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ABSTRACT

Several problems encountered in geomechanics, energy resource explorations,
seismology, biomechanics, etc. involve the study of deformations and stresses in
a medium composed of a solid skeleton with fluid-saturated pore spaces. Such a
medium is commonly known as a poroelastic material. Although, the theoretical
foundations to describe the behaviour of poroelastic materials have been in exis-
tence for many years, their applications to analyze complex problems encountered in
engineering practice, especially under dynamic loadings, have been attempted only
in recent years. Motivated by the relevance of theory of poroelasticity to the mod-
elling of practical problems encountered in several disciplines, this thesis presents
Green’s functions (fundamental solutions) and a boundary element solution scheme
as effective tools for analysis of quasi-static, time-harmonic and transient problems

involving homogeneous and multi-layered poroelastic media.

A set of analytical general solutions for governing equations of a poroelastic
medium with compressible constituents are presented explicitly for 3-D quasi-static
and 2-D dynamic (time-harmonic and transient) problems by using appropriate in-
tegral transform techniques. These general solutions are used to derive Green’s
functions corresponding to quasi-static and dynamic loads, and fluid sources ap-
plied at a finite depth below the surface of a homogeneous poroelastic half-space.
An exact stiffness matrix method based on analytical general solutions of a ho-
mogeneous poroelastic medium is presented to compute 3-D quasi-static and 2-D
dynamic Green’s functions of a multi-layered poroelastic half-space. Explicit so-
lutions for stiffness matrices of a layer with a finite thickness and an underlying
half-space are presented in appropriate integral transform domains. Displacements
and pore pressure at layer interfaces are considered as the basic unknowns in the
present stiffness method whereas the layer arbitrary coefficients are chosen as basic
unknowns in the conventional methods. The significant advantages of the present
stiffness matrix scheme over the existing solution schemes are discussed. Selected
numerical results for homogeneous and multi-layered poroelastic half-spaces sub-
jected to surface/buried loadings and fluid sources are presented to portray the

influence of poroelastic material parameters and other governing parameters on the



response.

An accurate indirect boundary integral equation scheme involving Green’s func-
tions derived in this thesis is presented to analyze boundary value problems involving
homogeneous and layered poroelastic infinite and semi-infinite media. The present
indirect boundary element scheme is developed on the basis of loadings and a flu-
id source applied on an auxiliary surface defined interior to the surface on which
the boundary conditions are prescribed. The analysis is conducted in the Laplace
domain for quasi-static and transient problems, and in the frequency domain for
time-harmonic problems, respectively. The numerical implementation of the bound-
ary element scheme is presented. The accuracy and the numerical stability of the
present scheme are verified by considering a set of boundary value problems (quasi-
static, time-harmonic and transient) for which analytical solutions are available.
The consolidation of a rigid spheroidal anchor and the dynamic response of a semi-
circular tunnel with a rigid wall are investigated to demonstrate the applicability

of the present scheme to analyze practical problems.

il
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Chapter 1

INTRODUCTION

1.1 General

The classical theory of elasticity has been used extensively in the past to an-
alyze elastostatic and elastodynamic problems in geomechanics (Poulos and Davis,
1974; Gibson, 1974; Selvadurai, 1979; Luco, 1982; Gazetas, 1983 and Wolf, 1985).
Traditionally, field equations have been formulated on the assumption that the soil
medium is a single-phased elastic solid. However, geomaterials are often two-phased
materials consisting of a solid skeleton with voids filled with water. Such materials
are commonly known as poroelastic materials (see Fig. 1.1) and widely considered as

a much more realistic representation for soils and rocks than idea] elastic materials.

Naturally, water-saturated soils under an externally applied load settle gradu-
ally with time. At the instant of application, the load is almost totally carried by
the pore water since the water is nearly incompressible when compared to the soil
skeleton. The pressure that increases in the pore water due to the externally applied
load is called excess pore pressure because it is in excess of the initial pore water
pressure under in situ conditions. Thereafter, the excess pore pressure becomes
gradually dissipated as the pore water starts escaping from the voids. This results
in an increment in stresses in the soil skeleton and a reduction in the volume of soil
mass. This phenomenon is known as soil consolidation and it is completed when
the excess pore pressure is equal to zero. When the volume reduction in a material
under an applied load is equal to the volume of pore fluid drained out it is called
a material with incompressible constituents. The incompressible constituent model
is a good approximation for consolidation of water-saturated soils (e.g. clay and
sand) but for the case of porous rocks, the compressibility of the pore fluid as well
as the solid constituent should be considered. In recent years, considerable atten-
tion has been directed toward the development of advanced theories and solution
algorithms (analytical and numerical) for stress analysis of poroelastic materials

since idealizations adopted to study several problems encountered in geomechanics,
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energy resource explorations, earthquake engineering and biomechanics often lead

to boundary value problems involving poroelastic media.
1.2 Theoretical Foundations of Poroelasticity

The theory of poroelasticity has its origin in the one-dimensional theory of soil
consolidation proposed by Terzaghi (1923) concerned with the vertical compression
of loaded clay layers. In his work, Terzaghi introduced the effective stress concept
which states that stress in the soil mass (effective stress) is equal to the total applied
stress minus the pore water pressure. Later, Biot (1941a, 1955) presented the
general theory of three-dimensional consolidation by adopting Terzaghi’s concepts.
Biot’s theory takes into account the coupling between the solid and fluid stresses and
strains based on the classical theory of linear elasticity and Darcy’s law. In addition
to material constants in classical elasticity, Biot included two parameters accounting
for compressibility of a two-phased material, and the coefficient of permeability of
a medium in his theory. The physical interpretation of these coefficients as well as
the methods of measurements were provided by Biot and Willis (1957) and Yew et

al. (1978, 1979).

The first theory of elastic wave propagation in a fluid-saturated porous medium
was also established by Biot (1956 a,b) by adding inertia terms to his quasi-static
theory (Biot, 1941a). Biot revealed that there are two dilatational waves and one
rotational wave propagating in a fluid-saturated poroelastic medium instead of two
body waves (one dilatational and one rotational) for the case of an ideal elastic
material. It is also noted that the body waves in a poroelastic medium are dispersive
and dissipative due to the presence of the viscous coupling between the solid matrix
and the pore fluid. Later, Biot extended his elastodynamic theory to the cases
of anisotropic and viscoelastic porous media (Biot, 1962). After the introduction
of theory of mixtures (Truesdell and Toupin, 1960 and Green and Naghdi, 1965),
several attempts have been made to obtain generalized theories of porous media
following mixture theory concepts (Morland, 1972; Bowen, 1976, 1982; Katsube
and Carroll, 1987a,b and others). However, these general theories based on theory
of mixtures often result in equations involving coefficients which are obstinate in

engineering practice.



Over the last four decades, Biot’s theory has been the basis for analysis of
a variety of practical problems encountered in geomechanics, geophysics, earth-
quake engineering and energy resource explorations. The present study is concerned
with the quasi-static and dynamic stress analysis of homogeneous and multi-layered
poroelastic media. In the following sections, a review of literature related to stress
analysis of poroelastic materials is presented in order to define the objectives and

the scope of this thesis.
1.3 Literature Review
1.3.1 Solutions for Homogeneous Poroelastic Materials

Biot (1941b) and Biot and Clingan (1941, 1942) presented the earliest solu-
tion for the consolidation settlements of poroelastic media under surface loadings
by using a method of solution based on the application of Laplace transform with
respect to the time variable and a series representation of solutions and boundary
conditions. Later, McNamee and Gibson (1960a,b) presented a solution for plane
strain and axially symmetric problems through the application of two displacement
functions and the appropriate integral transforms (Laplace/Fourier for plane strain
problems and Laplace/Hankel for axially symmetric problems), and then obtained
solutions for a uniform strip load and a uniform circular patch load applied at the
top surface of a semi-infinite clay stratum. Schiffman and Fungaroli (1965) extend-
ed the displacement functions to the case of asymmetric problems and studied the
consolidation of a homogeneous poroelastic half-space due to a uniform horizon-
tal patch load at the surface. Puswewala and Rajapakse (1988) derived Green’s
functions for semi-infinite and infinite poroelastic media subjected to axisymmetric
internal loadings and a fluid source. Solutions corresponding to a poroelastic half-
space with a point sink was also presented by Kanok-Nukulchai and Chau (1990).

Rajapakse (1993) presented a stress analysis of a borehole in a poroelastic medium.

The above studies are concerned with the special case involving incompressible
constituents which is valid mainly for soils but not for porous rocks. Biot’s quasi-
static equations for poroelasticity were reformulated by Rice and Cleary (1976) in

terms of material constants which are more easily identifiable. In their paper, Rice
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and Cleary replaced Biot’s two poroelastic parameters accounting for compressibil-
ity of poroelastic materials by Skempton’s pore pressure coefficient B (Skempton,
1954) and the undrained Poisson’s ratio of the bulk material. The formulation of
Rice and Cleary (1976) has been widely used to study the quasi-static response
of porous elastic solids containing compressible constituents since late seventies.
Cleary (1977) presented a set of fundamental solutions for an infinite poroelastic
solid. Rudnicki (1986a) rederived Cleary’s results for a suddenly applied point force,
a fluid mass source and a fluid mass dipole. Problems related to a slip on a fault
in a poroelastic medium were also considered by Rudnicki (1986b, 1987). Plane
strain problems related to a borehole in a poroelastic medium were studied by De-
tournay and Cheng (1988). Detournay et al. (1989) considered problems related to

hydraulic fracturing in fluid-saturated rocks.

In addition to above studies related to quasi-statics of poroelastic materials,
many researchers have employed Biot’s poroelastodynamic theory to study some
basic elastodynamic problems. For example, the propagation of Rayleigh waves
in a fluid-saturated poroelastic half-space was studied by Jones (1961) and Dere-
siewicz (1962). Geertsma and Smith (1961) studied the reflection and transmission
of dilatational waves in poroelastic solids. Deresiewicz and Rice (1962) also stud-
ied the reflection of body waves from a plane, traction-free boundary of a porous
solid. The characteristics of waves propagating in an infinite fluid-saturated poroe-
lastic medium due to an instantaneous point load were investigated by Burridge
and Vargas (1979) using Laplace transforms. Norris (1985) derived time-harmonic
solution for a point force applied in an unbounded poroelastic medium and ob-
tained a closed form solution for an impulsive point load applied in a nondissipative
medium by using Fourier transforms. The solutions for time-harmonic concentrat-
ed loads and fluid source applied in an infinite poroelastic medium were presented
by Bonnet (1987) by using an analogy between poroelasticity and thermoelasticity
in the frequency domain. Boutin et al. (1987) considered the Green’s functions
for infinite poroelastic media due to time-harmonic point forces and a fluid source
and discussed the construction of synthetic seismograms from the Green’s func-
tions. The poroelastic counterpart of the classical Lamb’s problem (Lamb, 1904)

was first considered by Paul (1976a,b) by assuming the nondissipative behaviour
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of the half-space. Recently, several studies have considered the vibrations due to
time-harmonic loads acting at the surface of saturated (Halpern and Christiano,
1986a,b and Philippacopoulos, 1988a) and partially saturated (Philippacopoulos,
1988b, 1989) poroelastic half-spaces.

Based on the above review, it is noted that Green’s functions corresponding to
quasi-static and dynamic loadings and fluid sources applied at a finite depth below
the free surface of a poroelastic half-space with compressible constituents have not
been reported in the literature. These Green’s functions can be used in the analysis
of anchors, buried footings, piles and underground structures (e.g. subway tunnels
and pipelines) and also in the development of computer codes based on the boundary
integral equation methods for analysis of a variety of complicated problems related

to poroelastic media.
1.3.2 Solutions for Layered Poroelastic Media

An important class of problems in practical engineering applications is con-
cerned with the study of mechanical response of a multi-layered medium since it
represents a closer approximation to most physical systems such as natural soil
profiles, which are normally layered in character. It is noted that studies related
to quasi-statics and dynamics of multi-layered poroelastic media are very limited
despite their relevance to many useful practical problems encountered in geome-
chanics, geophysics, earthquake engineering and energy resource explorations. On
the other hand, the response of layered ideal elastic media has received wide at-
tention in the past. In view of this observation, a review of existing methods for
evaluation of static and dynamic response of layered ideal elastic media is presented
with the assumption that these methods can be extended to study the response of

layered poroelastic media.

The study of wave propagation in multi-layered ideal elastic media has received
more attention when compared to elastostatic problems due to extensive applica-
tions found in earthquake engineering, geophysics and nondestructive characteriza-
tion of sites. A review of literature indicates that existing methods for determination

of static and dynamic responses of a layered ideal elastic medium can be grouped
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into two main categories. In the first approach, general solutions, which rigorously
satisfy the governing equations, of each layer expressed in terms of a set of arbitrary
functions in Fourier or Hankel transform space are used to establish a linear simul-
taneous equation system with arbitrary functions as the unknowns by considering
the boundary conditions at the top surface and continuity conditions at layer inter-
faces. Thereafter, the equation system is solved numerically for discrete values of
the integral transform parameter (alternatively a dimensionless wave number in the
dynamic case) and the response is computed by applying numerical quadrature to
evaluate the inverse transform integrals. Thomson (1950) and Haskell (1953, 1960,
1962) pioneered the above approach. The Thomson-Haskell approach has significant
drawbacks in the numerical implementation due to the presence of mis-matching
exponential terms in layer matrices. Improved formulations were developed lat-
er by Knopoff (1964), Gilbert and Backus (1966), Watson (1970), Schwab(1970)
and others. Studies by Apsel (1979), Luco and Apsel (1983) and Apsel and Lu-
co (1983) present a comprehensive review of previous investigations, and present
a computationally efficient and accurate algorithm based on generalized reflection
and transmission coefficients (Kennett, 1974) to compute the three-dimensional dy-

namic response of a multi-layered medium due to buried sources.

The second category of solutions for dynamics of layered media is based on fi-
nite element concepts. In this approach, a layered medium is divided into a number
of thin layers within which displacements have prescribed variations (e.g. linear in
the vertical direction and a suitable form of outgoing waves in the horizontal /radial
directions). The governing equations are solved approximately in the finite element
sense by using the assumed displacement representation and an approximate stiff-
ness matrix relating boundary displacements and stresses of a typical thin layer is
obtained. The assembly of layer stiffness matrices yields the global stiffness equation
of the layered system for a given wave number. Numerical solution of the global s-
tiffness equation results in the displacements at thin layer interfaces and subsequent
application of numerical quadrature to evaluate integrals over the wave-number do-
main yields the response of the layered medium. The origin of this method can be
traced back to the studies by Lysmer and Waas (1972), Waas (1972) and Dong and

Nelson (1972). In addition to the approximate nature of the solution, this method
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also has the disadvantage that the presence of an underlying half-space cannot be
taken into consideration in a consistent manner. Studies by Kausel et al. (1975),
Waas (1980), Kausel and Peek (1982), Kausel and Seale (1987), Oner and Dong
(1988) and Seale and Kausel (1989) present further developments and applications

of the approximate stiffness method for ideal elastic and anisotropic layered media.

As mentioned previously, very limited studies have considered problems re-
lated to layered poroelastic media. The Thomson-Haskell approach was used by
Vardoulakis and Harnpattanapanich (1986) to evaluate the quasi-static response of
a layered poroelastic medium with incompressible constituents. In a subsequent
paper (Harnpattanapanich and Vardoulakis, 1987), these authors studied the con-
solidation of a finite inhomogeneous soil layer whose shear modulus increases linearly
with depth (Gibson soil layer) under rectangular surface loads. The application of
this scheme to an N-layered poroelastic system results in an unsymmetric matrix
of order 8N x 8 N which needs to be repetitively solved in the numerical evaluation
of the response. The numerical effort involved in the analysis is substantially high
due to the presence of Laplace inversion in addition to the Fourier transform inver-
sion in the case of poroelastic media. In addition, the elements of the coefficient
matrix involve both negative and positive exponentials of the Fourier transform
parameter which results in numerically ill-conditioned matrices for increasing val-
ues of the transform parameter. The approximate stiffness matrix method (Lysmer
and Waas, 1972 and Waas, 1972) was employed only recently by Bougacha et al.
(1993b) to study two-dimensional vibrations of fluid-saturated layered poroelastic
media. Bougacha et al. (1993a) also extended their scheme to evaluate the static
and dynamic stiffnesses of rigid strip and circular foundations on a homogeneous

poroelastic medium with rigid base.
1.3.3 Numerical Methods for Poroelasticity

All of the studies mentioned in Sections 1.3.1 and 1.3.2 are concerned with
problems under simplified boundary and loading conditions (i.e. surface and inter-
nal loadings in a homogeneous or multi-layered half-space). However, in practical
situations, one encounters more complicated problems such as embedded founda-

tions, pile groups, anchors, underground openings, hydraulic fracture, etc. which
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cannot be solved by using standard analytical procedures. In view of this, numerical
solutions schemes such as finite and boundary element methods have emerged as

powerful tools to analyze various problems encountered in engineering practice.

A finite element scheme was first proposed by Sandhu (1968), and Sandhu
and Wilson (1969) for the analysis of consolidation problems. Their solution was
based on a variational principle by Gurtin (1964) in which displacement and pore
pressure are considered as the basic unknowns. Later, several attempts have been
made to improve the Sandhu and Wilson scheme (Hwang et al., 1971; Yokoo et al.,
1971a,b; Ghaboussi and Wilson, 1973). Krause (1978) presented a finite element
scheme based on the virtual work principle. The combination of a finite element type
approximation in spatial coordinates and the application of the Laplace transform to
the time coordinate was proposed by Kanok-Nukulchai and Suaris (1982) to study
the consolidation process in poroelastic materials by using variational principles
based on Biot’s theory. Although the finite element method has been extensively
applied to the consolidation problems including nonlinear material behaviour, it
has drawbacks in some special cases such as the modelling of far-field radiation
conditions for wave propagation problems and in the simulation of field singularities
in hydraulic fracture problems. The finite element method also becomes inefficient
when applied to some problems involving infinite and semi-infinite layered media

(Muki and Dong, 1980) since a large discretization of volume is required.

In recent years, the boundary element method (Rizzo, 1967; Liggett and Liu,
1983; Kobayashi, 1984 and Beskos, 1987) has emerged as a versatile computational
method to analyze complicated stress analysis and fluid flow problems encountered
in many disciplines. Boundary element methods are particularly efficient and accu-
rate in the solution of problems involving unbounded media (e.g. problems in ge-
omechanics, geophysics, earthquake engineering and energy resource explorations)
since discretization of volume is unnecessary and far-field radiation conditions and
layering can be rigorously modelled by using appropriate Green’s functions. The
development of boundary integral equation methods for poroelasticity has been the
focus of interest of several recent studies following the early theoretical foundation-
s presented by Predeleanu (1968) and Cleary (1977). To the author’s knowledge,
Cheng (1981) and Cheng and Liggett (1984a,b) presented the first formal numerical
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implementation of boundary element analysis for quasi-static response of poroelas-
tic domains through the use of Laplace transforms. Later, several papers have been
published on the Laplace transform-based boundary element methods for poroe-
lasticity (e.g. Cheng and Detournay, 1988 and Badmus et at., 1993). Predeleanu
(1981), Nishimura (1987), Cheng and Predeleanu (1987), Dargush and Banerjee
(1989) and Nishimura and Kobayashi (1989) considered the time-domain analysis
of quasi-static response of a poroelastic medium by using time-domain Green’s func-
tions for an infinite space. Boundary element formulations for poroelastodynamics
have been presented recently by Manolis and Beskos (1989), Dominguez (1991,
1992), Cheng et al. (1991) and Wiebe and Antes (1991). It is noted that formal nu-
merical implementations of boundary element formulations for poroelasticity have
been attempted only for a limited number of quasi-static and time-harmonic prob-
lems and numerical studies for transient dynamic problems have not been reported
in the literature. On the other hand, boundary element studies of static and dy-
namic problems encountered in many engineering applications involving ideal elastic

materials are very well documented.

Boundary element formulations mentioned above are based on reciprocal the-
orems (Predeleanu, 1968 and Cleary, 1977) and involve integral equations with
singular kernels which have to be solved numerically. Alternatively, it is possible
to develop a boundary integral equation formulation which involves non-singular
kernel functions by considering the distribution of a set of sources on an auxiliary
surface. Such indirect formulations have been successfully used in the past to ana-
lyze a variety of problems related to ideal elastic media (Ohsaki, 1973; Rajapakse
and Shah, 1988; Mossessian and Dravinski, 1989; Wang and Rajapakse, 1990 and
others) and serve as an effective alternative to direct formulations. A review of lit-
erature reveals that the development of indirect boundary integral equation method
for poroelastic media along the direction of Ohsaki’s formulation for ideal elasticity

has not been reported in the literature.
1.4 Objectives and Scope of the Present Study

Based on the above literature review, it can be concluded that although Biot’s

theory for poroelasticity provides a much more realistic and effective representation
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of the mechanical response of natural soils and rocks, it has not been applied as
widely as the ideal elastic theory to solve problems encountered in geomechanics,
energy resource explorations, seismology, earthquake engineering, etc.. For example,
the influence of consolidation effects on single piles and pile groups under quasi-
static and dynamic loadings, on impedances of embedded foundations, on synthetic
seismograms for layered media, on seismic wave scattering by surface topographies
in porous soils, etc. have not been investigated in the past. Therefore, there exists
a necessity to develop efficient computational tools which can be effectively used
to analyze problems encountered in geomechanics, energy resource explorations,

earthquake engineering, etc. on the basis of Biot’s theory for poroelasticity.

This thesis has three main objectives. First, a set of Green’s functions (funda-
mental solutions) corresponding to homogeneous and layered poroelastic half-spaces
subjected to internal loadings and fluid sources are presented. These solutions are
known to serve as powerful tools in developing solutions for a variety of bound-
ary value problems in several disciplines. Secondly, an indirect boundary integral
equation method based on above Green’s functions are presented to solve problem-
s involving complicated geometries and boundary conditions. Thirdly, numerical
solutions for several boundary value problems (quasi-static and dynamic internal
loads and fluid sinks, anchors, tunnels) involving homogeneous and layered poroe-
lastic media are presented to study the influence of poroelastic material parameters
and other governing parameters on the response of the medium. It is expected
that the basic tools presented in this thesis could be effectively applied to solve a
wide range of problems encountered in geomechanics, energy resource explorations,

seismology, earthquake engineering, etc..

The organization of this thesis is described in the following. In Chapter 2,
explicit analytical solutions for three-dimensional quasi-static Green’s functions of
a homogeneous poroelastic half-space with compressible constituents due to inter-
nal loadings and a fluid source are presented in Laplace domain. The numerical
evaluation of Green’s functions and the application of numerical Laplace inversion
scheme are discussed. The influence of poroelastic material parameters on the re-
sponse and the features of the consolidation process are also investigated. An exact

stiffness matrix method based on the general solutions given in Chapter 2 is pre-
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sented in Chapter 3 to compute quasi-static Green’s functions of a multi-layered
poroelastic half-space subjected to buried loadings and a fluid source. The signifi-
cant advantages of the present matrix scheme when compared to existing methods
are discussed. The derivation of dynamic (time-harmonic and transient) Green’s
functions corresponding to loadings and fluid sources applied at a finite depth be-
low the surface of a homogeneous poroelastic half-plane is considered in Chapter
4. The accuracy of proposed numerical scheme for evaluation of dynamic Green’s
functions is verified. Selected numerical results are presented to portray the in-
fluence of poroelastic material parameters on the dynamic response of internally

loaded poroelastic half-planes.

The stiffness matrix scheme presented in Chapter 3 is extended in Chapter 5
to evaluate Green’s functions of a multi-layered poroelastic half-plane due to time-
harmonic loadings and fluid sources applied in the interior of a layered medium by
using the general solutions presented in Chapter 4. Numerical evaluation of Green’s
functions for layered media is discussed and selected numerical results correspond-
ing to multi-layered poroelastic half-planes subjected to surface/buried dynamic
excitations are presented. In Chapter 6, the development of computer codes based
on an indirect boundary integral equation method for the solutions of quasi-static,
time-harmonic and transient problems are presented. The numerical accuracy of the
present boundary element scheme is demonstrated by considering a set of boundary
value problems involving poroelastic materials for which analytical solutions can be
developed. The applicability of the present scheme is demonstrated by consider-
ing the quasi-static response of a spheroidal anchor and the dynamic response of
a semi-circular tunnel in poroelastic soils. Finally, major conclusions of the thesis

and recommendations for future work are presented in Chapter 7.
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Chapter 2

3-D QUASI-STATIC GREEN’S FUNCTIONS

2.1 General

In this Chapter, explicit solutions for quasi-static Green’s functions of a ho-
mogeneous poroelastic half-space due to internal loadings and a fluid source are
presented. General solutions are derived for equations governing quasi-static defor-
mations of a poroelastic solid with compressible constituents by applying Fourier
expansion, Hankel integral transforms and Laplace transforms with respect to the
circumferential, radial and time coordinates, respectively. These general solutions
are used to derive a set of Green’s functions corresponding to circular ring loads
(radial, circumferential and vertical) and to a ring fluid source applied at a fi-
nite depth below the free surface of a poroelastic half-space. The circumferential
variation of the ring loads and the fluid source is described by appropriate trigono-
metric terms. Complete explicit solutions for Green’s functions are presented in
the Laplace transform space. The numerical evaluation of Green’s functions are
also discussed. Selected numerical results for a poroelastic half-space under a set of
buried loads and a fluid sink are presented to portray the influence of poroelastic

material parameters on the response and the features of the consolidation process.

2.2 Constitutive Equations

Consider a poroelastic medium with a Cartesian coordinate system (z,9,2)
and a cylindrical polar coordinate system (r,8,z) defined such that the z-axis is
perpendicular to the free surface as shown in Fig. 2.1. Let u; denote the average
displacement of the solid matrix in the i-direction (i = z,y,z or r,0,2). Then,
the constitutive relations of a homogeneous poroelastic material with compressible
constituents can be expressed by using the standard indicial notation as (Biot, 1941)
L(Sif] — adi;p, h,j=z,y,z0r7,0,z2 (2.1a)
1-2v
p=—aMe+ M( (2.1b)

Oi5 =24 [sz +
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where

C = —W; (22(1,)

’

t
’ZUiZ/ q‘idt (22b)
0

In the above equations, 0;; is the total stress component of the bulk material; €;;
and € are the strain component and the dilatation of the solid matrix, respectively,
which are related to the displacement u; as in ideal elasticity;  is the shear modulus;
v is the drained Poisson’s ratio; é;; is the Kronecker delta; p is the excess pore fluid
pressure (suction is considered negative); ¢ is the variation of the fluid volume per
unit reference volume; w;, and ¢; denote the average fluid displacement relative
to the solid matrix, and the fluid discharge, respectively, in the i-direction (i =
z,y,z or 1,0,2). In addition, o and M are Biot’s parameters accounting for the
compressibility of the two-phased medium. It is noted that 0 < ¢ < land 0 < M <
oo for all poroelastic materials. For a completely dry material, M — 0 whereas for
a material with incompressible constituents oo = 1 and M — co. The parameters «

and M can be defined alternatively as (Rice and Cleary, 1976)

B 3(vy — V)
T BA -2+ 1) (2:3a)
and M = 24B° (1 — 20)(1 +va)’ (2.3b)

vy —v)(1 —2v,)

where v, is the undrained Poisson’s ratio and B is Skempton’s pore pressure co-
efficient (Skempton, 1954). For a poroelastic solid, B could vary from zero to one
with v, varying from » to 0.5. The limiting cases of a poroelastic material with
incompressible constituents and a dry elastic material are obtained when v, = 0.5

and B =1, and v, = v and B = 0, respectively.
2.3 Governing Equations and General Solutions

The quasi-static governing equations (Rice and Cleary, 1976) for a poroelastic
medium with compressible constituents, expressed in terms of stresses and pore
pressure as the basic variables, can be transformed into Navier equations with cou-

pling terms and a diffusion equation, by treating the displacements and the variation
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of fluid volume as the basic unknowns. The governing equations in the absence of
body forces (solid and fluid) and a fluid source can be expressed in the cylindrical
coordinate system as

1 0 120ug u, _2B(1+w,)0¢

2y, A ek S Tk 2.
Vi +1—21/u87' r[r 00 r] 3(1-2v,) or 0 (2.4a)
I 0¢ Toug 20u,, 2B(1+wv,)18¢
2 Pt A _ =9
Viug + 1—2v, 100 7'[ rr 00 ] 3(1—2v,) 706 0 (2:45)
N 1 9 2B(1+1)d
Vius + 1-2v,02 3(1-2v,) 8z 0 (24¢)
a¢
2 —_—
Vi = ey (2.4d)
where
? 19 19 &
2 —_ — — — — —_—
o T rar T Eoe T o (2:50)
Our u. 10ug Ou, -
= T tie T, (2.55)
“R2(1 _ 2
o 2usB*(1 - v)(1 +v,) (2.5¢)

1 — vy) (Ve — v)
In the above equations, u,(r,0, z,t), ug(r, 8, z,t) and u,(r, 9, z,t) are the displace-
ments in the r-, 6- and z-direction, respectively; ¢ is the generalized consolidation
coeflicient and & is the coefficient of permeability defined as the ratio between the

intrinsic permeability of the medium and the fluid viscosity.

At this stage, it is convenient to nondimensionalize all quantities including the
coordinate frame with respect to length and time by selecting the radius of a loading
area a as a unit length and a?/c as a unit of time, respectively. All variables will be
replaced by appropriate nondimensional variables, but the previous notations will

be used for convenience.

Application of Fourier expansion with respect to the circumferential coordinate

¢ for the displacements and the variation of fluid volume results in

o0 x
up(r,0,2,t) = Z Upm (T, 2,t) cos mb + Z Urm(r, 2,t) sin m  (2.6a)

ug(r, 0, 2,t) = Z Ugm (T, 2, 1) sin ml — Z Ugm (T, 2,t) cos mb (2.60)
m=0 m=0



uy(r,0,2,t) = Z Uzm (T, 2,t) cos mb + Z Uzm (7, 2,t) sin mo (2.6¢)

m=0 m=0
((r,0,2,t) = Z Cm (7, 2,t) cos mé + Z bom(r, 2,t) sin mo (2.6d)
m=0 m=0

In eqns (2.6), Urm, Uom, Uzm and (m are symmetric components and Urm, Uom,
Uym and th are antisymmetric components corresponding to the mth harmonic.
In the subsequent analysis, only symmetric components are considered without
loss of generality. It is noted that the solution corresponding to antisymmetric
components can be obtained by making the replacements cos m# — —sin mé and

sin mfd — cos m# (Muki, 1960).

The Laplace-mth order Hankel transform of function ¢(r, z,t) with respect to

variables ¢ and r, respectively, is defined by (Sneddon, 1951)

Hu{d(r, 2,t)} = /000 /000 P(r, z,t)e ™ T (Er)rdrdt (2.7)

In eqn (2.7), s and ¢ denote the Laplace and Hankel transform parameters, respec-
tively, and .J,, denotes the Bessel function of the first kind of order m (Watson,

1944). The inverse relationship is given by

o+ico  poo
(r, z,t) = —1—/ / Hon{o(r, z,t)}eStJm(f'r)fdfds (2.8)
0 0

27(7, —ico
where p is greater than the real part of all singularities of Hm{d(r,z,t)} and i =
v—1
In view of eqns (2.6)-(2.8), the eqn (2.4d) can be solved directly and the re-

sulting solution can be expressed as
Hin () = A (€, 5)e™ + B, (&, 5)e™7? (2.9)

where

and A, (€, s) and B, (&, s) are arbitrary functions.
Differentiation of equs (2.4a) to (2.4c) and subsequent manipulations yield
Vie =gV (2.11)
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where

B(1+vy,)

o) (2.12)

7] =
and V2 is defined as in eqn (2.5a).

Application of Fourier expansion together with Laplace and mth order Hankel

integral transforms in eqn (2.11) and the substitution of eqn (2.9) results in

2 -
[%‘2‘ - ]Hm(em) =15 (Am(f, s)e”* + Bm/(¢, S)e‘7z> (2.13)
where
8U’T‘m Urm m 8‘U,zm
™ o o et (2.14)

The following solution for eqn (2.13) can be obtained by using the method of vari-

ation of parameters (Kreider et al., 1966)
Hom(€m) = U(Am(fv s)e” + B (¢, S)e_w) +Cm(€, 5)e™ + Din(€,s)e™%* (2.15)

where Cy, (¢, 5) and D,, (€, s) are arbitrary functions.

After lengthy manipulations involving eqns (2.4a)-(2.4c), (2.6), (2.9), (2.149)
and (2.15), the general solutions for the mth Fourier harmonic of displacement u;

(t =7,6,2) in the Laplace-Hankel transform space can be expressed as

Hmt1(Urm + Uom) = — iﬂ (Ame™ + Bpre™ %) + a12(Cineb® — Dpe™%?)
+ Epet® + Fpe™8? (2.16a)

Hope1(Urm — Uom,) 26_372 (Ame'VZ + Bme_’yz) — alz(C’me‘fz - Dme_Ez)

+ Gpe*® + Hye™ 4 (2.16b)

'Flm(uzm) :?(Ame'yz — Bme_“’z) — (alz — %)C’megz — (alz + —aé—z)Dme_gZ

Em - Gm z Fm - Hm —&2
- (*2—-)65 4 (—2—)6 ¢ (2.16¢)
where )
1 (3 — 4v,
— R Sl 7 2.17
“ a2’ “ = 20— 20y) (2.17)
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and En,(€,5), Frn(€,s), Gm(€,s) and Hy, (€, s) are arbitrary functions.

Application of Fourier expansion with respect to the circumferential coordinate

¢ for the stress components and the pore pressure results in

i 0 t
2ij(r,9,2,) Z Gijm (T, 2,t) f(6) (2.18a)
0, z,t)
Lréi~ = Z Pm (7, 2,t) cos mé (2.18b)
H m=0

In eqns (2.18), 04 and p,, are symmetric components corresponding to the mth

harmonic and

(2.19)

cos mb, ,jFbori=7=20
e

sin m#é, torj =40

Thereafter, the general solutions for the mth Fourier harmonic of the stress
components and the pore pressure in the Laplace-Hankel transform space, nondi-

mensionalized with respect to the shear modulus of the medium, can be expressed

as
' 2
+ (a1€z + a3) Cme®® — (a1€2 — a3) Dppe™8
Em — Um Fm — Hm _
+f(”_z’G_)eEZJ“f(“—g“‘—)e & (2.20a)

Hm(arrm + Ueem) = - 2(72 + 5) (Ameryz -+ Bm(i_’yz)
+ (alfz - 20,3)C’me€z - (alﬁz — 2(13)Dme"“EZ

m — Im m Hm —
+ 5(5—#—)4"‘ - €(~F—2-—)e ¢ (2.200)
7:{m+1 (Uzrm + 0297n) - - g_z‘n' (Ame'yz — Bme"'”)
4 (2a1§2z 1)Cm €z (2a1€22+1)Dm —¢x
3Em — Gmy g7 o 3Fm — Huy _,.
() e - () e (2.20¢)
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_ & _ —¢x
(22 et - (224 D)
E’rn._3 m Fm_ Hm —
- (P g(Fm Mmoo (500
m. m m Fm. Hm —&z

Hm(mem+?:’—urm+%—) —f(E :G )et” + & : )e~¢ (2.20¢)

2

Hon (O 2zm) :§s_77 (Ame"® + B,e™7?)

— (alfz - a4) Cmet” + (alfz + a4)Dme_5z

m_Gm m m —
_ 5(_E__2___)eﬁz - f(F___2_£__)e &z (2-20f)

Hon(prm) =asn(Ame"” + Bpe %) — a4n(Crme® + Dme_gz)(2.20g)

where
Vy (1 —wy) B(1-v)(1+w,)
= _————— r = 2.21
“BEIo 2v,,’ - (1-2v,)° 4 3(vy ~ V) (2:21)

According to Darcy’s law, the fluid discharge in the i-direction is given by

o o

2 t=r,z, qo = —Rral) (2.22)

qi = —kK

2.4 Solution of Boundary Value Problems

Boundary value problems involving an internally loaded poroelastic half-space
are considered in this section to derive the Green’s functions. The solutions corre-
sponding to the four basic loading configurations, i.e. a vertical ring load, a radial
ring load, a circumferential ring load and a ring fluid source, all of intensity equal
to Heaviside unit step function H(¢) per unit arc length applied over a circular ring
of radius 7’ at a depth z = 2/, are presented. The circumferential distribution of
the vertical and radial ring loads and the ring fluid source is of the form cos m0

and that of the circumferential ring load is sin mf. A solution to the internally
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loaded half-space can be derived by considering it as a two-domain boundary val-
ue problem (Karasudhi, 1990). A superscript ¢ (i = 1,2) is used to denote the
domain number where domain “1” is bounded by 0 < z < 2’ and domain “2” by
z' < z < 0o. General solutions for each domain are given by equs (2.16), (2.20) and
(2.22) with arbitrary coefficients A (¢, s), B (€, 5), ..., H} (¢, 5) where a superscript
¢ =1,2 is used to identify the domain number. Note that for domain “27, arbitrary
functions A2 (¢,s),C2 (¢, ), E% (¢,5) and G2 (¢, s) = 0 to ensure the regularity of

the solutions at infinity.

In view of the prescribed circumferential distribution of the loading case only
the mth Fourier harmonic in eqns (2.6) and (2.18) needs to be considered. Therefore,

the boundary and continuity conditions in the Laplace domain can be expressed as

5L om(7,0,5) =0, n=r0,z (2.23q)

PL(7,0,5) =0 (2.23b)

Uy (1,2, 8) — @2, (r, 7', 8) = 0, n=r0,z (2.23¢c)

(1,2, 8) = oy (r, ', ) = (2.23d)

Ornm(ry 2y 8) — &2, (r,2,s) = ;Z'S, n=r0,z (2.23)
{fc%ﬁé(r, z',s)} - {/cagzn (r, z',s)} = % (2.23f)

where the superposed bar in eqns (2.23) denotes the Laplace transform of quantities

with respect to the time coordinate.

For a vertical ring load,

F,=6(r—r"), F,=Fy=0Q=0 (2.24)
where 6 ( ) denotes Dirac’s delta function.
For a radial ring load,

Fr=6(r—1"), Fo=F,=Q=0 (2.25)
For a circumferential ring load,

Fy=6(r—1), F,.=F,=Q=0 (2.26)
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For a ring fluid source,

Q=46(r—r'), F.=Fy=F,=0 (2.27)

Substitution of general solutions for displacements, stresses and pore pressure
in eqns (2.23) together with eqns (2.24)-(2.27) and the following Hankel transform
representation for §(r —r') yields a set of linear simultaneous equations to determine

arbitrary functions corresponding to the two domains.
§(r— 1) = / P T (617 Tom (€7 dE (2.28)
0

The following solutions are obtained for the non-zero arbitrary functions ap-
pearing in the general solutions given by eqns (2.16), (2.20) and (2.22) for different

loading cases.

2.4.1 Arbitrary Functions for Vertical Ring Loading

" . e'—’)’Z’ . , . B b3e—6z’ _ bZe.._»yz/ ) ,
An(E5) = gorInler’), Bl(6s) = (P () (2200)
B..(¢,5) = Bl (£,5) — AL (€, 5)e¥™ (2.295)

&/ be~5* — 2bgye=7"

1 _ € / ! 1 . 1€ 57Y€E ’ /
Co(6:9) = oot Jn(€r'), Di(€9) = ( b )7« Tm(E7) (2.29¢)
D},(¢,5) = Dy, (€,5) — CL(€, 5)e* (2.294)
EL(¢,5) = boe™t 7 T (€") (2.30a)

m\& 40:5,“132 m .

broe6* — 2b Eyne=7%

1 _ {010 9577 ’ /

F2(¢&,5) = FL(¢,s) — bret* ' T (€7) (2.30¢)
me me dagps? " '
Gn(é,8) = —En(6s),  Hi(&s)=—Fi(s), i=1,2 (2.30)
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where

by =ass +2(1 —v,)in(€ =), by = ass+2(1 — v,)én(€ +7) (2.31a)
by = 4(1 — v,)€% — 2(1 — 2v,)ass — 2a5és”’ (2.31b)
by = 2(1 — v )én(€ +7v) — (3 — 4y, )ass — 2a5é sz’ (2.31¢)

assz’ assz’
5 =2(1 — w , _— = —_—

( (
bs = 2(1 — v, )én(é +v) + (3 — 4yu)a53, bo =2(1 — v,)(£%n + ass)  (2.31e)
bio = bebs{ — b1y, b1 = asbos (2.31f)

2.31d)

Q4

2.4.2 Arbitrary Functions for Radial and Circumferential Ring Loadings

AL (&,5) = 85;;;r'{n-fm_1<fr'> + Imia(er) } (2.320)
BL(&,s) = (C”e—é:; - ;’;ie_7z,)r'{nJm_1(§r') F g (r')) (2.325)
B.,(€,5) = BL(&,s) + AL (£, 5)e® (2.32¢)
CmlE:5) = 4 l " {m T (6) + T (6)) (2.324)
D, (¢,5) = (cze%;a:b?ffewz )T'{nJm_l(f'r’) + Jm+1(£r')} (2.32€)
D7(&,8) = D}, (¢, 5) + CL (€, 5)e* (2.32f)
En(és) = gg;—z?"{Canm—l(ﬁr') - C4Jm+1(€7"')} (2.33q)
FL(es) = {(bgc;; — cycs — b11)7sz_1(8£;°5 Z))15 M(i)gc‘; — ¢35 + b11) Ty (E7) g

- %r'{ -1 (Er') + T (677) | (2.33b)
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!

et

FA(6:9) = Fa(6,) + 2o r{anda (&) — erns (60} (2.3
GL(6r5) = = L condm s () — esTumma (& 2.33d
m(&;8) = W"‘ {0471 ~1(¢r") — es i1 (ér )} (2.33d)
1 _ [ (bocs — czes5 + bin)ndm_1(€r") — (bocs — cacs — bi1)Tmar (E7)7 _ex!
Hm(‘fas) — { 8a5blf,us2 }’f' [&
b9527]e_72l / ’ ’
WT {nJm_l(fr ) + Jm+1(f’f‘ )} (2336)
2 1 GEZI / ! !
Hm(é? S) = Hm(é" S) + W'I' {C’[TLJ _1(67’ ) - CGJm.I.](gT' )} (233f)
where
c1 =4(1 — v,)E%n + 4(1 — vy)ass — 2a5és?’ (2.34a)
c2 = 2(1 — vu)én(é +7) + (3 — dvy)ass — 2a5s2’ (2.34b)
ass (7 —8vy)ass
= bgl — — 27 = bt — L OVu)U55 _
C3 6£ 2(1 _ V«u), Cq bﬁf 2(1 _ Vu) (2 346)
ass
¢s = (1 - 2v,)ass + 2(1 — vu)éym, cs = byt — m (2.34d)
_ (7 — 8vy)ass
Cr = Z)'yé~ W (2346)
and
-1, for radial loading,
n= { (2.35)
1, for circumferential loading
2.4.3 Arbitrary Functions for Ring Fluid Source
=77’ 2bsye 6% — bye=1*

1 _ / ' 1 _ 57 2 / '
A(69) = o (1), B (6,9) ( T )r T (€r')(2.360)
Bru(€,5) = Bpo(€,8) + AL (¢, )27 (2.360)

1 e—gz’ — 6_721
Crlls) =0, Di(&s) =bs( ) I () (2.36¢)

204b1uKs
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D;.(€,5) = D}, (&, ) (2.36)

¢ ! ! b i 2b —1¥ / !
E}(¢,8) = 4—;/,47357' Jm(&r'), FL(¢s) = ( g€ 4a5bm&z§ )7« (') (2.37a)
Fr(€,8) = Fr(&,s) + EL (€, 5)e** (2.37b)
Gin(f’ 5) = _E71n(€: 8), H;n(fa 3) = —F:;z(f, 3), 1= 112 (2-370)

2.4.4 Special Loading Cases

1)Vertical patch load [Fig. 2.2(a)] and a point load

The deformation fields corresponding to these loadings are axially symmetric
about the z-axis and only the terms corresponding to m = 0 in eqns (2.6) and
(2.18) need to be considered. The arbitrary functions corresponding to a uniform
patch loading of radius a and intensity fo H(t) as shown in Fig. 2.2(a) are given by
eqns (2.29) and (2.30) with the term ' .Jo(&r') replaced by fo.J; (€)/¢. In addition,

Uy = Org = 0,9 = 0 for axisymmetric vertical loading.

‘The arbitrary functions corresponding to a vertical concentrated load of mag-
nitude Py H (t) applied at z = 2’ [poroelastic counterpart of the classical Mindlin’s
solution for a vertical load (Mindlin, 1936)] is given by eqns (2.29) and (2.30) with
m = 0 and the term 7' Jy(é7') replaced by Py/27.

2) Horizontal patch load [Fig. 2.2(b)] and a point load

The deformation fields corresponding to these loading cases are symmetric
about # = 0 and only the symmetric terms corresponding to m = 1 in eqns (2.6) and
(2.18) need to be considered. The arbitrary functions corresponding to a horizontal
patch load can be obtained from eqns (2.32) and (2.33) by replacing the terms
nr'Jo(§r') and 7' Ja(€r') by —2foJ1(€)/¢ and 0, respectively.
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In the case of a concentrated load of magnitude Py H (t) applied at z = 2’ [poroe-
lastic counterpart of classical Mindlin’s solution for a horizontal load (Mindlin,
1936)], the arbitrary coefficients are once again obtained by replacing the terms

nr'Jo(ér') and 7' Jy(€r') in eqns (2.32) and (2.33) by — Py /7 and 0, respectively.

3) Patch fluid sink [Fig. 2.2(c)] and a point sink

The deformation fields corresponding to these fluid sinks are axially symmetric
about z-axis and only the terms corresponding to m = 0 in eqns (2.6) and (2.18)
need to be considered. The arbitrary functions corresponding to a circular fluid sink
of radius a and uniform intensity goH(¢) are given by eqns (2.36) and (2.37) with
the term 7'Jo (£7') replaced by —qoJ1(¢)/€. In the case of a point sink of intensity
QoH(t) applied at z = 2/, the arbitrary functions are given by eqns (2.36) and
(2.37) with ¢'Jo(¢r') replaced by —Qy/2w. Note that ug = 0,9 = 0.6 = 0 for both

patch fluid sink and a point sink.

4) Loadings and fluid sources with non-uniform distribution

Arbitrary functions corresponding to loadings and fluid sources with non-
uniform intensities applied over an axisymmetric domain (circular or annular) can
be obtained by first developing a Fourier expansion of the intensity of applied load-
s/fluid sources with respect to 0 and thereafter integrating with respect to /. The
integration with respect to 7’ can be obtained numerically or by analytical methods
depending on the type of radial distribution of the load /fluid source. In addition,
the solutions corresponding to loadings and fluid sources of different configurations
(e.g. ring, patch and annular loads) applied in a poroelastic full space can be ob-
tained from the half space solutions by setting 2z’ approaching infinity and replacing
|2 — 2| by |2| where the origin of the coordinate frame (r, 6, z) is now set at the level
of the applied load/source with the z-axis coinciding with the axis of symmetry of

the applied load/source.
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2.5 Numerical Solutions
2.5.1 Numerical Scheme

The development of an accurate numerical scheme to evaluate the Green’s
functions due to buried loadings and a fluid source is considered in this section
with the intention of eventually using Green’s functions in the boundary element
analysis. The complete solutions for displacements, stresses, pore pressure and fluid
discharge corresponding to each boundary value problem are given by eqns (2.16),
(2.20) and (2.22) together with the solutions for arbitrary functions, AL (&,8) to
H,(¢,s), given by eqns (2.29)-(2.30), (2.32)-(2.33) and (2.36)-(2.37). The solutions
for displacements and stresses at an arbitrary point appear in terms of Lipschitz-
Hankel type semi-infinite integrals with respect to Hankel transform parameter £
and a Bromwich integral with respect to Laplace transform parameter s. It should
be noted that the Laplace inversion can be carried out analytically when z = 0 and
z' =0 (McNamee and Gibson, 1960b). However, the resulting solutions would still
involve Lipschitz-Hankel type integrals with respect to ¢ which can be evaluated only
by numerical quadrature. Given the complexity of the integrands corresponding to
the response at an arbitrary point due to a buried load /fluid source, it is proposed
to develop an accurate numerical quadrature scheme to evaluate these integrals.
The review of literature indicates that the Laplace inversion can be carried out very
accurately (Piessen, 1975) by using the numerical inversion method proposed by

Stehfest (1970). The formula due to Stehfest is given by

L

=22 S e fntd) (2.380)

n=1

1

where f denotes the Laplace transform of f(t) and

min(n,L/2) kL/2(2A)'

Cn = (“1)n+L/2 Z A 1 1 NI "
b=l(nrd) /2] (L/2 = E)ENE — 1) (n — E)I(2k — n)!

(2.38b)

and L is even.

The application of eqns (2.38) to evaluate the Green’s functions correspond-

ing to internal loadings and a fluid source involves the computation of a series of
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Lipschitz-Hankel integrals involving products of Bessel functions at L discrete val-
ues of s for each value of t. The semi-infinite integral with respect to ¢ can be
evaluated accurately by applying an adaptive version of extended trapezoidal for-
mula with A¢ = 0.1. This integral possesses a removable singularity at £ = 0 and
remains finite for all £ > 0. It is found that accurate time-domain solutions are
obtained from eqns (2.38) with L > 6. The Stehfest method is computationally
quite demanding although it is accurate. For example, in the boundary element
method the Green’s functions need to be computed repetitively at a considerable
number of boundary nodes to compute the time-domain solutions. A simpler and
computationally more efficient scheme is given by Schapery (1962) which can be

expressed as

F(t) = [sf(8)]s=0.5/¢ (2.39)

where f denotes the Laplace transform of f(t) and s is the Laplace transform

parameter.

Table 2.1 presents a comparison of nondimensional vertical displacements and
pore pressure obtained from Stehfest and Schapery schemes at the point (0,a) due
to a uniform vertical patch load applied at a depth z = a as shown in Fig. 2.2(a).
A nondimensional time t*, where t* = ct/a?, is used in Table 2.1 and hereafter in
the discussion of numerical solutions in this Chapter. The two solutions from Table
2.1 agree very closely. Table 2.2 presents solutions for pore pressure at an internal
point due to a vertical patch load applied at the surface. Comparison of solution-
s presented by Schiffman and Fungaroli (1965) with those obtained from Stehfest
and Schapery schemes indicate that the pore pressure solutions corresponding to
Schapery scheme is less accurate but still acceptable in a practical situation. The
suitability of Schapery’s scheme for a more complicated situation such as the bound-
ary element method can be assessed only after a detailed numerical study involving
a boundary element analysis. Nevertheless, Schapery’s scheme is computationally
very efficient and it also yields approximate explicit time-domain Green’s function-
s [see eqn (2.39)] which can be useful in the development of direct time-domain

solution algorithms.
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2.5.2 Numerical Results for Internal Loadings and Fluid Sink

The quasi-static response of poroelastic half-space regions of different material
properties to a selected set of internal loading configurations is presented in this
section. In the numerical study, time histories of nondimensional displacements
and pore pressure due to buried patch loads and a buried patch fluid sink are in-
vestigated to study the features of the consolidation process. Stehfest inversion
scheme is used to obtain time-domain solutions. The loadings and discharge are
assumed to be uniformly distributed over a circular area of radius a with intensity
fo and qq, respectively, and acting at a depth a as shown in Figure 2.2. Six different
poroelastic materials (Rice and Cleary, 1976), namely, a material with incompress-
ible constituents (v = 0.25,v, = 0.5, B = 1.0), Ruhr Sandstone (v =012,v, =
0.31, B = 0.88), Tennessee Marble (v = 0.25, v, = 0.27, B = 0.51), Berea Sandstone
(v = 02,1, = 0.33, B = 0.62), Westerly Granite (v = 0.25,v, = 0.34, B = 0.85)
and Weber Sandstone (v = 0.15,v, = 0.29,B = 0.73), are considered in the nu-
merical study to investigate the influence of poroelastic material parameters on the

response and the features of the consolidation process.

Time histories of nondimensional displacements, uy = 2pu./foa], ui =
2pus/ foa] and uf,[= 2a5 pru,/gea?], at points O (r = 0,z = 0)and B (r =0,z = a)
are shown in Figs. 2.3(a), 2.3(b) and 2.3(c) for the uniform patch loadings shown
in Figs. 2.2(a), 2.2(b) and 2.2(c), respectively. The trend of the displacement his-
tories are quite similar for both vertical and horizontal loadings and the material
with incompressible constituents has the lowest initial solution followed by Westerly
Granite, Berea Sandstone, Ruhr Sandstone, Weber Sandstone and Tennessee Mar-
ble. Comparison of this behaviour with the material properties indicates that the
initial response is mainly governed by the value of the undrained Poisson’s ratio.
The above dependence of the initial solution for displacements only on the undrained
Poisson’s ratio can be verified analytically by obtaining the initial (t = 0%) solution
through limit procedures. The following initial solutions are obtained for vertical

displacement and pore pressure for a vertical patch load [Fig. 2.2(a)]

U AT, 2 ="—‘fi*— - — 4V z 22 — 4V z_ — U, - L.
02) =g [ {14 2) 42622 4 (- 4 — 41 - m)(1 - 20)
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raeatsransio

—~&(14-=) _ _ —§[1—=]|
X e +{(3 dv,) + €1 zl}e J :

(7, 2) :W /O‘X’ [{(3 s 26}8—5(1+z) _ h*e‘fll‘zlJ

x Ji(&)Jo(Er)dé (2.400)

1, 0<z2<«1
h* = { (2.41)

1, 1<z< o0

where

The initial solutions for horizontal displacement and pore pressure for a horizontal

patch load [Fig. 2.2(b)] are given by

U (1, 2) :1—(3(—1]‘_0—1/*)_“ /Ooo [{(— (3 — 4w )E(1+ 2) + 2822 + 8(1 — 1,)? + 1)

x e~80+2) 4 ((7 —8ry) — €1 — Zl)“«’ngll_zl}«]o(f?“)

+ {((3 — 4, )E(1+ 2) — 2822 + 8uy, (1 — 1) — 1)

x e=6+2) | (1 el - z|)e—fl1—zl}.]2(gr)] —J%dg (2.424)
- sz
X Ty (€)1 (€r)de (2.420)

It is interesting to note that the above solutions for displacements are essentially
elastic solutions with the Poisson’s ratio equal to the undrained Poisson’s ratio. In
addition, the final solutions (¢t — co) for displacements corresponding to loadings
shown in Figs. 2.2(a) and 2.2(b) are given by eqns (2.40a) and (2.42a), respectively,
where v, replaced by v. The final solutions for pore pressure are zero for both
loading cases. The numerical solutions shown in Figs. 2.3 indicate that the mate-
rial with the lowest undrained Poisson’s ratio has the largest initial displacements.
Therefore, the material with incompressible constituents has the lowest initial dis-
placements. On the other hand, the material with the lowest drained Poisson’s
ratio has the maximum final displacements. In view of eqns (2.40a) and (2.42a), it
is evident that the material with incompressible constituents, Tennessee Marble and

Westerly Granite have identical final solutions for displacements since the drained
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Poisson’s ratios of these materials are identical. This fact is also confirmed by the
numerical solutions shown in Figs. 2.3(a) and 2.3(b). The order of magnitude
of nondimensional final displacements is identical to that of the drained Poisson’s
ratio.

Naturally, the displacement at point O is always less than that at point B for
loadings shown in Figs. 2.2(a) and 2.2(b). The displacement increases slowly when
0 < t* < 0.1 and more rapidly during the period 0.1 < t* < 100 reaching its fi-
nal value when ¢* > 1000 for vertical and horizontal loadings. The displacements
shown in Fig. 2.3(c) under a patch fluid sink [Fig. 2.2(c)] have features different
to those corresponding to vertical and horizontal loadings. Naturally, the initial
displacements are zero for all materials in this case and increase rapidly with time
within the period 0.1 < ¢* < 100. Final solutions are reached when t* > 1000 for all
six materials. The displacement at point O is found to be higher than that at point
B at all time instants. Similar behaviour was also noted in the numerical solutions
reported by Kanok-Nukulchai and Chau (1990). The order of the final solutions
for a fluid sink is identical to that of v. Once again the nondimensional fina] solu-
tions for Tennessee Marble, Westerly Granite and the material with incompressible

constituents are identical due to identical drained Poisson’s ratios.

Fig. 2.4(a) shows time histories of nondimensional pore pressure, p*|= p/ fol,
at point B (r = 0,2 = a) under a vertical patch load [Fig. 2.2(a)]. Initially
(0 < t* < 0.1), excess pore pressure in all materials increase slowly reaching their
maximum values near ¢* = 0.1. This behaviour is called the Mandel-Cryer effect
(Mandel, 1953). Thereafter, they decrease rapidly with time and become almost
negligible after ¢* > 10. It is noted that the order of magnitude of excess pore
pressure developed in all materials under a vertical patch load is identical to that of
the Skempton’s pore pressure coefficient B. The maximum pore pressure is found in
the material with incompressible constituents followed by Ruhr Sandstone, Westerly
Granite, Weber Sandstone, Berea Sandstone and Tennessee Marble, respectively.
Time histories of nondimensional pore pressure, Py [= askp/qoal, at point B is shown
in Fig. 2.4(b) for a fluid sink. The initial pore pressure in all materials are zero
and suction is subsequently developed at this point. Thereafter, suction increases

more rapidly with time during the period 0.01 < ¢* < 1.0 reaching their final values
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when t* > 10.

Figure 2.5 presents the profiles of displacements and pore pressure for Ruhr
Sandstone along the r- and z-axis under a vertical patch load [Fig. 2.2(a)] and
a fluid sink [Fig. 2.2(c)]. The displacements at all points increase with time and
the shape of the displacement profiles remain relatively unchanged with time in
the case of vertical loading. Under vertical loading, the highest displacement is
observed at the level of loading and it decreases rapidly with the depth below the
level of loading. Vertical displacement at the surface level also decreases rapidly
with the radial distance and the displacement at r = 4a is about one-fifth of the
displacement at = 0. The difference between initial and final surface displacement
profiles is about fifteen percent. Pore pressure profiles corresponding to the vertical
loadings are shown in Fig. 2.5(c) and these show complicated variation with time.
An examination of the explicit solution indicates that at t* = 0 pore pressure is
discontinuous within the domain of the loading. It becomes continuous for t* > 0
and undergoes rapid changes with time in the vicinity of loading during the period
0 <¢* <0.1. Note that for t* < 0.01 suction is developed in the region 0.5 < zfa <
1.0. Pore pressure profiles become much smoother when ¢* > 0.1 and thereafter
pore pressure decreases gradually with both the depth and time. Pore pressure

within the domain is nearly dissipated when t* > 10.

The variations of vertical displacement along the z-axis and the free surface
(z = 0) due to a fluid sink are shown in Figs. 2.5(d) and 2.5(e), respectively.
These solutions show more dependence on time when compared to those presented
in Figs. 2.5(a) and 2.5(b). Maximum displacement is observed near the surface
but not at the level of loading and the displacement decreases rapidly near the sink
level (1.0 < z/a < 2.0). More gradual variation of vertical displacement is noted for
z/a > 2.0. Maximum surface displacement is noted at the origin (r = 0,z = 0) at
all times and the surface displacement decreases rapidly with the radial distance.
Comparison of numerical solutions for displacements at t* = 1000 and t* = 108
indicates that a final equilibrium state is reached when ¢* > 1000. Similar behaviour
was also noted by Kanok-Nukulchai and Chau (1990) for an interior sink in a
poroelastic half-space with incompressible constituents. Suction profiles shown in

Fig. 2.5(f) indicate that they increase rapidly with time and reaching a final value
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when ¢* > 1000. The initial solution yields zero suction in this case. The maximum
value of suction is noted at z = a and a sharp decrease is noted with the depth both
above and below the sink level. Naturally, the suction profiles show a singularity at

z = a due to the applied sink.
2.6 Conclusions

Green’s functions for a poroelastic half-space corresponding to buried circu-
lar ring loads acting in the radial, circumferential and vertical directions and to a
fluid source are presented. Solutions corresponding to point, circular and annular
loadings and fluid sources can be derived from ring load/fluid source solutions. In
addition, Green’s functions for a poroelastic full space can be obtained by taking
certain limits on the corresponding half-space solutions. The Green’s functions
are expressed in terms of Lipschitz-Hankel integrals involving products of Bessel
functions. The complexity of Green’s functions hinders any attempts to obtain
time-domain solutions by analytical Laplace inversion methods. It is found that
accurate time-domain solutions can be obtained by applying the numerical scheme
proposed by Stehfest (1970) for Laplace inversion and applying direct numerical
quadrature to evaluate the Lipschitz-Hankel integrals. The numerical study also
confirms that the simpler and computationally more efficient Schapery’s scheme
(Schapery, 1962) yields time-domain solutions with reasonable accuracy. The ap-
plication of Schapery’s scheme to the Laplace domain solutions presented in this

Chapter results in approximate time-domain Green’s functions explicitly.

The response of six different poroelastic half-spaces under buried patch loads
and a patch fluid sink is investigated in the numerical study. The nondimensional
initial displacements are found to be governed by the undrained Poisson’s ratio
whereas the final response depends only on the drained Poisson’s ratio. In all
loading cases it is found that the rate of displacement is higher when 0.1 < t* <
100. Final solutions are reached when t* > 1000 for all types of loadings. The
difference between the initial and final displacements due to vertical and horizontal
loadings is less than twenty percent of the final displacement for all six materials.
The initial solutions for pore pressure and displacements are zero due to a fluid

sink. Displacements and suction show more dependence and variation with time
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under a circular sink when compared to the solutions corresponding to vertical
and horizontal loadings. It is also noted that under a sink the highest vertical

displacement is not observed at the level of the sink.

An exact stiffness matrix approach based on the general solutions presented in
this Chapter is developed in Chapter 3 for the analysis of a multi-layered poroelastic
half-space under three-dimensional loadings and fluid sources. The present Green'’s
functions are used in the development of an indirect boundary integral equation
method for the analysis of complicated problems related to semi-infinite and infinite
poroelastic media in Chapter 6. These Green’s functions are equally useful in the
application of direct boundary integral equation methods for poroelastic half-space
regions. In addition, Green’s functions presented in this Chapter can also be used in
the analysis of problems encountered in energy resource explorations, groundwater

studies and in the development of solutions for anchors, buried footing, piles, etc..
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Table 2.1: Comparison of vertical displacement and pore pressure due to a vertical
patch load [Fig. 2.2(a)] for a poroelastic material with incompressible constituents

(v =0.25)

t 2pu,(0,a,t*)/ foa p(0,a,t*)/ fo
(ct/a?) Stehfest Schapery Stehfest Schapery

10°° 0.813 0.814 1.424 1.424
107° 0.814 0.815 1.426 1.427
104 0.817 0.819 1.431 1.433
0.001 0.827 0.830 1.448 1.453
0.01 0.853 0.859 1.492 1.497

0.1 0.902 0.905 1.470 1.471

1.0 0.961 0.966 0.045 0.048

Table 2.2: Comparison of pore pressure due to a vertical patch load applied at the

top surface for a poroelastic material with incompressible constituents (v =0.0)

& p(05,0.1,6/ 7
(ct/a®) Schiffman and Fungaroli (1965) Stehfest Schapery
0.001 0.90 0.894 0.833
0.01 0.48 0.484 0477
0.1 0.13 0.129 0.166
1.0 0.02 0.015 0.031
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Figure 2.2 Loading configurations considered in numerical study
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Figure 2.3 Displacement histories at points O (r =0,z = 0) and B (r =0,z = a) for different

materials under loadings shown in Figure 2.2
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Figure 2.4 Pore pressure histories at point B (r = 0,z = a) for different materials under
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Chapter 3

QUASI-STATIC GREEN’S FUNCTIONS OF
A MULTI-LAYERED POROELASTIC HALF-SPACE

3.1 General

An exact stiffness matrix method is presented in this Chapter to compute
quasi-static Green’s functions of a multi-layered poroelastic half-space with com-
pressible constituents due to buried loadings and a fluid source. The Laplace-Hankel
transforms of displacements and pore pressure at layer interfaces are considered as
the basic unknowns when compared to the conventional method (Vardoulakis and
Harnpattanapanich, 1986) where the layer arbitrary coeflicients are chosen as basic
unknowns. The three-dimensional analytical general solutions of a homogeneous
poroelastic medium presented in Chapter 2 are used to construct explicitly an 8 x 8
symmetric stiffness matrix which describes the relationship between generalized dis-
placement and force vectors of a layer in the Laplace-Hankel transform space. For
an underlying half-space, a 4 x 4 exact stiffness matrix is also derived explicitly
by using the general solutions. The global stiffness matrix of a multi-layered half-
space is assembled by considering the continuity conditions of tractions and fluid
flow at the interface between the adjacent layers. The numerical solution of the
global stiffness equation system for discrete values of Hankel and Laplace transfor-
m parameters results in the Laplace-Hankel transforms of displacements and pore
pressure at layer interfaces. Thereafter, time-domain solutions for displacements,
stresses, pore pressure and fluid discharge are computed by applying a numerical
scheme for Laplace inversion and direct numerical quadrature for Hankel transform
inversion. Selected numerical results for displacements, pore pressure and fluid dis-
charge corresponding to different poroelastic layered systems are presented in this
Chapter to portray the influence of layering and the poroelastic material parameters

on the response.

The present method has high numerical efficiency due to the fact that it requires

the solution of a banded symmetric stiffness matrix [e.g. 4(V + 1) x4(N +1) for the
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system shown in Fig. 3.1] of nearly one-half the size of the unsymmetric coefficient
matrix [e.g. (8N +4) X (8N + 4)] corresponding to the conventional scheme based
on the determination of layer arbitrary coefficients. In addition, the elements of
the stiffness matrix involve only numerically stable negative exponential terms of
Hankel transform parameters resulting in well-conditioned matrices for all values
of transform parameters. The stiffness matrix scheme presented in this Chapter
can be used directly to compute the kernel functions required in the application of

boundary integral equation methods for layered poroelastic domains.

3.2 Stiffness Matrices

Consider a multi-layered system with a total of N poroelastic layers overlying
a poroelastic half-space. Layers and interfaces are numbered as shown in Fig. 3.1.
Following Section 2.3, the general solutions for the mth Fourier harmonic of solid
and fluid displacements, pore pressure and stresses in the Laplace-Hankel transform

space of a homogeneous poroelastic medium can be expressed in the following matrix

form:
u(¢, z,5) = R(¢, 2,5)C(¢, 5) (3.1a)
£(£,2,5) = S(&,2,5)C(¢, 5) (3.1b)

where

u(é, z,8) =< u;(&,2,8) >T, 1=1,2,3,4 (3.2a)
£(¢, 2, 5) —< fi(€,2,8) >T, i=1,23,4 (3.20)
(fa 2, 3 [ (Ul'r‘m +- u@m) - ﬂm—l (urm - ’U,em)] (33(1)
U2 (fa 2,8 ) % 7:lm+1 (urm + 'U'0m) + ﬁm—l (Urm - Uem)] (3-3b)
ug (5’ 2,8 ) ﬂm (uzm) (336)
u4(§7 2, 3) = _m(pm) (3'3d)
fl (67 2, 3) = % [ —m—{-l (Uz'rm, + Uzem) - 7j(m—l (Uzrm - 0z9m)] (34(1,)
f2 (57 2, S) - ?2]: [ﬁm-}-l (Uzrm + azOm) + 72m—l (Uzrm - Uz@m)] (34b)
f3(€a 2y 3) = 7:(m (Ozzm) (346)
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f4(€a Z, 3) = 7__['m ('wz'rn) (34d)
C(,s)=<Am By, Cw D, E, Fn, Gn H,>T (3.5)

In the above equations, s and ¢ denote the Laplace and Hankel transform parame-
ters, respectively; H,, is the Laplace-mth order Hankel transform operator defined
in eqn (2.7) and the arbitrary functions A, (¢, s), By, (&,8), ..., Hp (&, 8) appearing in
C(¢, s) are to be determined by employing appropriate boundary and/or continuity
conditions. In addition, the matrices R(¢, 2, s) and S(¢, z, 5) in eqns (3.1) are given

by

R = [R; R;| (3.6a)
S=[S; So] (3.60)
where
( —{nce? s —Ence™ 17 /s ayzet? —ajze™¢?
0 0 0 0
Rl = (37&)
ynce’[s  —ynee™ % [s  —(ayz — %)eﬁz —(a1z + %Z)e_fz
\ 2pasne’®  2uasne=7# —2puaynet? —2uasne 4 )

efz 8_£Z __eﬁz ___e—ﬁz
1 e&z 6—£z e&z e—-fz

RZ — —2' _efz e—fz efz _e—fz (37b)
0 0 0 0
(—2577]&372/3 2lynee™*[s  (2a1€z — 1)et* (2012 + 1)e~%*
0 0 0 0
Si =u (3.7¢)
28%nce™ s 2¢%nce= Vs —2(aréz — as)et®  2(a1éz + ag)e~¢*
\ —2a561e7* 2a561e7 7% 2040657 —~2a405e" 5% }
2bet*  —2¢eT8r  _9tebr  2getz
W e
S2 T2 | —26etr —2¢em8 9febr 2gemEr (3.7)
0 0 0 0



=TI s _SE (3.7¢)
S S

and ¢, v, 7 and a; (i = 1,2,4,5) are defined in eqns (2.5¢), (2.10), (2.12), (2.17) and
(2.21), respectively, in Section 2.3.

Let a superscript n denote quantities associated with the nth layer (n =
1,2,..,N). Then, the following relationships can be established for the nth lay-

er of the system shown in Fig. 3.1 by using eqns (3.1a) and (3.1b):

U= | c) (3.8a)

_R(n) (63 Zn+41, 3)

r _S(n)(f’ Zn>3)
FW = | cm (3.8b)

S( )(fazn-i-l)s)

where

U =<y (&, 2, 8) u(")(f, Zn41,S) >T (3.9a)
FO =< —£(¢, 2,,5)  £™)(E, 2ppn,5) >T (3.90)

In eqns (3.8) and (3.9), U™ denotes a vector of generalized coordinates for the
nth layer whose elements are related to the Laplace-Hankel transforms of the mth
Fourier harmonic of displacements and pore pressure of the top and bottom surfaces
of the nth layer. Similarly, F(™) denotes a generalized force vector whose elements
are related to the Laplace-Hankel transforms of the mth Fourier harmonic of trac-
tions and fluid displacements of the top and bottom surfaces of the nth layer. The
matrices R(™ and S(™ in eqns (3.8) are identical to R and S defined in equs (3.6)
except that the material properties of the nth layer are used in the definition and
Z = Zp, O Zpy1. The vector C(™) is the arbitrary coefficient vector corresponding to

the nth layer.

The eqn (3.8a) can be inverted to express C(™ in terms of U™ and the sub-

stitution in eqn (3.8b) yields

F(® = KWym), n=1,2 .., N (3.10)
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where K(™ can be considered as an exact stiffness matrix in the Laplace-Hankel
transform space describing the relationship between the generalized displacement

vector U™ and the force vector F(™ for the nth layer.

The explicit derivation of K(* corresponding to an arbitrary Fourier harmon-
ic of a three-dimensional poroelastic problem is extremely complicated and it is
impossible to achieve this task manually due to the fact that the inversion of eqn
(3.8a) involves a fully populated 8 x 8 unsymmetric matrix whose elements involve
rather complicated expressions. However, this task, which needs to be performed
only once, can be achieved by using modern symbolic manipulation packages. In the
present study, the author used the computer algebra package Mathematica (Wol-
fram, 1988) to obtain K™ explicitly. It should be noted that Mathematica results
in extremely lengthy and complicated expressions for elements of K(™ which have
to be extensively manipulated and reduced to obtain more simplified expressions to
achieve a computationally efficient solution scheme. After lengthy manipulations,

it is found that K™ is symmetric and its elements can be expressed as

1st Row:
ki1 = (0, + 1) (dio1 — d202) — 402, (ds o1 — dygs) (3.11a)
k12 =0, kiz = (03, — 1) (dro1 — dags) + ¢ (3.110)
ke = 61(05, — 1) (do0z — d501 ~ 401002 03) + G2k (3.11¢c)
k15 = 2d701 — 2009, (2d101 — d205 + ds 03) (3.11d)
k16 =0, kir = 2(04%” - 1) [d493 — d3g1] (3.11e)
k1s = 201 [a2n(d291 + ds03) — d792] + 62k1s (3.11f)

where

Q1 = e T, Qgp = e"¢hn, n=12..,N 3.12a)

(
dy = (alna2n — 1)2 + (aln - aZn)27 dy = (alna2n - 1)2 - (aln - a2n)2 (312b)
ds = (Oé1n042n - 1) (Oézn - Oéln.), ds = gy (Ogn - 1) (3.12¢)
)

2

ds = (od, = 1) (03, +1), do= (o, +1)(cd, ~1), dr=aun(ad, —1)13.124
4p? 2 2
01 = —Z“(aia?,ﬂﬁ), 02 = ﬁ(%aia?,@ﬁz — aza403), 03 = J(MCM% n) (

3.12¢)
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¥ = (03, — 1) (2d1g1 — d2g2) — 4oz, (2d3 g3 — daga)
2ua
g1 = ,ufsﬁ [2#61261557}5152 - a2a4a561]
g2 = & [%ar dpasain{asds — pasn(6} + 53)}]
gs = 2,ua1a4a57](51hn, gs = alarhz
2nd Row:
(3, +1) 2péany
koo = —pé 15—, ko = ——+
(aZn - 1) (agn - 1)
ka; = 0, 1=1,3,4,5,7,8
3rd Row:
kas = (03, — 1) (dso1 — ds02) — 4azndsps
kas = (03, — 1){51 (dro2 — d201) + 83 (d1o1 — dwz)} — dazn61d303
kss = —kir, ksg = 0, ka1 = 202n (d202 + ds03) — 2dy 01
k3s = 26, [a2nd1 03 — (0f, — 1)d392] + 62k3s5
4th Row:
kaa = (0, + 1) (2d1g6 — dags) — (05, — 1)dogr + dazngs
ka5 = ks, kss =0, kyr = —ksg
kag = 2d7g7 — 202, (2d1g6 — dags + go)
where

2pas

gs = [a2a4ar (5% — 622) + 2ua2asEnds (612 + 6%)]

3
442 a%als;
g = 7(%&;—7](5152) g7 = 627]%&

8= no1Y

_ 2, €2\ 2
g9 = I [dsgs (67 + 63) — 2dg616293 + 4a1n6¥2n5194]
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(3.13b)

(3.13¢)
(3.134)

(3.14a)

(3.14b)

(3.15a)
(3.15b)
(3.15¢)
(3.15d)

(3.16a)
(3.160)
(3.16¢)

(3.17a)

(3.17b)

[d493(51? +63) — 2010 (03, — 1)616293 + aan (o, + 1)612g4J(3 17¢)

(3.17d)



5th Row:

k55 = kll, ]'1:56 = 0, k57 = —k13, k58 = k14 (318)

6th Row:
kes = ka2, ker = keg = 0 (3.19)

7th Row:
ker = ka3, krg = —kaq (3.20)

8th Row:
kss = kaq (3.21)

The layer stiffness matrix K is a function of the layer thickness, the layer
material properties, the Laplace and Hankel transform parameters s and &, respec-
tively. Only negative exponentials that decrease rapidly with increasing ¢, s and
hr are involved in k;;. The relationships between k;j’s [e.g. eqns (3.18)-(3.21)] can
also be derived on the basis of the physical behaviour of the system since each k;;
represents a component of a generalized force vector due to a generalized displace-
ment vector equals to a unit vector. When compared to the stiffness matrix method
proposed by Lysmer and Waas (1972) and Seale and Kausel (1989), the K(™) ob-
tained from the present method is exact and does not involve any approximations

in the derivation.

For the underlying half-space, due to the regularity condition at z — oo, the
general solutions involve only four arbitrary coefficients in the vector C(V 1) je.

B%VH) , D£nN+1), F,va“) and Hy(nNH) . The stiffness matrix of the bottom half-space

can be expressed as

FV+D) — (N1 y(N+1) (3.22)

where
U+ _ o u(N+l)(§’ ZNg1,8) >T (3.23a)
F(N+1) =< _f(N+1)(€, ZN+1, 3) >T (323b)

KW+ = symm. [l:",zj] (3.23¢)

4x4
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The elements of the half-space stiffness matrix can be expressed as

forp = -2&;“5—", firg = 0 (3.24a)
foag = —“‘;5” F26(81 — Sy, Fea = (62 — 1) (3.24b)
kg = ué, ko3 = Koy = 0 (3.24¢)
faz = k11,  hsa = —hua (3.24d)
fiag = “2‘25;61 + cBakra (3.24¢)
where
B = 2pagasn*(6y — 61) — az?—”” (3.25)

It is noted that exponential terms of ¢ and s are not involved in the expression
of K(V+1) and its elements depend on the material properties of the underlying
half-space, the Laplace and Hankel transform parameters s and &, respectively. The
stiffness matrix K(¥+1) of the underlying half-space derived here exactly satisfies all
the governing equations. On the other hand, the stiffness matrix scheme proposed
by Lysmer and Waas (1972) and Seale and Kausel (1989) is not capable of taking

into consideration the influence of an underlying half-space.
3.3 Global Stiffness Matrix

The global stiffness matrix of a multi-layered half-space is assembled by using
the layer and half-space stiffness matrices together with the continuity conditions of
tractions and fluid flow at layer interfaces. For example, the continuity conditions

at the nth interface can be expressed as
£, 20, 8) — £ (€, 25, 8) = T (3.26)

where £(™) is identical to f defined in eqn (3.2b) with a superscript n denoting the

layer number and

(n)
T =< (™ 7™M 7" ——~QS >T (3.27)
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i which

Tl(n) = %‘ [ﬂm-}-l (CZ-',(;:L) + Te(;rLL)) - ﬁm——l (CF?(I);LL) - T(?'(YI:L))] (328(7')
™ % (Pt (TS + L) + Fom (1) = T3] (3.280)
T = R, () (3.28¢)
Q) = ﬁm(Q.(Jf)) (3.28d)

where Ti(,,:i) (1 =mr,0,2) and QS,’LL) denote the mth Fourier harmonic of the tractions

and fluid source applied at the nth interface, respectively.

The consideration of eqn (3.26) at each layer interface together with eqns (3.10)

and (3.22) results in the following global equation system.

FK(l) 1 ( Ul O NSV
U2 T(2)
K?2)
S ST I
K@) U (M)
i K(N+1) | | U+ | | TV+D)

The global stiffness matrix of eqn (3.29) is a well-conditioned symmetric ma-
trix and has a band width equal to 8. It is naturally constrained against rigid
body displacements due to the presence of K(¥V+1) If 5 half-space is not present at
the bottom then the bottom plane at z = zy has to be restrained to eliminate the
rigid body displacements. The number of unknowns in the final equation system,
le. eqn (3.29) is equal to 4(V + 1) which is nearly one-half of that correspond-
ing to the classical approach based on the solution of layer arbitrary coefficients
Ag,’f ) , B.(,,? ) y een HT(,? ). This reduction of the size of final equation system together with
the symmetry makes the present scheme computationally efficient when compared
to the conventional scheme (Vardoulakis and Harnpattanapanich, 1986). Further-
more, the eqn (3.29) is invertible and numerically stable for very large values of ¢ as

shown in Section 3.4.1. Laplace-Hankel transforms of stresses and fluid discharge
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at the top and bottom interfaces of a layer can be obtained by using eqns (3.10),
(3.29) and (2.8). If displacements and/or pore pressure within points of a layer
are required then it is convenient to define a set of fictitious planes through these
points and consider these as additional layers. Alternatively, eqn (3.8a) can be used
to compute C{™ for a layer and thereafter compute displacements and pore pressure
at arbitrary points within a layer using eqn (3.1a). This, however, may involve the
inversion of numerically ill-conditioned matrices such as R(™ for large values of ¢
and consequently loss of precision. If loads and Jor fluid sources are applied within

a layer then fictitious interfaces are considered at the loading levels.
3.4 Numerical Solutions
3.4.1 Numerical Scheme

A computer code based on the solution procedure described in the preceding
sections has been developed to compute the quasi-static Green’s functions of a
multi-layered poroelastic half-space due to internal loadings and a fluid source. The
tasks performed by the computer code can be described as 1) the computation and
assembly of stiffness matrices corresponding to each layer and the underlying half-
space of a multi-layered poroelastic half-space to establish eqn (3.29) for specified
values of ¢ and s corresponding to a given numerical Laplace inversion scheme; 2)
the solution of eqn (3.29) to obtain the interlayer displacement and pore pressure
vectors in the Laplace-Hankel transform space; 3) the evaluation of semi-infinite
integrals with respect to ¢ defined in eqn (2.8) by direct numerical quadrature
discussed in Section 2.5.1 and 4) the evaluation of the time-domain solutions by
using the numerical Laplace inversion given by Stehfest leqn. (2.38)] or Schapery
[eqn (2.39)]. It should be noted that the determinant of global stiffness matrix is
nonsingular along the integration axis of eqn (2.8) [i.e. real ¢ axis for real values
of s given by eqns (2.38) and (2.39)]. Although it is impossible to prove this by a
rigorous mathematical analysis for an N-layered system, it can be argued that if
poles exist in the integrand of eqn (2.8) for real ¢ and s values [i.e. singular global
stiffiness matrix in eqn (3.29)] then by virtue of the application of contour integration

method for Laplace inversion yields terms that would increase exponentially with
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time. Such behaviour is not admissible in quasi-static problems where the response

approaches a finite limit for ¢ — co.

The numerical stability and the invertibility of the global stiffness matrix in
eqn (3.29) for increasing values of ¢ and s can be assessed by computing a condition
number of the matrix (Cline et al., 1979). Figure 3.2 presents L;-condition numbers
(The multiplication of the first norm of a matrix and the first norm of its inverse)
with respect to £ for different values of s of the final equation systems corresponding
to the present stiffness method [i.e. eqn (3.29)] and the conventional method based
on the determination of layer arbitrary coefficients. The results shown in Fig. 3.2
correspond to a layered system consisting of a poroelastic layer of unit thickness
(v =0.25, v = 0.35 and BO = 0.8) bonded to a poroelastic half-space (v(2) =
0.2, zxq(tz) = 0.3 and B = 0.6). In addition, pa(l)/,u(z) = 0.5 and (1) = £®),
A coefficient matrix of a linear equation system with a small condition number is
considered as a well-conditioned system whereas a large condition number indicates
ill-conditioning. The numerical results in Fig. 3.2 show that the global stiffness
matrix of the present scheme has a smaller condition number which either remains
constant or decreases over a wider range of values of transform parameters ¢ and s.
The condition number of the coefficient matrix corresponding to the conventional
method is always higher than that of the global stiffness matrix of eqn (3.29) and
becomes extremely large for increasing values of ¢ due to the presence of mis-
matching exponential terms in the coefficient matrix. The numerical stability of the
present stiffness matrix approach is clearly demonstrated by the solutions shown in

Fig. 3.2.

Table 3.1 presents a comparison of numerical solutions for vertical displace-
ment and vertical stress at the point (0, a) of a homogeneous poroelastic half-space
due to a uniform vertical patch load of radius a applied at a depth z = a below
the free surface. The half-space is considered to be comnsisting of 10 layers of equal
thickness, h/a = 0.2, and an underlying half-space. Solutions obtained from the
present stiffness method are compared with the numerical solutions of a homoge-
neous poroelastic half-space from Chapter 2 to verify the numerical stability and
the accuracy of the present matrix scheme. The two solutions are in excellent -

greement. Table 3.2 presents a comparison of elastostatic solutions corresponding
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to a layer of unit thickness perfectly bonded to a half-space and subjected to uni-
form vertical pressure of unit total force applied over a circular area of unit radius
at the top surface. Exact solutions (computed numerically) provided by Muki and
Dong (1980) is used in the comparison with the final solutions (t = o0) from the
present study. The general accuracy of the solutions obtained from the stiffness
matrix method presented in this Chapter is confirmed through these independent

comparisons.
3.4.2 Numerical Results for Multi-Layered Poroelastic Half-Spaces

The quasi-static response of a multi-layered poroelastic half-space under a s-
elected set of loadings is investigated in the numerical study. A layered system
consisting of two poroelastic layers bonded to an underlying poroelastic half-space
is considered in all numerical studies presented in this Chapter. The properties
of the first layer are v(1) = 0.25, 1/1(‘1) = 0.5 and B = 1.0; for the second layer,
v(2) = 0.25, 7/1(3) = 0.35 and B(?) = 0.8 and for the underlying half-space, v(3) = (.2,
1/53) = 0.3 and B®) = 0.6. In addition, ,u(z)/,u(l) = 1; ;1,(3)/u(1) = 2 and applied
loadings and fluid discharges are assumed to be uniformly distributed over a circular

area of radius a.
3.4.2.1 Displacement Histories under Surface Loadings

Time histories of displacements at the origin (r =0,z = 0) due to uniform
patch loadings of intensity fo applied at the top surface are studied first. Problems
of this nature are useful in the study of consolidation settlement of surface foun-
dations. In the parametric study, the total thickness of the two layers, hy + ho,
is equal to 2a and x®)/x(® =0.5. A nondimensional time, 71[= ¢(®t/a?], in the
range 107% < 7y < 10 is considered in the numerical study. Time histories of
nondimensional vertical displacement, ul,[= 2uMy, /foa], at the origin due to a
uniform vertical pressure are shown in Figs. 3.3(a) and 3.3(c). Figs. 3.3(b) and
3.3(d) present nondimensional horizontal displacement, u},[= 2u(Mu, / foa], at the
origin due to a uniform horizontal pressure applied at the top surface. Numerical
results presented in Figs. 3.3 indicate that the general trend of the displacement

histories is quite similar for both vertical and horizontal loadings as noted in Section
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2.5.2 for a homogeneous poroelastic half-space under buried loadings. The influence
of permeability on the response is considered in Figs. 3.3(a) and 3.3(b) by setting
n(l)/fa(z) = 0.001,0.01,0.1,1.0 and 10 with h; = hy = a. It can be seen from these
two figures that the ratio £(1)/k(?) has a significant influence on the consolidation
process of a layered poroelastic half-space. As expected, the consolidation settle-
ment is first noted in the case of (1) /k(®) = 10 whereas, for £ /2 = 0.001, it
is observed when 7 > 0.1. The earliest final solution is reached for s /) =10
and the latest for (1) /x(2) = 0.001. This behaviour is due to the fact that the first
layer is less permeable in the latter case. Comparison of displacement histories in
Figs. 3.3(a) and 3.3(b) indicates that the variation of the ratio x(1) /12 essentially
results in a shift of the response profile in the time scale. The numerical solutions
in Figs. 3.3(a) and 3.3(b) show identical initial and final displacements since the
material parameters v, v, and u, and the thicknesses of the two layers are the same

for all values of x(1) /(%)

The influence of layer thickness on the response is studied in Figs. 3.3(c) and
3.3(d) for five different values of the ratio hi/ha, i.e. hi/he = 0.25,0.5,1,2 and 4.
Note that the total thickness of the two layers is 2a and £V /K3 = 0.001. The initial
displacements for different values of h; /hy are different and their order of magnitude
is identical to that of h, /ha. This is a consequence of the fact that the undrained
behaviour of poroelastic materials is mainly governed by the undrained Poisson’s
ratio, therefore a higher ratio of h;/hy means a lesser undrained compressibility
of the layered system since 1/.1(}) > 1/&2). The consolidation settlements in all cases
are initiated at almost identical time instants, ie. after r; > 0.1, and the final
settlement is first reached in the case where hy/hy = 0.25 (i.e. hi/a = 0.4 and
ha/a = 1.6) when 71 > 100. It is also found that the time to reach the final solution
increases with increasing values of h; /hy. These features are consistent with the fact
that since x(1) / k(2 = 0.001, the layered system becomes more impermeable for a
higher ratio of hy/hy. Final solutions are identical since elastic properties (drained)
of the different layered systems are identical and the consolidation process in all

cases is completed for 7 > 1000.
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3.4.2.2 Displacement and Pore Pressure Histories due to Fluid Sink

The next set of solutions corresponds to problems involving fluid withdrawal
from layered poroelastic media. Problems of this nature are useful in the study of
settlement due to groundwater withdrawal, energy resource explorations, etc.. A
circular fluid sink of uniform intensity go is located at the center of the second layer
of the layer system defined previously. The sink is at a depth z = 10a below the free
surface. In the numerical study, the permeability of the first layer and the half-space
is assumed to be equal, i.e. (1) = () and the ratio fs:(z)//«;(l) is varied from 1 to
100. In addition, the thickness of the second layer is assumed to vary between a to
4a. A nondimensional time 75, where 75 = ()¢ /a2, is used in the fluid sink problem.
Time histories of nondimensional vertical displacement, u:q[: My, /q0a?], at the
origin for different values of x(2)/x(1) and hy are presented in Figs. 3.4(a) and
3.4(b), respectively, for 1072 < 7, < 10%. It is found that the displacement at this
point is higher than that at the point (0, 10a) at all time instants. Similar behaviour
was also observed in the numerical solutions shown in Fig. 2.3(c) for the case of
a buried patch fluid sink in a homogeneous poroelastic half-space. The solutions
presented in Figs. 3.4(a) and 3.4(b) indicate that the surface settlements in all cases
are initially zero and increase rapidly with time during the period 1 < 7 < 100.

Final solutions in all cases are reached when 79 > 1000.

Figs. 3.4(c) and 3.4(d) show time histories of nondimensional pore pressure,
Pyl= cWp/2uM gya), at the center of the patch sink (r = 0,z = 10a) for different
values of (%) / £ and h2, respectively, for 1073 < 7, < 103. Tt is noted that initial
pore pressure is zero and suction is subsequently developed at this point. Final val-
ues for suction are obtained after 73 > 100. It is noted that less suction is developed
due to a fluid sink in a more permeable layered system; i.e. for higher values of
&3 /M) in Fig. 3.4(c) and for higher values of &, in Fig. 3.4(d). It can be argued
that higher suction developed in a layered system results in higher stresses in the
solid matrix (effective stresses) and consequently larger solid strains. Therefore, the
solutions presented in Figs. 3.4(a) and 3.4(b) indicate that the vertical displacement

decreases with increasing values of x(2?) /&) and hs, respectively.
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3.4.2.3 Pore Pressure and Fluid Discharge Profiles along the z-Axis

Nondimensional pore pressure, pi[= p/ fo], along the vertical axis due to a
vertical patch load applied at the top surface are shown in Figs. 3.5(a) and 3.5(b)
for different values of x(1) /r3) and hq /ha , respectively, for time instants 7; = 0.001
and 1. It is found that no suction is developed along the z-axis due to a vertical
surface load and excess pore pressure becomes insignificant for z > 4a. The notable
feature is that a discontinuity in the slope of the profiles is observed at the interfaces,
ie. at z/a = 0.4 for hy/hy = 0.25, at zfa =1 for hi/hy = 1 and at zfa = 1.6
for hq/he = 4. This is due to the fact that since the permeability of the two layers
are different a discontinuity exists in the slope of the pore pressure profiles at the
interfaces. A small discontinuity also exists at the interface between the second
layer and the half-space (i.e. at 2/a = 2.0) since the permeability of the two media
are not the same (k) /x() = 0.5). Initially (11 < 0.001), a very large pore pressure
is developed near the top surface resulting in a very high gradient of pressure in the
region 0 < z/a < 1. Pore pressure beneath the first layer decreases with depth in
all cases and are nearly identical for z/a > 2. As expected, the rate of pore pressure
dissipation increases with increasing values of permeability. For example, at 7y =1,
excess pore pressure is nearly dissipated in the first layer for (1) / ) = 10 whereas
appreciable pore pressure is noted in the first layer if x(1) / £ = 0.1 for all values
of hy/hy. Excess pore pressure diminishes to negligible level when 73 > 10 and 100

for fs:(l)/fc(2) = 10 and 0.1, respectively.

Profiles of nondimensional pore pressure, Py, and fluid discharge, Qg [= ¢2/ ),
along the z-axis due to a patch fluid sink at a depth z = 10a below the free sur-
face are shown in Figs. 3.6(a) and 3.6(b), respectively, for different time instants.
Numerical solutions are presented for 8 < z/a < 12 and for x(? /) =1 and 10
when hy = 2a. Note that () is equal to 1) in this case. As expected, suction
profiles shown in Fig. 3.6(a) indicate that the maximum value of suction is noted
at the level of the sink (i.e. z/a = 10) for all values of 7, and the suction is higher
for x(2 /&) =1 when compared to k(2 /&) = 10. Naturally, the pore pressure
profiles show a singularity (kink) at z = 10a due to the fluid sink applied at this

level. A discontinuity in the slope of the py profiles is observed at layer interfaces,
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ie. at z/a =9 and 11 for £ /x(}) = 10. Such a discontinuity does not exist when
£ = (). Final values for suction are attained when 72 > 1000. Fluid discharge
profiles shown in Fig. 3.6(b) for 7, = 0.1 and 1000 indicate that a unit discontinuity
exists at the level of applied patch fluid sink (z = 10a). A discontinuity in the slope
of the discharge profiles is also noted at z/a = 9 and 11 when x(® /1) = 10 where-
as, for k(?) = g1 discharge profiles are smooth along the z-axis. This behaviour
is similar to what observed in Fig. 3.6(a). Initially (7 < 0.1), higher discharge
is developed in the case where x(?)/x(1) = 10. As time increases, the discharge
for £2) = £() increases and reaches a final state when 75 > 1000. However, the
discharge profile for x(%) /) =10 is nearly time-independent. The fluid discharge

corresponding to both values of £(2)/x(1) becomes negligible after |z/a — 10] > 2.
3.5 Conclusions

Explicit solutions for stiffness matrices of a layer with a finite thickness and
a half-space are presented in the Laplace-Hankel transform space. The present
stiffness matrices satisfy exactly all the field equations relevant for a poroelastic
medium. These stiffness matrices need to be derived only once and can be applied
to study the response of any horizontally layered poroelastic medium. The global
equation of a layer system is obtained by assembling the layer matrices on the basis
of interface continuity conditions. Accurate time-domain solutions can be obtained
by applying the numerical scheme proposed by Stehfest (1970) or Schapery (1962)
for Laplace inversion and applying direct numerical quadrature to evaluate the

Hankel transform inversion integrals.

The stiffness matrix method presented in this Chapter has the advantage that
the size of the final equation system is nearly one-half of that corresponding to the
conventional matrix approach based on the determination of layer arbitrary coef-
ficients. In addition, unlike the coefficient matrix of the conventional method, the
global stiffness matrix of the present method is symmetric, numerically stable and
well-conditioned for the large values of transform parameters and has a band width
equal to eight. Selected numerical results presented in this study for different lay-

ered systems indicate that the response of a layered poroelastic medium depends
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significantly on the poroelastic material parameters and the configuration of lay-
ering. The response of a layered system is governed by many parameters (layer
thickness, material parameters, etc.) and it is difficult to identify the influence of
individual parameters on the response. The present method can be effectively used
to compute the kernel functions (Green’s functions) required in the application of
boundary integral equation methods for a multi-layered poroelastic half-space. It
can be also used to verify the accuracy of approximate methods such as the finite
element method and other numerical techniques that can be applied to study the

consolidation problems involving layered poroelastic media.
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Table 3.1: Comparison of vertical displacement and vertical stress due to a vertical

patch load applied at depth z

0.25,v, = 0.35 and B = 0.8)

a of a homogeneous poroelastic half-space (v =

t 2pu,(0,a,t*)/ foa o::(0,a*,t*)/ fo
(ct/a?) Case I Stiffness Method Case I Stiffness Method
Stehfest | Schapery Stehfest | Schapery

10~° 0.9757 | 0.9757 0.9758 -0.7151 | -0.7151 -0.7151
10~4 0.9771 0.9771 0.9775 -0.7154 | -0.7154 -0.7155
0.01 0.9891 0.9891 0.9910 -0.7181 | -0.7181 -0.7179
0.1 1.0051 1.0051 1.0067 -0.7163 | -0.7163 -0.7142
1.0 1.0271 1.0271 1.0291 -0.7059 | -0.7059 -0.7068
10 1.0505 1.0505 1.0493 -0.7041 | -0.7041 -0.7044
10 1.0635 1.0636 1.0635 -0.7040 | -0.7040 -0.7040

Case I: Numerical solution from Chapter 2.

Table 3.2: Comparison of vertical displacement due to a vertical patch load applied

at the top surface of a layered elastic half-space (/@ = 10,00 = @ = 0.3

2pu,(r,0)

M & D (1980)7

Stiffness Method

and h1 = 10)
z 2puu.(0, 2)
M & D (1980)7 | Stiffness Method

0 0.1948 0.1948

1 0.1815 0.1813

2 0.1264 0.1262

6 0.0545 0.0542

11 0.0312 0.0308

TN O

ot
(@]

0.1948
0.1601
0.1089
0.0450
0.0216

0.1948
0.1600
0.1088
0.0448
0.0215

T Muki and Dong (1980).
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Chapter 4
2-D DYNAMIC GREEN’S FUNCTIONS

4.1 General

This Chapter is concerned with the derivation of dynamic Green’s functions
corresponding to time-harmonic and transient loadings and fluid sources applied at
a finite depth below the surface of a homogeneous poroelastic half-plane. Biot’s
equations for dynamic poroelasticity with internal friction are considered. Two-
dimensional general solutions for governing equations under time-harmonic excita-
tions can be obtained by applying Helmholtz representation and Fourier integral
transforms with respect to the z-coordinate. The Green’s functions are presented
explicitly in the Fourier transform space for displacements, stresses, excess pore
pressure and fluid discharge corresponding to arbitrary distributions of vertical and
horizontal loadings and fluid sources (specified discharge and pressure). Solutions
corresponding to point and uniformly distributed excitations are also presented.
In addition, it is shown that Green’s functions corresponding to transient excita-
tions (loadings and fluid sources) can be derived from the time-harmonic solutions
through an appropriate change of parameters. An accurate numerical scheme is pre-
sented to evaluate poroelastodynamic Green’s functions. Selected numerical results
for displacements, stresses and pore pressure corresponding to three poroelastic
materials and an ideal elastic material are presented to portray the influence of
frequency of excitation, poroelastic material properties and types of loadings on the

dynamic response of poroelastic half-planes.

4.2 Governing Equations and General Solutions

Consider a poroelastic half-space with a Cartesian coordinate system (z,y, 2)
defined such that the z-axis is perpendicular to the free surface of the half-space
as shown in Fig. 4.1. It is assumed that the deformations are plane strain in the
zz—plane, i.e. €,y = €y, = €,, = 0. The equations of motion in the absence of body

forces (solid and fluid) and a fluid source can be written for the present case as

Je o¢  o?
2 2 —_— —— T e—— Y .
uViug + (A +a°M + #)5‘3: aM&x 5 (puz + prwy) (4.1a)
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pViu, + (A + oM + M*g—i - aM% = aa—;(puz + prw,) (4.1b)
aM-g—; - M% = g;(pfum + mwg) + bag;m (4.1¢)
aMgg— —Mg—g = %(pfuzA—mwz)-l—bagzz (4.1d)
where
v? = ‘52,27 + 5822—2 (4.2a)
€= %L;z a@f (4.2b)
(=G4 2% (420
= 12_“;/ (4.2d)

In the above equations, u;(x, z,t) and w;(z, 2, t) (i=2,2),¢ ( u, v, a and M are
defined previously in Section 2.2; ) is the Lamé constant of the bulk material; p and
ps are the mass densities of the bulk material and the pore fluid, respectively, and
m is a density-like parameter which depends on p 7 and the geometry of the pores.
In addition, b is a parameter accounting for the internal friction due to the relative
motion between the solid matrix and the pore fluid. The parameter b is equal to the
ratio between the fluid viscosity and the intrinsic permeability of the medium. If
internal friction is neglected then b = 0. Note that eqns (4.1) can also be expressed
in terms of solid and fluid displacements (Biot, 1956a). Eqns (4.1) are based on
the assumptions that the flow of the fluid relative to the solid through the pores is
of the Poiseuille type and the thermal and hysteresis effects are negligible. More
details of Biot’s hypotheses and identification of material parameters are discussed

by Biot (1956a), Bourbié et al. (1987) and Rasolofosaon (1991).

The motion under consideration is assumed to be time-harmonic with a time
factor of e** where w is the frequency of the motion and i = /=1. For brevity,
the term e™* is suppressed henceforth from all expressions. It is important to
note that the governing equations, eqns (4.1), do not consist of four independent
unknowns. With the aid of eqns (2.1b) and (4.2¢), the eqns (4.1) can be reduced

to only three independent equations expressed in terms of three unknowns Ug, Uy
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and p. The corresponding governing equations can be expressed by using standard

indicial notation as

pigi + (A + p)us i+ w?(p — 9ps)us — (o — Npi=0 (4.3a)
2 2
prw psw{o— )
i Ui = .3b
Piit P+ 5 ii =0 (4.30)
where )
9= PrY (4.4)

(mw? — {bw)

The field equations for dynamic thermoelasticity in the absence of body forces

and a heat source can be expressed in the frequency domain as

i gg + (A + p)ug g0 + pou; — ¥0 ; = 0 (4.5a)
@,ii + %@ + iwnui,i =0 (4.5b)

where © denotes the temperature increment and +, 5 and 7 are parameters given by
Nowacki (1975). It is evident from eqns (4.3) and (4.5) that there exists an analogy
between poroelasticity and thermoelasticity in the frequency domain (Bonnet, 1987

and Cheng et al., 1991).

In view of the analogy between poroelasticity and thermoelasticity in the fre-
quency domain it is possible to obtain a poroelastic Green’s function from a corre-
sponding thermoelastic Green’s function through the change of relevant parameters.
Bonnet (1987) and Cheng et al. (1991) obtained poroelastic Green’s functions for a
full plane from the solutions given by Kupradze et al. (1979) and Nowacki (1975),
respectively, for thermoelasticity. However, Green’s functions for a poroelastic half-
plane subjected to internal excitations cannot be derived by using the analogy be-
tween poroelasticity and thermoelasticity since the thermoelastic Green’s functions
for an internally loaded half-plane are not available in the literature. Therefore,
a formal solution of the corresponding boundary value problems with the aid of

general solutions of equns (4.1) is necessary.

At this stage, the half-width of a loading strip denoted by a is selected to
nondimensionalize all length parameters including the coordinate frame. Stresses

and pore pressure are nondimensionalized with respect to shear modulus 1 of the
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half-plane. All variables will be replaced by appropriate nondimensional variables,

but the foregoing notations will be used for convenience.

The equations of motion, eqns (4.1), can be solved by introducing the following

displacement decompositions based on Helmholtz representation of a vector field.

8¢1 ('737 Z>t) + a’lpl ("Ba Z, t)

oz, 2,1) = = (4.60)
sl z,t) = SABAY Hhle Y (4.6b)
wa (@, 2,t) = a¢2gj’t) + sz(aw; %) (4.6¢)
w3, 2,1) = 8¢2(0”‘;z’t) - awzg’;z’t) (4.6d)

where ¢; and t; (i =1,2) in equs (4.6) are scalar and vector fields, respectively.

Substitution of eqns (4.6) into eqns (4.1) together with the assumption that the
motion is time-harmonic yields two sets of partial differential equations for scalar

fields ¢y, o and vector fields 41,1, as

(A +2)V2 +6°]¢1 = — [aM* V2 + p*6%] ¢, (4.7a)
[0M*V? 4 p*6%] ¢y = —[M*V2 + m*§% — iv*6]gy  (4.70)
and
[V2 + 891 = —p* 874y (4.8a)
P8y = —[m*6% — ib*68)4h, (4.8b)

where the dimensionless parameters \,, M*, p*,m* and b* are defined as

A
Ne= A oir 3 =2y = M
[ 7
pr=—m"=— and b*= (4.9a)

p p VPh

and the nondimensional frequency, 6, is defined as

= \/gwa (4.95)
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The Fourier integral transform (Sneddon, 1951) of a function f(z, z) with re-

spect to the z—coordinate is defined by

&z \/2_/ f(z,2)e % %dg (4.10a)
s

and the inverse relationship is given by

f(z, 2) = / f(€ 2)e®2d¢ (4.100)

It can be shown that the general solutions of Fourier transforms of @; and 1;

(¢ =1,2) can be expressed as

$1(&,2) =A(£,6)e™" + B(£,8)e™" + C(£,86)e™ + DI(£, §)e=r* (4.11a)
$2(¢,2) =xa {A(£ ,8)e™* + B(¢, 5)6-»,1z} + X2 { C(¢,6)e™* + D(¢, 5)6*72/2} (4.110)
P1(&,2) =E(¢&,6)e™? + F(¢,6)e 3= (4.11¢)

$a(6,2) =xa{ BE, 6)e* + F(¢,6)e ™ | (1.11d)

where A(¢,0), B(,6),C(€,6),D(£,6), E(¢,6) and F(¢,6) are arbitrary functions to
be determined by using appropriate boundary and /or continuity conditions relevant

to a given problem and

(A +2)L2 - 42

Xi = g — oM LE i=1,2 (4.12a)
P*52

Xs = s s (4.120)

Vi =4/& — L2, i=1,2 (4.12¢)

13 = /&% — 52 (4.12d)
Note that the radicals (¢ = 1,2,3) are selected such that Re(ry) > 0. In addition,

2 —4 :
="ty Z’l 2 (4.13a)
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— /w2 -4
2= V% 7 (4.13b)

2
S% = (p*xs + 1)6? (4.13¢)
m*§% — ib*6) (A + 2) + M*§% — 2aM* p* 2
oy = ) - +)2)M* (4.13d)
m*6? — ib*5)62 — (p*)26
wy = ( o —I—)2)M* ) (4.13¢)

where L1, Ly and S are the dimensionless complex wave numbers associated with
three kinds of dispersive and dissipative body waves, which were denoted by Biot
as the dilatational wave of the first kind (fast wave), the dilatational wave of the
second kind (slow wave) and the rotational wave, respectively (Biot, 1956a). In the
limiting case of an ideal elastic solid (M* = p* = m* = b* = o = 0), only ¢; and 9,
are involved in the analysis. The governing equations for ¢; and 1 are eqns (4.7a)
and (4.8a), respectively, with the right hand side of these equations being equal to
zero and eqns (4.7b) and (4.8b) vanish automatically. It is immediately evident that
the resulting solutions for ¢; and 1; are identical to those given by Lamb (1904).
In addition, Ly and S are identical to the wave numbers of pressure (P) and shear

(SV)) waves propagating in an isotropic ideal elastic solid (Achenbach, 1973).

In view of eqns (2.1), (4.2b)-(4.2d), (4.6) and (4.11), the general solutions for
Fourier transforms of displacements u; and w; (¢ = z,z), stresses 0ii(i,j = xz,2)

and excess pore pressure p can be expressed as

Ug (€, 2) =16 (Ae™? 4+ Be™% + Ce"?* + De™12%) 4 (Ee™s” — Fe2%) (4.14a)
Us(§,2) =71 (A™* — Be™%) 4 45 (Ce™* — De™™%) — i¢(Be™ + Fe™ %) (4.14b)
W (¢, 2) =i€ { x1(Ae"? + Be™ M%) 4 x5 (Ce™?* + De“W)}

+ X373 (Ee™* — Fe™ %) (4.14c)

’[[}z(g, Z) =X171 (Ae’hz _ Be—’)'lz) + X272 (Ce’)’zz _ De—’yzz)
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~ i€x3 (Ee™* + Fe~17) (4.14d)
Oz0(§, 2) =61 (A€M + Be™"%) 4 ¢ (Ce™* + De™12%) + 2i¢yy (Be™* — Fe~ %) (4.154)
506, 2) =2i¢ {m (A€™* — Be™7) 4 (Ce™ — De) }

+ 63 (Be” + Fe™ %) (4.15b)

0..(€,2) =0 (AG“Z + Be_“z) + B2 (C’e”z + De_“’zz) — 2iéy3 (Ee"”z — Fe‘73z)(4.150)

P&, z) =m (Ae™” + Be™"%) 4y (Ce™* + De™72%) (4.16)
where

m = (a4 xi)M*L?, i=1,2 (4.17a)

s = (&2 +43) (4.17¢)

Bi = 292 — NL? — an;, 1=1,2 (4.17d)

The fluid discharge, which is defined by the time derivative of the fluid dis-

placement relative to the solid matrix, can be expressed as
qn = 16wy, n==,z (4.18)

where ¢, is the fluid discharge, nondimensionalized with respect to \/u/p, in the

n-direction (n = z, 2).
4.3 Solution of Boundary Value Problems

Boundary value problems for a poroelastic half-plane subjected to buried time-
harmonic excitations as shown in Fig. 4.1 are considered in this section to derive
the Green’s functions. The solutions corresponding to four basic loading config-

urations, i.e. a vertical load, a horizontal load, a fluid source and applied pore
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fluid pressure, which are assumed to be distributed over a strip of width 2a at a
depth z = 2/, are presented. The loading is uniform in the y-direction so that
the resulting deformations are of plane strain type. A solution to the internally
loaded half-plane can be derived by considering it as a two-domain boundary value
problem. General solutions for each domain are given by eqns (4.14)-(4.16) and
(4.18) with arbitrary coefficients 4;(¢,6) to Fy(¢,8) where a subscript ¢ (1 = 1,2)
is used to identify the domain number. The domain “1” is bounded by 0 <z<2
and domain “2” by 2/ < z < co. Note that for domain “2”, arbitrary function-
s A2(£,0),C(&,6) and Ey(€,6) = 0 to ensure the regularity of the solutions at
infinity. The boundary and continuity conditions corresponding to a poroelastic

half-plane subjected to buried loadings/fluid source can be expressed as

oD(z,0) =0, n==zc,z (4.19a)
pM(z,0) =0 (4.19b)
ulM(z,2') — u®(z,2') = 0, n=umz,z (4.19¢)

In the above equations, the superscript (1 =1,2) is used to denote the domain
number and H( ) denotes the unit step function. The intensity of distributed load
acting in the n-direction (n = x, z) over a strip of width 2a at depth z = 2’ and a
fluid source applied at z = 2’ over a width of 2a are denoted by Ty, (z) (n = z, z) and
Q(z), respectively. The boundary and continuity conditions given by eqns (4.19) are
consistent with the discussion given by Deresiewicz and Skalak (1963). According
to eqns (4.19), a pore pressure discontinuity does not exist at z = 2’ and the applied
load is completely taken by the solid skeleton at z = 2’. Solutions corresponding to
eqns (4.19) are the required Green’s functions for boundary element methods when

the excitation is represented by a line load and a line fluid source.

The boundary and continuity conditions corresponding to a poroelastic half-

plane subjected to applied pore fluid pressure at a depth z = 2’ can be expressed
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P (z, 2') — p(z, Z) = P—/(ji) [H(z+a) — H(z — a)] (4.20a)
o) o) = L [Hw o)~ Hla-a)] (4200
o-glm) (JI, Z,) - ngm) ($> Z/) =0 (4.206)
wiM(z,2') —w®(z,2') =0 (4.20d)

together with the boundary and continuity conditions, given by eqns (4.19a)-(4.19c).
In eqns (4.20), P(z) denotes the intensity of distributed fluid pressure applied over
a strip of width 2a. Note that according to eqns (4.20), a discontinuity does not
exist in the solid skeleton stress at z = 2/. This type of loading is not required
as the kernel functions of boundary element methods. However, Green’s functions
corresponding to eqns (4.20) are required to simulate the pore pressure jump that
could exist under a buried/surface impermeable foundations by using the integral

equation method given by Wong and Luco (1986).

Substitution of general solutions for displacements, stresses, pore pressure and
fluid discharge defined by equs (4.14)-(4.16) and (4.18) in eqns (4.19) and (4.20)
yields a set of linear simultaneous equations to determine arbitrary functions corre-
sponding to the two domains. The following solutions are obtained for the non-zero
arbitrary functions appearing in the general solutions given by eqns (4.14)-(4.16)

and (4.18) for different loading cases.

4.3.1 Arbitrary Functions for Vertical Loading

e M _

A= 7O (4.21q)
2 (V5e—7121 + 28%yze~ 12" 4§2C37/1e“732') _
B = SR T.(¢) (4.21b)
' —"/gzl _
By = B; - Alezﬁz ; Ci = —.%M_TZ(g) (4.216)
! (252’/43_712, — yge~ 1% 4 4€2§3V16—73ZI) _
Dy = 2uRN; T.(¢) (4.21d)
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vy e~ 7% _

.D = .D it C 272’2,, E = TZ 4.21
SR v (4210
vy (vae™% — yge™ %) titprme 17 _ :

= T, 4.21
1 273 RN (&) (4.21f)
Fa= Byt By (1.219)

where

n = (771 - 7]2)7 Vo = ’]71,62 - ')72[31’ V3 = 47]17273’ vy = 4772,),1,),3 (422&)
Vs = G3ly — §Z(V3 +v4), vg=qvy+ 62(y3 tug), vr=cve+ & (vs — va)(4.220)
Ny =281 — v, R=—quy+&(vs - w) (4.22¢)

It is noted that A;(,6),B1(,6),Ba(£,6),C1(¢,6), D1(&,6) and Dy(¢,6) are
even functions of { whereas E(¢&,6), F1(&,68) and Fy(¢,6) are odd functions of & if
the Fourier integral transform of the applied vertical loading denoted by T, (¢) is
an even function of . In addition, R is the Rayleigh equation corresponding to a
poroelastic half-plane. In case of a uniformly distributed vertical load of intensity

fo applied over a strip of width 2aq,

- _ [ 2sin({a) .
T.(¢) = \/; : fo (4.23q)

and for a vertical point load of magnitude Fp,

_ Fy

T,(¢) = Nors (4.23b)

The solutions for a vertical load applied in a poroelastic full plane can be
derived from the above solutions by taking B (¢,8) = D;(&,6) = Fi(¢,6) = 0 and
setting |2 — 2’| = ||, where the origin of the coordinate system is now defined at
the point of application of the load.

It is also useful to identify the wave fields created by the applied vertical load
on the basis of the solutions given by eqns (4.14)-(4.16) and (4.21). For example,

it is noted that in view of eqns (4.21) the terms Ay, Cy and FE;, when substituted
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Aq

in eqns (4.14)-(4.16), represent the Biot’s fast and slow waves, and the rotational
wayves, respectively, propagating in a poroelastic full plane. The influence of the
free boundary at z = 0 is reflected in the solutions by the terms By, D; and Fj.

The reflected field due to each type of body waves consists of Ly, Ly and S waves.

4.3.2 Arbitrary Functions for Horizontal Loading

i€(x2 — x3)e~ "M _
B te 4.24q
271 N2 Q) ( )
Zf{(m — Xa)vse " + 282 (x1 — Xa)vae™ T — (xq — X2)<3V4e_732/}jw 4.24b
B 271 LR Ny =(£)(4.240)
= | 2712’ — (X3 — Xl)e‘“hz' -
By + Aje™?, Cy A T.(¢) (4.24¢)
if{%z(xz — Xa)vse™ M — (x1 = x3)vee ™ + (x1 — X2)<31/36_73ZI}T (£)(4.24d)
— 2y22' — (X2 - X1)€*73zl —
D+ Cie ; Ey 2l T:(8) (4.24¢)
4§2V2{(X3 — x2)e" " + (x1 — XB)e_”z,} - (x1 — Xz)v7e—73z'T ,
N 2uRN, = (€) (4.24f)
= F) — B e?r* w244)
where
Ny = (x1 — x2)(€* — 73) (4.25)

It is noted that A;(¢,6),B1(¢&,6), Ba(£,6), Cy (¢, 6),D1(¢,6) and Dy(¢,6) are
odd functions of £ whereas E1(¢,6), F1(£,6) and Fy (&,6) are even functions of ¢ if
Tw(€) is an even function of ¢ where T, (¢) is the Fourier integral transform of the
applied horizontal loading. Appropriate values of T, for a uniform strip load and
a concentrated horizontal load are given by eqns (4.23a) and (4.23b), respectively.
It should be also noted that in view of eqns (4.24) the terms A;, C; and E; are

associated with the two dilatational waves and the rotational waves, respectively,
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propagating in a poroelastic full plane due to the applied horizontal load. The

presence of the free boundary is reflected in the solutions by the terms By, Dy and

Fy.

4.3.3 Arbitrary Functions for Fluid Source

e vse M 4 282y, e 12 \/~
A = B; = (4.26a)
1T 28500 — xa)m \/762 ' 26(x1 — x2)11 R (e
, g1
By = By +A16271z , Ci = \/—-Q (4.26[))
26(x2 — x1)72
26 v3e ~mz' — Vg€ —727’ \/— Dy 3!
Dy = Dy = Dy + Cye”72* 4.26¢
' 26(x1 — x2)72R o poT (4.26¢)
2bvy (e~ M7 — e~ 1) \/7
By =0, Fi = Fy =F 4.26d
1 1= 0 = 1) Q¢ 2 = ( )

Note that A1(¢,6), B1(&,6), B2(¢,6),C1(¢,6), D1(¢,6) and Dy(€,6) are even
functions of ¢ whereas Fy(¢,6) and Fy(¢,6) are odd functions of ¢ if Q(¢) is an
even function of ¢ where Q(¢) is the Fourier integral transform of the applied fluid

source. In case of a uniformly distributed fluid source of intensity gy over a width

of 2a,
Q) = \/g%@qo (4.27q)

and for a line source of strength Qy,

S8y = Qo
Qe = (4.270)

It should be noted from the solutions given by eqns (4.26) that the wave fields
emanating from a fluid source do not create a rotational wave since E; = 0. The
terms A; and C; are associated with the two dilatational waves propagating in an
infinite poroelastic plane due to a fluid source and the presence of the free surface is
reflected in the solutions by the terms By, D; and Fj. However, the total field in a
half-plane consists of a rotational wave due to the reflection of the two dilatational

waves at 2z = 0.
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The solutions for a fluid source applied in a poroelastic full plane can be derived
from the above solutions by taking By (¢,6) = D1(¢,6) = Fy(¢, §) = 0 and setting
|z — 2’| = ||, where the origin of the coordinate system is now defined at the point
of application of the source. For example, the substitution of eqns (4.26) in eqn
(4.16) with the above conditions yields the following solution for pore pressure due
to a line fluid source of strength Qg applied in a poroelastic full plane.

plz, z) = \/_EZQOG /OO ! [21—6"71"4 — 1%6_721""} cos(éx)d¢ (4.28)
0

B 2wé X1—xz2lm 72

The above solution can be written in closed form by considering the following

relationships (Erdélyi, 1954)

oo e—-lg\/ £2+1’2

o VETE cos(§z)d§ = Ko(nv/ p? + z?) (4.29a)
and
Ko(z) = ——;—iwﬂéz)(—iz) (4.290)

where Ky and Héz) are the modified Bessel function of the second kind of order zero
and the Hankel function of the second kind of order zero, respectively (Abramowitz

and Stegun, 1972). The substitution of eqns (4.29) in eqn (4.28) results in

p(z,2z) = \/giﬁx?%x_z) [7)1H(()2)(L17’) - ngﬂéz)(Lz’f')] (4.30)

where

r=x?+ 22 (4.31)

It can be shown that the above solution is identical to the complex conjugate of eqn
(42) of Cheng et al. (1991) which is the pore pressure due to a line fluid source.
Note that Hél) (Hankel function of the first kind) appears in the expression given
by Cheng et al. (1991) due to a time factor of e~ being used whereas in the
present study a time factor of e** is used. The appropriate outgoing waves are
represented by Hé?') in the present case. Therefore, eqn (4.30) has to be identical
to the complex conjugate of eqn (42) of Cheng et al. (1991) (Eringen and Suhubi,
1975).
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4.3.4 Arbitrary Functions for Applied Fluid Pressure:

(A\* +2)Lie~n?

A1 = Q[I,Nl P(é‘) (432&)

(\* + 2){1/5L§e_7‘zl + 2¢2%, (,836_7221 - ,356_73zl)}

TN, P(¢) (4.320)

B = -

: N4 2)L2e~727 _
By = By — Aje®M? 0:( 1 P 4.32
2 1 1€ ) 1 2N, (f) ( C)

A* 4+ 2) ygLie™ 2% — 2¢2n, (BN + Bse 5%
1

Dy = SRV, P(¢) (4.32d)

, i€\ +2)(L} — L})e "
Dy = Dy — Gy E,=— P 4.3%¢
2 1 1 1 2’)’3,[LN1 (f) ( )

Y +2){a(Bae™ — fae™) vy (I} — L3)e=*' )

F,=— P .32
1 i (6 (432f)
Fy = Fy + Eye?s® (4.32¢)
where
B3 = dvoy3 L3, Ba = dmys L3, Bs = 23(L} — L3) (4.33)

It is noted that Aq(¢,6), B1(&,6), B2(€,6), C1(&,6), D1(€,6) and Dy(¢,6) are
even functions of £ whereas Fy(¢,6), F1(¢,6) and Fy(€,6) are odd functions of ¢ if
P(¢) is an even function of ¢. In addition, P(¢) is the Fourier integral transform of

the applied fluid pressure. In case of the uniformly applied fluid pressure of intensity

P(¢) = \/g g{l(;—a)po (4.34)

The wave fields created by the applied fluid pressure can also be identified on

Ppo over a strip of width 2a,

the basis of the solutions given by eqns (4.14)-(4.16) and (4.32). For example, in
view of eqns (4.32), the terms A;, C; and Ej, when substituted in eqns (4.14)-

(4.16), represent the two dilatational waves and the rotational wayves, respectively,
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propagating in a poroelastic full plane. The presence of the free surface is reflected
in the solutions by the terms By, D; and F; and the reflected field due to each body

wave consists of all three types of waves.
4.4 Transient Green’s Functions

The Green’s functions corresponding to a poroelastic half-plane subjected to
internal transient excitations (loadings and fluid sources) are considered in this
section. In transient dynamic problems, it is convenient to employ the Laplace
transform to remove time dependency. The Laplace-Fourier transform of a function
f(z,z,t) with respect to variables t and z, respectively, is defined by (Sneddon,
1951) ) . o oo |

i ze) = —= /0 /_ oz e (4.350)
In eqn (4.35a), s and ¢ denote the Laplace and Fourier transform parameters,

respectively. The inverse relationship is given by

1 g+toco  poo )
/ F(&, 2, 5)eli€2s8) ge g (4.35b)

T,2,1) =
f( ) 7:\/ 8nd 0—100

where the line Re(s) = ¢ is to the right of all singularities of f and i = /—1.

It can be shown that the general solutions for Laplace-Fourier transforms of
displacements, stresses and excess pore pressure are identical to those given by eqns
(4.14)-(4.16) for the time-harmonic case with the following definitions of parameters
xi and ; (2 =1,2,3), @y, wy and S2.

Xi = p*s* +aM*L?’ 77 S

p=0/E2 4112, i=1,2, V3 =€+ 52 (4.360)

_ (m*s? +b*s) (A + 2) + M*s? — 2aM* p* 2

(4.36a)

w1 OF + 2) (4.36¢)
m*sz—}—b*s 32_ *234 .
wy = ( o +)2)M*('0 ) , 5% = (p*x3 +1)s? (4.364)

Note that the radicals v;(i = 1,2,3) are selected such that Re(y) > 0. In addition,
the fluid discharge, nondimensionalized with respect to V i/ p, in the n-direction

(n =z, 2) can be expressed in the present case as
Gn = $Wny, n==zz (4.37)
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The transient solutions for displacements, stresses, excess pore pressure and flu-
id discharge corresponding to internal excitations are identical to the solutions given
in Section 4.3 for time-harmonic problems with the parameters x;,v; (¢ = 1,2,3),
etc. defined as shown in eqns (4.36). The Fourier transforms of excitations denoted
by Tn(€) (n = z,2) in equs (4.24) and (4.21), Q(¢) in eqns (4.26) and P(¢) in eqns
(4.32) are now replaced by Ty, (£, s) (n =z, 2), 6Q(€, s)/is and P(¢, s), respectively.
Note that T,,(¢, ) (n = z, 2), Q(¢, 5) and P(¢, s) are the Laplace-Fourier transforms
of the intensity of loadings, fluid source and fluid pressure, respectively, applied at
the level z = 2/. Green’s functions required in the development of boundary inte-
gral equation methods for transient dynamic problems of a poroelastic half-plane
are obtained when the excitations are represented by impulsive concentrated loads
and fluid source. The values of T,,(¢,s) (n = z,2) and Q(&,s) corresponding to

impulsive loads and fluid source are given by eqns (4.23b) and (4.27b), respectively.
4.5 Numerical Solutions
4.5.1 Numerical Scheme

The development of a numerical solution scheme to evaluate Green’s functions
corresponding to a poroelastic half-plane subjected to buried loadings and fluid
sources is considered in this section. The numerical evaluation of time-harmonic
Green’s functions is discussed in detail since the solutions for transient problems in
the Laplace domain have similar explicit forms. It is expected that time-domain
solutions for transient problems can be determined by using an accurate Laplace
inversion scheme such as Stehfest formula [eqns (2.38)] as discussed in Section 2.5.1
for quasi-static problems. In Chapter 6, transient Green’s functions are computed
in boundary element analysis and further details related to the computation of

transient Green’s functions are given there.

The complete solutions for displacements, stresses, pore pressure and fluid dis-
charge corresponding to time-harmonic problems are given by equs (4.14)-(4.16)
and (4.18) together with the solutions for arbitrary functions, A;(&,8) to F(&,8)
(1 =1,2), given by eqns (4.21), (4.24), (4.26) and (4.32). It is found that the so-

lutions for poroelastic field at an arbitrary point appear in terms of semi-infinite
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integrals with a complex-valued integrand. Given the complexity of the integrand-
8, it is natural to employ a suitable numerical quadrature scheme to evaluate the
integrals as discussed in Section 2.5.1 for quasi-static problems. The singularities
of the integrands need to be investigated before the establishment of a numerical
integration procedure. The understanding of the singularities of the integrands can
be obtained by treating £ as a complex variable. It is noted that due to the p-
resence of the radicals 7;(i = 1,2,3) the Riemann surface of the integrand of each
integral has eight sheets. However, the condition Re(v;) > 0, which is required to
satisfy regularity conditions at infinity, implies that only the sheet in which radicals

7:(7 = 1,2,3) have positive real parts everywhere is relevant.

The important singularities of the integrand are the branch points of the radi-
cals 7;(¢ = 1,2,3) as defined by eqns (4.12c) and (4.12d) and poles of the function
R defined in eqn (4.22c). For a poroclastic half-plane, the branch points are given
by L1, Ly and S, i.e. the wave numbers corresponding to three kinds of body waves
defined by eqns (4.132), (4.13b) and (4.13c), respectively, while poles are given by
the roots of the following equation which is the Rayleigh equation for a poroelastic

half-plane governing the propagation of the surface waves.
~bady +€%(d3 —dy) =0 (4.38)

It is noted that the surface wave for a poroelastic medium is also dispersive and
dissipative like body waves if internal friction exists (i.e. b # 0). Equn (4.38)
can be reduced to the classical Rayleigh equation in the case of an isotropic elastic
solid. Generally, these branch points and poles are all complex-valued with negative
imaginary parts. However, their locations can be on the real axis if the viscous
coupling between the solid matrix and the pore fluid is neglected (b=10). It can be
shown (Deresiewicz, 1962) that the Rayleigh wave in a poroelastic half-space can
be nearly real-valued when the frequency is very low or very high. In this thesis,
the dissipative nature of the half-plane is incorporated (i.e. b # 0) therefore the

real £ axis is free from any singularities.

The dynamic Green’s functions are computed by using an adaptive version
of extended trapezoidal formula with a sampling interval of A¢. For transient

problems, the integrand in the semi-infinite Fourier integrals does not have any
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branch points or poles along the real ¢-axis therefore the integral with respect to
& can be performed on the real ¢-axis. It is also found that a sampling interval
of A = 0.1, as in the case of quasi-static problems discussed in Section 2.5.1,
is accurate enough in the numerical evaluation of Green’s functions for transient
problems. However, for time-harmonic problems, a smaller integration interval
has to be employed since the integrands become nearly singular when the path
of integration are in the neighbourhood of the pole. Therefore, A¢ = 0.005 for
|¢ — Re(ér)] < 0.25 where {g is the pole given by eqn (4.38) and A¢ = 0.05
when ¢ is outside that region. Note that for the case of a dry elastic material (an
ideal elastic material) and a poroelastic material with inviscid pore fluid (b=0)
where the branch points and poles are on the real axis, one percent attenuation
(material damping) is incorporated in the shear modulus in the numerical evaluation
of the integrals (Apsel and Luco, 1983). Alternatively, it is possible to deviate the
integration contour initially into the first quadrant of the complex plane to avoid
the singularities on the real axis and then fall back to an integration along the
real axis. The deviated portion of the contour should be selected in light of the
location of singularities of the integrand. It should be noted that the integrands
of semi-infinite integrals do not have any singularity in the first quadrant of the
complex plane since the response of the half-plane has to be finite for large values
of z and z. The integrand of the semi-infinite integrals decays exponentially with
the Fourier transform parameter if z # 2. However, for z — 2/ , the integrand
decays rather slowly. Convergence can be enhanced in this case by investigating the
asymptotic behaviour of the integrand and devising a numerical integration scheme
that incorporates the asymptotic behaviour of the integrand (Apsel and Luco, 1983
and Rajapakse, 1990). Green’s functions corresponding to a line load and a line
fluid source are singular at z = 2’ and 2 = 0. The order of these singularities
are identical for half-plane and full plane problems. A rigorous examination of the
nature of singularities can be obtained by investigating the closed form solution for

a full plane (Cheng et al., 1991).

Table 4.1 presents a comparison of numerical solutions for nondimensional
stresses of a homogeneous ideal elastic half-plane under a static line load ap-

plied at a depth z = a below the free surface (Melan, 1932). Solutions ob-
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tained from the present analysis for the limiting case of an ideal elastic material
(M* = p* =m* = b* = a = 0) and § = 0.01 are compared with the numeri-
cal solution given by Poulos and Davis (1974) for the Melan’s problems to veri-
fy the general accuracy of the numerical quadrature scheme used to compute the
semi-infinite integrals appearing in the Green’s functions. Table 4.2 presents a
comparison of elastodynamic solutions corresponding to an ideal elastic half-plane
(M* = p* = m* = b* = a = 0) given by Rajapakse and Wang (1991) with those
obtained from the present study when § = 1.0. It is evident that the two solutions
presented in Tables 4.1 and 4.2 are in excellent agreement including at points which
are very close to the point of loading. Table 4.3 presents the solutions for pore
pressure of a poroelastic full plane (A\* = 1.5, M* = 12.2, p* = 0.53, m* = 1.1,
b* = 2.3 and o = 0.97) subjected to a vertical line load. Comparison of solutions
obtained from the numerical integration scheme used in the present study with the
closed form solutions given by Cheng et al. (1991) confirms that the two solutions
are complex conjugate. The overall accuracy of the explicit solutions derived in this
study and the numerical integration scheme used in the computation of Green’s

functions is confirmed by these independent comparisons.
4.5.2 Numerical Results for Internal Excitations

The dynamic response of poroelastic half-planes of different material properties
to a selected set of time-harmonic internal loading configurations is considered in
this section. Three poroelastic materials identified as materials A, B and C and a
dry elastic material (an ideal elastic material) are considered in the numerical study.
The properties of these materials are: A\* = 1.5, M* = 12.0, p* =0.5, m* =1.1 and
a = 0.97. In addition, b* = 0,2.0 and 10.0 for material A, B and C, respectively.
Note that only the nondimensional parameter A\* is required in the case of a dry
elastic material. All numerical results presented hereafter correspond to the case
where the excitation is applied uniformly over a strip of width 2a located at a depth

z = a below the free surface of the half-plane.

Figure 4.2 shows the surface displacement profiles of the three poroelastic half-
planes and the dry elastic half-plane under internal time-harmonic excitations. So-

lutions are given for two frequencies of excitations, § = 0.5 and 2.0. Nondimensional
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vertical displacement, u},[= pu,/ foa], of the surface under a uniform vertical load-
ing of intensity fo is shown in Fig. 4.2(a). Fig. 4.2(b) shows nondimensional surface
displacement in the z-direction, u,[= pu./foa], due to a uniform horizontal load-
ing of intensity fo. Fig. 4.2(c) shows the nondimensional vertical displacement,
wh,[= 1/ pu./q0a], of the surface due to a time-harmonic fluid sink of intensity
go. It is evident from these solutions that the response of the half-plane depends
very significantly on the frequency of excitation of the loading. Both real and imag-
inary parts of the displacements shown in Figs. 4.2 vary rapidly with the distance
and become more oscillatory as the frequency of excitation increases. Due to the
complicated variation of the response it is difficult to identify a clear qualitative

relationship between the displacements and frequency.

Comparison of solutions presented in Figs. 4.2 also indicates that the poroelas-
tic properties of the medium has a significant influence on the response. It is noted
from Fig. 4.2(a) that the vertical displacements along the surface due to internal
vertical loading corresponding to poroelastic materials A and B are quite different
from the solutions corresponding to an ideal elastic material. The difference in the
response between poroelastic and ideal elastic materials is more substantial in the
case of the horizontal displacement along the surface due to an internal loading in
the z-direction. Solutions presented in Fig. 4.2(c) corresponding to time-harmonic
fluid sink show the largest dependence of the response on poroelastic material prop-
erties of the medium. Since poroelastic materials A, B and C have identical material
properties except for the material parameter b* it can be stated that the difference
in response noted in Figs. 4.2 reflects basically the influence of b* on the response.
However, as in the case of frequency, the dependence of response on b* is rather
complicated and the trends shown in Figs. 4.2 do not show a clear qualitative

relationship.

The influence of the parameter M* was also investigated by considering plots
similar to those shown in Figs. 4.2 for material B with different values of M*. It
was found that the influence of M* on the swiface displacements is negligible in
the range of 10 < M* < 1000. For M* < 10, the influence of M* is noticeable
but not very significant in the case of applied loading but it is substantially high

for the case of applied fluid sink. For example, the vertical displacement along the
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free surface due to vertical loading is found to be less than ten per cent different
when M* is increased from 1.0 to 10.0 but, for the case of applied fluid sink, uj,
with M* = 10.0 could be as high as five times of uz, with M* = 1.0 for z < 2a.
The influence of A* is found to be similar to that observed for an ideal elastic solid.
However, it is difficult to even qualitatively define the relationship between various
material parameters and the response due to the complicated dependence of the

response on \*, b*, M* and 6.

Figure 4.3 shows the nondimensional vertical displacements, u*,, u* gandul [=
puz[poal, along the z-axis due to vertical loading of intensity fy, fluid sink of
intensity go and fluid pressure of intensity po, respectively. It is found that u, along
the z-axis for a horizontal strip load does not show much deviation from the solutions
for an ideal elastic material (Rajapakse and Wang, 1991) and not presented here
for brevity. Fig. 4.3 indicates that at low frequency (§ = 0.5) the displacements
vary smoothly with the depth whereas at high frequency (§ = 2.0) the variations
become oscillatory. The influence of poroelastic properties is relatively more visible
on vertical displacements along the z-axis under a vertical load when compared
to vertical displacements along the free surface shown in Fig. 4.2(a). In general,
the influence of the poroelastic properties of the medium on the solutions shown in
Figs. 4.3 is similar to what observed earlier in Figs. 4.2 with the highest influence
of poroelasticity noted under applied fluid loadings. A kink exists in the real part
of vertical displacement profiles shown in Fig. 4.3(a) at z = a due to the loading
applied at this level. However, the imaginary part of the displacement is smooth
at this level. In all cases, the amplitude of vertical displacements decreases with

increasing z for z/a > 5.0 and becomes negligible for z/a > 10.0.

Fig. 4.4(a) shows the variation of nondimensional vertical stress, oy =
0.2/ fo], along the z-axis under the uniform vertical loading defined previously.
These solutions also show oscillatory variations with the depth at high frequency
(6 = 2.0) while at low frequency (6 = 0.5), the variation of stress with depth is s-
mooth. Due to the loading applied at z = q, there is a unit discontinuity in the real
part of 07, at z = a. Imaginary part of o7, is smooth at this level. Comparison of
solutions corresponding to different materials indicates that the poroelastic material

properties have a significant influence on the vertical stress at high frequencies. The
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imaginary part of 0%, corresponding to materials A and B is substantially different
from the ideal elastic material when § = 2.0. At low frequencies (§ < 0.5), o3,
corresponding to material A and the ideal elastic material are nearly identical. Fig.
4.4(b) shows the variation of the nondimensional vertical stress, o},,[= ../po);
along the z-axis under applied fluid pressure of intensity py applied over a strip
of width 2a located at z = a. A discontinuity of magnitude o exists in the real
part of 0}, at z = a. This is consistent with eqn (4.20b). The influence of poroe-
lastic properties on the real part of o7,, in Fig. 4.4(b) is less than that noted in
Fig. 4.4 (a) and the general trend of variation with z is somewhat identical. The
imaginary part of o}, depends significantly on poroelastic material properties as

in the case of Im[o*, ] shown in Fig. 4.4(a). The real part of 0., shown in Figs.
4.4 decreases gradually with z while the imaginary part shows oscillatory variations

with decreasing magnitudes.

The profiles of nondimensional pore pressure along the z-axis due to applied
vertical loading, pi[= p/fo], and due to applied fluid pressure, py[= p/po], are
shown in Figs. 4.5(a) and 4.5(b), respectively. The nondimensional pore pressure,
p*, depends significantly on the frequency and poroelastic material properties. As
in the case of o¥,,, the variation of pore pressure along the z-axis is quite smooth
at low frequencies but becomes oscillatory for § > 1.0. There is no singularity in
the pore pressure profiles due to the applied vertical loading. The magnitude of p}
is found to increase with increasing b* which is consistent with the fact that higher
b* means a more impermeable medium. In addition, Fig. 4.5(a) indicates that
significant pore pressure is developed under applied vertical loading. Pore pressure
profiles shown in Fig. 4.5(b) have a unit discontinuity in the real part at z = a due
to the applied pore pressure at this level. This is consistent with the eqn (4.20a)
and no discontinuity exists in the imaginary part of p;. The influence of poroelastic
material properties is negligible on Re[p;] profiles but quite significant on Im[p;].
However, the frequency of excitation has a significant influence on both real and

imaginary part of the pore pressure profiles shown in Figs. 4.5(a) and 4.5(b).
4.6 Conclusions

A set of Green’s functions is presented for displacements, stresses, pore pressure
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and fluid discharge of a poroelastic half-plane subjected to time-harmonic internal
excitations applied to the solid and fluid phases. It is also shown that Green’s
functions corresponding to transient excitations (loadings and fluid sources) can be
derived from the time-harmonic solutions through appropriate redefinitions of vari-
ables. The solutions appear in terms of complex-valued semi-infinite integrals with
an integrand that is oscillatory. Numerical solutions are evaluated by direct numeri-
cal integration of the semi-infinite integrals. Comparisons with existing solutions for
static and dynamic responses of an ideal elastic half-plane and for dynamic response
of a poroelastic full plane confirm the accuracy of the present numerical quadrature
scheme used in the evaluation of the Green’s functions. Internal strip loadings in
the vertical and horizontal directions and internal strip fluid sink/pressure are con-
sidered in the numerical study. Numerical results presented in this Chapter indicate
that the response of the medium is significantly influenced by poroelastic material
constants, b* and M*, and the nondimensional Lamé constant \*. Numerical results
also show a strong dependence of the response on the frequency of excitation. In
general, the response shows a higher dependence on poroelastic material properties
when the excitation is applied to the fluid when compared to the solid skeleton.
Due to the complicated nature of the dependence of the response of the medium on
b*, M*, A* and 4, it is difficult to identify a clear qualitative relationship between

governing parameters and the response.

The Green’s functions presented in this Chapter confirms the fact that the
poroelastic solutions differ substantially from ideal elastic solutions. Therefore, the
incorporation of poroelastic behaviour of natural soils is important in the study
of dynamic soil-structure interaction problems. Green’s functions presented in this
Chapter are useful in the analysis of a broad class of problems related to earthquake
engineering, geotechnical engineering, geophysics by using the boundary integral
equation methods and other techniques. The present solution is also useful in the
assessment of accuracy of finite element and other approximate numerical methods

that can be used to study dynamic response of poroelastic materials.
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Table 4.1: Comparison of vertical stress due to a vertical line load Vj and shear stress
due to a horizontal line load Hy applied at depth z = a of an ideal elastic half-plane
(v =10.25)

zfa ao..(0,2)/Vy a0,(0,z)/Hy
P&D (1974)T Present study | P & D (1974:)T Present study

0.5 0.2672 0.2672 0.0314 0.0314
0.99 26.3127 26.3126 5.2517 5.25016
1.01 -26.7371 -26.7369 -9.3578 -9.3580
1.5 -0.7028 -0.7027 -0.1426 -0.1425
2.0 -0.4087 -0.4086 -0.0786 -0.0785
2.5 -0.2990 -0.2989 -0.0536 -0.0536
3.0 -0.2387 -0.2386 -0.0398 -0.0398

T Poulos and Davis (1974).

Table 4.2: Comparison of vertical displacement and vertical stress due to a vertical
strip load of intensity f; applied over a strip of width 2a at depth z = a of an ideal

elastic half-plane (v = 0.25 and § = 1.0)

pu(0,2)/ foa 0.:(0,2)/ fo

zfa | R& W (1991)% | Present study | R & W (1991)F | Present study

Re Im Re Im Re Im Re Im

0 |-0.0186 | -0.5895 | -0.0187 | -0.5893 0 0 0 0

0.5 |-0.0042 | -0.5941 | -0.0041 | -0.5939 | 0.0873 | 0.2485 | 0.0874 0.2484
0.99 | 0.0151 | -0.5417 | 0.0153 | -0.5415 | 0.2126 | 0.4179 | 0.2127 0.4176
1.01 | 0.0128 | -0.5386 | 0.0131 | -0.5385 | -0.7826 | 0.4235 | -0.7827 0.4232
1.5 | -0.1165 | -0.4483 | -0.1162 | -0.4480 | -0.6337 | 0.5306 | -0.6338 0.5302
2.0 |-0.2175 | -0.3351 | -0.2171 | -0.3347 | -0.4271 | 0.5851 | -0.4271 0.5845
2.5 |-0.2765 | -0.2145 | -0.2761 | -0.2141 | -0.2171 | 0.5889 | -0.2172 0.5883
3.0 |-0.2947 | -0.0983 | -0.2942 | -0.0981 | -0.0317 | 0.5478 | -0.0320 0.5472

i Rajapakse and Wang (1991).
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Table 4.3: Comparison of nondimensional pore pressure (ap/Vy) due to a vertical line
load V4 applied in a poroelastic full plane (\* = 1.5, M* = 12.2,0* = 23,p" =

0.53,m* = 1.1 and « = 0.97)

0=0.5 6=20

z/fa | Closed form3 Present study | Closed form3 Present study
Re Im Re Im Re Im Re In
0.2 10.0032 | -0.0139 | 0.0031 [ 0.0139 | 0.0068 | -0.0465 | 0.0069 | 0.0466
0.5 1 0.0089 | -0.0232 | 0.0089 | 0.0232 | 0.0344 | -0.0665 | 0.0345 | 0.0665
1.0 | 0.0181 | -0.0290 | 0.0181 | 0.0290 | 0.0753 | -0.0540 | 0.0754 | 0.0540
1.5 10.0257 | -0.0290 | 0.0257 | 0.0290 | 0.0938 | -0.0181 | 0.0939 | 0.0182
2.0 10.0314 | -0.0259 | 0.0314 | 0.0259 | 0.0897 | 0.0191 | 0.0898 | -0.0191
3.0 10.0372 | -0.0160 | 0.0372 | 0.0161 | 0.0457 | 0.0613 | 0.0457 | -0.0614

§ Cheng et al. (1991).
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Figure 4.1 Coordinate system and internal loadings

86



0.45 0.35
T mat.A
_'“\“ ...... mat.B
\\ +e—a dry mat.
kA A §=05

* 3 o + 7’ N
=y ]
5} . '~ 4 ,I‘
=054 -7 7
1 s ) ’:7
] N2
—0.45 T T
0 2 4 6
z/a
.3
0.30 - mat.A
------ mat.B
—_— ==~——-= dry mat.
S 0189 =
*3H 0.00 e * :
=0.154 7/ S
-'0.30 1 T T
0 2 4
z/Q
/ (b)
0.9
- mat.A
| /6—\ """"" mat.B
0.8 _-,Z\ \ —— mat.C —_
T %97 2 .
) \ & -
c E

(e)

Figure 4.2 Displacements along the free surface for different poroelastic materials subjected to

internal excitations (2 = a)
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Chapter 5

DYNAMIC GREEN’S FUNCTIONS OF
A MULTI-LAYERED POROELASTIC HALF-PLANE

5.1 General

The stiffness matrix scheme presented in Chapter 3 is extended in this Chap-
ter to evaluate Green’s functions of a multi-layered poroelastic half-plane due to
time-harmonic loads and fluid sources applied in the interior of the layered medi-
um. The system under consideration consists of N layers of different properties
and thickness overlying a homogeneous half-plane. Fourier transforms of average
displacements of the solid matrix and the pore pressure at layer interfaces are con-
sidered as the basic unknowns. Exact stiffness (impedance) matrices describing
the relationship between generalized displacement and force vectors of a layer of
finite thickness and a half-plane are derived explicitly in the Fourier-frequency s-
pace by using exact general solutions given in Chapter 4 for Biot’s equations for
poroelastodynamics. The global stiffness matrix of a layered system and the global
force vector is assembled by considering the continuity of tractions and fluid flow at
layer interfaces. The numerical solution of the global equation system for discrete
values of Fourier transform parameter together with the application of numerical
quadrature to evaluate inverse Fourier transform integrals yield the solutions for
poroelastic fields. Selected numerical results for displacements, stresses and pore
pressure of multi-layered poroelastic half-planes are presented to demonstrate the
influence of layering, material parameters and the frequency of excitation on the
dynamic response of a layered poroelastic medium. The significant advantages of
the present method for dynamic problems when compared to existing approximate
stiffness methods and other methods based on the determination of layer arbitrary

coeflicients are discussed.

5.2 Stiffness Matrices

Consider a multi-layered system with a total of N poroelastic layers overlying a

poroelastic half-space as shown in Fig. 3.1. It is assumed that the deformations are
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plane strain in the zz-plane, ie. €y = €,y = €,, = 0. Following eqns (4.14)-(4.16)

and (4.18), general solutions for poroelastic fields governed by eqns (4.1) can be

expressed in the Fourier transform space as

where

u(é, z,w) = R(¢, 2,w)C(£,w)
f(£>z>w) - S(f) z,w)C(f,w)

u(, z,w) =<itly U, P>

(¢ 2,w) =<1, G, W, >

T

C,w)=<A B C D E F>T

(5.1a)
(5.10)

(5.2a)
(5.20)
(5.2¢)

In the above equations, £ and w are the Fourier transform parameter and the fre-

quency of excitation, respectively, and the superposed bar denotes the Fourier trans-

form of quantities with respect to the z-coordinate defined in eqn (4.10a). In ad-

dition, the arbitrary functions A(¢,w), B(¢,w), ..., F(¢,w) appearing in C(¢,w) are

to be determined by employing appropriate boundary and/or continuity conditions.

The matrices R({, z,w) and S(, z,w) in eqns (5.1) are given by

where

Ry =

Sq

Sy =

R=[R; : Ry

S=[S1 : S

’—._.66'712

771 6712

i _fe’"')'zz
_726"‘722
7726—722

[ —2péyrem=
ﬂl enz
| Y1 X1 671 z

[ 2puéye2?
1626_-72'2
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7 e "1z 72 ev2?

_66722
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and

mi=(a+x) ML}, i=1,2, 3 = p(€ +3) (5.50)

Bi = 22 — AL? — om;, i=1,2 (5.5b)
A+ ao? 2u) L3 — puw? 2

_ A+’ M +2p)LF — pw i=12, o= 1 (5.50)

¢ psw? — aM L? ’ T bw — mw?

In addition, p, A, o, M, p, ps, m and b are the poroelastic material constants
defined in Sections 2.2 and 4.2 and ~; (i = 1,2,3) and L? (i = 1,2) are given in
eqns (4.12c), (4.12d) and (4.13a), (4.13b), respectively, with the following definitions

of parameters w; (i = 1,2) and S2.

(mw? — bw)(A + ® M + 2p) + pw? M — 205w M

wy = Ot 2l (5.6a)
_(mw? — ibw) pw? — psluwt .
wy = O+ 20)0 (5.6b)
g _ W
S = —;(PfXS +p) (5.6¢)

For an nth layer (n = 1,2,..., N), let U™ denote a vector of generalized coordi-
nates whose elements are the Fourier transforms of displacements and pore pressure
of the top and bottom surfaces of the nth layer and F(™) denote a generalized force
vector whose elements are Fourier transforms of tractions and fluid displacements

of the top and bottom surfaces of the nth layer. Then,

U™ =< u(n)(fa Znaw) u(n)(fazn+1’w) >T (5.7&)

F =< £ (¢, 2,,0)  £0E 201,0) ST (5.7b)

The vectors u(™ and £(™ in eqns (5.7) are identical to u and f defined in eqns
(5.2a) and (5.2b), respectively, except that the material properties of the nth layer
are employed in the definition and 2z = z,, or Zn+1. The above selection of U™ and
F(?) satisfies the admissible boundary conditions at the boundaries of a poroelastic
layer and those at the interface of two poroelastic materials (Deresiewicz and Skalak,
1963). A relationship between the generalized displacement vector U™ and the
force vector F(™ for the nth layer can be established by introducing a stiffness

(impedance) matrix K(™ through the eqn (3.10).
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The explicit derivation of K (™) corresponding to two-dimensional poroelastody-
namics is extremely complicated since it involves the manipulation of fully populated
6 x 6 unsymmetric complex matrices. The algebraic complexity of this task may
be the main reason for the emergence of the approximate stiffness matrix method
(Lysmer and Waas, 1972 and Waas, 1972) which present a finite element represen-
tation for K(™) based on an approximate displacement field. Similar to the case
of three-dimensional quasi-statics presented in Section 3.2, the computer package
Mathematicais used in the explicit derivation of K(™). After lengthy manipulations,
it is found that K™ for elastodynamics is also symmetric and its elements can be

expressed as

Ist Row:

b = (62— 26%) [ (03, + 1)1 — (03, — 1)€4] (5.80)
Fiz = 1352 +26%) | (03 +1) #5 — dasnga] — £ (o, — 1) (21561 + s o]
bis = £(s5 ~ 26°) [4andr — (o, — 1) s — (a3, +1) ]

i = 2(53 — 267) | (0 — )€1 — asnth |

k15 = 2673 (3 — 26%) &3 [a3n¢3 — (a3, + 1)€2¢4] 5.8¢)

ke = 2¢ (g3 — 2¢7) [a3n¢6 — (Bn +1)¢r + (o, — 1)¢8] (5.8f)
where

Qip = e Vikn i=1,2,3, n=12..,N (5.90)

$1 =% [(a%n — 1) (a3, = 1) (my2 — 772’71)2 —4(o1q — azn)znlnﬂl’ﬁ] (5.90)
__#f_z 2 2 _ 2
g = - (aln 1) (a2n 1) (771 772) (5.9¢)

b3 :#(771(; 72) [(a%n —1) (b, + 1)my2 — (e, +1) (e, - 1)7;271] (5.94)

be =M¢_—@ |o2n (0t = 1)maz — a1a (03, — 1)7m | (5.9¢)
_ 2
05 = (0 1) (03, 4 1) - (e + ) (a ] (590)

o =22 [(a, = 1) o, = 1) (35 ) (m2 o)
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+2(a1p — Oézn)z (m + 7]2)’)’172] (5.10a)

b7 2(7]1 — ) (aln - O—'2n) (alna2n - 1)’)’1’)’273 (5.100)
_ 2
b5 =(ng—2’—‘5— (20 (62 = 1) — cun (03 = 1)1] (5.10c)
@ =273€” [(a?;n +1)¢3 — 4a3n¢4] ~ (a3, = 1) (131 + E22) (5.10d)
2nd Row:
kaz =73 (53 — 267) [(ain — 1) 33 — (03, + 1)¢2] (5.11a)
ks =(of, — 1)nixaths + (o, — 1)m3 xas
—mne (x1 + x2) [(a%n —1)th2 + (0, — 1)ths + %] (5.11b)
kog = — ks, kas = 273 (53 — 26%) [a3n¢2 — (a3, - 1)’)’3454] (5.11c)
kas =273 (g3 — 26?) [(a%n +1)ds — o3n5 — (0, — 1)¢7] (5.11d)
where
= [(0, = 1) (63, — 1) (895 + €9 + 2] (5.120)
2
P2 =§—Z—0& [4azna3n — (g, +1) (a3, + 1)] (5.12b)
1
v =_ [(03, = 1) (03, — 1) (234 +¢%) + 2] (5.12¢)
2
P4 =5—Zjﬂ [4a1na3n — (o3, +1) (e, + 1)] (5.12d)
2 1
e =D (0 1) (od, - )6+ { o —1) (o~ 1)
+2(a1n — azn)” }] (5.12¢)
3rd Row:

kss = (x1 — x2) [(a%n + 1) myihs — (a3, + 1)772721/)2] — (a3, + 1)96(5.13a)
k3a = kig, ka5 = —kge (5.13b)
kas = 2(x2 — x1) [a2n772’72¢2 - ahﬂh’h%} + 2a3n%6 (5.13¢c)
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where

2
e 26—;3- (3 — 2¢%) [27172{(05%71, +1) (05, +1) - 4a1na2n}

—(ad, = 1) (o3, - 1) (¥ + 73)] (5.14)

4th Row:
kag = Ky, kys = —k12, ke = k13 (5.15)

5th Row:
kss = ka2, ks = —kog (5.16)

6th Row:
kes = k33 (5.17)

The element of layer stiffness (impedance) matrix K(® is a function of the
layer thickness, the layer material properties and the Fourier transform parameter
. Only negative exponentials that decrease rapidly with increasing ¢ and h,, ave
involved in k;; as in the case of quasi-statics. The relationships between various kij’s
[e.g. eqns (5.15)-(5.17)] can also be derived on the basis of the physical behaviour of
the system since each k;; represents a component of a generalized force vector due
to a generalized displacement vector equals to a unit vector. When compared to the
scheme of Lysmer and Waas (1972) the K(™ obtained from the present method is
exact and do not involve any approximations in the derivation. The present scheme
also result in the stiffness (impedance) matrix of each physical layer of the layered
system without further discretization into sub-layers as required in the approximate

methods of Lysmer and Waas (1972), Kausel and Peek (1982), etc..

For the underlying half-plane, the stiffness (impedance) matrix are identical to

that given by eqn (3.22) with U+ FV+1) and KVHD are now defined as

UV =« @D (¢ 2p 11, 0) ST (5.18a)
FOHD = V4D (¢ g, w) ST (5.18b)

KW+ = symm. 21 (5.18¢)
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The elements l;z] of the half-plane stiffness matrix K(¥+1) can be expressed as

ki = %(Ca —28%) (my2 —mem), ko = %?[(nz —m)s3 + 273(mye — nz’n)] (5.19a)
F1s = %(Cs =28) (2 —m), kn = %ﬂ(m =) (53 — 2¢%) (5.190)
kas = ;,]S—[nle (173 ~ €) = mxz (a7 - 62)] (5.19¢)
kag = %['YIXI (127 =€) = mxa(nys =€) + (1 - 72)€2><3] (5.194)
where

9 =m (11— &) —n(ny &) (5.20)

It is noted that exponential terms of ¢ are not involved in the expression of
K+ and its elements depend on the material properties of the underlying half-
plane and the Fourier transform parameter ¢. The stiffness matrix KD of the
underlying half-plane derived here also satisfies all the governing equations exactly.
On the other hand, the matrix schemes proposed by Lysmer and Waas (1972) and
Kausel and Peek (1982) are not capable of taking into consideration the influence
of an underlying half-plane of a multi-layered system. Therefore, the presence of a
rigid base at a finite depth is assumed in the approximate matrix schemes. Oner
and Dong (1988) has presented a method to compute the stiffness of the underlying

half-plane by using further approximations.
5.3 Global Stiffness Matrix

The global stiffness matrix of a multi-layered half-plane is assembled by using
the layer and half-plane stiffness matrices on the basis of continuity of tractions and
fluid flow at layer interfaces. The procedure is similar to that described in Section
3.3. The final equation system for determination of interlayer displacement and
pore pressure is identical to eqn (3.29) except that the external force vector T(")
at the nth interface is defined as

o 5(n)
T =< 7™ T %>T (5.22)

where Ti(n)(z' = x,z) and Q™ denote the Fourier transforms of the tractions and

fluid source applied at the nth interface, respectively.
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The global stiffness matrix of eqn (3.29) for a two-dimensional poroelastody-
namic problem is a well-conditioned symmetric matrix of order 3(N +1) x 3(NV +1)
and has a band width equal to 6. When compared to the conventional method based
on the determination of layer arbitrary coefficients, the global stiffness matrix in-
volves only numerically stable negative exponential terms of the Fourier transform
parameter ¢ resulting in a well-conditioned final equation system for all values of
¢ as shown in Section 5.4.1. The present scheme also requires less computational
effort due to the presence of a banded symmetric global stiffness matrix which is
nearly half the size of the unsymmetric coefficient matrix encountered in the con-
ventional schemes based on the determination of layer arbitrary coefficients. In
addition, the eigenvalues of the global stiffness matrix can be directly related to the
velocities (wave number) of the surface waves in a layered poroelastic medium and
the corresponding eigenvectors represent the displacements at layer interfaces for

different mode of vibrations.
5.4 Numerical Solutions
5.4.1 Numerical Scheme

This section is concerned with the development of a computer code based on the
stiffness matrix scheme to evaluate Green’s functions of a multi-layered poroelastic
half-plane corresponding to time-harmonic buried loads and fluid source. The tasks
performed by the computer code is similar to that described in Section 3.4.1 for
quasi-static problems. The program computes the stiffness matrices corresponding
to each layer and the underlying half-plane for specified values of Fourier transform
parameter ¢ and the frequency of excitation w. These matrices are assembled into
the form of eqn (3.29) and the interlayer displacements and pore pressure vectors
in Fourier transform space are obtained by solving the global stiffness equation [eqn
(3.29)] for each specified value of ¢&. Thereafter, the displacement and pore pressure
at each interface in the frequency domain are obtained by evaluating the semi-
infinite integrals with respect to ¢ in eqn (4.10b) by using numerical quadrature
as discussed in Section 4.5.1. To ensure that the real ¢-axis is free from singular-

ities, one-percent material attenuation is incorporated into the shear modulus of
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the materials in the analysis of dry elastic (ideal elastic) materials and poroelastic
materials with 6=0. A nondimensional frequency defined as § = waW is
used hereafter in the discussion of the numerical results where PV and p) are
the mass density of the bulk material and the shear modulus of the first layer of a

multi-layered half-plane, respectively.

The numerical stability of the global stiffness matrix of a layered system under
dynamic excitations is assessed by computing a condition number of the matrix
(Cline et al., 1979). Figure 5.1 presents L;-condition number of the final equation
system corresponding to the present stiffness matrix method fi.e. eqn (3.29)] for
increasing values of ¢ and for different values of §. The Li-conditioned number
corresponding to the conventional method based on the determination of layer arbi-
trary coefficients is also shown in Fig. 5.1. The results shown in Fig. 5.1 correspond
to a layered system consisting of a poroelastic layer of unit thickness with properties
identical to the first layer of the system shown in Table 5.1 bonded to a poroelastic
half-plane with properties identical to the second layer of the system shown in Table
5.1. The global stiffness matrix of the present scheme has a much smaller condition
number which either remains constant or decreases over a wide range of values of
¢ and 6. On the other hand, the condition number of the coefficient matrix corre-
sponding to the conventional method based on the determination of layer arbitrary
coeflicients is always higher and becomes extremely large for increasing values of ¢
due to the presence of mis-matching exponential terms. Similar behaviour is noted
in Section 3.4.1 for quasi-static problems. The numerical stability of the present
stiffness matrix approach is clearly demonstrated by the solutions shown in Fig.

5.1.

Table 5.2 presents a comparison of numerical solutions for nondimensional
vertical stress (0,./fy) due to a static vertical line load fo applied at the sur-
face of a homogeneous ideal elastic half-plane (Melan, 1932) and an elastic lay-
er of unit thickness bonded to a rigid base (Poulos, 1966). Solutions obtained
from the present stiffness method for the limiting case of an ideal elastic material
(M =p;f=m=0b=a=0)and § = 0.01 are compared in Table 5.2 with the
numerical solutions given by Poulos and Davis ( 1974) to verify the accuracy of the

present solution scheme. The two sets of solutions are in excellent agreement. Table
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9.3 presents a comparison of elastodynamic solutions corresponding to an ideal e-
lastic half-plane given by Rajapakse and Wang (1991) with those obtained from the
present matrix scheme. The half-plane is considered to be consisting of 10 layers
of equal thickness, h/a = 0.2, and an underlying half-plane of identical materials.
The numerical stability and the general accuracy of the present matrix method are

confirmed through these independent comparisons.
5.4.2 Numerical Results for Strip Loadings

In the numerical study, selected results corresponding to two poroelastic layered
systems identified as layered systems A and B and a dry elastic (an ideal elastic)
layered medium are presented. The configuration of the layered system is shown
in Fig. 5.2 and the material properties are given in Table 5.1. Note that only the
material parameters 4, A and p are required in the numerical evaluation of dynamic
response of dry elastic layer media. It is also noted that for layered system A, where
the internal friction is neglected (b = 0), and for the dry elastic layered system, one
percent attenuation (material damping) is considered in the numerical evaluation
to facilitate numerical integration along the real ¢-axis (Apsel and Luco, 1983).
All numerical results presented hereafter correspond to the case where vertical and

horizontal loads are applied uniformly over a strip of width 2a with intensity fy.

The figure 5.3 shows the nondimensional vertical displacement, u*, (0, 2)[=
,u(l)uz(O, z)/fo], at the center of a vertical strip load applied on the surface
(#'/a = 0.0) and inside (2'/a = 1.0) the layered half-planes. Solutions are presented
for the nondimensional frequency range 0.2 < § < 2.6 since the displacements are
arbitrary for § = 0. It is evident from the figure 5.3 that substantial differences exist
between the response of the three layered systems. The variation of u,, with § is
quite similar for a surface strip load and a buried strip load although both real and
imaginary parts of u}, are larger for a surface load. This implies that the half-plane
becomes more stiff and damp under a buried load than a surface load. The main
difference between the material properties of poroelastic systems A and B exists in
the values of b (i.e. internal friction). All materials in the layered system A have
zero internal friction (b = 0) whereas the system B consists of materials with finite

internal friction (Table 5.1). Comparison of u?, profiles in Fig. 5.3 indicates that
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the presence of finite internal friction in materials makes the layered system more
stiff and damp (i.e. smaller real and imaginary values of u*_ ). The influence of b is
more pronounced in the frequency range 0.6 < § < 1.5. Comparison of the response
of the layered system A and that of the dry elastic layered system also indicates
that substantial difference exists in the response when 0.6 < § < 1.8. The real
part of u7, shown in Fig. 5.3 shows a change in sign within the frequency range
0.8 < 6 < 1.4 for the three layered systems. The maximum value of the imaginary
part of u}, occurs when the corresponding real part of the solution is equal to ze-
ro. The imaginary part of u}, shown in Fig. 5.3 remains negative throughout the

frequency range 0.2 < § < 2.6.

Figure 5.4 shows the variation of u},(0,z)[= p(Mu,(0,2)/fo] at the center of
a horizontal strip load applied on the surface (2'/a = 0.0) and inside (z'/a = 1.0)
the layered half-planes. The behaviour of these solutions is quite different from
u;, shown in Fig. 5.3. The influence of poroelastic properties on the response is
quite smaller when compared to the case of vertical displacement under a vertical
loading (Fig. 5.3). The real part of u*, corresponding to a surface and a buried load
increases initially in the range 0.2 < § < 0.5 and thereafter decreases rapidly with
increasing frequency. Re[u}, ] shows oscillatory variations with frequency for § > 1.4
but remains positive throughout the frequency range 0.2 < § < 2.6. The imaginary
part of uz, remains negative for 0.2 < § < 2.6 but decreases with & for all three
layered systems reaching its maximum value near § = 0.7 and thereafter increases
with increasing 6. The imaginary part of u?, shows relatively more dependence on
the poroelastic behaviour of the material than the real part of u*,. The solution

for uy, at the center of a strip is more stiff and damp for a buried horizontal load

than a surface load. Similar behaviour was noted for vertical loading.

Figures 5.5(a) and 5.5(b) show the displacements u,(z,0) and u*_(z, 0) along
the surface of a half-plane due to strip loads in the vertical and horizontal direction-
s, respectively. At low frequency (6 = 0.3), the real part of u, and u}, decreases
gradually with the distance x/a. The imaginary part of the displacements remains
nearly constant for the layered system A and the dry elastic layered system whereas
a minor linearly increasing variation is noted for the system B. The influence of

poroelastic properties is quite negligible on the surface response at low frequencies.
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As frequency increases (e.g. § = 1.5), the surface response of the three layered Sys-
tems shows increasing differences especially under a vertical loading. The variation
of surface displacements with the horizontal distance becomes oscillatory at higher

frequencies.

Figure 5.6(a) shows the profiles of nondimensional stress o7,, = o, /fo along
the z-axis due to a vertical strip load applied at z’'/a = 1.0. At low frequency
(6 = 0.3), both the real and imaginary parts of o, show negligible dependence on
the poroelastic properties as noted previously for displacements. At high frequency
(6 = 1.5), profiles of o}, of poroelastic layered systems A and B are nearly identical
but show substantial differences from o%,, of the dry elastic layered system. As
expected, the real part of o}, shows a unit discontinuity at z/a = 1.0 due to the
loading applied at this level and the imaginary part of o%_, is smooth at this level.
The variation of 0},, with the depth is generally smooth within the layers except
for the discontinuity in the real part at z/a = 1.0 and kinks at the layer interface
levels for both real and imaginary parts of o,,. At low frequency (6 = 0.3), the
kinks in the o, profiles at the layer interface are not very visible. Solutions for o,

are negligible for z/a > 6.0.

Pore pressure profiles along the z-axis (Fig. 5.6(b)) due to a vertical strip load
applied at 2’/a = 1.0 show substantial differences from the vertical stress profiles.
Note that the pore pressure in the medium is zero in the case of a dry elastic layered
system. The magnitude of real and imaginary parts of p?¥ is generally larger for § =
1.5 when compared to § = 0.3. Pore pressure profiles vary smoothly within the layers
and show kinks at the layer interfaces. The kinks at layer interfaces ave visible for the
layered system B at low and high frequencies but are visible for the layered system
A only at 6§ = 1.5. Pore pressure is zero at z = 0 due to the imposed boundary
condition. Substantial differences in pore pressure observed in Fig. 5.6(b) for
poroelastic layered systems A and B indicate that the parameter b quantifying the
internal friction has a strong influence on the pore pressure generated in the medium.
However, the comparison of pore pressure profiles at different frequencies for layered
systems A and B indicate that the dependence of p} on b is very complicated and
does not show a clear trend for a layered system. Pore pressure profiles along the

z-axis due to vertical loading do not have any discontinuity at the loading level due
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to the continuity conditions considered in the analysis. This essentially means that
the loading is applied to the solid skeleton resulting in equal discontinuities in the
total stress and the effective stress. On the other hand, it is possible to consider
loadings applied directly to the fluid, i.e. a discontinuity equal to py in the fluid
pressure at an interface which results in a discontinuity of the total stress equal to

apg. Under this condition, the effective stress at the loading level is continuous.

5.5 Conclusions

The exact stiffness matrix method presented in Chapter 3 is extended to com-
pute Green’s functions of a multi-layered poroelastic half-plane due to buried time-
harmonic loads and fluid sources. In contrast to the approximate methods (Lysmer
and Waas, 1972 and Waas, 1972) reported in the literature the present matrix
method rigorously satisfy all the equations governing the dynamic response of a
poroelastic medium and is also capable of modelling rigorously the influence of an
underlying half-space in a layered system. Furthermore, the present method does
not require the discretization of each material layer into thin sub-layers resulting
in a much smaller global stiffness equation system. The global stiffness matrix of
the present scheme is symmetric and its elements do not involve mis-matching ex-
ponential terms. The condition number of the global stiffness equation system is
much smaller than that of the equation system corresponding to methods based
on the determination of layer arbitrary coefficients and remains nearly constant
with increasing values of the Fourier transform parameter. This behaviour confirms
the superior numerical stability of the present scheme over the existing schemes.
In addition, the present global stiffness matrix [e.g. 3(NV + 1) x 3(N + 1) for the
system shown in Fig. 3.1] is nearly one-half the size of the unsymmetric matrix
[(6N +3) x (6N + 3) for the system shown in Fig. 3.1] corresponding to conven-

tional methods based on the determination of layer arbitrary coefficients.

The numerical accuracy of the present exact stiffness matrix method is con-
firmed through existing solutions for an elastic medium subjected to static and
dynamic loadings. Selected numerical results for displacements of layered systems
presented in this paper indicate that the poroelastic properties and the frequency

of excitation have a significant influence on the response. It is also found that the
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material parameter b related to internal friction of the porous medium has a signif-
icant influence on vertical displacements and pore pressure due to vertical loading.
The influence of b on horizontal displacements due to horizontal loading is relative-
ly smaller. The present matrix scheme can be used directly to compute Green’s
functions required in the application of boundary integral equation methods for
multi-layered poroelastic media and in the analysis of a variety of problems encoun-
tered in geomechanics, earthquake engineering and geophysics. It can be also used
to verify the accuracy of approximate numerical methods such as the scheme by
Bougacha et al. (1993b). The stiffness method presented in this Chapter can be
extended to study transient response of layered poroelastic media by appropriate

redefinition of vectors u and f, and matrices R and S in eqns (5.1).
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Table 5.1: Material properties of layered systems

;LT At MT pi p}:r mi b8 Q
first layer 2.5 5.0 25.0 | 2.0 1.0 | 3.0 1.5 0.95

second layer 1.25 1.88 | 188 | 16| 1.0 1.8 ] 0.75 0.98
half-plane 100 | 100 | 20.0 | 24 | 1.0 | 4.8 4.5 0.9

T x10% N/m?2
T x10° kg/m3.
§ x10° N-s/m* for layered system B; for layered system A, b(1) = p(® = p(3 =

Table 5.2: Comparison of vertical stress due to a vertical line load applied at the top

surface of an ideal elastic medium (v = 0.0)

z Case I Case II
P & D (1974)T | Present study | P & D (1974)T | Present study

0.2 -3.183 -3.187 -3.148 -3.123
0.4 -1.592 -1.592 -1.641 -1.639
0.6 -1.061 -1.061 -1.159 -1.155
0.7 -0.909 -0.909 -1.034 -1.030
0.8 -0.796 -0.796 -0.948 -0.944
0.9 -0.707 -0.707 -0.887 -0.882

Case I: a half plane.
Case II: a finite layer with rigid base.
T Poulos and Davis (1974).



Table 5.3: Comparison of vertical displacement and vertical stress due to a vertical

strip load applied at depth z = @ of an ideal elastic half-plane (v = 0.25 and § = 1.0)
pu=(0, 2)/ foa 0::(0,2)/ fo
zfa | R& W (1991)F | Present study | R & W (1991)% | Present study
Re Im Re Im Re Im Re Im
0 |-0.0186 | -0.5895 | -0.0187 | -0.5893 0 0 0 0

0.5 |-0.0042 | -0.5941 | -0.0041 | -0.5939 | 0.0873 | 0.2485 | 0.0874 | 0.2484
0.9 | 0.0108 | -0.5546 | 0.0110 | -0.5544 | 0.1914 | 0.3914 | 0.1915 | 0.3912
1.1 | 0.0119 | -0.5242 | 0.0120 | -0.5241 | -0.7605 | 0.4472 | -0.7606 | 0.4470
1.5 | -0.1165 | -0.4483 | -0.1162 | -0.4480 | -0.6337 | 0.5306 | -0.6338 | 0.5302
2.0 1-0.2175 | -0.3351 | -0.2171 | -0.3347 | -0.4271 | 0.5851 | -0.4271 | 0.5845
3.0 [-0.2947 | -0.0983 | -0.2942 | -0.0981 | -0.0317 | 0.5478 | -0.0320 | 0.5472

¥ Rajapakse and Wang (1991).
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Figure 5.2 A multi-layered half-plane considered in the numerical study
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Chapter 6

INDIRECT BOUNDARY INTEGRAL EQUATION METHOD

6.1 General

The development of computer codes based on an indirect boundary integral
equation method is considered in this Chapter for the analysis of quasi-static, time-
harmonic and transient boundary value problems involving semi-infinite and infinite
poroelastic media. Formulations are presented in the Laplace domain for quasi-
static and transient problems and in the frequency domain for time-harmonic prob-
lems, respectively. The kernel functions of the integral equation correspond to an
appropriate set of Green’s functions derived in Chapters 2 and 4 for a homogeneous
domain and in Chapters 3 and 5 for a layered system, respectively. The numer-
ical implementation of the integral equation is also discussed. The convergence
and numerical stability of the present scheme are investigated by considering two-
dimensional and three-dimensional cavity expansion problems under quasi-static,
time-harmonic and transient loadings. In addition, the versatility and applicability
of the present scheme are demonstrated by presenting the solutions for axial stiff-
ness of a spheroidal anchor embedded in a poroelastic medium, and investigating
the dynamic response of a semi-circular tunnel with a rigid wall in a poroelastic

medium.
6.2 Indirect Boundary Integral Equation Scheme

Consider a poroelastic domain Q with a volume V bounded by a surface S
with a Cartesian coordinate system (z,y,2) defined as shown in Fig. 6.1. It is
assumed that a set of admissible boundary conditions are specified on the surface
S. For example, if u; (i = z,y, z) is specified on $ then such a problem is known
as a displacement boundary value problem whereas a problem with specified T;
(¢ ==,y,2) on S is called a traction boundary value problem. In addition, the pore
pressure p or the fluid discharge ¢, normal to the surface S has to be specified. The
surface S is called a fully permeable surface when p is equal to zero on S whereas

a fully impermeable surface corresponds to the case where gn =0on S.
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Generally, the solution of the governing equations for domain € le.g. eqn (2.4)
in Section 2.3 for quasi-static deformations] subjected to the boundary condition
specified on S by using analytical methods is possible only in a very few special
cases such as in the case of a vertically loaded rigid sphere in an infinite poroelastic
medium (De jong, 1957). In view of this, the development of computational methods
such as boundary integral equation methods have received increasing attentions
over the past decade (Cheng and Liggett, 1984a,b; Cheng and Detournay, 1988;
Nishimura and Kobayashi, 1989; Cheng et al., 1991 and Dominguez, 1992). As
mentioned in Chapter 1, one of the main objectives of this thesis is to present an
indirect boundary integral equation scheme with non-singular kernels for analysis
of quasi-static, time-harmonic and transient boundary value problems involving

semi-infinite and infinite poroelastic domains.

The indirect boundary integral equation method presented herein follows the
concepts used by Ohsaki (1973) for the case of ideal elastic media. The present
scheme is based on the consideration of an equivalent problem defined with respect
to an undisturbed poroelastic medium. For example, consider a poroelastic domain
Q2 with a volume V bounded by a surface S identical to S in Fig. 6.1. It is assumed
that a set of unknown forces with magnitude fi(r',t') with 7 = z,y, z and a fluid
source I'(r’,¢’) are applied on an auxiliary surface S’ defined interior to § as shown
in Fig. 6.2. Hence, the displacement u;(r,t), traction T;(r,t), pore pressure p(r,t)
and fluid discharge in the direction of unit normal n to an arbitrary plane, denoted

by gn(r,t), at any point with position vector r in V can be expressed as

(r,t) —/ / g, t =t ") f;(,t))dS at!
+/0 /, Gig(x,t —t'; 2 )L (2’ ¢")dS dt’, ' e S d,j=uz,9,2 (6.1a)

t) :/Ot/, Hij(x,t —¢';2") fi(x',¢))d S dt’
-+ /t /S’ Hiy(r,t — ;2O (2, ¢')dS dt’, r'eSs 4,j=u1z,9,2 (6.1

r,t) :/Ot /S' Hyj(r,t —t';x') f;(x',¢/)dS dt’
+/Ot/,Hpq(r,t —~t's e \I'(«',t")dS dt’, eSS j=gz,9,2 (6.1¢)
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t
qn(r,t) = / / Ggji(r,t —t';2") f;(x',t")dS dt’
0 JS

¢
+/ / Gyqlr,t — ;2 \T(x',¥)dS dt’, eSS j=z,y,2z (6.1d)
0 JS

In the above equations, Gy;(r, ;1) and Gyy(r,¢;1') denote displacements in the i-
direction (i = z,y,2) at point r due to an impulsive force in the j-direction (j =
z,y,z) and an impulsive fluid source, respectively, at point r’ at ¢ = 0; Ggj(r, t;x')
and Gyq(r,t;1') denote fluid discharge in the direction of a vector n at point r
due to an impulsive force in the j-direction (j = z,v,2) and an impulsive fluid
source, respectively, at point r’ at ¢ = 0. For example, if n = {0 0 1}7 then
Gy (r,t;1') is the fluid discharge in the z-direction at point r due to an impulsive
force in the z-direction applied at v/ at t = 0. Hj(r,t;x") and Hyy(r,t;1') denote
tractions in the i-direction (i = z,y,2) at point r due to an impulsive force in
the j-direction (j = ,y,z) and an impulsive fluid source, respectively, at point
' at t = 0; Hpj(r,t;1') and Hpy(r,t;1') denote excess pore pressure at point r
due to an impulsive force in the j-direction (j = z,9,2) and an impulsive fluid
source, respectively, at point ¥’ at ¢ = 0. It is important to note here that the
kernel functions Gij, Gyq, Hy;, etc. in eqns (6.1) are non-singular since r # r’ in
the present scheme. In the case of ideal elasticity, only eqns (6.1a) and (6.1b) are
involved in the analysis with the second integrals in those equations being equal to
zero. In addition, for ideal elastic problems under static loadings, the convolution
integrals with respect to the time parameter ¢’ do not exist, and eqns (6.1a) and

(6.1b) reduce to the forms given by Ohsaki (1973).

The Green’s functions (kernel functions) are not available explicitly in the time
domain for half-space/plane problems. It is computationally more efficient in the
case of linear problems (especially for transient problems) to develop a formulation
in the Laplace transform domain (Badmus et al., 1993). Applying Laplace transform

to the time variable in eqns (6.1) yields
ai(r, 8) :/ Gij(r,5;0') fi(x),8)dS" + [ Gig(x, s; r')L(x',5)dS"  (6.2a)
! SI

T;(r,s) ://Eij(r,s;r')fj(r’,s)dS'—l—/ Hig(r,s;0')I(x',5)dS"  (6.2b)

l4

p(r, s) :/ flpj(r,s;r’)ﬂ(r’,s)dS'—I—/ Hpy(r,s;7)T(1',5)dS"  (6.2¢)
S’ S’
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gn(t, 8) :/ Ggi(r, s;1') fi(x', 5)dS’ +/ Goq(r,s;1")(',5)dS"  (6.2d)
S’ S’
where the superposed bar in eqns (6.2) denotes the Laplace transform of quantities

with respect to the time coordinate and s is the Laplace transform parameter.

It should be noted that in the case of quasi-static problems the Green’s func-
tions for impulsive loads and an impulsive fluid source are obtained by considering
the governing equations in the absence of inertia terms as shown in eqns (2.4).
Hox%rever, the quasi-static Green’s functions presented in Chapter 2 are derived on
the basis of applied loadings and fluid source with time histories identical to a step
function H(t). This means that for quasi-static problems the relevant Green’s func-
tions can be obtained directly by multiply the Green’s functions given in Chapter
2 by a factor “s”. However, for transient dynamic problems, Green’s functions are
derived on the basis of field equations with appropriate inertia terms as presented

i Chapter 4 for two-dimensional problems.

In the case of time-harmonic problems where the motion is assumed to be time-
harmonic with a time factor of e*’*, the analysis can be performed directly in the
frequency domain. The pertinent integral equations in the frequency domain can

be expressed as

ui(r,w) :/, Gij(r,w;r') fi(x!,w)dS’ +/S, Gig(r,w;r\I'(¢',w)dS"  (6.3a)

Tz-(r,w):/ Hij(r,w;r')fj(r',w)dS'—{—/ Hig(r,w;r")I'(x',w)dS’  (6.3b)

s s

) = | Hyewin) (6,08 + [ Hygle,2 )0, )8 (6:30)
! SI

gn(r,w) :/ qu(r,w;r')fj(r',w)dS'-}-/ Gaq(r,w;r")(r',w)dS"  (6.3d)

S’ S!
where the quantities u;(r,w), Gi;(r,w;r’), fi(r',w), etc. are defined as similar to
eqns (6.1) with the understanding that the analysis is performed in the frequency

domain.

If the domain Q is an infinite medium Green’s functions corresponding to a
full space/plane are obtained from Chapters 2 and 4. On the other hand, for the
case where (2 is a semi-infinite medium, Green’s functions corresponding to a half-
space/plane are used. For layered media, the relevant kernels in eqns (6.2) and (6.3)

are obtained from Chapters 3 and 5.
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The unknown quantities, f;(r/,s) and I'(z',s) in equns (6.2) for quasi-static
and transient problems and f;(r’,w) and I'(r/,w) in eqns (6.3) for time-harmonic
problems, are determined by imposing boundary conditions on S which are identical
to those prescribed on S. Since the nature of integral equations represented by eqns
(6.2) and (6.3) are identical, the numerical implementation of eqns (6.2) is presented
as an example with understanding that the solution scheme can be readily extended
to equs (6.3). Equation (6.2) represents a set of Fredholm integral equations of the
first kind for unknown fields fj and . In view of the complexity of the kernel
functions Gij, Hy;, qu, etc. equs (6.2) can be solved only by applying numerical
techniques. The numerical solution is obtained by considering N and N’ node
points on S and S, respectively. Let F denote a vector whose elements correspond
to the unknown quantities (i.e. forces f; and fluid source I') at node points on S

and defined in the following form
F=<fi £, f5 .. fy>7T (6.4a)
where
f; =< fo(ri,s) fy(ri,s) fu(ri,s) T(xi,s) >, i=1,2,...,N' (6.4b)

Then, a discrete version of equs (6.2) with respect to N and N’ node points on S

and S', respectively, can be expressed as
QF =B (6.5)

where the elements of the vector B correspond to the specified boundary conditions
at node points on S and the elements of the matrix Q are expressed in terms
of Green’s functions. For example, consider the case where displacement a;(r, s)
(¢ = z,y,2) and fluid discharge Jn(r,s) on the surface S are specified as equal to

ul(r,s) (1 = z,9,2) and ¢}(r, s), respectively. Then,

B=<u u u3 ... uy >T (660,)
Q = [G(ri, 51 ))]anxan, i=1,2,.,N; j=1,2,..,N’ (6.60)

where
u; =< U;(I‘,;,S) ‘LL;(I‘Z',S) u:(r’ias) q;ka(ria 3) >, i = 1727 7N (670’)

116



e Y = ! Gyw C_—;’I‘/y éyz G'yq
G(rz, 2 j) = ASJ G:!zm C_‘?zy C:;zz C:;zq (67b)
G(I‘B qu qu qu

and AS; denotes the tributary area corresponding to the j-th node point on S’.

In the above formulations, single node boundary elements with a constant value
over a tributary area are used. However, there are more advanced elements (e.g.
linear or quadratic) which account for variation of Green’s functions within the
element length thereby reducing the number of nodes required in the discretization

and also enhancing the accuracy.

Another example is the case where traction Ti(r,s) (¢ = z,y,z) and pore
pressure p(r,s) on the surface S are specified as equal to T (r,s) (i = z,y,2) and

p*(r, s), respectively. Then,

B =< tl tz t3 tN >T (68&)
Q = [H(r;, ;1" )] anxan 1=1,2,.,N; j=1,2,...N’ (6.8b)

where
t; =< T (x5, 5) Ty (rs,s) Ty (rs,8) p*(riy8) >, t=1,2,...N (6.9a)
H(r;, s;1'5) = AS;- Hy, Hyy Hy Hyq (6.90)
L 2z Lzy }_Izz L zq
Hpe  Hpy p= Hpq
A least square solution of eqn (6.5) yields
F=[Q7Q] Q"B (6.10)

Once F is known, the complete poroelastic fields on the boundary S as well as
at points in Q can be computed directly from eqns (6.2). In a similar manner,
the solution for time-harmonic problems can be obtained by using the procedure

described in eqns (6.4)-(6.10) with the appropriate forms of F, B and Q.

In the case of axially symmetric domains, it is natural to employ the cylindrical

polar coordinate system (r, 6, z) defined as shown in Fig. 6.3 in the analysis. This
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type of problems can be analyzed by applying Fourier expansion with respect to
the circumferential coordinate  to the field variables as shown in Chapter 2. Due
to the orthogonality of trigonometric terms, the boundary value problems can be
analyzed seperately for each Fourier harmonic. In the case of problems involving an
axially symmetric boundary surface S and a corresponding source surface S’ the
integral equation can be expressed in terms of the correponding generating curves L
and L in the rz-plane (see Fig. 6.4). For example, the formulations corresponding

to the mth Fourier harmonic can be expressed as

/az.m(r, 3) :/ C—T’;{?(r, s; r/)fjm(r’, s)r’dL/
/ Gm(r s;0 )\ (', 8)r'd L, rel; 4,j=r0,2(6.11a)

(r, 5) /H (r,51") fim(x', 8)r' dL’

/ H7 (v, 50" )T (v, s)r'd L, rel; i,j=r0,2(6.11b)

Pm (T, 3) —// H(x,51") fim(r', 8)r'dL’

/ Hm (r,s;1")o (¢, 8)r'dL/ rcl; j=r06,z (6.1lc)

Gnml(r, ) = Gm(r $;1') fim(x', 8)r'dL’

+ ) G, st )\Tn(t',s)r'dl,  rel; j=r6,z (6.11d)
In the above equations, a subscript m is used to identify the mth Fourier harmonic
of displacements, tractions, pore pressure and fluid discharge. A superscript m
is used in the Green’s functions to imply that the circumferential dependence of
loadings and fluid sources used in the derivation of Green’s functions is given by
either cos mé or sinmé type variation. In addition, Green’s functions in eqns (6.11)
correspond to forces and a fluid source applied over a circular ring of radius 7’
(Fig. 6.4). It is noted that when both geometry and loadings are axially symmetric

the corresponding solutions can be obtained by considering eqns (6.11) with only

m = (),
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6.3 Numerical Solutions
6.3.1 Numerical Scheme

In this section, the development of computer codes based on the indirect bound-
ary element algorithms outlined in Section 6.2 is considered. The numerical eval-
uation of Green’s functions (i.e. matrix Q) is already discussed in Section 2.5.1
for three-dimensional quasi-static problems and Section 4.5.1 for two-dimensional
dynamic (time-harmonic and transient) problems, respectively. Since the analysis
is conducted in the Laplace domain for quasi-static and transient problems and the
integral equations are solved numerically, Laplace inversion schemes proposed by
Schapery [eqn (2.39)] and Stehfest [eqns (2.38)] are used to obtain time-domain
solutions. In addition, single node boundary elements based on an average value of
a nodal quantity over a tributary area is used in all numerical examples. In ensuing
sections, the accuracy and applicability of the present boundary element scheme are
demonstrated by considering a set of boundary value problems for which analytical

solutions are available.
6.3.2 Numerical Verification of Boundary Element Scheme
6.3.2.1 Spherical Cavity under Quasi-Static Loadings

The convergence, stability and accuracy of the numerical solutions obtained
from the present scheme are established by considering the problem of a permeable
spherical cavity of radius a in an infinite poroelastic medium under uniform normal
traction foH(t) applied at the cavity wall [Fig. 6.5(a)] where H(t) denotes a unit
step function. This problem is axially symmetric with respect to geometry and
loading and the response is a function of only spherical coordinate R (see Fig. 6.3).
The solution corresponding to this problem can be obtained analytically and it is
found to be identical to the ideal elastic solution. This implies that no excess pore

pressure is developed in the medium.

The Green’s functions required in the analysis of the spherical cavity problem
correspond to impulsive ring loads and fluid source applied in a poroelastic full

space and are obtained by multiplying full space Green’s functions (without inertia
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effects) given in Section 2.4 corresponding to m = 0 by a factor “s”. These Green’s
functions are expressed in terms of Lipschitz-Hankel type semi-infinite integrals
involving products of Bessel functions and their numerical evaluation is discussed in
Section 2.5.1. The numerical Laplace inversion formula proposed by Schapery [eqn
(2.39)] is employed in this case to obtain the time-domain solutions for quasi-static
problems due to the fact that it requires less computational effort than Stehfest
scheme [eqns (2.38)]. Comparison of boundary element solutions for quasi-static
problems based on both Laplace inversion schemes indicates negligible difference

between the two solutions.

A discretization as shown in Fig. 6.4 is used to obtain the boundary element
solutions from eqn (6.11). The influence of the number of nodes N and N’ used
to discretize the generating curves L and L' and the location of source curve I/
with respect to L denoted by Aa are examined by evaluating the displacement
up at the cavity wall with the analytical solution given by Saada (1974) for a
spherical cavity in an ideal elastic medium. Table 6.1 shows the nondimensional
displacement 2pup/ foa at the cavity surface for different values of N ,N', Aa and
t*. A nondimensional time t* = ct/a?, in which c is the generalized consolidation
coefficient defined in eqn (2.5¢), is used in Table 6.1 and hereafter in the discussion
of quasi-static solutions. Comparison of numerical solutions presented in Table
6.1 with the corresponding nondimensional analytical solution of 0.5 (Saada, 1974)
indicates that the present solutions show good convergence and stable behaviour.
The maximum error is about two percent and the boundary element solutions also

confirm the absence of a consolidation process in this case.

The case of a spherical cavity of radius a in an infinite poroelastic medium sub-
jected to fluid pressure po H(t) applied at the cavity wall [Fig. 6.5(b)] is considered
next. In this case, the response is time dependent and the displacement at the cav-
ity surface is zero. Two boundary element meshes for different values of N and N’ ,
ie. N =16, N’ =8 and N = 20, N’ = 10, respectively, with Aa = 0.15 (see Fig.
6.4) are used in the numerical evaluation of displacement r and pore pressure p in
a poroelastic medium (v = 0.2, = 0.33 and B = 0.62). Figures 6.6(a) and 6.6(b)
show comparisons between analytical solution and boundary element solutions for

displacement 2pup/poa and pore pressure p/po respectively, at spherical surfaces
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of radius R/a = 1.5 and 3.0 inside the medium. The solutions presented in Figs.
6.6(a) and 6.6(b) indicate that the indirect boundary element scheme proposed in
this study results in numerically stable and accurate solutions. A small discrep-
ancy between the analytical and boundary element solutions for pore pressure is
observed at early times (¢* < 1.0). This could be due to the numerical nature of the
Laplace inversion which involves the computation of very rapidly decaying integrals

for small values of t* (i.e. large values of s).
6.3.2.2 Axial Stiffness of Rigid Anchors

A class of displacement boundary value problems with a fully impermeable
surface [equs (6.8)] is studied next. First, an impermeable rigid sphere of radius a
embedded in a poroelastic medium subjected to a vertical point load F, [Fig. 6.7(a)]
is considered. An exact analytical solution for this problem is available (De jong,
1957) for a poroelastic material with incompressible constituents (vy = 05,B =
1.0). Tables 6.2 and 6.3 show comparisons of time histories of vertical displacements
between analytical solutions and boundary element solutions for different values of
N,N’, and Aa, respectively. The two sets of solutions are in excellent agreement
and the maximum difference is about two percent. In addition, the variation of
numerical solutions for different values of N, N, and Aa in Tables 6.2 and 6.3,
respectively, is less than two percent. The numerical convergence and stability of
the present scheme for quasi-static problems are clearly established by the solutions

presented in Tables 6.1-6.3 and Figs. 6.6.

"To demonstrate the applicability of the boundary element code for analysis of
more complicated problems, the case of an impermeable rigid spheroidal anchor in
a poroelastic medium [Fig. 6.7(b)] is considered next. An exact analytical solution
given by Selvadurai (1976) for an anchor in an ideal elastic medium is compared
with the final solutions (¢ — co) obtained from the present scheme for different
values of N, N' and Aaq in Tables 6.4 and 6.5, respectively. The accuracy of present

solutions are once again confirmed through these comparisons.

Figure 6.8 shows time histories of vertical displacement 2ua,u, /Fy of a ver-

tically loaded rigid sphere (a,/an = 1.0), an oblate (a,/a; = 0.5) and a prolate
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spheroid (a,/a;, = 2.0 and 3.0) embedded in a poroelastic medium. Three different
poroelastic materials, namely, a material with incompressible constituents, Ruhr
Sandstone and Westerly Granite, are considered in the numerical study. The prop-
erties of these materials are given in Section 2.5.2. The solutions presented in Figs.
6.8(a) and 6.8(b) for vertical displacement of an anchor show similar behaviour to
those shown in Figure 2.3 for the case of a buried vertical patch load in a poroelastic
half-space, i.e. the initial displacements are governed by the undrained Poisson’s
ratio (v,) whereas the final response depends only on the drained Poisson’s ratio
(v). Therefore, an anchor in a poroelastic medium with incompressible constituents
has the lowest initial solution followed by anchors in Westerly Granite and Ruhr
Sandstone, respectively. The nondimensional final displacements of anchors in a
material with incompressible constituents and Westerly granite are identical due to
identical drained Poisson’s ratio of these materials. The numerical results indicate
that the vertical displacement of an anchor increases slowly when 0 < ¢* < 0.1 and
more rapidly during the period 0.1 < t* < 100 reaching their final values when
t* > 1000 for all spheroidal anchors. It is also noted that the difference between the
initial and final displacements of an anchor is less than fifteen, ten and five percent
of final displacements for anchors in a material with incompressible constituents,

Ruhr Sandstone and Westerly Granite, respectively.
6.3.2.3 Cylindrical Cavity under Time-Harmonic Loading

The accuracy of the present boundary element scheme for time-harmonic prob-
lems is investigated in this section. A plane strain traction boundary value problem
involving a fully permeable cylindrical cavity of radius a in a poroelastic infinite s-
pace subjected to time-harmonic radial traction of uniform intensity f; is considered
(Fig. 6.9). The analytical solutions in the frequency domain for radial displacement

ur, hoop stress gy and pore pressure p can be expressed as

() _ L1 Ky (Ly7) + Ly® Ky (Lar)

6.12a
foa B1L2 + 5,128 (6.12a)
099(7') 1 2 2 * *
= K. Li%K. — {1+
% ﬂlL%"‘ﬂQL%@[LI 2(L17) + Li®Ky(Lor) — {1 + X + aM (e +x1)}
X LiKo(Inr) — {14 X* + aM*(a + x2) } L3® Ko (Lo7)] (6.12b)
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B — — (et x0) M B K (L) — (o + x0) M L Ko (L) (6.12¢)

where

Bi = [1 + A* + aM*(a + Xz)]KQ(LL) + KQ(L.L'), 1=1,2 (6130,)

(a4 x2) L3 Ko(L2)

The nondimensional parameters \*, o, M*, L; and y; (1 = 1,2) are defined in Section
4.2 and K, is the modified Bessel function of the second kind of order m (Watson,

1944).

Figure 6.10 shows the discretization used in boundary element analysis of two-
dimensional cavity expansion problems. The number of nodes on the curves § and
S" are N and N', respectively, and the distance between the two curves is denoted
by Aa. It should be noted that in the analysis of circular cavity problem one can
use symmetry conditions and consider only one-quarter of the cavity wall. This
results in a much smaller matrix Q since only one-fourth of the node points shown
in Fig. 6.10 is required in the discretization. In the present study, the symmetric
conditions are not considered in order to check the numerical stability of large size
Q matrices encountered in the solution of more complicated problems and to check
the overall accuracy in the numerical evaluation of Green’s functions. The Green’s
functions required in this case are given in Section 4.3 and correspond to time-
harmonic concentrated loads and fluid source applied in a poroelastic full plane.
These Green’s functions appear in terms of semi-infinite Fourier integrals and their
numerical evaluation is discussed in Section 4.5.1. Closed form Green’s functions
for this problem are also obtainable by using the analogy between thermoelasticity
and poroelasticity in the frequency domain (Bonnet, 1987 and Cheng et al., 1991).
However, closed form Green’s functions are not available for semi-infinite and multi-
layered poroelastic media. Therefore, it is useful to apply Green’s functions in the
integral form to examine the accuracy and numerical stability of the present solution

scheme.

A poroelastic medium with \* = 1.0, = 0.95, M* = 15, pf=05m* =12

and b* = 5.0 is considered in the numerical study. A nondimensional frequency, 9,
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as defined by eqn (4.9b) is also used. In addition, N = 42, N’ = 24 and Aa = 0.3 are
used in the boundary discretization (see Fig. 6.10). Figure 6.11 presents comparison
between solutions for radial displacement and hoop stress at the cavity surface (r=
a) obtained from the present study with the analytical solutions given in eqns (6.12).
It is evident from Figs. 6.11(a) and 6.11(b) that the present scheme yields accurate
numerical solutions with less than one percent error for both real and imaginary
parts. Numerical results also indicate that the radial symmetry is satisfied at all
node points with one percent accuracy. Since such high accuracy exists in the
solutions obtained from the present scheme using Green’s functions expressed in
the integral form, it should be also possible to obtain accurate boundary element
solutions for time-harmonic problems involving semi-infinite and layered poroelastic

media by using Green’s functions presented in Chapters 4 and 5, respectively.
6.3.2.4 Impedances of Rigid Semi-Circular Tunnel

The applicability of the present scheme for practical problems is demonstrat-
ed by investigating the dynamic response of a massless semi-circular tunnel with
a rigid wall in a poroelastic medium under time-harmonic loadings (Fig. 6.12).
It is assumed that the tunnel wall is fully impermeable and perfectly bonded to
the surrounding medium along the contact surface S. The tunnel is subjected to
time-harmonic vertical, horizontal and moment loadings Vye™?, Hye™* and Myett,
per unit length respectively. The displacements of the tunnel, under the applied
loadings, can be expressed in terms of vertical displacement Ay e™*, horizontal dis-
placement Agre™* and rotation ¢pe?? about the y-axis of a point O (z = 0,2 = 0)

as shown in Fig 6.12.

The displacement at a point (z,z) on the contact surface S can be expressed

in terms of Ay, Ay and ¢y as
Ug(z,2) = Ag — z2¢g (6.14a)
(2, 2) = Ay + zdyg (6.14b)
The resultant forces and moment acting on the massless tunnel can be expressed
in terms of traction components T;(z, z) (i = z, 2) as

Vy = / T,d$ (6.15a)
S
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Hy = / T,ds (6.15b)
S

My = /(Twz - T,z)dS (6.15¢)
S

Figure 6.13 shows the discretization used in the boundary element analysis for
this problem. A solution for unknown quantities (i.e. forces f; and fluid source I")
at node points on S’ can be obtained in terms of Ay, Ay and ¢q by using eqn (6.10)
with B and Q being defined in the forms of eqns (6.6a) and (6.6b), respectively.
Thereafter, solutions for nodal tractions are expressed in terms of Ay, Ay and
¢o from eqn (6.3b). Substitution of the solutions for nodal tractions in a discrete
version of eqns (6.15) written with respect to node points on S yields a relationship

between applied forces and displacements Ay, A g and ¢y.

The response of a rigid semi-circular tunnel is characterized by the following

nondimensional impedance matrix

Vo Ky 0 0 Ay
H() =TU 0 KH KHM AH (6.16)
M, 0 Kuyg Ku ado

where Kv, Ky, Kgy (= Kym) and Kpr are the vertical, horizontal, coupled and

rocking impedances, respectively, and a is the radius of a semi-circular tunnel.

Figure 6.14 shows the vertical, horizontal, coupled and rocking impedances
of a rigid massless semi-circular tunnel of radius a in different poroelastic media.
Solutions are presented for the nondimensional frequency range 0.1 < § < 2.0,
where ¢ is defined in eqn (4.9b), since the displacements are arbitrary for § = 0.
Three poroelastic materials identified as materials A, B and a dry elastic material
(an ideal elastic material) are considered in the numerical study. The properties of
these materials are identical to that given in Section 6.3.2.3 except that b* = 0 and
9.0 for materials A and B, respectively. In addition, only the nondimensional Lamé
constant A* is required in the case of a dry material. A discretization represented
by N =36, N’ = 24 and Aa = 0.1 is used in the boundary element analysis (see
Fig. 6.13). Comparison of numerical solutions presented in Fig. 6.14 indicates that
both real and imaginary parts of impedances of a tunnel in material B are larger

than those in material A. This implies that the presence of finite internal friction
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makes a medium more stiff and damp since material A has zero internal friction
(b* = 0) whereas b* = 5 for material B. The influence of b is more pronounced
when 0.5 < § < 2.0. The real part of Ky, Kz and Ky of a tunnel in material A
(b* = 0) increases in the range 0.1 < § < 0.5 and thereafter decrease sgradually with
increasing 6 whereas, for tunnels in poroelastic material B and in a dry material, the
real part of these impedances shows less dependence on the frequency in the range
0.1 < 6 < 2.0. The real part of the rocking impedance K is found to decrease
gradually with the frequency for all tunnels. Numerical results presented in Fig.
6.14 also indicate that the highest radiation damping occurs in a tunnel in material
B when 0.1 < 6 < 2.0 due to the fact that the maximum value of the imaginary
part of the impedances is found in this case. The imaginary part of the impedances
for all tunnels shows nearly linear variation with the frequency and remains positive

throughout the frequency range 0.1 < § < 2.0.
6.3.2.5 Cylindrical Cavity under Transient Loadings

The application of the present boundary element scheme to transient problems
is considered in this section. To the best of author’s knowledge, a numerical im-
plementation of boundary integral equation methods for transient elastodynamic
problems together with numerical examples has not been reported in the literature.
A two-dimensional cavity expansion problem due to radial traction fop(r) (Fig.
6.15) is considered to verify the accuracy of the present scheme for transient prob-
lems. A nondimensional time 7 = (t/ a,)\/m is used in the transient solutions and
two different types of time histories for ¢(7), i.e. a gradually applied step pulse
[Fig. 6.16(a)] and a triangular pulse [Fig. 6.16(b)] are considered in the numerical
study. The analytical solution given by Senjuntichai and Rajapakse (1993) is used

in the comparison with boundary element solutions.

The boundary discretization used in this problem is shown in Fig. 6.10. Once a-
gain, the complete geometry was considered in the numerical analysis. The transient
Green’s functions required in this problem correspond to the case where impulsive
loads and fluid source are applied in a poroelastic full plane. Exact closed form

Green’s functions in this case can not be obtained by using the analogy between
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thermoelasticity and poroelasticity as in the case of time-harmonic problems. How-
ever, it is possible to obtain transient Green’s functions in closed form (Wiebe and
Antes, 1991) when the internal friction between the solid skeleton and the pore fluid
is neglected (i.e. b = 0). In this study, the internal friction is taken into account
(b # 0) and the corresponding Green’s functions in the Laplace domain are given in
Section 4.3. These Green’s functions are presented in terms of semi-infinite Fourier
integrals and the numerical evaluation of the integrals is discussed in Section 4.5.1.
Since the present analysis is conducted in the Laplace domain for transient problem-
s, a numerical Laplace inversion formula is used to obtain time-domain solutions.
The numerical inversion of Laplace transform for transient problems requires more
computational effort when compared to the case of quasi-static problems. Simple
scheme such as Schapery’s scheme cannot be used for transient dynamic problem-
s. Therefore, the Laplace inversion formula proposed by Stehfest [eqns (2.38)] is
employed in this case. The main advantage of Stehfest’s scheme when compared
to other schemes (e.g. Hosono, 1979) is that it involves sampling of the Laplace

transform solutions only at real values of the transform parameter.

Figures 6.17(a) and 6.17(b) present comparisons of time histories of radial
displacement and hoop stress at the cavity surface obtained from the boundary
element scheme and the analytical solution (Senjuntichai and Rajapakse, 1993). The
boundary element solutions are obtained from a discretization with N = 48, N/ = 28
and Aa = 0.3 (see Fig. 6.10). A poroelastic material with properties A* = 2.0, =
0.98, M* = 20, p* = 0.5, m* = 1.25 and b* = 10 is considered in the numerical study.
In addition, the eqns (2.38) with L = 10 is used to obtain time-domain solutions.
Comparison of solutions presented in Figs. 6.14(a) and 6.14(b) clearly shows the
high accuracy of the transient solutions obtained from the present boundary element
scheme. Numerical results for displacement and hoop stress under the two loading
cases indicate that the analytical and boundary element solutions agree very well
in both ascending and descending parts of the response. Furthermore, the radial

symmetry is satisfied at all node points within a two percent error.
6.4 Conclusions

Following the concepts of Ohsaki (1973) for ideal elastic media, an accurate
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indirect boundary integral formulation is presented to analyze quasi-static, time-
harmonic and transient boundary value problems related to semi-infinite and infinite
poroelastic media. The kernel functions of the integral equations are non-singular
and correspond to Green’s functions derived explicitly in Chapter 2 for quasi-static
problems and Chapter 4 for time-harmonic and transient problems, respectively.
In the case of layered poroelastic media, the relevant kernel functions are directly
obtained from Chapters 3 and 5. Single node boundary elements with a uniform
distribution over a tributary area are found to yield accurate solutions. It is also
found that accurate time-domain solutions can be obtained by applying Laplace
inversion schemes proposed by Schapery (1962) and Stehfest (1970) for quasi-static
and transient problems, respectively. The numerical examples have demonstrated
the high accuracy and numerical stability of the present scheme in analyzing a
variety of problems involving poroelastic media by using Green’s functions expressed
in the integral forms. In the case of semi-infinite and layered media, the relevant
Green’s functions are always expressed in the integral forms. In view of the high
accuracy obtained from the present scheme by using infinite space Green’s functions
in the integral forms, it can be concluded that the Green’s functions presented in
Chapters 3 and 5 can be effectively used in the present boundary element scheme
to analyze complicated boundary value problems involving layered poroelastic half-

spaces.
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Table 6.1: Convergence of displacement 2uug/ fya of a pressurized spherical cavity in

an infinite poroelastic medium with N, N, Aa and ¢

(N, N") t* =0.01 t" =100
Aa=021 Aa=025] Aa=03| Ae=02] Aa=025] Aa=03
16,8 0.488 0.490 0.496 0.490 0.492 0.498
18,10 0.490 0.492 0.497 0.496 0.498 0.499
20,10 0.497 0.495 0.498 0.499 0.499 0.500
20,12 0.498 0.499 0.499 0.499 0.500 0.500
24,12 0.499 0.499 0.500 0.499 0.500 0.500
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Table 6.2: Convergence and comparison of vertical displacement of a rigid spherical
anchor in an infinite poroelastic medium with N and N’ (Aa¢ = 0.15,v = 0.25, v, =

0.5 and B = 1.0)

t 2uau. [ Fy
(ct/a?) | Analytical Solution! Present Study with different (V, N')

(20,12) | (24,12) | (24,14) | (28,14) | (28.16)
0.001 0.106 0.106 0.105 0.106 0.106 0.106
0.1 0.108 0.109 0.109 0.109 0.109 0.109
10.0 0.121 0.120 0.120 0.120 0.120 0.120
1000 0.123 0.123 0.123 0.124 | 0.123 0.124
o 0.124 0.124 0.123 0.124 0.124 0.124

T De jong (1957).

Table 6.3: Convergence of vertical displacement of a rigid spherical anchor in an

infinite poroelastic medium with Aa (N = 20 and N’ = 12)

t* 2uau. | Fy
(ct/a?) | Aa=0.08 [ Aa=01 | Aa=0.15 | Aa=02
0.001 0.108 0.107 0.106 0.105
0.1 0.110 0.109 0.109 0.109
10.0 0.121 0.120 0.120 0.120
1000 0.124 0.124 0.123 0.123
00 0.124 0.124 0.124 0.124
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Table 6.4: Convergence and comparison of vertical displacement of rigid spheroidal
anchors in an ideal elastic medium with ¥ and ¥ (Ae¢ = 0.1 and v = 0.25)

2payu. [ Fy
ay/a, | Analytical Solutiont | Present Study with different (V, N')

(18,10) ] (20,10) | (20.12) | (24.14)
05 0.142 0.141 | 0143 | 0.143 | 0.145
1.5 0.165 0.162 | 0.167 | 0.163 | 0.163
2.0 0.198 0.197 | 0.201 | 0.193 | 0.196
3.0 0.250 0.258 | 0.253 | 0254 | 0.254

} Selvadurai (1976).

Table 6.5: Convergence of vertical displacement of rigid spheroidal anchors in an ideal
elastic medium with Aa (N = 20 and N’ = 12)

ay/ap 2uayu. [ Fy
Ae=0.08 | Aa=0.1 Aa=015 | Aa=0.2
0.5 0.145 0.143 0.149 0.150
1.5 0.164 0.163 0.163 0.164
2.0 0.193 0.193 0.197 0.196
3.0 0.249 0.254 0.249 0.243
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Figure 6.1 Domain and surface related to boundary value problems

Z

Figure 6.2 Equivalent domain considered in the indirect boundary integral equation method
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Figure 6.3 Axially symmetric domain with different coordinate systems

N nodes

N’ nodes

2

- /
- Figure 6.4 Generating curves L and L with discretization considered in axially symmetric problems
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(a ) Applied radial traction (b) Applied fluid pressure

Figure 6.5 Three-dimensional cavity problems considered in the numerical study
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Figure 6.6 Comparison of displacement and pore pressure histories for a spherical cavity
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(a) Spherical anchor (b) Spheroidal anchor

Figure 6.7 Axially loaded rigid anchors with different geometries considered in the numerical study
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Figure 6.8 Time histories of vertical displacement of spheroidal anchors in poroelastic media
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Figure 6.9 Two-dimensional cavity expansion problems under time-harmonic loading
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Figure 6.10 Boundary discretization for two-dimensional cavity expansion problems
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Figure 6.11 Comparison of radial displacement and hoop stress of a cylindrical cavity under

time-harmonic loading
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Figure 6.12 Semi-circular tunnel with a rigid wall under time-harmonic loadings
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Figure 6.13 Boundary discretization for rigid semi-circular tunnel problem
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Figure 6.16 Time histories of loadings considered in transient problems
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Figure 6.17 Comparison of radial displacement and hoop stress of a cylindrical cavity under
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Chapter 7

CONCLUDING REMARKS

7.1 Conclusions

The main conclusions of this thesis are summarized in this Chapter. Separate

conclusions are presented at the end of Chapters 2-6 based on the analysis and

numerical results presented in those Chapters. The followings are the major findings

and conclusions of the present study.

1)

Green’s functions corresponding to quasi-static and dynamic loads and fluid
sources applied at a finite depth below the surface of a homogeneous half-space
can be obtained explicitly in terms of semi-infinite integrals.

The integrands of semi-infinite integrals appearing in the Green’s functions of
a homogeneous half-space are very complicated and cannot be evaluated ana-
lytically. The application of direct numerical quadrature such as the extended
trapezoidal rule is the appropriate way to compute these Green’s functions. For
quasi-static problems, it is found that time-domain solutions can be obtained
with high accuracy by using Laplace inversion schemes proposed by Schapery
(1962) and Stehfest (1970). In the case of time-harmonic problems, the path
of integration is free from any singularity due to the dissipative nature of the
medium. However, a smaller integration interval is required in the vicinity of
the singularities of the integrands.

The exact stiffness method presented in this study results in a computationally
efficient and numerically stable scheme to evaluate Green’s functions for multi-
layered poroelastic media. When compared to the conventional methods based
on the determination of layer arbitrary coefficients, the present scheme involves
matrices consisting of only negative exponential terms of the integral transform
parameters and requires less computational effort due to the presence of a
banded symmetric matrix which is nearly half the size of that encountered in
the conventional scheme. When compared to the approximate stiffuess methods
reported in the literature, the present stiffness scheme exactly satisfies all the

governing equations of the medium and is also capable of rigorously accounting
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for the presence of an underlying half-space. In addition, the present scheme
does not require the discretization of physical layers into further sub-layers.

4) Numerical solutions presented in this study for homogeneous poroelastic media
indicate that in the case of quasi-static problems the initial response is mainly
governed by the undrained Poisson’s ratio whereas the final response depends
only on the drained Poisson’s ratio. Numerical solutions corresponding to time-
harmonic excitations indicate that the response is governed by a complicated
combination of nondimensional parameters b*, M*, A\* and the frequency of
excitation. A clear qualitative relationship between the governing parameters
and the response cannot be identified in the case of layered poroelastic media.

5) It is found that an indirect boundary integral equation method similar to that
presented by Ohsaki (1973) for ideal elasticity can be developed for poroelas-
ticity. The indirect boundary element scheme is developed for the analysis
of quasi-static, time-harmonic and transient problems involving semi-infinite
and infinite poroelastic media. The accuracy and the numerical stability of
the present algorithms for quasi-static, time-harmonic and transient problems
are confirmed by solving a set of boundary value problems for which ana-
lytical solutions are available. Full space Green’s functions expressed in the
integral forms have been used in all example problems analyzed by using the
boundary element method. The fact that highly accurate numerical results
are obtained from the boundary element method based on Green’s functions
computed by using numerical integration scheme indicates that the half-space
and layered media Green’s functions presented in this thesis can be effective-
ly used in boundary element analysis of more complicated problems involving

poroelastic media.
7.2 Recommendations for Future Work

In author’s opinion, there are two main aspects to be considered in any future
extension of this work. The first one is the derivation of 3-D dynamic Green’s func-
tions for homogeneous and multi-layered poroelastic half-spaces. Secondly, in this
thesis, only a few types of problems are considered in the boundary element analysis

since the main objectives are to develop the indirect boundary element algorithm
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and verify its accuracy. Given the fact that Chapters 2-5 present the necessary
Green’s functions for both homogeneous and multi-layered media, it is very useful
to employ the boundary element scheme presented herein to study practical prob-
lems such as the dynamics of embedded foundations, quasi-statics of a single pile
and pile groups, scattering of seismic waves by cavities, canyons, etc. in poroelastic

media and investigate in detail the influence of poroelastic effects.
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