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Abstract

If A is an n×n matrix, then the permanent of A is the sum of all products of entries

on each of n! diagonals of A. Also, A is called doubly stochastic if it has non-negative

entries and the row and column sums are all equal to one.

A conjecture on the minimum of the permanent on the set of doubly stochastic

matrices was stated by van der Waerden in 1926 and became one of the most studied

conjectures for permanents. It was open for more than 50 years until, in 1981,

Egorychev and Falikman independently settled it.

Another conjecture (which, if it were true, would imply the van der Waerden con-

jecture) was originally stated by Holens in 1964 in his M.Sc. thesis at the University

of Manitoba. Three years later, Doković independently introduced an equivalent

conjecture. This conjecture is now known as the Holens-Doković conjecture, and

while known not to be true in general, it still remains unresolved for some specific

cases.

This thesis is devoted to the study of these and other conjectures on permanents.
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Chapter 1

Preliminaries

1.1 Notation

AT : the transpose of matrix A.

A∗ : the complex conjugate transpose of matrix A.

A ∗B : the Hadamard product of matrices A and B, i.e., if A = (aij), B = (bij), then

A ∗B = (aijbij).

A(i|j) : the (n− 1)× (n− 1) submatrix obtained from an n×n matrix A after deleting

the i-th row and j-th column.

det(A) : determinant of a matrix A.

∆k
n : the set of n × n matrices of non-negative integers which have each row and

column sum equal to k.

In : the identity matrix.

Jn : represents (1/n)n×n

1



1.2. Permanent of a matrix 2

Λk
n : the set of (0, 1) n× n matrices with row and column sum equal to k.

‖A‖ : the Euclidean norm of A, i.e., ‖A‖ =
(∑m

i=1

∑n
j=1 |aij|2

)1/2

.

per(A) : permanent of A.

⊕ : direct sum of matrices, i.e.,
n∑
i=1

Ai = diag(A1A2...An)

Ωn : the set of n× n doubly stochastic matrices, i.e.,

Ωn :=

{
(aij)n×n

∣∣aij ≥ 0, 1 ≤ i, j ≤ n,
n∑
i=1

aij =
n∑
j=1

aij = 1

}
.

Ω0
n : the set of all matrices from Ωn with zero main diagonal, i.e., A ∈ Ω0

n if and

only if A ∈ Ωn and aii = 0, 1 ≤ i ≤ n.

σk(A): the sum of all permanents of order k of a matrix A (subpermanents).

ρ(A) : the rank of a matrix A.

tr(A) : the trace of a matrix A, i.e., tr(A) =
∑n

i=1 aii.

1.2 Permanent of a matrix

1.2.1 History

According to Minc (1978) [104], the permanent function first appeared in 1812 in two

articles written by Binet [9] and Cauchy [18]. Binet offered identities for determining

the permanents of m× n matrices with m ≤ 4. Cauchy, in the same article dealing

mostly with determinants, used the permanent as a type of ordinary symmetric func-

tion and named this function “fonction symétrique permanents.” The first author

who called this function “permanent” was Muir [111] in 1882. There were 20 articles
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about permanents, published by 14 different authors, during the period from 1812

to 1900. In the majority of these, the permanent appeared in formulas regarding

determinants. In 1881, Scott (1881) [125] stated (without proof) an interesting iden-

tity for a specific matrix which remained a conjecture until Minc (1979) [105] and

Kittappa (1981) [67] obtained partial results and, finally, Svrtan (1983) [128] proved

it in general. In 1978, Minc [104] did a survey in which 20 unsolved conjectures and

10 open problems were mentioned. Eight years later, the same author published the

second survey regarding the permanent function and stated a total of 44 conjectures

and 18 open problems in the history of permanents. A few of these conjectures and

open problems were solved prior to 1986. About 20 years later, in 2005, Cheon and

Wanless [25] listed the same number of 44 conjectures and 18 open problems with

new results in a few of these.

1.2.2 Definitions and examples

If A = (aij) is an m× n matrix with m ≤ n, then

per(A) :=
∑
σ

a1σ(1)a2σ(2) . . . amσ(m) =
∑
σ

m∏
i=1

aiσ(i), (1.1)

where summation is over all one-to-one mappings σ from {1, . . . ,m} into {1, . . . , n}.

The vector (a1σ(1), a2σ(2), . . . , amσ(m)) is called a diagonal of the matrix A, and the

product a1σ(1)a2σ(2) . . . amσ(m) is a diagonal product of A. In other words, the perma-

nent of A is the sum of all diagonal products of A. For example, if

A =

1 2 3

4 5 6


then per(A) = 1× 5 + 1× 6 + 2× 4 + 2× 6 + 3× 4 + 3× 5 = 58.
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The permanent function is widely used in combinatorics. We mention just two

examples (see Minc [104]). The first one is the dance problem. In how many ways

can a dance be arranged for n married couples in such a way that no wife dances

with her husband? The problem is to determine the number Dn of permutations of n

elements that fix no element (derangements of n elements). If J is the n× n matrix

with all entries ones, then it is well known that

Dn = n!(1− 1

1!
+

1

2!
− 1

3!
+ · · ·+ (−1)n

1

n!
) = n!

n∑
i=0

(−1)i

i!
.

However one can verify also that per(J − In) = Dn.

Another combinatorial problem is to study in how many ways can n couples be

placed at a round table so that men and women are sitting in alternate places and no

wife is sitting on either side of her husband. This problem is due to Lucas (1891) [78]

who wrote an article called “Théorie des Nombres” in 1891. Let P be the n × n

permutation matrix with 1’s in the positions (1, 2), (2, 3), . . . , (n − 1, n), (n, 1), and

the husbands are seated in alternate places. For each such seating the wives may be

arranged in

Un = per(J − In − P ) = per

(
n−1∑
i=2

P i

)
ways. The numbers Un are called menage numbers.

Binet (1881) [9] obtained a formula for the permanent of a 2 × n matrix A by

writing the product of the sums of elements in two rows in A in the following way:
2∏
i=1

n∑
j=1

aij =
n∑

p,q=1

a1pa2q =
∑
p6=q

a1pa2q +
n∑
p=1

a1pa2p

= per(A) +
n∑
p=1

a1pa2p,

and so

per(A) =
2∏
i=1

n∑
j=1

aij −
n∑
p=1

a1pa2p.



1.2. Permanent of a matrix 5

Using a similar approach, Binet also found formulas for the permanents of m ×

n matrices with m = 3 and 4. Following Binet and Cauchy, the authors Bor-

chardt (1855) [11], Cayley (1859) [19] and Muir (1882) [111], (1897) [112], (1899) [113]

devoted their work to identities involving determinants and permanents. Some of

the results were later generalized by Levine (1859) [73], (1860) [17] and Carlitz

(1860) [17]. Minc (1978) [104] summarized the results in the following way. If A

is an n × n matrix, and E and O are the sets of even and odd permutations of

n! elementary products, respectively (where below, f(A) represents the undefined

remaining terms) then

per(A) · det(A) =

(∑
σ∈E

n∏
i=1

ai,σ(i)

)2

−

(∑
σ∈O

n∏
i=1

ai,σ(i)

)2

=
∑
σ∈E

n∏
i=1

a2
i,σ(i) −

∑
σ∈O

n∏
i=1

a2
i,σ(i) + f(A)

= det(A ∗ A) + f(A).

Permanents and determinants have similar definitions which might imply that

many properties for determinants are analogous to those properties for permanents.

There are two major differences between permanents and determinants: multiplica-

tivity and invariance.

• Multiplicativity: det(AB) = det(A) det(B) but per(AB) 6= per(A) per(B), in

general.

Brualdi (1966) [15] proved multiplicativity for a special case.

Theorem 1.1 (Brualdi). If A is a n × n non-negative fully indecomposable matrix

(see Definition 4) and B is a n × n non-negative matrix with nonzero permanent,
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then per(AB) = per(A) per(B) if and only if there are permutation matrices P and

Q such that PAQ is a diagonal matrix.

• The permanent fails in the invariance under a few elementary operations on

matrices.

If A is an m × n matrix, D is an m × m diagonal matrix, and G is an n × n

diagonal matrix, then in general, per(DAG) 6= per(D) per(A) per(G).

A few properties for permanents are immediate consequences of the definition:

• If A is a n× n matrix, then per(AT ) = per(A).

• The permanent of an m × n matrix with m ≤ n is a multilinear function of

the rows of each matrix. In the case when m = n, the permanent is also a

multilinear function of the columns.

• Let A be an m× n matrix, m ≤ n and suppose that P and Q are permutation

matrices of order m, and n respectively. Then per(PAQ) = per(A).

Many other interesting properties can be found in Minc [104]. For 1 ≤ k ≤ n,

let Qk,n be the set of strictly increasing sequences of k integers taken from 1 to n,

and let Gk,n be the set of non-decreasing sequences of k integers taken from 1 to n.

Let A be an m × n matrix, and let k, r be positive integers such that 1 ≤ k ≤ m,

1 ≤ r ≤ n, and let α = (i1, . . . , ik) ∈ Qk,m, and β = (j1, . . . , jr) ∈ Qr,n.

Define A[α|β] to be the k×r submatrix of A “lying” in rows α and columns β and

whose (i, j) entry is aαiβj. Similarly, A(α|β) is the submatrix of A complementary

to A[α|β].
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• Laplace expansion (see Minc [104]) for permanents: if 1 ≤ r ≤ n and β ∈ Qr,n

is a fixed sequence, then

per(A) =
∑

α∈Qr,n

perA[α|β] perA(α|β).

• In particular for r, s = 1, 2, . . . , n, the following expansion of the permanent

with respect to the r-th row or the s-th column is valid:

per(A) =
n∑
j=1

arj per(A(r|j)) =
n∑
i=1

ais per(A(i|s)).

Recall that |A| = (|aij|).

• Triangular inequality: | per(A)| ≤ per |A|.

• If A is an n× n matrix and c is a real number, then per(cA) = cn per(A).

• If D and E are diagonal matrices, and A is an n× n matrix, then

per(DA) = per(AD) = per(A) · per(D)

and

per(DAE) =

(
n∏
i=1

DiiEii

)
per(A).

• If A,B are non-negative matrices, then per(A+B) ≥ per(A) + per(B).

In this thesis, we deal mostly with square matrices, i.e., with m = n. Many results

in the area of permanents regarding matrices consisting of zero and ones, matrices

with complex entries, and matrices with non-negative real entries, in particular,

doubly stochastic matrices. The focus in this thesis is on the permanents of doubly

stochastic matrices.

Following are several pertinent definitions with examples.
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Definition 1. A non-negative matrix with all row sums (or column sums) exactly 1

is called stochastic. If both row and column sums are exactly 1, then the matrix is

called doubly stochastic.

Definition 2. A non-negative matrix with all row sums (or column sums) not ex-

ceeding 1 is called a sub-stochastic matrix. If both row and column sums are at most

1, then the matrix is called doubly sub-stochastic.

Definition 3. An n× n non-negative matrix is called partly decomposable if it con-

tains a k × (n− k) zero submatrix.

Note that a matrix A is partly decomposable if and only if there exists P,Q

permutation matrices and two square matrices X,Z, with PAQ =

X Y

O Z

.

Definition 4. A matrix which does not contain a k × (n − k) zero submatrix for

k ∈ [1, n− 1] is called fully indecomposable.

Let Eij = (ekl)
n
k,l=1, where ekl = 1 if k = i, l = j and ekl = 0, otherwise.

Definition 5. A non-negative matrix A = (aij) is called nearly decomposable if it is

fully indecomposable and if, for each entry aij 6= 0, the matrix A − aijEij is partly

decomposable.

For example,

A =


1 2 0

3 0 4

0 5 6


is fully indecomposable matrix. In order for A to be nearly decomposable the matrix

A − aijEij has to be partly decomposable, with Eij as the 3 × 3 matrix with zero

everywhere excluding position (i, j) where the entry is 1.
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Definition 6. A non-negative matrix A has a doubly stochastic pattern if and only if

there exists a doubly stochastic matrix with the same zero pattern (zeros in the same

positions).

Definition 7. A square complex matrix A is normal if and only if A∗A = AA∗,

where A∗ is the conjugate transpose of A (for real matrices, A∗ = AT ).

For example,

A =


1 0 1

1 1 0

0 1 1


is normal, since

A∗ =


1 1 0

0 1 1

1 0 1

 ,

and the condition A∗A = AA∗ is satisfied:

AA∗ = A∗A =


2 1 1

1 2 1

1 1 2

 .

Definition 8. A Hermitian matrix is a square matrix with complex entries which is

equal to its own conjugate transpose.

For example,

A =


1 1 + i 3− i

1− i 3 3− 2i

3 + i 3 + 2i 4


is a Hermitian matrix.
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In any Hermitian matrix, the main diagonal entries are real. While not all normal

matrices are Hermitian, every Hermitian matrix is (trivially) normal.

Definition 9. An n × n matrix A is positive definite if for all non-zero vectors x,

xTAx > 0. If xTAx ≥ 0, then the matrix is positive semidefinite.

The next proposition is a standard result in linear algebra (see, e.g., [59]):

Proposition 1.1. A Hermitian matrix is positive definite if all eigenvalues are posi-

tive. If the eigenvalues are all non-negative, then the matrix is positive semidefinite.

For example, if A =

 2 1 + i

1− i 4

, then A − λI =

2− λ 1 + i

1− i 4− λ

 and the

characteristic equation is λ2 − 6λ+ 6 = 0 with the roots λ1 = 3 +
√

3, λ2 = 3−
√

3.

Since each λi > 0, i = 1, 2, A is positive definite.

For 1 ≤ i, j ≤ 2, let Aij be ni × nj,
2∑
i=1

ni = n. Recall that a matrix A is block

upper triangular if has the following form A =

A11 A12

0 A22

.

Definition 10. An n × n matrix A is called reducible if and only if, for some per-

mutation matrix P , the matrix P TAP is block upper triangular. If a square matrix

is not reducible, then the matrix is called irreducible.

1.2.3 Properties

We now look at the properties of permanents in historical development. The first

few properties mentioned in this section are combined with the determinants.

Schur (1918) [124] proved that, if A is a positive semidefinite Hermitian matrix,

then per(A) ≥ det(A) with quality if and only if A is diagonal or has a zero row.
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An interesting result for doubly stochastic matrices is due to Hardy, Littlewood

and Polya (1934) [53] who continued Muirhead’s (1903) [114] research. This result

can be summarized as follows. For two n-tuples of non-negative integers α and β,

there exists a doubly stochastic n× n matrix A such that αT = AβT .

Polya (1913) [119] showed that, for an 3×3 matrix, there is no linear transforma-

tion that would convert permanent into determinant. Marcus and Minc (1961) [88]

generalized Polya’s result for n > 3.

It is obvious that, if A is a non-negative n× n matrix, then

| det(A)| ≤ per(A) ≤
n∏
i=1

n∑
j=1

aij.

Gibson (1968) [46] showed another inequality between the permanent and deter-

minant. If A is an n× n sub-stochastic matrix, then per(I − A) ≥ det(I − A) ≥ 0.

A year later, having the same goal to find identities between determinants and

permanents, Gibson (1969) [47] considered the following problem. Let A,B be n×n

matrices. If aij = 0 for j > i + 1, and if bij = aij, for i ≥ j, and bij = −aij,

for i < j, then per(A) = det(B). In other words, if two square matrices A,B

are lower-triangular and B is related to A by the last two equalities above, then

per(A) = det(B). A tri-diagonal matrix has nonzero elements only in the main

diagonal, the first diagonal below this, and the first diagonal above the main diagonal.

The similar result holds for tri-diagonal matrices.

Engel and Schneider (1973) [33] showed that, if A = (aij) is a real n× n matrix

with aii ≥ 0 and aij ≤ 0 for i 6= j, i, j = 1, . . . , n, then

det(A) + per(A) ≥ 2
n∏
i=1

aii.

Also, if A ∈ Ωn with aii ≥ 1
2
, then per(A) ≥ 1

2n−1 .
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Recall that A ∗ B is the Hadamard product. Chollet (1982) [26] asked if there

might be any permanental relation analogue to Oppenheim’s inequality for determi-

nants which states that, for m × m positive semidefinite Hermitian matrices A,B,

det(A ∗B) ≥ det(A) · det(B). Indeed, he proved that per(A ∗ A∗) ≤ (per(A))2.

Five years later, Gregorac and Hentzel (1987) [50] demonstrated that for non-

negative 2× 2 and 3× 3 Hermitian matrices, and for B = A∗,

per(A ∗B) ≤ per(A) · per(B).

Among the elementary properties stated in Section 1.2.2 is Binet-Cauchy’s [104]

theorem for permanents. Recall that µ(α) (see Minc [104]) is the product of the

factorials of the multiplicities of the distinct integers in the sequence α. For example

µ(1, 2, 2, 4, 4, 5, 5, 5) = 1!2!2!3!. For the next theorem, also recall that Gm,n was

defined in Section 1.2.2 as the set of non-decreasing sequences of k integers taken

from 1 to n.

Theorem 1.2. If A is an m× n and B is an n×m matrices with m ≤ n. Then

per(AB) =
∑

α∈Gm,n

1

µ(α)
per(A[1, . . . ,m|α]) per(B[α|1, . . . ,m]).

Marcus and Newman (1962) [91] proved that if A and B are two real doubly

stochastic matrices then

| per(AB)|2 ≤ per(AAT ) per(BTB).

If equality holds, then one of the following must occur:

1. A row of A or a column of B is zero,
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2. No row of A and no column of B is zero and there exists a diagonal matrix D

and a permutation matrix P , both doubly stochastic such that AT = BDP .

A necessary and sufficient condition for the permanent of a square non-negative

matrix to be zero was provided independently by Frobenius (1917) [45] and König (1936) [69].

Theorem 1.3 (Frobenius-König). Let A be an n × n non-negative matrix. Then

per(A) = 0 if and only if A contains an s× t zero submatrix such that s+ t = n+ 1.

Marcus and Nikolai (1969) [93] showed that if A and B are positive semidefinite

matrices, then per(A+B) ≥ per(A).

Wen and Wang (2007) [140] proved two relations involving the permanent func-

tion. Their starting point was Chebyshev’s sum inequality (see Hardy, Littlewood

and Polya (1952) [54], pp. 44–45) which states that if for 1 ≤ i ≤ n ai, bi ∈ R,

a1 ≤ a2 ≤ · · · ≤ an, b1 ≤ b2 ≤ · · · ≤ bn, then

1

n

n∑
i=1

aibi ≥

(
1

n

n∑
i=1

ai

)(
1

n

n∑
i=1

bi

)
.

Their first result confirmed the following version of Oppenheim’s inequality for

permanents. If A = (aij) and B = (bij) are two n× n matrices with positive entries,

and

ai,1
ai+1,1

≤ ai,2
ai+1,2

≤ · · · ≤ ai,n
ai+1,n

, i = 1, 2, . . . , n− 1,

bi,1
bi+1,1

≤ bi,2
bi+1,2

≤ · · · ≤ bi,n
bi+1,n

, i = 1, 2, . . . , n− 1,

then

per(A ∗B)

n!
≥ per(A)

n!

per(B)

n!
.

Equality holds if and only if ρ(A) = 1 or ρ(B) = 1.
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Another result from Wen and Wang [140] was that if A = (aij), and B = (bij) are

two n × n matrices with positive entries with bi1 ≤ bi2 ≤ · · · ≤ bin and ai1

bi1
≤ ai2

bi2
≤

· · · ≤ ain

bin
, i = 1, 2, . . . , n, then

per(A)
n∏
i=1

n∑
j=1

aij

≤ per(B)
n∏
i=1

n∑
j=1

bij

.

If all the signs in the original inequalities are reversed, then the conclusion still holds.

Equality holds if and only if ai1/bi1 = ai2/bi2 = · · · = ain/bin, i = 1, 2, . . . , n.

1.2.4 Lower bounds

Motivated by van der Waerden’s conjecture (see Chapter 3), many authors tried to

find lower bounds for permanents of various kinds of matrices. In this section, we

discuss lower bounds for the following kinds of matrices: (0, 1), non-negative, positive

semidefinite, fully indecomposable, and doubly stochastic.

(a) (0,1) matrices

The first important formula which was a starting point for many lower bound re-

sults was Frobenius-König Theorem (see Theorem 1.3). Minc (1974) [102] used

Theorem 1.3 to prove that the permanent was strictly positive for a special kind of

matrices.

Theorem 1.4. If A is an m×n (0, 1) matrix, m ≤ n, and if each row sum is greater

than or equal to m, then per(A) > 0.

Proof. If, in a (0, 1) matrix every row sum is greater than or equal to m, the implica-

tion is that every row has at least m ones, and n−m is greater than or equal to the
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number of zeros in each row. If A has an s× t zero submatrix, then t ≤ n−m and

s ≤ m. Adding these inequalities we get t+ s ≤ n−m+m = n. Now, Theorem 1.3

states that a necessary and sufficient condition for per(A) to be 0 is that A contain

an s× t submatrix such that s+ t = n+ 1. Now, using s+ t ≤ n, we get s < m, and

so per(A) > 0.

Hall (1948) [52] showed that, if A is anm×n (0, 1) matrix with nonzero permanent

and row sums at least k, k ≤ m, then

per(A) ≥ k!.

Mann and Ryser (1953) [81] extended Hall’s result for the case when k ≥ m. Let

A be an m × n (0, 1) matrix, m ≤ n, with at least k one’s in each row. If k ≥ m,

then

per(A) ≥ k!

(k −m)!
.

Jurkat and Ryser (1966) [64] provided a formula which expressed the permanent

as a product of matrices formed from rows of the initial matrix. If a = (a1, a2, . . . , an)

is a real n-tuple, let a∗ = (a∗1, a
∗
2, . . . , a

∗
n) be the n-tuple a rearranged in non-increasing

order a∗1 ≥ a∗2 ≥ · · · ≥ a∗n, and let a
′

= (a
′
1, a

′
2, . . . , a

′
n) be the n-tuple a rearranged

in non-decreasing order a
′
1 ≤ a

′
2 ≤ · · · ≤ a

′
n. If A is an n× n (0, 1) matrix with row

sums r1, r2, . . . , rn, then Ā is the (0, 1) matrix whose i-th row has the first r∗i entries

equal to 1 and the remaining entries equal to 0, with i = 1, . . . , n.

Theorem 1.5 (Jurkat-Ryser). If A is an n × n (0, 1) matrix with row sums ri,

i = 1, 2, . . . , n, and with {ri + i− n} = max(0, ri + i− n), then

per(A) ≥
n∏
i=1

{ri + i− n}.
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If per(A) 6= 0, then equality holds if and only if there exists a permutation matrix P

such that AP = Ā.

Recall that Λk
n is the set of (0, 1) n×n matrices with row and column sums equal

to k. Minc (1969) [100] also showed that, if A ∈ Λk
n, then

per(A) ≥ n(k − 2) + 2.

Hall (1948) [52] proved that, if A ∈ Λ3
n (note that this implies that 1

3
A ∈ Ωn), then

per
(

1
3
A
)
≥ n!

nn , which verified van der Waerden’s conjecture for doubly stochastic

matrices A such that A ∈ Λ3
n.

Sinkhorn (1969) [126] stated that if A is a nearly decomposable n × n (0, 1)

matrix with m rows containing exactly three ones and n−m rows containing exactly

two ones, then per(A) ≥ m. If A is a fully indecomposable member of Λ3
n, then

per(A) ≥ n.

Hartfiel (1970) [55] demonstrated that for any A ∈ Λ3
n, per(A) ≥ n + 3, and

Hartfiel and Crosby (1972) [58] proved that, for any A ∈ Λk
n, per(A) ≥ (k − 1)(k −

2)n/2. Voorhoeve (1979) [135] showed that for any A ∈ Λ3
n, per(A) ≥ 6 (4/3)n−3.

Wanless (2006) [139] applied a result by Schrijver (the inequality (1.2) below) to

matrices from Λk
n to show that

lim
n→∞

(
min
A∈Λk

n

per(A)

) 1
n

=
(k − 1)k−1

kk−2
.

(b) Positive semidefinite matrices

Consider the Hadamard determinant theorem (see Marcus and Minc (1962) [90]) in

order to find a similar relation for permanent function: “If A = (aij) is a positive

semidefinite Hermitian n × n matrix, then det(A) ≤
∏n

i=1 aii with equality if and
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only if A has a zero row or A is diagonal.” Marcus and Minc (1962) [90] found the

corresponding permanent relation for a positive semidefinite Hermitian n×n matrix:

per(A) ≥ n!

n2n

n∏
i=1

aii,

where the inequality is strict unless A has a zero row.

Marcus (1963) [82] showed that for any positive semidefinite Hermitian n × n

matrix A, per(A) ≥
∏n

i=1 aii.

Marcus and Minc (1965) [86] offered another lower bound for a positive semidef-

inite Hermitian n-square matrix A, with row sums ri,

per(A) ≥ n!

s(A)n

n∏
i=1

|ri|2,

where s(A) denotes the sum of all entries in A. Moreover, equality holds if and only

if A has a zero row or the rank of A is 1.

Doković (1967) [28] showed that if A is a positive semidefinite n × n matrix

and Gr,n is the set of non-decreasing sequences of r integers taken from 1 to n and

α ∈ Gr,n, then per(A[α|α]) ≥ r!
nr .

(c) non-negative matrices

Marcus (1964) [83] demonstrated that, if A = (aij) is an n×n non-negative Hermitian

matrix, then

per(A) ≥
n∏
i=1

aii

with equality if and only if A has a zero row or A is a diagonal matrix.

Recall that ∆k
n represents the set of n×n matrices with row and column sum equal

to k. Also, if A(i) = (ai1, ai2, . . . , ain) is the i-th row of A, then let (a∗i1, a
∗
i2, . . . , a

∗
in)

represents the n-tuple A(i) arranged in a non-increasing order, and (a
′
i1, a

′
i2, . . . , a

′
in)
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the same n-tuple arranged in non-decreasing order. We advice the reader that in

this context a∗ij is not the complex conjugate.

Minc (1969) [99] provided the following bounds for permanents of non-negative

matrices.

Theorem 1.6. If A = (aij) is a non-negative n× n matrix, then

n∏
i=1

i∑
t=1

a
′

it ≤ per(A) ≤
n∏
i=1

i∑
t=1

a∗it.

Moreover, if A is positive, the equality can occur if and only if the first n − 1 rows

of A are multiples of (1, 1, . . . , 1).

Levow (1971) [74] showed that for any A ∈ ∆k
n the following inequality holds

per(A) ≥
(
k

2

)
n

2
+ k.

Schrijver and Valiant (1980) [122] provided a lower bound for permanents on ∆k
n.

Their main result is

min
A∈∆k

n

per(A) ≤ k2n(
nk
n

) .
Schrijver (1998) [123] proved that, for any n, k integers with n ≥ k ≥ 1 and any

A ∈ ∆k
n,

per(A) >

(
(k − 1)k−1

kk−2

)n
. (1.2)

Also, for any given k, the fraction k−1
kk−2 is the best possible because

lim
n→∞

(
min
A∈∆k

n

per(A)

) 1
n

=
(k − 1)k−1

kk−2
.

(d) Fully indecomposable matrices

Minc (1969) [100] demonstrated that, if A is a fully indecomposable n × n (0, 1)

matrix, and s(A) is the sum of all entries of A, then

per(A) ≥ s(A)− 2n+ 2.
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Minc (1973) [101] proved the following theorem for a lower bound of a fully

indecomposable n× n (0, 1) matrix with row sums ri, i = 1, . . . , n.

Theorem 1.7. Let A be a fully indecomposable n × n (0, 1) matrix with row sums

r1, r2, . . . , rn, then

per(A) ≥ max
i
ri.

Equality holds if and only if at least n− 1 of the row sums equal 2.

The same year, Hartfiel [57] improved the lower bound for a fully indecomposable

matrix. Recall the following notations: if 0 ≤ R− 1 < n set R1 = R and R2 = 1. If

n ≤ R− 1 set R1 = n and R2 = R− n+ 1.

Theorem 1.8. If A is a fully indecomposable n×n (0, 1) matrix with k ≥ 3 ones in

each row, then

per(A) ≥ s(A)− 2n+ 2 +
k−3∑
i=2

(i!− 1)n+ [(k − 2)!− 1]R1 + [(k − 1)!− 1]R2.

(e) Doubly stochastic matrices

Recall that Ωn denotes the set of all doubly stochastic n× n matrices. Marcus and

Newman (1959) [92] gave a weak lower bound for the permanent function on Ωn by

showing that for any A ∈ Ωn

per(A) ≥ (n2 − n+ 1)1−n. (1.3)

Holens (1964) [60] demonstrated that if A ∈ Ωn, then

per(A) ≥
(
n2 − 2n+ 2

)1−n
,

which is slightly better than (1.3). It is likely that Holens was unaware of the

following result. Marcus and Minc (1962) [89] also improved (1.3) by showing that,
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if A ∈ Ωn, then

per(A) ≥ 1

nn
. (1.4)

Rothaus (1972) [120] showed that if A ∈ Ωn, then

per(A) ≥ 1

nn−1
.

He also showed that there exists an r depending on n such that per(Ar) for A ∈ Ωn

achieves its minimum uniquely at the matrix with equal entries which is Jn.

Marcus and Minc (1962) [89] verified the van der Waerden conjecture (see Chapter

3) for a particular class of doubly stochastic matrices by showing that, if A ∈ Ωn is

a positive semidefinite Hermitian n× n matrix, then

per(A) ≥ n!

nn
,

where the equality holds if and only if A = Jn.

Marcus and Minc (1965) [84] demonstrated that if A ∈ Ωn with at least m

eigenvalues of modulus 1, then

per(A) ≥ (n−m+ 1)−(n−m+1).

Moreover, if A is irreducible, then per(A) ≥ (m/n)n.

London (1971) [76] established the following two properties for a minimizing

matrix. If A is a minimizing matrix for per(S), S ∈ Ωn, then:

1. If aij > 0, then per(A(i|j)) = per(A).

2. If aij = 0, then per(A(i|j)) = per(A) + β, β ≥ 0.

Merris (1973) [95] proposed the following conjecture: if A ∈ Ωn, then

n · per(A) ≥ min
i

n∑
j=1

per(A(j|i)),
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and provided a counter-example with “max” instead of “min”.

Friedland (1978) [41] improved the lower bound in (1.4) for A ∈ Ωn, namely

per(A) ≥ 1

n!
. (1.5)

Friedland (1979) [42] gave a further improvement by showing that, for any A ∈ Ωn,

per(A) ≥ 1

en
. (1.6)

Bang (1976) [3] outlined a proof for (and, in (1979) [4], provided a complete proof

of) the following lower bound:

per(A) ≥ 1

en−1
, A ∈ Ωn. (1.7)

This was the best lower bound proved for Ωn before the final resolution of the

van der Waerden conjecture in 1981.

Foregger (1980) [36] showed that, for 2 ≤ n ≤ 9, the minimum value of the

permanent of a nearly decomposable A ∈ Ωn is 1
2n−1 .

After 1981, when Falikman [34] and Egorychev [32] obtained the exact lower

bound for the permanents on the set of all doubly stochastic matrices, the efforts

shifted to determining the minimum of the permanent on various subsets of Ωn. For

example, a subset Z of {1, 2, . . . , n} × {1, 2, . . . , n} defines a set Ωn(Z) = {A =

(aij) ∈ Ωn|aij = 0 if (i, j) ∈ Z}. In other words, Ωn(Z) is defined by specifying the

zero pattern.

Recall that ‖A‖ =
(∑m

i=1

∑n
j=1 |aij|2

)1/2

. Achilles (1977) [1] showed that if Ωk
n is

the set of n× n doubly stochastic matrices having k zero entries in the same row or

the same column (without loss of generality, in the first k positions in the first row)

and, if A ∈ Ωk
n, then the minimum of ‖A− Jn‖ is achieved at
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Amin =



0 . . . 0 1
n−k . . . 1

n−k

1
n−1

. . . 1
n−1

.. .. ..

.. .. .. n−k−1
(n−1)(n−k)

.. .. ..

1
n−1

. . . 1
n−1


and is equal to

√
k√

(n−1)(n−k)
.

Another Achilles’s [1] result is that, on the set Ωk
n, then the permanent function

has a local minimum at Amin.

Define arg min
X∈Ωn

per(X) to be the set of those X ∈ Ωn that have minimum

permanent. Let Ω∗n be the subset of Ωn with a zero entry in the (1, 1)-position.

Knopp and Sinkhorn (1982) [68] studied the minimum of the permanent on Ω∗n. If

Tn ∈ arg min
X∈Ω∗n

per(X), and n > 3, then

Tn =



0 1
n−1

. . . 1
n−1

1
n−1

. . . n−2
n−1

Jn−1

1
n−1


.

Also, for n = 2, the minimum value of a permanent of A ∈ Ω2 is per(T2) = 1.

For n = 3, the minimum value of a permanent of A ∈ Ω3 is achieved at T3 and its

permutations.

For s+ t ≤ n− 1, let Z ⊆ {(i, j)|1 ≤ i ≤ s, 1 ≤ j ≤ t} be fixed, and let Ωn(Z) be

the set of all doubly stochastic matrices with 0’s in every (i, j) ∈ Z; i.e., Ωn(Z) is a
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subpolytope (see Section 2.1) of Ωn. If s = t = 2, then Minc (1984) [109] found

min{per(A)|A ∈ Ωn(Z)} =
(n− s)!

(n− s)n−s
· (n− t)!

(n− t)n−t
· (n− s− t)n−s−t

(n− s− t)!
.

Chang (1984) [21] found the minimum value of the permanent on sets of doubly

stochastic matrices with at least one fixed entry.

Chang (1988) [23] demonstrated that, for 0 ≤ a ≤ 1
2
,

0 a 1− a

d 1− d 0

1− d d− a a

 ∈ arg min{per(B)|B = (bij) ∈ Ω3, b11 = 0, b12 = a},

where d = 2−a−2a2

4(1−a)
.

Brualdi (1985) [14] showed that, for Z = {(i, j)|i+j ≤ n−1} and any A ∈ Ωn(Z),

per(A) ≥ 1/2n−1, with equality if and only if aij = 1/2, for all (i, j) with i + j = n

and a1n = an1 = 1/2.

1.2.5 Upper bounds

Since every term in the expansion of per(A) is included in
∏n

i=1

∑n
j=1 aij, which is

equal to 1 for all doubly stochastic matrices A, we conclude that per(A) ≤ 1, for

A ∈ Ωn. Equality is achieved only if A is a permutation matrix (see also Marcus and

Newman (1959) [92]).

Ryser (1960) [121] conjectured that for a A ∈ Λk
mk, with 1 < k < n, the permanent

takes its maximum on the direct sum (see Section 1.1) of k × k matrices of 1’s.

Minc (1963) [97] showed that, if A is an n × n (0, 1) matrix with the row sums

ri, i = 1, . . . , n, then

per(A) ≤
n∏
i=1

ri + 1

2
, (1.8)
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with equality if and only if A is a permutation matrix, and conjectured that

per(A) ≤
n∏
i=1

(ri!)
1
ri . (1.9)

The estimate (1.9 was proved by Bregman (1973) [12].) In 1967, Minc [98] im-

proved (1.8) by showing that, if A is a (0, 1) matrix with row sums ri, i = 1, . . . , n,

then

per(A) ≤
n∏
i=1

ri +
√

2

1 +
√

2
.

Nijenhuis and Wilf (1970) [115] showed that if A is an n × n (0, 1) matrix with

row sums ri, i = 1, . . . , n, and where τ ≈ 0.1367 . . . is a universal constant, then

per(A) ≤
n∏
i=1

((ri!)
1
ri + τ).

Ostrand (1970) [116] provided an upper bound for an m × n (0, 1) matrix with

row sums r1 ≤ · · · ≤ rm:

per(A) ≤
n∏
i=1

max(1, ri − i+ 1).

Foregger (1975) [35] proved that, if A is an n× n (0, 1) matrix with all row sums

greater or equal to 3, and N is the number of positive entries in A, then

per(A) < 2N−2n.

Merriell (1980) [94] established the maximum of the permanent on Λk
n for some

special cases. For example, the maximum on Λ3
3t+1 is 6t9, and the maximum on Λ3

3t+2

is 6t−292.

Baum and Eagon (1967) [7] were interested in applications in a statistical es-

timation for probabilistic functions and in a mathematical model for ecology. In

particular, one of their inequalities when applied to permanents yields the following
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estimate. Let S be the set of m × n row stochastic matrix with permanent dif-

ferent from 0. If f : S → S with f(A)ij = aij per(A(i|j))/ per(A), i = 1, . . . ,m,

j = 1, . . . , n, for all A = (aij) from S, then

per(A) < per(f(A)), unless f(A) = A. (1.10)

Baum and Sell (1968) [8] improved (1.10):

per(A) ≤ per((1− t)A+ tf(A)), t ∈ (0, 1],

with equality if and only if f(A) = A.

Foregger (1975) [35] showed that, if A is a fully indecomposable matrix with

non-negative integers entries, and s(A) represents the sum of all entries from A, then

per(A) ≤ 2s(A)−2n + 1. (1.11)

For 2 ≤ m ≤ n, let A = (aij) be a positive m× n matrix. Luo (1980) [79] proved

that

per(A) ≤ (n− 1)!

(n−m)!

m∏
i=1

(
n∑
j=1

amij

) 1
m

.

Using graph methods, Donald, Elwin, Hagar and Salamon (1984) [29] proved that

if A is a fully indecomposable non-negative n × n matrix with row sums ri and all

entries integers, then

per(A) ≤ 1 +
n∏
i=1

(ri − 1).

Cheon and Wanless (2005) [25] published an update on Minc’s surveys of open

problems in the field of permanents. One of the chapters in their paper contains two

tables (with n = 1, . . . , 11 and k = 1, . . . , 11) for minimum and maximum values

of the permanent for non-negative n× n (0, 1) matrices with row and column sums

equal to k.



Chapter 2

Doubly stochastic matrices

2.1 Properties and more inequalities

In this section, only properties of doubly stochastic matrices (recall that the set of

all such n × n matrices is denoted by Ωn), and the permanents of matrices from

Ωn will be discussed. Since a few of the properties describing permanents of doubly

stochastic matrices were presented in Section 1.2.3, these will not be described again.

We start with the following observation (see Minc [104]).

Proposition 2.1. If a matrix is doubly stochastic, then the matrix is square.

Proof. Let A = (aij) be an n ×m matrix such that
∑n

i=1 aij = 1, 1 ≤ j ≤ m, and∑m
j=1 aij = 1, 1 ≤ i ≤ n. Summing these equations we get the sum of all entries from

A in two different ways:
∑m

j=1(a1j+a2j+· · ·+anj) = n,
∑n

i=1(ai1+ai2+· · ·+aim) = m.

Hence, n = m.

Proposition 2.2 (Minc [104], 1978). The permanent of doubly stochastic matrix is

positive.

26
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Proof. Since all entries of A ∈ Ωn are non-negative, the permanent of A can not

be less than zero. Let’s suppose per(A) = 0, then using Theorem 1.3 (which is

Frobenius-König theorem) there exist permutation matrices P and Q with PAQ =X Y

O Z

, and let O be the zero h× k matrix with h+ k = n+ 1.

Let s(A) be the sum of all entries in the matrix A. Applying this summation to

PAQ matrix: n = s(PAQ) ≥ s(X) + s(Z).

If O is an h × k matrix, then all the nonzero entries in the first k columns

are included in B, therefore s(X) = k. In the same way for Z, hence s(Z) = h.

Therefore, n ≥ s(X) + s(Z) = k + h. By our supposition n = k + h− 1, which is a

contradiction. Hence, the hypothesis is false. Therefore, per(A) > 0.

Proposition 2.2 implies that every doubly stochastic matrix must have a positive

diagonal (see Minc [104]). Consider the following version of the dance problem. In a

school, there are n boys and n girls. The question is, if each boy has previously met

exactly k girls and each girl has previously met exactly k boys, is it possible to make

pairs of boys and girls into dance partners who have met before. If A = (aij) is the

n × n adjacency matrix, i.e., aij = 1 if the i-th boy met the j-th girl and aij = 0,

otherwise. In each row and column of this matrix, A contains exactly k ones, and so

1
k
A ∈ Ωn. Proposition 2.2 implies that there is a positive diagonal and, hence, it is

possible to pair boys and girls in this dance problem in k completely different ways.

Another way to view this dance problem is with graphs. The following is an old

theorem (likely due to König, and also follows from Hall’s matching theorem—see

nearly any text on graph theory, e.g. West (1996) [141]).

Theorem 2.3. In any k-regular subgraph of Kn,n (the complete bipartite graph on

two partite sets, each with n vertices ), there exists perfect matching.
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As a consequence, (applying this theorem k times) in the adjacency matrix A

there are k disjoint diagonals, each with all positive entries.

The following theorem was discovered by John von Neumann [134] in 1928, and

independently proved by Birkhoff (1946) [10].

Theorem 2.4 (Neumann (1928) [134], Birkhoff (1946) [10]). If A ∈ Ωn, then

A =
∑s

i=1 αiPi, where the Pi’s are permutation matrices and αi’s are non-negative

numbers with
∑s

i=1 αi = 1.

In other words, every doubly stochastic matrix is a convex combination of per-

mutation matrices.

Some of the additional elementary properties of doubly stochastic matrices are:

• If A ∈ Ωn and P,Q are permutation matrices, then PAQ ∈ Ωn.

• The product of two doubly stochastic matrices of order n is also a doubly

stochastic matrix of order n.

• If A,B ∈ Ωn and α ∈ (0, 1), then the convex combination αA + (1 − α)B) is

in Ωn.

Brualdi (1966) [15] showed that if A ∈ Ωn, then per(AAT ) = per(A2) if and only

if A is a permutation matrix.

London (1973) [77] presented the following two interesting results regarding dou-

bly stochastic matrices. Recall that ρ(A) represents the rank of the matrix A.

Proposition 2.5. If A ∈ Ωn, then ρ(A− Jn) = ρ(A)− 1.

As an observation the above property does not hold for any n× n matrices.
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Proposition 2.6. Let i, j = 1, . . . , n, and suppose that αi and βj are real numbers

such that there exist i and j for which αiβj 6= 0, − 1
n
≤ αiβj,

∑n
i=1 αi = 0,

∑n
j=1 βj =

0. If A ∈ Ωn, then ρ(A) = 2 if and only if A = Jn + P , for some P = (pij) an n× n

matrix with pij = αiβj.

Let A = (αij) and B = (bij) be n×n non-negative doubly stochastic matrices. Let

β1, β2, . . . , βk be the column partition of A corresponding to its fully indecomposable

components, and let γ1, γ2, . . . , γl be the row partition of B corresponding to its

fully indecomposable components. Recall that |βi ∩ γi| represents the number of

common components among βi and γi. Brualdi (1966) [15] stated that per(AB) =

per(A) per(B) if and only if the following are true:

• For 1 ≤ i ≤ k, 1 ≤ j ≤ l, |βi ∩ γi| ≤ 1, and

• If G is the graph whose vertices are the βi with |βi| > 1 and the γj with |γj| > 1

such that there is an edge joining βi and γj provided |βi ∩ γj| = 1 and these

are the only edges, then G has no circuits.

Marcus and Minc (1965) [86] proved that if N is m × m, normal, and with

eigenvalues r1, . . . , rm, then

| per(N)| ≤ 1

m

m∑
i=1

|ri|m.

If, in addition, N ∈ Ωm, then | per(N)| ≤ ρ(N)
m

. The last inequality is strict unless

either N is a permutation matrix or m = 2 and N = J2.

If A is an arbitrary m×m doubly stochastic matrix, then

per(A) ≤
(
ρ(A)

m

) 1
2

,

equality holds if and only if ρ(A) = m and A is a permutation matrix.



2.1. Properties and more inequalities 30

Wilf (1966) [142] calculated the “average” permanent of a class of doubly stochas-

tic matrices. Let n, s be fixed positive integers, (P1, . . . , Ps) be an ordered set of n×n

permutation matrices, and Kn,s be the set of (n!)s matrices that result from calcu-

lating A = s−1(P1 + · · ·+Ps) for each possible ordered set (P1, . . . , Ps). The matrices

from Kn,s are doubly stochastic. If

γn,s := (n!)−s
∑

P1,...,Ps

per

(
1

s
(P1 + · · ·+ Ps)

)
,

then, for n→∞,

γn,s ∼
√

2πn

(
1− 2

s

)− 1
2

(s−1)(
1− 1

s

)ns−n+s− 1
2

.

Eberlein (1969) [30] established a condition for minimizing permanent function

over the set of doubly stochastic matrices. If A ∈ Ωn and per(A) ≤ per(S), for any S

doubly stochastic matrix, then any two lines (rows or columns) of A are either with

different zero patterns or equal (one has a zero component where the other has not.)

Gyires (1976) [51] proved that if A ∈ Ωn, then

per(A2) +
√

per(AAT per(ATA))

2
≥ n!

nn
.

Minc (1975) [103] showed that for any A ∈ Ωn, and t ≤ n − 2, with t positive

integer, if all permanental minors from A of order t are equal, then A = Jn.

Marcus and Minc (1967) [87] asked the following question.

Proposition 2.7. For fixed A,B ∈ Ωn, if for all α ∈ [0, 1], per(αA + (1 − α)B) is

constant, then is it true that A = B?

Definition 2.8 (Wang [136], 1977). Two matrices A,B ∈ Ωn where A 6= B are said

to form a permanental pair if, for any α ∈ [0, 1], then per(αA+(1−α)B) is constant.



2.1. Properties and more inequalities 31

Wang proved the following: (i) for every n ≥ 3, there exists infinitely many

permanental pairs; (ii) no permutation matrix can form permanental pairs with

any doubly stochastic matrix; (iii) the matrix Jn does not form a permanental pair

with any doubly stochastic matrix. In 1979, Wang and Brenner [13] showed that

there exist no permanental pairs which contain a direct sum (see Section 1.1) A =

Jn1 ⊕ Jn2 ⊕ · · · ⊕ Jnk
.

Recall that a convex hull is the set of convex combinations {λ1x1 + λ2x2 + ... +

λkxk|k ≥ 1, xi ∈ Rn, λixi ≥ 0, and
k∑
i=1

λi = 1.}

Let V be the set of all n × n permutation matrices and let P be the polytope

formed by the convex hull of V in Mn×n(R), an n2 dimensional space. (Then P is

said to have dimension n2.) Observing that by Theorem 2.4, P contains Ωn.

A subpolytope Q of P is the intersection of P with some affine subspace of

Mn×n(R) (and the dimension of Q is the dimension of this subspace).

Gibson (1980) [48] define a subpolytope Q of P to be permanental if the perma-

nent function is constant in Q, and proved that such a Q exists with dimension at

least n2−3n+4
2

.

It is known that the permanent function is not convex on the set of doubly

stochastic matrices (see Minc[107]). In other words, it is not true that per(αA+(1−

α)B) ≤ α per(A) + (1 − α) per(B), for all A,B ∈ Ωn and α ∈ [0, 1]. At the same

time, it was shown by Perfect (1964) [118] that, for every A ∈ Ωn,

per

(
1

2
(In + A)

)
≤ 1

2
(1 + per(A)) .
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2.2 Conjectures and open problems

This section is devoted to unresolved conjectures and open problems on the perma-

nent function on the set of doubly stochastic matrices. The numbers assigned to the

conjectures and open problems are the same as in Minc (1978) [104] and in Cheon

and Wanless (2005) [25].

Conjecture 3 (Marcus and Minc [87], 1967). If S ∈ Ωn, n ≥ 2, then per(S) ≥

per(nJn−S
n−1

). For n ≥ 4, equality holds if and only if S = Jn.

Marcus and Minc (1967) [87] proved this conjecture for positive semidefinite sym-

metric matrices and for matrices in a small neighborhood of Jn.

If n = 2, then the above relation is an equality. The case when n = 3 was resolved

by Wang (1977) [136] who, in particular, showed that if

S =


0 1

2
1
2

1
2

0 1
2

1
2

1
2

0

 ,

then per(S) = per
(

1
2
(3J3 − S)

)
= 1

4
. For n = 4, Foregger (1979) [39] showed that

Conjecture 3 is true. Hwang (1989) [61] verified the validity of Conjecture 3 for

partly decomposable matrices. Malek (1989) [80] proved a stronger version of this

conjecture for a special case of doubly stochastic matrices.

Conjecture 4 (Wang [136], 1977). If S ∈ Ωn, n ≥ 2, then per(S) ≥ per(nJn+S
n+1

) and

if n ≥ 3 equality holds if and only if S = Jn.

Wang (1977) [136] proved this conjecture for n = 3. Chang (1983) [20] showed
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that Conjecture 4 is true for matrices in the complement of sufficiently large neigh-

borhood of Jn. Five years later, Chang (1988) [23] and Foregger (1988) [38] inde-

pendently showed that the conjecture is true for n = 4. Hwang (1989) [61] provided

a proof for the case of partly decomposable matrices.

Recall that σk(A) represents the sum of all permanents of order k of a matrix A.

Conjecture 10 (Tverberg [129], 1963). If A ∈ Ωn and A 6= Jn, then for any t with

2 ≤ t ≤ n, σt(A) > σt(Jn) =
(
n
t

)2 t!
nt .

This conjecture was proved by Friedland (1982) [43] (for more details, see Section

3.3).

Conjecture 12 (Holens [60], 1964 and Doković [27], 1967). If A ∈ Ωn, and k ∈ Z,

k ∈ [2, n], then σk(A) ≥ (n−k+1)2

nk
σk−1(A), with equality in the case 2 ≤ k ≤ n − 1

only if A = Jn.

More details on this conjecture are in Chapter 3.

Conjecture 13 (Sinkhorn [127], 1977). If A ∈ Ωn and if per(A(i|j)) ≥ per(A), for

all i, j, then either A = Jn or up to permutation of rows and columns, A = 1
2
(In+Pn),

where Pn is a full cycle permutation matrix.

This conjecture was proved by Bapat (1983) [6].

Conjecture 15 (Foregger [36], 1980). If A is a nearly decomposable doubly stochastic

matrix, then per(A) ≥ 1/2n−1, with equality if and only if A = (P + In)/2 up to

permutations of rows and columns.

Foregger (1980) [36] proved a particular case of this conjecture, when 2 ≤ n ≤ 8.
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Conjecture 17 (Foregger [104], 1978). For any positive integer n, there exists an

integer k = k(n) such that per(Ak) ≤ per(A), for all A ∈ Ωn.

Chang (1984) [22] produced a partial result: for any positive integer n and c ∈

(0, 1
n
], there exists an integer N = N(n, c) > 1 such that if S = (sij) ∈ Ωn satisfies

c ≤ min{sij, 1 ≤ i, j ≤ n}, for all k ≥ N , then per(S2k
) ≤ per(S). In 1990, Chang

[24] showed that the conjecture is true for n = 3.

Conjecture 18 (Merris [95], 1973). If A ∈ Ωn, then

n per(A) ≥ min
i

∑
j=1

per(A(j|i)).

As far as we know, this is one of the few conjectures in which no one has made

any progress so far.

Conjecture 20 (Gyires [51], 1978). If A ∈ Ωn, then

4(per(A))2

per(AA∗) + per(A∗A) + 2 per(A2)
≥ n!

nn
, (2.1)

with equality if and only if A = Jn.

Chang (1990) [24] proved this conjecture for n = 3. He also showed that for

A = (aij) ∈ Ωn and y := min{aij, 1 ≤ i, j ≤ n}, if y ≥ n−2
(n−1)2

, then inequality (2.1)

holds.

Conjecture 29 (Wang [137], 1979). If B ∈ Ωn, n ≥ 3, and for all A ∈ Ωn and any

θ ∈ [0, 1],

per(θB + (1− θ)A) ≤ θ per(B) + (1− θ) per(A), (2.2)

then B is a permutation matrix.
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For all A ∈ Ωn and any θ ∈ [0, 1], the matrix B is called a star if per(θB +

(1 − θ)A) ≤ θ per(B) + (1 − θ) per(A). Wang [137] proved that if B is a star, then

per(B) ≥ 1
2n−1 .

By definition, σn(A) = per(A), and σ1(A) is the sum of all entries of A. Kopo-

tun (1996) [70] conjectured that a modification of the inequality (2.2) holds for σk

instead of the permanent function. If A ∈ Ωn, then for every k ≥ 3, there exists

nk ≥ k + 1 such that for all n ≥ nk and θ ∈ [0, 1], the inequality

σk(θJn + (1− θ)A) ≤ θσk(Jn) + (1− θ)σk(A).

A partial result has been obtained for k ≤ 3 and B = Jn. Also, Kopotun showed

that σk(A) is convex for n ≥ 2 and σ3(A) is convex for n ≥ 4.

Karuppan and Arulraj (1998) [65] provided a counterexample showing that Con-

jecture 29 fails, for n = 3. They modified the conjecture as follows.

Conjecture 29’ (Karuppan and Arulraj [65], 1998). The inequality

per(θB + (1− θ)A) ≤ θ per(B) + (1− θ) per(A)

is true for all A ∈ Ωn and any θ ∈ [0, 1] if and only if B is permutation equivalent

to the direct sum (see Section 1.1) of In and some number of matrices from Ω2.

Conjecture 34 (Lih and Wang [75], 1982). If A ∈ Ωn and α ∈ [1
2
, 1], then

per(αJn + (1− α)A) ≤ αJn + (1− α) per(A).

Lih and Wang proved the conjecture for n = 3. Foregger (1988) [38] verified it

for n = 4 by showing that, if A ∈ Ω4 and t1 < t ≤ 1, where t1 is the unique real root

of 106t3 − 418t2 + 465t− 153, then

per(tJ4 + (1− t)A) ≤ t per(J4) + (1− t) per(A),
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with equality if and only if A = J4.

Hwang (1991) [62] conjectured and proved for n = 3 that if A ∈ Ωn, n ≥ 2, A 6=

Jn, then the permanent function is strictly convex on the straight line segment joining

Jn and (Jn+A)/2. Hwang also wondered if his conjecture is equivalent to Conjecture

34.

Conjecture 35 (Kim and Roush [66], 1981). The maximum value of per(I −A) for

A ∈ Ω2k+1 is 3 · 2k−2. This value is obtained for the direct sum (see Section 1.1) of

1

2


0 1 1

1 0 1

1 1 0



and k − 1 copies of

0 1

1 0

.

This is another conjecture without even partial results according to our knowl-

edge.

Let Z = {(i1, j1), (i2, j2), . . . , (in, jn)} where 1 ≤ ik, jk ≤ n, 1 ≤ k ≤ n, and let

Ωn(Z) be the subset of {S = (sij)n×n ∈ Ωn|sij = 0 for all (i, j) ∈ Z}.

The concept of a “tie point” was introduced by Hartfiel (1971) [56] for a nearly

decomposable matrix. The point (i, j) is called a tie point for A if aij = 0 and replac-

ing aij with a positive entry creates Ā with the property that if any other positive

entry of Ā is replaced with a 0, then the resulting matrix is partly decomposable.

Conjecture 41 (Foregger and Sinkhorn [40], 1986). If A is a nearly decomposable

matrix minimizing the permanent in Ωn(Z) and (i, j) ∈ Z, then perA(i|j) > per(A)

implies that (i, j) is a tie point for A.



2.2. Conjectures and open problems 37

The only progress regarding this conjecture was made by Foregger (1987) [37]

who proved Conjecture 41 for a special matrix associated with a certain type of

bipartite graph.

Conjecture 44 (Minc [110], 1987). The permanent function on the set of n×n dou-

bly stochastic matrices with zero trace achieves its minimum uniquely at the matrix

all of whose off-diagonal entries are 1/(n− 1).

This conjecture seems to be well known and appeared in Minc (1987) [110]. There

appears to be no progress toward resolution of this conjecture.

In his book devoted exclusively to permanents, Minc [104] provided ten open

problems. Later, he added eight more problems in two different surveys. Here, we

discuss only problems dealing with permanents of doubly stochastic matrices.

Problem 8 (Friedland and Minc [44], 1978). Find matrices A on the boundary of

Ωn so that the permanent is monotone increasing on the segment (1 − θ)Jn + θA,

θ ∈ [0, 1].

Foregger(1988) [38] constructed classes of doubly stochastic 4 × 4 matrices with

the above property.

Problem 13 (Minc [104], 1978). Determine the largest number b = b(n) such that

per(A) ≥ n!
nn , for any real n × n matrix A all of whose row and column sums are

equal to 1 and which satisfy ‖A− Jn‖ ≤ b.

In order to state the last three open problems we need some additional definitions.

Let A = (aij) be an n × n (0, 1) matrix and define Ω(A) to be the subset of Ωn

determined by A such that Ω(A) = {S = (sij) ∈ Ωn|sij = 0 if aij = 0}. In other
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words, Ω(A) represents the set of all doubly stochastic matrices with the same zero

pattern as A.

An n×n (0, 1) matrix A is called cohesive if there exists a matrix B in the interior

of Ω(A) for which per(B) = min{per(S)|S ∈ Ω(A)}.

If A = (aij) is an n × n (0, 1) matrix and P represents a permutation matrix,

then

b(A) =
1

per(A)

∑
P∈Ω(A)

P ∈ Ω(A)

is called the barycenter of Ω(A). An n × n (0, 1) matrix A is said to be barycentric

if the minimum permanent over Ω(A) takes place at the barycenter of Ω(A).

Problem 14 (Brualdi (1985) [14]). Characterize cohesive matrices.

Problem 15 (Brualdi (1985) [14]). Characterize barycentric matrices.



Chapter 3

Van der Waerden’s conjecture

What is the minimum of the permanent on the set of all doubly stochastic matrices?

This question was posed van der Waerden [130] in 1926, and became one of the

most famous and most hunted questions in the theory of permanents; it remained

unresolved for more than 50 years.

Conjecture (van der Waerden’s (1926) [130]). If A ∈ Ωn, then

per(A) ≥ n!

nn
,

and equality holds if and only if and A = Jn = (1/n)n×n.

3.1 History and earlier results

Between 1926 and 1959, no progress in the van der Waerden conjecture was reg-

istered. In 1959, Marcus and Newman [92] investigated properties of minimizing

matrices in the set of all doubly stochastic matrices. A matrix A ∈ Ωn is called

minimizing if

A = arg min
S∈Ωn

per(S).

39
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The authors’ goal was to show that the only matrix which satisfies those properties is

Jn. Although this project was not successful, their achievement represented a major

step forward.

It was shown in [92] that (i) if A is a minimizing matrix, then it is fully in-

decomposable; and (ii) for any 1 ≤ s, p ≤ n, if A = (aij) ∈ Ωn is a minimizing

matrix with asp > 0, then per(A(s|p)) = per(A). In order to prove (ii), Marcus

and Newman showed that if A was a minimizing doubly stochastic matrix in a suf-

ficiently small neighborhood of Jn (but different from Jn) with all positive entries,

then per(A) > per(Jn). In particular, this implies that if A ∈ Ωn is a minimizing

matrix with all of its entries positive, then A = Jn.

Marcus and Newman (1962) [91] proved the conjecture for symmetric positive

semidefinite doubly stochastic matrices. Minc (1963) [96] slightly generalized (and

offered a new proof of) the main result in [91]. Let Φn be the set of positive semidef-

inite Hermitian n×n matrices which have e = (1, 1, . . . , 1) as a characteristic vector.

If H ∈ Φn and the row sums of H are all equal to λ1, then per(H) ≥ n!
(
λ1

n

)n
, with

equality if and only if either a row of H is zero or H is a non-negative multiple of

Jn.

Marcus and Minc (1968) [85] proved that if A is an n × n positive definite Her-

mitian doubly stochastic matrix with least eigenvalue λn, then

per(A) ≥ per(Jn) + λnn(1− per(Jn)),

and that if A is a normal doubly stochastic matrix n×n whose eigenvalues lie in the

sector [−π
2m
, π

2m
] of the complex plane, then

σm(A) ≥ σm(Jm) +
1

2

(m− 2)!

nm−2

(
n− 2

m− 2

)2

‖A− Jn‖2 ,

where ‖A− Jn‖ denotes the Euclidean norm of A− Jn.
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Eberlein and Mudholkar (1968) [31] proved the conjecture for n = 3 and n = 4,

and Eberlein (1969) [30] proved it for n = 5. For n = 6, 7, 8, Graf (1971) [49]

determined regions in the set of doubly stochastic matrices such that the inequality

in the conjecture was satisfied for all matrices from these regions. Butler (1975) [16]

verified the conjecture for regular doubly stochastic matrices, i.e., matrices A such

that A = AXA for some X ∈ Ωn.

3.2 Resolution

In 1981, Egorychev [32] and Falikman [34] independently proved the van der Waerden

Conjecture (uniqueness of the minimizing matrix was not discussed in Falikman’s

paper).

According to Egorychev’s [32] paper one main idea was an inequality for “mixed

discriminants” or “mixed volumes of convex bodies” by Aleksandrov.

Theorem 3.2.1 (Egorychev). If A = (aij) is an n×n real matrix with its first n−1

columns being non-negative. Then,

(per(A))2 ≥ per(a1, . . . , an−2, an−1, an−1) · per(a1, . . . , an−2, an, an).

If a1, a2, . . . , an−1 are positive, then equality can hold if and only if an is a multiple

of an−1.

The following theorem became the key result in Egorychev’s proof.

Theorem 3.2.2 (Egorychev). If A is a column (or row) stochastic n×n matrix, with

k, l = 1, 2, . . . , n, satisfying 0 < per(A) ≤ per(A(k|l)), then per(A) = per(A(k|l)).
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Falikman’s proof was based on minimizing the function, for ε ∈ R,

Fε(X) = per(X) + ε

( ∏
1≤i,j≤n

xij

)−1

over the set Ω∗n = {X = (xij) ∈ Ωn|xij 6= 0, 1 ≤ i, j ≤ n}.

3.3 Generalizations and post resolution

Recall that σk(A) denotes the sum of all subpermanets of order k of a matrix A.

Tverberg (1963) [129] conjectured that, if A ∈ Ωn with A 6= Jn and 2 ≤ k ≤ n, then

σk(A) > σk(Jn), (3.1)

and proved this conjecture for k = 2 and k = 3. When k = n, (3.1) is a

generalization of the van der Waerden conjecture. Tverberg conjecture was settled

by Friedland [43] in 1982 by relating the problem of minimizing σk on Ωn to that

of minimizing the permanent function on a particular subsets of Ω2n−k. (These

particular subsets corresponded to faces in the polytope associated with Ωn as defined

in Section 2.1.)

The van der Waerden conjecture was so popular that, even after its resolution,

there were many papers published discussing, analyzing and simplifying its proofs.

In particular, Pach (1981) [117] showed a detailed exposition of Egorychev’s proof.

Lagarias (1982) [72] gave van der Waerden’s conjecture background and provided an

outlines of Egorychev’s proof. Ando (1982) [2] explained Egorychev’s proof. Jung-

nickel included the proof of van der Waerden’s conjecture in his book [63] published

in 1982. Lint (1981) [131], (1982) [132], (1983) [133] produced three easily read-

able articles devoted to its resolution. Minc (1982) [106] provided two versions of



3.4. The Holens-Doković conjecture 43

Egorychev’s proof. Laffey (1983) [71] presented a detailed proof using Egorychev’s

techniques. Bang (1983) [5] polished Falikman’s proof and included the proof of the

uniqueness of the minimizing matrix. Minc (1983) [108] presented a short history

and both versions of the proofs.

3.4 The Holens-Doković conjecture

In 1964, Thomas Frederick Holens (1964) [60] defended his M.Sc. thesis at the

University of Manitoba, in the third chapter of which he dealt with the permanent

function of doubly stochastic matrices. Let A ∈ Ωn and let Ak be the matrix formed

by replacing all the entries of k columns of A by 1/n. Holens proposed the following

conjecture and proved it in the case n = 2.

Conjecture (Holens (1964) [60]). If A is doubly stochastic, then

per(A) ≥
∑

per(A1)(
n
1

) ≥ · · · ≥
∑

per(Ak)(
n
k

) ≥ · · · ≥
∑

per(An−1)(
n
n−1

) ≥ per(An).

In 1967, Doković [27] proposed the following conjecture, which he proved for

k = 3 (if k = 1 or 2 then the statement is trivial).

Conjecture (Doković (1967) [27]). If A ∈ Ωn, and k = 1, 2, . . . , n, then

σk(A) ≥ (n− k + 1)2

nk
σk−1(A). (3.2)

As it turns out, these two conjectures are equivalent (verification is direct and is

left to the reader) and are now known as the Holens-Doković conjecture.

Since (see Minc [104])

∂

∂θ
σk(θJn + (1− θ)A)

∣∣∣
θ=0

=
∑

α,β∈Qk,n

∑
i∈α,j∈β

(
1

n
− aij

)
per((A[α|β])(i|j)) =
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=
1

n

∑
α,β∈Qk,n

∑
i∈α,j∈β

per((A[α|β])(i|j))− kσk(A) =

=
(n− k + 1)2

n
σk−1(A)− kσk(A),

the Holens-Doković inequality states that the derivative of σk(θJn + (1− θ)A) is

non-positive at θ = 0, which implies that the function σk(A) is non-increasing on the

line segment joining A and Jn.

The Holens-Doković conjecture is an attractive conjecture which, unfortunately,

turned out to be false in general. In 1996, Wanless [138] published the paper “The

Holens-Doković’s conjecture on permanents fails!” with the title saying it all. There

is still hope for positive results though since n and k were not independent (e.g.

n = k = 4) in Wanless’ counterexamples, and, in fact, the smallest counterexample

involved a 22× 22 matrix.

While the Holens-Doković conjecture is dead, in general, many cases are still

open.
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