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Abstract

In bioinformatics, Genomic Selection (GS) and Genome-Wide Association Studies

(GWASs) are two related problems that can be applied to the plant breeding industry.

GS is a method to predict phenotypes (i.e., traits) such as yield and disease resis-

tance in crops from high-density markers positioned throughout the genome of the

varieties. By contrast, a GWAS involves identifying markers or genes that underlie

the phenotypes of importance in breeding. The need to accelerate the development

of improved varieties, and challenges such as discovering all sorts of genetic factors

related to a trait, increasingly persuade researchers to apply state-of-the-art machine

learning methods to GS and GWASs.

The aim of this study is to employ sparse Bayesian learning as a technique for

GS and GWAS. The sparse Bayesian learning uses Bayesian inference to obtain

sparse solutions in regression or classification problems. This learning method is also

called the Relevance Vector Machine (RVM), as it can be viewed as a kernel-based

model of identical form to the renowned Support Vector Machine (SVM) method.
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The RVM has some advantages that the SVM lacks, such as having probabilistic

outputs, providing a much sparser model, and the ability to work with arbitrary

kernel functions. However, despite the advantages, there is not enough research on

the applicability of the RVM.

In this thesis, we define and explore two different forms of the sparse Bayesian

learning for predicting phenotypes and identifying the most influential markers of

a trait, respectively. Particularly, we introduce a new framework based on sparse

Bayesian learning and ensemble technique for ranking influential markers of a trait.

We apply our methods on three different datasets, one simulated dataset and two real-

world datasets (yeast and flax), and analyze our results with respect to the existing

related works, trait heritability, and the accuracies obtained from the use of different

kernel functions including linear, Gaussian, and string kernels, if applicable. We

find that the RVMs can not only be considered as good as other successful machine

learning methods in phenotype prediction, but are also capable of identifying the

most important markers from which biologists might gain insight.
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Chapter 1

Introduction

In this thesis, we address two related problems in bioinformatics: Genomic Selec-

tion and Genome-Wide Association Studies (GWASs). Genomic selection involves

predicting phenotypes such as growth and fertility in livestock [34, 50], yield and

drought resistance in crops [40], and disease risk in humans [1, 41], using genetic

information of individuals (i.e., sequences of genome-wide molecular markers). The

main aim of genomic selection is maximization of predictive power. Genomic selec-

tion is ideal for complex traits, which are controlled by many genes with different

effects across the genome [72]. Genomic selection in plants or animals is mainly used

in the breeding industry.

On the other hand, GWAS deals with causal interpretation of phenotypic varia-

tions in humans, plants, or animals. GWAS helps to understand the genetic archi-

tecture of complex traits. For example, GWAS in humans involves rapidly scanning
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markers across the genomes of many people to find genetic variations associated

with a particular disease. Once new genetic associations are identified, researchers

can use the information to develop better strategies to detect, treat and prevent the

disease [47]. GWAS, particularly in humans, has yielded the “missing heritability”

problem [60], though it is also present in other organisms (e.g., [80, 100]). Missing

heritability is the gap between known and predicted heritability. In other words,

GWAS has identified many genetic loci for a wide range of traits, but these typically

explain only a minority of the heritability of each trait, implying the existence of

other undiscovered genetic factors. An example of this missing heritability is height

in humans, and disease resistance in crops. However, devising new approaches and

proper tools in GWAS may uncover the missing part [100].

There are a variety of computational models used in genomic selection and

GWAS, though mostly statistical (e.g., Best Linear Unbiased Prediction, or BLUP [43]),

traditionally. However, machine learning methods, such as random forests [16] and

Support Vector Machines (SVMs) [79], have had an increasing interest to overcome

challenges in these problems, such as identifying markers that influence a trait in

complex interactions [36, 89].

In this thesis, we employ the sparse Bayesian learning method [92] for predict-

ing phenotypes and identifying influential markers of a trait. The sparse Bayesian

learning uses Bayesian inference to obtain sparse solutions for regression and clas-

sification tasks. This learning method is also called the Relevance Vector Machine
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(RVM), as it can be viewed as a kernel-based model of identical form to the SVM.

SVMs are one of the most theoretically well-motivated and practically most effective

classification algorithms in modern machine learning, as expressed by Mohri et al.

[64]. Although the prediction performance of the RVM practically competes with

the SVM, it has some advantages that the SVM lacks, e.g, having probabilistic out-

puts, providing a much sparser model, and the ability to work with arbitrary kernel

functions. However, there is not enough research about sparse Bayesian learning

applicability, particularly in bioinformatics, despite its advantages.

In this work, we have two major contributions: (1) We employ RVMs with dif-

ferent kernels for predicting phenotypes via regression or classification. We also use

ensemble RVM to improve prediction accuracy and rank the training samples (or

variants). Ranking individuals allows us to extract the most informative samples,

and consequently, to get more insights from data. To the best of our knowledge,

there has not been any research on the application of RVM in genomic selection.

Also we did not find any work which used ensemble RVM for ranking purposes. (2)

We merge sparse Bayesian learning and ensemble technique for feature selection and

ranking, i.e., identifying influential markers of a trait. This is a new approach, and

such an architecture has not been used for feature selection previously. We apply

our methods on three different datasets, one simulated dataset and two real-world

datasets (yeast and flax), and analyze our results in respect of the existing related

works, trait heritability, and the accuracies obtained from the use of different kernel
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functions including linear, Gaussian, and string kernels.

We have organized the thesis material as follows. In Chapter 2, we describe the

required machine learning background including sparse Bayesian learning in classifi-

cation and regression. Next in Chapter 3, we represent our proposed methods, i.e.,

Kernel RVMs, Basis RVMs, and Ensemble RVMs. Then in Chapter 4, we illustrate

the bioinformatics scope of this thesis, i.e., genomic selection and GWAS. We also

review existing related work for prediction and feature selection in bioinformatics.

Next in Chapter 5, we investigate how our RVM architectures perform on a simulated

data set. Then in Chapters 6 and 7, we experiment the RVMs on two real world

datasets, yeast and flax, respectively. Last, we present conclusions and future work

in Chapter 8.
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Chapter 2

Background

In this chapter, we describe the machine learning background required to un-

derstand the proposed methods and the related work, such as Machine Learning,

Kernel Methods, Sparse Bayesian Learning and Relevance Vector Machine (RVM),

and Evaluation Measures and Techniques.

2.1 Machine Learning

Machine learning [64], as a part of Artificial Intelligence, is a branch of computer

science that gives computers the ability to learn from examples or past experiences,

and detect patterns in data or make predictions on data. For example, an email

spam filter uses machine learning to sort incoming mails into spams and non-spams.

If a user frequently discards emails with a specific header, the spam filter will start
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to categorize similar emails as unwanted or spams.

Machine learning algorithms are often categorized into two types: supervised

and unsupervised. Supervised learning is the task of inferring a function from labelled

training data. The training data is a set of training examples, or pairs, each consisting

of an input object (which is typically represented as a vector) and a desired output

value. The goal of the algorithm is to correctly determine the output value for

new, unseen examples. Two major categories of supervised learning problems are

classification and regression. A classification assigns a category or target value to

each item (e.g., a spam filter assigns spam/non-spam categories to emails), while a

regression predicts a real value for each item (e.g., predicting house prices based on

features of residential houses sold in a duration). The performance of the resulting

function should be measured on a test set which is separate from the training set

and consists of unseen instances.

Contrary to supervised learning, we only have input data in unsupervised learning.

In this case, the learning task is inferring a function to describe the hidden structure

in unlabelled data. For instance, grouping customers by purchasing behaviour can

be viewed as a clustering problem which is an unsupervised learning method.

In the machine learning context, the set of all possible examples or instances is

referred to as the input space, and the set of attributes associated to an example

is called the feature vector. In the email spam filter problem wherein instances are

email messages, some relevant features may include the length of the message, the
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name of the sender, and the presence of certain keywords in the header or body of the

message. In fact, a feature vector is an n-dimensional vector of n numerical features

that represents some example. The vector space associated with the feature vectors

is called the feature space.

Machine learning techniques are increasingly being used to address problems in

bioinformatics in which there is a large amount of data and noisy patterns, but no

general theory for describing those data. Some of the widely used machine learn-

ing techniques in bioinformatics are Artificial Neural Networks [9], Support Vector

Machines [11], Hidden Markov Models [105], Bayesian Networks [67], and Decision

Trees [85].

2.2 Kernel Methods

Kernel methods, such as SVM, are a class of machine learning algorithms that

depend on data only through dot products. The dot product of two vectors defines a

similarity measure between the pair. In a kernel method, a kernel function computes

a dot product in some possibly high-dimensional feature space. An advantage of this

technique is the ability to generate non-linear decision boundaries.

For instance, consider the left hand side of Figure 2.1, and suppose our classifica-

tion task is discriminating between crosses and circles in the input space. However,

no line (or hyperplane in higher dimensional examples) can separate the two popula-

tions in that space. In fact, it is likely that in a real classification pattern recognition
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problem, linear separation is not possible, as is shown in the left hand side of the

figure. In such a case, one solution is to use a non-linear mapping of the points

into some higher-dimensional feature space in which the samples are linearly separa-

ble. Then, we solve the problem (i.e., finding the optimal hyperplane) in the feature

space, and consequently, we will be able to identify the corresponding non-linear

decision boundary for the points in the input space. To do this procedure, a kernel

method only requires a function K : X ×X −→ R, which is called a kernel over the

input space X. For any two input vectors xi,xj ∈ X, K(xi,xj) is the dot product

of vectors ϕ(xi) and ϕ(xj):

∀xi,xj ∈ X, K(xi,xj) = 〈ϕ(xi), ϕ(xj)〉 , (2.1)

for some mapping ϕ : X −→ H to a feature space H. The kernel also can be written

in matrix form over the data sample: K = [K(xi,xj)]ij, which is called the kernel

matrix or Gram matrix.

In fact, the kernel method operates in a high-dimensional, implicit feature space

without needing to know the mapping function ϕ, as computing the inner products

between the images of all pairs of data points in the feature space suffices. However,

the appropriate choice of a kernel is left to the user. This approach is called the kernel

trick, and Figure 2.1 shows a graphical illustration for it in a binary classification ex-

ample. As data points are not linearly separable in the input space, they are mapped

from the input space to a feature space, using the mapping ϕ : R2 → R3, ϕ(x) = z.
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The mapping ϕ is defined implicitly via the kernel K(xi,xj) = 〈xi,xj〉2. One pos-

sible mapping for this example can be ϕ(x1, x2) = (x1
2, x2

2,
√

2x1x2) = (z1, z2, z3).

The images of data points in the feature space are linearly separable by a plane.

Figure 2.1: Mapping data points from an input space to a feature space.

The main advantage of using kernel functions is that computing the kernel is

easy, but computing the feature vector corresponding to the kernel is mostly hard

and costly, or even impossible. For example, the corresponding feature vector for

a simple kernel such as Gaussian kernel (2.2) has an infinite number of dimensions,

but computing the kernel itself is trivial.

To guarantee the convergence in a kernel method such as SVM, the kernel func-

tion K must satisfy Mercer’s condition, which says the square kernel matrix should

be Positive Definite Symmetric (PDS) [46], such as is the case for polynomial and

Gaussian kernels. More precisely, satisfying Mercer’s condition guarantees existence

of an underlying mapping functions in (2.1). Otherwise, the kernel function is not
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legitimate in SVM, and the classification problem cannot be solved. However, there

is no such limitation in an RVM framework [92], as we will see later in this chapter.

2.2.1 Kernel Types

In this research, we use both sequence and non-sequence kernel functions. A non-

sequence kernel refers to a kernel that can handle binary or numerical data types

(e.g., gene expression data). Gaussian kernel and polynomial kernel are among non-

sequence kernels: For any constant γ > 0, Gaussian kernel or Radial Basis Function

(RBF) is the kernel K : RN → R:

∀x,x′ ∈ RN , K(x,x′) = exp(−γ‖x− x′‖2), (2.2)

where ‖x‖ is the norm of the vector x. Also, a polynomial kernel of degree d such

as K is defined by:

∀x,x′ ∈ RN , K(x,x′) = (x · x′ + c)d, (2.3)

for a fixed constant c ≥ 0.

In contrast to a non-sequence kernel, a sequence kernel operates on strings, or

finite sequences of symbols. Intuitively speaking, we can say that the more similar

the two strings x and x′ are, the higher the value of a string kernel K(x,x′) will be.

Sequence kernels have applications in biological sequence analysis, natural language
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processing, document classification and other text processing areas [82].The n-gram

kernel [59] is an example of a sequence kernel. The n-gram kernel of the two strings

x and x′ counts how often each contiguous string of length n is contained in the

strings:

Kn(x,x′) =
∑
u∈An

ψu(x)ψu(x′), (2.4)

where ψu(x) denotes the number of occurrences of the subsequence u in the string x,

and An is the set of all possible subsequence of length n, given the alphabet A. For in-

stance, suppose we are given two DNA sequences with the alphabet A = {A,C,G,T}:

x = AACCT and x′ = GACAC. The bi-gram (2-gram) subsequences in x and x′ are

{AA,AC,CC,CT} and {GA,AC,CA}, respectively. Therefore, K2(x,x
′) = 1× 2 = 2,

as only one subsequence AC is common in both sequences, which it has been repeated

once in x and twice in x′. Higher kernel values mean two sequences are more similar.

Other than n-gram kernels, there are also other sequence kernels common in bioin-

formatics, such as mismatch, gappy, substitution, and homology kernels [28, 55, 59].

Most sequence kernels used in applications such as computational biology and

natural language processing are considered rational kernels [23]. Rational kernels [21,

22], which are based on finite-state transducers [73], present an efficient general

algorithm for manipulating variable-length sequence data.
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2.3 Sparse Bayesian Learning

The sparse Bayesian modelling [92, 93] is an approach for learning the prediction

function y(x; w), which is expressed as a linear combination of basis functions:

y(x; w) =
M∑

m=1

wmφm(x) = wTφ(x), (2.5)

where φ(x) = (φ1(x), ..., φM(x))T are basis functions, generally non-linear, and w =

(w1, ..., wM)T are the adjustable parameters, called weights. Given a dataset of input-

target training pairs {(xi, ti)}Ni=1, the objective of the sparse Bayesian method is

to estimate the target function y(x; w), while retaining as few basis functions as

possible. The sparse Bayesian algorithm often generates exceedingly sparse solutions

(i.e., few non-zero parameters wi).

In a particular specialization of (2.5), such as the one that SVM uses, M = N

and the basis functions take the form of kernel functions, one for each data point xm

in the training set, so that φm(x) = K(x,xm), where K(., .) is the kernel function.

This exemplification of the sparse Bayesian modelling is called the Relevance Vector

Machine (RVM). Tipping [91] introduced the RVM method as an alternative to the

SVM method of Vapnik [94]. However unlike the SVM, we can use arbitrary basis

sets in the RVM [92], as the sparse Bayesian framework permits.

Assuming that the basis functions have the form of kernel functions, we illus-

trate the sparse Bayesian algorithms for regression and classification in the following
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section (in order to facilitate direct comparisons with the SVM). Corresponding al-

gorithms for arbitrary basis functions can be easily induced from them.

2.3.1 Relevance Vector Regression

We follow the framework developed by Tipping [92]. In the regression framework,

the targets t = (t1, ..., tN)T are real-valued labels. Each target ti is representative

of the true model yi, but with the addition of noise εi: ti = y(xi) + εi, where

εi ∼ N (0, σ2). This means: p(ti | xi,w, σ
2) = N(y(xi), σ

2), or:

p
(
t | w, σ2

)
= (2πσ2)

−N/2
exp

{
− 1

2σ2
‖t−Φw‖2

}
, (2.6)

where w = (w1, ..., wN)T , and the data is hidden in the design matrix (kernel matrix)

Φ = [φ(x1), ...,φ(xN)]T , wherein φ(xi) = [K(xi,x1), ..., K(xi,xN)]T . For simplic-

ity, we omit the implicit conditioning on the set of input vectors {xi} in (2.6) and

subsequent expression.

We infer weights using a fully probabilistic framework. Specifically, we de-

fine a Gaussian prior distribution with zero mean and αi
−1 variance over each wi:

p (wi | αi) = N (0, αi
−1) , or:

p (w | α) =
N∏
i=1

N
(
0, αi

−1). (2.7)

The key to obtain sparsity is the use of independent hyperparameters α = (α1, ..., αN)T ,

13



one per weight (or basis function), which moderate the strength of the prior infor-

mation.

Using Bayes’ rule and having the prior distribution and likelihood function (2.7

and 2.6), the posterior distribution over the weights would be a multivariate Gaussian

distribution:

p(w | t,α, σ2) =
p(t | w, σ2)p(w | α)

p(t | α, σ2)
= N(µ,Σ), (2.8)

where the covariance and the mean are:

Σ = (σ−2ΦTΦ + A)−1, (2.9)

µ = σ−2ΣΦT t, (2.10)

and A = diag(α1, ..., αN).

The likelihood distribution over the training target t, given by (2.6), is marginal-

ized with respect to the weights to obtain the marginal likelihood for the hyperpa-

rameters:

p(t | α, σ2) =

∫
p(t | w, σ2)p(w | α)dw = N(0,C), (2.11)

where the covariance is given by C = σ2I + ΦA−1ΦT . Values of α and σ2, which

maximize (2.11), cannot be obtained in closed form, thus the solution is derived via
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an iterative maximization of the marginal likelihood p(t | α, σ2) with respect to α

and σ2:

αi
new =

1− αiΣii

µi
2

, (2.12)

(σ2)
new

=
‖t−Φµ‖

N −
∑N

i=1(1− αiΣii)
. (2.13)

The basic RVM algorithm iterates over (2.9), (2.10), (2.12), and (2.13), reducing the

dimensionality of the problem when αi is larger than a threshold (note that αi has

a negative power in (2.7)). The algorithm stops when the likelihood p(t | α, σ2)

stops increasing. The non-zero elements of w are called Relevance Values, and their

corresponding data points are called Relevance Vectors (RVs) as an analogy to the

Support Vector Machine. Having the relevance vectors, {xr}|RV s|
r=1 , and the relevance

values, {wr}|RV s|
r=1 , the RVM makes prediction on a new data instance x∗:

y∗ =

|RV s|∑
r=1

wrK(x∗,xr), (2.14)

where |RV s| denotes the cardinality of the set of relevance vectors.

2.3.2 Relevance Vector Classification

In the binary classification framework, each target ti is binary (either 0 or 1).

In this case, the model is assumed noise-free, i.e., σ2 ≡ 0. Applying the sigmoid

function ρ(y) = 1/(1 − e−y) to y(x; w), and adopting the Bernoulli distribution for
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p(ti | xi,w), we can rewrite the likelihood as:

p(t | w) =
N∏
i=1

ρ(y(x; w))ti(1− ρ(y(x; w))1−ti . (2.15)

However, here we cannot obtain the marginal likelihood analytically similar to the

regression case. Therefore, we can use an iterative procedure [91] which involves

repeatedly solving these two coupled problems: (i) An optimization of a regularized

logistic model: From log {p(w | t,α)}, we find the most probable weights wMP for

the current fixed values of α; (ii) A regression RVM: Computing the Hessian of

log {p(w | t,α)} at wMP , then the covariance Σ, and correspondingly, updating α.

2.3.3 RVM versus SVM

The RVM is a probabilistic model whose functional form is equivalent to the

SVM [79] and achieves comparable recognition accuracy to it [12]. The SVM is

another sparse method for training a model such as (2.5), where the basis functions

have the form of kernel functions. The SVM expresses predictions in terms of a

linear combination of kernel functions centred on a subset of the training data called

Support Vectors (SVs). Given labelled training data, the SVM algorithm outputs

an optimal hyperplane which categorizes new examples, that is, it makes predictions

on examples that are not part of the training set. The optimal hyperplane is a

hyperplane that maximizes the margin of the training data (see Figure 2.2). To

consider training errors, the SVM also uses a soft margin assumption which allows a
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few training data to fall on the wrong side of the hyperplane. The optimal hyperplane

is specified by the support vectors. Support vectors are samples that are closest to

the hyperplane. However, the relevance vectors in the RVM, unlike the SVM, tend

to represent more prototypical examples rather than data points close to the decision

boundary [92].

Some advantages of the RVM over the SVM are discussed in Tipping [92]: (i)

In the SVM, it is necessary that we tune the parameters related to the cost of

the soft margin (i.e., misclassification penalty). However, analogous parameters in

the RVM are automatically estimated by the algorithm. (ii) In the SVM, the kernel

function must satisfy Mercer’s condition (which says the square kernel matrix should

be Positive Definite Symmetric), while the RVM framework allows the use of an

arbitrary kernel function. (iii) The RVM method, unlike the SVM, is based on

a Bayesian inference, and provides probabilistic outputs. (iv) The RVM provides

much sparser models in terms of the number of examples (i.e., relevance vectors)

than the SVM (i.e., support vectors).

A disadvantage of RVM over the SVM is that the RVM can get stuck in a lo-

cal optimum. However, the convex optimization algorithm employed by the SVM

guarantees to find a global optimum. Another disadvantage of RVM is hidden in cal-

culating the covariance (2.9) which requires a matrix inversion. The issue is that if

this matrix is ill-conditioned, then its inverse will be prone to large numerical errors

(or not available if it is singular). A matrix is ill-conditioned if the condition number
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Figure 2.2: An example of a linear SVM. Support vectors are shown with the solid
shapes.

is too large (and singular if it is infinite) [97]. The condition number of a matrix is

defined as cond(A) = ‖A‖ · ‖A‖−1.

2.4 Evaluation Measures and Techniques

In the process of constructing a classification or regression model, we first split

the full labelled data into training and test samples. The training sample is used

for model selection and training, while the test sample is used to show the overall

performance of the trained model on unseen instances. In this section, we describe

some measures and techniques which are used or mentioned in this research for

evaluating the performance of a regression or binary classification model.
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Sensitivity, Specificity, and Accuracy

There are three main statistical measures for expressing the estimated perfor-

mance in a binary classification when evaluating the classifier on the testing data:

- Sensitivity (SN), measures the accuracy of positive classifications, and is defined

as SN = TP/(TP + FN), where TP and FN refer to the number of true

positives and the number of false negatives, respectively.

- Specificity (SP), measures the accuracy of negative classifications, and is de-

fined as SP = TN/(TN +FP ), where TN and FP refer to the number of true

negatives and the number of false positives, respectively.

- Accuracy (ACC), represents the proportion of true results, both positive and

negative, in the selected population, and is defined asACC = (TP+TN)/(TP+

FP + TN + FN).

A good test is a one who has both high SN and SP, and consequently, high ACC.

However, sometimes because of specific conditions in the population of interest (e.g.,

imbalanced datasets), the estimated performance of a classifier may result in high

accuracy, but large difference in absolute value between SN and SP. Therefore, ACC

needs to be interpreted cautiously.
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Correlation Coefficient

In this thesis, we will compute the correlation coefficient between the observed

and predicted values primarily in regression. Pearson’s Correlation Coefficient (PCC,

or R) is a measure of linear dependence between two variables X and Y :

Rxy =

n∑
i=1

XiYi −

(
n∑

i=1
Xi

)(
n∑

i=1
Yi

)
n√√√√√

 n∑
i=1

Xi
2 −

(
n∑

i=1
Xi

2

)2

n

 n∑
i=1

Yi
2 −

(
n∑

i=1
Yi

2

)2

n


where n refers to the number of pairs of data. The correlation coefficient shows that

how closely one variable is related to another variable. The value of R falls in the

range [-1,1]. A correlation coefficient of 0 means that there is no linear relationship

between the two variables. The closer a correlation coefficient to +1 or -1, the

stronger the relationship is between variables. In this case of regression, if an Xi is

the observed output value for an input, its corresponding Yi represents the predicted

output value for that input by a predictor. In this way, a PCC close to 1 represents

that a predictor is making accurate predictions for a regression problem.

Coefficient of Determination

Coefficient of determination (R2) is the square of correlation coefficient. It is a

statistical measure that indicates the proportion of the variance in the dependent
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variable y that is predictable from the independent x-variables. The range is 0 to 1.

The coefficient of determination gives us an idea of how many data points fall within

the results of the fitted regression line. In general, the higher the (R2), the better

the model fits our data.

Depending on the situation during the thesis, we may use either of correlation

coefficient or coefficient of determination measures in evaluating a regression model.

More precisely, to compare our results with a related work which uses a specific

measure, we will also evaluate our method with the same measure. The goal is not

to compare results between datasets (e.g., yeast versus flax) but to compare between

previous results on the same dataset.

Cross-validation

In learning a prediction function, partitioning the available data into three sets

- training, validation and test sets - is a reasonable solution to avoid overfitting

(i.e., overfitting as the result of model selection based on training and testing on

the same data). However, by partitioning the data into three sets, we drastically

reduce the number of samples which can be used for learning the model. Also, the

results depend on a particular random selection of the pair (train, validation) sets.

Cross-validation is a solution to this problem. Cross-validation is a model evaluation

method for estimating the performance of a predictive model. It is also used for

model selection (tuning the free parameters of the algorithm).
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In a k-fold cross-validation, we partition the original dataset into k equal-sized

subsets, randomly. Then, we train our model k times, each time leaving one of the

k subsets for testing, and using all the remaining k − 1 subsets for training. In this

way, each of the k subsets is used exactly once as the test set:

dataset =
k⋃

j=1

dj,

Foldi :


testset = di

trainset = dataset− di

, i = 1, ..., k.

The k results (i.e., computed prediction measures) from the folds can be averaged to

produce the final evaluation result.

As a cross-validation result depends on how a given dataset is divided into folds,

sometimes a repeated cross-validation is applied at an added cost. In a repeated

k-fold cross-validation, k-fold cross-validation runs for multiple times (e.g., N) using

different split into folds, and the result will be the average of all N cross-validation

results. Repeated k-fold cross-validation allows to get a more precise estimate of the

expected predictive performance than non-repeated k-fold cross-validation.

ROC Curve Analysis

A Receiver Operating Characteristic (ROC) curve is a commonly used way to

visualize the performance of a binary classifier. In a ROC curve, the true positive
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rate (or, SN) is plotted against the false positive rate (or, 1−SP ) for different cut-off

points of a parameter. A typical ROC curve is shown in Figure 2.3. Generally, ROC

curve analysis is undertaken to:

1. Assess the overall discriminatory ability of a binary classifier, i.e., the ability

of a classifier to correctly classify the samples into two groups, positive and

negative.

2. Recognize the best SN and SP . As a result, a ROC curve helps in determining

the best cut-offs that maximize SN and minimize 1− SP .

The Area Under the Curve (AUC) is a common metric to compute the strength of a

classification: An AUC of the ROC curve close to 1 indicates a strong test, and an

AUC close to 0.5 (i.e., random classifier performance) represents a weak test.

Figure 2.3: A typical ROC curve.
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Chapter 3

Methodology

In this chapter, we introduce separate definitions for two different forms of the

sparse Bayesian learning, i.e., Kernel RVM and Basis RVM, and explain our proposed

ensemble method, Ensemble RVM, for ranking purposes.

3.1 Kernel RVM versus Basis RVM

In this research, we define sparse Bayesian learning in such a way that we can

discriminate between kernel and basis functions, i.e., “kernel” RVM versus “basis”

RVM. For example, we define two types of linear RVMs, which we call linear kernel

RVM and linear basis RVM. In a linear kernel RVM, the basis functions in (2.5) are
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linear kernel functions, i.e.,

φm(x) = K(x,xm) = 〈x,xm〉.

When we use linear kernels, in fact we have no mapping. In other words, there is

no feature space (as we use input vectors directly), so our estimator tries to pass a

hyperplane through input vectors in the input space (e.g., in the regression case).

In our linear basis RVM, the basis functions are linear and equal to the features

of the input vectors, i.e.,

φm(x) = x[m],

where x[m] refers to the m-th feature in an input vector x with M dimensions. We

can view it as if we have no basis function in a linear basis RVM, as we use input

vectors directly in (2.5) instead:

y(x; w) = wTx.

Therefore in (2.6), w = (w0, w1, ..., wM)T are weights, where M is the number of
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features, and the design matrix

ΦN×(M+1) =



1 x1
[1] x1

[M ]

1 x2
[1] x2

[M ]

· · ·

1 xN
[1] xN

[M ]


, (3.1)

where the first column handles the intercept w0, and N is the number of training

individuals.

Thus, this linear-basis RVM will find the RVs which correspond to the features;

i.e., the obtained sparsity will be in the feature set rather than the training individ-

uals. This is exactly what we expect from a feature selection method. Therefore,

this RVM can perform target prediction as well as feature selection. For example,

in a genomic selection/GWAS in crop breeding, the individuals are breeds of a crop,

the features are the markers, and a phenotype is a target. Then, a linear basis RVM

would identify a subset of relevant markers to that phenotype, while it is trained for

phenotype prediction.

We should note that there is not an SVM counterpart for a basis RVM, as the

design matrix (3.1) resembles a non-PDS function which specifically cannot be used

in an SVM. In Chapters 5 through 7, we use linear basis RVMs to rank which markers

contribute most to a prediction.
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3.2 Ensemble RVM

An ensemble of classifiers is a set of classifiers whose individual decisions are

combined in some way to classify examples [25]. Ensembles often produce better

predictive performance than a single model by decreasing variance (bagging), bias

(boosting), or improving predictions (stacking) [106]. Moreover, ensemble techniques

have the advantage of handling large data sets and high dimensionality because

of their divide-and-conquer strategy. Random Forests [16] and Gradient Boosting

Machines [33] are examples of ensemble methods.

In this research, we employ ensemble RVM with the bagging approach. Bagging

stands for bootstrap aggregating [15]: base models are trained on bootstrap sub-

samples of the training set and their predictions are aggregated through majority

voting or averaging. Bootstrapping [27] is a type of resampling where large numbers

of smaller samples of the same size are repeatedly drawn, with replacement, from

an original sample. Bagging is commonly used as a resolution for the instability

problem in estimators. Bagging has been used in the random forest algorithm.

We use ensemble RVM for target prediction (in regression or classification case)

and feature selection. This is the contribution of the thesis. Specifically, for feature

selection purposes, we construct ensembles composed of linear basis RVMs, while for

target prediction we mainly use kernel RVMs. Each RVM in an ensemble finds a set

of representatives or RVs which represent important training individuals or features,

depending on the type of RVMs in the ensemble. Then, aggregating RVs of the
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ensemble lets us rank the individuals or features. Ranking mechanisms allow us to

reduce dimensionality and enhance generalization [75]. Furthermore, they enable us

to recognize interpretable or insightful individuals/features in the model. This is the

attribute that we can benefit from in some applications such as genomic selection

and GWAS, as we will see in the following chapters.

As a sample, a pseudo-code for training an ensemble of basis RVMs in regression is

shown in Algorithm 1. This ensemble is used to rank the features. Herein we omitted

any processes related to the model selection phase. In other words, we assumed that

the number of RVMs in the ensemble, numRVMs, and the bag size, bagSize, are

known in advance. Therefore, we showed both the training and the test phases for

the ensemble in the same loop. The inputs of the algorithm are the training and

test datasets, that each of which include a design matrix and a vector of real-valued

labels. The algorithm outputs the ranks of the features in the training dataset and

the performance (PCC) of the ensemble over the test dataset. As the algorithm

shows, each RVM in the ensemble is trained with a bag of the training dataset. As

we are in the regression case, we assume the labels are noisy, so we assign a Gaussian

distribution to the likelihood and consider a standard deviation for the noise (e.g.,

0.1) in the main RVM algorithm, which we have explained in Section 2.3.1. Also, we

should set the number of iterations in the RVM algorithm. After training an RVM

with SparseBayes, the trained RVM gives us its inferred weights and RVs. Then, we

update the rank vector according to the identified RVs. The rank vector is a vector
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that counts the number of times each vector is an RV in any RVM in the ensemble.

Having the trained RVM, we can also obtain the labels of the test individuals. After

training all the RVMs in the ensemble, we will have the feature ranks, and calculate

the ensemble vote on the test individuals by averaging the result of the RVMs.

Algorithm 1: EnsembleBasisRVR

Input: trainData, testData

Output: rankVect, testPCC

Initialization:

rankV ect← zeroV ect

testPCC ← zero

ySumV ect← zeroV ect

for i = 1 to numRVMs do

bag ← Bootstrap(trainData, bagSize)

weightV ect, RV s← SparseBayes(likelihood = “Gaussian”, noisSTD = 0.1,

iterations = 2000,

designMat = bag.designMat,

labelV ect = bag.labelV ect)

Update(rankV ect, RV s)

yV ect← testData.designMat ∗ weightV ect

ySumV ect← ySumV ect+ yV ect

ensembleV oteV ect← Average(ySumV ect, numRVMs)

testPCC ← Correlation(testData.labelV ect, ensembleV oteV ect)
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3.3 Algorithmic Complexity

Herein we discuss the computational complexity of a single RVM or an ensemble

RVM in details. We should note that the complexity of a predictor differs in the

training phase versus the prediction phase.

We exclude the model selection phase, and we suppose that we have a high

dimensional dataset with N training individuals, each with p features (p � N).

During the training phase, first we should construct the kernel matrix in a kernel

RVM, or the design matrix in a basis RVM. Constructing a design matrix for a basis

RVM with linear basis functions (our case in this research) can be considered to take

constant time. However, computing a numerical kernel matrix is quadratic in the

number of training individuals, O(N2), as we should calculate a dot product for every

two pairs of individuals. Also, the complexity of computing an n-gram rational kernel

over a pair of strings is linear in the sum of the length of the strings [3]. In other

words, it is is equal to the length of the longest sequence, or p in our case. Therefore,

the complexity of constructing an n-gram kernel matrix would be O(N × p).

Given the kernel or design matrix, we enter the main part of the training an RVM.

Based on the sparse Bayesian learning algorithm 2.3, the computationally intensive

part of the RVM algorithm is the matrix inversion in (2.9) which requires O(N3)

operations for a dataset of size N in a kernel RVM [81]. Also, the space complexity

is O(N2) for the memory requirements of Φ and Σ matrices [81]. Similarly, if we have

a basis RVM, the algorithm requires O(N × p) storage and O(p×N2) computation.
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Therefore, repeatedly computing and inverting the Hessian matrix is the most costly

part in the training phase of an RVM.

The complexity of training an ensemble can be viewed identical to a single RVM,

as the number of RVMs in an ensemble is often much less than the number of

training individuals (or features). Also, taking a bag of the training data in each

RVM member of an ensemble is linear in the bag size, which is at most equal to

N in a kernel RVM (or p in a basis RVM); thus, it does not increase the overall

computational complexity.

In the prediction phase, the computational complexity of an RVM is linear in

the number of RVs in the RVM, O(|RV s|), based on (2.14). As the number of RVs

is sparse, the trained RVM is fast in prediction. Consequently, the computational

complexity of prediction in an ensemble RVM is O(|RV s|1 + ... + |RV s|numRVMs),

which will be linear in N in an ensemble of kernel RVMs (or p in an ensemble of

basis RVMs) in the worst case.

3.4 Implementation Tools

To do our experiments on the datasets in Chapters 5,6 and 7, we use the following

machine learning tools:

• To implement the RVMs, we use SpareBayes software package for Matlab [90].

• For computing rational kernels (n-gram and composition kernels), we use Open-
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FST (Open Finite-State Transducer) library [2, 5] and OpenKernel library [4].

• For computing numerical kernels and other machine learning tasks such as

implementing an SVM, we use Scikit-learn package in Python [71].
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Chapter 4

Related Work

We considered the genomic selection problem as a regression (or as a classifi-

cation) problem, and genetic marker association of a complex trait as a feature

selection problem. To date, there has not been any research on the application of

RVM in genomic selection or genome-wide association study, either in plants or ani-

mals. However, there is research on RVM in some other bioinformatics applications

such as identifying particular motifs in a sequence [26, 58] and predicting biological

networks [6, 99]. Also, there is research on feature selection techniques based on

machine learning methods in a few applications in bioinformatics such as microarray

analysis [44]. In this chapter, first we present an overview of the genomic selection

problem. Then, we review the existing research works on RVM-based applications

in bioinformatics. Next, we explain genome-wide association study and some related

classical methods for analysing complex traits. Last, we review some latest research
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works on feature selection techniques in bioinformatics applications.

4.1 Genomic Selection

Genomic selection involves predicting a phenotype (e.g., traits, disease risk) based

on all available markers across the entire genome, whereas traditional marker-assisted

selection attempts to identify individual loci in a genome significantly associated with

a trait. Genomic selection has been applied to animal, plant, and human species.

Meuwissen et al. [61] introduced the concept of genomic selection, versus the marker-

assisted selection process. As genomic selection uses all marker data as predictors of

performance, it will consequently deliver more accurate predictions [48]. A genetic

marker is a variation in DNA that can be used to differentiate between individuals

or species. It can be a short DNA sequence, such as Single Nucleotide Polymorphism

(SNP), which is a single base-pair change, or a long one, such as Single Sequence

Repeat (SSR).

Machine learning methods have had many contributions in genomic selection re-

search. To name a few applications, see [41, 54] in human, [13, 39, 40, 48, 56, 70]

in plant, and [37, 65, 103] in animal research. For example, Guo et al. [41] applied

logistic regression model, support vector machines, and gradient boosted trees for

predicting Anorexia nervosa1 disease risk, having genotype data of 3940 Anorexia

cases and 9266 controls. Li et al. [56] assessed several models such as Bayesian meth-

1Anorexia nervosa is a complex psychiatric eating disorder with a genetic contribution.
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ods, support vector regression, and random forests, in predicting the flowering time

traits of Brassica napus2 across 1674 genotyped SNPs under ten different natural en-

vironments and three geographical regions. Yao et al. [103] applied a semi-supervised

support vector regression algorithm to predict residual feed intake in dairy cattle with

a small reference population, having a dataset of 3792 cows with or without mea-

sured phenotypes. In all of these applications, the central problem is to predict an

organism’s phenotype from knowledge of its genotype and environment.

Genomic selection in plants and animals have been mainly used in breeding. In

this case, genomic selection is based on two distinct and related groups: training and

breeding populations [24]. The training population, which is both genotyped and

phenotyped, is used to train a learning model; and the breeding population is a set

of individuals that are genotyped but not phenotyped. The trained model is then

used to predict breeding or genotypic values of non-phenotyped selection candidates.

Heritability

Heritability is a concept used in the fields of breeding and genetics that describes

the degree of variation in a phenotypic trait in a population that is due to genetic

variation in that population [98]. Heritability is relative to specific population in a

particular environment since contribution of genetic factors is relative to contribution

of other factors such as environment. Its number can range from 0 (no genetic

2Brassica napus or Rapeseed is a source of vegetable oil.
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contribution) to 1 (all differences on a trait reflect genetic variation). Two specific

types of heritability are broad-sense heritability and narrow-sense heritability. The

broad-sense heritability (H2) is the variance in the phenotype measurements (VP )

due to genetic factors (VG):

H2 =
VG
VP
.

Phenotypic variance combines the genetic variance with the environmental variance.

Genetic variance usually has three major components: the additive variance (VA),

dominance variance (VD), and epistatic variance (VJ):

VG = VA + VD + VJ .

Additive genetic effects are the contributions to the final phenotype from more than

one gene, or from alleles 3 of a single gene, that combine in such a way that the sum

of their effects in unison is equal to the sum of their effects individually. Non-additive

genetic variation [86] results from interactions between genes. Interactions between

genes at the same locus 4 are called dominance, and interactions between genes at

different loci are called epistasis. In addition to the three major genetic effects, there

may be parental imprinting effects [77]. Imprinted genes are genes whose expression

is determined by the parent that contributed them. Imprinted genes do not follow the

3An allele is one of the possible forms of a gene.
4A locus in genetics is a fixed position on a chromosome, like the position of a gene or a marker.
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usual rule of inheritance that both alleles in a heterozygote are equally expressed [51].

The narrow-sense heritability (h2) is the variance in the phenotype measurements

due to additive genetic factors:

h2 =
VA
VP
.

Data Representation

Input: There is not a unique way to represent a sequence of SNPs in a vector space

for applying in a machine learning method. Typically, an individual in a genomic

selection problem is a fixed-length sequence of biallelic SNPs wherein an allele is

coded either as 1 or 2. For example, consider this sequence with five biallelic SNPs:

1 2 2 2 1 2 2 1 1 1,

where each of the pairs represents the value in both the mother’s and father’s chro-

mosomes in an individual, e.g., the first pair 1 2 indicates that in the first locus in

this offspring genome, the inherited allele from the father and the mother is 1 and

2, respectively. One way of representing the above example as a numerical vector,

applicable in a numerical kernel function, can be:

[0 −1 0 0 +1],

where 1 1 coded as +1, 2 2 as −1, and 1 2 or 2 1 as 0. To be applicable in a sequence

kernel function, we can represent it as a string:

CBCCA,
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where 1 1 is coded as A, 2 2 as B, and 1 2 or 2 1 as C. Obviously, the representation

method will affect on the prediction result and performance, apart from what clas-

sifying method we choose.

Output: A typical genomic selection classifier predicts either a binary trait or a

quantitative trait. Quantitative traits are real-valued numbers (e.g., grain yield in

kg/ha). However, binary traits only have two distinct phenotypic values (e.g., af-

fected/unaffected), so we can represent them as −1/+ 1 or 0/1 output values.

4.2 RVM Applications in Bioinformatics

In the following, we discuss existing research that exploits RVMs for bioinformat-

ics applications for prediction purposes, with an emphasis on the kernel type that

each RVM-based solution used.

Non-sequence kernel RVM: Down and Hubbard [26] introduced an RVM model

with an incremental training procedure for classifying and detecting interesting indi-

vidual points and regions in sequences. They defined several basis functions based on

the occurrence of particular motifs within the sequence, or more precisely, position-

weight matrices5. These basis functions were designed to be used in the RVM im-

plementations, for purposes such as detection of transcription start sites, splice sites,

or small motifs. However, the authors did not report any results of applying their

5This is a matrix where each element represents the probability of a given nucleotide (or amino
acid) occurring at a particular position in the sequence.
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RVM model in a problem despite stating that their model was successful.

Sequence kernel RVM: Li et al. [58] used an RVM classifier to identify a small

subset of promoter motifs that have regulatory functions in glucose-regulated and

ABA-regulated genes in Arabidopsis. Having the promoter sequences of variable

lengths as input, the RVM classifier gives an estimate of the probability that the as-

sociated gene is up-regulated or down-regulated as output. The authors constructed

RVMs for classifying glucose-regulated and ABA-regulated genes with these datasets

as inputs: a collection of∼1700 glucose and∼1300 ABA up- and non/down-regulated

promoters. In this RVM model, a basis function φi(x) represents the number of times

an arbitrary substring si, such as a 5-mer 6, occurs in a promoter sequence x. Li

et al. used 10-fold cross-validation to estimate the performance of the model. Using

the AUC as measure, they demonstrated that the RVMs have a classification rate of

∼70%. The authors could also validate the top-weighted promoter sequences selected

by the RVM strategy, based on the functional knowledge of known promoter motifs.

Li et al. established a detailed model of glucose and ABA transcriptional regula-

tory networks and their interactions, having the predicted promoter motifs. Their

research shows that although the RVM did not show improvement in classification

accuracy (compared with some related work which used probabilistic methods), the

sparse feature selection attribute of the RVM still could help in identifying significant

motifs, given a sufficiently rich set of input sequence features.

6The term k-mer refers to all the possible substrings of length k that are contained in a string.
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Ensemble of non-sequence kernel RVMs: Wu et al. [99] used an ensemble

method for prediction of human functional genetic networks from heterogeneous

data. Large-scale datasets and massive missing data values are sources of major

problems that we confront in constructing genetic networks from heterogeneous data

sources. To tackle these problems, Wu et al. proposed a combination of AdaBoost,

RVM, and reduced-feature model. AdaBoost [78], or Adaptive Boosting, is an en-

semble learning algorithm which constructs a strong classifier from a combination of

simple weak classifiers, which were RVMs in this research. Using the reduced-feature

modelling, Wu et al. considered a set of base models which used subsets of the com-

plete feature sets (all of the different sources of the data). Then, they trained each

base model using RVM-AdaBoost (i.e., first level of ensemble); and at the end, they

generated an ensemble of all base models through averaging of the outputs from all

base models as the final output (i.e., second level of ensemble). Wu et al. defined

four kernels (called KC1-4) using different combination of radial basis kernel (see Sec-

tion 2.2) and diffusion kernel [52]. A 10-fold cross validation on training set showed

∼85% performance (using AUC) for the kernel KC1. The authors also demonstrated

that the sparseness of RVM-based ensemble model is able to significantly reduce the

prediction time, which is crucial in such a large-scale problem. Their research is the

only one which adopted an RVM-based ensemble for an application in bioinformatics.

Non-sequence kernel RVM: An et al. [6] proposed a method based on the RVM

model combined with Local Phase Quantization (LPQ), described below, to predict
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protein-protein interactions from protein sequences. They used their method to pre-

dict interactions in human and yeast datasets with ∼11000 and ∼8000 protein pairs,

respectively. In their proposed method, first each protein sequence is represented

as an M × 20 position-weight matrix, wherein M is the length of the protein se-

quence and 20 corresponds to twenty amino acids. As the obtained matrices have

a variable number of rows, An et al. used the LPQ method to convert each matrix

to a 256-dimensional feature vector. Originally, LPQ is an image processing oper-

ator that is used to process spatial blur in textural features of images. After this

stage, the authors used Principal Component Analysis (PCA), which is a procedure

for identifying a smaller number of linearly uncorrelated variables, to convert 256

features into 180 features in human and 172 in yeast. Then, they used a Gaussian

kernel RVM for classification of protein pairs to interacting/non-interacting. Using

a 5-fold cross-validation, An et al. [6] achieved a high accuracy of 97.62% in human

and 92.65% in yeast compared to the other methods including SVM (combined with

LPQ, similar to their RVM model) which showed at least 10% difference in predic-

tion accuracies. In this research, the sparseness of the model was not important

and only classification strength of the RVM was presented. The authors concluded

the reasons for the better performance of the RVM model, particularly compared to

SVM, are less computational work of the kernel function, and also no obligation to

satisfy Mercer’s condition. However, they did not clarify how these attributes may

result in a higher accuracy.
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4.3 Genome-Wide Association Study

A Genome-Wide Association Study (GWAS), is an observational study of a

genome-wide set of genetic variants in different individuals to see if any variant

is associated with a trait. GWAS is a relatively new way 7 for scientists to dis-

cover genetic factors underlying phenotypic variation. The most common approach

of GWAS is the case-control design which is appropriate for binary traits. For ex-

ample, scientists can search the genome for SNPs which occur more frequently in

people with a particular disease than in people without the disease (e.g., [68, 96]).

For quantitative traits, such as height and yield in plants, there are several variations

to the case-control approach (see [17, 53] for more information).

The traditional alternative approach to GWAS is Quantitative Trait Locus (QTL)

mapping/analysis. A QTL is a chromosomal region or genetic locus which correlates

with variation in a phenotype (the quantitative trait). QTL analysis is a statistical

method that links two types of information, phenotypic data (trait measurements)

and genotypic data (molecular markers), in an attempt to explain the genetic basis

of variation in complex traits. To begin an analysis, scientists need to have parental

strains (two or more) that differ genetically for the trait of interest. Then, the

parental strains are crossed to create F1 individuals, which are then crossed using

one of a number of different schemes (e.g., crossed among themselves) to create

F2 individuals. Finally, the phenotypes and genotypes of the F2 population are

7The first successful GWAS was reported in 2005 [20].
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scored. Markers that are genetically linked to a QTL influencing the trait of interest

will segregate more frequently with trait values, whereas unlinked markers will not

show significant association with phenotype (For more information on QTL analysis,

see [63]).

To detect reliable phenotype–genotype associations, sometimes genetic diversity

analysis is done along with an association study [35]. The genetic diversity observed

within a population is a result of various evolutionary processes, such as mutation,

recombination, and selection, that act on population. Genetic diversity serves as

a way for populations to adapt to changing environments. When there is more

variation, it is more likely that some individuals in a population possess variations of

alleles that are suited for the environment. Genetic diversity of a population can be

assessed by some simple measures such as the number of alleles per locus [8]. Also,

some simulation software programs are commonly used to predict the future of a

population given measures such as allele frequency and population size [45].

4.4 Feature Selection in Bioinformatics

We can view a GWAS as a feature selection problem wherein features are bio-

logical markers (e.g., SNPs). There are many studies on feature selection in bioin-

formatics, mostly applied on microarray gene expression data for classification [44].

Feature selection methods are generally used to reduce overfitting and to improve the

accuracy and efficiency of learning algorithms, especially when there exist irrelevant
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or redundant features. As the common attribute of many bioinformatics applications

is high-dimensionality, such as microarray data analysis, feature selection methods

are extensively used (For reviews on feature selection methods in bioinformatics

see [44, 75, 95, 101]).

Among feature selection methods, ensemble learning, such as random forests and

ensemble SVM, has had an increase in use due to their unique advantages in dealing

with high-dimensionality. For instance, a recent work that uses ensemble SVM for

gene selection and classification of microarray gene expression data, is the research

done by Anaissi et al. [7]. Anaissi et al. used SVMs based on Recursive Feature

Elimination (SVM-RFE) as the base classifiers of an ensemble. The SVM-RFE

algorithm, proposed by Guyon et al. [42], trains a linear kernel SVM, removes the

worst feature (the one with smallest weight value of the decision hyperplane given

by the trained SVM), and then repeats the process with the rest of the features

until all are exhausted. At the end, features are ranked according to when they

were eliminated, with the most important eliminated last. Anaissi et al.’s approach

employs ensemble and bagging methods, in a similar way as random forests, to

improve overall feature selection and classification accuracy in SVM-RFE. In other

words, Anaissi et al. constructs multiple SVM models at each iteration of SVM-RFE

(the number of SVMs was set to 50 models based on the earlier work of Saeys et al.

[76]). For evaluation, they applied both ensemble SVM-RFE and single SVM-RFE

on a childhood leukaemia dataset with about 22,000 features and 60 samples (75%
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of samples for training and 25% for testing). To select the most important features,

they evaluated a range of different number of features (e.g., from 20 to 100) on the

training set using cross-validation, and chose the one which gave the best AUC (i.e.,

equal to 36 features). Their experiments showed an average 9% better AUC accuracy

in the ensemble architecture compared to single SVM-RFE.

Anaissi et al.’s approach and our proposed ensemble RVM method for feature

ranking are similar in respect of adopting ensemble and bagging techniques. However,

our method has advantages that the ensemble SVM-RFE lacks. A drawback of SVM-

RFE is that it is computationally expensive since it goes through all features one by

one and it does not take into account any correlation the features might have [44].

However in our approach, feature selection is embedded in RVM base learners and no

iterative approach such as RFE is required, so there is no increase in computational

complexity for this purpose. Also, we claim that the quality of feature subsets in our

ensemble approach would be higher than its analogous ensemble SVM-RFE due to

the different interpretations of support vectors and relevance vectors (see 2.3.3).

There are also limited studies that used different sparse Bayesian classification

for finding disease-related genes in classifying gene expression data [18, 57, 102],

though not mentioned in the above feature selection surveys. A most recent work

done by Yang et al. [102] proposes a sparse Bayesian classification algorithm for

selecting predictive features which are highly correlated, as in a biological process,

multiple molecules are working together, resulting in correlated feature expression
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levels. Yang et al. used an iterative convex optimization procedure for updating

parameters and hyperparameters. Adopting this approach for updating allowed an

efficient implementation of the algorithm via parallel computing. The authors showed

the success of their method on simulated data with 500 samples and 50 features

wherein there were 4 pairs of highly correlated features. Then, they applied their

method on a public embryonal tumour gene expression dataset with 20 samples

(balanced) and 5669 genes for classifying samples into two tumour types. Using a

10-fold cross-validation, they could find 98 features distinguishing tumours. Then,

using the heatmap of correlation matrix, they demonstrated that the selected features

are correlated. They also showed the detected gene ontology terms are consistent

with the findings in a previous study.
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Chapter 5

Experimental Results on Synthetic

Data

5.1 Introduction

In this chapter, we investigate how RVMs perform on genomic selection and

GWAS with a synthetic dataset. Before constructing models for real datasets, it is

advantageous to experiment with the methods on synthetic data, as we can identify

any possible obstacles or drawbacks in our methods. Also in this way, we can have

an evaluation of our methods, as on synthetic data we know all true answers, i.e.,

phenotype values and most important markers, in advance. This opportunity will

not happen when we work on real datasets in genomic selection or GWAS.

We show how ensembles of kernel RVMs perform in predicting quantitative and
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binary traits (i.e., regression and classification) for genomic selection. Also, we will

demonstrate how ensembles of basis RVMs identify important markers affecting the

traits in a GWAS.

5.2 Dataset

We have done our experiments on a simulated dataset [88], produced for the 14th

QTL-MAS workshop [87]. It consists of 3226 individuals in five generations, and each

individual is genotyped for 10031 biallelic SNPs, arrayed on a genome encompassing

five chromosomes. The first four generations contain 2326 individuals, phenotyped

for two traits: a Quantitative trait (Qtrait) and a Binary trait (Btrait). The pheno-

typic values for the remaining 900 individuals, representing the fifth generation, are

supposed to be predicted. Therefore, we considered the first four generations indi-

viduals (without pedigree information) as the training data, and the fifth generation

individuals as the testing data. Other than the split into testing and training data,

the pedigree information is not used.

In this simulated dataset, the Qtrait was determined by 37 QTL located on

chromosomes 1-4: 30 additive (loci 1-30), 2 pairs of epistatic (loci 31-32, also loci

33-34), and 3 imprinting QTL (loci 35, 36 and 37). The Btrait was affected by a

subset of 22 additive QTL determining the Qtrait. The QTL differed in the amount

of their effect on the traits: there were two QTL with major effect on chromosome

3 (loci 14 and 17), a group of QTL with intermediate effect on chromosomes 1-3,
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several QTL with small effect on chromosome 4, and no QTL on chromosome 5.

Each simulated QTL was surrounded by 19-47 SNPs located within 1Mb distance

from the locus.

In this dataset, an individual is a fixed-length sequence of biallelic SNP pairs

wherein an allele is coded either as 1 or 2, and each pair represents the value in

both the parents’ chromosomes in an individual. For example, the pair 1 2 in the

ith position of an offspring sequence indicates that in the ith locus in the offspring

genome, the inherited allele from the mother and the father is 1 and 2, respectively.

We represented an individual as a numerical vector such that 1 1 is coded as +1, 2 2

as −1, and 1 2 or 2 1 as 0.

5.3 Predicting Phenotypes

5.3.1 Predicting Quantitative Trait

Performance Measures

To assess predictive accuracy of the regression model, we used the Pearson Cor-

relation Coefficient (PCC) and the mean squared error (MSE) of observed and pre-

dicted trait values.
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Training size versus Performance

A training set is a fraction of all possible data that can approximately cover the

whole data domain. In a problem domain such as ours, we might think that a learning

method can learn better from a bigger set than a smaller one to discover useful

relations and discard unnecessary ones. However, it is not favourable in RVM to have

large sets, because of time and memory requirements. To investigate the stability

of the RVM model and the influence of training size on the RVM performance, we

ran some experiments. We randomly partitioned the original training data into a

training set (85%) and validation set (15%) for 20 times. In each round, we iteratively

(10 times) trained an RVM with bootstrap samples of training set with specific size,

ranging from 100 to 2000 individuals, and calculated the PCC on the training part

and the validation set. The results are shown in Figure 5.1. As the performance curve

for the validation set shows, the RVM demonstrates instability when we increase the

training size. In other words, a greater training size does not always imply a better

performance (e.g. compare PCCs when N = 1700 and N = 1900).

As the dataset is a high-dimensional dataset (i.e., about 10000 features versus

2000 individuals), we considered that it is linearly separable, so we used a linear

kernel in all of our predictors.
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Figure 5.1: The impact of training size on the RVM performance (PCC) over the
training and validation sets.

Ensemble Architecture

The RVM’s instability issue, arisen from using different training sizes, led us to

employ an ensemble RVM model to decrease the instability impacts. To find the

best ensemble architecture, i.e., the number of RVMs in the ensemble and the size

of training samples, we ran a set of experiments similar to the previous section: We

repeatedly randomly partitioned the training data into training set and validation

set. Then in each round, we iteratively trained a set of RVM ensembles, consisting

of 5 to 100 RVMs, with bootstrap samples of training set in different sizes, and
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calculated the PCC on the validation set. Figure 5.2 shows the curve of average

PCC and MSE of an ensemble with 100 RVMs (other sizes not shown) over validation

sets for different training sizes. As indicated in this figure, we will obtain the best

PCC (i.e., 0.65), if the training set has 800 or 1100 samples. However, the absolute

minimum MSE (i.e., 54.4) lead us to choose 1100 as the best training size for the

ensemble. On the other hand, setting the number of RVMs in the ensemble with

more than 40 did not show a noticeable improvement on the performance for this set

of experiments. Nevertheless, we chose the largest number of RVMs for the ensemble

(i.e., 100). In the situations in which we do not have any preferred option, using

a larger ensemble might be more advantageous in the end, without adding up a

considerable computational complexity to the training phase.

Figure 5.2: Average PCC and MSE over validation sets in different training size N
in an ensemble with 100 RVMs.

Consequently, we constructed an ensemble with 100 RVMs and trained the en-

52



semble using bootstrap samples of 1100 items from the original training dataset. The

PCC for the trained ensemble on the test data is 0.505 by averaging over RVMs.

About Relevance Vectors

We next consider the properties of the RVs in the ensemble. This will lead us to

our new application of RVs for feature selection in Section 5.4. In one training of

an ensemble of 100 RVMs using 1100 samples, there are approximately 1500 shared

RVs. The RVs of an RVM is a sparse set of training individuals. In an ensemble,

we can collect RVs of all RVMs and sort them based on the number of occurrences.

Figure 5.3 demonstrates the Qtrait values for the most and least hit RVs (i.e., more

than 29 and less than 2 occurrences, respectively). It is interesting that the top

ranked RVs (blue marks) consist of the individuals with the highest and lowest trait

values, while the lowest ranked RVs (orange marks) consist of the individuals in

between. In fact, the top and bottom ranked RVs correspond to the maxima and

minima of a function, respectively. We intuitively know that having extrema has

greater importance than the other points in a regression problem. This confirms

that RVs in the RVM represent more meaningful examples rather than data points

close to the decision function as it is in the SVM.

Training Size versus Iterations

In the above experiments, we set the iteration parameter in the RVM algorithm

to 5000. Almost 1% of the time, the RVM did not converge. Figure 5.4 shows RVM
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Figure 5.3: The range of Qtrait for the most and least hit RVs.

performance on training and validation sets versus different training sizes in both

converged and non-converged RVMs. As the figure demonstrates, for some train-

ing sizes (e.g., less than 800), the algorithm always converges; and for others, the

non-converged PCC is close to the converged PCC, if not better. It should be noted

that the algorithm with less than 5000 iterations had more non-convergent cases

(we examined down to 1500 iterations). Although non-convergent RVMs practi-

cally have similar performance in a set of experiments compared to their convergent

counterparts, we raised the number of iterations to 5000 to have a smaller set of

non-convergent cases.
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Figure 5.4: Performance in convergent versus non-convergent RVMs.

5.3.2 Predicting Binary Trait

Performance Measures

To assess predictive accuracy of the classification model, we used Sensitivity (SN),

Specificity (SP) and Accuracy (ACC) measures.

Imbalanced Dataset

A dataset is imbalanced if the proportion of the classification categories are not

approximately equal, such as our training dataset in which the proportion of the

negative class to the positive class is almost 5 : 2 for the binary trait. There are

techniques to handle such datasets with SVMs such as assigning different weights

55



to positive and negative classes [10], called class-weight SVM. Experiments on our

dataset indicate that the RVM is also sensitive to imbalanced data. Figure 5.5 shows

an instance of the test results of three classifiers (class-weight SVM, ordinary SVM,

and RVM) with linear kernel, trained with a stratified sampling of 800 training

individuals. We can see that the best to the worst performances in order are the

class-weight SVM (with 620 SVs), the RVM (with 38 RVs), and the ordinary SVM

(with 523 SVs) classifiers.

Figure 5.5: The sensitivity and specificity of the class-weight SVM, ordinary SVM,
RVM, and Ensemble RVM classifiers over the test dataset.
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Ensemble Architecture

One way of dealing with the problem of imbalanced datasets is employing ensem-

ble predictors. Therefore, in a similar process to the Qtrait predictor, we constructed

an ensemble with 100 RVMs and trained the ensemble using balanced bootstrap sam-

ples of 1300 items from the original training dataset. The SN, SP, and ACC of the

trained ensemble on the test data are 0.67, 0.65, and 0.66, respectively, by taking

majority vote. These results are now analogous to the class-weight SVM results, as

shown in Figure 5.5.

About Relevance Vectors

There are about 1300 shared RVs in the ensemble. In the classification case,

how the top ranked RVs represent prototypical examples might not be as clear as

regression case. However, the imbalanced property of the dataset can be consid-

ered an attribute which we might expect to happen in the population of RVs, too.

Interestingly, the shared RVs are also imbalanced, (i.e., for every five negative indi-

viduals that are in the top ranked RVs, there are about two positive individuals),

even though each RVM in the ensemble was trained with a balanced sample.

5.4 Identifying Influential Markers

We report the result according to three criteria [66]: the success rate (ratio of

mapped QTL to the total number of simulated QTL), and the error rate (ratio of
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false positives to the number of reported positions), and mean distance between a

true mapped QTL and the nearest reported positions. A true QTL is considered

mapped if one or more of the predicted positions is within 1 Mb distance from the

QTL. Predicted positions are considered as false positives, if a distance to the closest

true QTL exceeded 1 Mb. It is possible that one predicted position is mapped to

two different QTL, or two predicted positions they are considered to map the same

true QTL.

5.4.1 Markers Affecting Quantitative Trait

For ranking SNPs affecting the Qtrait, we used the RVs found by the ensemble

Qtrait predictor to train three ensemble Qtrait SNP selectors: Ensemble (I) con-

sists of 4000 RVMs trained with bootstrap samples of 50 individuals, Ensemble (II)

consists of 2000 RVMs trained with bootstrap samples of 100 individuals, and En-

semble (III) consists of 1000 RVMs trained with bootstrap samples of 200 individuals.

Figure 5.6 shows the true 37 Qtrait loci versus top ranked SNPs in either of three

ensembles, if we consider the top ranked 10, 50 and 100 SNPs. For instance, Fig-

ure 5.6a shows that if we consider the top 10 SNPs, all the three ensembles identify

the two major loci on Chromosome 3 (i.e., loci 14 and 17) plus one other additive

loci on Chromosome 1 (i.e., 3) and one pair of epistatic on Chromosome 1 (i.e. loci

31 and 32).
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(a)

(b)

(c)

Figure 5.6: Predicted Important SNPs versus 37 QTL affecting Qtrait: (a) Top 10
Loci, (b) Top 50 Loci, and (c) Top 100 Loci. Dashed lines indicate to the true
loci, while blue, green and red dots indicate to the positions of the identified im-
portant SNPs on each chromosome recognized by Ensemble RVM (I) ,(II) and(III),
respectively. (Some loci, either true or predicted, overlapped due to their closeness).



5.4.2 Markers Affecting Binary Trait

For ranking SNPs affecting the Btrait, we used the RVs found by the ensemble

RVM Btrait predictor to train three ensemble RVM Btrait SNP selectors, all similar

to the ensemble Qtrait SNP selectors (i.e., Ensembles (I)-(III)), but trained with

balanced bootstraps. Figure 5.8 shows the true 22 Btrait loci versus top ranked

SNPs in either of three ensembles, if we consider the top ranked 10, 50 and 100 SNPs.

For instance, Figure 5.8a shows that if we consider the top 10 SNPs, ensemble (III)

identifies three loci 1, 8 and 14, while ensemble (II) identifies two loci 1 and 14, and

ensemble (I) identifies only locus 14.

5.4.3 Bootstrap Size versus Performance

Figure 5.7 shows the performance of the three different ensemble architectures

in identifying Qtrait and Btrait SNPs in terms of success rate, error rate and num-

ber of mapped loci in top ranked SNPs. These diagrams show that ensembles are

clearly more successful in identifying influential Qtrait SNPs than Btrait SNPs. Also,

among three ensemble architectures, ensemble (III) with a larger bootstrap sample

size performs better (e.g., see 5.7c). However, different ensembles might be able to

find different loci at different cut-off points of top ranked SNPs. For instance, as

Figures 5.6c shows, ensemble (I) identifies loci 16 and 24, while these loci are not

in top 100 SNPs in ensemble (II) and (III). Table 5.1 summarizes ensemble (III)

performance in finding Qtrait and Btrait loci.
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(a) Ensembles’ success rate (b) Ensembles’ error rate

(c) Ensembles’ mapped loci

Figure 5.7: Ensembles’ performance in identifying loci related to Qtrait and Btrait.

5.5 Comparison with Related Work

Previously, Ogutu et al. [69] compared SVMs, random forests and boosting for

genomic selection over the same dataset. They use all the three methods for predict-
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Table 5.1: Evaluating Ensemble (III) in identifying Qtrait and Btrait loci.

Feature type Top positions Mapped Loci Mean dist. (Mb) Success rate Error rate

Qtrait loci 10 8 0.35 0.22 0.40
100 18 0.48 0.48 0.67

Btrait loci 10 3 0.25 0.14 0.60
100 13 0.40 0.59 0.73
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(a)

(b)

(c)

Figure 5.8: Predicted Important SNPs versus 22 QTL affecting Btrait: (a) Top 10
Loci, (b) Top 50 Loci, and (c) Top 100 Loci. Dashed lines indicate to the true
loci, while blue, green and red dots indicate to the positions of the identified im-
portant SNPs on each chromosome recognized by Ensemble RVM (I) ,(II) and(III),
respectively. (Some loci, either true or predicted, overlapped due to their closeness).



ing Qtrait, and obtained the correlation coefficient values 0.547 for boosting, 0.497

for SVMs, and 0.483 for random forests. Comparing to their results, our ensemble

RVM with PCC=0.505 outperforms SVM and random forests, but is outperformed

by boosting. Ogutu et al. also employed random forests for importance rankings

of the SNPs using two different measures of importance ranking (i.e., mean square

error and node impurity). However, they confined the evaluation of the results to

chromosome maps, and they did not report any other measure that we can compare

our results with, precisely. Nevertheless, only by visually comparing the chromosome

maps, obtained by random forest (Figure 5.9) and ensemble RVM (III) (Figure 5.6),

we can see that the ensemble RVM approach outperforms the random forests, de-

spite similarities. For example, the random forest apparently was not successful in

identifying any locus on Chromosome 2, but the ensemble RVM ranked an epistatic

locus on Chromosome 2 in top 10. We also can find similar examples in Chromosome

3. The random forest was not able to find any locus other than the two major loci,

but ensemble RVM identifies 2 more loci in top 100 SNPs.

5.6 Conclusion

For the first time, we investigated how ensemble RVMs perform in predicting

quantitative and binary traits (i.e., regression and classification), and identifying

important markers affecting the traits in a GWAS with a simulated dataset [88].

We also illustrated some issues in applying RVMs along with approaches for dealing

64



Figure 5.9: Importance ranking of the 10031 SNP markers by random forest. Posi-
tions of the simulated additive (triangle), epistatic (circle) and imprinted (diamond)
QTLs are indicated on each chromosome. Figure taken from Ogutu et al. [69], used under
Creative Commons license.

with them such as instability, non-convergency, and imbalanced datasets. RVMs

(including ensemble RVMs) had been used neither for phenotype prediction nor for

marker selection in genomic selection. We saw that RVMs can present positive

results, thus at least they can be considered as an alternative approach to other

strong machine learning methods such as SVMs in phenotype prediction.

The ensemble RVMs have similar advantages to a typical ensemble method, such

as handling high-dimensionality problems, overcoming the imbalanced problems in

classification cases, and improving the overall accuracy by decreasing model variance.
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Apart from those advantages, our ensemble RVMs approach, either for phenotype

prediction or for marker selection, have two main benefits, derived from the sparse

solution property of RVMs. One advantage is that we can reduce a training dataset to

its “representative” sequences (i.e., RVs), and even we can rank these representatives.

In this way, we are able to recognize the sequences that are most important for

regression or classification, so later a biologist might get more insights about the

“best” and “worst” sequences. From this viewpoint, RVMs can be even used in a

supervised clustering method. Another unique advantage of our ensemble RVMs is

ability to rank the markers, and to identify the most important ones. Particularly

in GWAS, when we seek a small set of important markers, ranking approach shows

its usefulness.
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Chapter 6

Experimental Results on Yeast

6.1 Introduction

In this chapter, we investigate how RVMs perform on genomic selection and

GWAS with a real world and well-studied dataset such as yeast Saccharomyces cere-

visiae. This yeast has been a popular model organism for biological research.

In genomic selection, we show how RVMs perform in predicting yeast growth in

different environments. We will examine the effect of different kernels in our kernel

RVMs. Also, we will demonstrate how ensembles of basis RVMs recognize and rank

the most influential markers on the yeast growth in each environment for a GWAS.
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6.2 Dataset

We used the yeast dataset which was originally from Bloom et al. [14]. They

obtained this dataset from a study of 1,008 haploid yeast strains derived from a

cross between a laboratory and a wine strain of the yeast Saccharomyces cerevisiae.

The parent strains differed by 0.5% at the sequence level. The genotypes consist of

markers that correspond to 11,623 sequence locations in the genome: coded as 1 if

the sequence variation came from the wine strain parent; or 0 if it came from the

laboratory strain parent.

Bloom et al. modified the environment of 1,008 yeast strains in 46 different ways

(first column in Table 6.1), and measured the population growth under those differ-

ent conditions. For example, they varied the basic chemicals used for growth (e.g.

galactose, maltose), or added minerals (e.g. copper, magnesium chloride), then they

measured growth trait in that condition. Precisely, Bloom et al. grew individuals for

specific amount of time and took the image of the result colony, then they calculated

the radius of the colony using image processing techniques. Some results, such as

irregular colonies were removed and treated as missing data. Thus, there are less

than 1,008 values for each trait. For example, there are only 599 reading available

for Sorbitol. However, for most traits there are more than 900 readings.
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6.3 Predicting Phenotypes

We considered the yeast dataset as 46 separate regression problems: we con-

structed a separate RVM model for predicting growth under each of 46 conditions.

We trained each RVM with linear basis functions, linear kernels, Gaussian kernels

(with different values of γ parameter), and a set of n-gram and compositional ker-

nels. Using the coefficient of determination (R2) as measure, and running 10 times

of 10-fold cross-validation (each time with random different folds), we evaluated the

results of RVM models. As the process for this dataset along with repeating cross-

validations was computationally heavy and time-consuming, all the process has been

done in parallel on the WestGrid (www.westgrid.ca) platform.

The accuracies plus the standard deviation of cross-validation accuracies in the

best RVM model are shown in Table 6.1. Having a quick look at the results we can see

that: (1) Gaussian kernel RVMs mostly produces promising results. Even in traits

such as Mannose in which the linear kernel RVM shows a slightly better accuracy,

it is possible to get the similar, if not better, accuracy with a bit more tuning of the

Gaussian kernel parameter. The only exception is Cadmium Chloride in which linear

Basis RVM presents a significantly better accuracy. (2) The RVM models are highly

stable, as the standard deviations are small. In following subsections, we analyze the

results with more details.
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Table 6.1: Coefficient of determination (R2) and standard deviation (std) of RVM
predictions among the 46 traits. (Gaussian parameter: γ1 = 1e−4, γ2 = 2e−4, and γ3 = 3e−4)

Trait Linear Basis Linear Gaussian 10gram 10gram+pn Best RVM std

Cadmium Chloride 0.639 0.033 0.454 0.004 0.008 Linear Basis 0.005
Caffeine 0.074 0.216 0.233 0.01 0.018 Gaussian(γ3) 0.006
Calcium Chloride 0.113 0.273 0.287 0.004 0.011 Gaussian(γ3) 0.007
Cisplatin 0.133 0.29 0.287 0.011 0.016 Linear 0.006
Cobalt Chloride 0.258 0.439 0.466 0.005 0.016 Gaussian(γ2) 0.006
Congo red 0.327 0.467 0.491 0.009 0.015 Gaussian(γ1) 0.006
Copper 0.146 0.334 0.379 0.014 0.012 Gaussian(γ3) 0.01
Cycloheximide 0.317 0.473 0.514 0.004 0.012 Gaussian(γ1) 0.005
Diamide 0.277 0.473 0.483 0.014 0.012 Gaussian(γ2) 0.005
E6 Berbamine 0.211 0.375 0.414 0.007 0.008 Gaussian(γ2) 0.008
Ethanol 0.276 0.457 0.476 0.006 0.017 Gaussian(γ2) 0.006
Formamide 0.114 0.207 0.25 0.007 0.015 Gaussian(γ2) 0.006
Galactose 0.076 0.206 0.241 0.001 0.002 Gaussian(γ3) 0.008
Hydrogen Peroxide 0.234 0.343 0.397 0.018 0.02 Gaussian(γ2) 0.01
Hydroquinone 0.087 0.139 0.208 0.005 0.013 Gaussian(γ3) 0.009
Hydroxyurea 0.12 0.296 0.342 0.01 0.015 Gaussian(γ2) 0.01
Indoleacetic Acid 0.128 0.255 0.313 0.01 0.009 Gaussian(γ2) 0.007
Lactate 0.36 0.542 0.555 0.011 0.02 Gaussian(γ2) 0.005
Lactose 0.374 0.553 0.574 0.007 0.014 Gaussian(γ2) 0.008
Lithium Chloride 0.531 0.597 0.678 0 0.006 Gaussian(γ1) 0.006
Magnesium Chloride 0.102 0.245 0.255 0.003 0.015 Gaussian(γ3) 0.005
Magnesium Sulfate 0.187 0.366 0.41 0.005 0.015 Gaussian(γ3) 0.005
Maltose 0.409 0.484 0.523 0.005 0.011 Gaussian(γ2) 0.005
Mannose 0.079 0.213 0.197 0.006 0.01 Linear 0.007
Menadione 0.216 0.389 0.411 0.011 0.015 Gaussian(γ3) 0.006
Neomycin 0.422 0.583 0.596 0.005 0.021 Gaussian(γ2) 0.003
Paraquat 0.31 0.442 0.454 0.012 0.017 Gaussian(γ2) 0.005
Raffinose 0.185 0.385 0.388 0.013 0.023 Gaussian(γ3) 0.007
SDS 0.199 0.36 0.398 0.007 0.014 Gaussian(γ2) 0.004
Sorbitol 0.176 0.343 0.364 0.017 0.022 Gaussian(γ3) 0.009
Trehalose 0.326 0.48 0.503 0.014 0.022 Gaussian(γ2) 0.005
Tunicamycin 0.417 0.594 0.622 0.007 0.013 Gaussian(γ1) 0.006
4-Hydroxybenzaldehyde 0.23 0.34 0.367 0.016 0.011 Gaussian(γ2) 0.008
4NQO 0.44 0.496 0.512 0.005 0.018 Gaussian(γ2) 0.005
5-Fluorocytosine 0.215 0.323 0.378 0.015 0.015 Gaussian(γ2) 0.008
5-Fluorouracil 0.326 0.505 0.559 0 0.008 Gaussian(γ2) 0.005
6-Azauracil 0.152 0.3 0.304 0 0.014 Gaussian(γ3) 0.005
Xylose 0.282 0.455 0.478 0.005 0.012 Gaussian(γ3) 0.004
YNB 0.379 0.224 0.515 0.001 0.002 Gaussian(γ1) 0.009
YNB:ph3 0.059 0.18 0.177 0.002 0.014 Gaussian(γ3) 0.005
YNB:ph8 0.203 0.327 0.361 0.008 0.016 Gaussian(γ2) 0.006
YPD 0.368 0.266 0.511 0 0.001 Gaussian(γ1) 0.008
YPD:15C 0.211 0.334 0.356 0.002 0.013 Gaussian(γ2) 0.006
YPD:37C 0.473 0.566 0.611 0.007 0.013 Gaussian(γ2) 0.006
YPD:4C 0.18 0.406 0.438 0.016 0.014 Gaussian(γ2) 0.005
Zeocin 0.316 0.46 0.475 0.01 0.018 Gaussian(γ3) 0.004



6.3.1 Linear Kernel RVM versus Linear Basis RVM

We presented definitions for linear RVMs in the form of linear kernel and linear

basis RVMs in Section 3.1. We explained that a linear basis RVM can be viewed as

an RVM with no basis function, as we use input vectors directly in the data model

instead. Similarly when we use linear kernels, in fact we have no kernel. It means

there is no feature space, so our estimator tries to pass a hyperplane through input

vectors in the input space (e.g., in regression case). Here, we might expect that both

linear kernel and linear basis RVMs produce similar results or with subtle difference,

as both are linear and in the same space. However, that is not the case, i.e., linear

kernel RVM and linear basis RVM produces different hyperplanes as we see in the

results in Table 6.1. Consider Cadmium Chloride and YPD:4C, as two extreme

examples. In the former, linear basis RVM has high accuracy, while in the latter

linear kernel RVM shows higher accuracy. As a corollary we can say that linear basis

RVM produces results which classic linear SVM is not able to. We know that the

linear kernel cannot be more accurate than a properly tuned Gaussian kernel [49],

but we cannot conclude the same for the linear basis function. Therefore, even if

we have conducted a complete model selection using the Gaussian kernel RVM for a

problem, it is still valuable to consider the linear basis RVM, just as we saw linear

basis superiority to Gaussian kernel in Cadmium Chloride.
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6.3.2 Investigating String Kernel RVM

We have also examined a set of string kernels with RVM: several n-gram kernels

(n = 3, 5, 7, 10) alone or by composing with polynomial kernels. As samples, we

have shown the result of 10-gram kernel alone and its composition with a polynomial

kernel of degree 100 (i.e., (α×kn(x, y)+β)100) in Table 6.1. All string kernels showed

poor accuracies on our dataset. The issue arises from the fact that a typical n-gram

kernel on this dataset gives us a Gram matrix with almost all elements close to one.

For instance, if we round the 3-gram kernels to their nearest thousandth, we will

have a matrix of ones. It intuitively indicates that the sequences are so similar to

each other that the predictor cannot discriminate between any pairs. Although if we

increase n or compose the n-gram with other kernels, such as polynomial, we may

see improvement in the results (e.g., compare the column 10-gram+pn to the column

10-gram in Table 6.1), this improvement is insignificant.

We think genetic linkage can be a reason for n-gram kernels adversity in this

problem. Genetic linkage describes an inheritance tendency in which two markers

located in close proximity to each other on the same chromosome are inherited to-

gether during meiosis[62]; i.e, the nearer two genes are on a chromosome, the lower

the chance of recombination between them, and the more likely they are to be in-

herited together. On the other hand, n-gram kernels capture the short adjacent

similarities in sequences. Therefore, high similarity between sequences captured by

n-gram kernels comes as no surprise. That is, we expect the small 3-10 SNP se-
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quences to be shared between individuals because these sequences appear close to

each other in the genome and are similar due to genetic linkage. The genetic linkage

phenomenon can also illustrate why n-gram kernels previously helped for gene-scale

problems such as metabolic network prediction [74], but do not work for this problem

which has a genome-scale attribute.

6.3.3 Heritability versus Accuracies

Bloom et al. [14] provided estimates for narrow-sense and broad-sense heritability

for the yeast dataset. They considered broad-sense heritability as the contribution of

additive genetic factors (i.e., narrow-sense heritability) and gene-gene interactions.

Accordingly, the difference between the two heritability measures provides an esti-

mate of the contribution of gene-gene interactions. Among the 46 traits, broad-sense

heritability estimates ranged from 0.40 (YNB:ph3) to 0.96 (Cadmium Chloride), with

a median of 0.77. Narrow-sense heritability estimates ranged from 0.21 (YNB:ph3)

to 0.84 (Cadmium Chloride), with a median of 0.52. Using the difference between

two heritability measures, we can estimate the fraction of genetic variance due to

gene-gene interactions, which ranged from 0.02 (5-Fluorouracil) to 0.54 (Magnesium

Sulfate), with a median of 0.30. Therefore, the genetic basis for variation in some

traits, such as 5-Fluorouracil, is almost entirely due to additive effects, while for some

others, such as Magnesium Sulfate, approximately half of the heritable component

is due to gene-gene interactions.
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To see if there is a correlation between heritability and RVM prediction accuracies,

we calculated the PCC between estimates of heritability and prediction accuracies.

The correlation coefficients in three RVM categories (Gaussian, linear, and linear ba-

sis) have been shown in Figure 6.1. The values related to the broad- and narrow-sense

heritability (blue and orange bars) indicate that heritability and RVM accuracies,

particularly in Gaussian and linear basis RVMs, have strong positive association. In

other words, we will have better predictions when the amount of heritability increase.

Especially if there is a higher narrow-sense heritability (more additive effects), we

can expect better results from the RVM predictor.

Does this association imply that RVM will be less successful in predicting traits

in which the genetic variation is more related to gene-gene interactions? To respond

to this question, we also calculated the correlation coefficient between RVM accu-

racies and gene-gene interactions effects (green bars in the figure). These values

indicate that gene-gene effects and accuracies, particularly in Gaussian and linear

RVMs, have small negative association, which means we cannot infer the RVM per-

formance is deteriorating when gene-gene interactions effects increases. We might

have expected that result, as an RVM model is capable of taking account all sorts of

factors for prediction. However, if we have narrow-sense heritability estimates before

constructing an RVM model, we are able to anticipate behaviour of the predictor,

due to the higher weight of additive effects (as most genetic variance in populations

is additive [32]).
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Figure 6.1: Pearson correlation coefficient between RVM accuracies and different
heritability measures.

6.3.4 Comparison with Related Work

Grinberg and King [38] recently compared several learning methods including

forward stepwise regression, ridge regression, lasso regression, random forest, gradient

boosting machines (GBM), and Gaussian kernel SVM with two classical statistical

genetics methods (BLUP and a linkage analysis done by Bloom et al. [14]). Grinberg

and King used the coefficient of determination (R2) as the accuracy measure, and

evaluated their models with one run of 10-fold cross validation. In Table 6.2, the

columns “GK: Best of Others” and “GK: SVM” refer to Grinberg and King’s results.

Comparing to the SVM, RVM models show better predictions, overall. However,

Grinberg and King’s approach for training and model selection in Gaussian SVM
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does not seem proper. Grinberg and King trained an SVM for each fold of cross-

validation. In other words, they trained 10 SVMs (10 sets of Gaussian kernel and

SVM parameters) for a trait. In this way, not only the accuracies are overestimated,

but also the model selection process appears problematic (e.g., the set of param-

eters that should be used to predict a trait for new yeast individuals is unclear).

Nevertheless, RVM shows superiority despite overestimated SVM accuracies.

Comparing to the best of the other methods, RVM turned out to have more

or less identical performance with others, except in six traits including Cadmium

Chloride, Indoleacetic Acid, Magnesium Sulfate, Maltose, 4NQO, and YPD:37C in

which GBM or Bloom et al.’s method showed superiority. However, we should note

that we do not know about the stability of the methods experimented by Grinberg

and King, as they run only one 10-fold cross- validation. On the other hand, RVM

shows high stability, as its standard deviations in 10 runs of 10-fold cross-validation

were small.

6.4 Identifying Influential Markers

For identifying the most influential markers (SNPs) on the traits, we used our

RVM ensemble architecture for ranking markers. An ensemble for a trait was com-

posed of 400 linear basis RVMs, each with subsampling 50 to 60% of training data.

As we are only interested in a small set of top ranked markers, the size of subsam-

pling does not make a difference in the results (data not shown). To demonstrate how
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Table 6.2: Our RVM results versus Grinberg and King’s (GK) [38]. For the RVM
column, the R2 value belongs to the best RVM given in Table 6.1.

Trait GK: Best of Others GK: SVM RVM(std)

Cadmium Chloride GBM:0.797 0.565 0.639(0.005)
Caffeine GBM:0.250 0.234 0.233(0.006)
Calcium Chloride BLUP: 0.268 0.261 0.287(0.007)
Cisplatin GBM: 0.338 0.272 0.287(0.006)
Cobalt Chloride GBM: 0.460 0.448 0.466(0.006)
Congo red Lasso:0.504 0.487 0.491(0.006)
Copper GBM:0.452 0.338 0.379(0.01)
Cycloheximide SVM:0.529 0.529 0.514(0.005)
Diamide BLUP:0.498 0.486 0.483(0.005)
E6 Berbamine GBM:0.412 0.390 0.414(0.008)
Ethanol GBM:0.518 0.455 0.476(0.006)
Formamide GBM:0.350 0.240 0.25(0.006)
Galactose GBM:0.235 0.217 0.241(0.008)
Hydrogen Peroxide SVM:0.399 0.399 0.397(0.01)
Hydroquinone BLUP:0.225 0.188 0.208(0.009)
Hydroxyurea GBM:0.337 0.301 0.342(0.01)
Indoleacetic Acid Bloom et al.:0.480 0.3 0.313(0.007)
Lactate Lasso:0.568 0.557 0.555(0.005)
Lactose GBM:0.582 0.565 0.574(0.008)
Lithium Chloride GBM:0.711 0.680 0.678(0.006)
Magnesium Chloride Bloom et al.:0.278 0.267 0.255(0.005)
Magnesium Sulfate Bloom et al.:0.519 0.378 0.41(0.005)
Maltose GBM:0.809 0.522 0.523(0.005)
Mannose GBM:0.255 0.215 0.213(0.007)
Menadione GBM:0.432 0.402 0.411(0.006)
Neomycin Lasso:0.614 0.597 0.596(0.003)
Paraquat Lasso:0.496 0.479 0.454(0.005)
Raffinose GBM:0.383 0.364 0.388(0.007)
SDS Lasso:0.411 0.383 0.398(0.004)
Sorbitol Bloom et al.:0.424 0.318 0.364(0.009)
Trehalose GBM:0.515 0.477 0.503(0.005)
Tunicamycin SVM:0.634 0.634 0.622(0.006)
4-Hydroxybenzaldehyde GBM:0.397 0.36 0.367(0.008)
4NQO GBM:0.636 0.542 0.512(0.005)
5-Fluorocytosine GBM:0.399 0.364 0.378(0.008)
5-Fluorouracil Lasso:0.552 0.546 0.559(0.005)
6-Azauracil GBM:0.315 0.279 0.304(0.005)
Xylose GBM:0.516 0.460 0.477(0.004)
YNB GBM:0.543 0.525 0.515(0.009)
YNB:ph3 BLUP:0.195 0.166 0.177(0.005)
YNB:ph8 BLUP:0.356 0.334 0.361(0.006)
YPD GBM:0.556 0.524 0.511(0.008)
YPD:15C Bloom et al.:0.432 0.333 0.356(0.006)
YPD:37C Bloom et al.:0.711 0.603 0.611(0.006)
YPD:4C GBM:0.485 0.421 0.438(0.005)
Zeocin GBM:0.495 0.475 0.472(0.004)



well the ensemble RVMs act in identifying influential markers, we present the top

ranked markers in three traits: Cadmium Chloride, Lithium Chloride, and Mannose.

We chose Cadmium Chloride and Mannose as samples which the linear basis RVM

showed excellent and poor phenotypic accuracies (Table 6.1), respectively, while we

chose Lithium Chloride for comparison purposes that are relevant in the next section.

The ensemble RVMs in each of the three traits ranked around 90% of the markers

with rank values in the range [1, 400]. The unranked markers indicate the markers

that do not have any effect (even minor) on a trait. The top ranked markers can

be chosen based on a threshold. For example, we can define the most influential

markers as those who are chosen by half of the RVMs in the ensemble as RVs, so in

this dataset we will have less than ten influential markers in the three traits. The

ranked markers indicate those who may have positive or negative effects on a trait.

In other words, we not only find the markers which have additive effects on yeast

growth in an environment such as Lithium Chloride, but also we find those which

have adverse effects on growth.

6.4.1 Comparison with Related Work

Previously, Bloom et al. [14] conducted a linkage analysis in the yeast cross

(same dataset) with high statistical power to map functional QTL in all 46 traits.

They found that nearly the entire additive genetic contribution to heritable variation

(narrow-sense heritability) in yeast can be explained by the detected loci. Bloom
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et al. specifically showed that for one trait (Lithium Chloride), the loci detected by

their method explained most of the heritability. Nevertheless, it is still important to

check the prediction performance in a validation population [40, 80]. Also, biological

information or experiments might be required to confirm the result [80].

Bloom et al.’s study was the only research on yeast, at the time of writing,

that had identified QTL (though only additive). Also, recent research refers to their

findings (e.g, [32]). Thus, to see how well our RVM ensembles results are, we compare

our identified influential markers in three traits to Bloom et al.’s QTL. Bloom et al.

found 6, 22, and 10 additive QTL in Cadmium Chloride, Lithium Chloride, and

Mannose, respectively. Therefore, we chose the top 6, 22, 10 ranked SNPs in the

three traits as well. Figures 6.2, 6.4, and 6.5 show both results in each of the three

traits accordingly. Each of the figures includes two parts (a) and (b) corresponding

to the map of yeast chromosomes 1-8 and 9-16, respectively. The results were very

promising: the markers identified by the RVM ensembles have similar distribution

to the Bloom et al.’s QTL. Also, the RVM ensembles were relatively successful in

finding the exact markers in the traits (33% match rate in Cadmium Chloride, 36%

in Lithium Chloride, and 40% in Mannose). It is also interesting that the highest

match rate among the three traits belongs to Mannose in which the linear basis

RVM had poor prediction accuracy. This could be an indication of an RVM being

capable of recognizing true “representatives” of a population, despite unacceptable

predictions. Another advantage is in the ranking system with which we can always
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recognize the most to the least markers’ weight on a trait (even in the small set of top

ranked sites). However, we can also go further and conclude that those top ranked

markers who are close to each other (e.g, markers at loci 649 kb, 656 kb, and 677 kb

on Chromosome 12 in Figure 6.4) might imply to the higher impact of a locus near

to those markers on a trait due to genetic linkage.

For comparison purposes, we only demonstrated an equal number of top ranked

markers to Bloom et al.’s QTL. However, if we decreased the threshold, the number

of influential markers would increase, so we might have witnessed a higher match

rate. For instance, Figure 6.3 shows the top ten (instead of six) most influential

markers in Cadmium Chloride. In this case, another additive QTL in chromosome

12 is identified (i.e., at position 464 kb). Another point that we should note is that

not all influential markers on a trait have additive effects. Therefore, the identified

markers which are distant from Bloom et al.’s QTL, present a good set of candidates

for further investigation by a biologist, to see if they have non-additive effects with

other loci. Also, as Bloom et al.’s results are not verified, the results that we show

may be recognizing additional additive markers not located by previous results.

6.5 Conclusion

In this chapter, we studied how RVM performs on growth prediction of yeast

in 46 different environments, comparing its performance with some other learning

methods such as SVM and GBM. Our obtained phenotype prediction accuracies
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(a)

(b)

Figure 6.2: Top 6 influential markers on growth in Cadmium Chloride recognized by
ensemble RVMs versus Bloom et al.’s 6 QTL.
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(a)

(b)

Figure 6.3: Top 10 influential markers on growth in Cadmium Chloride recognized
by ensemble RVMs versus Bloom et al.’s 6 QTL.
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(a)

(b)

Figure 6.4: Top 22 influential markers on growth in Lithium Chloride recognized by
ensemble RVMs versus Bloom et al.’s 22 QTL. (To view the improved version of (b) follow
the link:(b) - Interactive Chart)
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(a)

(b)

Figure 6.5: Top 10 influential markers on growth in Mannose recognized by ensemble
RVMs versus Bloom et al.’s 10 QTL.
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suggest that RVM shows positive results, and can be used as an alternative method

(i.e., a method which is as valid as other successful learning methods) in genomic

selection. Our intention, however, was not to show the superiority of RVM, as each

machine learning method has its own pros and cons.

We investigated different kernels in RVM. We illustrated how different linear

RVMs, i.e, linear kernel RVM and linear basis RVM perform in phenotype prediction.

We observed that Gaussian RVMs had the best accuracies, while string kernel RVM,

such as n-gram, presented poor predictions. We think this poor performance is due

to the genetic linkage phenomenon. To our knowledge, this research is the only study

that has been used string kernels in genomic selection, so analysing these kernels will

open the door for future research.

We also investigated the relationship between different heritability measures and

RVM prediction accuracies. The results indicate an strong association between

narrow-sense heritability and prediction accuracy in RVMs. On the other hand, new

research points out that the most genetic variance in populations is additive [32].

Knowing these facts, we can consequently anticipate the performance of the model

before constructing it.

The last part of this chapter was devoted to identifying most influential markers

on the traits. We chose three traits with different phenotype prediction accuracies as

samples, and demonstrated how well our RVM ensembles work to rank the markers

in each trait, comparing the results with other research which used a traditional
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linkage analysis to find additive QTL. The comparison validated the results of RVM

ensembles in finding markers with additive effects. However, we can earn more from

the RVM ensembles, as those are capable of identifying both growth-increasing and

growth-decreasing markers in yeast.
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Chapter 7

Experimental Results on Flax

7.1 Introduction

In this chapter, we investigate how RVMs perform on genomic selection and

GWAS with flax (linseed, or Linum usitatissimum L.) data. Flax is a crop that

is commercially grown as a source of stem fibre and seed oil. Flax seeds contain

oil composed of main fatty acids such as linoleic (LIO) and linolenic (LIN) acids.

The major breeding aims of oilseed flax development are high seed yield, high oil

content, and different levels of LIN contents (high or low) [104]. High-LIN flaxseed

is one of the richest dietary sources of omega-3 fatty acid, whereas low-LIN flaxseed

improves the oxidative stability and suitability of linseed oil for food products [30].

The major breeding aims of fibre flax are increased straw yield, fibre content in

straw, fibre quality, and resistance to disease and abiotic stresses [104]. Flax straw
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and its processed forms are mainly used in the pulp and paper industry. Other uses

of flax straw such as producing bio-based materials for industrial applications are

being researched [31]. Canada is the world’s leader in the production and export of

flax [29].

In genomic selection, we show how RVMs perform in predicting seed yield, oil

content, iodine value, linoleic, and linolenic acid content in three different populations

of flax. We will examine the effect of different kernels in our kernel RVMs. Also,

we will demonstrate how ensembles of basis RVMs recognize and rank the most

influential markers on the aforementioned traits for a GWAS on flax.

7.2 Dataset

We used the flax dataset of You et al. [104]. This dataset contains three bi-

parental flax populations:

1. BM was generated from a cross between two high-yielding, moderately high-

LIN, Canadian linseed parents. This population consists of 243 lines, each with

342 markers.

2. EV was generated from a cross between a low-LIN breeding line and a fibre

flax cultivar. It consists of 86 lines, each with 443 markers.

3. SU was obtained from a cross between a low-LIN and high-LIN breeding lines.

It comprised of 70 lines, each with 474 markers.
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There are about 100 markers shared between these populations. Genetic Markers

in this flax dataset are Single Sequence Repeat (SSR) markers. SSRs are stretches

of DNA consisting of variable number of short tandem repeats. These SSRs are

different between even closely related species. As an SSR in our dataset has either

of two values, we can represent the individuals as sequences of 0 and 1. The three

full marker sets cover about 74% of the flax genome, showing that the markers have

been distributed genome-wide in the populations [104], though not dense, like the

yeast dataset in Chapter 7.

There were some missing genotype data in the populations: 16% in BM, 1.4% in

EV, and 4.5% in SU. For each population, we used most frequent strategy along a

marker axis for data imputation. That is, if a marker X was missing in a sample,

then the most frequent value among all samples was used for marker X. We con-

sidered values of five traits for these populations as phenotypic data: iodine value

(IOD), linoleic acid content (LIO), linolenic acid content (LIN), oil content (OIL),

and seed yield (YLD). All of these traits are quantitative. Based on the broad-sense

heritability estimations done by You et al. over the two populations EV and SU,

the traits LIN, LIO, and IOD have high, OIL has intermediate, and YLD has low

heritability.
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7.3 Predicting Phenotypes

For every pair of trait and population, we constructed a regression RVM (i.e.,

15 models in total). We trained each RVM with following functions: linear basis,

linear kernel, Gaussian kernel (with different values of γ parameter), and a set of

n-gram kernels (5-gram to 20-gram). The result of 10 times of 5-fold cross-validation

(each time with different random folds) has been shown in Table 7.1. We measured

the accuracy of the genomic predictions using the Pearson’s correlation coefficient

(PCC) between the predicted and observed phenotypic values. Also, we calculated

the standard deviation of the PCC for each model.

These results indicate that excluding the n-gram RVM, the other three RVMs

do acceptable predictions, where the Gaussian and linear basis RVMs provide better

results compared to the linear kernel RVM. Similar to the yeast dataset 7, N -gram

kernels does not predict well here. This is another evidence in support of non-

suitability of N -gram kernels in genomic selection due to genetic linkage; however,

the Gram matrices here did not have severe “matrix of ones” issue which we had in

yeast (Section 6.3.2). The best predictions among n-gram kernels belong to (BM,

LIO) and (SU, LIO) using 9-gram kernel and 5-gram kernel, respectively.

In general, we have higher accuracies in EV compared to BM and SU. This superi-

ority indicates that the markers specific in the EV population have more importance

on the traits than those in the BM or SU, in combination with the common set mark-

ers. Also, the results show that the phenotype prediction accuracies and heritability
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Table 7.1: Pearson correlation coefficient and standard deviation of predictions
among the five traits in three populations.

Population Trait Linear Basis Linear Gaussian N-gram You et al. [104] Best

BM IOD 0.12(0.05) -0.03(0.02) 0.16(0.03) -0.05(0.01) 0.28(0.14) You et al.
LIO 0.45(0.03) 0.27(0.03) 0.61(0.01) 0.32(0.01) 0.36(0.11) Gaussian
LIN 0.28(0.04) 0.06(0.02) 0.34(0.03) -0.03(0.01) 0.43(0.12) You et al.
OIL 0.32(0.03) 0.06(0.02) 0.36(0.03) 0.04(0.01) 0.43(0.11) You et al.
YLD 0.12(0.05) 0.08(0.03) 0.24(0.05) -0.05(0.02) 0.22(0.11) Gaussian

EV IOD 0.54(0.06) 0.42(0.02) 0.67(0.03) -0.08(0.01) 0.70(0.11) You et al.
LIO 0.52(0.05) 0.62(0.04) 0.68(0.03) -0.14(0.07) 0.70(0.11) You et al.
LIN 0.52(0.11) 0.65(0.03) 0.68(0.03) -0.12(0.05) 0.70(0.11) You et al.
OIL 0.48(0.07) 0.33(0.03) 0.42(0.06) -0.11(0.01) 0.56(0.15) You et al.
YLD 0.26(0.12) 0.25(0.06) 0.25(0.07) 0.15(0.02) 0.25(0.19) Linear Basis

SU IOD 0.46(0.09) -0.22(0.05) 0.36(0.07) -0.032(0.02) 0.40(0.19) Linear Basis
LIO 0.47(0.07) 0.34(0.07) 0.46(0.06) 0.33(0.03) 0.46(0.18) Linear Basis
LIN 0.45(0.06) 0.05(0.05) 0.42(0.07) 0.18(0.04) 0.43(0.19) Linear Basis
OIL 0.06(0.1) 0.19(0.03) 0.27(0.07) 0.06(0.01) 0.31(0.21) You et al.
YLD 0.19(0.1) 0.13(0.05) 0.21(0.05) 0.17(0.01) 0.29(0.23) You et al.

have positive associations in both EV and SU populations, i.e., higher heritability

corresponds to better accuracy. This is not the same in the BM population: For

example, Gaussian RVM gives better result in OIL or YLD than in IOD, which has

higher heritability than both.

7.3.1 Comparison with Related Work

Previously, You et al. [104] used three linear methods, Ridge Regression Best

Linear Unbiased Prediction (RR-BLUP), Bayesian LASSO, and Bayesian ridge re-

gression, over the three populations. They used broad-sense heritability of traits

estimated in the three populations for building their models. They ran 5-fold cross-

validation 500 times to evaluate the prediction accuracy of the five traits, IOD, LIO,
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LIN, OIL, and YLD. Their obtained accuracies are shown in Table 7.1. However,

they did not express which of the three linear models is the source of their obtained

accuracies. It is not clear if all relate to one model, or each come from a different

model (maximum of three accuracies). Nevertheless, comparing our results and You

et al.’s shows that the RVM models are highly stable, as the standard deviations

of RVM results are small compared to the standard deviation of the models chosen

by You et al.. Also, there is significant superiority of Gaussian RVM in (BM, LIO)

compared with the linear models (You et al.’s models and linear RVMs). Besides, N-

gram RVM has comparable accuracies to the linear models in LIO trait in both BM

and SU populations, though not the best. Definitely, such results imply non-linear

relationships in some traits such as LIO, which cannot be captured by linear models.

Thus for analysing this dataset, employing or constructing other non-linear kernels

would be beneficial. Obtaining better results in such cases would not be unexpected,

particularly for the LIO trait in the BM and SU populations.

7.4 Identifying Influential Markers

For identifying the most influential markers (SSR) on the five traits, we used our

ensemble RVM architecture for ranking markers over the three populations. Each

of these ensembles is composed of 100 linear basis RVMs, each with subsampling

80% of training data. The ensemble RVMs in each of the five traits ranked almost

100% of the BM markers, 87% of the EV markers, and 90% of the SU markers with
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Table 7.2: Most influential markers recognized by ensemble RVMs

Population Trait Most significant markers

BM IOD Lu91, Lu223, Lu2909, Lu2163, Lu2555, Lu869, Lu502, Lu60, Lu747b, Lu2161, Lu3216
LIO Lu265, Lu652, Lu1146a, Lu461, Lu2032, Lu2974, Lu220, Lu91, Lu2825b, Lu1039, Lu2010b
LIN Lu223, Lu2909, Lu209, Lu2288, Lu91, Lu2163, Lu3238, Lu869, Lu3201, Lu60, Lu502
OIL Lu1049, Lu2340, Lu60, Lu2909, Lu3082, Lu3068, Lu2968, Lu2120a, Lu3113, Lu638, Lu3057a
YLD Lu91, Lu223, Lu869, Lu2909, Lu502, Lu2163, Lu2555, Lu2288, Lu209, Lu747b, Lu3201

EV IOD Lu2571, Lu803, Lu870, Lu2758, Lu3038, Lu2597, Lu2832, Lu943, Lu2513, Lu462a, Lu3016
LIO Lu2571, Lu803, Lu1169, Lu2010a, Lu2031, Lu3016, Lu2065, Lu2810, Lu2832, Lu870
LIN Lu2571, Lu803, Lu870, Lu2513, Lu2832, Lu1169, Lu2031, Lu943, Lu2810, Lu2827, Lu3016, Lu2010a
OIL Lu2120a, Lu2493, Lu52, Lu2863, Lu3085, Lu3017, Lu465, Lu989, Lu2286, Lu3157, Lu2449
YLD Lu2519, Lu2493, Lu2265, Lu2513, Lu628, Lu2865, Lu1094, Lu2923, Lu2582, Lu2430, Lu2219

SU IOD fad3B 207, Lu359 0, Lu2003 281, fad3A 84, Lu58a 257, Lu1052 0, Lu3218 497, Lu213 61, Lu2794 160, Lu2732 137
LIO fad3B 207, fad3A 84, Lu359 0, Lu58a 257, Lu2794 160, Lu2003 281, Lu213 61, Lu1052 0, Lu44E4 84, Lu2732 137
LIN fad3B 207, fad3A 84, Lu359 0, Lu58a 257, Lu2003 281, Lu2287 35, Lu213 61, Lu2794 160, Lu2732 137, Lu1052 0
OIL Lu1001 74, Lu3026 287, Lu998 275, Lu3281 865, Lu2262 31, Lu3266 733, Lu3097 338, Lu2794 160, Lu3068 313, Lu906 1
YLD Lu1077 174, Lu2162 7, Lu52 0, Lu41 202, Lu2247 28, Lu3099 353, Lu628 78, Lu2950 232, Lu2206, Lu805 11, Lu910 4

rank values in the range [1, 100]. The top ten ranks in each pair of (population,

trait) are shown in Table 7.2. These markers are in the top 2-3% of all markers.

Also, we presented a visualization of the top ranked markers in three populations in

Figures 7.1, 7.2, and 7.3. The charts are only to visualize commonality, since they are

not based on positions in chromosomes. These visualizations demonstrate markers

shared among different traits. Influential markers on a trait can indicate positive or

negative effects on a trait (or, additive versus non-additive effects).

7.4.1 Comparison with Related Works

There are previous studies which provide genetic maps and QTL detection in

flax [19, 83, 84].

Cloutier et al. [19] obtained a flax dataset similar to the SU population (i.e., by

crossing of the same two lines in the SU populations). Using QTL analysis, they

detected two major QTLs each for LIO, LIN, and IOD. The result of comparing

93



Figure 7.1: Most influential markers on the five traits in the BM population (Interactive
Chart).

these QTLs with the top ranked markers identified by ensemble RVMs is shown in

Table 7.3. 1 Marker fad3A, which is in the SU markers set, had been assigned top

ranked for each of LIO, LIN, and IOD traits by the ensemble RVMs. This indicates

that our results are valid. The second QTL they found was an interval between two

markers which did not exist in our SU markers set. Therefore, we were not able to

check the rank of the markers related to this QTL.

Soto-Cerda et al. [84] worked on a dataset, called the Canadian flax core col-

lection, to find the markers associated with yield. Using association mapping, they

1To have a better view of ranks in Tables 7.4-7.3, consider that rank 34 and below in the BM
population are in the top 10% of all markers. So are rank 44 and rank 47 in EV and SU populations,
respectively.
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Figure 7.2: Most influential markers on the five traits in the EV population (Interactive
Chart).

Table 7.3: QTLs detected by Cloutier et al. [19] versus influential markers recognized
by RVM.

Marker Trait BM EV SU

fad3A IOD, LIO, LIN na na IOD:rank4, LIO:rank2, LIN:rank2, OIL:rank282, YLD:rank98
Lu206-Lu765B IOD, LIO, LIN na na na

identified 12 marker-trait associations for six agronomic traits, which they called

yield-related traits: one thousand seed weight, seeds per boll, start of flowering, end

of flowering, plant height, plant branching, and lodging. As Soto-Cerda et al. stated,

these six traits may either directly affect yield, such as one thousand seed weight,

or indirectly through adapting to regional growing conditions, thus avoiding yield

and quality losses, such as flowering time. Table 7.4 shows a comparison of each of
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Figure 7.3: Most influential markers on the five traits in the SU population (Interactive
Chart).

the markers identified by Soto-Cerda et al. to the rank of that marker (if it was in

the population) assigned by our ensemble RVMs. For example, the marker Lu2555

associated with one thousand seed weight trait in Soto-Cerda et al.’s study, has high

rank for traits IOD, LIN, and YLD in the BM population in our results (shown

in boldface). In this example, the high rank of this marker in YLD matches their

finding, but how do we interpret the high rank of the marker in IOD or LIN trait?

It is possible that the marker Lu2555 is associated with a more general set of genes

that are promoting general plant health. In particular, since the markers are not

sufficiently dense it may be possible that the markers do not represent an individual

gene but a collection of advantageous aspects of the genome.
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We do not provide interpretations for all results, and we leave it to a biologist

to get insight from them. For instance, suppose there is a relationship between the

level of linoleic acid and seed weight. Hence, if a marker is significantly associated

with the seed weight trait, then it will make sense if the same marker has association

with linoleic acid. Also, this question might be raised that why does a marker has

very different ranking in different populations (e.g., Lu2555 has high rank for YLD

in the BM, but low rank in the EV). One reason for this happening can be difference

in marker sets of populations. One marker might get lower relevance to a trait when

it is along with some other markers. Also, a marker may just be representative for a

set of advantageous aspects (e.g., SNPs) in the genome, and we have identified when

these occur, but not what particular markers are affecting which genes. More dense

data (such as SNPs) may be necessary to identify this.

Soto-Cerda et al. [83] used molecular diversity and association mapping to iden-

tify marker loci significantly associated with thousand seed weight, seeds per boll,

dehiscent capsules, plant height, start of flowering, flower shape, petal color and

petal overlap in pale and cultivated flax, respectively. We have listed the identified

markers plus their ranks in our ensemble RVMs in Table 7.5 and 7.6.

7.5 Conclusion

In this chapter, we demonstrated how RVM performs in predicting seed yield, oil

content, iodine value, linoleic, and linolenic acid content in flax. Until now, no state-
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Table 7.4: Marker loci significantly associated with thousand seed weight (TSW),
start of flowering (FL5), end of flowering (FL95), plant height (PH), plant branching
(PB) and lodging (LDG) identified by Soto-Cerda et al. [84] versus influential markers
on the five traits recognized by RVM.

Marker Trait BM EV SU

Lu2164 TSW IOD:rank287, LIO:rank264, LIN:rank150, IOD:rank342, LIO:rank385, LIN:rank343, IOD:rank403, LIO:rank352, LIN:rank335,
OIL:rank179, YLD:rank181 OIL:rank354, YLD:rank362 OIL:rank331, YLD:rank396

Lu2555 TSW IOD:rank5, LIO:rank34, LIN:rank12, IOD:rank225, LIO:rank213, LIN:rank233, na
OIL:rank252, YLD:rank7 OIL:rank222, YLD:rank288

Lu2532 TSW na IOD:rank60, LIO:rank238, LIN:rank211, IOD:rank188, LIO:rank277, LIN:rank146,
OIL:rank92, YLD:rank97 OIL:rank32, YLD:rank79

Lu58a TSW na na IOD:rank5, LIO:rank4, LIN:rank4,
OIL:rank68, YLD:rank131

Lu526 TSW IOD:rank29, LIO:rank202, LIN:rank23, na na
OIL:rank294, YLD:rank35

Lu943 FL5, FL95,PH IOD:rank317, LIO:rank179, LIN:rank153, IOD:rank8, LIO:rank17, LIN:rank8, na
OIL:rank75, YLD:rank196 OIL:rank43, YLD:rank59

Lu316 PH na na na

Lu2067a PB IOD:rank146, LIO:rank283, LIN:rank300, IOD:rank377, LIO:rank348, LIN:rank334, IOD:rank396, LIO:rank432, LIN:rank357,
OIL:rank334, YLD:rank108 OIL:rank217, YLD:rank242 OIL:rank300, YLD:rank438

Lu2560 LDG IOD:rank282, LIO:rank246, LIN:rank169, na na
OIL:rank321, YLD:rank229

Lu2564 LDG IOD:rank241, LIO:rank41, LIN:rank228, IOD:rank107, LIO:rank228, LIN:rank36, na
OIL:rank295, YLD:rank216 OIL:rank205, YLD:rank103

of-the-art machine learning method such as RVM had been used for genomic selection

in flax. We used a flax dataset [104] consisting of three populations with a full and

a common set of SSR markers and some missing genotype data. We compared our

phenotype prediction accuracies with existing classic linear methods accuracies [104]

(such as BLUP) on the same dataset. We not only saw the superiority of RVM

in some linear relationships, but also in some non-linear cases such as linoleic acid

content and yield. We also investigated n-gram kernels in RVM, and saw their poor

performances, similar to the yeast dataset, likely due to genetic linkage. However,

we also witnessed the positive potential of n-gram kernels in identifying non-linear

relationships in linoleic acid predictions.

We also investigated the relationship between broad-sense heritability and RVM
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Table 7.5: Marker loci significantly associated with thousand seed weight (TSW),
seeds per boll (SPB), dehiscent capsules (DEH), plant height (PH), start of flowering
(FL5), flower shape (FS), petal color (PC) and petal overlap (PO) in pale flax iden-
tified by Soto-Cerda et al. [83] versus influential markers on the five traits recognized
by RVM.

Marker Trait BM EV SU

Lu451b TSW na na na

Lu652 TSW IOD:rank57, LIO:rank2, LIN:rank146, na IOD:rank209, LIO:rank265, LIN:rank192,
OIL:rank107, YLD:rank68 OIL:rank369, YLD:rank175

Lu1171 SPB IOD:rank54, LIO:rank26, LIN:rank174, IOD:rank402, LIO:rank389, LIN:rank400, IOD:rank314, LIO:rank218, LIN:rank230,
OIL:rank54, YLD:rank45 OIL:rank435, YLD:rank401 OIL:rank346, YLD:rank184

Lu2344 DEH IOD:rank97, LIO:rank13, LIN:rank14, IOD:rank122, LIO:rank180, LIN:rank138, IOD:rank99, LIO:rank201, LIN:rank237,
OIL:rank151, YLD:rank80 OIL:rank60, YLD:rank276 OIL:rank73, YLD:rank86

Lu442a DEH na IOD:rank171, LIO:rank83, LIN:rank227, na
OIL:rank267, YLD:rank251

Lu265 PH IOD:rank19, LIO:rank1, LIN:rank135, IOD:rank49, LIO:rank118, LIN:rank162, na
OIL:rank167, YLD:rank16 OIL:rank120, YLD:rank88

Lu271 FL5 na IOD:rank415, LIO:rank411, LIN:rank424, IOD:rank386, LIO:rank370, LIN:rank255,
OIL:rank428, YLD:rank387 OIL:rank104, YLD:rank18

Lu2344 FS IOD:rank97, LIO:rank13, LIN:rank14, IOD:rank122, LIO:rank180, LIN:rank138, IOD:rank99, LIO:rank201, LIN:rank237,
OIL:rank151, YLD:rank80 OIL:rank60, YLD:rank276 OIL:rank73, YLD:rank86

Lu2725 PC IOD:rank18, LIO:rank155, LIN:rank15, na na
OIL:rank279, YLD:rank14

Table 7.6: Marker loci significantly associated with thousand seed weight (TSW),
seeds per boll (SPB), dehiscent capsules (DEH), plant height (PH), start of flowering
(FL5), flower shape (FS), petal color (PC) and petal overlap (PO) in cultivated
flax identified by Soto-Cerda et al. [83] versus influential markers on the five traits
recognized by RVM.

Marker Trait BM EV SU

Lu2042 TSW IOD:rank34, LIO:rank43, LIN:rank64, IOD:rank45, LIO:rank29, LIN:rank33, IOD:rank16, LIO:rank31, LIN:rank20,
OIL:rank46, YLD:rank26 OIL:rank287, YLD:rank70 OIL:rank120, YLD:rank409

Lu2067a PH,FL5 IOD:rank146, LIO:rank283, LIN:rank300, IOD:rank377, LIO:rank348, LIN:rank334, IOD:rank396, LIO:rank432, LIN:rank357,
OIL:rank334, YLD:rank108 OIL:rank217, YLD:rank242 OIL:rank300, YLD:rank438

Lu943 FL5 IOD:rank317, LIO:rank179, LIN:rank153, IOD:rank8, LIO:rank17, LIN:rank8, na
OIL:rank75, YLD:rank196 OIL:rank43, YLD:rank59

Lu3038 PO IOD:rank260, LIO:rank233, LIN:rank282, IOD:rank4, LIO:rank30, LIN:rank16, na
OIL:rank325, YLD:rank303 OIL:rank201, YLD:rank125

prediction accuracies. The results indicated that there is positive association be-

tween trait heritability and accuracies in two of three populations, so we have trait

predictability in these populations, similar to the yeast dataset. In other words, the

predictors are more successful in predicting traits with higher heritability than traits
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with low heritability, but why? Why is trait predicting less successful for traits with

lower heritability? For example, yield is a trait with low-heritability. It is said that

yield is the most complex trait in crops [84]. Correspondingly, it is hard to identify

important yield-related markers. We believe this complexity mainly comes from the

ambiguity hidden in the definition of the trait itself. The yield of a crop such as flax

is measured in weight unit per land unit (kilogram per hectare). We can see cor-

relations between yield and other high heritability traits such as seed weight, seeds

per boll, bolls per area, and even fatty acid oil contents. Another example akin to

yield to some extent is oil content with intermediate heritability. Apparently, there is

correlation between oil content and two high heritability traits, linoleic and linolenic

acid. We think one approach to get better accuracies for lower heritability traits,

such as yield, can be constructing models which integrate higher heritability trait in

addition to the trait itself and variant sequences for prediction in future research.

In the last part of this chapter, we demonstrated how our RVM ensembles rank

the markers in each of five traits in the three populations. We compared our iden-

tified top ranked markers to the limited existing markers influential on fatty acid

composition traits and some agronomic traits and recognized by classical QTL anal-

ysis and association mapping. Interestingly, we found matches which validate our

results, including makers fad3A [19] (influential on iodine, linoleic, and linolenic acid)

and Lu2555 [84] (influential on seed weight which is correlated with yield). This in-

dicates that our newly identified markers present a good set of candidates for further
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investigation by a biologist.
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Chapter 8

Conclusion

In this thesis, we first addressed the difficulties of two problems, genomic selection

and identification of genome-wide associations of a complex trait. Then, having

one simulated and two real-world datasets (yeast and flax), we showed how sparse

Bayesian learning or RVM as a kernel-based method, with its unique advantages

compared to SVM, can help us in these two problems.

For the first time, we employed RVMs with linear/non-linear kernels for predict-

ing phenotypes via regression or classification. We showed that using ensemble RVM

and bagging technique allow us to rank the RVs, and at the same time, improve the

prediction accuracy and/or handle imbalanced data. We showed that if only predic-

tion accuracy is our concern, then RVM can be considered as good as other successful

learning methods. We also provided analyses of the RVs ranked by a trained ensem-

ble RVM, and showed that how a set of top ranked RVs has the most important
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individuals including both the “best” and “worst” genomes which a biologist might

get insight from. We demonstrated that the identified RVs are not only much sparser

than their counterparts in SVM (i.e., SVs), but also better representatives of data.

A major contribution of our work is to define sparse Bayesian learning in such

a way that we can discriminate between kernel and basis functions, i.e., “kernel”

RVM versus “basis” RVM. We introduced a new approach based on linear basis

RVM, ensemble method, and bagging technique for feature selection and ranking.

We showed that how this framework can help us to find most influential markers of

a complex trait, as well as non-relevant markers. We also presented the sensitivity

analysis of model parameters, i.e., bootstrap size and number of base learner in an

ensemble versus prediction accuracy.

Our ensemble linear basis RVM is an embedded method in which feature selection

is part of the model building. We compared our results with the existing results

from the traditional QTL mapping and association analysis in our real datasets, and

demonstrated the validity of our approach. However, our method also found some

new influential makers in both flax and yeast that can be considered by a biologist

for further investigations. As we showed in the simulated dataset, our proposed

method is capable of recognizing markers with any sort of effect, either additive or

non-additive. We also discussed about heritability and found that we have higher

trait predictability in traits with high heritability than traits with low heritability.
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Future Work

We think the next steps can be in three directions: (1) Gaussian basis RVMs

for feature selection, (2) Sequence kernels for genotypic data, and (3) Predictors for

low-heritability traits.

Gaussian basis RVMs: Our ensemble linear basis RVM for feature selection takes

in to account only linear relationships. Although this linear separability is a reason-

able assumption for high dimensional data, it is desirable to try nonlinear basis sub-

stitution, particularly Gaussian function, to handle nonlinear relationships. Gaussian

basis RVM still gives feature RVs as each Gaussian basis in the model operates on

a different dimension (feature). However, employing Gaussian basis RVM requires

setting not only the variance (σm) in each Gaussian basis function in (2.5), but also

the mean or center (µm):

φm(x) = exp(−(x[m] − µm)2

σm2
),

where x[m] refers to the m-th feature in an input vector x with M dimensions.

Investigating any appropriate approach, with acceptable computational complexity,

for choosing parameters in Gaussian basis RVMs, and employing these RVMs in an

application remain as future work.
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Sequence kernels for genotypic data: Our other contribution was training

RVMs with sequence rational kernels including n-gram kernels, that had never in-

vestigated in any other applications. We observed that the sequence kernel RVMs

presented poor predictions on both yeast and flax datasets. We provided an analy-

sis indicating that the poor performance is due to genetic linkage, and not because

of RVM. Therefore, we suggest sequence kernels which are not affected by genetic

linkage be investigated in future for genomic selection.

Predictors for low heritability traits: We also discussed about heritability and

found that we have lower trait predictability in traits with lower heritability such

as yield. This result was not specific to RVM predictors, but corresponds to other

computational methods that previously had been used. As any low heritability trait

(e.g., yield) has correlations with one or more high heritability traits (e.g., yield

with seed weight), we propose constructing predictive models which also capture the

dependencies of the trait to the traits with higher heritability, in order to improve

accuracies. Finding such solutions remain as future work.
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