Study of Transient Impulse Voltage Distribution and Evaluation of Tap-lead Insulation of A Power Distribution Transformer

By Wei Cui (崔巍)

A Thesis

Submitted to the Faculty of Graduate Studies in Partial Fulfillment of the Requirementes for the degree of

Master of Science

Department of Electrical and Computer Engineering
University of Manitoba
Winnipeg, Manitoba
Canada
© Copyright by Wei Cui 1996

Acquisitions and Bibliographic Services Branch

395 Wellington Street Ottawa, Ontario K1A 0N4 Bibliothèque nationale du Canada

Direction des acquisitions et des services bibliographiques

395, rue Wellington Ottawa (Ontario) K1A 0N4

Your file Votre référence

Our file Notre référence

The author has granted an irrevocable non-exclusive licence allowing the National Library of Canada to reproduce, loan, distribute or sell copies of his/her thesis by any means and in any form or format, making this thesis available to interested persons.

L'auteur a accordé une licence irrévocable et non exclusive à Bibliothèque permettant la nationale du Canada reproduire, prêter, distribuer ou vendre des copies de sa thèse de quelque manière et sous quelque forme que ce soit pour mettre des exemplaires de cette thèse à la disposition des personnes intéressées.

The author retains ownership of the copyright in his/her thesis. Neither the thesis nor substantial extracts from it may be printed or otherwise reproduced without his/her permission. L'auteur conserve la propriété du droit d'auteur qui protège sa thèse. Ni la thèse ni des extraits substantiels de celle-ci ne doivent être imprimés ou autrement reproduits sans son autorisation.

ISBN 0-612-16117-X

Name _____

Dissertation Abstracts International and Masters Abstracts International are arranged by broad, general subject categories. Please select the one subject which most nearly describes the content of your dissertation or thesis. Enter the corresponding four-digit code in the spaces provided.

SUBJECT TERM

Electrical & computer ongg

0544

UMI

Subject Categories

THE HUMANITIES AND SOCIAL SCIENCES

COMMUNICATIONS AND THE ARTS
Architecture0729
Art History0377
Cinema
Dance
Design and Decorative Arts0389
Fine Arts0357
Fine Arts
Journalism0391
Landscape Architecture0390
Library Science0399
Journalism
Music0413
Music 0413 Speech Communication 0459 Theater 0465
Theater
BALLETELAL
EDUCATION
General0515
Administration0514
Adult and Continuing
Administration
Art02/3
Bilingual and Multicultural0282
Business
Community College
E_L_CL:ULJ 0519
Elementary 0524
Educational Psychology 0525
Einance 0277
Finance
Health 0680
Higher 0745
History of 0520
Higher 0745 History of 0520 Home Economics 0278
Inductrial 0571
Language and Literature
Mathematics
Music
Music
• •

Physical Reading Religious Sciences Secondary Social Sciences Sociology of Special Teacher Training Technology Tests and Measurements Vocational	0535 0527 0714 0533 0534 0529 0530 0710 0288
LANGUAGE, LITERATURE AND	
LINGUISTICS	
Language	
General	.0679
Ancient	
Linguistics	.0290
Modern	.0291
Modern Rhetoric and Composition	.0681
Literature	
General	.0401
Classical	. 0294
Comparative	.0295
Medieval	.0297
Modern	
African	
American	.0591
Asian	.0305
Asian Canadian (English)	0352
Canadian (French)	0355
Caribbean	.0360
English	
Germanic	
Latin American	.0312
Middle Eastern	0315
Romance	.0313
Slavic and East European	0314

PHILOSOPHY, RELIGION AND	
THEOLOGY	
Philosophy	0422
Religion	
∑-onore!	0318
Biblical Studies	.0321
Cleray	.0319
History of	.0320
Philosophy of	. 0322
Biblical Studies Clergy History of Philosophy of Theology	0469
SOCIAL SCIENCES	000
American Studies	.032.
Anthropology	000
Archaeology	.0324
Cultural Physical	.0320
rnysical	.032/
Business Administration	021/
General	.0310
Accounting	027
Banking	0/5
Marketina	0338
Marketing Canadian Studies	038/
Ei	
Gozora	.0501
Agricultural	0503
Agricultural Commerce-Business	0505
ringnce	USU8
History	. 0509
Labor	0510
Theory	. 051
Folklore	0358
Geography	0366
Gerontology	., 0351
History	
Géneral	0578
Ancient	0579

Medieval	0591
Modern	
Church	
Bkack	0328
African	
Asia, Australia and Oceania	0333
Canadian	
European	0232
Latin American	
Middle Eastern	0333
United States	0337
History of Science	
institution of octation	7300
Low	UJ70
Political Science	
General	0615
International Law and	
Relations	0616
Relations Public Administration	0417
Parametria	001/
Recreation	0814
Social Work	0452
Sociology	
General	0626
Criminology and Panalogy	0427
Chininoogy dia saloogy	0020
Demography	UY36
General Criminology and Penology Demography Ethnic and Racial Studies	0631
ingiviauai ana family	
Studies	0628
Industrial and Labor	
Relations	0420
Public and Social Welfare	0/20
Public and Social Welfare	0030
Social Structure and	
Development	0700
Development	0344
Transportation	0700
	0000
uman ana kegional rianning	UYYY
Women's Studies	0453

THE SCIENCES AND ENGINEERING

BIOLOGICAL SCIENCES	
Agriculture	
General	.0473
Agronomy	.0285
Animal Culture and	
Animal Pathology Fisheries and Aquaculture Food Science and	.0476
Fisheries and Aquaculture	.0792
rood Science and	
Technology,	.0359
Forestry and Wildlife	.0478
Technology Forestry and Wildlife Plant Culture	.0479
Plant Pathology	.0480
Plant Pathology Range Management	.0777
Soil Science	.0481
Soil Science Wood Technology	.0746
Biology General Anatomy	
General	.0306
Anatomy Animal Physiology	.0287
Animal Physiology	.0433
Biosighshes	.0308
Botany	.0309
Çelİ,	.03/9
<u>Ecology</u>	.0329
Entomology	0353
Genetics	.0369
Limnology Microbiology	.0/93
Wiclopiology	.0410
Molecular	.030/
Neuroscience	.0317
Oceanography Plant Physiology	.0410
Plant Physiology	.001/
Veterinary Science	.0//8
400 logy	.04/2
Biophysics	0707
General	.0/80
Medical	.0760
EARTH SCIENCES	
	0.405
Biogeochemistry	.0425
Geochemistry	.0770

eophysics ydrology lineralogy gleobotany	.0373 .0388 .0411 .0345
aleontology	.0418
alynology nysical Geography nysical Oceanography	
EALTH AND ENVIRONMENTAL CIENCES	
rvironmental Sciences ealth Sciences	
General	.0566
Audiology	.0300
Dentistry	.0567
Education	.0350
Education Administration, Health Care	.0769
Human Development	D/58
Immunology Medicine and Surgery Mental Health	.0982
Medicine and Surgery	.0564
Mental Health	.0347
Nursing	,0569
Nutrition	.0570
Obstetrics and Gynecology . Occupational Health and	.0380
Safety	.0354
Oncology Ophthalmology Pathology Pharmacology	.0992
Ophthalmology	.0381
Pathology	.0571
Pharmacology	.0419
rnarmacy	-UJ/ Z
Public Health	.0573
Radiology Recreation	.0574
Recreation	.0575
Rehabilitaion and Therapy	.0382

Speech Pathology Toxicology Home Economics	.0460
Toxicology	.0383
Home Economics	.0386
PHYSICAL SCIENCES	
Pure Sciences	
Chemistry	- ·
General Agricultural	.0485
Agricultural	.0749
Analyscal	, 0400
Biochemistry	.0487
Inorganic	.0488
Nuclear	.0738
Organic Pharmaceutical	.0490
Pharmaceutical	.0491
Physical	.0494
Polymer	.0495
Radiation	.0754
Mathematics	.0405
Physics	
General	.0605
Acoustics	.0986
Astronomy and	
Astrophysics	.0606
Atmosphéric Science	.0608
Atomić	.0748
Astrophysics Almospheric Science Atomic Condensed Matter	.0611
Electricity and Magnetism	.0607
Electricity and Magnetism Elementary Particles and	
High Energy Fluid and Plasma	.0798
Fluid and Plasma	.0759
Molecular	.0609
Nuclear	
Optics	.0752
Radiation	0756
Statistics	0443
Applied Sciences	
Applied Mechanics	0346
Applied Sciences Applied Mechanics Computer Science	0984
•	

Engineering	
Engineering General	0537
Aerospace Agricultural	0538
Agricultural	0539
Automotive	US4t
Biomedical	054]
Chemical	0542
Gvil	0543
Electronics and Electrical	0344
Environmental	0546
Marine and Ocean	0547
Materials Science	0794
Mechanical	0548
Metalluray	07 43
Mining	0551
Nuclear	0552
Packagina	0.549
Petroleum Sanitary and Municipal	0765
Sanitary and Municipal	0554
System Science	0/90
Geotechnology Operations Research	0420
Plastics Technology	0795
Textile Technology	0004
teams realizably	4,,,-
PSYCHOLOGY	
General Behavioral	0621
Behavioral	0384
Clinical	0622
Clinical Cognitive Developmental	0633
Developmental	0620
Experimental	0623
Industrial	0624
Personality Physiological	002
Production	0340
Psýchobiology Psychometrics	0.47
1 37 CANTINGS	00032

THE UNIVERSITY OF MANITOBA FACULTY OF GRADUATE STUDIES COPYRIGHT PERMISSION

STUDY OF TRANSIENT IMPULSE VOLTAGE DISTRIBUTION AND EVALUATION OF TAP-LEAD INSULATION OF A POWER DISTRIBUTION TRANSFORMER

BY

WEI CUI

A Thesis/Practicum submitted to the Faculty of Graduate Studies of the University of Manitoba in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE

Wei Cui © 1996

Permission has been granted to the LIBRARY OF THE UNIVERSITY OF MANITOBA to lend or sell copies of this thesis/practicum, to the NATIONAL LIBRARY OF CANADA to microfilm this thesis/practicum and to lend or sell copies of the film, and to UNIVERSITY MICROFILMS INC. to publish an abstract of this thesis/practicum.

This reproduction or copy of this thesis has been made available by authority of the copyright owner solely for the purpose of private study and research, and may only be reproduced and copied as permitted by copyright laws or with express written authorization from the copyright owner.

To My Parents 献给我的父母

ABSTRACT

This work is concerned with the evaluation of present and new designs of taplead insulation of a distribution transformer with barrel-type coils. To accomplish this, simulations, based on lumped parameter equivalent circuits, and test measurements were carried out to investigate transient impulse voltage distribution in a distribution transformer coils, and coils with new tap-lead insulation designs. In order to establish the equivalent circuit models, an accurate and flexible technique was proposed to calculate lumped inductive parameters. The models were validated by a good agreement between the simulation results and test measurements through investigating the capacitive effects of core and tank, the effect of various equivalent circuits and the effect of tap connections under impulse voltage application. By using the simulation results of transient over-voltage distribution as boundary conditions, electric field stresses on insulation near the input end and tap-leads were evaluated through quasi-static field analysis based on Finite Element Method. With conservative factors already built in, the field analysis results show that the present tap-lead insulation design of three layers of paper is conservative and it can be reduced to two layers of paper or even one layer of paper without any problem in electrical point of view.

ACKNOWLEDGEMENTS

The author wishes to express his sincere gratitude to his supervisor Prof. M.R. Raghuveer for his invaluable guidance and inspiration during the course of this work.

Special thanks must be extended to Mr. James G. Cross, formerly of Carte International ltd., Winnipeg, for providing us the distribution transformer winding assembly and the recurrent surge generator. Thanks are also due to Mr. James G. Cross and Marek Kornowski, also formerly of Carte International ltd., for their input.

The author wishes to acknowledge the efforts of Mr. John Kendall for providing the much appreciated technical assistance and support during the experimental phase of this research.

Special appreciation also goes to Mr. Yi Zhao, Liang Tang and Xin Li for many fruitful discussions with them.

The author wants to dedicate this thesis to his parents for their love and encourgement.

CONTENTS

1.	INTRODUCTION 1
2.	METHODOLOGY 6
	2.1 Equivalent Circuit of Transformer Winding
	2.2 Calculation of Parameters
	2.2.1 Inductance
	2.2.2 Capacitance
	2.2.3 Resistance
	2.3 Transient Voltage Distribution Simulation
	2.3.1 Inductor Model
	2.3.2 Capacitor Model
	2.3.3 Node-voltage Equation
	2.3.4 Transient Analysis Program
	2.4 Field Analysis19
	2.4.1 Quasi-static Field Approximation
	2.4.2 Finite Element Method and ANSYS Program
	2.4.3 Field Analysis Configuration
3.]	RESULTS AND ANALYSES24
	3.1 RSG Test Set-up and Measurement Results
	3.2 Full Lightning Wave Distribution Simulation
	3.2.1 Capacitive Effect of Core, Tank and Mutual Inductive27
	Coupling Effect Between Two Coils
	3.2.2 RSG and Simulation Results for AB Tap Connection 30
	3.2.3 Comparison of Simulation Results Using Various
	Equivalent Circuits
	3.2.4 Effect of Tap Connections, Comparison of RSG and
	Simulated Waveforms at Chosen Locations
	3.3 Chopped Lightning Wave Simulation

	3.4 Present Insulation Design Evaluation	40
	3.5 Modified Insulation Design Evaluation	41
4. CO	NCLUSIONS AND SUGGESTIONS TO FUTURE WORK	64
	FERENCE	66
	Appendix A: Curve Fitting and Sectionalization Programs	
	Appendix B: Equivalent Circuit Parameter Calculation Programs	
	Appendix C: Electromagnetic Transient Analysis Program	

List of Figures

Chapt	ter 1.
	Figure 1.1 Tap leads and insulation of a coil of a 10 kVA, 14,400/240
Chapt	eer 2.
	Figure 2.1 A general ladder-type equivalent network of transformer winding 6
	Figure 2.2 Three equivalent circuits of two transformer coils
	Figure 2.3 Non-circular shape of barrel-type transformer winding
	and it's line segmental representation
	Figure 2.4 Two straight line segments position9
	Figure 2.5 Circular concentric solenoids used to validate the calculation 11 method of self and mutual inductances
	Figure 2.6 Segmental representations of circular solenoids
	Figure 2.7 Simulation of capacitive effect of core and tank
	Figure 2.8 Inductor model
	Figure 2.9 Capacitor model
	Figure 2.10 Cross-section of winding showing tap lead insulation
	Figure 2.11 Two dimensional representation of tap-lead insulation
Chapt	er 3.
	Figure 3.1 Set-up of RSG test
	Figure 3.2 RSG test results, standard lightning wave, measured
	waveforms at locations 1-1 to 2-9
	Figure 3.3 RSG test results, standard lightning wave, measured
	waveforms at locations 1-11 to 2-3 near the tap leads
	Figure 3.4 RSG test results, standard lightning wave, measured
	waveforms (long time range) at locations 1-1 to 2-9
	Figure 3.5 RSG test results, chopped lightning wave, measured
	waveforms at locations 1-1 to 2-9
	Figure 3.6.1 to Figure 3.6.6 Capacitive effect of core, tank and
	mutual coupling effect between two coils to transient

impulse voltage distribution
Figure 3.7.1 to Figure 3.7.8 Comparison of RSG and simulation
results (EC-1, tap ab) of transient lightning wave
distribution in transformer coils
Figure 3.8 Simulation and RSG results of lightning wave surge
distribution along winding at 1.2 and 45 microsecond
Figure 3.9.1 to Figure 3.9.6 Effect of various equivalent circuits to 33
transient lightning wave distribution
Figure 3.10 Simulation results of voltage distribution along winding34
with various tap connections at 1.2 and 45 microseconds,
winding excited with full lightning wave
Figure 3.11.1 to Figure 3.11.12 Effect of various tap connections
to transient lightning wave distribution
Figure 3.12.1 to Figure 3.12.8 RSG and simulation results of transient 38
chopped lightning voltage distribution
Figure 3.13 RSG and simulation results of voltage distribution along winding 39
at time ($1.16 \mu\text{S}$), winding excited with chopped lightning wave,
simulation carried out using EC-1
Figure 3.14 An example of voltage potential contour plot at point 1-1 42
Figure 3.15 An example of voltage potential contour plot at point E 42

List of Tables

Chapter 2.	
Table 2.1	Self inductance of simple solenoids
Table 2.2	Mutual inductance of simple solenoids
Chapter 3.	
Table 3.1	RSG measurement and simulation results of transient lightning 44
	wave distribution in transformer coils without oil impregnation
Table 3.2	RSG measurement and simulation results of transient chopped 46
	lightning wave distribution in transformer coils without oil
	impregnation
Table 3.3	Simulation results of transient lightning wave distribution 48
	in transformer coils with present tap lead insulation
	design, with oil impregnation
Table 3.4	Simulation results of transient chopped lightning wave50
	distribution in transformer coils with present tap lead
	insulation design, with oil impregnation
Table 3.5	Field magnitude ($kV\!/mm$) at various locations of coils with 52
	present tap lead insulation design, when the winding is subjected
	to full lightning wave (peak value 125 kV) and chopped lightning
	wave (peak value 145 kV), with oil impregnation
Table 3.6	Simulation results of transient lightning wave distribution 53
	in transformer coils with design A of tap lead insulation,
	with oil impregnation
Table 3.7	Simulation results of transient chopped lightning wave55
	distribution in transformer coils with design A of tap
	lead insulation, with oil impregnation
Table 3.8	Field magnitude (kV/mm) at various locations of coils with 57
	design A, when the winding is subjected to full lightning wave (peak
	value 125 kV) and chopped lightning wave (peak value 145 kV),
	with oil impregnation

Table 3.9	Simulation results of transient lightning wave distribution 5		
	in transformer coils with design B of tap lead insulation,		
	with oil impregnation		
Table 3.10	Simulation results of transient chopped lightning wave60		
	distribution in transformer coils with design B of tap lead		
	insulation, with oil impregnation		
Table 3.11	Field magnitude (kV/mm) at various locations of coils with 62		
	design B, when the winding is subjected to full lightning wave (peak		
	value 125 kV) and chopped lightning wave (peak value 145 kV),		
	with oil impregnation		

1. INTRODUCTION

Accumulation of knowledge from research work and practical experience has resulted in transformer designs which are increasingly optimal in functionality and economy. With increasing transmission voltage levels, in the past many years, researchers concentrated their attention on the optimal design of large capacity power transformers. Nowdays, because of stiff competition in the marketplace, manufacturers are interested in the optimal design of distribution transformers. Even though the improvement may only be very limited, the gains to be made in the long term is appreciable. Among present designs of various types of distribution transformers, improvements are possible in the high-low barrier and tap-lead insulation. The objective of this project is to evaluate the design of tap-lead insulation of a distribution transformer and suggest optimal designs. Fig. 1.1 shows the arrangement of tap leads and associated insulation of a coil which belongs to a 10 kVA, 14,400/240 distribution transformer.

Fig. 1.1 Tap leads and insulation of a coil of a 10 kVA, 14,400 / 240 distribution transformer

Generally speaking, under normal operation in the steady state, the voltage is linearly distributed along the winding; therefore, insulating the tap leads presents no difficulty. However, during operation, the transformer may suffer many types of abnormal voltages. The resulting non-linear distribution of these voltages along the transformer winding can cause high stress at certain portions of the winding. Some extra insulation is normally used to reinforce the insulation structure. This is the reason why extra insulation is present around the input end and tap leads. Therefore, accurate simulation of transient abnormal voltage distribution along a transformer winding is crucial for the evaluation of it's insulation structure at these locations.

In the early 1950s, Abetti [1] suggested a scaled transformer model in conjunction with a capacitance network to model the transient distribution of impulse voltage in transformer winding. Though the simulation results are sufficiently accurate for design purposes, the method suffers the disadvantage that it requires the construction of a special model for each transformer design.

Almost at the same time, Lewis [2] proposed that the transient behavior of a transformer winding can be studied with an equivalent ladder-type network composed of a finite number of uniform sections. Each section is composed of lumped capacitive and inductive components which represent the distributed parameters of actual winding. The transient behavior of the equivalent network when subjected to an impulse surge can be readily evaluated by numerical computation. Lewis's model is applicable only to a uniform winding. Furthermore, the representation of inductive coupling effect was included by modifying the self inductance value.

McWhirter et al [3], studied the same problem based on an equivalent circuit approach. They derived from the circuits a set of equations which were solved by using an analog computer. Their model still suffers the restrictions arising from the size and symmetry of the equivalent circuit used to represent the winding.

Dent [4] used an equivalent circuit of the same general form as that proposed by Lewis, but with certain differences. Dent's model can represent a non-uniform winding and the effect of inductive coupling between sections are taken into account. The differential equations of the equivalent circuit were solved numerically by a digital computer. Besides, any form of applied waveshape may be used. Because almost all the simulation work can be done on a digital computer, it is very convenient to change parameters of the equivalent circuits to simulate different winding designs, different test connections and change parameters to simulate various types of input voltages. Because of it's speed and economy, this method is widely used in transformer design work.

After Dent's paper was published, most of the researchers in this area, concentrated their attention on the calculation of parameters of the equivalent circuits.

Okuyama [6] calculated the self and mutual inductances of transformer winding through introduction of some correction factors obtained from experiment.

Stein [5] and Kawaguchi [7] proposed a method to calculate equivalent series capacitance by computing the electrostatic energy stored in the coils.

Fergestad [9],[10] calculated self and mutual inductance of sections of windings by taking certain effects of iron-core into account.

Wilcox [14],[15] derived a set of formulae from Maxwell's equations to calculate self and mutual inductive parameters. He also did some work to incorporate in his formulae the effect of induced eddy currents in the iron-core.

Leon and Semlyen [17] used the image method to calculate turn to turn leakage inductance and the charge simulation method to calculate the capacitance between turns and from turn to ground.

All of the above methods to calculate self and mutual inductance can only be applied to coils with circular shape, which is the general case for power transformer. But, for distribution transformers, the shape of coils is not circular and can not be represented by a simple geometric shape. Therefore, the above methods and formulae can not be applied directly.

Kazibwe [25] used some simple geometric shapes composed of straight line segments to represent the coils of a barrel-type distribution transformer. The self and mutual inductance values were calculated by a proper summation of the inductance values calculated for the single line segments and line segment pairs using the formulae given by Grover [19]. Because the number of segments used by Kazibwe to model the shape of barrel-type coil is only $4 \sim 6$, the calculation results are not accurate enough to show the effect of small changes of coil shapes caused by modification of insulation design.

Based on Kazibwe's idea, a more accurate and flexible technique for the calculation of self and mutual inductive parameters of equivalent circuits of barrel-type coils has been developed in the present work. Each turn of the winding is represented by 24, 40 or even more straight line segments. Therefore, the calculation results are more accurate and can approximately show the small difference caused by various tap-lead insulation designs.

The present research work covers the following aspects:

Establishment of equivalent circuits to model transformer winding transient response

Several equivalent circuit models were established to simulate transient impulse voltage distribution in the sample transformer winding. The models are composed of non-uniform sections; the layers of the winding near tap leads are divided into more sections than other layers of the same coil. Therefore, the impulse voltage distribution near the tap leads can be simulated in more detail.

 Calculation of capacitive, inductive and resistive parameters of equivalent circuits

Series capacitance of one section was obtained through calculation of the total electrostatic energy stored in that section. Parallel capacitances between

two sections and section to ground were calculated by utilizing simplified models. The self inductance of each section and the mutual inductance between two sections were calculated by the new technique mentioned above. Resistance of each section was calculated by taking skin effect into account.

Transient Voltage Distribution Simulation and RSG measurement

Transient response of equivalent circuits to full lightning wave and chopped lightning wave application were solved by using a transient analysis program written by the author which utilizes the trapezoidal integration technique. In order to validate the simulation methods, the transient impulse voltage distribution in the transformer winding was measured by using Recurrent Surge Generator technique.

Evaluation of present insulation design through field analyses

Transient impulse voltage distribution in the sample transformer winding with present tap lead insulation design was simulated under actual working conditions. The simulation results were used as boundary conditions to carry out field analysis of insulation near the input end and tap leads of the transformer coils by employing the Finite Element Method.

Evaluation of modified tap lead insulation designs through field analyses

The design of tap lead insulation considered in this work includes three layers of paper, A modified design reduces the insulation by one layer of paper; another design uses only one layer of paper. All the parameters of the equivalent circuits were recalculated because of the changes caused by the tap lead insulation modification. Following the steps described above, field analyses were carried out by using the transient simulation results as boundary conditions and the new designs are evaluated. Based on the field analysis results, suggestions were made for alternative designs of tap lead insulation.

2. METHODOLOGY

2.1 Equivalent circuit of transformer winding

During an impulse voltage test, an impulse of known waveshape is applied at one end of a transformer winding, the other end of the winding being grounded or isolated, while all the associated windings are effectively grounded and fully or partially short-circuited. If the grounding and short-circuiting of all windings except that under test are completely effective, the condition would be equivalent to the application of an impulse voltage to an isolated winding. An equivalent circuit may be used to simulate the behavior of a single distributed winding subjected to an applied voltage impulse. A distributed winding is generally modeled by a ladder-type network, each section of the network only represents a part of winding which can be regarded as having individual self-inductance, mutual indutance with all other sections, capacitance to adjacent sections, series capacitance, and resistance. A general ladder-type network is shown in Fig. 2.1.

Fig. 2.1 A general ladder-type equivalent network of a transformer winding

This equivalent circuit can be used to model non-uniform windings. A section of the equivalent circuit, therefore, may represent a layer, layers or part of a layer of winding. The manner in which the equivalent circuit is constructed can be varied according to specific need, so that significant portions of the winding (e.g. near the input end or tap leads) can be examined in detail while less significant portions are grouped together.

In this study, the primary concern is tap-lead insulation. Therefore, the layers of winding which are adjacent to tap leads are divided into several sections, while the other layers are represented by one section per layer. Three equivalent circuits with different sectionalizations of layers of winding near tap leads are shown in Fig. 2.2. Each section of the equivalent circuits contains a self inductor, a series capacitor and a resistor. Besides, each inductor is coupled with all other inductors and parallel capacitors exist between section to section and section to ground. With the fine sectionalization of the transformer winding near the tap leads, the effect of nonlinear distribution of impulse voltage on tap lead insulation can be analysed in more detail.

2.2 Calculation of parameters

2.2.1 Inductance

As mentioned in the last chapter, considerable work has been done on the calculation of inductance of coils. The methods used, however, can only be applied to a circular coil configuration, which is the general case for a power transformer. For distribution transformers, the coils usually have non-circular shape, as shown in Fig. 2.3. It is evident that this non-circular shape can not be represented by simple geometrical shapes such as a circle or a rectangle. Therefore, another approach has to be found to calculate the inductive parameters of coils with non-circular shape. The method used in the present work comprises of the following steps.

- Accurately measure the geometrical dimensions of the coils, or for new designs, calculate the geometrical dimensions according to winding design specifications;
- Simulate the coil shape through a curve fitting technique. Represent the con-

tinuous fitting curve with straight lines which intersect at right angles, as shown in Fig. 2.3;

Fig. 2.2 Three equivalent circuits of a two coil transformer winding

• Calculate the self inductance of one section and the mutual inductance between two sections by first calculating the self inductance of all line segments and the mutual inductance between all possible line segment pairs, then properly sum the calculated values. The formula for self inductance of a straight conductor with round cross section is given by [19]:

- (a) ----- Shape of barrel-type transformer winding;
- (b) ----- Line segmental representation.

Fig. 2.3 Non-circular shape of barrel-type transformer winding and it's line segmental representation

$$L = 0.002 l \left[\ln \frac{2l}{\rho} - \frac{3}{4} \right] \tag{1}$$

L ---- Inductance value in microhenry;

l ---- Length of winding in cm;

 ρ ---- Radius of wire in cm.

The formula for mutual inductance of two straight line segments placed as shown in Fig. 2.4 is given by [19];

Fig. 2.4 Two straight line segments position

$$L = 0.001 \left[\alpha \sinh^{-1} \frac{\alpha}{d} - \beta \sinh^{-1} \frac{\beta}{d} - \gamma \sinh^{-1} \frac{\gamma}{d} + \delta \sinh^{-1} \frac{\delta}{d} - \sqrt{\alpha^2 + d^2} + \sqrt{\beta^2 + d^2} + \sqrt{\gamma^2 + d^2} - \sqrt{\delta^2 + d^2} \right]$$
(2)

where:

$$\alpha = l + m + \delta;$$

$$\beta = l + \delta;$$

$$\gamma = m + \delta;$$

If two filaments overlap, δ is to be used with negative sign.

In order to validate this new technique, two ways were used to calculate the self inductances and mutual inductances of several simple solenoids. These solenoids are circular concentric coils, with dimensions shown in Fig. 2.5. In the first approach, the formulae for self and mutual inductance of circular solenoids given in [19] were used. In the second approach, the circular coils were modeled by many straight line segments and the self and mutual inductance values were obtained by proper summation of the self inductance of each segment and the mutual inductance between each segment pair. The circular coils were represented by 24, 40, 80 and 160 segments as shown in Fig. 2.6. The results are listed in Tables 2.1 and 2.2. By comparison of the results yielded by the two ways, it is seen that the new approach yields quite accurate results. One disadvantage of the new approach is the limitation on the number of segments used to represent the circular coils. When the number of segments used is too large, the calculations are very time consuming. The other disadvantage is that the effect of the iron core is not taken into account. However, under transient conditions, the effect of iron core is not significant and the coils can be treated as if they are wound on an air core.

Fig. 2.5 Circular concentric solenoids used to validate the calculation method of self and mutual inductance

Fig. 2.6 Segmental representations of the circular coils

2.2.2 Capacitance

2.2.2.1 Series Capacitance

The lumped series capacitance in the equivalent circuit is used to represent the series capacitive effect of the corresponding section of the transformer winding. Consequently, under uniform voltage distribution conditions, the electrostatic energy stored in the section of winding should be equal to the energy stored in the lumped series capacitance. By calculating the total electrostatic energy stored in that section, we can obtain the corresponding series capacitance value. This method has been frequently used in previous research. The development of the formula, given below, can be found in [25].

$$C_s = \frac{C_u (n-1) L}{n^2} \tag{3}$$

$$C_u = \frac{\varepsilon_0 \varepsilon_r W}{d} \tag{4}$$

 ϵ_0 ----- Dielectric constant of free space;

 ε_r ----- Relative dielectric constant of formel coating on the conductor;

W----- Conductor thickness;

d ----- Thickness of formel coating between two consecutive turns;

n ----- The number of turns of the section;

L ----- Perimeter of a turn.

2.2.2.2 Parallel Capacitance

Because the segmental representation of coils, as shown in Fig. 2.3, is exactly the same for each turn on the same layer, the surface of a layer of winding can be approximated by several planes intersecting with each other at right angles. The capacitance between two layers of winding is obtained from summing the capacitance calculated for each pair of adjacent parallel planes. When the number of straight line segments used is large enough, the obtained capacitance value should

be close to the exact value. Because the capacitance calculations are not time consuming, the continuous curve can be represented by a very large number of straight lines, i.e several hundred segments.

2.2.2.3 Capacitive effect of core and tank

In order to calculate the capacitance between the outer layer of transformer windings and the tank, the two coils were modeled by a cylinder which is concentric with the circular tank as shown in Fig. 2.7. The capacitance formula for coaxial cylinders configuration was used in the calculation. The perimeter of the central cylinder is approximately equal to the peripheral length of the two coils in their assembled position. A copper foil is used to simulate the capacitive effect of core. The capacitance of the core to the end turn of each layer of winding was calculated by utilizing a parallel plane model.

- 1 ---- Tank;
- 2 --- Outer layer of H.V. winding;
- 3 ---- Outer layer of L.V. winding;
- Coaxial cylinder used to calculate the capacitance between outer layer of winding and tank;
- Copper foil sheet used to simulate the capacitive effect of core.

Fig. 2.7 Simulation of capacitive effect of core and tank

2.2.3 Resistance

Because the applied voltage impulse contain many high order harmonics, skin effect should be taken into account when the resistance of each section is calculated. For a rough estimation, 750 kHz was chosen as the frequency used to calculated the skin depth of the conductor wires. The resistance was then calculated according to the skin depth and the length of wire.

2.3 Transient Voltage Distribution Simulation [21]

The time responses of equivalent circuits to applied impulse voltage were solved by an electromagnetic transient analysis program based on the trapezoidal integration rule. The development of the node-voltage equations used in the program is described in the following sections.

2.3.1 Inductor Model

The voltage-current relationship for an inductor of value L is

$$i(t) = \frac{1}{L} \int_{t'=0}^{t} v(t') dt' + i(0)$$
 (5)

where i(0) is the current at time t = 0 in the inductor. In computing the inductor voltage values, a series of values will be calculated at equally spaced time intervals $t_0, t_1, \ldots, t_{k-1}, t_k, \ldots$, the current in the inductor at the end of the k th interval is

$$i_k = \frac{1}{L} \int_{t_{k-1}}^{t_k} v(t)dt + i_{k-1}$$
 (6)

The integration is replaced by trapezoid approximation.

$$i_k = i_{k-1} + \frac{1}{2} \frac{\Delta t}{L} (\nu_{k-1} + \nu_k)$$
 (7)

$$= \frac{\Delta t}{2L} v_k + (\frac{\Delta t}{2L} v_{k-1} + i_{k-1})$$
 (8)

This last expression is of the form

$$i = gv + I \tag{9}$$

and thus represents a parallel combination of a current source and conductance as shown in Fig. 2.8.

Fig. 2.8 Inductor model

The symbol g represents the conductance which is determined by L and the time interval Δt . I is determined by the value of i and v at the previous time instant.

2.3.2 Capacitor Model

The voltage current relationship for a capacitor of value C is

$$i(t) = C\frac{d}{dt}v(t) \tag{10}$$

The slope of voltage versus time curve can be approximated only from a knowledge of some past values of ν . The simplest such approximation is:

$$\left. \frac{dv}{dt} \right|_{t_k} = \frac{1}{\Delta t} \left(v_k - v_{k-1} \right) \tag{11}$$

Hence the capacitance current at the end of the kth interval is approximated by

$$i_k = \frac{C}{\Delta t} (v_k - v_{k-1})$$

$$i_k = \frac{C}{\Delta t} v_k - \frac{C}{\Delta t} v_{k-1}$$
(12)

Again, this relationship can be described as a parallel combination of a current source and a conductance as shown in Fig. 2.9.

Fig. 2.9 Capacitor model

The conductance g is determined by capacitance value C and time interval. The current source is determined by conductance value g and the value of voltage at last time interval instant.

2.3.3 Node-voltage Equation

The lumped parameter equivalent network of the transformer winding contains only passive elements, such as resistors, capacitors and inductors, each inductor may be coupled with other inductors. Suppose each branch contains only one component. Based on the inductor and capacitor model mentioned above, the element currents I_e and element voltages V_e can be expressed as follows:

$$I_e = \begin{bmatrix} I_L \\ I_R \\ I_C \end{bmatrix} \tag{13}$$

$$V_e = \begin{bmatrix} V_L \\ V_R \\ V_C \end{bmatrix} \tag{14}$$

Where I_L and V_L refer to the currents and voltages of the inductor elements, I_R and V_R to those of resistors, I_C and V_C to those of capacitors.

The voltages and currents of various types of elements at kth time interval are related as follows.

For resistors

$$I_{R_k} = \left[\frac{1}{R}\right] V_{R_k} \tag{15}$$

Where [1/R] is a diagonal matrix of the conductances of resistive elements.

For capacitors

$$I_{C_k} = [C] \frac{1}{\Delta t} (V_{C_k} - V_{C_{k-1}})$$
 (16)

Where [C] is a diagonal matrix of capacitance values, Δt is the time step, and V_{c_k} are the capacitor voltages at $t = t_k$.

For inductors

$$I_{L_k} = [L]^{-1} \frac{\Delta t}{2} V_{L_k} + [L]^{-1} \frac{\Delta t}{2} V_{L_{k-1}} + I_{L_{k-1}}$$
 (17)

Where [L] is a matrix of inductance values including mutual inductances, I_{L_k} and V_{L_k} are the inductor currents and voltages at $t = t_k$.

Hence the element currents at time t_k are given by

$$I_{e_{k}} = \begin{bmatrix} \frac{\Delta t}{2} [L]^{-1} & 0 & 0 \\ 0 & \left[\frac{1}{R}\right] & 0 \\ 0 & 0 & \frac{1}{\Delta t} [C] \end{bmatrix} \begin{bmatrix} V_{L_{k}} \\ V_{R_{k}} \\ V_{C_{k}} \end{bmatrix} + \begin{bmatrix} \frac{\Delta t}{2} [L]^{-1} V_{L_{k-1}} + I_{L_{k-1}} \\ 0 \\ -\frac{1}{\Delta t} [C] V_{C_{k-1}} \end{bmatrix}$$

$$= Y_{e} V_{e_{k}} + I_{p_{k-1}}$$

$$(18)$$

The above equation defines the element-admittance matrix Y_e and the vector $I_{p_{k-1}}$ which incorporates all the "past history" of the inductors and capacitors in the network. Since there is no dependent current source and independant current source in the equivalent network, the branch current is equal to element current.

$$I_h = I_e \tag{19}$$

The applied impulse voltage is treated as an independant voltage source, and there is no other independant voltage source or dependant voltage source in the equivalent network. The general expression for the branch voltage is:

$$V_b + V_g = V_e \tag{20}$$

V_b ---- Branch voltage;

 V_g ---- Source voltage;

 V_e ---- Element voltage.

By Kirchhoff's current law, $AI_b = 0$ at all instants of time.

$$A(Y_e V_{e_k} + I_{p_{k-1}}) = 0 (21)$$

Rearranging (21) we have:

$$AY_eV_{e_{\nu}} + AI_{p_{\nu-1}} = 0$$

The element voltages are related to the branch voltages from Eq. (20).

$$AY_e(V_{b_k} + V_{g_k}) + AI_{p_{k-1}} = 0 (22)$$

$$AY_{e}V_{b_{k}} + A(Y_{e}V_{g_{k}} + I_{p_{k-1}}) = 0$$

The network node equation is obtained as follows.

$$AY_{e}A^{T}V_{n_{k}} = -A(Y_{e}V_{g_{k}} + I_{p_{k-1}})$$
(23)

The above equation is now solved for V_{n_k} . The entire transient analysis consists of stepping k from 1 to K so that t_k equals or exceeds the final time for which the analysis is to be performed. The $I_{p_{k-1}}$ term incorporates the voltages and currents for each inductor calculated at the previous time step and the previously calculated voltages across the capacitors.

2.3.4 Transient Analysis Program

Although some very powerful and user-friendly commercial programs are available, such as EMTDC and ATP, they are mainly designed for system simulation. Through their user interfaces, a large number of mutual inductances can not be inputted directly. Therefore, a transient calculation program suitable for analysis of circuits with large number of mutual inductances was written in FORTRAN, as shown in Appendix C. This program is based on the principles discussed in section 2.3.3 and it was verified by comparing the simulation results with that obtained by use of EMTDC program.

2.4 Field Analysis

2.4.1 Quasi-static Field Approximation

From the simulation results, the distribution of impulse voltage in the transformer coils at various locations can be obtained in the time domain. The harmonic content of a full lightning impulse is small in the frequency range of $0.5 \sim 1.0$ MHz [26]. Though the chopping of lightning impulse introduces an increase in the harmonic content, significant harmonic components are still below 10 MHz. For a rough estimation, suppose the relative dielectric constant of insulating media between the layers of winding is 3.4. The speed of transmission of an electromagnetic wave in insulating media is $v = c/\varepsilon_r$, which is about 1.0×10^8 m/sec, therefore the wave-length v/f, is about 10 m. The geometric dimensions between the tap lead and adjacent layers is less than 0.01 m, which is much less than 10 m. Therefore, it is accurate enough to approximate the exact field problem through quasi-static field analysis. For quasi-static fields, the physical characteristics of the electric field is the same as that of static electric field. At any chosen time, the magnitude of impulse voltage distributed along the winding can be taken as boundary conditions for field analysis.

2.4.2 Finite Element Method and ANSYS Program [24]

In the Finite Element Method, the boundary and interior of the solution domain are subdivided into a finite number of subregions or finite elements. A discrete number of nodal points are established with an imaginary mesh that divides the region. The variables of interest can be uniquely specified throughout the solution domain by nodal parameters associated with the nodal points of the system. These nodal parameters are the unknown parameters of the problem. It is assumed that the parameters at a particular node influence only the values of the quantity of interest within the elements that are connected to that particular node. Next, an interpolation function is assumed for the purpose of relating the quantity of interest within the element in terms of the values of the nodal parameters at the nodes that are connected to that particular element. The interpolation functions are then substituted into the governing integral form. By the minimization of a functional or by employing the method of weighted residuals, element matrices are formulated. Once the element equations have been established, the contribution of each element is added to form the system equations. Next, the boundary constraints are incorporated into the system equation. After the system equations are solved, the nodal potentials are known, from which other nodal parameters of interest are calculated.

ANSYS is a computer program for various type field analyses based on Finite Element Method. In this research work, ANSYS is used as the field analysis tool.

2.4.3 Field Analysis Configuration

Theoretically, the Finite Element Method can be used to analyse a geometry with arbitrary shape. Because of the limitation of storage space and computer speed, a practical field region is usually simplified to a simple configuration according to the physical characteristics of actual field problem.

The field analysis of tap lead insulation is actually a three dimensional problem. Fig. 2.10. shows a cross section of the layer of winding which is tapped. Though

the distribution of impulse voltage in a transformer winding is not linear, the potential difference between adjacent turns in the same layer is very small. From the equivalent circuits, shown in figure 2.2, the potential difference between the outer most turns is larger than that between adjacent inner turns. Therefore, maximum stress should occur in the location near the edge of winding. Because of this characteristic, the three dimensional field problem can be simplified to a two dimensional problem. The potentials of the end turns of corresponding layers are applied as boundary conditions. Two dimensional analysis, therefore, incorporates an element of conservativeness. A two dimensional representation of the tap lead insultation is shown in fig. 2.11.

Fig. 2.10 Cross section of winding showing tap lead insulation

Fig. 2.11 Two dimensional representation of tap lead insulation

unit: µH

Table 2.1 Self Inductance of simple solenoids

	REF-F	L-24	L-40	L-80	L-160
CPU Time*	1 secs	3 mins	8 mins	22 mins	90 mins
S-1	30.6	29.1	29.6	29.8	29.8
S-2	30.6	29.1	29.6	29.8	29.8
S-3	30.6	29.1	29.6	29.8	29.8
S-4	97.9	92.4	94.7	95.97	96.27
S-5	453.9	424.4	438.1	445.83	447.90
S-6	1644.8	1534.1	1588.4	1618.45	1626.86

Note:

REF-F --- Reference formula from [19];

L-24 --- 24 segments representation;

L-40 ---- 40 segments representation;

L-80 ---- 80 segments representation;

L-160 ---- 160 segments representation;

S-1 ~ S-6 --- Solenoid 1 ~ Solenoid 6, see Fig. 2.5;

* CPU time is the time taken to calculate the inductance of all 6 solenoids; Machine type: Sparc station 10.

Table 2.2 Mutual inductance of simple solenoids

unit : μH

	REF-F	L-24	L-40	L-80	L-160
CPU Time	1 sec	4 min	9 min	28 min	115 min
S-1 & S-2	14.97	13.80	14.40	14.75	14.87
S-1 & S-3	0.201	0.302	0.326	0.339	0.343
S-1 & S-4	37.15	42.14	42.99	43.45	43.57
S-1 & S-5	4.20	4.57	4.91	5.09	5.15
S-1 & S-6	47.41	50.40	52.33	53.27	53.55
S-2 & S-3	0.54	0.41	0.44	0.46	0.47
S-2 & S-4	37.15	42.14	42.99	43.45	43.57
S-2 & S-5	6.02	6.76	7.24	7.50	7.57
S-2 & S-6	59.43	62.21	64.41	65.48	65.81
S-3 & S-4	1.24	0.78	0.84	0.87	0.88
S-3 & S-5	47.63	50.26	51.70	52.49	52.71
S-3 & S-6	47.41	50.39	52.33	53.27	53.55
S-4 & S-5	12.07	12.29	13.17	13.65	13.79
S-4 & S-6	124.83	125.32	129.35	131.53	132.18
S-5 & S-6	502.35	485.02	499.73	509.7	512.38

Note:

Expressions see Table 2.1

3. RESULTS AND ANALYSES

3.1 RSG Test set-up and measurement results

In order to validate the simulation method used, a distribution transformer ($10\,$ kVA, 14,400/240) winding assembly with two coils without iron core were used. Recurrent Surge Generator (RSG) tests were carried out on these coils. The chosen applied waveforms were full lightning wave ($1.2~X~50~\mu S$) and chopped lightning wave (chopped at about $1.16~\mu S$). The transient voltage distribution of the coils were measured by probing the end turns of each layer and recorded by using a digital oscilloscope. The data was transfered to a PC through a GPIB cable. Finally, DOCUWAVE, a software installed in the PC, transformed the data to a text file. The set-up of the RSG test is shown in Fig. 3.1. The measured results are shown in Figs. 3.2 to 3.5.

1 ---- Coils;

4 ---- GPIB cable;

2 ---- Recurrent surge generator;

5 --- PC with DOCUWAVE installed

3 ---- TDS 540 digital oscilloscope;

Fig. 3.1 Set-up of RSG test

Fig. 3.2 RSG test results, standard lightning wave, measured waveforms at locations 1-1 to 2-9 (see Fig. 3.1)

Fig. 3.3 RSG test results, standard lightning wave, measured waveforms at locations 1-11 to 2-3 near the tap leads (see Fig. 3.1)

Fig. 3.4 RSG test results, standard lightning wave, measured waveform (long time range) at locations 1-1 to 2-9 (see Fig. 3.1)

Fig. 3.5 RSG test results, chopped lightning wave, measured waveform at locations 1-1 to 2-9 (see Fig. 3.1)

From the measured results, it can be seen that the transient voltage distributions of full and chopped lightning wave have following characteristics.

- Impulse voltage input causes oscillations in the transformer winding. These oscillations attenuate significantly after about 100 microseconds.
- During the first 100 microseconds, the transient voltage distribution in transformer winding is very non-uniform, that is, in the first 2 ~ 3 microseconds, the windings of coil No. 1 near the input end experience a relatively large voltage drop, while at about 45 microseconds after application of the lightning impulse voltage, the oscillations in the coils cause high stress inside coil No. 2.
- The potentials of tap leads and adjacent layers are almost equal, except that there is some potential difference between taps E, F and their adjacent layers.
- In coil No.1, the transient voltage distribution of the chopped lightning wave is even more non-uniform than that of the standard lightning wave.

3.2 Full lightning wave distribution simulation

In order to simulate the transient impulse voltage distribution in transformer windings, the lumped parameter equivalent circuits shown in Fig. 2.2 were used. The values of the lumped inductive, capacitive and resistive components of the equivalent circuits were calculated by the methods introduced in the last chapter. The forty segments representation was used to calculate the self and mutual inductances of sections in a coil, the twenty four segments representation was used to calculate the mutual coupling between two coils. The capacitive components were calculated using a eight hundred segment repersentation. The transient impulse voltage distributions in these equivalent networks were calculated using the developed transient analysis program. In order to validate the simulation method, the calculation results of several cases are compared with the RSG measurement results in the following sections.

3.2.1 Capacitive effect of core, tank and mutual inductive coupling effect between two coils

It has been stated in the last chapter that as far as transient voltage distribution is concerned, transformer coils with iron core can be treated as though they are wound on air core. Though the inductive effect of iron core can be neglected, it is not clear whether the capacitive effect of the iron core can be ignored. In this section, the capacitive effect of the iron core and tank, and the effect of mutual inductive coupling between two coils are investigated.

The values of the capacitive components which represent the capacitive effect of the core, tank and the mutual inductances between two coils are calculated by the methods outlined in chapter 2. The RSG measurement results and simulation results are shown in Figs. 3.6.1 to 3.6.6.

In Figs. 3.6.1 to 3.6.6, the abbreviations ref, cor, tak, gap and ab represent the following cases:

ab ----- two coils with core and tank simulated, with mutual coupling in between;

ref ----- two coils without core and tank simulated, with mutual coupling in between;

cor ----- two coils with only core simulated, with mutual coupling in between;

tak ----- two coils with only tank simulated, with mutual coupling in between;

gap ----- two coils with 20 cm gap, without mutual coupling.

Fig. 3.6.1 RSG result, waveforms at location 1-5 (see Fig. 3.1)

Fig. 3.6.2 Simulation result, waveforms at location 1-5 (see Fig. 3.1)

Fig. 3.6.3 RSG result, waveforms at location AB (see Fig. 3.1)

Fig. 3.6.4 Simulation result, waveforms at location AB (see Fig. 3.1)

Fig. 3.6.5 RSG result, waveforms at location 2-5 (see Fig. 3.1)

Fig. 3.6.6 Simulation result, waveforms at location 2-5 (see Fig. 3.1)

As Figs. 3.6.1 ~ 3.6.6 shown, for RSG test results, in the first 50 microseconds, the results almost overlap; differences appear after 50 microseconds. The "ab" and "tank" curves are almost identical. The same can be said for the "ref" and "gap" curves. The "cor" curve lies in between. This implies that the tank has a relatively larger effect than the core and that the mutual inductive coupling between two coils has no evident effect. From the simulation results, the effects of core, tank and mutual coupling between two coils are not evident because the curves corresponding to all fives cases overlap. However, the simulation results are still meaningful

when one is mainly concerned with the initial values and maximum values of impulse voltage distribution.

3.2.2 RSG and simulation results for AB tap connection

Figs. 3.7.1 to 3.7.8 compare the RSG measurement results and the corresponding simulation results of transient full lightning wave distribution. The simulation employed the EC-1 equivalent circuit (see Fig. 2.2). The coils are connected in AB tap position and both core and tank were simulated. Fig. 3.8 shows the distribution of full lightning wave along the winding at 1.2 and 45 microseconds.

Simulation of the state of the

Fig. 3.7.1 Simulation & RSG results at location 1-1 (see Fig. 3.1), winding excited with lightning wave (1.2 X 50)

Fig. 3.7.2 Simulation & RSG results at location 1-5 (see Fig. 3.1), winding excited with lightning wave (1.2 X 50)

Fig. 3.7.3 Simulation & RSG results at location 1-9 (see Fig. 3.1), winding excited with lightning wave (1.2 X 50)

Fig. 3.7.4 Simulation & RSG results at location 1-13 (see Fig. 3.1), winding excited with lightning wave (1.2 X 50)

Fig. 3.7.5 Simulation & RSG results at location AB (see Fig. 3.1), winding excited with lightning wave (1.2 X 50)

Fig. 3.7.6 Simulation & RSG results at location 2-1 (see Fig. 3.1), winding excited with lightning wave (1.2 X 50)

Fig. 3.7.7 Simulation & RSG results at location 2-5 (see Fig. 3.1), winding excited with lightning wave (1.2 X 50)

Fig. 3.7.8 Simulation & RSG results at location 2-9 (see Fig. 3.1), winding excited with lightning wave (1.2 X 50)

It can be seen that the RSG measurement and simulation results are in good agreement, especially for coil 1. For coil 2, there are differences in the RSG and simulation results during the initial 20 microseconds, the maximum values are still in good agreement.

3.2.3 Comparison of simulation results using various equivalent circuits

The objective of this research work is to evaluate the tap lead insulation design and make suggestions for more economic designs. Therefore, detailed information about the transient impulse voltage distribution in windings near the tap leads is

Fig. 3.8 Simulation & RSG results of full lightning wave distribution along winding at 1.2 and 45 microseconds

needed. Theoretically, the more the number of sections in the layers near the tap leads, the more detailed the information to be had about the transient impulse voltage distribution near that location. The comparison of simulation results obtained by consideration of the three equivalent circuits EC-1, EC-2 and EC-3 (shown in Fig. 2.2) are shown in Figs. 3.9.1 to 3.9.6 and Table 3.1. It is shown that the simulation results are quite close except that a finer division i.e. more sections per layer seems to result in small oscillations, especially near the low-voltage winding. The reason for this is probably associated with the relatively high natural frequency of this type of winding depiction. Fig. 3.10 shows the simulated voltage distribution along the winding at 1.2 and 45 microseconds.

3.2.4 Effect of tap connections, Comparison of RSG and simulated waveforms at chosen locations

In practice, transformer may operate under various tap connections. The effect of tap connections on the transient impulse voltage distribution was studied using

Fig. 3.9.1 Simulation results at location 1-5 (see Fig. 3.1), winding excited with lighning wave (1.2 X 50)

Fig. 3.9.3 Simulation results at location 1-13 (see Fig. 3.1), winding excited with lighning wave (1.2 X 50)

Fig. 3.9.5 Simulation results at location 2-5 (see Fig. 3.1), winding excited with lighning wave (1.2 X 50)

Fig. 3.9.2 Simulation results at location 1-9 (see Fig. 3.1), winding excited with lighning wave (1.2 X 50)

Fig. 3.9.4 Simulation results at location 2-1 (see Fig. 3.1), winding excited with lighning wave (1.2 X 50)

Fig. 3.9.6 Simulation results at location 2-9 (see Fig. 3.1), winding excited with lighning wave (1.2 X 50)

equivalent circuits EC-2 and EC-3. The RSG and Simulation results are shown in Figs. 3.11.1 to 3.11.12 and Table 3.1. These figures show that tap connections influence transient impulse voltage distribution at the initial time. Tap connection EF results in a relatively large voltage drop in the winding near the input end at initial time than do tap connections AB and CD.

Fig. 3.10 Simulated results of voltage distribution along winding with various tap connections at 1.2 and 45 microseconds, winding excited with full lightning wave

Fig. 3.11.1 RSG results at location 1-5 (see Fig. 3.1), tap connection ab, cd and ef, winding excited with lightning wave

Fig. 3.11.2 RSG results at location 1-9 (see Fig. 3.1), tap connection ab, cd and ef, winding excited with lightning wave

Fig. 3.11.3 Simulation results of EC-2 at location 1-5 (see Fig. 3.1), tap connection ab, cd and ef, winding excited with lightning wave

Fig. 3.11.4 Simulation results of EC-2 at location 1-9 (see Fig. 3.1), tap connection ab, cd and ef, winding excited with lightning wave

Fig. 3.11.5 Simulation results of EC-3 at location 1-5 (see Fig. 3.1), tap connection ab, cd and ef, winding excited with lightning wave

Fig. 3.11.6 Simulation results of EC-3 at location 1-9 (see Fig. 3.1), tap connection ab, cd and ef, winding excited with lightning wave

Fig. 3.11.7 RSG results at location 2-5 (see Fig. 3.1), tap connection ab, cd and ef, winding excited with lightning wave

Fig. 3.11.8 RSG results at location 2-9 (see Fig. 3.1), tap connection ab, cd and ef, winding excited with lightning wave

Fig. 3.11.9 Simulation results of EC-2 at location 2-5 (see Fig. 3.1), tap connection ab, cd and ef, winding excited with lightning wave

Fig. 3.11.10 Simulation results of EC-2 at location 2-9 (see Fig. 3.1), tap connection ab, cd and ef, winding excited with lightning wave

Fig. 3.11.11 Simulation results of EC-3 at location 2-5 (see Fig. 3.1), tap connection ab, cd and ef, winding excited with lightning wave

Fig. 3.11.12 Simulation results of EC-3 at location 2-9 (see Fig. 3.1), tap connection ab, cd and ef, winding excited with lightning wave

3.3 Chopped lightning wave distribution

Under operating conditions, a transformer sometimes may experience a chopped lightning wave which can stress the transformer insulation because of the highly non-linear distribution of the impulse voltage. Therefore, it is meaningful to investigate the non-linear distribution of the chopped lightning wave in transformer winding. RSG measurements and simulation results of the transient chopped lightning wave distribution are shown in Figs. 3.12.1 to 3.12.8 and Table 3.2. Fig. 3.13 shows RSG measurements and simulation results of chopped lightning wave distribution along the transformer winding at the chop time about $1.16~\mu S$.

It is seen that the simulation results of the chopped lightning wave distribution agree well with RSG measurement results. The simulation results show a worse non-linear transient voltage distribution than the practical case. Therefore, when the insulation design is evaluated based on the simulation results, a factor of safety is built in the analysis.

Fig. 3.12.1 RSG and simulation results at location 1-1 (see Fig. 3.1), winding excited with chopped lightning wave

Fig. 3.12.3 RSG and simulation results at location 1-9 (see Fig. 3.1), winding excited with chopped lightning wave

Fig. 3.12.5 RSG and simulation results at location AB (see Fig. 3.1), winding excited with chopped lightning wave

Fig. 3.12.2 RSG and simulation results at location 1-5 (see Fig. 3.1), winding excited with chopped lightning wave

Fig. 3.12.4 RSG and simulation results at location 1-13 (see Fig. 3.1), winding excited with chopped lightning wave

Fig. 3.12.6 RSG and simulation results at location 2-1 (see Fig. 3.1), winding excited with chopped lightning wave

Fig. 3.12.7 RSG and simulation results at location 2-5 (see Fig. 3.1), winding excited with chopped lightning wave

Fig. 3.12.8 RSG and simulation results at location 2-9 (see Fig. 3.1), winding excited with chopped lightning wave

Fig. 3.13 RSG and simulation results of voltage distribution along winding at time ($1.16~\mu S$), winding excited with chopped lightning wave, simulation carried out using EC-1

From the results of sections 3.2 and 3.3, it can be concluded that:

• For both full lightning wave (at about 1.2 μS) and chopped lightning wave (at chop time, about 1.16 μS), no matter what tap connection is chosen, the insulation near the input end of transformer coil, such as the insulation between

points 1-1 and 1-3, between points 1-2 and 1-4 (see figure 3.1), experience larger stress than the insulation of the other parts. This non-linear voltage distribution becomes worse for the E-F tap connection.

• Among the several tap leads, the insulation aound E (between point 1-11 and E) is stressed more than the insulation around other tap leads.

The good agreement between RSG measurement results and simulation results justify the methods which are used to calculate self and mutual inductive parameters, series and parallel capacitive parameters and the method of lumped parameter equivalent networks which are used to simulate the transient impulse voltage distribution. Furthermore, it suggests that we can use these methods to simulate transient voltage distribution in transformer coils under actual conditions and to predict transient voltage distribution in transformer coils with modified insulation design.

3.4 Present insulation design evaluation

In order to evaluate the insulation design, the transient voltage distribution in transformer windings must be known. In actual working conditions, the transformer coils are assembled on an iron-core and impregnated with transformer oil. It has already been mentioned in Chapter 2 that as far as transient impulse voltage distribution is concerned, the effect of iron core on the inductive parameters can be ignored. The capacitive effects of core and tank can be simulated by adding several lumped capacitors to the equivalent circuit networks. The effect of oil impregnation can be included by using a larger relative dielectric constant when the series and parallel lumped capacitances are calculated. Therefore, the equivalent circuit networks with these additional and modified parameters can be used to simulate the transient voltage distribution in transformer windings under actual working condition.

From simulation results, we can know the transient impulse voltage distribution in transformer coils. In order to evaluate the insulation design, we need to carry out quasi-static field analysis which utilizes appropriate simulation results at chosen time as boundary conditions. The RSG measurement and simulation results show that at 1.2 microseconds for the full lightning wave and at the chop time of about 1.16 microsecond for chopped lightning wave, the voltage distributions are the most non-linear. Therefore, field analyses were carried out using simulation results at these times as boundary conditions. The simulation results of transient lightning wave distribution at chosen points of transformer coils at 1.2 microseconds are listed in Table 3.3. The results of chopped lightning wave distribution are listed in Table 3.4. The field evaluation results of present coil insulation design under overvoltage of magnitude 125 kV for full lightning wave and 145 kV for chopped lightning wave [27] are shown in Table 3.5. According to the analysis results, the maximum stress on the insulation around the input end is about 26.4 kV/mm and the maximum stress on tap lead insulation around location E (see Fig. 3.1) is about 13.5 kV/mm. Generally speaking, the impulse strength of paper oil combination is about 35 kV/mm. Since a factor of safety is already built into the analyses, therefore, it may be concluded that the present insulation design can withstand the full and chopped lightning over-voltage it is supposed to withstand. Fig. 3.14 and Fig. 3.15 show potential contours around points 1-1 and E respectively.

3.5 Modified insulation design evaluation

Field analyses of the present design in the last section shows that the maximum stress in the tap lead insulation is lower than the maximum stress value near the input end of the coil. For the most economic design, the maximum stress of every part of the coil should be approximately the same value. However, this condition is not possible to attain in practice. The results obtained in the last section suggest

that the present tap lead insulation design is conservative and may be modified to obtain economic designs.

Fig. 3.14 An example of potential contour plot at point 1-1

Fig. 3.15 An example of potential contour plot at point E

The present design of tap lead insulation comprises of three layers of paper above and three layers of paper below the tap lead (see Fig. 2.11). In the first modified design (design A), the tap leads are insulated with two layers of paper above and two layers of paper below. In another modified design (design B), only one layer of paper insulates both sides of the tap lead. For these modified tap lead insulation designs, the geometric dimensions of the coils were calculated. The values of all inductive, capacitive and resistive parameters of the equivalent networks were calculated according to the new coil dimensions. Following the procedure described previously, the transient impulse voltage distributions were simulated and the stresses in coil insulation were evaluated based on the transient simulation results. The simulation results of transient full lightning wave distribution in transformer coils with modified tap lead insulation are listed in Table 3.6 for design A and in Table 3.9 for design B. The simulation results of transient chopped lightning wave distribution in transformer coils with modified tap lead insulation design are listed in Table 3.7 for design A and Table 3.10 for design B. The field evaluation results are listed in Table 3.8 for design A and in Table 3.11 for design B.

The simulation results show that, the transient impulse voltage distributions do not change significantly after tap lead insulation design is modified. The field analysis results show that maximum field stress near the input end remains almost the same as in the unmodified design. The maximum stress on the tap lead insulation increases to about 14.7 kV/mm for design A and to about 16.3 kV/mm for design B. Although, the maximum stress on the tap lead insulation of the new designs are a little bit higher than that in the present design, it is still in the safe range and well below the maximum stress on the insulation near the input end.

Table 3.1 RSG measurement and simulation results of transient lightning wave distribution in transformer coils without oil impregnation, entries in the table are in per unit of peak value of applied voltage

Тар	Volt. diff.	Vol	t. differe	nce at 1.2	2 μS	Vo	lt. differe	ence at 45	μS
cons.	between	RSG	EC-1	EC-2	EC-3	RSG	EC-1	EC-2	EC-3
AB	1-1 & 1-3	0.128	0.129	0.149	0.141	0.000	0.015	0.009	0.005
	1-3 & 1-5	0.135	0.125	0.131	0.132	0.000	0.000	0.004	0.007
	1-11 & E	0.088	0.120	0.155	0.116	0.014	0.017	0.015	0.010
	1-13 & C	0.027	0.022	0.010	0.014	0.000	0.000	0.007	0.008
	1-13 & A	0.047	0.062	0.013	0.074	0.000	0.000	0.004	0.006
	B & 2-1	0.020	0.011	0.030	0.040	0.027	0.040	0.029	0.020
	D & 2-1	0.007	0.004	0.002	0.019	0.014	0.014	0.007	0.004
	F & 2-3	0.020	0.037	0.057	0.035	0.054	0.058	0.059	0.074
	2-1 & 2-3	0.027	0.044	0.060	0.035	0.054	0.067	0.064	0.073
	2-3 & 2-5	0.034	0.028	0.032	0.011	0.074	0.073	0.083	0.069
CD	1-1 & 1-3	0.135		0.153	0.151	0.000		0.009	0.006
	1-3 & 1-5	0.135		0.143	0.144	0.007		0.005	0.007
	1-11 & E	0.081		0.135	0.093	0.014		0.000	0.005
	1-13 & C	0.020		0.010	0.007	0.007		0.023	0.021
	1-13 & A		1						
	B & 2-1				Pr 20 40 44				
	D & 2-1	0.000		0.001	0.003	0.007		0.036	0.030
	F & 2-3	0.027		0.036	0.012	0.054		0.043	0.070
	2-1 & 2-3	0.034		0.017	0.024	0.061		0.077	0.099
	2-3 & 2-5	0.027		0.037	0.042	0.074		0.076	0.065

Тар	Volt. diff.	Vol	Volt. difference at 1.2 μS				Volt. difference at 45 μS			
cons.	between	RSG	EC-1	EC-2	EC-3	RSG	EC-1	EC-2	EC-3	
EF	1-1 & 1-3	0.149		0.161	0.157	0.007		0.011	0.018	
	1-3 & 1-5	0.149		0.136	0.140	0.000		0.015	0.016	
	1-11 & E	0.074		0.119	0.118	0.014		0.046	0.000	
	1-13 & C								~~~~	
	1-13 & A									
	B & 2-1									
	D & 2-1									
	F & 2-3	0.014		0.019	0.037	0.047		0.089	0.068	
	2-1 & 2-3									
	2-3 & 2-5	0.041		0.036	0.026	0.081		0.091	0.058	

RSG ---- RSG measurement results;

EC-1 --- Simulation results of equivalent circuit No. 1, see Fig. 2.2;

EC-2 --- Simulation results of equivalent circuit No. 2, see Fig. 2.2;

EC-3 --- Simulation results of equivalent circuit No. 3, see Fig. 2.2;

Table 3.2 RSG measurement and simulation results of transient chopped lightning wave distribution in transformer coils without oil impregnation, entries in the table are in per unit of peak value of applied voltage

Tap	Volt. diff.	Vol	t. differer	ice at 1.1	6 μS
cons.	between	RSG	EC-1	EC-2	EC-3
AB	1-1 & 1-3	0.102	0.168	0.179	0.183
	1-3 & 1-5	0.150	0.111	0.116	0.120
	1-11 & E	0.157	0.118	0.124	0.119
	1-13 & C	0.047	0.028	0.016	0.025
	1-13 & A	0.055	0.078	0.056	0.030
	B & 2-1	0.024	0.030	0.006	0.019
	D & 2-1	0.000	0.011	0.002	0.002
	F & 2-3	0.031	0.028	0.040	0.043
	2-1 & 2-3	0.055	0.033	0.040	0.054
	2-3 & 2-5	0.031	0.023	0.026	0.030
CD	1-1 & 1-3	0.135		0.185	0.187
	1-3 & 1-5	0.143		0.123	0.124
	1-11 & E	0.095		0.094	0.103
	1-13 & C	0.034		0.021	0.031
	1-13 & A				
	B & 2-1				
	D & 2-1	0.032		0.007	0.009
	F & 2-3	0.024		0.010	0.028
	2-1 & 2-3	0.016		0.032	0.027
	2-3 & 2-5	0.048		0.027	0.026

Тар	Volt. diff.	Volt	Volt. difference at 1.16 μS						
cons.	between	RSG	EC-1	EC-2	EC-3				
EF	1-1 & 1-3	0.103		0.193	0.198				
	1-3 & 1-5	0.167		0.123	0.129				
	1-11 & E	0.087		0.121	0.101				
	1-13 & C								
	1-13 & A								
	B & 2-1								
	D & 2-1								
	F & 2-3	0.048		0.037	0.025				
	2-1 & 2-3								
	2-3 & 2-5	0.056		0.030	0.029				

Table 3.3 Simulation results of transient lightning wave distribution in transformer coils with present tap lead insulation design, with oil impregnation, entries in the table are in per unit of peak value of applied voltage

Тар	Volt. diff.	Volt.	diff. at 1	.2 μS	Volt	. diff. at 4	15 μS
cons.	between	EC-1	EC-2	EC-3	EC-1	EC-2	EC-3
AB	1-1 & 1-3	0.133	0.154	0.145	0.035	0.008	0.008
	1-2 & 1-4	0.138	0.141	0.142	0.032	0.024	0.005
	1-11 & E	0.120	0.156	0.115	0.010	0.016	0.031
	1-13 & C	0.023	0.009	0.017	0.004	0.007	0.017
	1-13 & A	0.064	0.009	0.072	0.011	0.009	0.008
	В & 2-1	0.013	0.035	0.037	0.032	0.044	0.028
	D & 2-1	0.005	0.001	0.022	0.011	0.002	0.030
	F & 2-3	0.036	0.058	0.034	0.067	0.050	0.017
	B & 2-2	0.039	0.003	0.025	0.077	0.061	0.047
	2-3 & 2-5	0.028	0.033	0.011	0.068	0.089	0.079
CD	1-1 & 1-3		0.157	0.155		0.014	0.013
	1-2 & 1-4		0.153	0.154		0.006	0.006
	1-11 & E		0.131	0.092		0.010	0.001
	1-13 & C		0.008	0.009		0.022	0.006
	1-13 & A						
	B & 2-1						
	D & 2-1		0.000	0.006		0.015	0.007
	F & 2-3		0.032	0.012		0.080	0.044
	В & 2-2						
	2-3 & 2-5		0.036	0.042		0.082	0.086

Тар	Volt. diff.	Volt.	diff. at 1	.2 μS	Volt. diff. at 45 μS		
cons.	between	EC-1	EC-2	EC-3	EC-1	EC-2	EC-3
EF	1-1 & 1-3		0.164	0.160		0.013	0.024
	1-2 & 1-4		0.144	0.149		0.026	0.027
	1-11 & E		0.118	0.121		0.001	0.026
	1-13 & C						
	1-13 & A						
	B & 2-1						
	D & 2-1						~==
	F & 2-3		0.019	0.040		0.069	0.021
	В & 2-2						
	2-3 & 2-5		0.035	0.025		0.085	0.067

Table 3.4 Simulation results of transient chopped lightning wave distribution in transformer coils with present tap lead insulation design, with oil impregnation, entries in the table are in per unit of peak value of applied voltage

Тар	Volt. diff.	Volt.	diff. at 1.	.16 μS
cons.	between	EC-1	EC-2	EC-3
AB	1-1 & 1-3	0.169	0.181	0.185
	1-2 & 1-4	0.118	0.121	0.125
	1-11 & E	0.118	0.122	0.119
	1-13 & C	0.029	0.017	0.025
	1-13 & A	0.079	0.061	0.030
	B & 2-1	0.031	0.011	0.018
	D & 2-1	0.011	0.002	0.002
:	F & 2-3	0.028	0.038	0.043
	B & 2-2	0.050	0.038	0.029
	2-3 & 2-5	0.022	0.025	0.030
CD	1-1 & 1-3	******	0.187	0.189
	1-2 & 1-4		0.128	0.130
	1-11 & E		0.093	0.102
	1-13 & C		0.023	0.032
	1-13 & A			
	B & 2-1			
	D & 2-1		0.008	0.008
	F & 2-3		0.010	0.027
	B & 2-2			
	2-3 & 2-5	W 45 40 4.	0.027	0.025

Тар	Volt. diff.	Volt.	diff. at 1.	16 μS
cons.	between	EC-1	EC-2	EC-3
EF	1-1 & 1-3		0.195	0.200
	1-2 & 1-4		0.128	0.135
	1-11 & E		0.121	0.099
	1-13 & C			
	1-13 & A			
	B & 2-1			
	D & 2-1	m w w w		
	F & 2-3		0.038	0.024
	B & 2-2			
	2-3 & 2-5		0.030	0.030

Table 3.5 Field magnitude (kV/mm) at various locations of the coils with present tap lead insulation design, when the winding is subjected to full lightning wave (peak value 125 kV) and chopped lightning wave (peak value 145 kV), coils impregnated with oil

Тар	Stress between	F	At 1.2 μS, full wave				At 1.16 μS, chopped wave			
cons.		EC-1	EC-2	EC-3	Avg.	EC-1	EC-2	EC-3	Avg.	
AB	1-1 & 1-3	19.34	17.85	16.89	18.03	22.74	24.19	24.73	23.89	
	1-2 & 1-4	15.68	16.02	16.14	15.95	15.56	15.94	16.47	15.99	
	1-11 & E	11.17	15.51	11.38	12.68	13.26	13.88	13.30	13.48	
CD	1-1 & 1-3		18.23	17.97	18.10		24.99	25.24	25.11	
	1-2 & 1-4		17.39	17.50	17.44		16.87	17.13	17.00	
	1-11 & E		13.20	9.03	11.11		10.31	11.51	10.91	
EF	1-1 & 1-3		19.04	18.59	18.81		26.04	26.78	26,41	
	1-2 & 1-4		16.36	16.93	16.64		16.87	17.80	17.33	
	1-11 & E		11.82	11.96	11.89		14.01	11.37	12.69	

Table 3.6 Simulation results of transient lightning wave distribution in transformer coils with design A of tap lead insulation, with oil impregnation, entries in the table are in per unit of peak value of applied voltage

Тар	Volt. diff.	Volt.	diff. at 1	.2 μS	Volt	. diff. at 4	15 μS
cons.	between	EC-1	EC-2	EC-3	EC-1	EC-2	EC-3
AB	1-1 & 1-3	0.133	0.154	0.145	0.034	0.005	0.005
	1-2 & 1-4	0.138	0.141	0.142	0.030	0.020	0.004
	1-11 & E	0.120	0.155	0.114	0.007	0.010	0.033
	1-13 & C	0.023	0.009	0.016	0.004	0.007	0.015
	1-13 & A	0.063	0.010	0.073	0.011	0.005	0.005
	B & 2-1	0.012	0.034	0.038	0.033	0.030	0.042
	D & 2-1	0.004	0.001	0.021	0.012	0.000	0.029
	F & 2-3	0.036	0.057	0.034	0.066	0.053	0.013
	B & 2-2	0.038	0.004	0.026	0.076	0.051	0.058
	2-3 & 2-5	0.028	0.033	0.011	0.067	0.091	0.080
CD	1-1 & 1-3		0.157	0.155		0.013	0.012
	1-2 & 1-4		0.154	0.154		0.005	0.005
	1-11 & E		0.131	0.092		0.016	0.001
	1-13 & C		0.008	0.008		0.023	0.007
:	1-13 & A	14 m to to					
	B & 2-1				~~~~		
	D & 2-1		0.000	0.005		0.016	0.008
	F & 2-3		0.032	0.011		0.081	0.043
	B & 2-2						
	2-3 & 2-5		0.036	0.042		0.081	0.088

Тар	Volt. diff.	Volt.	Volt. diff. at 1.2 μS			Volt. diff. at 45 μS		
cons.	between	EC-1	EC-2	EC-3	EC-1	EC-2	EC-3	
EF	1-1 & 1-3		0.164	0.160		0.013	0.023	
	1-2 & 1-4		0.145	0.149		0.024	0.026	
	1-11 & E		0.118	0.120		0.003	0.019	
	1-13 & C							
	1-13 & A							
	B & 2-1							
	D & 2-1							
	F & 2-3		0.019	0.040		0.068	0.026	
	B & 2-2							
	2-3 & 2-5		0.035	0.025		0.085	0.067	

Table 3.7 Simulation results of chopped lightning wave distribution in transformer coils with design A of tap lead insulation, with oil impregnation, entries in the table are in per unit of peak value of applied voltage

Tap	Volt. diff.	Volt.	diff. at 1.	16 μS
cons.	between	EC-1	EC-2	EC-3
AB	1-1 & 1-3	0.170	0.181	0.185
	1-2 & 1-4	0.118	0.121	0.126
	1-11 & E	0.117	0.122	0.118
	1-13 & C	0.028	0.017	0.025
	1-13 & A	0.078	0.059	0.029
	B & 2-1	0.030	0.009	0.018
	D & 2-1	0.011	0.002	0.002
	F & 2-3	0.028	0.038	0.043
	B & 2-2	0.049	0.037	0.028
	2-3 & 2-5	0.022	0.025	0.030
CD	1-1 & 1-3		0.187	0.189
	1-2 & 1-4		0.128	0.130
	1-11 & E		0.092	0.102
	1-13 & C		0.023	0.031
	1-13 & A			
	B & 2-1			
	D & 2-1		0.008	0.008
	F & 2-3		0.010	0.027
	В & 2-2			
	2-3 & 2-5		0.027	0.025

Tap cons.	Volt. diff.	Volt. diff. at 1.16 μS				
	between	EC-1	EC-2	EC-3		
EF	1-1 & 1-3		0.195	0.200		
	1-2 & 1-4		0.128	0.135		
	1-11 & E		0.121	0.099		
	1-13 & C					
	1-13 & A					
	B & 2-1					
	D & 2-1					
	F & 2-3	10-40-W-44	0.038	0.024		
	B & 2-2					
	2-3 & 2-5		0.030	0.030		

Table 3.8 Field magnitude (kV/mm) at various locations of the coils with design A, when the winding is subjected to full lightning wave (peak value 125 kV) and chopped lightning wave (peak value 145 kV), with oil impregnation

Tap Stress cons. between	At 1.2 μS, full wave				At 1.16 μS, chopped wave				
	between	EC-1	EC-2	EC-3	Avg.	EC-1	EC-2	EC-3	Avg.
AB	1-1 & 1-3	19.36	17.81	16.84	18.00	22.76	24.24	24.76	23.92
	1-2 & 1-4	15.68	16.02	16.14	15.95	15.56	15.94	16.61	16.04
	1-11 & E	12.19	16.80	12.33	13.77	14.46	15.13	14.50	14.70
CD	1-1 & 1-3		18.19	17.95	18.07		25.00	25.25	25.12
	1-2 & 1-4		17.50	17.50	17.50		16.87	17.13	17.00
	1-11 & E		14.29	9.78	12.03		11.25	12.55	11.90
EF	1-1 & 1-3		19.01	18.59	18.80		26.03	26.78	26.40
	1-2 & 1-4		16.48	16.93	16.70		16.87	17.80	17.33
,	1-11 & E		12.81	12.96	12.88		15.14	12.33	13.73

Table 3.9 Simulation results of lightning wave distribution in transformer coils with design B of tap lead insulation, with oil impregnation, entries in the table are in per unit of peak value of applied voltage

Tap cons.	Volt. diff. between	Volt. diff. at 1.2 μS			Volt. diff. at 45 μS		
		EC-1	EC-2	EC-3	EC-1	EC-2	EC-3
AB	1-1 & 1-3	0.133	0.153	0.144	0.033	0.003	0.005
	1-2 & 1-4	0.139	0.142	0.143	0.027	0.017	0.003
	1-11 & E	0.119	0.154	0.113	0.005	0.003	0.034
	1-13 & C	0.022	0.009	0.016	0.004	0.006	0.013
	1-13 & A	0.062	0.010	0.075	0.012	0.020	0.010
	B & 2-1	0.011	0.033	0.040	0.037	0.017	0.047
	D & 2-1	0.004	0.001	0.021	0.013	0.002	0.028
	F & 2-3	0.036	0.057	0.034	0.063	0.056	0.010
	B & 2-2	0.038	0.004	0.027	0.076	0.042	0.064
	2-3 & 2-5	0.028	0.033	0.011	0.066	0.093	0.083
CD	1-1 & 1-3		0.157	0.155		0.011	0.011
	1-2 & 1-4		0.154	0.155		0.004	0.003
	1-11 & E		0.130	0.090		0.025	0.000
	1-13 & C		0.008	0.007		0.023	0.008
	1-13 & A						
	B & 2-1						
	D & 2-1		0.000	0.004		0.015	0.009
	F & 2-3		0.032	0.010		0.086	0.043
	В & 2-2						
	2-3 & 2-5		0.036	0.041		0.079	0.090

Tap cons.	Volt. diff. between	Volt. diff. at 1.2 μS			Volt. diff. at 45 μS		
		EC-1	EC-2	EC-3	EC-1	EC-2	EC-3
EF	1-1 & 1-3		0.164	0.160		0.012	0.023
	1-2 & 1-4		0.145	0.150		0.022	0.026
	1-11 & E		0.117	0.119		0.007	0.015
	1-13 & C						
	1-13 & A						
	B & 2-1						
	D & 2-1						
	F & 2-3		0.019	0.039		0.067	0.027
	B & 2-2						
	2-3 & 2-5		0.035	0.025		0.084	0.067

Table 3.10 Simulation results of chopped lightning wave distribution in transformer coils with design B of tap lead insulation, with oil impregnation, entries in the table are in per unit of peak value of applied voltage

Tap cons.	Volt. diff.	Volt. diff. at 1.16 μS			
	between	EC-1	EC-2	EC-3	
AB	1-1 & 1-3	0.170	0.181	0.185	
	1-2 & 1-4	0.119	0.122	0.126	
	1-11 & E	0.117	0.121	0.117	
	1-13 & C	0.028	0.016	0.025	
	1-13 & A	0.077	0.058	0.028	
	B & 2-1	0.030	0.008	0.019	
	D & 2-1	0.011	0.002	0.002	
	F & 2-3	0.028	0.039	0.042	
	B & 2-2	0.049	0.036	0.027	
	2-3 & 2-5	0.022	0.025	0.030	
CD	1-1 & 1-3		0.187	0.189	
	1-2 & 1-4		0.129	0.131	
	1-11 & E		0.092	0.101	
	1-13 & C		0.022	0.031	
	1-13 & A			*** *** ***	
	B & 2-1				
	D & 2-1		0.008	0.008	
	F & 2-3		0.009	0.027	
	B & 2-2				
	2-3 & 2-5		0.027	0.025	

Tap cons.	Volt. diff. between	Volt. diff. at 1.16 μS			
		EC-1	EC-2	EC-3	
EF	1-1 & 1-3		0.195	0.200	
	1-2 & 1-4		0.129	0.135	
	1-11 & E		0.119	0.098	
	1-13 & C				
	1-13 & A				
	B & 2-1				
	D & 2-1				
	F & 2-3		0.037	0.024	
	B & 2-2				
	2-3 & 2-5		0.030	0.029	

Note:

Expressions are the same as Table 3.1

Table 3.11 Field magnitude (kV/mm) at various locations of the coils with design B, when the winding is subjected to full lightning wave (peak value 125 kV) and chopped lightning wave (peak value 145 kV), with oil impregnation

Tap cons.	Stress between	At 1.2 μS, full wave			At 1.16 μS, chopped wave				
		EC-1	EC-2	EC-3	Avg.	EC-1	EC-2	EC-3	Avg.
AB	1-1 & 1-3	19.40	17.77	16.79	17.99	22.80	24.30	24.81	23.97
	1-2 & 1-4	15.79	16.14	16.25	16.06	15.69	16.07	16.61	16.12
	1-11 & E	13.51	18.47	13.57	15.18	16.03	16.73	16.03	16.26
CD	1-1 & 1-3		18.15	17.92	18.03		25.04	25.27	25.15
	1-2 & 1-4		17.50	17.61	17.55	~~~	17.00	17.27	17.13
	1-11 & E		15.70	10.75	13.22		12.48	13.92	13.20
EF	1-1 & 1-3	****	19.00	18.59	18.79		26.07	26.80	26.43
	1-2 & 1-4		16.48	17.04	16.76		17.00	17.80	17.40
	1-11 & E		14.11	14.27	14.19		16.64	13.58	15.11

Note:

Expressions are the same as Table 3.1

4. CONCLUSIONS AND SUGGESTIONS FOR FUTURE WORK

In order to evaluate the present design of tap lead insulation of a distribution transformer with barrel-type coils and suggest more economic designs, it is necessary to simulate the transient impulse voltage distribution. Simulations were carried out by using the equivalent circuit method proposed by Lewis and Dent. A new accurate and flexible technique has been proposed to calculate lumped inductive components of the equivalent circuits. This technique is suitable for the application to transformers with barrel-type coils. The simulation results of transient voltage distribution have been validated by comparison with test measurement results. The effect of various equivalent circuit models and the effect of tap connections to transient voltage distribution have been examined. According to the RSG measurement and simulation results, the transient impulse voltage distribution have following characteristics:

- Impulse voltage input causes oscillations in transformer coils. These oscillations attenuate significantly after about 100 microseconds.
- During the first 100 microseconds period, the transient voltage distribution in transformer winding is very non-uniform, that is, in the first 2 ~ 3 microseconds, the windings of the coil No. 1 near the input end experience relatively large voltage drop, while at about 45 microseconds, the oscillations in the coils cause high voltage drop inside the coil No.2.
- The potentials of the tap leads and the adjacent layers are almost identical, except that there is some potential difference between taps E, F and their adjacent layers.
- The transient voltage distribution of chopped lightning wave is even more non-uniform than that of full lightning wave in coil No. 1.
 - By modification of the capacitive components in the equivalent networks to

reflect the effect of oil impregnation, the transient impulse voltage distribution under actual working condition were simulated. By using the simulation results as boundary conditions, field stress in the insulation near the input end and tap lead insulation were evaluated under over-voltage condition by quasi-static field analysis. The results show that the insulation design of the transformer coils is safe; tap lead insulation design with three layers of paper is conservative and it can be improved. Two modified designs have been suggested. One includes two layers of paper around the tap leads, the other includes only one layer of paper. The simulation results show that the transient impulse voltage distributions do not change significantly when the tap lead insulation design is modified. The field stress analysis shows that the field stress in the insulation of the modified designs at the location of the tap lead is still well below the stress at the input end. In view of the factor of safety built into the field analysis. Therefore, the tap lead insulation can be reduced to two layers of paper or only one layer of paper without any problem from an electrical point of view.

Although, the conclusions are drawn based upon consideration of a specific distribution transformer, all the methods used in this research work are general in the sense that they may be used to evaluate insulation levels in other types of transformer with barrel type coils.

For future research, the effect of iron core on the lumped inductive components of the equivalent circuit of transformer with barrel-type coils should be investigated. The transient impulse voltage distribution caused by the current surge entering the low voltage side and corresponding tap lead insulation stress evaluation are worth ascertaining by both test measurement and simulation method [18].

REFERENCE

(In Chronological Order)

PAPERS

- [1] P.A. Abetti, "Transformer Models for the Determination of Transient Voltage", AIEE Transactions on Power Apparatus and systems, June, 1953, pp. 468-480.
- [2] T.J. Lewis, "The Transient Behaviour of Ladder Networks of The Type Representing Transformer and Machine Windings", Proceedings IEE, Vol. 101, pt. II, 1954, pp. 541-553.
- [3] J.H. McWhirter, C.D. Fahrnkopf and J.H. Steele, "Determination of Impulse Stresses within Transformer Windings by Computers", AIEE Transactions on Power Apparatus and Systems, February 1957, pp. 1267-1274.
- [4] B.M. Dent, E.R. Hartill and J.G. Miles, "A Method of Analysis of Transformer Impulse Voltage Distribution Using a Digital Computer", Proceedings IEE, Vol. 105, pt. A, 1958, pp.445-454.
- [5] G.M. Stein, "A Study of The Initial Surge Distribution in Concentric Transformer Windings", IEEE Transactions on Power Apparatus and Systems, Vol. PAS- 83, 1964, pp. 877-893.
- [6] K. Okuyama, "A Numerical Analysis of Impulse Voltage Distribution in Transformer Windings", J. Inst. Elec. Engrs., Japan, Vol. 87, No.1, 1967, pp. 80-88.
- [7] Y. Kawaguchi, "Calculation of Circuit Constants for Computing Internal Oscillating Voltage in Transformer Windings", J. Inst. Elec. Engrs., Japan, Vol. 89, No.3, 1969, pp. 44-53.
- [8] H.W. Dommel, "Digital Computer Solution of Electromagnetic Transients in Single and Multiphase Networks", IEEE Transactions on Power Apparatus

- and Systems, Vol. PAS-88, No.4, April 1969, pp. 388-396.
- [9] P.I. Fergestad, T. Henriksen, "Transient Oscillations in Multiwinding Transformers", IEEE Transactions on Power Apparatus and Systems, Vol. PAS-93, March/April 1974, pp. 500-509.
- [10] P.I. Fergestad, T. Henriksen, "Inductances for The Calculation of Transient Oscillation in Transformers", IEEE Transactions on Power Apparatus and Systems, Vol. PAS-93, March/April 1974, pp. 510-516.
- [11] A. Miki, T. Hosoya and K. Okuyama, "A Calculation Method for Impulse Voltage Distribution and Transferred Voltage in Transformer Windings", IEEE Transactions on Power Apparatus and Systems, Vol. PAS-97, No. 3, May/June 1978, pp. 930-939.
- [12] R. Kasturi, G.R.K. Murty, "Computation of Impulse-Voltage Stress in Transformer Windings", Proceedings IEE, Vol. 126, May 1979, pp. 397-400.
- [13] C.J. McMillen, C.W. Schoendube and D.W. Caverly, "Susceptibility of Distribution Transformers to Low-Voltage Side Lightning Surge Failure", IEEE Transactions on Power Apparatus and Systems, Vol. PAS-101, No.9, September 1982, pp. 3457-3470.
- [14] D.J. Wilcox, M. Conlon and W.G. Hurley, "Calculation of self and mutual impedances for coils on ferromagnetic cores", IEE Proceedings, Vol. 135, Pt. A, No.7, Sept. 1988, pp. 470-476.
- [15] D.J. Wilcox, W.G. Hurley and M. Conlon, "Calculation of self and mutual impedances between sections of transformer windings", IEE Proceedings, Vol. 136, Pt. C, No. 5, Sept. 1989, pp. 308-314.
- [16] E.E. Mombello, G. Ratta and J. F. Rivera, "Study of Internal Stress in Transformer Windings Due to Lightning Transient Phenonmena", Electric Power Systems Research, 21 (1991)pp. 161-172.
- [17] Francisco de Leon, Adam Semlyen, "Efficient Calculation of Elementary

- Parameters of Transformers", Transactions on Power Delivery, Vol. 7 No. 1, Jan. 1992, pp 376-382.
- [18] IEEE Transformers Committee and Dielectric Tests Subcommittee, "Secondary (Low-Side) Surge in Distribution Transformers", Task Force Report, IEEE Transactions on Power Delivery, Vol. 7, No.2, April 1992, pp. 746-756.

BOOKS and OTHERS

- [19] F.W. Grover, "Inductance Calculations: Working Formulae and Tables", Dover Publications, Inc. 1946.
- [20] L.F. Blume, A. Boyajian, G. Camilli, T.C. Lennox, S. Minneci and V.M. Montsinger, "Transformer Engineering", John Wiley & Sons, Inc., 1951.
- [21] J. Staudhammer, "Circuit Analysis by Digital Computer", Prentice-Hall, Inc. Englewood Cliffs, N.J., 1975.
- [22] R. Feinberg, "Modern Power Transformer Practice", John Wiley & Sons, Inc. 1979.
- [23] L.M. Magid, "Electromagnetic Fields, Energy, and Waves", Robert E. Krieger Publishing Company, Malabar, Florida, 1981.
- [24] J.E. Akin, "Application and Implementation of Finite Element Methods", Academic Press, 1982.
- [25] W.E. Kazibwe, "Impulse Voltage Distribution and Transfer in Mineral Oil and RTEMP-Filled Barrel-Type Transformers", M.Sc Thesis, The University of Manitoba, 1984.
- [26] E. Kuffel, W.S. Zaengl, "High-Voltage Engineering", Pergamon Press, 1984
- [27] Canadian Standards Association, "Single-Phase and Three-Phase Distribution Transformers, Types ONAN and LNAN", A National Standard of Canada, CAN/CSA-C2-M91, 1991
- [28] ANSYS User's Manual, Swanson Analysis Systems, Inc. Houston, PA. 1994.

APPENDIX A.

Curve Fitting and Sectionalization Programs (Partial)

```
PROGRAM read
* USE TO READ MEASURING DATA POINTS AND OUTPUT STEPPED
* LINE END POINTS AND SHOWING CURVE DATA POINTS
      PROGRAM read
     PARAMETER (C1X=0.0)
      INTEGER DIV, M, NUM
     PARAMETER (M=4, NUM=5)
     DOUBLE PRECISION T1X(NUM), T1Y(NUM), T2X(NUM), T2Y(NUM)
     DOUBLE PRECISION T3X(NUM), T3Y(NUM), T4X(NUM), T4Y(NUM)
     DOUBLE PRECISION A1(M), A2(M), A3(M), A4(M)
     DOUBLE PRECISION STX(1000), STY(1000), SHX(1000), SHY(1000)
     REAL SHXX(1000), SHYY(1000)
     REAL STXX(1000), STYY(1000)
     DOUBLE PRECISION XAVG(4)
     DOUBLE PRECISION WID
     DOUBLE PRECISION TMLEN, TTLEN
     PRINT *, 'INPUT LINE DIVISION VALUE'
     READ(*,10) DIV
 10
    FORMAT(I3)
     OPEN(UNIT=10, FILE='input1/length.txt')
*23456789012345678901234567890123456789912345678901234567890
********* LAYER No.1
     OPEN (UNIT=11, FILE='input1/md11.txt')
     OPEN(UNIT=12, FILE='input1/md12.txt')
     OPEN(UNIT=13, FILE='input1/md13.txt')
     OPEN(UNIT=14, FILE='input1/md14.txt')
     OPEN(UNIT=21,FILE='input2/stp1.txt')
     OPEN(UNIT=22,FILE='input31/c1stp1.txt')
     OPEN(UNIT=31,FILE='output/shc1.txt')
     OPEN(UNIT=32, FILE='output/sttp1.txt')
     XX=0
     DO 100 I=1, NUM
        READ(11,110) T1X(I),T1Y(I)
110
        FORMAT (D12.4, 5X, D12.4)
        XX=XX+T1X(I)
100 CONTINUE
     XAVG(1) = XX/NUM
```

```
XX=0
     DO 120 I=1, NUM
        READ(12,130) T2X(I),T2Y(I)
130
        FORMAT (D12.4, 5X, D12.4)
        WID=T2X(NUM)
        XX=XX+T2X(I)
120 CONTINUE
     XAVG(2) = XX/NUM
     XX=0
     DO 140 I=1, NUM
        READ(13,150) T3X(I),T3Y(I)
        FORMAT (D12.4,5X,D12.4)
150
        XX=XX+T3X(I)
140 CONTINUE
     XAVG(3) = XX/NUM
     XX=0
     DO 160 I=1, NUM
        READ(14,170) T4X(I), T4Y(I)
170
        FORMAT (D12.4, 5X, D12.4)
        XX=XX+T4X(I)
160 CONTINUE
     XAVG(4) = XX/NUM
     CALL fit (T1X, T1Y, T2X, T2Y, T3X, T3Y, T4X, T4Y,
    $NUM, M, STX, STY, SHX, SHY, XAVG, DIV, WID, A1, A2, A3, A4)
     DO 180 I=1,8*DIV+6
        STXX(I) = STX(I)
        STYY(I)=STY(I)
        WRITE(32,182) STXX(I)+C1X,STYY(I)
        FORMAT(E10.4,5X,E10.4)
182
        WRITE(21,184) STX(I), STY(I)
        WRITE(22,184) STX(I)+C1X,STY(I)
184
        FORMAT (D16.10, 5X, D16.10)
180 CONTINUE
     DO 186 I=1,803
        SHXX(I) = SHX(I)
        SHYY(I) = SHY(I)
        WRITE(31,188) SHXX(I), SHYY(I)
188
        FORMAT (E10.4,5X,E10.4)
186
    CONTINUE
     TTLEN=0.0
     DO 190 I=1,803-1
        TMLEN=0.0
        TMLEN=SQRT((SHX(I+1)-SHX(I))*(SHX(I+1)-SHX(I))+
    $(SHY(I+1)-SHY(I))*(SHY(I+1)-SHY(I)))
        TTLEN=TTLEN+TMLEN
190 CONTINUE
```

```
WRITE(10,*) 1, TTLEN
      CLOSE(11)
      CLOSE(12)
      CLOSE(13)
      CLOSE(14)
      CLOSE(21)
      CLOSE(22)
      CLOSE(31)
      CLOSE(32)
****** END OF LAYER No.1
      CLOSE(10)
      STOP
      END
 SUBROUTINE fit
      SUBROUTINE fit (M1X, M1Y, M2X, M2Y, M3X, M3Y, M4X, M4Y,
     $NUM, M, STX, STY, SHX, SHY, XAVG, DIV, WID, A1, A2, A3, A4)
      DOUBLE PRECISION M1x(NUM), M2x(NUM), M3x(NUM), M4x(NUM)
      DOUBLE PRECISION M1Y(NUM), M2Y(NUM), M3Y(NUM), M4Y(NUM)
      DOUBLE PRECISION STXX(1000), STYY(1000)
      DOUBLE PRECISION STX(1000), STY(1000)
      DOUBLE PRECISION SHX(1000), SHY(1000)
      DOUBLE PRECISION XAVG(4), WID
      DOUBLE PRECISION X, Y, Y1, Y2
      DOUBLE PRECISION A1(M), A2(M), A3(M), A4(M)
      INTEGER I, J, NUM, DIV, TNUM
* CALL SUBROUTINE pair TO DETERMINE THE COEFFICIENTS
* OF FITTING FUNCTION
                                         5
*23456789012345678901234567890123456789912345678901234567890
      CALL pcir(M1X, M1Y, A1, NUM, M)
      CALL pcir(M2X, M2Y, A2, NUM, M)
      CALL pcir (M3X, M3Y, A3, NUM, M)
      CALL pcir(M4X, M4Y, A4, NUM, M)
                    3
*23456789012345678901234567890123456789912345678901234567890
      DO 10 I=1,201
      X=WID*(I-201)/200
      SHX(I)=X
      Y1=1
      Y = A1(1)
      DO 20 J=2,M
         Y1=Y1*(X-XAVG(1))
         Y2=A1(J)*Y1
```

```
Y=Y+Y2
  20 CONTINUE
      SHY(I)=Y
  10 CONTINUE
                             4
*23456789012345678901234567890123456789912345678901234567890
      DO 30 I=202,401
      X=WID*(I-201)/200
      SHX(I)=X
     Y1 = 1
      Y=A2(1)
      DO 40 J=2,M
         Y1=Y1*(X-XAVG(2))
        Y2=A2(J)*Y1
         Y=Y+Y2
  40 CONTINUE
      SHY(I)=Y
  30 CONTINUE
                   3
                             4
                                        5
*23456789012345678901234567890123456789912345678901234567890
      DO 50 I=402,602
     X=WID*(602-I)/200
      SHX(I)=X
     Y1 = 1
     Y = A3(1)
     DO 60 J=2,M
        Y1=Y1*(X-XAVG(3))
         Y2=A3(J)*Y1
         Y=Y+Y2
  60 CONTINUE
      SHY(I)=Y
  50 CONTINUE
*23456789012345678901234567890123456789912345678901234567890
     DO 70 I=603,802
     X=WID*(602-I)/200
     SHX(I)=X
     Y1 = 1
     Y = A4(1)
     DO 80 J=2,M
        Y1=Y1*(X-XAVG(4))
        Y2=A4(J)*Y1
        Y=Y+Y2
  80 CONTINUE
      SHY(I)=Y
  70 CONTINUE
* CONNECTION POINT
      SHX(803) = SHX(1)
      SHY(803) = SHY(1)
```

```
*23456789012345678901234567890123456789912345678901234567890
      DO 100 I=1, (DIV+1)
      X=WID*(I-(DIV+1))/DIV
      STXX(I)=X
      Y1 = 1
     Y = A1(1)
      DO 110 J=2,M
        Y1=Y1*(X-XAVG(1))
         Y2=A1(J)*Y1
        Y=Y+Y2
  110 CONTINUE
      STYY(I)=Y
  100 CONTINUE
                  3
*23456789012345678901234567890123456789912345678901234567890
     DO 120 I = (DIV + 2), (2*DIV + 1)
     X=WID*(I-(DIV+1))/DIV
      STXX(I)=X
      Y1 = 1
     Y = A2(1)
     DO 130 J=2,M
        Y1=Y1*(X-XAVG(2))
        Y2=A2(J)*Y1
        Y=Y+Y2
  130 CONTINUE
      STYY(I)=Y
  120 CONTINUE
                   3 4
*23456789012345678901234567890123456789912345678901234567890
     DO 140 I=(2*DIV+2), (3*DIV+2)
     X=WID*((3*DIV+2)-I)/DIV
     STXX(I)=X
     Y1 = 1
     Y = A3(1)
     DO 150 J=2,M
        Y1=Y1*(X-XAVG(3))
        Y2 = A3(J) * Y1
        Y=Y+Y2
  150 CONTINUE
      STYY(I)=Y
  140 CONTINUE
                   3
                             4
                                       5
*23456789012345678901234567890123456789912345678901234567890
     DO 160 I=(3*DIV+3), (4*DIV+2)
     X=WID*((3*DIV+2)-I)/DIV
      STXX(I)=X
     Y1 = 1
     Y = A4(1)
     DO 170 J=2,M
```

```
Y1=Y1*(X-XAVG(4))
        Y2=A4(J)*Y1
        Y=Y+Y2
 170 CONTINUE
      STYY(I)=Y
 160 CONTINUE
         2 3 4 5 6
*23456789012345678901234567890123456789912345678901234567890
     STXX(4*DIV+3)=STXX(1)
     STYY(4*DIV+3)=STYY(1)
* TOTAL NUMBER OF STEP POINTS
     TNUM=4*DIV+3
     CALL step (STXX, STYY, TNUM, STX, STY)
     RETURN
     END
 SUBROUTINE pair
      CURVE FITTING USING LEAST SQUARE METHOD TO N DATA POINTS
      WITH POLYNOMINAL FUNCTION
      SUBROUTINE NAME: PCIR
      SUBROUTINE pcir(X,Y,A,N,M,DT1,DT2,DT3)
         2 3 4 5
*23456789012345678901234567890123456789912345678901234567890
     SUBROUTINE pcir(X,Y,A,N,M)
     DIMENSION X(N), Y(N), A(M), S(20), T(20), B(20)
     DOUBLE PRECISION X, Y, A, S, T, B, DT1, DT2, DT3, Z, D1, P, C, D2, G,
    $Q,DT
     z=0.0
     DO 10 I=1, N
10
    Z=Z+X(I)/N
     B(1) = 1.0
     D1=N
     P = 0.0
     C = 0.0
     DO 20 I=1,N
        P=P+(X(I)-Z)
        C=C+Y(I)
20 CONTINUE
     C=C/D1
     P=P/D1
     A(1) = C*B(1)
     IF (M.GT.1) THEN
        T(2)=1.0
        T(1) = -P
        D2=0.0
        C = 0.0
```

```
G=0.0
        DO 30 I=1,N
           Q=X(I)-Z-P
           D2=D2+Q*Q
           C=Y(I)*Q+C
           G=(X(I)-Z)*Q*Q+G
30
        CONTINUE
        C=C/D2
        P=G/D2
        Q=D2/D1
        D1=D2
        A(2) = C * T(2)
        A(1) = C * T(1) + A(1)
     END IF
     DO 100 J=3,M
        S(J)=T(J-1)
        S(J-1) = -P*T(J-1) + T(J-2)
        IF ( J.GE.4 ) THEN
           DO 40 K=J-2,2,-1
40
               S(K) = -P*T(K) + T(K-1) - Q*B(K)
        END IF
        S(1) = -P*T(1) - Q*B(1)
        D2 = 0.0
        C = 0.0
        G=0.0
        DO 70 I=1, N
           Q=S(J)
           DO 60 K=J-1,1,-1
           Q=Q*(X(I)-Z)+S(K)
60
           D2=D2+Q*Q
           C=Y(I)*Q+C
           G=(X(I)-Z)*Q*Q+G
70
        CONTINUE
        C=C/D2
        P=G/D2
        Q=D2/D1
        D1=D2
        A(J)=C*S(J)
        T(J) = S(J)
        DO 80 K=J-1,1,-1
           A(K) = C*S(K) + A(K)
           B(K) = T(K)
           T(K) = S(K)
80
        CONTINUE
100 CONTINUE
     DT1=0.0
     DT2=0.0
     DT3=0.0
     DO 120 I=1,N
       Q=A(M)
       DO 110 K=M-1,1,-1
110
          Q=Q*(X(I)-Z)+A(K)
       DT=Q-Y(I)
       IF ( ABS(DT).GT.DT3 ) DT3=ABS(DT)
```

```
DT1=DT1+DT*DT
        DT2=DT2+ABS(DT)
120 CONTINUE
      RETURN
      END
* SUBROUTINE step
      SUBROUTINE step(XX, YY, NUM, SXX, SYY)
      DIMENSION XX(NUM), YY(NUM), SXX(1000), SYY(1000)
      DOUBLE PRECISION XX, YY, SXX, SYY
      INTEGER NUM, I
              3
*23456789012345678901234567890123456789912345678901234567890
      SXX(1) = XX(1)
      SYY(1) = YY(1)
      SXX(2)=XX(1)
      SYY(2) = 0.5*(YY(1)+YY(2))
      DO 100 I=2, NUM-1
         SXX(2*I-1)=XX(I)
         SYY(2*I-1)=0.5*(YY(I-1)+YY(I))
         SXX(2*I)=XX(I)
         SYY(2*I) = 0.5*(YY(I) + YY(I+1))
100 CONTINUE
      SXX(2*NUM-1)=XX(NUM)
      SYY(2*NUM-1)=0.5*(YY(NUM-1)+YY(NUM))
      SXX(2*NUM)=XX(NUM)
      SYY (2*NUM) = YY (NUM)
      RETURN
      END
```

A-8

APPENDIX B.

Equivalent Circuit Parameters Calculation Programs (Partial)

```
* PROGRAM call
* USE TO CALCULATE THE SELF INDUCTANCE, CAPACITANCE AND
* RESISTANCE OF DIFFERENT LAYER/SUB-LAYER
     PROGRAM cal1
     COMMON /COM1/ PI,E0,ER,MU
     COMMON /COM2/ SIGMA, FREQ
     COMMON /COM3/ RADIUS, PITCH
     PARAMETER (DIV=5, NS=13)
     DOUBLE PRECISION PI, E0, ER, MU, SIGMA, FREQ, RADIUS, PITCH
     DOUBLE PRECISION DX(1000), DY(1000), DZ(1000)
     DOUBLE PRECISION TL, TC, TR
     INTEGER NUM, TMP, I
     INTEGER NUMZ (50)
     NUM=8*DIV+6
 INPUT THE NUMBER OF TURNS IN EACH SECTION
      OPEN(UNIT=5, FILE='input1/section.txt')
      DO 50 I=1, NS
         READ(5,*) NUMZ(I)
50
      CONTINUE
      CLOSE(5)
* INPUT THE NUMBER OF TURNS IN EACH LAYER
     OPEN(UNIT=10, FILE='output/p2s1s11-5.txt')
******* START LAYER No.1
* 2 3 4
*23456789012345678901234567890123456789912345678901234567890
     TL=0.0
     TC=0.0
     TR=0.0
     OPEN(UNIT=11, FILE='input1/mz1.txt')
     DO 100 I=1, NUMZ(1)
        READ(11,110) DZ(I)
110
        FORMAT(D12.4)
100 CONTINUE
     CLOSE(11)
     OPEN(UNIT=12, FILE='input2/stp1.txt')
     DO 120 I=1, NUM
```

```
READ(12,130) DX(I),DY(I)
        FORMAT (D16.10,5X,D16.10)
 130
120 CONTINUE
     CLOSE(12)
     CALL slcr(DX, DY, DZ, TL, TC, TR, NUM, NUMZ(1))
     TMP=1
     WRITE(10,140) TMP, TL, TC, TR
140 FORMAT(I3,5X,D16.10,5X,D16.10,5X,D16.10)
******* END LAYER No.1
     CLOSE(10)
     STOP
     END
* END OF PROGRAM cal1
* PROGRAM cal2
* USE TO CALCULATE MUTUAL INDUCTANCE BETWEEN TWO DIFFERENT SECTIONS
                    3 4
*23456789012345678901234567890123456789012345678901234567890
     PROGRAM cal2
     PARAMETER (DIV=5, NS=13)
     DOUBLE PRECISION DX(50,200), DY(50,200), DZ(50,300)
     DOUBLE PRECISION ML(50,50)
     DOUBLE PRECISION LLL, LL
     INTEGER I, J, K, L, M, N
     INTEGER NUM
     INTEGER NUMZ (50)
     NUM=8*DIV+6
      OPEN (UNIT=5, FILE='input1/section.txt')
      DO 1000 I=1,NS
      READ(5,*) NUMZ(I)
1000 CONTINUE
      CLOSE(5)
     OPEN(UNIT=10,FILE='output/p2s1ml1-5.txt')
     OPEN(UNIT=11, FILE='input2/stp1.txt')
     OPEN(UNIT=12, FILE='input2/stp2.txt')
     OPEN(UNIT=13, FILE='input2/stp3.txt')
     OPEN(UNIT=14,FILE='input2/stp4.txt')
     OPEN(UNIT=15, FILE='input2/stp5.txt')
     OPEN (UNIT=16, FILE='input2/stp6.txt')
     OPEN(UNIT=17,FILE='input2/stp7.txt')
     OPEN(UNIT=18, FILE='input2/stp8.txt')
     OPEN(UNIT=19,FILE='input2/stp9.txt')
     OPEN(UNIT=20, FILE='input2/stp10.txt')
     OPEN(UNIT=21, FILE='input2/stp11.txt')
```

```
OPEN(UNIT=22, FILE='input2/stp12.txt')
      OPEN(UNIT=23, FILE='input2/stp13.txt')
*23456789012345678901234567890123456789012345678901234567890
      DO 1010 I=1,NS
         DO 1020 J=1, NUM
            II=I+10
            READ(II,1030) DX(I,J),DY(I,J)
            FORMAT (D16.10, 5X, D16.10)
1030
1020
         CONTINUE
1010 CONTINUE
      CLOSE(11)
      CLOSE(12)
      CLOSE(13)
      CLOSE(14)
      CLOSE(15)
      CLOSE(16)
      CLOSE(17)
      CLOSE(18)
      CLOSE(19)
      CLOSE(20)
      CLOSE(21)
      CLOSE(22)
      CLOSE(23)
      OPEN(UNIT=11, FILE='input1/mz1.txt')
      OPEN(UNIT=12, FILE='input1/mz2.txt')
      OPEN(UNIT=13, FILE='input1/mz3.txt')
      OPEN(UNIT=14, FILE='input1/mz4.txt')
      OPEN(UNIT=15, FILE='input1/mz5.txt')
      OPEN(UNIT=16,FILE='input1/mz6.txt')
      OPEN(UNIT=17, FILE='input1/mz7.txt')
      OPEN(UNIT=18, FILE='input1/mz8.txt')
      OPEN(UNIT=19, FILE='input1/mz9.txt')
      OPEN(UNIT=20, FILE='input1/mz10.txt')
      OPEN(UNIT=21, FILE='input1/mz11.txt')
      OPEN(UNIT=22, FILE='input1/mz12.txt')
      OPEN(UNIT=23, FILE='input1/mz13.txt')
                   3
                              4
                                        5
*23456789012345678901234567890123456789012345678901234567890
      DO 1040 I=1,NS
         DO 1050 J=1,NUMZ(I)
            II=I+10
            READ(II,1060) DZ(I,J)
            FORMAT (D12.4)
1060
        CONTINUE
1050
 1040 CONTINUE
      CLOSE (11)
      CLOSE(12)
      CLOSE (13)
      CLOSE (14)
```

```
CLOSE(15)
      CLOSE(16)
      CLOSE(17)
      CLOSE(18)
      CLOSE(19)
      CLOSE(20)
      CLOSE(21)
      CLOSE(22)
      CLOSE(23)
*23456789012345678901234567890123456789012345678901234567890
      DO 1100 I=1,NS-1
         DO 1110 L=(I+1), NS
            LL=0.0
            DO 1120 N=1, NUMZ(L)
               DO 1130 M=1, NUM-1
                  DO 1140 K=1, NUMZ(I)
                     DO 1150 J=1, NUM-1
                        LLL=0.0
                        CALL mutual(DX(I,J),DY(I,J),DZ(I,K),
     DX(I,J+1), DY(I,J+1), DZ(I,K), DX(L,M), DY(L,M), DZ(L,N),
     DX(L,M+1), DY(L,M+1), DZ(L,N), LLL
                        LL=LL+LLL
1150
                     CONTINUE
1140
                  CONTINUE
1130
              CONTINUE
          CONTINUE
1120
              3
*23456789012345678901234567890123456789012345678901234567890
        ML(I,L)=LL
1110
         CONTINUE
1100 CONTINUE
                    3
*23456789012345678901234567890123456789012345678901234567890
      DO 1200 I=1, NS-1
         DO 1210 J=I+1,NS
            WRITE(10,1220) I, J, ML(I,J)
            FORMAT(I3,5X,I3,5X,D16.10)
1220
1210
         CONTINUE
1200 CONTINUE
      CLOSE(10)
      STOP
      END
* SUBROUTINE slcr
* USE TO CALCULATE THE SELF INDUCTANCE, CAPACITANCE AND
* RESISTANCE OF A LAYER/SECTION
      SUBROUTINE slcr(DX, DY, DZ, TL, TC, TR, NUM, NUMZ)
```

```
COMMON /COM1/ PI,E0,ER,MU
      COMMON /COM2/ SIGMA, FREQ
      COMMON /COM3/ RADIUS, PITCH
      DOUBLE PRECISION PI, E0, ER, MU, SIGMA, FREQ, RADIUS, PITCH
      DOUBLE PRECISION DX(NUM), DY(NUM), DZ(NUMZ)
      DOUBLE PRECISION TL, TC, TR
      DOUBLE PRECISION SL, SLL, SELFL, ML, MLL
      DOUBLE PRECISION CC, TLEN, LEN
      DOUBLE PRECISION RR, TTR
      INTEGER I, J, K, L, NUM, NUMZ
      TL=0.0
      TR=0.0
                                        5
                              4
*23456789012345678901234567890123456789912345678901234567890
      SLL=0.0
      DO 500 I=1, NUM-1
         CALL self(DX(I),DY(I),DZ(1),DX(I+1),DY(I+1),DZ(1),SL)
 500 CONTINUE
      SELFL=SLL*NUMZ
                                        5
*23456789012345678901234567890123456789912345678901234567890
     ML=0.0
     MLL=0.0
      DO 510 K=1, NUMZ
         DO 520 I=1, NUM-1
            DO 530 L=1, NUMZ
               DO 540 J=1, NUM-1
          CALL mutual(DX(I), DY(I), DZ(K), DX(I+1), DY(I+1), DZ(K),
     DX(J), DY(J), DZ(L), DX(J+1), DY(J+1), DZ(L), ML
                  MLL=MLL+ML
 540
               CONTINUE
            CONTINUE
 530
 520
        CONTINUE
 510 CONTINUE
      TL=SELFL+MLL
                    3
                                        5
                              4
*23456789012345678901234567890123456789912345678901234567890
     LEN=0.0
      CC = 0.0
      TC=0.0
      DO 550 I=1, NUM-1
         TLEN=SQRT ((DX(I)-DX(I+1))*(DX(I)-DX(I+1))+
     (DY(I)-DY(I+1))*(DY(I)-DY(I+1))
         LEN=LEN+TLEN
 550 CONTINUE
```

```
CALL cap1 (NUMZ, LEN, CC)
      TC=CC
                              4
*23456789012345678901234567890123456789912345678901234567890
      TTR=0.0
      DO 600 I=1, NUM-1
         CALL res(DX(I),DY(I),DZ(1),DX(I+1),DY(I+1),DZ(1),RR)
 600 CONTINUE
      TR=NUMZ*TTR
       WRITE(8,610) TL, TC, TR
* 610 FORMAT(D16.10,5X,D16.10,5X,D16.10)
      RETURN
      END
* SUBROUTINE self
      SUBROUTINE self(DX1,DY1,DZ1,DX2,DY2,DZ2,L)
      COMMON /COM1/ PI,E0,ER,MU
      COMMON /COM2/ SIGMA, FREQ
      COMMON /COM3/ RADIUS, PITCH
      DOUBLE PRECISION PI, E0, ER, MU, SIGMA, FREQ, RADIUS, PITCH
      DOUBLE PRECISION L, LEN, DX1, DY1, DZ1, DX2, DY2, DZ2
*23456789012345678901234567890123456789912345678901234567890
      IF ((DX1 .EQ. DX2) .AND. (DY1 .EQ. DY2)) THEN
         L=0.
         LEN=SQRT((DX2-DX1)*(DX2-DX1)+(DY2-DY1)*(DY2-DY1)+
     $(DZ2-DZ1)*(DZ2-DZ1))
         L=0.002*LEN*(LOG(2*LEN/RADIUS)-0.75)
      END IF
      RETURN
      END
* SUBROUTINE mutual
* USE TO CALCULATE THE MUTUAL INDUCTANCE
* OF TWO STRAIGHT LINE SEGMENTS
      SUBROUTINE mutual (DX11, DY11, DZ11, DX12, DY12, DZ12,
     $DX21, DY21, DZ21, DX22, DY22, DZ22, MUTL)
                    3
*23456789012345678901234567890123456789912345678901234567890
```

```
DOUBLE PRECISION DX11, DY11, DZ11, DX12, DY12, DZ12
     DOUBLE PRECISION DX21, DY21, DZ21, DX22, DY22, DZ22
     DOUBLE PRECISION LEN1, LEN2, DIS, DELTA
     DOUBLE PRECISION MUTL, ALPH, BELTA, GARMA
     DOUBLE PRECISION BIGX1, BIGY1, BIGX2, BIGY2
     DOUBLE PRECISION SMAX1, SMAY1, SMAX2, SMAY2
     DOUBLE PRECISION SIGN
*23456789012345678901234567890123456789912345678901234567890
     IF (( DX11 .EQ. DX12) .AND. ( DX21 .EQ. DX22 )) THEN
         IF ((DX11*DX21) .GT. 0 ) THEN
           SIGN=1.0
        ELSE
           SIGN=-1.0
        END IF
        LEN1=ABS (DY11-DY12)
        LEN2=ABS (DY21-DY22)
                  3
                                      5
                            4
*23456789012345678901234567890123456789912345678901234567890
          IF ( DZ11 .EQ. DZ21 ) THEN
             DIS=ABS(DX11-DX21)
          ELSE
            DIS=SQRT((DX11-DX21)*(DX11-DX21)+(DZ11-DZ21)*
     $(DZ11-DZ21))
          END IF
         2 3 4
*23456789012345678901234567890123456789912345678901234567890
          IF ( DIS .EQ. 0. ) THEN
             MUTL=0.0
             RETURN
          ELSE
             CONTINUE
          END IF
                  3
*23456789012345678901234567890123456789912345678901234567890
          IF ( DY11 .GT. DY12 ) THEN
             BIGY1=DY11
             SMAY1=DY12
          ELSE
             BIGY1=DY12
             SMAY1=DY11
          END IF
          IF ( DY21 .GT. DY22 ) THEN
             BIGY2=DY21
             SMAY2=DY22
          ELSE
             BIGY2=DY22
             SMAY2=DY21
          END IF
```

```
IF ( BIGY1 .GT. BIGY2 ) THEN
             DELTA=SMAY1-BIGY2
           ELSE IF ( BIGY2 .GT. BIGY1 ) THEN
                   DELTA=SMAY2-BIGY1
           ELSE IF ( SMAY1 .GT. SMAY2 ) THEN
                  DELTA=-LEN1
           ELSE
                   DELTA=-LEN2
           END IF
*23456789012345678901234567890123456789912345678901234567890
      ALPH=LEN1+LEN2+DELTA
     BELTA=LEN1+DELTA
     GARMA=LEN2+DELTA
      MUTL=0.001*(ALPH*LOG((ALPH/DIS)+SQRT((ALPH/DIS)*(ALPH/
     $DIS)+1))-BELTA*LOG((BELTA/DIS)+SQRT((BELTA/DIS)*(BELTA/
     $DIS)+1))-GARMA*LOG((GARMA/DIS)+SQRT((GARMA/DIS)*(GARMA/
    $DIS)+1))+DELTA*LOG((DELTA/DIS)+SQRT((DELTA/DIS)*(DELTA/
    SDIS)+1))-
    $SQRT(ALPH*ALPH+DIS*DIS)+
    $SQRT(BELTA*BELTA+DIS*DIS)+
    $SQRT(GARMA*GARMA+DIS*DIS) -
    $SQRT(DELTA*DELTA+DIS*DIS))*SIGN
     RETURN
*23456789012345678901234567890123456789912345678901234567890
     ELSE IF (( DY11.EQ.DY12).AND.( DY21.EQ.DY22 )) THEN
              IF ((DY11*DY21) .GT. 0 ) THEN
                 SIGN=1.0
              ELSE
                 SIGN=-1.0
              END IF
              LEN1=ABS (DX11-DX12)
             LEN2=ABS(DX21-DX22)
                    3
                                        5
*23456789012345678901234567890123456789912345678901234567890
             IF ( DZ11 .EQ. DZ21 ) THEN
                DIS=ABS(DY11-DY21)
             ELSE
                DIS=SQRT((DY11-DY21)*(DY11-DY21)+(DZ11-DZ21)*
     $(DZ11-DZ21))
            END IF
           IF ( DIS .EQ. 0. ) THEN
             MUTL=0.0
             RETURN
           ELSE
```

```
CONTINUE
           END IF
                   3
                                       5
                             4
*23456789012345678901234567890123456789912345678901234567890
           IF ( DX11 .GT. DX12 ) THEN
              BIGX1=DX11
              SMAX1=DX12
           ELSE
              BIGX1=DX12
              SMAX1=DX11
           END IF
           IF ( DX21 .GT. DX22 ) THEN
              BIGX2=DX21
              SMAX2=DX22
           ELSE
             BIGX2=DX22
              SMAX2=DX21
           END IF
           IF ( BIGX1 .GT. BIGX2 ) THEN
             DELTA=SMAX1-BIGX2
           ELSE IF ( BIGX2 .GT. BIGX1 ) THEN
                   DELTA=SMAX2-BIGX1
           ELSE IF ( SMAX1 .GT. SMAX2 ) THEN
                   DELTA=-LEN1
           ELSE
                   DELTA=-LEN2
           END IF
                    3
                                        5
*23456789012345678901234567890123456789912345678901234567890
      ALPH=LEN1+LEN2+DELTA
     BELTA=LEN1+DELTA
     GARMA=LEN2+DELTA
      MUTL=0.001*(ALPH*LOG((ALPH/DIS)+SQRT((ALPH/DIS)*(ALPH/
     $DIS)+1))-BELTA*LOG((BELTA/DIS)+SQRT((BELTA/DIS)*(BELTA/
     $DIS)+1))-GARMA*LOG((GARMA/DIS)+SQRT((GARMA/DIS)*(GARMA/
     $DIS)+1))+DELTA*LOG((DELTA/DIS)+SQRT((DELTA/DIS)*(DELTA/
     $DIS)+1))-
     $SQRT(ALPH*ALPH+DIS*DIS)+
     $SQRT(BELTA*BELTA+DIS*DIS)+
     $SQRT(GARMA*GARMA+DIS*DIS)-
     $SQRT(DELTA*DELTA+DIS*DIS))*SIGN
     RETURN
     ELSE
        MUTL=0.0
```

END IF RETURN END

```
* SUBROUTINE cap1
* USED TO CALCULATE THE SELF-CAPACITANCE OF A LAYER/SUB-LAYER
                             4
*23456789012345678901234567890123456789012345678901234567890
      SUBROUTINE cap1 (NUMZ, LEN, SC)
     COMMON /COM1/ PI,E0,ER,MU
     COMMON /COM2/ SIGMA, FREQ
     COMMON /COM3/ RADIUS, PITCH
     DOUBLE PRECISION PI, E0, ER, MU, SIGMA, FREQ, RADIUS, PITCH
     DOUBLE PRECISION LEN, SC
     INTEGER NUMZ
     SC=(E0*ER*2*(RADIUS/100))/((PITCH/100)-2*(RADIUS/100))*
    $((NUMZ-1.0)/(NUMZ*NUMZ))*(LEN/100)
     RETURN
     END
  SUBROUTINE res
* USED TO CALCULATE HIGH FREQUENCY RESISTANCE OF A LINE
SEGMENT
     SUBROUTINE res(DX1,DY1,DZ1,DX2,DY2,DZ2,SR)
     COMMON /COM1/ PI,E0,ER,MU
     COMMON /COM2/ SIGMA, FREQ
     COMMON /COM3/ RADIUS, PITCH
     DOUBLE PRECISION PI, E0, ER, MU, SIGMA, FREQ, RADIUS, PITCH
     DOUBLE PRECISION DX1, DY1, DZ1, DX2, DY2, DZ2, SR
     DOUBLE PRECISION OMEGA, DEEP, AREA, LEN
                   3
*23456789012345678901234567890123456789912345678901234567890
     OMEGA=2.0*PI*FREQ
     DEEP=SQRT(2.0/(OMEGA*MU*SIGMA))
     AREA=2*PI*((RADIUS/100)*(RADIUS/100)-((RADIUS/100)-DEEP)*
     $((RADIUS/100)-DEEP))
     $DZ2) * (DZ1-DZ2))
     SR=LEN/(SIGMA*AREA)
     RETURN
     END
```

APPENDIX C.

Electromagnetic Transient Analysis Program (Partial)

```
* PROGRAM emtp
* USED TO CALCULATE THE TRANSIENT RESPONSE OF A R-L-C NETWORK
                               3
*2345678901234567890123456789012345678901234567890123456789012345
      PROGRAM emtp
* INPUT DATA
      PARAMETER (IBN=185)
      PARAMETER (INN=54)
      PARAMETER (IRRN=29)
      PARAMETER (ICCN=130)
      PARAMETER (ILLN=26)
      PARAMETER (IMLN=325)
      DOUBLE PRECISION AA(INN, IBN), AAT(IBN, INN)
      DOUBLE PRECISION AMR(IRRN, IRRN), AMC(ICCN, ICCN), AML(ILLN, ILLN)
      INTEGER ADR(IRRN), ADC(ICCN), ADL(ILLN)
      DOUBLE PRECISION DELTT
      INTEGER TIS, SN
      DOUBLE PRECISION ZE(IBN, IBN), YB(IBN, IBN)
      DOUBLE PRECISION MR(IRRN, IRRN), MC(ICCN, ICCN), ML(ILLN, ILLN)
      DOUBLE PRECISION TYN (INN, IBN), YN (INN, INN), YNI (INN, INN)
      DOUBLE PRECISION TML (ILLN, ILLN)
      DOUBLE PRECISION TT, SVAL, VG(IBN)
      DOUBLE PRECISION VN(INN), VB(IBN), VE(IBN), CE(IBN), ECS(IBN)
      DOUBLE PRECISION CN1(IBN), CN2(IBN), CN3(IBN), CN4(IBN)
      INTEGER ERROR, TEMPIS (IBN), TEMPJS (IBN)
      DOUBLE PRECISION TVAL1, TVAL2
      DOUBLE PRECISION VCE(ICCN), TCCE(ICCN)
      DOUBLE PRECISION VLE(ILLN), ILE(ILLN), TCL1E(ILLN), TCL2E(ILLN)
      DOUBLE PRECISION VRI(IRRN), VCI(ICCN), VLI(ILLN)
      DOUBLE PRECISION TCRI(IRRN), TCCI(ICCN), TCLI(ILLN)
* INPUT TIME STEP, ITERATION TIMES AND SOURCE TYPE
* SN=1 ---- LIGHTNING WAVE
* SN=2 ---- LIGHTNING CHOPPED WAVE
* SN=3 ---- SINE WAVE
      DELTT=1.0D-8
      TIS=2000
      SN=2
      CALL input (ZE, AA, MR, MC, ML, ADR, ADC, ADL, DELTT, IBN, INN, IRRN,
     $ICCN, ILLN, IMLN)
                              3
*2345678901234567890123456789012345678901234567890123456789012345
```

```
* (1) SETTING ZERO
     DO 100 I=1, INN
        DO 110 J=1, INN
           VNI(I,J)=0.0
110
       CONTINUE
100 CONTINUE
     DO 200 I=1, IRRN
        DO 210 J=1, IRRN
           AMR(I,J)=0.0
210
       CONTINUE
200 CONTINUE
     DO 300 I=1,ICCN
         DO 310 J=1, ICCN
          AMC(I,J)=0.0
310
        CONTINUE
300 CONTINUE
     DO 400 I=1, ILLN
         DO 410 J=1, ILLN
           AML(I,J)=0.0
 410
       CONTINUE
 400 CONTINUE
      DO 500 I=1,INN
        VN(I) = 0.0
500
    CONTINUE
     DO 510 I=1, IBN
       VB(I)=0.0
510 CONTINUE
     DO 520 I=1,IBN
        VE(I)=0.0
520
     CONTINUE
     DO 530 I=1, IBN
       CE(I) = 0.0
 530
    CONTINUE
     DO 540 I=1, IBN
        VG(I) = 0.0
 540 CONTINUE
* END OF (1)
     DO 600 I=1, IBN
         DO 610 J=1, IBN
           YB(I,J) = ZE(I,J)
 610
        CONTINUE
600 CONTINUE
     CALL inv(YB, IBN, ERROR, TEMPIS, TEMPJS)
```

```
CALL tran (AA, AAT, INN, IBN)
      CALL mul (AA, YB, INN, IBN, IBN, TYN)
      CALL mul (TYN, AAT, INN, IBN, INN, YN)
      DO 620 I=1,INN
         DO 630 J=1, INN
            (U,I)MY = (U,I)IMY
630
         CONTINUE
620
     CONTINUE
      CALL inv(YNI, INN, ERROR, TEMPIS, TEMPJS)
      DO 700 I=1, IRRN
            AMR(I,I)=1.0/MR(I,I)
700
     CONTINUE
      DO 800 I=1, ICCN
            AMC(I,I) = (1.0/DELTT)*MC(I,I)
800
     CONTINUE
      DO 900 I=1, ILLN
         DO 910 J=1, ILLN
            TML(I,J)=ML(I,J)
910
         CONTINUE
900
     CONTINUE
      CALL inv(TML, ILLN, ERROR, TEMPIS, TEMPJS)
      TVAL1=DELTT/2.0
      CALL smul(TVAL1, TML, AML, ILLN, ILLN)
* END OF (2)
      OPEN(UNIT=21, FILE='s-oil/c1-ab-p3/node1.txt')
      OPEN(UNIT=22,FILE='s-oil/c1-ab-p3/node3.txt')
      OPEN(UNIT=23, FILE='s-oil/c1-ab-p3/node5.txt')
      OPEN(UNIT=24, FILE='s-oil/c1-ab-p3/node7.txt')
      OPEN(UNIT=25,FILE='s-oil/c1-ab-p3/node9.txt')
      OPEN(UNIT=26, FILE='s-oil/c1-ab-p3/node13.txt')
      OPEN(UNIT=27, FILE='s-oil/c1-ab-p3/node17.txt')
      OPEN(UNIT=28,FILE='s-oil/c1-ab-p3/node21.txt')
      OPEN(UNIT=29, FILE='s-oil/c1-ab-p3/node23.txt')
      OPEN(UNIT=30, FILE='s-oil/c1-ab-p3/node25.txt')
      OPEN(UNIT=31,FILE='s-oil/c1-ab-p3/node27.txt')
      OPEN(UNIT=32,FILE='s-oil/c1-ab-p3/node28.txt')
      OPEN(UNIT=33, FILE='s-oil/c1-ab-p3/node30.txt')
      OPEN(UNIT=34,FILE='s-oil/c1-ab-p3/node32.txt')
      OPEN(UNIT=35,FILE='s-oil/c1-ab-p3/node34.txt')
      OPEN(UNIT=36,FILE='s-oil/c1-ab-p3/node38.txt')
      OPEN(UNIT=37, FILE='s-oil/c1-ab-p3/node42.txt')
      OPEN(UNIT=38,FILE='s-oil/c1-ab-p3/node46.txt')
      OPEN (UNIT=39, FILE='s-oil/c1-ab-p3/node50.txt')
      OPEN(UNIT=40,FILE='s-oil/c1-ab-p3/node54.txt')
      JJ=1
```

```
DO 1000 I=1, TIS
         TT=DELTT* (I-200)
      IF (TT .LT. 0.0) THEN
          SVAL=0.01
         SVAL=0.04
         VG(1) = SVAL
      ELSE
         CALL source (TT, SVAL, SN)
         VG(1) = SVAL
      END IF
         CALL add (VB, VG, IBN, 1, VE)
                      2
                                          4
*2345678901234567890123456789012345678901234567890123456789012345
      CALL eqi (VE, CE, ECS, AMC, AML, ADC, ADL, VCE, TCCE, VLE, ILE,
     STCL1E, TCL2E, IBN, INN, IRRN, ICCN, ILLN)
         CALL mul(YB, VG, IBN, IBN, 1, CN1)
         CALL add(CN1, ECS, IBN, 1, CN2)
         TVAL2=-1.0
         CALL smul(TVAL2, CN2, CN3, IBN, 1)
         CALL mul(AA, CN3, INN, IBN, 1, CN4)
         CALL mul(YNI, CN4, INN, INN, 1, VN)
         JJ=JJ-1
         IF (JJ .EQ. 0) THEN
             WRITE(21,1100) TT, VN(1)
             WRITE(22,1100) TT, VN(3)
             WRITE(23,1100) TT, VN(5)
             WRITE(24,1100) TT, VN(7)
             WRITE(25,1100) TT, VN(9)
             WRITE(26,1100) TT, VN(13)
             WRITE(27,1100) TT, VN(17)
             WRITE(28,1100) TT, VN(21)
             WRITE(29,1100) TT, VN(23)
             WRITE(30,1100) TT, VN(25)
             WRITE(31,1100) TT, VN(27)
             WRITE(32,1100) TT, VN(28)
             WRITE(33,1100) TT, VN(30)
             WRITE(34,1100) TT, VN(32)
             WRITE(35,1100) TT, VN(34)
             WRITE(36,1100) TT, VN(38)
             WRITE(37,1100) TT, VN(42)
             WRITE(38,1100) TT, VN(46)
             WRITE(39,1100) TT, VN(50)
             WRITE(40,1100) TT, VN(54)
1100
            FORMAT (E12.6, 5X, E12.6)
             JJ=4
         ELSE
```

CONTINUE

```
END IF
         CALL mul(AAT, VN, IBN, INN, 1, VB)
          CALL add(VB, VG, IBN, 1, VE)
                      2
                                3
                                                      5
                                            4
*2345678901234567890123456789012345678901234567890123456789012345
      CALL ic(VE, ECS, CE, AMR, AMC, AML, ADR, ADC, ADL, VRI, VCI, VLI,
      $TCRI, TCCI, TCLI, IBN, INN, IRRN, ICCN, ILLN)
 1000 CONTINUE
      CLOSE(21)
      CLOSE(22)
      CLOSE (23)
      CLOSE(24)
      CLOSE (25)
      CLOSE(26)
      CLOSE(27)
      CLOSE(28)
      CLOSE(29)
      CLOSE(30)
      CLOSE(31)
      CLOSE (32)
      CLOSE(33)
      CLOSE (34)
      CLOSE (35)
      CLOSE (36)
      CLOSE(37)
      CLOSE(38)
      CLOSE (39)
      CLOSE(40)
      STOP
      END
* SUBROUTINE input
* USE TO FORM THE IMPEDANCE MATRIX, INCIDENCE MATRIX OF THE NETWORK
*2345678901234567890123456789012345678901234567890123456789012345
      SUBROUTINE input (ZE, AA, MR, MC, ML, ADR, ADC, ADL, DELTT, IBN, INN,
     $IRRN, ICCN, ILLN, IMLN)
      DOUBLE PRECISION ZE(IBN, IBN), AA(INN, IBN)
      DOUBLE PRECISION MR (IRRN, IRRN), MC (ICCN, ICCN), ML (ILLN, ILLN)
      INTEGER ADR(IRRN), ADC(ICCN), ADL(ILLN)
      DOUBLE PRECISION DELTT
      INTEGER IBN, INN, IRRN, ICCN, ILLN, IMLN
      INTEGER I1, I2, I3, I4
      DOUBLE PRECISION VAL
      INTEGER II1, II2, II3, IT1, IT2
                                3
*2345678901234567890123456789012345678901234567890123456789012345
```

```
DO 100 I=1, IBN
         DO 110 J=1, IBN
            ZE(I,J)=0.0
110
         CONTINUE
100 CONTINUE
      DO 120 I=1, INN
         DO 130 J=1, IBN
           AA(I,J) = 0.0
130
        CONTINUE
120 CONTINUE
      DO 140 I=1, IRRN
         DO 150 J=1, IRRN
           MR(I,J)=0.0
150
         CONTINUE
140 CONTINUE
      DO 160 I=1, ICCN
         DO 170 J=1, ICCN
           MC(I,J) = 0.0
170
         CONTINUE
160 CONTINUE
     DO 180 I=1,ILLN
         DO 190 J=1, ILLN
           ML(I,J)=0.0
190
         CONTINUE
180 CONTINUE
      DO 200 I=1, IRRN
        ADR(I)=0
200 CONTINUE
     DO 210 I=1, ICCN
         ADC(I)=0
210
     CONTINUE
     DO 220 I=1, ILLN
       ADL(I)=0
220
     CONTINUE
     II1=0
      II2 = 0
     II3=0
      IT1=0
     IT2=0
                             3
*2345678901234567890123456789012345678901234567890123456789012345
     OPEN(UNIT=10,FILE='input/s-oil/ab-s1-p3')
```

DO 500 I=1, IBN+IMLN

```
READ(10,*) I1, I2, I3, I4, VAL
* IF COMPONENT IS RESISTOR
         IF (I4 .EQ. 1) THEN
            II1=II1+1
            ADR(II1)=I1
            MR(II1, II1) = VAL
            ZE(I1, I1)=VAL
            IF (I2 .EQ. 0) THEN
               AA(I3,I1) = -1.0
            ELSE
               CONTINUE
            END IF
            IF (I3 .EQ. 0) THEN
               AA(I2,I1)=1.0
            ELSE
               CONTINUE
            END IF
            IF ((I2 .NE. 0) .AND. (I3 .NE. 0)) THEN
               AA(I2,I1)=1.0
               AA(I3,I1) = -1.0
            ELSE
               CONTINUE
            END IF
         ELSE
            CONTINUE
         END IF
* IF COMPONENT IS CAPACITOR
         IF (I4 .EQ. 2) THEN
            I1=I1-IMLN
            II2=II2+1
            ADC(II2)=I1
            MC(II2, II2)=VAL
            ZE(I1, I1) = DELTT/VAL
            IF ((I2 .NE. 0) .AND. (I3. NE. 0)) THEN
               AA(I2,I1)=1.0
               AA(I3,I1) = -1.0
            ELSE
               CONTINUE
            END IF
            IF (I2 .EQ. 0) THEN
               AA(I3,I1) = -1.0
            ELSE
               CONTINUE
            END IF
            IF (I3 .EQ. 0) THEN
               AA(I2,I1)=1.0
            ELSE
              CONTINUE
            END IF
```

```
ELSE
            CONTINUE
         END IF
* IF COMPONENT IS INDUCTOR
         IF (I4 .EQ. 3) THEN
            II3=II3+1
            ADL(II3)=I1
            ML(II3,II3)=VAL
            ZE(I1,I1)=2.0*VAL/DELTT
            IF (12 .EQ. 0) THEN
               AA(I3,I1) = -1.0
            ELSE
               CONTINUE
            END IF
            IF (I3 .EQ. 0) THEN
               AA(I2,I1)=1.0
            ELSE
               CONTINUE
            END IF
            IF ((I2 .NE. 0) .AND. (I3 .NE. 0)) THEN
               AA(I2,I1)=1.0
               AA(I3,I1) = -1.0
            ELSE
               CONTINUE
            END IF
         ELSE
            CONTINUE
         END IF
* IF COMPONENT IS MUTUAL INDUCTANCE
         IF (I4 .EQ. 10) THEN
            ZE(I2, I3) = 2.0 *VAL/DELTT
            ZE(I3,I2)=2.0*VAL/DELTT
            DO 510 J=1, ILLN
               IF (I2 .EQ. ADL(J)) THEN
                  IT1=J
               ELSE
                  CONTINUE
               END IF
 510
            CONTINUE
            DO 520 J=1, ILLN
               IF (I3 .EQ. ADL(J)) THEN
                  IT2=J
               ELSE
                  CONTINUE
               END IF
 520
            CONTINUE
            ML(IT1, IT2)=VAL
            ML(IT2, IT1)=VAL
         ELSE
            CONTINUE
         END IF
* END (4)
```

```
*2345678901234567890123456789012345678901234567890123456789012345
 500 CONTINUE
      CLOSE(10)
      CLOSE(20)
      RETURN
      END
* SUBROUTINE eqi
*2345678901234567890123456789012345678901234567890123456789012345
      SUBROUTINE eqi(VE, CE, ECS, AMC, AML, ADC, ADL, VCE, TCCE, VLE, ILE,
     $TCL1E, TCL2E, IBN, INN, IRRN, ICCN, ILLN)
      DOUBLE PRECISION VE(IBN), CE(IBN), ECS(IBN)
      DOUBLE PRECISION AMC(ICCN, ICCN), AML(ILLN, ILLN)
      INTEGER ADC(ICCN), ADL(ILLN)
      DOUBLE PRECISION VCE(ICCN), TCCE(ICCN)
      DOUBLE PRECISION VLE(ILLN), ILE(ILLN), TCL1E(ILLN), TCL2E(ILLN)
      INTEGER IBN, INN, IRRN, ICCN, ILLN
      DO 100 I=1, IBN
         ECS(I)=0.0
100 CONTINUE
*2345678901234567890123456789012345678901234567890123456789012345
      DO 200 I=1,ICCN
         VCE(I)=VE(ADC(I))
200 CONTINUE
      CALL mul (AMC, VCE, ICCN, ICCN, 1, TCCE)
      DO 300 I=1,ICCN
         ECS(ADC(I)) = -1.0 *TCCE(I)
300 CONTINUE
* (2) CALCULATE ECS DUE TO INDUCTOR
      DO 400 I=1, ILLN
         VLE(I)=VE(ADL(I))
         ILE(I)=CE(ADL(I))
400 CONTINUE
      CALL mul (AML, VLE, ILLN, ILLN, 1, TCL1E)
      CALL add(TCL1E, ILE, ILLN, 1, TCL2E)
      DO 500 I=1, ILLN
         ECS(ADL(I))=TCL2E(I)
500
      CONTINUE
      RETURN
      END
```

```
* SUBROUTINE ic
*2345678901234567890123456789012345678901234567890123456789012345
      SUBROUTINE ic (VE, ECS, CE, AMR, AMC, AML, ADR, ADC, ADL, VRI, VCI, VLI,
     $TCRI, TCCI, TCLI, IBN, INN, IRRN, ICCN, ILLN)
      DOUBLE PRECISION VE(IBN), ECS(IBN), CE(IBN)
      DOUBLE PRECISION AMR (IRRN, IRRN), AMC (ICCN, ICCN), AML (ILLN, ILLN)
      INTEGER ADR(IRRN), ADC(ICCN), ADL(ILLN)
      DOUBLE PRECISION VRI(IRRN), VCI(ICCN), VLI(ILLN)
      DOUBLE PRECISION TCRI(IRRN), TCCI(ICCN), TCLI(ILLN)
      INTEGER IBN, INN, IRRN, ICCN, ILLN
      DO 100 I=1, IBN
         CE(I) = 0.0
100 CONTINUE
          1
                    2
                               3
*2345678901234567890123456789012345678901234567890123456789012345
      DO 200 I=1, IRRN
         VRI(I)=VE(ADR(I))
200 CONTINUE
      CALL mul(AMR, VRI, IRRN, IRRN, 1, TCRI)
      DO 250 I=1, IRRN
         CE(ADR(I))=TCRI(I)
250 CONTINUE
      DO 300 I=1,ICCN
        VCI(I)=VE(ADC(I))
300 CONTINUE
      CALL mul(AMC, VCI, ICCN, ICCN, 1, TCCI)
      DO 350 I=1, ICCN
         CE(ADC(I))=TCCI(I)
350 CONTINUE
      DO 400 I=1, ILLN
        VLI(I)=VE(ADL(I))
400 CONTINUE
      CALL mul(AML, VLI, ILLN, ILLN, 1, TCLI)
      DO 450 I=1, ILLN
         CE(ADL(I))=TCLI(I)
450 CONTINUE
     DO 500 I=1, IBN
        CE(I) = CE(I) + ECS(I)
500
     CONTINUE
     RETURN
      END
```