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ABSTRACT

Compactifications of complefely regular Hausdorff spaces

have been studied in several ways; two of these are by

embedding topological spaces in products of other spaces,

and by supplying topological spaces with additional

structure.

In 1930 Tychonoff showed that a topological space is

compleLely regular and Hausdorff if and only if it can be

embedded in some product of closed unit intervals. By

embedding a completely regular Hausdorff space X in the
1x(y -r\

product Xt"- \^r r/ r one obtains the compactification of X

which is the projective maximum among aIl compactifications

of X. This compactification of X is called the Stone-Cech

eômnâetifieatjnn nf Y: ânv ntlran ñ^mnâ^tifiCatiOn Of X iSvv¡¡¡ÌJqvvrr +vuv¿v¡¡ vr ¿r, uL¿J

some quotient space of the Stone-Cech compactification of X.

In 1 948 Samuel developed a relationship between

uniformi-ties and compactifications, and i-n 1952 Smirnov

established the correspondence between proximitj-es and

compactifications " ïn this paper we wiIl consider both

quotient spaces of Stone-Cech compactifications, and

nrôtrimi t.i es ôn tonol opi eal snarrês - to str:dv nêmâi nrìerS ofP¡ v^rrrrrvfvu vr¡ vvlJv¡võfvsf

compacf if icat,ions.
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Mnna snêni f ioal'l v- r^re üIiSh to determine when auyvv!! ¿vq¿fJ , "v

completely regular Hausdorff spaee has a compactification

with a O-dimensional remainder" Such a compactification

will be called O-dimensional aL infinity (denoted by 0.I.);

a o-space is any space possessing a 0.I" compactification.

In 1942 Freudenthal showed that a rimcompact separable space

i-s a O-space. Morita using uniformites, and Skylarenko

using proximities, showed in 1952 and 1966 respectively that

any rimcompact Spaee X has a compactification which has a

basis of open sets whose boundaries are contained in X"

Skylarenko showed that a O-space which is Lindelöf aL

infinitv is nimoomnaet- l-rut, mentioned the existence of

nôn-rimcomnaet. O-snaces- He nnoverì that the maximum 0.I.I ¿r¡¡vv!¡¡yqvv v vvuvvv.

compactification of a rimcompact space is the minimum

nenfer:t eômnâctification of that space, and in 1969

McCartney showed that any O-space X has a maximum 0.I.

compactification which will also be the minimum perfect

compactification of X.

In Chapfers 2-4 we develop a theory for a class of

spaces intermediate between rimcompact spaces and 0-spaces,

which we will cal-I tralmost rimcompact spacesrr. Each afmost

rimcompacl space will possess a compactification in which

each point of the remainder has a basis (in the compact-

ification) of open sets whose boundaries do not intersect

the remai-nder of the compaetificati-on. The approach will be

1iìil



to show that if a spâce satisfies a condition similar to

rimcompactness, then an easily defined quotient space of the

Stone-Cech compactification of X is a compactification of X

wit.h t.he nr,ônÊnfr¡ mcntinncd ^r"'^"^' {-r-'¡ ^OnVefSe iS alSOW¿UlI Ullç VI vl/CI UJ lliEIJU!\Jllç\t ClU\-,VÇ t Lllç v

true" A proximal characterizaLion of almost rimcompact

spaes is also given. To charact'erlze the larger cl-ass of

0-spaces, in Chapter 5 we defíne a relation e on the power

set of a space X. We show bhab a is a proximity compatible

r^rit.h fhc t.ônô'r^ñr, ^.F. v-if. rnrì nn'lv if' x is a 0_snace- inwlvll UIIç vVPvrVóJ UI 
^ 

f I ollu vI¡rJ ¿t ^ 
!Ð o v-uyovvt

which case the compactificabion oX of X associated with a is

t,he maximum 0 . I. comÞactif ication of X.

Tn Chapter 6 we consider t,he problem of extending maps

of 0-spaces over their maximurin 0. I. compactif ications . In

1956 Morita showed that if X and Y are locally compact and

paracompact, then any cl-osed map from X into Y extends to a

map from the maximum 0.I. compactification of X into bhe

maxj-mum 0.I. compactification of Y" Nowinski, in 1972,

showed that it is sufficient for X and Y t,o be locally

compact and metacompact. !,Ie shall prove that in order for a

closed map of X into Y to exLend to a map from the maximum

0"I. compactificati-on of X into the maximum 0.I. compact-

ification of Y, it is necessary and sufficient that the map

satisfy a condition imposed on preimages of pai-rs of points.

This result is used to show that if i) X is a realcompact or

metacompact O-space and Y is a rimcompact space in which Lhe

(AVJ



set of q-points has discrete complement, or if iÍ) X is a

metacompact 0-space or a locally compact realcompacl space 
'

and Y is a rimcompact k-spaee, then any closed map from X

into Y exLends over the maximum 0.I. compactifications of X

and Y.

(v)
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CHAPTER 1

PRELIMINARY NOT]ONS

In the following, all spaces are assumed to be

completely regular and Hausdorff"

The symbols .R, N, Q, P and I will_ denote the real-

numbers, natural numbens, rational numbers, irralional
numbers and unit interval resDectivelv. iir/hen used as

topological spaces, R is given its usual interval topology,

and the remaining spaces are given the subspace topology

inherited from Ã. If X and Y are Lopological spaces, the

collection of continuous functions from X to Y is denoted bv

C(X,Y). The ring of conti-nuous real-valued funetions on a

space X is denoted by C(X), and its subring of bounded

members by C*(X). If f e C(X), the set {x: f(x) = 0} is
called the zeroset of f, and is denoted by Z(f) . Two

subsets A and B of X are said Lo be completelv separated

X if there exists f e C(X) such that I c f*(O), and

B c f*(1). A map is a conLinuous surjection. A function

f: f, -+ Y is closed if whenever F is a closed subset of X,

then ftFl is a closed subset of Y" We use without, mention

the folJ-owing well known facL. If f : X * Y is a closed
'^<--^.IIÌâPr and f '[S] c U, where S c Y, and U is open in X, then

there is an open set V of Y such that f*[S] c f*[V] c U. A

closed function f : [ -* Y is perfect if for each y e Y, f*(y)

t_n



is compact. If f e C(X,Y) and I c X, $ie use f lA (the

restriction of f to A) to denote the map of A into T defined

by (flo)(a) = f(a) for each a e A. If A c X, then A is

C-embedded (respectively, C*-embedded) in X if for each

f e C(A) (respectively, C*(A)), there exists g e C(X)

( respectively, C* (X ) ) such that gl n = f.

If X is a topological space, a compactificati-on KX of X

is a compact Hausdorff space in which X is densely embedded.

For background information on compactifications, the reader

is referred to tGJl or tchl. It is well known t,hat a

topologieal space X is completely regular and Hausdorff if
ancl on'l v i f X has a cômnãoLif ication. ïf KX and JX are twovvr¡¡l/uv (

compactifications of X, $ie write KX > JX (and say KX is
farEer than JX) if there is a map f : KX -+ JX such that,

f(x) = x for all x e X. hle write KX = JX (and say KX and JX

are eouivalent eompactifications of X) if there is a

homeomorphism h: KX -o JX such that h(x) = x for aII x e X.

The following is an easy consequence of 3.2"1 of IEn]

1.1 Proposition (Taimanov's theorem) : Let KX and KY be

compactifications of X and Y respectively, and let f be a

map from X into Y. There is a map f ': KX -' KY such that,

f'lX = f if and only if for A, þ c Y, CIK'A n Cl*rB = Q

imn]-ioq nl e*,'¡\ n l-'l ¡.u(-rKX- \ n.,/ ,' -.KX. ', 
B) = 0 .



If f and f'are as in 1"1r r^re say that f extends to

f' e C(KX,KY).

Let ,((X) denote the family (of equÍvalence cl-asses) of

compactifications of X" The relation > is a partial order

on K(X), and ((X) is a complete upper semilattice when

partially ordered by

Stone-Cech compactification of X, denoted by ßX. The

compacbification ßX is characterized as that compact-

ification of X in which X is Cx'-embedded. In the sequel, if
vY e tr(Y ì +r"e natunal map from ßX into KX is denoted by Kf .- j:\¡rl t ¡¡qvur uf ¡¡¡qy

The following is a consequence of 6.12 of tGJl.

Tn nr n1- i at1]¿¡, if KX and JX are

then KX > JX jf ¡nrì nnì r¡ if for A, B

impl ies Cl-,,.,4 n Cl-,,.,8 = ô .' t\^ I\^

1.2 Proposition : Suppose

ificat,ions of X, and bhat

mân from KX into JX" Then

compacbifications of X,

c X, CIJXA n ClrrB = Q

that KX and JX are compacL-

KX > JX. Let f denote the naLuraL

fiKX\Xl=JX\X.

We will- often caII KX \ X the remainder of KX.

A topological property P is hereditarv if whenever a

space X has property P, and S c X, then S has property P. A

ny.nnonf rr p iq nnndrrnf ir¡o if WheneVef {X.: i e I} iS a Set OfyL vt/vl vJ -t¿_¿__yt4_t4l¿.tz_+__!_l¿ ¿r

spaces, each of which has property P, then n{Xr: i e I} has



ñn^nêFf1r D
PL vYeL vJ

TL is shown in iESl that, any non-empty family

{XrX: i € f } of compactifications of X has

bound" Let P = n{KiX: i e I} " For each x

the element of P each of whose coordinates

e : f, -+ P is an embedding of X in Pr and hle

etXl with X. Then CtpX is the least upper

{K.X: i e I}" The natural map from CI-X toa-Y
restriction to CI-X of the projection P* :' P '1

f ollows from 1 .2 that ClpX \ X c tl { KtX\ X: i

have the following resul-t.

a least upper

t X, let e(X) be

is x. Then

^1n irìontifr¡¿uv¿¡ v+¡ J

bound of

K. X is the
l_

P + K.X. It
]-

e IÌ. Thus I^Ie

then A ô B,

B ô A,

BZ) if and only if A ô 81

'l .3 Proposition : Let P be a topological property which is

hcr.crì i t anv end nnnrìttat i r¡o Tf â cnâôo Y haS A COmpaCt-IIgl çU LvaL J qrtu yl vuqe v ! v e . vl/qvv ¡¡

ification whose remainder has property P, then X has a

maximum comÞactification whose remainder has property P "

A proximitv on a space X is a relaLion ô on P(X)

^^+: ^ F,.-i --Ðd uIÞr y rrl6,

(P1) o ø A

(P2) if A'

(D \ ì€ 
^at 

3, 
!r n'

(Pr, ) for A,
T

orA6

/ñ \ . ^tr-J t_r A.)

for any

B c X,

B c X,

B1' B2

Þ"z'

IcX,

and A n B = 0,

and A 6 B, then

c X, A O (Bl u

B c X, and A í B, then there exists C c X such



that A I C, and B il X \ C.

Our standard reference on proximities is tN!,I1. The pair
(X,0¡ is called a proximity space, and is seoarated if for

x, y Ê X, x ô y implies x = y. (Although strictly speaking

we should use the notati-on { x} 6 {y} we shall simply write
x o y") We often write A .^ B Lo mean A I X \ B.

Tf ( 1\,

X

ô) is a proximity space and A c X, define Ao to be

ô AÌ. Then A * Au i" a Kuratowski closure{x €

operator, so ô induces a topology r on X, defined by r(6) =

A{X \ A": A c X}. If t is a given topology on X, then ô is
called compatible with t if r(ô) = î. In the sequel, âhy

proximity considered on a topological space X is assumed to

be compatibl-e with the topology of X. It is well known tNWl

that a topological space X is completely regular and

Hausdorff if and only if there is some separated proximity

on X which induces the topology of X.

If 61 and ô2 are two proximites on a space X, hre say

ôr ) ô,, if for A, þ c X, A ôr B implies that A ô. B. Ift¿t-¿

(x,0) and (Y,y) are proximity spaces, then a function

f: X -n Y is a proxi-mity map if fon A, B c X, A 6 B j-mplies

ftAl v f[BJ, or equivalently, for C, þ c Y, C * D implies
44f tcl ,6 f 'tDl.

A compacL Hausdorff space X admits a unique compatible



proximity ô defined by ( for A' B c

CIXA n CI*B = Q. Hence if KX is a

induces a proximity 6 on X defined

if and only if CIKXA n Cl*rB É 0 "

X) A ô B if and only if

compactification of X, KX

by(forA,!cX),4ôB

The converse i-s al-so true. Given a pnoximity 6 on X' ü¡e

can construct a unioue compactification ôX of X (caIled t,he

proximal compactification of X associated with ô ) satisfying
(for A, B . X) A ô B if and only if CI-ôXA n CIo*B I 0. Then

ô.X ) ô^X if Ah,'l nnlrr if ,\ > ô-, So the partially ordered
| ¿ 

v!¡+J "1 -2'

set of nr,Õximities on X is order isomorphic to ,((X) " They¿ v¡L!¡'¿-

proximity ß on X inducing ßX is the largest proximiLy on X,

and is defined by (for A, B. X), A ø B if and only if A and

B are complet,ely separated in X. If (X,o¡ and (Y,r) are

proximity spaces, then according to 1 " 1 and the preceding

remanks, if f is a map from X into Y, then f extends to

F É C(ôX,vY) if and only if f is a proximity map.

A decomposition D of a space X is a collecti-on of

disjoint subsels of X whose union is X. Define a function P

(caI1ed the nalural map) of X j-nto D by letLing P(x), for

x t Xr be the element of D containing x. Then the

decomposi-tion space X/D is the quotient space whose elements

are the elements of D, and which has the quotient topology

induced by the natural map P" An open set V of X is

saturated (with respect Lo D) if V is a union of elements of

D" Clearly, if V is saturated with respecL Lo D, then



P*tPtVll = V. Since P is a quoti-ent mâÞr if V is clopen in

X and saturated with respecL Lo D, Pi Vl is clopen in X/D.

The collection D is an upper semicontinuous decomposition of

X if for each D e D, and each open set U of X containing D,

there exists a saturated oÞen set V of X such that

D c V c U"

Let ¿ be a decomposition of ßX \ X into compact sets,

and LeL D'denote the decomposition of ßX consisting of

D u {{x}: x e X}. Then BX/D' is a compactification of X

(where X is identified with {{x}: x e X}) if and only Lf D'

is an upper semicontinuous decomposition of BX tfel.

A space X is connected if whenever X = U u V, where U

and V are nonempty open subsets of X, then U n V I O. The

connected component C* of x e X is the union of all

connected subspaces of X containing x. A space X is totallv

disconnected if Cx = {x} for all x e X. The ouasi'comoonent

a_- of x e X is the infersection of all elosed-and-open-X

(denoted clopen) subsets of X containing x. A space X is

fullv disconnected if Qx = {x} for all x e X"

1"4 Definition : The decomposition of ßX consisting of

{{x}: x e X} ¡r {ñ . n ie +,he connected component in ßX \ X- '"p" "p
of p e BX \ XÌ is denoted by C(ßX). The decomposilion of ßX

consisting of {{x}: x e X} u {QOt Qp is the quasi-componenL

in ßX \ X of p e ßX \ X] is denoted by 4(ßX)"



B

It is clear LhaL if V is open in ßX and V n (eX \ X) is

clopen in gX \ X, then V is saturated with respect to both

c(sx) and 4.(ßx).

If U is an open subset of X, and 6X e K(X), then ExorU

is defined to be ôX \ C16X(X \ U). The set ExotU is offen

called the exLension of U in ôX" Ït is an easy exercise to
/. \ / i.\ /... \ r f . \ 

^verlry (11I (f r/ r (rr_a,) ano (lvJ or tne rof rowlng

proposition. Statement (v) is implicit in the proof of

Lemma 2 of tSkl, and (vi) follows from (v).

1.5 Proposition : Let ôX e 1((X).

(i) If W is open in ôX, then lrrl c Exu*(l{ n X).

(ii) If U and V are open in X, then Ex^*(U n V) =

(Ex^..U) n (Ex...V).ôÃ orL

(iii) If U is open in X, then (Exu*U) n X = U, hence CIôXU =

Ct ^.,Ex ^.,U.ÒÀ ÒÄ

(iv) If F is closed in X, U is open in X, and F n U = Q,

then C16XF n Exo*U = S.

(v) If U and V are open in X' then

Ex",,(U u V) \ (Ex..,U u Ex".,V) c Cl".,U n Cl"-V.Òx' 0x 0À oÀ oÅ

(vi) ïf U and V are open in X, and ClôXU n ClutV - 0, then

Ex^.,(U u V) = Ex^.,U u Ex"-V.tiÀ' öÀ ÒÄ

If U is any open subset of X, then it is easy to verify
thet Ew Tl i e tha 'l ¡rooqf Open SUbSet Of 0X WhOSe""ôx



intersection with X is the set U" The collection

{Ex^.,U: U is an open subset of X} of open sets of ôX isolL

easily seen to be a basis for the topology of 6X.

Tf B c X, the boundarv of B in X, denoted by bdXB, is

defined to be the set CIXB n CI*(X \ B). A compactification

ôX of X is a perfect compactification of X if for each open

subset U of X, CloX(bdXU) = bdoX(Exu*U). According to the

corollary to Lemma 1 of t Skl , B X is a perfecL compact,-

ification of X.

The equivalence of (i), (ii), and (iii) of the foltowing

proposition appear in Theorems i and 2 of tSkl.

'1 .6 Proposition : Let ôX e K(X)" The following are

equivalent.

(i) ôX is a perfect compactification of X.

(ii) If U and V are disjoinb open seLs of X, then
f ra tt \Ex...(U u V) = Ex".,U u Ex".,V"Òi(. otf, 0-¿t

(iii) For each p e ôX, (of)*(p) is a conneeted subset of ßX.

Following tSk:1, we say a space X is punctiform if every

connected compact subset of X consists of one point " The

next proposition follows from Theorem I (and iLs pnoof) of

tskl.

1"7 Proposition : A space X has a minimal perfect



i0

compactification KX if and only if X has aL least one

compactification with punctiform remainder. In this case

the minimal perfect compactification KX is unique; KX \ X is

punctiform, and KX is the largest of all compactifications

of X with punctiform remainder. The collecfion of sets

{(Kf)*(p)r p e KX \ X} are maximal connected compact subsets

of ßX \ X"

Suppose that X is a space which has a compactification

with totally disconnected remainder. Since total dis-

connectedness is productive and hereditary, it fol-l-ows from

1 " 3 that X has a maximum compactification SX having totally

disconnected remainder. Since a totally disconnecLed space

is punetiform, it follows from 1"7 that X has a minimum

perfect compactification JX, and that SX < JX. It is easy

to verify that if x has a compactification with totally

disconnected remainder, then the maximal compacL connected

subsets of BX \ X are precisely the connected components of

ßX \ X, hence by 1"7 JX = BX / C(ßX) "

A straightforward computation using 2.5 of tMcl and 1"6

þ!rV çù L,lù t/¡IE I \-rl-f\JWfI1|! o

i"B Proposition : Let

a compacLification of

a compactification KZX

f : KrX -+ KIX denotes

X be a space, and suppose that

X which is not perfect. Then

such that K-X > K" X. and if
¿l

the natural mâp r then f is not

K., X is
there is



11

homeomorphism, but lf*(p)l s 2 for each p e K.,X \ X.

Tt is eâsv to verify that if K.X and KrX are as in 1.8,| -- ¿--

and KIX is totally disconnected, then KZX is totally dis-

connected " Thus we have the following.

1-q Theorem : T,et X be â sDace which has â cômnâct.ificationtc)ævYqvv

with totally disconnected remainder. Then X has a maximum

compactification SX having totaJ-Iy disconnected remainder.

The compactification SX = ßX / C(ßx)' and is the minimum

oenfect compactification of X.

A space X is zero-dimensional (denoted by 0-dimensional)

if X has a basis of clopen sets. A space X is stronslv

0-dimensi-onal- if any two dis joint zerosets of X ane

contained in disjoint clopen sets of X. Any 0-dimensional

space X has a maximum 0-dimensional compact,ification denoted

by ßoX. (Here, and in the following' a maximum

P-compactification of X means a compactificatj-on of X which

is the maximum in the class of compactifications of X with

property P.) The compactification ßoX can be characterized

as that compactification of X to which al-l continuous

{0,1 }-valued functions on X can be conti-nuously extended

(where {0,1} denotes the two-point discrete space). The

proximity ß0 on X inducing ßoX is defined by (for A, B c X)

A ßo B if and only if A and B are contained in disjoint

clopen subsets of X. The compactifications BoX and ßX are



t¿

equivalent if and only if X is strongly 0-dimensional.

1.10 Definitions : A space X is a O-space if X has a

compactification KX such that KX \ X is O-dimensional " hle

will say that KX is a O-dimensional- at infinitv (denoted by

0"I.) comÞactification of X.

It follows from 1.7 that if KX is a 0.I.

compactification of X and JX is a perfect compaetification

of X, then JX > KX. Hence any perfect 0.I. compactificaLion

of X is a maximum 0.I" compactification of X. The converse

is al-so true. If X is a O-spaee, then X has a maximum 0.I.
eompactification (which we shall denote by FoX) which witl

also be the minimal perfect compactification of X (2.2, 3.3

of tMcl). Since FoX is a perfect, 0"I. compactification of

X, for each p e FoX \ X, (Fof)*(p) is a connected compacu

quasi-component of eX \ X. Then c(pX) = A(ßX) =

. f 
- ^a€,{ (F0f ) (p): p e Fo X}. AIso each el-ement of C(pX) contained

in BX \ X has a basis in ßX of open sets of ßX whose

intersections with ßX \ X are clopen in ßX \ X (again, by

the 0-dimensionality of FoX \ X)" 0n the other hand, if

€.(gX) = c(gX), and c(eX) is an upper semicontinuous

decomposition of BX into compact sets, then ßX / C(BX) is a

perfect compactifieation of X. Suppose that in addition,

elements of C( ßX) contained in ßX \ X have a basis in ßX of

open sets whose intersections wit,h ßX \ X are clopen in
ßX \ X. It follows from 1 "2, bhe remark following
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Definition 1 .4 and the properties of decomposition spaces,

that ßX / C(BX) is a 0.I. compactification of X. Thus

ßX / C(BX) is a penfect 0.I. compactification of X and hence

j-s Fo X.

Following the terminology of [M1] and ISkJ, we say that
ân ônÊn set il of X is r-onen in X if bd,,U is aomnaot - TheaI¡ v¡re¡¡ uvv v vr ¿u -::_:_:¿¿Y_:¿ ¿¡¡ ""x" vvt¡¡Hsvv.

intersection and union of finitely many n-open sets are

d-^nên âc ic l}.a anmnìôñônt Of â T-Onen qot A enang X iS., vyvrr uv v . n oyav

rimcompact if X has a basis of r-open sets. Any rimcompact

qnâñâ iq ¡ O-qn¡^o FM I The maXimUm 0.I. COmpACtifiCatiOn

of a rimcomoact sDace X is called the Freudenthal comÞact-

ification of X, and is denoted by FX.

1"11 Definition : If F1, FZ c X, then Fl and FZ are

n-separated in X if there is a r-open set U of X such that

Fn c U. and Cl-U ñ F. = ö. lrle shall often blrite rt{x} and F
^¿

are r-separatedrr as rrx and F are rT-separatedrr.

If X is any topological- space, define 6 to be a relafion

on P(X) as follows: (for A, B c X) A I B if and only if A

and B are n-sepanated in X. The relalion 6 is a proximity

on X if and sp] rr if ï i s ni.mcompactr in which case 6X = FX,

the maximum 0"I" compactification of X tSkl.

It
V¡r t

is easily verified that if X is O-dimensional- and A,

then A and B are contained in disjoint clopen subsetsD
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of X if and only if A and B are r-separated i-n X. Thus if X

is O-dimensional, FX = ßoX"

For any space X, the residue of X (denoted by R(X)) is
ll.ra qal- nf ^^intS at WhiCh X iS nOt l6g¿'ì ìrr nnmnrnt If KXt/v+l¡vgvv¡¡¡¡/uvv.

is any compactifieation of X, then Clr..,r(KX \ X) =' t\À'

R(X) u (KX \ x).

The notions used from set theory are standard. An

ordinal is thought of as the set of its predecessors, and a

cardinal as an initial ordinal-. The symbol to is used to

denote the o'th cardinal. For any set X, lXl denotes the

cardinality of X.



CHAPTER 2

ALMOST RTMCOMPACT SPACES

ïn this chapter we develop a theory of 0"T. compact-

ifications for a cl-ass of spaces intermediate between the

class of rimcompact spaces and the class of O-spaces ( recaII

Definition 1"10). This class will be characterízed and

compared to the class of rimcompact spaces by discussing how

the remainder of the maximal 0"I. comDactification of a

member of the class is embedded in the compactification.

We shall be working with Tr-open subsets of a spaee X and

rel-ated open sets of compactifications of X; we begin by

listing some straightforward results.

2.1 Definition: Let KX e K(X), and let hl be open in KX. If

bdvvl{ c X, W is said to be a small boundarl¡ (denoted by sb)

subset of KX.

2"2 Lemma : Let, KX e K(X).

(i) The intersecLion (union) of finitely many sb open

subsets of KX is an sb open subsel of KX.

If W is an sb open subset of KX, then
/..\( ii ) i/ü n X is n-open in X"

(11-1) W = EXr,. rr^r ñ Yr
rrx." tt t\/.

( iv ) KX \ CI,,.,!,I is sb in KX.
f\ r1



to

(v) If ôX > KX, and if f : ôX -+ KX is the natural man- f.he¡

f*[W] is an sb open subset of ôX.

Proof: (i) This follows from the fact that if A, B are

subsets of x, then tbdx(A n B)l u tbdr(A u B)1.
fbd-,4 u bd--Bl._X-X

(ii) As bdX(hi n X) c bdKXI,ü n X = bd*rlrr, the set

bdx (i,rr n X) is a closed subset of a compact, subset of X, and

hence is compact.

(iii) ft is sufficient to show that Ex**(W n X) c W,

since the reverse inclusion is true for any open subsef W of

KX. NowEx**(W n X) \ Wc C]KX(1,\rn X) \ lri= CfKXi/\r\ I/rl =

bd*rlrl c X, while Ex*r(W n X) n X c !'I, hence Ex*r(W n X) c W"

( iv) This foll-ows from the fact f hat bd-(X \ Cl--A) c

1a'{ ^ r'^- subset A of a space X.--x^t rvr orrJ

(v) This is obvious, since bdô Xf*[ ht] c f*[ bd*rhr] . X. !

2.3 Lemma: Let KX be a perfect compacbification of X.

Then :

(f) If V is an open subset of ßX, and V n (gX \ X) is
clopen in ßX \ X, then (Kf)*t(Kf)tVll = V.

If U is r-open in X, and F is closed in X, then

(ii) CIKXU n (KX \ X) = ClKXExr<xU n (KX \ X)

= (Bx**U) n (rx \ X) "

(iii) F c U if and onty if CIKXF c Ex*rU.

(iv) F n ClrU = $ if and only if CI-KXF n CI-KXU = $.
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Proof: (i) Recall that by 1.2 (Kf)teX \ Xl = KX \ X, and

that (Kf) ln' is bhe identity map on X. Clearly'À

(Kf)*t(Kf)tV n Xll = V n X, so it is sufficient to show that
(Kf)*i(r(f)tv n (ßx \ X)ll = v n (Bx \ x). Now KX is a

perfect compactification of X, so according to 1.6, for each

p e KX \ X, (l{f)*(p) is a connected subset of ßX \ X. This

implies that either (Kf)*(p) c V n (ßX \ X), or

(Kf)*(p) n (V n (BX \ x)) = o" If p E(Kf )tv n (ex \ x)1,

then (Kf)*(p) n (V n (ßX \ X)) r o, hence (Kf)*(p) c

V n (BX \ X); in other words, V n (ßX \ X) =

(Kf)*t(Kf)tv n (ßx \ x)ll"

(fi) Since U is î-open in X, and KX is a perfect

compactification of X, Cl**Ex**U \ Ex**U = bdfXExfXU =

CIKXbdXU=bd*UcX.

(i-ii) Clearly, if CI*XF c Ex**U, then p c U. On the

other hand, if F c U, then CIKXF \ Ex**U =

(C1KXF \ Ex6¡U) n (KX \ X) c (CIKXU \ ExrarU) n (KX \ X) = 0,

accordi-ng to (ii).

(iv) Clearty, if C1KXF n CI**U - o, then F n CrrU = 0.

Conversely, if F n ClrU = ô, then C1KXF n CÌ**U =

CIKXF n CI*'U n (KX \ X) = Ct**F n Ex**U n (KX \ X), by

(ii), whil-e the latter set is empty by 1"5 (iv)" I

Tt is an easy exercise to find examples showing thaf if
KX is not a perfect compactification of X, then none of the
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statements of 2.3 need be true. For example, let o.R be the

one point compactification of fr. The set U = (0,-) is
î-open in R, F = [1,-) is closed in R, and F c U, but

Cl ^F I Ex -U"$fi uft

Recall that if X is rimcompact, then X is a O-space and

FX denotes the maxi-mum 0.I. compactif ication of X. The

space FX \ X is a O-dimensional subspace of FX; i^re show that
it is embedded in FX in a special way. We need the

following definition "

2,4 Definition : If I c. Y, then Z is O-dimensionallv

embedded in Y if Y has a basis of open sets whose boundaries

are contained in Y \ Z"

Recal-l that F0X is the maximum 0.I. compactification of

a O-space X.

The proof that (i) implies (fi) in the folJ-owing

proposition appears in ISk]; that (ii) implies (i) is a

trivial consequence of 2.2 (ii).

2.5 Proposition : For any space X, the following are

equivalent "

(i) X is rimcomÞact"

(if) X is a O-space, and FoX has O-dimensionalJ-y embedded

remai-nder.
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l,rle remark that the Freudenthal compactif icat ion FX of

rimcompaet space X was constructed in IMn ], where it was

shown that FX \ X is O-dimensionally embedded in FX, and

that FX is the maximum in the famity of compaclifications

X having 0-dimensionally embedded remainders. It was not
nnini-arl nrr'l- +hat FX iS the maximUm in the flami'l v of 0.I.yvrr¡ vvu rr¡u^!!¡¡u¡r¡ ¡r¡ u¡¡v r qr¡¡¿f J v¿ v

compactifications of X.

According to 2"5, the Freudenthal compactification of a

rimcompact space X satisfies two conditions which would not

appear to be necessary for a compactification of X to have

0-dimensional remainder" Finst, points of X have neigh-

bourhood bases (in FX) of open sets whose boundaries lie in

X - we might expect the bases to be somewhat more arbitrary,
nenhans oonsistins of oDen sets mere'ì v saturated WithvlJv¡¡¡¡¿v¡v¿J

respect to c( eX) (recal-1 Def inition 1"4). SecondIy, âhy

element of FX \ X has a basis of open sets of FX whose

boundaries lie in X. It is not true in general that if an

open set in a topological space inLersects a subspace in a

clopen set, then the boundary (in the lange space) of that
open set does not intersect the subspace. For example, if

X = I x I, Y = {(1/nr 0)}nr¿y, and U = X \ l(1/2,0)i, then U

is open in X, and U n Y is a clopen subset of Y, whil-e

bdvu n Y = l(1/2,0)Ì. Then $¡e might expect to find a
1\

O-space X where points of the remainder of FoX have

neighbourhood bases (in FoX) consisting merely of open sets

of
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r^¡hose interseetions with FoX \ X are clopen in FoX \ X

If X is any O-space, of the two properties possessed by

the Freudenthal compactification of a rimcompact space

mentioned above, FoX has the first if and only if X is
ri-mcompact, whereas the second property is possessed by the

Freudenthal compacbification of a space as a consequence of

the space being rimcompact" Hence if X is a O-space, and

FoX does not have the second property, FoX cannoL have the

first; the converse is not true. The followine definition

weakens the notion of a 0-dimensi-onal embeddine

2.6 Definition : If I c. Y,

embedded in Y if each poin

sets whose boundaries are

Z ís relativelv O'dimensionally

t of Z lnas a basis (in Y) of open

containedinY\2"

It is immediate that if â snâoê X h:s ¿ compactification

KX with relatively 0-dimensionally embedded remainden, then

KX \ X is 0-dimensional-, hence X is a O-space. Also, âs a

consequence of 2"5, if X is rimcompact, then X has a

compaetification with relatively 0-dimensionally embedded

remainder" We shaIl formulate an intennal condition on a

space X that in 2"19 wil-l be shown to be equivalent to X

having such a compactification; spaces satisfying this

condition will be called rralmost rimeompactrt. lrie shall see

that non-rimcompact, al-most rimcompact spaces exist (Example

3"i8); there are also O-spaces which are not almost
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rimcompact (Example 3"22)" However, if bdXR(X) is compact,

then X is a O-space if and only if X is almost rimcompact
()r ll)

lrie have mentioned that the existence of a 0.I" compact-

ification of a space X is equivalent to C(ßX) (or equiv-

a1ent1y, 4(ex) (reca11 Definition 1"4)) forming an upper

semicontinuous decomposition of ßX into compact sets, where

elements of C(ßX) contained in ßX \ X have neighbourhood

bases consisting of open sets of ßX whose intersections with

BX \ X are clopen, and that, in fact, this decomposifion of

ß X is F o X. In the f ollowing frsatunatedrr will mean

Itsaturated wit,h respecf to C(0¡¡". Points of FoX \ X wil-I

be regarded as connected components of ßX \ X, or as points

of FoX \ X, withoub explicit mention"

Before formally defining the term rralmost rimcompacttt,

I¡Ie investigate the saturated open sels of BX for a

rimcompact space X" We make the following definition.

2.7 Definition: If F and U are closed and open subset,s of

X. respectivelv. then F is ¡-contained in U if there is an

r-onen set V Of X Such that F c \,r c Cl--V c U.¡,

Note that F is n-contained in U if and onJ-y if F and

X \ U are n-separated.
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Recal1 that

A
o

2, I Proposition

below. If U is
implies (f). If

/..\rmpl ].es \ ff / .

if ôis
\tr

a proximity on X, and A, B c X, then

: Consider statements (i) and (ii) given

an open subspace of a O-space X, then (ii
in addition, X is rimcompact, then (i)

(i) Ex^-U is saturated.Þ^

(ii) If F is a closed subset of X and F ., U, then F is
r¡-contained in U.

Pnoof : (i) implies (ii). lrre will show first, that if
p e ßX \ X, and CO is the connecLed component of p in
ßX \ X, then tO has a basis in ßX of open sets whose

boundaries lie Ín X. Since X is rimcompact, (Ff)(p) has a

basis W of open sets of FX whose boundaries lie in X"

According to 2.2 (v) , for each lri e L, ( Ff )*i lül is an open

set of ßX whose boundarv l-ies in X. Since Ff is a closed

flaÞ, the collection of sets {(Ff)*tWl: hr e Hl is a basis ín
ßX for (Ff)*tlFf)ln)l - c Alsn- sinap lFf)*t-ct- I^i't -,L'/\ytJ - "p. Õ¿Èvt D¿I¡uç \r¡l t"tFxtt,

r.r ( tr.+-\*rr'rr and I/ is a basis for (Ff ) (p), we can assume"-ßX\ \r r./ Ltr J

wibhout loss of generality that for each lrt e W_, there is
lü. e I such Lf^' õ1 / /nnr+¡ht-l) c (Ff)*tVl].

I _ rd.u \..r\B¡\rr 1 ¡w1_l) c \f r./ |

Now suppose that ExU*U is a

any closed subseb of X such that

from X \ U, then CIßXF c ExU*U.

then by hypothesis, Co c ExUrU"

saturated open set " If F is
F is completely separated

If p e Clo.,rF n (ßX \ X),. K¡

It follows from 2.2 (ii)
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and (iii), and the remarks in the previous paragraph, that

there is a î-open set U(p) of X such that CO c ExU*U(p) c

Clu*U(n) c ExßXU. As X is rimcompact, it follows that if
p e F, then there is a n-open set U(p) of X such that
p e U(p) . Cfu*U(O) c ExUtU. Then ClßXF c

u{ExeXU(p): p e ClU¡F} c Exu*U, so by compactness, there

exists a finite set {p., ,p2,...pn} c ClßXF such thaf CIUrF c

u{U(p1): 1 < i < n} c u{CIU*U(nr): 1 < i < n} c ExU*U. If
V = u{U(nr): 1 s i < n}, then V is a r-open subset of X, and

F c V c CIXV c U, hence F is n-contained in U"

(ii) implies (i). Suppose that p e ExrrU n (gX \ X).

It suffices to show that CO c ExUrU. Choose F to be a

closed subset of X such that p e CIU*F c ExUrU. Now F is
completely separated from X \ U, so by hypothesis F is

n-contained in U. That is, there is a r-open subset V of X

such that F c V c CIXV c U. Now CIXV n (X \ U) = ô, so by

2"3 (iv), C1u¡V n CIex(X \ U) = 0, and p e C1u*F c CIßXV c

eX \ CI"r.(X \ U) = Ex^vU. As C1^vV n (eX \ X) is clopen inÞ./r þ/'\ þ^

eX \ X, and ao n CI'¡V r ô, aO c CIBXV. Thus tO c Exu¡U,

and the statement follows " n

If X is rimcompaet, then the coll_ection of n-open

subsets of X is a basis of open sets of X, each of which

satisfies the condition imposed on U in 2"8. 0n the other

hand, if X has a basis of open sets, each satisfying (ii) of
2 "8, then X is easily verif ied to be rimcornpacL.
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We are now prepared to define lralmost rimcompactrt. The

first of the following definitions is a weakening of

Definition 2"7.

2"9 Definitions: (i) ff F is closed in X, U is open in X,

and F c U, then F is nearlv n-contained in U if there is a

compact subset K of F so that whenever F'is a c]osed subset,

of F, and F'n K = Q, F'is n-contained in U.

is nearlv rimcompact if whenever U is open in

X such that x e !'IX, and x e U, there is an open set lrl of

and Cl..!rl is nearly î -contained in U "
^

(iii) A space X is ouasi-rimcompact i-f for any x É X, there

is a comnaot set K of X. so 'that whenever F is a closed"x "'
subset of X and F n K* = 0, then x and F are r-separated.
(iv) A space X is almost rimcompact if X is nearly

rimcornpacL and quas i-rimcompact .

Note that X is rimcompact if and only if whenever U is

i s ân ônen srtbset V ofan open subset of X, and x r U, there

X such that x e V and CtyV is r-contained in U. Equiv-

alently, X is rimcompact if and only if whenever U is an

open subset of X, and x e U, then {x} is n-contained in U,

clearly the latter formulation is the most straightforward.
However the former formulation is an analogue of (i) and

(ii) of Definition 2.9, and is the motivation for the

terminology developed.



Clear1y, every rimcompact space is almost rimcompact.

We wil-l show that any almost rimcompact space is a O-space

(2.19)" Neither near rimcompactness nor quasi-

rimcompactness is sufficient to insure thaf a soace is a

0-space (Examples 3.19 and 3.20), hence nei-ther condition
implies the other. However, if X is quasi-rimcompact, then

X is a O-space if and only if X is al-most rimcompact (2.19)

hence if and only if X is nearly rimcompact. 0f the three

classes of spaces defined in Definition 2.9, the elass of
almost rimcompact spaces is the most important because of

its characterization in terms of spaces possessing compact-

ifications with relatively 0-dimensionally embedded

remainders (2"19). Quasi-rimcompactness of a space X will
provide a basis of sb open sets of ßX for elements of C(ßX)

contained in BX \ X, while in the presence of quasi-

rimcompactness, near rimcompactness provides a basis of

saturated open sets for each point of X" We need the

following easily proved result.

2"10 Lemma : Let X be any space, and let U, V and W be open

subsets of X" If C1XU n CI*V = 0r and W c U u V, then
¡fabd.,(W n U) c bd,,i,ü.ÀÀ

2.11 Definition: If KX e K(X), and x e KX, then G(KX,x) =

n{Cl*rU: U is a n-open subset of X and x e Ex*rU}" The set

G(ßX,x) witl be denoted by Gx.
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2"12 Lemma : Let X be any space.

then G(KX,x) is connected.

If KX e K(X), and x e KX,

Proof: Suppose that for some x e KX, G(KX,x) is not

connected. Let G(KX,x) = G1 , G2, where Gi and G, are

disjoint non-empty closed subsets of G(KX,x). Since G(KX,x)

is compact, G1 and G2 are disjoint compact subsets of KX;

hence there are open sets Ul and UZ of KX such that Gi c Ui,
(i = 1,2) and cI*ru., n cl**u, = ô" Then

G(KX,x) n (KX \ (U., u UZ)) = 0r so by compactness, there is
a finite collection Vi, i = 1 12, .. "n of n-open subsets of X

such that x e Ex*rV' for each i, and n{Cl*rVr: 1 < i < n} c

U1 u U2" ïf V = n{Vr: 1 s i < n}, then V is a ïr-open subset

of X, and by 1"5 (ii), x e Ex**V"

Let Wi = V n Ur, (i 
=

According to 2.10, bdXl'I. c

âre n-onen sr:bsets of X"

112) " Then Wl u V'1, = V.

bdXV, (i = 1,2). Hence Wt and WZ

As CI1¡W1 n Ct**Wt c

of generality that x

n UZ = 0¡ which is a

and UZ" The theorem

e Ex,, ,,!ü " .
¡\1\ |

contra-

i q nnnrrorl

2"13 Theorem : If X is quasi-rimcompact, and p e ßX \ X, the

OO is the (compact, eonnected) quasi-componenL of p in

ßX \ X. The set GO has a basis of open sets of ßX whose

boundaries lie in X.

CI*rU., n ClKXU2 = Q, x e Ex**V = Ex**lnl., u Ex**lrrirr by 1.5

(vi). Assume without loss

Then G(KX,x) n UZ c CIKXVJI

diction to oun choice of U1

I
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Proof : lrle showed in the previous lemma that aO is compact

and connected" Tt remains to show that Go is the quasi-

component in BX \ X of p e BX \ X. !üe *iif first show that
if X is quasi-rimcompact, and if p e BX \ X, then GO is a

subset of BX \ X. If p e ÊX \ X, and x € X, then there is a

closed subset, F of X such that F n K* = 0, and p É CI'¡F,
(whene K is as in Definition 2"9 (iif))" Then x and F are\rrr¿v.-..x

f-eônâncrorT while p e cl"r.F. That is, there is a .n-open
t - Þ^

set U of X such that x / CIXU and F c U. Since p e CI'XF .

Ex,,rU by 2.3 (iii), x / G^. Thus G^ c ßX \ X.KÃP¿t p I!

Toj- n - {U: U is Í-open in X and p e Exo.U}, Then G-- ='.-vyu¡¡YÞ^-X

G-- n (gx \ x) = n{cl"-u n (Bx \ x): u E G_}.. For eachx þi. -p-
U ,8r, C1BXU n (eX \ X) is ctopen in ßX \ X by 2.3 (ii),
lronno i- Ìra ^rrâqi -nnmnnnant Of p in BX \ X iS COntained in G^.Ysqu Y 

P

0n the other hand, Gp is connected by 2.12. Therefore OO is

contained in the quasi-component of p in BX \ X. That, is,
G^ is the (connected compact) quasi-component of p in

U

Bx \ x.

To prove the last statemenf.- rÁre noi.e that the

inlensection of finitely many members of 1ip is again a

member o¡ G^. Then by compactness, if T is a cl-osed subset
Y

of BX such that G^ n T = 0, there is U e G_ such that G_ cp-pp
Clovu c ßX \ T. Since G^ c BX \ X, G^ c Cl,vU n (eX \ X) =Þ^ ir IJ Þ¡.

Ex".,,U n ( gX \ X). Then the coll-ection of setsÞr\

{Exo.rU: U e G-} is a basis for G cônsisting of open sets ofP^ P' -P

BX whose boundaries are contained in X" D



2B

2.14 Corollarv : Suppose that X is quasi-rimcompact and has

a compactification with totalry disconnecled remainder.

Then X is a O-space, and FoX \ X is relatively
O-dimensionally embedded in FoX.

Proof : Suppose that X has a compactification with totally
disconnected remainder. According to 1,9, ßX / L(BX) is a

compactification of X. Since X is quasi-rimcompact, it
follows from 2"13 that c(ßx) = 4(Bx), and that el-ements of
C(eX) contained in ßX \ X have a basis of open sets of BX

whose boundaries are contained in X. Thus X is a O-space

and ßX / C(BX) = FoX has a relativety 0-dimensionally

embedded remainder " !

The following wilt be useful in several arguments.

2-1q Lemma : If Gg

rimcompact .

fxi- for eaah >r r X- then X is(JL,'u¡r'

Proof: Suppose that, x

closed subset of X, and

compactness, there are

thatxeExgxUi, (i=1

= ô. Then x e n{Ur: 1

X,whileFnCl¡(n{Ur:

are n-separated in X.

e X, and that G* = {x}. If F is a

x I F, then ClßXF n G* = Q. By

Í-open sebs Ui, (i = 1,2,...n) such

,2, " ".n) and CIßxF n n {CleXUi: 1<i<ni

< i < nÌ which is a r-open subset of
1 s i < nÌ) = S. That is, x and F

Thus X is rimeomnaet - n
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2" 16 Corollary : If X is quasi-r j-mcompact , and R (X ) is

totally disconnected, then X is rimcompact.

Proof: According to 2"15, it is sufficient to show that

{x} - G-" The proof of 2"13 invol-ved showing that if x E Xx

and p e ßX \ X, then there is a r-open subset U of X such

that x e U, and p y' Exu¡U. Then p y' CIBXU, so p I G*; that

is, if x e X, then G* c X. If x / R(X), then G* = {x i. If
x e R(X), then G* c R(X), and therefore is a conneeted

subspaee of a totally disconnected space, hence consist,s of
ônê nnint- Since X e G G = {x}" !l/v¿¡¡v. - _x, _x

Note that a space with totally disconnected residue need

not be rimcompact. If X is the quotient space R/{N}, then

R(X) = {À/}, so R(X) is totatly disconnected. However, it is

easy to verify that {/t/} does not have a basis of Tr-open

sets, hence X is not rimcompact.

If U is an open subset of X, let Us = u{Go: p e ßX \ X

and G- c Ex^-UÌ u U.
TJ ÞA

2.17 Theorem: If X is almost rimcompact, and U is an open

subset of X, then Us is a saturated open subset of ßX,

Proof : Clearly Us is saturated " To show that Us is open in

ßX, we show that if p e Us, then thene is an open set W of

ßX such that p e hl c Us. First suppose that p e (eX\X)nUs.

Then G^ c Exo.rU, so by 2.13, and 2.2 (ii), Lhere is a r-openp Þ^
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set V of X such that p t Gp c ExBXV c ExUrU. Clearly

t*U*U n X c Us. If q e ExU*V n (gX 1 X), then GO c ExU*V,

si-nce Ex",rV n ( gX \ X) is clopen in ßX \ X" In other words,6ã.

q, Us. Since q is an arbitrary element of ExßXV n (BX\X),
f,i.. \r ttso*ßXV c U". Then I/\i = ExU*V is an open set of gX having the

desired properties.

Now suppose thab p , Us n X = U. Since X is nearJ-y

rimcompact we can choose V to be an open subset of X such

that p e V and CIXV is nearly r-contained in U. lrle show

that CIßXV c Us" Suppose r e CI-ßXV \ X. Since ? / C1ßXK =

K for any compact subset K of X, thene is a closed subset F

of CIXV such that r e CIU'F and F n K = 0, where K is the

compact subset of C1XV witnessing the fact that CIXV is
narn'l \1 Ì -õnn+3i¡s6t in U. Then F iS n-cOntained in U; let Vn

be a r-open subset of X such that F c CI'V., c U" Then

r e Cl^.rV, c Ex^.rU. Since Cl^*,V, n (gX \ X) is clopen inþ^ | Én gÀ I '

ßX \ X, it follows by an argument in the preceding paragraph

that CI o.,rV. c US . Since r e Cl-" vV. and r was chosen to beÞ.¿! , O ,t
a

an arbiLrary element of CIßXV, CIßXV c U". Then !ù = ExUrV

is the desired open set of BX.

We have shown that if p e Us, then there is an open

subset lrl of ßX such that p e lrl c Us. Thus Us is a saLurated

open subset of BX" !

2"18 Corollarv : If X is almost rimcompacL, then each x É X

has an open basis in ßX of saturated open sets of ÊX.



31

Proof : Since the collection of open sets {ExrrU: U is open

in X, x e U] is a basis for x in BX, the collection

{Us: U is open in X, x e Ui is a basis for x in ßX

consisting of saturated open sets" !

lrie can now characterize al-most rimcompact spaces as

O-spaces possessing compaetifications with relaLively
0-dimensionally embedded remaindens.

2"19 Theonem : For any space X, the following are

equivalent.

(f) X is almost rimcompact.
/..\(ii) X is a 0-space, and FoX has nelatively 0-dimensionally

embedded remainder "

(iii) X has a compactification with relatively
0-dimensionally embedded remainder.

(iv) X is quasi-rimcompact, and has a compactification with

totally disconnected remainder"

Proof : (i) implies (ii). According to 2"13 and 2.18, if X

is almost rimcompact, then Ç-(BX) = 0(ßX), and is an upper

semicontj-nuous decomposition of ßX into compact sets, where

elements of C( ÊX) contained in ßX \ X have neighbourhood

bases i-n BX of open sets whose boundaries l-ie in X. Then

FoX = ßX / ç(eX) is a 0"I" compactification of X with

relatively O-dimensionally embedded remainden.
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(ii) implies (iii). This is obvious"

(iii) implies (i)" Suppose that KX is a compact-

ification of X with relatively 0-dimensionally embedded

remainder " Vrie first show that X is quasi-nimcompact.

If x e X, and p e KX \ X, there is an open set UO of KX

such that x / Cl-KXUp, p r Up and bdfXUp c X. Clearly

KX \ CfKXUp is an sb set of KX containing x and not

containing p. Let K* = n{Cl**U: U is an sb open set of KX,

x e ExzvU]. Clearly K-- is a compact subset of X containingKÀ-X

x" Suppose that F is a closed subset of X, and that F n K*

= 0. Then CTKXF n KX.= 0"

finite coll_ecLion U1 ,U2,. "

that x e U' i = 112,...n,

O. Then n{U, n X: 1 < i- <

witnesses the fact that x

Bv cômnâctness- thene is a

-11 of sl'r ônên Sets of KX SUChvyv¡

and Clr..'F ¡ (a{o't lt ' 1<i<n}) 
=À^ 

l-¿

nÌ is a n-open subset of X whi-ch

and F are r-separated.

A similar argument wil-I show that X is nearly

rimcompact " For suppose that U is open in X, and that

x e U. Choose V to be an open subset of X such that x e V c

CIKXV c Ex**U. Since KX \ X is rel-atively O-dimensionally

embedded in KX, for each p e CI*XV \ X, there is an sb open

set U(p) of KX such that p. U(p). Cf**U(R) c Ex**U. Let

K = Cl**V \ u{U(p): p e CI*'V \ X}. Then K is a compact

subset of X" Suppose that, F is a closed subset of C1XV and

bhat F n K = 0. Then CIKXF c u{U(p): p € CIKXV \ X}. By

compactness, there is a finite set {p1,p2,.".pn} c CI-KXV \ X

suchthat Clr*Fc u{U(pr): 1 <i< n}c u{CI**U(nr): 1si<n}
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c Ex,,.,U. It follows f rom 2"2 ( i) and (ii) that W =KÅ

(u{U(ni): i < i < n}) n X is a n-open subset of X witnessing

the fact that F is n-contained in U" Therefore CIXV is
nearly n-contained in U and X is nearly rimcompact.

(iv) implies (ii) " This is 2.14.

(iii) implies (iv). This is obvious, since (iii)

implies that X is almost rimcompact and is a O-space. n

Theorem 2.19 states that if a space X has a

compactification with relatively O-dimensionally embedded

remainder, then FoX has relatively 0-dimensionally embedded

remainder " The following stronger sLatement is true "

2.20 Theorem : Let ôX be a compactification of X with

0-dimensionally (respectively, relatively 0-dimensionally)

embedded remainder. If KX is a 0.I" compactification of X,

and KX > ôX, then KX \ X is O-dimensionally (respectively,

relatively 0-dimensionally) embedded in KX.

Proof: According to 2"2 (v), it is sufficient to pnove that

KX has relati-ve1y 0-dimensionally embedded remainder.

Suppose that T is a cl-osed subset of KX and that

p e (KX \ X) \ T. If f: KX * ôX is the natural nâp, let
T' = f*(f (p) ) n T. Now KX \ X is O-dimensional-, hence

f'(f(p)) is a compact O-dimensional subspace of KX. Since

p é. T' , there are dis joinL closed subsets 8., and 8.., of
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f*(f(p)) such that p e 81, T' . BZ, and Bl u Bz = f'(f(p))"

As B1 and B2 are disjoint compact subsets of KX, it follows

that there are open sets Vt and V Z of KX such that Bi c Vi,
(i = 1,2 ) and Cl**V1 n CIKXV2 = 0. Since f is a closed flâp ¡

anrl fof ¡l^'ll c \I il \I- t:n¿or¡u ¡ \r \y./.,/ = Vi u YZ, there is an open set I,\l of ôX such

that f*(f(p)) c f*[!rr] c f*[ctorw] c V1 u Vz. Now ôX \ X is
relatively 0-dimensionally embedded in ôX, so we can assume

without l-oss of generality that bdo*!rl c X, and hence

hÁ f*rt^l-l - Y <-
--KX. L,rr ^. ïf Wi = f tlrll n Vi, then by 2"10' bdKXWi. X

(i = 112). Also, p t Wl , whil-e T'c W2.

Let S = T \ Wr. Then f*(f(p)) n S = 0. Since f is
e'loserì- t.hpne is ân ônen set hi? of ôX such that f*(f(p)) cvl/vr¡

f*[!,lr] . KX \ S. Again, without loss of generality i¡re can

âssumê hrì W c X. Then f*[Wr] is an sb subset of KX,"r ôx,'3 ¿r¡çr¡ r 
J

thenefonc hw 2-.2 (i) üin n f*'" r 'u!¡ur ç¿ vr s uJ ¿ . I L W, j is an sb subset of KX
+containing p, while T n (Wt n f tl,rr3l )

= [(T n hl.) n l/'ln n f*[v\i-]l u t(T \ ll^) n üi. n f*iW^ll¿15¿tJ
c (1' n l,l.) ¡r lS n f*[1,i-l).' .'1' u \v rr I L rr?J

Thus each point

KX" In other words,

embedded remainden.

KX \ X has a basis of sb subsets of

has relatively 0-dimensionally

of

KX

D
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cHAPTER 3

EXAMPLES OF ALMOST RTMCOMPACT SPACES

In fhis chapter our main intention is to construct

examples of almost rimcompact non-rimcompact spaces " We

show in Example 3.18 that if Y is any O-dimensional space

which is not strongly 0-dimensional, then Y can be written

as ßX \ X for (i) a nimcompact space X, and (ii) an almost

rimcompact non-rimcompact space X. The space X wil-l be a

subspace of the product space KY x (r,rt+1 ), where KY is a

perfect compactification of Y. A particular example of such

a space is discussed in Example Vï"13 and Exerci-se VI"7 of

IIs]. T¿rie give a general outline of the consLnuction and

show that X is rimcompact if and only if R(X) = KY \ Y is
0-d imens ional .

The results we prove in order to outl-ine the genenal

construetion also lead to some interesting observations

concerning the conditions under which 0-spaces are

rimcompact. !,fe will show that if X is a O-space in
(i) any two distinct points of X are n-separated in

wh

X

ich

or

(ii) R(X) is locally compact and 0-dimensional, then X is

rimcompact ( 3. 7 and 3 " 11 respectively ) . l¡üe give examples to

show that conditions (i) and (ii) are incomparable.

Finally, in 3.22 we present an example of a O-space

which is not almost rimcompact.
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In the following we implicitly use Lhe trivial faeL t,hat

if KX is a compactification of X, and T is a subset of

Cl-,,-(KX \ X), then the cl-osure of T in Cl-,,-(KX \ X) equals
f!À l\ À

cl KXT .

The following resul-t and its corollary wil-l- be useful in

several arguments "

3.1 Lemma: Suppose that KX is a compactification of X, and

that lrl is a compact clopen subseL of CIKX(KX \ X). Then

(i) There is f e t(KX, [0,i]) such that

fti,\rl = 0.

f[(C1KX(KX \ X)) \ v\i] - 1,

and clxf*[ (0, 1 ) ] is compact.
/..\ | / ^ ¡\(Íi) There is an sb open set (recalI Definition 2,1) U of KX

such that bd**U c X \ R(X), and

Ex,,,,(U n X) n C],,.,(KX \ X) = Cf,,.,(U n X) n CI,,.,(KX \ X)l\À Á^ t\^ r\^

= T¡1. If !'l n R(KX \ X) = ô¡ then Cl-(U n X) n R(X) = Q.

Proof : Suppose that I,ü is a compact clopen subset of Cl-u v(KX

\ X)" If V = [ClKX\*(fX \ X)] \ W, then V and !\i are

disjoint clopen subsets of CÌKX(KX \ X) whose union is
C1,,.,(KX \ X). Define a map g : CI-,,-(KX \ X) -Þ {0,1} asÁJr' ÁÀ

fol-lows:

e(x)=0ifx€W,

e(x) = 1 if x e V.

Then g is conti-nuous . Since Clr-v (KX \ X ) .is compact , and
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hence is Cx-embedded in KX, there is a function

h : KX-+ [0,1] such that hlCIKX(KX \ X) = g.

Define f : KX + [0,1] as follows.

f(x) = O if x, h*[t0,1/3))
f(x) = 3h(x) 1 if x É h*[11/3,2/3)f,

f(x) = 1 if x " h*[L2/3,11)

Then f is well-defined and continuous on KX. Clear1v

ftl^rl = o and ftvl = 1. Atso, clxf*[(o,l)].
clxh*[ (1/3,2/3)l . h*['[ 1/3,2/3]), which is a compact subset

of X. Thus f has the desired DroÞerties.

(ii) Let f be as in (i). Since CIKX(KX \ X) c

f*(o) u r*(l), f*[tori/3)l is an sb open set of KX whose

boundary is contained in X \ R(X). It follows from 2.2

(r_1r_/, tnat
(rx \ X) n f*[[0,1 /3)J = (KX \ x) n Ex**[f*[0,1/3)] n xl

= (KX \ X) n CIKXIf*[tO'1/3)) n X].

Tn fact, since bdKxf*[t0,1/3)] c X \ R(X), it follows that
clKX(KX \ X) n f*[ lO'1 /3)]

= cfKxrr(rx \ x) n Ex**[f*[[0,1/3)) n x]

= cl¡ç¡(KX \ X) n Cl*¡i r*[ t o ,1/3)l n X] .

Note that R(KX \ X) = Cl**R(X) \ X" If ü¡e also assume that,

hr n R(KX \ x) = Q, then n(X) c ctKX(KX \ x) \ w c f'(1). As

clxtf*[[ 0,1/3)] n xl c f*[[ 0,1 /3]) n x, it follows that
clxif*[[ 0,1/3)l n x] n R(x) = o. Then u = f*tt0,1 /3)J has

the desired properties, and the theorem is proved. I



lùe make the following easily proved result explicit.

3.2 Lemma: Suppose that S, T are closed subsets of X, and

that S n (T u R(X)) = 0. If S is compact, then there is an

open set U of X such that ClïU is compact, S c U, and

T n C1*U = Q"

l.l Corollarv: Let X be a space, and let KX e ((X)"

Suppose that T is a closed subset of KX, that I,\l is a compact

clopen subset of CIKX(KX \ X) and that T n l,rl = Q. Then

there is an sb open set U of KX such Lhat bd**U c X \ R(X),

i,\r = U n C16*(fX \ X), and T n CI**U = Q.

Proof: If W is a compact clopen subset of CIKX(KX 1 X),

then by 3.1 (ii) there is an sb open set Ul of KX such that

bd*rU., c X \ R(X) and Ex**(U1 n X) n CI6¡(KX \ X) =

ClKX(U1 n X) n ClfX(KX \ X) = W. Since T n lri - O,

T n C1**(KX \ X) n CI*X(Ul n X) = ô,. hence T n Cl*r(U., n X)

is a compact set contained in X \ R(X). According to 3.2,

there is an open seL V of X such that C1XV is a compact

subset of X \ R(X), and T n ClfX(Ut n X) c V. Let UZ =

KX \ CIXV. Then U2 is an sb open set of KX by 2"2 (iv), and

lrl c UZ" If U = U1 n UZ, Lhen UZ is an sb open seL of KX by

2.2 (i), and Ex**(U n X) = Ex*r(U., n X) n Ex*r(U, n X) by

1.5 (ii). Al-so bd*rU c bd*rU., u bdKXU2 c R(X). IL then

follows from 2.2 (iii) that U n CI*X(KX \ X) = Ex*r(U n X) n

CIKX(I(X \ X) - l,ü, while T n Cl*rU c T n ClfxUl n CIxXUz = g.

The statement is proved. D
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3"4 Lemma : Let X be a O-space" Suppose that X has a 0"I.

compactification KX of X such that CIKX(KX \ X) is

0-dimensional. Then X is rimcompaet.

Proof: It suffices to show that if x e R(X), then x has a

basis in X of n-open subsets of X" Suppose that T is a

cl-osed subset of X, and that x É R(X) \ T. Then x / CIKXT.

Let S = CI,,,,T n C1,,.,(KX \ X). Then S is closed in
l\À frÀ

clKX(KX \ X) and x e tCt-**(KX \ X)l \ S. Since C1**(KX \ X)

is compact and 0-dimensional, there is a compact clopen set

W of Cl,,-(KX \ X) such that x t Vri, and S n W = Q. Then
l\^

(î1 T\ n r^I - 0, so by 3.3, there is an sb open set U of KXa"rKx., '¡ fl

such that U n CIKX(KX \ X) = I¡ir and C1KXU n C1KXT = 0. Then

^/rr\rby 2.2 (ii-¡, U n X is a n-open subset of X, x e U n X, and

T n U n X = g. Thus x has a basis in X of n-open sets, and

X is rimcompact. I

3.5 Theorem: Suppose that T is a Iocal1y compact space such

that T = X u Y, where X n Y = ör and X, Y are totally

disconnected. ïf T is not O-dimensional. then there is a

elosed connected subset C of T such that Cl"(X n C) =

CIC(Y n C) = C.

Proof : If T is a locally compact space which is not

0-dimensional, then there is a cl-osed connected subset C of

T such that lCl > 1. Since X and Y are totally

disconnected, C n X and C n Y are nonempty. Suppose LhaL
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Ct^(C n Y) 7 Ct and tet z e C \ CI.(C n Y)" Since C is att

locally compact subspace of T, there is an open set U of C

qrrah fhat n] It ic nnmn¡nf and Z e U c ClnU c C\CI^(C n y).
"-C" vvrr¡l/qvvt ar¡u v - - |!. U

Now ClnU is a cl-osed subset of X, and hence is a compact(/

0-dimensional subspace of X, since X is totally dis-
connected. Hence there is a compact clopen (in ClCU) subset

V of CICU such that z e V c U" Then V is a eompact clopen

-,.k^^+ ^r î --Li^L ^^.^!'^^l:^!- !r^^ 4^^LÐuuùçr/ vr .,, which contradicts the fact that C is connected.

Thus CIC(C n Y) = C. Similarly, CIC(C n X) = C, and the

theorem is proved. D

The previous result leads to an interesting sufficient
condition for a space to be rimcompact" We need the

fol-lowing def inlton.

"^l\ 
Definif-inn : A snâôê Y ie nninfr^riqa rimnnmnnnt 'if,. v g_:_*__*.Il_*_]a+

whenever x, y are distinct points of X, then x and y are

î-separated in X.

There are non-rimcompact, pointwise rimcompact spaces.

For example, if X is the quotient space R/INìr, then X is
pointwise rimcompact sinee lR(X)l = 1 but is not rimcompact.

Any fully disconnected space is pointwise ri-mcompact.

3.7 Theorem : Let X be a space" If X has a compactification

with totally disconnected remainder, then the following are

equivalent .
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(1/

(af

X is rimcompact.

) X is pointwise rimcompact.

Pnoof : (i) impties (ii)" This is obvious.

(ii) implies (i): Suppose that x e X. Recall Lhat G* =

n{CI".rU: U is r-open in X and x e Ex"rU}. According to
þ/a - Þ^

2"13, Gx is a connected subset of BX. To show that X is

rimcompact, by 2"15 it suffices to show that G* = {x}.

Since X is pointwise rimcompact, Gx n X = {x}. Suppose that

G-- n (gX \ X) r 0. Leb KX be a compactification of X withx

totally disconnected remainder. Then (Kf)tGxl is a

connected subset of KX, (Kf)tC*J n X = {x}, and

l- rI¿r\ f n I I \ {x } is totally disconnected. According to 3"5L \¡L¡ /

applied to the sets {x}, t(ff)tcxll \ {x}, there is a

connected subset C of (Kf)tGxl such that CfC(C n {x}) =

nr rTlr¿r\rn r \ {x}l n Cl. This is clearly impossible, so"-c"
it fotlows that G* n (eX \ X) = g. Thus G* = {x} and the

t.hcorpm is nnoved. n.v^ .

If X is fully disconnected, and has a compactification

with totally disconnected remainder, then it fol-lows as a

special case of 3"7 thab X is rimcompact. It is easy to

verify t,hat a futly disconnected ri-mcompact space is
0-dimensional, thus any fully disconnected non-0-dimensional

space is a pointwise rimcompact non-rimcompact space.

Example 3.10 will illustrate that a t,otally disconnected

rimcompact space need not be O-dimensional.
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lrle now outline a construction that üre will use to

produce many of our examples.

A collection of infinite subsets of // is called al_most

dis ioint if the intersection of two distinct members is
finite . Zorn's lemma implies LhaL there exists a maximal

collection of almost disjoÍnt infinite subsets of À/. In the

following E will- denote a maximal such coll-ection " The

following topology on N u Æ is credited to Isbel-l- in tGJl.

Each point of It/ is isolated, and À e -R has as an open base

{{r} u (À \ F) : F is a finite subset of /r/i. It is noted in

5T of tGJl that such spaces I u ¡? are first countable,

1oca11y compact, 0-dimensional and pseudocompact. The

following is 2.1 of tTel "

3.8 Proposition : Any compact meLric space without isol-ated

points is homeomorphie to the remainder B(/V u R) \ 1t/ u F for
a suitably chosen maximal almost disjoint collection Æ"

In the sequel, when we choose a maximal almost disjoint
collection R such that ß (¡/ u g_) \ /y u Ã is homeomorphic to a

compact metnic space X having no isolated points, Lie

identify points of ß(A/ u E-) \ ü u Æ with points of X in the

obvious manner, and consider ß(À/ u Æ) \ À/ u .R to be the

space X"
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Let P be a topological property. Following the

terminology of iHIl hre say that X has property P at infinitv
if BX \ X has property P.

The following is Theorem 10 of tskl"

3.9 Proposition: ïf X is Lindelöf aL infinity, then X is a

O-sn¡no if anrì nnlr¡ if Y icr v.imnnmnrnt

Since any countable spaee is Lindelöf, it follows from

3.9 that if X is a space which has a compacfificat,ion with

countable remainder, then X is rimcompact.

3.10 Exampl-e : Choose a maximal col-lection .R such that
B(1y u E) \ l\i u Ã is homeomorphic to the unit interval I.
Let X = /t/ u.R u (p n I), where P denotes the Írrationals.

Then ßX \ X = Q n I, so leX \ Xl = o0" Acconding to the

remark following 3"9, X is rimcompact. Note that X is
totally disconnected. For if p e N u F, then the connected

component of p in X is {p}, since ü u Ã is locally compact

and O-dimensional. If p e P n I, then the connected

component aO of p in X is contained in P 0 I, which is
f nl-el'l rr rli <a^nneCLed and thUS C = { p} . lrte Claim that X is"p-(¡/J.

not fully disconnected and hence is not 0-dimensional.

Choose p1 and pZ to be distinct points of P n I. Suppose

LhaL there is a clopen subset U of X such that pr . U, whil_e

Þ2 I U. Then ClßXU is a clopen subset of ßX such that
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p1 e CIßXU' and pZ / CIBXU. This impies that I is not

connected, which is a contradiction" Thus p1 and p2 cannot

be contained in disjoint clopen subsets of x, henee x is not

0-dimensional " !

The next result also follows from 3.4 and 3"5.

3.11 Coroll-ar)¡ : Let X be a space for which R(X) is locally
compact and 0-dimensional " Then the following are

equivalent.

(i) X is rimcompact.

(ii) X is a 0-space.

(iii) x tras a compactification with totally disconnected

remainder.

Proof : Clearly (i) impties (ii) impties (iii).

(iii) implies (i) : suppose that KX is a compactification of
x in which Kx \ x is totally disconnected. lrre claim that, if
R(x) is loca1ly compact and o-dimensionar, then crKX(KX \ x)

is 0-dimensional-. It then fo]lows from 3" 4 that X is
rimcompact, since KX \ X is 0-dimensional.

Q,rnnnca that Cl,.-(KX \ X) is not 0-dimensional_. Since!\^

R(X) and KX \ X satisfy the hypotheses of 3.5, there is a

compact connected subset C of CIKX(KX \ X) such that
CIn(C n R(X)) = Cl,-(C n (KX \X)) = C. Then(- u-
ICl.(C n R(X))] \ tn(X) n Cl = C n (KX \ X)" However,t

n (X ) n C is IocaIly compact, which implies that
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tCIC(R(X) n C)l \ tR(X) n Cl is compact. Then C n (KX \ X)

cannot be dense in C" which is a contradiction. Thus

CIKX(KX \ X) is O-dimensional, and X is rimcompact" !

Q,,nnnqa that X is a space which has a compactificationvqt/yvvv

with totatly disconneeted remainder. It follows from 3.11

that if R(X) is locally compact and O-dimensional, Lhen X is

pointwise rimcompact. The converse is not true, as the

space A of rational numbers i1lust,rates. The following

example shows that the local compactness and

O-dimensionality of R(X) do not generally imply that X is

pointwise rimeompact " Note that this shows that the

hypotheses of 3.11 do not imply that X is rimcompact.

3"12 Example : Let Nl = {n + 1/22 n e /t/}, and let D be the

decomposition of Ã consisting of the sets

lN, N1, {r: r E R \ (/|l u il.t )i}. Let X = R/0. It is a

straightforward computation to show that if U is an open

subset of X containing Ìri and not containing N 1, then the

boundary in X of U is not compact. Thus N and N j are not

n-separated in X, hence X is not pointwise rimcompact" It

is easily verified that R(X) = {À¡1,N}, hence R(X) is locally

comoact and 0-dimensional.

? I ? Thonram : Let X be a space. Suppose that there is aJ'tJ.#

perfect compactifieation KX of X such that CIKX(KX \ X) is a

perfecf compactifi-cation of KX \ X" Suppose also that
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whenever F is a closed subset of R(X), and x e R(X) \ F,

then x and F are n-separated in X. Then R(X) is
0-dimensional "

Proof: Suppose that F is a closed subset of R(X), and that
x e R(X) \ F. I'le show that there is a clopen subset U of

R(x) such that x r ur and u n F = ô. By hypothesis there

exists a r-open subset lrl of X such that x r hi, while
F n Clrhl = Q. Let V = Ex**!rr n (fX \ X). It follows from

2.3 (ii) that V is ctopen in Kx \ x" As ctKX(Kx \ x) is a

perfect compactification of KX \ X, it follows that CIKXV is
a clopen subset of CIKX(KX \ X). Let U = CI*'V n R(X).

Then U is a clopen subset of R(X). Since x e R(X) n [rr/ c

CIKX(KX \ X) n Ex*rW, x e Cl*r[Ex**!ri n C1*'(KX \ X)] =

ClfX[Ex*rW n (KX \ X)] = CIXXV, hence x e U. At-so, Cl*rV c

CIKXW, So F n U c F n Cl*rV c F n Cl*rlü n X = Q. Thus U is
the desired clopen subsef of R(X), and R(X) is
0-dimensional. !

Recall that if X is O-dÍmensional_, then Ê0X is the

maximum 0-dimensional compactification of X, and equals FX.

3"14 Corollarv: If X is rimcompact, and CIFX(FX \ X) is
perfect compactification of FX \ X, then R(X) is
O-dimensional. Thus R(X) u (FX \ X) = ßo(FX \ X).

Proof : By assumptíon, X satisfies the hypothesis of 3.13,

hence R(X) is O-dimensional. Then R(X) u (FX \ X), as a
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perfect 0.I" compactification of FX \ X, is the maximum 0.I.

compactification of FX \ X. That is, R(X) u (FX \ X) =

F(FX \ X), which equals ßo(FX \ X) since FX \ X is
0-dimensional. l-l

3.15 Theorem : Suppose thab X is a O-space such that
nl fE'-Y \ Yl ic a nanfoai nnmn¡ntifinatiOn Of F0X \ X"'-F"X \ ¡¡l

f f-r"n

a) X is almost rimcompact"

b) The foltowing are equivalent"

(i) X is rimcompact.

/-i-i\ Õ1 .r(Fox \ x) = ßo(Fox \ x)"\rr,/ -.FO^ Po\r'0^ \ ^/.
/ . . . \ ñ / r, \( iii ) R (X ) is totally disconnected "

f . \ ñ /r,\( iv ) R (X) is 0-dimensional .

Proof : a) To pnove that X is al-most rimcompact, it sufflices

by 2.19 to show that FoX \ X is relatively 0-dimensionally

embedded in FoX. Suppose that p e (FoX \ X) \ T, where T is

a closed subset of FoX" Choose U to be open in FoX such

that p É CI- -U and T c U" Let S = Cl-- -U n (poX \ X).' f oÀ | oJl

Then S is closed in FoX \ X, and p / S. Since FgX \ X is

O-dimensional, Lhere is a clopen subset V of FoX \ X such

that p E V, and S n V = S. As Clf^X(FoX \ X) is a perfect

compactification of FoX \ X, it foffo*= that CIF"XV is a

compact clopen subset of Cl, .r(FoX \ X) such tfrai p e CI, vV! 0Â ! o^

and Clo yS n Clo yV = g. Since

T n Clo .,r(FoX \ X) c U n Cl", .,(FoX \ X)
f oÀ f oÀ

c clo ,.[u n clo v(Fox \ x)]
! 0rr r 0rr
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= Cln ,r[U n (FoX \ X)]FX

= "tFox-'
it follows that T n CIo *(FoX \ X) n Clo vV = Q. That is,r oÀ - f oÀ

Cl- ,,V is a comneol ol nnen set oF Cl- -(Fo X \ X) dis joint,--l'oX v v¿vve¡¡ "-FoXt

from T which contains p" It follows from 3.3 fhat there is
an sb open set U of FoX such that Clo yV = U n Cl_tr ,.(F'X\X),!0/r ,.0^

and hence p Ê U, while U n T = O. Thus each point of FoX\X

has a basis in Fox of open sets whose boundaries lie in x,

and FoX \ X is relatively O-dimensionallly embedded in FoX.

The statement folIows.

b) (i) implies (iv)

(iv) implies (iii).

This is 3" 1 4.

This is obvious.

(iii) implies (ii). It follows from 1.8 LhaL as a perfect

compactification of Fo x \ x having totally disconnected

remainder, R(X) u (FoX \ X) is the minumum perfect
compacLification of FoX \ X. Since FoX \ X is rimcompact,

the minimum perfect compaetification of FoX \ X is F(F0X\X)

Since FoX \ X is O-dimensional F(FoX \ X) = ßo(FoX \ X) and

the statement follows.

(iii) implies (i)" This is a speciat case of 3.4.

ïn constructing exampJ_es

tv,Io results to show that for
combi-nes Theorems 1 and 4 of
iGJ] "

we will often use the following
X c Y, ßX = Y" The first

tGll; the second is 6.7 of
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3.16 Proposition : Let, {Xo: c E A} be a set of pseudocompact

qnâôêe Thon.

(i) If n{Xq: t e A} is pseudocompact, then ß[fi{Xo: a E A}]

- TT{Rv . 0 e A}"_ ¡¡ ( P/rc.

(ii) If Xo is locally compact for all but one o, e A, then
[{X^: q e A} is pseudocompact.

d

3"17 Proposition : If X is any space, and X c T c BX, then

BT = ßX.

3" 18 Exampl-e : Let Y be any O-dimensional_ non-strongly

O-dimensional- space. Then ßY z ßoY. Let KY be any penfect

compactification of Y, and lel X = (KY x (r¡,+1 )) \ (y x

{o,}). It follows from 3.16 and 3.17 that ßX \ X =

Y x {or, }. Thus X is a O-space, and Fo X = ßX. As

CI".r(ßX \ X) = CI".,r(Y x {rt}) = KY x {to¡}, it follows LhaLÞl\' 5À'

atrot(nox \ X) is a perfect compactification of FoX \ X.

According fo 3.15, X is almost rimcompact, and X is
rimcompact if and only if KY = B o Y" In part,icular, if KY =

ßY, x is an almost rimcompact space which is not rimcompact.

!

hle stated in Chapter 2 LhaL neither bhe near

rimcompactness nor the quasi-rimcompactness of a space X is
sufficient to insure that X is a O-space, although by 2"19

the presence of both properties is sufficient " The
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3"19 Example : Let y = I x {0,1,1/2,1/3,.".}, Z =

Y x (o,+1), and X = Z \ (I x {1r1/2,1/3,...} x {r,r,}). Vr/e

claim that X is quasi-rimcompact.

Since R(X) = I x {0} x {ori, which is a compact subset

of X, it suffices to show that if F is a cl-osed subset of X

such that F n R(X) = 0, the F and R(X) are r-separated.

Suppose that F is closed in X, and that F n R(X) = 0. For

each p t F, choose U(p) to be an open subsel of X such that
p e u(p), cl./u(p) is compact, and (cI./u(p)) n R(X) = 0. If'ÄÀ
p e CI'.,F \ F, then p e I x {1/n} x {or1}, for some n e N.^ þÃ

Choose V to be a clopen subset of or+1 containing or: and

let U(p) = I x l1/nl x V" Then U(p) is clopen in ßX,

U(p) n R(x) = ö, and p r U(p). Since ClsXF.

u{U(p): p e CIBXF}, by compactness there is a finite subset,

rn ñ ñ ] c Cl^,,F such that Cl^,,F c u{U(p. ): 1<i<n}.\t'1rt¿Zr"'.tHn Þ^ Þ^ -.t

rf U = u{U(ni): 1 < i s n}, then U n X is î-open in x,

F c U n X, and CIXU n R(X) = g. Thus F is n-separaLed from

R(X), and X is quasi-rimcompact"

hle claim t,hat X is not a O-space. For if X is a

0-space, then 4(ßX) is an upper semicontinuous decomposition

of ßX. The elements of 4(ßX) eontained in ßX \ X are of bhe

form I x I1/n\ x {or} for n e N" Since a basic

neighbourhood in ßX of p É R(X) intersects all but finitely
many of these components, if these quasi-components are
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collapsed to points, then distinct points of R(X) do not

have dis joint neighbounhoods . Thus -€.( eX ) is not an upper

semicontinuous decomposition of BX and X is not a 0-space.

!

3.20 Examgle : Choose Ã to be a maximal almost disjoint

colleetion of infinite subsets of il such that
^ f -- - 

\B(À/ u Æ) \ /r/ u F is homeomorphic to I. Leb X =

tß(il u n) x (r,r,+1)J \ t(Ài u E u {1/2}) x {o,}J. Then it

follows fnom 3"16 and 3"17 that ßX = ß (/t/ u fi) x (o, +1 ).

Thus ßX \ X = (¡¡ u Æ u {1/21) x {r'}. We claim LhaL X is

nearly rimcompact. Defi-ne Z Lo be X u {(1/2,u¡)}. Then

BZ \ Z = ßX \ Z = (il u F) x {o,}, which is O-dimensional.

According to 3"15, Z is almost rimcompact. Hence Z is a

O-space and is nearly rimcompact. Note thaf if U is a

î-^rìên srrhqct of Z SUCh that (1/2rar¡ / Cl-?U, then U n X =\ | ¿ l-rwt / - 
u

U, and U is a ?r-open subset of X. Suppose that x e V, where

V is open in X. Then V is open in Z, so there is an open

seL V. of Z such that x e Vn c CI-V. c V, and Cl.Vn c X.
I-ILILI

Since Z is almost rimcompact, there is an open subset !l of Z

such LhaL x e i¡J and CI?W is nearly î-conlained (in Z) in Vr.
L-l

Qinna I^I ic ^nen in x- and cl.,l/\i = Cl-lrl" it fol_lows from thevI.'¡¡ ,'' - 
¡ /'

previous remark, and the definition of near rI-conLainment

bhat x e !'J and C1XW is nearly n-contained (in X) in V1"

Thus X is nearly rimcompact.

It is clear that ßX \ X = (/V u

totally disconnecLed" However, ßX

l1/21) x {ur,} is

is not O-dimensional-.

Ru

\Ã
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For suppose F is any non-compact closed subset of ßX \ X

such that (1/2ru¡) d F. Suppose there is a clopen subset U

of 8X \ X containing (1/zr@L) such that U n F = Q. Since

Clo.,(ßX \ X) = B(BX \ X), Cl"vU is a clonen snhsor nrgÀ' -'¿t --ts¡.

ClBX(BX \ X). The point (1/2,,'tr¡ e CIr¡U, whil-e

ICIßXF t (eX \ X)] n CtßXU = O. However, ClßXF \ (eX \ X) c

I x {o¡ }, which implies that I x {ur, } is not connected.

Since this is a conLradiction, (1/2,u¡) and F are not

contained in disjoint clopen sets of ÊX \ X. Thus ßX \ X is
nOt 0_dimenSiOnal . SinCe B y i q nl orn] rr the maXimUm Comneof._

ification of x having totalty diseonnected remainder, it
follows from 1.8 that BX is the minimum perfect compact-

ification of X. Since ßX is not a 0.I. eomnactifieation of

X, X cannot be a O-space. I

!üe have seen in 2.16 that if X is a quasi-rimcompact

space which has a compactificat,ion with totally disconnected

remainder, then X is al-most rimcompact. The previ_ous

example shows that a nearly ri-mcompact space which has a

compactification with totally disconnected remainder need

not even be a O-soace "

Since any space with a countable basis is Lindelöf aL

infinity, it follows from 3"9 that any O-space having a

countable basis is rimcompact " We point out that a space X

has a countable basis if and only if X is a separable metric
space. A coll-ection B of non-empty open sets of X is a
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r-basis for X if for any non-empty open set U of X, there is
B e B such that B c U. (Note that bhe concepts of trn-sps¡tt

and trn-basistr are unrelated " ) The forlowing exampre shows

that a O-space X having a countabl_e n-basis need not be

rimcompact, even if X is almost rimcompact.

3.21 Example : Choose Ã to be a maxima] coll_ection of almost

dis joint inf inite subsets of À/ such that B ( tr u 8) \ À/ u ,? is
homeomorphic to I. Let X = [ß(1t/ u E)J' \ t(il u {) x {l}].
Then it follows from 3"16 and 3.17 that ßX = [e(ro u Ã')]',

hence ßX \ X = (¡U u 8) x {1}. Then X is a O-space and FoX =

ßX" Since Cl-^-(gX \ X) = B(/t¡ u E_) x {1}, CI^-(eX \ X) is a
þ^ gÀ

perfect compactification of ßX \ X. ït follows from 3"15

(a), that X is almost rimcompact. However X is not

rimcompact, by 3"15 (b), since R(X) = I x {1} is not

O-dimensional- " Since N x N is a countable dense set in

tß(^/ u -R)lt, tB(^/ u fi)12 has a countable n-basis; hence X

has a countable n-basis. I

The difference between rimcompact spaces and almost

rimcompact spaces Iies in the nature of Lhe saturated (with

respect to t(ßX)) open sets of the Stone-Cech compacL-

ification which form a basis for points of the space. If X

is rimcompact, and x r X, then the collection
{Ex^r,U: U is r-open in X and x e U} is a basis at x of

Þ¡.

saturated open sets of BX, whereas this is not true if X is
not rimcompact. However, in both the case where X is



54

rimcompact or almost rimcompact ' non-rimcompact, the

O-dimensionality of Fo X \ X is witnessed by a panticulanly

nice collection of open sets of ßX, namely open sets whose

boundaries are contained in X" In general it is not tnue

that if X is a O-space, then FoX \ X is relatively

0-dimensionally embedded in Fo X. In the following example,

we build on Example VIT"26 of tlsl to produce a non-almost

ri-mcompact space X for which eX \ X is O-dimensional.

3"22 Example : In Example VIT.26 of IIs1, a compact space Y

is constructed which has the following properties. First,

there is a o-dimensional subspace z of Y such that Y \ Z is

dense in Y and Z lnas only one non-isolated point z" AJ-sot

there is a point p e Y \ Z such LlnaL if U is any open subset

of Y containing z, and bdrrU c Y \ Z, then p e U.

Let X = (Y x (o,+1)) \ (Z x {o,}). Then by 3.16 and

3"17, BX = Y x (or,+1), and so ßX \ X = Z x {ur,i. Then X is

a O-space and FoX = ßX. lrle show that X is not almost rim-

compacl by showing that (2,r,) does not have a basis in ßX

of sb open sets of BX. Suppose that V is an sb open set of

ßX such Lhat (z,rr) e V and (p,tt) / v. Let Vl =

V n (Y x {ui¡i)" Then Vt is an open subset of Y x {o¡} whose

boundary (i-n Y x {r,,,}) is conlaj-ned in (Y \ Z) x {ûrr} such

that (zrrr) r V1. However (p,rt) e V1, which is a

contradiction. Thus (zrr, ) does not have a basis in ßX of

sb open subsets of ÊX; hence X is not almost rimcompact'
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Note that since Z has only the

Ii i s ânv Õnen subset of X such that

Ex ",.U n ( Bx \ X ) is clopen in BX \
Þ/a

easy to venify that for each p e ßX

col-lection ¿(p) of open subsets of

Ex^.,,U n (ex \ x) is clopen in BX \þ^

{Ex^-U: U e Y(p)} is a basis in BX- þ,\

non-isolated point z, if

(2"u,) { bd^-Ex^.'U, then
Þ^ Þ.¿!

-aìX = Z x lr,r1l. It is then

\ X, there is a

X such Lhat

X for each U e U(p), and

for p" I
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CHAPTER 4

PROPERTIES OF ALMOST RIMCOMPACT SPACES

In this chapter Ì^re develop the properties of almosc

rimcompact spaces" We begin by showing in 4"4 that if X is
a space in which bdXR(X) is compact, then X is a O-space if
and only if X is almost rimcompact" Such a space X need not

be rimcompact " Next we consider invariant properties of
almost ri-mcompact spaces" Neither perfect images nor

perfect preimages of ri-mcompact spaces need be 0-spaces.

However, i-n 4"11

rimcompact space

almost rimcompact

üIe

is

show that if the perfect preimage of a

¡ O-sn: oe - t-hen t-het. nonf eot- nno i ma oc i svy¡v¿l¡¡gÕv

Example 4.8 shows that an open subspace

of an almost rimcompact space is not necessarily a O-space,

while in 4 " 7 we prove fhat any closed subspace of an almost,

ri-mcompact (respectively, O-space) is almosb rimcompact

( respectively, a 0-space ) . l¡'/e obtain a partial answer to
fho ^,1ôêfìan : If S iS a ClOSed SUbSet Of e O-snace X- whatq V¿VpVU UUVUVV Vl q V-ÐlJqVU Jr, yYf¡qV

conditions on S imply that CI' yS = F¡ S?

Vüe prove 4.4 by considering separately the cases where X

is nowhere locally compact, and whene X has compact residue.

4.1 Lemma: Suppose that X is nowhere locally compact, and

that KX is a 0"I" eompaetification of X" Then KX \ X is

relatively O-dimensionally embedded in KX.

Proof : Suppose that p e KX \ X, and that p r hl, where l,'/ is
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an open subset of KX. Since KX \ X is O-dimensional, there

is a clopen subset V of KX \ X such that p e V c lri n (KX\X),

and C1KXV c $J" Let U be any open subset of KX such that
U n (KX \ X) = V. Since KX \ X is dense in KX, CIKXU =

CIKX(U n (KX \ X)) = CIKXV. Then (C16¡U) n (xX \ X) =

CIKXV n (KX. \X) = CIKX\XV = V. It follows that bdKXU =

Cl,,.,.U \ U c X, hence U is an sb open subset of KX. Since
KÄ

CI*'U c Id, p has a basi-s in KX of sb open seLs of KX. Thus

KX \ X is relatively O-dimensionally embedded in KX. !

Let X be a space. In the sequel, L(X) denotes the

loca1ly compact part of X; that is L(X) = X \ R(X). Note

that if KX e K(X), Lhen L(X) = KX \ CI,,*(KX \ X), and that

L(KX \ X) = (KX \ X) \ R(KX \ X) = KX \ tX u CIKXR(X)1"

The fol 'l owì ns i s êâ sv to nrove 
"

4"2 Lemma : If X is a space, KX e K(X), and l,r/ is a compact

clopen subset of either L (KX \ X) or KX \ X, then I/ü is a

compact clopen subset of CIKX(KX \ X).

4.3 Lemma : Suppose that X is a space in which R(X) is

compact. If KX is a 0.I. compactification of X, then KX \
is relatively 0-dimensionally embedded in KX"

Proof : Suppose that, T is closed in KX, and that

p E (KX \ X) \ T" As R(X) is compact, there is an open set

U of KX such that p r U, whil-e tT u R(X) I n Cl-r,vu = Q.l\^
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compact and 0-dimensi.onal, there is a compact clopen set !,1

of KX \ X such that p e W c U. Then I/ü n T - 0, so by 4.2

and 3. 3 there is an sb open set V of KX such LhaL

V n CI*t(KX \ X) = lrl and T n CI**V = 0. Then p e V, and

V n T = S" Thus each point of KX \ X has a basis in KX of

open sets whose boundaries lÍe in X. That is, KX \ X is

relatively 0-dimensionally embedded in KX. !

4"4 Theorem: If X is a space in which bdxR(X) is compact,

then the following are equivalent.
(i) XisaO-space.
(fi) X is almost rimcompacL.

( iii ) X is a O-space, and Fo X \ X is relat,ivety

0-dimensionally embedded in F o X.

(iv) If KX is any 0.I. compactificat,ion of X in which

rìr (ia+ p¡/v\\ n .r ,(x \ R(x)) c x, then KX \ x is"tKX\¿frux¡t\^// 
rr vfK)

relativety O-dimensionatly embedded in KX.

Proof : It fol-lows from 2.19 that (fii) implies (fi) and

/..\ /.\(]-a, ]-mprr-es \a/.

/.\ \ Ali) imnlipq lìr¡) Srrnnrìqê that KX iS a 0-T- eomnant.-\¿/ \!v / ô

ification of X in which CI*X(int¡R(X)) n CIKX(X \ R(X)) c X.

lte claim that KX \ X c E*KX(intrn(X)) u Ex**(X \ R(X)). As

x \ [int-R(x) u (x \ R(x))] = bd-R(x), which is a compact.ÁÀ
subset of X, KX \ X c Ex,çX[int*R(X) u (X \ R(X))]. Tf U and

V are open subsets of X, and p e Exo.r(U u V) \ (Exo,.rU u
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Ex**V), then by i.4 (v), p e Cl*rU n Cl**V. As

ClrX(intxR(X)) n CIKX(X \ R(X)) c X, it follows bhat KX \ X

c E*KX(int*R(X)) u Ex*r(X \ R(X)), and the claim is proved.

Note that Cfrint*R(X) is a nowhere 1ocal1y compact

qnâôa E'nr. i f 1¡ 'i e ân\¡ ônen SUbSet Of Cl.,int.,R(X ) , there iS'¡^
an open set U of X such that U n ClXintXR(X) = V. Then

U n int.,rR (X ) is a non-empty open subset of X" Since
^

int R(X) is nowhere locally compacL, C],(U n int.,R(X)) is"*X À

not compact" Then CIXV, which is the closure in Cl*intxR(X)

nf \i i s nnt onmn:ot . Thus nô noi nt of Cl-,int.,R(X ) has a--x --- - x-''--' "
baSiS (in C1.r.i-+ P/vlì nf nnmnaat n'lôqod neighbOUfhOOdS, and

¡.1¡vX¿|\l!/ 
/ vv¿¡¡yuv

r'l int RrYl ig ngblhere lOCally COmpaCt."'X..,vXll\/l/J|

As CIfXintrR(X) is a 0.I. compactification of
Cl --i nt.--R lX ) it follows from 4. 1 that"-x-"

ñ / r7 \ ñ / rt \c1,,-int-R(x ) \ c1.,intvR(x ) which by our claim is just
K,l^^^

FË.v in{- prY\l n tKX \ xl, is relatively 0-dimensionallyvx¡!\r! /

embedded in ClfXint*R(X). Let p e IEx*rint*R(X)J n IKX\X].

lüe show that p has a basis in KX of open sets whose

boundaries lie in X. Suppose that p e KX \ T, where T is a

closed subset of KX. Since p / CIKX(X \ R(X) ), there is an

open subset U1 of KX such that p . U1 and

C1**U., n ICIKX(X \ R(X)) u T] = Q" Then U1 is open in
Ìi- i n* Þ /'Y \ and henee in rì''r i nì Þ /v \ It fOllOWS that!^KXrr¡uX¡t\^/, oI¡u r¡çr¡vç r¡¡ "-KX-truX¡t\^/.

there is an sb (with respect to Cl*intXR(X) ) open set IJZ of

Cl*rintxR(X) such that p t UZ. U1" As U1 c Ex*rintXR(X),

it follows LhaL U2 is open in KX. Since
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î1 rT ^ nl (X \ R(X)) = 0, U. is an sb open subset of KX"-KX"2 ,, v¿KX\rr \ ¡r\¡Ll/ - ì. ¿

whieh contains p and has empty intersection with T.

The subset CIX(X \ R(X)) of X is a space with compact

residue, so by 4"3, CIKX(X \ X) is a 0.I" compactification
of X with a relatively 0-dimensionally embedded remainder.

r'' * - ñì tv \ R(X)) \ Ctv(X \ R(X)) (which by our earlier-LI Ir ç UIKX\^ 
^

claim equals Ex**(X \ R(X)) n (KX \ X)), then p I CIKXR(X).

It foll-ows from an argument similar to that in the preceding

paragraph that p has a basis in KX of sb open sets of KX.

Thus each point of KX \ X has a basis of sb open sets of KX,

hence KX \ X is relatively O-dimensionally embedded in KX.

(iv) implies (iii)" Since FoX is a perfect compactification

^î v an¡r Ìa.r RIX) is onmnaqf , by 2"3 (ii) and 1.5 (ii),\,,I 
^t 

d.tl\.I U\rXl!\r!/ vv¡'¡yu!

Clo *(intyR(X)) n Clo y(X \ R(X)) n (FoX \ X) =- 0"

Exo ,.inL.rR(X) n Exo .r(X \ R(X)) ¡ (FoX \ X) = Q. Thus FoX
r oÄ À f oÀ

satisfies the condition imposed on KX in (iv) and hence

F oX \ X is rel-atively O-dimensionally embedded in F o X" !

The hypothesis of 4"4 do not imply that X is rimcompact.

If in Example 3.18, Y is chosen to be a localIy compacL

0-dimensional- space which is not 0-dimensional, and ßY i-s

chosen as t,he perfect compactification of Y' then X =

(ey x (ur,+1 )) \ (Y x {or1}) is a almost rimcompact non-

rimcompact space in which R(X) is compact.

The next example shows that, as mighf be expected, it is
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not true that if X is rimcompact, and X c T c BX, then T is

necessarily a 0-space.

4.5 Example : Choose F so that B(11/ u E_) \ ¡/ u -R = I. Let X

= f/ u B_, and T - N u F u {1}. Then X is rimcompact.

However, the single connected component of ßT \ T = BX \ T

is t0,1), which is not compact. Thus T is not a O-spaee. n

IL is clear that if X is

then T is a O-space" Recall

BX. The following indicates

between FoX and FoT hol-ds.

aO-space,andXcTcFoX,

that if X c Y c ßX, then ßY =

that the expected relationship

4.6 Theorem : If X is a O-space, and X c T c FoXe then T is

a O-spaee and FoX = F6T. If X is almost rimcompact

(respectively, rimcompact) then T is al-most rimcompact

(respectively, rimcompact) .

Proof : Clearly FoX is a 0.I. compactification of T.

Suppose that KT is a 0.I. compactification of T such that KT

> FoX. Then KT is a compactification ôX of X. Recall thaL

ôf : BX -' 6X denotes the natural map. Def ine g : ôX * FoX

to be the natural map. Then g " (of) = Fof. Suppose that

p e FoX \ T" Since FoX is a perfect compacbification of X'

by 1,6, (Fof )*(p) = (g o ôf )*(p) is a connected subset of

ßX. Then (6f)t(Fof)*(p)l = g(p) is a connected subset of KT

contained in KT \ T. Since KT \ T is O-dimensional, lg*{p)l

= 1. It follows that KT = FoX, and hence FoX = F¡T.
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If eaeh point of FoX \ X has a basis of open sets of FoX

whose boundaries are contained in X, then each point of

FoX \ T has a basis of open sets of FoX = FoT whose

boundari-es are contained in T. Thus if X is almost rim-

compact, T is almost rimcompact. A similar statement holds

if X is rimcompact. !

It is tempting to attempt to shorten the pnoof of the

preceeding theonem by immediately claiming that KT as chosen

is a 0.I. compactification of X. However, since the union

of two 0-dimensional spaces need not be 0-dimensi-onal, it is

not immediately clear that KT \ X is O-dimensional, and

further argument of the sort provided in the proof is
necessarv.

We note in passing the following special case for 4"6.

If X is a O-space, and X u CI' ,rR(X) c T c FoX, then since
! o^

X u Clp vR(X) is almost rimcompact by 4.3, T is almost! o^

rimcompaeL.

l'le noï¡ consider subspaces of O'spaces. It is an easy

exercise to prove that an open or a closed subspace of an

rimcompact space is rimcompact" This contrasts with the

fact that while a closed subspace of an almost rimcompact

space is almost rimcompaet, an open subspace of an almost

rimcompact space need not even be a O-space
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4.7 Theorem : If F is a closed subset of a O-space

(respectivelyr âñ almost rimcompact space) X, then F is a

0-space (nespectively, almost nimcompact) "

Proof : If F is cl-osed in a 0-space X, and KX is any 0.I.
compactification of X, then ClKXF is a 0.I. compactification

of F" Thus F is a O-sÞace.

Suppose that KX \ X is relatively 0-dimensionally

embedded in KX" !ùe show that CTKXF \ F is relatively

0-dimensionally embedded in CIKXF. Suppose that T is a

closed subset of CIKXF and p e (Cl**F \ F) \ T. Then T is

closed in KX. Since KX \ X is relatively O-dimensionally

embedded in KX, there is an sb open set U of KX such that

p e U and (CIKXU) n T = Q. Consider the open set U n Cl*tF

of CIKXF. The boundary in CIKXF of U n CI*'F is

clKx(u n CIKXF) \ u n cl*rF c tcrKx(u n cl**F) \ ul n cl**F

c t(CTKXU) \ Ul n Ct*rF

c bdKXU n C1**F

c X n CI,,.,F
KA

= F.

Then U n Cl**F is an sb open subset of CIKXF and a

neighbourhood (in CIKXF) of P, whil-e T n (CI*'F) n U = O.

Thus each point of C1KXF \ F has a basis of sb open sets of

CIKXF" Hence CIKXF \ F is relatively 0-dimensionally

embedded in CIKXF" IL follows from 2"19 that F is almost

rimcompact. I
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l'ô4.8 Example : If X, Z are as in Example 3"20, then X is an

open subspace of Z and Z is almost rimcompact, but X is not

a O-space. !

Conti-nuous images and preimages of ri_mcompact spaces

need not be rimcompact, even if the map is perfect. ïn
f ¡nt qi nao ân\¡ nnmn'l atol rr reç¡ll'l ar snâoc i S the imaEe Of anq¡¡J vv¡¡¡¡/f u uv!J I u6 urqr Dy@vç ¿rrrqóe

extremally disconnected space (ie. a space in which disjoint
open sets have disjoint closures) under a perfect

irreducible map (see tstl), the perfect, image of a

nimcompact space need not even be a O-space" The next

example shows thab the perfect pneimage of a rimcompact

space need not be a O-space. However, we will show in 4.11

Lhal. i f the nerfeel-. nreimâsê nf a nimoomnaof. snâoê i s av}/svv

0-space, then the preimage is almost rimeompact. Example

4.12 shows that the preimage need not be rimcompact.

4"! Example : Let Y = T x {0,1,1/2,1/3, ". "}, and X =

IY x (o,+1)] \ tI x {1,1/2,1/3,"""} x {or,}J. It is shown in

Example 3.19 that X is not a O-space. Let, f : I x

{0,1,1/2,1/3,"""} x (o¡+1) -} {0,1,1/2,1/3,"""1 x (ur¡+i) be

the pnojection map. Then f is closed, since I is compact"

Let S = [{0,1,1/2,1/3,...} x (t¡¡+1)] \ t{111/2,1/3,"".} x

{rr}1. Since f*(y) = I x {y}, for y E S, f is a perfect map

from X into S. The space S, being a subspace of

{0,1,1/2,1/3,.. "l x (or¡+1 ), is O-dimensional (and hence

rimcompact) "



The following is 1"2 of tHIl.

4.10 Lemma : Let f : X + Y be a perfect map. If S is a

compact subset of Y, then f*[S] is a compact subseL of X.

4.11 Theorem : Let f : X -n Y be a perfect map. If X is a

O'space, and Y is ri-mcompact, then X is almost nimcompact.

Proof : lrle show that X is quasi-rimcompact. It then foll-ows

from 2.19 that X is almost rimcompact" If x e R(X), let K*

= f*(f(x)). Then K* is a compact subset of X" Suppose thab

F is a closed subset of X such bhat F n K* = g" Since f is

a crosed fiâpr and r*(r(x)) c x \ F, there is a n-open subset

I,'I of Y sueh that r*(r(x)) c f*[cluvüJ c x \ F. As f is a

perf ect mâp r and bdyW is compact , it follows f rom 4. 'l 0 that
+__+-<-

f Ibd-!ri] is compact " Since bd.,rf IW] . f Ibd.,rti'lJ , it fotlowsr'ÀÃ
that f*[w] is a r-open subset of X. Also, x e f*[W], and

+--F n CIxf Ll,ìlJ = Q. Thus x and F are t-separated" Hence X is
quas j--rimcompact, and the theonem follows " !

4 " 12 Example : Choose F to be a family such that

ß (À/ u B) \ À/ u Æ_ is homeomorphic to I. Then F(¡¡ u A) =

ûr(À/ u .R), the one-point compactification of It/ u À.. If X =

tÊ(À/ u E-) x (o'+1 )l \ t(¡¡ u F) x {t¡r}1, then according to

3"15, X is almost rimcompact but is not rimcompact" Let

f : g(il u E) x (r,r,+1 ) * t,l(tr u Â) x (r,rr+1 ) Ue the natural

nâp, and let Z = [r,r(i[ u 8) x (r¡r+1)] \ t(/y u fi) x {r¡i}1. If
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z e Z, then

p r (rr+1).

into Z. The

rimcompact).

Aoonr.rlino to 6"9 (a) of tGJl, if S c X, then Cl_^_S = ßS^ Y*¡¡ö v. J \s/ L vv r t !¿ 
É 

^

if and onl-y if S is C*-embedded in X" AIso, according to

xxx, if X is O-dimensional, and S c X, then CIß.XS = ßoS if
and only if every {0,1}-valued function on S extends

continuously to a {0,1}-valued functi-on on X. AccordinE Lo

4.7, if S is a closed subspace of a O-space X, then S is a

O-space. We address the following question : if S is a

nl ncod qrrhcnraa nf V r^r\.ran iS Cl- -S = F I S?vqvv "' r^^

We can formulate an ansi^Ier to this question by means of
nÌ.^vìmitioq Let c., âñd d¡ dannfo fha ^fOXimitieS On X and*x *"- -s v

Q i n¡ìrra-i næ E' X and Fo S respectively" The proximity oy¿¡ruuv¿r¡ó r0/\ q¡¡u ¡0u rçoyçvu¿vçfJo ¿¡¡v yrv^¿rlr¿uJ *,,

i nrlrrnoçr â r'ìr¡ôximity a.,rl o On S def ined aS follOws : if A, By¡ v__ _X 
S

c S, then A (o*lr) B if and only if A ox B. Then atoo*t =

FoS if and only if oXlS = oS" If X is rimcompact, then this
formulation of the ansr^rer becomes : CI-FXS = FS if and onl-y

i f r^rhonrren .q . ¡nd S - ArlF srlbsets of S whi ch âr¡e î-sen¡ññ+^/rrr w¡¡st¡vç¡ 
"1 

ql¡U 
"2 G¡ g ùqVùVVÐ VI U WI¡!çt¡ @¡ ç ',-Ðçl/OI AUçU

in S, then Sr and S, are n-separated in X" This corresnnnrts, 
| -¿ --r-- 

vv¡ I vvyv¡¡vv

to the following statement for ßX: CIBXS = BS if and only

if whenever St and 52 are subsets of S which are contained

in disjoint zerosets of S, then St and Se are .contained in

disjoint zerosets of X" If rrßXtt and rtzerosetsrrare replaced

n{t \ ¿L \Z) = tZt
<--Afso f LZJ

arìârìê 7 i<vyuvv

^<- rorf(z)=ïx{p}forsome

= X, so flX is a perfect map from X

0-dimensional (and hence
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by rf ß 0Xtt and trclopen setsfr respectively, w€ obtain the

corresponding statement for ß o X. lrle attempt to f ind a

condition on a subspace S of a O-space X involving the

extension of cerLain continuous functions on S which wilI be

equivalent to the condition that Cln ¡¿S = FoS. Such a! o^

eondition for subspaces of almost rimcompact spaces with

compact residues is presented in 4"23"

The fotlowing is a partial external characterizaLi-on of

those closed subspaces S of a O-space X for which at, 
o rt =

LS
! Ouo

4.13 Lemma : Consider staLements (i) and (ii) given below.

If S is a closed subspace of a O-space X, then ( i) implies
(ii). If, in addition, S is C*-embedded in the 0-space X,

then ( ii) implies ( i) .

/-i\ rì'r c - FoS.\¿/ "-F.-N"
(ii) ClavS i-ntersects each quasi-eomponent of BX \ X in añ¡

connecLed set.

Proof : RecaII t,hat 4.( BX) = { (Fof )o(p)t p e Fo X}.

(i) imnlies (ii)" Let g : BS + Cl^vS and h : CI^..S -+ Clo vS\+/ o tsÄ ßÄ f oÅ

denote the natural maps. Then h o g : BS -+ Ctto XS is t,he

natural frâp, and h = FeflCIßXS. Suppose that a is any

quasi-component of ßX \ X such that CIBXS n Q É ö" Then

F0fIQ] = hIQ n C]-ßXSl e CIFoXS. If CIFoXS = FoS, then

Cl' vS is a perfect compactification of S. Note thatFX
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htQ n CtßXSl is a singleton set. It foltows from 1"6 that

(fr. g)*[hIQ n ClßXS]l is a connected subset of ßS. Then

et(h o g)*ihtQ n cluxsll = h*thta n crBxsll is a connected

subset of cIßxs. As h*[h[Q n ClßXS]l =

(Fof)*[roftQ]l n clu¡S = Q n clu¡s, it follows that

O n CI^ .,S is connec ted .
b .¿\

(ii) irnnlie.s liì Qrrnnnca that Cl^.,S inLerseCts each\¿*/ \¿/ o vgYirvvv 
Þ^

quasi-component of ßS \ X in a connected set. If

D e CI- .,S. then lF ^ f lcl ---.s)*1.') - [ lF'^ f *
- f oÁ . rçrr \r0rr-tßX.) \pl = L\r0r) (p)-l n CIßXSI

hence (FoflCI".,,S)*(p) is connected. If Cl-avS = ßS, then byÞÄ ÞÅ

1"6, Cl- -S is a perfect compactification of S. Since' r ^Ä

CtFoX, i" a 0.I. compactification of S, CIF'XS = FoS.

Note that if a cl-osed subset F of a space X has compact

boundary in X, then F is C*-embedded in X" Then the

following, which is 3.13 of Il¡c], follows directly from

¿+. lJ.

4"14 Corollarl¡: Suppose that U is an open subspace of a

O-sneee X- Tf hr.l--Tl is nomnaet- then C'l- .,U = F^(CI.,U).vvr/qvv"*X"-*F^X--u\--X-

If S is not C*_embedded in X in 4.13, then (ii) does not

imply (i), even if X is rimcompact.

4.15 Example : Choose R to be a family of subsets of N such

Lhat B(/U u Ã) \ ¡ti u B is homeomorphic to I. Let X =

(¡y u E) u (P n I) (whene P denotes the irrationals). Then X
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is rimcompact and ßX = FX = ß(À/ u Æ.)" If S = I ñ p, then S

is a closed subset of X, and C1FXS = I. The set CIßXS

intersects each quasi-component of ßX \ X in a connected

set. However FS = B(P n I) t I. !

4.16 Theorem : Let S be a closed C*-embedded subspace of a

O-space X. Suppose that whenever a subset F of X is
completely separated in X from S, then F is r-cont,ained in X

\ S. Then CfF^XS = Fo(S).

Proof : Tf S satisfies the hypotheses then X \ S saLisfies
the condition imposed on U in 2"8 (ii). It follows from 2"8

that ExUr(X \ S) is saturated, and so C}ßXS i_s saturated.

That is, any quasi-eomponent of ßX \ X which intersects
Cl- 

" vS is contained in CI".rS, and hence is a connecLed subsetþi, þÀ

of Cl^ -S. It follows from 4. 1 3 that Cl- --.q - F'. s n
HXp¿r - r nX" - r ou' u

In view of the fact that the above results include as a

hypothesis the C*-embedding of the closed subset S in X, we

point out the following. If S is a closed subset of a

O-space X, it is neither necessary nor sufficient for S to

be C#-embedded in X in order that Cl¡" *,S = FoS holds.! o^

4"17 Example : Choose E so that ß(À/ u E) \ À/ u Ã is

homeomorphic to I" Let X = g(1r/ u 8-) \ {1}. Then X is
rimcompact, and FX = BX = B (¡/ u Æ). The set [0,1) is a

closed subset of X, and ClfXt0,1) = [0,1] = F[0,1).

However, [0,1) is not C*-embedded in X"
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4.18 Example : Let X = {x e E: x > O} - R+. Then X is
rimcompact and FX is the one-point compactification of x.

The seL N is a closed C*-embedded subset of X. while

F¡i = BN * C1r¡tr.

As pneviously mentioned, oun main concern is to find a

condition on a subspace S of a O-spaee X involving the

extension of certain continuous functions which wil_1 be

equivalent to the condition that Clo .S = FoS" Results 4"19foÀ

to 4.22 inclusive will be useful; our main results are

stated in 4"23 to 4.25"

4"19 Lemma : Let X be a O-space, and Iet KX be a 0.I.
compaetification of X. Suppose that S and T are closed

subsets of X such that CfKXS n [Cl*rT, CIKXR(S)] = Q.

Then :

(i) There is an sb open set U of KX such that S c U and

ICIKXT u Cl**R(S)J n CI*'U = ô, hence

(ii) Thene is f e C*(KX,IO,i]) such thab f*[(0,1)] c X,

clxf*[ (0,1 )] is compacL, crKxs \ s c r*(t ) and

tcrKXT \ Tl u cl**R(x) c f*(o) '

Proof : (i) Suppose that

hence there is a compact

that p e W(Þ) and W(p) n

0. Then lu(p) n [CtOrT u

that there is an sb open

p e Cl**S \ S. Then p e L(KX \X),

elopen set l,ri(p) of L(KX \ X) such

t(cr*rr , clr<xR(x)) n (KX \ X)l =

CtrxR(X)l = 0. It follows fnom 3"3

set U(p) of KX such LhaL W(p) =
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U(p) n Clor(KX \ x) and croru(n) n ICl**T u CI*XR(X)] = o.

Then p e U(p) and Cf**U(n) n I CIKXT u CI*tR(X)J = Q. 0n

the other hand, suppose p e S" By hypothesis S n R(X) = ô,

hence there is an open set U(p) of X such that p e U(p),

CftU(O) is compact, and CftU(n) n IT u R(X)] = Q. Then

cl*rs c utu(p): p e cl**sÌ. By compactness there is a

finite subset {p1,p2,...,pn} of C1KXS such that CI**S c

u{U(pi): i < n}" If U = u{U(ni): i < n} bhen U is an sb

open subset of KX, and C1KXU n [Ct**t u Cl*rR(X)] = 0. The

statement follows.

(ii) Let U be chosen as in (i). Since U is sb in KX,

and (Cl*rU) n R(X) = 0, CIKXU \ U . L(X). It fol-lows that

U n CI*'(KX \ X) = Ex**(U n X) n CI*'(KX \ X) =

crKx(u n x) n cl**(rx \ x), hence u n cr*r(KX \ x) is a

compact clopen subset of CIKX(KX \ X). According to 3"1,

there is f e C*(KX,[0,'1 ]) such that

ftUnC1,,.,(KX\X)l=1
f!À

õr-/^1 t'',X \ X)] \ U] = o1L \urKX\¡!.
<--

and CtXf t(0,1)l is compact" The

doq.i rarì nnnno¡f igg. D

Ïf fi ßxrt and 1r BYn are replaced by nKXrr and rf Kyrl

respectively in the proof of 1"2 of IIwJ' we obtain the

following.

4.20 Lemma : Suppose that KX, KY are compactifications of X

and Y respectively, and LhaL f : X + Y is a closed map. If

function f clearlv has the



f extends to g e C(KX,KY), then cIKXf*(y) = g*(y) for each

y e Y.

The followino is â snêeiat case of 6"3" In proving 6.3

ü¡e do not rely on any results proved in this chapter.

4.21 Theorem: Suppose that X is a O-space and that

f: X + [0,1] is a closed map. If f*(y) is compact for each

y e (0,i), then f extends to g e C(FoX, tO,1l).

4"22 Lemma : Suppose that S is a closed subspace of a
<-

O-space X. Suppose f Ê C(S,[0,i]), CIXf t(0,1)l is compact,

s n R(x) c f*(o) and cf o 'f*('1 ) n clo -R(x) = o. Then theref oÀ f oÀ

exists g E C(X,[0,1]) such that glc: f and g*(y) is compact

fnn ocnh \r a t n ' \
r - (U¡li '

Proof : Suppose f r C(S,[0, i] ) satisfies t,he hypotheses.

Since ClXf*[(0,1)] is compact, f is a closed map from S into

[0,1]. In particular ftsl is a closed (and hence compact)

subset of [0,1]" Then f : S -o fisl is a map from a O-space

into a rimcompact space. By 4"21, f extends to

f . : FoS -+ f[.qr Qrrnnnca that Cl' 
"S = FsS. As-'l - -u- -r¿J o ust/l/vev 

" ,.0^

f : S -n ftsl is closed, it fo]lows from 4"20 that Clo ,.f*(y)! 0 rr

= C16 of*(y) = f .*(y) for each y e ftSl. Then f*(y) =f oò - 
|

t.,*(u) if y e (0,1), and Fos \ s c f1*(o) u r.,*(t).

+ _ <-- -As f1 (1) n Ir1 (0) u CIFoXR(x)] - o, it follows from

4.19 (i) (applied Lo the subsets r*(l) and f*(o) of X), LhaL
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there is an sb open set U of FoX such that f*(1) c U and

if 1*(O) u CIr,¡R(X)J n ClrorU = Q " Since bd¡,0*U c L(X), it
follows from 2"2 (iii) that atroru n CIro¡(FoX \ X) =

Exro*(UnX) n CIOoX(FoX\ X) =Un Clro¡(FoX\X). Henee

Clro*U n Clro¡(FoX \ X) is a compaet clopen subset of
atror(po x \ x). Let !t = cIFoxu n clrox(Fo x \ x). Define a

map h : ClroX(FoX \ X) u S * [0,1] as fol]ows :

h(p) = 0 if p r ICIpo¡(FoX \ X)] \ hr,

= 1 if p . !,1,

= f., (l) if p e Clro*S.

since clro¡(Fox \ x) n crF0xs c f1*(o) , f1*(1), while

r1*{o) n ctrox(Fox \ x) c Icrpox(Fox \ x)] \ w, and

g*(1) n cro y(Fox \ x)

continuous. The domain

h extends to a function

then elS = f and g*(y)

c W, h is well-defined and

of h is a compact subset of FoX, so

h1 e C*(FoX,[0,i]). If g = h,,l¡,

is compact for each y e (0,1). I

rimcornpact space

closed subset of

4.23 Theorem : Suppose LhaL X is an a1most

in which R(X) is compact, and that S is a

X. The following are equivalent "

lì\ rìr c - E q
\¿,/ "fË. - r 0v.

(ii) suppose f e C*(S,iO,1J), ctxf*i(0,1)l

S n R(v) c f*(O). Then there exists
such that g*(y) is compact for each y

is oomnant.- and

g e Cs(X,[0,i])

É (0,1).

Proof : (i) implies (ii). Suppose that f e C#(S,[0,i])
satisfies the hypotheses of (ii). Then f*(1 ) n R(X) = O.

Sinee R(x) is comoact. CI- ..f*(1) n c'l - n/v\ ' ñ'i¡,\r!/ ¿u roX- \,/ .. --F'XR(X) = 0" Then f
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satisfies the hypotheses of 4"22,

g e C(X,[0,1] ) such that elS - f,
each y e (0,1)"

hence there exists

and g*(y) is compact for

(ii) implies (i). Since CIro*S is a 0"I. compactification
of X, Cl- -S s FoS" To show that FgS = CI- .,S. it suffices' I oÀ -f oX ' --

by '1 . 1 to show that if 51 and 52 are closed subsets of S

whose closures in FoS are disjoint, Lhen 51 and 52 have

disjoint closures in ttro*t, otr equivalently, in FoX.

Suppose then that 51, 52 are closed subsets of S whose

cl-osures in Fo S are dis joint, and choose

p e (F'x \ x) n clFoxs1" lrre will show that p { cLF,>Êe.

Since FoX \ X is locally compact (since R(X) is assumed to

be compact) there is a compact clopen subset !r/ of FoX \ X

qrrah f h¡t ?r Éuuvr¡ vLtav p - W. As ClFo XR(X) = R(X), R(X) is a cl-osed

subset of Fo X, and R(X ) n irl = Q . It follows from 3. 3 that
there is an sb open set U of FoX such that U n Clror(FoX\X)

= hl and (cruoxu) n R(x) = ô. Evidentry p e u. Let rl =

s1 n c1¡(u n x), and let T2 = [s' n clx(u n x) ] u [R(x) n

Sl" The sets T1 and T, are closed subsets of S (hence of
X), and p e (ClroXSl) n U c ClnoX(S1 n CJ-r(U n X)) =

CtroXTl. To show that p I CIF'XS2, it suffices to show that
p / CfF 

oXT2, 
since lClFoXSe) n U c ClfoX(SZ n Clr(U n X)) c

Cl"' ..rT^,. Not^ +r'r^+ T Â-r T hrrra rli s i^int closures in Fo S,f ^À ¿ 
s utl4u r1 clllL¡ '2 

rrd'vE Lr:.ùJU

ol -^o q rnd- -1 52 have disjoint closures in FoS and R(X) is
compact. It is easy to verify that R(S) c R(X) n S" Then

R(S) c T^, hence the closures in FoS of T" and R(S) are¿' I

disjoint. It follows from 4"10 (ii) (applied to T1, T2 as
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subsets of S), that there is a function g e C#(FoS,[0,1])

such that g*t (0,'l )l c s, c15g*t (0, i )l is compact'

Clp^.sTl \ Tl c g*('1 ) and R(S) u [Clp^qT2 \ Trl c g*(O). t¡rre
t 0v | | r 0u L

will construct a functi-on f satisfying the hypotheses of
(ii) 

"

Let F = S n R(X) n g*11/4r1). Then F c Tz. Since

ClFoST2 \ T2 . g*{O), F is a compact subseL of S. Also,

sínoc Rrs) c .'*(O), F c L(S); that is, F n Clo o(FoS \ S) =¡r\v/õ\v/r!\v/tv¡¡svLÐrL--!.0s._.-

0. As F c R(X), T1 c CIX(U n X) and R(X) n CI*(U n X) = 0,

it follows that F n ClFoSTl = 0. Choose f1 e C*(F0S,[0,1 ])
such that

fiIFJ = 0,

f1[crF^"(Fos \ s) u crr^sTl] = 1.
'0"

Define f2 : FoS + [0,1] as foflows :

f2(x) = o if x , g*[10,1/31),

fr(x) = 1 if x , g*[12/3,1]1,

fr(x) = 3f ., (x) 1 if x , g*[t1/3,2/37)"

The function fr(x) is well-defined and continuous. Let f3 =

ft o f2. Then clFosTl \ Tt c f1*(1) n rr*(t) = f3*(1), and

Clr^sTe \ Te c f*(o) . f2*(o) c f3*(0). lrre claim that, s n
'o"

R(x) c f*(O). If x e R(X) n S n g*10,1/3f , then f2(x) = 0"

If x e R(X) n X n g'11/4,1f , then f1(x) = 0" The claim

follows. Fina]ly, FoS \ s c g*(O), g*(1). f2*(0) u

if1*(1) n rr*{t)i c f3*(o) u rr*(t).

Define f¡ : FoS -> [0,i] as follows :

f4(x) = o if x , fU*[Lo,l/37),
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f4(x) = 3fr(x) - 1 if x e fr*[L1/3,2/31),

f4(x) = 1 if x e fr*[tz/3,1]1.

Then f4 is well--defined and continuous, and has the

properties of f3 listed in the preceding paragraph. In

additi-on, CIXf4*[(0, 1 )] is compact.

Let f = f4lS. By assumption f extends to a function

h e C*(X, [0,1] ) such that, h*(y) is compact if y E (0,1). Vrre

elaim that Cto vTo n (FoX \ X) c Clo -h*[[ 0,1/3)). hre write--I,'ox-Z ' --FoX--

Tz = [Trnf*[10,1/3]ll u ITrnclsf*[(1/3,j)]l u ITznfn(1)].
since clsf*[ (0, 1 ) ] is compact , Tz n clsf*[ (i /3,1)) is
compact" A1so, since ClfoSTZ n (FoS \ S) c ClFoSf*(O),

T^ n f*(1) js nomnanf.- Then Cfo -T. n (FoX \ X) c-2 \¡/ --F0X-2 "

ctroxtT2 n f*10,1/3)l c clroxh*[10,1/3)]. The claim is
proved. Similarly, ClFoXTl n (Fo X \ X) c Cl-FoXh*[ (1/3,1]).

Since h*[[ Or1/3)7 is a î-open subset of FoX,

clF^xh*[[o,i/3)] n clroxh*l(i/3,111 . x. since

p e Clo-*T, n (FoX \ X), p I CIo.,T., thus p I CIo.,S:. As- | oÃ | - | oÃ ¿' ^ | oÀ

p was an arbit,rary element of Cff 
oXS.l 

n (Fo X \ X),

ClFoXSl n CIfoXSZ = ô, thus Cln,o*S = FoS" I

4.2)1 Corollarv : Let X be a O-space . Suppose that S is a

closed subset of X which is r-sênânat.erì from R(X ) . Then the

following are equivalenL.

(i) Cto yS = FoS.
- 0'-

(ii) rf f e c(s,to,1l) and crsf*t(0,1)l is compact, then

there exists g e C(X,[0,1]) such that glo = f and e*(y)
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is compaet for each y e (0,1)"

ã /.\ /..\Proof : (i) implies (ii). ïf S is a closed subspace of a

O-space X whieh is n-separated from R(X), then S is clearly
C.E" separated from R(X). Hence Cl-- -R(v\ n r-r q - 0. If- "*Fof,^'rAz " "'FoX"

f satisfies the hypotheses of (ii), then f clearly satisfies

the hypotheses of 4"22. It follows from 4"22 that f extends

to g e C(X,[0,1]) having the desired properties.

(ii) implies (i)" Let Y = X u Clr^XR(X). According to

4.6, FoY = FoX. Since R(Y) c Clo ,.R(X;, R(Y) is compact;r'o^

hence Y is almost rimcompacL. If f as in (ii),

g e C(X,[0,1]) is the hypothesized extension of f, then by

4"21, g extends to h: FoX + [O,tJ. According to \.2O,
, *, \\ ,4, \ ÃClo -(e (y)) = h (y) for each y e [0,11. In particular,r "À-"

h*(y) is a compact subset of X for each y e (0,1). If hl =

hl* then h satisfies the eonditions imposed on g in 4"23

Ciil. It follows fnom 4.23 that the closure in FoY of S is

FoS" Since FoY = FoX, the theorem is proved. !

The next result is a special case of 4"23.

4"25 Corollarv : If X is locally compact, and S is a closed

subset of X, then the following are equivalent.
/;\ r¡¡ o - TS\r_/ "rFX" - ¡

(ii) If f e C(S,[0,1]) and CISf*t(0,1)l is compact, then

there is g t C(X,[0,1]) such that glS = f and g*(y) is

compactifye(0,1)'
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CHAPTER 5

PROXIMITÏES AND O-SPACES

In this chapter we will present a proximal charac-

terizaLíon of 0-soaces.

We have Seen in 2.5 bhat X is rimcomn¡ot. i f enrì .''n1y if

X has a compactification with O-dimensionally embedded

remainder. Al-so, according to 2 " 19 X is al-most rimcompact

if and only if X has a compactification with relatively

0-dimensionally embedded remainder. A 0-space X was

constructed in Example 3.22 in which the remainder of FoX is
not relatively 0-dimensionally embedded in FoX; t,his

validates the statement that in orden for a compactiflcation

to have 0-dimensional remai-nder, it is not necessary that
points of the remainder have neighbourhood bases in the

compactification consi-sting of open sets whose boundaries

lie in X.

In this chapter vie shall characterize internalJ-y ( i )

those open sets U of BX for which U n (ßX \ X) is clopen in

ßX \ X, and in particular, (ii) those open sets U of X for

which (ExovU) n ( gx \ X) is clopen in ßX \ X. This wil-1' ó^

lead to the promised proximal chanacterization of 0-spaces.

We need some tools for studying clopen sets in remainders of

compactifications. These are developed in 5.1 5.5

inclusive.
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5"1 Definitions: (i) tet X be a space. An open set U of

KX r {(X) :-s clopen at inf initv in KX (denoted by KX-C " I. )

if U n (KX \ X) is clopen in KX \ X. The set U is a full
KX-C.I. set if U is KX-C"I", and U = Ex¡çy(U n X). Often a

ßX'C"I. (respectively, fu11 ßX-C.L) set wilI simply be

called a C.I. (respectively, fuI1 C.I.) set.

(ii) A O-space X is a fuII O-space if for each p e ßX \ X,

the connected component of p in ßX \ X has a basis in ßX of
full C " I. sets .

(iii) If E is a family of open sets of X, and D is open in

X, then D is small with respect to Ð if for each E e E,

Clr.(D n E) is compact.
À

/.\^(iv) A family E of open sets of X is

( denoted C. E. ) if there is a compact

i f Il i e ^ñôh in X, and K c U, thefevyv¡¡

with respect Lo E such that X = U u

clooenlv extendible

subset K of X so that,

is E e E, and D small

EuD" AfamilyEis
ful] C.E. familv if E is C.E., and E*ßX(u {E: E e E} ) =

u{ExurE: E e E.}.

According to 2"2 (iii), if KX e K(X), and if l^l is an sb

open set of KX, then V{ is a fuII KX-C.I. set. The fo}lowing

shows that if V\l is any KX-C.I. open set, the the sets W and

Exrr,r(W n X) can nnlr¡ rìiffon in the locally compact part oft\^'

KX \ X.

5.2 Prooosition : Tf KX € ((X), and if U is a KX-C"I. set,
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then Ex*r(U n X) n Cl*rR(X) = U n CIO*R(X).

Proof: Let U be a KX-C.I" open set, and suppose that

p e [Ex**(U n X) n Cl**R(X)] \ U. As p e (KX \ X) \ U,

which is clopen in KX \ X, there is an open subset W of KX

such that p e I'l c Ex**(U n X) and W n (KX \ X) n U = Q" As

p e C16¡R(X), there is x e W n R(X). Now W n R(X) c

Ex**(U n X) n X = U n X, so x e l¡rl n U, which is an open set

of KX. A1so, x e R(X), so l/rr n U n (KX \ X) É 0, which is a

contradiction to our choice of Vù. Then

Ex**(U n X) n CIKXR(X) c U n CIKXR(X). Since bhe reverse

i-nClUSiOn iS pl r.rarrc l-n,ra the reSUIt iS pnOVed. I

!'ie need to extend some resul-ts concerning open sets and

Þerfect compactifieations.

5.3 Lemma: Let KX e K(X). If K is a compact subset, of X,

and if U is open in X, then tEx**(U \ K)l n (fX \ X) =

(Ex**U) n (fX \ X). Hence if V is open in X, and CIX(U n V)

is compact, then (Ex*rU) n (Ct*rV) . X.

Proof : Since

Ex*r(U \ K) n (KX \ X) = Ex*¡(U n (X \ K)) n (KX \ X)

= Ex*rU n Ex*r(X \ K) n (KX \ X)

= Ex*rU n (KX \ K) n (KX \ X)

= Ex**U n (KX \ X),

the first statement i-s true "

Suppose that CIX(U n V) is compact. Sínce
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tU \ clx(U n V)l n V = 0, by 1"5 (iv), Ex**(U \ clX(U n V))

n Cl*rV = O. Then Ex**(U n (KX \ X)) n CIKXV =

Ex6¡(U \ CIX(U n V)) n (KX \ X) n CI**V = Q. I

If E is a family of open subset of X, let Ex¡ç¡E =

u{Ex**E: E , gl. The following is an immediate consequence

of 5. 3.

5.4 Corollarv: Let KX e K(X). Suppose Llnaí E is a famity

of open sets of X, and that D is open in X. If D is small-

with respecL Lo E, then

cl_r.vD n Ex,..,,8 n (KX \ X) - 0, andK]T K Ã_

Ex,,-D n (u{Clrr*,E: E e E}) n (KX \ X) = S.K'( KJ(

The equivalence of (i) and (ii) in the following theorem

appears in Theorem 1 of [Sk]; we wil-I need the equivalence

^/.\!/r..\oI (aJ and (]-]-fJ.

5.5 Theorem: Let KX e K(X), and let U, V be open in X.

Then the following are equivalent.
(i) KX is a perfect compactification of X.

(ii) If U n V = 0, then Ex**(U u V) = Ex*rU u Ex**V.

(ij-i) rf c1X(U n V) is compact, then Ex**(U u V) =

Ex*rU u Ex*rV"

Proof : (iii) impties (ii). This is obvious.

(ii) implies (iii). Since tEx**(U u V)l n X = U u V =



B2

(ExO*U u ExOrV) n X, it is sufficient to show that

Ex**(U u V) n (KX \ X) = (Ex*¡U u ExKXV) n (fX \ X).

CIX(U n V) is compact, then according to 5.3,
(Ex*tu n (KX \ x)) u (Ex*rv n (KX \ x))

= [Ex**(U\C]*(UnV)) n (KX\x)] u IEx*r(V\ctx(unV)) n (KX\X)

(as U\Cl*(UnV) and V\CIX(UnV) are disjoint open seLs of X),

= Ex*r[(U \ clx(U n V)) u ( V \ CIX(U n V))] n (KX \ X)

= Ex*,,[(U u V) \ ctx(U n V)] n (rx \ x)

= Ex**(U u V) n (KX \ X),

where the last equality follows fnom 5.3" The theorem

follows " D

If E = {E(e): o e A} is a collection of sets, then

will denote the collection of sets {u{E(er): 1 < i < n} :

{o1, oZ,...,on} is a finite subset of A}. The following
series of results will establ-ish a correspondence between

,lC.E. (nespectivety, fu]1 C.E") famil-ies and C.I"
(respectively, fu11 C.I") subsets of compactifications.

5"6 Theorem: Let KX be a perfect compacLifieation of X. If
U is a C.I" subset of KX, then there is a C.E. family E such

LhaL Ex".,,E = U"KÄ_

If

F'
L

Proof : Since U is an open subset of KX,

can choose an open set Ep of X such that
c U. Let En = {tr : n c Iïl- and E = E\.:.1 - ."p. r " "), -1-
then Cl ,,,,E c U.

l\^

foneanhnoUweY

ñ ê kv Þ' 
- 

I l k'
Y e !^I{.Y!ñ vr lzY!^rr¡\ ¡/ ¡r/\ y

Note that if E e E"
-l
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Clearly, Ex*rE = U" In order to show that E is a C.E"

family, we must construct a compact subset K of X so that if
rT ia ^nôh in X, and K c U, there is E Ê E.t and D Small Withvyvi¿ ,.,

respect Lo E such that X = U u D u E. First r¡.re construcf a

second family of open sets of X" Since U n (KX \ X) is
clopen in KX \ X, for each p e (KX \ X) \ U, r^re can choose

ây. .'rìan qat n_ of X such that p e Ex,,-D_ white ( CIrr.rD* ) n Uv'v¡¿ "p "^KX"p KX p
E.c X" LeL D, = {D^: p e (KX \ X) \ U}, and D = Ð'.,. Note

-r p -l
LL^+ :ã n ' Dl and E. e E tl'ran r''l n n Clrr-E. c X, hencevLld.v r-r u1 o _, I _1' L'rr=rl "rKX"1 rr¿ I

Cl.,r(E. n Dr) is compact. Tt follows that if D e D and]\tl

E e L, then CIX(D n E) is compact (being a finite union of

compact sets). In other words, if D. D, then D is smatl

wi th nesnect to E 
"r vvyvvv

Let K = KX \ u{Ex**A: A e E u D_\ " Then K is a compact

subset of X. Suppose that K c V, where V is open in X.

Then the collection of sets {Ex**A: A e E u D} u {Ex**V} is

an open cover of KX, so there is a finite subcollection

whose union covers KX. Then X is covered by the union of a

finite subcollection of E u D u {V}. Since E and D are

closed under fínite unions. there are sets E e E and D e D

sucht,hat X= Vu E u D. Since Dis smallwith respect to

E_, ¿. is a C.E. family. I

It is a straightforward computation to verify that if KX

= ßX, and if U is a fulI C"I. subset of ßX, then E as

defined in the proof of 5.6 is a full C.E" family. We

observe that in the proof of 5.6, the only conditions Lhat E
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is required to satisfy are that (i) for each E e E-, C1KXE c

U, and (ii) Ex6¡E = U. Thereforer w€ could have chosen E Lo

be {V: V is open in X and CIKXV c U}.

5.7 Theorem: Let KX be a perfect compactification of X, and

lef E be a C.E. family of open sets of X. Suppose thab

p e (KX \ X) \ Ex**E. Then

(i) There is a set D small with respect Lo E such that

P e Ex,'-D' hence.KÃ

/ìi\ /E- n\ n (KX \ X) = u{C1,,.,8: E E g.} n (KX \ X), and\!!/ \u^KX¿1 / rr \rr^ \ ¡Ll 
[^

( iii ) Ex,..,E is KX-C " I.r!À_

Proof : Let K be a compact subset of X which witnesses the

fact LhaL E is a C.E. family, and let p e (KX \ X) \ Ex**E.

Since p É CIKXK = K, there is an open set U of X such that

K c U, whil-e p / CIKXU" Choose D to be smafl with respecl

Lo E, and choose E e E, such that X = U u E u D. Now

X \ Cl-U c D u E, so p E KX \ Clrr.rU = Exr.".(X \ Cl.,U) c
À it.it KÄ ]f'

Exç¡(E u D) = Ex¡ç¡E u Ex¡ç¡D, where the last equality foll-ows

from 5"5" Since p y' Ex**E, it follows that p e ExKXD.

(ii) and (iii): Suppose that p e (KX \ X) \ Ex**r.

According to (i) and 5"4, there is an open set D of X such

t,hat, p e Ex*rD, and Ex*rD n (u{CI*'E: E e E}) c X. Then

Ex**E n (KX \ X) = (u{CIKXE: E e B}) n (KX \ X). Thus,

p I at**txtE*rcxå n (KX \ x) l, so (Ex*rå) n (KX \ X) is

clopen in KX \ X. !
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It follows easily from the above that, if E is a full-

C.E. family, then ExU*E is a ful-I C.I. subset of ßX.

When $ie defined a C"E. family E, we did not specify that

E is to be elosed under finite unions, although the C.E.

family ¿ constnucted in the proof of 5.6 is closed under

finite unions. The following result shows that it is not

necessary to specify this property in the definition of a

C. E. family.

5.8 Theorem: Let KX be a perfecl compactificat,ion of X, and

let E be a C.E. family of open sets of X" Then
Lr(i) E, is a C.E. family.

/-i;\ L.- F - F-- ¿oFr(11/ ux6¡4. = trx**(¿ ) "

(iii) If B is a closed subset of X, then Cl**B c Ex**E i¡
E.

and onlv if there is E e E' such that B c E.

Proof: (i) Note thaf if D is small with respect Lo E, then
Ë.D is small with respect Lo E'" It is then clear that if E

E.

is a C.E. family, ¿' is also"

(ii) If U and V are any open subsets of a space X, and

if ôX is any compactification of X, then an easy computation

shows that (Exo*U) u (Exu*V) c Exo¡(U u V) c Cl ôX(U u V) =
E' F'

CIôXU u Clu*V. Then Ex*¡ã. c Ex*XE c u{Cl**E: E E g_-} c

u{Cl**E: E e E} = Ex*rEr where the last equality follows

from 5.7 (ii), hence rx*¡4F = Ex*¡g.

(iii) Note that Exu*U u ExorV c Exu*(U u V), for any



86

compactification 6X of X, and open sets U, V of X" Hence if

lì'l ----R c trw----Æ, bV compactness there is a set E . EF such-!^KXU'vJ

that Clo,.rB c Fv ïi. i-h¡r is, ! c E" 0n the other hand, if¡..^ "^KX"
F" F'B c E, where E . E', then clKxB c CIKXE c Ex*rE' = Ex*rE,

where the last inclusion and the equality follow from 5"7

(ii), and (ii) of the present result respectivety. I

In the following results, we will assume without loss of

generality that any C.E. family is closed under finite
unions.

The correspondence between C.I. open sets and C"E"

families developed in 5"7 has an interesting form in the

special sítuations discussed below.

5"9 Proposition : Let U be an open subset of X. Then

(i) {U} is a C.E. family if and only if bdXU is compact.

(ii) Ex^-U is C.I" in ßX if and only if {V: Cl-vVþÃ ¡. Þ

C. E. family .

^/.\Proof: (i) Suppose that {U} is a C"E" family" Then by 5"7

(ii) cls¡u n (sx \ x) = Exu¡u n (ex \ x)" That is,
bd ^.rEx ^ -U = CI 

^ -bd.,U c X.
Þ1r Þ^ Þ.¿\ .À

Conversely suppose that bdXU is compact and let
K = bdXU. If K c V' where V is open in X, then

X = U u V u (X \ CIXU). Since CIX(U n (X \ CIXU)) ; 0,

{U} is a C"E. fami}y"
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(ii) Suppose LhaL u' = {V:

Then by 5"7 (iii), Exu*U' is a

equals Exu*U.

CIXV .ß UÌ is a C

C.I. set of ßX wh

H TâMI Iv

i nh ol a¡r'l r¡

0n the other hand, suppose that Exg¡U is a C.I" subsel

of ßX" According to the remark following 5.6, the family

{V: Cl.,,V 1n U} is a C.I" family" !
^Þ

If X is almost ri.mcompact, the connected componenLs of

ßX \ X have a parLicularly nice form. According to 2.14,

the connected corìponent in ßX \ X of p e ßX \ X is the set

n {Cl".rU: U is r-open in X, p e ExovU} " Indentifying theKÃ ' KÃ

connected componenLs of BX \ X in this ü¡ay al-lows us to show

directly that C(gX) is an upper semiconbinuous decomposition

of gX with certain special properties" The connected

components of BX \ X are not as easily j-dentified for an

arbitrary O-space X" Rather than working wit,h c(eX), we

will characterize 0-spaces in terms of proximity theory. We

would like to motivate this characterization by first

considering almosL rimcompact spaces from the viewpoint of

proximities.

Recall that for a ri-mcompact space X, the proximity ô

associated with FX is defined as follows: for A, B c X,

A 6 B if and only if A and B are n-separated in X. If X is

any space, define y to be a relation on P(X) as fol]ows: for

A, B c X, A ú B if and only if there is a compact subset K
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of CIXA, so that if A'is â closed subset of CIXA and A'n K

= Qr then A'and B are r-separated. For the rest of this

chapter, .¡ will be defi-ned as above.

ïf ô is as in the previous paragraph, then ö is clearly
symmetric, while it is not clear that v is symmetric. It is
not neeessârv Èn l^rrr i 'l rì crrmr4pl¡1r i nt.o t.he def initiOn Of "l .¡¡vv r¡vuvuuq¡ J vv

Recall that if KX e K(X), and p is the rel-ation on P(X)

rìefined bv (for A- B c X) A p B if and onl-v if C1,,.,4 n C1,,.,8\ ¿ v¡ .'' ¿L t -_KX.. KX

* þ, then p is a proximity on X" lrie apply this fact to

prove that if X is almost rimcompact, then y is a proximity

on X and therefore is symmetric (and satisfies the remaining

rìofinino nFôñêr.tio< nf â nFñr¿ímitr¡l
l/¿ vr!+,t,+vJ /.

5"10 Theorem : For any spac€ X, the following are

^^,,;,,^l ^-+Çqur v 4IçIl U ô

(i) X is almost rimcompact"

/;;\ ", -ia imitr¡ ^n Y\ -J-I,/ Ï -l-Þ d lJl'\J¡'lllll uJ vr¡ r! o

If y is a proximity on X, then yX = FsX.

Proof : (i) implies (ii). If X is almost rimcompact, then

by 2"19, X is a O-space and FoX \ X is relatively
0-dimensionally embedded in F oX" We will shol^I both that Y

is a proximity on X and that yX = FoX by showing that if F1

E' âFâ qrrhqote nf Y tl.ran rilr_.rF. n Cl'',.F" = O if and Only'2 "' "*FoX'l " --h'oÄ ¿

if' E. J E+r L 4 ã L 
^ 

èt¿

Suppose that Cfp,^XFt n Ç1r^XFZ = S. For each
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p e Cf - -Fn \ CI-F',, choose an r-open subset U( p) of X such' r".¿! | ¡, t'

that p t r*ro¡U(t), and Cfro*U(p) n ClpoXF2 = 0. Let, K =

ClFoXFl \u{U(p): peClFoXFl \ X}. ThenKisacompact
qrrhqat nf n] F_- .Silnno.se that F: iS a ClOSed SUbSet Of"-x.1o vuyvvov , 

¡

CIXF.t and that, Fi n K = Q. Then ClpoyFi c u{ExpoXU(R): p Ê

Cf o .rF, \ XÌ " By compactness there is a finite setr'0^ |

f n I - ll'ì F' \ Y qrrnh l-h¡l- f-'l F'tPlr PZr"" "tPnJ q 
"tFoXtl \ rr uqv¡r vrtav "tFoXtl '

u{Exo .,U(p.,): 1 < i < n}. Then Fí. u{U(p*): 1 < i < n},foÀ "l-' | "l--

which is a r-open subset of X whose closure has emply

intersection r^rith F^. In pt hen wonrì - F 1 and F ^ are
¿JvLlvL''".*'.1.

r-separated, so F1 I FZ"

Conversely, suppose that Fi I FZ, and let K be a compact

snhset nf Cl --F . wi tnessi nø this fact. Let"-x'1
p e Cl- .,F. \ Cl,,F". There is a cl-osed subset F- of Cl-Fn' !ox'l x I p Å |

suoh that. n e ñr r. an¡r (Ct"' .rF^) n K = g. Thusouvr¡ wllav v o -tFoX'p' o!¡u ! o^ rJ

p e Cl- -F^, and by our choice of K, F^ is n-separated from¡ H X ñ'r'o^ P P

F2" Since FoX is a perfecL compactification of X, according

to 2"3 (iii) and (iv), CrFoXFp n clpoxF2 = 0. Then

D é. CL^ ,,F^. and as p was arbitrarily chosen in CIF XF1,' I oÀ ¿' r oÂ
na r 

^1 
ñ

tt v¿ñ - v.FÃIFA/

(ii) implies (i). Suppose that y is a proximity on X"

We will show that Lhe proximal compactification yX

associated with v has relatively 0-dimensionally embedded

remainder, and therefore, by 2"19, thaL X is almost

rimcompact "

Note that if U is a î-open subset of X, and if A, B are
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closed subsets of X contained in U, X \ CIXU respectively,

then A and B are î-separated in X, hence A /( B. That is,
Cl--vA n Cl .rB = ô"YÀ YÀ

We noi^I claim that if U is a r-open subset of X, then

bdXU = bdrXE*yXU. For suppose that p e bdyxE*rXU \ bdXU.

Then p e Cl-yXExyXU n CtrX(X \ U) " As U is n-open in X, bdXU

is closed in yX" Hence we can choose an open subset i,ü of X

such that p e Exr¡Vrl, and Clyxhr n bdrU - 0" Since

p e Clr¡U n Exr¡lrir p e Clr¡(lri n U). Similarly,
p e Clrx(W n (X \ U)) = CIyX(1,\r n (x \ CtXU)), since

i/rl n bdrU = Q. Hence p. Clr*(trt n U) n ClyX(W n (X \ CÌXU)).

However, ClX(i/ü n U) . CfXlrl n Clr,U

c (CIXI^J) n U, while

ClX(hr n (x \ ClXU)) c ClXI,ü n CI*(X \ ClXU)

c (ClXl,\r) n (X \ U). Then ClX(hr n U) and

ClX(i,rr n (X \ CIXU)) are n-separated in X, hence

CryX(lrl n U) n Cl-rX(W n (X \ CIXU) ) = 0, which contradicts

our choice of p" Therefore bdXU = bdyxExy*U and our cl_aim

is verifÍed.

Suppose LhaL T is a closed subset of yX, and that
p e (vX \ X) \ T. Choose open sets U and V of X such LhaL

p e Ex...U, T c Ex..",V, and Cl^..rU n CI..-V = Q. Then. YÄ YÀ 'IÄ _YÅ'

ClvU I Cl-vV; let K be a compact, subset of CIVU witnessing
^À-À

this fact" Since p { K, there is a closed subset F of CIXU

q,rah tlacl- ñ . C1^..rF, and F n K = g. Then F is n-separated-*rX-
from ClvV" Choose hl to be a r-open subset of X such that

^
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F c W, and Clxhi n C1XV = ô. Then E*"XW is an sb open set of

^'v ^-r - ^1-..,F n (vX \ X) c Cl.-.'W n (yX \ X) =l^t clllLi P o -. ,^ y^

Exr*W n ('rX \ X), while T n ExyXW. (ClyXV) n (Exrr!ù) = Q"

This shows that yX \ X is relatively 0-dimensionally

embedded in yX, as required. I

A pnoximity similar to y will be defined using C.E.

families instead of n-open sets " Just as in the case of

almost rimcompact spaces, when considering 0-spaces we are

only concerned with what happens rral^Iay from compact subsetsfr

of X.

5"11 Definitions : (i) ff A, B c X, A is C.E.-separated from

B if there is a C.E" family E such that A c E for some

E e E, and Cl*(uE) n C1XB = 0 "

(ii) Let X be any space, and define o to be a relation on

P(X) as follows: for A, B c X, A d B if and only if there is

a compact subset K of CIXA, so that if A'is a cl-osed subset

of Cl.,rA, and A' n K = 0, then A' is C.E"-senanated from B.--x--, - I t

For the nest of this chapter" o will be as defined

above" hie shall prove that X is a O-space if and only if o

is a proximity on X, in which case qX = F¡X (5.15)" Unless

qr\êôifinrllr¡ sietorì in l.he fOllowing fesults o is not

assumed to be a oroximitv on X"

5.12 Lemma : Suppose that KX is a perfect compactification
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of X, and that F1, F, are closed subsets of X such that

F1 d FZ. Then if p e ClfXFt \ F1, there ís a KX-C"I" subset

U.., such thab p r U., and Cly(U^ n X) n F: = ô, hence
yP^IJa

U- n CI,,-F- = e.DK¡,¿

Proof : Suppose that F1 ú FZ; let K be a compact subset of

F1 witnessing this fact. ïf p e CI*'F,, \ F1 , then p I K, so

there is a closed subseL Fí of Fl such that p e Cl**Fi, and

Fi n K = Q. Thus p Ê clKXFi and Fí is C.E"-separated from

F2" Let E be a C.E. family such that (Cf *(uE) ) ^ F2 = ô,
. 

-aand F; c E, for some E e E" Since KX is a perfect compact-

ification of X, by 5"7 (iii), Ex**8 is C.I" in KX" Also,

p e Cl**Fi c Ex¡çXE., by 5"8 (iii), while CIr(uE) n FZ = ô,

hence Ex**E n Cl**F, = O. I

The following is an i-mmediate consequence of 5 " 12 "

5.13 Corollarv : Suppose that KX is a perfect compact-

ification of X, and that F1, FZ are closed subsets of X. If

F. ú F^" then nr F n /ar .F^ = Q"I z' v'KX''1 " "-KX .

5"14 Lemma: Suppose that e i-s a proximity on X, and that aX

is a perfect compactification of X. Then oX \ X is

O-dimensional, hence X is a 0-space and oX = FoX.

Proof : Suppose that T is a closed subset of aX \ X, and

that p e (oX \ X) \ T" !üe must find a clopen subset U of
qX \ X such that p e U, whil-e U n T = $. Now p / CloXT, so
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there exist open sets V, W of X such that, p e ExorU, CI*XT c

Exot!ü, and CI'XV n Clo*W = Q " Hence C1XV ú CI-XW" If aX i-s

a perfect compactification of X, then acconding to 5"12

there is an aX-C.I. open set UO such that p r Up, while

U,^, n C1,yl,'l = 0. Then U^ n (oX \ X) is a clopen subset of
P U^ IJ

sX \ X having the desired properti-es. n

5 " 15 Theorem : If X is any space, then the following are

equivalent "

(i) XisaO-space.
(ii) a is a proximity on X.

Furthermore, if o is a proximity on X, then aX = FoX.

Proof : (i) implies (ii). Suppose thaf X is a O-space. lrre

will prove that a i-s a proximify on X, and that oX = Fo X by

showing that if F1, F, are closed subset of X, then

CI'^XF,' n CIO 
^XFe = Q if and only if Fl d F Z"- 0" - 0..

s,,nnnca +hat Fn d Fn" Since FoX is a perfectvql.vvev 
" I ¿

compactification, according to 5"13, CfFoXFl n ClaoXF2 = g"

0n the other hand, suppose that ClFoXFl n ClFoXF2 = S.

Since FoX \ X is O-dimensional, for each p e (CtpoXFl) \ X,

there is an FoX-C"I. open set U(p) such that p e U(p) while

CIX(U(p) n X) n FZ = O. Let K = ClFoXF.t \ u{U(p): p É

Cl,, .rF, \ XÌ. Then K is a compact subset of Fn. If F; is ar oÄ I - | |

closed subset of F,, such that Fí n K = ô , then Cln 
, XFí c

u{U(p): p r ClFoXFl \ X}. By compactness, there is a finite

subset {p1rp.,...,prr} . CfFoXFi \ X such Linat, CJ_ro*Fi c
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r{Ttln \. '1 < i < n}" Now u{U(p_): 1 < i s n} is a C.I" openv(v\yil. -.'.'i,

set of FoX, so by 5"6, there is a C.E. family E of open sets

of X such that t*rox¿ = u{U(pr): 1 < i < n}" Now CIfoXFí c

Exo uE, so by 5" B (iii), there is E 6 f, crrah th¡t F', c E"! o^ '1

Al-so, since CIX(u{U(pi): 1 < i < n}) n F2 = 0, Cl¡(uE) n î2

= Q. In other words, F, is C.E. separated from FZi LhaL is,
F. ú F^"t¿

(ii) implies (i). Suppose that o is a proximity on X"

According to 5"14, to show that X is a O-space it suffi-ces

to prove that qX is a perfect compactification of X"

First, suppose that Vi and YZ ane disjoint C.I. subseLs

of ßX. If yi r Vi n (ßX \ X) (i = 1,2), we claim that

(of)(v1) z (of)(v2)" To see this, note that there are

closed subsets Fi of X such that yi e CleXFi c Vi (i = 1,2).
Ê,r¡ tr Á rì.rana exists a c" E. family E such that E*gx4 - v1¿. v

Since ClU*F., c ExUXE, by 5.8 ( iii), Fi c E, for some E e E "

Also, C1*(uE) n F2 c (ClBXV1) n Y2 = 0, so F1 is C.E.

separated from Fri that is Fl ú FZ. Then CloXFl n CI*XFZ =

o. Since (af)(vi) e CtoXFi, (of)(v1) = (ar)(v2), and our

claim is verified "

Now suppose that oX is not a perfecL

X. According to 1"5, there is P e qX \

is not connected. Write ("r)*(p) = Tr u

<-
are dis joint cl-osed subsets of ( of ) ( p ) "

onmnrnt T and T âFê disiaint anmnant'1 -2

thene Arc- ônen sets Un and U^ such LhaL-l ¿

rlÕmnâot i fi natiOn Of

X such that (or)*(p)

TZ, where T1 and Tz

Since (of)*(p) is
subsets of ßX, so

Ti c Ui (i- = 1,2),
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and ClU*U., n CIUXUe = O"

(or)*(p) c u1 , uz, there

thatpeExoXWlcClo*Wrc

lor)*[cJ-o*wrJ c ul u u2.

that, is CIXWl d (X \ I,ri2) "

5"16 Definibions : (i) ff

senârated fnom B if thereæ¿^v¡

^1 
/ * \C1*(uE-) n Cl*B = ö¡ while

/..\f.f1/ -Lr ,( t-s any space,

as follows: for A, B c X,

compact subset K of CI*A

Since of is a closed

are open sets i,\11 and

E**XW2, and ClßXW2 c

Now CloXWl n CloX(X \

^.,.¡uroP t arl\r

\IZ of X such

\lt¡t | - n.
JI^J

¿

In the following i = 1,2. Choose zL e ( of )*(p) n Ui n

CtßXVü1" According to 5"12, there are ßX-C.T. sets Si such

that ,L r Si, and Si n CIßX(X \ !rlr) = O. Now Si c Ul u UZ.

Let Sí - Si n Ui. According to 2.11, applied to the sets

cIu*u., n (sx \ x), crsxu2 n (ex \ x) and si n (ßx 1 x),

Sí n (ex \ x) is clopen in ßX \ X. In other words, Si is at'

C.I. subset of BX. Also ,i e Si, i = 1,2, white Sí n Sá c

Ul n UZ = O. It follows from our earlier claim that
(of)(v.t ) z (or)(vr), which contradicts the faeL thaf

zi , ( of )*(p) . Thus ( of )* (p) is connected for each

p e oX \ X, hence oX is a perfect compacfification of X. !

The correspondence between full C. I " sets and ful-I C " E.

families that Ís outlined in the remarks followine 5.6 and

5"7 allows us to characLerize full- 0-spaces"

A, B c X, then A is full-y C "E.

is a full C.E. family E such that,

A c E for some E e E"

define o' to be a relation on p(X)

A ú B if and only if there is a

so that if A' is a closed subset of
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CI.,A, and A' n K = 0, then A.' is full-y C.E" separated from
À

B.

Then results 5.12 - 5"15 hold, if in the statements and

proofs of the results, ttC. E " 
tt , trC.I . rr , rf ctt, and tf 0-spacett

are replaced byttfull C.E"ft, rrfull- C.I.rr, tto'tt, and tfful1

0-spacert respectively, Ieaving us with the following

characterization of full 0-spaces.

q 1'7 Thonr.om . Tf Y ie ân\¡ qnârìê t.hcn t.L^ f'^'l 1^.'-i*-J.'t ..- -ne rorrowrng are

anrri r¡al onfvYs¿

(i) X is a full O-=p."".

(ii) s.' is a proximity on X.

If o, is a proximity on X, then oX = FoX"

Example 1.34 is a full O-space which is not almost

rimcompact" lrle do not have an example of a O-space whieh is

not full- this question is left open to the reader.

Recall that a closed subset F of X is regular closed in

X if ClrintrF = F. The following result is 2"4 of [Wo].

5"19 Lemma : If A is a regular closed subset of X, B is

o'l nseri in X- and Ct^-A \ A c Cl^-B \ B, then Cl-(A \ B) is"' -*ßx-- --ßx- --x'--
pseudocompact.

5,20 Proposition ; Let U be open in X. If ExU*U is C"I. in
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ßX, and p € bdu*(ExurU) n (BX 1 X), then there is a closed

pseudocompact subset F of X such that p e C1U¡F.

Þnnnr ' Rr¡ o osumption Exo,.U n ( ßX \ X) is clopen in ßX \ X.."Jqvç5¡¡¡rv+v¡¡-..8À'

I\Tnj-a thal- h/ì (F- rT'\ \ v - [Cl^_U \ EX^_U] \ X" If"*BX\U^BX',, \ lL Þ^ É,t

' (r-r Ir \ Ex^.,U) \ X, there exists a neprrrlar e'losedy t a"tßX" t 
Or, 

¡çr ç E^f ùUù é- ¡ v6urqr vrvuv

subset V of X such that p e ExUrV, while (CIU*V) n ExU¡U c

X" Leb B = X \ U" Then ClßXV n (BX \ X) c ßX \ ExU*U =

Cl-o.,,8" According to 5"19, Cl..(V \ B) is a pseudocompactÞÄ it.

subset of X" Now CI'(V \ B) = Cl¡(V n U), and it is easily
checked that p e CIßX(V n U)" The proposition follows" !

5"21 Corollarv: Suppose X is a space in which pseudocompacL

closed subsets are compacL" If X is a ful1 O-space, then X

is almost rimcomoact.

Proof : Suppose that pseudocompact closed subsets of X are

compact. It follows from 5.20 that if ExUtU is any full

C"I" subset of ßX, then bdUrExU*U c X. This implies that

any connected component of ÊX \ X having a basis in ßX of

ful-l- C.ï. sets has a basis of open sets whose boundaries are

contained in X" In other words, if X is a fuIl O-space,

then by 2"19, X is almost rimcompact" !

5.22 Corollarv : If X is realcompacL, or metacompact, then X

is a full O-space if and only if X is almost rimcompact.

Bv s'liEhtlv EenerâlizinE scìmÞ nf t.he nncviouspJ ur¿ó¡¡ vf J óvr¡v¡ sr¡4¿r¡õ r.. "
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definitions, we can determine, in terms of the proximity ô

associated with a compactification ôX, wheLher ôX is larger

than some 0.I. comoactification of X.

5"23 Def initions : (i) Let K1X, KZX e .((X), with KtX t K2X,

rnrl lat f'. td f, + K.X denote the natural maÞ. Then K^X iS.'1 
¿ 

r¡quu¡ or - ¿

nenfe ot r^ri th nesnect t.n K .X i f f*ln) i s connected for eachvvr ¡vvv vrrv¡¡ r vuVvvv vv I\./t rr ¡ \ V/ !ù

P e KrX"

(ii) Let ô be a proximity on X. A family E of open sets of

X is C"E. wibh respect to ô, (denoted by ô-C.8") if E is

C.E. and also satisfies: for E e E, there is E1 e E such

that E" Ã (x \ E^)"t¿'
(iii) ff A, B c X, then A is ô-C"E. separated from B if

there is a ô-C"E. family E such that ClX(uE) n Cl*B - 0,

while A c E fon some E e E.

(iv) If X is any space, define oô to be a rel-ation on p(X)

as follows: for A, B c X, A oô B if and only if there is a

compact subset K of C1XA such that if A' is a elosed subset

of Cl.rA, and A' n K = 0r then A' is ô-C.E- senâraterì from B.À

If ôX is l:noon thqn qome 0"I" compactification of X,

then Lhere is a maximal 0.I" compactification smaller than

ðX, denoted by F(ôX). According to an argument in [Mcl,

F( ôX ) i-s perf ect with respect to 6X" The proof of 5 "5 (when

modified slightly) also yields the following.

5"24 Theorem : Suppose that KX, ôX e ,((X), and tlnal U, V are



99

open in X. Then the following are equivalent"

(i) KX is perfect with respect to ôX"

(if) If U n V = 0, and ExurU u ExorV = ExôX(U u V), then

ExOrU u Ex*rV = Ex*r(U u V).

(iii) If CfX(U n V) is compact, and Exo¡U u Exu¡V =

Exor(U u V), then Ex**U u Ex**V = Ex*r(U u V).

The following result is analogous to 5 "7, but requires a

stightty differenb method of proof.

5"25 Theorem Suppose that KX, ôX e ((X)r that KX is perfect

with respect to 6X, and that E is a ô-C"E" family. Let

p e (xx \ X) \ Ex**E. Then

(i) there is a set D smalt with respect to E such that
p e Ex,,-D, hence'Á^

rii\ Fv E a (fX \ X) = (uf nr E'. tr. F,]) n (KX \ X) and\¿f / "^KX¿L rr \¡\/\ \ r\/ - \u ( "-KX". ! u 4

(iii) Ex,,,,E is C.I. in KX.t\À-

Proof : (i) Let E be a ô-C.E. family, and suppose that, p É

(fx \ X) \ Ex,,-E. As in the proof of 5"7, v¡e can find a seLKit-

D small with respecL Lo [, and E e å such that

p e Ex,,-(E u D) " It is sufficient to show LhaL if D is' t\^

small with respecL Lo E, then Exur(E u D) = Exu*E u ExorD.

As KX is perfeet with respecL to 6X, 5"24 then implies that

Ex,,-(E u D) = E.- tr tt É-v D" As p É Exn t n c Fv----ll , and-..KXr- ' e' - u^KX! " "^KX. - rrX"r P " "^KX"'
(i) is proved.

Suppose LhaL for some E e E_, there is a point
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p e Ex^*,(E u D) \ (Ex^.,,E u Ex,-D). By 1.4 (v),
' 0À- oÄ 0Å

p e CIOXE n ClôXD" Since E is a ô-C"8" family, there exists

E1 e E such that Clo*E c ExôXE., . Then (6X \ X) n Exo*E., n

Cl-^-D a 0, contradicting 5"4" Hence if D is small withoÃ

rêsnêrlt to tr- and if E e E_, it follows that Ex^.,r(E u D) =vvs-t-:r---ÒX.-

Exo*E u ExurD. As in the proof of 5"7, (ii) and (iii)

follow from ( i) . I

Then 5.6, 5.8 and 5"12 5"15 are true if in the

statements and proofs, ItC.E.fr, ttC.I.tt, rrperfectrt, and trott

are replaced by tf 6-c"8. tt, trôx-c.I. tt, rf perfecL with respect

to ôXtt , and tto.tt respectively. This leads to bhe f o1J-owing

resul t .

tr, 26 Tlronnam Let ôx e K(x ) . The forrowing are equivalent.æ
(i) 6X is larger than some 0.I. compactification of X.

(ii) oô is a proximity on X.

If o¡ is a proximity on X, then dr = F(oX).ö'ô
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CHAPTBR 6

CLOSED MAPS ON O-SPACES

In this chapter we consider t,he following question :

ïf f: X + J is a closed fiâpr and if X and Y are 0-spaces,

under what condit,ions on X, Y and/or f will f extend to
t-tç' v Ea v)?

é Þ v\r'0Atr 0r?

We begin by summarizi-ng the known results on fhis

question. In Lemma 1 of tlil it is shown that if
f e C(X,[0,1]), and the set {y e [0,1] : f*(y) contains a

eomnaet set K such that X \ K can be written as U u V.wher"ert

U, V are n-open in X and U c f*[O,yJ, while I c f*[y,1J] is
dense in [0,1], then f extends to g e C[FoX,[0,i]). An

âFc¡ì]mêrì1- i n tho nnnnf nf TheOf em 3 Of I M"] ShOWS that iflJt vvr v¡ f ¡¡vvr vrrr J v¡ a.r,

f : X -+ Y is closed, X and Y are rimcompact and bdxf*( y) is

compact for each y t Yr then f extends to g e C(FX,FY).

This result is used to prove Theorem 5 of tM2l which states

that if f : X * Y is a closed mao. and if X and T are

locaIIy compact and paracompact, then f extends bo

g e C(FX,FY)" In Theorem 4 of [No] it is shown that the

paracompactness of X and Y can be weakened to meta-

^^mnân'l-naqqvv¡¡¡vqv

fn the sequel, if X is a O-space (respectively,

rimcompact) then oX (respectively uX) will denote the
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proximity on X inducing F¡X (respectively, FX)" !'le show in

6"3 that if X is a O-space and Y is rimcompact, then a

cl-osed map f : X * Y extends to g e C(F9X,FY) if and only if
for any distinct pair of points y, z e Y, f*(y) FX f*(").
lrie apply this resul-t to several particular classes of

spaces. In particular we show in 6"11 that if X is a

metacompact 0-space, Y is a rimcompact quotient space of a

locaIly eompact space, and f : X -+ Y is a closed ilâpr then f
extends to g e C(FoX,FY). Note that si-nce the closed image

of a metacompaet spaee is metacompact, Y is necessarily

metaeompact "

The following, which is Lemma 1 of t SI(l , will simplify

the oroofs of several resul-ts.

6"1 Lemma : Suppose that the compactification 0X associated

with the proximity 0 on X is a perfect compactification of

X, and that A, B are disjoint subsets of X. Then A e B if
anrì on'lv if hd,,A 0 bd,,B."*x" - -*x-'

I,üe use without mention bhe fact that if 0X is a compact-

ification of X associated with the proximity 0 on X, then

A 0 B if and only if CI'XA n ClrrB É O (see Chapter 1). In

the following, if f : X + Y is a ilâp¡ the natural map of ßX

into ßY extending f is denoted by ßf.

6.2 Definition : A map f : X * Y is a lrlZ-map if Cl"',rf-(y) =8À
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( er)*(y) for each y e Y.

Theorems 1.1, 'l .2 and 1.3 of [tw] show that a closed map

is a WZ-map, and bhat the converse is true if either X is

normalr or bdxf*(y) is compact for each y e y.

Suppose that f : X -o Y is a ftâp, and that 0X, yY are

compactifications of X and Y associated wibh the pnoximities

0 and y respectively" Recall that f extends to g E C(oX,yY)

if and only if for C, D c Y, C I D implies f*l}f ø f*[D]
(see Chapter 1)" Suppose that Y is rimcompact, that eX is a

nerfect eômnâctification of X and that f : X * Y is a

WZ-map" The following result states that to show that f

extends to g e C(0X,FY), it suffices to show LhaL
++.f tcl ú f [D], where C and D are singleton subsets of Y.

6-? Theor"em : Snnnose thaf. Y is nimcomnaot.. anrì t,h,al. f is a

lrlZ-map from a space X into Y. If o X is a perfect

compactification of X, then the following are equivalent "

(i) f extends to g e C(oX,FY).

(ii) For any distinct pair of points y, z e Y,

f+(rr\ d +-u(o\r \J./ p L \L/.

(iii) If f*(y) is complet,ely separated in X from a subset B

of X, then r*(y) I B"

+"Proof: (i) implies (iii). If B c X, and f (y) is
eomn'ì et.e 'l w sênânaterì f rom B, then Cl-^.,f*( V) n Cl^.,8 = q.4vvv¿J 

Þ¿. 
\r/ -*ßX-

SinCe f iS a !nl7-mârr lll ---f* 
+

,tL-Lra-,, -,ßX, (V) = (ßf) (V). Then y =
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(ßf)t(er)*(y)l é (øf)tclexBl = clßyfIB], hence y dy ftBl.

Thus if f extends to g e C(0X,FY), f*(y) ø B.

(iii) implies (ii). Suppose that V, z aye distincr
points of Y. Then f*(y) and fu(r) are completely separated

in x, hence r*(y) ø f*(z).

(ii) implies (f ) . We wish to show t,hat if C, þ c Y and

C fly D, then f*[c] ø f*[D]. It is easy to show that if Y is
ni mnnmnanl- then C ø v D if and only if C and D are contained

in î-open sets of Y whose closures in Y are disjoint. It
then suffices to show that if C and D are disjoint closed

subsets of Y with compact boundaries in Y, then
44t'lc) É f'tDt.

hie claim that (ii) implies the following statement : if

C is a closed subset of Y with compact boundary, and

y e y \ c, then r*(y) ø r*tcl. rf y e y \ c, then y / bdyc.

Hence if z e bdyc, (ii) implies that r*(y) ø f*(z). Then

there i s ân ônên set. II( z.\ of X such that r-l --f*f o \ cvr¡v¡ v ru qr¡ vyçr¡ ùçe v\Ll ur ^ ùuL;ri vL!a.v \/_Lox1 \¿, 1

Ex^.,U(z). white Cl^.,U(z) n Cl^--f*(rr) = ö. As-"0x-'-" --0x-' ' \r/ - Y

z^ar*r- raf \r raf \ .r ^?¡ \¡0f )'tExurU(z)J c ExU*U(z), it fol_lows that Clurf'(z) c

Exuru(z). since f is a wZ-map, clßxf*(z) = ( er)*(z). The

map Bf is elosed, henee there is an open set V(z) of ßY such

that (or¡*1r¡ c (gf )*tY(z)l c. ExurU(z). Let lrr(z) =

v(z) n Y. Then f*(z) . r*tw(z)l . rJ(z), and so f*[bd.rcJ c

u{f*t!ri(z)l i z € bdyc}. It follows that bdyc c

u{W(z): z e bdyC}" As bdyC is compacL, there is a finite

subset lzn ozn. - I - h/'r ,C such that bd.,C c
I ¿).. 

o ran, "*Y" 
Dqu¡¡ vLtav v' 

I
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u{!ri(zr): 1 < i
u{f*[Vrr(zr)J: 1

f*(y) ø u(zr),
f*[ bdrc], f*(y)
t*(y) ø f*[c],

< nÌ" Then f*[ndrc] .
< i < n] c u{U(zr): 1 < i <

f*(y) ø u{u(zr): 1 s i < n}"

n Ì. Since

As bdxf*[c] c

from 6"1 thatd hrl-f*l-CI- It then fo1towsP vuxr LvJc

and the claim is proved.

Suppose then that C and D are disjoint closed subsets of

Y whose boundaries are compact. ff p e bdrD, then p é C,

hence r*(p) ø f*[c]. Then there is an open set U.(p) of X

such that crexf*(p) c Exr*U., (l), and f*[c] n cru*u.,(R) = Q.

From an argument essentially identical to that in the

preceding paragraph, where f*(y) is replaced by f*[C]

f ott-ows that bdïf*lD ] I r*lcl " Thus by 6, 1 r*tu I ø f

and the theorem i-s proved. !

Tt is an easy exercise to show that Lemma 1 of I D,

follows from the fact that 6.3 (ii) implies 6"3 (i).

t Lv

€T^a
LUJ,

AJ-thoughb the conclusions of 6.3

hypothesi-zed function f is a !üZ-map,

it r^re will assume that f is a closed

cl-osed map is a hlZ-map.

hold whenever the

i n ôìrra a nnl i eations of

mîn Aq nnt orl ^h^"^rfro}/. nD rlvuç!¡ d,LJ\.'VC t Õ.

6.4 Theorem: Suppose that X is a O-space, Y is rimcompact

and f : X -+ Y is a WZ-map. Then the following are

^^,,-i -,^''t ^-+çv uf v d._LEtl L/ .

(i) f is closed, and extends to g e C(FoX,FY).

(ii) f is closed, and for any distinct pair of points



106

Y, z E Y, f*(y) &x tu(z) "

(iii) ff B is a closed subset of X, y e Y and f*(y) n B = 0,
4

then f (y) úX B.

If in additiOn Y -i q ni manr¡nar:f. - t.ho nt eViOUS COnditions are

equivalent to
(iv) For each y . Y, f*(y) has a neighbourhood basis in X

of r-open sets of X.

Proof : It follows from 6"3 that (ii) impties (i).

(i) implies (ii). Suppose that y t Y, that B is closed

in X, and that f*(y) n B = Q. Since f is a cl-osed fiâp,

there is an open set v of Y such that f*(y). f*[V]. X \ B.

Then y ßy U \ V. Since f extends to g e C(F6X,FY),

f*lw\ ¿- r*ry \ Vl = X \ f*tVl. Thus ¡*r"t -r Dr \J/ ,X L Lr \ vJ = ^ \ r LvJ" LIIuÞ r \J) @X Ð"

(iii) implies (ii). Tf y and z are distinct points of
<-<-<-4Y, then f (V) n f (z) = ô, hence f (V) úX f (z)" We show

that f is a closed map by showing that if S c Y, and f*[ S] .

U, where U is open in X, then there is an open set V of Y

such that f*[S]. f*[V]. U. If y. S, then f*(y) n (X \ U)

= Q, hence f*(y) d* X \ U. Then CIBXf*(y) n CIßX(X \ U) =

'-^t+'.,1 - ¡l r+/.,\- s-inne f is a WZ-map, and as ßfA. AS \þr) (y/ = tl-ßXr \Y/r Ðlrruç r rù

i-s a closed mâp r it fol-l-ows that there is an open seL V(y)

of ßY such that (ßf)*(v) c (Br)*iv(y)l . Exu*u. Then f*(y)
<--c f.tV(y) n Yl c ExU*U n X = U. If V = u{V(y) n Y: y e Si,

then V is open in Y, and f*[S] = u{r*(y): y e S} c

u{f*tv(y) n YJ: y e S} = f*[V] c U. Thus f is closed.
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If X is rimcompact then (iii) and (iv) are clearly
+equivalent since if X is 

"iroo*pr"t,, then f (V) FXB if and
€

only if f (V) and B are n-separated in X" I

Example 4"12 shows that the hypotheses of 6.4 do not
imn'ì r¡ fh¡i- Y iq nimnnmnanl-¡ tr¡¡vv¡¡¡l/qv v o

6.5 Corollary : Suppose that X, Y are rimcompact, and that
f : X -+ Y is a closed map" If f extends to g e C(FX,FY),

then g*(y) = n{clr*u: u is r-open in x and f*(y) . u} for

each y e Y"

Proof: Since f is closed, if y e Y then by 4.20
+- <-CIFXf (V)" If p e FX \ CfFXf (y), then Lhere is

set B of X such that p e C1r*8, and B n f*(y) = S. It

follows from 6.4 that there is a t-oDen set U of X such that
€f (V) c U, and (Cl*U) n B = 0. Then by 2"3 (iii) and (iv),

^*rt"\ - nr f* t \ -g (yl = urFxr' (y) c Exr*U' while CIFXU n Clr*B = 0 " Thus

J 11 lT T+ F^ì I ^,.^ +l^^r ^- /--\ - ^J^r rl. rr i -y È vrFxu. tt follows that g*(y) = n{Ctr*U: U is n-open in
X and f*(y) . UÌ. Since the reverse inclusi-on ctearly
holds, the statement is proved. I

6"6 Definition z LeL It = {U

seLs of X. A subseb F of X

finite subset A' of A such

: 0 e A] be a
0

i q //-anmnenf_"Æ

t,hat F c u{Uo:

(v) =

close d

collection of open

if there exists a

g € A J"

o

ð"

o. lr rneorem

O-space and

Letf:X*Y

is rimcompact "
I

be a WZ-map, where X is a

Suppose LhaL for any open
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cover u of X, y(U) is a discrete subspace of Y, where

Y(u) = {y e Y: bdxf*(y) is not u-compact}.

If either f is a'ìosed- or" X is nimaomnaot flTan ? avr-6¡6ts tor ¿rr¡vvr¡¡yuu u t

g e C(FoX,FY).

Proof: Aceording to 6.3, it suffices to show that if y and

z a?e distinct points of Y, then f*(y) Éx f*(z)" Choose

Vr z e Y such that y / z" Let V be an open subset of Y such

that y e V, while z I ClyV. Then f*(y). f*[V], and

f*(z) n f*[Clrrv] = Q. Iirre define an open coven U of X in the
<-<-followinø wâv. If x e f ICt,,V]" then x ø-, f (z)" so there¿ Lv*Y._' 

^

is an open set U(x) of X sueh that x e U(x), and
+<-<-f (z) dx U(x). If x e X \ f tclyvl, then x ø.x f (y), so

there is an open set V(x) of X such that x e V(x) and

f*(y) dx v(x). we define ïJ = {u(x): x e f*[clvv]] u

' <-tcr.,Vl Ì. which is an oÐen cover "; x.{V(x): x L t lctyvl}, which is an open c

ìr^{-^ +r^^+ o*ry) n tu{v(x): x / f*[cI*,v]]l = o =rrvus vLrav f \J/ il LUlv\^/.

fu(z) n tu{u(x): x e f*[c]-vl]1"
a

Let y(u) = { y e Y: bdxf<-(y) is noL Il-eompact} . If

y I Y(u), then bdvf*(y) c u{U(xr): 1 < i < n}, whereÀ a'

l*1,*2,...,xn] c r*tctrvl. since f*(") /x u{u(xr): 1si<n},

it follows from 6.1 that f*(y) du fu(z), and t,he theorem is

proved. Now suppose that y , ,<¿1. By assumption Y(U) is a

discrete subset of Y, hence there is a î-open set !ü of Y

.qunh t.hat v e W c V, and Clvhl n Y(¿¡) = {y}. If p e bd.,rhi,J - "- l 
J J " vuY..,

then p d y(U) so there is an open set U'(p) of X which is a

finite union of elements of Il such that ¡0,.f*(p) c U'(p) and



109

\ , ^*,U'(p) Éu f (z)" It follows from 6.1, the choice of u and

the ,"o, that Fo X is a perfect, compacbifj-cation of X, that
<-there is an open set w(p) of X such that f (p) c W(p) and

lrl(p) øv t*(z). If X is rimcompact, w(p) can be chosen Lo be

a n-op"n subset of X.

We claim LhaL there is an open set !,1'(p) of Y such t,hat,
<-<-f (p) c f t!'I'(p)l c W(p)" This is obvious if f is a closed

map. Suppose that X is rimcompact, and that hI(p) is î-open

in X" Since f is a hlZ-map, it fol-Iows f rom 2.3 ( iii ) that
r'pe\+r'^\ - r-r --f*(.,) c Ex .,!ü(p). Since Bf is a closed ffiâpr\Pr / \Y/ - "-ßX. \P/ "^ßX

we can again find the desired open set W'(p) of Y, and the

c]aim is true "

Then f*iUOrWi c u{f*t!'l'(p) l: p e bdrhr} , so bdrW c

u{lri'(p): p e bdrlri}. Since bdyiiü is compact, there is a

finita qof f -.,Þ^,.. ",Þ_- ] c bd_,!rl such that bd.,!rl c!Y,l rrzt---rrn' I I

u{t,u'(nr): 1 < i < n}. Then r*tuorwJ c u{f*tw'(lr)J: 1<isni

c u{trr(pr): 1 < i s n}. As f*(z) Fx w(pi), and bdxf*llrr].
fo¡bd.,!rl1 , it fol-l-ows t,hat fu(z\ d,.. bd.-f*[i,rl]. Thus by 6"1*Y"" ! \4, "x ""x'
f*(z) úx f*[hr]. since f*(y) . f*[tnl], fu(=) dx f*(y) and the

theorem is proved. I

The next result is a special case of 6.7.

6"8 Corollarv : Suppose

where X is a O-space and
.<-{v e Y: bd.,f (v) is not

thatf:X-+Yisa

Y i s ri moomnact .

compact Ì. Ir Yn

n'l nqarl mân

Let Y^ =U

is a discrete
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subspace of Y, then f extends to g e C(FoX,FY).

As mentioned in our summary of known results, it is
shown in IM.] that if X is rimcomnact and the set Y- defined-"J- -0

in 6. B is empty, then the conclusions of 6. B ho1d .

A space X is a k-sÞace if a subset F of X is closed if

and only if F n K is compact for each compact subset K of X.

rt is well known that a space x is a k-space if and only if
X is the quotient of a IocaIIy compact space, and that any

first countable space is a k-space.

The fotlowing are 1.3 of [Rr] and 7.2 (d) of IIw]
respectively.

6.9 Proposition: Suppose that Y is a k-space, and that f is

a closed map from a space X into Y" If U is any

point-finite open cover of X, and y(U) = {y e Y: f*(y)) is
not U-compactÌ, then Y(U) is a cl-osed discrete subspace of

6.10 Proposition : Suppose that X is tocally compact and

realcompact, and thaf f is a closed map from X into a space

Y. If Y^ = {y E Y: f*(y) is not compact}, then Y^ is aU'-U
closed discrete subsoace of Y"

lrie point ouL that although the normality of X is
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included as a hypothesis in 7 .2 of I IwJ , it is not required

in the proof of 7 "2 (d).

The following shows that the requirement that X be

locally compact in Theorem 4 of INo] is not necessary.

6"11 Theorem: Suppose that, Y is a rimcompact k-space, and

that X is either (i) Iocally compact and realcompact; or

(ii) a metacompact O-space. If f : X -+ Y is a cl-osed flâp,

then f extends to g e C(FoX,FY)"

Proof : In the case where X is realeompact and locatly

compact, the theorem follows immediately from 6"8 and 6.10.

If X is a metacompact O-space, and U is any open cover

nf X ohnnsc V Lo he a noirt r'':-':+ nefinement of U.Ur Lt UriuvÐç , vv vv @ yvrrlt/-I -Lll-Lt/Ë (JPçfl I çl rLlclllçItU v.

Clearly Y(U) c Y(v) , where Y(Y) and Y(li ) are as in 6.9 " The

theorem then follows from 6"8 and 6.9" I

We now consi-der closed maps into q-spaces" If x r X,

then rr ie ¡ n-nnint nf Y if there eXiStS A SeqUenge {Nj i{-n,sæv¡'l-LLr|,

of neighborhoods of x such +r^^+ :F - N*, forur.lcl u rr 
^i 

r 
-a.

i e Ne and i z j implies that xi t x;, then the set
-U

{xr: i e If} has an accumulation point in X. A space X is a

O-Snâce if Frrêhr¡ nninl nf Y is a o-noint Of X.l¿_-__=_¿l_=_y.Y_ ¿r vv-LLtw vL v-vvrrrv

Clearly any first counLable or locally countably compact

space is a q-space " An example of a countably compact space



I l¿

which is not a k-space is outlined in 1.10 of [Bu]" The

following example shows that a k-space need not be a

u -ò L,rd.ug .

6.12 Example : Let X be the quolient space R/lNìt " Since X

is the quotient of a locally compact space, X is a k-space,

lrle show that {Irl} is not a q-point of X. Leb { Un: n e 1v} be

a sequence of open neighbourhoods of N in X. For each

n e N , Iet V._ be an open i-nterval_ of bhe fonm ( n-r - n+r- ), n \r¡ ¡llrr¡,rnl

which is contained in Un. If =n = (n+rn)/Z, for each rì,

then =n . Urr, and sn = "* if n I il, but {sn: n e Iüi has no

accumulation ooint in X. n

A subset F of a space X is relativelv pseudocompact in X

if fon each f e C(X), f is bounded on F. Foltowing the

terminology of [IwJ, we say that a subset F of X has

propertv (*l if inf{f(x): x e F} > 0 for each f e C(X) whích

iq nncitir¡o ^rì F" It is pOinted Out in IIw] that ayvv !

pseudocompact subset of X has property (*), and that a

subset with property (*) is relativety pseudocompact.

^ 
1e Tìafìnìir',¡¡ : A subseL F of a space X has propertV (#*)v. 'J

if fon ânv noinL-finite collection U = {IT. û c al nfr¿ rvr qr¡J yvJ-I.lt -I l-fllue UUI UO I u s At OI Open

sets of X covering F, there is a finite subset A'of A such

that F c u{Cf.,U : 0 e A'}.
J\0

6.14 Lemma : If a subset F of a space X has propert,y (**),
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then F has property (*)"

Proof: Let f e C(X) such thab f is positive on F. If g =

f ¡ 1, then g is positive on F, and inf{g(x): x e F}

inf{f(x): x e F}. For n e N l-et U(n) = g (1/(n+Z),1/n).
Then {U(n): n e il} is a point-finite collection of open sets

of X which covers F" Since F has property (**), there is a

finite subset {n., ,n 2t " " " rn^} of N such that F c
u{Cl*,U(n*): 1 < i < n}. If m = max{n,"n^,..."11 }. then F cJt 1' ---1'--2'---' m''
g*[1/(n+2),1],henceinf{f(x):XeF}>inf{e(x):XeF}>

0. Thus F has nronertv (s)" I

It is shown in 2"1 of tMil that if
mân- ¡nd \¡ c Y is a .t-nnini- af Y fhanJ " ¡, u¡¡vr¡

rel-atively pseudocompact" It follows

remarks preceding 6 " 13, that t,he next

this fact.

f: +Yisacl-osed

l-/.1 F /*,\ -,'^Lruxr \y/ r-Þ

fnom 6^1U- and the

result generali-zes

{-

^

ïf

15 Proposition : Suppose that f : X + Y is a cl_osed map.

V e Y iS a o-noint of Y- t. 1^^- r-r r.ut..\ has nronertv (*,S).J - y-yv+rrv vI r, UIIçIj Lruxt \ J / l¡eÐ yr vvçt vJ \

Proof : Let U = {Uo: s e A} be a point-f inite col-lection of
open sets of X covering bdxf*(y) . Since f is a cl_osed frâp,

and f*(y). intrf*(y) u (u{Uo: c E A}), there is an onen ser.

V of Y such that f*(y) . f*[ cl,rv] c int.rf*(y) u¡.Ã
(u{U : o e A}\ Tar f N I -- he â seônenoê nf ônêng , v (¡ri, 

i_eil 
vv q uvYuur¡vç v¡ vlJçr¡

neighbourhoods of y in Y witnessing the fact, that y is a

n-nni nt. nf Y If M= = N. ñ Vu then {M, : i e À/i witnessesY' ,,i - ,'i I
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the fact that y is a q-point of Y" Suppose that for any

finite subset A' of A, UO*f*(y) ç u{ClrAo: o e A'}. üle witl
construct inductively a closed discrete set {xr: i e Nl of X

such that xi e f*[Mrl for each i, and f(xr) = f(xr) implies

that i = j. Let x1 e bdXf*(y). Suppose we have chosen xi,
for i < n, such that *i , f*[Mr] and f(xr) = f(xr) i-f i r i.
Let An = {o e A: *i e Uo, i < i < n}. Since I/ is a point-

finite collection of subsets of X, lArrl < ûr. Hence
<--norf (v) É u{C1*Ao: o e An}. Let Vn =

I f*[ Mn ] n ( x \ u { ct xA o : o. An } ) I \ t f* t f (x ,) , f ( x 
3 

) , . . . , f ( x 
n ) J J .

Since f(xi) * y if i > 1 by our inductive hypothesis, Vn is
a non-emntv onên srhsef. ofl X which intersects b.l ,,f*( v) .s r¡vr¡-v]r¡lJuJ vyvr¡ "*x. \J

Hence there is a point Xn , Vn \ f*(y). Clearty r(xn) I

f(xi) for i < n.

lrle claim that {xa: i e ll/} is a cl-osed di-screte subspace

of X. Since {xa}ir, c CIXf*tVl \ int*f (v), Ctr{xr: i e fi}

c ClXf*[V] \ intxf<-(y) c u{Uo: a e A}. If x e Cl*f*tVl , let

V* = u{Uo: x e Uo}" If V* n {xr: i e /f} = 0, then

x / C1*{x.: i e À/}. If V* n {x.: i e tr} î þ, choose

x. e V n {x.: i e t}. Then {x,x.} c U^ for some o e 4..."
J r J 0 J+l

Þr¡ ^r'h jnÀ,ratir¡a l.rr¡nntl.racig, {X_r: i e N and i > j}uJ vu¡ rr¡uuvu¿vu r¡Jyvvrrvu!r

n [u{U-: o, e A.,r}] = 0, hence U is a neighbourhood of x ino J+r 0

X such that Uo n {x.: i e Nl c {*1,*2 rj}. Thus

x / CIy{xi: i e Itl}, and the claim is proved.

Since f is a closed ßâpr every subset of f [ {xr: i e 1ü} ]

is a c]osed discrete subset of Y. This contradicts the faeL
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that sÍnce f(xr) e Ni, and f(xr) * f(xi) if í ¿ i,

{ f (x, ) : i e ,t1/} has an accumulation poilt i-n Y. Thus

^{ , \ . ^-bdxf (y) c u{ClXUo: c e A'} for some finite subset A.of A,

and so UO*f*(y¡ has property (**). !

Trie now have the followine.

6"16 Theorem : Suppose that Y is ri-mcompact, and that the
qot v nf nnn o-noints of Y is diScrete in Y. If f : X * YY-yvrr¡ vu va

is elosed, where X is (i) a metacompact O-space or (ii) a

naal nnmnant O-qnrno thon f ewtanrlq i-n a ^tn t' ñr'\
o E U\rsÃ¡f Ii"

Proof : If y / YO, then by 6.15, bdxf*(y) has propert,y (#*).

If X is realcomoact. then it follows from 6"14 and the

remarks preceding 6"13, LhaL bdXf*(y) is conpact, since any

relatively pseudocompact subset of a realcompact space is
eomnact- hv BE.1 of tGJl"

We show that if X is metacompact, and bdxf*(y) has

property (**), then bdXf<-(y) is compact. According to

178"1, 17K.2 and 17K"3 of [hli], it suffices to show that if
V = {V^.: o e A} is a collection of open sets of X such thaf

0

^4ruotf (v) c u{Vo: o e A}, then there is a finite sub-

collection of V whose closures cover UArf*(y). Let i/ be

such a collection. Then tr/' = V u {int*f*(y), X \ f*(y)} is
an open cover of X. Choose W Lo be a point-finite open

refinement of V'. Then I/ = {W e Lz !{ n bdyf*(y) I O} is a

point-finite refinement of V which covers bdXf-(y). Since
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bdXf*(y) has property (#*), there is a finite subcollect,ion

of tJ whose closures cover bdyf*(y). Since u refines tr/,

there is a finite subcolle"tion of V whose closures cover
n*, \ hr n*, \ .bdXf (y)" Thus bdXf (y) is compact.

It follows that if Yl = {yeT: bdxf*(y) is not compact},

then Y1 c YO, hence Y1 is a discrete subspace of X" Thus by

6.8, f extends to g e C(FoX,FY). !

There are examples of maps of rimcompact spaces which do

not extend to maps of the respective Freundenbhal

compactifications. The following is Example 1 of tNol.

a --6"1T Example: Let X = @r x f, and let Y = f. Then X is
locally compact and Y is compact. Let f be the projection

map from X onto Y. Then f is an open map. Sinee o¡ is

countably compact, f is also closed. However FX is the

one-point compactification of urr X I. Clearly f does not

ovionrì tn c¡ " C.(FY Tlv^vvrru ó e v\¡ ¿r91/.

ïn facL, if X is any eountably compact O-space such that
gX \ X is not 0-dimensional, there exists fe C(X,[0,1]) such

tha,t f does not exLend to g e C(FX, [0, 1] ) " For any bounded

conti-nuous real-valued function on X is closed " Thus if X

is not Ce-embedded in FoX, (ie" if FoX * ßX), there is a

closed function from X into I whieh does not extend over

Fo X. This is noL true if r¡countably compactrt is weakened to

trpseudocompacttf , Tn the following Ê is any maximal almost
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rìi s ini nt no'ì'l ectin

pseudocompact, for

of subsets of N " Recall thaf 1t/

any such collection .R "

uRis

6.18 Theorem : Let

ânv snâôê. Then Y

g e C(F(1r¡ u,?),FY)

Proof: First note

cl-osed subset of /t/

finite subset of it¡

in N u -8" Since f
hence has a basis

f:NuE*Ybe

is O-dimensional

e n'l nscrl mân - where Y is

, and f extends to

that if y e Y \ ftÆ], then f (V) is a

u fr contained in N, hence f'(y) is a

+"u F contained in N " Then f (V) is open

iq r ntlntiant n'laf arl in \f--,.; fiâP, y l-s lsora Leo J-n J. ,

of ol one n srrhggf g of Y.

Since Æ is a closed discrete subset of /l/ u R, and f is a

closed ftâpr ft4l is a closed discrete subset of Y. Suppose

that y e ft8l \ T, where T is cl-osed in Y. Then there is an

open subset U of Y such that y É U, U n T = ô, and U n ft&l

= {y}. Choose V to be open in Y such that y e V c ClyV c U"

Then bdyv c Y \ ftÆ1. Since each point of bdyv is isol-ated

in Y, bdvv is open in Y, hence Cl-.,V is open in Y" Thus Cl--V.II'I

is a n]nnon "ubset of Y such that y e ClrrV and (Cl",V) n T =r _ "-I' '_rI.'

0. It follows that Y is O-dimensional. Then f extends to
g e C(ßo(fl u Ã),ßoY)" Since Bo(tr u Ã) = F(lti u Ã) and ßoY =

FY, the theorem follows. I

It is well known that if f : X -+ Y is a map, where X and

Y are O-dimensional, then f extends to g e C(FX,FY) =

C( eo X, B o Y) " The following generalizes this fact,.
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6.19 Theorem : Suppose that X is a space, Y is O-dimensional-

and KX is a perfect compactification of X" If f : X -+ Y is

a map, Lhen f extends to g € C(KX,ßoY).

Proof : Subsets C and D of Y have disjoint closures in ß o Y

if and only if C and D are contained in disjoint clopen

subsets U and Y \ U of Y respectively. Since f*[U],
f*[Y \ U] are then disjoint clopen subsets of X, and KX is a

perfect compactification of X, it follows that
<-<-<-+r,'r {' rlf-l ^ 1-r f rY \ Tf I = $. Then Cl ,, f rrr-ì ^ ¡r f ID] =ttKxt LUJ ll \/-LKXf Lr \ vJ - rrx' Lvr rr vrKX.

ö; thus by 1.1, f extends to g e C(KX,ßoY)" !

+
6.20 Definition : A map f : X + Y is monotone if f (V) is
connected for eaeh y e Y.

The following ansr^rers a question communicated verbally

to R" G. lrioods (Topology Conference, 1980) by D. Bellamy.

6"21 Theorem : Let f : X * Y be a monotone quotient Í]âpr and

let KX, KY be perfect compactifications of X and Y

respectivety" If f extends to g e C(KX,KY), then g is
monotone "

Proof: Suppose that there is p e KY such that g*(p) is not

connected. lririte g*(p) = Gt u GZ, where Gt and GZ are

disjoint closed subsets of g*(p). Since g*(p) is compact,

Gr and G, are disjoint compact subsets of KX; hence there
tt
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are open sets Ut and U, of X such that Gi c E*KXUi,

(i = 1,2) and Cl*tU.t n C1KXU2 = g. Since g is a closed Dâp,

there is an open set V of Y such that g*(p). g*[V].
E*KXUI , E**XU2. Let Wi = g*[V] n Ui = f*[V n y] n U.i,
(j- = 1,2) " Then hl1 and Vl2 are dis joint open subsets of X,

and Wl u WZ = f*[V n Y]. Since f*(y) is connected for each

y E Y, W. = ¡*r 1I I fnn <^ñô SUbSet V. Of Y, ( i = 112) .r - "i "'i, I
Since f is a quotient mâpr Vi is open in Y (i = 1,2). Then

V n Y - Vn u V-, while Vn ¡ V. = 0. It follows from 1.5 (i)| ¿' | ¿
a f .. \ I ) aand (ii), and '1 "6 t,hat p e Ex*rV = ExfyVl u ExKyV2, while

Ex¡çyV1 n Ex¡çyV, = 0. Suppose without loss of generality
f h¡l- n r Fv V.. Since g*[Exr.rrvrl is an open subset Of KXY " "^KY''l " - rtr I

<-_+++containing f'IV1], e'(p) . C tEx^rV., J c E*KXf'tV1J = Ex*rirl.,

c E*KXU1, which contradicts the fact that
+*-g (p) n ExXXUZ I O. Thus g (p) is connected for each

p e KY.

6 " 22 Corol-1arl¡ : Suppose

0-dimensional. ïf there

intn v than X iS almOSt¡t

homeomorphic to FY \ Y.

Lhat X is a O-space and Y is
i s e ncr.f ent. mon ot.one mâ n f rOm

rimcompact and FoX \ X is

Proof : Let f : X + Y be a perfect monotone map. Then f
extends Lo g e C(F0X,FY) by 6.19. Since f is perfect,

^*F ç.v \ v-r - ró L!¿ \ rJ -.toX \ X" As f is monotone, it folfows from
<-6.21 that g (v) is connected for each y E FY \ Y" Since

FoX \ X is O-dimensional, and g*(y). F0X \ X, ls*(y)l = 1.

Thus BlpoX\X : FoX \ X + Fl \ Y is a closed contj-nuous
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one-to-one flâp, hence g is a homeomorphism" The fact that X

is almost rimcornpact follows from 4.11. !

Example 4.9 shows that the perfect monotone preimage X

of a O-dimensional space need not be a O-space, while

Example \.12 shows that even if X is a O-space, X need not

be rimcompact.
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