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ABSTRACT

Several problerns encountelecl in geornechanics, eùergy resource explorations,
seisrnolog¡ biomechauics, etc. involve the study of cleforrnations ancl stresses in
a rnedium cotnposed of a solid skeleton with fluicl-saturatecl por.e spaces. S¡ch a
medium is cornmonly known as a poroelastic material. Although, the theoretical
foundations to clescribe the behaviour of poroelastic rnaterials have been in exis-

tence for many years' their applications to analyze complex problems encountered in
engineering pÏactice, especially under dynamic loadings, have been atternptecl only
in lecent yeal's. Motivated by the relevance of theory of poroelasticity to the mocl-

elli[g of practical problems encounteLed in several clisciplines, this thesis presents

Gteen's fttnctions (funclamental solutions) ancl a bounclary eleme¡t solution scherne

as effective tools for analysis of quasi-static, time-harmonic ancl transient p¡oblems

involving homogeneous and multi-layered poroelastic media.

A set of analytical general solutions for governing equations of a poroelastic
mediurn with compressible constituents ale presentecl explicitly for B-D quasi-static
and 2-D dynamic (time-harmonic and transient) problems by using appropr.iate i¡-
tegral transfolm techniques. These general solutions are usecl to clerive Green's

functions corresponding to quasi-static ancl clynamic loacls, ancl fluicl souÌces ap-
pliecl at a finite depth below the surface of a homogeneous poroelastic half-space.

An exact stiffness matrix method basecl on analytical gener-al solutions of a ho-

mogeneous poroelastic rnedium is presentecl to compute 3-D quasi-static ancl 2-D
clynamic Green's functions of a multi-layerecl poroelastic half-space. Explicit so-

Iutions for stiffness matrices of a iayel with a finite thickness and an unclerlying
half-space are presented in appropriate integral tlansform clomains. Displacernents
and pore plessure at layer interfaces are considerecl as the basic unknowns in the
present stiffness method whereas the layer arbitrary coefficients are chose' as basic
unkûowns in the conventional methods. The significant aclvantages of the present
stiffness matrix scheme over the existing solution schemes are cliscnssecl. Selectecl

numerical lesults for horrogeneous and rnulti-layerecl poroelastic half-spaces sub-
jectecl to surface/buriecl loadings and fluicl sources are pr.esentecl to portray the
influence of poroelastic material parameters ancl other governing parameter-s o1 the



resporìse.

An ¿ccurate indirect bounclaly ilteglal eqnation scheme involving Green's flnc-
tions derived in this thesis is presented to analyze bounclary value problems i'volvi'g
holrogeneous and layered poroelastic infinite ancl serni-infinite meclia. The preselt
indirect boundary element scheme is developed on the basis of loaclirrgs ancl a fln-
id soulce applied on an auxiliary surface definecl interior to the surface on which
the boundary conditions are prescribed. The analysis is concluctecl in the Laplace

domain for quasi-static and transient ploblems, ancl in the frequency clomain fo¡
time-harrnonic problems, respectively. The numerical irnplementation of the bouncl-

ary element scheme is plesented. The accuracy ancl the numerical stability of the
present scheme ate velified by consiclering a set of boundary value problems (quasi-

static, time-harmonic ancl transient) for which analytical solutions are available.

The cousolidation of a rigid spheroidal anchol and the clynamic response of a semi-

circular tunnel with a rigid wall are investigatecl to clemonstrate the applicability
of the present scheme to analyze practical problerns.
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Chapter 1

INTRODUCTION

1.1 General

The classical theory of elasticity has been used extensively in the past to a1-

alyze elastostatic and elastoclynarnic problems in geomechanics (Poulos and Davis,

1974; Gibson, Ig74; Selvaclurai, 1979; Luco, lg82; Gazetas, 1983 ancl Wolf, 1985).

Traditionall¡ field equations have been formulated on the assumption that the soil

meclinm is a single-phasecl elastic solid. However, geomater.ials are often two-phaserl

materials consisting of a solid skeleton with voids fillecl with water.. Such materials
are comrnouly kuown as poroelasti,c materials (see Fig. 1.1) and widely considerecl as

a much more realistic representation for soils and rocks than icleal elastic materials.

Naturally, water-saturated soils uncler an externally appliecl loacl settle gracll-
ally with time. At the instant of application, the loacl is almost totally carr.ied by

the pore water since the watel is neally incornpressible when comparecl to the soil

skeleton. The pressure th¿t increases in the pore water clue to the exter.nally applied

load is called ercess pore presszre because it is in excess of the initial pore water
pressru'e under i'n si'tu conditions. Thereafter, the excess pore pressure becornes

graclually clissipated as the pore water starts escaping frorn the voicls. This r.esuits

in an increment in stresses in the soil skeleton ancl a recluctiou in the volume of soil

ürass. This phenomelton is known as soil consolirlati,on and it is completecl whe¡
the excess pore ptessule is equal to zero. When the volnme recluction in a rnaterial
undet an appliecl load is equal to the volume of pore fluicl clrainecl out it is callecl

a material with incompressible constituents. The incompressible constitue¡t moclel

is a good approximation fol consolidation of water-satulatecl soils (e.g. clay ancl

sancl) but for the case of porous locks, the compressibility of the pore fluicl as well
as the solid constitnent should be consiclerecl. In recent yeals, consicler.able atten-
tion has been directed towarcl the development of advancecl theories ancl solutio¡
algorithrns (analytical and numerical) for stress analysis of poroelastic materials
since idealizations adopted to study sevelal problems encounterecl in geomechanics,



eneÌgy resotlrce explorations, earthquake engineering and biomechanics often leacl

to boundary value problerns involving poroelastic meclia.

1.2 Theoretical Foundations of Poroelasticity

The theoly of poroelasticity has its origin in the one-dimensional theory of soil

consolidation proposed by Terzaghi (1923) concerned with the vertical compr.essiol

of loaded clay layers. In his work, Terzaghi introduced the effecti,ue stress concept

which states that stless in the soil mass (effective stress) is equal to the total appliecl

stÌess rninus the pore water pressure. Later, Biot (194ia, 1955) pr.esentecl the
genetal theory of three-climensional consolidation by aclopting Ter-zaghi's concepts.

Biot's theory takes iuto account the coupling between the solicl ancl fluicl stresses ancl

strains basecl on the classical theory of linear elasticity ancl Darcy's law. In aclclition

to material constants in classical elasticity, Biot included two parameters accounting

for cornpressibility of a two-phased material, and the coefficient of per.rneability of
a mediurn in his theory. The physical interpretation of these coefficients as well as

the lnethods of rneasurernents were provided by Biot atcl Willis (1gb7) ancl yew eú

al. (1978,1979).

The first theoly of elastic wave propagation in a fluicl-satur.atecl porous rnediurn

was also established by Biot (1956 a,b) by adding inertia terms to his quasi-static

theory (Biot, 1941a). Biot revealed that there are two clilatation¿il waves and one

rotational wave propagating in a fluid-satulated poloelastic meclium insteacl of two

bocly waves (one dilatational and one rotational) for the case of an icleal elastic

material' It is also notecl that the body waves in a poroelastic meclium ale dispersive

and clissipative clue to the presence of the viscous coupling between the solicl rnatrix
and the pore fluid. Later', Biot extended his elastoclynamic theory to the cases

of anisotropic and viscoelastic porous media (Biot, 1962). After the introcluctiol
of theoly of mixtures (Tluesdell and Toupin, 1960 ancl Green and Naghcli, 1965),

several attempts have been macle to obtain generalizecl theories of por.ous rnedia

following mixture theory concepts (Morland, lg72; Bowen, 1g76, 19g2; Kats¡be
and Carroll, 1987a,b ancl others). However, these general theories basecl on theory
of rnixtules often result in equations involving coefficients which are obstinate irr
engineering practice.



Over the last four clecades, Biot's theory has been the basis for analysis of
a variety of practical problerns encountered in geomechanics, geophysics, earth-
quake engineering ancl enetgy resource explolations. The present stucly is concernecl

with the quasi-static and dynarnic stress analysis of homogeneous a¡cl m¡lti-layer.ecl
poroelastic media. In the following sections, a review of literature related to stress

aualysis of poloelastic rnaterials is presented in order to define the objectives ancl

the scope of this thesis.

1.3 Literature Review

1.3.1 solutions for Fromogeneous Poroelastic Materials

Biot (1941b) and Biot ancl Clingan (1941, 7942) presentecl the ear.liest solu-

tion for the consolidation settlements of poloelastic meclia unclel s¡rface loacli'gs
by using a method of solution based on the application of Laplace tr-alsform with
respect to the tirne variable and ¿ series representation of solutions ancl boul{ary
conclitions. Later, McNarnee and Gibson (1960a,b) presentecl a solution for. plane

strain and axially symrnetric problerns through the application of two clisplacerne¡.t

fuuctious and the appropriate integlal tlansfolrns (Laplace/Fonrier- for pla'e strain
problerns ancl Laplace/Hankel for axially symmetric p¡oble¡rs), alcl the' obtai'ecl
solutions for a uniform strip load and a uniform circular patch loacl appliecl at the
top surface of a semi-infinite clay stlatum. Schiffm¿n ancl Fungaloli (1g65) exte¡¿-
ecl the displacement functions to the case of asytrmetric problerns ancl st'cliecl the
consolidation of a homogeneous poroelastic half-space clue to a uniform horizon-
tal patch load at the surface. Puswewala ancl Rajapakse (tga8) cler.ivecl G,.-ee¡'s

functions for serni-infinite and infinite poroelastic media subjectecl to axisymmetric
internal loadings and a fluid source. Solutions collesponcling to a poroeiastic half-
space with a point sink was also plesented by Kanok-Nukulchai ancl Cha¡ (1gg0).

Rajapakse (1993) presented a stress analysis of a bolehole in a poroelastic meclium.

The above studies are concerned with the special case involving incompressible

constituents which is valid mainly fol soils but not for porous rocks. Biot's q¡asi-
static equations for poroelasticity were reformulatecl by Rice ancl Cleary (1g76) i1
terms of material constants which are more easily identifiable. In their paper, Rice



and Cleary replacecl Biot's two poroelastic parameters acconnting for. compressibil-

ity of poroelastic matelials by Skernpton's pore pressure coefficient B (Skempton,

1954) ancl the undrained Poisson's ratio of the bulk material. The formulation of
Rice and Cleary (1976) has been widely used to stucly the quasi-static response

of porous elastic solicls coutaining compressible constituents since late seventies.

Cleary (1977) presentecl a set of fundarnental solutions for an infinite por-oelastic

solicl. Rudnicki (1986a) rederived Cleary's results for a suclclenly appliecl point force,
a fluid mass sotlrce and a fluid mass dipole. Problems relatecl to a slip on a fa¡lt
in a poroelastic mediutn were also considerecl by Rudnicki (1986b, 1987). plane

strain problems relatecl to a borehole in a poroelastic rneclium were stuclied by De-

tonlnay and Cheng (1988). Detournay et al. (1989) consiclerecl problems relatecl to
hydlaulic fractnring in fluicl-satnlated rocks.

In addition to above studies relatecl to quasi-statics of por.oelastic rnaterials,
ûLany researchers have employed Biot's poroelastodynamic theor-y to study some

basic elastoclynarnic problerns. For example, the propagation of Rayleigh waves

in a fluid-saturatecl poroelastic half-space was studied by Jones (1g61) ancl Dere-
siewicz (1962). Geertsma and Srnith (1961) stucliecl the reflection ancl tr.ansrnission

of dilatational waves in poroelastic solids. Deresiewicz and Rice (1g62) also stncl-

ied the reflection of body waves frorn a plane, traction-free bounclary of a pororls

solicl' The characteristics of waves propagating in an infinite fluicl-saturated poroe-

lastic medium clue to an instantarì.eous point loacl wele investigated by Burriclge

ancl Vargas (1979) using Laplace transforms. Norris (1985) clerivecl time-harmonic
solution for a point force applied in an unboundecl poroelastic meclium ancl ob-

tainecl a closecl forrn solution for an irnpulsive point loacl appliecl in a nondissipative
mediurn by using Fouliel transfolms. The solutions for tirne-harrnonic concentrat-
ecl loads and fluid source applied in an infinite poroelastic meclium were presentecl

by Bonnet (1987) by using an analogy between poroelasticity ancl thermoelasticity
in the fi'equency clomain. Boutin et al. (1937) consiclerecl the Gleen's functiols
for infinite poroelastic media due to tirne-harmonic point forces ancl a fluicl source

and discussed the construction of synthetic seismograms from the Greel's func-
tions. The poroelastic counterpart of tlie classical Lamb's problern (Lamb, 1904)

was first considered by Paul (1976a,b) by assuming the nonclissipative behaviou¡



of the half-space. Recently, several stuclies have considerecl the vibr.ations due to
time-harmonic loads acting at the surface of saturatecl (Halpern ancl Christiano,
1986a,b arrcl Philippacopoulos, 1988a) and partially saturatecl (Philippacoponlos,

1988b, 1989) poroelastic half-spaces.

Basecl on the above review, it is noted that Green's functions corresponding to
quasi-static ancl dynamic loaclings and fluid sources applied at a finite clepth below

the fi'ee sulface of a poloelastic half-space with cornpressible constituents have not
been repolted in the literature. These Green's functions can be nsed in the alalysis
of anchors, buried footings, piles and undergrouncl stmctules (e.g. subway tnnnels
and pipelines) and also in the developrnent of computer codes basecl on the bouldary
integral eqnation rnethods for analysis of a variety of complicatecl problelns relatecl

to poloelastic rnedia.

!.3.2 Solutions for Layered Poroelastic Media

An irnportant class of problerns in practical engineering applications is co¡-
cerned with the stucly of mechanical response of a rnultllayerecl necliurn silce it
represents a closet approxirnation to most physical systerns such as natural soil
profiles, which aîe normally layered in character. It is notecl that stuclies relatecl

to quasi-statics and clynarnics of multi-layered poroelastic media are ver-y lirnited
clespite their relevance to ma,ny useful practical problerns enconnter.ecl in geome-

chanics, geophysics, earthquake engineering ancl erergy resource explolations. On
the other hancl, the response of layered i,deal elastic media has receivecl wicle at-
tention in the past. In view of this observation, a review of existing rnethods for
evaluation of st¿tic and dynamic response of layered 'ideal elastic meclia is presente<l

with the assurnption that these methods can be extenclecl to stucly the response of
layered poroelastic rnedia.

The study of wave propagation in multi-layered icleal elastic meclia has receivecl

rnore attention when compared to elastostatic problems due to extensive applica-

tions founcl in earthquake engineering, geophysics and nonclestructive characteriza-

tion of sites. A review of literature indicates that existing rnethocls for cleterminatio'
of static and dynarnic responses of a layered icleal elastic meclium can be groupecl



into two main categories. In the first approach, general solutions, which rigorously

satisfy the goveming equations, of each layer expressed in terms of a set of arbitrar-y

functions in Fonrier or Hankel transforrn space are usecl to establish a linear simul-

taneotts equation system with arbitlary functions as the unknowns by consiclerilg
the boundary conditions at the top surface and continuity conclitions at layer.ilter-
faces. Theleafter', the equation system is solved numerically for discrete values of
the integral transform parameter (alternatively a dimensionless wave rumber il the
dynamic case) and the response is computecl by applying numerical quadrature to
evaluate the inverse transform integlals. Thornson (1950) ¿lncl Haskell (1gb3, 1960,

1962) pioneerecl the above approach. The Thourson-Haskell approach has significalt
drawbacks in the nrunerical implementation clne to the presence of mis-matching

exponential terms in layer matrices. Improved forrnulations \4/ele developecl lat-
er by Knopoff (1964), Gilbert ancl Backus (1966), Watson (1970), Schwab(lg7g)

and others. Studies by Apsel (1979), Luco and Apsel (1983) ancl Apsel ancl Lu-
co (1983) present a comprehensive review of previous investigations, ancl preselt
a conr.putationally efficient and accurate algolithrn based on generalizecl reflectio¡
and ttansmission coefficients (Kennett ,1974) to compute the three-climensional dy-

namic response of a multi-layelecl medium clue to buriecl sources.

The second category of solutions for dynamics of layered meclia is based on fi-
nite elernent concepts. In this approach, a layered medium is divicled into a n¿prber

of thin layers within which displacements have prescribecl variations (e.g. li¡ear in
the vertical clirection and a suitable folm of outgoing waves in the horizontal/raclial
directions). The governing equations are solved approximately in the finite eleme¡t
sense by using the assumed displacement representation ancl an approxirnate stiff-
rless matrix relating boundary displacements ancl stresses of a typicat thin layer. is

obtainecl. The assembly of layer stiffness matrices yields the global stiffness equation

of the layerecl systern for a given wave nurnber. Numelical solution of the global s-

tiffness equation results in the displacements at thin layer intelfaces ancl subseque¡t

application of numerical quadratule to evaluate integrals over the wave-number clo-

rnain yields the response of the layered medium. The origin of this methocl can be

traced back to the studies by Lysmer and \Maas (7972), Waas (7972) and Dong alcl
Nelson (1972). In addition to the approximate nature of the solution, this rnethocl



also has the disadvantage that the presence of an underlying half-space cannot be

taken into consideration in a consistent manner. Stuclies by Kausel et al. (1925),

Waas (1930), Kausel and Peek (1982), Kausel ancl Seale (1gSZ), Oner and Dolg
(1988) and Seale and Kausel (1989) present ftrrther developments ancl applicatio¡s
of the approximate stiffness method for ideal elastic and anisotropic layerecl rneclia.

As mentioned previonsly, very limitecl studies have consiclerecl problerns r.e-

lated to layered poroelastic meclia. The Thornson-Haskell approach was lsed by

Varcloulakis and Harnpattauapanich (1936) to evaluate the quasi-static response of
a layerecl poloelastic medium with incornpressible constituents. In a snbseqnent

paper (Harnpattanapanich and Vardoulakis, 1987), these authors studied the con-

solidation of a finite inhornogeneous soil layer whose shear moclulus increases linear-ly

with clepth (Gibson soil layer) undel rectangular surface loacls. The application of
this scheme to an l/-layered poroelastic system results in an unsyrnnetr.ic matrix
of order 8I/ x 8l[ which needs to be repetitively solvecl in the nurnerical evaluation
of the response. The numerical effort involved in the analysis is substantially high
due to the presence of Laplace inversion in addition to the Four.ier transfo,.rn inver-
sion in the case of poroelastic meclia. In addition, the elements of the coefficient

matlix iuvolve both negative and positive exponentiais of the Fonr.ier transform
paraDreter which results in numerically ill-conditionecl matrices for increasilg val-

tes of the tr'¿nsform paÌarneter. The approximate stifness matrix method (Lysmer
and Waas, 1972 ancl'Waas, 7972) was employed only recently by Bougacha et aI.

(1993b) to study two-dimensional vibrations of fluicl-saturatecl layerecl poroelastic

media. Bougacha eú ø/. (1993a) also extended their scherne to evalnate the static
and dynamic stiffnesses of rigid strip and circular founclations on a homogeneous

por-oelastic lnedium with rigid base.

1.3.3 Numerical Methods for Poroelasticity

All of the studies mentionecl in Sections 1.3.1 ancl 1.3.2 are concernecl with
problems under simplified boundary ancl loading conclitions (i.e. surface ancl inter-
nal loaclings itt a homogeneous or multi-layered half-space). However, in practical
sitrtations, one encounters more cornplicated problerns such as embedclecl founcla-

tions, pile groups, anchors, unclerground openings, hyclraulic fracture, etc. which



cannot be solved by using standard analytical procednres. In view of this, nlrnerical
solutions schemes such as finite and boundary elernent methocls have emerged as

powerful tools to analyze various problerns encountered in engineeling practice.

A finite element scheme w¿s first proposed by Sanclhu (1963), ancl Sanclhu

and Wilson (1969) for the analysis of consolidation problerns. Thei¡ solution was

based on a variational principle by Gurtin (1964) in which displacernent and pore
pressul'e are considerecl as the basic unknowns. Later, several attempts have beerr

made to improve the Sandhu and Wilson scheme (Hwang et a1.,,1g71; Yoko o et ul.,

1971a,b; Ghaboussi and 'Wilson, 1973). Kranse (1978) pr.esentecl a filite elerne¡t
scheme based on the virtual work principle. The combination of a finite element type
approximation in spatial coorclinates ancl the application of the Laplace t¡ansfor-m to
the tirne coolclinate \Mas proposed by Kanok-Nukulchai ancl Su¿ris (1982) to stucly
the consolitlation process in poroelastic lnaterials by using variatiolal pri'ciples
based on Biot's theory. Although the finite element method has been extensively

applied to the consolidation problems including nonlinear. material behavioru, it
has clrawbacks in sorne special cases such as the moclelling of far.-fielcl racliatiol
conditions for wave plopagation problerns and in the simulation of fielcl sing¡larities
in hydraulic fi'actule problems. The finite element methocl also becomes inefficient
when applied to sorne problems involving infinite ancl semi-infinite layered meclia

(Muki and Dong, 1980) since a large discretization of volume is requirecl.

In recent years, the boundary element methocl (Ftizzo,,1967; Liggett alcl Li1,
1983; Kobayashi, 1984 ancl Beskos, 1987) has ernergecl as a versatile cornputational
methocl to analyze cornplicated stress arralysis and fluicl flow problems eil.corlnterecl

in many disciplines. Boundary element methods are palticnlarly efficient alcl accu-

r¿te in the solution of problems involving unboundecl meclia (e.g. problems in g-e-

omechanics' geophysics, earthquake engineering and energy resource explorations)
since discretization of volume is unnecessaly ancl far-fielcl racliatio¡ conclitions a.cl
layering can be rigorously modellecl by using appropliate GLeen's fnnctions. The
clevelopment of boundary integral equation methods for por.oelasticity has been the
focus of intelest of several recent studies following the early theo¡etical fo.nclatio'-
s presentecl by Precleleanu (1968) ancl Cleary (7977). To the author's knowleclge,

Cheng (1981) and Cheng and Liggett (1984a,b) presentecl the first formai numerical



implementation of boundary element analysis for quasi-static response of poroelas-

tic clomains through the use of Laplace transforms. Later, sevelal papers have been

published on the Laplace transform-based bonnclary element methocls for poroe-

iasticity (e.g. Cheng and Detournay, 1988 and Baclmrs et at., 1993). Preclelea¡1

(1981), Nishirnura (19S2), Cheng and Precleleanu (1937), Dargush and Banerjee

(1989) and Nishirnura and Kobayashi (1989) consiclered the tirne-clomain analysis

of quasi-static response of a poroelastic medinm by using time-domain Glee¡'s func-

tiorrs for an infinite space. Boundary element for.mulations for poroelastoclynarnics

have been plesented recently by Manolis and Beskos (1989), Dominguez (lgg1,
1992), Cheng et al. (1991) and Wiebe and Antes (1991). It is notecl that formal n1-

melical implernentations of boundary eleurent formulations for- poroelasticity have

been attenptecl only fol a lirnited nurnbel of quasi-static and time-harmonic prob-

lems ancl numerical studies for tlansient dynamic problems have not been r.epor.tecl

in the literature. On the other hand, boundary element studies of static and cly-

namic problerns encottntered in many engineering applications involving i,deal elastic

matelials ¿re very well documentecl.

Bonnclaly element formulations mentionecl above are basecl on reciprocal the-

orerns (Precleleanu, 1968 and Cleary, 1977) ancl involve integral equations with
singular kernels which have to be solved nurnerically. Altematively, it is possible

to develop a boundary integral equation formulation which involves non-singnla¡

kernel functions by considering the distribution of a set of sources on an auxiliar-y

surface. Such indilect formulations have been successfully used in the past to ana-

lyze a variety of problems relatecl to ideal elastic media (Ohsaki, 1973; Rajapakse

and Shah, 1988; Mossessian and Dravinski, 1g8g; 'Wang and Rajapakse, 1gg0 a¡cl

others) and serve as an effective alternative to clirect formulations. A review of lit-
erature reveals that the clevelopment of indirect boundaly integral equation rnethocl

for poloelastic meclia along the direction of Ohsaki's forrnulation fol icleal elasticity
has not been reportecl in the literature.

1.4 Objectives and Scope of the Present Study

Basecl on the above literatule review, it can be concludecl that although Biot's
theory for poroelasticity provides a rnuch more realistic ancl effective representation



of the mechanical response of natural soils and rocks, it has not been applied as

widely as the ideal elastic theory to solve problems encounterecl in geomechanics,

elleÏgy resotlrce exploratiotts, seismology, earthquake engineering, etc.. For example,

the influence of consoliclation effects on single piles and pile groups nncler. quasi-

static and dynamic loadings, on impedances of embedded founclations, on synthetic

seismograms for layeled media, on seismic wave scatterirrg by surface topographies

in porous soils, etc. have not been investigatecl in the past. Therefore, there exists

a necessity to develop efficient computational tools which can be effectively usecl

to analyze problems encounteled in geomechanics, enelgy resource explorations,

earthquake engineering, etc. on the basis of Biot's theory for poroelasticity.

Tltis thesis has thlee rnain objectives. First, a set of Green's fnnctions (funcla-

mental solutions) corlesponding to homogeneous and layerecl poroelastic half-spaces

subjected to interual loaclings and fluid sources ale preserìtecl. These solutions are

known to serve as powerful tools in developing solutions for a vadety of bouucl-

ary value problerns in several disciplines. Seconclly, an inclilect boundary integral
equation methocl basecl on above Green's functions are presentecl to solve problem-

s involving complicatecl geometries and boundary conclitions. Thilclly, nu¡rerical
solutions for sever'¿l bounclary value ploblerns (quasi-static ancl dynamic internal
loads and fluid siuks, anchols, tunnels) involving homogeneous ancl layered poroe-

lastic media are preseil.ted to stucly the influence of poloelastic rnaterial parameters

and other governing parameters on the response of the meclium. It is expectecl

that the basic tools presented in this thesis could be effectively appliecl to solve a

wide range of problems encounterecl in geomechanics, enelgy resour.ce explorations,

seismology, earthquake engineering, etc..

The orgalrization of this thesis is described in the following. In Chapter. 2,

explicit analytical solutions for three-climensional quasi-static Gr.een's functions of
a homogeneous poroelastic half-space with cornpressible constituents clue to inter.-

nal loadings and a fluicl source ale plesented in Laplace clomain. The numerical

evaluation of Green's fitnctions and the application of numerical Laplace inversion

scheme are cliscttssed. The influence of poroelastic naterial pararneters on the re-

sponse and the features of the consolidation process ale also investigatecl. An exact

stiffness matrix rnethod based on the general solutions given in Chapter 2 is pre-
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serlted in Chapter 3 to compute quasi-static Green's functions of a mllti-layerecl
poroelastic half-space subjected to buried loadings and a fluicl source. The signifi-
cant aclvantages of the present matlix scheme when compaled to existing rnethocls

are discussed. The clelivation of clynarnic (time-harrnonic and transient) GLeen's

functions corresponding to loadings and fluicl sources appliecl at a finite clepth be-

low the snrface of a homogeneous poroelastic half-plane is consiclerecl in Chapter.

4. The accuracy of proposed numer-ical scherne for evaluation of clynarnic Green's
functions is velified. Selected numerical results are presentecl to portray the ir¡
fluence of poroelastic rnaterial pararneter.s on the clynarnic response of ilter¡ally
Ioaded poroelastic half-planes.

The stiffness matrix scheme presented in Chapter' 3 is extenclecl in Chapter. b

to evalnate Green's fnnctions of a rnulti-layeled poroelastic half-plarre due to time-
harmottic loaclings ancl fluid souïces applied in the interior of a layerecl rneclium by
using the general solutiotis presented in Chapter 4. Nurnerical evaluation of Green,s

functions for layerecl media is cliscnssecl ancl selectecl numeric¿l lesnlts corresponcl-

ing to multi-layerecl poroelastic half-plaues subjectecl to surface/buliecl clyuarnic

excitations ale pt'esented. In Chapter 6, the development of cornputer cocles basecl

on an inclirect boundary integral equation nethod for the solutions of quasi-static,

tirne-harrnonic and transient problems are presented. The nnmerical accur.acy of the
present bottnclary element scherne is demonstrated by consiclering a set of bonndary
value problerns involving poroelastic materials for which analytical solutions can be

developecl. The applicability of the present scherne is clemonstratecl by consicler-

ing the quasi-static response of a spheroidal anchor and the clynamic response of
a semi-circular tunnel in poroelastic soils. Finally, major conclusions of the thesis

ancl recornmendations for future work are presentecl in Cirapter' 7.
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Chapt er 2

3-D QUASI-STATIC GREEN'S FUNCTIONS

2.1 General

In this Chapter', explicit solutions fol quasi-static Gleen's functions of a ho-

mogerìeous poroelastic half-space due to internal loadings and a fluid source are

presented. General solutions ale clelived for equations governing quasi-static clefor.-

mations of a poroelastic solid with compressible constituents by applying Fourier
expansiou, Hanhel integral tlausforms and Laplace transforms with respect to the
cii'crtnlferential, raclial arrd tirne coorclinates, respectively. These general solutio¡s
are used to clerive a set of Green's functions corresponcling to cir.cular r.ing loacls

(raclial, cilcumferential ancl vertical) and to a ring fluid source appliecl at a fi-
nite depth below the flee surface of a poroelastic half-space. The circnrnfereltial
variation of tlie ling loads ancl the fluid source is desclibed by appropriate trigono-
metÌic terms. Cornplete explicit solutions fol Green's functions are prese¡tecl in
the Laplace transforrn space. The nnmerical evaluation of Green's functions are

also discussed. Selected nnmerical results for a poroelastic half-space uncler. a set of
buriecl loads and a fluicl sink are presented to portray the influence of poroelastic

material parameters on the response ancl the features of the consoliclation process.

2.2 Constitutive Equations

Consicler a poroelastic mecliurn with a Cartesian coor.clinate system (*,y,r)
and a cylindrical polar coordinate system (r,0,2) clefinecl such th¿t the z-axis is

perpendicular to the free surface as shown in Fig. 2.7. Let z¿ clenote the average

clispiacernent of the solid rnatrix in the z-direction (i,: r,y)z or r,g,z). Thel,
the constitutive relations of a homogeneous poroelastic mater.ial with cornpressible

constituerrts can be expressed by using the standard inclicial notation as (Biot, 1g4i)

oij ,rlun, + , -J roo¡rl o6¿jP,

P : -aMe -f M(

'i, j : tr1J,z ot rr0rz (2.1a)

(2.7b)
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where

\-

\u¿:

_Ui,i

[' n,o,
Jo

(2.2a)

(2.2b)

In tlre above equations, o¿¡ is the total stless cotnponerìt of the bulk rnaterial; e¿¡

and e are the strain cornponent and the dilatation of the solicl matrix, respectively,

which are related to the displacement z¿ as in ideal elasticity; ¡z is the shear rnoclulus;

z is the ch'ailed Poisson's ratio; á¿¡ is the Klonecker clelta; p is the excess pore fluicl

plessure (suction is consiclered negative); ( is the variation of the fluid volume per

nnit reference volurnei ui, and q¿ clenote the average fluicl clisplacernent relative
to the solid matrix, and the fluid clischalge, respectively, in the i-clilection (i :
r,,'Urz o'- rr0,z). In addition, a attcl M ar-e Biot's parameters accounting for the
conrpressibility of the two-phased medium. It is noted that 0 ( o ( 1 and 0 < M <
oo for all poroelastic materials. For a completely clry material, M --+ 0 whereas for
a material with incompressible constituents o : 1 and M --+ oo. The pararneters c
and M c¿n be clefined alter.natively as (Rice and Clear.y, 19Z6)

3(u. - u)
Q:

and M-

B(L-zu)(I+u.)
2pB2 (r - zu)(r ¡ uu)2

(2.3a)

(2.3b)9(r.-u)(7-2u,")

where z, is the undrainecl Poisson's ratio and B is Skenpton's pore pr.esslre co-

efficient (Skernpton, 1954). For a poroelastic solicl, B coulcl vary from zero to o1e

with uu varying fi'om z to 0.5. The limiting cases of a poroelastic material with
incomplessible constitnents and a dry elastic rnaterial are obtainecl when uu: 0.5

ancl B : 1, and uu: r,t ald B : 0, respectively.

2.3 Governing Equations and General Solutions

The quasi-static governing equations (Rice ancl Cleary, 1976) for. a poroelastic

meclium with complessible constituents, expressed in terurs of stresses ancl pore

pressure as the basic variables, can be tlansforrned into Navier equations with cou-

pling terms and a diffusion eqrtation, by treating the clisplacements ancl the variation
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of fluid volurne as the basic unknorvns. The governing equations in the absence of
body forces (solid ancl fluid) ¿ncl a fluicl source can be expr-essecl in the cylinc¡'ical
coordinate system as

-'70eY"tt.- 4
L-2uu0r

_,70eY'ua I
I - 2u, r00

I ,2 )'us , u,., 2B(I + uò AC_ :..r'r00'rt 3(1-2ur)0r-"
7,'ue 2 0.u,1 ZB(I * u.") 7 0(
't''r r 00r 3(i-2uu)r00-'

Vz'u- * I oe

7-2uu0z

v2* aCv \: cot

2B(1+ u.) Ae

r!-ãfi u

Q.aa)

(2.4b)

- 0 (z.ac)

where

(2.4d)

(2.5a)

(2.5b)

(2.5c)

n2 ¿z ,lo 1¿z 2z
v :-__L__J___.L_' 0rz' r0r'r2002, A"z

-_0'u, , u, , t7ue 0u"
0r r r00'02

^ _ 2¡t nBz (1 - z)(1 ¡ ru)'
9(1-u")(u--u)

In tlre above equations, ur(r,0, z,t), u6(r,,0, z,t) and. u,(r,0, z,t) ar.e the clisplace-

ments in the r-, 0- and z-direction, respectively; c is the gener.alizecl consoliclatio'
coefficient and ¡; is the coefficient of pelmeability clefined as the r-atio between the
intrinsic permeability of the meclinm and the fluicl viscosity.

At this stage, it is convenient to nondimensionalize all quantities incluclilg the
cooÌclinate fi'ame with respect to length ancl time by selecting the r-adius of a loacli'g
area ¿¿ as a ttnit length and a2 f c as a unit of time, respectively. All variables will be
replaced by appropriate nonclimensional variables, but the previous notations will
be used for convenience.

Application of Fouriel expansion with respect to the circumferential coorclinate
á for the clisplacements and the variation of fluicl volurne results iu

u,(r,0, z,t) - i u,,.(r, z,t) cos nz|+ Ë ú,n (r, z,t) sin m0 (2.6a)
¡¡t'=0 rn=o
oo co

us(r,0, z,t) - Ð ur,.(r, z,t) sin ntT - Ð rr*(r,, z,t) cos nzg (2.6b)
m=O tn=O
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u,(r,0, z,t) - Ð u,,-(r, z,t) cos rnT + L ú,,*(r, z,t) sin m0 (2.6c)
m=0 tn=O

C(r,0, z,,t) - i e,.{r, z,t) cos nt\ + f ,-,r,z,t) sin nz\ (2.6(t)
rn=0 tn=O

In eqns (2.6), ?f,rrn, ,Ì10r.,t., ,tL,"rn and (- ar.e symmetric components ancl úrrn,, ú0^.,

ú,"rn and' (- ot" antisyurmetric cotnponents corresponding to the nzth harmouic.
In the snbseqrtent analysis, only syrnmetlic components are consiclered without
loss of gelerality. It is noted that the solution corresponcling to antisymmetric
cornponents can be obtained by rnaking the replacements cos nz| -> -sin md and
sin nzî --+ cos nzd (Muki, 1960).

The Laplace-mth ot'cler Hankel transforrn of function ó(r,",ú) with respect to
variables ú and r, respectively, is defirred by (Sneclclo', 1gbl)

tt,.{ó(r, z,t)} : [* [* ó(r, ,,,t)e-"t J,,(tr)rd,rdt (2.7)Jo Jo

In eqn (2.7), s ancl { clenote the Laplace ancl Hankel transfonn pararneters, respec-

tively, and J,n clenotes the Bessel function of the fir'st kincl of orcler nz (Watson,

7944). The inverse relationship is given by

Ó(', " 
1 ¡o*iæ f* -,t): 

zn¿ Jn_o* J, ?1,"{þ(r,z,t)}e"tJ,n(þ)(dtcts (2.8)

where p is greater than the real part of all singularities of tt,*14rçr,z,t)\ ard i,:

'/:T
In view of eqtrs (2.6)-(2.8), the eqn (2.4d) can be solvecl clirectly ancl the re-

sulting solution can be expressed as

71,"(e.) : A,n(t,s)e'r' * 8,.(e,s)e-72 (2.g)

where

t:^/t\t (2.10)

and -4-.({, s) and B,.(t,s) are arbitrary functions.

Differentiation of eqns (2.4a) to (2.ac) ancl subsequent manipulations yield

Y2e:rtvz( e.rr)
16



where

,t:!^!:+",)
3(t - u.) (2'L2)

and V2 is definecl as in eqn (2.ba).

Application of Fourier expansion together with Laplace ancl nzth order Hankel
integral transforms in eqn (2.I1) and the substitution of eqn (2.g) results i¡

l# - €'lzr",G,n) : rtr(A,-G,s)etz * 8,.(€,,s)e-t") e.ß)

where

- )urrn , ,ur* , Tn 0.urrn
'*: - 0; + ---:-:- *;'ut*+ -0; Q.74)

The following solution for eqn (2.13) can be obtainecl by usi¡g the methocl of vari-
ation of paraureters (Kreider et a|.,1966)

11,.(u*) : r(o,-(€,r)"'" * 8,.(€,s)e-t") + c,.(€.,s)et" * D,-(t,s)e-€" (2.15)

wlrere C,"(€.,s) and D,,(t,s) are arbitrary functions.

Aftel lengthy rnanipulations involving eqns (z.ae-e.ac), (2.6), (2.g), (2.r4)
and (2.15), the genelal solutions for the nzth Fourier harmonic of clisplacernent u¿

('i : r,0, z) in the Laplace-Hankel transforrn space can be expressecl as

T{rnf-r(urrn I uern) : - * @*"tz ¡ Bo,e-r') + a7z(cme€z - D,ne-€")

t E*¿€" I F,n¿-Ê" e.76a)

Jl,,.-t(u,,n - ur,*) :*(A,,et, I B,n¿-t,) - orr(c,-"c" - D,ne-€")

+ Grne€' I H,ns-€' e.I6b)

8,.(r",*) :1! 1A,-"1' - B,ne-tz) - (or, - !)",."r" 
_ (or" * i) D,n¿-Ê"

- (t* =r"*)ee, + (ry)"-Ê. (2.16c)

wlrere 
o, : 

-1-- 
. a, - 

(J - 4u-)
' 2(L - zuu) 2(r - 2u-) Q'rT)
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and E,n(t,s), F,.(€,s),, G,.(€,s) a'd H,*(€,s) are arbitrary functio's.

Application of Fourier expansion with respect to the circumferential coorclinate

á for the stress cornporìents and the pore pressure results in

o.;j(r,0, z,t)
2¡-t

p(r,0, z,t)
2p,

:Ðoij,n(r,z,t)f(0)
rn=O

oo
r: L p,n(r', z,t) cos m0
nt=0

(2.78a)

(2.18ö)

the nzthIn eqns (2.18), o¿¡,, ancl pn

harmonic and

'11,n(o,,,n+ Yly lYus,n): -
+

+

are syrnrnetric cornponents corresponding to

cosm0, i.,j+0ori:j:0
/(P) : 

{
(2.1e)

sin m,0, iorj-Q

Thereafter, the general solutions for the r¿th Fourier harmonic of the stress

cornponents and the pole pressure in the Laplace-Hankel transform spâ,ce, noncli-

mensionalizecl with respect to the shear modulns of the meclium, can be expressecl

AS

!{o, "',, + B,n"-r"¡

(ott, * o.) c,n¿€' - (ott" - o.) D,n¿-t'

4ry)e*+€(ry)e-t, e.zoo¡

Tl,n(o,,,n + oee,n) : - l0' + s) (A,*et" * B,ne-tz)

* (af z * Zøs)c,n¿€" - ("t€" - 2ot) D,n¿-€'

*€et;9-)e*+€(ry)e-e, e.zob)

Tt,n+l(o,,,n I o 
"e,n) 

: - + (A,'el, - Bme-tz)

+ ef)c,næ" + e+l])D,n"-e,
+q!L;9-)"r, -€(ry)e-t, e.2oc)
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]7,n(o,e,n*Tr,,,*T)

'Ìlrn(o""n 
)

where

lú3 :
7 - Zu,u'

(L - u"\
uLr--- (1 -zuu)'

^ _B(I-u)(L¡r.)
" 3(uu - u)

0nqo: -K;h

'Ìl,n-t(o",,n - o"0^) :ry(A,n"r" - Brne-tz)

_ ("r€1 - t)c,n"e, _ çzatt;+ 
t) 

D,n"_€"

- ¿(E* -3G'-)"€' + €(!t+!-)e-t"

- qfu+Sy) eÊ, + € e'+!.) "-Ê.

t2^
:ï (A,nel' * Bme-t")

- (or€" - on)Cn ¿Ê' * (afz * nn)D,n¿-Ê,

- t(E* - G'")"r" 
- r(ry)"-€.

(2.20d)

(2.20e)

(2.20Í)

(2.2r)

(2.22)

'llr-(pr.) :a,¿rl(Arnet' I Brne-'Y') - onn(c,*"e' * Dn"¿-€r)e.zog)

uu

According to Dalcy's law, the fluid discharge in the i-direction is give¡ by

0pq¿: -ñ Ai) x : r) z)

2.4 Solution of Boundary Value Problems

Bounclary value problerns involving an internally loaclecl poroelastic half-space

are consiclered in this section to derive the Green's ftrnctions. The solutions corre-
sponding to the four basic loading configurations, i.e. a vertical ring loacl, a radi¿l
Iing load, a circumfelential ling load and a ring fluicl source, all of intensity equal
to Heaviside unit step function f1(ú) per unit arc length appliecl over â, circular ring
of radius rt at a depth z : z!,, are presentecl. The circumferential clistribution of
the vertical and radial ring loads ancl the ring fluicl souïce is of the form cos 2zd

and that of the circumferential ring load is sin m0. A solution to the internally
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loaded half-space can be derived by considering it as a two-domain bonnclary val-
tre problem (Karasudhi, 1990). A superscript i (i : L,,2) is used to clenote the
domain nurnber where domain "1" is bouncle<l by 0 < z 1 zt ancl domain ,,2,' by
z' 1 z ( co. General solutions for each clornain are given by eqns (2.16), (2.20) ancl

(2.22) with arbitrary coefficieuts ,4i({ ,, s), B:^(€, r), ..., Hh((, s) where a superscr.ipt
'i :7,2 is nsed to identify the domain numbel. Note that for dornain ,,2,, , arbitrary
ftrnctious A?.,G,Ð,ChG,t),82,,G,s) ancl G?^(€,s) :0 to ensrue the reg¡larity of
the solutions at infinity.

In view of the plescribed circumferential clistribution of the loacling case only
the nzth Fourier harmouic in eqns (2.6) and (2.18) neecls to be colsiderecl. Therefore,

the bourrdaly ancl contimrity conditions in the Laplace clomain can be expressecl as

af,-,n(r,O, s) - 0,

P'r.(r,0, s) : 6

ttl,rr(r, z' , s) - aI.,?, zt ,, s) : Q,

P'r.(', z' ', s) - P'r.(,,, zt , s) : Q

õ2nn (r, z' , s) - õZn,n(r, 
"' , 

r) : L,

{.9*(,,,',")} - {"9#(,,"',ù}: #

?z : rr 0, z (2.zïa)

(2.23b)

?'L:'r",,0r2 (2.23c)

(2.23d)

n:r,0,2 (2.23e)

Q.23r)

wlrere the superposecl bar in eqns (2.23) denotes the Laplace transform of qualtities
with respect to the time coorclinate.

For a vertical ring loacl,

F,:6(r-r'), F,:Fe:Q:o

where ô ( ) denotes Dirac's delta function.

(2.24)

Fol a radial ring load,

F,: 6(r - r'),

For a circurnferential ring load,

Fe:F":8:0 (2.25)

Fe:6(r-r'),

20
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For a ring fluid source,

Q:6(r-r'), Fr:Fe:F":0 (2.27)

Substitution of general solutions for displacements, stresses ancl por.e pressure

in eqns (2.23) togethel with eqns (2.24)-(2.27) anct the following Hankel transform

representation for 6(r-r') yields a set of linear simultaneous equations to determile
albitlary functions corresponding to the two dornains.

(2.28)

The following solutions are obtainecl for the non-zero arbitrary functions ap-

pealing in the genelal solutions given by eqns (2.16), (2.20) and (2.22) for clifferent

loading cases.

6(, - ,'') : fo* 
,'r,,r{rt)J,-((r){d,{

2.4.1 Arbitrary Functions for Vertical Ring Loading

' p-'"' 
.-,r lt t\ n1 t> , /b3e-€'' -b2e-'Yz'yA',,G,'):;,l",r,J,n(1r,¡,a,,.(€,q:(ffi),,l^.1g,,)(2.29a)

n?.G, t)

cl(¿, s¡ :

al$, s¡ :

116., s¡ :

D'.,(€,r) : ,L(€ , t) - CLG, s)¿2€"'

-È 
-le\'

B',"(€, t) - A',"(€, s)¿z't,'

!-rt¡,n(€r'), n1,_ç9, s¡ :
+a4ps

, / J,n(€rt )
lls'

b1s¿-€,' - 2bs{1r¡s-t,

(2.2eb)

)r'L-qq/) (z.zec)

(2.2ed)

(2.30tt)

(2.30ö)

(2.30c)

b4e-€"' - 2b51e-'tz'
4aab1p,s

)'' 1,*çg''¡

b6¿-E''

4"ttt$

( 
uto'-'

FhG,s) : Få({, s) 'J.,(tr')

4a5fu(p,s2

, ¿-l
07gs'

4"rw"

G',"(€, s) : -E!^(€, r), H:-(€, s) : -F|^(€, ,), i : L,2
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where

bt: o.5s +2(L - u.)€n(€ - l), b2: a¡s +Z(I - u")€rÌ(€ +ù (2.3ta)

bs : 4(1 - u.)€zn - 2(r - 2uu)a5s - 2a5(sz' (2.31ô)

b+ :2(I - u-)tq\ + 7) - (J - 4u.)a5s - 2a5(szt (z.JIc)

bs :2(r - uu)€rt, ba : trt #%. b7 : €rt-r #% esLct)

h :2(7 - u-)€n(€ + 7) + (3 - 4uu)a5s, bs :2(r - ,,)(€zrt * ø5s) (z.Jre)

ôro : b6bs{ - b11, bn : *y eilf)a4

2.4.2 Arbitrary Functions for Radial and circumferential

- È o-'Y z'
e!^G,ù : 

ffir'{nJ,*-t(€",) + J,n+t (€",)}

B',,G, ù : (W),' {**-, (€"') r J,n+r(€"') }

B',.(€, s) : r,l,n,(€, s) * ¿',-G, s)ezt"'

-È.,c),(€,ù : 
ffil{nJ,.-t(€",) + Jrn+7 ((",)}

n'*G,t) : (
c2e-Êz' - 2b5(s-'Yz'

8aab1p"s )r' {"t-,-, (€r') I J,n+7 (€"')} (2.32e)

n?^G, s) : DL.,G, s) + ckG, s)s2€,'

E:*G,ù : 
#r'{canJ,.-r(€r') - c+J,t+7 (€",)}

(ås"¡ - c4c5 - b¡)nJ*-1(tr') - (bsca - cac5

8a5fu{p,sz

Ring Loadings

(2.32a)

(2.32b)

(2.32c)

(2.32d)

Q32r)

(2.33a)

rå(€,') :

'##r' {,r*-r(€"') + t,.*rg,)} (2.33å)



p|^(€,r) : FhG, r) + #r,{c6nJ,.-1(þ,)

: #r'{carJ*-t(t ')

- czJ¡n+t(g"') ) (2.33c)

(2.33d)

(2.33e)

(2.33f )

(23aa)

(2.34b)

Qsac)

(2.34d)

(23ae)

GLG,t)

nLG,t)

- csJm+t(€"'))

( (bsc+ - c3cs: l-- I bn)nJ,n-t(€r') - (bs"s - c4c5 - fu1)J,,¡1({rt) j,'"
8a5fu{-¡1,s2

, bs(2qe-'t'' , (+ 
4"5:"^bÅ t"7 

r' lnJ'n-t({"') + I **' (€'' )}

H',-(€,,r) : HLG, s) + #*,,{"7nt,.-1(€r,) -
whele

caJ,n+t(€"') )

cI:

C2:

C3:

C5:

c7:

4(1 - r,)€2n + 4(1 - u u)a5s - 2a5{szt

2(r - u-)tn(t+ 7) + (3 - 4u.)a5s - 2a5(szt

L è a1s t , (7-8u.u)a5s
oo( - ,l-J,¡ c4 - -be€

(1- 2u.)a5s * 2(1 - u.,)t.yT, c6 : b,t - , 
o"

r\ 2Q - u.)
t ¿ (7-\uu)a5s

2(L - u.")

and

( -1,
":1 

1,

for radial loading,

for circnmferential loading
(2.35)

2b51e-Ê'' - b2e--tz'

4a5bgr¡p,ns )r' t,-16r'¡(z.J6a)

2.4.3 Arbitrary Functions for Ring Fluid Source

lt.(€,ù: 
#r*r'J,,qqr'),, n',.(€,r) : (

B',.(€, s) : BLG, s) + ALG, s)e2t"' (2.36b)

-fz' - "-.rz'
2aabp¡p,ns
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D?-(€,") : Dl"(4, r)

,l

' 
p \e

ELG, t) : ffir,J,-(¿t,), 
p).(€,r) : (

bse-Ê"' - Zbs¿-'rz'

4a5b1p,ns2 )'' 4.1q''¡

(2.36d)

(2.37a)

FhG, t) : FLG, s) + EhG, s)¿ze,' (2.37b)

G',"(€,t) : -81,.(€, r), HhG,'): -Fk(t,,t), i: L,2 (2.37c)

2.4.4 Special Loading Cases

1)Vertical patch loacl [Fig. 2.2(a)] ancl a point load

The deforrnation fields corresponding to these loadings are axially symrnetric
abotrt the z-axis and only the terms colresponding to tn : 0 in eqns (2.6) ancl

(2.18) need to be considerecl. The albitrary functions corresponcling to a uniform
patclr loading of radius ¿ ancl intensity foU(t) as shown in Fig. 2.2(a) are givel by
eqns (2.29) ancl (2.30) with the term r/.Is({r') reptaced by foh(€)l€. In aclclitio',
'ttre : ore : oz0: 0 for axisymmetric vertical loading.

The arbitrary functions corresponcling to a vertical concentr.atecl loacl of mag-
nittrde PoH(t) applied at z : z/ [poroelastic counterpart of the classical Mindlin,s
solntion for a vertical load (Mindlin, 1936)] is given by eqns (Z.Zg) ancl (2.30) with
m:0 and the term r-l.,16({r,) replaced by pslZr.

2) Horizontal patctr loact [Fig. 2.2(b)] ancl a point loacl

The deformation fields corresponcling to these loacling cases are symrnetric
about 0 :0 aud only the syrnmetric telurs corresponcling to m : I in eqns (2.6) ancl

(2'18) neecl to be considerecl. The arbitraly functions corresponcling to a horizoltal
patch load can be obtainecl flom eqns (2.32) ancl (2.33) by replacing the terrns
nrtJs(frl) and r'J2(þt) by -2fsJ1({)/{ ancl 0, r.espectively.
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In tlre case of a concentrated load of magnitu d,e PsH (t) applied a.t z : z, [poroe-
lastic counterpart of classical Mindlin's solution for a horizontal load (Mincili¡,
1936)], the arbitrary coefficierrts are once again obtainecl by replacing the terrns
nrtJs({r/) and r'J2(gt) in eqns (2.J2) ancl (2.33) by -psf r ancl 0, respectively.

3) Patch fluid sink [Fig. 2.2(c)] ancl a point sink

The deformation fields corresponding to these fluicl sinks ar-e axially syrnmetric
about z-axis ancl only the terms corresponcling to m : 0 in eqns (2.6) ancl (2.1g)
need to be considered. The arbitrary functions colresponcling to a circular fllicl sink
of radius ¿ and uniform intensity qoV(t) are given by eqns (2.36) and (2.32) with
the telnr rtJs({rt) replaced by -qoJr(Ðlt. In the case of a point sink of intensity

QoH(t) applied at z : zt, the arbitrary functions are given by eqns (2.36) ancl

(2.37) with r'lJ6({r') replaced by -Qol2n.Note that ue: or0: oz0:0 for both
patch fluid sink and a point sink.

4) Loaclings ancl fluid sources with non-unifolm clistribution

Arbitrary functions corresponding to loadings ancl fluicl sources with 1o1-
unifolm intensities applied oveÌ an axisymrnetric clomain (cir-cular- or annular) can
be obtainecl by first developing a Foulier expansion of the intensity of appliecl loacl-

s/fluid sotll'ces with respect to 0 ancl thereafter integrating with respect to r/. The
integration with respect to rt can be obtainecl numerically or by analytical rnethocls

depencling on the type of raclial distribution of the load/fluicl source. In aclclitio',
the solutions corresponding to loadings ancl fluid sources of differe¡t colfig.rations
(e.g. ring, patch ancl annular loacls) appliecl in a poroelastic full space can be ob-

tainecl frorn the half space solutions by setting z' approaching infinity ancl replacing

lr' - "lbV lrl where the origin of the coorclinate frame (r,0,2) is now set at the level
of the applied load/soulce with the z-axis coincicling with the axis of syrnmetry of
the applied load/source.
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2.5 Numerical Solutions

2.5.L Numerical Scheme

The development of an accurate numerical scherne to evaluate the GLeen,s

functions clue to buried loadings ancl a fluid source is consiclerecl in this section

with the intention of eventually using Green's firnctions in the bol¡clary element
analysis. The complete solutions for displacements, stresses, pore pressure ancl fllicl
disclrarge corresponding to each bonndary value problem are given by eqns (2.16),
(2.20) and (2.22) togethel with the solutions for arbitrary functions, A,,-((,s) to
Hi,G,s), given by eqns (2.29)-(2.J0), (2.J2)-(2.88) ancl (2.36)-(z.JT). The solurions

for displacernents ancl str-esses at an arbitlaly point appear in tenns of Lipschitz-
H¿nkel type serni-infinite integrals with respect to Hankel transforrn pa¡arneter- {
and a Bl'omwich integral with respect to Laplace transforrn par.arneter s. It shoulcl

be noted that the Laplace inversion can be carried out analytically when z : 0 a¡cl
zt :0 (McNamee and Gibson, 1960b). However, the resulting solutions woulcl still
involve Lipschitz-Hankel type integrals with respect to { which can be evaluatecl o¡ly
by numerical quadrature. Given the cornplexity of the integrancls correspo¡cli¡g to
the respouse at an arbitrary point due to a buriecl loacl/fluicl source, it is pr.oposecl

to develop an a,ccurate numerical quaclrature scherne to evaluate these integrals.
The review of literature indicates that the Laplace inversion can be carried out very
accnrately (Piessen, 1975) by using the numerical inversion methocl proposecl by
Stehfest (1970). The formula clue to Stehfest is given by

r(t)=YÉ "*Í@Y)'7=tt
where / clenotes the Laplace transform of /(ú) ancl

cn: (-r)n*"/' ^t"f/t)

(2.38a)

¡r'/2 (Zk)l
(L 12 - Å;)!Å.!(,t - 1)!(n - k)t(zk - n)l

(2.3så)
k=[(ntt) l2l

a:nd L is even.

The applicatiol of eqns (2.38) to evaluate the Green's functions corresponcl-

ing to internal loadings and a fluid source involves the cornputation of a series of



Lipscltitz-Hankel integrals involving products of Bessel functions at tr discrete v¿l-

ues of s for each value of ú. The serni-infinite integral with respect to { ca¡ be

evaluated accurately by applying an adaptive version of extenclecl trapezoiclal for-
rnula with A€ : 0.1. This integlal possesses a rernovable singularity at € : 0 a¡cl
lemains finite for all € > 0. It is found that accurate time-clornain solntions are

obtained from eqns (2.38) with .D > 6. The Stehfest rnethocl is computatiolally
quite demancling although it is accurate. Fol example, in the bol¡clary elenre't
method the Green's functions need to be computecl repetitively at a consiclerable

number of bounclary uodes to compute the time-clomain solutions. A si¡rpler alcl
cornputationally more efficient scheme is given by Schapery (1g62) which cal be
expressed as

f (t) = [".f (r)]"=o.r/, (2.3e)

where / denotes the Laplace transform of /(t) ancl s is the Laplace transfo¡¡
palameter.

Table 2.1 presents a comparison of nonclimensional veltical clisplacerne¡ts ¿1cl

pore pressure obtained from Stehfest and Schapery schemes at the point (0,ø) clue

to a uniform vertical patch load applied at a depth z = o, ¿s shown in Fig. 2.2(a).
A nonclirnensional tirne ú*, where t* : ct/a2, is usecl in Table 2.1 a'cl hereafte' i'
the discussion of nurnerical solutions in this Chapter. The two solutions frorn Table
2.1 agree very closely. Table 2.2 presents solutions for pore pressure at an internal
point due to a vertical patch load appliecl at the surface. Comparisou of solution-
s plesented by Schiffman and F\rngaroli (1965) with those obtainecl from Stehfest
and Schapery schemes indicate that the pore pressure solutions coïrespo¡cling to
SchapeÌy scheme is less accurate but still acceptable in a practical situation. The
suitability of Schapery's scheme for a more complicatecl situatio¡ s¿ch as the bouncl-

ary element method can be assessed only aftel a cletailecl numerical stucly involving
a bounclary element analysis. Nevertheless, Schapery's scherne is cornputatio¡ally
very efficient ancl it also yielcls approxirnate explicit tirne-clomain Green's function-
s [see eqrr (2.39)] whic]r can be useful in the developrnent of clir.ect time-clornain
solution algoritirms.
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2.5,2 Numerical Results for rnternal Loadings and Fluid sink

The quasi-static response of poroelastic half-space legions of clifferent rnaterial
properties to a selected set of internal loading configurations is presentecl i¡ this
section. In the numerical stucly, time histories of nonclimensionai clisplaceme¡ts

and pore pressure due to buried patch loacls ancl a buriecl patch fluicl sink are in-
vestigated to study the features of the consolidation process. Stehfest inversion
scheme is used to obtain time-domain solutions. The loaclings and discharge are

assutned to be uniformly distributed over a circular alea of raclius ¿ with intensity

/9 and Ç6, respectivel¡ ancl acting at a depth ø as shown in Figur-e 2.2. Sixclifferent
poroelastic matelials (Rice ancl Clealy, 1976), narnely, a material with i¡compress-
ible constituents (u : 0.25,uu : 0.5,8 : 1.0), R¡hr Sanclsto¡e (r : 0.72,uu :
0.31,.B : 0.88), Tennessee Marble (u :0.25,uu:0.27,8 : 0.b1), Berea Salclsto¡e
(u :0.2,uu:0.33,8 :0.62), Westerly Granite (u :0.25,uu:0.J4.g : 0.g5)
and Weber Sanclstone (u:0.75,,uu - 0.zg,B :0.TJ), are consiclerecl in the n¡-
rnerical stucly to investigate tire influence of poroelastic material parameters on the
Ìesponse ancl the featnles of the consolidation process.

Tirne histories of nondirnensional displacernents, ,uî,1: 2¡_tu"f fsal, uî,[:
Zpu"l fsal and u)o[: 2a5p,nu,f qsa2l, atpoints O (r : 0, z :0) ancl B (r : 0, z : a)
are shown in Figs. 2.3(a), 2.3(b) and 2.3(c) for the uniform patch loaclings shown

in Figs. 2.2(a), 2.2(b) and 2.2(c), respectively. The trencl of the cìisplacernent his-
tories are qttite similar fol both vertical and horizontal loaclings ancl the 

'raterial
with incornpressible constituents has the lowest initial solution followecl by \Mesterly
Granite, Berea Sandstone, Ruhr Sandstone, \Meber Sanclstone ¿ncl Tennessee Mar-
ble. Comparison of this behaviour with the material ploperties inclicates that the
initial Ìesporìse is rnainly governecl by the value of the undrained Poisson's ratio.
The above clependence of the initial solution for clisplacements only on the rinclrainecl

Poisson's ratio can be verified analytically by obtaining the initial (t : O+) solutio¡
tltrough limit procedttres. The following initial solutions are obtainecl for ver.tical
displacement and po'e pressure for a veltical patch load [Fig. z.z(a)]

l{,t - 
au){(7 + z) -r z€' , + (r - 4u.)2 - 4(r -u"(r,z):a6fi 

fr* u.)(7 - rròj



v ¿-t1+z¡ + {fs - au.) + 41 - aj"-u'-"tf

l{,t - 
4,,) + z€}"-er'*a -

(2.a0a)

(2.40b)

Q.aza)

(2.42b)

p(r, 
") 

:"Jui*'"r:{t 
Ir*

x J1({)Js(tr)dt

where
( I, 01217

n.: { e.4r)( -1, I<z<æ
The initial solutions for horizontal displacernent ancl pore pr-ess¡re for a horizo'tal
patclr load [Fig. 2.2(b)] are given by

u*(r'z) :T@y;i/- 
i{(- rt - au){Q + z) +2€" +8(1 - ,-¡' + r)

y ¿-€(1+z¡ + (fz _Br.) _ €11 _ ,l)"-ett-"')ro(g")

+ {(fl - au,)((t * ,) - 2€'" + Bu-(r - ,,) - t)
y 

"-€(1*z) 
+ (r + {11 _ ,¡)"-ttr-,'}rrfe"l]f ,e

p(','):u## I,* l{rr- (3 - +u,¡}e-eo+ò + "-eva]
x J1({J1(tr)dt

t-
ç

¡r* "-€lt-rl]l

It is intelesting to note that the above solutions for clisplacements are essentially
elastic solutions with the Poisson's ratio equal to the unclrainecl Poisso¡'s ratio. I'
acldition, the final solutions (t --t oo) for clisplacements corresponding to loacli¡gs
slrown iu Figs. 2.2(a) and 2.2(b) are given by eqns Q.a}{ ancl (2.42a), respectively,
wlrete uu replaced by u. The final solutions fol pore pr-essule ar.e zero fol both
loading cases. The numerical solutions shown in Figs. 2.3 inclicate that the rnate-
rial with the lowest nnclrainecl Poisson's ratio has the largest initial clisplacerne'ts.
Therefore, the matelial with incompressible constitnents has the lowest initial clis-

placernents. On the other hancl, the material with the lowest clrainecl poisson's

ratio lras the maximutn final displacernents. In view of eqns (2.40a) ancl (2.42a), it
is evident that the matelial with incornpressible constitne¡ts, Tellessee Marble a'cl
Westerly Granite have identical final solutions for clisplacements since the clrainecl

h(€)Jo(€") ,*-- 
" 

-AË
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Poisson's ratios of these materials are identical. This fact is also confirrned by the
numerical solutions shown in Figs. 2.3(a) and 2.3(b). The olcler of magnitucle

of nondilnensional final clisplacements is identical to that of the clrainecl Poisson,s

ratio.

Naturall¡ the displacelnent at point O is always less than that at point B for
Ioadings shown in Figs. 2.2(a) and 2.2(b). The displacement increases slowly when

0 < ú* < 0.1 and more lapidly during tlie period 0.1 < ¿* < 100 reaching its fi-
nal value when f* > 1000 for vertical and horizontal loadings. The clisplacements

shown in Fig. 2.3(c) uncler a patch fluid sink [Fig. 2.2(c)] have features diffele¡t
to those corresponding to vertical ancl horizontal loadings. Naiurally the initial
clisplacernents are zero fol all materials in this case ancl increase rapiclly with ti¡re
within the periocl 0.1 < ú* < 100. Final solutions are reachecl when ú* > 1000 for all
six uraterials. The clisplacernent at point O is founcl to be higher than that at point
B at all time instants. Sirnilar behaviour was also notecl in the numerical solutions

repolted by Kanok-Nukulchai ancl Chau (1990). The order of the final solutiols
for a fluid sink is identical to that of z. Once agaiu the nonclirnensional fin¿l solu-

tions for Tennessee Marble, Westelly Glanite ancl the material with incompressible

constituents ale identical due to identical drainecl Poisson's ratios.

FiS. 2.a@) shows time histories of nondimensional pore pressnre, pî[: pllo],
at point B (r : 0, z : o) uncler a vertical patch loacl [Fig. z.z(a)]. Initially
(0 < ¿. < 0.1), excess pore pressure in all materi¿ls inclease slowly reaching their
maxirnum values neaL ú* : 0.1. This behaviour is called the Mantlel-Cryer effect

(Manclel, 1953). Thereafter, they decrease rapiclly with time ancl become ahnost

negligible after ú* > 10. It is notecl that the orcler of magnitucle of excess pore

pl'essnre developed in all materials under a vertical patch load is identical to that of
the Skempton's pore pressure coefficient B. The maxirnum pore pressnre is folnd i¡
the material with incornpressible constituents followecl by Ruhl Sanclstone, Westerly
Granite, Weber Sandstone, BeLea Sandstone ancl Tennessee Marble, respectively.

Time lristories of nondimensional pore pressure, p[[: a5xpf q6a], at point B is shown

in Fig. 2.4(b) for a fluid sink. Ttre initial por-e plessure in all mater.ials are zero

and suction is subsequently developecl at this point. Thereafter, suction ilcreases

more rapidly with time during the period 0.01 < ¿* < 1.0 reaching their final values



when ¿* > 10.

Figure 2.5 plesents the profiles of clisplacernents and pore pressure for Ruhr
Sanclstone along the r- and z-axis under a vertical patch loacl [Fig. 2.2(a)] ancl

a flnid sink [Fig. 2.2(c)]. The clisplacernents at all points inclease with tirne ancl

the shape of the displacernent profiles retrain lelatively unchangecl with tirne i¡
the case of vertical loacling. Uncler vertical loading, the highest displacement is

observed at the level of loading and it decreases rapiclly with the depth below the
level of loading. Vertical clisplacernent at the surface level also d.ecreases rapidly
witlr the radial distance ¿ncl the displacement at r : 4a is about one-fifth of the

displacerneut at r : 0. The difference between initial ancl final surface clisplacernent

profiles is about fifteen percent. Pore pressule profiles corresponcling to the vertical
loadings are shown in Fig. 2.5(c) ancl these show complicatecl variation with tirne.
An examitration of the explicit solution indicates th¿t at f* : 0 por.e pr.essure is

discontinuous within the domain of the loading. It becomes continuous for ú* > 0

ancl ttndergoes rapid changes with tirne in the vicinity of loacling cluring the periocl

0 < ¿* < 0.1. Note that for ú* < 0.01 suction is developecl in the region 0.5 < zf a 1
1.0. Pore pressure profiles become much srnoother when ¿* > 0.1 ancl thereafter
pore pressure decreases graclually with both the depth and tirne. Pore presslre
within the clomain is nearly clissipated when ú* > 10.

The variations of vertical displacernent along the z-axis ancl the free surface

(, : 0) due to a fluicl sink are shown in Figs. 2.5(cl) ancl 2.5(e), respectively.

These solutions show more dependence on tirne when cornparecl to those presentecl

in Figs. 2.5(a) and 2.5(b). Maximum displacement is observecl near the slrface
but not at the level of loacling ancl the clisplacement clecleases rapiclly near the sink
level (1.0 1 z f a < 2.0). More gradual variation of vertical clisplacement is notecl for
zf a) 2.0. Maximum surface displacernent is notecl at the origin (r:0,2:0) at
¿ll times ancl the snrface displacement decreases rapidly with the raclial clistance.

Compalison of nurnerical solutions for displacements at ú* : 1000 ancl ú* : 106

inclicates that a final equilibrium state is reached when ¿* > 1000. Similar behavionr
was also notecl by Kanok-Nukulchai and Chau (1990) for an inter.ior siuk i¡ a

poloelastic half-space with incornpressible constituents. Suction pr-ofiles showl in
Fig-. 2.5(f) indicate that they increase rapidly with time ancl reaching a fi1al value
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when ¿* > 1000. The initial solution yields zero suction in this case. The rnaximum

value of suction is noted at z : ¿ and a shalp decrease is notecl with the depth both
above ancl below the sink level. Naturally, the suction profiles show a singular-ity at
z : cL due to the applied sink.

2.6 Conclusions

Green's functions fol a poroelastic half-space corresponding to buriecl circu-
lar ring loads acting in the radial, circumferential and veltical clirections ancl to a
flnid source are presented. Solutions corresponding to point, circular and annular

loadings and fluid sources can be derived from riug load/fluicl source solutions. In
a,clditiort, Green's fitnctions for a poloelastic full space can be obtained by taking
certain limits on the colresponcling half-space solutions. The Green's fnnctiols
al'e expressecl in tenns of Lipschitz-Hankel integrals involving proclucts of Bessel

ftrnctions. The complexity of Green's functions hinclers any atternpts to obtai¡
time-clomain solutions by analytical Laplace inversion rnethods. It is founcl that
accurate time-clonain solutions can be obtainecl by applying the numerical scherne

ploposecl by Stehf'est (1970) for Laplace inversion ancl a,pplying clirect nurne¡ical
qnadrature to evaluate the Lipschitz-Harrkel integlals. The nurnerical stucly also

confirrns that the sirnpler and computationally more efficient Schapery's scheme

(Schaper¡ 1962) yields time-domain solutions with reasonable accuracy. The ap-

plication of Schapery's scheme to the Laplace dom¿in solutions presentecl in this
Chapter resnlts in approximate tirne-dornain Gleen's functions explicitly.

The response of six clifferent poroelastic half-spaces uncler buriecl patch loacls

aud a patch fluicl sink is investigated in the numerical study. The nonclimensional

initial displacernents are found to be governed by the unclrainecl Poisson's ratio
whereas the final response depends only on the drained Poisson's ratio. I¡ all
Ioading cases it is found that the rate of displacement is higher when 0.1 < ¿* <
100. Final solutions are reached when ú* > 1000 fol all types of loaclings. The
difference between the initial and final clisplacernents due to vertical ancl hor.izontal

Ioaclings is less than twenty percent of the final clisplacement for all six rnater.ials.

The initial solutions fol pole pressure and displacements are zero clue to a fluicl

sink. Displacements aud suction show more clependence and variation with tirne
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.nde' a circula. sink when cornparecl to the solutions

and horizontal loadings. It is also noted that uncler a

clisplacement is not observed at the level of the sink.

correspon(ling to vertical

sink the highest vertical

An exact stiffness matlix approach based on thc general solutions pr.esentecl in
this Chaptel is developed in Chapter 3 for the analysis of a m¡lti-layerecl poroelastic
half-space uncler three-dilnensional loaclings and fluid sources. The prese.t Gree''s
functions are used in the development of an indirect bounclary integral equatiol
method fol the analysis of complicatecl problems lelatecl to semi-i¡finite and i'finite
poroelastic media in Chapter 6. These Green's functions are equally usef'l i' the
application of direct boundary integral equation methocls for poroelastic half-space
regions. In addition, Green's functions presentecl in this Chapter.can also be *secl i'
the aualysis of problems ertcounterecl in energy resoÌlrce explorations, gr-onldwater
stuclies ancl in the cleveloprnent of solutions fol anchols, bur.iecl footing, piles, etc..
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Table 2.1: Comparison of vertical displacement and pore pressure due to a vertical
patch load [Fig. 2.2(a)] for a poroelastic material with incompressible constituents
(u :0.25)

t"
(ct I a2)

2¡-ru,(0, u,t.) f fsa p(0, a,t") I fo
Stehf'est Schapely Stehfest Schapely

10 -o

1 0-5
10-4
0.001
0.01

0.1
1.0

0.813
0.814
0.817
0.827
0.853
0.902
0.961

0.814
0.8i5
0.819
0.830
0.859
0.905
0.966

r.424
r.426
1.431
i.448
1.492
1.470
0.045

1.424
r.427
1.433
1.453
7.497
t.471
0.048

Table 2.2: Comparison of pore pressure due

top surface for a poroelastic material with

to a vertical patch loacl applied ai the

incompressible constituents (u - 0.0)

t*
(ct I a2)

p(0.,5,0Jl,t.V fo
Schiffrnan and Fungar-1ilT96S Stelifest Schzrpery

0.001
0.01

0.1

i.0

0.90
0.48

0.i3
0.02

0.894
0.484
0.129
0.015

0.833
0.477
0.166
0.031
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Chapter 3

QUASI.STATIC GREEN'S FUNCTIONS OF
A MULTI.LAYERED POROELASTIC HALF.SPACE

3.1 General

An exact stiffness matrix method is presented in this Chapter to compute
quasi-static Green's functions of a multi-layerecl poloelastic half-space with com-

pressible constituents due to buried loadings ancl a fluicl sonrce. The Laplace-Hankel

traDsforms of displacements and pore plessure at layer interfaces are co.siclerecl as

the basic unknowns when compared to the convention¿l rnethocl (Var-cloulakis a'cl
Harnpattanapanich, 1936) where the layer arbitraly coefficients are chosen as basic

unknowns. The three-dimensional analytical general solutions of a homogeneous

poloelastic medium presented in Chapter 2 are usecl to construct explicitly a1 8 x g

symrnetric stiffrress matrix which describes the relationship between ge¡eralizecl clis-

placemeut ancl force vectors of a layer iu the Laplace-Hankel transforrn space. Foi'
an underlying half-space, a 4 x 4 exact stiffness matrix is also derivecl explicitly
by using the general solutions. The global stiffness matrix of a multi-layered half-
space is assembled by considering the continuity conclitions of tractions ancl fluicl
flow at the interface between the adjacent layers. The nnmerical solutio¡ of the
global stiffness equation system for discrete values of Hankel ancl Laplace transfor'-
rn parameters results in the Laplace-Haukel transforms of clisplaceme¡ts ancl pore
pl'essure at layeÌ interfaces. Thereafter, time-dornain solutions for clisplacerne'ts,
stresses, pore pressure and fluid discharge are computecl by applying a mrmerical
scherne for Laplace inversion and clirect numerical qlaclrature for Ha¡kel tra'sfor.m
inversion. Selected numerical results fol clisplacernents, pore pÌesslre and fluicl clis-

charge colresponding to different poroelastic layerecl systerns are pÌesentecl in t¡is
Chapter to portray the influence of layering ancl the poroelastic rraterial parameters

on the lesporìse.

The present rnethod has high numelic¿l efficiency clue to the fact that it requires
the solution of a banded symmetric stiffness matrix [e.g. a(¡f a t) x 4(l/+ 1) for the
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system shown in Fig. 3.1] of nearly one-half the size of the unsymmetric coefficient
matrix [e'g. (8¡/ * a) x (s¡/ + 4)] corresponcling to the conventional scherne basecl

on the cletermination of layel arbitrary coefficients. In aclclition, the elements of
the stiffness rnatlix involve ouly numelically stable negative expo'ential terms of
Hankel transform parameters resulting in well-conditioned rnatrices for all values

of transform paranretels. The stiffness matrix scherne presentecl in this Chapter
can be used directly to compute the kernel functions requirecl in the application of
boundary integlal equation methods for layerecl poroelastic clomains.

3.2 Stitrness Matrices

Consicler a multi-layerecl system with a total of l/ poroelastic layers overlyilg
a poroelastic half-space. Layers and interfaces are nnmberecl as show¡ i¡ Fig. J.1.
FollowiDg Section 2.3, the genelal solutions for the rnth Fourier. har.mo'ic of solicl

and fluid displacements, pore pressure ancl stresses in the Laplace-Hankel transform
space of a homogeneous potoelastic medium can be expressecl in the following matr.ix
form:

where

a(t,z,s) : R,(6, z, s)C({, s)

f(€,r.,s) : S(€, z,s)C((,s)

a(€, z,s) :( u¿(€, z,r) )7, i :7,2,J,4
1(t, t,s) :( l¿(€, z, t) )T , ,i : I,2,J,4

ut(€, 2,,") : ; lu,.*, (u,,o + ur^) - \ln"-t (u,,n - ur,)l

uz(t,, z, ù : +lu**r(u,,n + ue,,) +'11,n-t(u,,, - ur,òf
us(€, z, s) : J7,n(u,"*)

u+(t, z, t) : 11,.(p,.)

h(€,z,ù:;1u,.*,(o",^ I o,e,n) -\l,--t(o,,,n - o"r,))

fz(t, z, ù : ;ln,-*r(o",,n ¡ o"e,n) -t Jl,o-t(o,,,n - o,rà)
h(€, r,, t) :']l,n(o,,*)

(3.1ø)

(3.1b)

(3.2a)

(3.2b)

(3.3ø)

(3.3ð)

(3.3c)

(3.3d)

(3.aa)

(3.4b)

$.ac)



f +(€, z, s) : 'Ì1n"('*",.) (3.4d)

C({, 
") 

:1 Arn Brn Crn D,n Ern F,n Grn H,o }T (3 b)

In the above equations, s ancl { denote the Laplace ancl Hankel transforrn paranìe-

ters, respectively; '11o, i" the Laplace-mth olclel Hankel transfoln opelator.clefinecl

in eqn (2.7) and the arbitrary ftrnctions A,n(€, s),8,,(€, ,), ..., H*({, s) appearing in
C({, 

") 
ale to be determined by ernploying appropliate bounclary ancl/or conti¡¡ity

conditions. In addition, the matrices R(t,t,s) ancl S(€,2,s) in eqns (3.1) are givel
by

R: [Rr : Rz]

s:[Si : Sz]

(3.6ø)

(3.6å)

where

":f
-{r¡cet' f ,s -{r¡ce-t' f s

1r¡cet'fs -y¡ce-t"fs

2p,a5r¡el" 2¡-r,a5r¡e-tz

(rt ze€z - (Lt ze-ez

00

-(or, - ?)"r, -(orr I !)e-Ê,

-Zp.aaqe€' -Z¡taar¡e-Ë"

(3.7a)

Rz: +(ïr;

_È - ¿ -e \' -e\'_È- t-e*e\'
- _È- è-'e*e\'

00

-2(1r¡cet" f s Z{1r¡ce-t" f s

0

2(2r¡cet'f s

-2as61et"

(2aft2 - L)e€'

0

(2aft2 * I)e-€"

2(2r¡ce-t' f s -2(afz - aa)e€, Z@1{z * aa)e-€'

2a561e-t' 2aa62eÊ' -2aa62e-€,

t:i') (3.7b)

Sr :F

I 
Q7c,

/ 2teE'

s':r 
l-"i,"

-2{e-t' -2{e€,
-te-Ê" €"€,
-2(e-Ê, 2(e€,

00
ir,4

4t

(3.7d)



ç 'yrln . €qnc1: 
-t 

o2: 
-

ss (3.7e)

and c, 1,, r¡ and ai (i: L,2,4,5) are clefi'ecl in eqns (2.5c), (2.I0), (2.I2), (2.I7) ancl

(2.27), respectively, in Section 2.3.

Let a superscript n clenote quantities associatecl with the nth layer. (n -
7,2,...,N). Then, the following lelationships can be establishecl for the nth lay-
er of the system shown i' Fig. J.1 by using eqns (3.1a) ancl (3.1b):

¡'(n) ç(') (3.8ø)

p(n) ç(^) (3.8ô)

where

u(') :< ,r(")(€, zn,s) .r(.)(€, zn*7¡r) >"
F(,) -< -¡(,) (t,zn,s) f(,)(€, zn,.ttr) >"

(3.eø)

(3. eb)

In eqns (3.8) and (3.9), IJ(') clenotes a vector of generalizecl coorclinates fbr the
nth layer whose elements are relatecl to the Laplace-Hankel transforms of the r¿th
Fourier halmonic of displacements ancl pore pressure of the top ancl bottom surfaces
of the nth layer. Similarl¡ F(') clenotes a generalizecl force vector whose elements
are related to the Laplace-Hankel transforms of the nzth Fourier harmonic of trac-
tions and fluid displacements of the top ancl bottom sur-faces of the nth layer. The
matrices R(') ancl 5(') it eqns (3.8) are icientical to R ancl S clefinecl in eqns (3.6)
except that the material ploperties of the nth layer are usecl in the clefinition and
z : zn or zn¡1. The vector C(') is the arbitrary coefficient vector corresponcling to
the nth layer.

The eqn (3.8a) can be invertecl to express C(') in terms 61 ¡r(",) ancl ilre sub-
stitution in eqn (3.8b) yields

F(') :1ç(",)¡r(,,),
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where K(') can be consiclered as an exact stiffness matrix in the Laplace-Hankel

transfonn space clescribirg the relationship between the generalized displacement

vector IJ(') and the force vector F(r) for the rzth layer.

The explicit derivation of K(') corresponcling to an albitlaly Fonr.icr harrnol-
ic of a three-dirnensional poroelastic problem is extremely cornplicated ancl it is

impossible to achieve this task manually clue to the fact that the i'versio' of eq'
(3.8a) involves a fully populated 8 x 8 unsymrnetric matrix whose elements involve
rather complicated expressions. However, this task, which neecls to be performecl

only once, can be achievecl by using rnoderu symbolic manipulation packages. I1 the
presetrt stucly, the author used the cornputer algebra package Matl¿emat|ca (Wol-
franr, 19SS) to obtain K(') explicitly. It should be notecl that Mathematicaresnlts
in extremely lengtþ ancl complicatecl expressions for elements of K(') which have

to be extensively manipulated ancl reclncecl to obtain more sirnplifiecl expressions to
achieve a computationally efficient solution scheme. After lengthy manipulations,
it is found that K(') is symmetric ancl its elernents can be expr-essecl as

lst Row:

Å;¡ : (o3*+ 1) (¿, ø - dzaz) - 4azn(drp, - cl+ps)

kn :0,, ltß : ("?_ - 1)(¿, h - clzpr) + t
kt4 : 6r(o3. - I) (dup, - dsØ - 4c,1nc,2,.os) + 62k¡

Å;rs : 2dzø -2azn(2¿rp, - dzpz * dsps)

A;16 : 0, kn :2("3-- t) 
l¿nn, - úl¡I]

ftrs : 2611a2-(drp, + d,a,.s) - Az pzf I 62k6

where

d1.n : 
"-'lhn , 

otzn. - e-eh^ ) TL : !r2, .,,, N

(3.i1o)

(3.11ó)

(3.11c)

(3.11d)

(3.11e)

(3.11/)

(3.72a)

r\ : (a6ar. - 1)' * (orn - oz')2, d,2 : (a6ar. - 7)' - (orn - az.)' ll.tZU¡
cfu : (a1nar- - 7) (or. - o,l,*), d4 : azn("?. - t) e.L2c)
dt : (o?^ - t) (al. + t),,lu : (o?* + r) (azr. - t), dT : etn(o\^ - t)2çs.na¡

n, : T þlalrtLù, Q2 : fr{rr.!'¡€na, - a2aaa!) ,, or : 2} 
@rono?h^) (s.tz")
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,þ : (o3^ - t) (zarh - d,zsz) - 4azn(2drs, - ct+s+)

o, :'#lz¡ro?no5tr¡6úz - o2oao561f

n, : älú"? - 4¡raaa2rrt{az6z - ponn(6? + $}l
h :2p.ataaa!r¡61hn, g+ : 

"?o?h?*

Zncl Rou:

, Zptaznti26:@=n

- 4a2n61d"3p3

- Zdz 8t

(3.13ø)

(3.13ô)

(3.i3c)

(3.13d)

(3.1aa)

(3.14b)

(3.15a)

(3.15ó)

(3.15c)

(3.15¿C)

(3.16ø)

(3.16ô)

(3.16c)

(3.17a,)

kzi: o, 'i: I,3,4,,5,7,8

Srd Rou:

ft¡e

ks+

Æ¡¡

lt¡s

Ith Row:

where

: (o3. - 1) (dup, - d.spz) - 4a2nd,aps

: (oZ.- t){¿, ktrp, - rlzpù + 62(d,tet - azp)}

- -ku, ,t¡o : 0, ks7 :2a2n(d2p2 + dsps)

- 26tlor.nr¿¿t - (al. - 7)d.rorf + 6n3-

k++ : @1. + t) (za1s6 - d.zss) - ("3. - r) dus, t 4c,2,,s,

tr¿+s: kß, lc¿o :0, k+z : -k,*
k+B :Zdzgz - Zazn(Zdrgu - dzgs +.qn)

2pas I
ot :'ff lo2oao5 

(6? - 63) + z ¡t af;a5{rì6, (ai + a})]

nu : 
+(afu?"n61622), n, : ffi

s, : hlars, (tl + o3) - 2.,t.' (o?r. - r) 6r62s3

sn : frl¿rgr(d? + 63) - 2d,66y62st * 4a1na2,

(3.17å)

r azn("?- + \a'zrs*llz.tzc¡

a?g*l ßrlct)



ítl¿ Row:

Æ¡¡ : Ã:ir, Äs6 : 0, ksz : -k:3, ksa: kt+ (3.18)

6th. Row:

kaa : kzz, Iraz: Ì;os:0 (3.1e)

7th, Row:

kzz : kss, kza: -ks+ (3.20)

9th Row:

kea: kqE (3.21)

The layer stiffness matlix K(') is a function of the layer thickness, the layer
rnatetial properties, the Laplace and Hankel transfomr palameters s ancl {, respec-
tively' Only negative exponentials that clecrease rapiclly with increasilg {, s ancl

Itn are involved in lc¿¡. The relationships between li;¿¡,s [e.g. eqns (8.1g)-(8.21)] cal
also be derivecl on the basis of the physical behaviour of the system since eac¡ Æ¿¡

represents a colnponent of a genelalized force vector clue to a generalized. clisplace-

rnent vector equals to a unit vector. When compared to the stiffless matrix met¡ocl
ploposed by Lysrner and Waas (7972) and Seale ancl Kausel (1g8g), the K(.) ob-
tained from the present rnethod is exact ancl cloes not involve any approximations
in the derivation.

For the unclerlying half-space, due to the regularity conclition at z --+ oo, the
general soltttions involve only four arbitrary coeffÊcients in the vector ç(]v*1), i.e.
Bff+t¡ , Dg*t) , Fg*') ancl ,H.#+t). Th" stiffness matrix of the bottom half-space
can be expressecl as

p(lv+t¡ : ¡ç(lv+t¡O"(iv+l) (3.22)

where

¡r(w+t¡ -4 ,r(1v+i)(€,r**r,r) >"
p(ru+t) -q _¡(iv+t)(€,r"*r,r) >"
1ç(rv+t) : symm. LÉo¡ln*n

(3.23ø)

(3.23ö)

(3.23c)
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The elements of the half-space stiffiress matrix can be expressecl as

A:r1 :

ñ,, :

2¡L,aaa5r¡ in:o
l̂r

_þasI
p

izz : ltt,

ñ., : Ãrr,

; A20,5c61
¡"44 - -n <p

+ 2t@r - 6r)fr:|.,

i:zs:fr2+:0
::ks+: -ltrc
* c62i:s

irn: (62 - 6)i,n

$.2aa)

(3.24b)

Q.zac)

(3.24d)

Q.zae)

whele

þ : 2p.a+atrf (62 - ór ) -
azasT

(3.25)

It is noted that exponential telms of { and s are not involvecl in the expression

of K(¡¡+1) and its elemeuts depencl on the material properties of the unclerlyi¡g
half-space, the Laplace and Hankel transform parameters s ancl {, r.espectively. T¡e
stiffness rnatrix K(/v+1) of the unclerlying half-space clerived hele exactly satisfies all
the governing equations. On the other hancl, the stiffness m¿rtrix scheme proposecl

by Lysrner and Waas (1972) and Seale ancl Kauset (1939) is not capable of taki¡g
into consideration the influence of an unclerlying half-space.

3.3 Global Stiffness Matrix

The global stiffness matrix of a multi-layerecl half-space is ¿ssemblecl by using
the layer and half-space stiffness matrices together with the continuity conditions of
tractions ancl fluid flow at layer interfaces. For example, the contimrity conclitions

at the nth interface can be expressed as

¡(n -t) (€, zn,s) - 1(') (Ë, zn,s) : 1(.) (3.26)

where ¡('") f. iclentical to f clefinecl in eqn (3.2b) with a snperscript z¿ clenoting ilre
layer nurnbel ancl

1(,,) :q /,) T:ù f!ù Q''' ,,
s
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iu whir:h

rl*) :ilr,,*r(rl:) +Tl'Ð -ùn,-t(r!g -r;:))l
r;') : Tlr-,*, (rJH + rÁ2) * ]í,n-t (rtg - ,[,Ð]
Tl') : u,-(r!:))

e@) : u."(el?)

(3.28a)

(3.28å)

(3.28c)

(3.28d)

whele flÏ,)(¡: r,0,2) ancl Qfr) d"rrote the rnth Fouriel h¿rrnouic of the tla,ctions

ancl fluid soulce appliecl ¿t the'nth irrterface, respectively.

The corrsicleration of eqn (3.26) at each layel ilterfzr,ce together.rvith eqns (3.10)

arrcl (3.22) results in the followirrg global equation system.

(3.2e)

1ç(ff+t¡

The gioba,l stiffIress matlix of eqn (3.29) is a well-conclitionecl synrmetric ¡ra-
trix ancl has a band wiclth equtrl to 8. It is naturally constr¿inecl against rigicl

body clisplacements cltte to the presence ef !ç(lv+t¡. If a half-space is not present at
tlre bottom then the bottom piarte at z : z,y has to be restrainecl to eliminate the
rigicl bocly displacernents. The rmmber of nnknowns in the final ecpratiol syster¡,
i.e. eqn (3.29) is equal to a(.n/ f 1) which is nearly one-half of that corresponcl-

ing to the classiczr,l approach b¿sed on the solntion of iayer arbitrary coefficients

e*) , A*) , ..., H*). This reclrtction of the size of final equation systern together with
the symntetly makes the present scheme computationally efficient when comparecl

to the conventional scheme (Varcloulakis and Hanrpattanapanich, 1986). Further-
more, the eqn (3.29) is invertible ancl numerically stable for very large valrres of { as

shown in Section 3.4.1. Laplace-Hankei transforms of stresses ancl fluicl clischarge

¡r(t)

¡-(z)

:

:

¡t(rv)

¡r(lv+t¡

1(t)

1(z)

:

:

.¡,( lr)

T(¡¡+1)
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at the top and bottorn interfaces of a layer can be obtainecl by using eqns (8.10),
(3.29) and (2.S). If clisplacements ancl/or pore pressule within poilts of a layer.

are reqrtiled then it is convenient to define a set of fictitious pla¡es thro'gh these
points and consider these as aclclitional layers. Alternatively, eqn (B.Sa) can be usecl

to cornputs 6(') for a layer and thereafter compute displacements ancl por.e pressure

at arbitrary points within a layer using eqn (3.1a). This, howeveL, rnay ilvolve the
inversion of nurnerically ill-conditioned matrices such as R(') fol large values of {
and consequently loss of precision. If loads ancl/or fluicl sources are appliecl within
a layer then fictitious intelfaces are consiclerecl at the loacling levels.

3.4 Numerical Solutions

3.4.L Numerical Scheme

A computer code based on the solution proceclure describecl in the prececling

sections has been developed to compute the quasi-static Greel's f¡lctions of a
multi-layerecl poroelastic half-space clue to inte¡ral loaclilgs ancl a fluicl source. The
tasks perfoÏtned by the computer cocle can be describecl as 1) the cor¡putatio' aucl

assernbly of stiffness rnatrices corresponding to each layer ancl the underlying half-
space of a multi-layerecl poroelastic half-space to establish eqn (3.2g) for specifiecl

values of { and s corresponding to a given nnmerical Laplace inversion scherne; 2)
the solution of eqn (3.29) to obtain the interlayer clisplacernent ancl pore pressnre

vectols in the Laplace-Hankel transform space; 3) the eval¿ation of semi-i'firrite
integrals with lespect to { clefined in eqn (2.8) by clirect numerical quadrature
cliscussed in Section 2.5.1 and 4) ttre evaluation of the time-clo¡rai' sol'tio's by
using tlte numerical Laplace inversion given by Stehfest [eqn. (2.88)] or Schaper.y

[eqn (2.39)]. It should be noted that the cleterminant of global stifiiress rnatrix is
nonsingttlar along the integration axis of eqn (2.8) [i.e. real { axis for real values
of s giverr by eqns (2.38) and (2.39)]. Aithough it is impossible to prove this by a
rigorous mathernatical analysis for an ltr-layelecl system, it can be arg¡ecl that if
poles exist in the integrancl of eqn (2.8) for real { ancl s values [i.e. singular global
stiffness matrix in eqn (3.29)] then by virtue of the application of contour integratio¡
method for Laplace invelsion yields terms that would increase exponeltially with



time. Such behaviour is not admissible in quasi-static problems where the response

approaches a finite limit for ú ---+ co.

The numelical stability and the invertibility of the global stiffness rnatrix iu
eqil (3.29) for increasing values of { ancl s can be assessecl by computing a conditio¡
numbel of the rnatrix (Cline et aL,1979). Figule 3.2 presents tr1-coldition nunbers
(The rnultiplication of the first norm of a matrix ancl the first norm of its i'verse)
with lespect to { for differeut values of s of the final equation systems corresponcling
to the present stiffness method [i.e. eqn (3.29)] and the conventional methocl basecl

on the determination of layer arbitlary coefficients. The results shown in Fig. 3.2

correspond to a layered system consisting of a poroelastic layer of ulit thickness
(u0) :0.25, u#) : 0.35 ancl B(1) : 0.8) bonclecl to a poroelastic half-space (uQ) :
0.2, ,[]) : 0.3 ancl B(2) : 0.6). In aclclitio ù, p(1) /p(2) - 0.5 a'cl ¡;(1) - rí(z) .

A coefficient matr-ix of a linear equation system with a small co¡clitio¡ n.'rber.is
consiclered as a well-conditioned system whereas a large conditiol lumber indicates
ill-conditioning. The numerical results in Fig. 3.2 show that the global stiff'ess
rnatlix of the present sclr.eme has a smaller conclition mrmber which either rernai's
constant or clecreases over a wider range of values of tlansform par-arneters { ancl s.

The conclition number of the coefficient rnatrix corresporrding to the conventiolal
rnethod is always higher than that of the global stiffness matr.ix of eqn (8.2g) ancl

becomes extrernely large for increasing values of { clue to the presence of mis-
rnatching exponential terrns in the coefficient matrix. The ¡urnerical stability of the
present stiffness matrix approach is clearly demonstratecl by the solutions shown in
Fig. 3.2.

Table 3.1 presents a comparison of nnrnerical solutions for vertical clisplace-

ment and vertical stress at the point (0, ø) of a homogeneous poroelastic half-space
due to a uniform vertical patch load of raclius ø appliecl at a depth z : a below
the free surface. The half-space is consiclelecl to be consisting of 10 layers of eq¡al
tlrickness, hf a:0.2, ancl an unclerlying half-space. Solutions obtainecl from the
present stiffness method are compalecl with the numelical solutions of a houroge-

neous poloelastic half-space flom Chapter 2 to velify the numerical stability a¡cl
the accuracy of the present matrix schenr.e. The two solutions are in excellent a-

greement. Table 3.2 presents a comparison of elastostatic solutions cor.respolcling
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to a layel of unit thickness perfectly bondecl to a half-space and subjectecl to uli-
form vertical pressure of unit total force appliecl over a circular ar-ea of unit ¡adius
at the top surface. Exact solutions (computecl numerically) providecl by M¡ki and
Dong (1980) is nsecl in the cornpar.ison with the final solutions (t -- oo) fi.orn the
present study. The genelal accuracy of the solutions obtainecl from the stiffness
matrix method presentecl in this Chapter is confirmecl thr-ough these ilclepenclent
cornparisons.

3.4.2 Numerical Results for Multi-Layered Poroelastic Half-spaces

The quasi-static response of a multi-layerecl poroelastic half-space u¡cler a s-

electecl set of ioaclings is investigatecl in the numerical stucly. A layered systern
consisti[g of two poroelastic layers bonded to an unclerlying poroelastic half-space
is consiclerecl in all numelical stnclies presentecl in this Chapter. The proper.ties

of the first layer. are z(1) - 0.25, ,Lt) :0.5 and 3(r) : 1.0; for the seconcl layer,
uQ) - 0.25, u[,2) : 0.35 ancl B(2) : 0.8 anr] for the unclerlying half-space, uQ) : 0.2,

,{;t) :0.3 ancl B(¡) : 0.6. I' aclclitio n, ¡L,Q) ¡f') - 1; pß) I pO : 2 ancl appliecl

loadings and fluicl clischarges are assumed to be uuiformly distributed over- a circnlar
area of radius ¿.

3.4.2.L Displacement Histories under surface Loadings

Time histories of displacernents at the origin (r : 0, z : 0) due to u¡iform
patch loadings of intensity /s applied at the top surface are stucliecl first. problerns

of this nature are usefitl in the study of consoliclation settlement of s'rface f'o''-
dations. In the pararnetric study, the total thickness of the two layer-s, h1 ! h,2,

is eqnal to 2a un.1 o(3)/ru(2) :0.b. A nonclimensional time, rif: ç(z)¡f ozl, in the
range 10-6 < 1 ( 10a is consiclelecl in the numerical study. Time histories of
nondimensional vertical displacement, ui"l: 2tt1)u,lfoal, at the origin clue to a
uniform vertical plessnÌe are shown in Figs. 3.3(a) ancl 3.8(c). Figs. 3.3(b) alcl
3.3(d) present nondirne'sional horizontal clisplacerne't, uî*l:2pQ)u,¡¡oø], at the
origin due to a uniform horizontal pressure appliecl at the top surface. Nnmerical
results plesented in Figs. 3.3 indicate that the general tre¡cl of the clisplaceme't
histories is quite similar for both vertical ancl horizo¡tal loaclings as notecl in Section



2.5.2 for a homogeneous poroelastic half-space uncler buriecl loaclings. The infllence
of permeability on the resporìse is consiclerecl in Figs. 3.3(a) and 3.3(b) by setting
r¡G) f ß(2) - 0.001,0.01,0.1,1.0 ancl 10 with ht: hz: a. It can be seen from these

two figures that the ratio HG) f HQ) has a significant influence on the consoliclation
process of a layered poroelastic half-space. As expectecl, the consoliclation settle-
rnerrt is fir'st noted in the case of 6G) ¡nQ) : 10 whereas, for- tr1) f KQ) : 0.001, it
is observed when ft ) 0.1. The earliest final solution is reachecl ¡s¡ ¡JL) f n(2) : 10

and the latest ¡or 6(t)/n(2) : 0.001. This behaviour is clue to the fact that the first
layer is less permeable in the latter case. Cornparison of clisplacernent histories in
Figs' 3.3(a) and 3.3(b) indicates that the variation of the.atio ru(1)/¡;(2) esse¡tially
results in a shift of the response profile in the tirne scale. The nrimer-ical sol'tions
in Figs' 3.3(a) and 3.3(b) show identical initi¿l and final clisplacernents since the
nlaterial palarneters I'/)t/u ancl ¡r, ancl the thicknesses of the two layers are the sanìe

for all valnes of KQ) f ñ(2) .

The influence of layer thickness on the response is stuclied in Figs. 3.3(c) a¡cl
3.3(d) for'five diffe'ent valnes of the ntio rtyf hz, i.e. hlhz - 0.25,,0.b,1,2 ancr4.
Note that the total thickness of the two layers is 2ø ancl KQ) f ñ(2) : 0.001. The i'itial
displacernettts for diffelent values of fu f h2 are cliffer-ent ancl their orcler of magnit'cle
is identical to that of. h'1f h2. This is a conseq¡ence of the fact that the u'c¡.ai'ed
behavionr of poroelastic materials is mainly governecl by the unclrainecl poisso''s

ratio, therefore a higher ratio of hlhz ûìeans a lessel nnclrainecl compressibility
of the layerecl system rin"" ,.f;) > ,L2). The consoliclation settlernents in all cases

are initiatecl at almost identical time instants, i.e. after 4 > 0.1, ancl the final
settlernent is fir'st reached in the case whele fuf h2: 0.25 (i.e. h1f a :0.4 ancl

h2f a:1.6) when rr ) 100. It is also founcl that the tinre to reach the final solution
increases with increasing values of fu f h2. These features are consistent with the fact
tlrat since ÆG) f KQ) - 0.001, the layerecl system becornes mole irnpe¡meable for a
higlrer ratio of h,1f lt'2. Final solutions are iclentical since elastic properties (clrainecl)

of the different layelecl systems are iclentical and the consoliclatiol process i1 ali
cases is completed for 11 > 1000.
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3-4.2.2 Displacement and Pore Pressure Histories due to Fluid Sink

The next set of solutions colresponcls to ploblenrs involving fluicl withclr¿w¿l
frotn layered poroelastic meclia. Ploblems of this nature ar.e useful in the stucly of
settlement due to groundwater withdrawal, energy resource explor.ations, etc.. A
circular fluid sink of uniform intensity q¡ is locatecl at the center.of the seco'cl layer
of the layer system defined previously. The sink is at a clepth z : I}a below the fi.ee

surface. In the numerical study, the permeability of the first layer ancl the half-space
is assumed to be equal, i.e. rc(1) - /i(3), ancl the ,otio oQ) ln;(l) is variecl from 1 to
100. In addition, the thickness of the seconcl layer is assumed to vary between ø to
4a. A nondimensional tirne 12, where 12 : ¿G)¿¡a2, is usecl in the fluid sink problem.
Tirne lristolies of nondirnensiolal vertical clisplaceme:nt, ulo[: cQ)urlqoa2], at the
origin for different valnes 6f ¡;(2) f ¡i0) ancl 14 are presentecl in Figs. 3.4(a) a1¿
3.4(b), respectively, for 10-2 < 12 1 !0a. It is found that the displacernent at this
point is higher than that at the point (0,10ø) at all time instalts. Similar.behaviour
was also observecl in the numerical solutions shown in Fig. 2.8(c) for the case of
a buriecl patch fluid sink in a homogeneous poroelastic half-space. The solltions
presented in Figs. 3.a(a) and 3.a(b) indicate that the surface settlements in all cases

are initially zero aucl increase rapidly with time during the per-iocl I 1 rz < 100.

Final solutions in all cases are reached when 12 ) 1000.

Figs. 3.a(c) and 3'4(d) show time histories of nonclimensional pole pÌess¡re,

n[[: c1)pf2p,0)r16a], at the centel of the patch sink (r :0,,2: 10¿) for cliffer.e¡t
valnes of tr?) f KG) ancl h2, respectively, for 10-3 112 1103. It is 

'otecl 
that initial

pore pl'essure is zero ancl suction is subsequently developecl at this point. Fi¡al val-
ues fol suction are obtainecl after 12 ) 100. It is notecl that less suction is clevelopecl

due to a fluid sink in a ntore permeable layerecl system; i.e. for higher values of
Æ(2) f KQ) in Fig. 3.4(c) ancl for higher values of h2 in Fig. B.a(d). It ca1 be argnecl

that higher suction clevelopecl in a layelecl systern results in higher stresses i' the
solid matrix (effective stresses) ancl consequently larger solicl strains. Therefore, the
solutions presented in Figs. 3.a(a) and 3.a(b) inclicate that the vertical clisplacement
decleases with incleasing values çf ¡xQ) f ¡1Q) ancl å2, respectively.
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3.4.2.3 Pore Pressure and Fluid Discharge profiles along the z-Axis

Nondimensional pore pressuïe, p!l: plÍol, along the vertical axis cl¿e to a
vertical patch load applied at the top surface ale shown in Figs. 3.5(a) ancl 3.5(b)
for clifferent values of K(r) f IiQ) and h4f h2, respectively, for tirne instants 

"r 
: 0.001

and 1' It is found that no suction is developecl along the z-axis clue to a veltical
strrface loacl and excess pole pressure becornes insignificant for z ) 4a. The notable
feature is that a discontinuity in the slope of the profiles is observecl at the interfaces,
i.e. at zf a:0.4 f.or- fuf h2 - 0.2b, at zf a: 1 fol hlhz: 1 ancl at zf a: 1.6

for /21 f h,2:4. This is clue to the fact that since the perrneability of the two layers

are different a discoutinuity exists in the slope of the pore ptessure profiles at the
iuterfaces. A srnall cliscontinuity also exists at the ilte¡face between the secon¿

layer and the half-space (i.e. at z f a : 2.0) since the per.meability of the two meclia

are not the same (KG) IKQ) : 0.5). Initially (r, < 0.001), a very lar.ge pore pressure

is developed near the top surface resulting in a very high gradient of pressure in the
legion 0 < zf a ( 1. Pore plessure betreath the first layer clecr.eases with clepth in
all cases ancl are nearly iclentical for- zf a ) 2. As expectecl, the rate of pore press*re
clissipation increases with increasing values of pelmeability. For example, at r, : l,
excess poÌe pressure is nearly clissipated in the first layer 1or ¡ç(t)/ru(2) : 10 whereas

appreciable pore pressure is noted in the first layer if KG) f KQ) : 0.1 for all values

of h,1f h2. Excess pore pressure diminishes to negligible level when ft ) 10 alcl 100

lor ,;(t)/rc(2) - 10 ancl 0.1, respectively.

Profiles of nondimensional pore press're, p[, ancl fluid clischarge, qîn[: q"lqo],
along the z-axis clue to a patch fluid sink at a depth z : 10a below the fiee sur-
face are shown in Figs. 3.6(a) and 3.6(b), respectively, for clifferent time instants.
Ntrmerical solutions âre presented for 8 < zf a ( 12 ancl 1s¡ y;(2)f K(1) - 1 ancl 10

wlren hz : 2a. Note that rc(3) is equal to ru(1) in this case. As expectecl, suction
profiles shown in Fig. 3.6(a) indicate that the rnaximurn v¿lue of suction is noteci

at tlre level of the sink (i.e. zla: 10) fol all values of 12 ancl the suctiol is higher-

1o,- ¡iQ) f n(1) - 1 when comparecl ¡6 ¡;(z) f ¡io) : 10. Naturaliy, the pore pÌessure
profiles show a singularity (kink) at z :10¿ clue to the fluicl sink appliecl at this
level. A discontinuity in the slope of the p| nrofiles is observed at layer interfaces,



i.e. at ,la- 9 and 11 for HQ) lri(l): 10. Such a cliscontimrity cloes not exist when
ß(2) - ru(1). Fin¿l values for suction are attained when 12 > 1000. Fluicl clischarge

profiles shown in Fig. 3.6(b) for 12 - 0.1 ancl 1000 inclicate that a unit clisconti¡¿ity
exists at the level of appliecl patch fluid sink (z : L}a). A cliscontinuity in the slope

of tlre dischalge profiles is also noted at zf a:9 and 11 when KQ) f ñ(t): 10 where-
as, for /i(2) - o(1), clischarge profiles are smooth along the z-axis. This behaviour
is sirnilar to what observed in Fig. 3.6(a). Initially (r, < 0.1), higher discharge
is cleveloped in the case where nQ) ¡oG) : 10. As tirne increases, the clisc¡arge
for nQ) - Æ(1) increases ancl leaches a final state when 12 ) 1000. However, the
disclrarge profile ¡ot ¡;(z) f n(1) : 10 is nearly tirne-inclepenclent. The fluicl clischars-e

corresponding to both value" o¡ oQ) f rc(l) becornes negligible after- lrl" - L¡l > 2.

3.5 Conclusions

Explicit solntions for stiffness matlices of a layel with a finite thickness and
a half-space aÌe presented in the Laplace-Hankel transforrn space. The present
stiffness rnatrices satisfy exactly all the fielcl equations relevant for a poroelastic
medium. These stiffness matrices need to be clerivecl only once ancl can be appliecl

to study the response of any horizontally layered poroelastic meclium. The global
equation of a layer system is obtained by assernbling the layer matrices on the basis

of iflterface continuity conclitions. Accurate tirne-clo¡rain solutio¡s ca1 be obtainecl
by applying the numerical sclr.erne proposecl by Stehfest (1g70) or Sc¡apery (1g62)

for Laplace inversion and applying clirect numerical quaclrature to evalnate the
Hankel transform inversion integrals.

The stiffness matrix method presented in this Chaptel has the aclvantage that
the size of the final equation system is nearly one-half of that corresponding to the
conventional matrix approach based on the cletermination of layer arbitrary coef-

ficients. In addition, unlike the coefficient matrix of the colventio¡al ¡rethocl, the
global stiffiress matrix of the present methocl is symmetLic, numerically stable ancl

well-conditioned for the large values of transforrn pararneters ancl has a bancl wiclth
equal to eight. Selected numerical resrilts presentecl in this study for cliffere¡t lay-
ered systerns indicate that the response of a layerecl poroelastic medium clepe¡cls



significantly on the poroelastic material parameters and the conûguration of lay-
ering. The response of a layered system is governed by many parameters (layer
thickness, rnaterial parameters, etc.) arcl it is clifficutt to identify the i'fluence of
iucliviclual parameters ott the response. The present rnethocl can be effectively usecl

to compute the kernel functions (Green's functions) requirecl in the application of
boundaly integral equation rnethods for a multi-layered poroelastic half-space. It
can be also used to verify the accur.acy of apploximate methocls such as the finite
element rnethocl and other numelical techniques that can be appliecl to stucly the
consolidation ploblems involving layered poroelastic meclia.
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Table 3.1: Comparison of vertical displacement and vertical stress due to a vertical
patch load applied at depth z : o, of a homogeneous poroelastic half-space (z -
0.25,uu: 0.35 and B - 0.8)

t*
(ct / a,2)

2p,u,(0, a,t* foa o"r(0, at ,t* 'Ío
Case I Stiffrress À,Iethocl Case I Stiffness Nlethocl

Stehf'est Schapery Stehf'est Schapery
o

10 -4

0.01
0.1

1.0
10

104

10- 0.9757
0.9777
0.9891
1.0051

1.027r
1.0505
i.0635

0.9757
0.9777
0.9891
1.0051

1.0271
1.0505
1.0636

0.9758
0.9775
0.9910
i.0067
1.0291
1.0493
1.0635

-0.7151
-0.7t54
-0.7181
-0.7163
-0.7059
-0.7041
-0.7040

-0.7151
-0.7154
-0.7181
-0.7163
-0.7059
-0.7041
-0.7040

-0.7151
-0.7155
-0.7r79
-0.7I42
-0.7068
-0.7044
-0.7040

Case I: Numerical solution from Chapter 2.

Table 3.2: Comparison of vertical clisplacement clue to a vertical patch loacl appliecl
at tlre top surface of a layerecl elastic half-space (¡ír) ¡rízl - 10, uG) : u(2) : 0.J
ancl å1 : 1.0)

z 2¡ru,=(0, z) 'r 2pu,,(r,0)
N,I & D (rgso)I Stiffness þIethocl N,r & D (1980)T Stiffness lvlethocl

0

1

2

6

11

0.1948
0.1815
0.1264
0.0545
0.0312

0.i948
0.1813
0.1262
0.0542
0.0308

0

1

2

5

10

0.1948
0.1601

0.1089
0.0450
0.0216

0.1948
0.1600
0.1088
0.0448
0.0215

T l,tuLi ancl Dong (1980).
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Chapt er 4

2.D DYNAMIC GREEN'S FUNCTIONS

4.1 General

This Chapter is concerned with the derivation of clynarnic Gleen's functions
corlesponding to time-hannonic ¿nd transient loadings ancl fluicl sources appliecl at
a finite depth below the surface of a homogeneous poroelastic half-plane. Biot's
equations fol dynamic poroelasticity with internal friction are consiclerecl. Two-
climeusional general solutions fot'governing equations nlcler time-harmonic excita-
tions can be obtained by applying Hehnholtz represeutation ancl Fonrier i¡tegral
transforms witlt respect to the u-coordinate. The Green's functions are pr.esentecl

explicitiy in the Fourier tlansfonn space fol clisplacements, stLesses, excess pore
pressure and fluid clischarge corresponding to arbitraly distributions of ve¡tical and
horizontal loadings ancl fluid sources (specified clischarge ancl pressure). Solutiols
corlespottclirrg to point and uniformly distributed excitations are also presentecl.

In addition, it is shown that Green's functions corresponcling to transielt excita-
tions (loacli[gs and flnid sources) can be clerived from the time-harmonic solntions
through an appÌopriate change of parameters. An accurate numerical scheme is pre-
sented to evaluate poroelastodynamic Green's functiols. Selected numeric¿l results
for clisplacements, stresses atrd pore pressule corresponding to three poroelastic
materials and an ideal elastic material are presentecl to portray the infllence of
frequency of excitation, poloelastic material properties and types of loaclings o1 the
dynarnic lesponse of poroelastic half-planes.

4.2 Governing Equations and General Solutions
Considel a poroelastic half-space with a Cartesian coorclinate systern (*,y,")

defined such that the z-axis is perpendicular to the free surface of the half-space
as slrown in Fig. 4.I. h is assumecl that the cleformations aÌe plane strain in the
æz-plane, i.e. er, : €slt : €lJr: 0. The equations of rnotion in the absence of bocly

folces (solicl ancl fluid) and a fluid source can be written for the present case as

tV2u,+ (À + az M + ù# - "*#:ffi{ru, (a.1ø)
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tty2u"+ (À + 02 M + ,ù# - "*#: #þu + ptu") (4.rb)

"* f. - *#: #(p¡u, * mu,) * u* @.rc)

"r#- M#: #(p¡u,*nru,)*u# Ø.r(t)

where

-o 6z 5zY.:_I_' 0r2 ' Az2
0u- 0'u-*l"0r'Az

* ,0u), 0uc:-(#*#)
, 21ru

I-2u

@.2a)

(4.2b)

@.2c)

(4.2d)

In tlre above equations, u¿(r,2,ú) ancl w¿(:n,,z,t) (i: t,z), €, C, þ, u, a antl M ar-e

clefiued previously in Section 2.2; À is the Lamé constant of the bulk rnaterial; p and

P¡ arc the m¿ss densities of the bulk material ancl the pore fluicl, respectively, alcl
m is a clensity-like parameter which depends on pr ancl the geometry of the pores.

In addition, ö is a parameter acconnting fol the internal friction clne to the relative
motion betweeu the solid matrix and the pole fluid. The parameter.ô is eq'al to the
ratio between the fluid viscosity ancl the intrinsic penneability of the 

'reclium. 
If

intelnal friction is neglected then å : 0. Note that eqns (+.1) cal also be expressecl

in terms of solicl ancl fluid displacements (Biot, 1956a). Eqns (4.i) are basecl on
the assurnptions that the flow of the fluicl lelative to the solicl thro*gh the por.es is
of the Poiseuille type ancl the thelrnal ancl liystelesis effects are legligible. Mor-e

cletails of Biot's hypotheses and iclentification of material parameters are discussecl

bv Biot (1956a), Bou'bié et at. (L987) ancl Rasolofosaon (1991).

The motion unclel consideration is assumed to be time-harmonic with a time
factol o¡ 

"it'tt 
where ¿¿ is the fi'equency of the motion ancl z' : Ji. For brevity,

tlre terrn 
"i'tot 

i" suppressecl henceforth from all explessions. It is important to
note that the govetning equations, eqns (4.7), clo not consist of four inclepenclent

unknowns. With the aid of eqns (2.1b) ancl (4.2c), the eqns (4.1) can be reclucecl

to only three independent equations expressecl in terms of three ¡nknowns ua,u,

62



and p. The corresponding governing equations can be expressecl by lsing standarcl
indicial notation as

Ll'ui,jj + (À + p)u¡,¡¡I r'(p - rjp¡)uo - (c - t)p,¿ :0

p,¿¿ * #, * p¡a2 (g - o) ,ui,i : o

þu¿,jj + (À + p)u¡,¡¿*.pu2u¿ - ?O,¿ :0
o,¿¿* Tr*iar¡u¿,¿- I

@.3a)

(4.3b)

where

(4.4)

The field equations for dynarnic thermoelasticity in the absence of bocly for.ces

and a heat sonrce can be expressed in the freqnency clomain as

@.5a)

(4.5å)

where O denotes the temperature increment and 7, ¡; ancl ? are palarnetels given by
Nowacki (1975). It is eviclent frorn eqns (4.3) ancl (a.5) that there exists an analogy
between poroelasticity and thermoelasticity in the freqnency clomain (Bolnet, Igg7
a,nd Cheng et a1.,1991).

In view of the analogy between poroelasticity ancl therrnoelasticity in the fre-
quency domain it is possible to obtain a poroelastic Green's function from a corre-
sponding therlnoelastic Gi'een's function through the change of relevant parameters.
Bonnet (1987) ancl Cheng et al. (1991) obtainecl poroelastic Green's functions fol a

full plane fi'om the soltttions given by Kuplaclze et aI. (1g7g) ancl Nowacki (1925),

respectively, for therrnoelasticity. However, Green's functions for a poroelastic half-
plane subjectecl to internal excitations cannot be derivecl by using the analogy be-
tween poroelasticity and thermoelasticity since the thermoelastic Gleen,s fu'ctions
fol an internally loaded half-plane are not available in the literat*re. Therefore,
a formal solttion of the corresponding bounclary value problerns with the aicl of
general solntions of eqns (4.1) is necessaty.

At this stage, the half-width of a loacling strip denotecl by ø is selecteci to
nondimensionalize all length parameters inclucling the coorclinate frame. Stresses

and pore pressuÌe are nondimensionalized with respect to shear rnoclulus ¡l of the



half-plane. All valiables will be replacecl by appropriate nonclimensional var-iables,

b't the foregoing notatio's will be .sed for convenience.

The equations of motion, eqns (4.1), can be solvecl by introclucing the following
clisplacernent clecompositions basecl on Helmholtz rep¡esentation of a vectol' fielcl.

,u_(n. z.t\ : oót(r, z,t) * oth(r, z,t)*r\*1-1"/ 
ðr ' 0,

'u..( r. z.t\ : oÓt(t' z't) 
- 

oth(r' z't)
oz ot

,,,, /-. -. *, - oÓr("t:'ù 
-o,þz(r,z,t)'LUL\J:) ZrT,) : --- A" 
* -- U

, ,, 0óz@, z,t) 0'þ2(r, z,t)tur_\trrz,t)-f

[{r"*z)v2+02]öt

laM*vz + p.621öt

-laM*vz + p.621óz @.Ta)

-lM.v' r m* 62 - ib.6lóz (4.Tb)

(a.8ø)

(4.8ó)

(a.ea)

$.6a)

(4.6b)

@.6c)

(4.6d)

wlrere þ¿ z\,ncl ,þ¿ (i :1,2) in eqns (4.6) are scal¿r,r' ancl vector' fielcls, respectively.

Substitution of eqns (a.6) into eqns (4.1) togethelwith the assumption that the
motion is time-halrnonic yields two sets of partial cliffeleltial equations fo. scalar
fielcls ót,óz ancl vector fielcls th,tþz as

ancl

[v'+ 62lrln: -p*62úz

p*62rh: -lrn*62 - ib.6lú2

where the climensionless parameters À", M*, p* ,n1,* ancl Ò* are clefinecl as

À" : À* +a2M*,)* : ì, M* : M,
pp

p* - Urm* :? ancl b*pp
and the nondimensional frequency, á, is clefined as

ab
=-

t/ Pt"

foò:^lLua
Ytt
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The Fourier integr.al tr.ansforrn (Snecldon, 1g51) of a
spect to the r-coordinate is defined by

ftrnction f (*, ") with re-

and the invelse

r G, ò : # l**, o, z)e-i€' d,r

l1g, z¡eiÊ'a6

(a.10ø)

(4.10å)

It can be shown that the general solutions of Fouriel transfolms of þ¿ and {¿
(i, :1,2) can be expressecl as

ót(€, ") 
:A(e ,6)s7" + B(t,,6)e-t'" + C(t,6)e7,' + D(€,6)e-t,' @.r7a)

Óz(t, z) :Yt f B({, t)e-î.'} + + DG,6)e-r"j Ø.rrb)

,hG, z) :E(t,6)ett'+ ,¡r(€, 6)e-t"' @.71c)

'rþr(€, z) :xs{tt*, 6)¿'tt, + r' (€, 6)e-x"} Ø.Itd)

wlrere AG,6),8(t,6),,c(€,6),D(Ë,6),,8(€,6) ancl l7({,ó) are arbitr.ary functions to
be deterrnined by using applopliate bonndary ancl/or continuity colclitio¡s releva't
to a given problem ancl

xz{cç¿,6)e'r"{r(e, 6)e'r,'

X¿

Xs

_ (^" + z)t? - 62

p*62 -aM*Lf;'
_ P*6'

i,b*6 - m*62

i: I,2 (a.Iza)

(4.12b)

@.72c)

(4.rzd)

addition,

(a.ßa)

i:1,2

Note that the radicals 7.¿Q : L,2,3) are selected slch that R"(Z) ) 0. In

-,t¿:\/t2-L?,

"ß: \/t2 - s2

øt*t/-?-+-t
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12-tJ2 
-

s2:
L^JT 

-

@2:

øt-t/4-+'ø,
2

(p* xe + 1)62

('rn" 62 - ib.6)(^. + 2) + M* 62 - ZaM* p* 62

(rn*62 -ib*6)62 - b\'6n

(4.13ó)

(4.13c)

(4.r3d)

(a.ße)(À. + 2)M.

whele Lt, Lz and ,9 are the dirnensionless cornplex wave nurnbels associatecl with
three kinds of dispersive and dissipative bocly waves, which were clenotect by Biot
¿rs the clilatational wave of the first kind (/øsú wave), the clilatatiolal wave of the
seconcl kind (s/ottr wave) ancl the rotational wave, respectively (Biot, 1gb6a). In the
Iirniting case of an icleal elastic solid (M* : p* : lrl* : b* : e.: 0), o¡ly S1 a;¡¡l $1
are involved in the analysis. The govelning equations for. /1 ancl þ1 arc eqns (4.2a)

ancl (4.8a), respectively, with the right hancl sicle of these equatio¡s being eqlal to
zero and eqns (4.7b) ancl (4.8b) vanish automatically. It is immecliately evide¡t that
tlre resulting solutions for /1 and tþ1are iclentical to those given by Lamb (1904).

In adclition, ,L1 and ,9 are identical to the wave nurnbers of pr.essule (P) ancl shear
(SV) waves propagating in an isotlopic icleal elastic solicl (Achenbach, 1973).

In view of eqns (2.I), (4.2b)-(4.2d), (4.6) ancl (4.11), the genelal solutiols for.

Fonriel transforms of displacements u¿ ar.tr w¿ (,i : z,z), stresses o¿¡(i, j : r,z)
and excess pore plessure p can be expressed as

¿"(€, z) :i((¿¿tt" * Be-tr, I Cetr' + De-1"") +.ß(Ee-t", _ Fe-t",¡ @Jaa)

a"(t., r) -.n(Aet" - Be-1'") +.y2(Ce't2' - De-l,") - q(ne1"' + F"-r",) (4.I4b)

[u,(t, 
") 

:ü{xr(A"r,' + Be-l,') + X2(Ce'y2, + n"-r"")}

* XsTs(E"'"' - Fe-l")

w 
"(€, 

z) :Xt",lt (A"r,' - B e-r,') * Xz.yz (C 
"r", - De-'y2z)
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- itXt(E","" + Fe-l"") (4.14d)

o*,(€,2):çt(A"r,' + Be-1,,) +ç2(Ce"'t2, + D"-ar,) *2i,(y(8"r"" _ Fe-tsz¡ (a.I1a)

o""(€, z) - B"-1r") +.Y2(ce-l," _ n"-rr,)\

+ q(Ee''r"' + Fe-1"') (4.75b)

- 2i€n(8"r"" - F"-r",)(a.15c)

:zt{{tt(A"r,.

o..(€,2) :þt(A"r," + Be-1,") + B2(Cet,, + De-1,,)

p(€, r) -rh(Aet" + Be-7,") + T2(Ce'Y2" + De-l,")

where

n¿: (a * X¿)M. L?, ,i :1,2

ç¿: -(2€2 +^*L?i_aq¿), i:r,Z
çs : ({2 +.y3)

þ¿ : 2l? - 
^- 

L? - ari, i, : r,2

The fluicl clischalge, which is clefined by the time clerivative

placement relative to the solid matrix, can be expressecl as

qn: i6un, 11,:tr)z

(4.16)

(a.77a)

(4.17b)

(a.fic)

(4.17d)

of the fluid clis-

(4.18)

wlrele q,, is the fluicl discharge, nondimensionalizecl with r-espect to f UlO, irr the
n-direction (n : r, z).

4.3 Solution of Boundary Value Problems

Boundaty value probletns fot a poroelastic half-plane subjectecl to b¡riecl time-
lrarmonic excitations as slr.own in Fig. 4.I arc consiclerecl in this section to clerive

the Green's functions. The solutions corresponcling to four basic loacling config-

urations, i.e. a vertical load, a horizontal load, a fluicl source and appliecl pore

o/



flnid pressnre, which are assulned to be distribrtecl over a strip of wiclth 2a at a

cleptlr 7 : 7t, are presented. The loading is uniform in the E-direction so that
the resulting deforrnations are of plane stlain type. A solution to the i'ter.nally
loadecl half-plane can be derived by considering it as ¿ two-¿omain bol'clary valne
problem. Genelal solutions for each dornain are given by eqns (4.14)-(4.16) a¡¿
(4.18) with arbitraly coefficients A¿(€,ó) to fl({,á) where a subscript i (.i: r,2)
is usecl to identify the dornain nurnber. The domain "1" is bounclecl by 0 < z 1 zl
and donraitt "2" by "' I z < æ. Note that for dornain ,r2rr, atbítr-ary function-
s Az(€,6),Cz({,ó) and Ez(t,á) : 0 to ensure the legulality of the solutions at
infinity. The boundary ancl continuity conclitions corresponcling to a poroelastic
half-plaue subjected to buliecl loaclings/fluicl sonrce can be expressed as

ol"1)(",,0) : o,

o(t) (r,o) : o

ut) @, z') - uf,) (n, z,) - o,

O(t) (r, zt) - ,p(z) (r, zt) - g

oL!)(*,",) - oL1|(*,r,):rPfn@ + a) - H(r - o)1, n

,rf,i) (*, z,) - tue) (,, r,) :,l i9Pln6 + a) - H (r - a)l

fL: X:) z

fL::L)Z

(a.1ea)

(4.7sb)

(a.Lec)

(4.1ecl)

: x:)z (4.19e)

(4.Ls1)

In the above equations, the superscript i ('i : I,2) is usecl to clenote the clomail
number and 11( ) denotes the unit step function. The intelsity of clistrib'tecl loacl

acting in the n-direction (n : r,z) ovel a strip of width 2a at clepth z : z, ancl a
fluid source applied at z : z' over- a width of 2a areclenotecl by Tr(r) (r: *,2) ancl

Q("), respectively. The bounclary ancl continuity conclitions given by eqls (4.1g) are

consistent with the discussion given by Delesiewicz ancl Skalak (1968). Acco,.cling

to eqns (4.19), a pore pressure discontinuity cioes not exist al z : zt and, the appliecl

load is completely taken by the solid skeleton at z : zt. Solutions corresponclilg to
eqns (4.19) are the required Green's functions for bounclary element methocls when
the excitation is r-epresented by a line loacl ancl a line fluicl source.

The boundary and continuity conclitions corresponcling to a poroelastic half-
plane subjected to applied pore fluid pressure at a depth z = z'can be exp¡essecl



oQ) (r, z,) -,p(t) (", r,) -

oL',) (r, z') - oQ,) (r, zt) :

oL! @,,') - "L?) 
(,,, 

",) -
,uf,l) (*, z') - w!2) (r, 

"') -

Bt:

Bz: Bt - Ate27"' ,

ryln@+a)-H(r-a)l

"Pfu@+a)-H(r-a)l
0

0

@.20a)

(4.20b)

@.20c)

(4.20d)

together with the boundary ancl contindty conditions, given by eqns (a.1ga)-(a.1gc).

In eqns (4.20), P(u) denotes the intensity of distributecl fluid pressure appliecl over

a stlip of width 2¿. Note that according to eqns (4.20), a cliscontinuity cloes not
exist in the solid skeleion stress at z : zt. This type of loacling is not 

'equilecl
as the kernel functiotts of boundary element rnethocls. However, G¡een,s f'.ctions
colresponding to eqns (4.20) are requirecl to simnlate the pore pressute jurnp that
could exist undel a buried/surface impermeable foundations by using the integral
equation rnethocl given by Wong and Luco (1936).

Substitution of general solutions for displacernents, stresses, pore pressure a¡cl
fluid dischalge clefined by eqns (4.14)-(4.L6) ancl (4.1S) in eqns (4.19) a¡cl (4.20)
yields a set of linear simultaneons equations to cleterrnine arbitr.ary functions corre-
sponcling to the two domains. The following solutions are obtainecl for the non-zelo
arbitrary functions appearing in the genelal solutions given by equs (4.14)-(4.16)

and (4.18) for differ.ent loading cases.

4.3.7 Arbitrary Functions for Vertical Loading

T2e-7tz'At: r.G) (a.27a)2pNt

nz (use-'t"' + 2t2 rr"-tr'' - 4t2 çt¿ne-tsz' )
2¡.tRN1

Cr - -qLe-'t'"' 7.rÐ)- 2PNt

tn (2€2 uqe-"Y'"' - uue-tz"' I 4{2 ssute-'yszt¡
2ñ

69

'.(t) (4.27b)

(a.zlc)
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'i{u1e.-t""'
D2 - D1 - C1s2'Yz'' , E7 : r,(t)

Z"lsltNt

'.(t)

@.27e)

(4.2rÍ)F1 -

u1

u5

¡r1

Fz:Ft*81¿2t""' (a.2Is)

where

: (ry - nz), uz : \tþz - nzþt¡ uJ :  nt.yz"yt,, u+ :  nz"yt.ys @.22a,)

: Ç3uz - t'@t* us), u6: Ç3uz + €2(rs + u4), uT : çJuz t €'(rs - ua)(a.22b)

:2t2ut-uz, R:-Çruz+Ë'Qs-,n) @.22c)

It is noted that A1(€,á), Bt(t,6),Bz({,ó), Cú€,,6),Dt({,6) ancl Dz(t,ó) are

even functions of ( whereas Et(t,,6),F ({,á) and Fz(€,á) are ocld fulctio¡s of { if
the Fourier integral transform of the applied vertical loacling denotecl by e({) is

an even function of {. In addition, ,R is the Rayleigh equation corlesponcling to a

poroelastic half-plane. In case of a uniformly clistributecl vertical loacl of i¡tensity

/s applied over a strip of width 2ø,

r.G) - ^ 
fT si."(€a) 

r^-li; € 'o
and for a vertical point loacl of magnitucle f's,

@.23a)

r,G) - (4.23b)

The solutions for a vertical loacl applied in a poroelastic full plane can be

delived from the above solutions by taking Br (€, 6) : Dt(€, á) : f'1(€, á) : 0 ancl

setting l, - ,'l : lrl, where the oligin of the coorclinate systern is low clefine{ at
the point of application of the lo¿d.

It is also useful to identify the wave fielcls cleatecl by the appliecl vertical loacl

on the basis of the solutions given by eqns (4.14)-(4.16) ancl (4.2I). For example,

it is noted that in view of eqns (4.21) the terms A1, Cl and -81, when substituted

.Fo----:
,/2r



At:

in eqns (4.14)-(4.16), represent the Biot's f¿st ancl slow w¿ves, ancl the rotational
waves, respectively, propagating in a poroelastic full plane. The influence of the
free bonndary at z:0 is reflectecl il the solutions by the terms Bt, Dt and l¡r.
Tlre reflected field due to each type of bocly \Ã/aves consists of L1, L2 a\d,S waves.

4.3.2 Arbitrary Functions for Horizontal Loading

i€(Xz - Xt)e-t"' T"G)
2'npNz @.zaa)

t{Q, - xs)use-''t'"' * Ztt (xr, - xs)u+e-'Yzz' - (x, - xz)çsuEe
Ì,1¿¡ç+.2+u¡B1

B2 : Bt * A1ez'tr'' , Ct : it}s - Xt)e-t"'' T"(€) (a.2ac)2'YzpNz

Dt:
¿€ 

{z€' (x, - Xs) u3e-t r,' - (xt - Xs)uae-^Y"' * (xt - Xz)çsute-t""

D2 - Dl I C1¿2t""' , E! :

272¡L,RN2

(x' - xt)e-t"'' r*G)
2lrNz @.zae)

4€2rz{t",- Xz)e-t,'' *(x, -xs)e -r,,' \ - (x, - Xz)u7e-ts''
; (€) Ø.24r)2¡-tRN2

- F1 - E1¿2'Yt''

where

N2 - (x, - xr)(€' -^Å) (4.25)

It is notecl that -4.i(€,ó), Bt(€,6),,82((,ó), e(t,6),Dt({,ó) ancl Dz(€,ó) are

ocld ftrnctions of { wheleas Et(t,6),Ft({,ó) ancl Fz(t,á) are even fu¡ctio¡s of { if
f*G) is an even function of { whete 4({) is the Foulier integral tr.ansform of the
appliecl hotizontal loading. Appropriate values of T, for a uniform strip loacl ancl

a concentrated horizontal load ale given by eqns (a.nQ ancl (4.23b), respectively.
It shoulcl be also uoted that in view of eqns (4.24) the terms ,4r, C1 ancl E1 are

¿rssociated with the two dilatational waves and the rotational \¡r¡aves, respectively,

,)
r,(t)G.24d)

F1

F2
G.zas)

211¡tRN2
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propagating in a poroelastic full plane due to the applied horizontal loacl. The
plesence of the free boundary is reflected in the solutions by the terms f,1, D1 and

F1.

4,3.3 Arbitrary Functions for Fluid Source

u5e-Ttzt t 2{2 u4¿-t""'At: e-'lt z

26(x, - xz)tt

Bz : Bt + Are21"' ,

Dt: 2{2 4s-tt "' - ,u"-'fzr'
26(xt - xz)tzR

26(xt - xz)ttR
i\fVlc), Bt: |vaa) @.26a)

^-'Yc zl
at c ''
"':26(x;-xr).y2' llaut (4.26b)

(a.26c)i\f LAØ, Dz: Dt t c1¿ztz''

Et :0, Ft: 2{u2(e-tr'' - "-'rr"'¡6(x, - xt)R lloct, Fz: Ft (4.26d)

@.27a)

Note that h(t,6),Bt(€,ó), Bz(€,6),Cr(€,ó), D{€,ó) a'cl Dz(€,,ó) are eve'
firnctions of { whereas F1({, ó) ancl Fz(t,ó) are odcl functions of € if 0(O is an

even function of { where 0(€) ir the Foulier integral transform of the applied fluicl

sollrce. In case of a uniforrnly clistributed fluid soulce of inteusit¡l Ç¡ over a wiclth
of.2a,

o({): \IZ--_SÐq,u'tf (
and for a line sollrce of strength Qs,

0(€) : (4.27b)

It should be noted from the solutions given by eqns (4.26) that the wave fielcls

emanating fi'om a flrdcl source do not create a rotational wave si¡ce ,Ð1 : 0. The
terms ,41 and C1 ale associated with the two clilatational waves propagating in an

infirlite poloelastic plane due to a fluid souÌce ancl the presence of the free snrface is

reflected in the solutious by the terms Bt, Dt ancl -F.1. However, the total fiel{ in a

half-plane consists of a rotational wave due to the reflection of the two clilatational

v/aves at z:0.

Qo

{2¡r
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The solutions for a fluid source applied in a poroelastic full plane can be clerived

fi'orn tlre above solutions by taking Bt(t,6): Dt (€,ó) = tr'l({,ó) :0 ancl setti¡g

l, - "'l = l"l, whele the origin of the coorclinate system is now definecl at the point
of application of the source. For exarnple, the substitution of eqns (4.26) i1 eqn

(4.16) with the above conditions yields the following solution for pore pressure clne

to a line fluid sour.ce of strength 8o appliecl in a poroelastic full plane.

p(r, z) : 
I iW Ir* # *lþu,,vt - 

!2e-r,t,t] cos({r)d{ (4.28)

The above solution can be written in closecl form by consicler.ing the following
relationships (Erdélyi, 1954)

f* e-p\/P+n"I -----: cos({z)d{ - Ksfn/ y + "t¡Jo ,/ €' + ,t'
(a.2sa)

and

Ko(,) : -|t*n[z) çiz) (4.zeb)

where lls ancl FIj2) ,rr" the rnoclified Bessel function of the seconcl kincl of or-cler zer.o

and the Hankel function of the second kind of orcler zero) r.espectively (Abrarnowitz
and Stegun,1972). The substitution of eqns (4.29) in eqn (4.2s) results i1

P(n'z) : lÍ"#ãl^HtÐ (Ltr) - q,H[Ð Øz')] (4.30)

where

(4.31)

It can be shown that the above solution is identical to the cornplex conjugate of eqn

(a2) of Cheng et al. (1991) which is the pore pressur.e clue to a line fluicl source.

Note th¿t øi1) lUottkel function of the first kincl) appears in the expression given

by Clreng ef ø/. (1991) due to a time factor o¡ "-iut being usecl whereas in the
present stucly a tine factor of ei-t is usecl. The appropriate outgoing waves ar.e

representecl by ãj2) in the present case. Therefore, eqn (a.30) has to be iclentical
to the complex conjugate of eqn (a2) of Cheng et al. (Lggl) (Eringen ancl S¡h1bi,
1e75).

12+22
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4.3.4 Arbitrary Functions for Applied Fluid Pressure:

, (À* l-z)Lf;e-t"' o,-,A7: 
-zñ-Ptel
(). + z){u5t"re-'t"' *2t2nr(þse-t,"' - þs"

@.32a)

-r""')\
Bt:

Dt:

(€)P

LZ)e-t""' j+ 2){u2@ae

(4.32b)

82 : Br - Are2t'"' ,

2p,RN1

ñ _ (À. *2)L!e-t"/
", - - zpN, @.32c)

(4.32d)

@.32e)

(4.34)

identifiecl on

example, in

eqns (4.14)-

respectivelg

P(€)

(À. + \{u6r,!e -'fzzt -2t2rlt(þ+e-t'"' I þse -r""')I
P (€)

2p,RN1

Dz : D7 - C1¿2't'"' , Et: i.tlÀ- +Z)(t? - tï)e-t""'
2'yzpNt

P(€)

i{(À. -,rtz, _ þJe-tr",) + ur@! _
F1 - 2lsp,RNt P(€) (4.32f)

Fz:Ft*81¿2t"'

where

Ø.32s)

þs :  'yz'ysL?, þ+:  'yt'ysL\, þs :2çt(L? - trr¡ (4.33)

It is noted that A1(€,ó), Bt(t,6),Br(€,ó), Q(t,6),Dr({,á) a'cl Dz(€,,ó) are

even functions of { whereas Et(t,6),Ft({,ó) and Fz(€,ó) are ocld functions of { if
P(1) is an even ftrnction of {. In adclition, F(6) is the Fourier integral transforrn of
the applied fluid pressure. In case of the uniformly appliecl fluicl pressure of intensity
p6 over a stlip of width 2ø,

P(€) : rli*?r,
The wave fields created by the applied fluid pressure can also be

the basis of the solutions given by eq's (4.14)-(4.16) ancl (4.J2). For

view of eqns (4.32), the terms At,, Ct ancl -81, when substitutecl in
(4.16), replesent the two dilatational waves ancl the rotationai rffaves,
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propagating in a poroelastic full plane. The presence of the free surface is reflected

in the solutions by the terrns Bt, Dt ancl f'1 and the reflectecl fielcl clue to each body
\¡¡ave consists of ¿ll three types of waves.

4.4 Tbansient Greents Functions

The Green's functions corresponding to a poroelastic half-plane subjectecl to
internal transient excitations (loaclings and fluid sources) are consiclerecl in this
section. In transient clynamic problems, it is convenient to employ the Laplace

tr-ansform to remove time depenclency. The Laplace-Fonliel transform of a fu¡ctio¡
f(*,,r,ú) with respect to valiables ú and r, respectively, is clefinecl by (Sneclclol,

1e51)

(a.35ø)

In eqn (4.35a), s and { clenote the Laplace a,ncl Fourier transf'orrn parameters,

respectively. The invelse relationship is given by

f (€,",ù: # lr- I:f (*,",t)e-u€,+"t)d.*dt

r(*,,,ù: # l,':: I* tu,z,s)¿(i€,+"Ðd,t,t, (4.35ô)

where the line Re(s) - p is to the right of all singularities of / ancl i: 11.
It can be shown that the general solutions fol Laplace-Fourier transforrns of

displacements, stresses and excess pore pressure are iclentical to those given by eq¡s
(4.14)-(4.16) for the time-harmonic case with the following clefinitions of parameters

f,¿ and 'ft (i : I,2,3), Ø7, @z ancl ,S2.

X¡.:

It' -

@I:

(À.+2)L? + s2

p*s2+aM*L?'

tþ *1, i: r,2, .Y,: \F+ S,

(m* s2 + b* s)(À" + 2) + M" s2 - ZaM* p* s2

i:7,2, x3-
b*s ¡ m*s2

p* s2
(a.36ø)

(4.36ó)

(4.36c)

,, s' : (p*xs * 1)s2 (4.36d)

0. In acldition,

the n-direction

Note that the radicals'yi(i :7,2,3) are selected such that Re(.y) >

tlre flnid discharge, nonclimensionalized with respect to 1/¡tf p, in

(n: r,z) can be expressed in the present case as

4n: sLun,,

Iõ

n:tr)z (4.37)



The transient solutions for clisplacements, stresses, excess pore pressure and flu-

id dischalge cori'esponding to internal excitations are identical to the solutions given

in Section 4.3 for time-harmonic problems with the parameters X¿,.y¿ (i : I,2,3),
etc. definecl as shown in eqns (4.36). The Fouriel transforrns of excitations clenotecl

¡v f"(€) (n: ,,2) in eqns (4.24) and (4.21) , QG) in eqns (4.26) ana P({) in eqns

(4.32) ale now replaced by T.(t,s) (n : r, z), 6Q({, s) f i,s and P({, s), respectively.

Note that T.(Ë,s) (n : n,, z), Q(€,s) ancl F({, 
") 

are the Laplace-Fourier transforms

of the intensity of loadings, fluid source and fluid pressure, respectively, applied at

tlre level z : z'. Gleen's futrctions required in the developrnent of boundary inte-

gral equation methods for transient dynarnic problerns of a poloelastic half-plane

are obtained when the excitations are replesented by irnpulsive concentrated loacls

ancl fluicl soulce. The v¿lues of ft({, s) (n: r,z) ancl Q({,s) corresponding to

irnpnlsive loads ancl fluid source are given by eqns (4.23b) and (4.27b), respectively.

4.5 Numerical Solutions

4.6.L Numerical Scheme

The development of a mrmerical solution scheme to evaluate Green's functions

corresponding to a poroelastic half-plane subjected to buriecl loaclings and fluid

sources is considerecl in this section. The nurnerical evaluation of time-harmonic

Green's fttnctions is cliscussed in cletail since the solutions for transient problems in

the Laplace dornain have similar explicit forms. It is expectecl that time-clomain

solutions for transient problerns can be cletermined by using an acclrrate Laplace

inversion schetre such as Stehfest formula [eqns (2.38)] as discussed in Section 2.5.1

for quasi-static problerns. In Chapter 6, transient Green's functions are cornputed

in boundary element analysis and further details related to the computation of

transient Green's functions ale given there.

The complete solutions for displacernents, stresses, pore pressure and fluid dis-

clrarge corresponcling to time-halrnonic problems are giverr by eqns (4.L4)-(4.16)

ancl (4.18) together with the solutions fol albitraly functions, A¿({, á) to E;({, ó)

(i :7,,2), given by eqns (4.2I), (4.24), (4.26) ancl (4.32). It is founcl that the so-

lutions for poroelastic field at an arbitrary point appear in terms of serni-infinite



integrals with a cornplex-valued integrand. Given the complexity of the iltegra¡cl-
s, it is natural to ernploy a suitable numerical quadrature scheme to evaluate the
integrals as discussecl in Section 2.5.1 for quasi-static problems. The singularities

of the irrtegrands treed to be investigated before the establishrnent of a numerical
integlation procedure. The unclerstancling of the singularities of the integrancls ca¡
be obtained by treating € as â. complex variable. It is notecl that cl¿e to the p-

resence of the radicals 'y.i(i : I,2,3) the Riernann sulface of the integr.ancl of eacir

integral has eight sheets. However, the condition Re(7¿) ) 0, which is requirecl to
satisfy regularity conclitions at infinity, irnplies that only the sheet in which laclicals

'yi(i : I,2,3) have positive real parts everywher-e is relevant.

The irnportant singularities of the integrancl ar-e the branch points of the racli-

cals 7¿(z :7,,2,3) as defined by eqns (4.12c) ancl (4.12d) ancl poles of the functiorr
1l defined in eqn (a.22c). Fol a poloelastic half-plane, the branch points ar.e givel
by Lt,L2 a]r.d,S, i.e. the wave numbers corresponding to three kincls of body \¡/aves

clefined by eqns (4.13a), (4.13b) aucl (4.13c), respectively, while poles are given by

the roots of the following equation which is the Rayleigh equation for a poroelastic
half-plane governing the pr-opagation of the surface v¡aves.

-bsdz + ((dß - d+):0 (4.38)

It is noted that the surface wave for a poroelastic mediurn is also dispersive ancl

dissipative like body \r/aves if internal friction exists (i.e. b # 0). Eqn ( .Bg)

can be teduced to the classical Rayleigh eqrration in the case of an isotropic elastic

solicl. Generall¡ these branch points and poles are all complex-valued with negative

imaginary palts. However, their locations carr be on the real axis if the viscons

coupling between the solid rnatrix ¿nd the pore fluicl is neglectect (å:0). It can be

slrown (Deresiewicz, Ig62) that the Rayleigh wave in a poroelastic half-space ca¡.

be nearly real-valuecl when the frequency is very low or ver-y high. In this thesis,

tlre dissipative nature of the half-plane is incorporatecl (i.e. b + 0) therefore the
real ( axis is free frorn any singularities.

The dynamic Green's fnnctions are computecl by using an aclaptive ve¡sion

of extendecl trapezoiclal formula with a sarnpling interval of A{. For transielt
problems, the integrand in the semi-infinite Fourier integrals cloes not have any
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branch points or poles along the re¿l {-axis therefore the integral with respect to

{ can be performed on the leal €-axis. It is also founcl that a sarnpling i¡ter.val
of A{ - 0.1, as in the case of quasi-static problems cliscussecl in Sectiol 2.b.1,

is accurate enough in tlie numerical evalnation of Green's fulrctions for tra¡sient
problerns. However, for time-harrnonic problems, a smaller integration interval
has to be employed since the integrands become nearly singular when the path

of integration are in the neighbourhoocl of the pole. Therefor.e, A€ : 0.005 for

l€ - R"(€n)l < 0.25 wher.e €n is the pole given by eqn (4.88) anct A{ : 0.05

when { is outside that region. Note that for the case of a ch.y elastic material (an

ideal el¿stic rn¿terial) ancl a poroelastic rnaterial with inviscicl pole fluid (å : 0)

whele the branch points and poles are on the real axis, one percent attennation
(material clamping) is incorpolated in the shear moclulns in the numerical evaluation

of the integrals (Apsel aucl Luco, 1933). Alternativety, it is possible to cleviate tlie
integration contour initially into the first quadrant of the complex plane to avoid

the singularities on the real axis and then fall baclç to an integration along the

leal axis. The deviated poltion of the contour shoulcl be selectecl in light of the
location of singularities of the integrand. It shoulcl be notecl that the integrands

of serni-infinite integrals do not have any singularity in the first quaclrant of the
cornplex plane since the tesponse of the half-plane h¿rs to be finite for large values

of z and z. The integland of the semi-infinite integrals decays exponentially with
the Fouriel tr¿nsforrn parameter 1f z f zt. However, fot z -. zt, tlte integrancl

decays lather slowly. Convergence can be enhancecl in this case by investigati¡g the

asymptotic behaviour of the integrand and clevising a numelical integratiol scheme

that incorporates the asymptotic behavionl of the integrancl (Apsel ancl Luco, 1g83

ancl Rajapakse, 1990). GLeen's functions corresponcling to a line loacl ancl a line
flnid soulce are singular at z : zt and r : 0. The or.cler of these singular.ities

are iclentical for half-plane and full plane problems. A rigorous examination of the

natule of singularities can be obtainecl by investigating the closed form solntion for
a ftrll plane (Cheng et al.,lggi).

Table 4.1 plesents a comparison of nurnerical solutions for nonclimensional

stresses of a hornogeneous icleal elastic half-plane unclel a static line loacl ap-

plied at a depth z : ¿ below the free sruface (Melan, 1932). Solutiols ob-
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tained from the present analysis for the limiting case of an icleal elastic ¡raterial
(M* : p* : rn* : b* : e.: 0) and ó : 0.01 are compalecl with the numeri-
cal solution given by Poulos ancl Davis (L974) for the Melan's problerns to veri-
fy the general accuracy of the uumerical quadrature scheme usecl to conrpnte the
semi-infinite integrals appearing in the Green's functions. Table 4.2 prese¡ts a

comparison of elastodynamic solutions corresponding to au icleal elastic half-plane
(M* : p* : rn* : ö* : cy : 0) given by Rajapakse ancl wang (1gg1) with t¡ose
obtainecl from the present study when á : 1.0. It is eviclent that the two solntions
presented irl Tables 4.1 and 4.2 ar-e in excellent agreement inclucling at points which
aÌe very close to the point of loading. Table 4.3 presents the solutions for pore
pressuÌe of a poroelastic full plane (À* : !.5, M* - I2.2, p* : 0.58, m* : I.I,
b* : 2-3 ancl a : 0.97) subjected to a vertical line loacl. Cornparison of solutions
obtainecl fi'om the numerical integration scherne used in the present stucly with the
closed form solutions given by Cheng et at. (7991) confirms that the two solntions

at'e complex conjugate. The overall accuracy of the explicit solutions cler.ivecl in this
study and the nurnerical integration scheme usecl in the conpntation of Gr.eel,s

ftrnctious is confirmecl by these independent comparisons.

4.5.2 Numerical Results for fnternal Excitations

The dynarnic response of poroelastic half-planes of clifferent material properties
to a selectecl set of tirne-harmonic internal loading confignrations is consiclerecl in
tlris section. Three poroelastic matelials identifiecl as rnaterials A, B ancl C ancl a

ch'y elewtic material (an ideal elastic material) are considerecl in the numerical study.

Tlre properties of these materials are: À* - 1.5, M* :72.0, p*:0.5, ïrL* :1.1 ancl

a:0.97. In additiott, å* : 0,2.0 ancl 10.0 fol material A, B ancl C, respectively.

Note that only the nondimensional parameter )* is reqnilecl in the case of a clry

elastic material. All mrmerical lesults presentecl hereafter corr-esponcl to the case

wlrele the excit¿tion is applied uniformly over a strip of wiclth 2alocated at a clepth

z : 0, below the free surface of the half-plane.

Figure 4.2 sirows the surface displacement profiles of the three poroelastic [alf-
planes and the clry elastic half-plarre under intemal time-harrnonic excitations. So-

lutions are given for two fi'equencies of excitations, á : 0.5 ancl 2.0. Nondimensional



vertical displacement, uf,,[- þu" l foal, of the surface under a uniform vertical loacl-

ing of intensity /6 is shown in Fig. a.2@). Fig. a.2(b) shows nondimensional surface

displacernent in the z-direction, uI*Í: þu,lfoa], due to a uniform horizontal loacl-

ing of intensity /6. FiS. a.2@) shows the nondirnensional vertical clisplacement,

uin[: {pf-pu,lq6a], of the srirface clne to a time-harmonic fluicl sink of intensity

Qo. It is eviclent frorn these solutions that the response of the half-plane depends

very significantly on the frequency of excitation of the loacling. Both real and imag-

inaly palts of the displacernents shown in Figs. 4.2 vary rapidly with the distance

and becorne more oscillatory as the frequency of excitatiou increases. Due to the

courplicated variation of the resporìse it is difficult to identify a clear qualitative

relationship between the displacements ancl frequency.

Comparison of solutions presented in Figs. 4.2 also indicates that the poroelas-

tic properties of the rnedium has a significant influence on the response. It is notecl

from Fig. a.2@) that the vertical displacements along the surface clue to internal
vertical loading corresponding to poroelastic materials ,4. ancl B ar.e quite clifferent

from the solutions corresponding to an icleal elastic material. The clifference in the

response between poloelastic and ideal elastic materials is more substantial in the

case of the horizontal clisplacement along the surfa,ce clue to an internal loacling in
the z-clirection. Solutions presented in Fig-. a.2(c) corresponding to tirne-hannonic

fluid sink show the largest dependence of the response on poroelastic material prop-

erties of the medium. Since poloelastic rnaterials A, B and C have identical material
properties except for the matelial parameter ô* it can be stated that the difference

in respottse noted in Figs. 4.2 reflects basically the influence of ó* on the r-esponse.

However, as in the case of frequency, the dependence of response on b* is rather
complicatecl and the trends shown in Figs. 4.2 do not show a cleal qualitative

relationship.

Tlre influence of the pararneteL- M* was also investigated by consicler.ing plots

sirnilar to those shown in Figs. 4.2 for- material B with different values of. M*. It
was found that the influence of M* on the sulface displacements is negligible in
tlre range of 10 < M* < 1000. Fo'- M* < 10, the influence of M* is ¡oticeable
but not very significant in the case of appliecl loading but it is substantially high

for the case of applied fluid sink. For example, the vertical displacement along the



free surface due to vertical loading is found to be less than ten per. cent cliffer.e¡t

wlren M* is incleased flom 1.0 to 10.0 bnt, for the case of appliecl fluid sink, zjn
with M* : 10.0 could be as high as five times of. ulo wítlt M* : 1.0 for r 1 2a.

The influence of À* is found to be similar to that observed for an icleal elastic solicl.

However, it is difficult to even qualitatively define the relationship between various

material pararneters and the response dne to the cornplicatecl dependence of the
response oil. À*, b*, M* and ó.

Figure 4.3 shows the nonclimensional vertical displacements, u1",, uf,n and. uîrl:
Pu"lpoa), along the z-axis due to vertical loading of intensity fo, fluicl sink <¡f

irrtensity Ç6 and fluid plessnre of intensityps, r'espectively. It is found that u, alo¡g
the z-axis fol a horizontal strip loacl does not show rnuch deviation from the solutions

for an ideal elastic material (Rajapakse ancl Wang, 1991) ancl not presentecl here

for brevity. Fig. 4.3 indicates that at low frequency (á : 0.5) the clisplacemelts
vary smoothly with the depth whereas at high frequency (6 : 2.0) the variatio¡s
becone oscillatoly. The influence of poloelastic properties is lelatively rnore visible
on vertical displacernents along the z-axis under a veltical loacl when compar.ecl

to vertical clisplacements along the fi'ee surface shown in Fig. a.2@). In general,

the influence of the poroelastic properties of the medium on the solutions shown in
Figs. 4.3 is sirnilar to what observed earlier in Figs. 4.2 with the highest influence

of poloelasticity noted nnder applied fluicl loadings. A kink exists in the real part
of veltical displacement plofiles shown in Fig. a.3(a) at z : ø clne to the loacling

appliecl at this level. Howevet, the irnaginary palt of the clisplacement is smooth
at this level. In all cases, the amplitude of vertical clisplacements clecreases with
incleasing z for zf a > 5.0 and becornes negligible for zla > L0.0.

FiS. a.a@) shows the variation of nondimensional vertical stress,, oî,"f:
orrlfo], along the z-axis under the uniform vertic¿l loacling clefinecl previously.

These soiutions also show oscillatory valiations with the clepth at high frequency

(á : 2.0) while at low frequency (á : 0.5), the valiation of stress with cleptþ is s-

mooth. Dne to the loading appliecl at z : ø, there is a nnit cliscontirtuity in the real

paÏt of o)r" at z : a. Imaginary part of ol"" is smooth at this level. Comparison of
solutions corresponding to different matelials inclicates that the poroelastic material
properties have a significant influence on the vertical stress at higtr frequencies. The
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imaginary part of ol"" conesponding to materials -4 ancl B is substantially different

fronr tlre icleal elastic matelial when 6 : 2.0. At low frequencies (á < 0.5), o)""

corresponding to material A and the ideal elastic material ale nearly identical. Fig.

4.4(b) shows the valiation of the nondirnensional vertical stress, olrrl: or"lpo|,

along the z-axis under applied fluid pressure of intensity ps applied over a strip

of widtlr 2a located a"t, z : a. A discontinuity of magnitude c exists in the real

part of of,"o at z : a.. This is consistent with eqn (4.20b). The influence of poÌoe-

lastic properties on the real part of. of,", in Fig. 4.4(b) is less than that noted in

Fig. 4.4 (a) and the genelal trend of variation with z is sornewhat identical. The

imaginary palt of olro depends significantly on poroelastic material properties as

in tlre case of Inlo)",] shown in Fig. a.a@). The real part of o,, shown in Figs.

4.4 decreases graclually with z while the irnaginary par-t shows oscillatory variations

with clecreasing rnagnitucles.

The profiles of nondimensional pore plessure along the z-axis due to appliecl

ver-tical loacling, pil: plfol, and due to applied fluicl pressure, p|[: Plpo], ate

shown in Figs. a.5(a) and 4.5(b), respectively. The nondimensional pore pressure,

p), depends significantly on the frequency ancl poroelastic matelial properties. As

in tlre case of of,r, the variation of pore pressrrre along the z-axis is quite srnooth

at low frequencies but becomes oscillatory fo'- ó > 1.0. There is no singularity in

the pore pressure profiles due to the applied vertical loading. The magnitude of p)

is found to increase with increasing ó* which is consistent with the fact that higher

b* means a more imperrneable rnedium. In adclition, Fig. a.5(a) indicates that

significant pore pressure is developed uncler applied vertical loading. Pore pressure

profiles shown in Fig. 4.5(b) have a unit discontinuity in the real part at z : ø due

to the applied pole pressure at this level. This is consistent with the eqn (4.20a)

ancl no cliscontinuity exists in the imaginai-y part of ni. The influence of poloelastic

material properties is negligible on n"þä] profiles but quite significant on Imþ|1.

However', the frequency of excitation has a significant influence on both real and

imaginary part of the pole pressure profiles shown in Figs. a.5(a) and a.5(b).

4.6 Conclusions

A set of Green's functions is presentecl for displacements, stresses, pore pressure



ancl fluid discharge of a poroelastic half-plane subjectecl to time-ha¡nonic i¡ternal
excitations appliecl to the solicl and fluid phases. It is also shown that Green's
functions corresponding to transient excitations (loaclings ancl fluicl sources) cal be

clerivecl from the time-harmonic solutions through appropriate reclefilitio's of va'i-
ables. The solutions appear in terms of complex-valuecl semi-infinite integrals with
an integrand that is oscillatoly. Numerical solutions aÌe evaluatecl by direct ¡urne¡i-
cal integration of the serni-infinite integrals. Cornpalisons with existing solutions for
static and dynamic responses of an ideal elastic half-plane and for clynarnic respolse
of a poroelastic full plane confirm the accuracy of the present numerical qlacfi.atur.e

scheme nsecl in the evalnation of the Green's ftrnctions. Internal strip loacli'gs i'
the veltical and horizontal directions and internal strip fluicl sink/pressure are coil.-

sidelecl in the numerical stucly. Numerical resnlts presentecl in this Chapter i'clicate
that the response of the medium is significantly influencecl by poroelastic material
constants, ó* and M*, and the nondirnensional Lamé constant À*. Numerical results
also show a strong dependence of the resporìse on the frequency of excitatio¡. In
general, the respouse shows a higher clependence on poroelastic matelial pr-oper.ties

when the excitation is appliecl to the fluid when cornparecl to the solid skeleton.
Due to the complicated nature of the depenclence of the response of the mecliurn on

b*, M*, À* and ó, it is difficult to iclentify a clear qualitative relatio¡ship between
governing parameters and the r.esponse.

The Green's functious presented in this Chaptel confirms the fact that t¡e
poroelastic solutions differ substantially from icleal elastic solntions. Thelefore, the
incorporation of poroelastic behaviour of natural soils is impor.tant in the st¿cly
of dynarnic soil-structure intelaction problerns. Glee¡'s f¡¡ctio¡s prese¡tecl i' this
Chapter are nseful in the analysis of a bloacl class of problens relatecl to ea'thqrrake
engineering, geotechnical engineering, geophysics by using the bounclary integral
equatiol methods and othel techniques. The plesent sol¡tion is also useful in the
assessmerìt of accuracy of finite element and other approxirnate nurnerical methocls
that can be used to study dynamic response of poroelastic materials.
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T¿ble {.1: Contpalison of vertical stress due to a veltical line lo¿rcl Vs ancl she¿rr. str.ess

<ltte to a hot'izontal line lo¿rd fl6 zrppliecl at clepth z : a, of an icle¿rl elastic hzrlf-plzr¡e

(u :0.25)

zla cLo,,(0, z) lVo ao,r(0, z) I Ho
P & D (1e74)r Plesent stucly P & D (rstÐl Present stucly

0.5
0.99
1.01

1.5

2.0
¿.o

3.0

0.2672
26.3127
-26.7371
-0.7028
-0.4087
-0.2990
-0.2387

0.2672
26.3726
-26.7369
-0.7027

-0.4086
-0.2989
-0.2386

0.0314
5.2517
-5.3578
-0.1426
-0.0786
-0.0536
-0.0398

0.0311
5.2516
-5.3580
-0.1425
-0.0785
-0.0536
-0.0398

T Poulos ancl Davis (igZ4).

Table 4.2: Conrpal'ison of veltical clisplacement ancl veltical stless clue to ¿ ver.tical
strip loacl of intensity /6 applied ovel a st'ip of wiclttr 2c at clepth z = ¿ of an icle¿rl

elastic half-plane (u :0.25 ancl ó : 1.0)

zla
¡nt.(0,:)l loct orr(0,:) f J¡

R & \,V (1991)+ Present stucly R.l¿ \,V 1ee1 )+ Plesent stucly
Re Im Re Im R.e Im Re Im

0

0.5

0.99
i.01
1.5

2.0

2.5

3.0

-0.0186
-0.0042
0.0151
0.0128
-0.1165
-0.2175
-0.2765
-0.2947

-0.5895
-0.5941
-0.5417
-0.5386
-0.4483
-0.3351

-0.2145
-0.0983

-0.0187
-0.0041
0.0i53
0.0131
-0.1162
-0.2r7r
-0.2767
-0.2942

-0.5893
-0.5939
-0.5415
-0.5385
-0.4480
-0.3347
-0.2741
-0.0981

0

0.0873
0.2126
-0.7826
-0.6337
-0.427r
-0.217r
-0.0317

0

0.2485
0.4179
0.4235
0.5306
0.5851

0.5889

0.5478

0

0.0874

0.2127
-0.7827
-0.6338
-0.4271
-0.2172
-0.0320

0

0.2484
0.4176
0.4232
0.5302
0.5845

0.5883
0.5472

I RojopoLse ancl lVang (1991).
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T¿r'ble 4'3: Conlpat'ison of nouclimension¿rl pol'e plesslrre (tL¡tf I/0) <lue to a ver.tic¿rl lirie
loacl I"[¡ appliecl in a poroelastic f.ll ¡rla'e (,\* - r.5,ì[- - r2.2,b* :2.J,p* :
0.53,'m" : 1.1 ancl a : 0.97)

zla
ó-0.5 ó:2.0

Closecl fonn} Plesent study Closecl folrnS Present strrcly
Re Im Re Im Re Ilrr Re hn

0.2
0.5
1.0

1.5

2.0

3.0

0.0032
0.0089
0.0i81
0.0257
0.0314
0.0372

-0.0139
-0.0232
-0.0290
-0.0290
-0.0259
-0.0160

0.0031

0.0089
0.0i81
0.0257
0.03i4
0.0372

0.0139
0.0232
0.0290
0.0290
0.0259
0.0161

0.0068

0.0344
0.0753
0.0938
0.0897
0.0457

-0.0465
-0.0665
-0.05.10

-0.0181

0.0191
0.0613

0.0069

0.0345
0.0754
0.0939
0.0898

0.0457

0.0466

0.0665
0.0540

0.0182
-0.0191

-0.0614

$ Ch"ug et at. (1991).
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Chapter 5

DYNAMIC GREEN'S FUNCTIONS OF
A MULTI-LAYERED POROELASTIC HALF-PLANE

5.1 General

The stiffness matrix scheme presented in Chapter 3 is extencled in this Chap-
ter to evalttate Green's functions of a rnulti-layeled poroelastic half-plane due to
time-harnonic loads and fluid sources appliecl in the interior of the layerecl rnecli-

tlm. The systern under consicleration consists of .Àtr layels of clifferent properties
and thickness overlying a hornogeneous half-plane. Fourier transforms of aver.age

clisplacernents of the solid matrix and the pore pressure at layer. intelfaces ar.e co¡-
siclered as the basic unknowns. Exact stiffness (irnpeclance) matrices clescribing

the relationship between generalized displacement ancl force vectors of a layer of
finite thickness and a half-plane are derived explicitly in the Fourier-frequency s-

pace by using exact geueral solutions given in Chapter 4 for. Biot's equatiols for
poroelastodynamics. The global stiffness matrix of a layerecl systern ancl the global
force vectol is assembled by considering the continuity of tr.actions ancl fluicl flow at
layer interfaces. The numerical solution of the global equation systern for. cliscrete

values of Fourier transform parameter together with the application of nurnerical
quadratule to evaluate inverse Fonrier transform integrals yielcl the solutions for
poloelastic fields. Selected numerical resnlts for clisplacements, stresses ancl pore
pressure of rnulti-layered poroelastic half-planes aÌe presented to demonstrate the
influence of layering, material pararneters ¿nd the fi'equency of excitatiol on the
dynamic response of a layerecl poloelastic meclium. The significant aclvantages of
the present method for dynamic problems when comparecl to existing approximate
stiffness methods and othel methocls based on the cleterrnination of layer arbitrary
coefficients are cliscussecl.

5.2 Stiffness Matrices

Consider a multi-layered system with a total of ly' poroelastic layers overlying a

poroelastic half-space as shown in Fig. 3.1. It is assumecl that the cleformations aÌe
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plane strain

ancl (4.18),

expressed in

where

where

in the tz-plante, i.e. er., : €aa : êa": 0. Following

general solutions for poroelastic fields gover.ned by

the Fouriel transform space as

eqns (4.14)-(4.16)

eqns (4.1) can be

t(t,2,ø) : R({, z,u)C({,a)

f(€,",¿¿) : S(€, z,u)C({,u)

(5.1ø)

(5.1ó)

(5.2a)

(5.2b)

(5.2c)

,t(t, z,u) :< iu* uz p >T

f (€, z,,a) :< io", õ"" u,

C(€,r) :1 A B C D

Rzl

Szl

E F>T

In the above equatiotts, { and ¿, ale the Fouriel tlansform parameter ancl the fre-
quency of excitation, respectively, and the superposed ba,r' clenotes the Fourier t::ans-

form of quantities with respect to the r-coorclinate defined in eqn (a.10a). I¡ acl-

ditiou, the arbitrary functions,4({, u),8(e,a),...,F(t,r) appearing in c({,ø) are
to be deterrnined by employing appropriate bounclaly ancl/or continnity colclitions.
Tlre rnatrices R,((, z,a) ands(€,r,ø) in eqns (5.1) ale g-iven by

R: [Rr

S:[Sr
(5.3ø)

(5.3ô)

(5.aa)Rr:

Rz:

Sr:

| -€urr" -(e-tr" -tetr.1
I 'Yr""' -'yte-'ltz 'yzen" ¡

Lrr""' T7e-'Ytz qzeþ" )

| -t"-'rr, i1s¿tsz i13e-ts, 1

| -rr"-r", -i{etz" -.¿q"-n, I

Lrr"-"' o o j

| -2p{1tet" 2p{ye-t,' -2tt€.yrel""f
I Pt"," þte-t,' þzet"" I

L 'nxtel'" -'Ytxte-'ttz 'yzxze1"' J

| 2¡1,(ye-t,' ,iç3¿7sz içs¿-ts, I
I þr"-'"" -2ip,{73¿tt" 2i¡lfye-tt" 

I

L-'lzxze-t"' -i(y3¿ts" -i.(y3e-t"' 1

(5.4b)

(5.ac)

Sz:
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and

q¿ : (a + xòM I'?, i : !,2, çs : p(€2 + ú)
þ¿:2ttl? - 

^L? 
-ari, i:r,2

Xi:

(s.sa)

(5.5å)

D ¡Lr)2:# (5.5c)
10A - m,u¿pfa2 - aML!

In adclitiofr, þ, À, e, M, p, pf , m ancl ó are the poroelastic material constants

defined in Sections 2.2 ancl 4.2 and n (i, : r,z,J) and L?¿ (i : !,2) are given in
eqns (4.12c), (4.12d) and (4.13a), (4.13b), respectively, with the following clefinitioDs

of parameterc ø¿ (i :7,2) and 52.

(^+ a2M +z¡,t)L! - paz
, i:7r2,

(maz - ¿bu)(À + a2 M + zp) I pa2 M - 2ap¡a2 MwI-

(^r'-i,ba)puz - pt2r4
' (^ + 2þL)M

t

s2 : L(prxs -l p)
p

rJ(') -< o(')({, zn,,a) rr(')({, zn*L¡r) >T

F(') -< -¡(') (€,zn,a) f(')(€, zn*7;r) >r

(5.6a)

(5.6ö)

(5.6c)

For an nth layer (n :7,,2,,..., N),let U(') clenote a vectol of generalizecl coorcli-

nates whose elements are the Fourier transforrns of clisplacenr.ents ancl pore pressur'e

of the top and bottom surfaces of the nth layer and F(') clenote a generalizecl force
vector whose elements are Fourier transforms of tlactions ancl fluicl clisplacements

of the top and bottom surfaces of the nth layer. Then,

(5.7a)

(5.7b)

The vectors u(') ancl f(') in eqns (5.7) are iclentical to u ancl f clefinecl i¡ eq¡s
(5.2a) and (5.2b), respectively, except that the material properties of the nth layer
are enrployecl in the definition and z : zn ot- zn*t.The above selection of IJ(') ancl

F(') satisfies the aclmissible bonnclary conclitions at the bounclaries of a poroelastic
Iayer and those at the intelface of two poroelastic materials (Deresiewi cz and Skalak,

1963). A lelationship between the generalizecl clisplacement vector IJ(') ancl the
foÏce vecto. p('") for the rzth layel can be establishecl by introclucing a stiffiress
(impeclance) matrix K(') through the eqn (3.10).
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The explicit derivation of K(') corresponding to two-climensional poroelastocly-

namics is extrernely complicated since it involves tlte manipulation of fully popnlatecl

6 x 6 unsymmetric complex matlices. The algebraic cornplexity of this task ¡ray
be the main reason for the emergence of the approximate stiffness matrix methocl
(Lysrner aud Waas, 1972 and \Maas, 7972) which present a finite ele¡rent I'epr-eser-

tation for K(') basecl on an approximate clisplacement fiekl. Similar to the case

of thlee-dimensional quasi-staiics plesentecl in Section 3.2, the computel package

Math,ematic¿ is used in the explicit derivation of K('). After lengthy manipulations,
it is found that K(') for elastoclynarnics is also symnretric ancl its elements can be

expressed as

lst Rou:

ftrr : (s, -zt )l{"Zr-+ 1)d, - (o?r-- r)€rdr] (5.sa)

kn : €rs (sr + 2€2)l{ú.+ 1)d, - +or.ónf - €@Z^ - t)lrrrør + sedz](r.aa)

r;r3 : g(r, - z()l+a3.óz - (o!, - t)dts - (o3.+ r)du] (5.sc)

ku: z(* - zt )lþfl. - 7)€zó+ - or-órf (5.8rt)

Ã;r¡ : 2tx(q - 2t')€trlor-ó, - (o3* + t)€, ónf (5.8e)

krc :2€(ç, - z€r)|"r.öu - (oZ. + 1)ó, + (oZ.- r)dr] (5 s/)

where

Q¿n: ¿-'fih", i: !r2r3, n: !r2r...rN

r' :lll"i" - 1) (o'r. - 7) (nrt, - rz.tt)' - +(or. - orn)'

ó, :+ @?* - L) (oZ.- 1) (r, - q,)'

(5.eo)

nnzntzl (5.eó)

,, :@Pl{"?- - 1) (o3. + 7)nttz - (o?^ + r) (,,2r* - t)qrtrf (5.err)

, p(ry-qz)r
ó+ : ryïtt¿ 

L"r.(o?. - 7) ntn - etn("|. - t) rpnf

r, :@1Ël{*?- - t) (o'r* + r)tz - (o?. + t) (a?r.- r)r,]

ru :Tl{"?" - t) ("?r.- 1) (2, - n) (,trt, - nzr)

(5.ec)

(5.ee)

(5.e/)
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* 2(a6 - or-)' (r, * qr)rtrf

ö, :4ù (*r* - a2n) (.,1n.,r. - r).yr.y2.y3I
6, :Øt-Jùt 

lor.(o?. - r)tz - .,rn(ol_ _I
,p :z.,ßtzl{ú"+ 1)dr - qor.ónf - þ2. _ t)

2ntl Row:

kzz :'Ye(ss - zt')l{ú- - r)xós - (o3* +

kz3 :(o?, - 7)n?xlh + ("3,, - r)nTxrrþ,

- rtrz(x, + x)l@1. - t)ltz + (o3*

l,zs :2tz(çs - 2€')lor.ó,

r)r']

(ttó, +(ó2)

(5.10ø)

(5.10ö)

(5.10c)

(5.10r/)

ùörl (5.11a)

I¡z+

liza

1.

- - to15'

- 1),,1,n+ rir]

- @3* - t)xónf

(o3. - Ð órl

(5.11å)

(5.1 lc)

(5.1id)

(5.72a)

(5.72b)

(5.12c)

(5.rzd)

(5.72e)

:2?3 (ç3 - ze,) l{"3" + 1)d, - c,3nós -
where

Ir,'ú, : 
,l("'r. - r) ("3. - r) (t3ú + €n) + zþ2pl

, €''Yr'Y.',t', :LfiÊluor.or. - (o3. + t) (a!.+ 1)]

r, :ll{"i- - t) (o3. - t) (t?t|+ 64) + z,t uç]

, t''Yr'Y:
',1'n :Ll4lkor.or. - (o3. + t) (a!*+ 1)]

r,:W|{*?._1)(o3._r)€ui.Yt.Yz.Y3{{*?.-t)(a|.-t)I
*2(an - "ù'jl

?rd Rou:

(x, - x)l@1* r r)nnrp, - (o3. + r),trtrrþrf -
l;rc, kzs: -ltza

li¡¡

ks+

k¡o

(o3. + t),r¿u1r.tar,;

(5.13å)

(5.13c)- orrrtrlr',þrl:2(xz - xùlor-rtrtrrþ,
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where

'úa €r^ß ,:_(Çs
v

- (o?.

- 2t')lrrrrr{{"?" + t) (al. + r)

- t) ("3. - t) (t? + ûl
- 4o6o2.j

(5.14)

y'tlt Rou:

k++: kn, kEs: -kn, lb¿o : ftrs (5.15)

ítl¿ Rou:

kss: kzz, kra : -kzs (5.16)

6th Rou:

Aoo : Ã;¡s (5.17)

The element of layer stiffness (impeclance) matrix K(') is a function of the
layer thickness, the layer material properties and the Fourier transform parameter

€. Only negative exponentials that decr.ease lapiclly with iucreasing { a1¿ hn ar-e

involved ín k¿¡ as in the case of quasi-statics. The relationships between various À¿¡,s

[e'g. eqns (5.15)-(5.17)] can also be cierived on the basis of the physical behaviour of
the system since each lü¿¡ represents a component of a generalizecl force vector clne

to a geueralized displacernent vector equals to a unit vector. When comparecl to the
sclrerne of Lysmer aud Waas (7972) the K(') obtainecl fi.orn the present methocl is
exact and do not involve arÌy approxinations in the clerivatiou. The present scherne

also result in the stiffiress (impedance) matrix of each physical layer of the layerecl

system without further discretization into sub-layels as requirecl i¡ the approximate
methocls of Lysrner ancl waas (rg72), Kausel ancl peek (1gg2), etc..

For the underlying half-plane, the stiffness (impedance) matrix are iclentical to
tlrat given by eqn (J.22) with u(tr+l), F(Iv+t) and K(ù+1) are now clefi'ecl as

1;(rv+t) _4 ,'(Ir+i) (€, "r*r,r) >T

p(/v+t¡ -4 -¡(lv+t) (€, r**r,r) >r
1ç(rv+i¡ : symm. lñor].*,

(5.i8ø)

(5.18å)

(5.18c)



Tlre eleme:ntsÉ¿¡ of the half-plane stiffness matrix ]ç(lr+r¡ can be expressed as

irt : ffAt - z€') (nrt, - rtzt), frr, : #1r,,
frr, :f f" - z€r)(t, - r), ir, : #fu, - qr) (ss - 2€2)

ir, : ilrrrr(trn - €') - rnxz(tz'ys- €')]

ñr. : llrrrr(trx - t') - nxr(tr'rr- €') + (t' - n)€'xrf
where

t) : rh(trx - €') - nr(trlo- 6') (5.20)

It is noted that exponential terrns of f are not involvecl in the expression of
6(lv+t¡ ancl its elements clepencl on the material ploperties of the unclerlying half-
plane aucl the Fonrier transform parameter {. The stiffiress matrix ¡ç(lr+t¡ of the
unclerlying half-plane derived here also satisfies all the governing equations exactly.
On the othel hand, the matrix schemes proposecl by Lysmer ancl Waas (ig72) ancl

Kausel and Peek (1982) are not capable of taking into consicler.ation the influence
of an underlying half-plane of a multi-layered system. Therefore, the presence of a
rigid base at a finite depth is assumed in the approximate rnatrix schernes. Oner.

and Dong (1988) has presented a rnethod to compute the stiffness of the ulclerlyilg
half-plane by using further approximations.

5.3 Global Stiffness Matrix

The global stiffiress matrix of a multi-layered half-plane is assemblecl by using
the layer and half-plane stiffness m¿trices on the basis of continuity of tractions ancl

fluid flow at layel intelfaces. The plocedure is similar to that clescribecl in Section

3.3. The final equation system for cletermination of interlayer clisplacement ancl

pore pressure is identical to eqn (3.29) except that the external force vector 1(",)
at the nth interface is defined as

a@) :q ¿l@) r!ù Q,'n' ,,
LA

(5.22)

where Í!")çi : r,z) and Q@) clenote the Fourier transforms of the tractions and
fluicl source appliecl at the nth interface, respectivelv.

- ar)çe * 2ts(rtrt, - nrÐ) (5.19ø)

(5.1eó)

(5.1sc)

(5.1ed)



The global stiffness matrix of eqn (3.29) for a two-dimensiolal poroelastocly-

namic problem is a well-conditioned symmetric matrix of order. B(N + r) x 3(lr + 1)

and has a band width equal to 6. lVhen compared to the conventional methocl basecl

on the cleterrnination of layet arbitlary coefficients, the global stiffness matr.ix in-
volves only numelically stable negative exponential terms of the Fourier tlansform
parameter'( resulting in ¿ well-conditioned final equation systern for all values of

{ as shown in Section 5.4.1. The present scherne also requires less cornputational
effort due to the presence of a bandecl syrnmetric global stiffness matrix which is
nearly half the size of the unsymmetric coefficient matrix encounterecl in the con-

ventional schemes based on the cleterrnination of layer arbitrary coefficients. In
addition, the eigenvalues of the global stiffness rnatrix can be clirectly related to the
velocities (wave number) of the surface v/aves in a layerecl por.oelastic rnecliu¡r alcl
the corresponcling eigenvectors Ìepresert the displacernents at layer i¡terfaces for.

clifferent rnode of vibrations.

5.4 Numerical Solutions

5.4.1Numerical Scheme

This section is concerned with the development of a computer code basecl on the
stiffness rnatrix scheme to evaluate Gleen's functions of a multi-layerecl poroelastic
half-plane corresponding to tirne-hatrnonic buriecl loacls ancl fluicl sonrce. The tasks

performecl by the computer code is similar to that clescribecl in Section 3.4.1 for.

quasi-static problerns. The program computes the stiffness matrices correspo¡cling
to each layer and the underlying half-plane for specifiecl values of Fourier transfor.m
paratneter { and the frequency of excitation ø. These matrices are assernblecl into
the forrn of eqn (3.29) and the interlayer displacernents ancl pore pressure vectors

in Fourier transforrn space are obt¿ined by solving the global stiffness equation [eqn
(3.29)] for each specifiecl value of {. Tliereafter, the clisplacernent ancl pore press¡re
at each interface in the frequency domain are obtained by evaluating the semi-

infinite integrals with respect to { in eqn (4.10b) by using numerical qnacl.,ature

as discussed in Section 4.5.1. To ensure that the real {-axis is free fi'om singular-

ities, one-percent materiai attenuation is incorporatecl into the shear rnoclnlns of
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the materials in the analysis of dry elastic (icleal elastic) materials a¡cl po,.oelastic

materials with å:0. A nondimensional flequency definecl as á : aa1/P@ is

used hereafter in the discussion of the numerical resnlts wþere p(1) oncl p(1) or"
the ruass clensity of the bulk material and the shear moclnlus of the first layer of a
multi-layered half-pla,ne, r'espectively.

The numelical stability of the global stiffness matrix of a layered systern ¡ncler
dynamic excitatiotrs is assessed by cornputing a conclition number of the matrix
(Cline et a1.,1979). Figure 5.1 presents -t1-condition nurnber of the final equation
system corresponding to tlte plesent stiffness matrix method [i.e. eqn (3.2g)] for
ilcreasing v¿lues of { and for diffelent values of 6. The ,L1-conclitio'ecl n.nr.ber
collesponding to the conventional method based on the cletermination of layer arbi-
trary coefficients is also shown in Fig. 5.1. The resnlts shown in Fig. b.1 corresponcl

to a layerecl systern consisting of a poloelastic layer of ¡¡it thick¡ess with pr.ope'ties

identical to the fir'st layer of the system shown in Table 5.1 bonclecl to a poroelastic
half-plane with properties identical to the seconcl layer of the systern shown in Table
5.1. The globai stiffness rnatrix of the present scheme has a much smaller. conclition
nurnber which either rernains constant ol clecreases over a wicle range of values of

{ and á. On the othel hand, the condition number of the coefficient rnatrix corre-
sponding to the conventional method based on the cletermination of layer ar-bitrary
coefficients is always higher and becomes extremely large for increasing values of f
due to the preseûce of mis-matching exponential terms. Similar behaviour is notecl

irr Section 3.4.1 for quasi-static problerns. The numerical stabitity of the present
stiffness matrix approach is clearly demonstratecl by the solutions showl in Fig.
5.1.

Tabie 5.2 preseuts a comparison of numerical solutions for nonclimensional

vertical stress (o,,1Ío) due to a static vertical line loacl /e applied at the s1r.-

face of a homogeneous ideal elastic half-plane (Melan, 1932) ancl an elastic lay-
er of unit thickness bonded to a rigicl base (Poutos, 1966). Solutions obtaiuecl
from the present stiffness method for the limiting case of a1 icleal elastic material
(M : pr : m : b : (t : 0) ancl á : 0.01 are cornparecl in Tabre 5.2 with the
numerical solutions given by Poulos ancl Davis (1974) to verify the accuracy of the
present solution scherne. The two sets of solutions are in excellent agreement. Tablc



5.3 presents a cornparison of elastodynamic solutions colr-esponcling to an icleal e-

lastic half-plane given by Rajapakse and \Mang (1991) with those obtainecl frorn the
present matrix scherne. The half-plane is considerecl to be consisting of 10 layers

of equal thickness, h'f a :0.2, and an underlying half-plane of iclentical materials.
The numerical stability and the general accuracy of the present matrix methocl ar.e

confirrned through these indepenclent comparisons.

5.4.2 Numerical Results for Strip Loadings

In the numerical study, selected results corresponcling to two poroelastic layerecl

systems identifiecl as layered systens ,4 and B and a clry elastic (an icleal elastic)
layerecl medium are presentecl. The colfignlation of the layerecl system is show¡
in Fig. 5.2 and the rnaterial propelties are given in Table 5.1. Note that olly the
material pararneters ¡r, À and p are required in the numerical evaluation of clynarnic
response of dry elastic layer rnedia. It is also noted that for layerecl system A, where
the internal friction is neglected (ó : 0), ancl for the clry elastic layered systern, o'e
percent attenuation (material damping) is consiclere{ in the ¡¡rnerical evaluatio'
to facilitate numerical integration along the leal €-axir (Apsel and Luco, 1g8B).

All rtumelical results presented hereafter correspond to the case where ve'tical a'cl
lrorizontal loacls are applied uniformly over a strip of wiclth 2a wilh intensity /s.

The figule 5.3 shows the nonclimensional veriical clisplacernent, uf,r(O.,2)[:

tt1)u"(0,r)lfol, at the center of a vertical strip loacl appliecl on the snrface

(z'f a:0.0) and inside (z'f a:1.0) the layerecl half-planes. Solutions are pr.esentecl

fol tlre nondimensional fi'equency range0.2 16 <2.6 since the ¿isplacernents a.e
arbitraty for ó : 0. It is evident from the figure 5.3 that snbstantial clifferences exist
between tlre tesponse of the three layered systems. The variation of uf," wítb 6 is
quite similar for a surface strip load and a buried strip loacl although both real a¡cl
irnaginary palts of u)" are larger for a surface loacl. This implies that the half-plane
becomes more stiff and clamp nnder a buried loacl than a surface loacl. The main
difference betweelt the material properties of poloelastic syste¡rs ,4, ancl B exists i'
the values of ô (i.e. internal friction). All materials in the layerecl system ,4. have

zero internal friction (å : 0) whereas the systern B consists of rnater.ials with finite
intelnal friction (Table 5.1). Comparison of ul" profiles in Fig. 5.3 inclicates that
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the presence of finite intelnal friction in materials makes the layerecl system more

stiff and damp (i.e. srnaller teal and imaginary values of ui). The influence of ð is

rnore ploil.ounced in the fi'equency range 0.6 < ó < 1.5. Comparison of the tesponse

of the layerecl system ,4 and that of the dry elastic layerecl system also iuclicates

that substantial difference exists in the resporse when 0.6 < á < 1.8. The real

part of uf,, slrown in Fig. 5.3 shows a change in sign within the frequency range

0'8 < 6 < l-4 for the three layered systeurs. The maxirmrm value of the irnaginary
part of tzl, occurs when the corresponding real palt of the solution is equal to ze-

ro' The imaginary part of u), shown in Fig. 5.3 remaius negative througho¿t the
frequency r-ange 0.2 < 6 < 2.6.

Fignre 5.4 shows the variation of ,i,(0,2)[: ¡¡(t)u,e,r)lfo) at the center of
a lrorizontal strip load appliecl on the surface (z'f a: 0.0) ancl inside (ztla:1.g)
the layerecl half-planes. The behaviour of these solutions is quite different fro¡r
z), showu in Fig. 5.3. The influence of poroelastic properties on the response is
quite smaller when cornpared to the case of vertical displacement under a vertical
Ioading (Fig. 5.3). The real part of uj, corresponding to a surface ¿ncl a l¡uriecl loacl

increases initially in the r-arÌge 0.2 < á < 0.5 and theleaftel clecreases rapidly with
increasing frequency. Re[z]"] shows oscillatory valiations with frequency for 6 > I.4
but remaius positive throughout the frequency rarge 0.2 < 6 < 2.6. The imaginary
part of zj, rernains negative for 0.2 < ó < 2.6 but clecreases with ô for all three

layerecl systems reachiug its maximum value near ó : 0.7 ancl thereafter increases

with increasing á. The irnaginary part of z]" shows lelatively more depenclerrce on

the poroelastic behaviour of the material than the real part of zj". The solutiol
fot u[, at the center of a stlip is more stiff and clamp for a buriecl horizontal loacl

than a surface load. Similar behaviorlr was noted for vertical loading.

Figures 5.5(a) ancl 5.5(b) show the displacements uf,,(r,0) ancl ui,(r,,0) along

the surface of a half-plane due to strip loacls irr the veltical ancl holizontal clirection-
s, respectively. At low ftequency (á:0.3), the real palt of uf,, ancl tz|, clec¡eases

gradually with the distance rf a. Th,e irnaginary part of the clisplacements r-ernains

nearly constant for the layered system .4 and the clry elastic layerecl system whereas

a minol linearly increasing variation is notecl for the systern B. The influelce of
poroelastic properties is quite negligible on the surface response at low freqlencies.
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As frequency increases (e.g. á : 1.5), the surface response of the three layerecl sys-

terns shows increasing diffelences especially under a vertical loacling. The variatio¡
of surface displacernents with the horizont¿l distance becornes oscillator.y at higher.

frequencies.

Figure 5.6(a) shows the profiles of nondimensional stress oI.,: o,,lfo along

tlre z-axis due to a vertical strip loacl applied at ztf a: 1.0. At low fi.equency

(á:0.3), both the real and imaginary parts of o),, show negligible depenclence on

the poroelastic properties as noted previously for displacements. At high frequency

(á : 1.5), profiles of o),, of poroelastic layerecl systems A ancl B are nearly identical

but show substantial differences from of,"" of the dry elastic layerecl system. As

expected, the real part of of,," shows a nnit discontinuity at zla - 1.0 clue to the

loacling appliecl at this level ancl the irnaginary part of o!", is smooth at this level.

Tlre variation of of,," witlt the depth is generally smooth within the layers except

for the discontinuity in the real part at zf a:1.0 and kinks at the layer interface

levels for both real and imaginary parts of o"". At low frequency (6 : 0.8), tfue

kinks in tlte o* profrles at the layer interface are not vely visible. Solutions for o",
are negligible for zf a> 6.0.

Pore pressule profiles along the z-axis (Fig. 5.6(b)) clue to a ver.tical strip loacl

applied at ztf a: 1.0 show substantial clifferences from the vertical stress plofiles.

Note that the pore pressure in the meclium is zero in the c¿se of a dry elastic layerecl

system. The maguitucle of leal ancl imaginary parts of p) is generally larger- for ó :
1.5 when compared to á : 0.3. Pore pressure plofiles vary smoothly within the layers

and show kinks at the layer interfaces. The kinks at layer interfaces are visible for the

layered system B at low and high frequencies but are visible for the layelecl system

,4 only at á : 1.5. Pore pr-essure is zero at z : 0 due to the imposed bounclary

condition. Substantial differences in pore pÌessure observecl in Fig. 5.6(b) for
poroelastic layered systems ,4, and B indicate that the parameter ô quantifying the

internal friction has a strong inflnence on the pore plessure gerì.eratecl in the rnecliurn.

However, the comparison of pore pressure profiles at clifferent fi'equencies for layerecl

systems ,4 and B inclicate that the dependence of p) on ô is very colnplicatecl ancl

does not show a clear trend for a layered system. Pore pressrue profiles along the

z-axis due to vertical loading do not have any cliscontinuity at the loacling level clue
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to the contirruity conclitions considered in the analysis. This essentially means that
the loading is applied to the solid skeleton resulti¡g in equal disco¡tiluities i' the
total stress and the effective stress. On the other hancl, it is possible to consicler

loadings applied directly to the fluid, i.e. a cliscontil¡ity eq¿al to p6 i' the fluicl
pressure at an interface which results in a discontinuity of the total stress eq¡al to
aps. Uncler this condition, the effective stress at the loacling level is continuous.

5.5 Conclusions

The exact stiffness matrix method presentecl in Chapter 3 is extenclecl to conr.-

pttte Green's functions of a multi-layered poroelastic half-plane clue to b'riecl time-
harmonic loads ancl fluid sources. In contrast to the approximate methocls (Lysnre'
ancl Waas, 1972 ancl Waas, 1972) reported in the litelature the present matrix
method rigolously satisfy all the equations governing the clynamic respo¡se of a
poroelastic rnedium ancl is also capable of moclelling rigorously the influence of a1

underlying half-space in a layered system. Fulthermo¡e, the pr-ese1t methocl cloes

not requile the cliscretization of each material layer into thi¡ snb-layer.s res.lti'g
in a much smaller global stiffiress eqnation systern. The global stiffness matrix of
the present scheme is symmetric ancl its elements clo not involve mis-rnatchi¡g ex-
ponential terms. The condition number of the global stiffness equation system is
much smaller than that of the equation system corresponcling to methocls basecl

on the cletermination of layer arbitrary coefficients ancl rernains nearly consta't
with increasing values of the Fourier transform pararneter'. This behavio'r confirms
the supelior numerical stability of the present scheme over the existirrg schernes.

In adclition, the present global stiffness matrix [e.g. B(¡f + 1) x 3(ff * 1) for the
systern shown in Fig. 3.1] is nearly one-half the size of the unsymmetric matrix

[(6¡¡ + 3) x (6,nr * 3) for the systern shown in Fig. 3.1] corresponding to conven-

tional methods based on the cletermination of layer arbitrary coefficients.

The numerical accuracy of the present exact stiffness matrix rnethocl is con-

firmed through existing solutions for an elastic meclium subjectecl to static alcl
dynamic loaclings. Selectecl numerical results for clisplacerne¡ts of layerecl systerns
prese[ted in this pa,per indicate that the poloelastic properties ancl the freqnency
of excitation have a significant influence on the response. It is also folncl that the
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rnaterial parameter ó related to internal friction of the porous medium has a signif-

icant influence on vertical displacements and pore pressure clue to vertical loacling.

The influence of å on horizontal displacernents due to horizontal loacling is relative-

ly smaller. The plesent matrix scheme can be used directly to cornpute Green,s

fttnctions required in the application of boundary integral equation methocls for
multi-layered poroelastic media and in the analysis of a variety of problems encourì.-

tered in geomechanics, earthquake engineering ancl geophysics. It can be also usecl

to verify the accuracy of approximate numerical rnethocls such as the scheme by
Bougacha el al. (1993b). The stiffness method presentecl in this Chaptel ca1 be

extenclecl to study transient response of layered poroelastic meclia by appropriate
reclefinition of vectors u an<l f, and rnatrices R ancl s in eqns (5.1).
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rst làyer
secon(l layer
half-plane

T¿ble 5.1: ùlatelizrl proper.ties of layerecl systenrs

t x108 N/*r.
f x103 kg/*t.
$ x106 N-s/ma for layered system B; for layered system A, b0) - 6Ø - 6(r) - g.

T¿rble 5.2: courparisorr of vc'tical stress clne to ¿r veltic¿rl

sulface of an icleal el¿rstic meclium (z _ 0.0)

line lo¿rcl zrpplied at the top

C¿rse I: ¿ half plane.

Case II: a finite layer rvith ligicl base.

T Poulos ancl Davis (1g24).

? Case I Case II
P & D (roz+¡T Present stucly P & D (rsz+¡T Present stucly

4.2
0.4

0.6
0.7
0.8

0.9

-3.183
-i.592
-1.061
-0.909
-0.796
-0.707

-3.187
-1.592
-1.06i
-0.909
-0.796
-0.707

-3.148
-1.64i
-1.159
- 1.034
-0.948
-0.887

-3.r23
-1.639
-1.15õ
-1.030
-0.941
-0.882
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T¿rllle 5.3: Cornparison of veltical clisplacenrent ¿urcl veltic¿r.l stless clue to a vertical

strip loacl zrppliecl zr,t cleptlt ; : (L of an icleal elastic half-pla,ne (u : 0.25 arrcl ¿5 : 1.0)

zla
þ'u,(0, z) I foa o.,(0, z) I fo

R & \,V (roor¡+ Present study R.3¿ W (tOOi;f Plesent stucly
Re Inr Re Im Re lnr Re Inr

0

0.5
o.g
1.1

1.5
2.0
3.0

-0.0186
-0.0042
0.0108
0.0119
-0.1165
-0.2175
-0.2947

-0.5895
-0.5941
-0.5546
-0.5242
-0.4483
-0.3351
-0.0983

-0.0187
-0.0041
0.0110
0.0120
-0.1762
-0.2777
-0.2942

-0.5893
-0.5939
-0.5544
-0.524r
-0.4480
-0.3347
-0.0981

0

0.0873
0.1914
-0.7605
-0.6337
-0.4271
-0.0317

0

0.2485
0.3914
0.4472
0.5306
0.5851
0.5478

0

0.0874
0.1915
-0.7606
-0.6338
-0.4271
-0.0320

0

0.2484
0.3912
0.4470
0.5302
0.5845
0.5472

I Rujoprl,lrse ancl lVang (1gg1).
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Chapter 6

INDIRECT BOUNDARY INTEGRAL EQUATION METHOD

6.1 General

The clevelopment of cornputer codes based on an inclirect bounclaly integral
equation method is considered in this Chapter for the analysis of quasi-static, time-
harmonic ancl transient boundary value problems involving serni-infinite ancl infi¡ite
poroelastic meclia. Formul¿tions are presented in the Laplace clomain for quasi-

static and transient problems ancl in the frequency domain for time-har.monic prob-

lems, respectively. The kernel functions of the integral equation correspo¡cl to a¡
appropliate set of Gteen's functions derived in Chapters 2 and 4 for a homogeneons

domain and in Chapters 3 and 5 for a layered systern, respectively. The numer'-

ical implementation of the integral equation is also cliscussecl. The convergence

and nurnerical stability of the present scheme are investigatecl by consiclering two-

dimensional ancl three-dimensional cavity expansion problerns uncler quasi-static,

time-harmonic ancl transient loaclings. In additiou, the versatility ancl applicability
of the plesent scheme are dernonstrated by plesenting the solutions for axial stiff-
ness of a spheroidal anchor embedcled in a poroelastic medium, ancl investigating
the clynarnic response of a semi-circnlar tnnnel with a rigid wall in a poroelastic

mediurn.

6.2 Indirect Boundary fntegral Equation Scheme

Consider a poroelastic domain f) with a volunr.e I/ bounclecl by a surface ,9

with a Cartesian coordinate system (r,y,r) definecl as shown in Fig. 6.1. It is

assumed that a set of adrnissible boundary conditions are specifiecl on the surface

5. For example, if u¿ (i : r,!/,2) is specifiecl on ,S then such a problem is known

as a clisplacement boundary value problem whereas a ploblern with specifred, T¿

(i : r,y,, z) on,9 is called a traction bounclary value problem. In aclclition, the pore

pÌessur.e p or the fluicl dischaÌge q?¿ normal to the snrface ,9 has to be specifiecl. The
surface ,9 is called a fully permeable sulface when p is equal to zero on ,g where¿rs

a fnlly impermeable surface corresponds to the case where gn : 0 on ,s.
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Generally, the solution of the govelning equations fol clomain f¿ [".S. eqn (2.4)

in Section 2.3 for quasi-static deforrnations] subjectecl to the bounclary conclitio'
specified on ,S by using analytical methods is possible only in a very few special

cases such as in the case of a vertically loaded ligicl sphere in an i¡fi¡ite poroelastic
tnedinrn (De jong, 1957) . In view of this, the clevelopment of cornputational methocls

such as boundary integlal equatiou methocls have receivecl increasing atteltions
over the past clecade (Cheng and Liggett, 1g84a,b; Cheng ancl Detournay, lggg;
Nishirnnra and Kobayashi, 1989; Cheng et al., 1991 ancl Dorninguez, Igg2). As
mentioned in ChapteL 1, one of the main objectives of this thesis is to preselt a¡
indirect bounclary integral equation scheme with non-singular- kernels for analysis
of quasi-static, time-halmonic and tlansient bounclary valne problerns involvilg
serni-infinite ¿ncl infinite poroelastic domains.

The indirect boundary integlal equation methocl presentecl herein follows the
cotrcepts used by Ohsaki (1973) for the case of icleal elastic rneclia. The preselt
scherne is based ol the consideration of an equivalent problem definecl with respect

to an undistnrbed poloelastic medium. For exarnple, consicler a poroelastic clor'ai'
fl with a volume 7 bounclecl by a surface ,S identical to ,9 in Fig. 6.1. It is assumecl

that a set of unknown forces with magnitucle Í.i(r,,t,) with i : t,!J¡z and, a fluicl
sollrce f (r', t/) are applied on an auxilialy surface ^9/ clefinecl interiol to 5 as shown

in Fig. 6.2. Hence, the displacem.ent u¿(r,,t), traction T¿(r,t), pore pressure p(r,ú)
and fluid discharge in the dilection of unit normal n to an arbitr.ary plane, clenoted

by q-(r,ú), at any poiut with position vector r in 7 can be expressecl as

u¿(r, t) : 
Io' f ,, " o, (*, t - t, ; r, ) Í ¡ (r,, t, ) d,s, (It,

* 
lot Ir,rooe,t - t'ir')f (r,, tt)cISt dtt , I e S'; i, j : t,!l,z (6.tø)

T¿(t,t) : 
lo' Ir,ro,(*,t - t,;t,)f j(t,,tt)d,Stdt,

* 
Io' lr,ron|,t - t,;r,)f (r,, t,)d,s,dt,, r, € s,; i, j : r,!t, z (6.1ó)

p(r,t) : 
lo' l*ur,{r,t - t,;r,)Í¡(r, ,tt)dst dt,

* 
lo' f ,,roo{r,t -t';r,)f(r,, 

tt)d,stdt,, r, e s,1 j : r,y,z (6.1c)
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Q.þ,t) : 
lo' f ,,"n,{r,t - 

t,;r,)Í j(r, ,t,)d,s,ctt,

ot

+ [" [^,"nne,t - t,;r,)l(r,, tt)d,st cltt , r, e s,; j : r,y, " (6.1d)Jo J s,

In the above equations, G¿j(r,ú;r/) ancl G¿q(r,ú;r/) clenote clisplacemelts in the z-

clirection (i: r,,y,z) at point r due to an impulsive force in the j-clirection (j :
r,u,z) and an irnpulsive fluid source, respectively, at point { att:0; Gn¡(r,,t;l)
and Gon(r,t;{) cleuote fluid discharge in the clirection of a vector n at point r
dne to an impulsive force in tlte j-direction (j : *,,y,2) and an impulsive fluicl
source, r'espectively, at point r/ at ú : 0. For example, if n: {0 0 1}" then
Go,(r,ú;r/) is the fluid discharge in the z-clirection at point r clne to an irnpulsive
force in the z-direction applied at { at t : 0. H¿¡(r,t;rt) ancl }r,o(r,t;r,) cle¡ote
ttactions in the i-clirection (i : r,,y,z) at point r clne to an irnp.lsive force i'
tlre j-direction (j : r,ll,z) and an irnpulsive fluid source, respectively, at point
{ at t : 0; Hp¡(r,,t;rt) and Hon(r,t;r') clenote excess pore presslre at point r
dtre to an impulsive force in the j-clirection (j : *,y,2) and an irnpulsive fluicl
sotll'ce, r'espectively, at point r/ ¿t ú : 0. It is important to note her.e that the
kernel fulctions G¡j,G.;orH¿¡, etc. in eqns (6.1) ar.e non-singula¡: silce t f { in
the present scheme. In the case of ideal elasticity, only eqns (6.1a) ancl (6.1b) ar.e

involved in the analysis with the seconcl integrals in those eqnations beirrg eqlal to
zero. In acldition, for ideal elastic ploblems under static loaclings, the co¡volltion
integrals with lespect to the time parameter' ú/ clo not exist, ancl eqns (6.1a) alcl
(6.1b) reduce to the forms given by Ohsaki (1923).

The Gleen's fnnctions (kernel functions) are not available explicitly i' the tirne
domain for half-space/plane problems. It is computationally rnore efficient in the
case of lineal problerns (especially for transient problems) to clevelop a formulatio¡
in tlre Laplace tlansfotm domain (Badmus et a\.,1993). Applying Laplace tr.ansforrn
to the time valiable in eqns (6.1) yields

'u¿(r, s) : 
I*Go¡(r,s;r')!¡(r',s)rlS' * I*Gonft,s;r')F(r,, 

s)d,S, (6.2a)

T¿(r,s) : f ,,H¿¡(r,s;t')!¡(r',s)d,S' 
* 

I,H,o(r,s;r')F(r', 
s)ctS, (6.2b)

p(r,r) : 
I*Eo¡þ,s;r')!¡(r',s)ctst * Ir,Èon(r,s;r')F(r', 

s)d.s' (6.2c)
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q;(r, r) : I Gn,(r,s;t')!¡(r',s)d,S, + [ cnn(r,s;r,)f(r,,s)d,S, (6.2d)
JS, JS,

whele the superposecl bar in eqns (6.2) denotes the Laplace tlansform of quantities

with respect to the tirne coorclinate ancl s is the Laplace transform par.ameter..

It shoulcl be noted th¿t in the case of quasi-static problems the Green's func-

tions for irnpulsive loads and an irnpulsive fluicl source ale obtainecl by consicler.ing

tlre. governing equations in the absence of inertia telms as shown in eqns (2.4).

However, the quasi-static Green's functions presented in Chapter 2 are clerivecl on

the basis of applied loaclings and fluid source with tirne histories iclentical to a step

fitnction H(t). This means that for quasi-static problems the relevant G¡eeu's func-

tions can be obtained directly by multiply the Green's functions given in Chapter
2by a factor "s". However, for transient clynarnic problems, Gleen's functions are

derived on the basis of field equations with appropriate inertia terms as prese¡tecl

in Chapter'4 for two-climensional problems.

In the case of time-har-monic problems where the motion is assurnecl to be time-
lrarnronic with a time factor of. ei-t, the analysis can be performecl clirectly in tfue

frequency clomain. The pertinent integral equations in the frequency clomain can

be expressed as

u¿(r,a) : 
l*G¿¡(r, 

u;r' ) f ¡(r', u)d,S' * 
l*G¿q(r,ø; 

r,)l(r,, a)cIS, (6.3a)

T¿(r,u) : 
l*H¿¡(t,a;r')f ¡(r',a)d,S' * I*H¿n(r.,cu;r,)l(r,, 

u)dSt (6.3b)

p(r,u) : [^ Hpj(r,a;r')f ¡(r',,u)clSt + [ Hro(r,ø;r,)t(rt,a)d,S, (6.Jc)JS, JS,

Qn(r, u) : 
l*Goi(r,, 

u;r' ) f ¡(r',u)d,S' * I*Gno(r,ø; 
r')f(r', u)ctS' (6.3d)

wlrere tlre quantities u¿(r, u), G¡¡(r,,ai{), Í¡(r',ø), etc. are clefinecl as similar to
eqns (6.1) with the unclerstartding that the analysis is perfolmecl in the freqlency
clomain.

If the clomain CI is an infinite mecliurn Green's functions corresponcling to a
full space/piane ale obtained fi'om Chapters 2 zncl, 4. Orr the other hancl, for the
case whele f) is a semi-infinite rnedium, Green's functions cor.responclirrg to a half-

space/plane are usecl. For: layered media, the lelevant kernels in eqns (6.2) ancl (6.3)

are obtained fi'om Chapters B ancl 5.
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The unknowil. quartities, f ¡(r',s) ancl F1r', s) in eqns (6.2) for quasi-static

ancl transient problems and f ¡þ' ,ø) and l(r/, ø) in eqns (6.3) for tirne-ha¡monic
problems, are cleterlninccl by irnposing bounclary conditions on ,9 which ar.e iclentical

to those prescribed on ,S. Since the natule of integral equations representecl by eq¡s

(6.2) ancl (6.3) are identical, the nnrnerical irnplementation of eqns (6.2) is presentecl

as an exarnple with understancling that the solution scherne can be r.eaclily extenclecl

to eqns (6.3). Equation (6.2) r'epresents a set of Freclholrn integral equations of the

first kind for unknown fields /, and l. In view of the complexity of the kernei

fnnctions Goj, Hoj, Gn¡, etc. eqns (6.2) can be solvecl only by applying nurnerical

techniques. The uumerical solrttion is obtained by consideling ly' ancl l// locle
points on ,9 and ,9/, respectively. Let F clenote a vector whose elements cor.responcl

to the unknown quantities (i.e. forces /, ancl fluicl source F) at nocle points olr ,g/

ancl definecl in the following form

F:( fi f2 f3 f.¡v, >"

where

$.aa)

(6.4b)

Then, a cliscrete versiol of eqns (6.2) with lespect to N ancl .ôtr/ nocle poi¡ts o¡ ,S

ancl ,9/, respectively can be expressed as

QF:B (6 5)

wheÌe the elements of the vectol B correspond to the specifiecl bouncl¿ry conclitions

at nocle points orr ^9 and the elements of the matr-ix Q er,re expressed in ter.ms

of Green's fttnctions. For example, consider the case where clisplacerneut z¿(r, s)

(i: r,'y,z) ancr fluid discharge q,"(r,s) on the surface,S ale specifiecl as equal to
uiþ,s) (i,: r,y,,z) and qå(r, s), respectively. Then,

f¿ :< f *7r' t) lu\¡, t) Í,(r¿,s) F(r¿, s) ), i : 1,2, ..., N,

(6.6a)

r,2,..., N' (6.6ó)

tri:( uiþ¡,s) u[(rt.,s) u)(r¿,s) qi(r¿,s) >, ,i:7,2,...,N

where
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G("0, s;r' j)

ancl A^9j denotes the tributary

I Ç,* g,o Q,, Q,n1

- A.q{ I Çu" Çru Qu. Çuo I-"t I Ç"" g,o Ç", Ç"n I

LGq* Gno Gn" Gnn J

alea corresponding to the j-th li

(6.7b)

ode point on ,S'.

(6.8ø)

(6.8ó)

In the above forrnulations, single node bounclaly elements with a constalt valne

ovel a tributaly axea aÌe usecl. However, there are moÌe aclvancecl elernents (e.g.

linear or qnaclratic) which account for variation of Green's functions within the
elemeilt length thereby reducing the number of nodes requirecl in the cliscr-etization

and also enhancing the accuracy.

Arrother example is the case where tlaction Z;(r, r) (i, : æ,y, z) and pore
pressure p(r,r) on the surface ,9 ar.e specifiecl as equal to ?j(r,s) (z : n,y.,z) and,

p*(r, s), respectively. Then,

where

t¿ :17](r¿, s) Tl(u, s) T: (r¿, s) p*(r¿, s) ), i :7,2,..., N (6.eø)

H(to, s;{ j) - /.Si (6.eå)

A least squ¿re solution of eqn (6.5) yields

r : lQ"Q]-tQte (6.10)

Once F is known, the cornplete poroelastic fielcls on the bounclary ,S as well as

at points in f) can be computed dilectly from eqns (6.2). In a sirnilar rnanneï,

the solution fol time-harmonic probiems can be obtainecl by using the ploceclure

clescribed in eqns (6.4)-(6.10) with the appropliate forms of F, B ancl e.

In the case of axially symrnetric clornains, it is natural to employ the cylinclrical
polar coordinate system (r,0,2) defined as shown in Fig. 6.3 in the alalysis. This

f H-,, È-ru È-," 4,n1
I H-0" H-uu 4u' H-un 

I

I 4," 4"o 4." 4,n I

L H¡,, Hru HW Hon J
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type of ploblems can be analyzecl by applying Fourier expansion with ¡espect to
the circumferential coordinate d to the fielcl variables as shown in Chapter 2. Due

to the olthogonality of tligonometric terms, the bonndary value problerns can be

analyzed seperately for each Fouriel harmonic. In the case of problerns i¡volvi¡g a¡
axially syrnmetric boundary surface ^9 and a colresponding souÌce sur.face ,g/, t¡e
integral equation can be expressed in terms of the correponcling generating curves Z
and Lt in the rz-plane (see Fig. 6.4). For example, the formulations cor.responclilg

to the rnth Fourier harmonic can be expr.essed as

u¿,n(r, ù : | 
", 

Gff b, s; r' ) f ¡,n(r', s)r' d,L'

+ [ Gftft,,s;r')l-(r' ,s)r'd,L', r € L; i,j :Ì',0,2(6.11ø)
JL,

T,-,(r, ù : I 
", 

Hff (r, s;r, ) f¡,"(t,, s)tr clL,

+ [ HfrF,,s;r')1,,"(r',s)r'd,L', re L; i,j:r,0,2(6.11b)
JL,

p,n(r, ù : I, Hfi(t, s;r').f ¡,,(r' , s)r' d,L'

r_
* 

J",Hffi(r,s;r')1,,,(r',s)r'd,L', r e L; i :r,0,2 (6.i1c)

Qn,n(r, ù : I", Gi¡G, s; r') !¡,.(r' , s)r' d,L'

f_
* J",Gffi(r,s;r')l-(r',s)r'dL',, r e L; i:r,0,2 (6.11¿)

In the above equations, a subscript rn is used to iclentify the nzth Fourier har-monic

of displacernents, tractions, pore pressure and fluicl clischarge. A superscript nz

is used in the Green's fulrctions to irnply that the circumferential clepenclence of
loadings and fluid sotlrces used in the derivation of Green's functions is give¡ by
either cosm0 or sin m0 type v¿riation. In adclition, Green's functions in eqns (6.11)

corlespond to forces ancl a fluid sottrce applied over a circular ring of r-aclius r/
(Fig. 6.a). It is noted that when both geornetry ancl loaclirrgs are axially syrnrnetric

the corresponding solutions can be obtainecl by consiclering eqns (6.11) with olly
nZ :0,
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6.3 Numerical Solutions

6.3.1 Numerical Scheme

In this section, the development of computel codes basecl on the inclirect bouncl-

ary elemerrt algorithrns outlined in Section 6.2 is considelecl. The numer.ical eval-

uatiou of Green's functions (i.e. matrix Q) i. already discussecl in Section 2.5.1

for three-climensional quasi-static problerns and Section 4.5.1 for two-clirnelsional

dynamic (tirne-harmonic and transient) problems, respectively. Since the analysis

is conductecl in the Laplace tlomain for quasi-static and transient problems a¡cl the
integral equations ar-e solved nurnerically, Laplace inversion schemes proposecl by
Schapery [eqn (2.39)] and Stehfest [eqns (2.38)] are usecl to obtain time-clomain
solntions. In aclditiol, single node boundary elements basecl on an aveïage val¡e of
a noclal quantity over a tlibutary area is used in all numerical examples. I1 e¡sning
sections, the accttracy ancl applicability of the present bounclary element scheme ar.e

dernonstrated by considering a set of boundaly value problerns for. which analytical
solutions are available.

6.3,2 Numerical Verification of Boundary Element Scheme

6.3.2.1 Spherical Cavity under Quasi-static Loadings

The convetgence, stability ancl accuracy of the numerical solutious obtainecl
from the present scherne are established by considering ihe ploblern of a permeable

spherical cavity of raclius ¿ in an infinite poroelastic rneclium uncler nniform norrnal
traction foil(t) appliecl at the cavity wall [Fig. 0.5(a)] where f1(ú) clenotes a unit
step function. This ploblern is axially symmetric with respect to geometr.y ancl

loacling and the response is a function of only spherical coorclinate -R (see Fig. 6.3).

The solution corresponding to this problem can be obtainecl analytically a¡cl it is

found to be identical to the icleal elastic solution. This implies that no excess pole
pressute is developed in the meclium.

The Green's functions requirecl in the analysis of the spherical cavity proble¡r
colrespond to impulsive ring loacls ald fluid souÌce appliecl in a poroelastic full
space and are obtained by multiplying full space Green's functions (without inertia
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effects) giveu in Section 2.4 corresponcling to n¿:0 by a factor "s". These Green's
functions at'e expressecl in terms of Lipschitz-Hankel type semi-infinite integrals
involving prodricts of Bessel fitnctions ancl theil numeric¿l evaluation is clisc'ssecl i'
Section 2.5.L. The nnmerical Laplace inversion founula proposecl by Schapery [eqn
(2.39)l is ernployecl in this case to obt¿in the time-clomain solntions for quasi-static
ploblems clue to the fact that it requires less computational effort than Stehfest
sch.erne [eqns (2.3S)]. Comparison of bonnclary elernerrt solutions fo¡ quasi-static
problems based on both Laplace inversion schemes inclicates negligible clifference

between the two solutions.

A discretization as shown in Fig. 6.4 is used to obtain the bounclary elernent

solutions fi'om eqn (6.1i). The influence of the number. of nodes ly' ancl .¡y'/ usecl

to discretize the generating curves tr ancl Lt ancl the location of source curve -t,
with respect to i denotecl by Aø are exarninecl by evaluating the displacernent
up at the cavity wall with the analytical solution given by Saacla (lg¡4) for a

spherical cavity in an icleal elastic rnedium. Table 6.1 shows the nonclirnensional

clisplacenrent 2¡.tuaf fs¿ at the cavity snlface for clifferent values of |y', ff/, Ao ancl

t*. A nondimensional time t* : ct/a2, in which c is the generalizecl consoliclation

coefficient clefinecl in eqn (2.5c), is usecl in Table 6.1 ancl he¡eafteril the clisc*ssio'
of quasi-static solutions. Comparison of numerical solutions pr.eseltecl irr Table
6.1 with the corresponding nondimensional analytical solution of 0.5 (Saacla, lg14)
indic¿tes that the pleseut solutions show goocl corìvergence ancl stable behaviour.
The lnaximunì. er.r.ot'is about two percent ancl the bolndary elernent solntions also

cortfirrn the absence of a consolidation pr.ocess in this case.

The case of a spherical cavity of radius ø ir an infinite poroelastic meclium sub-
jected to fluid pïessure poU(t) applied at the cavity walt [Fig. 6.5(b)] is consicler.ecl

next. In this case, the response is time clependent ancl the clisplacenent at the cav-

ity surfäce is zero. Two boundary elernent meshes for clifferent values of l/ ancl ny'/,

i.e. ff - 16,-4y'/:8 ¿nd N:20,1/':10, respectively, with aa:0.1b (seeFig.
6.4) ale used in the nurnelical evaluation of clisplacernent u¿ ancl por-e presslre p i1
a poroelastic tnecliurn (u : 0.2,,uu:0.33 ancl B : 0.62). Figu¡es 6.6(a) ancl 6.6(b)
show cornparisons between analytical solution ancl bounclary element solutions for
clisplacernent 2p,u¡7f psø and poïe pless:u¡.e pf ps respectively, at spherical snrfaces
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of radius Rf a:1.5 ancl 3.0 inside the rnedium. The solutions presentecl irr Figs.

6.6(a) and 6.6(b) indicate that the indirect bounclary element scherne pr.oposecl in
this study r-esults in numerically stable and accurate solntions. A srnall clisc¡ep-

attcy between the analytical ancl boundary elernent solutions for- pore press¡r.e is
observed at early tirnes (¿. < 1.0). This coulcl be due to the nuurerical natnr.e of the
Laplace inversion which involves the computation of vely rapiclly clecaying integrals

for small values of ú* (i.e. lar-ge values of s).

6.3.2.2 Axial Stiffness of Rigid Anchors

A class of displacement boundary value problerns with a fully imperlneable

surface [eqns (6.8)] is studied next. First, an imperrneable rigicl sphere of raclins ¿

ernbeclclecl in a poroelastic mediurn subjected to a vertical point loacl tr'¡ [Fig. 6.7(a)]

is considelecl. An exact analytical solution fol this ploblern is available (De jong,

1957) for a poroelastic material with incompressible constituents (uu : 0.5, B :
1.0). Tables 6.2 and 6.3 show cornparisons of tirne histories of vertical clisplacernents

between analytical solutions and boundary element solutions for cliffer.ent values of
ff, ff', ancl Aa, respectively. The two sets of solutions are in excellent agreement

ancl the maximum cliffelence is about two percent. In aclclition, the variation of
numerical solntions for different values of ly',,ôy'/, and Aa in Tables 6.2 alcl 6.8,

respectively, is less thau two percent. The numeric¿l convergeuce ancl stability of
the present scheme for quasi-static problelns are cleally establishecl by the solutions
presentecl in Tables 6.1-6.3 and Figs. 6.6.

To clemonstrate the applicability of the boundary element code for analysis of
illore cornplicated problems, the case of an impermeable rigicl spheroiclal anchor i¡
a poroelastic meclium [Fig. 6.7(b)] is considerecl next. An exact analytical solltion
given by Selvarlurai (1976) for. an anchor in an ideal elastic meclium is comparecl

with the final solutions (t --t *) obtained fron the present sch.eme for clifferent

values of ly', -Ay'/ ancl A¿ in Tables 6.4 and 6.5, respectively. The accnlacy of present

solutions are once again confirrned through these comparisons.

Figure 6.8 shows time histories of vertical displacement 2¡L,au,urlFs of a ver-

tically loaded rigid spherc (auf a¡": 1.0), an oblate (o,lor:0.5) alcl a prolate
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spheroid (n,,lou:2.0 and 3.0) embeddecl in a poroelastic meclium. Three clifferent

poroelastic materials, namely, a material with incornpressible constitue¡ts, Ruhr
Sandstone and Westerly Granite, are consicleled in the numerical stucly. The prop-

elties of these matelials are given in Section 2.5.2. The solutions pl'esented in Figs.

6'8(a) and 6.8(b) for vertical clisplacement of an anchol show similar behaviour to
tlrose shown in Figure 23 for the case of a buried vertical patch loacl in a poroelastic

half-space, i.e. the initial displacements ale govemed by the unch.ained Poisson's

ratio (zr) whereas the final response depends only on the rlrainecl Poissou's ratio
(z). Thelefore, an anchol in a poroelastic meclium with incompressible constituents

has the lowest initial solution followecl by anchors in Westerly Gr-anite ancl Ru¡r
Sandstoue, respectively. The nondirnensional final displacements of anchors in a

material with incompressible constituerrts ancl Westelly granite are identical clle to
iclentical drained Poisson's ratio of these materials. The numerical results inclicate

that the vertical displacernent of an anchor increases slowly when 0 < ú* ( 0.1 a¡cl

more rapidly cluring the per-iocl 0.1 < ¿* < 100 reaching their final val¡es whe¡
Ú* > 1000 for' ¿ll spheroiclal anchors. It is also noted that the clifference between the

initial and final clisplacerneuts of an anchor is less than fifteen, ten ancl five percent

of final clisplacements for anchors in a material with incompressible constitnents,

Ruhr Sanclstone and Westerly Granite, respectively.

6.3.2.3 Cylindrical Cavity under Time-Harmonic Loading

The accuracy of the present boundary elernent scheme for time-haunonic prob-

lems is investigated in this section. A plane strain traction bounclar.y value problern

involving a fully permeable cylindrical cavity of raclius ø in a poroelastic i¡finite s-

pace subjected to time-harmonic radial traction of uniforrn intensity /s is considerecl

(Fi8' 6.9). The analytical solutions iu the frequency clomain for raclial clisplacement

2", h.oop stress ogg a\d pore pressure p can be expressed as

pu"(r) _LrK,(L{) + LzeKl(Lzr)
fon hL? + þrLrza

oee(r) 1-# : prq; pBa[L?Kr(L.,') + LSaKzØzr) - {1 + À* + aM*(o + xr)}

x L!rcsØtr) - {1 + À* + aM* (a + y2)}Lloxolt rr¡1

(6.12a)
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- (a* y1)M"LlKs(hr) - (o* y2)M.LTraKs(L2r) (6.72c)

where

þ;: [r + À* + aM*(a-f xò]Ko(L¿) + Kz(L¿), i: !,2
Ã _ (a -f xt)L?KoØt)rs--@

(6.13ø)

(6.13ð)

Tlre nondimensional parametels À*, a, M* , L¿ and ¡¿ (i : r,2) are clefinecl i1 section
4.2 and Krn is the modifiecl Bessel function of the second kincl of orcler- rn (Watsor,
re44).

Figure 6.10 shows the discretization used in bonndaly element analysis of two-

dirnensional cavity expausion ptoblems. The number of nocles on the curves 5 ancl

^9' are ltr ancl .A//, tespectively, ancl the clistance between the two cuïves is clenotecl

by Aa. It should be notecl that in the analysis of circular cavity problem ore can

use syrnlnetry conditions and consider only one-quarter of the cavity wall. This
results in a much smaller matrix Q since only one-fourth of the nocle poilts showl
in Fig. 6'10 is requitecl in the discretization. In the plesent stucly, the symmetric
couditions are not consicleled in orcler to check the numerical stability of large size

Q rnatrices encountered in the solution of more complicatecl problerns ancl to check

the overall accuracy in the numerical evaluation of Green's functions. The Green's
firnctions required in this case ale given in Section 4.3 ancl corresporcl to time-
harmonic concentrated loads and fluid soulce appliecl in a poroelastic full plane.

These Green's functions appeaÌ in terrns of serni-infinite Fourier integrals ancl their.

uumerical evaluation is discussed in Section 4.5.1. Closecl for.m Green's functions
for this problem ale also obtainable by using the analogy between thermoelasticity
and poroelasticity in the frequency domain (Bonnet, 1987 ancl Cheng et al.,1gg1).
However, closed fotrn Green's functions are not available fol semi-infinite ancl multi-
layerecl poloelastic media. Thelefore, it is useful to apply Green's ftrnctions in the
integral form to exarnine the accuracy ancl numerical stability of the present solutio¡
scherne.

A poroelastic rnedium with À* - 1.0, a : 0.g5, M* : 15, p* - 0.5, tn* : I.2
and å* : 5.0 is considered in the numerical stucly. A nondimensional frequency, ó,

p(r) :
lo
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as defined by eqn (4.9b) is also used. In addition, N : 42,-4y'/ : 24 and, L,a:0.3 are

used in the bounclary discretization (see Fig. 6.10). Figure 6.11 presents comparison

between solutions for raclial displacernent and hoop stress at the cavity surface (r :
ø) obtainecl from the present stucly with the analytical solutions given in eqns (6.12).

It is evident frorn Figs. 6.11(a) and 6.11(b) that the plesent schemeyielcts accurate

numerical solutions with less than one percent errol for both real ancl imaginar.y

palts. Numerical results also indicate that the raclial syrnmetry is satisfiecl at all
node points with one pelcent accuracy. Since such high accuracy exists in the
solutions obtainecl from the plesent scheme using Green's functions exp.-essecl in
the integral form, it shoulcl be also possible to obtain accurate bounclar.y elemelt
solutions fol tine-harrnonic problems involving semi-infinite and layerecl poroelastic

meclia by using GLeen's fnnctions presentecl in Chapters 4 ¿ncl 5, respectively.

6.3.2,4 fmpedances of Rigid Semi-Circular Tunnel

The applicability of the present scheme for practical problems is clemo¡strat-

ed by investigating the dynamic response of a massless semi-circular tunnel with
a rigid wall in a poroelastic medium uncler time-harmonic loaclings (Fig. 6.12).

It is assumed that the tunnel wall is fully impermeable ancl perfectly boncled to
the surrouncling mediurn along the contact surface ,S. The tunnel is subjectecl to
tirne-lrarmonic vertical, horizontal ancl rnornent loadings Vo"i.t, H,ei-t antd. Msei.t,
per nnit length respectively. The clisplacernents of the tunnel, uncler the appliecl

loadings, can be expressed in terms of vertical displacem ent Ayei'¿, horizoltal dis-
placernent Arei't and rotatio\ þsei't about the y-axis of a point o (r:0,2:0)
as shown in Fig 6.12.

Tlre displacement at a point (r,z) or the contact surface,g can be expressecl

in terms of. Ly,A¡¡ and do as

u,(n,z): Ln - zóo

u"(ï, z) : Av * róo

(6.1aø)

(6.r4b)

The resultant folces ancl mornent acting on the massless tunnel can be expressecl

in terms of traction components T¿(r, z) (l : r, z) as

'o: lrT"ds
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(6.15b)

(6.15c)

Figure 6.13 shows the discretization used in the boundary elernent analysis for
tlris ploblern. A solution for unknown quantities (i.e. folces f ¡ ancl fluicl source f)
at nocle points on .9' cau be obtainecl in terms of Ay, A¡¡ and óo by using eqn (6.10)

with B and Q being clefined in the forms of eqns (6.6a) and (6.6b), respectively.

Theleafter', solntions for nodal tlactions ale exptessed in ter.rns of Ay, A¡¡ ancl

/s from eqn (6.3b). Substitution of the solutions for noclal tractions in a cliscrete

velsion of eqns (6.15) written with respect to node points on ,5 yields a relationship

between appliecl forces and displacernents Av, Au and ç16.

The response of a rigid serni-circular tunnel is chalacterizecl by the following

nonclirnensional impeclance matrix

{#,} 
:"'lî r;. ü:] {äî }

wlrere Kv,Kn,Kuu(: Kvn) and K¡¡a are the veltical, horizontal, couplecl ancl

rocking impedances, respectively, ancl ø is the ladins of a serni-circnlar- tunnel.

Figure 6.14 shows the vertical, horizontal, coupled and rocking impeclances

of a rigid massless semi-circular tunnel of radius ¿ in different poroelastic meclia.

Soltrtions are presented for the nondirnensional frequency range 0.1 < 6 < 2.0,

where á is defined in eqn (4.9b), since the clisplacernents are arbitrary for 6 : 0.

Tlrree poroelastic materials iclentified as materials A, B and a clry elastic material
(an ideal elastic rnaterial) are considelecl in the nurnelical stucly. The pr-operties of
these materials are identical to that given in Section 6.3.2.3 except that ö* : 0 ancl

5.0 for rnaterials ,4 and B, respectively. Iu additiou, only the nonclirnensional Lamé

constant À* is required in the case of a dry matelial. A discretization representecl

by l/ - 36, Nt : 24 and A,ø :0.1 is used in the bourrclary element analysis (see

Fig. 6.13). Comparison of nurnelical solutions pr'esentecl in Fig. 6.14 inclicates that
both real and imaginary parts of impedances of a tunnel in rnaterial B are larger

than those in material .4. This irnplies that the plesence of finite internal friction

Hs - lrr,ot
Ms - lr(r,, -T"r)d,s

(6.16)
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makes a rnedillrn more stiff and damp since material -4 has zero internal friction
(ó* :0) whereas ô* :5 fol material B. The influence of ó is mole pronoulcecl

wlren 0.5 < 6 < 2.0. The real part of Kv, Ka ancl K¡¡¡¡a of a tunnel in material,4
(ó* : 0) incleases in the range 0.1 < ó < 0.5 and thereafter declease sgraclually with
increasing ó wheteas, fol tunnels in poroelastic material B and in a clry rnaterial, the

leal part of these impeclances shows less dependence on the frequency in the range

0.1 < 6 < 2.0. The real palt of the rocking irnpedance K¡4 is found to decrease

gradually with the frequency for all tunnels. Numerical results presentecl in Fig.

6.14 also indicate that the highest radiation darnping occurs in a tunnel in matelial

B when 0.1 < 6 < 2.0 clue to the fact that the rnaxirnum value of the imaginary
palt of the impeclances is found in this case. The irnaginary part of the irnpeclances

for all tnntrels shows nearly linear variation with the frequency and remains positive

throughout the fi'equency range 0.1 < 6 < 2.0.

6.3.2.5 Cylindrical Cavity under Transient Loadings

The application of the present bottnclary elernent scheme to transient problems

is considered in this section. To the best of author's knowledge, a nulnerical irn-

plementation of boundary integral equation methods for tlansient elastodynamic

problerns together with nurnerical examples has not been reported in the literature.

A two-clirnensional cavity expansion problern drre to raclial traction /6/(r) (Fig'.

6.15) is considered to vetify the acculacy of the present scheme for transient prob-

lems. A nondimensional time r : (tlcL)\/p/p is usecl in the transient solutions ancl

two diffelent types of tirne histories for /(r), i.e. a g-radirally applied step pulse

[Fig. 6.16(a)] ancl a triangular pulse [Fits^. 6.16(b)] ale consiclerecl in the numerical

study. The analytical solution given by Senjuntichai and Rajapakse (1993) is usecl

in the comparison with bounclary element solntions.

The boundary discretization used in this ploblern is showu in Fig. 6.10. Once a-

gain, the complete geornetry was considered in the nurnerical analysis. The transient

Green's fttnctions requirecl in this problem corresponcl to the case where irnpulsive

loacls and fluicl source are appliecl in a poroelastic full plane. Exact ciosecl forrn

Green's functions in this case can not be obtained by using the analogy between
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thermoelasticity and poroelasticity ¿s in the case of time-harmonic problems. How-

ever, it is possible to obtain transient Green's functions in closecl for.m (\Miebe a¡cl

Antes, 1991) when the intelnal friction between the solicl skeleton ancl the pore fluicl

is neglected (i.e. ó - 0). In this study, the iuternal friction is taken into account

(b + 0) and the corlesponding Greeu's functions in the Laplace domain are given in

Section 4.3. These Green's functions are presented in telms of semi-infinite Fonrier

integlals and the uumerical evaluation of the integrals is cliscussed in Sectiorr 4.b.1.

Since the plesent analysis is conducted in the Laplace clomain for transient problem-

s, a lltllllerical Laplace inversion formula is used to obtain time-dornain solutions.

The numerical inversion of Laplace transform for transient problerns requiles mor.e

compntational effort when cornparecl to the case of quasi-static problerns. Simple

scheme such as Schapery's scheme cannot be usecl for transient clynamic problem-

s. Thelefore, the Laplace inversion formula proposed by Stehfest [eqns (2.38)] is

ernployed in this case. The main aclvantage of Stehfest's scherne when comparecl

to other schernes (e.g. Hosono, 1979) is that it involves sarnpling of the Laplace

tlansfomr solutions only at real values of the transform parameter.

Figures 6.17(a) and 6.17(b) present comparisons of time histories of raclial

clisplacement and hoop stless at the cavity surface obtained frorn the bounclary

element scheme ¿nd the analytical solution (Senjuntichai and Rajapakse, 1993). The

boundary element solutions are obtained from a discretization with l/ : 48, Nt : 28

and a¿ : 0.3 (see Fig. 6.10). A poroelastic rnaterial with properties À* : 2.0, a :
0.98, M* - 20,p* : 0.5, m* :1.25 and b* : 10 is consideled in the numeric¿l study.

In addition, the eqns (2.38) with L : I0 is used to obtain time-dornain solutions.

Comparison of solutions preserted in Figs. 6.14(a) ancl 6.14(b) clearly shows the

high accuracy of the transient solutions obtainecl from the present bounclar-y element

scheme. Nurnerical results for clisplacement and hoop stress uncler the two loading

cases inclicate that the analytical and boundary elernent solutions agree very well

in both ascending and descetrcling parts of the ïespoilse. Fnrthelrnore, the raclial

symrnetry is satisfied at all node points withil a two pei'cent elror.

6.4 Conclusions

Following the concepts of Ohsaki (1973) for ideal elastic media, an accurate
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indirect boundaly integral formulation is presented to analyze quasi-static, tirne-

harmouic and tt'ansient boundaly value problems related to serni-infinite ¿ncl infinite
poroelastic media. The kernel functions of the integlal equations are non-singular

and collesponcl to G'een's functions derived explicitly in Chapter 2 for quasi-static

problerns and Chapter 4 for time-halmonic and transient problems, r'espectively.

In the case of layered poroelastic media, the relevant keurel functions are directly

obtained flom Chapters 3 and 5. Single node boundary elernents with a uniform
distribution over ¿ tributary area are found to yield accurate solutions. It is also

foturcl that accurate time-domain solutions can be obtainecl by applying Laplace

iuversion schemes proposed by Schapery (1962) ancl Stehfest (1970) for quasi-static

ancl tr.ansient problems, respectively. The nurnerical examples have clemonstratecl

the high acctuacy ancl numerical stability of the present scheme in analyzing a

variety of problems iuvolving poroelastic media by using Green's functions expresse{

in the integral forms. In the case of semi-infinite and layered meclia, the relevant

G,.een's functions are always expressecl in the integral forrns. In view of the high

acctlracy obtained frorn the preseut scheme by using infinite space Gr.een's fuuctiolrs

in the integral forms, it can be conclucled that the Green's functions presented in
Chapters 3 and 5 can be effectively used in the present bonndaly elernent scherne

to analyze complicatecl boundary value problems involving layered poroelastic half-

spaces.
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Table 6.1: Conver'gence of clisplacernent 2puplJsa of a pLe.ssulizecl sphelical cavit)' in
an infinite poloclastic ntecliuni with N, JV/, Ac aucl f*

(lV,lV') f- : 0.01 ú* = 100
l\ct:0.2 Àr¿ : 0.25 Ar¿:0.3 Àr¿ - 0.2 Àr¿ :0.25 Ar¿ : 0.3

16,8

18,10
20,10
20,72

24,I2

0..188

0.490
0.497
0.498
0.499

0.+90
0.492
0.495

0.499
0.499

0.496
0.497
0.498
0.499

0.500

0.490
0.496
0.499
0.499

0.499

0.492
0.498
0.499
0.500

0.500

0.498
0.499
0.500

0.500
0.500
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T¿rble 6.2: Collvet'geltce atrcl cotnpnrisorr of vr:r'tic¿rl displaceurcut of ¿r ligirl sphclir:zrl

anclror in ¿rrt infiuite porot:lastic nrecliunr lvith /V ¿rlrrl:\' (Àa : 0.15, u:0.25,uu:
0.5 ancl ¡: 1.0)

L

(ct I a2)

2pau,, f F¡
An¿rlviic¿rl Solutiolr Pleseut Stucly rvith diffclerrt (.1/,lV/)

(20,12) (21,72) (2.1,14) (28,14) (28,16)
0.001

0.1

10.0

1000
oo

0.106
0.108
0.121

0.1 23

0.r24

0.106
0.109
0.120

0.123
0.r21

0.105
0.109

0.120

0. i23
0.1 23

0.106
0.109
0.120

0.12.{
0.124

0.106
0.109
0.120

0.1 23

0. i24

0.106
0.1 09

0.1 20

0. i2-{
0.r24

T Du jone (1957).

T¿r.ble 6.3: Convergence of veltical clisplacement of ¿r ligicl sphelical a¡ciro¡ in a,rr

infinite poloelastic meclinm with Ar¿ (lV - 20 ¿ncl ,V, : 12)

t*
(ct I a2)

2¡mtt= f Fs
Àr¿ : 0.08 Àr¿ : 0.1 Ar¿ : 0.15 Àr¿: 0.2

0.001
0.1

10.0
1000
co

0.108

0.1 10

0.12i
0.12.1

0.724

0.107

0.109
0.120

0.r24
0.724

0.106

0.1 09

0.1 20

0.123
0.121

0. i05
0.109
0.120
0.1 23

0.r24
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T¿ble 6.'l: Convel'Scrnce attcl r:ottt¡>¿rlisotr of vertic¿rl rlisplaccrrrcrrt of rigicl s'¡eroirlal
attchors in an icle¿rl elastic tnecliunt witlì N ancl tV' (Àr¿ : 0.1 ¿rncl u :0.25)

cr u f rt¡,
2¡Lrt,tt.- f Fo

Aualyticzrl S<¡lutiouI Prescnt Stucly with cliff'erent (¡/, rV,)
(18,10) (20,i0) (20,12) ( 24,14)

0.5
1.5

2.0

3.0

0.1,+2

0.16õ
0.1 98

0.250

0.141
0.1 62

0.197
0.258

0.143
0.167
0.201
0.253

0.143
0.163
0.193
0.251

0.1.15

0.163
0.196
0.25"r

I Sc'l,raclurai ( 1g76).

T¿r,ble 6.5: ConveÌgelìce of vertic¿rl clisplacemernt of ligicl spher.oiclzrl anchor.s iu an icle¿rl
elastic rneclinm rvith Ar¿ (t\ : 20 ¿rncl ,y, : 12)

ctu f tt¡ 2¡Lrtutt, f Fo
Ar¿:0.08 Ar¿ = 0.1 Ar¿ : 0.15 A¿ - 0.2

0.5
1.5
2.0

3.0

0.145
0.16.{
0.1 93

0.249

0.143
0.1 63

0.193

0.254

0.149
0.163
0.197
0.249

0.150
0.164
0.i96
0.243
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Figure 6.1 Domain and surface related to boundary value problems

Figure 6.2Equivalent domain considered in the indirect boundary integral equation method
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Figure 6.3 Axially symmetric domain with different coordinate systems
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Figure 6.5 Three-dimensional cavity problems considered in the numerical study
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Figure 6.7 Axially loaded rigid anchors with different geometries considered in the numerical study
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Figure 6.9 Two-dimensional cavity expansion problems under time-harmonic loading
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Figure 6.10 Boundary discretization for two-dimensional cavity expansion problems
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Figure 6.12 Semi-circular tunnel with a rigid wall under time-harmonic loadings

N nocles

N'nocles

Figure 6.13 Boundary discretization for rigid semi-circular tunnel problem

Lf t-
-_A_ L-ts--'-

I l=-
2La

140



?.5,

4.5-

\
k

I

-l

mat.A
nìat.B
dry rnat.

.Ð-

I

.r]

:*

HÈ
H

hnaginary

0.0

3.

0.5

"--_î_-_l_

u

r-l
I

I

,l
0.

2-

1.0

6

4

1.5

Imaginary .r4
.ri7.lv

2.O

t

0.5

2.6

Imaginar¡ '?

""')::';7
...riiV Rear

r.0
¿i

0.0

r.5 2.0

0.0

Figurc 6.14 h'peclauccs of a rigicl scrni-circular tu''cl

2.O'

1.5.

l.o -

::j

Ek

1.0

6

...:

Irnaginary ....

0.0

.tt/

-..t/

0.5

Real
.::Ð-

1.0

6

r.5 2.O



foQG)

Cylindrical
cavity

Poroelastic
medium
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Chapter 7

CONCLUDING REMARKS

7.1 Conclusions

The main conclnsions of this thesis are stlmrnarized in this Chapier. Separate

conclusions are presented at the encl of Chapters 2-6 based on the analysis ancl

numerical results plesented in those Chapters. The followings are the major.finclings

and conclusions of the present stucly.

1) Green's functions corresponding to quasi-static and clynamic loacls ancl fluicl

sotll'ces appliecl at a finite depth below the surface of a homogeneous half-space

c¿n be obtainecl explicitly in ter.ms of semi-infinite integrals.

2) The integrancls of serni-infinite integrals appearing in the Green's functions of
a homogeneous half-space are very complicated ancl cannot be evaluated ana-

lytically. The application of dilect nnmerical qnach'atule such as the extenclecl

trapezoidal mle is the appropriate v¡ay to compute these Green's functions. For

quasi-static ploblerns, it is fonncl that time-domain solutions can be obtainecl

with high accuracy by using Laplace inversion schernes proposecl by Schapery

(1962) and Stehfest (1970). In the case of time-harrnonic ploblems, the path

of integlation is free flom any singularity due to the dissipative nature of the

medinm. Howevet, a smallel integration interval is required in the vicinity of
the singularities of the integlands.

3) The exact stiffness method presentecl in this stucly results in a computationally

efficient ancl numerically stable scherne to evaluate Green's functions for rnulti-

layerecl poroelastic media. lVhen cornpared to the conventional methocls basecl

on the determination of layer arbitraly coefficients, the present scheme involves

rnatrices consisting of only negative exponential terms of the integral tlansfor.rn

parameters and requires less computational effort due to the pr.esence of a
b¿nded syrnmetric matrix which is neally half the size of that enconnter.ecl in
the conventional scheme. When compaled to the apploximate stiffrress methocls

leported in the litetature, the present stiffness scheme exactly satisfies all the

governing equations of the medium and is also capable of rigorously acconnting
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for the presence of an underlying half-space. In acldition, the present scheme

cloes not require the discretization of physical layers into fnrther sub-layels.

4) Nunelical solutions presented in this stucly for homogeileons poroelastic rneclia

inclicate that in the case of quasi-static problerns the initial r.esporìse is rnainly
governecl by the uncltained Poisson's ratio whereas the final response clepencls

only on the drained Poisson's ratio. Nunerical solutions colresponcling to time-

Italmonic excitations indicate that the response is governecl by a complicatecl

combination of nondimensional pararneters b*, M*, À* ancl the frequency of

excitation. A clear qualitative relationship between the governing palameter.s

and the resporìse cannot be identified in the case of layered poroelastic meclia.

5) It is founcl that an inclirect bounclary integlal equation methocl sirnilar to that
presented by Ohsaki (1973) for ideal elasticity can be developecl for poloelas-

ticity. The inclirect boundary element scheme is developed fol the analysis

of quasi-static, time-harmonic and transient problems involving serni-infinite

and infinite poroelastic media. The accnracy and the nnmer.ical stability of
the present algorithrns for quasi-static, time-harmonic ancl transient problems

are confi.rmecl by solving a set of boundary valne problems for which ana-

lytical solutions are available. Full space Green's functions expressecl in t[e
integral forms have been used in all exarnple problems analyzecl by using the
bounclary elernent method. The fact that highly accurate numerical results

are obtainecl from the boundary element method basecl on GLeen's functions

cotnputecl by using nurnerical integration scheme inclicates that the half-space

ancl layerecl rnedia Green's ftrnctions presentecl in this thesis can be effective-

ly usecl in bonnclary element analysis of more cornplicatecl problems involvilg
poroelastic media.

7.2 Recommendations for F\rture Work

In author's opinion, there are two main aspects to be consiclerecl in any future
extension of this work. The first one is the clerivation of 3-D dynamic Gr.een's func-

tions for homogeneous and multi-layered poloelastic half-spaces. Seconclly, in this
thesis, only a few types of problems are consider-ecl in the boundary element alalysis
since the main objectives are to develop the indirect bonndary element algorithm
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ancl verify its accttracy. Given the fact that Chapters 2-5 present the rrecessary

G,.een's functions for both homogeneous ancl multi-layerecl meclia, it is very useful

to employ the bounclary eletnent scheme presented herein to stucly practical prob-

lerns such as the clynamics of embedcled fonnclations, quasi-statics of a single pile

and pile groups, scatteling of seismic waves by cavities, canyons, etc. in poroelastic

media and investigate in detail the influence of poroelastic effects.
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