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Abstract

The thesis is based on the design and analysis of suitable compartmental dererministic

models for the transmission dynanics and control of HIV/AIDS in a population. A

basic model, which incorporates the use of antiretroviral drugs for a single HIV sLrain,

is designed firsL of all. In addilion to incorporating treatment-¡elated benefits (such as

slow progression io AIDS and ¡educed transmissibility of treated individuals, in com-

parison to untreated pcople), the model includes the transmission of HIV by inclividuals

in ihe AIDS siage of infection (the lat¿er is often e¡roneously ignored in HIV transmis-

sion modelling). The model is used to evaluate various treatment stralegies, such as the

universal treatment of infected individuals (regardless of their stage of infection) and

the targeted treatment of Lhose rvith or without symptoms only. Using Lyapunov fun-

tion theory, in conjunction with the LaSalle Invariance Principle, the model is shown to

have a globally-asymptotically stable disease-frce equilibrium wbcnever its associated

reproduction number is less than unity, and has a unique locally-asymptotically stable

endemic equilibrium whenever this number exceeds unity. The unique endemic equilib_

rium is shown to be globally-asymptotically stable for a special case. It is further shown

that the treatment-free equivalent of the nodel exhibits similar qualitative dynamics.

Numerous simulations of the n.rodel were car¡ied out using a reasonable set of parame-

ter values. The simulations show that the universal administ¡ation of i;he antiretroviral

drugs is more beneficiaÌ, in terms of reducing the morbidity and HIV-relaied mortality,

than i[s targeted use to either people with or without clinical symptoms oI AIDS.



The treatment model is extended to include the clynamics of two HIV strains,

namely a wild strain, which is suscepcible to drug treatment, and a resisi,ant strain. The

gìobal stability of ihe disease-f¡ee equilibrium, and the local stabiliiy of the associatecl

boundary and co-existence equilibria are established. It is shown Lhat the treatment-

free equivalent of the model can have a continuum of co-existence equilibria, while

the treatment moclel can exhibit trvo co-existence endemic equilibria, under certain

conditions,

Finally, a. model for assessing the poientiar impact of an imperfect HIV vaccine,

which incorporates the differential infecrivity and staged-progression properties of Hlv

disease as well as v*¡ious vaccine characteristics, is clesigned ancl a,naiyzcd, In addiiion

to showing the presence of l¡ackward bifurcatio¡l in rhe model, the study shows that

the widespread use of an imperfect HIV vaccine can have detrimenial impact in tÌre

communihy if the use of the vaccine makes a certain epidemiological quantity, known

as " uacc,ine ,impacl" , negative.

Ove¡all, this study shows that the prospect of effective.ly controlli'g the spread of

HIV in a population using antiretroviral drugs and/or a vaccine is bright.
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Chapter 1

Int ro du ction f Background

1.1 Public health and socio-economic impact

Since its inception in the 1980s, the human immono-deficiency virus (HIV), the causative

agent of the acquired immune deficiency syndrome (AIDS), continues to pose ân un-

precedented threat to global health and human development, An estimated 34-46

million people are currently living with HIV/AIDS. \¡Iore tha,n 20 million people have

died from AlDS-reìated causes during the lasi 20 years, of which an estimated 3 mil-

Iion deaths occurred in 2003 alone [26]. AIDS is now tìre leading cause of death in

sub-Saharan Africa and the fou¡th leading cause of death globaìly. The pandemic has

cut life expectancy significan0ly in many countries in sub-Saharan Africa. For exam-

pìe, ìife expectancy in Botswana dec¡eased from 65 years in 1g8b-1gg0 to 40 years in

2000-2005 1921.

In addition to being a serious public health problem, HIV has far reaching conse-



quences to all social and economic sectors of society. It exacerbates poverty, reduces

educaiional opportunities, devastates the rvorkforce, creates large numbers of orphans,

and exerts tremendous pressure on already limited health and social services [86, g0].

For example, HIV/AIDS has cut annual growth rates in Africa by 2-470 per ycar [24].

The annual economic Ìoss (slower economic growth) as a result of HIV-related death

or disability in 50 countrics (US, Russia,5 in Asia, 8 in Lalin America, and 35 jn

sub-Saharan Africa) during 1992-2000 is estimated at $25 billion [31],

HIV is transmittecl in humans oiø a number ¡.¡f mechanisms including sexual, shar-

ing contaminated needles by HIV drug users, mother-to-child, blood transfusion eLc.

Numerous antiHIV preventive and therapeutic straLegies have been embarhed upon

ained at slowing the spread of the disease. These include condom use, voluntary HIV

tesling, educabion and counselling about safer sex practices, and the use of antircbrovi-

ral drugs (ARVs). AlthougÌr the widespread use of ARVs, especially the highly-active

antiretroviral therapy (HAART), in nations that can afiord tìrem has resulled in a sig-

nifìcant decline in HIV cases, these drugs are still not generally accessible in resource

poor nations. The \Vorld Health Organizations (WHO) reported that only 5% of peo-

ple who need ARVs in developing nations actually have access to these drugs in 2003

[91]. Further, the widespread use of ARVs is associated with a numbe¡ of side efiects,

and toxicity, in addition to the danger of lhe energence of ARV-resistanl st¡ains. TÌre

use of an effective HIV prophylactic vaccine is widely considered to be the ,,besi', way

to slow o¡ curiail the HIV/AIDS pandemic 119, 27]. However, it is unlikely that a

highly-cfiective vaccine will be available soon. Instead, the current expeciation is that



the most likely vaccine that will be de'eloped in the foreseeable future may have lower

effìcacy in protecting against infection and/or result in a shorter duration of protection

in successfully immunized people than most trâditional vaccines. ln other words, a

future HIV vaccine is expected to be imperfeci.

Oq'ing to the huge HlV-related public health and socio-economic burden globally,

coupled with the continuing spread of the disease (especially in resource-poor nations),

the need for the development and implementation of effective ancl affordable preventive

and therapeutic strategies for the wo¡ldwidc control of HIV infection has become ever

more pressing, The main aim of this thesis is to use mathematical modeling, based

on the current knowledge of HIV biology and epidemiology, to gain insighLs into the

transmission dynamics of HIV/AIDS in a population, and to evaluate control strategies.

Although there àrc numerous anti-HIV preventive and therapeutic strategies, such

as [ire ones enumerated above as rvell as other non-traditional methods (e.g., male

circumcision [4, 5, 7, 67,74,76, 79,85, 88] and the use of microbicides 16]), rhis study

will focus on evàluating the impact of using ARVs and a putative HIV vaccine. A

brief review oI some of t'he key biological and epidemiological features of HIV disease,

rele\.ant to lhe modelling component of this thesis, is provided below.

7.2 Replication cycle (staged-progression)

HIV infects and replicates primarily in CD4+ T cells. The virus enters the cells by

fusion aller bindilg to the CD4 glJ'coproiein in conjunction witìr a chenokine receptor.

The virus also infects other CD4-bearing cells, such as monocytes, tissue macrophages



and dendritic cells, that replicate HIV inefficiently relative to CD4+ T cells. HIV

replicaiion is essential for disease progression to AIDS. The typical course of HIV

infection proceeds zza the following three sequential stages:

1.2.I Primary stage

Upon introduciion into an individual, HIV infects both resting and activated CD4+ T

cells. However, it integrates and multiplies only in activated CD4+ T celìs. Initialìy,

such replicaiion proceeds virtually unopposed by the immune system. As a result,

thc rate of HIV replication is far greater than that of its clearance. This viral inllux

primes thc immune sysiem, eventually triggering the activacion of HIV-specilìc B cells

(aniibody producing cells) and ihe clonal expansion ancl dil{erentiaLion of CDg+ T

cells into anti-HIV cytotoxic T lymphocytes (crls). This rise in HIV concentration

(viremia) triggers the next round of activation of HlV-specific memory ancl residual

naive CD4+ T, CD8+ T and B cell populations, resulting in the appearance of anti-HIV

CTLs in the blood of the HlV-infected individual within 1 to 4 weeks, and anti-HiV

antibodies within 8 to 12 weeks of initial infection. Although this anti-HIV immune

response eflectively suppresses HIV virenia, b¡r reversing the rates of HIV replication

and its clea¡ance, it fails to completelv eliminate HIV.

1.2.2 Asymptomatic (chronic) stage

A typical HIV infection is characterized by the appearance of a vigorous anti_HIV

immune response usually capable of suppressing HIV replicarion leading to a d¡amatic



decline of HIV in circulation with a corresponding rise in the numbers of CD,l+ T

cells. The anii-HIV CTLs play a crucial role in thìs process. The immune response,

however, fails to block HIV replication completely. Such fa,ilure is characterized by

the persistence of lor'.' levels of viral replication and a gradual, ì:ut steady, clecline in

CD4+ T cells in the absence of clinicaì disease. This asvmptomatic phase may last for

many years or ovet a decade. In this phase, bhe rate of clearance of HIV is consistenily

greater than that of its replication.

1.2.3 AIDS stage

Although levels of HIV in circulation renain low during the asymptomatic phase, a

gradual but stead¡. flssll¡s in the numbe¡s of CD4+ T cells conbinues. Once bhe CD4+

T cell numbe¡s ¡each below a threshold, ihe HIV concentration in circulatíon begins

to rise rapidly (reaching levels > 106 virions/ml blood) and the patient exhibits a

precipitous loss of immuniLy to many other pathogens. This last phase of HIV disease

is referred to as AIDS, during which the pa.tient invariably acquires life-threatening

opportunistic infections that lead io death. A notable featu¡e of thts phase of disease

is the persistence of high concentraiions of HIV in circulation rvith minimal CD4+ T

cell counts, Further information on modelling the immuno-pathogenesis of HIV can be

found in .37,47,7I,72], and the references therein.

Figure 1.1 171] depicts a schematic description of these stages. The early peak iu

viral load corresponds to primary infection. This is followed by a long asymptomalic

period, during which the viral load changes slightly (lasting over 10 years on average).



Ultimately, the viral load increases and the symptoms of full-blown AIDS appear

!lI\: an¡il¡odies

"'.------ 
.-q-Ð-¡!- T ceug

\¡img

) . l1l'.-eek¡ Lp ro 10 -r,ears

Figure 1.1: Timc cou¡se of HIV infectron in a typrcal adult.

1.3 Differential infectivity

In addition to the staged-plogression property described in Section 1.2, another notable

feature of HIV disease is diflerential infectivity l4g]. Studies of HIV RNA in infected

individuals show that viraÌ levels vary widel¡' between individuals, rvith individuals

having higher viral loads during the chronic phase hending to der.elop AIDS more

rapidly (because RNA levels are co¡related \\'ith infectiousness l33l). The cliflerential

infectivity of HIV can ihen be defined as the variations in infectiousness, and the

increase in tbe a\.erage progression time f¡om infection io AIDS that goes along wìth

a decreased vìral load during the chronic phase of inlection 149].



L.4 Incidence functions

Disease incidence in a, conmunity is defined in terms of the number oI neu, infections

generated per unit time in that community. Incidence, in disease models, is generally

characterized by an incidence function (a function that describes the mixing pa[tern

within the community). various types of incidence funcLions have been used in disease

modelling (see, Ior example, [a7]), and the choice of such function can play an im-

portant role in the dynamics of the disease. Here, a general construction of incidence

function required for modelling is given. Let S(t), Y(t) ancl N(/) denote the number

of susceptible inclividuals, infected individuals and the total population size at time ú,

respectively. Suppose p(,lrt) is the eflective contact rahe (i.e., the average number of con-

tacts suffrcieni to [ransmit infection) per person per unit tinÌe. Then, p(N)y/l/ is the

average number of contacts with infectious individuals a susceptible individual makes

per unit time. Thus, the number of new cases coming frorn all susceptible individuals

(.9) is À.9, where I : P(N)Y/N is the lorce of infection, If B(¡/) : p, a constant, then

À,9 is refer¡ed to as a stanriard" inciden,ce functi,on. When p(l/) : B¡\¡ (that is, the

contact rate depends on the total population), ihen À.9 is called n¿ass action ,incid,ence

143, 46, 471. It is \¡¡orth staLing tlìât standard incidence moclels with constant total

population (iv(f)). such as the model in 154], are essentially mass action models. The

aforementioned two incidence fo¡mulations (standard and mass) àppeâr to be the most

rvidely used in the mathematical epidemiologv literature. Although some sludies have

suggested that lhe standa¡d incidence formulation is more realistic for human diseases

[2, 3], the choice of one over the other reall¡' dspsr¿r on t]re disease being modeled



and, in some câsesì the need for analytical tractability, Both standard incidence (see,

for example, [8,26,49.65]) and mass action incidence ([11, 36, b4,71,80]) have been

used to model HIV epidemiology and immuno-pathogenesis. Standard incidcnce is

used throughout this thesis, excepL in a single instance in Chapter b, rvhere a ner.v

mathematical fact (associated u'ith m¿ss action incidence) is illustratecl.

L.5 Reproduction numbers

Compartmental mathematical mocìeìs have been widely usecl to gain insights into the

spread and control of emerging and re-emerging hunan diseases, dating bach to the

pioneering rvork of Bernoulli (on modelling the dynamics of smallpox) in 1260 and the

lihes of Ross, Kermack and McKendrick and others (see 12, 3, 47] and the references

therein)- The dynamics of these models tend io generally be completely determined by

a threshold quantity, known as lhe bas,ic reprod,uction number (denoled by R¡), which

measures the average numbe¡ of nerv cases an index càse can gene¡ate in a completeÌy

susceptible popuìation 13,22,47). Typically, when R0 is less ihan unity, a srnall infìux

of infected inclividuals I'ill not generate large outbreaks, and the disease dics out in time

(in this case, the corresponding disease-free equilibrium (DFE) rs locally asymptoiically

stable (LAS)). On the other hand, the disease will persist if 7?0 exceeds unity, where

a stable endemic equilibrium point (EEP) exists. This phenomenon, where the DFÐ

and an EEP exchange their siabiìity àL Ro : 1, is known as fonLtard, b,ifurcation (or

transcritical bìfurcation). A schematic description is given in Figure 1.2.



1,0

Ro

Figure 1.2: Forward bifurcation diagram

This phenomenon was first noted by Kermack and \,Icl{endrick 153], and has been

observed in many clisease Lransmission models eve¡ since (see [14, 15, 16, 25, 44, 47 ,55)

and the references therein), In general, for models that exhibil forward bifurcation,

the requirement 7lo < 1 is necessary and sufficient for disease elimination (i.e., the

number oI infectives at steady state depends continuously on 7?¡). In the presence of

a control measure) such as the use of a vaccine in the community, the dynamics of the

model is governed by another threshold quantity, known as lhe effectiue reproduction,

number, denoted by R"¡¡. The threshold, 7?¿ll, represents the average number of

secondary cases a typical infected individual will generate in a population where a

fraction of ihe susceptible individuals are vaccinated. A number of studies have shown

that whilst R.¡¡ < I is necessary for disease eliminaLion, this requirement may not be

sufficient. This is owing to the phenomenon of backward, bifurcation, where a stable

endemic equilibrium co-exisls with a stable disease-free equilibrium for R"¡¡ < l.



This phenomenon has been observed in numerous disease transmission models such as

those for behavioural responses to perceived risks 140], multiple groups [14, 15, g0],

vaccination [1. 26, 54], and transmission of mycobacLeríum tubercu,Iosis with exogenous

re-infection [16, 30]. In a backward bifurcation. disease control is only feasible ilR"¡¡ is

reduced furlher to values below another sub-threshoìd less than unity. The phenomenon

of l¡ackward bifurcation lìas inportant public healih implicalion, since it renders the

classicaì requirement of reproduction number being less than unity to be insufficient (in

general) for disease elimination. A schematic description of the backward l¡ifurcation

phenomenon is given in Figure 1.3.
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Figure 1.3: (A) Backward bifu¡cation diagram showing coexistence of a stable DFE
and two branches of endemic equilibria (stable and unstable branch); (B) Time series
plot rviíh diÍIerent initial conditions showing the trvo stable equilibria separaied by an
unstable (saddle) equilibrium point.

1.6 Thesis outline

The thesis is organized as follows. Some of the basic mathematical preliminaries needed

to qualitatively ana,lyze the models in this lhesis are reviewed in Chapter 2. ln Chapter

3, a basic HIV treatment model, rvhich subdivides the total populalion into susceptible,

untreated newly- and asymptomatically-infected, AIDS, and treated individuals, is

11



formulated and analyzed. Chapter 4 addresses the issue of resistance development as

a result of using ARVs. In Chapter 5, a vaccination model, which incorporates the

staged-progression and differential infectivity aspects of HIV disease, is studled. The

main mathematical and epidemiological contributions of the thesis are summarized in

Chapter 6. Areas lor future work are also cnumerated.



Chapter 2

Mathematical Preliminaries

This chapter summalizes some of the key mathematical theories and me[hodologies

relevanl to the thesis.

2.1 Equilibria of linear and non-linear autonomous

systems

Consider the equation below

i- [(r.t:p\. ¡tUcR". /€Rr. and p€7cRp (2 1)

where U and V are open sets in IR.' and lRp, respectiveìy, and p is a parameter. The

overdot in (2.1) represents difierentiation with respect to time (*A). The equation (2.1)

is referred lo as a uector f,eld or an ord,inary d,zfferentiaL equatzon. Vector fields which

expliciily depend on time are called nan-autonontous, whlle vector fields which are

13



independent of time a¡e calLed autonomozs. This thesis consicle¡s onlv autonomous

systems,

Consider the following general autt:nomous system

¿:/(z), r€R" (2 2)

Definition 2.1. An equilzbrium solutton of (2.2) ts a por,nt r € lR szci¿ that f (r) : O.

2.2 Hartman-Grobman Theorem

Defrnition 2.2. LeL x - r be an equilibrium solutzon, of (2.2). TÌten r is called,

hyperbolic ,if none of the e,igenualues "Í D f @) hrL.ue zero reaL part. An equ.ilibriurn

point that ,is nol hyperbolic .is called" non-hyperbol,ic.

Let

¿:/(z), z€R",
. (2 3)

¡: s(s), v eRn,

be trvo C' (r > 1) vector Êelds on lR".

Definition 2.3. The d"yn,am,ics generated, bg the, uector f,eld,s f and, g of (2.3) are said

to be Locally Ck conjugate (k < r) i,f there erist a Ck d,i,ffeomorphism l-¿ which takes

lhe orbtts of the flow generated, by f, þ(t,x), to the orbits of the flou generated. by g,

tþ(t,y), preseruing ori,entati,on and parametrization by Lime lÌg).

1.4



Theorem 2.1. (Hartman and Grobman 189)) Consrd,er a C,(r > 7) uecLor .field

(2.4)

with doma,¿n of f to be a large open subset of R. Suppose also that (2.4) has a

equi,librzum soLutions which are hTlperbolic. Consider the assoc,iated linear uector f"eld,

€:Dr@)t, €€R' (2.5)

Then tLte fiou generated by (2.4) is C0 conjugate to the flou generated, by the lznearizerl

system, (2.5) i,n a nei,ghborltood of the equilibrzum poirtt r -, z.

A direct application of the Hartman-Grobuan Theorem is that o¡bit strucLu¡e near

equilibrium solution u'hich are hyperbolic is qualitatively the same as the orbit structure

given by the associated linearized dynamical svstem.

2.3 Stability theory

The following are sLandard deflnitions and theorems required t'o analyze the stability

of an equilibrium of an autonomous system.

Let c(l) be any solution of (2.2). Then, r(t) ts stat:te if solutions starting ',close,'

to z(f) at a given time remain close io ã(ú) for all later times. IT, rs asymptotically

stable il nearlry solutions actually converge to i(f) as I ---+ oo. This is formally deÊned

15



Lr elow:

Definition 2.4. The equil,ibrium t(t) is said to be stable zf g,iuen e > 0, Lhere erists

¿ ô : d(e) > 0 such that, for ang solul,ion U(t) of (2.2) satisfying ]z(¿o) - s(¿0) < d,

l¡(¿) - a(t)l < e for t > ¿0, ¿o € lR.

Definition 2.5. The equ.il.ittrium r(t) is said to be asgm¡.ttoticatLy stabte if (,i) it is

stable and (,ä) there erists a constant c > 0 such that ¿f )i(to) - g(to)l < c, then

¿rll lr(¿) - s(¿)l : o

Definition 2.6. A solution uÍ¡,ich is not stable,is sa,id, to be unslabLe.

Theorem 2,2. Suppose all llte eigenualues of Df(r) haue negatiue real parts. Then

l,he equì,l,ibrium soLutton t - r ol the sEstem (2.2) is local.ly asynt¡ttotzcally stable, and"

un,stable if øt least one of tlte e,igenualues has posi,ti,ue real part.

2.4 Bifurcation theory

In general, syslens of physical interest iypicalty have parameters which appear in the

defining systems of equations. As these parâ.meters are varied, changes nay occur in

the qualitative structures of the solutions for ce¡lain parameter values. These changes

are called bifurcations. The parameter values where bifurcation occurs ate called åi-

furcatzon uaLues. A standard definition for bifurcation at a point is given below.

Definition 2.7. Let

¡:fþ,p), ¿-€lR, É¿€lR,

16
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be a one-parameter t'amr,ly of one-d.,tmensional uector f,eld,s. An equ,il,ibrium solution of

(2.6) giuen, bA @, p) - (0,0) ß sa,ir). to und.ergo bifurcation at IL : 0 if the flout for p

near zero and, r near zero ¿s not qual¿tati,ueLy the same as the flou near r :0 ctt ¡¿ - g,

There are various types of bifurcations, including saddle-node, transcritical, pitchfork,

backs,ard, and hopf bifurcatíons 1891. Two of these, forward and backward bifurcations,

are relevant to this thesis.

2.5 Non-existence of periodic solutions

Generally, models of disease transmission may have solu(ions that difÌer from the calcu-

lated equilibrium solutions. SucÌr solutions affect the stability of the equilibria. These

ì<inds of solutions are generally refer¡ed to as closed orbits (i.e., periodic orbits, ho-

moclinic orbits, heteroclinic trajectories and polygons). In order to establish global

properties of equiÌibria, it is sometimes necessary lo show the non-existence of closecl

orbits in ihe feasible region of the modeì. Some methods for ruling out closecl orbits in

iR2 are described below, afier the foìlowing standard definitions.

Let á : .f (¡), r € lR2 be a vecio¡ field,

Definition 2.8. (Periodic solution)

r(t) for all t, for some T > 0.

Example 1:

The s¡'s¡s¡l à: y,ù : -t - 5(r2 -

A solul'ion r(t) ts said to be periodic if r(t +T) :

L)y has a pcriodÍc orbit illustrated below

IT



Figure 2.1: Periodic orbit

Defrnition 2,9. (Homoclinic orbits), Homoctinzc orb,ils are trajeclories thal start and,

end, at the sarne sad"dle point. Th,at is, tlt ey are trajectories connecting a single sarLd,l,e

node.

Example 2:

The system ù: A,ù : t + 12 has a homoclinic orbit as shown belorv.

Figure 2.2: Hornoclinic orbit

Deflnition 2.10. (Heteloclinic orbiis). Heteroclinic orb.its are trajectorzes that start at

18



one saddle node and end, at the o,nother sad,d,le nod,e. That is, they connect two sad,d,le

nocl,es.

Example 3:

The s¡'s¡sm i : y, A : - sin i¿ has a hete¡oclinic orbit illustrated belov/.

Heteroclintc O¡btt

Figure 2.3: Heteroclinic orbit

Definition 2.11. (Polygons) . PoÌygons are trajeclories connecling more than two

soddle nodes.

Example 4:

The systeu ù:y +:x2 - E2,A : -r -2ry has a polygon as shown belorv
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Figure 2.4: Polygon

2.5.7 Lyapunov functions and LaSalle's Invariance Principle

Lyapunov Functions

A powerlul method for analyzing the stability of an equilibrium poinL is based on thc

use of Lyapunov functions. Lya,punov functions are energy-like functions lhat decrease

along trajectories, If such a function exists, then closed orbiis are forltidden [81].

Definition 2.I2. A funclion V : lR" + lR is s¿íd to be a pos,itiue definite function ,i,f

. 7(r) > o for aLl r,

o V(r) - 0 il and only if r - 0,

c V(t) ---+ oo 0s Í --.t oo.

The general Lyapunov FuncLion Theorem is given below.
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Theorem 2.3. Consid"er th,e t'ollowing uector field

i=l(r), re R' (2.7)

Let t be an equil,ibrium solution of (2.7) anrt letV : U ---+ lR åe ¿ C1 function d,efin,ed,

on some nei,ghborhoorJ U of z such that

i) V is posi,Li,ue definite

lll Yl.rl< l) ?n ¿./\{ ¡l

The,n ris staltle. Moreouer, ,if

iii) Y(r) < 0 zn tt\{z}

then ris globalLy asymptotically stable (GAS).

Any function I,/ that satisfies the above is called a Lyapunou function laS, 89].

Example 5:

Consider the following vector fieìd, wi0h e a real parameter,

ù : u,

_ -_2"y _ -t-cr I.

The sysien has a nonìryperbolic equilibrium solution at (r,y) : (0,0). LeNV(r..y):
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(r2+A2)12. Clearly V(0,0) :0ancll/(r,S/) > 0 in any neighborhoocl of (0,0). Further,

V(r'Y) : a¡¡r¡

: r'u + UGr - n2A)

- rA - rA - cix2l|2

- -er2y2 <0 for e>0.

Hence, V < 0. T}rus, by the Lyapunov Function Theorem (2.3), ihe equilibrium (0,0)

is stabìe for e :0 and GAS lor e > 0.

Limit Sets and Invariance Principle

Since general epidemiology models monitor human populations, it is necessary to con-

sider that associated population sizes can never be negaLive. Thus, epidemioìogical

models should be considered in (feasible) regions where such property (nonnegativity)

is preserved.

Definition 2.L3. A poi,nt z¡ € ìR' ls calLed an a-l,irnit poirtt o/ z e ìR',, denoter| by

a(r), if there eri,sts a sequence {tt}, tr --' cn such that

þ(t¿, r) "+ as.

Definition 2.L4, A point r¡ € lR' is called an a-lzmit point o/ z e R.", denoted, by

22



a(t) , i,f there erzsts a sequence {ti} , ü ---' -<n such that

þ(t¡,t) -- ao.

Definition 2.75. The set of aII a -limit poin,ts of a flow is catted the a-limi,t set.

S'irnilarLy, the set of all a- l,imit ltoinl,s of a flnw ,is called the a-tirnit set 189).

Definition 2.16. Let S C lR" óe ¿ set. Then, S is said to be i,nuctriant under the uector

Jìeldt: f(r) i,f for any roe S ue haue z(ú,0,2¡) e ,9 /or ¿ll / e R.

If we restrict the region to positive times (i.e., f > 0), then S is said lo be a posi,tiuely-

znuariant s¿f. In other words, solutions in a positively-invariant set remain there fo¡

all time. The set is negaiir.ely-invariant if we go backward in time.

Theorem 2.4. (LaSalLe's Inuari,ance Principle). Suppose there,,is a contìnuouslg ri,i,f-

ferentiable, pos'itiue def,nite, and, radzul,ly unbound,ed, function V : lR" -t R, such thl,t

av
*(r - t)f (r) < w(r) < o, Vz e lR',

Then, i zs a globalty stable equiLibrium. The solution t(t) conue,rge,s to the largest

in,uariant set S conta,iner| ¿n E : {r e lR" : I4l(z) :0} [38]

2.5.2 Dulac's criterion

Theorem 2,5, (Dulac's Criterion). Let, r: f (z) be a continuous r)i,ff eren,tiable uector

Jield d,efi,ned on a s.imply connected subsetD of the plane. IJ there erisls a continuously
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d,ifferent'iable, real-ualued" function g(r) such that Y .(ot) has one s,ign throughout, D,

then lhere are no cLosed orbits lyi,ng entirelg in D [81, 89].

Proof Suppose there rvere closed orbit C lying entirely in the region D. Let ,4 denote

a region inside C. Then, by Green's Theorem,

where n is ihe outwa¡d normai and I is the clcment of arc length along C. lt is clear

that the lefb hand-side of the integral is non-zero, since V. (9x) has one sign in D. The

rìght hand-side of íhe integral is zero since x.n: 0 everywhere by the assumption

ihat C is a, [ràjectorJ, (the tangent vector x is orthogonal io n). This con[radiction

inplies that no such C can exisi 1811.

n

Example 6

Thesystemù:t(2-r-g),A:y@r-22-3) has no closed orbits in the positive

quadrant z,g > 0. To see this, let g -IlrU,so Lhaf

ll^v øove- t' o;, .at.,

v.{ei) - lrnrt,!*rtUJ: UA

ð /2-¡ -u\ â /4¡-¡:-3\
d¡\ u ) ay\ r /

: -1 .s.
a

Since thc region z, g > 0 is simply connected, 9 and / satisfy the required smoothness
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conditions. The Dulac's crite¡ion implies lhat there are no closed o¡bits in the positive

quadrant [81].

2.5.3 Busenberg - van den Driessche technique

Busenberg and van clen Driessche l12l extendecl the Dulac's criterion to lR3 as folÌows,

Theorem 2.6. Let ,5 c R3 åe smooth, oriento.ltle, surt'ace sucl-¡ that any 1:ieceu,ise

smool.lt closed cu,rue ^¡(L) e S .is the bound,øry of surJace S' c S. If I : lR3 -- lR3 is

smooth, f :7(l) + R3 'is Lipschitz, and f and, g sati,s.fy

s(7(t)) /(1(t)) : o,

(curl 9).n > 0 on 5 (< 0 on S),

uhere n is the untt normal to S. Then 1(t) is n,ot a phase polygon (trajecto,r,ies con-

nectzng more lhan one sad,rLLe nod"es) ol the d;tfferential equ,ati,on, ar: fu(t)).

2.6 Methods for local stability of equilibria

Here, two sta.nda¡d nethods for analyzing the local stabiliiy of the equilibria of disease

t¡ansnission mode.ls are briefly described.



2.6,L Linearization

Determining the siability of an equilibriun c(l) generally requires an understanding of

the nature of solutions near :;(l). Lei

r:i(t)+e (2 8)

and suppose thaL (2,8) is substituted into the general àutonomous vector fìeld i :

f(r), r e R" and / is twice difierentiable. The Taylor series expansion about z(t)

gives

i : r(r) + ¿ - I @(t)) + D f (r(t))e + o(e,),

whcre D/ is the derivatir.e of / and | . denotes norm on lR". Hence,

t: Df (z(t))e + O(lel2) (2 e)

Equation (2.9) above describes the evolution of orbits near z(f). The behavior of

solutions arbitrarily close to ø(l) is obtained by studying the associated linear system

¿: D f(¡(t))e (2.10)

However, if ø(ú) is an equilibrium solution, i.e., r(¿) : r, then ,/(r(¿)) : Df (t) rs a

matrix rvith cons0ant entries, and the solution of (2.10) ihrough the point e¡ € R' at
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(2,1i )

Then,

R'is

f:0 is given by

e(ú): exp(D/(z)f )e¡.

Theorem 2.7 . Suppose all of the eigenualues of D f (r) haue negati,ue real 1:arts

the equ'il'iLtriurn solutian r : r of the nonl,inear uector f,eld, ¡ : f(r), r e

asy mpt ottcaL Ly slab I e.

Example 7

Consider thc vecto¡ field

ù: fír,u):u2 - r,

;r: f-t."'\-.2-,,J _ J¿\'"\VJ

The system has a unique equilibrium poini, ¿ : (0,0). The Jacobian J of t,he vector

fieJd is given by

J,, y¡-Dtç,(r11 i- 
*l 

I ' "l
l* *l 

:[,. 
_ I

Evaluaring J rr r gives \ ¿" aP 'l \-- - /

(-, o\
J(00-ll

f, -')
so thàt the eigenvalues of J(0,0), )1 : À2 : -1, haye negative real parts. Hence, the

equilibrium ¿ : (0, 0) is asymptoLically stable,

27



2.6.2 Next generation method

Whilst the linearization method altove applies to analyzing the local stability ol equi-

Iibria in general, the next generalion method is used to establish the iocal àsymptotic

stability of the DFE (or a boundary equilibrium). The method was first introduced

by Diehmann and Hesterl¡eek [23] and refined for epidemiological models by van den

Dricssche and Watmough [87]. Epidemiological models, of Kermach ancl Mckend¡ick

type, i,ypically subdivide the total population (l/) into a number of mutually exclusive

compartments depending on their disease status (see, for instance, Example 8). The

fo¡mulation in [87] is norv described. Suppose the given disease transmission model,

rvith non-negative initial conditions. can be written in terms of the foìlowing system:

i¡: "/(.'¡) - F,(:)- V;(r). t: l, (2.1:)

where V¿ : V,- - VI and the function satisfy the following axioms below. First of all,

X": {r > 0]r; : 0, r. : 1, ,n2} is defined as the disease-free states (non-infected

state variables of the model) of the model, where z : (r1,... ,r.)r,r¡ ) 0 represents

tÌre nunber of individuals il each compartment of the model.

(Ar) if r I 0. rhen F,. V:. Vl > 0 for I - l

(A2) if r¡: 0, then V,- : 0. h particular, if r € X" thcn Vo- :0 for i : 1, tm.

(.A3) F :0 tf i. > m.

(Aa) if r €X", thenF;(z) :9 and Vf,(r) :0fori:1,
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(45) If F(r) is set to zero, then all eigenvalues of D/(z¡) have negatìve real parts.

Here, F¿(z) represents the ¡ate of appea¡ancc of nerv infections in compa,rtnent ¿i

Vf,(r) rcpresenis the rate of transfer of individuals into compartment i by all other

means, and Vr-(r) represents the rate of transfer of individuals out of compartment z.

It is assumed that these functions are at least twice continuouslv difierentiable in each

variable 187].

Definition 2.17. (.l4-Mairrx) An n x n m.atrb A is a,n Xt[ -matririf anrJ, onty iJ

euery ofl-diagonal entry of A .is non,-positiue and, the d,iagonal enlries are all positiue.

Lemma 2.1. (van den Driessche and Watmough IBT)) ï r i,s a DFE of (2.t2) and

flt) satisfy (,41) - (,45), then the d,e,ri,uat iues DF (r) anrt DY (r) are partitioned, as

,F à)- (; :) 
,v('): (: ;)

whe,re F anrl V are the nt x m rnalri,ces deJined by,

r: 19,,,.l and v -l9!,,.,.l aith r < i. ì < rnLtì¡; ') Lð¡, ' )

Further, F is nan-negati,te, V is a non.-s,ingular M -ma[rir and, fi,Ja are m¿trices

øssoc'iettetl with the trans,ition terms of the m,odel, and alL eigenualues of Ja ltaue posi-

ti,ue reaL parts.

Theorem 2.8, (van den Driessche and Watmough lSTl). Consider the d,,isease trans-

misston model giuen b,!) (2.72) with f (z) saLisJytng arioms (A7) - (A5). Il r i,s a DFE
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oJ the mode,l, then r ts LAS xf R0 : p@V L) < 1 (where p is spectral rarl,ius), but

unstable zf R¡ > 1.

Example 8

Consider the basic SIR model below (where the variables S, 1, ,3 represent the popula-

tìon of susceptibìe. infected and recovered individuals. respectively; and ly' : ,g + I + A

is the Notal population at time l)

#:" - # -,'
dI ß51

dt 
: N (p-o)1,

dj-''-'r'

The modei lras a DFE, given by X¡: fil¡t,ll,0). Here, the non-nega[ive matrix, F,

and the ,À,f -matrix, l,{ are given bv

.-(#) andv-(, ") whe¡es,-rv-:!

It is easy to verify that for this system, the conclitions A1-45 of Section 2.6.2 are sat-

isfied (i,hese conditions are also satisfied lor all the subsequent models in this thesis).

R
Thus. R¡ : p\FV ') : -:- Hence, /6 is LAS whenever ßo < 1, and unstable ifli+o
Ro>7.
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Chapter 3

HIV Tbeatment Model

3.1 Introduction

Eve¡ since lhei¡ introduction in the early 1990s [71, 72], ARVs, particuìarly HAART,

have had dramatic impact in curtailing the bu¡den (morbidity and morta,lity) of the

HIV pandemic in man¡' countries where these drugs are accessible [70]. The use of

such life-saving drugs, over long periods of Cime, reduces the r.iral Ìoads in HlV-infected

individuals to non-detectable levcls (typically cha¡acterized by HIV RNA of less than

50 copies/ml) 152]. In addiiion to mahing these individuals less infectious (orving to tlie

positive correlation between viral load and HIV transmission [33]), HAART extends

the life. and Lhe quality of life, of infectcd individuals [71].

The type of strategy for implementing a HIV conlrol ptogram based on using ARVs

is influenced by a nurnber of factors ranging from biological, availability of resources,

and the efiìciency of the public healíh care system to optirnally administe¡ the distr.ibu-
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tion of ARVs in the community. Although the cost of ARVs has reduced significantly

over the years, these drugs are still not widely available in many resource-poor nations.

The WHO [91] reporied, in 2003, that only 5% of people who need ARVs in deveioping

nations actually have access to ùhese drugs. In nations r','here these drugs are readily

arailable, some have opted for universal (mass) treatment ol all diagnosed individuals

regardlcss ol their stage of infection (e.g., in Brazil [61]), while others have adopted

â more targeted approach, rvhere only individuals with low CD4 count (generaìly be-

lor' 200 cells/ml) or displaying symptoms ol AIDS are treated; individuals rvith such

low CD4 count àre esscnlially at the pre-AIDS or AIDS stage of HIV disease, and

therefore have high viral loads. This late strategy is further justified by the results ol

the randomized clinical trials in 113, 32, 35, 391 which provide strong evidence of im-

pror.ed survival and reduced progression by treating symptomatic patients and patients

with CD4 count of less than 200 cells f mm3 . Further, this strategy has the aclditlonal

advantage of minimizing the possibility of the evolution and spread of ARV-resistant

HIV strain in íhe community and also minimizing ARV-related side efiects and toxic-

ity. It is t'orth emphasizing ihat the latter strategy (treating those with CD4 < 200

cells/ml, or those with viral load above a certain ihreshold) forms part of the new

HIV coni¡oì guidelines in a number of countries such as the USA 121, 34] and Canada

186]. Some resource-pool nalions, such as Botswana [64], also suitsc¡ibe to the late

(viral load-dependent) treatment strategy, perhaps due to reasons that may include

economics. In summary. there are a number of ways ARV programs could be imple-

mented including targeting (i) all inlected ìndividuals (universal treatnent), (ii) nervly-



and asynptomatrcally-infected individuals (i.e., infected lndlviduaìs rvithout the clini-

cal symptoms of AIDS) and (iii) individuals with clinical symptoms of AIDS. From now

on, Strategv (ii) is referred to as the "HIV-only" Strategy. The key modellÍng question

here is which of these strategies is most efiective in mininizing HlV-related burden

(measured in íerms of disease-related mortality and morbidity) in a communily?

Several authors have, over the ìas[ two clecades, used mathematjcal n.rodels, of

the form of deterministic or stochastic systems of differenbial equations, to assess the

impact of ARVs on HIV conNrol 120, 33, 52, 58, 61, 62, 77,72,82]. However, many of

these models do not incorporate the role of individuals with clinical AIDS symptoms in

HIV t¡ansmission. That is, these studies assume that individuals in the AIDS stage of

infection do not contribute in fu¡ther spread of HIV. To the contrary, epidemiological

evidence supports ihe hypothesis that AIDS patients are capable of, and do engage in,

risky sexual l¡ehavior such as having multiple sexual pàÌtne¡s or inconsisbent condom

use [59, 68, 69]. In this cl.rapter, a HIV t¡eaiment modeì, which incorporates HIV

t¡ansmission by AIDS ir.rdividuals, is designed and used to evaluate the aforementioned

treatment strategies.

3.2 Model formulation and basic properties

The total population, ,¡r¡, is subdivided into four mutualìy-exclusive conpartments

namely susceptible (S(Z)), untreated newly- and asymptomaticalìy-infected individ-

uals (1"(¿)), infected individuals at the AIDS stage of infection (A(t)) and trea0ed

individuals (1"(¿)), so that N(¿) : S(¿) + 1"(¿) + A(t) + Ir(t).



The susceptible population is increased by the recruitment of individuals (assumed

susceptible) into the population at a rate Il. These individuals acquire infection, fol-

lowing contact with infecied individuals in the 1,. A and 17 classes, at a rate ), where

BQ"¡nnA+n717)
¡/

is the {o¡ce of infection. The parameter B is the efiective contact rate (contact capable

of leading to infectiorr), while 4¡ > 1 is the ¡elativc risk of infec[iousness of individ-

uals with AIDS (in comparison to lhose in the I, class). The parameter 0 < ?r, < 1

àccounbs lor the assumed reduced infecliousness of treatcd individuals relative to un-

treated individuals. Infected individuals in the 1, class progress to AIDS àt â rate a.

It is assumed that infected indir.iduals in the 1, and A classes are treâted with ARVs

aL a rate r", (with efficacy e7). Treated individuals progress to AIDS at a reduceil

rate ad, where 0 < d < 1 is a modificalion parameter accounting for the slow progres-

sion of treated individuals (in comparison to untreàted individuals). Further, natural

morbality occu¡s in all classes àt a ra,te p, and AIDS indivlduals sufler an additional

disease-induced mortality at a ràte ó. The model is given by the following system of
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differential equations (see Figure 3.1 for a fìowchart diagram)

1a:l-,ls LLs.
dt

d 1".

;l : 
^S 

PI,, - al" - r7rul"'

d.A

,tt 
: oI" - (P + 6)A - qrAA + ooIr,

d.I-
Oi - t rr,I, - {7 r¡A - pl ¡ - 0a17.

(3.1)

Figure 3.1: Flow diagram model (3.1)

It follows from the nodel (3.1) that se[ting r¡ :0 and r, f 0 corresponds to the

HIV-only strategy. Further, while the AIDS-only Strategy involves setting ¡¿ : 0 and

r¿ I 0. lhe Universal Strategy entails having r" I 0 and z¡ I 0. That is, while

Strategy (i) targets only individuals in the 1, class and Strategy (ii) iargets those

displaying clinical symptoms of AIDS only. the Unive¡sal Strategy (iii) eniaits ireaiing

infected individuals regardless of their stage of HIV infection.

ôA FA
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Since the model (3.1) nonitors human populations, it is assumed that all ihe stàte

variables and parameters of the model are non-negative. Consider the biologically-

feasible region

D: {(S,I",A,I,r) e Ri:S + I"+ A+ rr <tr/p}

The following steps are lollowed to establish the positive invariance (i.e., solutions in

2 remain in D for all time) and attractivity property of 2. The ra0e of change of the

total population, obtained by adding alÌ the equations in model (3.1), is given bv

d¡,¡

.h :n- P'N -64 (3 2)

Since the right hand side of (3.2) is bounded by n-/¿¡/, a standard comparison theorem

can be usecl to show rhar ¡/(/) < ¡ú(0)e ,' 
' 

11, - e-u'1. ln prrricular, 1V1t1 < [ itLr -p
¡/(0) f n 

Thus, 2 is positively-invariant (that is, all solutions with iniiial conditions
I,L

in D remain inD lor ó > 0). Furiher, rvhenever N , nlp, then dN/dt < 0. Thus,

it follows that every solution of the equations in rnodel (3,1) with initial conditions

in lRf tends [oward D aß ¿ --+ oo. Therefore, the ølimit seis of the system (3.1) are

contained in D. Hence, it is suficient to consider the dynamics of the flow generated

by (3.1) il 2. In this region, the model can be considered as been epidemiotogically

and mathematically lvell-posed [471.
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3.3 Tleatment-free model

Before analyzing the full model (3.1), ii is instructive io gain insights into the dynamics

of the treatnent-free version of the model (r" : 7¡, - €1. : 17 - 0 in (3.1)) given by

4q-r-)"e-us.
dt

* : 
^t 

- tui a\1.,. (3 3)
dt

dj-",-rp 
-6)A.

where, now, t/ : ,9 + 1. +,4 and 
^ 

- 
B(1" !nA) For rhis model, it can be shown

tv

that ihe region

^:{(S,I",A) 
e Rf :,9+ t"+A<Up,}

is positively-inva¡iant and attrâcting. Thus, the dynamics of the t¡eatment-free model

will be considered in 2i.

3.3.1 Local stability of DFE

The model (3.3) has a DFE, obtained by setting ihe right hand sides of the equations

in the model to zero, given by

(3 4)â,: (s-,rj ,{'): (T , Ð



The linear stability of á¡ can be established using the next generation operator method

on the system (3,3). Using the notation in [87], the matrices F andV, for the new

infection ternn and lhe remaining t¡ansfer terms respectively, are, respectively, given

bv

Thus,

'- (; ï) 
-'": ('-." ,:,)

R6:ptFV_t,:#_ 
*_^_þr a

The following resulis follows from Theo¡em 2 of f871.

(3 5)

Lemma 3.I. TL¡.e DFE of the mortel (3.3), gi.uen by Q.a), is LAS if R¡ < I anrl

unstable 'if R¡ > 1-

The quantity 7lo is the basic reprod,ucti,on, number. It measures the average number

of new infections generated l;y a single infected individual in a completely susceptible

population.

Biologically speaking, Lemma (3.1) implies that HIV can be eliminated f¡om the

communii'y (when Iù¡ < 1) if the initial sizes of the sub-populations of the model are in

the basin of attraction of t¡. To ensure that elimination of the virus is independent of

the initial sizes of the sub-populations, it is necessary to show that the DFE is globally

asymptotically stable- Thrs is established below.
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3.3.2 Global stability of DFE

Theorem 3.L. Th,e DFE of th.e m,odel (3.3), giuen by (3.4), i.s GAS wheneuer R¡ <

Proaf. Consider the following Lyapunov function:

r: þ{10", +d) +4a11" +rt(p+a)A},

wilh Lyapunov derivative,

F : t3{10,t + õ) + rtall"+ n0' + a)A}

- ls{10'+ d) +aal[)s - (p+ a)t"]+nfu+a)laI" - (p.+ d),s)]

: ts[(p+ ¿) +4a]),5 - (p,+ a)(p,+ 6)13(1"+ n.q)

- þ10, + ó) +ryalì.9- (p+a)(p+ ó))-v

- ru F..tr,, ,,^t1Úsltp+dl-lo] - '\[^'(r-o)(p'ô) -J

< (¡t - a)rp , 6)01t" - ,tA)10,w ,t 
6),+ 0't: . tl since s ! N' Llt'+ o)(p-ò) I -

- fu+a)(p+õ)þ(1"+nA)(Ro- 1) < 0 forR¡ < t.

Since all the model pa,raneters are nonnegative, it follows that f < 0 for R¡ < 1 with

LaSalle's Invaria,nce Principle 138], every solution to the equations in the model (3.3),

with initial condi0ions in 21, approaches t6 as f ---+ oc. n

The above result has inportant public health implications. It guarantees disease
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elinination (in finite tiure) provided 7?0 can be made less than unity

3.3.3 Existence and IocâI stability of EEP

Existence

To find conditions for the existence of an equilibrium for which the disease is endemic

in thc popula,tion (i,e., at lea"st one of Ij- and A*. is non-zero), denoted by €., :

(S--,4-,,4*), the equations in (3.3) are solved in terms of the force of infection at

steady-state given by

(3 6)

Setting the right hand sides ol the model to zero (and noting that À : ).-) gives

a)--lI
(p + 6)(¡1, + À.- )(p + a)

(3.7)

Using (3.7) in the expression for À** in (3.6) shorvs that the nonzero (endemic) equilibria

of the model satisfy

b1)-- - c1 :11, (3 8)

where å1 : al Ir *ð, and c1 : (¡,t, I a)(p+á)(R¡ - 1). Ii is clear that òr > 0, and

c1 ) 0 for 7?6 > 1. Thus, the linear system (3.8) has a unique positive soìution, given

by À.- : ct/öl, whenever 7lo ) 1. The conponents of the endemic equilibrium, C1, are
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then determined by substituiing À-- - ctlù into (3.7). Noting that ??6 < 1 implies

that c1 ( 0. Thus, for 71.6 ( 1, the force of infection at steady-state (À..) ís negative.

Hence the model has no positive equilibria in this câse. These results are summarized

below.

Lemma 3.2. The treatment-t'ree model (3.3) has a untque posi,tiue end"em.ic er¡uiltbri,um

uheneuer Rs > 1 and, no positiue end,em,ic equzl,ibri,um utheneuer Ro < I.

Local stability

Lemma (3.2) above shows the existence of a unique positive endemic equilibrium if

7?6 > 1. The local stability property of this enclemic equilibrium is norv explored.

Theorem 3,2, The uníque endetni,c equ,ilibrium. of tl.r,e mod,el (3.J) ß LAS if R0 > I.

Proof.

The proof is based on converting the problem (of the siability of an equilibrium point)

to that of analyzing the stability of a flxed point. Substi0uting (3.7) into (3.6), and

noting tìlât

I] À--lI ol-.fI
p + À.. (¡r + o)(s + À--) (¡, + d)(¡r + À..)(p + ") 

'

gives a fi,xed point problem of the form ).- : ./(À--), where

r\" / 1 I \*+a' ì
!t/tv2



rvith

c,- o -, u?' . and c,: I *, o
' tt ô (p- o)la-d) p-a (p t o)(¡r-ó)

It lollows that

Evaluating / (À--) at )-" : Ct

b,
, and simpÌifying, gives

,'r r..ri I
1,.--.r /<n,., _bl

1( ì
lrom u'hich it is clear rhar l{ / ()')i f] < I u'henever 7?0 > I 148,89j. n

I t l.r--_¡.J i

It should be mentioned that this result can also be obtained using standard lin-

earization around the EEP; bui this method (linearization) is more involved (requires

nrore algebraic manipu)ar ions).

3.3.4 Global stability of EEP for ð: 0.

The global stabilit)' analysis of the equilibria of disease transmission models (especially

the endenic ones) is generally diflcult to carrv out. Consequently, the literature on

global analysis of equilibna of disease transmission models (especially the endemic

ones) is scant. Here, a global siability result of the unique endemic equilibrium of (3.3)

is given for a special case (á : 0). IL is b¿sed on the approach in [12]. First of all,
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the model (3.3) wiLh d:0 is normalized by defining the following nerv va¡iables and

pârameters:

u ! " ,, p, ,. u - a lao -R- Yt:L[u. V": nA. t 
:ttt. 0-i. U :i

Using these change of varial¡les and parameters, model (3.3) becones:

d.x

dl:r-Àx-x'
dY ì--
î : 

^r - 
òYt- Yt. (3 e)

dYz

-=ItYi-Y.
dt

where,

, 0(Y1 + r¡Y2\

^ 
- ff r¡'ith,¡Vifl) - X \t t + Y\t ) t Y2tt ).

For the system (3.9), the DFE is ft : (1,0,0) and it can be shown thàt the corre-

spontling Lasj,- reploducrion nunrber i, Ì.0 : dfå ll 
l" 

). 
Ler i, : rX . y,-. yj ) denote

an EEP of system (3.9). The equation lor ihe rate of change of the total population,

ly'r , is:

dN,
-dî r - r'}t' (3.10 )

Here, it is easy to show ihat 
^t 

€ 10, 1], since at the DFE, ¡ú : X : 1 and the

natural expectation is that the spread of the disease in the population would teduce
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¡/r (/út < 1). Therefore, the dynamics of the norn:ralized modeì (3.9) rvill be stuclied

in the region

CI : {(X, y,, yr) e R} : X +y +y2 < r}.

Like the region 21, the region fl is also positively-invariant. Further, it can be shown

that the plane

0. : {(X,y,, %) € O r X * yl+y2 - r}

is posiiively-invariant. We claim the following.

Lemma 3,3. The modeL (3.9) has no periodic orbits, homocli,n:ic orbils or polygons tn

ç¿-.

Proof. The Bursenberg - van den Driessche technique (Theorem (2.6) of Chaptcr 2)

will be used. Let f1, f2, f3 denote the right hand sides of the equations in model (3.9),

respectively. The relabion X + \ + Yz : I is used to obtain f¡(Y1,Y2), f¡,(X,Y2) and
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fi(X,Y1), j : 2,3,k: 1,3,1 : 1,2, as follou's:

fr(x'Yr) : r-P{Y,+l(1 -x-Yr)}X-x,

f1(x,y,) : I-p0-X Y2+7YùX-X,

ïr(X,Y) : p{y,+?(1 - x -Y,)}x - (1 +0)y1,

r^Yr,Yù : ß(y, + r[ùQ - Yz -Y) - (1 + 0)y1,

h(x,Y2):ct(]' x Yù-Y",

f3()", Y,) : a\ - Yz'

Lctg:91 f 92 -1- 93, where

l^ -./s(v',Y2).[:lY),Y2)] l.hlx.Y"t -/,(x.v"]lsr(v,.v2) : 
L0 ff --Vf-). E2(x.Y2) -+",-)

_ 1'1-, l. htx.Yr) ¡q y4 Jg3{^. rrr - L "", xX I

Clearly, g . f: 0 in the inte¡ior of 0*, where f: (f1, fr, f3). Using the normal vector

n: (1,1,1) io 0-, it ca,n be shown that (in fl\{O})

currg.(1,1,1):- (9."-.ju:{ +}) .o
\r1 tt t2 rt ,l

Hence, by Lenma 3.1 in 112], ihe desired result is obtained.

We claim the folìowing.



Theorem 3.3. The end,emic equi,L.ibrium of th,e nonnali,zed model (3.9) is GAS in

f,) \ fì6, tiråere Oo: i(X,yr,Y2) € Q;Y1 : Y2-,0j, uheneuer Ro > L.

Proof. Since fì* is positively-invariant, the ø-limit set of each solution of the nor-

malized model (3.9) is cont,ained in f,)-. Moreover, it is easy to see that the DFE,

ao : 1t,O,O¡ of (3.9), atiracis Q¡ (ibs stable manifold). Since f¡om Lemma (3.2), a

unique endemic equilibriun.r exists which rs LAS (by Theorem (3.2)) whenever 7?¡ > 1

(7?o) > f) i.e., the DFE is unstablc, By Lemma (3.3) above, there are no periodic

solutions in f)-. It follows that every solution in a neighborhood of 8¡ in f)' will leave

that neighborhood asymptotically. because the¡e a¡e no homoclinic orbiis, containing

¿o i" f¿., Sjnce Q* is positively-invariant, t1 is GAS in Q' \ f)¡, ¡

It is worth noling that establishing ihe proof for the case d l0 is not feasible using

this approach. The re¿son is that, for d I 0, the dynamics of [he model need Lo be

conrirlered in ¡norhcr rcgion. Q". given bv Q'' - {tX Yr. if fd;fr) Ç Q: X rYl-Y2 -

1]. The problem is thai Q-- is not positively-invarÍant (since, for instance, solutions

on the boundary of 0-- do not necessarily remain there or enter Í-l**).
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3,4 Analysis of the treatment model

3.4.1 Local stability of DFE

Consider, now, the full treatment model (3.1), with DFE given by

ái : {s'. I;.A'.ti)- (i , r Ð

Here, the matrices f. and V are givel by

(3. 1 1)

Iu"'

":li
,r'r,.I

it
I ,.'

u: | _,
I

L-"'

põ \a

0

0

: :"1

, _,:,^ 
" ]

witl.r,

I{1 : ¡t * al e7ru, K2: ¡ti6te7rn, K3- p,l0a,

with lr' : ,9 + 1" +,.4 + ¡", The lreatm,ent reprod,uctton number, denoied. by R7 :

p(FV 1), is given by

- a BZr ,ß(2., - Zz)
'"'- K, I(rzr- t<rz"

(3.12)



with

21 : q¡a(K3'l 0e1.r.) + nT(o€TrA'f Kzerr.),

22 - ¡rK2+9a(p+õ).

Thus, the following result is established.

Lemma 3.4. The DFE of the model (3.7) is LAS if R7 < I and unsto.bLe if Rr > I

The global stabi.lity of ihe DFE is established as follows.

3.4.2 Global stability of DFE

Theorem 3.4. Th,e DFE of the model (3.1) i.s GAS if R7 < 1..

Proof. Consider the Lyapunov funcLion,

î: rrI" -t lzA+ lslr,
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where, /; : Ztl Zz, h: Kr(nnKz * q7e7rn), h: Kr(,1ta] + ?"112). Thlrs,

È : ni"+ f2A+ hir

: /thS- (¡L' i a+ e7r")1") + f2tdI"- (p+d+ e7r¡)A+ 0aI7)

i lz\err.I, I qrnA - (P + ea)Ir)

: /r()S - I{J") + fr@l"- K2A+0a17)-l fi(e7r,I"t errtA- KzIr)

: ,f'À^9 - (fth - f2a - fie7r,)1, - (hK" - fie7rn)A )- (J20a - ftK3)17

: 
"frÀS - K1(I{2KB - e7rna1) I. - Kr(K2Ks - er.rA.r?)qAA - Kr(K2K3 - úr.rAd1hTlr

: 
"fr)S - K:(K2K3 - 0ae7r¡)(1. + qAA + nrlr.)

- "/r)S - t(ttlçK3 ga, rrtt#
tYl /'ut 

'l: I{t(I{zl{s 0oc7ra)':;J LK1\K2K3 - 1a,:rra\N 'l

- I{.Zztr" i ttAA qrrr\ltzt z'los - i]'t NK1z2 I
< Ktz2tt" - ¡tA + n,t, ll!44!- tl fors s //L t\tz: .l

: KtZz(1" r qnA -t nrlr)(Rr - 1) < 0 lor R7 < I.

Thc proof is completed using the same argument as in the prool of Theorem (3.1). ¡



3.4.3 Existence and local stability of EEP

Existence

Let, €.1 : (S*, fj., A-.,4-) be an endemic equilibrium ol ihe full model (3.1). Furiher,

let

^.. 
: pQ;. + n4!N:: + nr'I;r). (3,13)

Solving tire equations in Lhe moclel (3.1) at sieady state, in terns of )**, gives

s*= n ,". \'' (ar ¡rt I Kz':rr,,)
À--t 'r - ---l(l^" + p)2, '

À"fl À" IIa (K3 ytu1rut
/f,(Ì *p) ' - 1(t\^" Jt)z,

(3.14)

Using (3.14) in (3.13), and simplifying, gives

(3.15)

The positive endemic equilibrium of the model (3.1) can be obtainecl by solving for À.*

in (3.15) and substituting the result inio (3.14). Clearly, À-- : 0 is a fixed point of

(3.15), which corresponds to the DFE, tn". For À** 10, (3.15) can be simplified to:

b2À** - c2: Q, (3.16)

I , aq¡(K3 i 0a7r,) . rnT(oeTrA I Kzet ru)



where,

, I a(K3- At7r,) \acrrA I K2e7r")bz- 

^- 
---xZ;- t Ê tttd c2:v' -¡

Since all the model parameters are assumed to be non-negative, it follorvs that ö2 > 0

and c2 > 0lctr R7 > 1 Thus, the linear equation (3.16) has a unique positive solution,

Ct
giverr by 

^-' 
: ;, whenevcr Rr > 7. Since 7?7 < l implies c2 < 0, it follows that

for 7?a ( l, ,l-- < O Hence, there is no positive solution when 7l7 < 1. This result is

summarized below.

Lemma 3.5. TÌre mod.et (3.7) Ìtas a untque end,emic equrlibrium uheneuer R7 > I.

The locaì âsymptotic stability of this equilibrium is investiga[ed below.

Local stability

Theorem 3,5. The u,nique end,em,ic equ,ilibrium of th,e treatm.enl mod,eL (3.I) is LAS

wheneuer k7 )> l.

Proof. The proof is similar to that given in Seciion 3.3,3, but now after substituting

(3.14) into (3.13), a fixed point problem of the form l* : /(À--) is obtained, where

^ v72
' r t À.,cn



Í,ith,

C,,z

Czz

B }aq¡( K3 - 0r1ru) rBq71oc7 r¡ - I{2r7r,)
l\t ttr4 

"rZ,1 a(K¿-A,¡r,\ , \oe7r¡ I K2t¡r,t
---'_----_-lr¡ KtZz KtZz

and

./r)'-r: l'', ,.
(1 + À--¡rr;:'

Evrlurring / q\"1ar )'' =: -hows th¡r
Dz

so rnar ]{1'q.1"¡l }l< ÌrvlrenevcrR¡ > lIt' ' 'l*-=-)l '-
ó2

/'r)--)l : I
l\,.-", /lT

n

In summary, it is cìea¡ that the trealnent model (3.f ) has the same dynamical features

as the t¡eatment-free model (3.3) (both models have a globally-asymptotically stable

DFE whenever the associated reproduction number is less than unity; and a unique

locally-asymptotically stable endemic equilibrium wheneve¡ the reproduction number

exceeds unity). Thus, adding treatment to the model (3.3) does not alter its dynamical

features.
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3.5 Numerical simulations and discussions

The treatment-free model (3.3) is a special case of model (3.1), and both models have

been shown to exhibii, similar qualitative dynamics- Consequently, numerical simula-

tions will be carried out on the treatment model (3.1) using the parameter values in

Table (3.2) (unless otherwise siaied). Using this set of paranreters, ßz : 2.3561 (so

that, by Theorem (3.5), the unique endemic equilibrium tfl is LAS). Figure 3.2 depicts

time series plots of r.arious variables of the model, using numerous initial conditions,

illustrating the local stability property of the endemic equilibrium for this case.

The model is now simulated to âssess Lhe impact of the three difierent treatment

strategies enumerated in section 3.2. Using a relatively low treatment rate of r, :

r,r : 0.5, Figure 3.34 shows tbat, nrore ne\\¡ c¿ses of HIV infection could be averted il

the Universal Strategy is implemen0ed. In this case, the HIV-onìy Sùrategy records the

least number of cases averted. Figure 3.38 shows an increase in number of new cases

averted with increasing treatment efficacy. Further simulations show that the Universal

Strategy is most efiectivc in reducing disease prevalence, followed by the AIDS-only,

and then the HIV-only Strategy (Figure 3.3C). These simulations shows that for this

value of r, ihe Universal Strategy is always the besi strategy. Low treatment rate can

be thought of the case for which the supply of ARVs is ìimited.

The impact of the rarious treatment strategies on mortality is depicted in Figure

3.4, Herc, the HIV-only Strategy ¡ecords the most number of latalities within a 10

year tirne. Figure 3.44 shows thab the Unive¡sal Strategy prevents the most cumula-

tive mortalii¡ followed by ihe AIDS-only Strategy, and then the HIV-only Strategy.



Figures 3.48-D depic[ mortality as a function of time with different treatment râtes.

The results obtained are consistent with those depicted in Figure 3.54; except for the

Iower mortality in the Universal and AIDS-only Strategies when the treâtment rate is

increased.

Figure 3.5 depict the total number of infectives as a function of time, for difierent

treatment rates. It is evident from this frgure that the Universal Strategy gives the

ìeast number of total infectives. The highest number of infectives is recorded when no

infected individual is treated. Here. too, a much lower number of total infeclÍves is

recorded when the ¿reatment rate is increased.

In conclusion, these simulations show that ihe Universal SLrategy is the best in

terms of preventing nevr' cases and mortality regardless of wÌrether a low (r, : r¡ : 0.5)

or high (r, : rA:5) treatment rate is used. An exiended version of the trea.tment

model (3.1), incorporating the diffe¡ential infectivity and staged-progression aspects of

HIV disease, is studied in 177].

3.6 Summary

In summary, the analyses and simulaLions in this chapter show the following:

(i) Both the treatment-free and bhe treatment model have a globally-stal¡le DFE when-

ever their associated reproduction number is less than unity; each of the models

has a unique endemic equilibrium whenever ils reproduction nurnber exceeds

unity;



(ii) The Universal Strategy gives the highest reduction in the total nu¡nber of new

cases and mortality;

(iii) Thc HIV-only Strategv results in more deaths than any of the other strategies;

(iv) ln terms of reduction ol new cases, the strategies are listed in descending order

ol significance as follows: Universal, AIDS-only and HIV-only slrategies;

(v) For lou' treatment rates (associated with limited supply of ARVs), a iargeted

AIDS-only Strategy is quite competiiive (ltut not as good as the Universal Strat-

egy) in reducing new cases and HIV-related mortâ,lity,

Overa,ll, the iheoretical analyses in thrs chapter sbow that highest reductions in

HIV burden can be achieved using the Univcrsal Strategy ralher than any of the other

(two targeted) strategies. Furbher, the use of ARVs can lead to significant reductions

of HIV burden, or cven disease eliminalion, in the comnunity.
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Table 3.1: Description of variables and parameters for model (3.1)

Variable/Parameter Descripíion

.e(¿)

L(t)

,4(¿)

h(t)

II

11

6

nA

n'f

TÚ

TA

(T'

a

0

13

susceptible individuals

newly- and asymplomalically-infected individuals

individuaìs at AIDS stage of infection

treated infected individuals

recruitment rate into the sexually-active population

natural death rate

disease-induced mortality rate fo¡ individuals in AIDS stagc

relative risk of infecLiousness of AIDS individuals

relative risk of infectiousness of treated individuals

treatment rate for individuals in the 1, class

treatment rate for individuals in AIDS s0age of infection

efficacy of ARVs

progression rate to AIDS of indjviduals in the 1, class

modification facto¡ for progression to AIDS by treated indivtduaìs

contåct lâ.te
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Table 3.2: Pa¡ameter values lor model (3.1)

Para¡neters nominalvalrres

T

11

6

\,s

Tr

TL

TA

€I.

()

0

p

1000

0.09

1.5

0.008

variable

variable

0.5

0.8

0.1

0.4
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Figure 3.2: Tine series plots for the treatment model (3.1) using difierent iniiial con-
diLions. (A) 1"(¿); (B) 1,,(t) + A(t); (c) 1r(r); (D) A(¿).
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(c)

Figure 3.3: (A) Cumulative new cases averted using nodel (3.1) for difierent treatment
strâtegies; (B) Cunulative new cases averted using model (3.1)wiih difierent treâtment
efficacies (ea : 0.1.0.3,0.5,0.7,0.9) ànd r; : 0.5; (C) Prevaience as a function of time
for model (3.1) wiLh different t¡eatment strategies.
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Figure 3,4: (A) Cumulative mortaìity averted for model (3.1) with difierent treatment
sNrategies using r¿ : 0.5; (B) Mortality as a function of time for model (3.1) rvith
different treatment strategies using 7, : 0.5; (C&D) Nfortality as a function of time for
model (3.i) with dilÌerent treatment stràtegies using 7i:5.



Figure 3.5: (A) Total infectives as a function of time for model (3.1) with different
treatment strahegies using 1¿ : 0.5; (B&C) Total infectives as a function of time for
model (3.1) with difierent treatment strategies using ri:5.
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Chapter 4

HIV Tþeatment Model with Wild

and Resistant Strains

4.7 fntroduction

One of the main epidemioìogicaì problems associated wi0h the use of ARVs in a pop-

ulation is the emergence and transmission of ARV-resistant strains in the population,

These new mulants arise due to numerous factors ranging lrom incomplete compliance

to the specified ARV regimen to biological factors as well as to the primary infection of

susceptible individuals with the resistant strain. In this chapter, the t¡eatmenL model

discussed in Chapter 3 is extended to âccount for two HIV strains, a wild (susceptible

to ARV treatment) and an ARV-resisbanl strain. In this model, it is assumed that no

treatnent for the resisLant st¡ain exists. The objective is to quantify the epiderniolog-

ical impact of the drug resistant strain, as rveìl as to gain insights into the dynamics
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of the two strains. Although models for multiple HIV subtypes or st¡ains have been

presented in the literature (see, for instance, 19, 10, 75]), this chaptcr complements and

extends thesc studies by, first of all, including the transmission of HIV by AIDS indi-

viduals (rvhich is not expliciíly included in these models) and carrying out a detailed

qualitative analysis of the resulting model.

4.2 Model formulation and basic properties

The total population, N, is subdivided into susceptiblc (.9(t)), newly- and asymp-

tonatically -infected individuals rvith the wild sirain (1-(l)), newly- and asJ¡mptomat-

ically -infectecl individuals with ¡esistant strain (I"(t)), AIDS individual infected with

the wild (,.4",(¿)), and resistant (.4,(f)) strain and treated individuals (&'(¿)), so that

N(¿) -.e(r) + h(t)+ 1,(¿) +A-(¿) +A"(t)+rr(L).

The susceptible population is increased by the recruitment of individuals (assumed

susceptible) into the population at a raLe fL These individuals acquire infection, fol-

lowing contact with infected individuals (in the 1,,, 1., A-, A. and ft. classes) ab a r.ate

À- and )", where

BQ-¡n-A-¡n717)

The parameter p is the eflective contact tate, while 4., > 1 is the relative risli of infec-

tiousness of individuals with AIDS (with wild strain) in comparison to individuals in

the 1- class. The modification parameters 4" > 1 is sinilarl¡' defined. teated individ-
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uals are assumed to be less inlectious, rvhere 0 < 47 < 1 is a modification pârameter.

This model assumes that the wild and resisLant strains are equally transmissrble (albeit

sone studies, e.g, [75], suggest thàt the resistant strain is less transmissible ihan the

wild srrain).

Individuals in the ,I.., and I classes progress to AIDS at a rate d- and ø., respec-

tively. Individuals infected with the wild strain (1., or,4.) âre treated àt àrafe.r-.

Tleated individuals progress to AIDS at a slower rate Ao-, where 0 < á < 1 is a mod-

ification parameter. It is assumed that treated individuals become resistant to ARV

treatnent ât â ràte 1-,.. Furiher, natural mortality occu¡s in all classes, at â tate p;

and AIDS individuals suffer a disea,se-induced dealh at rates ô- and d, for the wild

strai¡¡infected and the resistant strain-infected individuals, respcctively. The model is

given by (a flow diagram is given in Figure 4.1)

#:"-À-,e-À"s-¡r,,e,
o*:^,t-tp-o,"- r,)t..

* - 
^,t - oL. + o,)r, -r.y.,rr,

ff : '-r- - (,* + tr+ d-),4., 't 0o.17,

dt-",.,\¡,w¡11I¡t

dI'--, -L- À -t,, L^,
,lt ,e ' ,," + 0o.)lr'

(4 1)
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Figure 4.1: Flow diagrarn for model (4.1)

As in model (3.1), it is assumed that all the state variables and parameters of the

model (4.1) are non-negative. Consitler the biologically-feasible region

D - {(5,L,,1,,A*,A,,Ir) e R! :.9+1- + r, + A. r A. -t rr <nl p}

Using the method described in Section 3.2.1, it can be shown that 2 is positively-

invarian[ and attracting, so 1,hat it is sufficient to consider the dynamics of the mode]

ihere.



4.3 teatment-freemodel

Consider the treatment-free version of the model (4.1) (obtained by setting ru: nl- -

lur : 0 :1r - 0 in (4.1)) given by

dS

dt-n-À",,9-),S-p^9,
dI-
; - 

^-s 
- (rt'+ o-)I-'

dI,
dt 

: 
^'s 

- (P' + o')t" Ø'2)

rJA_

¿t - "-t,, - (p+ 6-)A.,

dA,
dt 

uftr- tp -f urt!1r.

B(1.' rt.A.) Bll,.t rt.A,) ^wrlh. 
^d 

and À. - --. N- For rhc model (4.2). ir can bc

shown that, the following region is positivel¡-i¡y¿¡i¿nt and attracting

u:{(5,h,1,,A.,,,4,) e nf :S+1-+ I,+A-+A,<nlp},

so that it is sufficient to consider the dynamics of the model (4.2) in D1.

4.3.1 Local stability of DFE

The model (a.2) has a DFE given by

to : (s. , 4, r; , Ai", A) : (rrlp, 0, o, o, o) (4 3)
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For this modeÌ.

where,

Pr: pio,,, and Pr: LL+ o,, PB: ¡t + õ- and Pa: p Í 6,.

lt follows that the ö¿szc reproductzon numöer, denoted by 7?¡ = p(FV-r), is given by

Ro : mar{R, ,R-},

with,

.- A(Po' r1"o,\ -.-, _ ß(h q"o.)tr, : - P.n ano /(u : P,h

Using Theorem 2 in 1871, the following result is established.

Lemma 4.7. Thc: DFE o! the mod,el (4.2), giuen by (4.3), ß LAS if Rs < I and

unslal:le if Rs > 7.

It is u,orth stating thab R," is the reproduction number of the resistant strain, while

7?., is lhe reproduction number of the wild strain.

rv. u -1.

n4go' l!'

000

000

P1 000

0P200

-ou0P¡0

0-o,0Pt

0l
,r-l
; l":
,]



4.3.2 Global stability of DFE

Theorem 4.L. The DFE of the model (4.2), g.iten by (4.3), i,s GAS uheneuer Rs < I.

Proof Consider the following Lvapunov function:

F - (p" + r7.o-) I- + Plr¡-A- + (P, ¡ r7,o,) I, + P2n, A,,

with Lyapunov derivative,

F : tP.t-,1"o")i..- Pt¡*A, çPa t ,¡,o,1i"- Ptq,A,

: (Ps + n-o,")(^.S - P1I-) + P1q-(o.1. - P"A.,) + (P¿ + ?i,o.)(À, S - P2I,)

+P24,@,1 - PaA,)

- (Ps+n-o-)À-S - P1h(I-+n-A-)+ (P,,+n,o,)À,S - P2P4(1.+n,A,)

: (ft ¡ r¡-o-)À,"S - Pr&¡/À. + (P¿ + T ,o,)À.5 - P2P4N 
^,

- p,,p,.rvÀ.,, ltp¿ -!.?tts rl *¿p,rv.l-ltP¿ q,o,ts 
- t]" L PtPeN I ',L P2P4N l

< ptp3\t. ,,.e.,1ryffiÐ tf +e,c,rt,-,i"A,)lq!!:J{') -r] ro, s<rir

-- PrhQ-+n-A-)(R--\)+ PzP+(1,+q.A,)(R, - 1) < 0 for R¡ < 1.

The prool is completed using similar arguments as irr the proof of Theorem (3.1). !
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4.3.3 Existence and locâl stability of boundary equilibria

The non-trivial equiliìrria of the model (4.2), where at least one of the infected variables

is non-zero, cannot be cleanly expressed in closed form, The approach in [51] will be

used to explore the possibility of the existence and stability of non-trivial equilibria.

The possible equilibria of the nodel (by inspection) are:

(i) Wild strain-only boundary equilibrium, €- : (S-,4,0, Ai,0); (no resistant strain)

(ii) Resistant strain-only boundarl. sq¡iliþrium, ¿. : (,9.,0, /i,0, Aï); (no wild strain)

(iii) Co-existence equilibria, t-, = (S*,ry,4",Aï,1i.); (both strains exist).

Soh,ing the urodcl a0 sleady stâ.te gives

4- : d,(Àil, );-) -

P2P4(^i+À;-+p)
o")j'11

SuL.,srir ur ing r hy exprcssions in (4.4) inr o Ài,' - 
B(l:' -q'A;l alT: + rl"A'"')

'\¡'- 
- illr(l 

^¡ - 1/-

gir.es

dnÀ; ( I a,ø,\
\., ¡;' ¡l - r \A - 

P,P, ).\ù. : or l,\,¡. . 
^, 

I = 
-------- ¡/:, 

-

(4.4)

(4 5),ßn^:- ( r n,o,\
Àl-+\-+s\Pr" PrP^)

^*'
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V., _ Jl t /1 o \ /t _ "" \l\; +);' -71' 
n^;[¡' pn).r;'(a - r,r,))'

The equilibria of the model can be obiained by finding bhe fixed points of the equation

/o, 
r .l;' . ,r;' t\ /^rt \

r - Õ¡r¡: 1"""' 
^' ' 

1, *,,",.,- l"'Illll
\"â"' l;')/ \r;'/

Existence and statrility of wild strain-only boundary equilibrium (á.,)

Theorem 4,2. Th,e rnodel (4.2) has a uni,que positiue uzld, strain,only bounrJary equ,i-

I'ibrtum, €-, which, zs LAS uheneuer R, < I <R-.

Proof. It is clear lrom (4.5) tlÌai dr()ii,0) : 0. Thus, a fixed point of fi(Àli, Ài-) is

obtained ìry solving the equation dr(Ài,., O) : Ài'. It follows that Àf is thc root of tbe

equal,ion

Àff(ø11Àil f cil) :0, (4 6)

where,

at : Pz I o- and cn: PtPz(7 - R.)



It, is clear thai À) : 0 and lf -, -ct/at are the roots of the equation (a.6), and

it is worth no[ing here ihat Àf :0 corresponds to ihe DFE, It is easy to see that

all )0 and c11 ) 0 (c11 < 0) whenever R.<1(R- > 1). Hence, )f > 0 whenever

c11 < 0 (R. > 1). For t1, to exist, it is necessary that the resistant strain does not exist

(i.e., 7?" < 1). Thus, a unique rvild strain-only boundary equilibrium exists whenever

R. <7 <R_.

The local stability property of t- is nou' shown. The Jacobian of (r is given by

( ðott s,,' . s.' t

,_ I ð'\;

"l

| ôø,,rr;'..1;'r

\ ôr;

Evaluating J at (Ài-,0) gives

r();i,0):

rï'^"'l
where,

ab P.t fu(Pn + r¡,o,)
'"": P.Pdn+4*;J

For stabilíty, we require fr < t (i.e., ??- > 1) and Rl. <

R, < I in this case. Combining all these shows that the

1 (i.e., 7?, < 7?-);nole thai

boundary equilibrium á., is



LAS pror.ided R, <I <k.. !

Existence and stability of resistant strain-only boundary equilibrium (á.)

We claim lhe following result.

Theorem 4.3. The model (4.2) has a uni,que reststan,t strai,n-only bound,ary equzhb-

rium, €,., uhich 'is LAS wheneuer R- < L < R,.

Proof. Here, too, it is easy to see that dr (0, Ài-) : 0. Thus, a frxed point of /, ()i-, )i.)

is obtained by solving the equation dr(0, Ài.) : Ài-, from rvhich it follows that Ài- is

the root of the equàtion

Ài- @22\i" * c22) : g, (4 7)

where

o22: Pa - o, antl ,'22 : PzPq(l - R,)

It is clear t,hat À|-:0 (corresponding io the DFE) and À;.: -czzlazz a¡e roots of

the equation (4.7). Ii is easy to see that a22 > 0, while c22 > 0 (c22 < 0) r'"'henever

R,. <I (R, > 1). Hence, l|. > 0 whenever c22 { 0 (R, > 1). Here, since there is

no wild strain, R* < \. Thus, a unique resistant strain-only equrlibrium, Ç, exists

whenever R- <I <R..



Evaluating J at (0, À]-) gives

For local stability of Ç, we require #.t @, > 1) ancÌ ù_.t @- < R.). Thus,

Ç is LAS provided R., < 1 < R,. !

4.3,4 Existence and local stability of co-existence equilibria

Fi¡st of all, the expressions in (4.5) can be r.e-written as

(4 8)

wherc,

L': ;+ 7ft una "': È* #i
lt follows from (4.8) ihat

À.J Lt + Ài. Lz: R- - \,

^i,i 
Lt + Ài. Lz : R, - I.

(4.e)



Since the lefL hand sides of the equations in (4.9) are always positive, it is necessary

tlrat ?., > 1 and 7è, > I. If R. I R,, then system (4.9) is inconsistent; and there is

no positive co-existence equrlibria in this case. Hence, for the two equations in (4.9) to

be consistent, it is necessary thai 7?- - R, > 1,. h is worth mentioning that, in this

case, a conLinuum (inflnitely many) of endemic equiìibria rvill arise (this phenomenon

rvas also observed in a study of TB dynamics [18]). That is, setting 7l- : R. - R¡ > I

implies thai

\!,] Lt + Ài. Lz : R¿ - r, (4.10)

so tlr¡r 0 4 ¡¡' a lÌ1----i and 0 < Ài' . -i; This result is summarizpd bplow.

Theorem 4.4. The model (4.2) l¿as a con,ti,nuum (family ) of positiue co-eristence en-

demic equil'ibria, €.i, (n e Z*), uheneuer all, of the fol,Iouing hold

(a) R--R,> r,

R--7(b) 0<À;". t^,
l)1

(c) 0<)ll .-:}j,
'D 1 \++r-(d)À-*:T,

anrL no co-eristence endemic equtl,ibria ol,heruise.

r - "ff{- avTheorem 4.5, Let Ri, . \n CZ-\. uìtll

- /ðo, ôrr\l /ðetðE¿ âEr ðo:\lr0 - \ô);- 
* 

a^-: )1,^; ,;-, 
und ', - (r^;.a^l - a\- a.l;. /',^,- 

^,_,



Then, Ei, is LAS wheneuer l7?i,l < 1, for each n € Z*.

Prool Evaluabing the Jacobian of Õ at each (Àil, ìi-) in the regions (b) io (d), gives

(Aa)(\;.^',-) ôEr(À;.Ài rl \
I a,t; lrr;:.i;., ô);- r\;,. r;_r I

.r¡t;;..r; 1: | |

laq,rr;.¡;'rl ôø:(),.Àl')l 
I

\ a.r;-,r,r.^r., r ,s:...s;. t /
with eigenvalues given by the ¡oots of the equation

" /ôó. aó,\l
r.'-1-¡ 'r '- |

^ '\ a,l; ' ô);- ,i (^...\:. )

/ aö. ðò,
Ll ' ''' \aÀjl ôÀ:-

It is easy to show that tlie dominant eigenvalue of J()ff, À].) is 7?[.. Thus, the family

of co-existence endemic equilibrium, tj., is LAS whenever )Rlå,| < L for each n. n

It is worth noting that for the case R*: R,: 1, the solution of sysiem (4.9) is

the trivial soluiion (0,0) (corresponding to the DFÐ). FinaÌly, we ofier the lollowing

conjectures (conpetitive exclusion):

Conjecture 4.L The modeL (4.2) has a unique and, LAS posttiue resistl,nt stratn-onLy

boundary equililtnum, t,, uheneuer R- < R, and R. > 7.

Conjecture 4.2. The model (4.2) has a unique and LAS posití,ue uzld, straí,n-only

boundrL,ry equilzbrium, €* , uheneuer R, < R* and, R- > )..



4.4 Analysis of the treatment model

4.4.L Local stability of DFE

Consider, now, the full model (4.1). Its DFE is

t3-(s.,ILI;,AL,Ai.,I;.):(rll¡r,0,0,0,0,0). (4.11)

next generation matrices are given bv;Further, the

ßs'nÉaélnÞuêl
¡t' " N'

o 4q o P'?'s' o

00000

00000

00000

Pj O000

0Pn00-?u,r

où0Pi:0-Ao.

0-o,0Pr+0

-ru0-r-0Prs
wherc,

P¡: ¡r,io-lr-, P12: lr+o, P'3: p"1'6, lr., Pla: lr+ 6,, Pts: I,t: -y-,-l 0o.

It' follows lhal Lbe treatment reproduclion number, denoted bV Rln - p(FV-l), is

R!6: mar{R!,,Rt_},



with,

n, - 
A(Pt,r -tl,o,\ ^^-t.n, lJ L,t, - ---F;Þ, ¡no /ú; : 

P" t, -

The foìlowing result holds by Theorem 2 of [87].

Lemma 4.2. The DFE o,f the mortel (4.1), gilen by (4.1I), ß LAS if R|ó < L and

unstabLe il Rto > l.

Further, u'e claim the following:

4.4.2 Global stability of DFE

Theorem 4.6. Tlte DFE of the model (4.7), qiuen by (4.I7), is GAS wheneuer RI < I_

Proof. The ¡rroof is bascd on using a comparison theorem. Nobice, firsl of all, ihaû the

(Pts -l 0r*) + qrr.(43 + d.)ì
;G +1,,) + áoJr + d.f I
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equations for the infected components in (4.1) can be written in terms of

dr_(t)
dt

dr,(t)
dt

dA-(t)
dt

dA,(t)
dt

drr(t)
d,t

:(r-v)

L,(t)

L(Ð

A*(t)

A,(t)

Ir(t)

/ s\- (''- t/

defined above.

130 þ',t- 0 þn,

0P 0,ßq,0

00 0 0 0

00 0 0 0

00 0 0 0

h(t)

L(r)

A.(t)

A,(Ð

Ir (t)

in D, itwhere the natrices F and

follows that

l/ are as Since,9 < lr' (for all I >



dr-(t)
dt

dI,(J)
dt

dA-(t)
dt

dIr(Ð
dt.

<(F -v)

h(t)

r, (t)

A-(t)

A,(t)

Irft\

(4.r2)

dA.(t)
dt

Using ihe facl that the eigenvalues of the matrix F. - V all have negative real parts

(see locai stability result in Lemma (4.2), where p(FV-t) < I iÎ R!0 < 1, rvhich

is equivalent to F - V having eigenvalues with negative real parts when 7?fi < 1),

it follows thàt the linea¡ized difierential inequality sysiem (4.12) is stable whenever

R'o < L Consequently, (I-(L),L(r),A,,(t),A,(t),Ir(t)) --+ (0,0,0,0,0) a.s ¿---+ oa.

It follows by comparison theorem (see, for instance, 156], p. 31 and [83], Theorem

8.1; Appendix B) that (1-(t),f(t),A.(t),A,(t),Ir(¿)) + (0,0,0,0,0). Substituting

I- - I, : A-: A,: Ir :0 in the first equâtion oI (4.1) gives ,9(f) -- S. as ú -+ 66,

Thrrs, (s(t),d,(t),r,(L),A.(t),A.(¿),¡'(¿)) --+ (S-,0,0,0,0,0) as f -* co for 7?l < 1,

so that á,j is GAS if R| < I n



4.4.3 Existence and local stability of boundary equilibria

The cxistence and stability of the equilibria associated with the model (4.1) is invesbi-

gated here. The possible equilibria of the model are:

(i) Resistant strain-only boundary equilibrium tj : (S-,0,4,0,4,0); (no wild sirain);

(ii) Low endemicity co-existence equilibrium, corresponding to I, : g, ¡,.: 0 in (4.1),

denobed by EL,1 :('S-,II,4,Ai",Ai,Iî); (both strains co-exist);

(äi) Hzgh end,emicúu co-existence equilibrium, denoted by t!",2 : (S.., 4., 4-, Ai, Aî" , ry),

(both strains co-exisi).

It should be noted that hhe model (4.1) cannot har.e a wild strain-only boundary

equilibrium, except if lim 1r : g.
t-oa

As before, the nodel (4.1) is solved ai steady state, in terms of

ana 
^¡

(4.13)_ þ(Ii. +n,Ai-)
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grvrng,

,IIç'". - _" - t.* j \.r L,/\ul/\lltL

(o- + hz)rÀi,il
&r(Àiï + Ài- + p)[P13(p + u,) + 1o*(p + 6-))'

(4.14)

,.. _ Ài" Plt{Pn(p' + t-,.) + qo-(u' + õ-)} + t,,,)ir.(o.,, + Pn))n

" (Àil + )i- + p)lPrs(p + ?-,) + 0o,,(¡.r, + 6.)lp¡p¡2 '

ø, [Ài-&r {Prs(p + 6,) + 9o.(p, + d,,)} + r-,Àir-(o- + Prs)]n
(À;-+4. + p)lPç(¡l +1-,) + 9o-(¡,t + 6.)lPúPnPr4

Substituting the components of the equilibrium at steady state into the expressions in

(4.13), gives (noting thai ¡ú-- :.9--+1;-+ I:. +Ai + Ai- + $.) a fixed-point problem

of the form

¡ - ú(¡)- f 
" '^t ^t 'l 

rvirh r: f^''l¡ - v(¡): 

1,,,^r.^,.,J 

tvith r: 
l,,,J

where {,1 and f2 are definerl as the right-hand side of the resulting two equs.tions,

respectively.



Existence and stability of resistant strain-only boundary equilibrium (áj)

Theorem 4.7. The model (4.1) has a uni,que anrl LAS resisl,o,nt stro.zn-only ltctund,ary

equi,líbriu,m, €|, uh,eneuer Rl", < I < R!,, and no bou.ndary equ,il,ibrium otherwise.

Proof. The proof is as in Section 4.5. Here, ú(0,Ài-) - 0 so that ihe fixed point of

lr(Àli, Àï.) is obtained by solving the equalion lz(0, Àï.) - );-. It follows thai l].

satisfres the equation

a33li.+ò33:[,

lvhere,

asz - Pts -l- o, and b*: Ptzh¿\ - Rt).

Here, Ài- : -bzz/azz. Clearly, ø33 is positir.e. and whenever Rt. > 1, then ò33 < 0

(Ài- > 0). Hence, a unique resistant strain-only equilibrium exists whenever 7?f > 1

(note that 7?l < t here). For the local stability of this equihì:rium, the Jacobian of rl,

given by

( auí^i. 
^',' 

) Adr {);. À;' )

, I ðÀ1: a^i

"-l
I Aer(^;. 

^;') 
,u?();:. À;')

\ ôr;. a^,

is evaluated at (0, À)-). This gives



r(0, );-) :

where,

Further, for st,ability, we require &., @i > 1) and # ., @t- < Rf). Combining

all these slrows ihat tj is LAS provided Rt- < 1 < R!,. tr

4.4.4 Existence and local stability of co-existence equilibria

Existence and stabiìity of the low endemicity co-existence equilibrium (t1., )

It is worth emphasizing here that, in the absence of transmission of the resistant strain

in the community (À, : 0), individuals infected with the wild strain will still develop

resistance, due to treatmenL (thereby moving into the ARV-resistant clâss, (f)). Thus,

the 1. and A, compartments will alwa5's be non-empty (even when ), : 0), excepl if

,11*lr 
: 0. In other words, ìim I l0 and ,lit¿. + 0 even if ),.:0. Since the

equilibrium is obtained by setting À, :0 (so ihat 1" : A, :0) in (4.1), it is terned the

low endemicity coexisience equilibrium (to distinguish it from the other co-existence

equilibriun for which À, was not set to zero). We claim the following.

;l

¡tL Rt,
Itur : ã;.
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Theorem 4.8. LcLRt"--''n- 9-O *,,0

,.^ : (ôu, *ô"r\l ,_,- f ðu. ô,-t2 Aúr ôur\l.o : 
\ u; t ð^; )' 

^r o, 
tno 't : 

\r¿'r^t - a¡- a,lt / ],,--,n,

In the, absence of infectzon by regislant strazn, (\, : 0), tne mod,el, (4,I) has a unzque

and, LAS low endemicity co-erLstence etluilibrium, denoled by €[,r, wheneuer R!- > 1

and )Rtjl < r.

Proof. Letting Ài- : 0 in (4.14), accounting for the absence of transmission of tbe

resistant strain, gives

c.. n ,., ø,);lIT( \'. + ttt ttPt-, I 0r,")"-\','-r ^":M

Àiirr
Plr (Ài,' + p)'

(Ài+p)-'(ø-+Prs)tuÀïn
(4,15)

P,tlPtz(p - 1",) ' 0o, (p 6.))

,." _ II1..À;r.t^;'pf tro,- P13t flo.1,, \1r.1)ij - tlJ tlo" + Pß),.ffiffi
Substiluting the expressions in (a.15) into the expression for Àii in (4.13) shows thàt

the non-zero equilibria of the model satisfy

rL,aaÀä ¡baa:g, (4.16)
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where,

at¿. - (.Pn -l o-)11-,r-(P1a r o,) * PuPn(r- f' Pn)),

baa - Py1Py2P1+[ùz(p + ^t-.) + 0o-(¡r + d.,)](1 - ßL).

Here, now, À[ - -baafo,aa; and it is easy to see ihat aaa is positive, while 7?L > 1is

required for öaa ho be negative so that )- > 0. This proves the existcnce of the low

endemicity co-existence equilibrium. Its local stability is invesiigated by evahrating the

Jacobian J ai (Àj),0), giving

Al'r(Àli, )1")l \ô)Ë l,^,,,0, 1

I

A1þrl^:,' , ^î')l Iô\* 1,,,.,,,,,/

12 .,(YL- 9!z\ *(Y!9!L 9!i4¿ll :o"\ar; ð\i- )),¡¡;.ot' \a.l;-a.l;. ôÀ;.dÀ; /1,,,.,n,-"

It is easy to show that the dominant eigenvalue of J(Ài,0) is Rf. Hence, the low

endemicity equilibrium is LAS whenever lRt|l < f . !



Existence and stability of the high endemicity co-existence equilitrrium

(ti,,")

First of all, it sÌrould be noted from (4.13) that, ai steadv state,

where,

u_)ùrrútoü.P¡lRt,-I,o"
ffi' 1r'- pn' p*p,,'

u o,(P15 1rùt- r"lo,.- n3) I 1¿rrù\où-Ptr) l, . "".lItt 
M- 4- lP,"w | )à . \tJtt 4.\PrtP" L' 

- P"]

Thus, (4.17) is equir.alent to

so that,

/ñ1 
-1\ 

\ *a
l\ /!ìrr - /r;r^r

"_:--F- (4.1e)

Since the left hand side of the first equation in (4.18) is positive, it foììows Chat 7?l > I

for consistency. Note also that for co-existence of the two strains, the fo¡ces of infectio¡
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Ài-, and )]*, at steady-state, must be nonzero. Hence, from (4,19), 7?L > R| (i.e,,

)- > À,) is required fo¡ the co-existence of the two stràins. Thus, we have established

the following result.

Theorem 4.9. The mod,el (4.I) has a unique pos,itiue hzgh, endemi,c,ity co-eristence

endem,i,c equi,Libri,um, €[,2, when,euer Rl- > R!, and R!- > \,Rt, > L

Theorem 4.10. Thc, unique ,posi,t¡ue co-eristence endem,ic equiliÍtrium of the model

(4.I) ß LAS uh,en,euer R1,,. < L

Proaf Evaluating the Jacobian of tlr a"t (Àff, )]-), gives

/'"'fi!j,^- 
^.., 

ry#Jll,^. 
^,,)

J();1, À:-) : I

l*-^-J,,,. ^,., 
&ufril 

i,^,, 
^,,, 

,J

with eigenvalues given by the roots of the equation,

, (ðtþ, Aúr\l
\- - \ \ aÀ;- 

* a.y / i,^,,,^,.,

/ ôtþ, ðtþ,
' \a)il ô4-

The dominant eigenvalue of J(lf , )i-) is given by

,1- /,1-.1 ñ
ñr r11 l Vlll -+-r21

2



where,

- ( ð"t ôçz \ | ( ðçt ðçz ôç,, ôu, \ I./r :l_-i_| ùlìo lat_t__ ___t" \ ôÀ; ðÀ.' ,/ ', ,:-.r:. , \ ôÀ; ôì;^ ô^;' ô); ) ,r-.- ,^r,,

Thus, the co-existence equilibria is LAS whenever lEt_,.| < I.

!

It is clear that the treatment model (4.1) exhibits some dynamical feaLures whicl.i are

difle¡ent from the treatment-free model (4.2). For example, r¡'hile the treatment-free

model can havc an infinile number (continuum) of coexiscence equilibria when ihe

reproduction nunbers of the wild and resistant stra,ins are greater than unity, the

treatmeni model sÌrorvs coexistence only when the reproduction number of the wild

strain is grea.ter than unity and exceeds that of i,he resistant strain.

It is worth to emphasizing that whenever Rl. - Ri: 1, then Àü : 0 and equation

(4.18) reduces to

^i- 
H2:0 + );- : 0.

Hence, if both reproduction numlters are the same ancl equal to unity, then À;- : 0

and l;' : 0; corresponding to the DFE. Finally, the case when Ri > R- > 1 results

in )f < 0 in (a.19). In lhis case, the equation to, f in (4.1) becomes

dI- _ \ o
a : - ¡' s - \ P + o. - r,) /, .

< -0t+o-+r.)1.,
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so that lim 1- : 0. Thus, the system ol equations in (4.1) becomès decoupled in A-

and !., giving

(4.20)

It easy Lo show that the system of linear dille¡ential equation (a.20) has a unique

equilibrium (AL,I+) - (0,0), so that eventually all the components of the wild strain

goes to 0 whenever R!. <Ri. Thus, Theorem (4,7) is not only valid lor Rt <7 <R|,

it is also valid for R| < Ri. In summary, whilst the treatment-free model has a

continuum of co-existence enclemic equilibria, the treatment-f¡ee model has a lorv and

high endemicity co-existence equilibria.

4.5 Numerical simulations and discussions

teatment-free model: The treâ.tnent-free model (4.2) is simulated using the pa-

Ìàmeters in Table (4.2). Wrth this sct of parameters, ancl B : 0.05, o- : 1.9, ¡¡.

reproduction nunbers ß- : 0.3003,7?" - 0.7234, so that R6 :0.7234 < 1. Thus, by

Theorem (4.1), ihe DFE is GAS, Figure 4.3C depicts simulations of this model, under

this scenario, rvith various initiaì conditions, confirming the global asymptotic stability

property of the DFE. Additional simulations, shorvn in Figures 4,34,8,D,E, illustra0e

tlre fact that, for (7è¿ > Ri) wiih Ri > I (i, j : u, r) and (i I j), the st¡ain with

tbe higher leproduction number always drives out the other (competitir.e exclusion).

d4.,,

i : -t,. - P - ð.)4, - 0o.t7.

dI-
,i -,,1* . (tt- )., t 0o,\tr.
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This is in line with Theorems (4.2) and (4.3) and Conjectures (4.1) and (a.2). It is

also shown that whenever the two reproduction numbers (7?- and 7?,) are equal and

greater than unity, the t\ûo strains co-exist -uzø a continuum of co-cxisling equilibria

(Figure 4.3F).

Tbeatment model: The ¿reatment nodeì (4,1) is simulated using the parameters in

Table (4.2), unless otherwise stated. These simulations show that the wild strain dies

out wlrenever ßl < 1 (Figure 4.54) or R| > Ri > 1 (Figure 4.5C). ln both of these

cases, the resistànt sttain dominates (wins the competition). For the case where Rl

exceeds Rf, it is shown lhat, both strains co-exist (Figures 4.58, D). Here, iL is worth

noting thât the resistant st¡ain has a higÌrer steady-state prevalence.

Simulations for tire case where 7?l and 7?f ale equal and greater tban unity shows

the dominance of the resistant strain, while the wild sLrain dies out (Figurc 4.74).

When 7?l and 7?f are equal and less than unity, the t$'o strains die out (Figure 4.78).

This (latier) result also holds for Rt-: Ri : f .

4.6 Sumrnary

Il summary, Lhe maìn frndings in this chapter are as follorvs:

(i) Boih ihe treatment-flee and the treatment model har.e a globally-stable DFE when-

ever the ma-xinum of ihc two reproducLion numbers for each rnodel is lcss than

unit¡r Thus, efiective disease control, or elimination, is feasible using ARVs;
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(ii) Fol fhe treàtment-free model, the strain with the higher reproduction number

always dominates, and the othe¡ strain goes extinct;

(iii) The treatnrent-free modeì can have a continuum of coexistence endemic equilibria

when the two reproduction numbers are equal and greater unity. This featu¡e is

not present in the treatrnent model;

(iv) For the treatment model, competitive exclusion occurs only when Rf > 1 and

R', > Rt-;

(v) Unlike in lhe case of the treatmeni-free model, the treatment model exhibits a low

and high endemicity co-existence equilibrium under certain conditions.
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Table 4.1: Description of variables and paraneters for modeì (4,1)

Parameters nominalvalues

S(¿) susceptible indrviduals

h(t) ner¡'ly- and asymptomatically-infected individuals

infected with wild strain

L(t) nervly- and asvmptomatically-infected individuals

infected with resistant strain

A-(t) AIDS individuals infected with wild strain

A,(t) AIDS individuals infected witÌr resistant strain

Ir(t) treated infected indivicluals

lI recruitnÌent rate into the sexually-active population

þ Latural dealh raie

6- disease-induced mortality for individuals in AIDS stagc

infected u,ith wild stra,in

á" disease-induced mortality for individuals in AIDS stage

infected rvith resistant strain

n- relative risk of infectiousness of AIDS individuals

infecied with wild strain

nr relative risk of inlectiousness of AIDS individuals

infected wrNh resistant strain

\r relative risk of infectiousness of treated individuals

aù) progression rate to AIDS for individuals infecled

with wild strairr

oî progression rate to AIDS for individuals infected

rvith resistant strain

ru treatment rate for individuals infected with wild strain

^lur rate of resistance developmen[ of treated individuals

A modification factor for progression io AIDS by

treated individuals

ß contact raiìe

92



Table 4.2: Parameter values for model (4.1)

Variable/Parameter Value

õ-

ó,

'q*

n,

nT

ou

or

Tu

0

p

1000

1/32

0.09

0.08

1.5

1

0.008

0.2

0.1

0.5

0.5

0.8

0.4



(c)

W wirds,râin

e-?/-/;t-;,/-"7
I Resistant strain

Figure 4.2: Prevalence (total number of infected individuals divided by ihe total pop-
ulation) as a function of time for model (4.2). (A) 7¿. > R.,, > I (o-: 0.5); (B)
k,,,>R,>1(ø-:0.t); (C) R, <R-<7 (o-:0,1.p: s.s5¡ (D)R-<L<R,
(o- : 0.7,13 : 0.05, q" : 2.2); (E) R. < 7 <R- (o-:0.1,4,,: z.z,B:0.0s); (F)
R- : R, > 7 (n- -- 1.42205). Other pârameters as in Table (4.2).



(A)

Figure4.3: Prevalence as alunctionof timeforthemodel (4.1) when: (A) Rt <I <Rt,
(É : 0 3); (B) ßl < r < RL. (o, : 1 1, d, : 0.8); (C) Ri > R'- > Ii @) Rl, > Rl, > I
(o-:0.3,o,:0.6,ô.:0.8). Other pârameters as in Table (4.2).
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(A)

02

Time lvears)

Figure 4.4; Prevalence a.s a function of time for model (4.1) when: (A) R!,,,: Rt, > t
(0 :0.2,n-: LTs505,o-:2.6,6.: 1.8); (B) R| - Ri .I (P :0.1,n.:
L79505,o-:2.6,õ,:1.8). Other paraneters as in Table (4.2).
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Chapter 5

HIV Vaccine Model with

Differential Infectivity and

Staged-Progression (DISP)

5.1 Introduction

The models discussed so far in this thesis are based on the use of ARVs. Fu¡ther,

none of the models in these chapters incorporâte the differential infectivity and staged-

progression properties of HIV disease, In this chapter, a HIV vaccine nodel which

accounts for ihc above properties will be designed and analyzed.

Tl.re key motivation lor modelling HIV vaccine is the fact that whilst the use of

ARVs has resulted in significant decline in HIV burden in rich nations, HIV prevalence

and AlDS-related mortality continue to rise in most parts of the developing rvolld



(largeìy due to the lack of r.videspread availability of ARVs in these nations). This.

together with the dangers associated rvith the evolution and transmission of ARV-

resistanl strâins, râises a major dilemma in the quest for efiectiveìy controlling HIV

globally. It is now believed by many that using a r.accine is necessary for combatting

HIV spread globally li9, 27], Although a number of anti-HIV vaccines are undergoing

various phases of clinical trials, it is generally believed thab any future HIV vaccine wiÌl

be imperfect. That is, it may have lower efficacy in protecting against infection and/or

result in a shori,er duration of proteclìon in successfully immunized people than most

traditionàl vaccines. ln addi[ion, by eliciting broad cellular immune responses, such

a vaccine nay reduce viral RNA concentrations and reducc infectiousness in infected

vaccinated individuals. The vaccine may also offer some therapeutic benefits ltv altering

the clinical course of Lhe disease (see 126l and relerences thercin),

This chapler focusses on analyzing tl.re potenbial impact of an imperfect HIV vac-

cine. The vaccine is assumed to have numerous characteristics, such as having ellect

in some, but not all, peopie; reducing, but not fully eliminatrng. susceptibrlity in those

immunized; waning protective immunity with iime; reducing the transmissibility of

virus and/or reducing the mean duration of infectiousness of breaklhrough infections.

In this chapter, a HIV model, incorporâ.ting the above vaccine characteristics ¿s well

¿s the aforementioned difierential infectivity and staged-progression nature of HIV

disease will be designed, While the difierential infectir.ity component accounts for

the variations ln viral RNA amongst infected individuals (those with high viral RNA

upon prinary infeciion are more infectious and progress to AIDS fasler than those

98



with low viral RNA), the siaged-progression component accounts for the fact tìrat an

HIV-infected individual typically passes through several infection stages, being highly

infectious during the pre-antibody phase (primary infection stage), maintaining lorv

inîeciil,ity during the asynptonàtic phase (secondary infection stage), and becoming

highly infectious as s/he progresses toward AIDS (AIDS stage) 129, 45, 49, 60, 66, 711.

These properties (differential infectivity and siaged-progression) are essential aspects

of HIV transmission clynamics, and incorporating these in our model adds to its realism

(albeit signiflcantly adds to the difficulty in tbe mathematical analysis),

5.2 Model formulation and basic properties

The total population, -l/, is subdivided into mutually-exclusive compartmenLs namely

susceptible (5(f)), vaccinated susceptible (V(f)), infect'ed individuals in the difle¡ential

infectivity group i stage J (V,j(t)), for (i,j : 1,2), vaccinated infected individuals

in the differential infectivity group i stage .j (W,,¡(t)), for (i, j - 1,2), HIV infected

individuals at the AIDS stage of infection (A(¿)), so that

¡/:,e+ v+ffø,,+tv,,S
i=t j =1

The susceplible population is increased by the recruitment of individuals (assumed sus-

ceptible) inio the population at a rate À. These individuals acquire infeclion, foìlowing
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contact with infected individuals in the Y¡, l4t"¡ (i, j - 1,2) classes, at a rate À, rvhere

?)
22

):tt(P,.,2*,,.,p,.,
ãã\ rv

IN is assumed, for mathenatical convenience, that AIDS individuals do not partake in

further HIV transmission. The parameter B¿,¡ is the efiective contact raie of infecled

individuals in subgroups (4,¡ and 141;,3), while s;,¡ is the relative risk of infectiousness

of vaccinated individuals. A fraction, p1, of the newly-infected unvaccinated suscep-

tible individuals move to lhe differential infectivity group 1 stage 1 (Y1,1), while the

remaining fraction, p2 : 1 - Pt, nove to the diflerential infectivity group 2 stage 1

(Y2,r). Infected individua,ls in ihe unvaccinatcd difierential infectivity group 1 stage 1

(Y1,1) progress ío unvaccinated differential infectivity group 1 stage 2 (Yi,r), at a rate

ø1,1; rvhile inlected individua,ls in the unvaccinated difierenLial infectivity group 2 stage

1 (Y2,1) progress to the unvàccinàted difierential infectivity group 2 stàge 2 (Y2,2), af, a

rale o2¡. lnfected inclividuals in difTerential infectivity groups 1 and 2 and stage 2 of

infection progress to the AID stage at à Ìâte o¡2 ànd ø2,2 with ø1,1 < ø2,2 respectively.

It is assumed lhat a fraction, p, of susceptible individuals are vaccinated. It is furthe¡

¿ssumed that the vaccine induced protection acquired by vaccinated individuals wanes,

at à rate 1 (so that tÌrese vaccinated individuals move to the susceptible class at the rale

1). Since vaccinated individuals are not fully-plotected against infection (owing to the

vaccine impcrfection), it is assuned that vaccinated individuals acquire infecbion aL a

rate that is q times lower than that of unvaccinated susceptibìe individuais. A fraciion,

îr, of the newl¡-i¡fs.¡.¿ r'accinated individuals move to the vaccinated difierential in-
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fectivity gloup 1 stage 1 (1411,1), while the remaining fraclion, 12 : 1 - Tr, move to the

vaccinated diflerential infectivity group 2 stage 1 (l,Yr,r). Infected rndividuals in the

vaccinated difierential infectivity group I stage 1 (14/1,1) progress to vaccinated difier-

ential infectivity group 1 stage 2 (W1,2) at arate 01,¡oy,1, while rnfected individuals in

the vaccinated cìifierential infectir.ity group 2 stage 1 (1,fi2,1) progress to the vaccinated

differential infectivity grou¡r 2 stage 2 (W2,2) aL a ra1e 021o2¡. Infected individuaìs in

both final stages progress io the AIDS stage ai a rale 01,2o1,2 and 02,2o2,2 respectively

(where d;,¡ < 1(i,j: 1,2), account for the reduced vaccine-induced progression to

AIDS). Further, natural mortaìity occurs in all classes, at a rate ¡2, and AIDS individ-

uals suf{er a disease-induced deaih, at â. rate a. In summary, the difierential infectivity

and staged-progression (DISP) HIV vaccine model is given by l78l (see Figure 5.1 for

a flow diagram).
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ds
,tt -(I -p)Â- 9"9-)S I tY.

d.v

dt - pL- pV - q\V - 1V.

,1.v.
¿i : pr.lS - (p * or,,)Y,,r,

dY"
-it - o,.,Y,t - (¡t - o1.2)\'1.2.

,1.Y".
-ä:rr¡s-(p+oz¡)Yzt,
dv. "

dt - "r., r2,t - \lt - u2.2t ¡2.2.

d.w..

- 

- rú^V - (p 01.1o1¡ì)W1,1.

d.tv,,,

1f - o1.1AttWt.t - (u 012o12\W12.

dw",
1l - nzqV - (p - 02.1o2.1\W21.

oY" :o",e,,v',, - tu-0,,o,,tw...
dt

d,A
- : otlY.z I o22Y22 * At 2o 1,2W1p I 02,2o2,2W22 - (a + p)A.lt

(5 1)
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All the parameters of the model (5.1) are assurned to be non-negative. Using

the method described in Section 3.2.1. it can be shown that the following region is

positively-invariant and attracting

D : {(S,V,y¡,y1,2,y21,y2,2,w1J,w.t,2,w2J,1412,2) e Rf :

S +V +Ytt TY,z t Y2,1 t Y2,21Wt¡ I IUt,z i lVz;t -1W2,2 < A.l¡t).

5.3 Vaccination-free model

5.3.1 Local and global stability of DFE

We consider, firsb of all, the model (5.1) in the absence of vaccination. In [his case,

p :1 : V : Wtt : 1iy'1,2: W2¡ : lVz,z - 0. so that the model (5.1) reduces to

dX
dt - tt- Pò - ^òl

d,Y, ,.'.,' _ p¡sÀ _ (u + o1 r1y., r,
dt

I ll -l d1 . I Yi adt -',-'
dY. ,._::* p2o^- \t1 1 n?1trt1,

dî

dYz,z

-lr - "r,trr., - \p -u2,2tr2,2.

d,A
n :o,.rYr,, oz,zYz,z - þ t p)A.
at

(5.2)
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2 2 n ,,l_t...-/lrir::

^: ),) _ 
Ii;_r and ¡/ : ,S + yt 4- yt2 t yzt t yz2 r A

i=\ j=r

The model has a DFE given by,

\\'ith,

r0 : (,s-, yil, y1i2,y;þy;,2, A.): (Â/a,0,0,0,0,0)

Here, lhe next generation màtrices âre given bv
ptlSttS" pt,ßt,zS* ptllztS* ptþz,zS*

lv- N- ¡/- ¡/.
0000

pzl3ttS* pzlSt,zS- pzl3ztS* pzþz,zS*

¡/- lir- ¡/. ¡/.
0000

(5 3)

I{,t, 0 0 0

-otJ Kss 0 0

00I{st0

0 0 -ozt Kzs

I(32: ¡,t i ø1,1, 1f33: lr+o1,2, K3a-- ¡,r" 
-l o2,1, K3s- 11 +o2,2.

Thc basi,c reproduct'ion number, R6 is given bv

.n ^, ¡:tt-t, t'tl\-3tKrs(4.1|{y1 A¡,2o1¡) - p:Ks2l(T\B2J I(3s - 1z.zoz.s) .- ../rrl -/,\r, ,- .".*t

Thus, ihe follorving result is established.

Lemma 5.L. The DFE of the uacc.Lnalion-Íree m,odel (5.2), g.tuen by tç., is LAS iJ
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R¡ < I onJ ,.tnstoble {Ra > L

Further, lve claim the following result.

Theorem 5.L. The DFE of the uaccinati,on-free model, (5.2), giuen by to, i,s GAS iJ

Ro<7.

Proof Consider the Lyapunov function given by,

n $.11(y Bt,zot.t ,, 0r,r,, Azll{ss'1- ß2202¡ ,, Bz.: ,,
" - KrrK"o '"-K*'t'' K----K;K;-tzt - nttz

with Lyapunov derivative given by,

8t,11(r3 - Attot¡ ,., ?t,z i, 82¡lfi-. 1z.zoz.t,., . þr2 .

-Ìtf; 
)"-ä)'' )i''tËlã'

.J1,11(s ' 0¡,2o1,1 . ßr,z 
.

/fa,lf33 l/)lJ^- t132rllt+ 
.J{lntolrrtt - /133r121'

ß. ,I("^ + ß".o", ß,"*ffi(¿SÀ- KuYz:) t 
n4l,(oz.tYz.t - l{ssYz.:).

n,, fSp¡ K3all35td11l{ytA.1.2o1,1) I p2l{321(3¡t 82.11(35 102,2o2,1) ,l'"1 
,

, I hl(u/(ìs( 0t.tK¡ - 81.2o1.1) t p2K32K¡( 02,1 l(3-o 82,2o2,¡) ,l
''l L lt 32Ksll3al{3., l

Àr(7?o - 1) <0 for S(N and 7?¡ < 1.

where,

22
r. -\-\-n. w'L 12 12 Ptt J tit

The proof is completed using similar argument as in the proof of Theorem (3.1). !
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5.3.2 Existence and local stability of EEP

Setlir.rg ihe right hand side of (5.2) to zero and soh.ing at sieady sNate (i.e., I'hen

Ytt I Yt2 I Yz,, I Yz,z l0) gives át : (S--, yr:i, yr:;, yr:i, Yfj), where

,9-'

Y;.i

^ 
,,,, f,)"^ o¡1p¡À 1\- p -\- 
I r'r = K3:{p r 

^J' 
rl' : kiKi*, -T)'

_ f.3 \' ,4, 1/^, o2 1p2)'- 1\

l(r.W f, f 
t22 lr*lr"(p I À")

(5 5)

Using (5.5) in (5.3), it follows that the endemic equilibria of (5.2) satisfv

)--^(¿,3À* + ca) :6, (5 6)

where,

fu : p2K32Ks(Kss * oz,t) + \K34K3E(Kß * o1,1), ca : K32I{sK3aK35(1 - 7?o)

Clearly, À** :0 is one solution, which corresponds to the DFE. The otÌier solution is

(5 7)

It is easy to see that ö3 > 0 and that for ) > 0, it is necessary that ca < 0 (i.e., 7?¡ > 1)

Thus, the model (5.2) has a unique positive endemic equilibrrum whenever R¡ ) 1

Tiris result is sunmarized l¡elorv.

Theorem 5.2, The uacc,ination-Jree model (5.2) has a unique poszti,ue end,ernic equ.i

03
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Li,briunt, 'if anrl only ,il Ro > \.

Further, the following result can be established.

Theorem 5,3. The unique positiue end"emi,c equ.tli,brinm of the mor)et (5.2) .is LAS

tuheneuer k¡ > 1.

Proof. LeL

22nv+)
)"' : It *i;:' 

(s 8)z2 !2 t\t\t

Suì:stituting (5.5) inio (5.8) and simplifying gives a fixed point problem of the form

).- : /(À-- ). wtrere

rvith,

// \r1\ 
- 

À--CJ
J\\ i 1+)-c4'

c, - hþ" T)-#,(u,,-ryi)
"' 

: h(*H).' &('.æ),

/'()'.):C#ep



Evaluating /'(À.-) at (5.7) shows that

f'r.l"ll :* ro,t.,,{7'¡,1"1¡ } <lwr,eneuerR¡> rl^-- Ro ll' l^..i1 '- -'--

n

5.4 DISP model with wholly-vaccinated population

Consider model (5.1) in which every menber of the population is vaccinabed (obtained

by setting Yt : Y,z: Yzt: Yz2 = p : 0 in (5.1)), given by

* :,x_r)v _ ¡,tv,dt
dlli.l
-r_- - rtqÀV - (p 1 01 1o¡..)1V1.1.

clW, 
"--¡f : or¡or¡wt't - (P + o¡2o1'2)w1,2'

ttwz.t (5 9)

:ãï : rzqSV - At * 9z,pz¡)Wz¡.

d.w,"" ." - o",0",W,, - (u, 0..o..tW.".
dt

d.A

o¡ : 01'2o1'z\lt'z * 02'2o2,2W2'2 - (a+ p)A,

wirrrrv - " iit4l., and 
^:U-U,,,,u,,,Y#t=1 t-1 ;=t /-l



5.4.I Local and global stability of DFE

The model (5.9) has a DFE given by

to, : (v",wir,w;,,,wi,r,wi,r) : (^/É¿,0, 0, 0,0)

with the associated next generàtion matrices,

r7qs1,1þ1¡V+ r¡qs1,2B¡2V*

(5.10)

00
r2qs1,1131,1V* r2qs1,2B¡2V*

0 0

túszlAz,tV*

0

îc(t,s¡ . ß" .Va

¡/-
0

tt os¡ t& cV+

¡/.
0

troos¡ "ß" "V1
1V-

0

000

I{y00

0 1{38 0

0 -0..o". K""

where,

I{36 - ¡.t lA1¡o1,r, I{tz: p101,2o1,2- Kss: ¡t *02¡o2,1, K3s = p1A2,2o2,2.

Thus, lhe bo,sic uacctn,o.ti,on reproduction number, denoled by Re, : p(FV-t), is

o - 
q[¡rJ{ssl(.ts(s1,1fi ¡ I{37 I s1,2!J1,2o1,¡0¡¡) I r21fi6K37(s2,1p2JKss I sz,þz,ozJ0zJ\]

,t ta r\t t rtrtt,
(5.11)

I ,.*

1.,''

The following result is established.
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Lemma 5.2. The DFE of the model (5.9), giuen by €¡,, ,is LAS tl Ro, < I. and.

unsíabte 'if RM > I.

Further, we claim lhe follou'ing.

Theorem 5.4. The DFE ol the mod,el (5.9), g,iuen bg ts,. is GAS ,if Rs, < L

Proof. Consrdu the Lyapunov function given lty,

, _ s.:Attl(y._ s.t.¿Bt.zot,tÊt.t ll,. _ ll39J:11¡.,,
ll36K37 " Kst

szJlSz.:, Kß s:z1zút¡t1t t... s¡"8"^

^381139 
lf 3s

with Lyapunov derivative given bv,

F _ tr¡0r,rKtt\"Ft,"ot¡0rl 
W,, + 

t#Wr,,

fu*rr**r",
s¡ ¡6¡.¡/(37 - s.2a12o¡ ¡0¡ . r^v K3¡w1.1\ - 

slllro,at.tws.t 
- KtrrÀ t,r)

-----K;7;--'"'e 
" "3u' r r'r ' Ku """

s" 
' 
B, , K"" , .s, "ß".o" ,0" , s^ "8" "(rzqÀV - /l38TI/2,r)- fi(or¡9r.,l 2t- I(rtW2 ¿)

nr,ll'qIn1,](3s,K31{s1.¡6,,¡/137-s1.2A1.2o1¡A7,7)-tr21{36K¡17\s2,1ß2,11(y*s2,2A¿,2o2.102.¡)l ,.]"'L l
, fÇi;rr/(rs/f:sts tt13t:Jl,tz - s7.281.2o¡.¡011) L n2K3ol(371s2 182,11(3s - s2,2 62,2o 1¡A2,1)) ,l,'-L _']

\z(ko, - 1) < 0, for I¡ ( .fy' and Ro, ( 1,
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$¡here,

22
rr-I\s;.¡B; ¡tV¡.¡.

i=1 j=1

The proof is completecl using similar argument as in ihe proof of Theorem (3.1)

5.4.2 Existence and local stabilitv of EEP

Solvrng the sysiem (5.9) at steady state, in terms of À.-, gives

n

r4¡i.; =

Â ,,.,., irlg)-^Â 02p21r¿q),'' l\
I l^" "' t r - 1ç* 1r- qÀ- I 

v' 2'2 - lrrsl(3r(t- q \1
0tJotJrú\+* l\

lr36^17ll/ + q^" J

(5.12)

(5.13 )

rvith,

Substituling (5.12)

satisfy

22
\+.-\-\-" n un'.,
./'/2ÚI'JYIJN++

inio (5.13) shows thal the nor-zero equilibria oI the model (5.9)

örrÀ.. * crr :0,



with,

so thatr

bt : lnßI{ssl{s()(0tJot,t I Ksz) I ¡zqKnKtz(1z,pzJ + Kss)1,

c11 : K36K37K3sKss(1 -ß0,),

ctl
^ - -ålr (5. 14 )

It is worth no0íng that À** : 0 corresponds to the DFE of the moclel (5.9). Further,

ò11 > 0 and c11 < 0 whenever kç¡ > I. Thus, the model (5.9) has a unique positive

endenric equilibrium whenever Ro, > L Hence, rve have the following result.

Theorem 5.5. The mod,el (5.9) h,as a unique end"emi,c ecyr,tlibrium uheneuer Rou > 1,.

Theorem 5.6. The unirlue positiue end,emzc equi,L.ibrium, of the rnotÌel (5.9) ts LAS

wheneuer R¡,, > 7.

Proof SubsLiLuling (5.12) ilto (5.13) gives tire fixed point problem of the form À** :

/(À.-), rvhere
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with,

a-nd.

," : H(0,.",, n åî*&) - ffi (u,,*,, 6z'szt9-?toz t).

"": H(.'#).ffi('.'#Ð,

!

TÌrus, in summary, both the vaccination-free DISP model (5.2) and ùhe wholly-vaccinai,ed

DISP model (5.9) exhibii similar qualitative dynamics (where the DFE is GAS when-

ever the associated reprocluction number is less than uniíy, and a unique and LAS

endemic equilibrium exisls when the number excceds unity).



5.5 Analysis of the full DISP vaccination model

5.5.1 Existence and local statrilitv of DFE

The model (5.1) has a disease-free equilibrium (DFE) given by

áo : l5'. V' . Y;.t.Yi.2. Yt).r.Y2..:.Wi.,.W í,r.W;,1.IV;,2\

- (lt t1 ptttl!. PÀ.0.0.u.0.0.0.0.01.
- \ pttt 1) ttt) """"""")

Using the uext gencrltion merhod. we have rhaL f: (C,,Cr) . *'fr"r".

(5.15)

Ptþt,$*

0

O.L)1 1Ò

1V1

0

r{1þtlV*

0

7T2q pl,1v
¡¡.
0

Ptl3yzS* ptþztS* ptl3z,zS.

¡/. iv- /ú-

000
pzhpS. pz1zt]* pzþz,zS*

¡/- ¡/. N*

000
¡rúþtlV* rt8l3z,tV* rúþz,zV*

lv- ¡/- ¡\¡.

000
¡¡zqþ+V* ¡rzQßzlV" ¡rzQl]z,zV*

lv. iv- iv-

000



Ptstt13ttS*

0

pzstt13ttS*

0

/¡ I Vr 1,t/Jtj1 v

¡¿'

0

7r2qsr,1ÞÌ,r V

It¡.

0

0

Pzst,zþt,zS*

0

r,os. '4. "V*
¡/-
0

rcos. ¡8, ¡V+

^Þ
0

Prs2,rP2,LÒ

¡/-
0

o.s, , ß, .5*
¡/-
0

îrqs2 J Ê2Jv 
*

0

ircos¡ t ß¡ .Va
/ú.

0

P1s2,2P2,2ò

N-

0

pz s z,z {Jz,z S*

0

zrúsz,zl3z2V+

0

ttcos¡ ¡ß¡ "V+
r\/-

0

a,nd,

Kzz

o 1,1

0

0

00

00

00

00

0

0

0

I{n

0

000

000

Kza, 0 0

-,r". IG. 0

00Kxt

0 0 -9tJot,t

000

000

00

00

00

00

0

/fss

-0zloz,t

0

0

0

Kzz

0

0

0

0

I{ro

wiih,

Kt - þ*1, K32: ¡LlotJ, Kez- 11+õr,2, Ky: ¡t,1o2,1, Kss: Iti_ oz,z,

K36 : pl01¡o1,7, I{37: IL-l 0y2o1,2, I{s: pt02,1o2¡, K3s: p102,2o2,2.
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The uacci,nation reprod,uction number, R,,o", is given bl

_ 1l ,4S' BV. l7(- - 1''"l*;*;n",*" fi.rr;.,<.uÇj (5 rG)

wirh.

A - ¡nK3aK35(Ér,r Il¡,r + 0t,zot,t) I pzKnKzz(þzlKss -l lz,zoz,t),

B : qltr2K36K3z(sz,rþztKæ I s2,2þ2,2o2¡A2,1) I K3s|çs1\(s1tB1¡K37 I s1,281,2o1,¡01,1)l

The following result is established by Theorem 2 oT [87].

Lemma 5.3. Tlte DFE of the mod,el (5.I), gi,uen by (5.15), zs LAS .¡l R""" < I and"

'unstable if R"". > L

5.5.2 Existence of backward bifurcation

Setting the right-hancl side of the equations in moclel (5.1) to zero and solving at steady

state, in terms of À, shows that the non-zero equilibria of the model (S.l) satisfy

aaÀ2 + baÀ -f ca : g, (5.17)
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\\¡here,

a a : qþ 1fi2 K 3a K 35 I{ 3{r 2 K 37 lfia(o t,z0 tz + 1l3s) + r 1 IQs K 3s(K 37 + or,r ár,r ) }l

tqlKt¡ KzsKssKss{pzKszKss(I{zs I o2,1) * p¡K3aKss(1ls3 + or,r )} (1 , p)],

ba - K37K36K3sK3gK7lp2K32K3.r (K:s -1- ar.1) 'l p1K3¡K35(Ks + ø1.r)J(1 - p)

lrzKzzKssKuKt5I{36K37pr1p"(K3s.|o¡,201,2)lpqpI{szKæKztK35K36K3str1(K37 I o1¡Ay,1)

lpjKeI{ssKzaKzT K3¿K3sp2(Ks5 -t ozl) * pj I{s¿I{t5K36K37 K3sK3spr (K:: -]- ø1,1)

lpK32K37K36K3aI{s5KæK3sK3s I K32I{s7 K36K3aKs¡Ili:/frgK38q(1 - p)(1 - 7?s)

-p Ks2q K3aK35Kssln1If36K3e(s1,1p1 ¡K 37 I s 1,2 81,2o 1¡0 1¡)

*tr2 K 36 K 37 (s 2,1,ß2 ¡ K 3s I s 2282,2o y,201,2))

ca : I{32K¡¡K3aI{35K36K371{3¿Kss(p + l)0 -R""").

I(; is worth noting lhat the coelåcient c.a is always positivc, and ca is positive (negative)

if 7?,"" is less than (greater than) unity, respectively. Hence, the following result is

established:

Theorem 5.7. The DISP model (5.1) /r,as

(i) a unique end,em,ic equi,li,brium, i,f ca 10 <+ R,". > 1,;

(ä) a unique end,em.i.c equ'iLibrium ,if ba < 0, and, ca : 0 or b|- 4aaca : Q

(iii) ftuo end,erni,c equilibria i,f ca > 0, b,, < 0 and bj - 4aaca > 0;

(lv) no endemic equilibnum oLherwise.
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Case (iiz) indicates the possibility of l¡ackrvard bifurcation in the model (5.1) rvhen

R"". < L To check for this, the discriminanL bf;- 4aaca is set to zero and solved for

t,he critical value of R,o", giving

't?' :r- LZ
- 1aaKyK32K3aKt4K35KB6K37K38I<3s'

from whicìr it can be shorvn that backward bifurcation occurs for vaÌues of 7?,"" such

tlrai Ri"" < R,,", < 1. This is illustrated by sinulating the model (5.1) wiih the

following sct of parameter values: p1 : 0.02, p2: 0.98, ø1,r : 0.72,o1,2 - 0.01, ør,r :

I5,o22 : 75,13r,,. - 0.55, {11,2 : 0.82, lJzt : 0.05, {lz,z: 0.02, sr,r : 1, s1,2 : 1, s2,1 :

\,sz,z - I,r1 - 0.J,,tr2: 0.9,dr,r : 0.5,ár,: - 0.5,021 : 0.5,A2,2 = 0.5,q :

0.5,¡,t : 0.02,1 : 0.07,^ - !,'tt :0.999 so that Ro :0.5513222627 < 1,R"".:

0.7908416180 < 1, and RT,"": 0.62552247 45 (i.e., Ri". < R"". < 1). Figure (5.24),

shows the DFE (corresponding to À : 0) and two endemic equilibria (corresponding to

À:0.2116141942 and ) : 0.04267449704, respectively). This Êgure shows that one of

the endemic equilibria (À : 0.2116141942) is LAS, and the other (^:0.04267449704)

is unstable (a saddle), and ihe DFE is LAS. This clearly shows the co-existence of

two stable equilibria u*ren ?,o" < 1, confrrming that the model (5.1) undergoes the

phenomenon of backward bifurcation (see Figure (5.28) for a time series ploi). Thus,

tl.re follor.virg result is established.

Theorem 5.8. The DISP mod,el (5.I) und"ergoes backward bifurcation wl,,en Case (üi)
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o! Theorem (5.7) holds anrl0 < Ri". < R,"" < 1.

It should be noted that for ihe case of a perfect vaccine (q = 0), the coefficients

a.r : 0 and ö¿ > 0. Thus, the quadratic in (5.17) becomes linear in ) (u'ith À : -ca/òa).

In this case, the DISP vaccination model (5.1) has a unique endemic equilibrium if and

onìy if ca < 0 (i.e.. R"". > I), ruling out bachwa¡d bifu¡cation in this case.

In summary, unlike the vaccination-free DISP model (5.2) and the rvholly-vaccinated

DISP model (5.9), the fulì DISP vaccina,tion nodel (5.1) undergoes the phenomenon

of backq'ard bifurcation. The reaso¡r for such backward bifurcation is ihe imperfect

nature of ihe HIV vaccine (q I 0).

5.6 DISP model with mass action incidence

The presence of backwarci bifurcaiion phenomenon in some models has been att¡ibuted

to many factors, such as thc incomplete degree protection for vaccination models [1,

26,54], exogenous re-infection for TB models 116, 30], and behavioural responses in

core group models [,10]. In Lhis chapter, the role of the choice of incidence function in

bifurcaiion di¡ection for models of HIV epidemiology that employ an imperfect vaccine

will be explored. Since íhe DISP vaccination nodel rvith st,andard incidence, gir.en by

(5.1). undcrgoes backward bifurcation, it is insi¡uctive to determine whether o¡ not

its mass action equivalent (r'here the total population, N, is removed from the force

of infection) also exhibiis such d¡.¡¿¡liçs. To do so, we consider the model (5.1) wiih
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mass action incidence, given by,

dS /1 -\^ ..(
,1, -,1-pl1r-pS -ÀS rrl/.
dv 

- -n ,,r/ -\,lL :tr'r-Ut -q^V -)V.
.1.V,
j-rrlS.(p-o¡1\Y11.
dY. "-i- : o,..Y,., - ( ¡.t -t o1.2\Y1,2.

clYz¡, - \ .'-ä - pr¡s - t¡t - o2.1\Y2¡.

Y# : or,.Yr¡ ltt, * oz,z)Yz,z, (5 18)

d\v. .:¡f - rtt),V - (¡t 0¡.¡o¡1)W1 1.

(1.14'. 
"jf - ot.t0t tW,., - (u - 012o,2\W¡.2.

dlt'",
--'' - n2q)l - (p Az.tozt\ll z.t.

dY"' - o,,0,,1v", - t, r g¡¡o¡"\w,".
dt " '

4 : or,r"r," I o2,2Y2,2 * 0\zor,zWt,z I 02,2o2,2W2,2 - (a + ¡t)A,dt

22
where, norv, 

^ 
- Ð)i(Pr¡V¡ 1- s;,iB¡¡W¡,). The model has Lhe sane DFE given by

i=r j=r

(5.f5). Here, the nexL generation nratrices or" f: (Urør) , .n.r"



ptl\,:,S. pt]t,zS* pt]ztS. pJ3z.zS"

pzþytS* pzþt,zX* pzþztS* pzl3z.zS'

rtqþttV* rtQþt2V* rtqlSz.tV* rtqßz2V*

rzQlSt¡V* rzq,ßt2V* ¡rzg]z¡V* rzQlSz,zV*

Ht:

Pls1,rPr.1Þ

0

P2s1,i,ui,rÒ

0

TTrqStJpr,rv

0

r2QS11B1,1V*

0

0

Ptst,zþt,zS*

0

Pzst,zAt,zS*

0

tt 1Q s 1,2131 2V*

0

irtct st t& ¡V+

0

0

,iS,,Drrò

0

P2s2,1P2,rò

0

ti1os..ß. 'V'

0

n¡osc , ßc .lI*

0

D, S" "8, ' S'

0

o.s, "ß. "S*

0

T1o s, r ßr ,\'"

0

lTc(ts¡ ¡ß¡ cV*

0



The uacci,nati,on

I{220000000

-o1¡ I{33 0 0 0 0 0 0

00Ks,:,00000

0 0 -ozJ Kits 0 0 0 0

00001{se000

0 0 0 0 011o1¡ I{37 0 0

000000K2a0

0 0 0 0 0 0 -021o2¡ li3s

re,ytrod,uction number on (5.18), denoied l:y Rl)" - p(FV t). it

,,{.9', BV-
/r 32 /r 3j 1(3ah35 K36l{r7l(Jsl<3s

(5.1e)

so that thc following result is established

Lemma 5.4. The DFE of the mass uction, mod,el (5.1,8), g.iuen bg (5.15), is LAS if

R:L" < 1 o,nr) unstable ¿[ Rn" > l.

5.6.1 Non-existence of endemic equilibria for Rl;" 17

Theorem 5.9, The mass action, mod,eL (5.I8) has no end,emi,c equiLibrium when Ri,." <

7, and has a u,nique endemic equ,il,ibríum, oth,enu,ise.
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Prool. Solvrng the equations in modeÌ (5.18) in terms of À gives

Ål(Kr, - qÀ)qt - pl + 1pl pA

'- (t l))(q\ t¡r., - q^tt{"

y^.. _ p2À^[l/131 I q))(] -P) t 1¡] r¡..! - 
rzqÀp| 

{5.20r'z'- 7¡..ip,¡¡q,\ tK¡ ' rrzt:6*n¡-¡7ç¡ \¿ ¿u)

ottptÀ]\l(Ky -qÀ)lt -p) - 'p] o¡Jq1¡ryq)pl\tt.r- 
@ 

rrr,2 - l(.1{-(q^Jrr,
,,.. _ o2,1¡2ÀAl(K3¡ - qÀ)11 - p) I tp] o1.20..2r2qÀp!\
'" - lçrt{rt t, I \\lq^ I Krl " t' K*K*(q^ {r,

22
Substituting (5.20) into À : t t(8, jX,i * s¿,¡B¿,¡Wi,¡), ancl simplifying, shows Lhat

i:t j=t
the non-zero equilibria of the mass action model (5.18) satisfy,

asl2 -l- örÀ * c: : 0. (5.21)

where,

0,5 : QK32K¡;'K31K35K36K37K3sK3s,

b5 : ¡tqK 32K sslú4 túslú61ú7lçs 1{3e + F1^1{361{3rf.rK* fl + (r - z)(r - q)l
Ltt I

I K ¡¡l{sz Ky¡ K tqK35 K3s K37 K3s K3s(t * RT".),

c5 : ¡t K31K32K33K3aK35K36K37 K3BK3¡(1, - R::"").

Clearly, ø5 > 0; and whenever RiL. < I, then ò5 > 0 and c5 > 0. Thus, by the Rouih

Hu¡witz criterjon, the quadraiic in (5.21) has no positive root. Hence, no endemic
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equilibriun exists when Rn < I. The case Rn. - l makes c5 : 0 and ós > 0. Thus,

the quadratic in (5.21) reduces to the linear equation a5À*ó5 : 0, so that ) - -Ùt a 0.
A5

Therefore, no endemic equilibrium exists whenever Rn. < 7. For Ri," > 1, c5 < 0. In

this case, the quadratic has t'"\'o roots with opposite signs. Thus, the proof is completed.

n

The above result indicates the impossibility of bachward bifurca.tion in the mass action

model (5.t8), since it has no endemic equilibria when 7?ü" 5! 1 (a necessary require-

ment fo¡ the existence of bachu'ard bifurcation). A global stability result for ihe DFE

of the ma.ss action moclel (5.18) is given belor',

5.6.2 Global stability of the DFE

The following leasible region:

D : {(S,V,1i J,Yt,2,Y2J,Y2,2,W1J,I4/r,z,I4/2,1, W:,2) e Rf :

,9 + y + Yt i-Y¡ lY21ÍY2,2 -1- I4l1,1 .l Wt,z I !4tz,t +w22 < l\lpj

is also positively-illvâriânt. Further, it can be shown that 2 attracts solutions outside

2 but in JRf . Next, we show that the set

2-: {(S, V,Ytt,Y2,Yzt,Yz,2,l(1,1,W12,W2¡,W22) eD: S < S.,V <V.} (5.22)



is positively-invariant and then find a Lyapunov function for (b.18) on D..

R'om the first equation in (5.18),

dS
¡ S tt -p)Â 1V-aS.

< (1-p)^ +tØlp- S -y -w)- pS,

. 1(1:p)#+lI _ (p+ i)s: ia + 1)(s. _s)

Hcnce. Sr/r I srol" ,' -A¡ 
t pt1 - pl)\1 - e-v'). 

Funher. il 
^'{0) 

<,A7p and
ulp + 1)

S(0) < S., then 5(f) ( S* fo¡ all f > 0. Finally, from the second equation of (5.18),

dV
* < rL - (p + t)v : (p + t)V- - v).

n\ ' ,rA IHcrrce.Vlil<--l:-- llztOt- -f:-¡'-¡r*.)/¡ntl. in parr i¡ular. Vttt <V. il'lzç0) <lr-1 L /'ll
7*. Thus, the set 2* is posiii,,.ely-invariant.

Theorem 5.I0. The DFE, ti, of the mass ct cti,on rnod,el (5.18) is G,,l.g ¿f Rn < \.

Prool. Consider the Lyapunov function

- - 
{Jt:l{nIßtzot,t,,, , Ar.r,, 02,71{35 i A22o2¡ ,,

KrrK* II'r r 
/(33r t2 t K;;ll;\ )2r

Br." r, (sr.rúi,lK:z - s1,2A1,2o1¡$¡),., st.zlJt- *u'" If I r+ 4lll.z

, ( s2 10211(3o - s2,2A22o2,102¡),,, sz,z6z,z,,,

' 1CuÁ-* 

-tt21 

' K;tt22'

t26



so that,

BtJlhr - 1t.zo t.t,, Bt.z,., 02)lç5+ Bz,zoz,s,.,

K.rrK* t"- Ku't2--R.31.<.j5 r!1

, Az,¿,., (s1¡t1¡K37 - s1,2A¡.2o¡¡A1¡),i, st.zþt.2,;,
i -;,- t2,:- 

- 

- 

- 

rr i.i -r --:- r r t2
.r'r 35 J13C /1 37 l\.¡
(s2.18211{3s - s2,2ß2,2o2¡02¡ ) , i, sz20z,z,;,

-1......................................_--;;-...;-tt 2.I - 
_-;- t t 2.2

.1\38^ 3, /1¡c

IASBVItt_ 1i" 
lK rrl<.ß l(r,K15 .l(3¡;.1(37 /136 K33 'l

.\ I ,4S' , BV' ,l ,- ',
IK32KßK3)K3,, th"K3? K;R; l] sincc x < x' v < v'

^@n"- 
1) < 0 for Rn.< L

Slnce all the model paramelers are assumed to be non-ncgalive, it follorvs tliat f < 0

f Rn. < 1 witl.r equality if and only if À : 0. Iij lollor¡.'s from the LaSalle's Invariance

Principle 138], that À - 0 as ú---+ oo. That is, the disease dies out. Since the DFE tó"

is GAS for the reduced systen with À:0, it follows that the DFE is GAS on Ð-.

Since the above comparisons impìy that 2* is absorbing as well as posi0ively-invariant,

the DFE is GAS for all non-negative initial conditions fi Rn. < 1. ¡

If the initial conditions are not in D*, lhen although the Lyapunov function is

decreasing asymptotically, ii is iniLially increasing and there js a disease outbreak.

Tl.iis is not ol interest il praclice, since the population would be initially above the

assumed carrying capaciiy Ä/¡-2.

The consequence of the above theorem, z/s-¿-¿is backward bifurcation, is sumna-

rized below.
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Theorem 5.\1. Tlte møss action motlel (5.I8) d,oes not und,ergo bct chward b,it'urcation

Praof.

It follorvs from Theorem (5.9), where no endemic equilbrium exist whenever 7?fl" S

and Theorem (5.10) rvhere tf is GAS whenever Rn. < L

These ¡esults show that thc subslitution of standard incidence in the ba"sic model

(5.18) with mass action incidence, whilsi retaining everything clse, removes its back-

ward bifurcation property. It is worth mentioning that this result also holds if con-

tinuous vaccination. where a fraction of the susceplible individuals is continuously

vaccinated, is added to the cohort vaccination in modcl (b.1) (deiails given in [78]).

5.7 Measure of vaccine impact

Since a future HIV vaccine is expected to be imperfect, it is instructive to determine

whether or not its widespread use will ahvays be benefrcial (or noi) to [he community.

To ínvesligate this, the vaccinated reproduction number, Ruo", is ¡e-written as

1,

n

(5 23)

where R6, Re, and K31 are as defined in Sections 5.3 and 5.4. Using the notation in

18, 65], a measure of the vaccine impact for the model (5.1) is defined as

æ,,.-n"lr -#(, *)]

pLL l. ?0,\a: - I r-;lrr31 \ rf-1./
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\Ã/e claim the following result.

Theorem 5.12. For the DISP tacci,ne mod,el (S.I), the use of mass uaccin,ati,an utll

haue

(i) positr,ue impact on th,e community ,¿f ó > 0 (R,"" < 1;-o),

(ä) no 'impact xf ó - 0, (R,"": Ro) and

(äi) negatiue zm,pact if þ < 0 (R,.. > ir-o).

Prool. Starting from (5.23) rvith (5.24), R,"": Rt)(I - d), ii follows rhat

R,,""

Thus, whenever R""" <ko (posiiive impact), I-ó <7 so ihat þ > 0. Similarl¡

wbenever k"""> Ro (negative impact), 1-l> l sothatþ < 0. Finally, if R,"":R0

(no impact), 7 - þ:7, so that d:0, n

Figurc 5.2 illustrates the cases rvhere the vaccine has positive (Figure 5.24) or

detrimental (Figure 5.28) impact.
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Figure 5.2: (A) Prevalcnce as a, function of time fo¡ (5.1) depicting positive impact of
the vaccine (Ro : I.4236,R0" : 0.7887 , Ó : 0.0990, 7?""" : L287) , (B) Prevalence as

a funcLion ol time fo¡ (5.1) depiciing negative impact of the vaccine (q:0.7,?-0:
1,.4236,R0": 3.9436, d - -0.3930,R"",: 1.9380). Other parameters as in Table (5.2)

5.8 Summary

This chapter shows the following:

(i) The phenomenon of backward bifurcation in HIV models with standard ircidence

wth vâccin

150 200
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can be removed by substitutrng such an incidence function with mass action

incidence. In othcr rvords, this study suggests that the presence o¡ absence of

standard incidence may be crucial to the presence or absence of bachward bifur-

cation in vaccination modelsl

(ii) The reason for the backward bifurcation phenomenon in the vaccination model

(5.1) is the imperlect nature of the HIV vaccine;

(iii) The mass action moclel has a. globally-stable DFE, and no endemic equilibrium,

whenever RT]". < 1;

(iii) A HIV vaccine will have positive irnpact if ?,," < R0, negati\¡e inpact if R,,"" >

7?0, and ro impacL il R""" : llo.



Tabie 5.1: Descripiion of variables and parameters for the vaccination model (5.1)

Variatrles/ Description

Parameters

s(r)

v(t)

Yr,r(¿)

Ìi,ll)
Yr,t(t)

Y","(t)

I4l,,, (¿)

Wt,z(t)

W,t(t)
Wz,z(t)

A(t)

p̂t,r, pl,2. p2,r.1J2,2

p

1-q
Sr 1.5r r. Sr i. S, t

0,..e,".()",.0""

lt

1

Ot 1.01 a.Ot1.Ota

(l

pr, p2,1rr,1r2

unvaccinated susceptible individuals

vaccinated susceptible individuals

unvaccinated infected individuals with high viral load, stage 1

unvaccinated infected individuals wiLh high viral load, stage 2

unvaccinated infected individuals rvith low viral load, stage 1

unvaccinated infected individuals q'ith low viral load, sLage 2

vaccinated infected individuals wiih high viral loacl, stage 1

vaccinated infected indivlduals rvith high viral load, stage 2

vaccinatcd infected individuals with low viral load, stage 1

vaccinated infected inclividuals rvith low viral load, stage 2

individuals in AIDS stage of infection

rate of recruitment into the population

transmission coeffrcients (contact rates)

fraction of individuals vaccinated

va.ccine elficacy

rate of infectiousness

modification parameters

nalulal death ¡ate

t'aning rale of vaccine

progression rates

disease-induced nortality rate

probabilities
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TaLìe 5.2: Paramtlcr values for model (5..1)

Parameters nominal values

p

q

Sr,1J S1,2, S2,11S2,2

01¡,41,2,02¡ 02,2

I,r

1

þt t l3t.z, l3zt, l3z.z 2.55,1.82,1.85,0.82

0.999

0.5

t

0.5

0.02

0.07

ot,t. ot 2. 02 t. 022 0.72.0.01.15.15

pr, p2,rt,T2 0. 0 2,0.0 8,0. 1 ,0.9



Figure 5.3: (A) Bifurcation diagram and (B) time series þlot using diflerent initial
conditions lor the lorce of infection À for the model (5.1). Parameters; h:0.02, pz:
0.98,o1,1 : 0.72,o1,2: 0.01,o2,1 : I5,o2,2: I5,0tt - 0.55,11,:0.82,02¡ :
0.05, P2,2: 0.02, sl,r : 1, sr,2 : 1, s21 : I, s2,2 :\,r'L :0.1, rr : 0.9, dr,l : 0.5,0\,2 :
0.5.02,r : 0.5,e2,2 : 0.5,q : 9.5,, : 0.02,? : 0,07,^ : 1,2 : 0.999.



Chapter 6

Contributions of the Thesis and

Rrture \Mork

6.1 Contributions

This thesis contributes in three main categories. The fi¡st is in the design of appro-

prìate mathematical models fol the transmission dynamics and control of HIV/AIDS

in a community. The second is in the rigorous analyses of the resulting deierministic

systems of nonlincar differential equations. Tìre third category entails the use of these

modeìs (ancl anaìytical results) to evaluate the potential impact of some anti-HIV pub-

lic health control strategies (notably the use of ARVs and an imperfect HIV vaccine).

The lnain specific contributions are itemized below:

(i) The design of realistic models for assessing the impact of ARVs and an imperfect

putative HIV vaccine to control the spread of HIV in a populaíion;
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(ii) Establishing the global asymptotic stabiliby properi;y of the disease-free equilìb-

rium of the treatment models, as well as those of their treatment-free equivalents.

This is based on using Lyapunov function theory, in conjunction with the LaSalle

Invariance Principle, and Comparison theorem;

(iii) Establishing the existence and local sbability oI the endemic (and/or boundary)

equilibria of lhe models. A global síabrliby result of the endemic equilibrium of

the treàtment model (3.1) is given for a special case;

(iv) Showing that, in the case of a single strain HIV model, the qualitative dynamics

of the treatnent modcl and its breatment-free equivalent are similar;

(v) Eslablishing that the Universal treatmert stra,tegy, using ARVs, is more benefrcial

to bhe communiby (in terms ofreducing new HIV cases and HIV-relaled mortality)

than the iargeted use of ARVs (to people with or without clinical sympi;oms of

AIDS). This is followed by the AIDS-only and the HIV-only strategies. lt is

further shown that rvhen ARV supply is Iimited, prioritizing such scarce resources

to those u'ith clinical syrnptoms of AIDS can efiectively reduce disease burden

(albeit the universaì strategy is still the best option);

(vi) Showing that a multi-sirain HIV model can have a continuum oI co-existence

endemic equilibria in tlie absence of Lreatment, and can have two co-existing

endemic equilibria il the presence of tleatment;

(vii) Establishing Lhe presence of vaccine-induced backward bifurcation in a vacci-

nation model which incorporates differential infectivity and staged-progression
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properties of HIV disease;

(viii) Deternining a threshold quantity for assessing the impact of a futu¡e HIV vac-

cine. The vaccine lvill have positive (negaiive) impact if bhe lhreshold is positive

(negative).

It is worth enphasizing that ihe relatively large nature and nonlinearity of some of

the models considered jn tiris thesis makes theil mathematical analyses daunting and

challenging. Thus, my contributions should be viewed in ihis lighi.

6.2 Future Work

Although this study shorvs that the prospecis of the ellective control of HIV using

ARVs and a putative HIV vaccine are bright, it can be extended in a number of areas,

such as:

(1) Model refinement: the models can be further refined to include, for instance,

(a) other anti-HIV intervertion sttategies such as condom use, male circumci-

sion, voluntary testing and screening, e.t.c.;

(b) low fitness (iransmissibility) of the resisiant strain as well as the use of

treâtment against such strain;

(c) siudying a comprehensive DISP model that incorpor.ates the suggestions in

(a) and (b) above.



(2) Mathematical analysis: An important future work is the design of technique(s)

for establishing the global àsymptotic stability of bhc endemic and/or boundary

equilibria of relatively large disease transmission models, such as some of the ones

considered in this thesis.
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