
A Comparison of Imaging Methods using GPR for 
Landmine Detection 

and 
A Preliminary Investigation into the SEM for Identification 

of Buried Objects

A Thesis Presented

To the Faculty of Graduate Studies

By

Colin Gerald Gilmore

In Partial Fulfillment

of the Requirements for the Degree of

Masters of Science in Electrical Engineering

University of Manitoba

Winnipeg, Manitoba, Canada

December 2004

© Colin Gerald Gilmore



Abstract
Part I

Various image reconstruction algorithms used for subsurface targets are reviewed. It 

is shown how some approximate wavefield inversion techniques: Stripmap Synthetic 

Aperture Radar (SAR), Kirchhoff Migration (KM) and Frequency-Wavenumber (FK) 

migration are developed from various models for wavefield scattering. The similarities of 

these techniques are delineated both from a theoretical and practical perspective and it is 

shown that Stripmap SAR is, computationally, almost identical to FK migration. A plane 

wave interpretation of both Stripmap SAR and FK migration is used to show why they are 

so similar. The electromagnetic assumptions made in the image reconstruction algorithms 

are highlighted. In addition, it is shown that, theoretically, FK and KM are identical. 

Image reconstruction results for KM, Stripmap SAR and FK are shown for both synthetic 

and experimental Ground Penetrating Radar (GPR) data. Subjectively the reconstructed 

images show little difference, but computationally, Stripmap SAR (and therefore, FK 

migration) are much more efficient.

Part II

A preliminary investigation into the use of the Singularity Expansion Method 

(SEM) for use in identifying landmines is completed using a Finite-Difference Time-

Domain code to simulate a simplified GPR system. The Total Least Squares Matrix Pencil 

Method (TLS-MPM) is used to determine the complex poles from an arbitrary late-time 

signal. Both dielectric and metallic targets buried in lossless and lossy half-spaces are con-

sidered. Complex poles (resonances) of targets change significantly when the objects are 

buried in an external medium, and perturbation formulae for Perfect Electric Conductor 

(PEC) and dielectric targets are highlighted and used. These perturbation formulae are 

developed for homogenous surrounding media, and their utilization for the half-space 
i



(layered medium) GPR problem causes inaccuracies in their predictions. The results show 

that the decay rate (real part) of the complex poles is not suitable for identification in this 

problem, but that with further research, the resonant frequency (imaginary part) of the 

complex poles shows promise as an identification feature.

Keywords: GPR, Seismic Migration, Stripmap SAR, Landmines, Target Identifica-

tion, SEM
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Contributions
Part I

The main contribution of Part I is to show why Stripmap SAR and Frequency Wave-

number migration are computationally almost identical. Key to the comparison of both 

techniques is a plane wave interpretation of both. To the authors knowledge, an electro-

magnetics based plane wave interpretation for Stripmap SAR has not been completed pre-

viously. In addition, it is not well understood in the radar community that Kirchhoff 

Migration and FK migration are equivalent from a theoretical perspective, and this is also 

shown.

Part II

The contribution of Part II lies in the application of the perturbation formulae devel-

oped by Baum [30] and Hanson [32] for PEC and dielectric targets, respectively. The PEC 

formula has been used previously for UXO targets, but not for landmine targets. No pub-

lished attempt of the use of the dielectric perturbation formula has been seen by the author.
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Chapter 1
Introduction and Motivation

In this chapter, the landmine problem is introduced, as are basic Ground Penetrating 

Radar (GPR) and inverse imaging concepts. The basic concept of synthetic aperture radar/

migration is introduced, as is the singularity expansion method.

1.1  Problem Discussion

The United Nations (UN) estimates that there are around 110 million buried land-

mines throughout the world. These cause the deaths of approximately 15,000 to 20,000 

people each year. Most (80%) of these deaths are civilians. As they provide a cheap and 

effective tool of war, their use is extremely widespread: casualties were reported in 65 

countries in 2002. [1]

The ‘Ottawa Treaty’, which banned the use, distribution and manufacture of land-

mines was signed by 122 countries in 1997, and has been ratified by over 40. However, 

the clearing of past landmines is still a large humanitarian issue, and the number of land-

mines cleared each year is outnumbered by the number of new landmines laid by a factor 

of 20 to 1 [1]. While the best way to deal with the global landmine problem is clearly to 

continue the efforts of the Ottawa Treaty and stop their use, the clearance of previously 

laid landmines remains a serious humanitarian issue.

In order to deem land as ‘usable’, 99.6% of landmines buried up to 10 cm deep must 

be removed. Current landmine systems, which include prodding, metal detection, and 

sniffer dogs are slow and dangerous. In the late 1990’s there was a large amount of 

research that went into landmine detection and removal programs utilizing Ground Pene-

trating Radar (GPR). While many papers have been written (see, for example, the semi-
1



annual GPR conference [2]), no fast, easy-to-use and safe system has been developed. The 

purpose of this thesis is to advance the currently developed signal processing (imaging, 

detection and identification) methods to better the detection and removal of landmines.

1.2  The Inverse Problem in Electromagnetics

The two methods explored in this thesis are that of focusing images generated by 

GPR, termed migration of images, and that of applying the Singularity Expansion Method 

for target identification. Both of these methods are a subset of the GPR problem, and the 

GPR problem is a subset of what is known as the inverse problem.

We can contrast the inverse problem with the forward problem. The general physical 

set-up of an electromagnetic scattering problem is shown in Figure 1.1. In the forward 

problem, the incident field,  and the material parameters , are known and 

the scattered field is to be determined. In the inverse problem, we have knowledge of the 

incident field,  and some (always limited) knowledge of the scattered field, 

, and we desire to infer some knowledge of the material parameters, . 

The uniqueness theorem (see Harrington [3]), tells us that, in the forward problem, the 

Hinc E, inc
Hscat Escat,

ε µ σ, ,

Figure 1.1: The Forward and Inverse Problem in Electromagnetics

Hinc Einc, ε µ σ, ,

Hinc E, inc

Hscat Escat, ε µ σ, ,
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scattered fields, , are unique. However, the inverse problem is much more 

complicated. The general inverse problem is an extremely interesting and complex prob-

lem; as W.C. Chew [4] states: “The ability to infer information on an object without direct 

contact also expands man’s sensory horizon. No doubt, it is a much sought after capabil-

ity”.

Two important questions for mathematicians concerning a problem are: 1) is there a 

solution and 2) if there is, is it unique? In inverse imaging, we are also concerned with the 

question 3) if there is a solution, is it stable? We define stable to mean that an arbitrarily 

small change in the input (measured scattered fields) will not cause an arbitrarily large 

change in the solution (material parameters). In GPR we have certainty that a solution 

exists because some physical media gave rise to the observed scattered fields. The inverse 

problem, with knowledge of the scattered fields at all points over all frequencies 

( ), outside the object of interest, is unique for two dimensions [5]. This author 

has not seen a proof of uniqueness for three dimensions. The mathematical proof of the 

uniqueness has been claimed to be one of the greatest accomplishments of 20th century 

mathematics.[7] 

However, in all practical situations, we deal with non-unique solutions because we 

cannot practically receive all frequencies at all points in space outside the object of inter-

est. In addition, the problem can be shown to be unstable: an arbitrarily small change in 

the input can cause an arbitrarily large perturbation of the solution. Problems that are 

unstable and non-unique are called ill-posed problems [5].

Due to the ill-posed nature of the inverse problem, solution techniques often have to 

make simplifications and assumptions in order to be feasible. Typically, this means mak-

ing assumptions about the material parameters beforehand. This can be an acceptable pro-

cess, for example in GPR we often know or can find many parameters of the soil 

surrounding possible targets.

The GPR problem is a special case of the generalized inverse problem. Both parts of 

this thesis, the Synthetic Aperture Radar (SAR)/Seismic Migration section and the Singu-

larity Expansion Method (SEM) section can be viewed as subsets of the inverse problem. 

The SAR/Migration algorithms fall under what can be termed inverse imaging. Inverse 

Hscat Escat,

0 ω ∞< <
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imaging involves building some type of image of the target, while the general inverse 

problem may not (such as the utilization of the SEM).

1.3  Basic GPR Principles

The basic process of GPR is depicted in Figure 1.2. The GPR can either be bistatic, 

with both a transmit and receive antenna, or monostatic with a single transmit and receive 

antenna. The basic idea is to excite the ground and possible targets with electromagnetic 

energy, then attempt to infer properties of the ground and targets from scattering informa-

tion obtained from the experiment. 

One of the biggest problems in GPR is the large ground reflection that occurs. With 

a high dielectric contrast between the ground and air, this allows for a very small percent-

age of the transmitted energy pass the interface, reflect off the target, and pass the inter-

face again to reach the receiving antenna.

In the GPR problem considered here, the antennas operate in free space, while the 

ground material properties are given by  and , and the target’s properties are 

εo µo,

ε1 µ1 σ1, ,
ε2 µ2 σ2, ,

Tx Rx

z

y

x

Figure 1.2: The Basic GPR System

ε1 µ1, σ1
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given by  and . Typically, the antenna(s) are moved over the target in a straight 

line, which allows for some type of synthetic aperture processing.

1.4  Thesis Overview

Part I of this thesis is concerned with the investigation of image focusing techniques 

for use with GPR for landmine detection. Following this introduction, Chapter 2 intro-

duces some electromagnetic concepts as well as some Fourier transform fundamentals. 

Chapter 3 describes Stripmap Synthetic Aperture Radar (SAR), which is followed by 

Chapter 4, a discussion of Seismic Migration techniques. Chapter 5 provides and dis-

cusses experimental and synthetic data as well as discussing theoretical comparisons of 

Stripmap SAR and the Seismic migration techniques. The work of part one is summarized 

in Gilmore, et. al. [8].

Part two of this thesis outlines a preliminary investigation of the use of the Singular-

ity Expansion Method (SEM) for the identification of landmines. Chapter 6 introduces this 

section and reviews the relevant literature, and Chapter 7 gives an overview of the Singu-

larity Expansion Method, the perturbation formulae for buried scatterers and also dis-

cusses the Matrix Pencil Method (MPM) as a method of determining the complex 

resonances of electromagnetic scatterers. Chapter 8 presents Finite-Difference Time-

Domain (FDTD) generated results and tests the perturbation formulae. Finally, Chapter 8 

concludes the thesis.

ε2 µ2, σ2
5
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Part I

A Comparison of Seismic Migration 
and Stripmap SAR Imaging Methods 

for Ground Penetrating Radar for 
Landmine Detection



Chapter 2
Electromagnetic and Fourier Transform 
Concepts

In this chapter, important electromagnetic concepts are covered. In addition, the 

basic concepts of the Discrete Fourier Transform (DFT) in both the time/frequency and 

spatial/spatial frequency domains are highlighted.

2.1  Basic EM Concepts

All macroscopic electromagnetic (EM) phenomena are governed by Maxwell’s 

Equations:

, (2.1)

, (2.2)

, (2.3)
. (2.4)

Where  is electric field intensity,  is magnetic field intensity,  is electric flux den-

sity,  is magnetic flux density,  is current density, and  is electric charge density. 

These equations imply the equation of continuity, 

, (2.5)

and in linear media, the field densities are related to the flux densities via the constitutive 

relations:

, (2.6)
, (2.7)
. (2.8)

E r t,( )∇× t∂
∂ B r t,( )–=

H r t,( )∇× J r t,( )
t∂
∂ D r t,( )+=

∇ B r t,( )⋅ 0=
∇ D r t,( )⋅ ρ r t,( )=

E H D

B J ρ

∇ J r t,( )⋅
t∂
∂ ρ r t,( )–=

D εE=
B µH=
J σE=
7



Where  is the dielectric constant or electric permittivity,  is the magnetic permeability, 

and  is the conductivity of the medium. Together, the three parameters ,  and  

determine how a medium reacts to electromagnetic fields. In this document, all bold 

parameters in the equations are vectors.

If we assume a time-harmonic dependency ( ), Maxwell’s equations can be writ-

ten in their time-harmonic form as:

, (2.9)
, (2.10)

, (2.11)
, (2.12)

with the equation of continuity becoming 

. (2.13)
While not shown here, integral formulations of Maxwells equations can also be 

derived.

If we define the admittivity [3] of the medium as

(2.14)

and the impedivity of a medium as:

(2.15)
then we can define the wavenumber as

. (2.16)

In lossless media, the wavenumber is purely imaginary, while in lossy media has a wave-

number with a real component.

2.1.1 The Wave Equation
Consider a source free  (impressed current), ), linear, 

homogenous and isotropic region of space. We can then write the frequency-domain Max-

well’s Equations (2.9) and (2.10) as:

(2.17)
. (2.18)

ε µ

σ ε µ σ

ejωt

E r ω,( )∇× jωB r ω,( )–=
H r ω,( )∇× J r ω,( ) jωD r ω,( )+=

∇ B r ω,( )⋅ 0=
∇ D r ω,( )⋅ ρ r ω,( )=

∇ J r ω,( )⋅ jωρ r ω,( )–=

ŷ σ jωε+=

ẑ jωµ=

k ẑŷ–=

J r t,( ) 0= ρ r t,( ) 0=

E∇× ẑH–=
H∇× ŷE=
8



By taking the curl of the first equation, and making a substitution of the second, we 

can arrive at the equation

. (2.19)
This is known as the complex vector wave equation. The magnetic field also follows the 

same equation:

. (2.20)
If we utilize the definition of the Laplacian operator

(2.21)
and the fact that the divergence of both  and  are zero, we can arrive at the vector 

wave equations:

, (2.22)

. (2.23)
A very important result which is used in this thesis is that each rectangular compo-

nent of both  and  satisfy the complex scalar wave equation or Helmholtz equation:

. (2.24)
Here,  can be replaced by any of the components  or .

We can also write the wave equation in the time domain for a source free region as:

. (2.25)

where ,  and  are the material parameters in the medium. 

2.1.2 Seismics and Electromagnetics
If we assume that the earth can be treated as an acoustic medium we may also apply 

lossless ( ) wave equation in both the time and frequency-domain for source free 

regions (Zhdanov [5] and Oristaglio et. al. [7]). The difference is that  would represent 

the wave pressure, a scalar quantity, and the term  is replaced with , the velocity 

of sound in the medium.

E∇×∇× k2E– 0=

H∇×∇× k2H– 0=

∇2A ∇ ∇ A⋅( ) ∇ ∇ A××–=
E H

∇2E k2E+ 0=

∇2H k2H+ 0=

E H

∇2ψ k2ψ+ 0=
ψ Ex Ey Ez, , Hx Hy Hz, ,

ψ∇2 µε
t2

2

∂

∂ ψ– µσ t∂
∂ψ– 0=

µ ε σ

σ 0=

ψ

1 µε( )⁄ v
9



2.2  The General Plane Wave

In general, the most elementary type of plane wave can be represented by the func-

tion (Stratton pg 363) [9]:

, (2.26)
where  represents a length away from the origin, and can be written as:

, (2.27)

where  is the unit normal in the direction of wave travel. We can 

define the vector wavenumber as

, (2.28)

so that the elementary wave function can be written as

. (2.29)
We can also write  in phasor form as

(2.30)

Where we have denoted the phasor term with an underscore, used here for clarity, but 

omitted later. When the non-phasor form of the wave function is introduced into the time-

domain scalar wave equation (2.25), we can arrive at the separation equation:

. (2.31)

Thus, if any three of  and  are determined, the fourth is given by the separation 

equation, (2.31).

In two-dimensional problems (with space variables  and ), equation (2.31) 

becomes

. (2.32)

ψ e j– kh jωt+=
h

h n R⋅ nxx nyy nzz+ += =

n nxax̂ ny+ ây nzâz+=

kn knxâx knyây knzâz+ + kxâx kyây kzâz+ += =

ψ e j– k R jωt+⋅=
ψ

ψ e j– k R⋅=

kx
2 ky

2 kz
2+ + µεω2 j– µσω k2= =

kx ky kz, , ω

y z

ky
2 kz

2+ k2=
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2.3  Green’s Functions and the Kirchhoff Integral Equa-
tion

2.3.1 Green’s Functions
The basic ideas of Green’s functions are presented here utilizing only a one-dimen-

sional problem (in time) for simplicity. Green’s functions used in electromagnetics require 

four-dimensions. More in-depth discussion of Green’s functions in electromagnetics is 

given in Morse and Feshbach [13] and D.S. Jones [14]. The aim here is to aid the reader in 

understanding the use of Green’s functions in the Kirchhoff integral equation. The deriva-

tion presented here is based on Adomain [12] and many specific details (such as initial 

conditions of the operator equation and boundary values) are sacrificed to keep the deriva-

tion clear.

If we consider an operator equation:

(2.33)
where  is a differential operator,  is called the forcing term and  is the unknown solu-

tion to the operator equation. In addition to  being a differential operator, we also require 

it to be a linear operator with an inverse. Utilizing the existence of the inverse we may 

write:

. (2.34)
Utilizing the fact that  is linear, and is a differential operator, we can write the 

solution as an integral type:

. (2.35)

This equation tells us that if we can find the unknown function , which we 

call the Green’s function, we can then find .

To provide a method of finding the Green’s function, we apply the operator  to 

(2.35) 

. (2.36)

Utilizing (2.33) and the linearity of , we can write

Lu t( ) f t( )=
L f u

L

u t( ) L 1– f t( )=
L

u t( ) L 1– f t( ) G t τ,( )f τ( ) τd∫= =

G τ t,( )

u t( )

L

Lu t( ) L G t τ,( )f τ( ) τd∫=

L
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. (2.37)

The only way for this equation to hold is if

. (2.38)
Thus, the Green’s function is the solution of the operator equation when the forcing 

term is the dirac delta function . It is important to note that the boundary condi-

tions (and therefore the physical media) will play a part in the solution of the Green’s 

function. We can view this process as finding the solution to the operator equation from a 

point source, then completing a weighted summing in (2.36), with the weighting function 

equal to the forcing function .

For clarity, we have considered functions that only depend upon the variable . In 

electromagnetics, however, we must consider quantities that vary with both space and 

time. We therefore write the Green’s function in the form:

(2.39)

which we can write as the solution to the operator equation  at location  and time  

from a point source located at  and time ‘. The rest of the terms in the above derivation 

can be similarly modified. 

2.3.2 The Kirchhoff Integral Formula
The Kirchhoff integral formula is an integral solution of the scalar wave equation 

(2.24). A derivation of the solution can be found in D.S. Jones [14]. The formula is pre-

sented here without proof, and the associated boundary conditions for the surface  are 

discussed in section 4.3. The Kirchhoff integral solution to the scalar wave equation for a 

source-free medium is

. (2.40)

Where  is the scalar field solution we are attempting to solve for,  is the surface 

of the volume in which we are attempting to find a solution,  is the outward normal to 

, and  represents the measurements of this scalar field.

f t( ) LG t τ,( )f τ( ) τd∫=

LG t τ,( ) δ t τ–( )=

δ t τ–( )

f t( )

t

G r t r′ t′,,( )

L r t

r′ t′

S′

ψ r t,( ) ψ r′ t,( )
n′∂
∂ G r t r′ t′,,( ) G r t r′ t′,,( )

n′∂
∂ ψ r′ t′,( )–

S′
∫° S′d t′d

t′
∫–=

ψ r t,( ) S′

n′

S′ ψ r′ t,( )
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2.4  The Continous Fourier Transform

In this thesis, the continous forward Fourier Transform (FT) of a signal  is 

defined as

, (2.41)

and the inverse fourier transform (IFT) is defined as

. (2.42)

where  is the Fourier-domain variable. If the variable  represents time then , 

the usual frequency-domain Fourier variable. For a spatial variable such as , we use 

 and . An equivalent transform can be defined with a positive in the expo-

nential term for the forward transform, and a negative in the exponential term for the 

reverse transform. Both versions of the transform will be used later in this thesis.

In general, we use upper-case letters for the Fourier domain signals, and lower-case 

letters for non-fourier domain signals.

The continous FT has been thoroughly studied elsewhere and the reader is referred 

to any standard textbook such as [10].

2.5  The Discrete Fourier Transform

The Discrete Fourier Transform (DFT) is an approximation of the continous fourier 

transform in a discrete form. If we imagine that we have a discrete -domain signal of  

total samples with a sampling period of . Then instead of

 (2.43)

we then have

f u( )

F ku( ) 1
2π

---------- f u( )e
j– kuu

ud
∞–

∞

∫≡

f u( ) 1
2π

---------- F ku( )e
jkuu

kud
∞–

∞

∫=

ku u ku ω=

x

u x= ku kx=

u N

∆u

F ku( ) 1
2π

---------- f u( )e
j– kuu

ud
0

N∆u

∫≡
13



. (2.44)

Note that  is still a continous variable. We now sample it at a set of discrete points 

 where  and multiply the transform by 

.  is sampled over a set of points from  to . The effects of this 

constant scaling term can be cancelled by appropriately defining the inverse transform. 

We then define the DFT as

(2.45)

The Inverse DFT (IFDT) can be defined as

. (2.46)

For a thorough description of the DFT, see Proakis and Manolakis [11].

2.5.1 Calculating DFT Parameters
The imaging algorithms of part I of this thesis rely heavily on both forward and 

inverse DFT or collected data. It is important to understand the relations between both 

Fourier domains and this next section highlights the relations between them.

Consider a sampled signal in the  domain, sampled  times from  to 

. Here, we assume that N is always an odd number. N being even will cause a 

slight modification of these formulae. The separation between samples is . If we take 

the DFT of this signal, we get an  point signal in the frequency domain, which goes from 

 to  (if  is even, this does not hold). In this discussion, we take the select 

the normalized angular frequency to be from  to  (this is in contrast to the previous 

F ku( ) 1
2π

---------- f n∆u( )e
jkun∆u–

∆u
n 0=

N 1–

∑=

ku

ku
m 2πm N 1–( )( )⁄ ∆u )= m 0 1 … N 1–, , ,=

2π ∆u( )⁄ ku k– umax kumax

F ku
m( ) f n∆u( )e

j2πm n
N
----–

n 0=

N 1–

∑=

f n∆u( ) 1
N
---- F ku

m( )e
j2πm n

N
----

m 0=

N 1–

∑=

u N u 0=

u Umax=

∆u

N

ku– max kumax N

π– π
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set of equations, where we selected a range of  to ). The separation between samples 

in the frequency domain is . This is graphically represented in Figure 2.1.

Starting with the fact that  sampled points contain  intervals:

 and . (2.47)

Using the fact that the sample frequency,  is 

(2.48)

The Nyquist sampling theorem states that

. (2.49)

Now that we have an equation for relating  and , we can find  and 

, using (2.47). Doing this:

 and (2.50)

0 2π

∆ku

Figure 2.1:The Time Domain Discrete Fourier Transform 

∆u

x n∆u( )

Umax

N total Points

Discrete FT

N total Points

∆ku
u

kumaxkumax–

ku

X m∆ku( )

Discrete IFT

N N 1–

Umax N 1–( )∆u= 2kumax N 1–( )∆ku=

Fsample

Fsample
1
∆u
-------=

kumax
2πFsample

2
------------------------ π

∆u
-------= =

kumax ∆u ∆ku

Umax

∆ku
2kumax
N 1–( )

----------------- 2π
N 1–( )∆u

------------------------- 2π
Umax
------------= = =
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. (2.51)

Using this set of equations ((2.50) and (2.51)) and the accompanying figure, we can 

relate all the desired quantities to each other, for both the discrete fourier transform as well 

as the discrete inverse fourier transform. To apply a time/frequency domain analysis we 

simply replace  with  and  with . 

2.5.2 Implementation of DFT and IDFT utilizing a SFCW Radar
When implementing the DFT and DIFT in the practical case of Stepped Frequency 

Continous Wave (SFCW) radar, we are confronted with the problem of finite bandwidth 

data. That is, we only collect data from  to . In order for (2.50) and (2.51) to 

apply, we must have the full bandwidth data. To accomplish this we zero pad the data back 

to , and then construct the negative frequencies from the complex conjugate of this 

zero-padded data. This step does add processing time to the algorithm. The zero-padding 

procedure is shown graphically in.Figure 2.2 

Umax N 1–( )∆u π N 1–( )
kumax

--------------------- 2π
∆ku
---------= = =

u t ku ω

ωstart ωstop

ω 0=

ωstart ωstop
ω

F ω( )

ωstart ωstop
ω

F ω( )

Filling

zeros

ωstart ωstop
ω

F ω( )

zeros
zeros

ωstop– ωstart–

Add Complex Conjugate

Figure 2.2: Zero Padding of SFCW Radar Data
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Chapter 3
Stripmap Synthetic Aperture Radar

In this chapter, we begin with one-dimensional range imaging and show why focus-

ing of these images is desirable. We then present the basic Stripmap Synthetic Aperture 

Radar (SAR) algorithm, and then give a description of the electromagnetic assumptions 

used in the Stripmap SAR algorithm.

The concept of Synthetic Aperture Radar (SAR) arose from the radar community 

when considering the problem of collecting a large amount of data from an aeroplane. The 

term synthetic aperture is based on the concept of simulating a significantly larger antenna 

aperture through signal processing, rather than constructing a very large antenna. The 

advantages of this can be illustrated as follows.

The cross-range, or lateral resolution ( ) of a radar can be approximated by the 

equation (Soumekh [6])

, (3.1)

where  is the operating wavelength,  is the diameter of the antenna, and  is the dis-

tance from the target to the antenna. If an antenna has a diameter of  meter, an 

operating wavelength of  meter, and a target at the range of  meters, then 

the lateral resolution is 50 meters. If, however, we move our radar along a line, creating an 

imaginary or effective aperture larger than the physical aperture (diameter) of the antenna, 

we can improve the cross range resolution significantly. For example, if we moved our 

radar 200 meters, the effective diameter (aperture) would become  and the lat-

eral resolution would become 0.25 meters.

The Stripmap SAR algorithm can be contrasted with what we call conventional 

SAR, where the focusing is completed by convolving the received radar data with the 

Lr

Lr
Rλ
D
-------=

λ D R

D 1=

λ 1= R 50=

Deff 200=
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inverse of the point target response. The so-called conventional SAR can be shown equiv-

alent to the Hyperbolic Summation (HS) algorithm of geophysics (for the HS algorithm, 

see section 4.2) [15]. The HS method has long ago been replaced by more sophisticated 

methods, and Stripmap SAR is one of these more advanced methods. As such, conven-

tional SAR will not be covered in this thesis.

The algorithm is presented here as it is seen in the literature [6]; it seems that the 

background of the authors for the main references in Stripmap SAR do not lie in electro-

magnetics, rather in signal processing. The standard presentation of the algorithm is 

devoid of any references to electromagnetics, and the purpose of the last section of this 

chapter is to delineate a list of electromagnetic assumptions left implicit in the Stripmap 

SAR algorithm. The three most important assumptions are that we ignore interactions 

within and between targets (we model only point scatterers), we assume a scalar wave 

field (i.e. the vectorial character of EM fields is ignored) and we assume that we know the 

material parameters of the external medium. This discussion facilitates the later compari-

son of this algorithm with seismic imaging techniques of chapter 4.

The Stripmap SAR algorithm is used extensively in modern radar systems, for 

example the E-3 AWACS (Airborne Warning and Control System) aeroplanes, NASA 

space shuttles and satellite borne radars all implement some variation of this algorithm [6]. 

3.1  Basic GPR Imaging Terminology

3.1.1 A-scans
When dealing with GPR images, we can define several different types of ‘scans’. 

The so-called A-scan, which is also known as a range profile, is the result of a single pulse 

(or sweep of frequencies) of a radar. For this type of example, we can imagine an antenna 

transmitting a pulse, then plotting the magnitude of the voltage received at the received 

antenna. Knowing the speed of light in the medium of interest, we could plot the return on 
18



a spatial axis. A graphical example of the A-scan, with two targets, is shown in Figure 3.1. 

The A-scan shown might be a return that we would expect from a GPR with the larger 

peak being the ground reflection and the smaller peak being a possible target.

3.1.2 B-scans, Range and Cross-Range
A B-scan is simply a succession of stacked A-scans. Here, we can imagine that we 

take a series of A-scans over a single line (we move the antennas along the  axis). At a 

set distance, , we perform an A-scan. The best way to display this resulting image is in 

Figure 3.1: Example of A-Scan
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a 2-D plot, with areas of increasing intensity representing scattering objects. An example 

of B-scan is shown in Figure 3.2. This figure does not directly relate to Figure 3.1, but is a 

B-scan from a single point target. 

The range is defined as the distance away from the antenna, the cross-range is the 

distance that the antenna has moved (in Figure 1.2, it would be the distance moved in the 

 direction). This B-scan gives the response expected from a point target at location 

). The reasons behind the hyperbolic shape of this B-scan will be 

explored more thoroughly in 3.2.2.

3.1.3 C-scans
C-scans are defined as a series of stacked B-scans. Due to the fact that our experi-

mental data collection can, at this time, only be done on a single plane, C-scans will not be 

used in this thesis.

Figure 3.2: Example of B-Scan
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3.2  One Dimensional Range Profiling

To understand the imaging algorithms in this thesis, it is important to first under-

stand basic 1-D imaging. We show here how a single A-scan or range profile can be con-

structed. Consider the problem shown in Figure 3.3. This is the case of a 1-D plane wave 

impinging on a point target located at a distance D from the transmitter. We model the 

expected return signal , as:

(3.2)
where  is the amplitude of the illuminating plane wave,  is a frequency independent 

measure of the reflectivity of the reflecting plane,  is the distance from the transmitter to 

the conducting sheet, and  is the speed of light in the surrounding medium.

We now take the IFT of the signal , and the resulting time-domain signal is

. (3.3)

This equation is a dirac delta function with a scaling term and we note that only phase 

information is used.

To then map this data into the spatial domain, we simply scale the time axis using 

the equation

0
z

ρ

z D=

Figure 3.3: A 1-D Plane Wave Illuminating a Perfectly Conducting Half Space

S ω( )

S k( ) ρAe
j– 2ω

c
----D

=
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D

c

S ω( )

s t( ) ρA
2π

----------δ t 2D
c
----–⎝ ⎠

⎛ ⎞=
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. (3.4)

Thus, equation (3.4) would become

(3.5)

which is equivalent to

. (3.6)

Which is a scaled dirac delta function at the point , which represents the physical dis-

tance from the antenna. Using this transformation, we can switch from the time to distance 

axis and vice versa.

3.2.1 Single Point Target from Two Locations
We now consider performing a range profile of a single target from multiple antenna 

positions. The problem setup is shown in Figure 3.4. Here, we imagine that we complete a 

z c t
2
---=

s z( ) ρA
2π

----------δ 2z
c

----- 2D
c

-------–⎝ ⎠
⎛ ⎞ ρA

2π
----------δ 2

c
--- z D–( )⎝ ⎠
⎛ ⎞= =

s z( ) ρA
2π

----------δ z D–( )=

D

ρ
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z

y1

y2

R1
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Figure 3.4: Range Imaging of Single Point Target from Two Locations
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range profile with the antenna at position , then complete another range profile with the 

antenna at position .

The received signals from each range profile,  and  are modelled as

 and , (3.7)

which in the time domain become

 and . (3.8)

If we then map the time domain into the spatial domain , we arrive at:

 and . (3.9)

These two signals are shown in Figure 3.5.

Thus, performing a standard range profile on a target results in a Dirac delta function 

located on the  axis at , the distance between the antenna and target.
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Figure 3.5: Range Profiles of a Single Target from Two Positions
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3.2.2 Target Hyperbolas and B-scans
We now consider the case of a single point target where we are moving our antenna 

along a path defined by , as shown in Figure 3.6. The distance between antenna and 

target,  as

. (3.10)

When we perform a range profile of this target at the distance , we get a Dirac 

delta function at . We can then create an image by stacking all these range profiles 

together, resulting in a B-scan. Thus in our image,

. (3.11)

This describes a half-hyperbola in the  plane:

. (3.12)

The hyperbola phenomena seen here gives rise to SAR focusing algorithms, as point 

targets become obscured with hyperbolae. To a certain extent, we can consider SAR (and 

seismic migration techniques) a process of focusing these hyperbolae back to point tar-

gets.
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Figure 3.6: Graphical Representation of How Target Hyperbola Occurs
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3.3  The Stripmap SAR Algorithm

The Stripmap SAR derivation (Soumekh [6]) begins by considering  point targets 

located in a 2 dimensional space with the ith target having coordinates  and some 

measure of the targets reflectivity, . The general setup is shown in Figure 3.7.

We assume that the radar emits a pulse  at all points on the  axis. In the practi-

cal situation we will clearly not have this (the radar will emit a pulse at a set of evenly 

spaced points on the  axis), however, for the derivation, we assume a continuous vari-

able. Assuming a lossless media, we then model the received signal  as:

(3.13)

where  is the speed of light in the surrounding medium, and as is usual in this deriva-

tion, we have neglected the attenuation term associated with each point. This is justified 

by the much greater importance of the phase terms. The initial modeling equation has bur-

n
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Figure 3.7:Stripmap SAR Setup

p t( ) y

y

s y t,( )

s y t,( ) ρip t
2 zi

2 yi y–( )2+
cm

--------------------------------------–
⎝ ⎠
⎜ ⎟
⎛ ⎞

i 1=

n

∑=

cm
25



ied in it many assumptions about the system. To maintain the flow of the derivation, these 

details are dealt with in section 3.4.

If the Fourier Transform, in the time domain, is taken of equation (3.13), we get

, (3.14)

where  is the wavenumber for lossless media and  is the FT of the trans-

mitted pulse. Here, and for the rest of this derivation, we have utilized a ‘-’ sign in the for-

ward fourier transform for all variables.

The next step is to take the FT in the spatial domain, . To solve the resulting inte-

gral, we make use of the method of stationary phase [16], and arrive at:

. (3.15)

Here, we have neglected another amplitude term , which results 

from the use of the method of stationary phase. It is important to note that the phase term 

in (3.15) is linear in both  and .

We now change flow in this derivation and consider how we would define the 

‘ideal’ image for these point targets. A reasonable ‘ideal’ image would be:

, (3.16)

where  is the usual two dimensional Dirac delta function. The spatial FT of 

this image in both the  and  directions is:

. (3.17)

If we compare equations (3.17) and (3.15), we can identify

, (3.18)

where we make use of the so-called spatial frequency mapping equation:
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. (3.19)

By taking the spatial IFT of (3.18), we can construct the imaging equation as

(3.20)

where  is  after we have utilized the spatial frequency mapping equation 

(3.19).

In summary, what this derivation shows is that to build the focused image, we take our 

collected data, , take the FT in both the  and  directions, divide by the FT of the 

pulse , then take the IFT in the  and  directions. We also require a  scal-

ing term to make this equation a true FT, but this factor is unimportant for imaging pur-

poses. In the case of SFCW radar,  over all frequencies of interest, and we 

collect data in the  domain and therefore we can begin our image construction at 

equation (3.14). 

3.3.1 The Interpolation Problem in Stripmap SAR
While the above derivation was done with continous variables, in practical situa-

tions we have only discrete variables. Specifically, the radar will collect a set of evenly 

spaced discrete points in the  domain which leads to a set of evenly spaced points in the 

 domain, when utilizing the efficient Fast Fourier Transform (FFT). We also collect data 

at a set of evenly spaced discrete points in the  domain (i.e. ) and this leads to a 

set of evenly spaced discrete values of .

In order to evaluate the imaging equation, (3.20), we require that our data lies in the 

 and  domain. To shift the data in the  to the  domain we utilize the 

spatial frequency mapping equation (3.19). Due to its non-linearity, (3.19) takes what was 

evenly spaced points in the  domain and creates a set of unevenly spaced points in the 

 domain. Efficient evaluation of (3.20) using the FFT requires evenly spaced points in 

both the  and  domains. In order to achieve the evenly spaced points in the  

domain, interpolation is required. 
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While at first this problem may seem trivial, improper consideration of the interpo-

lation problem will result in non or poorly focused images. In addition, this interpolation 

step ends up being the slowest part of the Stripmap SAR algorithm. In order to avoid con-

fusion in the basic understanding of the Stripmap SAR algorithm, a detailed exposition of 

the interpolation process is given in Appendix A.

3.3.2 Graphical Representation of The Stripmap SAR Algorithm
A graphical representation of the Stripmap SAR algorithm for at the 2-D problem is 

presented in Figure 3.8.

3.4  Electromagnetic Assumptions in Stripmap SAR

In the Stripmap SAR derivation just presented no electromagnetic considerations 

were made. In this section, we will provide a list of electromagnetic assumptions that are 

made in the algorithm which we hope will provide an alternate way of seeing the Stripmap 

SAR algorithm. To the author’s knowledge, this has not been published previously. We 

begin by considering equation (3.13), which provides the initial model for the Stripmap 

SAR algorithm. 

The most important electromagnetic assumption made in (3.13) is that we model our 

scatterers as isotropic point scatterers only. This is equivalent to ignoring all interactions 
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Figure 3.8: Graphical Representation of the 2-D Stripmap SAR Algorithm
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both between, and within scatterers, which might be called a first-order scattering approx-

imation. The justification given in the literature [6] for the point target approach to the der-

ivation of the Stripmap SAR algorithm is that larger targets can be made up of a 

summation of these point targets. This assumption may not be valid, but for practical situ-

ations seems to work reasonably well (i.e. it does provide focused images).

Secondly, we assume that we have knowledge of the speed of light in the surround-

ing medium, which is equivalent to knowing the material parameter  of the medium. 

Most practical media have . We also assume a lossless medium (conductivity is 

zero).

In addition, we ignore the  decay associated with EM fields. In other words, 

only phase information is used in this modelling equation.

We can also notice that equation (3.13) does not make any reference to the vectorial 

character of EM fields. That is, it assumes a scalar wavefield. We can interpret this as an 

assumption that the radar system radiates and receives only one of the 6 (rectangular) sca-

lar components of the full vector wavefield. This assumption is identical to the one made 

when we apply seismic imaging techniques to the EM problem, and in practical situations 

this approximation does work (i.e. the algorithm provides focused images) because anten-

nas usually radiate and receive only one vector component of the EM field.

3.4.1 The Vector Wavenumber in Stripmap SAR
In this section, we take a closer look at the spatial frequency mapping equation, 

equation (3.19). From section 2.2, we know that in the two dimensional problem consid-

ered in the Stripmap SAR derivation, the vector wavenumber should satisfy the equation:

. (3.21)

However, from (3.19), we see that we have the entirely unsatisfying result that 

. (3.22)
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After an analysis of the Stripmap SAR derivation procedure, we can note that this 

discrepancy occurs because we have to take into account both the forward and return time 

of the EM wave. The problem can be solved by applying the exploding source model.

3.4.2 The Exploding Source Model
In order to finish the EM interpretation of Stripmap SAR and to later compare Strip-

map SAR and the seismic based Frequency-Wavenumber migration (which is covered in 

chapter 4), we first must apply a sum of plane waves explanation of Stripmap SAR. To 

accomplish this, we first apply the exploding source model to Stripmap SAR. 

The exploding source model was first introduced by Claerbout [20]. It is fundamen-

tal to the solution of wave equation based migration techniques discussed in chapter 4. In 

the exploding source model it is assumed that the scattered field originates from sources 

located at the scatters. At time  these sources ‘explode’ and send travelling waves to 

the detectors at the surface. To adapt to this new model, we must replace the velocity of 

propagation in the medium, , with half its original value:

. (3.23)

 We can then show that equation (3.13) is equivalent to each point source radiating a plane 

wave in all directions, with a varying amplitude term. This is explored in the next section.

3.4.3  A Plane Wave Interpretation of Stripmap SAR Algorithm
Consider the phasor form of a general scalar plane wave in the frequency domain:

, (3.24)

where  (i.e. we are using the exploding source model), and  is the unit normal 

in the direction of travel of the plane wave,. In this consideration, we have centered our 

coordinate system on the point scatterer, and the antenna located at the point . The 
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problem setup is shown in Figure 3.9. We now assume that the wave emitted from the 

point source (via the exploding source model) to be a plane wave by the time it reaches the 

antenna. We can describe the unit normal of this wave, , as:

. (3.25)

Thus vector wavenumber is given by . The scalar wave is received at the 

point 

. (3.26)

We can then write the received signal  as

, (3.27)
where  takes into account the pulse shape and the reflectivity. If we 

note that , and that  is simply the distance from the 

scatterer to the antenna, we can see that equation (3.13), the initial modelling equation for 

stripmap SAR, can be considered as a sum of scalar plane waves emanating from each 
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Figure 3.9: Plane Wave Interpretation of Stripmap SAR
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point target at half the actual medium velocity. To reiterate, (3.13) makes the approxima-

tion that the receiver is in the far field (i.e. the signal is a plane wave) and considers only 

phase differences in the received signal.
32



Chapter 4
Seismic Migration

This chapter begins by describing seismic migration techniques. It begins with the 

basic geometric method of Hyperbolic Summation, then introduces the wave field migra-

tion algorithms of Kirchhoff Migration and Frequency Wavenumber Migration. The 

exploding source model is required for the wave field techniques, and is described in sec-

tion 4.1. 

Migration is the term used by geophysicists to describe the process of focusing the 

basic B-scan images to more closely resemble the physical target dimensions. These 

images arise from a seismic system similar to a GPR, but radiating sound waves instead of 

electromagnetic waves. Early seismic algorithms, such as Hyperbolic Summation, were 

based on a geometric approach and paid little attention to the physics of seismic wave 

propagation. More advanced techniques of migration based on the scalar wave equation 

were introduced in the late 1970’s and early 1980’s. A good overview of the more 

advanced techniques is given in Berkhout [19]. 

The same three basic assumptions made in the Stripmap SAR algorithm are made 

for seismic algorithms. Once again, migration techniques model point scatterers only. 

Interactions inside, and between targets are ignored. We again assume a lossless ground 

and knowledge of the ground constitutive parameters (i.e. we assume knowledge of the 

velocity of propagation in the medium). The third assumption that only one EM field com-

ponent is radiated and received is implicit in the application of seismic algorithms to an 

EM problem, as seismic algorithms are based on the scalar wave equation.

The migration methods in this chapter are presented in 3 dimensions, but all are eas-

ily modified to two dimensional problems. Much of this series of derivations is based on 

Scheers [18].
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4.1  The Exploding Source Model

The wave equation based seismic algorithms of Kirchhoff Migration and Fre-

quency-Wavenumber migration require the application of the exploding source model, 

discussed previously in section 3.4.2. Essentially, we replace the actual medium velocity 

with half its true value ( ).

 Under the exploding source model, wavefield migration consists of two basic con-

cepts:

1. Backward extrapolation of the received signal to the exploding sources.
2. Defining the image as the backward extrapolated wave field at time .

In other words, migration consists of back propagating the received wave front to 

the instant the targets ‘explode’. The image is then the scalar field at the instant before it 

begins to propagate.

vm cm 2⁄=

t 0=
34



The geometry of the exploding source model is shown in Figure 4.1. Here, we again 

see the target hyperbolas seen in SAR imaging. The receiver locations are physically 

located on the plane , and record the data over the entire -  plane. We also assume 

a constant velocity throughout the entire medium surrounding the point target. Viewed 

through this diagram, seismic migration is an attempt to take the data received in the -  

plane and extrapolate it back to the -  plane.

Here, we may note that we make the same three assumptions used in Stripmap SAR. 

For point targets to ‘explode’ in this fashion, we require no interactions between point tar-

gets. We again assume knowledge of the velocity in the surrounding medium, and the 

assumption about having only scalar wave fields is inherent to seismics.

Point Source

t

y

z

t 0=
Receiver Locations

Figure 4.1: The Exploding Source Model
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4.2  Hyperbolic Summation

Hyperbolic Summation (HS), also known as diffraction summation, is a simple geo-

metric approach to seismic migration. It is presented here because it provides a good intro-

duction to seismic migration and helps one to understand the more complicated Kirchhoff 

Migration algorithm.

The HS algorithm starts with the assumption that every point in the desired image 

has been created by a diffraction hyperbola, as shown in Figure 4.1. To migrate each point 

in the image, , we sum the recorded data (which is the scalar wavefield at the loca-

tion ) along the calculated hyperbola. The shape of the hyperbola to sum over will 

depend upon the depth of the point to be migrated, and the medium velocity. If there was a 

point scatterer located at , the amplitudes of the hyperbolae towards a large value. 

If there is no point scatterer (i.e. a noise source), the data will sum towards a much smaller 

value.

If we imagine that we have collected (have knowledge of) the scalar field,  on the 

 plane at a set of discrete points, or  where  and 

. The migrated image can then be expressed as:

(4.1)

where  is the distance between the measuring position  and the point to 

be migrated , and  is the velocity of light in the medium.

As we are concerned with 2-D images in this thesis, we write the Hyperbolic Sum-

mation algorithm as:

(4.2)

One advantage of this method is that we can select a sub-region to migrate (by selec-

tively picking our  points). However, it does not take the physics of wave propa-

gation into account, and has been superseded by more advanced methods. As such, no 

images focused by this method are presented.
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4.3  Kirchhoff Migration

Kirchhoff Migration (KM), which is also known as reverse-time wave equation 

migration or wave field extrapolation, is based on an integral solution of the scalar wave 

equation:

. (4.3)

As per the exploding source model, . The boundary conditions on the scalar 

wave equation specify  on the local ground surface (our collected data), and also specify 

that  as  The diagram associated with this problem is shown in Figure 

4.2. In this diagram, we have the associated quantities:

•  is the location of the observer
•  is the time of the observer
•  is the location of the point source over which we integrate
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•  is the time of the source point
•  is the surface containing all the sources, consisting of the data plane and the infinite 

hemispheric half-space in .
•  is the outward normal to 
•  is the scalar wave field at location  and time 
•  is the scalar wave field that results from a source at point  and time .

The Green’s Function is chosen to satisfy the same wave equation, but with 

Dirichlet Conditions on the ground surface (  on ). Using the image principle, our 

Green’s function is:

(4.4)

where  is the basic free space Green’s function:

. (4.5)

With this Green’s Function we now write the Kirchhoff Integral (equation (2.40)) 

[13] as

. (4.6)

Our choice of G specified that, on ,

(4.7)

and we note that

. (4.8)

From these, we can write the scalar wave field as

, (4.9)

where  on the ground surface. This integral is known as the Rayleigh integral [5]. 

Taking into account the following identity for the Green’s function:

, (4.10)

the scalar wave field can be written as

. (4.11)
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This equation gives us a solution for the scalar wavefield for all times at any loca-

tion. What it tells us is that, in order to find the scalar wavefield at all locations for all 

time, we take our collected data on the  plane, , take the derivative (in the  

direction) of the free space Green’s function, then integrate over both time and the  

surface.

Different practical implementations of Kirchhoff Migration will vary depending on 

the approximation used for the derivative of the free space Green’s function, 

.

For the first order approximation, we can write (utilizing the Taylor expansion):

, (4.12)

then, utilizing the identity

, (4.13)

we can write

(4.14)

and

. (4.15)

Thus,

. (4.16)

In some literature (Yilmaz [21]) the second order term  is taken into 

account In this thesis only the first order approximation is utilized.

The  term can be re-written as

, (4.17)

where we have shown the angle  in Figure 4.2. Placing the approximation for  into 

(4.11) we arrive at:
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, (4.18)

then utilizing the sifting property of the Dirac delta function:

. (4.19)

Finally, the image is the wave field at time , so we may write

. (4.20)

The  term, once taken into the discrete domain, is exactly the same as the 

 term in Hyperbolic summation. Thus, KM consists in summing over theoretical 

hyperbolae (in time) in exactly the same manner as HS. However, there are three differ-

ences observed with these equations. The first is that we take into account the spreading 

losses of spherical waves in the  term. Next is the  term, and the third is 

that we first take the derivative, in the time domain, of the received data. This means that 

we must calculate the time derivative of each A-scan before we perform the hyperbolic 

summation. In the frequency domain, this involves a simple multiplication of the data by 

.

All experimental data collected in this thesis was collected along a single line at dis-

crete points , . The imaging equation for KM in this 2-D case becomes:

. (4.21)

where  and  are now in two dimensions. 

In addition to our knowledge of the scalar wave field being discrete in , our knowl-

edge of the scalar wave field is discrete in time as well. Almost invariably the time 

 will not fall on an exact discrete time-domain data point. Thus, interpola-

tion of some type is required for the implementation of this method. In this thesis, we have 

used simple nearest-neighbour interpolation to select the time-domain data point.
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A graphical representation of the implementation of the algorithm is given in Figure 

4.3.

4.4  Frequency-Wavenumber Migration

Frequency-Wavenumber (F-K), or Stolt Migration, was first developed by R.H. Stolt 

in 1979 [22]. It is also based on the exploding source model and the scalar wave equation. 

The final result closely resembles the final form of the Stripmap SAR algorithm. A thor-

ough comparison of these two algorithms is completed in section 5.1.2. Also important is 

that F-K migration is theoretically identical to KM (see section 5.1.1). The F-K migration 

algorithm is presented in a sum of plane waves format.

F-K migration begins by considering a general plane wave of the form shown in 

(2.29). This plane wave obeys the time-domain scalar wave equation for lossless media:

, (4.22)

and the rectangular components of the vector wavenumber obey the separation equation,

. (4.23)
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Accordingly, if we select any three of the components  or  the fourth becomes 

fixed.

 It has been shown (Stratton [9], p.363) that we can represent an arbitrary wave func-

tion  as a sum of plane waves:

, (4.24)

where  is an amplitude function of any three of the Fourier variables.

In GPR, we measure the field on the  plane:  and 

therefore we have

. (4.25)

Noting that this is a FT (with a positive sign in the forward FT for spatial variables and a 

negative sign for time), we can determine the unknown amplitude function as 

. (4.26)

Thus,  is simply the FT of the collected data,  in the ,  and  

domains.

Utilizing the basic concepts of the exploding source model, the image is 

 and, 

.(4.27)

Where we have placed a positive sign in the exponentail because the integrals are from 

 to . This facilitates later comparisons to Stripmap SAR imaging.

This equation describes a focused image, however it is not in the convenient form of 

an IFT at this time. In order to eventually utilize the efficiency of the FFT algorithm, we 

make a change of variables from  to . 
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Noting from equation (4.23):

, (4.28)

then

, (4.29)

so

. (4.30)

The modified F-K imaging equation then becomes

. (4.31)

Where  is  mapped from the  domain to the  domain. 

In this form our final image is represented as a FT, which when the imaging equation is 

formulated in discrete space and time allows us to utilize the efficient FFT. The final form 

of the F-K migration algorithm shows us that to obtain a focused image, we take the 3-D 

FT of the collected data in the  and  domains (i.e. ) scaled by the 

Jacobian of the transformation from  to , .

This equation can be re-derived for two spatial dimensions. In two dimensions 

( ), the separation equation (4.23) becomes

, (4.32)

and the final imaging equation becomes

. (4.33)

Written in this form, we can more closely see the resemblance of F-K migration to 

Stripmap SAR. In fact, the only difference in the final imaging equations is the Jacobian 

term, . The nature of these similarities is described fully in 5.1.2.
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When F-K migration is taken into the discrete domain, the switch from  to  cre-

ates exactly the same interpolation problem as in Stripmap SAR. Again, we collect data at 

a set of evenly spaced discrete points in the -  domains, and a set of evenly spaced dis-

crete points in the -  domains. When we map the data from the from the  domain to 

the  we utilize the equation:

, (4.34)

which, when we consider that , becomes

. (4.35)

This mapping equation is equivalent to equation (3.19), the mapping equation from 

Stripmap SAR imaging. Again, the interpolation problem is further described in Appendix 

A

A graphical representation of the 2-D F-K algorithm is given in Figure 4.4.
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Chapter 5
Comparison of Imaging Techniques

In this Chapter, we first prove that KM and F-K migration are theoretically equiva-

lent. We also show why the final equations for Stripmap SAR and F-K migration are so 

similar, utilizing the sum of plane waves interpretation of both techniques. The practical 

implementation of the algorithms is also shown. Next, we give a brief discussion of the 

experimental set-up used to collect the experimental data, and then give results for both 

synthetic and experimental data.

The main contribution of Part I of this thesis lies in this section. The Stripmap SAR 

and Seismic migration are often treated as distinct in the literature; for example the major 

textbooks used for references for Stripmap SAR (Soumekh [6]) and Seismic Migration 

(Zhdanov [5]), do not make any mention of the other techniques, despite the similarities. 

These similarities are discussed in section 5.1.2. In addition, it is not well understood 

within the EM community that Kirchhoff and Frequency-Wavenumber migration are 

equivalent (e.g. Scheers [18]).

5.1  Theoretical Comparisons of Different Focusing 
Algorithms

5.1.1 The Equivalence of Kirchhoff Migration and Frequency-Wave-
number Migration 

While the basic imaging equations of KM (equation (4.11)) and F-K migration 

(equation (4.31)) look dissimilar, they both derive from the scalar wave equation (4.3) 

with velocity . It should come as no surprise that they are equivalent from a theoretical vm
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perspective. There are, of course, differences in implementation and in the nature of the 

approximation of the derivative of the Green’s Function in KM.

To show the equivalence of KM and F-K migration, we must first write the KM 

solution for the scalar wave field (equation (4.11)) in the frequency domain. In the fre-

quency domain, (4.11) becomes (Zhdanov [5])

, (5.1)

where * denotes complex conjugate, and

 , (5.2)

is the frequency domain Green’s function for the scalar wave equation.

Another important part of proving the equivalence of KM and F-K migration is writ-

ing equation (4.24) in the frequency domain. In the frequency domain, (4.24) becomes:

. (5.3)

We will now show that the two frequency domain solutions of the scalar wave field, (5.1) 

and (5.3) are equivalent.

We can demonstrate that, in ,

, (5.4)

where

, (5.5)

and

(5.6)

is the Green’s function of the Helmholtz equation. It can be shown (Zhdanov [5]) that the 

function  satisfies the 1-D Helmholtz equation,
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. (5.7)

Therefore,  is the Green’s Function for the 1-D Helmholtz equation 

(where we may apply the term Helmholtz because we have assumed that the velocity in 

the Helmholz equation is one, i.e ). The solution to this equation is [5]

. (5.8)

For ,

. (5.9)

Which is (5.4). Placing (5.4) into the frequency domain representation of the sum of plane 

waves solution for F-K migration (equation (5.3)) we arrive at:

. (5.10)

Utilizing the fact that the FT of the product of two functions is equal to the convolu-

tion of these two functions, we obtain 

, (5.11)

which is equation (5.1), the frequency domain representation of the KM solution of the 

scalar wave equation. Therefore, from a theoretical perspective, we have that the two solu-

tions are equivalent. Differences that do occur between the two algorithms come when we 

implement the two algorithms.

5.1.2 Similarities and Differences of F-K Migration and Stripmap 
SAR

The key to comparing these two algorithms is the sum of plane waves solution inter-

pretation of both. To the authors knowledge, neither algorithm has been previously pre-

sented in this form. The real differences between these two algorithms lies in the method 

of finding the image equations, not the initial assumptions of the models.
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Given that initial modelling equation (3.13) of Stripmap SAR was shown to be 

equivalent to a plane wave expansion of the received field in section 3.4.3, we can see that 

the sum of plane waves method used to solve for the F-K migration image could be used 

with the Stripmap SAR equation as the known portion of the scalar wave field. That is, we 

could now let the initial Stripmap SAR equation (3.13) be our known scalar field at 

, That is, for the 2-D version of F-K migration, let  and 

solve for the total field following the procedure used for F-K migration (section 4.4).

The real differences lie in the method of selecting what we called the ‘desired 

image’. Once the initial model of Stripmap SAR is given, we derive the final imaging 

equation by comparison with an ‘ideal image’ consisting of Dirac delta functions, where 

in F-K migration we define the desired image as the backward extrapolated wave field at 

time .

Also of interest is to note that the Stripmap SAR initial modelling equation ignores 

the 3-D spreading loss term . F-K migration, as a rigorous solution of the scalar wave 

equation, does take this spreading loss into account.

The Stripmap SAR algorithm is not a rigorous solution of the scalar wave equation, 

it is a solution of the particular model selected. Due to the fact that the F-K migration is a 

rigorous solution and clealy states the approximations used (in the exploding source 

model), we consider it a superior algorithm for pedagogical purposes. In section 5.4 we 

will show that the practical differences between the two algorithms are slight.

5.2  Practical Implementation of Imaging Algorithms

While Stripmap SAR, KM migration and F-K migration algorithms have all been 

developed, it remains to be shown how they were practically implemented (i.e. computa-

tional implementation). Here, we show the three imaging algorithms in flow chart form.

All synthetic and experimental data considered comes from a Stepped-Frequency 

Continous Wave (SFCW) radar which is moved along a single line, as shown in Figure 

1.2. With a SFCW radar data is collected in the frequency domain. As such, we assume for 

z 0= ψ y z, 0 t,=( ) s y t,( )=

t 0=

1 R⁄
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this section that we have knowledge of a scalar wave field along the  axis at a set of 

discrete points in both  and . We denote this field

 (5.12)

where ,  and , . The val-

ues of , ,  and  depend on the particular data set collected.

We also assume that we have generated the full frequency domain response (i.e. we 

have negative and positive frequency data). When the data is not in this form (i.e. it is col-

lected from an SFCW radar), it should be appropriately zero-padded and the negative fre-

quency data generated as described in section 2.5.2 for the following flow charts to be 

applicable.

5.2.1  B-Scans
A B-scan consists of taking the FFT of the collected data in the  direction, then 

scaling the resulting time axis using the equation . The flow chart is shown in 

Figure 5.1. The B-scan results in an unfocused image. Matlab code for the implementation 

of B-scans is given in Appendix B.

z 0=

y ω

Ψ ya z, 0 ωb,=( ) Ψ ya ωb,( )=

ya a∆y= a 0 1 … A 1–, , ,= ωb b∆ω= b 0 1 … B 1–, , ,=

B A ∆y ∆ω

ω

z vmt=

Ψ ya ωb,( )

 

ψ ya tb,( )

 

Direction
ω

t-axis Scaling
zb vmtb=

FBscan ya zb,( )

FFT in

Figure 5.1: Implementation of a B-scan
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In GPR for landmine detection, we are often only interested in a small range of data, 

e.g.,  (meters). As such, we often display only a portion of the total image, 

, by displaying a selected set of values of . 

5.2.2 Stripmap SAR/F-K Migration
The implementation of Stripmap SAR and F-K migration are very similar. The only 

difference from an implementation point of view is that a different multiplication is 

required before the final 2-D IFFT. For quick reference, the (continous variable) imaging 

equation for Stripmap SAR with the data in the form of (5.12) is 

, (5.13)

and the imaging equation for F-K migration is 

. (5.14)
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The flow chart is shown in Figure 5.2. Details of the interpolation procedure are 

found in Appendix A, and Matlab code for the implementation of this flow chart is shown 

in Appendix B.

Again, because we are often interested in a small depth of targets, we often only dis-

play a selected portion of the image, e.g. .
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5.2.3 Kirchhoff Migration
Here, we give the flow chart for the implementation of KM. Due to the fact that we 

can select which points we want to migrate, we save significant computational time by 

selecting a sub-region over which to migrate. Here, we select, for example, the region 

 before we perform the full KM migration.

The KM equation for the SFCW radar data is given by:

. (5.15)
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The KM flow chart is shown in Figure 5.3 
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Here, instead of migrating the whole image then selecting a sub-portion to display, 

we may migrate only the part of the image we wish to display by properly selecting the 

points we wish to migrate.

The Matlab code for the KM algorithm is given in Appendix B.

5.3  Experimental Setup

In this section we describe how both synthetic and experimental data were gener-

ated. All data comes from SFCW radar (simulated or experimental).

5.3.1 Synthetic Data Generation
To simulate data coming from a point target, the following equation is used:

, (5.16)

where  is the reflectivity,  is the distance from the ith target to the antenna position, 

 is a simulated antenna radiation pattern,  is the frequency of excita-

tion, and  is the velocity of the medium. The total number of point targets is .

The purpose of the synthetic data is to ensure that the implementations of the focus-

ing algorithms are working. As such, there is no ground-air interface simulated in the data: 

we assume a homogenous medium with material parameters ,  and  (i.e. con-

ductivity is zero. Due to the fact that the synthetic data closely represents our initial 

assumptions of the exploding source model which is applied to the focusing algorithms, 

we expect the algorithms to perform well with this data.
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5.3.2 Experimental Data
The general experimental set-up is shown in Figure 5.4.

Here, an Anritsu 360 B Vector Network Analyzer (VNA) is used to collect  data 

from a single antenna (monostatic radar). The VNA is controlled over a General Purpose 

Instrumentation Bus (GPIB) via ethernet using a National Instruments GPIB-Ethernet 

Adapter. The computer also controls a motor that moves the single antenna along a set of 

rails suspended above the sandbox. This setup allows for movement along a single line 

with a controllable step size. A photograph of the sandbox (with a horn antenna) is shown 

in Figure 5.5.
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Motor
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Figure 5.4: Experimental Setup
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The sandbox was filled with dry silica sand, with . For the purposes of the 

imaging algorithms, we assumed . Here, we have also placed blocks of RF absorp-

tion foam beneath the sand.

5.4  Results

All three major algorithms, Stripmap SAR, KM and F-K migration were pro-

grammed in Matlab. All algorithms were implemented in 2-D format. 

εr 2.2≈

σ 0=

Figure 5.5: Photograph of Experimental Setup
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5.4.1 Synthetic Data Results
First, the algorithms were compared by imaging synthetic data. The unfocused B-

scan image of the synthetic data is shown in Figure 5.6. Here we have created the data 

using the method described in section 5.3.1, with the medium parameters , 

, and . There are two point targets located at  and 

 with reflectivities  and  respectively. The data was collected 

with a step size in the cross range of 1 cm, over a simulated frequency range of 1-12.4 

GHz. The discretized target hyperbolas can clearly be seen. However these hyperbolas are 

not perfect (i.e there is some distortion), so we expect imperfections in the focused 

images.
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Next, we present the focused image of the data using the Stripmap SAR algorithm. 

This is shown in Figure 5.7. The target hyperbolas have been focused. The next figure, 
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Figure 5.8, is the F-K migrated image, and the KM image is shown in Figure 5.9. All 
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images have been normalized so that the maximum magnitude is one. In addition, we have 

selected a viewing range of  meters.

Subjectively, we might say that KM focuses the image slightly better than the other 

two algorithms. The error in the focusing does not appear in the form of a residual hyper-

bola, which occur in the Stripmap SAR and F-K images. It is unclear where these ghost 

hyperoloid images come from at this time. We do not expect ideal focusing, as the algo-

rithms were derived for the case of continous data over the whole  axis, and we clearly 

do not have this situation.

One of the advantages of using synthetic data is that we can define the ideal image 

as a single pixel at location  of magnitude 0.5 and a pixel at loca-

tion  with magnitude 1. Utilizing this ideal image, we can now cal-

culate the RMS error between the ideal image and the three focusing algorithms defined 

as:

. (5.17)

where  is the index of the largest  in the displayed image. For the three figures 

above, this would be . The RMS error will vary depending on the selection of 

. Note that  and  can be selected to change the range over which the RMS error is 

calculated, but it is important to select the same number of pixels from each image to 

ensure proper comparison. The RMS error for the three images is shown in Table 5.1.

Other metrics were attempted, such as entropy. However, it provided similar results 

to the RMS error metric (with even less difference between images than RMS error). 

Essentially, the error metrics are close for all three images.

As another algorithm metric we have presented the time required to complete each 

focusing algorithm. While no claim to the most efficient implementation of these algo-

rithms is made, (especially KM) the results seen in Table 1 are instructive.

While all three RMS errors are similar, the time to process is very different. We can 

conclude from visual inspection and the RMS error that all three algorithms focus images 

comparably, but KM shows over a two magnitude increase in computation time over the 
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more efficient FFT-based Stripmap SAR and F-K methods. The slight improvement in 

RMS error does not justify the huge amount of processing time required to complete the 

focusing of KM.

5.4.2 Experimental Results
Experimental data is obtained using a monostatic setup with a Vivaldi patch antenna 

and the VNA from 0.8 to 5 GHz. The targets consist of, from right to left, two mine-like 

dielectric targets, a small piece of wood, and a small (shrapnel-like) metallic target. A dia-

Table 5.1   Comparison of Focusing Algorithms for Synthetic Data

Focusing Algorithm
Time Required to 

Process Image 
(Seconds)

RMS Error

Stripmap SAR 1 2.76

Frequency-Wavenum-
ber Migration

1 2.69

Kirchhoff Migration 546 2.37
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gram of the targets is shown in Figure 5.10. The first dielectric target consists of a 5x12x2 

cm foam block, while the second dielectric target consists of cylindrical shaped foam with 

a depth of 2 cm and a diameter of 8 cm. The piece of wood is a 5x3x6 cm piece of spruce, 

and the metallic target is a small piece of sheet metal with a maximum dimension of less 

than 12 cm. 

As the purpose of this section is to compare the image focusing algorithms, a partic-

ular set of targets is not the main consideration. It is important that the GPR is able to 

detect both metallic and dielectric targets in the sand, but this detection ability is a factor 

of the antenna, transmit/receive system, and the material parameters of the targets 

involved. It has been shown previously (e.g. Phelan [27]) that detection of these types of 

targets is feasible with this particular experimental setup. 

Data was collected at a 1 cm step size in the cross range. Here, the ground surface 

has been windowed out of the image to enhance the relative magnitude of the targets. The 

sand

Vivaldi Antenna

Dielectric Targets
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Figure 5.10: Experimental Data Layout
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unfocused image is presented in Figure 5.11. All images in this section have been normal-
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Figure 5.11: Unfocused Data for 0.8-5GHz SFCW Radar
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ized magnitude of one. The Stripmap SAR focused image is shown in Figure 5.12  The F-
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Figure 5.12: Stripmap SAR Focused Image for 0.8-5GHz SFCW Radar
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Figure 5.13: F-K Migration Focused Image for 0.8-5GHz SFCW Radar
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K focused image is shown in Figure 5.13. The KM focused image is shown in Figure 5.14.

As can been seen all three focused images provide a reasonable focusing of the 

unfocused radar data. All three focused images are visually very similar, with some slight 

differences in KM. While not shown here, KM again took over two orders of magnitude 

longer than the FFT based algorithms. Obviously, KM has high computational demands 

with little or no gain in image quality.

 To help determine the differences between Stripmap SAR and F-K migration, 

which are not visible to the eye, a plot of the difference between the Stripmap SAR image 

in Figure 5.12 and the F-K image in Figure 5.13 was computed. This plot is shown in Fig-
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Figure 5.14: KM Focused Image for 0.8-5GHz SFCW Radar
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ure 5.15. We note that the maximum magnitude difference is of 1.6% of the maximum 

magnitude of the two regular images. This, combined with the very similar results of Fig-

ure 5.12 and Figure 5.13 allows us to conclude that the differences in the multiplicative 

constant taken before the final 2-D IFFT (see Figure 5.2) makes little practical difference 

at these frequencies. The effects may be different for alternate frequency ranges.

5.5  Conclusions and Future Work of Part I

We have shown how various migration and SAR algorithms, which can be applied 

to GPR imaging of landmines, are developed, and shown the similarities and differences 

both from a theoretical and experimental point of view. Images formed by these algo-

rithms show little subjective difference. The main difference is compuational time and it 

was shown that Stripmap SAR and F-K migration are much more computationally effi-

cient than KM. Confusion around the close relationship between Stripmap SAR and F-K 

algorithms was alleviated by using a sum of plane wave interpretation of both techniques.
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While this investigation shows how imaging algorithms may be applied to GPR data 

to focus images into slightly better focused images which can aid in target detection, these 

forms of inverse imaging do not provide an adequate method to identify/discriminate 

landmine targets. For example, in the experimental data presented above, we cannot dis-

criminate the two mine-like dielectric targets from either the wood ‘clutter’ or metallic 

(shrapnel) ‘clutter’. We can see where possible targets exist, but we cannot determine the 

nature of those targets. Clearly, other methods will be required to properly identify land 

mine like targets from surrounding clutter. The exploration of the Singularity Expansion 

Method as a solution to the identification problem is the subject of Part II of this thesis.

5.5.1 Future Work
For the purposes of aiding in the detection of landmine targets, it seems that these 

focusing algorithms are sufficient at this time. While other imaging algorithms do exist 

(see, for example, Milisavljevic [23]), the larger problem seems not to be in the detection, 

but rather identification of subsurface targets. As such, our efforts are now focusing on tar-

get identification.
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Chapter 6
Introduction to Part II

Using the methods described in part I of this thesis, we are able to construct subsur-

face images of objects which have different electromagnetic properties than the surround-

ing medium. These images allow for the detection of buried objects, but give very little 

help in identifying the target (other than some idea of the basic dimensions of the target). 

With the ultimate goal of implementing an effective landmine detection and identification 

GPR system, the second part of this thesis is concerned with the use of the Singularity 

Expansion Method (SEM) to aid in the identification problem once these objects have 

been detected.

Many different identification techniques have been proposed and attempted, includ-

ing the (SEM) (Baum [24][25]) auto-regressive (AR) modelling of return signal (Rhen-

beregen REF), Image enhancement techniques such as polarimitry and Symmetry filters 

(Stiles, [26] Phelan, [27]), and image processing techniques such as moment based meth-

ods (Gilmore et. al. [28]). We have chosen to concentrate here on the SEM method.

Many of these techniques fall under what is called model-based parameter estima-

tion (Miller and Sarkar). In these we analyze and create, on a physics based (i.e. Max-

well’s equations) analysis of the general problem, some type of model and then fit the 

parameters of the model to our observed data. Part II focuses on the Singularity Expansion 

Method, which is a model-based parameter estimation technique.
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6.1  The Singularity Expansion Method for Detection of 
Landmines

The Singularity Expansion Method was first introduced by Baum in 1971 [24] and 

reviewed in [25]. It arose from considering general electromagnetic scattering and has 

resulted in an effective method to identify large-scale (e.g., airplane) targets in free-space. 

The method has recently been expanded to aid in the identification of buried targets. For 

simplicity, we can explain the basic principles of the SEM method by considering an 

acoustic tuning fork. This description is based on Peters [44].

If an acoustic tuning fork is struck sharply, there is a short transient pulse followed 

by a long decaying ringing (or resonance, or natural response) at a the tuning frequency. 

This ringing signal can be described as

(6.1)
where the amplitude term  is dependent upon the initial strike, while the decay term  

and resonant frequency  are dependent only on the construction of the tuning fork (when 

the fork is located in free space). In the two-sided Laplace domain, we can represent  

as:

, (6.2)

where  is the Laplace transform variable (or complex frequency). Thus, the 

identifying information of the particular tuning fork is located in a set of poles in the com-

plex frequency domain, and these poles are independent of the excitation (initial strike). 

The magnitude of the poles is dependent on the exitation. These poles in the complex fre-

quency domain are known as Complex Natural Resonances (CNR), complex poles, or 

simply poles.

Baum’s major contribution in [24] was to prove that electromagnetic scattering 

could be represented in a similar fashion. We represent a scattered field component as 

(6.3)
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where  is the residue, or strength of the particular pole,  is the  pole, and  is 

the total number of poles.  is an everywhere analytic (entire) function in the complex 

frequency plane.  is usually called the early time response, because it represents the 

initial ‘strike’ of the electromagnetic field.

The poles arise from resonant currents on (or in) the scatterer. The resonant currents 

will tend to follow very specific patterns for particular objects. The different locations of 

the set of poles corresponding to an object allow for the effective identification of the 

object illuminated by the incident pulse. 

The advantages of the SEM method are clear. If a particular mode (resonance) can 

be excited on the target by the incident pulse, and that mode can be detected, then it pro-

vides some very specific information corresponding to the target that can be used to iden-

tify the target.

For humanitarian de-mining, we know the types of landmines and their construction 

that have been used in any particular minefield. This gives us targets for which we can cal-

culate (either experimentally or computationally) electromagnetic responses. These 

responses allow the construction of a library of possible landmine targets. When a certain 

set of poles are detected from an unknown object we can then compare these to the library, 

and possibly identify the object.

6.1.1 Finding Poles from an Arbitrary Signal
To make the SEM an effective target identification technique, we must have a way 

of reliably detecting the poles of a given arbitrary signal contaminated with noise. Many 

methods have been proposed and implemented including the matrix pencil method (Sarkar 

[38] - [40]), Prony type methods such as the regular Prony, Least-Square Prony and Total-

Least-Squares Prony (Hildebrand [41]), and State-Space based methods (Jang [42]). For 

an overview of some commonly used methods, see [42]. In this thesis, we implement the 

Matrix Pencil Method (MPM). The MPM has been shown to be equivalent or better in 

both accuracy and efficiency, than other competing algorithms [42].

Rm sm mth M

G s( )

G s( )
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6.2  The SEM Method for Buried Targets

When attempting to utilize the SEM method for buried targets, the problem becomes 

significantly more complicated. Here, we could imaging trying to strike a tuning fork in 

water. Clearly, the tuning fork will not resonate at the same frequency as in air due to the 

different acoustic properties of water. The complex poles of electromagnetic targets will 

similarly change when they are buried in an external medium.

6.2.1 Buried PEC Targets
For canonical Perfect Electric Conductor (PEC) targets, such as spheres and cylin-

ders buried in a homogenous medium (i.e. not for the half-space problem), Baum [30] has 

provided analytic solutions. In [30] he also introduces a perturbation formula for general 

PEC targets buried inside a homogenous medium. The perturbation formulae for conduct-

ing targets perturb free space poles, i.e. the poles that arise when the PEC target is located 

in free space. The perturbation is a simple formula based only on the material parameters 

of the surrounding medium (see section 7.2), and is an exact solution (for the homogenous 

problem) when the material parameters are known and do not vary with frequency.

However, the basic perturbation formulae for PEC targets, given in [30], consider 

only targets buried in a homogenous medium, i.e. they do not take into account the air-

ground interface. Hanson [33] has provided a further perturbation technique for targets 

buried in layered media. Using the layered media perturbation allows for the modelling of 

the air-ground interface. However, the perturbation formula in [33] is no longer as simple 

a transformation. For the layered medium perturbation of the free space poles, we must 

know the depth and orientation of the buried object in addition to the material parameters 

of the surrounding ground. While we may obtain an estimate of the depth from focused 

GPR images, the orientation of the object is extremely hard to determine.

6.2.2 Buried Dielectric Targets
To aid the identification of buried dielectric targets, Baum and Hanson [31][32] have 

introduced perturbation formulae to determine the resonances of buried dielectric targets 

based on the internal resonances of the object with PEC boundaries. These resonances are 
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not the same as the free-space poles used for the PEC perturbation formula. Again the 

dielectric perturbation formulae are for a homogenous external medium. Hanson’s layered 

media perturbation formula [33] also applies, but again is aspect and depth dependent and 

no easy to use library could be constructed from its use. 

To calculate the internal resonances of an arbitrary object one can either calculate 

analytically, or determine numerically, the internal resonances. These internal resonances, 

which are entirely on the imaginary axis in the complex frequency plane, combined with 

the perturbation formula outlined would form the basis of the library for identifying 

dielectric targets. 

The dielectric perturbation formula is not an exact solution for the SEM poles (even 

for the homogenous case), as the internal resonances of the target buried in the external 

medium are not exactly as if the target were surrounded by PEC. Worthy, in [34], provides 

a comparison of the perturbation formula outlined in [31] with known analytic poles for 

canonical dielectric objects (such as a sphere) in a homogenous medium. No computa-

tional or experimental data are presented. He then provides graphs of the ‘effective’ area 

of the perturbation formulae presented by Baum and Hanson in [31] and [32]. An ‘effec-

tive’ perturbation is considered to be a pole that is within 6% of the analytic solution. In 

[35] and [36] Worthy provides libraries of responses for both cylindrical and rectangular 

dielectric mines. 

6.2.3 Discussion of Buried Targets in General
The wide-band and resonant responses of buried targets (taking into account the air-

ground interface) have been studied extensively using the Method of Moments (MoM) 

[45] - [54]. For an overview of recent developments, see Carin [45]. These papers utilize a 

half-space Green’s function to calculate both full bandwidth time-domain responses and 

the resonances of targets of interest. Both dielectric and PEC targets are considered, 

although only Bodies of Revolution (BOR) are considered dielectric targets (see Geng, 

[46] and [47]). 

The essential result of both Hanson’s perturbation formula given in [33] and the 

numerical results of [45] - [54] is to show that as the depth of the buried target and the ori-

entation of orientable targets varies, so do the poles. As the depth increases, the poles tend 
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to move in a spiral pattern around the poles for the object buried in a homogenous space. 

A good graphical example is given in [33], reprinted here in Figure 6.1, with permission 

from the author. The exact scale used for the axes in Figure 6.1 is not important, but it is 

important to note that the scale is linear. 

Thus, for buried targets, we would have to call the complex natural resonances of an 

object at best only quasi-invariant identification technique as the poles will change not 

only with ground parameters, but also with orientation and burial depth. However, from a 

survey of the pertinent literature ([45] - [54] and [33]) we can see that the variation of the 

imaginary part (frequency of resonance) from the homogenous case tends to be small, on 

the order of 5-10%, depending on orientation and burial depth.

In practical situations, the estimates of the ground parameters (  and ) will vary 

significantly over even a small area. Water content alone causes significant changes in 

Figure 6.1: Poles for Wire in Half-Space 
(Reprinted with Permission from [33])

σ ε
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both  and . For example, in sandy soils  rises from  to , and  rises from 

 to  for a water content rise of 0 to 40% [34]. Additional changes in material 

parameters come from the ‘trenching effect’ where the disturbed earth above the mine has 

different properties than the surrounding materials.

In addition to changes in ground material parameters, complications from other clut-

ter, defined here as non-landmine targets, will preclude us from calculating the exact reso-

nances of the object. As such, when we are attempting to decide whether a particular target 

is a landmine or clutter, an object giving rise to a pole within of 5-10% of our estimated 

poles for landmines buried in the area should be treated as a mine (i.e. exhumed).

6.3  Implementation of the SEM Method for GPR

While the resonances of buried objects have been studied numerically, there have 

been relatively few attempts to utilize the perturbation formulations for PEC and dielectric 

targets. In fact, only the PEC perturbation techniques have ever been implemented. In   

Wang [51], resonances of conducting planar objects are considered, and the PEC perturba-

tion formulae of [30] and [33] are compared with MoM generated numerical results. The 

perturbation formulae correspond well with the MoM solution for conducting planar 

objects. In [37], Chen implements a GPR system for the detection of Unexploded Ordi-

nance (UXO) and utilizes the basic perturbation formula in [30] to approximate the length 

of PEC scatterers buried underground. The results of the paper show some promise in the 

technique for conducting targets like UXO.

To this authors knowledge, no attempt at comparing the perturbation formulae for 

dielectric targets, even with computational data, has been presented. In addition, the use of 

the basic PEC perturbation formula has not been presented for landmine like targets either 

for computational methods or experimental data. To begin the preliminary exploration of 

the use of SEM for landmine detection, we implement a simplified GPR system in FDTD. 

6.3.1 FDTD Simulation of GPR
With the ultimate goal of implementing a effective landmine GPR detection and 

identification system, we have chosen to simulate a GPR system using a Finite-Difference 

ε σ ε 3εo 30εo σ

0.001 0.1
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Time-Domain (FDTD) code (Mardare et. al. [55]). FDTD techniques provide an effective 

tool for the simulation of GPR problems (see Bourgeois [56]). 
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Chapter 7
The Singularity Expansion Method

This chapter covers the essentials of the SEM method, then discusses the perturba-

tion formulae for both PEC and dielectric buried targets. The implementation of the 

Matrix Pencil Method is discussed, as well as determining the onset of late-time.

This section of the thesis is presented in ‘application oriented’ format. Due to the 

fact that this is a preliminary investigation into the use of the SEM method for landmine 

identification/discrimination many of the in-depth proofs and derivations required for the 

use of the SEM method have been omitted. The references for the required proofs/deriva-

tions are provided at appropriate spots. For example, the derivations of the perturbation 

formulae for the poles of buried objects will not be presented, only the final results.

As previously mentioned, we have restricted our experimental data to Finite-Differ-

ence Time Domain (FDTD) produced synthetic data. No experimentally collected data 

from a laboratory environment is considered/presented. The FDTD method provides an 

accurate method to test the predictions that come from the use of the SEM method.
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7.1  Introduction to the SEM

The basic diagram associated with the SEM problem is shown in Figure 7.1. 

Here, we present the equations for the SEM method for a PEC target ( ). The 

method can be extended for dielectric targets. If we assume the scatterer is illuminated 

with a plane wave of the form [25]

(7.1)

which in the two-sided Laplace domain is written as

, (7.2)

where ,  is the complex frequency,  is the speed of light in the 

external medium,  is the direction of incidence, and  is the direction of polarization. 

Here  and  is the two-sided Laplace transform of .

The SEM form of the solution [25] for the current density on a PEC target is:

εt µt σt, ,

Incident Radiation

Einc Hinc,
Scattered Radiation

Escat Hscat,

ε1 µ1 σ1, ,

Figure 7.1: Scattering of an Incident Wave by a Target
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(7.3)

where  is a coupling coefficient,  is a natural mode,  is the complex nat-

ural resonance,  is the total number of poles and  is the space vector on the surface of 

the scattering object. In the time domain, the poles  are replaced with 

.

7.1.1 SEM From a Signal Processing Perspective
Stepping from the electromagnetic domain and into the signal processing domain, 

we make the assumption that we can write our two-sided Laplace transform of the scat-

tered signal, after the onset of the poles at , from a target as:

, (7.4)

where  is an entire function representing the early-time contribution of the received 

scattered form.  is the residue of the  pole,  is the location of the  free space 

pole, and  is the total number of poles. In general,  may contain poles itself (i.e., 

the poles associated with the transmitting antenna and transmitted waveform). However, 

for this discussion we assume that it is everywhere analytic (entire). We can represent the 

poles as

, (7.5)

where  is the decay rate of the pole, and  is the frequency. For real time domain sig-

nals (as seen in all real radar problems) we expect the poles to occur either on the  

(real) axis, or in complex conjugate pairs. In stable problems (again all real radar prob-

lems)  will be negative, i.e. the received signal will decay towards zero.

In the time domain, the received signal,  can be represented as
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, (7.6)

where

, (7.7)

and 

. (7.8)

If we assume, for example, that all poles come in complex conjugate form, then  

is even, and

. (7.9)

In other words, if there is no DC component of our scattered signal, we can represent the 

late time portion of the signal as a sum of exponentially damped sinusoids.

An example of a free space scattered signal from a long, thin, wire like object is seen 

in Figure 7.2. This represents the scattered field from a perfect electric conductor 40 cm x 
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1cm x 1cm. The incident field is at a 45 degree angle to the length of the wire, and an 

amplitude of 1 kV/m, polarized in the  direction. This data was obtained using FDTD.

Here, we can see an early-time signal (around 3-6 ns) that, in later time becomes a 

summation of exponentially damped sinusoids (poles).

7.1.2 Determining the Onset of Late-Time
In order to properly model our scattered signal from an object as a set of complex 

poles, we need to distinguish between the so-called early and late-times. Determining the 

onset of late-time can be viewed as determining the time  in equation (7.3). Only 

the late-time content can be modelled with a summation of damped sinusoids. Typically, 

the early-time consists of impulse-like components. 

The problems with finding the onset of late-time have received some attention (see 

for example, Selli [43]). However, for the purposes of this preliminary investigation we 

utilize a process of trial and error in order to determine the onset of late-time. If the reso-
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nances have a low damping coefficient, we can usually visually distinguish an adequate 

location to switch from early-time to late-time.

7.2  Perturbation Formula For Buried PEC Targets

In 1993, Baum presented the perturbation for the SEM method for Perfect Electric 

Conductor (PEC) targets buried in a surrounding homogenous, non-magnetic medium 

[30]. The setup for the problem is the same as in Figure 7.1, with , and the exter-

nal medium having material parameters ,  and . The material 

parameters are assumed to be frequency independent. It is important to note that Baum’s 

perturbation formula is for the poles in a homogenous medium and that it is analytically 

derived with the only approximation being that the material parameters are frequency 

independent. The more complicated situation of layered media is discussed in [33], but as 

previously mentioned, the perturbation formula of [33] requires knowledge of the material 

parameters, target orientation and shape, and the burial depth while providing limited 

extra accuracy. As such, it is not presented here.

Given that an object a has free space pole given by , Baum’s analytic formula for 

the perturbed poles in the external medium is

, (7.10)

where  is the perturbed pole, and the  term is selected for  in the right-hand  plane 

(i.e, positive real part of ), and the  is selected for  in the left-hand  plane. Baum 

also notes that there is a possible branch cut introduced into the representation of the scat-

tered signal in the Laplace domain. However, the branch cut occurs only for dispersive 

external medium [29]. In this discussion, no dispersive external media are considered, so 

the branch cut is not considered here.

For high frequencies, (frequencies above the so called relaxation constant of the 

medium) where , the perturbation formula becomes

. (7.11)
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This is a simple scaling of the poles by , and a shift along the real axis by 

. As Baum notes, for high frequencies we expect the pattern of the poles to 

remain the same, and possibly aid in identification. 

To implement this perturbation formula, we must have prior knowledge of the type 

targets we are attempting to find. This is usually not a problem, because for humanitarian 

demining we have lists of what types of landmine were buried and approximate locations 

(see, for example, [35] and [36]). To utilize the perturbation formula presented here it is 

required that we find the free space poles of the scattering object, and know the materials 

of the surrounding ground. For a PEC the free space poles can easily be found either 

numerically, utilizing some type of EM modelling code (such as FDTD), or experimen-

tally in an anechoic chamber. The ground parameters could be found by taking several 

samples of the ground in suspected burial sites.

7.3  Perturbation For Dielectric Targets

The problem of detecting the resonances of dielectric targets is a much more compli-

cated problem than detecting the resonances of a PEC target. In general, the resonances 

are significantly weaker for the dielectric targets [37]. The set up for the problem again 

follows from Figure 7.1, but with the external medium having parameters  and . 

The target will be a loss-free dielectric with parameters  and .

In [32] Hanson and Baum provide an approximate perturbation formula for arbi-

trarily shaped scatterers based not on the free-space resonances, but on the interior cavity 

resonances, which are located on the  axis in the Laplace ( ) plane. Again, Hanson in 

[33] provides a perturbation formula for layered media but it is dependent on the burial 

depth and orientation of the target.

The key assumption made in the basic dielectric perturbation formula is that there is 

a high contrast between the target and external medium wave impedances, which trans-

lates into a high contrast in the permittivities from target to ground. The wave impedance 

in the external medium in the Laplace-domain is given by

1 εr⁄

σ1 2εr( )⁄

ε1 µo, σ1

ε2 µo
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. (7.12)

The Laplace domain wave impedance of the target is given by:

. (7.13)

The ratio of the internal to external wave impedances is defined as:

. (7.14)

As , we can assume that the target is surrounded by a PEC [31]. This creates 

a set of interior cavity resonances, that for canonically shaped targets (such as rectangular 

cavities or cylindrical cavities) can be analytically calculated. For example, the internal 

resonances of a rectangular cavity can be found in [3].   For non-canonically shaped 

objects the internal resonances would have to be found numerically or experimentally. We 

denote these unperturbed internal resonances as . These resonances will be on the  

axis, because the targets have no losses.

Under the assumption of a large impedance ratio, , we can represent the 

perturbed poles as

, (7.15)

where the shift in the pole is given by

. (7.16)

The area of integration is on the surface and volume of the cavity, where  is the unper-

turbed magnetic field of the internal cavity resonances.

There exists a source of error that is intrinsic to the use of this formula (7.16). The 

assumption that the field  is the field when the target is surrounded by PEC does not 

match the physical reality, where the target is surrounded by another dielectric (with a 
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higher relative permittivity. How this source of error effects the perturbed poles is 

explored by Worthy [34].

7.4  The Matrix Pencil Method

The SEM method is not practical without a method to extract the poles and residues 

from the late-time signal. Many methods have been proposed and implemented including 

the matrix pencil method [38] - [40], Prony type methods such as the regular Prony, Least 

Square Prony and Total-Least Squares Prony [41], and State Space based methods [42]. 

All these methods are concerned with determining, from an arbitrary digital (or discrete 

time) signal, the best fit of a series of exponentials. Two major concerns are the perfor-

mance in noise, and how to decide the number of poles with which to model the signal (i.e. 

how to pick ).

In this thesis, we consider the Total Least-Squares (TLS) Matrix Pencil Method 

(MPM). In the presence of noise, the TLS-MPM has been shown to perform better or as 

well as other competing techniques [42]. The underlying assumption of the MPM is that 

the late-time part of the scattered signal  (which has now been digitized), can be mod-

elled as a linear combination of damped sinusoids:

(7.17)

where  and  are given in equations (7.7) and (7.8) respectively,  is the sample 

period and .

The derivation of the matrix pencil method is presented in [40]. This particular 

implementation of the TLS-MPM is given in [42]. We begin by constructing a Hankel 

matrix,  as

(7.18)
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where  is the total number of samples in the signal , and  is the so-called pencil 

parameter which, for efficient noise filtering, should be chosen in the range  to . 

For a large amount of samples, the particular selection of  makes little difference [43].

Next, we complete the Singular Value Decomposition (SVD) of the matrix  writ-

ten as

, (7.19)
where  and  are matrices composed of the eigenvectors of  and  

respectively.  represents the complex conjugate transpose, and  is the singular value 

matrix, containing only diagonal elements of the singular values of .

The matrix  allows us to make an extremely important step in the MPM process. 

At this point,  is an ill-conditioned matrix. By analyzing the relative magnitude of the 

singular values,  inside the singular matrix , we can get an idea of how many poles, 

, we should select to model our signal . For example, if we have collected data 

with  significant digits, then all singular values , such that

(7.20)

are singular values (and therefore, poles) that are caused by numerical noise.

After  total singular values have been selected, we then create a ‘filtered’ version 

of , , which contains only the  vectors of corresponding to the  largest 

eigenvalues. For example, if  is a  matrix, then  will be a  matrix. It 

is this step in the MPM that allows for efficient noise filtering, and provides an effective 

method for selecting the number of poles with which to model the signal.

We then construct two matrices from the ‘filtered’ matrix :  and . 

 is obtained from  by deleting the last row of .  is obtained by delet-

ing the first row of . Thus, both  and  will be  sized matrices. 

Finally, the complex poles, , are given by

, (7.21)

where  denotes an operator that retrieves the eigenvalues of a matrix, and + denotes 

the generalized (Moore-Penrose) inverse.
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Once the poles,  are known, the residues,  can be found from the least squares 

problem:

. (7.22)

zm Rm

y 0( )
y 1( )
…

y N 1–( )

1 1 … 1

z1
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Ts … zM
Ts

… … … …

z1
N 1–( )Ts z2

N 1–( )Ts … zM
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R2

…
RM'
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Chapter 8
Results and Conclusions from Part 2

This chapter presents the methodology used for synthesizing data for a simple GPR 

model using the Finite-Difference Time-Domain (FDTD) algorithm and presents the 

results of applying the SEM method to this data. Data is presented for a variety of targets, 

including PEC wires and mine-like targets, as well as dielectric mine-like targets.

The perturbation formulae for PEC and dielectric targets are implemented and com-

pared with the FDTD generated data.
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8.1  Total Field Formulation FDTD Generation of Data

Consider the geometry of the FDTD problem as shown in Figure 8.1. Here we are 

utilizing the total field formulation of FDTD.

The FDTD space is defined physical locations  cm,  cm, and 

 cm. The spacing is uniform, with all step sizes being 1 cm. We have defined a 

simplified GPR antenna to direct more of the EM energy into the ground by creating 12 

PEC objects of zero thickness in the FDTD space at . This antenna is clearly not 
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an accurate description of an experimental (field) GPR system, but is used for this proof-

of-concept investigation.

The ground is defined from locations ,  and . The 

parameters of the ground for the lossless case are ,  and . For 

the case of lossy ground, we set . These parameters approximate the material 

parameters of dry sand. For the cases of dielectric targets we increase the permittivity to 

. Here, we could consider wetting the sand to artificially increase the differ-

ence in dielectric constants between the landmines and surrounding ground.

There are several different targets considered for the simplified GPR system, but the 

target shown in Figure 8.1 is a PEC ‘wire’ of 20cm x 1cm x 1cm. The FDTD locations are 

,  and . PEC is defined as having . Other targets will 

be discussed in the appropriate sections.

For the source, we excite the y-component of the current density at grid location 

,  and . The imposed current density,  is given the time-domain 

form of the derivative of a Gaussian function

(8.1)

where , and . A graph of the time domain of the Gaussian pulse 

is shown in Figure 8.2, and the magnitude of the frequency domain is shown in Figure 
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8.3.All 3 rectangular electric field components ,  and  are recorded at point T1 
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Figure 8.2: Time Domain Wave Form of Derivative of Gaussian Source
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which has been placed at the location ,  and . 

An example of an FDTD code source file is given in Appendix B.

8.1.1 Generation of FDTD Data
In all cases we have constructed our target response in the following manner:

1.The FDTD code was run with only the antenna and ground present
2.The FDTD code was then run with antenna, ground and target present

The target response is then calculated by subtracting the second run of the code from 

the former. For free-space responses, the same two tests were run but without the ground. 

This process is allowable because of the linearity of EM fields. This clearly is not a situa-

tion that is applicable to a practical landmine identification system but for this preliminary 
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investigation it provides results that are instructive to test the perturbation formulae from 

the preceding chapter.

A list of experiments conducted is provided in Table 8.1. The exact details of each 

experiment are provided in the pertinent section.

8.2  Experiments 1 and 2: Twenty Centimeter PEC Wire

The first experiment was conducted with a high-Q resonator: a 20cm x 1cm x 1cm 

PEC wire. Its location in the FDTD grid is cm, cm and cm. 

First, the free space poles are determined. Next, we consider the wire buried in a both a 

lossy and non-lossy dielectric ground (half space).

8.2.1 Free Space Poles of 20 cm Wire
The free space response of the wire was determined by running the FDTD code with 

only the antenna present, then running it again with both the antenna and wire present. The 

Table 8.1   List of FDTD Experiments Conducted

Experiment
Number Target Ground 

Type
Shown in 

Thesis

1 PEC Wire Lossless Yes

2 PEC Wire Lossy Yes

3 PEC Landmine Lossless Yes

4 PEC Landmine Lossy Yes

5 Dielectric #1 Lossless Yes

6 Dielectric #1 Lossy No

7 Dielectric #2 Lossless No

8 Dielectric #2 Lossy Yes

20 x 39< < y 15= z 17=
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 wave-form at point T1 in the FDTD space resulting from the subtraction of the free 

space result from the antenna result is shown in Figure 8.4 

By a process of trial and error, an onset of late-time of 6 nanoseconds was selected. 

From the time-domain response it is clear that at 6 ns we have reached the resonant (late-

time) part of the scattered signal.
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94



Next, the MPM was applied to the late-time portion of the signal ( ). The plot 

of the first 100 singular values is shown in Figure 8.5. As can be seen from the plot, the 

assumption of 2 poles fits quite well, because all poles beyond the 2nd are over -50 dB 

below the most dominant pole. However, it is recommended (Sarkar [58]) to over-estimate 

the number of poles slightly. As such, the late-time portion of this signal was modelled 

with 4 poles. The free space poles of the 20 cm PEC wire with the onset of late-time at 6 
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ns are given in Figure 8.6. Note that the poles come in complex conjugate pairs. The loca-

tions of the positive frequency free-space poles are listed in Table 8.2.

With a 20cm long resonator, we expect the most dominant pole to occur when 

. The resonant frequency ( ) occurs at 750 MHz. Since this 

resonant frequency is exact only for an infinitely thin wire, we expect the most dominant 

pole’s frequency to occur slightly below . Table 8.2 shows that the main resonant 

frequency occurs at 675.6 MHz, which is a reasonable result. This set of free-space poles 

is used for the poles  in equations (7.10) and (7.11).

Table 8.2   PEC Wire Free-Space Pole Locations

Description Pole #1
(MHz)

Pole #2
(MHz)

Free Space 
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Figure 8.6: Poles for Free Space 20cm PEC Wire
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It seems that higher order poles are not excited by the pulse that is transmitted across 

the FDTD grid. It is assumed here that if we used a pulse with higher frequency that more 

(higher frequency) poles would be visible in the above signal. We have not used a higher 

frequency pulse because in FDTD transmission of higher frequencies requires a finer grid 

spacing, which results in extended computation time. This problem is discussed in more 

detail in section 8.4.

8.2.2 Twenty cm Wire Buried in Lossless Ground
Next, we considered the effects on the poles by burying the 20cm x 1cm x 1cm wire 

in a half space with , , and  (lossless ground). Here, we apply 

Baum’s transformation seen in equation (7.10). Equation (7.10) is equivalent to equation 

(7.11) for lossless media. Once again, the FDTD program was run with the only the 

antenna and ground present, then run a second time with the antenna, ground, and target 

present. Figure 8.7 shows the  field component at location T1.
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Figure 8.7: Ex from 20 cm x 1 cm x 1 cm PEC Wire Buried in Lossless Media
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By visual inspection, the late-time onset was determined to be around 6 ns. The 

resulting poles are shown in Figure 8.8. Here, the perturbed free-space poles are shown as 

filled circles, free space poles are shown as ‘+’ signs, and the poles observed in the buried 

target signature as hollow circles. The poles all come in complex conjugate pairs, and 

Table 8.3 lists the positive frequency poles.

 Overall, the two least damped poles (Pole #1) offer the best correlation from per-

turbed to observed poles. There is a reasonably good correlation for both the decay rate 

(real part) and the resonant frequency (complex part). However, for Pole #2, we see that 

the damping ration does not correspond well between perturbed and observed pole. In 

Table 8.3   PEC Wire in Lossless Medium Pole Locations

Description Pole #1
(MHz)

Pole#2
(MHz)

Perturbed

Observed 
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Figure 8.8: Poles for 20 cm Wire Buried in a Lossless Medium

31.1– j337.8+ 31.5– j682.3+

33.3– j345.9+ 52.7– 706.6+
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both cases, the resonant frequency is reasonably close. The discrepancy between damping 

ratios has been noted by other researchers [37]. We do not currently have a complete 

explanation of this phenomenon.

The differences seen in the resonant frequencies can all be attributed to the fact that 

the perturbation formula used is meant for a target in homogenous space, while here the 

target is in a half-space. As discussed in the introduction, research on the resonances of 

objects buried in a half-space has shown that the poles will change location from the 

homogenous case [33]. While this can account for the differences of frequency seen, it 

does not fully account for the differences in damping ratios.

This discrepancy seen in the damping ratio was commonly seen with our data when 

utilizing the SEM for buried object detection. In the majority of cases, it was not useful for 

identification purposes but the resonant frequency was useful for identification purposes. 

These unexpected shifts in the damping ratio also precludes the use of the pole pattern as 

an additional identifying technique (as suggested by Baum in [29]).

8.2.3 Twenty cm Wire Buried in Lossy Ground
The same process was repeated, except with ground parameters , , 

and . Here, we again performed the subtraction of the FDTD data. We selected 

4 poles, and the onset of late time was determined to be 7 ns. The plot of the  field at 

εr 4= µr 1=

σ1 0.01=

Ex
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location T1 is shown in Figure 8.9. Here, we can easily see that the resonances are more 

highly damped. 

The final result of the MPM is shown in Figure 8.10, and the exact location of the 

positive frequency perturbed and observed poles are given in Table 8.4.  

As with the lossless case, we see close correlation with the frequencies of the 

observed poles to the calculated poles, but poor correlation overall in the damping ratio. 

The damping ratio of the least damped set of poles could possibly be used to help identify 

the target. The observed resonant frequencies for the least damped poles are located at 

Table 8.4   PEC Wire in Lossy Medium Pole Location

Description Pole #1
(MHz)

Pole #2
(MHz)

Perturbed

Observed
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Figure 8.9: 20 cm Wire Buried in Lossy Medium
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342.6 MHz, and the (perturbation formula) calculated resonant frequencies are at 315.2 

MHz. For the secondary poles, the observed resonant frequencies are at 694.3 MHz and 

the perturbed poles are at 681.9 MHz. Again, we can attribute the differences to the fact 

that we have a resonant object buried in a half-space rather than a fully homogenous 

space.

We note here that even in a lossy ground, this method of detecting resonant frequen-

cies allows for at least preliminary identification of a highly resonant PEC object.

8.3  PEC Landmine

Next, we considered a PEC landmine of the dimensions 12cm x 5 cm x 6 cm. Its 

location in the FDTD grid is cm, cm and cm. We again 

illuminated the PEC landmine in free space in order to obtain the free space poles. The 

same illuminating pulse as shown in Figure 8.2 and Figure 8.3 was used.
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The time domain response of the  field component at point T1 of the PEC land-

mine in free space is given in Figure 8.11. As can be seen from this plot, the resonances 

are much more highly damped and much harder to find compared to the wire-like resona-

tors (i.e. we have a low-Q resonator).

Because of significantly higher damped poles, the onset of late-time is much harder 

to determine. In this case, trial and error was utilized and the onset of late-time was 

selected to be 2.5 ns. When this choice, 6 poles modelled the signal well. The resultant 

free space poles can be seen as the ‘+’ marks in Figure 8.13 and Figure 8.14. The exact 

positive frequency poles are given in Table 8.5.

8.3.1 PEC Landmine Buried in Lossless Medium
Next, the PEC landmine was buried in a lossless medium with , . 

The standard subtracted time domain response was calculated and is shown for the  
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Figure 8.11: Free Space Response from PEC Landmine at T1

εr 4= µr 1=

Ex
102



component at point T1 in Figure 8.12. The positive frequency poles, including the free 

space poles are given in Table 8.5.

The onset of late-time was chosen as 7 ns. When the late-time signal was analyzed 

with the MPM, 4 poles fit the signal well. The result of the MPM analysis is shown in Fig-

ure 8.13. The free space poles are shown with ‘+’s, the perturbation formula (7.11) calcu-

lated poles with filled circles and the observed poles (observed in the signal shown in 

Figure 8.12) are shown with ‘o’s. The exact pole locations for poles with positive imagi-

nary parts are given in Table 8.5.

Table 8.5   PEC Landmine in Lossless Medium Pole Locations

Description Pole #1
(MHz)

Pole #2
(MHz)

Pole #3
(MHz)

Free Space

Perturbed

Observed N/A
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Figure 8.12: PEC Landmine Buried in Lossless Medium

191.1– j1115.7+ 298.9– j1783.9+ 460.7– j2902.4+

95.5– j557.9+ 149.4– j892.0+ 230.3– j1451.2+

48.8– j570.6+ 63.3– j1045.1+
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Again, the perturbation formula calculated damping ratios do not match very well 

with the observed damping ratios. However, the least damped poles show a reasonable 

match in resonant frequencies (557.9 MHz to 570.6 MHz). These frequencies are close 

enough to allow for at least approximate identification of the object. The difference in 

these poles here is again attributed to the switch from homogenous to layered medium.

The more highly damped set of poles (#2) do not match well in either frequency or 

damping ratio. This is not entirely unexpected, because of the highly damped nature of the 

free space time-domain response. The particular location of the higher frequency (and 

more damped) poles varies significantly with changes in the selection of the onset of late-

time while the location of the least damped poles is more stable with respect to the onset 

of late-time. Poles that change location significantly with small changes in the selection of 

late time are probably not part of the late-time response, rather they are probably part of 

the early-time response, which is not an identifying feature.
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8.3.2 PEC Landmine in Lossy Medium
 The FDTD code was re-run with the ground parameters changed to , 

, and . Again, we considered the  field at point T1 in the FDTD 

grid. While not shown here, the time domain signal was generated and a late-time of 6.5 ns 

was selected by trial and error. The resulting poles are shown in Figure 8.14. The exact 

locations of positive frequency poles for the observed and perturbed poles are given in 

Table 8.6. Here, we note that there is a DC component in the late-time signal. We can see 

this from the inclusion of a pole with zero frequency in Figure 8.14 and Table 8.6.

Table 8.6   PEC Landmine in Lossy Medium Pole Locations

Description Pole #1
(MHz)

Pole #2
(MHz)

Pole #3
(MHz)

Perturbed

Observed
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Figure 8.14: Poles for PEC Landmine in Lossy Medium
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Similar to the lossless case, we see poor correlation in the damping ratios but the 

resonant frequency of the least damped poles shows promise as an identifier of the object. 

We can see, that even in lossy media, we can detect identifying features for PEC land-

mine-like targets.

8.4  Dielectric Landmine-Like Targets

The dielectric perturbation formula of equation (7.16) provides a way to calculate 

the poles of dielectric targets buried in a homogenous medium. In [34], Worthy provides a 

region of effectiveness for the perturbation formula based on the material parameters of 

the surrounding medium, material parameters of the target and the depth of the target. He 

provides regions of 6% error and regions of 2% error. 

To place our dielectric target within the ‘effective’ (6% error) region of the perturba-

tion formula, we require a high dielectric contrast between the target and the surrounding 

medium. This means we must set the permittivity high inside the ground, which leads to a 

slower (by a factor of ) velocity of light in the ground. The lowest wavelength 

propagated in FDTD is limited by the grid spacing. Typically, this is taken to be around 

, where  is the grid spacing. 

This creates a problem. We would like to increase the permittivity contrast between 

the ground and target by raising the ground permittivity significantly, but we also need to 

be able to detect the resonant frequencies of the object, which means reducing the FDTD 

grid spacing. If we were to use a small, realistic (anti-personnel landmine sized) dielectric 

object and still wanted to detect the resonant frequencies the grid spacing in our FDTD 

space would have to be made prohibitively small, creating extremely long processing 

times (measured on the order of days). To avoid these problems we have chosen a large 

dielectric target (more on the order of an ant-tank mine) for our simulations.

For dielectric targets, we note that there are now two known sources of error. One is 

the error caused from the use of a perturbation formula for homogenous media on targets 

embedded in a half-space, and the other is the error that is intrinsic to the use of the pertur-

bation formula itself (the error associated with the assumption that the internal resonances 

1 εr⁄

λmin 5∆x= ∆x
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are based on the target being surrounded by PEC). This is contrasted with the PEC pertur-

bation formula (equation (7.10)), where the only error is caused from the switch to half-

space. Thus, we can expect the results from the dielectric perturbation formula to be less 

accurate than for the PEC case.

8.4.1 Calculation of Internal Resonances and Perturbations
The internal resonances of a (non-magnetic) dielectric-filled cavity with edge 

lengths of ,  and , surrounded by a PEC, are given by [3]:

. (8.2)

where  is the permittivity of the cavity and ,  and  are integers representing the dif-

ferent resonant modes. The most dominant mode (lowest frequency) occurs when the inte-

ger of the smallest dimension is 0 and the other two are unity [36]. Thus, for our dielectric 

target, the most dominant mode is given by

. (8.3)

After applying the surface and volume integrals in (7.16) to the fields generated by this 

mode we can find the perturbation  to be [36]:

, (8.4)

where  is given by equation (7.14). Utilizing these formulae, we are now ready to 

compare observed poles with these calculated dominant poles.

8.4.2 Dielectric Landmine in Lossless Ground
In order to generate data within the 6% error region of the perturbation formula, we 

have selected a 20 cm x 5 cm x 20 cm dielectric target with the parameters , 

 and . Essentially, we are simulating a cavity within the ground. The 

FDTD coordinates of the mine are cm, cm and cm. To 

accommodate the larger target, the  component of the FDTD space has been extended to 

cover from cm. The rest of the FDTD grid, including the antenna and current 
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density source positions remain unchanged. The ground parameters for the lossless case 

are selected to be ,  and .

The time-domain signal resulting from the standard FDTD subtraction procedure for 

the  signal component from point T1 is shown in Figure 8.15.

The onset of late-time was chosen to be 6 ns, and 4 poles were selected to model the 

signal. The results of applying the MPM are shown in Figure 8.16 and the exact locations 

of the perturbed internal resonances and observed poles are given in Table 8.7.

Table 8.7   Dielectric Landmine #1 in Lossless Medium Pole Locations

Description Pole #1
(MHz)

Pole #2
(MHz)

Perturbed N/A

Observed
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Figure 8.15: Time Domain Response of Dielectric Landmine In Lossless Medium
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As can be seen the observed poles (shown with the ‘o’ mark) and the calculated 

poles (shown with filled circles) differ significantly in decay rate. The decay rate does not 

seem promising as an identifier for this problem.

In addition, we get an unexpected set of poles at 699.4 MHz. This frequency obvi-

ously does not correspond with the perturbation formula calculated poles, located at 

1059.9 MHz. We assume that this lower frequency pole is caused by a resonance not 

directly related with the target and due to the lower frequency, we expect that this is a res-

onance that is related to the external medium. The FDTD code used utilizes boundary con-

ditions (Mur second order) that are meant to absorb free-space radiation, and the 

placement of the ground material directly next to the absorbing boundary conditions will 

cause reflections in the FDTD simulation. We expect that if the boundary conditions were 

changed to be compatible with the ground medium that this pole would disappear.

There is a set of observed poles at a frequency of 1158.2 MHz. The perturbed inter-

nal resonance is at 1059.9 MHz and if we consider the two known sources of error: the 

half-space vs. homogenous space error, and the error associated with the use of the pertur-

bation formula itself, this resonant frequency is within a a reasonable range and possibly 

qualifies as a suitable identifier.

 However, there is a very large difference in the expected decay rates of these poles. 

It may be that the dielectric resonance that we would like to detect is so damped that 
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another resonance (caused by the external medium) is dominating the time-domain 

response.

The dielectric mine in lossy media is not presented here, but offers similar results as 

the lossless case, with the observed poles having higher damping ratios.

8.4.3 Dielectric Landmine Number 2
To provide more data on dielectric targets, the FDTD code was run with a larger 

dielectric mine. Here, we defined a 40cm x 20cm x 5 cm object in the FDTD locations 
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Figure 8.16: Poles for Dielectric Landmine in Lossless Medium
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 cm,  cm and  cm. The new parameters were re-entered 

and the time-domain results for the landmine buried in the lossy medium ( , 

.) are shown in Figure 8.17. It is clear from this image that we are some type of 

resonance is occuring in the simulation. With a selected late-time of 6 ns and modelling 

the late-time signal with four poles, the results of the MPM are shown in Figure 8.18, with 

exact pole locations given in Table 8.8.

Once again, we see an unexpected set of poles, this time at a resonant frequency of 

135.4 MHz. The set of observed poles (which have a significantly higher magnitude or 

residue, not shown here) are at a resonant frequency of 979.3 MHz, Again, with the 

Table 8.8   Dielectric Landmine #2 in Lossy Medium Pole Locations

Description Pole #1
(MHz)

Pole #2
(MHz)

Perturbed N/A

Observed
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known sources of error taken into account, this seems a reasonable result. The fact that 

pole #1 has dropped in resonant frequency for dielectric landmine #2 (as compared to the 

smaller dielectric landmine #1) gives us reason to believe that pole #1 is a result of the 

dielectric target resonating.

The case for the lossless ground  showed similar results, with the observed 

poles being slightly more damped.

8.5  Conclusions and Future Work

Utilizing perturbation formulae for buried PEC and dielectric targets we have 

applied the SEM method in an attempt to identify the targets. At this time, no solid conclu-

sions can be made from the results, rather, the results point to areas where future work 

should be conducted.

It is clear from the results that the damping ratio, , of the poles varies signifi-

cantly from the predicted ratio for both PEC and dielectric perturbation formulae. It does 
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not show promise as an identifier for landmines detected using GPR (especially dielectric 

targets).

However, the resonant frequency (imaginary part of the complex pole) shows prom-

ise as an identification feature, taking into account known sources of error. For both PEC 

and dielectric targets the resonances show good correlation with resonances calculated 

with the perturbation formulae. For PEC targets the observed error can be attributed to the 

fact that the perturbation formulae are based on the target being surrounded by a homoge-

nous medium, when in the GPR case they are located in a half-space. For dielectric tar-

gets, we have the homogenous vs. half-space error, as well as error introduced by the use 

of the dielectric perturbation formula. Unsurprisingly, the observed poles match the per-

turbation formula calculated poles better for the PEC perturbation formula than for the 

dielectric perturbation formula.

8.5.1 Future Work
There are several areas deserving further investigation that follow from these pre-

liminary results. First, even when we have the almost ideal case of knowing all material 

parameters, the material parameters being frequency independent, the ground material 

being homogenous, and being able to subtract out the initial ground reflections there is 

still significant difference between the expected perturbed pole locations and the observed 

pole locations (especially for dielectric targets). We need to eliminate all sources of error 

that we can.

To do this, we suggest the implementation of the half-space perturbation formula of 

Hanson [33]. Although this will add significant complexity, it should eliminate a large 

portion of the error. For PEC targets, the use of the layered-medium perturbation formula 

should almost eliminate the error entirely for these FDTD simulations.

With the ultimate goal of implementing an experimental GPR system for the detec-

tion and identification of landmines, we also need to investigate time-domain signals that 

are not generated from the subtraction method used here (section 8.1.1). The FDTD sub-

traction method, while providing an excellent way to identify more fundamental sources 

of error (such as the half-space vs. homogenous problem) is not applicable to an experi-

mental GPR system. Signals that match what is available from an experimental GPR sys-
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tem need to be investigated. We can perhaps use a similar subtraction method, but subtract 

out the antenna free-space response, which would be easy to generate in an experimental 

GPR system.

Finally, we outline the need for a laboratory experimental time-domain GPR system 

to determine if detection of the natural resonances of buried dielectric and PEC objects is 

feasible from available equipment. The use of FDTD code provides an extremely large 

dynamic range, one that is not realizable for current time-domain radar receivers. It needs 

to be seen if this loss of dynamic range precludes the detection of these resonances.
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Chapter 9
Conclusions

In part I we have shown how the image reconstruction techniques of Stripmap SAR, 

Kirchhoff Migration and Frequency Wavenumber migration are developed and imple-

mented. The mathematical and physical models used for each algorithm were delineated 

and it was shown that Stripmap SAR and Frequency Wavenumber are almost identical 

from a computational point of view. The reasons for this were shown using a sum of plane 

waves interpretation of both techniques. The theoretical equivalence of KM and FK 

migration was shown. Stripmap SAR and FK migration are much more computationally 

efficient than KM, while offering similar image quality.

In part II we simulated a simplified GPR system with an FDTD code and showed 

that it is possible to detect the complex resonances of PEC and dielectric targets buried in 

both lossy and lossless ground (half-space). The location of these complex poles was pre-

dicted by the use of perturbation formula based on the free-space poles for PEC targets, 

and the internal resonances for dielectric targets. The perturbation formula shown were 

developed for homogenous medium surrounding the target, and this creates error in the 

prediction of the location of the poles. The decay rate (real part of the complex pole) is not 

predicted very well by the perturbation formula, but the resonant frequency (imaginary 

part of the complex pole) shows promise as an identifying feature. 



Appendix A
Interpolation in Stripmap SAR and 
Frequency-Wavenumber Migration
The most time consuming step in both the Stripmap SAR and Frequency-Wavenumber 

focusing algorithms is the interpolation step. It occurs when we wish to map our data in 

the  domain into the  domain, using

(a.1)

where . The problem is best illustrated by the next series of diagrams.

ω kz

kz k2 ky
2–=

k ω vm⁄=
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We begin by considering discrete data collected in the  and  domains. This is shown in 

Figure a.1. The data is plotted with respect to . We have collected data only at the dis-

crete points shown by the black dots. Outside the black dots, we don’t have any data.

y ω

y

kmin kmax

∆y

k

Figure a.1: Discrete Data in Stripmap SAR

k
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This first step in the Stripmap SAR algorithm is to take the FT in the  direction. This 

poses no problem, as we go from one evenly spaced grid to another. The next diagram is 

shown in Figure a.2. 

The next step is the mapping step - which takes our data in the  (equivalently 

) domains and maps it to the  domains. This is completed through the 

equation 

. (a.2)

In the ,  domain, this equation can be re-written as

(a.3)
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Figure a.2: Discrete Data in the Regular Frequency and Spatial Frequency Domain
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which describes circles of radius  in the -  plane. Thus, each line of constant  is 

mapped to a circle in the -  plane. The next mapping step is shown graphically in Fig-

ure a.3. 

Complex values of , i.e., when  are ignored.

Now, for each value of  there is an unevenly spaced set of data points in the  direc-

tion. In order to complete the discrete inverse fourier transform (see equation (3.20)) the 

data must be evenly spaced in  and . To accomplish this, we must interpolate onto an 

evenly spaced grid in the -  domain.

The starting point to accomplish the interpolation is to select an evenly spaced grid over 

which to interpolate onto. We denote the desired range of interpolation as being from 

 to . In order to simplify the IDFT process, . Whereas  is 
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Figure a.3: Discrete Stripmap SAR data in Spatial Frequency Domains
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selected such that no extrapolation is required. Note that if we select  equal to the 

maximum value of data we have on the  axis, as shown by the thick line in Figure a.3, 

we will have to extrapolate new data points in the top right and bottom right corners of the 

grid, shown as the hashed regions.

However, if we select

 (a.4)

then no extrapolation is required. The location of  is shown in Figure a.3 as a thin, 

solid vertical line. This selection of  and  is by no means the only selection 

possible.

Another possible area of concern is the area shown with the small dots. If  is too 

large, the area inside the smallest circle  will be very underpopulated with data. 

Care must be taken to ensure that this area gives an accurate interpolation.

Now that we have selected the maximum and minimum of the grid we wish to interpolate 

onto, we need to choose the new discretize grid on which to interpolate. A simple choice 

for the number of points to discretize the  domain is the same number of points as we 

have collected for frequencies (i.e. if we have 501 different frequencies that we have col-

lected data at, pick 501 sample points in the  domain). This is certainly not the only 

choice possible. Once this number has been chosen, the interpolation can be completed.

The interpolation can be done using any general method. Some specific methods are given 

in [6]. Another method, which was implemented here, is to use the built in function of 

MATLAB [17]- ‘griddata’. The ‘griddata’ function allows for different interpolation tech-

niques to be completed over any two non-regularly spaced grids. For example, we can 

complete linear, nearest neighbour and cubic interpolation schemes in 2-D. The linear and 

cubic interpolation are much better than nearest neighbour, but show little difference 

between each other.

Once the interpolation has been completed, the new range axis  can be computed from 

the formulae developed in equations (2.50) to (2.51).

kzdmax
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Other techniques are available to complete this interpolation process [6], but are not con-

sidered here.
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Appendix B
Source Code Examples

For part I of this thesis, the source code includes the code to generate synthetic data, 

Kirchhoff migration code, and a combined Stripmap SAR/FK migration code. All code is 

in the Matlab language.

For part II, source code is given here for the FDTD program outlined in [55] and for 

the implementation of the MPM in Matlab script. Only code for the PEC 20 cm wire is 

provided, as the other data generated comes from simple changes in these two programs.

b.1  Source Code for Part I

b.1.1 Matlab Source Code for Stripmap SAR, F-K Migration and B-
scans

One program was used to generate B-scans, Stripmap SAR and F-K Migration 

images.

clear all
close all
clc
 
tic
%**************************************************************************
% SAR Specifications
%**************************************************************************

%**************************************
% Database Information
%**************************************

data_file = 'bistatic9_F_F_W1_M_s11.txt';
calibration_file = 'antenna1.txt';
data = load(data_file);
calibration = load(calibration_file);

% t = 1:4:501;
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% data = data(t,:);
% calibration = calibration(t,:);
% 
% [N TwoM]=size(data);
% data = [zeros(2*N,TwoM);data];
% calibration = [zeros(2*N,2);calibration];
[N TwoM]=size(data);
% data = data(N/2:end,:);
% calibration = calibration(N/2:end,:);
% N = N/2;

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Zero Pad Factor (in the w domain)
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
freqZeroPad = 8;
apertureZeroPad = 1; 

%**************************************
% Medium Information
%**************************************

c=3e8;                                      %speed of light in the medium
Er = 3.5;                                   %Relative permitivity of the gound 
encountered
v = c/sqrt(Er);                             %relative velocity in the medium
c = v;

%**************************************
% Frequency Domain Information
%**************************************

fstart = 0.8;                                 %start frequency (in GHz)
fstop = 5;                               %stop frequency (in GHz)
f = linspace(fstart,fstop,N)*1e9;           %frequency vector
df = f(2)-f(1);                             %frequency step size

%**************************************
% Spatial Information
%**************************************

du = 0.01
M = TwoM/2;                                 %number of points in the synthetic 
aperture
apertureLength = du*(M-1);                  %length of synthetic aperture
u = linspace(-apertureLength/2,apertureLength/2,M);           %Antenna position 
vector

%**************************************
% Range Informarion
%**************************************

Fs = 2*f(end);
dt = 1/(Fs);
dx = v*dt/2;
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%**************************************
% Windowing Information
%**************************************

xmin = 0.25;
xmax = .4;

%**************************************************************************
% Processing
%**************************************************************************

%**************************************
% PreProcess Data To Create S = I+jQ
%**************************************

p=1:2:(TwoM-1);
q=2:2:TwoM;
I=data(:,p);
Q=data(:,q);
S=I+j*Q;
[N M]=size(S);

%**************************************
% Spectrum Completion:
%   As S = S(w,u) where w is band limited
%   between w1 and w2 (w1>0) we wish to 
%   add the frequencies from DC to w1
%**************************************

fLowFreq = fliplr((f(1)-df):-df:0);         %generate frequencies from 0 to w1 
(actually from 0+eps (eps<df) to w1-df
lowZeros = length(fLowFreq);                %create zeros of this length
S = [zeros(lowZeros,M);S];                  %The positive frequency side of S is 
now completed by concatenation
[N M] = size(S);                            %Store the new size of the matrix
f = [fLowFreq f];                           %The frequencies should also be con-
catenated

%**************************************
% Load Cable Calibration Information
%**************************************

calI=calibration(:,1);
calQ=calibration(:,2);
calS=calI+j*calQ;
calS = [zeros(lowZeros,1);calS];  

%**************************************
% Process Calibration - 
%   Find the end of the cable by largest 
%   reflection of open cct data.
%**************************************

calSNegative = flipud(conj(calS(2:end-1,:))); 
calS = [calS;calSNegative];
calRange = ifft(calS);
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[Max Index] = max(abs(calRange));
Index = 0;
%**************************************
% Process Calibration - 
%   Shift so that the end of the cable
%   is the first element
%**************************************

S_negative = flipud(conj(S(2:end-1,:))); 
S = [S;S_negative];
rangeS = ifft(S);
rangeS = circshift(rangeS,-Index);

[FullN FullM] = size(S);

%**************************************
% Define The Range Vector 
%(We now have the length Required)
%**************************************
x = (0:FullN-1)*dx;

%**************************************
% Data Windowing - 
%   Consider Range of xmin-xmax m past the 
%   end of the cable
%**************************************

minIndex = find(x>xmin-dx/2 & x<=xmin+dx/2);    
maxIndex = find(x>xmax-dx/2 & x<=xmax+dx/2);

% Occasionally, minIndex and maxIndex may not be found.
% This is probably due to round off error in Matlab
if isempty(minIndex) | isempty(maxIndex)
    ERROR = 'Distance Index is Empty.  Try changing xmin and xmax slightly.'    
    return
end

H = rectwin(maxIndex-minIndex);
H = [zeros(1,minIndex) H' zeros(1,(FullN-length(H)-minIndex))]';
H = repmat(H,1,FullM);
rangeS = rangeS.*H;

%**************************************
% Post Windowing - 
%   Convert back to frequency domain
%**************************************

S = fft(rangeS);
S = S(1:N,:);
[N M] = size(S);                            %Store the new size of the matrix

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Zero Padding in the Frequency Domain    
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
[N M] = size(S);
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Nzeroed = freqZeroPad*N;
S_w_u = zeros(Nzeroed,M);
S_w_u(1:N,1:M) = S;

%This needed later for Bscan Imaging
BScanS = S_w_u;

%Now, Must Redefine Frequencies
if freqZeroPad ~= 1;
    fupper = linspace(f(end),f(end)*freqZeroPad,Nzeroed-N);
    f = [f fupper];
end

%**************************************************************************
% SAR Processing
%**************************************************************************

%*******
%STEP 1: Take the FFT in the u domain
%*******

S_w_ku = fftshift(fft(S_w_u,[],2),2);           %take the fft along the 2nd dimen-
sion (u)     
k = 2*pi*f/v;                             %the wave number
dku = 2*pi/((M-1)*du);                        %the step size in the slow-time dop-
pler domain
ku = (-pi/du:dku:pi/du);  
ky = ku;                           %the slow time doppler vector
[N M] = size(S_w_ku);

%*******
%STEP 2: Interpolation from unevenly spaced data
%   Here we use capitals to denote full matrices
%*******

KU = repmat(ku,N,1);                        %ku exists, constant vector for each 
frequency
K = repmat(k',1,M);                         %k exists, constant vector for each 
position 
KY = KU;                                    %side effect of the physical problem, 
ky = ku
KXmn = 4*K.^2-KU.^2;                        %side effect of the physical problem, 
kx ~= k
KXmn = sqrt(KXmn);                          

for a = 1:N                                 %This (stupid) loop, converts imaginary 
kx to negative kx
    for b = 1:M
        if ~isreal(KXmn(a,b)) == 1
            KXmn(a,b) = j*KXmn(a,b);
        end
    end
end
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F_kxmn_ky = S_w_ku;                         %Now our function (F) is in the kxmn, 
kymn domain (but kymn = ky)    
kxmin = 0;                                  %We wish to reconstruct our information 
over valid kx
kxmax = sqrt(4*k(end)^2-max(abs(ky))^2);
kx = linspace(kxmin,kxmax,N);               %construct the desired kx vector 
(whereas kxmn is actual)
KX = repmat(kx',1,M);

%******************************
% Matlab Interpolation
%******************************
                                            
% Freal = griddata(KXmn,KY,real(F_kxmn_ky),KX,KY,'cubic');
% Fimag = griddata(KXmn,KY,imag(F_kxmn_ky),KX,KY,'cubic');
F_kx_ky_positive = griddata(KXmn,KY,F_kxmn_ky,KX,KY,'linear');
% F_kx_ky_positive= Freal +j*Fimag;
% F_kx_ky_positive = F_kxmn_ky;

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%55
% Stolt Migration
%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

W = c/2*(KX.^2+KY.^2).^0.5;
Jacobian = (c/2)^2*KX./W;
F_kx_ky_positive_Stolt = Jacobian.*F_kx_ky_positive;

%********
%SAR Imaging
%********
[N M] = size(F_kx_ky_positive);
F_kx_u_positive = ifft(ifftshift(F_kx_ky_positive,2),M,2);     %First take thje 
ifft in the ky direction to get u
F_kx_u_negative = flipud(conj(F_kx_u_positive(2:end,:)));     %Create the full 
spectrum over kx
F_kx_u = [F_kx_u_positive; F_kx_u_negative];
[N M] = size(F_kx_u);
F_x_u = ifft(F_kx_u);                                           %Take the ifft to 
get x

[N M] = size(F_x_u);
dx = pi/kxmax;
x = (0:N-1)*dx;
u = linspace(-apertureLength/2,apertureLength/2,M*apertureZeroPad); 

%********
% Display
%********

minIndex = find(x>xmin-dx/2 & x<=xmin+dx/2);    
maxIndex = find(x>xmax-dx/2 & x<=xmax+dx/2);

% Occasionally, minIndex and maxIndex may not be found.
% This is probably due to round off error in Matlab
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if isempty(minIndex) | isempty(maxIndex)
    ERROR = 'Secodary Distance Index is Empty.  Try changing xmin and xmax 
slightly.'    
    return
end

display_F_x_u = F_x_u(minIndex:maxIndex,:);

display_F_x_u = display_F_x_u/max(max(display_F_x_u));

figure
% subplot(3,1,1)
imagesc(u,x(minIndex:maxIndex),abs(abs(display_F_x_u)));
xlabel('Cross Range (meters)');
ylabel('Range (meters)');
title(' Stripmap SAR Focused Image of Dielectric and Metallic Targets');
colormap(flipud(gray));
colorbar
F_x_u_SAR = display_F_x_u;

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Stolt Migration
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%********
%SAR Imaging
%********
[N M] = size(F_kx_ky_positive_Stolt);
F_kx_u_positive = ifft(ifftshift(F_kx_ky_positive_Stolt,2),M,2);     %First take 
thje ifft in the ky direction to get u
F_kx_u_negative = flipud(conj(F_kx_u_positive(2:end,:)));     %Create the full 
spectrum over kx
F_kx_u = [F_kx_u_positive; F_kx_u_negative];
[N M] = size(F_kx_u);
F_x_u = ifft(F_kx_u);                                           %Take the ifft to 
get x

[N M] = size(F_x_u);
dx = pi/kxmax;
x = (0:N-1)*dx;
u = linspace(-apertureLength/2,apertureLength/2,M*apertureZeroPad); 

%********
% Display
%********

minIndex = find(x>xmin-dx/2 & x<=xmin+dx/2);    
maxIndex = find(x>xmax-dx/2 & x<=xmax+dx/2);

% Occasionally, minIndex and maxIndex may not be found.
% This is probably due to round off error in Matlab
if isempty(minIndex) | isempty(maxIndex)
    ERROR = 'Secodary Distance Index is Empty.  Try changing xmin and xmax 
slightly.'    
    return
end
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display_F_x_u = F_x_u(minIndex:maxIndex,:);

display_F_x_u = display_F_x_u/max(max(display_F_x_u));

figure
% subplot(3,1,2)
imagesc(u,x(minIndex:maxIndex),abs(abs(display_F_x_u)));
xlabel('Cross Range (meters)');
ylabel('Range (meters)');
title('FK Focused Image of Dielectric and Metallic Targets');
colormap(flipud(gray));
colorbar

%load in the kirchhoff image to display
load Kirchhoff_Real
load Kirchoff_Real_Range
load Kirchhoff_Real_Cross_Range
% subplot(3,1,3);
figure
krichhoff_dielectric = krichhoff_dielectric/max(max(krichhoff_dielectric)) 
imagesc(u,X,krichhoff_dielectric);
title('KM Focused Image of Dielectric and Metallic Targets');
xlabel('Cross Range (meters)');
ylabel('Range (meters)');
xlabel('Cross Range (meters)');
colormap(flipud(gray))
colorbar

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Plot the Difference Betweeen Stolt and SAR Processing
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
figure
imagesc(u,x(minIndex:maxIndex),abs(display_F_x_u-F_x_u_SAR));
title('Difference Between Stolt and SAR');
xlabel('Cross Range (meters)');
ylabel('Range (meters)');
colormap(flipud(gray));
colorbar

% 
% %**************************************
% % Straight B-Scan imaging:
% %   In the case where we take the ifft directly,
% %   we must calculate the plotting parameters 
% %   carefully
% %**************************************
% 
% Fs = f(end);                                %In this case we have only positive 
spectrum
% dt = 1/(Fs);                                %Fs = fmax
% dx = v*dt/2;
% x = (0:N-1)*dx;
% plotX = 0:dx:(length(display_F_x_u(:,1)-1));
% 
% minIndex = find(x>xmin-dx/2 & x<=xmin+dx/2);    
% maxIndex = find(x>xmax-dx/2 & x<=xmax+dx/2);
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% 
% figure                                      %plot the B-Scan image (This is 
losing information.... it must be.)
% Temp = abs(real(ifft(BScanS)));
% display_Temp = Temp(minIndex:maxIndex,:);
% plotX = 0:dx:(length(display_Temp(:,1)-1))*dx;
% imagesc(u,plotX,display_Temp);
% xlabel('Cross Range (meters)');
% ylabel('Range (meters)');
% title('1 Sided FFT Image (Unfocused)');
% 
%**************************************
% B-Scan imaging using Spectrum reconstruction:
%   Here we reconstruct the double sided spectrum
%   in order to produce the appropriate image
%**************************************

BScanPositive = BScanS;  
BScanNegative = flipud(conj(BScanPositive(2:end-1,:)));
BScanFull = [BScanPositive;BScanNegative];
[N M] = size(BScanFull);

Fs = 2*f(end);
dt = 1/(Fs);
dx = v*dt/2;
x = (0:N-1)*dx;

minIndex = find(x>xmin-dx/2 & x<=xmin+dx/2);    
maxIndex = find(x>xmax-dx/2 & x<=xmax+dx/2);

figure
TempFull = abs(real(ifft(BScanFull)));
display_TempFull = TempFull(minIndex:maxIndex,:);
plotX = 0:dx:(length(display_TempFull(:,1)-1))*dx;
display_TempFull = display_TempFull/max(max(display_TempFull));
imagesc(u,plotX,display_TempFull);
xlabel('Cross Range (meters)');
ylabel('Range (meters)');
title('1-D FFT B-Scan Image  (Unfocused)');
colormap(flipud(gray));
colorbar;
toc

b.1.2 Kirchhoff Migration Source Code
%Kirchhoff synthetic data program

clear all
close all
clc
tic

%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Load in the fake Data - Generated by Hong Su's Program
% Stored Originally as swu - I want S
%%%%%%%%%%%%%%%%%%%%%%%%%%%%
load FakeData
S = swu;
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[N M] = size(swu);

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%Zero Padding Factor - Used in the Inverse FFT (and nowhere else)
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%5

freqZeroPad = 1;
apertureZeroPad = 1 ; 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% The desired viewing area (if we know where the synthetic targets are)
% note, must also choose to plot the windowed version of the final F_x_u
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
xmin = 0;
xmax = 0.82;

%**************************************
% Medium Information
%**************************************

c=3e8;                                      %speed of light in the medium
Er =2.2;                                      %Relative permitivity of the gound 
encountered
v = c/sqrt(Er);                             %relative velocity in the medium
c = v;

%**************************************
% Frequency Domain Information
%**************************************

fstart = 1;                                 %start frequency (in GHz)
fstop = 12.4;                                  %stop frequency (in GHz)
                           
f = linspace(fstart,fstop,N)*1e9;           %frequency vector
df = f(2)-f(1);                             %frequency step size

%**************************************
% Spatial Information
%**************************************

apertureLength = 2;                         %length of synthetic aperture
dBistatic = 0;                              %distance between Tx and Rx antennas
                                            %number of points in the synthetic 
aperture
u = linspace(-apertureLength/2,apertureLength/2,M);%Antenna position vector
du = u(2)-u(1);                             %antenna position step size

%**************************************
% Spectrum Completion:
%   As S = S(w,u) where w is band limited
%   between w1 and w2 (w1>0) we wish to 
%   add the frequencies from DC to w1
%**************************************

fLowFreq = fliplr((f(1)-df):-df:0);         %generate frequencies from 0 to w1 
(actually from 0+eps (eps<df) to w1-df
lowZeros = length(fLowFreq);                %create zeros of this length
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S = [zeros(lowZeros,M);S];                  %The positive frequency side of S is 
now completed by concatenation
[N M] = size(S);  
f = [fLowFreq f];

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%
% Kirchhoff Migration Begins Here
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%

%first, take time derivative of the data
w = 2*pi*f;
omega = repmat(w,M,1)';

S = (j*omega).*S;

%create the full version of S (upper and Lower frequencies)
Sfull = [S; flipud(conj(S))];
Stime = ifft(Sfull);

xMax = c*1/df/2;
tMax = 1/df;
x = linspace(0,xMax,length(Sfull(:,1)));
dx = abs(x(2)-x(1));
% x = fliplr(x);
t= linspace(0,tMax,length(Sfull(:,1)));

lowDepth = find(x>xmin-dx/2 & x<=xmin+dx/2);
highDepth = find(x>xmax-dx/2 & x<=xmax+dx/2);
if xmax > max(x);
    [Eraseme highDepth] = max(x);
end

figure
imagesc(u,x(lowDepth:highDepth),abs(Stime(lowDepth:highDepth,:)));
colormap(flipud(gray));
colorbar;
getframe;

figure
contour(u,x(lowDepth:highDepth),abs(Stime(lowDepth:highDepth,:)));
colormap(flipud(gray));
getframe;

%diffraction summation
for yIndex = 1:length(u);
    yIndex
    for zIndex = lowDepth:highDepth;
        %the point to be migrated is now
        yPoint = u(yIndex);
        zPoint = x(zIndex);
        Sum = 0;
        for j = 1:length(u);
            measuredPoint = u(j);
            Rj = sqrt((yPoint-measuredPoint)^2+zPoint^2);
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            %tHype = 2*Rj/c;
            if Rj<=max(x) & Rj ~= 0
               %now find the closest point on which to sum over
               costheta = zPoint/Rj;
                B_Xj_time = interp1(x,Stime(:,j),Rj,'nearest');
                B_Xj_time = B_Xj_time*costheta/Rj;
                Sum = Sum+B_Xj_time;
            end
            
        end
        Migrated_Image(zIndex,yIndex) = Sum;
            
            
    end
end
 

figure
imagesc(u,x(lowDepth:highDepth),abs((Migrated_Image(lowDepth:highDepth,:))));
colormap(flipud(gray));
toc
Migrated_Image = Migrated_Image(lowDepth:highDepth,:);
X = x(lowDepth:highDepth);
save KIRCHOFF_IMAGE Migrated_Image;
save KRICHOFF_RANGE X
save KIRCHOFF_CROSS_RANGE u;

b.2  Source Code for Part II

b.2.1 FDTD Source Code for PEC 20cm Wire
**************
* Input File For Joe's GPR
*************************
.Problem Size
0 60 0 61 0 30
.Number
1000 1
.Space
1
0 60 0.01
1
0 61 0.01
1
0 30 0.01
.Test
20 30 15 1 T1ShortWireLoss
.Test
20 30 15 2 T1ShortWireLoss
.Test
20 30 15 3 T1ShortWireLoss
.Test
30 30 15 1 T2ShortWireLoss
.Test
30 30 15 2 T2ShortWireLoss
.Test
133



30 30 15 3 T2ShortWireLoss
.Test
25 7 15 1 bombShortWireLoss
.Test
25 7 15 2 bombShortWireLoss
.Test
25 7 15 3 bombShortWireLoss
.Directory
/home/ee/cgilmore/joe/final/PECShortWire/
.Boundary
aaaaaa
.Mur
2
.Object Ground
0 60 0 20 0 30 4 1 0.01
.Object A1
10 15 25 27 15 15 1 1 999
.Object A2
11 15 27 29 15 15 1 1 999
.Object A3
12 15 29 31 15 15 1 1 999
.Object A4
13 15 31 33 15 15 1 1 999
.Object A5
14 15 33 34 15 15 1 1 999
.Object A6
15 15 34 35 15 15 1 1 999
.Object A7
15 16 36 36 15 15 1 1 999
.Object A8
16 17 36 37 15 15 1 1 999
.Object A9
17 19 36 38 15 15 1 1 999
.Object A10
19 21 36 39 15 15 1 1 999
.Object A11
23 25 36 41 15 15 1 1 999
.Object A12
23 25 36 41 15 15 1 1 999
.Object Bomb
20 39 15 15 17 17 1 1 999
.Isource dipole
3 15 16 25 26 15 16 1 1 0 0
dgaussian
1.0 2e-9 5e-10
.End

b.2.2 Matlab Source Code for the Matrix Pencil Method
%Colin Gilmore 
%Sept 2004
%Utilize the matrix pencil method to find the poles from the generated fdtd
%data.
clear all;
close all;
clc;
%first load the test data
[ExTotal,t] = readfdtddata('T1ShortWireLossEx.wave');
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[ExIncident,t2] = readfdtddata('E:\Colin\FDTD Results\final\basic-
Ground\T1groundLossEx.wave');

%perform subtraction of the data
fulldata =ExTotal - ExIncident;

dt = t(2)-t(1);

figure
plot(t/1e-9,fulldata);
title('Ex Data for 20cm Wire in Lossy Ground');
xlabel('Time [ns]'); 
ylabel('Amlitude(V/m)');
pause

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% From the above graph, I have select the late time starting point.
% For now, I will read it in from the user
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

lateTime = str2num(char(inputdlg('Beginning of Late Time','User 
Input',1,{'0'})));
%always go to the end of the time domain response
stopTime = 1; 

%create the late-time signal
    lateTimeData = fulldata(t >= lateTime & t<=stopTime)';
    lateTimeTime = t(t >= lateTime & t<=stopTime)';
    
    figure
    plot(lateTimeTime,lateTimeData)
    title('Late Time Data Selected to Perform the Matrix Pencil On');
    xlabel('Time');
    ylabel('Magnitude');
    pause
    
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
    % Here we begin the matrix pencil method. See Interaciton note 580 for a
    % cookbook method.
    % First, we must find the hankel matrix
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
    N = length(lateTimeData);
    
    %Select the pencil parameter
    L = ceil(N/3);
    if N-L<=L+1
        'L is Too High (Y matrix will be incorrectly sized for SVD)'
        break
    end
    %Create the data matrix Y
    Y=[];
    for aa = 1:N-L;
        ytemp = lateTimeData(aa:aa+L);
        Y = [Y; ytemp];
    end
    'data matrix found'
    beep
    %Next, find the singular value decomosition of the data matrix Y
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    [U,S,V] = svd(Y,0);
    'svd finished'
    beep
    %now, we must plot the SVD of the data matrix in order to choose an number
    %of poles that we wish to calculate. The selection of the number of poles
    %is a critical step in the matrix pencil method
    % figure
    
    for a = 1:length(S(:,1));
        s(a) = S(a,a);
    end
    figure
    stem(20*log(s/max(s)));
    title('Magnitude of Singular Values');
    xlabel('Pole Order');
    ylabel('Magnitude (dB)');
    
    pause
    %let the user enter the number of poles to model the signal with
    M =str2num(char(inputdlg('Number of Poles to Select','User Input',1,{'0'})));
    
    Vnew = V(:,1:M);
    Snew = S(:,1:M);
    
    V1 = Vnew(1:end-1,:);
    V2 = Vnew(2:end,:);
    
    %now poles of the signals are given by the eigenvalues of ([v1]')(moore-pen-
rose inverse)*V2'.
    
    %now perform the moore-penrose psuedo inverse on V1Trans
    %start with a SVD of V1Trans
    V1TransPinv = pinv(V1);
    
    Zm = eig(pinv(V1)*V2);
    LogPoles = log(Zm);
    matrixPencilPoles = LogPoles/dt;
    matrixPencilPoles = real(matrixPencilPoles)+ (j/2/pi)*imag(matrixPencil-
Poles);
    
    %plot the poles
    figure
    scatter(real(matrixPencilPoles),imag(matrixPencilPoles)/1e6,'o');
    title('Poles for 20 cm Wire Buried in Lossy Medium');
    xlabel('Damping Factor (radHz)');
    ylabel('Frequency (MHz)')
    hold on
    
    %load in the pre-calculated free space poles
    load freeSpacePoles;
    %now perform Baum's transformation on the free space poles
    sig = 0.01;
    EpR = 4;
    Eps = EpR*8.854e-12;
    modifiedPoles = -(sig/2/Eps)+((sig/2/Eps)^2 + (1/EpR)*(freeSpace-
Poles.^2)).^0.5; 
    %need to switch the phase of the poles after the sqrt in the above
    %formula
    modifiedPoles = -modifiedPoles;
136



    %plot calculated poles and free space poles
    scatter(real(modifiedPoles),imag(modifiedPoles)/1e6,'rx');
    scatter(real(freeSpacePoles),imag(freeSpacePoles)/1e6,'g+');
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