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Abstract

Telephone bandwidth speech compression has been an ongoing area of ¡esearch fo¡

several years. Numerous applications in telecommunications and storage have emerged in

the past two decades. The ease of real-time implementation using single-chip digital

signal processors has led to widespread implementation of speech coding algorithms in

personal communication systems, for both wired and wireless communications.

Artif,cial neural networks have demonstrated their usefulness for clustering and

pattern classification problems. The use of artificial neural learning algorithms for high

quality speech compression at low bit-rates and low computation rates, potentially in non-

stationary environments, are examined in this study. By using a class of artificial neural

leaming algorithms for determining the codebook in an adaptive vector quantizer,

moderate sized codebooks can be generated that can be searched in parallel and are able to

adapt to non-stationary environments. Unsupervised learning algorithms including

frequency-sensitive competitive learning and Kohonen's self-organizing feature maps

have been investigated for learning the codebook vectors. In contrast with earlier work,

these learning rules have been employed in vector quantization of the residual signal after

linear predictive coding and pitch prediction in a neural analogy to the code-excited linear

prediction (CELP) approach. The performance of these algorithms for speaker-dependent

and speaker-independent speech compression are presented. The results obtained by the



present neural CELP method compare favorably with those of the CELP method,

requiring reduced computational power and comparable bit-rates with a tolerable

reduction in speech quality. The effects of limited precision on classification and learning

in competitive learning algorithms for low power VLSI implementations are also explored

in this thesis.
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Chapter 1,

Introduction

Compression of telephone bandwidth speech has been an ongoing area of research for

several years. In the past two decades, there has been an overwhelming interest in this

field which has resulted in numerous applications in telecommunications and storage.

Some applications of speech compression include wired and wireless telecommunication

networks, consumer products for personal communication, and digital audio systems [1].

The ease of real-time implementation of speech-coding algorithms using single-chip

digital signal p¡ocessors has led to widespread implementation of speech algorithms in

personal communication systems. Another new area of application is multimedia personal

computing where voice storage is becoming a standard feature. Wideband audio coding

for high-fidelity reproduction ofvoice and audio has also emerged as an important activity

in the past decade. Applications of wideband audio coding lie largely with the

broadcasting industry, motion picture industry, music industry and multimedia computing.

1..1.. Speech Coding

Speech coding may be defined as a digital representation of speech that provides for

efflcient storage, transmission, recovery and perceptually faithful reconstruction of
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original speech. In other words, coding compresses speech for digital storage and expands

or decompresses the stored data to reconstruct the original speech without significant loss

in quality. Much of the research in speech and audio compression involves lossy

compression techniques, where the original representation of the signal samples is never

recovered exactly after decoding (decompression). At high compression ratios, there is a

significant degradation in the reconstructed speech quality due to the lossy techniques

used for compression. Hence, in digital processing of speech signals, there are two

conflicting requirements viz. f,rst, we need to achieve the lowest possible bit-rates (high

compression ratios); second, we want to achieve this with minimum ioss of speech quality.

A third requirement for low-power (e.g. mobile) implementations is to reduce

computational requirements of these algorithms. Satisfying these requirements is the

purpose of the ongoing research in the speech coding community. Figure l.i shows the

different bit-rates and an approximate designation of the speech quality that can be

achieved at these bit-rates [2].

Speech coding algorithms can be divided into two main categories waveþrm coders

and, voioders or parametric coders, In waveform coders, the data transmitted from

encoder to the decoder specify a representation of the original speech as a waveform of

amplitude versus time, so that the reproduced signal approximates the original waveform

and, consequently, provides an approximate recreation of the original sound. In contrast,

vocodefs do not reproduce an approximation to the original waveform; instead,

parameters that characterize individual sound segments are specified and transmitted to

the decoder, which then reconstructs a new and different wavefom that will have a similar

sound, Often these parameters characterize the short{erm spectrum of a sound or the
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parameters specify a mathematical model of human speech production for a particular

sound. Vocoders operate at lower bit-rates than waveform coders but the reproduced

speech quality, while intelligible, usually suffers from a loss of naturalness and some of

the unique characteristics of an individual speaker are often lost.

Waveform coding

Digital co{ing of Speech

<- I ----_> Source Coding
I

I

200

Broadcast

(commentary

quality

Kilobits per second

quality

Figure l.I. Spectrum of speech coding transmíssion rates in nonlinear scale and

associated quality.

One of the most popular and notable waveform coding algorithms is code-excited

linear prediction (CELP). Other algorithms in commercial use today are adaptive delta

modulation (ADM), adaptive differential pulse code modulation (ADPCM), adaptive

predictive coding (APC), multipulse linear predictive coding (MP-LPC) and regular pulse

excitation (RPE) t3l. MP-LPC, RPE and CELP are sometimes viewed as "hybrid"

algorithms because they borrow some features of vocoders, but they are usually classified

as waveform coders. Va¡ious versions of CELP are available, but ali algorithms in this

family are based on linear prediction, analysis-by-synthesis, methods with a stochastically

generated codebook for excitation. CELP produces bit-rates of 4800 bits per second (bps)
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with very good intelligibility and high quality, but the computational rates are usually very

high.

Although vocoders were studied several decades ago, the most important vocoder is

the linear predictive coding (LPC) vocoder method which is still extensively used in low

bit-¡ate voice telephony. A version of the LPC vocoder has been used for many years as a

U.S. Government standard, for secure voice communication. The bit-¡ate that can be

obtained for LPC is 2400 bps with very low computational rates, but often, the reproduced

speech sounds afificial or "unnatural" with a buzzy character and the identity of the

speaker is hard to recognize.

Vector quantization (VQ) techniques can be used to obtain low bit-rate coding below

2400 bps with speech quality similar to that produced by CELP. In VQ techniques, a k-

dimensional data vector is encoded using one of a finite set of M symbols. Each symbol is

called a codeword and the set of all the codewords is known as the codebook. The VQ

techniques usually require computationally extensive codebook learning and search. VQ

problems can be mitigated by using various afificial neu¡al network (ANN) algorithms.

The use of ANN techniques for VQ of telephone bandwidth speech is the main focus of

this thesis.

1.2. Artificial Neural Networks (ANN)

The human brain is superior to that of a digital computer at tasks like recognizing

speech and faces. Other important features of the human brain a¡e that its operation is

inherently parallel and that it can adapt to a new environment by learning. Computers

were built to perform complex mathematical computations at high speeds. Since they are
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designed to perform precise mathematical computations, they are not well suited to pattern

classification problems. Since the brain handles the task of pattern classification well, one

would hope that computers with architectures that attempt to mimic its operation, would

be able to perform well on problems such as human perception. This area of study is

called artificial neural networks (ANN), and has become an impofant field of resea¡ch in

the past decade. ANNs have been applied to a wide range of problems in data clustering

and pattern recognition [4]. ANNs make use of parallelism and learning algorithms to

solve complex tasks like pattern classification.

The basic form of an ANN architecture is shown in Figure 1.2. F,ach processing

element in the ANN is called a neuron and the connections between the neurons are

known as synapses. Each synapse has an associated weight w¿ which represents the

strength ofthe connection from neuronj to neuron L Tlpically, each neuron computes the

output as a nonlinear transformation of the weighted sum of its inputs. ANNs learn to

solve desi¡ed tasks by example. AII the information necessary to solve the task must be

provided by the examples, and this information is processed and stored in the weights. The

network uses the example set to modify these weights so that it can learn to perform the

desired task. The method by which the weights are modified is known as the learning

algorithm. The¡e a¡e numerous available learning algorithms which can be broadly

classified as either supemised or unsupemised leaming algorithms.

ln supervised learning algorithms, learning is performed on the basis of direct

comparison of the output of the network to known correct answers. Since the cor.rect

answers are provided, this kind of learning is also called learning with a teacher. In

unsupervised learning, there is no teacher or the coüect answers for speciflc inputs are not
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available. The only available information is in the correlations of the input data or signals.

The network must discover categories from these correlations and produce output signals

corresponding to the input category.

Output
Layer

Hidden
Layer

w::

Figure 1.2. Basic Neural Network Architecture

Unsupervised learning can be used for data clustering and leaming a codebook in VQ

applications. An unsupervised learning algorithm known as competitive learning (CL) ìs

particularly well suited for VQ applications and hence can be used in speech compression

applications [5]. Various CL techniques are available which include soft competitive

learning (SCL) and frequency-sensitive competitive learning (FSCL). Another technique

called the Kohonen self-organizing feature map (KSFM) is used to enforce a topological

relationship among the units in a network. Since ANNs are a highly parallel computer

architecture, they offer the potential fo¡ real-time VQ applications as the codebooks can be

searched in parallel. Most ANN training algorithms are adaptive and these ANN based
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VQ design algorithms can be used to build adaptive vector quantizers which are crucial in

applications where the source statistics are changing. The computational requirements of

the learning algorithms can also be reduced if the learning algorithms can tolerate a lower

bit precision. In that case, these algorithms can be implemented using low precision (and

low power) digital signal processing (DSP) in real-time applications.

Normally in neural VQ, the speech signal is preprocessed to obtain LPC parameters

which are then vector quantized. It has been shown in many previous studies of speech

coding by non-neu¡al techniques that in order to obtain high quality speech, it is necessary

to transmit the prediction residual along with the LPC parameters. Transmission of the

residual signal requires a significantly larger number ofbits than those required to send the

LPC parameters. Hence, it seems useful to quantize the residual signal rather than the LPC

parameters. In contrast with earlier work, ANN learning rules are employed in VQ of the

residual signal in this thesis to obtain low-bit rates and low computation rates for speech

while retaining acceptable perceived speech quality. The effects of limited precision on

learning and classification are included in this study. Preliminary results of this wo¡k have

been published in [6], [7] and [8].

1.3. Summary

This chapter provided an overview of speech compression and the potentiai role of

artitcial neural networks. The importance of speech compression in communications and

a suÍìmary of LPC, CELP and VQ compression schemes were presented. This was

followed by an introduction to ANNs and the classification of ANN a¡chitectures based on
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the learning mechanisms. Finalìy, the use of ANNs in speech compression applications

was introduced.

The remainder of this thesis is organized as follows: speech compression techniques,

LPC, CELP and VQ will be discussed in detail in Chapter 2. In Chapter 3, algorithms for

VQ of speech using ANN techniques will be discussed. These algorithms will be applied

to an experimental speech compression task and the results obtained will be presented in

Chapter 4. The effects of limited precision on learning and classification will also be

discussed in Chapter 4. In Chapter 5 conclusions will be drawn based on simulations

obtained in Chapter 4 and proposals for future work in this area will be presented.



Chapter 2

Speech Coding Techniques

Speech compression techniques have made rapid progress in the last decade. Linear

predictive coding (LPC), code-excited linear prediction (CELP) and vector quantization

(VQ) techniques have been used in nume¡ous telecommunications applications. Artificial

neural network (ANN) techniques can be used for VQ to potentially obtain low bit-rates,

low cornputation rates and high quality speech compression. Before we can design such

ANN algorithms for speech coding, an understanding of the non-neural speech

compression techniques is necessary. Although speech compression techniques like

adaptive diffe¡ential pulse code modulation (ADPCM), subband coding (SBC) and

adaptive transform coding (ATC) techniques have been primarily used in

telecommunications applications, LPC, CELP and VQ techniques are of great importance

in low bit-rate speech coding as lossy compression techniques. These techniques are

designed to remove the redundant information from the speech signal. In this chapter, the

LPC, CELP and VQ approaches will be discussed; the other techniques have been

described in t1l, t2l, t3l, [9] and [10].
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2.1. Linear Predictive Coding (LPC)

LPC methods are among the most popular and powerful analysis techniques for

processing speech. This approach has become the predominant technique for estimating

speech parameters, e.9., pitch, formants, spectra, vocal tract area functions and for

representing speech for low bit-rate transmission or storage. The importance of this

method lies in its ability to provide accurate estimates of the speech parametets and in its

relative speed of computation.

The underlying assumption in most speech processing schemes is that the properties of

the speech signal change relatively slowly with time. This assumption leads to a variety of

short-time processing methods in which short segments of speech signals are isolated and

processed as if they were short segments from a sustained sound. The LPC method is

accurate when it is applied to stationary signals i.e., signals whose behavior does not

change with time. To perform LPC analysis, the speech signal is segmented into analysis

f¡ames which are quasi-stationary.

The basic idea of linear predictive analysis is that a speech sample can be

approximated as a line combination of past speech samples, thereby removing

redundancies in the speech signal. The LPC method is based on the speech production

model shown in Figure 2.1 This model removes the near sample correlations to a large

extent. The system is excited by an impulse train or random noise based on whethe¡ the

speech signal is voiced or unvoiced. If the signal is voiced then the pitch period is

estimated. In LPC, the vocal tract is modelled as an all-pole recursive filter which is

known as the formant filter. Incorporating a gain G, the filter can be expressed as
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G
= 

s(z)
u (z)- -l -N¡I+a( + ... + aNz

where N¡ is the order of the model and a¡, arc the filter coefÍìcients. If slz) is the speech

output of the model, and u(n) is the excitation input, the equation above can be written in

the time domain as

H(z) =

N,

s(n) = 6¡1(ù + Laos(n-k)
k= |

(2.r)

(2.2)

*j\ G
(Gain)

Vocal Tract
Parameters

ed/Unvoiced
switch

Figure 2.1. Speech Production Modelfor LPC

In other words, every speech sample is computed as a linear combination of the previous

speech samples together with a contribution from the excitation. This fo¡mulation is also

the reason for calling the method linear predictive coding. From (2.2), the fomant filte¡ or
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short+erm filter has a transfer function

h=e{z) = !,ooz+. (2.3)

The LPC predictor coefficients ao are determined directly from the speech signal in

such a manner that the mean-squared error of the short segment of speech is minimized.

The speech signal is segmented into analysis frames by multiplying the speech signal s(n)

by a window signal, w(n), which is zero outside the analysis frame. The most popular

windowing function used is a Hamming window given by

w (n) = o.sa - o.a6cos(ff), o 
= " = 

N - t (2.4)

w (n) = 0' othe¡wise'

Here N is the window length in samples and is generally taken in the range of 20-40 ms,

with 30 ms being a fypical value. Usually, the successive windows are chosen to overlap

and the distance between the successive windows is called the frame period. Typical

values of the frame period are 10-30 ms. The LPC patameters are estimated using the

method given in Appendix 4.1. One possibility for the selection of the excitation for

voiced signals is given in [2]. The main features of the government standard LPC-10

algorithm are as follows: the frame length is 22.5 ms (180 samples for a sampling rate of 8

kHz) and the total bits per frame is 54, which gives a total data rate of 2400 bps. LPC

analysis is performed pitch synchronously and a 10th order LPC model is used for voiced

signals. For unvoiced signals, only a 4th order model is used since this is sufficient to

determine the speech spectrum. The remaining bits are used for error protection. The

speech quality of the synthesized speech has an undesirable mechanical quality and often
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the identiry of the speaker is lost; but this method is used for applications like secure

telecommunications where a low bit-rate is more important than the quality of the speech

produced. The LPC method has the advantage of low computation rates requiring about

1.7 million instructions per second (MIPS)1.

2,1J, Pitch Prediction Algorithm

The dete¡mination of periodicity in a speech segment is important in many speech

coding algorithms. This periodicity determines if the segment is voiced or unvoiced, and if

voiced, it determines the fundamental period. For the LPC method, pitch prediction is

necessary in order to generate the excitation as shown in Figure 2.1. For voiced signals

(such as vowels) the speech signal demonstrates a fine structure arising from the quasi-

periodic nature of the vocal tract, in addition to sho¡t-term correlations. The quasi-periodic

nature of vibrations in the voiced speech remains to a large extent in the residual signal

obtained after the short-term prediction (non-recursive inverse A(z) of (2.3)) as shown in

Figwe 2.2. This long+erm periodicity can be removed further by pitch prediction [11].

The pitch predictor has a smaller order than the formant filte¡ and temoves these distant

sample corelations; this filter is also known as a long{erm filter. The delays associated

with these taps are grouped around the pitch lag value. The transfer function for a pitch

predictor or the long-term predictor with 3 taps is

p (z) = Þrr-' *Þ27-@*r) +þ32-@+2)

where M is the pitch period.

(2.s)

l.Multiply, add, multiply-accumulate and compare instructions
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Original Signal

Residual Signal after I-PC

Figure 2.2. Original Speech Signal and the Residual Signal Obtained after LPC

In order to obtain the pitch predictor coefficients B,, the pitch period or pitch lag value

M has to be determined. When the formant or LPC analysis is performed first, the nea¡

sample based redundancies have been removed to a large extent before pitch analysis. The

conventional predictor configuration uses a cascade of a formant predictor and a pitch

predictor. The value of the pitch period is chosen so as to maximize the conelation of the

residual after the formant prediction. The normalized correlation anay is given by

M-l+N" .)

s.'ô-(0,r¡)L 6 (-. ^\n=M '' '
(2.6)
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where

r'{- I

O (¿ j) = 2 d("- ¡) d(n- j) (2.7)
n=O

and d(n) is fhe residual signal after formant prediction which is input to the pitch predictor.

The value of M that maximizes the quantity in (2.6) is chosen as the pitch period. The

pitch prediction parameters can be estimated using the method in Appendix 4.2.

2.2. Yector Quantization

Shannon's rate distortion theory states that better performance can be achieved by

coding vectors instead of scalars. Vector quantization is used to compress speech and

image signals. VQ is often used for speech compression with the LPC model to achieve

low bit-rate coding. Recently, with the emergence of new and efficient methods of

encoding high-dimensionality data vectors, VQ became associated with high-quality

speech coding at low rates.

A vector quantizer maps each input vector in a k-dimensional Euclidean space.Rl, into

one of the finite number of representative vectors in Rt. The set of representative vectors

is called a codebook, and each representative vector is called a code vector or a reference

vector. A general VQ scheme is shown in Figure 2.3. An optimal vector quantizer

minimizes the average distortion over all the representative vectors. The lower the

disto¡tion caused by reproducing an input vector with the corresponding representative

vector, the higher is the performance of the VQ, A complete review of VQ is presented in

[12] and [13].
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A number of different performance criteria can be used to determine an optimal

codebook. In speech applications, the objective is to minimize the overall disto¡tion due to

VQ in the reconstructed signal. Thus the design criterion used to design an optimal

codebook of a given size is the minimization of the average distortion in encoding vectors

using the codebook. Another possible c¡iterion is to maximize the entropy of the

codebook, i.e., ensure that each ofthe codewords is used equally or frequently in encoding

the data. The idea here is to ensure that all the codewords ale doing their fail share in

representing the entire input data. For the case when N is fixed and ft is very large, it was

shown that the codebook that maximizes the entropy also minimizes the expected

distortion [14].

Subregion S;
ReD¡esentative
Veôtor lIl¡

Input Vector .Ë

Figure 2.3. Vector Quantization Scheme

Given the performance criterion, the VQ design process involves the determination of

the codebook that is optimal with respect to the criterion. In general, this requires knowing

the probability distribution of the input data. Typicall¡ this distribution is not known and
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the codebook is constructed through a process called training. During training, a set of

data vectors that is representative of the data that will be encountered in practice is used to

leam an optimal codebook. During the training process, a disto¡tion measure d(x,w) is

typically used to determine which data points are considered as being in the same region

as the representative vector, The distortion measure can be viewed as the cost of

representing inputx by the codevector u,, By determining which training data vectors lie in

the same region, the fr dimensional data space is partitioned into cells S¡ (See Figure 2.3).

All of the input vectors that fall into a particul cell are mapped into a single, coÍtmon

reproductive vector lri. If the cells are partitioned according to a minimum disto¡tion rule,

then the partition is refened to as a Voronoi or Dirichlet partition. The most cotnmon

distortion measure is the Euclidean distance given by

(2.8)
j=r

Another distortion measure called the ltakura-Saito distortion measure is frequently used

in speech coding applications, and is a spectral distortion measure.

The training process which is used to build the codebook can be summarized as

follows: Each of the data vectors is compared to each of the codewords and the

corresponding distortion is calculated. The codeword that most closely matches the data

vector, i.e., the reproduction vector which rcpresents the input vector with minimum

distortion is selected and the codeword is updated to reflect the inclusion of this new data

vector in its partition. Various VQ algorithms are available and have been summar.ized in

lI2l,lt3l and [14].

k

d. (x,w) = ll* - "ll' = Zlr,- *,lt
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In [15] a large reduction in coding rate was achieved though short-term temporal

compression of the speech followed by VQ. The VQ is applied to the temporal

decomposition output to implement coders operating in a range of 450-600 bps with

naturai sounding speech output. Hence VQ can be used effectively for very low rate

speech coding by parameterizing the speech signal by quantizing these parameters

effectively. By employing VQ for LPC parameters, the bit-rate can be reduced to 800 bps.

However, VQ methods require high computational power for training and searching the

codebooks.

2.3. Code Excited Linear Prediction (CELP)

Predictive coders reduce bit-rate by removing redundancies in the speech signals by

linear prediction and then transmitting the quantized parameters of the predictor. as well as

the quantized residual. It is however very difficult to quantize the prediction residual

accurately at rates less than 2-3 bits/sample, For low-rate, high-quality speech coding, a

more efficient representation of the excitation sequence is required. This problem was

addressed in [16] in which it was suggested that high-quality speech at low bit-rates may

be produced by coding of Gaussian excitation sequences in conjunction with analysis-by-

synthesis linear prediction and perceptual weighting, A novel excitation scheme for

analysis-by-synthesis CELP was proposed in [17]. This analysis-by-synthesis CELP coder

is shown in Figure 2.4.

The CELP coder contains two time-varying linear recursive filters each with a

predictor in its feedback loop. The first feedback ioop includes the LPC analysis filter with

a transfer function given in (2.3) and the second feedback loop includes the pitch predictor
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with a transfer function given in (2.5). The excitation is encoded using a codebook of

Gaussian sequences. The codebook contains 1024 vectors and each vector is 5 ms long. A

gain factor g scales the excitation vector and the excitation samples are filtered by the

long-term (pitch) and short-term (LPC) synthesis filters.The optimum vector is selected

such that the perceptually weighted mean-squared-enor is minimized. The perceptual

weighting frlter W(z) is applied directly to the input speech signal s(n) and the synthetic

output 3 (z) and the resulting enor is minimized to obtain the excitation vector and the

gain.

Codebook

Figure 2.4. Analysis-by-Synthesis CELP

A 4800 bps CELP algorithm has been adopted by the Department of Defense for

possible use in a third-generation secure telephone unit [18]. The synthesis configulation

for Federal Standard 1016 (FS1016) is shown in Figure 2.5. The speech signal is sampled

at I kHz and segmented into frames of 30 ms. Each frame is segmented in subframes of

7.5 ms. The excitation in this CELP is formed by combining vectors from an adaptive and
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a stochastic codebook with gains ga and gs respectively. The excitations are selected in

every subframe by minimizing the perceptually weighted eÛor measure.

Figure 2.5. F51016 CELP Synthesis [9].

The codebooks are searched sequentially starting with the adaptive codebook. The

term adaptive codebook is used because the long-term predictor (tlIP) lag search can be

viewed as an adaptive codebook search where the codebook is defined by previous

excitation sequences and the lag determines the specific vector. The adaptive codebooks

contains the history of past excitation signals and the LTP lag search is ca¡ried ove¡ 128

integer (20-147) and 128 noninteger delays. A subset of lags is searched in even

subframes to reduce the computational complexity. The stochastic codebook contains 512

sparse and overlapping code vectors. Each code vector consists of 60 samples and each

sample is ternary valued (1, 0, -1) to allow for fast convolution. Ten short-term predictor

coefûcients A(z) a¡e encoded as line spectrum pairs (LSP) [2] on a frame-by-frame basis.

Subframe LSP's are obtained by applying linear interpolation of frame LSP's. A short-

term pole-zero postfilter is also part of the standard.

20
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The characteristics of the CELP coder are given in Table 2.1. One bit per frame is used

for synchronization, 4 bits per frame for forward error correction and I bit per frame for

future expansion giving a total bit-rate of 4800 bps. The computational requirements for

CELP are 12.6 million instructions per second (MIPS). CELPs major computational

requirements are dominated by the transmitter's codebook searches. CELP coders do not

exhibit the usual vocoder problems in background noise because they use a more

sophisticated excitation model than the classical vocoder's pitch and voicing, Background

noise, including multiple speakers, is faithfully reproduced. Informal listening tests

indicate that the 4800 bps CELP coder's speech intelligibility and quality are comparable

to 32,000 bps continuously variable slope delta (CVSD) coding.

Linear
Predictor

Adaptive
Codebook

Stochastic
Codebook

Update 30 ms 7.5 ms 7.5 ms

Parameters l0 LSP's I gain,I delay,256
codewords

I gain, i index,512
codewords

Bits per frame 34 index: 8+6+8+6
+gain: 5x4

index: 9x4
gain: 5x4

Rate 1133.33 bps 1600 bps 1866.67 bps

Table 2.1. CELP characteristics [18]

2.4. Summary

This chapter provided an overview of LPC, VQ and CELP speech coding techniques.

LPC provided an efficient method of estimating the speech signal as a linear combination

ofpast speech samples. It removed short-term cor¡elations in the speech signal to a large
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extent. The LPC filter was excited by a impulse train or random noise based on whether

the speech signal was voiced or unvoiced. The pitch period was estimated if the speech

signal is voiced. The pitch Rlter was used to remove the long+erm conelations in the

residual signal after LPC. LPC produced bit-rates of 2400 bps with the reproduced speech

quality having an artificial of buzzy character. However, the computational requirements

were very low and at 1.7 MIPS.

The vector quantization method was then introduced and the advantages of the VQ

method we¡e presented, By using a suitable learning algorithm, VQ produced a codebook

which is a finite set of representative vectors for a set of input vectors. The index of the

best matching representative vector for any input vector is transmitted instead of the

whole vector, thereby reducing the bit-rates. VQ can be potentially used to obtain bit-rates

as low as 450 bps with good speech quality, However, the VQ technique suffers from

increased computational requirements for the codebook learning and search.

CELP uses the linear-predictive-analysis-by-synthesis method along with two

codebooks for LTP lag and excitation. The Federal Standard CELP 1016 was then

described. CELP produces very high speech quality even in noisy environments and

requires a bit-rate of 4800 bps. The computational requirement is 12.6 MIPS requiring

most of this relatively lalge computational power for the codebook search.

In the next chapter, artiñcial neural learning algorithms for VQ wiil be discussed.

These algorithms can be potentially used to solve the VQ problems to produce

simultaneously low bit-rate and low computation rate speech compression.

22



Chapter 3

Artificial Neural Learning for Vector Quantization (VQ)

3.1. Introduction

A number of studies have reported the use of artificial neural network (ANN)

algorithms in VQ encoding and codebook design [5], [19], [20] and [21]. ANNs are highly

parallel computing structures consisting of a number of simple processing units called

neural units, each with a set of interconnections (weights) from the other units and from

the inputs to the network. ANNs are designed to perform well on tasks such as human

perception, where they adapt to a new environment by learning. ANNs learn to perform

any desired task by training on a set of examples. The set of examples consists of sample

inputs that are representative of the task the network must perform. The network learns

from these examples and stores the information in the weights. The values of the weights

are modified by a suitable learning algorithm. The network also has the ability to

generalize upon the training cases. The ANN lealning algorithms most suitable for VQ of

speech are the unsupervised learning methods including competitive learning and feature

mapping.
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An unsupervised learning network has a set of inputs and outputs with no external

feedback to say what the outputs should be. The network must discover on its own

patterns, features, regularities, correlations or categories in the input data and output an

appropriate code. The network must derive the enor and the necessary weight

modifications directly from the learning rule, and from the statistics of the training data.

Some of the features that might be represented by the outputs of such networks are

familiarity, principal components, geometric clustering, prototyping, encoding and feature

mapping. Principal component analysis can be used for dimensionality reduction of the

data. The encoding problem can also be performed using clustering or feature mapping

which is often called vector quantization (VQ). One of the major advantages of

formulating the VQ problem in terms of ANN algorithms is that a large number of these

algorithms can be applied to the VQ task. Most ANN algorithms are adaptive and allow

for the possibility of training the VQ on-line even in a non-stationary environment.

Most unsupervised learning networks consist of only a single layer with inputs and

outputs. The number of output units is usually smaller than the number of inputs except in

the case of feature mapping. Learning techniques are either based on connections that

learn using a modified Hebb rule (e.g. principal component analysis) [4] or competitive

learning. In this chapter, competitive learning algorithms used for VQ of speech will be

discussed. Another unsupervised learning algorithm known as the Kohonen self-

organizing feature maps (KSFM) is also discussed. A relevant measure of the quality of

the codebooks obtained by these algorithms is the codebook entropy. The codebook

entropy E is given by

u
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ø = -\n¡losz@¡) (3.1)

t= I

where Nis the number of codewords in the codebook andpi is the relative frequency with

which codeword I is used in encoding the data set. In the ideal case, if all the codeword

entries a¡e equally utilized, the value of the entropy would be IoSzWI The closer the

entropy to this ideal value, the more uniform is the codeword usage implying a better

codebook performance,

3.2. Competitive Learning (CL)

The aim of CL networks is to cluster or categorize the input data. The clusters must be

found by the network itself from the conelations of the input data, Inputs which are

similal should be classified as being in the same category and so should most strongly

activate the same output unit. Categorization or clustering can be used for data encoding

and compression through VQ, which has applications in speech coding. (Chapter 2.2).ln

CL, only one output unit is on at any time and the output units compete for being the

active output. This netwo¡k is therefore called a winner-take-all (WIA) network.

A simple CL network is shown in Figure 3.1. The connections shown with open

arows are inhibitory and the remainder are excitatory. There is a single layer of output

units O¡ each fully connected to a set of inputs x¡ via excitatory connections w¡. The

connection of the unit to itself is excitatory which will help the neuron to reinforce its

output. The connections to other output units are inhibitory and attempt to suppress the

output of other neurons, The inputs and outputs are usually binary 0/1. The output which
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is most active is known as the winner. The winner is normally the unit with the largest net

input

ft,=!w..r.=w..xt t_¿ UJ I

for the current input vector,r. Thus,

(3.2)

*i*,*'*i,, (for aII i) (3.3)

defines the winning unit i- with the output of the coresponding winner O¡* =1 and all

other outputs equal to 0. If the inputs and the weights for each unit are normalized, so that

lu¡l = I for all i, then (3.3) is equivalent to

1",* 
- 'l < 

1", - "l (for att i) (3.4)

This states that the winner is the unit with normalized weight vector w closest to the input

vector x.

The algorithm starts with small random values for the weights, Then a set of input

patterns xrt is applied to the network in random order and the distortion d(x,w,) (Euclidean

distortion (2.8) or any other sultable measure) is calculated. The conesponding winner l*

is selected as the unit with the lowest distortion for each input, and the weight vector

conesponding to the winning unit is moved closer (during learning) to the input pattern

¡p. Figure 3.2 shows a competitive learning network with the input vectors represented by

dots and the weight vectors represented by crosses. The figure shows that the output units

have discovered a cluster ofinputs and have moved to its center of gravity after learning.
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There are several ways ofupdating the winning unit so that it moves closer to the input

vector and is more likely to win on that input in the future. In simple competitive learning,

the weight of the winning unit is updated using

Figure 3.1. A Simple Competítive Leaming Network

27

(3.5)

where.rtr is the set of input patterns, € is the learning rate, n is the training ite¡ation and the

weight of the winning unit wr* moves directly towalds the input pattern .rp. This kind of

CL is known as hard competitive learning since only the winning unit is updated.

There is a problem with this learning method. If the weight vector lr,i of a particular

unit is initially far removed from any input vector, then it may never win and therefore

never lea¡n. These units are termed as dead units. The consequence of having dead units is

that it reduces the codebook entropy value defined in (3.1). There are several ways of

w.-.(n+ i) = w.- .(n) +e( xP.-w....fn) It'J r^J \ J t^l )
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preventing dead units and increasing the value of the entropy. One of the methods is called

frequency-sensitive competitive learning (FSCL) which will be discussed in the next

section. There are also soft competitive learning algorithms (SCL) in which all units are

updated in proportion to their current responsibility for the input p aftern 1221. The hard CL

network requires low computational requirements since only the winner is updated.

Ajler Learning

Figure 3.2. Competítive læarning

3.3. Frequency-Sensitive Competitive Learning (FSCL)

FSCL for VQ of speech was proposed by Krishnamurthy et al [5] and [19]. The

motivation fo¡ the FSCL network is to overcome the limitations of the CL network while

retaining its computational advantages. Since the main problem of hard CL is dead units

or underutilized units, FSCL keeps count of how frequently each unit wins. This

information is used when the winner is updated. This mechanism is sometimes called a

conscience; frequent winners penalize themselves by increasing their distortion measure,

thereby enhance the opportunities for infrequent winning units to win in the competition.

A similar conscience mechanism approach was first described in [23] which suggested

the use of a th¡eshold to be subtracted from the net input and an adjustment to the
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th¡esholds to encourage frequently losing units to win. The FSCL method applies these

models to the VQ problem. In the FSCL network, each unit incorporates a count of the

number of times a unit wins, The distortion measure used to determine the winner is

modifled to include this count. If z¡ denotes the numbe¡ of times a unit wins the

competition and d(x,w ¡) is the distortion used to obtain the winner, the modified disto¡tion

measure for the training process is defined as:

d8(x,w,) = d(x,w¡(n)) xf(u¡) (3.6)

where f is a nondecreasing function called the fairness function. The faimess function

introduces a count-dependent weighting to the distortion measure. This function provides

a way to control the behavior ofthe FSCL training procedure. For example, choosing f(u)

= 1 reduces the FSCL to the standard CL algorithm. Two possible choices for the fairness

function are f(u) = u¡ or f(u) = u¡k wherc k = þexp(-nlT¡ where B and Z are constants and

n is the training iteration number. If a given neural unit wins the competition frequently

during the learning process, its count z; increases and so does its distortion in (3.6), since

.Fis nondec¡easing. The increased distortion value reduces the likelihood that this unit will

be the winner in the future, giving other units with a lowe¡ count value a chance to win the

competition. The winning unit at each iteration is. chosen as the unit with minimum

distortion d*. After the winner is obtained, its weight is updated using (3.5) and the count

ø, of the winner is incremented. This method encourages all neural units to participate

equally in the competition encouraging uniform codeword usage and hence increased

codebook entropy. The computational requirements for FSCL are slightly greater than

those of CL algorithm due to the use of the modified distortion measure (3.6). The

29
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memory requirements during the training process are also increased to store the winning

frequency of each neural unit.

3.4. Kohonen Self-Organizing Feature Maps (KSFM)

The CL and FSCL networks pay little attention to the geometrical arrangement of the

output units. A few network architectures convey some information based on the location

of the winning output unit, with nearby output units coffesponding to nearby input

patterns. A network that performs such a mapping is called a feature map. The feature map

preserves the topology and the neighborhood relations from the space ofpossible inputs to

the line or plane of the output units. There are a number of ways of designing

unsupervised learning networks that self-organize into a feature map. The KSFM

algorithm introduced by Kohonen [24] uses the CL algorithm to obtain the winner but the

weight update rule is modified to preserve the topology and neighborhood relations.

KSFM uses the architecture shown in Figure 3.3 which is a fuliy connected network.

There are N continuous valued inputs .r1 to x¡. The output units O¡ are arranged in a one or

two-dimensional anay and are fully connected via w¿ to the inputs. A CL rule is used to

choose the winning unit i. with the weight vector ni* closest to the input vector r. The

winning unit can also be found as the unit with the lowest distortion d(r,w).

In order to incorporate a topological relationship among the output units, the weight

update equation is modified as

30
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Figwe 3.3. Feature Mapping Architecture

for all I andj. The neighborhood function 
^(¡, 

,-) is I fo¡ I = l- and e(n) is a time-varying

learning rate. The neighborhood function has to be changed dynamically during learning

for the algorithm to be useful. In earlier stages of training, a wide neighborhood À(r, l-)

and large learning rate r are used. As the training progress both these values should be

gradually reduced. This allows the network to organize its elastic net rapidly during the

period when a large neighborhood and learning rate are used and then refine it slowly with

respect to the input pattern as the neighborhood and the learning rate are decreased. A

typical choice for the neighborhood function is

^ 
(t, t*) = ,*pl-1r,-, .¡tzo') (3.8)

where o is a width parameter that is gradually reduced and lr - r¡-l is the distance between

the units i and i* in the output a-ray.

By the use of neighborhoods, the KSFM network overcomes the problem of

unde¡utilized units giving a larger entropy than a hard CL network. One drawback of

KSFM compared to the CL and FSCL networks is the additional computation involved
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dur.ing training. This additional computation

neighborhood of the winning unit as well

neighborhood.

3.5. Summary

arises from both the calculation of the

as from updating all the units in the

In this chapte¡ several artificial neural Iearning methods for the adaptive VQ of speech

were discussed. Artificial neural learning methods can be potentially used to learn the

codebook in a VQ. ANNs are adaptive and hence allow for the possibility of training the

VQ onJine, and for their employment in a nonstationary environment. Th¡ee

unsupervised learning methods to train the codebook in a VQ were discussed in this

chapter. Firstly, the competitive learning algorithm was introduced which is a winner-take-

all network. An input vector was applied to the network and the output closest to the input

unit was chosen as the winner. The weight of the winner was updated so as to move it

closer to the input. The CL network introduced dead-units or underutilized units. The

FSCL netwo¡k which has a conscience mechanism was then introduced to avoid the

underutilization of codewords and to increase the codebook entropy. The conscience

mechanism allowed the units that win often to increase their distortion accordingly to

permit other infrequently winning units to participate in the competition. The third

algorithm that was described was the KSFM in which the network incorporated

neighborhood and topological relationships among the output units. This was done by

choosing a neighborhood function and by updating a neighborhood of the winning unit.

Initially a large neighborhood was chosen so as allow the network to organize itself

rapidly and as the neighborhood decreased the network would fine tune its weight values.
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Among the three learning algorithms, CL has the lowest computational requirements and

KSFM has the highest. In the next chapter, the leaming methods discussed in this chapter

will be used to vector quantize the excitation signal for speech compression.



Chapter 4

Neural VQ for Speech Compression

In the earlier chapters, LPC, VQ and CELP speech coding techniques were discussed.

LPC requires low bit-rates and computational power, but the reproduced speech sounds

artiflcial or unnatural with a buzzy character. CELP uses a computationally expensive

algorithm to obtain good intelligibilify and excellent speech quality with bit-rates higher

than LPC. VQ can be used potentially to reduce the bit-rate below LPC with speech

quality similar to CELP but usually requires computationally expensive codebook sea¡ch.

By employing ANN algorithms for VQ, one can achieve moderate sized codebooks that

can be searched in parallel and a¡e able to adapt to non-stationary environments with bit-

rates lower than CELP. This means that ANN algorithms can obtain a compromise

solution with low bit-rate, moderate speech quality and moderate computation-rate.

Computational requirements may be further reducible through the use of restricted bit

precision. In this chapter, the performance of the unsupervised learning algorithms

discussed in Chapter 3 for speaker-dependent and speaker-independent speech

compression will be examined and the results will be compared to those obtained by using

CELP The results obtained by using limited precision in both the classification and

learning computations of these algorithms are also examined.



Neural VQ for Speech Compression

For all the simulations presented in the remainder of this thesis, software was written

in C and C++ programming languages. Various modules were developed to implement the

analysis and synthesis of the speech signal and for generating the training data. A public

domain C softwa¡e package known as som_¡tak [25] which implements the KSFM

algorithm was obtained from Finland. This software was extended to implement the FSCL

algorithm. The distortion measure was the Euclidean function (2.8) and the fairness

function for the FSCL algorithm was f(u,) = ¿¿i for all the simulations. Another public

domain C program which implements the FS1016 CELP [26] was obtained from the

Department of US Defense to compare the results of this study.

4.1. Neural VQ of LPC Parameters

In earlier studies [5] and [19], the speech signal was preprocessed to obtain the LPC

parameters (Section 2.1) which we¡e then vecto¡ quantized using artificial neural learning

algorithms. These experiments were repeated and included in this study. The training data

was obtained from the TIMIT database [27] for both speaker-dependent and speaker-

independent speech compression. The database consists of speech segments from 630

different speakers from 8 major dialects of American English, each speaking 10

phonetically rich sentences. The training data consisted of 6000 data vectors of LPC

autocouelation coeffrcients of 10 diffe¡ent sentences from a single male speaker. The data

was downsampled to 8 kHz and the LPC autoconelation coefficients were extracted from

a window size of 40 ms (320 samples). The autoconelation coefficients are vector

quantized using the FSCL and KSFM leaming algorithms described in Chapter 3.
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The experiments were conducted for a codebook size of 128 codewords. Figure 4.1

and Figure 4.2 show the codeword utilization for the codebooks leamed using FSCL and

KSFM. The neighborhood for the KSFM was chosen to be a 16 x 8 rectangular grid for a

codebook of size 128.

36

Coder¡rzord lJtilization for FSCI-

Ent¡.opy-6.8a
Distortion-O. 18

o.o -luo.o I
Codevvord Index

Figure 4.l. Codeword Utilization Using FSCL Algorithm

A comparison of these frgures shows that the codeword utilization is more uniform

using the FSCL technique as compared to the KSFM method. The entropy value fo¡ FSCL

was 6.89 and for KSFM was 6.79, the ideal value being 7 which shows that the fairness

function in FSCL encourages a uniform codeword utilization. A comparison of the

distortion values shows that the FSCL also gives a lower distortion than KSFM method.

Informal listening tests revealed that the neural net vector quantizer preserves the shape of

the LPC filter and the LPC synthesized speech was identical to the original speech when
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the true residual signal was used to excite the inverse LPC filter. In [19] speaker-

independent speech coding experiments were also performed. For a codebook size of 128,

the speaker-independent experiments introduces some additional distortion in VQ and a

larger codebook has to be used.

Coder¡¡ord tltilization for KSFN4

Entropy-6.49
Þisto¡tion-O.25

Codeword Index
Figure 4.2. Codeword Utilization Using KSFM Algorithm

1.O

4.2. Neural CELP

It has been shown in many previous studies of speech compression by non-neural

techniques that, in order to obtain high speech quality, it is necessary to transmit the

prediction residual signal along with the LPC parameters. It is, however, very difficult to

quantize the prediction residual accurately at rates less than 2-3 bits/sample. Below these

rates, the quantization error starts showing significant corelation with the speech signal.
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As a result, the predictor is no longer optimal and the coding gain drops. CELP coding

gets around this problem by using an analysis-by-synthesis loop to minimize the

frequency-weighted mean-squared error between the coder input and the decoder output.

In neural VQ of speech, the prediction residual has to be transmitted and the transmission

of the prediction residual requires a significantly larger number of bits than those required

to transmit the LPC parameters. Hence, it seems useful to vector quantize the residual

signal rather than vector quantizing the LPC parameters as in the previous section. The

amount of information in the LPC prediction residual can be reduced by performing pitch

prediction on the LPC prediction residual which removes redundant pitch information.

The residual signal obtained after LPC and pitch analysis can be vector quantized in a

neural analogy to the CELP approach.

In the neural CELP approach, the speech signal is preprocessed to obtain 10 LPC

parameters. The residual signal obtained afte¡ inverse LPC analysis is used to exttact the

pitch period and 3 pitch prediction coefftcients. The final residual after the removal of the

pitch information is then vector quantized using the artificial neural learning methods

discussed in Chapter 3. The codebook can be learned offline, and is available both at the

transmitter and the receiver. At the transmitter, the original speech signal is filtered

through the inverse LPC and pitch prediction filters and the residual signal is obtained.

The closest matching codebook vector for the residual vector is searched for in the

codebook and the coruesponding index of the codebook vector is obtained. The analysis

stage of neural CELP is shown in Figure 4.3(a). The codeword index along with the LPC

and pitch parameters are quantized and transmitted to the receiver. The codebook vector

conesponding to the codeword index is used at the receiver in the reconstruction of the
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speech signal. The analysis and synthesis stages of the neural CELP coder are shown in

Figure 4.3(b).

(b)

Figure 4.3. (a) Speech Analysis Modelfor Neural CELP. (b) Speech

Synthesis Model for Neural CELP

4,2.1. Speaker-Dependent Case (40 ms LPC Frames)

For speaker-dependent speech compression, the speech data was obtained from 10

sentences in the TIMT database spoken by a single male speaker. The speech signal is

Codeword
Index

Pitch
Parameters

(a)
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preprocessed to obtain ten LPC parameters and the prediction residual is used to estimate

the pitch period and three pitch prediction coefficients. A frame size of 40 ms is used for

LPC analysis and 20 ms for pitch prediction. The final residual i.e. the excitation signal

obtained after LPC and pitch prediction, is vector quantized using the FSCL and KSFM

algorithms. The training data set consisted of about 7000 vectors with each vector being a

5 ms (40 dimensional vector) excitation signal. The FSCL and KSFM learning algorithms

are employed for training the codebook and the codebook entropy is calculated for

different codebook sizes. Figure 4.4 shows the codeword utilization for a codebook size of

512 when the residual excitation is vector quantized using FSCL. Figure 4.5 shows a

similar plot when KSFM is employed for VQ, The graphs show that the FSCL gives a

larger value of entropy than the KSFM. The distortion is calculated as the average sum of

the squares of the error between the training set and the codebook. The graphs show that

the FSCL results in a lower disto¡tion than KSFM,

The error during training is shown in Figure 4.6. It can be seen that the average error in

FSCL is less than that of KSFM. The FSCL case also reaches a minimum much faster than

the KSFM case. The learning in KSFM is performed in two phases as suggested in the

software documentation. In the f,rst phase, a large neighborhood and learning rate are

used. The codebook in the initial phase is trained for 50000 training iterations. In the

second phase, both the neighborhood and the learning rate are reduced and the training is

performed for another 150000 training iterations. From Figure 4.6, the eruor for KSFM

decreases when the learning rate is reduced in the second phase of learning. The optimal

learning rate was obtained by experimentation. For the FSCL a learning ¡ate of 0.05 was
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Figure 4.5. Codeword Utilization for VQ of Excitation Signal using KSFM

used, For the KSFM, the learning rate in the first phase was 0.05 and in the second phase
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the learning rate was reduced to 0.02.

Table 4.1. shows the relative codebook entropies for different codebook sizes obtained

using the FSCL and KSFM methods. It can be seen from the table that the relative entropy

as a percentage of the ideal value reduces slightly as the codebook size increases. FSCL

results in a higher entropy than KSFM. This results from the fairness function which

encourages uniform utilization of the codewords. The entropy values cannot be compared

directly with codebook entropy for the CELP method since the excitation codebook in

CELP is generated stochastically.

Awerage Error During Training

- 

FSCL

- 

¡<sF¡vf

50000.0 100000.0 lsoooo-o
Nurrrber of Iteratiofrs
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Figurz 4.6. Average Error during Training for FSCL and KSFM Leaming
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Codebook
Size

Entropy asTo of
Ideal (FSCL)

Entropy asTo of
Ideal (KSFM)

512 99.5 96.6

1024 99.4 96.1

2048 98.5 95.4

Table 4.1. Entropy for Speaker-Dependent Data.

Another relevant measure for comparison of the reconstructed speech is the segmental

signal-to-noise (SNR). The SNR is calculated as

(4.1)

where s(n)is the original speech signal and 3 (n) is the reconstructed speech signal. The

SNR fol each frame is calculated using (4.1) and the segmental SNR of the entire speech

segment is obtained as an average ofall the frame SNR values whose value is between -10

dB and 64 dB [26]. The segmental signal-to-noise ratio (SNR) obtained for a speech

segment by regular CELP coding is 4.08 dB for an adaptive codebook of size 256 and a

stochastic codebook of size 512. The LPC analysis frame size was 40 ms, the adaptive

codebook was searched every 20 ms and the stochastic codebook was searched every 5 ms

for the regular CELP method. Table 4.2 shows a comparison of the segmental SNR

obtained for the reconstructed speech segment using the excitation codebooks learned via

FSCL and KSFM learning methods for encoding and decoding the excitation signal. For

the preprocessing phase, the LPC analysis frame size was 40 ms, the pitch prediction

I t"'rrr I
IL¿I

^lNR=lOios,"l 

- 

rl"''l ).(r(¡¿) -3(z))'I\;)
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analysis frame size was 20 ms and excitation codebook was searched every 5 ms. The

results show that the present VQ method introduces some distortion in the reconstructed

speech for codebooks of size lower than 2048 codewords. The distoftion introduced by the

codebook results in the distortion in the inverse pitch predictor, thereby reducing the

speech quality of the reconstructed speech signal.

Codebook
Size

FSCL
SNR dB

KSFM
SNR dB

512 3.10 2.33

t024 3.39 2.99

2048 4.t7 3.r2

Table 4.2. Comparison of the Segmental SNRfor Speaker-Dependent VQ

The theoretical computation rate required by CELP is 12.6 MIPS [18]. CELP's

computations, excluding the codebook searches and including the receiver require

approximately 2 MIPS. The adaptive codebook of size 256 requires about 2.3 MIPS and

the stochastic codebook of 5i2 codewords requires 8.3 MIPS which gives the total

computation requirement of 12.6 MIPS. The neural CELP method however requires less

computational power compared to CELP. The LPC and pitch prediction requires about 1.5

MIPS and the codebook search for a size of 2048 codewords is about 4.7 MIPS giving a

total computatio¡ ralæ of 6.2 MIPS. The computational requirements of the neurai CELP

method may be reduced still further by restricting precision, as discussed in (Section 4.4).

The bit-rate required by CELP is about 4300 bps with a 40 ms LPC frame size, 20 ms

frame size for an adaptive codebook of 256 codewords and 5 ms frame size for the
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stochastic codebook with 512 codewords. The bit-rate obtained by neural CELP with 40

ms LPC frames,20 ms pitch prediction frames, and 5 ms excitation frame size is about

4800 bps for an excitation codebook of 2048 codewords. The bit-rate for neural CELP is

therefore marginally higher than CELP.

For speaker-dependent speech coding, the speech quality using neural CELP is lower

than that of CELP for a codebook size below 2048. However, informal subjective tests

indicated that the perceived speech quality is very intelligible. The bit-rate using neuraÌ

CELP is also slightly larger than CELP. The most important advantages of neural CELP

coding are the reduced computational requirements and the adaptability to nonstationary

environments.

4.2.2. Speaker-Independent Speech Compression (40 ms) LPC Frames

For speaker-independent speech compression, the speech data was obtained from 32

speakers from the TMIT database (26 male, 6 female) having different dialects each

speaking one sentence. The training set consisted of about 20000 samples of the residual

signal, initially of dimension 40 samples of the excitation signal (5 ms). The FSCL and

KSFM learning algorithms were applied to learn the codebooks of different sizes and the

entropy was calculated for each codebook. As in the speaker-dependent case, Table 4.5.

shows the comparison of relative entropies for the KSFM and FSCL algorithms. The

results indicate that the FSCL gives a higher value for entropy than the KSFM method and

encourages uniform codeword utilization.

Tabie 4.5 shows the segmental SNR of the reconstructed signal obtained by using the

FSCL and KSFM leaming methods for the codebook. The SNR for the CELP method for
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the same speech sample was 5.6 dB indicating that the CELP method gives better

performance than the neural methods in terms of speech quality. The codebook size for the

speaker-independent case is larger than in the speaker-dependent case. Once again, the

FSCL gives a higher SNR than the KSFM algorithm. In order to obtain a SNR equivalent

to that of CELR the neural method requires a very large codebook and a large number of

training samples. Though the SNR is otherwise lower than that of CELR the perceived

speech quality remained very intelligible, and faithful to the speaker, when informal

subjective tests were conducted.

Codebook
Size

Entropy asTo of
Ideal (FSCL)

Entropy asTo of
Ideal (KSFM)

8192 98.8 95.7

4096 99.0 96.0

2048 99.3 96.s

r024 99.4 96.6

Table 4.3. Entropy for Speaker-lndependent Data (40 ms Frames)

Codebook
Size

FSCL SNR
dB

KSFMSNR
dB

8192 5.5i 4.66

4096 5.03 4.19

2048 4.38 3.86

1024 4.18 3.65

46

Table 4.4. Segmental SNRfor Speaker-Independent Døta (40 ms Frames)
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The bit rate obtained by using the neural VQ with a codebook size of 2048 is about

4800 bps. This bit rate can be reduced if we use a VQ for the LPC parameters in addition

to the residual VQ. An LPC codebook of size 1024 and a residual codebook of size 2048

will give a bit rate of 4215 bps and this can be reduced further by using a smaller

codebook for the LPC parameters. The LPC codebook further degrades the SNR but

preserves the perceived speech quality.

The computation rate required by neural CELP when both LPC and ¡esidual

codebooks of size 1024 are used increases ftom 6.2 MIPS to 6.35 MIPS because of the

additional codebook search involved. This value is still less than the computation rate

required by CELP which is 12.ó MIPS for a comparable codebook size.

4.2.3. Speaker-Independent Speech Compression (30 ms) LPC Frames

In order to improve the pitch predictor in the neural CELP method, the LPC analysis

frame size was reduced from 40 ms to 30 ms (240 samples at 8 kHz sampling rate). The

pitch prediction coefficients were extracted using the LPC residual signal on a frame size

of 7.5 ms. The excitation obtained after the LPC and pitch prediction was then employed

in VQ. Each training vector consisted of 7.5 ms (60 samples) of the excitation signal. The

vector quantizer was trained using the FSCL and KSFM algorithms. Table 4.5 shows the

comparison of the new SNR values for the FSCL and KSFM algorithms. The segmental

SNR obtained using the CELP method was 7.55 dB using the same analysis frame sizes.

The results in Table 4.5 show that the SNR obtained by FSCL for a codebook size of

8i92 is higher than the SNR obtained by CELP. Informal subjective tests indicated that

the perceived speech quality is similar to that of CELP even with a codebook size of less
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Than 8792 codewords. The bit-rate obtained by using the neural VQ with a codebook size

of 2048 and CELP are both about 4800 bps. The computation tates are further reduced in

the neural CELP method to 5.4 MIPS fo¡ a codebook of size 2048 codewords. This

reduction in the computation rates is due to the reduction in the LPC and pitch analysis

frame size and to the increase in the codeword dimension.

Codebook
Size

FSCL SNR
dB

KSFMSNR
dB

8t92 8.62 5.96

4096 6.04 4.96

2048 5.39 4.46

1024 4.96 4.10

Table 4.5. Segmental SNR for SpeakerJndependent Data (30 ms LPC Frames)

4.3. Subjective Speech Quality Tests

In order to test the speech quality obtained by using neural CELP, subjective speech

quality tests were conducted. A new data set which consisted of a vowel database [28] was

used in the subjective tests. The data set consisted of isolated words and pseudowords

(had, hid, head, hod, hood, hud) spoken by 7 female and 13 male speakers, each saying all

6 of the words. The codebooks were trained using the FSCL leaming algorithm with a

codebook of size 4096 codewords. The words were then ¡econstructed using the codebook

and tested for their subjective quality. The SNR for the test samples using neural CELP

was less when compared to the SNR obtained by regular CELP. However, the

reconstructed speech samples were tested for intelligibility. The original speech signal, the
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reconstructed signal using CELP, and the reconstructed signal using neural CELP were

played to a successive set of listeners who were asked if the words could be recognized.

The audience was also asked to rate the quality of the speech samples on a scale of 1 to 5

with 5 being excellent and 1 being poor. The results of the word recognition tests are

shown in Table 4.6. The results show that all the vowels could be distinguished in 85Vo of

the trials. The vowels that were wrongly identified using the neural CELP method couldn't

be recognized using either the original speech or the CELP coder. In the word recognition

tests, most of the cases that resulted in misclassification of the vowels was caused due to

an apparent "t" sound in the recordings at the end of the words for certain speakers, rather

than the appropriate "d" sound. In the second test, the quality of the speech was tested.

The results of the mean-opinion-score (MOS) tests a¡e shown in Table 4.7. The ¡esults

show the speech quality the CELP output is very close to that of the original speech. The

listeners indicated that the words were very intelligible and the quality of neural CELP

was close to that of the original except for a slight raspy or hoarse sound in the output.

This was responsible for the lower MOS for the neural CELP method.

Compression
Method

Accuracy

Original 85Vo

CELP 85?o

Neural CELP 859o

Table 4,6. Word Recognition Tests
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Compression
Method

MOS

Original 4.5

CELP 4.4

Neural CELP 4.0

Table 4.7. Speech Quality Tests (Mean-Opiníon Score)

4.4. Computing with Reduced Power Requirements

Most neural network simulations on conventional computers have been performed

using a 32-bit floating-point representation fo¡ the network's weights, distortion measures

and weight-update calculations. Using lower precision numbers, it is possible to place

more weights and processing elements in the same chip area, with a conesponding

increase in the performance and storage capacity to hardwale cost. If the computations are

performed in lower precision arithmetic the computational requirements and with them

the power consumption in the device can be reduced. By reducing the power consumption

in the device, the system can be used for portable communications and computing devices.

Experiments have been conducted to examine if the a¡tificial neural learning

algorithms can tolerate reduced precision during encoding and, and more importantly,

during learning. During encoding, the 7.5 ms excitation signal is used as the input to the

codebook and the coresponding closet vector in the codebook is identified. The output is

the index of the winning vector i.e. the vector whose distortion is the lowest, Experiments

were conducted when the precision was reduced during distortion calculations. The test

speech signal was encoded using reduced precision disto¡tion calculation, and then
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decoded using the method of Figure 4.3(b). The segmental SNR of the reconstructed

signal was calculated and is shown in Table 4.8. The SNR was only reduced to 4.9 from

4.9ó, for example, for a L024 word codebook size when 12 bit precision was used.

Limited precision arithmetic was also applied during learning. The precision was

¡educed during both distortion and weight update calculations during learning. The

weights are also stored using reduced precision. Table 4.8 shows the results obtained when

limited precision a¡ithmetic was perforned during learning.

Precision in bits FSCL SNR dB

16 4.95

t2 4.9

8 4.88

6 3.47

Table 4.8. Segmental SNR for Limited Precisíon Classification

The codebook sizewas 1024 and the FSCL method was used for leaming. From Table

4.5, the SNR using 32 bit precision for a codebook size of 1024 is 4.96 dB. These results

indicate that the ANN algorithms are tolerant of low precision arithmetic which can result

in low power consumption for portable computing with little degradation of speech

quality. However, the precision cannot be reduced below approximately 8 bits without a

significant degradation in the speech quality. Subjective tests have shown that the

perceived speech quality remains intelligible for precision greater than 8 bits. This system

can therefore be used in real{ime applications using low power DSP chips or custom

VLSI hardwa¡e.
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Precision in bits FSCL SNR dB

t6 4.91

l2 4.88

8 4.37

6 3.1'7

Table 4.9. Segmental SNRfor Límited Precision Learníng

4.5. Summary

The work presented in this chapter examined the neural CELP algorithm and its

performance for speech coding. In the neural CELP algorithm, the excitation signal is

vector quantized using FSCL and KSFM aigorithms and the codebook is generated using

training samples. The LPC and pitch prediction coefficients of the input speech signal are

calculated and the excitation signal is identified from the codebook for the closet matching

codebook vecto¡. The index of the closet matching codebook vector along with the pitch

and LPC coefficients are quantized and transmitted to the receiver. At the receiver, the

codebook vector corresponding to the codeword index is used in the reproduction of the

speech. Speaker-dependent and speaker-independent speech compression experiments

were conducted. For both the experiments, the results showed that the codebooks

generated by FSCL provide improved codeword utilization ofthe than those using KSFM.

The distortion obtain by FSCL is also lower than that of KSFM. The comparison of the

results obtained by the neural CELP method with the regular CELP method showed that

neural CELP is capable of producing comparable bit-rates and lower computation rates

than CELR as well as being suitable for a nonstationary environment. CELP has a slightly
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higher SNR compared to that of neural CELP for small excitation codebook sizes.

Subjective speech quality tests showed that the speech output produced by neural CELP is

very intelligible except for a slight raspy or hoarse sound.



Chapter 5

Conclusions and Future Work

5.1. Summary and Conclusions

This thesis began with a brief overview of conventional speech coding techniques

including linear predictive coding, code-excited linear prediction and vector quantization.

The potential role of artificial neural networks for vector quantization (VQ) of speech was

then described. Several a¡tificial neural learning methods for adaptive VQ of speech were

discussed. Artificial neural learning methods are adaptive and hence allow for the

possibility of learning the codebooks online in a non-stationary environment such as the

corner automated teller machine or in a portable computer. Three unsupervised learning

methods: competitive learning, frequency-sensitive competitive learning and Kohonen

self-organizing feature maps were discussed, for learning an adaptive codebook using VQ.

These learning methods were adopted in a new speech compression technique known as

neural CELP. In our neural CELP method, the input speech was preprocessed to obtain 10

LPC coefficients. The output of the inverse LPC filter was used to extract the pitch period

and 3 pitch prediction coefûcients. The final residual after LPC and pitch prediction was

used to generate the codebook. Experiments were conducted for speaker-dependent and
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speaker-independent speech compression. The codebook was generated using 5 ms and

7.5 ms signals of the excitation signal. The codebook entropies, segmental SNR, bit-rates,

and computational rates were calculated for codebooks obtained using FSCL and KSFM,

and these were compared to the results of CELP coding. Experiments were also conducted

by employing low precision arithmetic for classification and learning.

The results ofthis thesis showed that artif,cial neural learning methods are of potential

importance for speech coding. The techniques used in this study differ from earlier neural

VQ studies and conventional CELP coding methods. The excitation signal was vector

quantized using the neural learning methods rather than quantizing the LPC parameters as

in the earlier studies, The¡e was only one codebook for the excitation which was generated

by training on speech samples as opposed to the stochastic codebook in the standard

CELP approach. The results obtained demonstrate that the neural CELP approach is

capable of producing high quality speech, low computation rates and low bit-rates. The

subjective speech quality tests indicated that the quality of speech with smaller codebook

sizes using the neural CELP approach was below that of CELP but remained very

intelligible. The listeners indicated a slight raspy or hoarse sound for a few words in the

test set using neural CELP. The artificial neural learning methods are also tolerant of low

precision arithmetic. The results of low precision computing indicated that the ANN

learning algorithms perform well even if the precision is reduced from 32 bits to 8 bits

with only a small reduction in the SNR ratio. However, if the precision is reduced below 8

bits, there is significant degradation of speech quality. These results indicate that the

system can be implemented in real-time by using a DSP chip for preprocessing of speech

and by replacing the neurallyleamed vector quantizer by a lookup table. However,
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ultimate real-time performance at low power in non-stationary environments will be best

obtained using integer arithmetic of restricted precision in dedicated ANN hardwa¡e.

5.2. Future Work

In this work, only software simulations of the experiments were performed. In order to

make the system more practical to use, it should be implemented as custom ha¡dware or as

low-power DSP chips. More research should be performed regarding speech quality of the

neural CELP method which may include obtaining better pitch detection algorithms, or

alternatively, post-processing of the reconstructed speech. The performance of the

algorithms for speech signals for speakers with high pitch (e.g. female speakers) was

lowest. An adaptive pitch prediction algorithm may have to be used for such speakers. An

artificial neural network can be used for pitch prediction which may result in an overall

improvement of the speech quality. The learning time of the algorithms for a large

codebook size is significant even on a high performance computer. More effort is

war¡anted in developing fast learning algorithms so that codebooks can be generated on-

line in real-time applications. These faster learning algorithms can be employed for fine-

tuning the codebooks online in non-stationary environments.
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Appendix A

Estimation of LPC and Pitch Parameters

4.1. LPC Parameter Estimation

In order to obtain the LPC patameters, the vocal tract info¡mation and the gain must be

determined. The speech signal is windowed using the windowing function defined in (2'4)

and the windowed speech signal is given by

s,,(m) = s(m+n)w(m) ' (A'1)

From (2.2), the estimate 3,, (nl) is given by

NÍ

3,,(m) = \aos,,Qn-k). (A'2)
k= I

In order to obtain a¿, we have to minimize the eüor over all available samples'

\(s,,(m) -3,,(m))2 (4.3)

Minimization leads us to the following set of linear equations which can be expressed in a

matrix form as



[ *,,,r, R,, (i) R,,(2) ... R,, (N/- rrl lr,l [o,,,rr]
I R,,(J) R,,(0) R,,(1) ...R,,(Nt-2)llarl lR,,(2)l
I o,,(t) R,,(i) R,,(0) ... R,,(N/-i)llrrl= ln,,{:) | (A'4)

t || t

fo,, {lor- r) R,t(Nf- 2) R,, (N/- i) ... *,, rrl .l þrl L^,, t"rll

Here, R,,(k) is known as the autocorelation function defined as

R,,(fr) = "for,, (m)s,,(m+k). (4.5)

nt=0

This N¡ x N/ matrix of autoconelation values is a Toeplitz matrix i.e., symmetric and all

elements along a given diagonal are equal. Such a matrix is nonsingular and it can always

be inverted. Hence, a solution can always be found, and the stability of the resulting

solution can be guaranteed. This property can be exploited to obtain an efficient algorithm

Estimation of LPC and Pitch Parameters

4.2. Estimation of Pitch Parameters

The pitch predictor removes the distant sample correlations. The value of the pitch

period is chosen so as to maximize the corelation of the residual after the formant

prediction. A normalized correlation aray given by

tonfo¡ the solution. The Durbin's recursive algorithm is used to solve the matrix

above for the LPC coefficients a¿.

(A.6)
M-l+Ne.2.^

Ya q (u,m)

,,3*@
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N-1

0(¡,"r) = 2 d("-i)d(n-j)
n=0

(4.7)

(4.10)

and d(n) is the residual signal after formant prediction which acts as the input to the pitch

predictor. The value oî M tbat maximizes the quantity in (A.6) is chosen as the pitch

period. The pitch filter is given by

P(z) = F,r-'*Þrz-@*t) +þ32-@+2) (4.8)

The parameters B¡ are estimated by solving the following matrix equation:

I arr,*t þ@,M+t) þ(M,M+r) llP,,l I q<0,*¡ 1

lþw* t,M) þ(M+t,M+ I) q(M+ I,M+Ðllþrl= lo<o,u* ttl. (A'e)

la Gø *2, M) þ (M + 2, M + t) þ (M + 2, M +Ð)þÀ lq p,u + z¡)

In many cases, the off-diagonal elements in the covariance matr.ix (A'9) a¡e negligible.

These terms are correlation terms with small lags. This approximation is justified by the

observation that when LPC analysis is done before the pitch prediction, the LPC filter

removes the short-term correlations. So, (4.9) can be simplified as

tt;l I oo,ørc<*,*t I
lÊrl= lO Q, M + 1) /þ (M + 1, M + 1)l'

þrl lqP,u *z¡rq @ +2, M +r)

Using (4.10), the pitch prediction coefficients B¡ can be estimated.


