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Abstract

Photonic bandgap materials are periodic structures that exclude electromagnetic
field propagation over frequency intervals known as bandgaps. These materials ex-
hibit remarkable wave dispersion and have found use in many applications that re-
quire control over dynamic electromagnetic fields, as their properties can be tailored
by design. The two principal objectives of this thesis are the development of a liquid
crystal-based microwave photonic bandgap device whose bandgap could be tuned
during operation and the design and implementation of a spectral transmission-line
modeling method for band structure calculations.

The description of computational methods comprises an overview of the imple-
mented numerical routines, a derivation of the spectral properties of the transmis-
sion-line modeling method in periodic domains, and the development of an efficient
sparse matrix eigenvalue algorithm that formed the basis of the spectral transmis-
sion-line modeling method. The discussion of experimental methods considers the
use of liquid crystals in microwave applications and details the design and fabri-
cation of several devices. These include a series of modified twisted nematic cells
that were used to evaluate liquid crystal alignment and switching, a patch resonator
that was used to measure liquid crystal permittivity, and the liquid crystal photonic
bandgap device itself.

Numerical experiments showed that the spectral transmission-line modeling
method is accurate and substantially faster and less memory intensive than the
reference plane wave method for problems of high dielectric contrast or rapidly
varying spatial detail. Physical experiments successfully realized a microwave pho-
tonic bandgap structure whose bandgap could be continuously tuned with a bias
voltage. The very good agreement between simulated and measured results vali-
date the computational and experimental methods used, particularly the resonance-
based technique for permittivity measurement. This work’s results may be applied
to many applications, including microwave filters, negative group velocity/negative
refraction materials, and microwave permittivity measurement of liquid crystals.
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Chapter 1

Introduction

1.1 Periodic Structures in Electromagnetics

Periodic materials are an important subject in wave mechanics that occurs in many

branches of physics [1]. The interaction of waves with periodic materials gives rise

to varied and rich phenomena that have been exploited in many applications. The

most notable example comes from solid-state physics, where the interaction of elec-

tron waves with a crystalline semiconductor material gives rise to discrete electron

energies. The operation of a transistor is based on the fact that the energy as-

sociated with electrical conduction can be shifted with an electric field, inducing

changes in conductivity. While the significance of the transistor is difficult to over-

state, periodic structures are also of substantial importance in the fields of optics,

electromagnetics, and acoustics. For example, periodic structures are used in optics

as highly efficient mirrors in lasing cavities [2], while in electromagnetics they form

the basis of phased array antennas [3].

The study of spatially periodic systems was initiated in 1887 by Strutt [4], who

investigated the electromagnetic properties of laminated media and identified Hill’s

1



differential equation [5], which was originally developed for the study lunar orbits,

as the mathematical basis for studying one-dimensional periodic systems. The work

of Hill was developed independently by Floquet in 1883 [6] and was subsequently

generalized to three dimensions by Felix Bloch during the course of developing a

quantum description of solids in the 1920s [7].

While the history of this analytical framework lies with electromagnetics and

quantum mechanics, the theory is applicable to all systems characterized by the

Helmholtz equation, which describes waves in a steady state. This equation arises

frequently when steady-state conditions are imposed on a differential equation as-

sociated with a time-dependent physical process. In particular, the mathematics

describing wave propagation in periodic media applies to the Schrödinger equa-

tion of quantum mechanics, the wave equation of linear acoustics, and Maxwell’s

equations of electromagnetics, and provides a quantitative explanation for common

properties found among periodic systems governed by entirely different physical

laws.

Periodicity influences many aspects of wave propagation, from velocity, refrac-

tion, and dispersion to the very existence of waves at all. In the latter case, where

waves within range of frequencies (or energies) cannot exist, the material is said to

possess a bandgap (or stopband). This is a consequence of constructive and destruc-

tive interference, the most elementary example of which is thin film interference. In

electromagnetics, periodicity arises from the periodic variation of material proper-

ties such as electrical permittivity, magnetic permeability and domain boundaries.

As in the general case, periodic electromagnetic media may possess bandgaps, or

regions of the electromagnetic spectrum where the material does not support propa-

gating modes. Bandgaps are sensitive to direction, frequency, and also polarization,

as electromagnetic waves are transverse. The periodicity of a material also strongly
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influences the phase and group velocities in a manner that is highly dependent upon

these parameters.

Periodicity in electromagnetics has enjoyed substantial investigation following

the work of Lord Rayleigh, remaining a fruitful and active area of research to

the present day. An early application to exploit the reduction in wave velocity is

the traveling wave tube, which is used for broadband amplification of microwave

frequencies [8–10]. The principle of amplification derives from the modulation an

electron beam by an input electromagnetic wave, whose speed is matched to that

of the beam by virtue of traveling along a helical transmission line.

A second application to exploit the reduced wave velocity is the slow wave

antenna [11–15]. This antenna consists of periodic radiating elements such as

periodically-spaced holes in a waveguide and can produce a very narrow beam

in the direction of periodicity due to the reduction in phase velocity. Subsequent

antenna design has also exploited frequency selective surfaces, which allow waves of

certain frequencies to pass while reflecting those in the stopband [16–18]. Such sur-

faces can allow a reflector antenna to operate at multiple frequencies simultaneously

using several focal points.

More recently, periodicity has been adopted in planar circuits for the suppression

of parallel plate noise, which arises from switching in high-frequency circuits [19,20].

Periodicity is realized as etchings in the parallel plate waveguide conductors, which

induce a bandgap that inhibits switching noise. Research of planar periodic struc-

tures has also included several types of microstrip filters, which derive bandstop

characteristics from periodicity in the signal line [21–23], the dielectric [24, 25], or

the ground plane [26–29].

As research of periodic structures in electromagnetics has taken place alongside

that in optics, quantum mechanics, and acoustics, there has been considerable mu-
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tual influence in mathematical analysis and design methodologies. In particular,

it has become common in electromagnetics to conduct analysis using the formal-

ism developed in solid state physics, whereby periodic systems are considered in

terms of their band structure and density of states. This practice has been widely

adopted following a seminal paper by Eli Yablonovitch, which explored the use of

periodic structures to inhibit spontaneous emission from excited atoms [30]. Re-

search that followed has given rise to several overlapping classifications. Materials

whose bandgap features prominently are known as photonic bandgap (PBG) or

electromagnetic bandgap (EBG) materials. Photonic bandgap materials consist-

ing exclusively of dielectrics are also known as photonic crystals (PCs), while such

one-dimensional materials at optical frequencies are also known as Bragg mirrors.

Owing to the lossy nature of metal at higher frequencies, optical structures are

usually photonic crystals made of such materials as silicon, sapphire and air. At mi-

crowave frequencies PBG materials are commonly fabricated from dielectric as well

as metallic materials. As both PCs and EBG materials are described by Maxwell’s

equations, the distinction between PCs and EBG materials arises primarily from

the practical differences between microwave and optical engineering [2, 31–33].

A related class of materials called metamaterials are also periodic [34]. How-

ever, whereas photonic bandgap materials are typically used at frequencies on the

order of the bandgap, metamaterials are usually employed at frequencies that are

so much lower than first bandgap that they may be viewed as an approximation to

a homogeneous medium [2]. Metamaterials also share some electromagnetic char-

acteristics with photonic bandgap devices. For example, negative refraction can

also be found in photonic bandgap materials, owing to the negative group velocity

of certain frequency bands [2, 32].

The electromagnetic properties of conventional photonic bandgap devices com-
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prising discrete materials are derived from the underlying geometry and material

properties, which remain fixed upon fabrication. Recently, substantial research has

been devoted to developing “tunable” devices, whose electromagnetic properties,

such as stopbands, can be modified after fabrication or even during operation. In

particular, liquid crystal (LC)-based devices have received considerable attention

after tunable three-dimensional photonic crystal using nematic liquid crystals were

experimentally realized [35–37]. Such devices derive bandgap tuning from the spe-

cial properties of nematic liquid crystals, whose remarkable orientational order on

a molecular scale can be manipulated with macroscopic fields and careful prepara-

tion of material surfaces [38–41]. Development of optical photonic bandgap devices

based on liquid crystals has intensified over the last few years, and it is expected

that this area of research will remain a fruitful source of new devices and avenues

of investigation.

1.2 Contributions

This thesis presents contributions to the research of photonic crystals in the areas of

numerical modeling and dynamically tunable materials. The first contribution con-

cerns the development of a spectral transmission-line modeling (TLM) method for

computing dispersion diagrams and Bloch modes of photonic crystals. This work

rests upon expressing steady-state conditions as an eigenvalue equation derived

from the matrices arising from the TLM discretization. Its derivation required the

original TLM method to be adapted to allow complex-valued voltages and the peri-

odic boundary conditions. As the resultant eigenvalue problem is large and sparse,

it was necessary to carefully develop an eigenvalue algorithm using a combination

of sparse matrix techniques in order to fully exploit the latent structure present
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in the scattering matrices. The method has been found to possess a speed that is

comparable to that of its time-marching counterpart but holds several advantages

over conventional TLM, including the automatic calculation of Bloch modes and

the removal of time stepping and Fourier transforms.

The second topic concerns the design and fabrication of two microwave de-

vices incorporating liquid crystals. These structures are a patch resonator for the

measurement of permittivity and a photonic bandgap device designed to exhibit

a tunable bandgap. The principal aim of this work was to produce a quasi two-

dimensional photonic bandgap device for microwave frequencies whose stopband

can be shifted and stretched in frequency using a static electric field, thereby allow-

ing the material to be “tuned” after fabrication and even during operation. The

fabricated device exhibited significant bandgap shifting in the range of 6–9 GHz

in response to a quasi-static electric field. Tunable structures of this kind are an-

ticipated to have considerable relevance to the design of filters, waveguides, noise

suppression, and many others areas of microwave engineering.

The remainder of this thesis is divided into five chapters with content arranged

as follows. The second chapter provides a literature review of the areas of re-

search spanned by this thesis. It begins with a mathematical framework of photonic

bandgap materials derived from Maxwell’s Equations, continues with a review of

conventional modeling methods and an overview of nematic liquid crystal physics

that is relevant to the work of this thesis, and concludes with a review of existing

tunable bandgap and microwave liquid crystal devices.

The third chapter details the computational and experimental methods em-

ployed in carrying out this research. Discussion of computational methods includes

the development of the spectral transmission-line modeling method and the imple-

mentation of numerical codes used in subsequent design. The discussion of exper-
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imental methods covers the design, simulation, fabrication, and testing of several

optical and microwave structures. These include several modified twisted nematic

cells used for the identification of suitable rubbing parameters and evaluation of

switching, a circular patch resonator for the measurement of liquid crystal per-

mittivity, a precursory linear microstrip photonic bandgap device used to validate

the experimental approach, and a second photonic bandgap device incorporating a

liquid crystal material. In addition, network analyzer calibration and the develop-

ment of a precision buffing machine used in the preparation of liquid crystal-based

samples are discussed.

The fourth chapter presents the results of the numerical and experimental work.

A comparison of runtimes, computed band diagrams, and eigenmodes are given for

several unit cells simulated with the spectral transmission-line modeling method

and the algorithms reviewed in the second chapter. The results of experiments

involving microwave structures (resonator and bandgap devices) are given as scat-

tering parameters that were measured using two-port network analyzers. These

results are compared with simulated values.

The fifth chapter contains a discussion of the results. The spectral transmission-

line modeling method is found to be not only accurate but also faster than the plane

wave method for problems characterized by high contrast in permittivity or rapidly

varying spatial detail. The simulated resonant frequencies and quality factors of

the unfilled circular patch resonator are found to be in excellent agreement with

measurements. Simulations of the liquid crystal photonic bandgap structure based

on the extracted permittivities are similarly found to be in excellent accord.

The sixth and final chapter concludes the thesis. A summary of the work is given

and potential future directions are explored. Three appendices follow. Appendix A

contains a derivation of the spectral properties of the inhomogeneous curl-curl op-
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erator subject to Bloch’s theorem, showing that the spectrum of a general photonic

bandgap material is discrete for given location in reciprocal space. This analysis

rigorously justifies the numerical routines encountered in this thesis. Appendix B

outlines the Rayleigh multipole method (RMM), a semi-analytical technique used

for the simulation of periodic structures based on circular geometries, and Ap-

pendix C provides a detailed tabulation of nanofabrication process parameters em-

ployed in the construction of physically-realized devices and mechanical drawings

that include the photolithographic masks used. Readers are advised that references

to equations, figures, and cited works are hyperlinked in document viewers that are

equipped with this facility.
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Chapter 2

Literature Review

2.1 Mathematical Overview of Periodic Systems

2.1.1 Photonic Crystals in General Electromagnetics

The electromagnetic analysis of photonic bandgap materials begins with Maxwell’s

equations, stated here in differential form [42]

∇× E (r, t) = −∂B (r, t)

∂t

∇×H (r, t) =
∂D (r, t)

∂t
+ J (r, t)

∇ ·D (r, t) = ρ (r, t)

∇ ·B (r, t) = 0

(2.1)

where E, H, D, B, J, and ρ are the electric field, magnetic field, electric flux

density, magnetic flux density, electric current density, and electric charge density,

respectively. Each of these is a function of position r ∈ R3 and time t ∈ R and, with
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the exception of ρ, a vector quantity. Additionally, the field and flux quantities are

assumed to satisfy the constitutive equations

D (r, t) = εr (r) ε0E (r, t)

B (r, t) = µr (r)µ0H (r, t)

(2.2)

where ε0 is the permittivity of free space and µ0 is the permeability of free space.

The relative permittivity εr(r) and the relative permeability µr(r) are scalar func-

tions of r and may be discontinuous. These equations describe materials that are

isotropic, dispersionless, and whose magnetic and electric polarizations are linear

functions of their respective field intensities. It is noted that while these restric-

tions serve to simplify the present discussion of modeling, they must be relaxed in

a general discussion of liquid crystals.

A material’s periodicity is manifested in (2.2). For periodic structures of infinite

extent the permeability and permittivity satisfy

εr (r) = εr (r+ n1a1 + n2a2 + n3a3)

µr (r) = µr (r+ n1a1 + n2a2 + n3a3)

(2.3)

for n1, n2, n3 ∈ Z and where a1, a2, and a3 are the elementary lattice translations,

as depicted in Fig. 2.1. In the case where ai · aj = 0 and |ai| = |aj| for i 6= j, the

lattice is square and described by the scalar lattice constant a = |a1|.

As the study of photonic bandgap materials concerns waves, only the two curl

equations appearing in (2.1) are relevant. Furthermore, these equations fix ρ up to
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Figure 2.1: Unit cell of an arbitrary two-dimensional photonic crystal (a) and the
corresponding elementary direct and reciprocal lattice vectors (b).

a constant, a result of the current continuity equation [42]

∂ρ (r, t)

∂t
= −∇ · J (r, t) (2.4)

For convenience, this constant can be set to zero, which corresponds to the absence

of a static electric field.

The spatial derivatives appearing in (2.1) may be stated in a strong or weak

sense. In the former, the field quantities are members of the space of continu-

ous functions, and the equations are only valid in regions where εr(r) and µr(r)

are themselves continuous. Should material properties be discontinuous, supple-

mentary normal and tangential boundary conditions must be enforced along the

discontinuities such that [42]

n̂ · (D1 (r, t)−D2 (r, t)) = ρS (r, t)

n̂ · (B1 (r, t)−B2 (r, t)) = 0
(2.5)
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and

n̂× (E1 (r, t)− E2 (r, t)) = 0

n̂× (H1 (r, t)−H2 (r, t)) = JS (r, t)
(2.6)

where ρS and JS are the surface charge and current densities, respectively, and

n̂ is the unit vector normal to the interface between the two materials, which

are distinguished by the subscripts 1 and 2. Equations 2.1–2.6, in conjunction

with the appropriate boundary conditions, serve as the point of departure for the

transmission-line modeling method discussed in §2.2.2.

Further analysis and additional modeling methods can be developed by restating

the problem in the frequency domain. By applying the Fourier transform with

respect to time, Maxwell’s equations can be re-written as a function of frequency

∇× E (r, ω) = −jωB (r, ω)

∇×H (r, ω) = jωD (r, ω) + J (r, ω)

∇ ·D (r, ω) = ρ (r, ω)

∇ ·B (r, ω) = 0

(2.7)

where the angular frequency ω is related to the frequency f by

ω = 2πf (2.8)
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The frequency-domain counterparts to (2.5) and (2.6) are

n̂ · (D1 (r, ω)−D2 (r, ω)) = ρS (r, ω)

n̂ · (B1 (r, ω)−B2 (r, ω)) = 0
(2.9)

and

n̂× (E1 (r, ω)− E2 (r, ω)) = 0

n̂× (H1 (r, ω)−H2 (r, ω)) = JS (r, ω)
(2.10)

Henceforth, the r and ω dependencies are suppressed for the frequency dependent

quantities. Equations 2.7–2.10 are the starting point of the Rayleigh multipole

method (§2.2.3 and Appendix B). The use of continuous functions to represent

field quantities represents a significant obstacle to analytical characterization of

structures comprising different materials. However, by appealing to the functional

analytical framework of weak derivatives, the need to explicitly satisfy these bound-

ary conditions can be removed, thereby simplifying analysis.

A distribution may be defined as a continuous linear functional on D (Ω) ≡

C∞
0 (Ω), the space of infinitely differentiable functions having compact support in

the open set Ω ⊂ R3 [43]. Regular distributions are linear functionals satisfying [43]

F : D (Ω)→ C, 〈F, φ〉 =
∫
Ω

f (r)φ (r) dr, φ ∈ D (Ω) (2.11)

which is stated in terms of Lebesgue measure theory and associates the distribution

F with the locally integrable function f . Singular distributions, such as the Dirac

delta function, are also linear functionals. However, such distributions are not

associated with locally integrable functions.

13



The derivative Dα of a distribution F may be defined as [43]

〈DαF, φ〉 = (−1)|α| 〈F,Dαφ〉 ∀φ ∈ D (Ω) (2.12)

where the multi-index α = (αx, αy, αz) is the order of the derivative with respect

to each spatial direction and |α| = αx + αy + αz. For regular distributions, this

becomes [43]

〈DαF, φ〉 = (−1)|α|
∫
Ω

f (r)
∂|α|φ (r)

∂xαx∂yαy∂zαz
dr (2.13)

which defines the derivative of any regular distribution. For example, this equation

may be used to show that the derivative of the Heaviside step function is the Dirac

delta function. If DαF is itself regular, (2.13) may be written as [43]

∫
Ω

(
∂|α|f (r)

∂xαx∂yαy∂zαz

)
φ (r) dr = (−1)|α|

∫
Ω

f (r)
∂|α|φ (r)

∂xαx∂yαy∂zαz
dr (2.14)

This equation defines the weak derivative for the function f (r), which, when suffi-

ciently smooth, becomes the classical Green’s theorem [43]. Note that the boundary

term is absent due to the fact that functions in D must vanish on the boundary, a

consequence arising from

supp (φ) ⊆ X ⊂ Ω, ∀φ ∈ D (Ω) (2.15)

where supp (φ) is the support of φ and X is a closed and bounded subset of Ω

(recall that Ω is open).

In cases where a classical derivative exists, the weak derivative will be identical

up to a measure of zero. The advantage of using weak derivatives lies in the fact

that Maxwell’s equations can be recast into a system of distributional differential
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equations [44], which may be written as

∇× E (r, ω) = −jωB (r, ω)

∇×H (r, ω) = jωD (r, ω) + JV (r, ω) + JS (r, ω) δS

∇ ·D (r, ω) = ρV (r, ω) + ρS (r, ω) δS

∇ ·B (r, ω) = 0

(2.16)

where the subscripts V and S are associated with volume and surface quantities

respectively, and δS is the Dirac delta distribution, whose argument vanishes on the

boundaries that carry a surface current or charge. These equations automatically

satisfy the normal and tangential boundary conditions along material discontinu-

ities, which may be seen by equating the singular distributions of each equation.

Applying a second curl to each of the curl equations in (2.7) produces two

equations describing waves at steady state

∇× µ (r)−1∇× E+ ε (r)ω2E = −JV (r, ω)− JS (r, ω) δS (2.17a)

∇× ε (r)−1∇×H+ µ (r)ω2H = ∇× (JV (r, ω) + JS (r, ω) δS) (2.17b)

which may also be written as

ε (r)−1∇× µ (r)−1∇× E+ ω2E = −ε (r)−1 (JV (r, ω) + JS (r, ω) δS) (2.18a)

µ (r)−1∇× ε (r)−1∇×H+ ω2H = µ (r)−1∇× (JV (r, ω) + JS (r, ω) δS) (2.18b)

Either equation alone is sufficient to describe wave propagation in a photonic
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crystal, as each field quantity can be recovered from the other by means of applying

the curl operator. Note that (2.18a) and (2.18b) are self-adjoint under the standard

[L2(Ω)]3 inner product when εr(r) = 1 and µr(r) = 1, respectively.

Both analytical and numerical analysis of periodic structures falls into two cat-

egories, depending on whether an electromagnetic source is present in calculations.

The source may be a current (appearing in the right-hand side of equation 2.17)

or a term arising from an inhomogeneous impedance boundary condition [45]. In

the absence of a source, the problem consists of solving for the propagating (or

evanescent) modes supported by the structure. This arises when calculating the

eigenmodes supported by an infinite lattice, and it is expressed mathematically as

the general operator equation [42]

Ax = λx (2.19)

where A is a given differential operator, λ is a scalar, and x is a (possibly vector)

solution to the eigenvalue equation.

Development of the analytical problem is continued in Appendix A, which pro-

vides a detailed derivation of the spectral properties of periodic structures. This

analysis shows that the spectrum of a photonic crystal, when restricted to a partic-

ular location in the irreducible Brillouin zone (introduced in §2.1.2), comprises only

discrete, real, and positive eigenvalues, thereby justifying the numerical algorithms

discussed in the latter part of this section. These algorithms have been used to

find approximate solutions to (2.17), having allowed for the evaluation of design

alternatives and verification electromagnetic properties prior to fabrication.
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2.1.2 Dispersion Diagrams and Symmetry

Wave dispersion is a nonlinear dependence of the wavenumber k on frequency.

While a nonlinear relationship necessarily exists when ε(r, ω) or µ(r, ω) exhibit a

frequency dependence, such a relationship can also arise in guided wave problems

where constituent materials show no such dependence. This is the case with peri-

odic structures, where dispersion is a fundamental property regardless of whether

constituent materials are themselves inherently dispersive. Investigation of a pe-

riodic structure’s dispersion relations commences with the Bloch theorem, which

states that the steady-state eigenmodes of an infinitely periodic structure (also

known as Bloch modes) may be expressed as [31]

Ek (r) = uk (r) e
jk·r (2.20)

where k ∈ R3, and uk(r + ai) = uk(r) for i = 1, 2, 3, such that uk(r) is a strictly

periodic function in R3 of the form

uk =
∑
G∈G

uk,Ge
jG·r

(2.21)

The term uk,G is a vector coefficient, and G is a given reciprocal lattice vector from

G, the set of reciprocal lattice vectors defined as [33]

G ≡ {G ∈ R3 : (∃l, n,m ∈ Z) (G = lg1 +mg2 + ng3)} (2.22)

where g1, g2, and g3 are the elementary reciprocal lattice vectors (Fig. 2.1). These

vectors satisfy the relation

gp · aq = 2πδp,q (2.23)
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where δp,q is the Kronecker delta function for p, q = 1, 2, 3 and ap are the elemen-

tary direct lattice vectors that define the translational invariance of the structure.

The set of reciprocal lattice vectors define the reciprocal space, which assumes a

prominent role in the study of a structure’s eigenmodes.

Of significant importance is the fact that a given solution of (2.20) does not

uniquely define k and its corresponding function uk. In particular, if (k,uk) form

a pair that satisfies (2.20), the shifted pair (k +G, e−jG·ruk) also does so for any

G ∈ G. This implies that any dispersion relation between f and k is periodic in k

with respect to the reciprocal lattice vectors. This result applies to any system that

admits Bloch’s theorem and fundamentally shapes the mathematical properties of

periodic structures.

For the purposes of analysis, the values of k are restricted to a single repeating

parallelepiped defined by the reciprocal lattice vectors and centered at k = 0. This

region of reciprocal space is known as the irreducible Brillouin zone. Any function of

k may be extended to the entirety of reciprocal space by replicating and translating

the portion that lies within the irreducible Brillouin zone in a manner that may be

likened to laying tiles in three dimensions. Thus, while a periodic structure is com-

pletely defined by its unit cell and lattice vectors, its electromagnetic characteristics

are likewise entirely described by the irreducible Brillouin zone and its associated

reciprocal lattice vectors. The foregoing arguments, with slight modification, also

apply to one-dimensional and two-dimensional periodic structures.

The dispersion diagram (also known as a band diagram) graphically represents

the dispersion of a system’s Bloch modes. Figure 2.2 shows a typical band dia-

gram of a two-dimensional photonic crystal comprising regularly spaced sapphire

cylinders. In this case, a complete plot would require two degrees of freedom to

represent the wavenumber and a third to provide variation of frequency. However,
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Figure 2.2: Dispersion diagram of a two-dimensional photonic crystal possessing a
square lattice of cylindrical rods made of sapphire (εr = 8.9 [32]), where the cylinder
radius is equal to 20% of the lattice constant a. The Rayleigh multipole method
(§2.2.3 and Appendix B) was used to produce this plot.

it is customary to plot frequency values parametrically along a closed path in the

irreducible Brillouin zone using only two degrees of freedom. Such a plot is sig-

nificantly less onerous computationally but is adequate for determining dispersion

characteristics and the presence and directional dependence of bandgaps.

The choice of path emerges from symmetry considerations such that points of

high symmetry are included in the resultant contour. For example, the location

Γ in a square lattice of cylinders possesses quadruple reflection symmetry (once

about each axis and each diagonal) and triple rotational symmetry (for the angles

of π/2, π, and 3π/2). Rigorous analysis of symmetry requires the use of a group

theoretical framework and may be used to analytically prove many characteristics

of a crystal’s eigenmodes [33]

While many symmetries arise from geometrical characteristics of the unit cell

and lattice vectors, time-reversal symmetry is common to all lossless and linear

periodic structures regardless of dimension or composition [46]. The time-reversed
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state Etr may be found with the time reversal operator T defined as [46]

Etr = TE (2.24)

This operator effects time reversal by complex conjugation and is consequently non-

linear. A given state and its time-reversed counterpart both travel forward through

time. However, each evolves as the other would if time were to run backwards. For

example, outgoing waves become incoming waves and vice versa. Time-reversal

symmetry is a consequence of the fact that the complex conjugate of any solution

of (2.17) is itself a solution. The origins of this outcome ultimately lie with the

nature of the wave equation, which is second order in time and must permit two

solutions.

In scattering problems, a state may be distinguished from its time-reversed

counterpart by appealing to power flow considerations, as the scattered field must

be outgoing at a distance far removed from the scatterer. The distinction is less

clear in the study of photonic crystals. Moreover, a time-reversed Bloch mode may

be written as

Etr
k (r) = uk (r)e

−jk·r = E−k (2.25)

which shows that the time-reversed state for a given k is simply the non-time-

reversed state for −k. The resultant property

Ek =⇒ E−k (2.26)

is known as inversion symmetry and is a characteristic of all periodic structures

comprising linear materials [33]. The existence of time-reversed modes in the ana-

lytical problem is preserved by the spectral TLM discretization, as shown in §3.2.2
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2.2 Methods of Modeling Periodic Structures

Several methods for modeling photonic bandgap devices are described in the follow-

ing sections. While by no means exhaustive, the techniques presented have gained

currency as standard modeling methods and have been used in this thesis to model

structures.

2.2.1 Plane Wave Method

The plane wave method is the earliest method used to study periodic structures and

has remained, to the present, the reference standard for modeling photonic crystals.

Its history dates back to the very first works on periodicity in electromagnetics un-

dertaken by Lord Rayleigh, Floquet, and Hill [4–6]. Its present use for modeling

crystals possessing discontinuous dielectric functions, however, is very much a con-

sequence of the computational resources that have become available over the last

several decades, which have allowed the spectral decomposition of very large matri-

ces. In work prior to this time [1], only low-contrast materials were considered. The

following paragraphs and equations are a summary of the discussion found in [2]

(see also [31–33]).

The plane wave method begins by expressing both the field and material prop-

erties as Fourier series expansions, which may be viewed as a sum of plane waves

(after which the method is named). Note that these plane waves are solutions

to Maxwell’s equation in homogeneous materials. In the presence of material in-

homogeneities, these waves are coupled and therefore not solutions to Maxwell’s

equations when considered individually. The curl-curl equation for the electric field
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subject to these expansions may be written as

∇×∇×

[∑
G′∈G

∑
G∈G

ε−1 (G)D (G′)

]
ei(k+G+G′)·r = −ω

2

c2

[∑
G∈G

D (G) ei(k+G)·r

]
(2.27)

where ε−1 (·) and D (·) are the coefficients of the Fourier series expansion of the

inverse of permittivity and electric flux density, respectively, and G is the set of

reciprocal lattice vectors. Shifting G′ about G gives [2]

∇×∇×

[∑
G′∈G

∑
G∈G

ε−1 (G−G′)D (G′)

]
ei(k+G)·r = −ω

2

c2

[∑
G∈G

D (G) ei(k+G)·r

]
(2.28)

Two applications of the relation ∇× (Veiu·r) = iu×Veiu·r for arbitrary vectors u

and V eliminates the differential operators, giving [2]

∑
G′∈G

∑
G∈G

ε−1 (G−G′) (k+G) [(k+G)×D (G′)] ei(k+G)·r

= −ω
2

c2

[∑
G∈G

D (G) ei(k+G)·r

] (2.29)

Projecting onto ei(k+G)·r yields [2]

∑
G′∈G

ε−1 (G−G′) (k+G) [(k+G)×D (G′)] = −ω
2

c2
D (G) (2.30)

This equation is incomplete, as the longitudinal component of D is not fixed. This

may be remedied by enforcing the transversality condition, ∇ ·D = 0, which may

also be written as D (G) · (k+G) = 0 ∀G ∈ G. The electric flux density may be
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projected onto the two unit vectors orthogonal to (k+G) [2]

D (G) = d1,Ge1,G + d2,Ge2,G (2.31)

Substituting (2.31) into (2.30) yields the infinite-dimensional eigenvalue equation [2]

∑
G′∈G

ε−1 (G−G′) |k+G|2

 e1,G · e1,G′ e1,G · e2,G′

e2,G · e1,G′ e2,G · e2,G′


 d1,G′

d2,G′

 =
ω2

c2

 d1,G

d2,G


(2.32)

Two-dimensional problems can be readily decomposed into two separate equa-

tions. When ε (r) is completely invariant to translation in the z-direction, kz = 0,

and the reciprocal lattice vectors will contain no z component (which would give rise

to variation of the field in the z-direction). This implies thatGz = G′
z = 0 ∀G,G′ ∈

G. Hence the transversality condition can always be satisfied by choosing e1,G and

e1,G′ to be (0, 0, 1)T. By orthogonality, the off-diagonal components of the matrix

in (2.32) vanish, yielding two individual eigenvalue equations, which correspond to

the transverse magnetic (TM) and transverse electric (TE) polarizations.

Equation 2.32 may be approximated by truncating the terms to a finite number

around G = 0 and solving the resultant finite-dimensional eigenvalue problem.

The accuracy depends heavily upon the geometries and materials of the unit cell

and the number of terms retained. Moreover, many plane waves are required to

accurately approximate materials possessing high contrast or rapid spatial variation

of permittivity. Unfortunately, the matrix arising from the truncation is dense,

resulting in eigenvalue analysis whose computational cost is proportional to the

cube of the number of terms retained [33].
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2.2.2 Time Marching Transmission-Line Modeling Method

The transmission-line modeling (TLM) method is a computational technique that

models the time evolution associated with wave propagation in materials of arbi-

trary composition. The technique was originally developed for electromagnetics by

Johns [47], who expanded upon earlier contributions by Kron [48]. The method

discretizes both space and time and is derived from Huygens’s principle of wave

propagation. Space is discretized as a Cartesian network of interconnected trans-

mission lines, while time is treated as discrete intervals. A brief overview of trans-

mission line theory is presented here in order to provide the relevant context for

subsequent analysis.

Transmission lines are physical systems that support the propagation of waves

and energy in one dimension and occur in acoustics [49], electrical power transmis-

sion [50], and electromagnetics [51]. Such structures are characterized by a uniform

cross section of finite or infinite extent that is extruded in the third dimension.

In electromagnetics, transmission lines comprise a combination of conducting and

dielectric materials. Transmission lines consisting of two conductors and a single

dielectric such as the coaxial line (Fig. 2.3) support the quasi-transverse electro-

magnetic (TEM) mode. Analysis of this mode with Maxwell’s equations yields the

Inner Conducter

Outer Conducter

Dielectric

E

H

(a) (b)
Figure 2.3: Cross section of a coaxial transmission line (a) and the electric and
magnetic fields of the transverse electromagnetic mode (b).
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telegrapher equations for the voltage v(z, t) and current i(z, t) [51]

∂v (z, t)

∂z
= −R′i (z, t)− L′∂i (z, t)

∂t

∂i (z, t)

∂z
= −G′v (z, t)− C ′∂v (z, t)

∂t

(2.33)

where propagation is assumed to take place along the z-direction, andR′, L′, G′, and

C ′ are the per unit length series resistance, series inductance, shunt conductance,

and shunt capacitance, respectively, of the transmission line (Fig. 2.4). The lossless

case is considered here such that R′ = G′ = 0. With these conditions, only the

fundamental TEM mode propagates for frequencies beneath the cutoff of the first

higher order mode(s). Applying a second partial derivative with respect to z and

performing a substitution for either v of i yields two one-dimensional wave equations

∂2v (z, t)

∂z2
− L′C ′∂

2v (z, t)

∂t2
= 0

∂2i (z, t)

∂z2
− L′C ′∂

2i (z, t)

∂t2
= 0

(2.34)

The values C ′ and L′ are assumed to bear no dependence on frequency, and thus

the TEM mode is dispersionless. In the present discussion, voltages and currents

that are solutions to (2.34) are assumed to be real and therefore correspond directly

dz

L'dz

C'dzG'dz

R'dz

v(z, t) v(z + dz, t)

i(z, t) i(z + dz, t)

Figure 2.4: Infinitesimal segment dz of an arbitrary transmission line showing the
associated voltages and currents, and definitions of R′, L′, G′, and C ′ [51].
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to physically permissible quantities.

Assuming that i(z, t), v(z, t) ∈ S ′(z, t) (the continuous dual of the Schwartz

space S(z, t)), a Fourier transform may be taken of the lossless form of (2.33),

giving

jkzv (kz, ω) = −jL′ωi (kz, ω)

jkzi (kz, ω) = −jC ′ωv (kz, ω)

(2.35)

from which the phase velocity vp may be defined as

vp =
1√
L′C ′

(2.36)

Equation 2.35 also gives

v (kz, ω) =

√
L′

C ′ i (kz, ω)
(2.37)

and

v (z, t) =

√
L′

C ′ i (z, t)
(2.38)

These equations define the ratio of voltage to current for arbitrary solutions to

(2.34). This ratio is fixed for all frequencies (the material is dispersionless) and is

defined by the characteristic impedance

Z0 =

√
L′

C ′
(2.39)

which is used extensively in transmission line analysis.

As the systems under consideration are linear and dispersionless, a voltage (or

current) characteristic solution of (2.34) may be rewritten as a function of a single
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parameter

v (z − vpt) = v (z, t) (2.40)

for waves traveling in the +z-direction, and

v (z + vpt) = v (z, t) (2.41)

for waves traveling in the −z-direction. Waves are scattered upon encountering

a discontinuity of impedance, which may arise at a junction between two lines of

different impedance or at the connection to a terminal load (Fig. 2.5). Each case

produces a reflected wave, whose magnitude depends on the mismatch between

the impedances. Where the discontinuity arises from the connection of a second

line, a transmitted wave is also produced. The dispersionless character of the

transmission lines considered here permits the transmitted and reflected waves to

be found by multiplying the incoming wave by frequency-independent transmission

Z 1 Z 2

(a) (b)

v inc v tran

v ref

Z 1

ZLoad

v inc

v ref

z
0

z
0

Figure 2.5: Impedance discontinuities arising from a junction of two lines of different
impedance (a) and a line termination (b).
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and reflection coefficients T21 and Γ11, respectively

vtran (z − v2pt) = T21vinc (z − v1pt)

vref (z + v1pt) = Γ11vinc (z − v1pt) when z = 0

(2.42)

where vinc and vref are defined for z < 0, and vtran is defined for z > 0. The

subscripts of the coefficients specify the direction of the incoming wave for which

they are valid (Fig. 2.5). These coefficients may be found by enforcing continuity

of voltage and conservation of current at the junction such that

(1 + Γ) vinc = vtran

(1− Γ) iinc = itran

(2.43)

giving

Γ11 =
Z2 − Z1

Z2 + Z1

T21 =
2Z2

Z2 + Z1

(2.44)

where (2.38) has been used twice. Note that the definitions in (2.44) are ideal-

izations. The transmission and reflection coefficients of physically realized systems

will also depend on the geometry of the junction, particularly its size with respect

to wavelength.

The scattering matrix (S-matrix) for the junction depicted in Fig. 2.5a may be

defined as

S =

 Γ11 T12

T21 Γ22

 (2.45)

This matrix provides a mapping between incoming and outgoing voltage solutions
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of (2.34) by means of a matrix multiplication

 vout1 (t)

vout2 (t)

 = S

 vin1 (t)

vin2 (t)

 (2.46)

The scattering matrix may be generalized to cases where the junction comprises

connections to any number of individual transmission lines. It may readily be shown

that the matrix will always be square, possess a dimension equal to the number of

transmission lines connected to the junction, and be unitary in the case where the

connected transmission lines possess the same impedance.

Wave propagation on a network of interconnected transmission lines is com-

pletely described by applying (2.46) and (2.45) to each junction after revising S

to reflect the number of transmission lines and their impedances. However, this

approach may lead to very complicated expressions for the voltage and current.

For certain networks, analysis may be simplified by approximating the continuous

voltages as pulses whose amplitudes are constant for discrete intervals of time, the

duration of which corresponds to the length of time required for a wavefront to

travel between two neighboring junctions. Consequently, scattering remains con-

stant for the duration of the time interval and may be computed with a single

scattering calculation. For a given set of initial voltage pulses, the system may be

advanced to the next time interval by

v (1) = MSv (0) (2.47)

where S is a block-diagonal matrix whose submatrices are the individual scattering

matrices of each junction, M is the matrix that maps each junction’s outgoing

voltage pulses to incoming pulses at neighboring junctions, and v(0) and v(1) are
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sets of voltages on the network of transmission lines for two successive intervals.

The time evolution of a system may be investigated by repeatedly evaluating (2.47).

The approach outlined above is only valid when the time required for a wavefront

to travel from one junction to the next is identical for each pair of neighboring

junctions. Such a case arises, for example, when identical transmission lines are

arranged as a Cartesian mesh (Fig. 2.6a).

TLM exploits the fact that wave propagation in an arbitrary material can be

approximated by wave propagation occurring in discrete time steps on a mesh of in-

terconnected transmission lines [52,53]. The TLM formulation provides an explicit

correspondence between the transmission-line quantities of voltage and current, and

the electric and magnetic fields of the system being modeled (2.1). The mesh may

assume one of several forms, depending on the dimensionality of the problem. The

Cartesian mesh of Fig. 2.6a may be used to model a two-dimensional problem for-

mulated in the TM polarization. The mesh comprises individual nodes (Fig. 2.6b

and 2.6c), each of which contains a junction of five transmission lines, four of which

are connected to neighboring nodes. The fifth transmission line is a shunt stub

whose length equals half that of the connecting lines and is terminated by an open

circuit. The impedances of the transmission lines and the termination of the mesh

are related to the material properties and boundary conditions of the system being

(a) (b) (c)
Figure 2.6: A 2D TLM mesh comprising shunt nodes for the TM polarization.
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modeled and are discussed in further detail in §3.2.

Typical use of the transmission-line modeling method parallels that of other

time-domain simulation techniques such as Finite-Difference Time-Domain (FD-

TD). The primary difference between the methods derives from the dynamical

variables used, which are voltages in the case of TLM and the electric and mag-

netic fields in the case of FDTD, and the method of calculating the evolution of

these variables. The transmission-line modeling method simulations commence by

assigning a series of initial voltages to a subset of the nodes of the mesh, which is

then repeatedly incremented in time using (2.47). The initial voltages on the mesh

are produced by injecting a set of voltage pulses in the first few timesteps, which

may be accomplished with the discrete, truncated Gaussian

vn (k) = e−
(∆tk−µ)2

σ2 |∆tk − µ| ≤ p

= 0 |∆tk − µ| > p, p ∈ R+

(2.48)

or alternatively the Kronecker delta

vn (k) = δk,0 (2.49)

where k is the time increment and n is the index of the node(s) subject to the

injection of the initial voltages. Equation 2.49 contains all frequencies that are

supported by the mesh in equal proportion for a given point on the mesh, while

the parameters of (2.48) are chosen such that the resultant pulse contains only the

frequencies of interest.

During the course of the mesh’s time evolution, voltages are recorded for selected

nodes such that the entire history of voltages on these nodes is known upon com-
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pletion of the time-stepping. A Fourier transform is performed on each of the time

series of voltages when the frequency dependence of the excitation is desired, such

as when computing the frequency dependence of scattering parameters, calculating

the frequency-dependent radiation pattern of an antenna, or when determining the

resonant modes of a structure (such as the unit cell of a photonic crystal).

Implementing steady-state boundary conditions may be difficult when using

time-domain methods for problems whose boundary conditions are stated as phase

delays. Such boundary conditions arise in the modeling the unit cell of a photonic

crystal, where waves passing through a boundary and leaving the unit cell are

made to reappear on the opposing side as an identical wave shifted in phase. As

the phase shift is fixed, such a boundary must necessarily be dispersive. This may

be illustrated by considering the associated time delay

∆t =
φ

kv
(2.50)

where ∆t is the time delay, φ is the phase delay, k is the wavenumber, and v is the

phase velocity. While shifts in time may be readily incorporated in time-domain

methods, implementing frequency dependence requires complicated expressions in-

volving dynamical quantities that span many timesteps [54]. An alternative ap-

proach exploits the fact that an arbitrary phase shift can be effected by combining

two signals of a single frequency that are π/4 radians out of phase with each other

cos (ωt+ φ) = A cos (ωt) +B sin (ωt) (2.51)

where A and B are real constants that satisfy the equation for a given value of

φ. A successful approach employed by [55, 56] employs a dual mesh, where the
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eigenmodes evolve in time on both meshes but are π/4 radians out of phase. The

mathematics of this assertion receive additional treatment during the analysis of

the spectral problem in §3.2. The coupling at the boundary for a dual mesh system

is

vin1 = vout1 cos (k · a)− vout2 sin (k · a)

vin2 = vout1 sin (k · a) + vout2 cos (k · a)
(2.52)

where k is the location in the irreducible Brillouin zone that defines the boundary

conditions, a is the spatial translation of the pulse across the unit cell, and where

the subscripts indicate the mesh for the given voltage.

2.2.3 Rayleigh Multipole Method

The Rayleigh multipole method is a two-dimensional semi-analytical algorithm for

computing the electromagnetic characteristics of diffraction gratings comprising

dielectric or metallic cylinders [57, 58]. The technique calculates the diffracted

and reflected fields (propagating and evanescent) in response to an incident plane

wave. This method may be applied to studying two-dimensional photonic crystals

composed of periodically arranged circular dielectric elements by decomposing the

structure into individual diffraction grating layers (Fig. 2.7), and stating the relation

between the diffracted and reflected orders as an eigenvalue problem.

While limited to circular geometries, RMM is exceptionally fast owing to ex-

plicit use of geometry. As the prototype microstrip test structure employed cir-

cular scattering elements (disks), RMM was a natural choice for performing band

diagram and finite structure simulations, particularly for parameter optimization

where many thousand variations were calculated in order to determine the disk

radius that maximized the width of the stopband.
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Figure 2.7: Photonic crystal possessing a square lattice showing the three elemen-
tary decompositions into individual diffraction gratings.

The essence of RMM lies with finding the relation between incoming and scat-

tered fields. This is done by expanding the field in the vicinity of one cylinder

as a sum of cylindrical harmonic functions and equating outgoing harmonics with

incoming ones using the boundary conditions at the surface of the cylinder and

periodicity of the field. This relation is expressed as a matrix that, when inverted,

gives the scattered field in terms of the diffracted modes. A detailed derivation of

the method is presented in Appendix B.

In addition to the restriction on geometry, a second disadvantage of the Rayleigh

multipole method lies with nature of the eigenvalue calculation. Whereas the

plane wave method finds eigenvalues ω2 for a given (kx, ky), the Rayleigh multi-

pole method finds values of ky for a given ω. As bands are generally more “flat”

than “vertical”, the plane wave method requires fewer simulated values to pro-

duce an acceptable band diagram. When using the Rayleigh multipole method to

compute bands that are nearly flat, ω must be incremented in very small steps,

an approach that produces very large data sets that complicate post-processing.

Notwithstanding, this program has been used in this thesis wherever it was neces-

sary to simulate structures comprising disks as its speed compares very favorably

to other methods.
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2.3 Physics of Nematic Liquid Crystals

Liquid crystals are remarkable materials that exist in one or more mesophases over

certain temperature range(s). This state of matter is a fluid that lies between

the solid crystalline and isotropic liquid phases. It is characterized by long-range

molecular order, the presence of which corresponds to a Hamiltonian of reduced

symmetry when compared to that of an isotropic material. Liquid crystals may be

classified according to their molecular arrangement in their respective mesophases,

the least ordered being the nematic mesophase, which is characterized by long-range

orientational order and the absence of positional order (Fig. 2.8). Cholesteric (also

known as chiral nematic) liquid crystals comprise molecules arranged in continuous

helical distortions. Finally, the smectic mesophase possess orientational order as

well as some positional order in the form of layers. Variation in these properties

gives rise to several additional subclassifications, particularly in the case of smectic

liquid crystals where there many different modifications [38].

Of the different varieties of liquid crystals, nematics are perhaps the most widely

used in applications such as displays. An example of a nematic liquid crystal

is 5CB [59] (Fig. 2.9). This molecule (like many nematics) possesses a strong

permanent dipole due to the cyano group [38]. Analysis may be simplified by

modeling such nematics as rod-like structures whose average local orientation is

described by the unit vector known as the director n̂. The liquid crystals considered

Figure 2.8: Molecular arrangement of a liquid crystal in the nematic phase.
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Figure 2.9: Chemical structure of 5CB (4-n-pentyl-4-cyanobiphenyl) [59]. Note the
cyano group, which endows the molecule with a very strong dipole moment [38].

in the present discussion are not ferroelectric, and as a result the bulk material (in

contrast to individual molecules) lacks a spontaneous polarization. Consequently,

the director is only unique up to a sign [38]. As the subject of liquid crystals is

quite expansive, the remainder of this section concerns only nematic liquid crystals,

which are used in experiment.

In thermotropic nematic liquid crystals, phase transitions occur with change in

temperature. The mesophase exists between the melting point (the temperature

at which the solid material melts and yields the liquid crystal mesophase) and the

clearing point TC . The latter is the temperature at which the mesophase loses its

reduced symmetry and becomes an isotropic liquid. In many cases, the melting

point can be reduced by forming a eutectic mixture of two or more liquid crystals

such that the resultant mixture will exist in a mesophase for a greater range of

temperature than either material alone [38].

2.3.1 Orientational Order

The orientational order in a uniaxial nematic liquid crystal is described quantita-

tively by the microscopic scalar order parameter [38,41]

S =
1

2

〈
cos2 (θ)− 1

〉
(2.53)
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where < · > is an ensemble average over a small volume and θ is the angle between

a given molecule and the director. The distribution of molecular orientations with

respect to the director is shown for a typical case in Fig. 2.10. The order parameter

may range in value from −1/2 to 1 and is strongly dependent upon temperature.

A value of zero corresponds to an isotropic liquid, while positive and negative val-

ues correspond to orientations that are planar and perpendicular to the director,

respectively, where the magnitude indicates the degree of alignment. The order pa-

rameter is positive for the rod-like nematic liquid crystals considered in the present

discussion [38,41].

Orientational order is also manifested in macroscopic properties such as dielec-

tric, optical, and magnetic anisotropy in the form of second-rank tensor susceptibili-

ties [60]. In particular, the diamagnetic susceptibility bears a direct correspondence

to the microscopic order parameter as a consequence of the fact that molecular

magnetic properties, ultimately dipolar in nature, are largely free of intermolecu-

lar interactions. While dielectric susceptibility is also related to the microscopic

order parameter, strong electrical interaction between molecules (such as induced

dipoles) precludes drawing a simple and reliable connection between molecular and

Figure 2.10: Distribution of molecular orientations in a nematic liquid crystal,
where θ is the angle with respect to the director [38]. The function shown corresponds
approximately to that of a nematic liquid crystal. Note that N(θ) must be symmetric
about π/2 due to the equivalence between n̂ and −n̂.
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bulk electrical properties [61,62]. Nonetheless, the axial symmetry of the bulk liquid

crystal allows the permittivity of the medium to be expressed as the tensor [38]

ε =


ε⊥ 0 0

0 ε⊥ 0

0 0 ε//

 (2.54)

where the basis vectors are formed from the director and two (degenerate) vectors

that span the plane that is normal to the director. The permittivity tensor depends

strongly on frequency and temperature [41] (Fig. 2.11). The latter dependence

may be exploited in a crude fashion to dynamically switch the permittivity of the

material.

2.3.2 Elastic Properties

In general, the orientation of the director is a function of position, time, tem-

perature, externally applied electric and magnetic fields, bounding surfaces, and

T

ε

TC

//

⊥

Isotropic

f

ε

frelaxation

//

⊥

(a) (b)
Figure 2.11: Temperature dependence (a) and frequency dependence for T < TC

(b) of the parallel and perpendicular components of the permittivity for a nematic
liquid crystal possessing a positive dielectric anisotropy [41]. Note that the lack of
orientation at temperatures above TC results in an isotropic permittivity.
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the intrinsic elastic, viscous, and electrostatic properties of the material [38]. The

picture is simplified considerably by first considering the static case, where none

of the quantities exhibit dependence on time and where the temperature is held

constant at some T below TC . Under these conditions, motion is limited to small

thermal fluctuations, and the forces acting on the director will be at equilibrium

and correspond to the solution that minimizes the free energy [41]

F = FS + FB (2.55)

where FS is the free energy resulting from interaction between the liquid crystal

and the bounding surface, and FB is the free energy of the bulk material. Note that

minimization of (2.55) may not yield a unique solution, an issue that may arise in

the design of a twisted nematic cell [38].

The free energy in the bulk material may be written as [41]

FB =

∫
V

(gf + gk + gε + gH) dV (2.56)

where the terms labeled with the subscripts, f , k, ε, and H are the volumetric

free energy densities due to the flexoelectric, elastic, electric, and magnetic forces,

respectively. The contribution due to a magnetic field is assumed to be zero in the

present discussion. The volumetric density of elastic free energy in a nematic liquid

crystal is given as [41]

gk =
1

2
[K11 (∇ · n̂) +K22 (n̂ · ∇ × n̂) +K33 (n̂×∇× n̂)] (2.57)

where the first, second and third terms correspond to the splay, twist, and bend

deformations, respectively, and the various K are the associated elastic moduli.
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The volumetric density of electric free energy is given as [41]

gε = −
1

8π
D · E = − 1

8π

(
ε⊥E

2 +∆ε (E · n̂)2
)

(2.58)

where ∆ε = ε// − ε⊥, D is the electric flux density, and E is the electric field. The

volumetric free energy density due to the flexoelectric polarization may be written

as [41]

gf = − (Pf ·E) (2.59)

where Pf is the flexoelectric polarization,

Pf = e11n̂∇ · n̂− e33 (n̂×∇× n̂) (2.60)

and e11 and e33 are the flexoelectric moduli.

While the minimization of free energy generally favors a smoothly varying di-

rector field, in certain instances the director may exhibit discontinuous points or

surfaces known as disclinations. Several types of disclinations are possible, depend-

ing on a given sample’s boundary conditions and history. In nematic liquid crystals,

defects often appear as threads when viewed through a polarizing microscope that

either terminate at the boundaries or form closed loops. In the case of the twisted

nematic cell, twist disclinations may arise at the boundaries between regions of

right and left-handed twists, as both twists are equally favored energetically. De-

fects may be a permanent feature of a given sample or may vanish with time (as

happens with twist disclinations) [38].
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2.3.3 Alignment

The surface term FS of (2.55) may be similarly defined in terms of several con-

stituent elements and will assume a minimum value when molecules on the surface

are aligned along the direction favored by the surface (note that a minimum value

of FS does not necessarily coincide with that of F ). In the case where strong

surface anchoring is assumed, its inclusion in the minimization of (2.55) may be

replaced with boundary conditions that fix the director orientation along the pre-

ferred direction of the bounding surface [41]. The reduced minimization problem

then becomes [41]

FV =

∫
V

(gk + gε + gf ) dV

n̂|S = n̂0

(2.61)

where n̂0 is the director on the surface S.

Many surface alignments are possible. Some induce unique alignments (monos-

table orientation) while others permit several different alignments (multistable ori-

entation) [41]. The present work is concerned only with the homogeneous (or

planar) alignment (Fig. 2.12), which is characterized by a specific azimuthal angle

that is constant across the surface and a polar angle that is π/2 + θp, where the

vector normal to the surface is oriented in the z-direction, and θp is a small or zero

value known as the pretilt angle [63].

This orientation can be induced by mechanical rubbing of a polymer-coated

surface. The rubbing process causes a permanent reorientation in the direction of

rubbing of the randomly directed polymer molecules near the surface (Fig. 2.13).

The resultant dispersion interactions between the liquid crystal material and the

uniformly directed polymer molecules result in planar alignment for many combi-

nations of liquid crystals and polymers (including those considered here) [63,64].
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Figure 2.12: Planar alignment of a nematic liquid crystal without pretilt (a) and
with a pretilt angle of θp (b).

While solving (2.61) for arbitrary geometries and surface alignments may be

nontrivial, the solutions of two elementary problems that are relevant to the present

work are found easily. The problems consist of a nematic liquid crystal that is

“sandwiched” between two parallel plates, which have been prepared to induce a

planar surface alignment (Fig. 2.14). The problem is first considered in the absence

of electric and magnetic fields and is assumed to have an infinite planar extent

such that only the boundaries due to the upper and lower plates are relevant to

the calculation. When both the upper and lower plates induce surface alignment in

a single direction, the director alignment simply extends homogeneously (without

deformation) into the bulk material. This is confirmed by inspection of (2.61),

which reveals that a uniform director orientation gives way to vanishing spatial

(a) (b)

(c)

Rubbing Direction

Figure 2.13: Unrubbed (a) and rubbed (b) polymer layer, and the resultant liquid
crystal alignment (c). The polymer and liquid crystal molecules are represented by
the thin lines and ovals, respectively.
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Figure 2.14: Basic nematic liquid crystal cell for φ1−φ0 = 0 (a) and φ1−φ0 = π/2
(b). Molecules that are oriented out of the plane are shown as shorter ellipsoids. The
cross sections of a twisted nematic cell are shown in (c).

derivatives and consequently an elastic free energy of zero.

Where an angle exists between the alignment directions (denoted by ∆φ), (2.61)

may be minimized by making the (intuitive) assumption that only the twist defor-

mation contributes to the elastic energy of the bulk and that the director may be

written as [41]

n̂ = (cos [φ (z)] , sin [φ (z)] , 0) (2.62)

The extrema of (2.61) are found by differentiating with respect to z (the only

remaining parameter), and equating the result to 0. The resultant global minimum

that satisfies the boundary conditions is given by [38]

φ (z) = φ0 + (φ1 − φ0)

(
z − z0
z1 − z0

)
(2.63)

which corresponds to a director rotation as a function of z. Note that in the presence

of perfect planar alignment, the twist direction is degenerate for φ1 − φ0 = π/2,

as both left-handed and right-handed twists yield a minimum energy solution. A

particular twist may be ensured by using alignment surfaces that exhibit a nonzero
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pretilt angle [41].

2.3.4 Response to an Electric Field

While the foregoing analysis may be broadened in a straightforward fashion to in-

corporate static electric fields, a simple qualitative description is sufficient when

considering the effect of a strong static electric field. In this case, (2.58), which

attains a minimum value when the director is aligned with the electric field, domi-

nates the minimization of the total free energy. In the presence of strong anchoring,

a transition region exists where the director is elastically distorted due to the com-

peting forces arising from the surface alignment and electric field (Fig. 2.15) [41].

Unfortunately, the interaction of a liquid crystal with time-varying field is con-

siderably more complex, a sufficient description of which requires an extensive ne-

matodynamic framework that properly describes time-dependent viscous processes.

In the case where the field variations are slow with respect to the viscous relaxation

time frames, the system retains its essentially static characteristics. In this regime,

the electric field brings about a reorientation of molecular dipoles [38].

At higher frequencies, the material’s viscous properties impede dipole reorienta-

z

ϕ
EΔz

Figure 2.15: Nematic liquid crystal cell in the presence of a strong electric field.
Shown is the S-effect [41]. For clarity, only a column of molecules is shown, and the
proportions of the transition region have been exaggerated.
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tion but not director realignment, a phenomenon which may be studied superficially

by considering the competing torques, whose sum [38] must vanish

ΓE + ΓK + ΓV = 0 (2.64)

where ΓE, ΓK , and ΓV are the electric, elastic, and viscous torques, respectively,

the last of which is given by [38]

ΓV = γ1

(
n̂× ∂n̂

∂t

)
(2.65)

where γ1 is the rotational viscosity. The electric torque is given by [38]

ΓE = ∆ε (n̂ · E) n̂× E (2.66)

Clearly, the viscous torque is proportional to the time rate of change of the director.

Of considerable importance is the fact that the electric torque is invariant to change

in sign of the electric field. This implies that the torque will remain constant over

timescales greatly exceeding those of a cycle of a moderately high-frequency time-

harmonic field. Moreover, upon application of an electric field, the terminal position

of the director will correspond to the balancing of the elastic and electric torques,

which is simply another manifestation of the minimization of free energy in the

static case [38].

A considerable density of ions is inevitably present in practically attainable liq-

uid crystal samples. At very low frequencies, ionic movement may significantly

alter the character of the liquid crystal material, and thus field-induced director

alignment is usually effected with a low-frequency time-harmonic field whose fre-

quency exceeds the characteristic frequencies of the ionic processes. The frequency
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can also be chosen to exceed the viscous relaxation frequency of the liquid crystal

such that resultant effect is comparable to that of a direct current (DC) field [38].

Two characteristic relaxation times are relevant to the S-effect (Fig. 2.15) in the

parallel plate setting [41]

τr =
γ∗1

∆εE2/4π −K11π2/∆z2

τd =
γ∗1∆z

2

K11π2

(2.67)

where γ∗1 is the effective rotational viscosity, and τr and τd are the time constants

corresponding to the rise time and decay time, respectively. These constants ap-

pear in arguments of exponential functions that describe director orientation in the

center of the sample as a function of time. The rise time is the approximate time

scale on which the director completes its reorientation in response to an external

electric field, while the decay time is that of the reversed process when the field is

switched off. These time constants are the solution to the dynamical problem when

the director is assumed to be only slightly deformed by the electric field. At higher

field strengths, which are of interest, these equations may at best serve as approx-

imations. However, the quadratic dependence upon ∆z is important, particularly

for the decay time, which clearly illustrates that thicker cells take considerably

longer to return to a relaxed state [41].
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2.4 Prior Work on Tunable Photonic Bandgap

Structures

Recently, substantial research has been devoted to developing “tunable” devices,

whose electromagnetic properties, such as bandgaps and dispersion characteristics,

can be modified after fabrication or even during operation. Two avenues based on

distinct mechanisms of tuning have emerged. The first relies upon the mechanical

deformation of geometry, while the second is based on tuning the electromagnetic

properties of the medium’s constituent materials, such as electric permittivity or

magnetic permeability. The following sections elaborate on these approaches in a

review of the theoretical and experimental research that has been conducted to

date.

2.4.1 Mechanically Tunable Devices

The tuning of the band structure as a result of mechanical tension and shear for a

silicon-air photonic crystal was considered numerically by Jun and Cho [65], who

calculated significant tuning for tension deformations resulting from a 3% strain.

Similarly, Kim and Gopalan [66] determined numerically that a triangular lattice

of air holes in silicon subject to 3% shear strain would exhibit a 73% reduction in

the width of the first bandgap.

It remains doubtful, however, that such a degree of tuning can be experimentally

realized with silicon (or other crystal)-based devices, given that Young’s modulus of

crystalline silicon is on the order of 1011 Pa [67]. Tellingly, the resonant frequency

of a fabricated silicon-based tunable one-dimensional photonic crystal microcavity

embedded in a one-dimensional lattice could be tuned by only 0.1% in response to
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a 0.04% strain [68]. Similarly, the angles of the diffracted orders of a realized one-

dimensional micro-diffraction grating could be tuned by at most 486 microradians

with a strain of 0.21% [69]. However, it is worth noting that while strain-induced

tuning may be of marginal practical utility, even a small shift in the measured

bandgap may be used to infer strain. In particular, one-dimensional fiber Bragg

grating sensors have found use in measuring strain in civil engineering applications

[70].

2.4.2 Liquid Crystal Devices

Liquid crystal-based devices have been intensely researched after three papers pub-

lished in 1999 that describe the experimental realization of tunable optical three-

dimensional photonic crystals using liquid crystals [35–37]. Busch and Sajeev [35]

found that the bandgap of an inverted silicon opal structure partially infiltrated with

a nematic liquid crystal could be opened and closed by varying the direction of an

applied electric field, while Yoshino et al. [36,37] investigated silica opal structures

infiltrated with nematic and ferroelectric smectic liquid crystals, finding the resul-

tant structures to be sensitive to temperature and the frequency of an applied elec-

tric field. In research that followed, many aspects of liquid crystal-based photonic

crystals have been theoretically and experimentally explored and utilized in several

applications. The following review concerns primarily optical structures, as com-

paratively little research has been conducted on microwave liquid-crystal devices,

with only Ghattean et al. [71] having experimentally demonstrated a liquid-crystal

based tunable structure for microwave frequencies. Despite the considerable differ-

ences in experimental aspects, the successful numerical and experimental outcomes

of such optical devices suggest analogous microwave structures bearing similar (but
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frequency-scaled) traits.

One-dimensional structures have been investigated theoretically in [72–74]. In

particular, Tolmachev et al. [72] studied the effect of varying the filling factor

of silicon in one-dimensional silicon/liquid crystal photonic crystals and identified

the silicon/liquid crystal volume ratio that maximizes bandgap tuning. Tuning of

one-dimensional structures infiltrated with liquid crystals has been experimentally

demonstrated by Astrova et al. [75], who fabricated an interdigital silicon structure

whose optical properties could be varied with the application of a static electric field.

Similarly, Tolmachev et al. [76, 77] developed a one-dimensional grooved silicon

structure containing E7 (a nematic liquid crystal mixture) whose reflection spectra

was tunable with the application of an electric field. Additionally, several structures

possessing tunable defects have also been demonstrated experimentally [78–83].

Numerical investigation of bandgap tuning for two-dimensional PCs has also

been carried out. In particular, Liu et al. [84–86] found that significant tuning

of the absolute bandgap was possible in various lattices infiltrated with 5CB (a

nematic liquid crystal) and showed that this tuning could be used in applications

requiring negative refraction or tunable polarizers. Similar results were obtained

by Halevi et al. [87], who considered two-dimensional crystals infiltrated with E7.

Other characteristics of two-dimensional liquid crystal-based PCs have also been

investigated numerically, including the low-frequency properties of two-dimensional

square lattices of void cylinders in silica filled with 5CB [88], material and geometry

combinations that lack omnidirectional TE bandgaps [89], and the characterization

of FDTD as a method for modeling the transmittance of finite periodic structures

[90,91]. Takeda et al. [92] showed that in the general case, the anisotropic character

of liquid crystal materials necessarily implies coupling between the TE and TM

modes in both square and triangular lattices, a result that is relevant to the present
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work. Several applications of tunable two-dimensional structures have also been

considered numerically, including tunable cavities [93, 94], switchable waveguide

T-junctions [95,96], couplers [97], and polarization splitters [98].

Experimentally realized two-dimensional structures have been demonstrated by

Leonard et al. [99], who used temperature to tune the bandgap of an infrared

photonic crystal based on a triangular lattice of E7 cylinders embedded in silicon,

and Martz et al. [100], who developed a technique for infiltrating two-dimensional

indium phosphide-based PCs with K15 (a nematic liquid crystal). In particular,

Ghattean et al. [71] developed a microwave two-dimensional photonic crystal based

on a lattice of 5CB cylinders embedded in high-density polyethylene. Measurements

showed that the structure could serve as on/off switch at 91 GHz with an extinction

ratio of 13.3 dB. Additionally, many tunable defect cavities have been fabricated

[101–105].

Three-dimensional LC-based PCs have been studied numerically by Liu et al.

[106, 107], who found that the band structure of several devices comprising silicon

and 5CB could be tuned with the application of an electric field, and D’Orazio

[108], who also established numerically the possibility of tuning the transmission

spectra of networks of intersecting square rods of silica immersed in 3M2CPOOB (a

smectic liquid crystal shown in Fig. 2.16). In addition to the early work of [35–37],

tunable three-dimensional photonic crystals have also been experimentally realized

by Meng et al. [111] and Kang et al. [112], who constructed optical photonic crystals

C
8
H
17
O O Cl

O

Figure 2.16: Chemical structure [109] of 3M2CPOOB ((2S, 3S)-3-methyl-2-
chloropentanoic acid 4’,4”-octyloxybiphenyl ester) [110].
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comprising periodically arranged silica spheres immersed in nematic liquid crystals

and found that the measured bandgap and Bragg reflection peak, respectively,

could be tuned with an electric field. Similarly, Mertens et al. [113] and Kubo et

al. [114] developed three-dimensional bandgap structures infiltrated with nematic

liquid crystals and found the resultant reflectivities of the structures to be tunable

by varying temperature.

Photonic crystals must consist of at least two different materials in order to re-

alize a contrast in permittivity sufficient to induce a bandgap. Hence, liquid crystal

materials will necessarily contact another material when used in a photonic crys-

tal. As the optical (and electromagnetic) properties of liquid crystals are strongly

influenced by such contact, several works have sought to clarify the role of bound-

ing surfaces in liquid crystal-based photonic crystals. In particular, Remenyuk et

al. [116,117] found weakly planar alignment of E7 on the liquid crystal/silicon sur-

faces in one-dimensional grooved silicon structures. Matthias et al. [115] studied

liquid crystal alignment in a hexagonal lattice hourglass-shaped cavities in silicon.

The cavities were treated with a surfactant to induce homeotropic anchoring and

subsequently filled with a glass-forming nematic liquid crystal polymer. The resul-

tant director field was measured with fluorescence confocal polarizing microscopy

(FCPM) and was found to possess pronounced disclination rings (Fig. 2.17). Fur-

ther work of Matthias et al. [118] involved the numerical simulation of a cholesteric

liquid crystal confined to similar pores, which was found to suppress the exhibition

of the material’s otherwise chiral structure. Finally, Halevi et al. [119] numeri-

cally evaluated the director field of a two-dimensional photonic crystal comprising

a periodic array of 5CB cylinders, where alignment was taken to be homeotropic

with respect to cylindrical bounding surfaces. The director field was found to be

non-uniform in the absence of an electric field, resulting, once again, in coupling
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Figure 2.17: Fluorescence confocal polarizing microscopy (FCPM) picture [115] of
a liquid crystalline rod (a). The angle between the plane of polarization and the
pore axis is 42◦. Simulated pattern (b). Reprinted with permission from “Spatially
periodic liquid crystal director field appearing in a photonic crystal template,” Ap-
plied Physics Letters, vol. 87, no. 24, p. 241105, December 2005. Copyright 2005,
American Institute of Physics.

between the TE and TM modes.

Finally, it is worth noting that in addition to basic tunable lattices, several opti-

cal tunable devices based on photonic crystals structures have been experimentally

realized, including tunable photonic crystal fibers [120–122], tunable Mach–Zehnder

interferometers [123,124], photonic crystal lasers [125–128], a tunable Fabry–Pérot

interferometer [129], and an optically-activated switch [130].

2.5 Existing Microwave Structures using Liquid

Crystals

The earliest work that considers liquid crystals as a tunable microwave dielectric

may be attributed to Lee [131] and Carr and Spence [132], who in 1954 studied

the effect of magnetic fields on the microwave dielectric constant of liquid crystals.

Further work carried out by Carr involved microwave dielectric permittivity mea-

surements [133] and an investigation of the effect of electric fields on liquid crystal

samples [134].

52



More recently, interest has developed in using liquid crystal materials in appli-

cations that exploit their switchable nature. In particular, considerable work has

been reported on tunable phase shifters. Several designs have been explored based

on liquid crystal layers that are “sandwiched” between a ground plane and an in-

verted microstrip line [135–140] and a coplanar waveguide [141–145]. Other designs

have been based on a stripline geometry [146] and a microstrip trace that floats over

a liquid crystal layer due to surface tension [147]. Improvement in switching speed

has been realized with polymer-stabilized devices [148,149], wherein a liquid crystal

material is hosted in a network of polymer fibers. The intimate contact with closely

spaced fibers imparts a strong restorative force on the liquid crystal, which thereby

returns more quickly to a relaxed state after the alignment field is turned off. Other

microwave applications of liquid crystals, including tunable capacitors [150], wave-

length selectors [151, 152], a variable phase grating [153] and resonators [154, 155],

have also been experimentally demonstrated. In particular, nematic liquid crystals

have shown to be especially promising as substrate materials in tunable phased

array [156] and reflectarray antennas [157–161].

While the optical properties of most widely available nematic liquid crystals are

well known, a comparable body of knowledge on the microwave dielectric properties

is still in an early stage of development. Characterization of liquid crystal materials

poses difficulty beyond that which is encountered with most materials, as dielectric

properties are anisotropic, extremely sensitive to bounding surfaces, and must be

measured in the liquid phase. Several approaches have been explored. Methods

based on liquid crystal-filled capacitors have been successfully used for frequencies

of 500 MHz [162], 10 MHz–6 GHz [163], and 1 Hz–1 GHz [164]. However, such

methods are likely of limited value at higher frequencies where discrete components

are more difficult to realize.
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Methods of permittivity measurement-based resonant planar geometries were

developed by Utsumi et al. [165, 166], who fabricated ring resonators using an

inverted microstrip configuration, and Yang and Sambles [167,168], who constructed

Fabry–Pérot-type devices. Other resonant geometries were considered by Parka

et al. [169], who developed a cylindrical dielectric resonator, and Mueller et al.

[170–172], who used a rectangular cavity perturbed with a polytetrafluoroethylene

tube containing various nematic liquid crystals.

Approaches derived from the broadband measurement of scattering parame-

ters have also been developed, including planar devices based on balanced stripline

[173, 174] and microstrip [175] geometries, where rubbed polymer layers and low-

frequency electric fields were used to produce distinct alignments in nematic sam-

ples. Coaxial-based transmission lines have been similarly employed. However,

while such structures support a DC field, challenges to preparing interior surfaces

have precluded the use of rubbing to induce alignment. In published works, sec-

ondary alignment was realized by a magnetic field [176], or abandoned in favor of

measuring the isotropic permittivity by heating samples to temperatures past the

clearing point [177].

Finally, the design of experiments in the present work has been guided by the

observation of modest discrepancies between permittivities evaluated through dif-

ferent techniques [165]. A planar structure was thus selected for carrying out per-

mittivity measurements in order to allow a common method of surface preparation,

temperature, dielectric thickness, and switching field to be used for the devices

fabricated in this thesis.
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Chapter 3

Computational & Experimental

Methods

This chapter details the implementation of numerical codes, the development of

the spectral transmission-line modeling method, and the design, construction, and

experimental procedures used in the evaluation of several fabricated devices.

3.1 Implementation of Simulation Algorithms

The plane wave method was implemented as a computer program in the C pro-

gramming language [178] using the magnetic field formulation. The program can

simulate two-dimensional photonic crystals described by arbitrary lattice vectors

and has been equipped with auxiliary functions for computing the Fourier series

of basic shapes, including a dielectric cylinder and a square dielectric rod. Other

shapes can be modeled by providing the program with a file that contains the first

few Fourier series terms of the inverse permittivity function. Interaction with the

program takes place using command-line arguments, which must consist at mini-
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mum of the lattice vectors, the location in the irreducible Brillouin zone, the number

of plane waves used in the expansion, the number of eigenvalues to be found, the

names of the output files, and, optionally, the names of the Fourier series files.

The program’s output consists of the calculated eigenmode frequencies expressed

as ωa/c. The code has been compiled and successfully run on Linux and has been

employed as a reference standard for validating other modeling methods used in

this thesis.

The time-domain transmission-line modeling method was implemented as a

computer program in the C programming language [178] for the TM polarization.

The program is capable of simulating two-dimensional photonic crystals possessing

square lattices comprising arbitrary dielectrics. Either a Gaussian or a Kronecker

delta may be used as an excitation, and a time series is collected at 128 randomly

chosen points in the mesh. The fast Fourier transforms are computed using the

FFTW software library [179], and the resultant magnitude spectra are added to-

gether. The peaks are detected manually or by means of a peak detection function.

The boundary conditions (range and increment of k), number of timesteps, mesh

files, and output files are specified by command-line arguments. The output fre-

quency is given in terms of ωa/c. The program has been compiled and successfully

run on Linux.

The Rayleigh multipole method was implemented as a computer program in the

C programming language [178]. The program is capable of dispersion diagram and

finite-structure calculations involving two-dimensional periodic structures compris-

ing dielectric or perfect electric conductor (PEC) circular discontinuities arranged

in a square or hexagonal lattice. The implementation uses the LAPACK software

package [180] to compute matrix inverses and eigenvalues and has been successfully

compiled and run on Microsoft Windows, Linux, and UNIX systems. Arguments
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are passed to the program via the command line and results are written to text files.

At several steps the program must decide when to truncate a series. This is handled

adaptively in a manner specific to the task. The Bn coefficients (Appendix B) are

calculated for increasing n until the magnitude of the last computed coefficient has

fallen beneath a user-defined threshold. The program retains all propagating plane

wave orders and a user-defined number of the most slowly decaying evanescent or-

ders. The infinite series arising from the lattice sum calculations are truncated once

the last term has fallen below a user-specified threshold. Finally, eigenvalues are

deemed to correspond to propagating modes if their modulus is no less than 0.999

and no greater than 1.001. In each case, the user can readily change the default

values with arguments passed from the command line.

3.2 Spectral Transmission-Line Modeling

Method

3.2.1 Introduction

The spectral transmission-line modeling method was conceived by approaching

TLM in a somewhat unconventional manner. The transmission-line modeling meth-

od discussed in §2.2.2 calculates eigenmodes indirectly by computing the time evo-

lution for a given initial field and subsequently calculating its discrete Fourier trans-

form. In contrast, frequency-domain methods such as the finite element method

approach the eigenvalue problem more directly. These methods discretize only

space, as they are developed from the time-harmonic form of Maxwell’s equations,

whose dependence on time has been eliminated by the inclusion steady-state con-

ditions. However, eigenvalue analysis is not limited to frequency-domain problems
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and may be extended to time-domain methods by imposing steady-state conditions

with respect to a discrete increment in time as follows

v (k + 1) = Av (k)

v (k + 1) = ejω∆tv (k)
(3.1)

which implies

ejω∆tv (k) = Av (k) ∀k ∈ N0 (3.2)

where A is the matrix that increments the timestep, and v(k) is the state of the

system at the kth time step. Such an approach has been explored for TLM by

Lukashevich et al. [181–183], who considered a spectral technique that reduces the

time required to analyze high-Q structures.

Note that (3.1) implies calculations involving complex values, which represents

the most significant departure from conventional time-domain methods where com-

puted field values are assumed to have a direct correspondence to the physical sys-

tem. For a time step matrix comprising only real coefficients, the ejω∆t eigenvalues

must always be paired with their complex conjugates e−jω∆t, which is a manifesta-

tion of time-reversal symmetry in electromagnetics. As discussed in §2.1.2, photonic

crystals possess this symmetry and, as a consequence, inversion symmetry in re-

ciprocal space. In the case of dispersion diagram calculations, the matrix is no

longer perfectly real due to the complex nature of quasi-periodic boundary condi-

tions. However, it will be shown that the eigenvalues of this problem are indeed

also paired with their complex conjugates. Moreover, when combined with their

respective time dependencies, the associated eigenstates comprise the set of forward

and backward traveling solutions.
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The spectral transmission-line modeling method developed in this section re-

places dual meshes, time stepping, the selection of random field samples, and the

discrete Fourier transform of the time-domain method with an eigenvalue algorithm

that, in the process of calculating the band diagram, automatically computes the

spatial configuration of the Bloch modes. The discussion begins with the TLM

discretization of the unit cell and is followed by the formulation of the eigenvalue

problem, whose properties are studied in order to construct an efficient eigenvalue

algorithm. Several numerical examples, which are based on comparing simulation

results with those produced by Ansoft HFSS, the Rayleigh multipole method, the

plane wave method, and the time-marching transmission-line modeling method,

are presented in §4.1. The first set of examples establish the numerical accuracy of

the method and demonstrate a significant runtime advantage over the plane wave

method when applied to problems characterized by high contrasts in permittivity

and high aspect ratios. The second set of examples show that the method’s run-

time requirements are comparable to those of time-marching TLM. However, unlike

elementary time-domain methods (such as time-marching TLM), the method devel-

oped here does not require subsequent frequency-domain computation to calculate

the eigenmodes. While work has been carried out for the TM polarization in two

dimensions, the analysis and algorithm may readily be extended to the TE polar-

ization and three dimensions by appropriately revising the treatment of spurious

modes.

3.2.2 The Eigenvalue Problem

The TLM problem may be discretized on one of several meshes, depending on the

characteristics of the problem. The two-dimensional mesh comprising shunt nodes
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(Fig. 3.1) is used here, as it corresponds to a two-dimensional problem restricted to

the TM polarization. This mesh comprises nodes that are connected to each other

by link transmission lines and contains shunt lines whose impedances are selected

to reflect the properties of the materials. The impedance of the link line is given

by [52]

ZL =
√
2Zmax (3.3)

where Zmax is the impedance of the dielectric material with the smallest relative

permittivity (εr,min). The impedances of the shunt stubs are related to the material

properties by [52]

ZS =
ZL

4 (εr/εr,min − 1)
(3.4)

where εr is the relative permittivity of the material in the volume represented by

the given shunt node. Note that the material is assumed to be lossless and non-

magnetic.

TLM simulates time evolution by carrying out consecutive scattering operations

at junctions where transmission lines meet. These are located at the center of nodes,

S
I

S
II

Z L

Z L

Z LZ L

Z S

Δx

vi+1
out (link)

Node i Node i+1

vi
out
(link)

vi
in (link) vi+1

in (link)

(a)

(b)

vi
out (shunt)

vi
in
(shunt)

Figure 3.1: Two neighboring shunt nodes of width and length ∆x (a). Each node
comprises four link lines and one shunt stub possessing impedances of ZL and ZS ,
respectively. Scattering occurs at junctions and is described by the scattering matri-
ces SI and SII. The traveling wave voltages involved in the scattering processes are
shown in (b).
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where the link lines are joined to the shunt stub, and at the periphery, where link

lines of adjacent nodes are connected. Scattering is performed in two steps by

converting incoming traveling-wave voltages to outgoing traveling-wave voltages at

every central junction in the mesh and subsequently repeating this process at every

peripheral junction. These operations may be carried out as sparse matrix-vector

multiplications effected by the matrices SI and SII for the central junctions and

peripheral junctions, respectively.

One application of SI followed by SII (or vice versa) advances the system by

one timestep

v (k + 1) = SISIIv (k) (3.5)

The product of SI and SII forms the timestep matrix. This discrete operation

corresponds to a duration of time ∆t in the analytical problem and is related to

the permittivity of the background medium and node width ∆x by

∆t =
∆x

vlink
=

√
εr,min

2

∆x

c
(3.6)

where vlink is the velocity of wave propagation along the link lines, and c is the

velocity of light in free space. The time-harmonic problem associates a timestep

with a change in phase

vejω∆t = SISIIv (3.7)

where v is an eigenmode. The spectral transmission-line modeling method is con-

cerned with finding solutions to (3.7) that correspond to physically acceptable fields.

Numerical analysis can be facilitated by working with the modified system

√
Z

−1
SISII

√
Zv′ = ejω∆tv′ (3.8)
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where v′ =
√
Z

−1
v and Z is the invertible matrix defined as

Zi,j = δi,jZL (3.9)

for elements corresponding to link lines, or

Zi,j = δi,jZS (3.10)

for those elements corresponding to the shunt stubs. Scaling by
√
Z affects only

the eigenvectors, leaving the eigenvalues unchanged. The scattering matrices may

be defined as follows

SI = diag
(
Si

I
)

(3.11)

where

SI
i =



ai bi bi bi di

bi ai bi bi di

bi bi ai bi di

bi bi bi ai di

bi bi bi bi ci


(3.12)

and

ai = Γi
L =

1
3
ZL//Z

i
S − ZL

1
3
ZL//Zi

S + ZL

=
1− 2εir/εr,min

2εir/εr,min

bi = T i
L =

2
(
1
3
ZL//Z

i
S

)
1
3
ZL//Zi

S + ZL

=
1

2εir/εr,min

ci = Γi
S =

1
4
ZL − Zi

S
1
4
ZL + Zi

S

=
2εir/εr,min − 4

2εir/εr,min

di = T i
S =

1
2
ZL

1
4
ZL + Zi

S

=
4εir/εr,min − 4

2εir/εr,min

(3.13)
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where i is an index that uniquely identifies each node. The values Zi
L and Zi

S

appearing in (3.13) may be found by evaluating (3.3) and (3.4) using the material

properties of the ith node. The entries of the first four rows and columns are

associated with the link lines, while those of the fifth row and column are related

to the shunt stub. The matrix may also be viewed as a collection of reflection

coefficients, which appear on the diagonal, and transmission coefficients, which

occur as off-diagonal entries. The second scattering matrix SII effects scattering

between nodes and has the following effect on the traveling wave voltages (Fig. 3.1)



...

v
in(link)
i = ejφβ

v
in(link)
i+1 = e−jφα

v
in(shunt)
i+1 = γ

...


= SII



...

v
out(link)
i = α

v
out(link)
i+1 = β

v
out(shunt)
i+1 = γ

...


−π ≤ φ ≤ π

(3.14)

When the connection in (3.14) involves neighboring nodes, φ assumes a value of

zero such that pulses travel from one node to the other unaffected. For connections

involves a boundary, pulses leaving the mesh on the periphery undergo a phase

shift prior to reappearing on the opposite side. This phase shift can be made to

satisfy the periodic boundary conditions by setting φ to k · d, where k is found in

the irreducible Brillouin Zone and d is the spatial translation of the pulse (±ax̂

or ±aŷ in the case of a square lattice). The repeated structure found in SII that

63



induces this action may be expressed as the group of matrix elements

SII
repeated =


0 ejφ 0

e−jφ 0 0

0 0 1

 (3.15)

Whereas the matrix elements appearing in SI are dependent solely upon the per-

mittivities and geometries of the materials present in the unit cell, the elements of

SII depend only on the boundary conditions. Consequently, band diagram simu-

lations for a photonic crystal require that SI be filled only once, at the outset of

computations. Conversely, SII must be updated for each location in the irreducible

Brillouin Zone. Once both matrices have been constructed, the eigenvalue equation

can be solved for ejω∆t and the related Bloch modes.

Assuming that εr,min = 1, the electric field can be recovered from the state vector

by using the relation

E = Ezêz =
2 (V i

1 + V i
2 + V i

3 + V i
4 ) + 2V i

shunt (4ε
i
r − 4)

4∆zεir
êz (3.16)

which has been derived from [52]. The voltages appearing in (3.16) may be drawn

from the set of incoming or the set of outgoing voltages, provided that only one set

is employed for a given evaluation of (3.16). The field may thus be recovered using

a matrix defined as

Fi,j =
1

2∆zεir

(
δ5i,j + δ5i,j−1 + δ5i,j−2 + δ5i,j−3 + 4δ5i,j−4

(
εir − 1

))
(3.17)

where the indices i and j commence at 0. Note that this matrix is not square,

representing a surjective mapping that is not injective. By symbolic computation,
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it may be readily shown that

FSI = F (3.18)

justifying the assertion that either the incoming or outgoing voltages may be used

to calculate the electric field.

The scaled timestep matrix in (3.8) is expected to possess eigenvalues of unit

modulus, as the unit cell contains only lossless materials and the periodic boundary

conditions ensure that the system’s energy remains constant over the course of

successive time increments. This may be confirmed by showing that the scaled

timestep matrix is unitary, which may be performed in two steps. From (3.15) it

may be seen that for arbitrary values of φ

(
SII
)† (

SII
)
=
(
SII
) (

SII
)†

= I (3.19)

where I is the identity matrix and † denotes the adjoint. Equation 3.19 satisfies

the definition of a unitary matrix [184], and hence, SII is unitary. Similarly, by

symbolic computation for each block in SI, the following can be shown to hold

(√
Z

−1
SI
√
Z
)† (√

Z
−1
SI
√
Z
)
=
(√

Z
−1
SI
√
Z
)(√

Z
−1
SI
√
Z
)†

= I (3.20)

illustrating that (
√
Z

−1
SI
√
Z) is also unitary. Moreover, as the product of two

unitary matrices yields a unitary matrix, the composition

(√
Z

−1
SI
√
Z
)
SII (3.21)
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is also unitary. Noting that
√
Z commutes with SII, the following holds

(√
Z

−1
SI
√
Z
)
SII =

√
Z

−1
SISII

√
Z (3.22)

where the term appearing on the right-hand side is recognized as the scaled timestep

matrix, thus shown to be unitary. Furthermore, under the weighted inner product

(u,v)Z−1 ≡ u†Z−1v (3.23)

the timestep matrix is itself unitary, suggesting that the selection of an eigenvalue

algorithm should made with the view of finding eigenvalues that lie on the unit

circle in the complex plane.

The analytical description of the problem provided by (2.17) permits the time

dependence of steady-state solutions to be resolved as either ejωt or e−jωt. As

steady-state conditions are absent from the formulation of the time-marching TLM

discretization, a steady-state eigenmode is expected to be associated with a pair of

eigenvalues, ejω∆t and e−jω∆t. This may be confirmed by considering the similarity

transform effected by SI

SI
(
SISII

) (
SI
)−1

= SII
(
SI
)−1

= SIISI (3.24)

where the final equality follows from the fact that SI (whose spectrum lies on the

unit circle of the complex plane) possesses only real eigenvalues and is therefore its

own inverse. It may also be shown that SII is also its own inverse and thus

(
SISII

)−1
= SIISI (3.25)
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Combining (3.24) and (3.25) gives

SI
(
SISII

) (
SI
)−1

=
(
SISII

)−1
(3.26)

which shows that the timestep matrix is unitarily similar to its inverse. Conse-

quently, every eigenvalue must be paired with its complex conjugate (recall that

SISII is unitary under (3.23)). The associated eigenstates are related to each other

by SI and are mutually orthogonal under the inner product of (3.23). While the in-

dividual states for each pair of eigenvalues are distinct, they yield the same electric

field configuration when subject to the field recovery operator defined in (3.17).

This result follows as a consequence of (3.18) and illustrates that that the field

recovery operator is non-injective. The foregoing analysis showed that TLM dis-

cretization retains much of the character present in the analytical problem.

3.2.3 Eigenvalue Algorithm

For coarse discretizations of the computational domain, (3.8) may be approximated

to a high precision using an arbitrary dense matrix solver for general matrices,

such as one from the LAPACK software package [180]. However, the length of the

calculation rapidly increases with increasing node density owing to the fact that

eigenvalue algorithms for dense matrices usually bear a computational complexity of

at least O(n3), where n is the dimension of the matrix [33]. As the timestep matrix

is sparse, numerical efficiency can be improved by using sparse matrix techniques.

Moreover, by carefully developing a tailored algorithm, the latent structure found

in the eigenvalue problem can be exploited to shorten runtime and lessen memory

requirements. The algorithm developed in this section is based on a hybrid of the

power and Arnoldi methods [185], which are two sparse matrix techniques that
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make use of a computationally inexpensive matrix-vector product

x2 = Ax1 (3.27)

which has a computational complexity of O(n) when the number of nonzero entries

in the matrix A is a linear function of its dimension n [186].

The power method iteratively approximates the largest eigenvalue of a general

matrix, which in the present work is assumed to be sparse. The method commences

by selecting an initial (usually random) vector. Each iteration involves multiplying

the previously computed vector by the matrix, where the first iteration utilizes the

initial vector. The action of the method may be considered by expanding both the

matrix and vector with the eigenvectors of the matrix

Ax =

(∑
i

λiviv
†
i

)(∑
i

xivi

)
=
∑
i

λixivi (3.28)

where λi is the i
th eigenvalue ofA. Note thatA is assumed to be normal (and hence

diagonalizable), and the left and right eigenvectors are related by the Hermitian

adjoint, denoted by the † symbol. Repeated applications of (3.27) give

Anx =
∑
i

λni xivi (3.29)

For a sufficiently large number of iterations n, only the eigenvector that corresponds

to the eigenvalue of largest magnitude contributes appreciably to the final vector

of (3.29). However, a considerable number of iterations are required when the

contrast in magnitude between eigenvalues is small. After the jth iteration, the
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largest eigenvalue can be approximated with the Rayleigh Quotient [186] as

λ|A| ≈
(xj)

†
Axj

(xj)† xj
(3.30)

where λ|A| is the eigenvalue of largest magnitude. The eigenvalues of (3.8) are of

equal magnitude owing to the unitary nature of the scaled timestep matrix. To

apply the power method, the system must be shifted in order to induce a contrast

in magnitude between different eigenvalues. The shifted system

√
Z

−1
SISII

√
Z+ cI =

√
Z

−1
SISII

√
Z+ ejΩ∆tI (3.31)

possesses eigenvectors that are identical to those of the original unshifted system

but a spectrum that has been shifted such that λi −→ λi + c, where c is a phase

given by Ω and ∆t. In this revised equation, the magnitude of each eigenvalue is

determined by the proximity in phase of its unshifted value to that of c. Setting

Ω in (3.31) allows the eigenmode closest in frequency to be selected by the power

method. For example, when Ω is set to 0, the power method converges to the lowest

frequency mode, which corresponds to the first band. This process is illustrated in

Fig. 3.2.

Applying the power method to the shifted system rapidly eliminates modes that

Figure 3.2: Unit circle in the complex plane illustrating the action of the power
method. In this example, the timestep matrix is shifted about Ω = 0. The thick-
ened line shows where eigenvalues of appreciable magnitude remain after successive
iterations.
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are substantially out of phase with c. However, modes that exhibit a smaller differ-

ence in phase persist in appreciable magnitude for a greater number of iterations.

The nature of this persistence may be investigated by expressing the modulus of

the shifted system’s eigenvalues as the first two terms of a Taylor series expansion

∣∣ejω∆t + ejΩ∆t
∣∣ ≈ 2− 1

4
(ω − Ω)2 ∆t2 (3.32)

which shows that as ω approaches Ω, the discrimination between modes diminishes

quadratically. Also note that the contrast in magnitude for closely spaced modes

depends quadratically on the timestep ∆t. This is particularly problematic at

higher frequencies, where modes are spaced more closely together. As ∆t � 1,

finer meshes also leads to slower convergence. In numerical calculations performed

in the preliminary investigation of this method, convergence to a single mode was

never observed using the power method alone.

While it may appear that the power method is a fruitless approach to solving

(3.8), its ability to quickly remove all but a few modes can be used to condition the

starting vector of a subsequent Krylov subspace routine by significantly reducing

the effective dimension of the problem. In particular, the Arnoldi method may be

used to efficiently establish the eigenspace of the remaining modes. In its most

general form, this method approximates the largest eigenvalues of a general matrix.

The Krylov subspace is defined as [185]

Kn = span{b,Ab,A2b,A3b, . . .} (3.33)

where b is an initial guess (in this case the last vector from the power method

iteration), and n is the dimension of the Krylov subspace. Note that the vectors
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that span this space are formed by additional iterations of the power method.

However, in Krylov subspace routines, the vectors from previous iterations are

retained as they carry significant information that may be exploited to increase

the rate of convergence. The vectors of (3.33) may be orthogonalized using the

Gram–Schmidt process [184, 187], where the ith vector of the series may be found

from

ui =
vi −

∑i−1
j=0 uju

†
jvi∣∣∣vi −

∑i−1
j=0 uju

†
jvi

∣∣∣ (3.34)

where vi = Aib. Numerical accuracy may be improved by using the modified

Gram–Schmidt process [184, 187] by setting vi = Aui−1 for i > 0. The resulting

vectors from either the stabilized or non-stabilized processes form the columns of

the orthogonal matrix Q, which satisfies

H = Q†AQ (3.35)

where H is an n × n upper Hessenberg matrix [186]. For sufficiently large n, the

largest eigenvalues of this matrix, known as the Ritz values [185], may serve as

good estimates of those of A, allowing the approximation

A ≈ QHQ† (3.36)

The Ritz values may be found with a dense matrix solver when the dimension of H

is sufficiently small (usually much smaller than that of A). Equation 3.36 becomes

an equality when b contains components of each eigenvector of A, n coincides with

the dimension of A, and calculations are performed without rounding. In prac-

tice, only the first condition is likely to be met as generating a Krylov subspace of

such large dimension is computationally prohibitive for all but the smallest prob-
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lems and because calculations must be performed with finite precision. However,

the numerical examples of §4.1.1 illustrate that this approximation can be highly

accurate.

When A is Hermitian, the recurrence relation of (3.34) can be truncated such

that successive vectors are only orthogonalized with respect to the last three com-

puted vectors. The scaled and shifted timestep matrix of (3.31) is normal but not

Hermitian. An equivalent Hermitian system may be constructed as A†A, which

possesses eigenvectors identical to those of A, due to the normality of latter. While

the full recurrence Gram–Schmidt procedure has a computational complexity of

O(n2), the three-term process for Hermitian matrices has a complexity of only

O(n) and consequently possesses the potential to drastically reduce the computa-

tional burden of orthogonalization [186]. However, the primary drawback to this

approach may be loss of orthogonality due to round-off error. As the numerical

issues surrounding the use of the three-term relation are complex and subtle with

the possibility of compromised accuracy, the full-term recurrence approach was

implemented in the numerical code. The pseudocode of the hybrid algorithm is

presented below. Note that GeomFile refers to the file that contains the geometries

and materials of the unit cell, BZpath is the set of points in the irreducible Brillouin

zone, NumPMiter is an integer containing the number of power method iterations,

DimKry is the dimension of the Krylov space, and ShiftVals is the set of values

for Ω.

algorithm SpectralTLM(GeomFile, BZpath, NumPMiter, DimKry, ShiftVals)

1: setup SI from GeomFile

2: setup
√
Z from GeomFile

3: for each k ∈ BZpath do
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4: setup SII from k
5: for each Ω ∈ ShiftVals do
6: c← ejΩ∆t

7: u0 ← rand()

8: A←
√
Z

−1
SISII

√
Z+ cI

9: //PowerMethodIterations
10: for i = 1, i ≤ NumPMiter do
11: u0 ← Au0

12: if i mod 100 = 0 then
13: u0 ← u0/|u0|
14: end if
15: end for
16: u0 ← u0/|u0|
17: //ArnoldiMethod
18: Q← H← 0
19: for i = 1, i < DimKry do
20: ui ← Aui−1

21: for j = 0, j < i do
22: y ← u†

jui

23: Hj,i−1 ← y
24: ui ← ui − yuj

25: end for
26: ui ← ui/|ui|
27: addColumnToMatrix(Q,ui)
28: end for
29: σ ← eigenvalues(H)
30: V← eigenvectors(H)
31: for each λi ∈ σ do
32: λi ← λi − c
33: ω ← angle(λi)/∆t
34: if |Ω− ω| < ∆Ω/2 then
35: //ComputeElectricF ield
36: f ← FQVi

37: writeToFile(k, ω, f)
38: end if
39: end for
40: end for
41: end for

The algorithm was implemented in the C programming language [178] using the
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ZGEEV function from the LAPACK library [180] to solve for the eigenvalues of H.

Extensive runtime evaluations are presented in §4.1.2.

3.2.4 Computational Complexity & Implementation Issues

The computational complexity of the spectral transmission-line modeling method

is a function of the mesh size and the separation of bands in frequency. While the

latter is difficult to quantify, it is possible to establish upper and lower bounds on

the computational complexity as a function of mesh size when the frequency range

of interest is kept constant.

A simple lower bound derives from the fact that the algorithm requires a certain

amount of time to process each node, regardless of subsequent computation. This

lower bound is O(m), where m is the number of nodes. An upper bound may

be found by considering the effect of increasing the density of nodes. In a mesh

comprising square nodes, the relation between the timestep, number of nodes, and

node width is given by

∆t ∝ ∆x ∝
√
m (3.37)

where ∆t is the timestep and ∆x is the node width. Decreasing the timestep does

not appreciably change the value of ω in (3.32), provided that the mesh possesses

a sufficiently fine discretization. In this case, halving the timestep (increasing the

number of nodes fourfold) permits (3.32) to be rewritten as

∣∣ejω∆t + ejΩ∆t
∣∣ ≈ 2− 1

4
(ω − Ω)2

(
∆t

2

)2

(3.38)

where ∆t is the timestep corresponding to the original mesh. Raising this expression
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to the fourth power and neglecting contributions from higher orders of ∆t gives

∣∣ejω∆t + ejΩ∆t
∣∣4 ≈ 8

[
2− 1

4
(ω − Ω)2 ∆t2

]
(3.39)

Equations 3.38 and 3.39 show that the reduction of nearby modes is constant when

the number of power method iterations is proportional to the number of nodes.

The complexity of m power method iterations is O(m2), which follows from the fact

that the complexity of a single iteration is O(m). The Arnoldi method possesses

a complexity of O(m) when the dimension is fixed. Thus, the the upper bound

is found to be O(m + m2) = O(m2). The actual computational complexity lies

between the bounds of O(m) and O(m2), which may be sharpened by considering

the numerical consequence of reducing the number of power method iterations while

simultaneously increasing the dimension of the Krylov subspace.

Numerical dispersion (as opposed to the analytical dispersion of waves consid-

ered earlier) is an undesired spurious dependence of the wavenumber on direction

that arises from the analytical problem being discretized on a mesh. The sever-

ity of numerical dispersion is directly proportional to frequency and node width.

To obtain reasonable accuracy, the node width should not exceed approximately

λ/10, where λ is the wavelength in the material of highest permittivity. A detailed

analysis of numerical dispersion in TLM may be found in [188] and [189].

Photonic crystals, like many electromagnetic structures, may support modes

that are degenerate with respect to frequency [32]. While the presence of such

modes does not affect the calculation of dispersion diagrams, the computed modes

may belong to a degenerate subspace. A mode satisfying particular criteria such as

symmetry may be found by performing several simulations using different values of

b and orthogonalizing the resultant eigenvectors accordingly.
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3.3 Design of Microwave Liquid Crystal Devices

Use of liquid crystals in microwave engineering brings forth several challenges be-

yond those encountered with ordinary dielectrics, placing demands on geometry,

surface preparation, and electrical characteristics. The ensuing discussion contains

an examination these issues, which serves as a rationale for the selection of a planar

geometry as the basis of the microwave devices presented in the latter sections of

this chapter.

3.3.1 Alignment Methods & Geometry

Microwave devices containing liquid crystals have employed a combination of heat-

ing [176], rubbed surfaces [155,166], and multiple low-frequency electric fields [139]

to produce the director alignments (§2.3), or absence thereof, required for switching.

Each of these methods raises specific design considerations. Temperature-controlled

switching (Fig. 2.11), which falls short of fully utilizing available dielectric contrast,

is likely impractical in many applications and may be incompatible with the use of

alignment layers whose glass transition (or decomposition) temperature is exceeded

by the clearing point of the liquid crystal. The use of rubbed surfaces is constrained

by the fact that, as discussed in §2.3.4, the switching time increases quadratically

with dielectric thickness, which is thus limited to perhaps a few hundred microns.

Due to the nature of the rubbing process, results may be inconsistent and involve

trial and error during the course of establishing a successful process. As curved and

irregular surfaces pose still greater difficulty, rubbed surfaces are usually planar.

Electrical switching requires that the structure support a (quasi) static electric

field in the region containing the liquid crystal. This precludes electrical switching

of liquid crystal materials embedded in rectangular and circular waveguides, which
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possess a low-frequency cutoff. For structures supporting a (quasi) TEM mode,

electrical switching may be achieved by applying a sufficiently high DC voltage

across the conductors that guide the high-frequency field. However, if the energy

of the radio frequency (RF) field is distributed amongst regions of significantly dis-

parate field strengths or the conductors are widely separated, high voltages may be

required to effect complete switching. The former is illustrated in Fig. 3.3, which

shows the fringing field around a narrow microstrip line. A large DC voltage may be

required to align the dipoles of a material along the field lines in the voluminous re-

gions occupied by the weak (but energetically significant) fringing field. This issue,

in the context of microstrip transmission lines, is explored extensively in [166]. Even

moderately high voltages may be incompatible with RF measurement equipment,

where size constraints place limits the breakdown voltage of DC blocks. These

constraints originate from the requirement that the physical size of RF components

must (generally) scale proportionally with wavelength. Hence, this issue restricts

the combinations of geometry, auxiliary equipment, and RF operating frequency

that may be realized.

Design of a structure to exhibit particular dynamical electromagnetic character-

istics requires careful design of the physical implementations that produce director

orientation. In three dimensions, this may amount to a formidable task when

Figure 3.3: Narrow microstrip line in air (εr = 1) showing the fringing field of
the fundamental TEM mode. Much of the energy is located in regions where the
field strength is weak (corresponding to lengthier field lines). In these regions the
alignment strength of the field is commensurately less.
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complicated material and field geometries are involved. In two dimensions, the de-

composition of waves in a uniaxial liquid crystal (2.54) in terms of conventionally-

defined TE and TM modes is only possible when ∇ ·D = 0 =⇒ ∇ ·E = 0, which

is satisfied by a director orientation that is normal to the plane of propagation.

However, in the presence of two closely spaced planar conductors, transverse com-

ponents of the electric field are strongly suppressed, and the resultant interaction of

the TM mode with a liquid crystal material enjoys a particularly simple description

wherein an effective permittivity may be defined as the scalar quantity

εeff = âz ·Rε (3.40)

where R is a rotation matrix corresponding to a rotation in R3 that rotates the

permittivity tensor ε, from its reference frame to that of the director. Under these

conditions, switching is manifested as a change in effective permittivity. The con-

trast in permittivities associated with the two states may be maximized by an

appropriate combination of surface and field alignment mechanisms.

Further practical difficulties arise from the fact that the functional characteris-

tics of liquid crystal materials occur in the liquid phase. Thus, in practical appli-

cations, liquid crystal materials lack structural integrity, providing no mechanical

support to the aggregate construction, and require a method of containment. Con-

sequently, a liquid crystal cannot serve as the substrate material in structures such

as conventional microstrip lines or coplanar waveguides. Addition of a superstrate

to support the conductors may provide a solution.

The final consideration concerns loss, which originates from both the material

itself and guiding conductors. Dielectric loss is partly due to ionic currents, but for

many nematics it is mainly due to the residual loss arising from dielectric relaxation
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at somewhat lower frequencies [177]. Significant ohmic losses result from the close

spacing of guiding conductors that is necessary when using rubbed surfaces. This

is most clearly illustrated by considering the attenuation constant due to conductor

loss for the TEM mode of a parallel plate waveguide [51],

αc =
Rs

η∆z
(3.41)

where Rs is the surface resistivity of the conductors, and η is the dielectric imped-

ance. Loss is inversely proportional to the conductor spacing ∆z. These losses are

significant in resonator devices and are discussed in further detail in §3.6.1.

3.3.2 Common Design Features

The design of each structure incorporates a common planar geometry that supports

only TM wave propagation over the frequencies of interest, thereby admitting the

simplified electromagnetic description of (3.40) and allowing director alignment to

be produced with rubbed surfaces and low-frequency electric fields. This arrange-

ment comprises a planar conductor suspended over a ground plane, where the inter-

vening space of approximately 200 µm is filled with a nematic liquid crystal. In each

device, feed-line structures are used to bring the signal lines to the liquid-crystal

regions. These were fabricated from the commercially available Rogers RO4003c

substrate, which comprises a 203 µm-thick dielectric (εr = 3.55) sandwiched be-

tween two layers of 17 µm-thick copper. Surfaces in contact with the liquid crystal

were coated with a layer of polymer that was rubbed with the method developed

in §3.5, thereby inducing uniform planar alignment. The director may be rotated

90◦ with a uniform low-frequency field, which may be effected by applying a 1-kHz

voltage across the conductors. While a spacing of 200 µm is associated with modest
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conductor loss, this is of limited consequence in the present work and was explicitly

incorporated into simulations. The reproducibility and adequacy of the rubbing

process is of greater importance and has been addressed with the design and con-

struction of a precision buffing machine (§3.4) and the determination of suitable

rubbing parameters through a series of rubbing experiments involving modified

twisted nematic cells (§3.5).

The liquid crystal used in constructed devices was selected following a review

of published microwave dielectric properties of several commercially available ne-

matic liquid crystals [177]. BL006 (produced by Merck KGaA and obtained from

EMD Chemicals, Hawthorne, New York) was chosen for its considerable dielectric

contrast at both DC and microwave frequencies, where the former property endows

the material with a strong response to low-frequency switching fields. Polyvinyl al-

cohol (98% hydrolyzed, molecular weight (MW) ∼16, 000, obtained from Scientific

Polymer Products, Inc., Ontario, New York) was selected as the alignment layer

as it produces excellent planar alignment [63], does not require refrigerated stor-

age, and was readily available commercially. Alignment layers were formed by spin

coating an aqueous solution of 1.5% w.t. polyvinyl alcohol (PVA), which was pre-

pared by dissolving anhydrous polyvinyl alcohol in distilled water heated to 85 ◦C.

Spin coating was performed for a duration of 30 seconds at a rotational speed of

2000 RPM.

Surfaces that were to make contact with the liquid crystal were carefully selected

and handled. Only materials that possessed specularly reflective surfaces and whose

measured roughness was on the order of nanometers were used. Samples were

discarded in cases where the deposition of copper incurred a visible or measured

increase of roughness. Prior to processing with the wafer saw, samples were coated

in a protective layer of photoresist that was later removed by rinsing in acetone,
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then isopropyl alcohol, and finally distilled water. The samples were then dried

with nitrogen. The water of the final rinse was found to make a very small contact

angle with each of the surfaces (which were difficult to dry). This confirmed that

samples retained their hydrophilic character, a requirement for spin coating aqueous

solutions of PVA.

Care was taken to ensure that the deposition of copper and polyvinyl alcohol,

and rubbing of the latter were performed consistently for all constructed devices.

The thicknesses of these layers were found by removing a portion of the deposited

material on a sample and measuring the resultant step profile. In the case of

polyvinyl alcohol, this was carried out by partially covering a sample with a mask,

removing the exposed material by plasma etching (Appendix C), and measuring

the height of the resultant step with a surface profiler (Tencor Alpha Step 500).

The thickness of the deposited PVA was found to be approximately 25 nm, a value

that has allowed its omission from computer simulations. In the case of copper,

the surface profiles of several copper edges in fabricated devices were scanned,

yielding an average thickness of approximately 1.175 µm. The sheet resistivity was

measured in six locations of a large sample using a four-point probe (Miller Design &

Equipment Model FPP-5000) and was found to be approximately 4.75×10−2 Ω/sq,

corresponding to a bulk conductivity of 1.79× 107 S/m. This value is considerably

less than that of pure copper (5.81× 107 S/m [51]) and its inclusion in simulations

led to a significant improvement in agreement between simulated and experimental

results, particularly those of the resonator Q-values.

81



3.4 Apparatus for the Preparation of Rubbed

Surfaces

The rubbing process is characterized by several parameters, including the material

of the cloth, its speed and direction, and the length of fiber in contact with the

sample (known as the pile impression). While rubbing may be performed by hand,

this approach affords only approximate control over these parameters. In view of

the sensitivity of liquid crystal alignment to surface preparation, it was deemed

necessary to construct a machine that would allow these parameters to be precisely

controlled.

The fabricated machine is based on a conventional design consisting of a stage

that passes under a rotating drum that is covered in a clean cloth and whose

height above the stage is adjustable (Fig. 3.4). Mechanical drawings depicting the

dimensions and the placement of components are given in Fig. C.5 in Appendix C

while the constructed machine is shown in Fig. 3.5. Components are mounted on an

aluminum platform (43.18 cm×20.32 cm×0.635 cm), which is seated on four leveling

pads. The stage comprises an aluminum plate (25.4 cm × 10.16 cm × 0.635 cm)

that is connected to the platform by a linear bearing (DT-118, obtained from Reid

Drum

Pile
Impression

Cloth

Sample

Stage

Adjustable

Height

Stage Motion

Drum Motion

Figure 3.4: Conventional method of buffing a liquid crystal alignment layer. The
pile impression and speeds of the drum and stage can be defined by the user.
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Figure 3.5: Constructed buffing machine.

Supply Company, Muskegon, Michigan). The drum assembly consists of a precisely

machined 5.08 cm-diameter aluminum rod that is connected to a rigid frame by

two ball bearings. The frame is joined to the platform at one extremity by two

pillow block bearings that support some of the assembly’s weight, the remainder

of which is born by two bolts on the opposing side, which protrude from tapped

holes in the frame and rest on the platform. The angle between the assembly and

the platform (and therefore the distance of the drum above the stage) may be
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set precisely by adjusting the protrusion of the bolts, which is accomplished by

manually rotating the knobs (Fig. 3.5), where each 1/6 revolution corresponds to

a vertical displacement of the drum of 145 µm. The drum assembly may also be

lifted by hand in order to free access to the stage and sample.

Motion of the drum and stage is effected by two stepper motors (IMC17, ob-

tained from RMS Motion, Carson City, Nevada), whose control circuitries ensure

that a constant speed is maintained in the presence of a variable of load. The mo-

tors are controlled by a personal computer-based software program, which allows

rubbing programs to be created, saved, recalled, and executed (Fig. 3.6). The pro-

gram abstracts the underlying communication with the motors, requiring that the

user specify only the distance of stage traversal and the velocities of the stage and

roller surface in either metric or imperial units. Testing of the machine established

the maximum speed of the drum surface to be approximately 2 m/s when buff-

ing a typical sample. Failure of a motor to sustain its prescribed speed is abrupt

and invariably results in complete discontinuance of rotation, the absence of which

verifies that a given course of rubbing has conformed to the programmed settings.

A precisely sized velour cloth was cleaned using an aqueous detergent (Spar-

kleen, obtained from Fisher Scientific, Ottawa, Ontario), thoroughly rinsed in dis-

tilled water, and attached to the drum using an adhesive (LePage BondFast) that

readily dissolves in acetone, facilitating future replacement of the cloth. This step

was carefully performed in the Nano Systems Fabrication Laboratory (NSFL) using

clean latex gloves to ensure that the outer surface of the washed cloth remained

perfectly free of contaminants (including adhesive). Samples were affixed to the

stage using doubled-sided tape. Immediately prior to, and after rubbing, the stage,

roller, and surrounding areas were cleared of dust and debris with an ionizing ni-

trogen gun. Upon removal of the sample, residual tape was abraded and the stage
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Figure 3.6: Buffing machine control software (for Microsoft Windows). The di-
rection of the drum’s rotation is determined by the sign of the specified rotational
velocity. A program consists of forward and reverse routines. Upon executing the
forward routine, the displayed program will move the stage at 10 mm/s over a total
of 180 mm, during which time the sample will be rubbed by the drum at 1490 mm/s.
The reverse routine quickly returns the stage to its initial position without apprecia-
ble movement of the drum (requiring the user to lift the drum assembly to prevent
the roller from contacting the sample a second time). This general format allows
programs to alternate between the forward and reverse rubbings if so desired. Note
that the pile impression is not controlled by the software.

was cleaned with isopropyl alcohol. The machine is operated and stored under a

cover in the NSFL in order to minimize exposure to dust.
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3.5 Twisted Nematic Cells For the Evaluation of

Rubbing Parameters

The search for a set of rubbing parameters (pile impression, speed, and duration)

that produced acceptable alignment for the given combination of cloth, alignment

layer, and liquid crystal was carried out with series of modified twisted nematic

cells (Fig. 3.7), each prepared with a unique set of rubbing parameters. This ap-

proach exploited the simple construction and evaluation of such cells, whose optical

properties readily reveal imperfections in alignment.

In accordance with the discussion in §2.3.3, the director in a twisted nematic

cell possesses a helical shape. The electro-optical properties are readily described

in terms of the ordinary and extraordinary rays normally incident upon the cell

when [41]

∆nh

λ
� 1 (3.42)

Figure 3.7: Normal/modified twisted nematic cell [38]. Crossed (a) and parallel
(b) polarizers give a normal and modified twisted nematic cell, respectively. In the
absence and presence of an applied electric field, the cell with the normal polar-
izer configuration is transparent and opaque, respectively. This behavior behavior
is reversed for the modified configuration. The ellipsoids represent liquid crystal
molecules.
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where λ is a given wavelength of light and ∆n =
√
ε//−

√
ε⊥. In this regime, which

applies to all of the fabricated devices, the ordinary ray follows the director such that

its polarization has been rotated by 90◦ upon leaving the structure. In the presence

of two crossed polarizers (Fig. 3.7), the incident light passed by the first polarizer

is similarly passed by the second. In this “off” state the cell’s transmissivity is at a

maximum. Applying a static electric field across the structure causes the director

to become vertically oriented and lose its birefringence with respect to normally

incident light. Thus, for the “on” state, a twisted nematic cell’s transmissivity is at

a minimum, as light undergoes no change in polarization and is therefore rejected

by the second polarizer. A structure whose second polarizer by is rotated by 90◦

(corresponding to a modified twisted nematic cell) exhibits the reversed behavior.

The quality of the alignment layers may be judged by viewing the cells through

polarizers, where defects appear as dark and bright spots for the crossed and non-

crossed configurations respectively.

As the space of variables attendant to the rubbing process is quite large, tri-

als were conducted around an approximate average of eight parameter sets that

were used in the rubbing of polyimide layers, as reported in [190–197]. This av-

erage corresponds to a pile impression, stage translation speed, and drum-surface

speed of approximately 0.6 mm, 13 mm/s, and 1.5 m/s, respectively. Eight cells

were prepared using the parameters given in Table 3.1. Each cell comprises two

25.4 mm × 25.4 mm flat and smooth glass squares, which were immersed in a pi-

ranha solution (heated sulphuric acid and hydrogen peroxide) to remove any organic

residue (Appendix C). A thin layer of a few nanometers of indium tin oxide (ITO)

was sputtered onto a single side of each of the cleaned samples, forming a trans-

parent conductive coating. Polyvinyl alcohol was spin coated on each of the ITO

surfaces, and the resultant films were rubbed in accordance with the parameters of
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Variation No. Drum Speed (m/s) Stage Speed (mm/s) Pile Impression (mm)

1 0.75 10 0.25
2 0.75 5 0.25
3 1.5 10 0.25
4 1.5 5 0.25
5 0.75 10 0.55
6 0.75 5 0.55
7 1.5 10 0.55
8 1.5 5 0.55

Table 3.1: Rubbing parameters used in the preparation of eight twisted nematic
cells.

Table 3.1. A felt pen was used to place a mark on a peripheral area of each sam-

ple in order to preserve information on the rubbing direction. Two samples that

were subject to identical rubbings were then brought together to form a completed

cell. Immediately prior to this step, a small drop of BL006 was placed onto the

inner surfaces of one of the samples to which two spacers of had been previously af-

fixed. These spacers were constructed from three layers of double-sided tape, whose

combined thickness was approximately 250 µm. A constructed device is shown in

Fig. 3.8.

Disclination lines (§2.3.2) were clearly visible when the samples were viewed

through polarizers under an optical microscope. These lines, which were not ob-

served on the following day, tended to form closed curves that shrank with time

and eventually vanished. Cells whose alignment layers were rubbed with a pile

impression of 0.55 mm appeared scratched when viewed through polarizers. Con-

versely, those rubbed with a pile impression of 0.25 mm showed regions where signs

of alignment were visibly absent. The other rubbing parameters appeared to have

comparatively smaller effects on the quality of alignment.

In view of these observations, another cell was prepared using a pile impression

of 0.35 mm, a stage speed of 10 mm/s, and roller speed of 1.5 m/s. The cloth was
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Figure 3.8: Transmission of light through a modified twisted nematic cell (a) as
viewed through an optical microscope set to 10× magnification. The polarizers are
mounted parallel to each other. This cell was prepared in accordance with the 7th

entry of Table 3.1. The “off” state (b) corresponds to an absence of alignment field,
while the “on” state (c) was produced by applying 7.07 V RMS (1 kHz) across the
cell. Note that (c) is completely white due to the fact that the transmissivity of the
cell is at a maximum in this state. The camera exposure settings used to capture
(b) and (c) were identical, and the contrast and brightness were enhanced in an oval
region in of (b) to illustrate the scratch marks left by the rubbing process. Scratch
marks on later samples were diminished by reducing the pile impression.

changed to remove the possibility of contaminants affecting rubbing quality. This

appeared perfectly transparent through crossed polarizers, and images conveyed

through the sample appeared undistorted. By rotating the polarizer by 90◦, the cell

was made opaque. In both cases, the cell’s transmissivity was identical when viewed

from the other side (corresponding to an exchange of the observer and electric field

source in Fig. 3.7). Upon observation of the sample under 10× magnification,

small defects were observed. However, their scale was orders of magnitude smaller

than the wavelengths of interest, and their collective area constituted a very small

portion of the overall cell. This set of parameters was therefore used to rub all

subsequently prepared samples.

The fabricated cells were also used to investigate electrical switching. During

their construction, the two glass slides were laterally offset from one another, ex-

posing the inner surface of each slide. These were scratched with a fingernail to

remove the layer of polyvinyl alcohol (exposure of the underlying ITO layers was
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confirmed by measuring the conductivity of the surfaces), and a segment of copper

tape possessing a conductive adhesive was affixed to each ITO surface. Wire wrap

was soldered to each of the copper pieces and connected in series with a 91-kΩ

resistor to a function generator (Stanford Research Systems Model DS340). It was

found that the modified twisted nematic cells could be switched with both DC and

1-kHz signals. Increasing the frequency past 1 kHz resulted in progressively longer

switching times until switching no longer occurred. In each case, the threshold

voltage that produced a noticeable change in the cell’s transmissivity was found

to be about 2 V RMS (measured across the cell). Switching time ranged from on

the order of a minute with 2 V RMS to a few seconds with 7.07 V RMS. Upon

discontinuance of the voltage, the cells returned to their prior state within a few

seconds.

3.6 Circular Patch Resonator

3.6.1 Design

The microwave characteristics of BL006 were studied with a circular microstrip

patch resonator, the design, simulation, and construction of which is presented in

this section. The most basic form of such a resonator consists of a ground plane,

substrate, microstrip patch, and coupling lines. As a resonance-based method of

permittivity measurement, the current approach rests on the fact that the resonant

frequency f as given by

f ∝ 1
√
εr

(3.43)

is exactly or approximately valid. Note that while a microstrip ring resonator is

often the method of choice for performing permittivity measurements in the case
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of solid isotropic substrates, a patch resonator was found to be better suited in

view of the issues discussed in §3.3.1. The patch was chosen to be circular, as this

geometry possesses a maximal surface area to peripheral length ratio.

The semi-analytically derived resonant frequencies of a circular patch resonator

possessing a superstrate may be expressed as [198]

fr,n,m =
αn,mc

2πaeff
√
εr,eff

n ∈ N0, m ∈ N1 (3.44)

where αn,m is mth zero of the first derivative of the regular Bessel function of

order n, c is the speed of light in vacuum, aeff is the effective radius, and εr,eff is

the effective dielectric constant, which is a function of frequency, substrate and

superstrate permittivities, and geometry. For a measured frequency, (3.44) may be

evaluated iteratively to find the substrate permittivity that satisfies this equation.

By expanding (3.44) as a Taylor series and retaining only the linear term, successive

values of εr,eff may be computed as

εn+1
r,eff = εnr,eff − 2εnr,eff

(
fmeas − fsim,n

fmeas,n

)
(3.45)

where ε0r,eff is taken as a guess and fmeas and fsim,n are the measured and nth sim-

ulated resonant frequencies, respectively. For greater accuracy, this procedure was

modified by replacing evaluations of (3.44) with full-wave simulations that explic-

itly incorporated the effects of conductor and radiation loss, coupling lines, and

geometrical imperfections introduced during construction. These simulations were

carried out with Ansoft HFSS, a commercial finite element software program that

solves the curl-curl equation for the electric field using a mesh of tetrahedra on

which edge elements are defined. Resonances may be modeled as those of a par-
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allel inductor-capacitor circuit, for which resonant frequencies ω0 are given by the

geometric mean [199]

ω0 =
√
ω1ω2 (3.46)

where ω1 and ω2 are the half-power frequencies. The quality factor Q is defined

as [199]

Q =
ω0

ω1 − ω2

(3.47)

During the iterative searches for the dielectric constants and loss tangents of BL006,

the measured and simulated resonances were compared using (3.46) and (3.47).

This approach was deemed more accurate than using the frequencies associated

with the absolute transmission peaks, which are liable to shift in the presence of

noise.

The diameter of the patch was chosen to be 2 cm, as such a value admits a

reasonable number of modes in the frequency span of interest (0–15 GHz) and yields

a diameter-to-substrate thickness ratio that keeps the fringing field proportionally

small (as discussed in §3.3.1). Unfortunately, the quality factor of such a resonator

is low due primarily to the lossy nature of BL006 [177] but also radiation loss and

the spacing and geometrical configuration of the conductors [3]. Loose coupling

was thus precluded, and the resonator was designed to be directly coupled to its

feed lines.

The designed resonator comprised four principal components: two feed-line

structures based on the Rogers RO4003c substrate, a 500 µm-thick crystalline

quartz superstrate patterned with a copper patch and connecting microstrip lines,

and a ground-plane structure consisting of a slab of soda-lime glass coated in cop-

per (Fig. 3.9 and Appendix C). Upon assembly of these components (Fig. 3.10),

each port is connected to the circular patch by a microstrip trace whose width
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Figure 3.9: Individual components of the circular patch resonator consisting of
two feed-line structures (a), one inverted patch structure (b), and one ground-plane
structure (c). Copper is shown in black. Note the presence of copper sidewalls on the
ground-plane structure, whose deposition is deliberate and which serve to facilitate
electrical connection to ground conductors of the feed-line structures.

tapers exponentially from 450 µm to 50 µm (the minimum dimension consistently

attainable with the available photolithographic process), thereby minimizing load-

ing of the resonator and the further degradation of the resonator’s Q. Between each

port and the patch, the microstrip line traverses the Rogers substrate to air/BL006

transition. Reflections arising from this transition may give rise to standing waves

that result in a shift of the resonant frequencies. The microstrip line was thus made

to cross this boundary at an oblique angle of 86◦ from normal, resulting in a less

abrupt change of impedance and a reduction of associated reflection. Satisfactory

performance of the coupling lines and associated transitions was confirmed in a sep-

arate simulation, which showed a return loss no greater than approximately -20 dB

over the frequency range of interest.

The entire unfilled resonant structure, including the coupling lines, was simu-

lated with Ansoft HFSS (Fig. 3.11). The layers of polyvinyl alcohol were omitted

from the simulation because they contribute negligibly to the structure’s electro-

magnetic properties, while the copper layers were fully discretized as 1.175 µm-thick
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Figure 3.10: Drawing of the circular patch resonator. The structure is symmetric
with in-plane rotations of π. The impedance of each microstrip line is 50 Ω at
each port. The width of each line is exponentially tapered from 450 µm to 50 µm
where it meets the the circular patch. The 203 µm-thick Rogers RO4003c substrates
extend from (1) to (4), while the air/BL006 dielectric is contained within (4)–(4).
A portion of the microstrip line is printed on the upper metalization of the Rogers
RO4003c substrates (1)–(3), while the remainder, including the patch, is printed on
the underside of the 500 µm-thick quartz superstrate, which extends from (3) to (3).
Note that the separate ground planes and microstrip lines are joined electrically at
(2) and (3), respectively.

metal layers possessing a conductivity of 1.79× 107 S/m (in accordance with mea-

surements given in §3.3.2). Owing to the extreme computational cost associated

with solving the vector wave equation in metal, only the portion of the ground

plane beneath the signal metalizations was discretized, with the addition of 2 mm

margins to capture the fringing field. The error in placement of the superstrate

during construction (which resulted in a tilt of 0.1◦ about the y-axis and a height

above the ground plane of 0.26 mm) was included in this simulation. The small

relative magnitude of the third peak in transmission may be explained by appeal-

ing to the field distributions of the resonant modes (Fig. 3.12). Whereas the first,

second, and fourth modes possess maximal anti-nodes at each of the two feed lines,
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Figure 3.11: Simulated S11 (a) and S21 (b) magnitudes of the unfilled circular
patch resonator depicted in Fig. 3.10. The frequency resolution is 10 MHz. This
simulation incorporates the non-idealities arising from construction, including the
error in superstrate placement and the diminished conductivity of sputtered copper.

the third mode, which is even with respect to the exchange of ports, possesses a

significantly smaller peripheral field that yields reduced coupling to the microstrip

lines. Moreover, it undergoes destructive interference with the fourth mode (in

terms of S21), which is odd with respect to the exchange of ports. The consequent

lack of definition of the third and fourth modes required to determine the half-

power frequencies excluded their use in permittivity calculations. The first two

resonant modes of the simulated structure (Fig. 3.11) are well-defined and corre-

spond in frequency to within approximately two percent of those computed with

the semi-analytical method of [198].

3.6.2 Fabrication

The construction of the resonator spanned several steps that commenced with the

preparation of the photolithographic masks, which were designed using the Inkscape

vector graphics package [200]. The tapers were approximated as 1000 linear seg-

ments, which were generated by a purpose-written software program. The designs
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Figure 3.12: Normal electric field distributions of the first four eigenmodes of
an ideal circular patch resonator. These modes are solutions to the homogeneous
Helmholtz equation on a disk subject to Neumann boundary conditions. The second
and third modes are even with respect to the exchange of ports one and two, while
the first and fourth modes are odd. Note that the anti-nodes of the first, second, and
fourth modes are located solely on the periphery of the disk and, moreover, are always
present at the junctions to the feed lines (owing to symmetry associated with their
diametrical placement), resulting in strong coupling to the connected microstrip lines.
In contrast, the third mode possesses anti-nodes at both the center and periphery
of the disk, where the latter is comparatively weak, resulting in significantly less
coupling. This outcome originates from the fact that only the zeroth order Bessel
function of the first kind possesses a maximum at zero.

were rendered on transparency film by Embassy Graphics, Winnipeg, Manitoba.

Examination of the masks under a microscope uncovered no defects in the mi-

crostrip feed lines. However, a small number of pinholes were observed in the patch

and ground regions and corrected with a black felt pen.

Construction of the feed-line structures began with cutting a rectangle mea-

suring approximately 40 mm × 50 mm from a larger sheet of Rogers RO4003c

substrate (obtained from Rogers Corporation, Rogers, Connecticut). Margins of

approximately 1 cm were included in anticipation of edge-beading during the spin
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coating of the photoresist. Burrs were removed with a fine emery cloth in order

to ensure flush contact between the sample and mask during photolithography.

The sample was cleaned with isopropyl alcohol, and photoresist was spin coated

on one side and hard baked to form a protective layer on the ground conductor.

Photoresist was then spin coated on the second side, exposed to ultraviolet light

under the mask of Fig. C.3b (Appendix C), developed, and immersed in a bath of

ferric chloride and hydrochloric acid, which etched the exposed copper (Fig. 3.13a).

The excess material was precisely trimmed from the substrate with a wafer saw

(Diamond Touch Technology) using the patterned cross hairs to align the blade

(Fig. 3.13b). The photolithographic process was then repeated for the ground con-

ductor (Fig. 3.13c) using the mask of Fig. C.3c, after which the two individual

structures were separated with the wafer saw.

Fabrication of the inverted patch structure started with cleaning a single side-

polished 500 µm-thick crystalline quartz wafer (obtained from University Wafer,

Figure 3.13: Rogers RO4003c substrates of the circular patch resonator during
various stages of construction. After etching the signal layer (a), excess material is
precisely removed with a wafer saw (b), allowing the exterior dimensions to be aligned
to the mask during the photolithographic process used to pattern the ground layer
(c). The substrates were separated with a wafer saw upon completion of patterning.
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Boston, Massachusetts) in a piranha solution. Approximately 1.2 µm of copper

was sputtered onto the polished side of the wafer that had been covered in a few

nanometers of sputtered titanium to aid adhesion. Adequate smoothness of the

sputtered copper was confirmed visually and with the Alpha Step surface pro-

filer. Photoresist was spin coated onto the copper and patterned with the mask of

Fig. C.3a. The unprotected copper was etched with ammonium persulfate, expos-

ing the underlying adhesion layer, which was subsequently removed with a buffered

solution of hydrofluoric acid (Fig. 3.14a). The individual structures were were sepa-

rated from the wafer using the wafer saw, where the cross hairs were once again used

for alignment. Prior to this step, a thick layer of protective photoresist (∼2 µm)

was spin coated onto the wafer and hard baked. Upon removal of the photoresist,

a 25 nm-thick layer of polyvinyl alcohol was spin coated on each sample, where the

Figure 3.14: Signal and ground structures of the circular patch resonator. The
signal structures were fabricated by sputtering copper onto a quartz wafer, which was
then patterned with photoresist and etched (a). Individual samples were cut from
the wafer using a wafer saw (b), and a ground plane was prepared by sputtering
copper onto a flat glass plate (c). A 25 nm-thick layer of polyvinyl alcohol was
then spin coated onto each sample, where regions requiring subsequent electrical
connection were temporarily covered with self-adhesive tape (shown in circles) to
prevent coverage.
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terminal region of each microstrip line was protected with tape to prevent coverage

that would inhibit the formation of an electrical connection. The samples were then

rubbed with the buffing machine using the parameters developed §3.5, after which

a felt pen was used to place a mark in a peripheral region indicating the direction

of rubbing.

The ground structure was prepared in a similar manner. A rectangular slab

(63 mm × 50.8 mm × 1.5 mm) was cut from a larger slab of soda-lime glass and,

with the exception of photolithography, subject to the same processing used in the

fabrication of the inverted patch structure.

The components were assembled in several steps. The two feed-line structures

were placed downside-up on a flat aluminum plate and pressed flush against a steel

bar and a silicon spacer that was cut to a precise size using the wafer saw (Fig. 3.15).

The copper sections of the feed-line structures were then fixed to the aluminum

plate with tape, which was carefully placed only on the structures’ copper strips,

ensuring that remaining surfaces were free of obstruction. The steel bar was then

Figure 3.15: Construction of the circular patch resonator. The two Rogers RO4003c
substrates were were placed on a flat aluminum plate and positioned to be flush with
a steel bar and precisely cut silicon spacer (a). The ground-plane structure was then
connected to the Rogers substrates using an epoxy (b).
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set back 14 cm and clamped to the aluminum plate. A minimal amount of epoxy

(LePage #11 Regular Epoxy Glue) was evenly distributed over the exposed surfaces

of the feed-line structures. The ground structure, oriented downside-up, was then

carefully placed on the feed-line structures and pressed flush against the steel bar.

Small adjustments were made to the position of the ground-plane structure to

eliminate gaps between adjacent ground conductors. The epoxy was allowed to set

under the pressure of a 3.4 kg steel block, whose weight was evenly transfered to

the structure by small Styrofoam pads placed directly over the epoxied surfaces.

After the epoxy had hardened, the structure was placed right-side-up. A very small

amount of epoxy was placed on the exposed surfaces of the Rogers substrates, upon

which the superstrate was then carefully placed. Small adjustments to the position

of the superstrate were made in order to ensure that the microstrip traces were

aligned. An attempt at applying a compressive force was abandoned after it was

found to result in lateral movement of the superstrate. The same epoxy was used

to seal one side of the open resonator. As capillary action draws liquids into the

cell, the epoxy was allowed to thicken for approximately one hour prior to its

application. Electrical connections of the ground planes and microstrip traces were

formed using a two-component silver epoxy (Epo-Tek H20E), which required the

structure to be baked at 80 ◦C for 3 hours. The position of the quartz superstrate

above the ground structure was then measured with a depth gauge. Measurements

were taken in five locations (in the center and at each of the four corners) with

a resolution of approximately 2 µm. The final step involved the connection of an

aluminum heat sink to the underside of the ground structure. Thermal grease was

spread on each of the mated surfaces, which were bonded with a small amount of

fast-setting epoxy (LePage 5 Minute Epoxy Glue) that was applied near the edges.

The completed structure (Fig. 3.16) was mounted in a test fixture (Anritsu
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Figure 3.16: Experimental setup of the circular patch resonator (a) and a closeup
of the resonator (b).

Model 3680) and its scattering parameters were measured using a calibrated net-

work analyzer (Anritsu Lightning Model 37397D). Measurements were conducted

prior to filling the resonator with BL006 and afterwards, where those involving the

unfilled structure were used to confirm the validity of the HFSS simulation. The

response of the scattering parameters to a range of applied voltages was measured
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for a temperature of 23 ◦C. The structure was also heated to the clearing point

of BL006 in an attempt to measure its isotropic permittivity. Measurements were

taken for various bias voltages between 0 Vpp and 20 Vpp. In each case, a period

of five minutes elapsed between the application of a given voltage and the onset of

measurement, allowing the liquid crystal to assume a steady-state molecular con-

figuration. This was approximately one or two orders of magnitude greater than

the time required for the real-time scattering parameters (displayed by the network

analyzer) to visibly stabilize.

3.7 Microstrip Photonic Bandgap Device

Prototype

This section details the design and fabrication of a tunable quasi two-dimensional

microstrip test structure. The aim of the design was to produce a test device that

both possesses some inherent utility, and also avails the experimental characteri-

zation of the electromagnetic properties of a tunable two-dimensional microwave

photonic crystal. While designed to physically accommodate a liquid crystal mate-

rial, the first device was fabricated for the sole purpose of evaluating its adequacy

as a test structure. It was therefore constructed and tested without a liquid crys-

tal material in order to limit the number of experimental variables, which would

otherwise confound the interpretation of measurements.

3.7.1 Design

The device was designed in accordance with the requirement for two closely spaced

conductors, which is readily shown to be compatible with a two-dimensional elec-
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tromagnetics wave problem that supports photonic crystal phenomena. In a ho-

mogeneous and source-free medium between the plates, the steady-state Maxwell

equations yield the Helmholtz equation

(
∇2 + k2

)
E = 0. (3.48)

where k = ω
√
µ0ε0 and the z-axis is normal to the plates. The local properties

of this set of three equations in a parallel plate environment may be investigated

by neglecting the boundaries in the x- and y-directions. Using the ∇2 operator

from [42] and expressing the Ex (or Ey) component through separation of variables

in cylindrical coordinates results in

(
∇2 + k2

)
Ex (x, y, z) = 0(

1

ρ

∂

∂ρ

(
ρ
∂

∂ρ

)
+

1

ρ2
∂2

∂φ2
+

∂2

∂z2
+ k2

)
Ex (φ, ρ, z) = 0

(3.49)

where

Ex (ρ, φ, z) = Exr(ρ)Exφ(φ)Exz(z) (3.50)

Note that in general these solutions must be combined with those of Ey and Ez in

order for ∇ · E = 0 to hold. The PEC boundaries constrain Exz to the form

Exz (z) = sin (kxzz)

= 0|z=0,h

(3.51)

where h is the spacing between the plates and kxz = π/h is the smallest nontrivial

value satisfying this relation. The solution to the radial component of (3.49) is
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given by

Exr (ρ) = AnJn (k
′ρ) +BnYn (k

′ρ) (3.52)

where Jn and Yn are the Bessel functions of the first and second kind, respectively,

and

k′2 = k2 − k2xz (3.53)

When h is very small, balancing (3.53) for a real value of k requires that k′ be

imaginary. Consequently, the solutions of (3.52) become evanescently decaying and

growing (where the coefficient of the latter term is set to zero to discard solutions

of infinite energy), such that the Ex and Ey components of the field decay exponen-

tially from a given disturbance that produces these fields. Under such conditions,

only Ez is relevant and the two-dimensional scalar problem corresponding to the

TM case (
∇2

2D + k2
)
Ez (x, y) = 0 (3.54)

may be recovered by setting Ezz = 1, which is required to satisfy the zero divergence

condition.

While (3.54) applies to problems characterized by a homogeneous medium,

rewriting k as a function of position (assuming that µr remains constant),

(
∇2

2D + k (x, y)2
)
Ez (x, y) = 0 (3.55)

enlarges its scope to include those of inhomogeneous media and in particular those of

a photonic crystal nature. For example, k(r) may be written as k(r) = ω
√
µ0ε0εr(r),

where εr(r) is given by (2.3) of §2.1.1. Analysis involving parallel plate structures

of finite extent (Fig. 3.17) may be facilitated considerably by approximating the

boundaries as perfect magnetic conductor (PMC), the accuracy of which is improved
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Figure 3.17: Approximate perfect magnetic conductor (PMC) boundary at the
periphery of a parallel plate structure.

for thinner structures (small h). The origins of this approximation rest with the

assumption that charge is limited to the inner surfaces of the structure and that the

normal current vanishes at the boundaries due to the dominance of attractive forces

between opposite charge on the opposing plates [3]. As a result of this simplification,

(3.55) becomes a straightforward modal problem endowed with Neumann boundary

conditions.

The experimental evaluation of realized photonic crystals cannot probe Bloch

modes directly, as in the strictest sense, these modes are only defined for structures

of infinite extent. The coupling between the eigenmodes of a finite crystal and an

incident field may also be nontrivial and require careful consideration. Nonetheless,

experimentally obtained scattering data from a photonic crystal of finite size may

still provide considerable information on the band structure and the presence of

bandgaps [2, 31–33].

Perhaps the most elementary investigation of scattering involves measuring the

transmitted and reflected fields produced by a plane wave that is normally incident

on a finite slab of material whose edges fall upon the crystal planes. For a two-

dimensional crystal possessing a square lattice, this corresponds (approximately)

to probing the Γ–X portion of a standard dispersion diagram. When the slab is

sufficient in width and the incident field is spatially localized (such as a Gaussian
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beam), it may be modeled as a stack of diffraction gratings (Fig. 3.18), whose

electromagnetic characteristics are strongly influenced by the lateral translational

invariance of the material. This modeling approach is discussed in considerable

detail in Appendix B.

The experiment described in the foregoing discussion is readily performed in

a parallel plate setting, where reflections arising from PMC boundaries may be

exploited to simulate a diffraction grating environment. A simple structure whose

electromagnetic characteristics are similar to those of a stack of diffraction gratings

may be constructed with a single scattering element per row (Fig. 3.19). In the

absence of scatterers, this arrangement of planar conductors is known as a parallel

plate waveguide (a transmission-line in the y-direction), supporting the TM modes

En
z = An cos (αnx) e

i±βny +Bn sin
(
αn+1/2x

)
ei±βn+1/2y (3.56)

Figure 3.18: Three-layer photonic crystal slab subject to illumination by an incident
plane wave (Einc), which is in plane and normal to the structure. While the structure
depicted comprises only three rows of scatterers, its extent in the x-direction is
assumed to be sufficient for translational invariance to shape its electromagnetic
properties.
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Figure 3.19: Top view of a structure containing only a single scattering element
per row. The dashed circles are the reflections/images of the disks looking into the
PMC boundaries. The 2D lattice of these disks may be treated as a periodic array
of diffraction gratings.

where

αn =
2πn

w

βn =
√
k2 − α2

n

(3.57)

for n ∈ N0. Note that these modes are distinct from the conventionally-defined TM

modes of a parallel plate structure [51] and are easily verified to be solutions of (3.54)

that satisfy the PMC boundary conditions. Note that all but a few modes near

n are evanescent, i.e. non-propagating. To ensure that electromagnetic activity

does not extend to higher order modes, the combination of maximum operating

frequency fmax and waveguide thickness h must satisfy

fmax < fc =
c

2h
√
εr
. (3.58)

where c is the speed of light in vacuum and fc is the cutoff frequency of the first

higher order mode(s). Terms of (3.56) may be combined to form an expansion of

an arbitrary field in any homogeneous region between the disks. Similarly, the field
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in homogeneous regions between diffraction gratings may be expressed as a sum of

the terms [57]

Ez =
Cne

i(α′
nx±β′

ny)

2
(3.59)

where

α′
n =

2πn

w
+ α0

β′
n =

√
k2 − α2

n

(3.60)

and α0 is the x component of the wavenumber of an incident plane wave that

produces these fields. The modal expansion of the parallel plate structure is clearly

subsumed by that of the diffraction grating, and its terms may be recovered by the

relations

An = Cn + C−n

Bn+1/2 = −i
(
Cn+1/2 − C−n−1/2

) (3.61)

which corresponds to a symmetrically/antisymmetrically illuminated diffraction

grating whose incident fields are restricted such that −α′
−n = α′

n = αn, which

may be attained by setting α′
0 = 0. As both the material and the incident field ex-

hibit mirror symmetry about x = ±w/2, this restricted diffraction grating problem

also satisfies the PMC boundary conditions, both between and within layers.

A particularly convenient regime of operation is given by

f < f1
c =

c

w
(3.62)

where f 1
c is the cutoff frequency of the first even harmonic (n = 1). Where the

connected apparatus also possesses symmetry about x = 0, the entire problem

is symmetric, and the Bn coefficients of (3.56) are zero. In this case, f 1
c gives

the frequency beneath which propagating modes are limited to the fundamental
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TM mode, and the incident, reflected, and transmitted fields may be represented

by scalar quantities, affording a particularly simple interaction with a two-port

network analyzer.

Connection to measurement equipment brings forth two additional design issues.

The first arises from the fact that, unlike a parallel plate waveguide, the coaxial lines

used in the connection of test equipment are not balanced transmission lines. This is

most easily remedied by replacing the parallel plate waveguide with a microstrip line

(Fig. 3.20). This substitution leaves the modal characteristics unchanged due to the

mirror symmetry induced by the ground plane for the modes under consideration.

The second issue concerns the coaxial to microstrip transition and the impedance

matching therein. The latter is readily implemented in the form of microstrip

tapers, while the former depends on the frequencies involved and is discussed in

further detail for specific devices.

The structure depicted in Fig. 3.20 forms the basis of a physically realized de-

vice. The first bandgap was chosen to lie within the frequency span of 0–7.5 GHz,

as the resultant dimensions facilitated manual fabrication. This choice does not

disqualify experimentally-derived characterizations from applying to structures of

smaller size, as the frequency-length scaling property of photonic crystals ensures

that a scaled replica will possess nearly identical electromagnetic characteristics

Ground Plane

x

yz

h

w

�r

�disk

Figure 3.20: Microstrip line with dielectric disk placement overlaid. The y bound-
aries are z = 0 and z = w. Note that εr = 1 for the prototype structure.
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(scaled in frequency) [33]. Sapphire was chosen as the disk material because it

exhibits very low loss and was commercially available in the required dimensions

from Silian Tech Company Ltd., Vancouver, British Columbia. A parametric sim-

ulation of the band structure was performed using the Rayleigh multipole method

(Appendix B) in order to approximately identify the ratio of disk radius to lat-

tice constant associated with a maximally wide bandgap (Fig. 3.21). As a result

of these simulations, the lattice constant and microstrip width were chosen to be

19.625 mm, while the disk radius was chosen to be 3.925 mm (20% of the period).

The band structure of a square lattice characterized by these dimensions is

shown in Fig. 3.22. Note that because α is limited to multiples of π, only the

paths Γ–X and Y–M apply. As a square lattice of circular disks is described by the

C4v point group, reflections about y = x and y = −x leave the lattice unchanged,

thereby allowing Y–M to be substituted with X–M [31]. Consequently, such a quasi

two-dimensional structure shares the first two sections a of standard band diagram

with its fully two-dimensional counterpart. A thickness of 0.5 mm was selected as a
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Figure 3.21: Bandgap at X in the irreducible Brillouin zone versus disk radius for
a lattice constant of 19.625 mm. The solid curves delineate the bandgap edges, and
the dashed curve represents the width of the bandgap (i.e. the difference between
the bandgap edges). Note the maximum near a disk radius of 4 mm.
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Figure 3.22: Simulated band diagram of the photonic bandgap structure described
by Fig. 3.19. The present work is concerned with symmetric incidence (Γ–X). The
X–M portion corresponds to antisymmetric incidence and is not considered here.

compromise between minimizing the effect of the fringing field and minimizing the

length of the impedance matching tapers. Note that for εr = 1, this value satisfies

(3.58) for frequencies up to 300 GHz, which is well above the bandgap shown in

Fig. 3.22.

The transmission coefficient (S21) was found by using the Rayleigh multipole

method to simulate the finite structure as a stack of 10 individual diffraction grat-

ings (Fig. 3.23). These results were confirmed with Lumerical FDTD, a finite-

difference time-domain full-wave solver. The latter was carried out on a uniform

Cartesian grid of 51× 1005 nodes, where the boundaries at z = 0, h were PEC and

those at x = −w/2, w/2 were PMC. The mesh was terminated in the y-direction

with absorbing boundaries. Note the good agreement save for some discrepancy at

low frequencies (possibly due to the absorbing boundaries).

3.7.2 Construction

The structure described in the preceding sections was fabricated in three stages.

The first step involved preparing a ground plane from a 5.1 cm × 34.2 cm steel
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Figure 3.23: Simulated S21 magnitude of the structure shown in Fig. 3.20. The
10-disk structure possesses a lattice constant of 19.625 mm and a disk radius of 3.925
mm.

plate. The plate was visually inspected for planarity and was chosen to be ∼2 mm

in thickness (and thus rigid). Three holes were drilled in each end for the coaxial

end launchers and two supporting bolts. In order to minimize the effect of the

transitions, the diameters of the center holes were chosen to match the outer con-

ductor diameter of the coaxial end launchers, which were subsequently fastened to

the steel plate.

The second step involved preparation the microstrip line, sapphire disks, and

polyethylene backside. Adhesive copper tape (Venture Tape, 1697AT) was cut to

the dimensions shown in Fig. 3.24 and affixed to a 0.5 mm-thick polypropylene

sheet possessing planar dimensions identical to those of the steel plate. In order to

allow connections to the subminiature A (SMA) pins, two small holes were cut out

of the tape at each end, underneath which two larger holes were previously drilled

in the polypropylene sheet to allow access with a soldering iron. Two polypropylene

spacers were then affixed to the backside on either side of the copper tape using

a cyanoacrylate adhesive. Finally, the sapphire disks were bonded to the exposed
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Figure 3.24: Plan view of the fabricated microstrip PBG structure (a) and photo-
graph of device including: ground plane with SMA connectors fastened underneath
(b), microstrip, sapphire disks, and spacers resting on polypropylene sheet (c), and
polyethylene board used to minimize leaky modes (d). All dimensions are in mil-
limeters. The microstrip width equals the disk spacing.

side of the copper tape using the same glue. In both cases, a firm compressive

force was applied to the parts that were bonded, and the adhesive was applied as

sparingly as possible.

The third and final step consisted of constructing the rigid portion of the back-

side using a flat polyethylene slab. This material was chosen for its low relative

permittivity (εr = 2.26 [201]), which was further reduced by removing regularly

spaced cuboids, leaving thin ridges for support. The complete structure was assem-

bled by attaching the microstrip/backside and steel plate assemblies, which involved

soldering the copper tape to the SMA pins. The resultant structure was clamped

between two flat and rigid boards using the polyethylene slab as a spacer to ensure

an air gap directly over the backside.
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The completed structure was tested using a vector network analyzer (Anritsu

Model 360B), which was calibrated using a short-open-load-thru (SOLT) calibration

kit.

3.8 Liquid Crystal Photonic Bandgap Device

3.8.1 Design Considerations

While the microstrip structure has demonstrated its suitability for the purpose

of evaluating a quasi two-dimensional photonic bandgap structure (§4.3), several

improvements may be identified. The first of these involves the uniformity of thick-

ness of the waveguide structure. Using the construction methods discussed, there

is likely some variation in local thickness, which may give rise to a non-uniform

waveguide impedance. This hypothesis was formed after observing some variation

in the measured S-parameters in response to adjusting the tension of the bolts.

This may be remedied by using a more rigid supporting structure. In the previous

experiment, the supporting structure was chosen to reduce energy on the backside

of the waveguide. Reduction in the unwanted field may also be effected by using

a wider structure, permitting the backside to be chosen from a greater selection of

materials.

The second improvement concerns the transition from the coaxial lines to the

device. The transition employed in the structure may be modeled using lumped

elements (Fig. 3.25). For a given set of materials and geometries, this transition

performs progressively worse at higher frequencies and is likely partially responsible

for the attenuation observed above the bandgap. This may be remedied by using

a microstrip test fixture, which carefully controls the impedance of the transition,
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Figure 3.25: Lumped element circuit equivalent of a transmission line connection
consisting of a coaxial line (Z0,C) joined to a microstrip line (Z0,M) at a 90◦ angle [51].
The lumped element parameters, C1, C2, and L depend on particular geometries and
materials present in the junction.

primarily by minimizing the size of the critical dimensions. Moreover, as such

fixtures permit the free connection and removal of samples, a calibration kit may

be used to significantly lessen the remaining effects of the transition.

The last improvement concerns a minimization of the effect of the fringing field

(the non-ideality of the PMC boundaries), which is reduced for smaller values of

h and larger values of w. The extent to which the structure may be made thinner

depends on a few issues. From (3.41) it may be seen that conductor losses increase

inversely with thickness. While this may pose a problem in practical applications, in

the present work this effect may be accounted for with full-wave simulations. The

issues of impedance matching and fabrication cause significantly more difficulty.

Maintaining a port impedance of 50 Ω while decreasing the substrate thickness

requires that the width of the microstrip line be commensurately reduced in accor-

dance with [51]

Z0 =
60
√
εeff

ln

(
8h

w
+
w

4h

)
, w/h ≤ 1

=
120π

√
εeff [w/h+ 1.393 + 0.667ln (w/h+ 1.444)]

, w/h ≥ 1

(3.63)

Beneath a certain width, the electromagnetic characteristics of the coaxial to mi-

crostrip transition may become compromised. For example, if the width of the
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probe exceeds that of the microstrip line, its position over the substrate will result

in a large shunt capacitance. Hence, the smallest practical width that may be used

is on the order of 400 µm. Fabrication challenges result from the fact that the

acceptable tolerance in h is proportional to thickness. For very thin structures, the

manual placement of the backside and presence of the adhesive become significant

sources of thickness variation. Collectively, these issues illustrate the design trade-

offs between substrate thickness and fringing field, and they have been thoroughly

considered in the design of the liquid crystal structure presented in the subsequent

section.

3.8.2 Design

The design of the earlier prototype photonic bandgap structure was used as the

basis for the liquid crystal-based device. In accordance with the discussion of the

previous section, a thinner dielectric thickness was employed. As the use of the

universal test fixture requires a solid substrate, the device was designed as three

primary components: a parallel plate structure containing the liquid crystal and

silicon scattering elements (squares), and two microstrip taper structures based on

a conventional microwave substrate. These sections are connected mechanically

and electrically.

In conjunction with the design of the resonator, the high-frequency 203 µm-

thick Rogers RO4003c board (εr = 3.55 ± 0.05) was selected as the substrate for

the microstrip taper structures. As a result of its thickness and dielectric constant,

a 50-Ω microstrip line fabricated from this substrate possesses a trace width of

450 µm, a value close to the minimum that is practically attainable. Moreover, its

dielectric constant is very near that of BL006 (εr = 2.6–3.1), resulting in minimal
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reflections of waves at the interface between the liquid crystal and microstrip taper

dielectric.

The backside was chosen to be crystalline quartz (εr = 4.6 [202]) due to its low

dielectric constant, rigidity, and earlier results showing that quartz surfaces yield

high quality sputtered films that are specularly-reflective, a quality required of

surfaces on which alignment layers are deposited. Undoped silicon (εr = 11.6 [202])

was selected in favor of sapphire as the material of the dielectric scattering elements

to partly compensate for a reduction in dielectric contrast arising from the use

of BL006. The individual components of the device are shown schematically in

Fig. 3.26.

The final dimensions were chosen in the course of balancing several competing

requirements. The lattice dimensions (and resultant frequency of the bandgap)

were constrained by the accuracy of the manual assembly process. Numerical sen-

Figure 3.26: Individual components of the liquid crystal-based microstrip pho-
tonic bandgap device, where planar dimensions are to scale and copper is shown as
black. The copper sidewalls at each end of the structures in (b) and (c) facilitate the
formation of an electrical connection with silver epoxy.
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sitivity analyses were conducted in order to identify a lattice geometry and size

whose attendant electromagnetic response is robust in the presence of the assumed

dimensional tolerances. As a result of these simulations, the lattice of the prototype

structure was retained and the lattice constant was chosen to be one centimeter.

The silicon scattering elements were chosen to be square, as this geometry is most

easily realized with the wafer saw. The final trade-off concerned the size of the

scattering elements, the number of unit cells, and the length of the impedance

matching tapers. As the dimensions of the test fixture placed an absolute limit

on the structure’s total length, the sum of the lengths of the tapers and series of

unit cells was fixed. Longer tapers yield less ripple and more uniform incident and

reflected fields, while a greater number of scattering elements produce stronger at-

tenuation in the stopband, which is also influenced by the size of the square with

respect to the lattice constant. These requirements were balanced by selecting

5 mm, 67.5 mm, and 71.5 mm for the lengths of the squares, liquid crystal region,

and tapers, respectively. The quartz backside was extended by 2 mm on each side

of the conductor to facilitate modeling by ensuring that the fringing field interacted

with the liquid crystal in a well-defined state. The aggregate construction is shown

to scale in Fig. 3.27.

The quartz superstrate rests on each of the microstrip taper structures, which

have a total thickness of 220 µm when the contribution of the copper signal layers

is included. As the thickness of the realized squares was 190 µm, a gap of 30 µm

resulted between the silicon squares and the upper conductor. The gap is signifi-

cantly less than the planar dimensions, and an effective dielectric may be defined

as

εeff =
ε1ε2 (h1 + h2)

h1ε2 + h2ε1
(3.64)
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Figure 3.27: Drawing of the liquid crystal-based microstrip photonic bandgap de-
vice with square silicon scattering elements overlaid. Planar dimensions are to scale.
Note that copper is shown as black.

where h1 = 190 µm, h2 = 30 µm, ε1 = 11.6, ε2 = 2.62 are the thicknesses of

the silicon square and the gap (assumed to be filled with BL006), and dielectric

constants of silicon and BL006, respectively. The liquid crystal in the gap was

assumed to possess a planar orientation, as this alignment is favored by both the

the silicon surface [116,117] and the polyvinyl alcohol layer.

The band diagram associated with the structure’s unit cell was computed for

both the “on” and “off” states with the plane wave method (Fig. 3.28), using an

effective dielectric constant of 7.91 for the squares. Finite-structure simulations

were carried out with Ansoft HFSS 12 for the unfilled structure (Fig. 3.29) and

each of the liquid crystal alignment states (Fig. 3.30 and 3.31). These simulations

incorporated explicit representations of known loss mechanisms, including radia-

tion, dielectric, and conductor losses, and utilized experimentally-derived complex

permittivity values for BL006 (§4.2.3). The transmission coefficients associated

with each alignment are plotted juxtaposed in Fig. 3.32, which shows considerable

tuning of the bandgap.
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Figure 3.28: Band structure of silicon/BL006 photonic crystal as computed with
the plane wave method. The solid and dashed lines correspond to the low and high
permittivities of BL006, respectively. The photonic crystal comprises silicon squares
(5 mm× 5 mm) in a square lattice (10 mm× 10 mm). The squares were assigned an
effective permittivity of 7.91 to account for a difference of 15% between the thickness
of the silicon squares and the spacing of the conductors (the void is assumed to be
filled with BL006).

3.8.3 Construction

The construction of the liquid crystal photonic bandgap device followed the same

general procedure as that of the circular patch resonator. The Rogers substrates,

in various stages of preparation, are shown in Fig. 3.33.

Fabrication of the quartz superstrate was modified slightly in order facilitate

electrical contact between the signal conductors. The additional step involved cut-

ting the quartz wafer to the correct length prior to sputtering, resulting in the depo-

sition of copper sidewalls at each end of the structure (Fig. 3.34). A 0.5 mm-thick

undoped silicon wafer (obtained from University Wafer, Boston, Massachusetts)

was thinned to approximately 0.2 mm in a heated solution of potassium hydroxide.

Roughly 100 squares measuring 5 mm×5 mm were cut from the thinned wafer using

the wafer saw. The thickness of each square was measured with a depth gauge to
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Figure 3.29: Simulated scattering parameter magnitudes of the entire unfilled pho-
tonic bandgap device depicted in Fig. 3.27. This simulation, conducted with Ansoft
HFSS 12, includes losses due to radiation, the dielectric, and the conductors, where
the model incorporates both ohmic losses and those due to surface roughness. The
silicon squares were assigned the measured thickness of 190 µm and a dielectric con-
stant of 11.6 [202], while the Rogers RO4003c substrates were assigned microwave
properties that were specified by the manufacturer (εr = 3.55, tan δ = 0.0027).

within approximately 2 µm. A variance of about 5 µm was found, indicating that

the thinning process was somewhat non-uniform. The squares were then divided

in accordance with their measured thickness; those whose thickness were closest to

the mean (190 µm) were set aside for later use.

After gluing the microstrip taper and ground-plane structures, the selected sil-

icon squares were adhered to the aggregate structure. This step was performed

with an absolutely minimal amount of epoxy using a purpose-constructed square

placement tool (Fig. 3.35), which allowed precise placement of the squares and

protected the alignment layer from inadvertent scratches. The quartz superstrate

was then placed on the squares and Rogers substrates using a pen whose tip had

been wrapped in double-sided tape (in lieu of a vacuum pick and place tool). One

corner of the superstrate was then epoxied to one of the Rogers substrates using the
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Figure 3.30: Simulated scattering parameter magnitudes of the entire photonic
bandgap device depicted in Fig. 3.27 in the absence of an alignment field. This
simulation was based on that of Fig. 3.29, where an experimentally-derived dielectric
constant of 2.62 and loss tangent of 0.035 (Table 4.3) were used to describe the BL006
material in the simulation.
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Figure 3.31: Simulated scattering parameter magnitudes of the entire photonic
bandgap device depicted in Fig. 3.27 in the presence of an alignment field. Once
again, an experimentally-derived dielectric constant of 3.11 and loss tangent of 0.007
(Table 4.3) were used to describe the BL006 material in the simulation.
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Figure 3.32: Simulated bandgap tuning of the linear silicon/BL006 photonic
bandgap device manifested in the transmission coefficient (S21) magnitude.

fast-setting epoxy, which, after about five minutes, allowed pressure to be applied

to superstrate without risk of lateral movement. Epoxy was then similarly applied

to the other corners of the superstrate, and a weight that rested on a segment of

Styrofoam was placed on the structure. This approach, which employed a compres-

sive force and restricted the application of epoxy to the sidewalls of the superstrate,

prevented the excess superstrate height that was incurred in the construction of the

resonator.

The final step involved the attachment of a supporting structure, which provided

the rigidity necessary for installation in the universal test fixture (the Rogers sub-

strate is very flexible). This was performed in two steps, the first of which involved

gluing two rectangular segments of 1.5 mm-thick soda-lime glass to the underside

of each microstrip taper structure using LePage 5 Minute Epoxy Glue. These spac-

ers ensured that the Rogers substrate remained horizontal when the structure was

placed on a flat surface. The second step consisted of gluing (using the same ad-

hesive) a long strip of balsa wood of rectangular cross section to undersides of the
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Figure 3.33: Rogers RO4003c substrates of the linear silicon/BL006 photonic
bandgap device during various stages of construction. After etching the signal layer
(a), the excess is precisely removed with a wafer saw (b), allowing the exterior dimen-
sions to aid alignment in the photolithographic process used to pattern the ground
layer (c). The substrates were detached with a wafer saw upon completion of the
patterning.

spacers and ground-plane structure. The sizing and placement of the glass spacers

and balsa wood were such that about 1 mm of the ground plane protruded from

each port, allowing unobstructed access to the lower jaws of the test fixture that

establish the ground contacts.

The completed structure (Fig. 3.36) was mounted in the test fixture, and its

scattering parameters were measured using a calibrated network analyzer (Anritsu
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Figure 3.34: Signal and ground structures of the linear silicon/BL006 photonic
bandgap device. The signal structures were fabricated by patterning the copper
layer that was sputtered on a quartz wafer (a, b), which had previously been cut to
the correct length, thereby resulting in the deposition of copper sidewalls. Samples
were cut from the wafer using a wafer saw (c), and a ground plane was prepared
by sputtering copper onto a flat glass plate (d). A 25 nm-thick layer of polyvinyl
alcohol was then spin coated onto each sample, where regions requiring subsequent
electrical connection were temporarily covered with blue tape (shown circled) to
prevent coverage (c, d).
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Figure 3.35: Placement tool for the accurate positioning of silicon squares. This
tool was constructed from individual rectangles of varying size that had been cut
from a 0.5 mm-thick silicon wafer using a wafer saw. Two narrow strips of tape were
adhered to its underside and run lengthwise along each edge. These strips serve as
spacers that prevent contact between the tool and the active region of the alignment
layer. The scores that run lengthwise along the structure allow precise alignment
of the tool with the signal conductors of the microstrip taper structures, thereby
ensuring accurate lateral placement of the silicon squares.

Lightning Model 37397D). Measurements were conducted prior to filling the struc-

ture with BL006 and afterwards. The response of the scattering parameters to a

range of applied voltages was measured for a temperature of 23 ◦C. Once again,

a period of five minutes was allowed to pass between the application of a given

voltage and the onset of measurement.

3.9 Network Analyzer Calibration

The microwave structures presented in the foregoing sections were experimentally

evaluated using two-port network analyzers. The coaxial cables that connect the

device under test to the network analyzer represented a potentially significant but

readily-controlled source of error. Owing to the linearity of the system, connecting
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Figure 3.36: Assembly of the linear silicon/BL006 photonic bandgap device. The
two Rogers RO4003c substrates were placed on a flat aluminum plate, positioned
to be flush with a steel bar and precisely cut silicon spacer (a), and taped to the
aluminum plate. The silicon spacer was removed (b), and the ground-plane structure
was bonded to the Rogers substrates using an epoxy (c). Silver epoxy was used to
electrically connect the grounds of the Rogers substrates to the glass ground-plane
structure (d). A square placement tool (Fig. 3.35) was used to guide the placement of
silicon squares and prevent inadvertent contact with the remainder of the alignment
layer (e). The quartz superstrate was then placed over the silicon squares, epoxied,
and electrically connected to the taper structures with silver epoxy. One side of the
open structure was sealed with viscous epoxy, and the scattering parameters were
measured. The structure was then filled with BL006 (f).

cables may be modeled as two-port networks described by 2 × 2 scattering ma-

trices (Fig. 3.37). By measuring the scattering parameters of known loads and

through sections, these matrices may be inferred and their effect subtracted from

the measurements of the device under test.

A SOLT (Short-Open-Load-Thru) calibration kit (Wiltron Network Analyzer

SMA/3.5 mm Calibration Kit, Model 3650) was used in the evaluation of the pro-

totype photonic bandgap structure (§3.7). The calibration kit comprises three
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Figure 3.37: Coaxial connections modeled as two-port networks. A calibration
finds the scattering matrix associated with each connection and applies a correction
to the measured scattering parameters for the device under test (DUT).

coaxial-based terminations and a thru section, allowing compensation for the er-

rors introduced by the lines. Note that this calibration does not compensate for

reflections arising from the connection of the SMA end launcher to the microstrip

line.

A 50-Ω microstrip thru-reflect-line (TRL) kit was designed and fabricated from

Rogers RO4003c substrate using the photolithographic and etching processes de-

scribed earlier (Fig. 3.38). The kit was used to calibrate the test fixture for measure-

Figure 3.38: Fabricated 50-Ω thru-reflect-line microstrip calibration kit (Rogers
RO4003c substrate). Dimensions were precisely controlled by using photolithographic
techniques to pattern the signal layers and a wafer saw to cut individual sections to
size.
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ments involving the patch resonator and liquid crystal photonic bandgap structure.

In addition to correcting errors that originated from the connections and cables,

this calibration also removed the effect of the coaxial-microstrip transitions. The

fabricated kit covered the frequency range of 3–40 GHz and comprised four sections:

a thru line (zero electrical length), a reflection (open), and a two lines.
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Chapter 4

Results

4.1 Spectral Transmission-Line Modeling

Method

Numerical experiments were performed for several unit cells consisting of different

geometries and materials in order to evaluate the accuracy and runtime character-

istics of the algorithm. The simulated band diagrams and runtimes were compared

with ones produced by the Rayleigh multipole, plane wave expansion, and time-

marching TLM methods. With the exception of the Ansoft HFSS simulation, the

data presented in this section were produced by single-threaded programs that were

executed on a 2.4 GHz Intel Quad Core Duo processor with 4 GB of memory.

4.1.1 Confirmation of Accuracy

The first simulation involved computing the dispersion diagram for a benchmark

test case consisting of a square lattice of sapphire disks (εr = 8.9 [32]), which possess

a radius of 20% of the lattice spacing (Fig. 4.1). The discretization of the unit cell
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Figure 4.1: Overview of a two-dimensional photonic crystal possessing a square
lattice. The white region represents the background dielectric (vacuum), while the
dark disks correspond to sapphire (εr = 8.9 [32]). The unit cell is contained within
the dashed lines.

(Fig. 4.2) consists of a Cartesian mesh of 120×120 nodes. The resulting dimension

of SI (3.11) and SII (3.15) is 72, 000. The fineness of the mesh ensures accuracy

at higher frequency and significantly exceeds the mesh density of 10 nodes per

wavelength. Such a fine discretization also minimized the “staircase” effect, which

is the geometrical inaccuracy introduced by Cartesian approximations of curved

boundaries.

Figure 4.2: Unit cell discretized as a mesh of 20×20 nodes (coarsened from 120×120
to illustrate the discretization process). The arrows show the phase change sustained
by pulses traversing the periodic boundaries.
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The dispersion diagram was produced with the algorithm of §3.2.3 at 15 equidis-

tantly-spaced points along each of the segments of the path Γ–X–M–Γ. The simula-

tion carried out 100, 000 power method iterations and employed a Krylov subspace

of dimension 250 for each point that was simulated in reciprocal space. The val-

ues of Ωa/c were 0.85, 2.55, 4.25, and 5.95. The values of these parameters strike

a balance between runtime and accuracy and were found empirically by conduct-

ing several simulations. The simulated frequencies are plotted against a dispersion

diagram produced by the Rayleigh multipole method in Fig. 4.3, and excellent

agreement is observed.

During the simulation, the electric field configurations corresponding to the

first three eigenmodes were recorded at the point k = (0, π/2a), which lies midway

between Γ and X. The normalized eigenmodes are plotted as isovalue contours

in Fig. 4.4 and are compared with those produced by Ansoft HFSS 11.1 (Ansoft

Corporation, Pittsburgh, PA). The latter simulation was carried out on a mesh

of 11,144 tetrahedra, arranged as a parallelepiped whose dimensions were 20 mm

in the x-direction, 20 mm in the y-direction, and 0.5 mm in the z-direction. The
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Figure 4.3: Band diagram computed with the spectral transmission-line modeling
method and the Rayleigh multipole method. The individual data are the results of
the spectral transmission-line modeling method, while the solid line was produced
by the Rayleigh multipole method [203].
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Figure 4.4: Calculated eigenmodes at k = (0, π/2d) in the irreducible Brillouin
zone showing the normalized electric field magnitude. The frequencies of the modes
are 2.5 GHz (a), 7.5 GHz (b), and 9.1 GHz (c). Each pair of figures comprises the
simulation results produced by the spectral transmission-line modeling method (left)
and Ansoft HFSS (right) and is plotted with 11 (a), 9 (b), and 9 (c) isovalue contours.

boundaries in the x- and y-directions were master-slave possessing phase delays

of 0 and π/2, respectively, while those in the z-direction were PEC. The small

separation of the plates ensured that only TM modes were computed. The electric

field plots were calculated at z = 0.25 mm.

4.1.2 Evaluation of Numerical Performance

Further numerical experiments were performed in order to compare the algorithm’s

performance with that of established methods. Evaluations are based on the con-

vergence of the first two bands at X in the irreducible Brillouin zone as a function

of runtime and memory requirements. The first of these comparisons was carried

out with the plane wave expansion method for a unit cell containing a thin cross of

lithium niobate (Fig. 4.5). The runtime and memory use were varied by adjusting

the number of unknowns, which corresponds to the number of plane waves used in
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Figure 4.5: Unit cell containing a cross of the lithium niobate (εr = 84 [204]). Note
that the structure possesses mirror symmetry about both axes and is rotationally
symmetric with rotations of π/2.

the plane wave expansion method and the number of nodes used in the spectral

transmission-line modeling method. The spectral TLM simulations were carried

out with 10m power method iterations (m is the number of nodes), and in each

case the dimension of the Krylov subspace was 300.

The results of these simulations are shown graphically in Fig. 4.6. In each

case, convergence was monotonic with respect to the number of unknowns and

hence also monotonic with respect to runtime and memory usage. The memory

figures used are estimates, as the actual amount of memory utilized depends on

the implementation of the eigenvalue solver. A lower bound was used for the plane

wave expansion method, while an upper bound was used for the transmission-line

modeling method in order to conduct a conservative comparison. The lower bound

corresponds to the amount of memory required to store the coefficient matrix,

which, owing to the mirror symmetries of the unit cell, is real and symmetric. As a

double precision floating point number requires 8 B of storage, 4n2 B are required

to represent this matrix, where n is the number of plane waves used. The upper

bound was taken to be the entirety of memory allocated for the calculations.

A second comparison was carried out with the plane wave method using the unit

cell shown in Fig. 4.7. This cell contains a silicon square that possesses periodically
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Figure 4.6: Calculated bandgap at X in the irreducible Brillouin zone as a function
of runtime (a) and memory use (b) for the unit cell containing a cross of lithium
niobate. Between 121 and 22, 801 terms were used in the plane wave expansion, and
between 625 and 10, 000 nodes were used in spectral transmission-line simulation.
The memory figures used in the plots are estimates. A lower bound based on the
minimum memory required to store the coefficient matrix was used for the plane
wave method. An upper bound found from the actual memory allocation was used
with the spectral transmission-line modeling method. The horizontal dashed lines
are provided for comparing the most accurate values of each method.

spaced square voids that lower the effective permittivity at low frequencies. While

the contrast in permittivity is only moderate, the spatial variation is rapid, and

consequently the Fourier series of the inverse permittivity function converges slowly.

Figure 4.7: Unit cell containing a silicon square (εr = 12 [202]) possessing 25 square
holes. Note that the structure possesses mirror symmetry about both axes and is
rotationally symmetric with rotations of π/2.
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The convergence of each method as a function of runtime and memory is shown in

Fig. 4.8 for point X in the irreducible Brillouin zone. The difference between the

most accurate values of each method was 3% for the dielectric band and 2% for the

air band.

Further simulations were conducted in order to compare the runtime character-

istics of the spectral transmission-line modeling method to the those of the time-

marching method. The test cases considered were the unit cells of the sapphire disk

and lithium niobate cross, which were used in the previous examples. The problems

were discretized on a 50× 50 mesh, which was used by both the spectral and time-

marching methods. The spectral method was executed for a range of runtimes by

exponentially varying the number of power method iterations from 1 to 200, 000 for
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Figure 4.8: Calculated bandgap at X in the irreducible Brillouin zone as a func-
tion of runtime (a) and memory use (b) for the unit cell comprising a silicon square
possessing square holes. Between 121 and 22, 801 terms were used in the plane wave
expansion while between 2500 and 10, 000 nodes were used in spectral transmission
line simulation. The memory figures used in the plots are estimates. A lower bound
based on the minimum memory required to store the coefficient matrix was used
for the plane wave method. An upper bound found from the actual memory alloca-
tion was used with the spectral transmission-line modeling method. The horizontal
dashed lines are provided for comparing the most accurate values of each method.
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a total of 300 simulations. The dimension of the Krylov subspace was maintained at

a constant value of 300. Variation in the runtime of the time-marching method was

effected by exponentially increasing the number of timesteps from 1 to 200, 000,

also yielding 300 simulations. The initial voltages of the latter simulations were

produced with a Gaussian pulse injected at a randomly chosen point in the mesh,

and the voltages were recorded at 128 randomly selected nodes for each timestep.

Upon completion of time-stepping, the eigenmode frequencies were found using the

procedure described in §2.2.2 and §3.1. The computed bandgaps as a function of

runtime at X in the irreducible Brillouin zone are shown in Fig. 4.9.
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Figure 4.9: Calculated bandgap at X in the irreducible Brillouin zone as a function
of runtime for the lithium niobate cross (a) and the sapphire rod (b). Note that the
results of the spectral method are only plotted for times past approximately 25 s and
10 s in (a) and (b), respectively.
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4.2 Circular Patch Resonator

4.2.1 Measured S-Parameters of the Unfilled Resonator

Evaluation of the circular patch resonator spanned two stages. Initial tests com-

prised the measurement of scattering parameters prior to the addition of BL006 in

order to confirm its predicted operation for a known dielectric (air). The measured

and simulated scattering parameters are compared in Fig. 4.10, which shows that

the values of S21 are in good agreement for each of the resonances. The resonant

frequencies and quality factors were extracted from the measured S21 using (3.46)

and (3.47) and are given in Table 4.1. The agreement between the simulated and

measured resonant frequencies and quality factors were found to be very good, with

discrepancies no larger than 0.5% and 4.5%, respectively.
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Figure 4.10: Comparison of the measured and simulated scattering parameter
magnitudes of the unfilled circular patch resonator. The simulated and measured
values have frequency resolutions of 10 MHz and 16.875 MHz, respectively. Note the
good agreement of S21 near the first two resonances.
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Mode Simulated Resonant Measured Resonant
Number Frequency (GHz) Frequency (GHz) Simulated Q Measured Q

1 8.094 8.135 12.31 11.79
2 13.34 13.30 16.42 16.94

Table 4.1: Simulated and measured resonant frequencies and quality factors of
the unfilled circular patch resonator (§3.6). These values were found using (3.46)
and (3.47) for each of the resonances of the simulated and measured S21 series.
Agreement between the resonant frequencies and quality factors is within 0.5% and
4.5%, respectively.

4.2.2 Measured S-Parameters of the Resonator Filled with

BL006

Further tests were carried out upon filling the resonator with BL006. Measurements

were performed on two occasions: five minutes after the structure was filled and

again twenty days later to assess the stability of the electromagnetic characteristics

of the device. On both occasions, scattering parameters were measured for 1-

kHz bias voltages of 0 Vpp and 20 Vpp. These conditions correspond to director

orientations that are nearly perpendicular and parallel, respectively, to the high-

frequency electric field. Comparisons of the various S21 are shown in Fig. 4.11,

while the extracted resonant frequencies are given in Table 4.2. Good agreement is

observed for both bias voltages, suggesting that the properties of the resonator are

stable with time.

Additional measurements were performed on the second occasion by varying

the bias voltage between 0 Vpp and 20 Vpp in increments of 2.5 Vpp (Fig. 4.12).

The resonant frequencies in each of the data series were extracted and plotted

as a function of bias voltage in Fig. 4.13. An abrupt change is observed in each

resonance as the bias voltage is increased past 5 Vpp, which may be considered

the threshold voltage for switching. For higher voltages, Fig. 4.12 and 4.13 show

that the resonator’s electromagnetic characteristics depend continuously on the bias
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Figure 4.11: Measured S21 magnitude of the circular patch resonator filled with
BL006 for no bias voltage (0 Vpp) and the maximum bias voltage (20 Vpp). The
solid and dashed lines correspond to the original set of measurements and a second
set of measurements taken twenty days later, respectively.

field, allowing the resonator to be continuously tuned.

4.2.3 Extracted Dielectric Constants and Loss Tangents

The measured scattering parameters were used in conjunction with the procedure

described in §3.6.1 to find the dielectric constants and loss tangents for the frequen-

cies of the first two resonances. The Ansoft HFSS model employed in the simulation

First Measurement Second Measurement
Perpendicular Parallel Perpendicular Parallel

Mode Source f (GHz) Q f (GHz) Q f (GHz) Q f (GHz) Q

1
S12 5.132 10.11 4.806 12.92 5.142 10.04 4.804 12.98
S21 5.130 10.11 4.807 12.94 5.141 10.02 4.804 13.01

2
S12 8.639 13.10 7.992 21.76 8.663 13.08 7.978 21.73
S21 8.636 13.13 7.993 21.77 8.663 13.05 7.989 21.75

Table 4.2: Measured resonant frequencies and quality factors of the circular patch
resonator filled with BL006 for the director orientations that are parallel and perpen-
dicular to the electric field. The second measurement was taken twenty days after
the first. The small discrepancies between values suggest that the electromagnetic
characteristics of the resonator remain stable over timescales on the order of weeks.
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Figure 4.12: Dependence on bias voltage of the measured S21 magnitude of the
circular patch resonator filled with BL006, shown for bias voltages of 0 Vpp, 7.5 Vpp,
10 Vpp, and 20 Vpp. The line darkness conveys voltage, where the darkest and
lightest shades correspond to 20 Vpp and 0 Vpp, respectively.

of the unfilled structure (Fig. 3.11) was reused in the iterative process by adjusting

the dielectric constant and loss tangent of the substrate material. Due to the enor-

mous computational demands that resulted from the numerous iterations and fully
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Figure 4.13: First (a) and second (b) resonant frequencies of the circular patch
resonator filled with BL006 as a function of bias voltage. These values were cal-
culated from the measured S21 magnitudes by using (3.46) and (3.47). Note the
distinct threshold where switching occurs (near 5 Vpp). Also note what appears
to be asymptotic convergence of the resonant frequencies to respective high-voltage
limits.
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discretized copper layers, only narrow frequency bands were calculated around each

of the resonant peaks and -3 dB points. The computed dielectric constants and loss

tangents are presented in Table 4.3, and a comparison of these results to several

values found in the literature is given in Fig. 4.14 and Table 4.4. Agreement of the

dielectric constants with those reported in [172] is noted as being particularly good.

Finally, analysis of loss is presented in Fig. 4.15, which shows dielectric heating to

be the primary loss mechanism of the filled resonator. Consequently, the extrac-

tion of loss tangents from the measured quality factors is well posed and therefore

accurate.

4.3 Prototype Photonic Bandgap Device

The measured S11 and S21 magnitudes are compared with simulated values in

Fig. 4.16. Good agreement is observed over the frequencies of the first band and

bandgap. However, the second passband exhibits a relative attenuation of approxi-

mately 10 dB. Also, small changes in the scattering parameters on the order of one

or two decibels were observed in response to adjusting the tension of the bolts.

Parallel Orientation Perpendicular Orientation
Mode No. f (GHz) εr tan δ f (GHz) εr tan δ

1 4.804 3.12 0.015 5.141 2.69 0.036
2 7.989 3.11 0.007 8.663 2.62 0.035

Table 4.3: Extracted dielectric constants and loss tangents of BL006 for the director
orientations that are parallel and perpendicular to the high-frequency electric field.

Parallel Orientation Perpendicular Orientation
f (GHz) tan δ [177] tan δ f (GHz) tan δ [177] tan δ

4.804 0.021 0.015 5.141 0.073 0.036
7.989 0.012 0.007 8.663 0.055 0.035

Table 4.4: Comparison of the BL006 loss tangents found in [177] with those calcu-
lated in the present work. Reasonably good agreement is observed.
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Figure 4.14: Comparison of the BL006 dielectric constants found in the literature
to those calculated in the present work. Note that the values of [145,177] were derived
using the same experimental technique. While the general agreement between the
various methods is fair, the values derived in the present work fall within the observed
variance and agree well with those of [172]. The continuous lines were generated in
the present work with data from [145,177].

4.4 Liquid Crystal Photonic Bandgap Device

4.4.1 Measured S-Parameters of the Unfilled Photonic

Bandgap Device

Evaluation of the liquid crystal photonic bandgap device followed that of the circu-

lar patch resonator. The scattering parameters measured prior to the addition of

BL006 are shown against simulated values in Fig. 4.17. Agreement was found to be

good, although some deviation is noted around 8 GHz where the experimental data

exhibit ripples that are absent from the simulation. At frequencies above 8 GHz, the

measured S21 appears to be shifted from the simulation by approximately −5 dB.

However, the prominent features and bandgap edges and attenuation are in excel-

lent accord.
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Figure 4.15: Simulated radiation, dielectric, and conductor losses of the circular
patch resonator as percentages of total loss at the center frequency of each mode. In
each case, the remaining loss (on the order of 50%) is due to the coupling lines. The
losses shown are those that affect the resonator’s quality factor.

4.4.2 Measured S-Parameters of the Photonic Bandgap

Device Filled with BL006

Further measurements were taken after filling the bandgap device with BL006.

Comparisons of the simulated and measured S11 and S21 for bias voltages of 0 Vpp
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Figure 4.16: Comparison of the simulated and measured scattering parameter
magnitudes of the prototype photonic bandgap device.
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Figure 4.17: Comparison of the simulated and measured S11 (a) and S21 (b) mag-
nitudes of the unfilled liquid crystal photonic bandgap device. The simulation is
that of Fig. 3.29 (produced with Ansoft HFSS 12). Additional simulations where the
dielectric constant of the Rogers substrate was changed showed that the ripples at
frequencies above the bandgap are due to resonances in the Rogers substrate. The
small attenuation in the measured S21 at higher frequencies and disagreement around
8 GHz are of unknown origin but likely involve the these resonances, whose greater
prominence in the measured results may be due to imperfections in construction.

and 20 Vpp are shown in Fig. 4.18 and 4.19. Excellent agreement is observed in both

cases, with only small discrepancies near the ripples in the bandgap. The full range
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Figure 4.18: Comparison of the simulated and measured S11 (a) and S21 (b) mag-
nitudes of the liquid crystal photonic bandgap device in the absence of an alignment
field, where the simulation data are that of Fig. 3.30. Note the excellent agree-
ment over the entire frequency band, which may be attributed to carrying out the
simulations with the experimentally-derived material properties of BL006.
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Figure 4.19: Comparison of the simulated and measured S11 (a) and S21 (b) man-
itudes of the liquid crystal photonic bandgap device in the presence of an alignment
field, where the simulation data are that of Fig. 3.31. Once again, note the excellent
agreement over the entire frequency band.

of experimentally-realized bandgap tuning is illustrated in Fig. 4.20, which shows

that application of the maximum bias voltage is accompanied by a small shift and

considerable contraction of the first bandgap. The frequencies between 8.5 GHz and

9 GHz can thus be switched “on” or “off” with an extinction ratio of approximately

20 dB. Additional measurements over a range of bias voltages between 0 Vpp and
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Figure 4.20: Extreme positions of the measured bandgap shown juxtaposed in
terms of S21 magnitude. Application of a 20 Vpp bias voltage results in a contraction
of the bandgap of approximately 500 MHz. This response is also accompanied by a
small shift of the bandgap.
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20 Vpp showed, once again, that the structure’s electromagnetic characteristics are

continuously tunable with the applied bias voltage (Fig. 4.21). The fabricated liquid

crystal photonic bandgap device was thus found to possess a “tunable” bandgap.

4.4.3 S-Parameter Comparisons using an Alternate

Characterization of BL006

Additional simulations of the bandgap structure were conducted using a character-

ization of BL006 found in [177]. A comparison of these simulations to experimental

results is shown in Fig. 4.22, which is used alongside Fig. 4.18 and 4.19 as a metric

in the evaluation the resonator-based permittivity measurements.
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Figure 4.21: Continuous tuning of the bandgap of the liquid crystal photonic
bandgap device, shown in terms of the S21 magnitude for bias voltages of 0 Vpp,
5 Vpp, 7.5 Vpp, 10 Vpp, and 20 Vpp. The line darkness conveys the voltage, where
the darkest and lightest shades correspond to 20 Vpp and 0 Vpp, respectively.
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Figure 4.22: Comparison of the simulated and measured S21 magnitude in the
absence (a) and presence (b) of an alignment field where the simulation was based
on an alternate characterization of BL006 reported in [177] (the frequency-dependent
dielectric constant is shown in Fig. 4.14). Note the lesser agreement when compared
with that of Fig. 4.18 and 4.19.

148



Chapter 5

Discussion

5.1 Spectral Transmission-Line Modeling

Method

The numerical experiments of §4.1.1 for a typical unit cell show that the method

produces accurate results. Excellent agreement is observed between the band struc-

tures produced by the spectral transmission-line and Rayleigh multipole methods

(Fig. 4.3). Similarly, the field plots produced by the method and Ansoft HFSS

are in very good agreement (Fig. 4.4). These results validate the algorithm and,

moreover, the general approach of treating the TLM discretization as a spectral

problem.

The remainder of the results (§4.1.2) establish the method’s speed and memory

use against that of the plane wave and the time-domain transmission-line modeling

methods. The two unit cells used in these evaluations (Fig. 4.5 and 4.7) are char-

acterized by rapidly varying spatial features, and in the first case, high contrast in

permittivity as well. These properties were expected to result in slow convergence
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of the plane wave method owing to the slow convergence of the Fourier series in the

plane wave expansion. Comparisons of the runtimes of the spectral transmission-

line modeling method and the plane wave method for point X in the irreducible

Brillouin zone confirm this and show that in both cases the convergence of the

spectral transmission line is at least two orders of magnitude faster and requires at

least an order of magnitude less memory (Fig. 4.6 and 4.8).

In the case of the lithium niobate cross, some discrepancy exists between the

most accurate results of each method, likely due to incomplete convergence of the

plane wave method. This assessment is supported by examining the convergence

leading up to the most accurate calculations. Increasing the number of nodes

fourfold from 2, 500 to the final number of 10, 000 changed the values computed

by the spectral transmission-line modeling method by less than 1%. In contrast,

doubling the number of plane waves from 12, 321 to the final number of 22, 801

yielded a difference of approximately 5%. Unfortunately, the memory requirements

arising from additional plane waves were prohibitive and prevented more accurate

simulations using the plane wave method.

The unit cells comprising the sapphire rod and lithium niobate cross were further

employed to produce a comparison of the runtimes between the spectral and time-

marching transmission-line modeling methods (Fig. 4.9). While the initial conver-

gence of the time-marching method is slightly faster, the spectral method converged

more quickly to higher accuracy, particularly for the example involving the cross

of lithium niobate; after 70 seconds, the spectral method converged to within 0.1%

of the final computed value while the time-marching method converged to within

1%. These examples illustrate that the methods require comparable computational

resources. However, the spectral method produces the spatial configuration of the

eigenmodes without additional computation.
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5.2 Circular Patch Resonator

Discussion of the circular patch resonator may be divided into an assessment of its

accuracy and a demonstration of its utility. The accuracy of this method ultimately

lies with the strict coherence of experimental measurements to simulated results.

This was confirmed by comparing the simulated and measured S21 of the unfilled

structure (Fig. 4.10). A more quantitative analysis involved a comparison of the

resonant frequencies and quality factors, which revealed a difference of no greater

than 0.5% and 4.5%, respectively, for the first two modes (4.1). Higher-order modes

were similarly compared, but the calculated quality factors were found in less ac-

cord. It is hypothesized that the closer spacing of modes at higher frequencies

may compromise the accuracy of using (3.46) and (3.47) to determine resonant

frequencies and quality factors. As the frequency is approximately proportional to

the inverse square root of the dielectric constant, the error in the frequencies of

the first two modes corresponds to an approximate error of 1% in the dielectric

constant, when the former is used to infer the latter. Both the error and frequency

range covered by the first two resonances were deemed satisfactory.

Confidence in the inferred permittivity also rests with the stability of the res-

onator’s properties over time. The second measurement (taken twenty days after

the first) reveals a small increase in the resonant frequencies for the perpendicular

orientation, which may be due to the fact that the first measurement was taken five

minutes after filling the structure with BL006. This length of time may have been

exceeded by the timescales of the transient phenomena associated with the filling

process, such as director distortions that produce visible disclination lines (§2.3.2).

For this reason, the data of the second measurement were used in calculating the

material properties.
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Two further issues may have affected the computed permittivity values. First, a

non-zero pretilt angle (§2.3.3) may have resulted in an overestimation of the perpen-

dicular dielectric constant, as the electric field in this case is not perfectly orthogonal

to the director. Generally, pretilt depends on the alignment layer, rubbing process,

and liquid crystal [63] and is conventionally measured with instruments that were

unavailable. An attempt was made to measure the isotropic permittivity of the liq-

uid crystal, which, in conjunction with high-bias voltage measurements, would have

allowed an inferential determination of the perpendicular permittivity as in [177].

However, this attempt failed when one of the electrical connections succumbed to

the stress induced by the heating.

The second issue concerns Fig. 4.13, which reveals that the convergence to the

high-voltage limit is incomplete (although not by very much). Higher bias voltages

may have resulted in still lower resonant frequencies and thus higher calculated

dielectric constants. However, this avenue of investigation was excluded by the

DC block and bias tee, whose breakdown voltages could not be exceeded. While

these limitations may have slightly narrowed the difference between the computed

dielectric constants of the parallel and perpendicular orientations, they have not

lessened the predictive value of the resonator measurements, as common alignment

layers, rubbing parameters, liquid crystal layer thicknesses, and alignment fields

were used in each experiment. This reasonably ensured that the resonator and

bandgap structures shared a common director configuration (and therefore effective

dielectric constant) for a given bias voltage.

The utility of the resonator-derived permittivity is demonstrated by the excel-

lent agreement between the measured and simulated scattering parameters of the

liquid crystal photonic bandgap structure (Fig. 4.18 and 4.19). This assessment

is further supported by a comparison of the experimental results of the bandgap
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structure to a simulation that was based on an alternate characterization of BL006

reported in literature (Fig. 4.22). The considerably poorer agreement strongly vali-

dates the rationale for the resonator and justifies the deliberate selection of process

parameters that were common to both devices.

5.3 Liquid Crystal Photonic Bandgap Device

The excellent agreement of the measured and simulated scattering parameters

(Fig. 4.18 and 4.19), and the demonstration of continuous tuning (Fig. 4.21) convey

the successful realization of a dynamically-tunable microwave photonic bandgap de-

vice. A few issues require explanation. The first concerns the prominent ripples

that appear in the the bandgaps shown in Fig. 4.18 and 4.19 and the first and second

passbands shown in Fig. 4.17. During the course of HFSS simulations, several sim-

ulated field plots were reviewed for different frequencies. The voltage standing wave

ratios in both microstrip taper sections were found to reach pronounced maxima

at the ripple peaks, suggesting that the origin of these ripples lie with resonances

in the microstrip tapers. This conclusion was strengthened upon observing a fre-

quency shift in the ripples in response to modifying the simulated permittivity of

the Rogers substrate. The same field plots implicate the presence of approximately

Neumann boundary conditions at both ends of each structure. This result is consis-

tent with the geometrical and physical properties of the device, as the connections

to the 50-Ω lines and those to the waveguide section (both unfilled and filled with

BL006) are abrupt transitions to higher impedances. While the triangular taper

enjoys a simple geometry, the linear change of trace width along the length of the

taper leads to a nonlinear change in the impedance, which is greatest near each

of the ports. The resonances and attendant ripples could possibly be reduced or

153



eliminated by replacing each triangular taper with an exponential or Klopfenstein

taper, for which the change of impedance is more uniformly distributed over the

length of the taper.

The second issue concerns the differences between the simulated and measured

results. The case where the structure is filled with BL006 but not subject to

an alignment field is considered first (Fig. 4.18). Further simulations, which were

performed by increasing the dielectric constant of the Rogers substrate from 3.55 to

3.7, showed that the discrepancies are a result of a small shift in the aforementioned

resonances of the taper structures. This shift, which is approximately 100 MHz

for the ripple in the bandgap, may have resulted from a deviation of substrate

permittivity from manufacturer-specified values, a deviation of taper lengths from

design values, or a difference in boundary conditions. Careful measurement of the

taper structures excluded length as a cause. However, dimensional inaccuracies

associated with the manually placed components (estimated to less than 500 µm)

may have resulted in boundary conditions different from those of the simulation.

Similarly, the substrate permittivity could not be eliminated as a cause in view the

difference between the measured values reported in [205] and those given by the

manufacturer.

In the case where the filled structure was subject to the maximal bias field

(Fig. 4.19), the discrepancies appear to be the sum of two components: the afore-

mentioned shift in the resonance of the taper structures and partial switching of

the liquid crystal in the volume between the silicon squares and the upper con-

ductor. This hypothesis was formed by conducting additional simulations in which

the liquid crystal in these regions was assigned permittivities between those of the

parallel and perpendicular orientations (the simulation of Fig. 4.19 assumed that

no switching occurred in these regions). These simulations showed that an inter-
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mediate permittivity eliminated much of the residual disagreement. However, a

rigorous a priori hypothesis cannot be formed as the effect of the silicon surfaces

on the liquid crystal has not been quantified.

The discrepancies in the simulated and measured results are greatest for the

unfilled structure (Fig. 4.17). It is hypothesized that the ripple near 8 GHz in the

experimental data results from resonance of the taper structures. The reason for its

absence from the simulated data is unclear but may be due to small errors in fabri-

cation that resulted in different boundary conditions at the junctions between the

waveguide and tapers. The ripples in the second passband appear more pronounced

in the measured data, suggesting stronger resonance in the tapers whose associated

loss may also have contributed to the noticeable attenuation of S21 above 8 GHz.

This hypothesis is supported by considering the greatly diminished ripples in the

passbands for the filled device, where the impedance discontinuities at junctions

between the waveguide and tapers are significantly less due to the small difference

between the dielectric constants of BL006 and the Rogers RO4003c substrate.

155



Chapter 6

Conclusion & Future Work

6.1 Conclusion

This thesis described research of photonic bandgap materials that spanned two

topics. The first contribution concerned the development of a eigenvalue-based

transmission-line modeling method for the calculation of dispersion diagrams and

Bloch modes. This work entailed the spectral characterization of the transmission-

line modeling method discretization and the development and evaluation of an

efficient sparse-matrix eigenvalue algorithm that exploited the latent structure of

the scattering matrices. The second contribution concerned development of a liquid

crystal-based tunable photonic bandgap device whose bandgap could be continu-

ously tuned in response to an applied bias voltage. This work included the design,

construction, and experimental evaluation of several devices, including a proto-

type linear microstrip photonic bandgap structure, a circular patch resonator that

was used for permittivity measurement, and the liquid crystal photonic bandgap

structure itself.

The band structures produced by the spectral transmission-line modeling meth-
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od agreed very well with those produced by the plane wave, Rayleigh multipole,

and the time-marching transmission-line modeling methods for each of the three

unit cells considered. Electric field plots produced by the spectral method and An-

soft HFSS are in similar accord. This confirms the method’s accuracy and, more

generally, validates the conceptualization of the transmission-line modeling method

discretization as a spectral problem. Further numerical simulations showed the

spectral transmission-line modeling method to be considerably faster and signif-

icantly less memory intensive than the plane wave method for unit cells whose

Fourier series converge slowly. Numerical comparisons to its time-marching coun-

terpart revealed similar speed and memory use. From these findings, the spectral

method is recommended in lieu of the plane wave method for unit cells charac-

terized by high aspect ratios, high contrast in the dielectric constant, or rapidly

varying spatial detail. Its use is also advised in place of the time-marching method,

as Bloch modes are found automatically without additional computation.

The measured scattering parameters of the unfilled circular patch resonator

agreed very well with full-wave simulations produced by Ansoft HFSS. The mea-

sured and simulated resonant frequencies and quality factors of the first two modes

agree to within 0.5% and 4.5%, respectively, which strongly suggests that the in-

ferred dielectric constants are correct to within approximately 1%. The extracted

permittivity was found to agree very well with values reported by [172] and mod-

erately with those reported by [145,177] (note that agreement between the results

of [145] and [177] is only fair). The electromagnetic characteristics of the resonator

filled with BL006 were unchanged after three weeks, suggesting that such a device

remains stable for at least such time durations.

The fabricated liquid crystal photonic bandgap device exhibited significant tun-

ing in the range of 6–9 GHz, which consisted of a small shift and considerable
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stretching of the first bandgap. The bias voltage could be used to continuously

tune the bandgap between two extreme positions. The measured scattering param-

eters of the liquid crystal photonic bandgap device agree very well with simulations

produced by Ansoft HFSS using the resonance-derived permittivities of BL006. The

substantially poorer agreement between the measured data and HFSS simulations

produced with the BL006 characterization of [177] affirms the utility and validity

of the circular patch resonator.

More generally, this work provides further evidence of the value of nematic liquid

crystals as tunable microwave dielectrics and suggests that future work may stand

to benefit from adopting the approach presented here, wherein the permittivity

measurement employs geometries and process parameters that are common to those

of the final application.

6.2 Future Work

Several avenues of future work are possible. With respect to resonance-based per-

mittivity measurements, characterizations of several other liquid crystals with the

resonator of §3.6 would contribute to the limited body of knowledge on the mi-

crowave properties these materials, which are expected to find greater use in mi-

crowave engineering in the future. It would also be interesting to determine the

isotropic permittivity of BL006, which could then be used in conjunction with

the other measured values to infer pretilt angles. Performing such an experiment

would require a resonator that is able to withstand the associated thermal shock

or a method of heating that is less likely to result in destructive temperature gra-

dients (such as heating in an oven). Results would need to be confirmed with a

conventional method of measuring pretilt.
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Research involving the liquid crystal photonic bandgap device may be contin-

ued on several fronts. The bandgap frequency may be increased by scaling the

structure’s dimensions with the lattice constant and modifying the tapers accord-

ingly. However, it seems doubtful that the manual assembly process described in

this thesis affords sufficient control over dimensional tolerances for any significant

foray into higher frequency work. Instead, one-dimensional or two-dimensional

periodicity might be realized as a patterned signal conductor in a covered copla-

nar waveguide-type structure (where an additional ground plane is placed over the

original signal/ground metalization). Such a design would leverage the precision

of the photolithographic process to enforce nearly all dimensions and limit manual

assembly to placement of the ground plane.

While the structure presented in this thesis may be employed in its present form

as a tunable filter, other uses are also possible. For example, tuning of the second

band may be exploited in negative group velocity applications. Such development

would require a detailed investigation of the band structure as a function of lattice

geometry and materials in order to identify parameters that yield a pronounced

change in the slope of the second band in response to tuning. The tuning of the

second band of the structure developed in this thesis (Fig. 3.28) consists primarily

of a shift, which does not yield a change in group velocity. Also, measurements

performed on experimentally-realized devices would need to be de-embedded to

remove the effect of tapers or other feed-line structures.

Finally, tuning of the band structure might find use in the modulation of neg-

ative refraction inherent to many photonic bandgap structures. For example, with

the correct choice of geometry and materials, it may be possible to develop a lens

based on a tunable photonic crystal slab whose focal point can be shifted in re-

sponse to tuning of the band structure. Further work is needed to determine how
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and to what extent dynamically tunable photonic bandgap materials could be used

in such applications.
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Appendix A

Spectral Properties of the

Pseudoperiodic Vector Wave

Equation

The spectral properties of the vector wave equation are derived in order to jus-

tify the numerical algorithms used to compute band structures. In particular, the

following analysis derives the spectral characteristics of the differential equation

ε(r)−1∇× µ (r)−1∇× E (r) + ω2E (r) = 0 (A.0.1)

where ω2, E(r), µ(r), and ε(r) are the angular frequency squared (eigenvalue),

electric field, magnetic permeability tensor, and electric permittivity tensor, re-

spectively. Note that ∇× is the curl operator with respect to position (r). As the
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material tensors describe a photonic crystal, they must obey

ε (r) = ε (r+ n1a1 + n2a2 + n3a3)

µ (r) = µ (r+ n1a1 + n2a2 + n3a3) ∀n1, n2, n3 ∈ Z

(A.0.2)

where {a1, a2, a3} is the set of linearly independent lattice vectors that define the

unit cell. Under these conditions, Bloch’s theorem [31] restricts E(r) to a space

whose functions may be written as a phase φ multiplied by a function that is

strictly periodic with the lattice. This phase is related to the wavevector k by

φ = eik·r (A.0.3)

Characterization of (A.0.1) is carried out by restating the problem for a fixed value

of k and then showing that the inverse of ε(r)−1∇× µ(r)−1∇× is an operator that

is compact and self-adjoint in a space that is precisely defined. These properties

are sufficient to show that (A.0.1) possesses only discrete eigenvalues, which form

a monotonically increasing set of positive numbers. The analysis is based on the

weak formulation so that boundary conditions between disparate materials are au-

tomatically satisfied. Note that the symbols � and � denote the end of a lemma

and proposition, respectively.

A.1 Definition of Functional Spaces

Several functional spaces are used throughout this section. In each case, the domain

of the functions Ω comprises the surface area (surface volume) of the scaled and

twisted unit torus and is characterized by its direct lattice vectors {a1, a2, a3}. The
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reciprocal lattice vectors

G ≡ {G ∈ R3 : (∃l, n,m ∈ Z) (G = lg1 +mg2 + ng3)} (A.1.1)

satisfy the relation gp · aq = 2πδp,q and may be used to expand an arbitrary square

integrable function in terms of its Fourier series

f (r) =
∑
G∈G

fGe
iG·r

(A.1.2)

Note that the special case of the cubic lattice gives Ω = T3. The following notation

is used to simplify expressions

xsup = sup
{
‖x (r)u‖[L2(Ω)]3 : ∀u ∈

[
L2 (Ω)

]3
where ‖u‖ ≤ 1

}
xinf = inf

{
‖x (r)u‖[L2(Ω)]3 : ∀u ∈

[
L2 (Ω)

]3
where ‖u‖ ≥ 1

} (A.1.3)

where x(r) may be ε(r), ε(r)−1, µ(r), or µ(r)−1. Each of the following functional

spaces is complete in the norm induced by the given inner product (and thus a

Hilbert space):

1. Space of weighted scalar square integrable functions: L2
w (Ω)

This space is equipped with the inner product

(u, v)L2
w(Ω) =

∫
Ω

w (r)u (r) v (r)dr (A.1.4)

where
∫
Ω
is the Lebesgue integral and w(r) is a bounded positive and piecewise

continuous real function that satisfies C−1 < w(r) < C for some C > 0 and for all
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r ∈ Ω. The integral of (A.1.4) evaluates to a complex number, is linear in the first

slot, Hermitian upon exchange of v with u, and positive-definite. Hence it satisfies

the properties of an inner product and induces the norm

‖u‖2L2
w(Ω) = (u, u)L2

w(Ω)
(A.1.5)

When w(r) = 1 the subscript w is dropped. This space is complete in the norm of

(A.1.5), which may be seen by considering that ‖·‖L2
w(Ω) is equivalent to ‖·‖L2(Ω),

that is

C−1 ‖u‖L2
w(Ω) ≤ ‖u‖L2(Ω) ≤ C ‖u‖L2

w(Ω)
(A.1.6)

which shows that a Cauchy sequence in L2
w(Ω) is also a Cauchy sequence in L2(Ω).

Completeness of L2
w(Ω) rests with the fact that L2(Ω) is complete and that all

members of L2(Ω), including the limits of all Cauchy sequences, are also members

of L2
w(Ω)

2. Space of weighted vector square integrable functions: [L2
w(Ω)]

3

This space is based on

[
L2 (Ω)

]3
= L2 (Ω)× L2 (Ω)× L2 (Ω) (A.1.7)

and is equipped with the inner product

(u,w)[L2
w(Ω)]3 =

∫
Ω

(w (r)u (r)) · v (r)dr (A.1.8)
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where w(r) is a bounded second-rank Hermitian positive-definite tensor that sat-

isfies C−1 < (w(r)x) · x/|x|2 < C for some C > 0 and for all r ∈ Ω, x ∈ C3 \ 0.

The elements of this tensor are assumed to be piecewise continuous. The integral

of (A.1.8) possesses the properties of an inner product and induces the norm

‖u‖2[L2
w(Ω)]3 = (u,u)[L2

w(Ω)]3
(A.1.9)

This space is also complete in the norm of (A.1.9).

3. Space of scalar square integrable functions whose divergence lies in

[L2(Ω)]3: H1(Ω)

This is a Sobolev space defined as

H1 (Ω) =
{
u ∈ L2 (Ω) : Dαu ∈ L2 (Ω) ∀α ∈ N3

0 : |α| ≤ 1
}

(A.1.10)

where |α| = ‖α‖1 and D is a weak derivative defined as

∫
Ω

(Dαf (r))φ (r) dr = (−1)|α|
∫
Ω

f (r)
∂|α|φ (r)

∂xαx∂yαy∂zαz
dr (A.1.11)

where φ ∈ C∞(Ω). This space is equipped with the inner product

(u, v)H1(Ω) =
∑
|α|≤1

(Dαu,Dαv)L2(Ω) (A.1.12)

which induces the norm

‖u‖2H1(Ω) = (u, u)H1(Ω)
(A.1.13)
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This space is complete (cf. [43]). Note that the given inner product and norm are

arbitrary, as they are not used explicitly.

4. Space of vector square integrable functions whose curl lies in [L2(Ω)]3:

H(curl,Ω)

This is a Sobolev space defined as

H (curl,Ω) =
{
u ∈

[
L2 (Ω)

]3
: ∇× u ∈

[
L2 (Ω)

]3} (A.1.14)

where the weak curl is defined as

∫
Ω

∇× u · φdr =
∫
Ω

u · ∇ × φdr ∀φ ∈ [C∞ (Ω)]3 (A.1.15)

This space is equipped with the inner product

(u,v)H(curl,Ω) = (u,v)[
L2
ε(r)

(Ω)
]3 + (∇k × u,∇k × v)[L2(Ω)]3 (A.1.16)

where ∇k = ∇ + ik and ε(r) is the material permittivity tensor. Note that this

definition, based on a shift of ik, departs slightly from convention [45]. This inner

product induces the norm

‖u‖2H(curl,Ω) = (u,u)H(curl,Ω)
(A.1.17)

The space of (A.1.14)–(A.1.17) is consistent with the axioms of an inner product

space and moreover is complete, which is shown in the following proposition.
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Proposition 1: The space of (A.1.14)–(A.1.17) is complete.

Proof. The following lemmas are required to complete this proof.

Lemma 1.1: Given an inner product space X, (un,v) → (u,v) ∀v ∈ X where

u ∈ X is the limit of the convergent sequence {un ∈ X}.

A proof of this lemma is given in [43]. �

Lemma 1.2: Given a normed space, if the sequence {un + vn} converges to the

limit c, and furthermore if the sequence {vn} converges to the limit v, then the

sequence {un} converges to the limit c− v.

The relations

∀ε > 0 ∃N : ‖un + vn − c‖ < ε when n > N

ε > 0 ∃N : ‖vn − v‖ < ε when n > N

(A.1.18)

may be used to show that

∀ε > 0 ∃N : ‖un + vn − c‖+ ‖vn − v‖ < ε when n > N (A.1.19)

By the triangle inequality

‖un + vn − c− vn + v‖ < ‖un + vn − c‖+ ‖vn − v‖ (A.1.20)

which gives

∀ε > 0 ∃N : ‖un + v − c‖ < ε when n > N (A.1.21)
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showing that {un} converges to c− v. �

Proof of completeness may be carried out in the manner of [43] by considering

the Cauchy sequence {u} and its convergence

lim
m,l→∞

(
‖um − ul‖2[

L2
ε(r)

(Ω)
]3 + ‖∇k × um −∇k × ul‖2[L2(Ω)]3

)
= 0 (A.1.22)

As each term is positive

lim
m,l→∞

‖um − ul‖2[
L2
ε(r)

(Ω)
]3 = 0 (A.1.23a)

lim
m,l→∞

‖∇k × um −∇k × ul‖2[L2(Ω)]3
= 0 (A.1.23b)

By virtue of (A.1.6)–(A.1.9)

lim
m,l→∞

‖um − ul‖2[
L2
ε(r)

(Ω)
]3 = 0 ⇐⇒ lim

m,l→∞
‖um − ul‖2[L2(Ω)]3

= 0 (A.1.24)

Because these spaces are complete, ul of (A.1.23a) converges to c1 ∈ [L2
ε(r)(Ω)]

3

(and also c1 ∈ [L2(Ω)]3) and ∇k × ul of (A.1.23b) to c2 ∈ [L2(Ω)]3. Expanding ∇k

gives

0 = lim
l→∞
‖∇k × ul − c2‖[L2(Ω)]3 = lim

l→∞
‖∇ × ul + ik× ul − c2‖[L2(Ω)]3

(A.1.25)

Noting that ik× is a bounded operator, the sequence {ik×ul ∈ [L2(Ω)]3} converges

to c3 ∈ [L2(Ω)]3 and hence, using lemma 1.2, {∇ × ul} converges to c2 − c3 ∈

[L2(Ω)]3. Using Lemma 1.1 twice yields
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(c2 − c3, φ)[L2(Ω)]3 =
(
lim
l→∞
∇× ul, φ

)
[L2(Ω)]3

= lim
l→∞

(∇× ul, φ)[L2(Ω)]3

= lim
l→∞

(ul,∇× φ)[L2(Ω)]3 = (c1,∇× φ)[L2(Ω)]3

(A.1.26)

which shows that c2 − c3 ∈ [L2(Ω)]3 is the weak curl of c1. Consequently, c1 ∈

H(curl,Ω). Using the triangle inequality with

lim
l→∞
‖∇ × ul −∇× c1‖[L2(Ω)]3 = 0

lim
l→∞
‖ik× ul − ik× c1‖[L2(Ω)]3 = 0

(A.1.27)

produces

lim
l→∞
‖∇k × ul −∇k × c1‖[L2(Ω)]3 = 0 (A.1.28)

Finally, using (A.1.28) along with

lim
l→∞
‖ul − c1‖[

L2
ε(r)

(Ω)
]3 = 0 (A.1.29)

gives

lim
l→∞
‖ul − c1‖H(curl,Ω) = 0 (A.1.30)

which shows that c1 ∈ H (curl,Ω) is indeed the limit of the arbitrary Cauchy se-

quence {ul}. �

5. Subspace of H (curl,Ω) whose members may be written as ∇kφ,

φ ∈ H1 (Ω): ∇kS
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This space inherits the inner product and norm of (A.1.14)–(A.1.17) and is shown

by the proof of the following proposition to be closed (complete).

Proposition 2:The space ∇kS is a closed subspace of H (curl,Ω).

Proof. Three lemmas are required to complete this proof. In each case k and ε(r)

are fixed and k /∈ G.

Lemma 2.1: (Poincaré-Type Inequality): For all φ ∈ H1(Ω) there exists C1 >

0 such that ‖∇kφ‖[L2
ε(r)

(Ω)]3 ≥ C1‖φ‖L2(Ω).

This may readily be shown by noting that

∥∥∥√ε (r)∇kφ
∥∥∥
[L2(Ω)]3

≥
√
εinf ‖∇kφ‖[L2(Ω)]3 (A.1.31)

and expanding φ as a Fourier series

∇k

∑
G∈G

φGe
iG·r =

∑
G∈G

i (k+G)φGe
iG·r

(A.1.32)

where the φG are the Fourier series coefficients, giving

√
εinf‖∇kφ‖[L2(Ω)]3 ≥ C1‖φ‖L2(Ω) (A.1.33)

where C1 is a constant independent of φ given by C1 = (
√
εinf min |k+G| : G ∈

G}) > 0. Thus,

‖∇kφ‖[
L2
ε(r)

(Ω)
]3 ≥ C1‖φ‖L2(Ω) � (A.1.34)
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Lemma 2.2: For all φ ∈ H1(Ω) and α ∈ N3
0 satisfying |α| = 1 there exists

C2 > 0 such that ‖∇kφ‖[L2
ε(r)

(Ω)]3 ≥ C2‖Dαφ‖L2(Ω).

Once again, expanding φ as a Fourier series gives

∥∥∥√ε (r)∇kφ
∥∥∥
[L2(Ω)]3

≥
√
εinf

∥∥∥∥∥∑
G∈G

i (k+G)φGe
iG·r

∥∥∥∥∥
[L2(Ω)]3

≥ C2

∥∥∥∥∥∑
G∈G

iGφGe
iG·r

∥∥∥∥∥
[L2(Ω)]3

= C2 ‖∇φ‖[L2(Ω)]3

(A.1.35)

where C2 is a constant independent of φ given by

C2 =
√
εinf min

{
|k| ,min

{
|k+G′|
|G′|

: G′ ∈ G\0
}}

> 0 (A.1.36)

Finally, note that

‖∇φ‖[L2(Ω)]3 ≥ ‖D
αφ‖L2(Ω)

(A.1.37)

which strengthens the inequality and gives

‖∇kφ‖[
L2
ε(r)

(Ω)
]3 ≥ C2 ‖Dαφ‖L2(Ω) � (A.1.38)

Lemma 2.3: For all φ ∈ H1(Ω) there exists C3 > 0 such that ‖φ‖H1(Ω) ≥

C3 ‖∇kφ‖H(curl,Ω).

Expanding the norm appearing in the right-hand side gives

‖∇kφ‖2H(curl,Ω) = ‖∇k ×∇kφ‖2[L2(Ω)]3 +
∥∥∥√ε (r)∇kφ

∥∥∥2
[L2(Ω)]3

(A.1.39)

Note that the order of differentiation with respect to the spatial index may be
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exchanged so that ∇k ×∇k(·) = 0, giving

‖∇kφ‖2H(curl,Ω) =
∥∥∥√ε (r)∇kφ

∥∥∥2
[L2(Ω)]3

(A.1.40)

The right-hand side may be estimated with an application of the triangle inequality

∥∥∥√ε (r) (∇+ ik)φ
∥∥∥
[L2(Ω)]3

≤ √εsup
(
‖∇φ‖[L2(Ω)]3 + ‖kφ‖[L2(Ω)]3

)
≤ C−1

3 ‖φ‖H1(Ω)

(A.1.41)

where C−1
3 =

√
εsup(1 + |k|) > 0 (and importantly, C3 > 0), giving the main result

‖φ‖H1(Ω) ≥ C3 ‖∇kφ‖H(curl,Ω) � (A.1.42)

Completeness of ∇kS may be shown by demonstrating that every Cauchy sequence

converges to a limit in the space. The approach used here is derived from [43].

Convergence of a given Cauchy sequence {un} in ∇kS is expressed as convergence

in the space’s norm

lim
k,l→∞

(
‖ (uk − ul) ‖2H2(curl,Ω)

)
= 0 (A.1.43)

which may be expanded as

lim
k,l→∞

(
‖ (uk − ul) ‖2[

L2
ε(r)

(Ω)
]3 + ‖∇k × uk −∇k × ul‖2[L2(Ω)]3

)
= 0 (A.1.44)

As both terms are positive, each must converge to zero giving

lim
k,l→∞

‖ (uk − ul) ‖2[
L2
ε(r)

(Ω)
]3 = 0 (A.1.45)
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Writing un as ∇kφn and exploiting lemmas 2.1 and 2.2 gives

lim
k,l→∞

‖φk − φl‖2L2(Ω) + lim
k,l→∞

∑
|α|=1

‖Dαφk −Dαφl‖2L2(Ω) = 0 (A.1.46)

The limits may be collected giving

lim
k,l→∞

‖φk − φl‖2H1(Ω) = 0 (A.1.47)

showing that {φn} is Cauchy in H1(Ω), which by virtue of being complete contains

the limit of this sequence φlim and consequently, ∇kφlim ∈ ∇kS . Finally, using

lemma 2.3 and the explicit definition of convergence gives

∀ε > 0 ∃N : ‖φn − φlim‖H1(Ω) < ε when n > N

=⇒ ∀ε > 0 ∃N : ‖∇kφn −∇kφlim‖H(curl,Ω) < εC−1
3 when n > N

(A.1.48)

which further implies that

∀ε > 0 ∃N : ‖∇kφn −∇kφlim‖H(curl,Ω) < ε when n > N (A.1.49)

and shows that ∇kφlim is the limit of the sequence {∇kφn}. �

A.2 Spectrum of the Variational Problem

The variational problem may be found using the approach given in [45] by multi-

plying by a sufficiently smooth testing function F and integrating the result over
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the domain Ω

∫
Ω

(
∇× µ (r)−1∇× E

)
· Fdr− ω2

∫
Ω

(ε (r)E) · Fdr = 0 (A.2.1)

Using the generic vector identities

∇ · (a× b) = (∇× a) · b− a · (∇× b)

a · (b× c) = (a× b) · c
(A.2.2)

with the divergence theorem gives

∫
Ω

(
µ (r)−1∇× E

)
·
(
∇× F

)
dr+

∫
∂Ω

n̂×
(
µ (r)−1∇× E

)
· F

−ω2

∫
Ω

(ε (r)E) · Fdr = 0

(A.2.3)

where n̂ is the unit normal vector on ∂Ω. The following analysis assumes that

ε(r) and µ(r) are second-rank Hermitian positive-definite tensors that are bounded

from above and below, where the latter property ensures that µ(r)−1 exists. Note

that these restrictions are consistent with the electromagnetic properties of most

conventional lossless materials.

Further work requires the domain of the problem to be specified. The band

structure of a photonic crystal can examined by considering only the unit cell.

This follows from Bloch’s theorem, which states that the time-harmonic field in an

infinite crystal must satisfy

E (r− d) = eik·dE (r) (A.2.4)

from which it may be deduced that the field must be the product of a strictly
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periodic function and a phase

E (r) = eik·rEp (r) (A.2.5)

Although this expression may be substituted into (2.17a), this approach leads

to working in the space of quasi-periodic functions. Analysis may be simplified by

studying an equivalent problem in the space of strictly periodic functions, as done

in [206]. The curl operator has the following effect on a Bloch function

∇×
[
eik·rEp (r)

]
= eik·r [ik× Ep (r) +∇× Ep (r)] (A.2.6)

Therefore, the eigenvalue problem may be reformulated as

∫
Ω

(
µ (r)−1∇k × Ep

)
·
(
∇k × Fp

)
dr

+

∫
∂Ω

[
n̂×

(
µ (r)−1∇k × Ep

)]
· Fp + ω2

∫
Ω

(ε (r)Ep) · Fpdr = 0

(A.2.7)

where ∇k = ∇ + ik and ∂Ω is the boundary of Ω, which is now defined as the

subset of R3 occupied by the unit cell

R3
UC =

{
r ∈ R3 : gi · r ≤ 2π ∀i ∈ {1, 2, 3}

}
(A.2.8)

where gi are the reciprocal lattice vectors. Similarly, the irreducible Brillouin zone

(unit cell of the reciprocal lattice) may be defined as

R3
IBZ =

{
k ∈ R3\G : ai · k ≤ 2π ∀i ∈ {1, 2, 3}

}
(A.2.9)

where ai are the direct lattice vectors. Note that the condition k /∈ G ensures that
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k + G 6= 0 ∀G ∈ G. As Ep and Fp are periodic, the boundary term vanishes,

leaving

∫
Ω

(
µ (r)−1∇k × Ep

)
·
(
∇k × Fp

)
dr− ω2

∫
Ω

(ε (r)Ep) · Fpdr = 0 (A.2.10)

The correct space for Ep and Fp is now identified as H(curl,Ω). Without ad-

ditional treatment, the null space of the ∇k× operator presents difficulty in the

ensuing analysis. This issue may be resolved by using the Helmholtz decomposi-

tion, following the approach used in [45], which rests on decomposing H(curl,Ω) as

a direct sum of two closed subspaces

H (curl,Ω) = H2 (curl,Ω)⊕∇kS (A.2.11)

where H2(curl,Ω) = ∇kS
⊥. This decomposition stipulates that

(u,v)H(curl,Ω) = 0 ∀u ∈ H2 (curl,Ω), v ∈ ∇kS (A.2.12)

a trivial consequence of which is that

(u,v)[
L2
ε(r)

(Ω)
]3 = 0 ∀u ∈ H2 (curl,Ω), v ∈ ∇kS (A.2.13)

Equation A.2.10 may now be written as

∫
Ω

(
µ (r)−1∇k × (E1 + E2)

)
·
(
∇k × (F1 + F2)

)
dr

−ω2

∫
Ω

(ε (r) (E1 + E2)) ·
(
F1 + F2

)
dr = 0 ∀F1 ∈ H2 (curl,Ω) ∀F2 ∈ ∇kS

(A.2.14)

where E1 ∈ H2(curl,Ω) and E2 ∈ ∇kS. Using (A.2.11), the identity ∇k×∇kφ = 0,
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and (A.2.13) gives two equations

∫
Ω

(
µ (r)−1∇k × E1

)
·
(
∇k × F1

)
dr

−ω2

∫
Ω

(
(ε (r)E1) · F1 + (ε (r)E2) · F2

)
dr = 0 ∀F1 ∈ H2 (curl,Ω)

(A.2.15)

and

ω2

∫
Ω

(ε (r)E2) · F2dr = 0 ∀F2 ∈ ∇kS (A.2.16)

As the second equation implies that E2 = 0, (A.2.14) is reduced to finding a solution

in H2(curl,Ω). The remaining analysis concerns finding the inverse differential

operator contained within (A.0.1) and begins by defining a sesquilinear form as

ã (u,v) =

∫
Ω

(
µ (r)−1∇k × u

)
·
(
∇k × v

)
dr ∀u,v ∈ H2 (curl,Ω) (A.2.17)

This sesquilinear form is bounded and coercive. The latter of property may be

expressed as

ã (u,u) ≥ K‖u‖2H(curl,Ω) ∀u,v ∈ H2 (curl,Ω) (A.2.18)

for some K > 0. These properties are proved in the following proposition

Proposition 3: The sesquilinear form of (A.2.17) bounded and coercive.

Proof. The following lemma is required for this proof.

Lemma 3.1: For all ψ ∈ H1(Ω) there exists D > 0 such that ‖ψ‖2H1(Ω) ≤

D‖∇kψ‖2[L2(Ω)]3
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This may readily be shown by expanding ψ as a Fourier series

∥∥∥∥∥∑
G∈G

ψGe
iG·r

∥∥∥∥∥
2

H1(Ω)

=
∑
G∈G

(
1 + |G|2

)
|ψG|2 (A.2.19)

where the ψG are the Fourier series coefficients. Thus,

‖ψ‖2H1(Ω) ≤ D‖∇kψ‖2[L2(Ω)]3
(A.2.20)

where D is a constant independent of ψ given by D = max{(1 + |G|2)/|k +G|2 :

G ∈ G} > 0. �

Boundedness is readily shown with the Cauchy–Schwartz inequality

|ã (u,v)| ≤ µ−1
sup

∣∣∣∣∫
Ω

(∇k × u) ·
(
∇k × v

)
dr

∣∣∣∣
≤ µ−1

sup

∣∣∣(∇k × u,∇k × v)[L2(Ω)]3

∣∣∣
≤ µ−1

sup ‖∇k × u‖[L2(Ω)]3 ‖∇k × v‖[L2(Ω)]3

≤ µ−1
sup ‖u‖H(curl,Ω) ‖v‖H(curl,Ω) ∀u,v ∈ H2 (curl,Ω)

(A.2.21)

Showing that (A.2.17) is coercive is somewhat more involved. Two projection

operators of C3 may be defined as

P×,Gt = −
1

|G+ k|2
(G+ k)× (G+ k)× t

P·,Gt =
1

|G+ k|2
(G+ k) (G+ k) · t

(A.2.22)

where P×,GP·,G = P·,GP×,G = 0, P×,G + P·,G = I, and t ∈ C3. The sesquilinear
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form may be estimated by using a bound for the inverse permeability and expanding

the integral as a Fourier series

ã (u,u) ≥ µ−1
inf (∇k × u,∇k × u)[L2(Ω)]3

(A.2.23)

which may be written as

ã (u,u) ≥ µ−1
inf

∑
G∈G

|(G+ k)× uG|2 (A.2.24)

Employing the generic identity

|a× u| = 1

|a|
|a× a× u| when a 6= 0 (A.2.25)

gives

ã (u,u) ≥ µ−1
inf

∑
G∈G

1

|G+ k|2
|(G+ k)× (G+ k)× uG|2 (A.2.26)

Using (A.2.22) this may be written as

ã (u,u) ≥ µ−1
inf

∑
G∈G

|G+ k|2 |P×,GuG|2 (A.2.27)

A scalar function ψ ∈ H1(Ω) may be defined as

iP·,G (G+ k)ψG = −P·,GuG (A.2.28)

This definition is consistent with the inclusion of ψ in H1(Ω), which may be seen

179



by considering

iP·,G (G+ k)ψG = i (G+ k)ψG = −P·,GuG

= −(G+ k) (G+ k)

|G+ k|2
· uG

(A.2.29)

which, using lemma 3.1, yields

‖ψ‖2H1(Ω) ≤ D ‖∇kψ‖2[L2(Ω)]3 = D
∑
G∈G

|(G+ k)ψG|2

= D
∑
G∈G

|(G+ k) (G+ k) · uG|2

|G+ k|4

≤ D
∑
G∈G

|G+ k|4 |uG|2

|G+ k|4
= D ‖u‖2[L2(Ω)]3

(A.2.30)

Noting that P·,G(uG + i(G + k)ψ) = 0 and P×,G(G + k)ψ = 0, (A.2.27) may be

written as

ã (u,u) ≥ µ−1
inf

∑
G∈G

|G+ k|2 |(P×,G + P·,G) (uG + i (G+ k)ψG)|2

= µ−1
inf

∑
G∈G

|G+ k|2 |uG + i (G+ k)ψG|2

≥ E ‖u+∇kψ‖2[L2(Ω)]3

(A.2.31)
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where E = min{µ−1
inf |G+ k|2 : G ∈ G} > 0. Finally, consider that

ã (u,u) ≥ Eµ−1
inf

∥∥∥√ε (r) (u+∇kψ)
∥∥∥2
[L2(Ω)]3

= Eµ−1
inf ‖u+∇kψ‖2[

L2
ε(r)

(Ω)
]3

= F ‖u‖2[
L2
ε(r)

(Ω)
]3 + F ‖(G+ k)ψ‖2[

L2
ε(r)

(Ω)
]3

≥ F ‖u‖2[
L2
ε(r)

(Ω)
]3

(A.2.32)

where (A.2.13) has been used and F = Eε−1
inf > 0. Using (A.2.32), (A.2.23), and

letting K = 1
2
min{µ−1

inf , F} > 0 gives

ã (u,u) ≥ K‖u‖2H(curl,Ω)
(A.2.33)

which shows that the sesquilinear form is coercive. �

Thus, by the Lax–Milgram theorem [43] for every u ∈ [L2
ε(r)(Ω)]

3 there exists a

w ∈ H2(curl,Ω) such that

ã (w,v) =

∫
Ω

(ε (r)u) · vdr ∀v ∈ H2 (curl,Ω) (A.2.34)

As ε(r) is bounded the right-hand side is a bounded linear functional. The operator

A : [L2
ε(r)(Ω)]

3 → H2(curl,Ω) may be defined as w = Au

ã (Au,v) =

∫
Ω

(ε (r)u) · vdr ∀u ∈
[
L2
ε(r) (Ω)

]3
,∀v ∈ H2 (curl,Ω) (A.2.35)
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This may be repeated for v, yielding

ã (u, Bv) =

∫
Ω

(ε (r)u) · vdr ∀u ∈ H2 (curl,Ω), ∀v ∈
[
L2
ε(r) (Ω)

]3
(A.2.36)

From the definition of the sesquilinear form (A.2.17), it may be readily shown that

A = B if µ (r)−1 and ε(r) are Hermitian and positive-definite. Moreover, using

(A.2.33) and the Cauchy–Schwarz inequality, the following series of inequalities

K ‖Au‖H(curl,Ω)) ‖Au‖[L2
ε(r)

(Ω)
]3 ≤ K ‖Au‖2H(curl,Ω)

≤ |ã (Au, Au)| =
∣∣∣∣∫

Ω

(ε (r)u) ·
(
Au
)
dr

∣∣∣∣
≤ ‖Au‖[

L2
ε(r)

(Ω)
]3 ‖u‖[

L2
ε(r)

(Ω)
]3

(A.2.37)

∀u ∈ [L2
ε(r)(Ω)]

3 may be used to show that

‖Au‖H(curl,Ω) ≤ K−1 ‖u‖[
L2
ε(r)

(Ω)
]3 ∀u ∈

[
L2
ε(r) (Ω)

]3
(A.2.38)

demonstrating that the operator A is bounded (note thatK−1 > 0). The eigenvalue

equation may now be written as

ε (r)u = ω2ε (r) IAu (A.2.39)

where I is the injection I : H2(curl,Ω) → [L2
ε(r)(Ω)]

3 (henceforth implicitly con-

tained within A). Noting that ε(r) is invertible, (A.2.39) may be written as

u = ω2Au (A.2.40)
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where A is the inverse to the differential operator of (A.0.1). The operator A is

compact in the space [L2
ε(r)(Ω)]

3. Proof of the following proposition is required to

show this.

Proposition 4: The injection H2 (curl,Ω)→ [L2
ε(r)(Ω)]

3 is compact.

Proof. This is a modification of a proof of Rellich’s Theorem found in [207]. Given

a bounded set B in H2(curl,Ω), it is necessary to show that for each sequence in

vk ⊂ B there is a subsequence uk that converges in [L2
ε(r)(Ω)]

3. As B is a ball in

H2(curl,Ω), each sequence contains a subsequence in H2(curl,Ω), that converges

weakly to an element u. It is possible to redefine this sequence by letting un →

un − u, so that the subsequence un converges weakly to 0. Using (A.2.13), the

[L2
ε(r)(Ω)]

3 norm of the nth member of the sequence may be expressed as

‖un‖2[
L2
ε(r)

(Ω)
]3 ≤ ‖un‖2[

L2
ε(r)

(Ω)
]3 + ‖∇kψn‖2[

L2
ε(r)

(Ω)
]3 = ‖un +∇kψn‖2[

L2
ε(r)

(Ω)
]3

≤ εsup ‖un +∇kψn‖2[L2(Ω)]3

(A.2.41)

where ψn is determined in accordance with (A.2.28). This expression may be split

into two terms

J1,n =
∑
G∈G

|G+k|≤R

|uG,n + i (G+ k)ψG,n|2 (A.2.42a)

J2,n =
∑
G∈G

|G+k|>R

|uG,n + i (G+ k)ψG,n|2 (A.2.42b)

such that

‖un‖2[
L2
ε(r)

(Ω)
]3 ≤ εsup (J1,n + J2,n) (A.2.43)
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The second term may be estimated as follows

R2J2,n ≤
∑
G∈G

|G+k|>R

|G+ k|2 |uG,n + i (G+ k)ψG,n|2 (A.2.44)

The |G + k| > R condition may be relaxed because each term of the resultant

sum is non-negative. Furthermore, (A.2.12), (A.2.21), and the second equation of

(A.2.31) may be reused in the present discussion by setting µ(r)−1 = I to give

J2,n ≤
1

R2

∑
G∈G

|G+ k|2 |uG,n + i (G+ k)ψG,n|2

≤(A.2.31)
1

R2
ã (un +∇kψn,un +∇kψn)

≤(A.2.21)
1

R2
‖un +∇kψn‖2H(curl,Ω)

=(A.2.12)
1

R2

(
‖un‖2H(curl,Ω) + ‖∇kψn‖2H(curl,Ω)

)
=

1

R2

(
‖un‖2H(curl,Ω) + ‖∇kψn‖2[

L2
ε(r)

(Ω)
]3
)

≤ 1

R2

(
‖un‖2H(curl,Ω) + εsup ‖∇kψn‖2[L2(Ω)]3

)

(A.2.45)

Finally, using (A.2.30) this becomes

J2,n ≤
1

R2

(
‖un‖2H(curl,Ω) + ε−1

supεsup ‖un‖2[
L2
ε(r)

(Ω)
]3
)

≤ 1

R2

(
1 + ε−1

supεsup
)
‖un‖2H(curl,Ω)

(A.2.46)

As un belongs to a bounded set in H2(curl,Ω), its norm is bounded from above by

a constant greater than zero that is independent of n. Thus, for any δ > 0 there

exists an R such that

J2,n ≤ δ/2 (A.2.47)
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Note that foregoing procedure is required for estimating J2,n as weak convergence

does not imply convergence in the norm (strong convergence).

The term J1,n is estimated more readily. Given that un ⇀ 0 as n → ∞ in

H2(curl,Ω), the following holds

lim
n→∞

l (un) = 0 ∀l (·) ∈ H ′
2 (curl,Ω) (A.2.48)

where l(·) is an arbitrary bounded linear functional and H ′
2(curl,Ω) is the continu-

ous dual of H2(curl,Ω). A collection of bounded linear functionals may be defined

as

lG′ (·) =
∫
Ω

e−iG′·r (·) dr (A.2.49)

and hence

lim
n→∞

lG′
(
uG,ne

iG·r) = 0 ∀G′ ∈ G (A.2.50)

which, using (A.2.28), gives

lim
n→∞

lG′
(
i (G+ k)ψG,ne

iG·r) = 0 ∀G′ ∈ G (A.2.51)

and finally,

lim
n→∞

|uG,n + i (G+ k)ψG,n| = 0 ∀G ∈ G : |G+ k| ≤ R (A.2.52)

Thus for any δ > 0 there is a value of n such that

J1,n ≤ δ/2 (A.2.53)
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Finally, for any δ > 0 there exists values of n and R (independent of n) such that

‖un‖2[
L2
ε(r)

(Ω)
]3 ≤ εsupδ (A.2.54)

which proves that un is strongly convergent in [L2
ε(r)(Ω)]

3 and therefore the injection

H2(curl,Ω)→ [L2
ε(r)(Ω)]

3 is compact. �

The final result is shown by the following proposition.

Proposition 5: The eigenvalue problem of (A.2.1) possesses eigenvalues (ω2)
that form a discrete set of positive numbers that commence at a minimum value
greater than zero and increase monotonically. The associated eigenmodes are
mutually orthogonal with respect to the energy inner product of [L2

ε(r)(Ω)]
3.

Proof. The operator A in [L2
ε(r)(Ω)]

3 is compact as it is a composition of a bounded

operator and a compact injection [42]. For all v ∈ [L2
ε(r)(Ω)]

3 a bounded linear func-

tional may be defined as

l (u) = (Au,v)[
L2
ε(r)

(Ω)
]3 (A.2.55)

∀u ∈ [L2
ε(r)(Ω)]

3. By the Riesz representation theorem [43], there exists a unique z

that satisfies

(u, z)[
L2
ε(r)

(Ω)
]3 = (Au,v)[

L2
ε(r)

(Ω)
]3 (A.2.56)

The adjoint operator A∗ : [L2
ε(r)(Ω)]

3 → [L2
ε(r)(Ω)]

3 may now be defined as A∗v = z,

and hence

(u, A∗v)[
L2
ε(r)

(Ω)
]3 = (Au,v)[

L2
ε(r)

(Ω)
]3 ∀u,v ∈

[
L2

ε(r) (Ω)
]3

(A.2.57)
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By substituting v with Av and u with Au in (A.2.35) and (A.2.36) respectively

and subsequently equating the the right-hand sides, the following relation may be

found

(u, Av)[
L2
ε(r)

(Ω)
]3 = (Au,v)[

L2
ε(r)

(Ω)
]3 ∀u,v ∈

[
L2
ε(r) (Ω)

]3
(A.2.58)

This leads to the conclusion that A∗ = A; that is, the operator A is self-adjoint.

The spectrum of a compact self-adjoint operator is very special. In particular,

the continuous and residual spectra are empty and the point spectrum consists of

discrete values that can only accumulate at zero and must be of finite multiplicity

[42]. This allows A to be expressed as

A (·) =
∑

ω−2∈σ(A)

ω−2uω ( · ,uω)[
L2
ε(r)

(Ω)
]3 (A.2.59)

where σ(A) is the spectrum of A and

(uω1,uω2)[
L2
ε(r)

(Ω)
]3 = δ1,2 (A.2.60)

Returning to the original eigenvalue problem of (A.2.1) and recalling that A is the

inverse of the differential operator, the following holds

ε (r)−1∇× µ (r)−1∇× (·) = A−1 (·) =
∑

ω−2∈σ(A)

ω2uω ( · ,uω)[
L2
ε(r)

(Ω)
]3 (A.2.61)

from which it may be concluded that the eigenvalues (ω2) form a discrete set of pos-

itive numbers that commence at a minimum value greater than zero and increase

monotonically. Moreover, the associated eigenmodes are mutually orthogonal with

respect to the energy inner product of [L2
ε(r)(Ω)]

3. �
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Appendix B

Rayleigh Multipole Method

The mathematical discussion of the Rayleigh multipole method (RMM) found in

this section summarizes the work of [57,58]. Significant groundwork was performed

much earlier by Twersky [208,209], who made substantial contributions to the the-

ory of diffraction gratings comprising dielectric rods. Without loss of generality, the

following derivations are based on the TM polarization (E = Ezêz). With minimal

adjustment to the boundary conditions, this procedure can also accommodate the

TE polarization.

The Rayleigh multipole method is formulated from diffraction grating analysis

(Fig. B.1), which consists of determining the transmitted and reflected orders due

Figure B.1: Diffraction grating showing the incident (Einc), diffracted (Ediff), and
reflected (Eref) fields. Note that Einc = ei(kxx+kyy)êz
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to an incident plane wave with the wavenumber k = (kx, ky). The problem is

periodic along the extent of the grating, as both the incident field and geometry

have translational invariance expressed as

Einc
z (r+ dx̂) = eikxdEinc

z (r)

ε (r+ dx̂) = ε (r)

(B.0.1)

where r = (x, y) ∈ R2. Hence the field above (+y) and below (−y) the grating can

be expressed as the product of a function that is periodic with the grating and a

phase, which may be expanded as

Ez (r) =
∞∑

n=−∞

Cne
ikxxfn (y) + Einc

z (r) (B.0.2)

where

knx = kx +
2πn

d
(B.0.3)

As the terms of the Fourier series are orthogonal to each other and the medium

above and below the grating is homogeneous, each term of the series must be a

solution to the the homogeneous Helmholtz equation

(
∇2 + k2

)
Ez (r) = 0 (B.0.4)

Consequently, the fn (y) terms appearing in (B.0.2) are identified as e+ikny y above

the grating and e−ikny y below the grating, where the sign of the exponent ensures

that field is outgoing and

kny =

√
k2 − (knx)

2

(B.0.5)
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where the square root is defined in terms of its principal value. Orders for which

kny is real are propagating, while the remainder are evanescent.

The task of computing the scattered field thus amounts to calculating the Cn

coefficients. The foregoing discussion is general, without reference to a particular

geometry or material composition. The Rayleigh multipole method requires that

ε (r) conform to a collection of non-intersecting circular geometries in the unit

cell. For simplicity, the unit cell is assumed to comprise only a single circular

discontinuity. Under this condition, the field outside the circular discontinuities

may be expanded as

Ez (r) =
∞∑

m=−∞

∞∑
n=−∞

BnH
(1)
n (k |r−mdx̂|) ei[kxmd+arg(r−mdx̂)] + Einc

z (r) , r /∈ DC

(B.0.6)

where H
(1)
n is the Hankel function of the first kind, and DC is the subset of R2

occupied by the circular discontinuities. This expression treats the scattered field as

a sum of outgoing cylindrical harmonics originating from each circular discontinuity.

A second expansion for the field exists in the annular region around the central disk

(m = 0) up to its nearest neighbor

Ez (r) =
∞∑

n=−∞

(
AnJn (kr) +BnH

(1)
n (kr)

)
einarg(r) (B.0.7)

where r is the Euclidean norm of r. The boundary conditions on the interface

between the circular discontinuity and the surrounding region require that the field

and its first derivative be continuous along the boundary’s normal direction (the

latter condition is derived from continuity requirements of the magnetic field). This
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gives the relation

An =

(
µ0kH

′(1)
n (ka) Jn (υka)− µ0υkH

(1)
n (ka) J ′

n (υka)

µ0υkJn (ka) J ′
n (υka)− µ0kJ ′

n (ka) Jn (υka)

)
Bn =MnBn (B.0.8)

where υ =
√
εr and a are the the refractive index and radius of the circular discon-

tinuity, respectively, and ′ denotes differentiation with respect to r. Note that the

materials considered here are non-magnetic. Substituting (B.0.8) into (B.0.7) and

equating with (B.0.6) gives

∞∑
n=−∞

MnBnJn (kr) e
inarg(r)

=
∞∑

s=−∞
s 6=0

∞∑
m=−∞

BmH
(1)
m (k |r− sdx̂|) ei[kxsd+marg(r−sdx̂)] + Einc

z (r)
(B.0.9)

Using Graf’s addition theorem [210], this may be rewritten as

∞∑
n=−∞

MnBnJn (kr) e
inarg(r)

=
∞∑

s=−∞
s6=0

∞∑
n=−∞

∞∑
q=−∞

Bq−nH
(1)
q−n (ksd) Jn (kr) e

i[kxsd+(n−q)arg(sdx̂)+narg(r)] + Einc
z (r)

(B.0.10)

As the terms on each side are orthogonal expansions with respect to einarg(r),

(B.0.10) becomes

MnBn =
∞∑

m=−∞

BmSm + Einc
n (B.0.11)

where

Einc
n =

(
ky + ikx
|k|

)n

(B.0.12)

may be found by expanding the incident plane wave as an infinite sum of Bessel
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functions of the first kind [210] and

Sm =
∞∑
s=1

H(1)
m (skd)

[
(−1)−m e−isdkx + eisdkx

]
(B.0.13)

Known as the lattice sum, this equation states the central disk’s incoming field

as the sum of scattered fields from the other disks in the grating. This sum is

actually conditionally convergent but can be made absolutely convergent by letting

k → k+ iε (ε > 0). Equation (B.0.13) may be recast into a more quickly converging

series by means of a Poisson summation and integral expansion of the Hankel

functions for m = 0 [211] and m 6= 0 [212]. Alternatively, this expression may be

evaluated by numerically integrating a transformed function [213]. Both methods

were implemented and found to agree well with each other, although the former was

found to be considerably faster and was therefore used in calculations. Solving for

the Bn coefficients allows the field to be expressed in terms of cylindrical harmonics.

The field can also be represented as a sum of transmitted and reflected plane waves.

These can be recovered using Green’s first theorem [58]

∫
U\C

(
V (r′)∇2

r′G (r; r′)−G (r; r′)∇2
r′V (r′)

)
dAr′ =∮

∂U∪∂C

(
V (r′)

∂

∂n′G (r; r′)−G (r; r′)
∂

∂n′V (r′)

)
dsr′

(B.0.14)

where G (r; r′) is the two-dimensional quasi-periodic Green’s function for the Helm-

holtz equation defined as [58]

G (r; r′) = − i
4

∞∑
n=−∞

H
(1)
0 (k |r− r′ − ndx̂|) eikxnd = 1

2id

∞∑
n=−∞

1

kny
ei(k

n
xx+kny |y|)

(B.0.15)

and the contours and areas of integration are those shown in Fig. B.2. Exploiting
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Figure B.2: Unit cell showing the contours and areas of integration appearing in
(B.0.14)

the identity [210]

Jv+1 (z)Hv (z)− Jv (z)Hv+1 (z) =
2i

πz
(B.0.16)

allows (B.0.2) to be rewritten in terms of the transmitted and reflected orders

Ez (r) =
∞∑

n=−∞

2ei(k
n
xx+kny y)

kny d
Tn, y > 0

Ez (r) =
∞∑

n=−∞

2ei(k
n
xx−kny y)

kny d
Rn, y < 0

(B.0.17)

where

Tn =
∞∑

m−∞

(
kny − iknx
|k|

)m

Bm, y > 0

Rn =
∞∑

m−∞

(−kny − iknx
|k|

)m

Bm, y < 0

(B.0.18)

Equations (B.0.17) and (B.0.18) are stated exactly. The scattered field can be

approximated by computing the first few terms of Bm around m = 0 and com-

puting the first few diffracted and reflected orders around n = 0. The accuracy

of this approximation rests on the number of terms included in the expansions

and the frequencies of interest. Lower frequencies yield a more quickly converging

Bm and fewer propagating orders, and hence fewer terms are required to obtain a

given accuracy. Note that in addition to propagating orders, a sufficient number

of evanescent orders must be retained when other objects are in close proximity
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to the grating. In the case of stacked diffraction gratings, these evanescent orders

strongly influence the propagating modes associated with the overall structure.

Multiple gratings of the same kind can be arranged as a stack (Fig. 2.7). The

homogeneous regions of space are unbounded in the x-direction and are character-

ized by constant ε (r). These regions comprise the space between the individual

gratings and the space above and below the grating stack. In these regions, the

field can once again be expressed as the sum of plane waves when the structure is

subject to illumination by a single plane wave. This result follows from the fact

that such a composite structure still satisfies (B.0.1). Furthermore, the field in

these regions can be expressed as the sum of components traveling (decaying) in

the +y and −y directions denoted by Ez+ (r) and Ez− (r), respectively

Ez+ (r) =

[
. . . , eik

−1
x x+ik−1

y y, eik
0
xx+ik0yy, eik

+1
x x,+ik+1

y y, . . .

]T
· v+

Ez− (r) =

[
. . . , eik

−1
x x−ik−1

y y, eik
0
xx−ik0yy, eik

+1
x x,−ik+1

y y, . . .

]T
· v−

(B.0.19)

where v+ and v− are column vectors of coefficients of the individual plane waves

propagating (or decaying) in the +y and −y directions, respectively. The trans-

mission and reflection matrices associated with a single grating are defined as

v
trans(above)
+ = Tup (ω, kx)v

below
+

v
trans(below)
− = Tdown (ω, kx)v

above
−

v
refl(below)
− = Rup (ω, kx)v

below
+

v
refl(above)
+ = Rdown (ω, kx)v

above
−

(B.0.20)

where the superscripts indicate the region of space (Fig. B.3) and the subscripts in-
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dicate the direction of propagation with respect to the y-axis. The quantities vbelow
+

and vabove
− are the components of the incident field, while v

refl(above)
+ , v

trans(below)
− ,

v
refl(below)
− , v

refl(above)
+ are the components of the scattered field. Note that the ele-

ments of these matrices depend on incident plane wave parameters ω and kx. These

matrices map the coefficients of the incident fields on each side of the diffraction

grating to the transmitted and reflected fields. Thus, the field in the homogeneous

regions above and below each grating may be expressed as

vabove
+ = Tup (ω, kx)v

below
+ +Rdown (ω, kx)v

above
−

vbelow
− = Tdown (ω, kx)v

above
− +Rup (ω, kx)v

below
+

(B.0.21)

As gratings in the present discussion possess mirror symmetry about the axis defin-

ing translational invariance (x-axis), Tup (ω, kx) = Tdown (ω, kx) and Rup (ω, kx) =

Rdown (ω, kx), and hence the subscripts can be removed.

As some or all of each grating’s scattered field is also the incoming field to other

grating(s), the total field associated with a multilayer structure can be expressed

as the solution to a linear system of equations using the T (ω, kx) and R (ω, kx)

matrices. Moreover, the variables representing the fields between gratings can be

eliminated to produce the transmission and reflection matrices associated with the

Figure B.3: Diffraction grating stack showing the translation vector t.
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entire grating stack. For example, the transmission and reflection matrices for a

two-layer stack are found to be

T′
2 (ω, kx) = T′ (ω, kx)

(
I−R′ (ω, kx)

2)−1
T′ (ω, kx)

R′
2 (ω, kx) = R′ (ω, kx) +T′ (ω, kx)

(
I−R′ (ω, kx)

2)−1
T′ (ω, kx)

(B.0.22)

The ′ denotes a shift in the reference plane effected by

T′ = DTD

R′ = D−1RD

(B.0.23)

where D is the diagonal matrix that advances phase and is defined as

Dj,k = δj,ke
i(kyty/2+kxtx/2) (B.0.24)

where tx and ty are the x and y components, respectively, of the translation vector

(Fig. B.3). Provided that the spacing between gratings is invariant throughout the

structure, (B.0.22) can be solved recursively by using the matrices associated with a

two-layer structure to generate the matrices for a four layer structure and so forth.

If the computational cost of the single layer matrices is treated as a constant, this

approach bears a computational complexity of O (log (n)), where n is the number

of grating layers.

The transmission and reflection matrices can also be used to calculate the dis-

persion diagrams for structures of infinite extent. The translation operator (with
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arguments suppressed)

T =

 T′ −R′T′−1R′ R′T′−1

T′−1R′ T′−1

 (B.0.25)

maps the field from below the grating to field above (Fig. B.3). The action of the

operator on the field quantities appearing in Fig. B.3 may be expressed as

T

 ubelow
+

ubelow
−

 =

 uabove
+

uabove
−

 (B.0.26)

The eigenvectors of this operator represent the modes supported by the infinite

structure, while the eigenvalues, which may be expressed as ei(kxtx+kyty), are the

difference in phase (and possibly magnitude) between any two field values sepa-

rated by the translation vector (Fig. B.3). Eigenvalues of unit modulus correspond

to propagating modes located at (kx, ky) in the irreducible Brillouin zone. Band

diagrams may be computed by solving the spectral problem of (B.0.25) for distinct

values of ω and kx in a manner that depends on the lattice and choice of path in

reciprocal space. As with the plane wave method, this produces a dense matrix.

However, the evanescent orders decay rapidly as the order increases, so the con-

stituent transmission and reflection matrices can be accurately approximated by

retaining only a modest number of terms.

The standard dispersion diagram for a square lattice may be found in three

steps. The first section (Γ–X) may be computed by setting kx to zero and solving the

eigenvalue problem for distinct values of ω separated by regularly spaced intervals.

The value of ky is recovered from those eigenvalues whose moduli are close to

unity, and a mark is plotted on the band diagram at the coordinate (ky, ω). The
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procedure for finding the second part (X–M) is identical to that of the first with

the exception of setting kx = π/d throughout. The third section (M–Γ) must be

dealt with somewhat differently in order to ensure that the calculated modes satisfy

kx = ky. Exploiting the fact that the stack of diffraction gratings can also be defined

diagonally (Fig. 2.7) allows the problem to be formulated in a coordinate system

that is rotated by π/4. The values k′x and k′y are related to their counterparts in

the original coordinate system by

k′x = kx − ky

k′y = kx + ky

(B.0.27)

The problem is evaluated in the same manner as Γ–X, albeit by setting the length

of the translation vector to d/
√
2, the disk spacing to

√
2d, and k′x to zero, which

ensures that kx = ky.
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Appendix C

Process Parameters & Mechanical

Drawings

C.1 Nanofabrication Process Parameters

C.1.1 Sputtering Processes

Sputtering was carried out with a Semicore/MRC 8667 sputtering system. Upon

loading the machine with samples, the chamber was evacuated with a roughing

pump to a residual pressure of 50 mT and subsequently to 6 µT with a cryopump.

Sputtering was performed in an argon atmosphere of 6 mT, corresponding to an

argon flow rate of approximately 40–45 sccm. The plasma was formed with a DC

power source and targets were cleaned prior to deposition by sputtering onto an

unused glass slide for 30 seconds. The sputtering parameters for each material used

are given in Table C.1.
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Material Power (W) Target Diameter (mm) Rate (nm/min) Final Thickness (nm)
Ti 300 152.4 46 35
Cu 200 152.4 147 1175
ITO 200 139.7 77 58

Table C.1: Sputtering process parameters.

C.1.2 Plasma Etching Process

The parameters used in plasma etching polyvinyl alcohol layers (to determine their

thickness by measuring the resultant step profile) are given in Table C.2. Etching

was carried out with a Trion RIE/ICP plasma etcher for a duration of 3 seconds.

Doubling this time did not appear to result in significant further etching or a visible

reduction of the underlying ITO layer. The parameters given here are based on the

work of [214].

Parameter Value

Pressure (mT) 35
CH4 Flow Rate (sccm) 10
Ar Flow Rate (sccm) 28
Inductive Coupled Plasma Power (W) 150
Reactive Ion Etching Power (W) 150

Table C.2: Plasma etching process parameters.

C.1.3 Removal of Organic Residue

Samples were cleaned with a piranha solution prior to the deposition of sputtered

material. The solution comprised a 4:1 ratio of 95%–98% hydrosulfuric acid (Fis-

cherbrand 351296–4) and 30% hydrogen peroxide (Fischer H324–4). It was prepared

by slowly adding the hydrogen peroxide to the sulfuric acid, as this process is very

exothermic. Samples were immersed for 5 minutes, rinsed with distilled water, and

then dried with nitrogen.
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C.1.4 Wet Etching Processes

The copper of the Rogers RO4003c substrate was etched with a solution containing

40% ferric chloride and 1% hydrochloric acid (415 Copper Etchant, MG Chemi-

cals). Etching times increased as the solution became depleted but did not exceed

approximately 20 minutes. Sputtered copper was etched in about 10 minutes with

a 15%–20% solution of ammonium persulfate (APS Copper Etch 100, Transene

Company). Titanium layers were etched in approximately 5 minutes using a 10%

buffered oxide etch solution, whose active component is buffered hydrofluoric acid.

C.1.5 Photolithographic Process

Photolithography was carried out with a positive photoresist (FujiFilm HPR 504,

Catalog No. 820006), which was spin coated onto samples at a rotational speed of

3000 RPM for a duration of 30 seconds. Samples were then soft baked at 115 ◦C

for 60 seconds and exposed to ultraviolet light using an ABM contact mask aligner

under a positive mask for 5.0 seconds. Samples were subsequently immersed in

developer (MF-354, Rohm Haas Microposit) for 20 seconds and then rinsed with

distilled water. The patterned photoresist was inspected under an optical micro-

scope. In cases where defects were observed, the patterned photoresist was removed

with acetone and the foregoing process was repeated. Samples that were satisfac-

torily patterned were then hard baked for 30 minutes at a temperature of 120 ◦C.

Photoresist layers used to protect samples during processing with the wafer saw

were formed by spin coating the same photoresist at a rotational speed of 500 RPM

and hard baking without patterning.
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C.2 Mechanical Drawings

C.2.1 Microstrip Photonic Bandgap Device Prototype

Figure C.1: Drawing of the signal (metal) layer of the microstrip photonic bandgap
device prototype. The placement of the sapphire overlaid.
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C.2.2 Thru-Reflect-Line Calibration Kit Mask

Figure C.2: Thru-reflect-line calibration kit mask shown scaled 2:1.
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C.2.3 Circular Patch Resonator Mask

Figure C.3: Circular patch resonator masks for (a) quartz superstrate, (b) Rogers
RO4003c signal conductor, and (c) Rogers RO4003c ground conductor. Drawing is
scaled 1:1.
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C.2.4 Liquid Crystal Photonic Bandgap Mask

Figure C.4: Liquid crystal photonic bandgap masks for (a) quartz superstrate,
(b) Rogers RO4003c signal conductor, and (c) Rogers RO4003c ground conductor.
Drawing is scaled 1:1.
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C.2.5 Buffing Machine

Figure C.5: Drawing of buffing machine, comprising the stage (A), platform (B),
drum assembly (C)–(F), roller (G), pillow block drum assembly bearings (H), drum
bearings (I), linear stage bearing (J), and stage motor bearing (K).
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Heijden, F. Karouta, R. Nötzel, E. van der Drift, and H. W. M. Salemink,
“Tuning of narrow-bandwidth photonic crystal devices etched in InGaAsP
planar waveguides by liquid crystal infiltration,” in Photonic and Phononic
Crystal Materials and Devices IX, A. Adibi, S.-Y. Lin, and A. Scherer, Eds.,
vol. 7223, no. 1. SPIE, February 2009, p. 72230C.

[106] C.-Y. Liu, Y.-T. Peng, J.-Z. Wang, and L.-W. Chen, “Creation of tunable
bandgaps in a three-dimensional anisotropic photonic crystal modulated by a
nematic liquid crystal,” Physica B: Condensed Matter, vol. 388, no. 1-2, pp.
124–129, January 2007.

[107] C.-Y. Liu and L.-W. Chen, “Tunable full bandgap in a three-dimensional
photonic crystal modulated by a nematic liquid crystal,” Physica E: Low-
dimensional Systems and Nanostructures, vol. 35, no. 1, pp. 173–177, October
2006.

217



[108] A. D’Orazio, “Infiltrated liquid crystal photonic bandgap devices for switch-
ing and tunable filtering,” Fiber and Integrated Optics, vol. 22, no. 3, pp.
161–172, May 2003.

[109] D. M. Walba, D. A. Zummach, M. D. Wand, W. N. Thurmes, K. M. Moray,
and K. E. Arnett, “Synthesis of ferroelectric liquid crystal oligomer glasses
for second-order nonlinear optics,” in Liquid Crystal Materials, Devices, and
Applications II, U. Efron and M. D. Wand, Eds., vol. 1911, no. 1. SPIE,
1993, pp. 21–28.

[110] S. Kishio, M. Ozaki, K. Yoshino, T. Sakurai, N. Mikami, and R. Higuchi,
“Characteristics of optical switching and memory effects utilizing deformation
of helicoidal structure of ferroelectric liquid crystals with large spontaneous
polarization,” Japanese Journal of Applied Physics, vol. 26, pp. 513–516,
January 1987.

[111] Q.-B. Meng, C.-H. Fu, S. Hayami, Z.-Z. Gu, O. Sato, and A. Fujishima,
“Effects of external electric field upon the photonic band structure in syn-
thetic opal infiltrated with liquid crystal,” Journal of Applied Physics, vol. 89,
no. 10, pp. 5794–5796, May 2001.

[112] D. Kang, J. E. Maclennan, N. A. Clark, A. A. Zakhidov, and R. H. Baughman,
“Electro-optic behavior of liquid-crystal-filled silica opal photonic crystals:
Effect of liquid-crystal alignment,” Physical Review Letters, vol. 86, no. 18,
pp. 4052–4055, April 2001.
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