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Abstract 

This thesis inwstigates the role of preprocessing, rejection classes and sample relabelhg in the classifi- 

cation of convective stonn cells. Ttiis problem is representative of pattern recognitioa problems display- 

ing high data dimensiodity, small sample sets, and imperfect sample labelling. A battery of standard 

classifiers are compared using preprocessing strategies such as interquartile rnembership, principal and 

independent components. Rejection classes uritiate the trade-off between improvement of petfocmancc 

and exhaustive classification; this is accomplished by refwing to assign class labels to samples 'near' 

class boundaries. Classifier specific values are wed to defme these boundaries. Sarnple relabelling is 

based on robust reclassification and median average deviation, fuuy logic and probabilistic leaming. 

This thesis uses meteorological volumetric radar data to analyse the effectiveness of these concepts. It is 

determined that the number of independent components to consider should not be based on a cumulative 

variance in priacipaf components and that interquartile rnembership is more effective with real variables; 

rejection classes pay a bigh price in terms of the number of unlabelled samples although they improve 

classifier performance; ro bust rec I assification consis tently improves cl assi fier performance over a broad 

muge of classifiers. Future validation of the number of event prototypes will confirm the application of 

robust reclassification to this problem. 
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A i 1  the mathematical sciences are founded on relations between physical laws 

and laws of numbers, so that the aim of exact science is to reduce the problems 

of nature to the determination of quantities by operations with numbers. 

- On Faraday's Lines of Force 

James Clerk Maxwell 

Science is built up with facts, as a house is with stones. But a collection 

of facts is no more a science than a heap of stones is a house. 

Jules Henri Poincare 

Life being al1 inclusion and confusion, and art being al1 discrimination and 

selection, the latter in search of the hard latent value with which it alone 

is concerned... 

- The Spoils of Poynton 

Henry James 



Chapter 1 Ovemew 

1.1 Introduction 

Meteorologicai volunetric radar data are used to detect thunderstorms, storm 

events responsible for nearly al1 severe summex weather. Discriminating 

between different types of thunderstorms is a challenge due to the high 

dimensionality of the data, the paucity of labelled data, and the imprecision 

of the labels. Several classification strategies and preprocessing techniques 

are tested to facilitate the discrimination between four types of storm 

events: wind, heavy rain, tornado and hail. 

1.2 Preamble 

Pattern recognition is the study of the classification of physicalobjects by 

"determination of quantitiesM; it is the constructive collection of facts in 

order to best discriminate and select between objects that may superficially 

appear similar. To this end, many algorithms and criteria have been proposed 

to d e t e m i n e  and measure the meaningful structure and organization of data. 

In addition, special techniques have been developed to cope with confounding 

circumstances under which classification must take place. 

1.3 Scope 

The purpose of this thesis is to explore the role of preprocessing, rejection 

classes, and robust labelling in classification systms where the data is 

subject to adverse influences. This thesis considers the case of high data 

dimensionality, a small data set, and imprecise data labelling. 

We examine the role of explicit preprocessing in enhancing the performance of 

decision trees based on C4.S [Mur941 [Qui871 [Sos98l,fuzzy clustering 

techniques [BezSI] [Gat89][Gus79] and mulitlayer perceptron neural networks 

[Rip94 1 [Roh88 f ILip97j . Specifically, we demonstrate dimensionality reduction 



via principal components [ K a r l  ] and independent components [Be1951 [Bel] . 
Robustness enhancement is effected via fuzzy set theory[Zad73], robust 

reclassification [Lau79] [Pi2971 IRou87 1 [Zhu92aJ and probabilistic leaming 

[Agr70]  fGim741 [Gre80]. 

The remainder of this thesis conformç to the following structure, 

Chapter 2 provides an overview of pattern recognition methods including Bayes 

classifiers, decision trees, cluster analysis, and multilayer perceptrons. 

The choice of performance measures is discussed as well as the definition of 

rejection classes. Chapter 3 introduces standard preprocessing methods, 

namely principal and independent components, which maximize the variance and 

non-normality of dimensional sub-spaces respectively. The problem of improper 

labelling is addressed using fuzzy set theory [Zad65], robust 

reclassification [ P i z 9 7 ]  and probabilistic learning [GreSO] . Chapter 4 

discusses radar data processing and introduces meteorological material 

regarding convective storm cells. It also details the characteristics of the 

data used in the real-world experiments , Chapter 5 lists the results by method 

and provides an overall summary of performance. Chapter 6 contains conclusions 

from the experiments and recommendations for future work. An appendix of the 

Matlab code used in this thesis follows. 



Chapter 2 Fundamentals of Pattern Recognition 

Classification is the determination of a mapping 9 from a feature space F to 

a classification space . The feature space characterizes N objects in terms 

of D features, whether of quantity (empirical), quality (heuristic) or both. 

The classification space consists of K points, each point representing a 

separate cIass of objects. Thus, 

(Throughout this thesis the following terms wi11 be used interchangeably in 

order to highlight intuition: classifier and mapping, objects and vectors, 

dimensions and features,) Altemativeiy, classification may be viewed as the 

division of the feature space into K or more xegions, each of which designates 

one of the K classes. These regions are disjoint and cover the  whole feature 

space. For linear classification methods the  boundaries of these regions are 

hyper planes and define decision rules (Fig.1). 

Figure 1. Linear classifier with decision regions 

Some classifiers also define regions to which no class label is assigned. This 

may be due to lack of data from this region or to a dense, quasi-uniform 



population of different classes; these regions are known as rejection regions. 

For example, if the distance from a sample to each cluster center exceeds some 

threshold, the classifier m y  decide to reject any label assignment (Fig.2). 

Figure 2. Rejection regions 

reject 

X 

reject 
O 

class 2 @ 
In order to constnict the mapping O ,  we m u t  Eirst determine a set of 

classifier dependent parameters that we deem to be sufficient. Typically, we 

divide our data set into two subsets, the design set which determines the 

classifier parameters, and the test set which evaluates the performance of 

the classifier in tenns of a predictive error rate. The family of classifiers 

that w e  will use depends upon the kind of a priori knowledge that is known or 

justified (Fig.3). 

Generally, the family of classifiers to be  used is straightforward, though, 

for cornparison, specific impIementations from one or more families may be 

used. When comparing classifiers we should weigh the accuracy of results by 

the number of parameters that need to be  estimated and the validity of our 

assumptions. The robustness of the system is sensitive to the number of 

parameter calculations. 

Conservative design methods include v-fold cross validation (CV). Here, the 



data set is decomposed into v subsets; v classifiers are designed using v-1 

of these subsets with the remaining datum comprising the test set. Leave-one- 

out (LOO) cross validation is the extreme form of this method, designing N 

classifiers with N-1 design vectors with a test singleton. This is usually 

not used for iterative classification methods due to the high computational 

effort required. Often the results of several classifiers are cornbined into 

a democratic vote to assign a label to the test vectors. Classifier design 

may be complicated or protracted by various factors. High dimensionality of 

data requises a highly abstract visualization. Standard domain specific 

preprocessing may introduce more degrees of freedorn. Mislabelled data (or 

outlier inclusion) may bias empirical statistics and distribution estimation. 

Figure 3. Taxonomy of classifier 

( non-par-trie 1 
5 ,  cluster 

a ~ l y s i s  

The following texts are recommended as excellent introductions to pattern 

recognition: [Dud73 1 [Cov91] [HowgO 1 [Pa089 1 [mz88 1 [Kan82 1 [Kit86 1 [You86] . 



2.1 Performance Measum 

Typically, the performance measure used for classifiers is the number of 

correctly identified vectors divided by the total number of vectors. Viewed 

as a function 

entries cm .. [ 111 

[cmij] deno te 

of the confusion matrix CM = P m i j ]  (where diagonal 

represents correctly classed vectors, and off-diagonal entries 

class O. vectors mistaken for class O vectors, 1 S i, j l K ) 
1 i 

2.2 Kappa Score 

However, since each class may have a dif f erent number of training vectors, we 

must differentiate between a poor classifier that assigns most of the vectors 

to the larger class and classifiers that assign most of the vectors in any 

one class to the correct class. In other words, we want to eliminate agreement 

due to chance, This agreement is 

The kappa score [Piz97] incorporates this chance agreement as 

P - P  
O C 

K = ( 4 )  1 -Pc ' 

Note: A kappa score of O denotes agreement strictly due to chance, while K > O ,  

( K < O )  denotes an agreement better (worse) than chance. A de facto standard 

rneasure of confidence in show in Table 1. Alternate performance measures are 

possible by extending the binary classification performance (classed 

correctly or incorrectly) into a continuous degree of classification. Use of 

smooth kernel estimators [Paw88] quantifies the degree of mis-classification 



and places less of a penalty on mis-classif ied objects that are near the class 

boundary . 

Table 1. Kappa Score Confidence 

1 Confidence 1 K range 1 

1 substantial 1 0.6 < ~10.81 

Consider the confusion matrices in Table 2 generated by two hypothetical 

classifiers. Based upon traditional performance measures,P and P 2 ,  the 1 

second classifier appears only marginally more accurate. However, when the 

kappa scores, K I  and K2, are computed, a significant difference is seen. 

Table 2. Poor and moderate classifiers 

assigned m2 Classifier1 
1 

class al 

class O* 

assigned w 1 

85 

15 

assigned a2 

15 

5 

Chssifier:! 

class al 

class 69 

assigned al 

85 

5 



2.3 Bayes classüier 

The Bayes classifier [Dud73] takes advantage of probability density functions 

for each class 

- - 

To classify an object we simply determine the conditional probability of the 

sample x for each class Ok 1 < k l K .  The maximum conditional probability 

denotes the most likely class and determines the assigned label. Given an D- 

dimensional normal distribution, x - N D ( m , Z )  , 

where 

and 

The discrimiant function for class O in logarithmic form is k 

Thus, the Bayes Rule is: 

Decide X E  W if k 



For Gaussian distributions, second order assumptions define alternately a 

linear or quadratic classifier. For equal diagonal class covariance, 

2 Zk ;A O 1 ,  1 S R I  K. the linear classifier foiIows : 

and we decide X E  O if k 

(12) 

For equal a priori class probabilities, the Bayes rule reduces to a minimum 

distance classifier. We also have a linear classifier for equal class 

covariance matrices. If xk = t , 1 5 k S K. (correlated f eatures) 

where 

and 

-1 
Note: The quantity ( a  - b) ( a  - b )  is the Mahalanobis distance between 
vectors a and b. If al1 classes have equal a priori probability, 

vi we have a minimum Mahalanobis distance classifier. 

Unequal class covariance defines a quadratic classifier; 

The added matrix is 



Consider Figure 5 which shows the quadratic decision boundary for a two class 

problem. Note how the covariance affects the boundary, sweeping around the 

class with lower variance. If we suppose that the labels a re  switched f o r  s 

samples near the boundary, the overall effect on the means and covariance 

matr ix  may be srnall. However, the classification rate will have àropped 

significantly. For any classifier, the classification performance ( e r r o r  

rate) has a lower bound of the Bayes rate ( r i s k ) .  This theoretical limit is 

the optimal performance of any classifier f o r  a given distribution. 

Figure 4. Bayes decision region for 2 claas problem 

class 1 
O 

O 

However, in order to impiement Bayes type classifiers, the a priori 

probability density function (pdf) of the vectors must be known. Empirical 

estimation of the pdf may be estimated using the design set and kernel 

estimators e.g. Parzen windows. 



T h e  Parzen density estimate [Je0941 is the sum of kernel functions 9 placed 

at each design sample X . The kernel functions are usually chosen to have such 
rnathematically tractable properties as differentiability or continuity. For 

a design set X with N samples of dimension D, we have the Parzen estimate k k 

Here h is a smoothing parameter that relates to the window size, the space 

under consideration for the estimate of each sample. 

Recall that the risk for a classification procedure is 

K 
(v )  = pklL (y ) fk  ( x )  d p  

k =  1 
The cost or loss matrix defines the relative penalties for 

mis-classification andis produced bymultiplying the probability of t he event 

by the benefit of each event. This allows the effects of decisions to be 

weighed. We consider only the 0-1 loss function def ined by L .. = 0 i = j 
11 

(Lu = 1 i f  j ) and denote the Bayes risk as Ro . Note however that some cost 

matrices are independent of probabilities. Recall Pascal's wager, where for 

any p = probability(Pascalts God exists) > O and the pay schedule of Table 3, 

his decision to live righteously is justified. 

Table 3. Pascrl's Wager Pay Scbeduk 

-- 1 live a nghtm~ life l w  1 -mal1 I 
1 live a wicked life I -OD I + m d  I 



Figure S. Bayes classifier for 2 class problem 

A classifier may be considered in terms of matrix operations where the N D- 

dimensional design vectors X, arranged in a N by D matrix, are multiplied by 

a D by K matrix W such t h a t  the resulting matrix is t h e  N by K classification 

vector 8, The matrix W is the matrix product of the inverse of t h e  design 

matrix X, a D by N matrix, and the N by K target matrix B. The target vector 

th 
of a sample is a row of zeros with a one in the k column to designate class 

O k  

This  results in an algebraically appealing solution that is computationally 

inexpensive, However, if X is not square it is then overdetermined (more 



equations than unknowns). The more general equation then applies; 

w = [n*1'~8 - S B  

X is known as the pseudo-inverse ( P m )  of X. The PINV is calculated using 

singular value decomposition. The pseudo-inverse takes into account only 

global information about the relationship between the feature vectors and the 

classification. Despite this w e w i l l  use pseudo-inverse as a linear benchmark 

for the other classifiers. Figure 6 shows the pseudo-inverse classification 

for random points in [O, 2 1 given the design vectors in Table 4; it also shows 

the discriminating function obtained by taking the class means and assigning 

labels on a nearest centex approach. 

Table 4. Design vector for pseudo-inverse example 

dimension 1 1 dimension 2 ( class 



Figure 6. Pseudo inverse solution to 2 class problem 
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2.5 Decision Trees (ID3 I C4.5) 

A decision tree is a set of inductive rules that discriminate objects based 

on a series of questions regarding f eature values. ID3 and C4.S are supervised 

learning algorithms introduced by Quinian [Qui93l[Qui87] for generating 

decision trees, ID3 concerns itself with non-numeric kategorical/ 

qualitative) data while C4.5 extends ID3 to include continuous features. 

S t rue tuta 

A set of nodes is linked in a tree structure where each node is associated 

with a question or a label, depending on whether it has a successor or not. 

Denote nodes that have a successor as question nodes and terminal/leaf nodes 

as class nodes. Each question node determines its successor based on the 

answer to its question. In this fashion a unique class node in the tree is 

reached; not al1 questions are posed for each datum. The derivation of the 

structure of the decision tree algorithms is based upon the uncertainty of 

each class given a specific feature value. Each question partitions the space 

with a hyper plane; each path from the root node to a leaf node defines a 



convex class region. 

Figure 7. Decision hw 

root noBe 

Figure 7 displays the process of classification used in a decision tree. Each 
node determines which side of its hyperplane the feature value is on; this 
ultimately decides the sample's assigned label. 

The notion of entropy is essential for the development of the discrimination 

made at each node, We follow its def inition wi th the decision tree generating 

algorithm. Throughout this section, ln denotes the logarithrn to base 2. 

Dofiaitioa: Entropy is the measure of uncertainty in a distribution 

P = [pl  p 2 ,  ...pK] of K classes where p is the probability that the sample k 

Nk 
is from class O Here P may be an empirical probability p = - k' k N est imated 

from the data. The entropy of P is 

(If we let - h ( p k )  define the information asraciated vith the occurrence of 

a class O sample, then q (Pl is the average amount of information per class k 



occurrence.) For a uniform distribution, entropy is maximized; each 

possibility is equally likely and the outcome most uncertain. Entropy may also 

be thought of as the information conveyed by a distribution. For example, if 

there are K equally probable events, then the probability p of each is 1 / K  

and the information conveyed by each event is -ln(p) = ln(K). Then if there 

are 16 events, In(l6) = 4 and we need 4 bits to identify each event. 

Gain is often used to rank features for decision tree nodes and is defined as 

the difference between the uncertainty of the distribution P and the 

uncertainty of P given the kpowledge of feature Y. Then 

A ~ ( P , Y )  = rl(p) -W'IY) ( 2 4 )  

The depth of the above tree is directly related to the number of hyper planes 

needed to define a class region and the number of operations needed to 

classify a test vector [Abr63] . 

2.6 Using Gain Ratios 

Note that gain favours attributes that have a large number of values. For a 

distribution A that has a distinct value for each record, then 7l  ( A I X )  is O, 

thus Y ( A , X )  is maximal. We define the gain ratio Y as an extension of the 

entropy gain; 

Ç (X, A) is the information due to the split of X based on the value of the 

categorical attribute A, 



2.7 Pruning Decision 'Lkes 
In the  design of the decision tree, w e  usually continue until the nodes 

contain memhers from only one class. However, depending upon the  distribution, 

this process may result in a tree with long and uneven paths. The tree may 

then be generalized by some form of p m i n g  where two or more leaf nodes are 

collapsed making the higher level node a leaf node. Pruning increases the 

error in classification but also makes the decision tree more stable. Multiple 

trees may be designed using different pruning methods with the majority 

deciding the classification. 

Table 5: Evaluation of ID3 type decision trees 

essentially be recalculated 

Advantage 

I 
r 

Continuous features are intractable with ID3 since each value rnay be unique. 

C 4 . 5  incorporates continuous features by creating a partition based on 

relative magnitude to a specific feature value. 

For the continuous dataset X, X , U E X ,  (24.5 calculates the entropy between 

straightforward to automate 

Disadvantage 

the sets: 

for new data, the tree structure must 

A = {ul(: > 1)) and B = {ul(:< l ) }  . vx 

The partition with the lowest entropy is chosen. 



Table6. ïD3 algorithm 

Stop 1. Calculate initial entropy of the training set, T, containing N k 
vectors f rom each class O 1 ks K , k t  

S t o p  2. Select a feature to senre as the root node/leaf node of the tree. 

i For each feature/attribute A , p = I P ,  partition the data set re1- 
P 

ative to the J attribute values of Q Denote the number of vectors in 
PJ ' 

any one attribute value partition as n PI ' 
ii Denote the number of vectors in attribute value partition a in 

PJ 
class k, k = 1.. .K as n (k) . Evaluate the entropy for this partition as 

pj 

The total entropy over al1 attribute values is: 

iii Select the feature A that yields the greatest decrease in 
P 

entropy : 

ftt Feature A is now the root of the tree, if we are on first 
P 

iteration, or one of J leaf nodes. 

S t a p  3. Iterate Step 2 for each leaf node of the tree until al1 leaf par- 
titions contain vectors from only one class (or, equivalently, until the 
entropy goes to zero) . 

2.8 Fuzy Decision Tree (FDT) 

The FDT algorithm [Sos98] has been modified to deal with continuous data 



slightly dif ferently from C4.5 ; the range is quantized into Q equal partitions 

and the data represented symbolically by the range interval it lies in. The 

partition with the highest gain, o r  gains ratio is then chosen. A shortcoming 

of the current version of FDT is that the intervals are  unif orm, and the numbex 

of intervals constant for al1 feature; intervals may have no entries fox 

highly clustered data and the number of partitions will tend to be sub-optimal 

for some features, Considew the entropy of the f~llowing distribution. 

Table 7. Professions sud characteristics 

Note the conditional probabilities 

doctors 

The uncertainty of a man's profession for both characteristics is: 

We are more likely to be correct in our guess of a man's profession if w e  know 
whether he wears glasses rather than a beard. 

beard 

1 

2.9 Knearest neighbours (KNN) 

glasses 

5 

A majority vote of the nearest data vectors may also be used as a classifier. 

Each test vector is assigned a label based on the class most represented by 

the Knearest neighbours. That is, decide X E  0.  iff 
1 

where O is the class of the lh neighbour and X (x) is the characteristic k 

f unction 



The KNN method is a non-parametric densi ty  estimator and relates to the nature 

of the t m e  pdf. This voting scheme may be rnodified with a weighting function 

such that the s consecutive samples of a class will dominate t samples from 

another class. Various weight families may be of interest. We then decide 

Usually is odd to prevent ties. This method achieves 100% training in the 

trivial case X = 1. Although this classifier uses a linear function of data, 

it generates a complex decision region. It is also non-iterative and thus easy 

to update. F o r  further reference see ICov67j. 

Figure 8. K nearest neighbour discriminant function 

2.10 Cluster Analysh 

Cluster analysis refers to any of a large number of algorithms that identify 

clusters or modes in data sets[Eve93]. This includes bath iterative algorithms 

for quantitative data and graph theoretic methods for qualitative data 



(minimum spanning tree). Both forms assign d-dimensional unlabelled data 

vectors X, 

to C different cluster centers V, 

based on a metric def ined for the space. We concern ourselves solely with the 

iterative algorithms. These algorithms begin by initializing C centers in 

space. Iteration follows as the centers are relocated based on neighbouring 

samples. The distance from each data point to every center defines weights 

which allow closer samples to have a larger impact on the relocation. 

Iterative rnethods may be distinguished by the exact method of center 

relocation (dually, objective functionals determine the formulation of the 

equations and may be used to discriminate): using crisp membership, fuzzy 

membership [Be2811 [Gat89] [Gus791 [Pa1951 or possibilistic typicality 

[Geb] [Kri93] [Kri96]. Intuitively, there are some satisfying results from 

clustering algorithms. For one cluster center and the Euclidean metric, the 

hard C-means algorithm converges to the center of gravity of the dataset 

(minimizing the mean square error). Since the number of cluster centers to 

use is required for most algorithms validity measures to confirm the number 

of cluster centers is essential, 

Generally, one hopes to leam correct data prototypes and identify natural 

subdivisions or modes of the probability density function. Clustering is also 

important for vector quantizers where an optimal many-to-one (region-to- 

point) map is sought for data compression. We now define some terms to 

elucidate the differences between three iterative clustering algorithms. 

Data partition matrices 



For N data vectors and C cluster centers, we define a data partition matrix 

th 
to be the NxC matrix u = [uncl where [uncl is the rnembership of the n 

th 
vector in the C cluster center fPa1951. Note that there are three sets of 

partition matrices: 

the crisp (hard) c partition matrix, 

the fuzzy (or constrained possibilistic) partition matrix, 

and the possibilistic partition matrix, 

Note that HCM assigns each datum exclusively to one cluster. 

FCM generalizes HCM in that it assigns a degree of membership 

in each cluster for al1 data points. While both HCM and FCM may be viewed as 

"pure" data partitioning matrices in that the membership values of each datum 

must sum to one, PCM is a mode-seeking algorithm that measures the typicality 

(possibility) of a vector being assigned to each cluster. The notion of 

typicality is concerned with a slightly different functional and attempts to 

maximize membership while minimizing the unconstrained FCM functional. 



- - 

given: unlabelled data X, C\1 = N 
number of clusters c where 1 ' c ~ N  
fuzzification exponent m > 1 
iteration limit T 

error termination criterion € > O  

objective function J e.g. inter-cluster MSE m 
objective function nom e . g .  Euclidean distance 

errox nom e. g . E r = 1 1 % -  5 -  111 

Step 1 Initialization: choose C initial cluster centers vo = [vl ... vC] . 

Step 2, Iterate: for t = 1 to T 
Update memberships using V with (45) t 2 -  1 

Update cluster centers vt using ut with (46) 

end 

Step 3. Output final centers vjinal with memberships LI final 

It should be noted that PCM has the potential to discover coincident cluster 

centers. This is not necessarily a defect [Kri96]and may serve as a validity 

measure on the number of cluster centers. One may use PCM to discover one mode 

at a tinte and rernove each mode from the data set as the PCM algorithm 

converges. 

The possibilistic objective function is 



( 4 0 )  

where p. >O for al1 i is the bandwidth (resolution) parameter and is estimated 
1 

with the interpretation that B is proportional to the average fuzzy int ra-  
C 

cluster distance of cluster i. Generally Q = 1. 

The fuzzy objective function, 

is minimized subject to 

C ' n c  
= 1 ,  vc, I l c S C .  

c =  1  
(The sum of weighted distances from vectors to cluster centers is minimized 

with the memberships summing to 1.) 

The hard C-means objective function is 

where A = a*, . ..aN] and On € {o., 1  ) . 

Note that initialization of cluster centers maybe achieved by choosing random 

points in the feature space or selecting random design points. 





Figure 9. Membenhip plot for 1-dimensional data 

2.12 Cluster vaüdity 

Various indices exist to confirm the  number of clusters inherent in the data. 

The Xie-Beni validity index, 

appears t o  be more robust than other indices [Pal951 The terms are 

in terpreted as the minimum separation (sep) between cluster centers, 

and the mernbership weighted covariance frorn the centexs, 

The following figures, (Fig.lO-12) show the Xie-Beni validity index applied 

to determining the number of clusters in a synthetic data set. Note t h a t  t he  



index value is relative to each data set; the lowest index indicates the 

minimization of the above functional ( 4 7 ) .  

Figure 10. Clustereà Data 

It is show that 3 clusters best represent the data and that 2 clusters 

represent the data 'bettert (in the Xie-Beni çense) than 4 clusters. Figure 

12 shows areas of influence for each cluster - samples falling within these 
regions contribute most t o  the cluster center location. When the nurnber of 

clusters involved in FCM exceeds the number of inherent clusters (based on 

some index or design) more than one cluster center will be associated with 

one or more classes. The distribution of centers  amongst the classes is a 

function of the random initialization. For this example, further iterations 

would produce different center distributions with a relatively same index. 



Figure 11. Validity index for clugters 

Figure 12. Cluster centers and region of influence for FCM elustering 

The differences between pure data partitioning and mode seeking algorithms 

m a y  be seen in Figure 13. A fuzzy data partition w i l l  assign equal memberships 

t o  the two inter cluster points since they are at the same distance from both 

centers. A possibilistic partition assigns a lower typicality value to the 



intercluster sample furthest away. 

Figure 13. Ciusterhg: typicrlity vs membership 

2.13 Artüicial Neural Network (ANN) 

An ANN is a massively parallel array of simple non-linear processing elements 

(PEI that effect supervised machine learning. Introductions and reviews may 

be found in [Bis941 [Bou961 [Rip94] [Cze94] [Koh88] [Lip97]. Note that the 

ANN conforms to the operational paradigm of biological neurons viz., 

information content is stored as weighted connections between processing 

elements. The ANN is initialized with a set of random weights and presented 

with each of the design vectors. Each FE operates on a weighted sum of inputs 

from the previous layer and passes its output to the next. The overall error, 

that is, the difference between the desired and actual network responses, is 

used to correct the weights. The vectors are presented repeatedly until the 

error stabilizes or until a maximum number of pxesentations is reached. 

The MLP is a supervised fully-comected feedfoward ANN; the output from each 



layer progresses forward through the network (Fig.14). The first layer is 

known as the input layer, the last as the output layer, while the remaining 

layers are the hidden layers. 

MLPs have been applied successfully to virtually every area of pattern 

recognition: character recognition fGos961, speech recognition[McC88], 

satellite imagery [Bou] and medical applications (Due961 . 

Figure 14. Multüayer perceptron architecture 

m output layer 

bidden layers 

input layer 

ANNs are a non-linear classifier due to the non-linearity introduced by the 

P E s  (Fig.15). This non-linearity entails a highly complex error surface and 

the profusion of local minima. A gradient descent technique is used to explore 

this space in search of a global minima for the error function. A common error 

function is the sum of squared errors, 

where d is the desired response and O the network output. 

For a differentiable transfer function backpropagation is used to adjust the 

inter-neuron weights to decrease the network error. The chah nile is used to 

calculate the partial derivative of the error with respect to each weight and 

adjusted as foliows; 



Here, CY is known as the le-ing rate; fl is a momentum term. 

The output of each PE is 

Common transfer functions include a step function/ramp, or belong to the class 

of S-shaped sigmoid functions. N is the number of neuxons in the previous 

layer and 8 is a bias term. One such sigmoid function is the logistic 

func tion , 

M a y  variations to this general outline exist, A momentum tem may be added 

to speed learning, a gain tem, Y, in the logistic function can modify the 

transfer function slope, and an alternate distance metric, like the L nom 1 

or Manhattan distance, may add robustness to the network. The use of bipolax 

transfer functions generally improves network performance since logistic 

functions have small outputs for sample values in the lower percentiles. This 

may bias results. 

Overtraining should be avoided when presenting inputs to the network. 

Essentially the network memorizes the training vectors exactly and has poor 

generalization to any other vector. This may be remedied by reducing the 

number of neurons and training for a longer period. 

The relation between network architecture and convex regions in the solution 

space is well known. A one layer network effects a hyper plane solution, a 

two layer has dis joint convex regions while three may f orm arbitrarily complex 

regions limited only by the number of nodes. Thus a three layer neural network 



is a universal function approximator. We follow the expedient principle of 

designing the parameters for the MLP on a single dataset and applying the set-  

optimal solution applied without further analysis. 

Figure 15. ANN Processing element 

inputs 

r 

2.15 Rejection of Classiûcation 

A study of rejection regions may be found in [Cho701 (Ha971 while the somewhat 

related topic of incomplete pattern vectors is discussed in 

[Kit78][Paw93][Zhu90]. Depending upon the difference in magnitude of two or 

more discriminant functions a reject class may be implemented whenever the 

dif ference falls below some threshold [Chow] . This may be extended to a class 

selective rejection scheme [Ha971 where the classification is excluded from 

a subset of the total number of classes. Alternate rejection criteria exist 

after ranking the classes by a posteriori probabilities [Cho701 such as: top- 

R ranking where the R most probable classes are retained, 1 < R s K , or the  



constant-risk (set of alternatives) approach where the probabilities of the 

R best classes retained accumulate to some threshold. Reject classes minimize 

the error rate given a rejection rate, or vice versa. Class selective 

rejection attempts to minimize the error rate for a given average number of 

retained classes. 

The level of uncertainty in any decision of a classifier may be measured by 

the relative magnitudes in its discriminating functions. In a Bayes 

classifier, we would be dubious of any label assigned when the difference 

between two or more discriminant functions is small and the pdfs are 

empirically based (Fig.16). This idea is impiicit in the membership functions 

of FCM but may be extended by omitting from consideration samples with low 

membership values; or acceptingthe labels of test samples closest to clusters 

with low entropy where the entropy is based on membership values. For ANNs, 

one may consider the use of one output neuron per class and then threshold 

the difference between the output of the largest two largest output neuxons. 

One advantage of this rejection critexia is its flexibility and 

applicability to any classifier. 



Figure 16. Naturai rejection region 

We define as cluster-entropy the entropy of each cluster center based on its 

members (for hard C-means) and a subset of its members(FCM), Thus, our 

empirical estimates of probability density are the relative proportions of 

design vectors in each class associated with a particular cluster. Overall, 

this has the flavour of a Parzen window approach - probabilities for the 

conditional association of vectors in clusters may also be derived. Baçed on 

statistics of the cluster-entropies, we may define the reject ale: if x 

belongs to a cluster whose entropy is higher than a threshold T, we will reject 

making a classification decision. Thus, we avoid making high risk decisions 

and consider the true probability distribution (in a pointwise approach (it 

is discrete in the number of clusters which are the number of samples of the 

p d f } .  By these means we hope to achieve a higher rate of correct 

classification on a smallex subset. Use of the mean and median cluster 

entropies as rejection thresholds is considered in [Aie991 while we consider 

labelling a specified percentage of test samples. 



Consider two hard C-means clusters that contain the following design vectors. 

Let the tuple [ x ~ ,  X2 , .. . xn] denote the number of vectors associated with 

a specific cluster with X .  from class O 1 S i a n .  
1 i '  

Table 10. Entropy of clusters 

1 eluster e I cluster C2 I 

Suppose a lso  that the rejection threshold is 0.8. 

Then we would refuse to assign the label O to any test vector that is closest 1 

cluster entropy 

to (has maximal membership in) cluster c since it exceeds the entropy 1 ' 

threshold, and classify as O any vector that is closest to cluster c 2 2 

0.9457 

We may a l so  consider the entropy of various subsets of samples assigned t o  a 

0.7793 

cluster. The cardinality of samples per class exceeding a specif ic membership 

(FCM) may be used as well as weighting this cardinality by class a priori 

probabilities. Indeed, the a priori probabilities may define for each class 

a unique membership threshold fo r  cardinality calculations. Consider the 

following FCM cluster with membership values for classes O and CO2 1 

respectively. Let be the minimurnrnembership value considered for entropy min 

Table 11. FCM cluster rejection 

7- 1 rnembership v a l k  1 

calculations, 

a2 sarnples 
I 

L 4 9  0.54 0.56 0.61 0.71 



Table 17 p lo t s  the ciuster entropy versus p min ' 

Figure 17. Cluster entropy versus pmin 



Chapter 3 Preprocessing Techniques 

Preprocessing in the context of pattern recognition is data manipulation that 

enables a less complex classifier to be used. Functions or transformations of 

the original data are often sought that aaximize some measure of separability 

e.g. interclass variance while minimizing intra-class variance or maximizing 

the variance in a subspace. Altemativeiy, the data may be decomposed into 

various bases. Standard preprocessing techniques include the transfoms of 

Hough[Ben97], Gabor [Por88], Fourier [Krz88] and normalization [Les83]. 

Feature extraction and selection [Kit861 [Fax841 may also be included at this 

stage where not only the original data are considered, but al1 the foms 

generated by the above transfoms and functions. Preprocessing is done 

implicitly in some complex classifiers (eg. the output from each layer in an 

ANN) though explicitmanipulationmay lead to new insight regarding the nature 

of the phenomenon (this could also be accomplished by analysing the neural 

weights of each layer) . 



Figure 18. Concentric distributions 

Figure 18 displays the exchange of data manipulation for a less complex 

classifier. The original data forms a convex region (classl) and a 

torus(class2). The problem is not linearly solvable. However, by taking the 

square of each original variable, the pxoblem becomes solvable by a classifier 

of reduced complexity. 

Alternate Measures of Separability that may be maximized (minimized) are: 

the scatter matrix, 

the within cluster scatter matrix, 

the between cluster scatter matrix, 

and t o t a l  scatter matrix, 



Preprocessing may be done on the total data set (before designating design 

and test set), class wise on the design set, or on distinct clusters in each 

of the classes. For example, one could calculate separate cluster means, 

standard deviations, independent and principal components. This leads to the 

design of L local classifiers; the domain is partitioned into L regions and 

a unique classifier designed for each region. This may exploit different 

distributions densities and allow low complexity classifiers to be used for 

most of the sample space. 

3.2 Reducing Dimensionality 

Dimensionality reduction has often been motivated by psychological and visual 

limitations. The human mind is most adept when dealing with 5 to 10 features, 

while our vision is practically restricted to two dimensions (in the sense of 

viewing exhaustive dimensional information). There is also a rule of thumb 

for inducing meaningful relationships: have at least 5 samples/dimension 

[~aw99]. Some attempts have been made to represent high dimensional objects 

in two space, namely Andrew's plots [Krz881 and Chernoff faces [Che73]. 

Therefore an intuitive understanding is soughtwith a relatively small number 

of features. Leaving graphical approaches, we focus here on the uncorrelation 

and the independence of variance. This processing results in new features 

which are a weighted combination of original features, e.g. principal and 

independent components. 



3.3 Principal Component Analysis (PCA) 

Principal component analysis [Kr2881 calculates the distribution of the 

sample variance among the D features. The D principal components are 

projections of the original features ont0 orthogonal axes. The components are 

ordered by variance such that the first principal component has the largest 

possible variance. Furthex components maximize variance subject to the 

condition that they remain uncorrelated to al1 previous projections. 

Mathematically, principal components are the eigenvectors of the covariance 

matrix; their ordering corresponds to the magnitude of their respective 

eigenvalues. For X, an N by D data matrix, with D by D sample covariance matrix 

S, the principal components 

y = [ y  y yD] are linear transformations of the original 1' 2.'. 

where ai = [ail, ai2, ...aiD] 

eigenvalue of S. Analysis 

is the 

of the 

eigenvector corresponding to the id larges t 

magnitudes of the coefficients in the 

eigenvectors of principal components often isolates meaningful relationships 

between physical features. Note that al1 the original features should have 

comparable variance. Therefore, we presuppose some scaling, standardization 

or normalization, A scree plot may be used to determine the number of 

principal components to consider; it plots the number of components versus 

the total percentage of accumulated variance, A point of inflection denotes 

the point of diminishing xeturns (optimum number of components) vis-a-vis 

total variance, However, the discriminatory power of the features may not be 



related to its variance. 

Figure 19. Variance aot directly related to discrimination 
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3.4 Independent Component Analysis (ICA) 

A stronger constraint on the feature variance is statistical independence: 

the joint density must be the product of the marginal densities . ICA (robust 

or non-linear PCA) determines a basis of dimension d < D 



[Be195][BelJ [Van98][Lee99a][H~~96]. ICA is used in blind source separation 

and blind deconvolution [Be195], and feature extraction 

[Bel97 1 [Hux96] [Ray971 . Of ten neural networks are used to compute independent 

components [Hyv96][Hyv97]fKar97][KarT]. For our purposes, we consider the 

following problem: we observe samples £rom a linear combination of independent 

signals and want to estimate the independent signals . Let s = CS1, s2...sq] be 

q statistically independent sources. The obsenred samples are denoted X = 43 

where 4 is a mixing matrix. The columns 4 are known as the independent 

component basis vectors (for feature extraction the columns are also 

features). Using higher order assumptions, ICA estimates the independent 

sources s given a required number of independent components. Usually q l D .  

Since uncorrelatedness is a prerequisite for statistical independence, PCA is 

often used to sphere (uncorrelate/whiten) the observed samples X ;  it is also 

used to estimate the number of independent components. For a low noise level, 

the energy of x is concentrated in the first few principal components. For 

independent components, a linear (sphering) transformation V is determined 

such that for y = Vx, E{yyt} = 1. 

I -- 
2 

This is accomplished by setting V = Q where E {XX} = Q is the correlation 

matrix for the original data X. 

Then, 

W e  now need only determine the orthogonal matrix V instead of the general 

matrix A. An orthogonal transformation (a joint density rotation) is now 

sought to maximize the non-normality of the marginal densities. Generally, a 

kurtosis maxima or minima is used to used as a criteria of independence. The 



kurtosis (fourth oxder cumulant) for a zero-mean random feature x is 

Note: the kurtosis of gaussian distributions is zero, while sub-gaussian 

(flatter) distributions, e.g. bimodal, have negative kurtosis while super- 

gaussian (peaked at zero with heavy tail) distributions have positive 

kurtosis, Recall that non-gaussian distributions contain significant 

information in higher order statistics. For sub(super)-gaussian distributions 

the kurtosis is maximized (minimized) and the solution may be found by 

standard gradient descent techniques. (The non-normality of the distribution 

is always maximized.) Note that only one independent gaussian component may 

be estimated; by the central limit theorem a linear mixture of independent 

random features is more Gaussian than the original features. Compared to the 

components determined by PCA, independent components are statistically 

independent and not necessarily orthogonal (Fig.20). 

Figure 20. Independent and principal components for a distribution 



3.5 Improper Labclling 
There are many ways that errors may contaminate data. To increase the accuracy 

of performance in the face of inaccurate labels, w e  may, of course, revert 

back to an unsupervised recognition method. However, thiç may be extreme for 

only a partial lack of knowledge. We assume that most of the labels are 

correct, This leads to a robust reclassification of the samples using the 

median average deviation, fuzzy labelling (modelling the uncertainty of the 

labels), and probabilistic Iearning. Literature references for fuzzy logic 

include [Be2871 [Kau75] [Ped] [Zad] while robust reclassification is 

discussed in [Lau79] [Piz97] [Rou87] [ZhugSaI . 

3.5 .1  Robuat Raclmrificatioa (RR) 
RR deals with outliers, noisy data and the effects they have on the estimation 

of classification parameters, particularly standard deviation and range. Its 

exploits the robustness (and simplicity) of the median to decide whether 

samples are likely to belong to a given distribution. This confirmation of 

the expert classification of the training data is known as burnishing a 

tarnished gold standard. Rather than cul1 the deviant sample Erom the training 

data set, we reassign it, The rnedian of the absolute deviation (MAD), 

medianlx - median (x) 1 
f (x) = 

0.6745 
t (61) 

is a robust estirnator of the  standard deviation. (Note: the constant 0,6745 

is a scaling factor chosen such that 7(x) approaches the standard deviation 

as the erxor distribution becomes more gaussian.) Extending this concept for 

D-dimensional samples , D>1, xj = [x j l ,  xj2...%] , j = 1 ... N of class O k ,  we k 

define each component of Z k as 



A feature of 1. is declared a class O feature i outlier if 
J k 

Here, Z is a constant, 22 1 , and medianki is feature i in the class O k 

medoid. The membership of sample x in the class Ok medoid is 
i 

where 

Class re-assignment of training vector x Erom class O to class O will 
j i i 

occur whenever 

Alternate formulations exist for the reclassification criterion. For 

rnultivariate sarnples, w e  may form a reject class for any sample that has T 

dimensions exceeding the product 2 7 .  This may be done both class-wise or 

overall. Note: 99% of normal samples lie within 2.5 MAD of their median. 

Figure 21 shows the reclassification of samples given different thresholds Z 

(=1.2 and 2). The circle denotes the closest radius where reclassification 

will occur. In this example, only samples from class CD1 are reclassed. Note 

also that samples £rom m l  outside the circle perimeter and on the far side 

from the class O will not be reclassed. As the Z incxeases, we expect the 2 

number of gaussian samples reclassified to decrease. 



Figure 21. Robu~t Recîassiecation Z = 1.2 and Z=2 

FST [Zad65j incorporates uncertainty into mathematical models. The crisp 

(hard) degree of membership ({0,1)) in a set is extended by FST to include 

al1 membership values in [0,1]. In this way linguistic terms with implicit 

uncertainty e.g. 'axoundt and 'close to' , are easily modelled. A fuzzy set is 

defined by its membership function, a non-negative value over a certain 

domain; typical mathematic expressions of this fuzziness involve gaussian or 

triangular fuzzy sets (Fig.22). Contrast intensification, 

is often used to accentuate the difference between membership values below 

and above 0.5. Here = (x) is the membership value of x .  Subsets of 

elements which al1 have a membership value of at least CL are also used to min 

differentiat objects in a fuzzy set. Consider the fuzzy set 

A = (0.6, 0.65, 0.75, 0.9). Denote the subset of A with minimal membership 

Pm in as A . Then AOe6 = [Al , AOe7 = 10.75 0.91 and = r0 .91.  
h i n  



Figure 22. Membership functions 

IQ partitions the data domain into fuzzy sets using overlapping membership 

functions to reflect the quartile distribution of a feature [Piz97]. The 

original data value is encoded depending upon its degree of membership in each 

of four fuzzy sets; the fuzzy encoding is utilized for each feature with 

feature specific parameters i.e.fuzzy sets (Fig.23). IQ is robust against 

outliers and transfoms the data into a more tractable classification space 

(a space which conforms to certain outlier assumptions). The number of 

partitions is decided ad hoc in the f o m  of a 1 of p intervalization, There 

are also various methods to determine what intemals to use. A general fuzzy 

membership function f. may be considered as the trapezoid characterized by 
1 

its width and end points ( 6 8 ) .  For w=O we have the farctiliar triangular fuzzy 

set. The  membership value at the intersection of two fuzzy sets is usually 

the same for al1 fuzzy sets in an encoding, 

Let x be the unencoded feature and a (b) its minimum (maximum) value. Denote 

as w the width of the fuzzy membership function and 



(L 

ri (li) the r ight  ( l e f t )  boundary of t h e  fuzzy set. The equation for a fuzzy 

set  is then 

Figure 23. Fuzzy encoding with 4 fuzy sets 

variable / feaîure range 

interquartile range 

1 

data range 

Note: when b > 0.5 there is a 1-1 mapping between t h e  encoded and unencoded 
value (no extra degrees of freedom are introduced). 

One method of detennining appropriate values for [. and r. is to use percentile 
1 1 

values of the sample distribution. Percentile values refer to the relative 

frequency distribution and the proportion of the number of features t h a t  lie 



th 
to the left (right) of some point. For example, the P percentile is 

charactesized by having P% of the total number of samples to its left and 

(100-P)$ of the samples on its right. For small data sets, this may be 

simplified by ranking the feature values by magnitude and selecting for 

i = 1 ... P , the element with rank 

th 
as the i percentile value, Calculating boundaries of the fuzzy sets: 

and 

3.6 Probabiiistic Leaming 
Probabilistic learning refers to learning where the class labels have been 

assigned with some degree of error. This problem, known also as the 

probabilistic teacher or stochastic labelling, is discussed in [Agr70], 

[Gim74] , [Gre80] , [KriSO] , [Sha72] and [ T i t 0 9 ]  + This approach may be used with 

unlabelled data where relative frequencies are known or to compensate for 

tarnished gold standards (domain expert e r x o r ) .  The first step in 

probabilistic applications should be to estimate the nature of this 

mislabelling and then estimate parameters for classification. 

3.7 Probabilistic Teacher - No a priori icnowledge 
For probabilistically labelled data with no a priori knowledge of functional 

forms we refer to [Ore801 - We denote the data set of N vectors of D dimensions 

by X, the teacher label as 0 ,  and the txue label as O .  Let the probability 

that the teacher assigns label 0 to a member of class O.  as pkj , the teacher k I 

class probabilities be pt and the teacher class densities be ftk. The k 



conditional probability p is assumed known. Recall that the class 
ki 

probabilities p and class densities f are unknown and will be estimated k k 

from the data. 

3.8 Density Estimates 

W e  assume the joint probability matrix P = [pkj] is non-singular and has as 

its inverse Q = [qkj] . Then the teacher density for class i is 

with teacher probability 

The correct density is 

with correct probability 

Now the product of the correct density and probability yield 

An estimate of the teacher class probability, Pt  is the ratio of vectors k t  

that the teacher ascribes to class i to total vectors. We then estirnate the 

true class probability as 

To estimate the teacher probability density, we partition the data into K 

subsets where each subset is declared by the teacher to corne from a single 

th 
class. We denote the estimate of the teacher density based on the k subset 

as ftR and estimate the true density for class k as 



Thus, the  pattern recognition procedure is to decide class W k such t h a t  k 



Chapter 4 Storm Ceii Data 

4.1 Radar Decision Support System 
A prerequisite to short term weather prediction is the ability to classify 

severe weather cells at different stages in their life cycles. The Radar 

Decision Support System (RDSS), developed by InfoMagentics Technologies 

Incorporated, is used by Environment Canada to process wide beam radar returns 

across Canada. RDSS maintains a database of weather cells that meet a minimum 

reflectivity threshold (47dBZ) which is an indicator of storm severity 

[Kec94]. For an overview of fuzzy and neural network techniques applied to 

meteorology see [Pi2951 [Lem801 [Lakg71 [Imy92] [Eag831 [Dos941 [Den951 [Bla] 

4.2 Radar Processing 
A radar data processing system conducts a volume scan by stepping a 

continuously rotating antenna through a series of elevation angles at regular 

intervals. Subsystems exist that allow operational meteoroiogists to focus 

their attention on regions of interest, known as storm cells, within the 

volurnetric radar scan, Refiectivity averages per square kilometer are used to 

form the Adjusted Equivalent Reflectivity (AER) and Constant Altitude Plan 

Position Indicators (CAPPIS), The AER is used to prepare pxecipitation 

accumulations by smearing the radar return values by motion vector, This 

interpolates the ce11 sampling for integrated liquid calculations. A CAPPI is 

a horizontal slice of raw radar data. Other important measurements for storm 

ce11 characterization are the horizontal (vertical) reflectivity gradients, 

absolute value of spatial rate of change between neighbouring reflectivity 

values, the height of the absolute maximum reflectivity, and the largest 

reflectivity value found anywhere in vertical col= Horizontal (vertical) 

profiles are also used. 

It is dif f icult to classify detected storm cells into specific types of stom 

events due to a number of confounding factors. Storm cells have an amorphous 



and cornplex three-dimensional structure as well as a vague evolution. The 

nature of the rotating antenna causes the acquisition of the data to be 

incomplete. Also, the verification of the ground truth of the severe weather 

event is uncertain. The data itself may be suspect; high reflectivity values 

may be caused not by events but by the beam being bent until it hits the ground 

(which can give a high return) or through an error in the  data collection. 

The sampling rate of these cells i s  once every five minutes, with the 

reflectivity values spread out in tirne over the five minute interval as the 

radar adjusts its azimuth, This is sufficient to capture the dominant features 

in most heavy rains and winds; h a i l  and tornadoes have substantially shorter 

life cycles and features may not be most clearly depicted (cf, Table 6). 

Table 12: Temporal and spatial characteristics of severe events 

tanporal range spatial range Meteo rological event I 
. . 

Heavy rain 1 5-60 1 

Shear Zone 1 10-30 1 lx10 

Tornadoes 

Gust Front 

Mesocyclone 1 15-60 

When a storm ce11 is found, a number of parameters known as products are 

derived from the  volumetric data, See Table 7 for a complete listing. Each 

ce11 is characterized by a 60 by 60 by 21 volume of reflectivity values (dBZ) , 

5-15 

5-30 

0.5 x 0.5 

1 x30 



derived products, and the affirmation of heuristic criteria. (Note that the 

actual ce11 is sometimes a small portion of this volumetric cube and that a 

high percentage of the reflectivity values may be nul1 due to radar blind 

zones. This occurs whenever the storm cell is near the radar and extends over 

the 19 degree azimuth.) Each ce11 is associated with other cells in  the same 

vicinity and the. These groupings of similar cells are denoted as a matched 

group. Fast work on the raw volume scans used histograms based on the rnedian 

reflectivity value (dBZ) of a radar slice of the ce11 [Piz95]; features 

included for a 1995 Vivian of (18 hail/7phail/10 torn/24 ptorn) mean, median, 

variance, skewnesss, Pearson's second coefficient of skewness, quartile coeff 

of skewness (=rneasure of asymmetrywithin first and third quarters), kurtosis. 

Results indicated an 80% classification rate, 

Table 13. RDSS Derived Features 

location 

core size 

severity heuristics 
[scl ,w~ * ,w2] 
core tilt angle, orienta- 
tion 

core tilt vector 

velocity 

Range 



Note that 3 and # denote the positive real and integer numbers respectively . 

Heuristic outputs are àiscrete numbers indicated by a range and {0,1} denotes 

a binary Eeature. 

4.3 Characteristics of Convective CeUs 
One of the dominant features of convective cells is a bounded weak echo region 

(BWER); this cavity in a field of high returns 

indicates a strong updraft. An updraft may collapse to form a microburst 

(wind), grow to a supercell, or dissipate gradually. 

Vertically Integrated Liquid (VIL) is also an important factor. 

Vertically integrated reflectivity (VIZ) is calculated by integrating c o l m s  

of returns and converted to a liquid density estimate (VIL). The familiar 

anvil shape of the cumulus nimbus storm is defined as overhang; a cornparison 

of radar reflectivity values is taken at two given heights. Both must meet 

separate thresholds. Supercells are associated with a variety of severe 

weather and are distinguished by size and higher reflectivity from ordinary 

convective cells. Severe events axe distinguished by relative ce11 motion 

orthogonal to dominant wind patterns (tornadoes), extreme reflectivity values 

(hail) and general magnitude. 



Figure 24. Thundentorm evolution 

Figure 24 shows the typical evolution of a thunderstom radar echo (a) into 
a bow echo (b ,c)  and into a comma echo(d). Dashed lines indicate the axis of 
gxeatest potential for downbursts. Arrows indicate wind flow relative to the 
storm. Note regions of cyclonic rotation (C) and anti-cyclonic rotation (A); 
both regions, especially C, are capable of supporting tornado development in 
some cases. 

Figure 25. Microbunt cross-section (Caracena 1982; 1987) 

Figure 25 shows a cross section of the conceptual vortex ring mode1 of a 
microburst. The hazard to small aircraft is clear. Wind gust potential (WGP) 
identifies locations where strong d o m  drafts are or may occur through 
calculations involving VïL and echo top. 



4.4 RDSS Data 

The data used by RDSS includes both static and dynamic measurements, raw 

reflectivity values and inferred characteristics. This includes ce11 

parameters and heuristic flags. 

Flags are binary values that indicate whether an event has occurred or whether 

another field is valid, Velocity set Flag - indicates that rate of change 
calculations are valid since more than one ce11 belongs to the matched ce11 

file, Supercell Flag - Cell meets the heuristic criteriz defined for a 

supercell. See the supercell severity rating. Join (Split) Flag - have two 

distinct cells joined (split) from the last sampling? 

Heuristic criteria are functions of ce11 size, volume, vertically integrated 

liquid (VIL); thresholds used are discussed in the literature [Wes] for both 

supercell and microbursts. Both çupercell analysis and wind gust analysis 

calculate separate echo top profiles. An echo top shows the height of storm 

formations; a column of relectivity is scanned d o m  until a threshold is 

exceeded or the bottorn of column reached. The height of the first threshold 

exception is recorded. 



Figure 26. Convective celi cross section 

Figure 26 shows a cross section of a convective ceIl exhibiting a BWER and 
overhang . 

4.5 RDSS Storm CeU Classification 
From the static and dynamic measurements of the ce l l ,  RDSS compares each ce11 

to  heuristic cr i ter ia  that define supercells, 

microburst conditions, and hail probability. Based upon which event severity 

level the ceTl meets the cell is stored with any associated series of cells 

in an overall severity directory, The overall severity is composed of a 

logical combination of individual event severities and is used to advise the 



public. Unfortunately, sorne weather manifestations thought severe ore not 

given an RDSS severity rating because they do not meet the minimum 

reflectivity value for RDSS archiving. For post event analysis exact times 

are not known, Additionally, several cells or series of cells may be found in 

the same locale and time interval. 

4.6 Schedule Correlation 

Class labels are assigned by a labelling algorithm. This includes correlating 

a schedule of observed storm events (including geographic location, duration 

and time of origin, and meteorological characteristics) with storm cells f ound 

in the radar scan within a the and distance radii. As this schedule will 

contain events observed by the general public (apart from meteorologists and 

climate observers), the descriptions may not be completely accurate and hence 

the class labels rnay be imprecise. Also, in a series of cells, the actual 

event may not be distinguishable from non-severe radar images. 

Alternate Iabelling strategies 

Methods to deal with the unverifiability of ground truth include the 

following: 

i) Label al1 files in each matched ce11 with the event type 

(hail, tornado, wind, rain) of the nearest scheduled event. 

ii) Use only the ce11 chosen as the single event ce11 to train the classifier 

as a prototype (with or without random noise). 

iii) The ce1i.s can be labelled with a fuzzy label based on their distance in 

tirne and/or location to the ce11 chosen as the most likely event cell. The 

use multiple fuzzy labels may be implemented by foxming a conditional 

probability matrix of events. The probability that events follow each other 

or are simultaneously manifested would be invaluable for a fuzzy labelling 



scheme and would allow one to label a ce11 as, e.g. 0.7 tornado and 0.6 hail. 

Figure 27. A Mgh precipitation (HP) storm 

Figure 27 shows a high precipitation storm. A schematic view is seen in (a) 
with (b) showing the visual characteristics of such a storm viewed from the 
east to southeast . In (a) regions of radar ref lectivity are coloured according 
to intensity. Scalloped lines and violet shading indicate the region of main 
updraf t (U) . Surface inf low is indicated by an arrow. Frontal symbols indicate 
location of gust front. Features in (b) include overshooting (overhang) top 
(O), back-sheared anvil (B), wall cloud (W) (often obscuredbyprecipitation), 
tail cloud (T), inflow band (I), and regions of heavy precipitation (Pl. 



For simplicity and due to lack of information on such a conditional 

probability matrix, we use only labelling schemes i) and iii) . When comparing 

scheduled event locations and times to those of the RDSS matched cells, a time 

radius of 40 minutes was used and a location radius of fifty kilometres, The 

rather large location radius (RDSS locates the event to within seconds of a 

degree) are due to the notorious imprecision in the scheduled time of the 

events, An increase in both the considered location area and time interval is 

meant to include events both before and after their peak severity and to 

register valid events that have error in both scheduled fields. 

4.8 Experimental Data Set 
This thesis will concern itself solely with the data set generated by the 

Environment Canada wide beam radar in Vivian, Manitoba fox the months May 1997 

through September 1997, RDSS collected approximately 200 files with an average 

of 6 cells per file for t h e  months July through September in 1997. It should 

be noted that the majority of these cells met the RDSS heuristic for its lowest 

severity rating, SO. Approximately 5% of the matched cells were rated S3. The 

corresponding schedule of events listed less than 100 confirmed events in t h a t  

interval. Correlation between the schedule of events and the RDSS matched 

cells reduced this data set to the cells corresponding to 43 severe and non- 

severe weather events. These matched cells contain 185 associated cells that 

rnay or rnay not have been verified as one of the four event types (cf. Table 

14). 

Tabk 14. Number of Celis per event type 



Table 15 shows the position of the most likely event-cell from each rnatched 

ce11 sequence. When this position differs from the number of cells, the most 

likely position i s  indicated first, followed by the number of cells in its 

matched group in parentheses. 

Table 15. Most likely cells from matched groups 

1 Event Type 1 Most likely cell in matched ce11 sequence 1 
Tomado 

r 

1 2 1 ~ ( 3 )  3(6) I(S) 4 ( 5 )  2(s) 
\ 



Chapter 5 Results 

We begin by considering the data set composition according to event type. Next 

we consider the effect on the data set of xobustreclassification. Classifier 

specific parameters are mentioned and results listed. The results from the 

experiments are organized by method (FDT,FDTg,PINV,MLP,KNN,FW, MLP with 

fuzzy labels, FCM with rejection) . Each section displays t h e  kappa score for 

classification on the test and design sets using t h e  preprocessing strategies 

listed in Table 17. Overall cornparisons of classifiers and preprocessing 

follow . 

5.1 Ceneration of training and test sets 

The design set was composed of 137 samples chosen randomly from the data set. 

Because of t h e  variance in the number of samples per class, approximately 75% 

of the samples from each class were included in the design set. The artifice 

of equal samples per class may be achieved by resampling, adding the multiple 

samples from the srnaller classes with additive white gaussian noise, was 

considered but the noise characteristics are not justified, 

Table 16. Design and test set nembership 

Design set 1 18 1 20 1 74 1 25 

Each classifier was presented with 10 unique design sets and the overall 

classification rate recorded. Both the design and test confusion matrices are 

show as are the traditional and kappa scores for design and test accuracy. 



Table 17. Preprocessing strategies 

p2 1 principal compooent 

P3 I independent components 

p4 / robust reclassification 

Robust Reciassification Matrices 

For a given threshold 2 ,  we list al1 samples that would be relabelled by robust 

reclassification where the parameters are calculated on the  whole data set. 

F o r  experimental purposes, 7 was calculated with the design set only and a 

threshold of Z=2.5 used. 

Table 18. Robust reclassification Z = 1 

reclassed \ original 1 tornadoes 1 wind 1 hail 1 rain 

tornadoes 

Table 19. Robust reclassification Z = 2 

wind 

hail 

rain 

O 

8 

28 

12 

reclassed \ original 

tomadoes 

8 

wind 

hail 

O 

22 

4 

tomadoes 

O 

4 

8 

30 

2 

5 

O 

4 

wind 

7 

O 

22 

O 

O 

hail 

3 

rain 

1 

3 t 

24 1 O 28 



Table 20, Robust reclassification Z = 2.5 

wind 

Use of rejection classes was done only with FCM and MLP. 

Thresholds for rejecting classification are discussed in their respective 

sections. Fuzzy labels were used only with the multilayer pexceptron. 

Due to time constraints, probabilistic learning was not implemented although 

other probabilistic methods [Gre80] were tested and performed poorly. 

reclassed \ original 

tornadoes 

5.3 Notes on preprocesshg with diffennt classi84rs 

hail 

4 

For most classifiers (MLP,PINV,FCM,KNN), accumulated variance determines the 

number of components to keep; however, this criterion would restrict our 

decision tree to a depth of one leaf. This would compare the methods poorly 

as the decision tree is not iterative (extra dimensions do not slow it dom 

to the same extent as FCM and MLP). One possibility is to use an oblique 

decision tree that would simultaneously consider several Eeatures. Thus, for 

FDT (with and without gain) we use 4 components for both PCA and ICA. Due to 

time constraints, some methods were evaluated less than 10 times. This is 

obvious from the confusion matrices but is not noted in the overall 

cornparison. This is done because the results are typical (in the information- 

theoretic sençe) . 

rain 

1 

- - -  

tornadoes 

O 

SA Specific classifier parameten 

G d  

8 

S 4 1 Fuzzy âacimiorr t r n  
Each f eature was partitioned into 6 sets [Sos98] . An obvious improvement that 



should be made is to compose partitions based upon the discrete nature of the 

feature; n-ary features may have at most n partitions, 

The following architecture was used for the MLP. 

Table 21. MLP architecture 

1 Architecture Layer 1 number of neurons 1 
1 input layer 1 22 (88) 1 
1 Hidden layer 1 1 30 

( Hidden layer 2 1 20 

This architecture was chosen by trial and error, The error of the network was 

observed for convergence to a zero error. No network achieved 100% on the 

design set; overtraining can not be the reason behind poor generalization. 

Although we could theoretically achieve the same results with two hidden 

layers, the speed of training would suffer. The network was presented with 

the design set in the same order for 500 epochs , At this time, if the confusion 

matrix associated with the design set exhibited diagonalization, training 

teminated and the test set was evaluated. This happened infrequently and the 

number of training sessions (each of 500 epochs) was limited to 20 sessions. 

Table 22. MLP parameters 

1 training function 1 gradient descent I 
1 performance function 1 mean square error regularized 1 
1 distance function 1 Manhattan distance 1 
1 transfer function 1 hyperbolic tangent sigmoid 1 

- - - - -- - -- 1 training sessions 20 500 epoch sessions I 



-ta: mean squared error regularized considexs both the mean square error and 
the m e a n  squared weights and biases of the net layers. 

The Xie-Beni validation index used to detennine the number of clusters. For 

the initial design set, the data was clustered with K M  and the validity index 

calculated for 10 through 20 clusters. The maximum validity value determined 

the number of clusters used in al1 further clustering. 

Table 23. FCM parameters 

1 fuzzif ication factor 

Farimm i terations t o  converge Iqo 
1 error thseshold to terminate 1 0.00000~ I 
1 i n i t i a l  centers 1 random training sampleç 1 

Figure 28. Xie-Beni Vafidity index (fuzzification factor =2) 



5.5 Fuzy  decision Tree - no gain 

Figure 29. Results for testhg and training sets ushg FDT 

0.8 - 

ICA 
1 1 

Table 24: Training and test confusion matrices FDT no pre Pl 

Table 25: Tkninlng and tmt coiifusion matrices FDT PZ 
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Table 27: lkaining and test confusion matrices FDT P4 

Table 26: 'baining and test confusion matriees FDT P3 

Tabk 28: 'Ikaining and test confusion matrices FDT P5 
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Fuay Decision T h e  with gains ratio 

Figure 30. Results for testing and training sets using 
- 

I 

Table 29: Training and test confusion matrices FDT gain P l  

Table 30: Training and tcst confusion matrices FDT gain PZ 
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Table 31: Training and test confusion matrices FDT gain P3 

Table 32: 'hainhg and test confusion matrices FDT gain P4 

Train 
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wind 

hail 

rain 

Table 33: Training and test confusion matrices FDT gain P5 
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f seudo inverse 

Figure 31. Results for testing and training sets using PINV 

Table 34: Training and test confusion matrices PINV Pl 
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5.8 MLP results 

Results fo r  tes t ing  and training sets using 

Table 39: Training and test confusion matrices MLP Pl  

Table 40: Training and test confusion matrices MLP P2 
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Table 41: Training and test confusion matrices MLP P3 

Table 42: Traiaiag and test confusion matrices MLP P4 

Train 

tornado 

wind 

hail 

Table 43: Training and test confusion matrices MLP P5 

rain 8 6 372 O 30 114 36 

tornado 

160 

18 

30 

Train 

tornado 

wind 

hail 

rain 

wind 

20 

160 

58 

tomado 

608 

136 

74 

1 04 

Train 

tomado 

wind 

hail 

rain 

hail 

168 

194 

1330 

wind 

94 

388 

50 

120 

tomado 

284 

24 

2 

10 

rain 

12 

28 

62 

hail 

18 

16 

164 

18 

wind 

24 

294 

46 

O 

Test 

rain 

100 

120 

72 

658 

hail 

40 

80 

1416 

14 

tomado 

2 

2 

6 

Test 

rain 

12 

2 

16 

476 

winâ 

22 

22 

90 

tomado 

154 

58 

40 

8 

Test 

hail 

92 

92 

306 

wind 

28 

84 

38 

42 

tomado 

14 

8 

78 

28 

min 

24 

24 

98 

hail 

18 

4 

14 

12 

wind 

60 

44 

96 

O 

min 

80 

74 

48 

258 

hail 

34 

80 

274 

92 

rain 
I 

32 

8 

52 

60 



KNN with K = 1 

Figure 32. Rcsuits for testing and training sets using KNNl 
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Table 44: Training and test confusion matrices KNN K = 1 Pl 
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Table 46: Training and test confusion matrices KNN K = 1 P3 

Table 47: Training and test confusion matrices KNN k = 1 P4 
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Figure 33. Results for testhg and training sets using KNN3 
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Table 49: Training and test confusion matrices KNN k = 1 Pl 

Table 50: 'kainhg and test confuaion matrices KNN k = 1 Pt 
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Table 51: Training and test confusion matrices KNN k = 1 P3 

Table 52: Training and test confusion matrices KNN k = t P4 
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FCM results 

Figure 34. Results for testing and training sets using FCM, c= 16 
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Table 54: Training and test confusion matrices FCM P l  

Table 55: Training and test confusion matrices FCM PZ 
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Table 56: Training and test confision matrices FCM P3 

Table 57: 'Iiaining and test confusion matrices FCM P4 

Tabk 58: Training and test confusion matrices FCM P5 
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5.12 Fuzzy Label Results 
The fuzzy event labels were used only with MLP as backpropagation lends itself 
to weighted desired outputs. Recall that the fuzzy event l abe l  bas a non-zero 
value in its desired event output where the magnitude of the response is 
determined by the relative distance in space and time from the schedule of 
events . 

Figure 35. Results for testing and training sets using MLP with hiuy labels 
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Table 59: Training and test confusion matrices MLP fuzzy labels P l  

Table 60: Training and test confudon matrices MLP fuzzy labels PZ 
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Table 61: Training and test confusion matrices MLP fuzzy labels P3 

Table 62: Training and test confusion matrices MLP fuuy labels P4 
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5.13 Rejection dasses 

Limits were put upon the number of samples that could be rejected; we required 

that 80% of the training vectors remain classified by the threshold. FCM 

rejection using the  mean and median cluster entropy rejected more than half 

of the samples and achieved a moderately improved classification IAle991. 

A cluster entropy threshold was chosen by constraining the FCM classifier to 

assign labels to 80% of the  samples. Test samples which were assigned (had 

the highest membership) i n  c l u s t e r s  with entropy exceeding the thresholdwere 

not classified. Due to time const ra ints ,  other methods of rejection ( C L m i n -  

subsets) were not irnplemented. 

Table 64: Cornparison of rejection class with FCM 
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Similarly to the FCM case, we define a threshold on the design set such that 

80% of the design vectors will be accepted by the threshold. Alternatively, 

the percentage kept may be defined on the test set. We determine the threshold 

by rneasuring the dif ference between the two largest positive MLP outputs, 

This difference is sorted and the (floor(0.8*N) ) t h  value chosen. Hexe N is 

the  number of training samples. 

Table 66: Cornparison of rejection class with MLP 

no rejection 1 0.4792 
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Table 67: Test and reject confusion matrices MLP 
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5.14 Probabilistic Results 
Due to time constraints, probabilistic learning results were not included. 

Preliminary studies showed that the nearest neighbour probabilistic scheme 

was comparable to the KNN in accuracy and that the kernel estimators performed 

poorly. The following matrices represent the probability that an event of type 

A is actually labelled type B. This information is necessary for the 

probabilistic methods and should be determined empirically. 

Table 68. Class joint probabuity of mislabelled simples 1 

1 tornado 1 wind 1 hail 1 min 

tornado 1 0.8 1 0.2 10 1 0  

rain 1 0  1 0  1 0.2 1 0.8 
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5.15 Overail cornparisons - classiûers and preprocessing 

Figure 36. Best PreProcessing per Classifier 
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Note that the results listed above for FCM use rejection classes. Accuracy of 

100% was achieved (on 12% of the test samples) with FCM re ject ion classes so 

a direct cornparison should not  be made. See Fig.38. 

The dominance of robust reclassification as a preprocessing method is clear 

though one should consider the assumptions behind reclassification. They may 

or may not  be justified. 



Figure 37. Best Ciassifier per PrePmcesshg 
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Figure 37 shows the most accurate classifier for each preprocessing method. 

The performance of the PINV classifier with no preprocessing demonstrates the 

loss of information that may accompany dimension reduction. 
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Chapter 6 Conclusions and Recommendations 

6.1 Conclusions 
Convective storm cells can be classified to a fair degree using standard 

classifiers and RDSS-derived features. Improvements in classification 

accuracy may be realized through the use of rejection classes at the expense 

of the number of samples classified. ûverall, preprocessing speeds 

convergence and removes noise from a data set (IQ) (PCA) (ICA) . Dimensionality 
reduction preprocessing may semove information content (ICA) and methods for 

determining the number of components to use should be domain specific and open 

to alternate interpretation. Equating the number of independent components 

with the number of principal components for some accumulated variance showed 

very poor results. A more accurate use of independent components may involve 

estimating independent stom types and allowing for more than one prototype 

for each event type. For example, there may be three unique hail thunderstoms 

prototypes. Independent components could then he used to identify these 

prototypes. 

Robust reclassification may be a valuable tool if empirical studies confirm 

the number of prototypes for each class. Again, reclassification makes certain 

assumptions about the distribution. If we err in estimating the number of 

clusters per class, reclassification will obscure class characteristics. A 

positive feature of robust reclassification is that test samples which would 

be reclassed may be flagged and this additional information used for analysis. 

Non-linear iterative methods (FCM/MLP) may converge to local minima. This may 

be addressed by: multiple runs with random initial conditions, adaptive 

architectures, and expansion of the data set. A non-linear non-iterative 

classifier is an effective tool to benchmark more complex classifiers. Local 

minima (poox accuracy relative to the non-linear classifier) may be identified 



and the iterative process restarted with a new random initialization or the 

architecture may be adapted. 

6 1  C-i8on of clri8ifiorr 
The failure of such celebrated techniques as FCM and MLP to discriminate with 

ultimate accuracy for al1 types of preprocessing lies in the selection of the 

number of clus ters and architecture. Improvements that should be made follow . 
The implementation of an adaptive not necessarily fully connected network may 

discriminate with a higher accuracy; loss of full connection will allow local 

refinements to the search space and speed training. Adaptation will augment 

the existing network architecture with neurons at error prone positions. The 

distinguishing performance of the pseudo-inverse shows that global 

information is applicable to the classification of these cells; this 

information could be used awtiliary to a neural network. 

6 A . 2  Crmauiion of  ptrprocamring 
Robust reclassification allowed almost al1 classifiers to improve their 

performance more than other preprocessing alternatives (including no 

preprocessing). An improvement on the application of robust reclassification 

that would hold more weight would be to cluster each class individually and 

define outliers for each class cluster. This would remove the presupposition 

that the distributions are unimodal and would provide a higher degree of 

tractability for overlapping distributions. 

6,2 Recommendations 
Based on preliminary studies not listed, augmenting the techniques used in 

this thesis with data of ce11 raw reflectivity values will improve 

performance. This data is seen to encapsulate the local features of such cells 

and provide independent data for ce11 discrimination. The dataset used in this 



thesis should be expanded and such techniques as FCM and MLP refined. This 

study was constrained by the number of ce11 prototypes thought to exist. 

Expansion of the data set may confirm or correct our presuppositions. 

6.3 Future research 
Future research will be conducted along several lines. Modifications to 

pattern recognition techniques used in this thesis include: 

- using alternate labelling schemes. Work on tirne averaging and storm type 
averaging to compose ce11 prototypes proved unsuccessful. Consideration of 

windows of cells around the scheduled event may be fruitful. 

- use of an adaptive and/or parsimonious network. 
- incorporate pruning of decision trees in order to generalize. 

- distinguish metrics and distance measures for various data types (real, 

integer, n-ary) . FDT should be updated to allow different number of partitions 

for different data types. 

- alternate rejection methods and fuzzy labelling. Constraints upon the nurnber 

of test samples may be defined instead of requiring a percentage of design 

samples to remain classified under the chosen thresho1d.Various membership 

functions for fuzzy labelling of the cells should be considered as well as 

multiple type labelling; assigning non-negative labels for two or more storm 

types. 

- incorporate other current features of RDSS, namely the ce11 product maps. 
This data is currently available and provides information regarding the RDSS 

products such as ce11 VIL, BWER, etc ... This intxoduces a methodology for 
cornparison since each ce11 product map has a unique size. 

- record the classification rate for each sample explicitly when n of N 

matched cells are in the training set of a classifier. Any correlation would 

suggest designing classifiers based on n samples from each matched group. 



Expansion of the dataset may be realized to include data £rom event-years and 

radar archives. Unsupervised learning and clustering of al1 the cells that 

RDSS collects, regardless of ground t ru th ,  may provide adequate ce11 

prototypes, Self-organising feature maps (SOFM) and group method of data 

handling (GMDH) [Far841 are other possible classifiers as are radial basis 

and probabilistic neural networks. 

Currently tirne series analysis on the evolution of a storm ce11 is being 

conducted as well as the use of wavelets to analyse the raw reflectivity 

values and histograms of the cells. 

Collaboration with the National Severe Stoms Laboratory in Norman, OK to 

procure empirical measures for mis-classification tables has also been 

initiated. Simulated annealing as an alternate method of labelling has also 

achieved prornising initial results [Li99J. 



7.0 Appendix: Matlab Fites 

The following files are from a pattern recognition toolbox developed and 
collected for this thesis. Matlab commands for each preprocessing rnethod are 
listed in full as well as implementations for most of the classifiers. The 
FDT code is written in C by Dr. Z. Sosnowski while the independent component 
module uses version 3.3 of mica(), available from SALK (http:// 
www.cnl.salk.edu/-scott/ica.html). The files are organized as follows: 
preprocessing, classifier code, miscellaneous functions. A brie£ description 
accompanies each file; complete documentation does not yet exist. 

.................................................. 
% ICA matlab commands for Sload 
% performs independent component analysis using 
% rwiica( ) from SALK 
%%%%%%%%%%%%%%%%$%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

if SPHERE 
train, = train-*Sphic; 
end 

% dataset is now ranked by xow labels IC 
train = abs([train-*Wic8 train(:,col)J); 

% convert test set 
test = abs([test(:,l:col-l)*Wicl test(:,col)]); 

ica-mod-completed = 1 
newlength-of-vectors = num-C + 1 
wcol = 1:num-C 
zcol = 1:num-C+1 

return 
........................................... 
% PCA module using  Matlab's svd PCA 
% dataset is [row=no,dataentries,col=no.of dimensions] 
% where the last column is the class label of the data 
% data is already normalized 
%%%%%%%%%%%%%%%%$%%%%%%%%%$%%%%%%%%%%%%%%%%%%%%%%%% 
% choose the number of components through a cumulative variance 
% defined by percentage-of-var 

% derive param 
label = train(:,23); 
train- = txain(:,1:22); 

if firsttime 
n u e  = scree3{train-,percent-of-var); 

end 

min-frac = 0.000000001; % include al1 and 



% select only num-C 
[train-,mean,tr,std-tr] = prestd(train,' 1 ;  
[train-,Xmat] = prepca(train_,min,frac); 

train, = train,'; 
train = train,(:,l:num-C) ; 

train = [train label]; 

test, = test(:,l:22); 

for i = l:length(std,tr) 
if std-tr(i) == O 
std-tr(i) = 1; 
end 
end 

for i = 1:ntest 
test-(i, :) = (test,(i,:) - mean-tr') ./std,trl; 
end 

test, = test-*Xmat'; 
test = [test-(:,l:num_C) test(:,length(zcol) 11; 

clear train, 
clear test, 

return 
%%%%%%%%%%%%%%%%%$%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% scree plot - 
% pass dataset (train) and percentage of variance to keep 
% provides a discrete scree plot for the principal components of a given 
% dataset 
% min-frac is the minimuni threshold for variance 
%%%%%%%%%%$%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

function [num-C] = scree(smalldata,percentoE-var) 

[row,col] = size(sma1ldata); 
points = zeros(1,coU; 
decr = 0.01; 
min-frac = .99; 
done = 0; 

while -done 

[ptrans,transMat] = prepca(smalldata',minnfrac); 
fnew-nm, col11 = size (ptrans ; 

if new-nm > 0 & points(new-nu) == O 
points(new-num) = -frac; 

end 



min-frac = min-frac - decr; 
if min-frac < O 
done = 1; 
end 

end 

k  = 1; 
sump = 0; 
while sump < percentof-var 
sump = sum(points(1:k)) ; 
k = k + l ;  
if k == col-1 
sump = -1 
end 
end 

if sump == -1 
n a  = col; 

else 
num-C = k -1 

end 

return 
%%%%%%%%%%%$%$%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% module for IQ, interquartile encoding 
% pass train and test subset and Nt the niunber of partitions 
% use ONLY train set to calculate interquartile thresholds 
% vectors = data set including column of labels 
% N = number of regions to split data into ( e.g. for quartile, N = 4 )  
% out = encoded dataset 
% partition = values that separate quartile regions ... 
% LRlim = left and right lirnits of each fuzzy membership function 
........................................................... 

function [train,test,gartition.LRlim] = iqnodl(train,test,N) 

vectors = train; 

label-tr = vectors ( : , col 1 ; 
label-ts = test ( : , col ) ; 

fpq = fopen('partitions,IQt , 'wb'); 
partition = zeros(co1-ltN+l); 

for i = 1:col-1 % do for al1 dimensions less tag 

% calculate thresholds for data ( quartile, etc.. measurements ) 
clear Q; 
Q(i,1) = min(vectors( :,il 1; 
Q(i,N+l) = max(vectors(:,i)); 



% partitions are based on distribution 
data = sort(vectoxs(:,i)); 

incr = (ntrain+l)/N; 
fprintf(fpq,'data points chosen are : ' 1 ;  

for j = 2:N 
Q(i, j) = data(ceil(incr*(j-1)) 1 ;  
fpxintf(fpq,' %d ltceil(incrf(j-l)) 1 ;  
end $ j = N  

partition(i, : )  = Q(it : )  ; 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
for j = 1:N 
left,lim(i, j )  = (3+Q(i,j) - Q(i,j+l) ) / 2 ;  
right-lim(i, j) = (3*Q(itj+î) - Q(i,j)) 1 2 ;  
end 

% print partition for reference 
for j=l:N+l 
fprintf(fpqtl $f ',j, Q ( j ) ) ;  end 
fprintf(fpq,'\n\n fuzzy domain lirnits: \n'); 
for j = l:N 
fprintf(fpq,' %f %f n left-lim(j),right-lim(j)); end 

% ensure that al1 Q are distinct 
for kk = l:N+1 
nb(kk) = length(find(Q(i, : )  == Q(i,kk) ) 1 ;  
end 
if max(nb(kk) > 1) 
fprintf(' equal consecutive Q\nl); 
end 
%%%%%%%%%%%%%%%%%%%%%%%$%$$$$%%%%%%%%%%%%%%% 

for k = 1:ntrain % for every training vector 
clear x; x = vectors (kt i) ; 

f o r  j = 1:N 
u ( j )  = O; 

% each partition (Fuzzy Encoding) 



end 
end 

end 
end 

$ x within limits 
% j = N  

end $ k = ntrain 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%$%%%%%% 
% insert test into cycle 

for k = 1:ntest % for every test vector 
clear x; x = test(k,i); 

for j = I:N 
u(j) = O; 

% each partition (Fuzzy Encoding) 

if u(j) > 1 
u ( j )  = 1; 
elseif u (j ) c O 
u(j) = O; 
end 

end 
end % x within 1imits 

end % j = N  

out-ts (k, l+ (i-1) *N: i*N) = u; 

end % k = ntest 

end % num of dimensions i = col-1 

train = [out label-tr] ; 
test = [out-ts label-tsl ; 

return 
%%%%%%%%%%%%%%%%%%%$$%%%%%%%%%%%%%%%%%%$$%%%%%%%%%% 
% robust reclassification - MAD median average deviation 
% see newcelIs/mad.m for module 
% alternate formulations exist - see paper 
$ default coeffecient is 2.5 (=> 99 % of normal data included) 
% perfonn analysis on original data values ( see data variable ) 

[row, col] = size (data) ; 
rrlabeis = data(:,col); 

% calculate tau and medians 



tau = zeros(nclasses,col-1); 
med = zeros(nclasses,col-1); 

for i = 1:nclasses 
list = find(data(:,col) == il; 
for i = 1:nclasses 
list = find(data(:,col) == i); 
tau(i,:) = mad(data(list,l:col-1)); 
med(i, : ) = med2 (data(list, 1:col-1) ) ; 
end 

% calculate membership in class medoids 
for k = 1:ncells 
D = zeros(l,nclasses); 
for j = 1:nclasses 

fox i = 1:col-1 
iEabs(data(k,i)-rned(j,i) )<=Z*tau(j,i) %seethesisRR 
D ( j )  = D ( j )  + l/(l+abs(data(k,i)- 
end 
end 

end 

% reclassify object 
for j = 1 :nclasses 
if D ( j )  == max(D) 
rrlabels(k) = j; 
end 
end 
end 

% reassignment 
% compute statistic with only robust 
% write numbers of reclassed samples 

labels 
to file 

xeclassed = zeros(nc1asses); 
rrconftr = zeros(nclasses); 

for j = 1:nclasses 
list = find(data(:,col) == j); 
for k = l:length(list) 
if ( rrlabels(list(k)) -= j) 
reclassed(j,rrlabels(list(k))) = reclassed(j,rrlabels(list(k) 1 )  + 1; 
rrconftt(rrlabels(list(k))) = rrconftr(rrlabels(list(k))) + 1; 
end 

end 
end 

for j = l:nclasses*nclasses 
fprintf(frob,'%d ',reclassed(j) 1 ;  
end 

fpr in t f  (frob, ' \n' ) ; 

return 
%%%%%%%%$%%%%%%%%%%%%%%0%%%%%8%%%%%%%%%%%%%%%%%%%%% 



%%%%%%%%%%%%%%$%%%%%%%%%%$%%%%%%%$$%%%%%%%%%%%% 
% multilayer perceptron ( or ff net) 

Sout = nclasses; % number of output neurons determined by 
% number of classes 

%S3 = O; 
%S4 = 0; 

FI = 'tansig'; 
PR = [real(min(dataset(:.wcol))); real(max(dataset(:,wcol))) J ' ;  

P = train(:,wcol)'; 
Tn = traintarg'; 

if S2 == O & S3 == O 
net = newff(PR,[Sl Sout],('tansig1 'tansig')); 
elseif S2 > O & S3 == O 
net = newff(PR,[Sl S2 Sout],{'tansig' 'tansig' 'tansig')); 
elseif S2 > O & S3 > O & S4==0 
net = newff(PR. [Sl S2 S3 Sout],('tansig' 'tansig' 'tansig' 'tansig')); 
else 
net = newff(PR.[Sl S2 S3 S4 Sout],('tansig' 'tansig' 'tansig' 'tansig' 
' tansig' 1 ; 

end 

mynetparam 

% set labels to fuzzy labels 
if Fuzzlab 
for i = 1:ntrain 
Tn(:,i) = Tn(:,i)*flabeltr(i); 
end 
end 

net = init (net ; 

old-confl = zeros(nc1asses); 
statick = 0; 
done = 0; $ train until training confusion matrix is diagonal 

%%%%%$%%%%%%%%%%%%%%%$% training loop 
while -done 
[net, tr] = train (net, P, Tn) ; 
Ao = sim(net, P) ; 
check = maxrowrbf(Ao',nclasses); 
[confl] = confuse3(check,conftr,nclasses) 

if kappa(confl) > 0.8 1 count > 40 
done = 1; 
end 



% count number of time training confusion matrix is static 
if old-confl == confl 
statick = statick + 1; 
else 
statick = 0; 
end 

i f  statick > 5 
'statick greater than 5 sessiosnt 
done = 1; 
end 

count = count + 1; 
old-confl = confl; 
statick 
end 
........................... training loop 

Pts = test(:,wcol) ' ;  
Ts = test(:,limit) ' ;  

A = sim(net,Pts); 
outmod = maxrowrbf(A',nclasses) ; 
[confS] = confuse3(outrnod,confts,nclasses) 

kappa ( confl ) 
kappa ( conf2 

cmtr(:,:,xs) = confl; 
cmts(:, : ,xs)  = conf2; 
ovcmtr = ovcmtr + confl; 
ovcmts = ovcmts + conf2; 

Save net 

return; 
%%%%%%%$%%%%%%%%%%%%%%5 
% PINV 

[row,col] = size(train); 
weights = pinv(train(:,l:col-l))*traintarg; 

% cleans up matrix of output values 
out = test(:,l:col-l)*weights; 
[outmod, nguessl] = maxrowrbf (out, nclasses) ; 

% calculate percent of correct classifications 
check = train(:,l:col-l)+weights; 
[chechod,nguess2] = maxrowrbf(check,nclasses); 

[conf2] = confuse3(outmod,confts,ncIasses); 
[confl] = confuse3(checkmod,conftrInclasses); 

return 
................................................... 
% k nearest neighbors for training and test set 
% given training set, for each test vector determine the 
% k nearest neighbors and assign the majority class 



clear dmark 
clear dmark2 

for i = 1:ntrain 
f o r  j = 1 :ntrain 
dmark(j) = dist(train(i,wcol),train(j,wcol) ' 1 ;  
end 

àmark2 = sort (dmark) ; 

% train set 
.................... 
% consider h u m  neighbors 

nvote = zeros(l,nclasses); 

f o r  j = 1:knum 
loc = f ind (dmark == dmark2 ( j ) ) ; 

nvote(train(loc,zcol(length(zcol)))) = nvote(train(loc,zcol(length(zcol)))) 
+l; 

end 

for j = 1:nclasses 
if nvote( j) == max(nvote) 
senatorW = j; 
end 

end 

end % i = ntrain 

% test set 
%%Mi%%%%%%%%%%%%%%%% 
for i = I:ntest 

for j = 1:ntrain 
dmark(j) = dist(test(i,wcol),train(j,wcol)'); 

end 

dmark2 = sort (dmark) ; 

nvote = zeros (1, nclasses) ; 

for j = 1:knum 
loc = find(dmark == dmark2(j)); 

nvote(train(loc,zcol(length(zcol)))) = nvote(train(loc,zcol(length(zcol)))) 
+l; 

end 

for j = 1:nclasses 
if nvote( j) == max(nvote) 
senator(i) = j; 
end 

end 

end % i = n tes t  

[conf2] = confuse3(senator,confts,nclasses); 



retum 
%$%%%%%%%%%%%%$%$%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% hard or fuzzy c-means ( k-means ) 
% Fuzzy c- means clustering based on Bezdek 1995 (IEEE FS vol3 no31 
% p is the dimension of vectors 
% n the nunber of vectors 
% x = vector, v = cluster center, u = degree of membership to cluster 
% parameters c = number of clusters 
% e r r o r  and distance nom 
% T = itexation limit 
% err = error threshold 
% m = exponent , generally m = 2, ( or 1 < m < 5 1 

limit = zcol(length(zcol)); 

n = ntrain; 
x = train(:,l:limit-1); 

% select centers from al1 classes 
% replaces ss = randperm(ntrain1; 

initcenters 

clear vold 
if RAND-CENTERS 

for i = 1:c 
vold(i,:) = x(ss(i),l:length(zcol)-1); % xandn(l,length(wcol)); 
end 
noise = rmdn (size (vold) ) /10O; 
vold = vold + noise; 

else B choose centers based on class type 

end 
done = O ;  i = 0; 

'running fuzzy c-means' 

while ( -done) 

i = i + l ;  
$i/erriter 

calcu ; 
calcv; 

E ( i )  = sum(swn(v~iew(:,wco~) - void(:,wcol)) 1 ;  
vold = vnew; 

% if no vector clusters to any of the new centers, place this center 
% vector in the largest heterogeneous class offset from that center 
% checks purity, and gets count of classes per cluster 

checkpop 

if (abs(E(i) ) < err 1 i > erriter) 
done = 1; 

end 



end % while 

% evaluate £cm : for each class, determine which cluster they dominate. 
% if two classes share a cluster, -> contention 

centers = vold; 
[cluster-validity-index] = XieBeni(train,centers,u') 

num = conftr + confts; 
modd = maxrowrbf(u,c); 
modd-tr = modd; 
modd-ts = zeros (1, ntest ) ; 

getcount 

f cmevall 

cmtr(:, : ,xs) = confl; 
cmts(:,:,xs) = conf2; 
ovcmtr = ovcmtr + confl; 
ovcmts = ovcmts + conf2; 

return 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
confuse3.m 
% takes target and actual vector and return confusion matrix 

function [confusion] = confuse3(act,num,nclasses) 

confusion = zeros(nclasses); 

start = 1; 
last = num(1); 

for k = 1:nclasses 
for i=start:last 

for j = 1:nclasses 
if (act(i) == j); 
confusion(k,j) = con£usion(k,j) + 1; 
end 
end 

end 

start = last+l; 
if k-= nclasses 
last = last + num(k+l); 
end 
end 
return 
%%%%%%%%%%%%%%%%%%%%%%%$%%$%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
fcmeval .rn 
% evaluation method for fan; take max rnembership value and assign hard label 

set1 = 1; 
clusterclass 
confl = confusion; 



setl = 0; 
clusterclass 
conf2 = confusion; 
%%%%%%%%%%%%%%%%%%%%%%%$%%%%%%#%%%%%%%%%%%%%%%%%%%%%% 
clusterclass .m 
% uses cluster information to classify vectors 
if setl 
vectors = train; 
[nvectors,colJ = size(vectors); 
count = count-tr; 
conft= conftr; 
else 
vectors = test; 
[nvectors,col] = sizetvectors); 
count = count-ts; 
conft = confts; 
end 

[c, col] = size(centers) ; 

conft = zeros(1,nclasses); 
for i = l:nclasses 
conft(i) = length( find(vectors(:,limit) == i ) 1 ;  
end 

for i = 1:nvectors 

for j = î:c % number of clusters 
dtov(j) = dist(vectoxs(i,wcol),centers(jIwcoi)'); 
end 

for j = l:c 
if dtov ( j ) == min (dtov) 

out (i) = centerclass ( j ) ; 
clusterassigned(i) = j; 
pos = j; 

end 
end 

end 

[confusion] = confuse3(outrconftrnclasses); 
p4 = sum(diag(confusion))/nvectors; 

$ calculate the entropy of each cluster 
meminc = max(count~tr(:,l:c))./sum(countttr(:,l:c)); 
pops = sum(count,tr); 

% REJECT OPTION 
% apply Bayesian approach with threshold for rejecting vector 
% valid vectors = O if memnic = mean(meminc) for al1 i 

per changes number of vectors kept' 

n-keep = f loor  (per*nvectors ) ; 
Bp4 = O ;  



Bvalid = 0; 

if setl == 1 
notgood = 1; 
tcheq = 0.9; 
while(notgood) 
poss = find(meminc > tcheq); 

if sum(pops(poss)) >= n-keep 
notgood = 0; 
else 
tcheq = tcheq - 0.005; 
end 
cleas poss; 

end 
thresholdB = tcheq; 
end 

for i = 1:nvectors 
if meminc(clusterassigned(i)) > thresholdB % don ' t  reject ! 
Bvalid = Bvalid + 1; 
if vectors(i,limit) == out(i) 
Bp4 = Bp4 + 1; 
end 

end 
end 

off = 1; 
for i = l:nclasses 
list = find(vectors ( : , limit) ==il ; 
conftsR(i) = length(find(meminc(clusterassigned(list))~threshol~) 1 ;  
outR(off:length(list)+off-1) = out(list1; 
off  = off + length(1ist); 

end 

if setl. == 1 
TRassign = clusterassigned; 
else 
~Sassign = clusterassigned; 
end 
clear clusterassigned 
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