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0. ABSTRACT

Given a vector of ungraduated values u" = (u",...,u;)T

and a constant A > 0, the Whittaker-Henderson graduation
method finds the optimal values gx = (ui,...,ug)T

the graduated values, which minimize F(u) + xS(u) over all

, called

u = (ul,...,un)T, where F is a measure of the lack of fit
of u to u" and S is a measure of the lack of smoothness
of the values in u. Thispaper gives a generalization of
the Whittaker-Henderson graduation method. F and S are
defined in terms of zp—norms and 2q—norms respectively,
where 1 < p, g < «». Methods of finding graduated

values in each case are investigated and some numerical
examples are given. Sets of graduated values thus

obtained are.compared. Monctone properties of the

graduated values are established.



1. INTRODUCTION: CLASSIFICATION

Given a vector of ungraduated values u" = (u",...,u;)T,
and a constant X > 0, the well-known Whittaker-Henderson

Type B method finds the graduated values u? = (ui,...,u

AT
n)

which minimize F(u) + AS(u) over all u = (ul,,,.,un)T. F

and S are defined as follows: |

n

- gy 2
F(u) = xrz_lwx(ux uX)
and
n-z
S(u) = = (Azux)2
x=1

where W, > 0 are weights assigned to u; and Aqu are the
z-th differences of u -

The formula for the graduated values is obtained
elegantly by Greville [3], using linear algebra, and by

Shiu [10] using advanced calculus.

n
Schuette [8] uses the measures F(u) = : w |u“—u i and
~ k=1 X' X X
n-z A
S(u) = = ]Azuxl and shows that u” can be obtained by
o x=1

formulating the problem as a linear programming problem.
In his discussion of Schuette's paper 41, Greville
suggested "It would be most interesting and worth-
while if someone would perform the same task for the

‘Chebyshev norm that Schuette has done for the Qlénorm”.



Some other suggestions are given in the discussion of

Schuette's paper [9], for example, to use the zlfnorm

for fit and the Chebyshev norm for smoothness, or use

the Rl—norm for fit and the zz—norm for smoothness,...,etc.
This paper gives a generalization of the Whittaker-

Henderson method by using Qp—norms (the definition and

properties of norms are given in Chapter 1). We use
n p - n-z Z a
Fo(a) = Xilwx|ux—uxl and S (u) = | 8% |~

x=1
where 1 < p, g < «. 1In case p and g equal infinity, we

define

tH
n

max |4%u

F_(u)
1<x<n-z

max [u’-u | and s_(u)

1<x<n X Xl

We classify the above cases (for different p and q)

into categories which can be explained by the following

diagram:
g=1 1 <gc<e qgq=e
p =1 corner rim corner
1 <p < = rim interior rim
p = o corneyr rim corner

Proof of existence of an optimal solution, or graduated
values,and, in some cases, unicueness of the optimal
solution are given in Chapter 1. It is shown that the

optimal solution is unigue when 1 < p < o,



The methods of finding graduated values in each
case are investigated in Chapters 4 to 6. The "corner"
cases are discussed in Chapter 4. The graduated values
are obtained by means of linear programming, which Perhaps
is the most widely used optimization model in operations
research. Chapter 5 considers the "interior" cases.
We differentiate Fp(g) + ASq(g) and obtain the graduated
values by solving the equationl Fé(g) + ASé(g) = 0. The
remaining cases, wé call them "rim" cases, whieh are
more complicated. They. are discussed in Chapter 6.

Chapter 7 gives some numerical examples for each

case and the resulting graduated values are compared.

Monotone properties of the optimal solutions are

obtained in Chapter 3. We show that Fp(gk) + xsq(gx)

)

and Fp(gk) are nondecreasing functions of ) and that'Sq(g
is a nonincreasing function of X. (The special case

when p = g = 2 has been treated by Chan, Chan and

Mead [11.)

Although in actuarial applications the graduatéd
values are normally required to be positive, we allow
them to be negative in this paper. It turns out that,
in most cases, the graduated values will be positive if

the ungraduated values are positive, even though we

do not impose non-negativity constraints.



2. NORMS, EXISTENCE AND UNIQUENESS OF SOLUTION

We generalize the Whittaker-Henderson graduation

method as follows:

Min F_(u) + 1S WH
! p(~) q(g) (WH,p,q)
where
n
F (u) = £ w_|u-u_|P
P x=1 ¥ X X
and
n-z q
S (u) = z A
q(N) x=l| uxl

with W, > 0 and 1 < p, g < =.
Before we define Fw(g) and‘Sw(E), we first give the

definitions and some properties of norms.

Given a vector y = (yl,...,yn) in Rn, the lo—nonm of
' p 1/p
y is defined as |[|y]|]|_ = ( |y ] J where 1 < p < =,
2 ~p - X -
x=1
In case p = =, the & _-norm of y is defined as

~

Hvll, = lim]ly!lp. It is intuitively clear that the
2 poe N B

following property holds:

LEMMA 1.1 ||y|]oo = max |y_|
~ 1<x<n
Proof: It suffices to show that ||y||_ > max |y_ | and
- - l<x<n
llyll, < max IyXl. Let k be the co-ordinate for

1<x<n

: s ) .
which iykl attains the value lfiénlyxl. We have



el = (29097 2 and®e =l = ma 13,1,
for each p; Therefore,%
max |y, | < |lyll.,- (2a)
1<x<n
Conversely, N 1/p
gl = [ 2 10?7 ¢ @iy PP = a2 )y,
= 0P max |y_|.

1<x<n

The ineqguality still holds if we take limits on both sides:

. . 1
Hy[]oo = lim||y||_ < lim n /P max |y | = max |y_].
~ pr ~ p P l_<_x_<_n lfxf_n (2b)

Therefore, the ecuality follows immediately from (2a) and (2b).

More generally, we can define the weighted £p~n0nm

n 5 1/p
of y, with weights W, > 0, as [ I w_ |y *]

( where
x=1 ¥

|
1l < p < ». Therefore, Fp(g)'and Sq(g), as defined above,
can be considered as the p-th power of the weighted
2p~norm of u"~u and the g-th power of the zp—norm of

AZE respectively.

The weighted % -norm of y is defined as

~

14

n 1/p
X wx]yxlp}

lim(
x=1

pree

for which a modification of Lemma 1.1 is valid:

|P = max |y_]|-.
15xsn

n 1/p
lim{ row, |y }
powlxg=] X X



The proof of this equality is quite similar to the proof

of Lemma 1.1: Let k be the co-ordinate for which

|y | = max |y_|
k 1<x<n ®

and j be the co-ordinate for which

Since
n 1 '
[l s oy VR < i,
taking limits on both sides, we get
lim( ? w_ |y !p] ° > |y, | = max |v_].
prolx=1 * % -k l<x<n =
Conversely,

n 1/p ,
| P py1/p _ 1/p
(Xilwxlyxl ] < (nwj 'Ykl ) = (nwj) lykl .

Taking limits on both sides, we get

o P
r v |y, |

syl = max |y |.
x=1

1<x<n

1/p
lim( }
pe

Therefore, we define F_(u) and S_(u) as follows:

F_(u) = max |u_-u"|
l<xz<n *Ox
and
_ z
S_(u) = max | A uX].

l1<x<n~z



F_(u) is the &_-norm of u"-u and S_(u) is the
% _—norm of Azg. Note that the weights disappear in
the term F_(u).

We are now going to show the existence and,
for the case that 1 < p < «, the unigueness of the optimal
solution of (VH,p,q).

It is obvious that Fp(g) and Sq(g) are continuous
functions of u. Therefore Fp(g) + Asq(g) is also contin-
uous. We show the existence of an optimal solution by
the continuity of Fp(g) + ASq(g) and the following theorem:
THEOREM Any continuous function defined on a closed
bounded subset in R" attains its minimum (and maximum)
values on that closed bounded set.

The proof of this theorem can be found in almost any text on

mathematical analysis (e.g. [5, p.1011).

Let ASq(E“) = c > 0 (in case ¢ = 0, u" is obviously
the optimal solution). Define
D_ = {y ¢ R": ly.~u"| < r, x =1 n}
r by . YX % - 2 YA IR 2 .

We can find r > 0 such that any u outside the subset Dr
is not an optimal solution, that is Fp(E) > ¢, which
implies that

Fp(}g) + ASq(g) > ¢ = Fp(g") + AS(u").
Jl/P

c
min w
X
%

We can take ¥ = [ if 1 < p < . 1In case p = o,

we take r = c.



Therefore, the existence of an optimal solution
follows from the continuity of Fp(g) + ASq(g) and from D_
being a closed bounded subset.

We will now show thétgif 1 < p < «», the optimal
solution is unique. We prove this by using the strict
convexity of the function Fp(g} when 1 < p < =

Recall that a function G: R® » R is convex if

G(By+(1-8)y*) = BG(y) + (L-B)C(y*)
for all Yr X* in R% and 8 ¢ [0,1]. G is strictly

convex.- if

G(BZ+(1—B)Z*) < BG(g) + (l—B)G(Z*)
for all Y z* in R® with vy # Z* and B ¢ (0,1). Also,
we have the following properties: 1f G, H are convex
functions and B > 0, then BG and G+H are also convex. If,
in addition, one of G and H is strictly convex, then
so is G+H.

When p and o egual 1 or infinity, it can be easily seen
from the above definitions that Fp(g) and Sq(g) are convex
functions of u.

When 1 < p < «», we can show that Fp(E) is strictly
convex and Sq(g) is convex. For the proof we need the
following lemma:

LEMMA 1.2 Let G(y) = |yv|P, p > 1. Then

G (y) = Sgn(y)P|Y|p—l for any y ¢ R and, except when y = 0
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and p < 2, G"(y) = p(p-1)|y|P72.

The function sgn(y) is defined as
1 ify > 0

sgn(y) = 0 if y =0
-1 if y < 0.

This can easily be proved by considering the cases y > 0,

y=0and v < 0 [2, pp.1131.
Note that G"(y) > 0, (the = sign applying only when
y = 0) and G'(y) is strictly increasing. Using facts in

elementary mathematical analysis [2, pp.113], we can

conclude that G{(y) = ]y]p is strictly convex.
THEOREM 1.1 Fp(g) is strictly convex when 1 < p < o
and Sq(g) is convex for all 1 < g < «». (Hence,

Fp(E) + ASG(E) is strictly convex.)

Proof: TLet u, u* ¢ R" and # ¢ [0,1]. Since G(y) = |y|°

is convex for 1 < g < « (in fact, it is strictly convex), we

have n—-z . _ o
Sq(fut@-Bu*) = = 2% (B (u )+ (1-8) (ux) |*
x=1
n—2z 2 ” q
= — * :
Xills(A a) + (1-8) (A7u2) |
n-z - n—-2 > g
< 2 ogla®u %+ oz oa-sy]a ux |
x=1 x=1

= BSq(g) + (l—B)Sq(g*).

In case g ecuals .l or infinity, it can be easily seen

that Sq(g) is convex.



Consider u, u* e R" with u # u* and 8 ¢ (0,1). Since
G(y) = |y|P is strictly convex and u # u*, that is,

u # u§ for at least some x, we have

n
- * et — D R, |} P
Fi, (gt (1-8)u*) xileIBuXHl B)uX-ur |

2 ' p

— . - K oga M
Xilwxls(ux uy)+(1-8) (ux-ul) |
n p n ) p

<f;ilwxlux—ux[ +xile(l—B)[u§—uX[

= BFP(E) + (l—B)Fp(g*)-

By Theorem 1.1, we obtain the following:

THEOREM 1.2 The optimal solution of (WH,p,q) is unique

when 1 < p < =,

Proof: We prove this by contradiction. Let u, u* be two

optimal solutions with u # u* and

Fp(E) + ASq(E) =M= F_(u*) + XSq(g*).

o]

u -+

~

Consider the point *,

N
N
3]

1 . 1
u -+ 3z u¥) < = F_(u) + 5 F_(u*
u -+ 5 u*) o o (4%)

F_( 5

P

NO| =
N

by the strict convexity of Fp(g). Therefore,

E*) + )\SG(J‘_ E + !‘_ u\‘*)

F_( 5

P

D] b
N

u +

[

(u) 1 + 1

[F (@) + AS, 5 [Fp(g*) T AS (a*) ]

+ 5> = M.

NI N
NE T



This contradicts the fact that

Min F_(u) + AS_{(u) = M.
i o () Y

~

12
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3. MONOQTONE PROPERTIES

Optimal solutions of gx of the problem

Min F + AS WH,
;n p(g) q(g) (WH,p,q)

have the monotondic properties:

Fp(gx) + ASO(EA) is a nondecreasing function of A,

Fp(gx) is a nondecreasing function of 1,

Sq(gk) is a nonincreasing function of A.
If Sq(gk) > 0, then Fp(gx) + ASq(EA) is an increasing
function of A. If, in addition, 1 < p, g < «, then
Fp(gx) is an increasing function of A and Sq(gx) is a
decreasing function of A.

These monotone properties can be used to check if
errors were made in the calculations of the EA when
several A values are used.

Although these properties may be intuitively clear,

we prove Theorems 3.1 and 3.2:

‘ *
THEOREM 3.1 Let X > x* > 0 and gx and EA denote the
corresponding optimal solution of (WH,p,q). Then
A by )\* % )\*
Fp(g ) + ASq(E ) > Fp(g ) 4+ A Sq(g ),
A A% A A*
F_(u > F_(u and S (u < S .
NG RE NC G £ s @

Proof: Since A > A*, we obtain the following inequalities:
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x* A¥ A A
F_(u + A*S (u < F_(u + A*S (u
p(~ ) q(~ ) < p(~ ) q(~ )
< F (ux) + AS (ux). (3.1a)
- p - q - Co
*
The first inequality comes from the fact that gx is

the optimal solution of (WH,p,q) corresponding to a*. The
second inequality is obvious since X > A%*.

Similarly, we obtain

A

Fo(u) + a8 (@) < F (@) + as_ M), (3.1b)
p '8 g® ) 2 p'R q'® |

Adding the first inequality in (3.la) and the inequality

(3.1b), we obtain

)\*

0 < (A9 Is (') - sq(EA)]. (3.1c)

* .
That is, Sq(gx) < Sq(gx ) since A > A*. This, and the first

*
inegquality of (3.la), imply that FP(EA ) < Fp(gx) and the
proof is complete.

A

*
THEOREM 3.2 Let » > A* > 0 and u” and gx denote the

corresponding solutions of (WH,o,q).
(a) If Sq(gx) > 0, then

)\*

A ).

Ay A
F (u + AS > F {(u + A*S _(u
p(~ ) qxg ) p(N ) _ q‘(N
(b) If, in addition, 1 < p, g < «, then

}\*

A
F_(u > F_(u and S _(u < S (u
p(~ ) p(~ ) q(~ ) q(N )
Proof: (a) The assumption SG(EA) > 0 implies that the

second inequality in (3.la) is a strict ineqguality. There-

A A

. * x
fore, F_(u") + is_(u") > Fp(gA ) + xS (') by (3.1a).

E q
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. *
(b) This can be obtained if we can show gx # uk and

the first inequality in (3.l1la) is strict. We first show
N .

EA # EX , which can be seen easily: From the result

obtained in Chapter 5, we have

A

F'(ud) + aS8'(0’) = 0 = F' (ud) + A*s_(ur).
P~ aq -~ it P~ q -~

A A%
Suppose u° = u’~ ; we have

) A A* A
AS'{(u”) A*S! (u = A*S!' (u
aq ~ . q(~ ) a - )

A) = 0 since ) # A%,

and thus'Sé(g
If we denote the differencing matrix of order z by K

(see Chapter 4 for définition), we have

Ay z A;g-1 Z A z A FL oz 2
Sq(u™) = Cala ull sgn (A pl),...,q|A un_zlsgn(A un_z)]K,
(see Chapter 5, Theorem 5.1). Since K is of rank n-z (see

Chapter 4),
Z A z A -
|a%ug |sgn (8%u)) = 0
for all x = 1,...,n-z. This will imply SO(EA) = 0 which
contradicts our assumption.
Now, we will use an indirect proof to show that the

first inequality in (3.la) is strict. Assume that

A¥ A% A A
F (u + A*S = F (u + A*S .
Lt ars (@t o) o)
*
Then, since gA # gx , there would not be a unique solution

to the minimization of F_(u) + A*S

D (u) , which is a

q
.contradiction.



A*

Therefore, we obtain Sq(gx) < Sq(g }. This,

with the first strict inequality in (3.la), implies

F
P

(4

A

*
) < FP(EA). Therefore the proof is complete.

16

together
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IV. THE "CORNER" CASES (p = 1 or », g = 1 or «)

In this chapter, we find the optimal solutions of

Min F (u) + A8 (u)
a p 1) q(~

~

by using linear programming for the cases when p,and g are equal
to 1 or infinity.
Case (i): vp =q =1

This case is proposed and solved by Schuette [8]. He
solved the problem |

Min[Fl(g) + ASl(g)] (wg,1,1)
u

by formulating it as a linear programming problem:

n n—z'
Min| ¥ wX(PX+NX) +A I (RX+TX)
x=1 x=1

subject to the constraints

zZ _ ' _ = 2 n
A (PX NX) + Rx Tx A uz X

i

1,2,...,n-2,
and

P_ >0, N_ >0, R >0, T > 0.
X - X - X - X -

(PX and NX represent the positive and negative parts
of u_~u" respectively, that is, P_ = u_-u" if u _-~u" > 0
X X X X X X x =

— . a—a M . —_ - L4 a1t
and P, =0 if I I 0; N, qu u if u, "u < 0 and

n

2l

N, =0 if u_-u" > 0. Similarly, R_ and T_ represent the
X X X - X x

positive and negative parts of Azux.)
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Case (ii): p = g = «.
This case is suggested by Greville in the discussion
of Schuette's paper [4].

We solve the problem:

Min F_(u) + AS_(u) (WH, =, )
u
where
F_(u) = max w |u;—uX| and S_(u) = . max lAzux|
1<x<n l<x<n-2
by formulating it as a linear programming problem:
Min [f + Xis] ‘ (LP1)
u,f,s
subject to the constraints
u —u; < f
® X =1l,...,0 (4.1a)
-u_+u" < £
\
n
¥ u.k . < s
joq b oxL -
N bx =1,2,...,n-2. (4.1b)
- I u.k < s
jop 1xL -

’

kXi are the coefficients of the (n~-z)xn difference

matrix K of order z, and K can be expressed as:

z+1 columns ' n-2z-1 columns
— z z~1 ,2 z-2 ,% Z i T
D NG DR ¢ NI G D (O PR PRy 1 0 ... 0
Z z-1,2 Z
0 (-1) (~1) (l) ............ —(Z_l) 1 . 0
z Z
L o | o . -« .« .« < . .« 0 (-1 "= 7g) 1]

-

~

n-2z-1 columns z+1 columns
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The vector Azg = (Azul,...,AZuh_z) can ‘be obtained
from u by a matrix multiplication: AZE = Ku,
which can be seen from the expression for K.

THEOREM 4.1 The linear programming problem (LPl) is

equivalent to the (WH,«,«) problem.
Proof: Let gx be the optimal solution of the (WH,«,=)
problem and (u*,f*,s*) the optimal.solution of the’
linear programming problem (LPl). We need to show that
Fw(gx) + ASw(gA) = f%* 4+ Ag¥.
Since

Ay A Ay Z._A
F_(u") = max Iu;-uxl and s_(u”) = max | & uxl,

1<x<n _ l1<x<n-z
(gk, Fw(gk), Sm(gx)) satisfies‘the constraints (4.la) and
(4.1b). Therefore,
Fm(gx) + Asw(gx) > f£%* 4 As*

since (uy*,f*,s*) is the optimal solution of (LP1). Conversely,

we have _
A A . -
F () o+ as_ (@) < F_(g*) + AS_ (%)
= max lu"~u§[ + 2 max [Azu*l < f* + As*.
1<x<n % 1<x<n-z ®

The first inequality comes from the fact that the minimi-
e, QNPT s S
zation of&(WH,w,w) preblem extends over all u.
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Case (iii). p =1, g = «.

We formulate

n
. z
Min| = w_|u"-u_| + A max |A"u
x'"x °x
u |x=1 l<x<n-z

Xl (WHllr‘”)

as the following linear programming problem:
n
Min Xilwx(PX+NX) + As (LP2)

subject to the constraints

n
T u.k . < s
i=1 iTxi -
n X =1,2,...,n-2
- ¥ u.k S
i=1 1 X1
PX+NX = uX—u; X = 1,2,...,n

and

p_ >0, NX,3 0, s>0

where kxi is the element in the x-th row and the i-th coiumn
of the difference matrix K of z-th order.

This formulation is in fact a combination of those
in case (i) and case (ii) and the proof that (WH,1l,«) and
(LP2) are equivalent proceeds along the same lines.

Case (iv): p = =, g = 1.

This case is gquite similar to case (iii). We formulate
n-z
Min| max |u'-u_] + 1 % |A%u | (WH, =, 1)
X X X
u |1<x<n x=1

as the following linear programming problem:



n—2z
Min{f + » I (R +T )
N X X
L x=1

subject to the constraints

u, - u!' < f
X x =1,
-u._ + u" < £
% =
.2
RX TX = A ux X

and

2,...,N

= 1,2,...,n-2

R, > 0, 'szo., £>0

It can be easily seen that (WH,~,1) and (LP3) are

equivalent.

(LP3)

21
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Y. THE "INTERIOR" CASES (1 < p < w, 1 < g < =)

Consider the following problem

n n-2z
Min z w_]u"-u_|P + 2 sz |a%u_|? (WH,p,q)
X X X . X
u x=1 x=1

where 1 < p, q < =,
We differentiate Fp(g) + ASO(E) with respect to u and
obtain the optimal solution of (WH,p,q) by solving the

equations F' (u) + AS'(u) = 0.
p q -~ ~

Let gA be the optimal solution of (WH,p,q). Then

F'(gk) + a8’ (ut) = 0.
P q - ~
Conversely,
A A
F! + AS! = 0
p (87 g =19

is also a sufficient condition for the optimality of EA.

This is a property of convex functions and the details-
can be found in [2, pp.l1l6]. Hence, the solution of the
equation Fé(g) + ASé(E) = 0 gives the unique optimal
solution to the (WH,p,g) problem.

Before we compute the derivative Fé(g) + AS&(E),
we need some preliminaries.

Let A: Rr +‘RS be a function. Define

~aAl an, ]

ayl . ayr
A‘(z) =

CE: W 3A

ayl 5yr




where

A(Y) = (Al (z)l ....’AS(Z)).

~

If A is a linear transformation and thus can be

represented by a matrix M, i.e., A(y) = My, where

~

M = . . ’
m « e e m
L sl sr
then
A'(y) = M.
7f a: RS - RS and B: RS - RY, and C = B(A) i
r t

s the

composite function: R~ =+ R, the Chain Rule [2, pp.122]

can be gene
c' (y)

THEOREM 5.1

ralized as

= B' (A(y))A' (y).

every u in

FE')(I,},)

where W is

WeogooerW -
1’ ""n

Fp(g) and So(g) are differentiable at

n . . .
R~ and their derivatives are

oF oF
ou, - ! EGE
1 n

qe]

i

= p[]ul—uilp—lsgn(ul~u£),---r un—uglp_
35S ' 98
— a 4
- ’ - ° . ¥ 4
L?ul aun
7 -1 ' -1
= q[|A7u1|q sgn(AZul),---,lAzUn_Z|a

the nxn diagonal matrix with elements

1

23

n

sgn(un—u ) W
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Proof: Let

It

A(u)

* 0 00

p

b i

then Fp(g) can be written as (B(A)) (u). Hence,

- -y

g p-1 a1
plu1 ull sgn(ul ul{
. 0
1) = .
At () 0 : |
Y g 1 P"l M
3 plun unl sgn(un un{-
and

B' (y) = [wl,...,wn].

So, by the Chain Rule:

Fi)(g) = B' (A(u))A' ()
= [plu ?u"lp—lsgn(u —u") plu —u"lp—ls n(u_=-u) W
1771 17H e PR, ER A e L
Let
n-z
B(y) = 1 |y |9
~ x=1
with v e R"7?. Then S(u) can be expressed as B(K(u)) and
' _ Z g-1 Z Z ag-1 z
B (Z) = [qg|a uy sgn (A ul),...,qlA unnz|" sgn (A un_z)]K.
Having computed the derivative Fé(g) + AS&(E), we
solve the equation Fé(g) + xSé(E) = 0 by using the Newton-

Raphson algorithm [7]. In order to do this, however, we need

the second derivative of Fp(E) + XSq(g).
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THEOREM 5.2 Fp(g) and Sq(g) are twice differentiable
at u except when u, = u; or Azux = 0 for some x and p < 2

or g < 2.) Their second derivatives (if they exist) are

asz i
1 —
FLw) = du, du-
i 73]
[ " -2 ]
g -ag 17
- 0
= p(p-1) . W,
0 .
Iu'—-u"lp_2
BZSq
S" (E) o A
q auiauj
- 5 -
| A ul]q -
. 0
= q(q—l)KT 0 . K.
|Azu |qm2
B n-z N

Proof: The matrix (Fé(g))T can be expressed as p(W(a)) (u),

where
»|u —u"lp_lsgn(u —u"‘a
1 71 171
A(u) = .
—_ p—lc o 1
hlun Unl sgn (u un)-
Then, by the Chain Rule,
F;(g) = p(p-1)WA' (u) = p(p-1)A' (W)W

where



g Bt p~2
[y -uy |7

" u —u"lp_z
n “n

The expression for S&(g) can be similarly derived.
Using the Newton-Raphson algorithm [7], we obtain
the following:

THEOREM 5.3 Let go be an initial trial solutiOnfanngk

denote the "solution" after k iterations, so that

k+1 _ k _ v K w Ky~ Loy ok v Ky -
u =u [Fp(g ) + xsq(g )1 [Fp(g )+ a8g M) J.
If EA = lim gk exists, then EA is the unique solution of
ko

the equation

A
F'(u) + 8! = {
p("’) q(E ) Ve

provided
n . k n k
Fplu™) + Asq(g )
and

" k " k -1
[Fp(g ) + xsq(g ) ]

exist for all k. That is, u* is the unigque optimal solution
of (WH,p,q) with 1 < p, g < o,

Notice that S%(gk) is a symmetric matrix; therefore,
it is nonnegative definite. F;(gk) is also nonnegative since
it is a diagonal matrix. Therefore, F;(gk) + A"S%(gk) is

‘nonnegative definite. Moreover, Fg(gk) + xsg(gk) is non-
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.singular if Fg(gk) is nonsingular, which is the case
for ui # u§ for all x =1,...,n. (If ui = u§

for some x, we can aiways change ui to'u;+e with € # 0
so as to have F;(g) nonsingular.)

‘Greville's [3] well-known graduated values for the
case p = q = 2 can be obtained immediately from Theorem
5.3. In this case,

F5(w) + ASy(w) = 2W(u-y") + 22K Ku,
and

2W + 2K 'K,

Fy(a) + As3(u)

which is positive definite and hence nonsingular. Then,

o
for any u,

o= -y @®) + sy )17 E %) + a8y )]
= u° - 2w + 22k 'k3 2w (WC-u") - 22K 'K (1°) 1
= u® - W+ AK'KI 0w + AKTR) (0©) - wu" ]
= 1% - 0%+ (W + AKTR) Ty

= (W + AK'K) “twy",

which is independent of go.

k

We should point out that F;(g )+ Asg(gk) is usually

a huge matrix and should not be inverted. Instead,
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k+1

we can find u by using the Choleski square-root method

[3] to solve the equations

ren (@) + Asg () 10g

" k n k k - ' k ' k
= [Fp(g ) + ASq(g ) 1lu™] [Fp(g ) + ASq(g ) 1.

An APL program for the computation by the Newton-Raphson

procedure is provided on the next page.
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Bedp, (ROTRF, XIVIXR-22) v 0
SD*((PMI)XPXW+¢XQ)+(Q~1)XQXLX(NK)+.XB+.XK
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v '

'P+g
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Lel

Jeld s

Keedgg 1927103 73100 000 000000000000 :

Wel® 197, (12 1F3 5 8 10 15 20 23 20 15 13 11 10 2 9 7 5 5 3 1)519 192r0
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GRADR IV

AGY

30, 53879314 28.731689856 30,50783422 34.130555801 38.06206207 43,61998412

A8, 28064435 53,07742402 58.74084863 62.80011241 67.0156958 71.79349972
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S 128.347123 )

K Difference matrix of order z

W nxn matrix with Vi as - diagonal elements
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Iv Intial trial solution

oV Ungraduatedvalues

AGV Approximated graduated values
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VI. THE "RIM" CASES (p=1 0r », 1 < a0 < »; 1 < p < «w, gq= 1 0r =)

The remaining cases for the
M;n Fp(g) + ASq(g)
w

are more complicated and will be

They are:
Case (i) l <p <= a
Case (ii) 1 <p <=, g
Case (iii) p=1, 1 < g
Case (iv) p==,1<gq

We formulate these (WH,p,q)
Case (i): 1 < p < o, g = 1.
n n-z
Min| Z
x=1 x=1

subject to

w_|u —u"]p + X I (R
X' "X "X X

solution of

(WHIPIQ)

discussed in this chapter.

problems as follows:

+TX)

Z _ _ - _
A u, = Rx TX X l,...,n-z
R >0
% 2
T > 0.
< 2
Case (ii): 1 < p < o, q = o,
n
Min| ® w_]u ~u"!p + As}
Xx'Tx X
u,s ‘x=1

subject to
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A u,, < s
- x=1,2,...,n~z
-Au_ < s
x =
Case (iii): p =1, 1 < g < =,
n | n-z o
Min| Z w (P _+N_) + x 2 |a%u_|“
X'Tx X X
x=1 x=1
subject to
Px - Nx = ux - ug, x=1,2,...,n
P. >0
x 2
N_ > 0.
X—-
Case (iv): p = o, 1 < g < =,
n-z
Min§f+>\ A uxlq}
u,f - x=1

subject to

From the above four formulations we see that we have
in fact combinations of the methods used in Chapter 4 and
Chapter 5. We can use the method of Lagrange Multipliers
to find the optimal solutiéns for the above cases. In
practice, however, these calculations are quite complicated
since the constraints are inequalities rather than equalities.
Therefore, we have considered only examples for which

p = 2 in cases (i) and (ii) and g = 2 in cases (iii) and



(iv), which allows us to compute the optimal solutions

by using much simpler quadratic programming methods.
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vII. EXAMPLES

Numerical examples are given in this chapter. The
19 ungraduated values and weights given by Millef
[6] are graduated using z = 3.

Tables 1 - 5 give the graduated values of the
special cases p=q=1, p=q=2, p=qg=3, p=g=2>5
and p = g = », respectively. Some patterns of the
graduated vélues can be detected from observation of the
results for the cases p=ag =2, p=g =3 and p =g = 5.

Graduated values of the other cases are also given.
Tables 6 - 9 show the graduated values of the cases
p=1, g==), (p=« g=1), (p =2, a=4) and
(p = 4, g = 2), respectively. |

The graduated values of the "rim" cases are also
shown. Tables lO'and 11 give the graduated values of
the cases (p =2, gq=1) and (p = 2, g = =), respectively.
These graduated values werecomputed by means of

quadratic programming methods.

Figﬁ%e 1 compares values with the graduated values

s va
for the cases p = ¢ = l, p=9g=2and p =g = «® when
z = 3 and A = 3. Figure 2 compares the ungraduated
bs g
values for (p,q) = (1,°°>l (P,q) = (Obll)l (plcf) = (214)

and (p,qg) = (4,2) when z = 3 and x» = 1.

33
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Different values of A are chosen in each case so
that a large range of the values Fp(gx) and Sq(gk) is
covered. Notice that the Monotone properties of the

optimal solutions (discussed in Chapter 3) are satisfied

in the above cases.
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TABLE 1

Graduated Values when p =1, g = 1 and z = 3

X Ungraduated Weights A =1 X =2 A=3 x=6 =10
Values

u" wx A

X Graduated Values uX
1 34 3 34.00 34.00 34.00 15.90 22.32
2 24 5 24.00 24.00 29.00 24.00 26.68
3 31 8 31.00 31.00 31.00 31.00 31.00
4 40 10 40.00 37.50 46.00 36.90 35.29
5 30 15 30.00 43.50 46.00 41.70 39.56
6 49 20 49.00 49.00 49.00 45.40 43.79
7 48 23 48.00 48.00 48.00 48.00 48.00
8 48 20 48.00 48.00 48.00 b51.46 52.18
9 67 15 67.00 51.67 51.67 55.78 56.73
10 58 13 58.00 58.00 58.00 60.96 61.68
11 67 11 67.00 67.00 67.00 67.00 67.00
i2 75 10 75.00 75.00 73.00 72.01 72.71
13 76 9 76.00 76.00 76.00 76.00 78.80
14 76 9 76.00 81.92 82.14 81.26 85.27
15 102 7 102.00 92.75 91.43 87.79 92.13
16 100 5 100.00 100.00 100.00 95.59 99.37
17 101 5 101.00 103.67 107.86 104.66 107.00
18 115 3 112.33 115.00 115.00 115.00 115.00
19 134 1 134.00 134.00 121.43 126.61 123.39
Fit ‘ Fl(ng 8.00 588.83 691.14 833.20 872.63
Smoothness sl(gx) 415.33 76.00 35.33 6.14 0.41
F. (') + s, () 423.33 740.83 797.14 870.07 876.76
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TABLE 2
Graduated Values when p 2, g=2 and z = 3
X Ungraduated Weights A= 1 A= 2 A =3 A =6 A =10
Values
u” Yy A
X Graduated Values ux

1 34 3 31.65 31.17 30.94 30.58 30.30
2 24 5 27.57 28.31 28.61 28.96 29.12
3 31 8 30.98 30.76 30.68 30.64 30.69
4 40 10 34.86 34.28 34.08 33.91 33.88
5 30 15 35.95 36.93 37.33 37.76 37.93
6 49 20 45.40 44,66 44 .30 43.85 43.62
7 48 23 48.16 48.21 48.25 48.30 48.33
8 48 20 51.38 52.10 52.44 52.87 53.09
9 67 15 61.04 59.98 59.53 58.99 58.73
10 58 13 62.19 62.68 62.83 62.90 62.88
11 67 11 66.86 67.00 67.05 67.10 67.11
12 75 10 72.65 72.06 71.86 71.72 71.73
13 76 9 75.63 75.98 76.21 76.58 76.81
14 76 9 81.75 82.60 82.94 83.30 83.44
15 102 7 94.76 93.53 _92.93 92.10 91.66
16 100 5 100.69 100.11 99,80 99.37 99.13
17 101 5 104.18 105.08 105.55 106.20 106.53
18 115 3 114.00 114.55 114.89 115.40 115.68
19 134 1 132.07 130.36 129.38 127.98 127.25

Fit Fz(EA) 2903.96 3979.98 4501.05 5164.62 5490.81
Smoothness SZ(EX) 1235.52 452.15 236.62 73.20 29.96

F,(ah) + 28, (")

4139.48 4884.27 5210.90 5603.82 5730.43




TABLE 3

Graduated Vafg&s when p = 3, q
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X Ungraduated Weights =1 A= 2 A= 3 A =6 A= 10
Values

u" Wx , A

X Graduated Values ux
1 34 3 30.91 30.71 30.60 30.42 30.29
2 24 5 28.00 28.24 28.36 28.53 28.64
3 31 8 30.97 30.73 30.63 30.51 30.45
4 40 10 34.46 34.14 34.00 33.81 33.71
5 30 15 36.14 36.53 36.72 36.98 37.13
6 49 20 44 .31 43.98 43.81 43.57 43.43
7 48 23 48.43 48.43 48.44 48 .46 48.47
8 48 20 52.64 52.98 53.16 53.41 53.57
9 67 15 60.95 60.56 60.37 60.09 59.92
10 58 13 62.82 63.07 63.18 63.31 63.38
11 67 11 66.39 66.46 66.51 66.60 66.72
12 75 10 71.39 71.09 70.96 70.85 70.83
13 76 9 74.72 74.97 75.13 75.44 75.68
14 76 9 82.24 82.74 82.99 83.33 83.52
15 102 7 94 .92 94 .34 94.03 93.56 93.25
16 100 5 101.62 101.22 101.00 100.69 100.51
17 101 5 105.46 105.93 106.19 106.60 106.88
18 115 3 113.64 114.22 114.57 115.15 115.51
19 134 1 130.07 129.36 129.03 128.55 128.22
Fit F3(EA) 20104.45 24600.43 27071 .49 30874.67 33295.07
Smoothness Sj(gk) 5845.65 2593.11 1575.18 652.77 335.08
F EA) + AS3(BA) 25950.09 29786.64 31797.02 34791.32 36645.88

3(




TABLE 4

Graduated Values when p = 5,
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x Ungraduated Weights A =1 A= 2 A= 3 A= 6 A= 10
Values
ull wx A
X Graduated Values u,
1 34 3 30.12 30.03 29.99 29.92 29.89
2 24 5 28.49 28.60 28.65 28.72 28.76
3 31 8 31.60 31.45 31.36 31.22 31.12
4 40 10 34.33 34.19 34.11 - 33.99 33.92
5 30 15 36.10 36.27 36.36 36.50 36.59
6 49 20 43.63 43.47 43.39 43.26 43.17
7 48 23 48.56 48.57 48.57 48.54 48.51
8 48 20 53.33 53.48 53.56 53.70 53.79
9 67 15 60.99 60.82 60.73 60.60 60.52
10 58 13 63.27 63.42 63.49 63.58 63.61
11 67 11 66.63 66.90 66.97 66.94 66.84
12 75 10 70.19 70.02 69.94 69.83 69.78
13 76 9 73.31 73.42 73.51 73.74 73.95
14 76 9 82.47 82.70 82.83 83.03 83.17
i5 102 7 95.14 94 .88 94.73 94.49 94 .31
16 100 5 102.57 102.30 102.15 101.93 101.79
17 101 5 106.41 106.65 106.78 107.01 107.17
18 115 3 113.45 113.90 114.15 114.56 114.83
19 134 1 128.85 128.61 128.47 128.25 128.09
Fit Fs(gx) 805003 937766 1015917 1148647 1244947
Smoothness SS(EX) 189895 94220.74 62095.73 30156.85 17579.92
FS(BK) + ASS(EA) 994899 1126207 1202204 1329589 1420746
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TABLE 5

Graduated Values when o = «, g = © and z

i
w

'x Ungraduated Weights 2 =1 x=2 AxA=3 Xx=6 i=10
Values

u” wx A

hld Graduated Values ux
1 34 1 24.94 24.81 24.56 24.39 24.39
2 24 1 27.07 27.41 27.68 27.90 27.91
3 31 1 30.31 30.79 31.26 31.64 31.64
4 40 1 34.40 34.78 35.21 35.55 35.56
5 30 1 39.06 39.19 39.44 39.61 39.61
6 49 1 43.99 43.86 43.86 43.79 43.79
7 48 1 48.93 48.60 48.38 48.12 48.12
8 48 1 53.58 53.26 52.92 52.64 52.64
9 67 1 57.94 57.81 57.56 57.39 57.39
10 58 1 62.28 62.44 62.40 62.39 62.39
11 67 1 66.89 67.32 67.51 67.68 67.68
12 75 1 72.03  72.62 73.00 73.29 73.29
13 76 1 77.99 78.52 78.94 79.26 79.26
14 76 1 85.06 85.19 85.44 85.61 85.61
15 102 1 92.94 92.81 92.56 92.39 92.39
16 100 1 101.37 101.20 100.24 99.62 99.62
17 101 1 110.06 110.19 108.37 107.34 107.34
18 115 1 118.73 119.60 116.87 115.59 115.59
19 134 1 127.66 129.62 125.66 124.39 124.39
Fit F_(u") 9.06 9.19 9.43 9.61  9.61
smoothness S (u") 0.28 0.17 0.09 0.03 0.03

Fw(gx) + XS, (u

9.34 9.54 9.70 9.81  9.95
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TABLE 6
Graduated Values when p = 1, = o and z = 3

x Ungraduated Weights X =1 A = A =10 Xx =15 x = 20

Values

u” Yk A
X Graduated Values u,

1 34 3 34.00 34.00 34.00 34.00 34.00
2 24 5 24.00 24.00 24 .00 24.00 26.63
3 31 8 31.00 31.00 31.00 31.00 31.00
4 40 10 40.00 40.00 40.00 40.00 39.23
5 30 15 30.00 30.00 30.67 41.33 43.45
6 49 20 49.00 49.00 49.00 49.00 49,00
7 48 23 48.00 48.00 48.00 48.00 48.00
8 48 20 48.00 48.00 48.00 48.00 48.00
9 67 15 67.00 67.00 67.00 56.33 53.96
10 58 13 58.00 58.00 58.00 58.00 58.00
11 67 11 67.00 67.00 67.00 67.00 67.00
12 75 10 75.00 75.00 75.00 75.00. 75.00
13 76 9 76.00 76.00 76.00 76.00 76.00
14 76 9 76.00 76.00 76.00 76.00 77.88
15 102 7 102.00 100.33 99.67 89.00 88.50
16 100 5 100.00 100.00 100.00 100.00 100.00
17 101 5 101.00 101.00 101.00 103.67 106.20
18 115 3 115.00 115.00 115.00 115.00 115.00
19 134 1 134.00 134.00 134.00 134.00 134.00
Fit Fl(gx) 0.00 11.66 26.33 434.33 555.66
Smoothness  S_(a')  54.00 49.00 47.00 15.00  7.88
Fl(gx) -+ AS&(BA) 54.00 256.66 496.33 659.33 713.16
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TABLE 7

Graduated Values when p = », o = 1 and z =

x Ungraduated Weights 2 = 0.1 x =0 A= 0.5 A=1 A= 2
Values '
u” Y% A
X Graduated Values u

1 34 1 26.85 24.52 24.52 25.35 25.35
2 24 1 27.69 27.97 27.97  28.57  28.57
3 31 1 29.69 31.42 31.62 32.01 32.01
4 40 1 32.85 35.19 35.45 = 35.67  35.67
5 30 1 37.15 39.24  39.48  39.57  39.57
6 49 1 42.62  43.59  43.70 43.69  43.69
7 48 1 49.23  48.23  48.12  48.04  48.04
8 48 1 54.98  52.95 52.72  52.62  52.62
9 67 1 59.85 57.76 57.52 57.43  57.43
10 58 1 63.84 62.65 62.51 62.46  62.46
11 67 1 66.96 67.62 67.69 67.73 67.73
12 75 1 69.21.  72.67  73.07  73.22  73.22
13 76 1 74.61  78.55  79.00  79.17  79.17
14 76 1 83.15 85.24  85.48 85.57  85.57
15 102 1 94.85 92.76  92.52  92.43  92.43
16 100 1 103.18 101.09 100.11  99.75  99.74
17 101 1 108.15 110.03 108.26 107.52 107.52
18 115 1 116.04 120.02 116.96 115.75 115.75
19 134 1 126.85 130.85 126.22 124.43 124.48
Fit F_(uh) 7.15 9.24 9.48 9.57 9.57
smoothness 5, (") 18.82 0.94 0.36 0.23  0.23
F(uh) + as (@) 9.04  9.52  9.66  9.80 10.03
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TABLE 8

Graduated Values when p = 2, g = 4 and z =

X Ungraduated Weights A = 0.1 X = 0.3 A = 0.5 A=1 A= 2
Values
u" wX )\
X Graduated Values uy

1 34 3 31.38 30.95 30.78 30.54 30.31
2 24 5 28.19 28.48 28.59 28.73 28.85
3 31 8 30.33 30.39 30.44 30.50 30.58
4 40 10 34.34 34.21 34.18 34.14 34.11
5 30 15 37.72 37.92 37.99 38.06 38.12
6 49 20 44.06 43.83 43.73 43,62 43.52
7 48 23 48.23 48.26 48.27 48.28 48.29
8 48 20 52.67 52.90 52.98 53.08 53.15
9 67 15 59.20 58.94 58.85 58.74 58.65
10 58 13 62.68 62.76 62.78 62.80 62.81
11 67 11 66.99 67.00 67.00 67.01 67.04
12 75 10 72.08 71.90 71.85 71.79 71.76
13 76 9 76.34 76.56 76.65 76.76 76.85
14 76 9 83.30 83.52 83.59 83.65 83.69
15 102 7 92.63 92.21 92.04 91.84 91.66
16 100 5 99.40 99.14 99.06 89.97 98.90
17 101 5 105.51 105.87 106.02 106.20 106.37
18 115 3 114.88 115.23 115.37 115.53 115.66
19 134 1 130.17 129.22 128.83 128.35 127.93
Fit F2(gx) 4746.86 5116.96 5257.08 5419.55 5554.51
smoothness S, (u") 772.34 404.56 167.69  69.29

F,(wh) + a5, (M)

3072.96

5054.16 5348.66 5459.36 5587.24 5693.10




TABLE 9

Graduated Values when p = 4,
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x Ungraduated Weights A =1 A =10 Xx =100 A = 200 x» = 300
Values
u” Yk A
X Graduated Values ux
1 34 3 32.66 31.36 29.94 29.70 29.61
2 24 5 25.48 27.03 28.75 29.05 29.16
3 31 8 32.13 32.39 31.59 31.28 31.11
4 40 10 38.02 36.39 34.42 33.97 33.77
5 30 15 31.98 33.71 35.88 36.41 36.66
6 49 20 47.38 45.94 44.09 43.62 43.40
7 48 23 48.39 48.48 48.48 48.48 48.48
8 48 20 49.60 51.04 52.89 53.36 53.60
9 67 15 65.04 63.33 61.19 60.68 60.43
10 58 13 59.80 61.29 63.07 63.41 63.52
11 67 11 65.96 65.79 ©66.38 66.51 66.56
12 75 10 73.85 72.37 70.62 70.34 70.29
13 76 9 74.63 73.99 74.26 74.68 74.98
14 76 9 78.10 79.82 82.03 82.66 82.98
15 102 7 99,70 97.85 95.42 94.65 94.22
16 100 5 101.75 102.70 102.33 101.89 101.62
17 101 ' 5 102.30 103.74 105.96 106.69 107.09
18 115 3 113.63 112.83 114.00 114.83 115.30
19 134 1 134.79 131.88 128.97 128.23 127.83
Fit F4(gx) 1564.00 18156.22 112334 160539 189039
Smoothness SZ(QA) 7795.14 3514.73 642.76 297.33 179.29
F Ex) + AS2(EA) 9359.14 53303.87 176610 220005 242824

4 (
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TABLE 10
Graduated Values when p = 2, g =1 and z =
X Ungraduated Weights X = 1 A =5 XA =10 A =15 A= 20
Values W
"
Uy X Graduated Values u;
1 34 3 33.83 33.17 32.33 31.50 30.67
2 24 5 24.20 25.00 26.00 27.00 28.18
3 31 8 31.06 31.31 31.63 31.94 31.91
4 40 10 39.70 38.50 37.00 35.50 34.27
5 30 15 30.27 31.33 32.66 34.00 35.27
6 49 20 48.85 48.25 47.50 46.75 46.00
7 48 23 48.00 48.00 48.00 48.00 48.00
8 48 20 48.15 48.75 49.50 50.25 51.00
9 67 15 66.73 65.67 64.33 63.00 61.67
10 58 13 58.23 59.15 60.31 61.46 62.67
11 67 11 67.00 67.00 67.00 67.00 66.80
12 75 10 74.80 74.00 73.00 72.00 71.22
13 76 9 76.00 76.00 76.00 76.00 75.92
14 76 9 76.33 77.67 79.33 81.00 82.45
15 102 7 101.57 99.86 97.71 95.57 94 .24
16 100 5 100.00 100.43 101.10 101.77 101.37
17 101 5 101.50 102.20 102.70 103.20 103.85
18 115 3 114.33 113.83 113.83 113.83 114.21
i9 134 1 135.50 135.33 134.50 133.66 . 132.45
Fit Fz(gx) 12.51 204.25 787.46 1759.44 2935.42
Smoothness sl(gx) 51.72 42.14 33.52 25.75 18.46
F,(ut) + xsl(gx) 64.23 414.95 1122.66 2146.19 3304.62
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TABLE 11

Graduated Values when p = 2, g=- and z = 3

x Ungraduated Weights X = 1 X = 10 A = 100 A = 200 » = 300
Values
u' Yy A
X Graduated Values u,

1 34 3 34.00 34.00 34.00 32.87 30.79
2 24 5 24.00 24.00 24.00 26.04 28.26
3 31 8 31.00 31.00 31.19 30.49 30.43
4 40 10 40.00 39.81 37.69 35.69 34.60
5 30 15 30.00 30.38 34.02 36.84 38.05
6 49 20 49.00 48.71 46.14 44.48 43.49
7 48 23 48.00 48.07 48.10 48.08 48.21
8 48 20 48.00 48.04 50.59 52.30 53.16
9 67 15 67.00 66.94 63.18 60.33 58.86
10 58 13 58.00 58.02 59.91 61.64 62.60
11 67 11 67.00 67.00 66.74 66.76 67.09
12 75 10 75.00 75.00 75.00 73.67 71.84
13 76 9 75.94 75.69 74.80 75.27 76.51
14 76 9 76.17 76.93 79.60 82.11 83.83
15 102 7 101.79 100.80 97.37 94.21 92.19
16 100 5 100.10 100.56 102.16 101.04 98.90
17 101 5 101.00 101.00 101.00 103.92 105.71
18 115 3 115.00 115.00 115.00 113.38 115.36
19 134 1 135.00 135.00 135.00 135.00 130.54
Fit FZ(QA) 1.65 25.54 1165.08 3733.37 5254.74
Smoothness sw(gx) 52.70 46.74 25.96 10.54 2.71
F?(EA) + Asw(gk) 54.35 493.24 3761.08 5483.37 6076.74
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VvIIX. CONCLUDING REMARKS

Notice that there is inconsistency between the definition of
the F- and S-functions as given in Chapter 1 for finite and for
infinite values of p and g: we used the £_- norms of g - p" and
AZH for p and g infinite, but the pth resp. qth powers of the
Kp— and Kq— norms for finite p and g.

This finds its origin in the fact that Whittaker used the
sums of squares, i.e. the pth power of the Zp—ndrms for p = 2;

here we have continued using the pth

power of the prnorms as
a direct extension from p = 2 to all values > 1; since this
is obviously impossible for p = «, we have used the £p~no£m.
itself for infinite p.

A more elegant approach might have resulted from alternative
definitions of Fp and Sq consistent with thoseof F_ and S_; Fp
would be defined as the (weighted) £p~norm of g - u", and S

g
as the Kq—norm of AZ% (rather than the pth or qth powers of these

norms) :
n 1/p
LR T | J— - nw P
row Iu u | ’
P =1 ¥ X
(8.1)
n-z 1/q
"G "o Y lAZu ‘q .
d x=1 ®

If we introduce the notation

1" }?COH — lim "F " ,
p—)OO p

"S . n - lim HS 1" ,
el q..>oo q

we see that we need only (8.1) to define Fp and Sq consistently

for all p, g (1 < p, q'i w)
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Note (see Chapter II, pp. 5-7) that the new definition does

not change anything for infinite p and q:

"F (u)" = F _(u) = max J|u - u"|

e © o 1<x<n v
"S,(w)" = 8 _(u) = max IAZu !
v v 1<x<n-z vX

as before.

A practical advantage of the new definition is that the functions
F_ and Sq would be of the same order of magnitude for all p and
q instead of, as before, growing exponentially with increasing
p and g.

The theoretical implications of this more consistent and,
therefore, more elegant approach have, however, not been explored
here. Bug&\they will be part éf a further study.

¢

k)
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