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ABSTRACT 

Fins are often used in the energy industry for nuclear fuel or compact heat 

exchanger tubes to enhance the heat transfer rate. hformation on turbulent fluid flow and 

heat transfer in finned passages is rather limited in the literature. This research was 

motivated to produce a theoretical means of predicting the pressure drop, heat transfer 

rate and onset of nucleate boiling (ONB) in finned flow passages. 

A finite element model was formulated to solve the governing conservation 

equations of momentum and energy. The finite element method was chosen for ease of 

representing accurately the inegular geometry under consideration. The turbulence model 

used is based on a classical mixing length theory which was extended to be applicable for 

finned geometry. 

The numerical model simulated experiments and analyses for annuli and finned 

annuli available in the literature. This was to show the accuracy of the numerical model 

and the validity of the turbulence model to the finned annulus geometry. The validated 

mode1 was then applied to predict the ONB in finned annuli and to study the geometric 

effects of fin height and number of fins. 

Agreement of the present analysis with available experiments and analyses is 

quite reasonable for hilly developed turbulent flow and heat transfer conditions in both 

annuli and intemally finned annuli. The predicted ONB results in conjunction with the 

Davis and Anderson criterion show good agreement qualitatively and quantitatively with 

the Atomic Energy of Canada Limited (AECL) data. Both the measured and predicted 
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ONB occumd at the sheath midway between fins. The predicted ONB followed the 

trends of the measured data such that the ONB power increases with increasing flow 

velocity, subcooling or pressure. 

The panunetric study shows that heat transfer in finned annuli is generally more 

effective than that in the unfinned annuli for nealy al1 cases. However, an exception was 

seen with a tall8-fin geometry such that heat transfer is slightly less effective than the 

unfinned annulus, particularly for high flows. The pressure drop increased with the 

increase of fin height or number of fins for a given mass flow rate (or for a given flow 

velocity). The ONB for the finned annuli was found to Jccur at higher powers than that 

for the unfinned counterparts for the same flow conditions. The ONB heat flux increased 

with increasing fin height or number of fins. The increase of the ONB heat flux was 

found more pronounced with low flows. 
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CHAPTER 1 

INTRODUCTION 

Fins are often used in the energy industry for a nuclear fuel or compact heat 
.. - 

exchanger tubes to enhance the heat transfer rate. Details of the flow and heat transfer 

behaviour are necessary to be able to optirnize the geometry of fins for given constraints 

of a particular application. Unlike conventional geometries of a tube and annulus, 

information on turbulent fluid flow and heat transfer in finned passages is rather lirnited 

in the literature. This research was motivated to produce a theoretical means of predicting 

the pressure drop, heat transfer rate and onset of nucleate boiling (ONB) in finned flow 

passages. The main advantage of a theoretical approach is that it may not have to rely on 

experiments every time the geometry andfor operating conditions deviate from the 

reference design conditions. 

Analytical solutions (in a closed form) for pressure drop and heat transfer rate for 

turbulent flows rnay be feasible for simple geometries such as a tube or annulus provided 

that the terms resulting from a turbulence closure are in a simple integrable fom. There 

have been analytical derivations of the friction coefficients and Nusselt numbers for flow 



in an annulus using a turbulence closure based on the mixing length model [1,2]. 

However, when fins are attached to an annulus making it a finned annulus, the problem 

becomes intractable by a strict analytical means. Thus, numerical treatment becomes 

necessary to be able to consider the complexity of the geometry and flow behaviour. 

Therefore, the primary goals of the present study are to: 

(1) Develop a computational procedure using a finite element method to solve 

the goveming equations for hilly developed, incompressible fluid flow and 

heat transfer in finned passages. The solution domain will include both the 

wall and fluid, i.e., the conjugate problem, 

(2) Validate the numencal model, 

(3) Use the model to predict the heat transfer rate and pressure drop for a single-phase 

flow up to the onset of nucleate boiling (ONB) in internally finned annuli, and 

(4) Perform a pararnetric study on the effects of fin geometry on pressure drop, heat 

transfer and onset of nucleate boiling. 

Literature Review 

A finned annulus may be considered as an extension from its reference geometry 

of a simple annulus produced by attaching longitudinal rectangular fins. Thus, the first 

step of the present study is to review the previous works on turbulent flow and heat 

transfer for smooth annuli, and then to extend the review to the more complex geometry 

of finned annuli. 



Smooth Annuli 

For annuü, a large number of experimental and analfical studies [ 1- 151 have been 

performed to investigate the characteristics of turbulent fluid flow and heat transfer. Some 

[2,6,7] of the studies dealt with developing flow near the entrance region, but most of the 

studies dealt with fully developed flow. Most of the studies dealt with concentric annuli 

and one [6] dealt with eccentric annuli. Lee and Kim [9] studied the transverse curvature 

effects to the extemal flow dong a cylindrical body that are relevant to the inner tube of 

an annulus. Most of the studies dealt with various inner radii and ratios between the inner 

and outer radii. The studies were usually made in a narrow range of Reynolds number. 

Most of the studies were done using air and a few [13- 151 using water, thus they cover a 

very limited range of Prandtl number. 

The present study concentrates on fully developed, turbulent flow conditions. 

Turbulent flow is more complex than a larninar flow as the steepest gradients of velocity 

and temperature take place within a very short distance from the wall. This thin layer 

govems the pressure loss and heat transfer rate in turbulent flow. This layer in turbulent 

flow is influenced by Reynolds number and Prandtl number. In addition, unlike flow in 

tubes or between parallel plates where the maximum velocity occun at its center, the 

location of maximum velocity is not stationary in space and moves depending on the ratio 

between the inner and outer radii. As a result, the flow inside the location of maximum 

velocity cannot be described by the universal log-law velocity profile in a tube, although 

the flow outside the location of maximum velocity is similar to tube flow. 



The equations goveming fully developed flow conditions are the conservation 

laws of momenturn and energy (see details in Sections 2.2 and 4.1.1). With the use of the 

eddy viscosity concept, the turbulent fluxes of momentum and heat are reduced to the 

tems containing the turbulent viscosities and difisivities. The turbulent Prandtl number 

is used to relate the turbulent viscosities of momentum and difisivities of heat. It is 

usually given as a constant or as a function of distance from the wall. The complexity of 

solutions depends on how the turbulent viscosities are modelled. The previous studies [l- 

111 based on the Prandtl concept of mixing length [16] have shown this concept able to 

predict well the characteristics of turbulent flow and temperatures in annuli. The studies 

differ in the choice of the expressions for turbulent viscosities and the simplifying 

assumptions used. 

To obtain the temperature profile and thus heat transfer rate in a concentnc 

annulus, Lee [2] used the relationship for turbulent eddy viscosity based on a given 

velocity profile and the shear stress variation. The velocity profile inside the radius of 

maximum velocity was based on his data since the universal velocity profile is not 

adequate for this region. The shear stress was obtained from a force balance on an annuiar 

fluid element. Similady. Kays and Leung [l] used a given velocity profile together with 

given eddy diffusivity expressions from their experimental data to integrate the energy 

equation. 

The velocity profiles both inside and outside the location of maximum velocity 

were obtained using given expressions for the turbulent viscosities for both inner and 

outer walls. Lee and Park [7] used the Deissler expression [17] for the region close to 



both inner and outer walls and Reichardt's expression [18] for the region remote from 

both walîs. Shigechi et al. [8] used the van Driest expression [19] in the sublayer and 

Reichardt's expression in the hilly turbulent layer for eddy difisivities. Patankar et al. 

[20] used the mixing length relations to obtain the turbulent viscosities of momentum. 

The velocity profile was then used to obtain the temperature profiles from the energy 

equation. 

The van Driest expression [19] for the velocity-shear stress relationship was 

equated with the stress equations based on a force balance in terms of the location of 

maximum velocity (Wilson and Medwell [IO], Quarmby [Il]). The location of maximum 

velocity was obtained by matching the value of maximum velocity given by the inner and 

outer velocity distributions. 

To take into accoun t the transverse curvature effects, Lee and Kim [9] applied a 

new mixing length model of Homby et al. [21] to the external flow dong a cylindrical 

body. Lee and Kim [9] obtained the mixing length distribution as a function of wall 

distance and duct geometry. They considered that the van Dnest model is basicdly for a 

flat plate and does not recognize the influence of the duct shape. 

It is apparent from the review of previous studies on annuli that a more 

systematic method is needed to model a wide range of the geometry (radius ratio) and 

heating conditions (constant temperature, constant heating rate, heating on inner, outer, or 

both walls), and the flow conditions of Re and Pr. The systematic method means less 

reliance on empiricism and fewer modelling assumptions. Most of the studies 

necessitated prior knowledge of the location of maximum velocity, the sublayer 



thickness, andhr the velocity profiles in the inner and outer regions (with respect to 

maximum velocity) to obtain the heat transfer rate. 

In the present study, the location of maximum velocity is numerically determined 

from the continuous velocity profile in the annulus. The sublayer thickness is calculated 

based on the van Driest model [19]. Instead of using the wall function fnquently used, a 

fine grid within the thin layes from both inner and outer walls was used to capture the 

sharp gradients of velocity and temperature. The present study simulated fully developed 

flow and temperature profiles with constant axial heat rate for a wide range of inner 

radius, radius ratio, Reynolds number and Prandd number. 

Finned Annuli 

For intemally finned tubes, turbulent fiows were experimentally investigated by 

Trupp et al. [22,23] and Edwards et al. [24], who studied the local flow structure in 

intemally finned tubes. Both studies dealt with fully developed isothermal air flows by 

varying Reynolds number. The finning configuration consisted of longitudinal rectangular 

fins equally spaced around the periphery of a tube. Trupp et al. used tail fins (Wr0=û.67, 

defined as fin heightltube radius) while Edwards et al. used short fins (Wr,=O. 17 and 

0.33) and varied the number of fins for the same tube radius. Both studies reported details 

of flow structures such as axial velocity distribution, secondary velocities, friction factor 

and local shear stress distribution dong the tube and fin surface. Said and Tmpp [25] 

used a high-Reynolds number k-E model with the wall functions to predict detailed flow 



and heat transfer structures under fully developed turbulent flow conditions. Kim and 

Webb 1261 developed an approximate solution to predict the fnction factor and Nusselt 

number for turbulent flow in intemaliy finned tubes. The model assumed a uniform wall 

shear stress around the fin and the logarithmic velocity and temperature profiles in the 

core and interfin regions of the flow. 

In contrast, for internally finned annuli, very few experimental studies [27-3 11 

have been performed. De Lorenzo and Anderson [28] presented heat tramfer coefficients 

and friction factors for low Reynolds numbea up to 4000 for t h m  finned annuli having 

different number of fins. Longitudinal fins were attached to the outside of the inner pipe. 

They indicated the transition between laminar and turbulent flow at Reynolds number of 

400. Atornic Energy of Canada Limited (AECL) [27,29-3 11 has performed expenmental 

studies for the problem of finned annuli. They measured the inner wall rnidway between 

fins and fin tip temperatures under single-phase and two-phase (watedsteam) flow 

conditions to determine the heat transfer coefficients. The data indicated that high intemal 

heat generation produced highly nonuniform surface temperature distribution on the 

finned surface. The effects of hydraulic diameter and fin geometry were also investigated 

for a variety of flow conditions. However, detailed flow and temperature measurements 

were not made in these studies [27-3 11. 

An analytical model was presented by Patankar et al. [20] for fully developed 

turbulent air flow in intemally finned tubes and annuli. Their model assumed zero- 

thickness fins, uniform wall temperature and no secondary flow. It used the thermal 

boundary condition of constant axial heat input, and is based on a mixing-length 



turbulence model. Ivanovic [32] compared the variation of local heat transfer coefficients 

dong the tube wall and fin height using a mixing length approach and a low-Reynolds- 

number k-E model. The results of heat transfer coefficients around the finned surface 

from both models were found ta be nearly identical. These anaiyticd studies did not 

consider the acnial interaction between wall heat conduction and fluid convection, and 

assumed infinite wall conductance (Le., uniform wall temperature). 

Based on the limited information on finned annuli, it is evident that a more 

realistic model is needed to deal with a fully conjugated problem where the heat is 

intemally generated, is conducted in the finned sheath. and leaves from the finned surface 

to the fluid by turbulent convection. The continuity of temperature and heat flux at the 

surface/fluid interface determines the heat transfer rate. The heat transfer rate is 

influenced not only by the finning configuration and the finning material, but also the 

flow conditions (Re and Pr) and interna1 heat generation rate. Therefore. the present study 

deals with a fully conjugated problem of heat conduction in the solid and convection in 

the fluid for finned annuli. 

The Onset of Nucleate Boiling (ONB) 

The onset of nucleate boiling is defined as the condition at which the first bubble 

appears on a heating surface. 

Hsu [33] developed a theory for the ONB which related the size range of active 

nucleation sites on a heating surface to the superheat required to initiate nucleate boiling 



in the liquid. He reiated this superheat equation to a transient heat conduction equation 

and denved the effective cavity sizes to be the ones which take a finite waiting period for 

the liquid to attain superheat to grow into a bubble. The mdel  is based on the 

themodynamic equilibrium critenon (the ClausiusClapeyron equation) and ihe Gibbs 

equation for surface tension. These two equations are combined to give the superheat 

equation at which nucleate boiling will occur. The Hsu criteria gave the maximum and 

minimum sizes of effective cavities as a function of subcooling, pressure, physical 

properties and the ihickness of the superheated layer. His theory requires the knowledge 

of the thermal layer thickness within which a bubble nucleus can develop. Hsu defined a 

thermal layer thickness 6 sirnilar to a lamina sublayer within which the transport is a 

result of molecular action only (y<&). Outside the thermal layer ( y r  b), turbulent motion is 

presumed sufficiently strong so that the liquid temperature remains constant at T,. 

Han and Griffith 1341 proposed an analysis similar to Hsu's. Bergles and 

Rohsenhow [35] adapted the Han and Griffith analysis to develop a criterion for the ONB 

for a system with a wide range of cavity sizes. Assurning a linear temperature profile in 

the vicinity of a hernisphencal bubble nucleus and using an equilibrium theory to describe 

the superheat needed for equilibrium of the bubble, they developed a graphical technique 

for predicting the ONB. They established an empirical design equation for the heat flux 

required to initiate nucleate boiling in water. 

A mode1 proposed by Davis and Anderson [36] is also based on the 

thermodynamic equilibrium criterion (the Clausius-Clapeyron equation) and the Gibbs 

equation for surface tension. These two equations were combined to give the superheat 



equation at which nucleate boiling will occur. They equated the slope of the superheat 

equation with the temperature profile at the wall and solved for the critical distance from 

the wall required to initiate nucleate boiling provided that cavities of the size 

corresponding to this critical distance exist. 

In this study, detailed flow and temperatun profiles are predicted from the present 

model for the finned annulus geometry. The predicted temperature and heat flux 

distributions are used in conjunction with the ONB criteria of Hsu [33] and Davis and 

Anderson [36] to determine the ONB. 

1.3 Scope of Present S tudy 

In the present study, a mathematical model is formulated to study turbulent fluid 

flow and heat transfer in finned passages. The governing equations are solved numerically 

using a finite element method to represent finned geometries accurately. The numencal 

results are compared with available experimental data, analytical solutions and other 

numerical results for fully developed turbulent flow and heat transfer conditions for 

annuli and finned annuli. The analysis covers a wide range of Prandtl numbers, Reynolds 

numben and geornetries for turbulent flow in annuli and finned annuli. The analysis is 

then extended to predict the ONB and to snidy geometric effects of fin height and number 

of fins. 

The present analysis includes ixprovementr over previously published analyses as 

follows: 



(1) A generalized computational procedure based on a finiteelement mode1 was 

developed for solving a conjugate heat transfer problem whose goveming 

equations may be a number of nonlinear, coupled, partial differential equations. 

The mode1 may be extended to simulate flows in a more complex geometry (e-g., 

nuclear reactor fuel subchannels). 

(2) The present analysis of finned annulus geometries represents the geometry and 

boundary conditions of the problem accurately. Thus, the simplifying assumptions 

used in the previous anaiysis of Patankar et ai. [20] became unnecessary, e.g., thin 

(zero-thickness) fins, a uniform finned surface temperature and a correlation for 

the radius of maximum velocity. The geometry is modelled accurately and so the 

effects of the fin space which was neglected in Patankar et al. on the flow and 

temperature fields are fully considered. The heat generation rate is specified in the 

heater or the fuel rather than assuming a uniform wall temperature along the 

finned surface. Thus, the effects of nonunifom fluid and heater temperature 

distributions on the heat transfer rate are captured. The numerically detennined 

locations of maximum velocity are used. 

(3) Results were obtained of the heat transfer and flow behaviour in finnedhnfinned 

annuli for a wide range of geometries (e.g., annulus radius ratio, fin height, 

number of fins), Reynolds number (1v to 106), Prandtl number (0.7 to 10). The 

analyses of Patankar et al. [20] covered fully developed turbulent air flow in 

internaily finned tubes and annuli for Re of l e  to ld and Pr of 0.7. The effects of 

variable fluid properties were aiso considered in the present analysis. 



(4) The analysis was extended to predict the ONB in internaily finned annuli. The 

results were compared with experimental data obtained at AECL. 

(5)  Geometric studies using the mode1 were performed by varying fin height and 

number of fins. 

Outline of Presentation 

The present study is presented in the following order: 

(1) The goveming equations with the turbulence closure in Chapter 2. 

(2) The numerical procedure of the finite element formulation in Chapter 3, 

(3) Validation tests against available experimental data and previous analytical 

studies for single-phase flow in annuli and finned annuli. and the parametric 

study of fins on the heat transfer and pressure drop in Chapter 4. 

(4) An extension of the mode1 to the ONB prediction, and the geometric effect study 

of fins on the ONB in Chapter 5, and 

(5)  Conclusion and recommendations for future studies in Chapter 6. 



CHAPTER 2 

MATHEMATICAL FORMULATION 

2.1 Description of Problem 

An intemally finned annulus is considered as a base geometry in the present study. 

Figure 2.1 shows the cross section of a finned annulus which has eight intemal fins. This 

is one of the geornetries used in the AECL experimental study [27]. The eight 

longitudinal, rectangular fins are equally spaced around the inner wall. 

A one-sixteenth part of the cross section is used due to the syrnmetry. The 

calculation domain consists of three distinct regions: 

(1) the heater tube (Region l), 

(2) the sheath and fin (Region 2). and 

(3) the fluid (Region 3). 

The present study is also able to consider other geometries of annulus or thin fins. 

This is achieved by applying appropriate boundary conditions and physical properties as 

required by the goveming equations and the undedying assumptions. The details of 

modelling are descnbed in the analysis sections. 

The following boundary conditions are applied ( s a  Figure 2.1): 



dw -=O , at the symmetry planes ae 

-=O . at the symmetry planes ae 

w=O , ut the walls 

T=specijied , ut a node 

q,,=specifed , in region 1 

2.2 Governing Equations 

In al1 theoretical studies of the turbulent motion of a viscous fluid, it is assumed 

that the Navier-Stokes and energy equations are valid for the actual irregular motion. 

However, in view of the complexity of the paths of fluid particles in turbulent motion, the 

solution of the appropriate Navier-Stokes and energy equations is complicated and 

impracticable. Therefore, the main problems of turbulent fluid motion are to obtain the 

time-averaged velocity and temperature fields. The equations goveming such mean fields 

are obtained by time-averaging the dependent variables of the conservation equations for 

the actual motion. 

The Navier-Stokes and energy equations goveming laminar flows remain valid for 

turbulent flows. The only difference between the two sets of equations is that the 

dependent variables (u, v, w, T and p) for turbulent flows become instantaneous quanti ties 



(qk @+#, where 4 is an instantaneous value, O is an time-averaged value of 4, and @ 

is the fluctuation). 

In the present study, the goveming equations are formulated in Cartesian 

coordinates. The fînite element method used in the study can describe a curvature 

accurately given that a sufficient number of elements are provided. 1t was Reynolds who 

fiat derived the system of averaged turbulent-motion equation in 1895 (Buleev [37]). The 

equations of motion in Cartesian coordinates for an incompressible fluid are (Kays and 

The continuity equation is 



The fluid energy equation is 

The solid energy equation is 

where u, v, w and Tare the time-averaged velocity components and temperature, x and y 

denote the x and y coordinate at a cross section. z denotes the axial coordinate in the flow 

direction, and u', v', w' and T' are the fluctuating velocity components and temperature. 

The turbulence models most widely used in applications have k e n  based on the 

Boussinesq eddy viscosity concept (Kays and Crawford [38]). The turbulent fluxes of 

momentum and energy in Equations (2-6) to (2-8) and Equation (2- 10) are related to the 

mean-velocity and mean-temperatun gradients via a turbulent viscosity and a thermal 

diifusivity, respectively. 



where &d=p/p) and q,(=k/(pp))  are the eddy difisivity for momentum and that for heat 

transfer, respectively. Both 8, and c,were assumed to be isotropic within the flow 

domain. 

The problem under consideration deals with a steady, incompressible. constant 

cross-sectional duct flow. Therefore ail of the denvatives with respect to time, t, are 

neglected. With the assurnption of no secondary flow (Le., u=û, dl). Equation (2-8) is 

sufficient for determining the axial velocity profile in the x and y plane. The last term in 

Equation (2-S), which is the derivative of a turbulent stress in the direction of flow, is 

generally found to be negligible (Kays and Crawford [38]). Velocity, W. is invariant with 

respect to the direction of flow, z. for a fully developed flow profile (i.e., &/&=O). 

Therefore, Equations (2-8) and (2- 10) for steady, two-dimensional, fully-developed 

turbulent flow of an incompressible fluid reduce to: 



where p is pressure, p, dynamic viscosity, p, turbulent eddy viscosity, k, thermal 

conductivity, kt turbulent thermal conductivity and q, heat generation rate per unit 

volume. 

Equation (2-1 1) with the assumption of no axial conduction (in the direction) 

reduces to: 

2.3 Review of Turbulence Models 

Turbulent flows are very important in practical applications. However, 

turbulence rnodelling is the most uncertain feature of theoretical predictions for 

turbulent forced convection. It is difficult to make the turbulence closure applicable 

for d l  turbulent flows. Although considerable effort has been devoted to the 

development and evaluation of turbulence models, to date no mode1 has been found to 

be both accurate and general. 

For a suitable characteristic length scale I and velocity scale v, , the use of 

dimensional reasoning suggests that the turbulent viscosity may be evaluated as 



Closure through the Boussinesq assumption can be considered as specifying suitabfe 

expressions for v, and 1. Models based on the Boussinesq wumption are called turbulent 

viscosity models (or algebraic mdels). 

ALthough experimental evidence indicates that the turbulent viscosity models are 

reasonably vaiid in many flow problems, there are exceptions. A class of models has 

been developed that effects closure without this assumption. These generally require the 

solution of transport partial differential equations for the Reynolds stresses known as 

Reynolds stress models. Turbulence models are often classified according to the number 

of partial differential equations that must be solved in order to supply the modelling 

parameters. 

A detailed review and evaluation of turbulence models is beyond the scope of the 

present study, but brief descriptions of existing models are given below. A good review 

of various turbulence models may be found in References 39 to 42. 

Zero Eauation Models 

In an algebraic model, foilowing Prandtl[16], the charactenstic velocity of 

turbulence is obtained from Ihdd and 1 is evaluated from the local geometry of the 

flow, i.e., distance from the wall and the boundary layer thickness. The rnixing length 

physically means the distance over which a fluid particle travels before exchanging 

momentum with fluid particles of diffennt layen. The mixing length is small in 

cornparison with the channel dimensions. Algebraic models have provcn to be accurate 



and diable for relatively simple flows but need to be modified to predict flows with 

complicating features such as modifications to account for low Reynolds number effects, 

surface roughness, wall blowing and suction, strong pressure gradients and strearnwise 

curvature (Pletchet 139 1). 

Prandtl assumed that 

The Prandtl rnixing length hypothesis can be written in a generalized form [32] 

aui au. aui 
vt=l{ [a+$) q/ 

Algebraic models have been criticized for their lack of generality. The 

adjustments needed to accommodate special effects have no physical bais and the 

constants in the models are changed to handle different classes of flow problems. 

Closures of al1 models suffer from these shortcomings to a certain degree, but some 

advantage in generality can be obtained through the use of more complex models. 

Algebraic models have continued to be used, especidly for the calculation of flows that 

demand large computing times due to multi-dimensionality or geometric complexity. 

Additional details of this model can be found in Section 2.4 as it fonns the bais 

of the turbulence model used in the present study. 



One-Eauation Models 

The most common one-equation model follows the suggestions of Prandtl and 

Kolmogorov made in the 1940s to let v, be proportional to the square root of the 

turbulent kinetic energy k 

where c, is a constant. usually taken as 0.09. and 1 a turbulent length scale. 

A transport partial differential equation for the turbulent kinetic energy can be 

derived from the Navier-Stokes equations but the terms npnsenting difision. 

generation and dissipation of k introduce additionai unknowns involving higher 

momentums of fluctuating quantities. These are determined through additional 

assumptions. 

The one-equation model appears at least more physical since it gives k+O for 

dw/ar=O whereas the zero-equation model indicates k=O for aw/&=û. 

T wo-E~uation Models 

Two-equation models permit the determination of both a characteristic velocity 

v, and a length scale 1 from the solution of transport partial differential equations. One 

of these transport equations is for the determination of turbulent kinetic energy k. 

Although a second transport equation can be developed for a length scale, a transport 



equation is solved for a length scde related parameter rather than the length scale itself. 

One of the most widely used two-equation models is the k-E mode1 frst proposed by 

Harlow and Nakayama 143 J and m e r  developed by Jones and Launder [44]. The 

parameter E is the turbulence dissipation rate and is assumed to be related to the length 

scale through 

3 - 

The turbulent viscosity is evaluated in tenns of k and E by 

Launder [45] suggests that. for accuracy and wider applicability. a fine-grid low- 

Reynolds number treatment be employed near the wall in place of wall functions, 

despite the attractive simplicity of the latter approach. The local heat transfer coefficient 

is determined to a very large extent by the variation of the effective diffusivity within 

the immediate vicinity of the wall. This observation is applied even more strongly 

where the fluid is water or one with an even higher Prandtl number. 

A low-Reynolds number k-E turbulence model has been widely used and has 

shown good results for boundary layer flows in pipes (References 45 to 47). Jones and 

Launder [44] extended the application of a high-Reynolds k-E model to low-Reynolds 

nurnkr turbulent flows as 



The constants C,= 1.44, a,= 1 .O, and OF 1.3 are used. 

k 2  Re, =- 
V E  

The difference from the high-Reynolds number k-E models is the last tem in 

Equations (2-25) and (2-26) added for the low-Reynolds number model. Various forms 

in place of these terrns were used in the literatun (Refermes 49 and 50). The last term 

in Equation (2-25) was introduced for computational rather than physical reasons. 

Because of the difficulty of specifying E at the wall as a boundary condition, E was set 



to zero at the wall and the dissipation energy rate in the vicinity of the wall is 

compensated. The last term in Equation (2-26) is included in the ~equation to produce 

satisfactory variation of k with the distance from the wall. 

The main weakness of the model is that it is based on the concept of an isotropic 

eddy viscosity. For this nason, predictions are often poor for flows with recirculation, 

strearnline curvature, and buoyancy effects unless the constants in the model are 

adjusted [39]. 

Reynolds Stress Models 

Although two-equation models have a reasonable degree of flexibility, they are 

restricted by the assumption of an isotropic turbulent viscosity and the assumption that 

the stresses are proportional to the rate of mean straia. Reynolds stress models are free 

of these restrictions. Transport partial diffenntial equations are solved for the Reynolds 

stresses and heat fluxes. 

The transport equations can be derived in an exact form but contain terms that 

must be approximated to close the system. Several closure schemes have been 

proposed. One that is widely used follows from the work of Launder et al. [48]. 

The Reynolds stress models contain the greatest number of partial differential 

equations and constants. They can, in principle account for effects such as buoyancy, 

curvature and rotation without ad hoc adjustments. On the other hand, the determination 

of the optimum modelling formulation and values of constants is not easy. The 



computational effort required by the Reynolds stress models is significantly greater than 

that for the less complex models and to date they have received limited use in 

engineering predictions. A description of many of the improvements and applications 

can be found in the reviews by Rodi 1421, Nallasamy [49] and Patel et ai. [SOI. 

Rodi 15 11 has pmposed a useful algebraic simplification to the Reynolds stress 

model. He assumed that the hansport of Reynolds stresses was proportional to the 

transport of turbulent kinetic energy k. The result is an algebraic relationship between 

the stresses and k, E, and derivatives of mean flow quantities. Transport equations are 

solved for k and E so that the algebraic Reynolds stress model can be considered as an 

extended k-6 model. The model appears attractive for accounting for effects of 

buoyancy, rotation and streamline curvature in an econornical fashion. It is not, 

however, equivaient to a full Reynolds stress model because of the additional 

assumptions made to convert the expressions for Reynolds stresses to an algebraic 

fonn. 

Present Turbulence Mode1 

Since turbulence modelling is the most important link in the predictive 

procedure, improvements in predictive capability corne mainly through the 

development and venfication of improved turbulence models. It is not clear at present 

whether the best way is through the approach in which a number of models each finely 

tuned for specific conditions are employed, or the development of a single general 



model for the Reynolds equations capable of predicting a wide range of flows. 

For the present study, the rnixing length model (so cailed the zero equation 

model) is chosen for the following rasons: 

The rnixing length theory has been applied to the tube and annulus geometries 

over four decades and shown good agreement with available experimental data. 

The finned annulus geometry is considered to be an extension of the basic 

annulus geometry. 

Ivanovic [32] showed that the mixing length model produced local heat transfer 

coefficients dong the finned periphery in good agreement with a low-Reynolds 

number k-E turbulence mode1 of Jones and Launder [Ml. 

Since the finite element method used in the present study utilizes a fine mesh 

near the wall boundaries instead of special wall functions, a simple turbulence 

model is prefened to keep calculation times reasonable. 

To close Equations (2- 16) and (2-17). p, and k, must be determined first. 

Ivanovic [32] exarnined a number of candidate turbulence models for use in the finned 

geometry. This work concluded that the high Reynolds number k-E model using the 

wail functions cannot be used in near-wall regions. In addition, it found that a 

substantial portion of the inter-fin space was in effect a near-wall region (i.e., y'< 15). 

Since the available wall functions account for the influence of only a single wall, they 

are not suitable for the finned geometries where the influences of both tube wall and fin 

walls are important. Thus for the present study, a turbulence model based on the rnixing 

length theory was adapted to calculate the turbulent viscosity and thermal diffisivity. 



From Equation (2-2 1), the eddy viscosity for a two-dimensional flow is obtained 

7 a T  
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where Pr is the molecular Prandtl number and Pr, is the turbulent Prandtl number. 

The essence of the heat and momentum analogy method of calculation lies 

in the assumption of a definite relationship between the thermal and momentum 

eddy diffusivities. A wide range of the ratio of momentum to thermal eddy 

diffusivity (e&,=Prr) was used in the literature for annuli some of which are 0.9 

by Patankar et al. [20], 0.83 by Kays and Leung 111, and 1 .O for PmO. 1 by Wilson 

and Medwell [IO]. A review of the turbulent Prandtl number can be found in Kays 

1521. 

The tube wall and the fin surface simultaneously influence the mixing 

length. The closer the point is to one of these surfaces, the greater should be the 

effect of that surface on the resultant mixing length. To fulfill this requirement, a 



superposition method proposed in Reference 20 is used. 

Consider a point which is situated at distance y from the tube wall and 

distance s from the fin surface. The mixing length at the point is taken to be the 

resultant of two contributions. First, considering a pipe flow without fins, the 

k i n g  length at y is 1Jy) where subscnpt p denotes pipe flow. Next, if an analogy 

between the inter-fin space and a parailel plate channel is applied, the mixing length 

at s is l&) where c denotes channel flow. The mixing length, lp is obtained from the 

Nikuradse work on turbulent pipe flow (Reference 53). 

The van Driest damping function @,), (Reference 19) is used so as to extend 

the Prandtl mixing length al1 the way to the wall instead of rnincating it to zero at an 

assumed outer edge of the sublayer. It bridges the gap between the hlly turbulent 

region and the viscous sublayer. The expression for the mixing length proposed by 

van Driest was used 



where A+=26 

For the analysis of an annulus, a fully developed turbulent flow is considered 

with inner radius ri and outer radius r,. The velocity, which is zero at ri, increases 

with increasing r, attaining a maximum at r=rm, and then decreases to zero at r,. 

The radius of maximum velocity is numerically determined. 

A mixing length expression of Nikuradse type is used for both inside the 

radius of maximum velocity risrsr,,,, and outside the radius of maximum velocity of 

an annulus rmsrsrO. As shown in Figure 2.2, the following is defined: 

Y,, =Y0 -Y, 

The mixing lengths in the region inside rm and in the region outside rm of an 

annulus are given, respectively, by Li and L, 



The constants c,, c, and c, for a pipe flow are obtained from the Nikuradse 

work on turbulent pipe flow (Reference 53) as cl*. 14, c2=û.08, cfl-06. The flow 

outside r,,, is similar to a pipe flow except that the location of maximum velocity is 

situated at a distance y,, from the outer wall instead of at the pipe centerline. With 

this reason, the constants c,, c, and c3 were taken equal to those for a pipe flow. 

The constants b's in Equation (2-40) are detedned to satisfy the following 

three conditions: 

(1) L,=ûat@, 

(2) ( d L / d y ) = ~ ~  at y-i) and 

(3) Li=& at y=y,,,. 

Applying these three conditions to Equation (240) results in 

Thus for given xi, b,, b, and 6, can be detemined. 

The coefficient K~ is evaluated using the relationship denved by Roberts (31. 



The relationship of i(, with K,, was obtained using the Reichardt [18] Equation (2-44) 

for the eddy viscosity in a pige flow together with a corresponding Equation (2-43) 

for the region inside r,,,. 

Equating Equations (2-43) and (2-44) at r=r, yields 

The shear stress variation as a function of the radial coordinate is obtained 

from a force balance on a cylindncal element of fluid in the annular cross section 

(Knudsen [54]). It is assumed that the positions of maximum velocity and zero 

shear stress are coincident (Brighton and Jones [SI). For risrsr,, carrying out a 

force balance on an annular element of fluid gives 



For r,,,srsro, 

Combining Equations (2-47) and (2-49) Oves 

where ri is the inner radius, r, the outer radius, r,,, is the radius of maximum 

velocity, ri and s, are the shear stress at the inner wall and at the outer wall, 

respectively. 

Substituting Equation (2-50) into Equation (2-45) gives 



where Q=rJ.q. 

Similarly, the mixing length influenced by the fin tip and the outer wall is obtained 

by using the same method as describeci. The only difference is that the distance from 

the inner wall becomes that from the fin tip. 

Now, the mixing length influenced by the fin side is obtain by using the 

a i iogy  to a parallel plate 

where so is the haif width between fins, r&, and 8. the half angle between fins. As 

before, applying the conditions of (1) Lc=û at dl and (2) (dLJds)=~ at s50 results 

in 

So the value of a, needs to be detennined. The value of a, cannot exceed 1 since the 

mixing length can not exceed the physical dimension. The results were found to be 

not sensitive to the value of a,. The value of a,=û.8 was determined to be an 

optimum value in cornparison with finned tube data by Patankar et al. [20], and thus 

a,=0.8, a2=1.4 and ap0.6 were used for given ~ a . 4 .  

The y+ and s+ used in the van Driest functions are defined by 



where y is the distance from the wall, s is circurnferential distance rû from the 

horizontal and so is half distance between fins fi,. 

The wall shear stress is detemiined for both inner and outer walls applying 

the respective velocity gradient at the wall using 

So far the mixing length mode1 has k e n  established. However, as discussed 

in Section 2.3, the use of the rnixing length theory has an inherent shortcoming that 

the turbulent eddy viscosity as defined by Equation (2-3 1) becomes zero at the 

location of maximum velocity since the velocity gradient becomes zero at this 

location, and thus the thermal difisivity becomes zero as predicted by Equation (2- 

32). Although it is confined to a relatively small portion near the location of 

maximum velocity, it is considered unphysical based on the experimental deduction 

of pi by Lee and Park [7] and Reichardt (1 81. if it is uncorrected, this will result in 

an unphysical kink in the temperature profile near the location of maximum velocity 



because of sudden reduction of the effective thermal viscosity, particularly for small 

values of Pr (0.7). However, the effects on the overall pressure &op and heat 

transfer rate were found to be small in ternis of Cf and Nu. 

To remedy the shortcoming. the Reichardt expression for the eddy viscosity 

given by Equation (2-44) was utilized. At r=r,, Equation ( 2 4 )  reduces to 

Using the definition for p, at r=r,,,, Equation (2-3 1) reduces to 

Equations (2-57) and (2-58) are equated to obtain &/fi at r=r, which produces the 

limiting low value of the eddy viscosity. The limiting (A/&),,, value is used only 

for the purpose of obtaining a minimum value of the eddy viscosity near the 

location of maximum velocity. Further discussion and the results of using this 

remedy are given in Section 4.1.3. 

2.5 Definition 

The following definitions are used to reduce numencal results for 

cornparison with available data. 



The Reynolds number is defined by 

The friction coefficient is defined by 

C' dz 2 
pw2 

The heat transfer coefficient is defined by 

The Nusselt number is defined by 

The cross-sectional average velocity is defined by 

The bulk fluid temperature is defined by 



The average heat flux to the fluid is 



CHAPTER 3 

NUMERICAL PROCEDURE 

Overview 

The steady-state conservation equations for m a s ,  momentum and energy, and the 

equations for turbulence models in two dimensions may be expressed in the following 

generai fom (e.g., [SI): 

Equation (3-1) may be solved with specified boundary conditions. As shown in 

Figure 3.1, the boundary conditions on the boundary l' of the domain may be in one or 

more of the following forms: 

(1) essential (Dirichlet) boundary condition on I', 

(2) natural (Neumann) boundary condition on I', 

(3) general boundary condition on r, 



where may be any one of the dependent variables such as velocity components, 

pressure. and fluid and solid temperatures, K, to K, may be constant material properties 

or coupled, nonlinear convection and diffision coefficients, and K, is a source tem. The 

constant, K, is a specified value (e.g., heat transfer coeff~cient). The overbar variable 

denotes a specified boundary value. As can be seen in the finite element formulation, each 

finite element may have different terms and different values of $. 

The finite element method was chosen for use in the present study instead of the 

finite difference counterpart. The main reason was to be able to model accurately an 

imgular geometry that contains cuwed and square boundaries such as a finned geometry. 

Although the finite element method has been used widely to study mean flow fields, its 

application to the turbulent boundary layer flows appears to have been limited to a simple 

tube (References 56-58). The present study applies the method to boundary layer flows in 

a complex geometry as in finned passages. 

A variational approach is used in obtaining the finite element formulation of the 

governing equation with specified boundary conditions. The method used is the 

variational finite element model (Reference 55) in which the test function, w used for the 

variational formulation is the same as the approximation hinction used to represent a 

dependent variable, a. The variational formulation results in an algebraic integral fom of 

Equation (3.1) for each element . The integration of the integral is performed numencall y 

on an element basis by transforming the physical coordinates (the global nodes) of an 

element to the master coordinates (the element nodes) through the Jacobian matrix. The 

element-based equations are combined with the adjacent elements by imposing the 



continuity at their interfaces. When this algebraic equation is applied to dl elements, it 

results in a ma& of algebraic equations for al1 element nodes in the domain. n i e  matrix 

for al1 unknown nodal values of each variable is then solved using a direct matrix solver. 

The computer model used in this study is based on the finite element prograrn 

which was used for solving one lineu, two-dimensional, second-order, partial differential 

equation (Reference 55). In this study, a generalized procedure was implemented into the 

original prograrn to be able to solve a number of coupled, nonlinear, partial differential 

equations. The classical variational finite element method used in the study is well 

reported in many finite element textbooks (References 59-62). The method used is briefly 

described for completeness, and the computational procedure for solving a number of 

nonlinear, coupled partial differential equations is given in detail. 

3.2 Finite Element Formulation 

The basic idea of the finite element method is t O divide a given domain into a 

number of simple geometric shapes called finite elements. In the following the variational 

fonn of the goveming equations with specified boundary conditions (Equations (3.1) and 

(3.2)) is denved over a typical element 4. The resulting equation is applied to al1 

elcments, maintaining the continuity between the elements [59]. 

There are three major steps in the derivation of a variational finite element model: 

(1) Take al1 non-zero ternis to one side of the equality as done in Equation (3.1), 

multiply the resulting equation by a test function w, and integrate the resulting 



equation over the domain of an element 4. 

Reduce the second spatial derivative terms in Equation (3.1) using integration by 

parts (or Green's theorem) so that and w are differentiable only once with 

respect to x and y. 

Introduce the approximation and test functions into the variational fom from step 

2, and express the resulting equation in a matrix form. 

Applying step 1 to Equation (3-1) leads to 

Following step 2, Green's theorem of Equation (3-4) (Reference 60) is applied to 

the tenns containing second-order spatial derivatives in Equation (3.1). 

Then Equation (3-3), including the specified boundary conditions, becomes 



w here 

and n, and n, are the unit vectors in the x and y direction. 

Equation (3-3) holds for any test function W. The use of Green's theorem reduced 

the order of the second-order terms and resulted in the natural boundary integrai on î,, 

(the third last terni in Equation (3-5)). The last two tems of Equation (3-5) come from 

the specified boundary conditions. When the naturd boundary integrals are summed over 

the adjacent elements, the net contribution becomes zero unless the physical boundary of 

the domain is encountered. Thus it is not necessary to evaluate such natural flux integrals 

when a portion of the element does not coincide with the physical boundary r of the 

domain Q. The methad of imposing essential boundary conditions is described in a later 

section. 

Suppose that the dependent variable Q and the test function are approximated over 

a typical element 0, by 



where %@,y) represents an approximation of @(x,y) over the element Q, fl and w! are 

the values of functions and we at the element nodes i and j in the element 4, and $' 

are the approximation functions. 

Finally following step 3, Equations (3-7) are substituted into Equation (3-5) to 

obtain the following algebraic equation 

Equation (3-8) may be written in a matrix tom: 



w here 

3.3 Coordinate Transformation 

The integrand in the square bracket in the coefficient integral of Equation (3- 10) is 

given as a function of the global coordinates x and y. As shown in Figure 3.2. the global 

x-y coordinates are transformed to the master 6-7 coordinates only to facilitate numerical 

evaluation of the integrals. The integrand contains not only functions but also derivatives 

with respect to the global coordinates (x,y). Thus, the nlationships between (aqlax, 

dJrlay) and (aJrla(, aJrIùq) are dso needed. A quadrilateral element Q(x,y) used in the 

present study is transformed to a master square element -1 s ( 6 . q ) ~  1 in Q&,q). 

The transformation between the global element Q,(x.y) and the master element 

C2JE.q) is accomplished by a coordinate transformation of the form 



The dependent variables of the problem are approximated by expressions of the 

fonn 

where Jri denotes the finite element approximation functions of the master element Q,. 

The functions A used for the approximation of the dependent variable (Equation (3- 13)) 

may be different from that used in that of the geometry (Equation (3- 12)). The present 

study uses the isoparametric formulation (m=n) where equal degree of approximation is 

used for both geometry and dependent variables. Al1 quadrilaterai elements (i.e., a four- 

sided elernent whose sides are not parallel), &, in the x-y plane c m  be transformed to the 

same four-noded square master element, Q, in the e-q plane. 

The approximation (also called interpolation) functions depend on the number of 

nodes in the element and on the shape of the element. The shape of element is such that 

its geometry is uniquely defined by a set of points, which serve as the element nodes in 

the development of the interpolation functions. 

The approximation functions for a 4-noded quadrilateral element are 



The functions qi(x,y) can be expressed in terms of the local coordinates (5.1) by 

the chah rule of  partial differentiation 

Equation (3-15) may be rewritten in a matrix form 

Equation (3-16) gives the relationships between the derivatives of Jr; with respect to the 

global and local coordinates. The matrix in Equation (3-16) is called the Jacobian matrix 



Thus, (d@Ii?x, aqli3y) can be related to (aJI/af, a@/*) using Equation (3- 16) by invening 

the Jacobian matrix 

Equation (3-18) requins that the Jacobian matrix be non-sinplar i.e., iis determinant 

being non-zero. 

Using the transformation in Equation (3-12), it can be written 

Given the global coordinates (x,yi) of element nodes and the interpolation functions Jrf, 

the Jacobian matnx can be evaluated using Equations (3-19) and (3-20). 

The element area dA=&dy in element ne is transfomed to 

3.4 Numerical htegration over a Master Element 

The transformation of the geometry and the variable coefficients of the differential 
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equation from the global coordinates @.y) to the local coordinates (6.q) resulted in 

algebraically complex integrals. They preclude analytical (exact) evaluation of the 

integrals. Thus numerical integration is used to evaluate such complicated integrals. The 

transfomation enables numerical evaluation of integrals for a master element, 4(( ,q)  

over - 1 s (c,q) s 1 using the GaussLegendre quadrature formula 

where M and N denote the number of Gauss quadrature points, (&) denote the Gauss 

point coordinates (see Figure 3.3). and W, and W, denote the corresponding Gauss 

weights (Reference 59). In the present model, the interpolation functions are of the same 

degree in both f and q (i.e.. M=N). 

3.5 Assembly of Elements 

The assembly of finite elements to obtain the equations of the entire domain is 

based on the following two niles (refer to Reference 62 for further details): 

( 1) continuity of the pnmary variable (e.g., temperature) 

(2) balance of secondary variables (e.g., heat flux) 

n i e  correspondence between the local (the nodes of each element) and global (the 

nodes of the finite elernent mesh) nodal values imposes the continuity of the primary 

variables at the nodes dong the interface between the two elements. 

The flux from the two elements should be equal in magnitude and opposite in sign 



at the interface between the two elements. The balance of secondary variables are 

imposed by adding the two equations fiom the two elements at the common node. 

When a number of elements are connected, the assembly of the elements is carried 

out by putting element coenicients into proper locations of the global coetficient matrix. 

This procedure is implemented in the computer program with the help of the connectivity 

relations, i.e., the correspondence of the local node number to the global node number. 

3.6 Imposition of Essential Boundary Conditions 

As discussed earlier, natural boundary conditions are imposed through the finite 

element formulation. Essential boundary conditions are imposed using the row-column 

elimination method (Reference 55). The method is implemented without altering the size 

of the global coefficient matrix and without rearranging the rows and columns. 

The finite element formulation results in a system of Iinear equations in the form 

Suppose that the value of 



is a boundary condition to be imposed. The second equation in Equation (3-23) is 

replaced with Equation (3-24) to enforce the boundary condition for asyrnmetric 

coefficient matrices. For symmetric coefficient matrices, Equation (3-25) is further 

modified to Equation (3-26). This procedure enables us to retain the original order and 

symmetry of the coefficient matrix. 



3.7 Gnd Generation 

In both finiteelement and finite-difference methods, the accuracy of a solution 

depends on the fineness of the mesh and on the mesh distribution. The mgions of large 

gradients need to be represented by small elements or a fine grid. 

The present study followed the following generai guidelines (Reference 62) for 

generation of a finite element mesh: 

1. The mesh matches the flow and solid geometries of the computational domain 

accuratel y. 

2. The mesh is such that large gradients in the solution (temperatures and velocities) 

are accurately represented. 

3. The mesh does not contain elements with very large aspect ratios (i.e.. ratio of the 

largest side to the smallest side of an element) or large angular distortions, 

especially in regions of large gradients. 

A mesh generation program was developed and used to generate a mesh for a 

finned geometry considering the above guidelines. A structured mesh generation scheme 

is used for ease of numbering and positioning elements and element nodes. A gradient 

option is used to allow the gradual stretching or clustering of the nodes, particularly near 

the wall boundaries. 

The essence of the present study is to be able to predict flow and temperature 

gradients near the wall. No wall function which is frequently used is employed. Instead, 

very fine nodes are introduced in a very short distance from the boundary. 



Reynolds [63] notes that the large velocity gradient near the wall causes the large 

eddies to be broken up into small ones which dissipate the kinetic energy by the action of 

fluid viscosity. In order to achieve the observed steady rise in the dissipation rate, the 

smail eddies must become even smaller as the Reynolds number increases. Thus it is 

expected that the thickness of the viscous sublayer will dccrease as the Reynolds number 

rises, and that the turbulent activity will extend nearer to the wall. 

The temperature profile becomes flatter with high Pr numbers. At a high Pr, the 

momentum boundary layer is thicker than the thermal boundary layer; at a low Pr number 

the thermal boundary layer is thicker. Thus, the region irnmediately adjacent to the heated 

wall should be shorter and finer. For an annulus or finned annulus geometry, the nodes in 

the vicinity of the point of maximum velocity should also be finer to capture the point. 

Baker [64] noted that the accuracy of parabolic element solutions can be up to a 

factor of 50 improvement over the corresponding linear element results. Logarithmic wall 

elements (Taylor [65]) handles large velocity gradients near the wall. 

3.8 Computational Procedure 

The finite element formulation discussed in the preceding sections applies only to 

one equation with given coefficients Ki. A computational procedure is developed to 

perfonn a wide range of problems only through the changes of an input file and/or the 

designated subroutines defining nonlinear coefficients and source ternis in Equation (3- 1). 

Equation (3-1) representing al1 governing equations is solved sequentially one after 



another until al1 goveming equations converge to a unique solution. 

GeneraI Procedure 

The following iterative procedure was chosen to obtain a solution for a set of 

nonlinear, coupied equations: 

(1) A set of governing, coupled, nonlinear, partial differential equations to be solved 

is detemiined. Additional closure equations for a turbulence mode1 c m  also be 

included. 

(2) The T' terms in Equation (3-1) are specified for dl elements in every goveming 

equation. The fonn or value of each "K" may be different in different regions of 

the solid or the fluid in each goveming equation. They may be given as any 

combination of a constant, a functional fonn and a nonlinear function. When the 

fom is given as a nonlinear function, the hinction for each term in each equation 

should be defined in the designated subroutines. 

(3) The calculation domain is discretized into a number of finite elernents using a 

quadrilateral element and the nodal coordinates and interconnections are input to 

the input file. The grid generation program discussed in the preceding section is 

used for this purpose. 

(4) Each equation is solved at a time. When the next equation contains any term given 

as a function of the variables from the previous equations, the most recently 

calculated values are used. This method is used with a relaxation scheme to help 



converge solutions of a set of coupled, nonlinear equations. 

where & is a dependent variable, n and n-I denote the value at cumnt step n and 

previous step n-1, respectively, and A is a relaxation factor which is specified in the input 

file and may be assigned a value between O and 1 (0.5 used throughout the simulation). 

This procedure continues until al1 nonlinear coefficients are converged to the 

prescribed convergence criteria for al1 dependent variables. 

where Ri is a prescribed tolerance value for each variable i, and rn is the number of nodes. 

Convergence 

The variables used to solve turbulent diffusivities in Equations (2- 16) and (2- 17) 

are coupled and nonlinear. Al1 nonlinear coefficients should converge to the prescribed 

convergence criteria. 

The first iteration starts with laminar viscosity and obtain a velocity field. The 

velocity field is used to update al1 coupled variables pdl, aw/&), 4 (pJ, r,,.,(w), ~ ~ ( r , ) ,  

I(r,,,), tw(l,  dwlùr). Subsequent iterations use the most cumnt velocity profile to update al1 

the variables. Iteration stops when the convergence critena are met. 



The values of Ri in Equation (3-28) used for both velocity (w) and temperature (T) 

are 5 ( W3). The use of this tolerance value resulted in maximum relative residuals (i.e., 

1 V-W' I/@) of al1 nodes for al1 cases less than 4 ( 104) and 3 ( 1w) for w and T, 

respectively. These residuals always decreased monotonically with iteration. 

When a converged solution is obtained, al1 dependent variables at nodes and 

elements are available for a p s t  analysis to obtain friction factor, wall shear stresses and 

local and average Nusselt numbers. 

3.9 Matrix Solver 

The finite element formulation of the goveming differential equation leads to a 

system of linear equations with a coefficient matrix which is banded. If the coefficients 

for the first-order space derivatives (convective terms) in Equation (3-1) are zero (ic., 

KFK*), the banded matrix is syrnmetric, otherwise it is asymmetric. Both symmetric 

and asymmetric equation solvers are employed in the code for the solution of the system 

of linear equations. The choice of the solver is made in the code depending on the values 

of K, and K, The solvers are based on a Gaussian elimination scheme. They use the 

banded properties of the coefficient matrix both in storage and computation. 

Care has k e n  exercised in numbering the nodal points so that a minimum band 

width can be obtained to reduce the computational time. 



3.10 Verifications 

Simulated results are always verified for their consistencies on the wall shear 

stress and pressure &op relationship and also for the heat balance. 1t has been noticed that 

when the near-wail grid was not adequate, the heat leaving the surface did not agree with 

the heat generated and the heat received by the fluid although the latter two agreed. 

Wall Shear Stress 

As shown in Equation (3-29), the average wall shear stress was obtained by 

integrating the caiculated velocity gradients over al1 the surfaces. This value should 

satisfy the input pressure drop as in Equation (3-30). The difference was allowed to be 

less than O. 1 %. 

where n is the normal distance from the wall, and 6s is the wail distance increment over 

which the velocity gradient takes place. 



Heat Balance 

The internai heat generation rate per unit volume, qm in the heater tube or the fuel 

is specified through the input. 

The heat transfened into the fluid is calculated using the simulated cross-sectional 

dT Q=pC W-A &Z 
dz 

average velocity W and the other input variables from Equation (3-32). 

where 6z is the axial heated length. 

The heat leaving the heated surface is numerically integrated as in Equation (3- 

33): 

To satisfy the heat balance, the heat generated must equal the heat leaving the 

heated wall and also the heat received by the fluid, i.e., al1 Q's from Equations (3-3 1) to 

(3-33) must equal. The difference was allowed to be less than 0.1%. 



CHAPTER 4 

RESULTS AND DISCUSSION OF 

SINGLE-PHASE ANALYSIS 

A number of analytical and numericd solutions, and experimental data available 

in the literature for annuli and finned annuli were simulated to establish primarily: 

(1) the accuracy of the finite element numerical procedure, and 

(2) the validity of the turbulence model to the finned annulus geometry. 

The objectives were met in steps. Fiat, to establish the accuracy of the numencal 

model, the model simulated the large number of experimental and analpical data for 

smooth annuli in the literature. The model also simulated the analytical work of Patankar 

et al. [20] for finned annuli. Secondly, to support the validity of the turbulence model, 

AECL data [27] for a finned annulus geometry were used. 

4.1 Analysis of Smooth Annuli 

Before proceeding with predicting turbulent flow in the more complex geometry 

of a finned annulus, the pnsent model was fiat applied to turbulent flow in a concentric 



annulus. The turbulent flow is more complex than its laminar flow counterpart since both 

Reynolds number and Prandtl number beccme parameters. Fully developed flow and 

temperature profiles with constant heat rate per unit length were predicted for a wide 

range of radius ratio rdr, (1.6 to 80.7), Reynolds number (1v to 106) and h d t l  number 

(0.7 to 10). The validity of the solutions in annular passages is demonstrated by 

comparing with available experimental and analytical data for: 

(1) eddy viscosity, 

(2) location of maximum velocity, 

(3) velocity profile, 

(4) friction coefficient, 

(5) temperature profile, and 

(6) heat transfer rate. 

4.1. I Solution Procedure 

The equations goveming incompressible, hlly developed, turbulent fluid flow and 

heat transfer using the eddy viscosity concept are given in Equations (2- 16) and (2-17). 

These equations were solved to calculate detailed flow and temperature distributions and 

thus to determine the friction factors and Nusselt numbers for annuli. 

The present turbulence mode1 based on the mixing length approach is described in 

Chapter 2. The numerical procedure for solving Equations (2-16) and (2- 17) is given in 

Chapter 3. In the present study, r,,, and the sublayer thickness are calculated. instead of 



using the wall function, a fine grid near both the inner and outer walls was used to obtain 

. a solution. 

The annular geometry simulated hem is schematically shown in Figure 4.1. The 

major assumptions and simplifications used are: 

the annulus is concentric. Both walls are smooth with the inner wall heated and 

the outer wall adiabatic, 

velocity and temperature profiles are fully developed, 

the mixing length mode1 is used to obtain eddy diffusivities, 

the turbulent Prandtl number is given by a constant value Pr,=0.9, 

the radial pressure gradient is negligible, and 

axial thermal conduction and eddy diffusion are negligible. 

The von K h h  constant for the region outside the location of maximum veiocity 

is a d . 4  while that for the region inside the location of maximum velocity K~ is expressed 

as a function of r,,, which are determined numencally (see Section 2.4). The constants 

used in the van Driest model are AT=Az=26 everywhere. 

The Md convergence test was perfomed by varying: 

the total number of elements, 

the number of near-wall elements, 

the aspect ratio (i.e., the ratio of the largest side to the smallest side of an 



element), and 

the gradient of the wall nodes (defined as the ratio of grid size between the first 

and the last node in the near-wail region. The grid distances of the remaining 

elements are linearly incremented between the fmt and the last node). 

The case chosen was the expenmental case of Lee [6] which has rdr,=1.632, 

Re=4.0(1û"), P d . 7  and Ti=48.440C (The results are compared in Section 4.1.7). The 

reference grid is one stripe of 0.27' of the annulus. It has 69 quadrilateral elements and 

140 nodes, consisting of 10 elements close to the inner wall, 10 elements close to the 

outer wail and 49 elements in the central flow region joining the two inner and outer 

regions (see Figure 4.2). Typical near-wall region of 10 elements used for P-7 is in the 

order of O. 1 mm whereas that used for P d . 7  is in the order of 1 .O mm. This grid was 

determined through a test by varying the total number of elements. Figures 4.3 and 4.4 

show that the reference grid is adequate in view of negligible changes in the fluid 

temperature and velocity profiles by doubling and quadrupling uniformly the total number 

of elements of the reference grid. 

A further grid test was pecfonned using the reference grid. In Figures 4.5 to 4.8, 

"Fractional change" in the y axis is defined as test values divided by the reference value 

(Le., Cf,t&,, and Nu,flu,d. it is clear from Figure 4.5 that the number of wall 

elements is quite important to be able to capture sharp temperature and velocity gradients 

in the near-wall region. In addition, as shown in Figure 4.6, the degree of angular section 

which determines the size of element aspect ratio should be chosen in accordance with 

the size of radial grid. The gradient of wall nodes helped to capture sharp temperature and 



velocity gradients and reduced the number of wall nodes required to obtain an accurate 

solution (see Figure 4.7). 

4.1.3 Eddy Diffbsivity 

The success of the mixing length model hinges on accurate prediction of the 

turbulent viscosities and thus the turbulent thermal diffbsivities through the turbulent 

Prandtl number. The present analysis was compared with the turbulent viscosity profiles 

obtained experimentally by Lee and Park [7] and also with the analyses using other 

turbulent viscosity models. 

Figure 4.9 presents cornparison of the present analysis with the turbulent viscosity 

profiles obtained experimentally by Lee and Park [7]. The flat region predicted by the 

present theory is near the location of maximum velocity. 

The experimental eddy viscosity distributions in Figure 4.9 were determined via 

velocity gradients (Equation (4-1)) from the velocity measurements (Reference 7) using: 

- 
dr , 

where p,hp,+p,. The experimental results indicated that the eddy viscosity increases to a 

peak on both inside and outside the radius of maximum velocity and then decreases 

slightly near the radius of maximum velocity, but does not go to zero. The classical 

mixing length model based on Equation (2-3 1) will predict the turbulent eddy viscosity to 



approach zero at the location of maximum velocity since the velocity gradient becomes 

zero at the maximum velocity point. The present model avoids this situation by assuming 

a minimum turbulent viscosity noar the location of maximum velocity (See Section 2.4). 

A nearly flat profile near the maximum velocity point is due to this modelling and a slight 

increase of p, towards this point is due to a slight increase of the mixing length. The 

present and measured profiles of the eddy viscosities agree quite well for al1 Reynolds 

numbers. 

Figure 4.10 shows the comparison between the data of Lee and Park [7], and the 

analysis using the turbulent viscosities of Deissler [17] for the sublayer and of Reichardt 

[18] for the fully turbulent layer (Equations (2-43) and (2-44)). The constant, ui, was 

evaluated from Roberts' expression [3] (Equation (2-45)). For this analysis, the sublayer 

thickness was assumed to be at y+=26 for both inner and outer regions. The numerically 

determined value of the location of maximum velocity was used. As seen in the figure. 

the turbulent vixosities using this model overestimated the data by up to about 40%. 

Figure 4.1 1 pnsents the results of using rm of Kays and Leung [l] rather than the 

numerically detemllned rm of the present model. Although the r, correlation given by 

Kays and Leung has been endorsed for a wide range of radius ratios (r,,/ri up to 81) by 

Roberts [3], comparison between Figures 4.9 and 4.11 suggests that the present model 

using the numerically determined rm yields more accurate prediction of the turbulent 

viscosities than using the Kays and Leung r, correlation. 

Figure 4.12 compares the performance of al1 four eddy viscosity models for 

Re=l. l(lC?) with the data of Lee and Park [7]. The present model produced the best 



agreement with the data It is noted that the present model using r,,, of Kays and Leung 

produced a nearly identicai profile for the region outside r, to that for the present model 

using the numericaily determined r, since both models used von K h h ' s  constant 

~ 8 . 4  for this region. 

4.1.4 Location of Maximum Velocity 

A further difficulty with the case of turbulent annulus flow is that the position of 

zero shear and thus the wall stresses are not known a priori. Brighton and Jones (51 

reported that the zero Reynolds stress (zero velocity gradient) and maximum velocity 

coincide within the accuracy of the experimental results. 

The radius of maximum velocity for Iaminar flow, r ,  in an annulus is given by 

Lamb [66] : 

Kays and Leung [1] presented a correlation (Equation (4-3)) for the radius of 

maximum velocity for rJri less than 10. 



where r, is the radius of maximum velocity for turbulent flow in an annulus. Equation 

(4-3) is reported to be adequate for a wide range of rJri up to 80.7 (as confinned by the 

experiments by Roberts [3] and Lee and Park [7]). Barrow et al. 141 also presented a 

correlation for the radius of maximum velocity which produced results similar to those 

from Equation (43) for rJri less than 10. 

Figure 4.13 shows a comparison of the present simulations with experiments of 

Brighton and Jones [SI and Ivey [67] on r,, and also the predicted values of rm of Kays 

and kung [ I l  and r, for larninar flow. The agreement is quite good given the uncertainty 

of such measurement. For high ri/rO, the location of maximum velocity of turbulent flow 

converges to that of laminar flow. As shown in the figure, the location of maximum 

velocity for turbulent flow moves closer to the inner wall for a given annulus geometry in 

comparison with that for the laminar fiow. Consequently, the ratio of t!ie shear stress 

between the inner wall and the outer wall is less than that for larninar flow (see Equation 

(2-SO)), indicating more contribution of the outer wall to the pressure loss for turbulent 

flow. The trend is sirnilar to that of the Kays and Leung correlation given by Equation (4- 

3). 

It was found from the present analysis that r,,, did not change with Re for high 

Reynolds numbers (AU'). This trend is consistent with Quarmby's measunments [Il] 



that the change of maximum velocity radii ratio (r,,,Cr,) was negligible at high Reynolds 

numbers (>le for rdr, 40). 

4.1.5 Velocity Profile 

Fuliy developed annular flow involves the combination of two boundary layers, 

each extending from a wail to the point of maximum velocity. Unlike those that meet at 

the center of a pipe or rnidway between parallel planes, annular flow is quite different in 

velocity distribution, shear stress and turbulence quantities (Barrow et al. [4]). 

The mechanism of the flow outside the radius of maximum velocity is similar to 

that occumng in circular pipe flow. This is not tme for the fiow inside the radius of 

maximum velocity. The standard universal velocity profile is not adequate for the 

turbulent velocity distribution inside the radius of maximum velocity. 

Brighton and Jones [SI showed that velocity distributions near the outer wall fit 

the law of the wall for al1 radius ratios. The inner velocity profiles are in agreement with 

the law of the wall for high rJrO ratios (0.562 and 0.375), but for lower r& u' is less than 

predicted by the law of the wall for y' greater than about 40, with the deviation increasing 

with decreasing ri(r,. 

Figure 4.14 compares the velocity profiles outside the radius of maximum 

velocity of the pnsent analysis with those in Reference 4. Agreement with the 

expenmental data is quite good. The velocity profiles are essentially the same for a wide 

range of radius ratios (th from 1.632 to 80.72). 



Figure 4.15 compares the velocity profiles inside the radius of maximum velocity 

of the present analysis with those in Refereme 4. Agreement with the experimental data 

is quite reasonable. As indicated by Barrow et al. 141, agreement of the velocity 

distributions between the outer wall of the annulus and the pipe might be expected 

because the ratio of the boundary layer thickness to outer wall radius is often much less 

than that for the pipe and consequently the lateral curvature effects are reduced. However, 

inside r, the velocity profile is aff'ected by the inner wall curvature and depends on the 

annulus radius ratio. 

Figure 4.16 compares the velocity profiles with the Brighton and Jones 

measurements [5].  The overall agreement of the profiles is quite good for both inside and 

outside the radius of maximum velocity for ail Reynolds numbers and radius ratios. The 

radii of maximum velocity were also well predicted for al1 cases. As the ratio rJri was 

increased, the location of maximum velocity moved to the inner wall and made the 

velocity gradient steeper from the inner wall. Figure 4.17 compares the predicted velocity 

profiles outside r, with the standard universal velocity profile of 

with ~=0.36 and B13.8. As discussed before, the log-law profile is quite adequate to 

represent the velocity profile outside r,,, for the wide range of Reynolds number and radius 

ratio. 



4.1.6 Friction Coefficient 

Figure 4.18 compares the friction coefficients with those of experimentai data of 

Brighton and Jones [SI and those for smwth pipe flow. The smwth tube data were based 

on an empiricai equation that fits the Khh-Nikuradse equation [38]: 

As shown in the figure, the friction coefficients for flow in annuli with smooth 

walls are slightly higher (up to 10%) than those for pipe flow. 

4.1.7 Temperature Profile 

The temperature profiles were measured by Lee [6] for rJri=l ,632 and Re=4(104), 

and aiso for rdr,=2.584 and ~e=2(10~) .  

Predictions were made from the present mode1 specifying the following 

conditions: 

(1) -dp/dz which matches the measured mass flow rate, 

(2) dT/& which matches the measured constant heating rate, 

(3) inner wall temperature, TWi, 

(4) w=û at both walls, 

(5) dT/dr=O at the outer wdl, and 

(6) aw/a0=0 and d'ïlaû=û on the symmetry lines. 



Fluid properties were evaluated at bulk temperature. 

Figures 4.19 and 4.20 compare the predicted temperature profiles with the 

experimental data of air [6]. In Figure 4.19, the maximum difference between the 

measured and caiculated temperatures was about 3°C when (Ti-T0)=29.2OC. The predicted 

Nusselt numbers comsponding to the conditions in Figures 4.19 and 4.20 were caiculated 

and found to be lower tban the experimental Nusselt numbers by 5 and 8%, respectively. 

4.1.8 Heat Transfer Rate 

Figure 4.2 1 compares the predicted Nusselt numbers for rdri=2 and Prs0.7 with 

the experiment and analysis of Kays and Leung (11. Figure 4.22 compares the predicted 

Nusselt numbers for two Prandtl numbers of 0.7 and 10 with those of Kays and Leung 

[I l .  Ali fluid properties were evaluated at bulk temperature. As shown in the figures. 

agreement is good. 

4.1.9 Summary 

In the present analysis of annuli, Nikuradse's mixing length relation for turbulent 

pipe flow [53] was applied to the region outside the location of maximum velocity. For 

the region inside the location of maximum velocity, the modified von K b h  constant of 

Roberts [3] was used. The van Dtiest damping hinction [19] was used to bridge the 

mixing length between the fully turbulent region and the viscous sublayer. The mixing 



length parameters that affect the velocity and temperature profiles are A+, K~. K~ and Pr,. 

The values of the parameters used in the present study are A+=26, i(i expression by 

Roberts [3], ~f l .4 ,  and PqS.9. A similar procedure was used earlier by Patankar et al. 

[20]. The main difference is that the present mode1 chose to use the calculated radius of 

maximum velocity. The reason is that the use of the Kays and Leung r,,, [l] was found to 

overestimate by up to 30% the eddy viscosities of the experiments [7]. 

Fully developed fiow and temperature profiles were predicted for the wide range 

of radius ratio rJri (1.6 to 80.7). Reynolds number (104 to 106) and Prandtl number (0.7 to 

10). The overall agreement between the present numerical results and data available in 

the literature for the annulus geometry is quite reasonable not only in tenns of velocity 

and temperature profiles. but also friction coefficients and Nusselt numbers. 

4.2 Comparison with Previous Finned Annuli Analysis 

The present turbulence model based on the modified mixing length model is 

similar to that used in the Patankar et al. analysis [20]. Thus. the present simulation was 

compared with a finned annulus case previously analyzed by Patankar et al. However. as 

detailed in Section 2.4, it is noted that there are differences in the modelling approach as 

the present model used: 

(1) The numencally determined r,,, values (one r, value along each radial grid line) 

rather than the single value used in Patankar et al. based on that of Kays and 

Leung. Thus, this difference influenced the variables such as wall shear stresses, 



the von K h i n  constant on the inner wall and the coefficients in the mixing 

length equations that depend on rm, 

(2) The limiting values of the turbulent viscosities near zero velocity gradient (i.e., 

near rJ derived from Reichardt's expression rather than the value of zero at t, 

and 

(3) The values of coefficients b,, b, and b3 in the mixing length equation for inside the 

location of maximum velocity (Equation (2-42)) given as a function of rJri and 

rdr, rather than the constant values used in Patankar et al. 

The analysis was pecformed for a case with the sarne conditions of Patankar et al.: 

r,,/ri=2, 

12 thin (zero thickness) fins attached to the inner wall of the annulus, 

H/(r,-ri)= 0.4 where H is the fin height, 

Pr = 0.7, 

uniform axial heating at the inner tube and fin walls and adiabatic at the outer tube 

wall, 

fluid properties evaluated at 20°C, and 

full y developed velocity and temperature profiles. 

The goveming equations are already given by Equations (2-16) and (2-17) in 

Section 2.2. The thermal boundary conditions used are T=T, dong the fin height and 

around the inner tube circurnference, and n/ae=O on the symmetry lines. The velocity 

boundary conditions are w=û on the walls and ùw/ae=O on the symmetry lines. 

The geometry and the grid used for the present simulation are given in Figures 



4.23 and 4.24, respectively. The number of nodes and finite elements used are 107 1 and 

1000, respectively. 

The results of the present computations are compared with those of Patankar et al. 

in Figures 4.25 and 4.26. The Nusselt number Nu and fiction coefficient Cf are plotted 

against Reynolds number (based on the hydraulic diameter). The simulations were made 

in two ways using: (1) the numerically determined r, and (2) Kays and Leung's r,. The 

present analysis using the calculated r, values simulated lower Cf and Nu than the 

analysis of Patankar et al. while the present model using the r,,, value of Kays and Leung 

simulated higher Cf and Nu than the Patankar et al. analysis. The differences arnong the 

three predictions are reasonable in view of the differences in modelling approach 

mentioned earlier. 

Figures 4.27 and 4.28 compare the local heat transfer coefficient distribution 

around the heated tube circumference and dong the fin height between the present and 

Patankar et al. analyses. The local heat transfer coefficients (HTC) in Figures 4.27 and 

4.28 were normalized by the area-averaged HTC over the tube and over the fin height, 

respectively. There are slight differences in the distributions between the two analyses. 

The difference near the fin tip is believed to be caused by a much finer grid before and 

after the fin tip used in the present model compared with that of Patankar et al. The 

present model using the Kays correlation shows a closer agreement since the anaiysis of 

Patankar et al. used the sarne correlation. It is noted that the heat transfer coefficient is 

highest at the tube center and reduces to zero at the corner between the tube and the fin 

base, and then increases towards the fin tip. 



There are no expenmental data for this geometry of zero-thickness fins. The 

present mode1 using the caiculated r,,, was demonstrated to predict eddy viscosities closer 

to the experiments than that using the ICays and Leung r, for an annulus (see Section 

4.1.3). 

4.3 Cornparison with AECL Finned Annulus Data 

4.3.1 AECL Single-Phase Experiments 

Facili tv and Measurements 

Figure 4.29 shows a schematic diagram of the test facility located in AECL-WL 

[29]. The vertical test section contains a finned pin placed inside a glas tube. The finned 

heater is constructed from a heater tube spray-coated with an electrical insulation of 

unifom aluminium oxide (A1203) layer of O. 1 mm, and clad with an aluminium sheath 

with 8 or 10 rectanplar, longitudinal fins. The dimensions of the &fin pin geometry are 

given in Figure 4.30. Power is supplied at a uniform rate by passing cumnt through the 

tube wall. Two glass tube diameters (17 and 24 mm ID) were used to study the effects of 

hydraulic diameters on the heat transfer characteristics. 

The sheath and fin tip temperatures were measured at three locations dong the 

heater using K-type themacouples (see Figure 4.3 1): one measured on the sheath at the 

midpoint between two fins and another at the mid point at the fin tip. The fluid 



temperatures at the test section inlet and outlet were measured by resistance temperature 

detectors. The pressure drops in the test section were measured using differential pressure 

transmitters. The test section inlet and outlet pressures were measured using absolute 

pressure transrnitters. A turbine flowmeter was used to measure the volumetric flow rate 

at the test section inlet. The power input was calculated from the voltage and cumnt 

measured across the heater. 

Figure 4.3 1 also shows the measurement locations of flow, fluid temperatures, 

wall temperatures, pressure and differential pressure. Appendix A, which reproduces the 

AECL data, gives velocity, bulk temperature and pressun at the measurement location in 

the downstream end (Section 3 in Figure 4.3 1). which is less than 50 mm from the heater 

outlet end. At this location. the value of pressure was actually measured locally using dp 

cells and the value of bulk temperature was calculated from an energy balance using inlet 

bulk temperature and power input. The value of velocity was calculated from the 

measured volumetric flow rate at the inlet. Appendix A also includes two wall 

temperature measurements for single phase flow. The inlet conditions and the power 

supplied to the heater were varied in the range oE 

Power: O-200kW 

Pressure: 100 - 300 kPa (abs) 

Velocity : O-6m/s 

Inlet Ruid Temperahire: 15 - 100°C 

AECL perfonned additional pressure drop measurements for single-phase water 

flow [30]: 0-7.5 m/s, a 440-mm length starting 80 mm from the test section inlet, 



isothermal conditions for an 8-fin pin in a 17-mm ID glas tube (Dh=7.3 mm). If a ratio of 

LlD of about 20 were required for the flow to be fully developed. about a 1M-mm length 

or longer would be requind for D,,=7.3 mm. Thus, the AECL Ap measuremenu are 

expected to be slightly higher than the Ap of a fully developed flow over the same length. 

Detailed information on the instrument calibration, test pmcedure and an 

estimation of the measurement enors can be found in References 27 and 29. 

Test Procedure 

The test facility had four parameters which could be adjusted individually or in 

combinations: power, pressure, volumetnc flow and inlet temperature. Experiments were 

perfonned by varying one of the four parameters and keeping the remaining three 

parameters constant. 

Dissolved and trapped noncondensible gas was removed from the loop in the 

following procedure. The pump speed was cycled from O to maximum flow until there 

was no visible gas passing through the glass test section. The dissolved noncondensible 

gas was removed from the loop fluid by boiling the fluid in the surge tank which was 

vented to the atmosphere. This was accomplished by establishing a volumetric flow rate 

of 0.6 Us and applying 20 kW of power to the test section. These conditions were 

maintained for one hour. Degassing was done each testing day prior to any expenment. 

Both the AECL single-phase and ONB data used in this study were produced by 



increasing power or by increasing inlet temperature. When experiments were performed 

by increasing power, the volumetric flow, test section outlet pressure and test section inlet 

temperature were held constant. The power applied to the heater was increased gradualIy. 

A suficient time lapse was allowed for steady-state conditions to be achieved. This 

procedure was repeated until suficient single-phase data points were collected. 

When experiments were performed by increasing inlet temperature, steady-state 

initiai conditions of outlet pressure, flow and power were adiieved. Then the heat 

exchanger secondary side cooling water flow was reduced such that the test section inlet 

water temperature was increased at approximately 2°C per minute. 

Reference 27 provides the accuracy of al1 measurements of fluid and surface 

temperatures, pressures, differential pressures, flow, current and voltage. The overall 

uncertainty with surface temperature measurements was estimated including the 

thermocouple error (l.l°C), fin effect (O.g°C), calibration (03°C) and mounting (O.g°C) 

and is reported to be within 13S°C in Reference 27. Two local surface temperatures were 

the main measured values used for comparison with the present analysis. 

Additional uncertainties associated with the surface rneasurements may be caused 

b y: 

a flow disturbance around the thermacouple junction. The junction is of a disk 

shape (with diameter of 0.01" and thickness of 0.005") and is embedded into the 



sheath. It was noted during the pre-tests that the direction in which the 

thermocouple junction faces influenced the reading and thus it was mounted to 

face against the flow, 

manufacturing tolerances on the dimensions of the fin and the sheath, 

eccentricity of an inner finned pin in the tube. This would cause subchannel flows 

to be distributed unevenly around the interfin regions, and 

nonuniformity of the heater thickness around the circumference. The 

circumferential variation of a heater thickness by manufacturer's tolerance would 

cause redistribution of the heat supplied, particularly for high power tests (see 

Section 4.3.2 for its sensitivity). 

Analysis of AECL SinglePhase Finned Annulus Data 

Validation is required to demonstrate the adequacy of the present models applied 

to the finned geometry, particularly: 

1. The modelling choices such as the use of numencally determined r, values (a 

number of r,,, values evaluated dong each radial grid line) and the use of lirniting 

turbulent viscosities near zero velocity gradient based on Reichardt's expression 

(see Sections 2.4 and 4.1.3), and 

2. The modifkd mixing length theory which takes into account the influences of 

both the tube and the fin walls. The value of coefficient a, in the mixing length 

equation (Equation (2-52)) for the fin side is adjusted. 



The adequacy of item 1 was demonstrated extensively for the annulus geometry in 

Section 4.1. AECL experimenta! data were used for validation, particularly item 2. 

AECL experiments were selected for simulation to demonstrate the eRects of flow 

velocity, subcooling and heater power. The simulated wall temperatures are compared 

with the measured. 

The problem is already described in Section 2.1 along with the boundary 

conditions. As shown in Figure 4.32, there are three different regions in the domain: 

region 1 is the heater, region 2 is the sheath and the fin, and region 3 is the flow region. 

The governing energy equations and physical properties of each region are quiie different. 

The governing momentum and energy equations for the flow region of fully developed 

velocity and temperature are given by Equations (2-16) and (2-17). The energy equation 

for the heater tube region is given by Equation (2-18). The energy equation for the sheath 

region including the fin is also given by Equation (2-18) but with no heat generation term 

q,. The continuity of temperature and heat flux was imposed at the interfaces between 

the regions. 

The von Kirmiin constant for the outer wall is ~ ~ 4 . 4  while that for the inner wall 

xi is expressed as a function of rm which are numerically determined (see Section 2.4). 

The constants used in the van Driest mode1 are A+=26 for both the inner and outer walls. 

The turbulent Prandtl number is given by a constant value of Prt=0.9. 



The analysis was performed for an 8-fin heater in a 17-mm glas tube shown in 

Figure 4.32. Considering the symmetry of the geometry, a one-sixteenth part of the cross 

section of an 8-fin pin shown in Figure 4.32 is discretized into a grid of 1440 finite 

elements and 15 19 nodes as shown in Figure 4.33. Instead of using the wall function, a 

number of fine nodes (10 nodes) were used for the near wall regions. 

The input data for the program are as follows: 

-dp/dz which matches the rneasured mass flow rate, 

dT/dz which matches the measured constant heating rate, 

interna1 heat generation rate to the heater which matches the measured power to 

the test section, 

temperature at a selected node which gives the measured bulk fluid temperature, 

w=û at both walls, 

d T / d d  at the outer wall, and 

dw/aO=û and ùT/a&û on the symmetry lines. 

The following calculation procedure was used to simulate each single-phase 

experiment: 

1. Make initial guesses of -dp/dz and p, (using p,). Specify a temperature at a 

selected node. 

2. Solve Equations (2-16) to (2-18) for the w and T fields, respectively. 

3. Calculate m from average velocity W. Calculate bulk fluid temperature Tb from 

the T field. 

4. Compare rii and Tb in Step 3 with the experimental values. if deviation exceeds 



196, modify -dp/dz and the specified temperature. Repeat Steps 2 to 4 until 

deviation is within the tolerance. 

Now velocity and temperature distributions wen obtained as well as -dp/dz, T, 

and T, for the given m, Tb and power. 

Com~arison with AECL Sinele-Phase Data 

Figure 4.34 compares the predicted pressure gradient with the experimental value 

based on the measured pressure drop across the 440 mm test section at various flow rates. 

As discussed in Section 4.3.1. the AECL Ap measurements would exceed the Ap of a 

fully developed flow since some length of the 440-mm length would be in developing 

flow. Even though the present predictions for fully developed conditions exceed the 

measured values (which include a developing part), the deviations are acceptably small. 

Figures 4.35,4.36 and 4.37 compare the predicted surface temperatures with the 

two measured wall temperatures for flow velocities of 1.2,2.0 and 4.0 m/s, respectively, 

at the sheath between fins and at the fin tip. It is noted that the effect of pressure on the 

heat transfer rates is shown to be negîigible in the figures (except for few outliers in 

Figure 4.37). For the case of velocity of 1.2 m l s ,  the predicted temperatures are within the 

error bounds for a wide range of heat generation rate. For the cases of higher velocities of 

2.0 and 4.0 m/s, the predicted wall temperatures both at the sheath and at the fin tip are 

higher than the measured temperatures. The overprediction of the wall temperatures at 

high flows and high powers corresponds to an underprediction of the heat transfer 



coefficients up to 15% by the present analysis (underprediction of the Nusselt number by 

the same amount) compared to the experiments. 

Figure 4.38 includes the wall temperaiuns calculated using the heat transfer 

correlation of Stein and Begell[13] and assurning that the same amount of heat was 

transferred through the surface area of the inner wall of the annulus without the fins: 

where Q is the element power and A, is the elernent surface area. Equation (4-6) was 

developed for the range of r h  of 1.235-1.695, Re of 2.2(1O4)-3.0(10') and for water. For 

water flow inside a centrally heated annulus, Nixon [14] further supported this equation 

provided that the fluid properties are evaluated at lh(Tb+Tw) based on data of Pr of 2.0- 

8.5, Re of 6.0(1@)-6.0(10'), rJri of 1.33-2.45 and ~,=5.3(10~~)-4.53(10*) m. As shown in 

Figure 4.38, the presence of fins reduced the surface temperatures significantly. 

Typical simulated results are shown in Figures 4.39 (temperature distribution) and 

4.40 (heat transfer coefficient and heat flux distributions dong the finned surface). Figure 

4.39 shows that the surface temperature is the highest at the sheath center and decreases 

towards the fin tip. Figure 4.40 shows that the heat transfer rate decreases towards the fin 

corner from the sheath center and increases towards the fin tip reaching the peak at the fin 

tip edge. The distance on the x-axis is normalized by the total periphery between the 



sheath center and the fin tip center. The case is a simulation of test number 277 in 

Appendix A. The definitions of and a= are 

qm =Ii,(T,, -Tb (4-8) 

T,,, ha= and Q, are the ma-averaged values over the entire inner surface including the 

sheath, fin side and fin tip. 

As shown in Figure 4.40, the heat flux distribution is quite nonuniform along the 

inner periphery of the sheath, the fin side and the fin tip. The heat flux over the sheath 

decreases towards the comer of the fin base reaching a minimum at the comer, then 

increases dong the fin side reaching its peak at the edge of fin tip, and then stays nearly 

uniform along the fin tip. Not only does the heat transfer coefficient increase along the fin 

height, but heat transfer itself increases. The heat transfer coefficient is shown to be 

higher over the fin tip than over the other inner periphery. This finding differs from the 

conventional assumption of negligibie heat transfer through the fin tip. The temperature 

distribution shows its peak at the sheath center between fins, and decreases along the fin 

side reaching its minimum at the edge of the fin tip. and increases slightly dong the fin 

tip. 

A sample of the detailed flow and temperature distributions are shown in Figures 

4.41 (iso-vels) and 4.42 (iso-therms), respectively. As shown in the figures, a sharp 

velocity gradient is concentrated near the first thin layer from the walls. The presence of 

fins pushes the velocity gradients towards the location of maximum velocity. However, 

the velocity profile outside the location of maximum velocity appean unperturbed by the 



fins. This led to a steeper velocity gradient at the fin tip than over the sheath, contributing 

to the increased heat transfer coefficient at the tip show earlier. Similady, as shown in 

Figure 4.42, most fluid temperature gradients take place wiihin a very short distance from 

the heated wall. The presence of fins also afTected the temperature distribution inside the 

sheath, resulting in lower temperatures at the root of the fin than over the sheath. This 

would cause an error in the conventionai analysis of the fin effectiveness by assuming the 

unifonn fin base temperature when heat is generated intemally in the solid. 

Sensitivitv Analvsis 

A number of sensitivity cases were run using test number 277 in Appendix A. 

Grid Convergence Test 

The goveming equations were approximated through the numerical integration 

using the finite element method. Thus, the grid was selected to obtain an accurate 

solution. 

The rules for generating the grid discussed in Section 3.7 were used for 

determining the grid size. A systematic grid convergence test made with an annulus 

geometry in Section 4.1.2 was considered for node distribution and element aspect ratio. 

For the present study, since no pre-determined wall hinction is used, the near-wall region 

within the first 0.1 ta 1-mm layer from the wall was represented by a fine grid of 10 



nodes. This fine noding was applied to al1 surfaces of the inner sheath, the fin side, the fin 

tip and the outer tube. A fine grid was also applied in the circumferential direction not to 

contain elements of very large aspect ratios (i.e., the ratio of the largest side to the 

smallest side of an element). 

As shown in the grid convergence test for an annulus in Section 4.1.2, the use of 

gradients for wall nodes in the range of 10 to 1 0  had negligible changes. Modelling the 

near-wall region in the range of 0.1 to 1 mm also made negligible differences. 

Effect of Mixing Length 

Increasing the mixing length through increasing the value of a, in Equation (2-52) 

(the reference value of 0.8 used throughout the study) to 1.0 increased the Nusselt 

numbers by 1% and reduced the sheath and fin tip temperatures by 1°C. 

Effect of Turbulent Prandtl Number 

As described in Section 2.4, the turbulent viscosity is defined as 

This definition indicates that four quantities of turbulent shear stress, turbulent 

heat flux, velocity gradient and temperature gradient are needed to evaluate Pr,. This is 



the reason why the scatter of experimental data tends to be large [52]. A survey of 

difiennt models of the turbulent Randti number Pr, by Kays [52] suggested the following 

based on experimental data for air: 

It provides a relatively high value of Pr, near the wall but approaches 0.85 as éM/v 

(thus y') increases. For Pr, for water, Hollingsworth et al. [68] proposed 

Pr, in this equation also approaches 0.855 as y+ is increased. The mode1 did not change 

the wall temperatures compared to the reference value of 0.9. However, lowering the Pr, 

value to 0.8 increased the Nusselt number by about 6% and reduced the sheath and fin tip 

temperatures by SOC and PC, respectively. 

Effect of r, 

As in the case of annulus. the use of r,,, from Kays and Leung [l] increased the 

heat transfer rate and pressure drop and thus increased Nu and C, This was expected 

since, as shown in Section 4.1.3, the use of rm of Kays and Leung overpndicted turbulent 

viscosi ties. 



Although only one location of maximum velocity in the radial line was considered 

in the annulus geometry, it is conceivable that the presence of fuis would move the 

location of r,,, in a given radial line. Furthemore, the radii of maximum velocity is 

expected to Vary in the circumferential direction for the finned geometry. These 

maximum velocity points are important as they are used as the integraiion end point 

approached from bath inner and outer walls. The single location of maximum velocity 

may be considered reasonable for small fin heights since the maximum velocities in the 

circumferential direction would deviate little from that of the annulus geometry. 

However, the effect is expected to be significant for tall fins. Therefore, r,'s are obtained 

on every radial line and used as the integration points from both walls. 

Effect of Physical Properties 

The physical properties such as rnolecular viscosity, thermal conductivity, density 

and specific heat were evaluated based on local element temperature for al1 cases. Test 

number 277 for Dh=7.3 mm in Appendix A was simulated with the physical properties 

evaluated based on the bulk fluid temperature. The case based on the bulk fluid 

temperature reduced the Nusselt number by 20% and incnased the sheath and fin tip 

temperatures by 21 and 17OC, respectively, compand to the reference case. It showed a 

significant effect especially when the wall and fluid temperatures are significantly 

different as in the present application. 



Effect of Sheath Conductivity 

The reference sheath conductivity of b=220 W/(mK) was varied from 10 

W/(mK) to m. The value of b=10 W/(mK) was considered to be a minimum value for 

commercial metals. The Nusselt number increased as the surface material conductivity 

increased. As expected, the case with L=QD resulted in the sheath and fin temperatures 

k i n g  uniform at 132OC compared to the reference case at 157 and 1 lg°C, respectiveiy, 

and increased the Nusselt number by 7%. The case with b=lO W/(m*K) increased the 

sheath and fin temperatures to 197 and 74OC, and reduced the Nusselt number by 21 %. 

Effect of Heat Generation Rate and Heat Split 

Adding more power to the heater had very little effect on the Nusselt numbers for 

the same flow conditions. Figure 4.43 shows that the temperature distribution along the 

finned surface becomes more nonuniform for higher fiows. However, the increase of heat 

generation rate changed the temperature distribution unnoticeably. 

Next exarnined was nonuniform heat splitting for the same power. The reference 

case of uniform heat generation rate was compared with cases of nonuniform heat 

generation rates up to 14% and 50% tilt. The heat is split inio: (1) Q, for the first 12" from 

the horizontal and (2) Q, for the next 10.SO angular heater segment of the modelled 22.5" 

segment. The second segment received less heat than the first segment by 14% and 50%. 

For example, the 14% tilt is defined as 



Q = Q, + Q, before split (4-25) 

Q = (1.144,) + (Q-û. 144,) = Q; + Q;, after split. 

Since the sheath thennal conductivity b=220 W/(m-K) is high, the effects on the Nusselt 

number and the wall temperatures were negligible. Therefore, the uncertainty caused by 

the nonuniforrn heater thickness discussed in Section 4.3.1 is negligible. 

Study of Geornetric Effects of Fins 

There are ways of evaluating enhancement in heat transfer of intemal finning. 

Reference 70 provides practical consideration of performance evaluation critena for 

enhanced heat transfer surfaces. Patankar et al. [20] used cornparison of the ratio of the 

fin heat load Q,,, to the total heat load Qt both per unit length with the ratio of the fin area 

&,, to the total heat tmsfer area 4. The criterion Qfi$Qt ,s &,,,/& was used to indicate 

that on a unit area basis the fins are a more effective heat transfer surface than the tube 

wall. 

4.4.1 Calculation Procedure and Input 

In the present study, the performance of interna1 finning is evaluated for the 

following conditions: 

(1) constant average flow velocity (W), and 

(2) constant mass flow rate (m). 



These conditions were chosen to facilitate the comparison of heat transfer rate and 

pressure drop for intemally finned annuli with respect to the annulus geometry of the 

same ri and r,. The use of constant average flow velocity is equivalent to the use of 

constant Re, when Re is evaluated using D,, of an unfinned annulus. Velocity and mass 

flow rate were chosen to give Re=lO* and 1 6  of an unfinned annulus. 

Table 4.1: Cases simulated for parsmetric study 

Figure 4.44 shows three simulated geometries of N=8, 12 and 16 with W(r,-rJa.22. As 

shown in Table 4.1, the following procedure was used in determining the geometric 

effects: 

(1) Choose the basis for comparison as either constant W or constant m, 

(2) Vary only one condition at a time: (a) fin height for a given number of fins or (b) 

the number of fins for a given fin height, 

(3) Specifj the heat generation rate defined in the heater tube. A fully conjugated 

Cases simulated 

-- 

Constant m 1. L kg/s I 

Number of fins 

8 

12 

16 

Constant W 

Relative fin height, W(r,-ri) 

O to 0.5 

O to 0.5 

O to 0.5 

6 m/s 

0.6 m/s 

8 O to 0.5 



problem is solved in which nonuniform heat flux and temperature distributions are 

taken into account in the overall performance of fins, 

(4) SpeciS the fluid properties based on Tb, and 

(5) Obtain a solution that gives the flow conditions - constant W (or constant m) and 

Tb* 

The reference geometry used is the AECL 8-fin geometry (Figure 4.30) having: 

ri=3.935(1O4) m. 

r,,=8.5(10-~) m and 

fin width=û.76(l0-') m. 

Constant water properties at 50°C were used, narnely: 

p=988 kglm3, 

~ ~ 5 . 4 7  1(16) Pzs,  

k#.64 W/(m*K), and 

C#181 J/(kg*K). 

The heat generation rates used are: 

q,p2.979(109) W/m3 for high flow simulations (Constant velocity of 6 mls and constant 

mass flow of 1.1 kg/s), and 

q&.958(108) w/m3 for low flow simulations (Constant velocity of 0.6 d s  and constant 

mass flow of 0.1 1 kgls). 



4.4.2 Effects of Fin Geometry 

Figures 4.45 to 4.46 show predicted pressure drops based on constant velocity and 

constant mass flow rate. Pressure drop increased witb the increase of fin height or number 

of fins for a given mass flow rate (or velocity). The higher fin height required the larger 

driving force, -dpldz due to additional resistance by increased fin height. Similarly, for a 

given m a s  flow rate (or velocity), the more number of fins required the larger driving 

force due to increased flow resistance by more fins. Figures 4.45 to 4.46 also show that, 

for a given fin geometry. pressure drop for the constant mass flow rate is higher than that 

for the constant velocity. More fins reduce the flow arui and thus increases the velocity 

for the constant mass flow rate cases. 

The effect of the presence of fins on the flow distribution is shown in Figures 4.47 

and 4.48. In these figures, ml denotes the mass flow passing through the annulus bounded 

by y=O and y=H and m, denotes the total mass flow. The fact (m,/rhJ<(&$AJ indicates 

that more of the flow passes through the unfinned area in order to avoid the higher 

resistance in the interfin spaces. The cornparison between Figures 4.47 and 4.48 also 

show that more of the total flow passes thmugh the interfin regions for higher flow 

velocity (or higher mass flow rate). The decrease of m,/r& with increasing number of fins 

indicates that more of the flow passes through the unfinned area to avoid higher 

resistance in the interfin spaces. The change of m,/m, was negligible whether the constant 

m or constant W is used. 

Figures 4.49 and 4.50 show that the fins are more effective than the annulus as 



Qfi$Qt > &Jh for nearly d l  cases. However, as shown in Figure 4.50, an exception can 

be seen in ta11 fins (H/(rori)=û.S) for the 8-fin geometry such that fins becarne slightly less 

effective for the high flow case. As discussed before, this is because more of the total 

flow passes through the interfin regions for high flows, resulting in more of the total heat 

leaving through the sheath. Figures 4.49 and 4.50 also show that, for a given fin height, 

increasing number of fins increased the heat transfer effectiveness in terms of 

(QfidQt)l(A&), particularly for low flows. The change in QJQ was negligible whether 

the constant m or constant W is used. 

Figures 4.5 1 and 4.52 show that, for a given heat generation rate in the heater, the 

average heated wall temperature T,,, decreased with increasing fin height or with 

increasing number of fins. These figures show that (QL)/("ïWjvC-Tb) was higher for the 

constant mass flow case than that for the constant velocity case. The reduction in flow 

area due to fins increased flow velocity for the constant mass flow rate case, and thus 

reduced T,,, for a given heat generation rate. 

Figures 4.53 and 4.54 show the effect of fin geometry on wall temperature (T,) 

for the high and low flows, respectively. As discussed before, both T,, and T, 

decreased with increasing fin height or number of fins. The comparison of Figures 4.53 

and 4.54 show that the ratio (T,-T,,)/(TWave-TJ is much higher for the high flow case than 

the low flow case. It indicates that, for the low flow case, the difference between T, and 

T,, became smaller (T, is slightly higher than T,,J as Qr$Q becomes higher for the 

low flow case than the high flow case. For the same reason, the ratio (Ta-Tb)/(TW,,-Tb) is 

higher with the constant mass flow case as shown in Figure 4.54. From the comparison of 



Figures 4.53 and 4.54, the difference in (Th-T,,)/('ï,,,,,-TJ between the %-fin and 16411 

geometry is more noticeable for the high flow case with negligible diffennce for the low 

flow case. 



CHAPTER 5 

RESULTS AND DISCUSSION OF 

ONSET OF NUCLEATE BOILING ANALYSIS 

Analysis of AECL Finned Annulus ONB Data 

The analysis is now extended to predict the onset of nucleate boiling in a finned 

annulus and to study the geometnc effects of fin height and number of fins. 

5.1.1 AECL ONB Experiments in Finned Annuli 

The ONB data reported in an AECL report [27] are reproduced in Appendix A. 

The data were collected for three different geometries: 

(1) Dh = 7.3 mm - 8-fin element in a 17 mm ID glass tube, 

(2) Dh=13.7mm-8-finelementina24mmIDglasstube,and 

(3) Dh = 5.4 mm - 10-fin element in a 17 mm ID glass tube. 

The data in Appendix A give the conditions at the point of ONB occurrence: the 

power, fluid velocity, pressure. bulk fluid temperature, and the sheath and fin tip 



temperatures. The data were already processed from the raw data. A detailed procedure 

used for reducing the data can be found in Reference 27. 

Measurements 

The AECL facility in which the ONB tests were conducted is the same as that 

used for the single-phase tests, and is described in Section 4.3.1. A schematic diagram of 

the test facility is given in Figure 4.29 and a diagram showing the instrumentation 

locations is given in Figure 4.3 1. 

The ONB is defined as the point where vapour bubbles first appear and become 

visually observable on the heated surface. The finned surface is illuminated by a 

stroboscopic light source to enhance the detection of the small vapour bubbles. An eight- 

power telescope was used for visual observations of the heated surface. To confirm 

visually observed ONB points, the ONB was determined for some selected tests from the 

change in the slope of the surface temperature with respect to power. At high velocities, 

the change in the temperature slope was not as well defined. Thus, for consistency the 

visually observed ONB was used in detennining al1 the ONB data points. 

Dissolved and trapped noncondensible gas was removed from the loop in each 

test. The procedure is described in Section 4.3.1. 

The ONB data were obtained by increasing power or increasing inlet fluid 

temperature. The power was incremented to a new value and the loop was allowed to 

achieve a steady state, while maintaining the test section outlet pressure, volumetric flow 



and inlet temperature at their initiai values. This procedure was repeated until the first 

bubbles appear on the finned surface. The power level and surface temperatures were then 

recorded. When experiments were performed by increasing inlet temperature, steady-state 

initial conditions of pressure. flow and power were achieved. Then the heat exchanger 

secondary side cooling water fiow was reduced such that the test section inlet water 

temperature was increased at approximately 2OC per minute. 

The ONB point was controlled to take place at the downstrearn end of the test 

section as shown in Figure 4.3 1 where the surface temperatures were measured. This 

point is 50 mm below the test section end. This location was chosen as flow is expected 

to be fuliy developed and heat losses by the axial conduction were found negligible. At 

some power level, the conditions permitted vapour bubbles ta form on the heated surface 

at some of the nucleation sites. As noted in Reference 27, the first bubbles always 

appeared on the sheath between two fins. At the ONB the vapour bubbles did not detach 

from the surface. The surface temperature at the ONB was several degrees above the fluid 

saturation temperature. 

AECL also performed a photographie study [30] to measure the cavity sizes on 

the sheath surface using magnification factors up to 7500. Although the range of cavity 

sizes was not obtained, an elliptic shape of a cavity of about 2 pm by 6 pn was shown. 

Ex~erimen ta1 Uncertain ties 

The experimental uncertainties described in Section 4.3.1 are also applicable here. 



There are additional uncertainties associated with the visual determination of the ONB 

point or the graphical determination of the ONB point @y change in slope of wall 

temperature). 

5.1.2 Cornparison with AECL Finned Annulus ONB Data 

The grid, input parameters and assumptions used for the ONB pndictions are 

identical to those used for the single-phase predictions. It is described in Section 4.3.2. To 

predict the superheat and heat flux required at the point of ONB, a number of single- 

phase predictions are made at various heat generation rates for given mass flow, bulk 

fluid temperature and pressure at the point of ONB. Fully developed flow and 

temperature conditions are assumed. Power is supplied to the heater tube inside the sheath 

and the outer tube wall is adiabatic. The simulations provide a curve of superheat venus 

heat flux. When the Davis and A~derson criterion [36] is applied, this curve is used to 

find the intersection point with the ONB cntenon that defines the ONB point. When the 

Hsu criterion [33] is applied, the simulation provides the thermal layer thickness which is 

obtained from the temperatun profile at the point of ONB. 

The von K h h  constant for the outer wall is u,=0.4 while that for the inner wall 

K~ is expressed as a function of rm, which is numerically determined (sec Section 2.4). The 

constants used in the van Driest mode1 are A+=26 for both the inner and outer wdls. A 



constant value of the turbulent Prandtl number Pr$9 was used. 

The andysis was performed for the finned annulus that consists of an 8-fin heated 

pin in a 17-mm glass tube shown in Figure 4.32. The grid used is the same as in Section 

4.3.2. Ruid properties such as viscosity, themal conductivity and density were evaiuated 

at the local fluid temperature. All ONB data obtained with the finned annulus geornetry of 

Dp7.3 mm were analyzed. 

ONB Analvsis with Hsu's Mode1 

Detailed flow and temperature profiles are predicted from the present mode1 for 

the finned annulus geometry. The predicted temperature and heat flux distributions are 

used in conjunction with the ONB criteria of Hsu [33] and Davis and Anderson [36] to 

determine the ONB. The pararnetric trend and the magnitudes of heat flux and superheat 

required for the ONB were predicted and are compared in the following section. 

The Hsu theory [33] is based on a bubble nucleus at a site surrounded by a warm 

liquid. As shown in Figure 5.1, the nucleus begins to grow into a bubble only when the 

surrounding liquid is sufficiently superheated. The time required for the liquid to attain 

this superheat is called the waiting period. The transfer of heat from the superheated 

liquid into the bubble is considered to be a transient conduction process. A cavity is 

considered effective only if the waiting period is finite. He derived the effective cavity 

sizes by equating the bubble temperature obtained from the Clausius-Clapeyron and the 

surface tension equations with the liquid temperature profile obtained from the transient 



conduction equation as 

where r , ,  and rcd, are the maximum and minimum sizes of effective cavities, 

respec tivel y, e,=T,-T,, &=Tm-T,, 0 ,=T,-Tm, A=2oT&pV), C= 1 +cos+, is the 

angle of bubble surface with respect to the horizontal, 6 is the lirniting thermal layer 

thickness, o is surface tension of liquid with respect to its vapour, and 1 is the latent heat 

of vaporization. These equations give the maximum and minimum sizes of effective 

cavities as a function of subcooling, pressure, physical properties and the thickness of the 

superheated layer. The superheat required for the ONB, 8, (=TGTm), was denved from 

Equations (5-1) and (5-2) as no cavity will be effective if the discriminant of these 

equations is negative as 

This equation indicates that there is no sustained boiling existing if 0, c 0,. 

The most important parameters in the Hsu criterion are the thermal layer thickness 

8 and the bulk temperature T,. He assumed that there exists a limiting themal layer 8 that 

for y& molecular transport pcevails, while for yr& the temperature remains at bulk 



temperature T,. His definition of 6 is similar to the laminar sublayer thickness. The 

thermal layer thickness 5 depends on the geometry, Re and Pr. and bubble disturbance 

(bubble size, bubble growth rate). At and up to the ONB. turbulence would be of primary 

influence on b for a given Pr. However, these definitions are rather arnbiguous and are 

difficult to determine. To achieve T,, it would take much farther distance from the wall 

than thermal layer thickness 6. 

Although some difficulties were encountered in applying the Hsu critenon, the 

present study assumed that the limiting thermal layer 6 is the first layer of a constant 

temperature slope from the wall and was detemiined from the temperature profile at the 

ONB. This is consistent with the vaiidity of a conduction equation in his derivation to 

obtain the liquid temperature profiles. The bulk fluid temperature was used in place of T, 

in the model. 

For turbulent flows in a finned annulus (with the inner surface heated and the 

outer surface insulated), the fluid temperature profile has a very shaq gradient 

immediately near the inner wall and the slope is quite flat and changes very little towards 

the outer wall. Figure 5.2 shows temperatures in the near-wall region of the temperatures 

along the mid-sheath radial line (the 22.5' line). There is a layer of a constant-slope 

temperature profile in the f iat  layer from the wall and that in thickness decreased as Re 

number increased for a given Prandtl number. The calculated 6 values tabulated in Table 

5.1 were used to obtain Tw,o, with the Hsu criterion (Equation (5-3)) for the analysis of 

AECL data. 

In the evaluation of Equation (5-3), the following values were used: 



a the bubble contact angle with respect to the horizontal @=90° corresponding to a 

hemisp herical sphere, 

a the latent heat of vaporization A, vapour density p. and saturation temperature T, 

evaiuated at saturation for a given pressure, 

a the surface tension of liquid with respect to vapour o evaluated at T,. 

Table 5.1 Cornparison of caidated and measureà TV,, for the finned annulus 

geometry of Dh=73 mm 

Case Calculated 
Tws0,. OC using 
6 from the 
temperature 
profile 

133 

Calculated 
TWqm,,, OC using 
constant 
5=2(l 04) m 

Measured 
Tw.onb* OC 

Although al1 finned annulus ONB data for Dh=7.3 mm were analyzed, Table 5.1 

presents the results of varying fiow velocity for fixed bulk fluid temperature of 56OC and 

pressure of 0.2 MPa. As shown in Table 5.1, agreement is poor between the measured and 

calculated T,, when the thermal layer thickness was obtained from the temperature 

profile. The calculated ONB temperatures are higher and the disagreement is more 

101 



noticeable at higher Reynolds numbers. As indicated in the table, the use of a constant 

value 6=2(104) m improved the agreement and brought the overall agreement of ail 25 

ONB data for the finned annulus geometry of Dp7.3 mm within &OC. The calculated 

thicknesses based on the constant temperatwe slope near the wall are an order of 

magnitude smaller than the value of b=2(104) m. Although the use of the constant value 6 

improved the agreement, it is difficult to justify it since the transient one-dimensional 

conduction equation applied in Hsu's denvation is valid only within the constant slope 

part of the temperature profile. 

The effective cavity sizes for the ONB data calculated from Equations (5-1) and 

(5-2) ranged from 1.2 to 28 Cm. The cavity size of 2 by 6 Fm measured by AECL is 

within the calculated range. 

A sensitivity study of input parameters on Tw,on, was made and shows that: 

(1) T,,,, decreased by 5-17OC by increasing the contact angle 30 to 90' (the range of 

typical contact angles for commercial metal surfaces [69]), and the changes are 

more for higher Re numbers, 

(2) the evaluation of surface tension at T, rather than at T, reduced Tw,, very little, 

viz., of the order of O. 1°C (surface tension increases with reducing temperature). 

It would be of interest to extend the Hsu model by using the transient fluid energy 

equation rather than the conduction equation to obtain the waiting period. Although the 

present model can be used for this purpose, it was not tried because of anticipated long 

CPU time involved. 



ONB Analvsis with Davis and Anderson's Mode1 

As in Hsu's model, the basic assumptions of Davis and Anderson [36] SE: 

The bubble nucleus grows at a surface cavity and has the shape of a truncated 

sphere as shown in Figure 5.3, 

The equilibrium theory (the Clausius-Clapeyron equation) can be used to predict 

the superheat required to satisfy a force balance on the bubble (the Gibbs equation 

for surface tension), 

A bubble nucleus will grow if the liquid temperature at a distance from the wall 

equal to the bubble height is greater than the superheat required for bubble 

equilibrium, 

The bubble nucleus does not alter the temperahlre profile in the fluid surrounding 

it. 

Davis and Anderson [36] derived the superheat equation required for a stable 

bubble using the Gibbs equation for the pressure difference across a bubble, the Clausius- 

Clapeyron equation and the ideal gas law. Then they equated the slope of the superheat 

equation with the temperature profile at the wall, and solved for the critical distance from 

the wall required to initiate nucleate boiling provided that cavities of the size 

corresponding to this critical distance exist. The Davis and Anderson ONB critenon [36] 

is given by: 



where q, is ONB heat flux, R is gas constant, k, is liquid thermal conductivity, and 4 is 

the angle of bubble surface with respect to the horizontal. The condition, C=l, 

corresponds to a hemisphecical bubble nucleus king used. 

For the present application, the following equation was found to give a good 

approximation to Equation (54): 

This equation is usually equated with the following equation to obtain T,, and 

thus qWi : 



However, for the finned annulus geometry the heat transfer coefficient and the wall 

temperature are not known and Vary around the finned periphery. Thus it is difficult to 

obtain the heat flux q, and superheat (Tm-T-) requhed to cause the ONB. Therefore. 

the present single-phase predictions of heat fluxes and wall temperatures are used in 

conjunction with the Davis and Anderson criterion to predict the ONB. 

The values used to evaluate the Davis and Anderson criterion are: 

@=go0 corresponding to a hemisphere, 

the latent heat of vaporization A and vapour density p, evaluated at T, 

corresponding to the pressure at the plane of ONB, 

the surface tension of liquid with respect to vapour o evaluated at Tm. 

The present model simulated the temperature and heat flux distributions. As 

illustrated in Figure 5.4, the ONB point is defined as the intersection of the calculated 

temperature and heat flux at the sheath rnidway between the fins with those of the Davis 

and Anderson criterion, Equation (5-4). The model supplied the successive caiculations 

of superheat at various powea until the ONB point. i.e.. the intersection point, was found. 

The following calculation procedure was used to detennine the ONB point using 

the Davis and Anderson criterion: 

1. Establish a relationship (a graph) between mass flow rate and -dp/dz by pre- 

simulating a number of isothemal cases for a given finned annulus geometry, 

2. Determine volurnetric heat generation rate (element powerheater tube volume), 



dT1dz (from the energy balance using mass fiow and CJ for each ONB datum 

point, 

Specify a temperature boundary condition at a selected node in the calculation 

domain, 

Select a comsponding value of -dpldz for a given mass fiow rate from the graph 

of step 1, and refine -dp/dz, if necessacy, based on the relationship of Ap a m2, 

Iterate simulations until the calculated Tb agrees with the experimental Tb by 

adjusting the temperature boundary condition of step 3, 

Run the single-phase mode1 with fixed mass flow rate and pressure but with 

variable power to compare with the Davis and Anderson criterion (Equation 

(5.4)). Repeat step 5 for each power until the calculated Tb converges to the 

experimental Tb. Plot superheat ( T A )  veaus heat flux at the sheath to obtain 

T, and power at the intersection with the Davis and Anderson criterion. An 

example is shown in Figure 5.4. 

The above procedure was repeated for al1 25 ONB data points for the 8-finned 

elernent in a 17-mm glass tube -7.3 mm). 

Figure 5.5 shows comparison of the experimental and calculated ONB powea 

with flow velocity. The agreement appears quite good except for a few high velocity 

points. For these data points. the detection of ONB occurred up to 15% higher power than 

the calculated ONB. The measured wall temperatures are also lower than the calculated 

temperatures. As bubble size gets smaller with increasing flow, it is possible that visual 

observation may have missed the first bubble until a higher power. The actual wall 
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temperature would have dropped due to improved boiling heat transfer rate. 

Figure 5.6 shows comparison of the experimental and calculated ONB powers 

with subcooling. The calculated ONB powers are about 6% less than the experimental 

values. 

Figure 5.7 shows comparison of the experimental and calculated ONB powers 

with pressure. The experimental data followed the expected panunetric trends except for 

one outlier at W=4.1 d s  (shown in Figure 5.7). 

The arithmetic mean deviation (ë) and the rmt-mean-square deviation (RMS) for 

al1 25 ONB data points are - 10% and 1346, respectively, where 

Predicted value -Experimental value 
e= 

Experimental value 

The predicted ONB powers were consistently less than the measured ONB powea. 

The predicted ONB shown in Figures 5.5 to 5.7 follow the pararnetric trends 

observed from the finned annulus ONB results such that the power at ONB increased 

with increasing: 

O flow velacity, or 



a ATrn, or 

pressure. 

The pnsent model together with the Davis and Anderson ONB criterion predicted 

slightly less powers and higher superheat (T,-T-) at the ONB than the experimental 

values. To improve the agreement, the model should calculate higher pressure losses 

(higher Cf) and thus higher Nu than the cumnt values for a given dp/dz. 

A sensitivity study of input parameten on the ONB heat flux was made. As 

illustrated in Figure 5.8, the ONB heat flux decreased slightly by increasing the contact 

angle from 30" (C= 1.866) to 90' (C-1). Aithough the use of smaller contact angle thus 

brought the agreement with the experiments closer at high flows, this may not be 

physically plausible since a higher flow would make the superheat Iayer in which bubbles 

occupy thinner and suppress the bubbles, thus increasing the contact angle (90° as in a 

hemisphere). 

The evaluation of surface tension at T, rather than at T, nduced T,,,on, very little 

in the order of O. I0C (surface tension increases with reducing temperature). Sensitivity 

cases were also run with such variables as Pr, (the reference value of Prt=0.9) and a, (the 

reference value of 0.8 used to calculate the mixing length in the circurnferential 

direction). The use of Prt=û.8 rather than the reference value reduced T, and T, by a few 

degrees Celsius. The use of a,=l.O rather than the reference value reduced T, and T, by 

about a degree Celsius. 

5.2 Parametric S tudy of Fins 



In the pnsent study, the performance of intemal finning is evaluated for: 

(1) constant average flow velocity (W), and 

(2) constant mass flow rate (m). 

The geometric and flow parameten in Table 4.1 were used. Details of the procedure and 

input is given in Section 4.4.1. 

As detailed in the previous section. the ONB heat flux was determined at the 

intersection between successive single-phase predictions with those of Davis and 

Anderson critenon. The heat flux was defined by: 

"= Heater power 
Area of unfnned onnuius ri 

This definition was used to facilitate the comparison of heat transfer rates for various 

intemally finned annuli with respect to the annulus geometry of the same ri and r,. 

Figures 5.9 and 5.10 show the ONB heat fluxes by varying fin height and number 

of fins for constant mass flow rate and constant velocity. The figures show that the ONB 

heat flux increased with increasing fin height or number of fins. The comparison between 

Figures 5.9 and 5.10 shows that the increase of the ONB heat flux is more pronounced 

with Iow flows. 

Summary 

The present analysis with Hsu's mode1 did not predict well the expimental ONB 

when the limiting thermal layer thickness was evaluated as the first layer of a constant 



temperature dope from the wall. His model posed some dificulties of defining 

consistently the limiting thermal layer thickness and the bulk fluid temperature. Thus, the 

present study recommends and used Davis and Anderson's criterion. 

The present model with the Davis and Anderson ONB cnterion predicted 

consistently less power and higher superheat &-Tm) at the ONB than the experimental 

values. The sensitivity studies indicated that the agreement cari be improved by: lowering 

Pr, or increasing a,. or reducing the bubble contact angle particularly at high flows. 

However, the optirnization of these parameters was deemed unnecessary since the 

predictions were quite good for low flows (less than about 4 mls) and the discrepancy at 

high flows may have been caused by some uncertainties in visually obtaining the ONB 

points particularly at high flows and high pressures. Overall, the present prediction with 

Davis and Anderson's ONB criterion predicted quite well the experimental finned annulus 

ONB data except for a few high flow data. The predicted ONB results followed the 

parametric trends for the finned annulus ONB data such that the ONB power increased 

with increasing flow velocity, AT,, or pressure. 

Both the expriment and the present prediction of ONB indicated that the highest 

wall temperature occurred at the sheath midway between two fins and is consistent with 

the ONB occumng there. The parametric study showed that the ONB heat flux increased 

with fin height and number of fins. The increase of the ONB heat flux is more 

pronounced with low flows. 



CHAPTER 6 

CONCLUSION AND RECOMMENDATIONS 

Conclusion 

A study was made of turbulent fiuid flow and heat transfer in finned passages. The 

goveming conservation equations of momentum and energy were formulated with a 

turbulence closure model based on the classical mixing length theory that has been widely 

used for the tube and annulus geometries. The mixing length model was modified for a 

finned geometry so that a mixing length at a point can be determined by superimposing 

the contributions from its surrounding surfaces. The goveming equations were solved 

using a finite element method to obtain detailed velocity and temperature distributions in 

finned annuli. 

A nurnber of coupled, nonlinear heat &ansfer and fluid flow problems in annuli 

and finned annuli have been simulated to establish primariiy: (1) the accuracy of the finite 

element numerical procedure and (2) the validity of the turbulence model applied to the 

finned annulus geometry. The objectives were met in steps. First, to establish the 

accuracy of the numerical model, the model simulated the large number of experimental 

and analytical data for annuli in the literature. The model also simulated analytical work 



of Patankar et al. [20]. Secondly, to support the validity of the turbulence model, AECL 

data [27] for the finned annuli geometries were used. The model was then applied to 

predict the onset of nucleate boiling in the finned annuli and to study the geometnc 

effects of fin height and the number of fins. 

For the analysis of annuli, fully developed flow and temperature profiles were 

predicted for a wide range of radius ratio ( r h  of 1.6 to 80.7), Reynolds number (l(r to 

1O6) and Prandtl number (0.7 to 10). The overall agreement between the present 

numencal results and data available in the literaiure is quite good in terms of eddy 

viscosities, location of maximum velocity, velocity profiles, friction coefficients, 

temperature profiles and Nusselt numbers. 

For the analysis of finned annuli, the same geometric and flow conditions used by 

Patankar et al. were applied in the present model. The present analysis reproduced closely 

the local heat transfer coefficient distribution around the heated tube circumference and 

along the fin height, as well as the Nusselt numbers and friction coefficients. 

For further analysis of finned annuli, the present model simulated AECL 

experiments and the results were compared with the two measured local surface 

temperatuns: at the sheath between fins and at the fin tip. The predicted temperatures are 

in good agreement for low flows for a wide range of heat generation rate. For high flows, 

the predicted wall temperatures both at the sheath and at the fin tip are higher than the 

measured temperatures. This would mean the underprediction of the heat transfer rates up 

to 15% by the present analysis. The presence of fins caused significantly nonuniform 

distributions of heat transfer coefficient and temperature along the finned surface. The 



heat transfer coefficient was predicted to be higher over the fin tip than over the other 

inner periphery. The predicted wdl temperature peaked at the sheath center between fins. 

and decreased dong the fin side reaching its minimum at the edge of the fin tip. 

The geometric effects of fins were also investigated by varying fin height and the 

number of fins for constant mass flow rates and constant flow velocities. Heat transfer in 

finned annuli is generally mon effective than that in the unfinned annuli, particularly for 

low flows. However, an exception was found that a srna11 number of taIl fins (H/(rO- 

ri)=0.5 with 8 fins) is not as effective as the unfinned annuli for high flows. Pressure drop 

increased with the increase of fin height or number of fins for a given mass flow rate (or 

a given flow velocity). 

The analysis was extended to predict the ONB on the internally finned annuli. The 

heat flux and superheat required for the ONB were predicted in conjunction with the 

criteria of Hsu [33], and of Davis and Anderson [36]. Hsu's criterion presented some 

difficulties in obtaining the thermal boundary layer thickness and the liquid temperature 

at the boundary. Thus, the Davis and Anderson criterion is recornmended and was used. 

For the finned annuli, the present analysis provides the essential input to the criteria such 

as the thermal boundary layer thickness for the Hsu criterion and the local heat flux and 

superheat at various powers for the Davis and Anderson criterion. 

The predicted ONB results with the Davis and Anderson criterion showed good 

agreement with the intemally finned annulus data of AECL except for few high flow 

conditions. Possible reasons for the disagreement are discussed. Both the measured and 

predicted ONB occuned at the sheath midway between fins. The predicted ONB followed 



the parametric trends of the measured data such that the ONB power increased with 

increasing flow velocity, AT,, or pressure. 

The ONB heat fluxes were dso studied by varying fin height and number of fins 

for constant mass flow rate and constant velocity. The finned annuli were found to delay 

the ONB to higher powers than the unfinned annulus counterpart for the sarne flow 

conditions. The ONB heat flux increased with fin height and number of fins. The increase 

of the ONB heat flux is more pronounced with low flows. 

Based on the study, it is concluded: 

a Overall, agreement of the present analyses with available expenments and other 

previously published analyses for both annuli and finned annuli geometries seems 

quite reasonable, 

The classical mixing length theory frequently used for the annuli can be applied to 

the finned annuli with the use of few modelling improvements: (1) a superposition 

method for the mixing length to take into account the influence of al1 walls, (2) 

the numerically determined locations of maximum velocity locations, (3) 

Reichardt's expression to remedy zero shear near the maximum velocity, and (4) 

temperature-dependent physical properties. No adjustment was necessary for the 

finned annuli to the generally accepted values of the parameters A+=26, K~ of 

Roberts [3], ~ @ . 4  and Prt=û.9 used for the annuIi, 

The present mode1 provides a practical means to solve for a fully conjugate 

probiem of assessing the pressure &op and heat transfer characteristics in finned 

passages. The actual geometry of fins and the heating conditions can be modelled 



accuratel y. 

6.2 Recommendations 

Provisions made in the cornputer model to enable extension of the present work 

include: 

up to 10 difiennt partial differential equations can be solved simultaneously. Each 

equation can consist of a number of terms such as a transient term, 

convection/diffision tenns and source terms. This will allow one to solve for the 

full two-dimensional Navier-Stokes equations (developing flow, transient flow), 

for two-phase fiow equations or for higher-order turbulence equations. 

higher order elernents such as eight- and nine-noded quadnlaterals can be tried to 

obtain a better accuracy with a smaller number of nodes. 

the model is limited to a two-dimensional problem. The model can be extended to 

solve three-dimensional problems with the addition of three-dimensional element 

shape functions. 

the present grid generation program was designed to generate sttuctured grids for 

the known geometries simulated (annulus, finned annulus). It provides the 

element nodal coordinates and element/node connections. The model may receive 

this input from other commercial grid generation programs for a unstmctured grid 

to further optimize the grid. 

Detailed surface and fluid temperatures, velocity and turbulence measurements 



will be useful. Comprehewive experimental data for Ap and temperature for different 

finned geometries will further support the use of the present mode1 for finned geometries. 
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Figure 4.8 Crid convergence test for number of ccntrnl-rcgion elements 
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Figure 4.10 Cornparison of eddy viscositics in annulus of rolq=2.31 (Reicliardt mode!) 
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Figure 4.19 Cornparison of tcmperrturc profiles for r,/ri=1.632, Rc=4E4 and Pr0 .7  
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Figure 4.30 AECL finned heater geometry (Reproduced fiom Reference 27) 

160 



@ Oii(le<temperabire 

@ Inkt tsnpeniainr 

@ Surtace temperahire midway 
between two fins 

@ fin tip temperature 

@ FW tu,< temperature 

@ ouüecpes~ure 

@ Inkt pressure 

@ Mapre~sure  

@ ~ a s i ~ o n a n e n t  

@ Tesisecüon voitage 

fluid volunetric Ibw 

- Sedion 3 

- Sedion 2 

- Section 1 

Figure 4 3 1 Instrumentation hnction and location 
(Reproduced h m  Refmnce 27 with rninor changes) 









Heater power, W 

Figure 4.35 Cornparison of w d l  temperatures with AECL data for Ws1.2 mls 
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(Tsh -Tb) for P=0.33MPa 

O (Th - Tb) for iW.33MPa 

+ (Tsh - Tb) for P 4 2 3 M P n  

O (Tfl - Tb) for P=0.23MPa 

(Tsh-Tb)CorP=O.I4MPn 

O (Tn - Tb) for P=O. I4MPa 
Prescrit rnalysis (Tsh -Tb) 

- - - - -Prcscni analysis (Tn -Tb) 

0.00E+00 1 .OOE+OQ 2.00Et04 3.00Et04 4.00Etû4 5 .00E+04 

Heater power, W 

Figure 4.37 Comparison of wdl temperatures with AECL data for W34.1 ds 
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Figure 4.39 Local tcmperaturc distribution dong the Tinncd surface (Test number 277) 
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Figure 4.40 Cnlculatcd locnl distributions of h and q along the finned surface 
(Test number 277) 
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Figure 4.43 Effeet of Iieat generntion rate and velocity on temperature distribution 
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Figure 5.8 Sensitivity of C value in Davis and Anderson criterion 
(ONB test number 2, p=O.35 MPa, (T,,,-Tb)=84C) 

I 

1 

. 
O 

O . . 
O . 

- Davis and Anderson 
criterion, Equation 
(5-8) with C=l 

-.--.- Davis and Anderson 
criterion, Equation 
(5-8) with C=1.866 

-O- Present single-phase 
predictions 
(W-5.8mIs) J . 

. 



Wra-rJ 

Figure 5.9 Effcct of fin geometry on ONB flux for W=0.6 4 s  and h=0.11 kgh 





APPENDICES 



APPENDIX A 

AECL Finned Annuli Data 

for Single-Phase and ONB 



Tft C 
67.97 
70.7 

72.22 
73.19 
74.85 
75.78 
80.57 
80.67 
84.57 
8726 
89.99 
79.88 
80.66 
83.4 

85.21 
86.47 
88.18 
89.84 
9 1.46 
94.48 
98.1 

1oO3 
74.9 
77.9 
79.8 
81.2 
82.5 
84.2 
85.6 
87.6 
88.7 

90.15 
92.1 
95.5 

108.2 
115.9 

AECL 
Tb, c 

i 
Tsh. C 

46 70.95 
48.27 73.78 
50.79 76.03 
52.09 76.8 1 
53.93 78.9 1 

Single-Phase 
W, m/s 

1.3 
1.25 
1.3 

1.25 
1.3 

1.25 
1.76 
1.76 
1.81 
1.76 
1.81 
2.27 
2.27 
2.27 
2.27 
2.27 
2.27 
2.33 
2.33 
2.33 
2.39 
2.39 
2.91 
2.91 
2.91 
2.91 
2.91 
2.91 
2.91 
2.91 
2.91 
2.91 
2.91 
2.91 
1.16 
1.16 

Test numk 
1 
2 
3 
4 
5 
6 55.13 

59.18 
6 1.37 
63.3 

66.42 
69.2î 
56.75 
58.48 
61.34 
62.36 
64.49 
66.55 
6a.52 
70.46 
73.15 
76.95 
79.7 1 
56.38 
59.58 
61.68 
63.18 
64.28 
66.18 
67.57 
69.17 
70.57 
72.47 
74.87 
78.47 
66.84 
67.68 

Data 
p. Pa 

122800 
122800 
122800 
122800 
122800 
122800 
124500 
124500 
124500 
124500 
124500 
127500 
127500 
127500 
127500 
127500 
127500 
127500 
127500 
127500 
127500 
127500 
130000 
130000 
130000 
130000 
130000 
130000 
130000 
130000 
130000 
130000 
130000 
130000 
211100 
210900 

Power, W 
4664 
473 1 
4774 
4690 
4692 
4734 

37 
3 8 
39 
40 
41 
42 

79.15 
85.55 
87.79 
89.1 1 
91.94 
94.97 
84.96 

- 86.47 
89.4 

9 1.26 
92.29 
94.29 
95.07 
97.66 
100.3 
103.6 
105.8 
83.1 
86.9 
88.9 
90.6 
9 1.5 
92.9 
94.8 
95.8 
97.3 

99 
101.1 

106 
113 

121.6 
66.84 
67.68 
47.78 
47.66 
48.88 
49.08 
48.88 

1.16 
1.16 
1.45 
1.45 
1.45 
1.45 
1.45 

9562 
1 1250 
4968 
4805 
674 1 
7033 

44 6903 1.45 213300 49 
45 86 14 1.45 213800 50.09 
46 10400 1.45 213800 51.15 

211100 
210900 
213800 
213900 
213600 
213300 
213600 43 6666 

7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 

113 
121.6 
67.88 
68.07 
76.52 
76.86 
76.66 

6769 
6753 
6835 
6820 
6802 
9332 
9300 
9388 
9354 
9354 
937 1 
9337 
9337 
9390 
9408 
9443 

11350 
11350 
11350 
11350 
11350 
1 1350 
1 1350 
11350 
11350 
11350 
11350 
11350 
9562 

1 1250 
108.2, 
115.9 
66.63 
67.09 
73.46 , 

73.73 
73.73 

75.93 
84.75 
92.14 

73.97 
8 1.67 
88.42 













Tsh. C 
127.6 
143.6 
130.9 
120.3 
114.3 
127.8 
127.3 
140.3 
1 14.9 
126.6 
127.6 
125.9 
140.1 
117.3 
128.5 
14 1.3 
130.5 
1 16.2 
14 1.5 
130.9 
120.1 
143.2 

130 
120.8 
130.3 

AECL ONB Data 
Tft. C 

123 
92.13 
107.5 
103.1 
11 1.2 
124.3 
122.6 
133.8 
1 12.5 
121.3 

12 1 
1 18.6 
130.3 
1 10.8 
116.5 
102.8 
95.9 1 
105.9 
100.4 
93.64 
107.7 
95.13 
1 10.8 
107.4 
121.2 

p. Pa 
210400 
353400 
250000 
166200 
121000 
211200 
210500 
311900 
122800 
211800 
213400 
213100 
316000 
127400 
215800 
322500 
219200 
132500 
333000 
233200 
143700 
343700 
238800 
153900 
211100 

Tb, c 
40.07 
55.18 
55.13 
53.92 
55.01 
57.4 

57.53 
58.73 
55.13 
56.49 
55.96 
55.44 
56.96 
54.2 1 
55.2 

55.82 
54.1 1 
53.38 
55.48 
54.34 
53.95 
55.45 
55.07 
54.2 

69.12 

W,m/s 
0.87 
5.83 
5.82 
5.W 
0.59 
0.58 
0.88 
1.18 
1.16 
1.17 
1.46 
1.76 
2.06 
2.05 
2.04 
2.9 

2.92 
2.91 
4.07 
4.08 
4.07 
4.95 
4.94 
4.91 
1.15 

1 

TestnumbePower.W 
1 
2 
3 
4 
5 
6 
7 
8 
9 

1 O 
I I  
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 

15620 
73870 
72790 
636 10 
7268 
8753 

13260 
19200 
14160 
15900 
19760 
21970 
31100 
23270 
24460 
38020 
32520 
29380 
5 1 190 
43970 
44450 
644 10 
623 10 
57580 
13230 



APPENDIX B 

Computer Input Description and 

Sample Input Data 







TOLEQ 

NPDE > O 

~NTEGER Ilpsifies ttic miiximuin nuinber of iteriiii~iis MAXlTER > O 

Noic: Soluiion is considercd converged when absolute (new-old 
value)/new is lcss iIiiui iolcriuice specifid for each equiiiion. 

Assigiis n tolerance viiluc for çonvcrycncc for 

I cacli cquation and ilius inusi be rcpeaicd oii ilic 
siune line NPDE tuncs 

New vJuc=RELAX *01d valuc+(l -RELAX)*Ne w value Rclax~ion fitctor to expediic convergerice. Notc 
ihc sune value is applied IO al1 cquatioiis. 

INTEGER 
INTEGER 
INTEGER 

-- - - - - - - - - - - 

Number of nodal point coordinitic driiit records 
Noûe nuinber of first node aloiig ihc liiic 

Note h i  Sei 13 inusi bç repaitcd NREC iirnes. 

N d c  nuinber of Iüst n d e  iilo~ig ilic linc 
INTEGER lncrement in noûe numbcr INC > O 

REAL 

REAL 
REAL 
REAL 

Y -coordUilite of Tusi n d e  
X-coordinrite of I i ~ t  node 
Y - coordiniite of lu t  naûe 
lnfonnirtion on the dcnsity of t11c ndd point 

-. - - . - . 

GRAD= O or 1: Equnlly ~piiccd nodes arc genemted. 
GRAD= LAI: Li=distiuicc bciwceir first IWO ndes  on tire line, L,= 

REAL - 

- - 
14 NREC 

disiance between lasi Iwo nodes on line. 

~ o i c  iliiii Scis 15, 16 imd 17 inusi hc r~piitcd for cich cquiiiion ünd 
iniiicriirl type (i.ç., NREC*NPDE ~imes) . 

~INTEGER 1~~u;ii ion number 

IÏ~$MAT ~INTEGER   la^ pariuneter uscd to specify wlietlicr the IMAT=O: Property is a constant and is irssigned the correspondhg 
value givcn in PROP. 

lMAT= 1: Properiy is il fuiiction. The user must enter ihc funciion ai thc 
dcsigniited subroutincs iii tlic source file. The specified valuc of PROP 
is no1 uscd iii ihis ciisc. 

1 1 1 Imnterinl propeny is r constantuii, tiiblc or 



IMAT=ii: Proprty is a inblc. Thc user inusi enter n nuinbcr of 
iiidcpciidciii ~wiiiis. 

REAL This set is only uscd wlicn ihc vidue IMAT = O 
When IMAT is noi cquiil io O ihen (lie 
correspondhg valuc of PROP is not uscd 
widiin the code. 

[NTEGER I~umber  of clcineni düiü records 

INTEGER 
[NTEGER 
lNTEGER 

~ u m b e r  of iirst elcincni in sequencc 
Number of Iast cletncni in sequcncc I N2>N I OR N2=N 1 
Incremcni in elcinent nuinbcrs iir scqucnce NELINC>O 

REAL Thc value of ihç point loiid 
INTEGER Equation nuinbcr 
INTEGER Number of essential boundary condition düia 

lNTEGER Nodc numbcr of Tirsi nodc in Lhc sequcncc 

INTEGER Increineni in ndirl nutnbcrs froin clement to 
INTEGER Number of nudes in wch clcmcnt 

INTEGER Ordcr of intcgriiiioii rule pcr coordiniiic 

Material property for eiich element 
INTEGER Node numbers in thc first element in tlic 
INTEGER Equaiion numbcr 
INTEGER Numbcr of poini loiid daia records 
INTEGER The node number of the n d e  at which ilie 

point loricl is applicd 

I~TEGER l ~ o d e  nuinbcr of ilic Iüsi node in ihc sequencc 

NODINC>O 

NEE4 
NINTE= 1.2 or 3 

Noie thrii Sci 19 musi be repcatcd NEQN tiincs. If NEQN = O and 

This set should bç rcpeiiied for d l  point loads (i.e., NREC iimcs). If 
NREC = O then ihe nexi equiiiion is reid. 

INTEGER ~~ncrement in nodal nurnbcrs 

Notc thai Sct 21 inust bc repeatcd NEQN timcs. 

This sci inusi bc rcpeated for al1 esscniial boundwy conditions ( i.c., 
NREC iirncs ). 





Sample Input Data (Test Number 277) 

TURBULENT 
M4 
UMCALL 
VARIA 
3.935E-3.8SE-3,998..4200,0.6,1.E-3.-.327~5.26.47,21.0.8 
O 
O -9 
8..03SE-3.1.02E-3 
225 
4-96 
0.0 
Test Number 2î7 
1 l 5 l 9 l U O l l l l  1 0 1 2  
40 0.005 0.05 
05 O 5  1 .O 
2 17 

1 2 1 .228600000OE-02 
2 4 1 3 175000000E-02 
4 13 1 .3935000000E-02 

13 21 1 .4035000000E-02 
21 30 1 .4955000000E-02 
30 40 1 .5055000000E-02 
40 49 I .8JOOOOOOOOE-û2 
50 5 1 1 -2283835453E-02 
51 53 1 3173382576E-02 
53 62 1 393299S413E-02 
62 70 1 -4032995413E-02 
70 79 1 .4955000000E-02 
79 89 1 5055000000E-02 
89 98 1 -8400000000E-02 
99 100 1 -2282219205E-02 

100 102 1 -3169748895E-02 
102 11 1 1 -3928491938E-02 
1 11 1 19 1 .402&191938E-02 
1 19 128 1 .4955000000E-02 
128 138 1 5055000000E-02 
138 147 1 .810000000OE-02 
148 149 1 -2279261378E-02 
149 151 1 3165610802E-02 
151 160 I .3923400490E-02 
160 168 1 .4023400490E-02 
168 177 1 .4955000000E-02 
177 187 1 5055000000E-02 
187 196 1 .8400000000E-02 
197 198 1 .2276796937E-02 
198 200 1 .3 162217969E-02 
200 209 1 -3919158333842 
209 217 1 .4019t58333E-02 
217 226 1 .49550ûûOoOE-02 
226 236 1 5055000000E-02 
236 245 1 .84000ûûûûOE-02 
246 247 1 ,2275386200E-02 
247 249 1 .316OZ86 128-02 
249 258 1 .39 16729964E-02 











16 256 48 4 9 4 2  3 16 17 66 65 
304 l a 8  48 49 4 2 2 310 31 1 360 359 
17 257 48 4 9 4 2  3 17 18 67 66 

305 1309 48 4 9 4 2  2 311 312 361 360 
18 258 48 4 9 4 2  3 18 19 68 67 

306 1410 48 4 9 4 2  2 312 313 362 361 
19 259 48 4 9 4 2  3 19 20 69 68 

307 l4l l  48 49 4 2 2 313 314 363 362 
20 260 48 49 4 2 3 20 21 70 69 
308 1412 48 49 1 2  2 314 315 364 363 
21 1413 48 49 4 2 2 21 22 71 70 
221414 48 4 9 4 2  2 22 23 72 71 
23 1415 48 4 9 4 2  2 23 24 73 72 
241416 48 4 9 4 2  2 24 25 74 73 
25 1417 48 4 9 4 2  2 25 26 75 74 
26 1418 48 4 9 4 2  2 26 27 76 75 
27 1419 48 4 9 5 2  2 27 28 n 76 
2s 1420 4s  4 9 4 2  2 28 29 78 n 
29 1421 48 1 9 4 2  2 29 30 79 78 
301422 48 4 9 4 2  2 30 31 80 79 
31 1423 48 4 9 4 2  2 31 32 81 80 
32 1424 48 4 9 4 2  2 32 33 82 81 
33 1425 48 4 9 4 2  2 33 34 83 82 
34 1426 48 4 9 4 2  2 34 35 81 83 
351427 4s  3 9 4 2  2 35 36 85 8.2 
36 1428 48 3 9 4 2  2 36 37 86 85 
37 1429 48 4 9 3  2 2 37 38 87 86 
381430 48 4 9 4 2  2 38 39 88 87 
39 1431 48 4 9 4 2  2 39 40 89 88 
40 1432 48 4 9 4 2  2 40 41 90 89 
41 1433 48 4 9 4 2  2 41 42 91 90 
421434 JS 4 9 4 2  2 42 43 92 91 
43 1435 48 4 9 4 2  2 -13 U 93 92 
51 1436 48 494 2 2 44 45 94 93 
45 1437 48 49 4 2 2 45 46 95 94 
461438 48 4 9 4 2  2 46 47 % 95 
47 1439 48 4 9 4 2  2 47 48 97 % 
48 14-80 48 49 4 2  2 48 49 98 97 

0 0 
1 4  

4 1474 49 O. 
298 315 1 O. 
21 315490. 
49 1519 49 O. 

2 1 
1491 1491 1 70.2 
O 0 
1 1  
1 1519 10.0 
2 1 
11519 120.0 
END 



APPENDIX C 

Computer Program 



L -  ' - - 7 - . . . . . . . . . .  . . . . .  

C *  * 
C S  
C PROGRAM FEAT (FiNïïE ELEMENT ANALYSIS IN TWO DIMENSIONS) 
C * 8 

C S.Y. SHhn (NOVEMBER 1996) * 
C**8*8888**888*8**8**I.***8888****888***88*8**8****************88*8****** 

C 
C 
C.....FEAT IS A FINITE ELEMENT COMPUTER PROGRAM DESIGNED TO SOLVE 
C TWO-DIMENSIONAL STEADY AND UNSTEADY FELD PROBLEMS- 
C.....BOTH PLANE AND AXfSYMMETR[C PROBLEMS MAY BE ANALYZED. 
C.....BOTH STEADY AM) UNSTEADY PROBLEMS MAY BE ANALYZED. 
C.....BOTH LINEAR AND NON-LINEAR PROBLEMS MAY BE ANALYSED. 
C 
C.....FREE-FIELD INPUT OYI'ION IS EXERCISED. 
C.....DOUBLE-PECISIOMNG IS USED FOR ALL REAL VARIABLES. 

W L I C I T  DOUBLE PRECISION (A-H.0-Z) 

CALLS: PREP. PROS, POST 

COMMON/FiLES~IN.NOU.NLG,NFIL&NPLOT 
COMMON/FtLENAh4ES/iNFiLEsrrrLE 
COMMON /VDIM/ L 1 .L2 
COMMON/CCON/NNODE,NELEM,NMAT.NPOINT.NOUT.NJ.NTO 
..NPRNT 1 .NPRNTZNPRNT3.NPRNT4.NPTYPE.NPDE 
COMMON/ClNT/XIQ(9.2.3),WQ(9.3) 
COMMON /BAND/ iB,iBZ.ISYM 
COMMON/MAX/MAXEL,MAXNOD,MAXEBN,MAXNBS,MAXPTLMAXMAT,MAXLB 
COMMON/TiMES~.TF,DELTAT,NSTEP.NSTEPT 
COMMON/CONSTt/ALPHA.BETA.THETA 
COMMON/CONST~~I'HETD.THETM,THETMD,DT~,ADT,BDT,OM~ADT. 
.HM2BPA,OMADT,HPBMA 

iNCLUDE T H V A R H  

L.....THIS PROGRAM IS DIMENSIONED FOR: 
C.....2350 ELEMENTS (MAXEL). 
C.....2;160 NODAL POINTS (MAXNOD). 
C.....2360 MAXIMUM HALF-BAND-WTH (MAXIB) OR MAXIMUM FULL-BAND-WIDTH, 
C.....285 ESSENTTAL BOUNDARY NODES (MAXEBN), 
C.....2JO NATURAL BOUNDARY SJDES (MAXNBS), 
C.....6û POINT LOADS (MAXV[Z). 
C.....45 MATERIAL PROPERTES (MAXMAT). 
C 
C.....THE FOLLOWING SEVEN DIMENSION STATEMENTS MUST BE CHANGED 
C TO RE-DIMENSION THE PROGRAM. 
C 
C 

DMENSION NE(2350).MAT(2350),NODES(9,U50),NINT(2350) 
DIMENSION XGM(1,2350),YGM(4,235O),SX(4,2350),SY(J.2350) 
DIMENSION X(2.2460),U(10.2460),UOtD(10,246O),~ER(10.2460) 
DiMENSION PROP(IO,lO.15) 
DMENSION NODBCI(1O.2SS),VBCI(10.28S),NELBC(IO~240)~NSDE( 10.240) 
DIMENSION VBC2(10.2,24O).NPT(10,60),VPT(10,60) 



DiMENSION GK(2460,2460),GF(2W).GFBC(2460) 
DIMENSION l'VAR( 10,10.45,20),VAR(10,10,45.20),IMAT(10,10,45) 
DiMENSION U1(10,2460),UU1(10,2460),UlOLD(I0,2360)~UU t 0LD(10.2$60) 
DiMENSION DIFFü(IO),UELEM(10,235û)sTOLEQ(1 O),RELAX( lO).DIFFMAX(fO) 
DIMENSION NBCl(lO),NBCZ(IO) 
DMENSION WAREA(I0.45),WNODES(10).WELEM(IO) 
DWNSION AMATA( 10,45),WBAR(10,45) 
DiMENSION SIGMA(2350),UTER2(2460) 

DATA EPSII .E-SI 
CHARACïERe2O INFlLE 
CHARACTER*4 LABEL(20) 
LOGICAL FIRST,START;! 

L.....THE WLLOWING SEVEN PARAMETERS MUST BE CHANGED TO SET THE 
C NEW ARRAY SEES IN RE-DIMENSIONING THE PROGRAM. 
C 

MAXEL = 2350 
MAXNOD = 2560 
MAXEBN = 285 
MAXNBS = 240 
m = 6 0  
MAXMAT = 45 
MAXIB = 2460 

C 
C.....MAXEL = MAXiMUM NUMBER OF ELEMENTS 
C.....MAXrJOD = MAXiMUM NUMBER OF NODES 
C.....MAXEBN = MAXIMUM NUMBER OF ESSENTIAL BOUNDARY NODES 
C.....MAXNBS = MAXIMUM WMBER OF NATURAL BOUNDARY SIDES 
C.....MAXPTL = MAXIMUM NUMBER OF POINT LOADS 
C.....MAXMAT = MAXIMUM NUMBER OF DlFFERENT MATERL4L GROUPS 
C.....MAXIB = MAXIMUM HALF-BAND-WTH OR MAXIMUM FULL-BAND-WTH 

FOR UNSYMMETRIC PROBLEMS 

SET UNIT m B E R S  FOR VO AND DISK FILES 

NIN =51 
NOU =52 
NFLE = 53 
NLG = 2 

OPEN (UNIT=NINWE.=INFILE(l:mE)/r.inp'.STAWWOLD7 
OPEN (UNIT=NOU,FILE=iNFiLE(I m E ) / f  .lis'.STATUS='UM(NOWbQ 
OPEN (UNïï=NLG,FILE=iNFILE(l :JTïïLE)//.lg',STATUS='üNKNOWN') 
OPEN (UNIT=3.FILE=INFILE(l:JTITLE)/r.d32',STATUS='UNKNOWN? 



l 1 2 FORMAT(A9) 
WFUTE(NLG.*)'FLOWTYPE '3LOWTYPE 
PRINT *,'FLOWTYPE ',FtOWTYPE 

C 
F(FLOWTYPE.EQ.TvRsULENT)READ(N[N,I 13)MIXMODEL 
fF:(FtO~E.EQ.TURBULEKE3READ(NIN, t 13)KEMODEL 

1 1 3 FORMAT(A2) 
D(ROWTYPE.EQ.TURBULEKE~.KEMODEL.EQ.'LB'.ORKEMODEL.EQ.'MY3 

- W@JIN,* )EWMAX 
C 

READ(NIN, 1 1 4)RMOPT 
Il4 FORMAT(A6) 

WRITE(NLG,*)'RM OPTION ',RMOPT 
PRLNT *.'RM OPTION ',RMOPT 

C 
F(RMO~.EQ.'RMUSER?W(NIN,*) RMVALUE 
iF(RMOIT.EQ.'RMUSER')WRlTE(NLG.*)'RM VALUE SPECIFIED iN MM '.RMVALUE 
iF(RMOPT.EQ.'RMUSER3PRCNT *,'RM VALUE SPECIFED IN MM ',RMVALUE 

C 
READ(NIN, 1 I6)FPROP 

1 16 FORMAT(- 
WRITE(NLG,*)*FLUID PROP OPTION *,FPROP 
PRiNT *.'FLUID PROP OPTION '.FPROP 

IF(FPROP.NE.'FiXED'.AND.(NGEOMTYPE.NE. 1 .AND.NGEOMTYPE.NE.Z 1 AND. 
. NGEOMTYPE.NE.22))THEN 
WRITr(NLG.*)'VAR PROP NOT SUPPORTED FOR GEOM OPT # ' .NGEOWPE 
PRINT *.'VAR PROP NOT SUPPORTED FOR GEOM O I T  U *,NGEOMTYPE 
STOP 
ENDE 

iF (NGEOMTYPE.EQ.0) THEN 
PRINTC,'GEOM TYPE m>: TüBE GEOMETRY MODELLED' 
ELSEIF (NGEOMTYPE.EQ.1) THEN 
PRïNT*,'GEOM TYPE #1: ANNULUS GEOMETRY MODELLED' 
ELSEIF (NGEOMTYPE.EQ.11) THEN 
PRINT*.'ENTER NO OF FJNS. HALF FIN WIDTH. FRU HEIGHT 
READ(NIN.*)FNO,HFWDTH,FHT 
PRiNT*.'GEOM TYPE #LI: PATANKAR ANNULUS GEOMETRY MODELLED' 
ELS EiF (NGEOMTYPE-EQ. 12) THEN 
PRiIUT8,'CiEOM TYPE # 12: PATANKAR UNFINNED ANNULUS MODELLED' 
ELSEIF (NGEOMTYPE.EQ.2) THEN 
PRINT+,'ENTER NO OF FINS, HALF ANGLE SUBTENDED BY A FIN' 
READ(NIN.*)FNO,B ANGL 
PRiNT*,'GEOM TYPE W. CONCENTRIC FINNED TUBE OF SOLIMAN MODELLED' 
ELSEIF (NGEOMTYF'E.EQ.3 .OR. NGEOMTYPE.EQ.2 1) THEN 
PRW.'ENTER NO OF FINS, HALF FiN WIDTH, FIN HEIGHT 



10 CONTINUE 

READ(MN,*)FNO,HFW[DTH,FHT 
PRINT*,'GEOM TYPE #3: SQUARE FINNED TUBE # l  OF EDWARDS MODELLED' 

ELSEE (NGEOMTYPE.EQ.22) THEN 
PRiNP,'GEOM TYPE #22: FA8 GRD BUT ANNULLIS' 

ELSE 
PRINT*,'SPECIFY GEOMETRY TYPEO=TUBE.l=ANNULUS,21=FA8' 

STOP 
ENDIF 

PEUNP,'ENTER THETA iN DEGREES' 
READ(rn.*)THETAN 
PRINT*,'ENTER MAX RE' 
READ(NIN.* )REMAX 
PRiNT*.'ENTER DPDZ [NCREMENT 
READ(MN,*)DPDZWC 

FIRST = .'l'RE. 
START = .TRUE. 
START2 = .TRUE. 

TO =o. 
TF =o. 
DELTAT = 0. 
CDOWN = 0. 

1 CALL PREP (NE.MAT,NODES,NINTX,PROP.NODBC 1, 
.VBC 1 ,NELBC.NSIDEVBC2,NPT.VPT.U.UOLD,LZLABEL,IMAT. 
.VAR.TVAR,TOLEQ,MAXITER.NBC 1 .NBC2,INFILEJTïTLE, 
-RELAX,UELEM.*89) 

CHECK INPUT TIME PARAMETERS AND SET SOME CONSTANTS 

THETD = THETA*DELTAT 
THETM = 1. - THETA 
THETMD = THETM'DELTAT 
GO TO 80 



DO 25 1= 1.NNODE 
GFBC(I) = 0.0 
DO 24 II= 1, NPDE 
U O L D O  = U o  - UOLDO8DELTAT 

24 CONTINUE 
25 CONTINUE 

C 
DT2 = DELTAPDELTAT 
ADT = ALPHA8DELTAT 
BDT = BETAeDï2 
OM2ADT = (1. - 2.*ALPHA) 'DELTAT 
HMtBPA = (5 - 2.*BETA + ALPHA)*DT2 
OMADT= (1. - ALPHA)*DELTAT 
HPBMA = (-5 + BETA - ALPHA)*DT2 

C 
C...,.TtME INTEGRATION LOOP STARTS 
C 

80 TIME = lü + DELTAT 
m=1 
mP=I 
m l  
EF(NPTYPE.NE. 1) NSTE PT=((TF-TO)/DELTAT)+EPS 
[F(NPTYPE.EQ. 1) NSTEPT=l 
NSTEP= 1 

85 I I I I I P = O  
DO 1 2 II = 1,NPDE 
DO 12 1 = LNNODE 
LTITER(II.I) = 0.0 

12 CONTINUE 

IF(IIP.EQ.NPRNT 1) iiP=O 
iF(mP.EQ.NPRNT2) mP=û 
IF(UIiP.EQ.NPRNT3) iiQP=û 
IF(NSTEP.EQ.NSTEVD IIPd 
IF( NSTEP-EQ-NSTEPT) mP=O 
IF(NSTEP.EQ.NSTEPï7 UiIP=O 

C 
[TER = O 

13 ï iER=ITER+I 
IF (NPRNT1 .GT. O) lIIIIP = IXmP + 1 
IF (NPRNTJ .EQ. IimP) IIlIIP = O 
IF (ITER .GT. MAXITER) THEN 
WRITE(NOU.600)iTER 
GOTO 26 

ENDIF 
C 

NPDEI=l 
NPDECNTG-NPDE 
IF(FLOWTYPE.EQ.TURBULEKE*.AND.iTER.GT3S)NPDE 1 =3 
IF(FLOWTYPE.EQ.TURBULEKF.AND.ER.GT.3S)NPDECNn.d 

C IF(ITER.LT.ZO)NPDEl= I 
C IF(ITER.LT.20)NPDECNTL=2 
C TTZRCNTL=ilER/2û 
C F(~R.GE.ZO.AND.I'IZR.NE.(20+1TERC~L))WDE1=3 
C iF(ITER.G E.2O.AND.ITER.NE.(20* ïïERCNTL))WDECNTL=4 
C IF(rrER.GT.1 AND. D ~ ( l ) . L T . ~ L E Q ( I )  AND. DIFFU(2)LT. 
C . TOLEQ(2))THEN 



. .OR. IIIIP.EQ.O)) WRïïE(NOU.50) IEQ,NSTEP,TIME 
50 FORMAT(///,' GENERATED SOLUTION FOR EQUATION = ',W. 

.lfGTIME STEP = 'J6JX.TiME OF SOLUTION = '. 1 PE 12.4) 
ENDIF 

C.... 
CALL PROS (NODBC 1 .VBCl ,NELBC.NSIDE,WCZNPT,VPT.NE,MAT.NODES.mT 
.,GK.GF.GFBCX.U,L~ , L Z P R O P , ~ B I I R N S T E P , U O L D ~ T .  
.VAR,TVARITERUI,UUI,U t OLD,UU IOLD.IEQ,UELEM,NBCl.NBCZAMUST,SIGMAl 

C.... 
IF(N0UT .EQ. 1 AND. NPRNT4 .GT. O AND. W .EQ. O .AND. 
. (IIP .EQ. O .OR. EiP .EQ. O .OR. EIIP .EQ. 0)) THEN 

WRiTE(NOU.9 1 )IEQ,iTER(I.U(IEQ,OJ=1 ,NNODE) 
C WRllE(NOU.9 I)IEQ~XTER.(I,AMUST(I),I= 1 .NELEM) 

ENDIF 
9 1 FORMAT(1 H 1.1 X.'SOLUTION VECTOR EQ = '.D$X.*ITERATION = '.E. 
. /.lX.3('N0DE.8X,'UD,l 8X)/.3(I5,5X.1PEllA.lOX)) 

CALL STRESS(NEX.NODES,U,IEQ,MAT,PROP,VAR.UELEM. 
1MAT.TVAR.S IG MA) 

IF((KEMODEL.EQ.'LB'.OR.KEMODEL.EQ.'MY~AND.EQ.EQ.J)THEN 
WRITE(N0U. 16O)IEQ 
WRITE(NOU, 170) 
DO 35 I=l.NBC l(1EQ) 
WRtTE(NOU.l80)NODBCl(IEQ,I).VBC l(1EQ.n 

35 CONTINUE 
ENDIF 

160 FORMAT(1 XJ,' GENERATED Ew BC EQ = '.Dl 
170 FORMAT(1X.' NODBCl VBCI 9 
180 FORMAT(1H ,5X.I5,7X,lPE 1 13) 
C 
21 CONTINUE 
C 

CALL cHEKCONV(U.UITER.DIFNRELAXD[FFMAX) 
PRiNT 999.TWITER(DIFNmQ).IEQ=l NPDE), 

. (DiFFMAX(IEQ).IEQ=l ,NPDE) 
WRITE(NOU.999)TIME,fTER(DIFN(EQ).EQ= 1 .NPDE), 

. (DiFFMAXOEQ).IEQ=l .MD€) 
WRITE(NLG,999)TIME,ITER,(DIFN(EQ)EQ= 1 ,NPDE), 

- (DiFFMAX(IEQ)EQ=I ,N'DE) 
999 FORMATV.1 X.TIME = ',F10.4,2X,' ITER = 'J5.10(1 X.El6.10)) 
C 

CALL ~ULK(IMAT,NE,MAT.NODESX,U,~WAREA,WNODES, 
WELEMmTA,WBAR,UELEM,StGMA,PROP) 

C 
DO 22 EQ=1 ,NPDE 
iF (DIFFU(IEQ) .GT. TOLEQmQ)) GOTO 1 3 

22 CONTINUE 
C 
26 DO 23 iEQ=I,NPDE 

CALL POST (X,NEMAT.NODES,NINT,U,PROP,IIP,IIIP,IZIIP,TIME 





150 FORMAT(///.IX,'DELTAT IS LESS THAN OR EQUAL TO ZERO') 
STOP 

200 WRITE(NOU,300) 
300 FORMAT(///,lX.'TtfE FINAL TlME IS LESS THAN THE RUlTIAL TIME? 

STOP 
400 WRITE(NOU,Sûû) 
500 FORMAT(///, 1 X,' DELTAT IS GREATE R THAN TF-TO 3 

STOP 
E m  

LOO continue 
jt=j 
r e m  
end 

PREPROCESSOR ROUTINE: CALL ROUTWS TO READ AND GENERATE DATA 

CALLED BY: MAIN 

C A U S  : RTHVAR. RCON. RNODE. RELEM. RMAT, REK, RTIMB. 
W. RCONS, OUTPL1,CALBAN 

W L I C I T  DOUBLE PRECIS ION (A-H.0-Z) 

cOMMON/FILES/NIN.NOU,NLG.NFIL&NPLOT 
COMMON /BAND/ iB,iBZ,ISYM 
COMMON/CCONINNODE,NELEM,NMAT,NPOINT. 
.NOUT.NINTO,NPRNTl ,NPRNT2,NPRNT3,NPRNTS,NPTYPE,NPDE 
COMMON/MAX(MAXEL,MAXNOD,MAXEBN,MAXNBS,~L,MAXMAT.MAXlB 
COMMON~ES/ro ,TF,DELTAT 
COMMON/CONSTl /ALPHA,BETA,THETA 

DIMENSION NE(I).MAT(l).NODES(9,1),NINT(I) 
DiMENSION NODBCl(lO.l).VBC1(10.I).NEtBC(lO~1),NSIDE(lO, 1). 

.VBC2(10,2 I),NPT(lO, l),VPT(lO. 1) 
DMENSION PROP( 10,10.1)X(2.1) 
DIMENSION U(10,1),UT(10,1),UELEM(lO,t) 
DiMENSION TVAR(10,10,1,20).VAR( 10,10.1,20),iMAT(lO.lO.l) 



DiMENSION TOLEQ(l).RELAX(l) 
DIMENSION NBCl(l),NBCZ(l) 

C 
CHARACTERa4 LABEL(2O)END 
CHARACTER*U) D F L E  

C 
C 

END = 'END' 
C 

READ(NIN. 100)LABEL 
IF (LABEL(I).EQ.IEND) GO TO 99 

C 
wRITE(N0U. 1 50) 
~ ( N O U , 2 0 0 ) L A B E L  
WRITE(N0U. I~~~MAXEL,MAXNOD.MAXEBN.MAXNBS,~ .MAXMAT.MAX~ 

C.....TH ERMAL HYDRAULIC VARIAB LES 
C 

P M  *,'FLOW TYPE OF THE PROBLEM' 
P m T  *, FLOWTYPE 
WRITE(N0U. *)FLOWYPE 
WRITE(NLG,*)FLOWTYPE 
PFUNT *.THERMALHYDRAULIC VARlABLES USED' 
PRINT 3 1 
PRmT 32,RLRO,DEN,CPAK 
PRINT 33 
PRiNT 34,ViS,DPDZ,TW,DTDZ 
WRITEXNOU.30) 
WFüTE(NOU.3 1) 
WRITE(NOU.32)FU.RO,DEN.CPhK 
wRITE(NLG.30) 
WRïïE(NLG.3 1) 
WRITE(NLG.32)Ri.RO.DEN.CPAK 
WRïiE(N0 U.33) 
~(NOU,34 )VIS ,DPDZ,TW,DTDZ 
WRiTE(NLG.33) 
WRi7'E(NLG,34) VIS.DPDZTW,DTDZ 

If: (NGEOMTYPE.EQ.0) THEN 
PRINT 35 

ELSEIF (NGEOMTYPE.EQ.1) THEN 
PRINT 35 1 

ELSEIF (NGEOMTYPE.EQ.11) THEN 
PRINT 352 
WFüTE(NLG.352) 

ELSEIF (NGEOMTYPE.EQ.12) THEN 
PRINT 353 
WRiTE(NLG,353) 

EUEIF (NGEOMTYPE.EQ.2) THEN 
PEUNT 36 

PRINT 37.FNO.BANGL 
WRITE(NOU.36) 
WFUE(NOU.37) FN0,BANGL 
WRITE(NLG,36) 
WRITE(NLG,37)FNO,BANGL 

ELSEiF (NGEOMTYPE.EQ.3 .OR. NGEOMTYPE.EQ.21) THEN 
PRiNT 38 

P W  39,FNO,HFWiDTH,FHT 
WRITE(NOU.38) 
WRITE(NOUS9)MO.HFWIDTH.FHT 



CALL RTHVAR 

CALL RNODE (XI 

CALL RELEM (NEMAT.NODES,NINTX) 

iF(NFTYPE.NE. 1) CALL RTIMES 

IF(NPiYPE.NE.1) CALL RIC (U.UT,UELEM.NE.NODES) 
CALL RiC (U.UT.UELEM.NE.NODES1 

IF(NPTYPE.NE. 1) CALL RCONST 

CALL OUTPL 1 (XNE.NODES,LABEL) 

CALL CALBAN (NODES.NEL2) 

RETURN 
99 RETURN 1 

C 
100 FORMAT(20A-4) 
1 50 FORMAT(//. 1 X,'FE A T  J, 
. I X,'(Finite Element Aricilysis in Two dimension)',//. 
. lX.'REVISION BY S.Y. SHIM'. 
.1X,'(16 SEP 92)'J, 
-1 X.'LAST REVXSION BY P.P. REVELIS AND S.Y. SHIM', 
. 1 X.'(3O JUL 92)'J. 
. lX.'LAST REVISION BY H.U. MAY.  P.G. WLLLKITE AND H. DiDANDEH'. 
-1  X.'(16 APR 87)' ) 

155 FORMAT(///SX,THIS PROGRAM IS DIMENSIONED K)R:'J5XJ5,2X. 
.'ELEMENTS,'J~XJ,2X.1NODES,' J,5X,I5,2X,'ESSENTlAL BOUNDARY 
. NODES.'JSX&.2X.'NATURAL BOUNDARY SIDES.'J,!5X,i5,2X. 
.'POiiUT LOADS,'J,5XI5,2X,'MATERIAL PROPERTIES,'JJX.i5,2X, 
.'- HALF-BAMbWIDTH OR MAXIMUM FULL-BAND-WTDTH.') 

200 FORMAT(///. 1 X,20A4) 
30 FORMAT(//,"THERMALHYDRAULIC VARiABLES USED') 
3 1 FORMATU,5X.'RI '.6X,'RO ',6X.'DEN ', 
. 6X.'CP 'bX,'AK 2 



32 FORMAT(S( 1 PE lO3,l X)) 
33 FORMAT(SX,'VIS '.6X'DPDZ ',6X,TW ',6X,'DTDZ 7 
34 FORMAT(4(1PE103,1X)) 
35 FORMAT(/SXTUBE GEOMETRY USED') 
35 1 FORMAT(/,!jX.*ANNULUS GEOMETRY USED') 
352 FORMAT(/JX,'PATANKAR FINNED ANNULUS USED') 
353 FORMAT(/,SX,'PATANKAR üNFiMUED ANNULUS USED') 
377 FORMAT(/,SX,'FAS UNFINNED ANNULUS USED') 
36 FORMATV$X.'CONC FINNED TUBE OR FIMJED ANNULUS GEOMETRY USED') 
37 FORMAT(2X,'NO OF FINS =', F3.0.2X,'HALF ANGLE SUBTENDED BY 

- A FIN @EG) = '.F5.1) 
38 FORMATVJX.*SQR FiNNED TUBE OR FINNED ANNULUS GEOMETRY USED') 
39 FORMAT(2X,'NO OF FINS =*, F3.0,2X,'HALF WIDTH = ', €10.4. 
2X,'FCN HEIGHT = ', E10.4) 
END 

C 
c 
C*+II***8+*L8*+88888*18**888*****8*8****8*8****8* 

SUBROUT[NE RTHVAR 
c**+*******t*8*8*88*88***8***8+++**88***** 

C 
C READS AND CALCULATES THERMALHYDRAULICS VARIABLES 
C 
C CALLED BY: PREP 
C 
C 

IMPLICIT DOUBLE PRECISION (A-H.0-Z) 
C 
C 

COMMON/FILES/NW,NOU,NLG.NFILE,NPLOT 
WCLUDE THVAR-H' 

C 
PI = 3.141592654 
IF (NGEOMTYPE.EQ.0 .OR. NGEOMTYPE.EQ.1) THEN 
RAD = ((RO**ZO)-(RI**2.0))/(2.O*RO) 
PWET = 2.0*PI+(RO + RI) 
AFLOW = P18(RO**2.0-R18*2.0) 
DH = 2.0*(RO-RI) 
ELSEIF (NGEOMTYPE.EQ.11) THEN 
AFLOW = PI8(RO**2. - Rt**2.) 
PWET = 2.*PI*(RO +RI) + FNO*2*FHT 
DH = J.*AfLOW/PWET 
ELSEIF (NGEOMTYPE.EQ.12.0R.NGEOMTYPE.EQ.22) THEN 
AFLOW = PI*(R0**2. - RI**2.) 
PWET = 2.*Pi*(RO +RI) 
DH = 4.*AFLOW/PWET 
ELSEiF (NGEOMTYPE.EQ.2) THEN 
BANGLRAD = BANGL8PV180. 
AFLO W = P18RO**2. - MO*BANGLRAD*(RO**2.-R18*2.) 
PWET = 2.*PI*RO - FN082.*BANGLRAD*(R0 -RI) + 

. FN0*2.*(RO-RI) 
DH = 4.*AFLOW/PWET 
ELSEiF (NGEOMTYPE.EQ.3) THEN 
AFLOW = PI*RO**2. - FNO*2.*HFWIDTH*FHT 
PWET = 2.*Pi*RO + FN0*2.*FHT 
DH = 4.*AFLOW/PWET 
DHA = 36.WE-3 
ELSEiF (NGEOMTYPE.EQ.4) THEN 



AFLOW = PPRO**2. - FNOCZ.*HFWIDTH*FHT 
PWET = 2*PI*RO + MO*Z*FEIT 
DH = 4.*AFLOW/PWET 
DHA = 50.668-3 
ELSEF (NGEOMTYPE-EQ5) THEN 
AFLOW = P[*R0**2. - FNO82-*HFWIDTH*FHT 
PWET = 2*PIeR0 + FNO*Z.*Ft.IT 
DH = 4,*AFLOW/PWET 
D M  = 38.3053 

ELSEIF (NGEOMTYPE.EQ.21) THEN 
AFLOW = PI*(RO**Z - Ri8*%) - FNO*2.*HRMDTH*FHT 
PWET = 2.*PI*(RO +RI) + FN0*2*FHT 
DH = 4.*AFLO W/PWET 

ELSE 
PRINT I 
WRITE(N0U. 1) 
WRITE(NLG. 1) 
FORMAT(///. 1 X.' GEOMETRY TYPE NOT DEFINED ') 

SrOP 
ENDiF 

PRINT 2, RI,ROAFLOW,PWET.DHA.DH.Z*RO 
WlUTE(NOU.2) RI,RO,AFLOW,PWET.DHA.DH.2*RO 
WlUTE(NLG.2) RI.RO~OW,PWET,DHA.DH,2*RO 
H)RMAT(IXWRI = '.El O.3.lX,@RO = '.ElO.3.IX.'AFLOW = '. 
E10.3.1X,'PWET = ',€103,/,lX,'DH,ED = '.E103.1X, 

. 'DH = *.E103.1X.'2*RO = '.EIO.3) 

RETLrRN 
END 

READS CONTROL PARAMETERS 

CALLED BY: PREP 

DIMENSION TOLEQ( 1 ),RELAX(I) 
CHARACTER*20 INFLE 

READ(NIN,*)NPTYPE,NNODE,NELEM,NOUT.NINTO.NPRNT1 .NPRNn,NPRNT3. 
NPRNTJ,NPLOT,NPDE 

R E A D ( N I N . * ) ~ R . ( T O L E Q ( E Q ) . E Q = l  .NPDE) 
READ(m,*)(RELAX(EQ)SQ= 1 ,NPDE) ,RELAXVIST 
iF (NPLOT .EQ. 1) 



.OPEN (U~=NFaE,~Er~E(lImTLE)/î.plt',STATUS='UNKNOWN') 
LF(MAMTER .LE O) THEN 
MAXITER = 50 
WiUïE(N0 W. 1 2) 
ENOF 
Do 11  IEC+I.NPDE 
IF(TOLEQ(IEQ).LE.O.O .OR. TOLEQ(IEQ).GE.I.O) THEN 
TOLEQ(iEQ)=û.OS 
WRITE(NOU, t 3)f EQ 
ENDD 

11 corn 
cF(NNODE.GT.MAXNOD) GO TO 1000 
iF(NELEM.GT.MAXEL) GO TO 2000 
IF (NPDE .LT. 1 .OR. NPDE .GT. 10) GO TO 2650 
WRITE(NOU.200) 
W~(NOU.300)NPTYPE.NNODE.NELEM,NOUT,NINTO.NPRNT 1 .NPRNT2,NPRNT3. 

NPRNT4.NPLOT.NPDE 
m s  = O  
IF(NPTYPE.LT.0) lAMS = 1 
NP'IYPE = IABS(NPTYPE) 
IF(NPTYPE.EQ.0) GO TO 2600 
IF(NPïYPE.GT3) GO TO 2600 
iF(IAMS.EQ.0) WRiTE(NOU.350) 
KF(IAXIS.EQ.1) WRiTE(NOU.360) 

350 FORMATV/$X.' NOTE: A PLANE PROBLEM IS SOLVED #W JI) 
360 FORMAT(//SX: NOTE: AN AXISYMMETRIC PROBLEM IS SOLVED w , / n  
1 O0 FORMAT(6U) 
200 FORMAT(1 H J/,* CONTROL PARAMETERS 3 
300 FORMAT(1 X,'NFïYPE ='.I6/ ' NNODE =',I6/ ' NELEM ='.16/ 
. ' NOüT ='J6/ * NllUTO =',I6/ ' NPRNTI =',I6/ ' NPRNT2 ='.I6/ 
. * NPRNT3 =',I6/ ' NPRNT4 ='.16/ ' NPLOT =*.I6/ ' NPDE =*,I6fi 
RETURN 

12 FORMATU//,3X.THE MAXIMUM NUMBER OF ITERATiONS (MAXTER) 1s'. 
. ' OUTSiDE ALLOWABLE L W S  AND HAS BEEN RESET TO 509 

13 FORMATU//,3X.THE TOLERANCE FûR EQUATION '.IZ' IS'. 
. ' OUTSIDE ALLOWABLE LiMiTS AND HAS BEEN RESET TO 0.053 

1 O00 WRITE(N0U. 1500)NNODE 
1500 FORMAT(///JX.THE NUMBER OF NODES.'.IS.',EXCEEDS THE MAXiMUM 

. NUMBER ALLOWABLE.9 
STOP 

2000 WRiTE(NOU,î!5OO)NELEM 
23'00 FûRMATU//,SX.THE NUMBER OF ELEMENTS,',LS.',U(CEEDS THE 

. MAXIMUM NUMBER ALLOWABLE.') 
STOP 

2600 WRiTE(NOU.2700) 
2700 FORMAT(///,SX.'ERROR EN PROBLEM TYPE: NPTYPE'JB 

STOP 
2650 WRITE(NOU.2750) NPDE 
2750 FORMAT(///SX.'ERROR IN PROBLEM TYPE: NPDE = '.I3.//) 

STOP 
END 

C 
C 
C***************************** 

SUBROüTINE RNODE (X) 
C********************t**L 
C 
C READS AND GENERATES NODAL POINT COORDUVATES 



C 
C CALLED BY: PREP 
C 
C 

w ~rcrr DOUBLE PRECISION (A-H.O-Z) 
REAL*8 SQWTFRAC( 100) 

C 
COuMON~ES/NIN,NOU,NLG,NFlLENPLOT 
COMMON/CCON/NNODE 

C 
DIMENSION X(2 1) 

C 
DO 15 I=l,NNODE 
X(I,I)=l.EM) 

1s X(Zi)=I .E20 
READ(NIN,*)NREC 
WTE(NOU.4ûû) 
WTE(NOU.700) 
DO 20 REC= I . N E C  
READ(NIN,*}NI ,NLiNCX 1 .Y 1 XN.YN.GRAD 
IF(N2.LT.N 1) N2 = N 1 
IF(iNC.LE.0) INC = 1 
IF(GRAD.LE.0.) GRAD=l . 
LNUM = (N2-N 1 )/INC 
WRITE(NOU,o00) N1 ,NLINCXl .Y 1XN.YN.GRAD 
X2l=XN-XI 
Ytl=YN-Y1 
X(I.NI)=Xl 
X(2,N l)=Y 1 
ALF=DSQRT(XZI *X21+Y21*Y21) 
iF(N2.EQ.N 1) ALF=I. 
IF(N2.EQ.N 1 ) GO TO 20 
ALLS=(2.*ALF/LNLTM)*GRAD/(GRAD+ 1 .) 
ALSS=ALLS/GRAD 
IF(WM.NE. 1) DELr(ALLS-ALSS)/(INUM- 1) 
iF(iNUM.EQ.1) DEL = 0. 
SUM=û. 
rIP==l 
DO 180 N=I.INUM 
IIP=IIP+l 
ALI =ALLS-IIP*DEL 
SüM=SUM+ALl 
iN=N 1 +N*INC 
X(l.IN)=X 1 +X2 15SUM/ALF 
X(ZIN)=Y 1 +Y2 1 *SUM/ALF 

ISO CONTINUE 
C 

IGRAD=GRAD 
IF(1GRAD .EQ.99 .OR. IGRAD .EQ -98)TH EN 
CALL SQWT(INUM,SQWTFRACJGRAD) 
DO 190 N=lrnUM 
LN=Nl+N*INC 
X(l .IN)=XI+XZt *SQWTFRAC(N) 
X(Z,IN)=Y 1 +Y 2 1 *SQWTFRAC(N) 

190 CONTINUE 
ENDIF 

C 
20 CONTINUE 



RETURN 
iûû FORMAT(3I55XSF10.0) 
400 FORMAT(1X.' INPUT NODAL POiNT DATA 3 
600 FORMAT(315$(1 PEI 1.3)) 
70OFORMAT(f N1 N2 INC X1 Y1 XN YN 
. GRAD') 

800 FoRMAT(I5) 
END 

C 
C 
C*8t*8****8*8*8*88888*~8~*1888*8****** 

SUBROUTINE SQWT(N.SQ-CD0 
C************************************* 
C 

IMPLICXT DOUBLE PRECISION (A-H.0-Z) 
REAL.8 SQWTFRAC(100) 

C 
C 
C...SQUARE-WEIGH THE GRlD ABOVE THE FIN TIP 
C 

SUM=O.O 
DO I l l  I=l.N 
SüM=SUM+PI 

1 1  1 CONTINUE 
SUM 1 =0.0 
IF (iN.EQ.99)THEN 
DO 112tL.N 

SUMI = 18i/SUM + SüMl 
SQWTFRAC(I) = SUMl 

112 CONTINUE 
C 

ELSEIF (IN.EQ.98) THEN 
DO I l 3  I=I.N 
J = N-I+l 
SUMI = SUMI + I*J 

SQWTFRAC(r) = S ü M  l/SUM 
113 CONTINUE 

ENDCF 
C 

RETURN 
END 

C 
C READS MATERIAL PROPERTY DATA 
C 
C CALLED BY: PREP 
C 
C 

IMPLICIT DOUBLE PRECISION (A-H.0-2) 
C 

COMMON/F[LES/NIN.NOU,NLG,NFILE,NPLOT 
COMMON/CCON/NNODE,NELEM,NMAT,NPOINT,NOUT 
..NINTO.NPRNTI ,NPRNTZ,NPRNT3,NPRNT3,NPTYPE,NPDE 



C O M M O N / M A X / M A X E L N A X N O D . M A X E B N , ~ S . ~ . M A X M A T  
COMMON /BAND/ IBJB2JSYM 

C 
DIMENSION PROP(10.10.1) 
DIMENSION TVA~(!!l.lO.l.2O),VAR(lO,~O.l,2O)~T(IO,lO,l) 

C 
L=NVrYPE+7 
READ(NIN.*) NREC 
iF(NREC.GT.MAXMAT) GO TO 600 
NMAT=NREC 
iF(NREC.EQ.0) CO TO 500 
DO 4 II= 1, NPDE 
~ m ( N O u . m ) I I  
DO 5 3 =  1,NREC 
READ(NIN.*) NCHECK l.NCHECK2 
IF (NCHECK 1 .NE. II .OR. NCHECK2 .NE. I) GO TO 1 0 0  
READ(MN.*) (IMAT(Il,IJ).I= 1 .L) 
READ(NIN,*) ( P R O P ( ~ , I = l , L )  
DO 6 I=l.L 

IF (IMAT(IIJJ) .GT. 1) TH EN 
WD(m.*)(VAR(II.WX),K=l .IMAT(ü.W)). 

- (TVAR(II,IJX)X=I,WT(U,U)) 
ENDE 

6 CONTINJE 
IF(NPTYPE.EQ.1 AND. 1 .EQ. 1) WRlTE(NOU.300) 
iF(NPTYPE.EQ.2 .AND.I .EQ. 1) WRITE(NOU,310) 
iF(NPTYPE.EQ3 AND. J .EQ. 1) WTE(NOU,320) 
WRîTE(NOU.340) J.(IMAT(II,I,D,I= 1 ,L) 
WRiTE(NOU.330) J.(PROP(D,U).I=I,L) 

5 CONTINUE 
4 CONTiNUE 
C 

ISYM = 1 
DO l l i i = l . N P D E  
DO 10 I =  1. NREC 
IF (DABS(PROP(IL4.I)) .GT. 0.0) ISYM = 2 
IF (DABS(PROP(IL5.I)) .GT. 0.0) ISYM = 2 

IO CONTINUE 
I 1 CONTINUE 

C 
1 O0 FORMAT(3 F 10.0) 
300 FORMAT(' MAT NO'AX,'K 1 1',8X.'K22'.8X,'K 12'.8X.'M 1',9X.'MT. 

.9X.'B', IOX.'F. 1 OX,'MW 
3 IO FORMAT(' MAT NOgAX,'K 1 1',8XeK22'.8X.'K l2'.8X.'M 1'9X'MT. 

.9X.'B', lOX,'F,lOX,'MU*.9X,'WO 1') 
320 FORMAT(' MAT NO'.IX,'K 1 1',8X.'K22'.8X,'K 1 T.8X'M 1',9X.'M2'. 

.9X.'B', 1 OX'F, IOX.'MV9X.'RHO 1',7X,'RH02') 
330 FORMAT(I5,2X.IO(l X.El0.3)) 
340 FORMAT(I5,2X. lO(6X.15)) 
JOO FORMATU.2X.WUT MATERIAL PROPERTES FOR EQUATION = ',i3) 

RETURN 
500 WRITE(NOU.5 10) 
510 FORMATU//.2X,TXE NUMBER OF MATERIALS IS EQUAL TO ZERO') 

STOP 
600 WTE(NOU.6 10) NREC 
610 FORMATV//$X,THE NUMBER OF MATERIALS,',IS.*,EXCEEDS THE 
. MAXIMUM N W E R  ALLOWABLE.') 
STOP 



SUBROUT[NE RELEM (NE.MAT,NODES,NINTX) 
C8888*888**8*t***8*8****8+***885***81*****8****8 

C 
C READS AND GENERATES ELEMENT DATA 
C 
C CALLED BY: PREP 
C 
C 

IMPLICIT DOUBLE PRECIS [ON (A-H.0-Z) 
C 
COMMON~ESFIW,NOU,WG,NFILENPLOT 
COMMON/CCON/NNODE.NELEM,NMAT,NPOiNT,NOUT 

C 
DiMENSION NE(l),MAT(I).NODES(9.1).NINT(I) 
DiMENSION X(2.1) 
DiMENSION NODE(9) 

C 
C.....READ ELEMENT DATA 
C 

READ(NIN.*)NREC 
WRITE(NOU,600) 
WRiTE(NOU,700) 
DO 20 IREC= 1 . N E C  
READ(NIN,*)N 1 ,N2,EL[NC~NODINC,NEE.NINTE.MATE,(NODE(~~I=l ,NE@ 
IF(IELINC.LE.0) IELINC= 1 
iF(NODINC.LE.0) NODiNC=I 
IF(N2.LE.N 1) N2=N 1 
IF(N2.GT.NELEM) GO TO 99 
WRITE(NOUJ5O)N I .NLfELiNC.NODfNC.NEE.MNTE~MATE,(NODE(I),I=l .NEE) 
iF(NEE.EQ.3) NODE(J)=NODE(I) 
ïF(NEE.EQ.3) NEEA 
IF(NEE.NE.6) GO TO 8 
N4 = NODE(4) 
N5 = NODE(5) 
Nd = NODE(6) 
NODE(4) = NODE(1) 
NODE(5) = N4 
NODE(6) = N5 
NODE(7) = N6 
NODE(8) = NODE(1) 
NEE = 8 

8 CONTINUE 
mc=- I 
DO 25  N=N 1.N2,iELiNC 
N[NC=NINC+I 
DO IO M=I,NEE 

10 NODES(M.N)=NODE(M)+NiNC*NODiNC 
NE(N)=NEE 
NINT(M=NINTE 

25 MAT(N)=MATE 
20 CONTINUE 



C 
C 

D û  280 N=I ,NELEM 
SUMX=O. 
SUMY=O. 
NEN=WN) 
IF(NEN.EQ.4) GO TO 280 
DO 275 M=S.NEN 
MM=NODES(M.N) 
iF (M.EQ.9) GO TO 15 
M4=NOD ES (M4.N) 
M3=NODES(M-S.N) 
iF(M.EQ.8) M3=NODES(I .N) 
IFX(1 ,MM).EQ.I .E20) X(l .W=O5*(X(I.M4)+X(l,M3)) 
iF(X(2,MM).EQ. 1 .EU)) X(2.MM)=O.S*(X(ZMJ)+X(ZM3)) 
iF(NEN.EQ.8) GO TO 275 
S UMX=SUMX+X( t ,Ma) 
SUMY=SUMY-+X(ZM;i) 
IF(M.NE.9) GO TO 275 

15 iF(X( l.MM).EQ. 1.EZO) X(I,MM)=.25+SUMX 
iF(X(ZMM).EQ. 1 .E20) X(ZMM)=.ZrSUMY 

275 CONTiNUE 
250 CONTINUE 

C 
C.....PRINT NODAL POINT COORD WATES 
C 

iF(N0UT .NE. 1) GO TO 32 
WRITE(NOU.520) 
WRITE(NOU.220) 
DO 30 N=I,NNODE 
WRITE(NOU,320)NX( 1 ,N)X(Z,N) 

30 CONTINUE 
C 
C.....PRINT ELEMENT DATA 
C 

WRITE(N0USOO) 
WRITE(NOU.200) 
DO 3 1 N=I,NELEM 
NEN=NE(N) 
WR~E(NOU,80O)N,NE(N),NINT(N),MAT(N). 
. (NODES(LN), t 1 ,MN) 

31 CONTINUE 
32 CONTINUE 

RETURN 
C 

99 WRITE(NOU.400) 
C 

100 FORMAT(16i5) 
200 FORMAT(28H ELEM NO NEE NINTE MAT.ZOX.12HNODE NUMBERS ) 
220 FORMAT(1 X,' NODE NO. X-COORDINATE Y-COORDINATE 3 
320 FORMAT(I7.1 OX.1 PEI 4.6,lOX.l PE14.6) 
350 FORMAT(1 X.U,2(2XJ5),4( lX,15).7X.915) 
JO0 FORMAT(37HOELEMENT NUMBER EXCEEDS MAXIMUM VALUE ) 
500 FORMAT(1H J,'GENERATED ELEMENT DATA 3 
520 FORMATU, 1 X,' GENERATED COORDINATES 9 
600 FORMAT(/.lX.' INPUT ELEMENT DATA') 
700 FORMAT(1X.' NI N2 EINC NWC NEE NINTE MAT 
. NODES') 



C 
C CALLU) BY: PREP 
C 
C 
C READS POINT LOAD AND BOUNDARY CONDïîiON DATA 
C 

IMPLICIT DOUBLE PRECISION (A-H.0-2) 
C 
COMMON/FïLES~NïN,NOV,NLG.NRLE.NPLOT 
C O M M O N / C C O N / N N O D E . N E L E M . N M A T . N O  
..NiNTO.NPRNTI .NPRNT2NPRNT3.NPRNTJ.NPTYPE,NPDE 
COMMON/MAX/MAXEL,MAXNOD.MAXEBN,MAXNBS.MAXPTt.MAXMAT.MAXlB 

C 
DIMENSION NODBC1(10,1),VBCL(lO, I).NELBC(lO, l).NSIDE(IO. 1). 

- WC2(lO,~l),N~(lO,l),VPT(IO,l) 
DCMENSION NBCl(I),NBC2(1) 

C 
C READ POINT LOADS 
C 

DO 15 II=I,NPDE 
READ(NIN.*) NCHECK,NREC 
IF (NCHECK .EQ. O .AND. NREC .EQ. O) GOTO 20 
IF(NREC.GT.MAXPTt) GO TO 500 
NPO[NT=NREC 
IF(NPOINT.EQ.0) GO TO 15 
WRïE(N0U. 100) 
DO IO I = 1.NREC 
IF (NCHECK .NE. II) GOTO 3000 
READ(MN8)N,V 
WEUïE(N0U. 120) N.V 
NPT(II.I)=N 

10 VPT(IIJ)=V 
15 CONTINUE 

C 
C READ ESSENTIAL BOWNDARY CONDïiïON DATA 
C 

20 CONTTNUE 
DO 25 iI=I,NPDE 
READ(MN.9 NCHECK.NREC 
iF(NREC .EQ. O .AND. NCHECK .EQ. O) GO TO 10 
NBC 1 (II)=O 
iF(NREC.EQ.0) GO TO 25 
WTE(NOU,  1 30) II 
WRITE(N0U. 1 JO) 
DO 30 J= 1,NREC 
READ(NilU.*)N 1 ,NZINC.V 
IF(iNC.LE.0) INC = 1 



IF(N2.LT.Nl) N2 = N1 
NUM = (N2-NI)/INC + 1 
WRïE(NOU, 150)N 1 ,N2JNC,V 
DO301=1,iWM 
M3Cl(II)=NBC10+1 
N=Nl+(L1)*INC 
NODBCl(n.NBCl(lr))=N 
VBCI (TI.NBCIO)=V 

30 CONTNJE 
iF(NBCl(lI).GT.MAXEBN) GO TO 1000 

C 
iF(NOUT.NE.1) GO TO 36 
WRITE(N0U. 160)II 
WTE(NOU, 1'10) 
DO 35 1=1 ,NBC 1 0  
WRITE(NOU.180)NODBCl(ii.~.WCl(II.i) 

35 CONTINUE 
36 CONTINUE 
25 CONTINUE 

C 
C READ NATURAL B O W A R Y  CONDITION DATA 
C 
40 CONTINUE 

DO 45 II=l,NPDE 
READ(NiN,*) NCHECK.NREC 
IF(NREC .EQ. O AND. NCHECK .EQ. O) GO TO 60 
NBC2(Q=O 
iF(NREC.EQ.0) GO TO 45 
WRITE(N0U. l9O)II 
WTE(NOU.2001 
DO 50 J = 1.NR.C 
READ(NIN,*)N 1.N2.lNC.NS.P.V 
IF(INC.LE.0) [NC = 1 
IF(N2LE.Nl) N2 = N1 
W M  = (N2-NI)/lNC + 1 
WRlïE(NOU,210)Nl.N2.~CCNS.P.V 
DOS0 1% 1.NUM 
NBC2(Q=NBC2@)+ 1 
N=Nl+(I-I)*INC 
NELBC(II.NBCt(m)=N 
NSiûE(II.NBCZ(II))=NS 
VBC2(XI. 1 ,NBCZ(il))= P 

50 VBC2(U,ENBC2(IlN= V 
iF(NBCz(ii) .GT.MAXNB S) GO TO 2000 
if(NOüT.NE. 1) GO TO 72 
WRITE(NOU.220)lI 
WRITE(NOU.270) 
DO 70 I=1 .NBC2(11) 
WRiTE(NOU.230)NELBC(UOINS iDE(U .il,VBC2(II, 1 .i).VBC2(U.2.D 

70 CONTINUE 
72 CONTINUE 
45 CONTINUE 
6û CONTINUE 
LOO FORMATV.lX.'iNPUT POINT LOAD DATA:' J 
. 'NPT VPT'J) 

1 10 FORMAT(U.SX.FIO.0) 
120 FORMAT( 1 X.IS.1 PEI 1 3) 
130 FORMATU, 1 X,' INPUT ESSENTIAL BOUNDARY CONDITlON DATA EQ = ',U) 



140 FûRMAT(1X; NI N2 iNC V') 
150 foRMAT(I5,uCE,2X~,3X,I PEI 13) 
160 FORMAT(1XJ.' GENERATED ESSENTIAL BOUNDARY CONDITION EQ = ',BI 
170 FORMAT(lX,' NODBCl VBCl ') 
1 80 FORMAT(1 H 3XJ5.7X.1 PE 1 1.3) 
190 FORMAT(/.lX.' INPUT NATURAL BOUNDARY CONDiTiON DATA EQ =*D) 
200 FORMAT(1X' N1 N2 iNC NS P GAMA') 
2 10 FORMAT(4ESXZ(l PEI 1.3)) 
220 FORMAT(/* 1 X,' GENERATED NATURAL BOUNDARY CONDlTION EQ = 'J3) 
230 FORMAT(1 H ,iS,3X,iS,5X,2(1PE11.3)) 
2-40 FORMAT0 
250 FORMAT(1I5.2FIO.O) 
260 FORMAT(3 iS$X,FIO .O) 
270 FORMAT(1X.' NELBC NSDE P GAMA 3 

RETüRN 
500 WRITE(NOUJS0) NREC 
550 FORMATVIISXTHE NUMBER OF POINT LOADS.'.IS.'.EXCEEDS THE 

- MAXIMLTM NUMBER ALLOWABLE.') 
1 OûO WRITE(N0U. 1 5OO)NBC 1 (II) 
1Sûû FORMAT(//ISX.THE WMBER OF ESSENTUL BOUNDARY NODES.'.IS. 

.:EXCEEDS THE MAXlMUM NUMBER ALLOWABLE') 
STOP 

2000 WRITE(NOU,2500)NBCZ(II) 
2500 FORMAT(III,5X,THE WMBER OF NATURAL BOüNDARY S IDES.'.IS. 

.'.EXCEEDS THE MAXIMUM NUMBER ALLOWABLE.') 
STOP 

3000 WRITE(NOU3 100) 
3100 FORMAT(II,2X,THECK POINT LOAD OR EQUATION NUM (NOT CONSISTEW') 

STOP 
END 

C 
C 
c************************** 

SUBROUTIEIE RTiMES 
CI************************* 

C 
C READS lMTL4.L AND FINAL TIMES. AND THE TEVIE WCREMENT 
C 
C CALLED BY: PREP 
C 
C 

lMPLICIT DOUBLE PRECISION (A-H.0-Z) 
C 
COMMON/FILES/NIN~NOU.NLG,NFLBNPLOT 
COMMONKblESlïO.TF,DELTAT 

C 
READ(NIN.*)TO.TF.DELTAT 
iF(TF.NE.Tû) WR[TE(NOU, lO)M,TF.DELTAT 
IO FORMATV.1 X.THE IMlTAL TIME =', 1PE I2JJ.I X.THE FINAL'. 
. ' TiME =', 1 PE l2.W. 1 X.THE TIME WCREMENT ='. 1 PE 12.4) 
RETURN 
END 

C 
C 
C********************************$** 

SWROUTINE RIC (U.UT.UELEM.NE,NODES) 
c***********+***************************** 
C 



C READS AND GENERATES CNITlAL CONDiTiONS 
C 
C CALLED BY: PREP 
C 
C 

tMPLICrC DOUBLE PRECISION (A-H.0-2) 
C 

COMMON/FILES/NIN,NOU,NLG.NFILENPLOT 
COMMON/CCON/NNODE.NELEMINMAT,NPOINT,NOUT 
..NINTO.NPRNTI ,NPRNT2,NPRNT3.NPRNT4,NFTYF'ENPDE 

C 
DIMENSION NE(l),NODES(9,1) 
DIMENSION U(10,1),UT(10,l),UELEM(lO,l) 

C 
DO 1 1 II=l .NPDE 
READ(W,*) NCHECKNREC 
WRïïE(NOU.20)II 
WRiTE(N0 0.30) 
DO 10 I=1 .NREC 
IF (NCHECK .NE. II) GOTû 210 
READ(NïN.*) N 1 .N2INC, UO 
IF(INC.LE.0) INC=I 
IF(N2.LT.NI ) N2=NI 
MJM=(N2-N 1 )/WC + 1 
WRITE(NOU,;U))NI .NLINC.UO 
DO IO I=I.NUM 
N=N I+(I-l)*INC 
U(II,N)=UO 

10 CONTINUE 
DO 16 NEL=l,NELEM 
NN=NE(NEL) 
UELEM(II.NEL) = 0.0 
DO 17 1 = 1,NN 
UELEM(ii,NEL) = UELEM(IZNEL) + U(iI.NODES(I.NEL)) 

17 CONTINUE 
UELEM(iI.NEL) = UELEM(U,NEL)/DBLE(NN) 

16 CONTINUE 
I I  CONTINUE 

C 
IF (NPTYPE .EQ. 1) RETURN 

C 
IF(NOUT.NE.1) GO TO 12 
DO 13 Ii=I,NPDE 
~ ( r I O U , s O ) n :  
WRITE(NOU,oO) 
WRITE(N0U ,ïO)(LU(II,I),I=l ,NNODE) 

13 CONTINUE 
12 CONTINUE 

IF(NPTY PEEQ .2) RETURN 
DO 14 II=l,NPDE 
READ(MN,*) NCHECK.NREC 
WRITE(NOU.8O)U 
WRITE(NOU.90) 
DO 200 1=1 . N E C  
IF (NCHECK .NE. iI) GOTO 210 
READ(NiN,*) N 1 ,NZINC,Uïü 
IF(INC.LE.O) m c = i  
IF(N2.LT.N 1) N2=N 1 



NUM=(N2-NI)/INC + 1 
WRlTE(N0U. 100) NI,N2JNC,Uïü 
DO 200 I=I ,NUM 
N=NI+(I-l)*INC 
UT(II.N)=rn 

200 CONTINUE 
14 CONTINUE 

iF(NOUT.NE. 1) RETURN 
DO 15 II=l,NPDE 
WRiTE(N0U. 1 1O)ii 
WRiTE(NOU, 1 20) 
WRITE(NOU, 130) (/UT(II,I)J=I .NNODE) 

15 CONTINUE 
RETURN 

C 
î0 MRMAT(//,lX.WPUT iNïïIAL SOLUnON DATA FOR EQUATION = '.BI 
30 FORMAT(IX,' N 1 N2 iNC U03 
40 FORMAT(U,2X.I5.2X.I5,3X. lPE113) 
50 FORMAT(/.IX.*GENERATED iMTiAL SOLUTION FOR EQUATION = '.U) 
60 FORMAT(lX,3(' NODE NO. UO 9) 
70 FORMAT(3(3X,IS$X. 1 PEI 2.4)) 
80 FORMAT(//.lX.'INPUT MTIAL DERWATiVE DATA FOR EQUATION = '.U) 
90 FORMAT(1X.' NI  N2 INC UT09 
100 K,RMAT(15,2X.U,2X.15.3X.I PEI 1 3 )  
1 10 FORMATU. LX.' GENERATED INITIAL DERIVATIVE FOR EQUATION = '.BI 
120 FORMAT(lX.3C NODE NO. Uïü 9) 
130 FORMAT(3(3X,U JX. 1 PEI 24)) 
210 WRITE(NOU.220) 
220 FORMAT(//, IX,'ERROR EQUA. NUM. DOES NOT MATCH IN INïï.COND INPUT) 

STOP 
END 

C 
C 
C******88*********81III**** 

SUBROUTiNE RCONST 
C*.************************ 
C 
C READS CONSTANTS FOR TiME APPROXIMATIONS 
C 
C 
C CALLED BY: PREP 
C 
C 

M L I C I T  DOUBLE PRECISION (A-H.0-Z) 
C 

COMMON/FiLES/NIN.NOU,NLG.NFiLE.NPLOT 
COMMON/CONSTI/ALPHA.BETA.THETA 
COMMON/CCON/NNODE.NELEM,NMAT,NPOINT,NOUT, 
.NiNTO.NPRNT 1 .NPRNT2.NPRNT3.NPRNT4.NPTYPEENPDE 
COMMON /BAND/ IB JB2,ISY M 

C 
IF (NETYPE .EQ. 3) GO TO 100 
READ (NIN.*) THETA 
WRiTE (NOU, IO) THETA 
iF (THETA .EQ. 0.0) ISYM = 1 
RETURN 

100 READ (NIN.*) ALPHA.BETA 
WRITE (NOU.20) ALPHA,BETA 



ISYM = 1 
RETURN 

C 
1 O FORMAT(//, 1 X,THE VALUE OF THETA =*, 1 PE 1 1 3) 
20 FORMAT(//, lX,THE VALUE OF ALPHA =O, 1PE 1 l.3,/, 1X.THE VALUE OF 
. BETA =',lPEll3) 
END 

C 
C SAVES GRD IMORMATION ON NFILE FOR A SCIBSEQUENT GRID PLOT 
C 
C CALLED BY: PREP 

COMMON/FU,ES/NIN,NOU.NLG.NFILFNPLOT 
COMMON/CCON/NNODE,NELEM,NMAT,NPOENT,NOUT 
.,NmTO,NPRNTl ,WRNT2NPRNT3,NPRm4,NPTYPE,NPDE 

C 
DIMENSION NE(l).NODES(9.1) 
DIMENSION X(2.I) 

C 
CHARACTERI4 LABEL(20) 

C 
C 

IF (NPLOT .EQ. 1 ) TH EN 
REWIND NFiLE 
WRITE(NFILES0) LABEL 
WWTE(NFiLE. 1 OO)NNODE.N ELEM.NPDE 
ENDiF 
DO 20 N=l,NNODE 
IF (NPLOT .EQ. 1) WRITE(NFiLE300)X(l .WX(L.N) 

20 CONTINUE 
DO 10 N= 1.NELEM 
NEN=NE(N) 
IF (NPLOT.EQ. 1) WRITE(NFILE,ZOO)NEN.(NODES(LN),~=l ,NENI 

10 CONTrNwE 
2ETURN 

50 FORMAT(ZOA4) 
1 O0 FORMAT(315) 
300 FORMAT(2(2X.E12.6)) 
200 FORMAT(1615) 

END 
C 
C 
C*************************+**** 

C 
C.... CALCULATES HALF-BAND OR FULL-BAND WIDTH 
C 
C CALLED BY: PREP 
C 



iMPLICïï DOüôLE PRECISION (A-H.0-Z) 
C 

COMMON~ES/NIN~NOU,~G,NFILE.NPLOT 
C O M M O N ~ L , M A X N O D , M A X E B N , M A X N B S , ~ M A X M A T ~  
COMMON/CCON/NNODE,NELEM,NMAT,NPOTNT.NOUT,NINTO 
.,NPRNTI .NP~NPRN~,NPRNT4,NPTYPE,NPDE 
COMMON /BAND/ IBJB2JSYM 

C 
DIMENSION NODES(9,1),NE(t) 

C 
IB =O 
DO 200 NEL = 1. NELEM 
w = o  
MIN = 100000 
N = NE(NEL) 

C 
DO 100 I =  1.N 
CF (NODES(I.NEL) .GT. MAX) MAX = NODES(LNEL) 

100 IF (NODESRNEL) .LT. MIN) MiN = NODES(I.NEL) 
NDF=MAX-MIN 
IF (NDIF .GT. IB) IB = NDIF 

200 CONTINUE 
m = m + i  
CF (ISYM .EQ. 2) IB2 = 2.*B - 1 
D (ISYM.EQ.1 AND. iB.GT.L2) GO TO 310 
CF (ISYM.EQ.2 AND. IB2.GT.L2) CO TO 320 
iF (1SYM.EQ.I) WRITE(NOU$OIO) il3 
IF (ISYM.EQ.2) WRITE(NOU$O20) iEi2 
RETURN 

3 10 WRiTE(NOU.5030) IB 
STOP 

320 WRïïE(NOU.SO;tO) iB2 
STOP 

50 10 FORMAT(//.' THE MAXIMUM HALF-BAND-WTH: IB '$13) 
5020 FORMAT(//,' THE MAXIMUM FULL-BAND-WIDm: Il82 =',1-1) 
5030 FORMAT(//,' THE HALF-BAND-WIDTH ='.B. 

.' EXCEEDS THE MAXIMUM ALLOWGBLFJh 
5040 FORMAT(//.' THE FULL-B AND-WIDTH ='fi, 

.' EXCEEDS THE MAXIMUM ALLOWABLEJfi 
C 

END 
C 
C 

SUBROUTINE PROS (NODBCI,VBC~.NELBC,NSIDE.VBC~.NPT,V~~NE,MAT,NODES 
.,NINT.GK,GF,GFBCX.U,Ll.L2PROP,~EIIP,NSTEP,UOLD.IMAT, 
.VAR.WAR.ITER.Ul,UUl,UIOLD,UU 1OLD,EQ.UELEM.NBCl ,NBc~.AMUST.SIGMA) 

C*********************************************************************** 
C 
C PROCESSOR ROUTINE: FORMS AND SOLVES FINITE ELEMENT EQUATIONS 
C 
C C U L E D  BY: MAIN 
C 
C CAUS : SETLNT, FORMKF. APLYBC, SOLVE 
C 
C 

M P L I C ï ï  DOUBLE PRECISION (A-H.0-Z) 
C 



DIMENSION NE(I),MAT(l).NODES(9,I).NWT(1) 
DIMENSION GK~L~,~).GF(I),GC;BC(I)X~~,~).U(IO,I).UOLD(IO. 1) 
DlMENSION NODBC l(1O. 1 ).VBCI (10,l),NELBC(IO,l),NSLDE(IO, 1). 
.vBc2(10*21).~(10*1)*~(10,  1) 
DIMENSION PROP(IO.IO,l) 
DIMENSION Ul(l0, t).UUI(IO.I),UIOLD(1O,I).UU10LD(10,~) 
DIMENSION 'WAR(10,10.1,20).VAR(10,10.1.20).IMAT(10.10,1) 
DIMENSION UELEM(lO.I) 
DIMENSION NBC I(I),NBC2(1) 
DIMENSION AMUST( 1 ) 
DCMENSION SIGMA(1) 

CALL SETINT 

CALL FORMKF (X.NE.MAT.NODES,NINT,GK,GF,L~,~PROP.U.IIP,UOLD.GFBC. 
.iMAT,VARTVAR.ITER.UU 1 .UU lOLD,iEQ,UELEM,SIGMA) 

CALL APLYBC (NODBC 1,VBC 1 ,NELBC.NSIDEVBC2NPT,VPT,NE,MAT,NODES, 
.N[NT,GK.GF,GFBC,lCU,UOLD.L1.ITERUl.UlOLD,IEQ.NBCl.NBC2) 

CALL SOLVE (GK.GFX.U,LI.LtTIMEZIP.UOtD,~ER.EQ, 

C- [NITtALIZE THE RESULT FOR EACH ELEMENT - 
DO 20 IEE=l.NELEM 
WNODE = 0.0 
DO 30 [NN= l,NE(KEE) 
WNODE = WNODE + U(iEQ.NODES(INN.IEE)) 

30 C O W E  
UELEM(IEQ,IEE) = WNODE/NE(IEE) 

20 CONTINUE 

SETS UP QUADRATURE RULES OF ORDERS 1.2, AM) 3. 

CALLED BY: PROS 

IMPLICIT DOUBLE PRECIS ION (A-H.0-2) 

COMMON/FLES/NIN.NOU,NLG,NFiLE.NPLOT 
COMMON/CINT/XiQ(9.2,3), WQ(9.3) 

THREE-POINT QUADRATURE 

XIQ(1,1.3)=-0.7715966692 
XtQ(2.1,3)=û.O 





C 
C CALLED BY: PROS 
C 
C C A U S  : ELEM, USETI. USET2. ASSMB 
C 
C 

IMPUCIT DOUBLE PRECISION (A-H.0-Z) 
C 

COMMON/FILES~,NOU,NLG,N~E,WLOT 
COMMON/CCON/NNODE,NELEM,NMAT,NPOINT,NOUT. NINT0 
..NPRNTI.NPRN~.NP~,NPRNT3,N~E,NPDE 
COMMON/CINT/XQ(9,2.3).WQ(93) 
COMMON /EiAND/ lB,IBZISYM 
COMMON/MAX/MAXEL,MAXNOD.MAXEBN,MAXNBS.MAXPTLMAXMAT.MAXIB 
COMMONW/TO,TFDELTAT,NSTEP 

C 
iNCLUDE THVAR.H' 

C 
DiMENSION X(ZI),U(IO.l ),UOLD(lO, l).UEOLD(9) 
DiMENSION NE(l).MAT( t),NODES(9,1),MNT(l) 
DiMENSION GK(L1. l),GF(l ),GFBC( 1) 
DiMENSION EK(9,9).EF(9)XX(Z9) 
DIMENSION PROP(10,lO. 1).OUI(IO,l),UU1OLD(IO,1) 
DIMENS ION EC(9,9)AE(9.9).FE(9),UE(9),EM(9.9) 
DiMENSION TVAR(10.10.1.20),VAR(lO, 10,1.20),IMAT(lO,10.1) 
DImNSION UELEM(IO.1) 
DIMENSION SIGMA(1) 

C 
C [NITIALIZETHEARRAYS 
C 

DO 12 I =  1, NNODE 
GF(0 = 0.0 

C iF (NSTEP .GT. 1) GO TO 12 
GFBC(T) = 0.0 
DO I O J = l , L 2  
GK(IJ) = 0.0 

10 CONTINUE 
12 CONTINUE 

NLT=7 
DO 50 NEL=I .NELEM 
N=NE(NEL) 
Nt l=MNT(NEL) 
iF(NLI.EQ.1) N b 1  
E(NL 1 XQ.2) NL=4 
E(NL I .EQ.3) NL=9 
DO 15 I=t,N 
XX(l.I)=X(i,NODES(r,NEL)) 

15 XX(Zn=X(2,NODES(I,NEL)) 
UELEM(iEQ,NEL) = 0.0 
D û 1 7 I = l . N  
UELEM(IEQ,NEL) = UELEM(IEQ,NEL) + U(IEQ,NODES(I.NEL)) 

17 CONTINUE 
üELEM(EQ,NEL) = UELEM(IEQ,NEL)/DBLE(N) 
NELE = NEL 

C 
iF(FL0WTYPE .EQ. TURBULENT .AND. IEQ .EQ. I 
. AND. NGEOMTYPE .EQ. 1)THEN 
CALL VISCl (NELENSQ(.NODES,U,EQ~ER,MAT(NEL),SIGMAX.UELEM) 



ELSEIF(FL0WTYPE .EQ. ?ZTRBüLENT .ANû. IEQ .EQ. I 
. .AND. NGEOMTYPE .EQ. 21)THEN 
CALL VISC2122 (NELE,NXX,NODES.U,EQ~R,MAT(NEL),SIGWZ.~LE~ 
ELSEiF(FL0WiYPE .EQ. "iURE3üLENT' .AND. EQ .EQ. I 
. .AND. NGEOMTYPE .EQ. 22)THEN 
CALL W C 2  122 (NELE.NSM,NODES,U,IEQ$rER,MAT(NEL).SIGMAZ,UELEM) 
ELSEIF(FL0WTYPE .EQ. 'TURBULENT .AND. JEQ .EQ. 1)THEN 
CALL VISC (NEL~N~NODES,U~Q,~,MAT(EIEL),SIGMAX,UELEM) 
ELSEiF(FL0WTYPE .EQ. TURBULEKF .AND. IEQ .EQ. I)THEN 
CALL VISC (NELENWODS.UEQ$rER.MAT(NEL),SIGMAX.UELEM) 
ELSEiF(FL0WTYPE .EQ. TURBULEKE' -AND. EQ .EQ. 3)THEN 
CALL VISCKE (NELEN~NODES,UEQ.ITER,MAT(NEL).SIGMAX,UELEM) 
ENDIF 

C 
CALL ELEM (XX.N.EK,EF.NLXIQ.WQ.MAT(NEL),NELEX.PKOP.EC.EM. 
. NODES,LTELEM,IMAT,VAR,WAR.IEQ) 

C 
30 iF(NPTYPE.EQ. 1 ) GO TO 45 

iF (ïïER .EQ. 1) THEN 
DO 61 K=I.NNODE 
UUl (IEQ,K) = U(IEQ,K) 
UU lOLD(1EQ.K) = UOLD(EQ.K) 

6 1 CONTINUE 
ENDIF 

DO 40 I=l.N 
E(NPTYPE.EQ.3) UEOLD(I)=UU I OLD(IEQ,NODES(I.NEL)) 

40 UE(I)=UU 1 (IEQ,NODES(LNEL)) 
C 

iF(NPTYPE.EQ.2) CALL USETl (EK.EF.AE.FE,UE.EC,N) 
C 

IF(NFïYPE.EQ.3) CALL USET2 (EK.EFAEFEUEUE0LD.EC.EM.M 
C 

45 IF(NPTYPE.EQ.1) CALL ASSMB (EK.EF,N,NOD~(l,NEL).GK,GF,9.L1) 
C 

lF(NP'iYPE.NE.1) CAiL ASSMB (AE,EN.NODES(I.NEL),GK,GF,~,L~) 
C 

50 CONTINUE 
D(IB .GT.MAXIB) GO TO 1OOO 
RETURN 

1000 WRITE(N0U. I5OO)iE 
1500 FORMAT(///JX,THE HALF-BANDWIDTH IB.',IS.',EXCEEDS THE 
. MAXIMUM ALLOWABLE.') 
STOP 
END 

C 
C 

SUBROUTINE ELEM (xx.N,EK,EF,NLXI.W.MAT.NEL,X,PROP,EC.EM.NODES. 
> UELEM.IMAT,VAR.TVAR,IEQ) 

C 
C...ELEMENT EQUATIONS FOR QUADRILATERAL ELEMENTS OF FOUR, EIGHT 
c OR NINE NODES. 
C 
C 
C CALLED BY: FORMKF 



CALLS : GETMAT, SHAPEJ. SHAPE8. S KAPE9 

IMPLICIT DOUBLE PRECXSION (A-H.0-Z) 

COMMON~ES/NIN,NOU,NLG,NFlL~NPLOT 
CO MMON IAXISI iAXIS 
COMMON /BAND/ IBJBZJSYM 

DIMENSION PROP(10.10,1),NODES(9.1) 
DIMENSION EK(9,1),EF(l)X(9.&3).W(9,3) 
DIMENSION DPSRC(9)J)PSIY(9),DXDS(22),DSDX(2,2) 
DIMENSION PSI(9),DPSI(9.2),XX(2.9) 
DIMENSI3N X(Z.1) 
DIMENSION EC(9,l),EM(9,1) 
DIMENSION TVAR(10.10.1.20).VAR(10.10.1,20),IMAT(10,10.1) 
DIMENSION üELEM(10.1) 

L.....NT~LIZE ELEMENT ARRAYS 
C 

DO 10 I=1 ,N 
EF(I)=û.O 
DO 10 I=l.N 
EC(Ij>=O.O 
EM(1J)d.O 

10 EK(IJ)=O.O 

CALL GETMAT (XK.YKXYKXM.YMXB.XF.RMUXRH0 1 XRHOZMAT,PROP, 
> UELEM,IUAT,VAR,TVAR,NEL,IEQ) 

CALCULATE ARTiFXCiAL DISSIPATION COEFFICIENTS IF NEEDED 

XMAX = DMAXI(XX(1.1 )XX( I,2)XX( 1 ,3)XX(l ,4) 
YMAX = DMAX l(XX(2.l)XX(22)XX(2.3)XX(2;1)) 
XMIN = DMINI(XX(l.I),XYC( 1.2).XX( l.3)XX(l A)) 
YMIN = DMiNI (XX(2 1),XX(2.2)XX(2,3)XX(2.9) 
DXMAX = XMAX - XMIN 
DYMAX = YMAX - YMIN 
SM2 = XM*XM + YM*YM 
DSMS = DABS(DXMAX*XM) + DABS(DYMAX8YM) 
DISSP = OS*RMU*DSMS/SM2 
XK = XK + DISS[P*XM8XM 
YK = YK + DISSPYM*YM 
XYK = XYK + DISSPXM*YM 

1 2 CONTINUE 
C 
C.....BEGiN INTEGRATION POINT LOOP 
C 

DO 50 L=l.NL 
iF(NL.EQ. 1) NN= 1 
IF(NL.EQ.4 NN=2 
iF(NL.EQ.9) NN=3 
IF(N.EQ.4) W TO 15 
IF(N.EQ.8) GO TO 25 
iF(N.EQ.9) GO TO 35 



C 
15 CALL SHAPU OCI(L,l.NNIXI(L.Z.NN).N,PSLDPSI) 

C 
GO TO 66 

C 
25 CALL SHAPE8 (XI(L. l.NN)X(L,ZNN),N,PSLDPSLNODES(l,NEL)) 

C 
GO TO 66 

C 
35 CALL SHAPE9 ~(L,I,NN)XI(L2NN).N,PSIDPSi) 

C 
C.....CALCULATE DXDS 
C 

66 CONTINUE 
DO 20 14.2 
DO 20 J=1.2 
DXDS(U)=û.O 
DO 20 K=l .N 

20 DXDS(IJ)=DXDSUJ)+DPSI(K.I)*XX(I.K) 
C 
C.....CAiCULATE DSDX 
C 

DETJ=DM)S(l. l)*DXDS(2,2)-DXDS(l,2)*DXDS(2, 1) 
IF(DETJ.LE.O.0) GO TO 99 
DSDX( I . 1 )=DXDS(Z.Z)/DETJ 
DSDX(RZ)=DXDS(l. l)/DETJ 
DSDX(I ,2)=-DXDS( 1.2)iDETJ 
DSDX(2.1 )=-DXDS(2,1)/DETJ 

C 
C.....CALCLJLATE D(PS[)/DX 
C 

YGA = 0. 
Dû 30 I=L,N 
YGA = YGA + PSI(I)*XX(Li') 
DPSrX(D=DPSI(L i)*DSDX(l,l)+DPSI(I,Z)*DSDX(2.1) 

30 DPSIY(I)=DPSI(I.l)*DSDX(l.2)+DPSI(I.2)*DSDX(22) 
IF(iAXIS.EQ.0) YGA = 1. 

C 
C.....ACCLJMULATE INTEGRATION POINT VALUE OF INTEGMLS. 
C 

FAC = DETJ* W(L,NN)*YGA 
M)401=lrN 
EF(D = EFO+XF*PSI(I)*FAC 
JJ = 1 
IF(ISYM.EQ.2) JJ = 1 
DO JO J=JJ.N 
EC(W) = EC(IJ)+(FAC*XRHO 1 *PSI(I)*PS I(&) 
EM(1.I) = EM(U)+(FAC*XRH02*PSI(I)*PS I(n) 
EK(1.J) = EK(I,J)+FAC*(XK*DPSIX(I)*DPSIX(J)+YK*DPSIY(D*DPSK(Jl 
.+XYK8DPSIX(D*DPS N(J)+XYK*DPSIYO*DPSTX(J) 
.+XM*PSI(I)*DPSIX(J)+YM*PSI(I)*DPSN(~+XB*PSI(I)*PSI(J)) 

;U) CONTINUE 
50 CONTINUE 
LF(IS YM.EQ.2) RETURN 

C 
C.....CALCLJLATE LOWER SYMMETRK PART OF EK. EC AND EM 
C 

DO 60 [ =  1.N 



DO 60 J = l . I  
EC(1.J) = EC(JJ) 
EM(TJ) = EM(J3 

60 EK(IJ) = EKIJJ) 
C 

RETCTRN 
99 WRlTE(NOU, 100) DETJ,NELX 
100 FORMAT(13H BAD JAC0BiAiU.E lO3.3X.lZ-i ELEMENT N O 3  J, lP9EI 1.3 

.J. 1 P9E 1 1 3) 
STOP 
END 

C 
C 
C**88**********888**88***IL*888*88*188*88****8 

SUBROUTINE SHAPEl (XI.YI.N,PSLDPSI) 
C**88*****888**8*8*+**8*88**8*888*8**8+*****8****8 

C 
C CALCULATES SHAPE FUEfCTIONS AND THEIR DERIVATIVES 
C FOR FOUR-NODED ELEMENTS 
C 
C 
C CALLED B E  ELEU BCINT. EVAL 
C 
C 

EMPLICIT DoUBLE PRECISION (A-H.0-2) 
C 

COMMON/FILES/NIN,NOU.NLG,NFLENPLOT 
C 

DiMENSION PSI(9),DPSI(9,2) 
C 

IF(N.LT.4.OR.N.GT.4) GO TO 99 
C 

PSI(1)=0.25*( 1 .-XI)*(I.-YI) 
PSI(2)d.2S8( 1 .+m8(1 .-YI) 
PSI(3)4.25*(1 .+xT)*(l .+YI) 
PSI(J)=0.25*(1 .-XI)*(I.+YI) 

C 
C CALCULATES DEEUVATIVES OF SHAPE FUNCTIONS 
C 

DPSI(i.l)=O.25'(YI-1.) 
DPSI(I.2)=O.U'(M-1.) 
DPSI(2,1)=0.25*(1 .-YI) 
DPSI(22)=O.25*(-1 .-XI) 
DPSI(3, 1)=0.2S8( 1 .+YI) 
DPSI(3,2)=û.25*( 1 .+lül 
DPSI(4,1)=0.2S8(-1 .-YI) 
DPSf(4.2)=0.25*(1 .-XI) 
RETURN 

99 WRITE(N0U. 100)NX,YI 
IOOFORMAT(/,' ERRORINCALLTOSHAPW N='J3,1X2Ei35) 
STOP 
END 

C 
C 
C*888888***8*******8*888*88*88888*8*88888*******8*88 

SUB ROUTINE SHAPES (XI.YI,N,PSI,DPSI.NODES) 
C**************************L*********~C***~********** 
C 



C.....CALCULATES SHAPE FUNCllONS AND THUR DERNATIVES 
C FOR BIQUADRATIC EIGHT-NODED ELEMENTS. 
C 
C CALLED BY: ELEM, BCiNT, EVAL 
C 
C 

IMPUCIT DOUBLE PRECISION (A-H-0-2) 
C 
CoMMoNmEs/NIN*Nou.NLX;*NFILENPLm 

C 
DWNSION PS 1(9),DPSI(9,2),NODES(8) 

C 
IF (N.LT.8.0R.N.GT.8) GO TO 99 

C 
PSI( I )=0.25*(1.-1~1)*(1 .-YI)*(-I .-XI-n> 
PSI(2)=0.25*( 1 .+XI)'(l .-YI)*(- 1 .+XI-YI) 
PSI(3)=0.25*( 1 .+xl)*(l .+YI)*(-1 .+XI+n, 
PSI(1)=0.25*(i .-?cl)*(l.+YI)*(- 1.-xI+m 
PSI(5)=05*(1 .-XI**2)*(1.-YI) 
PSI(6)=05*( 1 .+XI)+(l .-YI**2) 
ps1(7)=05y1 .-XI**2)*(1 .+YI) 
PS1(8)=05*(1 .-XI)*(I .-YP2) 

C 
C CALCWATES DERIVATIVES OF SHAPE FUNCTIONS 
C 

DPSI(I. ~)=O.~S*(Z*XI+YI-~.*XI*~-YI**~) 
DPSI(I .2)a.2sL(2.*n+x~-2.*~1*n-xl**2) 
DPSI(2.1 )=0.25*(2.*XI-n-2.*X*YI+nf *2) 
DE'S I(2.2)=0.25*(Z8n-M+2.*XI*YI-XI* *2) 
DPSI(3.1)=O.Z*(2.*X+YI+2.*XI*YI+YI**2) 
DPSI(3.2)=0.25*(2.*W+~+Z*XI*YI+X18*2) 
DPSI(4.1 )=0.25*(2.*XI-YI+2.*M*W-n**2) 
DPSI(4.2)=0.25*(2.*YI-XI-2.*XLYI+XI**2) 
DPSI(S,1)=05*(2'XT*YI-Z*M) 
DPSI(5,2)=05*(XP*2- 1 .) 
DPSI(6.1)305*(1 .-YI**2) 
DPS I(6.2)=05*(-2.*YI-2*XJ*Yn 
DPSI(7, I )=OP(-2.*M-Z8XI*YT) 
DPS1(7.2)=05*(1 .-XP2) 
DPS1(8,1)=05*(YI**2-1.) 
DPS1(8.2)=05*(2.*XI*n-2.*YI) 

C 
C.....MODiFICATIONS mR TRIANGULAR ELEMENTS 
C 

F(NODES(1) .NE. NODES()) RETURN 
DELH = O.l25*(l .-XI*XI)*(l .-n'YI) 
DELHX = -0.25*XI*(l.-YPYI) 
DELHY = -0.S*YI8(1.-=*XI) 
PSI(6) = PSI(6) - 2*DELH 
PSI(2) = PSI(2) + DELH 
PSI(3) = PSI(3) + DELH 
DPSI(6.1) = DPSI(6.1) - 2.*DELHX 
DPSI(6-2) = DPSI(6,2) - 2.*DELHY 
DPSI(Z 1) = DPSI( Z 1 ) + DELHX 
DPSI(2.2) = DPSI(2.2) + DELHY 
DPSI(3.1) = DPSI(3,l) + DELHX 
DPSI(3.2) = DPS1(3,2) + DELHY 
RETURN 



99 WRTCE(NOU.IOO)N 
IO0 FORMAT u,' ERROR IN CALL 7'0 SHAPE.8 N= 'J3) 
STOP 
END 

C 
C 
C**~*~L~8*8~~88*8888** * *8888*~**1* * * *~* *~* * *8~  

SUBROCJTNE S W E 9  (XLYLN,PSLDPSI) 
C 8 ~ * * 8 ~ ~ ~ 8 O W t ~ 8 ~ 8 ~ ~ 1 L ~ ~ ~ 8 I 8 8 ~ 8 ~ * ~ ~ ~ 8 ~ ~ 8 8 ~ ~ ~ ~ 8 ~  

C..... 
C CALCOLATES SHAPE FUNCTIONS AND THEIR DERIVATIVES 
C FOR BIQUADRATlC NINE-NODED ELEMENTS 
C 
C CALLED BY: ELEM, BCINT. EVAL 
C 
C 

tMPtIcrr DOUBLE PRECISION (A-H.O-Z) 
C 

DIMENSION PSI(9),DPSI(9,2) 
C 
COMMON/FiLES/NIN.NOU.NLG,NFILENPLOT 

C 
IF(N.LT.9.0R.N.GT.9) GO TO 99 

C..... 
PSI(1) =0.25*(XI**2-XI)8(Yr*'2-~ 
PSI(2) =0.25*OQ**2+M)*(YI**2-YI) 
PSI(3) =0.25*(Xt**2+n8(n**2+W 
PSI(4) =0.25*(XI**2-XI)*(YI**2+yI) 
PSI(5) =05*(1 .-X18*2)*(YI**2-YI) 
PSI(6) =ûSYxJ**Z+XI)*( I .-YI0*2) 
PSI(7) 4 5 Y 1  .-XI**2)*(YI**2+YI) 
PSI@) =0.5*(XI**2-XT)*(l .-Y18*2) 
PSI(9) =(1 .-XI0*2)*(1 .-YP.2) 

C..... 
C.....CALCULATES DERIVATIVES OF SHAPE FUNCTIONS 
C..... 

DPSI(1,1)=0.25*(2.*XI*Y1**2-2.*XI*~-W**2+n) 
DPSI(1,2)d.25*(2*n*M**2-2.*XI*n-xI**2+~ 
DPSI(Z 1 )=0.2S*(2.*Xf8Y I**2-2.*XI*Yl+YI**2-YI) 
DPS1(22)=0.25*(2*YI*M**2+2*XI*YI-X1* *2-ICI) 
DPSI(3.1 )=0.25*(2.*XI*YI**2+2*XI*n+~**2+n) 
DPSI(3.2)=0.25*(2*W*xl**2+2.*XI*YI+m**2+Xn 
DPSI(4.1)=0.25*(2.*XI*YI**2+2.*xI*YI-YI**2-Y1) 
DPSI(4.2)=0.25*(2.*n*xI8*2+=**2-2.*M*n-)a, 
DPSI(S,1)=05*(Z*XI*n-2.*XI'n**2) 
DPSI(S,2)=0Sf (2*YI-l.-2*YI*M**2+XI**2) 
DPSI(6. 1)=05*(2*XI-R8M*YI**2+1 . -YP2)  
DPSI(6.2)=05*(-2.*YI*XIS*2-2.*XI*YI) 
DPSI(7,1)=05*(-2.*XI*~**2-2.*XI*~ 
DPSI(7,2)=05*(2*YI+ 1 .-2.*Y18XI**2-XP2) 
DPSI($ l)=OSY2.*XI-2.*XI*Y1"2-1.+W**2) 
DPSI (8,2)=0.5*(-2*YI*~**2+2.*XI*YI) 
DPSI(9,1)=(-2.*X+2.*XI8YI**2) 
DPSI(9.2)=(-2.*YI+2.* YIoXI**2) 
RETURN 

99 WRiïE(NOU,lûû)N 
100 FORMAT U,' ERROR IN CALL TO SWAPE9 N= 'J3) 

STOP 



END 
C 
C 
C88888888r8*8***8***888****8888*8****8*****88*8*****8***~*****8********* 

SUBROUTINE GETMAT ( X K v Y K X Y K ~ . ~ X B X F , R M U x R H O  1 XRH02MAT,PROP. 
> üEtEMgMATsvAR,TVARNEL,IEQ, 

C8*t8*+8++*+$+*~**~*****888*88**~888~~***8*8***~&88*8**8*88**88*8*88**** 

C 
C CALCüLATES MATERiAL PROPERTlES 
C 
C CALLED BY: ELEM. €VAL 
C 
C 

IMPLICIT DOUBLE PRECIS ION (A-H.0-2) 
C 

COMMON/FILES/NIN.NOU,NLG,NFILENPLOT 
C 

DIMENSION PROP(10.10,l) 
DIMENSION TVAR(lO.1O.I .ZO),VAR(l0.10. 1,20).IMAT(10.10,1) 
DIMENSION UELEM(IO.1) 

C 
XK=FUNC(l ,IMATvMAT.UELEM,PROP.VAR,TVAR,~UEQ 
YK=FtMC(~T*MAT,UELEM.PROP*VARsTVAR,NEL,EQ 
XYK=NNC(3~T,MAT,UELEM9PROPvVARTVAR.NELIEQ) 
XM=FUNC(4JMAT,MAT,UELEMsPROP.VARWAR.NELEQ) 
Y M=FUNC(SJMATvMAT.UELEM,PROP.VARTVAR.NELEQ) 
XB=~C(6,IMAT,MAT.UELEM,PROP,VARWAR,NELEQ 
XF=NNC(7.IMAT,MAT.UELEM,PROP,VAR,TVAR~NEL.EQ) 
RMU=FUNC(8.IMAT.MAT,UELEM.PROP. VARTVAR.NEL.IEQ) 
XRHO 1 =fLINC(9.IMAT.MAT.UELEM.PROP.VAR.TVAR.NEL,[EQ) 
XRH02=NNC( 10,IMAT.MAT.UELEM.PROP.VAR.TVAR.NEL.IEQ) 

C 
RETURN 
END 

C********8************************************** 

SUBROUTWE USEïl (EK,EFAEFE.UEEC,N) 
C**88$88**88***88888B88*88**8888B88***8888*88*88 

C 
C FORMS NEW ELEMENT MATRICES FOR IST ORDER TIME INTEGRATIONS 
C 
C CALLED BY: FORMW 
C 
C 

I M P L I C ~ ~  DOUBLE PRECISION (A-H.O-Z) 
C 

COMMON~ES/l 'O,TF,DELTAT 
COMMON/CONSTl/ALPHA,BETAIMETA 
COMMON/CONS~TD,THETM.THETMD.D~ADTB DT,OM2ADT, 
.HM2BPA,OMADT,HPBMA 

C 
DIMENSION EK(9,1),EF( 1) 
DIMENSION AE(9.I )BE(9,9).FE(l),FE2(9).uE(l) 
DIMENSION EC(9.1) 

C 
C LNïiTALiZE ELEMENT ARRAYS 
C 

DO 5 1=1 ,N 
FE(lW.0 



FE2(I)=û.O 
DO 5 J=I.N 
AE(W)=û.O 

5 BE(iJ=û.O 
C 
C SET-UPAE 
C 

DO 10 I=l,N 
DO 10 I=1,N 
AE(U) = AE(IJ) + EC(IS) + THETD*EK(U) 

IO CONTINUE 
C 
C SET-UP BE 
C 

DO 20 I=l .N 
DO 20 J=I ,N 
BE(1J) = BE(W + EC(1.J) - THEIWD*EK(TJ) 

20 c o r n  
C 
C SET-UP FE 
C 

Dû 30 I=I,N 
FE(1) = DELTA'PEF(1) 

30 CONTWUE 
C 
C MULTIPLY BE AND UE AND ADD RESULT TO FE 
C 
C MULTIPLY BE AND UE 
C 

DO QO b1.N 
SUM=O.O 
DO 50 K=I .N 
SUM=SUM+BE(I.K)*UE(K) 

50 CONTINUE 
FEZ(I)=WM 

40 CONTINUE 
C 
C ADDRESULTTOFE 
C 

DO 60 1=1 .N 
FE(I)=FEO+FE2(I) 

60 CONTINUE 
C 

RETURN 
END 

C 
C 
c********************************+***************** 

SUBROUTINE USET2 (EK,EF,-%F,.CF.1-EOLD.EC.EM,N) 
C*****************************.****************** 
C 
C FORMS NEW ELEMENT MATRICES FOR 2ND ORDER TiME INTEGRATIONS 
C 
C CALLED BY: FORMKF 
C 
C 

IMPLICIT DOUBLE PRECISION (A-H.0-2) 
C 



COMMONfTTMES/rO.TF,DELTAT 
COMMON/CONSTl/ALPHA,BETA 
COMMONKONS-,M,THW,DnADT,BDT,OM2ADT. 

.HM2B PA.OMADT,HPBMA 
C 

DIMENSION EK(9.1).EF( 1) 
DIMENSION AE(9,1).BE(9.9).CE(9.9),FE(l)~FE2(9),FE30 
DIMENSION UE(l),UEOLD(l) 
DIMENSION EC(9,1).EM(9,1) 

C 
C NTWLEE ELEMENT ARRAYS 
C 

Dû 10 I=l.N 
FE(W-0  
FEZ(I)=o.O 
FE3(1)=0.0 
DO 10 J=I,N 
AEO=û.O 
BE(LJ)=O.O 
CE(LJ)=O.O 

10 CONTINUE 
C 
C SET-m'A& 
C 

DO 20 1=1 ,N 
Dû 20 J=l,N 
AE(1.J) = EM(IJ) + ADPEC(1J) + BDPEK(1J) 

20 CONTINUE 
C 
C SET-UPBE 
C 

DO 30 I=I.N 
DO 30 J=l,N 
BE(IJ) = -2.*EM(I.J) + OM2AD'PEC(U) + HM2BPA8EK(W 

30 CONTINUE 
C 
C SET-UPCE 
C 

DO 40 I=1,N 
DO 40 J=l,N 
CEfiJ) = E M O  - OMADT*EC(I,J) + HPBMAeEK(U) 

40 CONTINUE 
C 
C SET-UP FE 
C 

DO 50 I=1 .N 
FE(I) = DT2*EF(I) 

50 CONTINUE 
C 
C MLJLïIPLY BE AND UE; STORE IN FE2 
C 

DO 60 1=1 .N 
SUM=O.O 
DO 70 J=l,N 
SUM=SüM+BE(I,JI*UE(J) 

70 CONTMJE 
FEZ(I)=SUM 

60 C O N T W E  



C 
C MULTIPLY CE AM) LJEOLD; STORE RESULT IN FE3 
C 

DO 80 I=I,N 
SUM=O.O 
DO 90 J=l ,N 
SLTM=SUM+CE(LJ)*UEOLD(J) 

90 CONTINUE 
FE30St .M 

80 CONTLNUE 
C 
C SLJMRIGHT-HANDSIDEVECTORS 
C 

DO 100 I=l.N 
FE~FEO-FEZ(Il-FE30 

100 CONTINUE 
C 

RETURN 
END 

C 

SUBROUTINE ASSMB (EK,EF,N.NODE,GK,GENN,LI) 

C 
C ASSEMLAGE OF ELEMENT EQUATIONS 
c ADDS EK AND E F ~  GK AND GF, RESPECCNELY. 
C 
C CALLED BY: FORMKF 
C 
C 

IMPLICU' DOUBLE PRECISION (A-H.0-Z) 
c 

COMMON/RLES/NXN,,NOU.NLG,NFLE.NPLOT 
COMMON /BAND/ IB,iBL.ISYM 
COMMONtTIMES/rO.TF,DELTAT,NSTEP,NSTEPT 

C 
DIMENSION EK(NN, I),EF(I),NODE(1),GK(Ll. l).GF(l) 

C 
DO20I= 1.N 
IG = NO DE([) 
GF(1G) = GFGG) + EFO 

C IF (NSTEP .GT. 1) GO TO 20 
DOlOJ=I .N  
JG = NODE(J) - IG + 1 
IF (ISYM.EQ.2) JG = JG + [B - 1 
IF (JG.LE.0) GO TO 10 
GK(1GJG) = GKGG JG) + EK(IJ) 

10 CONTINUE 
20 CONTINUE 

RETURN 
END 

C 
C 
CI8888*888l8+2*+8*88888888**8888*88**8*888*88888***888*88*88*88*8*****8* 

SUBROUTINE APLYBC (NODBC1,VBCl ,NELBC,NS[DE,vBC2,NPT,VPT,NE*MAT, 
.NODES,NINT,GK,GF,GFBCX,U,UOLD.L 1 .ITER,U 1,Ul OLD,IEQ,NBC 1 ,NBC2) 

C * * * * 8 8 * * * 8 ~ 8 8 ~ * 8 8 8 ~ 8 ~ 8 8 * 8 * 8 * 8 8 8 8 8 ~ ~ 8 8 ~ 8 8 8 ~ ~ 8 8 * 8 8 * * 8 * 8 ~ * 8 ~ 8 8 8 * ~ 8 8 8 8 8 ~ 8 ~ 8  



C 
C.....MODiFIES K AND F TO ACCOLMT FOR BOUNDARY CONDITIONS. 
C 
C CALLED BY: PROS 
C 
C CALLS : BCINT. USETBI, USETBZ ASSMB. DRCHL 
C 
C 

IMPLICiT DOUBLE PRECISION (A-H.0-Z) 
C 

COMMON~ES/NINSNOUINLX;,NFlLE,NPLOT 
COMMON/CCONINNODE.NEtEM.NMATINPOINTINOUTINWTO 
..NPRNTl , N P ~ N P W 1 N P R N T 4 , N P T Y P E , N P D E  
COMMONWS~.TF,DELTAT.NSTEP,NSTEPI' 
COMMONKONSn/rHETD.WETM,THETMD.DliiADT.BDT.OM2ADT* 
.HM2BPA.OMADT.HPBMA 
COMMON /BAND/ IBJBUSYM 

C 
INCLUDE THVAR.H1 

C 
DIMENSION NODBCl(lO.I).VBCI (IO. l).NELBC(lO,l)~NSIDE(lO, 1). 
.VBCZ(IO.L l),NPT(lO, t).VPT(10.1) 
DIMENSION NE( 1 ).MAT(l ).NODES(9.1 WNT(1) 
DIMENSION GK(Ll,l),GF(1),GFBC(l),U(1O~l).UOLD(lO,l) 
DIMENSION X(Zl).UI (lO,l).UIOLD(10.1) 
DIMENSION NOD(3). PE(3,3).GAMA(3)XX(29),NODA(3) 
DIMENSION NBC 1 (l),NBC2(1) 

C 
C....APPLY POINT LOADS 
C 

IF (NPOiNT.EQ.0) GO TO 20 
GO TO (10.14.16). NPTYPE 

10 CONTINUE 
DO 11 I=l.NPOINT 
N = NPT(IEQ*I) 

1 1 GF(N) = GF(N) + VPTflEQ.0 
GO TO 20 

14 CONTINUE 
DO 15 I =  1, NPOINT 
N = NPTrnQ.0 

15 GF(N) = GF(N) + DELTAT* VPT(iEQ.1) 
GO TO 20 

16 CONTWUE 
DO 17 I=l,NPOINT 
N = NPT(IEQ*I) 
GF(N) = GF(N) + DTZ8VPT(IEQ.C) 

17 CONTMUE 
C 
C.....APPLY NATURAL BOUNDARY CONDITIONS 
C 

20 iF (NBC2(lEQ).EQ.O) GO TO 70 
DO 60 I=l,NBC2(IEQ) 

C 
C.....P[CK OUT NODES ON SiDE OF ELEMENT 
C 

NEL=NELBC(IEQ,I) 
NS=NSIDE(IEQ.I) 
N C 4  



iF(NE(NEL).EQ.6) NC=3 
NOD(I)=NS 
iF(NE(NEL).EQ.4) GO TO 45 
NOD(2)=NS+NC 
NOD(3)=NS+ 1 
IF(NS.EQ.NC) NOD(3)=1 

C 
C.....PICK OUT NODAL COORDINATES (8-9 NODE ELEMENTS) 
C 
00 50 J=13 
NS=NOD(J) 

50 NODA(J)=NODES(NJ,NEL) 
GoTO!u 

35 NOD(L)=NS+l 
IF(NS.EQ.NC) NOD(2)=1 

C 
C.....PICK OUT NODAL COORDINATES (4NODE ELEMENTS) 
C 

M, 53 1=1,2 
NJ=NOD(J) 

53 NODA(J)=NODES(NJ,NEL) 
54 N=NE(NEL) 

DO 55 L=I,N 
XX(1 .L)=X(I ,NODES(LNEL)) 

55 XX(ZL)=X(ZNODES(LNEL)) 
C 
C.....CALL BCINT 7'0 CALCULATE BOUNDARY LNTEGRALS PE AND GAMA 
C 
C 

CALL BCINT (VBC2(iEQ, 1 .Z).VBCZ(IEQ.ZI),PE,GAMA,NOD.NEL$(X. 
.NS.NE.VBCZMAT.NODES.NINT.NODBCl .VBCI .NELBC.NSIDE,NPT.VPT) 

C 
C 
C 
C.....CALL ASSMB TO ADD PE TO GK AND GAMA TO GF 
C 

59 CONTINUE 
NSNO = 3 
iF(N.EQ.4) NSNO = 2 

C 
IF (ITER .EQ. 1) THEN 
DO 61 K=I .NNODE 
UI(iEQ,K) = U(TEQ,K) 
U IOLD(IEQ,K) = UOLD(EQ,K) 

6 t CONTINUE 
ENDlF 

C 
iF(NiTYPE.EQ.2) CALL USETB 1 (PEGAMA.NSN0,NODA.U 1 .iEQ) 
IF(NFTYPE.EQ.3) CALL USETB2 (PE,GAMA,NSNO,NODA,U1.U1OLD~IEQ 
CALL ASSMB (PEGAMA,NSNO,NODA,GK.GF,3,L 1) 

C 
60 CONTINUE 

C 
C.....APPLY ESSENTML BOUNDARY CONDïïiONS 
C 

70 CONTINUE 
iF (NBC 1 (IEQ) .EQ. O) RETURN 

C IF (NSTEP .GT. 1) GO TO 80 



C 
DO 75 I=l,NBCI(iEQ) 
N=NODBC l(IEQJ) 

C 
iF(iEQ.EQ.4AND.KEMODEL.EQ.'L8')CALL EW-LB (U.XN,VBC l(iEQJ)) 
IF(~.EQ.4.AND.KEM0DEL.EQEQ1MT)CALL EW-LB (UX,N.VBCI(iEQ,I)) 
IF(CEQ.EQ.4.AND.KEMODEL.EQ.'HE3CAtL EW-HE (UX.N.VBCI(iEQ.i)) 

C 
IF (ISYM.EQ.1) CALL DRCHLS (GK.GF,GFBC.N.VBCI(IEQJ),Ll) 
IF (ISïM.EQ.2) CALL DRCHLU (GK,GF,N,VBCl~J),Ll) 

C 
75 CONTMUE 
80 CONTINUE 

C 
C 

DO 90 1 = 1, NNODE 
IF(ISYM.EQ.1) GF(l) = GF(1) - GFBC(I) 

90 CONTWE 
DO 95 1 = 1, NBCl(1EQ) 
N = NODBCI(IEQ,i) 

C 
iF(EQ.EQ.4.AND.KEMOûEL.EQ.'LB')CALL E K L B  (U.X.N.VBCI(iEQ.Q) 
ff(IEQ.EQ.4~.KEMODEL.EQ.'MY')CALL EW-LB (UXN.VBCI(1EQ.I)) 
F(IEQ.EQ.4.AND.KEMODEL.EQ.'HE3CALL E Y H E  (UX.N,VBCl(IEQ.I)) 

C 
VALUE = VBC 1 (1EQ.I) 
GF(N) = VALUE 

95 CONTIMIE 
END 

C 
C**t****l8*ll***l88*81*1tI*********** 

SUBROUTINE EWLB (UX,LEWBC) 
C*** * *L*C+*~8*88t l * * *~&* t&*&I I r * * *88**  

C 
C 

IMPLICIT DOUBLE PRECISION (A-H.0-2) 
C 

INCLUDE 7HVAR.H' 
C 

DIMENSION U(lO.l).X(Z.l) 
C 

DSZ=DSQRT((X(I .O-X(1 ,I-1))**2.+(X(ZI)-X(Z1-1))**2.) 
DS 1 =DSQRT((X(I J- 1 )-X( 1 ,I-2))**2.+(X(ZJ- 1)-X(ZJ-2))**2) 
DS=(DS2+DS 1)/2. 

C 
EWC=VIS/DEN*((U(3,I)-U(3.I-l))/DS2-(U(3.I-l )-U(3.1-2))/DS 1 )/DS 
EWBC=DMiNl @ABS(EWBC),EWMAX) 

C 
RETURN 
END 

C 
C************************************ 

SUBROUTINE EW-HE (U,XI.EWBC) 
C*****************+****************** 
C 
C 

LMPLICIT DOUBLE PRECISION (A-H,O-2) 
C 



INCLUDE THVAR.& 
C 

DIMENSION U(lO,l),X(2.1) 
C 

EWBC=DABS(U(4J-1)) 
C 

RETURN 
END 

C 
..................................... 

C 
C.....SETS UP CONTRIBUTIONS FROM NATURAL BOUNDARY CONDITIONS TO 
C STEP-BY-STEP NEGRATION OF FIRST ORDER UNSTEADY PROBLEMS. 
C 
C CALLED B E  APLYBC 
C 
C 

IMPLIClT DOUBLE PRECISION (A-H.0-Z) 
C 

DIMENS ION PE(3.1 ),GAMA( l),Ul(lO. l),NODA(l ),PE I(3.3) 
C 

COMMON~MEStiû,TF.DELTAT,NSTEP.NSTEPï 
COMMON/CONSTl/ALPHA.BETA,THETA 
COMMON/CONS~ETD,THETM.THETMD.DT2,ADT,BDT,OM2ADT, 
.HM2BPA,OMADT,HPBMA 

C 
DO 100 I= l ,NSNO 
GAMA(1) = GAMAO*DELTAT 
DO 100 J = 1. NSNO 
PEI(1.I) = THETMD*PE(I.Jl 

100 PE(W) = THETD8PE(IJ) 
C 

DO 250 I =  1, NSNO 
SUM=O. 
DO 200 J = 1, NSNO 
JI = NODA(0 

200 SUM = SUM + PEl(I~*Ul(KEQ.JJl 
250 GAMA(1) = GAMA0 - SUM 
C 

RETURN 
END 

C 
C***********8************************8**************** 

C 
C.....SETS UP CONTRIBUTIONS FROM NATURAL BOUNDARY CONDITIONS TO 
C STEP-BY-STEP INTEGRATION OF SECOND ORDER UNSTEADY PROBLEMS. 
C 
C CALLED BY: APLYBC 
C 
C 

IMPLICIT DOUBLE PRECISION (A-H,O-Z) 
DIMENSION PE(3.l ),GAMA(l ),U1 (lO,l),UlOLD(lU, l),NODA(l), 
. PEI (3,3),PE2(3,3) 

C 



COMMONWSm,TF,DELTAT.NSTEP,NSTEPT 
COMMON/CQNSTl/ALPHABETA.THETA 
COMMONICONS~D.THETM,THETMDD~ADT$DT.OMWT. 

.HMîBPA,OMADT,HPBMA 
C 

Dû 100 I=l ,NSNO 
G A M A 0  = DTPGAMAO 
Dû 100 J=l ,NSNO 
PEIOJ) = HM2BPA8PE(U) 
P E 2 0  = HPBMA*PE(U) 

100 PE(W = BDPPE(1.i) 
C 

DO 250 I = 1, NSNO 
SUMI =O. 
SUM2 = O. 
DO 20 J =  1,NSNO 
JJ = NODA(J) 
SUMI=  SUMI+  PEI(W)*UI(IEQ,IJ) 

200 SUM2 = SUM2 + PE2(I.J)*UlOLD(IEQ.JJ) 
250 GAMA(I) = GAMA0 - SUMI- SUM2 

C 
RETURN 
END 

C 
C88~88*~t~8*****8****8+***18***88******8***8*88** 

SUBROUTWE DRCHLS (GK,GF.GFBC,NEQ.VALE.LI) 
C***l******************************************* 
C 
C.....THIS SUBROUTINE MODIF[ES THE S n S  MATRlX GK AND LOAD fW3"ER 
C GF FORESSENTIAL BOUNDARY CONDITIONS. 
C.....MATRRC GK IS SYMMETRIC. 
C 
C CALLED BY: APLYBC 
C 
C 

IMPLICIT DOUBLE PRECISION (A-H.0-Z) 
C 

COMMON /BAND/ IB,IB2.ISYM 
COMMON/CCON/NNODE 
DMENSION GK(Ll.l).GF(l),GFBC(l) 

C 
GK(NEQ, 1 )= 1 .O 
DO 200 N=2,(B 
NEQN=NEQ-N+ 1 
iF(NEQN.LT.1) GO TO 150 
GFBC(NEQN) = GFBC(NEQN) + GK(NEQN,MmVALUE 
GK(NEQN,N) = 0. 

150 CONTINUE 
NEQNN=NEQ+N-i 
iF(NEQNN.GT.NNODE) GO TO 200 
GFBC(NEQNN) = GFBC(NEQNN) + GK(NEQ.N)* VALUE 
GK(NEQ.N) = 0. 

200 CONTINUE 
RETURN 
END 

C 
C 
C*********************************************** 



SUBROUTINE DRCHLU (GK.GF,NEQ,VALUE,LI) 
C*****************+***************************** 
C 
C.....THIS SüBROUTINE MODiFiES THE STiïFNESS MATRIX GK AND LOAD VECTOR 
C GF FOR ESSENTIAL BOUNDARY CONDITIONS. 
C.....MATRIX GK IS UNSYMMETRiC. 
C 
C CALLED BY: APLYBC 
C 

IMPLICXT M)UBLE PRECISION (A-H.0-2) 
C 

COMMON /BAND/ CBJBWSYM 
DIMENSION GK(Ll.I).GF(I) 
DO 200 J I =  1, iB2 
GK(NEQ,IJ) = 0.0 

200 CONTINUE 
GK(NEQD) = 1 .O 
GF(NEQ) = VALUE 
RETURN 
END 

C..... 
C..... 
C..... 
~ ~ ~ * * * * * ~ m t * * ~ m + ~ m * * * * * * * * ~ a m * * ~ * ~ t ~ ~ * * m * * ~ * r n a * * * * * * * * * * *  

SUBROüTiNE SOLVE (GK,GFX,U,Ll,LZTfMEJIP.UOLD,ITER,EQ 
C*****m*m******************+****************** 

C..... 
C..... 
C.....SOLVES THE LiNEAR EQUATIONS: GK*U = GF FOR NODAL POINT VALUES 
C..... 
C CALLED BY: PROS 
C 
C 

IMPLICIT DOUBLE PRECIS ION (A-H.0-Z) 
C 

COMMON/FiLES/NW,NOU,NLG,NFItENPLOT 
COMMON /BAND/ [B.IBZ,ISY M 
COMMON/CCON/NNODE.NELEM,NMAT,NPOLNT,NOUT,N1NTO 
..NPRNTI .NPRNn.NPR~.NPRNTil ,NPTYPE~NPDE 
COMMON/TiMES/ïü,TF,DELTAT,NSTEP,NSTEPT 

C 
DIMENSION GK(Ll,l),GF(I) 
DIMENSION X(2.1),U(10.1).UOLD(IO,I) 

C 
C SAVE OLD SOLUTION VECTOR FOR 2ND ORDER TiME PROBLEMS 
C 
D ([TER .EQ. 1) THEN 
DO 10 I=l,NNODE 

10 UOLD(IEQ,I)=U(IEQ.I) 
ENDIF 

C 
C IF (BYM.EQ.1 AND. NSïEP.EQ.I) CALL TRIBS (GK.NNODE(B,Ll) 

IF (ISYM.EQ.1) CALL TRiBS (GK,NNODBIB,LI) 
C 

IF (ISYM.EQ.1) CALL RHSBS (GK,U,GF,NNODEfB,Ll JEQ) 
C 
C IF (ISYM.EQ.2 .AND. NSTEP.EQ.1) CALL TRIBU (GK,NNODEIB,IBZLI) 

IF (ISYM.EQ.2) CALL TRIBU (GK,NNODE,IB,IBZLl) 



C 
C.....THIS SUBROUTINE TRIANGUtARIZES A BANDED AND SYMMETRIC MATRIX GK. 
C.....ONLY THE UPPER HALF-BAND OF THE MATRIX IS STORED. 
C.....STORAGE IS IN THE FORM OF A RECTANGULAR ARRAY L1 X L2. 
C.....THE HALF-BAND WIDTH IS IB. 
C.....THE NUMBER OF EQUATIONS IS NEQS. 

CALLED BY: SOLVE 

IMPLICIT DOUBLE PRECISION (A-H.0-2) 

DIMENSION GK(LI.1) 

100 SUM=SUM+GK(I-K,K+ 1 )*GUI-K J+K)/GK(I-K. 1) 
120 GK(U)=GK(IJ)-SUM 

RETURN 
END 

C..... 
C..... 
~***l****************************************** 

C.....FOR THE LINEAR SYSTEM GK*U=GF WITH THE MATRlX GK TRIANGIAAREED 
C BY ROUTINE TRIBS. THIS ROUTINE PERFORMS FORWARD S ü B S ~ ~ O N  
C N O  GF AND THE BACK SUBSTITUTION INTO U. 
C...-THE HALF-BAND WIDTH OF A IS IB. 
C.....THE NUMBER OF EQUATIONS B NEQS. 

CALLED BY: SOLVE 

IMPLICIT DOUBLE PRECISION (A-H.0-Z) 



SUMd. 
KI=MINo(lB-1.1-1) 
DO 100 K=l,Kl 

100 SUM=SUM+GK(I-K.K+ I)K;K(I-K. 1)WFfl-K) 
1 10 GF(B=ûF(I)SUM 
C 
C....,BEGEN BACK-SUBSTITUTION 
C 

U(W,NEQS)SF(NEQs)/GK(NEQS, 1) 
DO 130 K=Z.NEQS 
I=NPI-K 
Jl=I+I 
J2=MINû(NEQSJ+IB-1) 
sUMa.0 
DO 120 I=JI.J2 
MM=J-J1+2 

120 SUM = SUM + GK(I,MM)*U(IEQJ) 
130 U(IEQ.D=(GF(I)-SUM)/GK(I. 1 ) 

RETURN 
END 

C 
C 

C 
C.....REDUCES MATRlX GK BY GAUSS ELMINATION WHERE GK IS UNSYMMETRIC. 
C 
C CALLED BY: SOLVE 
C 
C 

IMPLICIT DOUBLE PRECISION (A-H.0-2) 
C 

COMMON/FILES/NIN.NOU,NLG,NFLBNPLOT 
DIMENSION GK(Ll.1) 

C 
KMIN=iü+ 1 
DO 50 N = 1. NEQS 
if (GK(N.IB) .EQ. 0.0) GO Tû 60 
IF (GK(N,IB) .EQ. 1.0) GO Tû 20 
C = 1 ./GK(N,IB) 
DO 10 K = KMIN, il32 
IF (GK(N,K) .EQ. 0.0) GO TO 10 
GK(N.K) = C*GK(N,K) 

10 CONTINUE 
20 CONTINUE 

DO JO L=2, iB 
i J = I B - L +  1 
I = N + L - 1  
IF (1 .GT. NEQS) GO TO 40 
IF (GK(LJJ) .EQ. 0.0) GO TO 43 
K I = I B + 2 - L  
KF=IB2+ 1 - L  
f = m  
DO 30 K =KI, KF 
J = J + l  
IF (GK(NJ) .EQ. 0.0) GO TO 30 
GKfiK) = GK(LK) - G K o 8 G K ( N J  



30 CONTINUE 
30 CONTINUE 
50 CONTINUE 

REmRN 
60 WRITE (NOUJO10) N. GK(N,iB) 

STOP 
5010 FORMAT(//,' SET OF  EQUATiûNS MAY BE SINGULAR ...' J, 

.* DiAGONAL TERM OF EQUATION 'J4: AT TRIBU IS EQUAL TO ', 
-1PE15.8) 
END 

C 
C 
C**************************+************ 

C 
C.....FûR THE LINEAR SYSTEM GK*U=GF WITH THE MATRIX GK TRIANGULAREED 
C BY ROUTINE TRIBU, THE ROUTWE PERFORMS FORWARD SUBvmu?rON 
C INTO GF AND THE BACK SUBSTITUTION INTO U. 
C...-THE HALF-BAND-W[DTH IS tB, FULL-BAND-WIDTH IS fBZ 
C.....THE NUMBER OF EQUATIONS IS NEQS. 
C 
C CALLED BY: SOLVE 
C 
C 

IMPLICIT DOUBLE PRECISION (A-H.0-Z) 
C 

COMMON/FiLES/N~,NOU,NLG,NFiLE.NPLOT 
DIMENSION GK(L1 .I),U(IO,I),GF(1) 

C 
C.....REDUCE THE LOAD VECTOR GF 
C 

DO 30 N=l.NEQS 
IF (GK(N.iI3) .EQ. 0.0) GO TO 60 
IF (GK(N.IB) .EQ. 1 .O) GO TO 10 
GF(N) = GF(N)X;K(N.IB) 

10 CONTINUE 
DO 20 L=2.IB 
J J = I B - L + I  
I = N + L -  I 
IF (1-GT-NEQS) GO TO 20 
IF (GK(L.if) EQ. 0.0) GO TO 20 
GFO = GF(T) - GK(IJJ)*GF(N) 

20 CONTINUE 
30 CONTWUE 

C 
C BACK-StiBSTITtmON 
C 

L L = J B + l  
U(IEQ,NEQS) = GF(NEQS) 
DO 50 M = 2. NEQS 
N=NEQS+ 1 - M  
SUM = 0.0 
DO 40 L = LL, iB2 
iF(GK(N,L) .EQ. 0.0) GO TO 40 
K = N + L - I B  
SUM = SUM + GK(N,L)*U(EQ,K) 

4û CONTINUE 



C..... 
C.....ACCUMULATES BOUNDARY INTEGRALS FOR QUADRILATERAL ELEMENTS. 
C..... 
C CALLED BY: APLYBC 
C 
C CALLS : SHAPEI. SHAPE8. SHAPE9 
C 
C 

LMPLICIT DOUBLE PRECISION (A-H.0-Z) 
C 

COMMON/FILES/NIN,NOU,NLG,NFftE,NPLOT 
COMMON /AMSI IAXIS 
COMMONiCCON/NNODENELEM.NMAT,NPOINT 

C 
DIMENSION NE(l).MAT(l).NODES(9,1),NI~(l) 
DIMENSION VBC2(10,2.l).NODBCI(1O.I),VBCI(IO,I},NELBC(10.I), 
.NSIDE(1O,1),NPT(lO.l).VPT(IO, 1) 
DIMENSION PE(3, I),GAMA(l) 
DIMENSION XI(3),YT(3).W(3)Sa((Z9),NOD(l) 
DIMENSION DPSIX(9),DPSN(9).DSDX(22) 
DEMENSION PS1(9),DPSI(9,2),DM)S(L2) 

C 
N=NE(NEL) 

C..... 
C.....INITIALIZE ELEMENT ARRAYS 
C 

DO 10 1=1,3 
GAMAO=o.O 
DO 10 J=lJ 

10 PE(IJ)=O.O 
GO TO (20.30,40.50), NS 

20 Yl(l)=-1.0 
n( 2 ) = ~ u  i ) 
YI(3)=YI(2) 
Xi( 1 )=-0.7745966694 
X1(2)=0.0 
XI(3)=-Xi(I) 
W(1)=0.55555555555 
W(2)=0.88888888888 
W ( 3 k W )  
GO TO 60 

30 M(l)=l .O 
XI( 2)=M( 1) 



M(3)=XI(2) 
n( 1 )=-O -7745966694 
YI(2)=0.0 
YI(3)=-W(1) 
W(I)=05555555555 
W(2)=0.888S88888S 
W(3)=W(U 
GO TO 60 

40 YI(l)=l .O 
yrm=nc 11 
Yt(3)=YI(2) 
M(1)=4.7745966694 
xr(2)=0.0 
=(3)=-M( 1 ) 
W( 1)=0.5555555555 
W(2)=0.8888888888 
W(3)=W 1) 
GO TO 60 

50 XI(l)=- 1 .O 
M(2)=xI( 1) 
m(3)=rcr(2) 
YI(l )=-û.7745966694 
YI(2)=0.0 
YI(3=-w 1) 
W( 1)=0.5555555555 
W(2)=0.8888888888 
W(3)=W( 1) 

C BEGIN INTEGRATION POINT LOOP 
60 DO 90 k l . 3  

IF(N.EQ.4 GO TO 15 
tF(N.EQ.8) GO TO 25 
tF(N.EQ.9) GO 'K) 35 

C 
15 CALL S W W  (XI(L),M(L).N,PSI.DPSI) 

C 
GO TO 66 

C 
25 CALL SHAPE8 (~(L).YI(L),N.PSLDPStNODES(l,NEL)) 

C 
GO TO 66 

C 
35 CALL SHAPE9 (XI(L),YI(L),N.PSIDPSC) 

C 
C.....CALCULATE DXDS 
C 

66 CONTINUE 
K K I  = 3  
iF(N.EQ.4) KKI = 2 
DO 70 Cs1.2 
DXDSn 1 )&.O 
DXDS(l,Z)=û. 
DO 70 KK=l,KKl 
K=NOD(KK) 
iF(NS.EQ.l.OR.NS.EQ.3) DXDS(I.I)=DXDS(I.l)+DPSI(K.l)*XX(LK) 

70 F(NS .EQ .2.OR.NS.EQ.4) DXDS(/2)=DXDS(I,2)+DPSI(K,2)*XX( I,K) 
NSl =NS + 1 
iF(NS.EQ.4) NSI = 1 
E(N.EQ.4) YGA=XX(ZNS)*PSI(NS)+Xx(ZNS 1 )*PSI(NS 1) 



IF(N.NE.4) YGA=XX(ZNS)*PSI(NS)+XX(XNSIJ)*fSI(NS+4) 
.+XX(2NSl)*PSI(NS 1) 

C 
C.....CALCUtATE JACOBIAN DS 
C 

iF(NS.EQ.1 .ORNS.EQS) DS=DSQRT((DM)S(1 ,l))**Z+(DXDS(2.1))**2) 
IF(NS.EQ.2.OR.NS.EQ.4) DS=DSQRT((DXDS(1.2))**2+(DXDS(2,2))**2) 
IF(TAMS.EQ.0) YGA = 1. 
EF@S.LE.O.) GO m 99 

C 
C....ACCUMUtATE INTEGRATION POINT VALUE OF INTEGRALS 
C 

FAC=DS*W(L) *Y GA 
IF(N.EQ.4) GO TO 85 
DO 80 1=13 
IIP=NOD(I) 
GAMA(r)=cAMA(D-PSIm*FAC%AMVAL 
DO 80 I = l 3  
JJ=NOD(J) 

80 PE(L+PE(Ln+PSI(IIP)*PSI(JI)*FAC*PVAL 
GO TO 90 

85 DO 87 I=1,2 
IIP=NOD(i) 
GAU4(nSAMA~-PSI~)*FAC*GAMVAL 
DO 87 J=1.2 
IJ=NOD(I) 

87 PE(LO=PE(LI)+PSI(ITP)*PSI(J4*FAC*PVAL 
90 CONTINUE 
C WRïïE(NOU,3000) NELNS 
3000 FORMAT(' CONVECIION CHECK: NEL,NS:'.IS) 
C WRITE(NOU.3010) (NOD(l),I=l$) 
3010 FORMAT(' NOû(1)'.3I5) 
C WRITE(NOU,3020) ((PE(/J) J= I,2),I=I ,2) 
3020 FORMAT(' PE(I.I)',(l P2E123)) 

RETURN 
99 WTE(N0U. 1 1 O)DS,NELX 
1 lO'FORMAT(17H BAD JACOBIAN(DS). 1 PE103,3X.r2H ELEMENT NO.. 
. i5/1 P9€10.3/1 P9€10.3/) 
STOP 
END 

C1*+**8**8+888***t*****k*********k**kk*k***&*8********************** 

SUBROUTINE POST (XNEMAT,NODES,MNT.U.PROP,IIP~.rmP.TiME 
.XGM.YGM,SX*SY .LABEL,UELEM,LMAT,Vm,TVAR,IEQ) 

C**k**L*+8*8I18*8**8I*8******8***8*8*8***k*O*~88**8***************** 

C..... 
C.....POSTPROCESSING ROUTINE: EVALUATES AND PRINTS EWIl'E ELEMENT SOLUTIONS 
C..... 
C CALLED BY: MAIN 
C 
C CALLS : EVAL 
C 
C 

IMPLICl'I' DOUBLE PRECISION (A-H.0-Z) 
C 

COMMONFILESININ,NOU,MXi,N~~NPLOT 
COMMON/CCON/NNODE,NELEM,NMAT,NPOIEIT,NOUT,MNTO 
.,NPRNTI ,NPRWNPw,NPRNTQ,NPTYPE,NPDE 
COMMON/ClNT/XIQ(9,2,3). WQ(9,3) 



C O M M O N ~ S ~ . ~ , D E L T A T , N S T E P , N S ~ P T  
C 

DMENSION PROP(IO.IO.1) 
DIMENSION X(2 1).U(IO,I)JCGM(4,1),YGM(4.1),SX(4,1),SY(4.1) 
DIMENSION NE(1),MAT(I),NODES(9,I),NINT(I) 
DIMENSION XX(2.9) 
DIMENSION TVAR(I0,lO.I ,20),VAR(10.10, t ,20)JMAT(10,10.1) 
CHARACTER84 LABEL(20) 
DIMENSION UELEM(IO.1) 

C 
C 
C- PRINT SOLUTION AT EACH TIME STEP - 

IF(NSTEP.EQ.NSTEPT .AND. NPLOT.NE.0) 
. ~ ~ E 1 1 0 )  (U(IEQJ)J=I.NNODE) 
iF(N0UT .EQ. 1 .AND. WTYPE.GT.1 AND. NSTEP.EQ.NSTEPT) 

- WRITE(NOU.80) 
C iF(N0üT .EQ. t AND. NPTYPENE.I .AND. (iIP.EQ.0 .OR. IIIP.EQ.0 
C . .OR IIIIP.EQ.0)) WIUTE4YOUSO) IEQ,NSTEP.TIME 

IF(N0UT .EQ. 1 AiW. NPTYPE.EQ.1) WRITE(NOW.75) 
CF (NPRNTI .NE. O) THEN 
iF(N0UT .EQ. 1 AND. (flP.EQ.0 .OR. NPTYPE.EQ. I))WRlTE(NOU,90)EQ. 

(LU(IEQ.I).I=l.NNODE) 
ENDIF 

C 50 FORMAT(///,' GENERATED SOLUTION FOR EQUATION = '.IU. 
C .IX,TIME STEP = '-16 JX.TIME OF SOLUTION = ', 1 PEI2.4l) 

75 FORMAT(//, 1 X.THE STEADY -STATE SOLUTION:') 
80 FORMAT(//,IX.THE SOLUTION AT THE FINAL TIME STEP:') 
90 FORMAT(1 H /, 1 X,'SOLUïïON VECTOR EQ = 'J3J. 1 X,3CNODE',8X. 
. 'U'. 18X)/.3(I5$X. 1 PEI 3.6. IOX)) 

i 10 FORMAT(1 P8Ell.4) 
C 

IF (NPRNT;! .NE. O) THEN 
D(N0UT .EQ. 1 AND. (liTP.EQ.0 .AND. NPTYPE.NE.1)) 
. WRITE(NOU.100) 
iF(N0üT .EQ. 1 AM), NPTYPE.EQ. 1 ) WRïïE(N0U. 150) IEQ 
ENDF 
NLT=7 
DO 10 NEL=l,NELEM 
NELI = NEL 
N=NE(NEL) 
NL 1 =MNT(NEL) 
IF(MNTO.EQ. 1 ) NL I=NINT(NEL)-1 
IF(NL 1 .EQ.O .OR. NLl .EQ. 1) NL= 1 
iF(NLl.EQ.2) N k l  
iF@Ll.EQ.3) NIA 
IF (NPRNT2 .NE. O) THEN 

C E(NOUT.EQ.l.AND.~.EQ.O.OR.~E.EQ.I)) 
C . WRITE(NOU.200) NEL 

ENDIF 
DO 20 1=1 .N 
XX(I,i)=X(l .NODES(I,NEL)) 

20 XX(2, I)=X(2,NODES(I,NEL)) 
C 

CALL EVAL (NELIXIQ~,N.NL.MAT.NODES.U,PROP,IIIP, 
XGM,YGM,SX,SY,UELEM,IMAT,VAR,TVAR,IEQ) 

C 
C 

10 CONTINUE 



C 
100 FORMAT(/'/* IX~GAUSS.~X~HX€WRD.~X~HY-COORD. 
. 7X.3H U JX6H QX ,6X.6H QY 5X.6H Q . 
. 6X6H ANGLE.6X.9H IACOBiANI 
d H  POINT) 

150 FORMAT(//,' STEADYSTATE FLUX SOLUTION FOR EQUATION = ' 
Jui X,4H NEL1X5HGAUSS.2X.7HX-C00RD~4X.7HY-COORD,7X, 
3H U , X 6 H  QX , 
.6X,6H QY $X6H Q ,6X,6H ANGLE,6X,9H JACOBIAN/, 
.6H POINT) 

C 2ûO FORMAT(fl2H ELEMENT NO-) 
END 
. - - - - - - -  - -  . . .  

SLTBROUTINE EVAL (NELXUOGN,NLMAT,NODES.U.PROP.IIIP 

C..... 
C.....CALCULATES U, SIG-X (QX), AND SIG-Y (QY) FROM SHAPE FU'KT'IONS 
C. FOR QUADRILATERAL ELEMENTS 
C..... 

CALLED BY: POST 

CALLS : GETMAT. SHAPEJ, SHAPES. SHAPE9.0UTPL2 

IMPLICIT DOUBLE PRECISION (A-H.0-Z) 

COMMON/FILES/NIN,NOU.NLG.NFILENPLOT 
COMMON /PLTOUT/ XG,YG,SIGHXSIGHY 
COMMONlCCON/NNODE.NELEM.NMAT.NPO~,NOUT,MNTO 
.,NPRNTl ,NPRNTZ,NPRNn,NPRNT4,NPTYPE,NPDE 
COMMONmMES/'Iü,TF,DELTAT,NSTEP.NSTEP'T 

Dm 
Dm 
DD 
DD 
Dm 
DIPI 
DIh 
Dm 
DIh 
DA' 

C.....CALCULATE U, SIG-X (QX). AND SIG-Y (QY) FROM SHAPE FUNCTIONS 
C 

CALL GETMAT (XK.YKXYKXM,YMXB.XF,RMUXRHO 1 XRHOZMAT(NEL),PROP* 
> UELEMWT.VARTVAR.NELIEQ) 

C 
C.....BEGiN INTEGRATION POINT LOOP 
C 

DO 50 L=l,NL 
iF(NL.EQ. 1) NN=l 
iF(NL.EQ.4) NN=2 
iF(NL.EQ.9) NN=3 
iF(N.EQ.4) GO TO 15 



IF(N.EQ.8) GO TO 25 
IF(N.EQ.9) GO TO 35 

C 
15 CALL S W W  ~(L,l.NN)XI(L.ZNN),N,PSiDPSr) 

C 
GO TO 66 

C 
25 CALL SHAPE8 W&,l,NW,M(L,2NN),N,PSLDPSI,NODES(l ,MX)) 

C 
GO TO 66 

C 
35 CALL SHAPE9 ~&.l,WS[I(LZNN),N,PSLDPSI) 

C 
C.....CALCULATE DXDS 
C 
66 DO 20 I=1,2 
DO 20 J=1,2 
DXDSo=û.O 
DO 20 K=I ,N 

20 DxDS(u)=DXDS(rJ)+DPSI(K.n*XX(LK) 
C 
C.....CALCULATE DSDX 
C 

DETJ=DXDS(I,l)*DXDS(2.2)-DXDS(I.2)*DXDS(2.1) 
DSDX( 1.1)=DXDS(2.2)IDfXJ 
DSDX(2,2)=DXDS( 1. l)/DETI 
DSDX(I.Z)=-DXDS(I .2)/DETJ 
DSDX(2.1)-DXDS(2, t)/DETJ 

C 
C.....CALCULATE D(PSI)/DX 
C 

DO 30 I=I,N 
DPSDC(I)=DPSI(I. l)*DSDX(l, I)+DPSI(I,2)*DSDX(2,1) 
30 DPSIY(T)=DPSI(I,I)*DSDX(I ,2)+DPSI(1.2)*DSDX(22) 
UH=û. 
DUHDXd. 
DUHDY=O. 
x w .  
YG=O. 
DO 10 I=I,N 
XG=XG+PS I(t)*XX(l .l) 
YG=YG+PSI(I)*XX(ZI) 
UH=UH+PSI(I)*U(IEQ,NODES(I,NEL)) 
DUHDX=DUHDX+DPSIX(I)*U(IEQ,NODES(I,NEL)) 

IO DUHDY=DUHDY+DPSIY(I)*U(IEQ,NODES(I,NEL)) 
SIGHXz-XK*DUHDX 
SIGHY=-YKeDUHDY 
LM=L 
NLM=NL 
NELM=NEL 

C 
IF(NSTEP.EQ.NSTEPT .AND. NPLOT.NE.0) CALL OUTPL2 (LM,NLM.NELM, 
XGM.YGM,SX.SY) 

C 
SIGMA=DSQRT(SIGHX*SIGHX+SIGHY*SIGHY) 

C 
C DETERMINE ANGLE 
C 



IF (DABS(S1GHX) .GT. 1 .E-13) GO TO 75 
ALFA = PI2 
CF (SIGHY LT. O.) ALFA = ALFA + PI 
IF (DABS(S1GHY) .LT. 1 .E-13) ALFA = 0.0 
mm80 

75 ALFA = DATAN(SIGHY/SIGHX) 
IF (SIGWX LT. O.) ALFA = ALFA + PI 

80 CONTINUE 
ALFA=ALFA*S7.2958 

C 
C PRINT FLLJX RELATED SOLUTION 
C 

IF (rU'PRNT2 .NE. O) THEN 
iF(N0UT .EQ. 1 .AND. (IIIP.EQ.0 .OR. WTYPE.EQ. 1)) 
. WRITE(NOU,lOO)NEL.UG,YG,UH,SIGHXSIGHY,SIGMAJQLFA,DETJ 
ENDF 

C 
100 H)RMAT(lX.I-t,lXI1.3X.lPE10.3~ZX.1 PElO3.X lPElO3. 

4 ( X l  PE103).2X,l PElO.3) 
50 CONTINUE 

RETURN 
END 

CI*****I**t*l**LI1**********8*****1***********8*****************0*** 

SUBROOTINE POST2 (X*NE,MAT.NODES.NINT,UvPROPJIP*mPv~.TIME 
SGM.YGM.SX.SY,LABELUELEM,IMAT,VARNAR.EQ,WBAR) 

C*****~*******************************0***************************** 
C..... 
C.....POSTPROCESSïNG ROUTINE: EVALUATES AND PRINTS FiMïE ELEMENT SOLUTIONS 
C..... 
C CALLEDBY: MAIN 
C 

IMPLICIT DOUBLE PRECXSION (A-H.0-Z) 
C 

COMMON/FILES~,NOU.NLG,N~E,NPLOT 
COMMON/CCON/NNODE.NELEM.NMAT,NPOINT,NOUT,MNTO 
..NPRNTl ,NPRNn,NPRNT3,NPRNT4.WI'YPE.NPDE 
COMMON/îINT/XZQ(9,2,3), WQ(9-3) 
COMMONmMES~.TF,DELTAT.NSTEP,NSTEPT 

C 
INCLUDE "rI4VAR.H' 

C 
DIMENSION PROP( 10.10,l) 
DiMENSION X(2. I),U(lO. I)XGM(4,1 ).YGM(-I,l),SX(3.l),SY(3.1) 
DIMENSION NE(l),MAT(l).NODES(9.1),NINT(l) 
DIMENSION XX(29) 
DIMENSION TVAR(10,lO.I ,2O).VAR(10, 10,I~20),1MAT(10.10.1) 
CHARACTER*4 LABEL(20) 
DiMENSlON UELEM(lO,I),WBAR(lO.45) 
DATA PI.PI2 13.1 4lS92654,l.S707%327/ 

C 
C- PRINT SOLUTION AT EACH TIME STEP - 
C 

iF(N0UT .EQ. I AND. NPTYPE.EQ.1) WRITE(NLG.75) 
IF (NPRNTI .NE. O AND. NGEOMTYPE .GE. 2) THEN 
iF(EQ.EQ. 1 .AND.NOVT.EQ. 1 .ANDAND(IIP.EQ.O.OR.~E.EQ.l))  

. WRITE(NLG,89)1EQ,(ItU~Q,I)/(-l./VIS*RO**2.*DPDZ),I=1,NNODE) 
IF(iEQ.EQ. 1 AND.NOUT.EQ.1 .AND.(ITP.EQ.O.OR.NPTYPE.EQ.l)) 

. ~(NLG,90)EQ,~U(IEQII)/WBAR(1,2),I=l ,NNODE) 



~(EQ.EQ.2AND.NOUT.EQ.1.AND.W.EQ.O.ORtNPTYPEEQ. 1)) 
. WRiTE(NLG,9 t)EQ.(I..(v~Q.I)-TW)*2*PI*AK/QLN.I=1 .NNODE) 
E~Q.EQ.2AND.NOUT4.1.AND.WEQ.O.OR.NVrYPEEQ.I)) 
. wRnz(~G.92)~.~~-U(IEQJ))/(Tw-TBULK(2))J=l.WODQ 
ENDIF 

75 FORMAT(//.lX.THE STEADY-STATE SOLLITION:') 
89 FORMAT(1H 1.1 X,'NORMALIZED VEL U/(-l./VIS*R0**2*DPDZ) EQ = '. 
. 13 J, 1 X4CNODS,8X,'CP. 18x)I.4(15.5X* 1 PEI 1.4.10X)) 

90 FORMAT(1 H /,IX'NORMALIZED VEL (UNB) EQ = *,UJ,l X.4CNODE.8X 
. U ,  18X)/.4(USX 1 PE 1 1.4, IOX)) 

9 1 EORMAT(1 H /, 1 X.'NORMALIZED TEMP (T-W*2.*PI*AK/QLN EQ = ',U J. 
. iX.4('NODE,8X.T', 18X)/,4(USX 1 PEI1 -4.10X)) 
92 FORMAT( 1 H /. 1 X.'NORMALIZED TEMP (TW-T)/(TW-TB) EQ = '.I3 J. 
. 1 X.j('NODE.8XT,l 8X)/.4(U,SXIl PE11.4,lOIC)) 
RETURN 
END 

C*************************************************** 

SUBROUTENE OUTPL2 (L,NL.NELXGM,YGM.SXSY) 
C******.******************************************** 

C 
C.....SAVES FLUX INFORMATION ON NFiLE FOR A SUBSEQUENT CONTOUR 
C AND VECTOR PLOTS 
C 
C CALLED BY. EVAL 
C 
C 

IMPLICIT DOUBLE PRECISION (A-H.0-Z) 
C 

COMMON/FILES/NIN.NOU.NLG,NFILENPLOT 
COMMON /PLTOUT/ XG,YG,SIGX.SIGY 

C 
DIMENSION XGM(4 l),YGM(4.1),SX(4.1),SY(4, 1) 

C 
IF(L.GT.4) RETURN 
XGM(L.NEL)=XG 
YGM(LNEL)=YG 
SX(L,NEL)=S IGX 
SY(L,NEL)=S IGY 
iF(L.EQ.NL .AND. NPLOT .NE. O) WRITE(NFïLE.1 
. YGMaNEL).SX(I,NEL),SY(I,NEL),I=I ,NL) 

100 FORMAT(IS/( I P4E 1 1.3)) 
RETrnN 
END 

C 
C 
C8* *8 * *~8* *8 *88888888888$+$*+88*8 *L* *&888*~8* *8 *88*88888*888* *~~88  

C S WROUTINE CHEKCONV 
C 
C 

C Checks for convergence and appties relaxation 
C 



C- DETER- AVERAGE TEMPERATURE DIFFERENCE OVER ENTIRE MESH 
DO 15 iEQ=I,NPDE 

DIFN(lEQ) = O-ODO 
DlFFMAX(IEQ) = O.OW 

UMAX = 0.om 
DO IO J=I,NNODE 
DIFN(IEQ) = DIFN(IEQ) + DABS(U(IEQA-UITERmQJ)) 
DIFFMAX(1EQ) = DABS(U(IEQ3-WmJ))/DABS(UITERmQJ) 

F @DFMAX(EQ) .GT. UMAX) THEN 
UMAX = DIFFMAX(lEQ) 
ENDiF 

U(EQ,J) = (1 .O-R€LAX(IEQ))*UITER(EQJ) + RELAX(IEQ)*U(IEQ.n 
UITER(IEQ& = WEQJ) 

1 O CONTINUE 
DtFFU(1EQ) = DIFFümQ) / NNODE 

DIFFMAX(EQ) = UMAX 
15 CONTINUE 

RETURN 
END 

C***************+**$********I******O*I*t1******0****8******************* 

C 
C FUNCTiON N N C  
C 
C 

IMPLICIT REAL*S(A-H.0-Z) 
DIMENSION TVAR(lO,lO, 1.20).VAR(10.10.1,20).IMAT(I0,1O.I) 
DIMENSION PROP(10.10.1) 

DIMENSION UELEM(lO.l) 

iF (MATNUM .EQ. I )  THEN 
C- THIS VARIABLE IS K 1 1 

iF (IMAT(IEQ, 1 ,MAT) .GT. 1 ) TH EN 
FUNC = PROPRTES(MATNUM.IEQ,MAT.UELEM(LEQ,NEL),IMAT.VAR,TVAR) 

ELSEIF (IMAT(iEQ,I,MAT) .EQ. 1) THEN 
N N C  = FK 1 l(IEQ,UELEM.NEL,MAT) 
ELSE 
FUNC = PROP(IEQ,I.MAT) 

ENDIF 
ELSELF (MATNUM .EQ. 2) THEN 

C- THIS VARIABLE IS K22 
IF (IMAT(IEQ.2,MAT) .GT. 1 ) TH EN 
FUNC = PROPRTES(MATNUMJEQ,MAT,UELEM(IEQ,NEL)~T,VAR,TVAR) 

ELSEIF (IMAT(EQ,ZMAT) .EQ. 1) THEN 
N N C  = FK22(IEQ,üELEM,NE t,MAT) 

ELSE 
FUNC = PROP(EQ,ZMAT) 

ENDiF 
ELSEF (MATNUM .EQ. 3) TWEN 

C- THIS VARIABLE IS K 1 2 
iF (IMAT(iEQ9,MAT) .GT. 1) THEN 



FUNC = PROPRTESWTNUMJEQ,MAT,UELEMm,NEL),IMAT,VARTVAR) 
ELSEIF (IMAT(IEQ.3,MAT) .EQ. 1) THEN 
FUNC = FK 12(iEQ,UELEM,NEL,MAT) 
ELSE 
FüNC = PRORiEQ.3,MAT) 
ENDIF 
ELSEIF (MATNUM .EQ. 4) THEN 

C- THIS VARIABLE IS Ml 
IF (IMAT(EQ.4,MAT) .GT. 1) THEN 
FüNC = P R O P R T E S ( M A T N U M & Q , M A T , U E L E M ~ , N E L ) . I M  

ELSEiF (IMAT(iEQ,4,MAT) .EQ. 1) THEN 
FUNC = FMl(IEQ,LJELEM.NEL,MAT) 
ELSE 
FUNC = PROP(1EQAMAT) 
ENDIF 
ELSEIF (MATNUM .EQ. S) THEN 

C- THIS VARIABLE IS M2 
E (iMAT(iEQ3,MAT) .GT. 1) THEN 
N N C  = PROPRTES(MATNUM,IEQ,MAT,UELEM(IEQ.NEL),LMAT.VARTVAR) 

ELSEIF (IMAT(1EQ S.MAT) .EQ. 1) THEN 
FUNC = FM2(iEQ,UELEM,NEL.MAT) 
ELSE 
FUNC = PROP(IEQS,MAT) 
ENDIF 
ELSEIF (MATNUM .EQ. 6) THEN 

C- THIS VARIABLE IS B 
IF (iMATUEQ,6,MAT) .GT. 1) THEN 
FUNC = PROPRTES(MATNUMEQ,MAT,UELEM(IEQ.NEL),IMAT,VAR.TVAR) 

ELSEiF (IMAT(IEQ6,MAT) .EQ. 1) THEN 
N N C  = FBB(IEQ.UELEM.NEt.MAT) 

ELSE 
W C  = PROP(iEQ,6,MAT) 
ENDIE: 

ELSEIF (MATNUM .EQ. 7) THEN 
C- THIS VARLABLE IS F 

iF (IMAT(EQ.7,MAT) .GT. 1) THEN 
FUNC = PROPRTES(MATNUM.EQ,MAT,UELEM(EQ,NEL),~T.VARTVAR) 

ELSEiF (iMAT(IEQ,7,MAT) .EQ. 1) THEN 
FUNC = FFFEQ.UELEM,NEL.MAT) 
ELSE 
FONC = PROP(EQ.7,MAT) 
ENDIF 

ELSEF (MATNUM .EQ. 8) THEN 
C- THIS VARIABLE IS MU 

IF (IMAT(IEQ,S,MAT) .GT. 1) TH W 
FUNC = PROPRTES(MATNUM,IEQ.MAT,UELEM(IEQ*~L).IMAT.VARTVAR) 

ELSEiF (IMAT(iEQb,MAT) .EQ. 1) THEN 
FUNC = FMW(IEQ,UEt EM.NEL,MAT) 
ELSE 
FUNC = PROP(EQ.8,MAT) 

ENDIF 
ELSEiF (MATNLJM .EQ. 9) THEN 

C- THIS VARIABLE IS RH01 
IF (iMAT(IEQQ,MAT) .GT. 1) THEN 
N N C  = PROPRTES(MATNUM,IEQ,MAT,UELEM(IEQ,NEL),IMAT,VAR.TVAR) 

ELSEiF (IMAT(IEQ9,MAT) .EQ. I ) THEN 
FUNC = FRHOl(IEQ,UELEM,NEL,MAT) 
ELSE 



FüNC = PROP(IEQ,9,MAT) 
ENDIF 

ELSEIF (MATNUM .EQ. 10) THEN 
C- THIS VARIABLE IS RH02 

IF (IMAT(iEQ. 10,MAT) .GT. 1) THEN 
FUNC = PROPRTES(MATNUMJEQ,MAT.UELEM(aEQ*NEL)WT*VaWM) 

ELSEIF (IMAT(IEQ, I0,MAT) .EQ. 1 ) THEN 
FUNC = FRH02(IEQ,UELEM,NEL,MAT) 

E U E  
FUNC = PROP(IEQ, 10,MAT) 

ENDIF 
ENDiF 

C 
RETURN 
END 

iMPLICïï REAL88(A-H.0-Z) 
C 

INCLUDE 7'HVAR.H' 
C 

DIMENSION UELEM(lO.l) 

iF (EQ .EQ. 1) THEN 
iF (FPROP.EQ.'FIXED')TH EN 

FK I 1 = -1 .O*AMUST(NEL) - VIS 
ELS EIF (FPROP.EQ.@FIXTB')THEN 

FK I I = - I .O* AMUST(NEL) - VIS F(TAVE) 
ELSE 
FK 11 = -1.O8AMUST(NEL) - VISF(UELEM(2NEL)) 
ENDIF 

C... fs-inp. ~rbulence test made1 
C FKI 1 = -0.0 1*DEN8UELEM(I ,NEL)*DH/2. - VIS 
C FKI 1 = 0.0 

ELSEiF (IEQ .EQ. 2) THEN 
C... elsfg6.inp. fa8.inp 

IF (FPROP.EQ.'FIXED~THEN 
PR = VIS*CPIAK 
FK 1 I = - 1 .08AK*AMUST(NEL)/VIS*PR/PRT(NEL) - AK 

ELSEiF (FPROP.EQeFIXTB3THEN 
PR = VISF(TAVE)*CPF(TAVE)/AK FVAVE) 
FK1 1 = -l.O*AKF~AVE)*AMUST(NEL)/VISF(TAVE)* 

- PWPRT(NEL) - AKFflAVE) 
ELSE 

PR = WSF(UELEM(ZNEL))*CPF(UELEM(ZNEL))/AKF(UELEM(t.NEL)) 
FK 1 1 = - t .O*AK F(UELEM(2,NEL))*AMUST(NEL)/VISF(UELEM(2,NEL))* 

. PR/PRT(NEL) - AKF(UELEM(2NEL)) 
ENDF 

C FKll =O.O 
C... faS.inp. turbulence test mode1 
C VIST = 0.01 *DEN*UELEM(l .NEL)*DH/'. + VIS 



C FK 1 1 = - 1 .O*AK*VTSTMS*PR/PRT(NEL) - AK 
C 

ELSEIF (EQ .EQ. 3) THEN 
SIGMAK = 1 .O 

FK11= - VIS - VIS7T(NEL)/SIGMAK 
C 

ELSEIF (EQ .EQ. 4) THEN 
SIGMAE = 1 3  
FK 1 1 = - VIS - VISTI'(NEL)/SIGMAE 

C 
ELSEIF (IEQ .EQ. 5) THEN 
FKl t = 0.0 
ELSEIF (IEQ .EQ. 6) THEN 
FK1I =O.O 
ELSEF (IEQ .EQ. 71 THEN 
FKI 1 = 0.0 
ELSEiF (EQ .EQ. 8) THEN 
FK11 =O.O 
ELSEiF (XEQ .EQ. 9) THEN 
FK11 = 0.0 
ELSEIF (IEQ .EQ. 10) THEN 
F K I I  =O.O 
ENDIF 
RETURN 
END 

c 
C FUNCTION FK22 

RML*8 NNCTION FK22(1EQ,UELEM,NEL,MAT) 

IF (IEQ EQ. 1) THEN 
iF(FPROP.EQ.'FIXED')THEN 

FK22 = -1 .O*AMUST(NEL) - VIS 
ELS E i ï  (FPROP.EQ.'FDCTB')THEN 

FK22 = - 1 .O*AMUST(NEL) - VISF(TAVE) 
ELSE 

FK22 = - 1 .O*AMUST(NEL) - VISF(UELEM(2,NEL)) 
ENDF 

C... fd.inp, turbulence test mode1 
C FK22 = -O.Ol*DEN*UELEM(l ,NEL)*DHR. - VTS 
C FK22 = 0.0 

ELSEiF (IEQ .EQ. 2) THEN 
C... e l  sfg6.inp.faS.hp 

IF(FPROP.EQ.'FKED')EN 
PR = VISmCPfAK 
FK22 = -l.O*AK*AMUST(NEL)MS*PR/PRT(NEL) - AK 

E U  EiF (FPRO P.EQ .'FiXTB')TH EN 
PR = VISF(TAVE)*CPF(TAVE)/AKF(TAVE) 



. PWRT(NEL) - A K F ( ~ L E M ( ~ N E L ) )  
ENDIF 

C FK22 = 0.0 
C... f&.inp, turbulence test mode1 
C VIST = 0.01 *DEN*UELEM(I .NEL)*DH/2. + VIS 
C FK22 = -1 .O*AK*VIST/VIS*PR/PRT(NEL) - AK 
C 

ELSEiF (lEQ .EQ. 3) THEN 
SIGMAK = 1.0 

FK22 = - VIS - VIS'lT(NEL)/SIGMAK 
C 

ELSEIF (IEQ EQ. 4) THEN 
SIGMAE = 13 
FK22 = - VIS - VISTT(NEL)/SIGMAE 

C 
ELSEE (IEQ .EQ. 5) THEN 
FK22 = 0.0 
ELSElF (IEQ .EQ. 6) THEN 
F K U  = 0.0 
ELSEIF (IEQ .EQ. 7) THEN 
FK22 = 0.0 
ELSEIF (IEQ .EQ. 8) THEN 
FK22 = 0.0 
ELSEiF (IEQ .EQ. 9) THEN 
FK22 = 0.0 
ELSEEF (IEQ .EQ. 10) THEN 
FK22 = 0.0 
ENDiF 
RETURN 
END 

IMF'LICIT REAL88(A-H-O-Z) 
DIMENSION UELEM(IO.1) 

C 
INCLUDE ITHVAR.He 

C 

IF (IEQ .EQ. 1) THEN 
FK12 =O.O 
ELSEiF (IEQ EQ. 2) THEN 
FK12 = 0.0 
ELSEiF (IEQ .EQ. 3) THEN 
FK12 = 0.0 
ELSEIF (IEQ .EQ. 4) TH EN 
FKl2  = 0.0 



ELSEIF (IEQ .EQ. 5) THEN 
FK12=0.0 
ELSEIF (IEQ .EQ. 6) THEN 
FK12=0.0 
ELSEIF (XEQ .EQ. 7) THEN 
FK 12 = 0.0 
ELSEiF (IEQ .EQ. 8) THEN 
FK12=0.0 
ELSEE (EQ .EQ. 9) THEN 
FKt2 = 0.0 
E L S E i F m  .EQ. 10) THEN 
FKl2 = 0.0 
ENDIF 
RETURN 
END 

IF (EQ .EQ. 1) THEN 
FM1 =o.o 
ELSEiF (IEQ XQ. 2) THEN 
FM1 = 0.0 
ELSEE (IEQ .EQ. 3) THEN 
FM 1 = 0.0 
ELSEE (IEQ .EQ. 4) THEN 
FMI = 0.0 
ELSEiF (IEQ .EQ. 5) THEN 
FM1 =o.o 
ELSEiF (IEQ .EQ. 6) THEN 
F M I  =o.o 
ELSEE (IEQ .EQ. 7) THEN 
FM1 = 0.0 
ELSEiF (IEQ .EQ. 8) THEN 
FM1 =o.o 
ELSEIF (IEQ .EQ. 9) THEN 
FM1 = 0.0 
ELSEiF (IEQ .EQ. 10) THEN 
FMI = 0.0 
ENDIF 
RETURN 
END 

C 
C FUNCTION FM2 
C 



IMPLICIT REALa8(A-H,O-Z) 
DIMENSION UELEM(10,l) 

C 
iNCLUDE THVAR.H' 

C 

IF (IEQ .EQ. 1) T ' E N  
FM2 = 0.0 
ELSEiF (EQ .EQ. 2) THEN 
FM2 = 0.0 
ELSEiF (IEQ .EQ. 3) THEN 
FM2 = 0.0 
ELSEIF (IEQ .EQ. 4) THEN 
FM2 = 0.0 
ELSEEF (IEQ .EQ. 5) THEN 
FM2 = 0.0 
ELSEiF (IEQ .EQ. 6) THEN 
FM2 = 0.0 
ELSEIF (IEQ .EQ. 7) THEN 
FM2 = 0.0 
ELSELF (IEQ .EQ. 8) THEN 
FM2 = 0.0 
ELSEiF (IEQ .EQ. 9) THEN 
FM2 = 0.0 
ELSEIF (IEQ .EQ. 10) THEN 
FM2 = 0.0 
ENDIF 
R E N R N  
END 

REAL*8 N N C T I O N  FE B(IEQ,UELEM,NEL.MAT) 

IMPLICIT REALa8(A-H.0-Z) 
COMMON/YSPLUS/YPLUSA,SPLUSA&LA,YA,SA,DFPADFCA&PA&CA. 

. TWYA.WSA 
DIMENSION YPLUSA(23SO) 
DIMENSION UELEM(I0,l) 

C 
üUCLUDE ITHVAR.H' 

C 
iF (IEQ .EQ. t ) TH EN 
FB 0 = 0.0 

C FBB = UELEM(I,NEL)*315.0 
ELSEiF (IEQ .EQ. 2) THEN 

C USED WiTH FFF 
IF(FPROP.EQ.'FIXED')THEN 

FBB = -1 .*DEN*CP8UELEM( 1 ,NEL)/DZ 
ELSEIF (FPROP.EQ.*FIXTB')THEN 



FBB = - 1 .*DENF(TAVE)*CPF(TAVE)*UELEM( 1 ,NEL)/ûZ 
ELSE 

FBB = -1 .*DENF(UELEM(Z.NEL))*CPF(UELEM(&NEL))*UELEM(I,NEL)/DZ 
ENDIF 

C FBB = 0.0 
Csys luiother W ~ Y :  applicaibe for a tube geometry, 1YniiiY flow, 
C constant tube w;ill tempariture 
C FBB = (DEN*CP*UELEM(I .N'EL))/ 
C . (W-TBULK(I))*DTDZ 

ELSEIF (IEQ .EQ. 3) THEN 
FBB = 0.0 
ELSElF (IEQ .EQ. 4) THEN 
û=C 1 *FI (NEL)IDABS(UELEM(~.NEL))* WSTT(NEL)* 

. (GRADX( l,NEL)**2.+GRADY(l.NEL)**2.) 
E=-CZ*FZ(NEL)*DEN*DABS(UELEM(;I,NEL))/DABS(UELEM(3,NEL)) 
FBB=E 

C WRITE(SZ99)EQ,NEL,VISTT(NEL),Fl(NEL),FZ(NEL).~UKE(NEL). 
C . YPLUSA(NEL).D,EFBB 
0 9  FORMAT(1 XX4.i 4( 1 X.E 10.4)) 

ELSEIF (IEQ .EQ. 5) THEN 
FBB = 0.0 
ELSEiF (IEQ .EQ. 6) THEN 
FBB = 0.0 
ELSED (IEQ .EQ. 7) THEN 
FBB = 0.0 
ELSEIF (IEQ .EQ. 8) THEN 
FBB = 0.0 
ELSEiF (IEQ .EQ. 9) THEN 
FBB = 0.0 
ELSED (IEQ .EQ. 10) THEN 
r n B  = 0.0 
ENDIF 
RETUW 
END 

WLICIT REAL*8(A-H.0-Z) 
COMMON/YSPLUS/YPLUSA,SPLUSA.ALLA.YA.SA.DFPAgFCAALPAALCA. 

. TWYA,TWSA 
COMMON/CCON/NNODE,NELEM.NMAT,NPOiNT,NOUT,NINTO. 

. NPRNT1 .NPRmNPRNT3,NPRNT4,NmP&NPDE 
C 

INCLUDE THVAR.H' 
c 

COMMONlELGRID/XG,EL.YG,EL 
DIMENSION UELEM(lO.l)XG,EL(235O),YG,EL(2350),YPLUSA(U501 

C 
IF (EQ .EQ. 1) THEN 



WSWPI = -1 .O*AMUST(NEL+ 1) - VIS 
GXI =GRADX(l ,NEL) 
GXS=GRADX(l,NEL+ 1) 
TWX=(GX2*VISWPl -GX 1 l WSW)/(XG-EL(NEL+ 1)-XG,EL(NEL)) 
GYl=GRADY(l ,NEL) 
GYZICiRADY(l,NEL+I) 
TWY=(GY2*VISWPl -GY 1 *VISW)/(YG-EL(NEL+ 1)-YG-EL(NEL)) 
ELSEF(NEL.EQ.NELEM)THEN 
VISW = -1 .O*AMUST(NEL) - VIS 
W S W i  = - 1 .O*AMUST(NEL-1 ) - VIS 
GXl=GRADX(I,EfEL-1) 
GXZ=GRADX(l ,NEL) 
TWX=(GXZaVISW-GX 1'VISWM l)/(XG-EL(NEL)-XG,EL(NEL- 1)) 
GY l=GRADY(I ,NEL-1) 
GY2=GRADY(l ,NEL) 
TWY=(GY2*VIS W-GY 1 *VISWM l)/(YG-ELINEL)-YG-EL(NEL- 1)) 
ELSE 
VISWMI = -I.OaAMUST(NEL-1) - VIS 
VISWPl= -1 .O*AMUST(NEL+I) - VIS 
GXl=GRADX(l,NEL-1) 
GX2=GRADX(l ,NEL+I 
TWX=(GX2*VISWP1 -GXI *VISWM I)/(XG-EL(NEL+ 1)-XG-EL(NEL-1)) 
GY 1 =GRADY(I ,NEL-1) 
GYZ=GRADY(I.NEL+l) 
'IWY=(GY2*VISWPI -GY 1 'VISWM I)/(YG,EL(NEL+ 1)-YG-EL(NEL-1)) 
ENDLF 

FFF = DPDZ 

lF(NEL.EQ. 1)THEN 
WST = - 1 .O*AK*AMUST(NEL)MS*PR/PRT(NEL) - AK 
WSTP 1 = -1 .O*AK* AMUST(NEL+ l)/VIS*PR/PRT(NEL+ 1) - AK 
GX 1 =GRADX(2,NEL) 
GX2=GRADX(ZNEL+ 1) 
TTX=(GX2*VISTPt -GX 1 *VTST)/(XG-EL(NEL+l)-XG,EL(NEL)) 
GY I=GRADY(Z,NEL) 
GY2=GRADY(ZNEL+ 1) 
TTY=(GY2*VISWI -GY l'VIST)/(YG-EL(NEL+ 1 )-YG-EUNEL)) 
ELSEIF(NEL.EQ.NELEM)THEN 
WST = -1 .O*AK*AMUST(NEL)MSaPR/PRT(NEL) - AK 
VISTMl= -l.O*AKaAMUST(NEL-I)/vIS*PR/PRT(NEL-1) - AK 
GX I=GRADX(ZNEL-1) 
GX2=GRADX(2.NEL) 
TIX=(GX2*VIST-GXI *VTSTM l)/(XG-EL(NEL)-XG-EL(NEL- 1 )) 
GY IaRADY(2,NEL-1) 
GY2=GRADY(2,NEL) 
'ITY=(GY2*WST-GY 1 *vISTMI)/(YG-EuNEL)-YG-€Lm- 1)) 
ELSE 
WSTM 1 = -1 .(rAK*AMUST(NEL-I )/VIS*PR/PRT(NEL-1) - AK 
VISTPl= -1 .O*AK*AMUST(NEL+l)/VIS*PR/PRT(NEL+ 1) - AK 
GXl=GRADX(ZNEL-1) 



C FFF=O.O 
C FFF = DEN*CPWAVE*(TAVE-TIN) 
C.. fa& constant heat flux, 0.6m length 
C FFF = -1 .*(DEN*CPWELEM(I .NEL))W/DZ 
Csys app t id l e  for the gbometry of iube and mulus.  hhu flow. 
C consmt heaî flux, elsfg6.h~ 

iF(FPROPEQ.'FKED')THEN 
FFF = DENSCP*UELEM(I ,NEL)*DTDZ 
ELSEIF (FPROP.EQ.'FIXTB?THEN 
FET = (DENF(TAVE)*CPFflAVE)*UELEM(l,NEL))*DTDZ 
EUE 
FFF = (DENF(UELEM(2.NEL))+CPF(UELEM(2,NEL))*UELEMI .NEL))*DTDZ 

ENDIF 
C.. elsfg6.inp consrnt w d l  
C FFF = (DEN* CPaUELEM( I,NEL))* 
C . ((TW-UELEM(rNEL))/(TW-TB ULK(2)))* DTDZ 
C rippiiulbe for a tube geornetry, h m h r  flow. constant tube w d  
C tzmpemure 
C FFF = (DEN*CPSUELEM( I,NEL))* 
C . (m-UELEM(ZNEL))/(TW-TBULK(1 )))*DTDZ 
C mottur wây (use FBB mi FFF): app licdbrt for a tube geometry, 
C h i n m  flow, constant tube w;31 tempennire 
C FFF = (DEN*CP*UELEM(I .NEL))* 
C . TW/('W-TBULK(I))*DTDZ 
C 
C WRITE(SZ99)EQ,NELAMVST(NEL).YPLUSA(NEt), 
C . DSQRT(XG,EL(NEL) **2.+YG_EL(NEL)**Z). 
C . -m,*m.-FFF*-m-m-FFF 

ELSEIF (TEQ .EQ. 3) THEN 

SIGMAK = 1.0 
IF(NEL.EQ. 1)THEN 
VlSK = - VIS - VIS'lT(NEL)/SIGMAK 
W K P l  = - VIS - VISTI'(NEL+ I)/SIGMAK 
GXI=GRADX(3,NEL) 
GX2=GRADX(3,NEL+l) 
TKX=(GX2*VISKPl-GXI *VISK)/(XG_EL(NEL+ 1)-XG,EL(NEL)) 
GY I=GRADY(3,NEL) 
GY=RADY(3,NEL+l) 
TKY=(GY2*WSKPt -GY 1 *VISK)/(YG-EL(NEL+I)-YG,EL(NEL)) 
ELSEIF(NEL.EQ.NELEM)THEN 
VIS K = - VIS - VIS'IT(NEL)/SIGMAK 
VISKMI = - VIS - VISTC(NEL-I )/SIGMM 
GXI=GRADX(3,NEL-1) 
GXZ=GRADX(3,NEL) 
TKX=(GX2*VISK-GX 1 *VISKM 1 )/(XG-EL(NEL)-XG,EL(NEL- 1)) 
GY lSRADY(3,NEL-1) 
GYZ=GRADY(3,NEL) 
TKY=(GY2*VISK-GY I*VISKMl)/CIG_EL(NEL)-YG-EUNEL-1)) 
ELSE 
VISKPI = - VIS - VISTl'(NEL+I)/SIGMAK 
VISKM 1 = - VIS - VIS'rT(N€L-1)/SIGMAK 



iF(KEMODEL.EQ.'LSe.0R.KEMODEL.EQ.'NA')THEN 
IF(NEL.EQ.I)THEN 
C=WS/2./DAeS(UELEM(3,NEL))*((UELEM(3,NEL+l)-UELEM(3,NEL))/ 

. (YY (NEL+ 1 )-YY(NEL)))+.2 
ELSEIF(NEL.EQ.NELEM)THEN 
C=WS/2/DABS(UELEM(3.NEL))*((UELEM(3.NEL)-UELEM(3.NEL-l))/ 

. (YY(NEL)-YY(NEL-I)))**Z 
ELSE 
C = V ~ S I Z . / D A B S ( U E L E M ( ~ . N E L ) ) * ( ( E L E M ( ~ , N L - l ) ) /  

. (YY (NEL+l )-YY(NEL- 1)))**2. 
ENDIF 

C 
ELSEIF(KEMODEL.EQiCHB)THEN 

C=ZaVIS*UELEM(3.NEL)/YY(NEL)**2 
C 

ELSE 
M . 0  

ENDIF 

FFF= A+B+C 
C 
C WR~(S2.99)EQ.NEL.WLUSA(NEL). 
C . DSQRT(XG_EL(NEL)**Z+YG_EL(NEL)**2). 
C . GRADX(1 ,NEL),GRADY( 1 ,NEL). 
C . GRADX(ZNEL),GRADY(ZNEL),GRADX(3,NEL),GRADY(3,NEL). 
C . GRADX(4,NEL),GRADY(4,NEL) 
C WRITE(52.99)iEQ.NEL.VIS~(NEL),YPLUSA(NEL). 
C - DSQRT(XG,EL(NEL)**2.+YG-EL(NEL)**2.).-TKX,-TKY.-A.-B.-C. 
C .  -TKX-TKY-A-B-C 

ELSEiF (IEQ .EQ. 4) THEN 
C 

SIGMAE = 1.3 
iF(NEL-EQ. 1)THEN 
VISE = - VIS - WSTT'(NEL)/SIGMAE 
VISEPI = - VIS - VISTT(NEL+ l)/SIGMAE 
GX1 =GRADX(4,NEL) 
GX2=GRADX(4,NEL+ 1) 
TEX=(GX2*VISEPI -GX 1 *VISE)/(XG,EL(NEL+ 1 )-XG-EL(NEL)) 
GY 1 =GRADY(J,NEL) 
GYL=GRADY(4,NEL+ 1) 
TEY=(GY2*VISEPI -GY 18VISE)/(YG-EL(NEL+ 1)-YGJL(NEL)) 
ELSEF(NEL.EQ.NELEM)THEN 
VISE = - VIS - WSTT(NEL)/SIGMAE 
VISEMI= - VIS - WS'IT(NEL-l)/SIGMAE 
GX l=GRADX(4,NEL- 1) 
GX2=GRADX(4,NEL) 
TEX=(GXZ*VISE-GX 1 *VISEMI)/(XG-EL(NEL)-XG_EL(NEL(NEL-I)) 



GY l=GRADY(Q.NEL-1) 
GYZ=GRADY(Q,NEL) 
TEY=(GY2*VIS€-GY 1 *VISEM l)/(YG-EL(NEL)-YG-EL(NEL- 1)) 
ELSE 
VISEPI = - VIS - VIS'TT(NEL+I)/SIGMAE 
VISEMI= - VIS - VISTI'(NEL-I)/SIGMAE 
GX 1 X RADX(4.W-1) 
GXZ=CiRADX(4,NEL+ 1) 
TEX=(GX2*VISEPI -GX I *VISEM I)/(XG-EL(NEL+ 1)-XG-EL(NEL- 1 )) 
GY 1 dRADY(4,NEL- 1 ) 
GYZ-GRADY(4,NEL+ 1) 
TEY=(GY2*VISEPl -GY I *VISEM I)/(YG-EL(NEL+ 1)-YG-EL(NEL-1)) 
ENDF 

D=-C 1 *FI (NEL)+DABS(UELEM(4,WL))/DABS(UELEM(3,NEL))*VISTT(NEL)* 
. (GRADX(1 ,NEL)**2.+GRADY(I .NEL)**2.) 

E=C2*F2(NEL)*DEN*DABS(UELEM(4,NEL))**ZJDABS(UELEM(3,NEL)) 
C 

iF(NEL.ëQ.1)THEN 
GXI =GRADX(I .NEL) 
GXZ=GRADX(l .NEL+ 1) 
GGX=(GXZGXl)/(XG,EL(NEL+ 1)-XG-EL(NEL)) 
GY 1 =GRADY(I &EL) 
GY2=GRADY(l9NEL+ 1) 
GGY=(GY2-GY l)/(YG-EL(NEL+ 1 )-YG-EL(NEL)) 
GGXY=(GYZ-GY I )/(XG-EL(NEL+ I )-XG-EL(NEL)) 
ELSEiF(NEL.EQ.NELEM)THEN 
GX I=GRADX(I .NEL-1) 
GXZ=GRADX(l ,WL) 
GGX=(GXZ-GX I)/(XG-EL(NEL)-XG-EL(NEL-1)) 
GY l=sGRADY(I,NEL-1) 
GYZ=GRADY(l .ML) 
GGY=(GYZ-GY l)/(YG,EL(NEL)-YG,EL(NEL- 1 )) 
GGXY=(GY2-GY I)I(XG~EL(NEL)-XG~EL(NEL-~ 1) 
ELSE 
GXI =GRADX(I .NEL-1) 
GXZ=GRADX(l ,ML+ 1) 
GGX=(GX2GX 1 )/(XG_EL(NEL+ 1 )-XG-EL(NEL-1)) 
GY I =GRADY(l .NEL-1) 
GYZ=GRADY(I,NEL+I) 
GGY=(GY2-GY l)/(YG,EL(NEL+l)-YG-EL(NEL-1)) 
GGXYz(GY2-GY i)/(XG,EL(NEL+ I )-XG-EL(NEL- 1)) 
El'JDIF 

iF(KEMODEL.EQ.U')THEN 
C...Launder and S h m a  (1974) 

F = -2. VIS *VISTT(NEL)/DEN8(GGX+GGY+2.*GGXY)**2. 
ELSEIF(KEM0DEL.EQ.'NAe)THEN 

C... Nagano (1987) 
F = -( 1 .-F.mUKE(NEL))*VIS*VIS~(NEL)/DEN*(GGX+GGY+2.*GGXY)**2 
ELSEIF(KEMODEL.EQ .'CH9)TH EN 

C... Chien (1982) 
F = Z8UELEM(4,NEL)*WSIYY(NEL)**Z*DW(P(-O.S*YPLUSA(NEL)) 
ELSE 
M . 0  
ENDlF 

C 



UELEM(~ ,NU),UELEM(ZNEL),UELEM(~,NEL),UELEM(~, 
FORMAT(1 XJI4.l4(l X*ElO.4)) 

ELSEIF (IEQ .EQ. 5) THEN 
FFF = 0.0 
ELSEiF (IEQ .EQ. 6) THEN 
FFF = 0.0 
ELSEiF (IEQ .EQ. 7j THEN 
FFF = 0.0 
ELSEIF (IEQ .EQ. 8) THEN 
FFF = 0.0 
ELSEE (IEQ .EQ. 9) TH EN 
FFF = 0.0 
ELSEiF (EQ .EQ. 10) THEN 
FFF = 0.0 
ENDE 
RETURN 
END 

C 
C NNCTION FMU 

REAL88 NNCTION FMU(IEQ.UELEM.NEL,MAT) 

LMPLIClT REAL*8(A-H,O-2) 
DIMENSION UELEM(l0,l) 

C 
[NCLUDE THVAR-H' 

C 
iF (EQ .EQ. 1) THEN 
FMU = 0.0 
ELSEIF (IEQ .EQ. 2) THEN 
FMU = 0.0 
ELSEiF (IEQ .EQ. 3) THEN 
FMU = 0.0 
ELSEIF (IEQ .EQ. 4) THEN 
FMU = 0.0 
ELSEiF (IEQ EQ. 5) THEN 
FMU = 0.0 
ELSEIF (IEQ .EQ. 6) THEN 
FMU = 0.0 
ELSEJF (IEQ .EQ. 7) THEN 
FMU = 0.0 
ELSEiF (IEQ .EQ. 8) TH EN 
FMU = 0.0 
ELSEIF (IEQ .EQ. 9) THEN 
FMU = 0.0 
ELSEIF (IEQ .EQ. 10) THEN 



FMU = 0.0 
ENDIF 
RETURN 
END 

C 
C FUNCTION FRHO1 

IMPLICXT REAL88(A-H.0-Z) 
DIMENSION UELEM(lO.1) 

C 
INCLUDE 7'HVAR.H' 

C 
IF (IEQ .EQ. 1) THEN 
FRHO 1 = 0.0 
ELSEF (IEQ .EQ. 2) THEN 
FRHO 1 = 0.0 
ELSEiF (IEQ .EQ. 3) THEN 
FRHO 1 = 0.0 
ELSEiF (IEQ -EQ. 4) THEN 
FRHO1 = 0.0 
ELSER? (IEQ .EQ. 5) THEN 
FRHO 1 = 0.0 
ELSEE (IEQ .EQ. 6) THEN 
FRHOI = 0.0 
ELSEiF (IEQ .EQ. 7) THEN 
FRHOl = 0.0 
ELSEiF (IEQ .EQ. 8) THEN 
FRHO I = 0.0 
ELSEIF (IEQ .EQ. 9) THEN 
FRHO 1 = 0.0 
ELSEiF ( E Q  .EQ. 10) TH EN 
FRHO 1 = 0.0 
ENDIF 
RETURN 
END 

IMPLICIT REALa8(A-H.0-Z) 
DiMENSION UELEM(10.1) 

C 
INCLUDE THVAR.H' 

C 
IF (IEQ .EQ. 1) THEN 
FRHO2 = 0.0 
ELSEIF (EQ .EQ. 2) THEN 



FRHO2 = 0.0 
ELsEiF (IEQ .EQ. 3) THEN 
FRHO2 = 0.0 
ELSEIF (LEQ EQ. 4) THEN 
FRHO2 = 0.0 
ELSEIF (IEQ .W. 5) THEN 
FRHO2 = 0.0 
ELSEIF: (IEQ .EQ- 6) THEN 
FRHO2 = 0.0 
ELSEIF (IEQ .EQ. 7) THEN 
FRHO2 = 0.0 
ELSEIF (IEQ EQ. 8) THEN 
FRHO2 = 0.0 
ELSEiF (IEQ .EQ. 9) THEN 
FRHO2 = 0.0 
ELSEIF ( E Q  .EQ. IO) TH W 
FRH02 = 0.0 
ENDIF 
RETURN 
END 

IMPLICrI' DOUBLE PRECISION (A-H,O-Z) 
COMMON/CWXIQ(9,2.3),WQ(9,3) 
COMMON/FJLES/NIN,NOU,NLG,NFILE,NPLOT 
COMMON/FLENAMES/INC.ILESIITLE 
COMMONICCON/NNODE.NELEM.NMAT.NPOINT,NOUT,NWTO 
.NPRNTI .NPRNT2.NPRNT3,NPRNT4,NPTYPE,NPDE 
COMMON/RM,üMAx/RM,RM,CAL,RMKAY ,UMAX,CKARMANl 

DIMENSION UELEM(lO,l).PS1(9),DPSI(9.2) 
DIMENSION NE( l).MAT(l).NODES(9.1)X(2,1).U(10,1) 
DIMENSION WAREA(lO,l).WNODES(1),WELEM(lO) 
DIMENSION AMATA(lO,I),WBAR(10,45) 
DIMENSION ANUS ELT(45),iMAT(l O, 10.45) 

DIMENSION PROP(lO.10,l ),TVAR(IO. 10,1,20).VAR(10,10.1.20) 
DiMENSION SIGMA(1) 

REAL*8 LINELEN,QUGDAREA 
REAL* 8 PX(9),PY (9) 
REAL*8 A,B,C,D,P,Q 

DATA PLPI2 13-14 l5926S4,l.5707%327/ 
CHARACTER*20 IMILE 

DO IO iM=l,NMAT 
DO I I  iEQ=l,NPDE 
AMATA(IEQ,IM) = 0.0 
WAREA(IEQ,IM) = 0.0 

CONTINUE 
TBULK(rM) = 0.0 



1 O CONTINUE 
C.. 

SFLOWl =o.o 
SFLOW2 = 0.0 
SAREAl= 0.0 
SAREA2 = 0.0 

C.. 
DO 20 IE== t ,NELEM 
DO 21 IEQ=I,NPDE 

MATNO = MAT(IE) 
C 
C... OBTAIN ELEMENT VALUE BASED AT SINGLE GAUSS POINT (L=l) 
C 

C 
15 

25 

35 

66 

17 
C 

C 

30 

C.. 

CALL SHAPE4 (XIQ(L.I.NN)XIQ(L.LNM.N,PSLDPSI) 

CALL SHAPES (XIQ(L, 1 .NM.MQG2NN),N.PSLDPSLNODES( 1 .NEL)) 

PX(IN) = X(I,NODES(IN.IE)) 
PY(IN) = X(&NODES(INJEl) 

CONTiNüE 
A = LINELEN( PX(t ),PY(I),PX(2).PY(2) ) 
B = LINELEN( PX(2),PY(?).PX(3).PY(3) ) 
c = L N L E N (  PX(3),PY(3),PX(4).PY(4) ) 
D = LINELEN( PX(4),PY(4).PX(l),PY(I) ) 
P = LWELEN( PX(2).PY(2).PX(I),PY(J) ) 
Q = LINELEN( PX(l).PY(t),PX(3).PY(3) ) 
ELAREA = QUADAREA(A.B.C.D,P,Q) 
WAREA(EQ,MATNO) = WAREA(IEQ,MATNO) + ELAREA8WELEM(IEQ) 
AMATA(IEQ,MATNO) = AMATA(IEQ,MATNO) + ELAREA 

C.. CALCULATE SUBCHANNEL MASS FLOWS 
C.. 

WIEQ .EQ. 1 AND. MATNO .m. 2)THEN 
DO i n [GO = 0.29 
iF(iE.GE.(2 l+IW *48)N.IE.LE.(48+IGO*48))THEN 



FLOW%DEN*WELEM(l)*ELAREA 
SFLOW3-CFLOw2+FLOw2 
SAREA2=SAREM+ELAREA 
GOTO 21 
ENDiF 

177 CONTINUE 
DO 178 IGOGO = 0,29 
iF(IELT.(21 +IGOGO*48))THEN 
FLX)Wl=DEN*WELEM(I)*ELAREA 
SFLOWl-CFLOWl+FLOWI 
SAREAl=SAREAl+ELAREA 
GOTO 21 
ENDiF 

178 CONTINuE 
ENDiF 

C.. 
2 1 CONTINUE 

TBULK(MATN0) = TBULK(MATN0) + ELAREA*WELEM(I) *WELEM(2) 
20 CONTINUE 
C 

TFLOW=SFLO W I+SFLOW2 
TAREA=SAREA 1 +SAREA2 
WRITE(3,*)'SFLOWl.SFLOWXTFLOW,SFLOWl/TFLOW,SFLOW~OW 
WRiTE(3.*)SFLOVJI SFLOW2TFLOW.SFLOW 1 ~ 0 W . S F L O W ~ O W  
WRITE(~,*)'SAREA~,SAREAZTAREA.SAREA~/~AREA.SAREA~/~W 
WRRE(3,*)SAREA I ,SARWTAW.SAREAI~~AREASAREA~/~AREA 

C.. 
PR = VIS*CP/AK 
RRATIO = RURO 

C.. 
DO 3 1 IM= 1 .NMAT 
IF (AMATA(l,IM).NE.O.O.AND.WAREA(1,IM).~.O.O)THEN 
WBAR(1 .iM) = WAREA( 1 ,IM)/AMATA( 1 .IM) 
TBULK(IM) = TBULK(IM)WAREA(l.[M) 
WAvE = WAR(1,2) 
TAVE = TBULK(2) 

C P W  *.'IM.WAREA( 1 .IM).AMATA(I.[M).WBAR(I .Mg 
C PRINT *,IM.WAREA(lJM)~TA(l .IM).WBAR(1 ,LM) 
ce******* 
C.. TUBE* 
Ca******* 

iF (NGEOMTYPE.EQ.0) THEN 
OPEN ( 1 ,Fü,E=INFILE(I :~E)/r.&l'.STATUS='UM(NOWN~ 
RE = DEN8DH*WBAR(I,IM)MS 

CF = -OS*DPDZ*DH/DEN/WBAR(l JM)**2 
CFRE = RE*CF 

C..KAY'S, PG199,3E4cRE<l E6 
CF-OWER=2.*0.023*RE**(-0.2) 
CF-DiF=DABS(CF-CF-OTHER)/CF_OTHER* 100. 

QFLUX = RAD*DEN*CP*WBAR(l.[M)*DTDZ 
HTC = QFLUX/(TW-TBULK(1W) 

FK = 1 .O*AK*AMUST(NELEM)/VIS*PR/PRT(NELEM) + AK 
Q I  = FK*(U(ZNELEM+l)-U(2.NELEM))/(X(I.NELEM+ 1)-X(L ,NELEM)) 

ANUSELT(iM) = HTCaDH/AK 
C... KAY'S, PG 241 -242 

WRITE(1 ,*)'U,R,Y/RO,TTEL.TEL-1 ,WLUSIrPLUS,mOGAMUST(U)WT 
C WRïïE(1 ,*)'U,RELRRO,TEL,TEL-1 ,YPLUS,TPLUS,TLOGAMUSTOAKT 

DO 19 U=l ,NELEM 



RELEM = (X(I ~+x(I JJ+ I ))12. 
RNODE = RELEM/X(I,NELEM+l) 

RRR = (RO-RELEM)/RO 
USTAR = (SIGMA(NELEM)/DEN)**OS 
CF-1 = ZLSIGMA(NUEM)/DEN/wBAR(1,W**2 
UPLUS = UEUUSTAR 
YPLUS = (RO-RELEM)*DEN*USTAR/VIS 
U T  = 1 .OmAK*AMUSTmMS*PR/PRT(U) 
TEL = (U(~JJ)+U(~JJ+I))I~. 
TPLUS4TW-TEL)*USTAR/Q%Ux*DEN.CP 
T E L  = (TEL-U(2,NELEM+I))/(U(2, t )-U(2,NELEM+I)) 

IF(YPLUS.LE. 13.2)THEN 
TL,OG=PR9YPLUS 
TEL-1 = TW -TLOG/USTAR*QFLüX/DEN/CP 
ELSE 
TLOG=2.2S*DL0Ci(YPLUS8 1 5*(I.+RELEM/RO)/(1.+2*(RELEM/RO)**2.)) 

. +13.2*PR-5.8 
TEL-1 = TW -TLOGIUSTAR*QFLüX/DEN/CP 
ENDIF 
WRITE( 1.27)U,REL,RRR,mEL,mL-1 . WLUS.TPLUS,TLOG,AMUST(U), 

AKT 
C WUTE(1 ,27)U,REL,RNODE.TEL,TELL1 ,YPLUS.TPLUS,TLOG.AMUST(U). 
C .  AKT 
27 FORMAT (lX.14, 10(2X,E115)) 
19 CONTINUE 
C.. SLEICHER AND ROUSE (1975). KAY'S, PG 245-247 
C.. CONSTANT HEAT RATE, I.E3<REcI .E6, PRcl E4 

IF(RE.LT. 1 .E4 .OR. RE-GT. 1 .E6)WRITE(NLG,*) 
. 'S&R NU OUT OF RANGE' 
iF(PR.GT.O.1)THEN 
AA30.88-0.24/(4.+PR) 
B B=0.333+05*DEXP(-O.6*PR) 
ANU-OTHER=5.+0.0 IS*(RE**AA)*(PR**BB) 
ANU-DIF=DABS(ANUS ELT(IM)-ANU-OTHER)/MU-OmER* 100. 

ELSE 
ANU-OTHER==6.3+0.0167*(RE**0.85)*(PR**0.93) 
ANU,D[F=DABS(ANUSELT(IM)-WU-OWER)/ANU,OTHER* 100. 

ENDlF 
c*********** 
C.. ANMJLUS* 
C*********** 

ELSEIF (NGEOMTYPEEQ. I) THEN 
OPEN (1 ,FiLE=INFILE(l:JTITtE)/f .da1 ',STATUS='UM(NOWM 

iF(FPROP.EQ.'FiXED')TH EN 
RE = DEN*DHmWBAR(l,IM)/VIS 

CF = -05*DPDZ*DH/DEN/WBAR(I .iM)**2 
ELS EiF(FPROP.EQ.'FRTB3THEN 

RE = DENF(TAVE)*DH*WBAR(I~MSFflAVE) 
CF = -05*DPDZ*DH/DENF(TAVE)/wBAR(l ,IM)**2 
ELSE 

RE = DENF(TAVE)* DH WBAR(1 ,IM)/VISF(TAVE) 
CF = -OS*DPDZ*DHIDENF(TAVE)/WBAR(1,~**2 
ENDIF 
CFRE = R P C F  

C..KAY'S. PG199,3E4<RE<I E6 
CFPOTHER=2.*0.023*RE**(-0.2) 
CF-DF=DABS(CF-CF,OTHER)/CF-OTHER* 100. 

C QTl=û. 



QM. 
wRITE(l,*) *LFKQ,QLQTI,QTZ' 

DO 23 I=l,NELEM 
IF (I.LT. 1 2)THEN 
FK = DABS(PROP(21,l)) 
ELSE 
FK = 1 .0*AK8AMUST(I)/vIs*PR/PRT~ + AK 

ENDIF 
Q = -1.*R8(V(U+l)-U(U)/(x(IJ+I)-X(IJ)) 
DS4(X(IJ+60cl)-X(I J+l))* *2+(X(2J+60+1)-~(2~+1))**2.)..5 
QwDS*DZ*360./267 
IF(I.LT. 1 2)QTl =QL+QTl 
lF(I.GE. 1 2)QTî=QL+QTt 

WR1TE(I ,266) LFKQ,QLQTI.Q'IZ 
FORMAT (I4,1X11(2X,Ell5)) 

CONTfNUE 

FK 1 = 1 .0*AK8AMUST(2)/VIS*PR/PRT(2) + AK 
FK2 = 1 .O*AKmAMUST(NELEM)MS*PR/PRT(NELEM) + AK 

ELSW(FPROP.EQ.'FIXTB3THEN 
PR = VIS F(TAVE) *CPF(TAVE)/AKF(TAVE) 

FK 1 = 1 .O*AKFCTAVE)*AMUST(2)mFCAVE)*PR/PRT(2) + AKF(TAVE) 
FK2 = 1 .08AKFflAVE)*AMUST(NELEM)MSFflAVE)*PR/PRT(NELEM) 

. + AKF(TAVE) 
ELSE 
PR 1 = VISF(UELEM(Z2))*CPF(UELEM(2.2))/AKF(UELEM(2.2)) 
PR2 = WSF(UELEM(&NELEM))*CPF(UELEM(2.NELEM))/ 

. AKF(UELEM(2,NELEM)) 
FK 1 = 1 .O*AKF(UELEM(2,2))*AMUST(2)MSF(UELEM(2.2)) 

. *PR lPRT(2) + AKF(UELEM(Z2)) 
FK2 = 1 .O*AKF(UELEM(2.NELEM))*AMUST(NELEM)/ 

- ViSF(UELEM(2,FJELEM))*PR'YPRT(NELEM) + AKF(UELEM(2NELEM)) 
ENDiF 

4-1 = -1 -*FK 1 *(U(Z3)-U(L2))/(X(1,3)-X( 1.2)) 
Qf = FK2*(U(ZNELEM+ 1)-U(2,NELEM))l 

. (X(l.NELEM+I)-X(1,NELEW) 
QTOTAC-Q-1*2.*3-111593*W*DZ/DZ+THETAN/360. 
IF(Q1 .GT. Q2)THEN 

iF(FPROP.EQ.*FiXED')ïHEN 
QfiUX=(RO**2-N**2-)/2/RI* DEN*CP WBAR(1 JM)*DTDZ 

AW,OnER=Ql/(U(22)-TBULK(IM))*DH/AK 
ELSEIF(FPROP.EQ.'FIXTB')TH EN 
QFLUX=(ROW*2-RI**~.)I~./RI*DENF~TAVE)*CPF~~AVE) 

. *WBAR(t.M*DTDZ 
ANU,OTHER<I J(U (2.2)-TBULK(IM))*DH/AK F(TAVE) 

ELSE 
QFLUX=(R08*2.-RI**~)I~JRI*DENF(TAVE)*CPF(TAVE) 

. *WBAR(1.MtDTDZ 
ANU-O~ER=Q,1/(U(2.2)-TBULK(lM))*DH/AKF(TAVE) 

ENDIF 
W=U(2,2) 
ELSE 

IF(FF'ROP.EQ.'FIXED')THEN 
QFLUX=(R08*2.-RI**2.)IZ&0*DEN*CP8WBAR(I JM)*DTDZ 

ANUANUOTHER=Q2/(v(2SELEM+ 1 )-TBULK(IM))*DH/AK 
ELS EJF(FPROP.EQ.'FMTB?THEN 



QEWRO**2.-RI**2)/uRO*DENF(TAVE)*CPFflAVE) 
*WBAR(lJM)*DTDZ 

ANU,OTHERJQ2/(v(2,NELEM+ 1)-TBULK(IM))*DH/AKF(TAVQ 
ELSE 
QFL~=~O**2-RI"Z)TURO*DEWflAVE).CPFflAVE) 
*WBAR(I,xM)*DTDZ 

ANU-OTHER=Q-U(v(%NELEM+l)-TBULKm)*DH/AKFflAVE) 
ENDIF 

TW=U(ZNELEM+ 1) 
ENDlF 

HTC = QFLUX/(TW-T8ULK(TM)) 
IF(FPROP.EQ.'FiXED')TH EN 
ANUSELT(1M) = HTCIDWAK 
ELS EIF(FPROP.EQ.'FIXTB ')THEN 
ANUSELTO = HTC8DH/AKF(TAVE) 
ELSE 
ANUSELT(IM) = HTC*DH/AKFCI'AVD 
ENDIF 

C... KAY'S, ffi 241-212 
C WRITE(1 .*)@iJ,RNODE,TELTELTELL .YPLUS,TPLUS.TUX;~ST(rJ),AKT 

DO 18 iJ=2,NELEM 
RELEM = (X(1 J.~+X(I,IJ+I))J~. 
RNODE = RELEM/X(I,NELEM+I) 

iF(FPROP.EQ.'FiXED')THEN 
PR = VIS*CP/AK 

USTAR = (SIGMA(NELEM)/DEN)**05 
YPLUS = (RO-RELEM)*DEN*USTAWIS 
.\KT = 1 .O*AK*AMUST(U)MS*PR/PRT(iJ) 
TEL = ( U ~ Z I J N U ( ~ +  1 ))a 
TPLUSm-TEL)*USTAwFLUX*DEN*CP 

ELS EIF(FPROP.EQ.'FIXTB')TH EN 
PR = VISFCTAVE)*CPF(TAVE)/AKF(TAVE) 

USTAR = (SIGMA(NELEM)/DENF(TAVE))**OS 
Y PLUS = (RO-RELEM)*DENF(TAVE)*USTAR/WSF(TAVE) 
AKT = 1 .O*AKFflAVE)*AMUST(u)MSFCrAvE)*PRIPRTcrr) 
TEL = (U(ZU}+U(2.U+ 1 ) ) n  
TPLUS=(TW-TEL)*USTmFLUX*DENF(TAVE)*CPF(TAVE) 

ELSE 
PR = WSF(UELEM(ZNEL))*CPF(UELEM(2,NEL))/AKF(UELEM(Z,EL)) 

USTAR = (SIGMA(NELEM)/DENF(UELEM(2,NEL)))**05 
YPLUS = (RO-RELEM)*DENF(UELEM(2,NEL))*USTAR/ 

VISF(UELEM(2,NEL)) 
AKT = 1 .O*AW(UELEM(2NEL))*AMUST(IJ)MSF(vELEM(Z~L)) 

. *PR/PRT(U) 
TEL = (U(2.ïJ)+U(2JJ+ 1))12- 
TPLUS=m-EL)*UST~~UX*DENF(UELEM(2,ML)) 

. *CPF(UELEM(ZNEL)) 
ENDE 

iF(YPLUS.LE. 13.2)THEN 
TLOG=PR*YPLUS 

iF(FPROP.EQ.'FJXED')THEN 
TEL-1 = TW -TLffi/USTAR*QFLUX/DEN/CP 

ELSEIF(FPROP.EQ.'FD(TB')THEN 
TEL-1 = 7W -TLOG/uSTAR*QFtUX/DENFflA~~PF(TAVE) 

ELSE 
TEL-1 = TW -TLOG/USTAR*QFLUX/DENF(UELEM(2$JEL)) 

KPF(UELEM(2NEL)) 
ENDIF 



ELSE 
TL0G=2.29DLOG(YPLUS8 I5*(1.+RELEM/RO)/(I .+2*(RELEM/R0)**2.)) 

. +13.2*PR-5.8 
IF(FF'ROP.EQ.'FrXED')THEN 

TEL-1 = TW -TLOG/USTAR*QFLUX/DEN/CP 
ELSEiF(FPROP.EQ.'FiXTB')THEN 

TEL-I = TW -TLOG/USTAR*QFLUX/DENFflAvE)/CPF(TAVE) 
ELSE 

TEL-1 = TW -TLOG/USTAR*QEUX/DENF(UELEM(2,NEL)) 
ICPF(UELEM(2,NEL)) 
ENDIF 

ENDIF 
C WRITE(I,27)U,RNODE,TEL,TEL,I .YPLUS.TPLUS,nffiAMUST(U)AKT 
18 CONTINUE 
CI*tt&*l****l*l8t*8l.*tl**88*8*8*88 

C.. PATANKAR'S FiNNED ANNULUS* 
C***************************** 

ELSWF (NGEOMTYPE.EQ. 1 1) THEN 
RE = DENCDH*WBAR(IJM)WIS 

CF = -05*DPDZ+DH/DEN/WBAR(l .IMY82. 
CFRE = RE*CF 

QLN = DEN*WBAR(I.IM)*AFLOW*CP8DTDZ 
C 
C... SHEATH 
C 

QTOTAM. 
TWTOTAM. 
HTCTOTALd. 
SAREAT*. 

EL=o 
C 

EL[NC=ZO 
NOD[NC=S 1 

C 
WRfTE(3.259) 
WRITE(3,*) 'SAREAT.QFLXL.WL.HTCL,-XK' 

DO 56 I=l O21 32.-NODINC 
RI P = DSQRT(X(l,I+ 1)**2.+X(2.1+ 1)**2) 
RI = DSQRT(X(1 J)**2+X(2,W82.) 

DSIP = RIP-RI 
C... ONLY FOR ENERGY EQUATION. LE. EQ=2 

IF(FLOWmPE.EQ.TURBULENT)THEN 
EQ=2 
NEL45i -ELlNC*IEL 
IEL=IEL+I 
CALL GETMAT (XK,YK,XYKXM,YMXB~*RMUXRHOIXRHO2,MAT(NEL). 

> PROP,UELEM.IMAT,VAR,TvAR,NEWEQ) 
FK 1 1 = - t .0*AK8AMUST(NEL)/vrS*PR/PRT(NEL) - AK 
ELSE 
M=AK 
ENDIF 

E(DS 1 P.NE.O.)QFU(L 1 P = - 1 .*DABS(XK)*(U(ZI+ 1)-U(2J))/DS 1 P 
Q-1-qnxLlP 

R2P = DSQRT(X(1 ,I-NODINC+I )**2.+X(2.1-NODINC+ 1)**2.) 
R2 = DSQRT(X(1 ,I-NODINC)**2.+X(2J-NODINC)**2.) 

DS2P = N P - R 2  
lF(DS2P.NE.O.)QFLXL2P=- 1 .*DABS(M()*(U(2,1-NOD[NC+ 1) 

-U(2J-NODINC))/DS2P 



QFWCL2=QW2P 
SAREA = DSQRT((X(1 J)-X( 1 ,I-NODINC))**2.+(X(zr) 

. -X(2J-NODINC)) **2) 
Q n x L  = (QFLXLl +QFLXL2)/2. 

TWL = (U(ZI)+U(2J-NODINC))/2. 
TWTOTAL = TWTOTAL + TWL*SAREA 
HTCL = QFLXL/(TWL-TAVE) 
HTCïûTAL = HTCTOTAL + HTCL*SAREA 

QLOCAL. = QFLXL*SAREA 
QTOTAL = QTOTAL + QLOCAL 

SAREAT = SAREAT + SAREA 
WFUTE(3,26) SAREAT.QFLXL.'IWL,HTCL.-XK 

56 CONTINUE 
QTOTALl= QTOTAL 
SAREATI = SAREAT 

C 
C... FIN SIDE 
C 

EL=o 
DO 57 I=1.20 
DS 1 P = X(2J+NODINC)-X(2.1) 

C... ONLY FOR ENERGY EQUATfON. LE. IEQ=2 
IF(ROWTYPE.EQ.TURBULENT)THEN 
IEQ=2 
INELrl+IEL 
EL=IEL+l 
CALL GETMAT (XK,YKXYK,XM.YM,XBXF,RMUXRHO 1 .XRHOZMAT(INEL), 

> PROP.UELEM.IMAT,VAR.TVAR,INELIEQ) 
FK I 1 = -1 .O*AK*AMUST(INEL)/vfS*PR/PRT(INEL) - AK 
ELSE 
XK=AK 
ENDF 

IF(DS 1 P.NE.O.)QFLXL 1 P = - 1 .*D ABS(XK)*(U(ZI+NODINC)-U(ZI))/DS 1 P 
QELXLl=QFLXLlP 

DS2P = X(ZI+NODINC+ 1)-X(2,I+ 1) 
IF(DS2P.NE.O.)QFLXL2P = -1 .* DABS(XK)*(U(ZI+NODINC+ 1) 

-U(2.I+ l))/DS2P 
QFLXLZ-QFLXLZP 

SAREA = X(l,I+l)-X(1 JI 
QFLXL = (QFLXLl+QFLXL2)/2. 

TWL = (U(ZI)+U(Z,I+ 1 ))no 
TWTOTAL = TWTOTAL + TWL*SAREA 
HTCL = QFLXL/(TWL-TAVE) 
HTClYrrAL = HTCTOTAL + HTCL*SAREA 

QLOCAL = QFWa*SAREA 
QTOTAL = QTOTAL + QLOCAL 

SAREAT = SAREAT + SAREA 
WRITE(3.26) SAREAT.QFtXL.TWL.HTCL,-XK 

57 CONTINUE 
QTOTAL2 = QToTAL - QToTAL 1 
SAREAT2 = SAREAT - SAREAT1 
QFLUX = QTOTAUSAREAT 

TW = TWTOTALlSAREAT 
C HTC = HTCTOTAUSAREAT 

HTC = QFLUX/(TW-TAVE) 
ANUSELT(1M) = HTC*DH/AK 

C 
Q I  = AFLOWTHETAN/3û0JSAREAT*DEN*CP8WAVE*DTDZ 



ANU-OTHER = Ql/(TW-TAVE)*DH/AK 
C******************************* 
C.. PATANKAR'S UNFINNED ANNULUS* 
C 1 1 * 8 l * * ~ t * $ * 8 ~ * + t * * ~ ~ * * ~ 8 ~ ~ ~ ~ ~ *  

ELSEIF (NGEOMTYPE.EQ.12) THEN 
RE = DEN*DH*WBAR(l JM)/VIS 

CF = -05*DPDZ8DH/DW/WBAR(1 JM)**2 
CFRE = RE*CF 

QLN = DEN*WEAR(l,IM)*AFLOW*CPDTDZ 
C 
C... SHEATH 
C 

QTOTU. 
TWTOTALrO. 
HTCTOTAL=O. 
SAREAT=O. 

E L 4  
C 

ELiNC=50 
NODINC=5 t 

C 
WRïïE(3.259) 
WRITE(3.9 'SAREAT.QFLXt,TWL,HTCL,-XK' 

DO 556 kIO2 1,52.-NODXNC 
RI P = DSQRT(X(1 ,1+1)**2.+X(2.I+1)**2.) 
RI = DSQRT(X( 1 3**2-+~(2,n'*2.) 

DSlP=RlP-RI 
C... ONLY FOR ENERGY EQUATION, LE. IEQ=2 

IF(FLOWTYPE.EQ.TORBULENT)THEN 
IEQ=2 
NEWS 1 -ELINC81EL 
EL=lEL+l 
CALL GETMAT (XK.YK.XYKXM,YMXBScFIRMU~RHO 1 XRH02,MAT(NEL). 

> PROP,ELEM,IMAT*VAR.TVARINELEQ) 
FK 1 1 = -1 .0*AK*AMOST(NEL)MS8PR/PRT(NEL) - AK 
ELSE 
X = A K  
ENDIF 

IF(DS 1 P.NE.O.)QFLXLl P = -1 .*DABS(XK)*(ü(%I+ 1)-U(Zr))/DS 1 P 
QFLXLl=QFLXLlP 

R2P = DSQRT(X(IJ-NODINC+l)**2.+X(2I-NODINC+1)**2~ 
R2 = DSQRT(X(1 ,I-NODINC).+2.+X(2J-NODINC)**2) 

DS2P = R2P-R2 
IF(DS2P.NE.O.)QFLXL2P=- 1 .*DABS(XK)*(U(2.1-NODLNC+ 1) 

-U(2J-NODtNC))/DS2P 
QFLXLLQFLXL2P 

SAREA = DSQRT((X(l~I)-X(l.t-NOD~C))**2.+(X(2,~) 
. -X(U-NODINC))**L) 

QFLXL = (QFLXLI+QFLXL2)/2 
TWL = (U(2J)+U(LI-N0DINC))E 
TWnrrAL = nvTOTAL + TWL8SAREA 
HTCL = QFLXL/(TWL-TAVE) 
HTCTOTAL = HTCTOTAL + HTCL8SAREA 

QLOCAL = QFLXL'SAREA 
QTOTAL = QTOTAL + QLOCAL 

SAREAT = SAREAT + SAREA 
WRITr(3,26) SAREAT.QFLXL.mHTCL.-XK 

556 CONTINUE 



QToTALI = QTOTAL 
SAREATI = SAREAT 

C 
QFLUX = QTOTAUSAREAT 

'Iw = TWTOTAWSAREAT 
C HTC = HrnTAUSAREAT 

HTC = QFLUX/(TW-TAVE) 
ANüSELTO = HTCaDH/AK 

C 
Q I  = AnOW~TGN/360~AREA~DEN*CP*WAVE*DTDZ 

ANU-OTHER = Ql/(TW-TAVE)*DH/AK 
C**************** 
C.. FA8 UNFINNED* 
C********+***.*** 

ELSEIF (NGEOMTYPE.EQ.22) THEN 
DHNEW=2*(RO-RI) 
IF(FPROP.EQ.'FlXED')TH EN 

RE = DEN*DHNEW*\KBAR(I,iM)MS 
CF = -05*DPDZ*DHNEw/DEN/HnBAR(l .IM)**2 
CFRE = RPCF 

QLN = DENaWAR(l,IM)*AFLOW*CPDTDZ 
ELSELF(FPROP.EQIFIXTB')THEN 

RE = DENF(TAVE)*DHNEW8 WBAR(1 JM)/VISF(TAVE) 
CF = -OS*DPDZ*DHNEW/DENFflAvE)mAR(I,IM)**2 
CFRE = REaCF 

QLN = DENF(TAVE)*WBAR(l ,iM)*AFLOWeCPF(TAVE)+DTDZ 
ELSE 

RE = DEM(TAVE)*DHNEW*WAR(lJM)/vISF(TAVE) 
CF = -OS*DPDZ*DHNEW/DENF~~AVE~/~BAR(I,IM)**~. 
CFRE = RE*CF 

QLN = DENF(TAVE)*WBAR(I .IM)*AFLOW*CPF(TAVE)+DTDZ 
ENDF 

C 
C... SHEATH 
C 

QTOTAM. 
TWTOTAL-0. 
HTrnTALd. 
SAREATd. 

EL=o 
C 

ELiNC=48 
NODINC=49 

C 
WRITE(3.259) 
WRITE(3,') SAREAT,QFLM,TWL,HTCL,*XK' 

DO 566 I=1474,53.-NODtNC 
RI P = DSQRT(X(l.I+l)**2.+X(2,I+l)**Z) 
RI = DSQRT(X(l,1)**2+X(2.1)**2) 

DSIP= RlP-RI 
C... ONLV FOR ENERGY EQUATDN. I.E. IEQ=2 

IF(FLOWTYPE.EQ.TURBULENT)THEN 
tEQ=2 
NEL;rl3%-ELINCeIEL 
EL=lEL+l 
CALL GETMAT (XK.YK.XYKm.YMXBX,RMUXRHOl SCRH02,MAT(NEL). 

> PROP,UELEM,IMAT,VAR.TVAR.NEL,EQ) 
IF(FPROP.EQ.'FIXED')THEN 

\ 



PR = VIS*CP/AK 
FK 1 1 = -1 .0*AK*AMUST(NEL)MS8PR/PRT(NEL) - AK 

ELS EIF(F£'ROP.EQ.'FIXTB ')THEN 
PR = VISF~~AVE)*CPF~~A~E)/AKF~~AVE) 

FK 1 1s -I.O*AKF~AVE)*AMUST(NEL)I~~~F~AVE)*PR/PRT(NEL) 
-AKFCTAVE) 
ELSE 
PR = V I S R U E L E M ( Z N E t ) ) * C P F ( U E L E M ( Z N E t ) ) / A K F ( )  

%ll=  -1 .O*AKF(UELEM(ZNEL))*AMUST(Nm,)/vrsF(vELEM(ZNEL)) 
*PR/'RT(ML) - AKF(UELEM(2,NEL)) 
ENDIF 

ELSE 
rF(FPROP.EQ.'FIXED')THEN 

XK=AK 
ELSUF(FPROP.EQ.'FD(TB')THEN 

XK=AKF(TAVE) 
ELSE 

XK-dF(UELEM(2NEL)) 
ENDiF 

ENDD 
F(DS 1 P.NEO.)QFLXLIP = -1 .*DABS(XK)*(U(ZI+l)-U(&I))/DS 1 P 

QFLXLISQFLXLIP 
R2P = DSQRT(X(1 J-NODiNC+l)**2.+X(Z I-NODINC+ 1)**2.) 
R2 = DSQRT(X( 1.1-NODINC)**2.+X(2I-NODLNC)**Z) 

DS2P = R2P-R2 
IF(DSZP-NE.O.)QFLXL2P=- I .*DABS(XK)*(U(2.I-NODiNC+ 1) 

-U(2I-NODENC))/DSZP 
QFLXL2=QFLXLZP 

SAREA = DSQRT((X(1 ,I)-X(1 ,I-NODINC))**2.+(X(Zi) 
. -X(2J-NODINC))**Z) 

QFLXL = (QFLXLl+QFW[LZ)/L- 
TWL = (U(WU(ZI-NOD[NC)112. 
TWTOTAL = TWTOTAL + TWL8SAREA 
HTCL = QRXL/(TWL-TAVE) 
HTCTOTAL = HTCK)TAL + HTCL'SAREA 

QLOCAL = QFLXL8SAREA 
QTûTAL = QmTAL + QLOCAL 

SAKEAT = SAREAT + SAREA 
WRlTE(3.26) SAREAT,QFLXL,TWL,HTCL.-XK 

566 CONTINUE 
QTOTALl= QTOTAL 
SAREATI = SAREAT 

C 
QFLUX = QTOTAUSAREAT 

TW = TWTOTAL/SAREAT 
C HTC = HTCTOTAUSAREAT 

HTC = QFLUX!(TW-TAVE) 
IF(FPROP.EQ.'rnD')THEN 
A N U S E L T O  = HTC8DHNEW/AK 
Q-1 = AFLOWWiETAN/360 JSAREAr DEN8CP*WAVE*DTDZ 

ANU-OTHER = Ql/(TW-TAVE)*DHNEW/AK 
ELSEIF(FPROP.EQ.'FIXTB3THEN 
ANUSELT(1M) = HTC*DHNEW/AKF(TAVE) 
Q I  = AFLOW*THETANn60./SAREAPDENFCrAVE)*CPF(TAV8W~V~*~~~~ 

ANU-OTHER = Ql/(TW-TAVE)*DHNEW/AKFflAVE) 
ELSE 
ANUSELT(IM) = HTC*DHNEW/AKF(TAVE) 
Q-1= AF~OW*THETAND~~./SAREAT*DENF~~AVE)*CPF~~AVE)*WAVE*DTDZ 



ANU-OTHER = Ql/(TW-TAVE)*DHNEW/AKF(TAVE) 
ENDIF 

C***t***********+$+***t*** 
C.. FINNED TUBE (SOLIMAN)* 
c******l***+*8***+*8**18** 

ELSEIF (NGEOMTYPE.EQ.2 .OR. NGEOMTYPE.EQ3)THEN 
RE = DEN*DH*WBAR(I~/VIS 

CF = -OJrDPDZ*DHDEN/WBAR(1~**2 
CFRE = RE*CF 

C.. SOLIMAN'S PAPER 
CF-OTHER = -2.*PI*DPDZ*RO**4JvIS/w8AR(lJM)/AFLOW/RE 
CF,D~DA.BS(CF-CF,OTHER)ICF-~THER*I~~. 
CFRE-OTHER = -2-*PI*DPDZ*RO**4JvIS/wBAR(l JM)/AFLOW 

QLN = DEN*WBAR(I,LM)*AFLOW*CPDTDZ 
QFLUX = QLN/(2*PI*RO) 
HTC = QFLUX/(TW-TBULK(IM)) 
ANUSELT(iM) = HTC*DH/AK 
ANU-OTHER = HTC82.*RO/AK 

ANU-DIF=DABS(ANUSELT(IM)-WU-OWER)/ANU-OTHER* 100. 
Cl****** 
C.. FAS* 
C******* 

ELSElF (NGEOMTYPE.EQ.21) THEN 
DHNEW=Z8(RO-RI) 
IF(FPROP.EQ.'FIXED")THEN 

RE = DEN*DHNEW*WBAR(l.M)/VIS 
CF = -OS+DPDZ*DHNEW/DEN/wBAR(lJM)**Z 
CFRE = RE*CF 

QLN = DEN*WBAR(l .Bl)*AFLOW*CP*DTDZ 
ELSEIF (FPROP.EQ.'FKïB~THEN 

RE = DENF(TAVE)*DHNEW* WBAR(I,iM)MSF(TAVE) 
CF = -OS*DPDZ*DHNEW/DENF(TAVE)/wBAR(l JM)**2. 
CFRE = RE*CF 

QLN = DENF(TAVWWBAR(1 .IM)*AFLOW*CPF(TAVE)*DTDZ 
ELSE 

RE = DENF(TAVE)*DHNEW* WBAR( 1 .iM)/VISF(TAVE) 
CF = -OS*DPDZ*DHNEW/DENF(TAVE)/WBAR(I .IM)**2. 
CFRE = RE*CF 

QLN = DENF(7'AVE)*WBAR(l .1M)*AFLOW8CPF(TAVE)*DTDZ 
EMXF 

SHEATH 

QTOTAL=o. 
TWTOTALFO. 
HTCTOTAL=o- 
SAREAT4. 

LEM 
WRITE(3.259) 
-(S.*) 'SAREAT,QFLXL,TWL.HTCL.-XK' 

DO 39 I= 1474,347-49 
RI P = DSQRT(X(1,1+1)**2.+X(2,1+1)**2.) 
R 1 = DSQRT(X(1 .I)**2.+X(2 J).*2.) 
RI M = DSQRT(X(I,I-1)**2.+X(2J-1)**2.) 

DSlP = RIP-R1 
DSlM = R1-RIM 

C... ONLY FOR ENERGY EQUATION, I.E. IEQ=2 
IF(FLOWTYPE.EQ.TURS üLENT)TH EN 



IEQ=2 
NEk13%-48*IEL 
EL=IEL+l 
CALL GETMAT (XK,YK,XYKXM,YMXBX,RMUXRHOl XRHO2.MAT(NEL), 

> PROP.UELEMmT,VARWAR,NEUEQ) 
IF(FPROPEQ.'FIXEJJ')THEN 

PR = VIS*CP/AK 
FKI 1 = -l.O*AK*AMUST(Nu)/vls*PR/PRT(NEL) - AK 

ELSEiF (FPROP.EQ.TIXTB')THEN 
PR = VISF(TAVE)*CPFflAvE)IAKF(TAVE) 
FK 1 1 = -1 .O*AKFflAVE)*AMUST(mL)/vlsF(TAVE)* 

. PR/PRT(NEL) - AKF(TAW) 
ELSE 

PR = VISF(UELEM(ZNEL))*CPFtmLEM(2NEL))/-1 
FK 1 1 = - 1 .Of AKF(UELEM(ZNEL))*AMUST(NEL)/VISF(UELEM(2,NEL))* 

. PRPRT(NEL) - AKF(UELEM(2WL)) 
ENDIF 

ELSE 
IF(FPROP.EQ.'FIXED')THEN 

XK=AK 
ELSEIF (FPROP.EQ.'FLXTW")EN 

XK=AKF(TAVE) 
ELSE 

XK=AKF(üELEM(ZNEL)) 
ENDIF 

ENDIF 
IF(DS 1 P.NE.O.)QFLXL 1 P = - 1 .*DABS(XK)*(U(2J+ 1)-U(2,I))/DS 1 P 
IF(DS1 M.NEO.)QFLXLl M=-1 -*DABS(PROP(2. 1,3))*(U(2I)-U(2,1-1 1) 

IDS 1 M 
QFLXLl=QFLXLlP 

R2P = DSQRT(X(l,I49+1)**2.+X(2.149+1)"2) 
R2 = DSQRT(X(l,I49)**2.+X(2,1-49)**2) 
R2M = DSQRT(X(I.I-W l)**2.+X(ZI-&l)*'2) 

DS2P = R2P-R2 
DS2M = R2-R2M 

IF(DS2P.NE.O.)QFLXL2P=-1.*DABS(XK)*(U(2J-49+ l)-U(2,149))/DS2P 
IF(DSZM.NE.O.)QFIXL2M=- 1 .*DABS(PROP(2,1.3))*(U(2I-19) 

-U(2.IJ9- 1 ))/DS2M 
QFLXLZ-QFLXL2P 

SAREA = DSQRT((X( 1 -11-X( I .I~~))**Z+(X(Z~)-X(ZI-J~))**~.) 
QFLXL = (QFLXL 1 +QFLXL2)/2. 

TWL = (u (~J )+u(z I -~~) )~ .  
TWTOTAL = TWTOTAL + TWL8SAREA 
HTCL L: QFLXL/(TWL-TAVE) 
HTCTûTAL = HTCTOTAL + HTCL8SAREA 

QLOCAL = QFLXL8SAREA 
QTOTAL = QTOTAL + QLOCAL 

SAREAT = SAREAT + SAREA 
WRITE(3.26) SAREAT,QKXL,TWL.HTCL,-M( 

39 CONTINUE 
QTOTALl = QTOTAL 
SAREATl = SAREAT 

C 
C... FIN SlDE 
C 

IEL=O 
DO 4 1 I=298.3 t 4 
DS 1 P = X(2,1+49)-X(2,i) 



DS l M = X(2,L)-X(ZI49) 
C... ONLY FOR ENERGY EQUATION, LE. -2 

LF(FLOWTYPE.EQ.IIIII"'"'''''''''''''''ULENT)THEN 
EQ=2 
NELr292iIEL 
JEL=IEL+I 
CALL GETMAT (XK.ïK.XYKXM.YM~XF.RMUXRHO1 S(RHOZMAT(NEL), 

> PROP*VELEMJMAT.VAR,WAR,NE~Q) 
IF(Fi'ROP.EQ.FIXED')TH EN 

PR = VIS*CP/AK 
FK 1 1 = -1 .O*AK*AMUST(NEL)/VIS*PR/PRT(ML) - AK 

ELSEIF (FPROP.EQ.'FiXTB')THEN 
PR = VISF(TAVE)*CPF(TAVE)/AKF(T"VE) 
FK 1 1 = -1 .O*AKF~A~*AMUST(NEL)/vrsFflAvE)* 

. PR/PRT(NEL) - AKF(TAVE) 
ELSE 

PR = VISFCUELEM(2NEL))*CPF(UELEM(LNEL))IAKF(UELEM(2,NEL)) 
K i 1  = - l . O * A K F ( v E L E M ( Z N E L ) ) * A M U S T ( N E L ) F ' I S F ( ~ ) *  

. PR/PRT(NEL) - AKF(UELEM(2,NEL)) 
ENDF 

ELSE 
IF(FPROP.EQ.'FIXED')TH EN 

XK=AK 
ELSEIF (FF'ROP.EQ.'FiXTB')THEN 

XK=AKF(TAVE) 
ELSE 

XK=AKF(UELEM(ZNEL)) 
ENDIF 

ENDF 
IF(DS1 P.NE.O.)QFW(LI P = -1.+DABS(XK)*(U(2.1+49)-U(2,r))/DS 1P 
IF(DS 1 M-NE-OJQFLXL 1 M=- 1 .*DABS(PROP(Z 1.3))*(U(2.1)-U(2.149)) 

/DSIM 
QFLXLl=QnxLlP 

DS2P = X(2.1+49+1 )-X(2,1+ 1) 
DSZM = X(21+ 1)-X(2.I-49+ 1) 
IF(DS2P.NE.O.)QFLXL2P = -1 .*DABS(XK)*(U(2.1+49+1)-U(21+1))/DS2P 
IF(DS2M.NE.O.)QFLXL2M--I.*DABS(PROP(2.1~3))*(U(2.1+ 1) 

-U(ZI-49+ 1))/DS2M 
QFLXL2=QFLXL2P 

SAREA = X(l,hl)-X(1.I) 
QFLXL = (QFLXLI+QFLXL2)/2. 

TWL = (U(2I)+U(2.1+ 1)1/2. 
m A L  = TWTOTAL + TWL'SAREA 
HTCL = QFLXL/CIWL-TAVE) 
HTCTOTAL = HTCTOTAL + HTCLSSAREA 

QLOCAL = QFWa*SAREA 
QToTAL = QTOTAL + QLOCAL 

SAREAT = SAREAT + SA- 
WRITE(3.26) SAREAT.QFLXL,'WL,HTCL,-XK 

4 1 CONTINUE 
QTOTAL2 = QTOTAL - QTOTALl 
SAREAT2 = SAREAT - SAREAT1 

C 
C... FIN TIP 
C 

IEM 
DO 43 1=315,70,-49 
DS IP = X(I,I+l)-X(1J) 



DS 1M = X(1.I)-X(1J-1) 
C... ONLY FOR ENERGY EQUATION, LE. IEQ=2 

IF(FLOWTYPEEQ.WULENT)THEN 
EQ=2 
NEbZd 1 -IEL*48 
IEL=IEL+ 1 
CALL GETMAT ( X K , Y K , X Y K X M , ~ ~ , R M U X R H O l  XRH02MAT(NEL). 

> PROP,UELEMWT,VAR,TVAR,NEUQ) 
IF(FPROP.EQ-'FIxED')THEN 

PR = VIS*CP/AK 
FK 1 1 = - 1 .O*AK*AMUST(NEL)Ms*PR/PRT(NEL) - AK 

ELS EIF (FPROP.EQ.'FIXTB')THEN 
PR = VISFflA VE)*CPF(TAVE)/AK F(TAVE) 
FK 1 1 = - 1 .O*AKFflAVE)*AMUST(NEL)MSFflAVE)* 

- PWPRT(NEL) - AKF(TAVE) 
ELSE 

PR = WF(UELEM(ZNEL))*CPF(UELEM(ZNEL))/AKF(UELEM(Z.ML)) 
FK 1 1 = -1 . O * A K ~ U E L E M ( Z N E L ) ) * A M U S T ( N E L ) / v t s F ( ~ L ) ) *  

- PR/PRT(NEL) - AKF(UELEM(2,NEL)) 
ENDE 

ELSE 
iF(FPROP.EQ-'FKED')THEN 

X = A K  
E U  EIF (FPROP.EQ.'FD(TB')THEN 

XK=AKF(TAVE) 
ELSE 

XK=AKF(UELEM(ZNEL)) 
ENDIF 

ENDiF 
IF(DS 1 P.NE.O.)QFLXLlP = -l.*DABS(XK)*(U(ZI+l)-U(21))tDS 1 P 
IF(DS 1 M.NE.O.)QFLXL 1 M=- 1 .*DABS(PROP(Z. 1.3))YU(ZI+ 1 )-U(2J) 

DSlM 
QFLXLl=QFLXLIP 

DSZP = X( 1 J49+ 1 )-X(I ,149) 
DSZM = X(l J-49)-X(1,I-49-1) 
CF(DSZP.NE.O.)QFLXL2P = - 1 .*DABS(XK)*(U(2149+ 1 )-U(2.149)) 

DSZP 
IF(DS2M.NE.O.)QFLXL2M = -1 .*DABS(PROP(21.3))*(W(2I-t9) 

-U(2,139-1 ) ) D S  2M 
QFLXLZ-QFW(L2P 

SAREA = X(2.L)-X(2J-49) 
QFLXL = (QFLXLl+QFLXL2)/2. 

TWL = (U(ZI)+U(2149))n. 
TWTOTAL = TWTOTAL + TWL*SAREA 
HTCL = QFLXt/(TWL-TAVE) 
HTflOTAL = HTCTOTAL + HTCL'SAREA 

QLOCAL = QFW(L8SAREA 
QTOTAL = QTOTAL, + QLOCAL 

SAREAT = SAREAT + SAREA 
H ~ ( 3 , 2 0 )  SAREAT,QFLXL.TWL,HTCL,-XK 

43 CONïiNUE 
QTOTAL3 = QTOTAL - QTOTAL 1 - QTOTAL2 

SAREAT3 = SAREAT - SAREATI - SAREATZ 
C 

QFLUX = QTOTAUSAREAT 
TW = TWTOTALBAREAT 

C HIC = HTrnTAL/SAREAT 
HTC = QFLUX/(TW-TAVE) 



IF(FPROP.EQ.'FZXED')THEN 
ANUSELTO = HTC*DHNEW/AK 
Q 1 =  AFLOWmTAN/360JSAREAT+DEN*CP*WAVE*DTDZ 

ANU-OTHER = QI/("W-TAVE)*DHNEW/AK 
ELSEIF (FPROP.EQ.*FIXIn')THEN 
ANUSELT(IM) = HTC*DHNEW/AKF(TAVE) 
Q I  = AROW~AN/36O./sAREAT+DE~AvE)*CPFflAVE)*WAVE*DTDZ 

ANU-OTHER = Ql/w-TAVE)*DHNEW/AKF(TAVE) 
ELSE 
ANUSELTO = HTC*DHNEW/AKFflAVE) 
Q1= AFLOWmAN/360./SAREAPDENFflAvE)*CPF(TAVE)* WAVE'DTDZ 

ANU-OTHER = Q I  /(TW-TAVE)*DHNEW/AKF(TAVE) 
ENDiF 
ELSE 
ENDJF 

C 
C.. TOTAL HEAT GENERATED (W) 
C.. PROP(EQN#. INDEX # FOR FFF, MATERIAL#), AMATA(EQN#. MATCI) 
C 

HEATl=DABS(PROP(2,7. I))* AMATA(2.l)*DZ*360flHETAN 
C 
C.. HEAT TO FLUD 
C 

IF(FPROP.EQ.'FiXED')THEN 
HEAT~=DEN*CP*WAVE*DTDZ*AMATA(Z~)*DZ+~~OJTHETAN 

ELSEIF (FPROP.EQ.'FiXTû')THEN 
H EAT~=DENF(TAVE)*CPF(TAVE)* WAVE8DTDZ*AMATA(2,2)* DZ8360JI'HETAN 

ELSE 
H EATZ=D ENF(TAVE)*CPF(TAVE)* WAVE*DTDZ*AMATA(2.2)* DZ8360JI"HETAN 

ENDF 
C 
C.. HEAT LEAVING THE SURFACE 
C 

HEAT3=QTOTAL*DZ*360JTHETAN 
C 

WRiTE(NLG.98) iM,WBAR(I .IM).CF.CF-1 CFFOTHER*CFFDIF,RE.CFRE, 

IF (NGEOMTYPEEQ. I .OR.NGEOMTYPE.EQ.ZI .OR.NGEOMTYPE.EQ.22) THEN 
OPEN (3S,RLE=~E(l:~E)/~.da3',STATUS='UNKNO~ 

IF(NPDE.EQ.l)TAvE=TIN 
F(FPROP*EQ.'FIXED9mEN 

PRAVEWS8CP/AK 
RMDOT=DENa WAVE*AMATA(I ,2)*3604ïHETAN 

WRITE(mG,*)'AVG.DEN~VIS,CP~,P~T,W,RE~ FLOW.-DPDZ' 
WRITE(NLG,Zo)DEN,WS,CPAK.PRAVE,TAVE,WAVBRE.RMDOT,-DPDZ 
~(35,*)'AVG.DENvVIS,CP~*PRT*W,RE,M FLOW.-DPDZ' 
WRITE(35,26)DEN.WS,CP~K.PRAVE.TAVEWAVE,RERMDOT,-DPDZ 
ELSEIF (FPROP.EQ.'FIXTB')TH EN 

PRAVE=VISFflAvE)*CPF(TAVE)/AKFflAvE) 
RMDOT=DENF(TAVE)* WAVE*AMATA(1.2)~.~ETAN 

WRITE(mG,*)'AVG.DEN,VIS,CP~,PRT,W,REM FLOW,-DPDZ' 
WR~(mC,26)DENFflAVE),VISF~AvE),CPFflA~~F(TA~. 
PRAVkTAVEWAVE,RE,RMDOT,-DPDZ 



WRITE(35,*)*AVG.DEN.vIS,CP~,PR,TtWt~M FLOW,-DPDZ' 
WRITE(35,26)DEWCrAvE),VISFCTA~,CPF(TAVE)N.F(TAVE). 
PRAVE,TAVE.WAVE.RE,RMDOT,-DPDZ 

ELSE 
PRAVE=WSflAVE)*CPF(TAvE)/AKFCrAvE) 
RMDOT=DENFflAVE)*WAVE*AMATA(1,2)9dOmETAN 

~NU;,')'AVG.DEN,VIS.CPS*PRTvW,REM FLOW.-DPDZ 
~(NLG,26)DENFflAvE),VISFflAVE).CPF(F(TAVE), 

PRACTAVG WAVE,RE,RMDOT*-DPDZ 
WRITE(35,*}lAVG.DW,WS,CP~,PR,T, W,RE,M FLO W,-DPDZ' 
~(35,26)DEWCrAvE),VISFCTAV~,CPF(TAVE)M~AW, 

PRAV&TAEWAVE,RE,RMDOT,-DPDZ 
ENDF 
WRITE(3.*)'Qs. Qfs ,Qfb Qt' 
WRITE(3,*)QTOTALlt QTOTALî, QTOTAL3, QTOTAL 
WEUTE(3,*)'As, Afs, Aff Ar 
WRITE(3,*)SAREATI. SAREAT2. SAREA'i3, SAREAT 
WRITE(3,*YQsrQt, AdAt. QfstQt, AfdAt. QftlQI, AfVAt' 
WRITE(3,*)QTOTAL I/QTûTAt.SAREATl /SAREAT,QTOTALuQTOTAL, 
SAREA~AREAT.QTOTAL.3~ALSAREA~ISAREAT 

ENDlF 
ENDIF 

3 1 CONTINUE 
C 
26 FORMAT ( lx .  1 1 (2X.El25)) 
98 FORMAT(IX.'MAT # = *,IZlX.'WBAR = ',E 13.6.IX.CF = '.El 3.6. lx. 

. 'CFJ = ',E13.6.1X,'CF-OWER = ',€13.6,lX. 'CF-DE (%) = *, 

. E13.6,1X,'RE ='.EI3.6,1X.'CFRE ='.EI3.6.1X, 

. 'CFRES = ',E 13.6) 
99 FORMAT(IX*'MAT # = 'J2.IX.'H = :E13.6v1XTW = '*E 13.6. 1X. 

. 'TB ='.E13.6,IX'QFLUX =*.E10.3,IX.'Ql =',E103,lX. 
- 'Q-2 = ',E10.3.1X.'NU = ',E13.6,1X.'NU-OTHER = ',E13.6.1X 
. 'NU-DIF (%) = @,E13.6) 

1 0  FORMAT(IX,'PR = @.IX,E13.6,lX.'RVRO = ',E13.6.1X. 
- 'DPDZ = '.E10.3.1X.'I-RM ='.I4IX.@RM,CAL = '.IX.E13.6. 
. IX.'RM,KAY =',E13.6. lX.'UMAX = *.E13.6.1X.'Ki =',E13.6) 

10 1 FORMAT( ' TOTAL INTEMAL HEAT GENERATION 0 = ',E 13.6. 
. /.' TOTAL HEAT TWNSFERRED TO FtUID (W) = ',E 13.6, 
. 1.' TOTAL HEAT LEAVlNG THE SURFACE (W) = '.E 13.6) 

259 FORMAT(2X.'POSITION '.2X,'QFLXL ',XTWL *, 

. tX.'HTCL '.S.' '.a' I . 
- 2X,' 3 

C 
RETURN 
END 

~ * * * * * r m + * * * * * * * * * * * * * * * * * * * * t * * * * * * * * * * * * * * * * * * * * m * * m * m * * * * m  

C SLTBROUTINE INTERP 
C 
~ * * * t t * * + + * * ~ * * * * * ~ . ~ + * * * * * * * * t * s * * a * t * * * m * * * * * * * ~ * * * * * * * * * * * * * * * * * ~ * * * * * *  

SUBROUTINE INTERP(AXX1AYY 1.iNPTl.AXINl AYOUTl) 
IMPLICIT REAL18(A-H,O-2) 
DIMENSION AXXI(I)~YYI(I)~I(4)A~l(4) 
A X F I = r n I  
INS I =INPTl 
ILI=INS 1 
ncsl=ms1 
IKONSTl =O 
iF(iNSI.LE.3) GO TO 210 



DO 50 I I l = l ~ S 1  
IIIl=IIl 
IF(AXF1-AXXl(l1)) 1 0 0 . 1 0 0 ~  

50 CONTINUE 
100 iF(IIIl.GE3.AND.IIIl.LT.INS 1) GO TO 3ûO 

F a 1  .EQ.INS 1) MONSTl=INS 1-3 
IKS 1 =3 
L l = 3  

210 DO 250 IKl=lS(SI 
IKK 1 =IK l+IKONSTI 
A X I l ( L l c l ~ l ( n u c l )  
AYIl(Xl)=AYYl ml) 

250 CONTRWE 
GO TO 400 

300 L1=4 
DO 350 iK1=1,4 
I K K I = K I + ~ ~ - ~  
AxII(IKI)=A)(Xl(MKl) 
AYII (IKI)=AYY I W K l )  

350 CON?INUE 
100 AFI=O.M) 

DO 500 IIl=I.ILl 
ACl=l.W 
DO 350 Ul=l,lLt 
IF(UI.EQ.iI1) W TO 350 
AC l=AC1*(AXF1-AXIl(UI))/(AXTI(Ul)-AXIl(Ul)) 

450 C O N T W E  
500 AFI=AFt+ACt*Anl(nl) 

AYOUTI=AFl 

IMPLICIT DOUBLE PRECISION (A-H,O-Z) 
COMMON~ES/NIN~NOU,~G~NFILENPLOT 

COMMON/CCON/NNODE.NELEM,NMAT,NPOINT.NOUT,NINTO 
. ,NPRNTI ,NPRNn,NPRNT3,NPRNTQ,NPTYPE,NPDE 
COMMON/I?MES/M,TF,DELTAT.NSTEP,NSTEPT 

DIMENSION NE(l),MAT( 1 ),NODES(9,1)X(2,I),U(lO,l) 
DIMENSION WAREA(lO,I).WNODES(1).WELEM(l) 
DCMENSION AMATA(lO,l),WBkR(lO,l) 
DIMENSION AMUST(l),SIGMA(l),UTER2(1).PRT( 1). W(l),VISTi'(I) 



DATA iB/S,2,6,9,9,6,3.7/ 
DATA IC19,63,7,8,9,7,4/ 
DATA ID/8,9,7,4.1 3.9.81 
DATA If/5,2.6,9,8,9,7.4/ 
DATA IQ/1$,9.8,9,6,3,7/ 

DO 1 O M = l  ,NMAT 
DO 11 IEQ=l.NPDE 
AMATA(IEQ,IM) = 0.0 
WAREA(IEQ.IM) = 0.0 

I l  CONTINUE 
10 c o m  

IF (NPRNT3 .NE. O) THEN 
IF ( N O W  .EQ. 1 .AND. (NSTEP .EQ. NSTEPT .OR. rmP.EQ.O))THEN 
WRXTE(NOU36) WQJEQ= 1 .NPDE) 

36 FORMAT(//,' ELEMEW,Uç'ELEMENT AREA:lO('LX.'U ELEMENTC, 
I213) 

ENDEF 
ENDiF 

DO 20 IE=LNELEM 
Do 21 IEQ=l,NPDE 
MATNO = MAT(IE) 
WNODES(iEQ) = 0.0 
DO 30 IN=l,NE(E) 
P X 0  = X(l,NODES(IN,IE)) 
P Y ( N  = X(%NODES(IN,IE)) 
WNODES(EQ) = WNODESCIEQ) + U(IEQ.NODES(IN,IE)) 

30 CONTINUE 

iF( NE(IE) .EQ. 4 ) THEN 
A = LLNELEN( PX(l).PY(l ),PX(2),PY(2) ) 
B = LINELEN( PX(2),PY(2),PX(3),PY(3) ) 
C = LWELEN( PX(3),PY(3),PX(4),PY(4) ) 
D = LINELEN( PX(4),PY(4).PXil ),PY(I) ) 
P = LiNELEN( PX(2),PY(2),PX(4),PY(4) ) 
Q = LWLEN(  PX(l),PY(I),PX(3),PY(3) ) 
ELAREA = QUADAREA(A,B.C.D.P,Q) 
WAREA(LEQ,MATNO) = WAREA(IEQ,MATNO) + ELAREA*WELEM(IEQ) 
AMATA(IEQ,MATNO) = AMATA(IEQ,MATNO) + ELAREA 

ELSE ! -  8 OR 9 NODED ELEMENTS 
CALL PSOLVE(PX,PY. 1,3,%4,9) 
DO 50 J=1,4 
A = LINELEN( PX(IA(I)).PY(IA(I)),PX(IA(J+4)),PY(IA(I ) 
B = LINELEN( PX(IB(I)),PY(IB(I)),PXm(J4)),PY(IB(J+;I)) 1 
C = LINELEN( PX(IC(I)),PY(IC(I))*PX(IC(J+4)),PY(IC(I+)) ) 
D = LINELEN( PX(ID(I)),PY(ID(I)),PXm(J+J)),PY(ID(J4)) 
P = LINELEN( PX(IP(I)),PY(IP(f)),PX(IP(J+4)),PY(rp(J+4)) 1 
Q = LINELEN( PX(IQ(I)),PY(TQ(I)),PX(IQ(J4)),PYflQ(J+J)) 
ELAREA = QUADAREA(A,B,C,D,P,Q) 
WAREA(IEQ,MATNO) = WAREA(IEQ.MATN0) + ELAREA8WELEM(IEQ) 
AMATA(IEQ,MATNO) = AMATA(IEQ,MATNO) + ELAREA 

50 CONTMUE 
END IF 

21 CONTINUE 



If: (NPRNT3 .NE. O) THEN 
iF (NOUT .EQ. I .AND. (NSTEP .EQ. NSTEiT .ORI iiUP .EQ. 0))THEN 
WRlTE(NOU.45) E,EL~.(WELEM(IEQ),IEQSI,WDE) 
FORMAT(ZXI4,11(4X I PE 1 1.3)) 
ENDIF 
ENDlF 
CONTINUE 

IF (NPRNT3 .NE. O) THEN 
IF (NOUT .EQ. 1 AND. (NSTEP .EQ. NSTEPT .OR. iiüP .EQ. 0))THEN 
~ ( N O U . 3 S )  
DO 33 IM=1 ,NMAT 
DO 33 iEQ=I,NPDE 
IF (AMATA(rEQ~.EQ.O.O>Co TO 33 
WRITE(NOU,40) TIMEW~TA(IEQM,Iv~P~~WQvIM)/AMATA(IEQ,M* 

EQ 
CONTINUE 
ENDD 
ENDD 

K)RMATU3X.TIMEJX,'MATERIAL'~4X,'AREA',3~4X'AVG LT. 
JX'EQN NO3 
K)RMAT(2X.F8.4.6X.U,3X. lPEll.3,l X.1 PEI 13,4Xi3) 

WRtTE(NOU,l10) (UMUST(I),I=l,NELEM) 
FORMAT(/. 1 X,3('ELEM',8X,'VISC'. 15X)/,3(USX. 1 PEI 1.4, IOX)) 

WRITE(N0U.I t 3) (I.PRT(D,I=I ,NELEM) 
FORMATU,lX3CELEM',8)C'PRT ',lSX)/.3(IS JX, IPE11.4.10X)) 

WRITE(NOU,lll) (I.SIGMA(I),I=l.NELEM) 
FûRMATU, I X,3CELEMe,8X,'STRESS, 14X)/,3(U,SX, 1 PEI I .J. IOX)) 

wRITE(NOU,l t 2) (T,UTERZ(f),I=I,NNODE) 
FORMATU, 1 X3('NODE$X.'UOLD'. 1 SX)/.3(ISSX 1 PE 1 1 .a. 10X1) 

WRiTE(N0U. 1 14) (I.rY(I).I=I ,NELEM) 
FûRMATU,1X,3CNODE$X,'Y1. lSX)/.3(I5SX. IPE11.4. IOX)) 

RETURN 
END 

L 

REAL.8 FUNCTION LüUELEN(X1.Y 1 XZY2) 
REALo8 XI,Y 1,XLYZ 
LINELEN = DSQRT( (XI -X2)*(X 1-X2) + (Y 1-Y2)*(Y I -Y21 ) 
RETURN 
END 

C**t*********************************************************************** 

REAL88 NNCTION QUADAREA(A,B,C,D,P,Q) 
REALL8 A.B,C,D,P.Q.TERM I ,TERM2,DDFABSDiFF 
TERMl = 4.0 P8P QfQ 
TERM2 = B8B + D*D - A*A - C'C 
DIFF = TERMI - (TERM2**2.0) 
ABSDFF = DABS(DIFF) 

C- Skce the ares is its magnitude d u e  not vector. so we cm 
C- use its aôsolute to prevent my square mot of a negative number. 

QUADAREA = 0.25 DSQRT(Ai3SDLFF) 
RETWRN 
END 

C 
C********************************************************** 

SUBROUTINE PSOLVE(PX.PYJ1 J2.J3J4,K) 



%EAL*8 PX(l),PY(l) 
3x1 = PX(J2)-PX(Sl) 
>Y1 = PY(J2)-PY(l1) 
3x2 = PX(J4)-PX(J3) 
3Y2 = W(J4)-PY(J3) 
W = l  
F(DY2.NEO.O) NUM = W M  + 1 
P(DX2.NEO.O) NUM = NUM + 2 
F@Y 1 .NE.O.O) NUM = NUM + 4 
F(DXt .NE.O.O) NUM = NüM + 8 

PRINT 100.NUM 
FoRMATC IN PSOLVE-NO SOLUTION. NUM='JS) 
RETURN 
PX(K) = PX(JI) 
PY(K) = PY(J3) 
RETURN 
PXO() = PX(J1) 
PY(K) = PY(J3) + (PX(K)-PX(J3))+DY2/DXZ 
REïüRN 
PX(K) = PX(J3) 
PY(K) = PY(J1) 
RETURN 
PY(K) = PY(J1) 
PX(K) = PX(J3) + (PY(K)-PY(J3))+DXUDY2 
RETURN 
PX(K) = PX(J3) 
PY(K) = PY(J1) + (PX(K)-PX(Jl))*DYl/DXI 
RETURN 
PY (K) = PY (J3) 
PX(K) = PX(J1) + (PY(K)-PY(Jl))*DXl/DYI 
RETURN 
FI = DXI/DY I 
F2 = DX2/DY2 
PY(K) = (PX(J1)-PY(Jl)*Fl -PX(J3)+PY(J3)*F2)/(FZ-F1) 
PX(K) = PX(J1 )+(PY(K)-PY(J1))W 
RETURN 
END 

C 
C FüiUmION PROPRTES 



C..... 
C.....CALCULATES STRESS FROM SHAPE FONCTIONS 
C. FOR QUADRLATEWL ELEMENTS 
C..... 
C CALLEDBY: 
C 
C CALLS : SHAPE4 
C 
C 

IMPLICIT DOUBLE PRECISION (A-H.0-Z) 

COMMON/FILES/NIN.NOU.NLG.NFiLENPLOT 
COMMON/CCON/NNODENELEM,NMAT.NPOiNT,NOUT,NINTO 
. .NPRNTl ,NPRNT2,NPRNT3,NPRNT4,NPTYPE,NPDE 
COMMON/FILENAMESANFIL~LE 
COMMON/RM-UMAX/IRM.RM,CAL,RMKAYvUMAX.CKARMANLIRMA,RM,CALA,UMAXA 
COMMONluSPLUS/YPLUSA.SPLUSA,ALLA,YASA,DFPA.DFCAALPA.ALCA, 
. TWYA.WSA 
CHARACTER*U) INFILE 

C 
INCLUDE 7'HVAR.H' 

C 
DIMENSION X(2 l6SO).U( 10. I).ARES(I) 
DIMENSION SlGMA(1) 
DIMENSION UELEM(IO.1) 
DMENSION YPLUSA(155O).SPLUSA(l 55O).ALLA(lSSO),YA( lSO).SA( 1550). 
.DFPA(1550)J)FC.4(1550)~LPA(I550)~LCA(l550),TWYA(1550),TWSA(1550) 
DIMENSION IRMA(SO),RM,CALA(5O),UMAXA(SO) 
LOGICAL STARTZ 

C 
IF (STAR'IZ) THEN 

OPEN ( 1 ,FILE=INFILE(I:JTïikE)/f .&l',STATUS='UNKNOWN3 
C STARTL = .FALSE. 

ENDIF 
C 

DO 5 NEL=l .NELEM 
WRïTE(5&99)NELCMU,FMUKE(NEL).DEN,UELEM(S,NEL). 

. UELEM(Q,NEL),WS~(NEL) 
99 FORh~T(lXI4.14(lX.E10.4)) 
5 CONTINUE 

WRITE(52.113) (I.VISTT(I)J=l ,NELEM) 
1 13 FORMAT(/,lX3('NODE,8X,'VIST,15X)/,3(I5$X, IPE11.4.10X)) 
C 

WFüTE(1 ,*)'NELY.Y+DP,S,S+,DC~~P~&L,~.TS,WS,VISE.SIG.U.T 
DO 122 I=l.NELEM 

IF(FPROPEQ.'FIXED')THEN 
VISEFF=AMUSTO+VIS 



IF(RMOPT.€Q.'RMCALL9THEN 
W T E (  1 .*)'W.RM,CAL.UMAX 
iF(NGEOMTYPEEQ.21 .OR. NGEOMTYPE.EQ.22)IENDdO 
iF(NGEOMTYPE.EQ.1 l)IEND=20 
DO 1222 k1,IEND 
WRïïI31. 121)IRMA(I).RMRMCALA(0.UMAXA0 

1222 CONTINUE 
ENDIF 

C 
ZERO = 0.0 
ZONE = 1.0 

C******* 
C..TUBE8 
Ce****** 

IF (NGEOMTYPE.EQ.0) THEN 
WRITE(I .25)iTER,DPDZREN 
W E ( 1  .*)'U,RELEM,RRO.UEL,UOUCL.TAU.TAUN.YPLUS.UPLUS,ULOG' 
DO 19 II= 1 ,NELEM 

UEL = (U( 1 .IJ)+U(l .U+ 1 ))/2- 
RELEM = (X(1 .U)+X(l J+ I ))a 
RNODE = RELEM/X(l.NELEM+I) 
UOUCL = UEW(1,l) 
USTAR = (SIGMA(NELEM)/DEN)**05 
UPLUS = üEL/USTAR 
YPLUS = (RO-RELEM)*DEN8USTAR/vlS 
TAUN = SIGMA(IJ)/sIGMA(NELEM) 

L... KAY'S, PG 171 
iF(YPLUS.GT. 10.8)THEN 
ULOG = 2.44*DLOG(YPLUS) + 5.0 
ELSE 
ULOG = YPLUS 
ENDIF 
WRITE( 1,27)U,RELEM,RNODE,UEL,UOUC L.SIGMA(U),TAUN.YPLUS.UPLUS, 

ULOG 
27 FORMAT (lXJ4,17(2X.E93)) 
19 CONTINUE 

WRITE(l,*)'DPDZ*DH/3 = ',DPDZ*DH/4. 
WRïE(I,*)'DPDZ8AFLOW = ',DPDZ*AFLOW 
WRITE( 1 .*)TAWAVG*PWET = ',SIGMA(NELEM)*PWET 
ENDIF 

CL********** 



C.- ANNULUS* 
C*I********* 

iF (NGEOMTYPE.EQ.1) THEN 
C... INNER WALL OF ANNULUS 

APoSl= DSQRT((X(l.72)-X(l.2))**2.+(X(2,72)-X(2.2))~2) 
C... OUTER WALL OF ANNULUS 

APOS2 = DSQRT((X(!, 14 l)-X(l,71))**2+(X(Z Ml)-X(Z71!)**2) 
S'iRAVE = (SIGMA(2)*APOS l+SIGMA(70)*AWS2)/((APOS l+AFOS2) 

c 
RMR-KAY = RMKAYW 
RMR-CAL = RM-CAWRI 
-LAM = DSQRT(((RO/RI)*q.-1 .)/UDLOG(RO/RI)) 
WRITE(NLG,*)'RM/RIRM/RIKAY.RM/RIRM/RICALM-LAPvr 
WRITE(NLG, *)RMR-KAY.RMR-C&RMR-LAM 

C 
TAUR = RO/RI*(RM-CAL8*2.-RI**2.)/(RO8*2.-RMRMCAL**2.) 

C 
WRiTE(NLG.*)'DS M E R ,  DS OUTER' 
WRITE(NLG.*)APOS 1 &'OS2 

WR~(NLG.*)TAU_I. TAU-o. TAU-AVG. TAU- AU-O-CAL. ,THEORY' 
WIUTE(~G.*)SIGMA(~).SIGMA(~O),STRA~SIGMA(~)/SIGMAC~~).TAUR 
WRiTE(NLG,*)'DPDZ*DH/4 = ',DPDZ9DH/4. 
WRITE(NLG.*)'DPDZ*AFtOW = 'DPDZ*AFDW 
WRïïE(NLG.*)TAWAVG*PWET = @.STRAVE*PWET 

C... KAYS, PG 241 -212 
~(NtG.*)'IJ.RR,~ST/vIS,TAU.TAUN.Y+.U+,U~GX.~O,YO 
WRITE~G,*)'(Ro-R)/(o-I).U/vM~(R-RI)/(O-~.T,~-~/OI-~Y 
DO 18 U=2.NELEM 

UEL = (U(l,U)+U(l.U+1))/2. 
TEL = (U(ZU)+U(Z.U+I ))/2. 
RELEM = (X(I .U)+X(l .U+ I))/Z 
RNODE = RELEM/X( l,NELEM+ 1 ) 
UOUCL = U E W M A X  

RR1= (RO-RELEM)/(RO-RI) 
RR2 = (RELEM-CU)/(RO-RI) 
TRR = (U(2.2)-TEL)/(U(22)-U(L70)) 

IF (RELEM .LE. RM,CAL)THEN 
USTAR = (SIGMA(2)/DEN)**OS 
YPLUS = (RELEM-fU)*DEN8USTAR/MS 
TAUN = SIGMAO/SIGMA(L) 

XIN = (RM-CAL-RELEM)/(RM-CAL-RL) 
YIN = (UMAX-UEL)/USTAR 
XOUT = 0.0 
YOUT = 0.0 

ELSE 
USTAR = (SIGMA(NELEM)/DEN)**O.S 
YPLUS = (RO-RELEM)*DEN*USTAWVIS 
TAUN = SIGMA(U)/SIGMA(70) 

x r n a . 0  
YINd.0 
XOUT = (RELEM-RM,CAL)/(RO-RUAL) 
Yom = (UMAX-uEL)/USTAR 

ENDiF 
UPLUS = UEWSTAR 
IF (RELEM .LE. RM,CAL)THEN 

C... BARROW ET AL. (1965) FOR ROIRI < 10 
iF(YPLUS.GT. 1OS)THEN 
ULOG = 2.7*(RI/RO)**0.353*DLOG(YPLUS) + 3.6*(RI/RO)**-0.439 



ELSE 
ULOG = YPLUS 

ENDlF 
ELSE 

C... KAYS, PG 171 
iF(YPLUS.GT. 10.8)THEN 
ULOG = 2.@*DLOG(YPLUS) + 5.0 

ELSE 
UUXi = YPLUS 

ENDIF 
ENDIF 
WRITE(NLG,27)U,RRZAMUST(u)MS,SiGMA~,TAUNm 

. YPLUS,UPLUS,ULOG~~YINXOUT,YOUT,RRl ,UOUCL, 

. RRZWELEM(~,TRR 
18 CONTINUE 

ENDF 
CI************************ 
C. .EDWWS FINNED TUBE bl* 
c************************* 

lF (NGEOMTYPE.EQ.3) THEN 
WRITE(l,25)ITER,DPDZREN 

25 FORMAT US~fTER,6X,'DPDZ',7X~REYNOLDSJ. 
- JX,i5,2(2XmE126),/) 

WUIE(1,251) 
WRITE( 1,255) 
WRiTE(1,26) ZEROZONUONEZONEZONEZONEZONE 
DO 20 U4.38 
U2=0 
DO 10 iNODE=47O+U,704+IJ,78 
U2=U2+ 1 
ARES(U2) = U(l.INODE)/U(I,l) 

1 O C O N T W E  
APOS = X(1 .U+L)IRO 
BRES t = U(l.U+L)IU( 1.1) 
BRES2 = U(lJf+80)/U(l,l) 

C X 9.0 135 18.0 225 DEG - 
W E (  1.26) APOS,BRES 1 ,BRESZaES(I)hRES(2)ARES(3)aES(J) 

26 FORMAT (1 X,7(2X,El1.5)) 
25 1 FORMAT (2X.'POSITION AND U/lJ(l.1) ALONG CONSTANT ANGLE3 
255 FORMAT(2X.' X8.2X.' 0.0 DEG.2X.' 45 DEG', 

. 2X,' 9.ODEG',2X.' 135DEG',ZX,' lS.ODEG', 

. 2X' 2 2 3  DEG3 
20 CONTlNUE 

ENDlF 
C811888888*8*8*+88**8.++ 

C..EDWARDS FINNED TUBE #2* 
c************************* 

IF (NGEOMTYPE.EQ.4) THEN 
WRITE(l,25)iTER,DPDZREN 
WRITE(1,26) ZEROZONEZONEZONEZONEZONEZONE 
DO 2 1 U=0,23 
U2 = O  
DO 1 1 INODE=74+U,218+U,48 
172=IJ2+ 1 
ARES(U2) = U(1 ,INODE)/U(I ,1) 

11  CONTINUE 
APOS = X( 1 JY+2)/X(1,25) 
BRESl = U(1 ,U+2)/U(I ,1) 



BRES2 = U(1 ,iJ+50)/0( 1.1) 
C X 9.0 135 18.0 223 DEG - 

m l  .%) APûSBRES I , B R E S ~ ( I ) ~ ( ~ ) ~ S O ) ~ ( 4 )  
2 1 CONTINUE 

ENDIF 
C**************.********** 

C..EDWARDS FINNED TUBE #3* 
C************************* 

IF (NGEOMTYPE.EQ5) THEN 
WRiï'E(1.25)ITERDPDZREN 
WRi'ïE(t.26) ZEROZOWONEZONE2ONEZONEZONE 
DO 22 m.23 
u2=0 
Do 12 INODE=74+U, 1 7O+I1,48 
U 2 = U 2 + 1  
ARES(U2) = U(1 ,INODE)/U(l, 1) 

12 CONTINUE 
APOS = X(1 JJ+2)/X(1,25) 
BRES 1 = U(1 .U+2)/U(1,1) 
BRES2 = U(I1U+5O)/U(I ,l) 

C X 0.0 286 3.75 7 5  11.25 DEG - 
WRïE(l.26) APOS$RES 1, BRES2ARES(l ),ARES(2),ARES(3) 

22 CONTINUE 
ENDIF 

C 
C..EDWARDS TUBE 11 TAU WALL ALONG THE PERIPHERY 
C 

IF (NGEOMTYPE.EQ3) THEN 
APOST = 0.0 
STRAVE = 0.0 
DO 3 1 Ik702.117,-39 
APOS I = DATAN((X(1 ,U+I )-X(I ,U+4O))/(X(ZU+l)-X(ZU+40))) 
APoS = (X(1 ,U+ 1)-X(1 ,U+30))/DSIN(-1 - O * A ~ S  1) 
APOST = APOS + APOST 
STRAVE = SIGMA(U)*APOS + STRAVE 
IF (U .EQ. 117) STRAVE = SIGMA(U)*APOS + STRAVE 

3 1 CONTINUE 
DO 32 U=lI6,99.-1 
APos = X(l,U+I)-X(I,U) 
APOST = APOS + MOST 
STRAVE = SIGMA(U)*APOS + STRAVE 

32 CONTINUE 
DO 33 U=59,20.-39 
APOS = X(2JJ+40)-X(2,U+ 1) 
APOST = APOS + APOST 
STRAVE = SIGMA(U)*APOS + STRAVE 

33 CONTINUE 
STRAVE = STRAVUAPOST 

iF (START2) THEN 
OPEN (1 ,FltE=INFILE(I :JTFTLE)/f .&l ',STATUS='UMCNOWN') 

STAR72 = .FAIS€. 
ENDIF 
WRXTE(l125)1TER,DPDZREN 
APOS = 0.0 
APOSl = 0.0 
APOS2 = 0.0 
DO 34 U=702,117,-39 



ARSS = SIGMA(n)/STRAVE 
ANGl = DATAN((X(1 .U+ 1)-X(l JJ+40))/(X(2JJ+ 1 )-X(2,IJM))) 
APOS 1 = APOS 
APOS3 = m s 2  
APOS2 = ((X(l,U+l)-X( 1 DM))/DSm(-I.08ANG1))/L0 
APOS = APOS 1 + APOS2 + APOS3 
IF(iJ.EQ.702)WRITE(I.261) 
F(U.EQ-702)WRiTE(l.*)'AVGG SHEAR STRESS = ',STRAVE 
iF(U.EQ.702)WRïE(1.*)'DPDZ8DH/4 = 'BPDZ*DH/Q. 
IF(iJ.EQ.702)WRKE( 1 ,*)'DPDZ*AFLOW = ',DPDZ8AFLOW 
iF(IJ.EQ.IOZ)WRITE( I.*)TAWAVG*PWET = *,STRAVE*PWET 
-1 26) APOS,ARSS,SIGMA~ 

26 1 FORMAT(W.'DIST FROM THE MID BRi FPIS,'. 2X 
. 'LOCAL TAU WALUAV. TAU WALL,',îX.'LOCAL TAU WALL') 

34 CONTINUE 
DO 35 II=117,99,-1 
ARSS = SIGMAO/STRAVE 
m s 1  = m s  
APOS3 = m s 2  
APOS2 = (X( 1,U+ 1)-X(1 JT))L!.O 
APOS = APOSI + APOS2 + APOS3 
WRiE(1.26) APOS,ARSS,SIGMA(U) 

35 CONTINUE 
DO 36 Ik98.20,-39 
ARSS = SIGMAOISTRAVE 
APOSl= APOS 
m s 3  = m s 2  

I APOS2 = (X(ZU+QO)-X(2U+ 1))/20 
APOS = APOS 1 + APOS2 + APOS3 
IF (U ,LT. 98) WFüïE(1.26) APOS,ARSS,SIGMA(U) 

36 CONTWUE 
ENDIF 

C***************************** 
C...PATANKAR'S FDINED ANNULUS* 
C*I*88S*S*t8****8888*88*****88 

IF (NGEOMTYPEEQ. 1 1 ) THEN 
APOST = 0.0 
STRAVE = 0.0 

UO=O 
C 

ELNC=50 
NODINC=5 1 

C 
C... SHEATH 

DO 51 IJ=1021,52,-NODINC 
APOS = DSQRT((X(1,lJ')-X(1.U-NODINC))**2. + 

. (X(;)rJ,-X(2JJ-NODINC))* *2.) 
MOST = APOS + APOST 

NELU=951 -lf08ELWC 
UO=Uo+ 1 

STRAVE = SIGMA(NELU)*APOS + STRAVE 
5 1 CONTINUE 

APOSTl=APOST 
STRAVEI=STRAVE 
STRSH=STRAVEl/APOSTI 

C... FIN SIDE 
UOd 

DO 52 U=1,20 



APoS = DSQRT((X(lJI+l)-X(1~)**2-(X(2JJ+I)-X(Z~)**2.) 
APOST=APOS+APOST 

NELU=[ +Lm 
UO=UO+ I 

STRAVE = SIGMA(NELU)*APOS + STRAVE 
52 COi+iTüWE 

APOST2=APOST-APOSTl 
STRAVE2=STRAVE-STRAVEl 
STRFS=STRAVEYAPOST2 

C... INNER SURFACE AVG STRESS 
STRAVEIN = STRAWAPOST 

C... TUBE 
UO=O 

DO 53 LJ=IO7l,IO&-NODtNC 
APOS = DSQRT((X( 1,D-X(1.U-NODMC))**2. + 
(X(2,U)-X(2JJ-NODINC)) * 82.) 

APOST = m s  + APOST 
NELU=1000-ELINC*UO 
UO=Uo+ I 

STRAVE = SIGMA(NELII)*APOS + STRAVE 
53 CONTINUE 

APOST4=APOST-APOST1 -APOST;! 
STRAVEkSTRAVE-STRAVEI -STRAVE2 
STRTB=STRAVE4/APOST4 

c.- 
STRAVE = STRAVUAPOST 

C.. 
WRITE(l,*YLENGTH OF SHEATH, FCN SIDE. FEN TIP, TLIBE' 
WRITE(1 ,*)APOSTl A P O S T 2 . A P û S I 3 ~ S T 4  

WRITE(1 .*)'STRESS ON SH, F S l D E  F TIP, JN AVG.. TUBE ALL AVG' 
WRITE(1 ,*)STRSH,STRFS,STRFT,STRAVEIN,STRTB,STRAvE 
WRITE(l,*)'DPDZ*DH/4 = ',DPDZ*DH/4. 
WRlTE(1 ,*)'DPDZ* AFLOW = ',DPDZ* AFLO W 
WRITE(I.*)TAWAVG*PWET = ',STRAVE*PWET 
WRITE(l,26 1) 
APOS = 0.0 
APOS 1 = 0.0 

C... SHEATH 
WRITE(l,*)'OVER THE SHEATH' 
UO=O 

DO 54 Ik1021.52,-NODINC 
NELU=95 1 -ELINC8U0 
UO=UO+ I 

ARSS = S1GMACNELU)ISTRSH 
A P o S  1 = DSQRT((X(1 ,W-X( 1.U-NODINC))**2++(X(2,IJ) 

. -X(ZIJ-NODINC))**2.) 
mS=AFoS+APOsl  
WRITE(I.26) APOS,ARSS,SIGMA(NELiJ) 

54 CONTINUE 
C... FIN SiDE 

APOS4.O 
APOS 1 d . O  
U0-O 
WRITE(l,*)'OVER THE FIN SLDE' 

DO 57 U=1.20 
NELU= I+UO 
UO=UO+ I 

ARSS = SIGMA(NELU)/STRFS 



APOS 1 = DSQRT((X(1 JJ+l)-X(1 JI))**22-(X(2U+ l)-X(2J))**2-) 
APOS=APOS+APOSl 
WRI'iE(1.26) APOS,ARSS,SIGMA(NEWT) 

57 CONTINUE 
C... TUBE 

APOS = 0.0 
m s 2  = 0.0 
m=O 
WRITE(1 ,*)'OVER THE TUSE SURFACE' 

DO 58 U=lO7 1.102,-NODINC 
NELU=loOo-ELINc.DO 
uo=LTOt1 

ARSS = SIGMA(NELU)/STRTB 
APOSZ = DSQRT((X(l3T)-X(lJJ-NODINC))**2. + 
(X(2JI)-X(2,U-NODINC))**2) 

APOS = APOS + APOSZ 
WRiTE( 1.26) APOSARSS.SIGMA(NELIf) 

58 CONTENUE 
ENDF 

C***********l******************* 
C...PATANKAR'S UNFINNED ANNULUS* 
C******************************* 

IF (NGEOMTYPEEQ.12) THEN 
APOST = 0.0 
STRAVE = 0.0 

UO=O 
C 

ELiNC=5û 
NO DINC=5 1 

C 
C... SHEATH 

DO 55 1 U=1021,52.-NODINC 
APOS = DSQRT((X( 1 ,LI)-X(1.U-NOD[NC))**2. + 
(X(2,U)-X(2.rJ-NODINC))**2+) 

APOST = APOS + APOST 
NELU=95 t -UO*ELINC 
UO=UO+ 1 

STRAVE = SIGMA(NELU)*APOS + STRAVE 
551 CONTINUE 

APOSTI=APOST 
STRAVEl=STRAVE 
STRS HSTRAVEl/APOSTl 

C... INNER SURFACE AVG STRESS 
STRAVEiN = STRAVE/APOST 

C... TUBE 
uo=O 

DO 553 U=1071,102.-NODINC 
APOS = DSQRT(@(1,U)-X(I,U-NODINC))**22 + 
(X(Zrr)-X(2.D-NOD rrJC))**2) 

APOST=APOS+APOST 
NELE= 1000-ELINC*UO 
UO=UO+I 

STRAVE = SIGMA(NELU)*APOS + STRAVE 
553 CONTINUE 

APOST44POST-APOSTI 
STRAVWTRAVE-STRAVEl 
STRTB=STRAVE4/APOST4 

C.. 



STRAVE = STl?AvE/APOST 
C.. 

WRïE(I,*)'LENGTH OF SHEATH, FJN SIDE. FIN TIP, TUBE 
WRlTE(1.*)APOSTl ~ST2,APOS'l3~ST4 

WRïE(l,*)'STRESS ON SH, F SIDE, F TIP, IN AVG, TLIBE, ALL AVG' 
WRITE(1 ,*)STRSH,STRFS,STRFT,STRAVEIN,STRTB,STRAVE 
WRITE(1 ,*)'DPDZ*DH/r, = '.DPDZ8DH/4. 
WRiTE(I,*)'DPDZ*AFLûW = ',DPDZ8AFLûW 
WRITE(1 ,*)TAWAVG*PWET = ',STRAVE*PWET 
WUTE(l,26 1) 
m s  = 0.0 
APOS i = 0.0 

C., SHEATH 
WRïïE(I,*)DVER THE SHEATH' 
UO=O 

DO 554 U=1021J2.-NODINC 
NELU=95 1 -ELINC*UO 
UO=UO+ 1 

ARSS = SIGMA(NEUT)/STRSH 
APOS 1 = DSQRT((X(1J)-X(1.U-NODINC))**Z+(X(2,U) 

. -X(2JJ-NODINC))**2.) 
APOS=APOS+mSI 
WlUTE( 1.26) APOSARSS,SIGMA(NELCl) 

554 CONTLNUE 
C... TUBE 

APOS = 0.0 
m s 2  = 0.0 
UO=O 
WRITE(1 .*)'OVER THE TUBE SURFACE 

DO 558 U=1071,102,-NODINC 
NELU=1000-ELINC*UO 
UO=UO+ 1 

ARSS = SIGMA(NELW1STRTB 
APOS2 = DSQRT((X(1 ,U)-X(l ,U-NODINC))*% + 
(X(2U)-X(Z,U-NODINC))**2.) 
APOS = APOS + m s 2  
WRITE(1.26) APOS,ARSS,SIGMA(NELII) 

558 CONTINUE 
ENDIF 

C**************** 

IF (NGEOMTYPE-EQ.2î) THEN 
APOST = 0.0 
STRAVE = 0.0 

uo=O 
C 

ELiNC=48 
NODINC49 

C 
C... SHEATH 

DO 56 1 k1474.53,-NODINC 
APOS = DSQRT((X(1.U)-X(1.U-NODINC))**2. + 
(X(ZU)-X(2,U-NODINC)))*.2.) 
APOST = APOS + APOST 

NELU=13%-UO*ELINC 
UO=Uo+ 1 

STRAVE = SIGMA(NELII)*APOS + STRAVE 



561 CONTINUE 
APOSTI =APOST 
sTRAVE1-STRAVE 
STRS H W V E I  /MOST1 

C.., WNER SURFACE AVG STRESS 
STRAVEIN = STRAVWAPOST 

C... TUBE 
UO=O 

DO 563 U=l5 19.98,-NODINC 
A P o S  = DSQRT((X(1.XJ)-X(lJ-NODXNC))**2. + 
(WU'JI-X(2S-NOD~C))*(2.) 

APoST=APOS+APOST 
NELU=1440-ELINC*IJO 
UO=UO+ 1 

STRAVE = SfGMA(NELU)*APOS + STRAVE 
563 CONTINUE 

APOST4=AYOST-APOSTl 
STRAVE4=STRAVE-STRAVE l 
STRTB=STRAVE4/APOSTJ 

C.. 
STRAVE = STRAWAPOST 

C.. 
WRITE(1 .*)'LENGTH OF SHEATH, FIN SiDE FIN TiP, TUBE 
WRITE(1 .*)APOSTI,APOS'IZAPOS'I3,APOST4 

WRïE(l.*)'STRESS ON SH, F SIDE, F TfP. IN AVG.. TUBE, ALL AVG' 
WRITE(1 ,*)STRSH.STRE:S,STRFT,STRAVEIN,STRTB,STRAVE 
WRiTE(1 ,*)'DPDZaDH/4 = '.DPDZaDH/4. 
WRïïE(I ,*)'DPDZ8AFLOW = ',DPDZ*AFLO W 
WRITE(I.*)TAWAVG*PWET = '.STRAVE8PWET 
WRITE(l.26l) 
APOS = 0.0 
A P O S  1 = 0.0 

C... SHEATH 
WRITE(l,*)'OVER THE SHEATH' 
uo=O 

DO 564 U=1174.53,-NODIk'C 
NELUSI 3%-ELINCWO 
UO=UO+ 1 

ARSS = SIGMA(NELU)/STRSH 
APOS 1 = DSQRT((X(1 ,U)-X(1.U-NODINC))**LiX(2.U) 

. -X(2U-NODINC))**Z) 
APOS=APOS+APOS1 
WRRE(1.26) APOSMSS,SIGMA(NELU) 

564 CONTINUE 
C... TUBE 

APOS = 0.0 
APOS2 = 0.0 
uo=O 
WRITE(l,*)'OVER THE TUBE SURFACE 

DO 568 U=1519.98,-NODINC 
NELU=1440-ELINC*UO 
UO=Uo+ 1 

ARSS = SIGMA(NELIJ)/STRTB 
APOSZ = DSQRT((X(1 .U)-X( 1 .U-NODNC))**2- + 
(X(2JJ)-X(2,LJ-NODlNC))**2) 

APOS = APOS + m s 2  
WRITE(1,26) APOSARSS,SIGMA(NELU) 

568 CONTINUE 



ErnIF  
CI******* 
C.., FAS* 
c******** 

iF (NGEOMTYPE.EQ.21) THEN 
WRITE(1,25)ITER,DPDZREN 
APOST = 0.0 
STRAVE = 0.0 

U M  
C... SHEATH 

DO 41 IJ=t474,347,-49 
APOS = DSQRT((X(1 ,U)-X(1 ,U49))**2. + 
(X(2JI)-X(W49))**2) 

APOST = APOS + APOST 
NELU= 13%-UO*48 
IJO=Uo+ 1 

STRAVE = SIGMA(NELU)*APOS + STRAVE 
4 1 CONTINUE 

APOSTI =APOST 
STRAVE l=!STRAVE 
STRS H=STRAVE l/APOST 1 

C... FIN SIDE 
UO=O 

DO 42 U=298.3 14 
APoS = DSQRT((X(I.IJ+ I)-X(I.U))**2--(X(2.U+1 1-X(UJ))**2-) 
APOST = APOS + APOST 

NELU=292+IJO 
UO=Uo+l 

STRAVE = SIG.UA(NELU)*APOS + STRAVE 
42 CONTINUE 

APOST2=APOST-APOSTI 
STRAVE2-STRAVE-STRAVE1 
STRFS=STRAVE2/APOST2 

C... FIN TIP 
UO=O 

DO 43 U=3 15.70,49 
APoS = DSQRT((X(I.LJ)-X(I.U19))**2.+(X(2,rr)-X(2,U-49))**2.) 

NELUz26 1 -48*UO 
UO=UO+ 1 

APOST = APOS 4 APOST 
STRAVE = SIGMA(NELLJ)*APOS + STRAVE 

43 CONTJNUE 
APOST3=APOST-APOSTI -APOST2 
STRAVEkSTRAVE-STRAVE 1 -S'l'RAVE2 
STRlT=STRAVW/APOST3 

C... iNNER SURFACE AVG STRESS 
STRAVEIN = STRAVWAPOST 

C... TUBE 
u o a  

DO 44 11=1519,98,-49 
APoS = DSQRT((X(1 ,U)-X(1 .U-49))1'2 + 
(X(2u)-X(/U-49))**2.) 

APOST = APOS + APOST 
NEW=IQ;U)-48*UO 
UO=UO+l 

S ' R I V E  = SIGMA(NELU)*APOS + STRAVE 
44 CONTINUE 

APOSTkAPOST-MOST 1 -APOST2-APOST3 



STRAWTRAVE-STRAVE 1 -STRAVE2-STRAVW 
STRTB=STRAVE4/APOST4 

C.. 
STRAVE = STFLAvE/APOST 

C.. 
WRITE(1 ,*)'APOSTl ,APOST2,APOS'i3,APOST4' 
WRïEil ,*)APOSTl ~ S ï 2 , A P O S ~ . A P û S T 4  

~(l,*)'STRSH,STRFS,~.STRAVEIN,STRTB,SWVE' 
WRïK'E(1 ,*)STRSH.STRFS.STRFT,STRAVEIN,STRTB,STRAVE 
WRITE(1 .*)'DPDZ*DH/4 = ',DPDZ*DH/4. 
WRITE( 1 .*)'DPDZ*AFLOW = '.DPDZ*AFLOW 
WlUTE(I,*)TAWAVG*PWET = ',STRAVE*PWET 
WTE(1.26 1) 
APOS = 0.0 
APOS l = 0.0 

C... SHEATH 
WRITE(l,*)DVER THE FINNED SURFACE' 
UO=O 

DO 45 b1474.347.49 
NELU= 13%-488 LI0 
UO=UOc 1 

ARSS = SIGMA(NELU)/STRAVEIN 
APOS 1 = DSQRT((X(1 ,LI)-X( t ,U49))**2-(21T)-X(ZU49))**2.) 
Af'oS=APOS+APOSl 
WRiTE(!.26) APOS.ARSS,SIGMA(NELLT) 

45 CONTINUE 
C... FIN S D E  

IJO=O 
DO 46 U=298,3 t4 

NE LU=292+ UO 
UO=UQe 1 

ARSS = SIGMA(NELU)/STRAVEIN 
APoS 1 = DSQRT((X(1 ,U+l)-X(1~)**2.-(X(ZU+l)-X(2,U))**2) 
A P o s = m s + A P O s 1  
WRITE(1.26) APOSARSS.SIGMA(NELU) 

46 CONTINUE 
C... FIN TIP 

uO=o 
DO 47 U=3 15.70.49 

NELU=26 1 -WU0 
UO=UO+ 1 

ARSS = SIGMA(NELU)/STRAVEIN 
APOS l = DSQRT((X(1 ,LI)-X(1 ,U-49))**2.+(X(t.rr)-X(2,U-49))**2.) 
APOs=APOs+APOs1 
WRITE(1,26) APOSARSS.SIGMA(NELU) 

47 CONTINUE 
C... TUBE 

APOS = 0.0 
m s 2  = 0.0 
UO=o 
WRITE(l,*)'OVER THE TUBE SURFACE 

DO 48 U=15 19.98.49 
NELIJ=1440-48*UO 
UO=UO+ 1 

ARSS = SIGMA(NELII)/STRTB 
APOS2 = DSQRT((X(1 ,ID-X(l,U19))**2. + 
(x(2LT)-X(ZU49))**2.) 

m s = m s + A P o s 2  



WRïE(l .26)  APOS,ARSS,SIGMA(NELU) 
48 CONTINUE 

ENDIF 
RETURN 
END 

C8+1Ll8tO8****888**88*18*88**8*******8*8*8***88*****88******8* 

SUB ROUTINE STRESS(NEXNODES,U,EQ,MAT,PROP,VARUELEM. 
IMAT,TVAR.SIGMA) 

C**88**88*8***888*88888*8.**888*8*8*t*8*0**88*8*8*8***88***88*88 

C..... 
C...,CALCüLATES STRESS FROM SHAPE FüNCTIONS 
C. FOR QUADRILATERAL ELEMENTS 
C..... 
C CALLEDBY: 
C 
C CALLS : SHAPB 
C 
C 

IMPLICIT DOUBLE PRECISION (A-H.0-2) 
C 

COMMON/FILES/NNNOU,mG,NFILBNPLOT 
COMMON/cWTBaQ(9,2,3),wQ(9,3) 
COMMON /PLTOUT/ XG,YG.SIGHX,SIGHY 
COMMON/CCON~NNODE,NELEM.NMAT,NPOINT,NOUT,NiNTO 
..NPRNTl ,NPRNn.NPRNT3.NPRNTJINPTYPE,NPDE 

C 
WCLUDE THVAR-H' 

C 
DIMENSION NE(I),MAT(l),NODES(9.1),X(2,l),U(lO, 1) 
DMENSION PS 1(9),DPS1(9,2)XX(2.9) 
DMENSION DPSIX(9),DPSIY(9),DXDS(2,2).DSDX(2,2) 
DiMENSION XI(9J.3) 
DIMENSION SIGMA(1) 
DATA P1,PIZ /3.l~lS926S3.l.S707%327/ 

C 
C.....CALCULATE U. SIG-X (QX), AND SIG-Y (QY) FROM SHAPE FUNCIIONS 
C 
C.....BEGiN ENTEGRATION POINT LOOP 
C 

DO 1 1 NEL=l .NELEM 
NN= I 
L=l 
N=NE(NEL) 
DO 15 I=l,N 
XX(I ,I)=X(l ,NODES(I,NEL)) 

1 5 XX(ZI)=X(2,NODES(LNL)) 
C 

CALL SHAPEJ (XIQ(L,l.NN)XQ(L2.NN),N,PSLDPS~ 
C 
C.....CALCULATE DXDS 
C 

DO 20 I=1.2 
Dû 20 J=1.2 
DXDSoJ)=O.O 
DO 20 K=1 ,N 

20 DXDS(T,~=DXDS(U).eDPSI(K,~*XX(I,K) 
C 
C.....CALCULATE DSDX 



CALL GETMAT (XK,YKmXM.YMXB.XF,RMUXRHO 1 XRHOZMAT(NEL),PROP, 
> UELEM.iMAT,VARIrVAR,NELJEQ 

SIGHX=-XPDUHDX 
SIGHY=YK*DUHDY 
IF(IEQ.EQ. 1 )SIGMA(NEL) = DSQRT(SIGHX*S1GHX+SIGHY8SIGHu) 
GRADX(IEQ.NEL)=DUHDX 
GRADY(IEQ.NEL)=DUHDY 

CONTINUE 

RETURN 
END 

C..... 
C.....CALCULATES U, SIG-X (QX), AND SIG-Y (QY) FROM SHAPE FUNCTIONS 
C. FOR QUADRLATERAL ELEMENTS 
C..... 

CALLED BY: 

IMPLICIT DOUBLE PRECISION (A-H.0-Z) 

INCLUDE THVAR.H' 



DiMENSION XX(Z9),NODES(9. I),U(IO. 1).SIGMA(2350)X(;i 1). 
. UELEM(IO.1) 
DiMENSION YPLUSA(23ZO) 
LOGICALFIRST 

REK = DEN*YY(NU)*DABS(UELEM(3,mt))**O5/vE 
RET = DEN*UELEM(3,NEL}'*UVIS/DABS(UELEM(4,NEL)) 

F(KEMODEL.EQ.'LS')THEN 
C... launder and Sixmm (Cho ;uid ûoldstein.1994) 

FMUKE(NEL) = DWB(-3.4/(1.+(RET/50.)**2)) 
ELSEiF(K EMODEL.EQ.'NA')TH EN 

C... Nagano 
FMUKE(NEL) = (1 .-DEXP(-YPLUSA(NEL)/265))-2 
EtsEiF(KEMODEL.EQ.'HF)THEN 

C... Hmm (Int. I. Heaf Miss Tmnsfer. 1990) 
FMUKE(NEL) = (1 .-DEXP(-O.O066*REK))'*2' 
. (1 .+50O.*DEXP(-O.O055*REK)/Rm 
ELSElF(KEMODEL.EQ.'LB')TH W 

C... hm-Bremhorst (198 1) 
FMUKE(NEL) = (1 .-DEXP(-0.0 165*REK))**2.*(1.+205/RET) 
ELSEi.F(KEMODEL.EQ.'MY)THEN 

C... Myong (1990) 
FMUKE(NEL) = (1 .+3.4S/DSQRT(DABS(W))* 

(1 .-Dm-YPLUS A(NEL)/IO.)) 
ELSEiF(KEMODEL.EQ.%He)THEN 

C. .. Chien 
FMUKE(NEL) = 1 .-DWIP(4.O 1 IS*YPLUSA(NEL)) 
ELSE 
FMUKE(NEL)= 1 .O 

ENDIF 



iF (FIR ST) THEN 
VISTT(NELkAMUST(NEL) 
IF(NEL.EQ.NELEM)FIRST = .FALSE. 
ELSE 
VISTNEW = CMU8FMUKE(NEL)*DEN*UELEM(3.NEL)**2./ 
. DABS (L'ELEM(4,NEL)) 
VISTI'WEL) = VTSTNEW8RELAXVIST + VISTI'(NEL)*(l.-RELAXVIST) 

ENDIF 

iMPLIClT DOUBLE PRECISION (A-H.0-Z) 
REAL*8 TL-DB(12),DENF,DB(12) 

C... n. C 
DATA TL,DB/-1 .E20,20.,40.$0.,60.,70.. 
80..90.,100.,140.,180.,1.E20/ 

C... DENE KG/M3 
DATA DENF,DB1998.2,998.2.992.2.988.0,983.2,977.7. 
97 t.8,9653,9583,926.I .886.9,886.9/ 

C 
DO 20 I=l,ll 
F(T1N.GE.n-DBmm.TEN.LE.TL,DB(I+l))mEN 
DENF=DENF-DB(I)iDENF,DB(I+l)-DENF-DB(I)) 

. '(m-TL,DB(I))/(TL-DB(I+I)-TL_DB(D) 
C... RETURNS DENF. KG/M3 FOR GIVEN TB, C 

GO TO 21 
ENDIF 

20 CONTINUE 
21 CONTINUE 

RETURN 
END 

C******+****************L.*L* 

IMPLICIT DOUBLE PRECISXON (A-H.0-2) 
REAL*8 TL_DB(12),CPF-DB(1 2) 

C... TL, C 
DATA TL-DB/- I ,E20,20..40.30..60..70., 
80..90..100.,140..180.,1.E20/ 

C... CPF, J/(KG K) 
DATA CPF-DB/4182..4182..4179..4181..4185..4190.. 

4l97.,42OS.,42I6..428S5,44O8.,44O8 J 
C 

DO 20 I=1,11 
1Fm.GE.n-DBO.AND.TIN.LE.TL,DB(I+ 1 ))THEN 



CPMPF-DB(I)+(CPF,DB(I+ 1)-CPF,D BO) 
* *~-Tt_DBO)/m-DBCr+l)-TL,DB(T)) 

C... RETURNS CPF. S/(KG K) FOR GIVEN TB, C 
GOTO 21 
ENDIF 

20 CONTINUE 
21 CONTINUE 

RETURN 
END 

C~+8~~t*88*~*8***~***8*****8**888*8* 

IMPUCCT' DOUBLE PRECISION (A-H.0-Z) 
REAL*8 TL,DB(t 2),VISF_DB(12) 

c... TL. c 
DATA TL_DB/-1 .E20,20.,40.$0.,60,70, 
~,W..loO..140.,180..1.E20/ 

C... WSF, PA S 
DATA VISF-DBfl0.03E-4,10.03€-4,653 1E-59.7 1 E-S.46.68E-5, 

. 40.44E-5,35.49E-5,3I50E-S,28.22E-5.19.6 1 E-S,14.94€-5,14.948-5/ 
C 

Do20 1=1.11 
EF(TIN.GE.n-DB(I)N.T[N.LE.TL,D B(I+ 1))THEN 
~SkWSF,DBO+(VISF-DB(I+ 1)-VISF-DB(I)) 

. *(TW-TL_DB~)/(TLTLDB(I+ 1)-TL,DBO) 
C... RETURNS VISF, PA S FOR GNEN TB. C 

GO TO 21 
ENDIF 

20 CONTINUE 
21 CONTINUE 

RETURN 
END 

C*********************************** 

REAL'S FUNCTION A K F O  
C ~ * 8 ~ 8 l t l ~ * 2 * * + t ~ * t ~ ~ * * * 8 * 8 8 * 8 * 8 8 I * b  

airpLIClT DOUBLE PRECISION (A-H.0-Z) 
REAL88 TL-DB( 12)AKF-DB( 12) 

C... Tt. C 
DATA TL_DB/-1 .E20,20.,~.JO0.60.,70.. 
~.,W.,loO.,140..180.,1.E20/ 

C..:AKF, W/(M KI 
DATA AKF,DB/.6,.6..629,.64,.65 1,.659, 
.667,.673,.677,.685,.674, .674/ 

C 
DO 20 1=1,11 
1Fm.GE.n-DBO.AND.m.LE.n-DBfl+l))THEN 
AKF=AKF-DB(I)+(AKF-DB(I+ 1 )-AKFDB(1)) 

. *(l'IN-TL,DB(I))/(TL,DB(I+ 1 )-TL_DB(I)) 
C... RETURNS M F ,  W/(M K) FOR GiVEN TB. C 

GO TO 21 
ENDIF 

20 CONTINUE 
21 CONTINUE 

RETURN 
END 



SLTBROüTINE VISCI (NEL,NS,NODES,USQ,ITERMAT,SIGMAX,UELEM) 
C ~ ~ ~ 8 ~ + ~ 8 t 8 8 l 8 8 W l t 8 t t 8 ~ 1 * 8 8 8 ~ t ~ ~ 8 ~ 8 8 ~ 8 ~ 8 ~ 8 ~ ~ ~ 8 ~ 8 8 8 ~ * ~ * 8 * * 8 * * 8 8 8 8 * 8 *  

C..... 
C.....CALCULATES U, SIG-X (QX), AND SIG-Y (QY) €ROM SHAPE FUNCIIONS 
C. FOR QUADRILATERAL ELEMENTS 
C..... 

CALLED BY: 

IMPLICIT DOUBLE PWISION (A-H,O-Z) 

COMMON/FILES/NIN*NOU,NLGINFILE,NPLOT 
COMMON/CINT/XIQ(9,23). WQ(9.3) 
COMMON /PLTOUT/ XG,YG,SIGHX,SIGHY 
COMMON/CCON/NNODENELEM,~T.NPOINT.NOUT,NINTO 
.,NPRNTl ,NPRN=NPRNT3,NPRNT4,NPmPE,NPDE 
COMMON/TiMES/TO,TF.DELTAT,NSTEP,NSTEPT 
COMMON/RM/RMUMAX/IRM~-CAL,RMKAY,UMAX,CKARMANI.IRMA,RM,CALA,UMAXA 
COMMON/YSPLUS/YPLUSA.SPLUSA~LA,YASA.DFPAgFCA.ALPAALCA, 
. TWYA.TWSA 
COMMON/ELGRD/XGGEL.YG_EL 

INCLUDE THVAR-H' 

DIMENSION NODES(9.1) 
DIMENSION U(IO,I),NE(l) 
DIMENSION UELEM(l0, l j 
DiMENS ION PS 1(9),DPSI(9.2)XX(2.9) 
DIMENSION DPSIX(9).DPSIY(9),DXDS(2,2),DSDX(2,2) 
DIMENSION XI(9.23) 
DIMENSION S tGMA(2350) 
DIMENSION ~LUSA(2350),SPLUSA(~U))ALLA(2350),YA(2350).SA(t350), 
. D ~ P A ( ~ ~ ~ ~ ) , D F C A ( ~ ~ ~ ~ ) ~ L P A ( ~ ~ ~ ~ ) A L C A ( ~ ~ ~ ~ ) . W A ( U S O ) , T W S A ( ~ ~ ~ ~ )  
DIMENSION X(2.I) 
D M  WSION XG_EL(235O),YG,EL(2350) 
DMENSION IRMA(SO).RM-CALA(SO).UMAXA(SO) 

c....mIZE 
C 

Atm.0 
ALCd.0 
Y d . 0  
sa.0 
D F M . 0  
DFCd.0 
YPLUS=O.O 
SPLUS=O.O 
A L M . 0  
TWY = 0.0 
TWS = 0.0 

C 
C....-CALCULATE U, SIG-X (QX). AND SIG-Y (QY) FROM SHAPE FLMCTIONS 
C 
C.....BEGiN DlTEGRATION POINT LOOP 



C 
NN=1 
L=l 

C 
CALL SHAPE4 OaQ(t,I,NN)XQ(L2NN).N~PSLD~I) 

C 
C.....CALCüLATE DXDS 
c 

DO 20 I=1.2 
Dû 20 J=1.2 
DXDS(I.JkO.0 
DO 20 K=l *N 

20 DXDS(U)=DXDSO+DPSI(K.J)*XX(LK) 
C 
C.....CALCULATE DSDX 

C.....CAiCULATE D(PSI)/DX 
C 

Dû 30 I=l.N 
DPSIX(I)=DPSI(I~l)*DSDX(1,1)+DPSI~2)*DSDX(Zl) 

30 DPSIY O=DPSI(I. l)*DSDX(1~2)+DPSI(L2)*DSDX(2.2) 
UH=û. 
DUHDXd. 
DUHDY=û. 
xG-0. 
YG=o. 
DO IO I=l*N 
XG=XG+PS I(I)*XX( i ,n 
YG=YG+PSI(n*XX(Zil 
UH=UH+PSI(I)W(IEQ.NODES(LNEL)) 
DUHDX=DUHDX+DPSiX(I)*U(IEQ.NODES(LNEL)) 

10 DUHDY=DUHDY+DPSN(I)*U(IEQ,NODES(r,NEL)) 
C 
D (MAT .EQ. 2) THEN 

C... 
THETANRAD = THETAN8PI/1 80.0 

F(FPROP.EQ.'FIXED?THEN 
ANU = VISIDEN 

ELSEIF (FPROP.EQ.'FIXTB')TH EN 
ANU = VISF(TAVE)/DENFCTAVE) 

ELSE 
ANU = VISF(U€LEM(2,NEL))/DENF(UELEM(ZNEL)) 

ENDIF 
R = DSQRTO(G8XG + YG8YG) 

C... 
IF (NGEOMTYPE.EQ. 1) NFEL = O 

C 
C... TURBüLENT FLOW IN ANNULUS OR FINNED ANNULUS (FA8*) 
C 

IF(NGE0MTYPE.EQ. 1 )THEN 
C 
C.. DETERMINE RM AT WHICH UMAX OCCURS 



C**********L* 
C... ANNULUS* 
C************ 

IF (NGEOMTYPE.EQ.1) THEN 
IF (NEL.EQ.2)THEN 

UMAX = 0. 
DO 59 1 = 1,NELEM 
IF (UELEM(1J) .GT. UMAX) THEN 
üMAX = üELEM(IJ) 
W = I  
ENDE 

59 CONTINUE 
ENDIF 

RM=DSQRT(X(lJRM)**2.+X(2lRM)**2) 
IF(ITER.GT.2)RM = DMAX 1 (RM-CAL. RM) 

RM-CAL = RM 
C... 

N RVIS 1 = 0. 
NRVIS2 = 0. 
IF (R .LE RM)THEN 
DOS98I= I J R M  
IF(AMüST(I) .GT. TURVIS 1) THEN 
TURVIS 1 = AMUST(0 
M S I  = I  

ENDIF 
598 CONTiWE 

ELSE 
DO 599 1 = tRM.NELEM 

IF (AMUST(1) .GT. TURVISS) THEN 
TüRVIS2 = AMUST(0 
IvIS2 = 1 

ENDF 
599 CONTINUE 

ENDF 
ENDiF 

C 
C...USE RM OF KAYS 
C 

RMKAY = RIY 1 .+(RO/Ri)**0.657)/( 1 .+(RVRO)**O.M3) 
IF(RMOFT.EQ.'RMKAYs')TH EN 

RM=RMKAY 
ELSEiF(RMOPT.EQIRMUSER3THEN 
RM=RMVALUE 
ENDIF 

YOMzRO-RM 
C 
C... 
C 
c************ 
C... ANNULUS* 
C+******.**.. 

IF (NGEOMTYPE.EQ.1) THEN 
Y=R-RI  
YM=RM-Fu 
ENDiF 

C... 
C... 
C... 



IF (R .LE. RM) THEN 
C 

IF (NEL .GT. NFEL) THEN 
RREF = R i  

ELSE 
RREF = RI + M T  

ENDIF 
RR = RO/RREF 
OM = RM/RREF 

C 
IRKARMANOW.EQ.'KVAR3THEN 

CKARMANX = O.Q*(RR-OM)/(OM-l .)* 
DSQRT((RPe2.-0 M* *2.)/RR/(OM*%- 1 .)) 

ELSE 
CKARMAM = CKARMAN 
ENDIF 

B 1 = 0.14*(RR-OM)/(OM-1.) 
B2 = 2.*B 1-05*CKARMANI 
R3 = OS*CKARMAM-B 1 
ALP = YM*(B 1-B2*(1 .-Y/YM)**2-B3*(l.-YNM)**4.) 

C 
ELSE 

C 
F(KARMANO~.EQ.*KFIX3THEN 

C CKARMANO = CKARMAN 
CKARMANO = 0.4 
ELSE 
CKARMANO = 0.4 
ENDiF 
AA1 =0.14 
AA2 = 2.*AA l-û5*CKARMANO 
AA3 = 05*CKARMANO-Ml 
ALP =YOM*(AA I -AA2*(Y-YM)**2JYOM**2.-AA3*(Y-YM)**4ROM"-I.) 

C 
ENDF 

ENDE 
C... 

TWY = 0.0 
Tws = 0.0 

C... 
iF (ITER .GT. 1) TH EN 

C************ 
C... ANNULUS* 
C************ 

IF (NGEOMTYPE-EQ. 1) THEN 
Tws = 0.0 

IF (R.LE.RM)THEN 
'WY = S IGMA(2) 
m = T W Y  

ELSE 
TWY = SIGMA(NELEM) 
ENDIF 

ENDIF 
ELSE 
TWY = -1 .O*DPDZ*DH/4.0 
TWS = - 1 .O*DPDZ*DH/4.0 

C... END OF IF(ITER.GT.1) 
ENDiF 



C... ANNULUS* 
C************ 

IF (NGEOMTYPE .EQ. 1) THEN 
IF (NEL .GT. NFEL) THEN 
IF(RLE.RM)THEN 
Y=R-EU 
ELSE 
Y=RO-R 

ENDIF 
ELSE 
iF(R.LE.RM)THEN 
Y=R-RI-MT 
ELSE 
Y=RO-R 

ENDIF 
ENDiF 

ENDIF 
c... 

E(FPROP.EQ.'FIXED')THEN 
YPLUS = Y*DSQRT(niru/DEN)/ANU 
SPLUS = S*DSQRT(TWS/DEN)/ANU 
ELSEIF (FPROP.EQ.'FRC'l'B~THEN 
YPLUS = Y *DSQRT(nvy/DENF(TAVE))/ANU 
S PLUS = S* DSQRTWS/DENF(TAVE))/ANU 
ELSE 
YPLUS = Y*DSQRTcrWy/ûENF(UELEM(ZNEL)))/ANU 
SPLUS = S*DSQRT(TWS/DENF(UELEM(ZNEL)))/ANU 
ENDIF 

C 
DFP = 1 .O - DEXP(- 1 .O*YPLUS/APLUS) 
DFC = 1 .O - DEXP(-I.O*SPLUS/APLUS) 

C 
IF(KARMANOm.EQ.'KFIX?THEN 
CKARMANFS = 0.4 

C CKARMANFS = CKARMAN 
ELSE 
CKARMANFS = 0.4 
ENDiF 
A2 = 2.*Al-OS*CKARMANFS 
A3 = OS*CKARMANFS-AI 
ALC = SO*(Af-A2*((1.O-S/SO)**2.O)-A3*((1 .O-S/SO)**4.0)) 
ALP = D P A L P  
ALC = DFC*ALC 

c************ 
C... ANNULUS* 
CI*********** 

IF (NGEOMTYPE .EQ. 1 ) TKEN 
ALL = ALP 

ELSE 
ALL = (ALC*ALP)/(ALC+ALP) 

ENDIF 
C 

ALLA(NEL)=ALL 
C 

UGRAD = DSQRT(DUHDX*DUHDX+DUHDY*DUHDY) 
C... 
C... 



IF(FPROP.EQ.'nXED9THEN 
USTAR = CTWn/DEN)**05 

ELSEIF (FPROP.EQ.'FWïEl') T HEN 
USTAR = ( ' ïWYIDE~AVE))**OS 

ELSE 
USTAR = (TWn/DEM(UELEM(2NEL)))**OS 

ENDF 
ALLRM = O. IPYOM 
UGRADm4-6.*(RM-RREF)*USTAR/ALLRM9*2 
UGRAD= DMAXl (UGRAD,UGRADMIN) 

ENDCF 

c... 
IF(FPROP.EQ.'FXED')THEN 
AMUT = DEN*ALLA(NEL)*ALLA(NEL)*UGRAD 
ELSEiF (FPROP.EQ.'FiXTB')THEN 
AMUT = DENF(TAVE)*ALLA(NEL)*AtLA(NEL)*UGRAD 
ELSE 
AMUT = DENFmLEM(ZWL))*ALLA(NEL)*ALLA(NEL)*UGRAD 
ENDF 
AMU = AMUT 

C... 
C... DEISSER AND REICHARDT 
C... 

IF (MKMODEL .EQ. 'MT .AND. iTER.GT.1 .AND. 
. (NGEOMTYPE .EQ. 1.OR.NGEOMTYPE .EQ. 21)) THEN 
IF (R .LE. RM)THEN 

C ETAI=(RM-R)/(RM-RI) 
C ETAPLUSI=l S*YPLUS*(I .+ETAI)/(l .+2-*ETA18*2.) 
C IF(ETAPLUSI.LE.26.)THEN 

IF (YPLUS .LE. 26.)THEN 
USTAR = (SIGMA(2)/DEN)**05 

UEL. = (U(1,NEL)+U(l.NEL.t 1))R. 
UPLUS = UEULrSTAR 

C AMU=VIS*O.O lSJ*UPLUS*YPLUS*(l -DEXP(-O.O 154*UPLUS*YPLUS)) 
AMU=AMUT 
ELSE 
USTAR = (SIGMA(2)/DEN)"OS 

UEL = (U(1 ,NEL)+U( 1 .NEL+ 1 )IR. 
UPLUS = UEUUSTAR 

AMU=DEN*CKARMANV6.*(RM-RI)*USTAR*(I .-((RM-R)/(RM-RI))**2.)* 
(1 .+Z8(RM-R)/(RM-RI)) 

ENDIF 
ELSE 

C ETAO4RM-R)/(RM-RO) 
C ETAPLUSO=l .5*YPLUS8( 1 .+ETAO)/(l .+2.*ETA08*2.) 
C IF (ETAPLUSO .LE. 42.)THEN 

iF (YPLUS .LE. %.)THEN 
USTAR = (SIGMA(NELEM)/DEN)**OS 

UEL = (U(1 *NEL)+U(I.NEL+l))/L 
UPLUS = UEUUSTAR 

C AMU=VIS*0.0 154*UPLUS*YPLUS*(l -DEXP(-0.0 154*UPLUS*YPLUS)) 
AMU=AMUT 
ELSE 
USTAR = (SIGMA(NELEM)/DEN)**OS 



UEL = (U(I,NEL)+U(l,NEL+ 1))/2. 
UPLUS = üEL/USTAR 

AMU=DEN*CKARMANO/6.*(RO-RM)*UST-*( 1 .-((R-RM)/(RO-RM))**2)* 
(1 .+ZB(R-RM)/(RO-RM)) 

ENDIF 
ENDIF 
ENDIF 

C... 
ELSE 
AMU = 0.0 

C... END OF F(MAT.EQ.2) 
ENDIF 

c..- 
C... DEISSER AND REICHARDT 
C... 

iF (MDCMODEL .EQ. 'MY AND. iTER.GT.1 AND. 
. WGEOMTYPE .EQ. 1.OR.NGEOMTYPE .EQ. 21)) THEN 
USTAR = (SIGMA(2)/DEN)**OS 
AMUMIN=DEN*CKARMANU6.*(RM-RI)*USTAR 
D (NEL .GE. N I S I  AlW. N'EL .LE. iRM)THEN 

AMU=DMAXI(AMü,AMUMIN) 
ELSEIF (NEL .GT. IRM .AND. NEL .LE. MS2)THEN 

AMU=DMAX 1 (AMUMüMiIU) 
ENDIF 

C ~Z*)'NELMStJVISZIRM.AMUMiN.AMW 
C WRITE(2. I21)NEL,MS 1 .MSZiRM,AMüMIN.AMU 
Cl21 FORMAT(IX414,16(1X,lPEl1.4)) 

ENDIF 
C 
C... CALCULATE TURBULENT PRANMZ NUMBER 
C 

LF(FPROP.EQ.'FIXED')THEN 
VISTEMP = VIS 
G T E M P  = CF' 
AKTEMP = AK 
PR = VIS*CP/AK 
ELSEIF (FPROP.EQ.'FDCTB?THEN 
VrSTEMP = VISFflAVE) 
C m M P  = CPFCTAVE) 
AKTEMP = AKFRAVE) 
PR = VISTEMP*CPTEMP/AKTEMP 

ELSE 
VISTEMP = ViSF(UELEM(2,NEL)) 
CPïEMP = CPF(UELEM(2,NEL)) 
AKTEMP = AKF(üELEM(2NEL)) 
PR = VISTEMP+CPTEMP/AKTEMP 

ENDiF 
IF(IPRT.EQ.0)THEN 

PRT(NEL)=PRTO 
ELSEIF(IPRT.EQ. 1)THEN 
P M = A M U M S T E W P R  
PRT(NEL)=2/PET+0.85 

ELSEIF(IPRT.EQ.2)THEN 
PRT(NEL)=l ./(O.S882+0.228*(AMU/VISTEMF')- 

. 0.0441 *(AMU/VISTEMP)"Z* 
(1 -DEXP(-S.lW(AMU/VISTEMP)))) 

ELSEIF(XF'RT.EQ.3)THEN 
IF (NEL .GT. K L )  THEN 



PRT(NEL)=I+0.855-DTANH(0.2*(YPLUS-7S) 
ELSE 
IF (YPLUS.GTS.0 .OR. SPLUS.GT5.O)TH EN 
PRTY=t+0.85S-DTANH(0.2*(YPLUS-7J)) 
PRTs=l+O.8SS-DTANH(O.2*(SPLUS-75)) 
PRT(NEL)=PRTY *PRTS/(PRTY+PRTS) 

E U E  
PRT(NEL)= 1 .O 
WDIF 

ENDIF 
ELSE 

WRITE(NLG.*)'SPECIFY IPRT (TURBULENT PRANDTL NUMBER OPTION)' 
ENDiF 

C... 
ALPA(NEL)=ALP 
ALCA(NEL)=ALC 
YA(NEL)=Y 
SA(NEL)=S 
DFPA(NEL)=DFP 
DFCA(NELkDFC 
YPLUSA(NEL)=YPLUS 
SPLUSA(NEL)=SPLUS 
TWSA(NEL)=TWS 
TWYA(NEL)=TWY 
XG,EL(NEL)=XG 
YG,EL(NEL)=YG 

C 
AMUST(NEL) = AMU 

C 
C... CALCULATE DISTANCE R O M  THE WALL 

IF (NEL .GT. NFEL) THEN 
YY(NEL)=Y 

ELSE 
W(NEL)=YmS/(Y+S) 

ENDiF 
C... 

RETURN 
END c***************************** 
SUBROUTINE VISC2 1 22 (NELNJM,NODES.U.IEQ.ITER,MAT.SIGMAX,ELEM) 

C********************************************************************** 
C... FA8* 
c******** 
C..... 
C.....CALCULATES U, SIG-X (QX), AND SIG-Y (QY) FROM SHAPE FUNCIIONS 
C. FOR QUADRLATERAL ELEMENTS 
C..... 
C CALLEDBY: 
C 
C CALLS : SHAPE4 
C 
C 

IMPLICIT DOUBLE PRECISION (A-H.0-Z) 
C 
COMMON/FILES/NIN,NOU,NLG,NFILBNPLOT 
COMMON/CINT/XiQ(9,2,3),WQ(9,3) 
COMMON /PLTOUT/ XG,YG,SIGHX,SIGHY 
COMMON/CCON/NNODE,NEtEM,NMAT,NPO[NT,NOUT,NINTO 



..NPRNTI .NPRNT2.NPRNT3,NPRNT41NPrYPE,NPDE 
COMMON/IIMES/TO,TFDELTAT.NSTEP,NSTEPI' 
COMMON~-UMAX/IRM~-CAL,RMKAY.UMAX,CKARMANI~.RM~CALA~UMAXA 
COMMON/YSPLUS/YPLUSA,SPLUSA&LA.YASA.DFPA,DFCWPA&CA. 
. TWYAITWSA 
COMMON/ELGRID/XG-EL,YG-EL 

C 
INCLUDE THVAR.H' 

C 
DIMENSION NODES(9.1) 
DIMENSION U(lO,I).NE(l) 
DiMENSION UELEM(10,l) 
DIMENSION PSI(9),DPSI(9,2)S(2,9) 
DIMENSION DPSDC(9)DPSTY(9).DXDS(22)DSDX(Z2) 
DIMENSION XI(9.2.3) 
DIMENSION SIGMA(t550) 
DIMENSION YPLUSA(1550).SPLUSAf 1550),ALLA(1550).YA(1550).SA( 1550). 
.DFPA( lSSO).DFCA( lSSO).ALPA( ISSO),ALCA(~ SSO),TWYA(lS50),TWSA( 1550) 
DIMENSION X(2 1) 
DIMENSION XG,EL(1550).YG-EL(I550) 
DIMENSION IRMA(50),RM-CALA(SO),UMAXA(So) 

C 
DATA PI.PI2 /3. t4l592654,15707%327/ 

C 
C....5urrrALlZE 
C 

ALM.0 
ALM.O 
ya.0 
S--0.0 
D W . 0  
DFC=O.O 
YPLUS=O.O 
SPLUsO.O 
ALM.0 
TWY = 0.0 
TWS = 0.0 

C 
C.....CALCULATE tl, SIG-X (QX), AND SIG-Y (QY) FROM S 
C 
C.....BEGiN INTEGRATION POINT LOOP 
C 

NN= I 
L=l 

C 
CALL SHAPE4 (XIQ(L,I,NN)XIaL2,NN).N,PSLDPSD 

C 
C.....CALCULATE DXDS 
C 

DO 20 I=1,2 
DO 20 1=1,2 
DXDS(I*n=o.O 
DO 20 K=l,N 

20 DXDS(U)=DXDSnn+DPSI(K,Q*XX(I,K) 
C 
C.....CALCULATE DSDX . 
C 

DETJ=DXDS(l , I)*DXDS(2.2)-DXDS(l,2)*DXDS(2.1) 

HAPE FlJP 



DSDX( l,l)=DXDS(2,2)/ûETJ 
DSDX(2,2)=DXDS(I, l)/DETJ 
DSDX(1,2)=-DXDS(1,2)/DETJ 
DSDX(2, 1)=-DXDS(2,l)/DETI 

C 
C.....CALCULATE D(PSI)/DX 
C 

DO 30 I=l,N 
DPSrX(~=DPSI(r,l)*DSDX(l,l)+DPSI~2)*DSDX(Zl) 

30 DPSiYO=DPSI(i. l)*DSDX(I .2)+DPSI(L2)*DSDX(22) 
U H 4 .  
DUHDX4. 
DUHDY=O. 
X O .  
YG-0. 
DO 10 I=l,N 
XG=XG+PSI(I)*XX(l .i) 
YG=YG+PSIO*XX(2J) 
UH=UH+PS I(D* U(IEQ,NODES(I.NEL)) 
DUHDX=DUHDX+DPSIX(I)*U(IEQ,NODES(I.NEL)) 

1 O DUHDY=DUHDY+DPSIY(I)*U(iEQ,NODES(LNEL)) 
C 

XF (MAT .EQ. 2) THEN 
C... 

THETANRAD = THETAN*PU180.0 
iF(FPROP.EQ.'FEED')THEN 

mu = VISDEN 
ELSEE (FPROP.EQ.'FD(TB')TH EN 

ANU = VIS FCI'AVE)/DENF(TAVE) 
ELSE 

ANU = VISF(UELEM(Z.~L))/DENF(UELEM(2,NEL)) 
ENDrF 

R = DSQRT(XG*XG + YGSYG) 
c... 

IF (NGEOMTYPE.EQ.21) NFEL =288 
IF ((NGEOMTYPE.EQ.22) NFEL = O 

C 
iF(NGEOMTYPE.EQ.21 .OR.NGEOMTYPE.EQ.ZZ)THEN 

C 
C.. DETERMINE RM AT WHICH UMAX OCCURS 
C... rrn on the di Line 

IF(RMOPT.EQ.'RMCALL')rnEN 
DO571=130 
UMAX=O.O 
JSTART=l Hi- l)*49 
JEND=49+(I-1)*49 
DO 57 7 J = JSTARTJEND 
iF (U(1.J) .GT. UMAX) TH EN 
UMAX = U(1J) 
IRM = J 

ENDF 
577 CONTINUE 

IF(NEL.GE.(1+48*(1-1)) AND. NEL.LE.(4848* (I-1)))THEN 
RM=(X(1 JRM)**2.+X(ZIRM)**2.)**05 

IF(XTER.GT.2)RM = DMAX 1 (RM-CALA(I), RM) 
RM-CALA(I) = RM 
IRMA(D=CRM 
LTMAXAo=UMAX 



GO TO 5777 
ENDiF 

57 CONTINUE 
5777 CONTINUE 

RM-CAL = RM 
C... rm ût a single point 

EtSEIF(RMOPT.EQ.aMCALP)THEN 
-=o. 
W 567 1 = 1,NNODE 
IF (U(1 .il .GT. UMAX) THEN 
uMAx = U(1J) 
IRM = 1 
ENDIF 

CONTWUE 
RM=(X(l,IRM)**Z+X(2JRM)**2.)**05 
RM-CAL = R M  

ENDIF 

C...USE RM OF KAYS 
C 

C 

C 

C 

c... 

C 

C 

RMKAY = RP(1 .+(RO/RI)**O.6S7)/(l .+(RVRO)*W343) 
F(RMOm.EQ.'RMKAYS)EN 

RM=RMKAY 
ELSEIF(RMOPT.EQ.'RMUS ER')TH EN 
RM=RMVALUE 

ENDiF 

YOM = RO - RM 
IF (NGEOMTYPE.EQ.21) THEN 
iF (NEL .GT. NFEL) TH EN 
Y=R-RI  
YM=RM-RI 
ELSE 
Y=XG-RI-MT 
YM=RM-RI-MT 
ENDlF 

ELSEIF (NGEOMTYPE.EQ.22) THEN 
Y = R - R I  
YM=RM-RI 

ENDF 

IF (R .LE. RM) THEN 

II: (NEL .GT. NFEL) THEN 
M F =  RI 
ELSE 
RREF = RI + FHT 
ENDF 
RR = ROfRREF 
OM = RMIRREF 

iF(KARMANOPT.EQ .'KVAR')THEN 
CKARMANI = 0.4*(RR-OM)/(OM-l.)* 

DSQRT((RR**2.-OM8*2.)/RR/(OM**2- 1 .)) 
ELSE 
CKARMAM = CKARMAN 



ENDIF 
B 1 = 0,14*(RR-OM)/(OM-1.) 
B2 = 2.*B 1 -OS*CKARMANI 
03 = OS'CKASWANI-B 1 
ALP = YM*(B 1-B2*(1 .-YTYM)**Z-B3Y 1 .-Y/YW**4.) 

C 
ELSEIF (R .GT. RM) THEN 
IF(KARMANOPT.EQ.'KFIX')THEN 
CKARMANO = 0.4 
E U E  
CKARMANO = 0.4 
ENDIF 
AAlsO.14 
AA2 = 2.*Ml-OS*CKARMANO 
AA3 = 05*CKARMANO-Ml 
ALP =YOM*(AA1 -M2*(Y-YM)**2/YOM**2-AA38(Y-yM)**44/YOM**J-) 

ENDF 
ENDIF 

C... 
TWY = 0.0 
TWS = 0.0 

C... 
IF (ITER .GT. 1) THEN 

C**********S************** 

C... FA8 U@IFiNNED ANNULUS* 
C************************* 

If (NGEOMTYPE.EQ.22) THEN 
€LING48 
NODINC=49 

TWS = 0.0 
C 

NN=lW/ELINC 
DO 219 I=l.NN 
IMl=I-1 
IF ( M L  .GE. (l+IMl*ELINC) AND. NEL .LE. (48+ïMl *ELINC)) THEN 

iF(R.LE.RM) THEN 
TWY = SIGMA(&IMl *ELINC) 

TWYI=TWY 
ELSE 
TWY = SIGMiî(38+IM 1 *ELINC) 
ENDiF 

GO TO 221 
ENDF 

219 C0NT'N.E 
ENDIF 

221 COhiINuE 
C************* 
C... FA8*.INP 
C************* 

iF (NGEOMTWE.EQ.2t) THEN 
NN= 1 Uûl48 
DO I l  1 61,NN 
IMl=I-I 
IF (NEL.GE.(l+IM 1848).AND.NEL.LE.(48+IM 1 *48))mEN 

F(R.LE.RM) THEN 
C... BASED ON FIN 7'XP 

TWY = SIGMA(21 +IM1*48) 
m=w 



ELSE 
C.,. BACED ON TUBE SURFACE 

TWY = SIGMA(48+IM1*48) 
ENDIF 

GOTO 112 
ELSEIF(NEL.GE(289tIM t *48).AND.NEL.LE.(336+IM 1 * 48))THEN 

iF(R.LE.RM) THEN 
C... BASED ON SHEATH SURFACE 

'WY  = SIGMA(292+IM 1 *48) 
TWYI=TWY 

ELSE 
C... BASED ON TUBE SURFACE 

TWY = SIGMA(336+IMI *48) 
ENDIF 

GO TO 112 
ELSE 
GOTO 111 
ENDiF 

1 1  I CONTINUE 
112 CONTINUE 
C 

DO 113 IJ=0,16 
DO 1 13 IN = î92+IJ, 1 396+Cf,48 
IF (NEL .EQ. Di) THEN 

TWS = SfGMA(292+U) 
X-RFIN = (X(1,298+LI)+X(I .299+tf))/2. 
Y-RFiN = (X(2298+U)+X(2299+IJ))R. 
RFiN = DSQRT(X-WIN**2+Y-RFIN**2) 
WINRAD = DATANCr-RFIN/X-RFiN) 
GOTO 114 
ENDIF 

113 C O W E  
114 CONTINUE 
C 

ENDiF 

E U E  
TWY = -l.O*DPDZ*DH/4.0 
TWS = -1.0SDPDZ*DH/4.0 

C... END OF IFUTER.GT.1) 
ENDIF 

C 
C...DETERMINE S ANI) SO 
C 

IF(NGE0MTYPE .EQ. 21)THEN 
S = R*DATAN(YG/XG) - RFWRFINRAD 
SO = R*THETANRAD - RFIN*RFINRAD 
ELSEIF(NGE0MTYPE .EQ. 22)Tf(EN 
S = 0.0 
SO = R*THETANRAD 

ENDF 
CtL**8888**88* 
C... F A S * . W  
CI************ 

IF (NGEOMTYPE .EQ. 21) THEN 
IF (N'EL .GT. NFEL) THEN 
IF(R.LE.RM)THEN 
Y=R-RI 



ELSE 
Y=RO-R 

ENDiF 
ELSE 
LF(R.LERM)TH EN 
Y=XG-Ri-FHT 
ELSE 
Y=RO-R 

ENDlF 
ENDIF 

ENDIF 
C88*8888888888*l**&&8~88*8 

IF (NGEOMTYPE .EQ. 2î) THEN 
IF(R.LE.RM)TH EN 
Y=R-RI 
ELSE 
Y=RO-R 

W D I F  
ENDE 

c*.. 
F(FPROP.EQ.'FIXED?THEN 
YPLUS = Y8DSQRT(I7W/DEN)/ANU 
S PLUS = S8DSQRT('iWS/DEN)/ANU 
ELS Ek (FPROP-EQ .'FIXTB?THEN 
YPLUS = Y*DSQRT(TWW/DENF(TAVE))/ANU 
SPLUS = S*DSQRT(TWS/DENF(TAVE))/ANU 
ELSE 
YPLUS = Y8DSQRT(TWY/DENF(UELEM(2NEL)))/ANU 
S PLUS = S*DSQRTCiWS/DENF(UELEM(Z,NEL)))/ANU 
ENDCF 

C 
DFP = 1.0 - DEXP(-1 .08YPLUS/APLUS) 
DR2 = 1.0 - DEXP(-1 .08SPLUS/APLUS) 

C 
iF(KARMANOPT.EQ.'KFüC?THEN 
CKARMANFS = 0.4 
ELSE 
CKARMANFS = 0.1 
ENDiF 
A2 = 2.*A I -OS+CKARMANFS 
A3 = 0S8CKARMANFS-A 1 
ALC = SO8(A1-A2*((1 .O-S/SO)**2.0)-A3*((1 .O-S/SO)**4.0)) 
ALP = DFP*ALP 
ALC = DFC*ALC 

C 
iF (NGEOMTYPE .EQ. 21) THEN 

DO 118 I =  1,3O 
IF (NEL .GE. 21+48*(I-1) .AND. NEL .LE. 48+4S8(1-1)) THEN 

ALL = ALP 
W T O  119 

ENDiF 
118 CONTINUE 

IF(FSOFT.EQ.'FSON')TH EN 
ALL = (ALC8ALP)/(ALC+ALP) 

ELSE 
ALL =ALP 



ENDIF 
c*********************** 
C... FA8 CTNFINNED ANNULUS* 
C*******L********l******** 

EUEIF (NGEOMTYPE .EQ. 22) THEN 
ALL=ALP 
ELSE 
M L  = (ALC8ALP)/(ALC+ALP) 
ENDIF 

119 CONTINUE 
c******** 
C... FA8* 
C******** 

ALLA(NEL)=ALL 
iF(NGEOMTYPE.EQ.2l)THEN 
ELING.48 
JSMPT=3 12 
DO 929 I=1.24 
DO 929 J=3W JSMFT 
DIST=DSQRT((XG,EL((JSMPT+ 1)+(I- I )*ELINC)-XG,EL(308+(1- 1 )*ELINCI) 
. **2+(Y G-EL((JSMPK'+ i)+(I-I)*ELLNC)-YGGEL(308+(I- l)*ELINC))**2) 
DISTl=DSQRT((XG,EL((JSMPT+ I)+(I- I)*ELINC)-XG,EL(I+(I-1 )*ELINC)) 

- **2+(YG_EL((JSMPT+I )+(I- I )*ELXNC)-YG-EL(S+(l- I)*ELINC))**2) 
ALLA(J+(T-1 )*ELINC)=IO.*+((DLOG1O(ALtA((JSMPT+I)+(El )*ELINCI)- 
. D W  lO(ALtA(308+(1-I)*ELINC)))* (DIST-DISTI )/DIST+ 
. DLoG1 O(ALLA(308+(I-l)*ELmC))) 

929 CONTINUE 
ENDIF 

C 
UGRAD = DSQRT(DUHDX*DUHDX+DUHDY*DUHDY) 

C... 
IF (MiXMODEL .EQ. 'M4 AND. ITER.GT.1 AND. 
. (NGEOM'TYPE .EQ. 21.0R.NGEOMTYPE .EQ. 22)) THEN 

C 
iF(FPROP.EQ.'EUED')THEN 
USTAR = (TWYi/DEN)**OS 
ELSEIF (FPROP.EQ.'RXTB')THEN 
USTAR = (TWYüûENF(TAVE))**05 
ELSE 
USTAR = (TWYUDENF(UELEM(2,NEt)))**05 
ENDF 
ALLRM = O. IQ8YOM 
UGRADm=CKARMAN1/6-*(RM-RREF)*USTAWALLRM**X 
UGRAD=DMAXl(UGRAD,UGRADMLN) 
ENDIF 

c... 
iF(FPROP.€Q.@FXXED3THEN 
AMUT = DEN*ALLA(NEL)*ALLA(NEL)*UGRAD 
ELS €IF (FPROP.EQ.'FDCIa')THEN 
AMUT = DENF(TAVE)*ALLA(NEL)*ALLA(NEL)*UGRAD 
ELSE 
AMUT = DENF(UELEM(&NEL))*ALtA(NEL)*ALLA(ML)*UGRAD 
ENDff 

C 
AMU = AMUT 

C... 
C... DEISSER AND REICHARDT 
C... 



CF (MIXMODEL .EQ. 'M2' .AND. ITERGT. 1 .ANû. 
. (NGEOMTYPE .EQ. 21 -0R.NGEOMTYPE .EQ. 22)) THEN 
F (R .LE. RM)THEN 

C ETAI4RM-R)/(RM-RI) 
C ETAPLUSI4 5*YPLUS*(l .+ETA.i)/(I .+2.*ETA.I**2) 
C IF (ETAPLUSI .LE. 26.)THEN 

IF (YPLUS .LE. 26.)THEN 
USTAR = (SIGMA(Z)/DEN)**05 

E L  = (U(1 ,NEL)+U(l,NEL+I))i2. 
WLUS = LJEWSTAR 

C AMU=VISf O.O154*UPLUS*YPLUS*(l -DEXP(-O.O154*WLUS*YPLUS)) 
AMU=AMUT 
ELSE 
USTAR = (SIGMA(2)/DEN)**05 

UEL = (U(l.NEL)+U(I8NEL+l))/2. 
UPLUS = UEWSTAR 

A M U = D E N * C m 6 . * ( R M - w * U S T A R * ( l  .((RM-R)/(RM-RL))**Z)* 
(1 -+2*(RM-R)/(RM-rU)) 

ENDIF 
ELSE 

C ETAO=(RM-R)/(RM-KO) 
C ETAPLUSO=l 5*YPLUS*(1 .+ETA0)/(1.+2.*ETAO**Z) 
C iF (ETAPLUSO .LE. 42)THEN 

IF (YPLUS .LE. 26.)THEN 
USTAR = (SIGMA(NELEM)/DEN)**OS 

UEL = (U(1 ,NEL)+U(l,NEL+l))/L 
UPLUS = ü E W S T A R  

C AMU=VIS*O.O 154*UPLUS*YPLUS*(I -DEXP(-3.0 154*UPLUS*YPLUS)) 
AMU=AMLJT 
ELSE 
USTAR = (SIGMA(NELEM)/DEN)**05 

UEL = (U(l .NEL)+U(l8NEL+1))/2. 
UPLUS = UEUUSTAR 

AMU=DEN*CKARMAN0/6.*(RO-RM)+USTARe(l .<(R-RM)/(RO-RM))"2-)* 
(1 .+2.*(R-RM)/(RO-RM)) 

ENDIF 
ENDiF 
ENDiF 

C... 
ELSE 
AMU = 0.0 

C... END OF IF(MAT.EQ.2) 
ENDIF 

C... 
C... DEISSER AND REICHARDT 
C... 

IF (MIXMODEL .EQ. 'MY AiW. ITER.GT.l AiW. 
. NGEOMTYPE .EQ. 21 .OR. NGEOMTYPE .EQ. 22) THEN 
USTAR = (SIGMA(2)/DEN)"OS 
AMUMIN=DEN*CKA-6.*(RM-RI)'USTAR 
IF (NEL .GE. M S I  .AMI. NEL .LE. IRWTHEN 

AMU=DMAXI(AMU,AMUMIN) 
ELSEIF (NEL .GT. IRM .AND. N'EL .LE. MS2)THEN 

AMU=DMAX 1 (AMUAMUMIN') 
ENDIF 

C WRITE(2,*)'NEL8MSl ,MSZIRM.AMUMIiU,AMV 
C WRITE(2 ,121 )NELJvIS l ,MS2 , IRM~,AMU 
Cl21 FORMAT(lX4I4,16(lX.lPEl1.4)) 



ENDIF 
C 
Cm.- CALCULATE TURBULENT PRANIYlZ NUMBER 
C 

IF(FPROP.EQ.'FDCED')EN 
WTEME'= VIS 
c m M P  = CP 
AKTEMP=AK 
PR = VIS*CP/AK 

ELSEIF (FPROP.EQ.'FiXTB')THEN 
' m m  = VISFflAvE) 
CPTEMP = CPFVAVE) 
AKTEMP = AKFflAVE) 
PR = VISTEMP+CPTEMP/AKTEMP 

ELSE 
VISTEMP = VISF(UELEM(2,WL)) 
CFïEMP = CPF(UELEM(2,NEL)) 
AKTEMP = AKF(UELEM(2NEL)) 
PR = VISTEMP*CPTEMP/AKTEMP 

ENDIF 
IF(IPRT.EQ .O)TH EN 

PRT(NEt)=PR'iü 
ELSEIF(EPRT.EQ. 1)THEN 

PET=AMU/ViSTEMPPR 
PRT(NEL)=2/PET+0.85 

ELsEIF(iPRT.EQ.2)THEN 
PRT(NEL)=l J(0.5882+0.228*(AMU/VfSTEMP)- 

. 0.0441 *(AMUMSTEMP)**2* 

. (1 -DEXP(-S-l65/(AMUMSTEMP)))) 
ELS EIF(iPRT.EQ3)THEN 
iF (NEL .GT. NFEL) THEN 
PRT(NEL)=l+0.855-DTANH(0.2*(YPLUS-75)) 

ELSE 
IF (YPLUS.GT.5.0 .OR. SPLUS.GT5.O)THEN 
PRTY=I +0.855-DTANH(0.2*(YPLUS-7.5)) 
PRTS=1+0.855-DTANH(0.2*(SPLUS-75)) 
PRT(NEL)=PRTY*PRTS/(PRTY+PRTS) 
ELSE 
PRT(NEL)= 1 .O 

ENDE 
ENDIF 
ELSE 
WRïiE(NLG,*)'SPEC!FY PRT (TURBULENT PRANDTL NUMBER OPTION)' 

ENDIE: 
C... 

ALPA(NEL)=ALP 
ALCA(NEL)=ALC 
YA(NEL)=Y 
SA(NEL)=S 
DFPA(NEL)=DFP 
DFCA(NEL)=DFC 
YPLUSA@EL)=WLUS 
SPLUSA(NEL)=SPLUS 
TWSA(NEL)=TWS 
TWYA(NEL)=TWY 
XG-EL(NEL)=XG 
YG-EL(NEL)=YG 

C 



AMUST(NEL) = AMU 
C 
C... CALCLLATE DISTANCE FROM THE WALL 

iF (NEL .GT. NFEL) THEN 
Y?'(NEL)=Y 

ELSE 
YYOJEL)=Y*S/(Y+S) 

ENDIF 
c. .. 

RETURN 
END 




