

A Multiprocessing System-on-Chip Framework

Targeting Stream-Oriented Applications

by

Darcy Philip Cook

A Thesis submitted to the Faculty of Graduate Studies of

The University of Manitoba

In partial fulfillment of the requirements of the degree of

MASTER OF SCIENCE

Department of Electrical and Computer Engineering

University of Manitoba

Winnipeg, Manitoba, Canada

Copyright © 2010 by Darcy Philip Cook

- i -

Abstract

 Over the past decade, the processing speed requirement of embedded systems has

steadily increased. Since faster clocking of a single processor can no longer be considered

to increase the processing speed of the system (due to overheating and other constraints),

the development of multiprocessors on a single chip has stepped up to meet the demand.

One approach has been to design and develop a multiprocessing platform to handle a

large set of homogeneous applications. However, this development has been slow due to

the intractable design space, which results when both the hardware and software are

required to be adjustable to meet the needs of the dissimilar applications. A different

approach has been to limit the number of targeted applications to be similar in some

sense. By limiting the number of targeted applications to a cohesive set, the design space

can become manageable. This thesis proposes a framework for a multiprocessing system-

on-chip (MPSoC), consisting of a cohesive hardware and software architecture intended

specifically for problems that are stream-oriented (e.g., video streaming). The framework

allows the hardware and software to be customized to fit a specific application within the

cohesive set, while narrowing the design space to a manageable set of design parameters.

In addition, this thesis designs and develops an analytic model, using a discrete-time

Markov chain, to measure the performance of an MPSoC framework implementation

when the number of concurrent processing elements is varied. Finally, a chaotic

simulated annealing algorithm was developed to determine an optimal mapping and

scheduling of tasks to processing elements within the MPSoC.

- ii -

Acknowledgements

I would like to thank the following individuals and groups who were instrumental

in providing advice and support throughout the development of this thesis.

• My advisor Dr. K. Ferens for his guidance and support in the development of

this thesis and throughout my entire graduate studies.

• Dr. A.S. Alfa, Dr. W. Kinsner, and Dr. P. Thulasiramin who each were

helpful in guidance and support of my projects within each of their courses

that together make up a large portion of the work in this thesis.

• The Xilinx corporation for donating the Xilinx ISE and Xilinx EDK

development tools that were used for the experimental implementation of the

MPSoC described in this thesis.

• Parker Hannifin, formerly Vansco Electronics, my former employer, who

provided financial support and provided the flexibility to allow me to pursue

graduate studies while being employed for them.

• Bristol Aerospace, my current employer who provided the flexibility to allow

me to continue my graduate studies while being employed for them.

• My parents for their encouragement to continue the pursuit of higher

education.

• My kids (Nolan, Grace, Hannah, and Rebekah) for sharing their dad with his

graduate studies.

• Most of all I would like to thank my wife, Susan, who has been a parent-and-

a-half to make up for her husband being half-a-parent while pursuing his own

dreams.

- iii -

TABLE OF CONTENTS

Abstract …………………………………………………………………………………... i

Acknowledgements ……………………………………………………………………… ii

List of Figures …………………………………………………………………………... vi

List of Tables ……..…………………………………………………………………….. ix

List of Abbreviations and Acronyms ……………………………………………………. x

List of Symbols ……………………………………………………………………….....xii

Chapter 1 Introduction .. 1

1.1 Motivation .. 1

1.2 Thesis Statement and Objectives .. 3

1.3 Organization of Thesis ... 4

Chapter 2 Background and Related Work .. 6

2.1 General Background on Computing Frameworks .. 6

2.2 Models of Computation .. 8

2.2.1 Overview of Models of Computation ... 8

2.2.2 Synchronous Dataflow Model of Computation .. 9

2.3 Parallel Processing Architectures ... 13

2.4 Related Work in Multiprocessing System Frameworks 17

2.5 Thesis Contributions to the Field of Study ... 23

Chapter 3 Multiprocessing System-on-Chip Framework Description 25

3.1 MPSoC Framework Architecture ... 25

3.1.1 Hardware Architecture .. 25

3.1.2 Software Architecture ... 36

3.1.3 Hybrid Pipeline Scheduling .. 40

3.2 MPSoC Experimental Implementation .. 47

3.2.1 Soft Processor Implementation ... 48

3.2.2 Task Controller Implementation ... 48

3.2.3 Task Controller Interface Peripheral Implementation 48

- iv -

3.2.4 Memory Controller Implementation ... 49

3.2.5 Memory Controller Interface Peripheral Implementation 51

3.2.6 Global Memory Implementation ... 51

3.2.7 Snoopy .. 52

3.2.8 Snoopy Interface Peripheral .. 56

Chapter 4 Analytical Model for the Multiprocessing System-on-Chip Framework 58

4.1 Motivation for an Analytical Model of the MPSoC Framework 58

4.2 Related Work in Analytical Models of Multiprocessing Systems 59

4.3 Performance Metrics .. 61

4.4 Analysis Inputs ... 62

4.5 System Design Assumptions .. 63

4.5.1 Types of Memory Requests .. 63

4.5.2 Distribution of Memory Requests ... 64

4.5.3 Memory Service Distribution ... 65

4.5.4 Task Execution Times ... 70

4.5.5 Memory Access Control ... 71

4.6 Description of the MPSoC Analytical Model .. 71

4.6.1 Partitioning the Processing Period .. 72

4.6.2 Analyzing a Partition .. 74

4.7 Example using the MPSoC Analytical Model ... 90

Chapter 5 Task Allocation Optimization .. 98

5.1 Motivation for Task Allocation Optimization .. 98

5.2 Overview of Combinatorial Optimization Techniques Applied to Task

Allocation Problems .. 99

5.3 Application of Simulated Annealing to the Task Allocation Problem 103

5.4 Application of Chaotic Simulated Annealing to the Task Allocation Problem 106

5.4.1 Continuous Function Chaotic Simulated Annealing 106

5.4.2 Mapping a Chaotic Variable in the Solution Space 109

5.4.3 CSA1 Method ... 109

5.4.4 CSA2 Method ... 111

- v -

5.4.5 CSA3 Method ... 113

5.5 Comparison of SA and CSA Results .. 115

5.5.1 Time Series Analysis .. 119

5.5.2 Power Density Spectrum ... 124

5.6 Task Allocation Optimization Conclusions ... 127

Chapter 6 Experimental Results .. 129

6.1 Experimental Application .. 129

6.2 Experimental Implementation and Results .. 132

Chapter 7 Conclusions and Future Work .. 141

7.1 Thesis Conclusions ... 141

7.2 Recommendations for Future Work ... 144

7.3 Thesis Contributions .. 146

References ... 151

Appendix A ... 159

A.1. Xilinx Tool Development Flow ... 159

A.2. Simulation of the MPSoC Framework Implementation 164

A.3. Xilinx University Program Virtex-II Pro Development Board 166

A.4. Experimental Setup .. 167

Appendix B ... 169

B.1. Matlab Implementation of the Analytical Model ... 169

B.2. Implementation of the Analytical Model and Optimization Algorithm in the C

Programming Language .. 169

- vi -

LIST OF FIGURES

Fig. 2-1. An example of a dataflow graph. ... 10

Fig. 2-2. An example of processing tasks from a dataflow graph in a pipeline. 12

Fig. 3-1. Block diagram of MPSoC hardware architecture... 26

Fig. 3-2. Interface between the Task Controller and soft processor 30

Fig. 3-3. Interface between the memory controller and a single processor. 34

Fig. 3-4. Interface between the global memory, the memory controller, a single processor.

 ... 35

Fig. 3-5. A flowchart of the general program structure. ... 37

Fig. 3-6. A flowchart of the head processor program structure. 39

Fig. 3-7. Traditional pipeline with variable task time. .. 43

Fig. 3-8. Dynamic pipeline scheduling with variable task time.. 45

Fig. 3-9. Filling the pipeline with hybrid pipeline scheduling. ... 46

Fig. 3-10. Implementation of the task controller interface peripheral controller. 49

Fig. 3-11. Implementation specific interface to global memory. 50

Fig. 3-12. Implementation specific memory controller interface peripheral. 51

Fig. 3-13. Snoopy interface peripheral.. 57

Fig. 4-1. Distribution of service time for k=5 and pe=0.25. .. 67

Fig. 4-2. Distribution of service time for k=10 and pe=0.5. .. 67

Fig. 4-3. Memory distribution of the individual memory types: (a) memory type 1, (b)

memory type 2, (c) memory type 3. The probability distribution for a global memory

access made up of a combination of the three memories is shown in (d). 70

Fig. 4-4. First window analyzed in the processing period. ... 73

Fig. 4-5. Second window analyzed in the processing period. ... 73

Fig. 4-6. State transition diagram for processor i. ... 75

Fig. 4-7. Initial task arrangement in the processing period. .. 92

- vii -

Fig. 4-8. Probability distributions of Markov chains representing memory access in first

partition. .. 93

Fig. 4-9. Task arrangement in processing period after first partition analyzed. 94

Fig. 4-10. The ideal processing period is compared with the actual processing period. The

ideal processing period does not consider the effect of memory interference, where the

actual processing period does consider memory interference. ... 96

Fig. 5-1. Example of a down movement of task D. .. 104

Fig. 5-2. Histogram of values generated by Logistic Map (left) and New Chaotic Map

(right), from [MiHu04]. .. 108

Fig. 5-3. Histogram of perturbations for CSA1. ... 111

Fig. 5-4. Chaotic variable vs. algorithm iteration for CSA2. .. 113

Fig. 5-5. Histogram of perturbations for CSA2. ... 113

Fig. 5-6. Chaotic variable vs. algorithm iteration for CSA. .. 115

Fig. 5-7. Histogram of perturbations for CSA3. ... 115

Fig. 5-8. Initial task solution for experiment #1. .. 119

Fig. 5-9. Initial task solution for experiment #2. .. 119

Fig. 5-10. Processing period calculated at each iteration for experiment #1. 119

Fig. 5-11. Number of perturbations at each iteration for experiment #1. 120

Fig. 5-12. Period calculated at each iteration for experiment #3. 121

Fig. 5-13. Period calculated at each iteration for experiment #2. 122

Fig. 5-14. Processing period calculated at each iteration for experiment #4. 123

Fig. 5-15. Power density spectrum of experiment #3 results. ... 125

Fig. 6-1. A dataflow graph representing the green screen application. 130

Fig. 6-2. Processing period results for the ideal value, the experimental measurement, the

calculation by the proposed analytical method, and the calculation by the simple method

(saturated bandwidth from [SLOW07]). ... 134

Fig. 6-3. Speedup of the memory intensive application for two, three, and four

processors. ... 136

- viii -

Fig. 6-4. Individual measured task execution times for the memory intensive application.

 ... 137

Fig. 6-5. Execution time vs. the number of processors for the computationally intensive

application. .. 138

Fig. 6-6. Speedup vs. the number of processors for the computationally intensive

application. .. 139

Fig. 6-7. Processor idle time of each processor in the one, two, three, and four processor

cases. ... 140

Fig. A - 1. A Screenshot of the design summary page within the Xilinx ISE 10.1.03 tool

 ... 161

Fig. A - 2. A screenshot of a VHDL module Open within the Xilinx ISE 10.1.03 tool . 161

Fig. A - 3. A screenshot of the peripheral interface GUI within the Xilinx EDK tool. .. 163

Fig. A - 4. A screenshot of the four Microblaze processor block diagram generated by the

Xilinx EDK tool. ... 163

Fig. A - 5. A screenshot of the Xilinx EDK tool with a software application for one of the

processors open. .. 164

Fig. A - 6. A screenshot of a simulation test bench for the task scheduler module. 165

Fig. A - 7. A screenshot of a simulation of the task scheduler hardware module. 166

Fig. A - 8. Xilinx University Program Virtex-II Pro Development Board from [Xili05]

 ... 167

Fig. A - 9. Block diagram of MPSoC experimental test setup. 168

Fig. A - 10. Screenshot of serial output received by HyperTerminal running on the PC,

with data sent from the XUPV2P board.. 168

Fig. B - 1. Screenshot of output from chaotic simulated annealing program. 170

- ix -

LIST OF TABLES

Table 4-1. Example task parameters. .. 90

Table 4-2. Task parameters after first partition is analyzed. ... 94

Table 4-3. Task parameters after analyzing the entire processing period. 95

Table 5-1. Task characteristics for experiments 1 and 2... 116

Table 5-2. Task characteristics for experiments 3 and 4... 117

Table 5-3. Experimental final processing periods. ... 124

Table 6-1. Experimentally determined task parameters of the memory intensive

application. .. 133

Table 6-2. Task allocations for 2, 3, and 4 processors. ... 133

- x -

LIST OF ABBREVIATIONS AND ACRONYMS

ASIC Application Specific Integrated Circuit (pg. 6)

BOA Bayesian Optimization Algorithm (pg. 22)

CSA Chaotic Simulated Annealing (pg. 102)

DFG Dataflow Graph (pg. 9)

DMA Direct Memory Access (pg. 22)

DRAM Dynamic Random Access Memory (pg. 63)

DSP Digital Signal Processor (pg. 6)

EDK Embedded Development Kit (pg. 159)

EEPROM Electrically Erasable Programmable Read Only Memory (p. 63)

FFT Fast Fourier Transform (pg. 19)

FIFO First-In, First-Out (pg. 11)

FPGA Field Programmable Gate Array (pg. 5)

FPU Floating Point Unit (pg. 48)

GA Genetic Algorithm (pg. 22)

Geo Geometric Distribution (pg. 75)

GPU Graphic Processing Unit (pg. 6)

GUI Graphical User Interface (pg. 162)

HNN Hopfield Neural Networks (pg. 102)

- xi -

ISE Integrated Synthesis Environment (pg. 159)

JPEG Joint Photographic Experts Group (pg. 1)

JTAG Joint Test Action Group (pg. 159)

kB kilobyte (pg. 51)

MHz Megahertz (pg. 52)

MIMD Multiple Instruction, Multiple Data (pg. 28)

MMU Memory Management Unit (pg. 48)

MPEG Moving Picture Experts Group (pg. 1)

MPSoC Multiprocessing System-on-chip (pg. i)

NoC Network-on-Chip (pg. 14)

NP Nondeterministic Polyminal (pg. 98)

NUMA Non-Uniform Memory Access (pg. 25)

OPB On-chip Peripheral Bus (pg. 48)

PC Personal Computer (pg. 132)

PH Phase Type Distribution (pg. 75)

PSO Particle Swarm Optimization (pg. 99)

QEA Quantum-inspired Evolutionary Algorithm (pg. 99)

RAM Random Access Memory (pg. 35)

RGB Red Green Blue (pg. 129)

- xii -

SA Simulated Annealing (pg. 99)

SDF Synchronous Data Flow (pg. 4)

SDRAM Synchronous Dynamic Random Access Memory (pg. 63)

SRAM Static Random Access Memory (pg. 63)

TS Tabu Search (pg. 99)

UMA Uniform Memory Access (pg. 25)

USB Universal Serial Bus (pg. 166)

VHDL VHSIC Hardware Description Language (pg. 147)

VHSIC Very High Speed Integrated Circuit (pg. xii)

XUPV2P Xilinx University Program Virtex-II Pro (pg. 47)

YUV Colour space based on luminance and chrominance (pg. 129)

- xiii -

LIST OF SYMBOLS

% percent (pg. 93)

0(ij) a zero filled i by j matrix (pg. 76)

αi probability of a memory request from task i (pg. 72)

αn attenuation variable in CSA1 algorithm (pg. 109)

βnp number of tasks a given processor has assigned (pg. 43)

β starting vector in the memory service time probability transition matrix

(pg. 66)

βc damping factor in Mingjun and Huanwen algorithm (pg. 107)

βd damping parameter in CSA1 algorithm (pg. 109)

βs spectral exponent in the
�

��� term (pg. 124)

γ parameter in new chaotic map (pg. 107)

∆E difference between the pipeline processing periods of successive iterations

in the SA and CSA algorithms (pg. 105)

εi error between iterative calculations of φi for processor i (pg. 85)

εr error limit for iterative process of finding f1,1
(n)

 (pg. 83)

ζi probability that processor i will have to wait for memory access when it

has a pending memory request (pg. 88)

η parameter in new chaotic map (pg. 107)

- xiv -

θi ratio of the task executed in the analyzed partition window to the total

execution time of the task (pg. 89)

θprev_i ratio of the amount of task i that was analyzed in previously analyzed

partitions to the total task execution time (pg. 89)

λ number of pipeline stages (pg. 42)

λi probability of accessing memory type i in global memory (pg. 69)

µ parameter in the logistic chaotic equation (pg. 107)

πi steady state probability vector for processor i (pg. 87)

σi
(n)

 probability of processor i requesting access to memory within n time

quanta (pg. 82)

υi vector representing start of service in the vacation probability transition

matrix for processor i (pg. 75)

φi
(n)

 probability that there will be a memory request from processor i when it

finishes vacation (pg. 80)

Aj matrix representing transitions between states of processor j in the vacation

process (pg. 78)

Bj matrix representing transitions from states where the memory controller is

serving processor j in the vacation process (pg. 78)

Dβ fractal spectral dimension (pg. 124)

- xv -

fx,y
(n)

 probability of first visiting state y from state x in a Markov chain at the n
th

time quantum (pg. 82)

f(Tn) cooling schedule function for SA and CSA algorithms (pg. 106)

G* global minimum task arrangement for SA and CSA algorithm (pg. 105)

Gcurrent initial task arrangement for SA and CSA algorithm (pg. 105)

Gnew latest task arrangement for the SA and CSA algorithms (pg. 105)

J number of unsuccessful iterations in the SA and CSA algorithms before

the search is restarted from the best known solution (pg. 106)

k number of states in the memory service probability transition matrix (pg.

66)

kb constant analogous to Boltzmann’s constant used in SA and CSA

algorithms (pg. 106)

KDS total number of data sets to be executed by tasks in the DFG (pg. 44)

m number of states in the vacation probability transition matrix (pg. 75)

mod the modulus operator (pg. 78)

ML list of preceding tasks for each task in the DFG (pg. 44)

Mmem number of different types of memory in a multiple memory system (pg.

68)

numperturbs number of perturbations in CSA1 algorithm (pg. 110)

NL list of tasks assigned to a processor (pg. 43)

- xvi -

N number of active processors (pg. 71)

Nmem average number of memory requests made during a task execution (pg. 64)

Nno_mem number of time quanta during a task’s execution without a memory

request (pg. 64)

pe probability of moving to the next stage in a negative binomial process

(pg. 66)

perturb_max maximum number of perturbations in CSA algorithms (pg. 110)

perturb_min minimum number of perturbations in CSA algorithms (pg. 110)

Pi probability transition matrix for processor i (pg. 76)

Q list of the number of times each task in a DFG has been executed (pg. 44)

S matrix representing the phases of service in the service time probability

transition matrix (pg. 66)

S
0
 vector representing the end of service in the service time probability

transition matrix (pg. 66)

tanh() hyperbolic tangent function (pg. 107)

tp pipeline processing period (pg. 12)

tP* global minimum pipeline processing period (pg. 105)

tpartition_new new time of a pipeline processing window after considering memory

access waiting times (pg. 89)

- xvii -

tremaining_new_i time remaining in a task to be analyzed after analysis of a single time

window (pg. 89)

tremaining_old_i time remaining in a task to be analyzed after analysis of a single time

window without considering memory access wait times (pg. 89)

ttotal_task_i total time remaining for task i that is yet to be analyzed (pg. 89)

ts system clock period (pg. 63)

T
 transpose matrix operation (pg. 66)

Tmax maximum temperature parameter for SA and CSA algorithms (pg. 105)

Tmin minimum temperature parameter for SA and CSA algorithms (pg. 105)

Tp pipeline processing period (pg. 42)

vx,y the probability of transitioning from state x in a Markov chain to state y

(pg. 82)

Vi matrix representing the phases of service in the vacation probability

transition matrix for processor i (pg. 75)

Vi
0
 vector representing the end of service in the vacation probability transition

matrix for processor i (pg. 75)

Vi’ full probability transition matrix representing the vacation of processor i

(pg. 81)

zm chaotic variable at the m
th

 iteration (pg. 107)

- 1 -

Chapter 1

INTRODUCTION

1.1 Motivation

Optimizing the hardware and software of a computing system to fit the

characteristics of a particular problem can be very beneficial in achieving performance

increases of the computing system. However, the complexity of a design increases

substantially for a system with less fixed design parameters. There is a great deal of

benefit in using a framework for a computing system that fixes certain parameters that do

not need to change to suit a particular application or class of applications. The framework

allows the designer to focus the design effort on parameters that can significantly affect

the performance of an application under development. Fixing certain parameters within a

framework reduces the design complexity, but also reduces the design options available.

Narrowing the scope of the applications to a particular class of application can allow the

framework to be customized to suit the characteristics that are common throughout the

class of applications.

Stream-oriented applications are a class of applications that can be well

represented by dataflow graphs [BaGo05]. These applications usually have a large

amount of data that needs to be processed by a relatively small number of tasks, with

particular data dependencies between the tasks. Stream-oriented applications are common

in multimedia applications such as JPEG and MPEG-4 encoders and decoders. The

framework proposed in this thesis is specific to the stream-oriented class of applications.

An MPSoC Framework Chapter 1: Introduction

- 2 -

Implementation of an MPSoC design can be very time consuming, and therefore

analysis of the design before implementation is beneficial to determine if the desired

performance (determined by some performance criteria that is specific to the problem)

can be achieved, and to determine how the design could be changed to achieve better

results. The use of a framework allows for more accurate analysis of a design, because

the particular features of the framework can be modeled within the model of the design

used for analysis. An analysis model of design also allows many variations of the design

to be considered using optimization algorithms, resulting in automation of the design

optimization.

This thesis is motivated by the need to develop complex computing applications

in a short period of time through the use of a framework that reduces the design space,

analysis that evaluates a proposed solution before implementation, and automated

optimization of the solution. Therefore, this thesis strives to address the following

research questions:

• Does the narrowing the scope of applications to a particular class of

application result in an MPSoC framework that can be optimized for both

performace and development time?

• Can an analytical model of an MPSoC system be used to predict performance

of the system before implementation?

• Can combinatorial optimization techniques be used to automate the mapping

and scheduling of tasks in an MPSoC system?

An MPSoC Framework Chapter 1: Introduction

- 3 -

1.2 Thesis Statement and Objectives

The purpose of this thesis is to present an effective MPSoC framework that

reduces the complexity of design for parallel computing systems targeted towards stream-

oriented applications.

In the context of this purpose, the following thesis objectives are identified in

order to address the research questions specified in the previous section:

• Definition and justification of the class of applications to which the

framework targets;

• Definition of the components that make up the framework architecture,

including the components that are fixed for all implementations of the

framework and the components that require customization for each

application;

• Discussion of the framework architecture in comparison to alternative

architectures to demonstrate the strength and weaknesses of the framework

architecture;

• Development of an analytical model, based on discrete-time Markov chains,

that can be used to evaluate the performance of an implementation of the

framework given application specific performance criteria;

• Automated task allocation of an implementation of the MPSoC framework for

application specific performance criteria using combinatorial optimization

algorithms, specifically chaotic simulated annealing, and the analytical model

as a cost function to evaluate potential solutions;

An MPSoC Framework Chapter 1: Introduction

- 4 -

• Verification of the objectives mentioned above through experimental results.

1.3 Organization of Thesis

This thesis consists of seven chapters. The organization of the remaining chapters

is described below.

Chapter Two provides some background information and related work in the areas

of computing models, parallel processing architectures, hardware/software partitioning,

and computing frameworks. The chapter begins by giving a general overview of

computing frameworks and the benefits of narrowing a framework to a specific class of

applications. Then an overview of computing models is given, including the computing

model chosen for the MPSoC framework, namely synchronous dataflow (SDF). An

overview of parallel processing architectures is given in the context of the strengths and

weaknesses for processing applications using a SDF computing model. This is followed

by an overview of related work in the area of multiprocessing system frameworks. This

background information provides the context for the remainder of the thesis by

explaining some of the key concepts related to the MPSoC framework development and

discussing the current state of the research in the field. The chapter is concluded by

stating the unique contributions made by this thesis to the field of study.

Chapter Three describes the Multiprocessing System-on-Chip framework. This

chapter describes the hardware and software architectures of the MPSoC and the

scheduling scheme for the MPSoC. This includes detailed descriptions of the components

that make up the framework, definition of the components that are fixed within the

framework, and identification of the components that require customization for each

An MPSoC Framework Chapter 1: Introduction

- 5 -

application of the framework. The implementation specific features of the MPSoC

framework that are used for the experimental demonstration are described to show how

the MPSoC framework could be implemented.

Chapter Four introduces the analytical model used to evaluate the performance of

an implementation of the MPSoC framework. The analytical model is a stochastic model

based on discrete-time Markov chains that can be used to evaluate the performance of an

implementation of the framework for several different performance criteria.

Chapter Five introduces automated optimization techniques using chaotic

simulated annealing. A brief overview of combinatorial optimization including discussion

of alternative techniques is given followed by a detailed description of the simulated

annealing and chaotic simulated annealing methods proposed for optimization of an

implementation of the MPSoC framework. The simulated annealing and chaotic

simulated annealing are compared and analyzed using experimental results.

Chapter Six describes the experiments used to verify and evaluate the MPSoC

framework and the analytical model. The MPSoC was implemented on a Xilinx Virtex-II

Pro FPGA [Xili07] using an example video processing application to demonstrate the

benefits and tradeoffs of the framework and verification of the analytical model.

Finally, Chapter Seven gives concluding remarks about the MPSoC framework,

analytical model, and optimization techniques, with discussion of the direction of future

related research. The paper is concluded with a summary of the contributions made by

this thesis. The contributions are expanded from those highlighted in Chapter Two to give

a comprehensive list of the contributions made to the field of study.

- 6 -

Chapter 2

BACKGROUND AND RELATED WORK

2.1 General Background on Computing Frameworks

For many years, data and signal processing applications have been implemented

with either general purpose microprocessors or application specific integrated circuits

(ASIC). General purpose microprocessors offered the benefit of being customizable for

applications through the use of software without having to make application specific

changes to hardware, but, generally, the hardware is not optimized specifically for the

application. ASICs, on the other hand, have the benefit of being hardware customizable,

specifically for the application to maximize performance, although at the price of very

high development costs. In the past twenty years or so there have been many devices

developed as an attempt to bridge the gap between customization and optimal

performance. Digital Signal Processors (DSP), for example, have the ability to bridge the

gap between general purpose microprocessors and ASICs for some types of applications.

DSPs implement common signal processing functions in hardware blocks, which

increases performance [Lee88b] [Lee89]. Software is then used for implementing the

portions of the applications that are not common to most DSP applications. The cost of

the increased performance of DSPs is that the scope of the applications to which they are

well-suited is narrowed to only signal processing applications. Graphic processing units

(GPU) also provide increased performance over the general purpose microprocessor and

still allow for customization through software, but at the cost of narrowing the scope of

applications to graphic processing applications or applications that have features similar

An MPSoC Framework Chapter 2: Background

- 7 -

to graphics processing problems. Many scientific computing applications also benefit

from the GPU architectures because of similar features of the problems [KEGS09].

Over the past decade, the multiprocessing system-on-chip (MPSoC) has been

established as a unique branch of evolution in computer architecture that targets

application specific embedded systems [WoJM08]. A wide variety of MPSoCs have been

developed to provide solutions in networking, multimedia, signal processing,

communications, and other applications. With the prevalence of field programmable gate

arrays (FPGAs), designers can customize hardware with much lower development costs

compared to ASIC development. However, development of complex applications entirely

in hardware can still be a very large development effort. Soft processors are

microprocessor cores that can be implemented in configurable hardware logic of an

FPGA to provide software configurability benefits of a general purpose microprocessor

(GPM), and, also, can easily be designed to have hardware features of GPM (such as

particular peripherals, floating-point units, instruction pipelining) added or removed to fit

a specific application. The development of soft processors has resulted in an increase of

application specific multiprocessing systems ([CoHJ07], [JoLi96], [BeBB08],

[RSJK05]). The design space for implementing a multiprocessing system-on-chip using

soft processors is very large, and the development time for such a system, where the goal

is to customize the system to maximize performance of a specific application, can be

prohibitively long. Therefore, in the same way as the DSP and the GPU provide

optimized platforms for specific classes of applications, there is a benefit in the

development of a multiprocessing system-on-chip framework that reduces the design

space for particular classes of applications. This can result in a solution that is more

An MPSoC Framework Chapter 2: Background

- 8 -

computationally efficient than a general solution, and more flexible than an application

specific solution. A class of problems can be defined by a common computing model.

The design of the multiprocessing system can then be optimized to specifically consider

only problems well-suited to particular computing model can allow for better

performance of the system compared to a generalized parallel processing system.

2.2 Models of Computation

2.2.1 Overview of Models of Computation

A model of computation is a formal description of the computational behaviour of

an application that is independent of the detailed design. A model of computation is

composed by notation and by the rules for computation behaviour [BaGo05]. It is useful

to express an application in terms of a model of computation to determine the structure of

the application independent of the implementation, because an analysis of the

computational model can result in better informed decisions. For example, it allows a

designer to choose the implementation hardware and software that best suits the

application, rather than forcing an application into hardware and software that is not

necessarily the best fit.

Some common models of computation are finite state machines

[Moor56][Meal55], discrete event models [BaGo05], synchronous/reactive models

[BeBe91], Statecharts [Hare87], Petri nets [Reis85], and dataflow models [Lee91]. Each

of these models of computation is not mutually exclusive from one another, and often an

application can be well represented using several models of computation [LeSa98]. The

An MPSoC Framework Chapter 2: Background

- 9 -

rules of a computational model specify a finite set of possible operations, and, as a result,

certain types of models are better suited to certain problems than others.

Stream-oriented applications are data-dominated, meaning that they generally

have large sets of data that need to be processed through a relatively small number of

tasks, which do not change based on the data to be processed. Each task is executed for

each data set processed. This differs from control-oriented applications where the tasks to

be executed may differ depending on the data being processed. Computing models that

determine the task to be executed based on some conditions (such as state machines,

Petri-nets, etc.) are well-suited to these control applications. Dataflow models, on the

other hand, are well-suited to applications where the order of tasks being executed does

not change based on the data to be executed. Since stream-oriented applications are data

dominated, and the MPSoC framework proposed in this thesis is targeting stream-

oriented applications, the model of computation chosen for the MPSoC framework

proposed in this thesis is a dataflow computing model.

2.2.2 Synchronous Dataflow Model of Computation

Stream-oriented applications have relatively large data sets which can be

processed by a set of tasks, either serially or concurrently. Dataflow computing of stream-

oriented applications is best modeled by a dataflow graph (DFG) [BaGo05]. A DFG has

nodes that represent computational steps (i.e., tasks) in an algorithm, and edges that

represent the movement of data. The DFG is unidirectional with no loops. All of the

preceding tasks previous to a current task must have completed processing the data set

An MPSoC Framework Chapter 2: Background

- 10 -

before the current task can begin processing the same data set. The DFG does allow for

parallel computations, where data dependencies do not exist.

Fig. 2-1 shows an example of a DFG. As indicated, task C can execute at the same

time that task E is being executed, but task H cannot start executing (on the same data

set) until task D, F, and G are all finished. Multiple datasets can be processed through the

DFG. This allows for the possibility of pipelining data through the graph, which would

allow a new data set to enter the graph before the current data set(s) have left the graph.

However, the succeeding data set can only be processed by tasks that have finished

processing the preceding data set.

Fig. 2-1. An example of a dataflow graph.

A special case of data flow computing is synchronous dataflow (SDF). SDF has

tasks that are represented by a DFG, where the tasks process a fixed amount of data in a

A

B

C

D

E

F G

H

An MPSoC Framework Chapter 2: Background

- 11 -

given processing period when the pipeline becomes full [LeMe87]. The tasks are

statically scheduled (i.e., scheduled at design time). In the case where the task execution

times are fixed, this produces a predictable processing period and therefore a predictable

total program execution time.

Homogeneous SDF is a special case of SDF that places a limitation on each node

such that it can only produce or consume one chunk of data per iteration (the size of a

“chunk” of data is implementation specific). This limitation is often placed to limit buffer

sizes between processing units implementing each node in the DFG, for hardware

architectures where processing units are connected in a point-to-point manner with FIFO

buffers between them. The MPSoC framework proposed in this thesis does not rely on

specific buffers between processing units, and therefore the MPSoC framework is valid

for both homogeneous and non-homogeneous SDF applications.

Fig. 2-2 shows an example of how the DFG in Fig. 2-1 can be processed using a

SDF computing model by three processors in a pipelined manner. In this example it takes

five processing periods to process one set of data, but a new set of data can start

processing each processing period. This means that after the pipeline is full (i.e. after 5

processing periods in this case), a data set can be completed every single processing

period rather than every five periods. So, in the example below, when the pipeline is full

the processors would execute the following tasks:

• Processor 1 would process task A from data set x+4, then task C from data set

x+2, and then task F from data set x+2.

An MPSoC Framework Chapter 2: Background

- 12 -

• Processor 2 would process task B from data set x+1, then task G from data set

x+2, and then task H from data set x.

• Processor 3 would process task E from data set x+2 and then task D from data

set x+1.

Fig. 2-2. An example of processing tasks from a dataflow graph in a pipeline.

For a large number of data sets, the average processing time of a data set will be

the processing period (tp), as shown in Fig. 2-2. There will be some additional time at the

beginning to fill the pipeline, and some time at the end to empty the pipeline, but for large

data sets this time is negligible. Therefore, to process a data set as fast as possible, the

processing period should be reduced to as short a time as possible. Adding more

processors allows for more tasks in the DFG to be executed in parallel which would

ideally decrease the average processing time. However, there is a system cost to adding

more processors. There is usually a particular performance increase that is needed in

order to justify adding additional processors.

Even if a system has a fixed number of processors, there are many ways that the

tasks can be arranged to result in different system behaviour. The number of pipeline

stages, the allocation of a task to a pipeline stage, and the allocation of a task to a

processor are all parameters of the system that can be varied to change the behaviour of

the system, and can affect system performance.

Processor 1

Processor 2

Processor 3

Processing

Period(Tp)

A

B

C

E D

F A

E

A

B

C F

G B G H

A

E D

B

C F

G

A

 Data Set 1 Data Set 2 Data Set 3 Data Set 4 Data Set 5

An MPSoC Framework Chapter 2: Background

- 13 -

2.3 Parallel Processing Architectures

The field of parallel processing architecture is a large area of study. There is a

significant amount of literature discussing tradeoffs of different parallel processing

architectures. This includes areas as diverse as supercomputing architectures to embedded

systems-on-chip. This section will give a brief overview of the differences between

possible parallel processing architectures within the context of application using a SDF

computing model within systems-on-chip. The large research area of parallel computing

architectures for supercomputing applications or interconnected stand-alone computers

will not be discussed since it is out of the scope of this thesis. Considering that the SDF

computing model divides an application into a number of tasks and describes the

dataflow between the tasks within the DFG, any parallel computing architecture

customized towards an SDF computing model will have a number of processors that are

assigned a certain number of tasks, either statically (at design time), or dynamically (at

run time), and there will need to be an interconnect network between the processors to

share data as described by the DFG. The parallel processing architecture is mostly

defined by the interconnection network that determines how information is passed from

one processor to another. The three basic types of communication are:

1. Routed network communication where there is not a direct path from each

processor to every other processor and information may be routed through

intermediate processors. This includes many variations of a network such as

mesh, binary tree, hypertree, and hypercube networks [Quin04].

An MPSoC Framework Chapter 2: Background

- 14 -

2. Point-to-point communication where any processor can communicate with

any other processor over dedicated communication medium.

3. Bus-based communication where any processor can communicate with any

other processor over a shared communication medium.

Routed networks are often beneficial for multiprocessing systems that are passing

a relatively small number of messages compared to the data being processed. Routed

networks within systems-on-chip have been explored extensively for many different

types of applications, often being referred to as a Network-on-chip (NoC) [LOCX05]

[LuDM09]. However, for applications where a large amount of data needs to be sent

relative to the data being processed, the overhead associated with routing the data can

become significant. Stream-oriented problems inherently have a large amount of data that

needs to be passed from one node to another in the DFG, meaning there must be a large

amount of data routed from one node to another. An advantage of the SDF computing

model in a multiprocessing system with routed network, is that the routes can be fixed at

design time, and do not have to be dynamically created while the application is running

because the tasks are statically scheduled (i.e. tasks are assigned to processors at design

time). A disadvantage of the SDF computing model in a multiprocessing system with

routed network is that the requirement to route data between processors essentially results

in an extra DFG task, which would assign the forwarding function to intermediate

processors that are not processing application data. Since there are generally a relatively

small number of tasks in the DFG for a stream-oriented problem, the routed network does

not offer any great advantage over the point-to-point network.

An MPSoC Framework Chapter 2: Background

- 15 -

The major advantage of point-to-point communication is that there are no

communication delays (due to communication channels being used for other

communication) and no routing delays. The major disadvantage of point-to-point

communication is that there needs to be a dedicated communication channel between

each processor. In the case of the SDF computing model, the number of communication

channels can be reduced to replicate the communication between tasks as shown in the

DFG. Basically, the topology of the routed data is determined by the edges in the DFG.

This is only the case if the tasks are allocated to microprocessors at design time (statically

scheduled). One consideration of the point-to-point network is the size of the

communication buffers. The communication buffers between processors must be

customized to fit the data to be sent between each task through one iteration of the DFG

multiplied by the number of pipeline stages. This means that the hardware is designed

specifically for the data pipeline; therefore, there can be no dynamic adjustment of task

scheduling or pipeline staging. While the point-to-point network may be an effective

MPSoC architecture for applications using the SDF computing model, it requires a

significant amount of hardware customization specific to the application DFG, or a fully

connected point-to-point network, which is usually inefficient for more than three

processors.

Bus-based networks have the advantage that any processor can communicate with

any other processor; however, there is a disadvantage that the shared communication

channel can become the bottleneck for the system. This is especially true if one processor

is sending a message to another processor when the other processor is busy and, as a

result, the shared communication channel is tied up waiting for the receiving processor to

An MPSoC Framework Chapter 2: Background

- 16 -

become free to receive the message. This problem can be alleviated through the use of

data buffers, where the data passed is stored in a buffer to be accessed by the receiving

processor when it becomes available. Even with data buffers, there needs to be a method

for each processor to know when there is data to be received. The data buffers can be

extended to a global memory, where each processor does not communicate with each

other processor directly; rather, it stores the output data from each task in the DFG to a

global memory. Then the next task (or tasks) in the DFG that depend(s) on this data can

access it from global memory, without needing to know which processor provided the

data. A disadvantage of the bus-based network is the need for a method to signal the

validity of data for processing. Tasks in a routed network or point-to-point network can

determine when data is valid to process by when the data arrives from a preceding task.

However, in a bus-based network the data can always be read even if it is not valid, so a

method to determine validity of the data is required. Valid data can be marked with a

stored flag for every data set (which would require additional memory), or a task

scheduler can be used to signal when the data is available for tasks to execute.

The major benefit of a bus-based global memory MPSoC using a SDF computing

model is that the basic hardware architecture does not have to be significantly customized

to fit the application. Another advantage of the bus-based global memory system is that

the tasks do not necessarily need to be statically scheduled, since the hardware

architecture does not have to change to match the mapping and scheduling of the tasks to

the processors. This thesis uses a hybrid pipeline scheduling technique for the MPSoC

framework (described in detail in Section 3.1.3). This technique has statically scheduled

An MPSoC Framework Chapter 2: Background

- 17 -

tasks, but allows for a dynamic pipeline stage and period, and is only possible with a bus-

based global memory MPSoC architecture.

2.4 Related Work in Multiprocessing System Frameworks

This section gives an overview of some of the related work that has been done in

the field of application specific MPSoC architectures and MPSoC frameworks.

Comparison of the related work to this thesis is made to highlight the contributions made

in this work.

There has been much work in the area of customizing MPSoC architectures by

using soft processors to fit the characteristics of an application. In these works, a very

specific application is generally chosen, and an MPSoC hardware and software

architecture is proposed to best suit the application. These papers show the benefit of an

MPSoC for solving specific applications, but require a large amount of effort to

customize a system from scratch for a specific application. One example of the

development of an MPSoC for a specific application can be found in [RSJK05] where a

soft multiprocessor system is developed and implemented in a Xilinx Virtex-II Pro FPGA

to forward IPV4 packets. Their system was analyzed and compared with network

processors (ASICs) designed for the same function. Another example can be found in

[BeBB08] where an MPSoC system is developed in a Xilinx Virtex-II Pro FPGA using

the Xilinx MicroBlaze soft processor [Xili08b]. Their system was designed specifically

for a real-time control application. The MicroBlaze processors were connected directly

together and passed messages between each other in a daisy-chained connection scheme.

The approach taken in this thesis differs from papers like [RSJK05] and [BeBB08] in that

An MPSoC Framework Chapter 2: Background

- 18 -

an MPSoC framework is developed that is not specific to an application, but rather to a

class of applications.

In [LOCX05], a design methodology of MPSoCs, which are specific to real-time

vision processing applications, is proposed. This paper targets a class of applications

(defined as the class of real-time vision processing applications), rather than a specific

application, but differs from a framework in that it does not specify features of the design

that are common to application class, but rather proposes a method of development of

MPSoC for applications that fit into this class. Two example architectures are chosen to

demonstrate how the evaluation of the architectures could be achieved. One of the

example architectures is a crossbar NoC, and the other is a bus-based architecture. The

design method explores heterogeneous processors and heterogeneous memory systems.

The allocation of tasks to processors is done in a heuristic fashion based on broad

generalizations of the application, without any rigorous analysis and without

consideration of inter-processor communications. [LOCX05] differs from the work in this

thesis in that a framework, rather than a design methodology, is proposed. However, just

as [LOCX05] sets out to define a design methodology and ends up defining portions of

an MPSoC architecture, the definition of a framework with an analysis and optimization

technique in this thesis, also largely maps out the design methodology to be used for

implementation of the framework. The method of analysis and the task allocation

optimization proposed in this thesis are more structured than the methods proposed in

[LOCX05].

An MPSoC Framework Chapter 2: Background

- 19 -

 In [SLOW07], a heterogeneous MPSoC architecture for specific embedded

computer vision algorithms is proposed. In this case, the number and type of processors

in the architecture are not chosen, but left up to the designer. The algorithm is organized

in an optical flow graph (essentially a dataflow graph). The processors are connected to a

bus-based global memory. A simplistic calculation was used to determine the required

global memory bandwidth of the system. This considers only the limiting case and

ignores the complexities of differing tasks’ memory access probabilities. [SLOW07] is

similar to this thesis in that an MPSoC framework is defined; however, [SLOW07]

defines the framework for a specific algorithm, rather than a broad class of applications,

as was done in this thesis. This thesis also proposes a detailed analysis method and task

allocation optimization technique as part of the framework, where these significant

design activities are only touched on lightly in [SLOW07].

In [LuDM09] the performance of a cluster based MPSoC is evaluated. This paper

describes an MPSoC framework where several processors are organized in clusters and

routing of messages is done through a hierarchal bus-based NoC. Each processor in a

cluster connects to a local memory bus to communicate with other processors in its

cluster by writing to the cluster-local memory. A single processor in each cluster is

responsible for routing messages to other clusters by writing to a global memory. A

round-robin arbitration scheme is used to determine access to the local and global

memories. Performance of the architecture was demonstrated with the implementation of

a matrix-multiplication problem, and a Fast Fourier Transform (FFT) problem. The

mapping of the algorithm to the processors and the scheduling of the tasks is not

discussed, and is assumed to be done in a heuristic fashion specific to the application. The

An MPSoC Framework Chapter 2: Background

- 20 -

architecture proposed in [LuDM09] is well-suited to divide-and-conquer type problems,

i.e., problems where the data is divided up, and can be processed individually and

reassembled. While there is a benefit to this architecture for divide-and-conquer types of

problems, a shortcoming of the paper is that it does not mention that these are the types of

problems that are well-suited to the hierarchal bus NoC, but rather alludes that the

MPSoC architecture proposed is a good general solution. The example applications given

are a matrix multiplication problem and an FFT problem. Both are problems that can

divide up the data and be processed individually and then reassembled, so that the results

are predictably good.

In [WuPe04], a design methodology for the development of a bus-based MPSoC

specific to applications described in a DFG is proposed. This is specific to algorithms that

are to be optimized for latency. Timing constraints are assigned to levels of the DFG, and

tasks are scheduled in the order that they appear in the DFG. Access to global memory is

done on a priority basis, based on the timing constraints assigned in the DFG. This paper

states that the tasks are mapped to processors by analysis of the system, but does not state

specifically what that analysis is, and so it is presumed to be based on some knowledge of

the designer about the application tasks. A system controller is used to schedule tasks that

are assigned to processors, but there is no mention of the scheduling technique used.

[WuPe04] has elements that are very similar to this thesis; for example, the framework

based on applications that are described by DFGs, the bus-based hardware architecture,

and the use of a hardware task scheduler. However, in this thesis, an analytical tool is

developed to analyze the performance of the system in detail before implementation, and

a method for optimization of task allocation is proposed, where these are left up to the

An MPSoC Framework Chapter 2: Background

- 21 -

judgement of the designer in [WuPe04]. In addition, a novel method of scheduling is

proposed in this thesis that is specific to the MPSoC framework, where the scheduling

technique is not addressed in [WuPe04].

In [CoHJ07], a method was developed to produce a latency-optimized MPSoC,

given a throughput constraint. The method targets applications that are stream-oriented

and throughput constrained. The method requires the hardware architecture to consist of

homogeneous processors that are connected together through point-to-point

communication. Tasks are pipelined to exploit parallelism using static pipeline

scheduling. A heuristic algorithm is used for mapping tasks to processors and scheduling

the tasks. The main goal of the algorithm is to minimize communication between

processors by mapping tasks that communicate with each other to the same processor

where possible. One trade-off in this method of mapping is that it depends on

homogeneous processing systems, since no consideration is made as to whether the tasks

mapped to a given processor are well-suited to the strengths of this processor. The

MPSoC framework proposed in this thesis is similar to [CoHJ07] in that applications that

are represented in a DFG and are stream-oriented are targeted. However, the hardware

architectures differ since a bus-based global memory architecture was used in this thesis,

allowing for the hybrid pipeline scheduling proposed in section 3.1.3, whereas a point-to-

point communication method was used in [CoHJ07], which means the scheduling must

be static. Also, the MPSoC framework developed in this thesis can be used in both

homogeneous and heterogeneous multiprocessor systems and homogeneous or

heterogeneous global memories, while the architecture described in [CoHJ07] is specific

to only homogeneous multiprocessing systems.

An MPSoC Framework Chapter 2: Background

- 22 -

A method for mapping tasks organized in a DFG to processors within an MPSoC

using a Bayesian Optimization Algorithm (BOA) is presented in [TBCP09]. [TBCP09]

assumes a bus-based global memory MPSoC architecture. The instructions for each task

are loaded from global memory into a processor’s local memory during run time. This

allows for tasks to be scheduled dynamically; however, this also requires a DMA (Direct

Memory Access) controller to move data and a dedicated processor to be used only for

scheduling of tasks. A simple analytical model is created to evaluate a mapping and

scheduling solution with a task graph. Each task is divided into two categories,

communication tasks and operational tasks. Communication tasks represent the time that

instructions and data are communicated to a processor, and operational tasks represent the

processing time of each task. It is assumed that all instructions and data are

communicated at the beginning and end of each operational task. This model does not

allow for the possibility of communication interspersed with processing during the

execution of the task. Each communication task is characterized according to the amount

of data communicated, and the communication medium delays; each operational task is

characterized according to the execution time. A task graph showing the communication

and operational tasks is created that is specific to a particular mapping, and from this, the

performance of the task mapping can be determined. A BOA algorithm is used as an

optimization algorithm to determine a good task mapping. BOA is a probabilistic model

building genetic algorithm, a particular type of Genetic Algorithm (GA), where the

standard mutation and crossover operators have been replaced by the construction and the

sampling of a Bayesian network. The results are then validated with an experimental

implementation of using Xilinx MicroBlaze processors and PowerPC processors in a

An MPSoC Framework Chapter 2: Background

- 23 -

Xilinx Virtex-II Pro FPGA. The work in [TBCP09] is very similar in its objectives to this

thesis, since in both cases, an analytical model of an application mapped and scheduled

on an MPSoC is developed, and an optimization algorithm is used to automate the

optimization of the task allocation. The major differences are that the architecture

proposed in [TBCP09] is not proposed as an MPSoC framework, but rather as a very

specific implementation of an MPSoC. Also, the analytical method used to evaluate

particular solutions was overly simplistic in that all communication to global memory

must occur at the beginning and end of a task, rather than allow for communication

interspersed within the execution of a task. The analytical method proposed in this thesis

allows for interspersed communication and operations. The analytical model proposed in

this thesis also considers characteristics of the global memory arbitration method.

2.5 Thesis Contributions to the Field of Study

This thesis makes unique contributions to the MPSoC field of study. Through the

review of related work discussed in Section 2.4, it is evident that there has been much

research done in the area of MPSoCs. While other research has resulted in proposed

MPSoC frameworks and task mapping and scheduling methods, these are generally

treated as separate research problems, which do not typically integrate the development

of the framework with analytical and optimization tools. A benefit of an MPSoC

framework, in general, is to reduce development effort. In addition, associated analytical

models to predict the performance of the system under different configurations, as well as

optimization techniques can significantly reduce the development effort. This thesis is

unique in that it addresses a more comprehensive picture; it develops a flexible

An MPSoC Framework Chapter 2: Background

- 24 -

multiprocessing framework, which is integrated and supported by an analytical tool to

measure the effect on performance under different numbers of multiprocessors, and,

furthermore, a tool to determine an optimal number of processors. Other unique

contributions of this thesis include the proposed hybrid pipeline scheduling (Section

3.1.3), the analytical model of the MPSoC using discrete-time Markov chain (Chapter 4),

and the application of chaotic simulated annealing to the task allocation optimization

specific to the proposed MPSoC framework (Chapter 5).

- 25 -

Chapter 3

MULTIPROCESSING SYSTEM-ON-CHIP FRAMEWORK DESCRIPTION

3.1 MPSoC Framework Architecture

The proposed MPSoC framework consists of both hardware and software

architectures that may each be individually configured to fit a specific application. The

following section defines the hardware and software architectures that make up the

MPSoC framework, including defining which components of the hardware and software

are fixed within the framework and which components are configurable to fit a specific

application.

3.1.1 Hardware Architecture

The hardware architecture (Fig. 3-1) is a multiple processor system with a

uniformly accessible global shared memory. This means that each of the processors in the

system can access the global memory space to share data, and all processors have an

equal average global memory access time. The terms uniform memory access (UMA) and

non-uniform memory access (NUMA) are often used to categorize memory architectures

in parallel processing systems [Quin04]. The MPSoC framework proposed in this thesis

may be a UMA system or NUMA system depending on the implementation. While

access to global memory is uniform, each processor has its own local memory as well. In

the case where homogeneous processors are using the MPSoC, then the system is a UMA

memory architecture. However, if the MPSoC framework is implemented with

An MPSoC Framework Chapter 3: MPSoC Framework Description

- 26 -

heterogeneous processors where different processors have different local memory access

times, the system would be categorized as a NUMA memory architecture.

Fig. 3-1. Block diagram of MPSoC hardware architecture.

Fig. 3-1 shows the hardware architecture of the MPSoC. The main components of

the system are the soft processors (including local data and instruction memories), global

shared memory, memory controller to control access to the global memory, and task

controller. The diagram shows four processors and three memory types; however, the

An MPSoC Framework Chapter 3: MPSoC Framework Description

- 27 -

number of processors and the number of different memory types that make up global

memory can vary depending on the needs of the application.

3.1.1.1 Soft Processor

A soft processor is implemented in configurable logic within an FPGA. The

framework described here is not specific to any particular soft processor. The MPSoC

framework does not require a homogeneous multiprocessor system, meaning that all the

processors in the system do not have to be the same type. The main benefit of a

homogenous multiprocessor system is the simplicity of the design. If the same type of

processor is used for all the processors in the system, the main design decisions are

determining the number of processors to include in the system, and the scheduling and

allocation of tasks to the processors. A design with a heterogeneous multiprocessor

system is more complicated because, in addition to the design decisions for a

homogeneous system, it also needs to be determined which different types of processors

should be included, how many of each kind, and what the differences are between the

processors. Differences between the processors in a heterogeneous multiprocessing

system can be relatively small, such as different peripherals or local memory sizes, or can

be very large, such as entirely different processing architectures. While a heterogeneous

processing system can be more complicated, there can be major advantages to a

heterogeneous processing system for some applications. The advantage is most

significant tasks with particular characteristics can be mapped to processors that are well-

suited to tasks with those characteristics. For example, if it was the case that a few tasks

in an application required significant digital signal processing, but the other tasks did not

An MPSoC Framework Chapter 3: MPSoC Framework Description

- 28 -

require this processing, then it would be advantageous to have a Digital Signal Processor

(DSP) as one of the processors in this system to execute the digital signal processing

tasks, but have other processors better suited to the other tasks in the application. This

would result in a better performance solution than using DSPs for all tasks or using

general processors for all tasks.

Each of the processors requires its own local data and instruction memory, which

allows each processor to run an independent program. Within Flynn’s taxonomy, this

system is defined as a multiple instruction, multiple data (MIMD) system [Flyn72]. The

local instruction memory contains the entire program for each of the processors, and the

local data memory is used for calculations while executing tasks.

All processors in the system will be assigned a subset of the DFG tasks to be

executed, and the execution of the tasks will be scheduled by the task controller. One of

the processors in the MPSoC framework is assigned additionally as the head processor.

The head processor is used to execute any serial code that may be required before and/or

after the DFG tasks are executed. For example, in an image compression application, the

head processor may need to open a file before the DFG tasks commence; furthermore,

upon completion of the DFG tasks, the head node may be required to close the file.

Opening and closing of the file only need to happen once respectively, so they do not fit

within the DFG. However, during execution of the DFG, there is no distinct difference

between the head processor and the other processors in the system.

An MPSoC Framework Chapter 3: MPSoC Framework Description

- 29 -

3.1.1.2 Task Controller

The task controller is the scheduler for the system. It has specific knowledge of

the application, so it is customized for each application. The task controller is

implemented entirely in hardware, independent of the soft processors. This allows the

task switching overhead to be much less than it would be if the scheduling was done in

software by a processor. The DFG task dependencies are entered as parameters in the task

controller hardware description language. Also, the task allocation for each processor in

the system is specified in the hardware description of the task controller. This allows the

task controller to control which task should be executed on which processor.

The task controller uses the following signals to control the execution of the tasks

on the processors. There is a set of these signals for each processor in the system.

• executing – Each processor has an “executing” signal that is sent to the task

controller. This signal is set by the processor when it is currently executing the

most recently assigned task.

• start_exec – A “start_exec” signal is sent from the task controller to each

processor. This signal is used to notify a processor when it should start

executing a task.

• DFG_node – A “DFG_node” bus is sent from the task controller to each

processor. This bus is timed with the “start_exec” signal, so that they are both

active together.

• iteration_num – An “iteration_num” bus is sent from the task controller to

each processor. The width of the “iteration_num” bus is implementation

An MPSoC Framework Chapter 3: MPSoC Framework Description

- 30 -

specific; it is not part of the generic MPSoC framework definition. How the

iteration_num is used by each processor is specific to the function of the

executing task. For example, it may be used as an index into global memory to

specify the location of the current data set.

• proc_done – A “proc_done” signal is sent to each processor. This signal is

used when all the data sets that are to be executed by a processor are finished.

This is used to signal to a processor that all of its work is done.

The following diagram shows a block diagram of the interface between the task

controller and one of the processors in the system. This interface is repeated between the

task controller and each processor in the system.

Fig. 3-2. Interface between the Task Controller and soft processor

The head processor will also have a “start_task_control” signal that is used to

enable the task controller. This is not repeated for all processors, but is only available to

the head processor. This signal is made active when the task controller should start

operating. The purpose of this is to allow the head processor to execute pre-DFG tasks

before the DFG tasks are executed, and then execute post-DFG tasks that may be required

after the DFG tasks are finished executing.

Task

Controller

Processor

executing

start_exec

DFG_node

iteration_num

proc_done

An MPSoC Framework Chapter 3: MPSoC Framework Description

- 31 -

The system designer determines which tasks are executed by which processor, but

the task controller will automatically determine how many pipeline stages are required by

using the task dependencies to determine which task can be executed. The pipelining

technique is a novel approach that can result in dynamic pipeline stages. This is pipeline

scheduling method is a hybrid between static pipeline scheduling and dynamic pipeline

scheduling. The hybrid pipeline scheduling technique is discussed in more detail in 3.1.3.

3.1.1.3 Task Controller Interface Peripheral

The task controller interface peripheral is a custom peripheral for each processor

that is used make the signals between the task controller and the processor available to

the software executing on the processor. The generic MPSoC framework requires that a

task controller interface peripheral exists, but the detailed design of the peripheral is

implementation specific because it depends on the type of processor used in the system.

Each processor in the system will have its own task controller peripheral to interface with

the task controller.

3.1.1.4 Memory Controller

The memory controller is used to control each processor’s access to global

memory. The interface between each processor and the memory controller is an

asynchronous interface. This means that there are a few handshaking signals that are

required for both the memory controller and the processor to acknowledge

communication between them. The asynchronous interface allows the memory controller

to operate at an entirely different clock speed than each of the processors. This is

significant for heterogeneous systems, where there may be several processors running at

An MPSoC Framework Chapter 3: MPSoC Framework Description

- 32 -

different clock speeds. Since the memory controller has an asynchronous interface with

the processors, the different clock speeds of the different processors are supported.

Only one of the processors in the system can access global memory at a time. The

memory controller controls accessibility to global memory to ensure that more than one

processor does not try to access global memory at the same time. The memory controller

determines which processor can have access to global memory by individually polling

each processor in the system to see if it is requesting to access global memory. If a

processor that is currently being polled is requesting access to global memory, then the

memory controller will service the memory request. When the memory request is finished

being served, the memory controller immediately moves its attention to the next

processor in the system to see if it is requesting memory access. The memory controller

will only wait one clock cycle for each processor to have a memory request, and if there

is no memory request, the next processor is polled. Therefore, if there are four processors

in the system and none of them is currently requesting memory access, the memory

controller will cycle through each of the processors in four clock cycles.

Each processor has the following control signals that are used to interface with the

memory controller:

• Address bus – This bus specifies the address of the location in global memory

that the processor would like to access. The size of the memory is

implementation specific and is not defined as part of the generic MPSoC

framework.

An MPSoC Framework Chapter 3: MPSoC Framework Description

- 33 -

• Data bus – This is a bidirectional bus that contains the data that is to be read

from or written to global memory.

• mem_request – This signal is active when the processor wants to access global

memory. This is the signal that the memory controller polls to determine if

there is an active memory request.

• read_write – This signal is used to specify whether the requested memory

access is a read or a write. The signal is low if a read is requested, and high if

a write is requested.

• ack_in – This is an acknowledge signal sent from the processor to the memory

controller. This is used as part of the handshaking scheme used to

acknowledge to the memory controller that data read from the global memory

was received by the processor.

• ack_out – This is an acknowledge signal sent from the memory controller to

the processor. This is used by the memory controller to signal to the processor

that the memory request has been served.

Fig. 3-3 is a block diagram showing the interface between the memory controller

and one processor. This same interface is repeated between the memory controller and

each processor in the system.

An MPSoC Framework Chapter 3: MPSoC Framework Description

- 34 -

Fig. 3-3. Interface between the memory controller and a single processor.

The memory controller also interfaces with the global memory. The memory

controller can be configured to interface with any type of memory, or even several

different types of memory in the same system. The interface between the memory

controller and the global memory is implementation specific and it is not defined as part

of the generic MPSoC framework. Since the interface to the global memory is

implementation specific, both synchronous and asynchronous memory interfaces could

be supported. Fig. 3-4 expands on Fig. 3-3 to show the interface between the memory

controller and global memory. There is only one interface between the memory controller

and global memory; it is not repeated as is the case with the interface between the

processor and the memory controller.

Memory

Controller

Processor

Address bus

Data bus

mem_request

read_write

ack_in

ack_out

An MPSoC Framework Chapter 3: MPSoC Framework Description

- 35 -

Fig. 3-4. Interface between the global memory, the memory controller, a single processor.

3.1.1.5 Memory Controller Interface Peripheral

The memory controller interface peripheral is a custom peripheral for each

processor that is used to allow the software running in the processor to access global

memory over the asynchronous global memory interface. The generic MPSoC framework

requires that a memory controller interface peripheral exists, but the detailed design of

the peripheral is implementation specific because it depends on the type of processor used

in the system. Each processor in the system will have its own memory controller

peripheral to interface with the memory controller.

3.1.1.6 Global Memory

The generic MPSoC framework requires that a global memory exists, but the type

and size of the global memory is implementation specific. Some applications may require

a large amount of data in which case an external RAM chip would be appropriate. For

applications that do not require a significant amount of memory, the memory blocks built

into the FPGA may be sufficient. The global memory could also be made up of several

different types of memories, depending on the needs of the application and the memory

available in the target system.

Memory

Controller

Processor

Address bus

Data bus

mem_request

read_write

ack_in

ack_out

Global

Memory

Implementatio

n Specific

Interface

An MPSoC Framework Chapter 3: MPSoC Framework Description

- 36 -

3.1.2 Software Architecture

The software architecture is defined by the MPSoC framework. The software

architecture describes the structure of the program to be run on each processor. This

structure varies slightly between the head processor and the other processors.

3.1.2.1 General Processor Program Structure

The general program structure for any processor in the system that the following

steps:

1. Run any initialization code that may be required for processor initialization.

This is specific to the particular processor used.

2. Continuously poll the “start_exec” flag and the “proc_done” flag sent by the

task controller until either is active. If the “start_exec” flag is active go to step

3, if the “proc_done” flag is active exit the program.

3. Read the “DFG_node” bus to determine which task should be executed.

4. Read the “iteration_num” bus to determine the task iteration number.

5. Set the “executing” flag active.

6. Execute the assigned task.

7. Set the “executing” flag inactive and go to step 2.

The only step listed in the above algorithm that is specific to the application is

step 6. This means that all of the other steps in the general program structure are

implemented with code that is specific to the processor used, and would not have to be

An MPSoC Framework Chapter 3: MPSoC Framework Description

- 37 -

rewritten for different applications. A fglowchart of the general program structure is

shown in Fig. 3-5.

Fig. 3-5. A flowchart of the general program structure.

proc_done=1

start_exec=1 and

proc_done=0

Start

Check

start_exec and

proc_done

Processor

Initialization

Read DFG_node

Read iteration_num

Set executing flag

Execute assigned task

Clear executing flag

End

start_exec=0 and

proc_done=0

An MPSoC Framework Chapter 3: MPSoC Framework Description

- 38 -

3.1.2.2 Head Program Structure

The head processor program structure is almost identical to the general processor

program structure with the exception that there may be some pre-DFG processing and

post-DFG processing required, and the head processor is responsible for initializing the

task controller to start DFG task scheduling. Fig. 3-6 shows the a flowchart of the

software structure for the head processor.

An MPSoC Framework Chapter 3: MPSoC Framework Description

- 39 -

Fig. 3-6. A flowchart of the head processor program structure.

3.1.2.3 Software Global Memory Access

The memory controller ensures that only one processor can access global memory

at a time. However, the memory controller does not control the execution of software;

No

Yes

proc_done=1

start_exec=1 and

proc_done=0

Start

Check

start_exec and

proc_done

Processor

Initialization

Read DFG_node

Read iteration_num

Set executing flag

Execute assigned task

Clear executing flag

End

start_exec=0 and

proc_done=0

Pre-DFG

processing

Start task control

All

processors

done

executing?

Post-DFG

processing

An MPSoC Framework Chapter 3: MPSoC Framework Description

- 40 -

therefore, when a memory request is made it is essential to have a software strategy in

place to determine what happens when the program is waiting to access memory. The

software strategy for global memory accesses defined by the MPSoC framework is to halt

program execution until the memory access is finished. This means that, when a global

memory access is requested, the program will wait until the memory access is finished

before continuing execution. This is a simple and safe strategy that ensures that the

expected values exist in memory. However, the safety and simplicity of this strategy

comes at the price of extended processing time. The program is essentially frozen when a

memory request is made and other processors are accessing memory. A more complex

strategy could be developed to allow for a memory request to be made and then continue

with other processing while the memory request is being serviced. This type of strategy

would need to have methods to ensure the validity of data. This is an area of possible

improvement that could be added to the MPSoC framework in the future.

3.1.3 Hybrid Pipeline Scheduling

The overall functionality of the task controller is described in section 3.1.1.2, but

the details of pipeline scheduling algorithm implemented by the task controller are

discussed in this section. The task controller implements a novel pipeline scheduling

algorithm that is a hybrid between traditional static pipeline scheduling and dynamic

pipeline scheduling. Static pipeline scheduling involves allocating the tasks to the

processors at design time, and also determining the schedule in which the tasks will be

executed. This approach is used for synchronous dataflow execution, which is

demonstrated in section 2.2.2. Dynamic pipeline scheduling involves dynamically

An MPSoC Framework Chapter 3: MPSoC Framework Description

- 41 -

assigning tasks to available processors during run-time. Dynamic scheduling has been

applied to many different fields of study, and implemented with many variations

[LePa95]. Most notably there have been many variations of dynamic pipeline scheduling

applied to instruction pipelining within computer architectures. True dynamic scheduling

has not been successfully applied to task scheduling because the overhead involved in

determining optimal solutions during run-time is too large to be feasible. Dynamic

scheduling is difficult because the system needs to be analyzed in real-time to determine

an optimal task scheduling and mapping. Chapters Four and Five in this thesis discuss the

analysis and optimization of the MPSoC framework for a particular application, but the

analysis and optimization proposed in this thesis is intended to be performed at design

time. In order for dynamic scheduling to be successful, an analytical model and

optimization technique that could be performed in real-time by the task scheduler would

be required. Hybrid algorithms that apply some elements of static pipeline scheduling and

some elements of dynamic scheduling have been proposed and have been applied to task

scheduling with some success [HaLe97]. The pipeline scheduling algorithm implemented

as part of the proposed MPSoC framework is a novel hybrid pipeline scheduling

algorithm that implements elements of both static and dynamic pipeline.

The element of static pipeline scheduling that applies to this hybrid method is that

the allocation of tasks to processors is done at design time. The tasks are also executed in

the order that was determined at design time, but the entire list of tasks may not be

executed in each pipeline period. The number of pipeline stages are not predetermined at

design time or fixed throughout execution, as would be the case with static scheduling.

An MPSoC Framework Chapter 3: MPSoC Framework Description

- 42 -

Static pipeline scheduling defines a fixed pipeline period (Tp) that is repeated.

Within each pipeline period, each task has a particular time slot assigned to it in which

the task is executed. Each processor has a defined set of tasks to be executed in each

pipeline period. When processing first starts, the first λ pipeline periods are required to

fill the pipeline, where λ is the number of pipeline stages. This means that some tasks

may not be executed in the first few pipeline periods. This is because the results of the

initial tasks must be available for any tasks that depend on those results. This pipeline

filling is shown in Fig. 2-2, where all the tasks are not executed until the fifth processing

period. However, a static pipeline period can only be fixed if the execution times of the

tasks are fixed. Typically there is a variation in the execution times of the tasks, due to

causes such as different branch paths that can be taken in the program execution, or

variable memory access times. Because of the variable execution times, there may be

times where the pipeline period is extended because one task cannot start to execute until

a task it depends on has finished executing. The strategy of inserting delays to account for

variable task execution time is called quasi-static scheduling and was first proposed by

Lee [Lee88a]. The following figure shows an example of this, using the DFG example

from Fig. 2-1 and the pipeline task allocation shown in Fig. 2-2. This figure shows the

ideal pipeline period on the left, and a pipeline period on the right where task E had a

longer than expected execution time and the quasi-static scheduling was applied. All

other task execution times are the same.

An MPSoC Framework Chapter 3: MPSoC Framework Description

- 43 -

Fig. 3-7. Traditional pipeline with variable task time.

Since tasks E, F and G are all executing on the same data set in the same period

and tasks F and G depend on the results of task E, Processor 1 and Processor 2 have to

wait until task E is finished before F and G can execute. This causes Processor 1 and

Processor 2 to be idle when they could otherwise be executing a task.

The new pipeline scheduling algorithm developed for the task controller in the

MPSoC framework reduces the idle times significantly by changing the number of

pipeline stages to ensure that, if there are any tasks assigned to a processor that can be

executed, they are executed, rather than waiting for other tasks to finish. There is no

longer a global processing period (Tp); now each processor will have its own processing

period, that is independent of the other processors.

The following parameters for each processor are given to the task controller

during initial design of the system:

• βnp – This is the number of tasks the processor has assigned to it.

• NL – This is a list of tasks that the processor has been assigned to execute. The

i
th

 task in the list will be denoted as NL[i].

Processing

Period (Tp)

Processor 1

Processor 2

Processor 3

Processing

Period (Tp)

H

E D

B

C F

G

A

 Data Set 1 Data Set 2 Data Set 3 Data Set 4 Data Set 5

Processor 1

Processor 2

Processor 3

H

E D

B

C F

G

A

An MPSoC Framework Chapter 3: MPSoC Framework Description

- 44 -

• ML – A list of the preceding tasks for each task in the DFG. The preceding

tasks for a specific task are all of the tasks that directly output into the specific

task. The j
th

 preceding task for the i
th

 task in the list will be denoted by M[i][j].

• Kds – The total number of data sets to be executed by the tasks in the DFG.

The task controller also keeps a list for each processor containing the number of

times that each task in the DFG has been executed. This list will be called Q, where Q[i]

is the number of times that the i
th

 task has been executed.

Given the above input parameters the dynamic pipeline scheduling algorithm for

each processor in the system can be described as follows:

// assign the first task in the list that has not completed all of its iterations

pipeline_index ← minimum pipeline index i where Q[NL[i]] < Kds

// while there are still tasks that have not finished their iterations

while Q[N[i]] < Kds for any task i that is in NL

{

// if the predecessors to the current task have more iterations complete than the current task, then

// execute this task, otherwise skip over it to the next task

 if Q[NL[pipeline_index]] < Q[ML[N[pipeline_index]][j]] for all j then

 {

 Allow task NL[pipeline_index] to be executed

 Wait until task NL[pipeline_index] is finished executing

 }

// move to the next task, and if the end of the list is reached, then start again at the beginning

 pipeline_index ← pipeline_index + 1

if pipeline_index = βnp then

{

 pipeline_index ← minimum pipeline index i where Q[NL[i]] < KDS

 }

}

An MPSoC Framework Chapter 3: MPSoC Framework Description

- 45 -

This algorithm is essentially scheduling each task assigned to a processor in order

of the list NL, until it either gets to the end of the list, or it runs into a task that cannot be

scheduled because it is waiting for one of its preceding tasks to finish executing with data

from the same data set. When the task controller runs into a task that cannot be executed

because its predecessors have not yet finished executing tasks from the same data set,

then that task is skipped, and the next task in the list is examined. When the task

controller reaches the end of the list, it goes back to the beginning of the list, or to the

first task in the list that has not already finished executing all of its data sets when the

task at the beginning of the list has finished all of its data sets.

With this algorithm, a processor will never sit idle if there are any tasks in its list

that can be executed (i.e. tasks that are not held up by other task dependencies). Using the

example shown in Fig. 3-7, the hybrid pipeline scheduling algorithm would adapt to the

variable length of task E as shown in Fig. 3-8. Now instead of Processors 1 and 2 waiting

idle until task E is finished, the next data set of A and C are executed on Processor 1, and

the next data set for task B is executed on Processor 2. This essentially increases the

number of pipeline stages for the system, but will result in a shorter total execution time

for the entire system.

Fig. 3-8. Dynamic pipeline scheduling with variable task time.

Processor 1

Processor 2

Processor 3

H

E D

B

C F

G

A A C

B

 Data Set 1 Data Set 2 Data Set 3

Data Set 4 Data Set 5 Data Set 6

An MPSoC Framework Chapter 3: MPSoC Framework Description

- 46 -

This scheduling algorithm also has advantages when the pipeline is initially filling

up because the pipeline period is not fixed, thus eliminating the effect of wasted

execution time when there are no tasks to be executed. This can be seen by the next

figure that shows what would happen on initial task execution if hybrid pipeline

scheduling was used instead of static pipeline scheduling for the example from Fig. 2-2.

Fig. 3-9. Filling the pipeline with hybrid pipeline scheduling.

This hybrid pipeline scheduling causes much less processor idle time than

(quasi)static pipeline scheduling. In this example, it can be seen that tasks without any

dependencies (like task A) will tend to get farther ahead of other tasks with dependencies

in the number of data sets executed compared to static pipeline scheduling. However, this

is not really a problem when the goal is to finish all tasks as quickly as possible because,

when A finishes all of its data sets, it will just stop being scheduled, and the other tasks

will catch up. This could become an issue for applications where latency is critical.

Latency is defined as the time it takes for a data set to be executed by all nodes in the

DFG, from the time that the first task in the DFG executes using the data set, to the time

that the last task in the DFG executes, using the same data set. In this case, the hybrid

pipeline scheduling algorithm proposed here could make the system latency larger than

 Data Set 1 Data Set 2 Data Set 3

Data Set 4 Data Set 5 Data Set 6

Processor 1

Processor 2

Processor 3

H

E D

B

C F

G

A A A

B

A C

B

E D

B G

A C F

E

An MPSoC Framework Chapter 3: MPSoC Framework Description

- 47 -

with traditional pipelining. An example in which delays would not be desirable would be

with a video conferencing application, where delays could impact the flow of the

conversation due to problems with the synchronization of the audio and video that may

result if the number of pipeline stages in the DFG gets too large. However, in applications

where the maximum throughput is the goal, and latency is not significant, then the hybrid

pipeline scheduling algorithm will always perform at least as good as (quasi)static

pipelining, and, most often, it will perform better.

The hybrid pipeline scheduling that has been implemented in this model is really

only feasible in this MPSoC framework because of the global shared memory. The global

shared memory allows the number of pipeline stages to grow indefinitely because the

data that the following dependant tasks require is not stored in a temporary buffer that can

overflow, but rather in global memory. In the case of the point-to-point communication

used in [CoHJ07], the hybrid pipeline scheduling algorithm used here could cause the

communication buffers to overflow. In that hardware architecture, the data passed from

task to task is stored in communication buffers that are sized according to the dependency

distance between the tasks, which is determined at design time.

3.2 MPSoC Experimental Implementation

In order to demonstrate the MPSoC framework developed, the framework was

implemented in a Xilinx Virtex-II Pro FPGA, on the Xilinx XUPV2P development

platform [Xili08a]. This section explains how each of the application specific

components was designed for the MPSoC framework implementation.

An MPSoC Framework Chapter 3: MPSoC Framework Description

- 48 -

3.2.1 Soft Processor Implementation

The soft processors used for the implementation of the MPSoC framework were

Xilinx MicroBlaze [Xili08b] soft processors. The MicroBlaze processor is a Reduced

Instruction Set Computer (RISC) with 32-bit instructions. The MicroBlaze processor is

optimized for use within Xilinx FPGAs, and is designed to be easily customized to fit a

variety of different applications. A number of features can be added to the processor to

increase functionality, or removed to reduce FPGA resources, such as the floating point

unit (FPU), local memory bus interface, hardware divider and multiplier, a memory

management unit (MMU), and many other features.

3.2.2 Task Controller Implementation

For the MPSoC framework implementation, the task controller was implemented

using the hybrid scheduling method described in section 3.1.3. The DFG_node bus was

implemented as an 8-bit bus sent to each processor, which means that the DFG is limited

to 256 tasks. For other implementations where more tasks are required, the width of the

DFG_node bus could be increased. The iteration_num bus was implemented with a 16-bit

bus that specifies the number of times that the current task has been executed previously.

The 16-bit bus width means that the number of iterations is limited to 65535; if more

iterations are required, the width of the bus could be increased.

3.2.3 Task Controller Interface Peripheral Implementation

The task controller interface peripheral between the task controller interface

peripheral and the processor is the Xilinx On-chip Peripheral Bus (OPB) [Xili06]. The

OPB is a standard bus interface provided by Xilinx for the MicroBlaze soft processors.

An MPSoC Framework Chapter 3: MPSoC Framework Description

- 49 -

The OPB can be used to interface with a memory-mapped peripheral of the MicroBlaze

processor. The task controller interface peripheral allows the signals sent by the task

controller to be read and written by addressing particular registers that can be accessed by

software execution. This peripheral is the interface between the task controller hardware,

and the software executing on the MicroBlaze processors.

Fig. 3-10 extends Fig. 3-2 to show how the task controller interface peripheral

interfaces with the task controller and the MicroBlaze processor core, for one processor.

These interfaces are repeated for each processor in the system.

Fig. 3-10. Implementation of the task controller interface peripheral controller.

3.2.4 Memory Controller Implementation

In the MPSoC framework implementation, the interface between the memory

controller and the global memory is a synchronous interface. This means that the memory

controller provides a clock signal to the global memory, which is acted upon on each

rising edge of the clock. A synchronous interface is generally faster than an asynchronous

interface, but a common clock signal is required for both the memory controller and the

global memory. The signals between the memory controller and the global memory are as

follows:

Task

Controller

executing

start_exec

DFG_node

iteration_num

proc_done

Task

Controller

Interface

Peripheral

MicroBlaze

Core
OPB

An MPSoC Framework Chapter 3: MPSoC Framework Description

- 50 -

• Address bus – This bus specifies the address in global memory that is

currently being addressed.

• Data bus – This is a bidirectional bus that contains the data read from and

written to global memory.

• read_write – This signal is used to specify whether the current memory access

is a read or a write. The signal is low if a read occurs, and high if a write

occurs.

• chip_enable – This signal is used to specify whether a memory access is

currently active. If this signal is high, then the address, data, and read write

signals are valid, and the memory should be accessed. If this signal is low, the

memory is inactive.

• clock – This is the shared clock signal between the memory controller and the

global memory. The global memory evaluates the signals on every rising edge

of the clock signal, and acts accordingly.

Fig. 3-11 expands on Fig. 3-4 to also show the implementation specific signals

used in the MPSoC framework implementation.

Fig. 3-11. Implementation specific interface to global memory.

Memory

Controller

Processor

Address bus

Data bus

mem_request

read_write

ack_in

ack_out

Global

Memory

Address bus

Data bus

read_write

chip_enable

clock

An MPSoC Framework Chapter 3: MPSoC Framework Description

- 51 -

3.2.5 Memory Controller Interface Peripheral Implementation

In the MPSoC implementation, the interface between the memory controller

interface peripheral and the processor is the Xilinx OPB, just as was done with the task

controller interface peripheral. Using the OPB allows the peripheral to be a memory-

mapped peripheral of the MicroBlaze processor. The memory controller interface

peripheral allows the signals sent by the memory controller (which were described in the

previous section) to be read and written, by addressing particular registers that can be

accessed by software execution. This peripheral is the interface between the memory

controller hardware, and the software executing on the MicroBlaze processors.

Fig. 3-12 extends Fig. 3-3 to show how the memory controller interface peripheral

interfaces with the memory controller and the processor core for one processor.

Fig. 3-12. Implementation specific memory controller interface peripheral.

3.2.6 Global Memory Implementation

The global memory in the MPSoC implementation was made up of eight 2 kB

block RAMs within the Virtex-II Pro FPGA, combined together to create a 16 kB global

memory. This is a very small global memory compared to what would normally be used

Memory

Controller

Memory

Controller

Interface

Peripheral

Address bus

Data bus

mem_request

read_write

ack_in

ack_out

MicroBlaze

Core

OPB

An MPSoC Framework Chapter 3: MPSoC Framework Description

- 52 -

for most applications; however, this was limited to the amount of memory available

within the Virtex-II Pro FPGA. An external memory could be mapped to the FPGA to

allow for a larger global memory; but, for the sake of the experiments needed to verify

the MPSoC, this was not necessary.

3.2.7 Snoopy

In order to evaluate the system performance, several metrics are required. The

snoopy block was developed to monitor the internal system signals and measure the

parameters that were interesting in evaluating the system performance. The snoopy block

measures these parameters by monitoring the control signals that are sent between the

various system components. The snoopy block does not add any functionality to the

system; it only measures system performance metrics. Therefore, it is not required by the

generic MPSoC framework. However, it can be used for any implementation of the

MPSoC framework because the signals monitored to measure system performance

metrics are all defined as part of the generic MPSoC framework.

Since snoopy is implemented entirely in hardware, the timing measurements are

accurate to the minimum clock period. In the MPSoC implementation, snoopy used a 100

MHz clock reference, which means that all timing measurements were accurate to within

10 ns. The following sections discuss the parameters that snoopy calculates, and the

signals used to derive those measurements.

3.2.7.1 Total Program Execution Time

The total program execution time is the time from when the DFG tasks are first

executed, to the time when the last DFG task is executed. This does not include any pre-

An MPSoC Framework Chapter 3: MPSoC Framework Description

- 53 -

DFG or post-DFG task execution that may be done by the head processor. This time is

determined by the snoopy block by counting the number of clock cycles from the time

that the “start_task_control” signal is set active by the head processor until the time when

all of the “proc_done” signals are set, which indicates that all processors are finished all

of their DFG tasks.

3.2.7.2 Processor Memory Waiting Time

The processor memory waiting time is the total time that each processor spends

waiting for a memory request to be served. This is the sum of the time for each individual

memory access by a particular processor. There is a separate total memory waiting time

that is kept for each individual processor. These times are determined by the snoopy

block by keeping a cumulative count (separate count for each processor) of the number of

clock cycles that the “mem_request” signal for each processor is active.

3.2.7.3 Number of Task Memory Accesses

The number of task memory accesses is the number of memory accesses that are

made by each task in the DFG. This is a separate count that is kept for each task in the

DFG. The snoopy block determines the number of memory accesses for each task by

monitoring the “mem_request” signal from each processor to the memory controller and

the “DFG_node” buses sent from the task controller to each processor. When a

“mem_request” signal for a particular processor first becomes active, the value on the

“DFG_node” bus for that processor is read by snoopy to determine which DFG task is

being executed by the processor requesting the memory request. The count of the

memory requests for that particular node is then incremented.

An MPSoC Framework Chapter 3: MPSoC Framework Description

- 54 -

3.2.7.4 Total Task Execution Time

The total task execution time is the total time spent executing a particular task in

the DFG. This is the sum of the times it took to execute particular tasks, each time it was

executed. There is a separate total task execution time that is kept for each individual task

in the DFG. The snoopy block determines the total task execution time for each task by

monitoring the “executing” signal from each processor to the task controller and the

“DFG_node” buses sent from the task controller to each processor. When an “executing”

signal for a particular processor is active, a cumulative count is kept for the task that is

read on the “DFG_node” bus for that processor.

3.2.7.5 Processor Idle Time

The processor idle time is the amount of time that each processor is not executing

a task in the DFG. This does not include the time during pre-DFG or post-DFG

execution, only the time that the task controller is actively scheduling DFG tasks. There

is a separate processor idle time that is kept for each individual processor. The snoopy

block determines these times by keeping a cumulative count (separate count for each

processor) of the number of clock cycles that the “executing” signal for each processor is

inactive. The count is only kept if the “start_task_control” signal is active, and at least

one of the “proc_done” signals is not active. These means that even if a processor is

finished all of its tasks in the DFG, but another processor is not finished its tasks, the

processor idle time is incremented. It might seem strange to count the time after all a

processor’s tasks are finished as idle time, but this time can be significant in determining

load balancing between processors. For example, if one processor finishes all of its tasks

well before another processor is finished, its idle time might be significantly larger. This

An MPSoC Framework Chapter 3: MPSoC Framework Description

- 55 -

would then flag to the system designer that a different pipelining task allocation may be

appropriate to better balance the processor loading.

3.2.7.6 System Parameter Communication

It is important to have a method to communicate the system metrics that are

collected by the snoopy block, so that the information can be viewed by the system

designer to evaluate the system. This information is communicated to the head processor,

so that the head processor can read this information and display it through whatever

means required by the system. The head processor typically would read and report the

parameters from the snoopy block as part of the post-DFG processing. The signals that

the snoopy block uses to communicate the parameters to the head processor are as

follows:

• info_addr – This is a 4-bit address bus specifying which parameter should be

communicated. The addresses are as follows:

• 0: Lower 32-bits of Total Execution Time

• 1: Upper 32-bits of Total Execution Time

• 2: Lower 32-bits of Processor Memory Waiting Time

• 3: Upper 32-bits of Processor Memory Waiting Time

• 4: Number of Task Memory Accesses

• 5: Not Used

• 6: Lower 32-bits of Total Task Execution Time

• 7: Upper 32-bits of Total Task Execution Time

• 8: Lower 32-bits of Processor Idle Time

An MPSoC Framework Chapter 3: MPSoC Framework Description

- 56 -

• 9: Upper 32-bits of Processor Idle Time

• 10 to 15: Not Used

• proc_task_addr – This is an address that specifies the processor or task whose

information is required. Whether this address is specifying a processor

number, or a DFG task number, depends on the current info_addr. If the

info_addr address is 0 or 1, then the total execution time is reported. Since this

is not specific to any processor or task, the proc_task_addr is ignored. If the

info_addr is 2, 3, 8, or 9, then the proc_task_addr is specifying a processor

number, because those info_addr addresses are specifying processor specific

parameters. If the info_addr address is 4, 6, or 7, then the proc_task_addr is

specifying a DFG task number, because those info_addr addresses are

specifying task specific parameters.

• Data – This is a 32-bit data bus that contains that data specified by the

addresses on the info_addr and proc_task_addr buses.

There is no need for acknowledge, read/write, or enable signals for the head

processor to interface with the snoopy block, because all of the information is read-only.

Therefore, the data bus can always be active, and it is up to the host processor to ensure

that, when it reads the data bus, the info_addr and the proc_task_addr is valid.

3.2.8 Snoopy Interface Peripheral

The snoopy interface peripheral is a custom processor peripheral that was created

to interface the snoopy block with the head processor. The snoopy block is not part of the

generic MPSoC framework; therefore, the snoopy interface peripheral is also not part of

An MPSoC Framework Chapter 3: MPSoC Framework Description

- 57 -

the generic MPSoC framework, but rather implementation specific. Only the head

processor has a snoopy interface peripheral. In the MicroBlaze implementation that was

created for this project, the interface between the memory controller interface peripheral

and the processor is the Xilinx OPB just as the Xilinx OPB was the interface between the

task controller interface peripheral and the memory controller interface peripheral. Using

the OPB allows the peripheral to be a memory-mapped peripheral of the MicroBlaze

processor. The snoopy interface peripheral allows the signals sent by the snoopy block

(which were described in the previous section) to be read and written by addressing

particular registers that can be accessed by software execution. This peripheral is the

interface between the snoopy hardware, and the software executing on the head

processor.

The following block diagram shows how the snoopy interface peripheral

interfaces with the snoopy block and the head processor core.

Fig. 3-13. Snoopy interface peripheral.

Snoopy

Snoopy

Interface

Peripheral

info_addr

Data

MicroBlaze

Core

OPB
proc_task_addr

- 58 -

Chapter 4

ANALYTICAL MODEL FOR THE MULTIPROCESSING SYSTEM-ON-

CHIP (MPSOC) FRAMEWORK

4.1 Motivation for an Analytical Model of the MPSoC Framework

While the MPSoC framework introduced in the previous section narrows the

design space by fixing key portions of the hardware and software architecture to fit the

chosen computing model, there are still many design decisions that can be made for a

particular application. Assuming that an application has been structured in a DFG, some

key decisions are:

• How many processors should be applied to a given problem?

• Which tasks should be assigned to which processor?

• What task schedule order should be used?

• In the case of heterogeneous multiprocessing systems, should certain tasks be

assigned to certain processors to achieve better performance?

These design decisions can have a significant effect on the performance of a

system. It is therefore beneficial to have a method to estimate the performance of the

system before implementation. This results in the option of trying many more

permutations of a particular application in a shorter period of time, as opposed to

spending the time to implement each permutation and then measuring the performance of

the system. An analytical model of the system is required to estimate the performance of

a system without implementation.

An MPSoC Framework Chapter 4: MPSoC Analytical Model

- 59 -

The fundamental trade-off that occurs with a multiprocessing system that has a

global shared memory is that the addition of more processors can result in more tasks

being executed in parallel, but can also result in more contention of global memory.

Therefore, it is important to determine how many processors can be added to a system

before the costs of additional processors outweigh the benefits.

4.2 Related Work in Analytical Models of Multiprocessing Systems

There have been several studies in the past that have analyzed memory

interference in a shared memory multiprocessor system. However, these studies have

focused on multiprocessing systems without defining a computing model. This typically

results in analysis methods that can be applied to a wider range of problems, but at the

cost of less accurate analysis. Since the model of computing was not considered in these

studies, assumptions could not be made about the contents of global shared memory, and

therefore it had to be assumed that the global shared memory could contain both data and

instructions. In the case where global memory contains both data and instructions, a

single bus global memory multiprocessing system is inefficient because there is very high

probability of memory interference, which counteracts the benefits of executing tasks in

parallel. Therefore, in these studies more complex architectures are analyzed to reduce

memory interference, such as cache systems, multiprocessing systems with multiple

memories either connected in a crossbar network [Bhan75] [DaSe96] [MuAM87]

[Nade88] [SeDe79], or with multiple buses [DaSe96] [JoLi96] [PaMi98]. The MPSoC

framework architecture discussed in Chapter 3 specifies that the global shared memory

contains only data and not instructions. This allows for the analytical model to be

An MPSoC Framework Chapter 4: MPSoC Analytical Model

- 60 -

specifically tailored to global memory containing only data, resulting in a more accurate

analysis for the MPSoC.

Another benefit of tailoring the analytical model specifically to the MPSoC

framework, compared to a more general analytical model, is that each specific task can

have its own probability of global memory request that is independent of the other tasks

in the system. In previous studies, which are more general analyses, the assumption was

made that all processors request access to shared memory with the same probability

throughout all execution, and across all processors. Therefore, memory requests were

often modeled as a Bernoulli process with a fixed probability for discrete time analysis

[Bhan75] [JoLi96] [DaSe96] [MuAM87] [SeDe79], or as a Poisson process with a fixed

probability for continuous time analysis [Nade88]. This thesis takes a different approach

because the shared memory contains only data and not instructions. This means that the

probability of requesting access to shared memory depends on the specific task being

executed, since the function of a task will determine the frequency at which data in

shared memory needs to be accessed. In this thesis, memory requests are modeled as a

Bernoulli process. Accordingly, each task in the DFG has its own probability of requiring

a global memory request. As a result, the probability of a memory request is allowed to

change for a particular processor, as the processor switches from executing one task to

another.

The analytical model presented in this thesis also differs from previous work in

how memory service time is modeled. Most of the previous studies assume that the

memory service time is constant [Bhan75] [JoLi96] [MuAM87] [ReVa99] [SeDe79];

An MPSoC Framework Chapter 4: MPSoC Analytical Model

- 61 -

however, there are some that assume a Bernoulli process [DaSe96] or Poisson process

[Nade88] for memory service. This thesis recognizes that the memory service time is

dependent on the specific memory type used, and not on the hardware architecture itself.

Therefore, the memory service time is represented by a phase type distribution that can be

adjusted to fit the characteristics of the specific memory used in an application. This also

allows for the flexibility in using several different types of memory that together make up

global memory. A negative binomial process is suggested as a phase type distribution that

can be easily adjusted to fit the characteristics of a specific memory.

4.3 Performance Metrics

There are many different possible performance metrics that can be considered for

a given system, such as processor load balancing, system throughput time, system

latency, and system resources (for example, number of processors and/or cost of

processors). The performance evaluation of a system can involve any of these

performance metrics, and significance of each of the performance metrics will determine

effectiveness of a particular implementation of the MPSoC. The most common

performance metric is system throughput time, that is, the time required to finish

processing all data sets. An increased performance is often measured by a reduction of

the system throughput time. However, in some cases system throughput time is not the

most important performance metric. The latency of a system can be very important for

stream-oriented applications. For example, in the case where the application is a video

conferencing system, it is not only important to have all of the data sent and processed,

but for the latency of the system to be such that there are not any noticeable delays in

An MPSoC Framework Chapter 4: MPSoC Analytical Model

- 62 -

two-way communication. The analytic model proposed in the following sections is not

particular to any one performance metric, and can be used to evaluate an implementation

of the MPSoC against many different performance metrics. However, the analytical

model is a stochastic model that relies on the probabilities of memory access times,

probabilities of global memory requests, and average task execution times. Therefore, the

model is well-suited to determine the typical expected performance of an MPSoC

framework implementation, but will not necessarily predict the worst case performance

of an MPSoC framework implementation.

4.4 Analysis Inputs

In order to analyze a particular implementation of the MPSoC framework, the

following implementation parameters need to be known about the system before analysis:

• The number of processors in the system.

• The number of pipeline stages in a system.

• The order of execution of each task in the system, and the task allocation to

processors.

• The probability of a memory access request for each task that is being

executed. This probability may differ between different tasks.

• The execution time of each task on its assigned processor if it does not have to

wait for memory access (i.e., the time it would take to execute if it was the

only task being executed).

An MPSoC Framework Chapter 4: MPSoC Analytical Model

- 63 -

• The memory access time probability distribution. This is the probability mass

function showing the probability of a memory access taking a certain amount

of time once a processor is given access to the memory.

• The system clock period (ts). This is used as the sample period of the system,

which will usually be chosen to be the instruction execution time for the

processors. The system time quanta will be considered the minimum time

quanta for the discrete Markov chain that is used to analyze memory access.

4.5 System Design Assumptions

There are a number of simplifications that are assumed when analyzing any

complex system. Without these simplifications, an analysis would be intractable. The

goal is to make assumptions that simplify the system to the point where it can be

analyzed, but not simplify it so much that it does not resemble the real world system. The

following section describes the major assumptions that were made for the analytical

model presented in this thesis.

4.5.1 Types of Memory Requests

There are two main types of memory requests, which are reads and writes. For

many types of memory technologies the time it takes to read data from memory is very

similar to the time it takes to write data to memory, but for other types of memory the

read time and the write time can vary significantly. For example, the read and write times

are usually very similar in volatile types of memory (e.g. SRAM, SDRAM, DRAM), and

the read and write times often differ significantly in non-volatile types of memory (e.g.

EEPROM, Flash, hard disk). The assumption made in this thesis is that the read and write

An MPSoC Framework Chapter 4: MPSoC Analytical Model

- 64 -

times do not differ significantly, and so there is no distinction made between reads and

writes to memory. This means that the memory analyzed will more closely match a real

world volatile type memory, and that the results may not be valid for a memory where the

read and write times vary significantly.

4.5.2 Distribution of Memory Requests

The rate and repeatability at which memory requests occur can vary significantly

between different tasks in the DFG. Some processes may have memory requests that

occur at very specific periods, while other processes may have batch memory requests,

and then large times where there are no requests. The specific distribution of the memory

requests for a given task cannot be determined without knowing what the task is. Even if

the task is known, the distribution can be difficult to predict because it may depend on the

data being processed. In this case, the interest is in solving the problem generally, without

knowledge of the specific distribution, so the assumption is made that the memory

requests are made according to a Bernoulli process with probability iα , where i is the

particular task in the DFG that is being executed. This means that the probability of a

memory request can differ between tasks. By using the average number of memory

requests made during its execution (Nmem) and the number of time quanta without

memory requests (Nno_mem), the probability of a memory request for a given task could be

determined with the following equation:

memnomem

mem

NN

N

_+
=α (1)

An MPSoC Framework Chapter 4: MPSoC Analytical Model

- 65 -

In the case where the processors can cache the data read previously from global

memory into their local memories, the probability of a memory request can be reduced.

This can be accounted for in the model in many different ways. In the most simplistic

case, the probability of a cache hit for a particular task can be determined, and then the

probability of a global memory request can then be adjusted to account for the cache by

multiplying the probability of a memory request by the probability that the data does not

already exist in cache (i.e. 1 minus the cache hit probability). More complex analysis of

the effect of cache in the system can be made, for example, by considering multiple cache

memories with different characteristics, or shared cache memories; however, this is

beyond the scope of this thesis.

4.5.3 Memory Service Distribution

Some types of memories have deterministic service times, where a memory

read/write completes in a known and certain number of clock cycles. Other types of

memories have non-deterministic service times, in which case, a probability distribution

may be used to predict memory read/write service times. Moreover, different types of

non-deterministic memories will have different memory service probability distributions.

The memory access time is modeled with a phase type distribution that can be tailored to

fit the probability mass function of the global memory access times.

4.5.3.1 Model of a Single Memory Type

A negative binomial phase type distribution can be used to generate a memory

access time probability distribution to fit most types of memories. Often the only

parameters given for read or write time of a memory are the maximum read/write time,

An MPSoC Framework Chapter 4: MPSoC Analytical Model

- 66 -

and the typical read/write time. These parameters can be used as shaping guidelines in the

model. For example, a memory’s mean service time can be used to represent the highest

probability of service time, and the tail of the distribution can be cut-off by the maximum

read/write time. The probability of service occurring after the maximum service time is

assumed to be very small and to never occur (this probability may be available from the

memory manufacturer, and could vary for different types of memory). There are two

parameters that can be varied to shape the distribution of the memory service to closely

match a particular memory; these are the number of stages in the negative binomial

distribution (k), and the probability of moving to the next stage (pe). The memory service

phase type distribution has representation (β,S),k. The vector β represents the starting

phase of the phase type distribution, and will be of the form:

[]0...001=β (2)

β will have k elements in it.

The matrix S represents the phases of service. It is a square matrix of order k and

will be of the form:

−

−

−

−

=

e

ee

ee

ee

p

pp

pp

pp

S

1

1

......

1

1

 (3)

The vector S
0
 represents the end of service. It will have k elements in it and will

be of the form:

[]TepS 0...000 = (4)

An MPSoC Framework Chapter 4: MPSoC Analytical Model

- 67 -

Since there are k stages in the negative binomial distribution, the minimum

service time will be k*ts (where ts is the minimum time quanta). The probability that

service will be finished at time i*ts, where i≥k is given by:

()()ki

e

k

ei pp
k

i
p

−
−

−

−
= 1

1

1
 (5)

Fig. 4-1. Distribution of service time for k=5 and pe=0.25.

Fig. 4-2. Distribution of service time for k=10 and pe=0.5.

An MPSoC Framework Chapter 4: MPSoC Analytical Model

- 68 -

Two examples of the service time distribution for particular values of k and pe are

shown in Fig. 4-1 and Fig. 4-2. These two examples show how the variance of the

distribution can change with a different k and pe while maintaining the same mean service

time. As the number of phases in the distribution increases, the variance of the

distribution decreases. This phase type distribution can also be used to represent a

memory type that has a deterministic service time by setting pe to 1, and k to the number

of time quanta in which service will be finished.

4.5.3.2 Model of Multiple Memory Types

A global memory may consist of several different types of memories, each with

its own memory access time probability distribution. The global memory probability

distribution will then be a combination of these probability distributions. To create a

phase type distribution to model Mmem different types of memory, the phase type

distribution of each memory type is required; also, the probability of accessing each of

the different types of memories must be known. Given that the matrix representing the

phases of service for the i
th

 memory type (as described by (3)), Si, the matrix that

represents the phases of service for the combined memories is determined to be:

=

memMS

S

S

S
...

2

1

 (6)

Where M is the total number of different memory types. The vector S
0
 represents,

which represents the end of service, can be made of each of the individual end of service

vectors (as described in (4)). It will be of the form:

An MPSoC Framework Chapter 4: MPSoC Analytical Model

- 69 -

=

0

0

2

0

1

0

...

memMS

S

S

S (7)

Finally, the vector representing the starting phase of the phase type distribution

differs from the form shown in (2). In this case the vector considers the probability of

each of the types of memories being accessed, and the starting phase vector will be in the

following form (the notation 0(i,j) will be used to represent an i by j matrix full of zeros):

[])2,1()2,1(2)2,1(1 0...00
21 −−−=

memMmem kMkk λλλβ (8)

The β vector, the S
0
 vector and the S matrix together make up the phase type

distribution with representation (β,S),k, where:

∑
=

=
memM

i

ikk
1

 (9)

As an example, suppose three different memory types are used, where the

probabilities of accessing each memory type when global memory is accessed are:

λ1=0.3, λ2=0.4, λ3=0.3. Each of the memory types are modeled with a negative binomial

phase type distribution with the following parameters:

• Memory Type 1: k1=5 and pe1=0.25 (the memory access probability

distribution is shown in Fig. 4-1)

• Memory Type 2: k2=10 and pe2=0.25

• Memory Type 3: k1=5 and pe1=0.5

Fig. 4-3 (a), (b), and (c) show the probability distribution resulting from each of

the three memories if they were the only memories in the system. Fig. 4-3 (d) shows the

An MPSoC Framework

resulting probability distr

used to form global memory and the probabilities of access each are as

Fig. 4-3. Memory distribution of the individual memory type

memory type 3. The probability distribution for

4.5.4 Task Execution Times

For the purposes of this analysis

task is fixed when run on a single processor (i.e. no global memory interference effects).

In practice, this assumption is not strictly true when there are a number of branch

statements within a task that can result in varied ex

being processed. However, for the purposes of determining the overall execution time,

the average task execution time for each task can be measured in a single processor

system and used in the analysis. If the varian

relatively small, the assumption of a fixed task execution time will not cause a significant

 Chapter 4: MPSoC Analytical Model

- 70 -

probability distribution of the combination of the memories when they are all

used to form global memory and the probabilities of access each are as described

Memory distribution of the individual memory types: (a) memory type 1, (b) memory type 2, (c)

he probability distribution for a global memory access made up of a combination of the

three memories is shown in (d).

Times

For the purposes of this analysis, it is assumed that the processing time for each

task is fixed when run on a single processor (i.e. no global memory interference effects).

this assumption is not strictly true when there are a number of branch

statements within a task that can result in varied execution times based on the data that is

being processed. However, for the purposes of determining the overall execution time,

the average task execution time for each task can be measured in a single processor

system and used in the analysis. If the variance of the real task execution times is

the assumption of a fixed task execution time will not cause a significant

MPSoC Analytical Model

ibution of the combination of the memories when they are all

described above.

, (b) memory type 2, (c)

a global memory access made up of a combination of the

he processing time for each

task is fixed when run on a single processor (i.e. no global memory interference effects).

this assumption is not strictly true when there are a number of branch

ecution times based on the data that is

being processed. However, for the purposes of determining the overall execution time,

the average task execution time for each task can be measured in a single processor

ce of the real task execution times is

the assumption of a fixed task execution time will not cause a significant

An MPSoC Framework Chapter 4: MPSoC Analytical Model

- 71 -

difference in the overall execution time predicted by the proposed model compared to the

actual system execution time.

4.5.5 Memory Access Control

In order to determine which processor gets access to the memory when there is a

request by more than one processor, it is necessary to have a control algorithm that is

implemented by the memory controller. The memory access control method is defined as

part of the MPSoC framework (described in section 3.1.1.4). This memory access control

method is a polling algorithm that cycles through the active processors to see if there is a

pending memory request. The controller spends one time quantum (ts) checking each

processor for memory requests. So, it will take N*ts to check all processors for memory

requests if there are no active requests, where N is the number of active processors. If

there is a memory request for a processor that is currently being polled, then the memory

request is serviced. When the memory request is finished being served, the memory

controller will wait with the current processor for one more time quanta to allow for

another memory request to be made. If no memory request is made in the next time

quantum, then the memory controller moves to the next processor to check it for memory

requests. However, if another memory request is made by the processor that just finished

a memory access in this one time quantum, then the memory controller will service the

new memory request without checking the other processors in between.

4.6 Description of the MPSoC Analytical Model

The goal of the analysis is to determine the amount of time that each processor

must typically wait when it has a memory request, while a memory request of another

An MPSoC Framework Chapter 4: MPSoC Analytical Model

- 72 -

processor is currently being serviced. From this information the execution time of the

process can be extended to represent the average execution time of a task in the DFG

when considering the time waiting for memory access. This allows for the tools to

compare different implementations of the MPSoC framework.

4.6.1 Partitioning the Processing Period

One of the complexities of analyzing this system is that each processor could

execute several different processes, and each process could have its own independent

memory request probability (αi). This means that each processor may not have a fixed

memory request probability, but rather the memory request probability will change with

each task that is executed by the processor. The time at which a processor switches from

one task to another task is independent from the task switching times of other processors

in the system. In order to get around this difficulty, the processing period is partitioned

into windows where the tasks of the DFG that are being executed do not change for all

processors. The results of this analysis is then used to adjust the processing period to

account for memory access waiting times in the window that was analyzed. The next

window is then analyzed, until the entire processing period is analyzed. This is an

iterative approach to the problem.

For example, if the system that was described earlier was to be analyzed, the

processing period with a full pipeline would look as shown in Fig. 4-4. The first window

that would be analyzed would be the section where tasks A, C, and D overlap. The

system is then analyzed to determine how much time those sections of A, C, and D are

lengthened when the time waiting for memory access is considered.

An MPSoC Framework Chapter 4: MPSoC Analytical Model

- 73 -

Fig. 4-4. First window analyzed in the processing period.

Suppose that after analyzing the first window, the time for task A was extended

(due to memory access time). Consequently, the processing period was now adjusted to

compensate for Task A’s extension, as shown in Fig. 4-5.

Fig. 4-5. Second window analyzed in the processing period.

It can be seen that the overall processing period is now extended because the

processing time of task A was extended; B must come after A is finished; and E must

come after B is finished. This change also created a gap between task G and E on

Processor 3, which is now an additional window that must be analyzed, that was not a

window before the first iteration. The second window that is to be analyzed is shown in

Fig. 4-5. This window consists of task A on Processor 1 and task D on Processor 3.

Processor 2 does not execute during this window, so the system is analyzed as if there are

An MPSoC Framework Chapter 4: MPSoC Analytical Model

- 74 -

only two processors for this window. After the second window is processed, the

processing period may change again. This process is repeated until the entire processing

period is analyzed, at which point the entire processing period will be adjusted to take

into consideration the memory access waiting times.

4.6.2 Analyzing a Partition

4.6.2.1 Model of Each Processor’s Memory Service

In order to analyze any particular partition of the processing period to determine

the amount of time that each processor waits for memory access while another processor

is being served, the memory requests by each processor are modeled with a discrete time

Markov chain. The memory requests for each processor can be modeled as a queue of

length 1. That is, there is either a memory request, or there is not a memory request.

There cannot be more than one memory request per processor at the same time.

From the point of view of each processor in the system, there are four states that

the memory controller can be in at any given time. The first state occurs when the

memory controller is polling the current processor to see if it has a memory request. The

second state occurs when the memory controller is in the midst of servicing a memory

request from the current processor. The third state occurs when the memory controller is

servicing other processors and the current processor does not have a pending memory

request. The fourth state occurs when the memory controller is servicing other processors

and the current processor has a pending memory request. When the memory controller is

servicing processors other than the current processor, the memory controller is said to be

on vacation with respect to the current processor. This means that the memory controller

An MPSoC Framework Chapter 4: MPSoC Analytical Model

- 75 -

is on vacation (with respect to the current processor) in the third and fourth states. When

the system only contains a single processor, there is no time spent in states 3 and 4 (the

vacation states), because there are no other processors to service. Therefore, the execution

time of additional tasks due to a processor waiting for memory access in a multiprocessor

system is determined by the amount of time spent in state 4. The goal of the proposed

analysis method is to determine the amount of time spent in state 4, from which the effect

of memory interference on the task execution time can be determined. Fig. 4-6 shows the

state transition diagram for processor i, with the probabilities of changing states shown on

the transition edges. This illustrates the transitions from state to state as defined by the

probability transition matrix in (10).

Fig. 4-6. State transition diagram for processor i.

There are several ways that the described system could be modeled with a discrete

time Markov chain. The method chosen was to model each memory request queue

individually as a Geo/PH/1 system with PH vacations. This means that the arrival of the

memory access requests is a Bernoulli process with arrival probability αi (for processor i),

service is a negative binomial phase type with representation (β,S),k, and there are

vacations with representation (υi, Vi),m, meaning υi is a vector describing the probability

of starting in each phase of Vi, Vi represents the phases of the vacation, Vi
0
 is the vector

An MPSoC Framework Chapter 4: MPSoC Analytical Model

- 76 -

representing the end of the vacation, and m is the order of the square matrix Vi. The

system is considered to be on vacation when the memory controller is serving other

processors. The probability transition matrix for a processor i can then be represented as

shown below. The notation 0(ij) will be used to represent an i by j matrix full of zeros.

()
() ()
() () ()

−−

+−

−

=

immim

iiiiiiii

mkmkii

miii

i

VV

VVVV

SSS
P

)(

0

)1(

00

)()(

00

)1(

00

11

001

010

β

ααβαα

βαα

ναβα

 (10)

The first row in the above matrix represents the state in which there are no

memory requests by the processor, but the memory controller is checking to see if there

are any memory requests. The probability of remaining in this state for the next time

quanta is 0, because either no memory request will arrive and the memory controller will

then go on vacation (i.e. serve other processors), or a memory request will arrive and the

memory request will begin being served.

The second row in the above matrix represents the states when a memory request

is being processed. The system will remain in this state in the next time quanta if memory

service does not finish, or if service finishes but another memory request is made

immediately. If service finishes and another memory request is not made immediately

then the system will return to the first state where the memory controller will wait one

time quanta for another memory request, and if one does not arrive the memory controller

will serve other processors. The second state consists of a number of sub-states, where

the number of sub-states is k, which is the order of the memory service matrix S.

An MPSoC Framework Chapter 4: MPSoC Analytical Model

- 77 -

The third row of the above matrix represents the case where the system is on

vacation (memory controller is serving other processor’s memory request) and there are

currently no memory requests for processor i. The system can go to any other state from

this state. If vacation ends (i.e. the memory controller has finished serving other

processors) and no memory request arrives, then the system will go to the first state to

wait one time quanta for a memory request to arrive. If vacation ends and a memory

request does arrive, then the system will go to the second state where the memory request

will be served. If vacation does not end and no memory request arrives, then the system

will remain in the third state. If vacation does not end and a memory request arrives, then

the system will go to the fourth state. The third state consists of a number of sub-states,

where the number of sub-states is m, which is the order of the vacation matrix Vi.

The fourth row of the above matrix represents the case where the system is on

vacation and there is currently a pending memory request. In this case, no more memory

requests can arrive, which means the system can either remain in the current state if

vacation does not end, or it will go to the second state if vacation does end, where the

pending memory request will be served. The fourth state consists of a number of sub-

states, where the number of sub-states is m, which is the order of the vacation matrix Vi.

4.6.2.2 Vacation Model

For a given problem the arrival probability, αi, for each processor in the partition

that is being analyzed is known, and the service of the memory, (β,S),k, is also known;

therefore, in order to analyze the probability transition matrix for each processor’s

memory service, the vacation process, (υi,Vi),m, is the only remaining unknown process.

An MPSoC Framework Chapter 4: MPSoC Analytical Model

- 78 -

The probability transition matrix that represents the vacation for processor i is Vi

and can be represented as follows:

() ()

()() ()()

()() ()()

()()

=

+−+

++++

++++

++

1mod2

1mod21mod2

1mod11mod1

1mod1mod

......

NNi

NiNi

NiNi

NiNi

i

A

BA

BA

BA

V (11)

Each matrix Aj, shown in the above matrix, represents transitions between states

of processor j while it is being served by the memory controller. Each matrix Bj

represents the transitions from the states where the memory controller was serving

processor j, to the states where the memory controller is serving processor j+1 (or

processor 1, if j = N, where N is the number of processors in the system). The subscripts

of the Aj matrix and the Bj matrix consist of the “mod” operator, where the notation x

mod y represents the modulus operation between x and y, where the result is the

remainder of division of y by x. This operator is necessary in the notation to account for

the wrapping around of the subscript. That is, when processor j is done being served, the

memory controller moves to processor j+1, but if j+1 is greater than the number of

processors in the system (N), then it wraps around to processor 1. For example, if there

were 4 processors in the system (N=4), then the matrix used to represent the vacation of

processor 3 (i=3) would be of the form:

=

2

11

44

3

A

BA

BA

V (12)

An MPSoC Framework Chapter 4: MPSoC Analytical Model

- 79 -

The form of the matrix Aj representing transitions between states when the

memory controller is serving processor j is shown below.

() ()

+−
=

SSS
A

jj

j

j βαα

βα
001

0
 (13)

The first row in the above matrix represents the state when there are 0 memory

requests. In this case the processor will only remain in service if a memory request

arrives, in which case the memory request will begin being served. If no memory request

arrives then the memory controller will go on to serve the next processor (this transition

is represented in matrix Bj).

The second row represents the state when there is 1 memory request that is

currently being served. If service finishes and no new memory request arrives, the state

represented by the first row (0 memory requests) is entered. The state remains the same if

either service does not finish, or if it finishes but a new memory request arrives to start a

new memory request service.

The form of the matrix Bj representing transitions between states when the

memory controller is moving from serving processor j to serving the next processor

(which is (j+1) mod N) is shown below.

()()() () ()

 −−−
=

++

)()1(

mod1mod1

00

111

kkk

jNjjNj

jB
βαϕαϕ

 (14)

The first row of this matrix represents the state when there are 0 memory requests

for processor j. The second row represents the state when there is 1 memory request for

processor j. Since the processor will never start a vacation when there is a pending

memory request that can be serviced, the probability of starting to serve the next

An MPSoC Framework Chapter 4: MPSoC Analytical Model

- 80 -

processor when there is one memory request is 0, which is why the second row consists

of zeros. When there are 0 memory requests the memory controller will start to serve the

next processor, but it could transition to the state where there is no pending memory

request for the next processor, or it could transition to the state where there is a pending

memory request for the next processor, depending on whether a memory access request

has arrived for the next processor since it was last served. The parameter φj represents the

probability that a memory request is made by processor j from the time its vacation starts

to the time that its vacation ends. This means that 1- φj represents the probability that

there are no memory requests made by processor j in the time that its vacation starts, to

the time its vacation ends. The first entry in the first row of matrix Bj represents the

transition from serving processor j to serving the next processor (processor (j+1) mod N)

when there are no memory requests pending for processor (j+1) mod N. The second entry

in the first row of matrix Bj represents the transition from serving processor j to serving

the next processor (processor (j+1) mod N) when there is one memory request pending

for processor (j+1) mod N.

The vector that represents the start of vacation for processor i is υi, and it can be

represented as follows:

()() ()[]0...01 mod1mod1 βϕϕυ NiNii ++−= (15)

The first entry in the vector represents the transition to serving the next processor

(processor (i+1) mod N) when there is no pending memory request for the next processor.

The second entry in the vector represents the transition to serving the next processor

when there is one pending memory request. The rest of the vector is filled with zeros.

An MPSoC Framework Chapter 4: MPSoC Analytical Model

- 81 -

The vector that represents the transitions when the vacation of processor i ends is

given by Vi
0
, and it can be represented as follows:

()()

−

=

+−+

)1(

1mod2

0

0

1

0

...

0

k

NNi

iV

α

 (16)

This shows that the vacation for processor i finishes after processor ((i+N-2) mod

N)+1 (which is the previous processor to i in the cycle) was being serviced, but now has

0 memory requests, and no new memory request arrived.

The parameter φi is defined as the probability that a memory request occurs for

processor i while processor i is on vacation. To determine this value, the amount of time

spent in the vacation process needs to be known. The amount of time that the memory

controller is on vacation relative to processor i can vary, and will not typically be a fixed

number. The probability of the vacation process ending in a particular number of time

quanta, needs to be determined for all time quanta amounts in which the probability is

significant. The first step in calculating these probabilities is to create a new Markov

chain with a probability transition matrix Vi’ by combining υi, Vi, and Vi
0
, as shown

below:

=

ii

i

i
VV

v
V

0

0
' (17)

Starting in state 1 of Vi’, the system will transition to the sub-matrix Vi by the

probabilities in the starting vector υi; it will then sojourn within Vi until it returns to state

1 by the probabilities defined in Vi
0
. Since the vacation process with representation

An MPSoC Framework Chapter 4: MPSoC Analytical Model

- 82 -

(υi,Vi),m starts vacation through υi and ends vacation through Vi
0
 and sojourns within Vi

during vacation, the vacation time is the same as the time that it takes to return to state 1

of Vi’ for the first time when starting from state 1. The parameter fx,y
(n)

 is defined as the

probability of first visiting state y from state x in a Markov chain at the n
th

 time quantum.

The following result has been shown to be valid [Rose71], given the number of states in

the Markov chain is m, and the probability of transitioning from any state y to any state x

is vx,y.

yx

n

yy

m

z

n

yzzx

n

yx vffvf ,

)(

,

1

)(

,,

)1(

, −=∑
=

+ for n ≥ 1 (18)

This also means that fx,y
(1)

=vx,y for any x and y. The probability of finishing the

vacation process in n time quantum can then be calculated by using (18) to calculate f1,1
(n)

in the Markov chain represented by Vi’, which is the probability of first returning to state

1 starting from state 1 in n time quanta.

The probability of processor i requesting access to memory in one time quantum

was previously given as αi. This can then be used to calculate the probability of processor

i requesting access to memory within n time quanta, defined as σi
(n)

, with the following

equation:

()∑
=

−
−=

n

h

h

ii

n

i

1

1)(
1 αασ for n ≥ 1 (19)

Equations (18) and (19) can now be used to calculate the probability that the

vacation for processor i will end in n time quanta and that there will be a memory request

made by processor i during that vacation. This probability is defined as φ
(n)

 and is

calculated by:

An MPSoC Framework Chapter 4: MPSoC Analytical Model

- 83 -

)(

1,1

)()(nn

i

n

i fσϕ = for n ≥ 1 (20)

Therefore, the probability that a memory request occurs for processor i while

processor i is on vacation is given by:

∑
∞

=

=
1

)(

n

n

ii ϕϕ (21)

It is not practical to use (21) to determine φi since this equation involves an

infinite sum. It can be shown that if the probability of requesting access to memory for

each of the processors is less than 1 (i.e., αi < 1 for all i), then the probability of

eventually finishing a vacation is 1. This means that state 1 of Vi’ is a recurrent state for

which the following equation holds true [IsMa76]:

∑
∞

=

=
1

)(

1,1 1
n

n
f (22)

This fact can be used to determine a practical limit to the sum in (21) by choosing

some acceptable error limit εr where:

r

r

n

n
f ε−=∑

=1

)(

1,1 1 (23)

Equation (23) gives an upper limit, r, to the sum in (22), where the probability of

the vacation ending in more than r time quantum is considered insignificant. The smaller

the error, εr, the larger the value of r, which means that more accuracy in the calculation

of φi will come at the cost of increased computational overhead. Once the value of r is

calculated, φi can be approximated by:

∑
=

=
r

n

n

ii

1

)(ϕϕ (24)

An MPSoC Framework Chapter 4: MPSoC Analytical Model

- 84 -

The calculation of φi is shown in the form of a pseudocode function below.

function φi = calc_phi (Vi’, αi)

 -- order_Vi’ is the order of the square matrix Vi’

 order_Vi’ ← get_order(Vi’)

 n ← 1

 F ← Vi’ -- F is the matrix holding the probability of first

 --moving from each state to each other state of Vi’for

 -- the current value of n, where f(1,1) is the

 -- probability of finishing the vacation in n time

 -- quantum

 sum ← F(1,1)

 -- σi is the probability of a memory request occurring in n

 -- time quantum for the current value of n (Equation15)

 σi ← αi

 φi ← σi * F(1,1) -- Equation 16

 -- check to see if the error limit has been reached

 while (sum < 1- εr)

 --this next for loop calculates the next value of F as

 -- shown byEquation 14

 for x=1 to order_Vi’

 for y=1 to order_Vi’

 total ← 0

 for z=1 to order_Vi’

 total ← total + Vi’(x,z)*F(z,y)

 end (for)

 F_new(x,y) ← total - F(y,y)* Vi’(x,y)

 end (for)

 end (for)

 n ← 2

 F ← F_new

 sum ← sum + F(1,1)

 σi ← σi + (1- αi)n-1 -- Equation 15

 φi ← φi + σi * F(1,1) -- Equation 16 and 17

 end (while)

end (function)

An MPSoC Framework Chapter 4: MPSoC Analytical Model

- 85 -

The above algorithm shows a method to calculate φi that depends on the

probabilities in the probability transition matrix Vi’. However, many of the probabilities

in the matrix Vi’ also depend on the value of φi. In order to overcome this paradox, an

iterative approach is taken. The iterative algorithm is outlined below.

for i=1 to N

 φi ← αi -- initialize all φi parameters

 εi ← 1 -- initialize all εi

end (for)

while (|εi| > 10-12 for any i) -- check for convergence

 for i=1 to N

 φi_old ← φi -- save the last φi parameter, because a

 -- new one will be calculated

 -- create the Vi’ matrix the based on the latest φi

 Vi’ ← build_vacation_process(φi,i)

 -- calculate the new value of φi

 φi = calc_phi (Vi’, αi)

 εi ← φi_old - φi -- calculate the error between the

 -- current φ and the last one

 end (for)

end (while)

The above algorithm first assigns an arbitrary value to φi for all i, 1≤i≤N. In this

case the value for φi is assigned αi. While any value between 0 and 1 can be assigned and

the algorithm will still work, using a value that is closer to the actual final value will

result in faster convergence. Since φi is the probability that there will be a memory

request while processor i is on vacation and αi is the arrival probability, in general, the

larger αi is, the larger φi will be, which is why αi is used as a starting guess.

An error value (εi) is kept for each processor. This is the difference between the

latest value of φi and the value of φi that was calculated previously to the latest value.

An MPSoC Framework Chapter 4: MPSoC Analytical Model

- 86 -

When all of the error values are less than 10
-12

, then this means that the algorithm has

converged to a final value of φi for all i. The error values are initialized to 1 at the

beginning to ensure that the while loop is entered the first time. Then the vacation

matrices for each processor i (Vi, Vi
0
, υi) are built using the current value of φi for all i.

Then a new value of φi for all i is calculated using the pseudocode function calc_phi. The

difference between the new values of φi and the previous values of φi are calculated. This

difference is checked to see if it is less than 10
-12

 for all i. If the error is smaller than the

limit, then the values of φi have converged to the final values; otherwise the process

needs to be repeated. Once the final values of φi are determined, there are no longer any

unknowns, so the vacation process is fully defined.

This algorithm depends on convergence of the φi values. If the values of φi do not

converge then the algorithm would continue indefinitely; therefore, it would not be

stable. Explicit proof of convergence for this algorithm is not offered in this thesis;

however, an argument for proof of convergence could be made that is similar to the proof

of the stability of token passing rings made by Georgiadis and Szpankowski in [GeSz92].

4.6.2.3 Determining the Memory Access Waiting Probability

Now that the vacation process for each processor is defined, the probability

distribution of the discrete time Markov chain that models the memory accesses of each

processor can be determined. The amount of time that is spent waiting for access to the

memory when the memory controller is currently serving another processor can be

determined from the probability distribution.

An MPSoC Framework Chapter 4: MPSoC Analytical Model

- 87 -

First, the vacation process, (υi,Vi),m, for each processor i is built using the

determined values of φj for all 1≤j≤N, as shown with (11), (12), (13), (14), (15), and (16).

Then, the vacation process is used to build the probability transition matrix for the

Markov chain representing the memory accesses of processor i, as shown with (10).

Then, the steady state probability vector πi can be calculated for the Markov chain. The

steady state probability vector for Pi can be calculated by solving for πi = πiPi [Nels95].

The steady state probability vector represents the probability of being in any given state

of Pi in a steady state condition.

The fourth block row of Pi shown in (10) represents all of the states where

processor i has a pending memory request, but the memory controller is currently serving

other processors. Therefore, the sum of the probabilities in the steady state vector that

represent the states in the fourth block row of the Pi shown in (10) is the probability that

the processor has a pending memory request, but the memory controller is serving

another processor. Each of the rows in the matrix shown in (10) is made up of several

sub-rows of which the number depends on the number of states in the memory service

process, k. The first row shown in (10) is actually only one row. The second row

represents k actual rows. The third and fourth rows are each made up of m sub-rows,

where m is the order of the vacation process. The order of the vacation process is also

dependent on the order of the memory service, and can be determined by the following

equation:

()()11 −+= Nkm (25)

An MPSoC Framework Chapter 4: MPSoC Analytical Model

- 88 -

There is one block row in the vacation for each processor, except the processor

who the vacation process is defined for, so there is N-1 block rows in the vacation. Each

block row in the vacation is made up of k+1 rows, one row for the case where the

currently serviced processor has 0 memory requests, and k rows for the case where the

currently serviced processor has 1 memory request that is being serviced.

This means that the sum of the last m items in the steady state vector πi will be the

probability that processor i will have to wait for memory access when it has a pending

request because the memory controller is currently serving another processor. The

variable ζi is defined as the probability that processor i will have to wait for memory

access when it has a pending request because the memory controller is serving other

processors, and can be calculated as follows:

[]∑
++

++=
=

mk

mkh ii h
21

2
πζ

 (26)

The notation πi[h] means the item h in vector πi (where the first item in the vector

is item πi[1]).

4.6.2.4 Adjusting the Partition to Account for Waiting Time

Now that ζi for each processor can be calculated, these values can be used to

adjust the length of the partition of the processing period that is being analyzed so it can

be adjusted to account for the time that each processor spends waiting for memory access.

The partition ends when the first task that is executing in the partition ends. In

order to determine which task ends first, the end time of each of the tasks is calculated

An MPSoC Framework Chapter 4: MPSoC Analytical Model

- 89 -

taking into consideration the memory access waiting time. The end time of each task can

be calculated with the following equation:

i

ioldremaining

inewremaining

t
t

ζ−
=

1

__

__

 (27)

Where tremaining_old_i is the time remaining in the task execution without

considering the memory access wait times, from the beginning of the current partition

being analyzed. The task that has the smallest tremaining_new_i is the task which will end first,

and therefore this is the new partition time, defined as tpartition_new.

The other calculation that needs to be done in order to adjust the processing

period to be able to analyze the next partition is to determine how much of the task

processed on each of the processors is done within the analyzed partition. The ratio of the

task executed in the partition time to the total execution time of the task that is executed

on processor i is defined as θi. Given the total execution time of the task executed by

processor when the memory access waiting time is not considered, ttotal_task_i, the value of

θi can be calculated by:

()i

itasktotal

newpartition

i
t

t
ζθ −= 1

__

_

 (28)

Given the ratio of the task that was analyzed in previously analyzed partitions,

θprev_i, the remaining time that needs to be analyzed for each task can then be calculated

by the following equation:

()
ipreviitasktotalitasktotaliremainingtask ttt _______ θθ +−=

 (29)

An MPSoC Framework Chapter 4: MPSoC Analytical Model

- 90 -

After the amount of each task that is remaining is calculated the entire processing

period can be updated (as the example in Fig. 4-5), and the next partition can be analyzed.

4.7 Example using the MPSoC Analytical Model

This section will use an example to show how the analytical model described in

the previous sections can be used to determine the pipeline processing period when the

effect of memory contention between processors sharing global memory is considered. In

the example the memory service will be modeled by a negative binomial process, with

k=5 and pe=0.25. The method of implementation is described in appendix B. The

memory service time distribution is as shown in Fig. 4-1. The DFG for the tasks executed

on the processors is as shown in Fig. 2-1. There are four processors in the system that can

execute tasks. In this example, the four processors are homogeneous, meaning that each

of the tasks will take the same amount of time to execute on any of the processors. The

parameters of the tasks are as shown in the following table:

Table 4-1. Example task parameters.

Task Executing
Processor

Initial
Task

Execution
Time

Probability
of

Memory
Access
Request

(αi)

Initial Start
Time in

Processing
Period

Initial End
Time in

Processing
Period

A 1 500 0.03125 0 500

B 2 1000 0.02 0 1000

C 3 2000 0.015 0 2000

D 2 500 0.025 1000 1500

E 4 500 0.015 0 500

F 1 2000 0.05 500 2500

G 4 1000 0.025 500 1500

H 2 1000 0.005 1500 2500

The scheduling of tasks for the purpose of the example was done using a heuristic

algorithm proposed in [BaGa99] which is a variation of the list-scheduling algorithm

originally proposed in [Hu61]. The algorithm for scheduling is as follows:

An MPSoC Framework Chapter 4: MPSoC Analytical Model

- 91 -

The algorithm is as follows:

1. For every node in the DFG, determine the longest completion time from that

node to any finishing node. This will give a list of priorities, with the longest

completion time having the highest scheduling priority (in the case of a tie, the

priority can be chosen arbitrarily).

2. Take the node with the highest priority that has not yet been scheduled and

schedule it to a processor in a slot with the earliest possible completion time.

Do not consider which other nodes need to be finished before the current one

can execute at this point.

3. Remove the scheduled node from the list.

4. Go to step 2 until the list is empty.

This is a greedy algorithm that does not necessarily result in the optimal solution,

especially since the effect of memory contention is not considered. The next chapter

discusses task scheduling for the MPSoC in greater detail. The arrangement of the tasks

results in a processing period (tp) of 2500 before the memory access waiting times are

considered. This is the ideal time, as if every processor could access the memory

whenever it was requested. The timing diagram for this system, before analyzing the

memory access wait times, is as shown in Fig. 4-7.

An MPSoC Framework Chapter 4: MPSoC Analytical Model

- 92 -

Fig. 4-7. Initial task arrangement in the processing period.

The first partition that is considered is from time 0 of the processing period to

time 500. In this window, processor 1 is executing task A, processor 2 is executing task

B, processor 3 is executing task C, and processor 4 is executing task E. Since all

processors are active, N=4 for analyzing this window. Equation (21) can be used to

determine the order of the vacation process for any of the processors. The order of the

vacation process, m, will be 18. This means that the order of the matrix Pi for each

processor i will be 42. After executing the iterative algorithm used to calculate φi as

outlined in section 4.2.2, the values converge to: φ1=0.4297, φ2=0.3489, φ3=0.2964 and

φ4=0.2964.

Now that the values of φi are calculated, the steady state probability distribution

for the Markov chain, representing the memory accesses for each of the processors, can

be calculated. Graphs showing these probability distributions are shown in Fig. 4-8.

An MPSoC Framework Chapter 4: MPSoC Analytical Model

- 93 -

Fig. 4-8. Probability distributions of Markov chains representing memory access in first partition.

From these probability distributions, the probability of each processor having to

wait to access the memory can be determined using (26). These probabilities are

calculated to be: ζ1=0.2627, ζ2=0.2178, ζ3=0.1876, and ζ4=0.1876. The minimum

probabilities of waiting is for processor 3 and processor 4, so ζmin=0.1876. Using (27) the

new time partition time can be calculated to be tpartition_new = 616, where the previous

partition time was tpartition_old = 500. Using (28), the ratio of the task executed in the

partition time to the total execution time of the task that is executed for each processor

can be calculated as: θ1 = 0.9060, θ2 = 0.4812, θ3 = 0.25, and θ4 = 1. This means that after

this partition is executed, 9.4% of task A is left to execute, 51.9% of task B is left, 75% of

task C is left, and task E has finished being executed. After analysis of the first partition

An MPSoC Framework Chapter 4: MPSoC Analytical Model

- 94 -

the timing diagram of the system is adjusted to look as shown in Fig. 4-9. Also, the next

partition that needs to be analyzed is shown.

Fig. 4-9. Task arrangement in processing period after first partition analyzed.

The updated table of task information after analyzing the first partition is shown

below.

Table 4-2. Task parameters after first partition is analyzed.

Task Executing
Processor

Task Execution
Time

Probability of
Memory Access

Request (αi)

Start Time in
Processing

Period

End Time in
Processing

Period

A 1 663 0.03125 0 663

B 2 1135 0.02 0 1135

C 3 2116 0.015 0 2116

D 2 500 0.025 1101 1601

E 4 616 0.015 0 616

F 1 2000 0.05 620 2620

G 4 1000 0.025 587 1587

H 2 1000 0.005 1601 2601

After the analysis of the first partition, the total processing period has increased

from 2500 to 2663. The next partition that needs to be analyzed is from time 616 to time

663. In this window, processor 1 is executing task A, processor 2 is executing task B,

processor 3 is executing task C, and processor 4 is executing task G.

This process is repeated until the entire processing window is processed. Each of

the iterations will not be shown here, but there are six iterations in total needed to fully

An MPSoC Framework Chapter 4: MPSoC Analytical Model

- 95 -

analyze the example problem given. At the end of the analysis, the updated table of task

parameters is as shown below.

Table 4-3. Task parameters after analyzing the entire processing period.

Task Executing
Processor

Task Execution
Time

Probability of
Memory Access

Request (αi)

Start Time in
Processing

Period

End Time in
Processing

Period

A 1 683 0.03125 0 683

B 2 1329 0.02 0 1329

C 3 2514 0.015 0 2514

D 2 733 0.025 1329 2062

E 4 616 0.015 0 616

F 1 2627 0.05 683 3310

G 4 1448 0.025 616 2064

H 2 1043 0.005 2062 3105

The processing period (tp) at the end of the analysis is 3310, compared to the

initial processing period of 2500. This same analysis can also be done using a different

number of processors to evaluate the effect that the number of processors has on the

execution time. The following graph shows the expected processing time using 1 through

6 processors to process the same DFG done in the example above.

An MPSoC Framework Chapter 4: MPSoC Analytical Model

- 96 -

Fig. 4-10. The ideal processing period is compared with the actual processing period. The ideal processing

period does not consider the effect of memory interference, where the actual processing period does

consider memory interference.

Fig. 4-10 shows that as the number of processors increases, the difference

between the ideal processing period and the actual processing period increases. This is an

expected result, since more processors in the system means that there is a greater

probability of memory contention. The above example demonstrates the importance of

considering the effect that waiting for memory requests can have in shared memory

multiprocessor systems. If the time that a processor waits for memory access when other

processors are accessing the memory is ignored, the results can be significantly different

than if this time is considered. Fig. 4-10 shows that the expected reduction in processing

time may be perceived to be greater than the actual reduction in processing time that can

be achieved if the effect of memory interference is not considered. The analysis method

An MPSoC Framework Chapter 4: MPSoC Analytical Model

- 97 -

proposed provides a method for determining the typical amount of time that each

processor in an implementation of the MPSoC framework will wait for memory access

because another processor is being served.

- 98 -

Chapter 5

TASK ALLOCATION OPTIMIZATION

5.1 Motivation for Task Allocation Optimization

In the previous chapter, a model of analysis of a particular task schedule was

developed. This model can be used to determine the average processing period for a

given set of tasks assigned and scheduled to a given set of processors, with consideration

of the effects of global memory contention. This provides a method to evaluate potential

MPSoC solutions, but it does not provide a method to determine an optimal solution.

There has been much research in the area of scheduling of tasks in an MPSoC, and

mapping tasks to processors within an MPSoC. These are technically two separate

activities, where mapping of tasks to processors is the act of determining which task will

be processed by which processor, and scheduling is the act of determining the order of

the tasks to be processed on a given processor. In this thesis, the term “task allocation”

will be used as the combination of these two activities, where mapping of the tasks to

processors and scheduling of the tasks on each processor happens at the same time.

Finding an optimal task allocation of tasks to a given set of processors is an NP

(Nondeterministic Polynomial) -complete combinatorial optimization problem [BeRo08].

This means that an optimal solution cannot be found in polynomial time. There are many

combinatorial optimization techniques that have been used to find solutions to NP-

complete combinatorial optimization problems. Often the goal of a combinatorial

optimization algorithm is to find a “good” solution in a reasonable amount of time, rather

than spending a much longer period of time finding the global optimum.

An MPSoC Framework Chapter 5: Task Allocation Optimization

- 99 -

5.2 Overview of Combinatorial Optimization Techniques Applied to

Task Allocation Problems

There are many techniques that have been developed to find optimal solutions to

task scheduling and mapping combinatorial optimization problems. Some of these

include greedy algorithms [BaGa99], genetic algorithms (GA) [ZhSh07] [GuAK10], tabu

search (TS) [ShPS09], particle swarm optimization (PSO) [VFMA09], quantum-inspired

evolutionary algorithm (QEA) [YaHa09], and simulated annealing (SA) [LiHs90]

[NaDS92] [HSSA10]. Each of the combinatorial optimization techniques mentioned

above have strengths and weaknesses, and as a result are suitable for different types of

applications. A benefit of the SA algorithm over other combinatorial algorithms is that it

asymptotically approaches the global optimum. That is, given an infinite amount of time,

SA is guaranteed to reach the global optimal solution. Practically this does not mean that

SA will find the globally optimal solution faster than other algorithms, but it does mean

that new solutions tend towards better solutions as the algorithm progresses. This is a

very beneficial property for problems where a good solution is required, but not

necessarily the global optimal solution. For this reason SA is a popular algorithm in

routing problems (such as printed wiring board routing, or FPGA routing); these

problems do not need the best solution possible, but rather a good solution in a reasonable

amount of time.

Sometimes, human beings have an astonishing way of arriving at a solution for

very difficult (NP-complete) problems. For example, given a set of tasks and resources on

which those tasks can be performed (like the job a manager does by allocating tasks to

employees) we can sometimes find a good solution in a very short amount of time. While

An MPSoC Framework Chapter 5: Task Allocation Optimization

- 100 -

the actual process we use to arrive at a good solution is debatable, it seems reasonable

that the process itself consists of first identifying a reasonable solution, then

incrementally changing the solution and observing the behaviour of the system. If the

system seems to move to a more reliable and stable solution, we keep that change and

continue with the iterative process. If the system does not seem to move to a more stable

solution, we inevitably need to keep the change, but try a different approach in the next

iteration. Tweaking the solution this way in an iterative manner eventually leads to an

acceptably good solution. This process is remarkably similar to the annealing of solids.

After the initial formation of a solid, if heat is added and the solid is allowed to cool, the

solid will either come to a more stable state or not. We can then modify the way heat is

added to the solid to make the solid move to a more stable configuration. As such, this

thesis tries to mimic the complex way humans use to solve combinatorial optimization

problems by simulating the process of annealing in the task allocation algorithm.

Furthermore, in the task allocation problem we can observe that making a small

change in the task allocation can bring about a large change in performance. For example,

if two tasks are memory intensive, then allocating their execution on different processors

at approximately the same time can result in higher global memory contention. If these

tasks were spread out in as very little as one processing period, the performance of the

system may dramatically improve. This observation motivates us to use chaos theory to

drive the task allocation algorithm. As such, this thesis applies chaos theory to simulated

annealing.

An MPSoC Framework Chapter 5: Task Allocation Optimization

- 101 -

Simulated Annealing is a method for solving combinatorial optimization

problems first proposed by Kirkpatrick et al [KiGV83]. SA is based on an analogy to the

annealing of solids. The basic idea of SA is that an initial solution is chosen at random,

and a temperature parameter starts at a high value. A new solution is chosen by making a

small random perturbation of the solution. If the new solution is better, then it is kept, but

if it is worse, it is kept with some probability related to the current temperature and the

difference between the new solution and the previous solution. When the temperature is

high, the probability of accepting the solution is high, and as the temperature decreases

(according to some cooling schedule), the probability of accepting a solution worse than

the current solution decreases. This method does not get stuck in local minima, because

of the possibility of acceptance of worse solutions that can result in escaping from the

local minima. It has been shown that the SA method can be guaranteed to find the global

minimum with a sufficiently slow cooling schedule [Haja88]; however, this generally

involves an unacceptably long solution convergence time, and is likely to take longer

than a simple sequential search. Therefore, there has been much work in determining the

parameters for particular problems that will result in a good solution in a reasonable

amount of time, even if it is not the global optimum.

Simulated Annealing has been applied to task allocation and scheduling problems

in multiprocessing systems in previous work. Van Laarhoven et al. [VaAL92] applied SA

to a job shop scheduling problem where the goal is to find the optimal allocation of jobs

for a set of machines. This problem is a well-known generalized scheduling problem. The

paper, [VaAL92], demonstrated the benefits of SA over other heuristic methods for job

scheduling. There are several papers [EPKD97] [FLPS10] [WiCL97] that have compared

An MPSoC Framework Chapter 5: Task Allocation Optimization

- 102 -

SA to other optimization methods for problems that are similar to the task allocation

problem presented in this thesis. These works demonstrate that SA has certain advantages

and disadvantages over other optimization techniques, but remains as one of the leading

methods for task scheduling and mapping optimization problems.

Chaotic Simulated Annealing (CSA) was proposed by Shaw and Kinsner

[ShKi96] in the training of multilayer feedforward neural networks. This work explored

several different chaotic attractors used to generate perturbations of weights of neural

networks. Chen and Aihara [ChAi95] also proposed a variant of CSA as a method to find

optimal solutions to combinatorial optimization problems using Hopfield neural networks

(HNN) [Hopf82]. This work used transient chaos in the stabilization of the HNN and was

demonstrated using the travelling salesman problem. There have been several papers that

have expanded on this work [ChAi97] [MaAi02] [WaSm98] [WaTi00].

In all of the CSA algorithms applied to neural networks, the weights of the neural

networks are continuous variables that are adjusted through variations of CSA to find

optimal solutions to the applicable problems. While Chen and Aihara applied the neural

networks in solving a combinatorial optimization problem, the variables perturbed at each

iteration were continuous variables, and so a chaotic variable could be easily mapped to

the continuous variable.

Another version of CSA was proposed by Mingjun and Huanwen [MiHu04]. The

CSA proposed by Mingjun and Huanwen differs from the previous work in that it did not

involve neural networks and it applied only to optimization of continuous functions, not

to combinatorial optimizations problems. This method generated solutions at each

An MPSoC Framework Chapter 5: Task Allocation Optimization

- 103 -

iteration of the SA algorithm by mapping values derived from a chaotic system to the

solution space. As the temperature parameter decreased, the variation over the solution

space also decreased, and the solution eventually would converge to a final optimal

solution. This method depends on the system to be a continuous system where a chaotic

variable could be easily mapped to a point in the solution space.

SA and a variation of the CSA algorithms are applied to the MPSoC task

allocation problem in this thesis, and are compared to demonstrate the differences in the

two algorithms for the MPSoC task allocation problem.

5.3 Application of Simulated Annealing to the Task Allocation

Problem

The SA algorithm starts with an initial random solution, and then perturbs the

solution on successive iterations to compare the solution to the previous solution. This

means that it is essential to have a method to perturb the current task allocation to result

in a new task allocation. The perturbation must be one that allows all possible solutions to

be reached from any other solution, given enough of the perturbations. The perturbation

should also result in a relatively small change in the solution, such that a local area could

be explored to find a minimum.

There are many ways to generate different combinations of tasks that would result

in perturbations that meet the above requirements, but the following task movement has

been chosen for this thesis. For a single perturbation, a task is chosen at random and is

moved in one of the following directions: up, down, left, or right. These directions are

relative to a task arrangement in which each of the processors represents a row, and each

An MPSoC Framework Chapter 5: Task Allocation Optimization

- 104 -

of the tasks allocated to a processor is shown in a row and ordered from left to right. This

means that each task has a row index (which is the processor), and a column index (which

is the order that the task is assigned to the processor). An up move is defined as

decreasing the row index of the chosen task, but maintaining the column index. The

affected tasks in the target row are shifted to the right to make room for the new task. A

down move is defined as increasing the row index and maintaining the column index. The

row index can be wrapped around if an up move is made by a task in the top row, or if a

down move is made by a task in a bottom row. A left move is made by maintaining the

row index and decreasing the column index. A right move is made by maintaining the

row index and increasing the column index. In the case of a right or left move, the task

position is swapped with the task next to the chosen task. Wrap-around of the column

index is not permitted, so a left move is not possible if a task is the first task in a row, and

a right move is not possible if a task is the last task in a row. An example of a down task

movement by task D is shown in Fig. 5-1.

Fig. 5-1. Example of a down movement of task D.

An MPSoC Framework Chapter 5: Task Allocation Optimization

- 105 -

The SA algorithm starts with an initial solution and a temperature parameter. The

temperature parameter is decreased on each successive iteration until a minimum

temperature value is reached. Also, at each iteration, a perturbation is made to the current

solution and the cost function is calculated. If the new solution is better than the previous,

then it is kept. If the new solution is worse, then it is kept with a probability associated

with the temperature parameter and the difference between the new solution cost and the

old solution cost. The SA procedure applied in the task allocation problem is shown

below.

1. Choose an initial task arrangement (�����	
�)

2. Determine the processing period (�) of �����	
�

3. Initialize the temperature parameter (�� ← ����, � ← 1)

4. Set the initial solution as the global minimum �∗ ← �����	
�, �∗ ← �

5. Perturb the current solution to generate a new solution (�
	�)

6. Determine the processing period (�
	�) for the new solution �
	�

7. If �
	� ≤ � then � ← �
	� and �����	
� ← �
	�, otherwise go to Step 9

8. If �
	� ≤ �∗ then �∗ ← �
	� and �∗ ← �
	�, go to Step 10

9. If �
	� > � then accept the new solution with a probability of �� �∆�
� !"#

,

where ∆$ = �
	� − �, and kb is a constant.

10. Reduce the temperature according to a cooling schedule �
'� = ()�
*

11. If �
'� ≥ ��,
then � ← � + 1 and go to Step 5, otherwise go to Step 12

12. Output best solution found, �∗

An MPSoC Framework Chapter 5: Task Allocation Optimization

- 106 -

The parameters used for the task allocation problem are: ���� = 400, ��,
 = 1,

01 = 2, and the cooling schedule function is defined as ()�
* = �
 − 1. A common

variation of the SA algorithm is to allow for restarting of the search. Search restarts occur

if a new solution is not accepted J times in a row, where J is some predetermined

constant. After J rejections in a row, the current solution is set back to the global

minimum, �∗. This is intended to prevent a solution from going too far off the path and

searching areas of the solution space that will only have poor solutions. In the case of the

task allocation problem, the search restart parameter was set to J=5, meaning that if 5

solutions in a row were rejected, then the current solution was set back to the current

global minimum value.

5.4 Application of Chaotic Simulated Annealing to the Task Allocation

Problem

Three variations of CSA are proposed and applied specifically to the task

allocation problem in this thesis. The three variations of CSA are modified versions of the

CSA proposed by Mingjun and Huanwen [MiHu04] for continuous variable optimization.

First the Mingjun and Huanwen version of CSA is described, followed by a discussion of

the difficulties of mapping a chaotic variable to a combinatorial optimization solution

space, and finally, followed by a description of each of the three CSA methods proposed

in this thesis.

5.4.1 Continuous Function Chaotic Simulated Annealing

The CSA algorithm proposed by Mingjun and Huanwen [MiHu04] is specific to

continuous function optimization problems and does not address combinatorial

An MPSoC Framework Chapter 5: Task Allocation Optimization

- 107 -

optimization problems. The algorithm is similar to the traditional SA problem (as

described in section 5.3), but uses a chaotic system in the perturbation step to generate

new solutions at each step (Step 5 of the SA procedure). Rather than making a small

perturbation of the previous value, a new value is chosen by generating a value from a

chaotic equation, and then mapping that value to the search space interval. For example,

if the all values in the search space are in the interval of 34, 67, then a value from a

chaotic system, z, is generated between 0 and 1, then the initial solution is calculated as

8 = 4 +)6 − 4* × :. At each successive iteration a new solution is generated by the

equation ;� = 8� + <� ×)6 − 4* × :�, where zm is the chaotic variable at the m
th

iteration, and <� is a factor that reduces as the temperature decreases according to the

equation <� = <� × �=>?, and βc is a constant.

Two different chaotic systems were used to generate the chaotic value zm. The

first equation was the well known logistic map:

:@'� = A:@)1 − :@ * (30)

Where A = 4. The second equation, referred to as the new chaotic map, was:

:@'� = C:@ − 2�4��)D:@*�=EF�G
 (31)

Where C = 0.9 and D = 5.

Since this version of CSA is only applicable to continuous intervals, the new

values generated at each iteration need to be able to be explicitly mapped to the interval.

The chaotic systems were used instead of just generating random numbers in order to

obtain a particular probability distribution, which could produce better results (i.e. faster

convergence to the global optimum) than a Gaussian or uniform distribution. Mingjun

An MPSoC Framework Chapter 5: Task Allocation Optimization

- 108 -

and Huawen show the benefit of the CSA over SA experimentally by showing the CSA

algorithms converge to a global minimum of several continuous functions in less time

than SA. Chen and Dong [ChDo08] expand on the work of Chen and Aihara to prove that

the Markov Chain associated with the CSA algorithm is weakly ergodic, which

guarantees that the asymptotic behaviour of the algorithm is independent of the initial

states. A significant difference between the CSA algorithm and the SA algorithm is the

probability distribution of the solutions generated at each iteration. If the functions where

an optimal solution is to be found, have local minima that are far apart (and far from the

initial solution), then the probability mass function resulting from the chaotic variables

will be more likely to search a far reaching area, and therefore more likely to find the

global minimum. However, this is dependent on the distribution of the optimal solutions,

and the initial solution, and therefore there is no guarantee that CSA will produce a better

solution than traditional SA. The histogram of the values produced by the logistic map

and the new chaotic map are given in [MiHu04] and shown in Fig. 5-2.

Fig. 5-2. Histogram of values generated by Logistic Map (left) and New Chaotic Map (right), from

[MiHu04].

An MPSoC Framework Chapter 5: Task Allocation Optimization

- 109 -

5.4.2 Mapping a Chaotic Variable in the Solution Space

In order to adapt the CSA method developed by Mingjun and Huanwen to the task

allocation combinatorial optimization problem, a method to perturb the tasks in such a

way that the solution space is searched according to the probability mass function derived

from a chaotic variable is required. The mapping of the solution to a chaotic variable is

done by mapping the chaotic variable to the number of perturbations made. While this is

not guaranteed to search the solution space exactly according to the specified value (for

example, since some perturbations may cancel out others), overall the more perturbations

that are made, should result in solutions that are farther apart. Therefore, a maximum and

minimum number of perturbations are chosen, and a generating function generates a

value between 0 and 1. How the generating function generates the value between 0 and 1

differs for the different CSA variations, and will be described in the following sections.

The number of perturbations is then mapped to the generated value from 0 to 1. This

mapping also differs between the different variations of CSA, and it will be described in

the following sections. In all cases, a maximum number of 30 perturbations and a

minimum number of 1 perturbation are used for the experimental results.

5.4.3 CSA1 Method

 The first variation of the CSA algorithm developed (referred to as CSA1 from

this point forward) used the logistic map (given in (30), with A = 4) multiplied by an

attenuation variable, <
, to generate a chaotic variable, :@, which was a value between 0

and 1. The initial attenuation variable is <K = 1, and was decreased on each iteration of

the CSA algorithm, according to the equation <
'� = LM<
, where LM = 0.99. The value

An MPSoC Framework Chapter 5: Task Allocation Optimization

- 110 -

from the logistic map was determined by iterating the equation a random number of

times, between 1 and 400, with an initial value of :K = 0.65. The number of

perturbations made at each iteration in the algorithm was then determined by the mapping

function:

�OPQ	����1R = <
:@)S�T�OT6_P48 − S�T�OT6_PV�* + S�T�OT6_PV� (32)

CSA1 has the result of using the probability mass function of the logistic map

with A = 4 but attenuated as the number of iterations increases. Therefore, initially there

is a higher probability of a larger number of perturbations, and this number is decreased

as the algorithm progresses. This has the effect of being able to search a large solution

space initially, and then reducing the solution space to areas where the global minimum is

more likely to exist. Fig. 5-3 shows a three dimensional histogram of the number of

perturbations (y-axis) vs. the number of iterations into the logistic map (z-axis) vs. the

number of iterations in the CSA1 algorithm (x-axis). The result of the CSA1 algorithm is

that the number of perturbations is most likely to be either a large number, or a small

number, but not likely to be in the middle for early iterations of the algorithm. As the

algorithm progresses, the number of perturbations decreases, with the hope of narrowing

in on the global optimum.

An MPSoC Framework Chapter 5: Task Allocation Optimization

- 111 -

Fig. 5-3. Histogram of perturbations for CSA1.

5.4.4 CSA2 Method

The second variation of the CSA algorithm, (referred to as CSA2 from this point

forward), was created based on the realization that the best probability distribution of the

solutions was not known, and therefore it would be best to change the probability mass

function of the chaotic variable as the algorithm progresses, with the hope of efficiently

covering the solution space. Again the logistic map, (30), was used as the basis of the

chaotic variable, but rather than using a fixed value of A as was the case for CSA1, the

value of A is changed as the algorithm progresses to create different probability

distributions at successive iterations. The mapping of the chaotic variable to the number

of perturbations is done differently for CSA2 than it was done for CSA1. In this case, the

chaotic variable is a value between 0 and 1, and the number of perturbations is a value

that is proportional to the difference between the chaotic variable and the mean value for

the distribution of the chaotic variable at its current CSA2 iteration. That is, the further

An MPSoC Framework Chapter 5: Task Allocation Optimization

- 112 -

away the chaotic variable is from the mean value, the more perturbations will be made.

Changing the value of A means that the probability of the number of perturbations will

have a distribution that follows the bifurcation diagram for the logistic map. At the

beginning of the CSA2 algorithm the value of A = 4. The value of A is changed linearly

to a final value of A = 2.8 in the final CSA2 iteration. Fig. 5-4 shows the possible values

of the chaotic variable at each iteration of the CSA2 algorithm. The red line through the

diagram is the mean value, which the chaotic variable is compared to determine the

mapping to the number of perturbations. This diagram is the bifurcation diagram for the

logistic map. Fig. 5-5 shows a three dimensional histogram of the number of

perturbations (y-axis) vs. the number of iterations into the chaotic map (z-axis) vs. the

number of iterations in the CSA2 algorithm (x-axis). The histogram shows that there is

rich variation in the probability distributions for the first 150 iterations or so. After that

point, the periodic points in the bifurcation diagram are reached, and the number of

perturbations is almost constant and continuously decreasing as the iterations in the

CSA2 algorithm continue. The idea of this version is that, in the first 150 iterations there

is a wide sweeping of the solution space, and as the algorithm progresses, the solution

space is searched in a smaller and smaller area, with the hope of narrowing in on the

global optimum.

An MPSoC Framework Chapter 5: Task Allocation Optimization

- 113 -

Fig. 5-4. Chaotic variable vs. algorithm iteration for CSA2.

Fig. 5-5. Histogram of perturbations for CSA2.

5.4.5 CSA3 Method

The third variation of the CSA algorithm (referred to as CSA3 from this point

forward) is almost exactly the same as CSA2, except that, instead of using the logistic

An MPSoC Framework Chapter 5: Task Allocation Optimization

- 114 -

map to generate the chaotic variable, the equation referred to as the new chaotic map,

(31), is used to generate the random variable. The D of this equation is varied from a

starting value of D = 5 to a final value of D = 0.5 over the iterations of the CSA3

algorithm. This chaotic map results in values outside of the range of 0 to 1, and therefore

the chaotic variables are normalized to fall within the range of 0 to 1. Fig. 5-6 shows the

possible values of the chaotic variable at each iteration of the CSA3 algorithm. The red

line through the diagram is the mean value, to which the chaotic variable is compared to

determine the mapping to the number of perturbations. This diagram has similar features

to the bifurcation diagram of the logistic map, but there are different variations, which

result in different probability mass functions at each iteration. Fig. 5-7 shows a three

dimensional histogram of the number of perturbations (y-axis) vs. the number of

iterations into the chaotic map (z-axis) vs. the number of iterations in the CSA3 algorithm

(x-axis). The histogram shows that there is rich variation in the probability distributions

for the first 275 iterations or so. After that point, the periodic points in the diagram are

reached, and the number of perturbations is almost constant and continuously decreasing

as the iterations in the CSA3 algorithm continue. The idea of this version is that, in the

first 275 iterations, there is a wide sweeping of the solution space, and as the algorithm

progresses, the solution space is searched in a smaller and smaller area, with the hope of

narrowing in on the global optimum.

An MPSoC Framework Chapter 5: Task Allocation Optimization

- 115 -

Fig. 5-6. Chaotic variable vs. algorithm iteration for CSA.

Fig. 5-7. Histogram of perturbations for CSA3.

5.5 Comparison of SA and CSA Results

The three variations of the CSA algorithms and the traditional SA algorithm were

implemented on a task allocation problem where 16 tasks were to be allocated on 4

An MPSoC Framework Chapter 5: Task Allocation Optimization

- 116 -

processors for two experiments, and then on 3 processors for another two experiments.

Description of the method of implementation for these algorithms is described in

appendix B. In both cases the systems are assumed to be homogeneous multiprocessing

systems, where the tasks have the same initial processing time on all processors in the

system. The method proposed is also valid for heterogeneous multiprocessing systems.

The only difference in that case is that the initial task times and probability of memory

access request for each of the tasks must differ depending on the processor that the task

has been assigned to. This means that a unique table of initial tasks times and probability

of memory access requests are required for each processor in the system (or each

processor type, if there are more than one processor of the same type). The characteristics

of the tasks for the first two experiments are shown in Table 5-1, and characteristics of

the tasks for the second two experiments are shown in Table 5-2.

Table 5-1. Task characteristics for experiments 1 and 2.

Task Experiment #1 and #2 Characteristics

Initial Task Time

(ns x 10)

Probability of Memory

Access Request

0 1484 0.054

1 1484 0.054

2 1484 0.054

3 1484 0.054

4 1484 0.054

5 1484 0.054

6 968 0.0525

7 1268 0.0549

8 968 0.0525

9 968 0.0525

10 1268 0.0549

11 968 0.0525

12 2630 0.0681

13 1268 0.0549

14 1368 0.0459

15 1368 0.0459

An MPSoC Framework Chapter 5: Task Allocation Optimization

- 117 -

Table 5-2. Task characteristics for experiments 3 and 4.

Task Experiment #3 and #4 Characteristics

Initial Task Time

(ns x 10)

Probability of Memory

Access Request

0 500 0.25

1 800 0.05

2 1500 0.01

3 700 0.025

4 250 0.35

5 350 0.05

6 3000 0.04

7 450 0.15

8 600 0.075

9 1800 0.025

10 100 0.1

11 1100 0.08

12 900 0.095

13 950 0.16

14 850 0.09

15 2100 0.06

In order to first get an idea of the size of the solution space for this problem, an

estimate of the solution space can be made. This estimate can be made by considering a

method of assigning the tasks to processors. If there are 4 processors, determining which

processor a particular task is assigned requires 2 bits of information. Consider a method

of assigning the tasks in order to each processor, where as a task is assigned it is given the

left most available slot in the processing period. This means that all possible solutions

could be arrived at by the permutation of task assignment, where each task could be

assigned to any processor. Since two bits are required to specify the processor that a task

is assigned to, and there is no restriction as to which a processor can be assigned, for a

given permutation of task assignments, there are 2XY, possible assignments, where N is

the number of tasks. In the experiment case where N=16, this means that for every

permutation of task assignments, there are 2EX = 4.29 × 10Z possible arrangements. This

number needs to be multiplied by the number of possible permutations of assignment of

the tasks. The number of possible permutations that the tasks can be assigned in is given

An MPSoC Framework Chapter 5: Task Allocation Optimization

- 118 -

by [! = [∙ [− 1 ∙ [− 2 ⋯ 1, for N=16; this means there are approximately 2.09 ×
10�E, which means that there are)4.29 × 10Z*)2.09 × 10�E* = 8.98 × 10XX possible

ways to assign the tasks to processors. Many of these ways to assign the tasks to

processors will end up with the same solution, so this is an upper limit to the number of

possible solutions, not the actual number of possible solutions, but it is obvious that the

number of actual solutions must be very large.

Four different experiments were done in total. Experiments #1 and #2 were done

with four processors and with task characteristics that did not vary significantly in

execution time and probability of memory requests. Because the task characteristics do

not vary significantly, this means that a very large number of the solutions will be fairly

close to the global minimum. That is, there will be many “good” solutions. Experiments

#3 and #4 were done with three processors and with task characteristics that varied more

significantly. In this case, there will not be as many “good” solutions as there would be in

the case where the task characteristics are more similar.

In Experiment #1 and Experiment #3 the initial solution was chosen to be an

obviously bad solution (and therefore likely to be far away from the global optimum). In

these cases, all of the tasks were assigned to a single processor. In Experiment #2 and

Experiment #4, the initial solution was chosen to be a more reasonable solution, where

the tasks were evenly divided among the processors. The initial task assignment for

Experiment #1 is shown in Fig. 5-8, and the initial task assignment for Experiment #2 is

shown in Fig. 5-9.

An MPSoC Framework Chapter 5: Task Allocation Optimization

- 119 -

Fig. 5-8. Initial task solution for experiment #1.

Fig. 5-9. Initial task solution for experiment #2.

5.5.1 Time Series Analysis

The length of the processing periods calculated at each iteration of the algorithms

in Experiment #1 are shown in Fig. 5-10.

Fig. 5-10. Processing period calculated at each iteration for experiment #1.

These show that the traditional SA algorithm takes longer to find a solution close

to its final solution, where the other algorithms move down to a pretty good solution in

Proc0

Proc1

Proc2

Proc3

Processing

Period (tp)

0 1 2 3

4 5 7

12

6

13 14 15

10 8 9 11

An MPSoC Framework Chapter 5: Task Allocation Optimization

- 120 -

only a few iterations. After the SA algorithm first reaches a solution that is close to the

final solution, it does not have wide variations, showing that it is likely exploring local

minima in a relatively small area of the solution space. While the three CSA algorithms

achieve a solution close to the final solution relatively quickly, there is much more

variation on further iterations, showing that a wider area of the solution space is being

explored. Fig. 5-11 shows the number of perturbations at each iteration for each of the

algorithms for Experiment #1. Similarities between the number of perturbations and the

three dimensional histograms in Fig. 5-3, Fig. 5-5, and Fig. 5-7 can be seen, as is

expected.

Fig. 5-11. Number of perturbations at each iteration for experiment #1.

Fig. 5-12 shows the processing periods at each iteration for Experiment #3.

An MPSoC Framework Chapter 5: Task Allocation Optimization

- 121 -

Fig. 5-12. Period calculated at each iteration for experiment #3.

Similar to Experiment #1, this experiment started with a poor solution, and so

there is a steep descent to an area where better solutions are explored. However, because

the characteristics of the tasks vary more significantly for Experiment #3 than for

Experiment #1, there are more poor solutions, and so it is more likely that local minima

are farther apart. This can be seen in the results of SA algorithm, where after the first

descent to a low solution, there is a slow movement to a higher solution (at about the

200
th

 iteration). The SA algorithm escapes the local minimum to search other areas, but it

is a slow progression from one local minimum to another. A similar result can be seen for

CSA1 at about the 250
th

 iteration, but CSA2 and CSA3 seem so have more wide swings

in the results until near the end of the algorithm as they settle into a solution.

Experiments #2 and #4 started with better initial solutions that that of

Experiments #1 and #3. The lengths of the processing periods calculated at each iteration

of each of the algorithms in Experiment #2 are shown in Fig. 5-13.

An MPSoC Framework Chapter 5: Task Allocation Optimization

- 122 -

Fig. 5-13. Period calculated at each iteration for experiment #2.

These graphs show that the processing periods from the solutions in the traditional

SA algorithm does not vary significantly compared to that of the CSA algorithms. Again

this shows that the SA explores a relatively small area of the solutions space. In the case

where the initial solution is close to a good solution, it may be beneficial only to explore

a small area because the optimal solution is likely close to the initial solution. The

solutions of the CSA algorithms vary quite a bit in the beginning iterations, and start to

settle in to exploring a smaller area of the solution space near the end. In this case, there

is no great benefit to searching a larger solution space, since the initial solution is already

close to the optimal solution.

The lengths of the processing periods calculated at each iteration of each of the

algorithms in Experiment #4 are shown in Fig. 5-14.

An MPSoC Framework Chapter 5: Task Allocation Optimization

- 123 -

Fig. 5-14. Processing period calculated at each iteration for experiment #4.

Again the SA results do not vary as significantly as the CSA results, but in this

case, there is not as large of a difference than in the case of Experiment #1. This is

because, although the initial solution was relatively good, there are more poor solutions

(because of the task characteristics).

The final solutions for each of the algorithms in each of the experiments are

shown in Table 5-3. These results do not show any concrete conclusions about which

method is likely to provide better results consistently. In Experiment #1 and #3, all of the

CSA algorithms perform better than the SA algorithm. This is expected; since the initial

solutions in these cases are far away from the global optimum, the SA algorithm takes

longer to reach good solutions, and therefore spends more time searching poor solutions.

In the cases where the initial solutions are relatively good (Experiments #2 and #4), there

is no obvious trend in the results. In this case, the SA algorithm can produce good results

because it searches in a small area close to the optimal solution, while the CSA algorithm

An MPSoC Framework Chapter 5: Task Allocation Optimization

- 124 -

may wander away from the optimal solutions because the CSA algorithms can have wider

swings in the search area of the solution space compared to the SA algorithm.

Table 5-3. Experimental final processing periods.

 SA Final Processing
Period

CSA1 Final
Processing Period

CSA2 Final
Processing Period

CSA3 Final
Processing Period

Exp. #1 11757 11677 11696 11663

Exp. #2 11678 11752 11704 11637

Exp. #3 8406 8362 8330 8298

Exp. #4 8353 8334 8367 8411

5.5.2 Power Density Spectrum

The power spectrum in the frequency domain can be determined by first

performing a Fast Fourier Transform (FFT) on the processing period results that were

calculated at each step of the algorithms, and then squaring the magnitude of each of the

values in the Fourier series to obtain the power. The power density spectrum can then be

analyzed by graphing the power vs. the frequency in a log-log plot. These graphs are

shown in Fig. 5-15 for each of the SA, CSA1, CSA2, and CSA3 algorithms from the

results of Experiment #3. These graphs show that the power spectrum is wide spread

without peaks at specific frequencies, and that each of the power spectra have average

slopes that are proportional to
�

_`a , where LR ≅ 1.8. This means that the results are fractal

in nature (similar characteristics at many scales), and have fractional Brownian

characteristics. The fractal spectral dimension can be calculated by the following

equation [Kins10], where E = 1 for a self-affine time series with a single independent

variable:

c> = $ + E=>a
X (33)

An MPSoC Framework Chapter 5: Task Allocation Optimization

- 125 -

In this case, since LR ≅ 1.8, the spectral dimension can be calculated to be

c> = 1.6.

Fig. 5-15. Power density spectrum of experiment #3 results.

Power density spectrum analysis can be used to compare the rate of convergence

of different combinatorial optimization techniques. This analysis shows the correlation

between successive iterations of the combinatorial optimization algorithm. Highly

correlated successive iterations will result in a fast rate of convergence to an optimal

solution, whereas totally uncorrelated iterations will result in no convergence to an

optimal solution. The more correlated the successive iterations, the greater the value of

βs. Totally uncorrelated iterations (white noise) result in a power density spectrum with a

slope proportional to a βs value in the range of −1 < LR < 1. A fractional Brownian

motion process results in a power density spectrum that has a slope proportional to a βs

value in the range of 1 < LR < 3, where βs=2 is traditional Brownian process [Kins10].

Brownian motion occurs in geometrical space when an object moves in a random

An MPSoC Framework Chapter 5: Task Allocation Optimization

- 126 -

direction, but limited to a distance from its last position. Therefore, the overall walk of

the object is a random walk where each position is related to the last position. Similarly, a

Brownian process can move randomly, but it is related to its last position. A Brownian

type process is critical to SA, since a perturbation should move the solution to a solution

nearby, to ensure that local minima can be properly explored. If the perturbation moves

the solution to an area of the solution space that is totally unrelated to the previous

solution, then there cannot be any progression of the search; rather, the search involves

just randomly selecting different areas of the solution space. Since the power density

spectrum of each of the results obtained from the experiments show that all of the

algorithms are fractional Brownian processes, this indicates that the search to a global

solution will progress with subsequent steps in the algorithm, and is not just randomly

searching different areas of the solution space with no signs of progression towards a

global minimum. A combinatorial optimization algorithm that resulted in a Black process

(defined as process where LR > 3) would be more desirable than a Brown process;

however, this would be very difficult to achieve without getting stuck in local minima

within the solution space.

The power density spectrum analysis in this case does not show any advantage of

one algorithm over the others, since the correlation of successive iterations produce the

same spectral dimension for each algorithm. However, the analysis does validate the

perturbation chosen for generating new solution. If the perturbation changed the solution

so much, at each iteration, that the new solution was not related to the previous solution

in any way, it would be expected that the results would have the characteristics of white

noise, because there is no correlation between one iteration and the next. The fact that

An MPSoC Framework Chapter 5: Task Allocation Optimization

- 127 -

there are no significant differences in the power density spectrum for the CSA algorithms

compared to the SA algorithm indicates that the action of searching a wide area of the

solution space initially and then narrowing down to a smaller area of solution space as the

algorithm proceeds (as is the case for the CSA algorithms), still maintains the desired

fractional Brownian process characteristics evident in the SA algorithm.

5.6 Task Allocation Optimization Conclusions

The three CSA methods developed are common in that they all tend to search a

relatively large solution space in the early iterations of the algorithm, and then settle into

searching smaller areas of the solution space as the algorithm progresses. This is

beneficial when the initial solution is far away from the global optimum, because

convergence to the global optimum can be faster. However, in cases where the initial

solution is close to the global optimum, searching a large solution space may result in

moving away from the global optimum, and therefore, searching a smaller area more

thoroughly can be beneficial (as is the case for the traditional SA algorithm). The power

density spectrum analysis can be used to compare the expected rate of convergence of

combinatorial optimization methods by determining how correlated the results are

between iterations of the algorithm. The power density spectrum analysis in this case

showed that the choice of perturbations result in a desired Brownian fractional process for

the SA algorithm. This analysis also showed that the CSA algorithms have the desired

fractional Brownian process characteristics evident in the SA algorithm. This means that

the searching of a wide solution space performed by the CSA algorithms does not prevent

An MPSoC Framework Chapter 5: Task Allocation Optimization

- 128 -

the solutions from progressing towards a global minimum, as might be the case for a

totally random search of the solution space.

Each of the CSA algorithms proposed have slightly different characteristics from

each other, due to the differences in the probability of distribution of the number of

perturbations that can be made throughout the algorithms. The CSA2 and CSA3

algorithms are an attempt to find a universal tool for solving combinatorial optimization

problems in that they walk through several probability distributions for determining the

number of perturbations that should be made at each iteration of the algorithms, and are

not necessarily only suited for problems that have particular characteristics of where the

local minima in the solution space are located. Ultimately, no conclusion can be made

that the CSA algorithms proposed are better than other SA algorithms for all types of

combinatorial optimization problems. Rather, the “best” algorithm for any particular

combinatorial optimization problem is specific to the unique characteristics of the

problem that is to be solved. That is, there is no algorithm to solve NP-complete

combinatorial optimization problems in the most efficient way that can be applied blindly

to any problem without good understanding of the characteristics of the problem.

- 129 -

Chapter 6

EXPERIMENTAL RESULTS

This section describes the experimental implementation created for the MPSoC

framework. The experimental results obtained from the MPSoC implementation, along

with the experimental results from the analytical model experiments (Section 4.7) and the

experimental results from the SA and CSA algorithms (Section 5.5) are used to validate

the MPSoC framework, the analytical model, and the optimization method proposed in

this thesis.

6.1 Experimental Application

In order to demonstrate the strengths and weaknesses of the MPSoC framework

and to validate the analytical method developed in this thesis, an example application was

developed for implementation using the MPSoC framework. The example application

performs the function of a green screen video system, which is often used to superimpose

one video feed onto the background of another video feed. There are typically two video

sources; the primary video feed has a green background and a non-green foreground.

Every green pixel in the primary video feed is replaced with a pixel in the same location

from the second video feed. This is a common technique used for television weather

forecasts to show the weather map behind the meteorologist. The example application

takes two images that are in YUV colour format, converts them both to RGB colour

format, and then replaces all of the green pixels in the primary image with a

corresponding pixel from the secondary image. The combined image is then converted

back to the YUV colour format. For simplicity in the example application, each pixel in

An MPSoC Framework Chapter 6: Experimental Results

- 130 -

the original two images was generated by a random number generator, rather than

actually having been input from a video source. This was done because the actual source

or content of the image is irrelevant for the purposes of evaluating the MPSoC

framework. The example application was divided up into 16 tasks, which have a DFG as

shown in the following figure:

Fig. 6-1. A dataflow graph representing the green screen application.

Tasks 0, 1, and 2 generate the Y, U, and V portions of the primary image. Tasks 3,

4, and 5 generate the Y, U, and V portions of the secondary image. Tasks 6, 7, and 8

calculate the R, G, and B portions of the primary image. Tasks 9, 10, and 11 calculate the

R, G, and B portions of the secondary image. Task 12 replaces the green pixels from the

Task 0

Get Y

Task 1

Get U

Task 2

Get U

Task 6

Calc B

Task 7

Calc G

Task 8

Calc R

Task 3

Get Y

Task 4

Get U

Task 5

Get U

Task 9

Calc B

Task

10

Calc G

Task

11

Calc R

Task 12

Swap

Green

Task 0

Calc Y

Task 1

Calc U

Task 2

Calc U

An MPSoC Framework Chapter 6: Experimental Results

- 131 -

primary image with the corresponding pixels in the secondary image. Tasks 13, 14, and

15 calculate the Y, U, and V components of the combined image.

The input and output for each task was read from, and written to, global memory,

with the exception of the original YUV images, which were generated by a random

number generator. Each image was 500 pixels (each pixel being 3 bytes). This is a very

small size for a real-world image, but the system was limited by the amount of global

memory available. However, the size of the application was sufficient for the purpose of

evaluation of the MPSoC framework. Two versions of the application were developed,

one in which minimal processing is done within each task in the DFG compared to the

amount of time spent accessing global memory, and the other in which much more time

is spent performing computations compared to the time accessing global memory. These

two applications demonstrate the extreme spectrum of real-world applications, so the

strengths and weaknesses of the MPSoC and analytical model can be demonstrated for

each case. The two applications will be referred to, respectively, as the memory intensive

application, and computationally intensive application. To simulate the computationally

intensive application, the memory intensive application was modified by inserting a busy-

wait loop that counted from 0 to 1000 for each piece of data that was operated on. This

loop served no purpose in the application, but simulated the situation where a significant

amount of calculations would need to be done for each task. Both the memory intensive

application and the computational intensive application were run through a number of

experiments in order to compare the results.

An MPSoC Framework Chapter 6: Experimental Results

- 132 -

6.2 Experimental Implementation and Results

The MPSoC demonstrating the framework was implemented in a Xilinx Virtex-II

Pro FPGA, on the Xilinx XUPV2P development platform [Xili08a]. Xilinx MicroBlaze

V6.0 soft processors were used for the MPSoC implementation, each processor running

with a clock speed of 100 MHz. Each processor had 16 kB of local memory to be used

for instruction and data memory. The head processor used a serial port peripheral to

output the performance metrics read from the snoopy block to a PC, in order to evaluate

the system. The global memory size used for the example application was 16 kB of RAM

internal to the FPGA. Details of the test setup are provided in Appendix A. Experiments

were conducted using 1, 2, 3, and 4 processors with the example applications.

The first step in implementing the system was to run the memory intensive

application on a system with a single processor. This is required to determine the serial

execution time of each of the tasks in the system and the probability of a global memory

access request. This information is required as input into the analytical tool. The snoopy

block (as described in section 3.2.7) provided the method by which the parameters of the

tasks could be measured. The total task time was determined to be the average time over

all 500 task executions. Determining the probability of global memory access time is not

necessarily a trivial exercise. Initially, it was determined by calculating the total number

of accesses to global memory divided by the number of instructions executed during a

single task execution. However, due to complexities in the operation of a processor (such

as instruction pipelining, variable length instructions, etc.) this determined value may not

be accurate. The determined probability must then be used within the analytical model,

and compared against measured results of the two processor case to validate the

An MPSoC Framework Chapter 6: Experimental Results

- 133 -

determined probability. The experimentally determined serial task execution times and

probability of global memory access requests are shown in Table 6-1.

Table 6-1. Experimentally determined task parameters of the memory intensive application.

Task Initial Task Time

(ns x 10)

Probability of Memory

Access Request (αi)

0 1484 0.054

1 1484 0.054

2 1484 0.054

3 1484 0.054

4 1484 0.054

5 1484 0.054

6 968 0.525

7 1268 0.549

8 968 0.525

9 968 0.525

10 1268 0.549

11 968 0.525

12 2630 0.681

13 1268 0.549

14 1368 0.459

15 1368 0.459

In order to validate the analytical model and to demonstrate its benefits, the tasks

were allocated according to a greedy heuristic algorithm, proposed in [BaGa99]. This

resulted in task allocations as shown in Table 6-2.

Table 6-2. Task allocations for 2, 3, and 4 processors.

Number of
Processors

Processor 1
st
 Task 2

nd
 Task 3

rd
 Task 4

th
 Task 5

th
 Task 6

th
 Task 7

th
 Task 8

th
 Task

2 P0 0 4 5 10 8 11 14 15

P1 2 1 3 7 6 9 12 13

3 P0 0 1 10 11 15

P1 2 3 6 8 12

P2 4 5 7 9 14 13

4 P0 0 5 11 13

P1 2 7 6 12

P2 4 10 8 14

P3 1 3 9 15

The analytical method, as described in Chapter 4, was applied for a system with

two, three, and four processors and compared to the experimentally measured processing

period times. Also, the simpler analysis method proposed in [SLOW07] was applied; this

An MPSoC Framework Chapter 6: Experimental Results

- 134 -

calculates the processing period by assuming that the maximum bandwidth of the global

memory has been reached. Therefore, the processing period time is calculated by

subtracting the portion of each task that is due to memory accesses, then calculating the

processing period of the parallel tasks, then adding the sum of the time for each memory

access (which was previously subtracted). This method essentially assumes that, every

time a memory access was requested, the global memory was already being serviced by

another processor, so the processing time can be parallelized, but all of the memory

accesses are executed serially. The graph in Fig. 6-2 shows the comparison of the ideal

processing period, (without considering the effects of memory contention), the actual

experimental measurement, the value calculated by the analytical method proposed in this

thesis, and the value calculated by a simple calculation, which assumes saturated

bandwidth.

Fig. 6-2. Processing period results for the ideal value, the experimental measurement, the calculation by the

proposed analytical method, and the calculation by the simple method (saturated bandwidth from

[SLOW07]).

An MPSoC Framework Chapter 6: Experimental Results

- 135 -

These experimental results show that the proposed analysis method results in

estimations that are quite close to the actual measured task periods. The simple analysis

method works well for the situation where three or four processors are used, but is not

accurate in the case of two processors. This is because the global memory bandwidth

becomes saturated in the case of three and four processors, but it is not saturated in the

case of two processors. The simple analysis method really gives an upper limit to the

expected processing period time, but only a relatively accurate estimation when the

memory bandwidth is saturated. The analysis method proposed in this thesis is superior to

the simple analysis method because it does not depend on memory bandwidth saturation.

While Fig. 6-2 shows the benefit of the analytical method, it also shows that the MPSoC

framework is not ideal for applications that required a large number of accesses to global

memory. In this case, there is not much benefit in implementing more than two

processors in the MPSoC, because the global memory contention limits the performance

that can be achieved within the system.

Speedup is a measure that is used often in parallel processing research as a

measure of improvement for an algorithm as the number of processors increase in a

parallel processing system. It is defined as the time for the serial execution of the

algorithm divided by the execution time with more than one processor. The ideal speedup

for any parallel processing system is equivalent to the number of processors in the

system. Fig. 6-3 shows the speedup for the memory intensive application. It can be seen

from this graph that the speedup for the two processor case is not particularly impressive,

and there is a slight improvement for three processors, followed by a reduced

performance for four processors. Since only one processor can access global memory at a

An MPSoC Framework Chapter 6: Experimental Results

- 136 -

time, adding more processors essentially reduces much of the program execution to serial

execution, regardless of how many processors are added to the system.

Fig. 6-3. Speedup of the memory intensive application for two, three, and four processors.

The following graph shows the execution times of each of the tasks with a

different number of processors in the system.

An MPSoC Framework Chapter 6: Experimental Results

- 137 -

Fig. 6-4. Individual measured task execution times for the memory intensive application.

In general, Fig. 6-4 shows that, as the number of processors increases, the amount

of time it takes to execute a task also increases; however, this is not always the case. The

only reason that the execution time for a task would significantly increase would be if

more time was spent waiting to access global memory. In the case of the single processor

system, the task can always access global memory when needed because the processor

does not have to compete with other processors for the memory. As the number of the

processors increase, there is a greater chance that the tasks will have to wait for memory

access. An interesting observation that can be made from Fig. 6-4 is that task 12 takes

more time to execute with three processors than it does with four processors. This is

counterintuitive because more processors should mean that it is more likely that there is

contention for global memory resulting in a longer task execution time. This data shows

that it is not always that straightforward because it depends on what other tasks are being

executed at the same time, and the probability that those tasks are accessing memory.

An MPSoC Framework Chapter 6: Experimental Results

- 138 -

Another interesting observation that can be made from Fig. 6-4 is that tasks 0 to 5

do not seem to have a significant increase in execution time as the number of processors

increase. This is because tasks 0 to 5 are the tasks that generate the YUV values with the

use of a random number generator. As a result, these are the most computationally

intensive tasks, and have the least amount of memory accesses. Therefore, as the number

of processors increase, these tasks are not affected significantly by increased probability

of global memory contention.

Since the bottleneck in the system is the contention for global memory access, it

seems that this system should perform much better with tasks that are computationally

intensive, compared to tasks that access memory often. In order to demonstrate the global

memory bottleneck, the computationally intensive application was created. This version,

as described earlier, is the same application as the original, except a large number of

computations that do not access global memory, were added to simulate computationally

intensive tasks. The graph in Fig. 6-5 shows the execution time vs. the number of

processors in the system for the computationally intensive application.

Fig. 6-5. Execution time vs. the number of processors for the computationally intensive application.

An MPSoC Framework Chapter 6: Experimental Results

- 139 -

This next graph shows the speedup achieved for the multiprocessor systems over

the single processor system with the computationally intensive application.

Fig. 6-6. Speedup vs. the number of processors for the computationally intensive application.

It is evident from Fig. 6-5 and Fig. 6-6 that the overall processing time is

significantly reduced as more processors are added to the system. The speedup is very

close to the ideal speedup for two and four processors. The efficiency (defined as the

speedup divided by the number of processors [Quin04]) is almost ideal (ideal efficiency

is 1) in the case of two and four processors (0.96 and 0.93, respectively), and is very good

for three processors (0.9). The reason that the efficiency is slightly smaller for three

processors is because the processor loading is not quite as well balanced as it is in the

case of two and four processors. The processor loading imbalance can be seen by the

following graph which shows the processor idle time for each of the processors in the

system for the one, two, three, and four processor systems.

An MPSoC Framework Chapter 6: Experimental Results

- 140 -

Fig. 6-7. Processor idle time of each processor in the one, two, three, and four processor cases.

There is some idle time for the single processor case because this is the task

switching overhead. The idle time for the two processor system and the four processor

system is fairly well balanced, showing that all the processors must have finished all of

their tasks in close succession. The three processor system shows that P2 had much less

idle time that P0 and P1. This must mean that P0 and P1 finished all of their tasks much

earlier than P2 had, so the time that P0 and P1 were doing nothing while waiting for P2 to

finish is considered idle time. The reason for this is demonstrated in the task allocation

table (Table 6-2), where it is shown that P2 has six tasks to execute and P0 and P1 only

have five tasks to execute. Because of the added busy-wait loops in the busy-wait

application, each of the tasks has almost the same serial execution time. This means that

executing six tasks will take approximately 20% longer than executing five tasks.

- 141 -

Chapter 7

CONCLUSIONS AND FUTURE WORK

7.1 Thesis Conclusions

This thesis has presented an MPSoC framework that is specific to a synchronous

dataflow computing model intended for stream-oriented applications. Chapter Three

specifies the architectural features of the MPSoC framework that are fixed, and the

features of the MPSoC that are implementation specific. In Chapter Four, an analytical

model was developed to model the MPSoC framework with the purpose of determining

the processing pipeline period considering the effects of global memory contention for a

particular allocation of tasks to a particular number of processors. The analytical model

was then used as part of a cost function that can be used for optimization algorithms

developed in Chapter Five, to determine a good solution to the MPSoC framework for a

particular application. Three variations of Chaotic Simulated Annealing algorithms were

proposed as the combinatorial optimization technique to be used for finding a good

solution, and the characteristics of these algorithms were compared. Finally, Chapter Six

describes the experimental implementation of the MPSoC framework that was developed

for the purposes of verifying the analytical method, and to examine the characteristics of

the MPSoC framework.

The experiments of Chapter Six demonstrate characteristics of the MPSoC

framework architecture. The experimental results demonstrate that the computationally

intensive program performs better than the memory intensive program due to reduced

global memory contention. Amdahl’s law specifies that, as the number of processors

An MPSoC Framework Chapter 7: Conclusions

- 142 -

increases in a parallel processing system, the total execution time asymptotically

approaches the time it takes to execute the portion of the program that is not

parallelizable [Amda67]. The experimental results show that using the synchronous

dataflow model of computing results in the global memory access time being portion of

the program that is not parallelizable, and therefore, as the number of processors increase,

the execution time will asymptotically approach the cumulative global memory access

time of the processors. However, even in the case of the memory intensive program, the

experimental results show that the task parallelization achieved through pipelining results

in performance improvements for multiple processors. In general, most real-world

applications will have a mixture of computationally intensive tasks and memory intensive

tasks. The pipelining of tasks achieved with the MPSoC for stream-oriented applications

structured in a synchronous dataflow graph will result in parallelization of computations

in both types of tasks.

The experimental results in Chapter Six also demonstrate the benefits of the

analytical method proposed in Chapter Four over a model that does not consider the

memory contention at all (the ideal case), and a model that considers only saturation of

the communication channel by comparing the predicted results with the measured results

taken from the MPSoC experimental implementation. This can be seen most clearly in

Fig. 6-2. Since the analytical model is validated by comparison to measured results, there

can be confidence in using the analytical model as a cost function to explore many

different possible MPSoC implementations through combinatorial optimization

techniques. Simulated annealing and variations of chaotic simulated annealing

combinatorial optimization techniques are applied to the task allocation problem and

An MPSoC Framework Chapter 7: Conclusions

- 143 -

compared to each other in Chapter Five. The experiments in this chapter demonstrate the

differences in the combinatorial optimization techniques. Analysis in the time domain

(section 5.5.1) demonstrates that the chaotic simulated annealing algorithms jump to

initial good solutions faster than the simulated annealing algorithm, but then have a larger

variance in the solutions compared to the simulated annealing algorithm due to the

broader search space. Analysis in the frequency domain (section 5.5.2) demonstrates that

both the simulated annealing and chaotic simulated annealing algorithms are fractional

Brownian processes, meaning that the solutions move towards improving solutions as

more iterations are applied.

The main benefit of the proposed MPSoC framework is that the design space for

multiprocessing systems targeting stream-oriented applications is significantly reduced.

This means that the complexity of developing MPSoC can be reduced, resulting in faster

development times, and ultimately faster time-to-market for MPSoCs developed using the

proposed framework. This is achieved through the defined hardware and software

architectural features that are beneficial to all applications within the stream-oriented

application class, so that the design time can be spent on features that are application

specific. The proposed chaotic simulated annealing optimization techniques, using the

MPSoC analytical model as a cost function, add to the benefits of the fixed architectural

features to automate task mapping and scheduling, which further reduces the number of

design decisions that need to be made to develop an application specific MPSoC for

stream oriented applications.

An MPSoC Framework Chapter 7: Conclusions

- 144 -

7.2 Recommendations for Future Work

There are many potential future research topics that could expand on the work in

this thesis. A few of the areas for potential future work are identified in this section with

the intention of highlighting the areas that would benefit from continued research.

An area that would benefit from future research is the memory arbitration method

of the memory controller in the MPSoC framework. The memory controller developed in

this thesis uses a polling method to cycle between each of the processors as described in

section 3.1.1.4. The analytical model also assumes the polling method for memory

arbitration. A possible improvement to the polling memory arbitration scheme is to use

an interrupt based memory arbitration. This would require changes to the framework and

the analytical model, but could result in reduced idle time for processors in the system.

Additionally, differing priorities could also be associated with tasks accessing global

memory, with access given to higher priority tasks over lower priority tasks. Prioritizing

tasks would require memory controller and task controller coordination, which would add

additional complexity to the MPSoC framework and analytical model, but could result in

better overall performance.

Another area of research expanding on this thesis is to consider dynamic

scheduling of tasks, rather than the hybrid scheduling discussed in section 3.1.3. A

dynamic scheduler would require more processing power to determine the tasks to be

executed on each processor during runtime; however, this would have the benefit of

being able to better adapt to varying task execution times. In an ideal case, a dynamic

scheduler could make an assessment of the system at run time through optimization

An MPSoC Framework Chapter 7: Conclusions

- 145 -

similar to the combinatorial optimization proposed in this thesis. However, the difficulties

of running this optimization in real-time is that the analytical model and optimization

techniques would have to be simplified such that a result could be obtained in a very

short period of time. The optimization technique and the analytical model proposed in

this thesis are complex and as a result require a significant amount of processing. The

complexity has the benefit of accuracy in the model, but at the cost of greater

computation times, such that it is beneficial to run at design time, but not practical for

run-time optimization. Therefore, a dynamic task scheduler would have to use a

simplified model of the system and optimization method in order to properly assess the

system in real-time.

Areas of research related to the analytical model described in Chapter Four could

be to consider variable task execution times for each of the tasks, rather than assuming

the task variability is minimal. Task variability could occur due to executions of different

branches within each of the tasks, or due to the use of local cache memories. The task

variability would add some complexity to the analytical model, but would result in more

accurate modeling of tasks that have significant execution time variability. Additionally,

research into how the analytical model could consider non-uniform distribution of global

memory accesses within each task, could be useful in modeling tasks where the memory

accesses are distributed unevenly.

Research into alternative combinatorial optimization algorithms applied to the

task allocation problem could be useful to compare the chaotic simulated annealing

algorithms proposed in Chapter Five to alternate techniques, such as particle swarm

An MPSoC Framework Chapter 7: Conclusions

- 146 -

optimization, genetic optimization, as well as other combinatorial optimization

techniques. These could potentially result in combinatorial optimization techniques that

can find a good solution to the task allocation problem in a shorter period of time.

The areas of future work mentioned above are just a few of the many possible

research topics that could spin off from the work in this thesis to further expand on the

research into MPSoC frameworks. In general, this is an important area of research at the

current time because computing technology has become more easily adaptable in both

hardware and software, and the number of embedded applications has expanded at an

exponential rate over recent years. This means that the potential MPSoC applications, and

the technology to implement these applications, are now at a point where general purpose

microprocessing systems are no longer competitive for many embedded systems, and

application specific MPSoCs will likely become more and more prevalent. Frameworks

for these MPSoCs then become important to reduce the development time and cost

associated with the customization of hardware and software specific to applications.

7.3 Thesis Contributions

This thesis makes several contributions to new knowledge in the area of

multiprocessing systems-on-chip. Below is a list of these contributions.

1. An MPSoC framework was proposed that was defined by four major parts: (1)

the targeted class of applications, (2) the hardware and software architectural

features, (3) a detailed model for analysis of the MPSoC, and (4) a method for

design of the MPSoC (in this case automated optimization of the system using

CSA). The definition of what constitutes an MPSoC framework is in itself a

An MPSoC Framework Chapter 7: Conclusions

- 147 -

contribution to the MPSoC field of study. Other proposed MPSoC, or MPSoC

frameworks (as described in Section 2.4) only address one or two of these four

parts, but they are never addressed as a whole, when in reality they are all very

closely related to each other. The first two parts are related to the performance

of the MPSoC system, and the last two parts are related to the design method

of the framework. A good MPSoC framework should address both the

performance of the proposed system, and the feasibility of the design. If a

proposed MPSoC framework has good performance, but the development

effort for an individual application is too large, then it will not likely to be

practical for use. Similarly, if an MPSoC framework can be implemented

quickly for a particular application, but it does not have good performance,

then it is also not likely to be useful in practice. By demonstrating how all of

these four parts fit together, and the demonstrating the importance of

considering all of these parts as a whole, a template for comparison of MPSoC

frameworks has been developed. That is, other MPSoC frameworks developed

in the future could be defined and compared by the class of applications

targeted, the architectural features of the MPSoC framework, analytical

models used to estimate system performance, and a proposed design

methodology.

2. Architectural features of MPSoC framework were developed to specifically

target stream-oriented applications. These features were implemented in

VHDL modules that could be used as the starting point for all

implementations of the MPSoC framework. Many of these modules could also

An MPSoC Framework Chapter 7: Conclusions

- 148 -

be used as components for other MPSoC architectures that do not strictly fit

into the MPSoC defined in this thesis.

3. An analytical method based on discrete time Markov chains was developed to

analyze potential implementations of the MPSoC framework. This allows the

system designer to compare different configurations of the MPSoC to

determine the optimal configuration of the MPSoC before implementation.

The analytical model could also be used as the starting point for models for

other MPSoC architectures, by modifying features of the model to match the

features of the processing architecture. The description of the analytical model

in Chapter 4 provides the explanation of the features of the model, which

allows for the model to be adapted for either slight changes in the MPSoC

architecture, or major differences, because the features of the model are linked

to features of the MPSoC architecture. The analytical model was implemented

in Matlab scripts and in the C programming language. These implementations

of the analytical method can easily be modified for other implementations of

the MPSoC framework, by changing only the input parameters, or can be used

as the base platform for implementations of analytical models for other

MPSoC architectures.

4. A novel hybrid pipeline scheduling technique was developed and described in

Section 3.1.3. This pipeline scheduling depends on design-time (static)

scheduling of tasks, but then allows the number of pipeline stages to vary

according to the tasks that are available for execution, to minimize the idle

time of each individual processor. This hybrid pipelining method is specific to

An MPSoC Framework Chapter 7: Conclusions

- 149 -

the synchronous data flow model of computing and the global shared data

memory architecture of the proposed MPSoC framework.

5. Application specific features of the MPSoC were developed for the

experimental application. This includes application specific VHDL modules,

implementation of the MicroBlaze processors, software written in C code for

the processors within the MPSoC. While this work is specific to the

experimental implementation of the MPSoC framework, it can be used as a

model on how to implement the MPSoC framework. Some of the features of

the MPSoC implementation that are not defined in the MPSoC, but could be

useful for reuse are the peripheral interfaces between the MicroBlaze

processors and the VHDL modules (task controller and memory controller).

The implementation of the peripheral interfaces includes hardware modules

and software drivers that could easily be modified to be interfaces from the

MicroBlaze processors to other types of hardware modules. Another module

that could be useful in other MPSoC systems is the Snoopy module (described

in 3.2.7). This module was used to measure system performance of the

experimental MPSoC implementation, and would be useful for other MPSoC

implementations to obtain similar system performance metrics.

6. Algorithms were developed in Chapter 5 for the purpose of automated

optimization of task allocation. A SA and three CSA variations were

developed and implemented in the C programming language. These

implementations of the algorithms can be modified with little effort for task

allocation problems for different implementations of the MPSoC framework

An MPSoC Framework Chapter 7: Conclusions

- 150 -

by changing only input parameters. Alternatively, these programs can

contribute to research using SA or CSA for entirely different applications by

serving as the base code, requiring only changes to the functions that are

specific to the perturbations for the task allocation problem.

7. This thesis demonstrated the benefits of using power density spectrum

analysis to evaluate the perturbation used in SA and CSA algorithms in

section 5.5.2. SA and CSA algorithms depend on the use of a perturbation that

makes only a small change between the current solution and the previous

solution. The chosen perturbation for a problem is specific to the nature of the

problem itself. This is especially significant for combinatorial optimization

problems, where it may not be obvious on how significant a change in the

solution is made by a particular perturbation. Analysis of the results of a SA

or CSA combinatorial optimization algorithms in the frequency domain can

measure the degree of correlation between successive solutions in the

algorithms by measuring the slope of the power density spectrum, which can

be used as a measure to determine the effectiveness of a chosen perturbation

for a problem. This can be used for many different types of SA and CSA

applications to evaluate and compare different types of perturbations for a

given problem.

- 151 -

REFERENCES

[Amda67] G. Amdahl, “Validity of the Single Processor Approach to Achieving Large

Scale Computing Capabilities” AFIPS Conf. Proc., vol. 30, pp. 483-485, Apr

1967.

[BaGa99] S. Bakshi and D. Gajski, “Partitioning and Pipelining for Performance-

Constrained Hardware/Software Systems,” IEEE Transactions on Very Large

Scale Integration (VLSI) Systems, vol. 7, no. 4, pp. 419-432, Dec 1999.

[BaGo05] J. Barros and L. Gomes, Models of Computation for Embedded Systems. The

Industrial Information Technology Handbook, Chapter 83, 2005.

[BeBB08] S. Ben Othman, A.K. Ben Salem, and S. Ben Saoud, “MPSoC design of RT

Control Applications based on FPGA SoftCore Processors”, 15
th

 IEEE

International Conference on Electronics, Circuits, and Systems, pp.404-409,

Sept. 2008.

[BeBe91] A. Benveniste and G. Berry, “The synchronous approach to reactive and
real-time systems,” Proceedings of the IEEE, vol. 79, pp. 1270–1282, 1991.

[BeRo08] A. Benoit and Y. Robert, “Mapping pipeline skeletons onto heterogeneous

platforms,” J. Parallel Distrib. Comput., 68(6), pp.790–808, 2008.

[BeTs93] D. Bertsimas and J. Tsitsiklis, “Simulated Annealing,” Statistical Science, vol.

8, no. 1, pp. 10-15, 1993.

[Bhan75] D. P. Bhandarkar, “Analysis of memory interference in multiprocessors,” IEEE

Trans. Comp, vol. C-24, no. 9, Sept 1975.

[ChAi95] L. Chen and K. Aihara, “Chaotic Simulated Annealing by a Neural Network

Model with Transient Chaos,” Neural Networks, vol. 8, no. 6, pp. 915-930,

1995.

[ChAi97] L. Chen and K. Aihara, “Combinatorial Optimization by Chaotic Dynamics,”

IEEE Conference on Computational Cybernetics and Simulations, vol. 3, pp.

2921-2926, 1997.

[ChDo08] G. Chen and Z.Y. Dong, “On the Ergodicity of the Markov Chain Associated

with a Chaotic Simulated Annealing Algorithm,” IEEE Congress on

Evolutionary Computation, pp. 1124-1127, 2008.

[ChVe02] K.S. Chatha and R. Vemuri, “Hardware-software partitioning and pipelined

scheduling of transformative applications,” IEEE Transactions on Very Large

Scale Integration (VLSI) Systems. vol. 10, no. 3, pp. 193-208, Jun. 2002.

An MPSoC Framework References

- 152 -

[CoFA10] D. Cook, K. Ferens, and A.S. Alfa, “A Model for Analysis of Memory

Contention in a Stream-Oriented Shared Memory Multiprocessor System,”

Unpublished.

[CoFW10] D. Cook, K. Ferens, and W. Kinsner, “Application of Chaotic Simulated

Annealing in the Optimization of Task Allocation in a Multiprocessing

System,” Unpublished.

[CoHJ07] J. Cong, G. Han, and W. Jiang, “Synthesis of an Application-Specific Soft

Multiprocessor System,” Proc. 2007 ACM/SIGDA 15th International

Symposium of FPGA, pp.99-107, 2007.

[DaSe96] S.K. Das and S.K. Sen, “Analysis of memory Interference in Buffered

Multiprocessor Systems in Presence of Hot Spots and Favorite Memories,”

Proceedings of the 10
th

 International Parallel Processing Symposium, pp.281-

285, Apr 1996.

[DAMF06] P.G. Del Valle, D. Atienza, I. Magan, J.G. Flores, E.A. Perez, J.M. Mendias,

L. Benini, G. De Micheli, “A Complete Multi-Processor System-on-Chip

FPGA-Based Emulation Framework,” 2006 IFIP International Conference on

Very Large Scale Integration, pp.140-145, 2006.

[EPKD97] P. Eles, Z. Peng, K. Kuchcinski, and A. Dobboli, “System level

hardware/software partitioning based on simulated annealing and tabu search,”

Design Automat. Embedded Syst., vol. 2, no. 1, pp. 5-32, Jan. 1997.

[FLPS10] F. Ferrandi, P.L. Lanzi, C. Pilato, D. Sciuto, and A. Tumeo, “Ant Colony

Heuristic for Mapping and Scheduling Tasks and Communications on

Heterogeneous Embedded Systems,” IEEE Transactions on Computer-Aided

Design of Integrated Circuits and Systems, vol. 29, no. 6, pp. 911-924, Jun.

2010.

[Flyn72] M. Flynn, “Some Computer Organizations and Their Effectiveness,” IEEE

Trans. Comput., vol C-21, no.9, pp. 948-960, Sept 1972.

[Fost95] I. Foster, Designing and Building Parallel Programs: Concepts and Tools for

Parallel Software Engineering. Reading, MA: Addison-Wesley, 1995.

[GeSz92] L. Georgiadis and W. Szpankowski, “Stability of token passing rings,”

Queueing Syst. Theory Appl, vol. 11, no. 1-2, pp. 7-33, Jul 1992.

[GuAK10] S. Gupta, G. Agarwal, and V. Kumar, “Task Scheduling in Multiprocessor

System using Genetic Algorithm,” International Conference on Machine

Learning and Computing, pp.267-271, 2010.

[Haja88] B. Hajak, “Cooling Schedules for Optimal Annealing,” Math. Oper. Res., vol.

13, pp. 311-329, 1988.

An MPSoC Framework References

- 153 -

[HaLe97] S. Ha and E.A. Lee, “Compile-time Scheduling of Dynamic Constructs in

Dataflow Program Graphs,” IEEE Transactions on Computers. Vol. 46, Issue 7,

pp. 768-778, July 1997.

[Hare87] D. Harel, “Statecharts: a visual formalism for complex systems,” Science of

Computer Programming, vol. 8, pp. 231–274, 1987.

[Hopf82] J.J. Hopfield, “Neurons with Graded Response have Collected Computational

Properties like those of Two-State Neurons,” Proc. Nat. Academy Sci. USA, vol.

79, pp. 2554-2558, Apr. 1982.

[HSSA10] M. Houshmand, E. Soleymanpour, H. Salami, M. Amerian, and H. Deldari,

“Efficient Scheduling of Task Graphs to Multiprocessors Using a Combination

of Modified Simulated Annealing and List Based Scheduling,” 3
rd

 International

Symposium on Intelligent Information Technology and Security Informatics,

pp.350-354, 2010.

[Hu61] T.C. Hu, “Parallel Sequencing and Assembly Line Problems,” Operations

Research, vol.9, no.6, pp.841-848, 1961.

[IsMa76] D.L. Isaacson and R.W. Madsen, Markov Chains Theory and Applications,

N.Y.: Wiley, 1976.

[JaPa08] H. Javad and S. Parameswaran, “Synthesis of Heterogeneous Pipelined

Multiprocessor Systems using ILP: JPEG Case Study,” Proc. of 6th

IEEE/ACM/IFIP International Conf. on Hardware/Software Codesign and

System Synthesis, pp.1-6, 2008.

[JoLi96] L.K. John and Y. Liu, “Performance Model for a Prioritized Multiple-Bus

Multiprocessor System,” IEEE Transactions on Computers, vol. 45, no. 5,

pp.580-588, May 1996.

[KaLi01] I.H. Kazi and D.J. Lilja, ”Coarse-Grained Thread Pipelining: A Speculative

Parallel Execution Model for Shared-Memory Multiprocessors,” IEEE

Transactions on Parallel and Distributed Systems, vol. 12, Issue 9, pp. 952-966,

Sept 2001.

[KEGS09] V.V. Kindratenko, J.J. Enos, S. Guochun, M.T. Showerman, G.W. Arnold,

J.E. Stone, J.C. Philips, and H. Wen-mei, “GPU clusters for high-performance

computing,” International Conference on Cluster Computing and Workshops,

pp.1-8, 2009.

[KFHM08] A. Kumar, S. Fernando, Y. Ha, B. Mesman, and H. Corporaal,

“Multiprocessor Systems Synthesis for Multiple Use-Cases of Multiple

Applications on FPGA” ACM Transactions on Design Automation of Electronic

Systems, vol.13, no.3, article 40, July 2008.

An MPSoC Framework References

- 154 -

[KiGV83] S. Kirkpatrick, C.D. Gelat, and M.P. Vecchi, “Optimization by Simulated

Annealing,” Science, vol. 220, pp. 671-680, 1983.

[Kins10] W. Kinsner, Fractal and Chaos Engineering. Lecture Notes. Winnipeg, MB:

Dept. Electrical and Computer Eng., Univ. Manitoba, 2010.

[Klei75] L. Kleinrock, Queueing Systems. Volume 1:Theory, N.Y.: Wiley, 1975.

[Lee88a] E.A. Lee, “Recurrences, Iteration, and Conditionals in Statically Scheduled

Block Diagram Languages,” VLSI Signal Processing III, IEEE Press, 1988.

[Lee88b] E.A. Lee, “Programmable DSP architectures. I,” IEEE ASSP Magazine, Vol.5,

Issue 4, pp.4-19, 1988.

[Lee89] E.A. Lee, “Programmable DSP architectures. II,” IEEE ASSP Magazine, Vol.6,

Issue 1, pp.4-14, 1989.

[Lee91] E.A. Lee, “Consistency in dataflow graphs,” IEEE Transactions on Parallel and

Distributed Systems, vol. 2, issue 2, pp. 223–235, April 1991.

[LeMe87] E.A. Lee and D.G. Messerschmitt, “Synchronous Data Flow,” Proceedings of

the IEEE. 75(9):1235-1245, September 1987.

[LePa95] E.A. Lee and T.M. Parks, “Dataflow Process Networks,” Proc. of the IEEE.

Vol.83, Issue 5, pp.773-779, May 1995.

[LeSa98] E.A. Lee and A. Sangiovanni-Vincentelli, “A framework for comparing models

of computation,” IEEE Transactions on Computer-Aided Design of Integrated

Circuits and Systems. vol. 17, issue 12, pp. 1217-1229, Dec. 1998.

[LeSe92] D. Lee and B. Sengupta, “An approximate analysis of a cyclic server queue

with limited service and reservations,” Queueing Syst. Theory Appl, vol. 11, no.

1-2, pp. 153-178, Jul 1992.

[LiHs90] F. Lin and C. Hsu, “Task assignment scheduling by simulated annealing,” IEEE

Region 10 Conference on Computer and Communication System, vol.1, pp.279-

283, 1990.

[LOCX05] T. Lv, I.B. Ozer, S.T. Chakradhar, J. Xu, W. Wolf, and J. Henkel, “A

Methodology for Architectural Design of Multimedia Multiprocessor SoCs,”

IEEE Design and Test of Computers, vol.22, issue 1, pp.18-26, 2005.

[LuDM09] G. Luo-feng, Z. Duo-li, and G. Mung-Lun, “Performance Evaluation of

Cluster-Based Homogeneous Multiprocessor System-on-Chip using FPGA

Device,” 4
th

 International Conference on Embedded and Multimedia

Computing, pp.1-4, 2009.

An MPSoC Framework References

- 155 -

[MBCG82] M.A. Marsan, G. Balbo, G. Conte, and F. Gregoretti, “Modeling Bus

Contention and Memory Interference in a Multiprocessor System,” IEEE

Transactions on Computers, vol. C-32, no. 1, pp. 60-72, Jan 1983.

[MaAi02] K. Masuda and E. Aiyoshi, “Solution to Combinatorial Problems by Using

Chaotic Global Optimization Method on a Simplex,” Proc. of the 41
st
 SICE

Annual Conference, vol. 2, pp. 1313-1318, 2002.

[Meal55] G.H.A. Mealy, “Method for synthesizing sequential circuits,” Bell System

Technical Journal, vol. 34, pp. 1045–1079, 1955.

[MiHu04] J. Mingjun and T. Huanwen, “Application of Chaos in Simulated Annealling,”

Chaos, Solutions and Fractals, vol. 21, no. 4, pp. 931-944, Aug. 2004.

[Moor56] E.F. Moore, Gedanken-Experiments on Sequential Machines, Automata

Studies, Princeton University Press, New Jersey, 1956.

[MuAM87] T.N. Mudge, H.B. Al-Sadoun, and B.A. Makrucki, “Memory-Interference

Model for Multiprocessors based on Semi-Markov Processes,” IEEE

Proceedings on Computers and Digital Techniques, vol. 134, issue 4, pp. 203-

214, July 1987.

[Nade88] M. Naderi, “Modelling and performance evaluation of multiprocessors,

organizations with multi-memory units,” SIGARCH Comput. Archit. News, vol.

16, no. 5, pp. 35-51, Dec 1988.

[NaDS92] A.K. Nanda, D. DeGroot, and D.L. Stenger, “Scheduling directed task graphs

on multiprocessors using simulated annealing,” Proceedings of the 12
th

International Conference on Distributed Computing Systems, pp.20-27, 1992.

[Nels95] R. Nelson, Probability, Stochastic Processes, and Queueing Theory, N.Y.:

Springer-Verlag, 1995.

[PaMi98] J.M. Paul and M.H. Mickle, “Multiprocessor Shared Memory Access and

Rewards,” Journal of the Franklin Institute, vol. 335, Issue 4, pp. 629-641, May

1998.

[Quin04] M. Quinn, Parallel Programming in C with MPI and OpenMP. 1
st
 Ed., NY:

McGraw-Hill, 2004.

[Reis85] W. Reisig, Petri Nets: An Introduction, Springer-Verlag, New York, 1985.

[ReVa99] G.L. Reijns and J.C. van Gemund, “Analysis of a Shared-Memory

Multiprocessor via a Novel Queuing Model,” J. Syst. Archit.(Netherlands), vol.

45, issue 14, pp.1189-1193, July 1999.

An MPSoC Framework References

- 156 -

[RGBM08] M. Ruggiero, A. Guerri, D. Bertozzi, M. Milano, and L. Benini, “A fast and

accurate technique for mapping parallel applications on stream-oriented MPSoC

Platforms with communication awareness,” International Journal of Parallel

Programming. vol. 36, issue 1, pp. 3-36, 2008.

[Rose71] M. Rosenblatt, Markov Processes. Structure and Asymptotic Behavior, N.Y.:

Springer-Verlag, 1971.

[RSJK05] K. Ravindran, N. Satish, Y. Jin, and K. Keutzer, “An FPGA-based soft

multiprocessor system for IPV4 packet forwarding”, International Conference

on Field Programmable Logic and Applications, pp.487-492, Aug. 2005.

[SeDe79] A.S. Sethi and N. Deo, “Interference in Multiprocessor Systems with Localized

Memory Access Probabilities,” IEEE Transactions on Computers, vol. C-28,

no. 2, pp. 157-163, Feb 1979.

[ShKi96] D. Shaw and W. Kinsner, “Chaotic Simulated Annealing in Multilayer

Feedforward Networks,” Canadian Conference on Electrical and Computer

Engineering, vol. 1, pp. 265-269, 1996.

[ShPS09] R. Shanmugapriya , S. Padmavathi, and S.M. Shalinie, “Contention Awareness

in Task Scheduling Using Tabu Search,” IEEE International Advance

Computing Conference, pp.272-277, 2009.

[SLOW07] J. Schlessman, M. Lodato, B. Ozer, and W. Wolf, “Heterogeneous MPSoC

Architectures for Embedded Computer Vision,” 2007 IEEE Conference on

Multimedia and Expo, pp.1870-1873, 2007.

[Taka88] H. Takagi, “Queuing analysis of polling models,” ACM Comput. Surv, vol. 20,

no. 1, pp. 5-28, Mar 1988.

[TaMu86] H. Takagi and M. Murata, “Queueing analysis of nonpreemptive reservation

priority discipline,” ACM SIGMETRICS '86/PERFORMANCE '86, vol. 14, no.

1, pp. 237-244, May 1986.

[TBCP09] A. Tumeo, M. Branca, L. Camerini, C. Pilato, P.L. Lanzi, F. Ferrandi, and D.

Sciuto, “Mapping Pipelined Applications onto Heterogeneous Embedded

Systems: A Bayesian Optimization Algorithm Based Approach,” Proceedings

of the 7th IEEE/ACM international conference on Hardware/software codesign

and system synthesis, pp.443-452, 2009.

[VaAa87] P.J.M. van Laarhoven and E.H.L. Aarts, Simulated Annealing: Theory and

Applications. Eindhoven, The Netherlands: D. Reidel Publishing Company,

1987.

An MPSoC Framework References

- 157 -

[VaAL92] P.J.M. Van Laarhoven, E.H.L. Aarts, and J.K. Lenstra, “Job Shop Scheduling

by Simulated Annealing,” Operations Research, vol. 40, no.1, pp. 113-125,

1992.

[VeKi83] M.P. Vecchi, and S. Kirkpatrick, “Global Wiring by Simulated Annealing,”

IEEE Transactions on Computer-Aided Design, vol. 2, no. 4, Oct. 1983.

[VFMA09] S. Vakili, S.M. Fakhraie, S. Mohammadi, and A. Ahmadi, “Particle Swarm

Optimization for Run-Time Task Decomposition and Scheduling in Evolvable

MPSoC,” International Conference on Computer Engineering and Technology,

vol.2, pp.28-32, 2009.

[WaSm98] L. Wang and K. Smith, “On Chaotic Simulated Annealing,” IEEE

Transactions on Neural Networks, vol. 9, no. 4, pp. 716-718, July 1998.

[WaTi00] L. Wang and F. Tian, “Noisy Chaotic Neural Networks for Solving

Combinatorial Optimization Problems,” Proc. of the IEEE-INNS-ENNS

International Joint Conference on Neural Networks, vol. 4, pp. 37-40, 2000.

[WaZi05] X. Wang and S.G. Ziavras, “A Framework for Dynamic Resource Assignment

and Scheduling on Reconfigurable Mixed-Mode On-Chip Multiprocessors”,

2005 IEEE International Conference on Field-Programmable Technology,

pp.51-58, 2005.

[WiCL97] T. Wiangtong, P. Cheung, and W. Luk, “Comparing three heuristic search

methods for functional partitioning in hardware-software codesign," Design

Automat. Embedded Syst., vol. 2, no. 1, pp. 5-32, Jan. 1997.

[WoJM08] W. Wolf, A.A. Jerraya, and G. Martin, “Multiprocessor System-on-Chip

(MPSoC) Technology,” IEEE Transactions on Computer-Aided Design of

Integrated Circuits and Systems, vol.27, no.10, Oct. 2008.

[WuPe04] B. Wu and C. Peng, “System-on-Chip Design with Dataflow Architecture,”

Proceeding of the 8
th

 international conference on Computer Supported

Cooperative Work in Design, vol.2, pp.712-716, 2004.

[Xili05] Xilinx Inc., EDK Base System Builder (BSB) support for XUPV2P Board, Xilinx

University Program Presentation, 2005.

[Xili06] Xilinx Inc., On-Chip Peripheral Bus V2.0 with OPB Arbiter(V1.10C). DS401,

Aug 2006.

[Xili07] Xilinx Inc., Virtex-II Pro and Virtex-II Pro X Platform FPGAs: Complete Data

Sheet. DS083 V4.7, Nov 2007.

[Xili08a] Xilinx Inc., Xilinx University Program Virtex-II Pro Development System –

Hardware Reference Manual. UG069 V1.1, Apr 2008.

An MPSoC Framework References

- 158 -

[Xili08b] Xilinx Inc., MicroBlaze Processor Reference Guide. UG081 V9.0, 2008.

[Xili08c] Xilinx Inc., ISE 10.1 Quick Start Tutorial, 2008.

[Xili08d] Xilinx Inc., ISE Design Suite 10.1Release Notes and Installation Guide, 2008.

[Xili08e] Xilinx Inc., Embedded System Tools Reference Manual – Embedded

Development Kit- EDK 10.1, Service Pack 3, 2008.

[YaHa09] H. Yang and S. Ha, “Pipelined Data Parallel Task Mapping/Scheduling

Technique for MPSoC,” Design, Automation & Test in Europe Conference &

Exhibition 2009, pp.69-74, 2009.

[ZhSh07] L. Zhou and S. Shi-Xin, “A Genetic Scheduling Algorithm Based on

Knowledge for Multiprocessor System,” International Conference on

Communications, Circuits and Systems, pp.900-904, 2007.

- 159 -

APPENDIX A

A brief overview of the development flow for the experimental implementation of

the MPSoC framework using the Xilinx Virtex-II Pro FPGA, the XUPV2P development

board, and the Xilinx development tools is given in this appendix. The associated design

files can be found in the attached CD-ROM in the “MPSoC Experimental

Implementation” directory.

A.1. Xilinx Tool Development Flow

Two main development tools were used for the development of the experimental

implementation of the MPSoC system. These tools are the Xilinx ISE version 10.1.03

[Xili08c] [Xili08d], and the Xilinx EDK version 10.1.03 [Xili08e]. The Xilinx ISE is the

main development tool for Xilinx FPGA development. In this tool, the target Xilinx

device is chosen, and the hardware design is described using VHDL. This tool

synthesizes the hardware design, and then implements the design with translation,

mapping, and place and routing. A programming bitstream file is then generated, and the

FPGA can then be programmed through a JTAG connection. VHDL module is created

for each hardware component within the design, except for the processors, which are

created using the Xilinx EDK tool. The hardware modules in this design are:

1. CLK_DIVIDE_I – This is a hardware module to divide the input frequency

for the crystal oscillator on the XUPV2P board from 100 MHz down to 10

MHz, for the global memory controller. The Microblaze processors used the

100 MHz clock, and the global memory controller uses the 10 MHz clock.

An MPSoC Framework Appendix A

- 160 -

2. MEM_CNTL_I – This is the memory controller hardware module. This is the

interface between the global memory and the processors as described in

section 3.2.4.

3. GLB_MEM_I – This is the global memory. For the experimental

implementation the global memory was made up of internal block RAMs

within the Xilinx Virtex-II Pro FPGA. The size of the global memory used is

16 kB as described in section 3.2.6.

4. TASK_CONTROL_I – This is the task controller module, which is

responsible for the scheduling of the tasks for each of the processors. This

implementation is described in section 3.2.2.

5. SNOOPY_I – This is the snoopy hardware module that monitors the operation

time of each task and collects data for the purposes of analysis. This module is

described in section 3.2.7.

6. Inst_Multiprocs – This is the hardware block that implements all of the

processors within the MPSoC. This block is generated using the Xilinx EDK

tool, as described later in this appendix.

Two screenshots of the Xilinx ISE tool are shown below in Fig. A - 1 and Fig. A -

2. The first screenshot shows the ISE tool with the design summary page open, and the

second screenshot shows the ISE tool with one of the VHDL modules open. These

screenshots are shown to give a general idea of the development environment of the

Xilinx ISE tool.

An MPSoC Framework Appendix A

- 161 -

Fig. A - 1. A Screenshot of the design summary page within the Xilinx ISE 10.1.03 tool

Fig. A - 2. A screenshot of a VHDL module Open within the Xilinx ISE 10.1.03 tool

An MPSoC Framework Appendix A

- 162 -

The processors within the MPSoC experimental implementation are Microblaze

processors (version 6.0). These are implemented using the Xilinx EDK (Embedded

Development Kit) tool version 10.1.03. This development tool allows for Xilinx

supported IP (intellectual property) blocks to be implemented into a single hardware

module that can then be interfaced to other hardware modules in the ISE tool. The Xilinx

EDK allows for multiple processors to be implemented within a single hardware block,

and allows each processor to be customized through the addition of peripherals and/or

processor features (such as pipelined instructions, floating point unit, etc.). Experiments

were conducted with 1, 2, 3, and 4 processors within the EDK generated hardware block.

Processor 1 was the head processor, and it had additional peripherals to allow for a serial

port connection. This allowed data to be written to a serial port, which was connected to a

RS-232 driver chip on the XUPV2P board, which was then interfaced to a PC to display

the output results. Several custom peripherals were created to interface with the task

controller (as described in 3.2.3), memory controller (as described in 3.2.5), and snoopy

hardware block (as described in 3.2.8). The connection of peripherals to processors, and

the routing of internal peripheral buses are done through the EDK tool GUI. Three

screenshots of the EDK tool are shown below. Fig. A - 3 shows the GUI used to connect

peripherals to particular internal processor buses. Fig. A - 4 shows the automatically

generated block diagram within the EDK for the four processor case. This shows the

processors, their internal memory, and peripherals, and how they are connected. Fig. A -

5 shows the EDK with a software application file open. These screenshots are shown to

give a general idea of the development environment for the EDK tool.

An MPSoC Framework Appendix A

- 163 -

Fig. A - 3. A screenshot of the peripheral interface GUI within the Xilinx EDK tool.

Fig. A - 4. A screenshot of the four Microblaze processor block diagram generated by the Xilinx EDK tool.

An MPSoC Framework Appendix A

- 164 -

Fig. A - 5. A screenshot of the Xilinx EDK tool with a software application for one of the processors open.

The hardware and software build files are created by the EDK tool and then the

ISE tool uses these to generate the overall bitstream to be loaded into the Virtex-II Pro

FPGA. The application software for each of the processors is written in the CD

programming language. In addition to the application code, peripheral drivers for the

custom peripherals are also written in C.

A.2. Simulation of the MPSoC Framework Implementation

The MPSoC framework implementation is a complex digital design, which would

be very difficult to implement successfully without the possibility of individual

component simulation. The Xilinx ISE tool has a built-in simulation tool that allows test

bench files to be generated that act as stimulus to each of the hardware modules. This

An MPSoC Framework Appendix A

- 165 -

allows the functionality of each of the hardware modules to be verified through timing

diagram simulations. Components can then be interfaced to each other and simulated at

higher levels. Without the ability to simulate at a low level, the design would be too

complex to effectively debug any issues within the design. Fig. A - 6 shows a test bench

file for the task scheduler module. This is organized in a timing diagram view that is

editable to force simulation inputs as desired for simulation.

Fig. A - 6. A screenshot of a simulation test bench for the task scheduler module.

Fig. A - 7 shows a simulation run with the test bench that shows the output values

given the stimulus defined in the test bench file. This simulation can be used to view

output signals as well as signals internal to the hardware module, to allow for effective

An MPSoC Framework Appendix A

- 166 -

debugging. The simulated output can then be compared to expected values to determine if

the VHDL module is behaving as expected.

Fig. A - 7. A screenshot of a simulation of the task scheduler hardware module.

A.3. Xilinx University Program Virtex-II Pro Development Board

The Xilinx University Program Virtex-II Pro (XUPV2P) development board was

used to implement the MPSoC experimental implementation. Fig. A - 8 shows a picture

of the XUPV2P development board taken from [Xili05]. This picture labels many of the

features available on the XUPV2P development board. For the MPSoC experimental

implementation, the key features used were the Virtex-II Pro FPGA, the USB connection

for loading the FPGA configuration via JTAG, and the RS-232 serial port, which was

used to output data to a PC for viewing program metrics.

An MPSoC Framework Appendix A

- 167 -

Fig. A - 8. Xilinx University Program Virtex-II Pro Development Board from [Xili05]

A.4. Experimental Setup

Development of the MPSoC experimental implementation was as described in the

previous sections of this appendix. The test setup for running the experiments is as

described below. Configuration bitstreams developed for the FPGA were downloaded

using the Xilinx ISE tool through a USB connection. The reset signal for the FPGA was

mapped to one of the switches on the XUPV2P board, so a hardware reset could be done

at any time to restart the running of the application. The head processor was used to

communicate results. This was done through communication over the RS-232 serial port

An MPSoC Framework Appendix A

- 168 -

at a baud rate of 9600 bps, which then connected to a PC. The output was viewed using

the Microsoft HyperTerminal program (version 5.1). Fig. A - 9 shows a high level block

diagram of the test setup connections. Fig. A - 10 shows a screenshot of the output sent

by the head processor within the FPGA and captured by the HyperTerminal program over

the RS-232 serial connection.

Fig. A - 9. Block diagram of MPSoC experimental test setup.

Fig. A - 10. Screenshot of serial output received by HyperTerminal running on the PC, with data sent from

the XUPV2P board.

XUPV2P

Development

Board

PC running

Windows XP

USB Connection

for FPGA

Configuration

RS-232 serial port

connection for

program output

- 169 -

APPENDIX B

A brief description of the implementation of the MPSoC framework analytical

model and optimization algorithm experiments is given in this appendix.

B.1. Matlab Implementation of the Analytical Model

The analytical model for the MPSoC framework described in Chapter 4 was first

implemented as a script to be run in Matlab. The benefit of using Matlab is that many of

the matrix operations required for the analytical model are built-in operations in Matlab.

The Matlab script ran for a single window within a pipelined processing period (such as

the example shown in Fig. 4-4). While the Matlab had the benefit of many built-in

functions to allow for fast implementation, because it is a scripting language, it is

inherently slower than a complied program. Running a single window within a pipeline

period could take several minutes, and then this would need to be repeated for each

window in a pipeline period to properly analyze a given MPSoC framework

implementation. Since the simulated annealing optimization algorithms (as described in

Chapter 5) require many MPSoC framework implementations to be analyzed, the Matlab

script would take days to run the optimization algorithms. The associated analytical

model Matlab files can be found in the attached CD-ROM in the “Analytical Model”

directory.

B.2. Implementation of the Analytical Model and Optimization

Algorithm in the C Programming Language

The simulated annealing and chaotic simulated annealing algorithms described in

Chapter 5 require analysis of many MPSoC framework implementations using the

An MPSoC Framework Appendix B

- 170 -

analytical method proposed in Chapter 4. The Matlab scripts described in the previous

section are too slow to run the optimization algorithms in a reasonable amount of time.

Therefore, the analytical method was implemented in the C programming language. This

required writing code for many of the matrix operations that are inherently built into

Matlab, but had the benefit of much faster running time. A program was written for each

of the simulated annealing and chaotic simulated annealing programs in the C

programming language, and then compiled, using the publically available GNU C

compiler. The programs were compiled and run remotely on the University of Manitoba

IST machines (cc01.cc.umanitoba.ca, cc02.cc.umanitoba.ca, cc03.cc.umanitoba.ca, or

cc04.cc.umanitoba.ca). Fig. B - 1 shows a screenshot of the output from one of the

chaotic simulated annealing algorithms (in this case run with 3 processors).

 Fig. B - 1. Screenshot of output from chaotic simulated annealing program.

The associated analytical model Matlab and C code files can be found in the

attached CD-ROM in the “Chaotic Simulated Annealing” directory.

