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ABSTRACT

Compactifications of completely regular Hausdorff spaces
have been studied in several ways; two of these are by
embedding topological spaces in products of other spaces,
and by supplying topological spaces with additional

structure.

In 1930 Tychonoff showed that a topological space is

completely regular and Hausdorff if and only if it can be

embedded in some product of closed unit intervals. By

embedding a completely regular Hausdorff space X in the
C*¥(X,I) . . s .

product X , one obtains the compactification of X

which is the projective maximum among all compactifications

of X. This compactification of X is called the Stone-Cech

compactification of X; any other compactification of X is

some quotient space of the Stone-Cech compactification of X.

In 1948 Samuel developed a relationship between
uniformities and compactifications, and in 1952 Smirnov
established the correspondence between proximities and
compactifications. In this paper we will consider both
quotient spaces of Stone-Cech compactifications, and

proximities on topological spaces, to study remainders of

compactifications.
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More specifically, we wish to determine when a
completely regular Hausdorff space has a compactification
with a O-dimensional remainder. Such a compactification
will be called O-dimensional at infinity (denoted by 0.I.);
a O-space is any space possessing a 0.I. compactification.
In 1942 Freudenthal showed that a rimcompact separable space
is a O-space. Morita using uniformites, and Skylarenko
using proximities, showed in 1952 and 1966 respectively that
any rimcompact space X has a compactification which has a
basis of open sets whose boundaries are contained in X.
Skylarenko showed that a O-space which is Lindeldf at
infinity is rimcompact, but mentioned the existence of
non-rimcompact O-spaces. He proved that the maximum O0.I.
compactification of a rimcompact space is the minimum
perfect compactification of that space, and in 1969
McCartney showed that any O-space X has a maximum O0.I.
compactification which will also be the minimum perfect

compactification of X.

In Chapters 2-4 we develop a theory for a class of
spaces intermediate between rimcompact spaces and O-spaces,
which we will call "almost rimcompact spaces™. Each almost
rimcompact space will possess a compactification in which

each point of the remainder has a basis (in the compact-
ification) of open sets whose boundaries do not intersect

the remainder of the compactification. The approach will be
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to show that if a space satisfies a condition similar to
rimcompactness, then an easily defined quotient space of the
Stone-Cech compactification of X is a compactification of X
with the property mentioned above; the converse is also
true. A proximal characterization of almost rimcompact
spaes is also given. To characterize the larger class of
O-spaces, in Chapter 5 we define a relation o on the power
set of a space X. We show that « is a proximity compatible
with the topology of X if and only if X is a O-space, in
which case the compactification «X of X associated with o is

the maximum 0.I. compactification of X.

In Chapter 6 we consider the problem of extending maps
of O-spaces over their maximum O0.I. compactifications. 1In
1956 Morita showed that if X and Y are locally compact and
paracompact, then any closed map from X into Y extends fto a
map from the maximum O0.I. compactification of X into the
maximum O0.I. compactification of Y. Nowinski, in 1972,
showed that it is sufficient for X and Y to be locally
compact and metacompact. We shall prove that in order for a
closed map of X into Y to extend to a map from the maximum
0.I. compactification of X into the maximum O0.I. compact-
ification of Y, it is necessary and sufficient that the map
satisfy a condition imposed on preimages of pairs of points.
This result is used to show that if i) X is a realcompact or

metacompact O-space and Y is a rimcompact space in which the

(iv)




set of g-points has discrete complement, or if ii) X is a
metacompact O-space or a locally compact realcompact space,
and Y is a rimcompact k-space, then any closed map from X
into Y extends over the maximum 0.I. compactifications of X

and Y.

(v)
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CHAPTER 1

PRELIMINARY NOTIONS

In the following, all spaces are assumed to be

completely regular and Hausdorff.

The symbols R, N, @, P and I will denote the real
numbers, natural numbers, rational numbers, irrational
numbers and unit interval respectively. When used as
topological spaces, R is given its usual interval topology,
and the remaining spaces are given the subspace topology
inherited from R. If X and Y are topological spaces, the
collection of continuous functions from X to Y is denoted by
C(X,Y). The ring of continuous real-valued functions on a
space X is denoted by C(X), and its subring of bounded
members by C¥(X). If f e C(X), the set {x: f(x) = 0} is
called the zeroset of f, and is denoted by Z(f). Two

subsets A and B of X are said to be completely separated in

X if there exists f e C(X) such that A c f+(0), and

Bef (1). A map is a continuous surjection. A function
f: X > Y is closed if whenever F is a closed subset of X,
then f[F] is a closed subset of Y. We use without mention
the following well known fact. If £ : X - Y is a closed
map, and £ [S] ¢ U, where S c¢ Y, and U is open in X, then
there is an open set V of Y such that £ [S]lc £ [V] cU. A

closed function f: X - Y is perfect if for each y ¢ Y, f (y)




is compact. If f e C(X,Y) and Z < X, we use flA (the

restriction of f to A) to denote the map of A into Y defined

by (flA)(a) = f(a) for each a € A. If A < X, then A is
C-embedded (respectively, C¥-embedded) in X if for each
f e C(A) (respectively, C¥(A)), there exists g & C(X)

(respectively, C¥(X)) such that g|A = f.

If X is a topological space, a compactification KX of X

is a compact Hausdorff space in which X is densely embedded.
For background information on compactifications, the reader
is referred to [GJ] or [Chl. It is well known that a
topological space X is completely regular and Hausdorff if
and only if X has a compactification. If KX and JX are two
compactifications of X, we write KX 2 JX (and say KX is
larger than JX) if there is a map f: KX » JX such that

f(x) = x for all x ¢ X. We write KX = JX (and say KX and JX

are equivalent compactifications of X) if there is a

homeomorphism h: KX > JX such that h(x) = x for all x e X.

The following is an easy consequence of 3.2.1 of [Enl.

1.1 Proposition (Taimanov s theorem) : Let KX and KY be

compactifications of X and Y respectively, and let f be a
map from X into Y. There is a map f“: KX » KY such that

f IX = f if and only if for A, B c Y, ClKYA n ClyyB = o

implies Clyyf (A) n Cleyf (B) = o.



In particular, if KX and JX are compactifications of X,
then KX 2 JX if and only if for A, B c X, ClJXA n ClJXB = ¢

implies ClKXA n ClKXB = ¢,

If f and f° are as in 1.1, we say that f extends to

£’ ¢ C(KX,KY).

Let K(X) denote the family (of equivalence classes) of
compactifications of X. The relation 2 is a partial order
on K(X), and K(X) is a complete upper semilattice when
partially ordered by 2. The largest element of K(X) is the

Stone-Cech compactification of X, denoted by BX. The

compactification BX is characterized as that compact-
ification of X in which X is C¥-embedded. In the sequel, if
KX ¢ K(X), the natural map from BX into KX is denoted by Kf.

The following is a consequence of 6.12 of [GJ].

1.2 Proposition : Suppose that KX and JX are compact-

ifications of X, and that KX = JX. Let f denote the natural

map from KX into JX. Then f[KX \ X] = JX \ X.

We will often call KX \ X the remainder of KX.

A topological property P is hereditary if whenever a

space X has property P, and S < X, then S has property P. A

property P is productive 1f whenever {Xi: i e I} is a set of

spaces, each of which has property P, then H{Xi: i € I} has



property P.

It is shown in [ESJ] that any non-empty family
{KiX: i e I} of compactifications of X has a least upper
bound. Let P = I{K;X: i ¢ I}. For each x & X, let e(X) be
the element of P each of whose coordinates is x. Then
e : X+ P is an embedding of X in P, and we can identify
e[X] with X. Then ClPX is the least upper bound of
{KiX: i e I}. The natural map from ClPX to KiX is the
restriction to ClPX of the projection P; HE S KiX' It
follows from 1.2 that ClpX \ X < T{K;X\X: 1 e I}. Thus we

have the following result.

1.3 Proposition : Let P be a topological property which is

hereditary and productive. If a space X has a compact-

ification whose remainder has property P, then X has a

maximum compactification whose remainder has property P.

A proximity on a space X is a relation § on P(X)
satisfying,
(P) ¢ # A for any A < X,

(P,) if A, B c X, and A n B 2 ¢, then A & B,

(Py) if A, B c X, and A & B, then B s A,
(P,) for &, B,, B, c X, A & (By u By) if and only if A s B,
or A ¢ B2,
and
(P5) if A, B < X, and A § B, then there exists C < X such



that A 8 C, and B § X \ C.

Our standard reference on proximities is [NW]. The pair

(X,8) is called a proximity space, and is separated if for

X, ¥y e X, x 6§ y implies x = y. (Although strictly speaking
we should use the notation {x} 6 {y} we shall simply write
X 6§ y.) We often write A <s B to mean A g X \ B.

If (X,8) is a proximity space and A < X, define A6 to be
{x ¢ X: x 6 A}. Then A ~ A% is a Kuratowski closure
operator, so ¢ induces a topology T on X, defined by t(¢8) =
{X \ AG: A e X}, If t is a given topology on X, then 8 is

called compatible with t if 1(¢§) = . In the sequel, any

proximity considered on a topological space X is assumed to
be compatible with the topology of X. It is well known [NW]
that a topological space X is completely regular and
Hausdorff if and only if there is some separated proximity

on X which induces the topology of X.

ir 84 and §, are two proximites on a space X, we say

8 §, 1f for A, B < X, A 8 B implies that A 85 B. If

pd
1 2
(X,8) and (Y,y) are proximity spaces, then a function

f: X - Y is a proximity map if for A, B < X, A 6 B implies

fLAJ v f[Bl, or equivalently, for C, D c Y, C # D implies

£1Cc1 4 £ D).

A compact Hausdorff space X admits a unique compatible



proximity & defined by (for A, B ¢ X) A 8 B if and only if
ClXA n ClXB = ¢. Hence if KX is a compactification of X, KX
induces a proximity & on X defined by (for A, B < X), A & B

if and only if ClKXA n ClKXB Z 6.

The converse is also true. Given a proximity § on X, we
can construct a unique compactification 86X of X (called the
proximal compactification of X associated with §) satisfying

(for A, B < X) A 8 B if and only if Cl A n Cl1.,B # ¢. Then

8§X

§,X 2 §,X if and only if 51 > 62, so the partially ordered

1 2
set of proximities on X is order isomorphic to K(X). The
proximity 8 on X inducing 8X is the largest proximity on X,
and is defined by (for A, B c X), A g B if and only if A and
B are completely separated in X. If (¥X,s) and (Y,v) are
proximity spaces, then according to 1.1 and the preceding

remarks, if f is a map from X into Y, then f extends to

F e C(8X,vyY) if and only if f is a proximity map.

A decomposition D of a space X is a collection of

disjoint subsets of X whose union is X. Define a function P
(called the natural map) of X into D by letting P(x), for

x ¢ X, be the element of D containing x. Then the

decomposition space X/D is the quotient space whose elements

are the elements of D, and which has the quotient topology
induced by the natural map P. An open set V of X is
saturated (with respect to D) if V is a union of elements of

D. Clearly, if V is saturated with respect to D, then



PIPLV]] = V. Since P is a quotient map, if V is clopen in
X and saturated with respect to D, PLV] is clopen in X/D.

The collection D is an upper semicontinuous decomposition of

X 1f for each D ¢ D, and each open set U of X containing D,
there exists a saturated open set V of X such that

DeV cU.

Let D be a decomposition of g8X \ X into compact sets,
and let D’ denote the decomposition of BX consisting of
Du {{x}: x € X}. Then BX/D" is a compactification of X
(where X is identified with {{x}: x e X}) if and only if D~

is an upper semicontinuous decomposition of B8X [Kel.

A space X is connected if whenever X = U u V, where U

and V are nonempty open subsets of X, then U n V # ¢. The

connected component CX of x ¢ X is the union of all

connected subspaces of X containing x. A space X 1s totally

disconnected if CX = {x} for all x & X. The quasi-component

QX of x ¢ X is the intersection of all closed-and-open

(denoted clopen) subsets of X containing x. A space X is

fully disconnected if QX = {x} for all x ¢ X.

1.4 Definition : The decomposition of B8X consisting of

{{x}: x e X} v {C_: Cp is the connected component in X \ X

of p e BX \ X} is denoted by C(BX). The decomposition of B8X

consisting of {{x}: x e X} v {Qp: Qp is the quasi-component

in BX \ X of p & BX \ X} is denoted by &(B8X).



It is clear that if V is open in BX and V n (BX \ X) is
clopen in BX \ X, then V is saturated with respect to both

c(8X) and Q(BX).

If U is an open subset of X, and 8X ¢ XK(X), then Ex vU
is defined to be 8X \ ClsX(X \ U). The set EX6XU is often
called the extension of U in 6X. It 1s an easy exercise to
verify (i), (ii), (iii) and (iv) of the following
proposition. Statement (v) is implicit in the proof of

Lemma 2 of [Sk], and (vi) follows from (v).

1.5 Proposition : Let &X e K(X).

(i) If W is open in 6X, then W c EXGX(W n X).

(ii) If U and V are open in X, then Exéx(U nv) =
(ExﬁXU) n (EXSXV)'

(iii) If U is open in X, then (EXGXU) n X = U, hence ClyyU =
Cl, Ex

sx ¥ sxU-
(iv) If F is closed in X, U is open in X, and F n U = ¢,

then ClGXF n EX&XU = 4.
(v) If U and V are open in X, then

EXGX(U u V) \ (Ex U v EXGXV) < ClyyUn Cly, V.

§X X X
(vi) If U and V are open in X, and ClgyU n ClsyV = ¢, then

EXGX(U v V) = EX&XU U EX&XV°

If U is any open subset of X, then it 1is easy to verify

that Ex(S

XU is the largest open subset of sX whose



intersection with X 1s the set U. The collection
{EXGXU: U is an open subset of X} of open sets of 6X is

easily seen to be a basis for the topology of §X.

If B « X, the boundary of B in X, denoted by bdyB, is
defined to be the set ClXB n ClX(X \ B). A compactification

8X of X is a perfect compactification of X if for each open

subset U of X, Cl6X(bdXU) = bdéX(ExaxU)‘ According to the
corollary to Lemma 1 of [Skl, gX is a perfect compact-

ification of X.

The equivalence of (i), (ii), and (iii) of the following

proposition appear in Theorems 1 and 2 of [Skl.

1.6 Proposition : Let 8X e X(X). The following are

equivalent.

(i) §X is a perfect compactification of X.

(ii) If U and V are disjoint open sets of X, then
Ean(U u V) = EXGXU U Ex V.

(iii) For each p e §X, (Gf)*(p) is a connected subset of BX.

Following [Sk], we say a space X is punctiform if every

connected compact subset of X consists of one point. The
next proposition follows from Theorem 3 (and its proof) of

[Sk1].

1.7 Proposition : A space X has a minimal perfecf
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compactification KX if and only if X has at least one
compactification with punctiform remainder. In this case
the minimal perfect compactification KX is unique; KX \ X is
punctiform, and KX is the largest of all compactifications
of X with punctiform remainder. The collection of sets
{(Kf)é(p): p e KX \ X} are maximal connected compact subsets

of 8X \ X.

Suppose that X is a space which has a compactification
with totally disconnected remainder. Since total dis-
connectedness is productive and hereditary, it follows from
1.3 that X has a maximum compactification SX having totally
disconnected remainder. Since a totally disconnected space
is punctiform, it follows from 1.7 that X has a minimum
perfect compactification JX, and that SX < JX. It is easy
to verify that if X has a compactification with totally
disconnected remainder, then the maximal compact connected
subsets of BX \ X are precisely the connected components of

BX \ X, hence by 1.7 JX = 8X / c(8X).

A straightforward computation using 2.5 of [Mc] and 1.6

gives us the following.

-—

.8 Proposition : Let X be a space, and suppose that K1X is

compactification of X which is not perfect. Then there is

o

i)

compactification K2X such that K2X 2 K1X, and if

f K2X -+ K1X denotes the natural map, then T isvnot a



11

homeomorphism, but If (p)l < 2 for each p ¢ K X\ X.

It is easy to verify that if K,X and K, X are as in 1.8,
and KiX is totally disconnected, then KZX is totally dis-

connected. Thus we have the following.

1.9 Theorem : Let X be a space which has a compactification

with totally disconnected remainder. Then X has a maximum
compactification SX having totally disconnected remainder.

The compactification SX = gX / C(gX), and is the minimum

perfect compactification of X.

A space X is zero-dimensional (denoted by O-dimensional)

if X has a basis of clopen sets. A space X is strongly

O-dimensional if any two disjoint zerosets of X are

contained in disjoint clopen sets of X. Any O-dimensional
space X has a maximum O-dimensional compactification denoted
by B8,X. (Here, and in the following, a maximum
P-compactification of X means a compactification of X which
is the maximum in the class of compactifications of X with
property P.) The compactification B,X can be characterized
as that compactification of X to which all continuous
{0,1}-valued functions on X can be continucusly extended
(where {0,1} denotes the two-point discrete space). The
proximity 8, on X inducing 8,X is defined by (for A, B c X)
A g, B if and only if A and B are contained in disjoint |

clopen subsets of X. The compactifications B8,X and BX are
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equivalent if and only if X is strongly O-dimensional.

1.10 Definitions : A space X is a 0O-space if X has a

compactification KX such that KX \ X is O-dimensional. We

will say that KX is a O-dimensional at infinity (denoted by

0.I.) compactification of X.

It follows from 1.7 that if KX is a 0.1I.
compactification of X and JX is a perfect compactification
of X, then JX 2 KX. Hence any perfect 0.I. compactification
of X is a maximum 0.I. compactification of X. The converse
is also true. If X is a O-space, then X has a maximum 0.1I.
compactification (which we shall denote by F,X) which will
also be the minimal perfect compactification of X (2.2, 3.3
of [Mel). Since F X is a perfect, 0.I. compactification of
X, for each p ¢ F, X \ X, (Fof)é(p) is a connected compact
quasi-component of gX \ X. Then Cc(gX) = @(gX) =
{(Fof)+(p): p e F,X}. Also each element of C(8X) contained
in BX \ X has a basis in BX of open sets of BX whose
intersections with B8X \ X are clopen in BX \ X (again, by
the O-dimensionality of F,X \ X). On the other hand, if
Q(BX) = ¢c(BX), and ¢(gX) is an upper semicontinuous
decomposition of BX into compact sets, then 8X / ¢(8X) is a
perfect compactification of X. Suppose that in addition,
elements of C(BX) contained in 8X \ X have a basis in BX of
open sets whose intersections with 8X \ X are clopen in

BX \ X. It follows from 1.2, the remark following
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Definition 1.4 and the properties of decomposition spaces,
that BX / C(BX) is a 0.I. compactification of X. Thus
BX / C(BX) is a perfect 0.I. compactification of X and hence

is F,X.

Following the terminology of [M1] and [Skl, we say that
an open set U of X is m-open in X if bdXU is compact. The
intersection and union of finitely many 7w-open sets are
m-open, as is the complement of a m-open set. A space X is

rimcompact if X has a basis of wn-open sets. Any rimcompact

space is a O-space [M1]. The maximum 0.I. compactification

of a rimcompact space X is called the Freudenthal compact-

ification of X, and is denoted by FX.

1.11 Definition : If F1, F2 < X, then F1 and F2 are

n-separated in X if there is a 7m-open set U of X such that

Fic U, and ClyU n F, = ¢. We shall often write "{x} and F

are w-separated" as "x and F are w-separated".

If X is any topological space, define § to be a relation
on P(X) as follows: (for A, B c X) A & B if and only if A
and B are m-separated in X. The relation ¢ is a proximity
on X if and only if X is rimcompact, in which case §X = FX,

the maximum 0.I. compactification of X [Sk].

It is easily verified that if X is O-dimensional and A,

B < X, then A and B are contained in disjoint clopen subsets
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of X if and only if A and B are wn-separated in X. Thus if X

is O-dimensional, FX = B,X.

For any space X, the residue of X (denoted by R(X)) is

the set of points at which X is not locally compact. If KX

is any compactification of X, then ClKX(KX \ X) =

R(X) uv (KX \ X).

The notions used from set theory are standard. An

ordinal is thought of as the set of its pfedecessors, and a
cardinal as an initial ordinal. The symbol v  1s used to
denote the o’th cardinal. For any set X, |X| denotes the

cardinality of X.
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CHAPTER 2

ALMOST RIMCOMPACT SPACES

In this chapter we develop a theory of 0.I. compact-
ifications for a class of spaces intermediate between the
class of rimcompact spaces and the class of O-spaces (recall
Definition 1.10). This class will be characterized and
compared to the class of rimcompact spaces by discussing how
the remainder of the maximal 0.I. compactification of a

member of the class is embedded in the compactification.

We shall be working with w-open subsets of a space X and
related open sets of compactifications of X; we begin by

listing some straightforward results.

2.1 Definition : Let KX ¢ K(X), and let W be open in KX. If

bdpxW < X, W is said to be a small boundary (denoted by sb)

subset of KX.

2.2 Lemma : Let KX e K(X).

(i) The intersection (union) of finitely many sb open
subsets of KX is an sb open subset of KX.

If W is an sb open subset of KX, then

(ii) W n X is m-open in X.

(iii) W = Expy(W n X).

(iv) KX \ Cl,.W is sb in KX.

KX
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(v) If 8X 2 KX, and if f: 86X » KX is the natural map, then

£ Iw] is an sb open subset of §X.

Proof : (i) This follows from the fact that if A, B are
subsets of X, then [bdX(A n B)]l u [bdX(A u B)l e

[bdXA U bdXB].

(ii) As bdX(W n X) ¢ bd XW n X = bd the set

K kx¥W

bdX(w n X) is a closed subset of a compact subset of X, and

hence is compact.

(iii) It is sufficient to show that EXKX(W n X) ¢ W,
since the reverse inclusion 1s true for any open subset W of
KX. Now EXKX(W n X))\ Wec ClKX(w n X))\ W= ClKXw \ W =

bdKXw < X, while EXKX(W n X) n X < W, hence EXKX(W n X) ¢ W.

(iv) This follows from the fact that bdX(X \ ClXA) c

bdXA, for any subset A of a space X.

(v) This is obvious, since bd  f [ W] < f*[bdKXWJ c X. [0

2.3 Lemma : Let KX be a perfect compactification of X.

Then

(i) If V is an open subset of B8X, and V n (BX \ X) is
clopen in BX \ X, then (Kf)“[(K£)[V1] = V.

If U is wn-open in X, and F is closed in X, then

n

(i1) ClgxU n (KX \ X) ClyxExpyU n (KX \ X)

(EXKXU) n (KX \ X).

(iii) F < U if and only if ClKXF c ExKXU.

(iv) F n ClyU = ¢ if and only if ClpyF n Clp U = ¢.
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Proof : (i) Recall that by 1.2 (Kf)[gX \ X1 = KX \ X, and
that (Kf‘)lX is the identity map on X. Clearly

(KE)I(KFYLV n X1] = V n X, so it is sufficient to show that
(K£) L(KE)IV n (BX \ X)11 = V a (BX \ X). Now KX is a
perfect compactification of X, so according to 1.6, for each
p g KX \ X, (Kf)+(p) is a connected subset of 8X \ X. This
implies that either (Kf) (p) ¢ V n (8X \ X), or

(KE) (p) n (V n (BX \ X)) = ¢. If p e(KF)LV n (8X \ X)1,
then (K£) (p) n (V n (8X \ X)) # ¢, hence (Kf)* (p) <

V. n (BX \ X); in other words, V n (BX \ X) =

(KE)TL(KEILV n (BX \ X)11.

(ii) Since U is m-open in X, and KX is a perfect
compactification of X, ClKXEXKXU \ EXKXU = bdKXExKXU =

ClKdeXU = bdXU c X.

(iii) Clearly, if C1 xF ¢ ExpyU, then F < U. On the

K KX~?
other hand, if F < U, then ClKXF \ EXKXU =

according to (ii).

(iv) Clearly, if ClygF n ClpyU = ¢, then F n Cl,U = ¢.

X X
Conversely, if F n ClXU = ¢, then ClKXF n ClKXU =

ClpgF n ClpyU n (KX \ X) = ClpyF n ExpyU n (KX \ X), by

KX
(ii), while the latter set is empty by 1.5 (iv). O

It is an easy exercise to find examples showing that if

KX is not a perfect compactification of X, then none of the
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statements of 2.3 need be true. For example, let wR be the
one point compactification of R. The set U = (0,%) is
m-open in R, F = [1,») is closed in R, and F < U, but
CleF s EwaU.

Recall that if X is rimcompact, then X is a O-space and
FX denotes the maximum 0.I. compactification of X. The
space FX \ X 1s a O-dimensional subspace of FX; we show that
it is embedded in FX in a special way. We need the

following definition.

2.4 Definition : If Z ¢ Y, then Z is O-dimensionally

embedded in Y if Y has a basis of open sets whose boundaries

are contained in Y \ Z.

Recall that F,X is the maximum O0.I. compactification of

a O-space X.

The proof that (i) implies (ii) in the following
proposition appears in [Sk]; that (ii) implies (i) is a

trivial consequence of 2.2 (ii).

2.5 Proposition : For any space X, the following are

equivalent.
(i) X is rimcompact.
(ii) X is a O-space, and F,X has O-dimensionally embedded

remainder.
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We remark that the Freudenthal compactification FX of a
rimcompact space X was constructed in [M1], where it was
shown that FX \ X is O-dimensionally embedded in FX, and
that FX is the maximum in the family of compactifications of
X having O-dimensionally embedded remainders. It was not

pointed out that FX is the maximum in the family of 0.I.

compactifications of X.

According to 2.5, the Freudenthal compactification of a
rimcompact space X satisfies two conditions which would not
appear to be necessary for a compactification of X to have
O0-dimensional remainder. First, points of X have neigh-
bourhood bases (in FX) of open sets whose boundaries lie in
X - we might expect the bases to be somewhat more arbitrary,
perhaps consisting of open sets merely saturated with
respect to C(8X) (recall Definition 1.4). Secondly, any
element of FX \ X has a basis of open sets of FX whose
boundafies lie in X. It is not true in general that if an
open set in a topological space intersects a subspace in a
clopen set, then the boundary (in the large space) of that
open set does not intersect the subspace. For example, if

X =Ix1I,Y={(/n, 0)} and U = X \ {(1/2, 0)}, then U

nelf?
is open in X, and U n Y is a clopen subset of Y, while
bdyU n Y = {(1/2, 0)}. Then we might expect to find a
O-space X where points of the remainder of F,X have

neighbourhood bases (in F,X) consisting merely of open sets
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whose intersections with FoX \ X are clopen in F,X \ X.

If X is any O-space, of the two properties possessed by
the Freudenthal compactification of a rimcompact space
mentioned above, F,X has the first if and only if X is
rimcompact, whereas the second property is possessed by the
Freudenthal compactification of a space as a consequence of
the space being rimcompact. Hence if X is a O-space, and
F,X does not have the second property, F,X cannot have the

first; the converse is not true. The following definition

weakens the notion of a O-dimensional embedding.

2.6 Definition : If Z < Y, Z is relatively O-dimensionally

embedded in Y if each point of Z has a basis (in Y) of open

sets whose boundaries are contained in Y \ Z.

It is immediate that if a space X has a compactification
KX with relatively O-dimensionally embedded remainder, then
KX \ X is O-dimensional, hence X is a O-space. Also, as a
conseguence of 2.5, if X is rimcompact, then X has a
compactification with relatively O-dimensionally embedded
remainder. We shall formulate an intennal condition on a
space X that in 2.19 will be shown to be equivalent to X
having such a compactification; spaces satisfying this
condition will be called "almost rimcompact". We shall see
that non-rimcompact, almost rimcompact spaces exist (Example

3.18); there are also O-spaces which are not almost
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rimcompact (Example 3.22). However, if bdXR(X) is compact,
then X is a 0O-space if and only if X is almost rimcompact

(4.4),

We have mentioned that the existence of a 0.I. compact-
ification of a space X is equivalent to £(8X) (or equiv-
alently, Q(BX) (recall Definition 1.4)) forming an upper
éemicontinuous decomposition of BX into compact sets, where
elements of C(BX) contained in BX \ X have neighbourhood
bases consisting of open sets of BX whose intersections with
BX \ X are clopen, and that, in fact, this decomposition of
BX is FoeX. 1In the following "saturated" will mean
"saturated with respect to C(BX)". Points of F¢X \ X will
be regarded as connected components of B8X \ X, or as points

of F,X \ X, without explicit mention.
Before formally defining the term "almost rimcompact",
we investigate the saturated open sets of 8X for a

rimcompact space X. We make the following definition.

2.7 Definition : If F and U are closed and open subsets of

X, respectively, then F is m-contained in U if there is an

r-open set V of X such that F ¢ V ¢ ClXV c U.

Note that F is w-contained in U if and only if F and

X \ U are m-separated.
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Recall that if § is a proximity on X, and A, B < X, then

A <s B means A 8 X \ B.

2.8 Proposition : Consider statements (i) and (ii) given
below. If U is an open subspace of a O-space X, then (ii)
implies (i). If in addition, X is rimcompact, then (i)
implies (ii).

(1) Ex,xU is saturated.

(i1) If F is a closed subset of X and F <8 U, then F is

mt-contained in U.

Proof : (i) implies (ii). We will show first that if

p ¢ BX \ X, and Cp is the connected component of p in
BX \ X, then Cp has a basis in BX of open sets whose

boundaries lie in X. Since X is rimcompact, (Ff)(p) has a
basis ¥ of open sets of FX whose boundaries lie in X.
According to 2.2 (v), for each W ¢ W, (Ff)+[W] is an open
set of BX whose boundary lies in X. Since Ff is a closed
map, the collection of sets {((Ff) [Wl: W e ¥} is a basis in
8X for (Ff) [(FF)(p)] = C_. Also, since (Ff)+[ClFXW] =

P
W is a basis for (Ff)(p), we can assume

<
ClBX((Ff) [W] and
without loss of generality that for each W ¢ J, there is

W, e K such that 01(BX(Ff)<‘[w1]) c (FEYTLW].

Now suppose that EXSXU is a saturated open set. If F is
any closed subset of X such that F is completely separated
from X \ U, then ClBXF c EXBXU. If p ¢« ClBXF n (BX \ X),

then by hypothesis, Cp c EXBXU‘ It follows from 2.2 (ii)
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and (iii), and the remarks in the previous paragraph, that
there is a m-open set U(p) of X such that Cp < ExgyU(p) <
ClsXU(p> c EXBXU‘ As X is rimcompact, it follows that if
p ¢ F, then there is a wn-open set U(p) of X such that

p ¢ U(p) < ClBXU(p) c EXBXU° Then ClBXF c

U{EXBXU(p): p € ClBXF} c EXBXU’ so by compactness, there

XF such that ClBXF c

U{U(pi): 1 <1< n}c u{ClBXU(pi): 1< i< n} < ExgyU. If

exists a finite set {p1,p2,...pn} c ClB

V = U{U(pi): 1 <1 < n}, then V is a m-open subset of X, and

FcVec ClXV c U, hence F is w-contained in U.

(ii) implies (i). Suppose that p ¢ EXBXU n (BX \ X).
It suffices to show that Cp = EXBXU. Choose F to be a
BXF c EXBXU. Now F is
completely separated from X \ U, so by hypothesis F is

closed subset of X such that p e Cl

m-contained in U. That is, there is a wn-open subset V of X

such that F <« V < ClXV < U. Now ClXV n (X \U) = ¢, so by

2.3 (iv), ClBXV n ClBX(X \ U) = ¢, and p ¢ C1_,F c ClBXV c

gX
gX \ ClBX(X \ U) = EXBXU° As ClsXV n (X \ X) is clopen in

gX \ X, and Cp n Cl1_,V z ¢, Cp e C1_,V. Thus C_ < Ex U,

BX X p B X

and the statement follows. [

If X is rimcompact, then the collection of m-open
subsets of X is a basis of open sets of X, each of which
satisfies the condition imposed on U in 2.8. On the other
hand, if X has a basis of open sets, each satisfying (ii) of

2.8, then X is easily verified to be rimcompact.
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We are now prepared to define "almost rimcompact". The
first of the following definitions is a weakening of

Definition 2.7.

2.9 Definitions : (i) If F is closed in X, U is open in X,

and F < U, then F is nearly m-contained in U if there is a

compact subset K of F so that whenever F’ is a closed subset
of F, and F" n K = ¢, F’ is m-contained in U.

(ii) A space X is nearly rimcompact if whenever U is open in

X, and x € U, there is an open set W of X such that x ¢ W

and Cle is nearly w-contained in U.

(iii) A space X is guasi-rimcompact if for any x ¢ X, there

is a compact set KX of X, so that whenever F is a closed

subset of X and F n KX = ¢, then x and F are m-separated.

(iv) A space X is almost rimcompact if X is nearly

rimcompact and quasi-rimcompact.

Note that X is rimcompact if and only if whenever U is
an open subset of X, and x € U, there is an open subset V of
X such that x € V and ClXV is m-contained in U. Equiv-
alently, X is rimcompact if and only if whenever U is an
open subset of X, and x € U, then {x} is m-contained in U.
Clearly the latter formulation is the most straightforward.
However the former formulation is an analogue of (i) and
(ii) of Definition 2.9, and is the motivation for the

terminology developed.




25

Clearly, every rimcompact space is almost rimcompact.
We will show that any almost rimcompact space is a O-space
(2.19). Neither near rimcompactness nor quasi-
rimcompactness is sufficient to insure that a space is a
O-space (Examples 3.19 and 3.20), hence neither condition
implies the other. However, if X is quasi-rimcompact, then
X is a O-space if and only if X is almost rimcompact (2.19)
hence 1f and only if X is nearly rimcompact. Of the three
classes of spaces defined in Definition 2§9, the class of
almost rimcompact spaces is the most important because of
1ts characterization in terms of spaces possessing compact-
ifications with relatively O-dimensionally embedded
remainders (2.19). Quasi-rimcompactness of a space X will
provide a basis of sb open sets of BX for elements of C(BX)
contained in BX \ X, while in the presence of quasi-
rimcompactness, near rimcompactness provides a basis of
saturated open sets for each point of X. We need the

following easily proved result.

2.10 Lemma : Let X be any space, and let U, V and W be open

subsets of X. If ClXU n ClXV = ¢, and We U u V, then

bdX(W nU) c bdXW.

2.11 Definition : If KX ¢ X(X), and x € KX, then G(KX,x) =

n{ClKXU: U is a m-open subset of X and x e EXKXU}. The set

G(BX,x) will be denoted by G, .
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2.12 Lemma : Let X be any space. If KX ¢ k(X), and x ¢ KX,

then G(KX,x) is connected.

Proof : Suppose that for some x e KX, G(KX,x) is not

connected. Let G(KX,x) = G, v G,, where G1 and G2 are

disjoint non-empty closed subsets of G(KX,x). Since G(KX,x)

is compact, G1 and G2 are disjoint compact subsets of KX;

hence there are open sets U1 and U2 of KX such that Gi < Ui’

(i = 1,2) and C1,,U, n C1,,U, = ¢. Then

KX 1 KX"2
G(KX,x) n (KX \ (U1 u U2)) = ¢, so by compactness, there is

a finite collection Vi’ i= 1,2,...n of m-open subsets of X
such that x e ExpyV., for each i, and n{ClKXVi: 1< i< n} c

U1 v U If V = n{Vi: 1< i< n}, then V is a n-open subset

5
of X, and by 1.5 (ii), x ¢ ExpyV.

Let W; = V.o Uy, (i = 1,2). Then W, u W, = V.

vV, (i = 1,2). Hence W, and W

According to 2.10, bdXWi c bd 1 5

X
are w-open subsets of X. As ClKXw1 n ClKXw2 c

ClKXU1 n ClKXU2 = ¢, X € EXKXV = EXKXW1 ] EXKXWE’ by 1.5
(vi). Assume without loss of generality that x e EXKXW1.
Then G(KX,x) n Uy © ClyggW, n U, = ¢, which is a contra-
diction to our choice of U1 and U2. The theorem is proved.

O

2.13 Theorem : If X is quasi-rimcompact, and p € BX \ X, the
Gp is the (compact connected) quasi-component of p in
BX \ X. The set Gp has a basis of open sets of BX whose

boundaries lie in X.
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Proof : We showed in the previous lemma that Gp is compact
and connected. It remains to show that Gp is the quasi-
component in BX \ X oflp e BX \ X. We will first show that

if X is quasi-rimcompact, and if p € BX \ X, then Gp is a

subset of BX \ X. If p e BX \ X, and x € X, then there is a
closed subset F of X such that F n KX = ¢, and p ¢ ClsXF’
(where K, is as in Definition 2.9 (iii)). Then x and F are

n-separated, while p ¢ ClBXF' That is, there is a wn-open

set U of X such that x ¢ ClXU and F < U, Since p ¢ ClsXF c

ExgyU by 2.3 (iii), x ¢ Gy. Thus Gy < BX \ X,

Let gp = {U: U is m~open in X and p ¢ EXBXU}. Then Gx =

Gx n (BX \ X) = niCl_ U n (BX \ X): U ¢ Qph. For each

BX

Ue G, ClggU n (BX \ X) is clopen in BX \ X by 2.3 (ii),

p’
hence the quasi-component of p in BX \ X is contained in Gp.

On the other hand, Gp is connected by 2.12. Therefore Gp is
contained in the quasi-component of p in BX \ X. That is,
Gp is the (connected compact) quasi-component of p in

BX \ X.

To prove the last statement, we note that the

intersection of finitely many members of ¢ is again a

p

member of Qp. Then by compactness, if T is a closed subset

of BX such that G_ n T = ¢, there is U e ¢ such that G_ c
p P p
ClBXU c BX \ T. Since Gp c BX \ X, Gp c ClBXU n (BX \ X) =

Ex_,vU n (BX \ X). Then the collection of sets

X

{Ex, U: U ¢ Qp} is a basis for Gp consisting of open sets of

BX

BX whose boundaries are contained in X. [
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2.14 Corollary : Suppose that X is quasi-rimcompact and has
a compactification with totally disconnected remainder.
Then X is a O-space, and F X \ X is relatively

O-dimensionally embedded in F,X.

Proof : Subpose that X has a compactification with totally
disconnected remainder. According to 1.9, BX / C(BX) is a
compactification of X. Since X is quasi-rimcompact, it
follows from 2.13 that C(BX) = 4(BX), and that elements of
€(BX) contained in BX \ X have a basis of open sets of BX
whose boundaries are contained in X. Thus X is a O-space
and BX / C(BX) = F,X has a relatively O-dimensionally

embedded remainder. 0O
The following will be useful in several arguments.

2.15 Lemma : If GX = {x}, for each x ¢ X, then X is

rimcompact.

Proof : Suppose that x ¢ X, and that Gy, = {x}. If F is a

closed subset of X, and x ¢ F, then ClBXF n GX = ¢. By

compactness, there are m-open sets Ui’ (i = 1,2,...n) such

that x e ExgyU;, (i = 1,2,...n) and Clg F n niClgyU.: 1sisn}
= ¢. Then x ¢ n{Ui: 1 £ i £ n} which is a m-open subset of
X, while F n ClX(n{Ui: 1< i<n})=4¢. That is, x and F

are m-separated in X. Thus X is rimcompact. 0
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2.16 Corollary : If X is quasi-rimcompact, and R(X) is

totally disconnected, then X is rimcompact.

Proof : According to 2.15, it is sufficient to show that
{x} = G,. The proof of 2.13 involved showing that if x © X
and p e BX \ X, then there is a m-open subset U of X such
that x ¢ U, and p ¢ EXsXU' Then p ¢ ClsXU’ so p ¢ GX; that
is, if x ¢ X, then GX c X. If x ¢ R(X), then GX = {x}. If
x e R(X), then G, < R(X), and therefore is a connected
subspace of a totally disconnected space, hence consists of

one point. Since x e Gx’ GX = {x}. 0O

Note that a space with totally disconnected residue need
not be rimcompact. If X is the quotient space R/{N}, then
R(X) = {N}, so R(X) is totally disconnected. However, it is
easy to verify that {N} does not have a basis of w-open

sets, hence X is not rimcompact.

If U is an open subset of X, let us = U{Gp: p e BX \ X

and Gp c EXBXU} u U.

2.17 Theorem : If X is almost rimcompact, and U is an open

subset of X, then U® is a saturated open subset of BX.

Proof : Clearly US is saturated. To show that US is open in
BX, we show that if p e US, then there is an open set W of
gX such that p e W ¢ U°. First suppose that p e (BX\X)nUS.

Then Gp c EXBXU, so by 2.13, and 2.2 (ii), thereAis a m-open
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set V of X such that p e Gp c EXBXV = EXBXU° Clearly

S
EXBXV n Xc U . If qece EXBX

since EXBXV n (BX \ X) is clopen in B8X \ X. 1In other words,

V. n (BX \ X), then Gq < ExgyV,

q ¢ U°., Since q is an arbitrary element of EXBXV n (BX\X),
EXBXV c U°. Then W = EXBXV is an open set of gX having the

desired properties.

Now suppose that p e US n X = U. Since X is nearly
rimcompact we can choose V to be an open subset of X such
that p € V and ClXV is nearly m-contained in U. We show
that Clg,V c U®. Suppose r € ClgyV \ X. Since r ¢ ClgyK =
K for any compact subset K of X, there is a closed subset F
of ClXV such that r e ClsXF and F n K = ¢, where K is the
compact subset of ClXV witnessing the fact that ClXV is
nearly mw-contained in U. Then F is w-contained in U; let V1
be a w-open subset of X such that F < ClXV1 c¢ U. Then
r e ClBXV1 S EXBXU' Since CleXV1 n (X \ X) is clopen in
BX \ X, it follows by an argument in the preceding paragraph
that ClyyV, < U°. Since r ¢ ClgyV, and r was chosen to be

. S
an arbitrary element of ClBXV’ ClBXV c U, Then W = EXBXV

is the desired open set of 8X.

We have shown that if p e US, then there 1s an open
subset W of BX such that p ¢ W < U®. Thus U° is a saturated

open subset of BX. [

2.18 Corollary : If X is almost rimcompact, then each x € X

has an open basis in BX of saturated open sets of BX.
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Proof : Since the collection of open sets {EXBXU: U is open
in X, x e U} is a basis for x in BX, the collection
{US: U is open in X, x e U} is a basis for x in BgX

consisting of saturated open sets. [

We can now characterize almost rimcompact spaces as
O-spaces possessing compactifications with relatively

O-dimensionally embedded remainders.

2.19 Theorem : For any space X, the following are

equivalent.

(i) X is almost rimcompact.

(ii) X is a O-space, and F,X has relatively O-dimensionally
embedded remainder.

(iii) X has a compactification with relatively
O-dimensionally embedded remainder.

(iv) X is quasi-rimcompact, and has a compactification with

totally disconnected remainder.

Proof : (i) dimplies (ii). According to 2.13 and 2.18, if X
is almost rimcompact, then C(BX) = Q(BX), and is an upper
semicontinuous decomposition of BX into compact sets, where
elements of (C(8X) contained in B8X \ X have neighbourhood
bases 1n gX of open sets whose boundaries lie in X. Then
F,X = 8X / ¢(BX) is a 0.I. compactification of X with

relatively O-dimensionally embedded remainder.
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(ii) implies (iii). This is obvious.

(iii) implies (i). Suppose that KX is a compact-
ification of X with relatively O-dimensionally embedded

remainder. We first show that X is quasi-rimcompact.

If x ¢ X, and p ¢ KX \ X, there is an open set Up of KX
such that x # ClKXUp’ P e Up and bdKXUp c X. Clearly
KX \ ClKXUp is an sb set of KX containing x and not
containing p. Let K_ = n{ClKXU: U is an sb open set of KX,

X € EXK Ul. Clearly KX is a compact subset of X containing

X
X. Suppose that F is a closed subset of X, and that F n KX

= ¢, Then ClKXF n KX = ¢, By compactness, there is a
finite collection U1,U2,..,Un of sb open sets of KX such
that x e U;, 1 = 1,2,...n, and ClgyF n (n{ClKXUi: 1€ign}) =
¢. Then n{Ui n X: 1< i < n}l is a w-open subset of X which

witnesses the fact that x and F are wm-separated.

A similar argument will show that X 1s nearly

rimcompact. For suppose that U is open in X, and that
x e U. Choose V to be an open subset of X such that x ¢ V ¢

ClKXV c EXKXU° Since KX \ X is relatively O-dimensionally

embedded in KX, for each p ¢ ClKXV \ X, there is an sb open
set U(p) of KX such that p ¢ U(p) < ClKXU(p) c EXKXU. Let

K = ClKXV \ u{U(p): p e Cl,,V \ X}. Then K is a compact

KX
subset of X. Suppose that F is a closed subset of ClXV and
that F n K = ¢. Then ClyyF © u{U(p): p € Clyg,V \ X}. By
compactness, there is a finite set {p1,p2,...pn} c ClKXV \ X

such that ClpyF < U{U(pi): 1 <£4i < nt}c U{ClKXU(pi): 1<i<n}
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c EXKXU' It follows from 2.2 (i) and (ii) that W =
(ufU(pyj): 1 <1 < n}) n X is a 7-open subset of X witnessing
the fact that F is w-contained in U. Therefore ClXV is

nearly m-contained in U and X is nearly rimcompact.
(iv) implies (ii). This is 2.14,

(iii) implies (iv). This is obvious, since (iii)

implies that X is almost rimcompact and is a O-space. [

Theorem 2.19 states that if a space X has a
compactification with relatively O-dimensionally embedded
remainder, then F X has relatively O-dimensionally embedded

remainder. The following stronger statement is true.

2.20 Theorem : Let 86X be a compactification of X with

O-dimensionally (respectively, relatively O-dimensionally)
embedded remainder. If KX is a 0.I. compactification of X,
and KX 2 86X, then KX \ X is O-dimensionally (respectively,

relatively O-dimensionally) embedded in KX.

Proof : According to 2.2 (v), it is sufficient to prove that

KX has relatively O-dimensionally embedded remainder.

Suppose that T is a closed subset of KX and that
p e (KX \ X) \ T. If f: KX » é6X is the natural map, let
T = £(f(p)) n T. Now KX \ X is O-dimensional, hence
£(f(p)) is a compact O-dimensional subspace of KX. Since

p £ T, there are disjoint closed subsets B, and B, of
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£7(f(p)) such that p e By, T < B,, and B, u B, = £f(f(p)).
As B1 and B2 are disjoint compact subsets of KX, it follows
that there are open sets V, and V, of KX such that B, = V,,
XV1 n C
and f*(f(p)) €V, u V,, there is an open set W of §X such

(i = 1,2) and Cly l¢xVo = ¢. Since f is a closed map,
that £ (f(p)) ¢ £ I[W] < f+[ClSXWJ < Vi u V,. Now 86X \ X is
relatively O-dimensionally embedded in 66X, so we can assume
without loss of generality that bdan c X, and hence

bd, f [W] ¢ X. If W= £ IWI n V., then by 2.10, bd W, c X

KX X'1i

(i = 1,2). Also, p ¢ W,, while T < W,

Let S = T \ w2. Then f«(f(p)) nS = ¢. Since f is

closed, there is an open set w3 of 8X such that f+(f(p)) =
fé[w3] c KX \ S. Again, without loss of generality we can

assume bdGXw3 c X. Then f+[w3] is an sb subset of KX,

therefore by 2.2 (i) W, n f+[W3] is an sb subset of KX
containing p, while T n (w1 n f+[w3])

n £IW.11 u [(T \ W)) n Woon FIW. 1]

3

[(T n WZ) n W1 3

(T” n W) u (S f‘*[w3]>

n

= ¢.

Thus each point of KX \ X has a basis of sb subsets of

KX. In other Words, KX has relatively O-dimensionally

embedded remainder. [
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CHAPTER 3

EXAMPLES OF ALMOST RIMCOMPACT SPACES

In this chapter our main intention is to construct
examples of almost rimcompact non-rimcompact spaces. We
show in Example 3.18 that if Y is any O-dimensional space
which is not strongly O-dimensional, then Y can be written
as BX \ X for (i) a rimcompact space X, and (ii) an almost
rimcompact non-rimcompact space X. The space X will be a
subspace of the product space KY x (w,+1), where KY is a
perfect compactification of Y. A particular example of such
a space 1s discussed in Example VI.13 and Exercise VI.7 of
[Is]. We give a general outline of the construction and
show that X is rimcompact if and only if R(X) = KY \ Y is

O-dimensional.

The results we prove in order to outline the general
construction also lead to some interesting observations
concerning the conditions under which O-spaces are
rimcompact. We will show that if X is a O~-space in which
(i) any two distinct points of X are w-separated in X or
(ii) R(X) is locally compact and O-dimensional, then X is
rimcompact (3.7 and 3.11 respectively). We give examples to

show that conditions (i) and (ii) are incomparable.

Finally, in 3.22 we present an example of a O-space

which is not almost rimcompact.
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In the following we implicitly use the trivial fact that
if KX is a compactification of X, and T is a subset of
ClKX(KX \ X), then the closure of T in ClKX(KX \ X) equals

ClgxT.

The following result and its corollary will be useful in

several arguments.

3.1 Lemma : Suppose that KX is a compactification of X, and
that W is a compact clopen subset of ClKX(KX \ X). Then
(i) There is £ ¢ C(KX, [0,1]) such that
fLWl = 0,
f[(ClKX(KX \ X)) \ Wl =1,
+
and Clyf [(0,1)] is compact.
(ii) There is an sb open set (recall Definition 2.1) U of KX
such that bdgyU e X \ R(X), and
EXKX(U n X) n ClKX(KX \ X) = ClKX(U n X)n ClKX(KX \ X)

= W. If Wn R(KX\ X) = ¢, then ClX(U n X) n R(X) = ¢.

Proof : Suppose that W is a compact clopen subset of ClKX(KX
\ X). IfV = [ClKX\X(KX \ X)] \ W, then V and W are
disjoint clopen subsets of ClKX(KX \ X) whose union is
ClKX(KX \ X). Define a map g : ClKX(KX \ X) » {0,1} as
follows

g(x) = 0 if x ¢ W,

g(x) = 1 if x ¢ V,

Then g is continuous. Since ClKX(KX \ X) is compact, and
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hence 1s C¥-embedded in KX, there is a function

h : KX - [0,1] such that hIClKX(KX \ X) = g.

Define f : KX - [0,1] as follows.
£f(x) = 0 if x € h'[[0,1/31]

f(x) 3h(x) - 1 if x ¢ h“[[1/3,2/3]11,

£(x) 1 if x ¢ h'[[2/3,1]]

Then f is well-defined and continuous on KX. Clearly
LWl = 0 and £LV] = 1. Also, c1Xf*[(o,1)] c
Clxh*[(1/3,2/3)] c h+E[1/3,2/3]], which is a compact subset

of X. Thus f has the desired properties.

(ii) Let f be as in (i). Since Clpy(KX \ X) <

£7(0) v £ (1), £ 000,1/3)] is an sb open set of KX whose
boundary is contained in X \ R(X). It follows from 2.2
(iii), that

(KX \ X) n £000,1/3)1 = (KX \ X) n Exuy [£00,1/3)1 n X

(KX \ X) n Clgy [f7L[0,1/3)1 n XI.
In fact, since bdgyf [L0,1/3)] © X \ R(X), it follows that
Clpyx(KX \ X) n £ [[0,1/3)]

= Cle\X(KX \ X) n Expy [ £000,1/3)1 n XI]

Clgy (KX \ X) n Cley[£000,1/3)] n XI.

Note that R(KX \ X) ClKXR(X) \ X. If we also assume that
Won R(KX \ X) = ¢, then R(X) ¢ Clpy (KX \ X) \ We £f7(1). A&s
Cly[f [[0,1/3)1 n X} c £ [[0,1/31] n X, it follows that
C14,[£f°[[0,1/3)1 a X1 a R(X) = ¢. Then U = £ [[0,1/3)] has

the desired properties, and the theorem is proved. O
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We make the following easily proved result explicit.

3.2 Lemma : Suppose that S, T are closed subsets of X, and
that S n (T v R(X)) = ¢. If S is compact, then there is an
open set U of X such that ClXU is compact, S < U, and

T n ClXU = ¢

3.3 Corollary : Let X be a space, and let KX e X(X).

Suppose that T is a closed subset of KX, that W is a compact
clopen subset of ClKX(KX \ X) and that T n W = ¢. Then
there is an sb open set U of KX such that bdpyU = X\ R(X),

W=1UH~n ClKX(KX \ X), and T n ClKXU = ¢

Proof : If W is a compact clopen subset of ClKX(KX \ X),
then by 3.1 (ii) there is an sb open set U1 of KX such that
bdKXU1 c X \ R(X) and EXKX(U1 n ¥X) n ClKX(KX \ X) =

ClKX(U1 n X)n ClKX(KX \ X) = W. Since T n W = ¢,

T n ClKX(KX \ X)n ClKX(U1 n X) = ¢, hence T n ClKX(U1 n X)

is a compact set contained in X \ R(X). According to 3.2,
there is an open set V of X such that ClXV is a compact
subset of X \ R(X), and T n ClKX(U1 n X) « V. Let U, =

KX \ ClyV. Then U, is an sb open set of KX by 2.2 (iv), and

W e U2. ir U = U1 n U2, then U2 is an sb open set of KX by

2.2 (i), and EXKX(U n X) = EXKX(U1 n X) n Ex,. (U, n X) by

KX* 2
1.5 (ii). Also bdpyU © bdpyU; u bdpyUs, < R(X). It then
follows from 2.2 (iii) that U n ClKX(KX \ X) = EXKX(U n X) n

ClKX(KX \ X) = W, while T n ClpyU e T n ClKXU1 nClKXU2 = ¢.

The statement is proved. O
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3.4 Lemma : Let X be a O-space. Suppose that X has a 0.1.
compactification KX of X such that ClKX(KX \ X) is

O-dimensional. Then X is rimcompact.

Proof : It suffices to show that if x ¢ R(X), then x has a

basis in X of w-open subsets of X. Suppose that T is a
closed subset of X, and that x € R(X) \ T. Then x ¥ ClpyT.
Let S = ClKXT n ClKX(KX \ X). Then S is closed in

ClKX(KX \ X) and x = [ClKX(KX VX)) N 8. Since Clpy (KX \ X)
is compact and O-dimensional, there is a compact clopen set
W of ClKX(KX \ X) such that x €« W, and S n W = ¢. Then
(ClKXT) n W= ¢, so by 3.3, there is an sb open set U of KX
such that U n ClKX(KX \ X) = W and ClgxU 0 ClgyT = ¢. Then
by 2.2 (ii), U n X is a m-open subset of X, x ¢ U n X, and

T nUnX=4¢. Thus x has a basis in X of r-open sets, and

X is rimcompact. 0O

3.5 Theorem : Suppose that T is a locally compact space such
that T = X v Y, where X n Y = ¢, and X, Y are totally
disconnected. If T is not O-dimensional, then there is a
closed connected subset C of T such that ClC(X n C) =

Proof : If T is a locally compact space which is not
O-dimensional, then there is a closed connected subset C of
T such that ICl > 1. Since X and Y are totally

disconnected, C n X and C n Y are nonempty. Suppose that
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ClC(C nY) #2C, and let 2z € C \ ClC(C nY). Since C is a
locally compact subspace of T, there is an open set U of C
such that ClCU is compact, and z € U < ClU « C\ClC(C nyY).
Now ClCU is a closed subset of X, and hence is a compact
O-dimensional subspace of X, since X is totally dis-
connected. Hence there is a compact clopen (in ClCU) subset

V of ClCU such that z ¢ V ¢« U, Then V is a compact clopen
subset of C, which contradicts the fact that C is connected.
Thus ClC(C nY) = C. Similarly, ClC(C n X) = C, and the

theorem is proved. 0O

The previous result leads to an interesting sufficient

condition for a space to be rimcompact. We need the

following definiton.

3.6 Definition : A space X is pointwise rimcompact if

whenever x, y are distinct points of X, then x and y are

T-separated in X.

There are non-rimcompact, pointwise rimcompact spaces.
For example, if X is the quotient space R/{N}, then X is
pointwise rimcompact since I[R(X)! = 1 but is not rimcompact.

Any fully disconnected space is pointwise rimcompact.

3.7 Theorem : Let X be a space. If X has a compactification
with totally disconnected remainder, then the following are

equivalent.
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(i) X is rimcompact.

(ii) X is pointwise rimcompact.
Proof : (i) implies (ii). This is obvious.

(ii) implies (i): Suppose that x ¢ X. Recall that G, =
n{ClBXU: U is mw~-open in X and x « EXBXU}' According to
2.13, Gx is a connected subset of 8X. To show that X is
rimcompact, by 2.15 it suffices to show that GX = {x}.
Since X is pointwise rimcompact, GX n X = {x}. Suppose that
GX n (BX \ X) # ¢. Let KX be a compactification of X with
totally disconnected remainder. Then (Kf)[GXJ is a
connected subset of KX, (Kf)[GX] n X = {x}, and

[(Kf)[GX]] \ {x} is totally disconnected. According to 3.5
applied to the sets {x}, [(Kf)[Gx]] \ {x}, there is a
connected subset C of (Kf)[GX] such that ClC(C n {x}) =
Clc[[(Kf)[GX] \ {x}] n C]. This is clearly impossible, so
it follows that GX n (BX \ X) = ¢. Thus GX = {x} and the

theorem is proved. (0

If X is fully disconnected, and has a compactification
with totally disconnected remainder, then it follows as a
special case of 3.7 that.X 1s rimcompact. It is easy to
verify that a fully disconnected rimcompact space 1is
O-dimensional, thus any fully disconnected non-0-dimensional
space is a pointwise rimcompact non-rimcompact space.
Example 3.10 will illustrate that a totally disconnected

rimcompact space need not be 0O-dimensional.
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We now outline a construction that we will use to

produce many of our examples.

A collection of infinite subsets of N is called almost
disjoint if the intersection of two distinct members is
finite. Zorn's lemma implies that there exists a maximal
collection of almost disjoint infinite subsets of N. In the
following E will denote a maximal such collection. The
following topology on N u R is credited to Isbell in [GJ].
Each point of N is isolated, and *» e E has as an open base
{{x} v (x \ F) : F is a finite subset of WN}. It is noted in
5I of [GJ] that such spaces N u R are first countable,
locally compact, O-dimensional and pseudocompact. The

following is 2.1 of [Tel.

3.8 Proposition : Any compact metric space without isolated

points is homeomorphic to the remainder 8(N u R) \ N u R for

a suitably chosen maximal almost disjoint collection EA.

In the sequel, when we choose a maximal almost disjoint
collection R such that B(N u B) \ ¥ v B is homeomorphic to a
compact metric space X having no isolated points, we
identify points of B(N U R) \ ¥ v B with points of X in the
obvious manner, and consider B(N u BR) \ N v B to be the

space X.
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Let P be a topological property. Following the

terminology of [HI] we say that X has property P at _infinity

if 8X \ X has property P.

The following is Theorem 10 of [3k].

3.9 Proposition : If X is Lindeldf at infinity, then X is a

O-space if and only if X is rimcompact.

Since any countable space is Lindeldf, it follows from
3.9 that if X is a space which has a compactification with

countable remainder, then X is rimcompact.

3.10 Example : Choose a maximal collection R such that

B(N uR) \ N v R is homeomorphic to the unit interval I.

Let X =N uvuR v (P nI), where P denotes the irrationals.

Then BX \ X = @ n I, so IBX \ X| = w,. According to the
remark following 3.9, X i1s rimcompact. Note that X is
totally disconnected. For if p ¢ ¥ v B, then the connected
component of p in X is {p}, since N v E is locally compact
and O-dimensional. If p e P n I, then the connected
component Cp of p in X is contained in P n I, which is
totally disconnected and thus Cp = {p}. We claim that X is
not fully disconnected and hence is not O-dimensional.
Choose P4 and Ps to be distinet points of P n I. Suppose
that there is a clopen subset U of X such that Py € U, while

P, £ U. Then ClBXU is a clopen subset of BX such that
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P« ClBXU’ and Py £ ClsXU' This impies that I is not
connected, which is a contradietion. Thus Pq and Py cannot
be contained in disjoint clopen subsets of X, hence X is not

O-dimensional. [
The next result also follows from 3.4 and 3.5.

3.11 Corollary : Let X be a space for which R(X) is locally
compact and O-dimensional. Then the following are
equivalent.

(i) X is rimcompact.

(ii) X is a O-space.

(iii) X hés a compactification with totally disconnected

remainder.
Proof : Clearly (i) implies (ii) implies (iii).

(iii) implies (i) : Suppose that KX is a compactification of
X in which KX \ X is totally disconnected. We claim that if
R(X) is locally compact and O-dimensional, then ClKX(KX \ X)
is O-dimensional. It then follows from 3.4 that X is

rimcompact, since KX \ X is O-dimensional.

Suppose that ClKX(KX \ X) is not O-dimensional. Since
R(X) and KX \ X satisfy the hypotheses of 3.5, there is a
compact connected subset C of ClKX(KX \ X) such that
ClC(C n R(X)) = ClC(C n (KX \X)) = C. Then
[ClC(C n R(X))1 \ [R(X) nCl =2Cn (KX \ X). However,

R(X) n C is locally compact, which implies that
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[ClC(R(X) n €)1 \ [R(X) n CJ] is compact. Then C n (KX \ X)
cannot be dense in C, which is a contradiction. Thus

ClKX(KX \ X) is O-dimensional, and X is rimcompact. O

Suppose that X is a space which has a compactification
with totally disconnected remainder. It follows from 3.11
that if R(X) is locally compact and O-dimensional, then X is
pointwise rimcompact. The converse is not true, as the
space @ of rational numbers illustrates. »The following
example shows that the local compactness and
O-dimensionality of R(X) do not generally imply that X is
pointwise rimcompact. Note that this shows that the

hypotheses of 3.11 do not imply that X is rimcompact.

3.12 Example : Let ZV1 = {n + 1/2: n ¢ N}, and let D be the
decomposition of R consisting of the sets

v, Ny, {r: r e R\ (F uNI. Let X = B/D. It is a
straightforward computation to show that 1f U is an open
subset of X containing ¥ and not containing N1, then the
boundary in X of U is not compact. Thus N and N, are not
t-separated in X, hence X is not pointwise rimcompact. It

is easily verified that R(X) = {W,,N}, hence R(X) is locally

compact and O-dimensional.

3.13 Theorem : Let X be a space. Suppose that there is a
perfect compactification KX of X such that ClKX(KX \ X) is a

perfect compactification of KX \ X. Suppose also that



46

whenever F is a closed subset of R(X), and x ¢ R(X) \ F,

then x and F are wn-separated in X. Then R(X) is

O-dimensional.

Proof : Suppose that F is a closed subset of R(X), and that

x € R(X) \ F. We show that there is a clopen subset U of

R(X) such that x € U, and U n F = ¢, By hypothesis there
exists a m-open subset W of X such that x € W, while

F n ClXW = ¢. Let V = EXKX

2.3 (ii) that V is clopen in KX \ X. As ClKX(KX \ X) is a

Wn (KX \ X). It follows from

perfect compactification of KX \ X, it follows that ClKXV is
a clopen subset of ClKX(KX \ X). Let U = ClKXV n R(X).
Then U is a clopen subset of R(X). Since x € R(X) n W c

ClKX(KX \ X) n EXKXW, X € ClKX[EXKXW n ClKX(KX \ X)1 =

< n (KX \ X)] = ClgyV, hence x e U. Also, Cl, V <

ClKXW, so FnUcPFn ClKXV c Fon ClKXW n X =¢. Thus U is

the desired clopen subset of R(X), and R(X) is

ClKX[ExK

O-dimensional. [

Recall that if X is O-dimensional, then 8,X is the

maximum O-dimensional compactification of X, and equals FX.

3.14 Corollary : If X is rimcompact, and ClFX(FX \ X) is a

perfect compactification of FX \ X, then R(X) is

O-dimensional. Thus R(X) v (FX \ X) = B, (FX \ X).

Proof : By assumption, X satisfies the hypothesis of 3.13,

hence R(X) is O-dimensional. Then R(X) v (FX \ X), as a



47

perfect 0.I. compactification of FX \ X, is the maximum O0.I.
compactification of FX \ X. That is, R(X) u (FX \ X) =
F(FX \ X), which equals 8,(FX \ X) since FX \ X is

O-dimensional. [

3.15 Theorem : Suppose that X is a O-space such that
ClFoX(F°X \ X) is a perfect compactification of F,X \ X.
Then
a) X is almost rimcompact.
b) The following are equivalent.

(1) X is rimcompact.

(ii) 01F0X(Fox \ X)) = Bo(FeX \ X).

(iii) R(X) is totally disconnected.

(iv) R(X) is O-dimensional.

Proof : a) To prove that X is almost rimcompact, it suffices
by 2.19 to show that F ;X \ X is relatively O-dimensionally
embedded in F,X. Suppose that p € (F,X \ X) \ T, where T is
a closed subset of Fy,X. Choose U to be open in F,X such

that p # ClF XU and T « U. Let S = Cl Un (FeX \ X).
0

FoX
Then S is closed in FoX \ X, and p ¢ S. Since F,X \ X is

O-dimensional, there is a clopen subset V of F;X \ X such
that p e V, and S n V = ¢. As ClFOX(F°X \ X) is a perfect
compactification of F,X \ X, it follows that ClFoXV is a
compact clopen subset of ClFOX(F°X \ X) such that p e ClFOXV

and ClF S n Cl V = ¢. Since

. X F,X

T n ClFOX(F°X \ X) «Un ClFOX(FoX \ X)
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ClFOX[U n (F,X \ X)]

Clp xS,

¢. That is,

it follows that T n ClFox(FOX \ X)n ClFOXV
ClF XV is a compact clopen set of ClF X(FOX \ X) disjoint
1] 0
from T which contains p. It follows from 3.3 that there is
an sb open set U of F,X such that Clp x/ = Un Clp X(FOX\X),
0 0
and hence p ¢ U, while U n T = ¢. Thus each point of F,X\X
has a basis in F,X of open sets whose boundaries lie in X,

and FoX \ X is relatively O-dimensionallly embedded in F,X.

The statement follows.
b) (i) implies (iv). This is 3.14.
(iv) implies (iii). This is obvious.

(iii) implies (ii). It follows from 1.8 that as a perfect
compactification of F,X \ X having totally disconnected
remainder, R(X) v (F,X \ X) is the minumum perfect
compactification of F,X \ X. Since F,X \ X is rimcompact,
the minimum perfect compactification of F,X \ X is F(F,X\X).
Since FyX \ X is O-dimensional F(F,X \ X) = 8, (F,X \ X) and

the statement follows.

(1iii) implies (i). This is a special case of 3.4. [J

In constructing examples we will often use the following
two results to show that for X ¢ Y, 8X = Y. The first
combines Theorems 1 and 4 of [Gl]; the second is 6.7 of

[GJ].
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3.16 Proposition : Let {Xa: o e A} be a set of pseudocompact

spaces. Then:

(1) If T{X : o ¢ A} is pseudocompact, then BLO{X, : o e A}]
= T{BX,: a e A},

(ii) If X, 1s locally compact for all but one @ € A, then

H{Xa: o e A} is pseudocompact.

3.17 Proposition : If X is any space, and X € T < 8X, then

BT

BX.

3.18 Example : Let Y be any O-dimensional non-strongly
O-dimensional space. Then BY # B,Y. Let KY be any perfect
compactification of Y, and let X = (KY x (w;+1)) \ (Y x
{w,}). It follows from 3.16 and 3.17 that gX \ X =

Y x {w,;}. Thus X is a O-space, and F,X = g8X. As

ClBX(BX \ X) = ClBX(Y x {w,;}) = KY x {w;}, it follows that
ClFOX(F°X \ X) is a perfect compactification of F,X \ X.
According to 3.15, X is almost rimcompact, and X is
rimcompact if and only if KY = 8,Y. In particular, if KY =
BY, X is an almost rimcompact space which is not rimcompact.

D .

We stated in Chapter 2 that neither the near
rimcompactness nor the quasi-rimcompactness of a space X is
sufficient to insure that X is a O-space, although by 2.19

the presence of both properties is sufficient. The
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following examples validate this statement.

3.19 Example : Let ¥ = I x {0,1,1/2,1/3,...}, 2 =
Y x (w,+1), and X = Z \ (I x {1,1/2,1/3,...} x {0,}). We

claim that X is quasi-rimcompact.

Since R(X) = I x {0} x {w,}, which is a compact subset
of X, it suffices to show that if F is a closed subset of X
such that F n R(X) = ¢, the F and R(X) are m-separated.
Suppose that F is closed in X, and that F n R(X) = ¢. For
each p & F, choose U(p) to be an open subset of X such that
p ¢ U(p), C1,U(p) is compact, and (C1yU(p)) n R(X) = ¢. If

pe Cl,,F\F, thenpe Ix {1/n} x {w,}, for some n e WV,

BX
Choose V to be a clopen subset of w,+1 containing w,, and
let U(p) = I x {1/n} x V. Then U(p) is clopen in B8X,

U(p) n R(x) = ¢, and p e U(p). Since ClBXF c

uiU(p): p ¢« ClBXF}, by compactness there is a finite subset
{p1,p2,...,pn} c ClBXF such that ClBXF c U{U(pi): 1<i<n}.
If U = u{U(pi): 1< i< n}, then U n X is m-open in X,

FecUnZX, and C1,U n R(X) = ¢. Thus F is m-separated from

X

R(X), and X is quasi-rimcompact.

We claim that X is not a O-space. For if X is a
O-space, then Q(B8X) is an upper semicontinuous decomposition
of BX. The elements of Q(BX) contained in 8X \ X are of the
form I x {1/n} x {w;} for n € N. Since a basic
neighbourhood in BX of p & R(X) intersects all but finitely

many of these components, if these quasi-components are
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collapsed to points, then distinct points of R(X) do not
have disjoint neighbourhoods. Thus @(8X) is not an upper
semicontinuous decomposition of gX and X is not a O-space.

O

3.20 Example : Choose R to be a maximal almost disjoint
collection of infinite subsets of ¥ such that

B(N u R) \ N v E is homeomorphic to I. Let X =

[(8(FV uR) x (u,+1)I N LW v Rvu {1/2}) x {w,;}]. Then it
follows from 3.16 and 3.17 that 8X = 8 (W v B) x (w,+1).

Thus BX \ X = (¥ v R v {1/2}) x {w;}. We claim that X is
nearly rimcompact. Define Z to be X v {(1/2,w,)}. Then

BZ \ Z = BX \ Z = (N v R) x {w,}, which is O-dimensional.
According to 3.15, Z is almost rimcompact. Hence Z is a
O-space and is nearly rimcompact. Note that if U is a
T-open subset of Z such that (1/2,w,) ¢ ClZU, then U n X =
U, and U is a w-open subset of X. Suppose that x ¢ V, where
V is open in X. Then V is open in Z, so there is an open
set V1 of Z such that x ¢ V1 = ClZV1 < V, and ClZV1 c X.
Since Z is almost rimcompact, there is an open subset W of Z
such that x ¢ W and Cl,W is nearly T-contained (in Z) in V.
Since W 1s open in X, and Cle = ClZW, it follows from the
previous remark, and the definition of near 7m-containment

that x ¢ W and Cl W is nearly w-contained (in X) in V1.

X
Thus X is nearly rimcompact.

It is clear that X \ X = (W v R v {1/2}) x {w,} is

totally disconnected. However, BX \ X is not O-dimensional.
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For suppose F is any non-compact closed subset of 8X \ X
such that (1/2,w,) ¢ F. Suppose there is a clopen subset U
of BX \ X containing (1/2,w,) such that U n F = ¢. Since
ClBX(BX \ X) = B(BX \ X), ClBXU is a clopen subset of
ClBX(BX \ X). The point (1/2,w;) ¢ ClyxU, while

[ClBXF \ (X \ X)1 n C1_,,U = ¢. However, ClxF \ (gX \ X) <

g X
I x {w,}, which implies that I x {w,} is not connected.
Since this is a contradiction, (1/2,w,) and F are not
contained in disjoint clopen sets of B8X \ X. Thus B8X \ X is
not O-dimensional. Since B8X is clearly the maximum compact-
ification of X having totally disconnected remainder, it
follows from 1.8 that B8X is the minimum perfect compact-

ification of X. Since 8X is not a 0.I. compactification of

X, X cannot be a O-space. [

We have seen in 2.16 that if X is a quasi-rimcompact
space which has a compactification with totally disconnected
remainder, then X is almost rimcompact. The previous
example shows that a nearly rimcompact space which has a
compactification with totally disconnected remainder need

not even be a 0O-space.

Since any space with a countable basis is Lindeldf at
infinity, it follows from 3.9 that any O-space having a
countable basis i1s rimcompact. We point out that a space X
has a countable basis if and only if X is a separable metric

space. A collection B of non-empty open sets of X is a
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B ¢ B such that B < U. (Note that the concepts of "m-open"
and "wr-basis" are unrelated.) The following example shows
that a O-space X having a countable w-basis need not be

rimcompact,; even if X is almost rimcompact.

3.21 Example : Choose R to be a maximal collection of almost
disjoint infinite subsets of N such that B(N u R) \ ¥ U R is
homeomorphic to I. Let X = [B(N u R)I* \ [(W v R) x {111,
Then it follows from 3.16 and 3.17 that 8X = [B(N u E)]?,
hence BX \ X = (¥ v R) x {1}. Then X is a O-space and F,X =
gX. Since ClBX(BX \ X) = g(¥N v R) x {1}, ClsX(BX \ X) is a
perfect compactification of BX \ X. It follows from 3.15
(a), that X is almost rimcompact. However X is not
rimcompact, by 3.15 (b), since R(X) = I x {1} is not
O-dimensional. Since N x N is a countable dense set in

[8(N v BR)1%, [B(¥ u R)]? has a countable m-basis; hence X

has a countable w-basis. [

The difference between rimcompact spaces and almost
rimcompact spaces lies in the nature of the saturated (with
respect to C(BX)) open sets of the Stone-Cech compact-
ification which form a basis for points of the space. If X
is rimcompact, and x & X, then the collection
{EXBXU: U is w-open in X and x ¢ U} is a basis at x of
saturated open sets of gX, whereas this is not true if X is

not rimcompact. However, in both the case where X is
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rimcompact or almost rimcompact, non-rimcompact, the
O-dimensionality of F¢X \ X is witnessed by a particularly
nice collection of open sets of BX, namely open sets whose
boundaries are contained in X. In general it is not true
that if X is a O-space, then FoX \ X is relatively
O-dimensionally embedded in F,X. In the following example,
we build on Example VII.26 of [Is] to produce a non-almost

rimcompact space X for which gX \ X is O-dimensional.

3.22 Example : In Example VII.26 of [Is], a compact space Y
is constructed which has the following properties. First,
there is a O-dimensional subspace Z of Y such that ¥ \ Z is
dense in Y and Z has only one non-isolated point z. Also,
there is a point p ¢ Y \ Z such that if U is any open subset

of Y containing z, and deU e Y\ Z, then p ¢ U.

Let X = (Y x (w,+1)) \ (Z x {w,}). Then by 3.16 and
3.17, 8X = Y x (w,+1), and so BX \ X = Z x {v,;}. Then X is
a O-space and F,X = 8X. We show that X is not almost rim-
compact by showing that (z,w,) does not have a basis in BX
of sb open sets of 8X. Suppose that V is an sb open set of
BX such that (z,w,) ¢ V and (p,w,) ¢ V. Let V, =
Van (Y% {w,}). Then V, is an open subset of Y x {w,} whose
boundary (in Y x {w,}) is contained in (Y \ Z) x {w,} such
that (z,w;) ¢ V,. However (py,w,) ¢ V,, which is a
contradiction. Thus (z,w,) does not have a basis in BX of

sb open subsets of BX; hence X is not almost rimcompact.



Note that since Z has only the non-isolated point z,

U is any open subset of X such that (z,w,) ¢ deXEXBXU’
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if

then

EXBXU n (BX \ X) is clopen in BX \ X = Z x {w,;}. It is then

easy to verify that for each p ¢ 8X \ X, there is a
collection U(p) of open subsets of X such that

Ex. U n (BX \ X) is clopen in BX \ X for each U ¢ U(p),

BX
{ExgyU: U e U(p)} is a basis in 8X for p. 0

and
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CHAPTER 4

PROPERTIES OF ALMOST RIMCOMPACT SPACES

In this chapter we develop the properties of almost
rimcompact spaces. We begin by showing in 4.4 that if X is
a space in which bdXR(X) is compact, then X is a O-space if
and only if X is almost rimcompact. Such a space X need not
be rimcompact. Next we consider invariant properties of
almost rimcompact spaces. Neither perfect images nor
perfect preimages of rimcompact spaces need be O-spaces.
However, in 4.11 we show that if the perfect preimage of a
rimcompact space is a O-space, then that perfect preimage is
almost rimcompact. Example 4.8 shows that an open subspace
of an almost rimcompact space is not necessarily a O-space,
while in 4.7 we prove that any closed subspace of an almost
rimcompact (respectively, O-space) is almost rimcompact
(respectively, a O-space). We obtain a partial answer to
the question : If S is a closed subset of a O-space X, what

conditions on S imply that ClF XS = F,3?
0

We prove U.4 by considering separately the cases where X

1s nowhere locally compact, and where X has compact residue.

4.1 Lemma : Suppose that X is nowhere locally compact, and
that KX is a 0.I. compactification of X. Then KX \ X is

relatively O-dimensionally embedded in KX.

Proof : Suppose that p & KX \ X, and that p ¢ W, where W is
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an open subset of KX. Since KX \ X is 0-dimensional, there

is a clopen subset V of KX \ X such that pe Vc Wn (KX\X),
and ClKXV c W. Let U be any open subset of KX such that

Un (KX \ X) = V. Since KX \ X is dense in KX, ClKXU =
Clgx(U n (KX \ X)) = ClgyV. Then (ClggU) n (KX \ X) =

ClKXV n (KX \X) = ClKX\XV = V. It follows that bdKXU

ClKXU \ U e X, hence U is an sb open subset of KX. Since
ClKXU c W, p has a basis in KX of sb open sets of KX. Thus

KX \ X is relatively O-dimensionally embedded in KX. U
Let X be a space. In the sequel, L(X) denotes the
locally compact part of X; that is L(X) = X \ R(X). Note
that if KX e X(X), then L(X) = KX \ ClKX(KX \ X), and that
L(KX \ X) = (KX \ X) \ R(KX \ X) = KX \ [X u ClgyR(X)1].

The following is easy to prove.

4.2 Lemma : If X is a space, KX ¢ K(X), and W is a compact

clopen subset of either L(KX \ X) or KX \ X, then W is a

compact clopen subset of ClKX(KX \ X).

4,3 Lemma : Suppose that X is a space in which R(X) is
compact. If KX is a 0.I. compactification of X, then KX \ X

is relatively O-dimensionally embedded in KX.

Proof : Suppose that T is closed in KX, and that

p e (KX \ X) \' T. As R(X) is compact, there is an open set

U of KX such that p ¢ U, while [T v R(X)J n ClgyU = ¢.
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Since U n (KX \ X) is open in KX \ X, and KX \ X is locally
compact and 0O-dimensional, there is a compact clopen set W
of KX \ X such that p ¢ W « U. Then Wn T = ¢, so by 4.2
and 3.3 there is an sb open set V of KX such that

V n ClKX(KX \ X) = Wand T n ClgxV = ¢. Then p ¢ V, and
VnT=2¢. Thus each point of KX \ X has a basis in KX of
open sets whose boundaries lie in X. That is, KX \ X is

relatively O-dimensionally embedded in KX. 0O

4.4 Theorem : If X is a space in which bdXR(X) is compact,

then the following are equivalent.

(1) X is a O-space.

(ii) X is almost rimcompact.

(1ii) X is a O-space, and F,X \ X is relatively
O-dimensionally embedded in F X.

(iv) 1If KX is any 0.I. compactification of X in which
Clgx(intyR(X)) n Clgy(X \ R(X)) < X, then KX \ X is

relatively O-dimensionally embedded in KX.

Proof : It follows from 2.19 that (iii) implies (ii) and

(ii) implies (i).

(i) implies (iv). Suppose that KX is a 0.I. compact-
ification of X in which ClKX(intXR(X)) n ClKX(X \ R(X)) < X.
We claim that KX \ X ¢ EXKX(intXR(X)) U EXKX(X \ R(X)). As
X\ [intXR(X) u (X \ R(XN1 = bdXR(X), which is a compact
subset of X, KX \ X ¢« EXKX[intXR(X) u (X \ R(X))1. If U and

V are open subsets of X, and p e Expy(U u V) \ (ExpyU u
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ExpyV), then by 1.4 (v), p e ClyU n Clg V. As
Clyy(intyR(X)) n Clpy(X \ R(X)) ¢ X, it follows that KX \ X

c EXKX(intXR(X)) U EXKX(X \ R(X)), and the claim is proved.

Note that ClXintXR(X) is a nowhere locally compact

space. For if V is any open subset of ClXintXR(X), there is
an open set U of X such that U n ClXintXR(X) =z V. Then

U n intXR(X) is a non-empty open subset of X. Since
intXR(X) is nowhere locally compact, ClX(U n intXR(X)) is
not compact. Then ClyV, which is the closure in ClXintXR(X)
of V, is not compact. Thus no point of ClXintXR(X) has a

basis (in ClXintXR(X)) of compact closed neighbourhoods, and

ClxintXR(X) is nowhere locally compact.

As ClKXintXR(X) is a 0.I. compactification of

Cl intXR(X), it follows from 4.1 that

X

Cl intXR(X) \ Cl intXR(X) which by our claim is Jjust

KX X
[EXKXintXR(X)J n [KX \ X1, is relatively O-dimensionally
embedded in ClKXintXR(X)° Let p ¢ [EXKXintXR(X)] n [KX\XJ.
We show that p has a basis in KX of open sets whose
boundaries lie in X. Suppose that p e KX \ T, where T is a

closed subset of KX. Since p ¢ ClKX(X \ R(X)), there is an

open subset U1 of KX such that p ¢ U1 and

ClgyUq n [ClKX(X \ R(X)) v T] = ¢. Then U, is open in
ExKXintXR(X), and hence in ClKXintXR(X). It follows that
there is an sb (with respect to ClxintXR(X)) open set U, of
ClKXintXR(X) such that p ¢ U, < U,. As U, < ExKxintXR(X),

it follows that U2 is open in KX. Since
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ClKXU2

which contains p and has empty intersection with T.

n ClKX(X \ R(X)) = ¢, U2 is an sb open subset of KX

The subset ClX(X \ R(X)) of X is a space with compact
residue, so by 4.3, ClKX(X \ X) is a 0.I. compactification
of X with a relatively O-dimensionally embedded remainder.
If p e Clgy(X \ R(X)) \ Cly(X \ R(X)) (which by our earlier
claim equals EXKX(X \ R(X)) n (KX \ X)), then p ¢ ClKXR(X).
It follows from an argument similar to that in the pkeceding
paragraph that p has a basis in KX of sb open sets of KX.
Thus each point of KX \ X has a basis of sb open sets of KX,

hence KX \ X is relatively O-dimensionally embedded in KX.

(iv) implies (iii). Since F,X is a perfect compactification

of X, and bdXR(X) is compact, by 2.3 (ii) and 1.5 (ii),

ClFoX(intXR(X)) n ClFOX(X \ R(X)) n (F, X \ X)

Ex intXR(X) n Exg X(X \ R(X)) n (F,X\ X) = ¢. Thus F X
4

F,X
satisfies the condition imposed on KX in (iv) and hence

FoX \ X is relatively O-dimensionally embedded in F,X. 0

The hypothesis of 4.4 do not imply that X is rimcompact.
If in Example 3.18, Y is chosen to be a locally compact
O-dimensional space which is not O-dimensional, and BY is
chosen as the perfect compactification of Y, then X =
(BY x (w,+1)) \ (Y x {w,}) is a almost rimcompact non-

rimcompact space in which R(X) is compact.

The next example shows that, as might be expected, it is
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not true that if X is rimcompact, and X « T « 8X, then T is

necessarily a O-space.

4,5 Example : Choose R so that (N u R) \ ¥ v R = I. Let X
=N uR, and T = ¥ v R u {1}. Then X is rimcompact.

However, the single connected component of 8T \ T = 8X \ T

is [0,1), which is not compact. Thus T is not a O-space. [

It is clear that if X is a O-space, and X « T < F X,
then T is a O-space. BRecall that if X <« Y < BX, then B8Y =
BX. The following indicates that the expected relationship

between F,X and F,T holds.

4,6 Theorem : If X is a O-space, and X ¢« T © F¢X, then T is
a O-space and FX = F,T. If X is almost rimcompact
(respectively, rimcompact) then T is almost rimcompact

(respectively, rimcompact).

Proof : Clearly F,X is a 0.I. compactification of T.

Suppose that KT is a 0.I. compactification of T such that KT
> F,X. Then KT is a compactification 6X of X. Recall that
8f : BX » 8X denotes the natural map. Define g : 86X » FoX
to be the natural map. Then g o (8f) = F,f. Suppose that

p e Fo,X \ T. Since F,X is a perfect compactification of X,
by 1.6, (Fof)+(p) = (g o 6f)+(p) is a connected subset of
BX. Then (5f)[(Fof)+(p)] = g(p) is a connected subset of KT
contained in KT \ T. Since KT \ T is O-dimensional, lg (p)!

= 1. It follows that KT = F¢X, and hence F,X = F,T.
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If each point of F,X \ X has a basis of open sets of F X
whose boundaries are contained in X, then each point of
FoX \' T has a basis of open sets of FyX = F,T whose
boundaries are contained in T. Thus if X is almost rim-
compact, T is almost rimcompact. A similar statement holds

if X is rimcompact. 0O

It is tempting to attempt to shorten the proof of the
preceeding theorem by immediately claiming that KT as chosen
is a 0.I. compactification of X. However, since the union
of two O-dimensional spaces need not be O-dimensional, it is
not immediately clear that KT \ X is O-dimensional, and
further argument of the sort provided in the proof is

necessary.

We note in passing the following special case for 4.6.
If X is a O-space, and X v Clg XR(X) ¢ T ¢ F,X, then since
4]
Xu ClFOXR(X) is almost rimcompact by 4.3, T is almost

rimcompact.

We now consider subspaces of O-spaces. It is an easy
exercise to prove that an open or a closed subspace of an
rimcompact space is rimcompact. This contrasts with the
fact that while a closed subspace of an almost rimcompact
space 1s almost rimcompact, an open subspace of an almost

rimcompact space need not even be a 0O-space.
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4,7 Theorem : If F is a closed subset of a O-space
(respectively, an almost rimcompact space) X, then F is a

O-space (respectively, almost rimcompact).

Proof : If F is closed in a O-space X, and KX is any 0.1I.

compactification of X, then ClKXF is a 0.I. compactification

of F. Thus F is a O-space.

Suppose that KX \ X is relatively O-dimensionally
embedded in KX. We show that ClKXF \ F is relatively
O-dimensionally embedded in ClKXF. Suppose that T is a
closed subset of ClypyF and p ¢ (ClKXF \ F) \ T. Then T is
closed in KX. Since KX \ X is relatively O-dimensionally
embedded in KX, there is an sb open set U of KX such that
p € U and (ClKXU) nT = ¢, Consider the open set U n ClpyF
of ClyyF. The boundary in ClgyF of U n ClgyF is

ClKX(U n ClKXF) \ U n ClKXF c [ClKX(U n ClKXF) \ Ul n ClKXF

n

[(ClKXU) \ Ul n ClpxF

C

bdKXU n ClKXF

c X n ClKXF

= F.

Then U n Cl,,F is an sb open subset of ClKXF and a

KX
neighbourhood (in ClKXF) of p, while T n (ClKXF) nU = ¢.

Thus each point of ClKXF \ F has a basis of sb open sets of

ClKXF° Hence ClKXF'\ F is relatively O-dimensionally

embedded in Cl, . F. It follows from 2.19 that F is almost

KX

rimcompact. 0
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4,8 Example : If X, Z are as in Example 3.20, then X is an
open subspace of Z and Z is almost rimcompact, but X is not

a O-space. 00

Continuous images and preimages of rimcompact spaces
need not be rimcompact, even if the map is perfect. In
fact, since any completely regular space is the image of an
extremally disconnected space (ie. a space in which disjoint
open sets have disjoint closures) under a perfect
irreducible map (see [3Stl), the perfect image of a
rimcompact space need not even be a 0O-space. The next
example shows that the perfect preimage of a rimcompact
space need not be a O-space. However, we will show in 4.11
that if the perfect preimage of a rimcompact space is a
O-space, then the preimage is almost rimcompact. Example

4,12 shows that the preimage need not be rimcompact.

4.9 Example : Let Y = I x {0,1,1/2,1/3,...}, and X =

[Yx (w,+1)] \ [I x {1,1/2,1/3,...} x {w,;}]. It is shown in
Example 3.19 that X is not a O-space. Let f : I x
{0,1,1/2,1/3, ...} x (w,+1) » {0,1,1/2,1/3,...} x (w,+1) be
the projection map. Then f is closed, since I is compact.
Let S = [{0,1,1/2,1/3,...} x (wi+1)1 \ [{1,1/2,1/3,...} x
{w,;}]. Since f$(y) = I x {y}, for y ¢ S, f is a perfect map
from X into S. The space S, being a subspace of
{0,1,17/2,1/3,...} x (w,;+1), is O-dimensional (and hence

rimcompact).
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The following is 1.2 of [HII.

4,10 Lemma : Let f : X + Y be a perfect map. If S is a

compact subset of Y, then £°[S] is a compact subset of X.

4,11 Theorem : Let £ : X » Y be a perfect map. If X is a

O-space, and Y is rimcompact, then X is almost rimcompact.

Proof : We show that X is quasi-rimcompact. It then follows

from 2.19 that X is almost rimcompact. If x e R(X), let Ky

£°(f(x)). Then KX is a compact subset of X. Suppose that
F is a closed subset of X such that F n K, = ¢. Since f 1is
a closed map, and fé(f(x)) < X\ F, there is a m-open subset
W of Y such that £ (f(x)) € £ [ClyW] € X \ F. As f is a
perfect map, and deW is compact, it follows from 4.10 that
£°IbdyW] is compact. Since bdyf [W] < £ [bdyWl, it follows
that £ [W] is a 7m-open subset of X. Also, x ¢ f+[w], and

F n Cle«[W] = ¢. Thus x and F are m-separated. Hence X is

gquasi-rimcompact, and the theorem follows. [l

4,12 Example : Choose R to be a family such that

8(N U R) \ N u B is homeomorphic to I. Then F(N u E) =
w(V v R), the one-point compactification of ¥ v g. If X =
[B(W v R) x (w;+1)1 \ [V v R) x {w,}], then according to
3.15, X is almost rimcompact but is not rimcompact. Let

f : 8N vR) x (w,+#1) = w(N v B) x (w,;+1) be the natural

map, and let Z2 = [w(N U R) x (w;+1)] N\ LW v RBR) x {w,}]. If
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z e Z, then £ (z) = {2} or £ (2z) = I x {p} for some
p e (w,+#1). Also £ [Z] = X, so le is a perfect map from X
into Z. The space Z is O-=dimensional (and hence

rimcompact).

According to 6.9 (a) of [GJ], if S < X, then ClBXS = BS
if and only if S is C¥-embedded in X. Also, according to
XXX, if X 1s O-dimensional, and S < X, then ClBoXS = BoS if
and only if every {0,1}-valued function on S extends
continuously to a {0, 1}-valued function on X. According to
4,7, if S is a closed subspace of a O-space X, then S is a
O-space. We address the following question : if S is a

closed subspace of X, when is ClF XS = F,37
0

We can formulate an answer to this question by means of
proximities. Let oy and eg denote the proximities on X and
S inducing F,X and F,S respectively. The proximity ay
induces a proximity aX'S on 3 defined as follows : if A, B
c S, then A (aXIS) B if and only if A Gy B. Then ClFOXS =
F¢3 if and only if aX'S = oag. If X is rimcompact, then this
formulation of the answer becomes : ClFXS = FS if and only
if whenver S1 and 82 are subsets of S which are m-separated
in S, then S1 and 82 are T-separated in X. This corresponds
to the following statement for B8X : ClBXS = B8S if and only
if whenever S1 and 82 are subsets of S which are contained

in disjoint zerosets of S, then S1 and 82 are contained in

disjoint zerosets of X. If "BX" and Yzerosets" are replaced
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by "B8,X" and "clopen sets" respectively, we obtain the
corresponding statement for 8,X. We attempt to find a
condition on a subspace S of a O-space X involving the

extension of certain continuous functions on S which will be

equivalent to the condition that ClFOXS = FoS. Such a
condition for subspaces of almost rimcompact spaces with

compact residues is presented in 4.23.

The following is a partial external characterization of

those closed subspaces S of a O-space X for which ClF XS =
0

4.13 Lemma : Consider statements (i) and (ii) given below.
If S is a closed subspace of a O-space X, then (i) implies
(ii). If, in addition, S is C¥-embedded in the O-space X,
then (ii) implies (i). |

(1) Clp ¢S = FoS.

(ii) ClgoyS intersects each quasi-component of BX \ X in a

connected set.
Proof : Recall that Q(8X) = {(F,f) (p): p ¢ F,X}.

(i) implies (ii). Let g : 8BS = ClBXS and h : ClsXS > ClFDXS
denote the natural maps. Then h o g : BS - ClFOXS is the
natural map, and h = F,fIC1lgXS. Suppose that Q is any
quasi-component of BX \ X such that ClBXS n Q 2 ¢. Then
Fof[Ql = hIQ n ClBXS] € ClFoXS° Ir ClFOXS = FyS, then

ClF'XS is a perfect compactification of S. Note that
0
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hlQ n ClBXS] is a singleton set. It follows from 1.6 that
(h o g)+[h[Q n ClBXS]] is a connected subset of B8S. Then
gl(h o g) [hlQ n C1,yS11 = h [hlQ n Cl,y4S1]1 is a connected
subset of Cl yS. As h“[hiQ n Cl,4S11 =

(Fof)“[F,f[Q1] n Cl,yS = Q n Cl,4S, it follows that

Qn ClBXS is connected.

(ii) implies (i). Suppose that ClBXS intersects each
guasi-component of BS \ X in a connected set. If

-« <
p e Clp ¢S, then (FoflClgyS) (p) = [(Fof) (p)1 n Clgys,

hence (FofIClBXS)+(p) is connected. If Cl,.S = BS, then by

BX
1.6, ClF XS is a perfect compactification of S. Since
0
Cl S is a 0.I. compactification of S, ClFoXS = F,S.

FoX

Note that if a closed subset F of a space X has compact
boundary in X, then F is C¥-embedded in X. Then the
following, which is 3.13 of [Mcl, follows directly from
4.13.

4,14 Corollary : Suppose that U is an open subspace of a
O-space X. If bd,U is compact, then Cl U = F,(C1L,U).
X F, X X
If S is not C¥-embedded in X in 4.13, then (ii) does not

imply (i), even if X is rimcompact.

4,15 Example : Choose R to be a family of subsets of ¥ such

that 8(N U R) \ N U R is homeomorphic to I. Let X =

(N uR) u (P n1) (where P denotes the irrationals). Then X
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is rimcompact and gX = FX = g(¥ v R). If S = I n P, then S
is a closed subset of X, and ClFXS = I. The set ClBXS
intersects each quasi-component of 8X \ X in a connected

set. However FS = 8(P n I) =2 I. DO

L.,16 Theorem : Let S be a closed C¥-embedded subspace of a
O-space X. Suppose that whenever a subset F of X is
completely separated in X from S, then F is w-contained in X

\ S. Then ClFOXS = F,(S).

Proof : If S satisfies the hypotheses then X \ S satisfies
the condition imposed on U in 2.8 (ii). It follows from 2.8
that EXBX(X \ S) is saturated, and so ClgxS is saturated.
That is, any quasi-component of BX \ X which intersects
ClBXS is contained in ClBXS, and hence 1is a connected subset

of Cl8 S. It follows from 4.13 that Clp xS = FoS. [
0

X

In view of the fact that the above results include as a

hypothesis the C#¥-embedding of the closed subset S in X, we
point out the following. If S is a closed subset of a
O-space X, 1t is neither necessary nor sufficient for S to

be C¥-embedded in X in order that ClFoXS = FoS holds.

4,17 Example : Choose R so that 8(N u R) \ ¥ v R is
homeomorphic to I. Let X = 8(W v R) \ {1}. Then X is
rimcompact, and FX = X = B(N v R). The set [0,1) is a
closed subset of X, and ClFX[O,T) = [0,1] = FLO,1).

However, [0,1) is not C¥-embedded in X.
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4,18 Example : Let X = {x ¢ R: x = 0} = R™.

Then X is
rimcompact and FX is the one-point compactification of X.
The set N is a closed C¥-embedded subset of X, while

FN = BN # ClFxNo

As previously mentioned, our main concern is to find a
condition on a subspace S of a O-space X involving the
extension of certain continuous functions which will be

equivalent to the condition that Clp 4S8 = FoS. Results b,19
4]

to 4.22 inclusive will be useful; our main results are

stated in 4.23 to 4,25,

4.19 Lemma : Let X be a O-space, and let KX be a 0.1I.
compactification of X. Suppose that S and T are closed

subsets of X such that Cl XS n [ClKXT U ClKXR(S)] = ¢.

K
Then
(1) There is an sb open set U of KX such that S ¢ U and

[ClK T u ClKXR(S)] n ClKXU = ¢, hence

X
(ii) There is f e C¥(KX,[0,1]) such that £°[(0,1)] ¢ X,
01Xf*[(o,1)j is compact, ClyyS\ S c £°(1) and

<+~
[ClKXT \ Tl u ClKXR(X) c £ (0).

Proof : (i) Suppose that p =« ClgyS \ S. Then p = L(KX \X),
hence there is a compact clopen set W(p) of L(KX \ X) such
that p & W(p) and W(p) n [(ClKXT u ClKXR(X)) n (KX \ X)1 =
¢. Then W(p) n [ClKXT U ClKXR(X)] = ¢, It follows from 3.3

that there is an sb open set U(p) of KX such that W(p) =
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U(p) n Cl (KX \ X) and Cl,,U(p) n [ClpyT u Clp R(X)] = 4.
Then p e U(p) and ClgyU(p) n [ ClygyT u ClgyR(X)] = ¢. On
the other hand, suppose p ¢ S. By hypothesis S n R(X) = ¢,
hence there is an open set U(p) of X such that p & U(p),
Cl4yU(p) is compact, and ClyU(p) n [T v R(X)1 = ¢. Then
ClKXS c u{U(p): p =« ClKXS}. By compactness there is a

S such that C1

[om

finite subset {p1,p2,.,,,pn} of ClKX KXS
u{U(pi): i<n}. IfU = U{U(pi): i € n} then U is an sb
open subset of KX, and ClKXU n [ClKXT u ClKXR(X)] = ¢. The

statement follows.

(ii) Let U be chosen as in (i). Since U is sb in KX,
and (ClKXU) n R(X) = ¢, ClpyU N U < L(X). It follows that
U n Clpy(KX \ X) = Exgy(U n X) n Clpy (KX \ X) =
ClKX(U n X) n ClKX(KX \ X), hence U n ClKX(KX \ X) is a
compact clopen subset of Clyy(KX \ X). According to 3.1,
there is f e C¥(KX,[0,1]) such that

LU n ClKX(KX \ X)1 =1

f[(ClKX(KX \ X211\ Ul =0
and Cleé[(0,1)] is compact. The function f clearly has the

desired properties. [

If "gX" and "BY" are replaced by "KX" and "KY"

respectively in the proof of 1.2 of [Iw], we obtain the

following.

4,20 Lemma : Suppose that KX, KY are compactifications of X

and Y respectively, and that f : X - Y is a closed map. If
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f extends to g ¢ C(KX,KY), then ClKXf+(y) = g (y) for each

y e Y.

The following is a special case of 6.3. In proving 6.3

we do not rely on any results proved in this chapter.

4.21 Theorem : Suppose that X is a O-space and that
f : X+ [0,1] is a closed map. If f (y) is compact for each

y € (0,1), then f extends to g ¢ C(F,X, [0,11).

4,22 Lemma : Suppose that S is a closed subspace of a

O-space X. Suppose f e C(S,[0,11), C1 f+[(0,1)] is compact,

X
S n R(X) < £7(0) and Clp ¢f (1) n Clp ¢R(X) = ¢. Then there
1] 0
<
exists g ¢ C(X,[0,1]) such that g!S = f and g (y) is compact

for each y ¢ (0,1).

Proof : Suppose f ¢ C(S,[0,1]) satisfies the hypotheses.
Since Cle+[(O,1)] is compact, f is a closed map from S into
(0,11, 1In particular f[S] is a closed (and hence compact)
subset of [0,1]. Then f : S + f[S] is a map from a O-space
into a rimcompact space. By 4.21, f extends to

£ FeS3 - f[S1. Suppose that ClF XS = F,S. As
0

1
f : S+ f[S] is closed, it follows from 4.20 that ClF Xf+(y)
0
= Cl, Sf+(y) = f1*(y) for each y ¢ f[S]. Then f*(y) =
0

£,°(y) if y ¢ (0,1), and F4S \ S < £,7(0) u £, 7).

As £,7(1) n L£,7(0) v Cly yR(X)I = ¢, it follows from

4.19 (i) (applied to the subsets f (1) and f (0) of X), that
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there is an sb open set U of F X such that f¢(1) < U and

<. » -
[f1 (Q) u ClFOXR(X>] n ClFoXU = ¢. Since bdFoXU c L(X), it
follows from 2.2 (iii) that Ci Un Cl (FoX \ X) =

F,X F,X

EXFOX(U n X)n ClFOX(F°X \ X) =Un ClFOX(F°X \ X). Hence
Cil Un Cl (FoX \ X) is a compact clopen subset of

FoX FoX
ClFoX(F°X \ X). Let W = ClFoXU n ClFOX(F°X \ X). Define a

map h : Cl (FeX \ X) u S~=[0,1] as follows

F,X
h(p) = 0 if p ¢ [Cly y(FeX \ X)1 \ W,

1 if p e W,

f1(p) if p e« ClFOXS.

Since Cly y(FoX \ X) n Clp 4S © £,7(0) v £, (1), while
f1+(0) N Clp y(FoX \ X) € [Clp y(Fox \ X)] \ W, and

g (1) n 01F0X(Fox \ X) € W, h is well-defined and
continuous. The domain of h is a compact subset of F X, so
h extends to a function h, e C¥(F,X,[0,1]1). If g = h1lX’

then ng = f and g (y) is compact for each y e (0,1). O

4.23 Theorem : Suppose that X is an almost rimcompact space

in which R(X) is compact, and that S is a closed subset of

X. The following are equivalent.

(i) 01F0Xs = F,S.

(ii) Suppose f e C¥(S,[0,11), Clyf [(0,1)] is compact, and
S n R(x) < fé(o). Then there exists g e C*¥(X,[0,11])

such that gé(y) is compact for each y & (0,1).

Proof : (i) implies (ii). Suppose that f e C¥(S,[0,11)
satisfies the hypotheses of (ii). Then £(1) n R(X) = ¢.

Since R(X) is compact, ClFOXfé(1) n ClFDXR(X) = ¢. Then f
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satisfies the hypotheses of 4.22, hence there exists
<
g = C(X,[0,1]) such that glg = f, and g (y) is compact for

each y ¢ (0,1).

" (ii) implies (i). Since Clp S is a 0.I. compactification
0

S < ¥yS. To show that F,S = Cl S, it suffices

of X, C F,xS

r x
by 1.1 to show that if S1 and S, are closed subsets of 8
whose closures in F,S are disjoint, then S1 and 82 have
disjoint closures in ClFDXS’ or equivalently, in F X.
Suppose then that S1, 82 are closed subsets of S whose
closures in F ;S are disjoint, and choose

p e (FeX \ X) n ClFOXS1° We will show that p ¢ ClFOXS2°
Since FoX \ X is locally compact (since R(X) is assumed to
be compact) there is a compact clopen subset W of F,X \ X
such that p ¢ W. As ClFoXR(X) = R(X), R(X) is a closed
subset of FyX, and R(X) n W = ¢. It follows from 3.3 that

there is an sb open set U of F X such that U n Clg X(FOX\X)
0

= W and (ClF XU) n R(X) ¢. Evidently p € U. Let T1 =

0
S; n Cly(U n X), and let T, = [52 n Cly(U n X) 1 u [R(X) n
S1. The sets T1 and T2 are closed subsets of S (hence of

X), and p ¢ (ClFOXS1) n Uc Cl (S, n ClX(U n X)) =

FoX "1

ClFoXT1' To show that p ¢ ClFoXSZ’ it suffices to show that

p £ ClFOXTZ’ since (ClFoXS2) nUc ClFOX(SZ n ClX(U n X)) <

C1 T,. Note that T, and T, have disjoint closures in F,S,
F,X 2 1 2

since S, and S, have disjoint closures in F,S and R(X) is
compact. It is easy to verify that R(S) < R(X) n 3. Then

R(S) « T hence the closures in F,3 of T1 and R(S) are

2’
disjoint. It follows from 4.10 (ii) (applied to Ty T, as
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subsets of S), that there is a function g ¢ C¥(F,S,[0,11])
such that g+[(0,1)] c S, Clsgét(O,T)] is compact,

Clp gTy \ T,
Wwill construct a function f satisfying the hypotheses of

c g (1) and R(S) u [Clp gTp \ Tpl < g (0). We

(ii).

Let F = S n R(X) n g [1/4,1]. Then F c T,. Since
ClFoSTZ \ T2 c g+(0), F is a compact subset of S. Also,
since R(S) < g (0), F ¢ L(S); that is, F n ClFoS(FoS \ 8) =
¢, As F < R(X), T1 = ClX(U n X) and R(X) n ClX(U nX) = ¢,
it follows thét F on ClFoST1 = ¢, Choose f1 e C¥(FoS,[0,11)
such that

f,[F] = 0,

f1[ClFOS(FDS \ ' S) uCl, «T,] = 1.

F,S"1

Define f FeS > [0,1] as follows

2
fo(x) = 0 if x ¢ g [[0,1/31],

£,(x) = 1if x ¢ g [02/3,111,

£,(x) 3f,(x) - 1 if x ¢ g rr1/3,2/311.

The function fz(x) is well-defined and continuous. Let f3 =

f1 ° f2,

Clp sTo V T

R(X) < £7(0). If x e R(X) n Sn g [0,1/3], then fo(x) = O.

<« < “«
Then Cl T1 \ T1 < f‘1 (1) n f2 (1) = f3 (1), and

F,S
c £(0) < f2+(0) c f;(o)° We claim that S n

If x ¢ R(X) n X n g+[1/u,1], then f1(x) = 0. The claim
follows. Finally, FoS \ S c g (0) v g (1) e f2*(o) u

[f1+(1) n f2*(1)] c f3+(0) U f3*(1).

Define fy : FoS > [0,1] as follows

£,(x) = 0 if x ¢ f3+[[0,1/3]],
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£,(x) “rr1/3,2/311,

1 if x € f3+[[2/3,1]].

fu(X)

Then fH is well-defined and continuous, and has the
properties of f3 listed in the preceding paragraph. In

addition, Cleu+[(0,1)] is compact.

Let f = fMIS° By assumption f extends to a function
h e C¥(X,[0,11) such that h+(y) is compact if y & (0,1). We

claim that C1 n (F,X \ X) ¢ C1_ ,n'[[0,1/3)]. We write

F,X12 F, X
T, = [Tonf [00,1/3113 u [T,nClgf 0(1/3,1)13 u [Tnf (1)1,
Since Clgf [(0,1)] is compact, T, n Clgf [(1/3,1)] is
.
compact. Also, since ClFOSTZ n (F,S \ 8) c ClFOSf (0),
+ 0

T2 n £ (1) is compact. Then ClFOXT2 n (F, X \ X) ¢

< < . .
ClFoX[T2 nf [0,1/3)] < ClFOXh (L0,1/3)1. The claim is
proved. Similarly, ClF XT1 n (F, X\ X) ¢ Cl

0

Since h"[[0,1/3)] is a m-open subset of F, X,

FOXh L(1/3,11].
Clp yh [L0,1/3)1 n Clp xh [(1/3,111 € X. Since

p e Cl n (F,X\ X), p¢ Cl T thus p ¢ Cl1 As

F X 1 F,X'2° F,X2°
p was an arbitrary element of ClF XS1 n (F, X\ X),
0

ClFoXS1 n ClFoXSZ = ¢, thus ClFOXS = F¢S. U

4,24 Corollary : Let X be a O-space. Suppose that S is a
closed subset of X which is rw-separated from R(X). Then the
following are equivalent.

(i) ClFOXS = F,S.

(ii) If f e C(S,00,11) and Clgf [(0,1)] is compact, then

there exists g ¢ C(X,[0,1]) such that g!s = £ and g+(y)
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is compact for each y ¢ (0,1).

Proof : (i) implies (ii). If S is a closed subspace of a

O-space X which is w-separated from R(X), then S is clearly

C.E. separated from R(X). Hence Cl R(X) n C1 S = ¢, If
FoX FoX

f satisfies the hypotheses of (ii), then f clearly satisfies

the hypotheses of 4.22. It follows from 4.22 that f extends

to g € C(X,[O,1]) having the desired properties.

(1i) implies (i). Let Y = X v ClFOXR(X)‘ According to
4.6, FoY = FoX. Since R(Y) < ClFOXR(X)’ R(Y) is compact;
hence Y is almost rimcompact. If f as in (ii),

g ¢ C(X,[0,11) is the hypothesized extension of f, then by
4,21, g extends to h : Fo¢X ~ [0,1]. According to 4.20,
ClFOX(g+(y)) = h«(y) for each y ¢ L0,1]. 1In particular,
hé(y) is a compact subset of X for each y ¢ (0,1). If hy =

hl then h satisfies the conditions imposed on g in 4.23

Y!
(ii). It follows from 4.23 that the closure in F,Y of S is

F,S. Since F,¥Y = F X, the theorem is proved. U
The next result is a special case of 4.23.

4,25 Corollary : If X is locally compact, and S is a closed

subset of X, then the following are equivalent.

(i) ClpyS = FS

(ii) If f e C(S,[0,1]) and Cle+[(O,1)] is compact, then
there is g ¢ C(X,[0,1]) such that ng = £ and gé(y) is

compact if y € (0,1).
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CHAPTER 5

PROXIMITIES AND O-SPACES

In this chapter we will present a proximal charac-

terization of O-spaces.

We have seen in 2.5 that X is rimcompact if and only if
X has a compactification with O-dimensionally embedded
remainder. Also, according to 2.19 X is almost rimcompact
if and only if X has a compactification with relatively
O0-dimensionally embedded remainder. A O-space X was
constructed in Example 3.22 in which the remainder of F X is
not relatively 0O-dimensionally embedded in FoX; this
validates the statement that in order for a compactification
to have 0O0-dimensional remainder, it is not necessary that
points of the remainder have neighbourhood bases in the
compactification consisting of open sets whose boundaries

lie in X.

In this chapter we shall characterize internally (i)
those open sets U of BX for which U n (8X \ X) is clopen in
BX \ X, and in particular, (ii) those open sets U of X for
which (EXBXU) n (BX \ X) is clopen in 8X \ X. This will
lead to the promised proximal characterization of O-spaces.
We need some tools for studying clopen sets in remainders of
compactifications. These are developed in 5.1 - 5.5

inclusive.
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5.1 Definitions : (i) Let X be a space. An open set U of

KX ¢ K(X) is clopen at infinity in KX (denoted by KX-C.I.)

if U n (KX \ X) is clopen in KX \ X. The set U is a full

KX-C.I. set if U is KX-C.I., and U = EXKX(U n X). Often a

BX-C.I. (respectively, full BX-C.I.) set will simply be
called a C.I. (respectively, full C.I.) set.

(ii) A O-space X is a full O-space if for each p e BX \ X,

the connected component of p in BX \ X has a basis in 8X of
full C.I. sets.
(iii) If E is a family of open sets of X, and D is open in

X, then D is small with respect to £ if for each E ¢ E,

ClX(D n E) is compact.

(iv) A family E of open sets of X is clopenly extendible

(denoted C.E.) if there is a compact subset K of X so that
if U is open in X, and K <« U, there is E ¢ E, and D small
with respect to £ such that X = Uu E v D, A family £ is a

full C.E. family if £ is C.E., and EXBX(U{E: E e E})

u{ExB E: E ¢ E}.

X
According to 2.2 (iii), if KX e K(X), and if W is an sb
open set of KX, then W is a full KX-C.I. set. The following
shows that if W is any KX-C.I. open set, the the sets W and
EXKX(W n X) can only differ in the locally compact part of

KX \ X.

5.2 Proposition : If KX e X(X), and if U is a KX-C.I. set,
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then EXKX(U n X) n ClKXR(X) = U n ClKXR(X).

Proof : Let U be a KX-C.I. open set, and suppose that
D e [Expy(U n X) n ClpyR(X)J \ U. As p e (KX \ X) \ U,

which is clopen in KX \ X, there is an open subset W of KX

As

I
-
°

such that p ¢ W ¢ EXKX(U n X) and Wn (KX \ X) n U

n

D e ClgyR(X), there is x ¢ W n R(X). ©Now W n R(X)
EXKX(U n X)) n X=UnZX, sox e Wn U, which is an open set
of KX. Also, x € R(X), so Wn Un (KX \ X) 2 ¢, which is a
contradiction to our choice of W. Then

EXKX(U n X) n ClKXR(X) c Un ClKXR(X). Since the reverse

inclusion is always true, the result is proved. [

We need to extend some results concerning open sets and

perfect compactifications.

5.3 Lemma : Let KX ¢ K(X). If K is a compact subset of X,
and if U is open in X, then [EXKX(U \ K)I n (KX \ X) =
(EXKXU) n (KX \ X). Hence if V is open in X, and ClX(U n V)

is compact, then (EXKXU) n (ClKXV) c X.

Proof : Since

EXKX(U \ K) n (KX \ X) = Expyx (U n (X \ K)) n (KX \ X)

EXKXU n EXKX(X A\ K) n (KX \ X)
Un (KX \ K) n (KX \ X)

1]

EXKX

EXKXU n (KX \ X),

the first statement is true.

Suppose that ClX(U n V) is compact. Since
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[u \ ClX(U n V)l nV =y, by 1.5 (iv), EXKX(U \ ClX(U n V))

n ClgyV = ¢. Then EXKX(U n (KX \ X)) n ClyyV

EXKX(U \ ClX(U n V)) n (KX \ X) n ClpxV = o. 0

If E is a family of open subset of X, let ExpyE =

u{ExKXE: E € E}. The following is an immediate consequence

of 5.3.
5.4 Corollary : Let KX ¢ K(X). Suppose that £ is a family

of open sets of X, and that D is open in X. If D is small

with respect to £, then

D n Ex, £ n (KX \ X) = ¢, and

KX= -
E: E e E}) n (KX \ X) = ¢.

ClKX

Ex, D n (U{ClK

KX X

The equivalence of (i) and (ii) in the following theorem

appears in Theorem 1 of [Skl; we will need the equivalence

of (i) and (iii).

5.5 Theorem : Let KX e X(X), and let U, V be open in X.
Then the following are equivalent.

(1) KX is a perfect compactification of X.

(ii) If U n V = ¢, then EXKX(U u V) = ExpyU u Expy V.

(iii) If ClX(U n V) is compact, then EXKX(U u V)

Ex V.

KXU U ExKX

Proof : (iii) implies (ii). This is obvious.

1"
(e

vV

H

(ii) implies (iii). Since [EXKX(U u V)l n X
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(EXKXU U EXKXV) n X, it is sufficient to show that
Expy(U v V) n (KX \ X) = (ExgyU U ExpyV) 0 (KX \ X). If
ClX(U n V) is compact, then according to 5.3,
(EXKXU n (KX \ X)) u (EXKXV n (KX \ X))
= [EXKX(U\ClX(UnV)) n (KX\X)1 v [EXKX(V\ClX(UnV)) n (KX\X)]

(as U\ClX(UnV) and V\ClX(UnV) are disjoint open sets of X),

EXKX[(U \ ClX(U n V)) u (VA ClX(U n V))l ﬁ (KX \ X)

EXKX[(U u V) \ ClX(U n V)l n (KX \ X)

ExKX(U u V) n (KX \ X),

where the last equality follows from 5.3. The theorem

follows. [

If £ = {E(a): o ¢ A} is a collection of sets, then EX

will denote the collection of sets {U{E(ai): 1< 1 £ n}
ta,, ®5y...ya ) is a finite subset of A}. The following
series of results will establish a correspondence between

C.E. (respectively, full C.E.) families and C.I.

(respectively, full C.I.) subsets of compactifications.

5.6 Theorem : Let KX be a perfect compactification of X. If
Uis a C.I. subset of KX, then there is a C.E. family E such

E = U.

that EXKX_

Proof : Since U is an open subset of KX, for each p ¢ U we

can choose an open set E_ of X such that p ¢ EXKXE c ClKXEp

p p
< U. Let E, = {Ep: p e U}, and E = gﬁo Note that if E ¢ §1

then Cl,,E < U,

KX
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Clearly, EXKXE = U. In order to show that E is a C.E.
family, we must construct a compact subset K of X so that if
U is open in X, and K « U, there is E ¢ §1 and D small with
respect to £ such that X = U v D v E. First we construct a
second family of open sets of X. Since U n (KX \ X) is
clopen in KX \ X, for each p e (KX \ X) \ U, we can choose

an open set Dp of X such that p e ExK D while (ClKXDp) n U

£p
€ X. Let Dy = (D, pe (KX \ X) \ U}, and D = D%. Note

that if D, € D, and E, ¢ §1, then C1,,D, n Cl,,E. < X, hence

1 =1 1 KX 1 KX™1
ClX(E1 n DT) is compact. It follows that if D ¢ D and
E € E, then ClX(D n E) is compact (being a finite union of

compact sets). In other words, if D € D, then D is small

with respect to E.

Let K = KX \ U{EXK A: A e £E uvuDl. Then K is a compact

X
subset of X. Suppose that K ¢ V, where V is open in X.
Then the collection of sets {EXKXA: A e EuDlou {EXKXV} is
an open cover of KX, so there is a finite subcollection
whose union covers KX. Then X is covered by the union of a
finite subcollection of E v D u {V}., Since E and D are
closed under finite unions, there are sets E ¢ £ and D e D

such that X = V u E u D. Since D is small with respect to

E, E is a C.E. family. [

It is a straightforward computation to verify that if KX
= BX, and if U is a full C.I. subset of BX, then £ as
defined in the proof of 5.6 is a full C.E. family. We

observe that in the proof of 5.6, the only conditions that £
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is required to satisfy are that (i) for each E ¢ E, ClKXE S
U, and (ii) EXKXQ = U. Therefore, we could have chosen £ to

be {V: V is open in X and ClpyV < ul.

5.7 Theorem : Let KX be a perfect compactification of X, and
let £ be a C.E. family of open sets of X. Suppose that

p e (KX \ X) \ Ex Then

kxE
(i) There is a set D small with respect to £ such that

p € EXKXD, hence
(ii) (EXKXE) n (KX \ X) = u{ClyyE: E ¢ E} n (KX \ X), and

(iii) EXKXE is KX-C.I.

Proof : Let K be a compact subset of X which witnesses the
fact that E is a C.E. family, and let p = (KX \ X) \ EXKXE_°
Since p ¥ ClKXK = K, there is an open set U of X such that
K « U, while p ¥ ClKXU. Choose D to be small with respect

to E, and choose E e E, such that X Uu E uD. Now

X\ Ci,UcDuE, sope KK\ C1,,U

X KX
Exgy(E U D) = ExgyE U ExpyD, where the last equality follows

EXKX(X \ ClXU) c

from 5.5. Since p ¢ EXKXE, it follows that p = EXKXD.

(ii) and (iii): Suppose that p e (KX \ X) \ ExpyE.
According to (i) and 5.4, there is an open set D of X such

that p e ExpyD, and ExpyD n (u{ClKXE: E ¢ E}) « X. Then

ExgyEZ n (KX \ X) = (U{ClKXE: E e E}) n (KX \ X). Thus,

p £ Cl y[EXpyE 0 (KX \ X)], so (EXKXQ) n (KX \ X) is

KX\
clopen in KX \ X. @O



85

It follows easily from the above that if E is a full

C.E. family, then EXBXQ is a full C.I. subset of BX.

When we defined a C.E. family E, we did not specify that
E is to be closed under finite unions, although the C.E.
family E constructed in the proof of 5.6 is closed under
finite unions. The following result shows that it is not
necessary to specify this property in the definition of a

C.E. family.

5.8 Theorem : Let KX be a perfect compactification of X, and
let £ be a C.E. family of open sets of X. Then

(1) EF

is a C.E. family.
. _ F
(i1) ExgpyE = ExKX(ﬁ ).
(iii) If B is a closed subset of X, then ClgyB < EXKXQ if

and only if there is E « EF such that B < E.

Proof : (i) Note that if D is small with respect to E, then
D is small with respect to QF. It is then clear that if g

is a C.E. family, EF is also.

(ii) If U and V are any open subsets of a space X, and

if 68X is any compactification of X, then an easy computation
shows that (EX5XU) U (EXSXV) < Exgyx(U u V) < Clyx(U v V) =

F F
ClGXU u C1 Then EXKXE_ c EXKXE_ c ,U{ClKXE: E e B} c

GXV°

U{ClK E: E e E} = Ex where the last equality follows

X kxEs
from 5.7 (ii), hence EXKX_E_F = ExpyE.

(iii) Note that EXGXU U ExgyV < EXGX(U u V), for any
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compactification 6X of X, and open sets U, V of X. Hence if
ClKXB c EXKXQ, by compactness there is a set E ¢ EF such
E; that is, B ¢ E. On the other hand, if

KX
B c E, where E ¢ E', then ClyyB © Clp E < Ex gF

that ClKXB < Ex

kxE = EXgyE
where the last inclusion and the equality follow from 5.7

(ii), and (ii) of the present result respectively. 0

In the following results, we will assume without loss of
generality that any C.E. family is closed under finite

unions.

The correspondence between C.I. open sets and C.E.
families developed in 5.7 has an interesting form in the

special situations discussed below.

5.9 Proposition : Let U be an open subset of X. Then

(i) {U} is a C.E. family if and only if bdyU is compact.
(ii) EXBXU is C.I. in BgX if and only if {V: ClXV <B U} is a

C.E. family.

Proof : (i) Suppose that {U} is a C.E. family. Then by 5.7
(ii) ClBXU n (BX \ X) = EXBXU n (BX \ X). That is,

deXEXBXU = Clexbd U e X.

X

Conversely suppose that bdXU is compact and let

K bd, U, If K < V, where V is open in X, then

X
UuVu (X\ ClXU). Since ClX(U n (X \ ClyU)) = ¢,

X

{U} is a C.E. family.
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(ii) Suppose that U” = {V: ClyV < U} is a C.E. family.
Then by 5.7 (iii), EXBXQ' is a C.I. set of BX which clearly

equals EXBXU.

On the other hand, suppose that EXBXU is a C.I. subset
of BX. According to the remark following 5.6, the family
{V: ClXV < U} is a C.I. family. O

If X is almost rimcompact, the connected components of
8X \ X have a particularly nice form. According to 2.14,
the connected component in 8X \ X of p e BX \ X is the set
n{ClBXU: U is n-open in X, p ¢ EXBXU}. Indentifying the
connected components of 8X \ X in this way allows us to show
directly that ¢(8X) is an upper semicontinuous decomposition
of gX with certain special properties. The connected
components of 8X \ X are not as easily identified for an
arbitrary O-space X. Rather than working with C(8X), we
willl characterize O-spaces in terms of proximity theory. We
would like to motivate this characterization by first
considering almost ‘rimcompact spaces from the viewpoint of

proximities.

Recall that for a rimcompact space X, the proximity ¢
associated with FX is defined as follows: for A, B < X,
A g B if and only if A and B are m-separated in X. If X is
any space, define y to be a relation on P(X) as follows: for

A, Bec X, A4 B if and only if there is a compact subset K
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of Cl,A, so that if A" is a closed subset of ClXA and A" n K

X
= ¢, then A" and B are n-separated. For the rest of this

chapter, y will be defined as above.

If § is as in the previous paragraph, then § is clearly
symmetric, while it is not clear that v is symmetric. It is
not necessary to build symmetry into the definition of .
Recall that if KX e X(X), and e is the relation on P(X)
defined by (for A, B ¢ X) A p B if and only if ClKXA n ClKXB
Z ¢, then p is a proximity on X. We apply this fact to
prove that if X is almost rimcompact, then y is a proximity
on X and therefore is symmetric (and satisfies the remaining

defining properties of a proximity).

5.10 Theorem : For any space X, the following are
equivalent.

(i) X is almost rimcompact.

(ii) v is a proximity on X.

If v is a proximity on X, then vX = F,X.

Proof : (i) implies (ii). If X is almost rimcompact, then
by 2.19, X is a O-space and FoX \ X is relatively
O-dimensionally embedded in F,X. We will show both that v

FyX by showing that if F

is a proximity on X and that vX 10

F2 are subsets of X, then ClFoXF1 n ClFoXFZ = ¢ if and only

if Fy 1 Fs.

Suppose that ClFoXF1 n ClFOXFZ = ¢. For each
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p g Cl F. \ Cl1,F,, choose an m-open subset U(p) of X such
F,X 1 X1

that p ¢ EXFOXU(p)’ and ClFoXU(p) n ClFDXFZ = ¢, Let K =
ClFOXF1 \ u{U(p): p = ClFOXF1 \ X}. Then K is a compact
subset of ClXF1, Suppose that F{ is a closed subset of
ClyF; and that Fi n K = ¢, Then ClFoXF% c U{EXFOXU(p): D €
ClF XF1 \ X}. By compactness there is a finite set

0
{p1, p2,..,,pn} c ClFOXF1 \ X such that ClFoXF1 c
U{ExFOXU(pi): 1 < i< n}. Then F{ c u{U(pi): 1< i< n},
which is a w-open subset of X whose closure has empty

’

intersection with F2° In other word, F1 and F2 are

rT-separated, so F1 4 F2,

Conversely, suppose that F1 4 F2, and let K be a compact

subset of ClXF1 witnessing this fact. Let

p € ClFoXF1 \ ClXF1, There is a closed subset Fp of ClXF

such that p ¢ Cl

1

FoXFP’ and (ClFOXFp) n K = ¢, Thus

p £ Cl F_, and by our choice of K, F_ is m-separated from
FoX'p p

F2° Since Fy¢X is a perfect compactification of X, according

to 2.3 (iii) and (iv), ClFoXFp n ClFOXFZ = ¢. Then

p ¢ ClFOXFZ’ and as p was arbitrarily chosen in ClFOXF1’
ClFoXF1 n ClFOXFZ = ¢
(ii) implies (i). Suppose that y is a proximity on X.

We will show that the proximal compactification yX
associated with v has relatively O-dimensionally embedded
remainder, and therefore, by 2.19, that X is almost

rimcompact.

Note that if U is a 7m-open subset of X, and if A, B are
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closed subsets of X contained in U, X \ ClXU respectively,
then A and B are r-separated in X, hence A 4 B. That is,

ClYXA n ClyXB = ¢

We now claim that if U is a n-open subset of X, then

bdXU = bdyXEXyXU‘ For suppose that p e deXEXYXU \ bdXU°

Then p € ClyXExyXU n ClyX(X \ U). As U is m-open in X, bd U
is closed in vX. Hence we can choose an open subset W of X
such that p e Exwa’ and Clwa n bdXU = ¢. Since

P € ClyXU n EXwa’ P e c1YX(w n U). Similarly,

p € ClYX(w n (X \ U)) = ClYX(W n (X \ ClXU)), since

Wn bd,U = ¢. Hence p ¢ ClYX(W nU) n ClYX(W n (X \ ClXU)).

X
However, ClX(w nU) c ClyW n ClyU

n

(ClyW) n U, while

01X(w n (X \ ClXU)) < ClXW n ClX(X \ ClXU)

n

(ClyW) n (X \ U). Then Cly(W n U) and
01X(w n (X \ ClXU)) are m-separated in X, hence

ClYX(W n U) n ClYX(W n (X \ ClXU)) = ¢, which contradicts
our choice of p. Therefore bdXU = deXExYXU and our claim

is verified.

Suppose that T is a closed subset of YX, and that
p € (¥vyX \ X) \ T. Choose open sets U and V of X such that
p € EXYXU, T c ExYXV, and ClyXU n ClyXV = ¢. Then
ClXU x ClXV; let K be a compact subset of ClXU witnessing
this fact. Since p ¢ K, there is a closed subset F of ClXU
such that p e ClyXF’ and F n X = ¢, Then F is n-separated

from ClXV° Choose W to be a m~open subset of X such that
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F e W, and Clxw n ClXV = ¢. Then EXYXW 1s an sb open set of
vyX, and p € ClyXF n (yX \ X) « Clwa n (yX \ X) =

EXYXW n (vyX \ X), while T n EXYXW c (ClYXV) n (EXYXW) = ¢.
This shows that ¥X \ X is relatively O-dimensionally

embedded in vX, as required. 0O

A proximity similar to y will be defined using C.E.
families instead of m-open sets. Just as in the case of
almost rimcompact spaces, when considering O-spaces we are
only concerned with what happens "away from compact subsets"

of X.

5.11 Definitions : (i) If A, B c X, A is C.E.-separated from

B if there is a C.E. family £ such that A ¢ E for some

E ¢ E, and ClX(ug) n ClXB = ¢,

(ii) Let X be any space, and define o to be a relation on
P(X) as follows: for A, B < X, A 4 B if and only if there is
a compact subset K of ClXA, so that if A° is a closed subset

of Cl,A, and A" n K = ¢, then A" is C.E.-separated from B.

X
For the rest of this chapter, o« will be as defined
above. We shall prove that X is a O-space if and only if «
is a proximity on X, in which case oX = FoX (5.15). Unless

specifically stated, in the following results o is not

assumed to be a proximity on X.

5.12 Lemma : Suppose that KX is a perfect compactification
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of X, and that F1, F2 are closed subsets of X such that
F1 é FZ' Then if p e ClKXF1 \ F1, there is a KX-C.I. subset
Up such that p ¢ Up and ClX(Up n X) n F, = ¢, hence

Up n ClKXFZ = 6.

Proof : Suppose that F1 d F2; let K be a compact subset of

F1 witnessing this fact. If p e ClKXF1 \ F1, then p ¢ K, so

there is a closed subset F{ of F1 such that p ¢ ClKXF{, and

¢. Thus p e ClKXF{ and F{ is C.E.-separated from

F,. Let Z be a C.E. family such that (Cly(UE)) n F, = ¢,

*1j
.
>
=~
]

and F{ c E, for some E & E. Since KX is a perfect compact-
ification of X, by 5.7 (iii), EXKXE is C.I. in KX. Also,
D € ClKXFa = EXKXQ, by 5.8 (iii), while ClX(UE) n F2 = ¢,

hence EXKXQ n ClKXF2 = ¢. [

The following is an immediate consequence of 5.12.

5.13 Corollary : Suppose that KX is a perfect compact-
ification of X, and that F1, F, are closed subsets of X. If

F then Cl,,F, n Cl,,F, = ¢.

4 F Kxfo =

1 2’ KX 1

5.14 Lemma : Suppose that o is a proximity on X, and that aX
is a perfect compactification of X. Then oX \ X is

0-dimensional, hence X is a O-space and aX = F, X.

Proof : Suppose that T 1s a closed subset of oX \ X, and
that p e (X \ X) \ T. We must find a clopen subset U of

X \ X such that p € U, while Un T = ¢. Now p ¥ ClaXT’ SO
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there exist open sets V, W of X such that p e EXQXU, cl T e

aX
Ex W, and ClaXV n Clan = ¢. Hence Clyv ¢ ClXW. If oX is
a perfect compactification of X, then according to 5.12
there 1is an oX-C.I. open set Up such that p € Up, while

Uy n Cl,yW = ¢. Then Up n (¢X \ X) is a clopen subset of

p
eX \ X having the desired properties. [

5.15 Theorem : If X is any space, then the following are
equivalent.

(i) X is a O-space.

(ii) o is a proximity on X.

Furthermore, if o is a proximity on X, then oX = F,X.

Proof : (i) implies (ii). Suppose that X is a O-space. We
will prove that o is a proximity on X, and that oX = F,X by
showing that if F1, F2 are closed subset of X, then

Cl F. n Cl

F X1 F, = ¢ if and only if F1 d F2.

Suppose that F1 o F2. Since Fy¢X is a perfect

compactification, according to 5.13, ClFOXF1 n ClFoXFZ = ¢.

On the other hand, suppose that ClFOXF1 n Cl Fo o= ¢,
Since Fo¢X \ X is O-dimensional, for each p e (ClFOXF1> \ X,
there 1s an F,X-C.I. open set U(p) such that p ¢ U(p) while
ClX(U(p) n X) n F, = ¢. Let K = ClFOXF1 \ u{U(p): p e
ClFOXF1 \ X}. Then K is a compact subset of Fu. If F{ is a
closed subset of F, such that F{ n K = ¢, then ClFOXF{ c

ui{U(p): p = ClF XF1 \ X}. By compactness, there is a finite
0

subset {p1,p2,,..,pn} c ClFoXF1 \ X such that ClFoXF1 c
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u{U(pi): 1 <1i<n}. Now U{U(pi): 1 <1 < n} is a C.I. open
set of FoX, so by 5.6, there is a C.E. family E of open sets
of X such that EXFOXE = U{U(pi): 1 < i< n}. Now ClFOXF{ <
EXFOXE’ so by 5.8 (iii), there is E ¢ E such that F{ c E.

Also, since Cly(u{U(p;): 1 < i < n}) n Fy = ¢, Cly(uE) n F,

= ¢. In other words, F{ is C.E. separated from F,; that is,

F1 ¢ F

5"
(ii) dimplies (i). Suppose that o is a proximity on X.

According to 5.14, to show that X is a O-space it suffices

to prove that @¢X is a perfect compactification of X.

First, suppose that V1 and V2 are disjoint C.I. subsets
of 8X. If y; e V, n (BX \ X) (i = 1,2), we claim that
(af)(y1) z (af)(yz), To see this, note that there are
closed subsets Fi of X such that y, e Cl  F, = V. (1 = 1,2).
By 5.6 there exists a C.E. family E such that EXBX§ = V1.

Since ClgyFq < ExgyE, by 5.8 (iii), F, ¢ E, for some E ¢ E.
Also, Cly(uE) n F, < <C18XV1) nv, =¢, so Fy is C.E.
separated from F2; that is F1 4 F2. Then ClaXF1 n ClaXF2 =

v. Since (af)(yi) e Cl 4F (af)(y1) z (af)(yg), and our

i 9

claim is verified.

Now suppose that oX is not a perfect compactification of
X. According to 1.5, there is p € oX \ X such that (of)“(p)
is not connected. Write (af)+(p) =Ty v T,, where T, and T,

are disjoint closed subsets of (af)+(p). Since (af)+(p) is

compact, T1 and T2 are disjoint compact subsets of BX, so

there are open sets U1 and U2 such that Ti < U,

; (4=1,2),
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and ClBXU1 n ClBXUZ = ¢. Since of is a closed map, and

(af) (p) < Uy U Uy, there are open sets Wy and W, of X such

that p e Exaxw1 = Clan2

<=
(af) [ClaXWZJ c U1 U U2. Now Cl_

that is ClyW, 4 (X \ WZ).

< EXan2’ and ClBXWZ <

W, n ClaX(X \ w2) = ¢

X

In the following i = 1,2. Choose z; ¢ (af) (p) n g; n

ClBXw1° According to 5.12, there are BX-C.I. sets Si such

that z, € Si’ and Si n ClBX(X \ W2) = ¢. Now Si c U, v U2.

1

Let Si = Si n Ui“ According to 2.11, applied to the sets

ClyyU, n (BX \ X), Cl, U, n (BX \ X) and S, n (BX \ X),

S, n (BX \ X) is clopen in 8X \ X. In other words, Si is a

i= 1,2, while 8] n S <

C.I. subset of BX. Also z. e S/ 5

i i’
U1 n U2 = ¢, It follows from our earlier claim that

(af)(y1) z (af)(yz), which contradicts the fact that
z; € (af)+(p)° Thus (af)+(p) is connected for each

p e oX \ X, hence oX is a perfect compactification of X. [
The correspondence between full C.I. sets and full C.E.
families that is outlined in the remarks following 5.6 and

5.7 allows us to characterize full O-spaces.

5.16 Definitions : (i) If A, B ¢ X, then A is fully C.E.

separated from B if there is a full C.E. family E such that
ClX(uE) n ClyB = ¢, while A ¢ E for some E ¢ E.

(ii) If X is any space, define o«  to be a relation on p(X)
as follows: for A, B c X, A 4 B if and only if there is a

compact subset K of ClXA so that if A” is a closed subset of
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ClyA, and A" nK = ¢, then A is fully C.E. separated from

B,

Then results 5.12 - 5.15 hold, if in the statements and
proofs of the results, "C.E.", "C.I.", "a", and "O-space"
are replaced by "full C.E.", "full C.I.", "a’'", and "full

O-space"™ respectively, leaving us with the following

characterization of full O-spaces.

5.17 Theorem : If X 1s any space, then the following are
equivalent.

(i) X is a full O-space.

(ii) ¢’ is a proximity on X.

If o’ is a proximity on X, then e¢X = F¢X.

Example 1.34 is a full O-space which is not almost
rimcompact. We do not have an example of a O-space which is

not full - this gquestion is left open to the reader.

Recall that a closed subset F of X is regular closed in

X if ClxintXF = F. The following result is 2.4 of [Wo].

5.19 Lemma : If A is a regular closed subset of X, B is
closed in X, and ClBXA \ A c ClBXB \ B, then ClX(A \ B) is

pseudocompact.

5.20 Proposition : Let U be open in X. If EXBXU is C.I. in
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X, and p « bdsX(EXsXU) n (BX \ X), then there is a closed

pseudocompact subset F of X such that p e ClBXF°

Proof : By assumption EXBXU n (BX \ X) is clopen in B8X \ X.
Note that deX(EXBXU) \ X = [ClBXU \ EXBXU] \ X. If

P e (ClBXU \ EXBXU) \ X, there exists a regular closed
subset V of X such that p e ExgyV, while (ClBXV) n ExgyU ©
X. Let B = X \ U. Then ClBXV n (BX \ X) ¢ BX \ EXBXU =

ClBXB° According to 5.19, ClX(V \ B) is a pseudocompact
subset of X. Now ClX(V \' B) = C14(V n U), and it is easily

checked that p e ClsX(V n U). The proposition follows. 0O

5.21 Corollary : Suppose X is a space in which pseudocompact
closed subsets are compact. If X is a full O-space, then X

is almost rimcompact.

Proof : Suppose that pseudocompact closed subsets of X are

compact. It follows from 5.20 that if EXBXU is any full
C.I. subset of BX, then deXEXBXU c X. This implies that
any connected component of BX \ X having a basis in gX of
full C.I. sets has a basis of open sets whose boundaries are
contained in X. In other words, if X is a full O-space,

then by 2.19, X is almost rimcompact. [

5.22 Corollary : If X is realcompact, or metacompact, then X

is a full O-space if and only if X is almost rimcompact.

By slightly generalizing some of the previous
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definitions, we can determine, in terms of the proximity ¢
associated with a compactification 6X, whether é6X is larger

than some 0.I. compactification of X.

5.23 Definitions : (i) Let KX, K,X ¢ K(X), with K{X 2 K,X,

and let f: K1X - K2X denote the natural map. Then K2X is

perfect with respect to K1§ if f¥(p) is connected for each

P e K2X°
(ii) Let & be a proximity on X. A family E of open sets of

X is C.E. with respect to §, (denoted by §-C.E.) if E is

C.E. and also satisfies: for E € E, there is E1 e £ such
that E1 g (X \ E2)°

(iii) If A, B < X, then A is 8-C.E. separated from B if

1
<
-

there is a $8-C.E. family £ such that Cly(UE) n ClyB
while A <« E for some E e E.

(iv) If X is any space, define a, to be a relation on P(X)
as follows: for A, B < X, A a B if and only if there is a
compact subset K of ClXA such that if A" is a closed subset

of CL,A, and A" n K = ¢, then A" is 6-C.E. separated from B.

X

If 68X is larger than some 0.I. compactification of X,
then there is a maximal 0.I. compactification smaller than
X, denoted by F(sX). According to an argument in [Mc],
F(8X) is perfect with respect to §X. The proof of 5.5 (when

modified slightly) also yields the following.

5.24 Theorem : Suppose that KX, 68X € K(X), and that U, V are
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open in X. Then the following are equivalent.

(i) KX is perfect with respect to §X.
(ii) If U nV = ¢, and ExgxU U ExgyV = EXGX(U u V), then

EXKXU U EXKXV = ExKX(U u V).

(iii) If ClX(U n V) is compact, and Exog¢U U BxgyV =

EXSX(U u V), then Ex,,U u Ex_,,V = EXKX(U u V).

KX KX

The following result is analogous to 5.7, but requires a

slightly different method of proof.

5.25 Theorem Suppose that KX, 8X € K(X), that KX is perfect
with respect to 86X, and that £ is a ¢-C.E. family. Let

p e (KX \ X) \ Ex Then

KxE

(1) there is a set D small with respect to E such that
p € EXKXD, hence

(11)  ExpyE n (KX \ X) = (u{ClgyBE: E ¢ E}) n (KX \ X) and

(iii) ExgpyEZ is C.I. in KX.

Proof : (i) Let E be a $-C.E. family, and suppose that p €

(KX \ X) \ Ex As in the proof of 5.7, we can find a set

KxZ-
D small with respect to E, and E ¢ E such that

D € ExKX(E u D). It is sufficient to show that if D is

GXE u EXGXD,

As KX is perfect with respect to 86X, 5.24 then implies that

small with respect to £

=3

then EXGX(E u D) = Ex

EXKX(E u D) = EXKXE U ExpyD. As p # ExpyE, p & ExgyD, and

(i) is proved.

Suppose that for some E e E, there is a point
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D € EXsX(E v D) \ (EXGXE u EXGXD)° By 1.4 (v),
p € ClaXE n ClGXD° Since £ is a §-C.E. family, there exists

E, € E such that Cl E, n

1 6XE c EXGXE1. Then (X \ X) n ExX sy

ClﬁXD z ¢, contradicting 5.4. Hence if D is small with

1

respect to E, and if E ¢ E, it follows that Exﬁx(E u D) =
Ex yE U Exg yD. As in the proof of 5.7, (ii) and (iii)
follow from (i). O

Then 5.6, 5.8 and 5.12 - 5.15 are true if in the
statements and proofs, "C.E.", "C.I.", "perfect", and "a"
are replaced by "s-C.E.", "§X-C.I.", "perfect with respect
to 8X", and "aa" respectively. This leads to the following

result.

5.26 Theorem : Let 6X e K(X). The following are equivalent.
(1) ¢6X is larger than some 0.I. compactification of X.
(ii) a4 is a proximity on X.

If oy is a proximity on X, then o, = F(sX).
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CHAPTER 6

CLOSED MAPS ON O-SPACES

In this chapter we consider the following question
If f : X » Y is a closed map, and if X and Y are O-spaces,

under what conditions on X, Y and/or f will f extend to

g € C(FQX,FOY)?

We begin by summarizing the known results on this
question. In Lemma 1 of [Dil] it is shown that if
f e C(X,[0,11), and the set {y € [0,1] : fé(y) contains a
compact set K such that X \ K can be written as U u V, where
U, V are m-open in X and U < f*[O,y], while V < f+[y,1]} is
dense in [0,1], then f extends to g ¢ C[F,X,[0,1]). An
argument in the proof of Theorem 3 of [M3] shows that if
f : X> Y is closed, X and Y are rimcompact and bde*(y) is
compact for each y & Y, then f extends to g & C(FX,FY).
This result is used to prove Theorem 5 of [M2] which states
that if £ ¢ X - Y is a closed map, and if X and Y are
locally compact and paracompact, then f extends to
g € C(FX,FY). 1In Theorem 4 of [Nol it is shown that the
paracompactness of X and Y can be weakened to meta-

compactness.

In the sequel, if X is a O-space (respectively,

rimcompact) then Gy (respectively SX) will denote the
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proximity on X inducing F,X (respectively, FX). We show in
6.3 that if X is a O-space and Y is rimcompact, then a
closed map £ : X > Y extends to g € C(F,X,FY) if and only if
for any distinct pair of points y, z ¢ Y, £ (y) P £ (2).

We apply this result to several particular classes of
spaces. In particular we show in 6.11 that if X is a
metacompact O-space, Y is a rimcompact quotient space of a
locally compact space, and £ : X > Y is a closed map, then f
extends to g ¢ C(F,X,FY). Note that since the closed image

of a metacompact space is metacompact, Y is necessarily

metacompact .

The following, which is Lemma 1 of [SK], will simplify

the proofs of several results.

6.1 Lemma : Suppose that the compactification 6X associated
with the proximity ® on X is a perfect compactification of
X, and that A, B are disjoint subsets of X. Then A 6 B if

and only if bdXA 9 bdXB°

We use without mention the fact that if 6X is a compact-
ification of X associated with the proximity 6 on X, then
A 8 B if and only if Cl,yA n Cl,yB = ¢ (see Chapter 1). 1In
the following, if £ : X - Y is a map, the natural map of B8X

into 8Y extending f is denoted by B8f.

6.2 Definition : Amap £ : X > Y is a WZ-map if ClBXf+(y) =
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(f) (y) for each y ¢ Y.

Theorems 1.1, 1.2 and 1.3 of [Iw] show that a closed map
is a WZ-map, and that the converse is true if either X is

normal, or bdxfé(y) is compact for each y e Y.

Suppose that f : X - Y is a map, and that X, yY are
compactifications of X and Y associated with the proximities
8 and y respectively. Recall that f extends to g e C(6X,vY)
if and only if for C, D c Y, C ¥ D implies £ LC]1 § £ L[D]
(see Chapter 1). Suppose that Y is rimcompact, that 6X is a
perfect compactification of X and that £ : X = Y is a
WZ-map. The following result states that to show that f
extends to g e C(6X,FY), it suffices to show that

£rcy o f+[D], where C and D are singleton subsets of Y.

6.3 Theorem : Suppose that Y is rimcompact, and that f is a
WZ-map from a space X into Y. If eX is a perfect
compactification of X, then the following are equivalent.
(1) f extends to g ¢ C(6X,FY).
(ii) For any distinct pair of points y, z ¢ Y,
£(y) ¢ £(z2).
(1iii) If £ (y) is completely separated in X from a subset B

<~
of X, then f (y) ¢ B.

Proof : (i) implies (iii). If B < X, and f (y) is
completely separated from B, then ClBXf+(y) n ClBXB = ¢.

Since f is a WZ-map, Clgyf (y) = (8£) (y). Then y =
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(8f)L(BE) (y)] ¢ (Bf)[Cl,yB] = Cl,yf[BI, hence y 4y f[BI.

Thus if f extends to g & C(6X,FY), f$(y) g B.

(ii1i) implies (ii). Suppose that y, z are distinct
points of Y. Then f+(y) and f+(z) are completely separated
in X, hence f*(y) # £ (z).

(ii) implies (i). We wish to show that if C, D < Y and
C #y D, then £ [C] § £°ID]. It is easy to show that if Y is
rimcompact, then C ﬁY D if and only if C and D are contained
in m-open sets of Y whose closures in Y are disjoint. It
then suffices to show that if C and D are disjoint closed
subsets of Y with compact boundaries in Y, then

£°[Cc] 4 £I[D].

We claim that (ii) implies the following statement : if
C is a closed subset of Y with compact boundary, and
y e Y\ C, then £ (y) ¥ £ [Cl. If ye Y\ C, theny ¢ bdyC.
Hence if z e bd C, (ii) implies that £ (y) £ £7(z). Then
there is an open set U(z) of X such that CleXf*(z) c
Ex,yU(z), while ClgyU(z) n Clyef (y) = ¢. As
(Gf)éfExeXU(z)] S EXBXU(Z), it follows that ClBXf+(z) S
ExgyU(z). Since f is a WZ-map, Clgyf (z) = (8f)“(z). The
map Bf is closed, hence there is an open set V(z) of BY such
that (8£)(z) = (BF)LV(2)] e Ex,yU(z). Let W(z) =
V(z) n Y. Then f (z) c £ [W(z)] < U(z), and so £ IbdyCl <
u{f IW(z)] s z ¢ bdyC}. It follows that bdyC <
u{W(z): z € bdyC}. As bdyC is compact, there is a finite

subset {21’22’°°°’Zn} < deC such that deC IS
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u{W(z;): 1 <1 <n}. Then f*[deCJ c

U{f+EW(zi)]: 1< i< nlc u{U(zi): 1 < i < n}. Since

£ (y) @ u(z,), £ (y) ¥ U{U(zi): 1 <1 <n}. As bdxf*[C] c
f*[deCJ, £ (y) ¢ bde+ECJ, It then follows from 6.1 that

£(y) ¢ £7[C], and the claim is proved.

Suppose then that C and D are disjoint closed subsets of
Y whose boundaries are compact. If p e deD, then p ¢ C,
hence £ (p) # £T[C]. Then there is an open set U1(p) of X
such that Clgyf (p) < BxgyU,(p), and £ LCI n Cl,yU,(p) = o.
From an argument essentially identical to that in the
preceding paragraph, where f*(y) is replaced by f+[C], it
follows that bdyf [D] § £ [CI. Thus by 6.1 £ [D] g £ [CJ,

and the theorem is proved. U

It is an easy exercise to show that Lemma 1 of [D1]

follows from the fact that 6.3 (ii) implies 6.3 (i).

Althought the conclusions of 6.3 hold whenever the
hypothesized function f is a WZ-map, in our applications of

it we will assume that f is a closed map. As noted above, a

closed map is a WZ-map.

6.4 Theorem : Suppose that X is a O-space, Y is rimcompact,
and f : X - Y is a WZ-map. Then the following are

equivalent.

(i) f is closed, and extends to g e C(F,X,FY).

(ii) £ is closed, and for any distinct pair of points
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Y, 2 e Y, £(y) dy £ (2).
(iii) If B is a closed subset of X, y ¢ Y and fé(y) n B =y,
then f (y) 4y B.
If in addition, X is rimcompact, the previous conditions are
equivalent to
(iv) For each y ¢ Y, fé(y) has a neighbourhood basis in X

of m-open sets of X.
Proof : It follows from 6.3 that (ii) implies (i).

(i) implies (ii). Suppose that y € Y, that B is closed
in X, and that fé(y) N B =2¢. Since f is a closed map,
there is an open set V of Y such that fé(y) c £ [V] <X \ B.
Then y SY U \ V. Since f extends to g = C(F.X,FY),

£7(y) dy £LY N\ V] = X \ £ LV]. Thus £ (y) dy B.

(1ii) implies (ii). If y and z are distinct points of

Y, then f*(y) nof(z) = ¢, hence fé(y) dy £(z). We show
that f is a closed map by showing that if S < Y, and £ISs] <
U, where U is open in X, then there is an open set V of Y

<« < <
such that £ [S1 e £ [V] ¢« U. If y e S, then £ (y) n (X \ U)

< <

= ¢, hence f (y) dx X \ U. Then ClBXf (y) n ClBX(X \ U) =
6. As (8f) (y) = ClBXf*(y), since f is a WZ-map, and as Bf
is a closed map, it follows that there is an open set V(y)
of 8Y such that (Bf) (y) < (BE)T[V(y)] < ExgyU. Then £5(y)
c £ IV(y) n Y] < ExgyU 0 X = U, If V= u{V(y) n Y: y ¢ S},

. < -
then V is open in Y, and f [S] = vif (y): y € S} <

u{f+[V(y) n Yl: y € S} = £I[V] ¢ U. Thus f is closed.
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If X is rimcompact then (iii) and (iv) are clearly
equivalent since if X is rimcompact, then f+(y) $y B if and

only if f+(y) and B are ﬂ—sepérated in X. O

Example 4.12 shows that the hypotheses of 6.4 do not

imply that X is rimcompact.

6.5 Corollary : Suppose that X, Y are rimcompact, and that
f : X >Y is a closed map. If f extends to g ¢ C(FX,FY),
then g  (y) = n{ClFXU: U is m-open in X and £ (y) < U} for

each y ¢ Y.

Proof : Since f is closed, if y € Y then by 4.20 g (y) =
Clpyf (¥). If p e FX \ Clpyf (y), then there is a closed
set B of X such that p e ClpyB, and B n f (y) = ¢. It
follows from 6.4 that there is a m-open set U of X such that
f+(y) < U, and (Cl4U) n B = ¢. Then by 2.3 (iii) and (iv),
g°(y) = Clpyf (y) © ExpyU, while CloyU n CloyB = ¢. Thus

p ¢ ClgpyU. It follows that g (y) > ni{ClpyU: U is m-open in

X and f+(y) c U}. Since the reverse inclusion clearly

holds, the statement is proved. [

6.6 Definition : Let U = {Ua: o ¢ A} be a collection of open

sets of X. A subset F of X is U~compact if there exists a

finite subset A” of A such that F c u{U,: o ¢ AT},

6.7 Theorem : Let f : X - Y be a WZ-map, where X is a

O-space and Y is rimcompact. Suppose that for any open
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cover U of X, Y(U) is a discrete subspace of Y, where
Y(U) = {y ¢ Y: bde*(y) is not U-compact}.
If either f is closed, or X is rimcompact, then f extends to

g e C(Fo,X,FY).

Proof : According to 6.3, it suffices to show that if y and
< <«
z are distinct points of Y, then f (y) #y f (z). Choose
vy, z € Y such that y # z. Let V be an open subset of Y such
that y e V, while z ¢ ClyV. Then £ (y) « £°LV1, and
£(z) n f+[ClYV] = ¢. We define an open cover U of X in the
following way. If x € £ el vl, then x ¢ f¢(z), so there
Y X
is an open set U(x) of X such that x ¢ U(x), and
< < <«
£ (z) dy U(x). If x e X \ £ [ClyV], then x gy £ (y), so
there is an open set V(x) of X such that x ¢ V(x) and
£°(y) dy V(x). We define U = {U(x): x ¢ f*[ClyV]} u
{V(x): x #£ f*[ClYV]}, which is an open cover of X.
Note that f (y) n [u{V(x): x ¢ £ [CLyVI}] = ¢ =
£(z) n [u{U(x): x e £TIC1y VI,

Let Y(U) = {y ¢ Y: bdxf+(y) is not U-compact}. If
y # Y(U), then bdyf (y) © ullU(x;): 15 i < n}, where
{X,3%p,-0,% } © £ [C1,V]. Since f (z) ¢y v{U(x;): 1sis=n},
it follows from 6.1 that £ (y) oy £(z), and the theorem is
proved. Now suppose that y € Y(¥). By assumption Y(U) is a
discrete subset of Y, hence there is a m-open set W of Y
such that y ¢ W e V, and ClyW n Y(y) = {y}. 1If p € bd W,
then p ¢ Y(U) so there is an open set U’(p) of X which is a

finite union of elements of U such that bde+(p) c U’'(p) and
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U’ (p) £y £7(z). It follows from 6.1, the choice of U and
the fact that F¢X is a perfect compactification of X, that
there is an open set W(p) of X such that f«(p) c W(p) and
W(p) ¢X £(z). If X is rimcompact, W(p) can be chosen to be

a m-open subset of X.

We claim that there is an open set W (p) of Y such that
f+(p) c f+[W'(p)] c W(p). This is obvious if f is a closed
map. Suppose that X is rimcompact, and that W(p) is w-open
in X. Since f is a WZ-map, it follows from 2.3 (iii) that

< <
(8f) (p) = ClBXf (p) <« EXBXW(p). Since Bf is a closed map,
we can again find the desired open set W (p) of Y, and the

claim is true.

Then £ [bdyWl = u{f [W (p)I: p e bdyW}, so bdylW <
uiW'(p): p ¢ dew}° Since bdyW is compact, there is a
finite set {p1,p2,...,pn} c deW such that deW c
u{W’(py): 1< i s n}. Then £ IbdyWl € ulf [W (py)I: 1sisn)

. < <
c U{W(pi): 1< 1 < nl. As f (z) % W(pi), and bdyf [wl <
f*[deWJ, it follows that f*(z) dy bdxf*EWJ, Thus by 6.1
£(z) dy £LWI. Since f (y) £ [Wl, £ (2z) dy £ (y) and the

theorem is proved. [
The next result is a special case of 6.7.
6.8 Corollary : Suppose that £ : X - Y is a closed map,

where X is a O-space and Y is rimcompact. Let YO =

ly ¢ Y: bde+(y) is not compactl}. If YO is a discrete
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subspace of Y, then f extends to g ¢ C(F,X,FY).

As mentioned in our summary of known results, it is
shown in [M3] that if X is rimcompact and the set YO defined

in 6.8 is empty, then the conclusions of 6.8 hold.

A space X is a k-space if a subset F of X is closed if
and only if F n K is compact for each compact subset K of X.

It is well known that a space X is a k-space if and only if

X 1s the quotient of a locally compact space, and that any

first countable space is a k-space.

The following are 1.3 of [Ar] and 7.2 (d) of [Iw]

respectively.

6.9 Proposition : Suppose that Y is a k-space, and that f is

a closed map from a space X into Y. If U is any
point-finite open cover of X, and Y(U) = {y ¢ Y: fé(y)) is

not U-compact}, then Y(U) is a closed discrete subspace of

Y.

6.10 Proposition : Suppose that X is locally compact and

realcompact, and that f is a closed map from X into a space
Y, If Y, = {y € Y: f+(y) is not compact}, then Y, is a

closed discrete subspace of Y.

We point out that although the normality of X is



included as a hypothesis in 7.2 of [Iwl, it is not required

in the proof of 7.2 (d).

The following shows that the requirement that X be

locally compact in Theorem 4 of [Nol] is not necessary.

6.11 Theorem : Suppose that Y is a rimcompact k-space, and
that X is either (i) locally compact and realcompact, or
(ii) a metacompact O-space. If f : X > Y is a closed map,

then f extends to g e C(F X,FY).

Proof : In the case where X is realcompact and locally

compact, the theorem follows immediately from 6.8 and 6.10.

If X is a metacompact O-space, and U is any open cover
of X, choose V to be a point-finite open refinement of [U.
Clearly Y(U) < Y(V), where Y(U) and Y(V) are as in 6.9. The

theorem then follows from 6.8 and 6.9. [

We now consider closed maps into g-spaces. If x ¢ X,

then x is a g-point of X if there exists a sequence {Ni}ieN
of neighborhoods of x such that if X; € Ni’ for

i e N, and 1 =2 J implies that X; # Xj, then the set

{xi: 1 € N} has an accumulation point in X. A space X is a

g-space if every point of X is a g-point of X.

Clearly any first countable or locally countably compact

space 1is a g-space. An example of a countably compact space
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which is not a k-space is outlined in 1.10 of [Bul. The
following example shows that a k-space need not be a

g-space.

6.12 Example : Let X be the quotient space R/{N}. Since X
is the quotient of a locally compact space, X is a k-space.
We show that {N¥} is not a g-point of X. Let {Un: n e N} be
a sequence of open neighbourhoods of N in X. For each

ne N, let Vn be an open interval of the form (n—rn,n+rn)
which is contained in Un' If s, = (n+rn)/2, for each n,

then s e U and s_ # s_ if n # m, but {sn: n € N} has no

n’ n m

accumulation point in X. 0

A subset F of a space X is prelatively pseudocompact in X

if for each f & C(X), f is bounded on F. Following the
terminology of [Iw], we say that a subset F of X has

property (¥) if inf{f(x): x € F} > 0 for each f ¢ C(X) which

is positive on F. It is pointed out in [Iw] that a
pseudocompact subset of X has property (¥), and that a

subset with property (¥) is relatively pseudocompact.

6.13 Definition : A subset F of a space X has property (¥%)

if for any point-finite collection U = {U, : o ¢ A} of open
sets of X covering F, there is a finite subset A" of A such

that F c u{ClXU :a e AT},
o

6.14 Lemma : If a subset F of a space X has property (¥#¥),
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then F has property (¥).

Proof : Let f ¢ C(X) such that f is positive on F. If g =

f A~ 1, then g is positive on F, and infi{g(x): x ¢ F}l =
inf{f(x): x € F}. For n € N let U(n) = g+(1/(n+2),1/n).
Then {U(n): n e N} is a point-finite collection of open sets
of X which covers F. Since F has property (¥¥), there is a
finite subset {n1,n2,..,,nm} of ¥ such that F <

u{ClXU(ni): 1< 1i<nt, If m= max{n1,n2,..,,nm}, then F c
g*[1/(m+2),1], hence inf{f(x): x ¢ F} 2 infig(x): x ¢ F} >

0. Thus F has property (¥). 0O

It is shown in 2.1 of [Mij that if £ : X = Y is a closed
map, and y € Y is a g-point of Y, then bdxfé(y) is
relatively pseudocompact. It follows from 6.14, and the
remarks preceding 6.13, that the next result generalizes

this fact.

6.15 Proposition : Suppose that f : X >+ Y is a closed map.

If y ¢ Y is a g-point of Y, then bde+(y) has property (¥*%),

Proof : Let U = {U_ : o ¢ A} be a point-finite collection of
open sets of X covering bdxf+(y). Since f is a closed map,
and f(y) < intXf+(y) U (U{Uat o e A}), there is an open set
V of Y such that f (y) e £ [ClyV] c inty £ (y) v

(U{Ua: a e A}). Let {Ni}ieN be a sequence of open
neighbourhoods of y in Y witnessing the fact that y is a

g-point of Y. If Mi = Ni n V, then {Mi: i e N} witnesses
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the fact that y is a g-point of Y. Suppose that for any
finite subset A" of A, bde*(y) ¢ UlClyA : o ¢ A}, We will
construct inductively a closed discrete set {xi: i e N} of X
such that x; e f+[Mi] for each i, and f(xi) = f(xj) implies
that 1 = j. Let xq ¢ bde<‘(y)° Suppose we have chosen x;,
for i < n, such that x, e f+[Mi] and f(xi) z f(xj) if i 2 j.
i < n}. Since J is a point-

Let An = {o e A: X; € Ua’ 1 <

finite collection of subsets of X, |A_ | < w. Hence

n
bdyf (y) # UlClyA : o = A }. Let V_ =
LEIM In(X\U{CL A : ash 1)] N\ [T [R(x,),f(xg), v, Flx )T,
Since f(x;) # y if i > 1 by our inductive hypothesis, vV, is
a non-empty open subset of X which intersects bdxfé(y).
Hence there is a point x, e V '\ f+(y). Clearly f(xn) z

f(xi) for i < n.

We claim that {xi: i e N} is a closed discrete subspace
< <
of X. Since {Xi}ieN c Cle Lvl \ intxf (y), ClX{xi: ie N}
e c1xf*[v3 \ intxf*(y) < u{U : a e A}. If x ¢ 01Xf*[v1, let
VX = U{Ua: X € Ua}, Ir v, n {xi: i e N} = ¢, then
X ¢ Clx{xi: ienNy. If VX n {xi: i e N} 2 ¢, choose

Xj e V n {xi: i e N}. Then {x,xj} c Ua for some a ¢ Aj+1°
By our inductive hypothesis, {xi: ie NV and 1 > j}
n [u{Ua: o € Aj+1}] = ¢, hence Ua is a neighbourhood of x in

X such that U n {x.: 1 e N} < {x.,X x.}. Thus
a i 1 J

2,.a.,

x ¢ Clylx;: 1 e N}, and the claim is proved.

Since f is a closed map, every subset of flix;: i e N}]

is a closed discrete subset of Y. This contradicts the fact
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that since f(xi) € Ni’ and f(xi) z f(xj) if i =2 j,
{f(xi): i € N} has an accumulation point in Y. Thus
bde+(y) c u{ClylU : o ¢ A’} for some finite subset A" of A,

and so bde+(y) has property (¥%¥), [
We now have the following.

6.16 Theorem : Suppose that Y is rimcompact, and that the
set YO of non g-points of Y is discrete in Y. If f : X~ Y

is closed, where X is (i) a metacompact O-space or (ii) a

realcompact O-space, then f extends to g e C(F,X,FY).

Proof : If y ¢ Y,, then by 6.15, bdxf+(y) has property (¥¥),
If X is realcompact, then it follows from 6.14 and the
remarks preceding 6.13, that bdeé(y) is compact, since any
relatively pseudocompact subset of a realcompact space is

compact, by 8E.1 of [GJ].

We show that if X is metacompact, and bde+(y) has
property (¥¥), then bde*(y) is compact. According to
17B.1, 17K.2 and 17K.3 of [Wil], it suffices to show that if
V= {Va: o € A} is a collection of open sets of X such that
bdxf+(y) c u{Va: o € Al, then there is a finite sub-
collection of ¥V whose closures cover bdxf-(.(y)° Let V be
such a collection. Then V" = V u {intXf+(y), XA\ fG(y)} is
an open cover of X. Choose ¥ to be a point-finite open
refinement of V°. Then U = {W e W: Wn bde+(y) zZ ¢} is a

point~finite refinement of ¥ which covers bdxf+(y)° Since
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bde+(y) has property (¥#¥), there is a finite subcollection
of U whose closures cover bdxf“_(y)° Since U refines V,
there is a finite subcollection of ¥ whose closures cover

“ <
bdyf (y). Thus bdyf (y) is compact.

It follows that if Y, = {yeY: bdxf+(y) is not compact},
then Y1 < YO, hence Y, is a discrete subspace of X. Thus by

6.8, f extends to g ¢ C(F,X,FY). [J

There are examples of maps of rimcompact spaces which do
not extend to maps of the respective Freundenthal

compactifications. The following is Example 1 of [Nol.

6.17 Example : Let X = w, x I, and let Y = I. Then X is
locally compact and Y is compact. Let f be the projection
map from X onto Y. Then f is an open map. Since w, is
countably compact, f is also closed. However FX is the

one-point compactification of w, x I. Clearly f does not

extend to g ¢ C(FX,I).

In fact, if X is any countably compact O-space such that
X \ X is not O-dimensional, there exists fe C(X,[0,1]) such
that f does not extend to g ¢ C(FX,[0,1]). For any bounded
continuous real-valued function on X is closed. Thus if X
is not C¥-embedded in F,X, (ie. if F¢X # BX), there is a
closed function from X into I which does not extend over
F¢X. This 1s not true if "countably compact"™ is weakened to

"pseudocompact™. In the following £ is any maximal almost
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disjoint collectin of subsets of N. Recall that ¥ v R is

pseudocompact, for any such collection E.

6.18 Thecorem : Let £ : ¥ v R > Y be a closed map, where Y is

any space. Then Y is O-dimensional, and f extends to

g e C(F(N v R),FY).

Proof : First note that if y € Y \ f[R], then f (y) is a
closed subset of ¥ u B contained in N, hence f (y) is a
finite subset of N v R contained in N. Then fﬁ(y) is open

in ¥ v BE. Since f is a quotient map, vy is isolated in Y,

hence has a basis of clopen subsets of Y.

Since K is a closed discrete subset of ¥V v B, and f is a
closed map, fL[R]l is a closed discrete subset of Y. Suppose
that y ¢ f[R] \ T, where T is closed in Y. Then there is an
open subset U of Y such that y ¢ U, Un T = ¢, and U n fLR]
= {y}. Choose V to be open in Y such that y ¢ V < ClyV = U.
Then bdyV < ¥ \ f[R]. Since each point of deV is isolated
in Y, deV is open in Y, hence ClYV is open in Y. Thus ClYV
is a clopen subset of Y such that y ¢ ClyV and (ClYV) n T =
¢. It follows that Y is O-dimensional. Then f extends to
g e C(By(N v R),Bo,Y). Since Bo(N v R) = F(N v R) and B,Y =

FY, the theorem follows. [

It is well known that if f : X »- Y is a map, where X and
Y are O-dimensional, then f extends to g ¢ C(FX,FY) =

C(B,X,8,Y). The following generalizes this fact.
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6.19 Theorem : Suppose that X is a space, Y is O-dimensional
and KX is a perfect compactification of X. If £ : X = Y is

a map, then f extends to g & C(KX,B,Y).

Proof : Subsets C and D of Y have disjoint closures in B,Y
if and only if C and D are contained in disjoint clopen
subsets U and Y \ U of Y respectively. Since f+[U],
£°I[Y \ U] are then disjoint clopen subsets of X, and KX is a
perfect compactification of X, it follows that

N N £ Cl,,f [D] =
ClKXf LUT n ClKXf [Y\N U] = ¢. Then ClKX [C] n KX (D] =

¢3 thus by 1.1, f extends to g € C(KX,8,Y). [

<
6.20 Definition : A map £ : X > Y is monotone if f (y) is

connected for each y € Y.

The following answers a question communicated verbally

to R. G. Woods (Topology Conference, 1980) by D. Bellamy.

6.21 Theorem : Let f : X > Y be a monotone quotient map, and
let KX, KY be perfect compactifications of X and Y
respectively. If f extends to g ¢ C(KX,KY), then g is

monotone.

Proof : Suppose that there is p e KY such that g+(p) is not
connected. Write g*(p) = G1 u G2, where G1 and G2 are
disjoint closed subsets of g+(p). Since g+(p) is compact,

G1 and G2 are disjoint compact subsets of KX; hence there
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are open sets U1 and U2 of X such that Gi S EXKXUi’

(1 = 1,2) and ClgyUy n ClgyU, = ¢. Since g is a closed map,
there is an open set V of Y such that gé(p) c g+[V] c
E

<
XKXU1 U EXKXU2° Let W, =g LVl n Ui

(i = 1,2). Then W, and W, are disjoint open subsets of X,

£IVa Y1 n U,

and W, v W, = fLVn Yl. Since f+(y) is connected for each

2
yedY, W = f*[vi] for some subset V, of Y, (i = 1,2).

Since f is a quotient map, Vi is open in Y (i = 1,2). Then
VnY = V1 v V2, while V1 n V2 = ¢, It follows from 1.5 (i)
and (ii), and 1.6 that p ¢ Ex,,V = Ex_,V, U Ex,,V while

KY KY "1 Ky 2°
ExgyVq N EXKYVZ = ¢. Suppose without loss of generality
that p e EXKYV1° Since g+[EXKYV1] is an open subset of KX
containing £ IV,1, g (p) = g [ExyyV,1 € Bxpy T IV,1 = ExpyW,
c EXKXU1, which contradicts the fact that
g*(p) n EXKXU2 Z ¢. Thus gé(p) is connected for each

p ¢ KY.

6.22 Corollary : Suppose that X is a O-space and Y is
O-dimensional. If there is a perfect monotone map from X
into Y, then X is almost rimcompact and FeX \ X is

homeomorphic to FY \ Y.

Proof : Let £ : X + Y be a perfect monotone map. Then f
extends to g € C(F X,FY) by 6.19. Since f is perfect,

g [FY \ Y] = FoX \ X. As f is monotone, it follows from

6.21 that g+(y) is connected for each y € FY \ Y. Since
FoX \ X is O-dimensional, and g (y) < FoX \ X, lg (y)! = 1.

Thus g’FOX\X : FoX A\ X »FY \ Y is a closed continuous
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one-to-one map, hence g is a homeomorphism. The fact that X

is almost rimcompact follows from 4.11. [

Example 4.9 shows that the perfect monotone preimage X

of a 0O-dimensional space need not be a O-space, while
Example 4.12 shows that even if X is a O-space, X need not

be rimcompact.
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