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Abstract

In this thesis, we present numerical solution of semilinear partial differential equa-

tions (PDEs) where the linear differential operator is a self-adjoint. A recent spectral

method for self-adjoint operators, based on basis recombination, leads to symmet-

ric definite matrices, which have real spectrum. This allows for developing stable

time-stepping algorithm to solve the resulting the ordinary differential equations.

The linear part of the discretized problem is usually stiff, which constraints the

step size for explicit numerical schemes. We therefore use exponential integrators,

a well-known time-stepping methods for solving stiff differential equations. We de-

scribe three methods namely, eigen-decomposition, contour integral and Carathéodory-

Fejér approximation, for computing the matrix (ϕ) functions of the exponential in-

tegrators.

We perform numerical experiments with some PDEs with different boundary

conditions, including time-dependent boundary condition and the numerical results

confirm the accuracy of the methods in both space and time.
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1

Introduction

1.1 Introduction

Many problems in science and engineering are of the form of time dependent semi-

linear partial differential equations (PDEs) of the form

ut = Lu+N (u, t), (1.1)

where L is a linear differential operator and N a nonlinear operator.

Examples of such equations include those attributed to Allen–Cahn, Cahn–Hilliard,

Gierer–Meinhardt, Ginzburg–Landau, Kuramoto–Sivashinsky, etc. . . . We consider

the one-dimensional spatial form of these equations.

The spatial discretization of (1.1) leads to a system of ordinary differential equa-

tions (ODEs) which is mostly characterized by stiffness in the linear part. The

stiffness leads to constraint on the step size where explicit time-stepping schemes

require an extremely small time step to ensure the truncated spectrum is contained

in the linear stability domain. Implicit methods can be used to alleviate this diffi-

culty but computing the solution at the next time step can be expensive due to the

nonlinearity.
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There are a number of existing schemes which can handle the issue of stiffness and

the well-known of this class of methods include implicit-explicit (IMEX), integrating

factor scheme, split step and exponential integrators, which is the main tool used in

this thesis. Exponential integrators have been developed for solving semilinear PDEs

by solving the linear part exactly and then “approximating” the nonlinear part of the

system. This results in computing the matrix exponentials and matrix functions (the

so-called ϕ functions), which will be discussed in Chapter 2. Numerical experiments

conducted by Kassam and Trefethen [2005], Montanelli and Bootland [2016] confirm

the superiority of exponential integrators over other existing methods for solving stiff

semilinear PDEs.

In this thesis, we are interested in solving (1.1) when the linear operator L is

a formally self-adjoint linear differential eigenvalue equipped self-adjoint boundary

conditions defined as

Lu = λu, Bu = 0, (1.2)

where L is a self-adjoint linear differential operator of the form

L = (−D)N
(
pNDN

)
+ (−D)N−1

(
pN−1DN−1

)
+ · · ·+ p0, (1.3)

where the variable coefficients are polynomials of degree at most m, pi ∈ Pm, and

pN 6= 0.

The spatial discretization using the well-known Ritz–Galerkin method and subse-

quently representing the solution as a linear combination of orthogonal polynomials

leads to a symmetric but dense matrix and hence higher computational cost (pos-

sibly O(N3)). A modern spectral method is “the ultraspherical spectral method”

developed by Olver and Townsend [2013] seeks to represent the solution of a linear

differential equations (with variable coefficients) in a Chebyshev polynomial expan-
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sion by making use of the relationship between derivatives of Chebyshev polynomials

and ultraspherical polynomials. The boundary conditions are imposed using respec-

tive number of rows of the linear system. The resulting discretization matrix is

banded but non-symmetric even for self-adjoint differential equations.

More recently, Aurentz and Slevinsky [2020] showed that the symmetry and spar-

sity in self-adjoint differential equations with polynomial coefficients may transcend

the ultraspherical spectral discretization. This uses a recombination of orthogonal

polynomial bases and leads to symmetric-definite and banded discretization matri-

ces. Symmetry guarantees real eigenvalues and eigenvector can be chosen to be

orthogonal to each other.

The symmetric-definite discretizations are important because they permit sta-

ble numerical algorithms to be implemented for the generalized eigendecomposition.

The banded structure results in a significant improvement in the complexity of the

stable algorithms which is reduced from from the general dense case of O(N3) down

to O(mN2), where the bandwidth isO(m). In this work, we use fixed-size spatial dis-

cretizations. It is known Aurentz and Slevinsky [2020] that principal finite sections

of ultraspherical spectral discretizations do not respect the symmetry of self-adjoint

linear differential operators. Therefore, the fact that the true spectrum and that

of any of its principal finite sections of the method of Aurentz and Slevinsky [2020]

is real is crucial in that it permits the design and implementation of contour inte-

gral representations of functions of the linear operator and rational functions more

generally.
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1.1.1 Second Order Linear Eigenvalue Differential Problem

Considering the classical negative second order linear eigenvalue differential equation

with boundary condition which is a well-known self-adjoint problem

−D2u = λu, Bu = 0. (1.4)

For a separable Hilbert space H = L2([−1, 1]) of the eigenfunctions, we define a

quotient space which satisfies the boundary condition as HB = {u ∈ H : Bu = 0}.

We represent the eigenfunction in normalized weighted Jacobi polynomial expansion

u(x) =
∞∑
n=0

un(1− x2)P̃ (1,1)
n (x). (1.5)

With the appropriate choice of basis in the quotient space and following the

Aurentz–Slevinsky method which will be discussed in Chapter 2, we end up with the

discretized form of (1.4) as

Au = λBu, (1.6)

where A is diagonal and B is symmetric pentadiagonal and positive definite penta-

diagonal matrix. Here λ is the generalized eigenvalue of the pencil (A,B) and u is

the coefficient of the expansion of the solution of the problem (1.4).

We relate this problem to the PDE defined in (1.1) where the discretized linear

part becomes L = −B−1A for the negative second order linear differential operator

in Eq (1.4).

We consider a classical one-dimensional equation of the form (1.1)

ut = εuxx + u− u3, x ∈ [−1, 1] t ≥ 0 (1.7)

known as the Allen–Cahn equation (Cahn and Allen [1977]), which is a well-

known reaction diffusion equation used to model phase-separation of alloys in mate-

4



rial science. It has a second order diffusive term with a cubic reaction term and we

consider the equation in aperiodic domain x ∈ [−1, 1].

Kassam and Trefethen [2005] solved this equation using Cox and Matthews [2002]

fourth-order exponential integrators by first discretizing the PDE with a Chebyshev

pseudo-spectral method, leading to a dense non-symmetric matrix for the linear part

of (1.7). Due to the fact that they worked with a dense matrix, the computation of

the matrix (ϕ) functions exponential integrators using contour integral on a unit cir-

cle and subsequent precomputations results in O(N4) complexity with time-stepping

complexity of O(N3) from matrix-vector product.

The objective of this project is to improve the computational complexity particu-

larly for self-adjoint problems using the following approaches to compute the matrix

functions

1. eigen-decomposition of the linear part resulting from the Aurentz and Slevinsky

[2020] method,

2. the use of contour integral for the computation of the ϕ functions ( Hale and

Weideman [2015], Weideman and Trefethen [2007]),

3. rational approximation of the ϕ functions, specifically the Carathéodory–Fejér

method (Trefethen and Schmelzer [2007])

Different boundary conditions will also be considered including nonhomogeneous

and time-dependent boundary conditions and we will also look at implementing it

on other PDEs of the form (1.1).

We consider self-adjoint linear differential operators in this research due to their

numerous applications in applied mathematics, particularly in mathematical physics.

The nonlinearity in 1.1 depends on the particular semilinear PDE.
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2

Background Research

2.1 Self-Adjoint Linear Differential Operators

Definition 2.1. Kufner [1985], Lui [2012] Let Ω ⊂ Rd and define w : Rd → [0,∞)

as the weight function. We define the weighed Sobolev space for every 1 ≤ p < ∞

and for every m ∈ N0 as

Wm,p(Ω, w) = {u ∈ Lp(Ω, w), ∂αu ∈ Lp(Ω, w),∀α ∈ Nd, |α| ≤ m},

endowed with the norm

||u||Wm,p(Ω,w) =
 ∑
|α|≤m

∫
Ω
|∂αu|pw(x)dx

1/p

.

For p = 2, we denote Wm,2(Ω, w) = Hm
w (Ω).

Let H = L2([a, b], w(x)dx) be Hilbert space of square-integrable functions on

[a, b]. We define an inner product as

〈f, g〉 =
∫ b

a
f(x)g(x)w(x)dx,
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for f, g ∈ H and f(x) denotes the complex conjugate of f(x). The adjoint of an

operator L denoted L∗ is defined (Boyce and DiPrima [1977], Hall [2013], Stone and

Goldbart [2009]) such that

〈f,Lg〉 = 〈L∗f, g〉.

If L = L∗, then L is said to be self-adjoint.

A linear differential operator that is self-adjoint when equipped with appropriate

boundary conditions is called formally self-adjoint when those boundary conditions

are absent.

Some examples of formally self-adjoint linear differential operators appearing in

eigenvalue problems include:

• The Sturm–Liouville eigenvalue problem

(−D) (pD)u+ qu = λwu, (2.1)

where p ∈ C1([a, b]), q ∈ C([a, b]), and 0 < w ∈ C([a, b]). The second order

operator has many of applications in mathematical physics, specifically in elec-

trostatics, vibrating string, and quantum theory Stone and Goldbart [2009].

• Choosing p(x) = 1, q(x) = 0 and w(x) = 1 in Eq. (2.1) leads to the (negative)

Laplace eigenvalue problem

−D2u = λu.

• The momentum operator given by

iDu = λu,
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is also another formally self-adjoint operator used in quantum theory (Hall

[2013]).

We prove two results of self-adjoint operators which will be useful in this thesis.

Theorem 2.2. (Griffel [2002]) Eigenvalues of self-adjoint operators are real.

Proof. Let u be an eigenfunction corresponding to the eigenvalue λ, that is Lu = λu,

then we have

λ〈u, u〉 = 〈u, λu〉,

= 〈u,Lu〉,

= 〈Lu, u〉,

= λ〈u, u〉.

Since 〈u, u〉 6= 0, we have λ = λ. Therefore λ is real.

Theorem 2.3. (Griffel [2002]) If λ and µ are distinct eigenvalues of a self-adjoint

operator with eigenfunctions u and v respectively, then u and v are orthogonal.

Proof. From the self-adjoint property, we have

〈Lu, v〉 = 〈u,Lv〉

=⇒ λ〈u, v〉 = µ〈u, v〉

(λ− µ)〈u, v〉 = 0

Since λ 6= µ, we have 〈u, v〉 = 0. Thus the eigenfunction corresponding to different

eigenvalues are orthogonal.
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2.2 Exponential Integrators

Consider the initial-value problem

y′(t) = f(t, y), y(t0) = y0. (2.2)

Given a step size h > 0, a time-stepping scheme produces a sequence {yn}∞n=0 that

approximates the true solution y(tn) at time tn = t0 + nh.

2.2.1 Linear Stability Analysis

Consider the linear scalar initial-value problem

y′(t) = λy(t), y(t0) = y0, λ ∈ C, (2.3)

with exact solution y(t) = eλty0.

Suppose that Re(λ) < 0 such that the exact solution decays to zero, that is,

lim
t→∞

y(t) = 0. Thus for a fixed time step h, we define the linear stability domain as Ds

of a numerical method as the set of all number z = λh ∈ C such that limn→∞ yn = 0

(Iserles [2009]). A method is termed as Absolutely-stable (A-stable) if the linear

stability domain contains the set hλ ∈ C : Re(hλ) < 0 (Dahlquist [1963]).

2.2.2 Derivation of Exponential integrators

Exponential integrators have been developed to solve semilinear PDEs of the form

(1.1) with stiffness in the linear part. Stiffness is a general term used to describe

the situation where the ratio of the largest to the smallest eigenvalues of a linear

vector-valued initial-value problem is large. Stiffness in the discretized form of (1.1)

can be alleviated by implicit methods but they become computationally expensive.

Explicit methods turn out to be constrained by small stability regions, requiring
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extremely small time steps.

The idea behind exponential integrators is to find exact solution of the linear

part and numerical approximation for the nonlinear part. This leads to applying the

matrix exponential and other related matrix functions to a vector, thus the name

exponential integrators, according to a comprehensive review done by Hochbruck and

Ostermann [2010], Cox and Matthews [2002].

A review paper by Minchev and Wright [2005] indicates that different forms

of exponential integrators have been rediscovered in different ways. The family of

exponential integrators consists of exponential time differencing (ETD) which is sub-

categorized into one-stage schemes (Runge–Kutta types) and multi-stage (Adams–

Bashforth), integrating factor (IF), Lawson and exponential predictor-corrector meth-

ods.

The exponential time differencing (ETD) was derived by Cox and Matthews

[2002] using the integrating factor(IF) idea.

Consider a system of ODEs resulting from the semi-discretization of Eq. (1.1) as

ut = Lu+N(u, t), (2.4)

where L is the linear operator with stiffness and N(u, t) a nonlinear forcing term.

For a scalar case, L is a constant. ETD schemes are derived by multiplying Eq. (2.4)

by the integrating factor e−Lt as

e−Ltut = e−LtLu+ e−LtN(u, t), (2.5)

and integrating over a single time step from t = tn to t = tn+1 = tn + h for step

size h yields

u(tn+1) = eLhu(tn) + eLh
∫ h

0
e−LτN(u(tn + τ), tn + τ)dτ. (2.6)
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Eq. (2.6) is the exact solution of (2.4), given an initial solution u(tn) and this for-

mula is also known as the variation-of-constant formula (Hochbruck and Ostermann

[2010]). The various forms of ETD methods depend on how one approximates second

term in Eq. (2.6) based on the approximation of the nonlinear term.

The simplest case approximates N by the constant N(un, tn) which is denoted

as Nn; and also representing the numerical solution of u(tn) as un, we have the

numerical scheme

un+1 = eLhun + L−1(eLh − I)Nn, (2.7)

as the exponential time differencing of order one (ETD1). This can also be written

as

un+1 = eLhun + hϕ1(Lh)Nn, (2.8)

where ϕ1(z) = (ez − 1)/z is referred to as a ϕ function.

2.2.3 Higher Order forms of ETDs

A second order of ETD can be derived using a linear approximation of the nonlin-

ear function instead of a constant approximation used in the case of ETD1. Higher

order and more accurate schemes can be derived using higher order polynomial ap-

proximations of the nonlinearity. Cox and Matthews [2002] derived the schemes

of arbitrary order using Newton’s backward divided difference approximation of

N(u(tn + τ), tn + τ), given the information about N at the nth and previous time

steps Nn, Nn−1, . . . , Nn−s. The approximation of N becomes

N(u(tn + τ), tn + τ) ≈ Gn(tn, τ) =
s−1∑
m=0

(−1)m
(
−τ/h
m

)
∇mGn(tn),

where ∇ is the backward difference operator.

Substituting N(u(tn+τ), tn+τ) ≈ Gn(tn, τ) into Eq. (2.6) and simplifying further
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the ETD scheme of order s as

un+1 = eLhun + h
s−1∑
k=0

gm
m∑
k=0

(−1)k
(
m

k

)
Nn−k, (2.9)

where the coefficients can be expressed as recurrence relation

Lhg0 + I = eLh,

Lhgm+1 + I = gm + 1
2gm−1 + 1

3gm−2 + · · ·+ 1
m+ 1g0 =

m∑
k=0

1
m+ 1− kgk.

In particular, ETD1 and ETD2 have coefficients

g0 = (eLh − I)L−1h−1, and g1 = (g0 − 1)L−1h−1 = (eLh − I − Lh)L−2h−2,

as their respective ϕ functions.

2.2.4 Exponential Time Differencing Runge–Kutta Methods

The ETD methods are multistep schemes which require s previous evaluations of the

nonlinearity. Usually the initial condition leads to one nonlinear evaluation available

and thus it is more convenient to use Runge–Kutta time stepping forms of ETD

schemes. In addition to that, Runge–Kutta schemes have higher accuracy and larger

stability regions. The second order form of these methods can be derived by first

approximating the solution u at tn + h as

an = eLhun + L−1(eLh − I)Nn, (2.10)

which can also be obtained from s = 1 in the s-step scheme (2.9).

We then approximate the nonlinear function under the integral Eq. (2.6) in the
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interval tn ≤ τ ≤ tn+1. The linear polynomial interpolant is given by

N = N(un, tn) + τ − tn
h

(N(un + h, tn + h)−N(un, tn)) +O(h2),

= N(un, tn) + τ − tn
h

(N(an, tn + h)−N(un, tn)) +O(h2).

Substituting into the approximation into Eq. (2.6) and integrating yields the scheme

un+1 = an + h−1L−2(eLh − 1− hL)(N(an, tn + h)−Nn),

and this is referred to as ETD2RK, which first computes the intermediate solution

an and then uses it to compute the solution at the next time-step un+1.

The third order Runge-Kutta form is also derived in similar way by first the

intermediate solution an and bn at tn + h/2 and tn + h respectively using s = 1 in

(2.9). The next step is to approximate the nonlinear function under the integral in

(2.6) using quadratic interpolation polynomial through the points tn, tn + h/2 and

tn + h. This leads to Cox and Matthews’ ETD3RK as

an = eLh/2un + L−1(eLh/2 − 1)Nn, (2.11)

bn = eLhun + L−1(eLh − 1)(2N(an, tn + 1/2)−Nn), (2.12)

un+1 = ehLun + h−2L−3[−4− hL+ ehL(4− 3hL+ h2L2)]Nn+

4h−2L−3[2 + hL+ ehL(−2 + hL)]N(an, tn + h/2)+

h−2L−3[−4− 3hL− h2L2 + ehL(4− hL)]N(bn, tn + h)

(2.13)

The most used exponential integrator is the Cox and Matthews’ fourth-order

scheme ETD4RK (Montanelli and Trefethen [2017], Kassam and Trefethen [2005]).

The intermediate solutions an and bn approximate the solution at tn+h/2 and a third
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parameter cn as the intermediate solution at tn+h. Again, a quadratic interpolation

polynomial is used to approximate the nonlinearity. The Cox and Matthews [2002]

fourth order scheme is given by

an = ehL/2un + L−1(ehL/2 − 1)Nn, (2.14)

bn = ehL/2un + L−1(ehL/2 − 1)N(an, tn + h/2), (2.15)

cn = ehL/2an + L−1(ehL/2 − 1)(2N(bn, tn + h/2)−Nn), (2.16)

un+1 = ehLun + h−2L−3[−4− hL+ ehL(4− 3hL+ h2L2)]Nn+

2h−2L−3[2 + hL+ ehL(−2 + hL)](N(an, tn + h/2) +N(bn, tn + h/2))+

h−2L−3[−4− 3hL− h2L2 + ehL(4− hL)]N(cn, tn + h). (2.17)

The fourth-order scheme is the main time-stepping numerical scheme used in this

work.

The Eq. (2.17) does not have the approximate solution at u(tn+1) expressed

explicitly in terms of the ϕ functions. A form of Eq. (2.17) given by Krogstad

[2005] can be expressed in the Butcher-like tableau

0
1
2

1
2ϕ1

1
2 0 1

2ϕ1

1
2

1
2ϕ1 0 0

1
2 −1

2ϕ1 0 ϕ1

4ϕ3 − 3ϕ2 + ϕ1 −4ϕ3 + 2ϕ2 −4ϕ3 + 2ϕ2 4ϕ3 − ϕ2

where ϕk = ϕk(hL) for k ≥ 1.

The solution at the internal stages remains the same while the approximate so-
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lution at tn+1 becomes

un+1 = ehLun + h ([4ϕ3(hL)− 3ϕ2(hL) + ϕ1(hL)]N(un, tn))

+ h ([2ϕ2(hL)− 4ϕ3(hL)](N(an, tn + h/2) +N(bn, tn + h/2)))

+ h ([4ϕ3(hL)− ϕ2(hL)]N(cn, tn + h)) . (2.18)

2.2.5 Exponential General Linear Methods

The Runge-Kutta form of ETD methods fall under the exponential general linear

methods, where given starting values u0, u1, . . . , uq−1 at time t = 0, h, . . . , (q − 1)h,

the approximate solution at next time step is given by (Minchev and Wright [2005],

Ostermann et al. [2006])

un+1 = ehLun + h
s∑
i=1

Bi(hL)N(vi) + h
q−1∑
i=1

Vi(hL)N(un−i), (2.19)

with q steps un−1 and s stages vi with v1 = un and

vi = eCihLun + h
i−1∑
ji=1

Ai,j(hL)N(vj) + h
q−1∑
j=1

Ui,j(hL)N(un−j), 2 ≤ i ≤ s. (2.20)

The coefficient A,B,C, U and V determines the particular scheme and we represent

the exponential general linear method (2.19) in tableau form as

c2 A2,1 U2,1 · · · U2,q−1
...

...
. . .

...
...

cs As,1 · · · As,s−1 Us,1 · · · Us,q−1

B1 · · · Bs−1 Bs V1 · · · Vq−1

The ETD Adams–Bashford takes the form for s = 1 (Ostermann et al. [2006]) in
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(2.19) as

un+1 = ehLun + hB1(hL)N(un) + h
q−1∑
i=1

Vi(hL)N(un−i). (2.21)

Another form of exponential integrators is the standard integrating factor (IF)

method first introduced by Lawson [1967]. The idea makes use of the change of

variable

v(t) = e−Ltu(t), (2.22)

and multiplying Eq. (2.4) by the integrating factor e−Lt and substituting the deriva-

tive v(t) leads

vt = e−LtN(eLtv, t), v(0) = u0. (2.23)

The stiff linear part L is not in an explicit form in the differential equation in

terms of v in Eq. (2.23) and thus we get rid of the step size or stability constraints.

However, the scheme becomes less accurate when a slow-varying nonlinear term is

combined with a fast decaying term from the exponential of −Lt. The transformed

system is solved with a time-stepping scheme such as those of Euler or Runge–Kutta

and the approximate solution is then transformed back to the original variable u.

The IF method was generalized by (Krogstad [2005]) to derive the generalized

Lawson schemes using the change of variables

v(t) = e−Ltu(t)− e−Lt
q∑
j=1

tlϕl(Lt)pl−1, (2.24)

where pl are the coefficients of the polynomial interpolant P (t) through the set of

points {tn−l, N(un−l, tn−l)}ql=1. Taking the derivative and substituting into Eq. (2.4),

we get the equation in the new variable v as

vt = e−Lt

N
eLtv +

q∑
j=1

tlϕl(Lt)pl−1, t

− P (t)
 , v(0) = u0, (2.25)

which can be solved with classical fourth order Runge–Kutta.
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2.3 Spectral Methods and Polynomial Approxi-

mation Theory

Spectral methods are important techniques in numerical analysis and scientific com-

puting. They are methods to discretize the solution of differential and integral equa-

tions with orthogonal polynomials or Fourier series.

Spectral methods are global methods, that is, the computations (or derivatives)

at any point in the space depend on the information at all other points in the entire

domain (Hesthaven et al. [2007]). This is in contrast to the case of finite difference (or

elements) termed as local methods whereby the computations at any point depend

only on the nearby grid points. In this case, the solution and its derivatives are

approximated by a local polynomial interpolant.

The convergence rates of spectral methods assimilate the regularity of the so-

lution: the smoother the function, the faster the convergence rate. This stands in

contrast to finite difference or element methods where the convergence rate is also

controlled by the mesh (Lui [2012]).

However, traditional spectral methods suffer from a few drawbacks. They can be

challenging to implement for complicated domains or complex geometries. Also the

method assumes solutions to be sufficiently smooth, hence for nonsmooth functions,

it becomes less accurate. This is usually encountered in problems involving shocks

and discontinuities.

The basis functions are usually smooth functions and the choice depends on

the nature of the solution. For smooth periodic functions with periodic boundary

conditions, the natural choice is trigonometric (Fourier) functions and this leads to

the so-called Fourier spectral method. For non-periodic functions with non-periodic

boundary conditions, one resorts to the use of non-periodic basis functions, mainly

polynomial basis functions. In this work, the spectral method is based on the use of
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polynomials bases which are eigenfunctions of Sturm–Liouville eigenvalue problems.

These polynomials are elegant choice of basis due to their nice convergence properties.

Examples of these polynomials include the classical orthogonal polynomials of Jacobi,

Laguerre, and Hermite.

Polynomial Approximation Theory

The classical orthogonal polynomials are known to be well-suited for expansion of a

square integrable function on a bounded interval and the truncated expansions are

the best polynomial approximations in their respective Hilbert space (Riesz [1923],

Hesthaven et al. [2007], Trefethen [2013]).

The sequence of orthogonal polynomials {pn(x)}∞n=0 are orthogonal with respect

to weight function w(x) on some interval (a, b) as

〈pm, pn〉 =
∫ b

a
pm(x)pn(x)w(x)dx =


hn, m = n

0, m 6= n.

(2.26)

When hn = 1, the polynomials pn are orthonormal.

The classical orthogonal polynomials are characterized in many ways, including:

1. the polynomials satisfy the Sturm–Liouville differential equation σp′′n + τp′n =

λnpn, where deg(σ) ≤ 2, deg(τ) ≤ 1, and λn = n
2 [(n− 1)σ′′ + 2τ ′]. (Bochner

[1929], Krall [1941]). Note that Krall extended the result of Bochner to the

case where 〈·, ·〉 is a quasi-definite inner product, which is applicable to the

Bessel polynomials with quasi–orthogonality in the complex plane.

2. they are the only orthogonal polynomials whose derivatives are also orthogonal

polynomials. This makes them suitable for developing spectral methods for

solving differential equations (Hahn [1935]).

The most widely used orthogonal polynomials are the Jacobi polynomials (in-
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cluding the special cases of ultraspherical, Chebyshev and Legendre polynomials),

Hermite polynomials and Laguerre polynomials.

The orthogonal polynomials also satisfy the three-term recurrence relation

pn+1(x) = (Anx+Bn)pn(x)− Cnpn−1(x), (2.27)

with initial values p0(x) = 1 and p1(x) = A0x + B0 ([DLMF, Eq. 18.19.1]). We

summarize properties of the classical orthogonal polynomials in Table 2.1 includ-

ing the interval of orthogonality, weight and hn given the standard normalization

([Abramowitz and Stegun, 1972]). In Table 2.1, An denotes 2α+β+1Γ(n+α+1)Γ(n+

β + 1)/((2n+ α + β + 1)Γ(n+ α + β + 1)n!)

As mentioned above, the main idea of spectral methods is to expand any smooth

function u(x) in the form

u(x) =
∞∑
k=0

ukpk(x), (2.28)

with coefficients defined as

uk = 1
hn

∫ b

a
pk(x)u(x)w(x)dx. (2.29)

A numerical quadrature can be used to evaluate the integrals and this results

in O(n2) operation for truncated series with first n terms. A more efficient way is

to compute the coefficients using the discrete sine and cosine transforms (DSTs and

DCTs) in O(n log n) for Chebyshev polynomials of the first, second, third, and fourth

kinds.

For any compact interval [a, b], an affine map may be used to expand in Jacobi

polynomials. If one endpoint is infinite, then Laguerre polynomials are used.

The convergence of spectral methods depends on the smoothness of the function

and subsequent decay of the expansion coefficients as shown in the following theorem
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(Hesthaven et al. [2007], Lui [2012]).

Theorem 2.4. (Lui [2012]) Let u ∈ H2m
w ([−1, 1]) for some m ≥ 1. Suppose that

(2.28) holds where pn is the solution of the Sturm-Liouville eigenvalue problem. Then

there exists a constant 0 < c <∞ such that

|uk| ≤
c‖u‖H2m

w ([−1,1])

λmk
.

Theorem 2.5. (Hesthaven et al. [2007]) Let w(x) = (1 − x2)λ−1/2. For any u ∈

Hm
w ([−1, 1]), m ≥ 0. Then for every N > 0 there exists a constant 0 < C < ∞

independent of N such that

‖u− PNu‖L2
w([−1,1]) ≤ CN−m‖u‖Hm

w ([−1,1]), (2.30)

where PN is the canonical orthogonal projection onto the N -dimensional subspace

span{C(λ)
0 , . . . , C

(λ)
N−1}.

Therefore we have spectral convergence for L2 error of truncation error and this

depends on the smoothness of the function u. If u ∈ C∞([−1, 1]), then the coefficients

decay faster than any negative power of N . For an analytic function, the convergence

becomes exponential convergence.

2.4 The Ultraspherical Spectral Method

In the ultraspherical spectral method, we consider the solution of a linear differential

equation on [−1, 1] of the form

(
aNDN + · · ·+ a1D + a0

)
u = f, N ≥ 0, (2.31)
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with the boundary conditions Bu = c, which ensure a unique solution of (2.31); and

also aN 6= 0 on [−1, 1]. In this case the functions f and a0, . . . , aN are so smooth on

[−1, 1] that they are well-approximated by degree-m Chebyshev polynomial approx-

imants.

The idea in this spectral method is to represent the solution of (2.31) in the

Chebyshev basis and then compute the vector of Chebyshev coefficients of the ex-

pansion of the solution. The method seeks to find an infinite vector u = (u0, u1, . . .)>

such that

u(x) =
∞∑
k=0

ukTk, x ∈ [−1, 1], (2.32)

where Tk is Chebyshev polynomial (of the first kind) of degree k.

Collocation methods based on this representation result in dense linear systems

(Trefethen [2000]) and hence the cost can be computationally prohibitive. The ul-

traspherical spectral method makes use of the relationship between Chebyshev poly-

nomials and derivatives resulting in discretizations which are almost banded.

First Order Differential Equation

Following the idea of [Olver and Townsend, 2013], we consider the first-order linear

differential equation to explain the method and the general case will be discussed

later. We look for solution of the first-order ODE

u′(x) + a(x)u(x) = f(x) and u(−1) = c, (2.33)

where a(x) and f(x) are continuous functions and of bound variation, which ensures

the unique representation as uniformly convergent Chebyshev expansion (Trefethen

[2013]). Thus we can represent the continuous function f(x) as

f(x) =
∞∑
k=0

fkTk(x). (2.34)
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We seek the solution of (2.33) in as expansion of Chebyshev polynomials and the

main task in this method is solve for the coefficients in this series. The idea is to

able to represent the differentiation, conversion from one space to another and the

multiplication by variable coefficients as sparse operators.

The first derivative of Chebyshev polynomial of the first kind can be expressed

in terms of that of the second kind as

DTk =


0 k = 0,

kC
(1)
k−1 k ≥ 1,

(2.35)

where C(1)
k−1 ≡ Uk−1 is Chebyshev polynomial of the second kind of degree k − 1.

Taking the derivative of the solution (2.32) using Eq. (2.35) scales the Chebyshev

coefficients and subsequently changing the basis to C(1) space. That is,

u′(x) =
∞∑
k=0

kukC
(1)
k−1(x). (2.36)

In matrix form, given a vector of Chebyshev coefficients u, the derivative in C(1)

series is given by D0u where D0 is the differentiation operator

D0 =



0 1

2

3

4
. . .



The resulting differentiation matrix D0 is sparse as compared to the dense differen-

tiation matrix from the spectral collocation method. The sparsity of the matrix has

a number of advantages, including saving computer memory to fast computations.

For variable coefficients like a(x)u(x) in Eq. (2.33), we have multiplication of two
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Chebyshev series. We can represent a(x) and u(x) in Chebyshev expansion as

a(x) =
∞∑
j=0

ajTj(x), and u(x) =
∞∑
k=0

ukTk(x),

and the product of a(x) and u(x) in Chebyshev series is given as

a(x)u(x) =
∞∑
j=0

∞∑
k=0

ajukTj(x)Tk(x) =
∞∑
k=0

ckTk(x).

We seek to find the vector of coefficients c = (c0, c1, . . . , )T in terms of aj and uk for

j, k = 0, 1, . . . ,

An explicit formula for the coefficients of products of two Chebyshev expansion

was given by Baszenski and Tasche [1997] as

ck =


a0u0 + 1

2

∞∑
l=1

alul k = 0,

1
2

k−1∑
l=0

ak−lul + a0uk + 1
2

∞∑
l=1

alul+k + 1
2

∞∑
l=0

al+kul k ≥ 1.
(2.37)

We can define an operatorM0[a] as the multiplication of Chebyshev coefficients

u = (u0, u1, . . . , )> by continuous function function a(x) in Chebyshev series and we

can get c =M0[a]u, whereM0[a] can be expressed as a sum of Toeplitz matrix and

Hankel-plus-rank-1 matrix as

M0[a] = 1
2





2a0 a1 a2 a3 · · ·

a1 2a0 a1 a2
. . .

a2 2a1 2a0 a1
. . .

a3 a2 a2 2a0
. . .

...
. . .

. . .
. . .

. . .


+



0 0 0 0 · · ·

a1 a2 a3 a4 . .
.

a2 a3 a4 a5 . .
.

a3 a4 a5 a6 . .
.

... . .
.
. .
.
. .
.
. .
.




(2.38)

This multiplication operator M0[a] is dense. For a(x) being continuous and
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of bounded variation, its finite Chebyshev expansion converges to a(x) (Trefethen

[2013]). Thus, given ε > 0, there exists an m ∈ N such that

∥∥∥∥∥a(x)−
m−1∑
k=0

akTk(x)
∥∥∥∥∥
L∞([−1,1])

< ε.

In practice, we can find the coefficients a0, . . . , am−1 using the Fast Cosine Transform

and subsequently leads to an m×m dense multiplication operatorM0[a]. However,

for n > m, the n× n principal part ofM0[a] is banded with bandwidth m and also

for a(x) smooth, m can be very small. That is, the multiplication operator remains

sparse with small bandwidth.

The differentiation operator D0 takes coefficients in Tk(x) and returns coefficients

in C
(1)
k , in contrast to the multiplication operator M0[a] returning coefficients in

Tk(x). Adding coefficients in different bases does not make sense. We therefore need

to convert one of the coefficients into the other’s basis or space, that is, an operator

that maps coefficients in Chebyshev basis to C(1)
k space.

Using the relationship between Chebyshev polynomials Tk(x) and C
(1)
k by the

recurrence relation

Tk =



C
(1)
0 k = 0,

1
2C

(1)
1 k = 1,

1
2(C(1)

k − C
(1)
k−1) k ≥ 2,

(2.39)

we can expand the solution (2.32) using (2.39) as

u(x) =
∞∑
k=0

ukTk(x) = u0C
(1)(x) + 1

2u1C
(1)(x) + 1

2

∞∑
k=2

uk

(
C

(1)
k (x)−C(1)

k−2(x)
)
. (2.40)

Writing few terms from the summation and rearranging gives u(x) as

u(x) =
(
u0 −

1
2u2

)
C

(1)
0 (x) +

∞∑
k=1

1
2(uk − uk+2)C(1)

k (x). (2.41)
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Thus, given a vector of Chebyshev coefficients u, a conversion operator S0 con-

verts them to coefficients in C(1)
k as S0u where the conversion operator is given by

S0 =



1 −1
2

1
2 −1

2

1
2 −1

2
. . .

. . .


.

Once again we have the conversion operator being sparse and banded. We repre-

sent function f(x) in Eq. (2.33) in Chebyshev series and subsequently convert the

coefficients to that C(1) basis. We represent the differential equation (2.33) as

(D0 + S0M0[a])u = S0f , (2.42)

which can also be written as

Lu = S0f , (2.43)

where L is defined as L = D0 +S0M0[a], and f and u are the vectors of coefficients

of expansion f(x) and u(x) respectively.

In practice, we truncate the infinite dimensional operators to work with the finite

dimensional space. We define an n×∞ projection operator which maps an infinite

dimensional operator in C∞ to a finite case Cn as

Pn = (In,0), (2.44)

where In is an n×n identity matrix. For example, applying the projection operator on

the differentiation operator as PnD0P>n truncates the the rows and columns to n×n

matrix with the last rows being zeros. Hence the structure of PnLP>n makes it easy
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to impose the boundary conditions by replacing the last row with the evaluations

at the boundary. One can permute this last row to be the first row so that the

resulting linear system is close to an upper triangular matrix. Thus, we approximate

the solution of (2.33) by first solving for the coefficients u0, u1, . . . , un−1 in the linear

system

T0(−1) T1(−1) · · · Tn−1(−1)

Pn−1LP>n





u0

u1
...

un−1


=

 c

(Pn−1S0P>n )(Pnf)

 ,

(2.45)

and the we get the solution as

ũ(x) =
n−1∑
k=0

ukTk(x).

Olver and Townsend described an adaptive QR algorithm to solve the linear

system in O(m2n) operations, wherem is the bandwidth of the banded discretization

of L. The complexity of the factorization is O(m2n). However, once the linear

operator is factorized, solving linear systems then costs only O(mn).

Higher Order Differentiation Equations

Consider theN th-order linear ODE (2.31) withK boundary conditions Bu = c ∈ CK .

Representing the solution of (2.31) in Chebyshev expansion as we did in the first-

order case (2.32), we would need the three operators: differentiation, multiplication

and conversion to solve (2.31).

We use the ultraspherical polynomial C(λ)
k of degree k for λ = 1, 2, . . .. This family
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of orthogonal polynomials satisfies the following relation to compute the derivatives

dC
(λ)
k

dx
=


0 k = 0,

2λC(λ+1)
k−1 k ≥ 1.

(2.46)

Given the solution u(x) in Chebyshev expansion and using the derivative relations

(2.35), we have for arbitrary λ ≥ 1

dλu(x)
dxλ

=
∞∑
k=1

kuk
dλ−1C

(1)
k−1(x)

dxλ−1 ,

and subsequently taking the derivative λ− 1 times using relation (2.46), we have

dλu(x)
dxλ

= 2λ−1(λ− 1)!
∞∑
k=λ

kukC
(λ)
k−λ(x)

In matrix form, we have a sparse representation representation as the λth-order

differentiation operator Dλ as

Dλ = 2λ−1(λ− 1)



λ times︷ ︸︸ ︷
0 · · · 0 λ

λ+ 1

λ+ 2
. . .



The operator Dλ maps the vector coefficients of the Chebyshev expansion to vector

coefficients of the expansion in C(λ).

Since Dλ return a vector of coefficients in C(λ), we would need conversion oper-

ators to convert of coefficients resulting from lower order derivatives. We use the
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following relationship between ultraspherical polynomials

C
(λ)
k =



C
(λ+1)
0 k = 0,

λ
λ+1C

(λ+1)
1 k = 1,

λ
λ+k (C(λ+1)

k − C(λ+1)
k−2 ) k ≥ 2.

(2.47)

The general case using Eq. (2.47) for λ ≥ 1, where Sλ converts coefficients in C(λ)

to that of C(λ+1) series as

Sλ =



1 0 − λ
λ+2

λ
λ+1 0 − λ

λ+3

λ
λ+2 0 . . .

λ
λ+3

. . .

. . .


.

We need one more operator for the multiplication of function a(x)u(x), partic-

ularly to represent the product of two ultraspherical expansions. We expand the

function a(x) and u(x) in C(λ) series as

a(x) =
∞∑
j=0

ajC
(λ)
j (x) and u(x) =

∞∑
k=0

ukC
(λ)
k (x)

we have the product as

a(x)u(x) =
∞∑
j=0

∞∑
k=0

ajukC
(λ)
j (x)C(λ)

k (x). (2.48)

Using of Carlitz [1961] approach on product of two ultraspherical polynomials as

C
(λ)
j (x)C(λ)

k (x) =
min(j,k)∑
s=0

cλs (j, k)C(λ)
j+k−2s(x), (2.49)
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where

cλs (j, k) = j + k + λ− 2s
j + k + λ− s

(λ)s(λ)j−s(λ)k−s
s!(j − s)!(k − s)!

(2λ)j+k−s
(λ)j+k−s

(j + k − 2s)!
(2λ)j+k−2s

, (2.50)

and

(λ)k = Γ(λ+ k)
Γ(λ) = (λ+ k − 1)!

(λ− 1)!

is termed as the Pochhammer symbol.

Substituting Eq. (2.49) into Eq. (2.48) and rearranging the summation yields

a(x)u(x) =
∞∑
j=0

( ∞∑
k=0

k∑
s=max(0,k−j)

a2s+j−kc
k
s(k, 2s+ j − k)uk

)
C

(λ)
j (x). (2.51)

Thus in matrix representation form, we have the (j, k) entry of the operator

representing the multiplication of a(x) in C(λ) expansion is given by

Mλ[a]j,k =
k∑

s=max(0,k−j)
a2s+j−kc

k
s(k, 2s+ j − k), j, k ≥ 0. (2.52)

As mentioned previous case, the function a(x) can be approximated finite summation

of first m coefficients

a(x) =
m−1∑
j=0

ajC
(λ)
j (x), (2.53)

and the resulting truncated operator PnMλ[a]P>n is banded with bandwidth m. One

can also approximate the a(x) by finite number of Chebyshev coefficients and then

convert it to C(λ) space using the truncated conversion operators.

Having obtained all the operators required solve (2.31), the discretized ODE

becomes

Lu = SN−1 · · · S0f , (2.54)
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where

L =MN [aN ]DN +
N−1∑
λ=1
SN−1 · · · SλM[aλ]Dλ + SN−1 · · · S0M0[a0].

TheK boundary conditions are imposed by replacing the lastK row of the truncated

part of the differential operator in (2.54). We can permute this to have the first K

rows being the boundary condition to make the resulting system close to a upper

triangular matrix. Thus we solve for coefficients u0, . . . un−1 in the following linear

system

 BP>n

Pn−KLP>n





u0

u1
...

un−1


=

 c

Pn−KSN−1.....S0f

 .

The approximate solution of (2.31) is then given by

ũ(x) =
n−1∑
k=0

ukTk(x).

Although ultraspherical spectral methods are known to be efficient, the repre-

sentation of the solution and subsequently using boundary bordering leads to a non-

symmetric matrix even for self-adjoint differential operators (Olver and Townsend

[2013]). This lack of symmetry leads to inaccuracy in the computations of the eigen-

values especially at the high modes for an eigenvalue differential problem.

2.5 Symmetrizing The Ultraspherical Spectral Method

For self-adjoint eigenvalue problems, the ultraspherical representation results in a

non-symmetric matrix and thus leading to complex spectrum. The method proposed
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by Aurentz and Slevinsky [2020] seeks to symmetrize the ultraspherical spectral

methods using basis recombination of orthogonal polynomials.

Following the idea presented in their paper, we consider the self-adjoint Sturm–

Liouville problem

Lu := −D2u = λu, u(±1) = 0. (2.55)

The main idea is to represent the solution in a basis that satisfies the boundary

conditions.

If we expand the solution of (2.55) as weighted normalized ultraspherical poly-

nomials

u(x) =
∞∑
k=0

un(1− x2)C̃( 3
2 )
n (x),

then the negative second-order differentiation of u is a diagonal matrix with en-

tries dn = (n + 1)(n + 2), when the basis for the range is {C̃( 3
2 )
n (x)}∞n=0. Thus, the

multiplication operator of 1 − x2, which is a symmetric pentadiagonal matrix, rep-

resents expansions in (1 − x2)C̃( 3
2 )
n (x) in the unweighted basis C̃( 3

2 )
n (x), and is given

by (Aurentz and Slevinsky [2020])

M[1− x2] =



a0 0 b0

0 a1
. . .

b0 a2

. . .
. . .


,

where

an = 2(n+ 1)(n+ 2)
(2n+ 1)(2n+ 5) , and bn = −

√√√√(n+ 1)(n+ 2)(n+ 3)(n+ 4)
(2n+ 3)(2n+ 5)2(2n+ 7) .

32



The representation leads to

Du = λMu, (2.56)

where where D is a diagonal andM is symmetric pentadiagonal and positive definite.

Thus the discretization leads to the generalized symmetric-definite pencil (D,M)

where the generalized eigenvalues are real.

2.5.1 Basis Recombination

Considering the classical problem (1.2) with homogeneous boundary condition and

with the Hilbert space H and the constrained Hilbert space HB defined in section

1.1.1. Let {φn}∞n=0 be an orthonormal polynomials basis for H with deg(φn) = n.

For the linearly independent boundary conditions in B, let {ρn}∞n=0 be the basis

recombination of the orthonormal polynomials {φn}∞n=0 so that Bρn = 0. Then the

model problem above suggests the existence of a conversion operator A which is

lower triangular and banded such that

(
ρ0 ρ1 ρ2 · · ·

)
=
(
φ0 φ1 φ2 · · ·

)
A. (2.57)

Using the QR factorization of A = QR, the unitary matrix Q maps the orthonor-

mal polynomial basis for H to the orthonormal basis {ψn}∞n=0 for the constrained

space HB

(
ψ0 ψ1 ψ2 · · ·

)
=
(
φ0 φ1 φ2 · · ·

)
Q, (2.58)

and we also get the operator R from

(
ρ0 ρ1 ρ2 · · ·

)
=
(
ψ0 ψ1 ψ2 · · ·

)
R. (2.59)
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By defining another set of polynomials {σn}∞n=0 such that

(
σ0 σ1 σ2 · · ·

)
R∗ =

(
ψ0 ψ1 ψ2 · · ·

)
, (2.60)

and since

(
ψ0 ψ1 ψ2 · · ·

)
Q∗ =

(
φ0 φ1 φ2 · · ·

)
. (2.61)

Using A∗ = R∗Q∗, we get

(
σ0 σ1 σ2 · · ·

)
A∗ =

(
φ0 φ1 φ2 · · ·

)
. (2.62)

As mentioned above, for the problem Eq. (1.4) the choice for φn is the normalized

Legendre polynomials φn(x) = P̃n(x) and the recombination ρn(x) = (1−x2)P̃ (1,1)
n (x)

and the orthonormal basis for HB is ρn(x) = (1−x2)P̃ (2,2)
n (x). Using these four bases,

[Aurentz and Slevinsky, 2020] showed that resulting Petrov–Galerkin for the problem

is symmetric-definite and banded where the solution is represented as u(x) = ρ>v =

ψ>Rv = ψ>u.

The solution can written in an expansion of the basis ψ and a vector of coefficients

u = (u0, u1, u2, · · · )> as

u(x) =
∞∑
n=0

unψn(x) = ψ>u.

2.5.2 The Petrov-Galerkin is banded and self-adjoint

Using the orthonormal polynomial basis ψn for HB, it follows that that the Ritz–

Galerkin scheme is self-adjoint:

Lψ>u = ψ>Lu = λwψ>u = ψ>λMu,
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where L = L∗ and M = M∗ is positive-definite. Using ρ> = ψ>R in Eq. (2.59) we

have

ψ>LRv = ψ>λMRv,

and using σ>R∗ = ψ> in Eq. (2.60),

σ>R∗LRv = λσ>R∗Rv.

we have that R∗LR is self-adjoint and R∗MR is self-adjoint and positive-definite.

To show bandedness, we have

Lρ>v = λwρ>v,

and using ρ> = φ>A in Eq. (2.57), we have Lρ>v = Lφ>Av. Suppose LB is banded

operator representing the discretization using the ultrapherical spectral method,

then there exists an upper triangular and banded above conversion operator so that

Lφ> = φ>C−1LB and using φ> = σ>A∗ in Eq. (2.62), we get

Lφ>Av = φ>C−1LBAv = σ>A∗C−1LBAv = λσ>A∗MBAv.

The bandedness comes from the fact that LBA is banded below and C−1 is an upper

triangular matrix which will not extend the bandwidth the LBA any lower. Since

A∗ is also upper-triangular and the Petrov-Galerkin scheme is self-adjoint, then the

scheme is banded.
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2.5.3 Bound on the Projection Error

Let Pn : HB → HB be the canonical orthogonal projection onto the n-dimensional

subspace span{ψ0, . . . , ψn−1} of the recombined basis and the discrete form as Pn :

`2 → `2. Using the solution u(x) = ρ>v = ψ>Rv = ψ>u ∈ HB, Aurentz and

Slevinsky [2020] showed that

‖u− Pnu‖HB ≤ 2‖R‖`2→`2‖v − Pnv‖`2 . (2.63)

This implies that the error committed by projecting u onto the recombined space

n-dimensional subspace {ψ0, . . . , ψn−1} is bounded by a constant multiple of the

discrete discrete truncation error v − Pnv

The bound on the projection error in H can also be obtained using the canonical

projection Pn : H → H onto the span{φ0, . . . , φn−1} and using u(x) = ρ>v =

φ>Av = φ>w ∈ H. In this case, Aurentz and Slevinsky [2020] also showed that

‖u− Pn+2Nu‖H ≤ 2‖A‖`2→`2‖v − Pnv‖`2 . (2.64)
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3

Eigen-Decomposition Approach

3.1 Introduction

The implementation of exponential integrators encounters the difficulty in computing

the ϕ functions, which are the coefficients gm in (2.9). For ETD1, we require the

computation of

ϕ1(z) = ez − 1
z

. (3.1)

This “definition” (3.1) suggests z = 0 is not in the domain of ϕ1, yet it is (based

on the Maclaurin series in Eq. (3.3)). This functions suffers from round-off errors

due to cancellation errors for z close to the origin. It is a well known computational

problem in numerical analysis (Higham [2002]). The limiting form of ϕ1(z) as z → 0

is 1 but the direct computation leads to inaccurate results and this problem is worse

in higher forms of exponential integrators.

The general form of the ϕ functions is given by Hochbruck and Ostermann [2005]

ϕl(z) =
ϕl−1(z)− 1

l!
z

=
ez −

l−1∑
j=0

zj

j!
zl

, for l ≥ 1, (3.2)
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where ϕ0(z) = ez. For example, we have

ϕ2(z) = ez − 1− z
z2 , and ϕ3(z) =

ez − 1− z − z2

2
z3 ,

which appear in second and third order ETD respectively. Also we have ϕl(0) = 1/l!.

A simple approach to alleviate this problem of computation is to use the Maclau-

rin series expansion for values of z close to the origin (Cox and Matthews [2002]).

The Maclaurin series representation of the ϕ functions is given by

ϕl(z) =
∞∑
k=0

zk

(k + l)! . (3.3)

It follows that the ϕ functions are entire, since the Maclaurin series has infi-

nite radius of convergence. Therefore, the Maclaurin series can be evaluated with

matrix argument. However subtractive cancellation in the summation is the cause

of numerical instability which leads inaccurate results especially if the spectrum is

in the left-half plane. Therefore, our strategy utilizes both the Maclaurin series

and the asymptotic formula for ϕl(z) in Eq. (3.2) for pointwise computation after a

(generalized) eigendecomposition of the matrices reveals the spectrum of the linear

operators.

3.2 Eigendecomposition with Homogeneous Bound-

ary Conditions

The method of Aurentz and Slevinsky [2020] synthesizes a symmetric-definite and

banded discretization to represent a stiff self-adjoint linear differential operator with

polynomial coefficients. Discretizing and truncating so that A,B,L ∈ Rn×n, we have

L = B−1A, (3.4)
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to represent the linear differential operator in Eq. (1.1) and as elaborated in Eqs. (1.2)

and (1.3). It follows from a congruence transformation with a Cholesky factorization

of B that the generalized spectral decomposition of L exists (Van Loan and Golub

[1983]), the spectrum is real, and the generalized eigenvectors can be chosen to be

real and B-orthogonal. Let Λ ∈ Rn×n denote the diagonal matrix of generalized

eigenvalues and V ∈ Rn×n the corresponding eigenvectors. It follows that for any

λ ∈ R,

V >(A− λB)V = Λ− λI.

For any entire function f : C→ C, the corresponding matrix function f(L) may

be defined in terms of the eigendecomposition of L ∈ Rn×n (provided it exists) by

f(L) = V f(Λ)V −1, where L = V ΛV −1,

and where the diagonal matrix function acts entry-wise on the main diagonal. If L =

B−1A as above, then the B-orthogonality of the generalized eigenvectors circumvents

the necessity for the inverse, since V −1 = V >B.

Since the ϕ functions are all entire, it follows that

ϕl(L) = V ϕl(Λ)V >B.

Therefore computing the ϕ functions on matrices is simply done by evaluating

the functions on the diagonal entries of a diagonal matrix provided the spectral

decomposition exists.
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3.3 Non-Homogeneous Problems

We consider a self-adjoint non-homogeneous boundary condition, Bu = c 6= 0, where

we represent the solution as

u(x, t) = v(x, t) + w(x). (3.5)

where v(x, t) satisfies the homogeneous boundary condition, Bv = 0, and w(x)

satisfies the non-homogeneous boundary condition, Bw = c. For a time dependent

boundary condition such as Bu = c(t), then w will also be time dependent as w(x, t).

We intend to solve the problem in v using the approach for a homogeneous case and

the main idea in this section is the formulation of w(x) using basis recombination

based on the given boundary condition.

3.3.1 Basis Recombination

We would like to show that {ρn(x)}∞n=0 is a basis for the complete Hilbert space

H = L2([−1, 1]). By the Stone–Weierstrass approximation theorem and density of

C([−1, 1]) in L2([−1, 1]), it is known that any degree-graded polynomial sequence

is a basis for H = L2([−1, 1]). The recombined polynomials, however, are only

degree-graded in the generalized sense that there exists a positive integer ν such

that deg(ρn+ν) > deg(ρn). Therefore, it is not immediately obvious that they are a

basis for H. There are a few equivalent proofs, including: a linear-algebraic proof

that the annihilator in Eq. (2.57) has dense column space; and, a functional-analytic

proof that recombinations are dense in HB which is itself dense in H. Both of these

proofs use standard constructions from their area, but do not illustrate the central

approximation-theoretic issue with the use of the recombinations as a basis.

Instead, we will show directly for the case of Dirichlet boundary conditions that

the original orthonormal polynomials have 2-norm-convergent representations in the
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recombined basis that also converge pointwise almost everywhere but not uniformly.

Thus, recombinations give rise to a Gibbs-like phenomenon (Wilbraham [1848]),

when approximating functions in H \HB. To overcome the slow decay in the coeffi-

cients of the expansions in recombined polynomials, we augment the recombinations

with a finite set of low-degree polynomials to strip off the inhomogeneity at the

boundary.

Let φn(x) = P̃n(x) be the normalized Legendre polynomials. Let Bu = u(±1) = 0

denote Dirichlet boundary conditions. Let ρn(x) = P̃n(x)−
√

2n+ 1
2n+ 5 P̃n+2(x) be the

recombined normalized Legendre polynomials so that Bρn ≡ 0.

Theorem 3.1. Let k be a non-negative integer and let u(x) = ρ>v, where:

vn =


√

2k + 1
2n+ 1 k ≤ n, k + n even,

0 otherwise.

Then the canonical orthogonal projections:

1. converge 2-normwise to the normalized Legendre polynomials of degree k:

lim
N→∞

‖P̃k − PN+ku‖ = 0,

2. and for every x ∈ (−1, 1):

lim
N→∞

∣∣∣P̃k(x)− PN+ku(x)
∣∣∣ = 0.

Proof. We assume without loss of generality that N is odd.
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1. From the annihilator:

A =



1

0 1

−
√

1/5 0 1

−
√

3/7 0 1

−
√

5/9 0 1
. . .

. . .
. . .



,

it follows that the coefficients vn are the infinite-dimensional solution to the

linear system Av = ek, where ek is the kth canonical basis vector.

For the norm of the approximation error, we convert the projections in the

recombined basis to the orthonormal basis. Using the fact that:

APN+kv =



0
...

0

vk

vk+1
...

vn −
√

2n− 3
2n+ 1vn−2

...

−
√

2N + 2k − 1
2N + 2k + 3vN+k−1



=



0
...

0

1

0
...

0
...

−
√

2k + 1
2N + 2k + 3



,
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we find:

lim
N→∞

‖P̃k − PN+ku‖ = lim
N→∞

∥∥∥∥∥∥P̃k − P̃k +
√

2k + 1
2N + 2k + 3 P̃N+k+1

∥∥∥∥∥∥ ,
= lim

N→∞

√
2k + 1

2N + 2k + 3 = 0.

2. For the pointwise convergence, the recombined expansion is a telescoping series:

PN+ku(x) =
√

2k + 1
N+k−1∑
n=k,2

√ 1
2n+ 1 P̃n(x)−

√
1

2n+ 5 P̃n+2(x)
 .

Since:

lim
N→∞

∣∣∣P̃k(x)− PN+ku(x)
∣∣∣ =

√
k + 1/2 lim

N→∞
|PN+k+1(x)| ,

the result follows by Bernstein’s inequality ([DLMF, Eq. 18.14.7]):

|Pn(x)| <
√

4
π(2n+ 1)

1
(1− x2) 1

4
.

As can be expected by the slow decay in the truncated coefficients, the prac-

tical effectiveness of the recombined polynomials as a basis for H is questionable.

Therefore, when approximating functions f ∈ H \HB, we use a redundant function

set span{1, x} ∪ {ρn(x)}∞n=0. The Gibbs-like phenomenon is shown in Figure 3.1 for

approximations of P̃0(x) and P̃1(x) in the recombined basis ρn. Next, we discuss how

to deduce the precise augmentation from the boundary conditions.

The boundary condition can be represented as an infinite-dimensional matrix-

vector product (Aurentz and Slevinsky [2020]) with the matrix B ∈ C2N×∞, where

Bu = Bφ>w = Bw.
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Figure 3.1: The polynomial approximations of P̃0(x) (left) and P̃1(x) (right) in the
recombined basis.

Considering the linear system



b0,0 b0,1 b0,2 · · ·

b1,0 b1,1 b1,2 · · ·
...

...
...

b2N−1,0 b2N−1,1 b2N−1,2 · · ·





w0,0 w0,1 · · · w0,2N−1

w1,0 w1,1 · · · w1,2N−1

w2,0 w2,1 · · · w2,2N−1
...

...
...


= I, (3.6)

then a solution, if it exists, would provide 2N polynomials w0, . . . , w2N−1, such that

B (c0w0 + c1w1 + · · ·+ c2N−1w2N−1) = c.

3.3.2 Dirichlet Case

Considering a second-order problem with nonhomogeneous boundary conditions Bu =

c, we look for bases uL(x) and uR(x) satisfying BuL =

1

0

 and BuR =

0

1


We pose the boundary conditions on Legendre polynomials Pn of degree n such
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that

B
(
uL uR

)
=

1 0

0 1

 = I

For Dirichlet boundary conditions Bu = u(±1) = c and using Pn(±1) = (±1)n,

then Eq. (3.6) becomes

1 −1 1 −1 · · ·

1 1 1 1 · · ·





w00 w01

w10 w11

w20 w21

w30 w31
...

...


= I. (3.7)

We take the first two columns of the evaluations as matrix, say B̂ =

1 −1

1 1


and left multiplication of Eq. (3.7) by B̂−1 gives

1 0 1 0 · · ·

0 1 0 1 · · ·





w00 w01

w10 w11

w20 w21

w30 w31
...

...


= 1

2

 1 1

−1 1

 . (3.8)

This shows that there are a countably infinite finite-dimensional set of polynomials

that can be used to remove the boundary components. We use the lowest degree

polynomials out of convenience.

Taking a finite dimension, we get the ‘left’ basis

uL(x) = w00P0 − w10P1 = 1
2P0 −

1
2P1 = 1

2 −
1
2x,
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such that uL(−1) = 1, uL(1) = 0, and similarly for the ‘right’ basis

uR(x) = w00P0 + w10P1 = 1
2P0 + 1

2P1 = 1
2 + 1

2x,

with uR(−1) = 0, uR(1) = 1. Hence the recombination of these bases can be used

to formulate w(x) for non-homogeneous Dirichlet boundary condition. Thus the

second order problem with Dirichlet boundary u(−1) = c1 and u(1) = c2, we have

w(x) given by

w(x) =c1uL(x) + c2uR(x) = c1

(1
2P0 −

1
2P1

)
+ c2

(1
2P0 + 1

2P1

)
,

which clearly satisfies the non-homogeneous boundary condition.

3.3.3 Neumann Case

Neumann boundary conditions, Bu = u′(±1) = c, illustrate a subtle issue. From

P ′n(±1) = (±1)n+1n(n+ 1)
2 , then Eq. (3.6) becomes

0 1 −3 6 · · ·

0 1 3 6 · · ·





w00 w01

w10 w11

w20 w21

w30 w31
...

...


= I. (3.9)

Taking the first two columns of the evaluations includes a column of zeros and

hence the linear system becomes rank deficient. A similar problem was encountered

by Aurentz and Slevinsky [2020] where they suggested doubling the columns and

subsequently using the Moore–Penrose pseudoinverse to solve the linear system. We

could also add a single column instead of doubling. Thus we take the first three
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columns of the evaluations as a matrix

B̂ =

0 1 −3

0 1 3

 .

Since B̂ is rectangular, we left multiply Eq. (3.9) by its Moore–Penrose pseudoinverse

given by

B̂+ =


0 0

1/2 1/2

−1/6 1/6

 ,

and choosing the lowest degree polynomials to satisfy the boundary conditions, we

get


0 0 0

0 1 0

0 0 1




w00 w01

w10 w11

w20 w21

 = B̂+,


0 0

w10 w11

w20 w21

 =


0 0

1/2 1/2

−1/6 1/6

 .

The following quadratic bases can be used for the recombination

uL(x) = w10P1 − w20P2 = 1
2P1 −

1
6P2,

u′L(−1) = 1, u′L(1) = 0, and also

uR(x) = w11P1 − w21P2 = 1
2P1 −

1
6P2,
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with u′R(−1) = 0, u′R(1) = 1.

The formulation of w(x) for non-homogeneous Neumann boundary condition fol-

lows the idea in the previous case. For Neumann boundary condition u′(−1) = c1

and u′(1) = c2 for the second order problem, we have

w(x, t) =c1uL(x) + c2uR(x),

=c1

(1
2P1 −

1
6P2

)
+ c2

(1
2P1 + 1

6P2

)
.

For a simple problem with negative and positive slopes at the end points, that is,

u′(−1) = −1 and u′(1) = 1 , we have w(x, t) = 1/2x2 − 1/6, which satisfies the

nonhomogeneous boundary condition.
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4

Rational Approximation

4.1 Introduction

In Chapter 3, we used a generalized eigendecomposition to assist in the evaluation of

the ϕ functions of matrices. Alternative methods are based on rational approxima-

tions. The most well-known method to generate rational approximations to matrix

functions is to reformulate via the Cauchy integral formula and to discretize by a

quadrature rule. Another more direct approach is the approximation of the ϕ func-

tion via the method of Carathéodory–Fejér.

The computation of matrix functions by the Cauchy integral formula is a powerful

tool in scientific computing. By matrix function, we mean a scalar function f such as

exp(z), log(x), or z1/2 and a matrix A ∈ Cn×n such that f(A) is of the same dimension

as A. The use of contour integrals to compute matrix functions was studied by

Talbot [1979] to invert Laplace transforms. Several authors have used this idea for

solution of PDEs where the integral is approximated by means of trapezoidal rule

which converges exponentially (Trefethen and Weideman [2014]). Matrix functions

via contour integrals can be represented in the Cauchy integral formula, which is also

known as Dunford (Dunford-Taylor) formula (Higham [2008], Hale et al. [2008]). For
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an analytic function f and a square matrix A, we have

f(A) = 1
2πi

∫
Γ
f(z)(zI − A)−1dz, (4.1)

where Γ is a positively-oriented contour in the region of analyticity of f and winding

once around the spectrum of A. The resulting quadrature formula for the integral

can be associated with rational approximation which will be discussed in Section 4.4

for functions of matrices.

4.2 The Cauchy Integral for ϕ functions

Kassam and Trefethen [2005] first introduced the idea of contour integral to compute

the ϕl(t) by considering the integral representation on a contour Γ enclosing t. In a

simple case, using a circle of unit radius centred at t and approximating the integral

with trapezoidal rule, the Cauchy integral becomes

ϕl(t) = 1
2πi

∫
Γ

ϕl(z)
z − t

dz ≈ 1
n

n∑
k=1

ϕl(t+ eiθk), (4.2)

where θk = 2πk/n are the n points on the circle, parameterized by angle. One

has to ensure that the circle does not get too close to the origin. Examples of such

contours are the Talbot-type contours such as parabolæ, hyperbolæand cotangent

(Trefethen et al. [2006]), and the particular choice of the contour depends on the

problem (Montanelli and Bootland [2016]).

Consider the Cauchy integral representation of the exponential function ϕ0(t) =

et on a contour Γ which encloses t in Eq. (4.2).

Let z : R → Γ be analytic. Then after variable transformation, the integral in
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Eq. (4.2) becomes

et = 1
2πi

∫ ∞
−∞

ez(θ)

z(θ)− tz
′(θ)dθ. (4.3)

The term ez(θ) leads to exponential decay of the integrand as |θ| → ∞ provided the

contour Γ begins and ends in the left-half plane. Thus there is minimal exponential

error committed when one truncates the contour’s preimage, R, to a finite interval.

Following the idea of Trefethen et al. [2006], we consider the interval [−π, π] and we

take n equispaced point θk with step size 2π/n. The integral is then approximated

by “trapezoidal” quadrature rule1 as

et ≈ −i
n

n∑
k=1

ez(θk)

z(θk)− t
z′(θk). (4.4)

This method can be used to compute matrix exponential provided we find an

elegant choice of contour with optimized parameters enclosing the spectrum of the

matrix.

The exponential decay of the integrand is lost if we generalize the approach to

evaluate the functions ϕl, l > 0, which decay algebraically in the left-half plane.

Trefethen and Schmelzer [2007] proposed an idea of additional reparametrization to

enforce exponential decay of the integrand for any ϕ function as summarized in the

following theorem.

Theorem 4.1. (Trefethen and Schmelzer [2007]) Let Γ be a closed contour encircling

the points 0 and t ∈ C with winding number 1. Then

ϕl(t) = 1
2πi

∫
Γ

ez

zl
1

z − t
dz (4.5)

The proof of this theorem is quite technical but essentially based on residue
1Here, trapezoidal is in quotations because the first and last contributions are not halved.
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theorem.

The integral representation (4.5) can be used to compute the function ϕl without

involving the function ϕl in the integrand. Using this idea for the matrix functions,

we evaluate the ϕ functions as

ϕl(hL) = 1
2πi

∫
Γ

ehz

(hz)l (zI − L)−1dz. (4.6)

In practice, we are interested in computing the matrix-vector product ϕl(hL)v

rather than the ϕl(hL). That is,

ϕl(hL)v = 1
2πi

∫
Γ

ehz

(hz)l (zI − L)−1vdz. (4.7)

Parametrizing a chosen contour as z(θ), we have

ϕl(hL)v = 1
2πi

∫ ∞
−∞

ehz(θ)z′(θ)
(hz(θ))l (z(θ)I − L)−1vdθ. (4.8)

Considering the discretized linear operator in this research where L = B−1A, we

have

zI − L = zI −B−1A = B−1(zB − A).

We approximate the integral with trapezoidal rule and using n nodes θk in a fixed

interval [−π, π] of spacing 2π/n as

ϕl(hL)v ≈ − i
n

n∑
k=1

ehz(θk)z′(θk)
(hz(θk))l

[z(θk)B − A]−1Bv, (4.9)

≈ i

n

n∑
k=1

wk[z(θk)B − A]−1Bv, (4.10)
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where wk is given by

wk = −e
hz(θk)z′(θk)
(hz(θk))l

.

The method (4.10) applied to evaluate any ϕl to a vector solves a banded linear

system at each node z(θk) of the trapezoidal rule which can be achieved in O(n)

complexity. Also exploiting symmetry of the contour, we can solve at only half of

the nodes and then take twice the real part of the results.

4.3 Choice of Contour and Error Estimates

A key aspect of contour integral approach for matrix functions is the selection of a

suitable contour which usually depends on the problem, and subsequently using an

efficient numerical integration to approximate the integral on the contour. In the

case of this research, the contour must enclose the spectrum of the linear operator

L but it cannot get too close to the spectrum otherwise the norm of the resolvent

(zI − L)−1 grows unbounded.

We consider a hyperbolic contour of the form (Weideman and Trefethen [2007])

z = µ(1 + sin(iθ − α)), −∞ < θ <∞, (4.11)

where µ ≥ 0 controls the width of the contour and the parameter α determines

the asymptotic angle of the hyperbola. Weideman and Trefethen [2007] have derived

optimal values of the parameters for the computation of the Bromwich integral which

has the exponential in the integrand. Figure 4.1 shows a schematic diagram of the

hyperbola (4.11).
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Figure 4.1: Hyperbolic contour that winds around the negative real axis also enclos-
ing the origin.

The error analysis is done by considering the absolutely convergent integral

I =
∫ ∞
−∞

g(θ)dθ, (4.12)

with infinite and finite trapezoidal rule approximations

Ih = h
∞∑

k=−∞
g(kh), I

[n]
h = h

n∑
k=−n

g(kh). (4.13)

The error (between I and I
[n]
h ) in approximating the integral results from the

discretization error (DE) and the truncation error (TE) given by

|I − I [n]
h | ≤ |I − Ih|+ |Ih − I

[n]
h |.

and we have the DE and TE as

DE = |I − Ih|, TE = |Ih − I [n]
h |.
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To estimate the discretization error, we use an idea from a well-known theorem

of Martensen [1968] for the trapezoidal rule.

Consider w = θ+ iv with θ and v real. Suppose that g(w) is analytic in the strip

d < v < c for some c > 0, d > 0 with g(w) → 0 uniformly as |w| → ∞ in the strip.

In this case, we have the function g(w) being a complex valued. Thus we consider

the analytic properties of the integrand in both the upper and lower half-planes,

leading to different error estimates in each of the half-planes. Suppose that for some

M+(c) > 0, M−(d) > 0 the function g(w) satisfies

∫ ∞
−∞
|g(θ + ic)|dθ ≤M+(c),

∫ ∞
−∞
|g(θ − id)|dθ ≤M−(d).

Then the discretization error is bounded by

|I − Ih| ≤ DE+ + DE−,

where

DE+ = M+(c)
e2πc/h − 1 , DE− = M−(d)

e2πd/h − 1 . (4.14)

The original idea (Martensen [1968]) considers g(w) to be real-valued function

where c = d and M− = M+ = M with the error estimate

|I − Ih| ≤
2M(c)

e2πc/h − 1 .

The convergence rate of the approximation of the integral depends on the width

of the strip of analyticity (Weideman and Trefethen [2007], Trefethen and Weideman

[2014]).
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Estimate for DE+: Consider the upper half-plane with c > 0, we have the line

w = θ + ic, −∞ < θ <∞,

which has image under the map (4.11)

z = µ(1− sin(α + c) cosh(θ)) + iµ cos(α + c) sinh(θ). (4.15)

From the error estimates (4.14), the decay rate of the error is maximized for a large

c in the upper half-plane. When c is increased from 0 in Eq. (4.15), the width

of the hyperbola gets smaller until it degenerates into the negative real axis when

c = π/2− α as

z = µ(1− sin(α + c) cosh(θ)).

However, at the same time, since the spectrum of L is on the negative real axis,M+(c)

becomes unbounded. This effect is due to the norm of the resolvent (z(w)I − L)−1

getting large as z(w) as approaches or lies on the negative real axis. Thus c should

not be π/2 − α. One way to resolve is to set the maximum of value of c to be

π/2− α− ε for some 0 < ε� 1 to maximize the decay rate of the error.

To see the effect of the resolvent, we consider a diagonalizable L = V ΛV −1:

(z(w)I − L)−1 = (z(w)I − V ΛV −1)−1,

= [V (z(w)I − Λ)V −1]−1,

= V (z(w)I − Λ)−1V −1.
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The bound of the norm is given by Trefethen and Embree [2005]

||(z(w)I − L)−1||2 ≤ κ(V )||(z(w)I − Λ)−1||2 = κ(V )
dist(z(w), σ(L)) ,

where κ(V ) is the condition number of V , σ(L) is the spectrum of L and the term

dist(z(w), σ(L)) represents the distance of the point z(w) to the spectrum σ(L).

Thus we take the error estimate in the upper half-plane as

DE+ = O(e−2π(π/2−α−ε)/h), as h→ 0. (4.16)

Estimate for DE−: We consider the lower half-plane d > 0 where the image of

the map of w = θ − id is given by

z = µ(1 + sin(d− α) cosh θ) + iµ sinh θ cos(d− α). (4.17)

According to the estimates from the theorem, we seek to maximize d in order to

enhance the exponential decay of the error.

When d is increased from 0, the hyperbola opens up wide until it becomes vertical

line in the half-plane when d = α, where we have

z = iµ sinh θ.

Thus we have the liming value of d is when d = α. In this case the norm of the

resolvent is not a limiting factor since the hyperbola is far off the negative real axis.

Thus we take d = α and also considering the contribution of the term ez in the

integrand leads to the error estimate

DE− = O(eµ−2πα/h), as h→ 0. (4.18)
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Estimate for TE: The infinite series (4.13) is truncated to a finite summation for

implementation purposes and this leads to the truncation error (TE). Suppose that

g(w) decays rapidly, one can estimate truncation error using the magnitude of the

last term retained in the finite sum in Eq. (4.13). The truncation error is estimated

as

TE = O(g(hn)), (4.19)

= O(eµ−µ sinα cosh(hn)) as n→∞. (4.20)

In our implementation, we consider spacing on the contour as h = 2π/n and

the the optimal parameter values derived by Weideman and Trefethen [2007] as

α = 1.1721, µ = 4.4921n. The total error is estimated by combining discretization

and truncation error estimates as

En = O(e−(π−2α−2ε)n/2) as n→∞ (4.21)

4.4 Carathéodory–Fejér Approach

We explore a third approach which is the so-called Carathéodory–Fejér (CF) ap-

proximation, to compute the ϕ function. CF approximation is a near-best rational

approximation introduced by Trefethen and Gutknecht [1983] for approximations on

a unit disc, which may be transplanted to finite or infinite intervals by a Möbius

transformation. It is sometimes regarded as exact in practice due to its high accu-

racy. The main idea is to find singular values and corresponding vectors of a Hankel

matrix of the coefficients of the polynomial (Taylor or Chebyshev) expansion of the

function ([Trefethen, 2013]). The underlying concept was studied by Carathéodory,

Fejér, Shur and Takagi to estimate the Fourier and Laurent series (Magnus [1994]).

The CF method has been used in a number of applications including the solution of
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PDEs and Talbot quadrature (Trefethen and Schmelzer [2007]).

4.5 CF Approximation on the negative real line

The use of CF method for computing exp(z) on the negative real line was introduced

by Trefethen et al. [2006], which subsequently led to extending it to evaluate the ϕ

functions of exponential integrators.

The partial fraction expansion of the rational approximations of type (n, n) is

given by

rn(z) = pn(z)
qn(z) = r∞ +

n∑
j=1

cj
z − zj

, (4.22)

where cj is the residue of the pole zj and r∞ = r(∞). For an entire function that is

real-valued on the real line, the polynomial qn(z) has real coefficients and thus the

poles come in conjugate pairs. The poles and residues of the rational approximation

(4.22) can be interpreted as the quadrature nodes and weights in the contour integral

approach, respectively.

The best rational approximation of exp(z) on the negative real axis using (4.22)

has error decreasing at rate (9.28903)−n ([Trefethen et al., 2006]) as n → ∞. To

make this approach more general for all the ϕ functions, one can use the same poles

approximating one of the ϕ functions to compute all the other functions instead of

sampling the poles and residues for each of the functions. In this case, we can use

the poles and residues of the approximation of exp(z) for other ϕ functions.

Using proposition 4.2 by Trefethen and Schmelzer [2007], suppose we define a

matrix Bz as

Bz =

z 1

0 0

 ,
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where we have B0
z = I and also

Bn
z =

zn zn−1

0 0

 .

From the Taylor form (3.3) of the ϕ functions, we have

ϕl(Bz) =
∞∑
k=l

1
k!B

k−l
z

= 1
l!I +

∞∑
k=l+1

1
k!B

k−l
z

=


∞∑
k=l

1
k!z

k−l
∞∑

k=l+1

1
k!z

k−l−1

0 1
l!



=

ϕl(z) ϕl+1(z)

0 ϕl(0)



Suppose we have the rational approximation of ϕl(z)

r(l)
n (z) = r∞ +

n∑
j=1

cj
z − zj

,

and also the inverse of (Bz − zjI) given by

(Bz − zjI)−1 =

(z − zj)−1 z−1(z − zj)−1

0 −z−1
j

 .
.

From the above identity, we have (1, 2) entry of ϕl(Bz) as the function ϕl+1(z)
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given ϕl(z). Thus we can approximate ϕl+1 from the (1, 2) entry of r(l)
n (Bz) as

r(l+1)
n (z) =

n∑
j=1

cjz
−1
j

z − zj
,

and this leads to the recurrence relation for general case for computing the ϕ functions

r(l+k)
n (z) =

n∑
j=1

cjz
−k
j

z − zj
, k ∈ Z. (4.23)

In particular, suppose we have the poles and residues approximating ϕ0(z) =

exp(z), then the approximation for the other ϕ functions is given by

ϕk(z) ≈
n∑
j=1

cjz
−k
j

z − zj
, k ≥ 0. (4.24)

Similarly, one can use the poles and residues of the CF approximation of ϕ1 to

evaluate the rest of the ϕ functions following the identity (4.23).

We compute the ϕl(z) for l = 0, 1, 2, 3 for z close to zero (1e− 16). We translate

the code for computing the poles and residues of a function on the negative real axis

which was originally in MATLAB by [Trefethen et al., 2006] into Julia. Using the

poles of rational approximation of ϕ0 and ϕ1, the absolute error ϕl − r(l)
n for degree

n = 12 rational approximation is shown in Table 4.1

Using poles of ϕ0 approximant using poles of ϕ1 approximant

ϕ0 3.156586103614245e− 12 4.716049772923725e− 10

ϕ1 1.5803403030645313e− 10 1.3367085216486885e− 13

ϕ2 2.638425922185661e− 9 6.512956840509787e− 12

ϕ3 1.7679756297850346e− 8 1.0279468942719916e− 10

Table 4.1: Error committed for approximating the ϕl using the poles of ϕ0 and ϕ1
generated with the CF approximation on the negative real axis following the identity
(4.23)

.
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This approximation method (4.24) can be extended to compute the matrix func-

tions where z is a matrix and that is the focus of this research. As mentioned in the

contour integral section 4.2, we are interested in the matrix-vector product ϕk(hL)v

for a vector v. Thus from Eq. (4.24), we have

ϕk(hL)v ≈
n∑
j=1

cjz
−k
j (hL− zjI)−1v, k ≥ 0.

Again, using the discretized linear operator of the form L = B−1A, we get the

approximation of the matrix-vector product as

ϕk(hL)v ≈
n∑
j=1

cjz
−k
j (hA− zjB)−1Bv, k ≥ 0. (4.25)

The approximation (4.25) solves n linear systems for a type (n, n) rational ap-

proximation of the matrix-vector product ϕk(hL)v but each linear system can solved

in linear complexity for banded matrices A and B. Also since the poles come in con-

jugate pairs, we can take advantage of the symmetry and solve about half the linear

systems by taking twice the results of the real part.
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5

Numerical Experiments

5.1 Introduction

In this section, we present the results of numerical experiments on some PDEs with

different boundary boundary to investigate the convergence of the time-stepping

scheme combined with the structure preserving spectral method of Aurentz and

Slevinsky [2020]. We do that in both space and time where solution is simulated

from an initial time t = 0 up to a final time t = T . For temporal convergence,

an extremely small time step is used to estimate an exact solution uexact(x, t = T )

and compute the relative error between this solution and the solutions u(x, t = T )

obtained by relatively larger time steps. For spatial convergence, the ‘exact’ solution

uexact(x, t = T ) is obtained using a small time step and a large number of coefficients

and we then measure error by varying the number of coefficients of the solution

u(x, t = T ). At the final time t = T , the L2 relative error is given by

Relative Error = ||u
exact(x, t = T )− u(x, t = T )||2
||uexact(x, t = T )||2

We also measure the computer time for the simulations, that is, the execution time

(time-stepping) against the error and the pre-computation time against the number
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of coefficients (of the polynomial expansion of the solution). The implementations

were carried out on a 2.4 GHz Intel i5 MacBook Pro with 8 GB of RAM.

5.1.1 Computing the Nonlinearity

At every time step, we store the coefficients of the polynomial expansion of the

approximate solution. Thus the computation of the nonlinearity in the discretized

form Eq. (2.4) has to be done in the physical or value space. For example, the

nonlinearity in the Allen–Cahn equation is N(u, t) = u − u3. There is the need to

transform between coefficients in different spaces using fast transforms.

Consider a sufficiently smooth function f(x) in different polynomial expansions

as

f(x) =
∞∑
n=0

anρn(x) =
∞∑
n=0

bnPn(x) =
∞∑
n=0

cnTn(x),

where ρn, Pn and Tn are the recombined basis, Legendre polynomials and Chebyshev

polynomials, respectively. We have their respective expansion coefficients as an, bn

and cn. Given the coefficients in the quotient space (recombined basis), we compute

the given nonlinearity as follows:

• the coefficients an in the constrained Hilbert space are first transformed to

coefficients bn of the Legendre polynomial expansion by applying the conversion

operator in Eq. (2.57) in linear complexity;

• the Legendre coefficients bn are then transformed to Chebyshev coefficients cn

using a fast Legendre–Chebyshev transform. One efficient transform is the

fast multipole-like method by Alpert and Rokhlin [1991] and it achieves the

conversion between Legendre and Chebyshev coefficients with linear complex-

ity. A recent method which is fast and simple was described by Hale and

Townsend [2014] based on asymptotic formula of Chebyshev polynomial and
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has complexity of O(N(logN)2/ log logN);

• The Chebyshev coefficients are then transformed to values on the Chebyshev

grid via the DCT, where the nonlinearity can be evaluated pointwise in value

space;

• We now transform the values of the nonlinearity on the grid back to Chebyshev

coefficients;

• Using the Chebyshev–Legendre transform, we get the coefficients of the non-

linearity in Legendre series; and,

• To be able to stay in the quotient space, the infinite coefficients in Legendre

space are projected to a finite number of coefficients in constrained space.

The above steps are summarized in Figure 5.1

Figure 5.1: Steps for evaluating the nonlinearity.

5.2 Homogeneous Boundary Conditions

5.2.1 The Allen–Cahn Equation

Experiment using Eigendecomposition

We solve the Allen–Cahn equation with initial condition u(x, t = 0) = (1−x2)(0.53x+

0.47 sin(−1.5πx)−x). The solution using ETD4RK up to the final time T = 64 con-
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firms the preservation of symmetry and the metastability of the Allen–Cahn equation

as shown in the Figure 5.2.
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Figure 5.2: Time evolution of the Allen–Cahn equation on x ∈ [−1, 1].

We show spatial convergence where we compute the relative error between the

solution obtained with N = 300 coefficients with time step h = 2−8 and the solutions

obtained by varying the number of coefficients. For temporal convergence, we use

time h = 2−8 with N = 300 coefficients to get the ‘exact’ solution and then compute

the relative norm for solutions obtained by varying the time step with N = 150. The

plots in the Figure 5.3 shows spectral spatial convergence and fourth order temporal

convergence which confirm accuracy of the methods used to solve the problem up to

the final time T = 1.
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Figure 5.4: Execution time against the relative error (left) and pre-computation time
against the number of solution coefficients (right).
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Figure 5.3: Spatial (left) and temporal (right) convergence at final time T = 1.

Experiment using Contour Integrals

We implement the contour integral method to compute the ϕ functions as discussed

in Section 4. We solve the Allen–Cahn equation using Krogstad [2005] form of

ETD4RK where the approximate solution at tn+1 in Eq. (2.18) is expressed in terms

of the ϕ functions. Each of the ϕ functions is evaluated on the hyperbolic contour

(4.11). For experimental purposes, it is observed that using at least n = 26 nodes
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Figure 5.5: Spatial (left) and temporal (right) convergence at T = 1 for solving the
Allen–Cahn equation using contour integral approach with quadrature nodes 26 on
the contour to compute the ϕ functions of ETD4RK.

on the contour achieves the desirable accuracy. The numerical results confirm the

accuracy with fourth-order temporal convergence and spectral convergence in space

as shown Figure 5.5. Increasing the number of nodes for the quadrature rule in the

contour integral improves the accuracy, as the error estimate in Eq. (4.21) predicts.

Experiment using the CF Method

We also implement the CF method to compute all the ϕ functions in the Krogstad

[2005] form of EDT4RK. Solving the Allen–Cahn equation using rational approxi-

mation of type (14, 14) leads to the fourth order convergence in time and spectral

convergence in space as shown in Figure 5.6. It is worth mentioning that the number

of poles used is far less than the number of nodes for the contour integral approxi-

mation.

5.2.2 Comparisons

We compare the complexity in the time-stepping or executions for the three methods

used to compute the ϕ functions. Figure 5.7 shows the execution time in seconds
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Figure 5.6: Spatial (left) and temporal (right) convergence solving solving the Allen–
Cahn equation at T = 1 using type (14, 14) CF approximants to compute the ϕ
functions of ETD4RK.

against number of expansion coefficients of the solutions at final time T = 1. It

does appear that it takes less than a second for the time-stepping using each of the

three methods. The eigendecomposition approach is the fastest amongst the three

methods. The rational approximation method seems to be more efficient than the

contour integral approach due to the fact the number of poles required to achieve

the desired accuracy is far smaller than the nodes in the contour integral approach.

The contour plots in Figure (5.8) show the number of nodes and poles needed

for the contour integral and CF method respectively to achieve a desired accuracy.

We do that in terms of the relative error in space against the number of spectral

coefficients to represent the solution of the Allen–Cahn equation (1.7) simulated up

to the final time T = 1. The error tends to decay relative to increasing the number

of solution coefficients and the number of nodes for approximating the ϕ functions.

We lose about 4 digits of accuracy for the CF method using a type (16, 16) rational

function and about 120 coefficients whiles about 6 digits loss of accuracy for the

contour integral with 26 nodes and 100 spectral coefficients.
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approximation and 26 nodes for the contour integral.

2 4 6 8 10 12 14 16
Degree (n) of rational approximation

40

60

80

100

120

140

N 
m
be
r o

f c
oe
ffi
cie

nt
s (

N
) o

f t
he
 a
pp

ro
xi
m
at
e 
so
l 
tio

n

N merical error (log10)

−12.0

−10.5

−9.0

−7.5

−6.0

−4.5

−3.0

−1.5

0.0

20 40 60 80 100
Number of nodes (n) for the conto r integral method

40

60

80

100

120

140

N 
m
be
r o

f c
oe
ffi
cie

nt
s (

N
) o

f t
he
 a
pp

ro
xi
m
at
e 
so
l 
tio

n

N merical error (log10)

−11.1

−9.9

−8.7

−7.5

−6.3

−5.1

−3.9

−2.7

−1.5

−0.3

Figure 5.8: The contour plot of the error (log10) at final time T = 1 for solving the
Allen–Cahn equation using the CF (left) and contour integral (right) against the
number of coefficients N of the solution.

70



The Kuramoto–Sivashinsky equation

We consider the Kuramoto–Sivashinsky (KS) equation given by

ut = −uxxxx − uxx − uux, x ∈ [−1, 1]. (5.1)

The PDE (5.1) was derived by Kuramoto [1978] and Sivashinsky [1977] to model

reaction-diffusion processes, specifically to study diffusive instability in a laminar

flame front. It has second and fourth-order reaction terms and it is well known for

producing chaotic behaviours (Lakestani and Dehghan [2012]). The negated second-

order term −uxx destabilizes the system by producing energy which the nonlinear

term uux transfers from low wavenumbers to high wavenumbers, while the fourth-

order term uxxxx term has a stabilizing effect.

We solve the PDE with homogeneous boundary conditions u(±1) = u′(±1) = 0

using the initial condition u(x, t = 0) = cos(x/16)(1 + sin(1/16)) (Montanelli and

Bootland [2016]). Using the type (14, 14) CF approximation to compute the ϕ

functions in Eq. (2.18), the convergence results is shown in Figure 5.9.
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Figure 5.9: Spatial (left) and temporal (right) convergence of solving the KS equation
at T = 1 using the type (14, 14) CF approximation to compute the ϕ functions.
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5.3 Nonhomogeneous Boundary Conditions

Consider the Allen–Cahn equation (1.7) with nonhomogenous Neumann boundary

conditions u′(−1) = −1 and u′(1) = 1. We set u(x, t) = v(x, t) + w(x) where v(x, t)

satisfies the homogeneous boundary conditions v′(±1) = 0 and w(x) the nonho-

mogeneous conditions w′(−1) = −1 and w′(1) = 1. From the basis recombination

section 3.3, the choice of w(x, t) based on the given boundary condition is given by

w(x, t) = 1/2x2 − 1/6 and thus Eq. (1.1) becomes

vt = Lv + Lw +N (v + w, t)︸ ︷︷ ︸
Ñ (v,t)

, (5.2)

where Lw is added to the modified nonlinearity Ñ . Thus we solve the homogeneous

problem in v using the initial condition v(x, 0) = u(x, 0) − w(x) and then use the

relationship u = v + w to get the solution in u. The convergence results are shown

in Figure 5.10.
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Figure 5.10: Spatial (left) and temporal (right) convergence for Allen–Cahn equation
with nonhomogeneous Neumann boundary condition u′(±1) = ±1 at T = 1.
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5.4 Time-Dependent Boundary Conditions

Considering the heat equation with time dependent or non-constant forcing term

Neumann boundary conditions as

ut = αuxx, Bu = u′(±1) = c±(t), x ∈ [−1, 1], t ≥ 0, (5.3)

where α = 10−3 is the diffusivity constant. For nonhomogeneous Neumann boundary

conditions, we set the solution u(x, t) = v(x, t) + w(x, t) such that Bv = 0 and

Bw = c±(t). From the basis recombination in Section (3.3), the choice of w(x, t) for

this boundary condition is given by

w(x, t) = c−(t)
(1

2P1 −
1
6P2

)
+ c+(t)

(1
2P1 + 1

6P2

)
(5.4)

= c−(t)
(1

2x−
1
12(3x2 − 1)

)
+ c+(t)

(1
2x+ 1

12(3x2 − 1)
)

(5.5)

In this experiment, we choose c−(t) = cos(2πt) and c+(t) = sin(2πt). We solve the

problem in v with the homogeneous boundary conditions and substituting u = v+w

in Eq. (5.3) leads to

vt = αvxx + αwxx − wt, v′(±1) = 0, (5.6)

where term αwxx − wt becomes the nonlinearity. The convergence results as shown

in Figure 5.11 indicate a slow decay of the error in space, specifically with the error

plateaus in space after N = 300 with error of 10−10.
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Figure 5.11: Temporal (left) and spatial (right) convergence of solving the heat
equation (5.3) with non-constant forcing terms at the boundaries at final time T = 1.

5.5 Piecewise-Defined Problems

We consider the nonlinear Schrödinger-like equation with a piecewise-defined poten-

tial given by

iεut = − i2ε
2uxx + i|x|u+ ε|u|2u, x ∈ [−1, 1] (5.7)

with the boundary conditions u(±1) = 0. Eq. (5.7) can also be written as

ut = ε

2(uxx −
2
ε2
|x|u)− i|u|2u, (5.8)

where we treat ε
2(uxx− 2

ε2
|x|u) as the linear part and the i|u|2u the nonlinear. It has

a number of applications in physics including modelling the behaviour of quantum

mechanical systems and nonlinear propagation of light in fibre optics. We modified

the original equation so that the linear operator has real spectrum.

The convergence results, as shown in Figure (5.12), does not look as accurate

as the other previous results. In particular, the fourth-order convergence in time is

achieved with a specific range of the time step, after which the error plateaus and

74



also very slow convergence in space.
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Figure 5.12: Temporal (left) and spatial (right) convergence of solving the nonlinear
Schrödinger equation (5.7) at final time T = 1.
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6

Conclusion

We have studied the numerical solution of stiff time-dependent semilinear PDEs with

a self-adjoint linear differential operator for the linear part. The algorithm is based

on the fact that the discretization of the self-adjoint operator using the structure

preserving spectral method of Aurentz and Slevinsky [2020] leads to symmetric-

definite and banded discretizations. The approach symmetrizes the ultraspherical

spectral method using basis recombination. The symmetry guarantees real spectrum

for any principal finite section and thus algorithms, based on the prior knowledge of

the true spectrum, are developed to solve the resulting semi-discretizations.

We used exponential integrators which alleviate stability constraint of the step

size due to the stiffness in the linear operator. The subsequent investigation of

eigendecomposition, contour integral and Carathéodory–Fejér methods to approx-

imate matrix-vector product involving the matrix ϕ functions led to a significant

improvement in the complexity of the time-stepping scheme.

The algorithm is implemented to solve the Allen–Cahn, Kuramoto–Sivashinsky,

heat and Schrödinger-like equations. Different boundary conditions including time-

dependent and non-homogeneous boundary conditions were considered as well as

piecewise-defined problems. The convergence results confirm the accuracy of the
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time-stepping and the spectral method.

This work can be extended in a number of ways. Possible future directions

include: extending the methods for higher spatial dimensions; considering more ex-

amples of PDEs of this nature can lead to making the algorithm more general and

possibly developing a numerical package for solving PDEs with self-adjoint linear

differential operators; and, considering PDEs with complex spectra, such as skew-

hermitian operators.
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