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Abstract

In this thesis a multi-reference constant denominator
perturbation theory (CDPT) is developed to reduce incomplete
basis set errors arising when solving the Schrédinger
equation with a finite basis set.

The advantage of this method 1s that very few basis
functions are needed and all calculations if carried out to
high enough order in the perturbation treatment effectively
use a complete basis set. As a first step the theory has been
restricted to one particle Hamiltonians and applied to the
anharmonic oscillator to study the convergence properties.
For perturbation calculations carried out to fifth order
results from Pade approximants show an improvement in

accuracy of between one and three orders of magnitude.
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Chapter 1 Review

1.0 Introduction

Since most Schrédinger equations cannot be solved
analytically, many approaches have been developed to get
approximate eigenfunctions and eigenvalues. Almost all these
approaches use basis sets which for practical calculations
nust be finite and therefore incomplete. Sometimes the
incompleteness of the basis sets makes the results calculated
unreliable. For example, in Table 1.1, hydrogenation energies
of four reactions are given. Here results are very dependent

on the basis set. Consider, the third reaction

F2+H2 = 2HF

results range from -29 to -134 kcal mol .

Table 1.1 Hartree Fock and experimental energies of
hydrogenation (kcal/mol)

*

Basis Set STO-3G 3-21G 3-21G  6-21G  6-31G ~ Expt.
LiF+H2
CH.CH.+H

3CH3HH, ) ) ) ) )
~ocH, 19 25 25 22 21 19
F+H,
oup ~29 —98  -98  -126 -134 ~133
NaF+i,,
HFeNE 37 30 46 33 . 30 35

Note: This table is from ref.l



The question of how this error introduced by the
incompleteness of the basis set can be removed or reduced is
one of the basic problems in quantum mechanics and quantum

chemistry.

1.1 Numerical Methods

One direct answer to the question above is to generate the

wave function and energy numerically[z—s] without recourse to
any basis set. In this approach a time independent
Schrodinger equation is used
2 2
[VT+ (2m/h") (E-V(R) ]1® (R) =0 (1.1.1)
and the whole space is divided into a grid. (e.g. cartesian
grid with equidistant points ) For practical calculations

there are two popular methods. The first is the numerical
matrix method[2’3] in which V2®(R) is approximated by the
linear combination of wave function values on the near grid
points. Then the numerical representation of (l1.1.1) becomes
many homogeneous linear equations. The problem can be solved
after calculating the eigenvalues and eigenvectors of a
matrix. The second <c¢lass of methods, called shooting
algorithms[4_9], numerically integrate the Schrédinger
equation above. Starting energies (or trial functions) are
used to get wave function values (or energies). This

procedure 1s iterated and wusually converges to the exact

(within a given numerical error) eigenvalues and



eigenfunction values. A good example is the Numerov method[4]
which can exactly solve the eigen equation in one dimension
case.

In gquantum chemistry numerical methods have been used to
solve the Hartree Fock equation for atomic, diatomic and

linear triatomic systems[6’7].

However, for polyatomic
molecules, the huge multidimensional space needed due to the
representation of wave functions by their grid point wvalues
makes these methods impractical. In addition, the Coulomb

[9]

singularities which arise are difficult to treat.

1.2 Quantum Monte Carlo Methods

Another class of methods which do not use basis sets is

Quantum Monte Carlo (gmc) 107131 (10-12]

In variational QMC
the expectation value of energy <E>=I[H¢T/wT1Wﬁdzdfﬂﬂlesz
can be calculated by sampling |¢T|2. Trial function wT and
initial coordinates of particles are chosen before the
calculation. Each particle is then moved randomly one after
another to a new position uniformly distributed inside the
system. That move is only accepted if the magnitude of |wTi2
has increased at the new position compared with the old
position. If the move is rejected the configuration is
returned to its original state. So after N steps of random
walk

N
<E> = (l/N)Z H¢T(Ri)/wT(Ri) (1.2.1)
i

Because the expectation energy 1s dependent on wT, this



approach cannot get back any information missing in the trial
function.
[13-15]
In another type of QMC method , called exact type

OMC, the Schrddinger equation is rewritten in imaginary time

as

~8y/8t = [~DV2+V (R) “E, 1y (1.2.2)

D=h2/(2m), V(R)=potential, and t=imaginary time with h unit.
Now in the form of a diffusion equation, wvarious procedures
are used to stochastically sample the exact wave function,
Y(R), of the system subject only to statistical error.
However, since the wave function generally has nodes, the
diffusion process has to be done separately in those regions
partitioned by the nodes. The nodes in practical calculations
are assumed to be 1in the same positions as found in the
starting trial function wT(R). As shown in Table 1.2[15]
below, the accuracy of the final results are then dependent
on the nodal positions used in the calculation. In the case
of H2, which has no nodes, its energy calculated is the best

result.

Table 1.2 Comparison of the molecular ground state energies

from exact type OMC and experiment

H2 LiH Li2 HZO
QMC -1.1745 -8.067 -14.991 -76.377
Expt. ~-1.17447 -8.0699 -14.9967 -76.4376

Note: The results in table are in atomic units



1.3 Constant Denominator Perturbation Theory

In this thesis a third approach to remove the incomplete
basis set error 1is explored wusing constant denominator
perturbation theory (CDPT). Constant denominator or average
energy perturbation theory was first proposed by A.
Unséld[l6]. The main idea Dbehind this method is the
following. Consider the first order wave function correction
for the i’th state found by Rayleigh Schrddinger perturbation
theory

‘¢1> =Y |p><n]V|i>/(ei—en) (1.3.1)
n+*l

If |w1> is known the second and third order perturbation

energies can be obtained as

E2 = <¢O]V~E1|¢1> (1.3.2)
and E3 = <wl|V—El|¢l> (1.3.3)
Here Bl = <yy|V]gy> = <i|v[i>

V = perturbation
|w0> = |i> unperturbed state

{ej} = the eigenvalues of zero order hamiltonian HO

Unsdld assumed e,-e, of Eq. (1.3.1) could be replaced by Ae,
the average wvalue of all e;"e, . Then an approximate wave

function correction is obtained.



[v,> = (1/n8e) T |n><n|V]|i>
n#i

(1—|i><i|)V|i>/Ae

i

(1/2e) (1-E;) [1> (1.3.4)

This average energy method is usually used to calculate the

polarizability{17—l9]

[20]

and estimate the induced dipole

moment of molecules. It is also a very popular method to

calculate the interaction energy among molecules[21_24].

In
these applications one common point is that only the third
order perturbation energy of the ground state has been
reached. This point is possibly due to the difficulty in
evaluating the average energy.

The earliest and easiest way to estimate Ae is by replacing
Ae with empirical quantities, for instance, the first

[25]

ionization energies It is just this assumption which has

given the Unsdld approximation a rather bad reputation, since
the final results can be wrong by a factor of 2. Another
possible but time consuming way 1s to make ab initio

calculations of Ae. Such a non-empirical Uns®ld scheme has

al.[zs].

been proposed by Mulder et Similar to this

non-empirical Unséld method is the generalized Kirkwood

[26-28]

method in its one parameter version which is actually

[29] in their CDPT

the same approach used by Cullen and Zerner
method for localized orbitals. The perturbation wave function
which is dependent on Ae is used as a trial function. For

example



[bp> = |ug>+]w, (ae)> (1.3.5)

Here WO and ¥, are the same as those in Eqg. (1.3.1)-(1.3.3).
Ae is then treated as a variational parameter and determined

by the Rayleigh-Ritz optimization procedure

W = <¢T|H]¢T>/<¢T|¢T> S (1.3.06)

£
exact

A third non-empirical Unséld method utilizes the Hylleraas

[30,31]

variation principle with Ae again as a parameter of a

trial function. The Hylleraas variation principle is given by

approx_ appProx,,_ APPrOX <, _ approx

E, 2<-,1;l |v E1|l/,0>+<¢;1 |v El[wl >

(1L.3.7)

E approx, B exact (1.3.8)

2 2

Where Ezapprox and E2exaCt are approximate and exact second
order perturbation energies respectively. The inequality
(1.3.8) is only true for the ground state. Taking leapprox>

= (l/Ae)(l—El)|w0> one can obtain Ae by wvariation in (1.3.8).
In summary, those Uns&ld methods above restrict themselves
to the ground state Dbecause of the wuse of wvariation
principles which are true for the ground state only.
Calculated perturbation energies are to third order and
involve parameter Ae. In this thesis a multi-reference model
space is formed and a complete basis is built into a constant
denominator perturbation series by wusing the <closure
relation. Using a few orthonormal functions as a basis set,

one can, not only reduce the incomplete basis error for the



ground state, but also for excited states. This 1is
demonstrated for the one particle anharmonic oscillator case
where the energy perturbation treatment is carried out to

fifth order and compared to exact numerical results.

1.4 The Anharmonic Oscillator

Both in physics and chemistry, the anharmonic oscillator
has been an important and interesting model. For example, in
quantum statistical mechanics the partition function Q = ¥
exp(—en/kt) plays a critical role in the study of the dynamic
and thermal properties of a system. Early models for the
study of photon dynamics and thermal properties of solids
used the harmonic oscillator, since its eigenvalues can be
obtained analytically. However a more realistic model is the

anharmonic oscillator whose Hamiltonian is given by

H = (1/2)p2+kx+lx-+mx" (1.4.1)

This model has been applied in the field of solid state

physics[32], kinetic mechanisms[33’34], thermal dynamics[35]

[36,37]

and spectrum theory Although the corresponding eigen

equation of the anharmonic oscillator (1.4.1) cannot be
solved analytically, numerical methods such as the Numerov
method[S] can give precise results.

In addition, there have been many non numerical studies of

(1.4.1). These include applications of the semiclassical WKB

method[38], variational <calculations with large  ©basis

se£3[39], and the employment of specialized basis function

. [40,41]
expansions



o =T ap, (x) (1.4.2)
1

which when substituted into the Schrddinger equation result

in a set of linear homogeneous equations for the coefficients

a, - This last method is however restricted to small 1 and m.
For normal Rayleigh Schrddinger perturbation treatments,

i.e. perturbation V = lx3+mx4 and HO=(1/2)p2+kx2, it has been

- pointed out by Bender and Wu[42]

that the energy perturbation
series diverges asymptotically for any m. Other possible
partitionings of the anharmonic oscillator have been

considered by Patnaik[43], and Halliday[44].

For example, in
the case of Patnaik’s work on the quartic oscillator (1=0),
the Hamiltonian 1is partitioned wusing a ladder operator
technique. The resulting zero order eigenfunction basis was
truncated to an arbitrary number of 19 functions. A Rayleigh
Schrédinger perturbation treatment of the energy was then
carried out to third order. Such a calculation is not simple
because of the two steps involved and relatively large basis
set used. Even so his final results as will be seen in
Chapter 3. are not satisfactory.

Recently Killingbeck[45’46] has applied the hypervirial
theorem to the anharmonic oscillator to obtain an energy
expansion. The value of this method is that no wave function
is required and therefore there is no basis set
incompleteness problem. After evaluating the Killingbeck’s
[47,48]

energy expansion to the 32’th order Lai and Madan

calculated the [8,8] Pade approximants. However, even at this



very high level of theory, the final results obtained are
accurate only to the third decimal for small 1 and m. These

results are compared in Chapter 3 with the theory developed

in this thesis.

10



Chapter 2 Theory

2.0 Introduction

In this Chapter a multi-reference constant denominator
perturbation theory 1is developed for single particle
Hamiltonians. In the first step of this theory a basis set of
several zero order reference states 1is selected by a
variational calculation with the Hamiltonian. Once this model
space has been constructed a perturbation treatment which
uses the closure condition to complete the basis 1is then
carried out separately for each of these reference states.
The wave function and energy corrections obtained, however,
are dependent upon the constant denominator Ae used in the
calculation. This Ae can Dbe optimally chosen using an
variational method, which gives an exact upper bound for the
ground state and approximate ones for the excited states.
Alternatively, Pade approximants can also be used to obtain
results for the energy which are relatively independent of
the Ae values.

We Dbegin by reviewing perturbation theory and its
relationship to the [n,n-1] Pade approximants (Section 2.1).
This 1is followed by the development of the multi-reference
constant denominator perturbation theory for one particle
Hamiltonians (Section 2.2). The method for the variational
optimization of the constant denominator is then derived
(Section 2.3). Finally for the application to anharmonic

oscillator details of the construction of the model reference

11



space are outlined (Section 2.4).

2.1 Perturbation Theory and the [n,n-1] Pade Approximants to
Fifth Order

Suppose we want to solve the eigenvalue problem

H|®i> = (HO+V)|®i> = & ¢i> (2.1.1a)

where we know the eigenfunctions and eigenvalues of HO.

HO[¢i> = ei|¢i> or HO]i> = e, [i> (2.1.1b)

If projection operators P’ and Q' are defined as
P’ = |i><i] (2.1.2)

Q" = ¥ |n><n] (2.1.3)
n=i

The wave function ]®i> and Schrddinger equation can be

rewritten as
_— 4
|¢i> = |¢i>+Q |®i> (2.1.4)

(E-Hy) [8,> = (£-,+V) [8,> (2.1.5)

where £ is an arbitrary constant.
Substitution of (2.1.4) into (2.1.5) followed by iteration

with

12



|®i> = |¢i> as an initial guess yields
o> =¥ |u > (2.1.6)
- - g
]¢q> = { R(& ai+V)} |¢i> (2.1.7)
where R, the resolvent is given by

R = 0’ (£-H,) 10 (2.1.8)

The corresponding energy is obtained through the use of the

intermediate normalization condition <®i|¢i> = 1 with
[o¢]
£,= <¢i]H]®i> = Z_Eq (2.1.9)
g=0
_ - q
Eq+l = <¢i|V{R(g ei+V)} ]¢i> (2.1.10)

For Brillouin Wigner perturbation theory &€ is set to €41
and the resulting expressions for wave function to second

order and energy to fifth order become

2
v > =11 v (2.1.11)
q=0

[4g>=E(1/ (e =) [n><n|V]%|g;> (2.1.12)

n+l

5
€= L E (2.1.13)

1 q=o q

Bye1 = <85 [VIZ (1/(e; e ))|n><n|vI%[e,> (2.1.14)

n#i

In the case of Rayleigh Schrddinger perturbation theory ¢

is set to eq- The first and second wave function corrections

13



and corresponding perturbation energies to fifth order for
state [i> are then given as
[¢1> = Z.!n><n|V|i>/(ei—en) (2.1.15)
n+l

lu,> = L [n><n|V|y,>/ (e ~e ) -E;} [n><n|y,>/ (e ,~e )

n=i n#i
(2.1.16)
E, = <i|v|i> (2.1.17)
E, = <i|V1¢l> (2.1.18)
E3 = <¢1|V—El[¢l> (2.1.19)
B, = <w1|V~E1|w2>—E2<¢1|¢1> (2.1.20)
E5 = <w2|V—E1[¢2>—E3<¢l]¢l>—E2<¢1|¢2>—E2<¢2|¢l> (2.1.21)
Now consider the trial function
|¢T> = |¢O>+cl|¢l>+c2]¢2> (2.1.22)
Following the Rayleigh Ritz variational principle
W=<gip [H|Ug>/<Up [d>= 2
2 2 ,
W(c,,c,) = e +te. +2} c_e -y <y_|& -H,|y_>c_c
1772 0 71 +1 0
p=1 P Pt o P 9 P Q
2 2
+Y <y _|V]y >c_c_+ AW § <y_|y_>c_c (2.1.23)
pg=1 P 9 P9 pq=1 P ¢ P a

14
where AW = £ —W(cl,cz)
14
For Rayleigh Schoédinger pertutrbation theory £ = ey and AW

is then usually negative. One can define equation Eg(2.1.23)

14



without the last term, i.e.

_ _ 2 2 B
W2(cl,c2) = e0+el+e2(2c1 c2)+e3(cl+2c2 2c1c2)

2 2
+e4(2c1c2—c2)+02e5 (2.1.24)
where generally Wz(cl,cz)z W(cl,cz)
If c, = 0 , the wvariation of (2.1.24) produces what is

known as the [1,0] Pade, that is

E[{1,0] = W2(C1,O) = e0+el+cle2 (2.1.25)

. , _
With ci= 1/ (1 e3/e2) (2.1.26)

Similarly if cl¢0 and c,*¥ 0, the wvariation of (2.1.24)

2
produces the [2,1] Pade.

* * * *

E{2,1] = WZ(Cl'C2) = e0+el+c1e2+c2e3 (2.1.27)

. * 2

With c, = [e2(e4~e5)—e3(e3—e4)]/[(ez—e3)(e4—e5)—(e3—e4) ]
(2.1.28a)

* 2

and C, = [e3(e2—e3)—e2(e3—e4)]/[(e2—e3)(e4—e5)—(e3—e4) ]

(2.1.28Db)

Since the [1,0] and [2,1] Pade are usually upper bounds on
the perturbation expansion one can define a new energy series

based on these Pades which will be generally well behaved
“rel 2.1.29
e0+e1—e +e (2.1.29)

0 71

*
e2 = Wz(cl,O)—(eO+e1) (2.1.30)

15



* * *

ey = WZ(Cl’CZ)—WZ(Ci’O) (2.1.31)

If we once again apply the Pade approximant method on this

series at the [1,0] level we obtain

* *

* * *
W[1l,0] = e0+el+e2/(l—e3/e2) (2.1.32)

[49]

This procedure will be called the double Pade

2.2 Multi-Reference Constant Denominator Perturbation Theory

For One Particle Hamiltonians

The first step in multi-reference theory is to define an
incomplete basis set called the model space (|i>; i=0,...,M].

This basis set satisfies the conditions

<i]3> = & (2.2.1)

<iH[3 > = 8, 4e; (2.2.2)

where H 1is the Hamiltonian of the one particle system.

Projection operators are then defined by

M
P =Y |i><i] (2.2.3)

M
Q = 1-y [i><i|] or Q =¥ |3><3] S (2.2.4)

where 1 is unit operator and states |j> form an orthonormal
complement to the model space. In order to avoid confusion
later on, the difference between these projection operators

and the primed ones given in equations (2.1.2) and (2.1.3) of

16



Section 2.1 should be carefully noted.

Following the constant denominator approach{zg], states
*
outside the model space have the average energy e . This
results in a zero order Hamiltonian of the form
M *
Hy = L e;|i><d] + e Q (2.2.5)
i=0
The corresponding perturbation operator is then
M *
V = H-Hy = H-( [ e /|i><i|[+ e Q)
e T
i=0
* M * , ,
= H-e - } (e -e ) [i><i] (2.2.06)
1=

The resulting Rayleigh Schrddinger perturbation wave function
corrections to second order and corresponding energies to
fifth order are given in eq.(2.1.15)-(2.1.21) of Section 2.1.
In order to solve these equations consider the perturbation
acting on an intermediate state |[n> ( n = M ) in the model
space.

M *
[H-} e.|3><j| -e Ql|n>
j=0 -

V|n>

(H-e ) |n> (2.2.7)

where the properties <i|j> = aij and Q|n> = 0 have been used.

Hence

E, = <i|[V[i> = <i|H-e ]|i>=0 1 (2.2.8)

Now let Q act on V1n>
QV|n> = Q(H-e ) |n>

= (1-P)H|n>

17



M

QV|n> = (H- Y |j><j|H) |n>
J=0
= (H-e_ ) [n> (2.2.9)
Hence QV|n> = V|n> (2.2.10)

Now the first order wave function correction ]¢1> can be

obtained as

|¢1> =Y Jn><n|V|i>/(ei—en)

n+#l
M *
=n§i[n><n|vll>/(ei—en) +(1/(ei—e ))QV|i>
(2.2.11)
*
Defining Ae = e,-e and using the relation
<n|V]i> = <n|H—ei|i> =0 (2.2.12)
equation (2.1.11) finally becomes
ly,> = (1/ne) (H-e.) [1> = (1/pe)V]i> (2.2.13)

In order to solve for the corresponding second and third
order energy corrections, equations (2.1.18) and (2.1.19),

consider V1w1> or (1/Ae)V2]i>

2 M * M *
VY = (H-Y e.|3><3| -e Q) (H- ¥ e.|i><j|-e Q)
5=0 A 4=0 -
o M x M Mo, * %2
= H -} e.H|3i><J| -e HQ-Y} e.|j><j|H+}Y el|J><]j| -e QH+e Q
j=0 7 j=0 j=0 7
(2.2.14)
5 5 M * M
VT|i> = H7|i>-} e H|3i><j|i> -e HQ|i>-Y e.|i><J|H|i>+
ol Nl s
J=0 J=0
e N * . x 2 .
+Y ej|3><3|1> -e QH|i>+e Qi>

3=0

_ 2_ 2,2 % .
= (H eiH ei+e:.L e QH)|1>

18



2 * * .
= (H"-e,H-e Hte e,)|i> (2.2.15)
i i
Therefore Vi|y,> = [H-e +(1/Ae)(H2—2e H+e2)]]i>
1 i i i

= ((H—ei)/Ae)(H—ei+Ae)|i> (2.2.1¢6)

The resulting energy expressions for the second and third

order corrections are then

. . 2,
E, = <i|V]y;> = (1/pe)<i| (H-e,)“|i> (2.2.17)

By = <¢1|V—El[¢l> = <¢l]v1¢1>

(l/Ae)<i[(H—ei)[(H—ei)+(1/Ae)(H—ei)2]i>

(1/8e) [<i| (H-e ) ?|i>+ (1/8e) <i| (H-e,) 3| i>] (2.2.18)

Equation (2.2.16) can also be used to construct the second
order wave function, i¢2>. Decomposing (2.1.16) into its P
and Q space components yields

M

|¢2>=n§i|n><n|v1wl>/(ei—en)+Qv1¢1>/Ae

M M
= Z'|n><n|V1¢1>/(ei—en)+(1/Ae)(l—z_|n><n|)vjwl>
n+l n=0

M M
= Zl|n><n|V|wl>/(ei—en)+(1/Ae)V!wl>—(1/Ae)§ [n><n|V|wl>
n#i n=0
(2.2.19)

where we have used relation (2.2.8).

If now (2.2.16) 1s substituted into (2.2.19) the final
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result is

{¢2>=—<i|(H—ei)2|i>/(Ae)2]i>+(H—ei)/(Ae)|i>+[(H—ei)/Ae]2|i>
M

+y [n><n[(H—ei)2|i>[1/(ei—en)—l/Ae)]/Ae (2.2.20)
n=zi

For the determination of the fourth and fifth order energy

corrections let V act on (2.2.16) and (2.2.19).

2 x M X
V‘[wl> = (H-e —Z(fej—e )|]><j|)v1wl>
j::
M
(H_ei+Ae)V1w1>i£4;ej_ei+Ae)|3><3]V1w1>

=(H—ei)(Ae+H—ei)2/Ae|i>

M
~(1/8e) ¥ (e —e. +he) |I><3| (H-e,) *|i> (2.2.21)
420 J 71 1
Similarly
M 5 M
Viu,> = T VIn><n|V|y,>/ (e -e ) +V"/bely
n#l

1>~ (1/8e) T V[n><n|V]y, >
n=0
(2.2.22)

substituting (2.2.7), (2.2.16) and (2.2.21) results in

M

v|¢2> = Z.(H_en)In><nlv'¢l>/(ei—en)+v2/Aelwl>
n+1

M
—(1/8e) .

(H—en)|n><n|V|w 7
n=0

M

Y (H—en)|n><n|(H—ei)2|i>/[(ei~en)Ae]
n#*i
20 2
-1/ (Ae) "y (H-e,+Ae) [n><n| (H-e,) 1> >
n=0 i i
2 2., .
+1/(de)” (H-e,) (H-e, +ae) "|i> (2.2.23)
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In the case of the fourth order energy, the two terms in

equation (2.1.20) become

<l/]llV“E1|l[l2> = <¢l|v|¢2>

M

- (l/Ae)B[Z <i|(H—ei)(H—en)|n><n|(H—ei)2|i>Ae/(ei—en)
n=zi
M 2 2 2
;§O<i|(H—ei)(H—en)|n><n|(H—ei) [i>+<i|(H—ei) (H—ei+Ae) |i>
M 2
;§O<i{(H—ei)(en—ei+Ae)[n><n|(H—ei) [1>]
M M
= (1/Ae)3[2 |<i|(H—ei)2|n>|2Ae/(ei—en)~z ]<i[(H—ei)2|n>|2
n=zi n#i
—<i] (H-e,) P|1>74<i| (He ) f[L>+20e<i ]| (Hoe ) O] 1>
+(ae)? <i] (H-ey) 7|1>) (2.2.24)
E <y, [y, >=(1/8e) > [<i| (H-e,) 2 |i>]2 (2.2.25)
271 : i T

Therefore

E, = <¢1|V—El|¢2>—E2<¢,l|¢l>

M
3 . 2,2 . 2,..2
= (1/Ae) g§i|<1](H—ei) [|n>] (Ae/(ei—en)—l)—2<1|(H—ei) | i>
+<i] (H-e,) {[i>+20e<i| (H-e ) 7| i>+ (ae) *<i| (H-e,) ?[i>]
(2.2.26)

Similarly in the case of the fifth order energy, the four
terms found in equation (2.1.21) are given by the following
expressions.

E, <y |y »>=E j[<i| (H-e, ) 2|i>+<i| (H-e,) 3|i>/Ae] / (ne)?

+<i] (H-e ) 2| i><i| (B-e,) ?[i>/8e] / (se)
(2.2.27)

2 3

= [<i| (B-e,) %] 1>
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E3<¢l|¢1>={<i|(H—ei)2|i>2+<i|(H—ei)3|i><i|(H~ei)2|i>/Ae]/(Ae)3
(2.2.28)

and
<¢2|V—El]¢2> = <¢2|v1¢2>

=~<2/(Ae)4)<i|(H—ei)2|i><i|(H—ei)3|i>—3<i](H—ei)2|i>2/(Ae)3
2 2, 2
+(1/0e) 7Y | |<i|(H—ei) [n>| [1/(ei—en)—1/Ae][2+2(ei—en)/Ae]
n#i

+2[1/(ei—en)—1/Ae]<i|(H—ei)3|n><n](H-ei)2|i>/Ae

—(en—ei+Ae)|<i|(H—ei)2|n>[2/(Ae)2} +3<i|(H—ei)4|i>/(Ae)3

+3<i (H—e.)3 i>/(Ae)2+<i (H—e.)2 i>/Ae+<i (H—e.)5 i>/(Ae)4
1 1 1

(2.2.29)
Details of the rather lengthy derivation of this last term
(2.2.29) are given in Appendix 1A. The resulting fifth order

energy is then
E5=<¢2|V—El|¢2>—E3<¢l|¢l>—2E2<¢l;¢2>
—-5<i| (H-e,) 7| i><i| (H-e,) | 1>/ (ne) *-6<i| (H-e,) ?[1>%/ (ae) 3

M
+(1/Ae)22 {|<i|(H—ei)2|n>|2[1/(ei—en)—l/Ae][2+2(ei—en)/Ae]
n#i

+2[1/(ei—en)—1/Ae]<i|(H-ei)3|n><n|(H—ei)2[i>/Ae
- (e _~e, +he) [<i| (H-e,) *|n>]|%/ (ae) *}+3<i| (H-e ) | 1>/ (ae) 3
+3<i|(H—ei)3|i>/(Ae)2+<i|(H—ei)2|i>/Ae+<i|(H—ei)5[i>/(Ae)4

(2.2.30)
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2.3 Variational Optimization Of the Constant Denominator

As pointed out in the introduction the choice of the
constant denominator , Ae, resulting from the partitioning of
H into HO and V 1is rather arbitrary. In this section an
approximate variational method is developed for finding an
optimal Ae.

Assume that states |®j> (j=0,...,1-1) are exact eigenstates
of H with {ej} (3J = 0,...,1~-1) being the corresponding

eigenvalues. Then the following variational principle 1is

true.
i-1
W:<¢T](H?E%fj|®j><¢j|)|¢T>/<¢T]¢T>z € oxact (2.3.1)
where ¢ is the exact eigenvalue of i’th state.
exact
If |3> and ej (3 = 0,...,1-1) are not far from the exact

elgenstates and corresponding eigenvalues. Then [¢j> and Cj
(3=0,...,1i-1 ) in (2.3.1) can be substituted by | 3> and ej to
evaluate an approximate Ae.

Now choose as the trial function the second order

perturbation wave function

|¢T> = [i>+|¢l>+|¢2>

= [1-(1/e) “<i| (H-e,) *[1>]|i>+2 (H-e,) /oe|1i>

2 2 M 2
+(1/Ae) (H—ei) |i>+% |n><n|(H—ei) |i>[1/(e.—en)
n#i 1
-1/Ael/ne (2.3.2)

Here the equations (2.2.13) and (2.2.20) have been used. The
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corresponding norm, <y..|v.> is then given as
Tl¥p 9

Wplug> = (1/8e)*[-<i| (H-e,) P 1>%4<i | (e ) T] 1>

® 20,2 3 3
= L |<n] (H-e,) 7|i>|“1+4<i]| (H~-e,) " |i>/ne

n#i + *

2 2., 2,442
+(1/he) T [4<i| (H-e ) " |i>+Y |<n| (H-e,) 7 |i>]
* n#i *
2

x(1/ (e =e )¥)1+1 (2.3.3)

Details of the intermediate steps used to obtain equation
(2.3.3) can be found in Appendix 1B.

*
Consider now H ]wT> where
* i-1
H = H-} e.|3><j] (2.3.4)
j=0

Let H* act on (2.3.2) and use equations (2.2.1) and (2.2.2)

H |[yp> = ei[l—(l/Ae)2<i|(H—ei)2[i>]|i>

2

+[2ei/Ae+(l-<i|(H—ei)2|i>/(Ae) )](H—ei)|i>

3

+ley/ (ne) P +2/ne] (H-e ) ?|i>+(1/0e) % (Hre ) 3| 1>

M
+3 (H-e;) |n><n| (H-e;) *[1>[1/ (e ~e ) ~1/8e] /ne

n=li
M 2.,
+e%§i|n><n|(H—ei) ]1>[1/(ei—en)—l/Ae]/Ae
i-1 L 5
_(l/Aeggmfjlj><jl(H—ei) |l>/(ei—ej) (2.3.5)

*
then the corresponding expectation value of wT with H 1is

2

WolH o> = (1/8e) *{-e <i| (H-e,) ?|i>2-2<i ] (Hre,) %[ 1>
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x<i|(H—ei)3|i>+ei<i|(H—ei)4|i>+<il(H—ei)5|i>
M 3 2

—22.<1|(H—ei) |n><n[(H—ei) |i>

n+1

M 2, .2

+¥ [<i|(H—ei) [n>| (en—Zei)}

n#i

+(1/0e) > (~4<i| (H-e;) ?|i>+4e,<i| (H-e,) °[1>

+4<1i| (H-e )4|i>+§4[—2[<i|(H—e )2|n>]2+2<i|(H—e )3ln>
i n#i i i
x<n| (H-e,) ?[i>/ (e, ~e ) 1)
+(1/8e) % (e, <i| (H-e,) 2|i>+6<i| (H-e,) [i>
1 1 1
M 2 2,2
+y [3/(ej-e ) te /(e e ) 1[<i] (H-e,) " [n>] te,
n#1l
it 2,2 2 . 2,
j;% ej[<j|(H—ei) [i>] /(ei~ej) } +4<1](H—ei) [1>/ne
(2.3.6)

Again details of the intermediate steps used to obtain
(2.3.6) can be found in Appendix 1B. Substituting (2.3.3) and
(2.3.6) back into (2.3.1) finally yields an expression for W
in terms of variable parameter Ae.

The solution of dW/d(Ae)=0 will then give an approximate
optimal constant denominator, Ae. This solution is obtained
directly by the computatibnal symbolic program, Maple[so].
The details of the deduction of W and dW/d(Ae) by Maple can

be found in Appendix 3.
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2.4 Anharmonic Oscillator

For the harmonic oscillator the Schrddinger equation can be

solved analytically, the resulting first five eigenfunctions

are then
_ 2
$g = Npexp(-x7/2) (2.4.1)
2
¢, = N, xexp(-x /2) (2.4.2)
2 2
¢2 = N2(—1+2x Yexp (-=x7/2) (2.4.3)
- 3 2
¢3 = N3(—3x+2x )yexp (-x7/2) (2.4.4)
by = N4(3—12x2+4x4)exp(—x2/2) (2.4.5)
where the Ni (L =0, 1, 2, 3, 4) are normalization factors.

For small 1 and m, the functions above can be taken as

approximate eigenfunctions of the anharmonic oscillator

H = (1/2)p2+(1/2)x2+lx3+mx4. (1.4.1)

If the exponential coefficients can be variationally changed
and the functions are kept orthonormal, an improved set of

approximate eigenfunctions is obtained with

¢y = Noexp(—r0x2/2) (2.4.6)

¢, = leexp(—rlxz/Z) : (2.4.7)
_ 2 2

¢y = Nz[l—(ro+r2)x ]exp(—rzx /2) (2.4.8)

3 2

¢3 = N3[x—(rl+r3)x /3]exp(—r3x /2) (2.4.9)
_ 2 4 2

b, = N4[l+b2x +b4x ]exp(—r4x /2) (2.-4.10)
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where b2 and b4 determined by orthogonality conditions are

given by
o 2 2 2. .2 2 2 3
b2 = (6r4r2r0+6r4r2+r4r2+2r4r0 r2r0+9r0r4+4r0r2+5r0)/
(r,c +tr.r —2r2+5r2+3r r,) (2.4.11)
470 072 2 0 472 T
b, = -(r.+r )2/3+(1/3)(r +r ) (6r,r.T +6r2r +r r2+2r2r
4 0 4 0 ~4 47270 470 7472 470
2 2 2 3 2 2
—r2ro+9r0r4+4ror2+5ro)/(r4ro+ror2—2r2+5r0+3r4r2)
(2.4.12)
The nonlinear optimization of the exponents ( r.; i=0, .
.,4} is carried out using Maple and the wvariational
principle (2.3.1).
i-1
W, = <¢i[(Higqu[¢j><¢j|)|¢i>/<¢i|¢i>
i-1
= <¢i|H[¢i>~§;8j<¢i|¢j><¢j|¢i>
= <¢i|Hl¢i> (2.4.13)
where the orthonormal property <¢i]¢j> = Sij has been used.

Details of this symbolic computation are given in Appendix
3G. Once this optimized set of basis functions has been
determined the corresponding zero order reference functions

which form the model space can be obtained by 1linear

variation.
e, = <i|H[i>/<i]i> (2.4.14)
4
[i> = ¥ b,.]e.> (i=0,...,4) (2.4.15)
420 13173
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Matrix elements required in equation (2.4.14) can be
obtained by the integral program inttl in Appendix 3C. The
diagonalization program used to obtain corresponding
eigenvalues and eigenvectors is given by the Fortran program

eisg in Appendix 2.
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Chapter 3 Results and Discussion

3.0 Introduction

In Chapter 2 a multi-reference constant denominator
perturbation theory (CDPT) was developed. The general purpose
of this theory 1s to reduce incomplete basis set errors
arising when solving the Schrddinger equation with a finite
basis set. As a first step, the theory derived, has been
restricted to one particle Hamiltonians. Since this is a
perturbation method, a major interest 1s then in its
convergence. In order to examine this question, the
anharmonic oscillator

H = p2/2+x2/2 +lx3+ mx4 (1.4.1)

has been studied in five different cases using the reference
functions given in Section 2.4. First, the effects of the
size and type of perturbation used are examined both for the
variational choice of Ae and the Padé approximant method.
Secondly, the effects of the size of the multi-reference
model space employed in this method are examined for the
ground state. Finally, conclusions as well as suggestions of
how this multi-reference CDPT approach can be extended to

many particle systems are discussed.

3.1 Effects of The Size and Type of Perturbation on The

Convergence of CDPT

A: Variational Results

Energy corrections calculated to fifth order are presented
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in Tables 3.la and 3.1b for the symmetric potentials 1=0,
m=0.1; 1=0, m=10 and asymmetric potentials 1=0.1, m=0.1;
1=1.0, m = 1.0 respectively. Plots of these potentials along
with the harmonic case 1 = 0, m = 0 are shown in Fig. 3.1.
The average energy Ae used in these calculation is from
variational method with trial function Y= ¢O+¢l+w2.

From the resulting perturbation series it can be seen that
the first five enerqgy corrections converge rapidly,

especially the fifth energy correction, E Comparing the sum

5
of the first five energy corrections with variational
results, W, we can see that such a energy correction series
converges to a value slightly better than the wvariational
result while still an upper bound to the exact energy.
Although in the model space five functions (see eqn.

(2.4.6)-(2.4.15) 1in Section 2.4) have been used, in the

quartic oscillator case (i.e. 1

0), only 3 functions make
contributions to the ground and second excited state energies
while 2 functions figure in the first excited state due to
symmetric restrictions. For m = 0.1 it is seen that the
convergence 1s much better than the m = 10 case no matter
whether ground or excited is being calculated. For example,
the ground state energy for m = 0.1, improves after
perturbation by more than 2 orders of magnitude. However the
corresponding result for m = 10 shows a markedly smaller
improvement of about a factor twenty. This result is due to
two related factors. The first is that the starting point

EO+El determined by the reference state in the model space is
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Table 3.la The Energy Corrections of CDPT for the Anharmonic

Oscillator having a Symmetric Potential

1 =0, m= 0.1

n =20 n =1 n =2
E+E, 0.55922078 1.7732529 3.1468516
E, ~0.60568377x10" % -0.28331632x107°  -0.62317408x10 2
E, ~0.10638020x10"% -0.61352147x10" > -0.13396620x10 2
E, ~0.27372457x107° -0.25310562x10"°> -0.55052507x10 >
E ~0.42001722x10°°  0.12257083x10°° -0.55738406x10 °
Sum 0.55914681 1.7695532 3.1387302
W 0.55914682 1.7695537 3.1387322
Exact 0.55914633 1.7695026 3.1386240

1 =0, m=10

n=2~0 n =1 n = 2
B+, 1.5093503 5.3763776 _, lo.245%03
E, ~0.2890799x10 ~0.3581007x10" % -0.6589216x10
E, ~0.8190135x107°  -0.9909824x1072 -0.1762156x10 *
E, —O.4629495x10_2 —O.6667632x10_j —0.1111389x10‘2
E ~0.7185399x10 0.8485106x10 0.1498332x10
Sum 1.5051768 5.3246192 10.3512904
W 1.5051776 5.3246453 10.3513576
Exact 1.504972 5.321608 10.34706
Note: 1.The average energy Ae used in the calculation is

from Rayleigh Ritz variational principle with trial function

bp = Yoty

EO+E1+E2+E3+E

3.W is the wvariationa

2.5um =

4*Es

1 energy.

4.The exact results are from ref.39.
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Table 3.1b The Energy Corrections of CDPT for the Anharmonic
Oscillator having an Asymmetric Potential
1 = , m = 0.1
n =290 n =1 n = 2

Eg+E; 0.55360114 1.7475173 3.1086418

E, ~0.66552910x10 %  -0.14701598x10 2 -0.94541810x10
E, ~0.13223122x10"%  -0.30743279x10° > -0.21596789x10
E, ~0.39711597x10 > -0.15770162x10 3 =0.11273851x10
Eg ~0.24159471x10° %  -0.12585386x10 ° -0.43687582x10
Sum 0.55351714 1.74558075 3.09589619

W 0.55351716 1.74558207 3.09589619
Exact 0.55351618 1.7455093 3.0953972

1 = , m = 1.0
n =20 n = 1 n =2

Eq*Eq 0.72135734 . 2.5032680 . 4.96893420
E, -0.553754x10 -0.13125x%10 ~-0.06860951
E, ~0.178945x107°  -0.36827x10 1 ~0.02294799
E, ~0.104622x103 ~0.15981x10 > -0.01667071
E ~0.1593 x107®  -0.28195x107° ~0.41506x10 ">
Sum 0.72051986 2.5014271 4.8602909

W 0.72052003 2.5014275 4.8608645
Exact 0.72046305 2.5013595 4.8386778
Note: 1.The average energy Ae used in the calculation is

from Rayleigh Ritz variational principle with trial function

Vp = Yot MYy

2.5um =

E +E,+E +E,+E +E

0 71 72 73

5

3.W is the wvariational energy.

4 .The exact results are from ref.39.
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worse for m = 10. The second is that the perturbation for mn
= 10 is much larger. Since the functional form of the model
space basis set is derived from the eigenfunctions of
the harmonic oscillator, one can take the difference between
eigenvalues of harmonic and anharmonic oscillators as a rough
measure of the size of the perturbation. For the harmonic
oscillator, the first three energy eigenvalues are 0.5, 1.5
and 2.5. In comparison for m = 0.1 the exact energies are
higher by 0.05914633 , 0.2695026 and 0.638624, Similarly for
m = 10, the differences are 1.004972 , 3.821608 and 7.84706.
One might therefore expect slower convergence for the larger
anharmonicity. This also explains why the ground state has
a faster convergence than the excited states.

In Table 3.1b the change of convergence with 1 and m is a
slightly different from that in Table 3.la. The excited
states, especially, have much worse convergence than the
ground state. For example, the second excited state, in the
case of 1=0.1; m=0.1, has an improved energy by more than two
orders of magnitude. However, for the 1 = 1.0; m = 1.0 case,
only an improvement of less than one order of magnitude has
been achieved after the perturbation treatment.

The effects of 1 and m on convergence are more serious than
for the symmetric potential. Consider the two cases 1 = 0.1,
m = 0.1 in Table 3.1b and 1=0, m=0.1 in Table 3.la. Although
the asymmetric case has an energy closer to the harmonic
oscillator than the symmetric case, the perturbation series
for the symmetric case has the faster convergence rate. For

instance, in the case of the ground states of the two cases,
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the energy corrections for the symmetric case give one more
order of improvement than the asymmetric case. The
explanation for this could be that the more complicated
potential (see Fig. 3.1) should have a more complicated
eigenfunction which 1s more difficult to approach in a

perturbation treatment with the model space used.

B:Pade Approximant Results

In Table 3.2 results with different constant denominators
Ae, are shown to see how Ae affects the rate of convergence.
One quantity, p, used to measure the relative remaining
incomplete basis set error is defined as

p = (final result-Exact)x100/(Starting value-Exact) (3.1.1)

Consider the second excited state of 1 = 0.1 and m = 0.1 in
Table 3.2 as an example. The resulting energy perturbation
expansions are very much dependent on the average energy Ae
used. The first series with Ae = -6.00 is fluctuating and
its perturbation energy at fifth order has a p of 14.15%.
In other words the incomplete basis set error has been
reduced by 100%-14.15% = 85.85%. The second series with Ae =
-8.465 which is from the variational method gives the best
result. The third series with Ae = -10 1is a smooth
monotonically decreasing series which has removed the
incomplete basis set error at fifth order by 95.02%. Although
these three different expansions give three different

results, the application of Pade approximants to these series
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Table 3.2. The Perturbation Energy Corrections with Different
Average Energy Ae and the Results after Pade

The ground state of 1 = 0.1,m = 0.1

a b c
e ~9.000 ~11.281" ~13.000
Ey+E, 0.55360114 0.55360114 0.55360114
E, ~0.83420759x10™%  -0.66552909x10"%  -0.57752363x10 %
Eq 0.36778752x107% -0.13223122x107%  -0.17594170x10" %
E, ~0.26482576x107° -0.39711597x10°°  -0.18271209x10 >
Eg 0.27326362x10 > —0.24159472x10"° ~0.18271209x10 >
Sum 0.55351817 0.55351715 0.55351773
ol 2.3440% 1.1431% 1.8225%
E[1,0] 0.55351801 0.55351809 0.55351809
E(2,1] 0.55351677 0.55351676 0.55351676
W[1,0] 0.55351675 0.55351674 0.55351673
Exact 0.55351618 0.55351618 0.55351618
02 0.6677% 0.6590% 0.6524%

The first excited state of 1 = 1,m 0.1

a b C
Ae ~6.000 ~8.850" ~10.000
BB, 1.7475173 - 1.7475173 . 17475173
E, ~0.21684749x10™% -0.14701598x10 ~0.13010940x10
E, 0.36115630x10 > -0.30743279x10 ">  -0.39041225x10 >
E, ~0.35991203x107°  -0.15770162x10 >  —0.18189980x10 >
E 0.50444060x107° -0.12585386x10 >  —-0.50517718x10
Sum 1.74585451 1.74558075 1.74559338
pl 17.1918% 3.5581% 4.1871%
E[1,0] 1.74565842 1.74565842 1.74565842
E[2,1] 1.74555819 1.74555671 1.74555610
W[1,0] 1.74555248 1.74555083 1.74555014
Exact 1.7455093 1.7455093 1.7455093
p2 2.1504% 2.0680%

2.0340%
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Table

3.2

(continued)

The Perturbation energy Corrections

with Different Average Ae and the Results after Pade

The second excited state of 1 = 0.1,m 0.1
a b c
re ~6.000 ~8.465" ~10.000
Eo+E, 3.1086418 3.1086418 3.1086418
E, ~0.13338267x10" 1 -0.94541810x10 2  -0.80029664x10 2
E, O.ll8lO638x10:§ —O.21596789x10_§ —0.27759973x10:§
E, ~0.18851850x10 % -0.11273851x10 ~0.13474865x10
E. 0.26716645x10 % ~-0.43687582x10"°  —0.45860194x10 3
Sum 3.09727108 3.09589618 3.09605675
ol 14.1482% 3.7675% 4.9798%
E{1,0] 3.09638852 3.09638853 3.09638853
E[2,1] 3.09570475 3.09569730 3.09569300
Wi1,0] 3.09566358 3.09565597 3.09565115
Exact 3.0953972 3.0953972 3.0953972
p2 2.0112% 1.9538% 1.9173%
Note: 1.The average energy Ae with star is from variational

method with trial function WT = w0+¢l+¢2.

2.5%um =

3.p1

4.p2

]

E+E . +E +E.+E +E_.

0 71 72 73

4

5

(Exact—Sum)xlOO/(Exact—(EO+E1)).

(Exact—W[l,O})xlOO/(Exact—(EO+El)).

5.Exact results are from ref.39.

yields results with almost the same energy.

E[1,0] which involves energy corrections to third order,

the equations

(2.2.17) and

(2.2.18)

in Chapter 2,

For the case of

from

it can be

seen that this Pade approximant 1is strictly invariant to any

denominator shifts.

This can be seen
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fourth and fifth order energy corrections, E4 and E5,
however, are dependent on the all reference functions in the
model space. Hence the E[2,1] Pade which wuses these
corrections shows a slight variance with Ae, especially for
excited states. The double Pade, W[1,0], defined by
eq.(2.1.25)-(2.1.32) 1is found to be the most successful
method for removing the incomplete basis set error. It also
shows very little dependence on the Ae value. Take the second
excited state of 1 = 0.1 and m =0.1 as an example again. The
incomplete basis set error has been reduced by about 98%
after the application of the double Pade. The double Pade not
only improved the results for the "a" and "c" series but also
for the "b" series which uses Ae from the variational method.
This fact shows that the double Pade is a good technique to
process the perturbation series to obtain an accurate

estimate of the energy.

C: General Results

Table 3.3a presents the energies of the first three states
for five different potentials which include the symmetric
cases(l = 0, m = 0.1, 1.0, 10) and asymmetric cases (1 = 0.1,
m=20.1; 1 =1.0, m=1.0) in (1.4.1).

For symmetric cases if m increases the relative remaining
incomplete basis set error p increases. For excited states
almost the same values of p are observed. In general for the

symmetric potentials in Table 3.3a the relative incomplete
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basis set errors of the ground state and the the excited
states have been reduced by 98-99%.

For the asymmetric potential, results are inferior to those
found in the symmetric cases. Again the excited state
energies are not as accurate as the ground state. The worst
case is the second excited state of 1 = 1.0, m =1.0, which
has a 0.130256 energy difference between starting and exact
points. Its relative incomplete basis set error, however,
still has been reduced by 89.45%.

The results of Patnaik[43] and Lai’s{48]

are also presented
in Table 3.3a for comparison.

In Patnaik’s work, a two step method is used, in which 19
basis functions are optimally selected and then a
perturbation treatment is carried out to third order. Below

we compare his results with ours at third order for the case

1=0, m=0.1 with variational optimized Ae (See Table 3.3b).

Table 3.3b The Comparison of Perturbation Energies at The
Third order

n=0 n=1 n=2
a 0.55914729 1.769964185 3.13891332
b 0.55%92002 1.7703405 3.1444874
Exact 0.55914633 1.7695026 3.1313992

Note: 1.Results of type "a" are from the developed CDPT in
Chapter 2 and the denominator Ae is from variational method
with trial function ¢T=w0+wl.

2.Results of type "b" are from Patnaik’s work.
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For the developed CDPT perturbation up to third order in
Chapter 2 only one reference function is involved for each
state in the calculation of the energy corrections. Although
this theory is much simpler than Patnaik’s work, comparison
of results shows the developed CDPT method has much more
accuracy.

The other results shown in Table 3.3a are [8,8] Pade
approximants from Lai’s work[48]. As reviewed in Section 1.4
such a calculation based on the hypervirial theorem involves
the energy expansion in terms of the quartic coefficient m to

the 32'th order. However these results are still unreliable.

D: The Effect of Perturbation Order

If only one wave function correction is used in the
calculation, the energy perturbation can be carried out to
third order with trial function wT = wo+wl. (see Appendix 3F)
Table 3.4 presents such results for the 1=1.0, n=1.0
asymmetric potential and compares them with those found from
the two wave function corrections wT = wo+¢l+w2. In both
types the average denominator, Ae has been variationally
optimized. In addition the same model space is used hence
both have the same starting point EO+E1' For the

perturbation treatments to third order the second order

energy corrections, E are larger in magnitude than those

2/
found in perturbation treatments carried out to fifth order

because of the different wvariational Ae wused. Also the
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Table 3.4. The Comparison of Perturbation Energies between
Third Order and Fifth Order in the Case 1=1.0, m=1.0

n =290 n =1

3rd Order 5th Order 3rd Order 5th Order
B +E, 0.72135734 0.72135734 2.5032680 2.5032680
E,  -0.818094x10 % -0.553754x10 > -0.18248x10 > -0.13125x10 2
By -0.36  x107' -0.178945x10 > -0.41  x107° -0.36827x1073
E, ~0.104622x107° ~0.15981x10 >
E ~0.1593 x107° ~0.28195x10 °
Sum  0.72053925 0.72051986 2.5014436 2.5014271
W 0.72053921 0.72052003 2.5014438 2.5014275
E{1,0] 0.72053921 0.72053921 2.5014436 2.5014436
W[1,0] 0.72048222 2.5013863
Exact 0.72046305 0.72046305 2.5013595 2.5013595
o 8.5162% 2.1492% 4.4053% 1.4311%

n =2

3rd Order 5th Order
Eg+E; 4.96893420 4.96893420
E,  -0.10222072  -0.06860951
E,  -0.86250x10 > -0.02294799
E, —0.01667071_3
E ~0.41506x10
sum  4.865851 4.8602909
W 4.8667135 4.8608645
E[1,0] 4.8658436 4.8658438
W[1,0] 4.8524317
Exact 4.8386778 4.8386778
p 20.8557% 10.5591%
Note.l. p= (E[l,O]—Exact)xlOO/(EO+E1~Exact) for the third

order perturbation. ;

p= (W[l,O]—Exact)xlOO/(EO+E1—Exact) for the fifth

order perturbation
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resulting third order energy corrections, E3, in the former
case almost give no contribution to the energy. The E[1,0]
Pade approximants which are invariant to denominator shifts
give identical energies for the two perturbation expansions.

Comparing the values of p, the relative remaining
incomplete basis set errors, one finds these have been
reduced by a factor of between two and four as one goes from
third to fifth order.

For excited states the accuracy of the third order series
is much worse than the fifth order series compared with the
ground state results. This is due to the slower convergence
caused by a worse starting point and greater anharmonicity in

the excited states.

3.2 The Effect of Starting Point

In the last several sections it has been observed that the
starting point greatly influences the final result. In this
section this point 1s examined for the ground state of
anharmonic oscillator. In Table 3.5 results are presented for
single reference and multi-reference model spaces. For the
single reference model space (type "a" and "b" ) the general
function

f(x) = N(l+c x+c2x2)exp(—rx2) (3.2.1)

1
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Table 3.5 The Effect of Starting Point on the Ground States

Energy
EO+El W[l,0] Exact P

1=0.0, a 0.560307 0.559157 0.55914633 0.9474%

0.559409 0.559157 0.55914633 4.1825%
m=0.1; c 0.55922078 0.55914653 0.55914633 0.2686%
1=0.0, a 0.812500 0.804105 0.80377066 3.8263%

0.807415 0.804087 0.80377066 8.6718%
m=1.0; c 0.80499631 0.80378415 0.80377066 1.1006%
1=0.0, a 1.531250 1.506410 1.504972 5.4723%

1.517445 1.506237 1.504972 10.1420%
m=10 ; c¢ 1.5093503 1.5050401 1.504972 1.5558%
1=0.1, a 0.560307 0.554640 0.55351618 16.5513%

0.553953 0.553535 0.55351618 4.3478%
m=0.1; c 0.55360114 0.55351674 0.55351618 0.6590%
1=1.0, a 0.812500 0.750664 0.720463 32.8140%

0.729672 0.721081 0.720463 6.7108%
m=1.0; c 0.72135734 0.7204822 0.720463 2.1492%
Note: 1.W[{1l,0] is double Pade result.

2.p= (W[l,O]—Exact)xlOO/(EO+E1—Exact).

3.Exact results are from ref.39.

is used. For type "a" model space found in Table 3.5 r Cq
and ¢, are set to zero and the exponent is optimized. For
type "b" model space, Ci1 S and r are optimized. Type "c"
uses the five reference functions from Chapter 2, Section
2.4.

Consider the first three symmetric potential cases.
Although type "b" has a better starting point than type "a"

the values of W[1,0] for both types are almost same. Hence,

in terms of the valués of p which gives a rough measure .of the
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convergence of the perturbation expansion relative to the
starting point, type "b" has the worst convergence. In

comparison, the best starting reference function is the

multi-reference one, type "c". This type always gives the

best results in terms of relative convergence, p and energy,

W[1,0].

For the last two asymmetric potential cases, the effect of
starting point is much more critical than in the symmetric
cases. For example, the case 1 = 1.0, m = 1.0, the third type
of reference functions gives improvement of accuracy by two
decimal points with relative remaining error p = 2.1492%.

However the first type of reference function gives one

decimal improvement to accuracy with relative remaining
error p = 32.814%. The possible reason 1s that more

complicated potential will be more sensitive to the starting

point.

3.3 Conclusions

In this thesis we have demonstrated that the developed CDPT
can be successfully applied to the anharmonic oscillator
(1.4.1). The advantage of this theory is that very few basis
functions are needed and all calculations if carried out to
high enough order in the perturbation treatment effectively
use a complete basis sét since the closure relation is used.
If the trial function is wa_g)wi in the developed CDPT and
average energy Ae 1is obtaineé_by the variational method, the

energy corrections calculated to the 2N+1’th order converge.

The most accurate estimates are however the Pade approximant
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methods especially the double Pade. One interesting point of
this theory is that in «contrast to single reference
perturbation theory multi-reference perturbation expansions
have higher order [n,n-1] Pade’s (n=1) which are not
invariant to scalings of the energy denominators. This
results from the high order perturbation energy corrections
being inhomogeneously dependent on Ae (see Eq. (2.2.26) and
(2.2.30)) .

Considering the goal of the theory, inspection of Tables
3.2 through to 3.4 shows that the incomplete basis set error
has been greatly reduced by the CDPT method. The choice of
starting functions (or model space) 1s still very important
since the only input into this theory is the basis set. The
results of Table 3.5 have demonstrated this.

Further research of this multi-reference CDPT method could
be done in two areas. One is the extension of the theory
developed in Chapter 2 to the multi-particle case. A possible
approach might be to get an effective potential for each
particle and then reduce the Hamiltonian to a sum of
effective one particle operators. After this step the CDPT
could then be applied.

An example of this approach is the application of CDPT to
the Hartree Fock method for atomic and molecular cases.
Although the Hartree Fock operator 1is a one particle
operator, there is a singularity problem in the calculation.
This problem. arises from the Coulomb potential 1/r. In the
calculation of energy by CDPT in Chapter 2 the integral <H™>

(n=1,2,3,..) cannot be avoided hence the integral <1/r">
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appears and gives the singularity problem. One way to remove
this singularity is to use a variable denominator Ae instead
of a constant one. If so this theory could be extended and
made more flexible. Such an approach limited to third order

has been tried by Kirtmann{Bl].
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Appendix 1: The Deduction of the Fifth Order Perturbation

Energy Correction and Variational Energy

A: Deduction of the fifth order energy correction

In Chapter 2 the wave corrections |w1>, |¢2>

V1¢l>, V1¢2> are obtained as

l4,> = (1/2e) (H-e,)|i>
|¢2> = ~(1/Ae)2(<i|(H-ei)z{i>)|i>+(l/Ae)(H-ei)|i>
2 200 2
+(1/n8e) " (H-e,) "|i>+Y |n><n]| (H-e,) " |i>
+ n=i *

X[l/(ei—en)—l/Ae]/Ae

V[g,> =[(H-e )+ (H-e ) */ae|i>]

M
Vip,> = Z.(H—en)ln><n|(H—ei)z]i>/[(ei—en)Ae]
n+1
oM 2
-(1/8e)7Y% (H—en)]n><n|(H-ei) [i>
n=0

+1/8e) 2 [ (H-e ) F+20e (H-e,) “+ (ae) * (H-e,) ] | 1>
22 2

+(1/8e) 7Y (en—ei+Ae)|n><n|(H—ei) [i>
n=0

The norm of the first order wave function

and the

(A.1)

(A.2)

(A.3)

(A.4)

and its

corresponding overlap with the second order wave function are

then given by

<wl|wl>=(l/Ae)2<i|(H—ei)2|i>
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<y [v,> = [<i (H-e ) |i>+<i] (H-e ) >|i>/ae] / () 2 (A.6)

Therefore the renormalization terms E2<¢l|¢2> and E3<¢l|¢l>

found at fifth order in equation (2.1.21) become

2 3

E2<¢l|¢2>=[<i[(H—ei)2|i> +<i|(H—ei)3|i><i|(H—ei)21i>/Ae]/(Ae)

(A.T)

E3<¢;l|¢l>:[<ii(H—ei)2|i>2+<i|(H—ei)3|i><i|(H—ei)2|i>/Ae]/(Ae)3

(A.8)

The remaining fifth order term <¢2|(V~El)|w2> is obtained by

<¢2[V—El|¢2> = <¢2|v1w2>

=~(1/Ae)4<i|(H—ei)2|i>[<i|(H—ei)3|i>+2Ae<i{(H—ei)2|i>]
3 2,..2 oM 2, .2
+(1/he) <i|(H~ej) |1>7+(1/8e) 7Y |<i| (H-e ) [n>]
n#l

x[l/(ei—en)—l/Ae]

- (1/8e) <] (B-e ) ? 1>+ (1/8e) P [<i] (H-e ) *[1>
+2Ae<i|(H—ei)3[i>+(Ae)2<i|(H—ei)2|i>]
3 3 2 2
+(1/ae) 7y [<i] (H-e )" |n>+ (e ~e ) <i| (H-e;) "|n>]<n]| (H-e ) “[i>
nzi

x[l/(ei—en)—l/Ae]—(l/Ae)4<i[(H—ei)3|i><i|(H—ei)2

[1>
+(1/ne) *[<i| (H-e,) °[1>+20e<i| (H-e ) *|i>+ (ae) *<i| (H-e,) °[i>]
M

—(l/Ae)4Z (en—ei+Ae)|<i|(Hlei)2|n>|2
n=0

49



M M 2 5
+y ¥ [1/(ei—en)—l/Ae}<i[(H—ei) [n><n|(H—em)[m><m](H—e.) [i>
nmzEin#li i

x[l/(ei—em)—l/Ae}/Ae

M

+(1/Ae)32 [1/(ei—en)—1/Ae]<i[(H—ei)2|n>[<n|(H—ei)3|i>
n=#i
2., 3 Mo . 2
+2Ae<n|(H—ei) [i>]1-(1/0e)7Y ¥ [l/(ei—en)~l/Ae]<1|(H—e.) | n>
n*im=0 +
x<n|m><m](H—ei)2|i>(em—ei+Ae)
3

= -2/ (ne) *<i] (Hme ) P|iv<i| (H-e ) 7| i>-3<i| (H-e,) ?[i>7/ (se)
oM 2, 2
+(1/8e) 7Y { |<i](H—ei) |n>| [l/(ei—en)—l/Ae][2+2(ei—en)/Ae]
n#i

+2[1/<ei—en)—l/Ae]<i|(H—ei)3[n><n|(H*ei)2|i>/Ae

—(en—ei+Ae)|<i|(H—ei)2|n>|2/(Ae)2} +3<i|(H—ei)4|i>/(Ae)3

+3<i] (Hme ) 71>/ (ae) “+<i| (H-e ) *|i>/ne+<i| (H-e,) °|1>/ (se) *
(A.9)
Finally substituting equations (A.7), (A.8) and (A.9) results

in
B = <¢2|V—El]¢2>—E3<¢1|¢l>—2E2<¢l|¢2>
—-5<i| (H-e,) “|i><i| (H-e ) | i>/ (ae) *-6<i| (B-e,) *|1>%/ (2e) >

20! 2, 2

+(1/8e) 7Y {[<i| (H-e;) "[n>["[1/ (e ~e ) -1/he] [2+2 (e ~e ) /te]
n=i

+2[l/(ei—en)—l/Ae]<i|(H—ei)3|n><n|(H—ei)2|i>/Ae

—(en—ei+Ae)|<i|(H—ei)zin>|2/(Ae)2}

+3<i] (H-e ) 1>/ (ae) 7+3<i| (H-e ) >|i>/ (ne) P4<i] (H-e ) *|i>/he

+<i] (Hoe ) 71>/ (ae) * (A.10)
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*
B: Deduction of W = <wT|H le>/<¢T|wT>

*
In Section 2.3 the operator H and trial function wT are
defined as
« i-1

H = H-Y e.|3><3]|
j=0 -

|¢T>=|i>+|¢1>+|¢2>

=[1-<i| (H-e,) 71>/ (ae) °] [i>+2 (H-e ) /ne|i>

M
+(H—ei)2/(Ae)2|i>t£dln><n](H—ei)2|i>[l/(ei—en)—l/Ae]/Ae

(B.1)
Then

* 2 . 2
H |¢T> = ei[l—(l/Ae) <1|(H—ei) |i>]]i>
+[2e, /he+ (1-<i| (H-e,) 2|i>/ (ae) %) ] (H-e,) |i>
1 1 1

+[ei/(Ae)2+2/Ae](H—ei)2]i>+(1/Ae)2(H—ei)3|i>

M
+y (H—ei)|n><n|(H—ei)2|i>[l/(ei—en)—l/Ae]/Ae
n#i

M 2
te Y |n><n| (H-e ) "|i>[1/ (e ,~e )-1/Ae]/re

ni=i

i-1 5

‘(1/Aeé£63j|j><j|(H—ei) [i>/(ei—ej) (B.2)

*
Substitution of (B.1l) and (B.2) into <¢T|H |¢T> results in

<o |H" [ug>=e, [1- (1/8e) ?<i| (H-e,) *[1>17

+[1-(1/8e) 2<i| (H-e ) *|i>]  [e,/ (ae) “+2/ne]
x<i| (H-e,) Z|i>+[1- (1/8e) <i| (H-e ) *|1>)

x<i| (H-e,) 31>/ (se) 2+ (2/te)
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<[ (2e, /8e) + (1-<i| (H-e,) “[1>/ (ae) ?) 1<i]| (H-e ) *|i>

+(2/0e%) le, /he+2]<i| (H-e,) > |i>+2<i| (H-e,) *|i>/ (se) >
o M 2, .2
+(2/80e7) Y |<i[(H—ei) [n>] [1/(ei—en)—l/Ae]
n#i

+ (e, /8e?) [1-<i| (H-e,) |i>/ (ae) “1<i| (H-e,) *[i>

+[2e, /het (1-<i| (H-e,) 1>/ (ae) ) 1 <i] (H-e,) ° [1>/ (se) *
+[ei/Ae+2]<i|(H~ei)4[i>/Ae3+<i[(H—ei)S[i>/Ae4
chi 3 2
+(1/4ae)7Y% <i|(H—ei) |n><n|(H—ei) ‘i>[l/(ei—en)—l/Ae]
n#i
+ (e /AeB)bZ4 |<i]| (H-e )2|n>|2[1/(e ~e_)-1/ae]
i . i i "n
n#1
i-1
~(1/ne) 3jzzoej|<i| (H-e,) 21317/ (e;-e])
2 M 2 .2
+[ (e, /ne+2) /ae” ]y [1/(ei-en)—l/Ae][<i|(H—e.) [n>]
n#i +
3M 3 2
+(1/he) Y, [1/(ei—en)—1/Ae]<i|(H—ei) |n><n}(H—ei) |i>
n#i
24 2 . 2, 2
+(1/he) 7Y, [l/(ei—en)—l/Ae] (en—ei)|<1](H—ei) [n>|
nzl
2 M 2 2, 2
+(ei/Ae )Z.[l/(ei—en)—l/Ae] |<i|(H—ei) [n>]
n=i
-(l/Ae)zii%e /(e,~e.) [1/(e,-e.)~1/ne]|<]| (H-e )2 i> 2
L3l e 1783 I Hmey) T~

(B.3a)
Regrouping terms in equation (B.3a) according to powers of

Ae and making appropriate cancellations yields
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x
<¢T[H |¢T>
4 . 2,.,.2 . . . ,
=(1/Ae) {—ei<1](H—ei) [i> —2<1|(H—ei)2|1><1|(H~ei)3|1>
+te,<i| (H-e )4|i>+<i[(H—e )5|i>
i i i
M

-2, <i| (H-e,) |n><n| (H-e;) ?|i>
n#i

M 2, 2
+y |<i|(H—ei) [n>] (e —2e;)}

nxi
+(1/Ae)3{—4<i](H—e )2|i>+4e <i| (H-e )3]i>
i i i
M
, 4, . . 2 2 . 3
+4<1](H—ei) [i>+Y [—2|<1|(H—ei) [n>] +2<1|(H—ei) |n>
n#i

x<n| (H-e ) “[i>/ (e,~e )1}
+(1/Ae)2{4ei<i|(H—ei)2§i>+6<i|(H—ei)3|i>

M 2.1 2, 2
+y [3/(ei—en)+ei/(ei—en) ]|<1[(H—ei) [n>]

n#l

i-1 2,2 2 2

-Y e.|<j| (H-e ) "|i>|"/ (e -e.) "} +4<i| (H-e,) "|i>/se
520 3 i i) i

+e:.L (B.3b)

Similiarly the norm of the trial function is given by

W lwp>=[1-<i| (H-e,) *|i>/8e”1%+ [1-<i] (H-e,) *|i>/ae”]

x<i|(H—ei)2|i>/Ae2+4<i|(H—ei)2|i>/Ae2+2<i|(H—ei)3|i>/Ae3

+[1-<i] (H-e,) ?|i>/ae”1<i| (H-e,) *|i>/ne”

3

. 3. . 4, 4
+2<1|(H—ei) |1>/Ae +<1|(H—ei) |i>/ne
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3 M 2, 2
+(2/ne )Z.l<i|(H_ei) n>| [l/(ei—en)—l/Ae]

n#i
M
+(1/Ae)2}:‘|<n[(H—ei)2[i>[2[l/(ei—en)—l/Ae]2
n#i
= (1/8e) ¥ [-<i] (E-ey) P i>T4<i] (Hme ) Y[1>
M 2.2 3 3
-y |<n|(H—ei) [i>] ]+4<i|(H—ei) |i>/nae
n#i
M
+(1/Ae)2[4<i|(H—ei)2|i>+z J<n[(H—ei)2|i>[2/(ei—en)2]
n+*x1
+1 (B.4)

Hence the final result for the variational energy, W is

*
W=<wT|H |¢T>/<¢T|¢T>

={—ei<i|(H—ei)2|i> —2<i[(H~ei)2|i><i|(H—ei)3]i>

M

+ei<i|(H—ei)4|i>+<i|(H—ei)5|i>—%§#fi|(H—ei)3|n><n]<H—ei)2|i>
Mo 2, 42
+y |<1[(H—ei) [n>] (e —2e;)
n#i
. 2,..2 . 3.
+[—4<1|(H~ei) [i> +4ei<1](H—ei) |i>
a,, .1 2, 2 3
+H4<i| (H-e,) “[i>+L (-2|<i| (H-e )" |n>|"+2<i| (H~e,) " |n>
n*l
x<n| (H-e,) 2|i>/ (e ~e_)) 1de+[de,<i| (H-e,) % |i>+6<i] (H-e,) >|i>
i i "n i i i
M . 2, 42
+Z.(3+ei/(ei—en))/(ei—en)|<1|(H—ei)~|n>|
n#l
i-1 2

. 2,..,2 2 . 2. 3 4
SEO ej|<3|(H—ei) [1>| /(ei—ej) ]ae +4<1(H~ei) |i>ae +eiAe }
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M
\ 4., 2,2
+<1](H—ei) |1>f§;£<n|(ﬂ—ei) [i>]

/(-<i] (H-e ) % |15

+4<i] (H-e ) S| i>0e+ [4<i] (Hoe ) ?]i>
M

+y |<n{(H—ei)2]i>|2Ae /(e -e )Z]Ae
n=i

2ine?y (B.5)

In order to solve for W let {ai} and {bi} (i=0,...,4} be
the coefficients of numerator and denominator respectively in

equation (B.5) and let x=Ae . W is then written as

4 . 4 .
W=7y a,x /T b.x" | (B.6)
. it i
i=0 i=0
Therefore
i _ _ _ 2
dw/dx = —{ alb0+aob1+( 2a2b0+2a0b2)x+(a1b2+3a0b3 3a3bO azbl)x
3 4
+(2a1b3+4a0b4~4a4bO 2a3bl)x +(—a3b2+3a1b4—3a4b1+a2b3)A
5 6, 2 102
+(—2a4b2+2a2b4)x +(—a4b3+a3b4)x }/égobix )
(B.7)
The solutions of dW/dx = 0 give approximate average energy

Ae.
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Appendix 2: Listing of the Eigenstate Generating Program

program eisg

This program can calculate eigenvalues and eigenvectors
by the Jacobi plane rotation method

implicit double precision (a-h,o0-2z)

dimension a(n,n),s(n,n),ap(n),aqg(n)

read(5,*) n, (a(i,]),J=1i,n),1=1,n)

n by n is the size of matrix a

a is the matrix whose eigenvalues will be calculated
mm=100000

error=1.0d-6
do 4 i=1,n
do 4 j=i,n

4 a(j,i)=al(i, )
do 5 i=1,n-1
s(i,1i)=1.0d0
do 5 j=i+1,n
s(i,3)=0.0d0
s(j,i)=s(i,3)

5 continue
s(n,n)=1.0d0
do 100 ip=1,n-1
do 90 k=1, mm
call maxv{n,a,ip, iq,sl)
if (sl.le.error) go to 100
r=(a(iqg,iq)-a(ip,ip))/(2.0d0*a(ip,iq))
d=dsqrt (1.0d0+xr*r)
dl=-r+d
d2=-r-d i
dll=dabs (dl)
d22=dabs (d2)
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if(dll.le.d22) go to 10

d=d2
go to 15

10 d=dil

15 c¢=1.0/dsqgrt (1.0d0+d*d)
b=c*d

h=d*a (ip, iq)
t=b/ (1.0d0+c)
a(ip,ip)=a(ip,ip)-h
a(iq,ig)=a(iq, iq)+h
a(ip,iq)=0.0d0
a(iqg,ip)=0.0d0
do 20 i=1,n
if (i.eqg.iqg) go to 20
if (i.eg.ip) go to 20
ap(i)=a(ip,i)-b*(a(iqg,i)+t*a(ip, i))
ag(i)=a(iqg,i)+b*(a(ip,i)-t*a(iqg, 1))
20 continue
do 30 i=1,n
all=s (i, ip)
az22=s (i, iq)
s(i,ip)=all*c-a22*b
s(i,iqg)=all*b+a22*c
30 continue
do 25 i=1,n
if(i.eq.iq) go to 25
if(i.eq.ip) go to 25
a(ip,i)=ap (i)
a(iq,1i)=aq(i)
a(i,ip)=a(ip, 1)
a(i,iqgq)=a(iqgq, i)
25 continue
90 continue
100 continue
do 110 i=1,n
write (6,120) i,a(i,i)

120 format (lx,’i=’,1i3,’eigenvalue=’,el17.8)
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125
110

10

write(6,125) (s(j,1i),J=1,n)

format (1x, 3 (1x,’eigenvector=',el6.7))
continue

stop

end

subroutine maxv{n,a,ip,iq,sl)
implicit double precision (a~h,o-2z)
dimension a (n,n)

s1=0.0d0

do 10 i=ip+1l,n
s2=dabs (a (ip, 1))

if(s2.le.sl) go to 10

sl=s2

ig=1i

continue

return

end
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Appendix 3 CDPT Program in MAPLE

A. Introduction

The procedure for the multi-reference CDPT calculation in

this thesis can be given by the following diagram

Step

Step

Step

Step

Step

Step

Step

Step

Start

l

gi: ¢_{ri) 1i=0 to 4

¢.(r,) is in Section 2.4
itti
l

get the optimized ri(i=0 to 4)
by hop(fu,l,m,ei) and
inttl (fu,r0,rl, r2,r3,r4)

|

get the matrix elements
<gi|H|gj> (1, 3=0 to 4) by

hop(fu,l,m,ei) and
inttl (fu,r0,rl,x2,r3,r4,)

l

using program in Appendix 2
to get starting point {ei,|i>}
4
i>=y c,. > 1i=0 to 4
S ROECE

I

Let ei=e, |fi>=|i> (i=0 to 4)
save them in result.m |

l

use fipen(fi,1l,m,ei) to get use thden(fi,1,m,el) to
fifth order multi-reference get third order CDPT
CDPT enegy corrections Ei(Ae) energy corrections
(i=0 to 5) and W(ae) Ei(Ae) (i=0 to 3) & W(ae)
|

get the optimized Ae and obtain)
energy corrections )

\.

do double Pade calculation by
the program in Appendix 3.5

End
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In this appendix those calculations in MAPLE are given by the

following.

B hop(fu,l,m,ei)

This subroutine is used to calculate the intermediate state
after the operator, [—(1/2)V2+(1/2)x2+lx3+mx4—ei], acts on

state |fu>.

Input parameters of subroutine hop

fu function is to be acted on by operator.

1 the coefficient of cubic term of potential

m the coefficient of quartic term of potential
el starting eigenvalue of ith unperturbed state.

hop :=proc(fu,l,m,ei);

ftt :=-diff(fu,x,x)/2+(x"2/2+1*x"3+m*x"4) *fu-ei*fu;
ftt :=radsimp (ftt);
ftt;

end;

save ‘result.m?';

C.Integral Program inttl{(fu,r0,rl,r2,r3,rd)

This integral program inttl uses one subroutine
Imk (fu,r,itg) which uses results saved in feco.m. In the
following results feco.m and subroutine lmk are given before
inttl.

I. feco.m
This process is used to calculate integral

st x2Neyn (-rx%) = coln] (n=1,...,18)

and e exp(—rxz) = ¢c0

—o
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co :=array(l..18);

cO0 :=(Pi/r)"~(1/2);

co[l] :=c0/(2*r);

for i from 2 to 18 do

cofi] ::=(2*%i-1)*co[i-1]/(2*r) od;
save ‘feco.m?;

ITI.Subroutine 1lmk (fu,r,itqg)

This subroutine is used to calculate integral

ftz exp(—rxz) fudx+itg
17 20
fu=y a x and itg = input constant
n=0

Imk :=proc(fu,r,itqg);
h :=array(1..18);
read‘feco.m';
h[1l] :=coeff(fu,x,0);
for i from 2 to 18 do
h[i] :=coeff(fu,x,2*(i-1)) od;
itg :=itg+cO0*h{1l];
for i from 1 to 17 do
itg :=itg+cof{il*h[i+1] od;
itg;
end;

save ‘result.m?;

III.Integral Program inttl (fu,r0,rl,r2,r3,r4,r5)

This program is used to calculate integral

+o0
J7° fu dx

n’i,jexp[—(ri+rj)x2} (n=0 to 17; 1i,7J=0 to 4)

inttl :=proc(fu,r0,rl,r2,r3,r4); .
read‘feco.m?;
g0 :=exp(-r0*x"2/2);
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gl
g2
g3
g4
ff
10
m0
n0
30
k0
101
1m

1n

13

1k

m01
mn

mj

mk

n01l
nj

nk

jo1
Jjk

itg
itg
itg
itg
itg
r
itg
r
itg
r
itg
r

itg

1=exp (-rl*x~2/2);

r=exp (-r2*x°2/2) ;
)
)

=exp (-r3*x"2/2) ;
i=exp (-ri*x~2/2
:=expand (fu) ;
r=coeff(£ff,g0,2);
:=coeff (ff,gl, 2);
:=coeff(ff,qg2,2);
:=coeff (ff,g3,2);
:=coeff (£ff,g4,2);
:=coeff (££f,g0,1);
:=coeff (101,qgl1,1);
:=coeff (101,g2,1);
:=coeff(101,93,1
:=coeff(101,q94,1
:=coeff (ff,gl, 1
:=coeff (m0l,g2,1
:=coeff(m0l1l,qg3,1
:=coeff (m01l,g94,1);
:=coeff (£f,g2,1);
r=coeff (n0l,q93,1);
:=coeff(n0l,qg4,1);
c=coeff (££,93,1);
r=coeff (j01,g4,1);
:=1lmk (10, r0,0);
:=lmk (m0,rl,itqg);
:=1mk (n0, r2, itg
:=1Imk (j0, r3,itg
:=1lmk (k0, r4,itqg);

r

r

)
) ;
);
) ;
)

r

r

-

4

-

4

)
)
)
)

:=(r0+xrl)/2;

:=lmk (1lm, r, itqg);

:=(r0+xr2)/2;

:=lmk (ln,r,itqg);

:=(r0+r3)/2;

:=1lmk (1], r,itqg);

:=(x0+rd)/2;

:=1lmk {1k, r,itqg);
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r :=(rl+r2)/2;
itg :=lmk(mn,r,itqg):;
r :=(rl+r3)/2;
itg :=lmk(mj,r,itqg);
r :=(rl+r4)/2;
itg :=lmk(mk,r,itq);
r :=(r2+r3)/2;
itg :=lmk(nj,r,itqg);

r :=(r2+rd)/2;
itg :=1lmk(nk,r,itqg);
r :=(r3+r4d)/2;
itg :=1lmk(jk,r,itqg);
itg;

end;

save‘result.m?';

D. The Program for Multi-reference CDPT to Fifth Order

This 1is the CDPT main program by which the wvariational
energy W and perturbation energy corrections of the J’th
state to fifth order are calculated. In addition, the trial
function wT is formed by the sum of the first two wave
function corrections and starting function.

Before calling the subroutine fipen, the five unperturbed
states, corresponding energies, and the integral programs
inttl given above as well as the subroutine hop(fu,l,m,ei)
should be stored (or saved) in result.m.

Note: This program can be used only for starting functions as

described in Chapter 2, Section 2.4.

Input parameters of subroutine fipen:

£3 j'th unperturbed state
1 the coefficient of cubic term in potential
m the coefficient of quartic term in potential
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e unperturbed energy of j’th state

fipen :=proc(fj,l,m,ej);
read‘result.m?;
hfl :=hop(fj,1l,m,0);
h2fl :=hop(hfl,1,m,0);
fu :=(hfl-ej*fy);
pfl :=fu/dn;
vpfl :=fu+ (h2fl-2*ej*hfl+ei~2*£f7)/dn;
a0 :=inttl (fO0*vpfl,r0,rl,r2,r3,r4);
al :=inttl (£f1*vpfl,r0,rl,r2,r3,r4d);
a2 :=inttl (£2*vpfl,r0,rl,r2,r3,r4d);
a3 :=inttl (£3*vpfl,r0,rl,r2,r3,rd);
a4 :=inttl (f4*vpfl,r0,rl,r2,r3,rd);
pf2 :=vpfl/dn;
error :=0.00001;
hf0 :=hop(f0,1,m,e0);
hfl :=hop(fl,1l,m,el);
hf2 :=hop(f2,1,m,e2);
hf3 :=hop(£3,1,m,e3);
hf4 :=hop(f4,1,m,ed);
vpf2 :=hop(vpfl,l,m,ej-dn)/dn;
if abs(el-e7j)>error
then pf2 :=pf2+a0*f0/(ej-e0);
vpf2 :=vpf2+a0*hf0/ (ej-e0);
elif abs(el-ej)>error
then pf2 :=pf2+al*fl/(ej-el);
vpf2 :=vpf2+al*hfl/(ej-el);
elif abs(ez—ej)>error
then pf2 :=pf2+a2*f2/(ej-e2);
vpf2 :=vpf2+a2*hf2/(ej-e2);
elif abs(e3-ej)>error
then pf2 :=pf2+a3*f3/(ej-e3);
vpf2 :=vpf2+a3*hf3/(ej-e3);
elif abs(ed-ej)>error
then pf2 :=pf2+a4*f4/(ej-ed);
vpf2 :=vpf2+ad*hfid/(ej-e4);
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£i;

pf2 :=pf2-(al0*f0+al*fl+a2*f2+al3*f3+ad*f4) /dn;

vpf2 :=vpf2-(a0*hf0+al*hfl+a2*hf2+a3*hf3+ad4*hf4) /dn;

vpf2 :=vpf2-((ej-el+dn) *a0*f0+ (ej—el+dn) *al*f1l
+(ej—e2+dn) *al*f2+ (ej-e3+dn) *a3*£3
+(ej-ed+dn) *ad*£f4) /dn;

b0 :=inttl (f0*pfl,r0,rl,xr2,xr3,r4);

bl :=inttl (fl1*pfl,r0,rl,r2,r3,r4);

b2 :=inttl (£2*pfl,r0,rl,r2,r3,r4d);

b3 :=inttl (£3*pfl,r0,rl,r2,r3,r4);

b4 :=inttl (f4*pfl,r0,rl,r2,r3,rd);

dO0 :=inttl (£0*pf2,r0,rl,r2,r3,r4);

dl :=inttl (f1*pf2,r0,rl,r2,r3,rd);

d2 :=inttl(f2*pf2,r0,rl,r2,xr3,r4);

d3 :=inttl (£3*pf2,r0,rl,xr2,r3,r4);

d4 :=inttl (f4*pf2,r0,rl,xr2,r3,r4);

ft :=fj+pfl+pf2;

pe2 :=inttl (£j*vpfl,r0,rl,r2,r3,r4);

pe3 :=inttl(pfl*vpfl,r0,rl,r2,r3,rd);

ul :=inttl (pf2*vpfl,r0,rl,r2,r3,rd);

u2 :=inttl(pfl*pfl,r0,rl,r2,r3,r4);

ped :=ul-pe2*u2;

u3 :=inttl (pf2*vpf2,r0,rl,r2,r3,r4);

ud :=inttl(pfl*pf2,r0,rl,r2,r3,r4);

peS :=u3-pe3*u2-2*pel*u4;

et :=ej+pe2+pe3+ped+pe5;

hft :=hop(ft,1l,m,0);

nf :=inttl (ft*ft,r0,rl,r2,r3,r4);

end;

save‘hil.m‘;

E. Double Pade Program in MAPLE

This program is used to do the double Pade calculation.

el0 :=elel+e2/(1~e3/e2);
bottom :=(e2-e3) *(ed-eb) - (e3-e4)"2;
e2l :=elel+(e2*({ed-eb)~-e3*(e3-e4d)) *e2/bottom
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+(e3* (e2-e3)-e2* (e3-e4)) *e3/bottom;
w2 :=el0-elel;
w3 :=e2l1-el0;
wl0 :=elel+w2/(1-w3/w2);

save‘hi2.m';

F. CDPT Program to Third Order in MAPLE

This is the CDPT program by which the wvariational energy
and perturbation energy can be calculated to third order. The
trial function wT is formed by the sum of the first order
wave function correction and starting function.

Before calling subroutine thden the integral programs
inttl, hop, and five unperturbed states with eigenvalues
should be read.

Note: Again this program can be wused only for starting

functions described as Chapter2, Section 2.4.

Input parameters of subroutine thden:
ily| j’th unperturbed state
1 the coefficient of cubic term in potential
the coefficient of quartic term in potential

e’ j’th unperturbed eigenvalue

thden :=proc(fj,1l,m,ej):;
hfl :=hop(fj,1l,m,0);
h2f1 :=hop(hfl,1l,m,0);
vpfl :=dn*pfl+ (h2fl1-2*ej*hfl+ej"2*£fj)/dn;
h3f1 :=hop(h2fl,1,m,0);
h2 :=inttl(f3*h2fl,r0,rl,r2,r3,r4,);
h3 :=inttl(fj*h3fl,r0,rl,r2,r3,r4);
w :=(ej+2* (h2-ej"2) /dn+ (h3-2*ej*h2+hj"3) /dn"2) ;
w :=w/ {1+ (h2-ej"~2)/dn"2);
dw :=diff(w,dn);
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pe2 :=(h2-ej"2)/dn;
pe3 :=(h3-2*ej*h2-(h2-ej"2)* (ej~dn)+ej"3);
pe3 :=pe3/dn"2;
et :=ejt+pel+pe3;
dw;
end;

save‘hi3.m';

G. Calculation Examples

Now we <can give calculation examples according to
procedure shown in the diagram at the beginning.

Step 1. Let gi be i’th function ¢i(ri) in Section 2.4.
e.qg.
g0 :=exp(-r0*x"2/2);
n0 :=1mk(g0*g0,xr0,0);
n0 :=1/(n0)"~(1/2);
g0 :=n0*g0;

Step 2. Optimize ry (i=0,...,4)
e.g. calculate optimized r
hg0 :=hop{(g0,1,m,0);
w0 :=inttl(g0*hg0,r0,rl,r2,r3,r4);
dwQ :=diff (w0, r0);

solution :=solve (dw0, r0);

0

r0 :=solution;
Step 3. Get matrix elements <gi|H|gj> (i,3=0,...,4)
e.g. calculate <gO|H|gO>
hg0 :=hop(g0,1,m,0);
h00 :=inttl1(g0*hg0,r0,rl,r2,r3,r4);

Step 4. Use program in Appendix 2 to get eigenvalues

corresponding eigenvectors [{ei} , C 13=0,...,41.

ij
Step 5. Define reference functions and starting point
- e.g. the first reference function |[0>
e0 1=eq;
» = * * * * .
£f0 : cOl*gO+cOl g1+c02 gZ+cO3 g3+c04 g4;
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Step 6. Do CDPT perturbation calculation
e.g. do perturbation to ground state | 0>
fipen(f0,1,m,e0) :

w :=inttl (ft*hft,r0,rl,r2,r3,r4d):

w :=w/nf:
dw :=diff(w,dn):
solution :=solve (dw,dn);

dn :=solution;
or do the third order CDPT calculation only substituting
thden into fipen subroutine above.

Step 7. Pade calculation
e.g. do calculation to ground state

read‘hiz.m?;

elel :=e0;

el :=pe2;

e3 :=pe3;

ed :=ped;

eb :=peb;

el0;

e2l;

wl0;
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