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Abstract

Telephone bandwidth speech compression has been an ongoing area of research for
several years. Numerous applications in telecommunications and storage have emerged in
the past two decades. The ease of real-time implementation using single-chip digital
signal processors has led to widespread implementation of speech coding algorithms in
personal communication systems, for both wired and wireless communications.

Artificial neural networks have demonstrated their usefulness for clustering and
pattern classification problems. The use of artificial neural learning algorithms for high
quality speech compression at low bit-rates and low computation rates, potentially in non-
stationary environments, are examined in this study. By using a class of artificial neural
learning algorithms for determining the codebook in an adaptive vector quantizer,
moderate sized codebooks can be generated that can be searched in parallel and are able to
adapt to non-stationary environments. Unsupervised learning algorithms including
frequency-sensitive competitive learning and Kohonen’s self-organizing feature maps
have been investigated for learning the codebook vectors. In contrast with earlier work,
these learning rules have been employed in vector quantization of the residual signal after
linear predictive coding and pitch prediction in a neural analogy to the code-excited linear
prediction (CELP) approach. The performance of these algorithms for speaker-dependent

and speaker-independent speech compression are presented. The results obtained by the




v

present neural CELP method compare favorably with those of the CELP method,
requiring reduced computational power and comparable bit-rates with a tolerable
reduction in speech quality. The effects of limited precision on classification and learning
in competitive learning algorithms for low power VLSI implementations are also explored

in this thesis.
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Chapter 1

Introduction

Compression of telephone bandwidth speech has been an ongoing area of research for
several years. In the past two decades, there has been an overwhelming interest in this
field which has resulted in numerous applications in telecommunications and storage.
Some applications of speech compression include wired and wireless telecommunication
networks, consumer products for personal communication, and digital audio systems [1].
The ease of real-time implementation of speech-coding algorithms using single-chip
digital signal processors has led to widespread implementation of speech algorithms in
personal communication systems. Another new area of application is multimedia personal
computing where voice storage is becoming a standard feature. Wideband audio coding
for high-fidelity reproduction of voice and audio has also emerged as an important activity
in the past decade. Applications of wideband audio coding lie largely with the

broadcasting industry, motion picture industry, music industry and multimedia computing.

1.1. Speech Coding

Speech coding may be defined as a digital representation of speech that provides for

efficient storage, transmission, recovery and perceptually faithful reconstruction of
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original speech. In other words, coding compresses speech for digital storage and expands
or decompresses the stored data to reconstruct the original speech without significant loss
in quality. Much of the research in speech and audio compression involves lossy
compression techniques, where the original representation of the signal samples is never
recovered exactly after decoding (decompression). At high compression ratios, there is a
significant degradation in the reconstructed speech quality due to the lossy techniques
used for compression. Hence, in digital processing of speech signals, there are two
conflicting requirements viz. first, we need to achieve the lowest possible bit-rates (high
compression ratios); second, we want to achieve this with minimum loss of speech quality.
A third requirement for low-power (e.g. mobile) implementations is to reduce
computational requirements of these algorithms. Satisfying these requirements is the
purpose of the ongoing research in the speech coding community. Figure 1.1 shows the
different bit-rates and an approximate designation of the speech quality that can be
achieved at these bit-rates [2].

Speech coding algorithms can be divided into two main categories waveform coders
and vocoders or parametric coders. In waveform coders, the data transmitted from
encoder to the decoder specify a representation of the original speech as a waveform of
- amplitude versus time, so that the reproduced signal approximates the original waveform
and, consequently, provides an approximate recreation of the original sound. In contrast,
vocoders do not reproduce an approximation to the original waveform; instead,
parameters that characterize individual sound segments are specified and transmitted to
the decoder, which then reconstructs a new and different waveform that will have a similar

sound, Often these parameters characterize the short-term spectrum of a sound or the



Introduction 3

parameters specify a mathematical model of human speech production for a particular
sound. Vocoders operate at lower bit-rates than waveform coders but the reproduced
speech quality, while intelligible, usually suffers from a loss of naturalness and some of

the unique characteristics of an individual speaker are often lost.

Digital coding of Speech
Waveform coding - —» Source Coding

Kilobits per second

L1 1 | | l | |
| 1 I I | | | | |
200 64 32 24 16196 8 72148 24 1.2 0.5 0.05
Broadcast [ >

(commentary) © Toll quality ~Communications Synthetic quality
quality quality

Figure 1.1, Spectrum of speech coding transmission rates in nonlinear scale and

associated quality.

One of the most popular and notable waveform coding algorithms is code-excited
linear prediction (CELP). Other algorithms in commercial use today are adaptive delta
modulation (ADM), adaptive differential pulse code modulation (ADPCM), adaptive
predictive coding (APC), multipulse linear predictive coding (MP-LPC) and regular pulse
excitation (RPE) [3]. MP-LPC, RPE and CELP are sometimes viewed as “hybrid”
algorithms because they borrow some features of vocoders, but they are usually classified
as waveform coders. Various versions of CELP are available, but all algorithms in this
family are based on linear prediction, analysis-by-synthesis, methods with a stochastically

generated codebook for excitation. CELP produces bit-rates of 4800 bits per second (bps)
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with very good intelligibility and high quality, but the computational rates are usually very
high.

Although vocoders were studied several decades ago, the most important vocoder is
the linear predictive coding (LPC) vocoder method which is still extensively used in low
bit-rate voice telephony. A version of the LPC vocoder has been used for many years as a
U.S. Government standard, for secure voice communication. The bit-rate that can be
obtained for LPC is 2400 bps with very low computational rates, but often, the reproduced
speech sounds artificial or “unnatural” with a buzzy character and the identity of the
speaker is hard to recognize.

Vector quantization (VQ) techniques can be used to obtain low bit-rate coding below
2400 bps with speech quality similar to that produced by CELP. In VQ techniques, a k-
dimensional data vector is encoded using one of a finite set of M symbols. Each symbol is
called a codeword and the set of all the codewords is known as the codebook. The VQ
techniques usually require computationally extensive codebook learning and search. VQ
problems can be mitigated by using various artificial neural network (ANN) algorithms.
The use of ANN techniques for VQ of telephone bandwidth speech is the main focus of

this thesis.

1.2. Artificial Neural Networks (ANN)

The human brain is superior to that of a digital computer at tasks like recognizing
speech and faces. Other important features of the human brain are that its operation is
inherently parallel and that it can adapt to a new environment by learning. Computers

were built to perform complex mathematical computations at high speeds. Since they are
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designed to perform precise mathematical computations, they are not well suited to pattern
classification problems. Since the brain handles the task of pattern classification well, one
would hope that computers with architectures that attempt to mimic its operation, would
be able to perform well on problems such as human perception. This area of study is
called artificial neural networks (ANN), and has become an important field of research in
the past decade. ANNs have been applied to a wide range of problems in data clustering
and pattern recognition [4]. ANNs make use of parallelism and learning algorithms to
solve complex tasks like pattern classification.

The basic form of an ANN architecture is shown in Figure 1.2. Each processing
element in the ANN is called a neuron and the connections between the neurons are
known as synapses. Each synapse has an associated weight w;; which represents the
strength of the connection from neuron j to neuron i. Typically, each neuron computes the
output as a nonlinear transformation of the weighted sum of its inputs. ANNs learn to
solve desired tasks by example. All the information necessary to solve the task must be
provided by the examples, and this information is processed and stored in the weights. The
network uses the example set to modify these weights so that it can learn to perform the
desired task. The method by which the weights are modified is known as the learning
algorithm. There are numerous available learning algorithms which can be broadly
classified as either supervised or unsupervised learning algorithms.

In supervised learning algorithms, learning is performed on the basis of direct
comparison of the output of the network to known correct answers. Since the correct
answers are provided, this kind of learning is also called learning with a teacher. In

unsupervised learning, there is no teacher or the correct answers for specific inputs are not
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available. The only available information is in the correlations of the input data or signals.
The network must discover categories from these correlations and produce output signals

corresponding to the input category.

Output
Layer

Hidden
Layer

Figure 1.2. Basic Neural Network Architecture

Unsupervised learning can be used for data clustering and learning a codebook in VQ
applications. An unsupervised learning algorithm known as competitive learning (CL) is
particularly well suited for VQ applications and hence can be used in speech compression
applications [5]. Various CL techniques are available which include soft competitive
learning (SCL) and frequency-sensitive competitive learning (ESCL). Another technique
called the Kohonen self-organizing feature map (KSFM) is used to enforce a topological
relationship among the units in a network. Since ANNs are a highly parallel computer
architecture, they offer the potential for real-time VQ applications as the codebooks can be

searched in parallel. Most ANN training algorithms are adaptive and these ANN based
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VQ design algorithms can be used to build adaptive vector quantizers which are crucial in
applications where the source statistics are changing. The computational requirements of
the learning algorithms can also be reduced if the learning algorithms can tolerate a lower
bit precision. In that case, these algorithms can be implemented using low precision (and
low power) digital signal processing (DSP) in real-time applications.

Normally in neural VQ, the speech signal is preprocessed to obtain LPC parameters
which are then vector quantized. It has been shown in many previous studies of speech
coding by non-neural techniques that in order to obtain high quality speech, it is necessary
to transmit the prediction residual along with the LPC parameters. Transmission of the
residual signal requires a significantly larger number of bits than those required to send the
LPC parameters. Hence, it seems useful to quantize the residual signal rather than the LPC
parameters. In contrast with earlier work, ANN learning rules are employed in VQ of the
residual signal in this thesis to obtain low-bit rates and low computation rates for speech
while retaining acceptable perceived speech quality. The effects of limited precision on
learning and classification are included in this study. Preliminary results of this work have

been published in [6], [7] and [8].

1.3. Summary

This chapter provided an overview of speech compression and the potential role of
artificial neural networks. The importance of speech compression in communications and
a summary of LPC, CELP and VQ compression schemes were presented. This was

followed by an introduction to ANNs and the classification of ANN architectures based on
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the learning mechanisms. Finally, the use of ANNs in speech compression applications
was introduced.

The remainder of this thesis is organized as follows: speech compression techniques,
LPC, CELP and VQ will be discussed in detail in Chapter 2. In Chapter 3, algorithms for
VQ of speech using ANN techniques will be discussed. These algorithms will be applied
to an experimental speech compression task and the results obtained will be presented in
Chapter 4. The effects of limited precision on learning and classification will also be
discussed in Chapter 4. In Chapter 5 conclusions will be drawn based on simulations

obtained in Chapter 4 and proposals for future work in this area will be presented.



Chapter 2

Speech Coding Techniques

Speech compression techniques have made rapid progress in the last decade. Linear
predictive coding (LPC), code-excited linear prediction (CELP) and vector quantization
(VQ) techniques have been used in numerous telecommunications applications. Artificial
neural network (ANN) techniques can be used for VQ to potentially obtain low bit-rates,
low computation rates and high quality speech compression. Before we can design such
ANN algorithms for speech coding, an understanding of the non-neural speech
compression techniques is necessary. Although speech compression techniques like
adaptive differential pulse code modulation (ADPCM), subband coding (SBC) and
adaptive transform coding (ATC) techniques have been primarily used in
telecommunications applications, LPC, CELP and VQ techniques are of great importance
in low bit-rate speech coding as lossy compression techniques. These techniques are
designed to remove the redundant information from the speech signal. In this chapter, the
LPC, CELP and VQ approaches will be discussed; the other techniques have been

described in [1], [2], [3], [9] and [10].
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2.1. Linear Predictive Coding (LPC)

LPC methods are among the most popular and powerful analysis techniques for
processing speech. This approach has become the predominant technique for estimating
speech parameters, e.g., pitch, formants, spectra, vocal tract area functions and for
representing speech for low bit-rate transmission or storage. The importance of this
method lies in its ability to provide accurate estimates of the speech parameters and in its
relative speed of computation.

The underlying assumption in most speech processing schemes is that the properties of
the speech signal change relatively slowly with time. This assumption leads to a variety of
short-time processing methods in which short segments of speech signals are isolated and
processed as if they were short segments from a sustained sound. The LPC method is
accurate when it is applied to stationary signals i.e., signals whose behavior does not
change with time. To perform LPC analysis, the speech signal is segmented into analysis
frames which are quasi-stationary.

The basic idea of linear predictive analysis is that a speech sample can be
approximated as a linear combination of past speech samples, thereby removing
redundancies in the speech signal. The LPC method is based on the speech production
model shown in Figure 2.1 This model removes the near sample correlations to a large
extent. The system is excited by an impulse train or random noise based on whether the
speech signal is voiced or unvoiced. If the signal is voiced then the pitch period is
estimated. In LPC, the vocal tract is modelled as an all-pole recursive filter which is

known as the formant filter. Incorporating a gain G, the filter can be expressed as
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G _ 52

Ho = e

. 2.1)
l+az +.. +ayz

where Ny is the order of the model and g, are the filter coefficients. If s(n) is the speech

output of the model, and u(n) is the excitation input, the equation above can be written in

the time domain as

Nf
s(n) = Gu(n) + Y a;s(n-k). (2.2)
k=1
Pitch
Pe_no& Periodic
Excitation Vocal Tract
Filter
¢ Synthetic
Sp(eech
u(n) 1 s(n
H(z)= —— —L
A(z)
G Vocal Tract
(Gain) Parameters
Random
Noise
oiced/Unvoiced
switch

Figure 2.1. Speech Production Model for LPC

In other words, every speech sample is computed as a linear combination of the previous
speech samples together with a contribution from the excitation. This formulation is also

the reason for calling the method linear predictive coding. From (2.2), the formant filter or
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short-term filter has a transfer function
Nf
L 4@ =Y a7 (2.3)
H (z) ke '
k=1
The LPC predictor coefficients g, are determined directly from the speech signal in
such a manner that the mean-squared error of the short segment of speech is minimized.
The speech signal is segmented into analysis frames by multiplying the speech signal s(n)
by a window signal, w(n), which is zero outside the analysis frame. The most popular

windowing function used is a Hamming window given by

w(n) = O.54—O.46cos(-2—;—n), 0<n<N-1 (2.4)

w (n) = 0, otherwise.

Here N is the window length in samples and is generally taken in the range of 20-40 ms,
with 30 ms being a typical value. Usually, the successive windows are chosen to overlap
and the distance between the successive windows is called the frame period. Typical
values of the frame period are 10-30 ms. The LPC parameters are estimated using the
method given in Appendix A.l. One possibility for the selection of the excitation for
voiced signals is given in [2]. The main features of the government standard LPC-10
algorithm are as follows: the frame length is 22.5 ms (180 samples for a sampling rate of 8
kHz) and the total bits per frame is 54, which gives a total data rate of 2400 bps. LPC
analysis is performed pitch synchronously and a 10th order LPC model is used for voiced
signals. For unvoiced signals, only a 4th order model is used since this is sufficient to
determine the speech spectrum. The remaining bits are used for error protection. The

speech quality of the synthesized speech has an undesirable mechanical quality and often
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the identity of the speaker is lost; but this method is used for applications like secure
telecommunications where a low bit-rate is more important than the quality of the speech

produced. The LPC method has the advantage of low computation rates requiring about

1.7 million instructions per second (MIPS)!.

2.1.1. Pitch Prediction Algorithm

The determination of periodicity in a speech segment is important in many speech
coding algorithms. This periodicity determines if the segment is voiced or unvoiced, and if
voiced, it determines the fundamental period. For the LPC method, pitch prediction is
necessary in order to generate the excitation as shown in Figure 2.1. For voiced signals
(such as vowels) the speech signal demonstrates a fine structure arising from the quasi-
periodic nature of the vocal tract, in addition to short-term correlations. The quasi-periodic
nature of vibrations in the voiced speech remains to a large extent in the residual signal
obtained after the short-term prediction (non-recursive inverse A(z) of (2.3)) as shown in
Figure 2.2. This long-term periodicity can be removed further by pitch prediction [11].
The pitch predictor has a smaller order than the formant filter and removes these distant
sample correlations; this filter is also known as a long-term filter. The delays associated
with these taps are grouped around the pitch lag value. The transfer function for a pitch
predictor or the long-term predictor with 3 taps is

~(M+1) —(M+2)

P(2) = B,z " +Byz +Byz 2.5)

where M is the pitch period.

1. Muitiply, add, multiply-accumulate and compare instructions
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I

Residual Signal after LPC

bbb

Figure 2.2. Original Speech Signal and the Residual Signal Obtained after LPC

In order to obtain the pitch predictor coefficients 3;, the pitch period or pitch lag value
M has to be determined. When the formant or LPC analysis is performed first, the near
sample based redundancies have been removed to a large extent before pitch analysis. The
conventional predictor configuration uses a cascade of a formant predictor and a pitch
predictor. The value of the pitch period is chosen so as to maximize the correlation of the

residual after the formant prediction. The normalized correlation array is given by

M—1+NI,

2
o’ (0,m)
G mm) (20

n =
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where
N-1

6(ij) = 2 dn-i)d(n-j) 2.7

n=0

and d(n) is the residual signal after formant prediction which is input to the pitch predictor.
The value of M that maximizes the quantity in (2.6) is chosen as the pitch period. The

pitch prediction parameters can be estimated using the method in Appendix A.2.

2.2. Vector Quantization

Shannon’s rate distortion theory states that better performance can be achieved by
coding vectors instead of scalars. Vector quantization is used to compress speech and
image signals. VQ is often used for speech compression with the LPC model to achieve
low bit-rate coding. Recently, with the emergence of new and efficient methods of
encoding high-dimensionality data vectors, VQ became associated with high-quality

speech coding at low rates.
A vector quantizer maps each input vector in a k-dimensional Euclidean space R¥, into

one of the finite number of representative vectors in R¥. The set of representative vectors
is called a codebook, and each representative vector is called a code vector or a reference
vector. A general VQ scheme is shown in Figure 2.3. An optimal vector quantizer
minimizes the average distortion over all the representative vectors. The lower the
distortion caused by reproducing an input vector with the corresponding representative
vector, the higher is the performance of the VQ. A complete review of VQ is presented in

{12] and [13].



Speech Coding Techniques 16

A number of different performance criteria can be used to determine an optimal
codebook. In speech applications, the objective is to minimize the overall distortion due to
VQ in the reconstructed signal. Thus the design criterion used to design an optimal
codebook of a given size is the minimization of the average distortion in encoding vectors
using the codebook. Another possible criterion is to maximize the entropy of the
codebook, i.e., ensure that each of the codewords is used equally or frequently in encoding
the data. The idea here is to ensure that all the codewords are doing their fair share in
representing the entire input data. For the case when N is fixed and & is very large, it was
shown that the codebook that maximizes the entropy also minimizes the expected

distortion [14].

Subregion S;

Representative
Vector W;

Input Vector x

Figure 2.3. Vector Quantization Scheme

Given the performance criterion, the VQ design process involves the determination of
the codebook that is optimal with respect to the criterion. In general, this requires knowing

the probability distribution of the input data. Typically, this distribution is not known and
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the codebook is constructed through a process called training. During training, a set of
data vectors that is representative of the data that will be encountered in practice is used to
learn an optimal codebook. During the training process, a distortion measure d(x,w) is
typically used to determine which data points are considered as being in the same region
as the representative vector. The distortion measure can be viewed as the cost of
representing input x by the codevector w. By determining which training data vectors lie in
the same region, the k¥ dimensional data space is partitioned into cells S; (See Figure 2.3).
All of the input vectors that fall into a particular cell are mapped into a single, common
reproductive vector w;. If the cells are partitioned according to a minimum distortion rule,
then the partition is referred to as a Voronoi or Dirichlet partition. The most common

distortion measure is the Euclidean distance given by

k
d(x,w) = |x-w|® = lej—wjf. (2.8)
j=1

Another distortion measure called the Itakura-Saito distortion measure is frequently used
in speech coding applications, and is a spectral distortion measure.

The training process which is used to build the codebook can be summarized as
follows: Each of the data vectors is compared to each of the codewords and the
corresponding distortion is calculated. The codeword that most closely matches the data
vector, i.e., the reproduction vector which represents the input vector with minimum
distortion is selected and the codeword is updated to reflect the inclusion of this new data
vector in its partition. Various VQ algorithms are available and have been summarized in

[12], [13] and [14].
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In [15] a large reduction in coding rate was achieved through short-term temporal
compression of the speech followed by VQ. The VQ is applied to the temporal
decomposition output to implement coders operating in a range of 450-600 bps with
natural sounding speech output. Hence VQ can be used effectively for very low rate
speech coding by parameterizing the speech signal by quantizing these parameters
effectively. By employing VQ for LPC parameters, the bit-rate can be reduced to 800 bps.
However, VQ methods require high computational power for training and searching the

codebooks.

2.3. Code Excited Linear Prediction (CELP)

Predictive coders reduce bit-rate by removing redundancies in the speech signals by
linear prediction and then transmitting the quantized parameters of the predictor as well as
the quantized residual. It is however very difficult to quantize the prediction residual
accurately at rates less than 2-3 bits/sample. For low-rate, high-quality speech coding, a
more efficient representation of the excitation sequence is required. This problem was
addressed in [16] in which it was suggested that high-quality speech at low bit-rates may
be produced by coding of Gaussian excitation sequences in conjunction with analysis-by-
synthesis linear prediction and perceptual weighting. A novel excitation scheme for
analysis-by-synthesis CELP was proposed in [17]. This analysis-by-synthesis CELP coder
is shown in Figure 2.4.

The CELP coder contains two time-varying linear recursive filters each with a
predictor in its feedback loop. The first feedback loop includes the LPC analysis filter with

a transfer function given in (2.3) and the second feedback loop includes the pitch predictor



Speech Coding Techniques 19

with a transfer function given in (2.5). The excitation is encoded using a codebook of
Gaussian sequences. The codebook contains 1024 vectors and each vector is 5 ms long. A
gain factor g scales the excitation vector and the excitation samples are filtered by the
long-term (pitch) and short-term (LPC) synthesis filters. The optimum vector is selected
such that the perceptually weighted mean-squared-error is minimized. The perceptual

weighting filter W(z) is applied directly to the input speech signal s(n) and the synthetic

output § (n) and the resulting error is minimized to obtain the excitation vector and the

gain.
Codebook s(n) s (1)
— W(z)
S,(n) y +
W(z) z
A(z)
edn)
VQ Index Brror
Minimization [*®

Figure 2.4. Analysis-by-Synthesis CELP

A 4800 bps CELP algorithm has been adopted by the Department of Defense for
possible use in a third-generation secure telephone unit [18]. The synthesis configuration
for Federal Standard 1016 (FS1016) is shown in Figure 2.5. The speech signal is sampled
at 8 kHz and segmented into frames of 30 ms. Each frame is segmented in subframes of

7.5 ms. The excitation in this CELP is formed by combining vectors from an adaptive and
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a stochastic codebook with gains g, and g, respectively. The excitations are selected in

every subframe by minimizing the perceptually weighted error measure.

Stochastic
Codebook

+ Speech

VQ Index
e Postfilter |—®

Adaptive @ A(z)
Codebook

+ Lag Index

Figure 2.5. FS51016 CELP Synthesis [9].

The codebooks are searched sequentially starting with the adaptive codebook. The
term adaptive codebook is used because the long-term predictor (LTP) lag search can be
viewed as an adaptive codebook search where the codebook is defined by previous
excitation sequences and the lag determines the specific vector. The adaptive codebooks
contains the history of past excitation signals and the LTP lag search is carried over 128
integer (20-147) and 128 noninteger delays. A subset of lags is searched in even
subframes to reduce the computational complexity. The stochastic codebook contains 512
sparse and overlapping code vectors. Each code vector consists of 60 samples and each
sample is ternary valued (1, 0, -1) to allow for fast convolution. Ten short-term predictor
coefficients A(z) are encoded as line spectrum pairs (LSP) [2] on a frame-by-frame basis.
Subframe LSP’s are obtained by applying linear interpolation of frame LSP’s. A short-

term pole-zero postfilter is also part of the standard.
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The characteristics of the CELP coder are given in Table 2.1. One bit per frame is used
for synchronization, 4 bits per frame for forward error correction and 1 bit per frame for
future expansion giving a total bit-rate of 4800 bps. The computational requirements for
CELP are 12.6 million instructions per second (MIPS). CELPs major computational
requirements are dominated by the transmitter’s codebook searches. CELP coders do not
exhibit the usual vocoder problems in background noise because they use a more
sophisticated excitation model than the classical vocoder’s pitch and voicing. Background
noise, including multiple speakers, is faithfully reproduced. Informal listening tests
indicate that the 4800 bps CELP coder’s speech intelligibility and quality are comparable

to 32,000 bps continuously variable slope delta (CVSD) coding.

Linear Adaptive Stochastic
Predictor Codebook Codebook
Update 30 ms 7.5 ms 7.5 ms
Parameters 10 LSP’s 1 gain, 1 delay, 256 | 1 gain, 1 index, 512
codewords codewords
Bits per frame 34 index: 8+648+6 index: 9x4
*gain: 5x4 gain: 5x4
Rate 1133.33 bps 1600 bps 1866.67 bps

Table 2.1. CELP characteristics [18]

2.4. Summary

This chapter provided an overview of LPC, VQ and CELP speech coding technigues.
LPC provided an efficient method of estimating the speech signal as a linear combination

of past speech samples. It removed short-term correlations in the speech signal to a large
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extent. The LPC filter was excited by a impulse train or random noise based on whether
the speech signal was voiced or unvoiced. The pitch period was estimated if the speech
signal is voiced. The pitch filter was used to remove the long-term correlations in the
residual signal after LPC. LPC produced bit-rates of 2400 bps with the reproduced speech
quality having an artificial or buzzy character. However, the computational requirements
were very low and at 1.7 MIPS.

The vector quantization method was then introduced and the advantages of the VQ
method were presented. By using a suitable learning algorithm, VQ produced a codebook
which is a finite set of representative vectors for a set of input vectors. The index of the
best matching representative vector for any input vector is transmitted instead of the
whole vector, thereby reducing the bit-rates. VQ can be potentially used to obtain bit-rates
as low as 450 bps with good speech quality. However, the VQ technique suffers from
increased computational requirements for the codebook learning and search.

CELP uses the linear-predictive-analysis-by-synthesis method along with two
codebooks for LTP lag and excitation. The Federal Standard CELP 1016 was then
described. CELP produces very high speech quality even in noisy environments and
requires a bit-rate of 4800 bps. The computational requirement is 12.6 MIPS requiring
most of this relatively large computational power for the codebook search.

In the next chapter, artificial neural learning algorithms for VQ will be discussed.
These algorithms can be potentially used to solve the VQ problems to produce

simultaneously low bit-rate and low computation rate speech compression.



Chapter 3

Artificial Neural Learning for Vector Quantization (VQ)

3.1. Introduction

A number of studies have reported the use of artificial neural network (ANN)
algorithms in VQ encoding and codebook design [5], [19], [20] and [21]. ANNs are highly
parallel computing structures consisting of a number of simple processing units called
neural units, each with a set of interconnections (weights) from the other units and from
the inputs to the network. ANNs are designed to perform well on tasks such as human
perception, where they adapt to a new environment by learning. ANNs learn to perform
any desired task by training on a set of examples. The set of examples consists of sample
inputs that are representative of the task the network must perform. The network learns
from these examples and stores the information in the weights. The values of the weights
are modified by a suitable learning algorithm. The network also has the ability to
generalize upon the training cases. The ANN learning algorithms most suitable for VQ of

speech are the unsupervised learning methods including competitive learning and feature

mapping.
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An unsupervised learning network has a set of inputs and outputs with no external
feedback to say what the outputs should be. The network must discover on its own
patterns, features, regularities, correlations or categories in the input data and output an
appropriate code. The network must derive the error and the necessary weight
modifications directly from the learning rule, and from the statistics of the training data.
Some of the features that might be represented by the outputs of such networks are
familiarity, principal components, geometric clustering, prototyping, encoding and feature
mapping. Principal component analysis can be used for dimensionality reduction of the
data. The encoding problem can also be performed using clustering or feature mapping
which is often called vector quantization (VQ). One of the major advantages of
formulating the VQ problem in terms of ANN algorithms is that a large number of these
algorithms can be applied to the VQ task. Most ANN algorithms are adaptive and allow
for the possibility of training the VQ on-line even in a non-stationary environment.

Most unsupervised learning networks consist of only a single layer with inputs and
outputs. The number of output units is usually smaller than the number of inputs except in
the case of feature mapping. Learning techniques are either based on connections that
learn using a modified Hebb rule (e.g. principal component analysis) [4] or competitive
learning. In this chapter, competitive learning algorithms used for VQ of speech will be
discussed. Another unsupervised learning algorithm known as the Kohonen self-
organizing feature maps (KSFM) is also discussed. A relevant measure of the quality of
the codebooks obtained by these algorithms is the codebook entropy. The codebook

entropy E is given by
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N
E = -3 p,;log,(p) 3.1)

i=1
where N is the number of codewords in the codebook and p; is the relative frequency with
which codeword 7 is used in encoding the data set. In the ideal case, if all the codeword
entries are equally utilized, the value of the entropy would be log,(N). The closer the
entropy to this ideal value, the more uniform is the codeword usage implying a better

codebook performance.

3.2. Competitive Learning (CL)

The aim of CL networks is to cluster or categorize the input data. The clusters must be
found by the network itself from the correlations of the input data. Inputs which are
similar should be classified as being in the same category and so should most strongly
activate the same output unit. Categorization or clustering can be used for data encoding
and compression through VQ, which has applications in speech coding. (Chapter 2.2). In
CL, only one output unit is on at any time and the output units compete for being the
active output. This network is therefore called a winner-take-all (WTA) network.

A simple CL network is shown in Figure 3.1. The connections shown with open
arrows are inhibitory and the remainder are excitatory. There is a single layer of output
units O;, each fully connected to a set of inputs x; via excitatory connections wj. The
connection of the unit to itself is excitatory, which will help the neuron to reinforce its
output. The connections to other output units are inhibitory and attempt to suppress the

output of other neurons. The inputs and outputs are usually binary 0/1. The output which
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is most active is known as the winner. The winner is normally the unit with the largest net

input
hy=Yw.x =w, . x (3.2)

for the current input vector x. Thus,

W o X > W, X (for all i) (3.3)

defines the winning unit i* with the output of the corresponding winner O;. =1 and all
other outputs equal to 0. If the inputs and the weights for each unit are normalized, so that

Iw;l = 1 for all i, then (3.3) is equivalent to
Iwi* —xl < |wl. —xl (for all i). (3.4)

This states that the winner is the unit with normalized weight vector w closest to the input
vector x.
The algorithm starts with small random values for the weights. Then a set of input

patterns x* is applied to the network in random order and the distortion d(x,w;) (Euclidean

distortion (2.8) or any other suitable measure) is calculated. The corresponding winner i*
is selected as the unit with the lowest distortion for each input, and the weight vector
corresponding to the winning unit is moved closer (during learning) to the input pattern
x". Figure 3.2 shows a competitive learning network with the input vectors represented by
dots and the weight vectors represented by crosses. The figure shows that the output units

have discovered a cluster of inputs and have moved to its center of gravity after learning.
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There are several ways of updating the winning unit so that it moves closer to the input
vector and is more likely to win on that input in the future. In simple competitive learning,

the weight of the winning unit is updated using

X1 X9 X3 X4 X5

Figure 3.1. A Simple Competitive Learning Network

W (TF D) = () s(x;‘ W 1) ) (3.5)
where x* is the set of input patterns, € is the learning rate, n is the training iteration and the
weight of the winning unit w;» moves directly towards the input pattern x*. This kind of
CL is known as hard competitive learning since only the winning unit is updated.

There is a problem with this learning method. If the weight vector w; of a particular
unit is initially far removed from any input vector, then it may never win and therefore

never learn. These units are termed as dead units. The consequence of having dead units is

that it reduces the codebook entropy value defined in (3.1). There are several ways of
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preventing dead units and increasing the value of the entropy. One of the methods is called
frequency-sensitive competitive learning (FSCL) which will be discussed in the next
section. There are also soft competitive learning algorithms (SCL} in which all units are
updated in proportion to their current responsibility for the input pattern [22]. The hard CL

network requires low computational requirements since only the winner is updated.

Before Learning After Learning

Figure 3.2. Competitive Learning

3.3. Frequency-Sensitive Competitive Learning (FSCL)

FSCL for VQ of speech was proposed by Krishnamurthy et al [5] and [19]. The
motivation for the FSCL network is to overcome the limitations of the CL network while
retaining its computational advantages. Since the main problem of hard CL is dead units
or underutilized units, FSCL keeps count of how frequently each unit wins. This
information is used when the winner is updated. This mechanism is sometimes called a
conscience; frequent winners penalize themselves by increasing their distortion measure,
thereby enhance the opportunities for infrequent winning units to win in the competition.

A similar conscience mechanism approach was first described in [23] which suggested

the use of a threshold to be subtracted from the net input and an adjustment to the
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thresholds to encourage frequently losing units to win. The FSCL method applies these
models to the VQ problem. In the FSCL network, each unit incorporates a count of the
number of times a unit wins. The distortion measure used to determine the winner is
modified to include this count. If u; denotes the number of times a unit wins the

competition and d(x,w,) is the distortion used to obtain the winner, the modified distortion

measure for the training process is defined as:

d* (x,w;) = d(x,w;(n)) X F(u,) (3.6)
where 7 is a nondecreasing function called the fairness function. The fairness function
introduces a count-dependent weighting to the distortion measure. This function provides
a way to control the behavior of the FSCL training procedure. For example, choosing #u;)
= 1 reduces the FSCL to the standard CL algorithm. Two possible choices for the fairness
function are Fu;) = u; or Fu;) = uf where k = Bexp(-n/T) where B and T are constants and
n is the training iteration number. If a given neural unit wins the competition frequently
during the learning process, its count #; increases and so does its distortion in (3.6), since
¥ is nondecreasing. The increased distortion value reduces the likelihood that this unit will
be the winner in the future, giving other units with a lower count value a chance to win the
competition. The winning unit at each iteration is chosen as the unit with minimum
distortion d”. After the winner is obtained, its weight is updated using (3.5) and the count
u; of the winner is incremented. This method encourages all neural units to participate
equally in the competition encouraging uniform codeword usage and hence increased
codebook entropy. The computational requirements for ESCL are slightly greater than

those of CL algorithm due to the use of the modified distortion measure (3.6). The
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memory requirements during the training process are also increased to store the winning

frequency of each neural unit.

3.4. Kohonen Self-Organizing Feature Maps (KSFM)

The CL and FSCL networks pay little attention to the geometrical arrangement of the
output units. A few network architectures convey some information based on the location
of the winning output unit, with nearby output units corresponding to nearby input
patterns. A network that performs such a mapping is called a feature map. The feature map
preserves the topology and the neighborhood relations from the space of possible inputs to
the line or plane of the output units. There are a number of ways of designing
unsupervised learning networks that self-organize into a feature map. The KSFM
algorithm introduced by Kohonen [24] uses the CL algorithm to obtain the winner but the
weight update rule is modified to preserve the topology and neighborhood relations.

KSFM uses the architecture shown in Figure 3.3 which is a fully connected network.
There are N continuous valued inputs x; to x,. The output units O, are arranged in a one or
two-dimensional array and are fully connected via wj; to the inputs. A CL rule is used to
choose the winning unit i* with the weight vector w;. closest to the input vector x. The
winning unit can also be found as the unit with the lowest distortion d(x,w)).

In order to incorporate a topological relationship among the output units, the weight

update equation is modified as

wy(n+1) = w(n) + () A, i*)(x?~wij) 3.7
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Figure 3.3. Feature Mapping Architecture

for all i and j. The neighborhood function A(i, i) is 1 for i = i* and &(n) is a time-varying
learning rate. The neighborhood function has to be changed dynamically during learning
for the algorithm to be useful. In earlier stages of training, a wide neighborhood A(, i)
and large learning rate € are used. As the training progress both these values should be
gradually reduced. This allows the network to organize its elastic net rapidly during the
period when a large neighborhood and learning rate are used and then refine it slowly with
respect to the input pattern as the neighborhood and the learning rate are decreased. A

typical choice for the neighborhood function is

A i) = exp(—lri-ri*’/Zczj (3.8)
where ¢ is a width parameter that is gradually reduced and |r — r;4| is the distance between
the units i and i in the output array.

By the use of neighborhoods, the KSFM network overcomes the problem of
underutilized units giving a larger entropy than a hard CL network. One drawback of

KSFM compared to the CL and FSCL networks is the additional computation involved
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during training. This additional computation arises from both the calculation of the
neighborhood of the winning unit as well as from updating all the units in the

neighborhood.

3.5. Summary

In this chapter, several artificial neural learning methods for the adaptive VQ of speech
were discussed. Artificial neural learning methods can be potentially used to learn the
codebook in a VQ. ANNSs are adaptive and hence allow for the possibility of training the
VQ on-line, and for their employment in a nonstationary environment. Three
unsupervised learning methods to train the codebook in a VQ were discussed in this
chapter. Firstly, the competitive learning algorithm was introduced which is a winner-take-
all network. An input vector was applied to the network and the output closest to the input
unit was chosen as the winner. The weight of the winner was updated so as to move it
closer to the input. The CL network introduced dead-units or underutilized units. The
ESCL network which has a conscience mechanism was then introduced to avoid the
underutilization of codewords and to increase the codebook entropy. The conscience
mechanism allowed the units that win often to increase their distortion accordingly to
permit other infrequently winning units to participate in the competition. The third
algorithm that was described was the KSFM in which the network incorporated
neighborhood and topological relationships among the output units. This was done by
choosing a neighborhood function and by updating a neighborhood of the winning unit.
Initially a large neighborhood was chosen so as allow the network to organize itself

rapidly and as the neighborhood decreased the network would fine tune its weight values.
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Among the three learning algorithms, CL has the lowest computational requirements and
KSEM has the highest. In the next chapter, the learning methods discussed in this chapter

will be used to vector quantize the excitation signal for speech compression.



Chapter 4

Neural VQ for Speech Compression

In the earlier chapters, LPC, VQ and CELP speech coding techniques were discussed.
LPC requires low bit-rates and computational power, but the reproduced speech sounds
artificial or unnatural with a buzzy character. CELP uses a computationally expensive
algorithm to obtain good intelligibility and excellent speech quality with bit-rates higher
than LPC. VQ can be used potentially to reduce the bit-rate below LPC with speech
quality similar to CELP but usually requires computationally expensive codebook search.
By employing ANN algorithms for VQ, one can achieve moderate sized codebooks that
can be searched in parallel and are able to adapt to non-stationary environments with bit-
rates lower than CELP. This means that ANN algorithms can obtain a compromise
solution with low bit-rate, moderate speech quality and moderate computation-rate.
Computational requirements may be further reducible through the use of restricted bit
precision. In this chapter, the performance of the unsupervised learning algorithms
discussed in Chapter 3 for speaker-dependent and speaker-independent speech
compression will be examined and the results will be compared to those obtained by using
CELP. The results obtained by using limited precision in both the classification and

learning computations of these algorithms are also examined.
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For all the simulations presented in the remainder of this thesis, software was written
in C and C++ programming languages. Various modules were developed to implement the
analysis and synthesis of the speech signal and for generating the training data. A public
domain C software package known as som_pak [25] which implements the KSFM
algorithm was obtained from Finland. This software was extended to implement the FSCL
algorithm. The distortion measure was the Euclidean function (2.8) and the fairness
function for the FSCL algorithm was F(u;) = u; for all the simulations. Another public
domain C program which implements the FS1016 CELP {26] was obtained from the

Department of US Defense to compare the results of this study.

4.1. Neural VQ of LPC Parameters

In earlier studies [5] and [19], the speech signal was preprocessed to obtain the LPC
parameters (Section 2.1) which were then vector quantized using artificial neural learning
algorithms. These experiments were repeated and included in this study. The training data
was obtained from the TIMIT database [27] for both speaker-dependent and speaker-
independent speech compression. The database consists of speech segments from 630
different speakers from 8 major dialects of American English, each speaking 10
phonetically rich sentences. The training data consisted of 6000 data vectors of LPC
autocorrelation coefficients of 10 different sentences from a single male speaker. The data
was downsampled to 8 kHz and the LPC autocorrelation coefficients were extracted from
a window size of 40 ms (320 samples). The autocorrelation coefficients are vector

quantized using the FSCL and KSFM learning algorithms described in Chapter 3.
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The experiments were conducted for a codebook size of 128 codewords. Figure 4.1
and Figure 4.2 show the codeword utilization for the codebooks learned using FSCL and

KSFM. The neighborhood for the KSFM was chosen to be a 16 X 8 rectangular grid for a

codebook of size 128.
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Figure 4.1. Codeword Utilization Using FSCL Algorithm
A comparison of these figures shows that the codeword utilization is more uniform
using the FSCL technique as compared to the KSFM method. The entropy value for FSCL
was 6.89 and for KSFM was 6.79, the ideal value being 7 which shows that the fairness
function in FSCL encourages a uniform codeword utilization. A comparison of the
distortion values shows that the FSCL also gives a lower distortion than KSFM method.
Informal listening tests revealed that the neural net vector quantizer preserves the shape of

the LPC filter and the LPC synthesized speech was identical to the original speech when
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the true residual signal was used to excite the inverse LPC filter. In [19] speaker-
independent speech coding experiments were also performed. For a codebook size of 128,
the speaker-independent experiments introduces some additional distortion in VQ and a

larger codebook has to be used.
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Figure 4.2. Codeword Utilization Using KSFM Algorithm

4.2. Neural CELP

It has been shown in many previous studies of speech compression by non-neural
techniques that, in order to obtain high speech quality, it is necessary to transmit the
prediction residual signal along with the LPC parameters. It is, however, very difficult to
quantize the prediction residual accurately at rates less than 2-3 bits/sample. Below these

rates, the quantization error starts showing significant correlation with the speech signal.
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As a result, the predictor is no longer optimal and the coding gain drops. CELP coding
gets around this problem by using an analysis-by-synthesis loop to minimize the
frequency-weighted mean-squared error between the coder input and the decoder output.
In neural VQ of speech, the prediction residual has to be transmitted and the transmission
of the prediction residual requires a significantly larger number of bits than those required
to transmit the LPC parameters. Hence, it seems useful to vector quantize the residual
signal rather than vector quantizing the LPC parameters as in the previous section. The
amount of information in the LPC prediction residual can be reduced by performing pitch
prediction on the LPC prediction residual which removes redundant pitch information.
The residual signal obtained after LPC and pitch analysis can be vector quantized in a
neural analogy to the CELP approach.

In the neural CELP approach, the speech signal is preprocessed to obtain 10 LPC
parameters. The residual signal obtained after inverse LPC analysis is used to extract the
pitch period and 3 pitch prediction coefficients. The final residual after the removal of the
pitch information is then vector quantized using the artificial neural learning methods
discussed in Chapter 3. The codebook can be learned off-line, and is available both at the
transmitter and the receiver. At the transmitter, the original speech signal is filtered
through the inverse LPC and pitch prediction filters and the residual signal is obtained.
The closest matching codebook vector for the residual vector is searched for in the
codebook and the corresponding index of the codebook vector is obtained. The analysis
stage of neural CELP is shown in Figure 4.3(a). The codeword index along with the LPC
and pitch parameters are quantized and transmitted to the receiver. The codebook vector

corresponding to the codeword index is used at the receiver in the reconstruction of the
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speech signal. The analysis and synthesis stages of the neural CELP coder are shown in

Figure 4.3(b).
Original
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Figure 4.3. (a) Speech Analysis Model for Neural CELP. (b) Speech
Synthesis Model for Neural CELP.

4.2.1. Speaker-Dependent Case (40 ms LPC Frames)

For speaker-dependent speech compression, the speech data was obtained from 10

sentences in the TIMIT database spoken by a single male speaker. The speech signal is
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preprocessed to obtain ten LPC parameters and the prediction residual is used to estimate
the pitch period and three pitch prediction coefficients. A frame size of 40 ms is used for
LPC analysis and 20 ms for pitch prediction. The final residual i.e. the excitation signal
obtained after LPC and pitch prediction, is vector quantized using the FSCL and KSFM
algorithms. The training data set consisted of about 7000 vectors with each vector being a
5 ms (40 dimensional vector) excitation signal. The FSCL and KSFM learning algorithms
are employed for training the codebook and the codebook entropy is calculated for
different codebook sizes. Figure 4.4 shows the codeword utilization for a codebook size of
512 when the residual excitation is vector quantized using FSCL. Figure 4.5 shows a
similar plot when KSFM is employed for VQ. The graphs show that the FSCL gives a
larger value of entropy than the KSFM. The distortion is calculated as the average sum of
the squares of the error between the training set and the codebook. The graphs show that
the FSCL results in a lower distortion than KSFM.

The error during training is shown in Figure 4.6. It can be seen that the average error in
FSCL is less than that of KSEM. The FSCL case also reaches a minimum much faster than
the KSFM case. The learning in KSFM is performed in two phases as suggested in the
software documentation. In the first phase, a large neighborhood and learning rate are
used. The codebook in the initial phase is trained for 50000 training iterations. In the
second phase, both the neighborhood and the learning rate are reduced and the training is
performed for another 150000 training iterations. From Figure 4.6, the error for KSFM
decreases when the learning rate is reduced in the second phase of learning. The optimal

learning rate was obtained by experimentation. For the FSCL a learning rate of 0.05 was
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Figure 4.4. Codeword Ultilization for VQ of Excitation Signal using FSCL
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Figure 4.5. Codeword Utilization for VQ of Excitation Signal using KSFM

used. For the KSFM, the learning rate in the first phase was 0.05 and in the second phase
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the learning rate was reduced to 0.02.

Table 4.1. shows the relative codebook entropies for different codebook sizes obtained
using the FSCL and KSFM methods. It can be seen from the table that the relative entropy
as a percentage of the ideal value reduces slightly as the codebook size increases. FSCL
results in a higher entropy than KSEM. This results from the fairness function which
encourages uniform utilization of the codewords. The entropy values cannot be compared

directly with codebook entropy for the CELP method since the excitation codebook in

CELP is generated stochastically.
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Figure 4.6. Average Error during Training for FSCL and KSFM Learning
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Codebook Entropy as% of | Entropy as% of
Size Ideal (FSCL) Ideal (KSFM)
512 99.5 96.6
1024 99.4 96.1

2048 98.5 95.4

Table 4.1. Entropy for Speaker-Dependent Data.

Another relevant measure for comparison of the reconstructed speech is the segmental

signal-to-noise (SNR). The SNR is calculated as

>’ ()

. #.1)
D, (s(m) —3(n))

SNR = 10log,,

where s(n) is the original speech signal and 5 (n) is the reconstructed speech signal. The
SNR for each frame is calculated using (4.1) and the segmental SNR of the entire speech
segment is obtained as an average of all the frame SNR values whose value is between -10
dB and 64 dB [26]. The segmental signal-to-noise ratio (SNR) obtained for a speech
segment by regular CELP coding is 4.08 dB for an adaptive codebook of size 256 and a
stochastic codebook of size 512. The LPC analysis frame size was 40 ms, the adaptive
codebook was searched every 20 ms and the stochastic codebotok was searched every 5 ms
for the regular CELP method. Table 4.2 shows a comparison of the segmental SNR
obtained for the reconstructed speech segment using the excitation codebooks learned via
FSCL and KSFM learning methods for encoding and decoding the excitation signal. For

the preprocessing phase, the LPC analysis frame size was 40 ms, the pitch prediction
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analysis frame size was 20 ms and excitation codebook was searched every 5 ms. The
results show that the present VQ method introduces some distortion in the reconstructed
speech for codebooks of size lower than 2048 codewords. The distortion introduced by the
codebook results in the distortion in the inverse pitch predictor, thereby reducing the

speech quality of the reconstructed speech signal.

Codebook ESCL KSEM
Size SNR dB SNR dB
512 3.10 2.33
1024 3.39 2.99
2048 4.17 3.12

Table 4.2. Comparison of the Segmental SNR for Speaker-Dependent VQ

The theoretical computation rate required by CELP is 12.6 MIPS [18]. CELP’s
computations, excluding the codebook searches and including the receiver require
approximately 2 MIPS. The adaptive codebook of size 256 requires about 2.3 MIPS and
the stochastic codebook of 512 codewords requires 8.3 MIPS which gives the total
computation requirement of 12.6 MIPS. The neural CELP method however requires less
computational power compared to CELP. The LPC and pitch prediction requires about 1.5
MIPS and the codebook search for a size of 2048 codewords is about 4.7 MIPS giving a
total computation rate of 6.2 MIPS. The computational requirements of the neural CELP
method may be reduced still further by restricting precision, as discussed in (Section 4.4).

The bit-rate required by CELP is about 4300 bps with a 40 ms LPC frame size, 20 ms

frame size for an adaptive codebook of 256 codewords and 5 ms frame size for the
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stochastic codebook with 512 codewords. The bit-rate obtained by neural CELP with 40
ms LPC frames, 20 ms pitch prediction frames, and 5 ms excitation frame size is about
4800 bps for an excitation codebook of 2048 codewords. The bit-rate for neural CELP is
therefore marginally higher than CELP.

For speaker-dependent speech coding, the speech quality using neural CELP is lower
than that of CELP for a codebook size below 2048. However, informal subjective tests
indicated that the perceived speech quality is very intelligible. The bit-rate using neural
CELP is also slightly larger than CELP. The most important advantages of neural CELP
coding are the reduced computational requirements and the adaptability to nonstationary

environments.

4.2.2. Speaker-Independent Speech Compression (40 ms) LPC Frames

For speaker-independent speech compression, the speech data was obtained from 32
speakers from the TIMIT database (26 male, 6 female) having different dialects each
speaking one sentence. The fraining set consisted of about 20000 samples of the residual
signal, initially of dimension 40 samples of the excitation signal (5 ms). The FSCL and
KSEM learning algorithms were applied to learn the codebooks of different sizes and the
entropy was calculated for each codebook. As in the speaker-dependent case, Table 4.5.
shows the comparison of relative entropies for the KSFM and FSCL algorithms. The
results indicate that the FSCL gives a higher value for entropy than the KSFM method and
encourages uniform codeword utilization.

Table 4.5 shows the segmental SNR of the reconstructed signal obtained by using the

FSCL and KSFM learning methods for the codebook. The SNR for the CELP method for
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the same speech sample was 5.6 dB indicating that the CELP method gives better
performance than the neural methods in terms of speech quality. The codebook size for the
speaker-independent case is larger than in the speaker-dependent case. Once again, the
FSCL gives a higher SNR than the KSFM algorithm. In order to obtain a SNR equivalent
to that of CELP, the neural method requires a very large codebook and a large number of
training samples. Though the SNR is otherwise lower than that of CELP, the perceived

speech quality remained very intelligible, and faithful to the speaker, when informal

subjective tests were conducted.

Codebook | Entropyas% of | Entropy as% of
Size Ideal (FSCL) | Ideal (KSFM)
8192 98.8 95.7
4096 99.0 96.0
2048 99.3 96.5
1024 99.4 96.6

Table 4.3. Entropy for Speaker-Independent Data (40 ms Frames)

Codebook | FSCL SNR | KSFMSNR
Size dB dB
8192 5.51 4.66
4096 5.03 4.19
2048 4.38 3.86
1024 4.18 3.65

Table 4.4. Segmental SNR for Speaker-Independent Data (40 ms Frames)
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The bit rate obtained by using the neural VQ with a codebook size of 2048 is about
4800 bps. This bit rate can be reduced if we use a VQ for the LPC parameters in addition
to the residual VQ. An LPC codebook of size 1024 and a residual codebook of size 2048
will give a bit rate of 4275 bps and this can be reduced further by using a smaller
codebook for the LPC parameters. The LPC codebook further degrades the SNR but
preserves the perceived speech quality.

The computation rate required by neural CELP when both LPC and residual
codebooks of size 1024 are used increases from 6.2 MIPS to 6.35 MIPS because of the
additional codebook search involved. This value is still less than the computation rate

required by CELP which is 12.6 MIPS for a comparable codebook size.

4.2.3. Speaker-Independent Speech Compression (30 ms) LPC Frames

In order to improve the pitch predictor in the neural CELP method, the LPC analysis
frame size was reduced from 40 ms to 30 ms (240 samples at 8 kHz sampling rate). The
pitch prediction coefficients were extracted using the LPC residual signal on a frame size
of 7.5 ms. The excitation obtained after the LPC and pitch prediction was then employed
in VQ. Each training vector consisted of 7.5 ms (60 samples) of the excitation signal. The
vector quantizer was trained using the FSCL and KSEM algorithms. Table 4.5 shows the
comparison of the new SNR values for the FSCL and KSFM algorithms. The segmental
SNR obtained using the CELP method was 7.55 dB using the same analysis frame sizes.

The results in Table 4.5 show that the SNR obtained by FSCL for a codebook size of
8192 is higher than the SNR obtained by CELP. Informal subjective tests indicated that

the perceived speech quality is similar to that of CELP even with a codebook size of less
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than 8192 codewords. The bit-rate obtained by using the neural VQ with a codebook size
of 2048 and CELP are both about 4800 bps. The computation rates are further reduced in
the neural CELP method to 5.4 MIPS for a codebook of size 2048 codewords. This
reduction in the computation rates is due to the reduction in the LPC and pitch analysis

frame size and to the increase in the codeword dimension.

Codebook | FSCL SNR | KSFM SNR
Size dB dB
8192 8.62 5.96
4096 6.04 4.96
2048 5.39 4.46
1024 4.96 4.10

Table 4.5. Segmental SNR for Speaker-Independent Data (30 ms LPC Frames)

4.3. Subjective Speech Quality Tests

In order to test the speech quality obtained by using neural CELP, subjective speech
quality tests were conducted. A new data set which consisted of a vowel database [28] was
used in the subjective tests. The data set consisted of isolated words and pseudowords
(had, hid, head, hod, hood, hud) spoken by 7 female and 13 male speakers, each saying all
6 of the words. The codebooks were trained using the FSCL learning algorithm with a
codebook of size 4096 codewords. The words were then reconstructed using the codebook
and tested for their subjective quality. The SNR for the test samples using neural CELP
was less when compared to the SNR obtained by regular CELP. However, the

reconstructed speech samples were tested for intelligibility. The original speech signal, the
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reconstructed signal using CELP, and the reconstructed signal using neural CELP were
played to a successive set of listeners who were asked if the words could be recognized.
The audience was also asked to rate the quality of the speech samples on a scale of 1 to 5
with 5 being excellent and 1 being poor. The results of the word recognition tests are
shown in Table 4.6. The results show that all the vowels could be distinguished in 85% of
the trials. The vowels that were wrongly identified using the neural CELP method couldn’t
be recognized using either the original speech or the CELP coder. In the word recognition
tests, most of the cases that resulted in misclassification of the vowels was caused due to
an apparent “t” sound in the recordings at the end of the words for certain speakers, rather
than the appropriate “d” sound. In the second test, the quality of the speech was tested.
The results of the mean-opinion-score (MOS) tests are shown in Table 4.7. The results
show the speech quality the CELP output is very close to that of the original speech. The
listeners indicated that the words were very intelligible and the quality of neural CELP
was close to that of the original except for a slight raspy or hoarse sound in the output.

This was responsible for the lower MOS for the neural CELP method.

Ccﬁgﬁf’ion Accuracy
Original 85%
CELP 85%

Neural CELP 85%

Table 4.6. Word Recognition Tests
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Copprtn | s
Original 4.5
CELP 4.4

Neural CELP 4.0

Table 4.7. Speech Quality Tests (Mean-Opinion Score)

4.4. Computing with Reduced Power Requirements

Most neural network simulations on conventional computers have been performed
using a 32-bit floating-point representation for the network’s weights, distortion measures
and weight-update calculations. Using lower precision numbers, it is possible to place
more weights and processing elements in the same chip area, with a corresponding
increase in the performance and storage capacity to hardware cost. If the computations are
performed in lower precision arithmetic the computational requirements and with them
the power consumption in the device can be reduced. By reducing the power consumption
in the device, the system can be used for portable communications and computing devices.

Experiments have been conducted to examine if the artificial neural learning
algorithms can tolerate reduced precision during encoding and, and more importantly,
during learning. During encoding, the 7.5 ms excitation signal is used as the input to the
codebook and the corresponding closet vector in the codebook is identified. The output is
the index of the winning vector i.e. the vector whose distortion is the lowest. Experiments
were conducted when the precision was reduced during distortion calculations. The test

speech signal was encoded using reduced precision distortion calculation, and then
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decoded using the method of Figure 4.3(b). The segmental SNR of the reconstructed
signal was calculated and is shown in Table 4.8. The SNR was only reduced to 4.9 from
4.96, for example, for a 1024 word codebook size when 12 bit precision was used.
Limited precision arithmetic was also applied during learning. The precision was
reduced during both distortion and weight update calculations during learning. The
weights are also stored using reduced precision. Table 4.8 shows the results obtained when

limited precision arithmetic was performed during learning,.

Precision in bits | FSCL SNR dB
16 4.95
12 4.9
8 4.88
6 3.47

Table 4.8. Segmental SNR for Limited Precision Classification

The codebook size was 1024 and the FSCL method was used for learning. From Table
4.5, the SNR using 32 bit precision for a codebook size of 1024 is 4.96 dB. These results
indicate that the ANN algorithms are tolerant of low precision arithmetic which can result
in low power consumption for portable computing with little degradation of speech
quality. However, the precision cannot be reduced below approximately 8 bits without a
significant degradation in the speech quality. Subjective tests have shown that the
perceived speech quality remains intelligible for precision greater than 8 bits. This system
can therefore be used in real-time applications using low power DSP chips or custom

VLSI hardware,
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Precision in bits FSCL SNR dB
16 4.91
12 4.88
8 4.37
6 3.17

Table 4.9. Segmental SNR for Limited Precision Learning

4.5. Summary

The work presented in this chapter examined the neural CELP algorithm and its
performance for speech coding. In the neural CELP algorithm, the excitation signal is
vector quantized using FSCL and KSFM algorithms and the codebook is generated using
training samples. The LPC and pitch prediction coefficients of the input speech signal are
calculated and the excitation signal is identified from the codebook for the closet matching
codebook vector. The index of the closet matching codebook vector along with the pitch
and LPC coefficients are quantized and transmitted to the receiver. At the receiver, the
codebook vector corresponding to the codeword index is used in the reproduction of the
speech. Speaker-dependent and speaker-independent speech compression experiments
were conducted. For both the experiments, the results showed that the codebooks
generated by FSCL provide improved codeword utilization of the than those using KSFM.
The distortion obtain by FSCL is also lower than that of KSFM. The comparison of the
results obtained by the neural CELP method with the regular CELP method showed that
neural CELP is capable of producing comparable bit-rates and lower computation rates

than CELP, as well as being suitable for a nonstationary environment. CELP has a slightly
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higher SNR compared to that of neural CELP for small excitation codebook sizes.
Subjective speech quality tests showed that the speech output produced by neural CELP is

very intelligible except for a slight raspy or hoarse sound.



Chapter 5

Conclusions and Future Work

5.1. Summary and Conclusions

This thesis began with a brief overview of conventional speech coding techniques
including linear predictive coding, code-excited linear prediction and vector quantization.
The potential role of artificial neural networks for vector quantization (VQ) of speech was
then described. Several artificial neural learning methods for adaptive VQ of speech were
discussed. Artificial neural learning methods are adaptive and hence allow for the
possibility of learning the codebooks on-line in a non-stationary environment such as the
corner automated teller machine or in a portable computer. Three unsupervised learning
methods: competitive learning, frequency-sensitive competitive learning and Kohonen
self-organizing feature maps were discussed, for learning an adaptive codebook using VQ.
These learning methods were adopted in a new speech compression technique known as
neural CELP. In our neural CELP method, the input speech was preprocessed to obtain 10
LPC coefficients. The output of the inverse LPC filter was used to extract the pitch period
and 3 pitch prediction coefficients. The final residual after LPC and pitch prediction was

used to generate the codebook. Experiments were conducted for speaker-dependent and
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speaker-independent speech compression. The codebook was generated using 5 ms and
7.5 ms signals of the excitation signal. The codebook entropies, segmental SNR, bit-rates,
and computational rates were calculated for codebooks obtained using FSCL and KSFM,
and these were compared to the results of CELP coding. Experiments were also conducted
by employing low precision arithmetic for classification and learning.

The results of this thesis showed that artificial neural learning methods are of potential
importance for speech coding. The techniques used in this study differ from earlier neural
VQ studies and conventional CELP coding methods. The excitation signal was vector
quantized using the neural learning methods rather than quantizing the LPC parameters as
in the earlier studies. There was only one codebook for the excitation which was generated
by training on speech samples as opposed to the stochastic codebook in the standard
CELP approach. Th¢ results obtained demonstrate that the neural CELP approach is
capable of producing high quality speech, low computation rates and low bit-rates. The
subjective speech quality tests indicated that the quality of speech with smaller codebook
sizes using the neural CELP approach was below that of CELP but remained very
intelligible. The listeners indicated a slight raspy or hoarse sound for a few words in the
test set using neural CELP. The artificial neural learning methods are also tolerant of low
precision arithmetic. The results of low precision computing indicated that the ANN
learning algorithms perform well even if the precision is reduced from 32 bits to 8 bits
with only a small reduction in the SNR ratio. However, if the precision is reduced below 8
bits, there is significant degradation of speech quality. These results indicate that the
system can be implemented in real-time by using a DSP chip for preprocessing of speech

and by replacing the neurally-learned vector quantizer by a lookup table. However,
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ultimate real-time performance at low power in non-stationary environments will be best

obtained using integer arithmetic of restricted precision in dedicated ANN hardware.

5.2. Future Work

In this work, only software simulations of the experiments were performed. In order to
make the system more practical to use, it should be implemented as custom hardware or as
low-power DSP chips. More research should be performed regarding speech quality of the
neural CELP method which may include obtaining better pitch detection algorithms, or
alternatively, post-processing of the reconstructed speech. The performance of the
algorithms for speech signals for speakers with high pitch (e.g. female speakers) was
lowest. An adaptive pitch prediction algorithm may have to be used for such speakers. An
artificial neural network can be used for pitch prediction which may result in an overall
improvement of the speech quality. The learning time of the algorithms for a large
codebook size is significant even on a high performance computer. More effort is
warranted in developing fast learning algorithms so that codebooks can be generated on-
line in real-time applications. These faster learning algorithms can be employed for fine-

tuning the codebooks on-line in non-stationary environments.
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Appendix A

Estimation of LPC and Pitch Parameters

A.1l. LPC Parameter Estimation

In order to obtain the LPC parameters, the vocal tract information and the gain must be
determined. The speech signal is windowed using the windowing function defined in (2.4)

and the windowed speech signal is given by
s, (m) = s(m+n)w(m) . (A.1)
From (2.2), the estimate §, (m) is given by

N

H
5,(my = Y as, (m—k) . (A2)
k=1

In order to obtain a,, we have to minimize the error over all available samples.

S (s, (m) =8, (m)) (A3)

m

Minimization leads us to the following set of linear equations which can be expressed in a

matrix form as
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R0 R(D R@ .. RW-D|[a] [RD]

R,(I) R0 R ..RWN-2|la] |R@

R(2) R,() R0 ..R(N-3|la;|=|R,D| - “AH
R, (N~ 1) R, (N=2) R,(N=3) .. R,(0) ||ay] [R,(N)]

Here, R,(k) is known as the autocorrelation function defined as

N-1-k
R (k)= Y s,(m)s,(m+k). (A.5)

m=0

This Ny X Ny matrix of autocorrelation values is a Toeplitz matrix i.e., symmetric and all
elements along a given diagonal are equal. Such a matrix is nonsingular and it can always
be inverted. Hence, a solution can always be found, and the stability of the resulting
solution can be guaranteed. This property can be exploited to obtain an efficient algorithm
for the solution. The Durbin’s recursive algorithm is used to solve the matrix equation

above for the LPC coefficients a;.

A.2. Estimation of Pitch Parameters

The pitch predictor removes the distant sample correlations. The value of the pitch
period is chosen so as to maximize the correlation of the residual after the formant

prediction. A normalized correlation array given by

M-1+N,

2

m=M q) (m’ m)

where
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N-1I

o)) = X dn-i)dn-j) (A7)
n=10

and d(n) is the residual signal after formant prediction which acts as the input to the pitch
predictor. The value of M that maximizes the quantity in (A.6) is chosen as the pitch
period. The pitch filter is given by

-(M+1 ~(M+2
(M+1) Z(+)

P(z) = B,g " +Byz +B; (A.8)

The parameters f3; are estimated by solving the following matrix equation:

oMMy oMM+D)  omM+2) ||P ¢ (0, M)
OM+1,M) M+ L,M+1) ¢(M+1L,M+2)||By|= |00, M+ 1)|- (A
O(M+2,M) G(M+2,M+1) ¢(M+2,M+2)]|B.| [$(0,M+2)

In many cases, the off-diagonal elements in the covariance matrix (A.9) are negligible.
These terms are correlation terms with small lags. This approximation is justified by the
observation that when LPC analysis is done before the pitch prediction, the LPC filter

removes the short-term correlations. So, (A.9) can be simplified as

b, (0, M) /o (M, M)
B,= |60, M+ 1) /0 (M+1,M+1)| (A.10)
By| 0O, M+2)/0(M+2,M+2)

Using (A.10), the pitch prediction coefficients J; can be estimated.




