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ABSTRACT

Several research topics have dealt with the applications of lhe hvzy theory in a

variety of areas including finance. However, the possibility of combining both fuzzy and

probability theories in finance has not received much attention. This research contribution

tackles the application aspects of fuzzy theory by combining fuzzy theory with probability

theory. Existing lite¡ature reveals that both theories describe uncertainty. F\rzzy theory

and probabiliiy theory are two paradigms of modeling uncertainty. This thesis is an attempt

to integrate the two theories.

The lack of proven practical applications and empiricar imprications of the fuzzy

theory during its early stage of development was a favorite criticism of its opponents. To

address that criticism, this research presents a methodology and shows a potential testability

process for three major âspects of the field.

The fust aspect is the use of the htzzy random uncertainty theory to flnd the

portfolio that gives the mean variance (E,v) combinations that were attainable through the

combination of statistical techniques and expert judgments. As inspired from Markowitz's

statement' the expert judgments in this research have been modered through the use of fuzzy

theory. various sample sizes have been used to show the location of the efficient frontier

and the capital market without short sales and with subjective fuzzy measure. Also, we

show that the validity of this derivation is unafected by the use of ¡eturns on the assets

with subjective measure (width).

The second aspect is fuzzy modeling by the introduction of fuzzy probabilities

in measuring risk. Following Philippaios and w son, the fuzzy entropy has been funy
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developed and then implemented in an empirical example to measure risk.

The third aspect of the research is to co¡rsider the application of a modified ap-

proach to the estimation of risk premium of commodity futures. The aim of this study

is to estimate systematic risk using commodity futures prices with the existence of price

ìimits. An estimation process has been conducted in two d.ifierent phases. with the help of

the ordinary Least squares (oLS) method, the systematic risk has been estimated using

the settlement prices of the commodity futures, which are assumed to be sharply defined.

The second phase investigates the impact and effectiveness of price limits on estimating the

beta risk of commodities return by using a.n optimization moder. Then, to comprete the

estimating process, a test for s, significant regression relationship is presented in the tast

aspect of the research.
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Chapter 1

Introduction

In many real situations variability is indicated by two kinds of uncertainty: ran-

domness (stochastic wariability) and inexactness (wagueness). Here, inexactness means non-

statistical uncertainty that is due, for example, to the imprecision of human knowledge or

to the inexactness of measurements rather than to the uncertainty of random events. While

the former uncertainty is modeled by the concept of ra¡dom variables, the second o¡e is

modeled by the concept of fuzzy mathematics and statistics.

The firzzy set theory introduced by Zadeh [169] is, as the name implies, a theory of

graded sets. Due to their sharp boundaries, classical sets are usually referred to in fuzzy set

literature as crisp sets. As in classical set theory, the degree to which an element r belongs

to the fuzzy set A is described by a function called the membership function. In contrâst to

the chara¡teristic function of a set in the classical sense, which takes the value one only if

x is a member of A, and zero otherwise, the membership function can take v¿lues between

zero and one. The value between zero and one is interpreted as the degree of membership
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of an element ø belonging to the fuzzy set A. This means, for example, that we could assign

the degree of 0.7 to the temperâture 230C as â member of the linguistic value "warm".

Some probabilists have been supportive of fuzzy set theory and other novel un-

certainty theories. One of them is J. N. Kapur, a well-known contributor to classical

(probability-based) information theory. The following excerpt ftom a published interview

[139] expresses his views regarding fuzzy set theory:

"In mathematics, earlier, algebra and topology were fighting for the soul of
mathematics. Ultimately both a¡e co-existing and are enriching each other.
Similarly today there is a struggle between probability theory and htzzy set
theory to capture the soul of uncertainty. I am sure ultimately both will co exist
and enrich each other. Already the debate has led to a deeper understa.nding of
what we mean by uncertainty... I believe that uncertainty is too deep a concept
to be captured by probability theory alone, Probability theory has had a long
histor¡ while hvzy set theory is relatively of recent origin. Let it grow to its
full strength."

Another probabilist endorsing fizzy theory is Viertl [159]. Moreover, Zadeh rede.

ûned the concept of probability vis-à-vis fuzziness [170], pointing out that probability is a

special.case of fuzziness, and it has two limitations: firstly, it works with bivalent sets A,

AltA': þ; AUA':X. So, P(AìA'):0,P(AUA'):1 for all sets A, and that itself

draws hard lines between things and non-things, and we cannot do that in the real world.

Secondly, probability mearrures need small infinities. A probability measure maps the sets

in a singlealgebra to the unit interval [0,1].

F\rzzy theorists explain why people have been wrong in a variety of aspects for so

long. The ¡eason is that rounding off and quantifuing simplifies life and often costs little.

The probability that r € .,4, for example, means that element x either is or is not an element

of set A. However, fuzziness may still exist (x belongs to fazzy set.A, with degree ¡r¡(ø)).
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Probabilists might wonder whether probability describes anything real. David Hume [62]

stated:

"Though there be no such thing as chance in the world, our ignorance of the
real cause of any event has the same influence on the understanding and begets
like species of belief."

In another instã3.ce, Kosko [80] states:

"The only subsets ofthe universe that a.re not fuzzy are the constructs of classical
mathematics, Aìl other sets of particles, cells, tissues, people, ideas, galaxies in
principle contain elements to different degrees. Their membership is partial,
graded, inexact, ambiguous, o¡ uncertain."

Kosko [81] claims that probability is not a primitive theory. He points out that we

can often eliminate it, in favor of a "fuzzy" or multivalued containment operator. Kosko [80]

presented this illustrative example showing the difference between fuzziness and probability;

"Suppose there is a 50% chance that there is an apple in the reÈigerator. That
is one state of affairs, perhaps arrived at through frequency calculations or a
Bayesian state of knowledge. Now suppose there is a half an apple in the refrig-
erator. Th¿t is another state of afiairs. Both states of afiairs are superficially
equivalent in terrns of their numerical uncertainty. Yei physically, ontologicall¡
they are distinct. One is 'random', the other 'fuzzy'."

When discussing the physical universe, every assertion of event ambiguity or non-

ambiguity is an empirical hypothesis. This is habitually overlooked when applying prob-

abiiity theory. Years of sucL oversight are perhaps responsible for the deeply entrenched

sentiment thât uncertainty is randomness, and randomness alone. When looking at an in-

exact oval, vr'e cannot say that it is probably a circle or ellipse, because nothing is random

about it. The situation is deterministic, as all the facts are known. However, uncertainty

remains, due to the simultaneous occurrence of two properties: to some extent a¡ oval is

an ellipse, and to some extent it is not an ellipse.
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Kosko [80] pointed out that conceptually and theoreticall¡ there are differences

between randomness and fuzziness. At the same time, there are many similarities. One

of the similariiies is that both theories express uncertainty in a numerical fashion in the

interval [0,1]. Fhzziness describes event ambiguity. It measures the degree to v¿hich an

event occurs, not whether it occurs.

Randomness describes the uncertainty of event occurrence. An event occurs or

does not, and you can bet on it. So, whether a¡ event occurs is "random"; to what degree

it occurs is fuzzy. rffhether an ambiguous event occurs when we say there is a 20% chance

of light snow tomorrow, involves compound uncertainties, or the probability of a fuzzy

event. In practice, we regula.rly apply probabilities to fuzzy events: small errors, satisfied

customers, safe investments. We understand that at least around the edges, some satisfi.ed

customers can be somewhat unsatisfied, and some safe investments cân be somewhat unsafe

investments.

F\rzziness has been presented as an alternative to randomness, to describe uncer-

tainty. We may pose the following question: Do the notions of likelihood and probability

exhaust our notions of uncertainty? Some people who have been trained in probability and

statistics believe so. For example, Bayesian physicist E. T. Jaynes [65] says thai:

"Our method of inference in which we present degree of plausibility by real num-
bers, is necessarily either equivalent to Laplace's (probability) or inconsistent."

Lindley [95] issued a challenge by saying:

"Probability is the only sensible description of uncertainty and is adequate for
all problems involving uncertainty. All other methods are inadequate."

In contrast, Zadeh [169] suggested that notions of an event and its probability

constitute the most basic concepts of probability theory. An event is a collection of points
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in the sample space. However, in everyday experience, one frequently encounters situations

in which an "event" is a fuzzy rather than a sharply defined collection of points. Zadeh [170]

presented in his study the following definitions where fuzzy events have been elaborated.

Definition L Let (W, A, P) be a probabili,ty space i.n which A is the o - f ietd, oJ Borel sets

i,nR" and P i,s a probability meosure ouer Wn . Then, a fuzzy euent inRn whose memhership

function is p¿(pt: R -+ [0, 1]), is Borel measumble. The probability o! a fuzzy eaent A is

d.ef,ned. by the Lebesgue-Stieltjes integml: p(A):ln p,¡(r)d,P : EÍt",tl.So, the probability

ol a fuzzy euent is the expectati,on of its membership functi,on o,ssuming that p¡ i.s Borel

measurable.

This definition forms a basis for generalizations within the framework of the hnzy

set theory.

One of many researchers rvho criticized the use of fuzzy theory to model uncertainty

is Cheesema¡ [24]. He points out that probability can solve the same problems that luzzy

approarhes claimed to solve by expanding the concept of probabilities to avoid limitations

imposed by the frequency of probability. This view has been persuasively argued; see for

example Klir [74] and Zadeh [174].

For further discussion on the long-standing controversy ofthe use ofprior probabil-

ities and their itrtetpretations and to find an explanation of various aspects of uncertainty,

including uncertainty in scientific inquiry, one may refer to [73], [7+], [81], [80], [81] and

[174]. It may be noted here that when we are making decisions with uncertain and incom-

plete information, it is always necessary to specify the assumptions. The concept of fuzzy

random v¿riables established by Kwakernaak [86] can be applied to model uncertainty. Puri
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ãld Ralescu [121] had a slightly difierent notion. They defined fuzzy random variables as

a generalization of random closed sets. This generalization also includes random variables

and random vectors. Thus, the concept of fuzzy random variables has been found to be

convenient in studying linear statistical inference, Iimit theorems and so on. Indeed, many

¡esults can be regarded as a generalization of results of real-valued random vaJis,bles.

L.1- Fuzzy Uncertainty

Consulting a dictionary for the term "uncertainty", we find that it has a b¡oad

semantic meaning. For example, Webster's New Twentieth Collegiate Dictionary defines

uncertainty as the quality or state of being uncertain. Synonymously, doubi, dubíety,

skepticism, suspicion, a¡d mistrust mean lack of sureness about someone or something.

Uncertainty ma.y range from falling short of certainty to almost a complete lack of definite

knowledge. Dubiety stresses a wavering between conclusions; skepticism implies unwilling-

ness to believe without conclusive evidence; suspicion stresses lack of faith in the truth,

reality, fairness, or reliability of something or someone, Mistrust implies a genuine doubt

based upon suspicion. Also, we ñnd that uncertain stands for 1) indefinite, indeterminate,

2) problematical (not certain to occur), 3) untrustworthy (not reliable), 4) a) dubious (not

known beyond doubt) b) not having certain knowledge: doubtful, c) not clearly identified

or defined, 5) not constant. These r"¿rious meanings are mentioned here to illustrate the

richness of the concept of uncertainty and the la.rge spectrum of possible theoretical tools

that can be used in dealing with difficult real-world problems.

.When 
we investigate these various meanings, at least two major types of uncer-
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tainty eme¡ge naturally: úz,gueness and ambi,guíty. It is easy to see that the meanings

mentioned above relate to the concepts of fuzziness and crispness. Keeping in mind that

the concept of uncertainty is closely connected to the concept of information, when our

uncertainty in a situâ,tion is reduced by an action such as performing an experiment or

ûnding a historical record, the action may be viewed as a source of information relating to

the situation.

Note here, that the classical mathematical frameworks for characterizing situations

as uncertain have been crisp set theory and probability theory. Yet, the fitzzy set theory,

by its capability of conceptualizing the main types of uncertainty is relevant and obvious.

Membership degrees that accompany t'tzzy theory and ûtzzy data (in the empirical sense)

indirectly express â pertinent measurement of uncertainties. Moreover, an important feature

of fuzzy set theory is its ability to capture the vagueness of linguistic terms in statements

of subjective and natural languages. In that case, gueness is a kind of uncertainty that

does not resuit from information deficiency but rather from imprecise meanings of linguistic

terms. Crisp set theory is not capable of expressing the imprecise meanings of vague terms

and of being transferred to a modeling quantifiable environment.

The lack of proven practical applications and empirical implications of the new

uncertainty during its early stage of development was a favorite criticism of its opponents.

At the beginning, they were able to embar¡ass proponents ofthe theory by simple questions

such as: "Can you show us at least one practical application or one empirical implication

of the new theory?", and they asked increasingly demanding questions. Later, when the

number of applications became overwhelming, the opponents asked whether the proponents
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could shov/ them at least one problem that could be solved with the help of fuzzy theory

but that could not be solved without it. Although the question is still debatable, a prolific

body of work has recently emerged with the help of fuzzy theor¡ where classical efforts

have failed; see for example ll75l. F\tzzy theory is offered as the basis of a new paradigm

of uncert ainty.

Currently, the range of applications of htzzy uncertainty is quite wide. For in-

stance, the fuzzy linear programming, which was developed to ta¿kle problems encountered

in real-world applications, shows that applications are diverse and cross disciplinary. Busi-

ness assignment problems (network location problems) (see Darzentas [29]), transportation

problems (Perincherry and Kikuchi [117]) and transshipment problems (Verdegay [158j)

represent only a suggestive list list of applications in the area of management science. In

the finance area, the number of applications is limited, for example, capital asset pricing

model (Ostermark [114]), profit apportionment in a concern (Ostermark [113]), bank hedg-

ing decision (Lai and Hwang [88]) and project investment (Lai and Hwang [88]), and there

is a room for future research, In marketing, the media selection problem by Zimmermann

[176] and the new product development by Srnimou et ai. [144] remain a non-exhaustive

list of applications in the area.

1.2 Fuzzy Modeling in Finance

During the last frfty years, investment theory has been developed around EMT

(Efficient Market Theory), Markowitz's Mean-Variance Model (EV) [103], Sharpe's Capital

Asset Pricing Model (CAPM) [141], Lintner [97] and Mossin [108], Ross's Arbitrage Pricing
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Theory [130] and Blâck, Scholes and Merton's Option Pricing Theory [13], [102]. Of these,

the frrst two theories are regâxded as the backbone of modern portfolio theory. The major

difficulty faced by operations researchers in modeling the problem of portfolio selection,

which is regarded as the theory that precedes the derivation of the Capital Asset Pricing

Model (CAPM), is that it is ba¡ed on the perception of risk by an investor, which will

ries, as diferent people have different beliefs about the future performance of various

assets. In real-world problems, we are faced with imperfect information (data) and must

deal with uncertain, imprecise, and vague data. In modeling and analyzing problems of

this type, earlier works in finance tended to equate all aspects of imperfect information

with uncertainty (of a random character). Thus, a multitude of probabilistic models nere

proposed. This was also the case y/ith the use of modeling in finance, for example [50],

[167], [25], [83], [134], [120], [38], [63], [116] and [143].

However, no simple and adequate methods for handling imprecise data, which may

stem, e.9., from the use of natural language and subjective statements was available until

the mid-1960's wherl zaÅeh [169] proposed fuzzy sets theory. And indeed, financial modeling

has been one of the areas to which fuzzy sets theory has been applied ([113], [ll4]).

Recently, there has been an increased interest in fuzzy theory in a large number

of applications, some of which will be mentioned in this thesis.

Markowitz [103] in the derivation of the efficient portfolio assumed that the return

r¿ (the return on the i¿å security) and R (yield on the portfolio as a whole) are assumed. to

be random lariables, and the probability beließ concerning these variables are given. of

course, he did not discr¡ss the method of how investors form their probability of beliefs. He
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sâ,ys:

'fn general we would expect that the investor could tell us, for any two events (.4
and B), whether he personally considered á more likely than B, B more likely
than .Á, or both equally likely. If the investor we¡e consistent in his opinions
on such matters, he would possess a system of probability beliefs. We cannot
expect the investor to be consistent in every detail. We ca.n, however, expect
his probabiliiy beliefs to be roughly consistent on important matters that have
been carefully considered. We should also expect that he will base his actions
upon these probability beliefs even though they be in paú subjective.,,

Ma¡kowitz addressed the subjectivity part of the probability beliefs by stating:

'rThe calculation of effi.cient surfaces might possibly be of practical use. perhaps
there are ways, by combining statistical techniques and the judgment of experts,
to form reasonable probability beliefs."

In this context, the fuzzy random uncertainty is a suitable theory to find the port-

folio which gives the (8, v) combinations that ¡vere âttainâble and the desired combination

by the investor through the combination of statistical techniques and expert judgments.

Markowitz's mean-variance model [103] assumes that the investor is risk averse, i.e. the

investo¡'s utility function is increasing and concave, and the security returns are jointly

normally distributed or the utility ís a quadratic function, and the risk associated with

it is fully identiÊed by its variance. Following the line of Markowitz, the purpose of this

thesis is to provide the aspects of fuzzy uncertainty in asset pricing, which v¿ould involve

a rederivation of the mean-lzriance theory followed by a rederivation of the fuzzy cApM

model. Generally speaking, in finance, and specifically in investment problems, because we

a¡e confronted with decision making situations, the essence of Bellman and Zadeh's [10]

approach to decision making under fuzziness adds a new dimension to the modeling efiort

in this research.
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Next, in chapter 2, we present the rederivation of the Markowitz efrcient ftontier.

In chapter 3, another aspect of fuzzy modeling in finance by the introduction of fuzzy

probabilities is presented, an empirical design is discussed, a¡d the a¿tual testing of the

collected data is completed. chapter 4 presents a brief review of v¿rious fuzzy regression

approaches and illustrates an application of a modiÊed approach to the estimation of risk

premium of commodity futures.



Chapter 2

Mathematical

Background/ P reliminaries

Inferences and decisions in statistics are based on information supplied by a ran-

dom experiment associated with a population and on additional information about the

experiment. To achieve a statistical inference in terms of certainty and precision is almost

impossible. Since the development of fuzzy set theory, many studies have tackled the com-

bination of both fuzzy set and probability theory. The aim of this chapter is to examine

methods for handling statistical problems involving fuzziness in the elements of the ran-

dom experiment, and serves as a point from which to derive the Ma¡kowitz frontier in the

presence of fuzzy uncertainty and random uncertainty. Gebhardt et al. [42] presented two

illustrative figures showing the elements and stages in a random experiment and involving

the observation of random variables and fuzziness in the observed report.

In statistics, we traditionally assume that the experimental performance and the
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parameter value, or state specification in a Bayesian setting, are accomplished under ran-

domness, whereas the remaining stages in the experiment are handled under certain and

well-deûned conditions. However, fuzziness can arise in some of these remaining stages,

that is, in the assessment of the experimental and/or prior distribution. Chapter 2 tackles

this point. Also see Walley [163] and Thomas [15a]. In the context of the qua.ntification

process of the random variable, Chapter 3 presents a special example. In this case, Iimi-

tatiors sometimes appear when assessing exact probabilities, so the available information

about probabilities is more properly described in terms of imprecise propositions, stating

a set of experimental results as "highly probable" or "unlikely". Also, the quantification

process in the random va¡iable can associate an imprecise report of the variable value with

each experimenta,l outcome. Frzziness can be involved in getting the experimental outcome

or the parameter value of the experimental distribution. Regarding the assessment of fuzzy

probabilities, we cârì see, for example, Zadeh [173], [172], Dubois and Prade [34], Rappoport

et. al [123], and Ralescu ll22l. Apilt ftom these, there are still many open questions in

connection to this topic.

The notion of a fuzzy random variable (see for example, Kwakernaak [86], puri

and Ralescu [121], Kruse and Meyer [84]) provides a valuable model that is manageabie in

a probabilistic framework. Also, the concept of fuzzy information presented by Zadeh [172]

can formalize either the experimental data or the events involving fuzziness. The concept of

a fuzzy random variable [121] was defined as a toól for establishing relationships between the

outcomes of a random experiment and inexa¿t data. By inexactness, we mean non-statistical

inexa¡tness that is due to subjectivity and to imprecision of human knowledge rather than
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to the occurrence of ra!.dom events. Korner [77] pointed out that the variability is given by

two kinds of uncertainties: rar.domriess (stochastic variability) and imprecision (vagueness).

Randomness models the stochastic va.riability of all possible outcomes of an experiment.

Frzziness describes the vagueness of the given or realiz,ed outcome. Ra¡domness answers

the question: What will happen in the futu¡e? Whereas fuzziness answe¡s the question:

What has happened? or 'What is meant by the data?

Kwakernaak [86] presented another explaoation for the difference between ran-

domness and fuzziness. He pointed out that when we consider an opinion poll in which

a number of people are questioned, randomness occurs because it is not known which re.

sponse may be expected from any given individual. Once the response is available, there

still is uncertainty about the precise meaning of the response. The latter uncertainty will

be characterized by fuzziness.

2.L Fuzzy Random Variables

In this case, we deal with two types of uncertaint¡ namel¡ randomness and possi-

bility (fuzzy). Randomness refers to the description of a random experiment by a probability

space (O,.4, P), v¡here Q is the set of all possible outcomes of this experiment, ,4 is a-field

of subsets of O (ihe set of all possible events), and the set-function P, deÊned on .á, is

a probability measure, we assume that all the information that is relevant for further

analysis of any outcome of the random experiment can be expressed with the aid of a ¡eal

number, so that we can specifu a mapping [/: O -- IR, which assigns to each outcome in

o its random value in IR. [/ is called a ¡andom variable and is expected to be measurable
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with respect to the ø-field A and the Borel o- field B of the real line. The possibility of

a second kind of uncertainty in our discussion of a random experiment has to be involved

whenever \ e are not in the position to fix the random values U(tl) as crisp numbers in IR,

but only to imperfectly specify these values by a possibility distribution on IR. In this case

the random variable U : O -+ IR changes to fuzzy random va¡iable X : O --+ f-(ft) q¡¡¡¡

F(R) : {llp,:R -, [0, 1]] denoiing the class of all fuzzy subsets. F\rzzy random vari-

able (f. r.v.) is interpreted as a fizzy perception of an ina¡cessible usual random variable,

U : Q --. IR, which is the original of X. The idea is that the corresponding description of

a random experiment Lrs(u) is imperfect in the sense that its most specifrc specification is

the possibility distribution X.:X(w). In this case, for any r€ IR the value X,,(r) quantifres

the degree of possibility with which the proposition Uo(w)=¡ is regarded as being true.

X.,(r) : 0 implies that there is no supporting evidence for the possibility of the truth of

Us(u):¡, whereas X,,(r) : l implies that there is no evidence against the possibility of

the truth of U¡(tu):¡, so that this proposition is fully possible. X-(r) e [0, 1) reflects that

there is evidence that supports the truth of the proposition as well as evidence that contra-

dicts it. A way proposed by Gebhardt et al. [42] of interpreting a possibility distribution

X.:lR --+ [0, 1] is viewing X,, in terms of the context approach.

The concept of a fuzzy random va¡iable is a reasonable extension of the concept of

a usual random va¡iable in the many practical applications of random experiments, where

the implicit assumption ofdata precision seems to be an inappropriate simplification rather

than an adequate modeling of the real physical condiiiors. Considering possibility distri-

bution allov¡s us to involve uncertainty (due to the probability of occurrence of competing
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specification contexts) and imprecision (due to the context-dependent set-valued speciflca-

tions of U¡(w)).

Definition 2 Let (A, A, P) be a prvbabilitg space. A Junction X:dl -'+ F (R) is cnlled' a tuzzy

rand,o¡n uari,able il and, onlg iJ:

X- t Q --+ lR, ut --+ inf(X(u)") and,

X" , O "- lR, z; -, sup (X(ul)")

are A-B- measurable tor all a e [0, 1] , wàth B being the Borelo- fi.eld of R.

The notion of a probabilistic set and fuzzy random variable was introduced by

several authors in difierent ways, Kwakernaak's theory [86] is similar to that presented

here. Puri and Ralescu [121] considered fuzzy random variables whose values are htzzy

subsets of .Rn, or more generally of Banach space.

Theorem 3 Let X : Q '- F (R) be a f,nite fuzzy random aariable such that X(A) :

{l¡12, ..,1"\ and, pi : P ftue A / X- :'i4],1, d: 1,...,n.

Then, {llirp¡inf (ã¡)., !!t p¿ sup(õ¿).]},e(o,rl is an a - att representation of

E(coX), where CoX:Q --+ F (R) is d,ef,nen by (cnx)(w)=Ço(X-) ui,th Co(X-) d,enoting the

conaer hull oJ X-.

2,2 Fuzzy Random Variables and Properties

Kwakernaak [86] defines the concept of fuzzy random variable as follows:
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Let I¿; R -+ [0, 1] be the characteristic function of the set tu¿. Also, let 
^9 

be the

space of a,ll piecewise continuous functions Ã --+ [0, 1]. We then define the perception of the

¡andom variable U, as described above, as the mapping X : O --+ 5 given by

.\x-

with X- : I¡ if and only if U(u) € I/d . This means that we associâ,te with each u € O,

not a real number U(tl), as in the case of an ordinary ¡andom variable, but a characteristic

function X., , which is an element of ,9.

The map X : O --+ ,5 described above cha¡acterizes a special type of fuzzy random

variable. The random variable U, of which this fuzzy random r¿riable is a perception, is

called an original of. lhe fiizzy random variable. Many originals may exist. Kwakernaak

[86] introduced the notion of a fuzzy rândom vs,riable as a function F

F :f)---+ -F'(R)

subject to certain measurability conditions, where (O,.4, P) is a probability space and .F'(lR)

denotes all piecewise continuous functions:

z: IR_-- [0, 1]

Feron [40] defined a fuzzy random set as a messurâble function:

F:Q--+F(x)
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whete x is a topological spare, F(x): {u: x -, [0, 1j], and {ø € x: F(u)(t) ) a} arc

closed subsets of x for each 0 ( a ( 1, zr e Q.

Puri and Ralescu [121] defined fuzzy random variable slightly difierently ftom

Kv¡akernaa& [86]. In [t21], fuzzy random variable is deÊned as a function X: O -+ F¡(lR¿),

where (Q,,4, P) is probability space, and .F¡(lR") denotes all fi:¡ctions (fuzzy subsets ofRD)

z:lR'--+[0, 1] such that {ø€lR':z(ø) )a} is non-empty and compact for each 0 <a( 1

2.3 Fuzzy Variables and Their Expectations

Let (O, á, P) be a probability space where P is a probability me¿ rure. Let f'e(R")

denote the set of fitzzy subsets ¡r : IR¿ ---+ [0, 1] with the following properties:

(a) {ø e n";p(ø) ) a} is compact for each a > 0

(b) {celR";p(ø):r}*ó

Definition 4 1771. A fuzzy rarul.om uariable (fuzzy uariabte) is a function

X:O--+.F'6(lR")

such that: {(ra,r): ø e X"(ta)) eAx B for euery ae [0, 1]

lVhere Xo : O --+ P(R") is d,efined by

X.(tn): {c e R': X(ur)(ø) ) a}

Definition 5 [109]. á tuzzy uariable X is called, integrablg boundel. i.! Xo is inteqrabty

bound,ed. for all a e [0, 1], i.e. for any a e ll,,Ll there exists ho € ¿1(O) such that

lfoll < lz" (tr) lor ench r, w with r e X,(u). Lr (Q) d.enotes all functiotu l¿ : O -, IR

which are integrable with respect to the probability rneasure P. Then, erpected ualue E[X]

of a Juzzy uariable X is defineÅ as:
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X: O--+ ¡o(m"); {ø e R": (.Ð[X])(") > o] : J X. for enchael\,tl

Theorem 6 ([124,[7î). If X : Q.* .F'g(R") is an integrably bound,ed, Juzzy aariable, there

enists a unique fuzzy sef u e .F'e(lR") such that{a e R":r.,(ø) >o¿]¡: I X" lor euery a€

l},Ll, Thös theoretn was used, to d,ef,ne erpected ualue of a fuzzy rand,om uariable X : e --+

Fs(Rn) uhich is intEmblg bound,ed,.

Definition 7 The etpectetl ualue oÍ X, d,enoted, by E[X], is the luzzy sef o e .F's(lR')l

such that {ø e IR : ø(ø) >_ a} : I X" Jor euery a e [0, 1]. Enistence and, uni,queness of u

are established. in the t'ollowing thenrern (E lÍl) (r) : S"p {" € [0, t] : ll e I X,] and. its

leuel sets are giaen by : {c : (E lxl) (t) / a} : J X", a € [0, 1]

2.3.L Properties of the expected value

Extension of Lebesgue dominated convergence theorem to fuzzy random variables

is done by .Fg(R") â metric which generalizes the Hausdorff metric, let u, u € ¡'o(lRn), and

set d,(u,u) : Sup"'>o(Lo(u), 1,"(u)). d¡¡ is Hausdorfi metric, and we denote by L,(u) :

{x:u(x) à a} and L"(u): {ø: u(o) > a}

Theorem 8 IJ the probability mensure P ás nonatomic, and if X : e --+ I'¡(lR¿) is øæ

intergmbly bound,ed Juzzy uariable, then E[X] is a fuzzy conuex set.

computation of E[x] with examples to compute expected value of a fuzzy ran-

dom va¡iable.

Example 9 Toss a Jair coin, outcomes: tail (T) and head (H). A ptayer toses approximatelg

$10 íf the outctme is T, wins an amount much larger than 8100 but not much larger than

æ



81000 il the outcotne is H.

The fuzzy random uariable is:

X : {T, H} -- .Fo(R") X(T) :'apprcrdrnately 10,'

X(H) :'t¡ns¿¡, larger than 100 but not larger than 1000,'

For a technical reason:

X(T) : u, X(H) : u u,u: IR --+ [0, 1]

z1ø¡: 
[r - 

('+a10)'?]+ ,('): [1- 
.;utuTo].

,f+ : max(.f, 0)

Since u and u are contirvuous with compact supporf, it .is eosy to show:

EtX)(ï): Supu+,=z,rntn([t - rr*r*r1*, [r - G-oeor't+\
\t " J 't ãEõ'I-l )

In particular, support of E[X] is included, án the interual [119,501].

Example tO Let X: Q -+ F¡(lR") be a fuzzy uariable such that

PIX : u¡] : p¡, i. : L.,..r

uhere u¿ : R -+ [0, l] are continuous uith com.pact support. Then, EIXI :

Ði=tP¿u¿

2.4 Variance of F\zzy Random Variables

Fìrzzy random variable introduced by puri and Ralescu [121] as a generalization

of compact random sets, combines both randomness and imprecision. stochastic variability

is described by use of probability theory and the vagueness by use of fuzzy sets introduced

by Zadeh [169].
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The notion of expectation and the notion of variance are parallel to the notions

for a ünear stâtistical infe¡ence with lttzzy random data.

Define F" : set of all normal compact convex fuzzy subsets of IR. and assume that

any pA i R --+ [0, 1] satisfies:

(1) A is normal, ,4.r : {c e R' : p,¡(n):1} is non-empty.

(2) a - cuts of A, Ao : {c € IR I pA@) > a} 0 < a ! 1 are convex and compact.

(3) The support of A , A0 : Uoelo,rll* is compact.

Each fitzzy set A corresponds uniquely to its support function.

S¿(a,u)= Sup{(u,a):ae A'), ø€.9"-1,e€ [0, 1]

8'-1is the (n. - 1) dimensional unit sphere of IR" and (., .) is the inner product of

the Euclidean space IR¿.

X:isa Borel measurable mapping X:e--+F". It follows thatforeachae [0, 1]

the a- cuts, Xo are non-empty compa.ct convex random sets.

2.4.1 Expectation, variance and covariance

Let the following measure defrned such that

Ed2(X,A): inf Ed2(X,B) (2.1)

A e M with Ed2(x,,4) < oo. The infimum of 2.1 is called variance of the random element

X.

The least square property of real-valued random variabres ø is generalized by this

principle: E(x - Ex)2 : inf¡e¿(X, A)
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and, Var(X) : inlBee'" Eú(X, B)

Assumption: we restrict ourselves to square integrable fuzzy random variables for

which nllxll! < oo. This assumption ensures that the expectations as well as the variance

always exist. Expectation or a finzy random vari¿ble is defined by generalized Aumaun

expectation EX. (EX)' : Sup{E€:{ is a selection of X'; Ell(ll, < æ}, o € [0, 1] ,

or by Bochner expectation of the corresponding support function of X . ^9¡¡(a, z) :

Es*(a,u) , u e S"-t, a e [0, 1]

S'-1 : is the (n-1) dimensional unit sphere of IRn and (.,.) is the inner product of

the Euclidea¡ space R'. It follows that

, sá(., z,l) represents a fuzzy set for a.ny fixed z € S'-1 and

S¡(c, .) is the support function of the convex a - ant for any fixed a € [0, 1]

Expectation as defined by Puri and Ralescu [121] is the uniqu e fuzzy seb EÍ with

trhrther, we can define:

where ¡¡ denotes the indicator of Ae /

Following Korner [27], the varia¡ce of frv i is defined as Varf : Eú(X, EX).

Usinc (øÍ), : EÍo anð, søÍ.: 8""., this can be wri6en as

(ur)":"lr"l o<a<1

loxae=u(r*^) vA€.,4,

VarÍ : 
" Iì Is"_,Vør s4(t)u@.t)d.a



Analogously, the cova¡iance between two frv's X and 7 is deÊned as:

C ou (x, Y) : n I: I s"-, C ou (s 4(t), sl.(t)) p(dt) da 2

2.4.2 LÈ-fuzzy numbers

If ¿ > 0 and r ) 0, then the membership function of an .L.R-fuzzy number

(p',I,r\"r, Ais
(
I L(52) iJ ,<p
Im¡(z)=\ t i.f a:¡1
I

|. Ã(?) if c>p

Here .L, .R : IR+ -+ [0, 1] are fixed left-continuous and non-increasing functions with

¿(0) : ,R(0) : 1. The functions L and R are called left and right shape functions, p

the modal point and I ,r > 0 are respectively the ieft and right spreads of the LR-fuzzy

number. The most commonly used LR-fuzzy numbers are triangular fuzzy numbers

(p,I,rla with linear shape functions L(a): P¡ç¡¡: Mar{0,1-ø} and, especially, the

symmetric triangular fuzzy numbers (¡r, t)a with I : r.

Another useful class of fuzzy numbers with unbounded support is the bell-kind (or

Gaussian) fuzzy number defined by t (a) : R(ø) : exp(-¿2) with a - Je¿el sets

t" : Lpo- t¡l-r"@, pn+ re1/-np¡] a € [0,1],

and o4¿: 
^fr l4 , such thar oA: ItA+ f þ¡-t¡¡

For details see [110]
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2.4.3 Random LR fuzzy numbers

Denote i :(pv,Iv,rvl tna rand.om LR-fuzzy number with lefi/right shape func-

tion L/R, with the random central value py a.nd the positive rand.om left and right spreads

ly and ry, The result for -Ei is known:

EÍ : (E tty , EIy , Ervl nn

Following ([109],[7fl) for random LÈ-nuzzy numbers Varf anð, Coa(Í,Í) is given by:

VarÍ -- V ar(¡1,¡) + a¡,V ar(tx) * a."V ar(rx) -2a¡,Cou(py,lx) *2a,,Cou(¡,t*,Ix) (2.2)

and

Cou(Í,Í) : Cou(p.*,pr) -l a¡"Cou(ty,ty) * a,"Cou(ry,ry) (2.3)

-2 a¡, lA n Q-r, ¡ç, ly) + C ou (¡.r,y, ty)l + 2a,, lC ou (p. y, r y) * C ou (¡-t ¡, r y)1,

where

"u:| | r,-,1.¡a., ",,:; I e.-t1a¡)2 aa

",, 
: | | a-'p¡a., ",":; I (n-Lq.,¡)2 ao

Definition 11 [171]. Let x denote a uniuersal set (also lmouvn as uni.uerse oJ d,iscourse)
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A fuzzy subset A of X is characterized, bg a membership Junctíon:

U: X - Í0'11

which ossociates with each element s of X a real number ¡t¡(n) i,n the interual

l0,ll, wi,th p,¡(r) representing the gratle of rnembershþ of element r í,n luzzy set A.

A is completely determined by a set of doublets.

A: {(ø, ¡raþ)ln e x}

If X : {ry,r21 ..., o,"} is a finite set and A is a hnzy set in X, then we often use

the notâtion

A: h/xt * pz/rz + ...* t"nlon

where p,¿fx¿, i, : l,...,n identifies that ¡z¡ is the grade of membership of x¿ in A

and the plus sign represents the union. However, when ø is not finite, a fuzzy set A is

deflned as:

IA: I p.¡(x)/x
Jx

Example t2 Suppose we uant to d,ef,ne the set o! natural nutnbers ,,close to j,,. This can

be expressed by

A = 0.0 I - 2 + 0.31 - I + 0.6/0 + L.olL + 0.612 + 0.3 13 + 0.0/ 4
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Definition 13 Ertetæion principle of zad,eh [171] proaides a general methotl, for ettend,ing

non-fuzzy rnathematirnl concepts i,n ord,er to d,ed with fuzzy quantities, Then it allows the

ectension of a mappi,ng f þom points i,n X to Juzzg subsets o! X:

f Ø) : Î(t"tlrr + pzlrz + ..' + ¡t*/a")

t"t/ l@ù + t"2/ î@2) + ... + tt,/ Í @")

Example 14 Consider the fuzzy set ,,about 7" ui,th a discrete uniaerse and, the mapping !
representing the square. Then the applicatáon oJ the ectension prínciple rcsults in

( "about 72 ") : 0.0152 +0.5/62 +r.o/72 +0.5182 +0.0/92 :0.0125+L.ol4s+0.5164+0.0/81

2,4.4 Fast computation of 4h¡ 4t ãtzr ã,2

a - Cuts 6¡ ! : (¡L,,l,r) ¡p are given by the intervals

.q" -- úr - L-t (d)¿, p + R-l(a)r] ; a € [0, 1] ,

An LB-l,tzzy number.4: (p,I,r)¡,nwith tr:.Rand l:r9^ i" called symmetric and

abbreviated by:

Adg @,L)1.

For a random s;'rnmetric fuzzy number ([tO0], [ZZ]):

y : 0", L)t
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E(p,L)¡,: (Ep,EL)",

and

Var (P'' L)":Var (P) *2a¡"Var(L)

In particular, the variance of a random triangular fi.rzzy number is simply given by

var(x) : var(P') +lvo,1t¡ +lvo,1,¡,

and the varia¡rce of random bell-kind fuzzy numbers is:

V ar (X) : V ar (P) + V ar(l) + V ar (r).

The covariance of two random LÈ-flzzy numbers X, Y is given by equation (2.3). This

form is more convenient under additional assumptions:

c If L : Ã (shape symmetric LÈ-htzzy number) then

C oa (X,Y) = C ou (¡-t *,p,r) j a¡"(C ou(t s¡, ly) * C ou (r y, ry))

*2a¡,(Cou(¡ry, rv - lv) + C oa(¡.ry, r ¡ - ty))

o If.L: R, lx = rx, Ir:ry (symmetric L$-fitzzy number As :: Á¿ - ,4¿). Then,

Cou(X,Y) : Cou(px, pv) I a"rCou(l,,ly)



2.5 Expected Utility Maximum

First, mathematicians formulated principles of behavior in chance situations by

assuming that the proper objective of the individual was to maximize expected monetary

return. However, later on, some researchers found that the expected return maximum is

not the proper methodologr [135] [54]. Therefore, the expected utility rule was proposed as

a substitute for the expected return rule ([3], [33]). Instead of maximizing expected return,

the rational investor would maximize the expected value of the utitity of return [4].

Markowitz ([r0¡], p. 209) says:

"Some recent cornment&tors, on the other hand, have agreed that the expected
utility maxim is not the essence of rational behavior. They show instances in
which human action differs from that dictated by the maxim... At least two
well-known economists who first wrote as opponents later became a.dherents of
the expected utility maxim. The writer knows of no equally famous conversion
in the other direction..,"

Thus, following Markowtiz [105] we use the expected utility maximum approach

to rederive the efficient frontier in the presence of fuzzy random returns.

2.5.L Utility frinction

Following ([ai]) and ([59], p 6e.61), an individual,s uriliry funcrion may be ex_

panded as a Taylor series around his expected end of period wealth.

u (ú) : u (E þrl) + u' (E lúJ)@ - E @) + 
Tu" tu wn @ - E l6t), + R3,



where the remainder is:

,,:ijur, (Et*D@ - ELú¡",

and where U(') denotes the ntå derivative of Lr. Assuming that the Taylor series converges

a¡d that the expectation and summation operations are interchangeable, the individual,s

expected utility may be expressed as

Etu (u)l:u(El.l) + j.u" 1ø¡or1ø¡+ E[ÂB],

where

EIRB] : 
å åu 

{.) 1ø 1õl m^ (õ)

rn"(õ) denotes the n¿å centrai moment of t. Assuming quadratic utility (or jointly normal

returns), the third and higher order derivatives are zero and, therefore, Elhl:O. Hence,

an individual's expected utility is defined over the first two central moments of his end of

period wealth, t,

Etu (u)l : EþîJ - f,rwrl 
: Elq - f, ({nlæt), +," {a)) .
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Chapter 3

Mean-Variance Theory with frnzy

Random Returns

S.L fntroduction

The pioneer work in the mean variance theory has been presented by Markowitz

([103], [105]) and Tobin [155]. Later, Sharpe [t4t] and Lintner [97] presented rhe Capiral

Asset Pricing Model (OAPM) which was built on the foundation of the mean-variance

theory. The logic behind this correlation is that the identification of the efficient frontier

of risky assets with the risk-ftee asset is provided by the mean-variance theory. That

efficient ftontier is singled out by the risk-free asset and the tangency frontier portfolio.

In equilibriurn, after asserting the assumption that all investo¡s have identical probability

beliefs (share the same information) the amâlgamâtion of the risk-free asset and the portfolio

would hold . Therefore, if the portfolio of all risky assets repre.sents the market, then the
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CAPM is developed and it is empirically measured. Obviousl¡ without ignoring ihe Roll's

critique [126] that CA,PM's view of the market portfolio as it contains every asset is not

always available. For example, data of real state or real asset investments are not available,

yet are crucial elements in the market. Thus, the applicability of CAPM in its existing

form is questionable, because the use of different proxies for market return will reshape the

empirical implications.

In this chapter, we question one important assumption made by Markowitz ([103],

[105]), which remains ¿ fundamental assumption in mean-variance theory litera-

ture today: thât assets are normally distributed or that random uncertainty is the sole way

of modeling uncertainty.

Markowitz ([tOS], p.tS3) discussed the reasons behind the use of variance as a

meâsure of dispersion in asset pricing instead of other dispersion measures.

"Many considerations infl.uence the choice of V or ,S as the measure of vari-
ability in a portfolio anaþis. These considerations include cost, convenience,
familiarii¡ and the desirability of the portfolios produced by the analysis."

Following Markowitz's articulation of the importance of using variance as a mea-

sure of dispersion, in this chapter, the variance analysis is co¡rsidered. Knowing that the

analyses based on ,9 (semi-variance) tend to produce better portfolios than those based on

It the analyses based on semi-variance can be considered in futu¡e research endeavors after

experience is gained with simpler measures in our context.

Although Markowitz [103] ignores the experts' judgments in the derivation of the

efficient ftontier, he [105] emphasizes the merit of such a combination ofstatisticaÌ techniques

and the judgment of experts in the portfolio selection process. Yet, Markowitz does not

propose a method to tackle that issue, and he does not study the efficient set of portfolios
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for the investor in the presence of fuzziness or any subjective information. White [166]

has presented a viable conceptual ftamework for the uncertainty theories which will be

used in this chapter. White [166] divides the uncertaingr into so-called "subjective" and

"objective". Subjective measu¡es are derivable Èom observation of choice, whereas objective

meâsures are derived, once the basic data are given, by specific procedures, independent of

the problem fa¿ed. He [166] ha.s suggested thât measutes of uncertainty are either formally

derived from specified data, or are imputed by observing choice in a given class of problems.

Also, he said:

"It is perhaps trot ân unreasonable prerequisite that objective and subjective
measures should be correlated to some extent."

The objective of this chapter is to re-examine mean-variance theory in the presence

of fuzziness articulated by htzzy returns (LR type). Vr'e rederive the Markowitz efficient set

and present the tr\zzy Capital Markei Line (FCML) and the FCAPM. By illustrating these

ideas with an empirical example, a comparative study is obtainable.

3.2 Analytical Derivation of the Efficient FYontier with Fuzzy

Random Returns

In this section, we analytically derive the efficient frontier in the presence of sub-

jective information indicated by LR-fuzzy random returns. Firstl¡ the efrcient frontier has

been developed assuming s.n economy consisting of no riskless assets. Then the derivation

of the F\zzy Capital Markei Line assuming an economy with boih risky and riskÌess assets

is achieved.
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Throughout most of this chapter we wiil use the following set of maintained as-

sumptions:

(.A.1) Perfect markets: The markets for all assets are perfect v'rith no taxes or

transâction costs. Unlimited borrowing and short sales are not permitted. Each asset is

infinitely divisible.

(42) Competition: All investors act as price takers in all markets.

(A'3) Homogenous expectations: All investors have identical probability beließ.

(.A4) State.independent utility: Investors are risk averse and maximize the

expectation of a Von Neuman-Morgenstern utility function, which depends solely on wealth.

(A'5) Complete markets: Each competitive investor can obtain any pa,ttern

of returns through the purchase of marketed assets (subject only to his/her own budget

constraint) if the number of marketed assets with linearly independent returns is equal to

the number of states. Under assumptions A1 through A4 it is known that the CAPM wilÌ

obtain if investor's utility function is quadratic over the relevant range of outcomes or if all

âsset returns are drawn ftom one of the class of "separating distributions" defined by Ross

li31l.

Following Markowitz [103] in assuming a one-period economy, we aasume that the

investor applies a buy-and-hold strategy during the entire period. Of course, it is noticeable

that the usual variations which we observe in a continuous framework are ignored here. As

they are under a multiperiod setting, the investo¡s are willing to rebalance their porifolios

over time and single period investment models are not appropriate to help investors to

make the optimal allocation of their wealth. Still, it is plausible that the analysis under
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the one-period model assists in understanding the mean-r¡ariance theory in the presence of

subjective measure, articulated by the use of fuzzy random returns.

3.2.1 fnvestor optimization problem

Let us assume that we have ,lV risky essets, indexed by j, where j : L,2,. . .,

N. Let the symbol " -" and "x " designate a random fuzzy variable. Let .É¡ represent the

one-period gross return on asset i, where the "gross" return is equivalent to one plus the

rate of return. Let ã,¡ andã¡ represent the lower limit and maximum limit return of security

j.

For example, v¡hen the investor faces a situation in rvhich returns are not sharply

defined but rather vague, she/he will establish, based on the experts' judgments, an aspi-

ration interval in which the returns are located . In that context, the membership function

which measures his/her degree of precísion has a symmetric LR linear form, Thus, when

-ãj is assumed to be vague, we const¡uct lhe fuzzy random return in the following fashion

a; : ñ.¡ + widtb (l¡), Thus, ã¡ : ñ¡ -T¡ "aal¡ 
: ñ. +T¡.

The experts' judgments provide the investor with the level of tolerance (width)

she/he needs to develop the efficient frontier and ã,¡ and,6¡ represent left-hand width and

right-hand returns respectively. The fuzzy random return cs.n be abbreviated tv ñi =

/ñ..,.T,\

Let -R¡ represent the gross risk-free rate of return. Let Ì,I/ represent initial wealth,

i represent terminal wealth, B represent the investment in a riskless asset, and yr. represent
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the investment in a risky asset j.

Given the above assumptions, the investor selects an optimal portfolio that maxi-

mizes the expected utility of the investo¡'s end period wealth. It follows that the investor

solves the following optimization problem.

subject to tr'r" ølu (t)l
r-8 ' t--N V;
'-W1¿-j=tift

T : R¡B +DT:,Vñ¡

The fust constraint is the investor's budget constraint, both sides of which are divided by

the investor's initial wealth tu. The second. constraint is the wealth accumulation constraint,

which incorporates fuzziness. The investor can hold an asset long or short. A short position

implies X¡ < 0. We denote the investment weights as X¡: þ W asset j and X¡ : fi for

the riskless âsset. Resteting the optimization problem:

subjeci to 
M" Elu (t)]
1: x¡_rDI=rx¡

'? : R¡wx¡ +D[rwxjaj,

using Taylor series expansion, we expand the investor's utility function around the expected



end of period wealth.

u(i) : "('[r]) +u,(øi4)('-'lil)
+f,u" (niil) (i - ø[r])'+r,

where

r, : f jur'"r (, l"l) (r _ ø [r])"

Assuming thât the Taylor series converges, and because the expectation and summation

operations are interchangeable, the individual,s expected utility can be expressed as

nlu (t)):u (øfrl) +lu" (n[t]) æ (t) + øva

where

Ewt:îiur"r (ø [r]) -" (r)

and rn"(i) denotes the n¿å central moment of 7.

To maximize expected utility of wealth, the investor v¡ill maximize a function of the

moments of the portfolio return, taking into account the assumption A4 that all investors

are ¡isk averse.

In addition, we know from the previous chapter that the covariance of ¡andom



LÈ-fuzzy random variable is:

CoulX,Yl : Coulm,,¡th) * a¿"lCou(Iy,ty) * Cou(ry,ry)l

-2ø¡r[Cou(my.,ry - ly) + Cou(mv,rx -Ix),

under the symmetric assumption of the hnzy LB-fuzzy variable, we get:

Cou(X,Y) - Coutrn,,msl*auICou(Ix,Iv)+Cou(ry,ry)l-2at,l1ou(rny,ly)+Cou(my,ly),

assuming fu¡ther that tn, r anð.I are independent,

v ar(x) : v ar(p,) + lv orlt¡ + lv or(r), (3.1)

C ou(X.,y) = C ou (t, x, py) + lC 
ou(l ¡, ty).

Applying the equation (3.2) in the context of the fuzzy random returns, we get:

(3.2)

v * lql= åå ",* [c* la,, n1 + !c-, (,,r]],

where S is portfolio fuzzy random return, and ñ,¡, ñ.¿ uruthe individuar ¡eturns of assets

j and i respectively. ir,f represent their spreads.

Following Markowitz [103], portforio p is a mean-variance efficient portforio if there

is no porrfolio q such rhar 
" [,q] = 

ø [4] *a v*lryl.v*141. Thus, rhe efficienr
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frontier can be presented as the set of portfolios that satisfy the quadratic minimization

problem:

Minvarl4l

subject to tg: x¡R¡ +Di=LxjELRì) (3.3)

xr +DI=txj:t

where, ¡.{ : ,lrö],is the expected portfolio fuzzy rand.om ¡eturn. Because of the linearity

of the expectation in hnzy ¡andom environment, the .E[.ãj] implies that the expectation of

a random LB-fuzzy number ,ã| is again an LF.'-fiszzy number:

Etñ;j: (n¡ñ,¡,n[,1) 
",

Thus, the model (3.3) is equivalent to:

[ *¿*v*[R;]

J 
suutect to pi: xfir +Dî=,x¡ (ttñ,l,ul,l)

[ "r+DË1x,:1
using the following notation:

pT,: Q"rb); Cou(4,ñ4¡ - o;¡; Cou(¡,Tr): L;¡,
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the investment problem with only risky assets under fuzzy random environment is as foliows:

M t n l{rfl* X ¡ x¿ [o ¿¡ + !L¿¡]
c!..':--a 1 uo=fl:rx¡a¡ñ.t1
ùuDJecr ro l 

'_ 
s.tú"r z'¡=1X¡Elt¡l

Df=,x¡:r

lve know from Dubois a¡rd prade þa] that the following multiprication has two different

outcomes when À is negative versus a positive value.

À o (m,a, B) ¡p - 
(Àm' Àa' Àþ) 

"' 
i/ À > o

Q,m,-Àa,-),8)¡E i/À<0

rn response to this consideration, we will limit our investigation to the case s¡hen the

proportions have positive values, v¡hich means we will be dealing with an investment problem

without short sales. specifically, many investors do not hold short sales due to either choice

or regulation (see e.g., [64], [2]).

\Me know from the existing literature that empirical derivation ofthe mean variance

efficient set, when short sales are arlowed, shows that most, if ¡ot a efficient Êontiers

contain some negative investment proportions. For exampre, Levy [g1] has suggested that

there are two reasons for short sares: profit and diversification. In another paper Levy [g2]

empirically finds that without short sales, many securities do not enter the efficient frontier,

and the larger JV, the smaller the percentage ofthe securities that will appear in the efrcient

set. Thus, the efrcient frontier grows slowly with an inc¡eased sample size. This finding

has been duplicated here under fuzzy information.
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Ross [129] suggested that in the absence of short sales, except on a single riskless

asset, using a geometric approach CAPM holds, as long as the ma¡ket portfolio is efficient.

That assumption is maintained here; so it is intended that we rvill be able to generate the

CAPM.

Also, a portfolio model under a fuzzy random environment without consideration

for non-negativity constraint is difficult to model. In response to these considerations, in

this chapter, we tackle the anaþical derivation of the efrcient frontier v¿ith fuzzy random

returns, under the assumption that there are no short sales of risky assets. so, the model

is a quadratic programming one in which some stocks are held rong (positive proportions)

while other stocks are omitted (held in zero proportions). Efficient frontier is a combination

of assets if there are no other combinations with the same (higher) exp,ected return rvith

lower risk, and if there is no other portfolio with the same (or lower) risk and with higher

expected return,
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3.2,2 Efficient frontier in al economy with risky assets

In this section s¡e want to solve the following utility minimization problem to find

the efrcient frontier:

Min ÐDXjXto¡;* X¡X¡Li¿ (g.4)

s.ú.

pe:ÐxiElRil
j=t

t,:lx¡a[,7
i=1

Ð"r: t

X;)0

(3.5)

(3.6)

(3.7)

(3.8)

To find the optimal solution of this quadratic programming, we first write the Lagrangian

form as

F(x, 11, À2, rB) : Ë Ë "ro",, 
* ff x, x,r,,,

i=l j:L i:l j=r

+x,(u,-i*,"tu,l) - ^"(r-þ*,u¡tl) -^, (,-Ë",) o,
\ ¡=' ' '/ 

\ ,= 
!

In what follow X is in IR" and is X : (X7, X2,..., X¡¡).
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Organizing the previous equation (3.g) we obtain:

JvN
¡'(x,À1,À2,À3) : llx¡x;(o;¡*L¿¡) (3.10)

i=l j=1

+¡,(p,-i*,u[*,]) *^, (,,-i,*,"u,,) .^, (' å",)\

The Kuhn-T\rcke¡ conditions of equation (3.10) are

o < txrø¡r -.1,ø [ñrl - 
^znli]- 

Às,j : 1,..,1v
:=1

.¡v

o = ue-txrrfn],
3=r
/V

o : tp-D*,"V,],
N

o - 1-Ð",
i=L

AL0 : o.. .X¡, j : 1, .., lV
vzLJ

x¡ào

(3.11)

(3.12)

(3.13)

(3.14)

(3.15)

(3.16)

where

oi¡ : coul.,, ¿] * lc* ft ,f] : o¡¡ + IL;¡

If every variable is positive then inequalities (3.11) are equalities because of the comple-

mentârity conditions (3.14). The X¡'s that satisô, the first order cond.itions minimize the
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variance for every given level of expected return and are unique. Equation (3.11) implies

Dx,"î¡- À1.e fñjl - 
^zEl¡l- 

À¡ : o,
j=1

that implies:

Define o* : variance.covariance of fuzzy returns, f)'-1 : the inverse of the matrix e' where

M¡¿ denote the elements of the inverse of the variance-covariance matrix of fuzzy random

returns, i.e., o--1 = [M¡i. o represents the sum of the two variance.covariance matrices,

a: þ¿¡l + å[¿o¡i. Multiplving both sides of equarion (J.12) bv ø [ñn], *a summing over

,t : 1, .., N, it follows

N-NN
x r : ÀrD M*rø 

1,4] + l, ! r l,lMo, + trD uo¿, tc : 1,.., N.

N--fiN

Ðr:,*0"1,É.1 : ^'ÐÐ*," [a] a [a]
NtVtv

+^rDÐ Mt"¡ølñklEl;l + rs I Ð Må,8 
[À_] 

.

¡t=1.Ç=1 &=1 i=1

: 
^,ÐÐ*,olalø[r]

NNtvrv
+ ÀzDo 

rÐ 
M *;E¡I*¡ø¡[1 + rs ! Ð* 

-,, Fr]

(3.17)

(3.18)

.A'lso, multiplving both sides of equation (J.12) by ø þ], *a summing over ,t : 1, ..,lv, ir

follows

Ð"-uiul (3.le)



Then, summing equation (3.17) over k : 1,.., iV, it follows

JVN¡¡NrVrVN
D"*: ^,ÐÐ¡ø*,ø [a] +.r,¡¡ El,turn*r,ÐÐr*,. (8.20)

Next, we define

tV rV

,4 : t)-MÈ,¿ [å1,¿--J*=t"¿=t t I

iV rv

u : 
ÐÐ*-,ø[n]ølnl,
NN

" 
: DDrn. (8.21)

Ë=1 i=l
NNtt : llux,ølñ,1øl*1,

*=r ¡=-r I- J

tV .iV

n, = ÐDuoÐliqlkl
È:1 i=l
rVN

ø : lluxtøfr1
'È=1 i=l

trlom equations (3.12), (3.13), (3.14), (3.18), (3.19) and (3.20), ir foltows:

þp : \B+À2A1*\3A

lp : \At+À2.B1 +À3cl

L : \Å*ÀzCt*ÀsC.

(3.22)

(3.23)

(3.24)



Noting here,

iVtVlvt

ÐÐ*r,u iel = ÐÐ 
ur,øferl,

NrVN,¡V
l\u*n[¡ntø-l : IÐ u*¿ølt]zlñ1,
å=1 t=l ,t:1 i=1

/VNjVN

Dl urunlø) 
"t 

rl : DDuo,øl,løtñ.rl
È=r i:1 ß=t i=1

Solving system of equations (3.22), (3.23) and (8.24) for À1,À2 and ,\3, and defining A :

B(BLC - C?) - lt('srC - ACù + A(hq -.481), and æ D* D¿M*¡ is posirive because

of the positive definiteness of matrix M = [M¡"¡], we obtain

t. _ Fo(Brc - c?) - tpØrc - c1A) + (A1e- tuA)

, -up(Atj - ACù + tp@C - A2) - (Be - &A)
\ó.2r )

¡^ _ pp(AtCt - tBù - tp(Bq - AA¡r + (84 - A?)

Next, we substitute for À1, À2 and À3, from equation (3.2ó) into equation (s.12) to solve for

x¿. x¡ is the proportion of each risky asset fr held in a portfolio on the minimum-variance

for a given expected return, which is as follows:

peD!=t M*¿l{"r" - e) øtøl - (Aú - ACùE(.) + (A'ct - A")l

- toD¡ M oo f{erc - qA) E (Rl) - (B c - A") E (,) + (BC | _ AAl))

,, +D[ru¡¡l1.trc1- BÁ) E(R.t) - (acr- AtA)E(tt)+(BBt- A?)]Xtr:,

È : 1,..,¡/. (3.26)
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Using the following notations: (BP - C?) : a; (AtC - AC) : þ; (Aßt - ABì : ^t.

(BC - A2) :6; (86 - AAL): p; (BBt - A?) : rþ, the equation (3.26) is equivatenr ro:

X*:

poD{-,Mr,l"n1a¡ - Be(;¡ +1] -4y,ttto,þufrrl - 6E(t) + el

+ ÐL, Mr, lr,fLl - en(,¡ +,t]

(3.27)fr : 1,..,1V

Because M : [Mrr] i. positive definite and A is zero if and only if ¡r* : À1 such that

t". :Ít"i,...,t"i1' I t";: (E ["r] ,rt,rl), orherwise Â > 0.

Theorem 15 ([161]). Let ¡t = Ipi,...t"il' lL Jor aU À. In the modet there ethts an open

i,ntertal (¡.rio, pi) oÍ t"i in which euery uariable ís posíti.ue i.J and, only i! :

(\',) (Ð *',')' (Ð *.,,) (T *')

for alt pe I- and, qe I+ and.

(ÐÐ**1 (Ð'-"ù -(+Ð*r,,,,ì (l*,) .,

for all iE Io



such that:

'. : {r,(rr4 (T*',ì -(Ð+*-"ì (?*) "}
,- : ,*,(pf *l (p',*r)- (pp'-"r) (Ð'-l .,)

'" : {n,(pf *l (Ð*"ì - (pp'-ø) (f *l:,}
Proof. Similar to what Vör<is [161] presented in his paper. I

Because of the positivity of the variables and of Â it follows that:

i r, t[, ur, þn@) - p n(,) * t] - ÇDn ur, 
þ "<nl - 

d ø(,)+ rl I -I L r l>o (3.28)

| +DLrMt",þn<ñrl-vø(,1++l l

If we define

nr = \ tvto;n¡ñ1t ¡o : I uxtn(fr ) ana e¡ : Ð ¡rror,
iii

then, the equation (3.28) ís equivalent to:

ur@fu - Þ l* + tsk) - lp(þh¡ - 6 fk t çsx) * (thr - pÍt" + rþsù > 0 k : t,...,n

If i e I0 then tr(Bh¡ - 6lx + pS*) + (lhx - Vf * + {g¡) < 0, indices q e I+ --+ (ah¡ _

ÊÍk + 19ù > 0, and lor p € I- and p € 1- -., (ah* - þÍ*+l7k) < 0, then the following



In line with vörös [161], from the inequality (3.2g), the interral in which every variabre is

positíve is given by:

inequality holds:

lo(þh* - 6fk+ pgx) + (thx - tpÍ* +tþs*¡ _ .. -
@<r"r<

rå: p1l {

¿9 : r'u* [ Ip(þhq - 6 Íq + 9gò + (thq - qfq + !rsq)\
;¿t* [ (aho-Bfo*1sq) I'

We next multiply equation (3.11) by Xj and sum over j for j : I,. .. ,.1V, to derive the

following:

.1./ N tV N

ÐDxtxt:,=ÀrI¿fat]x¡+t"lx¡ø(,¡+>qÐx¡. (a.so)
j=1 i=r j=t j j:t

Ftom the definition .f "' (ry), equations (4.12), and (J.13), equarion (3.J0) implies

v*[4]: À1p; + À2L + À3. (3.31)

substituting for À1,À2 and À3 ftom (3.25) into (4.31), to obtain the equation for the

minimum-variance frontier. so, for the interval (¡rir, ¡rfo), we obtain the functio¡al form
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of return-variance;

(3.32)

Once all fuzzy components (¿p : 0, I and I¡ : 0) have been discarded in the equation

(3.32), we will get the standard functional form of return-va¡iance, Thus, the model is a

special case ofthe Markowitz frontier. Next, for the sake of completeness ofthe analysis, the

minimum-variance portfolio in the presence of fuzzy random uncertainty is presented below.

since, the equation (3.32) is a function of two variables of degree 2, partial derivatives and

all other properties of multiple variables are applicable. The difierentiability is achieved as

follows

a"'(4) 
-2apo-2reþ*^t ^ 2r,ß-t--îpr- : ----l . :0 * l¿p o¡n : =tfu- ' and (3'33)

a", (4,) _ 2o ._ n
ô2þp - a-".

9,2,3 Efficient frontier in an economy where one asset is risk-free

For all investors to achieve the efficient ftontìer by lending or borrowing against

the risky portfolio, and for the separation theorem to hold, following Ross' [12g] analysis,

by permitting the investor to short sale the riskless a6set, the anaþical derivation of the

efficient frontier is presented, The risk-free asset ofiers a riskless return of -R¡. with shori

sales restrictions, all assets will appear in positive amounts in the market portfolio. The

æ (ry) : U'?a + 136 - zpotrþ - 2toç + Prt + tþ) 
,



50

investor's utility minimization problem is formulated as follows.

M|lDtD¡x;x¡oii

Subject to Fi: X¡R¡ +Dj:LXjElñ;l 
(r.rn)

Xr +DjXi:L
X¡)0, j:1,...,¡¿

The above model is equivalent to:

M_i,;nlr\,XtX¡oi,
-.t

Subject to (prh) : x1(Rr,¿î) +D¡=tx¡ (ut^rl,tl¡)
(3.35)

xt+DiXi:7
X¡20, i:1,...'N

which is equivalent to:

Minlrl.X;X¡oi,
,li

trp : X ¡ R¡ + Dj=r Xj Etñ¿l
öubJect to

Ip: x¡t¡ +Dj=LxjElÀ , (3.36)

Xt +DjXj: I
X¡20, i:1,.'.,N



ã1

For simplicity, vr'e assume that -l?¡ is sharply defined, s/hich means that l¡ : 0. In order to

find the optimal solution of this quadratic programming, we write the Lagrangian form:

ç'(xj,À1,À2) : ÐDxrx¡oi¡
ij

*^, ( r, - n¡ -Ðx¡(ufo,l - or))
\ ¡=r ')

+¡,(ç-¡x, (ø¡r,1-nr))
\ -'\'"' '/)

The Kuhn-T\rcker conditions of (3.37) are:

: 
2x;"ii-.r, (r[e;] -ar) -.r,rþ] >o j:1,..,rv (3ss)

,¡V: tte-a¡-Ðx¡(r[e,]-a¡)=o (3.3e)

: to-\x¡ølT¡]:o (s.40)
j=r

: 0 (3.41)

> 0 j=I,...,N (2.42)

If every variable x¡ is positive (inequalitíes (3.42) hold) then inequalities (8.3g) are equalities

because of the complementarity conditions (3.a1). so, the equations (3.Jg) imply that:

(3.37)

âv
ã4
ôv
ã\

ôv
a^,

ôrI/ --
ðXt"t

xj

(3.43)xr:ÀrDMn(ELnl-RÐ+ 
^zÐMn¡E(¡) 

k:1,...,N
d=l i
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Multiplying both sides of the equation (3.a3) by 
føt&rl - &] -a summing over ,t :

1, ...,1V, it follows:

Dxr(Et"-] -.') : uÐÐ*'(ul";] - ",) ("t"-] -"') @.44)

+.r,f !u*, (ø þ]) (ø¡e,¡ - n )

Muliiplying both sides of the equation (3.43) by ø[] ana summing over /c : 1,..., N, it

follows:

Dxonlñ] : ^,ÐÐ 
ur,(nlñ;]-^,)"[,r] (3.45)

+À,ttM¡.iø6,)uVr]

Flom equation (3.39), we deduce that the equation (8.44) using the implied parameters A,

B, C, Ar, B1 and Cr, it follor¡¡s that:

pp-Rî:^1lB-2RrA+nlcl+szl/|--Rîcl (a.46)

Also, from equation (3.40), the equation (8.45) implies that:

tp = \[h - R¡cl + ),28 (3.47)



So, boih equations (3.a6) and (3.47) imply:

_l
t\L=-"D

& : 1,..., lV

(3.48)

Defining D : (B - zRrA + R?C)B - (h - R¡C?) and substfturing for .\1and À2 from

previous equation (3.48) inio equation (3.a3) to solve for X¡:

I
- 7 I Kr, - R¡)a - ÇØt - R¡ct)lÐ,:, M*,@lñ.1- R¡)+ Inn : Dl " 

' 
I

L [ 
("-zryA+ R?c)te-(fi-R¡c)(po- RòJD,¡ntr,øG) ]k : 1,...,1V (3.49)

Using the notation indicated in the previous section,

sk:l.Mki; Ír":ltøx;øffrl and tz¿ :\u¡rø¡a;1,
iii

equation (3.49) is equiralent to:

[fuo - a¡¡a - b(h - R¡cù) (hk - rysù +

f ta -zqe+ nlc)¿p - (h - R¡cù(po - Rìf ¡r
(3.50)

under the positive condition of the previous equation (8.50), and in a fashion similar to

the previous section, v/e derive the equation for the frontier using vörös's method [161].
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Because of the positivity of the variables and of the dominator, multiplying equation (3.38)

by Xi, summing from j : 1,...,.ÌV a.nd rearranging, we find that:

\Dxix'it: ^'Ð 
(" t¿] - n¡) x¡ + x,l x¡n(,¡

stjj

Flom the definition o1. o2 (ñ$) and equations (3.39), (g.40), equarion (3.51) implies rhat:

var@|):\(po-R¡)+À2to

Substituting for À1and À2 from (3.48) into (3.52), we obtain the equation for the minimum-

va¡iance frontier,

(3.51)

(3.52)

æ (4):; (p, - n¡) [@, - a¡¡e - 6Øt - Rrcì]

+rplp - 24 A + Rlc)te - @1 - R¡c,)(¡ro - R¡)]

(3.53)

Arranging the above equation we get:

(u, - R¡)2 a + P, (a - z.an¡ + R?c) - ztp(h - R¡c)(po - R)
(3.54)"'(4): - zRÍA+ RïC)B - (4, -

ln the mean-standard deviation space, we get the following equation:

"(4):
(3.55)

Thus, the minimum-r¡¿riance frontier in mean-standard space is nonlinear, and equation

(3'55) is the F\rzzy capital Market Line (FCML). we believe with the absence of fuzziness

(uo- R¡)'a +ry B - zARr + R?C) - 2rP(Ar - R¡C)(po - R¡)
B -2R¡A+



(in every single return J¡ : 0 a¡d in the portfolio mean lo : 0) in the model, the equation

(3.55) will ofier the classical capital market line. An empirical implication of this conclusion

is shown in the next section.

3.3 Empirical Implications of the Model

In this section we analyze the relationship between risk and return in the presence

of fuzzy information, revealed by the use of fuzzy returns, in NASD,A.Q stocks in the 19g0-

2000 period.

3.3.1 The impact of the subjective measure on the location of capital

ma¡keü line

In this subsection we use NASDAQ stock data to show the impact of the intro-

duction of fuzziness on the location of Capital Market Line. In real life, the investor will be

fa¡ed with more than just 15 assets as presented here. However, we limit our investigation in

this section to 15 stocks to compare the lo cation of rrzzy capital market line with respect to

the location of the original cML. The model can be solved using any optimization software

to construct the market line of 15 risky assets. The randomly selected 15 stocks are traded

on the NASD.A'Q. The data, which covered the monthly rate of returns of these stocks for

the lO-year period 199G2000, were taken from the center for Research and security prices

(CRSP) and used to estimate the mean and standard deviation of returns. The following

tables (3.1 and 3.2) show the returns end the widths (spreads) of fuzzy returns for 15 stocks

over the l0-year period.
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Due to the space limitation, the above table does not contâin all the observations over the
lO-year period; it is a subset from the complete data set. permno is a number identifuing

the issuing company

Because there are an infinite number of ways to characterize fuzziness, there are

an infinite number of ways to graphically depict the membership and to generate the data.

Normally, experts should be able to offer decision makers or investors information regarding

the measure of fuzziness. In this context, fuzziness has been used under the following con-

ditions, that it reflects the experts' judgments and that the returns should. be around those

values' For example, the company with permn 10028 has ¿ 0.211 return. After getting a

subjective recommendation from experts, the return that should be used is 0.211*0.000645.

In a fuzzy setting with rR type frnzy membership, that means that the membership func-

tion equals 1 for a return 0.211, and it is linearly decreasing on the right and left. Ross T.

[132] pointed out that there are more ways to assign membership function values to fuzzy

variables tha¡r for random variables. The literature on this topic is rich with references,

for example [3a]. The assignment can be intuitive or based on algorithms or logical opera-

tions. lve established the table (3.2) based on a combination of the intuition and inference

15 NASDAQ ¡eturns randomly selected
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methods presented by Ross T. [132].

Folìowing an inference approach, we use the bid-ask spread to get the width ofthe

fuzzy returns. the logic behind that technique is that ¿ bid-ask spread creates vagueness

and imprecision in the investor's choice. It is the irregularities, which may arise from the

lack of imprecision in the data, that are a concern here.

Moreover, market-created uncertainty results from the interaction (directly or in-

directly) among participants who form their expectations in an ill-defined market. Conse-

quentl¡ each participant will form his/her expectations based on their subjective prediction

of other participants' expectations.

'We 
use the bid-ask spread because it affects the stock returns (see, [78]). There

a¡e considerable theoretical justifications to the use of a bid-ask spread and to its effects on

returns. Heinkel and Kraus [52] pointed out that a component of the bid-ask spread, which

is based on information asymmetries, could be considered part of true returns. Hence, the

effect of bid-ask spread is that the observed returns difier f¡om the true returns.

Moreover, as pointed out by Amihud and Mendelson [6] raiionat investors select

their assets to maximize their expected return net. These authors showed a strong efect of

the spread on retur[s.

Because the bid-ask spread is ¡elated to the availability of information about the

asset, the greater the amount of information about an asset, the narrower the sprea.d, which

means the closer the true return is to the observable return (see, [82]). In contrasi, the more

information about an asset is vague, the greater the distance betrveen the true return and

the observed return. In this sense, the width between the observed return and the net
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return, taking into consideration the bid-ask spread has been identiûed (see, [106]). Atso,

Merton [106] pointed out that incomplete information about a stock, which is a major

factor, is reflected in its bid-ask spread. This conclusion has been supported by the efiect

of Amihud and Mendelson's spread [5].

In a statement Merton [106] says:

"I also believe that financial models based on frictionless markets and complete
information are often inadequate to capture the complexity of rationality in
âction.t'

That lead to the development of the so-called width (tolerance level), which means

that the investor uses the net and observable returns to form his/her fundamental returns,

assuming that the fuzzy random return sweys between them. We employ a method com-

parable to Amihud and Mendelson [5] in developing the net return, to allow the investors

the ability to compress information into fuzzy notions that they can analyse using fuzzy

theory. Under these considerations, the following formulas have been derived to generate

the widths data in Table (3.2)

Pmt: A s lcpr i æ. ¿ - B i d,pr i, cc. ¿

":^(#),r,",:(ffffi)",

Sor ead* : As kpr icet - Bid,pricet
As kpr ice ¿ * B id,pr ice¿'

such that
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then

uti.dth: h: ln*t _ Rtl

Due to the space limitation, the above table does not contain all the observations over the
10 year period; it is a subset f¡om the complete data set.

The following graph (3.1), which has been plotted in two dimensions, shows the

location of the capiial market line with fuzziness (blue line) and without accounting for

fuzziness (red line); the value of 0.031 has been used for the portfolio width lo :0.031 and

0.07 ¿s the ¡isk-f¡ee rate rR¡ : 0.07 to be able to show the graph in two dimensionsl. The y

axis represents o and the x axis represents /ro. By increasing from lo:0.031 (blue line) to

0.045 ( navy line) and 0.061(brown line), the FCML is moving upward, which means that

a¡ increase of fuzziness manifested by the portfolio width Io will cause the market line to be

more dominated by the original market rine. on the contrar¡ a smalr degree of fuzziness

in the model, measured by the portfolio width, shows that fiizzy capital market lines are

@¡ateof0.07hasbeenusedonlyfo¡illustIatioDpurpose.The
average of T-Bill rate over the period 199G2000 could be more appropriate.

Table 3.2: 15 widths ofthe 15 NASDAQ stocks 1990-2000
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õ0 assets).

Because the computer program is long and complicated, it has not been included

here. The part of the computer code (written in Visual Basic) which generates the IV asset

mean-variance eftcient set with short sales under fuzzy information, is in appendix A.

One aim ofthis part of the program is to not only do all the necessa.ry computations

ftom stock prices and solve the optimization problem but also to generate a graph of the

efficient frontier without short sales. The following ûgures [(3.J), (9.4), (A.5)] show the

efficient frontier without short sales for all th¡ee sample sizes (15, 30 and 50 asseis). one

major element v¡orth elaborating on is that all efficient frontiers are concave arcs, which is

consistent with the finding of szegö. However, the boundary of each sample size turns out

not to be a parabola. It is also clearly observed that the arc, which is between minimum and

maximum points does not coincide with the original bounda.ry. The minimum (maximum)

point represents, as discussed previously and supported by Szegö,s frnding [142] can be

achieved by investing the capital in the investment option with lowest (highest) return.

For comparison, the following graphs represent the case when fuzziness is not in_

cluded. In accordance with Levy [92], the figure (3.6) plots the efficient frontiers constructed

with and without short sales; the efficient frontier without short sales lies inside the efficient

frontier with short sales. An investor with shori sales will attain a lower utility than an

investor with both short and long positions. Also, in all cases (15, B0 and 50 assets), it is

clear that the frontier is not a parabola, but an arc of a parabola as suggested by szegö

[147], see figures [(3.7), (3.s)].













Figure 3.11: Efficient frontier with subjec-
tive fuzzy information without short sales (15
assets)

Figure 3.12: Efficient frontier with subjec-
tive fuzzy information s¡ithout short sales (30
assets)
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Figure 3.13: Efficient frontier with subjective fuzzy information without short sales (50
assets)

under a fuzzy information environment, the efficient frontier without short sares has been

derived (ï¡ith the use of a \484. program; part of that program is in appendix A) and protted
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for various sampÌe sizes. The portfolio width has been included as a third pa.rameter, and

the frontier has been plotted in a th¡ee.dimensional graph. In this section, the relationship

betrveen risk, return and width, which is used as proxy for the subjective comment of the

experts, has been represented by a surface. The efficient frontier portfolios are plotted on a

graph with the dp in the x-axis, width in the y-axis and the mean in the z-axis. projecting

the graphical representation into a two standard deviation-mean plane ûgure (3.14) shows an

ârc, not a parabola, which is consistent v¡ith the result reported earlier when the subjective

fuzzy measure was discarded from the model. Also, for 15, 30 and 50 asset sample sizes,

similar to the case of short sales, we still observe that in the larger sample size, the efficient

frontier is shifted to the left; the dominance of the large size sample still holds. In general,

the efficient frontier is a combination of assets, if there is no other combination with the

same (higher) expected return with lower risk, and if there is no other portfolio with the

same (or lower) risk and with higher expected return. In this context, a higher (lower) risk

is associated with a higher (lower) return.
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3.4 Short Sales and the Derivation of the F\zzy Random

CAPM

We derive another fuzzy version of the CAPM that difiers ftom the fuzzy con-

strained capital asset pricing model attempt derived by ostermark [114] in s/hich he used

rtzzy \near constraints to a.ugment the problem and solved it by parametrie methods of

linear programming.

One serious deficiency of the method presented by Ostermark is that it allows

the introduction of fuzziness only in the linear policy constraints without changing the

covariance terms (ø¿¡). His analysis is amiss, because, if we want to allow some degree of

subjective imprecision in the system, we should not ignore that imprecision will influence

the covariance terms and the expected return in a similar fashion.

Moreover, limiting the analysis, in the case when the coefficient of policy constraint

(returns) and the mean portfolio are fuzzy, is not an appropriate approach to deriving the

rwzy capil,al asset model with subjective imprecision. This is because, ûrstl¡ the returns

are used to compute the variance-covariance (cov-var) matrix, so if there is imprecision in

those coefficients, it must be modeled again in the cov-var matrix. secondly, if we want

to capture the managerial imprecision, the theory of cApM should be extended to deal

with the source of fuzziness; for example, when data exclude some observations, when data

consist of non-sharply definable observations, or when we want to allow the introduction of

a me¿ujure of subjectivity in returns, as inspired by Markowitz,s statement [105]. Thirdl¡

because ostermark assumes that all the proportions have a positive amount (short sales

restrictions are imposed) and ignores the riskless asset in the model, the cApM has been
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violated. As suggested by Ross ([129], [36] and [3fl) the CApM wilt nor hold if rhere is a

riskless asset, like other risky assets that cannot be shortened, and the cApM will hold for

that subset of assets that can be sold short.

Also, it has been shoq'n in many sources (e.g. [28], [92] and [93]) that capital asset

priciag theory has been developed on the basis of mean-va¡iance theory. Thus, we suggest

that a better way to handle that derivation task is through an analytical approach.

.A,n approach for deriving the !\rzzy Capital Asset pricing Model (FCApM) is pre-

sented, using, to some extent, the htzzy efficient frontier model obtained previously. Let us

consider an arbitrarily chosen risky asset J. Let rn denote the portfolio lying on the tangency

point between the fuzzy random-adjusted cML and the minimum-variance frontier for risky

assets. m is a mean-variance efficienr porrfolio, *irh E lÃå] 
: DË, (r lerl , nl¡) ,rx, :

(D, X¡ø1n¡,2, X¡ø[¡]) 
,*.Consider 

a porrfolio p, consisring of a proporrion ø invesred

in security j, an inefficient portfolio, and a proportion (1 - tr.r) invested in portfolio rn. The

optimal portfolio is found through solving the following model:

unf,var þ("1a,],r¡Ç1) + 1r

Subject to

.ElRr]+g-ut)ElAl: 
"

-nli]+ G-.',) El^l:,,

-.t(ulo],"r,;)) (3.56)

Knowing that such a portfolio wilì have an expected return equal to

Pp : EÍñpl : w Elñ¡l + (r - u) øln".l,



with spread (or width) equal to

t, : øLR"l : - nl¡l + (L - u) El*1,

we conclude that under fuzzy random setting, the expected value is:

EIñ;] : wElR;1+ (1 - tl,)Etñål

* (n fet], ul¡) *(1 - ü,) (E [o], r1,;),

and the standard deviation is equal to

"(Ri) :l {""i + Q - u)2 o2,- + 2w (L - w) o¡^)
' 

L 
*+ @rt?*(r-to)2 L2*+zu(r-@L¡^)

(3.57)

L/2

(3.58)

(3.5e)

All such portfolios will lie on a curved line connecting J and m. of concern is the slope

of its curved line with fuzzy random uncertainty. using equation (3.52), the derivative of

Etft] v/ith respect to w is taken:

dgtful-# = EIR;I- EIRàI

Second, using equation (3.58), the derivative of øþ with respect to t¿ is taken:

opi _
dta -

uol - o2*+ woz, +ojrn-2uo¡, *il.u.t3-L2, +uLr^I L¡,_-2wL¡^

l@' 4 * ( - ut)2 o2* i 2w (t - r) o ¡ ^) + È (.' t, + (t - u)2 r,2,. * r* (t - ù 4 ^)]



Third, the slope of the curved line Jrn can be written:

dElñìl

-_ 
.hn
do!
d¡o

lø¡.ã¡ - r¡ñ;¡] ("o3 + (L - u)2 o2,. + 2u (r - w) o¡^)

li @'"? + (r - w)2 r2,* + 2u (L - u) L j*)

þ"? - t',- + -o2* + o ¡^ - z-o i*]
*iþ"? - L!+uL!+ L¡^-huL¡^f

since the proportion of u is zero at the endpoint m, the slope of Jn can be calculated by

substituting zero for w in equation (3.61). After doing that, many terms drop out, leaving

the following:

dElÐ;l l"l";l - Elñhll lo,^ + àt,*l'/'

At m, the slope of the FCML must coincide ¡¡'ith the slope of the curve Jrn. Thus, the

slope of the curve of Jm at m, as shown on the right-hand side of equation (8.62), is set to

be equal to the slope of ihe FCML assuming that l- : 0:

(3.63)

q@
dri

(3.62)

Etñ:j :løt'fu - n¡] tt:¡- - o'z^l + !lr'¡^ - L'^ll . -,=t-z _Lii:--+E[Ã;] (3.64)
L"nz t Sunl

["2^ + lr,!]1/2

E lñ;-l - R, ] [[o, ^ - or, ] + ! lr, ¡ * - r!)l + for^ + i Lr^l E IRàlEtñ;t= (3.65)



Elry\

ETñil

R¡ [o2,.+ trt2^] + ntñ;"|["¡^+ It ¡^] - lr ["i^+ !Li^]

., l"tñel - n¡] ¡o¡^ + !r¡*l',¡------@a!fi-
(3.66)

(3.67)

Thns, we obtain the fuzzy random CAPM (FCAPM) equation as follows:

ElRil- Rr

ELñ.;]

ffila¡ñ;¡-n¡),*
R¡ + þ¡^[utñ*l- a,]

such that

P¡' :

Note here that once the rrzzy meâsure has been ignored in the equation (8.6g) by having

L¡u : L2, = 0, g/e obtåin the beta of the original CApM.

3.5 Summary

This study addressed the implications of reraxing one of the fundamental assump-

tions associated with mean-variance theory as set down in Markowitz ([103], [105]) and

Tobin [155] that asset returns are sharpry defined. Theoretical arguments in fuzzy mathe-

matics assume that there âre cases in which random unce¡tainty alone may not serve the

purpose and indicate thât fuzziness may impact the fust two moments of asset return, This

suggests that the lack of information associated with market-tra.ded securities challenges

the usefulness of sta¡rdard mean-variance theory for other research and practicar portfolio

(3.68)
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management.

To make the link between existiug theory and the subjectivity measure of expert's

judgments, we rederived the Markowitz efficient set a¿d dealt with the implications of

the ¡ederivation on the capital Market Line (cML) and the capital Asset pricing Model

(CAPM). The contribution of this chapter is the presentation of a methodology for the

derivation of the attainable efficie¡t frontier in the presence of fuzzy information in the

data o¡ when the lazzy information is imposed in the modeling environment to reflect a

subjective meâsure.



Chapter 4

hnzy Probabilities with

Applications

4,1 Introduction

Shannon [140], with the intention of measuring the information lost in the process

of transmission, pointed out that a measure of information should essentially be a measure of

uncertainty. Here, uncertainty usually is associated with a probability distribution p. Also,

he showed lhat -Klp¿Lnp¿ satisfies the properties for a measure of uncertainty, and he

called it a meâsure of entropy, because a measure of probabilistic uncertainty is equivalent

to a measure of entropy. The expected information gained upon complete resolution of

uncertainty is a measure of current uncertaint¡ and Il is a positive factor that determines

the unit of measurement.

Entropy originated in the field of thermodynamics and statistical mechanics to
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represent å, measure of disorder. Lindley [94] and Good (t43l, t441, [45], [46], [4fl) presenred

the relationship between the measure of info¡mation and probability and statistics. Both

uncertainty and entropy are closely related in describing imperfect knowledge.

The idea behind the principle of entropy, as suggested by Cozzolino and Zahner

[27], is that:
¡r....the probability distribution desired has maximum uncertainty (minimum
information content) subject to representing some explicitly sf,ated, known in-
formation..."

It is well documented that the scope of entropy applications is not rimited; many

studies have looked at the use of entropy theory in various subjects. For instance, a com-

prehensive development and selected empirical bodies of work in business were given by

Theil [152], Herinter [53], Abdel-Khalik [1], phitippatos and Wilson ([119],[118]), Saxena

[137], Thomas [153], and Nawrocki [111].

Work by Cozzoltno and Zahner [22], is considered pioneer work in entropy in

financial modeling. They used the principte of maximum entropy to derive a probability

distribution of future stock price for an investor having speciÊed expectatio¡rs. The principle

of maximum entropy is used in their study and in others, because it ofiers a method. to

generate probability distribution from limited information.

In another efiort, Thomas [153] presented a generalized maximum entropy prin_

ciple to deal with problems involving uncertainty but with initial information about the

probability space. Normally, this knowledge is expressed through known moments of ¿ ran-

dom variable. He suggested adding known bounds on moments to the modeling framework.

In fact, Thomas [153] did model system selection in a htzzy situation, when probabilities

might lie between tv,¡o values. with bounds in event probabiliiies and moments, his solution
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to the nonlinear programming problem is achieved by a numerical method (algorithm). In

the present stud¡ we relax and expand this restriction somewhat by aìlowing for information

via a random variable with fuzziness in the system.

In another study, saxena [1BZ] used entropy to select the best alternative invest-

ment projects. He presented an algorithm to obtain the probability distribution of variables

based on probability ranges, which should be specified at the earry stage of a study.

Nawrocki [111] used entropy to mea,sure investment performance (security analy_

sis)' He suggested a heuristic algorithm using portfolio anaþis with state-value weighting

entropy as a measu¡e of investment risk. philippatos and Gressis [l1g] provide conditions in

which mean-variancer mean entropy and second degree stochastic dominance are equivalent.

rn a ruzzy setting, De Luca [g9] was the first to defi¡e a non-probabilistic entropy

with the use of fuzzy theory. He proposed an entropy meâaure of a quantity of information

that is not random in nature. However, as he pointed out in his study, the mathematical

effo¡ts were not complete and open fo¡ much work.

Even after Philippatos and wilson [11g] argued that entropy is a better statistical

measure ofrisk than variance, because entropy is a non-parametric measure, entropy still did

not appear often in published works. As philippatos and w son [11g] suggested entropy as

a measure of portfolio risk, because it does not make assumptions concerning the probability

under$ng the returns, we use the same analogy to estabrish the measure of risk using the

proposed fuzzy entropy method.

It is of interest to point out here that neither the cozzorino and zahner l2T)

approach nor the Philippatos and wilson [11g] method include a the situation when there
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is imprecise information to start from. consequentl¡ we use the fuzzy theory in conjunction

with the entropy theory. This study describes the method of providing a specific distribution

by using the frnzy entropy principle.

Kapur [68] has discussed the views of Jaynes [65], Cheesman [24], and Lindtey

[96], who are in favor of probabilistic entropy and of Kosko [29] and Klir [23], who are in

ravor of htzzy entropy. Kapur [139] emphasized the need for a cooperative efort between

probabiliiy theory and fuzzy theory to explore the concept of uncertainty for the prosperity

of mankind.

To measure uncertainty about facts, events or consequences of actions, we need

some kind of probability. However, to measure the indeterminancy that arises from limited

knowledge about these matters, we need to use imprecise or fuzzy probabilities. Here, fuzzy

probabiliiies are used as a generic term to cover mathematical models such as upper and

lower probabilities. This chapter is concerned with fuzzy probabilistic reasoning, which

involves various methods for assessing fuzzy probabilities, taking into aacount new ,,htzzy"

information and the derivation of certain results of other probabitities and conclusions.

The focus in the present chapter is on the presentation of a new approach using

probability theorg and various other (non-probabilistic) scenarios with their utility in risk

modeling. Anyone familiar with the stock market will find that the most challenging decision

is to differentiate between the good one stock to buy and the bad stock to sell.

Borch [14] in his book said:

"However, if we buy the stock in question, there is necessarily a seller who thinks
that at the present time and the present price it is right to sell the stock which
q/e consider best to buy. If the seller is jusi as intelligent a.nd smart a,s we are,
it may be useful to think twice.,,
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In the present study the goal is to draw conclusions a,bout modeling fina¡rcial risk

using fuzzy probabilities. To a lesser extent, we consider decision problems (investment

problerris), v.¡here the goal is to choose ¿n optimal strategy and determine the optimal

âlternâtives. The primary aim of the chapter is to establish the mathematical theory of

fuzzy probabilities, based on the measure of entropy.

tr\zzy entropy meâsures the degree of fuzziness of a set A. The usual entropy

meâsure tells us how equal the probabilities pt, p2, . .. p'¿ âre among themselves or how

close the given probability distribution is to the uniform distribution. The measure of fuzzy

entropy tells us about the degree of fuzziness of the set A or ¿bout how close the given set

is to the most fuzzy set.

4.2 A, F\tzzy Situation Handled Through Probabilistic En-

tropy: Discrete Case

statistical reasoning with imprecise probabilities has been discussed in the litera-

ture; for instance, Walley [163] has investigated methods of reasoning and imprecise proba-

bilities. F\rzzy probabilities are not crisp but are imprecise and ambiguous. SpeciÊcally, we

consider probabilities pt, p2,... 1 p,n, satisfying the constraints,

a¿ < pi < b¡,a¡) 0, b;<L; i:1, ...,n (4.1)

Dp :t
i=1

and

(4.2)
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There is ¿ fuzziness about these probabilities and we would like to understand it and

possibly measure it. As a first step, we attempt to get the most unbiased estimates for

the probabiüties satisfuing corstraints (a.1) arrd (4.2). For this purpose we maximize the

probabilistic entropy measure ([6fl, [69]).

-\(b; - nùt'n(b¿ - p¡) -l(ø; - a;.)Ln(n; - ai) (4.3)

(4.4)

(4.5)

This measure is so designed that on its maximization subject to (4.2) , it gives probabilities

that automatically satisfy constraint (4.1). using Lagrange's method to maximize (4.3)

subject to (4.2), we get

b; -n;, .. _ w
pì-ai

where If, a Lagrange multiplier associated with (4.2), and is determined by using both (4.2)

and (4.4) we get:

b¿ * Ka;Pi=-L+K'

K:B;;, (4.6)

where A:DlLr a¿, and B: DlLr ö¿.

Using (4.1) and (4.2), we get

and using (4.2), we get

and (4.6) and (4.7) yield Ìf > 0.

A<L< B (4.7)
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Using (4.5) and (4.6) we get

(4.8)

These p¡'s yield the most unbiased estimates for the probabilities satisfying the constraints

(a.i) and (a.2).

4.2.1 Illustrative Example

Let us assume that we have a set of probabilities p¡ that satisfiy the constraints

(4.1) and (4.2) such that a¿ and bi â,re âs in the table below. We attempt to get the most

unbiased estimates for the probabilities.

To evaluate the probabilities pi such that (¿ = t, . . ., 4) using the method illus_

trated above we have A : D.ai : 0.7,8 : D¿b¿ : I.l4 ) 1. Thus, the most unbiased

estimates for the probabilities are

4.2.2 An alternative measure of fuzziness

In this section, we consider the set of probabilities (pt, p2, . . ., p",) as a fuzzy set

with the probabilitíes p1,p2,...,pn as values of membership function. A measure of fuzziness

of this set [68] is
fln

-Dr,t'"1r,¡ -lQ - p;)Ln(r - n;) (4.e)
í=L i=1

I, 2 .f 4

0.1 0.15 0.20 o.25
b¡ 0.2 0.26 0.33 0.35

j 4

Pi 0.16¡t 0.225 0.288 0.318
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An alternative measure of fuzziness as given by (4.3) and (a.a) is

l-Dçru'-"'*+'- 
ou,) ^(W))- (4 io)

l:('-ry),('-W)l
An alternative meâsure of fuzziness based on (4.3) and (4.4) is as follows:

- lå (" -#)'* (u, -w) Ð (+? - "o),(# -"'¡1

: 
t å('1t#) ^(ryi9) Ð(H)-(H)l
: -#"1i,þ, -',) L*(t#) * ¡0, - a;) r'nþt - a)]

rl-r-nl-nZ ¡L 
tu, - a¡) Ln(b; - a;¡ + ! (4 - "¡ r'n1r + x¡l

: - å,a - 
a¡) Ln (b¡ - o;) - (B - ols.""# * i *t"izl

: (B -, f-å (g-9) ^(W) -,,ru - ot]

-(B - A)t(#) mr#)* tt'7r,"tt'7r]
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: (B -' l-åg+ ^(#) - Ln(B - Ðf

+(B-A)l-#u^#-#'"#l rn."l

The above formula (4.11) consists of three terms:

1. The first term is

(B - A) +("ntronv of the probabiliry disrriburion #,æ,,*)
(4.t2)

2. The second term is

-@-A)Ln(B-A) (4.13)

3. The third term is

(B - A) * f"ntropy of the probabitity disrriburion , *, *ù G.r4)L -- '1+

We observe that

(a) Third term in (4.11) is 0 if K:0 or K: co, that is, if B:1, or.4:1, and

has maximum va]¡ue Ln2 rvhen 1{ : 1, that is when ,4, + B : 2.

(b) If B - á is kept fixed, then the first term in (4.11) is maximum rvhen all

(å; -oJ's are equal, the second term is constâ.nt and the third term is maximum

when B * A:2.

Based on the above observations, there are ferv comments worth mentioning here.
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1. Probability theory and fivzy set theory are considered as giving two diferent and

mutually exclusive approaches for two diferent types of uncertainties. However,

he¡e we have considered both types of uncertainties simultaneously and have tried to

discuss fuzziness in terms of the probabilities themselves.

2. We first try to eliminate the fuzziness by using ihe principle of maximum entropy to

get crisp values of probabilities.

3. However, the set ofcrisp probabilities is itself regarded as a fuzzy set with probabilities

giving the values of the membership function, and we find measures of probabilistic

uncertainty, rvhich can be measured as the fuzziness of the information that was given

to us originally.

4. We started rvith a fuzzy situation and ended with a probability distribution where the

probability distribution, depends upon the fuzziness of the original situation.

5. This measure depends upon all (ö¿ - a;)'s, (B - A),un¿ ¡¡" ,"¿¡o 
4:-1.

4.2.3 Generalized Case

Instead of considering probabilities, we now consider any zz non-negative numbers,

Ír, !f,2, . ,., ørr, satisfying the constraints

ai3r;3b¡, a¡) 0, ö¡<l; i.:L,...,n (4.i5)

lrl

and

rt+12+,,.+r.:C (4.16)



88

so that

A<C<B

Proceeding in the same fashion as before, we get

,,:Ll tai
' l+K

^ B+KA- T+K

P11r¿-" "t\: c=À Ø'r7)

So that

C(b¡-a¿)*Ba¡-Ab;. B_A (4.18)

which suggests that the fuzziness is still measured by (a.11), but the value of 1l here is

given by (4.17).

4.3 F\zzy Directed Divergence Measures

Inthissectionweconsidertwosetsoffuzzyprobabilitiespl,p2,...,ptuar]dqltq2,...lqn

such that

(i) First condition

oì<pi<b¡, e¡1q¿1f¿, a¿,e¡)_0, b¿,Í;<\ i--I,2, ..., n (4.19)



(ii) Second condition

n11

Dpr: t, and f ør:1, (4.20)
d:l i=l

and, as before, we get the sets of estimâtes âs

b;-a;+Ba¡-Ab¡
B_A

(4.2t)

where r': DlLr.ñ and .Ð: DLr e¿. We cân no\Â, use any one of the following measures

of directed divergence.

Ðþ,^';+1r-n;',tfi], (4.22)

if,o,-o,, ^(#)*Ëø -.,,^(ffi)], Ø2s)

Dlr, -,r,^ (ïå)+ !ø, - ", ^ (Ti)]
.ålr -q¿)Ln(#)*¡r*- "r^(ffi)l u24)
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Numerical Example

Iæt us assume that we have a set of probabilities p; and q¡ that satisfiy the con-

straints (4.19) and (4.20) such that a¿ , b¡ , e; and fr are specifled in the table belorv. We

attempt to get the most unbiased estimates for the probabilities under this scenario.

L 1 2 4

o.; 0.1 0.15 0.20 0.25
b; o.2 0.26 0.33 0.35
ei 0.22 0.t7 0.4 0.I8

0.26 0.19 0.55 0.2

To evaluate the probabilities pd â.nd qi such that (¿ = t,...,a) using (4.21), ,4:

D¿a¿:0.7, B:D¿b; = 1.14 > L, E:lre¿:0.97, .F' :D¿f¿:1.2. Thus, the most

unbiased estima.tes for the probabilities are

x 1 2 4
p; 0.168 0.225 0.288 0.318

rJ.225 0.r72 0.419 0.182

4.4 An Application: Measure of Risk in Portfolio Analysis

In usual portfolio analysis, variance of returns is taken as a measure of risk. This

requires the investors to know all the variances and covariances for all the n securities. This

information may not always be available, or it may exist but not be complete.

An alternative method is to find the minimum and maximum returns for each

security. Let the values ofthe¡e for the i¿â security be r¡ and.R¿. Let tl; be the proportionate

investment in the i¿À security, and let

- 1./,iri , 1DíR¿

"': Di=r.r?n' oi -- Di--.iri
(4.25)



Norv, proceeding as before, we obtain the following most unbiased. estimates f¡ for p¿,

i=I,2,...,n

ui&i _
^ ) ,uif i

where a¿ 1p; 1b¿, i, =I,2, . . ., n, and

!r': i

h"+D#b#,

which is

:r. " +f ffi!:)_r"(!,oa)
We now choose 'rxt,u2, . . ., ton to maximize

(4.26)

(4.28)

or u;R¿ uiri , uiri u¿&r-r* - t*n 't,.,* - Er"R,î;: L 
Ð.rR¿ D_¡,
f,lu,trt - Ð.u,"r'..

or

^ u;(R¿ + r;\Pt: D,{e-+r-t) ø'27)

Using the notation k¿ for fu + r¿ in (4.27) the measure of risk is taken as

uil'a u¿r;
tu¿&

Ui uiTi

Ð*,o,-r [r, "+ Ðy#ï.Ð#H:-r.!r;,{, 
Ø2s)
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subject to Dr¿: t, where F¡ is the mean return from the iÚå security, and À depends upon

the attitude of the investor towards risk. This determines points oD the mean-entropic risk

frontier. Solving these equations by maximizing (4.29) subject to: ! tu; : I; ¿ = I, 2, . . .

.,n

(k;u¿) k¿ (l + ln ui ) - ,ti k¡u¿lnu¿ - k¿ ln &¡ le¿w; - lc¡ w;lc;lnk;

î¡-À (Då¿ -r)

(4.30)
Dku¿

where D is the Lagrange multiplier corresponding to !u¿ : 1.

Minimization of risk yields that u¿(R¿ + ri), i = I,2, . . ., n should all

so that:

be equal,

(4.31)

(4.32)

¡, -I P.
4't,- tt t "4 ;-1 Ouí - --------1- | L: L, 1, ., n

ç-"ri+R¿
Thus, the investments in those securities for which the sum of the minimum and the max-

imum returns are large will be relatively small. A corresponding empirical analysis is

presented in the Section 4.12.

An Alternative Approach

In l,he above discussion we used

Eä=u'=#

that gives rise to the follorving two possibilities.



(Ð

ri-R¿
t" = t&'

d¿:min(# r*) for each i : 1,2, . . ., n

å¡ : max (# #) ror each i = r,2, . ., n

(4.33)

(iÐ

ri-Ràtt¿te
This in turn yields the following Figure (4.1).

Figure 4.1: Alternative approach with difierent cases

(4.34)

A¡ Azlr A¡
I

A4
I

ri/Ii& &Æiri r¡lZ¡i Ri/Zir¡

The procedure of Section 3 gives us probabilities that lie between A1 and A2.

However, it does not ensure the highly desirable result that these probabilities lie between

A3 and Aa. To overcome this difficulty we define

(4.35)

(4.36)

I' t, A3
I

4,4
I

r¡Æi& rilL¡r; &/}R¡ RiÆr¡

and then proceed as before so that each pi we get will lie between a¿ and b; that is between



# *O ¡,fu ina"nurraently of whichever is greater. In other words

*''(#,¡fu)=o,=-*(#;,r*) i:t,2,...,n (4.27)

Also, it is seen that

¡:Do,l1, and r: !a¿ ¿ t
ii

(4.38)

F\rthermore, p¿ divides the line joining a¿ and b; in the ratio L - A to B - I as in the

following Figure (4.2):

t1-AtB_1 |

ai pi bi

Figure 4.2: Another scenario

Therefore, two cases arise.

Case 1.

*-.o,. = 
o

L¡r¿-' _ ¡ã,or p¿)]r¡)r;and nr\n<n (4.39)

Case 2.

fur.._
tie s n, < fi' ü pi¿.& >.R¡ and r;!r; 5 r; (4.40)

It is obvious that neither case I nor case 2 can arise for all values of i, and if we draw a
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curve joining points (i, ¡f;) *O another curve joining points (t,*ã) for various values

of i, the two curves rvill intersect at some point (or points) (see Figure (4.3))

For example, Let us assume that we have four stocks, and their returns are as

follows

Figure 4.3: Curves for a numerical exampie

4.5 Fuzzy Density Functions: Continuous Case

A recognition of the important role of uncertainty in dealing with problems of

organized complexity began another stage that is characterized by the emergence of several

new theories (fuzzy set theory, possibility theory, and rough set theory) of uncertainty,

different from probability theory, rvhich is capable of capturing only one of several types of

.) 4
0.10 0.13 0.1 0.15

Il¿ 0.125 0.15 0.16 0.19

s4: U.19 0.25 0.27 0.29

FÉ: 0.21 0.24 0.25 0.30
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uncertainry ([173], [174], [170], [18], [11], [122], [138]).

'we now combine fuzzy sets and, ruzzy probabilities resurts in continuous spâces as

follows.

Let J(ø) and 9(ø) be two non-negative continuous functions defrned over [a,b], and

l"u 
,{,)0,: r,., and 

f^u 
o{,)n: c

5o ¡¡u¡ í4 
""d I represent probability densit¡r functions. F\rthermore, let

a(ø):¡¡ln (+,+), .r,: 
l"bo@)a,

ö(ø) : ¡¡¿* (#),*)) , B: 
l"u 

q,¡0,

Then, proceeding as before, we get the most unbiased probability density function

o6¡ : lb(x) - a(n)) +_B2r@) - eo@)

4.5.L Illustrative example

Let

f@)-x,s@):s2,¿=s,6:1

(4.41)

(4.42)

(4.43)

(4.M)

(4.45)

,a,:|,c= l"'**:tr

then,

1l
F= | (4.46)





Thus, at c: f

' (3)

'(å)

^, 
, (?) =,

,' , (?):^

(4.50)

(4.51)

(4.54)

Now:

A = [t'" "'o'* [' "o*=4Jo Jz¡e 27

B : [''t ,ro, * [' 3r'¿, :lJo lzp 27

Using (4.48), (4.4s), (4.52) and (4.53) into (4.44), we obtain:

ep¡ =f,pr +s,2),

(4.52)

(4.53)

so, that p(c) : i @@) f à(ø)), when 0 < t < 213, as well as when 2/3 < ø < 1

Also, p(x) is continuous ¿nd differeniiable throughout the interval [0, l], therefore,

lo' 
r@)a, : I' ä rr. * tr2) h : 1 (4.55)

as expected.

4.5.2 General case

In the above example, e@) = + (a(r) + ö(ø)). The quesrion may be asked here,

whether the same result is true for all non-negative continuous functions J(c) and g(ø). A
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probability density function beiween ø(ø) and b(r) is for 0 S À < 1

P(c): ¡ a(ø)+(1 -À) ü(ø) Q(ø(zs' (4'56)

Alternatively

P('):À9+(1-À)9 Q(r(ø6

p@): 
^s++ 

(1- À)9 t61r 11 (4.57)

where ø¡ is the point of intersection of

t=+,,oa u:ff (4.58)

so that the entropy

: - I,^ (9 -.\P -(' -À)9) ^(ry- ^+ - tr -'uf) a'

: l.'"(^9-(1-À)9-+)'"(^P+(1-À)+ -p)o*n'n,

: - l"','-rl+ -'Pl^(t'-^rlP-*D- (460)

-l'^l+,-'Pl^ffi- +ù*



: -(.\.LnÀ+(1-À)z,n(r-À)) -l l9 -91-(9 -#D *

(4.62)

It may be noted. here that we have considered only the set of probability functions of the

form

p@ : 
;(ø(ø) + å(z)) :i(+. #)

^{"4 
* (1- À)P, (4.63)

and find that À: j gives the maximum entropy density function ln our earlier discussion

we considered all other density functions and not density functions ofthe form (4.63) on1y.

4.6 Comparison of the Two Solutions

4,6.1 The assumptions and the solutions

In the Section 3 taking {s as unit¡ assuming

-/'l@-910,Jol F c l--

This is maximum when À: |, resulting in the density function

ri,Rt
tI&srisffi'

and rve get the most unbiased probability distribution in (4.27) as

(4.61)

(4.64)

- r¡* R¡N;:ffiTfi, i:1, ..., n (4.65)



In the second solution (4.37), we assumed a narrov/er range for p¿

./r; Ã¿\- , /r¿ Ã¿\
"'t' (;h,tIÃ" ) =r,="'* (tf if e)' i:r'

and we get the most unbiased probability density function as

: ll r¿ & \
"'- z \tl', ' Ð? R")

4.6.2 Comparison of the two solutions (discrete case)

(4.66)

We norv show that the first solution lies within the range of the second solution'

r¿* R¿ Ril¿r;-r¿ln4 (4.67)

so that

according as

Similarly,

Ð,(rr+A) D;r¿ - (D;ri)[D(ft+nr)] '

r;* R¿ n¿

ti"+Ð -t,n":

r¡]_R¿

D,(r, ¡ 4¡ t:'

r¡D¿R¿ - R¿Ð¿r¡
(D;&)[D¿('¡+&)]'

-tl 
ri

-t -, Drrr,

-)#

.h: >t -------i-, -rDr&



aÆcording as

T;,R;'t<->ì"
Dit¡ tt' -' -'Lr&

so that if

&-riri-r;|R¿-R"
DtIù'D;rt' ffi >¡¡"r44¡=t,À"

and if

&,riR",r¡*R;,ri
t;& s tr,' D,e s tit+Ð: t¡,

In either "*" ¡ffiþ Ies between f; "n¿ #h .o that although we have started with

possibly a wider range for p¿ we find that the probabilities for the most unbiased distribution

lie in the narrower range.

Also, we show that

r¿t_R;__!( ,, _, & \r_,t¡ +¿ - t (.t, 
" 

+ ¡3,)(¿' 
:' <' )o' (4 68)

equivalent to

,Ð',Ð*Ð(r+&)(r, =, =, (.:"**Ð',) (Ð"-T")

or

,,I.,D& +a;lr;\ø(>, :, <) "(T")'."(P')'



according as

',¡* (D',-ÐÐ -*Ð', (Ð"--*) r-, :, <) o
¡ \¿

which is equivalent to:

&D"'(>, =, <)"DA
i;

OT

R¿ -, 1:i

Drnrt=' =' :1 fi
that is

Þ¿(2, =, S)F¿

4,6.3 Comparison for the continuous case

1. Proceeding in the same manner as in subsection 5.3 rve get the follorving:

F(o)(>, :, S)7(ø)

corresponding to

*,r,:, =)9
This is illustrated in the following figure (4.5)

(4.6e)

(4.70)



p(x)

e(xYG

Figure 4.5: Illustrative example

Thus, both probabilify density functions lie between $ and S. fne first

probability density function is larger for 0 ( ø ( r¡, and the second probability density

function is larger for ø¡ ( ø ! 1. However, the areas under these two different density

functions are the same.

4,6,4 New measures of risk

Although we use the same entropy measure in equation (4.2g) we get two most

unbiased probability density functions according to the range we assumed for them, and we

get the following two different measures of risk

Lnn+rt#ffi''(##*)l (4.71)

L"n+D;(#k.;h)^;(ffi.#h) ø72)



Figure 4.6: Example of two most unbiased probability distributions

We can use either to obtain the mean-entropic risk frontier.

4.7 Heuristic Explanation of the Two Most Unbiased prob-

ability Distributions

(") In the figure below (4.6), Curve I is for y:S, and Curve II is for y:e(p,

a¡d the area under ea¿h curve is unity. These two curves must, therefore, intersect in at

least one point 16. We want to find a curve III, A : p@), such that p(x) lies between

ry,+andthar
¡b

J. n@)dx = r

There can be an infinity of such curves, such as:

(4.73)

a=^++(1-À)# a1r1b, 0<)<1 (4.74)
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The area und.er each curve is À f cpdu + (l- Ð j: l$dr: 1. There are many more such

curves, but the question may be asked as to which cu¡ve should be chosen. obviously, the

most unbiased choice for À lying between 0 and 1 is À : å. This choice of À yields

orù:ii#.*)]

This is exactly the same result that we got earlier in equation (a.ffi) by using a relatively

more sophisticated argument.

(b) We now consider the Curve tV, a : E, and Curve V, A: t9

If /(ø) < g(r), then the Curve IV will always be below Curve I/.

Figure 4.7: Example of three most unbiased probability distributions

The area under the Curve.[V is $ and the area under the Curve V is f;. Norv,
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we rvant a Curve I/1, A : P(a) such that

l"u '{')0" 
: 

''

r$."p¡.p

(4.75)

(4.76)

(4.7e)

["u 
oeo,:å,1"'o*,:9

such that A, Q and.R, represent points in the Figure (4.2) and Ae, AR and AS represent

the distance between them.

l"u 
rco':'

Using, the Figure (4.7), we get

(4.77)

To be able to have P(ø) as presented by the inequality(4.26), the most unbiased choice

should be taken as

(4.78)

so that,

AR: AS, AA:e+ 
' 
1, P,

s(r) _ Í(a)
FG
9-"o,

That is the formula of P(ø)

(4.80)

G+F
G

which is exactly the result rve got in the first case using relatively more sophisticated argu-
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ments,

(.) It may be observed that in our argument in both cases, we have used the

principle of maximum entropy by trying to get the most unbiased estimates, although we

have not formally stâted it.

(d) Suppose in case (b) we take the curves y : AP, and y : ffi, ,n"r,

proceeding as in the case (b), rve get

Pþ)=2++P

It can be shown that P(x) still lies in the narrower range of I ^ P. But P(x) does not

give an unbiased estimate because we have given different weights to S and S. tn"."

different tveights result in a biased estimate.

(.) In case (a) rve assumed that the curves gr: S and g: 9(p intersect at

one point but they can intersect at more than one point (see Figure (4.8)).

Figure 4.8: Example of another situation

Even in this case, it is easy to show that the most unbiased estimate will still be
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4.8 'W'eaknesses of Shannon's Measure for the Present Prob-

lem

Suppose we are given two probability density functions /(z) and 9(z) as distinct

functions defined over the closed interval [ø, ö], and we want to find a probability density

function lying between f(x) and g(x) that has the maximum Shannon entropy [140].

d(ø): Àf(ø) + (1 -À)e(æ), o<À<1

¡b ¡b îb

J" 0{,)a" : À 
J" f@)dx+(t- \) J" oþ)dx, 0 < À < 1

: À+(1 -À):1

Therefore, /(ø) is a proper density function. Also,

ó@) - l@) = (1 - À) [g(") - J(r)]

and

sþ) - ó(a) = À[s(r) - f(r)],

so that t'(c) Iies between /(c) and 9(c) when 0 < À < 1.

Now, Shannon's entropy for the density function /(r) is a function of À and is



given by:

,6¡ : - | 
"u 

61,)tn þ(ø)d.r = - l"' f^r ø+ (r - À)e(ø)l ln [À/(c) + (1 - À)e(c)] dr

so that

s'1.r¡ : - /'1r + h(Àl(c) + (r - .r)e(ø))l lJû;) - s(x)lax

s"(À): -l"'7¡ffiffi¡a,.o
Therefore, 5 ()) is a strictly concave function of À, and thus has a unique global maximum.

Additionally, it easily follows that S'(À) is a decreasing function of l. If at À : 0, S(À) > 0,

andat.\:1,S'())<0,ihenS(À)rvillhaveaglobalmaximumbetweenÀ:0andÀ:1. In

this case Shannon's measure will ofier the most unbiased probability density function lying

betrveen /(c) and 9(c). In a1l other cases, it will give a probabiliiy function lying outside

the region contained by /(ø) and g(ø) as it will correspond to either ì < 0, or À > 1. The

above example demonstrates such a situation. If we use the entropy measure given by (a.3),

we can always find the most unbiased probability distribution between J(c) and g(ø). The

reason fo¡ ihis is that the measure given by (4.3) ensures that À always lies between 0 and

1. For Shannon's measure, it will depend upon the values of .9'(0) and .9'(1).

4.9 Empirical Illustrative Portfolio Analysis

In this section, following the lines of Philippatos and Wilson [119] and Cozzolino

and Zahner [27] in using entropy to measure the portfolio risk, a simple empirical example
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is presented. One of the suggested measures of risk presented previously in equation (4.28)

has been used to compute the optimal strategy. We use some published data in [104], and

the returns on the nine securities during the years 1937-54 are presented in the following

Table (4.1)

Table 4.1: Returns on nine securities over the period 1937-1954

Year I 2t, 3
s

4 5 6 7 8 o

r937 -.305 -.t73 -.318 -.477 -.457 -.uoð -.319 -.4UU -.4J¡l
1938 .513 098 .28ã .7t4 .107 .238 .076 .336 .238
r939 .055 .200 -.o47 .Ibil -.424 -.078 .381 -.093 -.295
1940 -.t26 .030 .104 -.043 .1E9 -.u( I -.UðI -.U9U -.ult)
1941 -.28u ,lðJ .637 -.187 .087 -.r94 -.240
t942 -.003 .067 -.039 4 T¡J .8tt5 .lbf) .262 I 113 .126
1943 .428 .300 .149 .225 .313 .351 .341 .580 .ô39
t944 LVZ .IUó .z6t-) -z!Jlt .637 .23ó 9q,7 .473 .282
1945 .446 .276 .4r9 .2t6 .373 .J49 -óÐz .zz9 .578
1946 -.088 -.046 -.078 -.272 -.037 -.209 .153 -.126 .249
1947 -.rzt -.071 .lbc . r44 026 .355 _ nao .009 .184
1948 -.015 ,056 -.035 ,107 .153 -.231 .038 .000 1.L4

1949 .305 .038 133 .321 .067 .246 .273 ,223
1950 -.u90 .UE9 IóZ .305 .579 -.248 .091 650 327
1951 .016 090 ,02L 195 .040 -.(ib4 .054 -.131
t952 tzE .083 131 390 ,434 .079 .IUg L75 .062
1953 -.UIU .035 .006 -.072 -.027 .067 .210 -.084 -.048
1954 .154 176 .908 ILi .469 .o77 tlz .756 185

The abbreviations represent the ticker symbol ofthe issuer company of the securit¡

for instance:

Am.T.: American Tobacco; A. T. &T.: American Telephone and Telegraph Co-

many; U. S. S.: United States Steel; G. M.: General Motors; A. T. & Sfe: Atchison, Topeka

& Santa Fee; C. C.: Coca-Cola; Bdn.: Borden; Flstn.: Firestone; S.S,: Sharon Steel.
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The data shows the returns, including dividends, for nine securities over an l8-year

period. In the previous section in this chapter, in the process to model the portfolio analysis

using the entropy method suggested, we started by identifoing maximum and minimum

returns. Based on the returns table, these minimum and maximum values are as follows

(a.\:

Let us define

"'=;#o' b':#h'

{ri represents the proportionate investment in security í, i: I, . - .,9

Following the formula indicated previously (4.22), we get:

ã': ui(&+r')
Dt¿¡(& + r;)

Maximizing the objective function (4.29) subject to !tr¡: 1, we get

u.: --¡14-'s\r
1¿ ¡t*R¿

1

Table 4.2: Minimum and maximum returns on nine securities over the period 1g3?-1g54
Items 2 .) 4

l]M 5 6 7 8 Iss
-0.3050 -0.1830 -u.J l¡lt, -0.4770 -0.4570 -0.2480 -0.3190 -0.4000 -0.4350

& 0.5130 0.3000 0.9080 0.7150 0.8650 0.3550 0.3810 0.7560 0.6390
r¿ * Il¿ U.ZUðU 0.1170 0.5900 0.2380 0.4080 0.1070 u.0620 0.3560 0.2040

w, 0.0876 0.1557 0.0309 u.u766 0.0447 0.1703 0.2939 u.05r2 0.0893
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Using the data illustrated in the Table (4.1), we solve the problem and achieve the optimal

proportions given in Table (4.2).

4.LO Summary and Concluding Remarks

In this chapter, we have considered a portfolio for which the minimum and the

maximum returns on the i¿ä security âre ri and.R¿ and the mean return is E¡. For this

purpose, firstly, we find the probabilities p1,p2, ...,pn for which a¿ 1 p¡ 1ö¿, where

uiri uíRiaí= 
DiU,.¡q. 

and or= 
Dñ,

which maximizes the measure of entropy given by equation (4.3) and offers us the most

unbiased probability distribution þ'¿, i = 1, ..., z given by (4.27). We next find the probabiliiy

distribution, which as in (4.37), lies between values given by (a.85) and (4.J6). This gives

the most unbiased estimâte

- I I u¡r¿ u;R¿ Io'= zlÐ,,** tþel ' i=1, ' . ', n

It can be easiiy shown that both þ'¿ and 1¡ lie between the limits given by (a.35) and (a.36)

We also obtained two new entropic measures of risk.

h?, + IAi htr and tnn+Dlitîli
ii
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F\rrthermore, the results to continuous wariate probability density functions are presented.

Also, a heuristic explanation of the results v¡ithout using the principle of Maximum Entropy

is provided. Finall¡ it is shown ihât the entropy meâsuÌe (4.8) will always give the most

unbiased probability density function, rvhich lies between the two given probability density

functions, whereas shannon's measure may give the most unbiased probability distribution

lying outside of the region bounded by the two given density functions.

The aim of the chapter is to present the mathematical theory of approimate

probabilities using the meâs're of entropy. when there is not enough information on which

to base our decisions, v.¡e cânnot expect sharply defined reasoning to reveal the most probable

outcome. A substantial amount of ¡esearch may be needed in this direction.



Chapter 5

Rtzzy Regression with Application

The price limit bounds the daily commodiüy price to move within ihe predeter-

mined level above or below the previous day's closing price. Therefore, the equilibrium

price is unobserved when it moves outside the limits. under price limitation, since the ob-

served price is not equal to the equilibrium price, estimating using the observed price may

yield biased parameter estimates, Actuall¡ many studies propose econometric analysis to

tackle the data distortion caused by price limits. Kodres [26] used the maximum likeli-

hood approach to estimate the parameters of two limit robit models. Roll [122] adopied

the proxy variable to substitute the limit move data. The daily commodity price on any

trading day cannot be higher (lower) than the previous closing price plus (minus) a limit.

The price limits bound the daily commodity price movements and shorten the distribution

of equilibrium price changes, allowing for the use or the fitzzy theory developed by Zadeh

[169]. Therefore, the equilibrium return may be treated as htzzy and random. The aim of

this study is to e.stimate systematic risk using commodity futures prices with the existence
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of price limits. The estimation process has been conducted in two diferent phases. The

systematic risk has been estimated using the settlement price of the commodity futures

using the ordinary Least squares (oLS) method, Then, an optimization model has been

developed to investigate the impact and effectiveness of price limits on estimating the beta

risk of commodities return.

In the following section, we present a review of the literature related to price limits

and to CAPM when applied to commodity futures. In section 2, we present the modeling

environment of both CAPM and a two.phase fuzzy regression approach, and in section B,

the data and methodology are demonstrated. our concluding remarks are offered in section

4.

S.L Review of the Literature: Price Limits and CAPM with

F\¡tures Markets

Recently, various studies have investigated the modeling of the price limits and

their impacts on stock and futures prices, for example (t11, t261, [51], [9g], [60], and [f15]).

A feature of most futures markets is a daily price limit rule. price limits have been imposed

on daily price volatility to stabilize the market. In a market with a daily price limit rule,

trading is permitted only at prices within limits determined by the settlement price of the

previous day. The settlement price is an average of the transactions' prices in the closing

periods of trading or, if trading is halted at the close, it is the relevant price limit. In

the stock market, the officers of the exchange have the power to stop when they berieve

it necessary and desirable. Yet, stops in the stock market are not necessarily related to
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the size of the price movement. Hopewell and schwartz [57] found that g2% of the halts

on NYSE lasted less than a day. In another example, the winnipeg commodity Exchange

regulates prices by prohibiting trading during any trading da¡ in futures of commodities

traded at a price that exceeds the settlement price of the previous d.ay,s session by a certain

amount. Table (5.1) represents the price limits of feed wheat, western barieg canola and

flaxseed commodities, excluding the new contract delivery month. such limits are based

upon the Board's lot quotations. In addition, in the case of trading in a contract that is

eligible in that month, there shall be no daily limit on price movement on the last day of

trading.

Table 5.1: Price limits per commodities futures traded in winnipeg commodity Exchange
(WCE). Sampte period: Jan. 1991 to Dec. 2000an. 1991 to Dec. 2000

Commodities Price Limits $ / Tonne(') Price Limits $ / Tonne(bl
Western Barley 5.00 7.50

Canola and Flaxseed 10.00 30.00
Feed Wheat 5.00 7.50

y price 2000.

Brennan [15] first proposed a theory expraining why a price limit exists in some

futures markets. In a market with price limits, when a shock happens, the equ ibrium

price moves outside the daily maximum alowable increase/decrease interval; it becomes

unobserved, and what we observe is merely a limit price. He pointed out:

"...for agricultural commodities, rvhere the basis risk is typicaly substantial,
Ìve expect to find a role for price limits, at least in the distant contract months.,i

He found that as the precision of the externar signal regarding ihe equilibrium

price increases, the price limits are expected to be either reraxed or ignored. Thus, that
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precision is not assumed in this chapter.

Roll [127] argued that the price data that is usually used may or may not reflect

actual transactions and is determined by members ofthe exchange at the cloôe ofeach day's

trading. The indicated limits on price movements prevent the price from moving by more

than a certain amount f¡om the previous day,s settlement price. Roll [12fl said that:

"When a significant event, such as a freeze in Florida, causes the price to
move the limit, the settlement price on that day cannot fully reflect all available
information. In other words, limit rules cause a type of market information
inefficiency (but not a profit opportunity). This might be inconsequential if
limit moves occurred rarely; unfortunately, they are rather common.,,

Hull [61] discussed the concept of the settlement price, which is defined as the

average of the prices at which the contrâct traded immediately before the bell signaled the

end of trading for the day. He pointed out that:

"It is important because it is used for calculating daily gains and losses and
margin requirements."

However, in the futures market, some futures contracts are settled in cash. In this

case, the settlement price on the last trading day is equal to the closing spot price of the

underlying asset, to ensure that the futures prices converges to the spot price.

There are many empirical studies that have dealt with futures prices behavior in

practice. Houthakker's [58] study looked at futures prices for wheat, cotton, and corn during

1937-1957, showing that it was possible to earn profi.ts from taking long futures positions.

Telser's study [151] constructed the findings of Houthakker [58]. Telser's data covered the

period 1926-1950 for cotton and 1927-i954 for wheat and resulted in significant profits for

traders taking either long or short positions. Gray's [48] study looked at corn futures prices

during 1921-1959 and resulted in findings similar to those ofrelser. Dusak's [35] study used
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data on corn, wheat, and soybeans during 1952-1967. Her study attempted to estimate the

systematic risk of an investment in these commodities by calculating the correlation of

movements in the commodity prices with movements in the S&P 500. However, the results

obtained by Dusak [35] suggest that there is no systematic risk.

Dusak [35] showed that systemâtic risk and return for wheat, corn, and soybeans

futures contracts vr'ere near zero. Then, she concluded that these futures contracts are

not risky assets when held es part of a large portfolio. Carter, Rausser, and Schmitz [19]

(hereafter refer¡ed to as CRS) changed Dusak's model by introducing stochastic systematic

risk as a function of actual net speculative positions. CRS found that half of the contracts

had significantly positive risks. Research done by Chang [22] using the same commodities,

supported the existence of a positive systematic risk. Baxter, Conine, and Tamarkin [9]

(hereafter referred to as BCT) repeated Dusak's study by using a proxy for the market port-

folio consisting of 93.7% of the S&P 500 index and 6.3% of the Dow-Jones cash commodity

index. BCT showed insignificânt systematic risk for wheat, corn, and soybeans futures.

Thus, they could not show a positive systematic risk for the same three futures contra¡ts

during 1953-1976. Elam and Vaught [39] (hereafter referred to as EV) investigated the

existence of risk and return in cattle and hog futures. They found signifrcant systematic

risk for the one hog and four cattle futures contracts. They combined 90% on the S&P 500

index and 10% on the Dow-Jones cash commodity index, as proxy index. Chang, Chen, a.nd

Chen (hereafter referred as CCC) [23] used six traded futures for copper, six for silver, and

four for platinum. They used the month-end settlement price, which is on the last trading

day ofthe month. They found contrary to other studies, a significant systematic risk in the
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agriculturâl and livestock commodity futures.

The estimation in futures markets usually faces the existence of price limit regula-

tions and may call for another approach to estimate systematic risk. Thus, it is important

to analyze the behavior of futures prices when the exchange is regulated by price limits.

Also, it is well known that the regulation responds to the trading behavio¡ of marlet mem-

bers. when traders are confronted with market barriers, they revise their expectations

accordingly.

Roll [127] concluded that the use of a possible settlement price implied by limit

moves will affect any informational efficiency study. In his empirical study [127], the price

on the first day with no limit move was brought back to the day of the first limit move,

and all intermediate days were ignored. For example, if a limit occurred on a specific

day, he assumed that the settlement price for that day was the price of the following da¡

which did not have a limit move. Kodres [26] analyzed the impact of price limits on a

test of the unbiasedness hypoihesis in foreign exchange futures markets. Mao, Rao, and

sears [101] claimed that trading halts mitigate price, enhance informational efficienc¡ and

tend to excessively inflate volatility . Mao et al. ([10t], [I00]) found that price trends, in

general, stabilize or reverse themselves after reaching limits and tend to move ba¡k into

prelimit price ranges. other researchers, such as subrahmanyam [146] argued that limits

obstruct informational efficiency. Hall and Kofman [51] proposed a modeling frame\Ã,ork

to distinguish between observed and theoretical futures prices. Kuserk and Locke,s þ51

findings contradicted Roll's stâtement that the limits create information inefficiency, not
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profit opportunity.l

Flom a probabilistic point of view, Hall and Kofrnan [51] presented that, in the

absence of price limits, observed futures prices should be equal to unobserved fundamental

futures prices plus some random noise, to refl.ect market microstructure efects such as bid-

ask bounce. But if there is a fixed and credible upper limit, and the price is close to that

limit, the probability of a further increase will be limited, the probability of a decrease will

be relatively larger, and the probability distribution of the next price move will become

increasingly skewed, the closer it gets to the limit.

Park [115], in his stud¡ investigated price limits in futures markets and pointed

out that price limits serve to delay gains and losses that might occur with large price swings.

Price limits function similarly to margin accounts by limiting the amount of price exposure

risk. According to Park [1i5]:

"Unfortunately, there is no generally accepted theory on how price limits
influence price behavior."

5.2 The Modeling Environment

5.2,L Necessary a.ssumpf,ions

As a rule, an observation is subject to difierent kinds of uncertainty from objective

sources (e.g., the coarseness of the computer used to collect and register data) or ftom

subjective ones (e.g., the evaluation of the observer, trader, or investor with respect to the

reliability of the observation). Thus, observation is subject to fuzzy structures specification,
llnfo¡med trade¡s q'il[ try to smooth their tladiDg activities befo¡e the price hits I limit, aqd market

makers p¡otect themselves agai¡st these movements by increasing the bid-ask spread upward.
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which can take place at each daily price. In fitzzy set, it is reflected by i'approximately p"

and can be enhanced by an evaluation, e.g. "quite surely p". One of many advantages of

using a fuzzy approach, here, is that information from different sources or data of different

specifications can be utilized. Motivated by these considerations, we âssume that futures

contracts under price limits are subject to fuzziness. Also, we assume that the trader

has some external source of information about the equilibrium future price2, but that the

information is incomplete and not precisely defined (fuzzy).

In fact, Brennan [15] assumes in his study that the price change follows a uniform

distribution and that the t¡ader receives a signal equals to the equilibrium price plus a

uniformly distributed error term.

'What remains unexplained in the literature (e.g. Dusak [35], CRS [19], BCT [9])

that discusses the estimation of systematic risk in futures market, is, first, why a price which

is subjeci to limits is not important in the estimation; and second, why price limits should

be ignored in the decision to accept or reject the existence of systematic risk. F\rthermore,

the findings of various articles explain neither how the price limits could be modeled in the

regression analysis, knowing that the maximum allowed change is calculated from the close

of the previous da¡ nor why it is necessary to use the settlement price, which is an average,

instead of the equilibrium price.

With a simple treatment, Chou [26] ignores noisy observâ,tions, which are obscured

by the residual shock. He also treats them as missing data. This approach is questionable,

because these discarded observations carry information about the model parameters, and it

@abletoobserveasignal7whichmaybedelivablefrohthesPot
market fo¡ the uaderlying comrnodíty or assetr Êom the markets fo¡ other futr¡¡es contracts, o¡ from other
sources.
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is not appropriate to ignore them in the estimation of the model. In addition, he ignores the

residual shocks, which are determined by the price limit regulation and may be carried over

from the preceding day and from previous days. The following trading days will show the

unrealized excess demand or supply that will accumulate and be carried over to consecutive

days [75].

Under a price limit, the settlement price (observed) is not exactly equal to the

equilibrium price (unobserved), and estimating without it might imply biased pararneter

estimates. To preclude the biased parameter estimates introduced by price limits, we treat

the futures price âs a fuzzy datum and use a two-phase fuzzy approach to estimate the

systematic risk.

Follorving the Brennan paradigm, we assume that there is an external signâl sug-

gesting that the equilibrium price is in the boundaries of the observed price and that the

equilibrium price is bounded by an upper bound (observed plus half the limit) and lower

bound (observed minus half the limii). That is, the equilibrium is partly observable, and

the external information suggests that the equilibrium price is between lp - t,e+ il. Tnu

membership function, which measures the degree of precision of that equilibrium price is

assumed to have a triangular shape function, The reason for this choice is twofold: (i)

triangular shapes are easy to construct and manipulate and (ii) most current applications

that use fuzzy theory are not significantly affected by their shape.

Let us assume that we have a two-day period, yesterday (ú - l) and today (ú). If

the price hit the up-limit (or downlimit) in t - 1, we would observe the limit p¿_1 : ¿..

(or p¿-1 = l¿); under this scenario, we assume that the equilibrium price is fuzzy random
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in the interval lnr-,, - t,rr-, + j]. If toaay (ú) registered a limit move, the price hirs limit

up (or downlimit) again, we suggest that the equilibrium price is fuzzy random in the

lnr- $,nr+ f]. Vet, if the obse¡ved price does not hit ihe limit, s/e still suggest that the

equilibrium prÌce is a fuzzy random in the inte¡val fn, - t,f, + j] since as observations

following a limit move re8ect both the associated shocks and the ¡esidual shock carried

over ftom previous trading days. Accordingl¡ prices are correlated, and we will not be

able to extract information via the observations to achieve more precise estimates of the

model parameters. It is the residual shock that substantially complicates the estimation of

the model. To this point, it has been assumed that the equilibrium price that rvould have

been observed in the absence of price limit will be around the settlement price. That is the

reason behind the use of fuzzy theory here.

5.2.2 Capital asset pricing model (CAPM)

Sharpe [141], Lintner [97], and Mossin,s [108] capital asset pricing models have

been investigated for both agricultural and livestock futures during the last decade. Many

studies (e.9. [35], [1451, [39]) discussed whether futures investors and traders accept any

systematic risks and whether there is a reward commensurate with the systematic risk of

futures contracts. The systematic risk of commodities is different from other financial assets.

For example, holding times for agricultural commodities are relatively short. In addition,

they are subject to seasonal production. Because spot and futures prices of a commodity

tend to follow each other, it is interesting to look at the relationship betv/een return and

systematic risk; the capital asset pricing model, which serves that purpose, has the foliowing
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standard form [28]:

Ellql: rr + Þo¡¡lEll¡¿l - r¡l (ä.1)

for any asset (or portfolio) q where E[.] is the expectation operator, and tildes ¡epresent

random variables. ño is the return on an asset and r¡ is the riskless rate of return. ñ¡4 is

the return on the market portfolio of all assets. Coefficient Éqv is defined AV W
which is ¿ measure of the tendency of a security's returns to respond. to swings in the broad

market.

The model (5.1) assumes that the expected return on a financial asset is composed.

of a risk premium and the return on the riskless asset. Additionall¡ the risk premium on

a financial asset equals the product of the systematic risk of the asset BqM and the risk

premium on the market portfolio lnlru) - r¡l . In the context of commodity futures, chang

et al. [23] advised that holders of a futures contract can expect a positive risk premium,

if changes in contraat prices are independent of changes in values of all assets combined.

Because CAPM is an ex-ante model, which means that the parameters are unobservabre,

Þqy,Í's are not observ¿bl and they should be estimated.

under the assumption of a single-factor return geners,ti.g process [66], the exposed

version of CAPM can be written as:

rq-rÍ: e¡* þq(ru - r¡)

and the empirical ve¡sion of CAPM in time series form is as follows:

(5.2)

rí: a¿ * þ¿r"^t* e¿t (O.JJ
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where rie¿ - rr - rft1 îemt: rmt - rft, eit disturbance term, oi and þ¡ can be estimated by

regressing excess return on asset ex-post returns against excess returns on a proxy for the

market portfolio. p, i. r.t estimate of p¡, and ûi measures the mean excess return to the

asset i, if the model is well specified.

Elam and Vaught [39] used a slightly modified CAPM to explain returns on futures

contracts:

E[n: þtÙ[r,_) - rfl

without including rl ss an intercept in equation (5.4) because a futures contract represents

an agreement to purchase a commodity at some later time. Because the payment for a stock

is made up front, the return on a stock should reflect the time value of money (represented

by r¡). The returns on a futures contract should not include r¡ because no money is put

up (or interest can be earned on money put up as margin) to buy a futures contract.

Therefore, we use the following empirical version in this chapter:

\t: o¿*9; (rmt - r jù +eit (5.5)

The realized return on the contract with a fixed maturity signified by i during period ú r¡
is computed as:

rít:Ln(#) (5.6)

where Pir represents contract'j's settlement price at time ú and p¿¿-1 represents i,s settlement

price at time ú - 1. The end of period returns on one-month rleasury Bills are obtained for

the same period and serve as a proxy for the monthly risk-free interest rate r¡.

(5.4)
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Following Chang et al. [23] we compute Sharpe,s [142] performance measure ,9;

below in (5.7) :

si='t 'J
Oi

which is a ¡eward-to.volatility ratio, a ratio of the reward to total volatility tra.de-off mea-

sures. Àlso, TÌeynor's [156] measure, provided below, is computed:

(5.7)

(5.8)- -ri-TÍ
Pi

which is the ratio of excess return to beta risk (systematic risk).

6,2,3 F\rzzy regression methods

It is impossible to estimate the parameters of the linear model (5.5) cApM in

this case, under these conditions, through the traditional ordinary least squares, because

the equilibrium price is not observed. we know that the estimation will be even more

complicated when the sample contains consecutive limit moves across more than two days.

Following common practice, we sha[ assume that the true return is a fuzzy ran-

dom number, normally distributed so that the proposed fuzzy regression approach is easily

implemented.

Tanaka [148] first introduced fuzzy linear regression to determine a rinear ¡ela-

tionship between a fuzzy dependent and crisp independent variabres. subsequently many

studies (see e.g. [56], ÍL241, ltz1l, [150], [149], [21], and [164]) have been proposed to im_

prove the fuzzy regressíon method. The literature dealing with fuzzy linear regression and

its applications has grown rapidly. For instance, fuzzy regression methods have been rvidely
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used iD forecasting (see e.g. [55], [164]), engineering (see e.g. þZ], [Z]), quality control (see

e.g. [70])' and health (see e.g. [8]). several papers have examined fuzzy regression methods

and discussed some properties and deÊciencies of their methodologies (for example [124],

[125]). Tanaka [148] suggested the following model:

^Y:,z,Dsl"l
Subject to { 

"; + (L - H){ la¿l > ui + (I - H)ei

-d!*, + (t - H){ lr¿l > -s¿ + (t - H)e¡

cj)0, j:1,...,p

where -4¿ : (a¡, c¡) are hszzy coefficients, v¡hich are the solution of the ruzzy linear pro.

gramming problem. Then, lol : (1, lør | , , ...,|*o)r and p is the number of independent

variables. a = (as,...,ar)T and ": (ø, 
"r,..., %)".

The fitzzy coefficient can be expressed as ,,approximate a;" with center a; and

spread (or width) q. Y = (A¿,e¡) is the fuzzy output, where g¡ is the center, ei is the fuzzy

spread and n is the number of observations.

savic and Pedrycz [136] introduced another formulation of fuzzy regression method

(referring to their approach as fiszzy least squares rinear regression) that can resolve the

issue ofinfinite solutions. They formulated the problem as a two-step procedure for building

fuzzy regression models.

Phase 1: Fit the regression line by using the av¿ilabre information about the center

points of the observation, i.e. input data are considered non-fuzzy. vector a* is used as one

of the input data sets in phase 11.
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Phase -I1: Determine the minimal vagueness using the linear constraints presented

by the Tanaka meihod [148] but v¡ithout a being a vector of decision variables. savic and

Pedrycz proposed some techniques for determining a. They chose to use the least squares

method to get a, which is given below:

a':(x'x)'xtY

Recently Hojati et al. (hereafter referred to as IfBS) [56] presented a new method

for fuzzy regression that is simple to use. They developed a model where only the dependent

variable is fiszzy and extended it to the case in which both dependent and independent

variables are finzy. In classical regression setting, we regress the rate of return using the

ordinary least squares method (oLS) to get the associated parameters of the model. In a

fuzzy regression setting, HBS's method is based on the linear programming approach and

minimizes the total absolute deviation to obtain the parameters. The parameters of the

model are chosen such that the total deviation of the upper movements of predicted and

associated observed intervals and the deviatìon of the lower movements of these intervals

are minimized.

In HBS's model, the objective function is presented by minimizing the total devi-

ations of the upper points of predicted and associated observed intervals, instead of mini-

mizing the total spread of fuzzy parameters. Note th¿t the essence of both papers [56] and

[136] has been used here to develop the proposed method.
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Proposed Method: Modification of Savic and Pedryczts method

Definition 16 A non-symmetricnl triangular fuzzy number, A¡ tlenoteì, as A¡ : (C7¡,a¡,Cp)

is d,efined as (see figure (5.1)):

ue,(ai) :1, ;.ï*,:. :::,:;:
Cn¡, Cr¡ > 0 , aj is a center (interior), C¡¡ left spread, and, C¡¿¡ right spread,. A¡ =

(C¡¡,a¡,Cp).

Figure 5.1: Representation of a non-symmetrical fuzzy number

aj-Cri qj

In T¿naka's model [150] the htzzy output datâ are assumed to be a fuzzy number

with a symmetric triangular membership function denoted by Y : (g¡,e¿), i,:1,...,n.

Extending this model in the case of fuzzy non-symmetric numbers, the linear model is as

follows:

Y : AX : AaXo * AtXt + ... + AsXs :llrX¡
i=o

(5.e)
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where Aj : (C¡¡,a¡,Cn) arul A = (C¡,a,Cp)

Theorem tT The fuzzy output Y in (5.9) cnn be represented, as:

Cose 1: IJX>0 Then Y:(C¡X,aX,C7X)

Case 2: IJ X < 0 ThenY : (lXlCp,aX,lXlC¡), where

a= (a¡...,a-); Cnj = (CRn,.....,Cn"); C¡,¡ = (C¡s,....,C¡") and.lxl: (lXll,...,lX"l)ú.

Proof. It is well known from Dubois and Prade [34] that the following equations

V À > 0; Ào (C¡,a,Cp) = (ÀC¿, Àa, ÀCa), and

V À < 0; Ào (C¡,a,Cp) : (-ÀCa,Àa,-ÀC¡). t

So, the membership functions are written as follows:

In case 1:

(
I t-+æ rf xCL<a <ox

Pv(Ð: 1,"x.t l+ffi If ax<a<xCn

In case 2, the membership function of the output is written as:

(

.. ,..\ l'-iffi Il lxlcR<a<ax
¡¿r\gi - 

I( 1+ #d rf ax <a <lxlct

Linear programming and parameters computation

Following the same procedure presented by Tanaka [150], we provide the linear

programming approach to estimate the parâmeters of the model.
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In case 1:

( *on o.r.
{ Subjeci to ++

I u(,\>h( '"-

Mi,n O.F.
a,C¡,Ca

Subject to I - #æ >h <+

L +.!;! > h

Min O.F.
a,Ct,Cn

-aX+(1 -h)xCr2-y
aX+(1 -h)XCp>s

a €lR, C¿, C¿ >0

In case 2, the linear programming problem is as follows:

( ,nn o.r.
{ Subject to

I u(r\>h\ '\,-

Min O.F.
a,C¡.,C ¡1

Subject to L-#+>h <+
t^ tuR -

r+ffi>h

Min O.F.
a,CL,CR

-aX + (1 - h)lxlcn2 -y

aX+(L-h)lxlc¡>_s

a €lR, C¡, C¿>0

"{

l¿: is the degree of the Âtting of the fuzzy linear model chosen by the decision maker.

After introducing an aggregate fuzzy linear regression method (aggregate case 1

and case 2), which is designed to minimize the sum of the tuzzy spreads around the g



predictions, the problem is formulated as:

-a, xP +,, - ;:{{,1;:Y:,:' ̂
i;: f .r i :,,, ç

', j-o

atXP + (t - n¡\lXrrCp, à v; + (1 - h)e;, Jor i: r,...,p
i j=o

subject to -atxr *(r-h) i f*r,"", ) -ur+ e- h)e¿, for i, :p*1,...,n
'=ot*' 

jlo

atXN +(1 -å) t DX1¡C"¡ )ui+(r -h)e¿, fori:p+!,...,n
i:P+1j=0

a € IR, C¿ : (Cno,Cnt), C¡ : (C¡s,C¡ù l0
Giaen XP : (XV,..Xp¡) > 0, ¡rv : (Xp+tj, ..X*¡) < 0 X¡s = 1

- a¿ x P *,, - 
",:{{:::,'::,=:': 

:,:?,ii:," - i : 1,, p

';' t,o
a'XP + (1-h)DDxr¡C"¡ > ai+ (L-h)ei, Jor i:1,...,p

¿=t j=o

subject to 
-atxN +(t -/r) Ë f*rr"*r) -ar+e-h)e;, for i:prt,...,n

,=o:, j;o

atXN *(1 -ir) t LXr¡C"¡ 2s¡+(r -h)e¿, fori:p*!,...,n
i=P+1j=0

a € lR, C¡ : (Cao,Cnt), CL: (CLo,CLù >0

Giuen XP - (Xy,..Xp¡) ) 0, Xr' : (Xp+t¡,..Xnj) < 0 X¡o:1

e¿ : the spread of the output. s: the number of independent variables in the model.

Extending savic and Pedrycz's method by introducing the non-symmet úcal fuzzy

number case (center is estimated using the oLS method, thus, a*¿ is used as one of the
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input data sets in phase II) and choosing /¿ : 0, we get the following optimization problem3:

ê{,&D} =, D 
"?=r 

(c u + c n¡) I 
x ¿ A

P1
-o-'xo +Dt x;¡Cu 2 -si+ ei, for i:1,...,p

i=l i=0pl
a*txP +DDx,¡c"¡ 2a¡ * e¿' for i : l' "'P

d:l j=0

subjectto 
-a+txN + f fxqcor) -vr+e¡, Jor i:p+r,...,n

i=P+1i=0
nl

a*txN + Ð Dx'¡c"¡ ) u; I e¿' for i' : p l l' "''n
i:P+1j=o

cR: (cRr,cît), cL = (cLo,cLù >0

Giaen XP : (X1¡,..Xp¡) ) 0, -)¡,v : (Xp+tj,..X*j) < 0, X¡o : t

Because we have non-symmetric Èlzzy data, we need to make some modifications

to the two-step procedure of savic and Pedryzc to use it. The proposed method is as follows:

Phase 1: a (center) is defined uniquely when X is a full rank matrix. F\rthermore,

as presented by savic and Pedrycz, the use of a* causes the center of the gj Êtted vâlues to

be closer to the observed values, 3r¿. That causes higher membership values, because o* is

the optimal vector that minimizes the sum ofthe squared residuals in ordinary least squares

regression analysis ([72], [1i2])4.

Phase .I1: Assuming that l¿ : 0 and c = (c¿, cr) such that c,. is the right spread of

the parameter and c¡ is the left spread of the parameter, the model is equivalent to:

@ontorepreseDttheestimatedcentersusingo¡dinaryleastsquar€s
(OLS) method (a', B') = (esa,esB)

aseveral standard curveÂtting methods may be used io this phase, for example, minimum sum absolute
deviations and the Chebyshev minmax crite¡ion 11621.
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M r!,D} =oDL, (c u + c n¡) lx;¡ltt" 
o r

-a*tXP +llxt¡C¡¡ ¿ r¿, , Jor i : !, ...,p
i:\ j=o
PI

a*tXP *ÐÐXr¡C^¡ > r*r, for i : t,...,p
.i:1 j=0

subject to 
-datxN * i f ,rr"rrlr¿¿, for i:p!I',...,n

d=P+1j:0
n1

a*tXN + L DX1¡C"¡ 2 ru¿, for i : p+1,...,n
ì=P+t j=0

Cn: (CRr,CRr), CL: (CL¡,CL¡) >0

Giuen XP : (Xrj,..Xe) à 0, X," : (X*t¡,..X*¡) < 0 X;o : 1

(5.10)

where r¿, rú represent the down and up returns, respectively.

Evidentl¡ it may be noted that the price limits generate a movement interval with

a lower bound and an upper bound, which correspond to the lower and upper movements of

price, respectively. r¿ is the observed commodity return at time ú based on the settlement

price. It can be seen as pseudo true return with a membership function equal to 1. ñis the

fuzzy equilibrium return at time t. Assuming that the given settlement price is not defined

sharpl¡ l¿ represents the price limits at time ú of each commodity futures.

The equation (5.6) under a fuzzy environment generâtes two returns, up.return

and down-return, which represent returns derived from the up movement and the down

movement of the commodity prices. we define the up movement (down movement) of the

price as the settle price plus (minus) the tolerance level (l¿12). Note here that J¿ represents

the limit of the price.

Thus, assuming that the price limit is constant over time, we can reproduce the



equation (5.6) as follows:

and

The above equations can be rewritten as

ru;,:Ln(#W)='#?ñ

r¿;,:Ln(#+)='Ë:!ñ

(5.11)

(5.12)

(5.13)

(5.14)

where .Rd_1, Fr"_1 represent the ratios or the multipliers associated. rvith an up

and down movement of the price, respectively. Economicall¡ we can conceptualize them

as the price limit's movement effect on the returns. Also, it measures the magnitude of the

price limit on returns. similarly, each one is a leftover ratio that represents the unrealized

residual shock from trading at time ú.

This problem is amenable to comparative static analysis, and the derivation of the

equations (5.13) and (5.14)$'ith respect to the price limit can be written into two terms:

, P¡t - P;çt P;t - P¡t-t P¡t-tt';t: 4lr¡tf2: Pr*, Pr^.iTIr= r¡t* Iri-t

. P¿t - P;t-t P* - Pn-t P;t_t
t ¿¡¿ = V;l -Tþ = pr-, n;, -T/t = r * tq-|

d,ru¡¿ _ d, ( Pa - p;t_t p¿t_t \ l &, - Br_, p;t_t
dt = 

d¿ \--8,- E;Tæ ): -r-P"= e,;;¡* (5.15)



138

ând

Then

IPu- P¿t-t P¿t-tz e;*' ç;;¡¡6

IJ P¡-Pn-1u- o-.4u 10 arut #ro

dr¿¡t

dt (5.16)

(5.17)

Flom the equation (5.17), when the price of the commodity is moving upward, assuming

that it is moving within the limits, the up-return (down-return) will decrease (increase)

with any possible increase in the price limits.

Il P¡t-n¿-r <o -'+ao and dd?;t 
<o (5.18)

FYom the equation (ó.18) when the price of the commodity is moving downward, the up-

return (down-return) will increase (decrease) with any possible increase in the price limits.

The following figure (5.2) illustrates the construction of the up-return and down-return

taking into account all possible cases.

Figure 5.2: Representation of fuzzy numbers

dowtr -rcfums

G liñir ùp Min (rù ¡d) [ñir doM , € l¡rir doM Max (ru,¡d) limjr ùp)
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It is known that in the Winnipeg Commodity Exchange, before October 10, 2000,

the regular daily price limits were s5.00/tonne for feed wheat and western ba.rley and

$10.00/tonne for canola and flaxseed. These limiis could be expanded (increased) in certain

situations. If any two of the nearest three contract months closed limit up or limit down

for two successive days, the limit was expanded to l.b time¡ its no¡mal efiective price the

following day. If any two of the nearest three contract months closed up or down by the

expanded limit for the next two days, the limit was further expanded to twice the normal

limit on the following day. when no two of the nearest three contrâ.cts closed at their

expanded daily limits in the same direction (boih up or both down), the daily price limii

returned to the normal limit on the following day.

5.3 Data and Methodology

Market return in this chapter has been computed using an approach similar to

the one suggested by cRS [19]. However, Marcus [102] suggested a weight of 10% for the

commodity index and 60% for the s&P 500 index. The s&p 500 index is a value weighted

index of the price of 400 industrial, 40 utilit¡ 40 financial and 20 transportation stocks.

The Dow Jones cash commodity futures indexS is an equal weighted index of frve.month-

fo¡ward future¡ prices for the 12 commodities: cattle, cofiee, copper, corn, cotton, gold,

hogs, lumber, silver, soybeans, sugar, and sr'heat.

Marcus [102] pointed out that when the weight given to commodities in the market

portfolio increases, the covariance between r¡ and r- will increase and B, rvhich measures

@ceofeachcommodityonagivendatebyitspriceonDec.21'
1974, and summing aqoss commodities. The sum is divided by 12 and urultipli"a uyioo tà ¡"ta tl" ioaux.
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the systematic risk, will increase. This weighting scheme is based on Marcus,s estimate that

commodities account for approximately 10% of total wealth. Also, it is approximately the

same as the 0.06 weight for commodities used by BCT [9].6

Following Marcus [102], Elam and Vaught [39], and Chang et al. [23] we proceed

by using the combination of 10% to the monthly log relative return for the TSE 300 in-

dex retu¡n7 and g0% of the Dow-Jones cash commodity index return as a proxy for the

market portfolio. Then, the above approach is illustrated empirically for four agricultural

futures contracts (western barle¡ canola, flaxseed, and feed wheat) traded at the Winnipeg

Commodity Exchange.

The log relative ¡eturns for these contracts were divided into six or five groups,

based on the time to maturity of the futures contract. systematic risk was first estimated

over the period Januray 1991 to December 2000 for the futures contracts in each of the four

groups using ordinary least squares regression for the model (5.ó).

5.3.1 Data

Monthly prices for four major traded commodities in the Winnipeg Commodity

Exchange (wcÐ) were obtained. The study period is from January l9g1 to December

2000. Table (5.2) summarizes the most important components of the financial data. The

risk premium on the portfolio of all assets is estimated by subtracting the risk-free return,

proxied by the one-month r-Bill rate, from the rate of return on the market portfolio.s

@use,normally,itisôpploPt¡atetolookattheporportionofthe
commodities of the total weâlth, which is believed to be 10% or less i¡ the Ame¡ican market. L this paper,
we ofe¡ 10% to the TSE 300 index.

TBoth the T-bill ¡ate and TSE 300 Index price were obtained from the Canadian FinaDcial Markets
Research Center datebase (CFRC).

8 
"T_Bill ruttt^ ,.presents the ¡eturn on s 91 dåy T-Bill purchsed at the €nd of læü monrh ahd sold aÈ the end of thiE

month. If r(t) is the vield (in Percent) st the end of month t, then the p¡ic€ ra€r month, p(t-r) of a T-bilr with 9t days io
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Table 5.2: Means, standard deviations of monthly rates of return and the Sharpe perfor-
mance and 1Ìeynor measures for the four contracts. Sample period Jan. 1gg1 to Dec. 2000.
(Ten percent n'eight rvas given to non-commodities in the market portfolio).

Commodity Meân
(o/o\

SD"
(o/"\

s¡"
(o/"\

li
(o/"\

Westem Barley:
May

AuguslJuly
November/October

November/Dscember
Fehnrarv/Merch

0.315
0.359
0.465
0.454
0.356

4.608
5.738
5.506
5.450
5.O97

-3.140
-t.755
0.096
-0.105
-2.035

-0.532
-0.336
0.032
-0.023
-0.487

Cânolâ:
JuneÀ4ay
JundJuly

September
November

January

0.i09
0.138
0.0357
0.045
0.066
t) 069

5.745
6.032
4.3E4
4.487
5.101
5.04E

-6.104
-5.31E

-9.672
-9.242
-7.724
-7.742

-0.948
-0.788
- l.l0l
-r.338
-0.980
-2.641

Flaxseed:
May
July

October/S epternber
October/Nov€mber
December/January

March

0.135
0.132

-0.05160
0.064
0.t23
0.127

5.450
5.868
4.521
4.784
4.7',78
4.993

-s.958
-s.585

-11.309
-8.267
-7.047
-6.663

-t.328
1.707
-4.824

-1t.66'1
3.432
-2.200

May
July

October
December

March

0.465
0.415
0.346
0.459
o.422

6.091
5.369
5.994
5.405
5.264

0.087
-0.825
-1.890
-0.03 t
-0.718

0.013
-0.139
-0.750
-0.006
-0.125

(,5D denotes the stândard deviation of monthly returns. ,g¡ denotes the sharpe performance measure

- which is equal to ff,o, t denotes thê stabdard deviation of cont¡act retrun, and r¡ -r¡: return of
bearing risk which is e{ual to the averège contract return minus the average ¡isk-free rate. ! denoter the

Tle¡mor measure which is equâl to 1#.)

Sharpe and Tleynor measures have been presented in table (ó.2). More broadl¡

the results reveal a visible relationship between maturity and mean and standard devia-

tion of contract returns. standard deviation for flaxseed and feed wheat declines with the
måturitv is P(¿ - 1) = 

Ìroo+ä.fFrJand 
the p¡ice today of that sâme bill with todåy's yierd and only 6t days ro maturiry

l"P(¿) = 
l,õ+.¡ä.æ]. 

The return' R(t) is À(t) Excerpr rrom cånadian Finåncial Mârkets Research

Center (CFMRC) Us€¡'s Msnual p.lt
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contract maturity, which is consistent with the assumption of samuelson [133] concerning

the variation of spot and forward prices. Also, it is apparent that there is a noticeable

relationship between high volatility and high return. Thus, investoÉ perceive a favorable

risk-¡eturn trade-off. over the sample period, feed wheat offered the highest mean return,

and ca¡ola offered the lov¡est. However, on average, all futures contra¡ts have approximately

an equal volatility. Negative sharp performance measure and rþeynor measure indicate that

all futures have the lowest return-to-volatility ratio except barley (Nov./oct. contract) and

feed wheat (May contract). Based on that, we cân say that these risks have not been well

compensated by the market.

5.3.2 Regression methods and results

The results ofthe estimation method using classical regression and proposed fuzzy

regression are reported in tables (5.3), (5.4) and (5.5). Because some of the delivery months

are replaced or canceled, we have created two series by combining each canceled month with

the closest replaced month to have constant series overtime. For example, the June canola

contract has been replaced by two series, May and July, after 1gg6. so, we have created.

two series, June data until 1996, then we have continued the data with July data, and we

have performed the same process to construct the June/May contract.

A, Classicol regression tesulta: Fi,rst phøse

systematic risk is estimated for Jan. 1gg1 to Dec. 2000 for the futures contracts

in each of the six or five groups using ordinary least squares regression. In table (5.3), we

report the OLS esiimates for regression model (5.5).
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Tabie 5.3: Classical regression parameters for western barley, canola, flaxseed, feed wheat.
Sample period Jan. 1991 to Dec. 2000. (Ten percent weight was given to non-commodities
in the market portfolio.)

M"v
Áusìrs/Jüly

Novcdbc/Oclobcr
NoY.Eb.r/D6cdbcr

Fcbrus¡yÂ{úch

0.00375
0.00424
0.00501
0.00509
0 0tÌ¡02

).00416
0.0052
0.0050
0.0019
0 00¡6

0.2122'
o.zg*
0.165
o.253
0.213

o 740¿

0-136'17
0.17t0
0,1654
0.1628
0.¡525

1.9905
1.75t
1.00

1.558
1.101

0.0325
0.0253
0.0084
0.020
0.0164

t.6tll
1.5J8¡
2.0t7.
2.t34'
1.721'

0.2414
0.3819
0-3577
0.3463
0.3041

Judjuly
0.00t89
0.0022

0.00119
0.00112
0.0015

0.00101

0.005t
0.0051
0.003E
0.0043
0.0045
0.0016

0.3702.
0Á0X
0.3E5'
0.3106'
0.402'
0.118

0.t?00
0.1?81
0.t27

0.1323
0.1194
0.1517

2.178
2.285
3-024
2.119
2.69t
0.977

0.03t7
0.0424
0.0719
0.014

0.0578
0.0080

2.014'
1.974'
2.092'
2.1J5'
t.92a'
2.1o2.

0.3776
0.4r46
0.2123
0.22E9
o.29t7
0 3008

Måv
Jult

Oclober/S!pt.mbr¡
O.lob.r/Novcdb¿r
D4nb.røúu¿¡y

Mæù

0.00188
0.00090
-0.0002
0.0007t
0.00102
0.00160

0.0049
0.0053
0.0041
0.0043
0.0043
0.0045

0.2415
-0.t92
0.t069
0.0339
-0.098t
0. t 512

0.t629
o.1162
0.t361
0.1¡143

0.1{39
0_ll0

1.501
-1.091
0.?Et
0.235
-0.542
I 008 0.0085

0 0078

0.0tE?
0.0t0

0.0052
0.0005

1.98¿'
t.880'
2.03f
1.9{9'
1.970'
2.u3'

0.3168
0.4057
0.2420
0.2722
0.2706
0.2911

Mav
July

Ocrob.r
Dcccbb.r

March

0.00553
0.00¿84
0.003?9
0.00525
0.00487

0.005{
0.0048
0.0054
0.0048
0.004?

0.404f
0.1t9'
0. t 51I
o.3ogt
o.¡o¡b

0.2970

0.180
0.1593
0.1E03
0.t606
0.t564

2.245
2.006
0.63?
1.919
1.912

0.0{l
0.0330
0.0059
0.0303
0.0310

0.0282

2.0t0'
t.68or
1.939'
t.74f
1.673'

0.4234
0.33tE
0.1250
0.3372
0.3r95

(S(ar)and S(Fr) denotê åtåndård errors of the etimated coêmciënts. a: denote! ststisticål åisniffcanc¡ åt the t% tev€t.
b: dènot€ 6tatisticâl sisniffGnc€ at thê 5% level. c: denote statisticål sirniñcånce ar rhe 2.5% tevel.

e ånd f denote thåt Durbin-Wat€on (DW) statistic€ do not reject the hypothesis of random ¡eliduals of th€ re$æsions ar
the 0,05 and 0.01 level¡ ¡erpectively. s: denotæ thar thê DW telt is inconclusive at the 0.0r lev€t.)

The estimated parameters and the corresponding standard errors are reported

in table (5.3). In general, the relationship between maturity and estimated beta (esp) is

negative, which means a lower maturity is associated with lower systematic risk. secondly,

the study reveals that a majority of betas are positive. The average betas for western

barley, canola, flaxseed and feed wheat arc 0.2404,0.JJ71,0.0410 and 0.2g20 respectively.

Thirdly, a sufficient number of betas (46% of the estimates) are statistically significant at
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least at the ã% level. In addition, it is noted that all signiflcant betas are positive. So, all

threecommodity futures (barle¡ canola, and wheat) have a positive systemåtic risk. Thus,

investors will refer to them as risky financial assets, and they will require a risk premium

to compensate for the level of risk they are bearing.

Pointing out the magnitude of ihe parameter a, the table (5.3) shows that all

cy's are statistically equal to zero. The insignificance of the estimated a (esa) serves as

evidence of the non-existence of excess return. This result is consistent with the frndings of

the previous studies (e.g. [35], [9], [145], [39], and [23]).

The findings of the classical regression, contrary to several previous studies in agr!

cultural and livestock commodity futures, support the existence of a significant systematic

risk with an overall average of 0.2288 for the four commodity futures under investigation.

The coefñcient of determination (R-square), which provides a measure of goodness

ût of the estimated regression equation to the data, is very small (overall average is 0.0250)

as previously observed in many studies (e.g. [35], [19], [9], [99], [29]). That simply means

that the least square line does not provide a better fit to the data, and the observations

âre not more closely grouped about the least square line. Note also, that the degree of

systematic risk is not constant across contracts for any of the commodity futures shorvn

in table (5.3) and iable(5.4). In the case of canola, the highest estimate is 0.407 for the

June/July contract and the lowest is 0.148 for the March contract.



Table 5.4: Systematic risk (beta) for barley,
v/eighting schemes for non-commodities in the
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canola, flaxseed, feed wheat using different
market portfolio, Jan. 1991 to Dec. 2000.

Commoditv Weight given to TSE 300 in the Ma¡ket Portfolio

Westem Barley:
May

August/July
Novembe¡/October

November/December
FebruarvÂvfarch

0.00 0.10 0.30 0.40 0.50

0.2ßc
0.314
0.157
0.240
0.229

0.2724
o.zggh
0.165
0.253
0.2t3

0.2s6
0.265
0.166
0.256
0.183

0.226
0.212
0.158
0.246
0.t39

0. t62
0.l4E
0.141
0.223
0.087

0.134
0.082
0.120
0.191
0.03s

June./May
JundJuly

September
November

January

0.374'
0.41'1c

0.380"
0.306"
0.382'
0.153

0.370"
0.40f
0.385'
0.310"
0.402'
0.148

0.346b
o 372b
0.371'
0.300b
0.404c
0.134

0.300
0.314
0.336c
o.272
0.385"
nltl

0.239
0.238
o.2E3b
0.229
o 346b
0.083

0.171
0.157
0.220
0.179
0.293
0.052

! laxseed:
May
July

October/September
OctoberÀIovembe¡
December/January

Marc-h

0.2446
-0.t62
0.106

0.0601
-0.071I
0.1s8

0.2445
-0.t92
0.106

0.0339
-0.098

0.151

0.231
-0.220
0.101

0.0003
-0.t25
0.134

0.204
-0.238
0.090
.0.037
.0.150

0.108

0.t67
-0.245
0.0738
-0.073
-0.167

0.076

o.t24
-0.238
0.055
-0.102
-0.174
o n¿?

May
July

October
De¡¿mber

Ma¡ch

o 357b
0.307b
0.149
o.2g3b
o.2E4b

0.404c
0.3190

0.151
0.308b
o.3o3b

0.440'
0.317
0.145
0.310
0.310

0.457
0.29E
0.131
0.295
o.302

0.4s0c
0.263
0.1t0
0.265
0.277

0.421c
0.2t7
0.085
0.224
0.24t

(a deDote,s stat¡-stical sig¡¡iÂcance at the 1% level. b denotes stst¡stical sigDiffcance at the 5% level. c denotes
statisticål €igniffcsnce at the 2.5% level.)

To validate whether the weight given to commodities in the market portfolio has an

impact on the estimated parameters, different weighting schemes have been used.. As Marcus

[i02] pointed out, as the weight given to commodities in the market portfolio increases, the

covariance between return and market return will increase and the estimate of beta rvill

increase. Table (5.4) supports that conjecture for the sample period. It shows that beta

decreases as the weight given to commodities decreases, which is consistent with Marcus and
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EV arguments. Note here that the Ame¡ican Dow-Jones cash commodity index (DJCCI)

has been used in the absence of a canadian commod.ity index. The resurts show that

the canadian commodity market (e.g. wcE) is affected significantly by the American

commodity market.

canola contracts continue to have statisticalry significant betas although com-

modities are weighted 40% in the market portfolio. This implies that commodity futures

contracts bear a systematic risk that depends to some extent on the proxy index employed.

Most notably, based on the table (5,4), all futures contracts except flaxseed were riskier.

Results do not show any signiûcance for the futures on flaxseed, which means that the risk

premium does not exist statistically.

B, F\tzzy regression results: Second phaae

In table (5.5), we report the estimates for the r:nzy regression moder (5.5) using the phase

2 illustrated in the previous section. Applying the model 5.10, the estimates for our entire

sample, covering Jan. 1991 to Dec. 2000 (l0-year period) are shown in table (5.5).
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Table 5.5: F\:zzy regression parameters for western barley, canola, flaxseed, feed wheat.
sample period: Jan. 1991-Dec. 2000. (Ten percent weight wes given to tron-cornmodities
in the market porifolio.)

The data used in the fuzzy regression, with a threshold value for identifying the

model, were chosen to be i¿ : 0. Following the two-step procedure to estimate the Êuzzy

parameters (a' B), based on the resurt provided in table 5, rve find that a majority of beta

estimates have zero spreads' Hence, the parameters have crisp varues. Also, the result

indicates the impact of price limits on estimating systematic risk of commodity futures.

The result shows, es in the case of canora and flaxseed, that a higher rimit corresponds to a

higher spread. Additionally, for the four commodity futures, the estimates parameters c,s

loDrmodities Parameters
D€livery Mo¡th! (cor, es(l ,cnn) (crI" esÊ ,crR) o.F.

Yestem Barley Msv (0. ls7 r,0.0ß7s,0. 1403)

(0.27 | 4,0.00 424,O.23 s'
(0. t425,0.00s01,0.2324)
(0. t425,0.00509,0.23 l5)
10.2750-0.00402.0. r 308)

(o,0.27n,0)
(0,0.299,0)

(0.5 I 52,0. 165,0)
(0.6030,0.2s3,0)

lo n 2t3 0\

35.688

60.768
46.41

46.549
!h

lanola (u.JJUZ,U.U{Jl ðy,0. lE I 3)
(0.3308,0.0022,0. I 806)
(0.10s1,0.00tr9,0. 1396)
(0.095,0.001 12,0.10E r)
(0. I 302,0.00 t 5,0. 129ó)

10.1497.0.00t0r-0. l3s3ì

(u,u.J?u¿¡u)

(0,0.407,0)
(0,0.38s,0)

(0,0.3 r0t,0)
(0,0.402,1.0616)

(0.0.148.0)

61.38

61.368

29.364
24.372
34.t't4
34.2

Juner'Ju

úch

(u.u,JJ7
rlaxseed Mav (u. r4ó,0.0uEE,0.t 159)

(0.2594,0.0009,0.08 l4)
(0. l24l ,-0.0002,0.083 2)
(0. 1 3 73,0.0007r,0. 1 146)
(0. l 323,0.00 t 02p. I E27)
(0.1089-0.0016.0 0?8rì

(u,o.z445,2. l2ó5.)

(0,-0.r92,1.745s)
(0.8547,0.1069, t.2s9)

(0,0.0339p.4t74)
(0,-0.098r,0)

ll ¡5611n l<lt I ?ll1\

37.127

45.733
30.735

31.384
37.8

1t.912

Ju

(0.42U5.0.04t0.1.2t6
ìeed Wheat May (u. ¡4l,u.tl,5rJru,JroJ

(0. I684,0.004E4,0. I 798)
(0.2 r 24,0.00379,0. 1? t ?)
(0.l86l,0.00525,0.t679)
l0.t74l 0.00¿8? 0 r ?¿¿\

(u,u.4u4r,0)

(0. r 742,0.319,0)
(0,0.1s r l,0)
(0,0.30r,0)

l0-0.303.0.|

60.804

42.263
46.092
44.88
4l R7

Ju

M8rch
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(esa) are very small with small spreads. Table ó demonstrates noticeable patterns between

contract maturity and spreads for the four commodities except barley.

The estimated beta with the corresponding objective function -total spreads- a.re

reported in table (5.5). Three observations on the estimated betas merit elabo¡ation.

Firstl¡ the fuzzy systematic risk estimates are all positive with an overall average equal to

(0.0348, 0.2288,0), which means that the htzzy beta is equal to 0.194 with a membership

function equal to 0, and it is equal to 0.2288 with a membership equal to 1. so, it is obvious

that bet¿ is always difierent from zero.

The average betas for canola, feed wheat, barley and flaxseed are (0,0.14g,0);

(0.0348, 0.2288,0); (0.2236,0.2a04,0); (1.66333, 0.1512, 1.7488) respecrively. Secondt¡ rhe

majority of the estimates arc fitzzîly signiñcant (fuzzily accepiable). For example, flaxseed

estimates, which have previously been reported to be statistically insignificant, appear to

be acceptable under the trvo-phase fuzzy regression method. some coefficients have a zero

left spread, rvhich means that the estimated fuzzy parameter cannot be below the estimated

beia (esB). Thirdl¡ the result provides a clear distribution of the sprea.ds in the presence of

price limits. Thus, the proposed method ofiers decision makers or investors the magnitude

of the systematic risk in the existence of price limits.

subsequentl¡ with ihe herp of the two-phase fuzzy approach in the presence of

price limits, we have been successful in presenting the movement interval of the systematic

risk associated with the membership function, which measures the degree of truth or the

degree of precision.
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5.4 Conclusion

As Black [12] argued, a major benefit of futures markets is that participants can

make production, storage, and process decisions by examining the pâtterns of futures prices

a¡d ihe risk associated with them. The systematic risk and return in v¡estern barley canola,

flaxseed, and feed wheat have been measured after extending the arguments of cRS [1g] and

Marcus [102]. cRS pointed out that a more appropriate ,,efficient portfolio,, return variable

in equation (5,5) would be an index composed of the s&p index of b00 common stocks and

the Dow-Jones commodity futures index. They advised that alternative indexes could be

proposed. Marcus's suggestion is to construct a reasonable weight for the commodity index

in the market index. consequentl¡ we have constructed a portfolio index composed of 0.g0

of DJCCI and 0.10 of TSE 300.

The purpose of the chapter is to estimate the systematic risk of canadian commod-

ity futures inve.stment. The capital asset pricing model has been the essential component of

our analysis. Addiiionally, CAPM has been structured to be estimated from two comple-

mentary phases. Firstly with the use of classical regression analysis, we have estimated the

parameters of the linear model. The result of that regression will serve as the first step of the

proposed two-step fuzzy regression method. secondly, knowing that most futures contrâ¡ts

have a daily price limit specifred by the exchange, and the movement of the price is said

to have a limit up and limit down, we have constructed, fiizzy non_symmetrical data. Then,

with the help of the second step, the spreads of the beta estimates have been provided.

Explanation of risk and return for cana.dian commodity futures is provided by the

use of CAPM' using a market portforio based on a weighting of 0.9 for DJCCI and 0.1 for
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the TSE 300 index, canola, barley, and feed wheat can be considered as low-risk assets, as

shown by the results. Thus, a significant portion of the risk associated with holding canola,

wheat, and barley cannot be diversified away.

Based on the classical regression, results show that three out of four commodity

futures are riskier. Therefore, the usual betief that traders of commodity futures bear

above-average risk is supported by the canadian data. Additionally a risk premium has

been identified for each commodity contract except flaxseed.

The findings ofthis study, contrary to several previous studies for agricultural and

livestock commodity futures, support the existence of a significant systematic risk with an

overall average of 0.2288 for the four commodity futures under investigation.

The result of table (5.5) is similar to the result of iable (5.3). However, the

pârameters with their estimated spreads, which were given by lhe ruzzy regression method,

offered a persuasive ¡esult with respect to the estimated parameters,

one direction for future research is the examination of the relationship between

systematic risk and the sizæ ofthe firm [30] using a fuzzy regression approach. F\rrther work

is needed to examine the fuzzy hypotheses testing by establishing a fuzzy acceptance region

(optimal, according to the approach used) [at]. More broadl¡ we feel that the¡e are more

opportunities ror fitzzy regression method applications in financial modeling. This method

provides an efective way to cope with the uncertainties that are inherent in the financial

models.
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Chapter 6

hnzy Hypothesis and Testing for

Significance

6.1 Fuzzy Hypothesis Background

F\zzy hypothesis has been introduced often in the literature; for example t201, t211,

and [128]. Yuan [168] discussed parameter estimation of normal fuzzy parameters in cases

when one of the parâmeters is unknown and when both are unknown. caslas [20] presented.

an extension of the problem of testing parâmeter hypoiheses when the information and.

the hypoiheses ate fitzzy, By extending the Bayes optimality criterion, caslas was able

to perform that extension. watanabe and Imaizumi [165] proposed a testing method of a

fuzzy hypothesis for random data. specifically, they examined the case when two population

means âre nenrly equal or not. Their method, called the lvzy statistical test, generates
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a fuzzy conclusion ftom the test. Romer and Kandel [128] investigated the impacts of

imprecise data on the statistical task of hypothesis testing. They also considered the issue

of defuzzification âs a way of getting numerical values for the test ¡esult. In fact, some

researchers in the area are not in favor of this procedure of defuzzifuing when the decision

maker may be able to understand and make a better judgment based on the result in its

original form.

Let X1, X2,..., X. be a fizzy sample for a population distribution pB, where that

distribution depends on a parameter p. In the previous chapter the estimation was investi-

gated. But, the actual statistical testing of the validity about the parameter p is presented

in the next section to check whether the fuzzy parameter is significant or not. The question

here is when to accept or reject a hypothesis about the parameter B in a ruzzy environment

(fvzy data).In test theory, significance testing (o-test) is equivalent to making a decision

about stochastic quantity { that belongs to a class of distribution r{¡. so, we suggest that

one way to develop such tests is given by the extension principle (e.g. Kruse and Meyer

[84], Watanabe and Imaizumi [165] and Viertl [160]).

Definition 18 (Vieril [160]). ,4 crisp statistic ¿(€i,...,€") às ectend,ed to a fuzzy statistic

T(h,...,x") by p¡(X1,X2,...,X")(P): Sup{rntn(p¡¡,((),...,t"x_G)/ t(h,...,Xn) = p}.

Thus, t'uzzy tests are obtained. Here, a crisp test Jor a fuzzy quantity x uitt be d,eriaed,.

For point estimator B, :ø,(h, ..,, X^) For the unknown parameter B, we are inclined, to

reject the hgpothesis Hs: B : B¡ agairæt H": þ * B. If the d,istance h@n,Bo) betueen the

estimaturþn and, ps is too large. The hypothesis Hs is rejected, rÍ h(þ^, þo) > tr_a, uhere

tço is the (1- a) quantile of the d,istribution o! h(þ., p) and, a is the probability oJ enor,
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In our case, where LR-fuzzy par¿ìmeter is considered, we want to test the following

hypothesis:

Ho: þ -- lo :0 against Ho:þ#þo

H6 is rejected if !o is larger than the (1-o) quantile of the limit distribution Ç. usually the

distribution of theþn is unknown, but a limit distribution is known when z goes to infinity

or very large þee, Krätschmer limit theorem for fizzy random variables [82]]. Therefore, an

asymptotical test be may be obtained. In this chapter, following Nather [10g], we use the

t-distribution.

Theorem L9 l$al. Let n € N, ô e (0, 1), ¿zd N€ N. Let {a¡..., aN} c [0, 1), ¡f €

{1,...,¡¿} and, p.s € U(R). Iet ["",+-) and (-æ,tJ,) be tuo one-sid,ed, 100*(l- 6)To and,

100 * (1 - 62)% (usual) confd,ence inte¡.uals for g and,fs uith 61 + 62: 6K and, Tn 1Un

Def,ne for (pt..., p") € [¡'(R)]" anrl a e l},t) A,lpt, ..., p..l and, 8,1pt,..., p^1.

Def,ne for (pr ..., t"") € [r(R)]" .

forie{1,...,N}, and

,,rr, ,r",a 

{ ,

t i.Í Dó¡0",,, . ,t') > K

otheru¡ise
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Then þ : [.F'(R)]" ..- {0, 1} ás a test lor

Hs: "The conuex hull of the fuzzy perception of g and,la is equal to p¡', against

H1 : "It i,s not e4ual to ¡-r,g" on the significnnce leuel 6.

Theorem 20 [84]

.Let n € N, ó € (0, 1), ¿r¿d Ne N. Let {a¡...,a¡¡) c [0, 1),.¡l e {I,...,N}, antt

po € u(rR).

(Ð IJ (æ,U.) ís a (usuat) one-sided 100*(1-6#)T0 confd,ence inter.ual Jor

U and,ly, let B.[¡r1,...,p*] be d,efined, as i,n [81] (theorem 11.10, p.p\|) lor (pr, ., ¡1,^) e

[-F(R)]" ond a e [0, 1).

, ( t ¿f sueú"')o,> Bo,,lpt,...,pnl
DefineJor(p1,...,p") e [F(R)]'. ór0"r,...,p,) t 

I
[ 0 otheruise

for i e {I, .., N} and,
(

olt ¿ÍÐó;0'¡..,p)>K
Q\Pr ...,1t") : \

I

[ 0 otheruise

Then þ : [r(R)]" -' {0,1} ß a test for

Hs: "The conue¡ hull of the fuzzy petc.eption oJ y and,lo is greater or equal to ¡ts"

agai,nst

H1 : "It is less than p,o" on the significance leuel 6.

(ä) IÍ [T",+æ) is a (usuat) one-sided 100*(j-6fv)To confid,ence intet-ual Jor

y andf, Iet A.[p1,...,p"] be d.efined, as,intheorern 11.10 for (h,...,t",) e [.F'(R)]":(
, o I 1 ¿Í irf(pò", < Ao,lt"t,...,t"nl

Q¿\ltr, ..., lt^) : \
I

|. 0 Otheruise
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(

for áe {r, ..., N} , and, ó(t"t,..., tù t I 
t n' DÓ;@v "'' t") 2 K

t 0 Otherwise

Then $: [.F'(R)]" --+ {0, 1} ,s a test for

H¡: "The cnnaer hull oJ the fuzzy perception of U and,lo is less or equal to ps"

against

H1 : "It ís greater than p¡" on the sàgnificance leael 6.

6.2 Potential Testing for Significance: Testing a Hypothesis

about a Coefficient

6,2.L Stating the problem

The statistical problem explored most thoroughly is that of hypothesis testing. As

the term suggests, one decides whether or not the hypothesis is correct. The choice lies

between tv¡o decisions: accepting or rejecting the hypothesis. A decision procedure for such

a problem is called a test of the hypothesis.

Siatistically (also see, [90]) the choice of a level of significance o will usually be

somervhat arbitrary, as in most situations, there is no precise limit to the probability of

an error of the first kind that can be tolerated. It has become customary to choose for a

standard value such as .0005, .01, or .05. Such standardization is convenient, as it reduces

certain tables needed for testing. In fact, when choosing a level of signiÊcance, one should

also weigh the porver of the test against various alternatives. If the power is low, one may

use much higher values for a than the customary values. The use of a in relation to the

porver of a test is suggested by Lehman [89]. A low signiflcance level results in the hypoihesis
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being rejected only for a set of values of the observations whose total probability under the

hypothesis is small, so that such values would be most unlikely to occur if H were true.

To test for a signiûcant regression relationship, we must conduct a hypothesis test

to determine whether the value of Blis zerc. In classical regression, two tests are commonly

used: the t-test and F-test. Both require an estimate of a2, the variance of e in the regression

model. To test a hypothesis is to perform an experiment considering this hypothesis; based

on the outcome of that experiment we decide whether the hypothesis can be correct. The

essential ingredients to establish such fuzzy significance testing are: fttzzy spare which is

identified by the existence of number of hszzy parameters (result of the experiment); action

space which means whether to accept the null hypothesis (e.g. B : Éo : 0) or to reject the

null of hypothesis and accept the alternative hypothesis (0 # þò.

6.2,2 Interval estimation

Regardless of the properties of an estimator, the estimate obtained will vary from

sample to sample, and there is some probability that it will be quite erroneous. A point

estimate will not provide any information on the likely range of error. The logic behind an

interval estimate is that we use the sample data. to construct an interval [Lower X, Upper

Xl, such that we can expect this interval to contain the true parâmetet in some specified

proportions of samples, or equivalently, with some desired level of confidence. Clearl¡ the

rvider the interval, the more confident we can be that it will, in any given sample, contain

the parameter being estimated.
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6.2.3 Process of rejecting and accepting

The formal "usual" procedure of hypothesis testing involves a statement of the

hypothesis, usually in terms of a "null" or maintained hypothesis and an "alternative",

conventionally denoted f{¡ and }f1, respectively. The procedure itself is a rule, stated in

terms of the data, that dictates whether the null hypothesis should be rejected or not.

For example, the hypothesis might state a parameter is equal to a specified value.

But, the decision rule might stâte that the hypothesis should be rejected if a sample estimate

of that parameter is too far from that value (where "far" remains to de defined). The

classical, or Neyman-Pearson, methodology involves partitioning the sample space into two

regions. If the observed data (i.e., the test statistic) fall in the rejection region (sometimes

called the critical region), then the null hypothesis is rejected; if the observed data falls in

the acceptance region, then it is not rejected.

6.2.4 Assumptions for testing significance

Assumptions of the classical linear regression model as pointed out by Greene [49]

are:

.A'1. Linear functional forms the relationship A : PX + €

}.2. IdentiÊabiliiy of the model parameters X is an r¿ x K matrix with rank I(

(identification condition) (the coìumns of X are linearly independent, and there are at least

K observations).
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Ä'3. Expected value of the disturbance given observed information.

E{e1lxl

nlelxl: =0

Ele"lXl

1'4.

Varle¡lXl : o2

A'5. Variances and covariances of the disturbances given observed information.

Elee' lXl : o2¡

A'6. Nature of the sample of data on the independent variables. X is a knorvn

7¿ x ¡k of constants (nonstochastic of X¿ (regressors)). So, assumptions A3 and A4 can be

made unconditional.

i.7. Probability distribution of the stochastic part of the model.

Ä.8. So, these assumptions describe the form of the model and reiationships

among its parts and imply appropriate estimation and inference procedures. It is convenient

to assume that the disturbances are normally distributed.

e/X - N(0,o2)

b is linear function of the disturbance vector ¿. If we assume that e has a multitãriate

normal distribution, we may use the results.l

rAny linear fu¡ctiob of a vector ofjoiut lormally dist¡ibuted variables is also normally d.istributed. The



159

6.3 Estimating b and' o2

To test a hypothesis about B or to form confrdence intervals, we will require an

estimate of the covariance matrix Varlbl: 02 (X' x)-t ' The standard error ofthe regression

lss,s'=Ë?'

Est. Var(b) : s2(x' X)-tistandard e¡ror of the estimator un i' ['z1x'x¡;*t] 
t/'

(k¿h diagonal element of (X' X)-t)'

Assuming normality: Zr : ffi has a standard normal distribution' So, it is

obvious to show that Y : {r' t¡-'x' (å) i. independent ot t";lr)". If e is normally

disiributed, then the least square coefficient estimator b is siatistically independent of the

residual vector e and therefore, all the functions of e, including s2, ratio:

. (ör - þòlJFsÑ ba- þt
Lk - ,/pSFt

1llø-ot#lt@-t")

have a t-distribution with (n-,b) degrees.of freedom. A common test is whether a parameter

B¡ is significantly different ftom zero. The appropriate test stâtistic:

sum of squared residuals (SSE), is a measure of the variability of the actual observations

about the estimated regression line. The mean square error (MSE) provides the estimate

mean vector and co!ãiiance mât * of AX, where X is ¡ormally distributed, follow the general patte¡l¡ given

earlier. Thus, if X- N(p, D), then AX*b- ¡t f¡p + t,1'D,q') .

If A does not have a fu.ll radk, then ,4 ! A' is singular alld the de$ity does not exist. Nonetheless, the

individual element of AX*b witl still be normally distributed, and the joint distribution of the Â¡11 vecto¡ is

still ¿ multila¡iate normal.

bu
+ - ___la,-,9ô*'
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of ø2; it is SSE divided by its degrees of fteedom'

î¿:bo*bP

SSE can be w¡itten as:

ssø : t(si - îr)" -- D(s' - bs - b¡r¿)2

ii

statisticians have shown that ssE has (n - 2) degrees of fteedom because two paIâmeters

(p6 and B1) must be estimated to compute SSE. Thus, the mean square is computed by

dividing SSE by (n - 2)' MSE provides an unbiased estimator of o2'

s2=MsE:l-

In classical stâtistics, the least squeres estimators are sample statistics that have their own

sampling distributions (normal form).

o
afL::

'/D¡þ; -z)2

Because rve do not know the values of ø, we develop an estimate of ø6r, denoted by 56r,

o.-s"o'- vEþi:æ'

Rejection rule is as follows using the t-test: we reject the null hypothesis if one of the
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t=*>t,n o, {.-r^,r.ùör ' ùór

On the other hand, using the F-test:

following inequalities has been satisÊed

Thus,

,'"oo=------!{4--- ssÀ
regressors degrees oJ Jreel,om ft of ind.epend,ent uariables

. MSR- - MSE.

F > ¡L =) reject Hs

So,

Analogicall¡ \,ve can estimate using the sum squared in a fuzzy environment to get two

statistic tests for each estimated coefficients, (CouC.a) and (Cs,C1p).

ln a finzy setting, we suggest

fssE5¡: r/-' U n-4

and because in our model we did not assume that inputs or independent variables are not

fuzzy, we will use the following equation with a slight change, taking into consideration the

sum squared method.

o. - sÍ
"tb- \t5J".=ãP



762

Assuming that t-distribuiion still holds in this setiing, we get the bft fitzzy test statistic as

follows:

r- -î""u _ 
S Í,,

and the right fuzzy test statistic

î,tn: #.Þf¡

DefiningthatÎ¿ = (60,,6t") : @o-C67,î1-Ct¿) a.ndÎa: @0",ît") : @.o+Cor,ô+g,").

Rejection rule, using the t-distribution, limiting the testing to the second coeffi.cient b1:

. bt bt-Cu,ut - ãl ---ãl-- 2 ualz,
"lb

. bn bt*Cta
LH - ã- ------ã-- 2 rdl2.ò1" ùf"

For the coefficient b¡:

which is equivalent to:

. bt bo-CottL: A-:----e^->ía/2,uJ6 uîh

. îR îolCoa - .LR : 
^ 

: - > Lalzl
ò.f¿ D-f¿

and
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It appearc ftom the previous inequalities (6.1) that incorporating the fuzziness

in the model increases the test statistic value and may become insignificant. With the

use of a fuzzy random variable, the iesting process becomes more robust and powerful.

However, in the right side of the fuzzy parameter, it is noticeable that the test is becoming

more significant because v¡e are adding positive value ff which will increase the test

statistic. In other words, the fuzzy test generates a more significant relationship. Thus,

if the original estimate was not significant, the fuzziness improves the test stâtistic. In

general, the introduction of fuzziness in the model increasingly improves the significance of

the test for the right side of the fuzzy parameter and reduces the significance of the test for

the left side of the fuzzy parameter. Let us assume that we have an estimated parâmeter

(ð) which is statistically insignificant using the ordinary least squares method and t-test

statistic. Using the indicated approach by estimating the fitzzy parameter spreads of that

parameter, we will get the lower and upper limit of b. It is obvious that an increase of the

test statistic value will result in a movement toward significance in the right side of the

parameter. The left side test statistics value may remain insignificant even with the use of

the fuzziness. We can conclude that the fuzziness introduces partial signifrcance instead of

full insignificance. Using the example information above, an increase of the test statistic

will result in having a partial significance (partial acceptance of the hypothesis) of that

parameter, rather than the complete insignificance of it. Since the procedure illustrated

above is simple, testing for signíficance can be effortlessly applied to any practical situation

involving the luzzy regression.

Our contribution is to establish the impact of fuzzy data on parameter significance
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tests. The elaborated test procedure serves that purpose. The test result shows whether

the data suggests a rejection (belongs to the rejection space) or acceptance of hypothesis.

Romer and Kandel [128] suggested that a fizzy sample might support the rejection and

the acceptance of a hypothesis. They warned that the term ,,acceptance" should be used

with care, Indeed, in their paper, they introduced the mathematical background on how

to reject the hypothesis to a ce¡tain degree, with the use of indices. The acceptance and

rejection of indices have been specified by a fuzzy test function. The decision to accept or

reject is based on the maximum ofboth indices from a probability point view; and from the

possibilisiic (fuzzy) view it is based on the difierence to the maximum. However, Romer

and Kandel's methods lack practicality use in various situations, like the one under study.

of course, here we are specifically interested in testing the significance of the coemcient

that accompanies the fuzzy regression method. That may be a limitation, but further

development and extension a,re necessary, rvhich will be handled in future research.

6.4 Testing for Significance and Graphical Illustration

To test for a significant regression relationship, we must conduct a hypothesis

test to determine whether the r"¿lue of B, is zero. In classical regression, two tests are

commonly used. Both require an estimate of a2, the variance ofe in the regression model.

The following figures (6.1) and (6.2) illustrate the movement of the test statistic accounting

for the fuzziness in the testing for significance.
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6.5 Empirical Example

The results, which have been generated ftom the previous chapter (Chapter 5)

dealing with estimation of systematic risk in the futures commodity market under price

limit, have been used to test for the significance of that estimation. The method elabo-

rated on the previous section of this chapter shows the importance of incorporating testing

method. The implication of the proposed method to measure the significance of the com-

puted parameters has been the focus of this section. As mentioned in the preceding chapter,

the nature of sample data pertaining to futures commodity returns will be used here to test

the signiûcance of the result. In favor of a faster computation, LR type of fuzzy parameter

has been used in this chapter.

The table of lhe Êvzy regression parãmeters for western barley, canola, flaxseed,

a¡rd feed wheat shorvs the data objective function values that measu¡e the sum of deviation.

The values of sum squared erro¡s have been used to compute the test statistic in a nuzzy

setting as examined in the previous section. An important rule employed here is that when

both spreads (widths) of the parameter are equal to 0, we need to treat the estimated

parameter as crisp. Therefore, the use of the proposed method for signiÊcance testing is

not required. The following table (6.1) shows the result.
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Table 6.1: Results of testing for significance: Statistical versus fuzzy

U 0.31lJ2 u ¿.1591i 2.159121

0-4

a.zõb I 2.245772

lD. 2.9938( 2.99389 YA Yã
2:\2 (c Yâ

Jan. 0 1. I a45A¿9 Ya
MArcn 0 0.144O o o 9673't 4 N N

rhêãl u.4u41 U ¿.2254t 2.225A91
o1 0 1.985481 Pãrtiâl h

oct. t5l'l 0 J.ðJU9l 0.830913 N N

Dec. 1.9014€ t147 m Yb
Marcn 0 1 Yb Yb

Ya denotes 8tâti.sticsl or firzzy aigniffcance st the 1% level. Yb d€notes stati-stical o¡ fuzzy significance at the 5%
level Yc denotes ¡tatisticål or fuzzy significanc€ at the 2.5% level. Psrtial o. ând partial 6 mean partial signiñcance

at the 1% and 5% respectively. N: denotes statisticslly or fuzzily insigni6cant

FÞom ihe Table (6.1) ii appears that flaxseed commodity futures, which are proven

to be statistically insignificant, have shown partial significance. Also, the result shows that

those contracts that have zero spreads are statistically and fuzzily significant.Thus, it is

enough to rely on a statistical test, as long as the fuzzy parameter has a zero spread

(width), which is equivalent to a crisp value. Another observation worth mentioning is that

the March flaxseed contract, which was statistically insignificant, is fully fuzzily signiûcant

ai 1%. Thus, it is obvious that, as expected, the significance has been improved for some

future contrâcts by the use of price limits.



Chapter 7

Conclusion and contribution

In the present chapter, we discuss the conclusion and the contribution of the thesis.

we believe that this research will lead to a numbe¡ of computational and theoretical inves-

tigations. some directions for further research that uses the methodology and testability

strategy have been provided.

7.7 Summary and Conclusion

Lack of proven practical applications and empirical implications of the new un-

certâinty (fuzzy random uncertainty) during iis early stage of development was a favorite

criticism of its opponents. Therefore, the present research represents an attempt to present

a methodology and a potential testability process for three major aspects.

In chapter 3, we question one important assumption made in Markowitz ([103],

[105]), rvhich remains a fundamental "hidden" assumption in mean-variance theory litera-

ture today, that ¡andom uncertainty is the sole means of modeling uncertainty.



169

Although Markowitz [103] ignores the experts' judgments in the derivation of the

efficient ftontier, he discusses the v¿Iue of such a combination of statistical techniques and

the judgment of experts, to form reasonable probability beliefs about the portfolio selection

process. However, Markowitz does not propose a method to deal with that issue, and he

does not examine the efficient set of portfolios fo¡ the investor in the presence of fuzziness

or any subjective information.

On other hand, White [166] has suggested that measures of uncertainty are either

formally derived from specified data, or are imputed by observing choice in a given class

of problems. Following along the lines of Markowitz, the purpose of this research is to

provide some aspects of fuzzy random uncertâinty in asset pricing, which would include a

rederivation of the mean-y¿riance theory, follorved by the rederivation of the fuzzy CAPM

modeì.

In the present study, we re.examine mean-variance theory in the presence of fuzzi-

ness that is articulated by fiizzy returns (LR type). We rederive the Markowitz efficient set

and present the F\rzzy Capital Market Line (FCML) and the FCAPM. By illustrating these

ideas with an empirical example, a comparative study is obtained.

The boundary of each sample size turns out to not be a parabola. It is also

clearly observed that the arc which is between a minimum point and a maximum point

does not coincide with the original boundary. The minimum (maximum) point represents,

as discussed previously and supported by Szego's finding [147], what can be achieved by

investing the capital in the investment option with lowest (highest) return.

The portfolio width has been included as a third parameter, and the frontier has
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been plotted in three dimensional graphs. The relationship between risk, return, and width

(proxy for the subjective evaluation of the experts) has been represented by a surface. Also,

for 15, 30, and 50 asset sample sizes, similarly to the case of short sales, we still observe

that the larger the size of the sample the more the efficient frontier is shifted to the left;

the dominance of large size sample still holds.

It is discerned in the previous graphs that as the degree of fuzziness increases (flex-

ibility with respect to the portfolio mean), there is a slight decrease in the level of¡isk. Note

here that the graph does not sugge^st a strong negative relationship for various sample sizes.

Because the widths in our samples are correlated with the return, which is derived from

historical data, we could not see â strong visible (either positive or negative) relationship.

Thus, we suggest that a.s soon as the investor starts getting nerv subjective information

from experts, which is to some extent not primarily correlated rvith the historical data, we

will be able to spot â strong visible relationship between the width size and the risk level.

So, an investor who is very fledble and is acquiring additional subjective information to

support the historical data will be liklely to accept a higher risk.

While Philippatos and Wilson [119] argue that entropy is a better statistical mea-

sure of ¡isk than variance because entropy is a non-parametric measure, entropy did not

appear often in published works, As Philippatos and Wilson [119] suggested entropy as a

measure of portfolio risk, because it does not make assumptions concerning the probability

underlying the returns, we use the same analogy to establish the measure of risk using the

proposed fuzzy entropy method in the second study.

Note here that neither the Cozzolino and Zahner l27l approach nor the philippatos



t71

and Wilson [119] method suggest anything about the situation when there is imprecise

information to start fiom. Consequentl¡ we use the fuzzy theory in conjunction v¡ith the

entropy theory. This study did extend the method to provide a speciñc disiribution by

using the fuzzy entropy principle.

The utilization of variance a¡i a measure of uncertainty is ignored purposel¡ be-

cause for distributions that are non-symmetric or not normally distributed, a new measure

of uncertainty is essentia.l. In addition, in a fuzzy environment it is crucial to use a ner'r'

measure of uncertainty that will differ from the variance, while taking into account the

fuzziness edsting in the system. In this stud¡ we suggest the use of fuzzy entropy as a

measure of uncertainiy. Although entropy or expected information has been widely used in

many engineering and mathematical subjects, the author deems that the scope of applica-

tion in finance is limited. The empirical analysis using the Markowitz data has been given

to illustrate the use of the method in the construction of the mean-entropy efficient frontier

under a fuzzy environment.

This study focused on the presentation of a new approach with the emergence of

probability theory and studied its ¡¡arious other (non-probabilistic) manifestations and their

utility in risk modeling. .A.nyone who is familiar with the stock market will find that the

most chalienging decision is to differentiate between the good stock to buy and the bad

stock to sell. To a lesser extent, we considered decision problems (investment problems),

rvhere the goal is to choose optimal strâtegy; some alternatives between actions may be

determined. Tbe major aim of the study was to esiablish the mathematical theory of fuzzy

probabilities, based on the measure of entropy.



L72

. In the third study, to overcome the biased parameter estimates introduced by price

limits in futures markets, we treat the futures price subject to price limits as a fuzzy datum

and use a two-phase fuzzy approach to examine the input of price limits and estimate the

systematic risk.

Following the Brennan paradigm, we a.ssume that there is an external signal sug-

gesting that the equilibrium price is in the boundaries of the observed price and that the

equilibrium price is bounded by an upper bound (observed plus half the limit) and lower

bound (observed minus half the limit). It is assumed that the equilibrium price that would

have been observed in the absence of a price limit will be around the settlement price.

The study estimates the systematic risk of Canadian commodity futures invest-

ment. The capital asset pricing model (CAPM) has been structured to be estimated from

two complementary phases. Firstly, with the use of classical regression analysis, we have

estimated the parameters of the linear model. The result of that regression will serve as the

first step of the proposed two.step fuzzy regression method. Secondìy, knorving that most

futures contracts have a daily price limit specified by the exchange, and the movement of the

price is said to have a limit up and limit down, we have const¡ucted fuzzy non-symmetrical

data. Then, with the help of the second step, the spreads of the beta estimates have been

provided.

Based on classical regression, results show that three out of four commodity futures

are riskier. Therefore, the usual beliefthat traders of commodity futures bear above.average

risk is supported by the Canadian data.

After Phase 2 of the estimation procedure, the pârameters with their estimated
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spreads, which have been given by the fiszzy regression, offered persuasive evidence for the

acceptance of some parameters.

The last step wos to test if the original estimate was significant or not; we wanted

to see if fuzziness improved the test statistic. In general, the introduction of fuzziness in

the model increasingly improves the signiÊcance of the test for the right side of the fuzzy

parameter and decreases the significance of the test for the left side of the fuzzy pârameters.

Using an approach that estimates the fizzy parameter spreads, we get the lower

and upper limit of the coefñcient. We conclude that the fuzziness introduces partial signifl-

cance instead of full insignificance. Using the example above, an increase of the test statistic

will result in a partial significance (partial acceptance of the hypothesis) of that parameter

rather than the complete insignificance of it. since the procedure illustrated above is simple,

the testing for significance can be effortlessly applied to any practical situation involving

fuzzy regression.

7.2 Contribution and F\rrther Research

The mean-variance model gained widespread acceptance as a practicai instrument

for portfolio selection, and it is hoped that the mean-variance frontier will be computed with

subjective meâsures like fuzzy return âs part of the portfolio allocation process by many

investment advisory firms and pension plans sponsors. The contribution of this research is

the presentation of a methodology on how to derive the attainable efficient frontier in the

presence of fuzzy information in the data or when the rrzzy information has been imposed

in the modeling environment to reflect a subjectivè measure.
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In real-world problems, we are faced with imperfect information (data), and we

have to deal with uncertain, imprecise, and vague data. In modeling and analyzing problems

of this type, earlier works in finance tended to equâte all aspects of imperfect information

with uncertainty (of a random character). Thus, a multitude of probabilistic models were

proposed. This was also the case with the use of modeling in finance. The suggested method

v¡ill serve the interest of investors who select their portfolios using a Markowitz-based model

with the introduction of fuzziness or any other subjective techniques, like the judgment of

experts' An additional important investigâ,tion would be to look at the mean-variance, when

investors can borrow or lend any amount they want at divergent borrowing and lending rates

rvhile we maintain the assumption of fuzzy returns ([16], [154). In another, we wânt to see

what will happen once we relax the assumption of riskless rate as borrowing and lending

rates.

On the other hand, an inevitable consequence of using fuzzy probabilities is that

probabilistic reasoning may produce indeterminate conclusions (we may not be able to

determine which of two events is more probable), and decision analysis may produce non-

decision (we may not be able to choose the best of two actions). when there is not enough

information on which to base our conclusions and decisions, we cannot expect sharply

defined reasoning to reveal the most probable outcome. we believe that a substantial

amount of research should be done in this area.

For instance, one direction for future research is the problem of the two-state

variable model of the term structure in which approimate probabilities may be be used.

Also, we hope that the suggested method will be useful in solving the problem of v-aluing the
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American put option using the binomial method. The critical-stock-price function, which

is the value of the stock price when one is indifferent between exercising and not exercising

the put, can be approximated not only to compute âccurate put prices but also to provide

the bounda,ry of early-excercise.

The third contribution may indicate this direction for future research: the exam_

ination of the relationship between systematic risk and the size of the firm, using a fuzzy

regression approach. F\rther work is needed to examine the htzzy hypothesis testing by

establishing a finzy acceprance region (optimal according to the approach used) [81]. Gen-

erall¡ rve feel that there are more opportunities for fuzzy regression method applications

in financial modeling. It provides an effective s/ay to cope with the uncertainties that are

inherent in the financial models.

The last contribution was to establish the impact of htzzy data on parameter

significance tests. The elaborâted test procedures serve that purpose. The test result shows

¡vhether the data suggest a rejection (belongs to the rejection space) or acceptance of the

hypothesis. we are specifically interested in testing the significance of the coemcient thât

accompaníes a simple fuzzy regression method. That may be considered a limitation in the

presented approach but further development and exte¡rsion ofthe method to cover multiple

variables is necessary and will be handled in future research.
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Appendices

Appendix A. Part of the VBA Program code

The following is a part of the used VEIA program to do the computation and

generate the efficient frontiers.

Sub EFwoSSwWgraphQ

'graph values without using table

'plots each coordinate

Dim cht As Chart

numSeriesToCreate = Application.Range("rMeans,,).Rows.Count

Set cht = Charts.Add

cht.SeriesCollection.NewSeries

For i : 1 To numSeriesTo0¡eate

cht.SeriesCollection(i).Name : Application.Range(,,rMeans").Cells(i,

1)

cht.SeriesCollection(i).Values :

Application.Range(" rWidths" ).Cells(i, 1)
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cht.SeriesCollection(i).XValues :

Application.Range(" rSigmas" ).Cells(i, 1)

Ifi < numSeriesToCreate Then

cht.SeriesCollection.NewSeries

End If

Next i

cht.Location Where::xllocationAsNewSheet, Name::" EFwoSSv,'W3',

cht.ChartType : xlSurface

With cht

.HasTitle : Tbue

.ChartTitle.Charâcters.Text : -

"Efficient FÌontie¡ with Widths and without Short Sales,,

.Axes(xlCategory).HasTitle : Tlue

.Axes(xlCategory).AxisTitle.Characters.Text : "Sigma"

.Axes(xlSeries).HasTitle : Ttue

,Axes(xlSeries).AxisTitle.Characters.Text : " Mean"

.Axes(xlValue).HasTitle : Ttue

.Axes(xlValue).AxisTitle.Characters.Text :' Width,

End With

End Sub

Sub createTable0

'table to create 3d graph
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'table consists of the values to be graphed

Dim ws As Excel.Worksheet

Set ws : Application.Worksheets(" Sheet2" )

ws.Activate

ws.Range(Cells(1, 2), Cells(l, 226)).Name : " rYValues,

ws.Range(" rYValues" ).FormulaArrey = " :T'RANSPOSE(rMeans),,

ws.Range(Cells(2, 1), Cells(226, l)).Name: " rXValues,,

ws.Range(" rXValues" ).FormulaArray : " :rsigmâs"

ws.Range(Cells (2, 2), Cells(226, 226) ).Name : " rZValues"

Fori:1To226

ws.Range(" rZValues" ).Cells(i, i) =

A.pplicaiion.Range(" rWidths" ).Cells(i, 1)

Next i

End Sub

Sub graphTable0

'graph values using table

Dim cht As Chart

numSeriesToCreate : Application.Range(',rMeans,,).Rows.Count

Set chi = Charts.Add

cht.SeriesColleciion.NewSeries

cht.SeriesCollection(1).XValues = Application.Range("rSigmas',)

For i : 1 To numSerie¡ToCreate



cht.SeriesCollection(i).Name : Application.Range(" rMeans" ).Cells(i,

1)

cht.SeriesCollection(i).Values :

Application.Range(" rZValues" ).Columns (i)

Ifi < numSeriesToCreate Then

cht.SeriesCollection.NewSeries

End If

Next i

cht.Location Where::xllocationAsNewSheet', Name::,,EFwoSSwW4',

cht.ChartT]'pe : xlSurface

With cht

.HasTitle : Tlue

.ChartTitle.Characters.Text : -

"Efficient FYontier with Widths and without Sho¡t Sales',

.Axes(xlCategory).HasTitle = Tbue

.Axes(xlCategory).AxisTitle.Characters.Text :',Sigma,,

.Axes(xlSeries).HasTitle : Tlue

.Axes(xiSeries).AxisTitle.Characters.Text : " Mean',

.Axes(xlValue).Ha¡Title = Tlue

.Axes(xlValue).AxisTitle.Characters.Text :

End With

End Sub



200

Appendix B. Explanation of expansion rules of daily limits in

\il.C8

Before October 10, 2000, the regular daily price limits were $5.00/tonne for feed

wheat and western barley and S10.00/tonne for canola and flaxseed. These limits could be

expanded (increased) in certain situations, as follows:

o Expanded daily limits rule in 1991:

Starting with the March 1991 contracts, there has been a special rule for contracts

in delivery. If a contract is in its delivery month and closes at the limit in the same direction

(up or down) for two successive days, its daily limit is expanded to 1.5 times normal. If

the contract closes at this expanded daily limit for both of the next two days, the limit is

increased to two times normal. If the limit has been expanded ånd the contlact does not

close at its limit, the limit will return to the normal limit.

o Expanded daily limits changed starting sometime in 1991 or 1gg2:

If two of the three nearest contract months close limit up or down, the daily limii

for that commodity is expanded to 1.5 times normal for the next three days. If two of the

nearest three contract months close limit up or down on the third da¡ the limit will remain

at 1.5 times normal for the next three days,

If a contract in its delivery month closes limit up or dorwr, the daily limit for that

contract is expanded to 1.5 times normal for the next three days. If that contract closes

Iimit up or dorvn on the third day, the limit will remain ât 1.5 times normal for the next

three days.
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Commodity daily limit expanded to 1.5 times normal expanded to tv,,o times nor-

mal feed wheat â,nd western barley ftom $5.00 io $7.50 and to $10.00 canola and flaxseed

from $10.00 to $15.00 and to S20.00. There are no expanded daily limits after October 10,

2000.


