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Abstract

Future wireless networks are expected to be highly heterogeneous and ultra dense

with different types of small cells underlaid with traditional macro cells. In the

presence of hundreds of different types of small cells, centralized control and manual

intervention in network management will be inefficient and expensive. In this case,

self-organization has been proposed as a key feature in future wireless networks. In

a self-organizing network, the nodes are expected to take individual decisions on

their behavior. Therefore, individual decision making in resource allocation (i.e.,

Distributed Resource Allocation) is of vital important. The objective of this thesis is

to develop a distributed resource allocation framework for self-organizing small cell

networks.

Game theory is a powerful mathematical tool which can model and analyze inter-

active decision making problems of the agents with conflicting interests. Therefore, it

is a well-appropriate tool for modeling the distributed resource allocation problem of

small cell networks. In this thesis, I consider three different scenarios of distributed

resource allocation in self-organizing small cell networks i.e., i). Distributed downlink

power and spectrum allocation to ensure fairness for a small cell network of base sta-

tions with bounded rationality, ii). Distributed downlink power control for an ultra

dense small cell network of base stations with energy constraints, iii). Distributed

joint uplink-downlink power control for a small cell network of possibly deceitful nodes

with full-duplexing capabilities. Specifically, I utilize evolutionary games, mean field

games, and repeated games to model and analyze the three aforementioned scenarios.

I also use stochastic geometry, which is a very powerful mathematical tool that can



model the characteristics of the networks with random topologies, to design the payoff

functions for the formulated evolutionary game and the mean field game.
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4.8 Equilibrium power policy for ĉ(t, e) with uniform initial energy distri-

bution. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
4.9 Cross-section of the power policy for ĉ(t, e). . . . . . . . . . . . . . . 110
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Chapter 1

Introduction

1.1 Small Cell Networks

A simple communication system is composed of a transmitter, receiver and a commu-

nication channel. When it comes to wireless communications, electromagnetic radio

spectrum acts as the communication channel. History of wireless communications

runs back to pre-industrial age; however, early stages of wireless communications did

not provide much system capacity due to the inefficient usage of radio spectrum [1].

Later with the development of the revolutionary idea of cellular concept by AT&T

Bell Laboratories, capacity of the wireless communication systems increased substan-

tially. Cellular concept takes the advantage of the property of electromagnetic signals

that their power decay exponentially with the propagation distance. Due to this prop-

erty, same frequencies can be spatially reused without having significant interference.

A cellular network is composed of a set of fixed transceivers (which are called base

stations) to which the several mobile devices in the vicinity are connected. The spa-

tial coverage area of a base station is called a cell. After the development of this cell

concept, by far cellular wireless has become one of the most fastest grown industries

1



Chapter 1. Introduction

in the history.

Figure 1.1: Traditional cellular grid model.

Traditional grid cellular model is as shown in Fig. 1.1. The actual network

deployment may not be composed of ideal hexagon shaped cells as shown in the

figure, however the idea is similar. This type of a traditional cellular network is

called as a homogeneous network as the characteristics (transmit power, coverage

area etc.) of all base stations are almost identical.

However, the recent evolution of smart phones and various other mobile devices

have caused a significant enhancement in wireless traffic demand due to the expansion

of bandwidth craving mobile applications such as video streaming, video chatting, and

online gaming. This tremendous increase in wireless traffic demand has posed enor-

mous challenges to the design of future wireless networks. Traditional homogenous

cells (i.e., macro cells) will not be able to provide the increasing demand. Therefore,

in-addition to the homogeneous traditional cellular networks which has been used so

far, deploying different types of small cells (e.g., pico, micro, and femto) has been

2



Chapter 1. Introduction

proposed as an efficient and cost effective solution to support this constantly rising

demand. Due to the reduced distance between the transmitter and the receiver, link

quality would be higher in small cells. They would also provide more efficient spatial

reuse [2].

Small cells can also deliver some other benefits such as offloading the macro net-

work (traditional cellular network) traffic, providing service to coverage holes and the

regions with poor signal reception (e.g., macro cell edges). Following this trend, future

wireless networks [3, 4] are expected to be composed of hundreds of interconnected

heterogeneous small cells. Fig. 1.2 shows how different types of small cells can be

underlaid with a traditional macro cell. In addition to the small cells, as shown in the

figure, there also can be D2D communications. Moreover, the network is no longer

homogeneous; hence this type of networks are identified as heterogeneous networks

(HetNets).

Figure 1.2: Small cells underlaying a macrocell.

Different from the cautiously planned traditional homogeneous networks, the ar-

3
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chitecture of a HetNet is random and unpredictable due to the increased density of

small cells and their impromptu way of deployment. In this case, manual intervention

and centralized control used in traditional network management will be highly inef-

ficient and expensive. Instead, self-organization has been proposed as an essential

feature for future heterogeneous small cell networks. [5, 6]. Next section will provide

a comprehensive introduction to self-organizing small cell networks.

1.2 Self-Organizing Small Cell Networks

The basis of any self-organizing system is its autonomous and intelligent adaptivity,

i.e., the ability to respond to external environmental changes. Many literature in

the context of wireless networks suggest that a self-organizing network should learn

the environmental dynamics and adapt accordingly [7–9]. Specifically, for small cell

networks, detecting the environmental dynamics can be done based on local interac-

tions with other nodes and/or through spectrum sensing. In [10], the authors explain

that the adaptive behavior of each member of a self-organizing set should also lead

the whole system to form a global pattern which is called as the emergent behavior.

Each network node 1 is expected to take individual decisions on their behavior, i.e.,

distributed control.

Based on the above notions, the basic cornerstones of a self-organizing network

are identified as follows:

• Autonomous and intelligent adaptivity

• Ability to learn from the environment

• Emergent behavior

1A network node can be a base station or a user equipment.

4
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• Distributed control.

Specifically, when it comes to HetNets composed of thousands of small cells, self-

organization is preferred due to the following reasons.

• Numerous network devices with different characteristics are expected to be in-

terconnected in HetNet. Nonetheless, these devices are expected to be with the

‘plug and play ’ capability. Therefore, the initial pre-operational configuration

has to be done with minimum involvement of expertise.

• The spatio-temporal dynamics of the networks is now more unpredictable than

traditional systems due to the unplanned nature of the small cell deployment.

For example, the small cells can be deployed by the customer and in that case

the locations of those small cells are unknown to the operator. Therefore,

intelligent self adaptation by the network nodes is necessary.

• Centralized control will be highly inefficient and time consuming for a dense net-

work due to the high computational power and the huge amount of information

exchange required. Instead, small cell base stations (SBSs) should be capable

of taking individual decisions on resource allocation based on local interactions.

• Self-organization of the network will also prevent possible human mistakes in

configuration and network management which can drastically degrade the per-

formance of the network and can result the extensively long recovery times.

• Self-organization of the network could also reduce a considerable amount of

operational and capital expenditure (OPEX/CAPEX) due to all aforementioned

reasons.
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Self-Organizing Functionalities

In general, the self-organizing process of a small cell network can be divided into three

phases, i.e., pre-operational phase, operational phase, and failure recovery phase.

These three phases are called as self-configuration, self-optimization, and self-healing

respectively. These are also referred to as self-X functionalities [5, 11, 12].

A brief overview of the operation and associated functions of each phase of self-

organization is given below.

• Self-configuration: Self-configuration is performed in the pre-operational

process. During this phase, the small cell base stations connect to the network

and execute their initialization algorithms automatically. This functionality is

composed of basic set-up of the base station and the initialization of network

parameters.

• Self-optimization: The main task of self-optimization is to adapt automat-

ically with the network dynamics for the optimal performance. In order to

perform self-optimization, the network nodes need to measure certain network

parameters (e.g., number of users, traffic patterns, and traffic load) and collect

the information about the network conditions (e.g., channel gains). User ad-

mission, scheduling and resource allocation are some of the notable functions of

self-optimization phase.

• Self-healing: The network’s ability to detect, diagnose, compensate, and re-

cover from failures is identified as self-healing. The self-healing process is mainly

composed of three functions [13], i.e., fault detection, fault diagnosis, and fault

recovery.
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1.3 Distributed Resource Allocation for Self-organizing

Small Cell Networks

1.3.1 Overview

As explained above, self-organizing network nodes are expected to take individual

decisions on their behavior including the decisions on resource allocation. Conse-

quently, distributed resource allocation is a primary requirement for self-organizing

small cell networks. Resource allocation belongs to self-optimization and self-healing

phases of the above explained self-x functionalities. Significant and necessary features

of a resource allocation scheme for a self-organizing small cell network are explained

below.

• Stability : Stability of the algorithm is defined as its ability to converge within

acceptable iterations.

• Robustness : Robustness is the ability of an algorithm to reach back to a stable

state within a bounded duration of time in case of an unexpected change in the

system or environment which makes the system deviate from a stable sate.

• Scalability : The complexity of self-organizing algorithms should not increase in

an unbounded manner with the increase of network size. Less complex algo-

rithms which occupy less computation resource could make the network more

scalable. Also, the amount of information exchange should not increase un-

bounded with increase in the number of network nodes.

• Less computation cost : Some SBSs may not have high processing power as

that of traditional macro base stations. In this case, complex algorithms which

require high computation power may not be suitable for small cells.
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• Withstand imperfect information: With certain self-organizing algorithms, the

SBSs are expected to exchange information with nearby nodes (i.e., local inter-

actions). However, this information can be distorted due to the noisy backhaul

and can be delayed due to the time taken in processing and transmission. Chan-

nel State Information (CSI) can also be distorted or temporally unavailable due

to the fading experienced by feedback channels. Moreover, if the status of each

channel is estimated by spectrum sensing, the sensing result can be inaccurate.

• Limited backhaul : Unlike macro base stations which have a separate backhaul,

SBSs such as femto base stations connect to the core network via a IP-based

backhaul such as DSL. The same backhaul link may also be used for inter-

cell coordination and periodic information exchange required by self-organizing

algorithms.

1.3.2 Challenges in Designing Distributed Resource Allocation

Schemes for Self-Organizing Small Cells Networks

Designing of distributed resource allocation schemes for HetNets self-organizing small

cell networks which are with above explained features is challenging mainly due to

the following reasons:

• Increased interference

• Spatio-temporal interference dynamics are more random than in traditional

marcocellular networks as a result of the unpredictable deployment of small

cells.

• Increased amount of information has to be exchanged among network nodes.
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• Complexity of the resource allocation algorithms increases with the density of

network nodes.

• Interconnection of different types of small cells.

Moreover, there are only a very few mathematical tools which are capable of mod-

eling and analyzing distributed resource allocation problems; nevertheless implement-

ing all aforementioned properties may not be possible. Moreover, different networks

have different features and limitations; for example, some networks are ultra-dense,

some may composed of network nodes with limited energy (battery-powered base

stations) and some network nodes may have very limited backhaul capacity. Also,

network operators are also with different objectives such as ensuring fairness, min-

imizing total cost, or prevent cheating. Some network operators may interested in

resource allocation considering the instantaneous profit and on the other hand some

network operators may consider maximizing the profit over a certain period of time.

To this end, the mathematical tool modeling the resource allocation problem has to

be selected considering the characteristics of the network and the requirements of the

network operator.

Designing the properly fitting cost/payoff function (i.e., objective function) con-

sidering all these aspects is also challenging. Specifically, defining the cost functions

based on the network performance metrics (e.g., achievable data rate, delay, and

transmit power), modeling the network dynamics (e.g., randomness of the wireless

channel, randomness of the user locations and base station deployment, and mobility

of the users), meeting the requirements defined by the standards and realizing of the

self-organizing network characteristics have to be considered within the scope of the

mathematical tool used to model the resource allocation problem.
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1.4 Motivations and Objectives

1.4.1 Motivations

Motivated by the significance of implementing self-organizing techniques for future

heterogeneous networks, I aim at developing a rigorous scheme for distributed re-

source allocation of self-organizing small cell networks. Optimization is one possible

tool that can be used to model resource allocation problems in wireless networks.

However, once optimization is used, the problem is modeled in a centralized man-

ner and resultant resource allocation schemes would be centralized; hence, it is not

suitable for solving the resource allocation problems distributively at each node as

needed by self-organizing networks. Therefore, I adopt game theory to model the

distributed resource allocation problem as game theory provides a rich set of math-

ematical tools for modeling and analyzing distributed interactive decision making

problems of agents with conflicting interests. Main motivations of using game theory

to model the interactions of network nodes in self-organizing small cell networks are

summarized below.

• The heterogeneous network nodes in small cell networks can be deployed by

different operators/users and will be composed of multiple tiers (i.e., macro,

femto, pico, micro). The performance of one tier could be easily affected by the

behavior of other tiers. Therefore, modeling of interactive behavior is required.

Game theory models provide a mathematical framework to analyze the com-

petitive or cooperative interactions among the players in a multi-player system.

As a result, game theory is a good candidate for devising resource allocation

schemes for Self-Organizing Networks (SONs).

• Different network nodes could have different QoS requirements and can be self-
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interested. Each node takes individual decisions to meet her own requirements

rather than optimizing the system-wide performance. In this case, these nodes

may have conflicting interests. Such self-interested behavior can be easily mod-

eled by using game theory.

• The basic keystones of a self-organizing network are ability to learn from envi-

ronment, autonomous adaptivity, emergent behavior capability and distributed

control. In the context of game theory, the players could adapt their decisions to

obtain a better payoff (i.e., autonomous adaptivity). Also, after several adap-

tation iterations, the game could reach the equilibrium (emergent behavior). In

addition to that, players take the individual decisions based on the information

they have (i.e., distributed control).

• Game theory provides a natural tool to develop distributed self-organizing al-

gorithms as it allows local interactions and individual decision making. Local

interactions will reduce the amount information exchange among the nodes and

as a result the network becomes scalable and capable of operating with limited

backhaul conditions.

Many types of games which are applicable in different settings have been developed

so far in game theory (e.g., non-cooperative games, cooperative games, Stackelberg

games, Bayesian games, differential games, evolutionary games, etc.). The notion of

equilibrium can be different for different types of games. A comprehensive introduc-

tion to game theory is presented in next chapter.

Furthermore, I exploit stochastic geometry to design the payoff functions. Stochas-

tic geometry is a very powerful tool to analyze networks with random topologies (e.g.,

to evaluate interference experienced at a network node). Network nodes are modelled

via point processes that reflect their spatial locations.
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1.4.2 Objectives

The main objective of this research is to develop a new distributed resource allocation

framework for self organizing dense small cell networks underlaying macro-cellular

networks. However, as different small cell networks can have different features and

limitations, network operators may have different objectives for resource allocation.

Therefore, in particular, I study several system models of small cell networks with dif-

ferent characteristics and different objectives. Throughout this work, game theory is

used to model and analyze the interaction of the network nodes in each system consid-

ered. Subsequently, based on the game theoretic modeling and analysis, distributed

resource allocation techniques are proposed for each system model. The research also

analyze the convergence of the algorithms and effect of imperfect information/delay

to ensure the stability and robustness.

Particularly, in this work, I address three scenarios with different resource alloca-

tion objectives as noted below.

1. Downlink power-subcarrier allocation to ensure fairness among base

stations with bounded-rationality : Rational network nodes make rational

choices by evaluating possible outcomes of every other node in the network.

However, in a dense network there might be circumstances in which they are

unable to make rational choices individually, since rationality requires the nodes

to take the choices of all other nodes connected to the network into account. To

this end, I first consider distributed downlink joint power-subcarrier allocation

for a dense network with bounded-rational base stations who are not capable of

tracking the moves of all the other base stations in the network. Moreover, for

such a system, ensuring fairness is important as base stations may not individ-

ually try to maximize their performances due to bounded rationality.

12



Chapter 1. Introduction

2. Downlink power control for ultra-dense networks of base stations with

limited energy: Due to irregular deployment and increased density, small cell

base stations may not be connected to the grid power supply all the time. In-

stead, some small cell base stations may be battery operated, which necessitates

frequent recharge, or they can be powered through energy harvesting, which is

inherently opportunistic and random. For such a dense network of small cells

with non-guaranteed and limited energy supply, rather than spending energy

without considering future transmissions, it is important to consider maximiz-

ing each SBSs performance over a certain period of time considering the limited

energy it owns. In this case, network nodes have to take individual rational de-

cisions. Therefore, as the second scenario, I consider distributed energy aware

downlink power control for an ultra dense small cell network where each SBS

tries to maximize its performance over a given period of time.

3. Joint uplink-downlink power control for a small cell network of pos-

sibly deceitful nodes with full-duplexing capabilities: Full-duplex trans-

mission is a newly emerging technology in wireless communications where users

and base stations can receive and transmit simultaneously using the same fre-

quency band. Moreover, there can be some situations where network nodes are

not truthful to each other, but are deceitful and provide inaccurate informa-

tion to obtain more benefit than other nodes. As the third scenario, I consider

deriving a cheat-proof distributed power control technique for small cells with

full-duplexing capabilities.

Chapters 3, 4, and 5 of this thesis present each of the aforementioned scenarios.

Precise features of the system models and proposed resource allocation techniques

will be explained in each chapter. I discuss the related work in each chapter. That is,
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the related work for each system model and the corresponding game used to model

the system is presented and the novelty of the research presented in this thesis is

emphasized.

1.5 Contributions and Scope of the Thesis

In this thesis, I exploit different types of games to model small cell networks with dif-

ferent characteristics and different requirements. More specifically, three game models

are adapted and extended to model three different distributed resource allocation sce-

narios for self-organizing small cell networks, which have not been addressed in the

existing literature. In the following, a short discussion on the contributions of this

thesis is presented considering the each type game model used.

1. Evolutionary game-based distributed downlink subcarrier and power allocation

to ensure fairness for network nodes with bounded rationality

• Distributed downlink power and subcarrier allocation problem in self-

organizing small cell networks is formulated as an evolutionary game.

• A stochastic geometry-based approach is used to analyze the utilities of

the players in terms of average achievable SINR and average achievable

rate.

• A distributed algorithm of linear time complexity which ensures fairness

among the base stations is proposed to reach the evolutionary equilibrium.

• Stability of the equilibrium point and the effect of the delay in information

exchange is analyzed.

2. Mean field game based energy aware power control for ultra-dense networks
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• Downlink power control problem of a dense small cell network is formulated

as a differential game and extended to a mean field game for an ultra-dense

scenario.

• Using stochastic geometry-based analysis, two cost functions for the mean

field game are derived in such a way that the mean field game setting

becomes valid.

• Existence of the equilibrium is proven for the differential game and the

sufficient conditions for the uniqueness of the mean field game are derived.

• An offline algorithm is proposed to obtain the mean field equilibrium, i.e.,

energy aware power control algorithm.

3. Repeated game based cheat-proof power control for full-duplex small cells

• Joint downlink-uplink power control problem for a full-duplex small cell

networks is formulated as a non-cooperative repeated game with imperfect

public monitoring.

• Theoretical characterization of perfect public equilibrium of the formulated

repeated game is provided.

• A distributed learning algorithm with linear time complexity is provided

to achieve perfect public equilibrium distributively.

• A deviation detection and punishment policy is implemented in order to

prevent selfish network nodes deviating from the desired operating point

for their own benefit.

A more detailed discussion on the contribution will be provided in latter chapters

of the thesis.
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1.6 Organization of the Thesis

In Chapter 2, I present a high level overview on the basics of the mathematical tools

used in this thesis, i.e., i). an introduction to game theory and how different game

models have been used to solve various problems in wireless communications, ii). a

brief introduction to stochastic geometry. Then, Chapter 3, Chapter 4, and Chapter

5 present the core contribution of this thesis. Specifically, Chapter 3 explains the

evolutionary game based distributed resource allocation scheme. Chapter 4 and 5,

respectively, discuss the mean field game based power control for ultra-dense networks

and repeated game based cheat-proof power control for full-duplex small cell networks.

Chapter 6 summarizes and concludes the research presented in this thesis and explore

some directions for future research. Symbols and notations used throughout the

chapters are given in a table at the beginning of each chapter.
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Game Theory for Self-Organizing

Small Cell Networks

2.1 Fundamentals of Game Theory

Game theory provides a strong set of mathematical tools for modeling and analyzing

interactive decision making problems in which the interests of agents (i.e., players)

may conflict with each other. It is a well developed area in applied mathematics and

has been used primarily in economics to model competitions in markets. In recent

years, game theory has also been widely adopted to solve many problems in the area

of wireless communications [14,15]. A number of works have explored the applications

of game theory for the analysis and optimization of various issues in wireless systems,

in most cases to solve resource allocation problems in a competitive environment.

A game is a process in which the agents select certain strategies from their own

strategy sets and obtain payoffs according to the strategies of all agents. The choice of

a strategy can be made both simultaneously and non-simultaneously. In addition, an

agent may make decisions multiple times according to the game rule. A game consists
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of a set of players, a set of strategies available to those players, and a specification of

payoffs for each combination of strategies.

1. Set of players N : The set of decision makers involved in the game. The players

are assumed to be rational or bounded rational depending on the type of the

game.

2. Set of strategies (Si)i∈N : Strategies are the options that a player can select

depending on the state of the game. Here Si denotes the set of strategies of

player i ∈ N . A player’s strategy could contain a single action, multiple actions,

or probability distribution over multiple actions. As common in game theory,

S−i denotes the strategies of all players other than i. The state of a game

depends on the strategies taken by all the players (i.e., [si, s−i]). Note that

different players could have different strategy sets.

3. Payoff πi: The payoff represents the preference of each player under the current

strategy profile. The payoff could be modelled as a cost function ci(si, s−i), a

utility function ui(si, s−i), or a combination of both (e.g., in the form of equa-

tion (2.1)), where the cost function represents the cost of performing certain

strategies (e.g., transmit power) which needs to be minimized, the utility func-

tion represents the gain (e.g., profit of service providers) which needs to be

maximized.

πi(si, s−i) = u(si, s−i)− c(si, s−i). (2.1)

It is straightforward to see that a player’s payoff depends not only on her own

strategy but also on the strategies of all other players.
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2.2 Types of Games

As explained in Section 1.4, game theory is a well-fitting mathematical tool to model

distributed resource allocation problems in wireless networks. Different game mod-

els (e.g., non-cooperative/cooperative, static/dynamic) can be used to address dis-

tributed resource allocation problems in small cell networks the choice of which de-

pends on the characteristics of the network, applications, and also the objectives.

Different game theory models may differ considerably in structure from many as-

pects, e.g., number of players, number of strategies, and payoffs. The number of

players may vary in different games; i.e., finite or infinite. If a game has only one

player, the game becomes an optimization problem. In different games, the number

of strategies for players can be either finite (e.g., in a rock-scissor-paper game) or

infinite (e.g., in a pricing game). The analysis of a finite strategy game and an in-

finite strategy game are different. The summation of payoffs of all players may also

differ in different models. In general, this summation can be zero, a non-zero constant

number, or any arbitrary value. The game process is an important aspect in the game

structure. The players in a game may take actions simultaneously, in a certain order,

or in a repeated fashion, according to which the game can be referred to as a static

game, a dynamic game, and a repeated game, respectively.

Moreover, the assumptions of players’ rationality are different. Most of the game

theory models assume perfect rationality of players, while some models consider that

the players are with limited rationality (i.e., bounded rationality). According to the

above analysis, game models can be divided into the following categories.
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Non-cooperative vs. cooperative games

Non-cooperative games are the most popular type of games. In non-cooperative

games, the players are commonly considered to be rational and self-interested who

have fully or partially conflicting interests. Each player selects the strategy to opti-

mize her own payoff function. For non-cooperative games, the most commonly used

solution concept is Nash Equilibrium the definition of which is given as follows:

Definition Nash Equilibrium: Let si ∈ Si and s−i ∈ S−i. Then the NE strategy

profile
(
s∗i , s

∗
−i
)

is defined as

πi
(
s∗i , s

∗
−i
)
≥ πi

(
si, s

∗
−i
)

(2.2)

for all si ∈ Si and for all i ∈ N .

When the game reaches a Nash equilibrium, none of the players can improve her

payoff by changing strategy unilaterally. There are also other solution concepts such

as correlated equilibrium which can be considered as a generalized version of NE [16],

evolutionary equilibrium and dominant-strategy equilibrium.

There can be situations that players may make agreements to cooperate. Cooper-

ative game provides analytical tools to model and analyze the cooperative behavior of

rational players who may form coalitions. In this case, the members of each coalition

cooperate to maximize the coalition payoff and the competition is among coalitions

instead of among individual players.

Static vs. dynamic games

A static game is one in which a single decision (time irrelevant but may contain

multiple actions) is made by each player, and each player has no knowledge of the
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decisions made by other players before making her own decision. Decisions are made

simultaneously (or their order is irrelevant). A game is dynamic if the order in which

the decisions are made is important or the strategy itself is time-dependent. For

dynamic games, the dynamics can be abstracted from different aspects which lead to

different types of dynamic games listed as follows:

(i) Dynamic nature in games’ play order: The dynamic nature in games’ play (de-

cision) order leads to the development of multi-stage game (e.g., Stackelberg game).

In this case, the decisions are made asynchronously and the games’ play order is im-

portant. The players who move later can observe the decisions of the players who

move first and then make the decisions accordingly. Note that if multiple players

exist in one stage, the competition within this stage is usually formulated as a stage

game.

(ii) Dynamic nature in time dependency: The dynamic nature in the time de-

pendency leads to the development of differential game and evolutionary game. For

differential game, the strategy of a player is time-dependent (i.e., function of time

t). That is, the player seeks a best response strategy considering the entire time

horizon. For evolutionary game, the players adapt their strategies according to the

time-varying system state.

2.3 Design of Payoff Functions

Game theory was initially proposed and developed for economics and social sciences.

Therefore, properly fitting game models in the context of wireless communication is

challenging.

The payoff function should quantify the perceived preference or the satisfaction

level of a player. In the context of wireless networks, the user satisfaction level may
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depend on one or multiple performance metrics given as follows:

• Individual performance (e.g., rate, SINR, and delay)

• Global network performance

• Interference level caused to other network nodes

• Power/energy consumption

• User fairness

As self-organizing small cell technologies are still in its infancy, there is no well-

defined framework for designing the payoff functions. However, after a comprehensive

study on how game theory has been used in the existing literature to solve resource

allocation problems in traditional cellular networks and small cell networks, I intro-

duce some general approaches on how payoff functions can be designed for various

applications and objectives in the context of self-organizing small cell networks.

A payoff function π(x) is expected to satisfy the following criteria.

1. The non-stationary property: dπ(x)
dx

> 0, which states that the payoff increases

with the preference or satisfaction.

2. The risk aversion property: d2π(x)
dx2

< 0, which states that the payoff function

is concave. In other words, the marginal payoff of satisfaction decreases with

increasing level of satisfaction.

Depending on the objective, behavior, and rationality of the network nodes, dif-

ferent payoff functions are defined in the wireless communications literature. The

payoff/utility functions which can be applied in the context of small cell networks are

discussed below.
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1. Payoff functions for power consumption

Power/energy conservation is crucial in small cell networks as they might be

operated in energy-limited environment (e.g., power supplied by a battery). [17]

defines a simple energy aware payoff function as follows:

πi(e) =
Etot
ei

, (2.3)

where Etot is the total energy available for each player and ei is the energy

required by player i for transmission. Players would try to achieve a higher

payoff by reducing the transmission power.

2. Payoff functions for individual performance Instead of direct power minimiza-

tion as that in equation (2.3), it is more appropriate for self-organizing algo-

rithms to perform power control in such a way that the desired performance

can be satisfied. The following logarithmic payoff function with individually

perceived SINR as the input parameter can capture the self-interest of network

nodes and is used for power control in [18, 19]:

πi(si, s−i) = log(γi(si, s−i)), (2.4)

where γi is the SINR of the ith player. Such a logarithmic payoff function and

its extensions are most popular payoff functions used in the context of resource

allocation due to its simplicity and mathematical tractability [20]. For example,

such form of payoff can be used for subcarrier allocation (in OFDMA networks)

and joint power-subcarrier allocation as well.

Another widely used payoff function is the Shannon capacity or the maximum
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achievable rate which can be considered as an extended version of logarithmic

function of SINR as shown below:

πi(si, s−i) = ln(1 + γi(si, s−i)). (2.5)

3. Fairness utility function

One of the desired objectives of resource allocation is to provide fairness among

users instead of obtaining the optimum performance. The most widely used

payoff function which guarantees fairness is given below:

u(x) =


xa

a
, if a < 0,

log x, if a = 0,

(2.6)

where a ≤ 0. By twice differentiation of (2.6) with respect to x the following

can be obtained:

du(x)

dx
=


xa−1, if a 6= 0,

1
x
, if a = 0,

(2.7)

and

d2u(x)

dx2
=


(a− 1)xa−2, if a 6= 0,

−1
x2
, if a = 0.

(2.8)

It can be observed that the function given in equation (2.6) has both non-

stationary and risk aversion properties for all x > 0 since du(x)
dx

> 0 and d2u(x)
dx2

<

0.

4. System payoff functions

In self-organizing enabled small cell networks, a group of densely deployed small
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cells could form a cluster and cooperate with each other to enhance the per-

formance of the cluster [21]. In addition to that, cooperative games can also

be formulated to design self-organizing algorithms for small cells. Accordingly,

cooperative payoff functions, which reflect the overall network/cluster perfor-

mance, are required.

The simplest and most intuitive cooperative payoff function would be the sum

capacity/rate of the cluster/network as shown below:

πi(s) =
∑
j∈Ni

Cj(s), (2.9)

where N is the set of players in the ith cluster who cooperates with each other

and Cj is the capacity of the jth player.

5. Multi-dimensional payoff function

The payoff function can be designed considering multiple performance metrics.

In such cases, these multiple metrics could appear in the payoff function (most

case in a product form). One typical example is given as follows:

πi = πrate
i πdelay

i . (2.10)

6. Payoff function with cost

For a strategy adopted by a player, there could be a cost associated with it

(e.g., cost of using bandwidth, power consumption) or it may affect the perfor-

mance of other players (e.g., cause interference). This issue can be modelled by

introducing certain cost functions into the payoff function. In particular, the

payoff function (some may refer to this as net utility) can be defined to reflect
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both the satisfaction of the player (modelled by utility function) and the cost

(e.g., price per unit resource) as follows:

πi(si, s−i) = ui(si, s−i)−mx, (2.11)

where ui(si, s−i) is the utility based on the user satisfaction and m is the price

paid for each resource x.

[22] uses a net utility function with logarithmic payoff as given below:

πi(si, s−i) = ai log (1 + γi(si, s−i))− bimγi(si, s−i), (2.12)

where γi is the SINR of the ith user, ai and bi are weighting parameters and m is

the cost for the received SINR. The gain of maximizing γi could be neutralized

by the cost associated with the received SINR.

Guaranteeing the existence of equilibrium is one of the essential features of any

game formulation. It is straightforward that the existence of equilibrium, conver-

gence, and stability of the equilibrium is highly related to the payoff function and

the structure of the game. Therefore, special payoff function can also be designed to

fit the game model into special structures (e.g., super-modular, potential). Polyno-

mial time computability is another important feature of a payoff function. Besides,

when it comes to self-organizing small cell networks, the ability to compute with local

information or with reduced information exchange is also highly desirable.
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2.4 Game Models for Distributed Resource Allocation in

Small Cell Networks

Eventhough game theory has been used widely to solve various problems in wireless

networks, distributed resource allocation for self-organizing small cells is relatively a

new and less addressed problem by the research community. In this section, I provide

few examples on how various game models have been used to develop distributed

resource allocation techniques in existing literature. A detailed discussion on related

work for each scenario considered in this thesis and corresponding game is provided

in each chapter.

2.4.1 Related Work

Game theory has been used to address the resource allocation and interference man-

agement problem in wireless networks [23–28] extensively. A two-tier resource allo-

cation problem is formulated as a Stackelberg game in [25], where the macro base

station (MBS) acts as the leader and the femto base stations are the followers. Then

a distributed algorithm is proposed to achieve the equilibrium. In [29], game theory

is used for resource allocation in an OFDMA-based small cell network. The authors

investigate the performance of two games. The first is a non-cooperative game where

the macro and the femto users try to improve their individual payoffs in a selfish

manner. The second is a hierarchical game where the players try to improve the

overall network efficiency. The hierarchical game model relies on the perfect knowl-

edge of the channel state information at the leader side which is not realistic in a

practical situation. Therefore, the authors propose a reinforcement learning process.

In [30], the authors propose a reinforcement learning algorithm which converges to an
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ε Nash equilibrium. The equilibrium is achieved through the smoothed best response

(SBR) dynamics. The convergence of the SBR algorithm to an ε Nash equilibrium

is guaranteed for a payoff function which depends on the sum rate of the entire net-

work. [31] presents a non-cooperative potential game formulation for decentralized

interference control in the downlink of an OFDMA network. Subcarrier allocation in

this scheme is based on a game theoretic approach and power allocation is done by

an optimization approach. This scheme also relies on the availability of all channel

gains. Achieving Nash equilibria in a distributed manner based on fictitious play

under certain conditions has been studied in [32] and [33].

A summary on how different game models have been used to solve several other

resource allocation problems in small cells distributively is provided in Table 2.1.

2.4.2 Stochastic Geometry for Payoff Function Design

As explained in the previous chapter, network geometry of future wireless networks

will be random due to the unplanned nature of the deployment of small cells. Network

geometry has a substantial impact on the interference and hence on SINR experienced

by each network node. Moreover, most of the performance metrics of the network

such as maximum achievable rate, outage probability, energy efficiency and spectral

efficiency are direct functions of SINR at network nodes. When applying game theory

to model resource allocation problems in small cell networks, as explained in Section

2.3 payoff has to be defined as a function of one or few of these performance metrics.

Thus, modeling and approximating the interference experienced at each network node

is significant in designing payoff functions for self-organizing small cells. In this regard,

I use stochastic geometry as a mathematical tool to model the network topologies and

approximate the performance metrics such as interference, SINR and rate in order to
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Chapter 2. Game Theory for Self-Organizing Small Cell Networks

design payoff functions.

Stochastic geometry is a branch of mathematics which studies of random spatial

point patterns. Recently, stochastic geometry has been used as a mathematical tool

to model and analyze the networks with random topologies such as ad hoc networks

and multi-tier HetNets [44]. In stochastic geometry analysis, based on the network

topology, different point processes are used to model the positions of the network

nodes.

Point Processes

A stochastic point process is a type of random process of which each realization is

composed of a set of isolated points either in time or geographical space, or even in

more general spaces. In stochastic geometry modeling, point processes are used to

abstract the spatial deployment of network nodes. Different point process such as

Poisson point process (PPP), Binomial point process (BPP), Hard core point process

(HCPP) and Poisson cluster process (PCP) are used in literature to model different

wireless networks. Among all this, in this thesis I use PPP to model the spatial

distribution of network nodes. The formal definition of a Poisson point process is as

follows.

Definition Poisson Point Process

let Φ be a point process in RN with intensity λ. Φ is a Poisson point process if and

only if following conditions are satisfied.

1. The number of point which belongs to Φ in any compact set C ⊂ R
N is a

Poisson random variable.

2. Numbers of points in any two disjoint sets in RN are independent.
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Chapter 2. Game Theory for Self-Organizing Small Cell Networks

Probability of number of points of Φ in any compact region of area A (i.e., N(A))

being equal to k is given by the following equation.

Pr (N(A) = k) =
(λA)k e−λdA

k!
. (2.13)

It is reasonable enough to abstract the spatial distribution of small cell base sta-

tions and users by PPPs due to their independent and random way of deployment.

Further, it has been shown that the results obtained using PPP assumption are within

1-2 dB accurate with the actual measurements of heterogeneous LTE networks [45].

PPP is also more analytically tractable than other point processes.

The mathematical tools introduced above will be used throughout this thesis.

Next three chapters present the core contribution of the thesis.
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Chapter 3

An Evolutionary Game for

Distributed Resource Allocation

In this chapter, I propose an evolutionary game theory (EGT)-based distributed re-

source allocation scheme for small cells underlaying a macro cellular network. EGT is

a suitable tool to address the problem of resource allocation in self-organizing small

cells since it allows the players with bounded-rationality to learn from the environ-

ment and take individual decisions for attaining the equilibrium with minimum in-

formation exchange. EGT-based resource allocation can also provide fairness among

users. I have shown how EGT can be used for distributed subcarrier and power al-

location in orthogonal frequency-division multiple access (OFDMA)-based small cell

networks while limiting interference to the macrocell users. Two game models are

considered, where the utility of each small cell depends on average achievable signal-

to-interference-plus-noise ratio (SINR) and data rate, respectively. For the proposed

distributed resource allocation method, the average SINR and data rate are obtained

based on a stochastic geometry analysis. Replicator dynamics is used to model the

strategy adaptation process of the small cell base stations and an evolutionary equi-
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librium is obtained as the solution. Based on the results obtained using stochastic

geometry, the stability of the equilibrium is analyzed. I also extend the formulation by

considering information exchange delay and investigate its impact on the convergence

of the algorithm. Numerical results are presented to validate the theoretical findings

and to show the effectiveness of the proposed scheme in comparison to a centralized

resource allocation scheme.

3.1 Introduction

3.1.1 Overview

In this chapter, I utilize evolutionary game theory (EGT) [46] to develop a dis-

tributed subcarrier and power allocation scheme for downlink transmission in or-

thogonal frequency-division multiple access (OFDMA)-based small cell networks un-

derlaying a macro cellular network. The SBSs are considered to be self-interested each

of which aims to improve its own performance (e.g., in terms of signal-to-interference-

plus-noise ratio [SINR] or average achievable rate) while limiting interference to the

macrocell network. Each SBS takes individual decisions on the selection of a subcar-

rier and a power level for its downlink transmission. Since simplicity is an important

requirement for distributed resource allocation in self-organizing networks, the SBSs

are considered to be with only bounded-rationality1. Different from the traditional

game models, in the EGT model, each player (i.e., an SBS) selects a strategy by

replication and can adapt its selection for a better payoff (i.e., evolution). Accord-

ingly, EGT focuses on the dynamics of the strategy adaptation in the population. A

population is the set of players involved in the game. The behavior of the population

1This is different from the traditional rationality assumption used in noncooperative game models
to obtain the Nash equilibrium. The rationality implies complete information and strong computa-
tion capability of each player to calculate the best response to other players’ strategies.
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can be described by the numbers of its members choosing each pure strategy.

The key features of this EGT-based solution are its simplicity and reduced amount

of information exchange among the network nodes. Also, the EGT-based resource

allocation can provide fairness among all SBSs. The proposed algorithm does not

rely on the perfect knowledge of real-time channel state information, which makes it

suitable for densely deployed small cell networks.

3.1.2 Contribution

The main contributions of this chapter can be summarized as follows:

1. I formulate the distributed power and subcarrier allocation problem in self-

organizing small cell networks as an evolutionary game with the SBSs as the

players. The strategy adaptation process of the SBSs is modelled by replicator

dynamics and the evolutionary equilibrium is obtained as the solution. Specif-

ically, I formulate two games based on two different utility functions for the

players.

2. A stochastic geometry-based approach is used to analyze the utilities of the

players in terms of average achievable SINR and average achievable rate. The

accuracy of the analytical results is validated by simulations.

3. A distributed algorithm is proposed to reach the evolutionary equilibrium and

its performance is compared with that of an optimization-based centralized

resource allocation scheme.

4. Based on the results obtained from stochastic geometry-based analysis, the

stability of the equilibrium is analyzed for the case when the utility of the users

is given by their achieved average SINR.
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5. I extend the formulation by considering information exchange delay and study

its impact on the convergence of the algorithm.

3.2 Related Work

Recently, EGT (Evolutionary Game Theory) has been adopted to solve wireless com-

munications and networking problems. Application of evolutionary coalitional game

theory to solve various problems in wireless networking can be found in [47]. The pa-

per also explains the open issues and trends in the field. [48] proposes a reinforcement

learning-based distributed mechanism for strategy and payoff learning in wireless

networks. The stability of the learning algorithm is discussed based on evolutionary

game dynamics. An EGT-based method is used in [49] to solve the problem of net-

work selection in an environment where multiple networks are available. In [50], the

authors present an EGT-based framework to analyze the interaction of mobile users

in a WCDMA system. In [51], the service selection in small cell networks is modeled

and analyzed by using evolutionary game theory.

EGT-based resource allocation for small cell networks is proposed in [52]. The

problem of subcarrier and power allocation for small cell networks underlaying a

macro network is formulated as an evolutionary game. The authors propose two

techniques to attain the evolutionary equilibrium. One is based on replicator dynam-

ics and the other is based on reinforcement learning. They also study the ‘replication

by imitation’ approach to reach the equilibrium. In [53], the authors propose an inter-

cell interference coordination technique inspired by evolutionary games. Interference

mitigation is done by power allocation and the proper selection of subcarriers for each

base station. They also compare the performance of EGT-based resource allocation

with different reinforcement learning algorithms. In this chapter, I develop an EGT-

35



Chapter 3. An Evolutionary Game for Distributed Resource Allocation

based distributed resource allocation scheme for self-organizing small cell networks

with a more rigorous and detailed analysis. Different from the other related work in

the literature, I use a stochastic geometry-based approach to analyze the stability of

the equilibrium of the evolutionary game. I also investigate the effect of information

exchange delay on the convergence performance of the distributed resource allocation

algorithm.

3.3 System Model and Assumptions

I consider the downlink transmission of an OFDMA-based two-tier cellular network

composed of macrocells and a set of underlaying self-organizing small cells. The

macro network is considered to be infinite and modeled by an infinite homogeneous

Poisson point process (PPP) Φm in R2. The density of Φm is given by λm. For resource

allocation, I focus on a generic small cell cluster (see Fig. 3.1) which is located inside a

macrocell. I assume that the cluster is highly dense and the propagation environment

has a high path-loss exponent. Due to the high path-loss exponent and the low

transmit power of the small cell base stations, the interference is significant only from

transmitters located in a small area around the receiver. The interference coming from

the further small cell base stations is negligible. Therefore, for a generic user inside

the small cell cluster, the total aggregate interference due to the SBSs (inside and

outside of the cluster) would be approximately same as the interference only due to

the base stations inside of the cluster. In other words, due to the low transmit power

and high path-loss, the small cell cluster has the similar effect as a large network to

a generic user inside the cluster. The spatial distribution of a large number of points

which are randomly distributed over a large area can be well approximated by an

infinite homogeneous Poisson point process (PPP) [54,55]. Following this, to analyze
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the effect of interference, the small cell cluster is also approximated by an infinite

homogeneous PPP denoted by Φs. The density of Φs is given by λs.

Moreover, I assume that the average channel gain from a generic SBS inside the

cluster to the macro user(s) within the same macrocell receiving on the same subcar-

rier is known. For simplicity, it is also assumed that each SBS serves only one user at

a time which is at a distance rs (equal to the small cell radius) from its serving SBS.
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Figure 3.1: A cluster of small cells considered for resource allocation.

The macrocell and the small cells share the same set N = {1, 2, ..., N} of orthog-

onal subcarriers for downlink transmission. In the context of self-organizing small

cell networks, each SBS selects one subcarrier from the available subcarriers. 2 They

are also capable of selecting a transmit power level from a finite set of values. Let

L = {1, 2, ..., L} denote the set of power levels [30].

Each SBS should select a suitable subcarrier-power combination which is referred

to as the “transmission alignment” of that SBS. For each subcarrier n, there is a

threshold for the maximum aggregate interference that can be caused by the entire

2Considering the case where the SBSs select multiple subcarriers will require us to consider a
larger strategy set in the game formulation. This issue will be further discussed in Section 3.4.
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small cell cluster to the macro users. The maximum allowable aggregate interference

depends on the user’s QoS constraint (e.g., SINR constraint) and the channel gain

between the base station and the user. This threshold is a pre-defined value denoted

by T (n). An SBS may receive a penalty or reward depending on whether the interfer-

ence constraint for macro users is violated or not. The penalty or reward is modeled

in the payoff function which will be explained in Section 3.4.

For SBS k, the transmit power vector is defined by Pk = (p
(1)
k , p

(2)
k , ..., p

(N)
k ),

where each element p
(n)
k is the transmit power level of the kth SBS over subcarrier

n. If subcarrier n is not used by SBS k, then p
(n)
k = 0. Since I assume that each

SBS selects only one subcarrier for its transmission, only one element of Pk will be

non-zero.

The received SINR of the small cell user served by a generic SBS k over subcarrier

n with power level l can be written as follows:

SINR
(n)
l =

g
(n)
k,kpl

N0 +
∑

m∈Im,(n)k
g

(n)
m,kpm +

∑
j∈Is,(n)k

g
(n)
j,k p

(n)
j

, (3.1)

where g
(n)
j,k is the channel gain between the transmitter j and receiver k over subcarrier

n, and N0 is the variance of the additive white Gaussian noise at the receiver. The

subscript m denotes the macro base station (MBS)/macro user. Im,(n)
k and Is,(n)

k

denote the set of interfering MBSs and SBSs, respectively, on subcarrier n. Note that

g
(n)
j,k incorporates the path-loss and fading for which Rayleigh fading is considered. pm

denotes the transmit power of the MBS and pl denotes the transmit power of an SBS

which uses power level l. It is also assumed that at any given time instant, the MBSs

transmit on all subcarriers with the same power level pm.3

3This can be considered as the maximum transmit power at a macro BS. That is, for simplicity,
I do not consider downlink power control at the macro BSs, which would depend on the subchannel
and power allocation methods adopted by the macro BSs as well as the locations of the macro users
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The interferer set Im,(n)
k can also be modelled by the point process Φm. Specifically,

Φm is modelled by a Poisson Point Process (PPP). Denoted by λ
(n)
s the intensity of

the small cell interferer set Is,(n)
k . The value of λ

(n)
s is given by

λ(n)
s = λs ×

(
L∑
l=1

x
(n)
l

)
, (3.2)

where λs is the intensity of the SBSs and x
(n)
l is the proportion of SBSs who transmit

on subcarrier n with power level l.

It is also assumed that the small cell users have a perfect delay-free feedback

channel to their base stations. Later in this chapter, I will relax this assumption by

extending the formulation to explicitly consider the delay due to information exchange

between users and the corresponding SBSs.

All the symbols that are used in the system model and the rest of the chapter are

listed in Table 3.3.

3.4 Evolutionary Game Formulation

In this section, I first give the evolutionary game formulation for distributed resource

allocation in self-organizing small cell networks. The replicator dynamics is used to

model the strategy adaptation process. The evolutionary equilibrium is considered

to be the solution of the formulated game and its stability is analyzed. I also extend

the formulation by considering information exchange delay.

and their channel conditions.

39



Chapter 3. An Evolutionary Game for Distributed Resource Allocation

Table 3.1: Chapter 3: Symbols

Symbol Description

α Path-loss exponent
Φm PPP which represents the spatial distribution of MBSs
Φs PPP which represents the spatial distribution of SBSs
λm Density of Φm

λs Density of Φs

πa Payoff of an SBS selecting action a
τ Delay in information exchange
A Set of transmission alignments (actions)
Ac Area of the small cell cluster
di,k Distance between the BS i and user k

F
(n)
l Number of SBSs on subcarrier n and power level l

g
(n)
j,k Channel gain between BS j and user k on subcarrier n

Im,(n)
k Set of interfering MBSs for user k on subcarrier n

Is,(n)
k Set of interfering SBSs for user k on subcarrier n
K Number of SBSs
ka Number of SBSs selecting action a
L Set of power levels
Lf(x)(v) Laplace transform of f(x)
N Set of subcarriers
N0 Noise variance

p
(n)
k Transmit power of SBS k on subcarrier n
pl Transmit power of an SBS using power level l
pm MBS transmit power
rs Radius of a small cell

r
(n)
l Achievable rate of an SBS on subcarrier n, power level l

T (n) Interference threshold for macro users on subcarrier n
w1, w2 Biasing factors
xa Proportion of SBSs using action a

x
(n)
l Proportion of SBSs using subcarrier n, power level l

40



Chapter 3. An Evolutionary Game for Distributed Resource Allocation

3.4.1 Game Formulation

The adaptive subcarrier-power allocation among bounded-rational SBSs can be for-

mulated as an evolutionary game as follows:

Set of players (K): The set of small cell base stations K = {1, 2, ..., K} denote the

set of players of the game.

Set of actions (A): The SBSs (i.e., the players) are interested in selecting a suitable

transmission alignment (i.e., subcarrier-power level combination). According to the

system model, each player has C = |L| × |N | transmission alignments. Accordingly,

I define the action set for each player as A = {a1, ..., aC} which includes all possible

transmission alignments.

Note that it is also possible to consider the case where each SBS selects multi-

ple subcarriers. Then the number of actions available for a player will be equal to∑N
r=1

(
N
r

)
|L|r. For simplicity of analysis, in this work I assume that each SBS selects

only one subcarrier for transmission.

Population: In the context of an evolutionary game, the set of players also con-

stitutes the population. Denote by K and ka the total number of SBSs in the cluster

and the number of SBSs selecting action a ∈ A, respectively. Then the frequency of

action a used in the population is given by

xa =
ka
K
, (3.3)

where the frequency xa is also referred to as the population share of action a. The

population share of all actions constitute the population state denoted by a vector

x = [x1 x2 · · · x|A|]
T . Note that x

(n)
l = xa, where action a corresponds to the

selection of subcarrier n and power level l. In the remaining of this chapter, I use
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x
(n)
l and xa interchangeably.

Payoff function: The payoff of an SBS quantifies its satisfaction level of selecting

action a for which two components are considered. The first component measures the

utility of an SBS when certain transmission alignment is used. The second component

is a penalty (or reward) term depending on whether the aggregate interference from

the small cell cluster to the macro user receiving on the selected subcarrier exceeds

the threshold or not. In this case, the protection to the macro users can be provided.

Specifically, the payoff of an SBS selecting action a is defined as

πa = π
(n)
l = w1

(
U(SINR

(n)
l )
)
− w2

(
I(n)
m − T (n)

)
, (3.4)

where w1 and w2 are biasing factors which can be determined based on which network

(i.e., macro or small cell network) should be given priority in resource allocation.

U(SINR
(n)
l ) is a utility function measuring the achieved performance. T (n) is the

interference threshold for subcarrier n. I
(n)
m is the aggregate interference caused by

the small cell cluster which needs to be estimated. Denote by F
(n)
l the number of

SBSs transmitting using subcarrier n and power level l. I
(n)
m can be approximated by

the following expression:

I(n)
m =

K∑
k=1

p
(n)
k ḡ

(n)
h,m, (3.5)

or equivalently,

I(n)
m =

L∑
l=1

F
(n)
l pl ḡ

(n)
h,m = ḡ

(n)
h,m Acλs

L∑
l=1

x
(n)
l pl, (3.6)

where Ac is the area of the small cell cluster, ḡ
(n)
h,m is the average channel gain from

a generic SBS to the macro user receiving on subcarrier n, and x
(n)
l is the fraction of
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SBSs transmitting on subcarrier n with power level l.

Specifically, I consider two utility functions as follows4:

U1(SINR
(n)
l ) = E

[
SINR

(n)
l

]
, (3.7)

and

U2(SINR
(n)
l ) = E

[
r

(n)
l

]
. (3.8)

Accordingly, for an SBS selecting action a, corresponding payoff functions for each of

the above utilities π
(1)
a and π

(2)
a can also be written as follows:

π(1)
a = (π(1))

(n)
l = w

(1)
1 E

[
SINR

(n)
l

]
− w(1)

2

(
I(n)
m − T (n)

)
, (3.9)

and

π(2)
a = (π(2))

(n)
l = w

(2)
1 E

[
r

(n)
l

]
− w(2)

2

(
I(n)
m − T (n)

)
. (3.10)

With the above definitions, two evolutionary games G1 and G2 are defined as

follows:

G1 =
(
K,A, π(1)

a )
)
, (3.11)

and

G2 =
(
K,A, π(2)

a )
)
. (3.12)

Hereafter, superscripts “(1)” and “(2)” will be used in payoff (πa), utility (u), and

population share (xa) to denote games G1 and G2, respectively.

4Later in this chapter I will show that these two utility functions result in different convergence
behaviors of the proposed resource allocation algorithm and also different amount of average in-
terference caused to macro users. Also, these functions can correspond to two different types of
application requirements.
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3.4.2 Dynamics of Adaptation of Transmission Alignment

In the context of the evolutionary game for transmission alignment selection, each

SBS will adapt its strategy according to its received payoff. This is referred to as the

evolution of the game during which the strategy adaptation of SBSs will change the

population share, and therefore, the population state will evolve over time.

In this case, the population share xa and population state x are functions of time t

which can be denoted as xa(t) and x(t), respectively. The strategy adaptation process

and the corresponding population state evolution can be modeled and analyzed by

replicator dynamics, which is a set of ordinary differential equations defined as follows:

ẋa(t) = xa(t) (πa(t)− π̄(t)) , (3.13)

for all a ∈ A, with initial population state x(0) = x0 ∈ X, where X is the state

space which contains all possible population distributions. πa is the payoff of each

SBS choosing transmission alignment a and π̄ is the average payoff of the entire

population. The average payoff π̄ is given by

π̄ =
∑
a∈A

πaxa. (3.14)

The replicator dynamics governs the rate of strategy (i.e., transmission alignment)

adaptation of the population. As the game (either G1 or G2) is repeated, each SBS

observes its own payoff and compares it with the average payoff of the system. Then,

in the next period, the SBS randomly selects another strategy if its payoff is less than

the average. According to the replicator dynamics, the number of SBSs selecting

transmission alignment a will increase if the corresponding payoff is higher than the

average (i.e., πa > π̄).
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Lemma 3.4.1. With the replicator dynamics defined in (3.13), the summation of all

population shares of all strategies in A can be guaranteed to be equal to one during the

evolution of transmission alignment selection. Also, each population share xa strictly

falls in [0,1].

Proof. The summation of the variation of rate of all population shares can be obtained

as

|A|∑
a

ẋa(t) =

|A|∑
a

xa(t)πa(t)−
|A|∑
a

xa(t)π̄(t). (3.15)

According to the definition, π̄(t) =
∑|A|

a=1 xa(t)πa(t). Therefore, with the initial condi-

tion
∑|A|

a xa(0) = 1, we have
∑|A|

i ẋa(t) = 0 which indicates that the summation of all

population shares does not vary with time. Also, we have ẋa(t) ≤ 0 with xa(t) = 1,

and ẋa(t) ≥ 0 with xa(t) = 0. Therefore, xa(t) ∈ [0, 1] can be guaranteed for all

t ∈ [0,∞).

3.4.3 Delay in Replicator Dynamics

In the evolutionary game of transmission alignment selection, the payoff of an SBS

at a particular time depends on the strategies of all players in the population (i.e.,

the population state) at that time. However, in practical networks, the information

about the population state and average payoff may be delayed due to the latency in

the signaling channels. Therefore, there is a gap between the time that a population

state arises and the time that the population state impacts the payoffs of the SBSs.

In that case, the SBSs have to make their decisions based on the previously received

data. Denote by τ the delay in information exchange. Then the decisions of SBSs

on transmission alignment selection at time t are made according to the population
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state at t − τ . This delay impacts the strategy adaptation process (i.e., replicator

dynamics). Specifically, the rate of variation of population share adopting a particular

strategy is proportional to the difference between the delayed payoff for that strategy

and the delayed average payoff of the population. In this case, the replicator dynamics

with delayed information can be written as a set of delayed differential equations as

shown below:

ẋa = xa(t− τ) (πa(t− τ)− π̄(t− τ)) . (3.16)

With delayed replicator dynamics, I investigate the impact of information ex-

change delays on the convergence of strategy adaptation process to the equilibrium.

To quantify the players’ payoff functions in the game formulation presented above,

in the following section, I use stochastic geometry-based analysis to obtain average

SINR and average transmission rate for a user served by a generic SBS with a certain

transmission alignment.

3.5 Analysis of Average SINR and Achievable Rate

At each step of the population evolution of the game G1 and G2, due to the bounded

rationality of the players, the selection of transmission alignment is random. During

the population evolution of the game, the penalty term in the payoff function affects

how many SBSs selects a particular transmission alignment. However, the spatial

distribution of the SBSs transmitting on each subcarrier is still random. Therefore,

a PPP can be used to model their spatial distribution.

According to Slivnyak’s theorem [56], the statistics for a PPP is independent of

the test location. Therefore, the analysis holds for any generic small cell user located

at a generic location.

By explicitly incorporating the distance gain, the instantaneous SINR for a generic
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user served by SBS k in (3.1) can be rewritten as

SINR
(n)
l =

h
(n)
k,kr

−α
s pl

N0 +
∑

i∈I(n)k
h

(n)
i,k d

−α
i,k p

(n)
i

, (3.17)

where h
(n)
i,k and di,k are the channel gains due to fading and the distance between

the base station i and user of SBS k, respectively, α is the path-loss exponent, and

I(n)
k denotes the union of the two interferer sets. That is, the interfering set I(n)

k is

composed of two sets, i.e., the set of macro interferers Im,(n)
k and the set of small cell

interferers Is,(n)
k .

3.5.1 Average Received SINR

The expected average SINR of a user attached to SBS k, receiving on subcarrier n

with power level l, is given by

E
[
SINR

(n)
l

]
= E

h
(n)
k,k,i∈I

(n)
k

 h
(n)
k,kr

−α
s pl

N0 +
∑

i∈I(n)k
h

(n)
i,k d

−α
i,k p

(n)
i

 . (3.18)

Since the expectation of any positive random variable X is given by E[X] =∫∞
0

Pr (x > t) dt,

E
[
SINR

(n)
l

]
= E

i∈I(n)k

∫ ∞
t=0

Pr

h(n)
k,k >

rαs

(
N0 + I

(n)
k

)
t

pl

 dt

 ,
(3.19)

where I
(n)
k =

∑
i∈I(n)k

h
(n)
i,k d

−α
i,k p

(n)
i is the aggregate interference at the receiver served

by SBS k on subcarrier n.
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Assuming Rayleigh fading, which results in exponentially distributed channel

power gains (i.e., h
(n)
k,k ∼ exp(µ)),

E
[
SINR

(n)
l

]
= E

i∈I(n)k

∫ ∞
t=0

exp

−µrαs
(
N0 + I

(n)
k

)
t

pl

 dt

 . (3.20)

By averaging over all possible interferers, the following can be derived.

E
[
SINR

(n)
l

]
=

∫ ∞
t=0

exp

(
−µtr

α
sN0

pl

)
∫
i
s,(n)
k ∈Is,(n)k

exp

(
−µtr

α
s i
s,(n)
k

pl

)
f
I
s,(n)
k

(i
s,(n)
k )di

s,(n)
k∫

i
m,(n)
k ∈Im,(n)k

exp

(
−µtr

α
s i
m,(n)
k

pl

)
f
I
m,(n)
k

(i
m,(n)
k )di

m,(n)
k dt. (3.21)

Let v = µtrαs
pl

. Then

∫
i
m,(n)
k ∈Im,(n)k

exp

(
−µtr

α
s i
m,(n)
k

pl

)
f
I
m,(n)
k

(i
m,(n)
k )di

s,(n)
k

=

∫
i
m,(n)
k ∈Im,(n)k

exp
(
−vim,(n)

k

)
f
I
m,(n)
k

(i
m,(n)
k )di

s,(n)
k

= L
I
m,(n)
k

(v),

where L
I
m,(n)
k

(v) is the Laplace transform of the Probability Density Function (PDF)

of aggregate interference5 coming from macro network (i.e., cross-tier interference) at

a generic user k receiving on subcarrier n.

Similarly, integration over the set Is,(n)
k in (3.21) can be reduced as L

I
s,(n)
k

(v) which

is the Laplace transform of the interference caused by the small cell network (i.e., co-

5For notational convenience, this is simply referred to as the Laplace transform of the aggregate
interference.
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tier interference) at the user k on subcarrier n. Substituting into equation (3.21), the

following can be derived.

E
[
SINR

(n)
l

]
=

∫ ∞
t=0

exp (−vN0)L
I
m,(n)
k

(v)L
I
s,(n)
k

(v) dt. (3.22)

The derivation of the Laplace transform of the aggregate interference has been

well explained in several previous work [57], [58]. However, since these works assume

constant transmit power, the derived expressions in these work cannot be directly used

for the analysis in this case. For this system model, the expectation of the Laplace

transform has to be taken with respect to the point process for the interferers, the

Rayleigh fading gain, and also the transmit power.

Recall that Is,(n)
k denotes the point process representing the spatial distribution

of the interfering small cell base stations. Then L
I
s,(n)
k

(v) can be expressed as follows:

L
I
s,(n)
k

(v) = EIs,(n)k

[
exp

(
−vIs,(n)

k

)]
= EIs,(n)k

E
h
(n)
i,k

Epi

exp

−v ∑
iεIs,(n)k

pid
−α
i,k h

(n)
i,k




= EIs,(n)k

[
Π
i∈Is,(n)k

E
h
(n)
i,k

Epi

[
exp

(
−vpid−αi,k h

(n)
i,k

)]]
,

(3.23)

where pi denotes the transmit power of an SBS (pi ∈ {p1, p2, · · · , pL}).

Due to the random selection of transmission alignments at each step of the pop-

ulation evolution, Is,(n)
k can also be modeled by a PPP with the intensity given by

(3.2). The Probability Generating Functional (PGFL) of a 2D PPP Φ can be written
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as follows [57]:

EΦ[Πx∈Φf(x)] = exp

(
−λ
∫
R2

(1− f(x)) dx

)
, (3.24)

where λ is the intensity of the point process. Therefore, L
I
s,(n)
k

(v) can be written

follows:

L
I
s,(n)
k

(v) = exp

(
−λ(n)

s

∫
R2

(
1− E

h
(n)
i,k

Epi [exp(−vpid−αi,k h
(n)
i,k )]

))
= exp

(
−2πλ(n)

s

∫ ∞
di,k=0

(
1− E

h
(n)
i,k

Epi [exp(−vpid−αi,k h
(n)
i,k )]

)
di,k ddi,k

)
,

(3.25)

where λ
(n)
s is the intensity of interfering SBSs on subcarrier n. Note that although the

lower limit of the integration over di,k is considered as zero in this work, there can be

a minimum separation between the base stations in practical networks. However, in

that case the expression in (3.25) will have an incomplete gamma function and hence

the expression for average SINR will not be simplified into a closed form.

By simplifying the expression given in (3.25) (see Appendix A.1), the Laplace

transform of the aggregate interference caused by the small cell network is given by

equation (3.26) as follows:

L
I
s,(n)
k

(v) = exp

{
−πλ(n)

s Eps [p
2
α
s ]E

h
(n)
i,k

[h
(n)
i,k

2
α ]v

2
αΓ

(
1− 2

α

)}
,

(3.26)

where Γ(z) is the complete Gamma function given by, Γ(z) =
∫∞
t=0

tz−1e−tdt, and ps

is the transmit power of a generic SBS in the interferer set.

Recall that all MBSs transmit on all subcarriers with uniform power pm. By
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following a similar derivation as above the following can be obtain

L
I
m,(n)
k

(v) = exp

{
−πλm p

2
α
mE

h
(n)
m,k

[h
(n)
m,k

2
α ]v

2
αΓ

(
1− 2

α

)}
. (3.27)

By substituting the expressions obtained in (3.26) and (3.27) into equation (3.22),

equation (3.28) can be obtained as follows:

E
[
SINR

(n)
l

]
=

∫ ∞
t=0

exp (−vN0)

exp

{
−πλm p

2
α
mE

h
(n)
m,k

[h
(n)
m,k

2
α ]v

2
αΓ

(
1− 2

α

)}
exp

{
−πλ(n)

s Eps [p
2
α
s ]E

h
(n)
i,k

[h
(n)
i,k

2
α ]v

2
αΓ

(
1− 2

α

)}
dt.

(3.28)

Since I consider a dense network, the network will be interference limited. Hence,

the effect of noise can be considered negligible compared to the interference. I also

assume α = 4 for analytical simplicity. Then by simplifying the expression given in

(3.28) the following can be obtained (see Appendix A.2 for derivation):

E
[
SINR

(n)
l

]
=

8pl

A2
(
λm
√
pm + λ

(n)
s E

[√
ps
])2 , (3.29)

where A = π2r2
s .

The Probability Mass Function (PMF) of the transmit power of any interferer

(i.e., ps in (3.29)) can be directly obtained from the proportions of the population

selecting each action. For transmission alignment corresponding to subcarrier n and
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power level l, the PMF of the transmit power of a generic interferer is given as follows:

Pr (ps = pj) =


k
(n)
j∑L

t=1 k
(n)
t −1

, if j 6= l,

k
(n)
j −1∑L

t=1 k
(n)
t −1

, if j = l,

or equivalently,

Pr (ps = pj) =


x
(n)
j∑L

t=1 x
(n)
t −

1
K

, if j 6= l,

x
(n)
j −

1
K∑L

l=t x
(n)
t −

1
K

, if j = l,

where k
(n)
j is the number of players selecting subcarrier n and power level j and

x
(n)
j =

k
(n)
j

K
. Therefore, for a user receiving on subcarrier n and power level l, E[

√
ps]

can be calculated as follows:

E[
√
ps] =

p1x
(n)
1∑L

t=1 x
(n)
t − 1

K

+
p2x

(n)
2∑L

t=1 x
(n)
t − 1

K

+ ...+

pl

(
x

(n)
l − 1

K

)
∑L

l=t x
(n)
t − 1

K

+ ...+
pLx

(n)
L∑L

t=1 x
(n)
t − 1

K

. (3.30)

The value of λ
(n)
s is given by (3.2).

3.5.2 Average Achievable Rate

The average achievable rate of a generic small cell user for transmission on subcarrier

n using power level l is given by

E[r
(n)
l ] = ln

(
1 + SINR

(n)
l

)
. (3.31)
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Same as in Section 3.5.1, the expectation has to be taken w.r.t. the channel gain and

interfering nodes. Therefore,

E[r
(n)
l ] = E

h
(n)
k,k,i∈I

(n)
k

[
ln

(
1 +

h
(n)
k,kr

−α
s pl

N0+
∑
i∈I(n)

k

h
(n)
i,k d

−α
i,k p

(n)
i

)]

= E
i∈I(n)k

[∫∞
t=0

Pr

(
h

(n)
k,k >

rαs (et−1)(N0+I
(n)
k )

pl

)
dt

]
.

Since h
(n)
k,k ∼ exp(µ), by following the same steps as in the analysis of SINR in Section

3.5.1, I obtain

E
[
r

(n)
l

]
=

∫ ∞
t=0

exp(−vN0)LIm,nk
(v)LIs,nk (v)dt, (3.32)

where v = µrα(et−1)
pl

. By simplifying the above expression for an interference-limited

network and α = 4, the following can be obtained:

E
[
r

(n)
l

]
=

∫ ∞
t=0

exp

(
−A

2
√
pl

(
λm
√
pm + λ(n)

s E [
√
ps]
)√

et − 1

)
dt, (3.33)

where A = π2r2
s .

In the next section, I will use the derived expressions in (3.29) and (3.33) to

analyze the stability of the evolutionary equilibrium of the game model.

3.6 Evolutionary Equilibrium and Stability Analysis

3.6.1 Evolutionary Equilibrium and It’s Existence

Evolutionary equilibrium, which is defined as the fixed points of the replicator dy-

namics [49], is considered to be the solution of the evolutionary games G1 and G2 for

transmission alignment selection. That is, at the equilibrium point, the population

state will not change, which implies that the rate of strategy adaptation will be be
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zero (ẋ
(n)
l = 0). Once the evolutionary equilibrium is reached, no player has the

willingness to change its strategy since all SBSs have the same payoff as the average

payoff of the population. In this way, the evolutionary equilibrium can also provide

fairness among the SBSs.

Using the expressions given in (3.29) and (3.33), the replicator dynamics ẋ
(1)
a and

ẋ
(2)
a of the games G1 and G2, respectively, can be expressed as in (3.34) and (3.35),

for all a ∈ A.

ẋ(1)
a = (ẋ(1))

(n)
l

= (x(1))
(n)
l

 w
(1)
1 8pl

A2
(
λm
√
pm + λ

(n)
s E

[√
ps
])2 − w

(1)
2

(
ḡ

(n)
h,mAcλs

L∑
q=1

(x(1))(n)
q pq − T (n)

)
−

∑
n∈N

∑
q∈L

(x1)(n)
q π(n)

q

)
. (3.34)

ẋ(2)
a = (ẋ2)

(n)
l

= (x(2))
(n)
l w

(2)
1

∫ ∞
t=0

exp

(
−A

2
√
pl

(
λm
√
pm + λ(n)

s E [
√
ps]
)√

et − 1

)
dt

−(x(2))
(n)
l w

(2)
2

(
ḡ

(n)
h,mAcλs

L∑
q=1

(x(2))(n)
q pq − T (n)

)
− (x(2))

(n)
l

∑
n∈N

∑
q∈L

(x(2))(n)
q π(n)

q .

(3.35)

According to the definition, obtaining the evolutionary equilibrium is equivalent to

solving a system of algebraic equations given by setting the left hand side of replicator

dynamics (3.34) and (3.35) to zero (i.e., let ẋ
(n)
l = 0).

Note that in the replicator dynamics defined in (3.34) and (3.35), two types of

54



Chapter 3. An Evolutionary Game for Distributed Resource Allocation

evolutionary equilibrium, namely, boundary evolutionary equilibrium and interior

evolutionary equilibrium exist. The boundary evolutionary equilibrium corresponds

to the case where there exists a population share xa = 1, while xb = 0 for all b 6= a ∈ S.

The interior equilibrium x∗ corresponds to the case where xa ∈ (0, 1),∀a ∈ S. The

boundary equilibria are not stable in the sense that any small perturbation will make

the system deviate from the equilibrium state.

3.6.2 Stability of Evolutionary Equilibrium

To evaluate the stability of the interior evolutionary equilibrium, the eigenvalues of the

Jacobian matrix corresponding to the replicator dynamics need to be evaluated. The

system is stable if all eigenvalues have a negative real part [59]. With the analytical

expressions obtained from the stochastic geometry-based analysis, the stability of the

equilibrium is analytically tractable in some cases. In the following, I analyze the

stability of the equilibrium of game G1 for a system with two subcarriers and uniform

power as an example. The stability of the game G2 is not analyzed since U2(SINR
(n)
l )

is not available in closed form. However, the results on the stability (i.e., convergence)

of G2 will be obtained by simulations in Section 3.8.

Specifically, I consider a system with two subcarriers and all SBSs transmitting

on the same power level. In this case there are two transmission alignments. Denote

the two transmission alignments by a1 and a2, which correspond to the selection of

subcarrier 1 and subcarrier 2, respectively. π
(1)
a1 and π

(1)
a2 are the corresponding payoffs

and x
(1)
a1 and x

(1)
a2 are the corresponding population shares in G1.

For the case where x
(1)
a1 , x

(1)
a2 6= 0, from (3.2),

λ(n)
s = λsx

(1)
an . (3.36)
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Also, E
[√
p
]

will be simplified to
√
p since I assume uniform power for all SBSs. By

substituting the values for E
[√
p
]

and λ
(n)
s into (3.29), we obtain

π(1)
a1

=
w

(1)
1 8p

A2
(
λm
√
pm + λs

√
p(x

(1)
a1 )
)2 − w

(1)
2

(
ḡh,mAcλsx

(1)
a1
p− T (n)

)
, (3.37)

and

π(1)
a2

=
w

(1)
1 8p

A2
(
λm
√
pm + λs

√
p(x

(1)
a2 )
)2 − w

(1)
2

(
ḡh,mAcλsx

(1)
a2
p− T (n)

)
. (3.38)

For any subcarrier with zero population will result in zero payoff. Then

π
(1)
i (for x

(1)
i = 1) =

w
(1)
1 8p

A2
(
λm
√
pmλs

√
p
)2 − w

(1)
2

(
ḡh,mAcλsp− T (n)

)
. (3.39)

For the stability of the system, the following Theorem can be stated.

Theorem 3.6.1. For a network with two orthogonal subcarriers and one transmit

power level, the interior evolutionary equilibrium in game G1 is asymptotically stable.

Proof. The replicator dynamics can be derived as follows:

ẋ(1)
a1

= x(1)
a1

(
π(1)
a1
− x(1)

a1
π(1)
a1
− x(1)

a2
π(1)
a2

)
= x(1)

a1

(
π(1)
a1

(
1− x(1)

a1

)
− x(1)

a2
π(1)
a2

)
= x(1)

a1
x(1)
a2

(
π(1)
a1
− π(1)

a2

)
= x(1)

a1

(
1− x(1)

a1

) (
π(1)
a1
− π(1)

a2

)
,

(3.40)

where the 3rd step follows from the fact that (x(1))a1 + (x(1))a2 = 1.
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For the system to have a stable equilibrium point, all eigenvalues of the Jacobian

of the system of equations should have a negative real part. As there is one system

equation, an equivalence to this condition is that the Jacobian should be negative

definite [60]. To this end, I first denote by f the right hand side of (3.40). Accordingly,

df

dx
(1)
a1

= x(1)
a1

(
1− x(1)

a1

)
×

(
dπ

(1)
a1

dx
(1)
a1

− dπ
(1)
a2

dx
(1)
a1

)
+
(
π(1)
a1
− π(1)

a2

) (
1− 2x(1)

a1

)
= x(1)

a1

(
1− x(1)

a1

)
×

(
dπ

(1)
a1

dx
(1)
a1

− dπ
(1)
a2

dx
(1)
a1

)
+
(
π(1)
a1
− π(1)

a2

) (
x(1)
a2
− x(1)

a1

)
.(3.41)

According to the definition, π
(1)
a2 = π

(1)
a1 at the equilibrium point. Hence,(

π
(1)
a1 − π

(1)
a2

)(
x

(1)
a2 − x

(1)
a1

)
= 0. Then

dπ
(1)
a1

dx
(1)
a1

and
dπ

(1)
a2

dx
(1)
a1

can be calculated as in equa-

tions (3.42) and (3.43).

dπ
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(1)
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1 16p
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√
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1 16p
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(
λm
√
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(2)
s
√
p(1− x(1)

a1 )
)3 + w

(1)
2 (ḡh,mAcλsp) . (3.43)

Note that w
(1)
1 and w

(1)
2 are positive values. From (3.42) and (3.43), it is obvious
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that for any x
(1)
a1 , x

(1)
a2 > 0, I have

∂π
(1)
a1

∂x
(1)
a1

> 0 and
∂π

(1)
a2

∂x
(1)
a2

< 0. For any xi = 0, πi = 0 and

the other πj where j 6= i is a constant as in equation (3.39). Hence,

(
dπ

(1)
a1

dx
(1)
a1

− dπ
(1)
a2

dx
(1)
a1

)
<

0. And from (3.41), df

dx
(1)
a1

< 0 for any non-zero x
(1)
ai . This proves that df

dx
(1)
a1

is strictly

negative for any non-zero value of x
(1)
a1 and x

(1)
a2 . Hence ẋ

(1)
a1 evaluated at any interior

equilibrium point is negative. This completes the proof.

Note that the stability analysis for more than two transmission configurations can

be done following a similar procedure. However, this would be computationally more

involved.

3.6.3 Stability of Delayed Replicator Dynamics

It is worth noting that the stability of the original replicator dynamics does not

always hold for its delayed counterpart due to the impact of delay. Specifically,

the evolutionary equilibrium is stable for small delays. However, when the delay is

larger than a certain bifurcation point, the evolutionary equilibrium will not be stable

under the delayed strategy adaptation. Analytical quantification of this bifurcation

point is done in [51] for systems with linear delayed replicator dynamics by analyzing

the characteristic equations of the system. However, a similar technique cannot be

used to analyze this system due to the high non-linearity of the delayed replicator

dynamics. To analyze the stability of delayed differential equations, there are several

methods used in the literature such as Lyapunov method [61] and those using fuzzy

models [62]. In the first method, characterization of the stability is done in terms

of Lyapunov function. The second approach is based on modeling the nonlinear

delay system as TakagiSugeno (TS) fuzzy sub-models with time delay. However,

the numerical evaluation of the bifurcation point is always possible with extensive

simulations. In Section 3.8, I will show the effect of delay on the convergence of the
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proposed EGT-based resource allocation algorithm numerically.

3.7 EGT-Based Resource Allocation Algorithm

3.7.1 Algorithm

The evolutionary equilibrium is achieved through strategy adaptation. To this end,

all players initially play a randomly selected strategy. At each iteration, each player

compares her own payoff with the average payoff of the population and selects a

different strategy if the current payoff is less than the population average.

Based on the replicator dynamics of the EGT, I develop a resource allocation

scheme to attain the evolutionary equilibrium. The following steps summarize the

algorithm.

• Step 1 (Initialization): The SBSs choose a transmission alignment randomly

and set i = 1.

• loop

– Step 2 (Exploitation): Each SBS transmits on the selected transmission

configuration and observes the received utility. The utility and the trans-

mission alignment information are then sent to a central controller.

– Step 3 (Learning): The central controller calculates the average payoff of

the population and the population state and broadcasts it to all SBSs.

– Step 4 (Update): Each SBS compares its own payoff with the average

payoff of the population. If the payoff is less than the average, the SBS

randomly selects another subcarrier and power level for transmission.

– Set i = i+ 1.
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• if i ≥ Maxi, end loop; otherwise go to Step 2.

Maxi is the maximum number of iterations that the algorithm can execute which

depends on the length of the transmission interval (e.g., a time slot) and the processing

power of the SBS.

Note that the strategy adaptation process in the proposed EGT-based algorithm

does not rely on the knowledge of the strategy selection of the other players. To

calculate the payoff, a player who played action a needs to know xa and for the

evolution it requires the average payoff of the entire cluster of small cells. Therefore,

the amount of information exchange is reduced. The central controller (e.g., a femto

gateway in a two-tier macrocell-femtocell network) is only expected to calculated

the average payoff of the system while the decisions on subcarrier and power level

selection are taken distributively at each SBS. The proposed algorithm provides an

identical payoff to each SBS at the equilibrium point. However, note that both the

games G1 and G2 can have multiple interior equilibrium points. Solution refinement

techniques are not included in the EGT algorithm as it requires the algorithm to run

several times and hence increases the complexity and also the convergence time.

3.7.2 Comparison with Centralized Resource Allocation

For comparison purpose, I consider a centralized resource allocation in the same

setting. The performance of the proposed EGT-based algorithm is compared with

a centralized resource allocation algorithm based on optimization. Under the same

system model, the optimization problem formulation to maximize the sum payoff

(equivalent to G1) of the small cell network is given as follows:
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Maximize
K∑
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(
ḡ

(n)
h,k

(
L∑
l=1

(
K∑
k=1

xk,n,l

)
pl

)
− T (n)

)
(3.44)

subject to

N∑
n=1

L∑
l=1

xk,n,l = 1, ∀k, (3.45)

xk,n,l ∈ {0, 1},∀n,∀k, ∀l, (3.46)

where xk,n,l = 1 if SBS k is transmitting on subcarrier n with power level l. The

objective function is given by (3.44) which is the same as the payoff function of game

G1. The constraint in (3.45) guarantees that each small cell base station selects no

more than one subcarrier and one power level. The solution for the above optimization

problem gives an upper bound for the sum payoff of the small cell network. An

equivalent optimization problem for the game G2 can be obtained by replacing (3.44)

with (3.10). The performance of the EGT-based algorithm will be compared with

this upper bound.

3.8 Numerical Results and Discussion

3.8.1 Simulation Parameters for EGT based Resource Allocation

Scheme

This section presents simulation results to validate the theoretical findings and to

evaluate the performance of the proposed algorithm. Some of the important simula-
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Table 3.2: Chapter 3: Simulation parameters

Parameter Value

λm 4 base stations/km2

Small cell cluster radius 200 m
Small cell radius, rs 10 m
MBS Tx power, pm 45 dBm
SBS Tx power, ps 5, 7, 10 dBm
Path-loss exponent, α 4

w
(1)
1 , w

(1)
2 , w

(2)
1 , w

(2)
2 1

tion parameters are given in Table II. Simulations are averaged over 3000 iterations.

I also select the interference threshold values (T n) to assure an SINR of 5dB at

the macro receiver. Recall that the values of the weighting factors in (3.9) and (3.10)

have to be decided considering the network parameters. I convert SINR, aggregate

interference, and interference threshold into decibels before calculating the payoff in

order to bring all the terms into the same range. The weighting factors are then set

to 1 in order to give equal significance to both components in the payoff function.

3.8.2 Validation of the Theoretical Results

I first validate the stochastic geometry-based analysis for the average signal-to-

interference ratio (SIR) of a user of a generic small cell, as given in equation (3.29).

For this purpose, I consider a system with two subcarriers. The user association to

the MBSs is assumed to be based on the maximum average received power. The

macrocell boundaries are defined by the Voronoi tessellation [63]. For simulations,

only the interference caused by the small cells inside the cluster is taken into account.

The simulation environment is as shown in Fig. 3.1.

I compare the actual values of SIR obtained by simulations (averaged over 3000
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Figure 3.2: Effect of SBS intensity λs = Aλm on SIR (for λm = 4 base stations/km2,
x1 = 0.4, x2 = 0.6).

realizations) with the theoretical value in (3.29). The values obtained by simulations

are quite close to the theoretical values (which are based on an infinite network)

specially for the higher values of A, i.e., for a dense small cell network. This is due

to the fact that the PPP assumption to model the spatial distribution of interfering

SBSs inside the cluster holds only for a dense network. For a sparse network, the

effects of the small cells outside the cluster can be significant. Therefore, the average

SINR obtained from simulation is smaller than that obtained from analysis.

3.8.3 Convergence of the Proposed EGT Algorithm

To analyze the convergence of the algorithm, I first consider a system with two sub-

carriers and all SBSs transmit using the same power level of 10 dBm. Fig. 3.3 plots

the payoff received by an SBS selecting each transmission configuration, i.e., each sub-

carrier in this case. It can be observed that the system converges to the equilibrium

after several iterations. The figure also indicates that at the equilibrium all SBSs

achieve the same payoff which shows the fairness of the proposed resource allocation

scheme.

For a network with 5 subcarriers and 2 power levels, i.e., N = 5, L = 2 and the set

63



Chapter 3. An Evolutionary Game for Distributed Resource Allocation

0 20 40 60 80 100 120 140 160 180 200
0

10

20

30

40

50

Number of iterations

P
a
yo
ff
p
er

S
B
S

Convergence of the Algorithm in game G1

 

 
Subcarrier 1
Subcarrier 2

0 20 40 60 80 100 120 140 160 180 200
0

5

10

15

20

25

30
Convergence of the Algorithm in game G2

Number of iterations

P
a
yo
ff
p
er

S
B
S

 

 
Subcarrier 1
Subcarrier 2

Figure 3.3: Convergence of the algorithm to the evolutionary equilibrium (for N =
2, L = 1, λs = 60λm).

of possible power levels given by L = {10 dBm, 7 dBm}, Fig. 3.4 shows the variation

of the payoff of an SBS with the number of iterations (obtained by simulations). It

can be seen that the algorithm converges within several iterations even for a higher

number of transmission configurations.

It can be observed from Figs. 3.3-3.4 that game G2 converges faster than G1. In

fact, the number of iterations required for convergence depends also on the initial state

of the population as well as the intermediate states it follows during the iterations

until convergence. Hence, by observing one instance, it is impossible to decide under

which game (i.e., G1 or G2) the algorithm is more efficient. Therefore, in Fig. 3.5, I

plot the Cumulative Distribution Function (CDF) of the required number of iterations

for convergence of both games. It is evident from the figure that G2 converges faster

than G1.

In order to analyze the effect of the number of transmission configurations on the

convergence of the algorithm, I plot the CDF of the required number of iterations

for convergence under different transmission alignments for both G1 and G2. Figs.
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Figure 3.4: Convergence of the algorithm to the evolutionary equilibrium (for N =
5, L = 2, λs = 60λm).
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Figure 3.5: CDF of the number of iterations to converge (for N = 2, L = 1, λs =
60λm).

3.6-3.7 show the results for G1 and G2, respectively, for systems with two subcarriers

and five subcarriers. The number of SBSs is 30 for both the cases. It is evident from

the figures that the larger the number of transmission configurations, the higher is

the number of iterations it takes to converge.
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Figure 3.6: CDF of the number of
iterations to converge for G1.
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Figure 3.7: CDF of the number of
iterations to converge for G2.
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Figure 3.8: Trajectories of proportions of population (for N = 2, L = 1, λs = 40λm).

3.8.4 Evolution of the Population

The trajectories of the proportion of SBSs selecting each strategy for G1 are illustrated

in Fig. 3.8. It can be seen that the proportions eventually converge to the equilibrium.

However, I do not obtain smooth trajectories due to the randomness of the strategy

adaptation process (see step 5 of the EGT-based algorithm given in Section 3.7).

3.8.5 Comparative Performance Evaluation

In Figs. 3.9-3.10, I compare the results with the upper bound obtained by solving

the centralized optimization problem in Section 3.7. It can be seen from these figures
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that the gap between the maximum payoff and the payoff obtained by the EGT-based

algorithm increases in both games with the number of base stations. Due to the full

corporation among base stations in the centralized scheme, it results in better pay-

offs than that of the distributed EGT algorithm. However, the main advantage of

using EGT algorithm in this regard is its simplicity and less information exchange.

Specifically, EGT-based algorithm has a linear time complexity, i.e., O (Maxi). On

the other hand, the complexity of solving the optimization problem grows exponen-

tially with the number of SBSs in the network. The optimization problem is a binary

integer programming problem. I solve the problem by an exhaustive search. In that

case, there are (N × L)K number of distinct patterns of transmission configuration

selection by SBSs. In addition, to solve the optimization problem, the central con-

troller should have information about the channel gains between all the users and

their interfering and serving base stations.
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Figure 3.9: Performance of the EGT algorithm with varying number of SBSs (for
game G1 with N = 5, L = 1).

I also investigate the effect of the weighting factors on the performance of the

macro network. Fig. 3.11 shows the variation of the average interference caused by

the small cell cluster at a macro user with w
(1)
2 . The simulation results are obtained
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Figure 3.10: Performance of the EGT algorithm with varying number of SBSs (for
game G2 with N = 5, L = 1).

for a network with N = 5, L = 1, and λs = 40λm. For both the games, the interference

caused to the macro network decreases with increasing w
(i)
2 . It is also interesting to

note that G1 provides more protection to the macro user than G2 even though G2 has

better convergence performance.
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Figure 3.11: Performance of the EGT algorithm with varying number of SBSs (for
game G2 with N = 5, L = 1).

3.8.6 Impact of Information Exchange Delay on Convergence

I also investigate the impact of information delay on the convergence of the replica-

tor dynamics. The delay τ indicates that at iteration n, all base stations have the

information corresponding to iteration n− τ (see equation (3.16)). The information

at n = 0 is used to compute the values corresponding to n < 0. Delay is assumed
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to be constant throughout all the iterations. As it can be seen from Figs. 3.12-3.13,

the larger the delay, the larger is the number of iterations it takes to converge and

the system becomes less stable. Under a small delay, the system can still converge to

the equilibrium. However, when the delay is larger than a certain bifurcation point,

the system will diverge. Another important observation is that even-though game G1

converges to the same equilibrium point with τ = 2, G2 converges to different equi-

librium points. Hence, with delayed information exchange, for system with multiple

equilibrium points, there is no guarantee that the system will converge to the same

equilibrium point as that for the delay-free system.
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Figure 3.12: Effect of delay on the
convergence of algorithm G1 (for
N = 3, L = 1, λs = 40λm).
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Figure 3.13: Effect of delay on the
convergence of algorithm G2 (for N =
3, L = 1, λs = 40λm).

In order to further characterize the effect of delay, I plot the CDF of the number

of iterations required for the convergence of the algorithm in Figs. 3.14-3.15 for a

network with two subcarriers and one power level. It can be observed that the higher

the delay, the higher is the number of iterations required for convergence in both the

games. As the resource allocation algorithm is expected to converge within a certain

period of time, the delayed information can lead to a very poor network performance.
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Figure 3.14: CDF of the required
number of iterations for conver-
gence of G1.
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Figure 3.15: CDF of the required
number of iterations for conver-
gence of G2.

3.9 Chapter Summary

In this chapter, I have presented an evolutionary game theory-based algorithm to

solve the problem of distributed resource allocation in self-organizing small cell net-

works underlaying macrocell networks. The available set of subcarrier-power level

combinations at each small cell base station has been defined as the strategy set and

the replicator dynamics is used to model the strategy adaptation process of the small

cell base stations. The evolutionary equilibrium, which is the fixed point of the repli-

cator dynamics, has been considered to be the solution of the formulated evolutionary

game. Based on the average achievable SINR of a small cell user derived based on

stochastic geometry analysis, the stability of the equilibrium point has been analyti-

cally proven for a system with two subcarriers. For larger system configurations, the

stability of the equilibrium point has been shown by simulations. I have also consid-

ered the impact of delayed information exchange on the convergence of the proposed

algorithm. Simulation results have been presented to validate the analytical develop-

ments and illustrate the performance of the proposed algorithm when compared to a

centralized resource allocation algorithm. Also, the effect of information delay on the

70



Chapter 3. An Evolutionary Game for Distributed Resource Allocation

equilibrium has been investigated by simulations.

The resource allocation scheme presented in this chapter ensures fairness among

the small cells however; it assumes players are bounded rational and consider instan-

taneous payoff when taking decisions. Despite that, some network operators may

interested in resource allocation considering maximizing the payoff or minimizing the

cost (i.e., network nodes are rational) for a certain period of time. Moreover, small

cell base stations may be battery operated, hence with energy limitations. Consider-

ing these aspects, in next chapter, I present a distributed energy aware power control

scheme for ultra dense small cell networks which consider maximizing the payoff over

a pre-defined period of time.
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Chapter 4

A Mean Field Game for

Energy-Aware Power Control in

Ultra-Dense Small Cell Networks

In this chapter, a novel energy-aware distributed power control paradigm is proposed

for dense small cell networks co-existing with a traditional macrocellular network.

The power control problem is first modelled as a differential game and the existence

of the Nash Equilibrium is proven. Then I extend the formulated stochastic game to

a mean field game (MFG) considering a highly dense network. An MFG is a special

type of differential game which is ideal for modeling the interactions among a large

number of entities. I also analyze the performance of two different cost functions for

the mean field game formulation. Both of these cost functions are designed using

stochastic geometry analysis in such a way that the cost functions are valid for the

MFG setting. A finite difference algorithm is then developed based on the Lax-

Friedrichs scheme and Lagrange relaxation to solve the corresponding MFG. Each

small cell base station can independently execute the proposed algorithm offline, i.e.,
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prior to data transmission. The output of the algorithm shows how each small cell

base station should adjust its transmit power in order to minimize the cost over a

predefined period of time. Moreover, sufficient conditions for the uniqueness of the

mean field equilibrium for a generic cost function are also given. The effectiveness of

the proposed algorithm is demonstrated via numerical results.

4.1 Introduction

4.1.1 Overview

Since classical games have to model the interaction of each player with every other

player, analysis of a system with a large number of players can be complex. Therefore,

when it comes to a dense network of interconnected base stations, solving the power

control problem based on classical game theory becomes very hard and sometimes

impossible due to the large number of players. In this context, the theory of mean

field game (MFG) [64–66], which has been used for solving a variety of problems in

different research areas [67–71], can be used.

MFGs can be considered as a special form of differential games applicable for

a system with a large number of players. While classical game theory models the

interaction of a single player with all the other players of the system, an MFG models

the individual’s interaction with the effect of the collective behavior (mass) of the

players. This collective behavior is reflected in the mean field. Individual player’s

interaction with the mean field is modeled by a Hamilton-Jacobi-Bellman (HJB)

equation. The motion of the mass according to the players’ actions is modelled by

a Fokker-Planck-Kolmogorov (FPK) equation [64]. These coupled FPK and HJB

equations are also called backward and forward equations, respectively. The solution
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of an MFG can be obtained by solving these two equations. When modelled as

an MFG, since the system can be completely defined by two equations (which are

also called the mean field equations), analysis of the system becomes much easier.

Moreover, solutions to the MFGs can be obtained distributively and behaviors of all

the players can be described by one control. In addition, MFGs can take the stochastic

nature of the system into account. All of the aforementioned properties make MFG

appropriate for modeling the power control problem for dense self-organizing small

cell networks. However, modeling the collective effect of the players (i.e., the effect of

mass/mean field) has to be done in a realistic way. Accurate modeling of the effect

of the mass is a major challenge when adopting MFGs to solve problems in wireless

communications.

In this chapter, I formulate the downlink power control problem of a dense small

cell network underlaying a macrocellular network as an MFG. The small cell base

stations (SBSs), when battery-operated, are assumed to be constrained by a finite

energy. To model the mass (or mean field), I adopt a stochastic geometry approach.

Specifically, I consider minimizing a cost function under certain constraints over a

pre-defined period of time. The cost function is derived by using a stochastic ge-

ometry approach in such a way that it reflects the signal-to-interference-plus-noise

ratio (SINR) at the receivers and the interference caused to the macro cellular net-

work. I propose a finite difference technique to solve the mean field equations for

the formulated MFG. The key feature of the proposed algorithm is that it can be

executed offline. By executing the algorithm, each base station can obtain a power

policy which depends on the initial energy distribution among the SBSs. The SBSs

can then use that power control policy for data transmission for a pre-defined period

of time. Another advantage of the algorithm is, it minimizes the cost over a certain
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period of time instead of taking decisions only based on the instantaneous cost.

4.1.2 Contribution

The contributions of this chapter can be summarized as follows.

1. The downlink power control problem of a small cell network underlaying a tra-

ditional macro network (i.e., for a system model consisting of multiple transmit-

ters and multiple receivers) is formulated as a differential game and extended

to a mean field game for a dense scenario.

2. The existence of a Nash Equilibrium for the formulated differential game is

proven.

3. Using stochastic geometry-based analysis, two cost functions for the mean field

game are derived in such a way that the mean field game setting becomes valid.

In this way, it combines the theory of MFG with that of stochastic geometry.

4. The forward and backward equations of the mean field game are solved based

on the finite difference technique proposed in [72].

5. An algorithm is proposed to obtain the mean field equilibrium for the formulated

game.

6. The sufficient conditions are given for the uniqueness of the mean field equilib-

rium for a generic cost function.

4.2 Related Work

Implementing most of the existing game theory based distributed resource alloca-

tion algorithms in the literature for a ultra-dense network would require an extensive
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amount of information exchange among the base stations. Recently, mean field game

has gained the attention of the research community as a tool to model dense hetero-

geneous networks (or small cell networks). In [70, 73–75], the power control problem

is modelled as mean field games for scenarios where multiple transmitters transmit

to a single receiver (e.g., uplink transmissions in a cellular network). The problem is

first formulated as a stochastic differential game and then its convergence to a mean

field game is shown for a very large number of transmitters. In [70], the authors

show the power control policy obtained at the mean field equilibrium. [73] and [74]

present the sufficient conditions for the uniqueness of the respective games formulated

in these papers. The work presented in [68] formulates the power control problem in

a cognitive radio network as a hierarchical mean field game. The mean field game

formulations in all of the aforementioned papers consider scaled interference (i.e., in-

terference at the receiver is normalized by the number of transmitters) only which

may not be valid for a large-scale small cell network. In addition, none of the above

papers presents any technique for solving the mean field equations, which is also very

challenging.

4.3 System Model and Assumptions

4.3.1 Network and Propagation Model

I consider an infinite small cell network underlaying an infinite macrocell network. In

practice, the spatial distribution of SBSs is random and independent of each other, as

most of the time the SBSs are deployed opportunistically in an unplanned manner.

Also, the deployment of macro base stations in practical LTE networks is closer to a

random deployment than the hexagonal grid model [76]. A network with an infinite
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number of nodes, which are randomly and independently distributed in a large area,

can be abstracted by a Poisson Point Process (PPP) [77, 78]. Therefore, I model

the spatial distributions of the SBSs and MBSs by two independent PPPs denoted

by Φs and Φm, respectively. The intensities of Φs and Φm are given by λm and λs,

respectively. Users are connected to the base station from which they receive the

highest average pilot signal power. The transmit powers of the pilot signals of SBSs

and MBSs are given by ps,pilot and pm,pilot, respectively. When users are associated to

the base station from which they receive the highest average pilot signal power, the

cell boundaries can be shown by a weighted Voronoi tessellation [79]. The pilot powers

of SBSs are lesser than those of MBSs. Although several users may be associated with

a base station, I assume that each base station serves only one user at a particular

time instant. For downlink transmission, scheduling of users in a small cell can

be performed by using schemes such as proportional fair or round-robin scheduling

schemes.

I consider the problem of downlink transmit power control at the SBSs. Co-

channel deployment is considered, i.e., both the MBSs and SBSs transmit on the

same channel. Power control is done in order to minimize the average cost of each

SBS over a given finite time horizon T . I will define the cost function later. Each SBS

k is assumed to be with a finite amount of energy, denoted by Ek,max, to spend within

the given period of time, T . In this way, I can take the heterogeneity of the small

cell base stations into account, i.e., different types SBSs can have different initial

energy levels or energy constraints. To consider any SBS k with an infinite amount of

energy in the same setting, Ek,max can be set to a large value, i.e., Ek,max >> pmaxT ,

where pmax is the maximum allowable transmit power for an SBS. The users served

by each SBS k have a minimum SINR requirement denoted by Γk. In this way, this
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system model captures heterogeneity of the mobile users in-terms of their QoS (i.e.,

different users can have different SINR requirements). 1 The channels between all the

transmitters and all the receivers are assumed to experience i.i.d. Rayleigh fading.

The SINR at the user served by SBS k at time t is given by

SINRk(t) =
pk(t)gk,k(t)rk,k(t)

−α

Is,k(t) + Im,k(t) +N0

, (4.1)

where Is,k(t) =
∑

l∈K,l 6=k pl(t)gl,k(t)rl,k(t)
−α and Im,k(t) =

∑
∀m∈Φm

pmgm,k(t)rm,k(t)
−α

denote the interference caused by small cell and macro cell networks, respectively.

gl,k is the fading power gain between transmitter l and receiver k (i.e., user served

by the base station k), rl,k is the distance between the transmitter l and the receiver

k , N0 is the noise power and α is the path-loss exponent. The following inequality

should hold for any SBS to satisfy its QoS constraint:

pk(t)gk,k(t)rk,k(t)
−α

Is,k(t) + Im,k(t) +N0

≥ Γk, ∀ k ∈ K, (4.2)

which can be expressed as follows:

pk(t)gk,k(t)rk,k(t)
−α − Γk (Is,k(t) + Im,k(t) +N0) ≥ 0, ∀k ∈ K. (4.3)

The major symbols that are used throughout this chapter are given in Table 4.1

4.3.2 Cost Function of an SBS

The cost function of SBS k at time t is composed of two components as follows:

1Later, it can be seen that both user and base station heterogeneity can be considered in the
differential game formulation. However, the mean field game formulation can only take the hetero-
geneity of the base stations into account.
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Table 4.1: Chapter 4: Symbols

Symbol Description

α Path-loss exponent
Γk SINR requirement for the users of SBS k
Φm PPP which represents the spatial distribution of MBSs
Φs PPP which represents the spatial distribution of SBSs
λm Density of Φm

λs Density of Φs

ck(t) Value of the cost at SBS k at time t
Ek State space (i.e., possible energy levels) of SBS k
ek State of the system at time t
ek(t) Available energy of SBS k at time t
Ek,max Maximum available energy of SBS k
gk,l Fading channel gain between transmitter k and receiver l
Imk(t) Interference caused to the nearest macro user by SBS k at time t
Is,k(t), Im,k(t) Interferences caused by small cell network and

macro cell network at the user served by SBS k at time t
N0 Variance of noise power
K Set of SBSs
Pk Set of all possible transmit powers of SBS k
pk(t) Transmit power of SBS k at time t
pm MBS transmit power
pmax Maximum transmit power for SBSs
pm,pilot,ps,pilot Pilot signal power of MBSs and SBSs
rk,l Distance between transmitter k and receiver l
T Time period during which power control is done
uk(t) Value function of SBS k at time t
v(t, e) Lagrange multiplier at time t and energy e
w1, w2 Biasing factors
X, Y Number of discretization levels in time axis

and energy axis, respectively
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• The cost associated with the satisfaction of the QoS constraint (Γk), denoted

by f
(1)
k (t), and

• The cost associated with the interference caused to the nearest macro user,

denoted by f
(2)
k (t).

Based on (4.3), f
(1)
k (t) is defined as follows:

f
(1)
k (t) =

(
Γk (Is,k(t) + Im,k(t) +N0)− pk(t)gk,k(t)rk,k(t)−α

)2
. (4.4)

Minimizing f1 will attempt to satisfy the QoS constraint, but it will also discourage

further increase of transmit power after satisfying the QoS constraint. A similar cost

function is also used in [80] and [81] for uplink power control. On the other hand,

f
(2)
k (t) is defined as the interference caused at the nearest macro user at time t, which

is given by Imk(t), as follows:

f
(2)
k (t) = Imk(t) = pk(t)gk,mr

−α
k,m. (4.5)

Accordingly, the cost function of SBS k at time t (i.e., ck(t)) is defined as a linear

combination of above two functions:

ck(t) = w1f
(1)
k (t) + w2f

(2)
k (t), (4.6)

where w1 and w2 are biasing factors which bring the above two terms into one scale.

The network operator has the freedom to set these biasing factors.

Note that for the formulation of the mean field game, in Section 4.5, I will general-

ize the cost function for any generic SBS such that interchangeability (or permutation)

of the states among the SBSs does not affect the outcome of the game.
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4.3.3 State, Action Space, and Control Policy of an SBS

The state of SBS k at time t is defined by the amount of available energy at that

time, which is given by, ek(t). Therefore, the state space Ek of SBS k can be written

as follows:

Ek = [0, ek(0)] = {ek(t) ∈ R|0 ≤ ek(t) ≤ ek(0)}, (4.7)

where ek(0) is the available energy of SBS k at time 0.

I also define the state of the system at time t, e(t) as follows:

e(t) = [ek(t)∀k]
T . (4.8)

The set of actions for SBS k includes all possible transmit powers as follows:

Pk = [0, pmax] , (4.9)

where pmax is the maximum allowable transmit power of any SBS. The transmit power

of SBS k at time t is denoted by pk(t).

The evolution of the state (in this case, available energy) over time is decided by a

control, which in this case corresponds to the transmit power given by pk(t) ∈ [0, pmax].

Consequently, the state equation of the system is defined as follows.

Definition (State equation): The state of SBS k is given by the random variable

ek(t) ∈ [0, ek(0)] whose evolution is defined by the following differential equation:

dek(t) = −pk(t)dt, 0 ≤ t ≤ T. (4.10)

The control policy is a mapping of the state to an action. This is defined over the

given period of time, T . I denote the control policy of player k over the time period
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T by pk (0→ T ). An optimal power control policy, p∗k (0→ T )∀k should minimize the

average cost of each player k over the given finite time horizon, T . Therefore, I write

p∗k (0→ T ) as follows:

p∗k (0→ T ) = arg min
pk(0→T )

E

[∫ T

0

ck(t)dt+ ck(T )

]
,

where ck(T ) is the terminal cost (i.e., cost at the end of time period T ).

The objective is to obtain the optimal power control policy distributively at each

SBS in order to minimize the average cost over time interval T . This can be seen as an

optimal control problem [82], but with several controllers (each SBS is a controller in

this case). Such a problem can be formulated as a differential game [14]. Differential

games can be seen as a generalization of the optimal control problems for the cases

where there are more than one controller. A mean field game is an extention to a

differential game when the system has a large number of players. In the next two

sections, I show the differential game formulation and its extension to a mean field

game (denoted by Gs and Gm, respectively). The set of SBSs K = {1, 2, ..., K} is the

set of players in these game models.

4.4 Differential Game Formulation

In this section, I formulate the differential game to model the downlink transmit power

control problem for the system model described above. To formulate the differential

game denoted by Gs, I define the value function uk(t) as follows:

uk(t) = min
pk(t→T )

E

[∫ T

t

ck(τ)dτ + ck(T )

]
, t ∈ [0, T ] (4.11)

where ck(T ) is the terminal cost.
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According to Bellman’s principle of optimality [83], an optimal control policy

should have the property that whatever the initial state and initial decision are, the

remaining decisions must form an optimal policy with regard to the state resulting

from the first decision [72, 84]. Accordingly, the optimal power control policy can

then be defined in-terms of the value function as follows.

Definition (Optimal control): The power profile p∗k (t→ T ) is the optimal power

control policy for SBS k if for any t ∈ [0, T ], E
[∫ T

t
ck(p

∗
k(τ))dτ + ck(T )

]
= uk(t), t ∈

[0, T ].

This value function should satisfy a partial differential equation which is in the

form of a Hamilton-Jacobi-Bellman (HJB) equation [85]. The HJB equation corre-

sponding to the optimal control problem given in equation (4.11) satisfying the state

equation (4.10) can be written as follows:

∂uk(t)

∂t
+ min

pk(t)

(
ck (pk(t))− pk(t)

∂uk(t)

∂e

)
= 0, (4.12)

where H
(
ek(t),

∂uk(t)
∂e

)
= minpk(t)

(
ck(t)− pk(t)∂uk(t)

∂e

)
is called the Hamiltonian.

Now, the Nash equilibrium of the game Gs is defined as follows.

Definition (Nash equilibrium of game Gs):

A power profile

p∗ = [p∗1(0→ T ), p∗2(0→ T ), ..., p∗k(0→ T ), ..., p∗K(0→ T )]

is a Nash equilibrium of the game Gs if and only if

p∗k(0→ T ) = arg min
pk(0→T )

E

[∫ T

0

ck
(
pk(t),p

∗
−k
)
dt+ ck(T )

]
, ∀k (4.13)
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subject to

dek(t) = −pk(t)dt (0 ≤ t ≤ T ) , ∀k (4.14)

where p∗−k denotes the transmit power vector of the SBSs except SBS k.

When the above condition is satisfied, none of the players can have a lesser cost by

deviating unilaterally from the current power control policy. Hence, it is equivalent to

the Nash equilibrium of game Gs. The Nash equilibrium of the above differential game

can be obtained by solving the HJB equation associated with each player given in

equation (4.12) [86]. I state following theorem on the existence of the Nash equilibrium

for Gs.

Theorem 4.4.1. There exists at least one Nash equilibrium for the differential game

Gs.

Proof. Existence of a solution to the HJB equation in (4.12) ensures the existence of

the Nash equilibrium for the game Gs. It is known that there exists a solution to the

HJB equation if the Hamiltonian is smooth [73, 87]. The Hamiltonian for equation

(4.12) can be written as in (4.15).

H

(
ek(t),

∂uk(t)

∂e

)
= min

pk(t)

(
ck(t)− pk(t)

∂uk(t)

∂e

)
= min

pk(t)

[
w1

(
Γk (Is,k(t) + Im,k(t) +N0)− pk(t)gk,k(t)rk,k(t)−α

)2

+ w2

(
pk(t)gk,mr

−α
k,m

)
− pk(t)

∂uk(t)

∂e

]
.

(4.15)

The first, second, and third derivatives of the Hamiltonian w.r.t. pk(t) can be
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written as follows:

∂H

∂pk(t)
= −2w1gk,kr

−α
k,k (Γk (Is,k(t) + Im,k(t) +N0)

−pk(t)gk,k(t)rk,k(t)−α
)

+ w2gk,mr
−α
k,m −

∂uk
∂e

, (4.16)

∂2H

∂pk(t)2
= 2w1

(
gk,kr

−α
k,k

)2
, (4.17)

∂3H

∂pk(t)3
= 0. (4.18)

For any n > 3, ∂nH
∂pk(t)n

= 0. The function has derivatives of all orders, hence it is

smooth. Therefore, it can be concluded that there exists at least one Nash equilibrium

for the differential game Gs.

Obtaining the equilibrium for game Gs for a system with K players involves solving

K simultaneous partial differential equations (PDEs). However, for a dense small

cell network, obtaining the Nash equilibrium by solving Gs would be difficult (if not

impossible) due to the large number of simultaneous PDEs. Therefore, for modeling

and analysis of a dense small cell network, I propose a mean field game formulation

where the system can be defined solely by two coupled equations. In the next section,

I show the extension of game Gs to the mean field game Gm.
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4.5 Formulation of Mean Field Game

4.5.1 Assumptions

First, the mean field is defined as follows:

Definition (Mean field)

m(e, t) = lim
K→∞

1

K

∑
∀k∈K

1{ek(t)=e}, (4.19)

where 1 denotes an indicator function which returns 1 if the given condition is true

and zero otherwise.

For a given time instant, mean field is the probability distribution of the states over

the set of players.

The general setting of mean field games is based on the following four assumptions

[88]:

1. Rationality of the players,

2. The existence of a continuum of the players (i.e., continuity of the mean field),

3. Interchangeability of the states among the players (i.e., permutation of the

states among the players would not affect the outcome of the game), and

4. Interaction of the players with the mean field.

The first assumption is generally applied in any type of game to ensure that the players

can take logical decisions. The presence of a large number of SBSs in the system model

ensures the existence of the continuum of the players. I derive the cost function

(which will be shown in next subsection) in order to ensure the interchangeability of

86



Chapter 4. A Mean Field Game for Energy-Aware Power Control in Ultra-Dense
Small Cell Networks

the actions among the players. The idea of the fourth assumption is that each player

interacts with the mean field instead of interacting with all the other players.

4.5.2 Deriving the Cost Function

A cost function, which depends only on control (and/or state) and mean field, would

ensure that the third assumption of the mean field game setting is valid. To derive

such a cost function for Gm, I follow a stochastic geometry-based approach. In this

case, for simplicity, I assume an interference-limited network setting (i.e., N0 = 0).

This assumption can be justified due the fact that the network is highly dense. It is

also assumed that all SBSs have the same QoS constraint given by γ.

By taking the spatial averages over the point process, I generalize f
(1)
k (t) and

f
(2)
k (t) for any generic player which transmits with power p(t) at time t as follows. I

denote the new functions by f (1,mean)(t) and f (2,mean)(t). The function f (1,mean)(t) is

given by

f (1,mean)(t) =

(
− p(t)E [gk,k(t)] E [rk,k(t)]

−α ΓEIs,gl,k(t),pl(t)

[∑
l∈Is

pl(t)gl,k(t)rl,k(t)
−α

]

+ ΓEIm,gm,k(t),pm(t)

[ ∑
m∈Im

pm(t)gm,k(t)rm,k(t)
−α

])2

,

(4.20)

where Is and Im are the sets of interfering SBSs and MBSs, respectively. The function

f (2,mean)(t) for any generic SBS is given by

f (2,mean)(t) = p(t)Eφs [gk,m] Eφm [rk,m]−α . (4.21)
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Then the cost function for a generic SBS can be written as follows:

c(t) = w1f
1,mean(t) + w2f

2,mean(t). (4.22)

Derivation of f (1,mean)(t)

Derivation of E [Is(t)] and E [Im(t)]:

I derive E [Is(t)] = EIs
[∑

l∈Is pl(t)gl,k(t)rl,k(t)
−α] for a generic SBS k at the origin.

According to Slivnyak’s theorem [89], the statistics for a PPP is independent of the

test location. Therefore, the analysis holds for any small cell user at a generic location.

Since the channel gains and the transmit powers of the interferes are independent of

the point process Φs,

E [Is(t)] = E[pk(t)]E[hk,k(t)]EΦs

[∑
l∈Is

rl,k(t)
−α

]
. (4.23)

For Rayleigh fading, assuming hl,k ∼ exp(1) for ∀k, l ∈ Φs, by using Campbell’s

theorem [90], we have the following:

E [Is(t)] = E [pk(t, t)]

∫
R2

rl,k(t)
−αd(R). (4.24)

Since the received power cannot be larger than transmit power, the path-loss is as-

sumed to be 1 when rl,k(t) < 1. Then, the average interference at a generic user at

the origin can be derived as follows:

E [Is(t)] = E[pk(t)]2πλs

[∫ 1

0

rdr +

∫ ∞
1

r−αrdr

]
,

= 2πλsE[pk(t)]

(
1

2
+

1

α− 2

)
. (4.25)
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By following similar steps, the average interference caused from the macro network

can also be derived as follows:

E [Im(t)] = 2πλmpm

(
1

2
+

1

α− 2

)
. (4.26)

Derivation of E [rk,k(t)]:

Each small cell user is assumed be connected to the nearest SBS. It is also known

that the distance to the nearest base station from any generic point is Rayleigh

distributed [91]. Therefore, the probability density function (PDF) of rk,k(t) can be

written as: frk,k(r) = 2πλsre
−πλsr2dr. Therefore, the average distance is the given by:

E [rk,k(t)] =
1

2
√
λs
. (4.27)

Derivation of f (2,mean)

In order to determine f (2,mean), I need to determine PDF of the distance to the nearest

possible macro user (i.e., rk,m) from any generic small cell user. The nearest macro

user can be just beyond the edge of coverage area of the small cell. In practice, cell

edges can be created both due to MBSs and SBSs. However, due to the limited

transmit power of the small cell base stations, the coverage area of small cells may

not overlap. For analytical tractability, in this case I assume that the small cells do

not overlap with each other. Therefore, the edges of the small cells are formed only

due to the MBSs.

PDF of rk,m can be derived as follows. Considering the cell edge between an SBS

and an MBS, we can write,

ps,pilotR
−α = pm,pilot(X −R)−α, (4.28)
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where R is the distance from SBS to the closest cell edge and X is the distance to

the nearest MBS. Since the distribution of MBSs follows a PPP with intensity λm,

the cumulative distribution function (CDF) FRk,m(rk,m) and PDF fRk,m(rk,m) of rk,m

are given by

FRk,m(rk,m) = 1− e−λmπb2r2 ,

fRk,m(rk,m) = 2πλmrb
2e−λmπb

2r2 , (4.29)

where b =
[
1 +

pm,pilot
ps,pilot

1
α

]
.

The above equations imply that rk,m is Rayleigh distributed and the expected

value is given by

Em∈φm [rk,m] =
1

2
√
λm

[
1 +

(
pm,pilot
ps,pilot

) 1
α

] . (4.30)

I assume that the path-loss exponent α is equal to 4. By substituting the values

from equations (4.25), (4.26), (4.27), and (4.30) for f (1,mean) and f (2,mean) in expression

(4.22), the cost function of a generic SBS transmitting with power p(t) at time t can

be written as follows:

c(t) = w1

(
−16λ2

sp(t) + 2πΓ [pmλm + E [pl(t)]λs]
)2

+ w216p(t)λ2
m

[
1 +

(
pm,pilot
ps,pilot

) 1
4

]4

.(4.31)

(4.32)

For a generic cost function, the control (i.e., transmit power) of time t would only

depend on the state of the SBS. Hence, the expectation of the transmit power over all

interfering SBSs can be written in terms of the mean field. Then, the above equation
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can be re-written as follows:

c(t, e) = w1

(
−16λ2

sp(t, e) + 2πΓ

[
pmλm + λs

∫
e∈E

p(t, e)m(t, e)de

])2

+ w216p(t, e)λ2
m

[
1 +

(
pm,pilot
ps,pilot

) 1
4

]4

. (4.33)

For comparison purpose, I also introduce another cost function2 denoted by ĉ(t, e),

which is similar to that in Chapter 3, as follows:

ĉ(t, e) = −ŵ1Eφs,φm [SINRk(p(t, :),m(t, :))]

+ŵ2pk(t)Eφs [gk,m] Eφm [rk,m]−α , (4.34)

where ŵ1 and ŵ2 are weighting factors.

This cost function does not take the QoS constraint into account. The SBSs can

increase their transmit powers even after satisfying the QoS constraint. A perfor-

mance comparison of these two cost functions will be shown in Section 4.7.

The first term of ĉ(t, e) is derived using stochastic geometry analysis in previous

chapter (in (3.29)) and then ĉ(t, e) can be written as follows:

ĉ(t, e) = −ŵ1
8p(t, e)

A2
(
λm
√
pm + λs

∫
∀ē∈E

√
p(t, ē)m(t, ē) de

)2

+ ŵ216p(t, e)λ2
m

[
1 +

(
pm,pilot
ps,pilot

) 1
4

]4

. (4.35)

2We will see later in the chapter that these two cost functions result in different power control
policies.

91



Chapter 4. A Mean Field Game for Energy-Aware Power Control in Ultra-Dense
Small Cell Networks

4.5.3 Mean Field Equations

Since the cost functions now only depend on the mean field and the control, the

optimal control problem given in equation (4.11) is similar for all the players in the

system. The HJB in equation (4.12) can then be modified as follows [67]:

∂u(t, e)

∂t
+ min

p(t,e)

(
c (p(t, e),m(t, e))− p(t, e)∂u(t, e)

∂e

)
= 0, (4.36)

where minp(t,e)
(
c (p(t, e),m(t, e))− p(t, e)∂u

∂e

)
is the Hamiltonian, generally denoted

by H
(
e,m(t, e), ∂u(t,e)

∂e

)
, and u(t, e) is the value function. The same equations are

applicable for ĉ(t, e) as well. The HJB equation models an individual player’s inter-

action with the mass (i.e., mean field). This is also called the backward equation.

The motion of the mean field corresponds to a Fokker-Planck-Kolmogorov (FPK)

equation which is called as the forward equation. The forward equation of game Gm

is given as

∂m(t, e)

∂t
+

∂

∂e

(
m(t, e)

∂H

∂z

)
= 0, (4.37)

where z = ∂u
∂e

.

It was proven that ∂H
∂z

can be replaced by the control [72], which is in this case

p(t, e). Hence, the modified FPK equation can be written as

∂m(t, e)

∂t
− ∂

∂e
(m(t, e)p(t, e)) = 0. (4.38)

The mean field equilibrium (MFE) can be obtained by solving the two coupled

PDEs given in equations (4.36) and (4.38).
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4.6 Solution of the Mean Field Game: Mean Field Equilib-

rium

4.6.1 Mean Field Equilibrium (MFE)

The solution of the MFG, namely, the mean field equilibrium (MFE) can be obtained

by solving the mean field equations. There is no general technique to solve the mean

field equations. In this section, I propose a finite difference technique to obtain the

MFE based on the method proposed in [72]. The coupled equations (4.36) and (4.38)

are iteratively solved until the equilibrium is achieved. The convergence point of

the algorithm is guaranteed to be the optimal solution (i.e., MFE) if the objective

function of the optimal control problem, E
[∫ T

t=0
c(t, e)dt+ c(T )

]
is convex.

As I propose a finite difference method, the time axis [0, T ] and the state space

[0, Emax] are discretized into X × Y spaces. Hence, there are X + 1 points in time

and Y + 1 points in state space. I also define

δt :=
T

X
and δe :=

Emax
Y

.

Solution to the forward equation

The forward equation is solved using the Lax-Friedrichs scheme to guarantee the

positivity of the mean field. The Lax-Friedrichs scheme is first order accurate in both

space and time [92]. By applying the Lax-Friedrichs scheme to equation (4.38), we

have

M(i+ 1, j) =
1

2
[M(i, j − 1) +M(i, j + 1)]

+
δt

2(δe)
[P (i, j + 1)M(i, j + 1)− P (i, j − 1)M(i, j − 1)] ,(4.39)
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where M(i, j) and P (i, j) denote, respectively, the values of the mean field and power

at time instant i and energy level j in the discretized grid.

Solution to the backward equation

The existing finite difference techniques to solve partial differential equations can not

be applied directly to solve the HJB equation due to the Hamiltonian. Therefore, I

reformulate the problem by writing the HJB equation as its corresponding optimal

control problem with the forward equation as a constraint. The reformulated problem

is as follows:

min
p(t,e),m(t,e)

E

[∫ T

t=0

c(t)dt+ c(T )

]
,

subject to

∂m(t, e)

∂t
− ∂

∂e
(m(t, e)p(t, e)) = 0, ∀(t, e) ∈ [0, T ]× [0, Emax]

and ∫
e∈E

m(t, e)de = 1, ∀t ∈ [0, T ] . (4.40)

The second constraint is to guarantee that the mean field gives the PDF of the state

distribution over SBSs at each time instant.

Then, the Lagrangian L (m(t, e), p(t, e), v(t, e)) for the above problem with the
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Lagrange multiplier v(t, e)∀t,e can be written as follows:

L (m(t, e), p(t, e), u(t, e)) = E

[∫ T

t=0

c(t, e)dt

]
+∫ T

t=0

∫ Emax

e=0

v(t, e)

[
∂m(t, e)

∂t
− ∂ (m(t, e)p(t, e))

∂e

]
dedt

=

∫ T

t=0

∫ Emax

e=0

m(t, e)c(t, e)de dt

+

∫ T

t=0

∫ Emax

e=0

v(t, e)

[
∂m(t, e)

∂t
− ∂ (m(t, e)p(t, e))

∂e

]
dedt,

(4.41)

where I have assumed the terminal cost c(T ) to be equal to zero.

As I use a finite difference scheme to solve the forward equation (i.e., first con-

straint in the reformulated optimization problem), I also discretize the Lagrangian

to solve the above given optimal control problem. The discretized Lagrangian LD is

given as in (4.42), where V (i, j) and C(i, j) denote the Lagrange multiplier and the

value of the cost function at point (i, j) on the discretized grid.

LD = δe δt
X+1∑
i=1

Y+1∑
j=1

[
M(i, j)C(i, j) + V (i, j)

(
M(i+ 1, j)− 0.5 (M(i, j + 1) +M(i, j − 1))

δt

)
−V (i, j)

(
P (i, j + 1)M(i, j + 1)− P (i, j − 1)M(i, j − 1)

2δe

)]
. (4.42)

The optimal decision variables (given by P ∗,M∗, V ∗) must satisfy the Karush-

Kuhn-Tucker (KKT) conditions. For an arbitrary point (̄i, j̄) in the discretized grid,

by evaluating and re-arranging the KKT condition, ∂LD
∂M (̄i,j̄)

= 0, I deduce the following
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equation to update V :

V (̄i− 1, j̄) = 0.5 [V (̄i, j̄ − 1) + V (̄i, j̄ + 1)]− δtC (̄i, j̄)− δt
Y+1∑
j=1

(
M (̄i, j)

∂C (̄i, j)

∂M (̄i, j̄)

)
+

δtP (̄i, j̄)

2δe
[V (̄i, j̄ − 1)− V (̄i, j̄ + 1)] .

(4.43)

If V (N + 1, :) is known, the values of the Lagrange multipliers can be updated itera-

tively using the above equation.

Assume an optimization problem whose objective function is given by f(x) and has

l equality constraints each denoted by hi(x)i∈{1,2,...,l}. It is known that the following

relationship exists at the optimal solution [93]:

5f(x∗) =
l∑

i=1

vi5 hi(x
∗), (4.44)

where x∗ is the optimal solution and vi is the Lagrange multiplier corresponding to

hi.

Let (p∗(t, e),m∗(t, e))∀(t,e)∈[0,T ]×[0,Emax] denote the solution for the optimal control

problem given in (4.40). Now, consider the optimal control problem given below for

any arbitrary e′ at time T :

min
p(T,e′),m(T,e′)

fT (p(T, e′),m(T, e′)) = E

[∫ T

t=T

c(t)dt+ c(T )

]
,

subject to

∂m(T, e′)

∂t
− ∂

∂e
(m(T, e′)p(T, e′)) = 0. (4.45)

According to Bellman’s principle of optimality [83], it can be concluded that the
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optimal solution to the above problem (4.45) is given by p∗(T, e′). As c(T ) = 0,

5fT (p(T, e′),m(T, e′)) = 0. Assuming that the derivative of the first constraint is

non-zero at the optimal point and from equation (4.44), it can be concluded that

v(T, e) = 0 for all e. Hence, by setting V (T, e) = 0,∀e ∈ E , and then using the

expression in equation (4.43) the values of the Lagrange multipliers can be updated.

Next, I consider the KKT condition, ∂LD
∂P (̄i,j̄)

= 0 for any arbitrary point (̄i, j̄) in

the discretized grid. Then

Y+1∑
j=1

(
M (̄i, j)

∂C (̄i, j)

∂P (̄i, j̄)

)
− M (̄i, j̄)

2δe
[V (̄i, j̄ − 1)− V (̄i, j̄ + 1)] = 0. (4.46)

Equation (4.46) has to be solved for P (̄i, j̄) to obtain the transmit power at point

(̄i, j̄).

Obtaining the MFE

The equations (4.39), (4.43), and (4.46) can be solved iteratively until the convergence

point is obtained. The complete algorithm to obtain the converging point is given

in Algorithm 1. I state the following theorem regarding the convergence point

assuming that the Lax-Friedrichs scheme is accurate for c(t, e),

Theorem 4.6.1. The convergence point of the given algorithm is the mean field

equilibrium of game Gm with cost function, c(t, e).

Proof. The Hessian w.r.t. P (̄i, j̄) andM (̄i, j̄) of the discretized version of the objective

function of the optimization problem given in equation (4.40) can be proven to be

positive for any arbitrary (̄i, j̄). Hence, the problem given in equation (4.40) is a

convex optimization problem. Since the KKT conditions are necessary and sufficient

conditions for the optimal solution of a convex optimization problem, the convergence
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point of the algorithm is equivalent to the MFE of game Gm with cost function,

c(t, e).

Algorithm 1 Computing the mean field equilibrium

1: Initialization : Initialize M(0, :), V(N+1,:), iteration = 1
2: repeat
3: for all i = 1 : 1 : X do
4: for all j ∈ {1, ..., Y } do
5: Calculate M(i+ 1, j) using equation (4.39)
6: end for
7: end for
8: if P (i,M + 1) = 0 then
9: M(i+ 1, Y + 1) = M(i, Y + 1)

10: else
11: M(i+ 1, Y + 1) = 0
12: end if
13: ∀i, Normalize M
14: for all i = X + 1 : −1 : 1 do
15: for all j ∈ {1, ..., Y + 1} do
16: Update V (i− 1, j) using equation (4.43)
17: end for
18: end for
19: for all i = 1 : 1 : X + 1 do
20: for all j ∈ {1, ..., Y + 1} do
21: Update P (i, j) using equation (4.46)
22: end for
23: end for
24: iteration = iteration+ 1
25: until iteration ≥ Itermax

4.6.2 Uniqueness of the MFE

In the following theorem, I state the sufficient conditions for G to have a unique

solution.

Theorem 4.6.2. The game G has a unique solution if the following conditions are

satisfied:
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1. ∂
∂m
H (p, z,m) > 0,

2. ∂
∂z

(mp) > 0,

3. ∂
∂z
H (p, z,m) > 0,

where z = ∂u
∂e

.

Proof. Assume that (m0(t, e), u0(t, e)) and (m1(t, e), u1(t, e)) are two different solu-

tions for the game G. Here I use the notation x(t, e) to denote a continuous function

of t ∈ [0, T ] and e ∈ [0, Emax]. Consider the following integration:

I(1) =
d

dt

∫
e∈E

(u1(t, e)− u0(t, e)) (m1(t, e)−m0(t, e)) de. (4.47)

The above integration is rearranged as follows:

I(1) =

∫
e∈E

(
∂u1(t, e)

∂t
− ∂u0(t, e)

∂t

)
(m1(t, e)−m0(t, e)) de

+

∫
e∈E

(u1(t, e)− u0(t, e))

(
∂m1(t, e)

∂t
− ∂m0(t, e)

∂t

)
de.
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After substituting equations (4.36) and (4.38), we obtain

I(1) =

∫
e∈E

H

(
e,m0(t, e),

∂u0(t, e)

∂e

)
(m1(t, e)−m0(t, e)) de

−
∫
e∈E

H

(
e,m1(t, e),

∂u1(t, e)

∂e

)
(m1(t, e)−m0(t, e)) de

+

∫
e∈E

∂

∂e
(m1(t, e)p1(t, e)) (u1(t, e)− u0(t, e)) de

−
∫
e∈E

∂

∂e
(m0(t, e)p0(t, e)) (u1(t, e)− u0(t, e)) de

=

∫
e∈E

H

(
e,m0(t, e),

∂u0(t, e)

∂e

)
(m1(t, e)−m0(t, e)) de

−
∫
e∈E

H

(
e,m1(t, e),

∂u1(t, e)

∂e

)
(m1(t, e)−m0(t, e)) de

+

∫
e∈E

(m0(t, e)p0(t, e))

(
∂

∂e
u1(t, e)− ∂

∂e
u0(t, e)

)
de

−
∫
e∈E

(m1(t, e)p1(t, e))

(
∂

∂e
u1(t, e)− ∂

∂e
u0(t, e)

)
de.

Let ∀(t, e), mθ(t, e) = m0(t, e) + θ (m1(t, e)−m0(t, e)) and uθ(t, e) = u0(t, e) +

θ (u1(t, e)− u0(t, e)).

Consider the intergral

I(θ) =

∫
e∈E

[
H

(
e,m0(t, e),

∂u0(t, e)

∂e

)
−H

(
e,mθ(t, e),

∂uθ(t, e)

∂e

)]
(mθ(t, e)−m0(t, e)) de

+

∫
e∈E

(
∂

∂e
uθ(t, e)−

∂

∂e
u0(t, e)

)
(m0(t, e)p0(t, e)−mθ(t, e)pθ(t, e)) de.
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Next, we write

I(θ)

θ
=

∫
e∈E

H

(
e,m0(t, e),

∂u0(t, e)

∂e

)
(m1(t, e)−m0(t, e)) de

−
∫
e∈E

H

(
e,mθ(t, e),

∂θ(t, e)

∂e

)
(m1(t, e)−m0(t, e)) de

+

∫
e∈E

(
∂

∂e
u1(t, e)− ∂

∂e
u0(t, e)

)
m0(t, e)p0(t, e)de

−
∫
e∈E

(
∂

∂e
u1(t, e)− ∂

∂e
u0(t, e)

)
mθ(t, e)pθ(t, e)de.

Using the chain rule, we have

d I(θ)
θ

dθ
=
∂I(θ)

∂mθ

∂mθ

∂θ
+
∂I(θ)

∂z

∂z

∂θ
,

where z = ∂uθ
∂e

.

By evaluating
d
I(θ)
θ

dθ
, we can write

d I(θ)
θ

dθ
=

∫
e∈E

(
a b

)c d

e f


a
b

 de, (4.48)

where a = m1(t, e) − m0(t, e), b = ∂
∂e
u1(t, e) − ∂

∂e
u0(t, e),

c = − ∂
∂mθ

H
(
e,mθ(t, e),

∂uθ(t,e)
∂e

)
, f = − ∂

∂ ∂u
∂e

(mθ(t, e)pθ(t, e)), e =

− ∂
∂z
H
(
e,mθ(t, e),

∂uθ(t,e)
∂e

)
, and d = −pθ(t, e).

It can also be deduced that I(θ)
θ

∣∣∣
θ=0

= 0. If dI(θ)
dθ
≤ 0, I(θ)

θ

∣∣∣
θ=1
≤ 0 and hence

I(1) ≤ 0. From equation (4.47),

d

dt

∫
e∈E

(u1(t, e)− u0(t, e)) (m1(t, e)−m0(t, e)) de ≤ 0.

According to the definition m1(0, :) = m0(0, :) and u1(T, :) = u0(T, :). Assuming
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Table 4.2: Chapter 4: Simulation parameters

Parameter Value

λm 0.00005 base stations/m2

λs 50λm
pm, pm,pilot 43 dBm
pmax 10 dBm
ps,pilot 13 dBm
w1 , w2 1000, 50000
T 0.5 s, 1 s

that m and u are monotone functions, then

d

dt

∫
e∈E

(u1(t, e)− u0(t, e)) (m1(t, e)−m0(t, e)) de = 0.

Therefore, if

c d

e f

 is negative all the time u1(t, e) = u0(t, e) and m1(t, e) =

m0(t, e), ∀(t, e) ∈ [0, T ]× [0, Emax]. Hence, the solution is unique.

4.7 Numerical Results and Discussion

This section presents numerical results on the performance of the proposed algorithm.

I also validate the stochastic geometry-based expressions derived in Section 4.5.2. The

values of the main simulation parameters are given in Table 4.2.

102



Chapter 4. A Mean Field Game for Energy-Aware Power Control in Ultra-Dense
Small Cell Networks

1 2 3 4 5 6 7 8

x 10
−5

0

0.005

0.01

0.015

0.02

0.025

MBS density,λm (Base stations/m2)

A
ve

ra
ge

 in
te

rf
er

en
ce

 a
t a

 g
en

er
ic

 s
m

al
l c

el
l u

se
r 

(m
)

 

 

Theoritical
Simulation

, W

Figure 4.1: Average interference experienced by a generic small cell user (for λs =
50λm).

4.7.1 Validating the Expressions Derived by Stochastic Geometry

Analysis

First, I validate the expressions derived by stochastic geometry analysis. To validate

the average interference given in equation (4.25), I only consider the interference

caused due to the SBSs (i.e., only one PPP is considered for simulation). The same

result would hold for the interference caused by the macro network. A comparison

of the simulation results with those obtained based on the expression in (4.25) is

shown in Fig. 4.1. In Fig. 4.2, I validate the expression for the average distance

to the closest possible macro user given in equation (4.30). The exact match of the

theoretical and simulation results validates the accuracy of the derived expressions.

4.7.2 Behavior of the Mean Field at Equilibrium

In this section I observe the behavior of the mean field at the equilibrium. First, I set

Emax = 0.1J , pmax = 0.01W , and T = 0.5 (i.e., 50 LTE frames). The initial energy
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Figure 4.2: Variation of the distance to the closest edge of an SBS with λm.

distribution m(0, :) is assumed to be uniform. The mean field at the equilibrium for

cost function ct,e is shown in Fig. 4.3.

Time, sec
Energy, J

Figure 4.3: Mean field at the equilibrium for c(t, e) with uniform initial energy dis-
tribution.

It can be seen from the figure that the number of SBSs with higher energy levels

decreases with time. The probability of base stations having zero energy increases

at the beginning of the time frame and later settles to a constant. This means,
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although some SBSs empty their battery while transmission, all SBSs do not empty

their batteries. This is because, the quadratic term (i.e., f (1,mean) in (4.20)) of the

cost function c discourages the SBSs to increase their transmit power after satisfying

the QoS constraint. Therefore, the SBSs which start transmission with higher initial

energy do not empty their batteries throughout the transmission.

For illustration, I also plot several cross-sections of the mean field in Fig. 4.4,

which shows the variation of the probability distribution of SBSs having a certain

energy with time. Since the initial distribution is uniform, the initial probabilities

are similar for all energy levels. After the transmission starts, there is no SBS with

full energy as everybody transmits with non-zero power. Therefore, the probability

of SBSs with maximum energy (i.e., 0.1 J) drops to zero right after the start of the

transmission. The probability of SBSs having zero energy increases for sometime, as

SBSs who had smaller initial energy would eventually empty their batteries.

In Fig. 4.5 and Fig. 4.6, I show the MFE considering ĉ(t, e) in equation (4.35).

ŵ1 and ŵ2 are set to 1. Unlike in the previous cost function c(t, e), this cost function

does not discourage the SBSs to increase transmit power after satisfying the QoS
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Figure 4.5: Mean field at the equilibrium for ĉ(t, e) with uniform initial energy dis-
tribution.

constraint. Therefore, the SBSs tend to use more energy during T and result in a

different mean field behavior. (Note that in this case, there are SBSs with a higher

energy than the previous case as Emax = 2J .) It can be seen in Fig. 4.5 that, the

probability of an SBS having zero energy is equal to one at the end of the time period

T (i.e., m(T ; 0) = 1). This means all the SBSs have emptied their energy allowance

during the transmission and have zero available energy at the end of the considered

time frame T . Therefore, it can be concluded that the cost function c(t, e) performs

better than the cost function ĉ(t, e) in terms of energy saving.

4.7.3 Power Control Policy at the Mean Field Equilibrium

I show the transmit power policies for the game Gm with both cost functions c(t, e)

and ĉ(t, e). Once the power policy is calculated, an SBS can decide on the transmit

power based on its available energy at each time instant. Re-computation of the

power policy is needed at the beginning of each time interval T (i.e., 0, T , 2T , 3T ,

...) only if the probability distribution of allowable energy changes.
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Figure 4.6: Cross-section of the mean field at equilibrium for ĉ(t, e).

Fig. 4.7 shows the equilibrium power policy for the cost function c(t, e). A uni-

form initial energy distribution is considered. All SBSs start transmission at low

power levels. The SBSs with lower energy may empty their batteries after sometime

decreasing the average interference caused to the other users. Then, the SBSs, which

have sufficient energy to transmit throughout T , increase their transmit power. As

the cost function c(t, e) discourage the SBSs to increase power after satisfying the QoS

constraint, the transmit power remains almost constant. However, the cost function

ĉ(t, e) results a different system behavior.

Fig. 4.8 shows the transmit power policy at the equilibrium for cost function ĉ. I

also consider a uniform distribution of initial energy. This figure also shows that, the

SBSs with higher energy start transmitting with maximum allowable transmit power

while the SBSs with lower energy start with lower power. However, the SBSs with

lower energy tend to increase their transmit power after some time. A cross-section

of the power policy plot is shown in Fig. 4.9 for energy levels 2J, 0.2J, 0.05J, and 0J .

The figure shows that the SBSs with higher energy start transmitting with maximum
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Figure 4.7: Equilibrium power policy for ĉ(t, e) with uniform initial energy distribu-
tion.

allowable transmit power while the SBSs with lower energy start with lower power.

However, the SBSs with lower energy tend to increase their transmit power after some

time.

The above phenomenon is illustrated more in Fig. 4.10 where I show the transmit

power policies with three different initial energy levels. The SBSs who start the game

with an initial energy of 0.05J do not transmit at higher power at the beginning of

the time period T . They increase the transmit power later in the time slot. By that

time, the SBSs who started the game with higher energy have spent most of their

energy and lowered their transmit power. The SBSs with less initial energy can have

a better cost by increasing their transmit power later in time period T due to reduced

interference. In an actual implementation, the pre-defined time T is composed of a

certain number of LTE frames. In simulations I have used T = 0.5s and T = 1s which

is equivalent to 50s and 100 LTE frames respectively. The proposed power control

algorithm determines the transmit power over T for each base station in such a way
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Figure 4.8: Equilibrium power policy for ĉ(t, e) with uniform initial energy distribu-
tion.

that it minimizes the total cost for the time period T . Therefore, after the execution

of the algorithm, the transmit power for each LTE frame in time T is known. When

several users are connected to the base station, each user may get a certain number

LTE frames out of the total number of frames in time T . The number and the order

of the frames given to a user depends on the scheduling scheme used. The scheduled

user at each LTE frame is served on the corresponding transmit power decided by the

proposed algorithm for that frame. When a new user is admitted to the base station,

service for that user can be started in the next T time period.

4.7.4 Comparison With Uniform Transmit Power Policy

Several works in the literature proposed solutions to the downlink power control

problem for two-tier cellular networks. However, providing a numerical comparison

(by simulation) of the proposed mean field game based solution with existing solutions

would be unrealistic as different works have used different system models and different

network parameters. However, a qualitative comparison among the different schemes
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Figure 4.9: Cross-section of the power policy for ĉ(t, e).

is provided in Table 4.3.

To illustrate the performance of the proposed algorithm numerically, I use uniform

transmit power setting as a benchmark algorithm. In this case, the uniform transmit

power pk of an SBS k with initial energy ek(0) equals to ek(0)
T

. Fig. 4.11 plots the

variation of average SINR with λs for both uniform transmit power setting and the

proposed algorithm for cost function ĉ(t, e). The results show that the transmit

power policy given by the proposed algorithm performs better when the network

becomes more dense. The variation of average SINR over T with λs for c(t, e) is

compared with the uniform transmit power policy in Fig. 4.12. Also, in this case the

proposed algorithm outperforms the uniform power policy. However, the SINR does

not increase after satisfying the QoS constraint.

4.8 Chapter Summary

I have proposed an energy-aware distributed power control algorithm for self-

organizing small cell networks. The power control problem for a small cell network

underlaying a macrocell network (i.e., in a co-channel deployment scenario) is first
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Figure 4.10: Transmit power variation of SBSs with different initial energy for ĉ(t, e).
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Figure 4.11: Variation of SINR at the receiver of a generic user with SBS density.

formulated as a differential game. The differential game for power control is then

extended to a mean field game for a dense network. An iterative finite difference tech-

nique is proposed to solve the mean field equations based on Lax-Friedrichs scheme

and Lagrange relaxation. I also have shown the sufficient conditions for the uniqueness

of the mean field equilibrium. The performance of the algorithm has been analyzed

for two cost functions. The main advantage of the proposed algorithm is that it

can be distributively executed offline. Also, the algorithm considers minimizing the
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Figure 4.12: Variation of SINR at the receiver of a generic user with SBS density.

cost over a pre-defined period of time, instead of minimizing the running cost. Nu-

merical results have been presented to demonstrate the performance of the proposed

algorithm.

In this chapter and in Chapter 3, I have considered half-duplex small cells. How-

ever, full-duplex transmission technology is also a recently emerging technology in

wireless communications. In next chapter, I consider distributed power control for

small cells with full-duplexing capabilities. Moreover, both evolutionary game and

mean field game based resource allocation techniques proposed in this thesis by far,

assume that the network nodes are truthful to each other. Both these resource alloca-

tion algorithms fail if the network nodes are deceitful and send inaccurate information

to other network nodes to manipulate the resource allocation scheme in such a way

that deceiving nodes can obtain more benefit than others. In next chapter, I also

address this problem and derive a cheat-proof distributed power control technique for

small cells with full-duplexing capabilities.
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Chapter 5

A Repeated Game for Cheat-Proof

Distributed Power Control in

Full-Duplex Small Cell Networks

In this chapter, I address the problem of distributed power control in a two-tier cel-

lular network, where full-duplex small cells underlay a macro cell in a co-channel

deployment scenario. I first formulate the distributed power control problem as a

non-cooperative game and then extend it to a repeated game with imperfect public

monitoring. The repeated game formulation prevents deceitful small cells from deviat-

ing from the social optimal solution for their own benefit. I establish the existence and

uniqueness of the Nash equilibrium in the formulated non-cooperative game. I also

characterize the set of perfect public equilibrium for the repeated game. A two-phase

distributed algorithm is proposed to achieve and enforce a Pareto optimal transmit

power profile. The solution obtained by this algorithm is also social optimal. Phase

1 of the algorithm is a fully-distributed learning phase based on Perturbed Markov

Chains, where each base station individually learns a Pareto optimal operating point.
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Phase 2 is composed of two rules: i) Detection rule based on Page-Hinckley test to

detect cheating, and ii) Punishment rule to motivate cheating base stations to co-

operate. Through theoretical analysis, I prove that the proposed distributed power

control mechanism achieves a public perfect equilibrium point of the formulated re-

peated game. The power control algorithm is also cheat-proof and needs only a small

amount of information exchange among network nodes. The effectiveness of the al-

gorithm is shown through numerical analysis. The proposed model, algorithm, and

analysis are also valid for a half-duplex system as a special case.

5.1 Introduction

5.1.1 Overview

Full-duplex transmission (i.e., transmitting and receiving at the same time in the

same frequency band)1 is an emerging technology which has a potential to signifi-

cantly increase the spectral efficiency and hence the network capacity. Recent stud-

ies show that full-duplex technology works better for low-power transmission nodes,

since self-interference can be reduced to the noise power level [100]. Therefore, de-

ployment of full-duplex small cells is expected to be an important feature of next

generation cellular networks. Most of the existing power control schemes including

two methods proposed in previous chapters of this thesis, are either for uplink or

downlink resource allocation, i.e., applicable only for half-duplex systems. When it

comes to full-duplex systems, uplink and downlink transmissions cannot be analyzed

separately, since uplink and downlink transmissions are mutually dependent due to

self-interference. Consequently, the existing solutions are not applicable for a full-

1Simultaneous transmission and reception in the same frequency band is referred to as in-band
full-duplexing and simultaneous transmission and reception in different frequency bands is referred
to as out-of-band full-duplexing. In this work, I consider in-band full-duplex transmission.
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duplex system unless perfect self-interference cancellation is possible. To date, only

a small number of research works have addressed the problem of distributed resource

allocation for full-duplex small cells. In [101], the authors propose a stable match-

ing game for subcarrier allocation in full-duplex single-tier small cells. However, no

theoretical analysis is performed. In [102], joint uplink-downlink resource allocation

problem for a full-duplex single cell is modelled as a non-cooperative game and solved

for NE. Most importantly, a great majority of the existing distributed resource allo-

cation mechanisms are based on different types of non-cooperative one-shot games;

that is, the resource allocation game is played only once. However, the resource allo-

cation processes are inherently repeated. Taking this fact into account, it is natural

to model the resource allocation problems by repeated games [103] instead of one-shot

games. In a repeated game, a base game (called the stage game) is played a finite

number of times or infinitely many times. In such a setting, every player is able to

take decisions based on previous joint action profile of players as well as previous out-

comes. Therefore, decisions produced by repeated games differ fundamentally from

those of one-shot games. Power control and spectrum sharing problems of wireless

systems are modelled as repeated games in [104], [105], [106] and [107], among others.

However, those works rely on the availability of perfect information of each player’s

history (also called Perfect Monitoring). In [108], repeated games with imperfect

public monitoring are used to develop a TDMA-based spectrum sharing scheme for

a cognitive radio network.

5.1.2 Contribution

In this chapter, I study the problem of distributed and cheat-proof joint downlink-

uplink power control for a two-tier network with multiple small cells underlaying a
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macro cell. This game model, developed based on a new payoff function, is applicable

to full-duplex systems in which uplink and downlink transmissions are coupled. Also,

in this model, I relax the assumption of perfect monitoring and only assume imperfect

monitoring of a public signal (Imperfect Public Monitoring). In order to solve the

formulated game, I propose a distributed power control algorithm that consists of two

phases. In Phase 1, each network node (either a small cell base station (SBS) or a

small cell user) distributively learns the equilibrium. In Phase 2, the following two

steps are executed: i) Cheating detection, which is performed by the macro cell base

station (MBS) to monitor the system and to detect any deviation from the learned

equilibrium point, and ii) Punishment, which is implemented to motivate the cheating

nodes to cooperate with the system (incentive-compatibility). The main contributions

of this chapter can be summarized as follows:

• I consider the joint downlink-uplink power control problem in a co-channel

deployed two-tier network with full-duplex small cells underlaying a macro cell.

I model the problem by a non-cooperative game, which accommodates the power

control for both macro and small cell tiers.

• I establish the existence and uniqueness of the NE of the formulated non-

cooperative stage game.

• I extend the formulated one-stage non-cooperative game to a repeated game

with imperfect public monitoring to obtain a solution which Pareto dominates

the NE of the stage game.

• Through theoretical analysis, I characterize the perfect public equilibrium

(PPE)2 payoff set of the formulated repeated game.

2The perfect public equilibrium (PPE) is equivalent to the concept of subgame perfect equilibrium
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• I develop a distributed learning algorithm with linear time complexity to find

the social optimal operating point. The convergence of the proposed learning

model to the social optimal is proven theoretically. Moreover, it is also shown

that the convergence point of the learning model is Pareto optimal.

• I implement a deviation detection and punishment policy in order to prevent

selfish network nodes from acting in their own benefit and deviating from the

social optimal operating point. The deviation detection algorithm is based

on the Page-Hinckley test. Moreover, the following punishment strategies are

studied: i) grim-trigger (punish forever) strategy and ii) punish and forgive

strategy.

• I design a distributed power control scheme based on the aforementioned learn-

ing algorithm, deviation detection algorithm, and punishment policy. The con-

vergence of the power control scheme to a PPE point of the formulated repeated

game is proven theoretically.

• I also evaluate the performance of the proposed power control technique through

extensive numerical analysis.

The main symbols that are used throughout this chapter are listed in Table 5.1.

5.2 System Model and Assumptions

I consider a network consisting of K small cells. In each small cell, an SBS and a

user communicate with each other in a full-duplex manner using the same channel.

A small cell can have multiple users in its coverage area; however, in a particular

in repeated games with perfect monitoring. The formal definition of PPE will be given in Section
IV.

118



Chapter 5. A Repeated Game for Cheat-Proof Distributed Power Control in
Full-Duplex Small Cell Networks

Table 5.1: Chapter 5: Symbols

Symbol Description

α Path-loss exponent
θk Weighting factor of small cell k’s payoff function
δ Discount factor for repeated game Gr
η Interference measurement error at the macro user
ν Learning rate of Phase 1 of power control algorithm
πk Payoff of player k in game Gs
ak Action of player k
aSO Pareto optimal payoff of game Gs
C (.) Self-interference function
K Set of base stations
h(t) History at step t of game Gr
Imax Interference threshold at the marco user
Itermax Maximum number of iterations of Phase 1
m(t) Public message at step t
mk(t) Mood of player k at step t
N0 Variance of noise power
pULk , pDLk Uplink, downlink transmit power of base station k
ri,j Distance between node i and j
sk Public strategy of player k

SINRUL
k , SINRDL

k Uplink, downlink SINR of base station k
vk Payoff of player k in game Gr
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time interval (or time step), only one user communicates with the corresponding

SBS. All small cells underlay a macrocell in which the MBS serves a macro user in

the downlink in a time interval using half-duplex communication mode3. Each base

station and the user served by this base station during a certain transmission interval

are considered as one entity. The set of cells is denoted by K = {0, 1, 2, ..., K},

where 0 stands for the macro cell and 1, 2, ..., K are used to denote the small cells.

Co-channel deployment is included in the model; that is, all base stations including

the MBS transmit through the same channel. Downlink and uplink transmit powers

of each base station k ∈ {0, 1, 2, ..., K} are denoted by pULk and pDLk , respectively.

Small cells can operate in any of the following three modes: i) full-duplex mode when

pULk , pDLk > 0, ii) half-duplex mode when either pULk or pDLk is zero, and iii) OFF mode

when pULk = pDLk = 0. I assume that the link between the MBS and the macro user

is half-duplex and consider only downlink transmission from the MBS to the macro

user (i.e., pUL0 = 0). For simplicity, only long-term signal attenuation due to path-loss

is considered. However, it is straightforward to include fading in the model, and the

analyses presented in the later sections remain valid.

The downlink signal-to-interference-plus-noise ratio (SINR) at the user and the

uplink SINR at the base station of a generic cell k are respectively given by

SINRDL
k =

pDLk r−αkb,ku
N0 + IULku + IDLku + C(pULk )

, (5.1)

and

SINRUL
k =

pULk r−αku,kb
N0 + IULkb + IDLkb + C(pDLk )

, (5.2)

3Uplink transmissions from the macro users to the MBS are not considered here. For a commu-
nication link between a base station and a user, in a repeated game set up, a complete transmission
interval consists of multiple time steps during which the power control algorithm is executed until
it converges.
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where N0 is variance of noise power and α is the path-loss exponent. Moreover, ku

and kb denote the user and base station of cell k, respectively. In addition, ri,j denotes

the distance between network nodes4 i and j. Also,

• IULl =
∑

j∈K−{l} p
UL
j r−αju,l is the interference caused by the uplink transmissions

of all the other users at the network node l,

• IDLl =
∑

j∈K−{l} p
DL
j r−αjb,l is the interference caused by the downlink transmis-

sions of the other base stations at the network node l, and

• C (p) is the self-interference at a network node which transmits at power p.

The above equations are valid for the macro cell as well. In particular, SINRUL
0 = 0

and C(pULk ) = 0, since according to this system model pULk = 0. It is also assumed

that each network node selects its transmit power from a pre-defined finite set.

The MBS is capable of obtaining a noisy measurement of the interference caused

by small cells to the macro user being served during a transmission interval. After

each transmission step, the MBS broadcasts a public message based on the measured

interference to all SBSs on a delay-free channel. I also assume that all users have a

perfect delay-free feedback channel to their base stations. Thus, users can update the

base stations about their performances at each step. Moreover, the initial location

information of the small cell network nodes is available at the MBS.

5.3 Stage Game and Analysis of Nash Equilibrium

5.3.1 Stage Game, Gs

In the following, I first formulate the stage game Gs.
4A network node is either a user or a base station.
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Set of players, K: Each base station and its associated user are considered as one

player of Gs. Thus the set of players is denoted by K = {0, 1, 2, ..., K}.

Set of actions for player k, Ak: Downlink and uplink transmit powers of each

base station-user pair k ∈ K− {0} is drawn from a finite set of power levels given by

PULk = {0, pUL,1k , pUL,2k , ..., pUL,maxk } and PDLk = {0, pDL,1k , pDL,2k , ..., pDL,maxk },

respectively. Note that for player k = 0 (i.e., the MBS according to the system

model), PUL0 = {0}. PDL0 is similar to other players, as given above. The action

of any player k (denoted by ak) is the combination of uplink and downlink transmit

powers. This is also called the transmit power profile (i.e., pk) of player k. The action

of player k thus yields

ak = pk =
(
pULk pDLk

)
. (5.3)

In addition, a−k represents the actions of all players other than k. The joint action

profile of the system is thus given by a = p = [a0 a1 ... aK ] ∈ A = A0×A1× ...×AK .

The size of the action set of each player is given by: |Ak| = |PULk ||PDLk |. I will use

the symbols a and p interchangeably in the rest of this chapter.

Payoff function of player k, πk: For small cells underlaying a macro cell network,

the following payoff function for a small cell k ∈ K−{0} is generally used ( [109,110]):

Payoffk = F1

(
SINRUL

k , SINRDL
k

)
−F2

 ∑
j∈K−{k}

pULk r−αku,j +
∑

j∈K−{k}

pDLk r−αkb,j

 . (5.4)

Note that the argument in the second term of the right-hand-side of (5.4) is the

interference caused by small cell k (i.e., player k, where k 6= 0) to the macro user and

other small cell nodes. Thus, the payoff function consists of two terms: i) F1 (·) that

corresponds to the gained utility and depends on the SINR at receivers, and ii) F2 (·)
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that corresponds to the cost or penalty for causing interference to the other network

nodes. Although including such penalty factor might assist theoretical analysis, it

is virtual and thus does not cause any actual performance reduction to small cells.

As a result, dishonest small cell nodes may continue increasing their transmit powers

in order to increase the real positive utility, neglecting the increase in the virtual

penalty. This might result in a performance reduction for the macro network as well

as other small cells.

Typically, the following two types of dishonest behavior might be observed:

1. Small cell network nodes are dishonest to each other, but all of them are truthful

to the MBS:

In this case, the MBS can select the maximum transmit powers for all nodes

in the small cell network (i.e., pUL,maxk , pDL,maxk ,∀k ∈ {1, 2, ..., K}) in such a

way that the interference level at the macro user is below a certain pre-defined

threshold, denoted by Imax. Let A′ = A1 × ... × AK be the set of all joint

transmit power profiles of small cells. Moreover, let psmall = [p1 ... pK ] ∈ A′

denote the transmit power vector (i.e., joint transmit power profile) of all nodes

in the small cell network. Then, before execution of the algorithm, the MBS

solves the following optimization problem, in order to decide maximum transmit

power of each node in the network:

Maximize
psmall∈A′

psmall

subject to
K∑
k=1

(
r0u,kbp

DL
k + r0u,kup

UL
k

)
≤ Imax

pULk , pULk ≥ 0 , ∀k ∈ {1, 2, ..., K}.

Note that only the initial location information of the small cell network nodes
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(which is available at the MBS) is required to solve the optimization problem.

2. Small cell network nodes are dishonest to each other and the MBS:

In this case, there is no benefit in solving the above optimization problem and

setting the maximum transmit power for each node in the small cell network.

Thus, there is no minimum interference guarantee and the MBS has to accept

the interference at the operating point.

For both the aforementioned cases, instead of considering a payoff function in

the form of (5.4), I formulate a payoff function which is only based on the utility

gained due to the SINR value at the receiver. In particular, the payoff of player k is

formulated as

πk = θk
log
(
1 + SINRUL

k

)
log
(

1 + SINRUL,max
k

) + (1− θk)
log
(
1 + SINRDL

k

)
log
(

1 + SINRDL,max
k

) , (5.5)

where θk ∈ [0, 1] is a weighting factor and SINRDL,max
k and SINRUL,max

k , respectively,

denote the maximum possible downlink and uplink SINR values that can be achieved

in small cell k. The maximum possible SINR is achieved when the transmitter is

transmitting at the maximum possible transmit power and the interference at the

receiver (caused by other nodes and self-interference) is zero. Therefore, SINRUL,max
k

and SINRDL,max
k can be calculated as

SINRUL,max
k =

pUL,maxk

N0

, and (5.6)

SINRDL,max
k =

pDL,maxk

N0

. (5.7)

It is also worth noting that πk has a value between 0 and 1 and equivalent to

the aggregate normalized uplink and downlink rate for Gaussian interference. Note
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that by changing the weighting factor θk, the priority for uplink and downlink can be

changed. In other words, the uplink SINR can be prioritized by increasing θ. These

biasing factors can be set based on the system requirement prior to the execution of

the power control algorithm.

5.3.2 Analysis of Nash Equilibrium

In the following theorem, I comment on the existence and the uniqueness of the NE

of the above stage game Gs.

Theorem 5.3.1. Stage game Gs has a unique NE when the following condition is

satisfied:

• For all small cells, the self-interference cancellation technique is strong enough

such that the minimum average uplink received power at the SBS is greater than

the self-interference induced by the maximum downlink transmit power, i.e.,

pUL,mink r−αku,kb > C
(
pDL,maxk

)
, ∀k ∈ {1, 2, ..., K}. (5.8)

Moreover, the equilibrium power profile is given by pk,NE =
(
pUL,maxk , pDL,maxk

)
, ∀k ∈

K.

Proof. Following payoff function can be written for any small cell k ∈ {1, 2, ..., K}:

πk = θ

log

(
1 +

pDLk r−αkb,ku

N0+IULku +IDLku +C(pULk )

)
log
(

1 + SINRDL,max
k

) + (1− θ)
log

(
1 +

pULk r−αku,kb
N0+IULkb

+IDLkb
+C(pDLk )

)
log
(

1 + SINRUL,max
k

) . (5.9)
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For player 0, the payoff is given by

π0 =

log

(
1 +

p0r
−α
0b,0u

N0+IUL0u
+IDL0u

)
log
(

1 + SINRDL,max
0

) . (5.10)

By Nash’s existence theorem [111], a game with a finite number of players and a finite

number of pure strategy actions for each player has at least one (mixed strategy)

NE. Moreover, from (5.6) and (5.7), the maximum achievable uplink and downlink

SINRs are constants. If the condition given in (5.8) is satisfied, by assuming that

pDL,mink > pUL,mink and pDL,maxk > pUL,maxk , ∀k ∈ {1, 2, ..., K}, it can be concluded

that pDL,mink r−αkb,ku > C
(
pUL,maxk

)
, ∀k ∈ {1, 2, ..., K}. Then it is easy to observe that

the best response of player k for any fixed p−k is to transmit with its maximum power,

both in uplink and downlink (that is, once p−k is fixed, the larger the uplink and

downlink power, the higher will be the payoff). This means
(
pUL,maxk , pDL,maxk

)
is a

strictly dominant strategy for all players. All players will play their dominant strategy

at any NE. Since there is one strictly dominant strategy for each player, the game has

only one NE. The equilibrium strategy pk,NE is given by
(
pUL,maxk , pDL,maxk

)
,∀k ∈

K.

The only NE for the above game is all nodes transmitting their maximum possible

transmit power. Therefore, at the NE, the players also experience the maximum

interference. Thus, the NE may not be the Pareto optimal power/payoff profile.

However, in the next section, I show that by formulating a repeated game, a solution

that Pareto dominates pk,NE can be obtained.
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5.4 Repeated Game and Analysis of Public Perfect Equilib-

rium

5.4.1 Repeated Game, Gr

I define the game Gs be repeated infinitely many times and denote the corresponding

repeated game by Gr. The main components of Gr are described below.

Set of players, K: Naturally, the set of players of Gr is the same as that of Gs, i.e.,

K = {0, 1, 2, ..., K}.

Action set of player k, Ak: The action set of a generic player k at each step of Gr

is same as the action set of that player in Gs, previously denoted by Ak. Moreover,

the action of player k at tth step of the game Gr is denoted by ak(t) = pk(t).

Payoff of player k, vk: The payoff of player k is defined as

vk = (1− δ) lim
T→∞

T∑
t=0

(δ)tπk(t), (5.11)

where 0 ≤ δ < 1 is the discount factor. The discount factor can also be seen

as the probability of not ending the game at a certain time step. Also, v =

[v0 v1 v2 ... vK ]T is the payoff profile (payoff vector) of all players.

History at step t, h(t): History of the game Gr at step t is composed of actions

played by all the players until step (t− 1). The action profile of the system at step t

is given by

a(t) = [a0(t) a1(t) ... aK(t)]T .

Therefore, at time step t, the history is given by

h(t) = [a(1) a(2) ... a(t− 1)] . (5.12)
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Perfect monitoring requires every player to have knowledge of h(t). Thus, players

need to exchange information about their actions after each step of the game. Since

such scenario results in excessive overhead, it is not realistic for a small cell network

with limited backhaul. In order to avoid this problem, I proceed as follows: I assume

that the MBS measures the interference at its user. I denote the MBS’s measurement

on interference at its user at time t by I (p−0(t)), which can be written as

I (p−0(t)) =
(
IUL0u + IDL0u

)
+ η, (5.13)

where η ∼ N (µ, σ2) is the estimation error. Based on I (p−0(t)), the MBS transmits

a public message m(t) which is drawn from a finite set of messages given by M =

{m1,m2, ...,mM}. The public history at step t can be then written as

hpub(t) = [m(1) m(2) ... m(t− 1)] . (5.14)

Due to the broadcast nature of wireless transmission, it is realistic to assume that

this signal is heard by all network nodes. Thus, with very low overhead, the public

history becomes available at all nodes.

Public strategy of player k, sk: The public strategy of player k is a mapping of

any possible public history to an action. Since Gr is a repeated game with infinite

time horizon, it has an infinite number of possible public histories. Thus the public

strategy space (Sk) of each player k is also infinite. Also, the public strategy profile

of the system is given by s = [s0 s1 ... sK ].

The equilibrium concept for a repeated game with public history and public strate-

gies is called perfect public equilibrium (PPE). The formal definition of PPE is given

below.
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Definition (Perfect Public Equilibrium [PPE]): A public strategy profile s̄ =

[s̄0 s̄1 ... s̄K ] is a perfect public equilibrium if for any public history hpub(t), the con-

tinuation public strategy given by s̄|h(t) is a Nash equilibrium of the continuing

subgame for all players, i.e.,

vk(s̄|hpub(t)) ≥ vk(ŝk, s̄−k|hpub(t)), ∀ŝk ∈ Sk, ∀k. (5.15)

5.4.2 Analysis of Perfect Public Equilibrium Set

Before characterizing the set of PPEs of game Gr, I define the following terms.

Definition (Minmax Payoff ): The minmax payoff is defined for the stage game. For

any player k, the minmax payoff, πk,minmax, is the maximum achievable payoff when

every other player aims at minimizing the payoff of k. Formally,

πk,minmax = min
a−k∈A−k

max
ak∈Ak

πk (ak,a−k) . (5.16)

Note that the NE of the stage game Gs results in the minmax payoff for all players.

Definition (Enforceability): A payoff profile v of the repeated game Gr is enforceable

if vk ≥ πk,minmax, ∀k. (Strictly enforceable if vk > πk,minmax ∀k.)

Definition (Feasibility): A payoff vector v of the repeated game Gr is feasible if

there exist rational, non-negative values of ζa∀a ∈ A, such that vk∀k ∈ K can be

expressed as ∑
a∈A

ζaπk (a) , where
∑
a∈A

ζa = 1. (5.17)

Definition (Individual Full Rank): Let Πk (a−k) be a matrix of size |Ak|× |M|. For
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an arbitrary player k and a fixed a−k, Πk (a−k) as follows.

Πk (a−k) =



Pr(m1/a1,a−k) Pr(m2/a1,a−k) ... Pr(m|M|/a1,a−k)

Pr(m1/a2,a−k) Pr(m2/a2,a−k) ... Pr(m|M|/a2,a−k)

. ... ... .

. ... ... .

Pr(m1/a|Ak|,a−k) Pr(m2/a|Ak|,a−k) ... Pr(m|M|/a|Ak|,a−k)


.

(5.18)

An action profile a has individual full rank for player k if Πk (a−k) has rank |Ak|.

Folk Theorem for repeated games with imperfect public monitoring:

Let V∗ denote the set of feasible and enforceable payoffs of a repeated game Gr.

In [112], it is shown that for any smooth subset W in the interior of V∗, there exists

a δ̂ such that for all δ ∈ (δ̂, 1), each point in W is a PPE, if Gr satisfies the following

conditions for all players: i) Any pure action profile has individual full rank, and ii)

the number of public messages exceeds |Ak| − 1.

This means that any point in V∗ can be obtained as a PPE for patient players,

i.e., when δ −→ 1. Thus, there can be infinitely many PPEs. My objective is to find

a desired operating point for the system which is also a PPE. The minmax action

profile can then be used as a punishment to motivate players to stay at the desired

point.

Even with the assistance of the Folk theorem, solving the formulated repeated

game is challenging. First, all players need to find a PPE operating point. Second,

the equilibrium strategy should ensure that all rational players would stay truthful,

i.e., the players should not have any incentive to deviate from the PPE operating

point. To find a PPE operating point and to implement an equilibrium strategy, I

propose a distributed mechanism that consists of the following two phases: i) learning
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phase, and ii) operating phase. Detailed analyses of these two phases are provided in

the next two sections.

5.5 Learning Phase: Finding a PPE Operating Point

5.5.1 Learning Algorithm

During the learning phase, the players are expected to learn a PPE operating point

distributively. In [113], the authors propose a distributed algorithm that converges to

a social optimal action profile (i.e., an action profile which maximizes the sum of the

payoffs of all players) for a system with a finite number of players with finite action

set. The algorithm is developed based on the theory of perturbed Markov chains.

By modifying the algorithms presented in [113] and [114], I develop a learning model

that finds a PPE operating point for the formulated repeated game Gr. The proposed

learning model is entirely distributed and does not require any information exchange

among the network nodes. Each node only has access to its own historical payoffs

and actions, and decisions are made solely based on individual payoff as described

below.

Each player k has a state given by mk(t), also called the mood, which can take

two values, namely, Content (C) or Discontent (D). The state or mood of a player

reflects its inclination towards experimenting new actions. More precisely, if a certain

player is Content, it will occasionally experiment new actions; in contrast, if a player

is Discontent, it will experiment new actions more often. Once the current state

mk(t), current action ak(t), and the individual instantaneous payoff πk(t) at step t

are known, the next action is selected according to the rules given in Algorithm 2.

In Algorithm 2, ν ∈ (0, 1) and c > |K| are constants. From Algorithm 2, it can be
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observed that if a certain player is in mood C, then it is more likely to stay with the

same action in the next step. A Discontent player, on the contrary, is more likely to

experiment other actions in the next step by randomizing over all actions belonging

to its action set.

Algorithm 2 Action updating algorithm
1: Initialization: Select constants ν ∈ (0, 1) and c > |K|.
2: if (mk(t) == C) then
3: Select ak(t+ 1) according to following rule:

Pr(d) =

{
1− νc, if d == ak(t)

1−νc
|Ak|−1 , otherwise

4: else
5: Select ak(t+ 1) according to following rule:

Pr(d) =
1

|Ak|
, ∀d ∈ Ak

6: end if

The state of a player is updated based on its individual instantaneous payoff

πk(t) and current action ak(t). Once the next action ak(t) is selected by executing

Algorithm 2, the next state is updated by following the rules given in Algorithm

3.

From Algorithm 3, it can be observed that, the larger the instantaneous payoff,

the higher is the probability that the players are Content. In essence, if πk(t) = 1 (i.e.,

maximum possible πk(t)), then mk(t+1) = C with probability 1 as ν(1−πk(t)) = 1. The

Content players are reluctant to experiment new actions according to Algorithm 2.

Therefore, all players are likely to stay with the actions which give higher payoffs.

All network nodes keep updating their moods and actions until the maximum

number of steps (Itermax) for learning phase is reached or until the instantaneous

payoff does not change for a significant number of iterations (which can be predefined).
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Algorithm 3 Mood updating algorithm
1: if (mk(t) == C) then
2: if (ak(t+ 1) == ak(t)) then
3: mk(t+ 1) = C
4: else
5:

mk(t+ 1) =

{
C, with prob. ν(1−πk(t))

D, with prob. 1− ν(1−πk(t))

6: end if
7: else
8:

mk(t+ 1) =

{
C, with prob. ν(1−πk(t))

D, with prob. 1− ν(1−πk(t))

9: end if

I present the complete learning method in Algorithm 4.

Algorithm 4 Complete learning algorithm
1: Initialization: Itermax= maximum number of iterations, select ak randomly, mk = D,
t = 1, c = |K|+ 1

2: repeat
3: ν = 1√

t

4: Step 1 : Select ak(t) by following the rules given in Algorithm 2
5: Step 2 : Update mood mk(t) by following the rules given in Algorithm 3
6: t = t+ 1
7: until t ≥ Itermax
8: pconk = ak
9: Inform pconk to the MBS.

5.5.2 Theoretical Analysis of the Learning Phase

Before proceeding to theoretical analysis, in the following, I define the social optimal

action profile (aSO) and interdependence property of one-shot games.

Definition (Social Optimal Action Profile): A social optimal action profile, aSO, is

referred to as a pure strategy action profile of the stage game Gs that maximizes the
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sum of the payoffs of all players. Formally,

aSO = arg max
a∈A

∑
k∈K

πk (a) . (5.19)

Definition (Interdependence): Consider a finite game G with a set of players J . Any

arbitrary player j’s set of actions is denoted by Aj. The set of pure strategy action

profiles of the system is then given by a ∈
∏

j∈J Aj. Let J̄ denote a non-empty

subset of J . The pure strategy action profile of players in subset J̄ is shown by aJ̄ ,

and the pure strategy action profile of players which do not belong to the subset J̄

is shown by a−J̄ . Then, the game G is interdependent if the following condition is

satisfied:

• For any arbitrary J̄ and for any arbitrary action profile a = aJ̄ ∪ a−J̄ ∈ A,

there is at least one player i /∈ J̄ and an action profile âJ̄ ∈ {
∏

k∈J̄ Ak} such

that πi (âJ̄ ,a−J̄) 6= πi (aJ̄ ,a−J̄).

In words, interdependency means that any subset of players has the ability to

change the payoff of at least one player outside the subset, by changing the actions

of the players inside the subset. In other words, if a game is interdependent, it is not

possible to split up players into two different sets which do not mutually affect each

other. Now the following results on the proposed learning model can be stated.

Lemma 5.5.1. Game Gs is interdependent.

Proof. See Appendix B.1.

Theorem 5.5.1. If all players update their actions and moods according to Algo-

rithm 4 at every stage of repeated game Gr, then the system’s asymptotic convergence

point has the following properties:
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1. The action profile at the convergence point is social optimal, i.e., a(t)t−→∞ =

aSO.

2. All players are Content after convergence, i.e., mk(t)t−→∞ = C, ∀k ∈ K.

Proof. See Appendix B.2.

Corollary 5.5.1. If Algorithm 4 is applied to the repeated game Gr, the instanta-

neous payoff profile and the action profile at the convergence point of the algorithm

are respectively equivalent to the Pareto optimal payoff profile and the corresponding

action profile of the stage game Gs.

Proof. An action profile aPO is said to be Pareto optimal if the payoff profile achieved

by playing aPO is not Pareto dominated by any other any other payoff profile. Let

acon be the action profile at the convergence point of Algorithm 4 for game Gr. I

prove that acon is Pareto optimal by following the method of proof by contradiction.

First, assume

acon 6= aPO. (5.20)

Then, aPO should Pareto dominate acon and hence the following can be deducted:

∑
k∈K

πk (acon) <
∑
k∈K

πk
(
aPO

)
. (5.21)

However, from Theorem 5.5.1 we have

acon = aSO = arg max
a∈A

∑
k∈K

πk (a) . (5.22)

Therefore, (5.21) and (5.22) contradict with each other. Consequently, the assumption

(5.20) is false. Hence, the convergence point of the algorithm is a Pareto optimal point,

i.e., acon = aPO.
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Theorem 5.5.2. Any feasible payoff vector obtained by following Algorithm 4 in

Gr (denoted by vA) is enforceable if the players are patient.

Proof. According to Corollary 5.5.1, if all players follow Algorithm 4, after conver-

gence, the instantaneous payoff profile is Pareto optimal. Let the system converge

after T̄ time slots. Then, the payoff obtained by any player k in game Gr can be

written as

vAk = (1− δ)

 T̄∑
t=0

(δ)tπk(t) +
∞∑

t=T̄+1

(δ)tπk
(
aPO

) . (5.23)

For smaller values of δ (i.e., for patient players)
∑∞

t=T̄+1(δ)tπk
(
aPO

)
>>∑T̄

t=0(δ)tπk(t). Hence we have

vAk = (1− δ)

 ∞∑
t=T̄+1

(δ)tπk
(
aPO

) = (1− δ)
πk
(
aPO

)
(1− δ)

= πk
(
aPO

)
≥ πk,minmax.

(5.24)

Since vAk ≥ πk,minmax ∀k ∈ K, payoff profile vA is enforceable.

From Theorem 5.5.2, it can be observed that action profile acon (i.e., aPO) and

payoff profile vAk are together a PPE operating point if the game Gr satisfies the

conditions required by Folk theorem, as stated in Section 5.4.2.

5.6 Operation Phase: Implementing an equilibrium strategy

5.6.1 Steps in the Operation Phase

Phase 2 of the learning mechanism is called the Operation Phase. The goal of this

phase is to implement an equilibrium strategy which enforces the potential PPE

operating point learned by executing Phase 1 (the learning phase) and provide the
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incentive to all players to stay at the learned operating point. This phase is composed

of the following two steps:

1. Detection: This step is performed by the MBS in order to detect if any player

is deviating from the desired operating point learned at Phase 1.

2. Punishment: In case a deviation from the desired operating point (i.e., cheat-

ing) is detected, a punishment should be given to ensure that the cheating

players do not benefit in the long run.

In next two subsections, these two steps are explained in details.

5.6.2 Step 1: Detection of the Point of Change of Interference

As mentioned in Section 5.4, at each step of Gr, the MBS obtains a noisy measurement

on the interference at the macro user. The MBS then broadcasts a public message

m(t) ∈ M = {m1,m2} based on these interference measurements. The measured

interference at step t, I(t), can be written as

I(t) =
(
IUL0u (t) + IDL0u (t)

)
+ η, (5.25)

where η ∼ N (µ, σ2). All small cell nodes are supposed to transmit at the power

levels learned in Phase 1. If at least one small cell node (the SBS or the small cell

user) cheats by increasing its transmit power at a certain time and continues trans-

mitting with the increased power, the statistics of the interference measurement I also

changes from that time onwards. Detection of statistical changes of a data sequence

is a fundamental problem in many applications [115]. I propose an algorithm to iden-

tify cheating by detecting the statistical changes of the interference measurements,

I(t). To this end, I take advantage of the Page-Hinkley test [116], which is a simple
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approach to detect any change point in the statistical mean of a sequence of random

variables. The proposed cheating detection rules are given in Algorithm 5.

Algorithm 5 Detection of cheating
1: Initialization: Select a threshold value th, Λ(0) = 0
2: repeat At each step t ∈ {1, 2, ...}
3: m(t− 1) = m1

4: Ī = 1
t

∑t
τ=1 I(τ)

5: Λ(t) = Λ(t− 1) + I(t)− Ī(t)
6: Λmin = min{Λ(τ)|τ ∈ {1, 2, 3, ..., t}}
7: until (Λ(t)− Λmin) > th
8: m(t) = m2

9: Tc = arg min{Λ(τ)|τ ∈ {1, 2, ..., t}}

According to Algorithm 5, if no increase is detected in the statistical mean of

I, the public message sent by the MBS to the small cells equals m1. In case of

cheating, the public signal equals m2. If small cells receive m2 as the public message,

they will trigger the punishment strategy, which will be explained in next subsection.

This algorithm also estimates the step where the player(s) started deviating from the

learned solution, aPO. This change point is denoted by Tc. Note that in Algorithm

5, th is a pre-defined threshold, based on which a change in the mean value of the

sequence of measured interferences is alarmed. Thus, the value of th affects the

algorithm’s performance measures such as the false alarm rate and the detection

delay (i.e., time taken to detect cheating). More precisely, smaller th results in faster

detection, but the probability of false alarm increases as an undesired side effect. I

will analyze this trade-off numerically in Section 5.8.

Now, I consider a simplified version of the repeated game Gr, denoted by Ḡr. In

Ḡr, every player can select among only two actions, i.e., Ak = {a1,k, a2,k}, ∀k ∈ K. I

state the following result.

Theorem 5.6.1. In Ḡr, the payoff profile obtained by executing Algorithm 4 (i.e.,
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v̄Ak ) is a PPE payoff profile if public messages are selected according to Algorithm

5.

Proof. At any round t, for any arbitrary action ai,k of any arbitrary player k, for any

fixed a−k and fixed sequence of interference measurements until time (t − 1), it can

be written

Pr (m1/ai,k,a−k) = Pr (Λ(t)− Λmin − T > 0) (5.26)

= Pr

(
Λ(t− 1) + I(t)− 1

t

t∑
τ=1

I(τ)−min{Λ(0),Λ(1),Λ(2), ...,Λ(t)} − T > 0

)
.

Also, from (5.25), I(t) = Iactual(t) + η, where Iactual(t) is the actual interference the

macro user experiences at time t. Let Λ(t−1) +
(
1− 1

t

)
Iactual(t)− 1

t

∑t−1
τ=1 I(τ) = K1

and Λ
(t−1)
min = min{Λ(0),Λ(1),Λ(2), ...,Λ(t − 1)}, since Iactual(t) and the sequence of

interference measurements until time (t− 1) are not random. By substituting in the

above equation I have

Pr (m1/ai,k,a−k) = Pr

(
K1 +

(
1− 1

t

)
η −min{Λ(t−1)

min , K1 +

(
1− 1

t

)
η} − T > 0

)
.

(5.27)

Let Ω be the sample space of the values that can be taken by η. Consider the following

two events: i) A =

{
η ∈ Ω| η < Λ

(t−1)
min −K1

(1− 1
t )

}
, and ii) Ac =

{
η ∈ Ω| η > Λ

(t−1)
min −K1

(1− 1
t )

}
.
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By applying the law of total probability,

Pr (m1/ai,k,a−k)

= Pr (A) Pr

((
K1 +

(
1− 1

t

)
η −min{Λ(t−1)

min , K1 +

(
1− 1

t

)
η} − T > 0

)
| A
)

+ Pr (Ac) Pr

((
K1 +

(
1− 1

t

)
η −min{Λ(t−1)

min , K1 +

(
1− 1

t

)
η} − T > 0

)
| Ac

)
= Pr (A) Pr (−T > 0) + Pr (Ac) Pr

(
K1 +

(
1− 1

t

)
η − Λ

(t−1)
min − T > 0

)
= Pr

(
η <

K1 − Λ
(t−1)
min(

1− 1
t

) )
Pr

(
η <

K1 − Λ
(t−1)
min − T(

1− 1
t

) )

=
1

4

1 + erf

 K1−Λ
(t−1)
min

(1− 1
t )√

2σ



1 + erf

 K1−Λ
(t−1)
min −T

(1− 1
t )√

2σ


 .

(5.28)

Πk (a−k) for player k of Ḡ can be written as Πk (a−k) =Pr (m1/a1,k,a−k) 1− Pr (m1/a1,k,a−k)

Pr (m1/a2,k,a−k) 1− Pr (m1/a2,k,a−k)

. We know that a−k is fixed

and K1 is an increasing function of ak. Hence, from (5.28), it is clear that

Pr (m1/a1,k,a−k) 6= Pr (m1/a2,k,a−k). Thus the determinant of Πk is non-zero

and Πk has individual full rank. By Theorem 5.5.2, v̄Ak is enforceable. Hence,

according to the Folk theorem (see Section 5.4.2), the payoff profile obtained by

executing Algorithm 4 is that for a PPE, if public messages are selected according

to Algorithm 5.

5.6.3 Step 2: Punishment

Step 1 is followed by Step 2 only when cheating is detected, that is, when m2 is

received as the public message. A punishment is performed to prevent players from
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evaluating cheating as worthy. Generally, the two following punishment techniques

are applied in repeated games [117]: i) Grim trigger strategy and ii) punish and forgive

strategy. I will describe these two punishment rules in the following subsections, and

for the latter strategy, I will propose a novel approach to efficiently tune the duration

of punishment.

Grim trigger strategy

Once cheating is detected, all players start transmitting at maximum power both in

uplink and downlink forever, which is also the NE power profile. Formally,

pk(t+ 1) =


pconk , if h(t) = [m1,m1, ...,m1]

pk,NE, otherwise.

If for all k, πk(p
con) > πk(pNE), the grim trigger strategy causes a reduction of long-

term payoff for any cheating player. Therefore, if all players are rational, they have

no incentive to deviate from pcon and grim trigger strategy. Consequently, the grim

trigger strategy is stable.

Punish and forgive strategy

Once a deviation from pcon is detected, pulling the grim trigger is equivalent to playing

the stage game forever. This will substantially decrease the efficiency of the entire

system. As a solution, a punish and forgive strategy can be implemented. The idea is

that, when a deviation is detected, all players will transmit at the maximum possible

power for some rounds Tp, and afterward the players play pcon again. The duration of

punishment, Tp, should be long enough to diminish the benefit obtained by cheating.
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Therefore, choosing Tp is critical when implementing the punish and forgive strategy.

To make any cheating worthless for players, the duration of punishment Tp needs to

satisfy the following condition: The maximum possible benefit obtained by cheating

(denoted by b̃max) should be less than the minimum possible payoff reduction (denoted

by r̃min) during the punishment.

Although the proposed change detection algorithm can detect any deviation from

the desired operating point, it is incapable of identifying the dishonest player(s). In

this case, b̃max and r̃min should be estimated. Since all players update their actions

at the end of the learning phase (see Algorithm 4), pcon is known to the MBS.

Moreover, the initial location information of the small cell nodes is known to the

MBS. Using this information, the MBS estimates the instantaneous payoff of player

k as

π̃k (pk,p−k)

= θ

log

(
1 +

pDLk r−αkb,ku
N0+IULku (p−k)+IDLku (p−k)

)
log
(

1 + SINRDL,max
k

) + (1− θ)
log

(
1 +

pULk r−αku,kb
N0+IULkb

(p−k)+IDLkb
(p−k)

)
log
(

1 + SINRUL,max
k

) .

(5.29)

Now, I define

b̃max = max{k ∈ {1, 2, ..., |K|} | (π̃k (pNEk ,pcon−k
)
− π̃k

(
pconk ,pcon−k

))
}, and (5.30)

r̃min = min{k ∈ {1, 2, ..., |K|} | (π̃k (pconk ,pcon−k
)
− π̃k

(
pNEk ,pNE−k

))
}. (5.31)

Assume that Algorithm 5 detects a deviation at time Td, and let Tc be the change

point as estimated by Algorithm 4. The punishment duration Tp is then calculated
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as

Tp =
⌈(Td − Tc) b̃max

r̃min

⌉
. (5.32)

The proposed punish and forgive strategy is summarized in Algorithm 6. When

Algorithm 6 Punish and forgive strategy
1: Initialize: Set pd = 0.
2: For every step t
3: if ((m(t) == m1) && (pd == 0)) then
4: pk(t+ 1) = pconk
5: else
6: pk(t+ 1) = pk,NE and pd = pd+ 1
7: end if
8: if (pd == Tp) then
9: pd = 0

10: end if

Tp is selected according to (5.32) and the actions are selected to pk(t + 1) as given

in Algorithm 6, cheating players gather no benefit in the long run, since the pay-

off reduction during the punishment duration is larger than the increase in payoff

obtained by cheating. As an immediate result, if the punish and forgive strategy is

implemented, the rational players would not deviate from the social optimal action

profile.

5.7 Distributed Power Control Algorithm

In this section, I present the complete distributed power control algorithm based on

the two phases explained in the previous section. During Phase 1, the players (i.e.,

small cells) learn Pareto optimal solution (which is also the social optimal solution

in this case) by acting according to Algorithm 4. In practice, Algorithm 4 can

actually be executed at the SBSs on behalf of both base station and user. Moreover,

in Phase 1, the MBS measures the interference at its user and perform steps 4, 5, and
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6 of Algorithm 5. Note that during the learning phase, the MBS does not alarm any

change in the mean interference experienced by the macro user. At the end of Phase

1, all small cells report their current action (i.e., pconk ) to the MBS. I can identify

two types of dishonest behavior by small cells, after they find out the social optimal

operating point.

• Type 1: In this case, the small cells try to mislead the MBS by reporting

transmission power (by SBS and/or the small cell user) which is higher than the

true pconk . The dishonest small cell nodes start transmitting with the reported

power from the first step of Phase 2. Since the MBS has collected interference

measurements at the macro user during the learning phase (by performing steps

4, 5, and 6 of Algorithm 5), this type of cheating is also detected as an increase

in the interference. However, the MBS needs pcon to calculate the appropriate

duration of punishment, which is unknown. Thus, in this case, the grim trigger

strategy is used as a punishment.

• Type 2: In this case, the small cells report the true values of pconk to the MBS,

but increase their transmission power at some later time during Phase 2. In this

case, the punish and forgive strategy can be used as explained in the previous

section.

The complete distributed power control algorithm is shown in Fig. 5.1. For

each step of the learning algorithm, every small cell preforms only a few simple

mathematical operations including generating random numbers. Algorithm 4 has

a constant time-complexity of O (Itermax). The Page-Hinckley test based detection

algorithm (Algorithm 4) has a time-complexity of O
(
T̄ 2
)
, where T̄ is the average

run length of the detection algorithm [118].
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Figure 5.1: Distributed power control mechanism.

5.8 Numerical Results and Discussion

In this section, I evaluate the performance of the proposed algorithm numerically. In

the first step, I consider a toy system model consisting of two small cells underlaying

the macrocell. Simulation parameters are summarized in Table 5.2. I consider the

case where small cells do not cheat on the MBS. Therefore, the MBS does not take

part in the game. The MBS transmits in the downlink direction with some fixed

transmission power. The small cell users transmit in the uplink direction with some

fixed transmit power. For the downlink transmission, SBSs select a transmission

power from the set {15, 20}. The game matrix is given in Table 5.3. From this

matrix, it can be observed that the Pareto optimal solution corresponds to both the

SBSs transmitting the lowest possible transmit power.

5.8.1 Phase 1: Learning Pareto Optimal Solution

Fig. 5.2 shows the convergence of the system during Phase 1 (Learning Phase). It

can be seen from Fig. 5.2(a) that, for both players, the learning phase converges to an

operating point that results in some payoff higher than the NE. Moreover, from Fig.
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Table 5.2: Chapter 5: Simulation parameters

Parameter Value

(x, y) coordinates of SBS 1 (−2.8010, 5.6566)
(x, y) coordinates of user of SBS 1 (−2.8233, 7.7278)

(x, y) coordinates of SBS 2 (−5.7635,−2.8713)
(x, y) coordinates of user of SBS 2 (−2.9953,−4.1508)

N0 0.001 W
α 4

pUL1 ,pUL2 2 W
PDL1 ,PDL2 {15, 20} W

γ 0.001
δ 1
θ 0.7

Table 5.3: Game matrix

pDL1 , pDL2 (W ) π1, π2

(15, 15) (0.5659, 0.4406)
(15, 20) (0.5288, 0.4698)
(20, 15) (0.5909, 0.3946)
(20, 20) (0.5540, 0.4241)
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(a) Payoff of each player.
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Figure 5.2: Phase 1: Payoff for the toy model.

5.2(b), the learning phase eventually converges to the social optimal solution, which

yields the highest aggregate payoff according to the game matrix shown in Table 5.3.

This convergence point is also Pareto optimal since it is not Pareto dominated by any

other payoff profile.
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Figure 5.3: Phase 1: Aggregate interference at the macro user for the toy model.

Fig. 5.3 plots the interference measured at the macro user during Phase 1. The

macro user experiences the highest interference if the system is at the NE, due to the

fact that all small cell nodes transmit at the maximum transmit power at the NE.

It can be seen from Fig. 5.3 that the interference at the macro user is reduced at

the operating point learned during the learning phase. For the presented toy model,

this convergence point also causes the minimum interference at the macro user since
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Figure 5.4: Phase 1: Payoff for a system with two small cells and one macro cell.

both the SBSs transmit at their minimum possible transmit power. In the next step

I observe the learning phase when the macro cell also participates in the game with

the two small cells. Fig. 5.4 plots the average payoff of a small cell player and the

payoff of the macro player during the learning phase. Similar to the previous case,

the learning algorithm converges to a point which yields a payoff better than that of

the NE for all players.
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Figure 5.5: Phase 1: Payoff for a system with 8 small cells.

Next, in Fig. 5.5, I observe the behavior of the learning phase for a larger network

with 8 small cells. The set of actions for each player is similar to that in the toy

model. In this case also, the learning algorithm results in a social optimal payoff

better than that for the NE; nevertheless, this system shows a slower convergence

rate compared to the toy model, due to a larger number of players. Moreover, a
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smaller difference between the payoff values leads to slower convergence, due to the

following reason. In Algorithm 3, the probability of being Content (or Discontent)

at a certain step t is given by ν(1−πk(t)); thus, similar payoff values result in similar

probabilities. Consequently, the algorithm needs more time to distinguish those action

profiles which deliver similar payoffs. Due to the same reason, the learning mechanism

might also converge to some operating point in which the aggregate payoff is slightly

less than the social optimal payoff, but still better than that of NE.

5.8.2 Phase 2: Operation Phase

In this section, I discuss the performance of Phase 2 of the proposed power control

scheme. For all simulations, I consider the toy model described in the previous section.

Moreover, player 1 cheats by transmitting its maximum transmit power (i.e., 20

W), starting 10 rounds after the beginning of Phase 2. For simulations, I set the

interference measurement error (η) as follows:

η = β × n̄ × (maximum average interference at the macro user), where n̄ ∼

N (0, 1).
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(b) Detection rule: Detection delay.

Figure 5.6: Effect of change-threshold on the performance of Page-Hinkly test.
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I first show the performance of the deviation detection rule based on the Page-

Hinckley test described in Algorithm 5. In Fig. 5.6(a) I illustrate the variation of

the false alarm probability as a function of the detection threshold th. For any value

of β, smaller values of detection threshold yield higher probability of false alarm.

Moreover, it can be observed that the false alarm probability increases with the value

of β, which can be explained as follows. For larger measurement errors, there is a

higher chance for the Page-Hinckley test to mistakenly alarm a change in the mean

interference even if there is no actual change. Therefore, in order to avoid a high false

alarm probability, one has to increase the detection threshold. However, increasing

the detection threshold th increases the delay of detecting any deviation. This is

evident from Fig. 5.6(b), which shows the variation of the detection delay5 with

detection threshold. It can also be observed that detection delay is smaller for larger

values of β. The reason is as follows. In case of cheating, for higher values of β, the

deviation from the mean interference increases, and thus it is easily detectable.
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Figure 5.7: Punishment rule: Average punishment duration.

To analyze the performance of the punishment rule, I first compute the average

punishment duration, Tp. Fig. 5.7 shows the variation of the average punishment du-

ration as a function of the detection threshold, for different values of β. For β = 0.001

5Detection delay is defined as the number of steps required to detect a deviation after the devi-
ation actually occurs.
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and for β = 0.01, if the detection threshold is larger than 0.01, the punishment du-

ration increases with the detection threshold. This can be justified by the following

argument. As discussed before, the detection delay increases when the threshold

increases. Moreover, the dishonest users gain benefits only before the cheating is

detected. As a result, the average punishment duration also increases with increasing

detection threshold, to void the effect of a larger detection delay. When the threshold

is less than 0.01, variations of the punishment duration show a different and inter-

esting behavior. we can observe that, for β = 0.01, the average punishment duration

decreases until the threshold value reaches 0.01. Moreover, when the detection thresh-

old is less then 0.01, the average punishment duration for β = 0.01 is larger than that

for β = 0.001. This is in fact the inverse effect of that in the previously-discussed

th ≥ 0.01 scenario. This behavior can be explained based on the false alarm prob-

ability of the detection algorithm. Clearly, a punishment can also be triggered due

to a false alarm. On one hand, from Fig. 5.6(a), when β = 0.01 and th < 0.01, the

false alarm probability is non-zero. On the other hand, for β = 0.001 and th < 0.01,

the false alarm probability is almost zero. Moreover, it is clear that the false alarm

probability also decreases with th. Therefore, for β = 0.01, the average number of

punishments (hence the average punishment duration) due to false alarm decreases

with th. However, when th > 0.01, the average punishment duration increases with

th, as the false alarm probability is almost zero and larger threshold values result in

higher detection delays.

Fig. 5.8 plots the payoff of the toy model once a deviation from the optimal

solution has taken place. As previously explained, I assume that player 1 cheats at

10th round of Phase 2. I also select β = 0.002 and th = 0.05. For this particular

case, the deviation is detected two steps later and hence the value of punishment
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Figure 5.8: Punishment rule: Payoff for the toy model.

duration Tp is 8. Fig. 5.8(a) shows the individual payoffs of each player. In can

be observed that player 1 gains an instantaneous payoff before cheating is detected.

However, player 1’s instantaneous payoff decreases during punishment duration, and

the decrement is sufficient to reduce the average payoff to a value smaller than the

average payoff obtained before cheating. Grim trigger, in comparison, decreases the

payoffs of both the players forever. Both grim trigger and punish and forgive strategies

can incentivize rational players to cooperate. However, from Fig. 5.8(b), it can be

easily concluded that the punish and forgive strategy is more productive than the

grim trigger strategy. The objective of any rational player is to maximize its average

payoff over time. Thus, the proposed power control mechanism is cheat-proof if all

participating players are rational.

5.9 Chapter Summary

I have studied the distributed power control problem for a co-channel deployed two-

tier network with full-duplex small cells underlaying a macro cell. I have formulated

the power control problem as a repeated game with imperfect public monitoring.

The existence and uniqueness of Nash equilibrium for the stage game is established
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and the perfect public equilibrium payoff set is characterized. I have proposed a

distributed learning mechanism to achieve the Pareto optimal solution which, unlike

the Nash equilibrium of the stage game, is efficient in the sense of maximizing the

social welfare. I also have developed a deviation detection technique based on Page-

Hinckley test to detect any cheating and presented a punishment policy to motivate

cheating players to cooperate. It is also proven that the proposed algorithm results

in a perfect public equilibrium operating point of the formulated repeated game. To

this end, I have proposed a distributed cheat-proof power control mechanism that

not only is efficient for small cell nodes, but also satisfies the SINR requirement of

the macro user. Intensive numerical analysis also verified the algorithm’s capability

to prevent cheating if all small cell nodes (i.e., SBSs and small cell users) are rational

and protect the macro user from harmful interference caused by the small cells.
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Conclusion and Future Direction

6.1 Conclusion

In order to support the constantly rising demand for wireless traffic, future wireless

networks will be composed of thousands of different types of small cells. Due to

the increased density of base stations, their random deployment and heterogeneity,

traditional centralized network control and manual intervention will not be realistic

for future wireless networks. Consequently, self-organization has been proposed as a

significant feature for future heterogeneous wireless network, i.e., network nodes are

expected to take individual decisions. Distributed resource allocation is one of the

desirable feature for self-organizing networks. In this thesis, I proposed a framework

for distributed resource allocation in self organizing small cell networks underlaying

macro-cellular networks.

Game theory is a strong mathematical tool that can model and analyze distributed

interactions among entities with conflicting interests. Specifically, in this thesis, I have

used evolutionary games, mean field games and repeated games to model three differ-

ent scenarios of distributed resource allocation in self-organizing small cell networks.
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Moreover, stochastic geometry is used to model the spatial distribution of the network

nodes and analyze the performance metrics of the network in order to derive payoff

functions for the formulated evolutionary game and mean field game.

In summary, I have developed three distributed resource allocation techniques

for self-organizing small cell networks underlaying macro-cellular networks. The pro-

posed three resource allocation schemes are intended to be applied in three different

scenarios (i.e., small cell networks with three different requirements). Fig. 6.1 pro-

vides a comparison and a summary on the three resource allocation paradigms that

has been proposed in this thesis.

Figure 6.1: Summary of the resource allocation techniques proposed in this thesis.

In next section, a brief discussion on practical implementation of the proposed

algorithms is given.
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Figure 6.2: Implementation of Algorithms.

6.1.1 Implementation of Proposed Algorithms in Practice

Frame length of a general LTE system is 10ms; each frame is composed of 1ms sub-

frames as shown in fig. 6.2. Each step of the proposed algorithms can be considered to

be equivalent to one LTE frame. During learning phases of each algorithm, network

nodes may transmit a test packet or same data packet as they do not achieve expected

performances until the learning duration is over; Ex: If algorithm takes 50 iterations

to converge a network node may transmit a test packet for 500 LTE frames, i.e., 0.5

s. After learning phase, actual transmission can take place, i.e., one packet per LTE

frame as shown in fig. 6.2. However, algorithm has to be reset after a pre-defined

time; Ex: 10 s (1000 LTE frames) as system parameters (such as channel gains,

distance between transmitter and receiver, etc).

6.2 Future Research Directions

Some of the potential research directions in designing distributed resource allocation

techniques for self-organizing small cell networks are outlined below.

1. Multi radio access technology (Multi-RAT):
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In future networks, different radio access technologies (e.g., Wi-Fi, different

types of small cells) are expected to be integrated in order to provide seamless

service to the user. Access control between different technologies should be done

in a self-organizing way to achieve the optimal performance. Access control is

closely related with resource allocation, since access control algorithms gener-

ally allow a new user only if there are sufficient resources to serve that user.

Therefore, distributed coordinated access control and resource allocation for

Multi-RAT to provide seamless connection to the user is an important research

direction.

2. Signaling overhead-optimal performance trade-off:

There is always a trade-off between the signaling overhead and optimal perfor-

mance of a network. A network may deliver optimal performance with complete

information but the signaling cost for implementing such algorithms would be

very high. On the other hand, the algorithms that rely on less information or

incomplete information may deliver slightly degraded performance. Address-

ing this issue and quantifying the trade-off is significant in order to achieve

near-optimal or optimal performance in self-organizing networks.

3. Context-awareness:

Context awareness, which is a powerful feature in many intelligent systems, has

recently been applied for enhancing the self-organizing features in small cell

networks. The idea is to utilize the context information, i.e., information from

the users’ environment, behavior, and social media, to enhance the provision of

services and applications. Context information can also be obtained by recently

proposed mobile crowdsensing techniques. The algorithms should be devised

considering the efficient exploitation of context aware information taken from
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different sources. The reliability of the different information sources would also

be an important issue.
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Appendix A

A.1 Laplace transform of the aggregate interference

Let

I1 =

∫ ∞
x=0

EpEh[1− e−vphx
−α

] x dx. (A.1)

Since the integration can be interchanged with the expectation,

I1 = EpEh

∫ ∞
x=0

(
1− e−vphx−α

)
x dx. (A.2)

Substituting y = vphx−α, I1 can be written as

I1 = EpEh

∫ ∞
y=0

(1− e−y)
(

1

α

)
y
−2
α
−1(vph)

2
α dy

= Ep

(
p

2
α

)
Eh

(
h

2
α

) v 2
α

α

∫ ∞
y=0

1− e−y

y
2
α

+1
dy.

(A.3)

Let I2 =
∫∞
y=0

1−e−y

y
2
α+1

dy. By performing integration by parts on I2, we have

I2 =
α

2
Γ

(
1− 2

α

)
. (A.4)
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Hence,

I1 = Ep

(
p

2
α

)
Eh

(
h

2
α

) v 2
α

2
Γ

(
1− 2

α

)
. (A.5)

A.2 Average SINR of a Generic User

For an interference-limited network (i.e., N0 = 0) and assuming path-loss exponent

α = 4, we can derive E
[
SINR

(n)
l

]
as in (A.6).

E
[
SINR

(n)
l

]
=∫ ∞

t=0

exp

{
−πλm

√
pmE[

√
h

(n)
m,k]
√
vΓ (0.5)

}
exp

{
−πλ(n)

s E[
√
ps]E[

√
h

(n)
i,k ]
√
vΓ (0.5)

}
dt. (A.6)

Since h
(n)
m,k and h

(n)
i,k are i.i.d. and they are exponentially distributed with mean µ,

E
[√

h
]

=

∫ ∞
h=0

√
hµe−µhdh. (A.7)

By substituting x = µh, we have

E
[√

h
]

=
1
√
µ

∫ ∞
x=0

(√
xe−x

)
dx

=
1
√
µ

Γ (1.5) =
1

2

√
π

µ
. (A.8)
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Also, after substituting the value of Γ (0.5) =
√
π and v = µtrαs

pl
in (A.6), we have ,

E
[
SINR

(n)
l

]
=∫ ∞

t=0

exp

{
−
π2λm

√
pm
√
tr2
s

2
√
pl

}
exp

{
−
π2λ

(n)
s E[

√
ps]
√
tr2
s

2
√
pl

}
dt∫ ∞

t=0

exp

{
− A

2
√
pl

(
λm
√
pm + λ(n)

s E[
√
ps]
)√

t

}
dt, (A.9)

where A = π2r2
s .

The expression in (A.9) has the following form:

I3 =

∫ ∞
0

e−k
√
tdt

=
2

k2

∫ ∞
0

xe−xdx =
2

k2
Γ (2) =

2

k2
, (A.10)

where the second step follows from the change of variables by substituting k
√
t = x.

Hence, (A.9) can be re-written as follows:

E
[
SINR

(n)
l

]
=

8pl

A2
(
λm
√
pm + λ

(n)
s E[

√
ps]
)2 . (A.11)
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B.1 Proof of Lemma 5.5.1

Let J be any arbitrary subset of base stations, i.e., J ⊂ K. The action profiles

of J and J c are given by aJ and a−J , respectively. Consider any base station

i /∈ J . The payoff of i is a function of the corresponding received SINRs, i.e.,

πi = F
(
SINRUL

i , SINRDL
i

)
. Also, from (5.1) and (5.2), it is evident that both uplink

and downlink SINRs are functions of uplink and downlink transmit powers of all

network nodes, i.e., πi = F (aJ ∪ a−J). Therefore, any change in aJ will change πi.

Therefore, game Gs is interdependent.

B.2 Proof of Theorem 5.5.1

When all players play a finite game repeatedly and follow the learning rules described

in Algorithm 4, the dynamics of the system induces a perturbed Markov process

with a finite state space X = A×MO, withMO =
(
{C,D}|K|

)
being the set of mood

profiles of the system. In [113] and [119], it is shown that when any interdependent

finite game is repeated following Algorithm 4 and ν −→ 0, a certain state x̄ =

[ā m̄] ∈ X is stochastically stable if and only if: i) ā is the social optimal action

profile and ii) m̄k = C, ∀k ∈ K. The game Gs is finite. It is also interdependent
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according to Lemma 5.5.1. In the game Gr, the players repeat the stage game Gs

infinitely many times. Therefore, if all players in Gr update their actions and moods

according to Algorithm 4 at every stage, it’s asymptotic convergence point is the

social optimal action profile, aSO. Moreover, the convergence of Algorithm 4 is

guaranteed when the experimenting rate (ν) is time-varying and goes to zero with the

iterations [114]. Therefore, to guarantee the asymptotic convergence of the learning

model, we select ν = 1√
t

in Algorithm 4.
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