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ABSTRACT

Several research topics have dealt with the applications of the fuzzy theory in a
variety of areas including finance. However, the possibility of combining both fuzzy and
probability theories in finance has not received much attention. This research contribution
tackles the application aspects of fuzzy theory by combining fuzzy theory with probability
theory. Existing literature reveals that both theories describe uncertainty. Fuzzy theory
and probability theory are two paradigms of modeling uncertainty. This thesis is an attempt
to integrate the two theories.

The lack of proven practical applications and empirical implications of the fuzzy
theory during its early stage of development was a favorite criticism of its opponents. To
address that criticism, this research presents a methodology and shows a potential testability
process for three major aspects of the field.

The first aspect is the use of the fuzzy random uncertainty theory to find the
portfolio that gives the mean variance (E,V) combinations that were attainable through the
combination of statistical techniques and expert judgments. As inspired from Markowitz’s
statement, the expert judgments in this research have been modeled through the use of fuzzy
theory. Various sample sizes have been used to show the location of the efficient frontier
and the capital market without short sales and with subjective fuzzy measure. Also, we
show that the validity of this derivation is unaffected by the use of returns on the assets
with subjective measure (width).

The second aspect is fuzzy modeling by the introduction of fuzzy probabilities

in measuring risk. Following Philippatos and Wilson, the fuzzy entropy has been fully
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developed and then implemented in an empirical example to measure risk.

The third aspect of the research is to consider the application of a modified ap-
proach to the estimation of risk premium of commodity futures. The aim of this study
is to estimate systematic risk using commodity futures prices with the existence of price
limits. An estimation process has been conducted in two different phases. With the help of
the Ordinary Least Squares (OLS) method, the systematic risk has been estimated using
the settlement prices of the commodity futures, which are assumed to be sharply defined.
The second phase investigates the impact and effectiveness of price limits on estimating the
beta risk of commodities return by using an optimization model. Then, to complete the
estimating pI‘C-)CGSS, a test for a significant regression relationship is presented in the last

aspect of the research.
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Chapter 1

Introduction

In many real situations variability is indicated by two kinds of uncertainty: ran-
domness (stochastic variability) and inexactness (vagueness). Here, inexactness means non-
statistical uncertainty that is due, for example, to the imprecision of human knowledge or
to the inexactness of measurements rather than to the uncertainty of random events. While
the former uncertainty is modeled by the concept of random variables, the second one is
modeled by the concept of fuzzy mathematics and statistics.

The fuzzy set theory introduced by Zadeh [169] is, as the name implies, a theory of
graded sets. Due to their sharp boundaries, classical sets are usually referred to in fuzzy set
literature as crisp sets. As in classical set theory, the degree to which an element = belongs
to the fuzzy set A is described by a function called the membership function. In contrast to
the characteristic function of a set in the classical sense, which takes the value one only if
x is a member of A, and zero otherwise, the membership function can take values between

zero and one. The value between zero and one is interpreted as the degree of membership



of an element z belonging to the fuzzy set A. This means, for example, that we could assign
the degree of 0.7 to the temperature 23°C as s member of the linguistic value “warm”.
Some probabilists have been supportive of fuzzy set theory and other novel un-
certainty theories. One of them is J. N. Kapur, a well-known contributor to classical
(probability-based) information theory. The following excerpt from a published interview

[139} expresses his views regarding fuzzy set theory:

“In mathematics, earlier, algebra and topology were fighting for the soul of
mathematics. Ultimately both are co-existing and are enriching each other.
Similarly today there is a struggle between probability theory and fuzzy set
theory to capture the soul of uncertainty. I am sure ultimately both will co-exist
and enrich each other. Already the debate has led to a deeper understanding of
what we mean by uncertainty... I believe that uncertainty is too deep a concept
to be captured by probability theory alone. Probability theory has had a long
history, while fuzzy set theory is relatively of recent origin. Let it grow to its
full strength.”

Another probabilist endorsing fuzzy theory is Viertl [159]. Moreover, Zadeh rede-
fined the concept of probability vis-3-vis fuzziness [170], pointing out that probability is a
special -case of fuzziness, and it has two limitations: firstly, it works with bivalent sets A,
ANA®=¢; AUA°=X. So, P(ANA®) =0, P(AUA®) =1 for all sets A, and that itself
draws hard lines between things and non-things, and we cannot do that in the real world.
Secondly, probability measures need small infinities. A probability measure maps the sets
in a single-algebra to the unit interval [0,1].

Fuzzy theorists explain why people have been wrong in a variety of aspects for so
long. The reason is that rounding off and quantifying simplifies life and often costs little.
The probability that z € A, for example, means that element x either is or is not an element

of set A. However, fuzziness may still exist (x belongs to fuzzy set A with degree p4(z)).



Probabilists might wonder whether probability describes anything real. David Hume [62]

stated:

“Though there be no such thing as chance in the world, our ignorance of the
real cause of any event has the same influence on the understanding and begets
like species of belief.”

In another instance, Kosko [80] states:

“The only subsets of the universe that are not fuzzy are the constructs of classical
mathematics. All other sets of particles, cells, tissues, people, ideas, galaxies in
principle contain elements to different degrees. Their membership is partial,
graded, inexact, ambiguous, or uncertain.”

Kosko [81] claims that probability is not a primitive theory. He points out that we
can often eliminate it, in favor of a “fuzzy” or multivalued containment operator. Kosko [80]

presented this illustrative example showing the difference between fuzziness and probability:

“Suppose there is a 50% chance that there is an apple in the refrigerator. That
is one state of affairs, perhaps arrived at through frequency calculations or a
Bayesian state of knowledge. Now suppose there is a half an apple in the refrig-
erator. That is another state of affairs. Both states of affairs are superficially
equivalent in terms of their numerical uncertainty. Yet physically, ontologically,
they are distinct. One is ‘random’, the other ‘fuzzy’.”

When discussing the physical universe, every assertion of event ambiguity or non-
ambiguity is an empirical hypothesis. This is habitually overlooked when applying prob-
ability theory. Years of such oversight are perhaps responsible for the deeply entrenched
sentiment that uncertainty is randomness, and randomness alone. When looking at an in-
exact oval, we cannot say that it is probably a circle or ellipse, because nothing is random
about it. The situation is deterministic, as all the facts are known. However, uncertainty
remains, due to the simultaneous occurrence of two properties: to some extent an oval is

an ellipse, and to some extent it is not an ellipse.



Kosko {80] pointed out that conceptually and theoretically, there are differences
between randomness and fuzziness. At the same time, there are many similarities. One
of the similarities is that both theories express uncertainty in a numerical fashion in the
interval [0,1]. Fuzziness describes event ambiguity. It measures the degree to which an
event occurs, not whether it occurs.

Randomness describes the uncertainty of event occurrence. An event occurs or
does not, and you can bet on it. So, whether an event occurs is “random”; to what degree
it occurs is fuzzy. Whether an ambiguous event occurs when we say there is a 20% chance
of light snow tomorrow, involves compound uncertainties, or the probability of a fuzzy
event. In practice, we regularly apply probabilities to fuzzy events: small errors, satisfied
customers, safe investments. We uncierstand that at least around the edges, some satisfied
customers can be somewhat unsatisfied, and some safe investments can be somewhat unsafe
investments.

Fuzziness has been presented as an alternative to randomness, to describe uncer-
tainty. We may pose the following question: Do the notions of likelihood and probability
exhaust our notions of uncertainty? Some people who have been trained in probability and

statistics believe so. For example, Bayesian physicist E. T. Jaynes [65] says that:

“Our method of inference in which we present degree of plausibility by real num-
bers, is necessarily either equivalent to Laplace’s (probability) or inconsistent.”

Lindley [95] issued a challenge by saying:

“Probability is the only sensible description of uncertainty and is adequate for
all problems involving uncertainty. All other methods are inadequate.”

In contrast, Zadeh [169] suggested that notions of an event and its probability

constitute the most basic concepts of probability theory. An event is a collection of points



in the sample space. However, in everyday experience, one frequently encounters situations
in which an “event” is a fuzzy rather than a sharply defined collection of points. Zadeh {170]

presented in his study the following definitions where fuzzy events have been elaborated.

Definition 1 Let (R", A, P) be a probability space in which A is the o — field of Borel sets
in R™ and P is a probability measure over R™. Then, a fuzzy event in R"™ whose membership
function is pa(py : R — [0,1)), is Borel measurable. The probability of a fuzzy event A is
defined by the Lebesque-Stieltjes integral: P(A)=[pa pa(2)dP = Ep4].80, the probability
of a fuzzy event is the expectation of its membership function assuming that p, is Borel

measurable.

This definition forms a basis for generalizations within the framework of the fuzzy
set theory.

One of many researchers who criticized the use of fuzzy theory to model uncertainty
is Cheeseman [24]. He points out that probability can solve the same problems that fuzzy
approaches claimed to solve by expanding the concept of probabilities to avoid limitations
imposed by the frequency of probability. This view has been persuasively argued; see for
example Klir [74] and Zadeh [174].

For further discussion on the long-standing controversy of the use of prior probabil-
ities and their interpretations and to find an explanation of various aspects of uncertainty,
including uncertainty in scientific inquiry, one may refer to (73], [74], [81], [80], [81] and
[174]. It may be noted here that when we are making decisions with uncertain and incom-
plete information, it is always necessary to specify the assumptions. The concept of fuzzy

random variables established by Kwakernaak [86] can be applied to model uncertainty. Puri



and Ralescu [121] had a slightly different notion. They defined fuzzy random variables as
a generalization of random closed sets. This generalization also includes random variables
and random vectors. Thus, the concept of fuzzy random variables has been found to be
convenient in studying linear statistical inference, limit theorems and so on. Indeed, many

results can be regarded as a generalization of results of real-valued random variables.

1.1 Fuzzy Uncertainty

Consulting a dictionary for the term *“uncertainty”, we find that it has a broad
semantic meaning. For example, Webster’s New Twentieth Collegiate Dictionary defines
uncertainty as the quality or state of being uncertain. Synonymously, doubt, dubiety,
skepticism, suspicion, and mistrust mean lack of sureness about someone or something.
Uncertainty may range from falling short of certainty to almost a complete lack of definite
knowledge. Dubiety stresses a wavering between conclusions; skepticism implies unwilling-
ness to believe without conclusive evidence; suspicion stresses lack of faith in the truth,
reality, fairness, or reliability of something or someone. Mistrust implies a genuine doubt
based upon suspicion. Also, we find that uncertain stands for 1) indefinite, indetermir_late,
2) problematical (not certain to occur), 3) untrustworthy (not reliable), 4) a) dubious (not
known beyond doubt) b) not having certain knowledge: doubtful, ¢) not clearly identified
or defined, 5) not constant. These various meanings are mentioned here to illustrate the
richness of the concept of uncertainty and the large spectrum of possible theoretical tools
that can be used in dealing with difficult real-world problems.

When we investigate these various meanings, at least two major types of uncer-



tainty emerge naturally: vagueness and ambiguity. It is easy to see that the meanings
mentioned above relate to the concepts of fuzziness and crispness. Keeping in mind that
the cbncept of uncertainty is closely connected to the concept of information, when our
uncertainty in a situation is reduced by an action such as performing an experiment or
finding a historical record, the action may be viewed as a source of information relating to
the situation.

Note here, that the classical mathematical frameworks for characterizing situations
as uncertain have been crisp set theory and probability theory. Yet, the fuzzy set theory,
by its capability of conceptualizing the main types of uncertainty is relevant and obvious.
Membership degrees that accompany fuzzy theory and fuzzy data (in the empirical sense)
indirectly express a pertinent measurement of uncertainties. Moreover, an important feature
of fuzzy set theory is its ability to capture the vagueness of linguistic terms in statements
of subjective and natural languages. In that case, vagueness is a kind of uncertainty that
" does not result from information deficiency but rather from imprecise meanings of linguistic
terms. Crisp set theory is not capable of expressing the imprecise meanings of vague terms
and of being transferred to a modeling quantifiable environment.

The lack of proven practical applications and empirical implications of the new
- uncertainty during its early stage of development was a favorite criticism of its opponents.
At the beginning, they were able to embarrass proponents of the theory by simple questions
such as: “Can you show us at least one practical application or one empirical implication
of the new theory?”, and they asked increasingly demanding questions. Later, when the

number of applications became overwhelming, the opponents asked whether the proponents



could show them at least one problem that could be solved with the help of fuzzy theory
but that could not be solved without it. Although the question is still debatable, a prolific
body of work has recently emerged with the help of fuzzy theory, where classical efforts
have failed; see for example [175]. Fuzzy theory is offered as the basis of a new paradigm
of uncertainty.

Currently, the range of applications of fuzzy uncertainty is quite wide. For in-
" stance, the fuzzy linear programming, which was developed to tackle problems encountered
in real-world applications, shows that applications are diverse and cross disciplinary. Busi-
ness assignment problems (network location problems) (see Darzentas [29]), transportation
problems (Perincherry and Kikuchi {117]) and transshipment problems (Verdegay [158])
represent only a suggestive list list of applications in the area of management science. In
the finance area, the number of applications is limited, for example, capital asset pricing
model (Ostermark [114]), profit apportionment in a concern {Ostermark [113]), bank hedg-
ing decision (Lai and Hwang [88]) and project investment (Lai and Hwang [88]), and there
is a room for future research. In marketing, the media selection problem by Zimmermann
[176] and the new product development by Smimou et al. [144] remain a non-exhaustive

list of applications in the area.

1.2 Fuzzy Modeling in Finance

During the last fifty years, investment theory has been developed around EMT
(Efficient Market Theory), Markowitz’s Mean-Variance Model (EV) [103], Sharpe’s Capital

Asset Pricing Model (CAPM) [141], Lintner [97] and Mossin [108], Ross’s Arbitrage Pricing



Theory [130] and Black, Scholes and Merton’s Option Pricing Theory [13], [107]. Of these,
the first two theories are regarded as the backbone of modern portfolio theory. The major
difficulty faced by operations researchers in modeling the problem of portfolio selection,
which is regarded as the theory that precedes the derivation of the Capital Asset Pricing
Model (CAPM), is that it is based on the perception of risk by an investor, which will
varies, as different people have different beliefs about the future performance of various
assets. In real-world problems, we are faced with imperfect information (data) and must
deal with uncertain, imprecise, and vague data. In modeling and analyzing problems of
this type, earlier works in finance tended to equate all aspects of imperfect information
with uncertainty (of a random character). Thus, a multitude of probabilistic models were
‘proposed. This was also the case with the use of modeling in finance, for example [50],
[167], [25], [83], [134], [120}, [38], [63], [L16] and [143).

However, no simple and adequate methods for handling imprecise data, which may
stem, e.g., from the use of natural language and subjective statements was available until
the mid-1960’s when Zadeh [169)] proposed fuzzy sets theory. And indeed, financial modeling
has been one of the areas to which fuzzy sets theory has been applied ([113], [114]).

Recently, there has been an increased interest in fuzzy theory in a large number
of applications, some of which will be mentioned in this thesis.

Markowitz [103] in the derivation of the efficient portfolio assumed that the return
r; (the return on the i** security) and R (yield on the portfolio as a whole) are assumed to
be random variables, and the probability beliefs concerning these variables are given. Of

course, he did not discuss the method of how investors form their probability of beliefs. He
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says:
“In general we would expect that the investor could tell us, for any two events (A
and B), whether he personally considered A more likely than B, B more likely
than A, or both equally likely. If the investor were consistent in his opinions
on such matters, he would possess a system of probability beliefs. We cannot
expect the investor to be consistent in every detail. We can, however, expect
his probability beliefs to be roughly consistent on important matters that have

been carefully considered. We should also expect that he will base his actions
upon these probability beliefs even though they be in part subjective.”

Markowitz addressed the subjectivity part of the probability beliefs by stating:

“The calculation of efficient surfaces might possibly be of practical use. Perhaps
there are ways, by combining statistical techniques and the judgment of experts,
to form reasonable probability beliefs.”

In this context, the fuzzy random uncertainty is a suitable theory to find the port-
folio which gives the (E, V) combinations that were attainable and the desired combination
by the investor through the combination of statistical techniques and expert judgments.
Markowitz's mean-variance model [103] assumes that the investor is risk averse, i.e. the
investor’s utility function is increasing and concave, and the security returns are jointly
normally distributed or the utility is a quadratic function, and the risk associated with
it is fully identified by its variance. Following the line of Markowitz, the purpose of this
thesis is to provide the aspects of fuzzy uncertainty in asset pricing, which would involve
a rederivation of the mean-variance theory followed by a rederivation of the fuzzy CAPM
model. Generally speaking, in finance, and specifically in investment problems, because we
are confronted with decision making situations, the essence of Bellman and Zadeh’s [10]
approach to decision making under fuzziness adds a new dimension to the modeling effort

in this research.
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Next, in Chapter 2, we present the rederivation of the Markowitz efficient frontier.
In Chaptér 3, another aspect of fuzzy modeling in finance by the introduction of fuzzy
probabilities is presented, an empirical design is discussed, and the actual testing of the
collected data is completed. Chapter 4 presents a brief review of various fuzzy regression
approaches and illustrates an application of a modified approach to the estimation of risk

premium of commodity futures.
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Chapter 2

Mathematical

Background /Preliminaries

Inferences and decisions in statistics are based on information supplied by a ran-
dom experiment associated with a population and on additional information about the
experiment. To achieve a statistical inference in terms of certainty and precision is almost
impossible. Since the development of fuzzy set theory, many studies have tackled the com-
bination of both fuzzy set and probability theory. The aim of this chapter is to examine
methods for handling statistical problems involving fuzziness in the elements of the ran-
dom experiment, and serves as a point from which to derive the Markowitz frontier in the
presence of fuzzy uncertainty and random uncertainty. Gebhardt et al. [42] presented two
illustrative figures showing the elements and stages in a random experiment and involving
the observation of random variables and fuzziness in the observed report.

In statistics, we traditionally assume that the experimental performance and the



13

parameter value, or state specification in a Bayesian setting, are accomplished under ran-
domness, whereas the remaining stages in the experiment are handled under certain and
well-defined conditions. However, fuzziness can arise in some of these remaining stages,
that is, in the assessment of the experimental and/or prior distribution. Chapter 2 tackles
this point. Also see Walley [163] and Thomas [154]. In the context of the quantification
process of the random variable, Chapter 3 presents a special example. In this case, limi-
tations sometimes appear when assessing exact probabilities, so the available information
about probabilitiés is more properly described in terms of imprecise propositions, stating
a set of experimental results as “highly probable” or “unlikely”. Also, the quantification
process in the random variable can associate an imprecise report of the variable value with
each experimental outcome. Fuzziness can be involved in getting the experimental outcome
or the parameter value of the experimental distribution. Regarding the assessment of fuzzy
probabilities, we can see, for example, Zadeh {173}, {172], Dubois and Prade [34], Rappoport
et. al [123], and Ralescu [122]. Apart from these, there are still many open questions in
connection to this topic.

The notion of a fuzzy random variable (see for example, Kwakernaak [86], Puri
and Ralescu [121], Kruse and Meyer [84]) provides a valuable model that is manageable in
a probabilistic framework. Also, the concept of fuzzy information presented by Zadeh [172]
can formalize either the experimental data or the events involving fuzziness. The concept of
a fuzzy random variable [121] was defined as a tool for establishing relationships between the
outcomes of a random experiment and inexact data. By inexactness, we mean non-statistical

inexactness that is due to subjectivity and to imprecision of human knowledge rather than
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to the occurrence of random events. Korner [77] pointed out that the variability is given by
two kinds of uncertainties: randomness (stochastic variability) and imprecision (vagueness).
Randomness models the stochastic variability of all possible outcomes of an experiment.
Fuzziness describes the vagueness of the given or realized outcome. Randomness answers
the question: What will happen in the future? Whereas fuzziness answers the question:
What has happened? or What is meant by the data?

Kwakernaak [86] presented another explanation for the difference between ran-
domness and fuzziness. He pointed out that when we consider an opinion poll in which
a number of people are questioned, randomness occurs because it is not known which re-
sponse may be expected from any given individual. Once the response is available, there
still is uncertainty about the precise meaning of the response. The latter uncertainty will

be characterized by fuzziness.

2.1 Fuzzy Random Variables

In this case, we deal with two types of uncertainty, namely, randomness and possi-
bility (fuzzy). Randomness refers to the description of a random experiment by a probability
space (§2, A, P), where Q is the set of all possible outcomes of this experiment, 4 is o —field
of subsets of @ (the set of all possible events), and the set-function P, defined on A4, is
a probability measure. We assume that all the information that is relevant for further
analysis of any outcome of the random experiment can be expressed with the aid of a real
number, so that we can specify a mapping U :  — R, which assigns to each outcome in

{1 its random value in R. U is called a random variable and is expected to be measurable
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with respect to the o—field A and the Borel o— field B of the real line. The possibility of
a second kind of uncertainty in our discussion of a random experiment has to be involved
whenever we are not in the position to fix the random values U(w) as crisp numbers in R,
but only to imperfectly specify these values by a possibility distribution on R. In this case
the random variable U : & — R changes to fuzzy random variable X : Q — F(R} with
F(R) = {&/p, : R — [0,1}} denoting the class of all fuzzy subsets. Fuzzy random vari-
able (f. r.v.) is interpreted as a fuzzy perception of an inaccessible usual random variable,
U : Q — R, which is the original of X. The idea is that the corresponding description of
a random experiment Up(w) is imperfect in the sense that its most specific specification is
the possibility distribution X,,=X(w). In this case, for any r€ R the value X,,(r) quantifies
the degree of possibility with which the proposition Ug(w)=r is regarded as being true.
Xy(r) = 0 implies that there is no supporting evidence for the possibility of the truth of
Up{w)=r, whereas X,,(r) = 1 implies that there is no evidence against the possibility of
the truth of Up{w)=r, so that this proposition is fully possible. X,,(r) € [0,1) reflects that
there is evidence that supports the truth of the proposition as well as evidence that contra-
dicts it. A way proposed by Gebhardt et al. {42] of interpreting a possibility distribution
X R — [0,1) is viewing X, in terms of the context approach.

Tﬁé concept of a fuzzy random variable is a reasonable extension of the concept of
a usual random variable in the many practical applications of random experiments, where
the implicit assumption of data precision seems to be an inappropriate simplification rather
than an adequate modeling of the real physical conditions. Considering possibility distri-

bution allows us to involve uncertainty (due to the probability of occurrence of competing
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specification contexts) and imprecision (due to the context-dependent set-valued specifica-

tions of Up(w)).

Definition 2 Let (2, A, P) be a probability space. A function X:Q — F(R) is called a fuzzy

random variable if and only if:

X, : Q- Rw—inf(X(w).) and

Xo @ Q- Rw—sup (X(w)a)

are A-B- measurable for oll « € [0,1], with B being the Borel o — field of R.

The notion of a probabilistic set and fuzzy random variable was introduced by
several authors in different ways. Kwakernaak’s theory [86) is similar to that presented
here. Puri and Ralescu [121] considered fuzzy random variables whose values are fuzzy

subsets of R", or more generally of Banach space.

Theorem 3 Let X : @ — F (R) be a finite fuzzy random variable such that X(2) =
{Z1,%2,..,%n} and p; =Pf{we Q) X,=7;}], i=1,...,n.

Then, {322 Piinf(Fi)an 25imy PisUP(Ti)altagqo) 8 an o — cut representation of
E(coX), where CoX:Q1 — F (R) is defined by (coX)(w)=Co(X,) with Co(X,,) denoting the

convex hull of X,,.

2.2 Fuzzy Random Variables and Properties

Kwakernaak [86] defines the concept of fuzzy random variable as follows:
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Let I; : R — [0,1] be the characteristic function of the set w;. Also, let S be the
space of all piecewise continuous functions R — [0, 1]. We then define the perception of the

random variable U, as described above, as the mapping X : 2 — § given by

with X, = I; if and only if U(w) € W; . This means that we associate with each w € {,
not a real number U(w), as in the case of an ordinary random variable, but a characteristic
function X, , which is an element of S.

The map X : 2 — S described above characterizes a special type of fuzzy random
variable. The random variable U, of which this fuzzy random variable is a perception, is
called an original of the fuzzy random variable. Many originals may exist. Kwakernaak

[86] introduced the notion of a fuzzy random variable as a function F

F:Q— F(R)

subject to certain measurability conditions, where (£2, A, P) is a probability space and F(R)

denotes all piecewise continuous functions:

u:R—[0,1]

Feron [40] defined a fuzzy random set as a measurable function:

F:Q— F(s)
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where 3 is a topological space, Fi(>c) = {u: 3¢ — [0,1]}, and {z € 3 : F(w)(z) > o} are
closed subsets of x for each 0 < o < 1,w € Q.

Puri and Ralescu [121] defined fuzzy random variable slightly differently from
Kwakernaak [86]. In [121], fuzzy random variable is defined as a function X : Q — Fp(R"),
where (2, A, P) is probability space, and Fo(R™) denotes all functions (fuzzy subsets of R")

1 : R® — [0, 1] such that {x € R™: u(z) > a} is non-empty and compact for each 0 < o < 1

2.3 Fuzzy Variables and Their Expectations

Let (Q, A, P) be a probability space where P is a probability measure. Let Fp(R")
denote the set of fuzzy subsets p : R® — [0,1] with the following properties:

(a) {zeR™pu(z) > a} is compact for each o> 0

(b) {zeR%ulz)=1}#4¢

Definition 4 [77]. A fuzzy random variable (fuzzy variable) is a function
X : 80— Fy(R™)
such that: {(w,z):z € Xo(w)} € AX B for every a € [0,1]
Where Xo : 2 — P(R") is defined by

Xo(w) ={z e R" : X(w)(z) > o}

Definition 5 [109]. A fuzzy variable X is called integrably bounded if X, is integrably
bounded for all @ € [0,1], ie. for any « € [0,1] there ewists hyo € LYQ) such that
[z]| < halw) for each z, w with z € Xo(w). LHQ) denotes all functions h:  — R
which are integrable with respect to the probability measure P. Then, expected value E[X]

of o fuzzy variable X is defined as:
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X: Q- RR); {zeR": (E[X])(z)>a} = [ Xa for each a € [0,1]

Theorem 6 ([121},{77]). If X : Q@ — Fy(R™) is an integrably bounded fuzzy variable, there
ezists a unique fuzzy set v € Fo(R") such that{z e R" : v(z) > a} = [ X, for everya €
[0,1]. This theorem was used to define expected value of a fuzzy random variable X : Q3 —

Fy(R™) which is integrably bounded.

Definition 7 The expected value of X, denoted by EfX], is the fuzzy set v € Fy(R™)!
such that {z € R:v(2) > a} = [ X, for every a € [0,1]. Eristence and uniqueness of v
are established in the following theorem (E{X]) (z) = Sup{a€[0,1]:z ¢ [ Xo} and its

level sets are given by : {z: (E[X])(z) > a} = [ Xa, @ €0, 1]

2.3.1 Properties of the expected wvalue

Extension of Lebesgue dominated convergence theorem to fuzzy random variables
is done by Fp(R"™) a metric which generalizes the Hausdorff metric, let u,v € Fy(R™), and
set d(u,v) = Supa>o{La(u), La(v)). dy is Hausdorff metric, and we denote by Lo(u) =

{z 1 u(z) > @} and Lo (v) = {z: v(z) > o}

Theorem 8 If the probability measure P is nonatomic, and if X : @ - FR(R™) is an

intergrably bounded fuzzy variable, then E[X] is a fuzzy conves set.
Computation of E[X] with examples to compute expected value of a fuzzy ran-
dom variable.

Example 9 Toss a fair coin, outcomes: tail (T) and head (H). A player loses approzimately

$10 if the outcome is T, wins an amount much larger than 8100 but not much larger than

Sets of fuzzy subsets
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$1000 if the outcome is H.
The fuzzy random variable is:
X :{T,H} - Fy(R") X(T) = “approzimately 10”
X (H) =“much larger than 100 but not larger than 1000”
For a techn;'cal TEASON:

XT) =u, X(H)=v u,v:R —[0,1]

u(z) = [1 - gm_-:lg)j]'{' v(z) = [1 - L—Q—ngggo 2]+
f+ =max(f,0)

Since u and v are continuous with compact support, it is easy to show:

E[X](x} = Supy4z=g; min ([1 — g@ﬁ]“’, {1 - (_z‘—‘.ggsgolz]+)

In particular, support of E[X] is included in the interval [119, 501].

Example 10 Let X : Q@ — Fo(R™) be a fuzzy variable such that
PX=w]=p,i=1,.1r
where w; : R — [0,1] are continuous with compact support. Then, E[X] =

T
i=1 Pilti

2.4 Variance of Fuzzy Random Variables

Fuzzy random variable introduced by Puri and Ralescu [121] as a generalization
of compact random sets, combines both randomness and imprecision. Stochastic variability
is described by use of probability theory and the vagueness by use of fuzzy sets introduced

by Zadeh [169].
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The notion of expectation and the notion of variance are parallel to the notions
for a linear statistical inference with fuzzy random data.

Define [ : set of all normal compact convex fuzzy subsets of R™ and assume that
any pra : R — [0, 1] satisfies:

(1) Aisnormal, A'={z € R": pu,(x) =1} is non-empty.

(2) a—cutsof A, A*={z€R:puy(z) >a} 0<a<1 are convex and compact.

(3) The support of A , A% = Uaepo,yA% is compact.

Fach fuzzy set A corresponds uniquely to its support function.

Sale,u) = Sup{{u,a):a € A%}, weS*"aeclol]

5"~ lis the (n — 1) dimensional unit sphere of R* and {.,.) is the inner product of
the Euclidean space R™.

X :is a Borel measurable mapping X : Q@ — F.. It follows that for each o € [0, 1]

the o — cuts, X are non-empty compact convex random sets.

2.4.1 Expectation, variance and covariance

Let the following measure defined such that
2 _ 2
Ed*(X,A) = BiggEd (X, B) (2.1)

A € M with Ed(X, A) < co. The infimum of 2.1 is called variance of the random element

X.

The least square property of real-valued random variables z is generalized by this

principle: E(z — Ex)? = infper (X, B)
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and Var(X) = infger, Ed3(X, B)

Assumption: we restrict ourselves to square integrable fuzzy random variables for
which EJ|X||2 < co. This assumption ensures that the expectations as well as the variance
always exist. Expectation of a fuzzy random variable is defined by generalized Aumann
expectation EX. (EX)* = Sup{Ef:{ is a selection of X*; E|j¢]l, < oo}, & € [0,1],
or by Bochner expectation of the corresponding support function of X . Sex(a,u) =
Eg,(o,u) ,ue S" 1 ac(0,1]

S7~1: is the (n-1) dimensional unit sphere of R" and {.,.) is the inner product of
the Euclidean space R™. It follows that

sa{., u) represents a fuzzy set for any fixed u € $*~! and

Sa(e, ) is the support function of the convex a — cut for any fixed o € [0,1]

Expectation as defined by Puri and Ralescu [121] is the unique fuzzy set EX with
( %) =E[)?a] 0<a<1
[a 4
Further, we can define:
/AXszE(XxA) VAcA4,

where x4 denotes the indicator of Ac A
Following Korner [77], the variance of frv X is defined as VarX = Ed}(X, EX).

Using (E)Z' ) = E}?a and spg = Es; , this can be written as
o o @

VarX =n fgl Jono1 Var s %, (Op(dt)do



23

Analogously, the covariance between two frv’s X and Y is defined as:
Cov(X,Y) =1 [y fgnr Cov(sg_ (), 57alt))p(dt)do 2

2.4.2 LR-fuzzy numbers

If I > 0andr > 0, then the membership function of an LR-fuzzy number

(I—L, g:T)L,R ] A iS

4

L(&ff) if a<p

ma(z) = ¢ 1 if z=p

\ R(ZE) if z>p
Here L, R: RY — [0,1] are fixed left-continuous and non-increasing functions with
L(0) = R(0) = 1. The functions L and R are called left and right shape functions, 7
the modal point and I ,7 > 0 are respectively the left and right spreads of the LR-fuzzy
number. The most commonly used LR-fuzzy numbers are triangular fuzzy numbers
{1,1,7) o with linear shape functions L(z) = R(z) = Maz {0,1 — z} and, especially, the
symmetric triangular fuzzy numbers (i, 1), with [ =r.

Another useful class of fuzzy numbers with unbounded support is the bell-kind (or

Gaussian) fuzzy number defined by L(z) = R(z) = exp(—z2) with o — level sets

Ay = [,uA —lav/—In(a), g + TA‘\/—IE(CI)] a€0,1],

and 047, =+/7/4 , such that 04 = s + 3'4@(7".4 —1a)

*For details see [110]
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2.4.3 Random LR fuzzy numbers

Denote ¥ =(uy, ly, Ty} a random LR-fuzzy number with left/right shape func-
tion L/R, with the random central value pty and the positive random left and right spreads

ly and ry. The result for EY is known:

EY = (Epy, Bly, Ery)p

Following ({109],[77]) for random LR-fuzzy numbers VarX and Cou(X,Y) is given by:

VarX = Var(py) +apVar(lx) +a,Var(rx) —2a, Cov(py, Ix) +2a,, Cov(uy, Ix) (2.2)

and
Cov(X,Y) = Cov(px, tty) + a1, Cov(lx, ly) + ar, Cov(rx, rv) (2.3)
*20’11 [OOU(ﬂx, EY) + CO’U(#’Y? EY)] + 2017-1 [COU(#X; TY) + COU(#’X: TX)] 3
where

a = / L @)da, = f (L' (@)  da

Uy, = —;-fR"l(a)da, Apy = %/(R"l(a)fda

Definition 11 [171]. Let X denote a universal set (also known as universe of discourse).



25

A fuzzy subset A of X is characterized by a membership function:
pa=X—[0,1]
which associates with each element z of X a real number p4(z) in the interval

[0,1], with p4(z) representing the grade of membership of element z in fuzzy set A.

A is completely determined by a set of doublets.

A= {(z,ps(z)/z € X}

If X ={x1,%9,...,Zn} is a finite set and A is a fuzzy set in X, then we often use

the notation

A= [T+ pa/To+ o F o /T

where p;/x;, ¢ = 1, ..., n identifies that g, is the grade of membership of x; in A
and the plus sign represents the union. However, when z is not finite, a fuzzy set A is

defined as:

A= [ pa@)fo

Example 12 Suppose we want to define the set of natural numbers “close to 1”. This can

be expressed by

A=00/~2+0.3/—140.6/0+1.0/1+0.6/2+0.3/3 + 0.0/4
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Definition 13 Eastension principle of Zadeh [171] provides a general method for eztending
non-fuzzy mathematical concepts in order to deal with fuzzy quantities. Then it allows the

extension of a mapping f from points in X to fuzzy subsets of X :

fA) = flpd/zi+ pofze + ... + pofzn)

= m/f(@) 4 pof flm2) + .. 4 p,/ f (=)

Example 14 Consider the fuzzy set “about 7” with a discrete universe and the mapping f

representing the square. Then the application of the estension principle results in
(“about7?”) = 0.0/5*+0.5/6%+1.0/72+0.5/82+0.0/92 = 0.0/25+1.0/49+0.5/64--0.0/81
2.4.4 Fast computation of a;, a,,, a,, a,,
a — Cuts of A= (p,l,7), 5 are given by the intervals
Ay =[p— L a)l,p+ R“l(a)r] ; ae0,1],

An LR-fuzzy number A = (u,l,7), p with L=Randl=1r “As called symmetric and

abbreviated by:

A (u,0).

For a random symmetric fuzzy number ([109], [77]):

Y= (_LL, A)L
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E (-u= A)L = (E]J., EA)L )

and

Var (u, A)p = Var (p) + 2a;,Var(A)

In particular, the variance of a random triangular fuzzy number is simply given by
Var(X) = Var(p) + éVa'r(l) + %Var(r),
and the variance of random bell-kind fuzzy numbers is:
Var(X) = Var(p) + Var(l) + Var(r).

The covariance of two random LR-fuzzy numbers X, Y is given by equation (2.3). This

form is more convenient under additional assumptions:

o If L = R (shape symmetric LR-fuzzy number) then

Cov(X,Y) = Cov(uxpy)+ a,(Cov(lx,ly) + Cov(rx, ry))

+2a1, (Cov(px, ry — ly) + Cov(py, rx — Ix))

e If L =R, Ix =rx, ly =7y (symmetric LR-fuzzy number Ag := A; — Apr). Then,

CO’U(X, Y) = CO’U(#‘X: IUY) + s,y GO’U(IE, lY)
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2.5 Expected Utility Maximum

First, mathematicians formulated principles of behavior in chance situations by
assuming that the proper objective of the individual was to maximize expected monetary
return. However, later on, some researchers found that the expected return maximum is
not the proper methodology [135] [54]. Therefore, the expected utility rule was proposed as
a substitute for the expected return rule ([3}, [33]). Instead of maximizing expected return,
the rational investor would maximize the expected value of the utility of return [4].

Markowitz ([105], p. 209) says:

“Some recent commentators, on the other hand, have agreed that the expected
utility maxim is not the essence of rational behavior. They show instances in
which human action differs from that dictated by the maxim... At least two
well-known economists who first wrote as opponents later became adherents of
the expected utility maxim. The writer knows of no equally famous conversion
in the other direction...”

Thus, following Markowtiz [105] we use the expected utility maximum approach

to rederive the efficient frontier in the presence of fuzzy random returns.

2.5.1 Utility function

Following ([41]) and ([59], p 60-61), an individual’s utility function may be ex-

panded as a Taylor series around his expected end of period wealth.

U(@) = U(E @) + U (B@)@ - Bl@)) + U (Bu]) (@ - Bl@))? + ks,
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where the remainder is:

Ra= Y 20O (B o) @ - B,

n=3

and where U™ denotes the n* derivative of U. Assuming that the Taylor series converges
and that the expectation and summation operations are interchangeable, the individual’s

expected utility may be expressed as

E[U @) = U(EI@) + 50" (@)0*(@) + B[R],

where

BlRy) = 3" U™ (B[a]) m™(@)
n=3

m™ (@) denotes the n** central moment of . Assuming quadratic utility (or jointly normal
returns), the third and higher order derivatives are zero and, therefore, E[R3] = 0. Hence,
an individual’s expected utility is defined over the first two central moments of his end of

period wealth, w,

B[U(@)| = Bl ~ 5 Bla?) = Blu] - 5 ((B)? + 0*(@))
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Chapter 3

Mean-Variance Theory with Fuzzy

Random Returns

3.1 Introduction

The pioneer work in the mean variance theory has been presented by Markowitz
([103], [105]) and Tobin {155]. Later, Sharpe [141] and Lintner [97] presented the Capital
Asset Pricing Mode! (CAPM) which was built on the foundation of the mean-variance
theory. The logic behind this correlation is that the identification of the efficient frontier
of risky assets with the risk-free asset is provided by the mean-variance theory. That
efficient frontier is singled out by the risk-free asset and the tangency frontier portfolio.
In equilibrium, after asserting the assumption that all investors have identical probability
beliefs (share the same information) the amalgamation of the risk-free asset and the portfolio

would hold . Therefore, if the portfolio of all risky assets represents the market, then the
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CAPM is developed and it is empirically measured. Obviously, without ignoring the Roll’s
critique [126] that CAPM’s view of the market portfolio as it contains every asset is not
always available. For example, data of real state or real asset investments are not available,
yet are crucial elements in the market. Thus, the applicability of CAPM in its existing
form is questionable, because the use of different proxies for market return will reshape the
empirical implications.

In this chapter, we question one important assumption made by Markowitz ([103],
[105]), which remains a fundamental “hidden” assumption in mean-variance theory litera-
ture today: that assets are normally distributed or that random uncertainty is the sole way
of modeling uncertainty.

Markowitz ([105], p.193) discussed the reasons behind the use of variance as a

measure of dispersion in asset pricing instead of other dispersion measures.

“Many considerations influence the choice of V or S as the measure of vari-
ability in a portfolio analysis. These considerations include cost, convenience,
familiarity, and the desirability of the portfolios produced by the analysis.”

Following Markowitz’s articulation of the importance of using variance as a mea-
sure of dispersion, in this chapter, the variance analysis is considered. Knowing that the
analyses based on S (semi-variance) tend to produce better portfolios than those based on
] V, the analyses based on semi-variance can be considered in future research endeavors after
experience is gained with simpler measures in our context.

Although Markowitz [103] ignores the experts’ judgments in the derivation of the
efficient frontier, he [105] emphasizes the merit of such a combination of statistical techniques
and the judgment of experts in the portfolio selection process. Yet, Markowitz does not

propose a method to tackle that issue, and he does not study the efficient set of portfolios
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for the investor in the presence of fuzziness or any subjective information. White [166]
has presented a viable conceptual framework for the uncertainty theories which will be
used in this chapter. White [166] divides the uncertainty into so-called “subjective” and
“objective”. Subjective measures are derivable from observation of choice, whereas objective
measures are derived, once the basic data are given, by specific procedures, independent of
the problem faced. He {166] has suggested that measures of uncertainty are either formally
derived from specified data, or are imputed by observing choice in a given class of problems.
Also, he said:

“It is perhaps not an unreasonable prerequisite that objective and subjective
measures should be correlated to some extent.”

The objective of this chapter is to re-examine mean-variance theory in the presence
of fuzziness articulated by fuzzy returns (LR type). We rederive the Markowitz efficient set
and present the Fuzzy Capital Market Line (FCML) and the FCAPM. By illustrating these

ideas with an empirical example, a comparative study is obtainable.

3.2 Analytical Derivation of the Efficient Frontier with Fuzzy

Random Returns

In this section, we analytically derive the efficient frontier in the presence of sub-
jective information indicated by LR-fuzzy random returns. Firstly, the efficient frontier has
been developed assuming an economy consisting of no riskless assets. Then the derivation
of the Fuzzy Capital Market Line assuming an economy with both risky and riskless assets

is achieved.
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Throughout most of this chapter we will use the following set of maintained as-
sumptions:

(A1) Perfect markets: The markets for all assets are perfect with no taxes or
transaction costs. Unlimited borrowing and short sales are not permitted. Each asset is
infinitely divisible.

(A2) Competition: All investors act as price takers in all markets.

(A3) Homogenous expectations: All investors have identical probability beliefs.

(A4)  State-independent utility: Investors are risk averse and maximize the
expectation of a Von Neuman-Morgenstern utility function, which depends solely on wealth.

(A5) Complete markets: Each competitive investor can obtain any pattern
of returns through the purchase of marketed assets (subject only to his/her own budget
constraint) if the number of marketed assets with linearly independent returns is equal to
the number of states. Under assumptions Al through A4 it is known that the CAPM will
obtain if investor’s utility function is quadratic over the relevant range of outcomes or if all
asset returns are drawn from one of the class of "separating distributions” defined by Ross
[131].

Following Markowitz [103] in assuming a one-period economy, we assume that the
investor applies a buy-and-hold strategy during the entire period. Of course, it is noticeable
that the usual variations which we observe in a continuous framework are ignored here. As
they are under a multiperiod setting, the investors are willing to rebalance their portfolios
over time and single period investment models are not appropriate to help investors to

make the optimal allocation of their wealth. Still, it is plausible that the analysis under
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the one-period model assists in understanding the mean-variance theory in the presence of

subjective measure, articulated by the use of fuzzy random returns.

3.2.1 Investor optimization problem

Let us assume that we have N risky assets, indexed by j, where j =1,2,. .
N. Let the symbol “ ™ and “x” designate a random fuzzy variable. Let I%j represent the
one-period gross return on asset j, where the “gross” return is equivalent to one plus the
rate of return. Let &; and I;j represent the lower limit and maximum limit return of security
j.

For example, when the investor faces a situation in which returns are not sharply
defined but rather vague, she/he will establish, based on the experts’ judgments, an aspi-
ration interval in which the returns are located . In that context, the membership function
which measures his/her degree of precision has a symmetric LR linear form. Thus, when

R is assumed to be vague, we construct the fuzzy random return in the following fashion

R; = Rj + width (I;), Thus, &; = B; — I and bj = R; +1;.

The experts’ judgments provide the investor with the level of tolerance (width)
she/he needs to develop the efficient frontier and a; and Ej represent left-hand width and
right-hand returns respectively. The fuzzy random return can be abbreviated by R';‘ =
(n3)

Let Ry represent the gross risk-free rate of return. Let W represent initial wealth,

Y represent terminal wealth, B represent the investment in a riskless asset, and V; represent
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the investment in a risky asset j.

Given the above assumptions, the investor selects an optimal portfolio that maxi-

mizes the expected utility of the investor’s end period wealth. It follows that the investor

solves the following optimization problem.

Subject to

The first constraint is the in{iestor’s budget constraint, both sides of which are divided by
the investor’s initial wealth w. The second constraint is the wealth accumulation coﬁstraint,
which incorporates fuzziness. The investor can hold an asset long or short. A short position
implies X; < 0. We denote the investment weights as Xj= J— for asset j and Xy = for

the riskless asset. Restating the optimization problem:

Subject to Mo B [U (?)]
L=Xp+30,

Y=RWX;+ YN WX;R;,

Using Taylor series expansion, we expand the investor’s utility function around the expected
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end of period wealth.

where
=S~ (e[¥N (v - E[F])"
=3 v (2[7]) (¥ - £[7])
Assuming that the Taylor series converges, and because the expectation and summation

operations are interchangeable, the individual’s expected utility can be expressed as

10 (7)] =0 (2[7]) o (5[71) o (7) - 50

where

by =5 L0 (s 7] v (7)

n=3
and m™(¥) denotes the n* central moment of Y.
To maximize expected utility of wealth, the investor will maximize a function of the
moments of the portfolio return, taking into account the assumption A4 that all investors
are risk averse.

In addition, we know from the previous chapter that the covariance of random
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LR-fuzzy random variable is:

Cov[X,Y] = Cov[my, my] + a5, [Cov(ix,ly) + Cov(rx, ry)]

—2ay, [Cov(mx,ry — ly) + Cov(my,rx — Ix),
under the symmetric assumption of the fuzzy LR-fuzzy variable, we get:
Cov(X,Y) = Cov[mg, my|+ay, [Cov(ix, ly)+Cov(ry, 7y )]—2ay, [Cov(mx, ly)+Cov(my, Ix),
assuming further that m, » and [ are independent,
Var(X) = Var(p) + éVa'r(l) + éVar(r), (3.1)

and

1
Cou(X,Y) = Cov(py, py ) + EC‘ov(l’X, Iy). (3.2)

Applying the equation (3.2) in the context of the fuzzy random returns, we get:

N N

Var [ﬁ;] = ZZXjX’; [Cav {éj,ﬁ,] + %C’ov P‘;,lj” ,

=] j=1

where ﬁ; is portfolio fuzzy random return, and Ej, R; are the individual returns of assets
J and i respectively. E;,i: represent their spreads.
Following Markowitz [103], portfolio p is a mean-variance efficient portfolio if there

is no portfolic g such that E [R;] > E [ff!;] and Var [R;} < Var [ﬁ;] . Thus, the efficient
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frontier can be presented as the set of portfolios that satisfy the quadratic minimization

problem:
( Min Var [f%;]
| Subiectto  pp = XpRy+ 3N, X5 [Ry] (3.3)
N
. Xf + §=1 XJ =1

where, py = F [fi;;] » 1s the expected portfolio fuzzy random return. Because of the linearity
of the expectation in fuzzy random environment, the E[ﬁ;‘] implies that the expectation of

a random LR-fuzzy number ﬁ; is again an LR-fuzzy number:

B|R;) = (B EL))
Thus, the model (3.3) is equivalent to:

Min Var [@]
S Subject to tp = XsRs + Z;\;l X; <E[§J]a E[‘Z’J) ’

N

\

using the following notation:

fp = (r“';ﬂ lp); CO”(EJ‘:E‘) = 0ij; COU@,E) = Li;,
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the investment problem with only risky assets under fuzzy random environment is as follows:

( Min YL Y XX [0 + 3 L]
{ Subject to fp = N:I XjE'[“Rj]
J b= Zj:l X;Ell;]
L ;1,'\;1 Xj=1

We know from Dubois and Prade [34] that the following multiplication has two different
outcomes when X is negative versus a positive value.

26 (00 B)p = (Am, A, AB)rp  if A>0

(Am, —Ao, ~MB8)rr if A <0

In response to this consideration, we will limit our investigation to the case when the
proportions have positive values, whi(\:h means we will be dealing with an investment problem
without short sales. Specifically, many investors do not hold short sales due to either choice
or regulation (see e.g., [64], [2]).

We know from the existing literature that empirical derivation of the mean variance
efficient set, when short sales are allowed, shows that most, if not all efficient frontiers
contain some negative investment proportions. For example, Levy [91] has suggested that
there are two reasons for short sales: profit and diversification. In another paper Levy [92]
empirically finds that without short sales, many securities do not enter the efficient frontier,
and the larger IV, the smaller the percentage of the securities that will appear in the efficient
set. Thus, the efficient frontier grows slowly with an increased sample size. This finding

has been duplicated here under fuzzy information.
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Ross [129] suggested that in the absence of short sales, except on a single riskless
asset, using a geometric approach CAPM holds, as long as the market portfolio is efficient.
That assumption is maintained here; so it is intended that we will be able to generate the
CAPM.

Also, a portfolio model under a fuzzy random environment without consideration
for non-negativity constraint is difficult to model. In response to these considerations, in
this chapter, we tackle the analytical derivation of the efficient frontier with fuzzy random
returns, under the assumption that there are no short sales of risky assets. So, the model
is a quadratic programming one in which some stocks are held long (positive proportions)
while other stocks are omitted (held in zero proportions). Efficient frontier is a combination
of assets if there are no other combinations with the same (higher) expected return with
lower risk, and if there is no other portfolio with the same (or lower) risk and with higher

expected return,
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3.2.2 Efficient frontier in an economy with risky assets

In this section we want to solve the following utility minimization problem to find

the efficient frontier:

N N
Min Y "N " X;X05 + X; XiLji (3.4)
i=1 j=1
s.t.
N —~—
i = X;E[R;] (3.5)
i=1
N —~
b= X;E(l] (3.6)
=
N
Y Xi=1 (3.7)
j=1
X; >0 (3.8)

To find the optimal solution of this quadratic programming, we first write the Lagrangian

form as

N N N N
F(X, 1,22, 3) = Z ZXingij + ZZXJ’XiLij

i=1 j=1 i=1 j=1
N . N > N
+A1 (,up -Nx;E [Rj]) + o (lp -3 XE [zj]) + 3 (1 ~ ZXJ-) . (3.9)
=1 j=1 =1

In what follow X is in R* and is X = (X7, Xz, ..., Xy).
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Organizing the previous equation (3.9) we obtain:

N N
F(X, /\1,/\2,/\3) = ZZX_.;X; (O’,’j -F—L,;j) (3.10)
i=1 j=1 .
N . N N N
0y = Y XGE [B] |+ (b~ S XB) | 40 [1-3%5 ]
The Kuhn-Tucker conditions of equation (3.10) are
N ~ —~
0 < Y Xiol—-ME [Rj] ~ME[] ~A3,5=1,.,N (3.11)
=1
N ~
0 = p— > X;E [Rj] , (3.12)
=1
N ~
0 = L~ XE [zj] , (3.13)
-
N
0 = 1-3x, (3.19)
j=1
oL . |
0 = 5}5’)(_7, J= 1, aey N (315)
X >0 (3.16)

where
1

% = Cov [Rj,fﬁ] + —l—C‘ov [’z},il] =0y +3

3 Ly

If every variable is positive then inequalities (3.11) are equalities because of the comple-

mentarity conditions (3.14). The X;’s that satisfy the first order conditions minimize the
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variance for every given level of expected return and are unique. Equation (3.11) implies

N
> Xl —ME B - %Ef) - x5 =0,
j=1
that implies:
N . N _ N
Xp=M\ MuE [B;-] + X0 > BlliMi+ 23> My, k=1,.,N.  (3.17)
i=1 =1 i=1

Define Q* : Variance-Covariance of fuzzy returns, '~ : the inverse of the matrix Q" where
M;; denote the elements of the inverse of the variance-covariance matrix of fuzzy random
returns, i.e., Q* 1 = [My;i]. € represents the sum of the two variance-covariance matrices,
2 = [o4;] + $[Li;]. Multiplying both sides of equation (3.17) by E [Rk], and summing over

k=1,.,N, it follows

éXkE [fék] - ZZMk, [ ] [Rk] (3.18)

=1 =1
N N

+Ag ZszzE[Rk]E -I—)ngZMk, [ ]
k=1 k=1 k=1 i=1

Also, multiplying both sides of equation (3.17) by E Fk}’ and summing over k =1,.., N, it

follows

kZI:;XkE['l}] = /\1ZZM;“ [ ] [zk] (3.19)

k=1 i=1

N N - N N N »
A2 )Y MuERJER + 2305 M E [zk] :

k=1k=1 k=1 1i=1
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Then, summing equation (3.17) over k£ =1, .., N, it follows

ZXk =A ZZMk; [R] + /\2225[5 M + A3 ZZMM- (3.20)

k=1 1i=1 k=1 i=1 k=1 i=1

Next, we define

A= 3N M 2],

k;l i;l ) )
B = YN MuE|R) B[R,
k;1 1;1
Cc = ZZMM' (3'21)
k=1 i=1
N N L
A = YN MuE R B,
k 11;1
B, = ZZMM E[lk]
k.-lz—~1
¢ = ZZMsz[zk]
k=1 i=1

From equations (3.12), (3.13), (3.14), (3.18), (3.19) and (3.20), it follows:

tp, = AB+ XA+ 34 (3.22)
lp = A1d; + AaBp + MGy (323)

1 = A1A+/\201—!—/\3C. (3.24)



Noting here,

N N N N N _
Do MuB[R] = Y3 MuE[R],
N k;l =1 i 3 k;l t;l i )
3y }: MuE[LER) = Z My E[l) B[R,
;:1}\:=1 ) ) k;l z;l ) )
SS MuE [B;} El] = 373 MuEB[]E(R,).
k=1 1=1 k=1 1i=1
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Solving system of equations (3.22), (3.23) and (3.24) for A1, A2 and A3, and defining A =

B(B,C — C%) — A1(A1C — ACY) + A(A1Cy - ABy), and as 3, 3. My is positive because

of the positive definiteness of matrix M = [Mgi], we obtain

p.p(Blc - 0‘12) - ,,(Alc' —_ ClA) + (A101 — BlA)

)\1=

A
B\ —,up(AlC - AGl) + lp(BC - A2) — (BCl - AlA)
2 et
A
A ,up(AlCl - ABl) - lp(BC'l - AA]) + (BBI - A%)
3
A

(3.25)

Next, we substitute for A1, A2 and A3, from equation (3.25) into equation (3.17) to solve for

Xk. X is the proportion of each risky asset & held in a portfolio on the minimum-variance

for a given expected return, which is as follows:

by TiLa M | (B1C — CF) B(E) — (iC — AC)B() + (A1 — AB)|

~ly Y= Mis | (41C — CLA)E(Ry) — (BC — AN E() + (BCy — A4, )

+ 0L My [(A1G1 — B1A) E(R;) — (BCy — A1A)E(l) + (BB — A‘;’)]

A
E = 1,.,N.

b

(3.26)
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Using the following notations: (B;C — C%) = a; (4:C — ACY) = B; (4,0 — ABy) = 7;

(BC — A%) =§; (BCy — AA;) = g; (BB, — A?) = 4, the equation (3.26) is equivalent to:

o i Mi [aB(R) = BE@) +1] — 1 X, M [BEE:) — SE ) + o)

+350% Mii [vB(RD) - 0E@) + v
Xk = A 3

k = 1,.,N. (3.27)

Because M = [M};] is positive definite and A is zero if and only if u* = Al such that

= [p3, ...,,u;]’ s py = <E [EJ] ,E'[E;]> , otherwise A > 0.
Theorem 15 ([161]). Let p* = [uf, ...,u;]’ # 1 for all A. In the model there exists an open

interval (13, py, ) of py, in which every variable is positive if and only if :

(371 (o)< (S0 (324

for all pe€ I~ and g I't and

() () () ()

k

forall ic I®
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such that:

- (o) () () ()

i

© = ) (S]] () <o

7

() () - (o 3pp) () -

IO

Proof. Similar to what Vorés [161] presented in his paper. m

Because of the positivity of the variables and of A it follows that:

by oIy M [oB(RD) = BE) +] =y X, Mis [BE(R:) — 6B (E) + ]

B -~ >0 (3.28)
T My [YE(R) — 0B() + 9]

If we define

hi = ZMkiE[Rz]; fv= ZMkiE(lNi) and gy, = ZMki;

then, the equation (3.28) is equivalent to:

tolahe = Bfx +v9k) — Lo(Bhi — 8f + 0gi) + (Yhis — @fi +¥ge) >0 k=1,...n

If i € I° then L(Bhy — 6fi + @gr) + (Yhe — ofe + Pgr) < 0, indices g € It — (oehy —

Bfik+79x) > 0, and for p € I™ and p € I~ — (ahy, — Bfr + vgx) < 0, then the following
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inequality holds:

Lp(Bhe — 8 fi + ogr) + (vhe — @ f + ¢gk) << o(Bhi, — 8 fr. + war) + (vhe — ©fi + i)
(ohy, — Bfr + yor) P (ohy, — Bfr +v9%)

(3.29)
In line with Vords [161], from the inequality (3.29), the interval in which every variable is

positive is given by:

# = min {lp(ﬁhp —8fp+wg,) + {(vhp — ofp+¥gp) }
pel~ (ahy — B fp +vgp)

= Imax
‘U) qelt

{ Ip(Bhy — 6fq + ‘qu) + (’th —ofq +v¥94) }
(ahq —Bfs+ '}’gq) ’

We next multiply equation (3.11) by X; and sum over j for j = 1,..., N, to derive the

following:

N
EZXXUU Z [ ]X -i—)\gZXE(l)-i-/\gZX (3.30)

j=11i=1 j=1
From the definition of o2 (ft’;), equations (3.12), and (3.13), equation (3.30) implies

Var [Rp] = Mg+ Aoy + Ds. (3.31)

Substituting for A;, Az and A3 from (3.25) into (3.31), to obtain the equation for the

minimum-variance frontier. So, for the interval (515 Hy0), we obtain the functional form
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of return-variance:

~ 2 25 -2 -
42 (R;) _ (plo+ 126 — 21,8 2pp + 157 + ) (3.32)

A )
Once all fuzzy components (I, = 0, ; and Iz = 0) have been discarded in the equation
(3.32), we will get the standard functional form of return-variance. Thus, the model is a
special case of the Markowitz frontier. Next, for the sake of completeness of the analysis, the
minimum-variance portfolio in the presence of fuzzy random uncerte;,inty is presented below.
Since, the equation (3.32) is a function of two variables of degree 2, partial derivatives and
all other properties of multiple variables are applicable. The differentiability is achieved as

follows

90 (B5)  gap, —2l
_ 2o, 24,8+ _2B—1o
B, = A= 0= tpmin = B and (3.33)
o%s” (R;) 20
= >0
2, A

3.2.3 Efficient frontier in an economy where one asset is risk-free

For all investors to achieve the efficient frontier by lending or borrowing against
the risky portfolio, and for the separation theorem to hold, following Ross’ [129] analysis,
by permitting the investor to short sale the riskless asset, the analytical derivation of the
efficient frontier is presented. The risk-free asset offers a riskless return of R;. With short

sales restrictions, all assets will appear in positive amounts in the market portfolio. The



investor’s utility minimization problem is formulated as follows.

<

The above model is equivalent to:

¥,

which is equivalent to:

Subject to
.

%’;n >3 2 KXo

Subject to py=XiRp+3

=1

X, E[R}]

Xf-}-Eij:l

X; 20,

ji=1,.

SN

ﬂg&” 2 2.5 XiXj0%;

Subject to (g, L) = X (By, 1) + 35, X; (E[ﬁj], E@])

Af{m 22 XiXjo
J

bp = X;Rp+3 ;3 X;E[R)]

lp = X¢ly + 2;;:1 XJ'E[E'] ’

X+, X =1

50

(3.34)

(3.35)

(3.36)
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For simplicity, we assume that Ry is sharply defined, which means that ! ¢ =0. In order to

find the optimal solution of this quadratic programming, we write the Lagrangian form:
U(X50,%) = )Y XiXjol (3.37)
i

i=1

A (1,, -3 X (B - Rf))
=1

+M (ﬂp —Ry=)X; (Eléj] - Rf))

The Kuhn-Tucker conditions of (3.37) are:

T N . - .
% - ;‘Xiaﬁ W (E [Rj] —Rf) — ME [zj] >0 j=1,.,N (3.38)
o o "
o = MR- ;xj (B|&] - r) =0 (3.39)
%‘I—; = 1, —inE [1}] =0 (3.40)
3=1
% X; = 0 (3.41)
X; >0 j=1,.,N (3.42)

If every variable X; is positive (inequalities (3.42) hold) then inequalities (3.38) are equalities

because of the complementarity conditions (3.41). So, the equations (3.38) imply that:

Xe=X) Mu(B[R]-Rp)+ % MuE®) k=1,.. N (3.43)

i=1
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Multiplying both sides of the equation (3.43) by {E[ﬁk] —Rf] and summing over k =

1, ..., N, it follows:

Rl ) L3 el ) el 1) o
+A2;¥ML (B [&]) (EiF - R

Multiplying both sides of the equation (3.43) by E[lNk] and summing over k = 1,..., N, it

follows:

S XE {Tk] = W)Y M (E [E;f] - Rf) E [’z;} (3.45)
+A2 th ME@)E {El’c]

From equation (3.39), we deduce that the equation (3.44) using the implied parameters A,

B, C, A1, By and Cy, it follows that:
—Rf =X [B - 2R;A+ R3C| + Mo [A1 — R;Cy) (3.46)
Also, from equation (3.40), the equation (3.45) implies that:

lp =X [Al - R,eC'l] + A2B (3.47)
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So, both equations (3.46) and (3.47) imply:

(v — Bf)B — (A1 — R;Cy)

(B — ZRfA + R%C')B - (A — R;Clz)

(B - 2R A+ R‘%O)lp ~ (A1 — Rfcl)(pp — Ry)
(B —~2RsA+ R}C)B — (A, — RfC})

(3.48)

Defining D = (B - 2R;A + R?,C')B — (A1 — R¢C?) and substituting for Ajand g from

previous equation (3.48) into equation (3.43) to solve for Xy

1 [(1p ~ Rp)B = 1(A1 — RfCy)] Yoiy Mui(E[R:) — Ry)+
X =

[ (B—2R; 4+ RO, ~ (1 — ReCr) 1y — Bp)| £ MicE )
k= 1,.,N (3.49)

Using the notation indicated in the previous section,
Ge=) Miii fe=> MuE[l] and hy = Y My E[RY),
i i i

equation (3.49) is equivalent to:

1 [(#p = Rf)B — 1,(A1 — RC)] (hs — Ryg) +

[ (B —2R¢ A+ R3C)lp — (Ay — RpCi) {1, — Rf)] Jr
k=1,..,N (3.50)

Under the positive condition of the previous equation (3.50), and in a fashion similar to

the previous section, we derive the equation for the frontier using Vorés’s method [161].
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Because of the positivity of the variables and of the dominator, multiplying equation (3.38)

by X;, summing from j = 1, ..., N and rearranging, we find that:

SoY XiXioh=n ) (B[R] - By) X+ 2> XE() (3.51)
j i j

J J

From the definition of 02(§;) and equations (3.39), (3.40), equation (3.51) implies that:
Var(Ry) = M (1, — Ry) + Aol (3.52)

Substituting for Ajand Ay from (3.48) into (3.52), we obtain the equation for the minimum-

variance frontier.

~R ~ Ry)B — L(Ay — R;C
02(~)=% (1o — Bp) [(p — Rp)B — lp(A1 — RsCh)] (3.53)

+p [(B = 2R, A + R3Ol — (41 ~ RyCh) (s - Ry)]
Arranging the above equation we get:

2 fo) (4~ B B+12 (B-24R; + R3C) — 20y (A1 — RyCr) (s, — Ry)| \es
o* (%) = (B~ 2R; A+ RZC)B — (A1 - R;C7) - (359)

In the mean-standard deviation space, we get the following equation:

| m-r) B2 (B-24R; + R3C) = 20,(A1 — RyCr) (s — Ey)|
o (f) = (B—2R;A+ RIC)B — (A1 — R;CD) |
(3.55)

Thus, the minimum-variance frontier in mean-standard space is nonlinear, and equation

(3.55) is the Fuzzy Capital Market Line (FCML). We believe with the absence of fuzziness
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(in every single return I; = 0 and in the portfolic mean I, = 0) in the model, the equation
(3.55) will offer the classical capital market line. An empirical implication of this conclusion

is shown in the next section.

3.3 Empirical Implications of the Model

In this section we analyze the relationship between risk and return in the presence
of fuzzy information, revealed by the use of fuzzy returns, in NASDAQ stocks in the 1990-

2000 period.

3.3.1 The impact of the subjective measure on the location of capital

market line

In this subsection we use NASDAQ stock data to show the impact of the intro-
duction of fuzziness on the location of Capital Market Line. In real life, the investor will be
faced with more than just 15 assets as presented here. However, we limit our investigation in
this section to 15 stocks to compare the location of fuzzy capital market line with respect to
the location of the original CML. The model can be solved using any optimization software
to construct the market line of 15 risky assets. The randomly selected 15 stocks are traded
on the NASDAQ. The data, which covered the monthly rate of returns of these stocks for
the 10-year period 1990-2000, were taken from the Center for Research and Security Prices
(CRSP) and used to estimate the mean and standard deviation of returns. The following
tables (3.1 and 3.2) show the returns and the widths (spreads) of fuzzy returns for 15 stocks

over the 10-year period.
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Table 3.1: 15 NASDAQ returns randomly selected

Permna M2 M3 N4 M5 M6 M7 M8 5] M10

10025 } 6.38E-07 }-0.010696) -0.02174 | -0.11641 | 0.036368 | 0068993 |-0.022473] 0.07654 1.0.043078
10078 [ 0.121184 [-0.182324]-0.044449] 0.018019 | -0.071705| 0.028368 ] 0.00465 | 0.1465011 0.120673
10200_] 0.033226 [-0.210156]-0.365934] 0.088947 | 0.056863 ] 0.014963(-0.164304] _ 0__|-0.241162
10271 | 0.152579 i) 0.050586 ]-0.008009]-0.018265] -0.016605] -0.053024| 0.02927 |-0.034233
10290 § 0.030214 | -0.05506 }-0.045024] 0.006557 | -0.013158] 0.181217 |-0.068598) 0.1116481 0.147335
10588 | 0.223143{-0.123059] -0.04879 ] 0.150572 § -0.24213%] 0.140356 | -0.011976] 0.102048 0 042560
10772_]0.179152]0.038916 | -0.14781 |-0.017857]-0.018183]-0.066375]-0.159065] 0.188052 | 0.150061
11203 0 0.098801 | 0.064103 |-0.006558] 0.066797 | 0.085472 | -0.014225] -0.002860] 0

11701 )-0.174717 ¢ |-0.105361]-0.020409]-0.020834] 0.010471 | -0.053485} 0.084311 | -0.094311
11917 [0.179693 § 0.013072 |-0.102479]-0.082444)-0.677643| 0.129678 | -0.176931} 0.190354 1-0.127833
12063 1-0.158057]-0.147325]-0.057158) 0.028088 | -0.264816] 0.051825 |-0.051625]-0.161268] 0.012423
12068 |-0.037272] 0.033198 ] -0.00409 |-0.012371 0 0.024531 ] 0.031875 | -0.015811]-0.003902
12189 | 0.133531] 0.020618 0 0.185719 [-0.107245] 0.072750 | 0.072758] 0 0.055059
19546 ] -0.11441] -0.06252 ] 0.279585] 0.115069 | -0.079137] 0.13206 | 0.030450| 0.04579 | 0.255695
23318 {-0.106314] -0.0977 }-0.165619] 0.312223 | -0.009132] 0.04485 |-0.146142]-0.015346]-0.020834

Due to the space limitation, the above table does not contain all the observations over the
10-year period; it is a subset from the complete data set. Permno is a number identifying
the issuing company

Because there are an infinite number of ways to characterize fuzziness, there are
an infinite number of ways to graphically depict the membership and to generate the data.
Normally, experts should be able to offer decision makers or investors information regarding
the measure of fuzziness. In this context, fuzziness has been used under the following con-
ditions, that it reflects the experts’ judgments and that the returns should be around those
values. For example, the company with permn 10078 has a 0.211 return. After getting a
subjective recommendation from experts, the return that should be used is 0.211-0.000645.
In a fuzzy setting with TR type fuzzy membership, that means that the membership func-
tion equals 1 for a return 0.211, and it is linearly decreasing on the right and left. Ross T.
[132] pointed out that there are more ways to assign membership function values to fuzzy
variables than for random variables. The literature on this topic is rich with references,

for example [34]. The assignment can be intuitive or based on algorithms or logical opera-

tions. We established the table (3.2) based on a combination of the intuition and inference
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methods presented by Ross T. [132].

Following an inference approach, we use the bid-ask spread to get the width of the
fuzzy returns. the logic behind that technique is that a bid-ask spread creates vagueness
and imprecision in the investor’s choice. It is the irregularities, which may arise from the
lack of imprecision in the data, that are a concern here.

Moreover, market-created uncertainty results from the interaction (directly or in-
directly) among participants who form their expectations in an ill-defined market. Conse-
quently, each participant will form his/her expectations based on their subjective prediction
of other participants’ expectations.

We use the bid-ask spread because it affects the stock returns (see, [78]). There
are considerable theoretical justifications to the use of a bid-ask spread and to its effects on
returns. Heinkel and Kraus [52] pointed out that a component of the bid-ask spread, which
is based on information asymmetries, could be considered part of true returns. Hence, the
effect of bid-ask spread is that the observed returns differ from the true returns.

Moreover, as pointed out by Amihud and Mendelson [6] rational investors select
their assets to maximize their expected return net. These authors showed a strong effect of
the spread on returns.

Because the bid-ask spread is related to the availability of information about the
asset, the greater the amount of information about an asset, the narrower the spread, which
means the closer the true return is to the observable return (see, [32]). In contrast, the more
information about an asset is vague, the greater the distance between the true return and

the observed return. In this sense, the width between the observed return and the net



58

return, taking into consideration the bid-ask spread has been identified (see, [106]). Also,
Merton [106] pointed out that incomplete information about a stock, which is a major
factor, is reflected in its bid-ask spread. This conclusion has been supported by the effect
of Amihud and Mendelson’s spread {5].

In a statement Merton [106] says:

“T also believe that financial models based on frictionless markets and complete
information are often inadequate to capture the complexity of rationality in
action.”

That lead to the development of the so-called width (tolerance level), which means
that the investor uses the net and observable returns to form his/her fundamental returns,
assuming that the fuzzy random return sways between them. We employ a method com-
parable to Amihud and Mendelson [5] in developing the net return, to allow the investors
the ability to compress information into fuzzy notions that they can analyse using fuzzy
theory. Under these considerations, the following formulas have been derived to generate
the widths data in Table (3.2)

_ Askprice; —~ Bidprice;

F,
mi 9 )

and
Pmt 1 — Spread,
Ri=In{— ot = | ——~—— ,
i H(Pmm)’Rnt (1+SPT€adt—1)Rt
such that

Askprice; — Bidprice;
Askprice, + Bidprice;’

Spread; =
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then

width =1, = |}inet - Rtl

Table 3.2: 15 widths of the 15 NASDAQ stocks 1990-2000

Permno M2 M2 (Y2} N5 e 7 5] XE] M10
10025 | 6.38E-08 } 0.000771 | 0.007388 | 0.008332 |} 0.002093 | 0.003002 | 0.000090 | 0.00392 10002747
10078} 0.000645 | 0.001587 | 0.600402 | 0.00016 | 0.000508 | 0.000132 ) 2.15E-05 | 0.000588 | 0.000428
10200 | 0.000647 ] 0.005252 ] 0.016081 | 0.003711] 0.001969 | 6.000365] 0.006733 0 0.014312
~ 10271 | 0.004350 0 0.001566 | 0.000241) 0.000498 | 0.000517 | 0.001818 { 0.000832 ] 0.000846
10290 0.001234 { 0.00305 | 0.00199 ] 0.000211{ 0.000513 | 0.004135 ] 0.001642] 0.003502 | 0.003996
10588 | 0.016129 | 0.010004 | 0.004648 ] 0.011011] 0.019282 | 0.011222] 0.00124 § 0.000616 [ 0.003408
10772 10.004632 ] 0.001458 | 0.004932 ] 0.000641 | 0.000974 | 0.003143 ] 0.009105] 0.010504 | 6.00611
11293 0 0.005047 | 0.003068 | 0.000336 | 0.002629 | 0.002612 | 0.000521] 0.000305 0

11701 | 0.007638 0 0.005277 } 0.000812 | 0.000434 | 0.000323 | 0.001711] 0.0027631  0.003
11917_] 0.005927 | 0.000335] 0.003676 | 0.003125 | 0.057284 | 0.008544 | 0.01111110.012208 1 0.009176
12063 ] 0.005244 | 0.00462 | 0.061405] 0.000585 ] 0.00999 | 0.002554] 0.002659 | 0.007896 [ 0.00045
12068 § 0.00108 | 0.000803 | 8.28E-05 § 0.000255 ] 0.00059 | 0.000741 | 0.000374 | 7.89E-05
12180 | 0.015748 | 0.002018 0 0.018062] 0.011509 | 0.007281 0.007801 0 0.004692
19548 |0.006743) 0.00391 [0.013475 0.004907 | 0.004586 | 0.005464 | 0.001495 | 0.003145 | 0.009637
23318 ]0.001278 ] 0.001265 | 0.002054 | 0.002871 | 8.34E-05 | 0.000392 | 0.001481 ] 0.000157 | 0.000218

Due to the space limitation, the above table does not contain all the observations over the
10 year period,; it is a subset from the complete data set.

The following graph (3.1), which has been plotted in two dimensions, shows the
location of the capital market line with fuzziness (blue line) and without accounting for
fuzziness (red line); the value of 0.031 has been used for the portfolio width l, =0.031 and
0.07 as the risk-free rate Ry = 0.07 to be able to show the graph in two dimensions!. The y
axis represents o and the x axis represents #p- By increasing from I, = 0.031 (blue line) to
0.045 ( navy line) and 0.061(brown line), the FCML is moving upward, which means that
an increase of fuzziness manifested by the portfolio width I, will cause the market line to be
more dominated by the original market line. On the contrary, a small degree of fuzziness

in the model, measured by the portfolio width, shows that fuzzy capital market lines are

! Although it appears very high, risk-free rate of 0.07 has been used only for illustration purpose. The
average of T-Bill rate over the period 1990-2000 could be more appropriate.
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dominated by the standard linear capital market line. Also, as presented in the previous
section, it is obvious in the following figure that the FCML is nonlinear. The introduction
of fuzzy information, then, shifts the intercept of the line relating p,, and the slope from R

to another positive value (value < Ry).

Figure 3.1: Capital Market Line (CML) without accounting for fuzziness (red line) and
fuzzy CML (others)

The next graph (3.2) plots the capital market line (blue plane) with the risk free
rate (Ry = 0.07) and the efficient frontier without the risk free-rate (green plane) in three
dimensions; the y-axis represents the portfolio width [,, x -axis represents the portfolio

mean j, and z-axis represents the oy,
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Figure 3.2: 3 D graphical representation of the fuzzy frontier with and without risk-free
rate

3.3.2 The impact of fuzziness on the location of efficient frontier

Using another set of data we randomly selected 15, 30 and 50 stocks traded on the
NASDAQ. Following the same method discussed in the previous subsection, we generate
the widths (spreads) for all the complete data in the form of 15, 30 and 50 widths. Similarly
to the case of 15 assets presented previously, the efficient frontiers have been presented for
15, 30 and 50 assets.

The mathematical problem without short sales presented previously (3.4-3.8) has
two new constraints (3.6) and (3.8), so it requires programming techniques to handle the
problem. With computer capability we are able to achieve the efficient investment strategy

for each portfolio return level p,, with width [, for all different groups of assets. (15, 30 and
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50 assets).

Because the computer program is long and complicated, it has not been included
here. The part of the computer code (written in Visual Basic) which generates the N asset
mean-variance efficient set with short sales under fuzzy information, is in appendix A.

One aim of this part of the program is to not only do all the necessary computations
from stock prices and solve the optimization problem but also to generate a graph of the
efficient frontier without short sales. The following figures [(3.3), (3.4), (3.5)] show the
efficient frontier without short sales for all three sample sizes (15, 30 and 50 assets). One
major element worth elaborating on is that all efficient frontiers are concave arcs, which is
consistent with the finding of Szegt. However, the boundary of each sample size turns out
not to be a parabola. It is also clearly observed that the arc, which is between minimum and
maximum points does not coincide with the original boundary. The minimum (maximum)
point represents, as discussed previously and supported by Szegd’s finding [147] can be
achieved by investing the capital in the investment option with lowest (highest) return.

For comparison, the following graphs represent the case when fuzziness is not in-
cluded. In accordance with Levy [92], the figure (3.6) plots the efficient frontiers constructed
with and without short sales; the efficient frontier without short sales lies inside the efficient
frontier with short sales. An investor with short sales will attain a lower utility than an
investor with both short and long positions. Also, in all cases (15, 30 and 50 assets), it is
clear that the frontier is not a parabola, but an arc of a parabola as suggested by Szegd

[147), see figures [(3.7), (3.8)].
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Figure 3.5: Efficient frontier (EF) without short sales for 50 asset prices

Gathering the information together in one graph will generate the following figures
(3.6, 3.7 and 3.8). We note here that the efficient frontier without short sales does not
coincide with the one with short sales. Yet we may have attached a part of the efficient
boundary to the original, so we need to identify the remaining parts of the new efficient
frontier. Also, the next three figures reveal that, for all sample sizes, the efficient frontier
with short sales dominates the one without short sales. This statement appeared in much of
the literature. Because short sales restrictions add a new constraint, it is obvious that the
efficient frontier will be dominated. Moreover, various sample sizes show that the efficient

frontiers with short sales are parabolas.



Figure 3.7: Efficient frontier with and without short sales for 30 assets prices
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Taking into account various sample sizes, the data suggest a conclusion consistent

with Levy’s findings [92] that as the sample increases, the efficient frontier with and without

shift from the left. It is clear that the distance between is proportional to the data. Levy

[92] used a small sample size up to 15 assets; here we expand that finding with a larger

sample size. He empirically finds that without short sales, many securities do not enter

the efficient portfolios, and the larger N, the smaller the percentage of the securities that

appear in the efficient portfolios out of the total number of available securities, N. This

finding is supported by the collected data.
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Figure 3.10: Portfolios’ efficient frontier(s) without short sales (EF wo SS)

Taking into account fuzzy information, the fuzzy efficient frontiers are represented

in XYZ plane as follows for various sample sizes (3.11,3.12 and 3.13):
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Under a fuzzy information environment, the efficient frontier without short sales has been

derived (with the use of a VBA program; part of that program is in appendix A) and plotted
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for various sample sizes. The portfolio width has been included as a third parameter, and
the frontier has been plotted in a three-dimensional graph. In this section, the relationship
between risk, return and width, which is used as proxy for the subjective comment of the
experts, has been represented by a surface. The efficient frontier portfolios are plotted on a
graph with the o, in the x-axis, width in the y-axis and the mean in the z-axis. Projecting
the graphical representation into a two standard deviation-mean plane figure (3.14) shows an
arc, not a parabola, which is consistent with the result reported earlier when the subjective
fuzzy measure was discarded from the model. Also, for 15, 30 and 50 asset sample sizes,
similar to the case of short sales, we still observe that in the larger sample size, the efficient
frontier is shifted to the left; the dominance of the large size sample still holds. In general,
the efficient frontier is a combination of assets, if there is no other combination with the
same (higher) expected return with lower risk, and if there is no other portfolio with the
same (or lower) risk and with higher expected return. In this context, a higher (lower) risk

is associated with a higher (lower) return.
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Figure 3.14: Efficient frontiers in a mean-standard deviation plane with subjective fuzzy
measure

Also, the following graph (3.15) shows that as the degree of fuzziness increases

(flexibility with respect to the portfolio mean improves) there is a slight decrease in the

level of risk. Note here that the graph does not suggest a strong negative relationship for
various sample sizes®. Because the widths in our samples are correlated with the returns,
we could not see a strong visible (either positive or negative) relationship. Thus, we suggest
that as soon as the investor starts getting new subjective information from experts, which

is to some extent not primarily correlated with the historical data, we will be able to spot

2 Also, due to the limited plotted number of observations, we could not see a very strong relationship.
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a strong visible relationship between the width size and the risk level. Thus, an investor

who is flexible and is acquiring additional subjective information to support the historical

data will be flexible to accept a higher risk. Thus, we anticipate a negative relationship.

The following graph (3.15) shows a slight negative trend, mainly for a larger size sample.

In contrast, an investor with small portfolio width (not flexible with respect to the portfolio

mean) tends to accept less risk. For instance, it has been shown in the figures that sometimes

there is not a conclusive relationship between portfolio width and risk.
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Figure 3.15: Relationship between the widths and sigma for different sample sizes
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3.4 Short Sales and the Derivation of the Fuzzy Random

CAPM

We derive another fuzzy version of the CAPM that differs from the fuzzy con-
strained capital asset pricing model attempt derived by Ostermark [114] in which he used
fuzzy linear constraints to augment the problem and solved it by parametric methods of
linear programming.

One serious deficiency of the method presented by Ostermark is that it allows
the introduction of fuzziness only in the linear policy constraints without changing the
covariance terms (o;;). His analysis is amiss, because, if we want to allow some degree of
subjective imprecision in the system, we should not ignore that imprecision will influence
the covariance terms and the expected return in a similar fashion.

Moreover, limiting the analysis, in the case when the coefficient of policy constraint
(returns) and the mean portfolio are fuzzy, is not an appropriate approach to deriving the
fuzzy capital asset model with subjective imprecision. This is because, firstly, the returns
are used to compute the variance-covariance (Cov-Var) matrix, so if there is imprecision in
those coefficients, it must be modeled again in the Cov-Var matrix. Secondly, if we want
to capture the managerial imprecision, the theory of CAPM should be extended to deal
with the source of fuzziness; for example, when data exclude some observations, when data
consist of non-sharply definable observations, or when we want to allow the introduction of
a measure of subjectivity in returns, as inspired by Markowitz’s statement [105]. Thirdly,
because Ostermark assumes that all the proportions have a positive amount (short sales

restrictions are imposed) and ignores the riskless asset in the model, the CAPM has been
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violated. As suggested by Ross ([129], [36] and [37]) the CAPM will not hold if there is a
riskless asset, like other risky assets that cannot be shortened, and the CAPM will hold for
that subset of assets that can be sold short.

Also, it has been shown in many sources (e.g. [28], [92] and [93]) that capital asset
pricing theory has been developed on the basis of mean-variance theory. Thus, we suggest
that a better way to handle that derivation task is through an analytical approach.

An approach for deriving the Fuzzy Capital Asset Pricing Model (FCAPM) is pre-
sented, using, to some extent, the fuzzy efficient frontier model obtained previously. Let us
consider an arbitrarily chosen risky asset J. Let m denote the portfolio lying on the tangency
point between the fuzzy random-adjusted CML and the minimum-variance frontier for risky
assets. m is a mean-variance efficient portfolio, with E [R;;] = ;\121 <E [Rj] , E[E;-])LR X; =
<Ej X;E[Ry), 2 XjE[E])LR' Consider a portfolio p, consisting of a proportion w invested
in security 7, an ineflicient portfolio, and a proportion (1 — w) invested in portfolic m. The

optimal portfolio is found through solving the following model:

Min %Var (w <E [*,-] ,E[’l}]) +(1—w) <E {Rm] ,E[E,,J)) (3.56)
Subject to
wk [}?J] +(1-w)E [ﬁ'mJ =

wE [?f,] +(1-w)E [Tm] =1,
Knowing that such a portfolio will have an expected return equal to

1t = E[Rp) = wB[R;] + (1 — w) E[Rp),
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with spread (or width)} equal to

by = BlRy] = w[;) + (1 - w)Efi,
we conclude that under fuzzy random setting, the expected value is:

= B{R = wE(R] + (1 - w) B[R] (3.57)

= w(B[&], BL) + (1 —w) (B[R] BT,

and the standard deviation is equal to

1/2
- w202.+(1—w)20,2n—1-2w(1—w)a-m
o(RY) = ( ! ? ) (3.58)

+1 (w%f. + (1 —w)? L2, + 2w (1 - w) L,-m)
All such portfolios will lie on a curved line connecting J and m. Of concern is the slope
of its curved line with fuzzy random uncertainty. Using equation {3.57), the derivative of

E[Ry] with respect to w is taken:

bl = i) - Bl 59

Second, using equation (3.58), the derivative of op with respect to w is taken:

do* WoF — 0%, + WO + Tjm — 200 + [wa — L2, + wIZ 4 Ljp — 2wL5mJ

(3.60)

[(w%? +(1-w)?02, + 2w —w) a_,-m) +3 (wQL? +{1-w)? L2 + 2w (1 - w) Lijm

/2
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Third, the slope of the curved line Jm can be written:

= dE[R
2 (3.61)
do} ;difé

1/2

_ - w?o? 4 (1 ——w)2 0%, + 2w (1 — w) Cjm
|B1E) - BiRy)| (172 )
+1 (szf. +(1—w) L2, + 2w (1 — w) ij)

[wa?- - a?n + wa?n + Ojm ~ 2warjm]

+1 [ng ~ L2, + w2, + Ljp — 2ijm]

Since the proportion of w is zero at the endpoint m, the slope of Jm can be calculated by
substituting zero for w in equation (3.61). After doing that, many terms drop out, leaving

the following:
- =, =, 1/2
ap(fy)  |BUE) - BiRy)| [0 + 112]V
doy [0jm — 0%] + 3 [Ljm — L]

(3.62)

At m, the slope of the FCML must coincide with the slope of the curve Jm. Thus, the
slope of the curve of Jm at m, as shown on the right-hand side of equation (3.62), is set to
be equal to the slope of the FCML assuming that ,,, = 0:

~ = 1/2 -
|BIE;] - BIR)] (0% + 422 _ B[R] - Ry
loim =021+ 3 [Lim ~L2] (o2, + 112)"

(3.63)

_[BlE) - By [[ogm ~ o2] + } [ — 2]
I [02, +112]

+ E[R%] (3.64)

|BU) = Ry] [[oim ~ 02] + 4 [Bgm — I2]] + [02, + 112, BIR)
’ [02, +512)]

(3.65)
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Ry [U,zn + %L?n] + E[ﬁ;} [O’jm + %ij] — Ry [ij + %ij]
(0% + 5LZ)]
[E[ﬁfn] - Rf] [05m + %ij]
0%, + 3 L]

E[Rj] (3.66)

Il

Ry +

E[R;]

Thus, we obtain the fuzzy random CAPM (FCAPM) equation as follows:

[0jm + 3 Ljm]
[02, +312]

BIE)] = Ry+ | BIE;,] - Ryl

B[R} - Ry [E[Tz;] - Rf] Jor (3.67)

such that

1
LI
s, = Loim + 31m] (3.68)
J [G'?n + ﬁL?n]
Note here that once the fuzzy measure has been ignored in the equation (3.68) by having

Ly = L%,I = 0, we obtain the beta of the original CAPM.

3.5 Summary

This study addressed the implications of relaxing one of the fundamental assump-
tions associated with mean-variance theory as set down in Markowitz ([103], [105]) and
Tobin [155] that asset returns are sharply defined. Theoretical arguments in fuzzy mathe-
matics assume that there are cases in which random uncertainty alone may not serve the
purpose and indicate that fuzziness may impact the first two moments of asset return. This
suggests that the lack of information associated with market-traded securities challenges

the usefulness of standard mean-variance theory for other research and practical portfolio
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management.

To make the link between existing theory and the subjectivity measure of expert’s
judgments, we rederived the Markowitz efficient set and dealt with the implications of
the rederivation on the Capital Market Line (CML) and the Capital Asset Pricing Model
(CAPM). The contribution of this chapter is the presentation of a methodology for the
derivation of the attainable efficient frontier in the presence of fuzzy information in the
data or when the fuzzy information is imposed in the modeling environment to reflect a

subjective measure.
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Chapter 4

Fuzzy Probabilities with

Applications

4.1 Introduction

Shannon [140], with the intention of measuring the information lost in the process
of transmission, pointed out that a measure of information should essentially be a measure of
uncertainty. Here, uncertainty usually is associated with a probability distribution P. Also,
he showed that —K 3 p; Lnp; satisfies the properties for a measure of uncertainty, and he
called it a measure of entropy, because a measure of probabilistic uncertainty is equivalent
to a measure of entropy. The expected information gained upon complete resolution of
uncertainty is a measure of current uncertainty, and K is a positive factor that determines
the unit of measurement.

Entropy originated in the field of thermodynamics and statistical mechanics to
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represent a measure of disorder. Lindley {94] and Good ([43], [44], [45], [46], [47]) presented
the relationship between the measure of information and probability and statistics. Both
uncertainty and entropy are closely related in describing imperfect knowledge.

The idea behind the principle of entropy, as suggested by Cozzolino and Zahner

[27], is that:

“....the probability distribution desired has maximum uncertainty (minimum
information content) subject to representing some explicitly stated known in-
formation ...”

It is well documented that the scope of entropy applications is not limited; many
studies have looked at the use of entropy theory in various subjects. For instance, a com-
prehensive development and selected empirical bodies of work in business were given by
Theil [152], Herinter [53], Abdel-Khalik [1], Philippatos and Wilson ([119],[118]}, Saxena
[137], Thomas [153], and Nawrocki [111].

Work by Cozzolino and Zahner [27], is considered pioneer work in entropy in
financial modeling. They used the principle of maximum entropy to derive a probability
distribution of future stock price for an investor having specified expectations. The principle
of maximum entropy is used in their study and in others, because it offers a method to
generate probability distribution from limited information.

In another effort, Thomas [153] presented a generalized maximum entropy prin-
ciple to deal with problems involving uncertainty but with initial information about the
probability space. Normally, this knowledge is expressed through known moments of a ran-
dom variable. He suggested adding known bounds on moments to the modeling framework.
In fact, Thomas {153] did model system selection in a fuzzy situation, when probabilities

might lie between two values. With bounds in event probabilities and moments, his solution
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to the nonlinear programming problem is achieved by a numerical method (algorithm). In
the present study, we relax and expand this restriction somewhat by allowing for information
via a random variable with fuzziness in the system.

In another study, Saxena. [137] used entropy to select the bést alternative invest-
ment projects. He presented an algorithm to obtain the probability distribution of variables
based on probability ranges, which should be specified at the early stage of a study.

Nawrocki [111] used entropy to measure investment performance (security analy-
sis). He suggested a heuristic algorithm using portfolio analysis with state-value weighting
entropy as a measure of investment risk. Philippatos and Gressis [118] provide conditions in
which mean-variance, mean entropy and second degree stochastic dominance are equivalent.

In a fuzzy setting, De Luca [99] was the first to define a non-probabilistic entropy
with the use of fuzzy theory. He proposed an entropy measure of a quantity of information
that is not random in nature. However, as he pointed out in his study, the mathematical
efforts were not complete and open for much work.

Even after Philippatos and Wilson [119] argued that entropy is a better statistical
measure of risk than variance, because entropy is a non-parametric measure, entropy still did
not appear often in published works. As Philippatos and Wilson [119] suggested entropy as
a measure of portfolio risk, because it does not make assumptions concerning the probability
underlying the returns, we use the same analogy to establish the measure of risk using the
proposed fuzzy entropy method.

It is of interest to point out here that neither the Cozzolino and Zahner [27]

approach nor the Philippatos and Wilson [119] method include a the situation when there
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is imprecise information to start from. Consequently, we use the fuzzy theory in conjunction
with the entropy theory. This study describes the method of providing a specific distribution
by using the fuzzy entropy principle.

Kapur [68] has discussed the views of Jaynes [65], Cheesman [24], and Lindley
[96], who are in favor of probabilistic entropy and of Kosko [79] and Klir [73], who are in
favor of fuzzy entropy. Kapur [139] emphasized the need for a cooperative effort between
probability theory and fuzzy theory to explore the concept of uncertainty for the prosperity
of mankind.

To measure uncertainty about facts, events or consequences of actions, we need
. some kind of probability. However, to measure the indeterminancy that arises from limited
knowledge about these matters, we need to use imprecise or fuzzy probabilities. Here, fuzzy
probabilities are used as a generic term to cover mathematical models such as upper and
lower probabilities. This chapter is concerned with fuzzy probabilistic reasoning, which
involves various methods for assessing fuzzy probabilities, taking into account new “fuzzy”
information and the derivation of certain results of other probabilities and conclusions.

The focus in the present chapter is on the presentation of a new approach using
probability theory, and various other (non-probabilistic) scenarios with their utility in risk
modeling. Anyone familiar with the stock market will find that the most challenging decision
is to differentiate between the good one stock to buy and the bad stock to sell.

Borch [14] in his book said:

“However, if we buy the stock in question, there is necessarily a seller who thinks
that at the present time and the present price it is right to sell the stock which

we consider best to buy. If the seller is just as intelligent and smart as we are,
it may be useful to think twice.”
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In the present study the goal is to draw conclusions about modeling financial risk
using fuzzy probabilities. To a lesser extent, we consider decision problems (investment
problems), where the goal is to choose an optimal strategy and determine the optimal
alternatives. The primary aim of the chapter is to establish the mathematical theory of
fuzzy probabilities, based on the measure of entropy.

Fuzzy entropy measures the degree of fuzziness of a set A. The usual entropy
measure tells us how equal the probabilities p;, pa, ...pn are among themselves or how
close the given probability distribution is to the uniform distribution. The measure of fuzzy
entropy tells us about the degree of fuzziness of the set A or about how close the given set

is to the most fuzzy set.

4.2 A Fuzzy Situation Handled Through Probabilistic En-

tropy: Discrete Case

Statistical reasoning with imprecise probabilities has been discussed in the litera-
ture; for instance, Walley [163] has investigated methods of reasoning and imprecise proba-
bilities. Fuzzy probabilities are not crisp but are imprecise and ambiguous. Specifically, we

consider probabilities p;, ps ..., p, satisfying the constraints,
GiSPiSbi,aiZO, sz]ﬂ ?'=1: S L (41)

and

ipi =1 (4.2)
i=1
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There is a fuzziness about these probabilities and we would like to understand it and
possibly measure it. As a first step, we attempt to get the most unbiased estimates for
the probabilities satisfying constraints (4.1) and (4.2). For this purpose we maximize the

probabilistic entropy measure ([67], [69]).

- Z(bi —pi)Im(b; — pi) — Z(Pi -~ a;) Ln{p; — a;) (4.3)
i1

i=1

This measure is so designed that on its maximization subject to (4.2), it gives probabilities
that automatically satisfy constraint (4.1). Using Lagrange’s method to maximize (4.3)

subject to (4.2), we get

b — pi
Pi— o

=K (4.4)

where X, a Lagrange multiplier associated with (4.2), and is determined by using both (4.2)

and (4.4) we get:
b+ Koy

Dy = BEY (4.5)
and using (4.2), we get
K:?fé (4.6)
where A=} " a;,and B=Y 1 b.
Using (4.1) and (4.2), we get
A<1<B (4.7)

and (4.6) and (4.7) yield K > 0.
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Using (4.5) and (4.6) we get

o (b,;—a,-)+Bai~Abi
pt“ B‘—'A

(4.8)

These p;’s yield the most unbiased estimates for the probabilities satisfying the constraints

(4.1) and (4.2).

4.2.1 IHustrative Example

Let us assume that we have a set of probabilities p; that satisfiy the constraints
(4.1) and (4.2) such that a; and b; are as in the table below. We attempt to get the most

unbiased estimates for the probabilities.

i |1 2 3 4
a; { 0.1 10.15 [ 0.20 | 0.25
b; 1 0.2 10261 0.33]0.35

To evaluate the probabilities p; such that (z = 1, . . ., 4) using the method illus-
trated above we have A = } . a; = 0.7,B = ) ;5 = 1.14 > 1. Thus, the most unbiased

estimates for the probabilities are

1 1 2 3 4
pi | 0.168 | 0.225 | 0.288 { 0.318

4.2.2 An alternative measure of fuzziness

In this section, we consider the set of probabilities (p;, pa, . . ., Pn) as a fuzzy set
with the probabilities p1, pz, ..., ps as values of membership function. A measure of fuzziness

of this set [68] is

n

=Y piln(p) =Y (1 —p)Ln(l —p;) (4.9)
i=1

i=1
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An alternative measure of fuzziness as given by (4.3) and (4.4) is

[_ 1n ((b,- - a;)B-I—_}i;z; — Abi) In ((bi - ai?gtB:i - Abi)} _ w10)

g (b; — a;) + Ba; — Ab; _ (bi — a;) + Ba; — A,
{Z (1 B A In|1 B A

i=1

An alternative measure of fuzziness based on (4.3) and (4.4) is as follows:

i bi + Ka; b+ Ka; i b; + Ka; b; + Ka;
-3 (b - b - - o) In (B,
[;(‘ 1+K)Ln( 1+K) ;(H-K G)Ln(lﬂr( ”’)]

=1

[ () o (KLam) 3 () o ()]

I

1+K[Z(b az)Ln(l_‘_K)-{-Z(b a;)Ln(b—al)}

].-]-K [Z(b ag)Ln(bi—ai)+Z(b;—a,;)Ln(1+K)

i=1

K 1 1
:—Ejb—,L bi —a5) — (B —
(b — ai) L (b — ) — ( A)[1+KL1+K+1+KL”1+K}

(B - A) [ i‘ ((b‘_a‘)) ((E:‘z’)) — Ln(B — 4)

=1
~(B-4) [(151{) L”(1+(K) (113K)L”(1:K)]
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= (B- A)[ Z( a*) ((2:2))—Ln(3~f1)}

+(B—A)[—~ K B 1 1t ]

4.11
1+K 14K 1+K 1+K (4.11)

The above formula (4.11) consists of three terms:

1. The first term is

e oo (bi—a1) (bz—ag)  (bn—an)
(B—A)«* (entropy of the probability distribution B-A' B_4'" B 4
(4.12)
2. The second term is
—(B — A)Ln(B — A) (4.13)

3. The third term is

K 1
(B — A) * [entropy of the probability distribution ( TR K)} (4.14)

We observe that

(2) Third term in (4.11) is 0 if K = 0 or K = 0o, that is, if B=1, or A =1, and
has maximum value Ln2 when K = 1, that is when A+ B = 2.
(b) If B — A is kept fixed, then the first term in (4.11) is maximum when all

(b; —a;)’s are equal, the second term is constant and the third term is maximum

when B+ A = 2.

Based on the above observations, there are few comments worth mentioning here.



87

1. Probability theory and fuzzy set theory are considered as giving two different and
mutually exclusive approaches for two different types of uncertainties. However,
here we have considered both types of uncertainties simultaneously and have tried to

discuss fuzziness in terms of the probabilities themselves.

2. We first try to eliminate the fuzziness by using the principle of maximum entropy to

get crisp values of probabilities.

3. However, the set of crisp probabilities is itself regarded as a fuzzy set with probabilities
giving the values of the membership function, and we find measures of probabilistic
uncertainty, which can be measured as the fuzziness of the information that was given

to us originally.

4. We started with a fuzzy situation and ended with a probability distribution where the

probability distribution, depends upon the fuzziness of the original situation.

5. This measure depends upon all (b; — a;)’s, (B — A), and the ratio ;3 - T

4.2.3 Generalized Case

Instead of considering probabilities, we now consider any n non-negative numbers,

Zi, X3, . . ., Tn, satisfying the constraints

(1)

a; <z; <b, ;20, 5;<1; i=1,...,.n (4.15)

and

Tt ze+.. .z =C (4.16)
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so that

AL<C<B

Proceeding in the same fashion as before, we get

m__bzr-l-Kai

U1+ K
B+ KA

C= 1+ K
B-C

K=" )
S (4.17)

So that

o C(bi—a,;) + Ba; — Ab;
e B-A

{(4.18)
which suggests that the fuzziness is still measured by (4.11), but the value of K here is

given by (4.17).

4.3 Fuzzy Directed Divergence Measures

In this section we consider two sets of fuzzy probabilities py, pz, ..., p, and q1, ga, ..., gn
such that

(i) First condition

G <pi<b, e&i<u<fi, 0,620 b,f<1;i=12 ..,n (4.19)
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(ii) Second condition

Zn:pi =1, and Zn:qz- =1, (4.20)
=1 i=1

and, as before, we get the sets of estimates as

___b,-,—ai+Ba,'——Abi
pl_ B—'A

_ fi—eit Fe;— Ef;
q‘l_ F—E H

(4.21)

where F'=371, fi and E =)"7 e;. We can now use any one of the following measures

of directed divergence.

g[plm-ﬂl Pz)Lnl_Zj W)
é{ ~p;) Ln (; Pt)+2(p, aJLn( —6;)}’ (4.23)

n

) [(b; —-pi)In C’a p*) +- Z(Ih —a;)Ln (1; :e:)}

i=1 %

n

03 {(fg A= Z(q,, —e)tn (22 )} L @
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Numerical Example

Let us assume that we have a set of probabilities p; and q; that satisfiy the con-
straints (4.19) and (4.20) such that a; , b; , e; and f; are specified in the table below. We

attempt to get the most unbiased estimates for the probabilities under this scenario.

il 1] 2] 3] 4
a; | 0.1 |0.15|0.20 | 0.25
b | 0.2 | 026033035
e | 022017 | 04 | 0.18
7 [ 0.26 [ 0.10 | 0.55 | 0.2

To evaluate the probabilities p; and q; such that (i = 1,...,4) using (4.21), A =
2:6=07,B=%b=114>1,E=7 ¢ =097, F = >; fi = 1.2, Thus, the most

unbiased estimates for the probabilities are

i 1 2 3 4
p; | 0.168 | 0.225 | 0.288 | 0.318
g { 0.225 | 0.172 | 0.419 | 0.182

4.4 An Application: Measure of Risk in Portfolio Analysis

In usual portfolio analysis, variance of returns is taken as a measure of risk. This
requires the investors to know all the variances and covariances for all the n securities. This
information may not always be available, or it may exist but not be complete.

An alternative method is to find the minimum and maximum returns for each
security. Let the values of these for the it* security be r; and R;. Let w; be the proportionate

investment in the i** security, and let

WiTy

4 = e, b=

2 Wil

wiR;

_Z?zl - (4.25)
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where o; <p; <b;,i=1,2,.. ., n,and

anpi =1 (4.26)
i=1

Now, proceeding as before, we obtain the following most unbiased estimates P; for p;,

i=1,2,..,n

wi Iy wiry Y wily wir > wirti wiR
~ Z WiTy E w; R; + E URTy Z w; By z w; R; E 'wz'rz
Pi= Z wi Z WyTy
Z wyTy Z w; R;

o
' wilky  winy I w; I
~ _ 2 witi o wiRy Y wiry S wiR;
‘ Ywily S ’
owiri Y wiRy
or

~ _ wi(Ri+ 1)

pi= m (4.27)

Using the notation k; for R; + r; in (4.27) the measure of risk is taken as

wik; w;k;
1 i 2hd 3 1
n n+ZZw, In S~ wik

which is
wik; In (w;k;
n o+ EwE ) _ ( 5 :w,;ki) (4.28)

We now choose w;, we, . . ., w, to maximize

s Ekgwilnwi Ewikglnk; o
> wF A[ln S T S b ~In "k (4.29)
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subject to 3 w; = 1, where 7; is the mean return from the i** security, and A depends upon
the attitude of the investor towards risk. This determines points on the mean-entropic risk

frontier. Solving these equations by maximizing (4.29) subject to: Y w; =1; i =1,2, ...

,
E (k,-wi) k; (1 +in wi) — Kk E kw;Inw; — k;Ink; Z k;w; — k; Zw,;ki Ink;
FimA (X kawy)? =D
2 kiw;
(4.30)
where D is the Lagrange multiplier corresponding to | w; = 1.
Minimization of risk yields that w;(R; +;),i=1,2,. . . , n should all be equal,
so that:
1
w; = T‘+f?’i ,1=1,2, ..., n (4.31)
>
i+ B

Thus, the investments in those securities for which the sum of the minimum and the max-
imum returns are large will be relatively small. A corresponding empirical analysis is
presented in the Section 4.12.

An Alternative Approach

In the above discussion we used

R;
2T

T3

2R

<b; <

(4.32)

that gives rise to the following two possibilities.
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(i)
T R;
S < SR or (4.33)
(i)
T R;
S 2 S (4.34)

This in turn yields the following Figure (4.1).

Figure 4.1: Alternative approach with different cases

Y S ;
1; 23Ry L2t Ri2R; Ri/2ir;
v w ;
i /2R, Ri/2im; i/ 2t Ri2ini

The procedure of Section 3 gives us probabilities that lie between A; and As.
However, it does not ensure the highly desirable result that these probabilities lie between

A3 and A4. To overcome this difficulty we define

T R; )
a; = min ) foreachi=1,2,...,n 4.35
(57 5w) ‘ (439

Ti R,,, .
b; = max P foreachi=1,2,...n 4.36
(Zﬁi EiR’i) (4:36)

and then proceed as before so that each p; we get will lie between a; and b; that is between
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' R;
' and independently of whichever is greater. In other words
Et T Ei R" P y &

min (Z?T:’Z}?Rz) Sp,;gmax( T"' - i '), i=12...,n (4.37)

Also, it is seen that

A=) "a;i<l,andB=) b >1 (4.38)

Furthermore, p; divides the line joining a; and b; in the ratio 1 — A to B — 1 as in the

following Figure (4.2):

ai pi bi

Figure 4.2: Another scenario

Therefore, two cases arise.

Case 1.
o<pi< 5 , o gy mizriand ;Y R <R (4.39)
Ei T z;R’l i i
Case 2,

1

._, or p;ZR;ZR;and pin,;Sr,- (4.40)
i

It is obvious that neither Case 1 nor Case 2 can arise for all values of t, and if we draw a
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curve joining points (i, ~2~'3;_:) and another curve joining points (z’, E&E) for various values
of 4, the two curves will intersect at some point {or points) (see Figure (4.3))

For example, Let us assume that we have four stocks, and their returns are as

follows
i 1 2 3 4
i 0.10 [0.130.14| 0.15
R; 0.125 [ 0.15 | 0.16 } 0.19
’”'ﬁ_ 0.19 | 0.25 | 0.27 | 0.29
7 | 021 | 0240.25]0.30
Figure 4.3: Curves for a numerical example

03§
025
02 15

15

0.05

4.5 Fuzzy Density Functions: Continuous Case

A recognition of the important role of uncertainty in dealing with problems of
organized complexity began another stage that is characterized by the emergence of several
new theories (fuzzy set theory, possibility theory, and rough set theory) of uncertainty,

different from probability theory, which is capable of capturing only one of several types of
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uncertainty ([173], [174], [170], [18], [11], [122], [138]).

We now combine fuzzy sets and fuzzy probabilities results in continuous spaces as

follows.
Let f(z) and g(z) be two non-negative continuous functions defined over [a,b], and
let
b b
f f(z)dz = F, and / g(z)de =G (4.41)
So that f—gi) and _g_(g) represent probability density functions. Furthermore, let
_ . (f(z) g(z) _f
a(z) = min ( Foa ) A= /a a{z)dz (4.42)
and
b
b(z) = max (I%, _g_g)_) , B =/ b(z)dz (4.43)

Then, proceeding as before, we get the most unbiased probability density function.

p(z) = [b(z) — a(a:)gl-_B:(m) — Ab(z) (4.44)

4.5.1 Illustrative example
Let

fE@)==z,9(x)=2%a=0,b=1 (4.45)

then,

! 1 ! 1
F:f xda:=~,G=f x?dr = (4.46)
0 2 0 3
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Set

a(x) = min(2z, 3z%), b(z) = max(2x, 32?), (4.47)

such that we get the following figure (4.4):

A
f(x)
g(x)
» »
Figure 4.4: Continuous scenario example
where

32 0<z< %
a(r) = (4.48)

2z 2<z<1

and

: 2 0<z<?2
B{x) = (4.49)

3a? 2<x<1

Obviously both a(z) and b(z) are continuous but are not differentiable. However,

; 6 0<z<? , 2 0<z<?
a(z)= , b(z) =
2 2<z<1 6 2<z<1
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Thus, at ¢ = %

a (g) = 4, a (§)=2 (4.50)
(

) =4 (4.51)

Now:

2/3 1 23

A = f 3z2dz + f 2zdr = - (4.52)
) 2/3 27
2/3 1

B = / 2zdz + f 302dg = o (4.53)
0 2/3 27

Using (4.48), (4.49), (4.52) and (4.53) into (4.44), we obtain:
1 2
p(z) = 5(23: + 3z), (4.54)

so, that p(z) = 1 (a(=) + b(z)), when 0 < z < 2/3, as well as when 2/3 <z <1

Also, p(x) is continuous and differentiable throughout the interval [0, 1], therefore,

1 1
/ p(x)dz = / % (2z+32%) dz =1 (4.55)
0 0
as expected.

4.5.2 (General case

In the above example, p(x) = 1 (a(z) + b(z)). The question may be asked here,

whether the same result is true for all non-negative continuous functions f(z) and g(z). A



probability density function between a(z) and b(z) is for 0 <A <1
P(z) = X a(z) + (1 — A} b(z) 0 <z < 2.

Alternatively

P($)=A%cl+(1—)\)£;) 0<z <=z

P(a:)=)\g(é—;—)-+(1—)\)j—%m—) rg<z <1

where zg is the point of intersection of

so that the entropy

F
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(4.56)

(4.57)

(4.58)

_ _/:u (&1_,\%m)_(1_)\).9_251)1,71(%?—)—,\ﬂ;’—)—u—)\)&?)dx

= —/: (A@%-(l«/\)%ﬂ —%’)) Ln (Af—(“’—)+(1—)\)—g-((§—) —%@) d£4.59)

F

f@) _9(=)
F G

o

- - [a-»

[
0

In ((1 —-A)
f(=)  g(=)

F G

F G

)d:n

F G

fz) _g(=)

) dm (4.60)
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This is maximum when A = %, resulting in the density function

L@—)—g—(gl dx

F

pla) = 3 ) +o(a) = 3 (L + 220,

fz) _ol@)

oo

)as
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(4.61)

(4.62)

It may be noted here that we have considered only the set of probability functions of the

form

f(=) 9(z)

(4.63)

and find that A = % gives the maximum entropy density function. In our earlier discussion

we considered all other density functions and not density functions of the form (4.63) only.

4.6 Comparison of the Two Solutions

4.6.1 The assumptions and the solutions

In the Section 3 taking wjs as unity, assuming

T ) R;
> i

&
"3

and we get the most unbiased probability distribution in (4.27) as

— ri + R

L R e i=1, ...

(4.64)

(4.65)
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In the second solution (4.37), we assumed a narrower range for p;

. Ti R; _ T R; o
min (E?Ti}zv ) < p; €< max (E?Ti’E?Ri)’ i=1 ..., n

E

and we get the most unbiased probability density function as

— 1 5 :
Bi=3 (Zt‘ . E}}Ra) (4.66)

4.6.2 Comparison of the two solutions (discrete case)

We now show that the first solution lies within the range of the second solution.

Ti + R Ty Riymi—mi) R

St R) S () [ (ri+ Rl (4.67)
so that
T+ & 5
Yo+ Ri) (€ = 2) ST
according as
R; _ T;
E—ifi’(s = 2) ST
Similarly,
bR R nidiRi-Rid
St ) SR (SR [ (e R
so that




102

according as

so that if
B ’ o _mitR o R
2R T Y Yuri T 2umi+R) T LR
and if
i , o ntB o n
Dl T Y YR T Y (ri R T

In either case ﬁf%m lies between E’:JE and i%ﬂ_« so that although we have started with
possibly a wider range for p; we find that the probabilities for the most unbiased distribution
lie in the narrower range.

Also, we show that

i + R; I(Ti R; )(

Zi?'i +R4 - 5 Ei T; + ZzR'b Z) = S))O: (468)

equivalent to

2Z?‘iZRiZ(T«;+Ri)(Z, = <) (TiZRH—ReZTi) (Zﬁ-i—ZRz)

or

2 2
) n) Rt Ry ny R (2 = <) (ZR,-) +Rg(§;n)
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S (Z—ZR,) ROW (Zr,-_;m) &,

which is equivalent to:

or

that is

Rfizri (_>.: =

R; . T
EiRi (2: e S) Zi Ti
7 (>, = 5

4.6.3 Comparison for the continuous case

103

= <)0

(4.69)

(4.70)

1. Proceeding in the same manner as in subsection 5.3 we get the following:

corresponding to

p(z) (>, =, <))
%(21 =, S)%ﬂi}

This is illustrated in the following figure (4.5)
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p(x)

———--_~~

;(x) ...-.....u""

enes
Sescsasssassasanses?

Figure 4.5: Illustrative example

Thus, both probability density functions lie between ._f%l and -51(52. The first
probability density function is larger for 0 < z < zp, and the second probability density

function is larger for zop < z < 1. However, the areas under these two different density

functions are the same.

4.6.4 New measures of risk

Although we use the same entropy measure in equation (4.28) we get two most
unbiased probability density functions according to the range we assumed for them, and we

get the following two different measures of risk

ot 3| () @

and

Wi Ty w; R; 1 w4y w; B;
Lnn—{—z (E —— w,-R.-)l (Z ant Z,-w;Rs) (4.72)
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Curve I

>
Figure 4.6: Example of two most unbiased probability distributions

We can use either to obtain the mean-entropic risk frontier.

4.7 Heuristic Explanation of the Two Most Unbiased Prob-
ability Distributions

(a) In the figure below (4.6), Curve I is for yz%—,ﬂ, and Curve I is for yzi(cﬂ,
and the area under each curve is unity. These two curves must, therefore, intersect in at

least one point xg. We want to find a curve III, y = p(z), such that p(x) lies between

I—g—f—), Q_g’_) and that

f bp(w)dm =1 (4.73)

There can be an infinity of such curves, such as:

y:)x%-{—(l-—)\)f—g—), a<z<bh 0<XI<I. (4.74)
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The area under each curve is f‘f ﬂgldz-k (1-2) f: ﬁFﬂdm = 1. There are many more such
curves, but the question may be asked as to which curve should be chosen. Obviously, the
most unbiased choice for A lying between 0 and 1 is A = % This choice of X yields

o) =4[22 93]

This is exactly the same result that we got earlier in equation (4.63) by using a relatively

more sophisticated argument.

(b) We now consider the Curve IV, y = ﬂc,{l, and Curve V, y = ﬂ},ﬁl.

If f(z) < g(x), then the Curve IV will always be below Curve V.

Figure 4.7: Example of three most unbiased probability distributions

The ares, under the Curve IV is —g and the area under the Curve V is % Now,
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we want a Curve VI, y = P(x) such that

f ' Plado = 1, (4.75)
and
f-éi) < P(z) < &P‘f) (4.76)

Using, the Figure (4.7), we get

b F rt G
/GAQdHI—E,L ARde'mF

such that A, @ and R, represent points in the Figure (4.7) and AQ, AR and AS represent

the distance between them.

b
f ASdz =1 (@.77)

To be able to have P(z) as presented by the inequality(4.76), the most unbiased choice

should be taken as

AR:AS:AQz-‘q—J(;—)-:I:%, (4.78)
so that,
) _1) G+ F
r G
= (4.79)
g(z) G
F P(x)
That is the formula of P(z)
P(z) = g—(‘%"’—), (4.80)

which is exactly the result we got in the first case using relatively more sophisticated argu-
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ments.
(c) It may be observed that in our argument in both cases, we have used the
principle of maximum entropy by trying to get the most unbiased estimates, although we

have not formally stated it.

29—(3:) and y = /()

i ETeR then

(d) Suppose in case (b) we take the curves y =
proceeding as in the case (b), we get

29(z) + f (@)

Ple) = =0 F

It can be shown that P(x) still lies in the narrower range of i%l to igl. But P(x) does not
give an unbiased estimate because we have given different weights to ﬂg and g(}(gl' These
diﬁere;lt weights result in a biased estimate.

— f=) 9(z)

(e) In case (a} we assumed that the curves y = 172 and y = £5* intersect at

one point but they can intersect at more than one point (see Figure (4.8)).

Px)

(x)/F

Figure 4.8: Example of another situation

Even in this case, it is easy to show that the most unbiased estimate will still be
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the same as equation (4.80), and the most unbiased probability density curve will lie exactly
mid-way between the two curves y = %—‘Q and y = Q%L) As an example, let f(x) and g(z)

defined over [a, b] such that

f(z) =1+sinz, g¢g(x)=1+cosz, a=0,b=2n

then
F=G=2r
and
P(z) = 24 sin::» COS @
The curves for I—(F@, -g-(g)—, P(z) are shown in the figure (4.9) and these intersect in two
common points within the interval [0, 27].
g g8
0375 T
025 ¥/
o125 |
0

Figure 4.9: Example of three curves
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4.8 Weaknesses of Shannon’s Measure for the Present Prob-
lem

Suppose we are given two probability density functions f(z) and g(z) as distinct
functions defined over the closed interval [a, b}, and we want to find a probability density
function lying between f(x) and g(x) that has the maximum Shannon entropy [140].

Let

¢(z) = Af(z) + (1 - Ng(=z), 0<A<l

so that

/:915(3:)(13: = ALbf(m)dm+(l—A)[lbg(m)d$, 0<Aa<1

= A+(1-A)=1
Therefore, ¢(z) is a proper density function. Also,

¢(z) — f(z) = (1 - A} [g(z) — f(=)]
and
g(z) — ¢lz) = Ag(z) — f(=)],

so that ¢(z) lies between f(z) and g(z) when 0 <A < 1.

Now, Shannon’s entropy for the density function ¢(z) is a function of A and is
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given by:

b b
S0 = [ o) mle)de =~ [ (@) + (1~ Vo@)ln (@) + (1 = V(o) do

so that

b
S0 =- f 1+ 1n(A (@) + (1 - Na(@)] [f (@) - 9(z)] de

and

o (f@) - @)
SN== | 6iw + @ - Ny @ <"

Therefore, S (A) is a strictly concave function of A, and thus has a unique global maximum.
Additionally, it easily follows that S'(}) is a decreasing function of A. If at A = 0, S(\) > 0,
and at A = 1, §'(A) < 0, then S()\) will have a global maximum between A =0 and A = 1. In
this case Shannon’s measure will offer the most unbiased probability density function lying
between f(z) and g(z). In all other cases, it will give a probability function lying outside
the region contained by f(z) and g(z) as it will correspond to either A < 0, or A > 1. The
above example demonstrates such a situation. If we use the entropy measure given by (4.3),
we can always find the most unbiased probability distribution between f({z) and g(z). The
reason for this is that the measure given by (4.3) ensures that A always lies between 0 and

1. For Shannon’s measure, it will depend upon the values of §'(0) and 5 (1).

4.9 Empirical Illustrative Portfolio Analysis

In this section, following the lines of Philippatos and Wilson [119] and Cozzolino

and Zahner [27] in using entropy to measure the portfolio risk, a simple empirical example
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is presented. One of the suggested measures of risk presented previously in equation (4.28)
has been used to compute the optimal strategy. We use some published data in [104], and
the returns on the nine securities during the years 1937-54 are presented in the following

Table (4.1)

Table 4.1: Returns on nine securities over the period 1937-1954

Year 1 2 3 4 5 6 7 8 9
AmT. | AT. & T. | U.8. 8. | G. M. A T & Sfe C. C. Bdn. Frstn. S. 8.

1937 | -.305 -.173 -.318 | -.477 -.457 -.065 | -.319 | -.400 | -.435
1938 | .513 .098 285 | .7T14 107 238 | .076 | .336 | .238
1939 | 055 .200 -.047 | .165 -.424 -.078 § .381 | -.093 | -.295
1940 | -.126 .030 104 | -.043 -.189 -.077 | -.051 | -.090 | -.036
1941 | -.280 -.183 -171 | -.277 637 -.187 | .087 | -.194 | -.240
1942 | -.003 .067 -.039 | 476 .865 156 | .262 | 1.113 | .126
1943 | 428 .300 149 ) 225 313 351 | .341 | .580 | .639
1944 | .192 103 .260 | .290 637 233 | 227 | 473 | .282
1945 | .446 216 419 | 216 373 349 | .352 | .229 | .578
1946 | -.088 | -.046 -.078 | -.272 -.037 -.209 | 153 | -.126 | .289
1947 | -127 | -.071 169 | 144 .026 355 [ -.099 | .009 | .184
1948 | -.015 056 -035 | .107 153 -231{ .038 | .000 | .114
1949 | .305 038 133 | 321 067 246 | 273 | 223 | -.222
1950 | -.096 .089 732 | 305 579 -.248 | .091 | .650 | .327
1951 | .016 .090 021 | 195 .040 -.064 | .054 | -.131 | .333
1952 | .128 .083 131 | .390 434 079 | 109 | 175 | .062
1953 | -.010 .035 006 | -.072 -.027 067 | .210 | -.084 | -.048
1954 | .154 176 908 | .715 469 077 | 112 | 756 | .185

The abbreviations represent the ticker symbol of the issuer company of the security,
for instance:

Am.T.: American Tobacco; A. T. &T.: American Telephone and Telegraph Co-
many; U. S. S.: United States Steel; G. M.: General Motors; A. T. & Sfe: Atchison, Topeka

& Santa Fee; C. C.: Coca-Cola; Bdn.: Borden; Frstn.: Firestone; S.S.: Sharon Steel.
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The data shows the returns, including dividends, for nine securities over an 18-year
period. In the previous section in this chapter, in the process to model the portfolio analysis
using the entropy method suggested, we started by identifying maximum and minimum

returns. Based on the returns table, these minimum and maximum values are as follows

(4.2):
Table 4.2: Minimum and maximum returns on nine securities over the period 1937-1954
Items 1 2 3 5 6 7 9
Am.T. A T &T. U.S. 8. G. M. A. T. & Sfe C.C. Bdn. Frstn. S. 8.

Ti -0.3050 | -0.1830 | -0.3180 | -0.4770 | -0.4570 { -0.2480 | -0.3190 | -0.4000 | -0.4350
R; 0.5130 | 0.3000 | 0.9080 | 0.7150 | 0.8650 | 0.3550 | 0.3810 | 0.7560 | 0.6390

i+ R; | 0.2080 | 0.1170 | 0.5900 | 0.2380 | 0.4080 | 0.1070 | 0.0620 | 0.3560 | 0.2040
W; 0.0876 | 0.1557 | 0.0309 | 0.0766 | 0.0447 | 0.1703 | 0.2939 | 0.0512 | 0.0893

Let us define
o = Wi o wily
Y wiR T Cwry
w; represents the proportionate investment in security 4, i=1,..., 9

Following the formula indicated previously (4.27), we get:

o wi{ R + 13)
b S w@® )

Maximizing the objective function (4.29) subject to Y w; = 1, we get

ri+ i

Uy =
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Using the data illustrated in the Table (4.1), we solve the problem and achieve the optimal

proportions given in Table (4.2).

4.10 Summary and Concluding Remarks

In this chapter, we have considered a portfolio for which the minimum and the
maximum returns on the #* security are r; and R; and the mean return is R;. For this
purpose, firstly, we find the probabilities py, pa, ..., ps, for which a; < p; < b;, where

w; Ry
Do wirs

Uy
a; = —_— and b; =

2wl

which maximizes the measure of entropy given by equation (4.3) and offers us the most
unbiased probability distribution p;, ¢ = 1,...,n given by (4.27). We next find the probability
distribution, which as in (4.37), lies between values given by (4.35) and (4.36). This gives

the most unbiased estimate
~ wiT; wilY

1
;T — -+ ’ g = 1, e
Py 2wt Y wiRy

It can be easily shown that both p; and ; lie between the limits given by (4.35) and (4.36).

We also obtained two new entropic measures of risk.

lnn-l—Zﬁ-lnﬁ- and 1nn+Zﬁ-lnﬁi
H i
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Furthermore, the results to continuous variate probability density functions are presented.
Also, a heuristic explanation of the results without using the principle of Maximum Entropy
is provided. Finally, it is shown that the entropy measure (4.3) will always give the most
unbiased probability density function, which lies between the two given probability density
functions, whereas Shannon’s measure may give the most unbiased probability distribution
lying outside of the region bounded by the two given density functions.

The aim of the chapter is to present the mathematical theory of approximate
probabilities using the measure of entropy. When there is not enough information on which
to base our decisions, we cannot expect sharply defined reasoning to reveal the most probable

outcome. A substantial amount of research may be needed in this direction.
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Chapter 5

Fuzzy Regression with Application

The price limit bounds the daily commodity price to move within the predeter-
mined level above or below the previous day’s closing price. Therefore, the equilibrium
price is unobserved when it moves outside the limits. Under price limitation, since the ob-
served price is not equal to the equilibrium price, estimating using the observed price may
yield biased parameter estimates. Actually, many studies propose econometric analysis to
tackle the data distortion caused by price limits. Kodres [76] used the maximum likeli-
hood approach to estimate the parameters of two limit robit models. Roll [127] adopted
the proxy variable to substitute the limit move data. The daily commodity price on any
trading day cannot be higher (lower) than the previous closing price plus (minus} a limit,
The price limits bound the daily commodity price movements and shorten the distribution
of equilibrium price changes, allowing for the use of the fuzzy theory developed by Zadeh
[169]. Therefore, the equilibrium return may be treated as fuzzy and random. The aim of

this study is to estimate systematic risk using commodity futures prices with the existence
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of price limits. The estimation process has been conducted in two different phases. The
systematic risk has been estimated using the settlement price of the commodity futures
using the Ordinary Least Squares (OLS) method. Then, an optimization model has been
developed to investigate the impact and effectiveness of price limits on estimating the beta
risk of commodities return.

In the following section, we present a review of the literature related to price limits
and to CAPM when applied to commodity futures. In Section 2, we present the modeling
environment of both CAPM and a two-phase fuzzy regression approach, and in Section 3,
the data and methodology are demonstrated. Our concluding remarks are offered in Section

4.

5.1 Review of the Literature: Price Limits and CAPM with

Futures Markets

Recently, various studies have investigated the modeling of the price limits and
their impacts on stock and futures prices, for example ((17], [26], [51], [98], [60], and [115]).
A feature of most futures markets is a daily price limit rule. Price limits have been imposed
on daily price volatility to stabilize the market. In a market with a daily price limit rule,
trading is permitted only at prices within limits determined by the settlement price of the
previous day. The settlement price is an average of the transactions’ prices in the closing
periods of trading or, if trading is halted at the close, it is the relevant price limit. In
the stock market, the officers of the exchange have the power to stop when they believe

it necessary and desirable. Yet, stops in the stock market are not necessarily related to
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the size of the price movement. Hopewell and Schwartz [57] found that 92% of the halts
on NYSE lasted less than a day. In another example, the Winnipeg Commodity Exchange
regulates prices by prohibiting trading during any trading day, in futures of commodities
traded at a price that exceeds the settlement price of the previous day’s session by a certain
amount. Table (5.1) represents the price limits of feed wheat, western barley, canola and
flaxseed commodities, excluding the new contract delivery month. Such limits are based
upon the Board’s lot quotations. In addition, in the case of trading in a contract that is
eligible in that month, there shall be no daily limit on price movement on the last day of

trading.

Table 5.1: Price limits per commodities futures traded in Winnipeg Commodity Exchange
(WCE). Sample period: Jan. 1991 to Dec. 2000

Commodities Price Limits $ / Tonne'® | Price Limits $ / Tonne®
Western Barley 5.00 7.50
Canola and Flaxseed 10.00 30.00
Feed Wheat 5.00 7.50

(a) daily price limits before October 10, 2000. {b) daily price limits effective October 10, 2000,

Brennan [15] first proposed a theory explaining why a price limit exists in some
futures markets. In a market with price limits, when a shock happens, the equilibrium
price moves outside the daily maximum allowable increase/decrease interval; it becomes

unobserved, and what we observe is merely a limit price. He pointed out:

“...for agricultural commodities, where the basis risk is typically substantial,
we expect to find a role for price limits, at least in the distant contract months.”

He found that as the precision of the external signal regarding the equilibrium

price increases, the price limits are expected to be either relaxed or ignored. Thus, that
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precision is not assumed in this chapter.

Roll [127] argued that the price data that is usually used may or may not reflect
actual transactions and is determined by members of the exchange at the close of each day’s
trading. The indicated limits on price movements prevent the price from moving by more

than a certain amount from the previous day’s settlement price. Roll [127] said that:

“When a significant event, such as a freeze in Florida, causes the price to
move the limit, the settlement price on that day cannot fully reflect all available
information. In other words, limit rules cause a type of market information
inefficiency (but not a profit opportunity). This might be inconsequential if
limit moves occurred rarely; unfortunately, they are rather common.”

Hull [61] discussed the concept of the settlement price, which is defined as the
average of the prices at which the contract traded immediately before the bell signaled the

end of trading for the day. He pointed out that:

“It is important because it is used for calculating daily gains and losses and
margin requirements.”

However, in the futures market, some futures contracts are settled in cash. In this
case, the settlement price on the last trading day is equal to the closing spot price of the
underlying asset, to ensure that the futures prices converges to the spot price.

There are many empirical studies that have dealt with futures prices behavior in
practice. Houthakker’s [58] study looked at futures prices for wheat, cotton, and corn during
1937-1957, showing that it was possible to earn profits from taking long futures positions,
Telser’s study [151] constructed the findings of Houthakker [58]. Telser’s data covered the
period 1926-1950 for cotton and 1927-1954 for wheat and resulted in significant profits for
traders taking either long or short positions. Gray’s [48] study looked at corn futures prices

during 1921-1959 and resulted in findings similar to those of Telser. Dusak’s [35] study used
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data on corn, wheat, and soybeans during 1952-1967. Her study attempted to estimate the
systematic risk of an investment in these commodities by calculating the correlation of
movements in the commodity prices with movements in the S&P 500. However, the results
obtained by Dusak [35] suggest that there is no systematic risk.

Dusak [35] showed that systematic risk and return for wheat, corn, and soybeans
futures contracts were near zero. Then, she concluded that these futures contracts are
not risky assets when held as part of a large portfolio. Carter, Rausser, and Schmitz [19]
(hereafter referred to as CRS) changed Dusak’s model by introducing stochastic systematic
risk as a function of actual net speculative positions. CRS found that half of the contracts
had significantly positive risks. Research done by Chang [22] using the same commodities,
supported the existence of a positive systematic risk. Baxter, Conine, and Tamarkin [9]
(hereafter referred to as BCT) repeated Dusak’s study by using a proxy for the market port-
folio consisting of 93.7% of the S&P 500 index and 6.3% of the Dow-Jones cash commodity
index. BCT showed insignificant systematic risk for wheat, corn, and soybeans futures.
Thus, they could not show a positive systematic risk for the same three futures contracts
during 1953-1976. Elam and Vaught [39} (hereafter referred to as EV) investigated the
existence of risk and return in cattle and hog futures. They found significant systematic
risk for the one hog and four cattle futures contracts. They combined 90% on the S&P 500
index and 10% on the Dow-Jones cash commodity index, as proxy index. Chang, Chen, and
Chen (hereafter referred as CCC) [23] used six traded futures for copper, six for silver, and
four for platinum. They used the month-end settlement price, which is on the last trading

day of the month. They found contrary to other studies, a significant systematic risk in the
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agricultural and livestock commodity futures.

The estimation in futures markets usually faces the existence of price limit regula-
tions and may call for another approach to estimate systematic risk. Thus, it is important
to analyze the behavior of futures prices when the exchange is regulated by price limits.
Also, it is well known that the regulation responds to the trading behavior of market mem-
bers. When traders are confronted with market barriers, they revise their expectations
accordingly.

Roll [127] concluded that the use of a possible settlement price implied by limit
moves will affect any informational efficiency study. In his empirical study [127], the price
on the first day with no limit move was brought back to the day of the first limit move,
and all intermediate days were ignored. For example, if a limit occurred on a specific
day, he assumed that the settlement price for that day was the price of the following day,
which did not have a limit move. Kodres [76] analyzed the impact of price limits on a
test of the unbiasedness hypothesis in foreign exchange futures markets. Mao, Rao, and
Sears [101] claimed that trading halts mitigate price, enhance informational efficiency, and
tend to excessively inflate volatility . Mao et al. ({101], [L00]) found that price trends, in
general, stabilize or reverse themselves after reaching limits and tend to move back into
prelimit price ranges. Other researchers, such as Subrahmanyam [146] argued that limits
obstruct informational efficiency. Hall and Kofman [51) proposed a modeling framework
to distinguish between observed and theoretical futures prices. Kuserk and Locke’s (85]

findings contradicted Roll’s statement that the limits create information inefficiency, not
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profit opportunity.!

From a probabilistic point of view, Hall and Kofman [51] presented that, in the
absence of price limits, observed futures prices should be equal to unobserved fundamental
futures prices plus some random noise, to reflect market microstructure effects such as bid-
ask bounce. But if there is a fixed and credible upper limit, and the price is close to that
limit, the probability of a further increase will be limited, the probability of a decrease will
be relatively larger, and the probability distribution of the next price move will become
increasingly skewed, the closer it gets to the limit.

Park 115}, in his study, investigated price limits in futures markets and pointed
out that price limits serve to delay gains and losses that might occur with large price swings.
Price limits function similarly to margin accounts by limiting the amount of price exposure
risk. According to Park [115]:

“Unfortunately, there is no generally accepted theory on how price limits
influence price behavior.”

5.2 The Modeling Environment

5.2.1 Necessary assumptions

As a rule, an observation is subject to different kinds of uncertainty from objective
sources (e.g., the coarseness of the computer used to collect and register data) or from
subjective ones (e.g., the evaluation of the observer, trader, or investor with respect to the

reliability of the observation). Thus, observation is subject to fuzzy structures specification,

Informed traders will try to smooth their trading activities before the price hits a limit, and market
makers protect themselves against these movements by increasing the bid-ask spread upward.
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which can take place at each daily price. In fuzzy set, it is reflected by “approximately p”
and can be enhanced by an evaluation, e.g. “quite surely p”. One of many advantages of
using a fuzzy approach, here, is that information from different sources or data of different
specifications can be utilized. Motivated by these considerations, we assume that futures
contracts under price limits are subject to fuzziness. Also, we assume that the trader
has some external source of information about the equilibrium future price?, but that the
information is incomplete and not precisely defined (fuzzy).

In fact, Brennan [15] assumes in his study that the price change follows a uniform
distribution and that the trader receives a signal equals to the equilibrium price plus a
uniformly distributed error term.

What remains unexplained in the literature {e.g. Dusak [35], CRS [19], BCT [9])
that discusses the estimation of systematic risk in futures market, is, first, why a. price which
is subject to limits is not important in the estimation; and second, why price limits should
be ignored in the decision to accept or reject the existence of systematic risk. Furthermore,
the findings of various articles explain neither how the price limits couldr be modeled in the
regression analysis, knowing that the maximum allowed change is calculated from the close
of the previous day, nor why it is necessary to use the settlement price, which is an average,
instead of the equilibrium price.

With a simple treatment, Chou [26] ignores noisy observations, which are obscured
by the residual shock. He also treats them as missing data. This approach is questionable,

because these discarded observations carry information about the model parameters, and it

?Brenan {15] assumes that the trader is able to observe a signal Y which may be derivable from the spot
market for the underlying commodity or asset, from the markets for other futures contracts, or from other
sources.
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is not appropriate to ignore them in the estimation of the model. In addition, he ignores the
residual shocks, which are determined by the price limit regulation and may be carried over
from the preceding day and from previous days. The following trading days will show the
unrealized excess demand or supply that will accumulate and be carried over to consecutive
days [75].

Under a price limit, the settlement price (observed) is not exactly equal to the
equilibrium price (unobserved), and estimating without it might imply biased parameter
estimates. To preclude the biased parameter estimates introduced by price limits, we treat
the futures price as a fuzzy datum and use a two-phase fuzzy approach to estimate the
systematic risk.

Following the Brennan paradigm, we assume that there is an external signal sug-
gesting that the equilibrium price is in the boundaries of the observed price and that the
equilibrium price is bounded by an upper bound (observed plus half the limit) and lower
bound (observed minus half the limit). That is, the equilibrium is partly observable, and
the external information suggests that the equilibrium price is between [p — é, p+ %] The
membership function, which measures the degree of precision of that equilibrium price is
assumed to have a triangular shape function. The reason for this choice is twofold: (i)
triangular shapes are easy to construct and manipulate and (ii) most current applications
that use fuzzy theory are not significantly affected by their shape.

Let us assume that we have a two-day period, yesterday (¢ — 1) and today (t). If
the price hit the up-limit (or down-limit) in ¢ — 1, we would observe the limit P =1,

(or p—1 = lg); under this scenario, we assume that the equilibrium price is fuzzy random
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in the interval [pt_1 - %,Pt—l + %] If today (t) registered a limit move, the price hits limit
up (or down-limit) again, we suggest that the equilibrium price is fuzzy random in the
[pt — 5, p¢ + &]. Yet, if the observed price does not hit the limit, we still suggest that the
equilibrium price is a fuzzy random in the interval [pt — %, Pt + %] since as observations
following a limit move reflect both the associated shocks and the residual shock carried
over from previous trading days. Accordingly, prices are correlated, and we will not be
able to extract information via the observations to achieve more precise estimates of the
model parameters. It is the residual shock that substantially complicates the estimation of
the model. To this point, it has been assumed that the equilibrium price that would have
been observed in the absence of price limit will be around the settlement price. That is the

reason behind the use of fuzzy theory here.

5.2.2 Capital asset pricing model (CAPM)

Sharpe [141], Lintner [97], and Mossin’s [108] capital asset pricing models have
been investigated for both agricultural and livestock futures during the last decade. Many
studies (e.g. [35], [145], [39]) discussed whether futures investors and traders accept any
systematic risks and whether there is a reward commensurate with the systematic risk of
futures contracts. The systematic risk of commodities is different from other financial assets.
For example, holding times for agricultural commodities are relatively short. In addition,
they are subject to seasonal production. Because spot and futures prices of a commodity
tend to follow each other, it is interesting to look at the relationship between return and

systematic risk; the capital asset pricing model, which serves that purpose, has the following
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standard form [28]:

E[ry] =1 + By [E [Fas] — 74] (5.1)

for any asset (or portfolio) ¢ where E[.] is the expectation operator, and tildes represent
random variables. 7; is the return on an asset and r ¢ is the riskless rate of return. s is
the return on the market portfolio of all assets. Coefficient Bgn is defined by %]%%“r)
which is a measure of the tendency of a security’s returns to respond to swings in the broad
market.

The model (5.1) assumes that the expected return on a financial asset is composed
of a risk premium and the return on the riskless asset. Additionally, the risk premium on
a financial asset equals the product of the systematic risk of the asset Bgar and the risk
premium on the market portfolio [E [Fi] — rf] . In the context of commodity futures, Chang
et al. [23] advised that holders of a futures contract can expect a positive risk premium,
if changes in contract prices are independent of changes in values of all assets combined.
Because CAPM is an ex-ante model, which means that the parameters are unobservable,
Bgns’s are not observabl and they should be estimated.

Under the assumption of a single-factor return generating process [66], the exposed

version of CAPM can be written as:
Tq—T5 = e+ Ba(rm —1y) (5.2)
and the empirical version of CAPM in time series form is as follows:

T = 0 + BT, + €t ’ (5.3)
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where 7§, = 1t — g4, T8 = g — Tpt, €t disturbance term, o; and Ei can be estimated by
regressing excess return on asset ex-post returns against excess returns on a proxy for the
market portfolio. Bz- is an estimate of f;, and «; measures the mean excess return to the
asset 4, if the model is well specified.

Elam and Vaught [39] used a slightly modified CAPM to explain returns on futures
contracts:

E[f] = B[E [l — 7] (5.4)

without including r; as an intercept in equation (5.4) because a futures contract represents
an agreement to purchase a commodity at some later time. Because the payment for a stock
is made up front, the return on a stock should reflect the time value of money (represented
by r¢). The returns on a futures contract should not include 75 because no money is put
up (or interest can be earned on money put up as margin) to buy a futures contract.

Therefore, we use the following empirical version in this chapter:

rit= 0+HB; (Tt — 741) +€it (5.5)

The realized return on the contract with a fixed maturity signified by i during period £ 7

is computed as:

rie = In ( PP" ) (5.6)

Tt—1
where Pj; represents contract i’s settlement price at time £ and P;;_; represents i’s settlement

price at time ¢ — 1. The end of period returns on one-month Treasury Bills are obtained for

the same period and serve as a proxy for the monthly risk-free interest rate Tf.
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Following Chang et al. [23] we compute Sharpe’s [142] performance measure S;
below in (5.7) :

(5.7)

which is a reward-to-volatility ratio, a ratio of the reward to total volatility trade-off mea-

sures. Also, Treynor’s {156} measure, provided below, is computed:

T,'—Tf

r=—F

(5.8)

which is the ratio of excess return to beta risk (systematic risk).

5.2.3 Fuzzy regression methods

It is impossible to estimate the parameters of the linear model (65.5) CAPM in
this case, under these conditions, through the traditional ordinary least squares, because
the equilibrium price is not observed. We know that the estimation will be even more
complicated when the sample contains consecutive limit moves across more than two days.

Following common practice, we shall assume that the true return is 2, fuzzy ran-
dom number, normally distributed so that the proposed fuzzy regression approach is easily
implemented.

Tanaka [148] first introduced fuzzy linear regression to determine a linear rela-
tionship between a fuzzy dependent and crisp independent variables. Subsequently, many
studies (see e.g. [56], [124], [125], [150], [149], [71], and [164]) have been proposed to im-
prove the fuzzy regression method. The literature dealing with fuzzy linear regression and

its applications has grown rapidly. For instance, fuzzy regression methods have been widely
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used in forecasting (see e.g. [55], [164]), engineering (see e.g. [87], [7]), quality control (see
e.g. [70]}, and health (see e.g. [8]). Several papers have examined fuzzy regression methods
and discussed some properties and deficiencies of their methodologies {for example [124],
[125]). Tanaka [148] suggested the following model:

Min et |z
ST

Ai(o,c

Subject to  oTx; + (1- H)CT [zi| > v + (1 — H)e;
{

—alz; + (1- H)cT lz:] > —yi + (1 — H)e;

\ ¢ 20, 7=1,...,p

where A; = (a4, c;) are fuzzy coefficients, which are the solution of the fuzzy linear pro-
gramming problem. Then, |z| = (1,]a1],, ..., |z,|)7 and p is the number of independent
variables. o = (ay, ...,ozp)T and ¢ = (cg, ¢y, ..., cP)T.

The fuzzy coefficient can be expressed as “approximate a;” with center oy and
spread (or width) ¢;. ¥; = (y;, e;) is the fuzzy output, where y; is the center, e; is the fuzzy
spread and 7 is the number of observations.

Savic and Pedrycz [136] introduced another formulation of fuzzy regression method
(referring to their approach as fuzzy least squares linear regression) that can resolve the
issue of infinite solutions. They formulated the problem as a two-step procedure for building
fuzzy regression models.

Phase I: Fit the regression line by using the available information about the center

points of the observation, i.e. input data are considered non-fuzzy. Vector o* is used as one

of the input data sets in phase I7.
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Phase II: Determine the minimal vagueness using the linear constraints presented
by the Tanaka method {148] but without o being a vector of decision variables. Savic and
Pedrycz proposed some techniques for determining o. They chose to use the least squares

method to get «, which is given below:

o = (XTx)" xTy

Recently Hojati et al. (hereafter referred to as HBS) [56] presented a new method
for fuzzy regression that is simple to use. They developed a model where only the dependent
variable is fuzzy and extended it to the case in which both dependent and independent
variables are fuzzy. In classical regression setting, we regress the rate of return using the
ordinary least squares method (OLS) to get the associated parameters of the model. In a
fuzzy regression setting, HBS’s method is based on the linear programming approach and
minimizes the total absolute deviation to obtain the parameters. The parameters of the
model are chosen such that the total deviation of the upper movements of predicted and
associated observed intervals and the deviation of the lower movements of these intervals
are minimized.

In HBS’s model, the objective function is presented by minimizing the total devi-
ations of the upper points of predicted and associated observed intervals, instead of mini-
mizing the total spread of fuzzy parameters. Note that the essence of both papers [56] and

[136] has been used here to develop the proposed method.
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Proposed Method: Modification of Savic and Pedrycz’s method
Definition 16 A non-symmetrical triangular fuzzy number, A; denoted as A; = (Crj, o, Cpj)

is defined as (see figure (5.1)):

1—&(—33;;-’1 aj—CLj<aj<aj
”’Aj(a'j)z ?
1+£‘3%ﬂ aj<aj<aj+C’Rj

Crj, Cr; > 0, «j is a center (interior), Cr; left spread and Cr; right spread. A; =

(Crj, a5, Crj).

Figure 5.1: Representation of a non-symmetrical fuzzy number

0 -Cuj 0y oy +Crj

In Tanaka’s model [150] the fuzzy output data are assumed to be a fuzzy number
with a symmetric triangular membership function denoted by ¥ = (yi,e&), i = 1,...,n.
Extending this model in the case of fuzzy non-symmetric numbers, the linear model is as

follows:

YV =AX = AoXo+ AXi+ ..+ A X, =D A;X; (5.9)
7=0
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where A; = (Cp;,a;5,Crj) and A= (Cp,a,Cg)

Theorem 17 The fuzzy output Y in (5.9) can be represented as:
Case 1: If X >0 Then Y = (CrX,aX,CrX)
Case 2: If X <0 Then Y = (|X|Cgr,aX,|X|CL), where

& = (011, ...,a,,_); GRJ' = (CR(), ..... y CRs); CLJ‘ = (CL(), veeay GLs) and |X| = (lX]I y ey |Xn|)t.

Proof. It is well known from Dubois and Prade [34] that the following equations
hold:

VA>0;, A0 (Ct, o, Cr) = (ACL, Aa, A\CR), and

VA<0; 20 (CL,a,Cr) = (—ACRr, Aa, —ACL). =

So, the membership functions are written as follows:

In case 1:
1~ oy If XCp<y<aX
by (y) = ,
1+%ﬂ If aX<y<XCg

In case 2, the membership function of the output is written as:

aX—
I_WI_C—';% If |X|0R<y<CEX
py (y) =
1+%§ If aX<y<|X|CL

Linear programming and parameters computation

Following the same procedure presented by Tanaka [150], we provide the linear

programming approach to estimate the parameters of the model.



In case 1:

Min O.F.
Subject to

plz) = h

< 9

Min O.F.
aICLICR

Subject to 1 — %= > A

X_.
1+aj(‘§;32h

In case 2, the linear programming problem is as follows:

Min O.F.
Subject to

p(x) > h

< 4

Min O.F.
a:CL )CR

aX—

Subject to 1 — 4o

> h

X._.
1+ xier 2P

=R
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Min O.F.
a,Cr,Cr
—aX +(1-h)XCL> —y
aX+(1-h)XCg>y

o ER,CR, Cr>0

Min O.F
,Cr,Cr
—aX +(1-h)|X|Cr >~y
aX +(1-h}|X|CL 2>y

a €R,Cg CrL>0

h: is the degree of the fitting of the fuzzy linear model chosen by the decision maker.

After introducing an aggregate fuzzy linear regression method {aggregate case 1

and case 2), which is designed to minimize the sum of the fuzzy spreads around the Y
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predictions, the problem is formulated as:

¢

< 4

oA S i=0 Loimy (Crj + Crj) | X
P 1
—otXP 4 (1—h) ZZXijCLj 2 —yi+(1—hle;, fori=1,..,p
i j=0
1
AXP 4+ (1-R)) > XijCrj >y + (1~ h)ei, fori=1,..,p
i =0

n 1
Subject to _ntxN 4 (1 p) D XiiCri > —yi+ (1 —h)es, fori=p+1,..n

i=p41 =0
1

n
ot XN 4 (1~ h) Z ZXijCLj >yi+ (1 —h)e;, fori=p+1,..,n
i=p41j=0

a €R, Cr = (Cro,Cr1), Cr =(Cro,Cr1) >0

Given XF = (le,..ij) >0, X¥ = (Xp-l-lj: ..an) <0 Xp=1

Min Z}:o > i1 (Cr; + Crj} | Xi5

a,Cr,Cr
r 1
—a! X + (1- h) ZZXijCLj > -y +(1— hle;, fori=1, P
i=1 j=0
P Jl
atXP+(1—h)ZZX£jCRj >yi+(1—h)e, fori=1,..p
i=1 j=0

n 1
Subject to _ ey N +(1-h) Z ZXijORj >—yi+{(1—h)e, fori=p+1,..,n

i=p+1 j=0

n 1
o XN+ (1~ ) Z ZXijCLj >yi+(1—h)ey, fori=p+1,..,n
i=p+1 j=0

a €R, Cg = (Cro,Cr1), Cr = (Cro,Cr1) >0

Given X¥ = (Xi_,', wXpi) >0, XN = (Xp+1j, Xnj) <0 Xp=1

e; : the spread of the output. s: the number of independent variables in the model.

Extending Savic and Pedrycz’s method by introducing the non-symmetrical fuzzy

number case (center is estimated using the OLS method, thus, o** is used as one of the
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input data sets in phase II) and choosing h = 0, we get the following optimization problem3:

Min Yico Soiet (Cri + Crj) | X
LR

P 1
—a*tXr 4 ZZXijCLj > —yite, fori=I1, e P
i=1 j=0

r 1
a*tXP 4 ZZX,'J‘CRJ' >y+e, fori=1,..,p
=1 j=0

n 1
& ¢ Subject to —a*t XN Z ZX,;_.;CRj >-yi+e, fori=p+1,.,n

t=p+1 7=0
n 1

a?t XN 4 Z ZX,'jGLj >yite, fori=p+1,.,n
i=p+1 =0

Cr = (Cro,Cr1), CL =(Cro,Cr1) >0

Given XP = (Xyj,.Xp;) >0, XN = (Xpt1j,-Xnj) <0, Xig=1

Because we have non-symmetric fuzzy data, we need to make some modifications
to the two-step procedure of Savic and Pedryzc to use it. The proposed method is as follows:

Phase I: o (center) is defined uniquely when X is a full rank matrix. Furthermore,
as presented by Savic and Pedrycz, the use of o* causes the center of the y! fitted values to
be closer to the observed values, y;. That causes higher membership values, because o* is
the optimal vector that minimizes the sum of the squared residuals in ordinary least squares
regression analysis ([72}, [112])%.
Phase II: Assuming that A = 0 and ¢ = (¢;, ¢} such that ¢, is the right spread of

the parameter and ¢ is the left spread of the parameter, the model is equivalent to:

3In section 3, we use the following notation to represent the estimated centers using ordinary least squares
(OLS) method {&*, 8%} = (esqa, esf)

1Several standard curve-fitting methods may be used in this phase, for example, minimum sum absolute
deviations and the Chebyshev minmax criterion [162].
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Min 3550375 (Crj + Crj) X
L\“R
r 1
—a*tXr +ZZXijCLj >rg , fori=1,..,p

i=1 j=0
r 1
a*XP 4 ZZX,‘jCRj >Tui, fori=1,..,p
i=1 j=0
n 1
Subject to —a*txN 4 Z ZXijCRj >rg, fori=p+1,..n {(5.10)
i=p+1 j=0
n 1
ot XN 4 Z ZXijGLj >rui, fori=p+1,.,n
i=p+1 j=0

Cr = (Cro,Cr1), Cr =(Cr0,Cr1) >0

Given XF = (X1j,-Xpj} =0, XN = (Xp+1j, - Xnj) <0 Xjo=1

where 74, o, represent the down and up returns, respectively.

Evidently, it may be noted that the price limits generate a movement interval with

a lower bound and an upper bound, which correspond to the lower and upper movements of

price, respectively. r; is the observed commodity return at time ¢ based on the settlement

price. It can be seen as pseudo true return with a membership function equal to 1. 7 is the

fuzzy equilibrium return at time t. Assuming that the given settlement price is not defined

sharply, I; represents the price limits at time ¢ of each commodity futures.

The equation (5.6) under a fuzzy environment generates two returns, up-return

and down-return, which represent returns derived from the up movement and the down

movement of the commodity prices. We define the up movement (down movement) of the

price as the settle price plus (minus) the tolerance level (I;/2). Note here that i represents

the limit of the price.

Thus, assuming that the price limit is constant over time, we can reproduce the



equation (5.6) as follows:

: Pt — Py
ruit=Ln(Pt+l/2):: L

Py 14172 Py 1 +1/2
and
Py —1/2 ) Py~ Py
Tair = Ln ~
it (Pit—l —1/2 Py, -1/2

The above equations can be rewritten as

Py—Fi 1  Py—Py1 Py
Tuit = P =

Py—FPe1  FPu—PFy1 Py,

d
Tdit = = =T Ky
W P - /2 P Py1-1/2 e oy

—_— . 1w
w-1+1/2 Py Pyg+ 12 it * By
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(5.11)

(5.12)

(5.13)

(5.14)

where Rf_l, Ry | represent the ratios or the multipliers associated with an up

and down movement of the price, respectively. Economically, we can conceptualize them

as the price limit’s movement effect on the returns. Also, it measures the magnitude of the

price limit on returns. Similarly, each one is a leftover ratio that represents the unrealized

residual shock from trading at time ¢.

This problem is amenable to comparative static analysis, and the derivation of the

equations (5.13) and (5.14)with respect to the price limit can be written into two terms:

1R — Py

dryg  d (Pi - P11 Py )

ddl\ Pui Bei+02

2 Fa (Pyg+1/2)*

(5.15)
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and
drai _ 1P — Py Py 1 (5.16)
dl 2 PFiy  (Pyg+1/2)° '
Then
dryi drgis
If P4—Py12>0— TR 0 and 12 0 (5.17)

From the equation (5.17), when the price of the commodity is moving upward, assuming
that it is moving within the limits, the up-return (down-return) will decrease (increase)

with any possible increase in the price limits.

If Pv—Py 1 <0— % >0 and d;;’“ <0 (5.18)

From the equation (5.18) when the price of the commodity is moving downward, the up-
return (down-return) will increase (decrease) with any possible increase in the price limits.
The following figure (5.2} illustrates the construction of the up-return and down-return
taking into account all possible cases.

Figure 5.2: Representation of fuzzy numbers

Membership
| ﬁ:{lctxon n

Right spread

Iip and down -refums
Ll

 limitup Min {(ru 4} timit down r & fimit down Max. (ru,fd) limit upsy
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It is known that in the Winnipeg Commodity Exchange, before October 10, 2000,
the regular daily price limits were $5.00/tonne for feed wheat and western barley and
$10.00/tonne for canola and flaxseed. These limits could be expanded (increased) in certain
situations. If any two of the nearest three contract months closed limit up or limit down
for two successive days, the limit was expanded to 1.5 times its normal effective price the
following day. If any two of the nearest three contract months closed up or down by the
expanded limit for the next two days, the limit was further expanded to twice the normal
limit on the following day. When no two of the nearest three contracts closed at their
expanded daily limits in the same direction (both up or both down), the daily price limit

returned to the normal limit on the following day.

5.3 Data and Methodology

Market return in this chapter has been computed using an approach similar to
the one suggested by CRS [19]. However, Marcus [102] suggested a weight of 10% for the
commodity index and 60% for the S&P 500 index. The S&P 500 index is a value weighted
index of the price of 400 industrial, 40 utility, 40 financial and 20 transportation stocks.
The Dow Jones cash commodity futures index® is an equal weighted index of five-month-
forward futures prices for the 12 commodities: cattle, coffee, copper, corn, cotton, gold,
hogs, lumber, silver, soybeans, sugar, and wheat.

Marcus [102] pointed out that when the weight given to commodities in the market

portfolio increases, the covariance between r; and r,, will increase and B, which measures

5The index is derived by dividing the price of each commodity on a given date by its price on Dec. 21,
1874, and summing across commodities. The sum is divided by 12 and multiplied by 100 to yield the index.



140

the systematic risk, will increase. This weighting scheme is based on Marcus’s estimate that
commodities account for approximately 10% of total wealth. Also, it is approximately the
same as the 0.06 weight for commodities used by BCT [9].5

Following Marcus [102], Elam and Vaught [39], and Chang et al. [23] we proceed
by using the combination of 10% to the monthly log relative return for the TSE 300 in-
dex return’ and 90% of the Dow-Jones cash commodity index return as a proxy for the
market portfolio. Then, the above approach is illustrated empirically for four agricultural
futures contracts (western barley, canola, flaxsced, and feed wheat) traded at the Winnipeg
Commodity Exchange.

The log relative returns for these contracts were divided into six or five groups,
based on the time to maturity of the futures contract. Systematic risk was first estimated
over the period Januray 1991 to December 2000 for the futures contracts in each of the four

groups using ordinary least squares regression for the model (5.5).

5.3.1 Data

Monthly prices for four major traded commodities in the Winnipeg Commodity
Exchange (WCE) were obtained. The study period is from January 1991 to December
2000. Table (5.2) summarizes the most important components of the financial data. The
risk premium on the portfolio of all assets is estimated by subtracting the risk-free return,

proxied by the one-month T-Bill rate, from the rate of return on the market portfolio.?

5To decide which weighting scheme to use, normally, it is appropriate to look at the porportion of the
commodities of the total wealth, which is believed to be 10% or less in the American market. In this paper,
we offer 10% to the TSE 300 index.

"Both the T-bill rate and TSE 300 Index price were obtained from the Canadian Financial Markets
Research Center database (CFRC).

8 “T-Bill return represents the return on a 91 day T-Bill purchased at the end of last month and sold at the end of this
month. If r(t) is the yield {in percent} at the end of month t, then the price last month, P(t-1) of a T-bilt with 91 days to
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Table 5.2: Means, standard deviations of monthly rates of return and the Sharpe perfor-
mance and Treynor measures for the four contracts. Sample period Jan. 1991 to Dec. 2000.
{Ten percent weight was given to non-commodities in the market portfolio).

Commodity Mean SD* S’ T;
(%) (%) (%) (%)

Western Barley:
May| 0.315 4608 | -3.140 -0.532

August/July | 0.359 5738 | -L.755 -0.336
November/October | 0.465 5.506 0.096 0.032
November/December 0.454 5.450 -0.105 -0.023
February/March | 0.356 5097 | -2.035 -0.487

Canola:

June/May | 0.109 5.745 | -6.104 -0.948
June/July [ 0,138 6.032 | -5.318 -0.788
September | 0.0357 | 4.384 | -9.672 -1.101
November | 0.045 4487 | -9.242 -1.338
Janvary { 0.066 5.101 -7.724 -0.980
March| 0.069 5.048 | -7.742 -2.641

Flaxseed:

May| 0.135 5450 | -5.958 -1.328

July | 0.132 5.868 | -5.585 1.707
October/September | -0.05160 | 4.521 | -11.309 | -4.824
October/November |  0.064 4784 | -8.267 | -11.667

December/January | 0.123 4778 | -7.047 3432
March ] 0.127 4.993 | -6.663 -2.200

Feed Wheat:
May | 0.465 6.091 0.087 0.013

Juty | 0.415 5.369 | -0.825 -0.139

October | 0.346 5994 | -1.890 -0.750

December | 0.459 5.405 -0.031 -0.006

March | 0.422 5.264 | -0.718 -0.125

{SD denotes the standard deviation of monthly returns. S; denotes the Sharpe performance measure
which is equal to -':i;—,ri, o; : denotes the standard deviation of contract return, and r; — r i return of
bearing risk which is e(iual to the average contract return minus the average risk-free rate. T; denotes the
Treynor measure which is equal to %"—)

Sharpe and Treynor measures have been presented in table (5.2). More broadly,
the results reveal a visible relationship between maturity and mean and standard devia-

tion of contract returns. Standard deviation for flaxseed and feed wheat declines with the

maturity is P(t — 1) = Iﬁ@and the price today of that same bill with today's yield and only 61 days to maturity

05
100
[mo+.-(¢).3%15] :

isP(t) = The return, R(t} is R(t) = Lﬂ%&—t(;);‘n" Excerpt from Canadian Financial Markets Research

Center (CFMRC) User’s Manual p.11
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contract maturity, which is consistent with the assumption of Samuelson [133] concerning
the variation of spot and forward prices. Also, it is apparent that there is a noticeable
relationship between high volatility and high return. Thus, investors perceive a favorable
risk-return trade-off. Over the sample period, feed wheat offered the highest mean return,
and canola offered the lowest. However, on average, all futures contracts have approximately
an equal volatility. Negative sharp performance measure and Treynor measure indicate that
all futures have the lowest return-to-volatility ratio except barley (Nov./Oct. contract) and
feed wheat (May contract). Based on that, we can say that these risks have not been well

compensated by the market.

5.3.2 Regression methods and results

The results of the estimation method using classical regression and proposed fuzzy
regression are reported in tables (5.3), (5.4) and (5.5). Because some of the delivery months
are replaced or canceled, we have created two series by combining each canceled month with
the closest replaced month to have constant series overtime. For example, the June canola
contract has been replaced by two series, May and July, after 1996. So, we have created
two series, June data until 1996, then we have continued the data with July data, and we

have performed the same process to construct the June/May contract.

A. Classical regression results: First phase

Systematic risk is estimated for Jan. 1991 to Dec. 2000 for the futures contracts
in each of the six or five groups using ordinary least squares regression. In table (5.3), we

report the OLS estimates for regression model (5.5).
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Table 5.3: Classical regression parameters for western barley, canola, flaxseed, feed wheat.
Sample period Jan. 1991 to Dec. 2000. (Ten percent weight was given to non-commodities

in the market portfolio.)
Commodity o S(a) Bi S(B) ts R? DW | SSE

Western Barley:
May | 0.00375 {0.00416 | 0.2722° | 0.13677 | 1.9905 | 0.0325 | 1.6737 | 0.2444

Auvgust/July | 0.00424 | 0.0052 0.299" | 0.1710 | 1.751 | 0.0253 | 1.558" 0.3819
November/October | 0.00501 | 0.0650 | 0.165 | 0.1654 1.00 | 0.0084 | 2.017°| 0.3577
November/December | 0.00509 | 0.0049 | 0.253 ] 0.1628 { 1.558 | 0.020 | 2.134°| 0.3463
February/March | 0.00402 | 0.0046 { 0.213 { 0.1525 | 1.401 ]| 0.0164] 1.721°| 0.3041

Average 0.2404 0.0205
Canola:

June/May | 0.00189 | 0.0051 {0.3702°| 0.1700 | 2.178 | 0.0387 | 2.014°} 0.3776
June/july | 0.0022 | 0.6054 | 0.407° | 0.1781 | 2.285 | 0.0424 | 1.974° | 04146
September { 0.00119 | 0.6038 | 0.385" | 0.127 | 3.024 |0.0719| 2.092°} 0.2123
November | 0.00112 | 0.0043 | 0.3108" | 0.1323 | 2.349 | 0.044 | 2.155° 0.2289
January | 0.0015 | 0.0045 | 0.402" | 0.1494 | 2.691 | 0.0578 | 1.928°| 0.2917
March | 0.00101 | 0.0046 | 0.148 | 0.1517 | 0.977 | 0.0080 | 2.102° | 0.3008

Average 0.337¢ 0.0438
Flaxseed:

May | 0.00188 | 0.0049 | 0.2445 | 0.1629 | 1.501 | 0.0187 | 1.984° | 0.3468

July | 0.00050 | 0.0053 { -0.192 | 0.1762 | -1.094 | 0.010 | 1.880° | 0.4057
October/September | -0.0002 | 0.0041 | 0.1069 | 0.1361 | 0.785 | 0.0052 | 2.031° | 0.2420
Octobes/November | 0.00071 | 0.0043 | 0.0339 | 0.1443 | 0.235 | 0.0005 | 1.949° | 0.2722
December/fanuary | 0.00102 { 0.0043 |-0.0981 | 0.1439 | -0.682 | 0.0039 | 1.970° | 0.2706
March | 0.00160 ; 0.0045 | 0.1512 | 0.150 | 1.008 [ 0.0085|2.113°] 0.2941

Average 0.0410 0.0078
Feed Wheat:

May | 0.00553 | 0.0054 {0.4041°| 0.180 | 2.245 | 0.041 {2.010°| 04234

July | 0.00484 | 0.0048 | 0.319° | 0.1593 | 2.006 |0.0330] 1.680°  0.3318
Octaber | 0.00379 | 0.0054 | 0.1511 | 0.1803 | 0.837 | 0.0059 | 1.939° | 0.4250
December | 0.00525 | 0.0048 [ 0.308" | 0.1606 | 1.919 |0.0303 | 1.747° | 03372
March | 0.00487 | 0.0047 | 0.303% | 0.1564 | 1.942 | 0.0310 | 1.673° | 0.3195

Average 0.2970 0.0282

Qverall Average 0.2288 0.0250

(S{@&;)and S{8;) denote standard errors of the estimated coefficients. a: denotes statistical significance at the 1% level.
b: denotes statistical significance at the 5% level. c: denotes statistical significance at the 2.5% level.
e and f: denote that Durbin-Watson (DW) statistics do not reject the hypothesis of random residuals of the regressions at
the 0.05 and 0.01 levels respectively. g: denotes that the DW test is inconclusive at the 0.01 level.}

The estimated parameters and the corresponding standard errors are reported
in table (5.3). In general, the relationship between maturity and estimated beta (esf) is
negative, which means a lower maturity is associated with lower systematic risk. Secondly,
the study reveals that a majority of betas are positive. The average betas for western
barley, canola, flaxseed and feed wheat are 0.2404,0.3371,0.0410 and 0.2970 respectively.

Thirdly, a sufficient number of betas (45% of the estimates) are statistically significant at
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least at the 5% level. In addition, it is noted that all significant betas are positive. So, all
three-commodity futures (barley, canola, and wheat) have a positive systematic risk. Thus,
investors will refer to them as risky financial assets, and they will require a risk premium
to compensate for the level of risk they are bearing.

Pointing out the magnitude of the parameter ¢, the table (5.3) shows that all
o's are statistically equal to zero. The insignificance of the estimated o (esc) serves as
evidence of the non-existence of excess return. This result is consistent with the findings of
the previous studies (e.g. [35], [9], [145], [39], and [23]).

"The findings of the classical regression, contrary to several previous studies in agri-
cultural and livestock commodity futures, support the existence of a significant systematic
risk with an overall average of 0.2288 for the four commodity futures under investigation.

The coefficient of determination (R-square), which provides a measure of goodness
fit of the estimated regression equation to the data, is very small (overall average is 0.0250)
as previously observed in many studies (e.g. [35], [19], [9], [39], [23]). That simply means
that the least square line does not provide a better fit to the data, and the observations
are not more closely grouped about the least square line. Note also, that the degree of
systematic risk is not constant across contracts for any of the commodity futures shown
in table (5.3) and table(5.4). In the case of canola, the highest estimate is 0.407 for the

June/July contract and the lowest is 0.148 for the March contract.
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Table 5.4: Systematic risk (beta) for barley, canola, flaxseed, feed wheat using different
weighting schemes for non-commeodities in the market portfolio, Jan. 1991 to Dec. 2000.

Commodity Weight given to TSE 300 in the Market Portfolio
0.00 0.10 0.20 0.30 0.40 0.50

Western Barley:
May | 0.273° 0.272° 0.256 0.226 0.132 0.134

August/huly | 0.314 0.299" 0.265 0.212 0.148 0.082
November/October |  0.157 0.165 0.166 0.158 0.141 0.120
November/December |  0.240 0.253 0.256 0.246 0.223 0.191
February/March | 0,229 0.213 0.183 0.139 0.087 0.035

Canola:
June/May | 0.374° 0.370° 0.346° 0300 0.239 0.171
June/July |  0.417° 0.407° 0.372° 0314 0.238 0.157
September | 0.380° 0.385* 0.371% 0.336° 0.283° 0.220
November | 0.306° 0.310° 0.300° 0.272 0.229 0.179
January | 0.382° 0.402* 0.404° 0.385° 0.346° 0.293
March 0.153 0.148 0.134 0.111 0.083 0.052

Flaxseed:

May | 0.2446 0.2445 0.231 0.204 0.167 0.124

July [ -0.162 -0.192 -0.220 -0.238 -0.245 -0.238
October/September |  0.106 0.106 0.101 0.090 0.0738 0.055
October/November |  0.0601 0.0339 0.0003 -0.037 -0.073 -0.102
December/January | -0.0711 -0.098 -0.125 -0.150 -0.167 -0.174
March | 0.158 0.151 0.134 0.108 0.076 0.043

Feed Wheat:
May | 0.357° 0.404° 0.440° 0.457° 0.450° 0.421°
July|{ 0307° 0.319° 0.317 0.298 0.263 0.217
October | 0.149 0.151 0.145 0.131 0.110 0.085
December | 0.293" 0.308° 0.310 0.295 0.265 0.224
March | 0.284° 0.303° 0.310 0.302 0.277 0.241

(a denotes statistical significance at the 1% level. b denotes statistical significance at the 5% level. ¢ denotes
statistical significance at the 2.5% level.)

To validate whether the weight given to commodities in the market portfolio has an
impact on the estimated parameters, different weighting schemes have been used. As Marcus
[102] pointed out, as the weight given to commodities in the market portfolio increases, the
covariance between return and market return will increase and the estimate of beta will
increase. Table (5.4) supports that conjecture for the sample period. It shows that beta

decreases as the weight given to commodities decreases, which is consistent with Marcus and
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EV arguments. Note here that the American Dow-Jones cash commodity index (DJCCI)
has been used in the absence of a Canadian commodity index. The results show that
the Canadian commodity market (e.g. WCE) is affected significantly by the American
commodity market.

Canola contracts continue to have statistically significant betas although com-
modities are weighted 40% in the market portfolio. This implies that commodity futures
contracts bear a systematic risk that depends to some extent on the proxy index employed.
Most notably, based on the table (5.4), all futures contracts except flaxseed were riskier.
Results do not show any significance for the futures on flaxseed, which means that the risk

premium does not exist statistically.

B. Fuzzy regression results: Second phase

In table (5.5), we report the estimates for the fuzzy regression model (5.5) using the phase
2 illustrated in the previous section. Applying the model 9.10, the estimates for our entire

sample, covering Jan. 1991 to Dec. 2000 (10-year period) are shown in table (5.5).
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Table 5.5: Fuzzy regression parameters for western barley, canola, flaxseed, feed wheat.
Sample period: Jan. 1991-Dec. 2000. (Ten percent weight was given to non-commodities
in the market portfolio.)

|Comm0dities Parameters
Delivery Months {Cor, €52 ,Cop) (i esP ,o1R) O.F.
Western Barley May (0.1571,0.00375,0.1403) 0,0272.0) 35.688
August/July (0.2714,0.00424,0.235) (0,0.299,0} 60.768
November/October (0.1425,0.00501,0.2324) {0.5152,0.165,0} 46.41
November/December (0.1425,0.00509,0.2315) (0.6030,0.253,0) 46.549
February/March (0.2750,0.00402,0.1308) (0,0.213,0) 48.696
Average {0.2236,0.2404,0)
Canola June/May {0.3302,0.00189,0.1813) (0,0.3702,0) 61.38
June/July {0.3308,0.0022,0.1806}) (0,0.407.0) 61.368
September (0.1051,0.00119,0.1396) (0,0.385,0) 29.364
November (0.095,0.00112,0.1081) (0,0.3108,0) 24372
January (0.1302,0.0015,0.1296) {0,0.402,1.0816) 34.174
March (0.1497,0.00101,0.1353) (0,0.148.0) 342
Average (0,0.3371,0.1802)
Flaxseed May (0.146,0.00188,0.1159) (0,0.2445,2.1265) 37.327
July (0.2594,0.0009,0.0814) {0,-0.192,1.7455) 45,733
October/September (0.1241,-0.0002,0.0832) (0.8547.0.1069,1.259) 30.735
October/November (0.1373,0.00071,0.1146) (0,0.0339,0.4174) 31.384
December/January (0.1323,0.00102,0.1827) (0,-0.0981,0) 37.8
March {0.1089,0.0016,0.0781) (1.6683,0.1512,1.7483) 31912
Average| (0.4205,0.0410,1.2161)
Feed Wheat May (0.1507,0.00553,0.316) {0,0.4041,0) 60.804
July (0.1684,0.00484,0.1798) (0.1742,0.319,0) 42263
October (0.2124,0.00379,0.1717) 0,0.1521,0) 46.092
December (0.1861,0.00525,0.1879) (0,0.308,0) 44.88
March {0.1741,0.00487,0.1744) {0,0.303,0) 41.82
Average (0,0.2970,0_)7
Overal| Average {0.0348,0.2288,0)

The data used in the fuzzy regression, with a threshold value for identifying the

model, were chosen to be & = 0. Following the two-step procedure to estimate the fuzzy

parameters (¢, f3), based on the result provided in table 5, we find that a majority of beta

estimates have zero spreads. Hence, the parameters have crisp values. Also, the result

indicates the impact of price limits on estimating systematic risk of commodity futures.

The result shows, as in the case of canols, and flaxseed, that a higher limit corresponds to a

higher spread. Additionally, for the four commodity futures, the estimates parameters o/s




148

(esar) are very small with small spreads. Table 5 demonstrates noticeable patterns between
contract maturity and spreads for the four commodities except barley.

The estimated beta with the corresponding objective function -total spreads- are
reported in table (5.5). Three observations on the estimated betas merit elaboration.
Firstly, the fuzzy systematic risk estimates are all positive with an overall average equal to
(0.0348,0.2288, 0), which means that the fuzzy beta is equal to 0.194 with a membership
function equal to 0, and it is equal to 0.2288 with a membership equal to 1. So, it is obvious
that beta is always different from zero.

The average betas for canola, feed wheat, barley and flaxseed are (0,0.148,0)
(0.0348, 0.2288, 0); (0.2236,0.2404, 0); (1.66883, 0.1512, 1.7483) respectively. Secondly, the
majority of the estimates are fuzzily significant (fuzzily acceptable). For example, flaxseed
estimates, which have previously been reported to be statistically insignificant, appear to
be acceptable under the two-phase fuzzy regression method. Some coefficients have a zero
left spread, which means that the estimated fuzzy parameter cannot be below the estimated
beta (esf). Thirdly, the result provides a clear distribution of the spreads in the presence of
price limits. Thus, the proposed method offers decision makers or investors the magnitude
of the systematic risk in the existence of price limits.

Subsequently, with the help of the two-phase fuzzy approach in the presence of
price limits, we have been successful in presenting the movement interval of the systematic
risk associated with the membership function, which measures the degree of truth or the

degree of precision.
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5.4 Conclusion

As Black [12] argued, a major benefit of futures markets is that participants can
make production, storage, and process decisions by examining the patterns of futures prices
and the risk associated with them. The systematic risk and return in western barley, canola,
flaxseed, and feed wheat have been measured after extending the arguments of CRS [19] and
Marcus [102]. CRS pointed out that a more appropriate “efficient portfolic” return variable
in equation (5.5) would be an index composed of the S&P index of 500 common stocks and
the Dow-Jones commodity futures index. They advised that alternative indexes could be
proposed. Marcus’s suggestion is to construct a reasonable weight for the commodity index
in the market index. Consequently, we have constructed a portfolio index composed of 0.90
of DJCCI and 0.10 of TSE 300.

The purpose of the chapter is to estimate the systematic risk of Canadian commod-
ity futures investment. The capital asset pricing model has been the essential component of
our analysis. Additionally, CAPM has been structured to be estimated from two comple-
mentary phases. Firstly, with the use of classical regression analysis, we have estimated the
parameters of the linear model. The result of that regression will serve as the first step of the
proposed two-step fuzzy regression method. Secondly, knowing that most futures contracts
have a daily price limit specified by the exchange, and the movement of the price is said
to have a limit up and limit down, we have constructed fuzzy non-symmetrical data. Then,
with the help of the second step, the spreads of the beta estimates have been provided.

Explanation of risk and return for Canadian commodity futures is provided by the

use of CAPM. Using a market portfolio based on a weighting of 0.9 for DJCCI and 0.1 for
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the TSE 300 index, canola, barley, and feed wheat can be considered as low-risk assets, as
shown by the results. Thus, a significant portion of the risk associated with holding canola,
wheat, and barley cannot be diversified away.

Based on the classical regression, results show that three out of four commodity
futures are riskier. Therefore, the usual belief that traders of commodity futures bear
above-average risk is supported by the Canadian data. Additionally, a risk premium has
been identified for each commodity contract except flaxseed.

The findings of this study, contrary to several previous studies for agricultural and
livestock commeodity futures, support the existence of a significant systematic risk with an
overall average of 0.2288 for the four commodity futures under investigation.

The result of table (5.5) is similar to the result of table (5.3). However, the
parameters with their estimated spreads, which were given by the fuzzy regression method,
offered a persuasive result with respect to the estimated parameters,

One direction for future research is the examination of the relationship between
systematic risk and the size of the firm [30] using a fuzzy regression approach. Further work
is needed to examine the fuzzy hypotheses testing by establishing a fuzzy acceptance region
(optimal, according to the approach used) [31]. More broadly, we feel that there are more
opportunities for fuzzy regression method applications in financial modeling. This method
provides an effective way to cope with the uncertainties that are inherent in the financial

models.



151

Chapter 6

Fuzzy Hypothesis and Testing for

Significance

6.1 Fuzzy Hypothesis Background

Fuzzy hyl;othesis has been introduced often in the literature; for example (20}, [21],
and [128]. Yuan [168] discussed parameter estimation of normal fuzzy parameters in cases
when one of the parameters is unknown and when both are unknown. Caslas [20] presented
an extension of the problem of testing parameter hypotheses when the information and
the hypotheses are fuzzy. By extending the Bayes optimality criterion, Caslas was able
to perform that extension. Watanabe and Imaizumi [165] proposed a testing method of a
fuzzy hypothesis for random data. Specifically, they examined the case when two population

means are nearly equal or not. Their method, called the fuzzy statistical test, generates
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a fuzzy conclusion from the test. Romer and Kandel [128] investigated the impacts of
imprecise data on the statistical task of hypothesis testing. They also considered the issue
of defuzzification as a way of getting numerical values for the test result. In fact, some
researchers in the area are not in favor of this procedure of defuzzifying when the decision
maker may be able to understand and make a better judgment based on the result in its
original form.

Let X1, X9, ..., X be a fuzzy sample for a population distribution Pg, where that
distribution depends on a parameter 8. In the previous chapter the estimation was investi-
gated. But, the actual statistical testing of the validity about the parameter 8 is presented
in the next section to check whether the fuzzy parameter is significant or not. The question

here is when to accept or reject a hypothesis about the parameter 8 in a fuzzy environment
(fuzzy data). In test theory, significance testing (a—test) is equivalent to making a decision
about stochastic quantity £ that belongs to a class of distribution Hy. So, we suggest that
one way to develop such tests is given by the extension principle (e.g. Kruse and Meyer

[84], Watanabe and Imaizumi {165] and Viert] [160}).

Definition 18 (Viertl [160]). A crisp statistic ¢(¢y,...,€,) is extended to a fuzzy statistic
(X1, Xn) by pp(Xs, X2, ., Xn)(B) = Sup {min(ux, (&1), ., pix, (€2)] H(X1,.., Xp) = B}.
Thus, fuzzy tests are obtained. Here, a crisp test for a fuzzy quantity X will be derived.
For point estimator 8, = Bn(Xl, vy Xn) For the unknown parameter 8, we are inclined to
reject the hypothesis Ho : B = Py against H, : B # B, If the distance h(Em Bo) between the
estimator E,,_ and f3y is too large. The hypothesis Hy is rejected if h(ﬁn, Bo) > t1_o, where

t1-a 8 the (1 — ) quantile of the distribution of h(Bn, Bo) and o is the probability of error.



153

In our case, where LR-fuzzy parameter is considered, we want to test the following

hypothesis:

Hy: 8 =py=0 against H,: 8 # u,

Ho is rejected if 7}, is larger than the (1—c) quantile of the limit distribution 7},. Usually the
distribution of the 3n is unknown, but a limit distribution is known when n goes to infinity
or very large [see, Kratschmer limit theorem for fuzzy random variables [82]]. Therefore, an
asymptotical test be may be obtained. In this chapter, following Nather [109], we use the

t-distribution.

Theorem 19 [84]. Letn € N, § € (0,1), and Ne N. Let {ay,..,an} C [0,1), K €
{1,..., N} and py € U(R). Let [Ty, +00) and (-00,U,,) be two one-sided 100*(1 — 8,)% and
100 % (1 — 09) % (usual) confidence intervals for y and Ty with §; + &3 = 6% and T,, < U,
Define for (py, ..., 1) € [F(R)]" and a € [0,1) Aalpy, ..., frn) and Balpey, ..., ).

Define for (uy, ..., tt,) € [F(R)]™.

(
1 ?‘f inf(#ﬂ)ﬂi < Aa; [MI: rrey ﬂn]
d
bi(fr1, s ) = S or Sup(itg)a; > Boag (1) s thy)
0 otherwise
forie {1,..,N}, and
4
1 if 2oty o) 2 K

Qb(ﬂl, hidd) ﬂ’n) g \

0 otherwise
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Then ¢ : [F(R)]™ — {0,1} is a test for
Hp : “The convez hull of the fuzzy perception of y and T'y is equal to py” against

H, : “It is not equal to py” on the significance level 4.

Theorem 20 [84]
Let n € N, § € (0,1), and Ne N. Let {ayy,...,an} C [0,1),K € {1,..., N}, and
o € U(R).
(i) If (-0,Uy) is a (usual) one-sided 100*(1-6%)% confidence interval for
U and Ty, let Bafpty, ..., ity,] be defined as in [84] (theorem 11.10, p.225) for (i, e ) €
[F(R)]" and a € [0,1).
Define for (1, . i) € [FR)]™. ¢y (11, oy ) = b e > Bl ol

0 otherwise
forie {1,.,N} and

¢(ﬂ I ) d 1 if Z¢i(ﬂ1,.-.,un) > K
11y Mg} =

0 otherwise
Then ¢ : [F(R)]® — {0,1} is a test for

Hp : “The convez hull of the fuzzy perception of y and Ty, is greater or equal to to”

against

Hy : “It is less than py” on the significance level §.

(ii) If [Tn, +00) is a (usual) one-sided 100%(1-6%)% confidence interval for
y and Ty, let Aafpy, ..., i) be defined as in theorem 11.10 for (uy, ..., 1) € [F (R)]" :

$ilttt, o i) L if inflo)a; < Ailpas, - ]
L 111 Hpn) —

0 Otherwise



155

13 (s i) 2 K
fOT i€ {1’ ""N}! and QS(MI:-..,P‘%) g Zf Z¢ ('u'l © )

0 Otheruwise
Then ¢ : [F(R)]" — {0,1} is a test for

Hy : “The convex hull of the fuzzy perception of U and Iy is less or equal to pg”
against

Hy : “It is greater than pug” on the significance level §.

6.2 Potential Testing for Significance: Testing a Hypothesis

about a Coeflicient

6.2.1 Stating the problem

The statistical problem explored most thoroughly is that of hypothesis testing. As
the term suggests, one decides whether or not the hypothesis is correct. The choice lies
between two decisions: accepting or rejecting the hypothesis. A decision procedure for such
a problem is called a test of the hypothesis.

Statistically (also see, {90]) the choice of a level of significance o will usually be
somewhat arbitrary, as in most situations, there is no precise limit to the probability of
an error of the first kind that can be tolerated. It has become customary to choose for «
standard value such as .0005, .01, or .05. Such standardization is convenient, as it reduces
certain tables needed for testing. In fact, when choosing a level of significance, one should
also weigh the power of the test against various alternatives. If the power is low, one may
use much higher values for @ than the customary values. The use of « in relation to the

power of a test is suggested by Lehman [89]. A low significance level results in the hypothesis
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being rejected only for a set of values of the observations whose total probability under the
hypothesis is small, so that such values would be most unlikely to occur if H were true.
To test for a significant regression relationship, we must conduct a hypothesis test
to determine whether the value of 8; is zero. In classical regression, two tests are commonly
used: the t-test and F-test. Both require an estimate of 02, the variance of £ in the regression
model. To test a hypothesis is to perform an experiment considering this hypothesis; based
on the outcome of that experiment we decide whether the hypothesis can be correct. The
essential ingredients to establish such fuzzy significance testing are: fuzzy space which is
identified by the existence of number of fuzzy parameters (result of the experiment); action
space which means whether to accept the null hypothesis (e.g. 8 = 8, = 0) or to reject the

null of hypothesis and accept the alternative hypothesis (8 # 8g).

6.2.2 Interval estimation

Regardless of the properties of an estimator, the estimate obtained will vary from
sample to sample, and there is some probability that it will be quite erroneous. A point
estimate will not provide any information on the likely range of error. The logic behind an
interval estimate is that we use the sample data to construct an interval [Lower X, Upper
X], such that we can expect this interval to contain the true parameter in some specified
proportions of samples, or equivalently, with some desired level of confidence. Clearly, the
wider the interval, the more confident we can be that it will, in any given sample, contain

the parameter being estimated.
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6.2.3 Process of rejecting and accepting

The formal “usual” procedure of hypothesis testing iﬁvolves a statement of the
hypothesis, usually in terms of a “null” or maintained hypothesis and an “alternative”,
conventionally denoted Hp and Hj, respectively. The procedure itself is a rule, stated in
terms of the data, that dictates whether the null hypothesis should be rejected or not.

For example, the hypothesis might state a parameter is equal to a specified value.
But, the decision rule might state that the hypothesis should be rejected if a sample estimate
of that parameter is too far from that value (where “far” remains to de defined). The
classical, or Neyman-Pearson, methodology involves partitioning the sample space into two
regions. If the observed data (i.e., the test statistic) fall in the rejection region (sometimes
called the critical region), then the null hypothesis is rejected; if the observed data falls in

the acceptance region, then it is not rejected.

6.2.4 Assumptions for testing significance

Assumptions of the classical linear regression model as pointed out by Greene [49]
are:

Al. Linear functional forms the relationship y = X + ¢

A2, Identifiability of the model parameters X is an n x K matrix with rank K
(identification condition) (the columns of X afe linearly independent, and there are at least

K observations).
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A3. Expected value of the disturbance given observed information.
— Ele1/X] _
Ele/X] = ' =0
| Blea/X] |
Ad.

Varle;/ X] = o®

A5, Variances and covariances of the disturbances given observed information.
Elee /| X] = oI

AG. Nature of the sample of data on the independent variables. X is a known
n X k of constants (nonstochastic of X; (regressors)). So, assumptions A3 and A4 can be
made unconditional.

AT. Probability distribution of the stochastic part of the model.

A8. So, these assumptions describe the form of the model and relationships
among its parts and imply appropriate estimation and inference procedures. It is convenient

to assume that the disturbances are normally distributed.

e/X ~ N(0,0%)

b is linear function of the disturbance vector e. If we assume that & has a multivariate

normal distribution, we may use the results.!

1 Any linear function of a vector of joint normally distributed variables is also normally distributed. The
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6.3 Estimating b and o2

To test a hypothesis about 8 or to form confidence intervals, we will require an
estimate of the covariance matrix Var([b] = ¢ (X' X)~1. The standard error of the regression

5 2__ _ee
is 5, 5° = ;=5

Est. Var(b) = s2(X'X)~1; standard error of the estimator by is [32 (X'X )I:kl] 2
(k*h diagonal element of (X' X)1).

Assuming normality: Zg = \%T_—Lgﬁ has a standard normal distribution. So, it is
obvious to show that 6—35 = (X' X)X’ (£) is independent of Ln——;']j)s—z If € is normally
distributed, then the least square coefficient estimator b is statistically independent of the

residual vector e and therefore, all the functions of e, including s?, ratio:

(b — Be)[V?S* b — By
Jlo-ng] -k Y

have a t-distribution with (n—k) degrees of freedom. A common test is whether a parameter

i =

By is significantly different from zero. The appropriate test statistic:

by,

t=

1
S,

sum of squared residuals (SSE), is a measure of the variability of the actual observations

about the estimated regression line. The mean square error (MSE) provides the estimate

mean vector and covariance matrix of AX, where X is normally distributed, follow the general pattern given
earlier. Thus, if X~ N(g, ), then AX+b~ N [Au F5AT A’] .
¥ A does not have a full rank, then AEA’ is singular and the density does not exist. Nonetheless, the

individual element of AX+b will still be normally distributed, and the joint distribution of the full vector is
still a multivariate normal.
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of ¢2; it is SSE divided by its degrees of freedom.
U = by + b1z
SSE can be written as:
SSE = Z:(ye -5)t = z(yi — by — biz;)?

Statisticians have shown that SSE has (n — 2) degrees of freedom because two parameters
(B and B;) must be estimated to compute SSE. Thus, the mean square is computed by

dividing SSE by (n — 2). MSE provides an unbiased estimator of o?.

SSE
n—2

s2=MSE =

In classical statistics, the least squares estimators are sample statistics that have their own

sampling distributions (normal form).

a

T Vooi(mi —7)?

Because we do not know the values of ¢, we develop an estimate of oy, , denoted by S,

8

S =
" w - o)2

Rejection rule is as follows using the t-test: we reject the null hypothesis if one of the
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following inequalities has been satisfied

_h by
t= o= >tas2 or Sor

< —tu/o-
Sbl 0/2

On the other hand, using the F-test:

SSR SSR

MSk = regressors degrees of freedom - # of independent variables

So,

MSR
F=IsE

Thus,

F > F, = reject Hy

Analogically, we can estimate using the sum squared in a fuzzy environment to get two
statistic tests for each estimated coefficients, (Cor,Cor) and (Cit, Cir).

In a fuzzy setting, we suggest

{SSE
Sf: n—4

and because in our model we did not assume that inputs or independent variables are not
fuzzy, we will use the following equation with a slight change, taking into consideration the

sum squared method.
Sy

V2 o(zi — )2

Sfb =
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Assuming that t-distribution still holds in this setting, we get the left fuzzy test statistic as

follows:
by
tL =T
Sy,
and the right fuzzy test statistic
by
th= —v.
St,

Defining that by, = (bg,, b1,) = (bo—Cor, b1—Cir) and bp = (bo,, b1,) = (bo+Cor, b1+Cir).

Rejection rule, using the t-distribution, limiting the testing to the second coeflicient by:

t _— e == ———— t
“ Sty Sty 7 taf
b bi+Cig
# S, S¢, > taf2
For the coeflicient bg:
b, o —Cor
t = —_———— t
g St, St, 7 ta/n
br _ bp+ Cor
t = — t
R Sfb Sfb > 0/21
which is equivalent to:
h Ci b Ci
e B Y LAk o .
Sp Sp el 5, TS, ST (6-1)
and
b Cim 1, Cir
—_— t — —
Sfb + Sf;, > loye O g y + Sfb < ta/g (6.2)
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It appears from the previous inequalities (6.1) that incorborating the fuzziness
in the model increases the test statistic value and may become insignificant. With the
use of a fuzzy random variable, the testing process becomes more robust and powerful.
However, in the right side of the fuzzy parameter, it is noticeable that the test is becoming
more significant because we are adding positive value %f which will increase the test
statistic. In other words, the fuzzy test generates a more significant relationship. Thus,
if the original estimate was not significant, the fuzziness improves the test statistic. In
general, the introduction of fuzziness in the model increasingly improves the significance of
the test for the right side of the fuzzy parameter and reduces the significance of the test for
the left side of the fuzzy parameter. Let us assume that we have an estimated parameter
(b) which is statistically insignificant using the ordinary least squares method and t-test
statistic. Using the indicated approach by estimating the fuzzy parameter spreads of that
parameter, we will get the lower and upper limit of b. It is obvious that an increase of the
test statistic value will result in a movement toward significance in the right side of the
parameter. The left side test statistics value may remain insignificant even with the use of
the fuzziness. We can conclude that the fuzziness introduces partial significance instead of
full insignificance. Using the example information above, an increase of the test statistic
will result in having a partial significance (partial acceptance of the hypothesis) of that
parameter, rather than the complete insignificance of it. Since the procedure illustrated
above is simple, testing for significance can be effortlessly applied to any practical situation

involving the fuzzy regression.

Our contribution is to establish the impact of fuzzy data on parameter significance
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tests. The elaborated test procedure serves that purpose. The test result shows whether
the data suggests a rejection (belongs to the rejection space) or acceptance of hypothesis.
Romer and Kandel [128] suggested that a fuzzy sample might support the rejection and
the acceptance of a hypothesis. They warned that the term “acceptance” should be used
with care. Indeed, in their paper, they introduced the mathematical background on how
to reject the hypothesis to a certain degree, with the use of indices. The acceptance and
rejection of indices have been specified by a fuzzy test function. The decision to accept or
reject is based on the maximum of both indices from a probability point view; and from the
possibilistic (fuzzy) view it is based on the difference to the maximum. However, Romer
and Kandel’s methods lack practicality use in various situations, like the one under study.
Of course, here we are specifically interested in testing the significance of the coefficient
that accompanies the fuzzy regression method. That may be a limitation, but further

development and extension are necessary, which will be handled in future research.

6.4 Testing for Significance and Graphical Illustration

To test for a significant regression relationship, we must conduct a hypothesis
test to determine whether the value of 8, is zero. In classical regression, two tests are
commonly used. Both require an estimate of 02, the variance of ¢ in the regression model.
The following figures (6.1) and (6.2) illustrate the movement of the test statistic accounting

for the fuzziness in the testing for significance.
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Figure 6.1: T-distribution and fuzzy test statistic
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Figure 6.2: Illustration of fuzzy test statistic
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6.5 Empirical Example

The results, which have been generated from the previous chapter (Chapter 5)
dealing with estimation of systematic risk in the futures commodity market under price
limit, have been used to test for the significance of that estimation. The method elabo-
rated on the previous section of this chapter shows the importance of incorporating testing
method. The implication of the proposed method to measure the significance of the com-
puted parameters has been the focus of this section. As mentioned in the preceding chapter,
the nature of sample data pertaining to futures commodity returns will be used here to test
the significance of the result. In favor of a faster computation, LR type of fuzzy parameter
has been used in this chapter.

The table of the fuzzy regression parameters for western barley, canola, flaxseed,
and feed wheat shows the data objective function values that measure the sum of deviation.
The values of sum squared errors have been used to compute the test statistic in a fuzzy
setting as examined in the previous section. An important rule employed here is that when
both spreads (widths) of the parameter are equal to 0, we need to treat the estimated
parameter as crisp. Therefore, the use of the proposed method for significance testing is

not required. The following table (6.1) shows the result.
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Table 6.1: Results of testing for significance: Statistical versus fuzzy

Commodity Left spread| esB | Right spread| t-left | tright | S-signi | F-signi
Western Barley May 0 0.2722 Y 1.97285] 1.972848]  Yc YD
Aug.fJuly 0 0.2990 1] 1.73366]1.733656]  Yb Yb
Nov./Oct. 0.5152 { 0.1650 0 -2.0993 ] 0.98909 N partial ¢
Nov./Dec. 0.603 0.2530 0 -2.1316 | 1.540818 N
Feb./Mar. 0 0.2130 0 1.38485] 1.384845 N N
Canola Junefay 0 0.3702 0 2.16912] 2.159121 Yc Yc
JunelJuly 0 0.4070 0 2.26577] 2.265772 Yc Ye
Sep. 0 0.3850 0 2.99389| 2.99389 Ya Ya
Nov. 0 0.3108 0 2.32919] 2.320194]  vc Ya
Jan. 0 0.4020 1.0816 12.66786}0.845849] Ya Ya
March 0 0.1480 0 0.96731] 0.967314 N N
Flaxseed May 0 0.2445] 21265 [1.48815]1443105] N | partiala
July 0 -0,1920 1.7455 -1.0804 | 8.741603 N partial a
Oct. /Sep.{ 0.8547 | 0.1069 1.259 -5.4478 ] 9.950658 N Ya
Oct./ Nov. 0 0.0339 0.4174 0.23293} 3.100861 N partial a
Dec. / Jan. 0 -0.0981 0 -0.6758]-0.675032] N N
March 1.6683 | 0.1512 1.7483 -10.028 | 12.55561 N Ya
Wheat May 0 0.4041 0 2.22589] 2.225894] Yc Ye
July 0.1742 1 0.3190 0 0.90125] 1.985481 Ye Partial b
Oct. 0 0.1511 0 0.83091] 0.830913 N N
Dec. 0 0.3080 0 1.80148] 1.901477] b Yb
March 0 0.3030 0 1.92083] 1.920834] Yb Yb

Ya denotes statistical or fuzzy significance at the 1% level. Yb denotes statistical or fuzzy significance at the 5%
level. Yc denotes statistical or fuzzy significance at the 2.5% level. Partial a and partial b mean partial significance
at the 1% and 5% respectively. N: denotes statistically or fuszily insignificant

From the Table (6.1) it appears that flaxseed commodity futures, which are proven
to be statistically insignificant, have shown partial significance. Also, the result shows that
those contracts that have zero spreads are statistically and fuzzily significant.Thus, it is
enough to rely on a statistical test, as long as the fuzzy parameter has a zero spread
{width), which is equivalent to a crisp value. Another observation worth mentioning is that
the March flaxseed contract, which was statistically insignificant, is fully fuzzily significant
at 1%. Thus, it is obvious that, as expected, the significance has been improved for some

future contracts by the use of price limits.
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Chapter 7

Conclusion and contribution

In the present chapter, we discuss the conclusion and the contribution of the thesis.
We believe that this research will lead to a number of computational and theoretical inves-
tigations. Some directions for further research that uses the methodology and testability

strategy have been provided.

7.1 Summary and Conclusion

Lack of proven practical applications and empirical implications of the new un-
certainty (fuzzy random uncertainty) during its early stage of development was a favorite
criticism of its opponents. Therefore, the present research represents an attempt to present
a methodology and a potential testability process for three major aspects.

In chapter 3, we question one important assumption made in Markowitz ([103],
[105]), which remains a fundamental “hidden” assumption in mean-variance theory litera-

ture today, that random uncertainty is the sole means of modeling uncertainty.
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Although Markowitz [103] ignores the experts’ judgments in the derivation of the
efficient frontier, he discusses the value of such a combination of statistical techniques and
the judgment of experts, to form reasonable probability beliefs about the portfolio selection
process. However, Markowitz does not propose a method to deal with that issue, and he
does not examine the efficient set of portfolios for the investor in the presence of fuzziness
or any subjective information.

On other hand, White [166) has suggested that measures of uncertainty are either
formally derived from specified data, or are imputed by observing choice in a given class
of problems. Following along the lines of Markowitz, the purpose of this research is to
provide some aspects of fuzzy random uncertainty in asset pricing, which would include a
rederivation of the mean-variance theory, followed by the rederivation of the fuzzy CAPM
model.

In the present study, we re-examine mean-variance theory in the presence of fuzzi-
ness that is articulated by fuzzy returns (LR type). We rederive the Markowitz efficient set
and present the Fuzzy Capital Market Line (FCML) and the FCAPM. By illustrating these
ideas with an empirical example, a comparative study is obtained.

The boundary of each sample size turns out to not be a parabola. It is also
clearly observed that the arc which is between a minimum point and a maximum point
does not coincide with the original boundary. The minimum (maximum) point represents,
as discussed previously and supported by Szego’s finding [147], what can be achieved by
investing the capital in the investment option with lowest (highest) return.

The portfolio width has been included as a third parameter, and the frontier has



170

been plotted in three-dimensional graphs. The relationship between risk, return, and width
(proxy for the subjective evaluation of the experts) has been represented by a surface. Also,
for 15, 30, and 50 asset sample sizes, similarly to the case of short sales, we still observe
that the larger the size of the sample the more the efficient frontier is shifted to the left;
the dominance of large size sample still holds.

It is discerned in the previous graphs that as the degree of fuzziness increases (flex-
ibility with respect to the portfolio mean), there is a slight decrease in the level of risk. Note
here that the graph does not suggest a strong negative relationship for various sample sizes.
Because the widths in our samples are correlated with the return, which is derived from
historical data, we could not see a strong visible (either positive or negative) relationship.
Thus, we suggest that as soon as the investor starts getting new subjective information
from experts, which is to some extent not primarily correlated with the historical data, we
will be able to spot a strong visible relationship between the width size and the risk level.
So, an investor who is very flexible and is acquiring additional subjective information to
support the historical data will be liklely to accept a higher risk.

While Philippatos and Wilson [119] argue that entropy is a better statistical mea-
sure of risk than variance because entropy is a non-parametric measure, entropy did not
appear often in published works. As Philippatos and Wilson [119] suggested entropy as a
measure of portfolio risk, because it does not make assumptions concerning the probability
underlying the returns, we use the same analogy to establish the measure of risk using the
proposed fuzzy entropy method in the second study.

Note here that neither the Cozzolino and Zahner [27] approach nor the Philippatos
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and Wilson [119] method suggest anything about the situation when there is imprecise
information to start from. Consequently, we use the fuzzy theory in conjunction with the
entropy theory. This study did extend the method to provide a specific distribution by
using the fuzzy entropy principle.

The utilization of variance as a measure of uncertainty is ignored purposely, be-
cause for distributions that are non-symmetric or not normally distributed, a new measure
of uncertainty is essential. In addition, in a fuzzy environment it is crucial to use a new
measure of uncertainty that will differ from the :variance, while taking into account the
fuzziness existing in the system. In this study, we suggest the use of fuzzy entropy as a
measure of uncertainty. Although entropy or expected information has been widely used in
many engineering and mathematical subjects, the author deems that the scope of applica-
tion in finance is limited. The empirical analysis using the Markowitz data has been given
to illustrate the use of the method in the construction of the mean-entropy efficient frontier
under a fuzzy environment.

This study focused on the presentation of a new approach with the emergence of
probability theory and studied its various other (non-probabilistic) manifestations and their
utility in risk modeling. Anyone who is familiar with the stock market will find that the
most challenging decision is to differentiate between the good stock to buy and the bad
stock to sell. To a lesser extent, we considered decision problems (investment problems),
where the goal is to choose optimal strategy; some alternatives between actions may be
determined. The major aim of the study was to establish the mathematical theory of fuzzy

probabilities, based on the measure of entropy.
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In the third study, to overcome the biased parameter estimates introduced by price
limits in futures markets, we treat the futures price subject to price limits as a fuzzy datum
and use a two-phase fuzzy approach to examine the input of price limits and estimate the
systematic risk.

Following the Brennan paradigm, we assume that there is an external signal sug-
gesting that the equilibrium price is in the boundaries of the observed price and that the
equilibrium price is bounded by an upper bound (observed plus half the limit) and lower
bound (observed minus half the limit). It is assumed that the equilibrium price that would
have been observed in the absence of a price limit will be around the settlement price.

The study estimates the systematic risk of Canadian commodity futures invest-
ment. The capital asset pricing model (CAPM) has been structured to be estimated from
two complementary phases. Firstly, with the use of classical regression analysis, we have
estimated the parameters of the linear model. The result of that regression will serve as the
first step of the proposed two-step fuzzy regression method. Secondly, knowing that most
futures contracts have a daily price limit specified by the exchange, and the movement of the
price is said to have a limit up and limit down, we have constructed fuzzy non-symmetrical
data. Then, with the help of the second step, the spreads of the beta estimates have been
provided.

Based on classical regression, results show that three out of four commodity futures
are riskier. Therefore, the usual belief that traders of commodity futures bear above-average
risk is supported by the Canadian data.

After Phase 2 of the estimation procedure, the parameters with their estimated
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spreads, which have been given by the fuzzy regression, offered persuasive evidence for the
acceptance of some parameters.

The last step was to test if the original estimate was significant or not; we wanted
to see if fuzziness improved the test statistic. In general, the introduction of fuzziness in
the model increasingly improves the significance of the test for the right side of the fuzzy
parameter and decreases the significance of the test for the left side of the fuzzy parameters.

Using an approach that estimates the fuzzy parameter spreads, we get the lower
and upper limit of the coefficient. We conclude that the fuzziness introduces partial signifi-
cance instead of full insignificance. Using the example above, an increase of the test statistic
will result in a partial significance (partial acceptance of the hypothesis) of that parameter
rather than the complete insignificance of it. Since the procedure illustrated above is simple,
the testing for significance can be effortlessly applied to any practical situation involving

fuzzy regression.

7.2 Contribution and Further Research

The mean-variance model gained widespread acceptance as a practical instrument
for portfolio selection, and it is hoped that the mean-variance frontier will be computed with
subjective measures like fuzzy return as part of the portfolio allocation process by many
investment advisory firms and pension plans sponsors. The contribution of this research is
the presentation of a methodology on how to derive the attainable efficient frontier in the
presence of fuzzy information in the data or when the fuzzy information has been imposed

in the modeling environment to reflect a subjective measure.
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In real-world problems, we are faced with imperfect information (data), and we
have to deal with uncertain, imprecise, and vague data. In modeling and analyzing problems
of this type, earlier works in finance tended to equate all aspects of imperfect information
with uncertainty (of a random character). Thus, a multitude of probabilistic models were
proposed. This was also the case with the use of modeling in finance. The suggested method
will serve the interest of investors who select their portfolios using a Markowitz-based model
with the introduction of fuzziness or any other subjective techniques, like the judgment of
experts. An additional important investigation would be to look at the mean-variance, when
investors can borrow or lend any amount they want at divergent borrowing and lending rates
while we maintain the assumption of fuzzy returns ([16), [157]). In another, we want to see
what will happen once we relax the assumption of riskless rate as borrowing and lending
rates.

On the other hand, an inevitable consequence of using fuzzy probabilities is that
probabilistic reasoning may produce indeterminate conclusions (we may not be able to
determine which of two events is more probable), and decision analysis may produce non-
decision (we may not be able to choose the best of two actions). When there is not enough
information on which to base our conclusions and decisions, we cannot expect sharply
defined reasoning to reveal the most probable outcome. We believe that a substantial
amount of research should be done in this area.

For instance, one direction for future research is the problem of the two-state
variable model of the term structure in which approximate probabilities may be be used.

Also, we hope that the suggested method will be useful in solving the problem of valuing the
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American put option using the binomial method. The critical-stock-price function, which
is the value of the stock price when one is indifferent between exercising and not exercising
the put, can be approximated not only to compute accurate put prices but also to provide
the boundary of early-excercise.

The third contribution may indicate this direction for future research: the exam-
ination of the relationship between systematic risk and the size of the firm, using a fuzzy
regression approach. Further work is needed to examine the fuzzy hypothesis testing by
establishing a fuzzy acceptance region (optimal according to the approach used) [31]. Gen-
erally, we feel that there are more opportunities for fuzzy regression method applications
in financial modeling. It provides an effective way to cope with the uncertainties that are
inherent in the financial models.

The last contribution was to establish the impact of fuzzy data on parameter
significance tests. The elaborated test procedures serve that purpose. The test result shows
whether the data suggest a rejection (belongs to the rejection space) or acceptance of the
hypothesis. We are specifically interested in testing the significance of the coefficient that
accompanies a simple fuzzy regression method. That may be considered a limitation in the
presented approach but further development and extension of the method to cover multiple

variables is necessary, and will be handled in future research.
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Appendices

Appendix A. Part of the VBA Program code

The following is a part of the used VBA program to do the computation and

generate the efficient frontiers.

Sub EFwoSSwWgraph()

‘graph values without using table

'plots each coordinate

Dim cht As Chart

numSeriesToCreate = Application. Range(”rMeans” ).Rows.Count
Set cht = Charts.Add

cht.SeriesCollection.NewSeries

For i = 1 To numSeriesToCreate

cht.SeriesCollection(i).Name = Application.Range(”rMeans” }.Cells(i,
1)

cht.SeriesCollection(i).Values =

Application.Range("rWidths”).Cells(i, 1)



cht.SeriesCollection(i). X Values =
Application.Range(”rSigmas”).Cells(i, 1)

If i < numSeriesToCreate Then
cht.SeriesCollection.NewSeries

End If

Next i

cht.Location Where:=x]LocationAsNewSheet, Name:=" EFwoSSwW3”
cht.ChartType = xISurface

With cht

.HasTitle = True

.ChartTitle.Characters.Text = _

”Efficient Frontier with Widths and without Short Sales”
Axes(xICategory).HasTitle = True
.Axes(xlCategory).AxisTitle.Characters. Text = ”Sigma”
.Axes(xISeries).HasTitle = True

.Axes(xlISeries). AxisTitle.Characters. Text = ”Mean”
.Axes(xlValue).HasTitle = True

.Axes(x1Value). AxisTitle.Characters. Text = *Width”
End With

End Sub

Sub createTable()

‘table to create 3d graph
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"table consists of the values to be graphed

Dim ws As Excel. Worksheet

Set ws = Application. Worksheets(”Sheet2")

ws.Activate

ws.Range(Cells(1, 2), Cells(1, 226)).Name = "rYValues”
ws.Range("rY Values”).FormulaArray = "=TRANSPOSE(rMeans)”
ws.Range(Cells(2, 1}, Cells(226, 1)).Name = *rXValues”
ws.Range(”rXValues”).FormulaArray = ”=rSigmas”
ws.Range(Cells(2, 2), Cells(226, 226)).Name = "rZValues”
Fori=1 To 226

ws.Range("rZValues”).Cells(i, i) =
Application.Range(”rWidths”).Cells(i, 1)

Next i

End Sub

Sub graphTable()

'graph values using table

Dim cht As Chart

numSeriesToCreate = Application.Range(” rMeans”).Rows.Count
Set cht = Charts.Add

cht.SeriesCollection.NewSeries

cht.SeriesCollection(1). X Values = Application. Range("rSigmas”)

For i = 1 To numSeriesToCreate
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cht.SeriesCollection(i).Name = Application. Range("tMeans” }.Cells(i,
1)

cht.SeriesCollection(i).Values =
Application.Range(”rZValues” ).Columns(i)

If i < numSeriesToCreate Then
cht.SeriesCollection.NewSeries

End If

Next i

cht.Location Where:=x1LocationAsNewSheet ’, Name:="EFwoSSwW4”
cht.ChartType = xISurface

With cht

HasTitle = True

.ChartTitle.Characters.Text = _

"Efficient Frontier with Widths and without Short Sales”
Axes(x1Category).HasTitle = True
.Axes(xICategory).AxisTitle.Characters. Text = ”Sigma”
.Axes(xISeries).HasTitle = True

.Axes(xISeries). AxisTitle.Characters.Text = "Mean”
.Axes(xlValue).HasTitle = True
.Axes(x1Value).AxisTitle.Characters. Text = "Width”
End With

End Sub
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Appendix B. Explanation of expansion rules of daily limits in

WCE

Before October 10, 2000, the regular daily price limits were $5.00/tonne for feed
wheat and western barley and $10.00/tonne for canola and flaxseed. These limits could be

expanded (increased) in certain situations, as follows:
e Expanded daily limits rule in 1991:

Starting with the March 1991 contracts, there has been a special rule for contracts
in delivery. If a contract is in its delivery month and closes at the limit in the same direction
(up or down) for two successive days, its daily limit is expanded to 1.5 times normal. If
the contract closes at this expanded daily limit for both of the next two days, the limit is
increased to two times normal. If the limit has been expanded and the contract does not

close at its limit, the limit will return to the normal limit.
e Expanded daily limits changed starting sometime in 1991 or 1992:

If two of the three nearest contract months close limit up or down, the daily limit
for that commodity is expanded to 1.5 times normal for the next three days. If two of the
nearest three contract months close limit up or down on the third day, the limit will remain
at 1.5 times normal for the next three days.

If a contract in its delivery month closes limit up or down, the daily limit for that
contract is expanded to 1.5 times normal for the next three days. If that contract closes
limit up or down on the third day, the limit will remain at 1.5 times normal for the next

three days.
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Commodity daily limit expanded to 1.5 times normal expanded to two times nor-
ma) feed wheat and western barley from $5.00 to $7.50 and to $10.00 canola and faxseed
from $10.00 to $15.00 and to $20.00. There are no expanded daily limits after October 10,

2000.



