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The increasing variety of networks and end systems, especially wireless devices, pose new challenges in communication support
for, particularly, multicast-based collaborative applications. In traditional multicasting, the sender transmits video at the same rate
and resolution to all receivers independent of their network characteristics, end system equipment, and users’ preferences about
video quality and significance. Such an approach results in resources being wasted and may also result in some receivers having
their quality expectations unsatisfied. This problem can be addressed, near the network edge, by applying dynamic, in-network
adaptation (e.g., transcoding) of video streams to meet available connection bandwidth, machine characteristics, and client
preferences. In this paper, we extrapolate from earlier work of Shorfuzzaman et al. 2006 in which we implemented and assessed
an MPEG-1 transcoding system on the Intel IXP1200 network processor to consider the feasibility of in-network transcoding for
other video formats and network processor architectures. The use of “on-the-fly” video adaptation near the edge of the network
offers the promise of simpler support for a wide range of end devices with different display, and so forth, characteristics that can
be used in different types of environments.
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1. Introduction

The rapid growth of distributed computing and the Internet
has led to demand for collaboration over wide area networks.
This demand has been only partially met by existing
multimedia and collaborative applications such as video-on-
demand, teleconferencing, and telemedicine, which use the
Internet for communication. For many such applications,
group communication is a core component and the timely
transfer of various types of media streams is a requirement.

Multicasting [1] is one of the building blocks of many
collaborative applications and provides efficient commu-
nication between a single sender and multiple receivers.
Messages originating from the sender are duplicated in the
network as they are routed to the receivers that constitute the
multicast group. Messages are forwarded through the use of
a tree of routers called a “multicast tree” that is rooted from
the sender, or possibly another predetermined point in the
network, and which contains all multicast destinations (i.e.,
receivers) as leaves.

Initial efforts at implementing multimedia and collabo-
rative applications for well-connected, high-end devices have
proven to be successful (ivs [2], nv [3], vat [4], and vic [5]
are widely used video and audio conferencing tools deployed
over the Internet and the multicast backbone (MBONE) [6]).
However, the usability of these new applications has been
limited by a number of problems. One problem is how to
deal with heterogeneity in the Internet. This heterogeneity,
resulting from an increasing variety of networks and end
systems, poses new challenges in communication support
for collaborative applications. For example, consider a
scenario where receivers have end systems ranging from
simple, low-power Personal Digital Assistants (PDAs) to
high performance workstations. Due to limited processing
capabilities or slow network links, low-end receivers may not
be capable of handling the same video streams as high-end
receivers. Thus, different users in a group may have different
requirements with respect to Quality of Service (QoS).

Multicasting performs one-to-many transmission so
video is normally transmitted at the same rate to all receivers
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Figure 1: In-network transcoding in heterogeneous multicasting.

independent of their network attachment and end systems
equipment. This means the source can only generate data
at a rate that meets the capability of the most constrained
receiver, although receivers having high bandwidth links
would be capable of receiving correspondingly higher quality
video streams. Additionally, not all the video streams
possess equal value to all recipients since receivers may have
different levels of interest in the incoming video streams.
Unfortunately, most existing collaborative applications are
not capable of capturing and exploiting user interest and
thus must transmit the same, full quality, video streams to
all participants. This approach results in resource wastage.
Further, ignoring receivers’ interests may also result in
some receivers’ quality expectations being unsatisfied since
bandwidth may be wasted on unimportant streams.

Video adaptation (or transcoding) is a viable solution
to these problems. Video streams originating from the
source can be transcoded (i.e., modified) dynamically in
the network according to the requirements of hetero-
geneous receivers and the capacity of their access links
“downstream” in the multicast tree. Figure 1 illustrates in-
network transcoding. Three high performance and one low
performance receivers are connected to the video-quality
adjustment nodes (i.e., routers) through high and low
bandwidth links. The adjustment nodes dynamically adapt
the rate of an incoming stream to meet the requirements of
the receivers and network links they deliver to.

Work on active networks [7] has identified a number of
issues that suggest that an active network-based approach
to dynamic adaptation of video streams could be beneficial.
Active networks allow users to inject customized programs
into the network nodes and also support individual packets
being programmed to perform specific actions as they tra-
verse through the network. In the active networks paradigm,
these packets are called “capsules” and they carry not only
data but also references to the routines to be invoked at the
nodes through which a capsule will pass. In this network

model, programmability migrates from the application layer
to the network layer and the network and application layers
are, essentially, bridged together. Active network services
running at the network layer can also exploit such informa-
tion as knowledge of network topology and load conditions
to achieve greater efficiency while application-level schemes
can only use indirect metrics like data loss rate to speculate
on network conditions.

In this paper, we seek to support the use of a wide range of
end devices, varying connection characteristics and different
user interests through the use of in-network video transcod-
ing techniques implemented near the network edge in a
fashion similar, but not limited, to that of active networks.
The edge of the network being the boundary between the
core network infrastructure and access network equipment
provides an ideal location for doing video adaptation. In our
system, video adaptation is done using a video adaptation
node. The architecture of our prototype video adaptation
node conforms to the node architecture provided by the
active networks “reference model” [8].

The recent development of network processors has been
motivated by the desire to support high data processing
speed and greater programmability (for flexibility) in the
network. Such devices offer an ideal environment for
deploying the proposed system and this research contributes
by helping to determine whether or not they are sufficiently
powerful to support in-network video transcoding. Our
current implementation uses the IXP1200 network proces-
sor for implementing the nodes that transcode MPEG-1
(MPEG-1 was chosen due to the limited instruction store and
processing capability of the IXP1200.) video data to a desired
bit rate. The functionalities provided by the active video
adaptation node are arranged according to an active network
architecture [8]. We implement our video adaptation process
as an Active Application (AA), one of the major components
of an active node. Capsules are not used.

We use requantization and selective frame dropping
as transcoding techniques to adapt the video streams.
Requantization is the process of dequantizing the Discrete
Cosine Transform (DCT) coefficients of the video stream and
then “requantizing” them with a new quantization step size
to reduce the bit rate. In frame-dropping, frames that are
not referenced by any other frames in the video sequence are
dropped to keep the generated bit rate of a video stream from
exceeding the allocated channel bandwidth and to reduce the
frame rate. We evaluate our transcoding techniques in terms
of transcoding latency, throughput, and accuracy. Finally, we
provide some simple extrapolation of our results for MPEG-
1 using the IXP1200 to different encoding schemes and more
powerful network processors.

The remainder of this paper is organized as fol-
lows. Section 2 provides related work, Section 3 overviews
videocoding techniques, and Section 4 reviews video adap-
tation algorithms. Section 5 and 6 discuss a simple low-pass
filter and frame resizing, respectively. Section 7 presents a
brief discussion of the use of network processors for video
transcoding, which is followed by Section 8, which reviews
and compares current network processor architectures.
Sections 9 and 10 present the implementation details and
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experimental results for our system, respectively. Finally, the
paper concludes in Section 11 and discusses some directions
for future work.

2. Related Work

A number of approaches to dynamically adaptive video
multicast have been proposed in recent years aiming to
address various issues and challenges including network
heterogeneity in the Internet. The approaches can generally
be divided into two categories. The first category adopts
layered video [9–12] at the source (where video is composed
of multiple layers with a base layer providing the lowest
quality video signal, and each additional layer enhancing the
quality of the base layer). Layered video is transmitted over
multiple multicast sessions where each session corresponds
to one layer. A receiver may subscribe to as many sessions
as can be effectively supported by its processing capacity
and link bandwidth. The second category uses video filter-
ing/transformation [13–16] inside the network to produce a
video stream of the desired quality “on the fly.”

These existing adaptation approaches have a number
of drawbacks and are subject to network heterogeneity
problems. First, the video stream used in layered multicast
schemes has to be layer encoded which makes such schemes
restrictive and incompatible with most existing video appli-
cations. Second, the use of receiver-driven resource reser-
vation in some approaches [15] leads to suboptimal use of
network resources due to the lack of receivers’ knowledge
about the current network load and the varying nature of
the network load over time. For example, if the receiver
makes its reservation during a busy period, the network can
only provide limited resources leaving the receiver with poor
video quality even if the load is mitigated later. Third, the
packet discarding technique used in some approaches [10]
to handle network congestion is regarded as flawed [17] as
it does not provide the best overall performance in terms
of bandwidth utilization and end-to-end QoS. Instead of
dropping a packet or sending it over a congested link by
dropping high-frequency coefficients of video streams [14],
the packet could be forwarded through a suboptimal route
to attain better overall performance and efficient use of band-
width. Fourth, many approaches focus only on single specific
aspects of the problem. For example, Akamine et al. [13]
describe a technique for the construction of multicast trees
to be used in video transmission that satisfy different QoS
requirements, but their work focuses only on which nodes
should do video filtering. How the filtering mechanisms are
implemented is not discussed. Finally, most work focuses
only on congestion and bandwidth issues while the varying
preferences of clients and the heterogenous characteristics
of clients’ devices also make group communication with
multicast difficult.

Yamada et al. [16] present an active network-based
video-quality adjustment method for heterogenous video
multicast using the IXP1200 network processor. This was
the first effort to use network processors in adaptive video
multicasting. They only implemented a low-pass filter as a

quality adjustment technique for real-time multicasting of
MPEG-2 video. Their system, as described, cannot perform
the required video adjustment at an acceptable rate.

Addressing these problems in collaborative applications
requires an efficient mechanism for in-network adaptation
of video streams, which influences user perceived quality
and resource requirements both for the end-systems and
the network. As described, though several application level
schemes have already employed dynamic adaptation, none
of them provides a complete solution to the problems
faced by collaborative applications. Responding to this issue,
the problem addressed in this paper is “how can network
performance in collaborative applications be improved by
detecting and managing preferences from the receivers for
use in dynamic, in-network adaptation of data streams?” To
this end, we discuss a framework that not only addresses net-
work heterogeneity by considering clients’ network connec-
tions and device characteristics but also supports delivering
activity-based user interest hints into the network and using
those hints at routers to adapt to changing user requirements
through the dynamic modification of data streams.

3. Different Video Coding Standards

This section reviews video coding standards with a focus on
the major video compression techniques. The characteristics
of these standards play a key role in building practical
video adaptation systems. Understanding the differences
between MPEG-1 and the other standards provides a basis
for extrapolating from our MPEG-1 results to other formats.

3.1. MPEG-1 Video Coding. In MPEG-1, video is represented
as a sequence of individual still images consisting of a
two-dimensional array of picture elements (pels). MPEG-
1 video compression employs two basic coding techniques:
intraframe coding and interframe coding.

In intraframe coding, spatial redundancy in the same
video frame is reduced by DCT-based frequency trans-
formation. In interframe coding, similarity between pels
in adjacent frames, temporal redundancy, is reduced by
motion compensation (MC). MPEG-1 divides the frames in
a sequence into three types: intracoded frames (I-frames),
forward predicted frames (P-frames), and bidirectional
predicted frames (B-frames). An I-frame is encoded by
intraframe coding without any reference to past or future
frames. P and B frames are encoded using interframe coding.
P-frames are coded with respect to the temporally closest
preceding I-frame or P-frame. B-frames are encoded with
respect to immediately adjacent I or P-frames past, future,
or both.

An MPEG-1 video bitstream is divided into six layers: the
video sequence, group of pictures, picture, slice, macroblock,
and block layers [18]. The video sequence layer contains
one or more groups of pictures (GOPs). A GOP contains
a sequence of pictures/frames beginning with an I picture
followed by several P and B pictures. A picture corresponds
to a single frame in the video sequence consisting of one
or more 16-pixel high stripes called slices. A slice contains
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a contiguous sequence of raster ordered macroblocks. Each
macroblock contains a group of six 8 × 8 DCT blocks, four
luminance blocks and two chrominance blocks. Each block
corresponds to the basic coding unit on which the DCT is
applied and consists of 64 pels arranged in an 8× 8 array.

3.2. MPEG-2 Video Coding. The MPEG-2 coding standard
[19] supports a wide range of bit rates, resolutions (both
spatial and temporal), quality levels, and services for appli-
cations such as digital storage, High-Definition TV (HDTV),
and so forth.

Unlike MPEG-1, MPEG-2 supports interlaced video
input images which are scanned as even and odd fields to
form frames. Thus, there are two new picture types. “Frame
pictures” are obtained by interleaving the lines of an odd
field and its corresponding even field while “field pictures”
are formed from a field of pixels alone. All picture types can
be I, P, or B frames. A coded I-frame consists of an I-frame
picture, a pair of I-field pictures or an I-field picture followed
by a P-field picture. A coded P-frame consists of a P-frame
picture or a pair of P field pictures. A coded B-frame consists
of a B-frame picture or a pair of B-field pictures.

MPEG-2 maintains MPEG-1 syntax, but uses exten-
sions to add flexibility and functions. “Scalable” extensions
support video data streams with multiple resolutions and
the ability to partition the data stream into two pieces,
one part containing all of the key headers, motion vectors,
and low-frequency DCT coefficients and the second part
transmitting less critical information such as high-frequency
DCT coefficients. Other extensions offer temporal flexibility
so not all frames have to be reconstructed.

3.3. MPEG-4 Video Coding. MPEG-4 was originally targeted
to support low bit rates and error prone channels (e.g., for
wireless devices) but also includes support for object-based
user interactivity. MPEG-4 allows video objects to be placed
anywhere in the coordinate system and transformations can
be used to change the geometrical appearance of the objects.
Streamed data can be applied to video objects to modify their
attributes and the user’s viewing point can be changed.

The basis of MPEG-4 video coding [20] is a block-based
predictive differential video coding scheme as in MPEG-
1 and MPEG-2. MPEG-4 video also specifies the coded
representation of visual objects that can be synthetic (as in
interactive graphics) or natural (as in digital TV). These
visual objects can be combined to form compound objects.
MPEG-4 multiplexes and synchronizes the visual objects
before transmission to provide QoS and allows interaction
with the scene generated at the receiver’s end.

MPEG-4 video provides methods for compressing tex-
tures, for texture mapping of 2D and 3D meshes, com-
pression of implicit 2D meshes, and compression of time-
varying geometry streams that animate meshes. MPEG-
4 also supports coding of video objects with spatial and
temporal scalability. Scalability allows decoding a part of
a stream and constructing images with reduced quality,
reduced spatial resolution, reduced temporal resolution, or

with equal temporal and spatial resolution but reduced
quality.

3.4. H.261 Video Coding. H.261 [21] has many elements
in common with MPEG-1. Both intraframe and interframe
coding techniques are used for compression. Like MPEG-
1, H.261 uses DCT-based frequency transformation and
motion compensation (MC). The video is also organized in
layers. However, there are some differences between these
two coding standards. In H.261, the quantization is a single
variable instead of a matrix of 64 terms and the syntax is
simpler with only four layers. To minimize delay, only the
previous picture is used for motion compensation. So, there
are no B frames.

3.5. H.263 Video Coding. H.263 [22] is an evolutionary
improvement to H.261, building on ideas from MPEG-1 and
MPEG-2. H.263 is intended for low bitrate communication
and it supports additional video frames. H.263 has MPEG-
like blocks and macroblocks with prediction and motion
compensation. The zigzagged quantized coefficients are
coded using the MPEG run-level methods although with
different tables. The video has four layers as in H.261.

Four optional modes enhance the functionality of H.263.
The “unrestricted motion vector” mode allows motion
vectors to point outside a picture. The “syntax-based arith-
metic coding” mode supports arithmetic instead of huffman
coding giving the same picture quality with fewer coded
bits. The “advanced prediction” mode uses overlapped block
motion compensation with four 8×8 block vectors instead of
a single 16×16 macroblock motion vector. The “PB-frames”
mode allows a P-frame and a B-frame to be coded together
as a single PB-frame.

3.6. H.264 Video Coding. H.264 [23], MPEG-4 Part 10,
or Advanced Video Coding (AVC) achieves very high-data
compression. The goal of H.264/AVC was to provide good
quality at substantially lower bit rates. An additional goal was
to do this in a flexible way that would allow the standard to
be applied to a wide variety of applications and to work well
in a variety of networks and systems.

The basic functional elements (prediction, transform,
quantization, and entropy encoding) are similar to previous
standards. H.264 provides a number of new features that
allow it to compress video much more effectively. These
include what follows. (i) Multipicture motion compensation
using up to 32 previously-encoded pictures as references.
This usually allows modest improvements in bit rate and
quality in most scenes. (ii) Variable block-size motion
compensation (VBSMC) with block sizes as large as 16 × 16
and as small as 4 × 4, enabling very precise segmentation
of moving regions. (iii) Quarter-pixel precision for motion
compensation, enabling very precise description of the
displacements of moving areas. (iv) A 4 × 4 integer block
transform is used as opposed to the 8 × 8 DCT blocks.
(v) Context-adaptive binary arithmetic coding (CABAC)
is used to losslessly compress syntax elements in the
video stream knowing the probabilities of syntax elements
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Figure 2: Video format conversion using a transcoder.

in a given context. (vi) Context-adaptive variable-length
coding (CAVLC) a lower-complexity alternative to CABAC,
is used for the coding of quantized transform coefficient
values.

4. Video Adaptation Algorithms

To support the transmission of pre-encoded video over
heterogeneous networks, the video streams need to be
dynamically adapted based on the channel bandwidth and
receivers’ requirements. The device or system that performs
this process is called a video transcoder. One salient function
provided by video transcoding is bit rate conversion, which
accepts a pre-encoded video stream as input and produces
an output stream having a different bit rate. Other func-
tionalities that may be provided by a transcoding process
include conversion of the frame rate, spatial resolution, or
compression standard (coding syntax). Figure 2 illustrates
the transcoding process.

Different transcoding operations entail different levels
of processing complexity. This complexity is determined
by how much a compressed video stream must be decom-
pressed before a transcoding operation is applied. Thus, a
transcoding operation can be optimized by performing it
in the appropriate stage of the compression/decompression
process. Figure 3 shows different regions where various
transcoding operations can be performed on a compressed
discrete cosine transform and motion compensated video
bit-stream. Region 1 represents uncompressed source image
data where operations such as frame resizing (i.e., conversion
of spatial resolution) and frame dropping (by reestimating
motion vectors) can be performed relatively simply although
a large amount of data has to be processed due to its
uncompressed nature. Region 2 contains the same amount of
data as region 1, but transcoding operations at this region can
be performed without using the computationally intensive
functions of Forward-DCT and Inverse-DCT transforms.
Requantization (i.e., bit rate conversion) can be performed
at this point by applying the new quantization factor on
the dequantized DCT coefficients. In region 3, the data
size is considerably smaller due to the absence of zero
coefficients in DCT blocks that are quantized and run
length encoded. Operations such as frequency filtering (i.e.,
bit rate conversion) and color to monochrome conversion
are feasible at this region. Finally, region 4 contains fully
compressed data and allows standard-specific and relatively
simple operations such as intelligent frame dropping (i.e.,
frame rate conversion).

4.1. Adaptive Requantization. Requantization is an efficient
transcoding technique for converting MPEG and H.261/263
video at a high bit rate to a lower bit rate. The requantization
process involves several steps.

Figure 4 shows a requantization transcoder with bit rate
control. First, the original video stream is decoded through
variable length decoding (VLD) [24] to obtain the quantized
DCT coefficients with coding information such as quantizer
scale (also called quantizer step size), macroblock type, and
motion vectors. A near-optimal decoding technique based on
Huffman decoding is used to generate the quantized DCT
values from the variable length codes in the compressed
stream. An inverse quantizer then dequantizes these decoded
coefficients using the quantization step size and produces the
actual DCT coefficients. These coefficients are requantized
with a larger quantization step size to reduce the bit rate.
The quantized coefficients are then coded again with other
coding information including the new quantization step and
modified macroblock information through variable length
coding (VLC) to get the resulting transcoded stream.

4.1.1. Quantization. The quantization process entails the
division of the integer DCT coefficients by integer quantizing
values. Intra- and interframe coding conform to different
quantization rules. The quantized DCT coefficient (QDCT)
in intracoding is calculated from the unquantized coefficient
(DCT) by the following formulae [18]:

QDCT= (16×DCT)+
(
Sign(DCT)×quantizer scale×Q)

2× quantizer scale×Q ,

(1)

where Q is the quantization table value for the coefficient
and the function Sign() in the rounding term produces the
following values:

Sign(DCT) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

+1, when DCT > 0,

0, when DCT = 0,

−1, when DCT < 0.

(2)

For intercoding, a similar equation is used for the
quantization with the exception that the rounding is always
to the smaller integer value. Hence, the equation does not
hold any rounding term:

QDCT = (16×DCT)
2× quantizer scale×Q. (3)
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4.1.2. Dequantization. Dequantization of the quantized
DCT coefficients is performed by the inverse of the quan-
tization procedure. For intra coding [18]

DCT = (2×QDCT)× quantizer scale×Q
16

, (4)

and for inter coding

DCT=
(
(2×QDCT)+Sign(QDCT)

)×quantizer scale×Q
16

.

(5)

4.1.3. Rate Control. Rate control in requantization is used
to determine quantization parameters, and is responsible
for preserving consistent video quality while satisfying both
bandwidth and delay constraints. The relationship between
quantizer step size and bit rate for a video stream can be
used to determine the quantizer step size and bit allocation
during requantization on a frame, slice, or macroblock basis.
We used slice level rate control. The rate controller needs to
know the target bit rate that is to be transmitted. At the slice
level, the actual bit count in the original video stream can be
scaled to obtain the target bit count. The scaling factor is the
ratio between the transcoder’s desired output (e.g., R2) and
input bit rates (e.g., R1). This maintains the proportion of
bits allocated among different frame types in the transcoded
video sequence. The actual bit count from the original stream
and corresponding target bit count for the ith slice in a frame
are calculated as follows:

Btarget(i) = Bactual(i)× R2
R1

,

Bactual(i) = Bstream(i) + Δ,

(6)

where Δ is defined as

Δ=

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

0, for the first slice of the

first frame of any type,

Bactual(i−1)−Btarget(i−1), otherwise.
(7)

To meet the target bit rate, the quantizer step size is
adjusted based on feedback to the rate controller (as shown
in Figure 4). The rate controller updates the quantizer step
size for the next slice on the basis of the difference between
the target and actual bit count for the previous slice (i.e., the
value of Δ). The new quantizer step size for the ith slice in a
frame is calculated as follows:

Q(i) = Qbase(i) + offset, (8)

where Qbase(i) is the original quantizer step size for that slice
and offset is determined by the value of Δ for the previous
slice. For the first slice of each frame, offset is initialized to
the mean value used for the previous frame of the same type.

As quantization is the only operation in the DCT-based
video compression algorithm that introduces quality loss,
requantization can produce some noticeable edge effects
on the transcoded video stream. However, as each DCT
coefficient is requantized to a smaller value, the bit rate
reduction achieved by the mechanism is significant.

4.2. Frame Dropping in Compressed Domain. Frame drop-
ping can be used to keep the generated bit rate of a video
stream from exceeding the allocated channel bandwidth
and to reduce the frame rate. Thus, a frame dropping
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Figure 5: (a) A sample precoded MPEG-1 video sequence. (b) The
transcoded sequence with alternate B frames dropped.

mechanism is used to reduce the data rate of a video stream
in a sensible way by discarding a number of frames according
to importance and transmitting the remaining frames at
a lower rate. Usually, in a transcoding process, the video
transcoder reuses the decoded motion vectors to speed up
the re-encoding process [25]. In this case, the frames cannot
be discarded because the motion vectors of each frame
are estimated from their immediate predecessor frames.
However, if frame dropping is allowed in a transcoding
process, those motion vectors cannot be reused because
the motion vectors of the current frame are no longer
estimated from the immediate past frame. If frame dropping
needs to be used, the current frame must be decompressed
completely and the motion vectors have to be estimated
again before recompression. This method introduces heavy
computational overhead, which is undesirable in real-time
transcoding. However, frames that are not referenced by
other frames in the video sequence can be discarded in a
specific interval to reduce the data rate thus avoiding the
computation for recomputing motion vectors.

In an MPEG-1 video sequence, for example, I and P
frames in a GOP are referenced by subsequent P and B
frames in the group. Hence, I and P frames in the video
sequence cannot be dropped without going through the
process of re-estimation of motion vectors (done in region
1 of video compression/decompression processing shown
in Figure 3) and thus requires complete decompression
and recompression of the video sequence. On the other
hand, B frames are not referenced by any other frames
in the sequence. Therefore, a number of B frames in a
specific interval can be discarded to control the bit rate
while maintaining acceptable image quality. In this case,
the transcoding operation is performed completely in the
compressed domain (region 4 in Figure 3). By dropping a
specific number of B frames, it is possible to produce a video
stream with a desired rate, however, due to the small size of
B frames in the video sequence, this approach has limited
impact. A sample frame dropping scenario is illustrated in
Figure 5.

4.3. Frame Dropping in Pixel Domain. To achieve increased
data reduction, a pixel domain frame dropping technique

MV (1) MV (2) MV (2) 

Frame number 

MV (unknown) 

1 2 3 4

Figure 6: A motion tracing example.
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Figure 7: Interpolation of motion vectors.

could be used. In this case, the frame must be decompressed
completely and motion estimation must be done again.
To reduce the computational overhead of motion vector
re-estimation, a bilinear interpolation method has been
developed [26] to estimate the motion vectors for the current
frame relative to the previous nondropped frame.

If the motion vectors between adjacent frames are
known, the problem of tracing the motion from frame four
to frame one as shown in Figure 6 could be partly solved
using the repeated applications of bilinear interpolation.
A shifted macroblock as shown in Figure 7 is located in
the middle of four neighbor macroblocks. The bilinear
interpolation is then defined as

MVint = (1− α)
(
1− β)MV1 + (α)

(
1− β)MV2

+ (1− α)
(
β
)
MV3 + (α)

(
β
)
MV4.

(9)

Here, MV1, . . . ,MV4 are the motion vectors of the four
neighboring macroblocks. α and β are determined by
the pixel distance to MV1. The weighting factor of each
neighboring macroblock is inversely proportional to the pixel
distance. By repeating the motion tracing, it is possible to
create an extended motion vector for each macroblock in the
current frame relative to its previously nondropped frame.

Bilinear interpolation only partially solves the motion
vector reuse problem. Hence, further adjustment of the re-
estimated motion vectors has to be performed by using a
smaller search range. For each macroblock, the new position
located by the interpolated and composed motion vectors is
used as the search center for the final motion re-estimation
stage.

The frame rate is controlled by dynamically determining
the length of dropped frames. The goal is to make the
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motion of the decoded sequence smoother. A threshold is
set beforehand and if the accumulated magnitude of motion
vectors after a nondropped frame exceeds this threshold,
this frame is encoded. The threshold is determined by using
the number of frames to divide the accumulated magnitude
of motion vectors in a buffer. The threshold is recursively
updated after transcoding each frame because the number of
encoded frames should be dynamically adjusted according to
the variation of the generated bits when the last nondropped
frame is transcoded.

5. Low-Pass Filter

A low-pass filter provides rate reduction by progressively
eliminating high-frequency components of the video signal
[16]. In essence, the low-pass filter eliminates an appropri-
ately determined number of DCT coefficients from the high-
frequency ones that comprise a luminance or chrominance
block. The low-pass parameter is related to the number of
DCT coefficients left in each block after quality adjustment.
At the beginning of each GOP, initial low-pass parameter
values are set independently for I, P, and B pictures based on
the compression ratio for the current GOP. The compression
ratio for a GOP is calculated from the predicted size (in bits)
of the GOP, the predictor for the total bits used by header
data in the GOP, and the number of bits allowed for the
current GOP, which in turn is calculated from a specified
target rate, the number of pictures in the GOP, and the frame
rate.

This technique implies that the rate averaged over a GOP-
time is regulated by the target rate. However, the result of per-
packet adjustment does not necessarily match the target rate.
To make up the balance, an adjustment value is introduced.
After the initial low-pass parameter value is set, it is changed
dynamically for each of the following macroblocks in the
GOP based on the size difference between the previous
original and filter macroblock. Using this technique the low-
pass parameter value for each macroblock is appropriately
determined. By eliminating the specified number of DCT
coefficients, it is possible to produce a video stream that has
the desired rate.

6. Frame Resizing

One common solution to reduce bit rate is to generate
a new compressed video with a lower spatial resolution
from the original precoded video bit stream. This method
requires downsizing of the original video and estimation of
new motion vectors for each intercoded macroblock in the
downsized video.

The algorithm proposed in [27] can achieve arbitrary
image/video downsizing. This algorithm takes advantage of
compressed domain processing techniques and is processed
completely in DCT domains without introducing further
computation. When combined with the transcoding method
described in [28], which can estimate the motion vectors
from the input bit stream for arbitrary downscaled video,

the proposed method can efficiently process video stream
downsizing.

In a spatial domain, for an arbitrary downsizing ratio
R, defined as the ratio of original resolution to the desired
resolution, more than one pixel in the original frame may
contribute to one single pixel in the downsized frame [27].
For example, one 8× 8 output block in the downsized frame
can come from as many as M × N related blocks, which
the supporting area in size of 8Rx × 8Ry (where Rx and Ry
are the horizontal and vertical downsizing ratio, resp.) may
cover in the original frame. For arbitrary downsizing, these
supporting areas may not align to the block border. This
approach realizes downsizing in two steps: (1) extracting the
supporting area from the original frame, and (2) downsizing
it into an 8× 8 output block.

Due to the noninteger downsizing ratio, some related
blocks in the original frame might partially contribute to
certain output blocks in the downsized frame. These related
blocks can be totally covered or partially covered by the
supporting area. The spatial information (DCT) of the
supporting area is extracted by partially decoding the related
blocks. The size of the extracted DCT block depends on the
covered pixels of each related block. Then the supporting area
can be represented by combining the extracted pixels from all
the related blocks in DCT domain.

In a natural image, most of the signal energy is con-
centrated in the lower frequency part in the DCT domain.
A reasonable downsizing scheme, as proposed in [29], is
to retain only the lower frequency components and discard
the high-frequency components of the block. Thus, most
of the energy of the original block is preserved. As the
supporting area of size 8Rx×8Ry may contribute to one 8×8
output block, it is necessary to discard the high-frequency
component and extract only the low-frequency part of size
8× 8 to downsize the block to 8× 8 in the DCT domain.

The motion vector estimation approach proposed in [28]
extends the existing video downsizing methods by consid-
ering an arbitrary downsizing scheme operating on several
macroblocks. Since different numbers of pixels from the
precoded macroblocks are used to form the new macroblock
in the downsized video, existing methods using the spatial
activity as a weighting factor for motion vector re-estimation
are not well suited for the case of video downsizing by
an arbitrary scale factor. The reason is that motion vectors
are usually obtained by finding a matched macroblock
within a search window of a reference frame by minimizing
the sum of absolute differences (SAD) between the two
macroblocks under comparison. To minimize the SAD, the
new motion vector should be skewed toward the motion
vector of the precoded macroblock that has more pixels
involved in forming the new macroblock. For this reason,
we consider another weighting factor, which is obtained by
multiplying the number of horizontal pixels by the number
of vertical pixels engaged from a precoded macroblock. Then
the motion vector for each macroblock in the downsized
video can be computed from the motion vectors and spatial
activity (i.e., number of nonzero AC coefficients) of the
related macroblocks of the precoded video, the weighting
factor, and the downsizing factors.
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7. Network Processors for Video Transcoding

To deliver enhanced next generation services such as con-
verged voice and data, streaming video, and differentiated
Quality of Service (QoS), an efficient in-network processing
architecture needs to be developed. Such an architecture
must be fast enough to process network data, flexible
enough to allow for application specific functions and future
upgrades, and reliable enough to provide QoS guarantees.

Network processors (NPs), specialized programmable
CPUs optimized to perform packet processing at wire speed,
can be used for this purpose. Network processors can
perform many functions such as packet classification and
possibly modification of packet contents at wire-speed near
the edge of the network. The feasibility of network processor-
based video transcoding is an area of research that has not yet
been fully addressed.

8. Overview of Network Processors

Network processors have evolved over time to introduce
greater processing and storage capability and, in some cases,
additional functionality. These are critical issues in deter-
mining the feasibility of video transcoding using network
processors.

8.1. Intel IXP1200. The IXP1200 contains one Stron-
gARM processor core, six programmable multithreaded co-
processors (microengines), SRAM, SDRAM, and PCI and IX
bus interface units.

The StrongARM 32-bit RISC microprocessor core run-
ning at 232 MHz is used for processing control packets,
and doing tasks such as managing forwarding tables and
other network state information. The microengines are
minimal 32-bit RISC processor cores that are typically used
to receive, process, and transmit packets independently. Each
microengine supports four hardware threads so up to 24
threads can be executed “in parallel.” The instruction store
of each microengine has space for 1024, 32-bit instructions
that each execute in one clock cycle.

The IX bus unit provides the on-chip scratchpad mem-
ory, receive and transmit queues (FIFOs), and a hash
generation unit. The 64-bit IX bus connects the processor to
Media Access Control (MAC) devices and is responsible for
moving data to and from the receive and transmit FIFOs.

8.2. Intel IXP2400. The Intel IXP2400 [30] offers a wire-
speed OC-48 data plane as well as control plane capa-
bility on a single chip. Each IXP2400 contains eight
multithreaded packet-processing microengines, a low-power
general-purpose Intel XScale core, network media and switch
fabric interfaces, memory and PCI controllers, and interfaces
to flash PROM and peripheral devices.

The eight 32-bit microengines run at 400/600 MHz
and support multi-threading up to eight threads each.
These microengines provide a variety of network processing
functions in hardware. Each of the microengines has space
for 4096, 40-bit instructions. The IXP2400 also offers Intel’s

Hyper Task chaining technology which allows a single
stream packet/cell processing problem to be decomposed
into multiple, sequential tasks that can be easily linked
together. The hardware design uses fast and flexible sharing
of data and event signals among threads and microengines to
manage data-dependent operations among multiple parallel
processing stages.

The integrated 32-bit XScale core offers high-
performance processing of routing table maintenance
and system management functions. The memory controllers
facilitate efficient access to 32-bit SRAM and 64-bit DRAM,
which hold the routing table, networking data, and so on. In
addition, a programmable hash engine (48, 64, and 128 bit)
is provided.

8.3. Intel IXP2800. The Intel IXP2800 [31] offers increased
processing to support deep packet inspection and filter-
ing, traffic management, and forwarding at up to OC-
192 (10 Gbps) wire speed on a single chip. Its store-and-
forward architecture combines a high-performance Intel
XScale core with sixteen 32-bit independent multi-threaded
microengines that cumulatively provide up to 25 Giga-
operations per second.

The 32-bit Intel XScale core operates at up to 750 MHz.
The sixteen 32-bit microengines running at up to 1.5 GHz,
support multi-threading with up to eight threads each, and
provide space for 8192, 32-bit instructions.

8.4. IBM PowerNP. The IBM PowerNP [32] supports multi-
ple network interfaces including Gigabit Ethernet at 2.5 Gbps
and OC-3 to OC-48 packet-over-SONET (POS). The core of
the PowerNP contains 16 programmable protocol processing
engines and seven coprocessors. Additional custom logic
supports management of data movement at the physical and
MAC layers.

The protocol processors are grouped into pairs which
share a co-processor to accelerate packet processing. Each
protocol processor supports two threads and includes a 3-
stage pipeline (fetch, decode, and execute), general-purpose
registers, eight instruction caches, and a dedicated ALU. The
instruction memory (128 KB) consists of eight embedded
RAMs and is initialized with picocode for packet processing
and system management.

8.5. EZChip (NP-1c). The NP-1c [33] provides a scalable and
programmable network processor architecture providing
10 Gbps wire speed. EZchip uses Task Optimized Processing
Core (TOP core) technology. TOPs employ a super-pipelined
and superscalar architecture for increased processing power.
There are four types of TOPs, each having a customized
instruction set and data path: (i) TOPparse identifies and
extracts various packet headers and fields to classify packets;
(ii) TOPsearch performs various table lookups required for
layer 2 switching, layer 3 routing, layer 4 session switching,
and layer 5–7 context switching and policy enforcement; (iii)
TOPresolve allocates packets to an appropriate output port
and queue; (iv) TOPmodify modifies packet contents.
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Data plane packet processing in the TOPcore is pipelined;
packets are passed from TOPparse to TOPmodify. A set
of software commands from the system’s host processor
control the operations performed by the TOP processors.
The programmability of the NP-1c makes it possible to adapt
to new applications through simple changes in software
without necessitating hardware changes.

8.6. Agere (PayloadPlus). The Agere PayloadPlus [34] net-
work processor exploits pattern matching optimization tech-
nology to achieve high performance. Two main components
are provided: the Fast Pattern Processor (FPP) and the
Routing Switch Processor (RSP). The FPP is a pipelined,
multi-threaded processor, that receives packets through the
physical interface and carries out protocol recognition and
classification at layers 2 through 7. The FPP reassembles
traffic into protocol data units (PDUs) and sends them to
the RSP which does queuing, packet modification, traffic
shaping, and traffic management.

8.7. Motorola (C-5e). Motorola’s C-5e [35] is capable of layer
2–7 processing at 5 Gbps. The C-5e contains 16 Channel
Processors (CPs) for packet forwarding which each contain
a transmit and receive Serial Data Processor (SDP) used for
processing bit streams. The programmability of the SDPs
supports diversity in media access control (MAC) interfaces,
as well as parsing requirements, and can support different
protocol implementations on a port-by-port basis. Each CP
also contains a RISC core that is used for application-specific
processing.

The Executive Processor (XP) integrated in the C-5e is
responsible for supervisory tasks and management of the
host processor. An on-chip Table Lookup Unit (TLU) offers
a high-speed flexible classification engine that supports over
46 million IPv4 lookups per second. The TLU is connected
to a 64-bit 128 MB SRAM. The C-5e also contains 128 MB
SDRAM for payload storage. By connecting multiple C-5e
NPs through their fabric interfaces to a fabric switch, it is
possible to achieve Terabits per second of aggregate band-
width. The C-5e NP’s highly configurable Fabric Processor
(FP) enables implementation of per-flow congestion control,
segmentation and re-assembly, and integrated scheduling of
up to 128 queues.

9. Implementation of the Active Video
Adaptation Node

We used the Intel IXP1200 network processor to implement
our active video adaptation node [36]. More powerful,
second generation, NPs suggest that still better results than
those we report are now achievable. The architecture of
our active video adaptation node conforms to the node
architecture provided by the active networks “reference
model” [8]. An active node runs a Node Operating System
(NodeOS) and one or more Execution Environments (EEs)
and provides services to users through Active Applications
(AAs). The functionality of an active network node is divided
among these three major components.

Execution environment (EE) layer 

Node operating system (NodeOS) layer
(channels, storage, and processor cycles)  

EE1 EE2 EEnAA

AA AA
AA

AA

AA

AA-active application 

· · ·

Figure 8: Schematic representation of the active node architecture.

9.1. Active Node Components. Figure 8 illustrates the archi-
tecture of an active network node. Underlying each active
network node is a Node Operating System that manages the
resources of the active node such as processors, channels, and
memory. The channels implemented by the NodeOS carry
packets to and from underlying communication substrates
and also perform protocol processing. An Execution Envi-
ronment provides a virtual machine programming interface
for executing programs on the active node. Thus, an EE is
analogous to a shell program in a general purpose computing
system exporting, in this case, an interface through which
end-to-end network services can be implemented. Multiple
EEs can be present on a single active node at the same time.
EEs are isolated from the details of resource management by
the NodeOS. An EE can accept active packets that initiate
the execution of packet specific programs, also called Active
Applications. AAs program the virtual machine provided
by an EE to implement an end-to-end service. The code
constituting the AA may be contained in a packet itself
or, more likely, preloaded at the node. An EE can invoke
multiple AAs to provide multiple services simultaneously
and manages the initiation, execution, and termination
of these AAs. All of the EE and AA functionalities are
programs running on the microengines and the NodeOS
functionalities are provided by the operating system running
on the StrongARM.

We have implemented our video adaptation algorithm as
an AA. The video adaptation AA is notified of a target output
rate for the input video stream by the EE that initiates it.
For the adaptation of multiple independent video streams
belonging to different multicast groups, multiple AAs may
be initiated by the same or different EEs. The same is also
true for the adaptation of a single video stream into streams
having different data rates. Figure 9 illustrates these two
scenarios.

9.2. Flow of Video Packets through the Active Node. Figure 10
shows a general flow of video packets through the active
node. Once video packets are received on an input port they
are classified based on information contained in the packet
headers such as protocol number, port numbers in UDP
headers, and/or Type ID in an ANEP [37] header. Incoming
packets may have to wait in one or more queues before
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Figure 9: (a) Two video streams with rates R1i and R2i are adapted to streams with rate R1o and R2o, (b) A single stream with rate R is
adapted to two different streams with rate R1 and R2.
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Figure 10: Video packet flow through the active node.

classification. The classification of packets determines the
input channel to the appropriate EE to which packets are
directed. Afterwards, the input channel processing packets
are passed on to the corresponding EE. Upon receiving a
packet, the EE sends it to the appropriate AA and receives the
result packet from the AA after adaptation of the packet in
accordance with the specified target rate. Video adaptation
AAs used by the EE are chosen based on a set of identifiers
consisting of a source IP address and port number, a
multicast group address for sending the video packet, and a
destination port number. On the output side, the EE sends
the adapted video packets to the scheduler through output
channels. Packets are then transmitted through appropriate
output ports. Before transmission, the packets may have to
wait in output queues. Besides active video packets having
an ANEP header, the node can also process legacy traffic
(conventional IP packets) by setting up the appropriate
channels that simply forward the packets without applying
any video adaptation.

9.3. Mapping the Algorithms to the IXP1200. Reception
and classification of packets, transcoding, and scheduling
and transmitting adapted packets are all implemented on
the microengines to provide wire-speed packet processing.
The processing done by each microengine differs and is
determined prior to run time.

9.3.1. Receiving Packets. We allocate microengine zero for
receiving packets. All four hardware threads are used for
this task. Incoming packets received by microengine zero
are queued to avoid packet loss during packet process-
ing by other microengines. Each thread on the receiving
microengine queues packets to be used by the microengines
that classify, transcode, and finally retransmit them. We
have implemented array-based circular queues in SRAM
where each entry in the queue contains a packet descriptor
consisting of the packet buffer handle (in SRAM) and the

packet size. We experimented with two different queue
configurations: single input and multiple input.

Single Input-Queue Configuration. In this configuration, one
100 Mbps port is mapped to a single packet queue to be
served by all four threads of the classification microengine.
Each of the four threads in the receiving microengine is
dedicated to receiving packets from the single port and to
queuing them. The single queue implementation can be
used for the adaptation of a single input video stream into
single or multiple output streams having different data rates.
Figure 11 shows the single input-queue configuration.

Multiple Input-Queue Configuration. In this configuration
a queue is created for each of the four threads in the
receiving microengine. The assignment of these receiving
threads to input ports can be done in different ways. Each
thread can be assigned to a single port or to a different
port (specified in advance). Thus, the receiving microengine
can receive packets from up to four ports. The multiple-
queue implementation can be used for transcoding single
or multiple video streams. In single stream transcoding,
packets received by the four threads are put in the queues
sequentially. In multiple-stream transcoding, each queue
contains packets belonging to a separate video stream that
is handled by a thread assigned to that queue. The multiple-
queue configuration is illustrated in Figure 12.

9.4. Classification of Packets. We allocate microengine one
for dequeuing packets from the input queues and classifying
them. Packet classification separates convention IP data
packets from the video packets to be transcoded. Both
dequeuing and classification of a given packet are performed
by a single thread. Packets are also analyzed to extract MPEG-
1 video start codes. In the single queue configuration, each
thread waits for its turn to retrieve a packet from the queue.
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Figure 11: Single queue configuration for the video transcoding node.
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Figure 12: Multiple queue configuration for the video transcoding node.

In the multiple-queue configuration, threads wait for new
entries in their respective queues.

9.5. Video Transcoding. We allocate three microengines (2,
3, and 4) for transcoding video packets from the classifi-
cation microengine. All three microengines are used by the
requantization technique while one microengine is sufficient
for implementing the frame dropping technique. Video
transcoding for a packet is done by a single thread in each
of these video processing microengines, as shown in Figures
11 and 12.

9.5.1. Requantization. Processing DCT coefficients during
requantization requires a simple but frequent operation due
to the large portion of MPEG-1 video data coming from
the block layer consisting of these coefficients. Implementing
the entire requantization process in one microengine is not
possible since each microengine has a limited instruction
store capable of holding only 1024 instructions. Hence, we
allocate microengine 2 for processing up to the macroblock
layer and microengines 3 and 4 for processing the block
layer.

Packet data are fed into the input buffer from the
SDRAM. Microengine 2 processes the data from the
sequence layer to the macroblock layer and moves the nec-
essary coding information to the shared SRAM and SDRAM
for processing the block layer on microengines 3 and 4. The
picture and slice layers are parsed to extract the frame type
(I, P, or B) and quantization scale, respectively. The frame
type determines the macroblock coding type (i.e., intra-
or intercoding) which defines the dequantization approach
required (i.e., intraframe or interframe). The quantization
scale is used to dequantize the original DCT coefficients.
The coding information includes the macroblock type and
quantization scale for processing the DCT coefficients.
Microengine 2 also processes the macroblock layer based
on the macroblock type to obtain the macroblock pattern,
motion vectors, and macroblock quantization scale. The
macroblock pattern and quantization scale (if it is different
from the slice layer quantization scale) are also included in
the coding information. The macroblock pattern provides a
coded block pattern that describes which blocks within the
macroblock are coded.

The block layer processing is divided into two parts. The
DC components of the block are processed by microengine
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Figure 13: Data flow through the input and output buffers during requantization.

3 and the AC components are processed by microengine
4. The microengine threads obtain the coding information
from the SRAM and SDRAM and additional information
such as the quantization table (intra or inter), the VLC
tables, and a new quantization scale (chosen according to the
rate control mechanism described in the previous section)
from the IXP 1200’s scratchpad memory. The microengines
decode the quantized DCT coefficients and dequantize them
to get the actual DCT coefficients. The coefficients are then
requantized with the new quantization step and are encoded
using VLC to get the transcoded DCT coefficients. The
microengines store the processed DCT coefficients in the
output buffer and write them back to the SDRAM. Figure 13
illustrates the data processing through the input and output
buffers during requantization. Once the whole packet has
been processed, the thread puts it in the correct output queue
(one for each of the four threads in microengine 4). The
transmit microengine dequeues the packets from the output
queues in round robin fashion and transmits them through
one or more output ports.

9.5.2. Frame Dropping. Frame dropping refers to a com-
pressed domain transcoding technique which is relatively
simple and entails less video computation. We allocate one
microengine (number 2) for transcoding the video stream
through frame dropping. As the transcoding technique
selectively drops a number of B frames to produce an output
video stream with the desired rate, the microengine processes
the video data from the sequence layer to the picture layer to
recognize the frame type. The picture rate in the sequence
layer is updated based on the new frame transmission rate.
The microengine achieves the new transmission rate by
discarding a specific number of B frames. The microengine
threads put the packets that belong to a nondropped frame
into the output queues. A single queue is created for each
thread in the microengine. Like requantization, packets are
dequeued from the output queues in a circular manner and
are transmitted through appropriate output port(s).

9.6. Transmitting Packets. We allocate microengine 5 for
dequeuing packets from the output queues and transmitting
them. One thread is assigned to dequeue the packets and the

remaining threads are used to schedule and send the packets
out on the wire as illustrated in Figures 11 and 12. Once a
packet is received from the output queue, new checksums
are calculated for the IP and UDP headers based on the new
packet size and contents. Packets are then transmitted out of
the IXP1200.

9.7. Hashing. The IXP1200 provides a hardware hash unit
located within the IX bus unit and the hash unit implements
a hash function that produces values with a uniform statis-
tical distribution regardless of the input. Packet processing
that requires one or more table lookups is greatly eased by
the hardware assisted hashing functionality provided by the
IXP1200. This hashing unit is only accessible to microengines
and is capable of performing either 48 bit or 64 bit
hashes.

In our framework, we have used a hash table to store,
retrieve, and update hints from the receivers at the active
node. These hints describe user preferences such as interest
levels in particular video streams and the capability of the
end devices such as processing power, screen size, and so
on. Receivers transmit the hints upstream (through the
active node) to the sender in capsule form. Video packets
originating from the source pass through the active node
that adapts the packets based on the hints from the intended
receivers and network connections.

9.8. Implementation Complexity and Portability. The active
video adaptation node entails greater implementation com-
plexity than a conventional router to provide support
for video adaptation. This complexity and the associated
overhead is not insignificant. Fortunately, the “cost” of
designing the adaptation node is incurred only once and
may be amortized over the number of network processors
it runs on. Further, the programmability of NPs will allow
for relatively easy extension of adaptation node functionality.
Despite the high-level similarity of NP architectures, there
is currently no readily accepted standard programming
model for network processors. Thus, our code is largely IXP
specific.

The different phases of the video adaptation algorithm
executed by each microengine are predetermined prior to
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execution. This makes the allocation of work simpler than
assigning it to the microengines dynamically. The concept of
“microblock” in packet receiving is used to balance the code
performance and modularity. A microblock is a sequence
of microengine code that operates on a single packet that
is currently being processed. One or more microblocks can
be combined together in a loop, called a “dispatch” loop
that calls these microblocks in a particular order to perform
specific functions. We have used a while loop as the dispatch
loop that calls the packet receiving microblock and a packet
queuing microblock to receive packets from the input ports
and to queue them for use by the other microengines. As
the packet length is unknown during the reception of the
start of the packet, a fixed size buffer (large enough to
hold the maximum size packet) is allocated for each packet.
Hardware supported SRAM LIFO stacks are used for such
buffer allocation without any overhead for writing code to
create stacks. This approach is largely generalizable to most
current NP architectures.

Another challenge was to determine the granularity of
segmentation for an MPEG-1 video stream at the server.
We decided to segment the video stream into a sequence of
independent packets on a per slice basis since the slice in
a frame represents the smallest independent coding unit in
an MPEG-1 video sequence. This suited the comparatively
low power of the IXP1200 but could still be used with more
powerful NPs. The granularity of segmentation does not
significantly affect coding complexity.

We used a nonpreemptive thread arbiter and shared
variables to implement intra-microengine thread commu-
nication and mutual exclusion. The nonpreemptive thread
arbiter allows one thread to run until the thread itself
explicitly releases control of the microengine by waiting for
a signal, swapping out on a memory read, or voluntarily
releasing control. Shared variables are implemented in the
hardware with absolute registers providing extremely fast
interthread communication and mutual exclusion. Synchro-
nization was a key performance issue in our IXP 1200
implementation and will likely continue to be regardless of
network processor architecture.

Most of the computation overhead and complexity
comes from implementing different levels of decompression
and compression tasks during the actual transcoding of the
video packets. However, multiple microengines capable of
wire-speed packet processing made the transcoding task fast
enough to provide a realistic video transfer rate (24–30
frames per second for MPEG-1) despite the limitations of the
IXP1200. Processing requiring table lookups was simplified
and expedited by the hardware assisted hashing functionality
provided by the IXP1200.

Implementing our video adaptation algorithm on other
network processors would require a modified strategy for
allocating various tasks such as reception and classification
of packets, transcoding, and scheduling and transmitting
adapted packets based on the hardware resources provided
by the particular network processor. Similarly, other archi-
tecture specific coding patterns would have to be revised. Not
surprisingly, porting NP code is similar to porting low-level
parallel code.

10. Protoype Evaluation

We now present the results obtained from our evaluation
of our IXP1200-based video transcoder. The metrics used
to measure transcoder performance included transcoding
latency, throughput, and accuracy. These criteria capture
the effectiveness of transcoding MPEG-1 streams using the
IXP1200. Transcoding latency determines how fast video
transformation takes place. Low transcoding latency is
preferred. The goodness of transcoding latency is determined
by how close the transcoded video transfer rate is to the
actual video transfer rate (i.e., for MPEG-1, 24–30 frames per
second). Transcoding throughput determines the number
of streams that can be processed simultaneously. Finally,
the amount of “blockiness,” “blurriness,” and “noise” in the
transcoded video determines the accuracy of transcoding
which is assessed by comparing the quality of the transcoded
streams with that of the original streams.

A test environment was set up to verify the practicality
and applicability of the video transcoding mechanism. The
experimental system consisted of a video server (sender),
an IXP1200-based transcoding node, and several clients
connected to the trancoding node. A number of experiments
were conducted to transcode MPEG-1 video streams accord-
ing to the various requirements of the clients and their link
bandwidths.

For our experiments, we used a selection of MPEG-1
video streams whose properties are summarized in Table 1.
The frame size represents the width and height of each frame
in pixels. The average size of I, P, and B frames are given
in bytes. The frame pattern represents the order in which
frames in a GOP are displayed. Each of the video streams is
viewed at a rate of 30 fps.

10.1. Transcoding Latency. We experimented using various
numbers of microengine threads to get an idea of the
capabilities of the IXP1200. The test video streams were
transmitted from the video server to the video transcoding
node at a rate of 300 Kbps. We set the output target rate of the
active node to 200 Kbps. We then conducted experiments for
each video sequence to observe any packet loss. The system
was found to be capable of processing the video streams at
that input rate.

10.1.1. Requantization. Figure 14 and Table 2 show the
transcoding latency per frame for each test video stream
using requantization. The transcoding latency for requan-
tization includes the time required for decoding the frame
through VLD, further processing related to dequantization
and quantization of DCT coefficients, and encoding using
VLC.

To take advantage of the IXP1200’s multithreading archi-
tecture and to improve transcoding performance, multiple
threads in each microengine can be used. The latencies
(approximate values in milliseconds) are shown in Table 2
and Figure 14 for different numbers of threads running on
the transcoding microengines. Employing two threads leads
to lower transcoding latency and the same is true for higher
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Table 1: Properties of the test MPEG-1 video sequences.

Clip Name Frame Size I P B Frame Pattern

ski.mpeg 192× 144 2877 1631 1012 IBBPBBPBBP

danger.mpeg 240× 176 3586 1959 IPIIPI

canyon.mpeg 144× 112 2265 1881 445 IBBPBBIBBP

vessel.mpeg 256× 256 4567 4844 4345 IBBPBBIBBP

blazer.mpeg 128× 96 2431 1419 567 IBBPBBPBBP

rotate.mpeg 160× 112 2670 I
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Figure 14: Transcoding latency per frame using requantization.

numbers of threads. However, employing more than three
threads provides little benefit. The reason for this is the
increasing level of intramicroengine mutual exclusion that is
required.

The transcoding latencies shown in Table 2 indicate
that the test video sequences can be transcoded at 24–30
frames or more per second while using two or more threads
in each video transcoding microengine. This meets the
minimum display frame rate for MPEG-1 video. Note that a
single thread implementation cannot meet this transcoding
rate for all the test video sequences. (e.g., “danger.mpeg,”
“vessel.mpeg,” and “rotate.mpeg” are transcoded at rates of
around 22.22, 18.51, and 23.28 fps which are at least close to
the minimum display rate, 24 fps.) The salient point to note
from Table 2 (with reference to Table 1) is the relationship
between frame size and transcoding latency. The smaller
frame sizes or coding bit rates imply sparser blocks in the
frame resulting in greater speedup during requantization.
The opposite is true for larger frames.

In our next experiment, we evaluated the transcoding
latency for the transcoding of two video streams (e.g.,
intended for different multicast groups). (No actual multi-
cast implementation was done. For assessing performance
of transcoding multiple streams, however, this was not
required.) Two threads (dedicated) in each video transcoding
microengine were responsible for transcoding one video
stream. The transcoding latency obtained for each video
stream was slightly higher than (previous experiment)
when they are separately transcoded with two threads in
each microengine. For the streams “canyon.mpeg” and

“rotate.mpeg,” the latencies obtained per frame were 7.80
and 30.64 milliseconds, respectively, which are slightly higher
than in the case of the single stream transcoding (6.41
and 26.18 milliseconds from Table 2). This is due to intra-
microengine mutual exclusion.

10.1.2. Frame Dropping. Table 3 and Figure 15 show the
transcoding latency (approximate values in microseconds)
per frame for several test video streams that contain B frames
in the sequence. The major component of the transcoding
latency using frame dropping includes the time required to
process the video data from the sequence to the picture layer
and the slice headers of a frame.

As in requantization, employing two threads leads to
lower transcoding latency than using one thread and the
same is true for higher number of threads. However, as
shown in Table 3 and Figure 15, employing more than two
threads contributes little to the performance. This is due to
the greater amount of intra-microengine mutual exclusion
that is performed by the video adaptation code.

Transcoding latencies obtained for frame dropping
indicate the real-time performance of this compressed
domain transcoding technique. Compared to requantization,
transcoding speed is much higher in this case. This is due to
the amount of video data that must be processed by the frame
dropping code. Approximately 4.83% of video data coded
at 333 Kbps, as an example, come from the sequence to the
picture layer and the slice headers of a frame.

Since the frame dropping technique does not process
macroblock and block layer data, the transcoding latency for
a frame depends on the number of slices in the frame. As
each frame is processed per slice, more slices result in more
packets that require increased processing time. The opposite
is true for a smaller number of slices per frame. This is
reflected in Table 3.

In this case also, we evaluated the latency for the
transcoding of two video streams intended for different
multicast groups. Two threads in each video transcoding
microengine were responsible for transcoding one video
stream. The transcoding latency obtained for each video
stream was slightly higher than (previous experiment) when
they are separately transcoded with two threads in each
microengine. For the streams “ski.mpeg” and “vessel.mpeg,”
the latencies obtained per frame were 346 and 418 microsec-
onds, respectively, which are a little higher than the values
obtained in the case of the single stream transcoding (335
and 403 microseconds from Table 3).
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Table 2: Transcoding latency per frame using requantization.

Clip Name
Transcoding Latency (ms)

1 Thread 2 Threads 3 Threads 4 Threads

ski.mpeg 12.21 7.44 4.96 4.51

danger.mpeg 45.00 27.41 18.22 16.61

canyon.mpeg 9.52 6.41 4.36 4.06

vessel.mpeg 54.00 32.90 21.67 19.90

blazer.mpeg 9.88 6.52 4.56 4.19

rotate.mpeg 42.95 26.18 17.45 15.87

Table 3: Transcoding latency per frame using frame dropping.

Clip Name Slices
Transcoding Latency (μs)

1 Thread 2 Threads 3 Threads 4 Threads

ski.mpeg 11 450 335 290 281

canyon.mpeg 7 345 248 219 214

vessel.mpeg 15 590 403 341 338

blazer.mpeg 8 388 268 237 231
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Figure 15: Transcoding latency per frame using frame dropping.

10.2. Throughput. Next, we measured and compared the
throughput attained by the active video adaptation node for
the requantization and frame dropping techniques.

10.2.1. Requantization. For our throughput experiments, we
set a target of 30% reduction in data rate for the output
streams. The input rate of the test video streams from the
video server to the transcoding node was then gradually
increased until the node experienced packet loss. Thus, the
throughput for each video stream was measured using the
highest possible injection rate at which the node could
perform the transcoding without losing packets.

Throughputs affored (approximate values in Kbps) are
shown in Table 4 and Figure 16 for different numbers of
threads running on the video transcoding microengines.
Using two threads leads to higher throughput than using
one thread and the same is true for higher numbers of

400

600

800

1000

1200

1400

1600

1800
T

h
ro

u
gh

pu
t

(K
bp

s)

ski danger canyon vessel blazer rotate

Video sequences

1 thread
2 threads

3 threads
4 threads

Figure 16: Throughput using requantization.

threads. However, employing more than three threads has
decreasing significance. The reason is, again, the amount of
intra-microengine mutual exclusion. Overall, requantization
produces a significant reduction in data rate while maintain-
ing reasonable image quality (as discussed later), but at the
expense of incurred delay. The results from Table 4 show that
requantizing streams with high transcoding latency results in
decreased throughput.

We also evaluated throughput when transcoding two
video streams targeted for different multicast groups. The
total throughput attained for these two streams was some-
what lower than the overall throughput attained when
they were separately transcoded using two threads in
each microengine. For example, the throughput obtained
from this experiment for the video streams “ski.mpeg”
and “vessel.mpeg,” 2214 Kbps, was a little lower than the
aggregate throughput obtained in the case of the single
stream implementation (1277 + 1208 = 2485 Kbps from
Table 4).
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Table 4: Throughput of video transcoding for MPEG-1 sequences.

Clip Name
Throughput (Kbps)

1 Thread 2 Threads 3 Threads 4 Threads

ski.mpeg 962 1277 1409 1450

danger.mpeg 880 1335 1565 1620

canyon.mpeg 1044 1366 1596 1634

vessel.mpeg 859 1208 1423 1470

blazer.mpeg 973 1185 1333 1402

rotate.mpeg 870 1279 1591 1650

400

600

800

1000

1200

1400

1600

1800

T
h

ro
u

gh
pu

t
(K

bp
s)

ski canyon vessel blazer

Video sequences

1 thread
2 threads

3 threads
4 threads

Figure 17: Throughput using frame dropping.

10.2.2. Frame Dropping. As in requantization, the input rate
of the test video streams from the video server to the active
node was gradually increased until the node experienced
packet loss. Since the test video sequences were coded at
30 frames per second, we decided to drop six B frames
from every 30 consecutive frames to meet the minimum
requirement of MPEG-1 picture rate (24 frames per second).
Table 5 and Figure 17 show the throughput attained for the
test video streams that contain B frames.

The throughputs (approximate values in Kbps) are
shown for changing numbers of threads running on the
video adaptation microengines. The trend in the change
of throughput for frame dropping based on the change
in the number of microengine threads is similar to that
for requantization. As in our compressed domain frame
dropping, B frames are selectively dropped, the reduction in
output data rate depends on the number and size of the B
frames in the video sequence. A video stream having high
average size of B frames produces less post frame dropping
throughput. This is illustrated in Table 5 for the sequence
“vessel.mpeg.”

We also evaluated throughput when transcoding two
video streams targeted for different multicast groups. The
total throughput attained for these two streams was, again,
a little lower than the overall throughput attained when
they were separately transcoded using two threads in
each microengine. For example, the throughput obtained

from this experiment for video streams “blazer.mpeg” and
“vessel.mpeg,” 2657 Kbps, was slightly lower than the total
throughput obtained in the case of the single stream
implementation (1389 + 1521 = 2910 Kbps from Table 5).

Compared to requantization, frame dropping produces
less reduction in data rate. Moreover, the reduction in data
rate achieved by the frame dropping technique is limited
by the number and size of B frames in the video sequence.
For this reason, this compression domain frame dropping
technique may not always be able to meet the data rate
desired by the receiver. However, this transcoding technique
is well suited to be used for ensuring that a receiver receives
frames at a rate appropriate to its processing capabilities.
On the other hand, requantization produces larger reduction
in data rate though it involves more processing and thus
takes longer than the other technique. Unlike the frame
dropping technique, requantization reduces the data rate
without affecting the frame rate, but of course at the cost
image quality.

10.3. Accuracy of Video Adaptation. We also measured the
quality of the transcoded video streams by comparing them
with the original streams. In evaluating the transcoded
video quality, we made use of peak signal-to-noise ratio
(PSNR) and percentage error (PE) introduced, as our error
metrics. The PSNR measures are estimates of the quality of
a transcoded image compared to the corresponding original
image. PSNR in decibels (dB) is computed as

PSNR = 20 log10

(
255

RMSE

)
(10)

for an 8-bit (pixel values of 0 to 255) image where RMSE
represents the root-mean-squared error of the transcoded
image. For an original image Fo(i, j) of N by N pixels and
the corresponding transcoded image Ft(i, j) of the same size,
RMSE is computed as

RMSE =
√∑N

i=1

∑N
j=1

[
Ft
(
i, j
)− Fo

(
i, j
)]2

N
. (11)

Next, the PE introduced in a transcoded image is calculated
from the relative error (RE) as follows:

RE =
∑N

i=1

∑N
j=1

(∣∣Ft
(
i, j
)− Fo

(
i, j
)∣∣)

∑N
i=1

∑N
j=1 Fo

(
i, j
)

PE = RE× 100%.

, (12)
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Table 5: Throughput of video adaptation for different test MPEG-1 sequences using frame dropping.

Clip Name Throughput (Kbps)

1 Thread 2 Threads 3 Threads 4 Threads

ski.mpeg 1194 1477 1576 1590

canyon.mpeg 1313 1624 1700 1713

vessel.mpeg 1002 1389 1490 1506

blazer.mpeg 1257 1521 1652 1669

Table 6: Quality of various test MPEG-1 video sequences-PSNR and PE.

Clip Name
I frame P frame B frame

PSNR PE PSNR PE PSNR PE

ski.mpeg 40.92 0.51 33.26 0.72 33.88 0.70

canyon.mpeg 28.57 6.56 28.64 6.53 28.27 6.90

danger.mpeg 26.60 7.34 22.98 11.38

vessel.mpeg 24.83 2.32 23.99 2.50 26.57 1.96

blazer.mpeg 29.02 2.06 28.57 2.07 28.30 1.97

rotate.mpeg 22.90 6.52

242 Kbps 150 Kbps

(a)

640 Kbps 320 Kbps

(b)

1 Mbps 650 Kbps

(c)

Figure 18: Video quality variation in original and transcoded image (a) canyon.mpeg, (b) rotate.mpeg, and (c) vessel.mpeg.

(a) (b) (c)

Figure 19: Error images for selected video streams.
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In computing RMSE and RE, the RGB values for each pixel
in a frame were considered.

Typical PSNR values range from 20 to 40. Transcoded
images with higher PSNR and lower PE values are judged
to be better. Table 6 summarizes the average PSNRs and PEs
for the I, P, and B frames, respectively, of several requantized
test video sequences given a 30% reduction in output data
rate. The values obtained for each frame type indicate the
degree of quantization that was achieved by the transcoder
in reducing the bit rate (lower PSNR and higher PE values
specify coarser quantization and vice versa).

It is important to note that these error metrics do not
always correlate well with perceived image quality though
they do provide a good measure of relative quality. A higher
PSNR does not necessarily always imply a reconstructed
image of better quality. For this reason, actual transcoded
images from several streams are provided below to allow the
visual effects of quantization to be seen. As the requanti-
zation achieves rate reduction by making the DCT values
smaller (and some are rounded to zero), the transcoded
video loses sharpness. Figure 18 shows the quality variation
in several images comparing the original and corresponding
transcoded streams.

Another useful technique for demonstrating errors is to
construct an error image that shows pixel by pixel errors.
Error images are created by taking the difference between
the transcoded and original pixels. These error images are
difficult to visualize as the difference values are often small
and some are zeros which commonly represent black. To
make the errors more visible, the difference values are
multiplied by a constant and the entire image is translated to
a gray level by adding an offset. Figure 19 shows error images
for three selected test sequences.

The quality of the transcoded video stream using frame
dropping was evaluated by quantifying the smoothness of the
motion in the decoded sequence. If the frame (picture) rate
is less than 12 fps it is easily detectable by the human eye. As
we maintain the minimum frame rate (24 fps) required by
the MPEG-1 standard in the frame dropping technique, the
transcoded streams exhibit sufficient smoothness of motion
in the decoded sequences.

11. Conclusions

In this paper, we discussed the design and implementation
of a network processor-based transcoder for in-network
adaptation of video streams to support collaborative appli-
cations. Our transcoder uses the IXP1200 network processor
to transcode MPEG-1 streams.

Transcoding was done by requantizing the DCT coeffi-
cients with larger quantization values to reduce the bit rate.
To verify the practicality of the video adaptation scheme,
we conducted experiments and presented results in terms
of transcoding latency, throughput, and accuracy of video
adaptation. Our video transcoding node implementation can
dynamically adapt the test video streams on a packet-by-
packet basis at an acceptable rate for use near the network
edge (where only a small number of concurrent streams are
likely).

Transcoding latencies obtained for test video sequences
confirm the real-time performance of the video transcoding.
As expected, the speed depends on the bit rate of the
compressed video stream; a high bit rate stream incurs
higher transcoding latency. We also evaluated the quality of
the transcoded video by measuring the average PSNR and
percentage error (PE) and through the use of error images.

The current implementation of the transcoder uses
the microengines provided by the IXP1200. Involving the
StrongARM processor is worth considering for future work
as is implementation using more powerful network proces-
sors. Our results were not compared to any other system
as currently no similar adaptation scheme exists. We did
compare the performance of our prototype to an earlier
system exploiting only the basic capabilities of the IXP1200
(one thread in each video adaptation microengine) as a
baseline.

The prototype adaptation node could be re-implemented
relatively easily on more recent IXP series network proces-
sors. The use of the IXP2400 or, particularly, the IXP2800
would result in reduced transcoding latency and higher
throughput given the increased number and speed of the
microengines and due to the larger number of threads
supported per microengine. Coding of the adaptation rou-
tines would also be simplified on such machines owing
to their larger instruction memory capacities. This would
improve readability and portability of the code and, possibly,
efficiency as well. More aggressive transcoding might also be
attempted. Further, the increased capabilities of these newer
network processors would be far more effective in supporting
the concurrent transcoding of multiple streams (for different
multicast transmissions) and/or higher resolution streams
corresponding to new encoding standards (e.g., MPEG-2 and
H.263). Finally, the significant control processor capabilities
of network processors such as the PowerNP and C-5e can be
effectively exploited in practical deployments.
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