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Abstract

The thesis is based on the design and analysis of suitable compartmental deterministic
models for the transmission dynamics and control of HIV/AIDS in a population. A
basic model, which incorporates the use of antiretroviral drugs for a single HIV strain,
is designed first of all. In addition to incorporating treatment-related benefits {such as
slow progression to AIDS and reduced transmissibility of treated individuals, in com-
parison to untreated people), the model includes the transmission of HIV by individuals
in the AIDS stage of infection (the latter is often erroneously ignored in HIV transmis-
sion modelling). The model is used to evaluate various treatment strategies, such as the
universal treatment of infected individuals (regardless of their stage of infection) and
the targeted treatment of those with or without symptoms only. Using ﬂyapunov fun-
tion theory, in conjunction with the LaSalle Invariance Principle, the model is shown to
have a globally-asymptotically stable disease-free equilibrium whenever its associated
reproduction number is less than unity, and has a unique locally-asymptotically stahle
endemic equilibrium whenever this number exceeds unity. The unique endemic equilib-
rium is shown to be globally-asymptotically stable for a special case. It is further shown
that the treatment-free equivalent of the model exhibits similar qualitative dynamics.
Numerous simulations of the model were carried out using a reasonable set of parame-
ter values. The simulations show that the universal administration of the antiretroviral
drugs is more beneficial, in terms of reducing the morbidity and HIV-related mortality,

than its targeted use to either people with or without clinical symptoms of AIDS.



The treatment model is extended to include the dynamics of two HIV strains,
namely a wild strain, which is susceptible to drug treatment, and a resistant strain. The
global stability of the disease-free equilibrium, and the local stability of the associated
boundary and co-existence equilibria are established. It is shown that the treatment
free equivalent of the model can have a continuum of co-existence equilibria, while
the treatment model can exhibit two co-existence endemic equilibria, under certain
conditions.

Finally, a model for assessing the potential impact of an imperfect HIV vaccine,
which incorporates the differential infectivity and staged-progression properties of HIV
disease as well as various vaccine characteristics, is designed and analyzed. In addition
to showing the presence of backward bifurcation in the model, the study shows that
the widespread use of an imperfect HIV vaccine can have detrimental impact in the
community if the use of the vaccine makes a certain epidemiological guantity, known
as “wvaccine impact”, negative.

Overall, this study shows that the prospect of effectively controlling the spread of

HIV in a population using antiretroviral drugs and/or a vaccine is bright.
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Chapter 1

Introduction/Background

1.1 Public health and socio-economic impact

Since its inception in the 1980s, the human immono-deﬁciency virus (HIV), the causative
agent of the acquired immune deficiency syndrome {AIDS), continues to pose an un-
precedented threat to global health and human development. An estimated 34—46
million people are currently living with HIV/AIDS. More than 20 million people have
died from AIDS-related causes during the last 20 years, of which an estimated 3 mil-
lion deaths occurred in 2003 alone [26]. AIDS is now the leading cause of death in
sub-Saharan Africa and the fourth leading cause of death globally. The pandemic has
cut life expectancy significantly in many countries in sub-Saharan Africa. For exam-
ple, life expectancy in Botswana decreased from 65 years in 1985—1990 to 40 years in
2000—2005 [92].

In addition to being a sericus public health probler, HIV has far reaching conse-



quences to all social and economic sectors of society. It exacerbates poverty, reduces
educational opportunities, devastates the workforce, creates large numbers of orphans,
and exerts tremendous pressure on already limited health and social services [86, 90].
For example, HIV/AIDS has cut annual growth rates in Africa by 2—4% per year [24].
The annual economic loss (slower economic growth) as a result of HIV-related death
or disability in 50 countries (US, Russia, 5 in Asia, 8 in Latin America, and 35 in
sub-Saharan Africa) during 1992—2000 is estimated at $25 billion [31].

HIV is transmitted in humans vie a number of mechanisms including sexual, shar-
ing contaminated needles by HIV drug users, mother-to-child, blood transfusion ete.
Numerous anti-HIV preventive and therapeutic strategies have been embarked upon
aimed at slowing the spread of the disease. These include condom use, voluntary HIV
testing, education and counselling about safer sex practices, and the use of antiretrovi-
ral drugs (ARVs). Although the widespread use of ARVs, especially the highly-active
antiretroviral therapy (HAART), in nations that can afford them has resulted in a sig-
nificant decline in HIV cases, these drugs are still not generally accessible in resource
poor nations. The World Health Organizations (WHO) reported that only 5% of peo-
ple who need ARVs in developing nations actually have access to these drugs in 2003
[91]. Further, the widespread use of ARVs is associated with a number of side effects,
and toxicity, in addition to the danger of the emergence of ARV-resistant strains. The
use of an effective HIV prophylactic vaccine is widely considered to be the “best” way
to slow or curtail the HIV/AIDS pandemic {19, 27). However, it is unlikely that a

highly-effective vaccine will be available soon. Instead, the current expectation is that



the most likely vaccine that will be developed in the foreseeable future may have lower
efficacy in protecting against infection and/or result in a shorter duration of protection
in successfully immunized people than most traditional vaccines. In other words, a
future HIV vaccine is expected to be imperfect.

Owing to the huge HIV-related public health and socio-economic burden giobally,
coupled with the continuing spread of the disease (especially in resource-poor nations),
the need for the development and implementation of effective and affordable preventive
and therapeutic strategies for the worldwide control of HIV infection has become ever
more pressing. The main aim of this thesis is to use mathematical modeling, based
on the current knowledge of HIV biology and epidemiology, to gain insights into the
transmission dynamics of HIV/AIDS in a population, and to evaluate control strategies.
Although there are numerous anti-HIV preventive and therapeutic strategies, such
as the ones enumerated above as well as other non-traditional methods {e.g., male
circumcision [4, 5, 7, 67, 74, 76, 79, 85, 88] and the use of microbicides [6]), this study
will focus on evaluating the impact of using ARVs and a putative HIV vaccine. A
brief review of some of the key biological and epidemiological features of HIV disease,

relevant to the modelling component of this thesis, is provided below.

1.2 Replication cycle (staged-progression)

HIV infects and replicates primarily in CD4% T cells. The virus enters the cells by
fusion after binding to the CD4 glycoprotein in conjunction with a chemokine receptor.

The virus also infects other CD4-bearing cells, such as monocytes, tissue macrophages



and dendritic cells, that replicate HIV inefficiently relative to CD4T T cells. HIV
replication is essential for disease progression to AIDS. The typical course of HIV

infection proceeds via the following three sequential stages:

1.2.1 Primary stage

Upon introduction into an individual, HIV infects both resting and activated CD4+ T
cells. However, it integrafes and multiplies only in activated CD4* T cells. Initially,
such replication proceeds virtually unopposed by the immune system. As a resulf,
the rate of HIV replication is far greater than that of its clearance. This viral influx
primes the immune system, eventually triggering the activation of HIV-specific B cells
{antibody producing cells) and the clonal expansion and differentiation of CD8+4 T
cells into anti-HIV cytotoxic T lymphocytes (CTLs). This rise in HIV concentration
(viremia) triggers the next round of activation of HIV-specific memory and residual
naive CD4% T, CD8* T and B cell populations, resulting in the appearance of anti-HIV
CTLs in the blood of the HIV-infected individual within 1 to 4 weeks, and anti-HIV
antibodies within 8 to 12 weeks of initial infection. Although this anti HIV immune
response effectively suppresses HIV viremia, by reversing the rates of HIV replication

and its clearance, it fails to completely eliminate HIV.

1.2.2 Asymptomatic (chronic) sta.ge

A typical HIV infection is characterized by the appearance of a vigorous anti-HIV

immune response usually capable of suppressing HIV replication leading to a dramatic



decline of HIV in circulation with a corresponding rise in the numbers of CD4+ T
cells. The anti-HIV CTLs play a crucial role in this process. The immune response,
however, fails to block HIV replication completely. Such failure is characterized by
the persistence of low levels of viral replication and a gradual, but steady, decline in
CD4™ T cells in the absence of clinical disease. This asymptomatic phase may last for
many years or over a decade. In this phase, the rate of clearance of HIV is consistently

greater than that of its replication.

1.2.3 AIDS stage

Although levels of HIV in circulation remain low during the asymptomatic phase; a
gradual but steady decline in the numbers of CD4* T cells continues. Once the CD4*
T cell numbers reach below a threshold, the HIV concentration in cireulation begins
to rise rapidly {reaching levels > 10° virions/m! blood) and the patient exhibits a
precipitous loss of immunity to many other pathogens. This last phase of HIV disease
is referred to as AIDS, during which the patient invariably acquires life-threatening
opportunistic infections that lead to death. A notable feature of this phase of disease
is the persistence of high concentrations of HIV in circulation with minimal CD4t T
cell counts. Further information on modelling the immuno-pathogenesis of HIV can be
found in [37, 41, 71, 72}, and the references therein.

Figure 1.1 [71] depicts a schematic description of these stages. The early peak in
viral load corresponds to primary infection. This is followed by a long asymptomatic

period, during which the viral load changes slightly (lasting over 10 years on average).



Ultimately, the viral load increases and the symptoms of full-blown AIDS appear.
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Figure 1.1: Time course of HIV infection in a typical adult.

1.3 Differential infectivity

In addition to the staged-progression property described in Section 1.2, another notable
feature of HIV disease is differential infectivity [49]. Studies of HIV RNA in infected
individuals show that viral levels vary widely between individuals, with individuals
having higher viral loads during the chronic phase tending to develop AIDS more
rapidly (because RNA levels are correlated with infectiousness [33]). The differential
infectivity of HIV can then be defined as the variations in infectiousness, and the
mncrease in the average progression time from infection to AIDS that goes along with

a decreased viral load during the chronic phase of infection [49].



1.4 Incidence functions

Disease incidence in a community is defined in terms of the number of new infections
generated per unit time in that community. Incidence, in disease models, is generally
characterized by an incidence function (a function that describes the mixing pattern
within the community). Various types of incidence functions have been used in disease
modelling (see, for example, [47]), and the choice of such function can play an im-
portant role in the dynamics of the disease. Here, a general construction of incidence
function required for modelling is given. Let S(¢), Y(f) and N(¢) denote the number
of susceptibie individuals, infected individuals and the total population size at time ¢,
respectively. Suppose 3{/V} is the effective contact rate (i.e., the average number of con-
tacts sufficient to transmit infection) per person per unit time. Then, S{(N)Y/N is the
average number of contacts with infectious individuals a susceptible individual makes
per unit time. ‘Thus, the number of new cases coming from all susceptible individuals
(5) is AS, where A = B{V)Y/N is the force of infection. If 3(N) = 3, a constant, then
AS is referred to as a stendard incidence function. When B{N ) = BN (that is, the
contact rate depends on the total population), then AS is called mass action incidence
[43, 46, 47). It is worth stating that standard incidence models with constant total
population (N(t)), such as the model in [54], are essentially mass action models. The
aforementioned two incidence formulations (standard and mass) appear to be the most
widely used in the mathematical epidemiology literature. Although some studies have
suggested that the standard incidence formulation is more realistic for human diseases

2, 3], the choice of one over the other really depends on the disease being modeled



and, in some cases, the need for analytical tractability. Both standard incidence (see,
for example, [8, 26, 49, 65]) and mass action incidence ({11, 36, 54, 71, 80]) have been
used to model HIV epidemiology and immuno-pathogenesis. Standard incidence is
used throughout this thesis, except in a single instance in Chapter 5, where a new

mathematical fact (associated with mass action incidence) is illustrated.

1.5 Reproduction numbers

Compartmental mathematical models have been widely used to gain insights into rthe
spread and control of emerging and re-emerging human diseases, dating back to the
pioneering work of Bernoulli (on modelling the dynamics of smallpox) in 1760 and the
likes of Ross, Kermack and McKendrick and others (see [2, 3, 47] and the references
therein). The dynamics of these models tend to generally be completely determined by
a threshold quantity, known as the basic reproduction number (denoted by Rg), which
measures the average number of new cases an index case can generate in a completely
susceptible population (3, 22, 47]. Typically, when Ry is less than unity, a small influx
of infected individuals will not generate large outbreaks, and the disease dies out in time
{in this case, the corresponding disease-free equilibrium (DFE) is locally asymptotically
stable (LAS)). On the other hand, the disease will persist if R exceeds unity, where
a stable endemic equilibrium point (EEP) exists. This phenomenon, where the DFE
and an EEP exchange their stability at Rg = 1, is known as forward bifurcation (or

transcritical bifurcation). A schematic description is given in Figure 1.2.
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Figure 1.2: Forward bifurcation diagram

This phenomenon was first noted by Kermack and McKendrick [53], and has been
observed in many disease transmission models ever since (see [14, 15, 16, 25, 44, 47, 55|
and the references therein). In general, for models that exhibit forward bifurcation,
the requirement Ry < 1 is necessary and suflicient for disease elimination (i.e., the
number of infectives at steady state depends continuously on Rq). In the presence of
a control measure, such as the use of a vaccine in the community, the dynamics of the
model is governed by another threshold quantity, known as the effective reproduction
number, denoted by R.;;. The threshold, R.;s, represents the average number of
secondary cases a typical infected individual will generate in a population where a
fraction of the susceptible individuals are vaccinated. A number of studies have shown
that whilst R.sr < 1 is necessary for disease elimination, this requirement may not be
sufficient. This is owing to the phenomenon of backward bifurcation, where a stable

endemic equilibrium co-exists with a stable disease-free equilibrium for R.p; < 1.



This phenomenon has been observed in numerous disease transmission models such as
those for behavioural responses to perceived risks [40], multiple groups [14, 15, 80],
vaccination {1, 26, 54], and transmission of mycobacterium tuberculosis with exogenous
re-infection [16, 30]. In a backward bifurcation, disease control is only feasible if Ry is
reduced further to values below another sub-threshold less than unity. The phenomenon
of backward bifurcation has important public health implication, since it renders the
classical requirement of reproduction number being less than unity to be insufficient {in
general) for disease elimination. A schematic description of the backward bifurcation

phenomenon is given in Figure 1.3.
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Figure 1.3: (A) Backward bifurcation diagram showing coexistence of a stable DFE
and two branches of endemic equilibria (stable and unstable branch); (B) Time series

plot with different initial conditions showing the two stable equilibria separated by an
unstable (saddle) equilibrium point.

1.6 Thesis outline

The thesis is organized as follows. Some of the basic mathematical preliminaries needed
to qualitatively analyze the models in this thesis are reviewed in Chapter 2. In Chapter
3, a basic HIV treatment model, which subdivides the total population into susceptible,

untreated newly- and asymptomatically-infected, AIDS, and treated individuals, is
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formulated and analyzed. Chapter 4 addresses the issue of resistance development as
a result of using ARVs. In Chapter 5, a vaccination model, which incorporates the
staged-progression and differential infectivity aspects of HIV disease, is studied. The
main mathematical and epidemiological contributions of the thesis are summarized in

Chapter 6. Areas for future work are also enumerated.

12



Chapter 2

Mathematical Preliminaries

This chapter summarizes some of the key mathematical theories and methodologies

relevant to the thesis.

2.1 Equilibria of linear and non-linear autonomous

systems

Consider the equation below
&= flz,t;p), s€UCR", t€R, and peVCRP (2.1)

where U and V' are open sets in R™ and RP, respectively, and i 18 a parameter. The
overdot in (2.1) represents differentiation with respect to time (). The equation (2.1)
is referred to as a vector field or an ordinary differential equation. Vector fields which
explicitly depend on time are called non-autonomous, while vector fields which are
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independent of time are called aufonomous. This thesis considers only autonomous
systems.

Consider the following general autonomous system

&= f(z), ©eR" (2.2)

Definition 2.1. An eguilibrium solution of (2.2) is a point & € R such that f(Z) = 0.

2.2 Hartman-Grobman Theorem

Definition 2.2. Lei * = & be an equilibrium solution of (2.2). Then T is called
hyperbolic if none of the eigenvalues of Df(z) have zero real part. An equilibrium

point thal is not hyperbolic is called non-hyperbolic.

Let

&= f(z), =€R",
(2.3)

y=g(y), y€&ER",

be two C7 {r > 1) vector fields on R®

Definition 2.3. The dynamics generated by the vector fields f and g of (2.3) are said
to be locally C* conjugate (k < r) if there exist a C* diffeomorphism h which takes
the orbils of the flow generated by f, ¢(t,x), to the orbits of the flow generated by g,

¥(t,y), preserving orientation and parametrization by time [89)],
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Theorem 2.1. {Harfman and Grobman [89]} Consider a C™(r > 1) vector field

&= f(z), zeR" (2.4)

with domain of f to be a large open subset of R™. Suppose also that (2.4} has a

equelibrium solutions which are hyperbolic. Consider the associated linear vector field

£=Df(E)E, EeR™ (2.5)

Then the flow generated by (2.4) is C° conjugate to the flow generated by the linearized

system (2.5) in a neighborhood of the equilibrium point z = &.

A direct application of the Hartman-Grobman Theorem is that orbit structure near
equilibrium solution which are hyperbolic is qualitatively the same as the orbit structure

given by the associated linearized dynamical system.

2.3 Stability theory

The following are standard definitions and theorems required to analyze the stability

of an equilibrium of ar autonomous system.

Let 2(t) be any solution of {2.2). Then, Z(t) is stable if solutions starting ”close”
to Z{t) at a given time remain close to Z(¢) for all later times. It is asymplotically

stable if nearby solutions actually converge to Z{t) as ¢ — oo. This is formally defined
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bhelow:

Definition 2.4. The equilibrium Z(t} is said to be stable if given € > 0, there exists
a § = &(e) > 0 such that, for any solution y(t) of (2.2) satisfying |T{ty) — y{to)| < 6,
|Z{1) - y(8)| < e fort > ty, to € R,

Definition 2.5. The equilibrium &(t) is said to be asymplotically stable if (i) it is
stable and (i) there exists a constant ¢ > 0 such that if |2(t) — y(to)| < ¢, then
lim [£(t) — y(0)| = 0.

Definition 2.6. A solution which is not stable is said to be unstable.

Theorem 2.2. Suppose all the eigenvalues of Df(Z) have negative real parts. Then
the equilibrium solution © = T of the system (2.2} is locally asymptotically siable, and

unstable if at least one of the eigenvalues has positive real part.

2.4 Bifurcation theory

In general, systems of physical interest typically have parameters which appear in the
defining systems of equations. As these parameters are varied, changes may occur in
the qualitative structures of the solutions for certain parameter values. These changes
are called bifurcalions. The parameter values where bifurcation occurs are called bi-

Jurcation values. A standard definition for bifurcation at a point is given below.

Definition 2.7. Let

&= flz,n), R, pekRr, {(2.6)
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be a one-parameter family of one-dimensional vector fields. An equilibrium solution of
(2.6) given by (z,p) = (0,0) is said to undergo bifurcation at p = 0 if the flow for p

near zero and T near zero is not qualitatively the same as the flow near x = 0 at o = 0.

‘There are various types of bifurcations, including saddle-node, transcritical, pitchfork,
backward, and hopf bifurcations [89]. Two of these, forward and backward bifurcations,

are relevant to this thesis.

2.5 Non-existence of periodic solutions

Generally, models of disease transmission may have solutions that differ from the calcu-
lated equilibrium solutions. Such solutions affect the stability of the equilibria. These
kinds of solutions are generally referred to as closed orbits (i.e., periodic orbits, ho-
moclinic orbits, heteroclinic trajectories and polygons). In order to establish global
properties of equilibria, it is sometimes necessary to show the non-existence of closed
orbits in the feasible region of the model. Some methods for ruling out closed orbits in

R? are described below, after the following standard definitions.

Let & = f(z), z € R? be a vector field.

Definition 2.8. (Periodic solution). A solution z(t) is said to be periodic if z(t+T) =

z(t) for allt, for some T > 0.

Example 1:

The system & =y, 7 = —z — 5{(z” ~ 1)y has a periodic orbit illustrated below.
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T g

Periodic Orbit

Figure 2.1: Periodic orbit

Definition 2.9. (Homoclinic orbits). Homoclinic orbits are trajectories thal start and

end at the some saddle point. That is, they are trajectories connecting o single saddle

node.

Example 2:

The system & = y,§ = = + z° has a homoclinic orbit as shown below.

Homoclinic Ozbit

Figure 2.2: Homoclinic orhit

Definition 2.10. (Heteroclinic orbits). Heteroclinic orbits are trajectories that start at
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one saddle node and end at the another saddle node. That is, they connect two saddle

nodes.

Example 3:

Y,y = —sinz has a heteroclinic orbit illustrated below.

The system &

o

VPV e
PO I S S

Es

R L Y

P g Vg
PULEEY 728w ALY
IR R ED i Y
F I S R ! :

s N,

£ ; \ ..:.: Y NS "
\\ L I L %a.{.f./ﬁ/, A /.

LI (0 A e B 2 -
o -

:_,u___q.mﬂ_
o - o
L

Heteroclinic Orbit

Figure 2.3: Heteroclinic orbit

Polygons are trajectories conneciing more than two

Definition 2.11. (Polygons).

saddle nodes.

Example 4:

2zy has a polygon as shown below,

= - —

_yQ,y

The system & = y + z°
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Figure 2.4: Polygon

2.5.1 Lyapunov functions and LaSalle’s Invariance Principle
Lyapunov Functions

A powerful method for analyzing the stability of an equilibrium point is based on the
use of Lyapunov functions. Lyapunov functions are energy-like functions that decrease

along trajectories. If such a function exists, then closed orbits are forbidden [81].
Definition 2.12. A funclion V : R" — R s said to be a positive definite function if
o V(z) >0 forall z,
o V(z) =01 and only if £ =0,
¢ Viz) — 0o as 7 -+ 0.

The general Lyapunov Function Theorem is given below.
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Theorem 2.3. Consider the following vector field
&= flz), zeR" (2.7)
Let & be an equilibrium solution of (2.7) and let V : U — R be a C* function defined
on some neighborhood U of & such that
i} V is posilive definite
i) V{z) <0 U\{z}.
Then Z is stable. Moreover, if
ity V(z) <0 U\{z}
then T is globolly asymptotically stable {GAS).

Any function V' that satisfies the above is called a Lyapunov function (48, 89].

Example 5:

Consider the following vector field, with ¢ a real parameter,

T =y,

. 2
¥y = —I—exy.

The system has a non-hyperbolic equilibrium solution at (z,y) = (0,0). Let V' (z, y) =
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(z*+y?})/2. Clearly V(0,0) = 0 and V{(z,4) > 0 in any neighborhoad of {0,0). Further,

Viz,y) = zi+yy
=y +y(—z — ez'y)
= 1y — oy — ex’y®

= —ex?y* <0 for € > 0.

Hence, V' < 0. Thus, by the Lyapunov Function Theorem (2.3), the equilibrium (0, 0)
is stable for € = 0 and GAS for e > 0.
Limit Sets and Invariance Principle

Since general epidemiology models monitor human populations, it is necessary to con-
sider that associated population sizes can never be negative. Thus, epidemiological
models should be considered in (feasible) regions where such property (nonnegativity)

is preserved.

Definition 2.13. A point xo € R is called an w—limit point of z € R™, denoted by

w(x), if there exists a sequence {t;}, t; — oo such thot

P{ts, z) — 0.

Definition 2.14. A point zg € R is colled an a—limit point of z € R®, denoted by

22



a(z), if there exists a sequence {t;}, t; — —o0 such that

o(t;, z) — xp.

Definition 2.15. The set of all w—limit points of a flow is colled the w-limit set.

Svmalarly, the set of all a—limit points of a flow 1s called the a—limit set [89).

Definition 2.16. Let § C R" be a set. Then, S is said to be invariant under the vector

field & = f(z) if for any zo € S we have z(t,0,z0) € S for allt € R.

If we restrict the region to positive times (i.e., ¢ > 0), then S is said to be a positively-
invariant set. In other words, solutions in a positively-invariant set remain there for

all time. The set is negatively-invariant if we go backward in time.

Theorem 2.4. (LaSalle’s Invariance Principle). Suppose there is a continuously dif-

ferentiable, positive definite, and radially unbounded function V : R™ — R, such that

Vv

(o= B)/(©) SW(@) <0, Yz eR™

Then, T 15 a globally stable equilibrium. The solution z(t) converges to the largest

invariant set S contained in E = {x € R™: W(z) = 0} [38].

2.5.2 Dulac’s criterion

Theorem 2.5. (Dulac’s Criterion). Lel & = f{x) be o continuous differentiable vector

Jield defined on a simply connected subset I of the plane. If there exists a continuously
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- differentiable, real-velued function g(x) such that V - (gz) has one sign throughout D,

then there are no closed orbits lying entirely in I [81, 89].

Proof. Suppose there were closed orbit C lying entirely in the region D). Let A denote

a region inside C. Then, by Green’s Theoren,

fﬁV-(gk}dAzjégk~nd€,

where n is the outward normal and ¢ is the element of arc length along C'. It is clear
that the left hand-side of the integral is non-zero, since V- (gx) has one sign in . The
right hand-side of the integral is zero since x - n = 0 everywhere by the assumption
that (' is a trajectory (the tangent vector X is orthogonal to n). This contradiction

implies that no such C' can exist [81].

Example 6
The system & = z(2 — x — y), ¥ = y{dx — 2% — 3) has no closed orbits in the positive

quadrant z,y > 0. To see this, let ¢ = 1/zy, so that

V(%) = 3-(08) + 5 (o)

Since the region z,y > 0 is simply connected, g and f satisfy the required smoothness
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conditions. The Dulac’s criterion implies that there are no closed orbits in the positive

quadrant [81].

2.5.3 Busenberg - van den Driessche technique

Busenberg and van den Driessche [12] extended the Dulac’s criterion to R® as follows.

Theorem 2.6. Let S C R® be smooth, orientable, surface such that any piecewise
smooth closed curve v(i) € S is the boundary of surface S’ C S. If v : R® — R3 s

smooth, fiy(t) — R® is Lipschitz, and f and g satisfy

ghv()) - Fv(8)) =0,

{curl gy m>0 on S (< Don S),

where m is the unit normal to §. Then v(t) is not a phase polygon (trajectories con-

necting more than one saddle nodes) of the differential equation & = f{z(1)).

2.6 Methods for local stability of equilibria

Here, two standard methods for analyzing the local stability of the equilibria of disease

transmission models are briefly described.
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2.6.1 Linearization

Determining the stability of an equilibrium Z(¢) generally requires an understanding of

the nature of solutions near z{¢). Let

z=2z(t) +e (2.8)

and suppose that (2.8} is substituted into the general autonomous vector field © =
f(z), = € R" and f is twice differentiable. The Taylor series expansion about Z(2)

gives

2= 2(t) + € = f(z(t)) + D (E(t))e + O|e*),

where Df is the derivative of f and |- | denotes norm on R™. Hence,

¢ = Df(E(t))ec + Ole2). (2.9)

Equation (2.9) above describes the evolution of orbits near #(t). The behavior of

solutions arbitrarily close to Z(t) is obtained by studying the associated linear system

¢ = Df(ED))e. (2.10)

However, if Z(t) is an equilibrium solution, i.e., Z{(t) = z, then Df(#(1)) = Df(z) is a

matrix with constant entries, and the solution of (2.10) through the point ¢, € R™ at
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= () i given by

et} = exp(Df(T})ep. (2.11)

Theorem 2.7. Suppose all of the eigenvalues of Df(Z) have negative real parts. Then,
the equilibrium solution z = T of the nonlinear vector field £ = f{z), z € R" is

asymptotically stable.

Example 7

Consider the vector field

i = filz,y) =y’ -z,

y = falzy)=2" -y

The system has a unique equilibrium point # = (0,0). The Jacobian J of the vector

field is given by

afr  éfr

&L % -1 2%
J(z,y) = Df(2(t) = =

%—f; % 20 -1

Evaluating J at T gives

J(0,0) J
= Ay

so that the eigenvalues of J{0,0), = —1, have negative real parts. Hence, the
equilibrivm Z = (0, 0) is asymptotically stable.
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2.6.2 Next generation method

Whilst the linearization method above applies to analyzing the local stability of equi-
libria in general, the next generation method is used to establish the local asymptotic
stability of the DFE (or a boundary equilibrium). The method was first introduced
by Diekmann and Hesterbeek {23] and refined for epidemiological models by van den
Driessche and Watmough [87]. Epidemiological models, of Kermack and Mckendrick
type, typically subdivide the total population (V) into a number of mutually exclusive
compartments depending on their disease status (see, for instance, Example 8). The
formulation in {87] is now described. Suppose the given disease transmission model,

with non-negative initial conditions, can be written in terms of the following system:

= fla) =Fiz) = Viz), i=1,--,n, (2.12}

where V; = V7 — V7 and the function satisfy the following axioms below. First of all,
Xe={zx 20z =0,i=1,---,m} is defined as the disease-free states (non-infected
state variables of the model) of the model, where z = {z1, - ,z,) z; > 0 represents

the number of individuals in each compartment of the model.

(A1) fx >0, then F,, V7, V] >0fori=1,-- ,m.

(A2} if % =0, then V7 = 0. In particular, if z € X, then V; =0fori=1,--- ,m. -
(A3) F; =0ifi>m.

(A4) ifz e X;, then Fi{z) =0and VI {z)=0fori=1,-.. ,m.
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(A5) If F(x) is set to zero, then all eigenvalues of D f(z;) have negative real parts.

Here, F;(x) represents the rate of appearance of new infections in compartment i;

V7 (z) represents the rate of transfer of individuals into compartment ¢ by all other
means, and V] () represents the rate of transfer of individuals out of compartment .
It is assumed that these functions are at least twice continuously differentiable in each

variable [87].

Definition 2.17. (M —Matrix) An n x n matriz A is an M—matriz if and only if

every off-diagonal entry of A is non-positive and the diagonal enlries are all positive.

Lemma 2.1. (van den Driessche and Watmough [87)) If T is a DFE of (2.12) and

fi(z) satisfy (A1) — {A5), then the derivatives DF(z) and DV(Z) are partitioned as

F 0 Vo0
DF(EF) = s DV{QTJ} = 3

00 J3 Jy
where Fand V' are the m X m matrices defined by,

= l:aFﬁ (f)} and V = liwg_\ﬁ(j)] with 1 < 1, 7 < m.

Lq L

Further, I is non-negative, V 1is a non-singular M—mairiz and Js, J; are matrices
associated with the transition terms of the model, and all eigenvalues of Jy have posi-

tive real parts.

Theorem 2.8. (van den Driessche and Watmough [87]). Consider the disease trans-
mission model given by (2.12) with f(z) satisfying azioms (Al) — (A5). If & is a DFE
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of the model, then T is LAS if R = p(FV ') < 1 (where p is spectral radius), but

unstable if Rog > 1.

Example 8
Consider the basic SIR model below (where the variables S, I, R represent the popula-
tion of susceptible, infected and recovered individuals, respectively; and N = S+7+R

is the total population at time ¢)

ds BS8I
PR
di _ BSI

P AR
dR

The model has a DFE, given by &y = (II/u,0,0). Here, the non-negative matrix, F,

and the M —matrix, V, are given by

* II
F= ﬁs)and V:( ),whereS*=N*z—.
(N* pto “

It is easy to verify that for this system, the conditions A1-A5 of Section 2.6.2 are sat-

isfied (these conditions are also satisfied for all the subsequent models in this thesis).

Thus, Ry = p(FV1) = —f_— Hence, Ay is LAS whenever Ry < 1, and unstable if
o

R0>1.
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Chapter 3

HIV Treatment Model

3.1 Introduction

Ever since their introduction in the early 1990s [71, 72], ARVs, particularly HAART,
have had dramatic impact in curtailing the burden (morbidity and mortality) of the
HIV pandemic in many countries where these drugs are accessible f70]. The use of
such life-saving drugs, over long periods of time, reduces the viral loads in HIV-infected
individuals to non-detectable levels (typically characterized by HIV RNA of less than
50 copies/ml) [52]. In addition to making these individuals less infectious {owing to the
positive correlation between viral load and HIV transmission [33]), HAART extends
the life, and the quality of life, of infected individuals [71]. |

The type of strategy for implementing a HIV control program based on using ARVs
is influenced by a number of factors ranging from hiclogical, availability of resources,

and the efficiency of the public health care system to optimally admirister the distribu-
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tion of ARVs in the community. Although the cost of ARVs has reduced significantly
over the years, these drugs are stili not widely available in many resource-poor nations.
The WHO [91] reported, in 2003, that only 5% of people who need ARVs in developing
nations actually have access to these drugs. In nationsl where these drugs are readily
available, some have opted for universal (mass) treatment of all diagnosed individuals
regardless of their stage of infection (e.g., in Brazil {61]), while others have adopted
a more targeted approach, where only individuals with low CD4 count (generally be-
low 200 cells/ml) or displaying symptoms of AIDS are treated; individuals with such
low CD4 count are essentially at the pre-AIDS or AIDS stage of HIV disease, and
therefore have high viral loads. This late strategy is further justified by the results of
the randomized clinical ¢rials in [13, 32, 35, 39] which provide strong evidence of im-
proved survival and reduced progression by treating symptomatic patients and patients
with CD4 count of less than 200 cells/mm?3. Further, this strategy has the additional
advantage of minimizing the possibility of the evolution and spread of ARV-resistant
HIV strain in the community and also minimizing ARV-related side effects and toxic-
ity. It is worth emphasizing that the latter strategy (treating those with CD4 < 200
cells/ml, or those with viral load above a certain threshoid) forms part of the new
HIV control guidelines in a number of countries such as the USA {21, 34] and Canada
[86]. Some resource-poor nations, such as Botswana [64], also subscribe to the late
(viral load-dependent) treatment strategy, perhaps due to reasons that may include
economics. In summary, there are a number of ways ARV programs could be imple-

mented including targeting (i) all infected individuals (universal treatment), (ii) newly-
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and asymptomatically-infected individuals {i.e., infected individuals without the clini-
cal symptoms of AIDS) and (iii) individuals with clinical symptoms of AIDS. From now
on, Strategy (ii) is referred to as the “HIV-only” Strategy. The key modelling question
here is which of these strategies is most effective in minimizing HIV-related burden
{measured in terms of disease-related mortality and morbidity) in a community?
Several authors have, over the last two decades, used mathematical models, of
the form of deterministic or stochastic systems of differential equations, to assess the
impact of ARVs on HIV control [20, 33, 52, 58, 61, 62, 71, 72, 82]. However, many of
these models do not incorporate the role of individuals with clinical AIDS symptoms in
HIV transmission. That is, these studies assume that individuals in the AIDS stage of
infection do not contribute in further spread of HIV. To the contrary, epidemiological
evidence supports the hypothesis that AIDS patients are capable of, and do engage i,
risky sexual behavior such as having multiple sexual partners or inconsistent condom
use [59, 68, 69]. In this chapter, a HIV treatment model, which incorporates HIV
transmission by AIDS individuals, is designed and used to evaluate the aforementioned

treatment strategies.

3.2 Model formulation and basic properties

The total population, N, is subdivided into four mutually-exclusive compartments
namely susceptible (S(¢)), untreated newly- and asymptomatically-infected individ-
vals (7,(t)), infected individuals at the AIDS stage of infection (A(t)) and treated
individuals (I7(t)), so that N(¢) = S(¢) + L.(t) + A() + Ip(t).
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The susceptible population is increased by the recruitment of individuals (assumed
susceptible) inte the population at a rate II. These individuals acquire infection, fol-
lowing contact with infected individuals in the I, A and Ir classes, at a rate ), where

_ B+ nad +nrlr)

A
N

is the force of infection. The parameter 3 is the effective contact rate {contact capable
of leading to infection}, while 74 > 1 is the relative risk of infectiousness of individ-
uals with AIDS (in comparison to those in the I, class). The parameter 0 < np < 1
accounts for the assumed reduced infectiousness of treated individuals relative to un-
treated individuals. Infected individuals in the I, class progress to AIDS at a rate a.
It is assumed that infected individuals in the I, and A classes are treated with ARVs
at a rate 7, (with efficacy er). Treated individuals progress to AIDS at a reduced
rate af, where 0 < # < 1 is a modification parameter accounting for the slow progres-
sion of treated individuals (in comparison to untreated individuals). Further, natural
mortality occurs in all classes at a rate u, and AIDS individuals suffer an additional

disease-induced mortality at a rate . The model is given by the following system of
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differential equations (see Figure 3.1 for a flowchart diagram}

as
dt

I
_C.i..._.t.f. = AS e rLLIu — Odlru - ETTuI‘LU
dt (3.1)

=TI — A5 - uS,

dA

’r = al, — (,u + (S)A — ¢rTaA + Balp,
df

d_t;,r - ETTqu + ETTAA — ,U,IT - HCEIT.

5A KA

Figure 3.1: Flow diagram model (3.1)

It follows from the model (3.1) that setting 74 = 0 and 7, # 0 corresponds to the
HIV-only strategy. Further, while the AIDS-only Strategy involves setting 7, = 0 and
7a 7 0, the Universal Strategy entails having 7, # 0 and 74 # 0. That is, while
Strategy (i) targets only individuals in the I, class and Strategy (ii) targets those
displaying clinical symptoms of AIDS only, the Universal Strategy (iii) entails treating
infected individuals regardless of their stage of HIV infection.
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Since the model (3.1) monitors human populations, it is assumed that all the state
variables and parameters of the model are non-negative. Consider the biologically-

feasible region
D={(81,AIr) R, S+ T, + A+ Ir <H/u}.

The following steps are followed to establish the positive invariance (i.e., solutions in
D remain in D for all time) and attractivity property of D. The rate of change of the

total population, obtained by adding all the equations in model {3.1), is given by

dN
R —_ -
= =TT~ uN =54, (3.2)

Since the right hand side of (3.2) is bounded by IHI—uN, a standard comparison theorem
can be used to show that N(z) < N{0}e™#¢ + %(1 — e™*). In particular, N(t) < % if
N < g Thus, D is positively-invariant {that is, all solutions with initial conditions
in D remain in D for ¢ = 0). Further, whenever N > I1/u, then dN/dt < 0. Thus,
it follows that every solution of the equations in model (3.1) with initial conditions
in R tends toward D as ¢ — oco. Therefore, the w-limit sets of the system (3.1) are
contained in D. Hence, it is sufficient to consider the dynamics of the flow generated
by (3.1) in D. In this region, the model can be considered as been epidemiologically

and mathematically well-posed [47).
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3.3 Treatment-free model

Before analyzing the full model (3.1), it is instructive to gain insights into the dynamics

of the treatment-free version of the model (7, = 17y = ex = Ir = 0 in {3.1)) given by

ds
L,
de - (u+ )iy, (3.3)
di
dA
“&*t— —OtIu—(,LL—f-é)A
. I
where, now, N = S+, +Aand A = M For this model, it can be shown

N
that the region

Dy ={(S L, A) €RL: S+ L+ A<T/u}

is positively-invariant and attracting. Thus, the dynamics of the treatment-free model

will be considered in ;.

3.3.1 Local stability of DFE

The model {3.3) has a DFE, obtained by setting the right hand sides of the equations

in the model to zero, given by

£ = (8", I, A%) = (— 0, 0) (3.4)
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The linear stability of £ can be established using the next generation operator method
on the system {3.3). Using the notation in [87], the matrices F and V, for the new

infection terms and the remaining transfer terms respectively, are, respectively, given

by
85t pys
v - o+ o 0
F=|" " | andv=
0 0 —a pu+4d
Thus,
Ro = p(FV~1) = 5 fia (3.5)

Cuta (pra)(p+o)

The following results follows from Theorem 2 of [87].

Lemma 3.1. The DFE of the model (3.3), given by (3.4), is LAS if Ro < 1 and

unstable if Rg > 1.

The quantity Ry is the basic reproduction number. 1t measures the average number
of new infections generated by a single infected individual in a completely susceptible
population.

Biologically speaking, Lemma (3.1) implies that HIV can be eliminated from the
community (when R < 1) if the initial sizes of the sub-populations of the model are in
the basin of attraction of &. To ensure that elimination of the virus is independent of
the initial sizes of the sub-populations, it is necessary to show that the DFE is globally

asymptotically stable. This is established below,
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3.3.2 Global stability of DFE

Theorem 3.1. The DFE of the model (3.3), given by (3.4), is GAS whenever Ry < 1.

Proof. Consider the following Lyapunov function:
F o= B{{{p + &) + nall, +n{p + a)A},
with Lyapunov derivative,

F o= B{{(u+6) +no)l, +nlu+a)A}
= B{l(g+8) +nai[AS — (p+ a) L] + nlp + a)od, — (p+ 8)A}
= Bllu+6) +na]AS — {u+ a)(u -+ 6)(1, + nA)

= Bl{u+ )+ naAS — (u + a)(u + AN

BS[p+6) +na] 1}
N(p+a)(p+46)

Blp + 6) + B
{p+a)(p+ 0}

= (p+a)(u+6)0I,+nA) Ry —1) <0 for Ry < 1.

= (u+a)(p+ 5)/\N{

< {u+a)(u+8)8(L +’-'7A)[ - 1] since 5 < NV

Since all the model parameters are nonnegative, it follows that F < 0 for Ry < 1 with
F =0 only if (Ix = A = 0). Hence, F is a Lyapunov function on D;. Therefore, by the
LaSalle’s Invariance Principle [38], every solution to the equations in the model (3.3),

with initial conditions in Dy, approaches & as t — oo. 4

The above result has important public health implications. It guarantees disease
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elimination (in finite time) provided Ry can be made less than unity.

3.3.3 Existence and local stability of EEP

Existence

To find conditions for the existence of an equilibrium for which the disease is endemic
in the population (ie., at least one of I** and A* is non-zero), denoted by & =

(S*, I'r, A™), the equations in {3.3) are solved in terms of the force of infection at

Rk T}

steady-state given by

o _ BUL +0A™)
= e (3.6)

Setting the right hand sides of the model to zero {and noting that A = A**) gives

_ _ a1

AT (e a){p A (g )+ X))+ o)

ok * % #k

(3.7)

Using (3.7) in the expression for A** in (3.6) shows that the nonzero (endemic) equilibria

of the model satisfy

biAY — ¢ =0, (3.8)

where by = o+ p + 9, and ¢; = (u+ a){ -+ 0)(Ra — 1). It is clear that b; > 0, and
¢1 > 0 for Ry > 1. Thus, the linear system (3.8) has a unique positive solution, given

by A** = ¢; /by, whenever Ry > 1. The components of the endemic equilibrium, &, are
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then determined by substituting A™ = ¢;/b; into (3.7). Noting that Ry < 1 implies
that ¢; < 0. Thus, for Ry < 1, the force of infection at steady-state (A*) is negative.
Hence the model has no positive equilibria in this case. These results are summarized

below,

Lemma 3.2. The treatment-free model (3.3) has a unique positive endemic equilibrium

whenever Ry > 1 and no positive endemic equilibrium whenever Ry < 1.

Local stability

Lemma (3.2) above shows the existence of a unique positive endemic equilibrium if

Ro > 1. The local stability property of this endemic equilibrium is now explored.
Theorem 3.2. The unique endemic eguilibrium of the model (3.3) is LAS if Ry > 1.

Proaf.

The proof is based on converting the problem (of the stability of an equilibrium point)
to that of analyzing the stability of a fixed point. Substituting (3.7) into (3.6), and
noting that

_.n AT N QAT
pr A (uka)(p+ A7) () (p+ A (p+a)

ok

gives a fixed point problem of the form A\** = f(A\**), where

ey /\**Ci
f()‘ )—— 1“{“/\**02?
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with

o]

8 Ban 1
T ite  raern T o
It follows that
df : 4y
e O = —
dA+ F ) (14 A(C5)?

Evaluating f (A} at 3™ = gi, and simplifying, gives
1

s e 1
S =5
’\“Z% 0
from which it is clear that {f'()\**) }
AH:%

It should be mentioned that this result can also be obtained using standard lin-

earization around the EEP; but this method (linearization) is more involved {requires

more algebraic manipulations).

3.3.4 Global stability of EEP for § = 0.

The global stability analysis of the equilibria of disease transmission models {(especially
the endemic ones) is generally difficult to carry out. Consequently, the Lterature on
global analysis of equilibria of disease transmission models (especially the endemic
ones) is scant. Here, a global stability result of the unique endemic equilibrium of {3.3)

is given for a special case {§ = 0). It is based on the approach in {12]. First of all,
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the model {3.3) with § = 0 is normalized by defining the following new variables and

parameters:

Using these change of variables and parameters, model (3.3} becomes:

dx
di
dYy
d
dY,
dt

=1-AX -~ X,

=AX —aYy, - ¥, (3.9)

where,

s BYi+nYa)

3 S with Ni(8) = X(8) + Yi(t) + Va(t),

For the system (3.9), the DFE is & = (1,0,0) and it can be shown that the corre-

B(1 -+ né)

sponding basic reproduction number is Ry = . Let & = (X*, Yy, Y;) denote

an EEP of system (3.9). The equation for the rate of change of the total population,

Nl: is:
L o1-N. (3.10)

Here, it is easy to show that N, € [0,1], since at the DFE, Ny = X = 1 and the

natural expectation is that the spread of the disease in the population would reduce
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Ny (N; < 1). Therefore, the dynamics of the normalized model (3.9) will be studied

in the region

Q={X, ", Vo) eR} X +V +¥; <1}

Like the region Dy, the region ) is also positively-invariant. Further, it can be shown

that the plane

O = (XYY e X+Yi+Y, =1}

is positively-invariant. We claim the following.

Lemma 3.3. The model (3.9) has no periodic orbits, homoclinic orbits or polygons in

Q.

Proof. The Bursenberg - van den Driessche technique (Theorem (2.6) of Chapter 2)
will be used. Let 1,5, f3 denote the right hand sides of the equations in model (3.9),

respectively. The relation X + ¥ + Y2 = 1 is used to obtain f;(Y;, ¥2), fx(X, ¥2) and
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f(X, Y1), i=2,3k=1,3,01=1,2, as follows:

fX,Y) = 1-B8{Vi+nl-X-V}}X-X,
((X,Ys) = 1-53(1~X Y2 +9¥3)X - X,
LX) = ﬁ{Y1+ﬂ(1—X—ﬁ’1)}X—(1+@)3ﬁ,
((Yi,Y) = Bi+n¥e)(l-Ys—Y) - 1+ &)Y,
£(X, ) = @(l—X—Ys)— Yy,

B, YY) = G- Y

Let g =g, + g, + g3, where

- —fa(Y1,Ya) fo(Y:, Ya) _ [ Yy) o —A(X )
gl(}/luyz) - |:O7 }/—1}/2 ) }/—1}/?2 :|1 gQ(X!.Y:?) - |: X}/:q ?0! X}/Q 3
_ =R M) A(X V)
g3('XU Y].) — l: X}/l 1 XYl ,O} .

Clearly, g - f = 0 in the interior of §2*, where f = (f;,fs, f3). Using the normal vector

n=(1,1,1) to £, it can be shown that {in 2\{0})

By  Yi+aX 1)<0.

Curlg-(1,1,1)=—(?1§+X2—YQg+ﬁ

Hence, by Lemma 3.1 in {12}, the desired result is obtained. O

We claim the following.
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Theorem 3.3. The endemic equilibrium of the normalized model (3.9) is GAS in

QN Qq, where Q= {{X,Y1,¥2) € Q: Y1 =Ys =0}, whenever Ro > 1.

Proof. Since (* is positively-invariant, the w—limit set of each solution of the nor-
malized model (3.9} is contained in ©2*. Moreover, it is easy to see that the DFE,
& = (1,0,0) of (3.9), attracts O (its stable manifold). Since from Lemma (3.2), a
unique endemic equilibrium exists which is LAS (by Theorem (3.2)} whenever Ry > 1
(Ro)} > 1) ie., the DFE is unstable. By Lemma (3.3) above, there are no periodic
solutions in 2*. It follows that every solution in a neighborhood of & in Q* will leave
that neighborhood asymptotically, because there are no homoclinic orbits, containing

& in O°. Since Q" is positively-invariant, & is GAS in * \ Q. |

It is worth noting that establishing the proof for the case § # 0 is not feasible using
this approach. The reason is that, for § # 0, the dynamics of the model need to be
considered in another region, 0™, given by Q™ = {{X, ¥}, (1+8)¥2) € O X +Yi+Y; =
1}. The problem is that Q* is not positively-invariant (since, for instance, solutions

on the boundary of £2** do not necessarily remain there or enter 2**).
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3.4 Analysis of the treatment model

3.4.1 Local stability of DFE

Consider, now, the full treatment model (3.1), with DFE given by
T * * * * ]'_'[
Ey 1 (SM I A ) = E,O,U,D . {3.11)

Here, the matrices F and V are given by

b B3ma A5ar K 0 0
F=10 ¢ 0 V=1 —a K, -fa
0 0 0 —€rTy —erTa K
with,
Ky = put+aterr, Ko=p+8+erra, Ki=p-+0a,

with N = § + I, + A+ Ir. The treatmeni reproduction number, denoted by Ry =

p{FV™1), is given by

_ B B4
Ry = + Ky

_ B2+ Zy)
K, '

7 (3.12)
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with

Zy = nao(Kz+epr,) + nr(oerta + Kaerm,),

Zy = pKy+Oalu+6).

Thus, the following result is established.
Lemma 3.4. The DFE of the model (3.1) is LAS if Ry < 1 and unstable if Ry > 1.

The global stability of the DFE is established as follows.

3.4.2 Global stability of DFE

Theorem 3.4. The DFE of the model (3.1) is GAS if Ry < 1.

Proof. Consider the Lyapunov function,

F = fily+ foA + fslr,
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where, fi = Z, + Zo, fo = Ki(naKs+nrerta), fs = Ki(naab + nrKs). Thus,

hli+ A+ falr

FiAS = (g + ot erm} L] + falady — (40 + er7a) A + fady)

+ falerudy + epTaA — (g + 0a) 7]

J1(AS — KoL) + folaly — KoA 4 Oaly) + f3(epruly + ertad — Kaly)

SIAS — (1 KL~ face = faerru )Ty — (foKo — frerma)A + (faba — f3K3) Iy

J1AS — Ky (I K3 — eptaad)l, — K\(K2 Ky — ertaaf)naA — K (K3 Ks — epta08)nr Iy,

FAS = K (KoK — Oaerra) (I + naA + nrlr)

f1A8 — KK K5 — QaeTTA)B—\é-Vm
AN

)
Ki(Ky K5 — GGGTTA)‘F [Kl{Kszl—ﬁgCMETTA)N - 1]

(Zy + Z5)3S _ 1:'
NK 7,

B(Z, + Zy)
K. 2,

I(lzg(fu -+ Y?AA + ?]TIT) ,:
K1 Zy(1y + naA+ nply) [ - 1] for S< N

KlZg(Iu + 144+ WTIT)(RT - 1) <0 for Ry < 1.

The proof is completed using the same argument as in the proof of Theorem (3.1). [
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3.4.3 Existence and local stability of EEP
Existence

Let T = (8™, I;*, A™, I#*) be an endemic equilibrium of the full model (3.1). Further,

Elk TR )

let

B + naA™ + nrdy)

A™ = N . (3.13)
Solving the equations in the model (3.1) at steady state, in terms of A™, gives
g I o A H{aepmy + Koerr,)
= P i ,LL’ T - I{I(/\** + ,U')Z2 (3 14)
oA v ATIa(Ks + Oerr,)
KO+ ) K ()2
Using (3.14) in (3.13), and simplifying, gives
By 1 + ona(Ks + ferty) | ror(certs + Koermy)
}\** -~ I(I Kle K]_ZQ (3 15)
14 E n Q’)\**(K‘q + QETTU) )\**(CEETTA -+ I{QETTU) '
K K7, K12

‘The positive endemic equilibrium of the model (3.1) can be obtained by solving for A**
in (3.15) and substituting the result into (3.14). Clearly, A* = 0 is a fixed point of

{3.15), which corresponds to the DFE, £F. For A** # 0, (3.15) can be simplified to:

BaA™ — cg = 0, (3.16)
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where,

1 alKs + bermy,)  (aerta + Kaepm,)
— | d =Ry -1
2 73 + K\ 7, -+ Rz and ¢y T

Since all the mode! parameters are assumed to be non-negative, it follows that b, > 0
and ¢y > 0 for Ry > 1. Thus, the linear equation (3.16) has a unique positive solution,

given by ™ = g—z, whenever Ry > 1. Since Ry < 1 implies ¢z < 0, it follows that
2

for Ry < 1, M < 0. Hence, there is no positive solution when Ry < 1. This result is

summarized below.,
Lemma 3.5. The model {3.1) has a unique endemic equilibrium whenever Ry > 1.

The local asymptotic stability of this equilibrium is investigated below.

Local stability

Theorem 3.5. The unique endemic equilibrium of the treatment model (3.1) is LAS

whenever Ry > 1.

Proof. The proof is similar to that given in Section 3.3.3, but now after substituting

(3.14) into (3.13), a fixed point problem of the form A** = f(A**) is obtained, where

. WY )‘**012
J(A )um,
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with,

012 — ﬁ + ﬁanA(KS -+ QETTu) n Tﬁ??T(aETTA + KQETTu) |

K, K. 2, K125
1 a(Ky + Oepr,)  (aerta + Koerty,)
Y R A T A
and
Cha

T = ey

Evaluating f (A\**) at A\** = z_g shows that
2

7O -2 so that

At E2 RT
bz

{rom

H < 1 whenever Ry > 1.

In summary, it is clear that the treatment model (3.1) has the same dynamical features
as the treatment-free model (3.3) (both models have a globally-asymptotically stable
DFE whenever the associated reproduction number is less than unity; and a unique
locally-asymptotically stable endemic equilibrium whenever the reproduction number
exceeds unity). Thus, adding treatment to the model (3.3) does not alter its dynamical

features.
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3.5 Numerical simulations and discussions

The treatment-free model (3.3) is a special case of model {3.1), and both models have
been shown to exhibit similar qualitative dynamics. Consequently, numerical simula-
tions will be carried out on the treatment model (3.1) using the parameter values in
Table (3.2) (unless otherwise stated). Using this set of parameters, Ry = 2.3561 (so
that, by Theorem (3.5), the unique endemic equilibrium £ is LAS). Figure 3.2 depicts
tirme series plots of various variables of the model, using numerous initial conditions,
illustrating the rlocal stability property of the endemic equilibrium for this case.

The model is now simulated to assess the impact of the three different treatment
strategies enumerated in section 3.2. Using a relatively low treatment rate of 7, =
74 = 0.5, Figure 3.3A shows that more new cases of HIV infection could be averted if
the Universal Strategy is implemented. In this case, the HIV-only Strategy records the
least number of cases averted. Figure 3.3B shows an increase in number of new cases
averted with increasing treatment efficacy. Further simulations show that the Universal
Strategy is most effective in reducing disease prevalence, followed by the AIDS-only,
and then the HIV-only Strategy (Figure 3.3C). These simulations shows that for this
value of 7, the Universal Strategy is always the best strategy. Low treatment rate can
be thought of the case for which the supply of ARVs is limited.

| The impact of the various treatment strategies on mortality is depicted in Figure
3.4. Here, the HIV-only Strategy records the most number of fatalities within a 10
year time. Figure 3.4A shows that the Universal Strategy prevents the most cumula-

tive mortality, foliowed by the AIDS-only Strategy, and then the HIV-only Strategy.
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Figures 3.4B-D depict mortaliﬁy as a function of time with different treatment rates.
The results obtained are consistent with those depicted in Figure 3.5A; except for the
lower mortality in the Universal and AIDS-only Strategies when the treatment rate is
increased.

Figure 3.5 depict the total number of infectives as a function of time, for different
treatment rates. It is evident from this figure that the Universal Strategy gives the
least number of ¢{otal infectives. The highest number of infectives is recorded when no
infected individual is treated. Here, too, a much lower number of total infectives is
recorded when the freatment rate is increased.

In conclusion, these simulations show that the Universal Strategy is the best in
terms of preventing new cases and mortality regardless of whether a low (7, = 74 = 0.5)
or high (7, = 74 = 5) treatment rate is used. An extended version of the treatment
model (3.1}, incorporating the differential infectivity and staged-progression aspects of

HIV disease, is studied in {77].

3.6 Summary
In summary, the analyses and simulations in this chapter show the following:

(i) Both the treatment-free and the treatment model have a globally-stable DFE when-
ever their associated reproduction number is less than unity; each of the models
has a unique endemic equilibrium whenever its reproduction number exceeds

unity;
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(i) The Universal Strategy gives the highest reduction in the total number of new

cases and mortality;
(iii) The HIV-only Strategy results in more deaths than any of the other strategies:

(iv) In terms of reduction of new cases, the strategies are listed in descending order

of significance as follows: Universal, AIDS-only and HIV-only strategies;

(v) For low treatment rates (associated with limited supply of ARVs), a targeted
AIDS-only Strategy is quite competitive (but not as good as the Universal Strat-

egy) in reducing new cases and HIV-related mortality.

Overall, the theoretical analyses in this chapter show that highest reductions in
HIV burden can be achieved using the Universal Strategy rather than any of the other
(two targeted) strategies. Further, the use of ARVs can lead to significant reductions

of HIV burden, or even disease elimination, in the community.
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Table 3.1: Description of variables and parameters for model (3.1}

Variable/Parameter Description

S(t) susceptible individuals

1,(t) newly- and asymptomatically-infected individuals

A(t) individuals at AIDS stage of infection

Ir(t) treated infected individuals

II recruitment rate into the sexually-active population

7 natural death rate

] disease-induced mortality rate for individuals in AIDS stage
NA relative risk of infectiousness of AIDS individuals

nr relative risk of infectiousness of treated individuals

Ty treatment rate for individuals in the [, class

TA treatment rate for individuals in AIDS stage of infection

€r efficacy of ARVs

s progression rate to AIDS of individuals in the I, class

6 modification factor for progression to AIDS by treated individuals
3 contact rate

o6



Table 3.2: Parameter values for model (3.1)

Parameters nominal values

II 1000

L 1/32

) 0.09

14 1.5

N 0.008

Tu variable
TA variable
€7 0.5

5% 0.8

@ 0.1

fé) 0.4
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Iigure 3.2: Time series plots for the treatment model (3.1) using different initial con-
ditions. (A} 1,(¢); (B) L.(t) + A{t); (C) Ip(t); (D) A(L).
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Figure 3.3: (A) Cumulative new cases averted using model (3.1) for different treatment
strategies; (B) Cumulative new cases averted using model (3.1) with different treatment
efficacies (er = 01.1,0.3,0.5,0.7,0.9) and 7; = 0.5; (C) Prevalence as a function of time
for model {3.1) with different treatment strategies.
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Figure 3.4: (A) Cumulative mortality averted for model (3.1) with different treatment
strategies using 7; = 0.5; (B) Mortality as a function of time for model (3.1) with
different treatment strategies using 7; = 0.5; (C&D) Mortality as a function of time for
model (3.1) with different treatment strategies using 7; = 5.
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Chapter 4

HIV Treatment Model with Wild

and Resistant Strains

4.1 Introduction

One of the main epidemiological problems associated with the use of ARVs in a pop-
ulation is the emergence and transmission of ARV-resistant strains in the population.
These new mutants arise due to numerous factors ranging from incomplete compliance
to the specified ARV regimen to biological factors as well as to the primary infection of
susceptible individuals with the resistant strain. In this chapter, the treatment model
discussed in Chapter 3 is extended to account for two HIV strains, a wild {susceptible
to ARV treatment} and an ARV-resistant strain. In this model, it is assumed that no
treatment for the resistant strain exists. The objective is to quantify the epidemiolog-

ical impact of the drug resistant strain, as well as to gain insights into the dynamics
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of the two strains. Although models for multiple HIV subtypes or strains have been
presented in the literature (see, for instance, [9, 10, 75]), this chapter complements and
extends these studies by, first of all, ircluding the transmission of HIV by AIDS indi-
viduals (which is not explicitly included in these models) and carrying cut a detailed

qualitative analysis of the resulting model.

4.2 Model formulation and basic properties

‘The total population, NV, is subdivided into susceptible (S{¢}), newly- and asymp-
tomatically -infected individuals with the wild strain (/,,(¢)}, newly- and asymptomat-
ically -infected individuals with resistant strain ([.(¢)), AIDS individual infected with
the wild (A4,,(t)}, and resistant {A,(¢)) strain and treated individuals {(/»(¢)), so that
N(t) = S(t) + L, (t) + L{t) + A (t) + A-(t) + ().

The susceptible population is increased by the recruitment of individuals {assumed
susceptible) into the population at a rate II. These individuals acquire infection, fol-
lowing contact with infected individuals (in the I, I, A,, A, and Ir classes) at a rate
Aw and M., where

ﬁ(fw + T}'wAw + WTIT) and A, = ﬁ(IT + nrAr)l

Aw = N N

The parameter [ is the effective contact rate, while n,, > 1 is the relative risk of infec-

tiousness of individuals with AIDS (with wild strain) in comparison to individuals in

the I, class. The modification parameters . > 1 is similarly defined. Treated individ-
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uals are assumed to be less infectious, where 0 < 9 < 1 is a modification parameter.

- This model assumes that the wild and resistant strains are equally transmissible (albeit

some studies, e.g. [75], suggest that the resistant strain is less transmissible than the

wild strain).

Individuals in the I, and I, classes progress to AIDS at a rate o, and o, respec-

tively. Individuals infected with the wild strain (I, or A,) are treated at a rate 7.

Treated individuals progress to AIDS at a slower rate 6o, where 0 < 6 < 1 is a mod-

ification parameter. It is assumed that treated individuals become resistant to ARV

treatment at a rate 7,,. Further, natural mortality occurs in all classes, at a rate pu;

and AIDS individuals suffer a disease-induced death at rates &, and & for the wild

strain-infected and the resistant strain-infected individuals, respectively. The model is

given by (a flow diagram is given in Figure 4.1)

ds
dt
dl,,
dt
dl,
dt
dA,
dt
dA,
dt
dly
dt

=11 = A8 — A8 — 1S,

= XS — (1 + 0 + Tw) s

= M5 — (u + o) Lr + yurdr,

= ouply — (T + p + 0y ) Ay -+ O I,

= JTIT . (.u' + (ST)A?‘:

= Tuwdw + TwAw — (b + Yeor + B0 ) Ir.
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Figure 4.1: Flow diagram for model {4.1)

As in model (3.1), it is assumed that all the state variables and parameters of the

model (4.1} are non-negative. Consider the biologically-feasible region

D= {(S7IUJ7[TJAW1AT}IT) eRiS+Iw+IT+Aw+AT+IT SH/#’}

Using the method described in Section 3.2.1, it can be shown that D is positively-
invariant and attracting, so that it is sufficient to consider the dynamics of the model

there.
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4.3 Treatment-free model

Consider the treatment-free version of the model (4.1) (obtained by setting 7, = ny =

Yur =8 = Ip =01in (4.1)) given by

ds
E~H—Aw5‘ﬁ)\,~8—,u5,
dl,
- = AwS = (b + ow)lu,
dl,
= NS~ {u+a)l,, (4.2)
dt
dA,
_EE“ = oyl — (.U -+ Jw)Aw:
dA,
E e G_rfr - (.U' + 51")141'7
w 'LUA’[U T i T .
with, A, = W%l and A, = w For the model {4.2), it can be

shown that the following region is positively-invariant and attracting
Dy = {(5 Ly, I, Ap, A) €RY 1 S+ Iy + I + Ay + Ar < TT/p),
so that it is sufficient to consider the dynamics of the model (4.2) in ;.

4.3.1 Local stability of DFE

The model (4.2) has a DFE given by

E = (8%, I, I7, A, A7) = (11/1, 0,0, 0,0). (4.3)

wr T
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For this model,

ﬁgm 0 Zm3 - —Pl 0 0 o_
o 0 & o &£ e 0 A 0 0 |

0 0 0 0 —5, 0 P 0

0 0 0 0 0 -0 0 P

where,
P=pt+oyand Po=p+0,, Pa=p+dy,and Py =pu+6,.
It follows that the basic reproduction number, denoted by Rg = p{FV 1), is given by
Ro = maz{R:, Ru},

with,

/G(PLI +77rar) and Rw - ﬁ(PS + nwaw)-

Re= =" PiBy

Using Theorem 2 in [87], the following result is established.

Lemma 4.1. The DFE of the model (4.2}, given by (4.3), is LAS if Ry < 1 and

unstable if Rg > 1.

It is worth stating that R, is the reproduction number of the resistant strain, while

R, is the reproduction number of the wild strain.
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4.3.2 Global stability of DFE

Theorem 4.1. The DFE of the model (4.2), given by {4.3), is GAS whenever Ry < 1.

Proof. Consider the following Lyapunov function:
F= (PS -+ nwgw)fw + PinyAs + (P:l + nrar)Ir + P Ay,
with Lyapunov derivative,

F = (P + o)y + PingAy + (P + o)l + P A,
= (B +nuow)(AwS — Pily) + Piu(owl, — PsAw) + (Py+ o) (S = Poly)
+Panje(oedr — PyAr)
= (B4 muow)ruS ~ PLP(Ly + twAu) + (P + 09,0008 — B Pyl + rAr)

= (Pg, 4 T}‘wO'w)}\wS — PR3N, + (P4 + WTJT))\,-S — BN,

(Py + 1,0)S (Py +n,0.)8
BB, N 1 + BANX, —P2P4N 1
6(}33 + Uwo'w)

PPy

= PB(Ly + 7Au) Ry — 1) + PR(L + 0. A ) (R, — 1) < 0 for Ry < 1.

= PPN, [

ﬁ(P-’f + nrgr)

< PIPS(Iw +7?wAw)!: PP
244

- 1] + PPy + T}TAT)[ - 1] for §< N

The proof is completed using similar arguments as in the proof of Theorem (3.1).
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4.3.3 Existence and local stability of boundary equilibria

The non-trivial equilibria of the model (4.2), where at least one of the infected variables
is non-zero, cannot be cleanly expressed in closed form. The approach in [51] will be
used to explore the possibility of the existence and stability of non-trivial equilibria.

The possible equilibria of the maodel (by inspection) are:
(i) Wiid strain-only boundary equilibrium, &, = (S*, 12,0, A2, 0); (no resistant strain)

(if) Resistant strain-only boundary equilibrium, £, = (5*,0, I},0, A*); (no wild strain)

b b

(iii) Co-existence equilibria, £y, = (S, I**, I**, A%, A%); (both strains exist).

st s de

Solving the model at steady state gives

S** _ H ko O-”“A:*H *k A:TH
CATHAT RS T RROG N ) Y BB TN )
(4.4)
/\**H **H
I** _— T *F )\w

P+ X2 4u) Y P A )

I** o *% ok TA**

Substituting the expressions in (4.4) into A} = - * A

gives

,BH/\;* ,..},_ 5 TheTw
A:U*‘I‘)\:*"'ﬂ P1 P1P3

}\T: — él()\** A**) —_

w I ** ?
ﬁHA:* (i ﬁro-r ) (45)
e
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where,

II 1 o7 1 G
NY™ = — = e e ) o D T .
w8 (-77)]

‘The equilibria of the model can be obtained by finding the fixed points of the equation

P1{AT A7) A
r=0¢(z)= , where z =
B2 (AL AT) AT

Existence and stability of wild strain-only boundary equilibrium (&,)

Theorem 4.2. The model (4.2) has a unique positive wild strain-only boundary equi-

librium, £, which is LAS whenever R, <1 < R,

Proof. 1t is clear from (4.5) that ¢o(A%,0) = 0. Thus, a fixed point of ¢y (A, A2*) is
obtained by solving the equation ¢, (A7, 0) = A%, It follows that A*" is the root of the

equation

Au(auAy +en) =0, (4.6)

where,

an = Py 4oy and ¢; = P P31 —R,).
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It is clear that A" = 0 and A = —c;; /a5, are the roots of the equation (4.6}, and

it is worth noting here that A% = 0 corresponds to the DFE. It is easy to see that

apy > 0 and c;3 > 0 (c¢y; < 0} whenever Ry, < 1 (R, > 1). Hence, A% > 0 whenever
e11 <0 (R, > 1). For &, to exist, it is necessary that the resistant strain does not exist
(i.e., Ry < 1). Thus, a unique wild strain-only boundary equilibrium exists whenever
R, <1< R,

The local stability property of &, is now shown. The Jacobian of @ is given by

oA, AT) 89 (A A

w

ON aN

3¢g()\*’“ )‘**) 8¢2()\** A**)

w7 WY M

oy QA

Evaluating .J at (A2, 0) gives

1 9 (A0, A%
R oN ogroy

0 RY

wr

where,

Rb _ P]Pg(P4+7]rCFT}
wr P4P2(P3+7]waw)'

For stability, we require RLW <1 {ie, Ry >1)and RE_ <1 (ie., R, < Ry); note that

R, < 1 in this case. Combining all these shows that the boundary equilibrium &, is
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LAS provided R, < 1 < Ry, O

Existence and stability of resistant strain-only boundary equilibrium (&)

We ciaim the following result.

Theorem 4.3. The model (4.2) has o unique resistant strain-only boundary equilib-

rium, £., which is LAS whenever Ry < 1 < R...

Proof. Here, too, it is easy to see that ¢, (0, A¥*) = 0. Thus, a fixed point of go(A5*, A**)
is obtained by solving the equation ¢2(0, AJ*) = AM*, from which it follows that AM* is

the root of the equation

)\:* (agz)\:* -+ ng) =0, (47)

where,

aoz = Py 4 o, and ¢y = P2P4(i — R,-)

It is clear that Ar* = 0 (corresponding to the DFE) and AT* = —cag/ag, are roots of
the equation (4.7). It is easy to see that ap > 0, while cos > 0 (22 < 0) whenever
R, < 1 {R, > 1). Hence, A}* > 0 whenever ¢p» < 0 (R, > 1). Here, since there is
no wild strain, R,, < 1. Thus, a unique resistant strain-only equilibrium, &,, exists

whenever R, <1 < R,.
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Evaluating J at (0, A}*) gives

1
N 0
J(0, A =
Od1( AL, M) 1

OX" iy R

For local stability of &, we require RLT <1 (R, >1)and - <1 (Ry < R,). Thus,

wr

E.is LAS provided R, < 1 < R,. O

4.3.4 Existence and local stability of co-existence equilibria

First of all, the expressions in (4.5) can be re-written as

AN = Bl + nuAy) — A Ry
v N* Tl AL+ ALY
(4.8)
A** _ B(I:* + T?TA::*) — A:*RT'
T N Tl ATL+ ALy
where,
1 a 1 a
L= — 2w Lo = — + -,
R TR MM TR YRR,
It follows from (4.8) that
ALy + A Ly = Ry — 1,
(4.9)

)\*w*Ll + /\:*LQ =R, 1.
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Since the left hand sides of the equations in (4.9) are always positive, it is necessary
that R, > 1 and R, > 1. If Ry, # R,, then system (4.9) is inconsistent; and there is
no positive co-existence equilibria in this case. Hence, for the two equations in {4.9) to
be consistent, it is necessary that R,, = R, > 1. It is worth mentioning that, in this
case, a continuum {(infinitely many) of endemic equilibria will arise {this phenomenon
was also observed in a study of TB dynamics [18]). That is, setting R, = R, = R; > 1

implies that

AL+ AL, =R, — 1, (4.10)
Ri—1 Ri—1 ) )
so that 0 < A} < ,and 0 < A < —= . This result is summarized below.

Ll LQ
Theorem 4.4. The model (4.2) has a continuum (family) of posilive co-existence en-

demic equilibria, £ (n € Zy ), whenever all of the following hold

(a) Ry =R, >1,

R, ~1
b) O < A .
() < T< L2 ?
Wk Rw_l
() O< A < P
R —1— MLy

(d) Ay = =t

and no co-existence endemic equilibria otherwise.

2
Theorem 4.5. Let R? = i gﬂ 4T1, (n e Z.), with
Od1 | Oy O¢1 Oy O¢1 Oy
T = d T = — ‘ .
° (a/\;; T g N T B Ay T e
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Then, £}, is LAS whenever [RL_| < 1, for eachn € Z.

Proof. Evaluating the Jacobian of @ at each (AJF, A*) in the regions (b) to (d), gives

W

85’:31()\** )\**) 5¢1(/\:)*,1\:*)

w T
O logaey O g
JA AT = )
Fa( Ay, A7) Bga (A, ATY)
N7 pwas O o
with eigenvalues given by the roots of the equation
d 7] d¢; 0 ddy 0
X - X(af:* N a,\ﬂ) + (af*l* afi - af*l* ai@ 0
w T AR A) w C T w AL AR)

It is easy to show that the dominant eigenvalue of J(AX*, A**) is R” . Thus, the family

w T

of co-existence endemic equilibrium, £7,, is LAS whenever [R" | < 1 foreach n. [

wr?

It is worth noting that for the case R, = R, = 1, the solution of system (4.9) is
the trivial solution (0,0} {corresponding to the DFE). Finally, we offer the following

conjectures (competitive exclusion):

Conjecture 4.1. The model {4.2) has o unigue and LAS positive resistant strain-only

boundary equilibrium, £,., whenever Ry, <R, and R, > 1.

Conjecture 4.2. The model (4.2) has a unique and LAS positive wild strain-only

boundary equilibrium, &,, whenever R, < Ry, and Ry > 1.
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4.4 Analysis of the treatment model

4.4.1 Local stability of DFE

Consider, now, the full model (4.1). Its DFE is

Eg= (S, I, Ir AL, As 1) = (TT/p,0,0,0,0,0). (4.11)

Further, the next generation matrices are given hy:

-fvs: 0w g @71%8‘“ —Pn 0 0 0 0 h

0 4 o G g 0 P2 0 0 —y
F=1lo0 0 0 0 0 | V=lwo, 0 P53 0 —bo,|:

0 0 0 0 0 0 -0, 0 Py O

0 0 0 { 0 —Tw O -7, 0 Py

where,

Ph=p+oy+7y, Po=pto, Pa=p+0,+7,, Pu=u+0, Pr=p+ v +0o,.

It follows that the treatment reproduction number, denoted by R = p(FV 1), is

Ry =maz{R;, R},
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with,

6(1314 -+ 771"0-1-)
P12P14

8 { %%(Pls + GTw} + WTTw(Pl:S + Jw) }
dRE = i1
M = Pus{i+ Yur) + 000 (11 + 0)

-3

The folowing result holds by Theorem 2 of [87].

Lemma 4.2. The DFE of the model (4.1), given by (4.11), is LAS if R} < 1 and

unstable if R§ > 1.

Further, we claim the following:

4.4.2 Global stability of DFE

Theorem 4.6. The DFE of the model (4.1), given by (4.11), is GAS whenever RY < 1.

Proof. The proof is based on using a comparison theorem. Notice, first of all, that the
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equations for the infected components in (4.1) can be written in terms of

)6 0 ﬁnw O 5772‘

dl,(t)

e L(t) L (t)
08 0 pn O

dféit} 1(t) L

7 g 00 0 0 O
d;‘];,;(i} ={(F-V) Aw(t) - (1 — —-) Au(t)

dAL(2)

o At At
00 0 0 o

df;t(t) () ()

where the matrices ' and V' are as defined above. Since S < N (for all £ > 0} in D, it

foliows that
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dt Ll
dfcf) L)
dA;(” SF-V)| 4. |- (4.12)
i A.()
220 -

Using the fact that the eigenvalues of the matrix F — V' all have negative real parts
(see local stability result in Lemma (4.2), where p(FV™!) < 1 if RY < 1, which
is equivalent to /' — V' having eigenvalues with negative real parts when R} < 1),
it follows that the linearized differential inequality system {4.12} is stable whenever
Ry < 1. Consequently, (1,(t), [.(£), Aw(t), A:{8), Ir(t)) — (0,0,0,0,0} as t — o,
It follows by comparison theorem (see, for instance, [56], p. 31 and [83], Theorem
B.1; Appendix B) that {I,{t), [.(t), Au{1}, A, (1), Ir(t)) — (0,0,0,0,0). Substituting
Ipn = I, = Ay = A, = I+ = 0 in the first equation of (4.1) gives S{(t) — S* as £ — oo.
Thus, (S(t), L,{t}, I.(t), Au(t), A-(8), Iz(t})) — {5%,0,0,0,0,0) as t — oo for R < 1,

so that £ is GAS if R < 1. O

79



4.4.3 Existence and local stability of boundary equilibria

The existence and stability of the equilibria associated with the model (4.1) is investi-

gated here. The possible equilibria of the model are:

(i) Resistant strain-only boundary equilibrium £ = (5*,0, I*, 0, A%, 0); (no wild strain);

Y hr

(ii) Low endemicity co-existence equilibrium, corresponding to I, = 0, 4, =0 in {4.1),

denoted by &L ., = (&%, I, I, A

TRy Froy w

Ar, I3 (both strains co-exist);

(iii) High endemicity co-existence equilibrium, denoted by £, = (S**, I, I'*, A%, A%, I3,

(both strains co-exist}).

It should be noted that the model (4.1) cannot have a wild strain-only boundary
equilibrium, except if fhm Iy =10.
[ —+ 00

As before, the model {4.1) is solved at steady state, in terms of

A = B M‘ﬁ‘f torly) A _ B ;*?TAT ) (4.13)

30



giving,

S** . 1 A** _ JWA;TH(PIS + BTw)
N F o © T POy TN ) [Pra( - Yar) + 00w+ 8u)]

I’F* __ )\TU*H ok (Jw -+ P13)T1.UA:<U*H

O Pu(Ay A ) T T P A+ i) [P+ ) + 000 (1 + 6,))

(4.14)

I = [}‘:*Pll{PIS(FL + 7w?‘) + Gcrw(,u + 6w)} + AI"{UT')\;)*TUJ(O-IU + PlS)}H

i (A 4 A ) [Pris(pe + var) + O (g + 84)] P11 Pro j
A UT[’\:*PH{PB(!L + 'er) + ng(iu’ + 510)} -+ 7wr)\;)*7'w(0'w + PIS)}H

(/\'L*u* 4 A:* + ,LL){P}:{(,U' + ’er) -+ QJM(M + 5w)]P11P12P14

Substituting the components of the equilibrium at steady state into the expressions in

(4.13), gives (noting that N** = S** + I** + I** + A% 4+ A* + I3*) a fixed-point problem

of the form

1AL AT) Ay
T = \If(m) = y with r = s
Yo AL, AT) A

where ¢ and 1), are defined as the right-hand side of the resulting two equations,

respectively.
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Existence and stability of resistant strain-only boundary equilibrium (£!)

Theorem 4.7. The model (4.1) has a unique and LAS resistant strain-only boundary

equilibrium, £}, whenever RY, < 1 < RE, and no boundary equilibrium otherwise.

Proof. The proof is as in Section 4.5. Here, 9,(0, \**) = 0 so that the fixed point of
Pal{Ay, Ar") is obtained by solving the equation 15(0, A2*) = A*. It follows that A\**

satisfies the equation

aaz Ay + bag = 0,

where,

azz = Pis -+ or and by = PPy (1 — Rf«)

Here, AJ* = —bs3/ass. Clearly, agg is positive, and whenever R: > 1, then bs3 < 0
(A7 > 0). Hence, a unique resistant strain-only equilibrium exists whenever RE > 1
{note that Rf, < 1 here). For the local stability of this equilibrium, the Jacobian of ¥,

given by

awl()\::;, A:*) a,(/)l ()\** A**)

w7

are ax

I (AT, A7) Bia( AL, A7)
axz axe

is evaluated at (0, A¥*). This gives
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1

RE 0
J(O,)\:*) = H
DN, ) 1

OAz o) T

where,

t

Rbb - Rr
wr N
Re

Further, for stability, we require zr < 1 (R% > 1) and = < 1 (R, < RY). Combining

all these shows that £f is LAS provided RY < 1 < RE. O

4.4.4 IExistence and local stability of co-existence equilibria
Existence and stability of the low endemicity co-existence equilibrium (&f,,)

1t is worth emphasizing here that, in the absence of transmission of the resistant strain
in the community (A. = 0), individuals infected with the wild strain will still develop
resistance, due to treatment (thereby moving into the ARV -resistant class, (7). Thus,
the [, and A, compartments will always be non-empty (even when A, = 0), except if
lim Iy = 0. In other words, lim I, # 0 and lim A, # 0 even if A\, = 0. Since the
i—o00 {00 L—00

equilibrium is obtained by setting A, = 0 (so that I, = A, = 0) in (4.1), it is termed the
low endemicity coexistence equilibrium (to distinguish it from the other co-existence

equilibrium for which A, was not set to zero). We claim the following.
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ST
Theorem 4.8. Let RY = Tho i;w o0 i

O O [ OY1 Oy Oy Oy
fo = (a/\;; o) o T Bn e T ey ) |y

In the absence of infection by resistant strain (A, = 0), the model {(4.1) has a unigue

and LAS low endemicity co-eristence equilibrium, denoted by &!

L1, whenever RE > 1

and [REH < 1.

Proof. Letting A7 = 0 in (4.14), accounting for the absence of transmission of the

resistant strain, gives

S** — H A** — O-wA*w*H(AL* + .'!‘L)hl('Pl5 + BTW)
/\Tu* -+ ,LL.‘ w PII[P]‘E(JLL + ’}’w'r') + gdw(” + 5w)]?
ok ok -1 *k
I;;* — Aw 11 ’ I;* - (/\w + !u) (Uw + P13)Tm/\w 11 7 (415)
Pl} (/\'L*u* -+ ﬂ) PII[PES(.U' + ’YwT) + Baw(,u, + 5?-!!)]
I** . HwaT‘AL*Tw(A*w* + Iu)_l(Jw -+ P13) A** _ HO’T’YW?")‘:U*TW(/\:U* + 'U,)_l(gw -+ P13)

Py + Yur) + oy (i + 6,)]Pra Pra’ T [(Prs(pt + Yur) + 00 {pn + 60) | P Pie Py

Substituting the expressions in (4.15) into the expression for A% in (4.13) shows that

the non-zero equilibria of the model satisfy

CL44)\ZT + 644 = O, (416)
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where,

tas = (P34 0u)[YarTw{Pra + 0:) + PiaPra(r + Pis)],

by = P11P12P14[P13(# + Yur )+ B0 (p + 8,)] (1 — R:u}

Here, now, A} = —byy/04e; and it is easy to see that ay is positive, while R > 1 is
required for by to be negative so that A, > 0. This proves the existence of the low
endemicity co-existence equilibrium. Its local stability is investigated by evaluating the

Jacobian J at (AX*,0), giving

O (A, A7) I (AL A7)

AL oy e P
J(A,0) = ,
O (ANyr, A*) Oa( Ny, A
A [ A e o

with eigenvalues satisiving

== O_
(Azr,0)

2., 671b1 + 67’52
V) )t

+ vy O Oty O
e \Brr BT T Aoy

It is easy to show that the dominant eigenvalue of J(A,0) is RE. Hence, the low

endemicity equilibrium is LAS whenever |R¥| < 1. (]

85



Existence and stability of the high endemicity co-existence equilibrium

(Eur2)

First of all, it should be noted from (4.13) that, at steady state,

By + ne Ay + nri3) A R
N#* T4+ X Hy + Xt Hy'

X
AL =

oo B AT TR AH

N T+ M Hy + A Hy'

where,

'erTw(Jw + P13),R':l Hy = _i_ 4 Tr
Pra(pe + Yur) + 00w + 04)) Pra’ P PPy’
Jw(Pls + 9’7'?_”) + Tw(gw -+ PIS) 1 FerTw(o'w + PIB)

(4.17)

+ =+
Thus, (4.17) is equivalent to

NUHL + ATHy = RE 1,

ACH
U —_ — 1
Y- =R,

T

AgHy + AT Hy —
so that,

(R, — RpA”

A** —
h H

PiulPia{p+ Yor) + 00u(p 4+ 0u)]  Piz [Pia(p+ yur) + 00, (1 + 6,,)1 P11 Pra

(4.18)

(4.19)

Since the left hand side of the first equation in (4.18) is positive, it follows that RE > 1

for consistency. Note also that for co-existence of the two strains, the forces of infection
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)\**

w

and A

1

at steady-state, must be nonzero. Hence, from (4.19), RY > R! (ie,

Aw > Ar} is required for the co-existence of the two strains. Thus, we have estahlished

the following result.

Theorem 4.9. The model (4.1) has o unique positive high endemicity co-existence

endemic eguilibrium, £ 5, whenever RE, > RE and RE, > 1, RE > 1,

Theorem 4.10. The unigue positive co-ezistence endemic equilibrium of the model

(4.1} ts LAS whenever |RE

wr

<1

Proof. Evaluating the Jacobian of ¥ at (AR, A**), gives

8@1 (/\** }\**)

w ! T

oy
TN =

-

O (A, AT)

oA

8 (A5 )

with eigenvalues given by the roots of the equation,

Oy

O
i 6/\:*)

X0 X(BA:U*

The dominant eigenvalue of J(AX¥, A3*) is given by

w e

(o Aze) o v
Oy, A7)
(g e) o e
(8% oy O awg) .
arany NOATONT N ONT M e

Rt = T+ /Th — 4Ty
wr 2 H
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where,

e
= (aA;* * aA:*>

and Tor = Oy Dby Oty Dy
TG A Oa aan

(ALAR) (AwAarm)

Thus, the co-existence equilibria is LAS whenever [R!, | < 1.
O
It is clear that the treatment model (4.1) exhibits some dynamical features which are
different from the treatment-free model (4.2). For example, while the treatment-free
model can have an infinite number (continuum) of coexistence equilibria when the
reproduction numbers of the wild and resistant strains are greater than unity, the
treatment model shows coexistence only when the reproduction number of the wild
strain is greater than unity and exceeds that of the resistant strain,
It is worth to emphasizing that whenever R, = R! = 1, then A\** = 0 and equation

(4.18} reduces to
ANFHy =0 = A" =0.

Hence, if both reproduction numbers are the same and equal to unity, then A** = 0
and A} = 0; corresponding to the DFE. Finally, the case when R: > RY > 1 results

dly
in A% < 0in (4.19). In this case, the equation for —; o (4.1) becomes

dl,
—= = ’_)\w - + 0w w) 4w,
7 S—{p+o,+ 1)l

A

“*(,LL Oy T+ Tw)Iwa
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so that tiim I, = 0. Thus, the system of equations in (4.1) becomes decoupled in A,
—50
and Iy, giving

Ay,
g&.{_ = -—(’Tw + }'_1. + éw)Aw + QJWIT)
(4.20)

dl-

d_;" = Ty Ay — (b + Yoo + 00) I

It easy to show that the system of linear differential equation (4.20) has a unique
equilibrium (A}, I7) = (0,0), so that eventually all the components of the wild strain
goes to 0 whenever R, < RL. Thus, Theorem {4.7) is not only valid for Rf, < 1 < RY,
it is also valid for R!, < RY. In summary, whilst the treatment-free model has a

continuum of co-existence endemic equilibria, the treatment-free model has a low and

high endemicity co-existence equilibria.

4.5 Numerical simulations and discussions

Treatment-free model: The treatment-free model (4.2) is simulated using the pa-
rameters in Table {4.2). With this set of parameters, and 8 = 0.05,0, = 1.9, the
reproduction numbers R, = 0.3003, R, = 0.7234, so that Ry = 0.7234 < 1. Thus, by
Theorem (4.1), the DFE is GAS. Figure 4.3C depicts simulations of this model, under
this scenario, with various initial conditions, confirming the global asymptotic stability
property of the DFE. Additional simulations, shown in Figures 4.3A,B,D,E, illustrate
the fact that, for (R; > R;) with R; > 1 {i,j = w,r} and (i # j), the strain with

the higher reproduction number always drives out the other (competitive exclusion).
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This is in line with Theorems (4.2) and {4.3) and Conjectures {4.1) and (4.2). It is
also shown that whenever the two reproduction numbers (R, and R,) are equal and
greater than unity, the two strains co-exist -vie a continuum of co-existing equilibria

(Figure 4.3F).

Treatment model: The {reatment model (4.1} is simulated using the parameters in
Table (4.2), unless otherwise stated. These simulations show that the wild strain dies
out whenever R!, < 1 (Figure 4.5A4) or RY, > R! > 1 (Figure 4.5C). In both of these
cases, the resistant strain dominates (wins the competition). For the case where R?,
exceeds RY, it is shown that both strains co-exist (Figures 4.5B, D). Here, it is worth
noting that the resistant strain has a higher steady-state prevalence.

Simulations for the case where R!, and R! are equal and greater than unity shows
the dominance of the resistant strain, while the wild strain dies out (Figure 4.7A).
When R{, and R are equal and less than unity, the two strains die out (Figure 4.7B).

This {latter) result also holds for R, = RL = 1.

4.6 Summary
In summary, the main findings in this chapter are as follows:

(i) Both the treatment-free and the treatment model have a globally-stable DFE when-
ever the maximum of the two reproduction numbers for each model is less than

unity. Thus, effective disease control, or elimination, is feasible using ARVs;
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(ii) For the treatment-free model, the strain with the higher reproduction number

always dominates, and the other strain goes extinct;

(iii) The treatment-free model can have a continuum of coexistence endemic equilibria
when the two reproduction numbers are equal and greater unity. This feature is

not present in the treatment model;

(iv) For the treatment model, competitive exclusion occurs only when R¢ > 1 and

i t,
R. >R,

(v) Unlike in the case of the treatment-free model, the treatment model exhibits a low

and high endemicity co-existence equilibrium under certain conditions.
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Table 4.1: Description of variables and parameters for model (4.1)

Parameters nominal values

S(t) susceptible individuals

L, (1) newly- and asymptomatically-infected individuals
infected with wild strain

I(t) newly- and asymptomatically-infected individuals
infected with resistant strain

Ay(t) AIDS individuals infected with wild strain

Ar(t) AIDS individuals infected with resistant strain

Ir(t) treated infected individuals
recruitment rate into the sexually-active population

7 natural death rate

O disease-induced mortality for individuals in AIDS stage
infected with wild strain

&, disease-induced mortality for individuals in AIDS stage
infected with resistant strain

The relative risk of infectiousness of AIDS individuals

' infected with wild strain

Tir relative risk of infectiousness of AIDS individuals
infected with resistant strain

nr relative risk of infectiousness of treated individuals

Ty progression rate to AIDS for individuals infected
with wild strain

Oy progression rate to AIDS for individuals infected
with resistant strain

T treatment rate for individuals infected with wild strain

Ywr rate of resistance development of treated individuals

g modification factor for progression to AIDS by
treated individuals

ol contact rate
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Table 4.2: Parameter values for model (4.1)

Variable/Parameter Value

I 1000
7 1/32
S 0.09
dy 0.08
The 1.5
N 1
nr 0.008
T 0.2
Ty 0.1
Ta 0.5
Yar 0.5
6 0.8

| 5 0.4
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Figure 4.2: Prevalence (total number of infected individuals divided by the total pop-
ulation) as a function of time for model {(4.2). (A) R, > Ry > 1 (0, = 0.5); (B)
R >Ry > 1 (0, =01); (C) R, <Ry <1 (0 =01,8=0.05); (D)R, <1 <R,
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Chapter 5

HIV Vaccine Model with
Differential Infectivity and

Staged-Progression (DISP)

5.1 Introduction

The models discussed so far in this thesis are based on the use of ARVs. [urther,
none of the models in these chapters incorporate the differential infectivity and staged-
progression properties of HIV disease. In this chapter, a HIV vaccine model which
accounts for the above properties will be designed and analyzed.

The key motivation for modelling HIV vaccine is the fact that whilst the use of
ARVs has resulted in significant decline in HIV burden in rich nations, IV prevalence

and AIDS-related mortality continue to rise in most parts of the developing world
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(largely due to the lack of widespread availability of ARVs in these nations). This,
together with the dangers associated with the e;rolution and transmission of ARV-
resistant strains, raises a major dilemma in the quest for effectively controlling HIV
globally. It is now believed by many that using a vaccine is necessary for combatting
HIV spread globally [19, 27]. Although a number of anti-HIV vaccines are undergoing
various phases of clinical trials, it is generally believed that any future HIV vaccine will
be imperfect. That is, it may have lower efficacy in protecting against infection and/or
result in a shorter duration of protection in successfully immunized people than most
traditional vaccines. In addition, by eliciting broad cellular immune responses, such
a vaccine may reduce viral RNA concentrations and reduce infectiousness in infected
vaccinated individuals. The vaccine may also offer some therapeutic benefits by altering
the clinical course of the disease (see [26] and references therein).

This chapter focusses on analyzing the potential impact of an imperfect HIV vac-
cine. The vaccine is assumed to have numerous characteristics, such as having effect
in some, but not all, people; reducing, but not fully eliminating, susceptibility in those
immunized; waning protective immunity with time; reducing the transmissibility of
virus and/or reducing the mean duration of infectiousness of breakthrough infections.
In this chapter, a HIV model, incorporating the above vaccine characteristics as well
as the aforementioned differential infectivity and staged-progression nature of HIV
disease will be designed. While the differential infectivity component accounts for
the variations in viral RNA amongst infected individuals (those with high viral] RNA

upon primary infection are more infectious and progress to AIDS faster than those
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with low viral RNA), the staged-progression component accounts for the fact that an
HIV-infected individual typically passes through several infection stages, being highly
infectious during the pre-antibody phase {primary infection stage), maintaining low
infectivity during the asymptomatic phase (secondary infection stage), and becoming
highly infectious as s/he progresses toward AIDS (AIDS stage) [29, 45, 49, 60, 66, 71].
These properties {differential infectivity and staged-progression) are essential aspects
of HIV transmission dynamics, and incorporating these in our model adds to its realism

(albeit significantly adds to the difficulty in the mathematical analysis).

5.2 Model formulation and basic properties

The total population, N, is subdivided into mutually-exclusive compartments namely
susceptible (S{t}}, vaccinated susceptible (V' (¢)), infected individuals in the differential
infectivity group % stage j (¥i,;{t)), for (4,7 = 1,2}, vaccinated infected individuals
in the differential infectivity group ¢ stage j (W, ;(¢)), for (4,7 = 1,2), HIV infected

individuals at the AIDS stage of infection (A{t)), so that

2

2
N=S+V+> 3" (Yi;+ Wiy

i=1 j=1

The susceptible population is increased by the recruitment of individuals (assumed sus-

ceptible) into the population at a rate A. These individuals acquire infection, following
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- contact with infected individuals in the Y, ;, Wi ; (i, 7 = 1, 2) classes, at a rate A, where

2 2
Y W,
A=D"3 (ﬁm’yg +Si,jﬁa,jTj)-
i=1 j=1

1t i1s assumed, for mathematical convenience, that AIDS individuals do not partake in
further HIV transmission. The parameter §3; ; is the effective contact rate of infected
individuals in subgroups (Y;; and W, ;), while s, ; is the relative risk of infectiousness
of vaccinated individuals. A fraction, p;, of the newly-infected unvaccinated suscep-
tible individuals move to the differential infectivity group I stage 1 (¥7,), while the
remaining fraction, p; = 1 — py, move to the differential infectivity group 2 stage 1
{¥2,1). Infected individuals in the unvaccinated differential infectivity group 1 stage 1
(¥1,1) progress to unvaccinated differential infectivity group 1 stage 2 (¥)2), at a rate
o1,1; while infected individuals in the unvaccinated differential infectivity group 2 stage
1 (Y3,1) progress to the unvaccinated differential infectivity group 2 stage 2 {¥52), at a
rate 09;. Infected individuals in differential infectivity groups 1 and 2 and stage 2 of
infection progress to the AID stage at a rate oy 2 and op9 with ;2 < 092 respectively.
1t is assumed that a fraction, p, of susceptible individuals are vaccinated. It is further
assumed that the vaccine induced protection acquired by vaceinated individuals wanes,
at a rate 7y (so that these vaccinated individuals move to the susceptible class at the rate
7). Since vaccinated individuals are not fully-protected against infection (owing to the
vaccine imperfection), it is assumed that vaccinated individuals acquire infection at a
rate that is ¢ times lower than that of unvaccinated susceptible individuals. A fraction,
71, of the newly-infected vaccinated individuals move to the vaccinated differential in-
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fectivity group 1 stage 1 (W) ), while the remaining fraction, 7y = 1 — 7y, move to the
vaccinated differential infectivity group 2 stage 1 (Wa;). Infected individuals in the
vaccinated differential infectivity group 1 stage 1 (Wi 1) progress to vaccinated differ-
ential infectivity group 1 stage 2 (W;2) at a rate 6; o, 1, while infected individuals in
the vaccinated differential infectivity group 2 stage 1 (Wa,1) progress to the vaccinated
differential infectivity group 2 stage 2 (Wa2) at a rate 5 109;. Infected individuals in
both final stages progress to the AIDS stage at a rate 61 20) 2 and fq 2049 respectively
(where 8;; < 1 (4,7 = 1,2}, account for the reduced vaccine-induced progression to
AIDS). Further, natural mortality occurs in all classes, at a rate u, and AIDS individ-
uals suffer a disease-induced death, at a rate a. In summary, the differential infectivity
and staged-progression (DISP) HIV vaccine model is given by [78] (see Figure 5.1 for

a flow diagram).
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ds
= (1 —p)A — puS — AS + AV,

dt
dv
=5 T PATHV AV =9V,
daY;
""Eg—;i'l“ =pAS — (p+01,1}Y1 1,
dY]
22 = o011 Y11 — (1 + o12)Y1 0,
it ' '
dY;
dfz;’l = paAS — {( + 021)Y3,,
aY5
d;,z = 09,Ys1 — {ft + 022) Y22,
dW,
““(# = mgAV — (p+ 0y101,1) Wiy,
d,
dtm = 01,1000 Wi — (p+ 01001 2)W) o,
dW.
d;'l = MagAV ~ (p 4 o109 ) Wa s,
dW-
d;‘z = 91021 Wa1 — (p + 622002)Ws o,
dA
T 01,2Y12 + 7a2Ya0 + 01201 2Wi 0 + 002099 Wa g — (@ + ) A
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Figure 5.1: Flow diagram for the DISP vaccination model (5.1).

infectivity group 7 stage j,

unvaccinated infected individuals in differential

Y

tial infectivity group i stage j.

Wi ;i vaccinated infected individuals in differen
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All the parameters of the model (5.1) are assumed to be non-negative. Using
the method described in Section 3.2.1, it can be shown that the following region is

positively-invariant and attracting

D = {(SV,Y11,Y12, Y1, Yoo, Wi, Wi, Way, Wan) € R

SHV+ Y1+ Yip+ Yo+ Yoo+ Wi+ Wig+ Way +Wap < A/u}.

5.3 Vaccination-free model

5.3.1 Local and global stability of DFE

We consider, first of all, the model (5.1} in the absence of vaccination. In this case,

p=y=V =W =W s=W;y; =W;,=0,so that the model (5.1) reduces to

dX
- A= AS
— A—puS )
dY, + Y
mc_ii,_l ‘,015')\—(n“ 01!1) 115
d)’l‘z

gt =011Y11 ~ (L + 012)Y) 9,
{5.2)

aY:
'E%’l' = paSA — (u + 021) Y2,
dYs
di'Q =021Y2,1 — (B + o22)Ye0,
dA
P G12Y12 + 022Y00 — (a0 + ) A,
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with,

ﬁi,jyé.j

The model has s DFE given by,

& = (S*’Ylflvylfmythyzfm A% = (A/p, 0,0,0,0,0).

Here, the next generation matrices are given by

B8 p1Bh St piPanSt pifa2S*

N= N* N~ N=

1] 0 0 0
F = * * * *
Pzﬁms Pzﬁl,‘zs .0252,15 PQﬁz,zS

N* N* N* N*

0 0 0 0

where,
Kp=p+o1, Ksz=p+o,,

The basic reproduction number, Ry, is given by

Ro = p(FV™)

K3y = p+ o9,

and N =8+ Y11+ Yo+ Yo+ Yoo+ A

_ p1 K34 K35(81,1 Kaz -+ 10011} + p2 Ko Ksa (G K35 + Bo002 1)

(5.3)
Ky 0 0 0
—o11 Kz 0 0
0 0 Ky O

0 ] a1 [(35

K35 = i+ osp.

(5.4)

KBQI{BS K34 K35

Thus, the following resuit is established.

Lemma 5.1. The DFE of the vaccinalion-free model (5.2), given by &, is LAS if
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Ry < 1 and unstable if Rg > 1.

Further, we claim the following result.

Theorem 5.1. The DFE of the vaccination-free model (5.2), given by &, is GAS if

RO'(].,

Proof. Consider the Lyapunov function given by,

611K33+)81 207,1 @12 521K35+ﬁ22021 520
F =L 2901y L B2y ' 2721y, 2y
Kg3 K33 et K3 L2 K34 Ky 21°F Kss 2
with Lyapunov derivative given by,
. Brifaa + raor ¢ B B2 1K35 + B2202, ¢ Baa
= ’ N € ==Y : i =V
d K333 11t Kz N (3435 21t Kag %
B11 K33 + Pr2o1,

Bz
= A— K3V £ Yoy — KanV,
I{ggKag, (plS 32 1’1) + 1{33 (lel L1 33 1,2);

62’11{2? _;{ﬁz’ggz’] (28X — K5y Yo 1) + 6,2’2 (02,1Y2,1 — K35Ya2),
34di35 35
— N [SleS-ﬁKss(ﬁl,les + ﬁ1,201,1) + P2K32K33(182,1K35 + ﬁ2,20’2,1) . 1:!
N K39 K33 K34 K35 ’
A [PleatK%(ﬁl,lea + Pra01,) + paKaaKas(Fo 1 K5 + Bo002,1) . 1]
Ko K33 KKy ’

= MNRp—1)<0 for S<N and Ry < 1.
where,

2 2
Ap = Z zgi,jyi,j.
i=1 j=1

The proof is completed using similar argument as in the proof of Theorem (3.1). [
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5.3.2 Existence and local stability of EEP

Setting the right hand side of (5.2} to zero and solving at steady state {i.e., when

Yiu # Vi # Yoo # Yoz #0) gives & = (§™, Y15, V5, Yy, Ye3), where

D yor o PIATA w__ TLamATA
po X T K (u4 A TP K Kag(u -+ A (5.5)
Y** _ ,02)\**1’\. Y** _ Jg,lpgA**A
BT Kag(p + a2 KasKaa(p + A+
Using (5.5) in {5.3), it follows that the endemic equilibria of {5.2) satisfy
AA(Bs AT 4+ ¢3) = 0, (5.6)

where,

by = paKaKsa(Kss + 021) + pr KsaKss(Kaz + 01,1 ), 03 = KgaKs3K30K35(1 — Ro).

Clearly, A* = 0 is one solution, which corresponds to the DFE. The other solution is

=3 (5.7)

It is easy to see that b3 > 0 and that for A > 0, it is necessary that ¢z < 0 (i.e., Ry > 1)
Thus, the model (5.2) has a unique positive endemic equilibrium whenever Ry > 1.

This result is summarized below.

Theorem 5.2. The vaccination-free model (5.2) has @ unigue positive endemic egqui-
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librium if and only if R > 1.
Further, the foliowing result can be established.

Theorem 5.3. The unique positive endemic equilibrium of the model (5.2} is LAS

whenever Rq > 1.

Proof. Let

6? _‘,'Y**

-y y A e (5.8)

=1 j=1

Substituting (5.5) into (5.8) and simplifying gives a fixed point problem of the form

A = f(A™), where

/\**03
)\** - e
FAT) 1+ 20y
with,
_ A Ba1o11 Bo.202 1
G = K (611+ Kaz ) Kz, (ﬁql K3 >,
M o1 a21
= @ —_— L 1 i S
and,

Cs

T = s
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Evaluating f'(A\**) at (5.7} shows that

‘ 1
AT = — so0 that
FO| =

{rom

H < 1 whenever Ry > 1.
A**

5.4 DISP model with wholly-vaccinated population

Consider model (5.1} in which every member of the population is vaccinated {obtained

by setting Y1: =Y =Ys, = Yoo =p=0in (5.1)}, given by

dVv

— = A = gAY —
p q BV,
dlv
dtlyl =mgA\V — (p+ 011011) Wi,
dW,
L o1t Wi — (i -+ 81201 2) W) 2,
df; (59)
d:’l = WagAV = (e 4 1091} Wa .
dW.
d;’g = 01021 Wa1 — (it + 022022)Wa s,
dA
il 01001 9Wi0 + 820095 Wan — (a0 + ) A,

2 2 2 2 W, .
with V=V 4+ Y W yand A=> ") 51300

i=1 j=1 i=1 j=1
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5.4.1 Local and global stability of DFE

The model (5.9) has a DFE given by
Eov = (VW0 W, W5, Wa o) = (A/p,0,0,0,0), (5.10)

with the associated next generation matrices,

-7T1QS1,151,1V* mqs1,2012V" migsa P V* qusz,zﬁz,QV*-
N* N* N+ N*
i 0 0 0
F = * * * !
m2g51,101 V" mags1 2610V Magse 1oV wogsanfeaV
N* N* N# N*
0 0 ] 0
s 0 0 0
—91,10'1,1 1{37 0 0
V= ,
0 0 Kz 0
0 0 *32,102,1 Ksg

where,

Kas = p+ 811011, Kgr=p+6012019, Kgg=p+01001, Kig=p+ 62902

Thus, the basic vaccination reproduction number, denoted by Rg, = p(FV 1), is

_ qimi Kas Kag (51,1011 Ky + 810681201101 1) + 7o Kss Kar(s2.1 82,1 Ko + 529322021021 )]

Row
o Kag K7 Kag K

(5.11)
The following result is established.

110



Lemma 5.2. The DFE of the model (5.9), given by &y, is LAS if Roy < 1, and

unstable if Koy > 1.
Further, we claim the following.
Theorem 5.4. The DFE of the model (5.9), given by &Ey,, 158 GAS if Rgy < 1.

Proof. Consider the Lyapunov function given by,

5 Kar 4+ s o160 s
F o 1,151,137 12812011 1'1Wz.1+ 1,201,2
I{36K37 K3'T
s K+ 3 o 16 5
+ 2,121 K39 2232,209,1 2’1W21+ 2,252,214/2,2’

Kgg I(3g ’ KSQ

Wie

with Lyapunov derivative given by,

- 51‘1/31,11'(37 + 51,2)61,201,191,1 i 51,251,2 :

F o= % 1,1+ —Wl,z
KagKyr Kay

59,1821 K39 + S22000091621 $9,0/32,2 W

2

K3gKsg Waa + Ky

S1aiaKsr + 51001201160, 5126,
= L 3}{36&; 2L ll(ﬁlqv\v . Ksswl,l} + 1;3: 2(0'1,191,1W1,1 - K37W1,2)
82,132,1 K3g + $2,082200 1851 83202,

K3g K39 {39

+

(quAV - I(ggﬂ@)l) +

(02,192,17/{/2,1 - ngwz,z)

Vglm KasKag (511001 K37 + 81,2012011011) + maK36Ky7(801601 K39 + 83,2/2,202102.1)] B

- N){ L
_ NK3K3:Kag Ky
Ay [Q[WlI{BBI(EQ(SI,IﬁI,IKaT + 81201201100 1) + T2 K36 K 37( 50,1821 Ko + 52,9022002162,1)] B
K36 K37 K33 K39

= )\Q(RDU — 1) <0, for V< N and Ry, < 1

111



where,

2 2
M=) bW
i=1 j=1
'The proof is completed using similar argument as in the proof of Theorem (3.1). O

5.4.2 Existence and local stability of EEP

Solving the system (5.9} at steady state, in terms of A*, gives

- A w _ TgATA we _ Bo100 mgA A
L + Q)\**.‘ 1,1 I(SG(JU: 1 q/\**)’ 22 K33K39(,u + QA**)7 (5 12)
W — O1101,1mgA™ A e TagATA
1,2 I{SGKBT(# + q)\**}> 2,1 1(38(.“ - q/\**)’
with,
2 2
V[/'i’!‘
=300 sl (5.13)

i=1 j=1

Substituting (5.12) into (5.13) shows that the non-zero equilibria of the model (5.9)

satisfy

by A™ + ¢y =0,
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with,

bn = [m@KssKse(61101,1 + Ksr) + maqKas Kar{62 1001 + K3p)],

i = K36K37K38K39(1 - Rov),
g0 that,
A= —— (5.14)

It is worth noting that A** = 0 corresponds to the DFE of the model (5.9). Further,
b;y > 0 and c;; < 0 whenever Rq, > 1. Thus, the model {5.9) has a unique positive

endemic equilibrium whenever Ry, > 1. Hence, we have the following result.
Theorem 5.5. The model (5.9) hos o unique endemic equilibrium whenever Ry, > 1.

Theorem 5.6. The unique positive endemic equilibrium of the model (5.9) s LAS

whenever Rgy > 1.

Proof. Substituting (5.12) into (5.13) gives the fixed point problem of the form A\** =

FA*), where

- /\**05
O =r5we
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with,

c = M (gusm . M) L T (52!132,1 . ,@M)

[(36 K37 K38 K39
g th1011 mag 1091
Co = ~__(1+ , :)+_(1+ ! )
6 1{35 K37 I{SS KSQ
and,
Cs

AR T

Evaluating f (A\*) at (5.14) shows that

/ 1
LA = that
I )/\w =, S0 tha

H < 1 whenever Ry, > 1.

{f’(A**)

PR

Thus, in summary, both the vaccination-free DISP mode! (5.2} and the wholly-vaccinated
DISP model (5.9) exhibit similar qualitative dynamics {where the DFE is GAS when-
ever the associated reproduction number is less than unity, and a unique and LAS

endemic equilibrium exists when the number exceeds unity).
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5.5 Analysis of the full DISP vaccination model

5.5.1 Existence and local stability of DFE

The model (5.1) has a disease-free equilibrium (DFE) given by

EG (S*a V*,}T:DY:Q, }/231:1:YQ":Qawlil)Wl*,Q’W‘;,l’iV;Z)

_ (hﬂl“PMA, pA ,0,0,0,0,0,0,0,0)-
plptyy Tty

Using the next generation method, we have that F = (01302) , where,

P151,1S* .0151,25'* ,0162,15'* P152,2S*

N* j\]’* j\r* N*
0 0 0 0
P2B118"  pafipST pafa1St pafaaS*
N N+ N N*
0 0 0 0
G . L
' gt Ve mgBaV* o mgB Vo migfaaV?
N+ N* N* N*
0 ] 0 0
Mogfh V™ magBiaV™ magBa V™ maqfaaV*
N* N+ N* N*
0 0 0 il
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.0131,1)61,15* .013],2}61,28* P152,152,1-9* P1$2,252,25'*

N* N#* N* N
0 0 0 0
9251.151,15* P231,2ﬁ1,23* P252,152,1S* ,0232,2)62,23*
N* N* N* N+
il 0 0 _ 0
(G = ,
: W1951,151,1V* qusl,m@l.zV* qus2,152,1V* 7T1q52.2ﬁ2,2V*
N* N* N= N~
0 : 0 0 0}
mogs1,1 PV mags1of12VY magsa 1 0a V' magsaafaaV
N* N* N* N*
{ 0 0 0
and,
K 0 0 0] 0 0 0 0
= 01,1 1{33 O 0 0 0 0 0
0 0 Ky #] 0 0 0 0
0 0 -9y Kss 0 0 0 4
V = ,
0 0 0 0 Fag 0 0 0
0 0 0 0 """6'1110'1’1 K37 0 0
0 0 0 0 0 0 Hag 0
0 0 0 0 0 0 —92‘10'2]1 ]{39
with,

Koo = p+y, Kn=pt+on, Kps=p+op Kuy=p+0oy1, Kiz=p+oa,

KSG = + 91’10'1,1, ](37 = U+ 91'20-1,2, 1{38 =+ 92,102,13 K39 = 92,20-23'
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The vaccination reproduction number, Ry, is given by

1 AS* Bv*
Rvac = + , 5.16
N* [K32K33K34K35 K36K37K38K39J (5.16)
with,
A = pi K Has{B1 Kas + B12011) + p2Ka K3 (82,1 Kas + Panca,),

B = gmaK35Ks7(801001 Kas + 832032,200182,1) + Kag K1 (811511 K37 + 51201201191 1)}

'The following result is established by Theorem 2 of [87].

Lemma 5.3. The DFE of the model (5.1), given by (5.15), is LAS if Ryee < 1 and

unstalle if Ryge > 1.

5.5.2 Existence of backward bifurcation

Setting the right-hand side of the equations in model (5.1) to zero and solving at steady

state, in terms of A, shows that the non-zero equilibria of the model (5.1) satisfy

as X + by + ¢y = 0, (5.17)
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where,

ay = qpKaK3qKas Kaz{maKar Kas(o1,200,2 + Kso) + 71 KagKao( Kz + 01,1611)}]
+q[ K37 K g5 oo K { p2 Kaa Kag (K35 + 0a1) + p1 Kaa Kgs ( Ky + o1,1) H1 = p)],

by = KsrKpeKsoK 3K [poKaa Kaa(Kiss + 021) + p1 Kaa Kas{ Kz + 01,)}(1 — p)
+ o K32 K33 K30 K35 K 3o Kgrpquu( Kag + 01201 2) + paullan Kas Kaq Ks Kas Koy (Kar + 01,161,1)
A0y K5 K33 Ko Kar Kas Kagpa (Kus + 02,1) + pyKaaKas Kgg Kay K3 Kagpi (K3 + 011
+ K30 Kar K3 K34 K35 Kan K39 K3 + o Kar Ko Kaa K5 Kyg K Kasq(1 — p) (1 — Ry)
—pKaquMKasKas[71'1K38K39(81,1ﬁ1,1K37 + 51,2)31,201,191,1)
+ 2 K36 K37 (52,102,139 + 82,2/%2,201,201 )]

e = Ko KagKaq K5 Kgg Kar Kz Kag(pt + 7) (1 — Rue).

1t is worth noting that the coefficient a4 is always positive, and ¢4 is positive (negative)
if Ryqe is less than (greater than) unity, respectively. Hence, the foilowing result is

established:

Theorem 5.7. The DISP model (5.1) has

(i) @ unique endemic equilibrium if cs < 0 < Ryge > 1;

(i1) @ unique endemic equilibrium if by < 0, and ¢y = 0 or b — daycy = 0;
(iii) two endemic equilibric if ¢y > 0, by < 0 and b ~ dayey > 0;

(iv) no endemic equilibrium otherwise.
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Case (iit) indicates the possibility of backward bifurcation in the model (5.1) when
Ryac < 1. To check for this, the discriminant b2 — dayey is set to zero and solved for

the critical value of Ryge, giving

I i
vae day Ko Kaa K3 K34 K35 Kas K3 K K(zg

from which it can be shown that backward bifurcation cccurs for values of R,.. such

that R¢

vac

< Ruae < 1. This is illustrated by simulating the model {5.1) with the
following set of parameter values: p; = 0.02,py = 0.98,0:1 = 0.72,012 = 0.01,09; =
15,099 = 15,511 = 0.55, 5 = 0.82,83; = 0.05, 000 = 0.02,811 = 1,812 = 1,89 =
1,802 = 1,m = 0.1,m = 09,6, = 05,0, = 0.5,00; = 05,055 = 0.5,q =
0.5, = 0.02,7 = 0.07,A = 1,p = 0.999 so that Rg = 0.5513222627 < 1, R0 =

0.7908416180 < 1, and RS

vac

= .6255824745 {i.e.,, RS, < Ryae < 1). Figure (5.24),
shows the DFE (corresponding to A = 0) and two endemic equilibria (corresponding to
A =0.2116141942 and A = 0.04267449704, respectively). This figure shows that one of
the endemic equilibria (A = 0.2116141942) is LAS, and the other (A = 0.04267449704)
is unstable {a saddle), and the DFE is LAS. This clearly shows the co-existence of
two stable equilibria when R, < 1, confirming that the model (5.1) undergoes the
phenomenon of backward bifurcation {see Figure (5.2B) for a time series plot). Thus,

the following result is established.

Theorem 5.8. The DISP model (5.1} undergoes backward bifurcation when Case (iii)
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of Theorem (5.7} holds and 0 < R¢

vac

< Ropue < 1.

It should be noted that for the case of a perfect vaccine (g = 0), the coefficients
as = 0 and by > 0. Thus, the quadratic in (5.17) becomes linear in A (with A = —eg/by).
In this case, the DISP vaccination model (5.1) has a unique endemic equilibrium if and
only if ¢ < 0 (i.e., Ryae > 1), ruling out backward bifurcation in this case.

In summary, unlike the vaccination-free DISP model (5.2) and the wholly-vaccinated
DISP model (5.9), the full DISP vaccination model (5.1) undergoes the phenomenon
of backward bifurcation. The reason for such backward bifurcation is the imperfect

nature of the HIV vaccine (g # 0).

5.6 DISP model with mass action incidence

The presence of backward bifurcation phenomenon in some models has been attributed
to many factors, such as the incomplete degree protection for vaccination models [1,
26, 54|, exogenous re-infection for TB models [16, 30], and behavioural responses in
core group models [40}. In this chapter, the role of the choice of incidence function in
bifurcation direction for models of HIV epidemiology that employ an imperfect vaccine
will be explored. Since the DISP vaccination model with standard incidence, given by
(5.1}, undergoes backward bifurcation, it is instructive to determine whether or not
its mass action equivalent {where the total population, N, is removed from the force

of infection) also exhibits such dynamics. To do so, we consider the model (5.1) with
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mass action incidence, given by,

ds

= ={l-p)A—pS—-AS 44V,

% =pA — uV — AV — 4V,

% = mAS = (- o1,1)Y11,

% = 011Y11 — (U +o12)Y1 0,

% = p2AS — (i + 001) Y,

diz/i’Q =091Yo1 — (1 + 022) Y22, 18
% =AYV — (g + 01101.1) W,
% = 011011 W11 — (u+ 81201 2) W 2,

dg?'l = magAV = (p 4 02,102,1)Way,

dp;?’g = 09102 Wa1 — (1 + ba0092)Was,

% =012Y12 + GaaYan + 01001 aWi g + 00029 Ws o — (e + ) A,

2 2 -
where, now, A = Z Z(ﬁw}’;j + 83,53 ;Wi ;). The model has the same DFE given by

i=1 j=1

(5.15). Here, the next generation matrices are F' = ( Hi| Hz) , where
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and,

Hy =

P16 5"
0
p25115"
0
H =

0

0

.0131,151,13*

0

[)231,1)61,15*

0

TG,V

0

7i"2q51,1ﬁ1,1V*

0

T V”

Tagfi V™

P28 ;B8 pifheS*
0 0 0
P22 XY e ST pafaaS®
] 0 0
mgBieV mighaV* mgBaaV*
0 0 0
Tagfh 2V magBaa V" maga 2V

0 0 0

P181,251,23* P182,152‘15* ;0132.252,23k

0 0 0

025120125 p25210015%  p2saafa ST

0 0

m1q812fh oV mgse 1oV migsaefa oV

0 {0

T2gs1,201,2V" m2gs2,1820 VY TagsaafaaV”

0 0
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Ky O 0 0 0 0 0 0
~oi1 Kz 0 0 0 0 0 0
0 0 Ky O 0 0 0 0
0 0 w09y Kiz O 0 0 0

g
0 0 0 0 K¢ O 0 0
0 0 0 0 -fou Ksg O 0
o 0 0 0 0 0  Ki 0
o 0 0 0 0 0 —fh1os1 Ks

The vaccination reproduction number of (5.18), denoted by R™, = p(FV 1), is

vac

AS* BV
—_— S Vv

vac - + ) 5.19
Ko KasKa4Kzs K3 K37 KK ( )

so that the following result is established

Lemma 5.4. The DFE of the mass action model (5.18), given by (5.15), is LAS if

Rﬂl

vac

< 1 and unstable if R > 1.

vac

5.6.1 Non-existence of endemic equilibria for R? <1

Theorem 5.9, The mass action model (5.18) has no endemic equilibrium when RS <

mTac

1, and has a unique endemic equilibrium otherwise.
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Proof. Solving the equations in model {5.18) in terms of A gives

Al(Kz + g = p) +pl . pA

g — : V= S bl
(1t + Agh + Ka1) gA + K
o _ PAAE +gA)(1 — p) + p) e FaAPA
b Kap(p+ M{gh+ Ka) M Kag(gh + Kan)'
o5 __ P22 (K + g\ (1 = p) + 77l - _ TagApA
Yol = ’ 2,1 = T N (5.20)
: Kay(p+ AYgh + Kay) ’ Kis(gh + Kay)
Yo o1p A [(Ka + ¢A) (1 = p) + vp)] e _ _ O11th1mgAPA
L K3 Kaa{p+ A)(gh + Kar) ’ L2 K37 Kae(gh + Ka)'
v o 02,12 A |( K1 + gAY (1 — p) + vl W — o128 ,2mag ApA
he Kas Kaa(p+ M) {gh + K3y) 22 KagKag{gh + Ka1)'
2 2
Substituting {5.20) into A = Z Z(ﬁ’?sjyi-j + 84,30, Wi ;), and simplifying, shows that
=l f=1

the non-zero equilibria of the mass action model (5.18) satisfy,
CL5)\2 + 55)\ + 5 = 0, (521)
where,

a5 = qR30K 33 K354 K 35K 3657 K38 K 39,
by = pgR KK K K Kar K3 K3y + Fi1AK3a K37 K35 K3 [% +(1~p)(1—-2gq)
+ g1 K50 I3 30 K35 K3 I a7 K3 K3 (1 — 'R.Tac),

Cg == ,UK311<32[{33I{341{35K361{37I{38I{39(1—RZ;C).

Clearly, as > 0; and whenever R} . < 1, then b5 > 0 and ¢5 > 0. Thus, by the Routh

Hurwitz criterion, the quadratic in (5.21) has no positive root. Hence, no endemic
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equilibrium exists when RI, < 1. The case R”, = 1 makes ¢5 = 0 and bs > 0. Thus,

vac vac

—bg
Qs

< 0.

the quadratic in {5.21) reduces to the linear equation asA+bs = 0, so that \ =

Therefore, no endemic equilibrium exists whenever R _ < 1. For R > 1, ¢5 < 0. In

vac vac

this case, the quadratic has two roots with opposite signs. Thus, the proof is completed.

g

The above result indicates the impossibility of hackward bifurcation in the mass action
model (5.18), since it has no endemic equilibria when R™_ < 1 (a necessary require-
ment for the existence of backward bifurcation). A global stability result for the DFE

of the mass action model (5.18) is given helow.,

5.6.2 Global stability of the DFE

The following feasible region:

D = {(S, VY1, Y12, Yo, Yoo, Wy, Wy o, Way, WQ,?) € Rf :

S+V+Yin+Yio+ Yo+ Yoo +Wig+Wig+Way +Wap <A/u}

is also positively-invariant. Further, it can be shown that D attracts solutions outside

D but in R, Next, we show that the set

Dy ={(5, V. Y11, Y10, Yo, Yoo, Wi, Wig, Woy, Wopo) € D5 < S,V < V') (5.22)
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is positively-invariant and then find a Lyapunov function for (5.18) on D,.

From the first equaftion in (5.18),

ﬁ
dt

A

(1 =pIA + 4V — s,

< (=P A+v(Ap—5-Y - W) —uS,

{(I=pp+7A
I

(A

—(+7)S = (p+7)(5" - 8).

Aly 4+ p(1 = p)] (2 —e™)
g+ )
5(0) < 8%, then S(t) < 8* for all ¢ > 0. Finally, from the second equation of (5.18),

Hence, S(t) < S{0)e ™ + Further, if N{(0) < A/p and

dv

7 SPA-(uA )V = () (V- V).
pA PA _( o )3 . . .
Hence, V{t) < —— + | V(0) — —— | e~ and, in particular, Vi) <V*ifV{0) <
it By

V*. Thus, the set D, is positively-invariant.

Theorem 5.10. The DFE, £", of the mass action model (5.18) is GAS if R < 1.

uvac

Proof. Consider the Lyapunov function

B11K33 + P01
K33 Ky
32,2

K A
Yoo+ @YmﬁL G2 K35 + Ba200,1

Kas K34 K35
s K + s 90110
+—w»-—Y2,2+ ( 1,151,1 37 1,2/61,001,1 1,1)
Ky, K36 Ksr
(52,1021 K39 + $9.202902 102 1) 82,2022
= Wos+
Kag K3 Kag

F o=

Y2,1

51 251 2
MLty 74
W1,1 + Kar A 1,2

WQ,Q:

126



50 that,

: 811 K33 + Pr2011 ¢ Bioy 5211(35+522021 .
f = Y + _""'Y : : : }/2
K K3 b 12 K34 K35 5
ﬁzz {s11511 K37 +81 ofha011611) | 51,2012 .
Vi + LELIPL 21200 | B2 g
K3a 2 KasKyy 1 Ky 7
(82,1001 K39 + 82,20 2091021) $3902,9 .
2% 272321%21) i | 4 222022,
- KKy 21 Kasg = °
AS BV
- + ~1
KapKas K3y Kas Ky Ksr K33 K
AS* BV*
< 4 — 1| since X < X*, V<V~
[I{32K33K34K35 Ko 5 K33 K59 J

= MR, -1} <0 for R,

vac vac

Since all the model parameters are assumed to be non-negative, it follows that F < 0

i R™

vac

< 1 with equality if and only if A = 0. It {ollows from the LaSalle’s Invariance
Principle [38], that A —+ 0 as t — oo. That is, the disease dies out. Since the DFE &J*
is GAS for the reduced system with A =0, it follows that the DFE is GAS on D,.

Since the above comparisens imply that D, is absorbing as well as positively-invariant,

the DFE is GAS for all non-negative initial conditions if R™_ < 0

If the initial conditions are not in D,, then although the Lyapunov function is
decreasing asymptotically, it is initially increasing and there is a disease outbreak.
This is not of interest in practice, since the population would be initially above the
assumed carrying capacity A/p.

The consequence of the above thecrem, wvis-a-vis backward bifurcation, is summa-

rized below.
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Theorem 5.11. The mass action model (5.18) does not undergo backward bifurcation.

Progf.
1t follows from Theorem (5.9), where no endemic equilibrium exist whenever Rp. <1,

and Theorem (5.10) where £§* is GAS whenever R™_ < 1. O

These results show that the substitution of standard incidence in the basic model
(5.18) with mass action incidence, whilst retaining everything else, removes its back-
ward bifurcation property. It is worth mentioning that this result also holds if con-
tinuous vaccination, where a fraction of the susceptible individuals is continuously

vaccinated, is added to the cohiort vaccination in model (5.1) {details given in {78]).

5.7 Measure of vaccine impact

Since a future HIV vaccine is expected to be imperfect, it is instructive to determine
whether or not its widespread use will always be beneficial (or not} to the community.

To investigate this, the vaccinated reproduction number, R,q., is re-written as

Rowe = Rao {1 _Pr (1 _ R“”H , (5.23)

where Rg, Ry, and Ky are as defined in Sections 5.3 and 5.4. Using the notation in

18, 65, 2 measure of the vaccine impact for the model (5.1) is defined as

. P_;U« _ T\)«Dv
¢ = 1(31( 7 ) (5.24)
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We claim the following result.

Theorem 5.12. For the DISP vaccine model (5.1), the use of mass vaccination will

have

(i) positive impact on the community if ¢ > 0 (Ryee < Ry),
(it) no impact if $ =0, (Ryee = Ro) and

(iii) negative impact if ¢ <0 (Ryae > Ro)-

Proof. Starting from (5.23) with (5.24), R = Ro(1 — ¢), it follows that

'RUCLC

=1~
Ko ¢

Thus, whenever Ry < Ry (positive impact), 1 — ¢ < 1 so that ¢ > 0. Similarly,
V\;henever Ruae > Ro (negative impact), 1 —¢ > 1so that ¢ < 0. F inally, if Ryge = Ry
{no impact), 1 — ¢ = 1, so that ¢ = 0. &

Figure 5.2 illustrates the cases where the vaccine has positive (Figure 5.24A) or

detrimental (Figure 5.2B) impact.
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Figure 5.2: {A) Prevalence as a function of time for (5.1} depicting positive impact of
the vaccine (Rg = 1.4236, Ry, == 0.7887, ¢ == 0.0990, Ryee = 1.287); (B) Prevalence as
a function of time for (5.1) depicting negative impact of the vaccine {g = 0.1, Ry =
1.4236, Rg, = 3.9436, ¢ = —0.3930, Ryoe = 1.9380). Other parameters as in Table (5.2)

5.8 Summary

This chapter shows the following:

(i) The phenomenon of backward bifurcation in HIV models with standard incidence
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car be removed by substituting such an incidence function with mass action
incidence. In other words, this study suggests that the presence or absence of
standard incidence may be crucial to the presence or ahsence of backward bifur-

cation in vaccination models;

{(ii) The reason for the backward bifurcation phenomenon in the vaccination model

(5.1} is the imperfect nature of the HIV vaccine;

(iii) The mass action model has a globally-stable DFE, and no endemic equilibrium,

whenever R™

vac

<1

(iii) A HIV vaccine will have positive impact if Ryqe < Rg, negative impact if Roqe >

Ro, and no impact if Ryq. = R,
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Table 5.1: Description of variables and parameters for the vaccination model (5.1)

Variables/ Description

Parameters

S(t) unvaccinated susceptible individuals

V(1) vaccinated susceptible individuals

Y1.(t) unvaccinated infected individuals with high viral load, stage 1
Y1.2() unvaccinated infected individuals with high viral load, stage 2
Ya(t) unvaccinated infected individuals with low viral load, stage 1
Yo.0(t) unvaccinated infected individuals with low viral load, stage 2
Wia(t) vaccinated infected individuals with high viral load, stage 1
W1 a(t) vaccinated infected individuals with high viral load, stage 2
Wy 1 (t) vaccinated infected individuals with low viral load, stage t
Waa(t) vaccinated infected individuals with low viral load, stage 2
Alt) individuals in AIDS stage of infection

A rate of recruitment into the population

B3, 019,821, Bap  transmission coeflicients (contact rates)

P fraction of individuals vaccinated

1—q vaceine efficacy

81,1, 81,2, 82,1, S22
811,019,821, 020
I

Y

01,1, 01,2,92,1,022
o

21, P2, T, T2

rate of infectiousness
modification parameters
natural death rate

waning rate of vaccine
progression rates
disease-induced mortality rate

probabilities
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Table 5.2: Parameter values for model {(5.1)

Parameters

nominal values

A
Bi1: P12, Fo1, Bag

p

51,1, 51,2, 82,1, 82,2
91,1, 91,2, 92,1, 92,2
H

¥

J1,1: 71,2, 02,1, 02,2

1, P2, 71, T2

100
2.55,1.82,1.85,0.82
0.999

0.5

0.07
0.72,0.01,15,15

0.02,0.08,0.1,0.9
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Figure 5.3: (A) Bifurcation diagram and (B) time series plot using different initial
conditions for the force of infection A for the model (5.1). Parameters: p; = 0.02, py =
0.98,0’1,1 = 0.72,0’1!2 - 0.01,0’2’1 = 15,0’2!2 = 15,,61‘1 = {).55,ﬁ1,2 = 0.82,62'1 =
0.05,62,2 = 002, S11 = 1, S12 = 1, 831 = 1,32:2 = 1,71'1 = 0.1,71’2 = 0.9,6’1,1 = 0.5,91]2 =
0.5,09) =0.5,030 =0.5,¢g = 0.5, u = 0.02,7 = 0.07,A = 1,p = 0.999.
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Chapter 6

Contributions of the Thesis and

Future Work

6.1 Contributions

This thesis contributes in three main categories. The first is in the design of appro-
priate mathematical models for the transmission dynamics and control of HIV/AIDS
in a community. The second is in the rigorous analyses of the resulting deterministic
systems of nonlinear differential equations. The third category entails the use of these
models (and analytical results) to evaluate the potential impact of some ant-HIV pub-
lic health control strategies (notably the use of ARVs and an imperfect HIV vaccine).

The main specilic contributions are itemized below:

(i) The design of realistic models for assessing the impact of ARVs and an imperfect

putative HIV vaccine to control the spread of HIV in a population;
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(ii) Establishing the global asymptotic stability property of the disease-free equilib-
rium of the treatment models, as well as those of their treatment-free equivalents.
This is based on using Lyapunov function theory, in conjunection with the LaSalle

Invariance Principle, and Comparison theorem;

(iii) Establishing the existence and local stability of the endemic (and/or boundary)
equilibria of the models. A global stability result of the endemic equilibrium of

the treatment model (3.1} is given for a special case;

(iv) Showing that, in the case of a single strain HIV model, the qualitative dynamics

of the treatment model and its treatment-free equivalent are similar;

(v) Establishing that the Universal {reatment strategy, using ARVs, is more beneficial
to the community (in terms of reducing new HIV cases and HIV-related mortality)
than the targeted use of ARVs (to people with or without clinical symptoms of
AIDS). This is followed by the AIDS-only and the HIV-only strategies. It is
further shown that when ARV supply is limited, prioritizing such scarce resources
to those with clinical symptoms of AIDS can effectively reduce disease burden

(albeit the universal strategy is still the best option);

(vi) Showing that a multi-strain HIV model can have a continuum of co-existence
endemic equilibria in the absence of treatment, and can have two co-existing

endernic equilibria in the presence of treatment;

(vii) Establishing the presence of vaccine-induced backward bifurcation in a vacci-
nation model which incorporates differential infectivity and staged-progression
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properties of HIV disease;

(viii) Determining a threshold quantity for assessing the impact of a future HIV vac-
cine. The vaccine will have positive (negative) impact if the threshold is positive
(negative).

[t is worth emphasizing that the relatively large nature and nonlinearity of some of

the models considered in this thesis makes their mathematical analyses daunting and

challenging. Thus, my contributions should be viewed in this light.

6.2 Future Work

Although this study shows that the prospects of the effective control of HIV using
ARVs and a putative HIV vaccine are bright, it can be extended in a number of areas,

such as:
(1) Model refinement: the models can be further refined to include, for instance,
(a) other anti-HIV intervention strategies such as condom use, male circumci-

sion, voluntary testing and screening, e.t.c.;

(b) low fitness (transmissibility) of the resistant strain as well as the use of

treatment against such strain;

(c) studying a comprehensive DISP model that incorporates the suggestions in

(a) and (b) above.
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(2) Mathematical analysis: An important future work is the design of technique(s)
for establishing the global asymptotic stability of the endemic and/or houndary
equilibria of relatively large disease transmission models, such as some of the ones

considered in this thesis.
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