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Abstract

In this thesis I extend a class of grammars called conjunctive grammars to a

stochastic form called stochastic conjunctive grammars. This extension allows the

grammars to predict pseudoknotted RNA secondary structure. Since observing sec-

ondary structure is hard and expensive to do with today’s technology, there is a need

for computational solutions to this problem. A conjunctive grammar can handle

pseudoknotted structure because of the way one sequence is generated by combining

multiple parse trees.

I create several grammars that are designed to predict pseudoknotted RNA sec-

ondary structure. One grammar is designed to predict all types of pseudoknots and

the others are made to only predict a pseudoknot called H-type. These grammars are

trained and tested and the results are collected. I am able to obtain a sensitivity of

over 75% and a specificity of over 89% on H-type pseudoknots.
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Chapter 1

Introduction

Biologists study a macromolecule called ribonucleic acid (RNA), one of whose pri-

mary functions is to be a messenger for another macromolecule called deoxyribonu-

cleic acid (DNA). RNA is made up of nucleotides held together by a ribose-phosphate

backbone.

However, RNA may have other functions besides messenger RNA, and in some of

these cases, the secondary structure is important. Nucleotides in a strand of RNA

will bond together to form base pairs. The forming of these base pairs will cause

the RNA strand to fold on itself. This folded structure is referred to as secondary

structure. An example of RNA secondary structure is seen in Figure 1.1.

Predicting the secondary structure of RNA is an important problem for biolo-

gists, because the structure of RNA will affect its function. An important group

of structures are called pseudoknots, an example of one which can be seen in Fig-

ure 1.2. As an example, these structures have been linked to RNA strands such as

those in viruses [Brierley et al., 2007]. Being able to predict pseudoknotted secondary

2
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Figure 1.1: This structure is known as a hairpin. The thick black line is the backbone

of the RNA and the dotted lines are the bonds in the secondary structure. More

information about secondary structure is given in Section 2.1

Figure 1.2: This pseudoknotted structure is known as a kissing hairpin; just like in

Figure 1.1, the thick black line is the backbone of the RNA and the dotted lines are

the bonds in the secondary structure. This structure is pseudoknotted because the

two loops at the end of each stem have formed bonds with each other.

structure would allow biologists to have a better understanding of these strands.

From a computational perspective, predicting RNA secondary structure is the fol-
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lowing problem: given a sequence of nucleotides (primary structure), find the most

likely combination of bonds (secondary structure) for the sequence. Since observing

secondary structure is time consuming to do with today’s technology, there is a need

for computational solutions to this problem. Techniques such as dynamic program-

ming (Rivas and Eddy [1999], Akutsu [2000] and Jabbari et al. [2008]) or machine

learning (Sakakibara et al. [1994], Rivas and Eddy [2000] and Fang et al. [2008]) have

been applied to attempt to solve this problem.

Predicting RNA secondary structure has been shown to be NP-hard [Akutsu,

2000]. This means that the problem is at least as hard as the hardest NP-complete

problem. NP-complete problems have no known polynomial-time algorithms. These

problems can however have theoretical solutions in the form of powerful and nonde-

terministic models of computation.

The prediction of RNA pseudoknotted secondary structure has no known polynomial-

time algorithm. However, there is a constrained version of predicting RNA secondary

structure that can be solved in polynomial time. By restricting allowable solutions to

secondary structures that do not contain pseudoknots, the computational complexity

of RNA secondary structure prediction is greatly reduced. This turns a NP-hard form

of RNA secondary structure prediction into a form that can be solved with a simple

dynamic programming algorithm. An example of a pseudoknotted structure can be

seen in Figure 1.2. In the thesis I consider the more general secondary structure

prediction problem, in which pseudoknots are permitted.

In this thesis, I will use grammars to predict the pseudoknotted secondary struc-

ture of RNA. A grammar is a mathematical model that can be used to assign struc-
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ture to a sequence [Linz, 2006]. Grammars work by rewriting special symbols call

non-terminals using a set of rules called productions. By assigning probabilities to

each production, grammars can to trained to find the most probable structure for

a sequence. The probabilities that are assigned will be based on many examples of

structure that the grammar is meant to predict, which is why the process is called

training. When a grammar has probabilities assigned to its productions the grammar

is called stochastic [Durbin et al., 1998]. When a stochastic grammar is developed

and trained to solve a problem, the technique is a form of machine learning [Bildi

and Brunak, 2001]. Machine learning with grammars is a very powerful tool when

applied to prediction problems in bioinfomatics, as seen in Sakakibara et al. [1994],

Rivas and Eddy [2000] and Fang et al. [2008] just to mention a few.

A Stochastic Context-Free Grammar (SCFG) is the stochastic form of a Context-

Free Grammar (CFG) (CFG, see Section 2.2.1). SCFGs can be used to predict

pseudoknot-free RNA secondary structure [Durbin et al., 1998]. However, they are

not powerful enough to solve the problem of predicting pseudoknotted RNA secondary

structure. This is in part because CFGs are unable to handle cross dependencies which

are needed to represent pseudoknots.

CFGs can be expanded to handle cross dependencies. There have been many

suggested generalization of CFGs but in my thesis I use Conjunctive Grammars

(CG) Okhotin [2001]. These grammars are similar to CFGs, except that they have

rules in place that will allow strings to be “anded” together (i.e., intersected). The

ability to “and” will make this class of grammars more powerful than CFGs. In this

thesis, I define a model called Stochastic Conjunctive Grammars (SCG) which are a
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stochastic form of Conjunctive Grammars. I use this powerful model to predict pseu-

doknotted RNA secondary structure. A SCG can be applied to solve this problem

because of the way one sequence is generated by combining multiple parse trees.

In my thesis I use a SCG to predict the pseudoknotted secondary structure of

RNA. I design several different grammars to predict the structure. The first gram-

mar is similar to SCFGs that have been used to predict pseudoknot-free secondary

structure [Durbin et al., 1998]. Then productions are added to the grammar so it can

handle pseudoknots.

I test this grammar using all the RNA pseudoknotted sequences in a database

called pseudoBase++ Taufer et al. [2009]. This database is a collection of 304 pseu-

doknotted RNA sequences with known secondary structures. Testing on all types

of pseudoknots was done in the hopes that this grammar could successfully predict

pseudoknots.

This grammar did not yield the results that were desired so new grammars were

designed. The new grammars that I designed would only predict H-type pseudoknots

(see the example in Figure 1.3). This is the most common type of pseudoknot, with

236 out of 304 RNA sequences in pseudoBase++ having only this type of pseudoknot.

These new grammars were designed based on statistics about 235 of the 236 H-type

pseudoknots (one sequence was excluded). The statistics that were gathered were

parts of a hairpin structure. I called these parts prefix, stem, loop and suffix (an

example can be seen in Figure 1.4). These new grammars yield much better results

than the first grammar to predict RNA pseudoknotted secondary structure. I was

able to obtain a sensitivity of over 75% and a specificity of over 89% on H-type
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pseudoknots.

Figure 1.3: This is an example of a H-Type; just like in Figure 1.1, the thick black

line is the backbone of the RNA and the dotted lines are the bonds in the secondary

structure. This structure is pseudoknotted because the tail after the stem will form

bonds with the loop of the hairpin.
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P
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Figure 1.4: This shows how I break down a hairpin into its parts to allow for statistic

gathering.



Chapter 2

Background

2.1 Biology

Ribonucleic acid (RNA) is a single-stranded sequence of four different nucleotides,

adenine (A), cytosine (C), guanine (G), or uracil (U). RNA can be viewed as a

sequence of elements from the alphabet {U , G, C, A}. The sequence of nucleotides

held together by a ribose-phosphate backbone is called the primary structure, an

example of which seen in Figure 2.1.

A A G G G C UA U UUCAG A CGGG

Figure 2.1: The thick black line is the ribose-phosphate backbone, and the circles

with the letters in them represent the nucleotides.

The nucleotides in a RNA strand will bond to each other, forming base pairs in

the strand of RNA. The bonds that occur will form most commonly in a Watson-

9



Chapter 2: Background 10

Crick matter. This is named after the two researchers who first observed this bond

pattern Watson and Crick [1953]. They made their original discovery on DNA but

the principle can be applied to RNA as well. They observed that a purine, which

are A and G, will need to bond with a particular pyrimidine, which are U and C.

In particular, A will bond to U and G will bond to C. Another bond which is

also common is the bond between G and U ; this bond it sometime referred to as a

“wobble” bond.

For bonds to form, the RNA strand will have to fold on itself. This folded structure

is known as the secondary structure (an example of which is seen in Figure 2.2).

A A G G G C UA U UUCAG A CGGG

Figure 2.2: The thick black line is the ribose-phosphate backbone, and the circles

with the letters in them represent the nucleotides. The thin dotted lines represent

the base pairs.

Secondary structure can be either pseudoknot-free, which means it has only nested

base pairs, or pseudoknotted, which means it includes non-nested base pairs. Each

base pair is represented by a pair (i,j) which represents that nucleotides in positions

i and j of the strand have bonded together. Base pairs are nested if, when (i,j) and

(i
′
,j

′
) are bonds then
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a) i < i
′
< j

′
< j;

b) i
′
< i < j < j

′
;

c) j
′
< i

′
< i < j;

d) or j < i < i
′
< j

′
.

Thus a pseudoknotted structure contains bonds (i,j) and (i
′
,j

′
) where

a) i
′
< i < j

′
< j;

b) i < i
′
< j < j

′
;

c) j
′
< i < i

′
< j;

d) or j < i
′
< i < j

′
.

Secondary structure has been well examined over the years and is nicely defined by

Nowakowski and Tinoco, Jr. [1997]. They define the types of secondary structures

that can be formed: stems, hairpins, bulges, internal loops, H-type pseudoknots,

kissing hairpins and hairpin loop-bulge contacts. These structures can be seen in

Figures 2.3 and 2.4.

2.2 Grammars

Grammars are mathematical structures that use productions, non-terminals and

terminals to generate a sequence of terminal symbols. Productions are rules that

will involve rewriting one non-terminal with a string of non-terminals and terminals.

Non-terminal symbols can be rewritten by a production rule. A terminal symbol can
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(a) Hairpin (b) Hairpin Flat

(c) H-type

(d) H-type Flat

Figure 2.3: (a) A pseudoknot-free structure known as a hairpin. The thick black

line is the backbone of the RNA and the dotted lines are the bonds in the secondary

structure. (b) A hairpin structure if the backbone is pulled flat. (c) A pseudoknotted

structure known as a H-type pseudoknot. The thick black line is the backbone of the

RNA and the dotted lines are the bonds in the secondary structure. (d) A H-type

structure if the backbone is pulled flat.
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(a) Stem (b) Bulge

(c) Internal loops (d) Kissing hairpins

(e) Hairpin loop-bulge contacts

Figure 2.4: (a,b,c) Other pseudoknot-free structures. (d,e) Other pseudoknotted

structures.
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not be rewritten and will be part of the terminal sequence that is being generated by

the grammar. Grammars are used when a sequence has a structure that associates

with a sequence.

2.2.1 Context-Free Grammar

A Context-Free Grammar (CFG) G can be described as a four-tuple G = (Σ, N ,

R, S) where

• Σ is the set of terminal symbols,

• N is the set of non-terminal symbols,

• R is the set of all the productions for the grammar. The productions are written

as A→ α where α ∈ (Σ ∪N)∗, i.e., α is a string of terminals and non-terminals,

• S ∈ N is the start symbol.

These productions will have one non-terminal producing a string of non-terminal

and terminal elements. These productions will be represented by one non-terminal

on the left hand side of an→ symbol and the string it will produce on the right hand

side. If a non-terminal can produce more the one string, each of the strings will be

on the right hand side and separated by a | symbol.

These productions will be applied by rewriting a non-terminal element by one of

the strings on the right hand side of its production. The rewriting of a non-terminal

will be represented by a ⇒ symbol. When several of these rewritings are combined

together it is known as a derivation. A derivation will start with the start symbol of a

grammar and begin by rewriting that symbol. A derivation will continue until there
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are no more non-terminals to be rewritten. All possible sequences that a grammar can

produce are generated by a derivation starting with the start symbol. An example of

a derivation can be seem in Equation 2.1. For Equation 2.1 the four-tuple G = (Σ,

N , R ,S) will be

• Σ = {a, u, c, g } (These nucleotides have been switched to lower case letters so

they will not get confused with the non-terminals which are upper case.)

• N = {S}

• R = {S → aSu|uSa|cSg|gSc|uS|aS|cS|gS|a|u|c|g }

• S ∈ N is the start symbol.

The following example uses the grammar G to generate the sequence aaggagcuu.

This is just one possible derivation for this sequence, and it is easy to see that other

derivations would be possible.

S (use S → aSu)

⇒ aSu (use S → aSu)

⇒ aaSuu (use S → gSc)

⇒ aagScuu (use S → gS)

⇒ aagaScuu (use S → aS)

⇒ aaggaScuu (use S → g)

⇒ aaggagcuu

(2.1)

Another example is given in Equation 2.2.
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S (use S → aS)

⇒ aS (use S → aSu)

⇒ aaSu (use S → gS)

⇒ aagSu (use S → Su)

⇒ aagSuu (use S → gSc)

⇒ aaggScuu (use S → aS)

⇒ aaggaScuu (use S → g)

⇒ aaggagcuu

(2.2)

A derivation can be represented as seen in Equations 2.1 and 2.2. Another repre-

sentation is a parse tree; this is a tree structure where non-terminal symbols translate

to nodes with children and terminal symbols translate to leaf nodes. An example of

a parse tree is is seen in Figure 2.5.

The parse tree in Figure 2.5 shows how a derivation will translate to a parse

tree. A better example of how parse trees translate to secondary structure is seen

in Figure 2.6. Note how the tree’s structure is very similar to the RNA secondary

structure. If a line were drawn connecting the leaf nodes, it would be the backbone of

the secondary structure. If you then removed all the productions that only produced

one terminal, and replaced the productions that produced two terminals with a dotted

line between the terminals, these three steps would transform the parse tree into the

secondary structure given by the derivation.

By extending a CFG to a SCFG it is able to learn how to solve problems. This is

possible because a stochastic grammar can have probabilities assigned to its produc-

tions based on other examples. A SCFG will be the same as a CFG but each of the
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S

a

S

g c

S

g

S

ug

S

a u

S

a

S

Figure 2.5: In this parse tree the non-terminal symbols are represented by the dia-

mond nodes and the terminal symbols are represented by the oval nodes. This parse

tree is a representation of the derivation in Equation 2.2. If the leaf nodes are read

from left to right it will be the same as the sequence generated in Equation 2.2.

productions for a SCFG will have a probability associated to it. Also, if probabilities

were assigned, Equations 2.1 and 2.2 would likely have different probabilities and one

parse would be more likely to form than the other.

The concept of a stochastic grammar will be explained more in the next section.

It is briefly mentioned in this section to demonstrate how the converting of a non-

stochastic class of grammars to a stochastic class of grammars has been done before.
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(a) Parse Tree

c
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a

ggg a
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a

ccc

a

(b) Traced Parse Tree

Figure 2.6: (a) A parse tree representation of the secondary structure of RNA se-

quence. (b) The secondary structure of the same sequence in part (a).
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2.2.2 Conjunctive Grammar

There is a more powerful class of grammars known as Conjunctive Grammars

(CG). This class of grammars is more powerful because they will have the ability to

use cross dependencies which are important to predict pseudoknotted RNA secondary

structure. As defined by Okhotin [2001], a CG is a four-tuple G =(Σ, N , P , S) where

• Σ is the set of terminal symbols.

• N is the set of non-terminal symbols.

• P is the set of rules for the grammar. The productions are written as A→ α1

& . . . & αn where n ≥ 1 and αi ∈ (Σ ∪N)∗. Each αi is called a conjunct in the

production (if X → α is a production with α = α1&α2& . . .&αn then we use

the shorthand αi ∈ α to mean that αi is a conjunct in α).

• S ∈ N is the start symbol.

The & symbol denotes conjunction or intersection, which means that the parsing

of each αi must have one word in common. In CGs, A → α1&. . .&αn means A

is rewritten by (α1&. . .&αn) and that all deviations by αi must lead to the same

terminal word or the entire deviation is unsuccessful. If at any point two conjuncts

being “anded” together are not the same sequence of terminal symbols then the whole

derivation is invalid.

In the same way as a CFG was extended to a SCFG, I have extended a CG to

an SCG. I now introduce one of the main contribution of this thesis: a Stochastic

Conjunctive Grammar G is a five-tuple G = (Σ, N, P,Φ, S) where,
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• Σ is the set of terminal symbols,

• N is the set of non-terminal symbols,

• P is the set of productions for the grammar. The productions are written as

A→ α1 & . . . & αn where n ≥ 1 and αi ∈ (Σ ∪N)∗,

• Φ : P → [0, 1]. Φ associates a probability to each production. For each A ∈ N ,

let PA ⊆ P be the set of all productions with A on the left-hand side; then we

require that Φ satisfies
∑
r∈PA

Φ(r) = 1 for all A ∈ N ,

• S ∈ N is the start symbol.

Just like a CG, SCGs have a & symbol; this symbol will allow the grammar

to “and” conjuncts together. Assigning probabilities is important when dealing with

machine learning because a string can have many parse trees to derive it. It is possible

for these parse trees to have very different structure so when probabilities are applied

it is possible to see which parse tree is the most likely.

Below is an example of a SCG. On the left are the non-terminals and on the right

is the string they can generate, followed by their probabilities in brackets.
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S → A&BC (p = 1)

A→ cA (p = .45)

A→ bA (p = .45)

A→ ε (p = .1)

B → bB (p = .75)

B → ε (p = .25)

C → cB (p = .75)

C → ε (p = .25)

(2.3)

I will introduce some necessary definitions around the concept of derivations. A

sentential form is a string over (Σ ∪N ∪&)∗. Just like with CFGs, the ⇒ symbol

indicates that one sentential form can derive another sentential form by a production

in P . The symbol ⇒∗ will represent that by starting with the symbol on the left

hand side and preforming a derivation, the sequence on the right hand side will be

generated.

The examples below will attempt to derive the word bbbcc and will use a non-

stochastic form of the grammar that is given above (this means it is given without

probabilities). The four-tuple G = (Σ, N,R, S) is

• Σ = {a, u, c, g}

• N = {S,A,B,C}

• R = Productions in Equation 2.3

• S ∈ N is the start symbol.
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S

⇒ A&BC

⇒ bA&BC

⇒ bbA&BC

⇒ bbbA&BC

⇒ bbbcA&BC

⇒ bbbccA&BC

⇒ bbbcc&BC

⇒ bbbcc&bBC

⇒ bbbcc&bbBC

⇒ bbbcc&bbbBC

⇒ bbbcc&bbbC

⇒ bbbcc&bbbcC

⇒ bbbcc&bbbccC

⇒ bbbcc&bbbcc

⇒ bbbcc

(2.4)

The above derivation is successful because both conjuncts are bbbcc in the second

last step. It is also possible to have an invalid derivation as well; consider the following
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derivation.

S

⇒ A&BC

⇒ bA&BC

⇒ bbA&BC

⇒ bbbA&BC

⇒ bbbcA&BC

⇒ bbbccA&BC

⇒ bbbcc&BC

⇒ bbbcc&bBC

⇒ bbbcc&bbBC

⇒ bbbcc&bbbBC

⇒ bbbcc&bbbC

⇒ bbbcc&bbbcC

⇒ bbbcc&bbbc

⇒ invalid

(2.5)

The above derivation is unsuccessful because, in the second last step, one conjunct

is bbbcc and the other is bbbc, which are not equal.

The following derivation is the same as the Equation 2.4 but with probabilities

being applied. It will have the following five-tuple:

• Σ = {a, u, c, g}

• N = {S, A, B, C}

• R = Productions in Equation 2.3
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• Φ = Probabilities for the productions in Equation 2.3

• S ∈ N is the start symbol.

S

⇒ A&BC (p = 1)

⇒ bA&BC (p = .45)

⇒ bbA&BC (p = .2025)

⇒ bbbA&BC (p = .091125)

⇒ bbbcA&BC (p = .04100625)

⇒ bbbccA&BC (p = .01845281)

⇒ bbbcc&BC (p = .00184528)

⇒ bbbcc&bBC (p = .00138396)

⇒ bbbcc&bbBC (p = .00103797)

⇒ bbbcc&bbbBC (p = .00077848)

⇒ bbbcc&bbbC (p = .00019462)

⇒ bbbcc&bbbcC (p = .00014596)

⇒ bbbcc&bbbccC (p = .00010947)

⇒ bbbcc&bbbcc (p = .00002737)

⇒ bbbcc (p = .00002737)

(2.6)

The above derivation is the same as Equation 2.4 but with probabilities being

applied. Whenever a non-terminal is rewritten, the derivation’s current probability

is multiplied by the probability of the new production being written in. Since a

probability is assigned to the whole production, when simplifying the & symbol the
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probability is not affected (i.e., when going from the second last to last step the

probability remains at .00002737). The final sequence is bbbcc and the probability of

the generating this sequence is .00002737.

Probabilities that are used for SCGs will get very small. Multiplying them over

and over again will create smaller and smaller numbers. This will cause problems of

underflow; to deal with the issue of multiplying probabilities, log odds will be used.

This means that the logarithm of the probabilities will be used and they will be

summed instead of being multiplied. Log odds are negative numbers, where a lower

value corresponds to a smaller probability.

Parse trees can be used to represent CG or SCG derivations (an example of a

CG parse tree is seen in Figure 2.7). The only difference between a stochastic parse

tree and a non-stochastic parse tree is that there would be a probability assigned to

the tree once the parse is finished. For a CG parse tree there are some additional

rules that are added so that the parse trees can handle more than one conjunct. It

is important when there is more then one conjunct that the leaf nodes are used in

the same order for each conjunct. If the leaf nodes are not used in the same order it

would be a representation of an invalid derivation.

An example of a CG parse tree is seen in Figure 2.8. It is harder to see the link

between parse tree and secondary structure than with Figure 2.6. Note how the top

tree only generates stems on the round brackets and the bottom tree generates the

square brackets.
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b bb c cS
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Figure 2.7: This parse tree is a representation of the derivation in Equation 2.4. The

children of the diamond shaped node will each represent a different conjunct.
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Figure 2.8: This parse tree will start at S. The tree above the sequence will generate

one structure and the tree below will generate another structure. When both of

these structures are combined it will generate an H-type pseudoknot. Since this is

pseudoknotted it will have non-nested brackets; these non-nested brackets will be

represented by different bracket types, either a round bracket or a square bracket.

Note how the two trees do not generate the stems in the same spots. I have removed

labels of the internal nodes for clarity.
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Related Work

Applying stochastic grammars to solve the problem of predicting RNA secondary

structure has been used for many years. An early example of the use of a stochastic

grammar for solving the problem of predicting RNA secondary structure is an algo-

rithm that was designed by Sakakibara et al. [1994]. Their algorithm was developed

to address the shortcomings that Hidden Markov Models (HMM) had when trying to

predict the secondary structure of RNA.

HMMs are computational models that have a starting state and several other

states. For a more complete introduction to HMMs see the text by Durbin et al.

[1998]. Each state in an HMM will have a set of emissions that it can produce. The

chance of transiting from one state to another will be governed by values called the

transition probabilities. What emission each state will make from the alphabet is

governed by a separate emission probability. HMMs do not lend themselves to RNA

secondary structure prediction because when predicting stems in RNA secondary

structure, the nucleotides in both portions of the strand need to be able to bond.

28
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HMMs work in a very sequential way, which means they are unable to predict these

bonds.

RNA secondary structure prediction is a problem for HMMs but it is easily imple-

mented when using a grammar to solve the problem. This is because grammars are

able to have productions such as A→ aBu, which is a good representation of a single

base pair. The algorithm that was designed by Sakakibara et al. [1994] used a SCFG

to predict the secondary structure of RNA. They focused on only predicting transfer

RNA (tRNA) because of its simple and well known structure. tRNA will form a

cloverleaf pattern with three hairpins that are joined together. Their grammar had

75 non-terminals and 660 productions and it was trained with folded RNA sequences.

The grammar was trained using the CYK algorithm which is well-described in Durbin

et al. [1998]. The CYK algorithm is a common algorithm to use when training with

labelled training data.

The algorithm of Sakakibara et al. [1994] is unable to predict pseudoknotted sec-

ondary structure because a context-free grammar can only represent nested structures

and pseudoknots are non-nested. However this algorithm does successfully predict

pseudoknot-free secondary structure of tRNA 93% of the time.

Another model that was developed at the same time was a covariance model

by Eddy and Durbin [1994]. This model will use phylogenetic information in the

form of multiple sequence alignments to aid in the prediction of RNA secondary

structure. This model is closer to an HMM than it is to a SCFG. It is able to make

predictions based on pairwise information. This is due to a complex architecture of

this model which incorporates base pairs and allows the model to bifurcate. This will
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allow the model to build a tree-like structure.

Just like with the model built by Sakakibara et al. [1994], the covariance model

of Eddy and Durbin [1994] also predicted RNA secondary structure of tRNA. This

model was able to predict the tRNA secondary structure with an accuracy of over

90%.

Other algorithms have been developed to improve the pseudoknot-free secondary

structure predicting power of SCFGs. One example of this kind of algorithm is a

profile-SCFG that was developed by Fang et al. [2008]. This model not only used a

SCFG but also used two HMMs to aid in predicting of secondary structure. It used

the HMMs so that it could incorporate phylogenetic information to make a profile.

A profile is a structure that represents the probability of a certain nucleotide being

in a certain location in a strand of RNA. A HMM will build a profile by comparing

several strands of RNA that are phylogenetically related, and build its emission prob-

abilities based on the multiple strands. It will look at all the nucleotides in position i

of a multiple sequence alignment for each strand and then those counts will be used

for the emission probabilities for state i in the profile. Transition probabilities are

computed based on the gaps in the multiple sequence alignment.

The algorithm designed by Fang et al. [2008] was able not only to make predic-

tions based on the input RNA sequence but it can also make predictions based on

phylogenetic information. This will allow their algorithm to make better predictions

overall.

Although neither Sakakibara et al.’s nor Fang et al.’s algorithms were able to

predict pseudoknotted secondary structure, there have been many algorithms that
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have been developed to do so. Both dynamic programming and stochastic models

have been applied to this problem. However, Sakakibara [2005] defended the idea

that there are significant advantages to using grammatical inference when solving

biological problems. These include the grammar’s ability to provide a framework to

solve a sequence analysis problem, and then being trained so they can learn details

about the problem. This will make for a powerful tool for solving biological problems.

A SCFG is not powerful enough to predict RNA pseudoknotted secondary struc-

ture so researchers have made many models that will extend a SCFG to make it

suitable to solve this problem. Rivas and Eddy [2000] developed a class of grammars

that was able to parse a tree that could represent RNA secondary structure that in-

cludes pseudoknots. The class of grammars was called crossed-interaction grammars,

because it had extra non-terminals that would allow for interactions in the grammars.

These grammars were able to represent the structure but were not built to be stochas-

tic like SCGs, proposed in this thesis, so they were not able to solve the problem of

predicting RNA secondary structure. Since Rivas and Eddy [2000] did not make their

grammars stochastic they do not have any experimental results to compare against

my results.

Another example of using grammars to predict pseudoknotted structures is a

model that was developed by Cai et al. [2003]. Their solution to this problem was to

use a model called parallel communication grammar systems (PCGS). PCGSs are able

to run several SCFGs at once in parallel. Communication between the parallel SCFG

allows them to build an RNA secondary structure that can include pseudoknots.

These grammars can communicate because there is a special non-terminal symbol
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called a query symbol. This will allow multiple grammars to all work together on the

same sequence. Their test used 85 sequences to test their results; 42 were used for

training and 43 were intended for testing. For various reasons (5 pairs of sequences had

the identical pseudoknot and 2 sequences did not have to right type of pseudoknot)

their testing size was reduced to 36. They claimed that their model was able to

predict pseudoknots with a 69% accuracy.

A more advanced profile-HMM method, developed by Yoon and Vaidyanathan

[2008], is a profile-csHMM. This method constructs a profile for a strand of RNA

but does so in a way that considers that nucleotides must bond in a Watson-Crick

manner. Two new states are created in the profile-csHMM, one that can push onto

a stack to affect the probability of future states, and one that can pop off a stack, so

its probability can be affected by past states. These new states allow this model to

assign probability to stems more accurately than a profile-HMM. This will allow it

to make a profile that is more based on structure and less on the sequence alone.

The result of the Yoon and Vaidyanathan [2008] model was very successful, having

accuracy for some groups of RNA sequences of up to 97%. This model has the

shortcoming of only being able to predict pseudoknotted secondary structure on RNA

after building a profile on a group of RNA that is phylogenetically related. On the

other hand, the model that is used in this thesis will be able to predict pseudoknotted

secondary structure of all RNA or for a specific pseudoknot type. This will make my

model much more versatile than the model used in Yoon and Vaidyanathan [2008].

Another class of grammars that has the ability to predict pseudoknotted secondary

structure is a tree adjoining grammar (TAG). This model works by building up a



Chapter 3: Related Work 33

parse tree by adding on more trees to a start tree. This class of grammars was

generalized by Uemura et al. [1999] to construct two classes of grammars called simple

linear tree adjoining grammars and extended linear tree adjoining grammars. These

classes of grammars are not stochastic so instead of having probabilities assigned

based on training, they make predictions based on minimal free energy. Free energy

is a measurement that is used to test the stability of a folded RNA strand. The

algorithms that parse these classes of grammars will run inO(n4) time for simple linear

tree adjoining grammars and O(n5) time for extended simple linear tree adjoining

grammars. No actual experimental results were given in Uemura et al. [1999] but they

did state that there were no large mismatches in the predictions by their grammars.

A faster parsing algorithm for extended linear tree adjoining grammars was designed

by Rajasekaran et al. [2010], reducing the run time to O(n4).

Using phylogenetically related sequences in order to predict secondary structure is

also seen in the model designed by Matsui et al. [2005]. They used a model called pair

stochastic tree adjoining grammars. Similar to TAGs, this model works by building up

a parse tree by adding on trees to a start tree. To get the model to predict secondary

structure, they gave their algorithm a folded sequence that is phylogenetically related

to other sequences they wish to predict and use it to build a tree they call a skeletal

tree. Their model was able to achieve a specificity of 88.9% and a sensitivity of 96%.

They achieve these results with an algorithm that has a running time of O(n5). Just

like the model built by Yoon and Vaidyanathan [2008], their model can only make

predictions if they have folded sequences that are phylogenetically related. Another

TAG-based model that uses evolutionary information and yields successful predictions
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is given by Kato et al. [2006b].

There are also many dynamic programming methods to solve the problem of pre-

dicting RNA secondary structure. One of the best known is an algorithm called

pknots which was developed by Rivas and Eddy [1999]. It is a extension of an algo-

rithm that is used to find pseudoknot-free secondary structure. This algorithm will

use free energy rather than a machine learning technique. This algorithm finds the

optimal global pseudoknotted secondary structure of a strand of RNA. Because of the

complexity of this problem, this algorithm will run in O(n6) time and O(n4) space

where n is the length of the sequence.

Other dynamic program algorithms have been designed to reduce the running time

for predicting RNA secondary structure with pseudoknots. An example of this type

of algorithm is one designed by Akutsu [2000] which runs in O(n4) time for predicting

what they called simple pseudoknots and O(n5) for complex pseudoknots. Another

algorithm was designed by Jabbari et al. [2008] who, by using a new concept called

hierarchical folding and only predicting a restricted number of pseudoknot types, de-

signed an algorithm with a running time of O(n3). Dynamic programming algorithms

will all make predictions based on minimal free energy or other measurement meth-

ods. This means they are all incapable of learning how to make predictions based

on real world examples. The SCG class of grammars that I designed will be able to

learn how to predict secondary structure and will have a prediction time complexity

of O(n3m) and space complexity of O(n2m) where n is the length of the sequence to

be predicted and m is the number of non-terminals in the grammar.
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Methods

4.1 Training

For a stochastic grammar to be useful it needs to be trained, which is the process

of assigning probabilities to productions. Training a grammar will allow it to learn

how it should produce parse trees for new input sequences. Although training will

vary between grammars there will be some common elements.

All the training that was done for the SCGs used in this thesis was on labelled

training data. An example of labelled training data can be seen in Figure 4.1.

Since all the training data is labelled, it will make the training of the grammar

much easier. These training algorithms will all start with a grammar which has

no probabilities associated with productions. The productions are hand crafted by

me to reflect RNA secondary structure. When the algorithm is done the grammar

will hopefully capture the RNA pseudoknotted secondary structure. The training

algorithm will go through sequences and count occurrences. How and what will be

35
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UAGGGGGGUCAGGGUCAGGAGCCCCCCCCUGAACCCAGGAUAACCCUCACUGUCGGGGGGCA

:::::::::::((((((((:[[[[[[[)))):))))::::::::::::::::::]]]]]]]:

Figure 4.1: Sample of labelled training data, from the website PseudoBase++

by Taufer et al. [2009], sequence id PKB78. The top sequence is the RNA strand

and the sequence at the bottom represents its structure. A pair of brackets repre-

sents a base pair in the structure. Different types of brackets are needed to denote

non-nested structures. The colons represent unpaired nucleotides.

counted will change depending on the grammar and how it will be intended to be

trained. Once the counting algorithm is performed the counts can be used to assign

probabilities to the productions in the grammar. Once the probabilities are applied

the grammar is ready to be used for parsing sequences.

The algorithms for training will take a sequence and its structure and split it

into two parts (an example is seen in Figure 4.2). The importance of splitting the

sequence and structure in two is because the grammars will predict the square and

round brackets independently. This will allow the grammars to predict pseudoknots.

The only non-terminal that may need to consider both sets of brackets is the start

symbol S. This is because S is the only production that will have an ‘and’ symbol in

it in my grammars.

The simplest form of these training algorithms is to just count the number of base

pairs and number of unpaired nucleotides. When the algorithm is run on the sequence

seen in Figure 4.2, it will generate the statistics in Table 4.1. A sample grammar to

illustrate the concept is seen in Equation 4.1; this will be used to demonstrate how

probabilities will be assigned.
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UAGGGGGGUCAGGGUCAGGAGCCCCCCCCUGAACCCAGGAUAACCCUCACUGUCGGGGGGCA

:::::::::::((((((((::::::::)))):))))::::::::::::::::::::::::::

UAGGGGGGUCAGGGUCAGGAGCCCCCCCCUGAACCCAGGAUAACCCUCACUGUCGGGGGGCA

::::::::::::::::::::[[[[[[[:::::::::::::::::::::::::::]]]]]]]:

Figure 4.2: This is the RNA sequence in Figure 4.1 split into two. The top two lines

are the sequence and structure only for the round brackets and the other uses the

square brackets.

S → A&XKX

A→ AB|a|u|c|g|aCu|uCa|gCc|cCg|gCu|uCg

B → a|u|c|g|aCu|uCa|gCc|cCg|gCu|uCg

C → AB|aCu|uCa|gCc|cCg|gCu|uCg

X → a|u|c|g|aX|uX|gX|cX

K → aKu|uKa|gKc|cKg|gKu|uKg

K → aK|uK|gK|cK|Ku|Ka|Kc|Kg

K → aX|uX|gX|cX

(4.1)

An example of the counts being applied to assign probabilities to productions

is seen in Equation 4.2. The non-terminal B is used to predict structure for round

brackets, so those counts are used. Note that the counts for the base pairs are doubled;

this is because there are two nucleotides involved. The length of the sequence is 62

and that is why it is used when calculating the probability.
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Round Square

A 10 11

C 14 14

G 16 15

U 6 8

AU 1 0

UA 1 0

GC 5 1

CG 1 6

GU 0 0

UG 0 0

Table 4.1: This table shows the count of all structure elements in the sequence used

in Figure 4.2.

B → a (10/62) | u (6/62) | c (14/62) | g (16/62)

B → aCu (2/62) | uCa (2/62) | gCc (10/62)

B → cCg (2/62) | gCu (0/62) | uCg (0/62)

(4.2)

The non-terminal B was chosen as an example in Equation 4.2 because the prob-

abilities are straightforward. Other non-terminals will have productions that are

harder to assign probabilities when just counting unpaired and paired nucleotides.

One example of this is the production A→ AB because this is the probability of con-

tinuing on with the sequence of unpaired nucleotides. It is a probability that would
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be pre-assigned which will take away the advantage of training a grammar.

Since the first example of a technique for training may be overly simple, it tends

to assign less than optimal probabilities to productions. Another technique that can

be used is one that will process a sequence and its structure, then create a count

of the productions that are needed to generate that sequence with that structure.

Then the algorithm will take the counts that have been collected and divide it by the

total number of times a production for their non-terminal was used. An example of

pseudocode that would gather these counts can be seen in the algorithm in Figure 4.3.

Note that this algorithm will have to be slightly different depending on the grammar

it will be training for (i.e., the algorithm in Figure 4.3 will only work for the grammar

in Equation 4.1). The algorithm will have a running time of O(L) where L is the size

of the training data.

Total 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

S 1 1

A 48 44 1 0 1 0 0 0 1 1 0 0

B 45 9 6 14 16 0 0 0 0 0 0

C 7 1 1 1 0 4 0 0

X 47 2 0 1 0 10 8 15 11

K 8 0 0 1 6 0 0 0 0 0 0 0 0 0 0 0 0 0 1

Table 4.2: This is a table which will be used to represent the grammar (Equation 4.1)

for the gatherCounts algorithm. Each row will represent a non-terminal (i.e. row 1

is the non-terminal S, A is row 2 and so on). The first column will be the total count

of how many times the non-terminal is used and the following columns will represent

the productions in the order they appear in Equation 4.1. The values that are filled

out are based on the sequence in Figure 4.2. Not all rows will have the same number

of columns because not all non-terminals have the same number of productions.
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// rBracket = input round bracket structure
// sBracket = input square bracket structure
// Seq = input RNA sequence
gatherCounts(String rBracket, String sBracket, String Seq) {
1 Stack S
2 c // used as a temp variable
3 L = length of Seq
4 G = Table 4.2
5 for i = 1 to L {
6 if sBracket[i] == “:” {
7 if continuing a sequence of unpaired nucleotides
8 increase G[1][1] and G[2][index of Seq[i]]
9 if not continuing a sequence of unpaired nucleotides
10 increase G[1][index of Seq[i]]
11 }
12 else if sBracket[i] == “[” {
13 S.push(Seq[i])
14 }
15 else if sBracket[i] == “]” {
16 c = S.pop
17 if first base pair in a stem
18 increase G[2][index for base pair c and Seq[i]]
19 if continuing a stem
20 increase G[3][index for base pair c and Seq[i]
21 }
22 }
23 for i = 1 to L {
24 if rBracket[i] == “:” {
25 if continuing a sequence of unpaired nucleotides
26 increase G[4][index of Seq[i]+4]
27 if not continuing a sequence of unpaired nucleotides
28 }
29 increase G[4][index of Seq[i]]
30 if it is part of a bulge
31 increase G[5][index of Seq[i] of a bulge]
32 else if rBracket[i] == “(” {
33 push Seq[i] on to S
34 }
35 else if rBracket[i] == “)” {
36 c = S.pop
37 increase G[5][index for base pair c and Seq[i]]
38 }
39 }
40 }

Figure 4.3: gatherCount Algorithm.



Chapter 4: Methods 41

Often when training grammars there are structural elements that might be missing

in the training data, leading to suboptimal predictions. To avoid this training will

often involve pseudocounts [Durbin et al., 1998]. This means an extra count will be

added to all productions even if they are not seen in the training data; this extra

count is called a pseudocount. All grammars I used in this thesis had pseudocounts

applied to them. I used a pseudocount of one for all productions in my grammars.

4.2 Parsing

It is important to be able to determine whether or not a sequence can be gener-

ated by a grammar. This can be done by working from the start symbol, applying

productions until the sequence is generated (an example of this process as a parse

tree is seen in Figure 4.4) and if so, determining what is the most likely parse tree

for that sequence. It is not only important to know if a grammar can generate a

sequence; with a stochastic grammar, the most probable parse tree that generates

it is also useful. All parse trees that generate the sequence will be found, and then

the tree with the highest probability is generated. Since the grammars that I will

be using will have productions in the form on A → bA where is b ∈ {a, c, g, u},

the grammars will be able to generate every sequence so the most likely parse tree

becomes important.

These processes can become very hard to do by hand when the grammars become

more complex. The Cocke-Younger-Kasami (CYK) algorithm is a dynamic program-

ming algorithm for parsing sequences. The CYK algorithm has been applied to this

problem for other classes of grammars such as CFGs, SCFGs [Durbin et al., 1998]
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Figure 4.4: This is a diagram the shows how the parse tree of the sequence

auuuaaaucauuucuuuuaaagcaaagc (ID PKB287 in PseudoBase++) is constructed of

the grammar in Equation 5.3.
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and CGs [Okhotin, 2001]. I will extend this algorithm to apply it to SCGs and it will

have a time complexity of O(n3m) and space complexity of O(n2m) where n is the

length of a sequence and m is the number of non-terminals in the grammar.

Let G = (Σ, N , R, S, Φ) be a SCG. The Stochastic CYK algorithm is a dynamic

programming algorithm that will use two upper-triangular three dimensional matrices

called γ and τ for parsing sequences according to G. Let x = a1 . . . aL be the input

RNA sequence. The indices of the matrices will be i, j, A where i is a start position

for a subsequence of length j in x and A represents a nonterminal symbol. A is

represented by an integer value, because the algorithm will map all non-terminals to

Ai where 0 ≤ i < |V |. For example S will become A0, the next non-terminal will

be A1 and the last non-terminal will be An for some n ≥ 0. Each entry in the γ

matrix will represent the probability that the subsequence ai . . . aj can be generated

by nonterminal A (i.e., the probablity that A⇒∗ ai . . . aj). An entry in the τ matrix

will be a triplet (B,C, k), where B and C are nonterminals that generated part of

the subsequence by using k as a cut point. A cut point is a point k in the sequence

aiai+1 . . . aj where i ≤ k ≤ j. The triplet (B,C, k) will represent B ⇒∗ ai . . . ak and

C ⇒∗ ak+1 . . . aj.

4.3 Parsing Algorithm

The version of the CYK algorithm that will be implemented for SCGs will have

similar upper-triangular three dimensional matrices. My version of the CYK al-

gorithm will only work on grammars that are in binary normal form. A gram-

mar that is in binary normal form will only have productions in the form of A →
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CKY() {
1 L = length of sequence
2 V = number of nonterminals
3 γ = the probability matrix
4 τ = the back tracing matrix
5 for i = 1 to L {
6 for v = 0 to V − 1 {
7 γ(i, i, v) = Φ(v → ai)
8 τ(i, i, v) = (0, 0, 0)
9 }
10 }
11 for j = 1 to L {
12 for i = j − 1 down to 1 {
13 for v = 0 to V − 1 {
14 γ(i, j, v) = maxv→α∈Pv

∑
v→BC∈α maxk=1,2,...,j−1

{ γ(i, k, B) + γ(k + 1, j, C) + Φ(v → BC)}
15 τ(i, j, v) = {⋃v→BC∈α(B,C, k)|γ(i, j, v) =

∑
v→BC∈α maxk=1,2,...,j−1

{γ(i, k, B) + γ(k + 1, j, C) + Φ(v → BC)}}
16 }
17 }
18 }
19 }

Figure 4.5: Modified CYK Algorithm for SCGs

B1C1&B2C2& . . .&BmCm or A→ a. All CGs are able to be transformed into binary

normal form as shown in Okhotin [2001]. Each grammar must be in binary normal

form in order to use the CYK parsing algorithm. Since the productions of SCGs

are the same as CGs, the transformation will work for SCGs. Since I hand crafted

these grammars they will not need to be converted to binary normal form because I

designed them to be in binary normal form.
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4.3.1 CYK Algorithm

The algorithm given in Figure 4.5 will work by initializing all the entries on the

diagonals in both matrices. This is done by the first set of loops. This information

is important because it will represent the productions where one non-terminal will

produce a terminal. When a SCG is in binary normal form this is the only type of

production that can directly generate a terminal.

With that information filled in the next step for the algorithm is to check if it is

possible to reach all the appropriate terminal products at the appropriate locations.

This will be accomplished by the second set of loops. It will do so by filling out the

rest of the matrix based on possible productions and previous cells in the matrix. The

previous cells that will be used to calculate a cell’s probability will be all the cells to

the left in the same row and all the cells below in the same column.

Line 14 of the CYK algorithm in Figure 4.5 is the line of code that does most of

the work in the algorithm. It is also the line I modified so that the CYK algorithm

in Durbin et al. [1998] could work on SCGs. The algorithm will check all the pro-

ductions v → α then check all of the BiCi ∈ α. This algorithm will check all the

conjuncts BiCi for all possible cut-points k to parse the current subsequence and find

the best one. That is, the algorithm will determine the most likely split of the current

subsequence into a prefix which is generated by Bi and the suffix that is generated by

Ci. If a production has multiple conjuncts, then the best k for each conjunct will need

to be found. All the probabilities for all conjuncts will be added together because log

odds are used, and then the production v → α with the highest probability is found.

Once the algorithm has finished running the probability of the sequences being
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generated will be stored in cell (1, L, 0), which is the probability of S ⇒∗ a1 . . . aL.

This cell will represent the probability of a subsequence from 1 to L, which is the

whole sequence, being generated starting with S. That is the exact question asked

when determining if a grammar can generate a sequence and what the most likely

parse tree is. This algorithm will have a running time of O(n3m).

Let’s consider an example of the CYK algorithm for SCGs. Given the following

grammar G where G = (Σ, V, P, S,Φ) with V = {S,A1, A2} and P defined by

S → A1A2&A2A1 (p = 1)

A1 → a (p = .5)|g (p = .5)

A2 → A2A1 (p = .35)|A1A2 (p = .35)|u (p = .3)

(4.3)

The CYK algorithm when run with G to parse the sequence auga will form the

following tables.

• The 3D matrices expressed as 3 separate 2D matrices at the start of the algo-

rithm:

S A1 A2

a u g a

a

u

g

a

a u g a

a

u

g

a

a u g a

a

u

g

a
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• After the first set of loops are run and the terminal productions are filled in.

Log odds are used and that is why γ(0, 0, 1) = −0.693 and not .5:

S A1 A2

a u g a

a 0

u 0

g 0

a 0

a u g a

a -0.693

u 0

g -0.693

a -0.693

a u g a

a 0

u -1.203

g 0

a 0

• After the second column is filled in each matrix. Remember that log odds are

being used so probability are added together not multiplied. S’s production has

an ‘and’ symbol so the probability is equal to the sum of the probability of both

conjuncts, A1A2 and A2A1:

S A1 A2

a u g a

a 0 -3.794

u 0

g 0

a 0

a u g a

a -0.693 0

u 0

g -0.693

a -0.693

a u g a

a 0 0

u -1.203

g 0

a 0

• After the third column are filled in each matrix.
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S A1 A2

a u g a

a 0 -3.794 0

u 0 0

g 0

a 0

a u g a

a -0.693 0 0

u 0 0

g -0.693

a -0.693

a u g a

a 0 0 0

u -1.203 0

g 0

a 0

• After the fourth and last column is filled in each matrix:

S

a u g a

a 0 -3.794 0 -10.766

u 0 0 0

g 0 0

a 0

A1

a u g a

a -0.693 0 0 0

u 0 0 0

g -0.693 0

a -0.693

A2

a u g a

a 0 0 0 0

u -1.203 0 -4.69

g 0 -2.436

a 0
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• Once the algorithm is done, it would have produced a 3D matrix that looks like

the tables above. Since cell (1,L,0) is -10.766 it means that the grammar can

generate the sequence and the log odd probability to do so is -10.766. A parse

tree that will parse this sequence is seen in Figure 4.6.

a u g aS

A2A1

A1A2

A2A1

A1A2

A2A1

A2A1

Figure 4.6: A parse tree that will parse the sequence auga with the grammar from

Equation 4.3.

4.3.2 CYK Back tracing

Since the τ matrix is constructed during the first algorithm, it will keep track of

the production that produced the entries. Starting at entry (1, L, 0) this algorithm

will trace the steps that the CYK algorithm did to produce the sequence. It will

do so by first seeing the productions that were involved in producing entry (1, L, 0).
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backTrace() {
1 create Stack s
2 s.push(1, L, 0)
3 while (s is not empty) {
4 (i, j, v) = s.pop
5 if τ(i, j, v) = (0, 0, 0) {
6 attach xi as a child of v
7 } else {
8 τ(i, j, v) = {(Bi, Ci, ki) : 1 ≤ i < l }
9 for r = 1 to l {
10 attach Br and Cr as children to v
11 s.push(kr + 1, j, Cr)
12 s.push(i, kr, Br)
13 }
14 }
15 }
16 }

Figure 4.7: CKY backtracing algorithm

Then the algorithm will push that information on to a stack. After that, it will pop

another entry off the stack and see what was involved in producing it. This will

happen until the stack is empty. This algorithm will end up with the complete parse

tree of this sequence. If there is no entry for (1, L, 0) this means that grammar is

unable to produce the sequence. This algorithm is given in Figure 4.7.
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Results

5.1 Training Data

I obtained RNA strands with known structure from a online database called Pseu-

doBase++ Taufer et al. [2009]. This is a database of all RNA strands with known

secondary structure which include pseudoknots. There are currently 304 pseudoknot-

ted secondary structured RNA sequences on PseudoBase++. One of the grammars

will be trained and tested on all the RNA sequences but others will be trained on a

subset of these 304 sequences.

The subset that will be used is one that will only contain H-type pseudoknots.

There is a total of 236 RNA sequences that are H-type pseudoknots. One of those

236 has an H-type structure that differs for the other. This is because it has a bulge

that contains hairpins. Since it differs from all others I removed it from the subset of

H-type pseudoknots, leaving this to be a set of 235 sequences.

From the 235 sequences, statistics were gathered about the length of the prefix,

stem, loop and suffix. The prefix refers to the sequence of nucleotides before a stem

51
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and the suffix is the sequence at follows the stem. The prefix and suffix are somewhat

artificial measurements because they are measurements that will just apply to the

H-type structure in PseudoBase++, which are only sequences which directly contain

pseudoknots and not the surrounding sequence. These statistics were gathered for the

round and square brackets independently. Also, to keep all the sequences the same

the first set of brackets was always considered to be round brackets, so in other words

the sequences were relabelled so they followed this pattern. The average length of an

H-type pseudoknot in PseudoBase++ is 39.29 nucleotides with the shortest being 21

and the longest is 121 nucleotides.

5.2 Grammars

In the thesis I designed three grammars to predict RNA pseudoknotted secondary

structure. The first was a grammar to predict all types of pseudoknots. Then the

next was to only predict H-type pseudoknots and lastly an improved version of the

grammar to only predict H-type pseudoknots.

Grammars will be trained using the gatherCount algorithm in Section 4.1. The

235 sequences will be split in half randomly with half being used for training and the

other half used for testing. After I craft and train a grammar, I evaluate how well

the grammar predicts the pseudoknotted secondary structure. I will test both the

sensitivity (Equation 5.1) and specificity (Equation 5.2) of the grammar. These are

standard measurements of evaluation for prediction algorithms. I will be testing to

see if the grammars are predicting bonds correctly. This means that true positives

will occur when the given SCG correctly predicts that there is a bond. A false positive
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occurs when it predicts a bond where there is none. A true negative occurs when

it correctly predicts no bond. A false negative occurs when it misses a bond that it

should have predicted. An example of these prediction types can be seen in Figure 5.1.

Sensitivity =
true positives

true positives + false negatives
(5.1)

Specificity =
true negatives

true negatives + false positives
(5.2)

Sequence agugguuaucccuccacuuaaaucgaaggg

Actual ((((.....[[[[[))))......].]]]]

Predicted round :((((::::::::)))):::::::::::::

Predicted square :::::::::[[[[[::::::::::]:]]]]

Misses x x x x

Figure 5.1: Sample of output of a prediction by my grammar in Appendix A, sequence

id PKB62 on PseudoBase++. The top sequence is the RNA strand, the next sequence

sequence is to the actual structure of the pseudoknot. The third sequence is how

the algorithm predicted the round brackets and the last sequence is the algorithm’s

prediction of the square brackets. This prediction has four mispredictions represented

by the x’s at the bottom. The first and fourth x’s are examples of a false negative,

the second x is an example of a false positive and the third is an example of a double

prediction which is always a false positive.

5.2.1 General pseudoknot grammar

Equation 5.3 is the general pseudoknot grammar that I used to attempt to predict

RNA secondary structure. I used a simple form of training that would determine
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what productions were used to generate the secondary structure and the count of

those productions.

This form of training counts the round and square brackets independently; when

considering round brackets, square brackets are treated as unpaired nucleotides. As

well, when training for square brackets, round brackets were treated as unpaired

nucleotides. The algorithm runs through the sequence twice, once for round brackets

and once for square.

When going through the sequence and its structure, it will match a corresponding

production to the structure. When deciding what production is being used to generate

a structural element it will look at the current element and the ones before and after

the current element. This is important because what is before and after will affect

the productions. It will also have to use a stack so it can recognise a base pair of the

structure accurately. It will only count productions when popping off the stack, as

this will prevent counting a production twice.

First, if a non-terminal only has one production then the probability will be one.

This is the case for the set of non-terminals {S, A4, A5, A6, A7, A8, A11, A12, A13,

A14, A15, A16, A17, A18} in Equation 5.3. These non-terminals were needed so the

grammar could be in binary normal formal.

Then probabilities will need to be assigned to non-terminals that have many pro-

ductions. For the productions A1 → a | u | c | g these probabilities will be the

probability of that unpaired nucleotide being present in the round bracket training.

For the productions A1→ A5A11 | A6A12 | A7A13 | A8A14 | A8A11 | A6A13 these

probabilities will be the probabilities of this base pair appearing in the round bracket
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training. These are base pairs because for example A5A11 ⇒ aA11 ⇒ aA9A6 ⇒

aA9u. This will correspond with the base pair au.

The productions A2→ A1A2 will represent the probability of the grammar contin-

uing to produce more unpaired nucleotides and base pairs. The remaining productions

for A2 will have the same probability as their corresponding production in A1 but

will be scaled down by the probability of A2→ A1A2.

A3 → a | u | c | g will be the probability of a sequence of unpaired nucleotides

ending with that nucleotide for the square brackets. A3 → A5A3 | A6A3 | A7A3 |

A8A3 will be equal to the probability of a sequence of unpaired nucleotides having

this nucleotide for the square bracket training.

A9 → A1A2 will be the probability of the grammar stopping a stem and going

into a loop. A1→ A5A11 | A6A12 | A7A13 | A8A14 | A8A11 | A6A13 will be equal

to the probability of a base pair being in a stem for the round bracket training.

For the productions A10→ A5A15 | A6A16 | A7A17 | A8A18 | A8A15 | A6A17,

these will have probabilities equal to probability of this base pair being in a stem

for square bracket training. For the productions A10 → A5A10 | A6A10 | A7A10

| A8A10 | A8A15 | A6A17 | A10A5 | A10A6 | A10A7 | A10A8, these will be the

probability of bugles happening in a stem. For the productions A10→ A5A3 | A6A3

| A7A3 | A8A3 these will represent the probability of a stem ending with a loop

starting with that unpaired nucleotide.
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S → A1A2&A3A4

A1 → a|u|c|g|A5A11|A6A12|A7A13|A8A14|A8A11|A6A13

A2 → A1A2|a|u|c|g|A5A11|A6A12|A7A13|A8A14|A8A11|A6A13

A3 → a|u|c|g|A5A3|A6A3|A7A3|A8A3

A4 → A10A3

A5 → a

A6 → u

A7 → c

A8 → g

A9 → A1A2|A5A11|A6A12|A7A13|A8A14|A8A11|A6A13

A10 → A5A15|A6A16|A7A17|A8A18|A8A15|A6A17

A10 → A5A10|A6A10|A7A10|A8A10|A10A5|A10A6|A10A7|A10A8|A5A3|A6A3|A7A3|A8A3

A11 → A9A6

A12 → A9A5

A13 → A9A8

A14 → A9A7

A15 → A10A6

A16 → A10A5

A17 → A10A8

A18 → A10A7

(5.3)

The result of the grammar and training technique did not yield good results. The

sensitivity was on average 0.248 and specificity was 0.8. The structure it would often



Chapter 5: Results 57

predict would have the round and square brackets in the same position, which is

counted as a misprediction. This is what lead to the low sensitivity. The specificity

was high because the positions with the double bracket prediction did align with either

a square or round bracket, which means the grammar rarely predicted a bracket where

there was not one. As seen in Figure 5.2 both set of brackets are aligned with the

square brackets in the actual structure.

Sequence ggggugcgacucccccgucuauccugaacgucaucaggacca

Actual ...............(((...[[[[[[)))...]]]]]]...

Predicted round :::::::::::::::::::::((((((::::::)))))):::

Predicted square :::::::::::::::::::::[[[[[[::::::]]]]]]:::

Misses xxx xxxxxxxxx xxxxxx

Figure 5.2: Sample of output of a prediction by the first grammar, sequence id PKB13

on PseudoBase++. The top sequence is the RNA strand, the next sequence sequence

is to the actual structure of the pseudoknot. The third sequence is how the algorithm

predicted the round brackets and the last sequence is the algorithm’s prediction of

the square brackets.

5.2.2 H-type grammar

To solve the problem of double bracket prediction, I developed a new grammar.

Unlike the first grammar this one would be built to only predict one type of pseu-

doknot. Since the H-type is the most common type (77% of pseudoknots in Pseu-

doBase++ are H-type), I chose to predict H-type. Out of the 236 H-type pseudoknots

I excluded one (sequence and structure given in Figure 5.3); all other H-type pseudo-

knots will follow a pattern of open round brackets, then open square brackets, then

close round brackets and finally close square brackets. This sequences will have closed
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round brackets before opening square bracket. After that sequence is excluded from

the H-type pseudoknots, it leaves a set of 235 RNA sequences.

CCUCCCGGGAGA~ACUGCCUGAUAGGGUGCUUGCGAGUGCCCCGGGAGGUCUCGUAG

(((((((((((.~.))(((......)))((.[[[[[[.))))))))))).]]]]]].

Figure 5.3: The excluded H-type pseudoknot. It was excluded because its structure

differs significantly from other H-types (ID PKB181 in PseudoBase++).

The next grammar was made to model the structure of the H-type pseudoknot.

Counts were gathered about the structure of H-type pseudoknots. Since an H-type

is constructed from two interconnected hairpins the structural elements that were

counted are prefix, suffix and stem from each hairpin. An example of how two hairpins

make a H-type and what is meant by prefix, suffix and stem are seen in Figure 5.4.

All 235 RNA sequences were used to see if there was information on prefix, suffix,

stem and loop length that could be useful. The statistics that were collected were

minimums, maximums, averages and in general the counts of how many sequences

are of a certain length. These statistics were collected for the four structures prefix,

stem, loop and suffix, as well as for the sequences themselves.

Since I used all of the sequences to design my grammars but not all of them for

training, I had to make sure that I was not over-training. To check for this I gathered

the length statistics from 117 random chosen sequences and I did this 100 times.

Then for each structure element that I used in the design I found the highest, lowest

and average length. I then compared those values to the average lengths for the full

sample of all 235 sequences. The results of this test is seen in Figure 5.5. In this

figure it is clear to see that values are fairly stable so using all the sequences to design
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Figure 5.4: This is an example of how a H-type pseudoknot is a combination of two

hairpins. If the first two structures are combined together they would produce the

H-type pseudoknotted structure at the bottom.
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the grammar should not cause over-training.

After gathering those statistics, I constructed a grammar that would predict the

secondary structure of RNA with H-type pseudoknots. The grammar that was con-

structed has 117 non-terminals and 436 productions. Many of these non-terminals

and productions were added because the grammar had to be in binary normal form;

this means there were many non-terminals that needed to be created to allow for base

pairs (see the example in Equation 5.4 and 5.5).

In the examples below An refers to the non-terminal that is next in the chain

when generating a chain of productions and Aa, Au, Ac, Ag are non-terminals that

only produce the terminal symbols a, u, c, g respectively. Here is an example of

productions not in binary normal form:

A→ aAnu|uAna|gAnc|cAng|gnAu|uAng
(5.4)

Here is an example of a same productions in binary normal form;

A1 → AaA2|AuA3|AcA4|AgA5|AgA3|AuA5

A2 → AnAu

A3 → AnAa

A4 → AnAc

A5 → AnAg

(5.5)

The grammar was run 100 times with 117 sequences being used for training and

118 sequences being used for testing. The sequences that were used for the tests were

randomly chosen each time. This grammar has an average sensitivity of 0.743 and an
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Figure 5.5: The data used in this chart was gathered from a sample of 117 sequence

that was run 100 times. It shows the maximum, minimum and average length for

each of the structure types that I incorporate into the design of my grammars.
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average specificity of 0.895. By designing a grammar that was only meant to predict

H-type pseudoknots in RNA secondary structure, my predictions saw an increase in

both sensitivity and specificity.

To express the importance of pseudocounts for this grammar, when pseudocounts

are removed the average sensitivity drops to 0.418 and the average specificity to 0.838.

This is a significant drop in sensitivity because without pseudocounts the grammar

is restricted from making some predictions.

5.2.3 Improved H-type grammar

There was one type of structure that was left out of the first grammar to predict

H-type pseudoknots. That structure is the loop which is the sequence of unpaired

nucleotides that is formed when base pairs form a stem. When the information

about loop length is added, the grammar will increase the number of non-terminals

to 133 and the number of productions to 552. The grammar was ran 100 times with

117 sequences being used for training and 118 sequences being used for testing. The

sequences that were used for the tests were randomly chosen each time. This grammar

has an average sensitivity of 0.754 and an average specificity of 0.891, thus with the

addition of the loop productions in the grammar I saw a slight increase in sensitivity.

The last grammar will also get an average of 25 sequences out of 117 that are

100% correctly predicted. The H-type prediction grammar without loop information

will get an average of 18 sequences 100% correct and the first grammar will get an

average of 3 sequences 100% correct. An example of this in seen in Figure 5.6.

The last grammar for predicting H-type pseudoknots does have a much higher



Chapter 5: Results 63

Sequence ggggugcaacucccccgucuauccuggacgucaccaggacca

Actual ...............(((...[[[[[[)))...]]]]]]...

Predicted round :::::::::::::::(((:::::::::)))::::::::::::

Predicted square :::::::::::::::::::::[[[[[[::::::]]]]]]:::

Figure 5.6: Sample of output that is 100% correct, sequence id PKB6 on Pseu-

doBase++. The top sequence is the RNA strand, the next sequence will be the

actual structure of the pseudoknot. The third sequence is how the algorithm pre-

dicted the round brackets and the last sequence is the algorithm’s prediction of the

square brackets.

sensitivity when it is predicting sequences that have length less than 60. After that

point the sensitivity drops off. This is not seen for specificity which is fairly high

no matter what size sequences it was predicting. These statistics can be seen in

Figure 5.7. Since the average length of a H-type sequence in about 40 the drop off

after 60 will not affect too many of the sequences.

As well as testing to see how well this final grammar did on sequences of different

length, I was also interested in seeing how different training sizes would do. I tested

the grammar on three different training sizes, one was 25% training (58 sequences) and

75% testing (177 sequences), one was 50% training 117 sequences) and 50% testing

(118 sequences) and the last was 75% training (175 sequences) and 25% testing (60

sequences). The result of this test can been seen in Figure 5.8. All the results given in

the chart are an average of over 100 tests. This chart shows that the size of training

data has little effect on the sensitivity and specificity of the predictions.
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(a) Sensitivity

(b) Specificity

Figure 5.7: (a) A break down of average sensitivity for 100 tests based on various

length sequences. (b) A break down of an average specificity for 100 tests based on

various length sequences.
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Figure 5.8: The data used in this chart was gathered from a samples that was run

100 times. It shows the sensitivity and specificity for each of the training sizes.

5.3 Time and Space Complexity

As described in the Chatper 3 the dynamic programming methods called pknots

by Rivas and Eddy [1999] has O(n6) time and O(n4) space complexity. Also the pair

scholastic tree adjoining grammar designed by Matsui et al. [2005] has a running time

of O(n5). My algorithm will have a time complexity of O(n3m) and space complexity

of O(n2m) where n is the length of a sequence and m is the number of non-terminals

in the grammar. This is because it will be using a modified CYK algorithm that has

run time and complexity as stated in Durbin et al. [1998]. Even though the Matsui

et al. [2005] model has a higher sensitivity, their algorithm is slower and does not have
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the versatility of being able to predict all H-types sequences rather than prediction

based on phylogenetic family.



Chapter 6

Conclusion

In this thesis I showed that a CG can be successfully extended to a SCG. I did this

by adding an extra component to allow it to incorporate probabilities. This allows

a SCG to be used for machine learning. Since there was a new component, I had to

change the CYK algorithm so that it will be able to work for SCGs.

Once the SCG was shown to be a valid model and was able to be trained suc-

cessfully, I set out to build grammars that were able to predict RNA pseudoknotted

secondary structure. I was unable to build a grammar that was able to predict all

types of pseudoknots successfully. However, when I reduced the predictions to only

H-type pseudoknots, the grammars that I built for predicting RNA sequences with

H-type pseudoknots only were very successful with an average sensitivity of over 75%

and an average specificity of over 89%.
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6.1 Future Work

I introduced a grammar that can successfully predict H-type pseudoknotted sec-

ondary structure. It would be interesting to see if grammars can be made to predict

other pseudoknot types. This may be difficult because there are few training examples

for other types of pseudoknots, as there are only about 70 non-H-type psuedoknotted

sequences in PseudoBase++. As well, it remains to be seen if there is a grammar that

could predict every type of pseudoknot. As well, it would be interesting to find other

kinds of problems that this class of grammars can be applied to in bioinformatics and

other fields. One problem that SCGs could be applied to is RNA-RNA interaction

prediction which has had grammars applied to it before, as seen in Kato et al. [2006a].

There are also algorithms that are used for training grammars called the Inside-

Outside algorithms. The inside algorithm will compute the probability that a se-

quence can generate a parse tree given a SCG. The outside algorithm will compute

the probability of all remaining parse trees with holes in them. These algorithms

are used when training a grammar on data that is not labelled. Since all data was

labelled in this thesis, I did not implement this algorithm. But it would be an inter-

esting algorithm to implement and would allow this class of grammars to be applied

to problems where labelled training data us unavailable.

One more additional problem is to see if SCG can be used to predict whether or

not a sequence contains pseudoknots or not and to predict the pseudoknots if there are

any. One way of doing this would be to build a grammar that could explicitly say if a

sequence has a pseudoknot portion or not. This would involve adding productions in

the grammar to predict pseudoknot-free secondary structure which are independent of
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the pseudoknotted productions. Then the grammar would make a top level decision on

which set of productions (pseudoknot or pseudoknot-free) to use based on probability.

Another technique that can be used to predict if a unknown sequence contains

pseudoknots is to use a sliding window. One idea for doing this is to design two

grammars, one to predict pseudoknotted structure and one to predict pseudoknot-

free structure. Each of these grammars would be run on the window as it slides

across a sequence. By examining the results of these grammars on RNA with known

structure secondary, both pseudoknotted and pseudoknot-free, a threshold may be

able to be developed. Then by running these grammars on RNA with unknown

secondary structure and comparing the results to the threshold, a decision about

whether the structure is pseudoknotted or not could be made.
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H-type Grammar

S → aA5&aA52|uA5&uA52|cA5&cA52|gA5&gA52

S → A4A14&aA52|A4A14&uA52|A4A14&cA52|A4A14&gA52

Figure A.1: Start productions

A1 → aA2|uA2|cA2|gA2|A4A14

A2 → aA3|uA3|cA3|gA3|A4A14

A3 → aA3|uA3|cA3|gA3|A4A14

A4 → aA5u|uA5a|cA5g|gA5c|uA5g|gA5u

A4 → aA4|uA4|cA4|gA4|A4a|A4u|A4c|A4g|A11A12

Figure A.2: Productions for round bracket prefix
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A5 → aA6u|uA6a|cA6g|gA6c|uA6g|gA6u

A5 → aA5|uA5|cA5|gA5|A5a|A5u|A5c|A5g|A11A12

A6 → aA7u|uA7a|cA7g|gA7c|uA7g|gA7u

A6 → aA6|uA6|cA6|gA6|A6a|A6u|A6c|A6g|A11A12

A7 → aA8u|uA8a|cA8g|gA8c|uA8g|gA8u

A7 → aA7|uA7|cA7|gA7|A7a|A7u|A7c|A7g|A11A12

A8 → aA9u|uA9a|cA9g|gA9c|uA9g|gA9u

A8 → aA8|uA8|cA8|gA8|A8a|A8u|A8c|A8g|A11A12

A9 → aA10u|uA10a|cA10g|gA10c|uA10g|gA10u

A9 → aA9|uA9|cA9|gA9|A9a|A9u|A9c|A9g|A11A12

A10 → aA10u|uA10a|cA10g|gA10c|uA10g|gA10u

A10 → aA10|uA10|cA10|gA10|A10a|A10u|A10c|A10g|A11A12

A11 → a|u|g|c

A12 → A11A12|A11A11

Figure A.3: Productions for round bracket stem and loop
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A13 → a|u|g|c

A14 → A13A15

A15 → A13A16

A16 → A13A17

A17 → A13A18

A18 → A13A19

A19 → A13A19|A13A13

Figure A.4: Productions for round bracket suffix

A20 → aA21|uA21|cA21|gA21

A21 → aA22|uA22|cA22|gA22

A22 → aA23|uA23|cA23|gA23|A23A36|A23A37|aA24u|uA24a|cA24g|gA24c|uA24g|gA25u

Figure A.5: Productions for square bracket prefix
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A23 → aA24u|uA24a|cA24g|gA24c|uA24g|gA24u

A23 → aA23|uA23|cA23|gA23|A23a|A23u|A23c|A23g|A34A35

A24 → aA25u|uA25a|cA25g|gA25c|uA25g|gA25u

A24 → aA24|uA24|cA24|gA24|A24a|A24u|A24c|A24g|A34A35

A25 → aA26u|uA26a|cA26g|gA26c|uA26g|gA26u

A25 → aA25|uA25|cA25|gA25|A25a|A25u|A25c|A25g|A34A35

A26 → aA27u|uA27a|cA27g|gA27c|uA27g|gA27u

A26 → aA26|uA26|cA26|gA26|A26a|A26u|A26c|A26g|A34A35

A27 → aA28u|uA28a|cA28g|gA28c|uA28g|gA28u

A27 → aA27|uA27|cA27|gA27|A27a|A27u|A27c|A27g|A34A35

A28 → aA29u|uA29a|cA29g|gA29c|uA29g|gA29u

A28 → aA28|uA28|cA28|gA28|A28a|A28u|A28c|A28g|A34A35

A29 → aA30u|uA30a|cA30g|gA30c|uA30g|gA30u

A29 → aA29|uA29|cA29|gA29|A29a|A29u|A29c|A29g|A34A35

A30 → aA31u|uA31a|cA31g|gA31c|uA31g|gA31u

A30 → aA30|uA30|cA30|gA30|A30a|A30u|A30c|A30g|A34A35

A31 → aA32u|uA32a|cA32g|gA32c|uA32g|gA32u

A31 → aA31|uA31|cA31|gA31|A31a|A31u|A31c|A31g|A34A35

A32 → aA33u|uA33a|cA33g|gA33c|uA33g|gA33u

A32 → aA32|uA32|cA32|gA32|A32a|A32u|A32c|A32g|A34A35

A33 → aA33u|uA33a|cA33g|gA33c|uA33g|gA33u

A33 → aA33|uA33|cA33|gA33|A33a|A33u|A33c|A33g|A34A35

A34 → a|u|g|c

A35 → A34A35|A34A34

Figure A.6: Productions for square bracket stem and loop
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A36 → a|u|g|c

A37 → A36A38|A36A36

A38 → A36A39|A36A36

A39 → A36A40|A36A36

A40 → A36A40|A36A36

Figure A.7: Productions for round bracket prefix
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