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ABSTRACT

Differentiation of wheat classes and rapid measurement of main constituents (e.g.,

protein, starch, oil content, and moisture content) in wheat are important challenges to the

grain industry. In this study, NIR reflectance and absorbance values of hyperspectral

images of wheat samples were used for identifying the Canadian wheat classes at same

and different moisture levels and for predicting protein and oil content of wheat. Images

of wheat were obtained using a NIR hyperspectral imaging system. Seventy five

normalized NIR mean reflectance and NIR absorbance features were extracted from the

scanned images of wheat. The extracted features were used to develop classification

models and prediction models for identifuing wheat classes; and predicting protein and

oil contents of wheat, respectively.

Classification accuracies were 100% in classifuing Canada Prairie Spring Red

(CPSR), Canada Western Extra Strong (CWES), Canada Western Hard White Spring

(CWHV/S), Canada Western Red Spring (CWRS), Canada Western Red winter

(CV/RW), and Canada V/estern Soft White Spring (CWSV/S) wheat; and > 98% for rhe

other two wheat classes (Canada Prairie Spring White (CPSW) and Canada Western

Amber Durum (CWAD)) using linear discriminant analysis (LDA) with leave-one-out

cross validation. Using quadratic discriminant analysis (QDA) with leave-one-out cross

validation, the classification accuracies were

classification accuracies of 80 - 100% and 89 - 100% were found for artificial neural

network (AI.IN) models with two different training patterns such as 60%o training - 30%

test - 10% validation (60-30-i0) and 70o/o training- 20o/o test - I0o/o validation (70-20-

10), respectively.



Classification accuracies of 100% were achieved using LDA with leave-one-out

cross validation for CWSWS wheat at 14, 16, 18, and 2Oo/o moisture levels with 75

features. And, classification accuracies of > 90%o were achieved for all wheat classes

except CWES wheat at20o/o moisture level and CWHV/S wheat at 14%;o moisture level in

LDA with leave-one-out cross validation using 75 features. Plots of the first two

canonical variables showed that protein and moisture contents of wheat could be

predicted using the NIR absorbance values of hyperspectral images. principal

components analysis (PCA) and STEPDISC procedure were used to find the top

wavelengths in wheat class identification.

A 75 feature PLSR model for predicting protein in wheat produced the best

standard error of prediction (SEP : 0.68) and a good correlation (r : 0.94) with the

measured protein in wheat. Also, the 75 feature PLSR model for predicting oil content in

wheat produced the best SEP of 0.10 and a r value of 0.83 with the measured oil content

in wheat. Results of this study showed that NIR hyperspectral imaging could be used as

an effective method for predicting protein and oil contents in wheat and identifying wheat

classes at different moisture levels.
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1. INTRODUCTION

Wheat is one of the main sources of food around the world. Wheat production and

export in Canada were 25.9 Mt and 15.1 Mt respectively, in 2004 (FAOSTAT 2006).

Production of several wheat classes while maintaining a zeto tolerance policy in insect

levels during export satisfu different types of consumers and produce maximum returns

to the farmers in Canada. Specif,rc wheat classes are used as primary ingredients for

specific products like bread, pasta, flat breads, or noodles. Each wheat class has its own

physical and chemical properties. Chemical compositions of wheat may be different for

wheat classes that are similar in appearance. Accidental mixing of wheat classes during

transportation or handling reduces the value of the lot considerably. A major challenge to

the grain industry is accurate identification and differentiation of wheat classes at various

moisture levels; and rapid measurement of the main constituents in wheat. Once wheat

classes are identified, quality analyses are done on the sample to determine the

constituents such as protein, starch, oil, and moisture content.

Wheat classes are broadly classified by their color (white or red), hardness (soft or

hard), and growing season (spring or winter). Eight important wheat classes grown in

western Canada are Canada Western Red Spring (CV/RS), Canada Prairie Spring Red

(CPSR), Canada Vy'estern Extra Strong (CWES), Canada Western Red Winter (CWRW),

Canada Prairie Spring White (CPSW), Canada Western Amber Durum (CWAD), Canada

Western Soft White Spring (CWSWS), ffid Canada Western Hard White Spring

(CwHwS) (CGC 2006a).

Various methods have been used to identifu and differentiate wheat classes. In

grain handling facilities, a visual method is used to identify and differentiate the wheat



classes. Wheat classes and varieties can be identif,red by measuring specific proteins

using polyacrylamide gel electrophoresis (PAGE) and high performance liquid

chromatography (HPLC) (CGC 2007a). In PAGE, the sample proteins are either

positively or negatively charged based on the pH of the medium and electrophoresed at

specific voltage (Rybicki and Purves 2007). The separated protein bands are further

subjected to staining and destaining processes and visualized under white illuminator

(ICC 2001). Sodium dodecyl sulfate PAGE (SDS-PAGE) helps to separate proteins

depending on their molecular weight and specific charge (Anonymous 2007a). SDS acts

as a denaturing agent, thereby changing the shape of the protein molecules by splitting

the hydrophobic linkages and imparting negative charge. A machine vision approach has

been used to distinguish two wheat classes (CWRS and CWAD), barley, oats, and rye

(Paliwal et al. 1999). Hard red spring (HRS) and hard red winter (HRVD wheat classes

have been differentiated by quantitative estimation of gliadin, one of the four major

protein components of wheat (Steinman 2007), using reversed-phase HPLC (Rp-HpLC)

(Huebner et al. 1995).

The grading and classification system of wheat in Canada is well established and

ensures the primary grade determinants such as contrasting classes, diseased kernels, etc.

to a permissible level (Fowler 2007). This system helps to preserve the commercial value

of wheat by maintaining its processing potential and assuring maximum return to the

producers (Dexter and Marchylo 2007). The development of a rapid method is necessary

to identify wheat classes that would benefit producers, grain handlers, wheat millers, and

processors (Dexter and Ma¡chylo 2007). Canadian Grain Commission (CGC) wheat

grades assure satisfactory performance in quality and milling potential and are considered



as the best wheat grades around the world (CWB 2007).Inter class identification and

intra class grading are the two important activities in wheat marketing (Williams 2006).

Kjeldahl and combustion nitrogen methods are commonly used to determine the

total nitrogen content in wheat. Conversion factors are used to find the total protein

content of various agricultural crops from the obtained total nitrogen values. Conversion

factors are 5.83, 6.25, 5.83, and 5.95 for some important crops such as barley, com,

millets, and rice, respectively. Whole wheat, geffn, and endosperm of wheat have specific

conversion factors such as 5.83, 6.31, and 5.70, respectively (FAO 2007).

Solvent extraction and gravimetric methods are used for fat content determination

in agricultural commodities (FAO 2007). Crude fat and dietary fats are determined using

a solvent extraction method with petroleum ether as solvent and a gravimetric method,

respectively. Wet protein and fat analyses are complex and time consuming procedures

that utilize hazardous chemicals and result in the sample being destroyed. There is a need

for an effective alternate method to determine the main constituents in wheat without the

drawbacks of traditional techniques.

NIR spectroscopy is used in various fields such as animal husbandry, agriculture,

and pharmaceuticals. In the agriculture sector, it helps in determining quality parameters

such as protein, moisture content, and oil content of whole (Delwiche 1998) and ground

wheat (Wang et aL.2004). NIR spectroscopy has been used to determine deoxynivalenol

(DON) mycotoxin levels in wheat (Petterson and Aberg 2003) and barley (Ruan et al.

2002) and identify waxy wheat varieties (Delwiche and Graybosch 2002). This technique

has also been used to determine four different life stages of Sitophilus oryzae (L.) (rice

weevil) at four different levels in artificially infested CWRS wheat (Paliwal et al.2004).



A PLS model was developed using the data obtained from single kernel NIR equipment

to determine both protein and moisture contents in soybean and only moisture content in

corn (Armstrong 2006).

NIR hyperspectral imaging is the combination of two important techniques such

as machine vision and NIR spectroscopy. NIR hyperspectral imaging data contain both

spatial and spectral information in the form of a hypercube with two spatial dimensions

and one spectral dimension (Lu and Chen 1998). This technique has the potential to

develop effective models to determine various quality parameters of agricultural

commodities. Good calibration results for measuring moisture and oil contents \À/ere

obtained from single kernel analysis of maize using NIR hyperspectral imaging (Cogdill

et aL.2004). This technique has been used for measuring the firmness and soluble solids

content in strawberries Qrlagata et al. 2005), detection of bruises, contaminations, and

defects in apples (Lu 2003; Mehl et a\.2004), and identification of bitter pit lesions in

apples (lrlicolai et aL.2006).

The objectives of this study were:

1. to differentiate western canadian wheat classes at same

statistical and ANN classifiers with normalized,NlR mean

as input features,

moisture level using

refl ectance intensities

2.

J.

to differentiate westem Canadian wheat classes with and without moisture effects

using statistical and ANN classifiers using NIR absorbance values as input

features, and

to develop PLSR models to predict main constituents of wheat such as protein and

oil content using NIR absorbance vaiues as input features.



2. REVIEW OF LITERATURE

Consumers always prefer good quality products. Production of high quality

products lead to marketing consistency and enhanced food safety. There are many

techniques available to ensure online quality monitoring of an agricultural product.

Standard chemical methods and various imaging techniques help to assess the quality and

safety of agricultural products. The value of end products depends on the type of raw

material, processing and storage methods used. Currently, imaging techniques are used

for online grading in certain sectors and provide an alternate method to traditional quality

measurement techniques. Some of the important imaging techniques are NIR or VisAtrIR

hyperspectral imaging, monochrome imaging, color imaging, soft X-ray imaging,

magnetic resonance imaging, X-ray computed tomography imaging, and thermal

imaging.

2.1 Advantages and drawbacks of traditional methods

The traditional methods of measuring quality of agricultural commodities have

some important advantages and drawbacks. Traditional methods are mostly direct

methods and require unskilled or partially skilled labors, minimum statistical knowledge,

handling of small amount of data, or minimum initial investment. Traditional methods are

time consuming and subjective and require hazardous chemicals, high operating cost and

destructive sample preparation. NIR hyperspectral imaging could be used as an effective

alternate method to overcome some of the drawbacks of traditional methods.



2.2 Ãdvantages and drawbacks of NIR hyperspectral imaging

NIR hyperspectral imaging is a type of NIR imaging in which images of a sample

are taken at different wavelengths of the NIR region. NIR hyperspectral imaging shares

similar advantages of NIR spectroscopy. This technique requires minimum time for

quality measurement, minimum operating cost, zero chemicals, and non destructive

sample preparation, and results more objective, comparatively accurate, and consistent.

Requirement of high initial investment, prof,rcient image and spectral data processing

knowledge, and expertise in statistical tools handling are some of the important

drawbacks of this technique.

2.3 NIR spectroscopy in the food industry

NIR spectroscopy is a modem technique and used for determining several quality

parameters in raw and processed grains, milk, meat, fish, fruits, vegetables,

confectionery, and beverages. It is also used for finding out the adulteration and

genuineness of food products. Functional, compositional, and sensory analyses of food

products could be done using NIR spectroscopy. The commonly used instruments for this

technique are monochromators (Hi0348, Jobin Yvon Inc., Edison, NJ), diode array

spectrometers (84524, Hewlett-Packard Inc., Palo Alto, CA), and filter instruments (MIR

06, Cambridge Research and Instrumentation Inc.,'Woburn, MA).Diffuse reflectance and

diffuse transmittance are the two important methods used in this technique to find the

NIR absorbance values of samples. Food absorbs NIR radiation based on the presence of

main constituents. Molecular vibrations are excited in the sample in the form of

combination bands and overtones of carbon, nitrogen, and hydrogen molecules based on

the amount of NIR absorption. NIR absorbance, reflectance, transmittance, or a



combination of these data are pre-processed using standard

(SNV-DET) and multiplicative scatter correction (MSC)

model calibration techniques such as multiple linear

components regression (PCR), and partial least squaïes

2006). NIR absorption bands are shown in Fig. 2.1.

normal variate and detrending

and processed using different

regression (MLR), principal

regression (PLSR) (Osbome
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2.3.1 Physical quality assessment of agricultural commodities using NIR

spectroscopy

Hareland (1994) developed a NIR prediction model for determining the percent

volume of flow particles in wheat flour derived from different wheat types and milling

methods. NIR reflectance spectroscopy was used in this study and percent volume of

flour particles was determined using a laser diffraction method. An NIR prediction model

was developed using a PLSR technique and 960/o of accuracy was reported for the wheat

flours in determining the percent volume of flour particles.

Identification of waxy wheat and differentiation of waxy wheat from partially

waxy and wild wheat varieties were studied using NIR spectroscopy (Delwiche and

Graybosch 2002). NIR reflectance spectra of ground wheat samples were collected using

a spectrophotometer in the NIR wavelength region of 1100 - 2499 nm at 2 nm

wavelength intervals. Iodine binding blue complex colorimetric method was used to

measure the apparent amylose content in wheat samples and the measured data were used

as a reference data set. PCA was used for developing a wheat classification model.

Spectral data were reducèd to 15 principal components and stepwise regression was

performed for the gene class separation. One-out cross validation was used for

determining the optimal number of discriminant functions. Perfect classification could

not be achieved using an NIR model because amylase contents were laid over the other

gene classes in wheat.

Delwiche and Massie (1996) used Vis/lrllR reflectance techniques to classify

single kemels of wheat. Wheat samples from three hard wheat varieties (hard white

(HWH), hard red spring (HRS), and hard red winter (HR\Ð) and two soft wheat varieties



(soft red winter (SRW) and soft white (SWH)) in U.S. were used for this srudy. A diode

array spectrometer was used for collecting the reflectance intensities at the VisÆ..lIR

wavelength region. NIR reflectance spectrophotometer was used to collect the reflectance

intensities from the NIR wavelength region of 1100 -2498 nm. pLSR and MLR merhods

were used for model development. Model classification accuracy was > 97%o in

differentiating red and white wheat classes using a seven factor PLSR model. For a five

wavelength MLR model, classification accuracy of

differentiating red and white wheat classes.

Cocchi et al. (2006) studied the feasibility of NIR spectroscopy to measure the

degree of adulteration in durum wheat flour which was adulterated with common bread

wheat flour. PLSR and wavelet interface to linear modeling analysis (WILMA) were

used for developing models using raw data and data pretreated using SNV as input. A

spectrophotometer was used for acquiring the spectra in the wavelength region of 400 -
2498 nm at 2 rm intervals. Spectral pretreatment helped to reduce the root mean square

error for calibration (RMSEC) (: 0.2903), root mean square error of cross validation

(RMSECV) (: 0.7215), and root mean square error of prediction (RMSEP) (: 0.3974)

values of PLSR model developed with 8 latent variables. V/ILMA-PLS model with 60

coefÍicients and 7 latent variables had the minimum RMSEP value of 0.447 in

quantifying the degree of adulteration in wheat flour.

Dowell (2000) used NIR spectroscopy to differentiate the vitreous and non

vitreous kernels of durum wheat. A diode array spectrometer was used to collect the

absorbance values from samples in the wavelength region of 400 - 1700 nm at 5 nm

intervals. Two groups of wheat kernels (easily distinguishable group and easily non
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distinguishable group) were formed and a two class PLSR model was developed for

differentiating the wheat kernels based on vitreousness. Improved performance in

identifying vitreous wheat kernels was achieved by increasing the discriminant value

from 0.5 to 0.7 in the PLSR model. Use of a subjective reference method (Bureau of

Appeals and Review method) in identiffing vitreousness of wheat was the main cause for

the performance reduction in the PLSR model. When a discriminant value of 0.5 was

used, approximately 80% of vitreous and ljYo of non vitreous kemels were classified

correctly. NIR spectroscopy could be used in quantifying the durum wheat vitreousness

because of the difference in NIR absorption by protein and starch contents of wheat.

Wang et al. (2002) studied the feasibility of VisAIIR spectroscopy to detect dark

hard vitreous (DHV) wheat kernels from non dark hard vitreous wheat (NDHV) kernels.

Diode array spectrometer was used to collect the reflectance intensities from wheat kernel

samples in the wavelength region of 400 - L700 nm. This wavelength region was

segmented into three portions such as 500 - 750 nm (visible region), 750 - 1700 nm

Q'{IR region), and 500 - 1700 nm (VisA{IR region) for calibration purposes. A two class

PLSR model was developed for DHV wheat detection. They found dorsal side kernel

orientation and selection of specific wavelength regions had significant impact in

detecting DHV wheat. Bleached kernels had lower classification accuracies (91.i -
97.1%) than non bleached kernels (97 .5 - rc\%) in the two class PLSR model. Negative

beta coefficients at the wavelength region of 550 - 650 nm were responsible for wheat

kemel color. They found wavelengths in Vis/l'trIR region or NIR region alone were more

suitable than in visible region for the detection of DHV wheat kernels from NDHV wheat

kernels.
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Wang et al. (2002) studied the use of NIR spectroscopy to differentiate sound

soybean seeds from damaged soybean seeds. Six categories of soybean seeds (sound

kernels, weather damaged kernels, frost damaged kernels, sprout damaged kernels, heat

damaged kernels, and mold damaged kernels) were taken for this study. A diode anay

NIR spectrometer was used to collect the NIR reflectance intensities of samples in the

wavelength region of 400 - 1700 nm at 5 nm intervals. Two class and six class PLSR

models were developed using commercial PLS software. Two class and six class ANN

models were developed using back propagation neural network (BPNN) architecture to

differentiate healthy soybean kemels from damaged soybean kernels. Two class PLSR

model at NIR wavelength (750 - 1690 nm) and full wavelength (490 - i690 nm) regions

gave more accurate results for the calibration set of samples (> 99.3%) as well as the

validation set of samples (> 99.5%) in discriminating the damaged kernels from the

sound kernels than that of the PLSR model at the visible wavelength region (490 -750

nm) (> 98.4% for the calibration set, ) 97.8% for the validation set). Six class PLSR

model at full wavelength region (490 - 1690 nm) produced good results in classifying

sound and damaged soybean seeds for both the calibration (average classification

accuracy :75.2o/o) and the validation (average classification accuracy:74.5yo) set of

samples.

NIR reflectance spectroscopy was used to identify heat damaged wheat kernels

from sound kernels (Wang et al. 2001). Heat damage of wheat was measured using the

mixogram and the measured data were used as the reference data set. Gelatinization,

pasting, and set back profiles of wheat were measured using a rapid viscosity analyzer.

Diode array spectrometer was used for measuring the VisAiIR reflectance intensities
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from heat damaged and undamaged kernel samples in the wavelength region of 400 -
1700 nm. PLSR and two wavelength regression methods were used for model

development to discriminate heat damaged wheat kernels from undamaged wheat

kemels. Heat damaged wheat kernels were darker and more yellow in color than

undamaged wheat kernels. A seven factor PLSR model produced a classification

accuracy of l00o/o at the NIR wavelength region (750 - 1700 nm) for classifuing heat

damaged wheat kemels from undamaged wheat kernels. A two wavelength regression

model (985 nm and 1050 nm) produced the best results for the calibration set

(classification accuracy : 97.5Yo) and the test set (classification accuracy : 96.8ofi of

wheat samples. NIR spectroscopy could be effectively used in identifying heat damaged

wheat kernels from healthy wheat kernels.

2.3.2. Chemical qualify assessment of agricultural commodities using NIR

spectroscopy

Protein content in wheat is affected by various environmental, agricultural, and

genetic factors (Fig. 2.2).
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Fig.2. 2 Factors affecting protein content in wheat.
Source: Anonymous (2007c).

NIR reflectance spectroscopy was used for measuring the protein content in single

kernels of wheat (Delwiche 1998). NIR wavelengths regions of 1100 - 2498 nm and

1100 - 1798 nm were used for scanning samples at 2 nm intervals and modeling

purposes, respectively. Protein content of single kernels of wheat was determined using a

combustion method and used as the reference data set. PLSR and MLR models were

developed for protein prediction in single kemels of wheat. In this study, 3180 wheat

kemels were taken (10 kernels each from 318 wheat samples) from two types of hard

wheat and soft wheat varieties. The calibration, validation, and test sets of samples were

developed for protein modeling. In addition to that, red and white wheat varieties were

pooled together, and pooled RED and WHITE calibration, validation, and test sets were

formed. Finally, all red and white wheat varieties were pooled and the three sets were

Çharðcterlstlcs
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formed. In order to improve the PLSR model performance, MSC was used as a data

preprocessing tool. In overall error analysis, errors related to reference method, scan

repeatability, and chemometric studies were found and added together. The relationship

between kernel size and wheat protein could not be developed. MSC effectively reduced

the spectral variabilify. NIR wavelength region of 1100 - 1400 nm was found effective

for protein content prediction analysis. In error analysis, chemometric error was equal to

0.4IL% protein. Although stepwise MLRmodels produced the test set standard error of

prediction (SEP) values of 0.1 - 0.2% protein more than that of PLSR models, stepwise

MLR was recommended for protein prediction because of its simplicity. It was

recommended to include wheat samples from more than one crop year in calibration to

improve the prediction accuracy of the models.

Wesley et al. (2001) developed an NIR model to measure the gliadin and glutenin

contents of wheat. Gliadin and glutenin contents are directly related to the quatity of

wheat protein. PLSR with one-out cross validation and curve fitting methods were used

to predict gliadin and glutenin of wheat from NIR spectral data. Size exclusion HPLC

was used for measuring protein content in wheat flour samples and used as the reference

data set. Preprocessing of NIR spectral data was done using SNV-DET for scatter

correction. It was observed that the performance of PLSR method was better than that of

curve fitting method in measuring glutenin and gliadin contents of wheat. PLSR method

had coefficient of determination (R2) values of 0.83 and 0.78 for glutenin and gliadin

contents, respectively, whereas curve f,rtting method had R2 values of 0.71 and 0.46 for

glutenin and gliadin contents, respectively. Standard error or cross validation (SECV)

values for glutenin and gliadin contents using PLSR method were 0.38 and 0.43,
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respectively, whereas SEP values of curve fitting method for glutenin and gliadin

contents were 0.65 and 1.02, respectively. The curve fitting method had the potential to

rank the samples qualitatively as high, medium, and low protein samples based on the

presence of glutenin and gliadin contents.

Ruan et aI. (2002) developed an ANN model to measure the mycotoxin DON in

barley using NIR spectroscopy. Barley samples from different crop years and different

levels of mold damage were used for this study. DON concentration values of barley

samples were measured using gas chromatography / mass spectrometry and used as the

reference data set. Wavelengths of 400 - 2500 nm at 2 nm intervals was used to collect

the absorbance values from bulk barley samples. Barley samples of different DON levels

were clearly discriminated in NIR wavelength region of 1500 - 1800 nm. ANN models

were developed using three layer BPNN architecture. Raw NIR absorbance values were

used as input for ANN model development. Effect of wavelength increments and

wavelength ranges were tested for the improvement in DON prediction in barley.

Wavelengths in the visible region (400 - 700 nm) and short wavelength NIR region (700

- 1100 nm) found to be crucial in predicting the DON levels in barley. ANN models in

the visible region (400 - 700 nm) and the short wavelength NIR region (700 - i i00 m)

produced the best R2 values of 0.921 and 0.912, respectivelyt and produced the minimum

SEP values of 3.351 and 3.706, respectively. ANN models with NIR absorbance values

from 400 - 2500 nm at 2 nm and 4 nm intervals produced the best R2 values of 0.933 and

0.923, respectivelyt and produced'the minimum SEp values of 3.097 and. 3.431,

respectively.
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Feasibility study to measure the protein in wheat kemels using NIR transmittance

spectroscopy was done by Delwiche (1995). Five samples each from six wheat classes of

different protein levels were used for this study. Ninety eight wheat kernels were

randomly chosen in each sample. Protein content in each test sample was found using

nitrogen and food protein determinator; and Kjeldal method, used as the reference data

set. NIR transmittance values were taken in the wavelength region of 740 - I 139 nm and

converted into absorbance using logt6 (1/T). NIR absorbance features in the wavelength

region of 850 - 1050 nm were used for PLSR model development. Four sample sets were

used for model calibration and one set for model validation. Three types of input data

such as i) no change in log (1/T) value (absorbance value), ii) Multiplicative scatter

correction (MSC) done in absorbance values, and iii) MSC done in second derivative of

log (1/T) value, were used. It was observed that model performance was improved using

the second and third data pretreatment methods.

Wang et al. (2004) developed a linear calibration model for determining moisture

in ground wheat using NIR spectroscopy. NIR spectral data were collected in the

wavelength region of 850 - 2000 nm at 5 nm intervals. NIR reflectance data were then

converted into absolute NIR absorbance using A = log (liR). Linear calibration models

were developed for the averaged NIR spectra and the f,rrst derivatives of averaged NIR

spectra. Models were also developed using MSC and SNV preprocessed NIR absorbance

data set. It was observed that the first derivatives of averaged NIR spectra gave better

results in linear calibration modeling ç*: O.9lZ, RMSEC :0.239). Baseline elimination

and resolution of overlapping peaks were found helpful in improving the performance of

the model developed from the first derivatives of NIR absorbance values. RÍ and RMSEC
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values of the model developed from the averaged NIR spectra were 0]93 and 0.54i,

respectively.

An NIR model was developed to measure the starch structure and the degree of

processing in cereal products produced from twin screw extrusion cooking (Guy et al.

1996). Non invasive measurements of hot melt in the extruder barrel were predicted using

NIR spectroscopy. NIR reflectance intensities were collected in the wavelength region of

1 100 - 2500 nm at 4 wn intervals. NIR models were developed using forward stepwise

regression method to predict the specific mechanical energy (SME) using the principal

component scores. Principal components were identified for the NIR reflectance

intensities in the wavelength region of 1300 - 1800 nm using PCA. The first two

principal components could explain > 95yo of variation of the NIR reflectance intensities.

The damage of hydrogen bonds between hydroxyl groups of the starch molecules at the

time of extrusion cooking affected the performance of the models.

Quality parameters of wheat flour were determined using NIR models (Miralbes

2004)- AACC standard methods were used for measuring the quality parameters such as

moisture content, protein, wet gluten, dry gluten, and ash content in wheat. NIR

transmittance data were collected in the wavelength region of 850 - 1048.2 nm at 2 nm

intervals. SNV-DET and modified PLSR we¡e used for correcting the spectral variations

of the NIR transmittance data and developing the calibration models, respectivety. NIR

absorbance data were treated with SNV-DET and first derivative processing methods,

and used as input for PLSR model development. The PLSR model produced the best R2

values of 0.99 for the validation sets to predict protein and moisture contents in wheat

flour' It also produced the minimum SEP of 0.14 and 0.15 in predicting protein and
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moisture contents of wheat flour, respectively. NIR transmittance spectroscopy could be

effective in controlling the product quality online in milling industries.

Petterson and Aberg (2003) determined DON mycotoxin in wheat kernels using

NIR transmittance spectroscopy. NIR transmittance spectroscopy was used to study the

level of ergosterol and DON in wheat. Insect and mite infestations were also studied from

NIR transmittance spectra of wheat. Wavelength region of 570 - 1100 nm was used for

acquiring NIR transmittance intensities. Gas chromatography (GC) and high performance

liquid chromatography (HPLC) were used to measure the DON levels of wheat and these

data were used as the reference data set. PLSR models were developed for determining

DON levels of wheat. Eleven to thirteen PLS factors were extracted based on the input

data derived from three different wavelength regions (normal (850 - 1100 nm), extended

(570 - 1100 nm), and reduced (670 - 1100 nm)) for model development. pLSR models

were developed for fungal infected wheat samples grown in Norway and Austria

separately. Eleven factor PLSR model for Nordic sample produced the best r value of

0.984 and SECV of 38lpg DON per kg of wheat at a reduced wavelength region of 670 -
1100 nm' NIR transmittance spectroscopy could be a potential technique to measure

DON and another mycotoxin, ergosterol in cereal crops.

2.3.3 Quality assessment of agricultural commodities using NIR spectroscopy

Delwiche (2003) identified scab and mold damage in wheat kemels using NIR

reflectance spectroscopy. Mold-affected and scab-damaged kemels in HRS wheat were

separated from sound kernels using visual inspection. A Zeiss MCS5I I diode anay

spectrometer was used to collect NIR absorbance values in the wavelength region of 940

- 1700 nm. Models were developed using the NIR absorbance values of 1002 - 1704 nm
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at 6 nm interval as input. Two types of kernel orientation techniques (crease down

placement and random placement of kernels) were used. LDA with leave-one-out cross

validation, soft independent modeling of class analogy (SIMCA), and pCA were used for

statistical purposes. Cross validation accuracies of 89 - 98% and test set accuracies of

90.5 - 98.4% were observed in the two way classification of sound kernels and damaged

kemels (scab damaged + mold damaged) using LDA. LDA with l, 2, 7, and 3 principal

component scores produced the cross validation and the test set accuracies of 89.3yo and

86.4yo, respectively. Cross validation and test set accuracies ranged from 85.3 - 86j%

and 83.6 - 85.\yo, respectively, in2,4, and 6 factor SIMCA-PLS models. Classif,rcation

accuracies of a test set of scab damaged, mold damaged, and sound kernels with random

kemel orientation were equal to or less than that of precise kernel orientation.

Baker et al. (1999) developed a NIR model to differentiate the kemels infested by

larval and pupal stages of rice weevil (Sitophilus oryzae (L.)) which was parasitizedby a

mite, Anisopteromalus calandrae (Howard), from uninfested kernels and unparasitized

kemels of wheat. Uninfested kernels, kernels infested with weevil larvae, kernels infested

with weevil pupae, kernels containing parasitoid larvae, and kernels containing parasitoid

pupae were used for this study. A diode array NIR spectrometer was used to collect NIR

absorbance values of wheat kernels in the wavelength region of 400 - 1700 nm. A pLSR

model was developed using thirteen PLS factors to detect the rice weevil infestation in

wheat kernels. Thirteen factor PLSR model produced the best r value of 0.90 and the

minimum SECV value of 0.15. NIR spectroscopy was effective in this study because of

the different levels of NIR absorption due to the compositional difference in chitin and

cuticle contents of insects. Misclassifications occurred in the kernels with small

20



parasitoid or weevil that absorbed a small amount of NIR radiation. NIR spectroscopy

was effective in differentiating the larval and pupal stages of insect or parasitoid in wheat

kernels as they absorbed a threshold amount of NIR radiation.

Feasibility of NIR spectroscopy in detecting the insect fragments in wheat flour

was studied by Perez-Mendoza et al. (2003). A diode anay NIR spectrometer was used

for collecting the diffuse reflectance intensities in the wavelength region of 550 - 1700

nm from wheat flour samples. These intensities were then converted into NIR absorbance

values. AOAC 972.32 floatation method was used as the reference method to find the

insect fragments in wheat flour samples. A PLSR model was developed using ten PLS

extracted factors to predict the insect fragment levels in wheat flour. Six wavelengths

(890, i120, 1220,7370, 1530, and 1630 nm) in the NIR region were identified as the

wavelengths related to the excitation of the first, second, and third overtones of CH

groups. Some of the main constituents of insect fragments such as chitin and lipid were

responsible for CH group absorption of NIR radiation. The AOAC floatation method had

high accuracy in predicting the insect fragments in wheat flour samples and took 2 h for

determination. Classification accuracy of 833Yo was reported in classifying samples with

0, 35, and 7 5 insect fragments as < 130 fragment sample per 50 g flour class; and of 90%o

for the samples with 150, and 300 insect fragments as > 130 fragment sample per 50 g

flour class. The NIR spectroscopy was not as sensitive as the floatation method in

determining the US-Food and Drug Administration (US-FDA) level of insect fragments

(75 insect fragments per 50 g of flour) in wheat flour. But there was a possibility for NIR

and mid-IR spectroscopy to detect the US-FDA permissible levels of insect fragments in

wheat flour with future advancements in the f,reld of spectroscopy.
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Wattg et al. (2004) used NIR spectroscopy to classify fungal damaged kemels

from healthy soybean kernels. PLSR and ANN methods were used for classification

purposes. Healthy soybean kernels and soybean kernels damaged by Phomopsis,

Cercospora kikuchii, soybean mosaic virus (SMV), and downy mildew were used. A

diode array spectrometer was used for collecting the NIR reflectance intensities in the

wavelength region of 400 - 1700 nm from single kernels of soybean. NIR reflectance

intensities were interpolated to 5 nm intervals. Five hundred healtþ seeds and eight

hundred fungal damaged seeds were used for this study. A two class model (healthy vs.

damaged) and five class model (healthy vs. four types of damage) were developed using

PLSR and ANN methods and NIR reflectance intensities in the wavelength region of 490

- 1690 nm. A ten factor PLSR model produced classification accuracies of > 99%o for the

calibration and validation sets in classifying healthy and damaged soybean kernels. A

five class ANN model produced the highest average classification accuracy of 93.5Yo for

the calibration set and 94.6Yo for the validation set in the wavelength region of 490 -
1690 nm in classifying healthy and four fungal damaged soybean kernels separately.

Detection of the mycotoxin fumonisin in corn using the reflectance and

transmittance spectroscopy at VisAtrIR wavelengths was studied by Dowell et al. (2002).

Two different spectrometers, one for the transmittance mode (Fiber optic spectrometer,

Model 52000, Ocean Optics, Dunedin, FL) and the other for the reflectance mode QrIIR

spectrometer, Perten Instruments, Springfield, IL), were used for collecting the

transmittance intensities from 550 - 1050 nm and reflectance intensities from 400 - i700

nm from single kernels of com. Total firmonisin in single kernel of corn was found using

a fluorometer and was used as the reference data set. A PLSR method was used to
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develop a calibration model to detect the fumonisin content (< 10 ppm and > 10 ppm) in

corn. Mahalanobis distance method was used for grouping the kernels based on

fumonisin levels. Classification errors were 0o/o and < 7.2o/o inidentifying I - 10 ppm and

> i00 ppm of fumonisin, respectively in corn. Misclassification of kernels was more for

corn with 10 - 100 ppm of fumonisin (error rate : 23.5 - 73.0%). Wavelengths of 650,

71'0,935, and 990 nm were identified as the important transmittance wavelengths using

PLS beta coefficients. Also, 590,995,1200, and 1410 nm wavelengths were identif,red by

the PLS beta coeffrcients that these wavelengths were important reflectance wavelengths

for classification. Fumonisin in corn kernels did not absorb a considerable amount of NIR

radiation. Changes in chemical compositions of corn due to fumonisin levels might

influence the NIR absorption levels. The possibility of the detection of fumonisin at a

minimum FDA allowed threshold level (2 - 4 ppm) in corn using NIR transmittance or

refl ectance spectroscopy is questionable.

Pearson et al. (2001) studied the detection of the mycotoxin aflatoxin in com

using Vis/lrllR transmittance and reflectance spectroscopy. Corn samples were obtained

at four different aflatoxin levels using black light examination on bright greenish-yellow

fluorescence (BGYF) characteristics. A silicon photo diode array fiber optic spectrometer

was used for collecting the transmittance spectra of single corn kernel samples in the

wavelength region of 500 - 950 nm. Diode array NIR spectrometer was used for

collecting the reflectance intensities of corn in the wavelength region of 550 - 1700 nm.

Nineteen point Savitzky-Golay second order filtering operation was used for smoothing

the transmittance spectra. Mahalanobis distance method was used for grouping the corn

samples of three different aflatoxin levels: 1, 10, and 100 ppb. A PLSR method was used
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for model development to detect aflatoxin in corn. Aflatoxin in single kernels of corn was

found using USDA-FGIS aflatest affinity chromatography and used as the reference data

set. Transmittance and reflectance data produced good classification accuracies with the

error rates of < 5Yo in identiSring 0, 1 - 10, > 100 ppb aflatoxin in com using

discriminant analysis. Error rates were of 52.2 - 56.5% and 65.2 - 87.0% for

transmittance and reflectance data, respectively, in classifying 10 - 100 ppb aflatoxin in

corn using discriminant analysis. Germ up and germ down kemel orientation improved

the classification accuracies of l0 - 100 ppb aflatoxin in corn to 284%o using six factor

PLSR model developed from NIR reflectance intensities. VisA{IR spectroscopy could be

used to detect aflatoxin in corn.

Maghirang et al. (2003) studied the detection of live or dead rice weevil at its

pupal and larval stage in single kernels of wheat using NIR spectroscopy. Sound kernels,

kernels with pupae, large larvae, medium sized larvae, and small larvae of rice weevil

were selected using x-ray imaging. Spectral data of all the above kernel samples with live

and dead internal insects were collected and analyzed. A single kernel characterization

system (SKCS) was used to collect the spectral data of individual kemels in the

wavelength region of 400 - 1700 nm at 5 nm intervals. A PLSR method was used to

develop a model at the wavelength region of 950 - 1690 nm for internal insect detection

in wheat. PLS beta coefficients identified ten important wavelengths (990, 1135, 1210,

1250, 1370, 1395, 1425, 1510, 1610, and 1670 nm) responsible for detecting internal

insects in wheat. Classification accuracies were > 90yo for detecting wheat samples with

pupae or large larvae of rice weevil using 5 - 7 factor PLSR models.
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2.4 Quality assessment of agricultural commodities using NIR hyperspectral

imaging

Cogdill et al. (2004) developed NIR models for predicting moisture and oil

contents in maize using PLSR, PCR and genetic algorithm with MLR. They used optical

absorbance data as input for these models. Optical absorbance values were obtained from

standardized NIR transmittance intensities collected in the wavelength region of 750 -
1090 nm at 5 nm intervals. These NIR transmittance data were standardized using an opal

glass standard. Data pretreatments were done using SNV, DET, and MSC. An eleven

factor PLSR model produced the minimum SECV of I.20% m.c. and relative

performance determinant (RPD) of 2.74 for moisture prediction in maize using optical

NIR absorbance data after the removal of outliers. A nine factor PLSR model produced

the minimum SECV value of 1.38% oil and RPD value of 1.45 for oil content prediction

in maize using SNV pretreated, outlier removed, optical NIR absorbance data.

Wang and Paliwal (2005) studied the performance of a morphological shrinking

algorithm and simulated ellipsoidal surface fitting in reducing the spectral variability of

different parts of the wheat kernel due to its curved surface. The difference in the

reflectance levels of the curved surfaces of the agricultural products was the main cause

for spectral variability. Hyperspectral images of four western Canadian wheat classes

were acquired in the wavelength region of 1100 - 1600 nm at 30 evenly spaced slices. It

was found that a morphological sh¡inking method was more effective in correcting the

overall spectral variability than that of ellipsoidal surface fitting for all classes of wheat.

Both the methods performed well in reducing the spectral variability along the minor axis
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of the endosperm of wheat kernels. Ellipsoidal surface fitting was not effective in

correcting the spectral variability along the major axis of the endosperm of wheat kernels.

Nagata et al. (2005) developed stepwise MLR models for measuring firmness and

soluble solids content (SSC) in strawbenies. NIR hyperspectral images of strawberries

were collected in the wavelength region of 650 - 1000 nm at 5 nm intervals. A three

wavelength (685, 985, and 865 nm) MLR model produced correlation of 78.60/o and SEP

of 0.350 in predicting firmness in 50%o to a full-ripe group of strawberries. Correlation of

87o/o and SEP of 0.43 were reported from five wavelength (9I5,765, 870, 695, and 860

nm) MLR model in predicting SSC in70%o to the full-ripe group of strawbenies. These

results confirmed that 615 and 980 nm wavelengths were responsible for chlorophyll and

water absorption, respectively. Carbohydrate and sugar absorptions were at the NIR

wavelength of > 800 nm.

Bruises were detected in apples using NIR hyperspectral imaging in the

wavelength region of 900 - 1700 nm (Lu 2003). NIR region of 1000 - 1340 nm produced

the best results in bruise detection in apples. Two classes of apples (Red Delicious and

Golden Delicious) were used for this study. Bruises were created in apples by mechanical

impacts. A pendulum f,rxed at I27,229, and 330 mm from the equatorial line of an apple

was used to create bruises by impact. Feature extraction from NIR hyperspectral images

\ilas done using principal components (PC) and minimum noise fraction (lvfNF)

transforms. Bruise detection accuracies were 62 - 88% for Red Delicious apples and 59 -
9l%o for Golden Delicious apples to detect old and new bruises using both the transforms.

The optimal spectral resolution and corresponding number of spectral bands were 8.6 -
17.3 nm and20 - 40, respectively.
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Mehl et al- (2004) detected surface defects and contaminations in apples using

hyperspectral imaging with a high spatial resolution of 0.5 - I nm. Several defects and

contaminations (side rots, bruises, flyspecks, scabs, molds, fungal diseases, and soil

contaminations in apples) were detected in this study. Four classes of apples (Red

Delicious, Golden Delicious, Gala, and Fuji) were used. Monochromatic images of

apples were taken in the wavelength region of 430 - 900 nm. Asymmetric and symmetric

second difference models were developed to analyze multispectral images for sorting out

good apples from the contaminated ones. Chlorophyll absorption wavelength of 685 nm

and two NIR wavelengths of 722 nm and 865 nm were found responsible for detecting

defects and contaminations in apples irrespective of their color and cultivar.

Bitter pit lesion is created in apples due to a physiological disorder. This disorder

creates brown colored lesions under the epidermis of apples. It reduces the consumption

of apples and sometimes leads to rejection of the apple lot as a whole by exporters. NIR

hyperspectral imaging was used for identifying bitter pit lesions on apples (lrtricolai et al.

2006). A discriminant PLS model with leave-one-out cross validation was developed to

find bitter pit lesions on apples and the model was further validated. PLS calibration was

done using two latent variables. Bitter pit lesions were identified in PLS predicted images

and binary images of apples. NIR hyperspectral images could detect bitter pit lesions on

apples. But, this method could not differentiate bitter pit lesions and corky tissues

developed inside apples.

Summary

There is a scope for using NIR hyperspectral imaging to classify westem

Canadian wheat classes. Moisture levels can affect identification and differentiation of
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the wheat classes using NIR absorbance values as input. Five different levels of moisture

(straight (12% and l4Yo), tough (L6%), and damp (I8%o and20%)) could be used for the

identification of wheat classes. In NIR spectroscopy, statistical and neural network

classif,rers produced good results in identifying different types of damages (Wang et al.

2002) and different types of fungal damages (Wang et al. 2004) in soybean, identifying

waxy wheat (Delwiche and Graybosch 2002), determining DON levels in barley (Ruan et

al. 2002), and detecting fumonisin levels (Dowell et al. 2002) and aflatoxin levels

(Pearson et al. 2001) in corn. Wavelength region of 960 - 1700 nm and its subset of I 100

- 1600 nm can be used for wheat class identification.

It is also observed that there is scope for predicting the protein and oil contents of

wheat using NIR hyperspectral imaging with NIR absorbance values as input. There were

no studies done in the prediction of protein and oil contents of wheat using the

reflectance or absorbance values of NIR hyperspectral imaging. This study will prove the

ability of NIR hyperspectral imaging in predicting the major constituents of wheat.

'Wavelength 
region of 960 - 1700 nm and its subset of 1100 - 1600 nm can be used for

the development of NIR prediction models. In NIR spectroscopy, PLSR was used for the

model development to determine protein (Delwiche 1998), to assess heat damage (Wang

et al. 2001), to detect live or dead internal rice weevil (Maghirang et aL.2003) in wheat.

A PLSR method is chosen in this study for developing protein and oil content prediction

models in wheat. Summary of different methods with important features used, accuracies

attained, statistical tools used, and wavelength regions and intervals used are shown in

Appendix (Tables 4.1 and 4.2).
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3. MATERIALS AND METHODS

Different materials and methods used in this NIR hyperspectral imaging study

on wheat for class identif,rcation and protein and oil content prediction are explained in

this section.

This study is divided into three segments:

l. Differentiation of eight western Canadian wheat classes at same moisture

level (Study: 1)

2. Differentiation of five westem Canadian wheat classes at five moisture levels

with and without moisture effects (Study: 2)

3. Prediction of protein and oil content in wheat for five western Canadian wheat

classes at f,rve moisture levels (Study: 3)

The major components involved in completing these studies are NIR

hyperspectral imaging system, preparation of grain samples, laboratory measurement of

protein and oil content in wheat, NIR hyperspectral images handling, and analysis of NIR

hyperspectral data.

3.1 NIR hyperspectral imaging system (Studies: 1,2, and 3)

The NIR hyperspectral imaging system used in this study was a long wavelength

NIR camera with a liquid crystal tunable filter, lens, sample stage, and light source

controlled through a Dell Optiplex GX280 Intel(R) (Dell Inc., Round Rock, TX)

computer (Fig. 1). An Indium Gallium Arsenide (InGaAs) camera (Model No. SU640-

1.7RT-D, Sensors Unlimited Inc., Princeton, NJ) was used for acquiring images at

different wavelengths in the NIR region of 960 - i700 nm. The camera could be operated
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Fig. 3.1 NIR hyperspectral imaging system.

1. Bulk wheat sample, 2. Liquid crystal tunable f,rlter (LCTF), 3. Lens, 4. NIR cameta,
5. Copy stand, 6. Illumination, and T.Dataprocessing system.

The electronically tunable, liquid crystal tunable f,rlter (LCTF) (VariSpec model

No. MIR 06, Cambridge Research and Instrumentation Inc., Wobum, MA) had 20 mm

aperture and 10 mm transmission bandwidth. This high quality interference filter helped

to rapidly select a wavelength in the NIR region without any vibration. This filter system

was attached to the camera system which ultimately helped to acquire multispectral

images with 16 bits ultra high resolution. The data acquisition board (NII pCI-1422,

National Instruments Corporation, Austin, TX) was attuned to RS-422 signals generated

from the camera system for image acquisition.

The sample \ryas illuminated by a pair of 300 W halogen bulbs (USHIO Inc.,

Chiyoda-ku, Tokyo, Japan) fitted on either side of the copy stand of the NIR imaging
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system' These halogen bulbs had the capacity to emit light in a wavelength range of 400

- 2500 nm. Halogen regenerative cycle was developed inside the bulb that helped to

prevent the blackening of bulb wall and avoid the reduction in light output (Anonymous

2007d). NIR hyperspectral images were acquired with the help of a control program

written in LabVIEW (Version 1, National Instruments Corporation, Austin, TX). Dark

current image was taken every time by blocking the entrance slit using a black board to

remove the inherent noise in the system before acquiring NIR hyperspectral images of

wheat samples. The camera was aligned to the centre wavelength of 1330 nm in the NIR

camera's usable wavelength region of 960 - 1700 nm. Dark current subtracted NIR

hyperspectral images were automatically taken and saved using the control program of

the camera. Spectral normalization was done to remove the effect of variations in

illumination at the time of image acquisition.

3.2 Preparation of grain samples

3.2.1. Grain samples for wheat class identification (Study: l)

wheat samples from eight classes, i.e., cwRS, cpsR, cwES, cwRw, cpsw,

CWAD, CWSV/S, and CWHWS were obtained from seed distributors in Manitoba and

Alberta, two major wheat producing provinces in Canada. Samples for each wheat class

were combined into a single mixed sample for each class. In Canada, wheat of one

specific class from different growing regions is not segregated and is marketed as a

composite class. The Canadian grain handling and transportation system causes the grain

of the same grade grown in various parts of Canada to mix thoroughly by the time it

reaches the terminal elevator (CWB 2007). Wheat for each class was conditioned to a
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moisture level of 11%o (wet basis). Moisture contents of wheat were determined using

ASAE 5352.2 standard method (ASAE 2003).

3.2.2 Grain samples for class differentiation with and without moisture effects; and

protein and oil content prediction in wheat (Studies: 2 and 3)

Five wheat classes, i.e., CWRS, CWES, CWRW, CWSWS, and CWHWS were

obtained from seed distributors in Manitoba and Saskatchewan. About a 10 kg composite

sample in each wheat class was conditioned to five different moisture levels (12Vq l4o/o,

160/0, l8o/o, and20o/o wet basis).

3.3 Laboratory measurement of protein and oil content in wheat (Study: 3)

3.3.1 Protein

Wheat samples for protein content were analyzed by the staff at the Norwest

Labs, Winnipeg, MB. In their lab, protein in wheat was determined by measuring total

nitrogen by combustion using AOAC off,rcial method 990.03 for four replicates per wheat

class (AOAC2003).

3.3.2 Oil content

Oil content in wheat was measured at the Canadian Wheat Board Centre for Grain

Storage Research, University of Manitoba, Winnipeg. It was determined using AACC

standard method 30-25 for three replicates per wheat class (AACC 2000). Wheat samples

were dried in hot air oven at 130oC for 19 h and ground using a mill (M-2, Seedburo

Equipment Co., Chicago, IL). Ground wheat samples (5 g each) were taken in a frlter

paper and placed inside the extraction thimble. E npty weights of the extraction beakers

\ryere measured and petroleum ether (30 ml each) was taken. Extraction thimbles and
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extraction beakers were fixed to the extractor unit and ether was allowed to circulate in

the system using condenser unit. The entire experiment was allowed to run for 6 h. Ether

passed through the extraction thimbles and extracted the oil from the sample. The oil and

solvent mixture obtained at the end were separated by evaporating the solvent. Amount of

oil collected was worked out by subtracting the empty weight of the beaker from the

weight of the beaker with oil. Crude oil content was measured using the following

formula

Weight of oil content - blank

Crude fat or ether extract, o/o : x 100

Weight of sample

3.4 NIR hyperspectral image handling (Studies: 1,2, and 3)

NIR hyperspectral images of bulk wheat samples were collected at the

equipment's usable wavelength range of 960 - 1700 nm incremented by l0 nm. The NIR

wavelength region was segmented into 75 slices, resulting in the NIR hyperspectral

image cube having 75 images (an image per slice) in it with the first image at 960 nm.

The camera was focused at a wavelength of 1330 nm. NIR reflectance intensities were

recorded at each wavelength slice of a hypercube depending on the NIR absorbance

properties of the main constituents þrotein, oil, starch, and moisture content) of wheat.

NIR reflectance intensity of a sample will be high when the sample absorbs a low amount

of NIR radiation and vice versa.
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3.4.1 NIR hyperspectral image acquisition (Study: l)

Wheat samples were prepared by randomly taking sub samples of 50 g each from

the composite class sample and placing in a petri dish of 90 mm diameter and 1l mm

depth. Three hundred NIR hyperspectral images were collected for each wheat class. In

total, T 5 x 300 x 8 (180,000) images were taken and analyzed.

3.4.2 NIR hyperspectral image cropping and feature extraction (study: 1)

Cropping at the centeÍ of the image was done to avoid pixels with poor

reflectance values along the four edges of the image. A pixel at the spatial coordinates of

190, 325 was identified as the center of the NIR hyperspectral image. An area of 200 x

200 pixels around the center pixel, i.e., 100 pixels in all four directions from the center

pixel (top, bottom, left, and right), was cropped from each image and the reflectance

value of each pixel of the cropped region at each slice of the NIR hyperspectral image

was extracted. Single median spectrum was calculated from a region of interest of a

hyperspectral image and used for developing PLS calibration models (Burger and Geladi

2006). Liu et al. (2007) used mean spectra of sub images derived from the hyperspectral

images and used them for determining SSC of oranges using PCA and line regression

methods.

Mean reflectance and normalized mean reflectance values were calculated for all

wavelength slices of the NIR hyperspectral images. The mean reflectance values were

normalized at each wavelength slice of an NIR hyperspectral image by dividing

reflectance at each slice by the maximum reflectance of all slices in an NIR hyperspectral

image. Normalized mean reflectance values at each wavelength slice of an NIR

hyperspectral image was considered as a feature for developing a model to differentiate
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wheat classes. In total, 75 features were extracted from an NIR hyperspectral image of a

bulk wheat sample. Image cropping and feature extraction were done in MATLAB

(Version 7,The Mathworks, Inc., Natick, MA).

3.4.3 Class differentiation with and without moisture effects; and protein and oil

content prediction in wheat (Studies: 2 and 3)

3.4.3.1 NIR hyperspectral image acquisition

Wheat samples were prepared by randomly taking a petri dish full of sub samples

from the composite class sample. The top surface of wheat bulk sample was made flat by

scraping in two perpendicular directions with a ruler. One hundred NIR hyperspectral

images were collected for each wheat class at each moisture level. In total, 75 x 100 x 5

" 5 (187,500) images were taken and analyzed.

3.4.3.2 NIR hyperspectral image cropping and feature extraction

Cropping at the center of the image was done to avoid pixels with poor

reflectance values along the four edges of the image. A pixel at the spatial coordinates of

190,325 was identified as the center of the NIR hyperspectral image. An area of 200 x

200 pixels around the center pixel, i.e., 100 pixels in all four directions from the center

pixel (top, bottom, left, and right), was cropped from each image and the reflectance

value of each pixel of the cropped region at each slice of the NIR hyperspectral image

was extracted.

Mean reflectance values were calculated for all wavelength slices of the NIR

hyperspectral images. Normalization of reflectance was done to avoid the variations in
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light intensity while acquiring NIR hyperspectral images. Absorbance at each wavelength

slice of an NIR hyperspectral image was calculated as:

A =log,o(1/R)

where, A is the absorbance at a wavelength slice of an NIR hyperspectral image; R is

normalized NIR reflectance at the same wavelength slice of NIR hyperspectral image. In

total,75 absorbance features were extracted from an NIR hyperspectral image of each

bulk wheat sample.

3.5 NIR hyperspectral data analysis

3.5.1 Wheat class identification (Study: 1)

3.5.1.1 NIR reflectance spectra and their slopes

For each wheat class, an average of normalized NIR mean reflectance intensities

at each wavelength slice of all NIR hyperspectral images was determined and used to plot

NIR reflectance spectra. Slopes of the normalized NIR mean reflectance spectra were

calculated as the rate of change in the normalized NIR mean reflectance intensity to the

wavelength and were plotted against the wavelength. Slopes of normalized NIR mean

reflectance intensities at different wavelengths are not the same and make the

wavelengths to distinguish clearly from each other. Mohan et al. (2005) used percent NIR

reflectance slopes and ratio of slopes as input features for classification of seven bulk

cereal grains using VisÆ.trIR reflectance intensities and reported 99.5% of classification

accuracy using linear parametric and neural network classifiers with top five slope

features identified by STEPDISC procedure in SAS and BPNN architecture in ANN. In

this study, change in trend in the average of normalized NIR mean reflectance spectra

leads to the creation of peaks and troughs in the curve.
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3.5.1.2 Class ifTcation

PROC DISCzuM (SAS 2002) was used for developing models using both LDA

and QDA with leave-one-out cross validation. Normalized NIR mean reflectance

intensities extracted from the NIR hyperspectral images of wheat samples were used as

input features to these models. PROC STEPDISC was used to identify the top 10

wavelengths that contributed mainly to the classification of wheat classes. The level of

contribution of each wavelength was identified by partial R2 and average squared

canonical correlation (ASCC) values. In STEPDISC, wavelengths with the highest level

of contribution was identified and subsequently removed from further analysis to find the

next best wavelength. This analysis was continued until the 10ú rank wavelength was

found.

The ANN model was developed using a software package NeuroShell 2 (Ward

Systems Group, Inc., Frederick, MD) to analyze the hyperspectral data. A modified-

BPNN architecture with hidden layer having three slabs with different activation

functions was used. Each slab of the hidden layer had a different activation function viz.,

Gaussian (f(x) : e-*2;, tanh (f(x) : tanh(x)), and Gaussian complement (f(x) : I - e-*2). As

these slabs had different activation functions, different features of the input data set were

created by the hidden layer to improve the performance of the ANN model. Output and

input layers had 1 and 75 neurons, respectively. Each slab of the hidden layer had,25

neurons. The output slab had logistic activation fi.rnction (f(x) : I / (l+e-*)). Input,

hidden, and output layers of ANN had learning rate, momentum, and initiat weight of 0.1,

0.1, and 0.3, respectively. ANN models for two different pafferns i.e.,60Yo training, 30%

test, and I}Yo validation sets (refened to as 60-3 0- 1 0 model) and 7 0% training, 20yo test,
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and l)yo validation sets (referred to as 70-20-10 models, respectively) were developed

and results of these models were compared. Calibration interval (events) for a test set was

fixed at 200. When the average elror was < 0.0002 and epochs were > 1000 since the

occuffence of the calculated minimum average error for training set, the training was

stopped. Also, when the number of events was > 20000 since the occurrence of the

calculated minimum average error for the test set, the training was stopped.

3.5.2 Differentiation of wheat classes with and without moisfure effects (Study: 2)

PROC DISCzuM (SAS 2002) was used for developing models using LDA and

QDA with leave-one-out cross validation. NIR absorbance features extracted from the

NIR hyperspectral images of wheat samples in the wavelength regions of 960 - 1700 nm

(75 slices) and 1100 - 1600 nm (51 slices) were used as inputs to these models. PROC

STEPDISC was used to identify the top i0 wavelengths that contributed mainly to the

classification of wheat classes at various moisture levels. The level of contribution of

each wavelength was identified by the values of partial R2 and ASCC. Classifìcation

accuracies of wheat classes were finally compared with the classification accuracies

derived from LDA and QDA using the top 7 NIR absorbance features as input.

A modified-BPNN architecture with three slabs in the hidden layer was used for

developing a 60-30-10 ANN model using the input features from 960 - 1700 nm (75

feature model), and from 1100 - 1600 nm (51 feature model). Calibration interval

(events) for a test set was flrxed at 200. When the average error was < 0.0002 and epochs

were > 1000 since the occurrence of calculated minimum average error for the training

set, the training was stopped. Also, when the number of events was > 20000 since it was

the calculated minimum average error for the test set, the training was stopped.
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Coefficient of determination (R2), mean square error (MSE), mean absolute enor (MAE),

and correlation coefÍicient (r) were found for the training, test, and validation data sets.

The top ten wavelengths were listed based on their contribution to ANN model for

classification. Critical wavelengths of NIR absorbance spectra of wheat classes were

identified using statistical and neural network classifiers with and without moisture

effects. The classification accuracies of the training, test, and validation sets of the ANN

model for wheat classes with and without moisture effects were reported.

PROC CANDISC was used for finding canonical variables using NIR absorbance

values of wheat classes at different moisture levels as input. Top two canonical variables

were plotted one against the other. The top canonical variable could explain the variation

of a major component of the input sample. The second top canonical variable that had no

correlation with the first canonical variable could explain the variation of the next major

component of the input sample. This analysis was done to confirm the results of

differentiation of wheat classes at different moisture levels.

Principal component analysis (PCA) was used to identify the wavelengths

responsible for wheat class identification. Principal component (PC) scores, factor

loadings, eigenvalues, Hotelling's T2 distances were found for the mean reflectance

intensities of NIR hyperspectral images of wheat classes at various moisture levels using

MATLAB. The top ten principal components were identified using PROC STEPDISC in

SAS. The top ten wavelengths were found based on their factor loadings for the top three

principal components (2,3, and 5).
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3.5.3 Development of protein and oil content prediction model for wheat (Study: 3)

PROC PLS (SAS 2002) was used for developing PLSR models to predict protein

and oil contents in wheat. For model validation, a test set validation method was used.

NIR absorbance features extracted from the normalized NIR mean reflectance values of

NIR hyperspectral images of wheat were used as input for PLSR models. Features from

600/o of hyperspectral images in each wheat class at each moisture level were used as the

training set, 30Yo as the test set, and l\Yo as the prediction set. Test set validation helped

to reduce the number of extracted PLS factors to a minimum level at which the extracted

factors had minimum root mean predicted error sum of squares (PRESS). The smallest

number of factors where probability value exceeded 0,I was selected for model

development. PLSR model helped to explain the percent variation of independent and

dependant variables using the extracted PLS factors. PLSR models for the prediction of

protein and oil contents were developed for 1) NIR absorbance features at the wavelength

region of 960 - 1700 nm (75 feature model) and 2) NIR absorbance features at the

wavelength region of i 000 - 1600 nm (51 feature model).

Ratio of performance to deviation (RPD) is a statistic which is defined as the ratio

of the standard deviation of measured protein or oil content to the standard error of

predicted protein or oil content of wheat. It was calculated for PLSR models predicting

protein or oil content in wheat. Measured protein or oil content with its standard

deviation and predicted protein or oil content with its standard error were plotted. Scatter

plot was prepared to show the variations in predicted protein or oil content and measured

protein or oil content for all wheat classes. Predicted values of protein and oil content of

wheat classes were grouped using Scheffe's test with a : 0.05. Scheffe's test produces
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high critical value in mean comparison and is considered as the most conservative

method (Crow 2006).

3.5.4 Overview of different classification and prediction models used in studies l, 2,

and 3

3.5.4.1 Linear discriminant analysis (LDA)

Independent and dependent variables are called as features and classes of the

model, respectively. They are expressed in measurement scale (independent variable) and

nominal scale (dependent variable). Linear relationship among the features is developed

to separate different classes. A line, plane, or hyperplane is formed based on the number

of features involved in differentiating different classes. Covariances of features are

assumed equal and the separating surfaces among classes are linear (Teknomo 2007).

3.5.4.2 Quadratic discriminant analysis (eDA)

Quadratic relationship among the features helps to separate different classes.

Covariances of features are not equal and the separating surfaces among classes are

quadratic (circle, parabola, or hyperbola) (Anonymous 2007e).

3.5.4.3 Artificial neural network (ANN)

An artificial neural network is a non-linear modeling tool, which can be used to

develop a model from the input featwes through a network of nodes in input, hidden, and

output layers to produce the output. Some of the important types of networks used in

ANN are BPNN, Kohonen self organizing map network (Kohonen), probabilistic neural

network (PNN), general regression neural network (GRNN), and group method of data
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handling network (GMDH). BPNN, a supervised type of network in which both input and

output variables contribute in training. Ward network, a modified form of BPNN, in

which the hidden layer has multiple slabs and each slab has different activation functions

was used in this study. This network is considered powerful as it forms different features

from input nodes. Precision of ANN model is improved by selecting a proper network of

input variables to explain the nature of the output variables (Neuroshell 2, Ward Systems

Group, Inc., Frederick, MD).

3.5.4.4 Canonical discriminant analysis

Canonical discriminant analysis helps to reduce the dimensions of input variables

like principal components analysis. Squared Mahalanobis distances between class means

are found and both univariate and multivariate analyses of variance are performed in this

method. Canonical variables plot helps to interpret the differences in output variables

(groups) visually. In this method, canonical variables, otherwise orthogonal variables, are

developed using linear combinations of input variables. The top most canonical variables

have the highest possible multiple conelation with the output variables. The number of

canonical variables developed is equal to the number of input variables used (Anonymous

1999a).

3.5.4.5 Partial least square regression (PLSR)

Partial least square regression model is developed using PLS factors found from

linear combinations of the input variables. PLS factors are otherwise called as

components or latent vectors. PLSR model has the capacity to explain both input and

output variations. The main goal of PLSR is to develop a model by using a minimum
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number of PLS factors to produce a minimum error in predicting the output (Anonymous

l9eeb).

3.5.4.6 Principal components analysis (PCA)

It is used to reduce the number of input variables to a minimum level for analysis

using orthogonal linear transformation. In this method, input data set is transformed to a

new coordinate system in such away that the first principal component (first coordinate)

explains the data set more effectively and attains the greatest variance. Similarly, second

principal component of the model attains the second greatest variance in explaining the

input data set. Generally, the top few principal components explain > 99yo of variations

of the input data set. The contribution of input variables in each principal component is

found from the factor loading vectors (Anonymous 2007f).
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4. RESULTS AND DISCUSSION

This section explains the results of different components of this study on wheat

for class identification and protein and oil content prediction using the NIR reflectance

and absorbance values of NIR hyperspectral imaging.

4.1 Wheat class identification (Study #: 1)

4.1.1 NIR reflectance spectra and their slopes

Normalized NIR mean reflectance spectra and their slopes of wheat classes are

shown in Figs. 2 and,3, respectively. NormaIized,NIR mean reflectance intensities at

1400 - 1650 nm wavelength region showed separated spectral lines among various wheat

classes. The slopes of NIR reflectance spectra resulted in corresponding peaks or troughs

at 1580, 1490, 1280, 1100, 16i0, and 1160 nm wavelengths. NIR absorption in different

samples produced several excitations such as CH, OH combination bands, CH, OH, NH

overtones (first, second), and CH overtone (third) (Osborne 2006). NIR reflectance

intensities were influenced by the presence of various sample contents and hence, peaks

and troughs were formed at specific wavelengths. Wavelengths related to the peaks and

troughs in the slopes plot of the normalized NIR mean reflectance intensities were similar

to the results obtained by Wang et al. (1999), Delwiche and Massie (1996), and Murray

and Williams (1987). They further reported that wavelengths at 960, 1420, 1470, and

1500 nm were related to water and protein, wavelengths at 1200, 1230,1310, 1360, 1610,

and 1700 nm were related to carbohydrate, wavelengths at 960 nm, 1060 nm, 1330 nm,

1390 nm, 1480 nm, and 1680 nm were related to kernel hardness, and wavelength at 1390

nm was related to oil content in wheat.
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Fig. 4.2 Slopes of NIR reflectance spectra of wheat classes.

4.1.2 Classification accuracies using LDA, QDA, and ANN

The normalized NIR mean reflectance intensities at each wavelength slice of NIR

hyperspectral images of bulk wheat samples were used as input for differentiating the

wheat classes. Classification accuracies of wheat classes at lL%o moisture level using

LDA and QDA (n: 300) with leave-one-out cross validation are shown in Fig. 4.3. The

classification accuracies were 100% for CPSR, CWES, CwHwS, CWRS, CWRV/, and

CWSWS wheat using LDA with leave-one-out cross validation. For CPSW and CWAD

wheat, classification accuracies were 98.67%. About l% of CPSW wheat was

misclassified as CWRS wheat.
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Fig. 4.3 Classification accuracies of wheat classes using LDA and QDA with leave-
one-out cross validation (n :300).

Classification accuracy was 99.67% for CPSR wheat using QDA with leave-one-

out cross validation. Classification accuracies of 99.61,99.33,98.33, 98.67,97.00,96.67,

and 97.33Yo were obtained for cwRV/, cwAD, cwRS, cwHws, cpsv/, cwES, and

CWSWS wheat, respectively. Classification accuracy of CWES wheat was < 97o/o.

Nearly 3% samples of CWES wheat were misclassified as CPSW wheat. In total, nearly

3o/o of samples of CWSWS wheat class were identified as all other classes of wheat

except CWES, CWHWS, and CWRS wheat class.

Table 4.i shows the top ten wavelengths determined using STEPDISC procedure

and ranked by their level of contribution to classification. The 1580 nm wavelength was

identified as the most significant wavelength with ASCC value of 0.12 and the 1160 nm
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wavelength was ranked 10 with ASCC value of 0.55. Normalized NIR mean reflectance

spectra of wheat classes had the highest peak at 1310 nm wavelength. It could be seen

from the slopes plot of normalized NIR mean reflectance spectra that the top ten

wavelenglhs were at and around the peaks or troughs of the plot. The level of

contribution of the top ten wavelengths in wheat class identification was high.

Table 4.1 Top ten wavelengths of NIR hyperspectral images of wheat classes using
STEPDISC procedure based on their contribution to classification.

No.
1

2

9

10

Wa

aJ

4

5

6

7

8

1 580
1380
960
1490
1200
1700
r280
I 100

1610
I 160

0.88
0.89
0.74
0.55
0.50
0.37
0.34
0.28
0.28
0.27

0.r2
0.24
0.31

0.37
0.43
0.4s
0.48
0.50
0.51
0.55

Osborne (2006) observed that wavelengths responsible for peaks and troughs at

wavelength regions of 960 - 1100 nm and 1420 * 1600 nm were related to NH, OH

overtones (second) and NH, OH overtones (first), respectively. Further study showed that

these wavelengths were related mostly to water and protein contents of the sample. Also,

wavelengths at 1100 - 1300 nm and 1600 - 1800 nm were related to CH first and second

overtones, respectively. Armstrong (2006) observed that 950 - 975 nm and 1400 - 1450

nm wavelength regions were associated to water absorption from the moisture content

prediction studies in soybean.

Mohan et al. (2005) reported mean classification accuracies of 89.I% and 99.1%

in classiffing seven cereal grains using a linear parametric classifier with the top two and
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five reflectance features in visible wavelength regions. Delwiche and Graybosch (2002)

reported classification accuracies of 42 - 7l% in identifying waxy wheat using linear

discriminant function with I - 10 principal component scores as input. They also reported

classification accuracies of 46 -7t% using quadratic discriminant function with 1 - l0

principal component scores as input.

Classification accuracies of wheat classes using 60-30-10 and 70-20-10 ANN

models are shown in Figs. 4.4 and 4.5, respectively. R2, MSE, MAE, and r values are

shown in Table 4.2. Training sets of 60-30-10 and 70-20-10 ANN models showed high

correlation coefficient of 0.994. For the 60-30-10 model, the validation set of CpSR

wheat had a high classification acclÍacy of 100%. For the 70-20-10 model, the

classification accuracies were 99.5yo, I00yo, and 100Yo for training, test, and validation

sets of CWSWS wheat, respectively. In the 70-20-10 ANN model, all wheat classes had

good classification accuracies of 89 - 100%. The lowest classification accuracy of 80%

was obtained for the validation set of CPSW wheat using the 60-30-10 ANN model. The

70-20-10 ANN model produced a relatively low classification accuracy of 89.26% for the

training set of CWRS wheat.

49



Table 4.2 Details of statistical parameters of 60-30-10 and 70-20-10 ANN models.

Statistical
parameters

60-30-10 A¡IN model 70-20-10 ANN model

Trainin Test Validation Train Test Validation
R2

MSE

MAE

r

0.988

0.06

0.14

0.994

0.984

0.08

0.t7
0s92

0.978

0.t2

0.19

0.989

0.989

0.05

0.13 I
0.994

0.986

0.07

0.1 55

0.993

0.989

0.05

0.148

0.994
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Fig. 4.4 Classification accuracies of wheat classes using the 60-30-10 ANN model (n
= 300).
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Fig. 4.5 Classification accuracies of wheat classes using the 70-20-10 ANN model (n
:300).

The top 10 wavelengths based on their input strength to wheat class identification

using both 60-30-10 and 70-20-10 ANN models are listed in Table 3. Five wavelengths

remained the same, but in a different order, for both ANN models. These wavelengths

were between 960 and 1300 nm. Osborne (2006) observed that this wavelength region

was related to CH second overtone, OH combination band, NH second overtone, OH

second overtone, and CH third overtone. A high contribution coefficient of 0.0174 at

1380 nm and a low contribution coefficient of 0.0156 at1590 nm were attained in the 60-

30-10 ANN model. In this training pattern, 1590 nm was the only wavelength that was

above the wavelength region of 960 - 1300 nm. The 1360 nm and 1120 nm wavelengths

produced high (0.0203) and low (0.0154) contribution coeffrcients, respectively in the 70-
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20-10 ANN model. In this model, the top ten wavelengths were in the wavelength region

of 960 - i480 nm. Classif,rcation accuracies of 99Yo were reported from two class models

developed from MLR and PLSR in comparing hard red wheat and hard white wheat

using VisA{IR reflectance properties (Delwiche and Massie lgg6). Average classification

accuracies of 50 - 89% were reported using ANN with three hidden layer nodes in

classifiiing different types of damages in soybean (Wang et al. 2002). Wang et al. (2004)

reported mean classification accuracies of 83 - 95% using ANN in classifying different

types of fungal damage in soybean. Classification accuracies were more than 97Yo for

HRS and CWAD in a four layer BPNN in comparing the above mentioned two wheat

classes with barley, oats and rye using their morphological features (Paliwal et al., 2001).

Mohan et al. (2005) reported a classification accuracy of 92.4%o in BPNN using top five

slope features of wavelengths in the visible region as input in classifying cereal grains.

They also reported classification accuracies of 70 -90% and 50 -10% using two and

five slope features of wavelengths in NIR region in BPNN, respectively. The statistical

linear parametric classifier produced better classification accuracies than BPNN using

slope features in the NIR region (Mohan et al. 2005).

In Canada, wheat classes are identified using kernel visual distinguishability

(KVD) characteristics of wheat (CGC 2006b). C\À/RS and CWAD wheat classes are

considered as major wheat classes whereas the remaining six wheat classes as minor

wheat classes in Canada. Based on Canada western standard committee

reconìmendations, C'WRS wheat can have 0.75 - 3.8% of contrasting wheat classes

(wheat classes of different color) and 2.3 - I .5% of other wheat classes in it based on its

grade ranging from I - 4 (CGC 2007b). In this study, LDA and eDA had higher
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classification accuracies of > 960/0 in differentiating wheat classes than 60-30-10 and 70-

20-10 ANN models.

Table 4.3 Top ten wavelengths of NIR hyperspectral images based on their input
strength to classifTcation using 60-30-10 and 70-20-10 ANN models in identifying
wheat classes.

60-30-10 model 70-20-10 model
S.

No. Wavelength (nm) Contribution Wavelength Contribution
coefficient (nm) coefficient

1

2

J

4

5

6

7

8

9

10

13 80

t490
I 360
1480
1 190

t340
r3t0
I 580
1090
1 590

0.}fl4
0.0t74
0.0169
0.0164
0.016i
0.0161
0.0161
0.0158
0.0158
0.01s6

I 360
13 80

l 190
1480
1 130

1 180

1060
i340
1400
t120

0.0203
0.0202
0.0179
0.0t67
0.0164
0.0160
0.0160
0.0159
0.0i 58
0.0167
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4.2.Wheat class differentiation with and without moisture effects (Study: 2)

4.2.1. Wheat class differentiation with moisture effect using statistical classifier

4.2.1.1ClassifTcation accuracies using LDA and QDA (75 input features)

The NIR absorbance values at each wavelength slice of a NIR hyperspectral

image of wheat samples were used as input for differentiating the wheat classes.

Classification accuracies of wheat classes at various moisture levels (I2Vq I4yo, 160/0,

18% and 20%) using LDA and QDA (n: 100 per treatment) with leave-one-out cross

validation are shown in Figs. 4.6 and 4."/, rcspectively.

The classification accuracies were > 94o/o for all wheat classes except CWES

wheat at2}o/o moisture level and CWHWS wheat at 14Yo moisture level using LDA with

leave-one-out cross validation. For these wheat classes, classification accuracies were

only 860/o. CWES wheat at2}o/o moisture level was mainly misclassified with CWRS and

CWHWS wheat classes at 20%;o moisture level. Misclassification between CV/HWS

wheat at I4Yo moisture level and CWRS wheat at l2%o moisture level was also seen. It

showed that wheat classes of high moisture levels were misclassified with other high

moisture wheat class or classes. Also, low moisture level wheat was misclassified with

other low moisture level wheat. The medium or high protein level wheat classes were

misclassified with each other. Misclassifications were not seen among the low protein

wheat classes. Except CWES wheat at 20o/o moisture level, all other moisture levels of

CWES wheat attained classification accuracies of > 94% and CWES wheat af l4o/o

moisture level had classification accuracy of 100%. Classification accuracies were >96%

for CWHWS wheat at all moisture levels except at l4Yo moisture level. CWRS wheat had

classification accuracies of > 96%o for all moisture levels and moisture levels of I4o/o and
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20Yo attained a classification accuracy of I00Yo; and lSYo moisture level wheat attained a

classification accuracy of 99Yo. CWRW wheat attained classification accuracies of > 98%

for all moisture levels and l4Yo moisture level had classif,rcation accuracy of I00% using

LDA. CWSWS wheat had good classification accuracies. CWSWS wheat of ß - 20%

moisture levels had a classification accuracy of 100%. A classification accuracy of 98%

was attainedby 12% moisture level of CWSWS wheat.

8120/o

ffi14%

Er16%

Ø18%

N 20%

CWES CWHWS CWRS CWRW CWSWS

Wheat classes

Fig. 4.6 Classification accuracies of wheat classes at various moisture levels using
LDA with leave-one-out cross validation (75 input features).

In wheat class identif,rcation at various moisture levels, QDA did not perform as

well as LDA. Leave-one-out cross validation was used in QDA also. None of the wheat

classes attained a classification accuracy of 100% using QDA. But, most of them attained

classification accuracies of > 90Yo.In CV/ES wheat, classification accuracies were >98%

Ë
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for all moisture levels except l8% moisture level. CWES wheat atIS%o moisture level

had a classification accuracy of only 85%. Misclassification mainly occurred in Igyo

moisture level of CWES wheat with 18% and20Yo moisture levels of CWHWS wheat

and 18o/o moisture level of CV/RS wheat. Poor classification accuracies were reported for

CWHWS wheat classes at all moisture levels. CWHWS wheat at high and low moisture

levels (20% and l2%)had a classification accuracy of only 77%. CWHWS wheat at L2yo

moisture level was mainly misclassified with other high protein wheat such as CWRS at

12% moisture level. CWHWS wheat at20Yo moisture level was misclassified as lg%

moisture level of CWES wheat and2}o/o moisture level of CWRS wheat. It was proven in

QDA also, that misclassifications among wheat classes were mainly based on their

protein and moisture levels. CWRW wheat had classification accuracies of > 90% for all

moisture levels except l2o/o moisture level. CWRW wheat at I2%o moisture level had a

classification accuracy of 85%o and was mainly misclassifred with the same wheat class at

14% moisture level. CWSWS wheat at all moisture levels had ciassification accuracies of

>92%.

56



àe

o
Eao
ooõ
E
o
G'

Ë70
ø
Øs
(J

812%

fi14%

e16%

ø18%

N20%

CWRS

Wheat Classes

Fig. 4.7 Classification accuracies of wheat classes at various moisture levels using
QDA with leave-one-out cross validation (75 input features).

NIR absorbance features at each wavelength had some contribution in wheat class

identif,ication at various moisture levels. Using STEPDISC procedure in SAS, the

features were ranked based on their contribution to wheat class identification. Feature

contributions were explained in terms of partial R2 and ASCC values. Top ranked input

feature was related to 1 i00 nm wavelength and it had partial R2 and ASCC values of 0.72

and 0.03, respectively. The last ranked input feature was derived from 1440 nm

wavelength and it had partial R2 and ASCC values of 0.02 and 0.50, respectively. The top

ten features with their partial k and ASCC values are shown in Table 4.4. The top ten

features had cumulative ASCC value of 0.24. STEPDISC results showed that all input
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features should be necessary for wheat class identification purposes. And, reduction in

input features led to further reduction of classif,rcation accuracies of wheat classes.

Table 4.4 Top ten wavelengths of NIR hyperspectral images based on their
contribution to classification using STEPDISC procedure in identifying wheat
classes at various moisture Ievels (75 input features).

No. Wavelensth lnm Partial ASCC
I
2

I 100
r 330
1 s80
t370
1400
l2I0
960
1000
1240
1700

0.72
0.80
0.81
0.87
0.78
0.74
0.59
0.51
0.49
0.43

0.03
0.05
0.09
0.12
0.t4
0.17
0.i9
0.21

0.22
0.24

aJ

4

5

6

7

I
9

10

4.2.1.2 Classification accuracies using LDA and eDA (51 input features)

Classification accuracies of wheat classes at various moisture levels using LDA

with 51 NIR absorbance features in the wavelength region of i 100 - 1600 nm are given

in Fig' 4.8. CWES wheat at moisture levels of 72, 14, and. 160/o had classification

accuracies of > 98%o and l4o/o moisture level of CWES wheat had a classif,rcation

accuracy of 100%. But, l8o/o and 20%o moisture levels of CWES wheat had poor

classification accuracies of 86% and 7l%o, respectively. CV/ES wheat at IB%o moisture

level was mainly misclassified with CWHWS wheat at.l8%o moisture level. CV/ES wheat

with 20%o moisture level was misclassifi ed as 20%o moisture level of CWHWS wheat and

20% moisture level of CWRS wheat. Same trend was observed in LDA with 75 input

features. Misclassif,rcation occurred mainly among the wheat classes of similar moisture

and protein levels. CWHWS wheat at all moisture levels had classification accuracies of

>92% and lLYo moisture level of CWHWS wheat had a classification accuracy of 100%.
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CWRS wheat at all moisfure levels also had classification accuracies of > 94% in LDA.

CWRS wheat at 74, i6, and 18% moisture levels had classification accuracies of 100, 9g,

and 98Yo, respectively. CWRW wheat at all moisture levels also had classification

accuracies of > 97%o and they were misclassified within the same wheat class of next or

previous moisture levels. CWRW wheat at 14 and 20% moisture levels had a

classification accuracy of 100Yø in LDA. CWSWS wheat at 16,lg, and 20olo moisture

levels had a classification accuracy of 100%o. And, the other two moisture levels of

cwsws wheat (r2 and 14%)hadclassification accuracies of 99 and97yo.

El12%
n14%
E 16%

Ø18%
ñ 20%

cwES cwHws 
*rjÏåt""* 

cwRW cwsws

Fig. 4.8 Classification accuracies of wheat classes at various moisture levels using
LDA with leave-one-out cross validation (51 input features).

Classification accuracies using QDA for wheat classes with 51 input features are

given in Fig. 4.9. Classification accuracies for CWES wheat at all moisture levels were

improved in QDA. CWES wheat at 12, 14, and,16% moisture levels had classification
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accuracies of 100%. Classification accuracies of 18 and 20o/o moisture level of CWES

wheat were also improved. CWES wheat at 20Yo moisture level had a classification

accuracy of 95o/o. CWES wheat atlSo/o moisture level was misclassified as 18 and20Yo

moisture levels of CWHWS wheat and 18% moisture level of CWRS wheat.

Classification accuracies of CWHWS wheat at all moisture levels using QDA were not as

good as those of LDA. Poor accuracies were found for 12,18, and 20o/omoisture levels

of CWHWS wheat. They were mainly misclassified with the wheat classes with similar

level of protein and moisture contents. CWRS wheat at 12 - 18olo moisture levels had

classification accuracies of 98Yo artd 20o/o moisture level wheat had a classification

accuracy of 99%o. CWRW wheat at all moisture levels had high classification accuracies

of > 92Yo and 14 - 20% moisture levels had classification accuracies of 2 97o/o.

Misclassification occurred with the immediate next moisture level of the same wheat

class. CWSWS wheat at all moisture levels had classification accuracies of 2 960/o; and

misclassification occurred mainly with previous or next moisture level of the same wheat

class. QDA improved classif,rcation accuracies of CWES and CV/RS wheat classes.
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Fig. 4.9 Classification accuracies of wheat classes at various
QDA with leave-one-out cross validation (51 input features).

The top ten wavelengths were identified using STEPDISC procedure in SAS.

(Table 4.5). Input feature at 1100 nm wavelength was identified as the top feature and at

i440 nm as the last rank feature based on their contribution to classification. These

results were in confirmation with the results of STEPDISC with 75 input features. These

features were ranked based on partial R2 and ASCC values. Input feature at 1100 nm had

partial R2 and ASCC values of 0.72 and 0.03, respectively. Input feature af 1440 nm had

partial R2 and ASCC values of 0.06 and 0.41, respectively. The top ten features had a

cumulative ASCC value of 0.22.'When top ten features were only used for wheat class

identification, the classif,rcation accuracies were drastically reduced. It showed that all

6t



features should be used for attaining good results in wheat class identification at various

moisture levels. Out of i0 top features of the 5l feature model, seven were the same with

those of the75 feature model.

Table 4.5 Top ten wavelengths of NIR hyperspectral images based on their
contribution to classification using STEPDISC procedure in identiffing wheat
classes at various moisture levels (51 input features).

No. Wavelength (nm) partiat R- ASCC-

9

10

1 100
1330
1 s80
r370
1400
12t0
1 190
1240
1 150

1 180

0.72
0.80
0.81

0.87
0.78
0.74
0.47
0.46
0.46
0.41

0.03
0.0s
0.09
0.t2
0.14
0.17
0.18
0.20
0.2r
0.22

4.2.1.3 Classification accuracies using LDA and QDA (top 7 input features)

Top seven common wavelengths were identified using STEPDISC procedure with

75 and 5l input features. They were 1100, 1330, i580, 1370,1400,1210, and i240 nm.

Wheat class identification was done using LDA and QDA with the NIR absorbance

features at the above wavelengths. Classification accuracies of top 7 input features were

compared with the classification accuracies of LDA (75 features, 51 features) and QDA

(75 features, 51 features). Classification accuracies of wheat classes at various moisture

levels using LDA and QDA at75,51, and top 7 input features are shown in Figs. 4.10,

4.II,4.12,4.13, and 4.I4, respectively. The classification accuracies of LDA with the top

7 wavelength features were the same or below to the classification accuracies of LDA

with 75 and 51 input features. Classification accuracies of QDA with top 7 wavelength
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features had more fluctuations. Mostly, they had

lower classification accuracies than QDA with75

three different trends: higher, equal,

or 51 input features.
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øLDA-7
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16%

Moisture levels

Fig. 4.10 Classification accuracies of C\ryES wheat a various moisture levels using
LDA and QDA a,t75,51, and top 7 input features.
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Fig. 4.11 Classification accuracies of CWHWS wheat at various moisture levels
using LDA and QDA at75r 51, and top 7 input features.
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îig. 4.12 Classification accuracies of CWRS wheat at various moisture levels using
LDA and QDA at75,51, and top 7 input features.
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Fig. 4.13 Classification accuracies of CWRW wheat at various moisture levels using
LDA and QDA at75,51, and top 7 input features.
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Fig. 4.14 ClassifTcation accuracies of C\rySWS wheat at various moisture levels using
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4.2.2. Wheat class differentiation with and without moisture effects using ANN (75

input features)

Table 4.6 shows the top ten wavelengths of NIR hyperspectral images based on

their input strength to classification using a 60-30-10 ANN model in identifying the

wheat classes without moisture effect. Wheat classes at various moisture levels were

identified using ANN. Average minimum error for the training and test sets were 0.0022

and 0.0033, respectively. Input feature related to 1100 nm wavelength was at the 1'trank

and 1080 nm at the 10ú rank. Input strength of l't rank and 10th rank features were 0.019

and 0.01 59, respectively.

Table 4.6 Top ten wavelengths of NIR hyperspectral images based on their input
strength to classification using the 60-30-10 ANN model in identifying wheat classes
without moisture effect (75 input features).

No. Wavelength (nm) Input streneth
I
2

3

4

5

6

1

8

1 100

I 190

i 360
I 500
1 180

1t20
t200
1 130

1480
1080

0.0190
0.0183
0.0168
0.0166
0.0166
0.0165
0.0165
0.0163
0.0161
0.01s9

9

10

Details of statistical parameters of 60-30-10 ANN model for wheat classes

without moisture effect are shown in Table 4.7.In this model, R2 values of the training

and test sets were 0.9731 and 0.9604, respectively. The 60-30-10 ANN model gave a

minimum MSE value of 0.053 and a maximum MSE value of 0.081 for the training and

test sets, respectively. A minimum MAE and a maximum MAE values were attained by

the training and test sets of the 60-30-10 ANN model. A maximum correlation (r :
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0.9865) was observed for the training set of the 60-30-10 ANN model. The test set of the

ANN model attained a minimum r value of 0.9800.

Table 4.7 Details of statistical parameters of the 60-30-10 ANN model for wheat
classes without moisture effects (75 input features).

Parameters Training Test Validation
f o.gnt 0.9604 0.961s

MSE
MAE

R

0.053
0.150
0.986s

0.081
0.1 88

0.9800

0.080
0.190
0.9807

In the 60-30-10 ANN model, the training set of CWHV/S wheat gave a

classification accuracy of 94.22% and the test set of CWHWS wheat gàve aclassification

accuracy of 90o/o (Table 4.8). For CWES wheat, the training and test sets had

classification accuracies of 92Yo and the validation set gave a classification accuracy of

only 87.5Yo. The training set of CWRS wheat gave a classification accuracy of > 90o/o.

The test and validation sets of CWRS wheat had classification accuracies of 82Yo and

760/o, respectively. CWRW wheat gave good classification accuracies of > 92o/o for the

training, test, and validation sets. The training set of CWRW wheat had a classification

accuracy of 95.06%. CWSWS wheat attained a classification accuracy of 100% for the

training, test, and validation sets.

Table 4.8 Classification accuracies of wheat classes without moisture effect using the
60-30-10 ANN model (75 input features).

Wheat class Trainine (7o) Test (%o) Validation (7o)

CWHWS
CWES
CWRS
CWRW
CWSV/S

94.22
92.83
91.T6
95.06

100

90
92.05
82.48
92.30
100

90.48
87.s

76.09
92.s
100
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Wheat classes were also identif,red with the moisture effect using ANN. For ANN

model development, T5 NIR absorbance features in the wavelength region of 960 - 1700

nm were used. The top ten wavelengths of NIR hyperspectral images based on their input

strength to classif,rcation using the 60-30-10 ANN model in identifying wheat classes

with moisture effect are given in Table 4.9.

Table 4.9 Top ten wavelengths of NIR hyperspectral images based on their input
strength to classification using the 60-30-10 ANN model in identifying wheat classes
with moisture effect (75 input features).

ut strensthNo. Wave
1

2
J

4
5

6

7
8

9

10

1 100
I 190

1r20
1 500
1360

1 180
13 10

1 080
I 130

1480

0.0187
0.0183
0.0171
0.0167
0.016s
0.0164
0.0163
0.0162
0.0161
0.0160

Details of statistical parameters of the 60-30-10 ANN model in identifying wheat

classes with moisture effect are shown in Table 4.10. The training set gave a maximum

R2 value of 0.972 whereas the test set gave a minimum R2 value of 0.954 for the 60-30-

10 ANN model. The correlation results of the training set showed that the training set of

the 60-30-10 ANN model would give minimum MSE and MAE values. The test set had a

maximum MSE value. The training set gave amaximum r value of 0.986 and the test and

validation sets had approximately the same r values.
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Table 4.10 Details of statistical parameters of the 60-30-10 ANN model in identifying
wheat classes with moisture effect (75 input features).

Parameters Trainin Test Validation

MSE
MAE

r

0.972
1.40

0.84
0.986

0.954
2.39
1.08

0.977

0.958
2.20
1.09

0.978

Classification accuracies of wheat ciasses with moisture effect using the 60-30-10

ANN model (75 input features) are shown in Table 4.1 1. The validation set of CWHWS

wheat at 20o/o moisture level gave a maximum classification accuracy of 7l.42o/o in that

class. The test set of CWHWS wheat at lEYo moisture level had a minimum classification

accuracy of 4.88% in that class. For CWES wheat class, classification accuracies of <

50o/o were observed for all moisture levels. The validation set of CWES wheat al I2o/o

moisture level gave the highest classification accuracy of 47.05% in that class. The

validation set of CWES wheat at I8o/o moisture level had a classification accuracy of only

9.09%. Poor classification accuracies of < 40o/o were observed for CWRS wheat class at

various moisture levels. CWRS wheat at 14% moisture level gave a maximum

classification accuracy of 36.67% and the validation sets CWRS wheat at 18 and I2Yo

moisture levels had classification accuracies of jVo. For CWRW wheat class,

classification accuracies of < 50%o were observed for all moisture levels. The training set

of CWRW wheat at 160/o moisture level gave a maximum classification accuracy of

49.18% and the validation set of CWRW wheat at 20Yo moisture level had a minimum

classification accuracy of 16.67% in that class. The classification accuracies of CWSWS

wheat were high. The training set of CWSWS wheat at l2%o moisture level gave a
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maximum classification accuracy of 90.62Yo and the validation set of CWSWS wheat at

14% moisture level had a minimum classification accuracy of 33.33o/o.

Table 4.11 Classification accuracies of wheat classes with moisture effect using the
60-30-10 ANN model (75 input features).

Wheat Class
Moisture
levels (7o) Training (7o) Test (%) Validation

(%)
CWHWS

CWES

CWRS

CWRW

CWSWS

20
18

t6
t4
t2

20
18

r6
t4
L2

20
18

T6

14

I2

20
18

t6
I4
t2

20
18

t6
t4
12

52.30
2L27
36.00
70.69
29.82

24.t3
17.86
35.48
43.33
45.61

37.88
32.35
24.t4
36.67
26.t5

37.29
48.48
49.18

39.2r
31.34

s6.67
62.5
57.37
58.82
90.62

s2.38
4.88
3s.90
62.96
25.00

25.8t
24.24
36.67
25.8r
34.61

12.00
16.00
15.38
25.00
18.18

25.71
40.74

34.375
36.84
29.t7

38.46
s0.00
4r.93
65.38
79.31

7t.42
8.33
45.45
40.00
27.27

27.27
9.09

37.50
JJ.JJ

41.05

11.11

0.00
6.25
16.67
0.00

16.67
42.86
42.86
36.36
JJ.JJ

57.r4
70.00
62.5
33.33
71.43
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4.2.3. Wheat class differentiation with and without moisture effects using ANN (51

input features)

Top ten wavelengths of NIR hyperspectral images based on their input strength to

classification using the 60-30-10 ANN model for wheat classes without moisture effect

are given in Table 4.12. NIR absorbance features were ranked based on their input

strength to classification. Maximum input strength was 0.0253 for the input feature at

1100 nm. Input feature at 1520 nm was ranked at tenth position with an input strength of

0.022s.

Table 4.12 Top ten wavelengths of NIR hyperspectral images based on their input
strength to classification using the 60-30-10 ANN model in identifying wheat classes
without moisture effect (51 input features).

No. Wavelength (nm) Input strength
I
2
J

4
5

6

1

8

1 100
1300
1 190
t270
1360
1120
1340
TTTO

1290
1520

0.0253
0.0250
0.0247
0.0242
0.0236
0.0236
0.0233
0.0227
0.0226
0.0225

9

10

Details of statistical parameters of the 60-30-10 ANN model for the wheat classes

without moisture effect are shown in Table 4.13. The 60-30-10 ANN model gave a

maximum R2 value of 0.9604 and a minimum R2 value of 0.9480 for the training and test

sets, respectively. Minimum MSE and MAE values were obtained by the trâining set of

the 60-30-10 ANN model. The 60-30-10 ANN model gave a maximum MSE and MAE

values for the test set. The value of r was maximum (: 0.9800) for the training set and

minimum (:0.9737) for the test set of the 60-30-10 ANN model.
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Table 4.13 Details of statistical parameters of the 60-30-10 ANN model in identifying
wheat classes without moisture effect (51 input features).

Parameters Validation
R

MSE
MAE

0.9604
0.078
0.1 95

0.9800

0.9480
0.106
0.23r

0.9737

0.9509
0.t02
0.223
0.9754

Classification accuracies of wheat classes without moisture effect using the 60-

30-10 ANN model are shown in Table 4.14. Classification accuracies of wheat classes

using the 60-30-10 ANN model with 51 input features were less than that of the 60-30-10

ANN model with 75 input features. CWHWS, CWES, and CV/RS wheat classes gave

classification accuracies of 85 - 90% except for the validation set of CWRS wheat. The

validation set of CWRS wheat had a classification accuracy of 76.09% only. CWRW

wheat gave classification accuracies of > 90%o except for the test set. The test set of

CWRW wheat had a classification accuracy of 87.I8%. Classification accuracies for the

training, test, and validation sets of CWSWS wheat were > 99%o.

Table 4.14 ClassifÏcation accuracies of wheat classes without moisture effect using
the 60-30-10 ANN model (51 input features).

Wheat Class Trainins (7o Test P/" Validation l7o
CWHWS

CV/ES
CWRS
CWRW
CWSWS

86.64
89.08
88.33
92.1t
99.68

80.63
89.40
85.40
87.1 8

99.32

87.30
82.14
76.09
95.00
100.00

Top ten wavelengths using the 60-30-10 ANN model to identiff wheat classes

with moisture effect are shown in Table 4.15. Input feature at 1100 nm wavelength was

ranked at the first position with an input shength of 0.0265. Input feature at 1120 nm was

ranked at tenth position with an input strength of 0.0220.
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Table 4.15 Top ten wavelengths of NIR hyperspectral images based on their input
strength to classification using the 60-30-10 ANN model in identifying wheat classes
with moisture effect (51 input features).

No. Wavelength (nm) Input strength
I
2
J

4
5

6

7

8

9
t0

1 100
1360
1580
r270
1 190
1300
t340
It70
1520
r120

0".026s
0.0264
0.0246
0.0243
0.0241
0.0239
0.0232
0.0226
0.0220
0.0220

Details of statistical parameters of the 60-30-10 ANN model for identifying the

wheat classes with moisture effect are shown in Table 4.i6. The 60-30-10 ANN model

gave a maximum R2 value of 0.9614 and a minimum R2 value of 0.9468 for the training

and test sets, respectively. MSE and MAE values were minimum for the training set and

maximum for the test set of the 60-30-10 ANN model. The training and test sets had r

values of 0.9806 and0.9732, respectively.

Table 4.16 Details of statistical parameters of the 60-30-10 ANN model in identifying
wheat classes with moisture effect (51 input features).

Parameters Validation
R

MSE
MAE

r

0.9614
1.980
1.056

0.9806

0.9468
2.801
1.262

0.9732

0.95r4
2.s46
1.204

0.9757

Classification accuracies of wheat classes with moisture effect using the 60-30-10

ANN model are shown in Table 4.17. Classification accuracies of CWHWS wheat class

wete ( 50%. CWHWS wheat at lSYo moisture level gave poor classification accuracies

of 2.I3%o, }Yo, and 0%o for the training, test, and validation sets, respectively. CWES
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wheat class had classification accuracies of < 40% for the training, test, and validation

sets of various moisture levels. CWES wheat at 18olo moisture level gave poor

classification accuracies of 8.93yo,9.09yo, and 18.18% for training, test, and validation

sets. CWRS wheat had classification accuracies of < 50%o for the training, test, and

validation sets. CWRS wheat at 20Yo moisture level gave classification accuracies of

l6-67yo, 12.00o/o, and Il.ll% for training, test, and validation sets, respectively.

Classification accuracies of lI - 64% were observed for CWRW wheat class. For

CWSWS wheat, classification accuracies of 0 - 86% were obtained. The validation set of

CWSWS wheat at l4%o moisture level gave a classification accuracy of 0o/o; and, the

training and test sets of CWSWS wheat at 12o/o moisture level had classification

accuracies of > 80%.
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Table 4.17 Classification accuracies of wheat classes with moisture effect using the
60-30-f 0 ANN model (51 input features).

Wheat class Moisture Training (%o) Test (7o) Validation (%)

CWHWS

CWES

CWRS

CWRW

CWSWS

levels (7o

20
18

t6
T4

12

20
18

16

t4
T2

20
18

16

T4

12

20
18

i6
t4
t2

20
18

t6
t4
I2

15.38
2.t3

30.00
50.00
31.58

27.59
8.93

27.42
40.00
31.58

16.67
20.59
25.86
30.00
20.00

28.8t
53.03
27.87
2s.49
17.9r

46.67
s0.00
45.90
39.71

81.25

19.05
0.00

23.08
37.04
2s.00

22.58
9.09
16.67
22.58
23.08

12.00
32.00
23.08
21.43
30.30

TT.43
37.04
12.50
36.84
20.83

15.38
67.6s
29.03
46.1s
86.2r

7.74
0.00
45.45
46.67
9.09

27.27
i 8.18
25.00
22.22
t7.65

11.11
t4.29
25.00
JJ.JJ

50.00

JJ.JJ

42.86
42.86
63.64
22.22

50.00
50.00
37.50
0.00
7t.43

The top ten wavelengths of statistical classifier and the 60-30-10 ANN model in

identifying wheat classes are given in Table 4.18.
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Table 4.18 Top ten wavelengths of statistical classifier and the 60-30-10 ANN model
in identifying wheat classes with and without moisture effect.

Rank

Statistical classifïer
75 input 51 input
features features

wirh wirh
moisture moisture
effect effect

60-30-10 ANN model

75 input features 51 input features

Without With
moisture moisture
effect effect

Without
moisture

effect

wirh
moisture

effect

1

2
J

4

5

6

7

8

9

10

1 100
1 330
1 580
r370
1400
12t0
960

r 000
t240
1700

I i00
I 330
I 580
r370
1400
tzt0
i 190
t240
I 150

I 180

I 100

1 190
1 360
1500
1 180
tt20
1200
1 130

1480
1 080

1 100
1 190
tt20
1 500
1 360
1 180
13 10

i080
1 130

1480

1 100

1300
I 190
1270
1 360
lI20
t340
t170
t290
r520

1 100

1360
I 580
1270
i 190

I 300
1340
lt70
1520
It20

The important wavelengths for identifying wheat classes without moisture effect

are shown in Fig.4.15- The 60-30-10 ANN model produced good results in idenrifying

wheat classes without moisture effect.
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Fig. 4.15 The important wavelengths for identiffing wheat classes without moisture
effect.

The important wavelengths for identifying wheat classes with moisture effect

are shown in Fig. 4.16. Statistical classifier produced good results in identifying wheat

classes with moisture effect. The top ten wavelengths based on their contribution to

wheat classification were found using STEPDISC procedure in SAS. In Figs. 4.i5 and

4.16, a strong peak could be seen at the NIR wavelength of 1440 nm. NIR spectra of

wheat classes at various moisture levels were separated from each other at this peak. All

wheat classes at various moisture levels had the same trend in the NIR absorbance

spectra. Peak at 1440 nm is created by the water molecules of the sample that had

different levels of NIR absorption (Osborne et al. 1986).Wang etal. (2004) found that
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NIR absorbance peaks at 1440 nm decreased with the decrease in moisture content of

ground wheat samples. Armstrong (2006) proved from moisture content prediction study

in soybean that the wavelength region of 1400 - 1450 nm was related to the NIR

absorption by water molecules of the sample.
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Plots of the first two canonical variables (Canl vs. Can2) for the wheat classes

with and without moisture effects are shown in Figs. 4.17 and 4.18, respectively.

Canonical variables were found from the 75 NIR absorbance features of wheat classes

using CANDISC procedure in SAS. Canonical variable 1 (Canl) was plotted against

canonical variable 2 (Cart2) for the wheat classes with and without moisture effects. Canl

had higher conelation with the independent variables than did Can2. From Fig. 4.L7, it

could be seen that wheat classes at various moisture levels were grouped in different

clusters along the axis of Canl (X axis). High moisture wheat classes were formed into

clusters at the front and low moisture wheat classes were formed into clusters at the back

of X axis. Wheat classes were grouped in different clusters based on their protein levels

along the axis of the Can2 (Y axis). High protein wheat classes were clustered at the

bottom whereas low protein wheat classes were clustered at the top of Y axis. Twenty

four canonical variables were extracted out of which Canl and Can? attained r values of

0.99 and 0.97, respectively.

From Fig. 4.18, it could be seen that wheat classes at various protein levels were

grouped in different clusters along the axis of Canl (X axis). High protein wheat classes

were clustered at the front whereas low protein wheat classes were clustered at the back

of X axis. Can2 did not help much to explain the variations in the major constituent of

wheat without moisture effect. Here, four canonical variables were extracted. Canl and

CanZ attained correlation values of 0.96 and 0.85, respectively. It is proved that NIR

absorbance values of hyperspectral imaging could differentiate wheat classes at various

moisture and protein levels. A list of wheat classes and their moisture levels for Fig. 4.17

is given in the Appendix 7.2.
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Fig. 4.17 Plot of first two canonical variables for wheat classes with moisture effect.

1. CWHWS-2o%
2. CWHWS_18%
3. CWHWS_16%
4. CWHWS_14%
5. CWHWS_'I2%
6. CWES_2o%
7. CWES-18%
8. CWES_16%
9. CWES_14%
10. cwES_12%
11. CWRS_2O%
12. CWRS_18%
13. CWRS_16%
14. CWRS_14%
15. CWRS_12%
16. CWRW 20%
17. CWRW_18%
18. CWRW_16%
19. CWRW_14%
20. cwRW_12%
21. CWSWS_2O%
22. CWSWS-18%
23. CWSWS_16%
24. CWSWS_14%
25. CWSWS 12%

ffiflsr1

D
úrd
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Fig. 4.18 Plot of first two canonical variables for wheat classes without moisture effect.

1. CWHWS
2. CWES
3. CWRS
4. CWRW
5. CWSWS
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4.2.4 PCA for wavelength identification in wheat classifTcation

The top ten principal components (PC) were identified using STEPDISC

procedure with PC scores as input in SAS. The top ten principal components, their partial

R2 values, and ASCC values in wheat class identification are given in Table 4.i9.

Table 4.19 Top ten principal components of NIR hyperspectral images based on
their contribution to wheat class identification.

2

J

5

6

8

I
4
10

7

9

No.
1

2

J

4

5

6

7

8

9

l0

Principal com Partial ASCC
0.89
0.84
0.90
0.77
0.77
0.76
0.7s
0.63
0.53
0.49

0.03
0.07
0.10
0.t2
0.15
0.17
0.19
0.21
0.22
0.23

Table 4.20 shows the top ten wavelengths of principal components2,3, and 5.

These wavelengths are shown in different bands in NIR reflectance spectra of wheat

classes in Fig. 4.19. The top three principal components (2,3, and 5) were selected.

Based on the factor loadings, the top ten wavelengths of these principal components were

identified.
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Table 4.20 Top ten wavelengths of principal components 2, 3, and 5.

Wavelength
No.

Principal component

I 500
1510
1520
1490
1 530
1450
1480

I 580
1470
t440

1

2
J

4

5

6

7

8

9

10

1700 1700
1690 1690
1680 1680
1670 t320
1070 1400
1020 t670
1050 1410
960 i390
1080 13s0
970 1140
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Fig. 4.19 Top wavelength bands of principal components 2,3, and 5 in wheat class identification.
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4.3 Prediction of protein and oil content in wheat (Study: 3)

4.3.1. Protein prediction in wheat

Measured protein contents (% dry basis) of the wheat classes are shown in Table

4.21. The protein content was the highest for CWRS wheat class followed by CWHWS,

CWES, CWRW, and CWSWS wheat classes. The protein levels were higher than

expected (usually 13 - l5%) because of a hot, dry harvest across westem Canada in

2006.

Table 4.21 Measured protein contents (% dry basis) of wheat classes.

Replications CWH\ilS CWES

Mean
Standard
deviation

17.70
18.00
17.80
17.s0
17.75
0.21

16.60

16.00
16.00

16.70

16.32
0.3 8

19.60
19.50
19.00
19.00
t9.27
0.32

t4.40
14.00
14.30
I4.1,0
14.20
0.18

CWSWS
13.90
13.90
14.30
14.00
t4.02
0.19

1

2
J

4

4.3.1.1 PLSR model for protein prediction in wheat (75 input features)

The extracted PLS factors, their root mean PRESS, and their probability to exceed

PRESS are given in Table 4.22.Minimum root mean PRESS value 0.30 was attained for

the 12th PLS factor. Also, for the 12th PLS factor, the probability value to exceed PRESS

was > 0.1. A twelve factor PLSR model was selected for predicting protein in wheat.
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Table 4.22 Results of test set validation for the number of extracted factors of PLSR
model for protein prediction in wheat (75 input features).

No. of extracted factors Root mean PRESS Probability > PRESS
1

2
aJ

4
5

6

7

8

9

10

1t
t2
13

t4
15

0.77
0.78
0.46
0.43
0.40
0.41

0.39
0.35
0.33
0.31
0.31

0.30
0.31

0.31
0.31

< 0.0001
< 0.0001
< 0.0001
< 0.0001
< 0.0001
< 0.000i
< 0.000i
< 0.0001
< 0.0001
0.0350
0.001
1.0000
0.046
0.029
0.r16

Table 4.23 shows the percent variation accounted for independent variables and

dependant variable using the extracted PLS factors. This PLSR model could explain

98.29% of variations in the independent variables Q.{IR absorbance values) and 89.560/o

of variations in the dependant variable (protein).
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Table 4.23 Percent variation accounted for by independent variables and dependant
variable using PLS factors for protein prediction in wheat (75 input features)

_ 
No. of _ Model effects Dependent variables

ß.xtracted
F;;;;;;- Current Total Current Toral

1

2
J
4
5

6
7

8

9
10

ll
T2

26.29
54.57
7.37
2.69
r.6l
1.89
1.25

0.47
0.93
0.37
0.45
0.29

26.29
80.86
88.24
90.94
92.61

94.50
9s.75
96.23
97.t7
97.s4
97.99
98.29

28.6r
12J1
30.10
7.49
2.27
t.43
1.37
2.6r
0.67
f. i9
0.59
0.46

28.61
41.33

7t.43
18.93
81 .20
82.64
84.01
86.62
87.29
88.49
89.09
89.56

Fig. 4.20 shows the predicted and measured mean protein contents with their

standard elrors for the wheat classes. Standard deviations of predicted and measured

protein contents of wheat were close to each other. Fig. 4.21 shows the scatter plot of

predicted protein and measured protein contents of wheat samples. Performance of PLSR

model could be explained from the value of RPD.
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Predicted protein contents for wheat classes are listed in Table 4.1 1. Results of

$ouping are shown in Table 4.24. Predicted protein contents of wheat classes were
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grouped using PROC GLM in SAS. Scheffe's grouping, the most conservative grouping

method, was used for grouping the predicted protein contents of wheat classes.

Table 4.24 Results of grouping for the predicted protein contents of wheat classes

(75 input features).

\ilheat
class

Qualitative Predicted 
Scheffe,sprotein protein

Ievel mean test

CWRS
CWHWS

CWES
CWRW
CWSWS

High
High

Medium
Low
Low

18.8

11.4
16.6

14.3
t4.2

A
B
C
D
D

The mean protein levels of CWRS, CWHWS, and CWES wheat classes were

separated far from each other. The results of grouping showed that the predicted protein

contents of high protein wheat classes (CWRS and CWHWS) and medium protein wheat

class (CWES) were correctly grouped. Predicted protein contents of CWRS, CWHWS,

and CWES wheat classes were significantly different from each other (cr : 0.05). But,

predicted protein contents of low protein wheat classes such as CWRW and CWSWS

were grouped in one group and for these wheat classes there was not significant

difference (a : 0.05) in protein content.

4.3.L.1.1Statistical performance of PLSR model for protein prediction in wheat (75

input features)

Important statistical parameters (SEP, RPD, and RER) for the PLSR model are

listed in Table 4.25. Standard deviation of the difference between the predicted and the

measured values of any chemical compound is called standard error of performance

(SEP). The ratio of standard error of performance to standard deviation of measured
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values using a standard method is called RPD. Ratio of standard error of performance to

the range of data in the standa¡d method is called RER.

Table 4.25 Statistical performânce of PLSR model for protein prediction in wheat
(75 input features).

Parameters Standard method PLSR model Difference
Overall Mean

SD
r

RPD
RER

16.31
2.03

t6.28
1.86

0.94
2.98
7.7r

0.02
0.68 (SEP)

In the PLSR model with 75 input features, predicted protein had good

correlation (r : 0.94) with measured protein. It showed that NIR hyperspectral imaging

could be used for determining the protein content in wheat. RPD and RER values of

PLSR model for protein were 2.98 and7.7I, respectively.

4.3.1.2 PLSR model for protein prediction in wheat (51 input features)

The extracted PLS factors, their root mean PRESS and their probability to exceed

PRESS are given in Table 4.26. A minimum root mean PRESS value of 0.34 was

obtained by the 9th PLS factor. Also, for the 9th PLS factor, the probability value to

exceed PRESS was greater than 0.1. A nine factor PLSR model was used for predicting

protein in wheat.
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Table 4.26 Results of test set validation for the number of extracted factors of PLSR
model for protein prediction in wheat (51 input features).

No. of extracted factors Root mean PRESS ProbabiliW > PRESS
1

2
J

4
5

6

7

8

9

10

11

l2
13

14

15

0.79
0.78
0.46
0.45
0.42
0.41
0.38
0.37
0.34
0.3s
0.35
0.35
0.3s
0.36
0.35

< 0.0001
< 0.0001
< 0.0001
< 0.0001
< 0.0001
< 0.000i
< 0.0001
< 0.0001

1.0000
0.397

0.08 i 0
0.0520
0.0960
0.0040
0.0310

Table 4.27 illustrates the percent variation accounted for by independent variables

and dependant variable using the extracted PLS factors. PLSR model could explain

98.44% of variation in independent variables ${IR absorbance values) and86.l7Yo in the

dependant variable (protein). The variation of independent variable explained by the 51

feature PLSR model was slightly more than that of the 75 feature PLSR model. But,

percent variation in explaining the dependent variable by this model was around 3% less

than that of the 75 feattxe PLSR model. The number of extracted factors was reduced

from 12 to 9 and at the same time the percent variation in explaining the variation of

protein content in wheat was also reduced by 3% than that of the 75 feattxe PLSR model.
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Table 4.27 Percent variation accounted for by independent variables and dependant
variable using PLS factors for protein prediction in wheat (51 input features).

No. of
Extracted
Factors

Model effects

Current Total

Dependent variable

Current Total

1

2
J

4
5

6

7
8

9

4r.76
4t.48
5.73
3.54
2.6s
1.22
0.92
0.95
0.r4

4r.76
83.25
88.99
92.53
95.t9
96.4r
97.33
98.29
98.44

22.85
19.0s
3r.44
5.s9
1.57
2.90
0.95
0.60
1.19

22.85
4t.91
73.35
78.9s
80.52
83.42
84.37
84.97
86.16

Fig. 4.22 explains predicted and measured protein contents and their standard

errors of five wheat classes. Standard errors of predicted and measured protein contents

were close to each other. Fig. 4.23 shows the scatter plot of predicted protein contents

around the measwed mean protein contents of wheat samples. This graph helps to

visualize the variations of predicted and measured protein contents in wheat.
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Predicted protein values of wheat classes are listed in Table A.12. Results of

grouping are shown in Table 4.28. Predicted protein contents of wheat classes were

grouped using PROC GLM in SAS. Scheffe's grouping was used to group the predicted

protein contents of wheat classes.

Table 4.28 Results of grouping for the predicted protein contents of wheaf classes
using PLSR model (51 input features).

Wheat
class

Qualitative Predicted 
Scheffe,sprotein protein "-'.-^.- "

level mean test

CWRS
CWHWS

CWES
CWRV/
CV/SWS

High
High

Medium
Low
Low

18.7
t7.2
16.7
14.4

t4.2

A
B
C
D
D

The mean predicted protein contents of CWRS, CWHWS, and CWES wheat

classes were separated far from each other. The results of grouping showed that the

predicted protein contents of high protein wheat classes (CWRS and CWHWS) and a

medium protein wheat class (CWES) were correctly grouped. The predicted protein

contents of CWRS, CWHWS, and CWES wheat classes were significantly different from

each other (o : 0.05). But, predicted protein contents of low protein wheat classes

(CWRW and CWSWS) were grouped into one group. The same trend was observed in

the75 feature PLSR model also. The predicted protein contents of CWRW and CWSWS

wheat classes were not significantly different (a: 0.05).
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4.3.1.2.1Statistical performance of PLSR model for protein prediction in wheat (51

input features)

Important statistical parameters (SEP, RPD, and RER) for the 51 feature PLSR

model are listed inTable 4.29.

Table 4.29 Statistical performance of PLSR model for protein prediction in wheat
(51 input features).

Parameters standard method PLSR model Difference
Overall Mean 16.3I

2.03
16.28
1.85

0.92
2.64
6.82

0.02
0.76 (SEP)SD

r
RPD
RER

PLSR model for protein had a good correlation (r : 0.92) with the measured

protein values. But, the correlation was less than that of the 75 feature PLSR model. It

showed that NIR hyperspectral imaging could predict the protein content in wheat. A

RPD value of 2.64 was obtained for PLSR model for protein. It was less than that of the

75 feature PLSR model. A RER value of 6.82 was observed for the 51 feature PLSR

model for protein.

4.3.2 Oil content prediction in wheat

Measured oil contents (% dry basis) of the wheat classes are shown in Table 4.30.

The oil content was the highest for CWR'W wheat class followed by CWHWS, CWSWS,

CWES, and CWRS wheat classes.
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Table 4.30 Measured oil contents ("/, dry basis) of wheat classes.

Replications CWHWS CWES CWRS C\ryRW C\rySWS
I
2

t.10
1.56
r.70
1.65

0.08

1.36
1.40

1.38
1.38
0.02

1.36
1.30
r.42
|.36
0.06

1.88
1.82
1.80
1.83
0.04

t.72
1.70
r.62
l.68
0.05

3

Mean
Standard
deviation

4.3.2.1PLSR model for oil content prediction in wheat (75 input features)

The extracted PLS factors, their root mean PRESS values, and their probability to

exceed PRESS in predicting oil content in wheat are given in Table 4.31. 
^ 

minimum

root mean PRESS value of 0.61 was obtained for the l3th PLS factor. For the 13th PLS

factor, the probability value to exceed PRESS was greater than 0.1. A thirteen factor

PLSR model was used for predicting oil content in wheat.

Table 4. 3L Results of test set validation for the number of extracted factors of PLSR
model for oil content prediction in wheat (75 input features).

No. of extracted factors (Root mean PRESS) Probability > PRESS

9

10

1l
T2

13

t4
15

1.01

0.88
0.72
0.67
0.68
0.7t
0.61
0.64
0.67
0.65
0.66
0.64
0.61

0.62
0.63

< 0.0001
< 0.0001
< 0.0001
< 0.0001
< 0.0001
< 0.0001
< 0.0001
0.0060

< 0.0001
< 0.0001
< 0.0001
< 0.0001

1.0000
0.1540

< 0.0001

Table 4.32 illustrates the percent variation accounted for independent variables

and a dependant variable using PLS factors to predict oil content in wheat. PLSR model
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could explain 98.39% of variations in the independent variables QIIIR absorbance values)

and 61.99Yo of variations in the dependant variable (oil content).

Table 4.32 Percent variation accounted for by independent variables and dependant

variable using PLS factors for oil content prediction in wheat (75 input features).

No. of
Extracted
Factors

Model effects

Current Total

Dependent variable

Current Total

1

2
ô
J

4
5

6

7

8

s8.59
22.32
7.30
2.65
1.93
1.73
1.06
0.82
0.13
0.28
0.41

0.39
0.1 1

58.59
80.91

88.22
90.88
92.82
94.55
9s.62
96.4s
97.t8
97.46
97.88
98.27
98.39

8.82
19.87
18.1 i
5.3 8

t.56
1.56
t.77
2.00
2.26
3.03
0.8 i
0.82
t.94

8.82
28.70
46.8r
52.r9
53.16
55.33
57.t0
59.11

61.31
64.40
6s.22
66.0s
67.99

9

10

11

t2
13

When comparing this model with PLSR models for protein, the percent variation

in explaining the dependant variable (oil content) was too low and approximately equal to

680/o only.Fig.4.24 explains predicted and measured oil contents and their variations in

wheat. Standard erïors of predicted and measured oil contents were close to each other

for most of the wheat classes except for CWES wheat. This means that this PLSR model

for oil content would poorly predict the oil content of CV/ES wheat. Fig. 4.25 shows the

scatter plot of the predicted and measured oil contents of wheat samples.
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Predicted oil contents of wheat classes are listed in Table 4.13. Results of

grouping are shown in Table 4.33. Predicted oil contents for five wheat classes were

grouped using PROC GLM in SAS. Scheffe's grouping was used to group the predicted

oil contents of wheat classes.

Table 4.33 Results of grouping for predicted oil contents of wheat classes using
PLSR model (75 input features).

Wheat Qualitative Predicted Scheffe's
class protein oil test

level content
mean

CWRV/ High 1.75 A
CV/SWS High 1.70 B
CWHWS Medium 1156 C
CWES Low 1.48 D
CWRS Low 1.40 E

The predicted oil contents of wheat classes \ /ere separated from each other and

correctly grouped. It is shown that the predicted oil contents of the five wheat classes

(CWRS, CWHWS, CWSWS, CV/RW, and CWES) were significantly different from

each other (a:0.05).

4.3.2.1.1Statistical performance of PLSR model for oil content prediction in wheat

(75 input features)

Important statistical parameters (SEP, RPD, and RER) of the 75 feature PLSR

model for oil content are given inTable 4.34.
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Table 4.34 Statistical performance of PLSR model for oil content prediction in
wheat (75 input features).

Parameters Standard method PLSR model Difference
Overall Mean

SD
R

RPD
RER

1.58
0.18

1.58
0.15
0.83
t.82
4.70

-0.002
0.10 (sEP)

Predicted oil contents had good correlation (r : 0.83) with the measured oil

contents of wheat classes. But, the value of r was less than that of the 75 and 51 feature

PLSR models for protein in wheat. NIR hyperspectral imaging could be used for

determining the oil content in wheat. A RPD value of 1.82 was obtained for PLSR model

for oil content prediction. It was also less than that of the 7 5 and 5 1 feature PLSR models

for protein prediction in wheat. A RER value of 4.70 was obtained for PLSR model for

oil content.

4.3.2.2 PLSR model for oil content prediction in wheat (51 input features)

The extracted PLS factors, their root mean PRESS, and their probability to exceed

PRESS are given in Table 4.35. Aminimum root mean PRESS value of 0.63 was attained

for the llth PLS factor. For the 10tl'PLS factor, the probability value to exceed PRESS

was greater than 0.1. A ten factor PLSR model was used to predict oil content in wheat.
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Table 4.35 Results of test set validation for the extracted factors of PLSR model for
oil content prediction in wheat (51 input features).

No. of extracted factors Root mean PRESS Probability > PRESS
I
2
J

1.00
0.90
0.74
0.72
0.72
0.76
0.69
0.66
0.66
0.64
0.63
0.64
0.64
0.64
0.64

< 0.000i
< 0.0001
< 0.0001
< 0.0001
< 0.0001
< 0.0001
< 0.0001
0.0010

< 0.0001
0.3430
1.0000
0.0410
0. 15 10

< 0.0001
0.1 530

4
5

6

7
8

9

10

11

t2
13

I4
15

Table 4.36 illustrates the percent variation accounted for independent variables

and a dependent variable using the extracted PLS factors to predict oil content in wheat.

This PLSR model could explain 98.58% of variations in the independent variables Q..IIR

absorbance values) and 62.88% in the dependent variable (oil content). Percent variation

in explaining the dependent variable (here it is oil content) was approximately 5% less

than that of the 75 feature PLSR model for oil content. At the same time, all PLSR

models explained about 99o/o of variations in independent variables (NIR absorbance

values).
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Table 4.36 Percent variation accounted for by independent variables and dependant
variable using PLS factors for oil content prediction in wheat (51 input features).

No. of
Extracted
Factors

Model effects

Current Total

Dependent variable

Current Total

I
2
3

4
5

6

7

8

9
10

46.r9
36.62
6.15
3.51
2.75
1.40
r.22
0.38
0.r4
0.17

46.t9
82.81
88.97
92.49
95.24
96.6s
97.87
98.26
98.40
98.s7

12.95
t3.96
19.49
3.76
0.98
2.r3
1.75

3.27
2.53
2.t2

12.95
26.91
46.4t
50.1 I
51.16
53.30
55.05
58.33
60.86
62.87

When comparing with PLSR models for protein, the percent variation in

explaining the dependent variable was far low and approximately equal to 630/o only.

Fig. 4.26 explains predicted and measured oil contents and their standard enors in

wheat. Standard deviations of the predicted and measured values of oil content were close

to each other for most of the wheat classes except for CWES and CWRW wheat classes.

It represented that PLSR model could poorly predict oil contents of CWRW and CWES

wheat classes. Fig.4.27 shows the scatter plot of predicted and measured oil contents of

wheat samples.
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Predicted oil contents of wheat classes are listed in Table A.14. Results of

grouping are shown in Table 4.37. Prcdicted oil contents of wheat classes were grouped

using PROC GLM in SAS. Scheffe's grouping was used to group the predicted oil

contents of wheat classes.

Table 4.37 Results of grouping for predicted oil content of wheat classes using PLSR
model (51 input features).

Wheat class Qualitative
protein level

Predicted oil
content mean

Scheffe's test

CV/RW
CWSV/S
CWHWS

CWES
CWRS

High
High

Medium
Low
Low

t.73
t.73
1.54
1.49
1.39

A
A
B
C
D

Predicted oil contents were grouped separately for the three wheat classes

(CV/HWS, CWES, and CWRS). Predicted oil contents were grouped in the same group

for CWRW and CWSWS wheat classes. The predicted oil contents of CWRW and

CWSWS wheat classes were close to each other and at the same time the predicted oil

contents of CWHWS, CWES, and CWRS wheat classes were sepffated far from each

other. Predicted oil contents of the three wheat classes (CWRS, CWHWS, and CWES)

\¡/ere significantly different from each other (cr : 0.05) whereas they were not

significantly different from each other (u : 0.05) for CWRW and CWSWS wheat

classes.

4.3.2,2.1Statistical performance of PLSR model for oil content prediction in wheat

(51 input features)

Important statistical parameters (SEP, RPD, and RER) of the 51 feature PLSR

model were found and listed in Table 4.38.
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Table 4.38 Statistical performance of PLSR model for oil content prediction in
wheat (51 input features).

Parameters Standard method PLSR model Difference
0.001

0.10 (sEP)

Predicted oil contents of wheat classes had good correlation (r:0.80) with the

measured oil contents using the 51 feature PLSR model. But, the value of r was less than

that of the 75 and 51 feature PLSR models for protein in wheat; and the 75 feature PLSR

model for oil content in wheat. NIR hyperspectral imaging could be used to predict the

oil content in wheat. A RPD value of 1.68 was obtained for the PLSR model. It was less

than that of the 75 and 51 feature PLSR models for protein; and the 75 feature PLSR

model for oil content in wheat. The RER value of PLSR model was 4.33.

Cogdill et al. (2004) found a SECV value of 1 .20o/o and a RPD value of 2.7 4 for

predicting the moisture content inmaize. A SECV value of 1.38% and aRPD value of

1.45 were also obtained for oil content prediction in maize from the models developed

using PLSR and PCR. Nagata et al. (2005) obtained a SEP value of 0.35 and a correlation

of 0.78 for predicting the firmness of strawberries using three wavelength stepwise MLR

model. A SEP value of 0.53 and a correlation of 0.87 were obtained for predicting SSC of

strawberries using a five wavelength stepwise MLR model. Delwiche (1998) found that

the NIR wavelength region of 1100 - 1400 nm was effective for protein content

prediction in wheat. In error analysis, chemometric error was equal to 0.41o/o protein.

Although, stepwise MLR models produced test set SEP values of 0.1 -0.2% protein

more than that of PLSR models, stepwise MLR was recommended for protein prediction

Overall Mean
SD
r

RPD
RER

1.58
0.18

1.58
0.14
0.80
1.68
4.33
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due to its less complexity. V/esley et al. (2001) fowrd a SEP value of 0.65 using a curve

fitting method and a SECV value of 0.38 using a PLSR model for glutenin content

prediction in wheat flour. R2 values of 0.85 - 0.93 and SEP values of 0.4 - 0.9%o were

reported for predicting protein in wheat using PLSR (Delwiche 1995).

The results of PLSR models for predicting protein and oil content in wheat

showed that the statistical performances of the 75 feature PLSR models were better than

that the 51 feature PLSR models. It was proved that the 75 feature PLSR models showed

improved results in predicting protein and oil contents in wheat than that of the 51 feature

PLSR models. NIR wavelengths of 960 * 1700 nm produced good results in predicting

protein and oil contents in wheat and further reduction in upper and lower limits of the

wavelength region would affect the performance of prediction. Environmental variables

such as soil type, climate may affect the amount of protein and oil contents present in

wheat in unpredictable ways and produce errors during prediction.
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5. CONCLUSIONS

This study has established that NIR reflectance intensities and absorbance values

of hyperspectral imaging could differentiate wheat classes and predict protein and oil

contents of wheat. First, this study was used to identify the Canadian wheat classes at

11% moisture level and produced good results. The normalized NIR mean reflectance

intensities of hyperspectral images could be used for differentiating wheat classes.

Classification accuÍacies of 96 - I00% were obtained using LDA and QDA in wheat

class identification. It was found that statistical classifier could be an effective statistical

tool to differentiate wheat classes. In ANN, classification accuracies of wheat classes

were usually > 90%o, and only a few classification accuracies were 80 - 90%. ANN could

also be effective when few distinctive wheat classes need to be classified. Classification

accuracies of validation sets of a few wheat classes (CPSR, CWRW, and CWSWS) were

100%. Further research is needed to consider samples of different levels of moisture

contents, different crop years, different locations and mixtures of two or more wheat

classes at different levels to improve model robustness and classification accuracy.

Secondly, this study was used to differentiate wheat classes at different moisture

levels. Mostly, LDA and QDA with 75, 51, and top 7 NIR absorbance features produced

classification accuracies of > 90yo for the wheat classes at various moisture levels.

Canonical variable plots confirmed that the NIR absorbance values of hyperspectral

images could be used to differentiate wheat classes based on the presence of moisture and

protein contents in wheat. PCA and STEPDISC procedure were used to identify

wavelengths responsible for wheat class identification. This study should be extended by

considering the wheat samples of different crop years, different locations, and mixtures of
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two or more wheat classes at different levels to improve model robustness and

classifi cation accuracy.

Finally, this study was used to predict protein and oil contents in wheat. NIR

absorbance features at the wavelength region of 960 - 1700 nm were used to develop

PLSR models and produced good results in predicting protein and oil contents in wheat.

PLSR models for protein explained the variations of the dependent variable better than

that of the PLSR models for oil content. NIR hyperspectral imaging could be used to

measure protein and oil contents of wheat. Wheat samples from different crop years and

different locations should be included to improve the model robustness and prediction

accuracy.
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7. APPENDIX
Literature review tables and confusion matrices
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7.1 Overview of classification and prediction methods used in NIR studies

LDA, QDA, ANN, canonical discriminant analysis, pLSR, and pcA have

already been explained in Materials and Methods section of the thesis. Some of the other

important methods used in NIR studies are briefly discussed here.

Multiple linear regression CMLR)

In this method, regression model is developed using linear combinations of two or

more independent variables to explain a dependent variable.

y: a+ bx1 + cx2 f d¡3

Where, y is a dependent variable; a is an intercept; b, c, and d are regression coefficients;

xt,x2, and x3 are independent variables.

Wavelet interface to linear modeling analysis (WILMA)

It is based on combination of fast wavelet transform (FWT) with MLR and pLSR

techniques to develop regression models using independent variables to explain

dependent variables. In this technique, each independent variable is decomposed into

FWT variables and then those variables are used to develop regression models using

MLR or PLSR methods (Cocchi et al. 2006).

Soft independent modeling of class analogy (SIMCA)

it is an approach in which PLSR is used to develop local models for each class

and further the classes of new observations are predicted using those models (Delwiche

2003).
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Table A.l Comparison of materials, wavelength ranges and intervals, and qualify parameters of agricultural and food
products used in spectroscopy.

Material Waveleneth ranee linterval
NIR reflectance spectroscopy
Ground wheat 850 - 2000 nm (5 nm)
Soybean 400 - 1700 nm (5 run)
Soybean 400- 1700 nm (5 run)
Wheat 1i00 - 2498 nrn (2 run)

Wheat 1002 - 1704 nm (6 run)
Wheat 400 - 1700 nm
Wheat 1 i00 - 2498 wn (2 mrt)
Wheat 400 - 1700 nm (5 run)

'Wheat flour 400 - 2500 nm
Wheat flour 550 - 1700 nm
'Wheat flour 400 - 2498 nn (2 run)
Wheat flour 400 - 2498 nm (2 nm)
Wheat starch, 1100 - 2500 nm (a tu")
V/heat flour,
Wholemeal flour

NIR transmittance spectroscopy
Wheat 570 - 1100 nm
Wheat 850 - 1050 nm

Wheat flour 850 - 1050 nm (2 nm)

NIR spectroscopy (absorbance)
Barley 400 - 2500 nm (2 run)
Wheat 400 - 1700 nm (5 run)

Moisture content
Different types of damages in soybean
Classification of fungal damage
Identification of waxy wheat

Scab and mold damage
Heat damage in wheat
Protein content
Detection of live or dead internal rice
weevil
Particle size distribution
Detection of insect fragments
Gliadin and glutenin content
Adulteration in wheat flour
Starch structural changes

Reference

Wang et al. (2004)
Wang etal. (2002)
Wang et al. (2004)
Delwiche and Graybosch
(2002)
Delwiche (2003)
Wang et al. (2001)
Delwiche (1998)
Maghirang et al. (2003)

Hareland (1994)
Perez-Mendoza et al. (2003)
Wesley et al. (2001)
Cocchi et al. (2006)
Guy et al. (1996)

Mycotoxins (DON levels)
Protein content

Protein, moisture, dry gluten, wet gluten,
starch damage and ash content

DON levels
Vitreousness of wheat
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Petterson and Aberg (2003)
Delwiche (1995)

Miralbes (2004)

Ruan et al. (2002)
Dowell (2000)



Wheat 400 - 1700 nm

Vis-NIR reflectance spectroscopy
V/heat 551 - 750 nm and

i 100 - 2498 nrrt
Wheat 400 - 1700 nm

Vis-NIR transmittance and refl ectance spectroscopy
Corn 550 - 1050 nm (transmittance)

400 - 1700 nm (reflectance)
Corn 500 - 900 nm (transmittance)

550 - 1700 nm (reflectance)

NIR hyperspectral imaging
Apple 900 - 1700 nm
Apple 900 - 1700 nm
Maize 750 - 1090 nm (5 run)

(transmiuance mode)
Strawberry 650 - 1000 nm (5 run)
Wheat 1100 - 1600 nm (30 evenly spaced

intervals)

Vis-NIR hyperspectral imaging
Apple 430 - 900 nm

Detection of parasitized rice weevils

Identification of wheat classes

Dark hard vitreousness of wheat

Detection of fumonisin levels

Detection of aflatoxin

Detection of bruises
Bitter pit lesions
Moisture and oil content

Firmness a¡d soluble solids content
Correction of curvature induced spectral
variability

Surface defects

Baker et al. (1999)

Delwiche and Massie (1996)

Wang et al. (2002)

Dowell etal. (2002)

Pearson et al. (2001)

Lu (2003)
Nicolai et al. (2006)
Cogdill et al. (2004)

Nagata et al. (2005)
Wang and Paliwal (2005)
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Table 4.2 Comparison of models used and results found to predict the quality parameters of agricultural products used

in spectroscopy.

Goals in different crops

PLSR and other main models used in NIR reflectance spectroscopic studies

Soybean
Different types of damages PLSR

Models used Results @ata pretreatment, if any) Refe¡ence

models (sound vs. damaged)
Average classification accuracies of 65 -76% for
six class models (sound / weather / frost / sprout /
heat / mold damaged) at three different
wavelength regions (490 - 750 nm, 490 - 1690
nm, and 150 - 1690 nm)
Average classification accuracies of 50 - 89o/o for
six class models using three different hidden layer
nodes (0, 3, 6, and25)
Average classification accuracies of 85 - 92Yo for
six class models using three different momentum
(0.4, 0.5, and 0.6) and learning rates (0.5, 0.6, and
0.7)
Average classification accuracies of 66 - 93To for
six class models at three different wavelength
regions

models (sound vs. damaged)
Average classification accuracies of 83 - 95% for
five-class ANN models (healthy / phomopsis / C.

kikuchii / SMV / downy mildew)

Classification of fungal damage PLSR

ANN

ANN
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Wheat
Protein content PLSR

Assessment of heat damage PLSR

MLR

Detection of live or dead
internal rice weevil

Day 1 (live) PLSR

Day 7 (dead) PLSR

Day 14 (dead) PLSR

Day 28 (dead) PLSR

Day 42 (dead) PLSR

Day 56 (dead) PLSR

R2 values of 0.901 - 0.979 for five wheat classes
(HRW / HRS / SRW / HWW / SV/W) during
model calibration
Standard error of calibration of 0.389 - 0.518,
Standard error or validation of 0.418 - 0.589,
Standard error of test of 0.462 - 0.590 for five
wheat classes

R2 values of 0.900 - 0.960 for five wheat classes

during eight term MLR model calibration
Standard error of calibration of 0.513 - 0.623,
Standard error of validation of 0.566 - 0.758,
Standard error of test of 0.618 - 0.720 for five
wheat classes

models (undamaged vs. damaged)
Classification accuracies of 91.8 - 99.3% for two
class two wavelength MLR models

Rz = 0.22 - 0.74, SECV = 0.2I - 0.44, Correct
classification (CC) : I I - 95%o

R2 : 0.02 - 0.78, SECV :0.23 - 0.50, CC = 68 -
95%
R2 : 0.08 - 0.78, SECV : 0.23 - 0.49, CC = 62 -
96%
R2 - 0.08 - 0.J2, SECV :0.27 - 0.48, CC: 62 -
94%
R2 : 0.03 - 0.76, SECV :0.24 - 0.50, CC: 57 -
9s%
R2 : o.o+ - 0.74, SECV : 0.26 - 0.49, cc : 56 -
95%

MLR

Delwiche (1998)

Wang et al. (2001)

Maghirang et al. (2003)
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Wheat flour
Glutenin
Gliadin

Glutenin
Gliadin

Flour particle size distribution
10 pm

10-41 pm
41 - 300 pm

Adulteration

PLSR
PLSR
Curve fitting
Curve fitting

Detection of insect fragments
75 insect fragments or more

Less than 75 insect fragments
130 insect fragments or more

Less than 130 insect fragments

R2 :0.83, SECV: 0.38
R2:0.78, SECV :0.43
R2:0.71, SEP:0.65
R2:0.46, SEP = 1.02

PLSR
PLSR
PLSR

PLSR

WILMA-
MLR
WILMA-PLS

PLSR
PLSR
PLSR
PLSR

PCA and other main models used in NIR reflectance spectroscopic studies

SEC = 0.16, R2 :0.99, SECV = 0.26
SEC : 0.59, R2 :0.99, SECV:0.87
SEC : 0.75, R2 :0.99, SECV = 1.1i

RMSEC : 0.29, RMSECV : 0;72,
0.39 (SNV pretreated data)
RMSEC = 0.57, RMSECV : 0.68,
0.s6
RMSEC : 0.32, RMSECV : 0.62,
0.44

Classification accuracy : > 90Yo

Classification accuracy :20 - 40Yo

Classification accuracy : 90Yo

Classification accuracy = 83.3o/o

Ground wheat
Moisturecontent Linear

calibration
models

Wesley et al. (2001)

RMSEP = Cocchi et al. (2006)

RMSEP :

RMSEP :

Hareland (1994)

R2 = 0.793, RMSEC:0.541 (Averaged spectra)
*' : 0.972, RMSEC : 0.239 (First derivatives of
averaged spectra)

Perez-Mendoza et al.
(2003)
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V/heat
Identification of waxy wheat

Year 1

Identification of scab and mold
damage

PCA,
Statistical
classifier

PCA,
Statistical
classifier

Ratios of
wavelengths

Year 2

LDA : Classification accuracy of 42.3 - 71.2%
(using I - 10 top principal component scores)

QDA : Classification accuracy of 51.6 - 63.3%
(using 1 - 10 top principal component scores)
LDA : Classification accuracy of 47.2 - 68.2%
(using 1 - 10 top principal component scores)

QDA : Classification accuracy of 46.5 - 7I.7%
(using 1 - l0 top principal component scores)

Classification accuracy of cross validation = 68.3

- 9 5 .l % þrecise orientation)
Classification accuracy of test set: 68.3 - 95.7%

þrecise orientation)
Classification accuracy of cross validation = 75 -
92.3% (random orientation)
Classif,rcation accuracy of test set : 64.8 - 88.9%
(random orientation)
Classification accwacy of cross validation =
89.3% þrecise orientation)
Classification accuracy of test set : 86.4%
(precise orientation)
Classification accuracy of cross validation :
84.7 % (random orientation)
Classification accuracy of test set : 86.4%
(random orientation)
Classification accuracy of cross validation = 85.3

- 86.7% þrecise orientation)
Classification accuracy of test set: 83.6 - 85.8%

þrecise orientation)
Classification accuracy of cross validation : 77.3

- 83.3% (random orientation)

PCA

Delwiche and Graybosch
(2002)

SIMCA-PCA

Delwiche (2003)
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V/heat flour
Specific mechanical energy in

starch during extrusion cooking
Wheat starch PCA and
Wheat flour Forward
Wholemeal stepwise

regression

PLSR models used in NIR transmittance spectroscopic studies
Wheat

Determination of Mycotoxins
Nordic material
850 - 1050 nm PLSR
570-1100nm PLSR
670-1100nm PLSR

Austrian dilution series
850- 1050nm PLSR
570-1100nm PLSR

670-i100nm PLSR

Protein content (%) PLSR

Classification accuracy of test set = 73.4%
83 .7 % (random orientation)

R : 0.94, SEC : 39 kJlkg, SEP = 51 kJ/kg
R: 0.98, SEC : 45 kJlkg, SEP : 45 kllkg
R = 0.99, SEC : 11 kJ/kg, SEP : 16 kJ/kg

Wheat flour

R = 0.955, SECV: 638 ¡rg DON / kg Petterson and Aberg
R : 0.978, SECV : 459 ¡rg DON / kg (2003)

R:0.984, SECV:381 ¡rg DON / kg

R : 0.963, SECV :761 pg DON / kg
R:0.891, SECV :7292 pg DON / kg
R : 0.899, SECV : 1234 pg DON / kg

Protein (%) PLSR
Moisture (%) PLSR

R2 : 0.782 - 0.914. SEP : 0.42
pretreatment)
R2 : 0.872 - 0.918, SEP : 0.48 -
pretreated data)
R' : 0.889 - 0.938, SEP : 0.45 -
pretreated on 2nd derivatives)

SEC SECV SEP
0.i 1 0.12 0.14
0.12 0.13 0.1s

126

Guy et al. (1996)

- 0.94 (no

0.83 (MSC

0.83 (MSC

R2

0.99
0.99

Delwiche (1995)

Miralbes (2004)



'Wet gluten (%,14%mb) PLSR
Dry gluten (o/o, I4Yo mb) PLSR

Damage starch (Corrected PLSR
Chopin Dubois units)

Ash (%) PLSR
Stability (min) PLSR

Degree of dough softening in 20 PLSR
min mixing @U)

Degree of dough softening in 12 PLSR
min after development time

@u)
Farinograph quality number PLSR

Resistance of dough to PLSR
deformation (mm)

Ratio of deformation PLSR
Deformation energy (10-4 Ð PLSR

0.66 0.66 0.86
0.17 0.r7 0.22
1 .01 1 .25 r.63

0.023 0.021 0.024
0.76 0.19 1.02

6.4 6.74 8.77

6.2 6.6 11.0

7.3 7.7 9.1

4.44 4.67 6.07

0.07 0.07 0.04
Is.6 16.5 z|.s
@ata are pretreated using SNT
procedures, and transformed with first
processing)

PLSR and
Barley

other main models used in NIR spectroscopic (absorbance) studies

DON levels (ppm)
400 - 2500 nm (2 run) ANN
400 - 2500 nm (a run) ANN

400 - 2500 nm (10 nm) ANN
400 - 2500 nm (20 nm) ANN
400 - 2500 nm (a0 nm) ANN

400 - 700 nm (10 nm) ANN
700 - 1100 nm (10 nm) ANN

1100-2500nm(10nm) ANN
1500 - 1850 nm (10 nm) ANN

0.96
0.99
0.94

0.98
0.88
0.93

0.90

R2

0.933
0.923
0.924
0.9i5
0.921
0.92r
0.9r2
0.840
0.805

0.92
0.90

0.79
0.9s

+ DET
derivative

SEP

3.097
3.431
3.490
3.694
3.474
3.351
3.706
4.958
5.461
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wheat 
vitreousness

All kernels PLSR

Obvious vitreous or non PLSR
vitreous kernels

Detection of parasitized rice
weevils

Infested vs. uninfested PLSR
Parasitoid vs. weevil PLSR

PLSR and other main models used in VisAtrIR reflectance spectroscopic studies

Wheat
Identification of classes

R2 : 0.26, Conect classification rate : 75o/o Dowell (2000)
(cross validation), 73yo (calibration), 12%

þrediction)
R2 = 0.85, Correct classification rate : 99.8o/o

(cross validation), l00o/o (calibration), I00o/o

(prediction)

Two-class models
Visible region PLSR

NIR region PLSR

Red vs. white wheat classes PLSR

Interwhite wheat classes PLSR

Interred wheat classes PLSR

R2:0.90, SECV:0.15
R2 = 0.87, SECV:0.18

Average classification accuracy : 72.72 Delwiche and Massie

99.0r% (19e6)
Average classification accuracy : 78.39
9238%
Classification accuracy : 97.5o/o (white), 98.8%
(red)
Classification accuracy : 89.3Yo (HWH), 93.6%
(swH)
Classification accuracy = 92.0Yo (hard red wheat

Baker et al. (1999)
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Red vs. white wheat classes MLR

Interwhite wheat classes MLR

Interred wheat classes MLR

Determination of dark hard
vitreousness

Including bleached kernels PLSR

Excluding bleached kernels PLSR

classes), 73.4% (HRS), 85.9% (HRW), 65.5%
(sRw)
Classification accuracy : 96.5Yo (white), 98.2%
(red)
Classif,rcation accuracy : 86.8%o (HWH), 92.1%
(swH)
Classification accuracy :9I.6%;o (hard red wheat
classes), 75.8% (HRS), 78.1% (HRW), 63.3%
(sRw)

Average classification accuracy : 90.7 - 97.1% Wang etal. (2002)
(cross validation)
Average classification accuracy : 90.7 - 97.l%
(test)

Average classification accuracy : 97.l - 100.0%
(cross validation)
Average classification accuracy :97.5 - rc}.0%
(test)

PLSR and other main models used in VisÆliIR transmittance and reflectance spectroscopic studies
Corn

Detection of fumonisin levels
1 - i0 ppm PLSR,

10 - 100 ppm Discriminant
>100 ppm analysis

Detection of aflatoxin
0 ppb Discriminant

1 - 10 ppb analysis
10 - 100 ppb

>100 ppb

0.6 -7.2%o enor
23.5 - 73.0%ó enor
0 - l.7Yo enor

0 - 0.6% error
1.0 - 3.1o/o enor
52.2 - 87.jYo enor
2.4 - 4.8Yo enor

r29

Dowell et al. (2002)

Pearson et al. (2001)



0ppb PLSR
1-10ppb

10 - 100 ppb
>100 ppb

Main models in NIR hyperspectral imaging studies

Apple

Detection of bruises Principal
components
transform,
minimum
noise
transform

Detection of bitter pit lesions

Maize

Moisture
None (lr[o outliers removed)

None (outliers removed)
SNV pretreated
DET pretreated

SNV - DET pretreated
MSC pretreated

None Q.{o outliers removed)
None (outliers removed)

SNV pretreated
DET pretreated

SNV - DET pretreated
MSC pretreated

None (No outliers removed)

0 -2.6Yo enor
2.I - 4.7%o enor
78.9 - 9L7Yo enor
4.9 - 14.7%o error

Bruise detection accuracy =
delicious apples)
Bruise detection accuracy : 59 -
delicious apples)

Discriminant
PLS model

PLSR
PLSR
PLSR
PLSR
PLSR
PLSR
PCR
PCR
PCR
PCR
PCR
PCR
Genetic

Pixels occupied
separated from the

R2

0.786
0.871
0.836
0.872
0.828
0.664
0.558
0.856
0.786
0.858
0.792
0.647
0.795

62 - 88% (Red Lu (2003)

94% (Golden

by bitter pit
pixels of healthy

SECV
1.9i
r.20
r.36
r.20
1.35

1.9s

2.31

1.25

1.52
1.25

1.50
2.01

1.s5

lesions were Nicolai et al. (2006)
skin

Cogdill et al. (2004)
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None (outliers removed)

SNV Pretreated
DET Pretreated

SNV - DET Pretreated

Oil content

None Qrlo outliers removed)

None (outliers removed)
SNV Pretreated
DET Pretreated

SNV - DET Pretreated
None Qrtro outliers removed)

None (outliers removed)
SNV Pretreated
DET Pretreated

SNV - DET Pretreated
None Qllo outliers removed)

None (outliers removed)
SNV Pretreated
DET Pretreated

SNV - DET Pretreated

algorithm +
MLR
GA+MLR
GA+MLR
GA+MLR

PLSR
PLSR
PLSR
PLSR
PLSR
PCR
PCR
PCR
PCR
PCR
GA+MLR
GA+MLR
GA+MLR
GA+MLR
GA+MLR

0.853

0.745
0.820
0.806

0.3 85

0.515
0.53 8

0.491
0.551
0.114
0.470
0.467
0.4r9
0.492
0.439
0.508
0.454
0.407
0.554

Strawberry
Firmness

70% - Full-riPe MLR
50% - Full-riPe MLR

Soluble solids content
70% - Full-riPe MLR

All riPeness levels MLR

1.27

r.69
1.36
r.46

1.88

r.40
1.38

1.47

r.37
2.05
r.45
r.43
t.49
t.42
r.62
1.41

1.50

1.56

1.39

SEP : 0.241 - 0.262,R = 0.588 - 0.645

SEP : 0.344- 0.350, R : 0.786 - 0.796

SEP = 0.43 - 0.80, R : 0'32- 0.87

SEP : 0.58 - 0.69, R: 0.59 - 0.73
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Wheat
Correction of curvature induced

spectral variability

Main models in VisA{IR hyperspectral imaging studies
Apple
Identification of surface defects Asymmetric

and symmetric
second
difference
models

Morphological
shrinking,
Simulated
ellipsoidal
surface fitting

Morphological shrinking was more effective.
Both methods performed well in reducing the
spectral variability along the minor axis of the
endosperm of the wheat kemel.
Ellipsoidal surface fitting was not effective in
correcting the spectral variability along the major
axis of the endosperm of wheat kernel.

685 nm (Chlorophyll absorption wavelength)
722 nn and 865 nm (l{IR wavelengths)
were responsible for detection of surface defects
in apples

Wang and Paliwal (2005)

Mehl et al. (2004)
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Table 4.3 Confusion matrix for the 75 NIR reflectance feature LDA model for eight
wheat classes (n :300 per class)

Class
(Tof,--+ CPSR CPSW CWAD CWES CWH\üS CWRS CWRW CWSWS

tFrom)J
CPSR

CPSW

C\ryAD

CWES

C\ryHWS

CWRS

CWRW

CWSWS

300

0

0

0

0

0

0

0

0

296

2

0

0

0

0

0

0

1

296

0

0

0

0

0

0

0

2

300

0

0

0

0

0

0

0

0

300

0

0

0

0

J

0

0

0

300

0

0

0

0

0

0

0

0

300

0

0

0

0

0

0

0

0

300

t33



Table 4.4 Confusion matrix for the 75 NIR reflectance feature QDA model for eight
wheat classes (n = 300 per class)

Class
(To)r+ CPSR CPS\ry CWAD CWES CWHWS CWRS CWRW CWSWS

ßrom) *
CPSR

CPSW

CWAD

C\ryES

CWHWS

CWRS

CWRW

CWS\ryS

299

0

0

0

0

0

0

2

I

29r

I

8

0

5

0

1

0

5

298

1

0

0

1

1

0

0

1

290

0

0

0

0

0

0

0

1

296

0

0

0

0

4

0

0

4

295

0

0

0

0

0

0

0

0

299

4

0

0

0

0

0

0

0

292

t34



7.2List of wheat classes and their moisture levels for Tables 4.5 to 4.10

S. No.

1

2

J

4

5

6

7

8

9

10

11

t2

i3

T4

15

t6

t7

18

r9

20

2T

22

23

24

25

Wheat class and its moisture content

CWES wheat at72Yo moisture level

CWES wheat at l4o/o moisture level

CWES wheat at 16%o moisture level

CV/ES wheat atlSYo moisture level

CWES wheat at2jo/o moisture level

CWHV/S wheat at I2o/o moisture level

CWHWS wheat atI4o/o moisture level

CWHWS wheat at160/o moisture level

CWHWS wheat atlSo/o moisture level

CWHWS wheat af 20o/o moisture level

CWRS wheat at I2o/o moisture level

CWRS wheat at I4Yo moisture level

CWRS wheat at160/o moisture level

CWRS wheat atISYo moisture level

CWRS wheat at2}o/o moisture level

CWRW wheat at12% moisture level

CWRW wheat at I4o/o moisture level

CWRW wheat at76%o moisture level

CWRW wheat atlSYo moisture level

CWRW wheat at20%o moisture level

CWSWS wheat at I2o/o moisture level

CV/SV/S wheat at14% moisture level

CWSWS wheat at160/o moisture level

CWSWS wheat at I8%o moisture level

CWSWS wheat at20%o moisture level
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T.able 4.5 Confusion matrix for the 75 NIR absorbance feature LDA model for five wheat classes each at lÏve various
moisture levels (n : 100 per class per moisture level)

10 11 12 13 t4 ls 16 17 18 19 20 2t 22 23 24 25

000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
001
000
000
10000
0 i00 0

0 0 100

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

100

0

0

0

000000
000000
000000
000000
000000
000000
010000
000000
000000
000000
000000
000000
000000
000000
000000
9820000
0 100 0 0 0 0

0198000
00198 l0
0000990
2 0 0 0 0 ,98
000000
000000
000000
000000

0

0

0

0
5

0
0
0
0
1

0
0
0
0

100
0
0
0

0

0

0

0

0

0
0

1990000100000000
2 0 100 0 0 0 0 0 0 0 0 0 0 0 0

3009800002000000
4000940000s00001
5000086000090000
6000009800002000
70000008610012000
8000000098000020
9000200009800000
10000210000960000
11000004000096000
120000000000010000
13000000010000981
14000000001000099
1500000000000000
1600000000000000
1700000000000000
1800000000100000
1900000000000000
2000000000000000
2t00000000000000
2200000000000000
2300000000000000
2400000000000000
2500000000000000

5
Class
(To)
rom
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Table ,4..6 Confusion matrix for the 75 NIR absorbance feature QDA model for five wheat classes each at five various
moisture levels (n = 100 per class per moisture level)

2 3 4 5 6 7 8 9 10 11 t2 13 14 15 16 t7 18 19 20 2t 22 23 24 25

I 990 000 00 00 0 I 0 00 0 0 0 00 0 0 0 0 0 0

2 09900000000 0 1 00 000000 0 0 0 0 0

3 0 09900000000 0 I 0 000000 0 0 0 0 0

4 00 085000 1 4400 13 I 000000 0 0 1 0

5 0 0 00980000 0000 020 00000 0 0 0 0

6 0 0 0 0 0770 0 0 0220 0 0 0 1 0 0 0 0 0 0 0 0 0

7 00 00008900 0 4020 003 0000 I 1 0 0

I 0 0 03 0008600 0090 0000000 0 I I 0

9 0 0 060000890 005 0 00000 00 0 0 0 0

10 0 0 0 i0 0 0 0 0 2 77 0 0 0 3 7 0 0 0 0 0 0 0 0 1 0

11 1 1 0 0 020 0 0 0930 0 0 0 1 20 0 0 0 0 0 0 0

t2 0 2 0 0 0 0 0 0 0 0 0926 0 0 0 0 0 0 0 0 0 0 0 0

13 0 0 020 0 020 0 0 0960 0 0 0 0 0 0 0 0 0 0 0

t4 0 0 0 5 0 0 0 1 0 0 0 0 3910 0 0 0 0 0 0 0 0 0 0

15 0 0 0 0 0 0 0 0 1 I 0 0 02960 0 0 0 0 0 0 0 0 0

t6 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 85 lt 0 0 0 I I 0 0 0

t7 0 2 0 00 0 0 0 0 0 0 0 0 0 0 1960 0 0 l 0 0 0 0

18 0 1 020 0 0 0 0 0 0 0 2 0 0 0 2901 0 0 0 0 2 0

t9 0 0 0 1 0 0 0 0 0 0 0 0 0 I 0 0 0 0970 0 0 0 0 I
20 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0950 0 0 0 5

2t 0 0 0 0 0 0 0 0 0 0 3 0 0 0 0 4 0 0 0 0,92 I 0 0 0

22 0 5 0 0 0 0 0 0 0 0 1 0 0 0 0 I 0 0 0 0 0930 0 0

23 0 0 0 0 00 0 3 0 0 0 0 0 0 0 0 0 0 0 0 0 095 2 0

24 0 0 0 00 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1951
25 0 0 0 0 0 0 0 0 0 I 0 0 0 0 0 0 0 0 0 0 0 0 0 099

Class
(To) 

'>1(From*
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Table 4.7 Confusion matrix for the 51 NIR absorbance feature LDA model for five wheat classes each at five various
moisture levels (n = 100 per class per moisture level)

9 10 11 12 13 t4 15 t6 t7 18 19 20 2t 22 23 24 25

I 980 000 I 00000 0 000 I 0 00 0 00 0 0 0
2 0100000 0 00000 0 00 0 0 0 00 0 0 0 0 0 0
3 0 09800 0 02000 0 00 0 0 0 00 0 00 0 0 0
4 0 0 0860 0 001200 0 i i 0 0 0 00 0 0 0 0 0 0
5 0 0 00710 000230 0 00 6 0 0 00 0 0 0 0 0 0
6 0 0 0 0 0 100 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
7 00 000 0922006 0 00 0 0 0 00 0 0 0 0 0 0
8 0 0 000 0 098000 0 200 0 0 00 0 00 0 0 0
9 0 0 040 0 019400 0 01 0 0 0 00 0 0 0 0 0 0
t0 0 0 040 0 003920 0 00 1 0 0 00 0 0 0 0 0 0
11 0 0 000 6 0000940 00 0 0 0 00 0 0 0 0 0 0

t2 0 0 0 0 0 0 0 0 0 0 0 100 0 0 0 0 0 0 0 0 0 0 0 0 0
13 0 0 000 0 0 I 000 0981 0 0 0 00 0 0 0 0 0 0
t4 0 0 0 1 0 0 00 I 00 0 0980 0 0 00 0 0 0 0 0 0
ls 0 0 00 1 0 00 020 0 0 1960 0 00 0 0 0 0 0 0
t6 0 0 000 0 00000 0 00 0973 00 0 0 0 0 0 0
t7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 100 0 0 0 0 0 0 0 0
18 0 0 000 0 00 1 00 0 00 0 0 2970 0 0 0 0 0 0

t9 0 0 000 0 00000 0 00 0 0 0 0981 0 0 0 0 1

20 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 100 0 0 0 0 0
21 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 I 0 0 0 0,99 0 0 0 0
22 0 0 000 0 00000 0 00 0 0 3 00 0 097 0 0 0
23 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 01000 0

24 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 01000
25 0 0 00 0 0 00 00 0 0 00 0 0 0 00 0 0 0 0 0100

-r+ I
Class
(To)
rom
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Table 4.8 Confusion matrix for the 51 NIR absorbance feature QDA model for five wheat classes each at five various
moisture ìevels (n: 100 per class per moisture level)

9 10 11 t2 13 t4 ls 16 t7 18 19 2021 22 23 24 2s

0000000000000
0000000000000
0000000000000
1300000000000
0040000000000
0002000000000
2000300000100
4000010000000
1000000000000
0170000000000
0000000000000
0000000000000
98000000000000
09800000000000
10990000000000
00092500020000
00009900000000
00001972000000
00000099000000
00000009800002
0 0 0 I 0 0 0 0 .99 0 0 0 0
00010000096000
000000000098i0
00000000000982
00000001000099

00000000
00000000
00000000
00006300
950000100
0850000130
009200020
00093 1000
000085 100
0 0 0 0 i 81 0 0

020000980
000000098
00000000
00000100
00000000
00000010
00000010
00000000
00000000
00000000
00000000
00000000
00010000
00000000
00000000

0

0
0

It

10000
01000
0 0 100
000
000
000
000
000
000
000
000
020
000
000
000
000
000
000
000
000
000
030
000
000
000

\t
0

0

0
I
J

0

r->1
Class
(To)
From

t:
1(

0

0

2

I
0

0

0

0

I
0
0

0

0

0
0

I
2
3
4
5
6
7
8
9

10
11

12

13
l4
15
t6
l7
18
19
20
2t
22
)?

24
25
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Table 4.9 Confusion matrix of top seven NIR absorbance feature LDA model for five wheat classes each at fTve various
moisture levels (n = 100 per class per moisture level)

t2 13 t4 15 16 t7 18 19 20 21 22 23 24 25

I 960 000 1 00000 0 00 0 3 0 0000 0 0 0 0

2 093000 1 I 000 0 400 0 0 0 0 I 00 0 0 0 0

3 0 0 89 0 0 0 0 10 0 0 0 0 0 0 0 0 0 I 0 0 0 0 0 0 0

4 0 0 07800 0 0 9 0 0 0 2ll0 0 0 0 0 0 0 0 0 0 0

5 0 0 0 0540000390 0 0 0 7 0 0 0000 0 0 0 0

6 0 0 000960000 4 000 0 0 0 0000 0 0 0 0

7 00 000 5871 007 0 00 0 0 0 0000 0 0 0 0

8 0 0 l 0000913 00 0 5 0 0 0 0 0000 0 0 0 0

9 0 0 013000 1810 0 0 1 4 0 0 0 0000 0 0 0 0

10 0 0 0 2 2 0 0 0 4 76 0 0 0 I ll 0 0 0 0 4 0 0 0 0 0

11 0 0 0 0 0 16 1 0 0 0 82 1 0 0 0 0 0 0 0 0 0 0 0 0 0

t2 0 I I 000 1 000 1933 0 0 0 0 0000 0 0 0 0

13 0 0 03 0003 3 00 090i 0 0 0 0000 0 0 0 0

t4 0 0 0 14 0 0 0 0 1 0 0 0 1 83 I 0 0 0 0 0 0 0 0 0 0

ls 0 0 003 00000 0 0 0 s910 0 00 I 0 0 0 0 0

16 0 0 000600000 0 0 0 0913 0000 0 0 0 0

t7 0 0 00 0 1 0 0 00 0 0 0 0 0 2970000 0 0 0 0

18 0 0 000000000 0 00 0 0 1971 00 0 I 0 0

19 0 0 0 I 0000 1 00 0 0 0 0 0 0 09800 0 0 0 0

20 0 0 0 000 00 00 0 0 0 0 0 0 0 0 0970 0 0 0 3

2t 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 7 0 0 0 0 .93 0 0 0 0

22 0 0 000000000 0 0 0 0 I 1 000 097 1 0 0

23 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 01000 0

24 0 0 000000000 0 00 0 0 0 0 I 00 0 591 3

2s 0 0 000000 000 0 0 0 0 0 0 0 020 0 0 098

10 1l97643
Class
(To)-'+ 1

lFromú
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Table 4.10 Confusion matrix of top seven NIR absorbance feature QDA model for five wheat classes each at five
various moisture levels (n : 100 per class per moisture level)

10 11 t2 13 t4 15 t6 l7 18 19 20 2t 22 23 24 2s

00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
10000
02000
00000
00000
00006

100, 0 0 0 0
098000
0 0 100 0 0
001935
000196

00000000000
00100000000
00000000000
2 0 0 0 11 0 0 0 0 0 0
80000'700000
08000000000
05000002000
00040000000
000s2000000
730000300000
089000000000
019430000000
000942000000
200184200000
000019700000
00000098 1000
010000196000
0000000198t0
000000000990
100000000093
00000000000
00000002000
00000000000
00000000100
00000000003

100 0 0 0 0 0 0 0 0

0990000000
00100000000
00077000010
0000850000
0000092000
00000092 10
0001000932
00012000180
000221 0001
0 0 0 0 0 11 0 0 0
020000000
000000022
0001000001
000020000
000000000
000000000
000000000
000100000
000000000
000000000
000000000
000000000
000000000
000000000

:+ I
Class
(To)

From
1

7

3
4
5

6
7
8
9

10
11

12
13
t4
15
t6
17
18
19
20
2t
)1

23
24
25
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Table 4.11 Predicted protein contents of wheat classes using PLSR model (75 input
features).

Sample
No.

CWHWS CWES CWRS CWRW CWSWS

1

2
J

4
5

6
7
8

9

10

II
12

t3
t4
l5
16

17

l8
19

20
2t
22

24
25
26
27
28
29
30

31

32
JJ

34
35
36
3t
38
39

40
4l
42
43
44
45
46
47
48
49
50

t6.87
17.79
17.49
17.12
t6.59
t6.96
16.93
17.14
r'Ì.36
17.77
t6.34
17.53
17.13
16.67
t7.22
17.92
17.03
t6.62
17.23
r6.98
t7.69
LI.JI
17.s4
t8.22
17.80
17.69
17.51

t8.32
17.97
l','|.23
17.06
17.99
17.01
17.24
t'|.66
ll.tt
17.38
17.28
17.76
t7.26
17.52
t7.40
18.24
17.93

17.16
17.ll
t8.23
17.83
17.86
l't.26

16.94
16.81
16.1 1

16.74
16.80
16.88
16. l0
t6.44
16.5 I
16.00
17.37
16.14
t7.03
17.08
16.70
17.13

16.87
t7.6r
16.69
t7.86
17.52
15.78
15.57
16.09
16.29
r7.09
15.33

1s.93
t6.52
16.41
r6.88
16.58
18.07
1 8.17
18.07
16.80
18.65
16.7 t
t7.14
17.15
t6.70
16.60
15.27
15.00
15.38

14.86
16.66

15.76
16.28
15.53

20.25
t9.17
19.35
18.00
18.32
19.98

18.92
19.23
19.08
18.85
19.t6
18.67
18.23
18.29
18.35
t8.42
18.62
19.00
18.28
17.21
18.89
18.96
18.68
18.43
t't .7 s
18.25
18.64
18.62
18.98

18.20
18.94
19.08
19.s9
18.20
19.17
20.03
19.22
19.91
19.42
19.5 I
19.60
18.74
18.59
t8.52
18.17
t8.52
19.0s
18.58
18.0s
18.54

13.62
14.52
t3.21
t3.75
14.36
14.40
13.75
14.05

l3 .55
t4.t6
13.55
14.43
14.33
15.16
14.05
14.37
14.42
t3.21
14.t9
13.12
14.30
14.29
14.49
14.49
14.3r
t4.34
13.76
r 5.19
14.07
14.68
14.53

15.22
1s.09
14.61
14.38
14.85
15.15
14.18
14.70
14.82
14.47
15.50
t4.93
1432
14.74
14.s9
14.61

14.09
t4.54
14.40

14.26
14.51
15.03
15.17
15.02
14.3 8

13.48
15.00
14.55
14.88
14.26
14.58
13.72
14.40
14.34
14.45

14.48
13.01

t3.41
14.28
14.24
t4.41
t4.21
14.88
13.66
14.3 8

14.27
14.36

13.78
r 3.80
14.35
14.59
14.27
14.63
t4.21
14.65

14.89
13.71

14.49
14.54
13.42
13.35
13.28
13.32
15.35

14.20
14.57
13.9 I
13.71

13.77

t42



Table 4.12 Predicted protein contents of wheat classes using PLSR model (51 input
features).

Sample
No. CWHWS CWES CWRS CWR\ry CWSWS

I
2
J

4
5

6

7
8

9

l0
ll
12

l3
l4
t5
t6
17

18

19

20
2t
22
23

24
25
26
27
28

29
30
3l
)¿
JJ
34
35
36
5t
38
39

40
4t
42
43
44
45
46
47
48
49
50

16.60
17.54
11.t5
t6.61
r6.66
16.98
16.9s
16.93
16.97
17.t3
16.51
17.08
17.01
16.2r
t7.5t
17.83
17.00
16.93
17.t5
t7.t4
17.14
17.32
t7.12
17.81
17.84
t].52
17.58
18.08
t7.98
11.11
16.15
11.57
16.74
16.91
17.45
16.70
16.81
16.97
17.23
16.83

t7.55
1 7.10
17.95
11.70
17.06
17.47
17.93
t7.89
17.69
17.t7

17.24
17.18
t6.52
t7.06
17.16
17.18

16.s4
16.89
16.79
16.26
t7.51
t6.40
17.49
17.18
17.20
17.49
17.0t
t7.76
16.82

18.15
17.53
15.85
15.71

16.t7
16.30
16.90
15.43
16. t0
16.3 8

16.63
t6.93
17.29
17.84

18.34
18.7 I
16.71
18.86
17.46
l7.20
17.42
16.01

t6.34
15.15
15.2r
15.31

t4.14
t5.92
15.23
t5.94
15.31

19.99
19.53
19.85
18.98
18.s3
20.25
19.29

19.59
19.44
19.t7
19.38
18.81
t 8.35
18.48
18.56
18.60
18.64
19.2r
18.44
17.58
18.61
18.70
18.98
18.68
17.77
18.01
18.57
18.41
19.02
18.05

18.42
18.58
19.09
17.83
19.05
19.80
r 8.65
19. l6
19.05
18.99
19.30
18.45
18.45
18.35

t'7.93
18.42
19.06
18.69
18.07
18.70

13.73
14.56
13.59
t4.12
14.40
t4.62
13.55
14.26
t3.13
14.25
13.41
14.30
14.09
14.93
13.98
t4.04
14.45
12.37
l3 .30
r3.48
14.67
14.72
14.90
14.89
14.93
14.81
t4.13
15.23
14.65

15.19
14.79
15.1 1

15.29
14.62
14.73
15.03
14.88
14.l5
14.82
14.66
t4.64
15.55
14.85
14.42
15.00
14.54
14.85
t4.r r

14.67
t4.40

13.81
14.26
14.12
14.58
14.4r
t3.19
13.03
14.43
13.98
t4.13
13.65
13.80
13.24
t4.03
13.63
t3.96
13.80
12.44
l3.98
r4.01
14.12
14.43
14.09
14.93
13.49
t4.29
t4.32
14.28
13.45

13.61

t4.40
14.56
t4.t4
14.81

14.52
15.02
15.21
t4.04
14.85

t4.87
14.27

I4.t I
14.18
14.13
r 5.89
14.93
15.47
14.69

t4.42
14.51

r43



Table 4.13 Predicted oil
features).

contents of wheat classes using PLSR moder (75 input

Sample
No. CWHWS CWES CWRS CWRW CWSWS
I
2
J

4
5

6
7

8

9
t0
ll
l2
13

t4
15

16

t'7
18

19

20
2t
22
23
24
25
26
21
28
29
30
3l
32
33
34
35

36
37
38
39
40
4t
42
43
44
45
46
47
48
49
50

1.52
1.48
r.50
t.54
t.63
1.59
1.57
1.53
t.5l
t.49
1.62
1.54
1.55
1.56
1.47
1.60
t.s9
1.56
r.59
1.6 r

1.53
1.53
1.55
1.45
1.53
1.4'7

1.58
1.46
1.53

1.62
1.69

1.59
l.8 t
1.68
1.60
1.67
1.69
1.63
1.60
1.70
1.51

1.56
1.46
1^49

1.56
1^49

1.52
1.47

1.53
1.56

1.57
t.52
1.55
1.53
r.60
1.58
L53
1.56
1.55
1.53
1.44
1.54
1.44
1.50
t.46
1.40
1.49

t.46
L48
1.39
1.47
1.52
t.s2
t.49
1.46
t.37
1.49
1.44
1.50

t.40
1.38
1.42

1.36
1.3 8

1.29

t.42
t.33
1.38
1.43
t.34
1.s 1

1.49

1.60
t.57
r.60
1.56
1.45

1.57
1.59
L60

1.40
t.4t
1.28
1.36
1.40
1.30
1.36
1.36
1.38
r.35
1.3 5

1.34
1.42
1.38
1.36
1.40
1.39

1.40
1.39

1.42
1.50
1.50
1.45
1.41

1.53
1.43
1.48
1.45
1.48
t.44
1.43

|.40
1.3 I
1.43
t.40
1.26
1.44
1.32
1.30

1.29
I.38
1.42
1.43
1.45

1.46
1.40
1.3 8

1.38

t.46
1.40

1.81

L.IJ

1.18
t.'78
1.88
1.74
1.84
1.77

l.8 r
1.79
1.82
1.80
1.83
1.74
1.7 5

1.80
1.70
1.79
1.88

t.16
t.7 t
t.72
1.73
1.73
r.70
t.73
1.81

1.69
t.l5
t.7l
1.7 5

1.12
t.69
r.73
t.76
1.74
1.73
r.79
1.72

1.80
1.76
1.66
1.68
1.73
1.72

l.74
t.67
t.7 5
1.73
1.80

t.79
1.76
1.17
1.71

1.7 5

1.82
1.84
t.17
t.72
t.78
1.71

t.76
1.78
1.80
t.69
1.17
1.7 5

1.88
1.66
1.72
1.55
t.57
1.60
1.58
1.66
1.57
1.59
1.56
t.63
1.63

1.66
1.66
|.61
l.6 r

t.69
t.63
1.60
1 .67

1.6s
1.63

1.14
1.7 5

1.80
l.7l
t.7 t
l.l5
1.68
1.71

1.78
r.74

t44



Table 4.14 Predicted oil contents of wheat classes using PLSR model (51 input
features).

Sample
No.

CWHWS CWES CWRS CWRW CWSWS

I
2
J

4
5

6
7
8

9
l0
lt
t2
l3
14

15

t6
t7
l8
l9
20
2l
22
23
24
25
26
27
28
)q
30
3l
32
)3
34
35
JO

JI
38

39
40
4t
42
43
44
45
46
47
48
49
50

1.52
1.43
1.48
1.48
1.60
t.57
1.54
1.53
t.5 t
l.5 t
1.59
t.49
1.47
1.51

1.38
1.54
l.s6
1.54
1.54
1.56
1.56
t.5't
1.58
r.49
1.56
|.49
1.60
1.47

t.52
r.63
1.64
1.55
1.64
1.60
1.54
1.64
1.63
1.58
1.59
1.64
1.55

1-54
1.47
1.54

1.57

1.49
1.53

1.46
1.52
1.57

t.56
1.53
1.58
1.54
1.58
1.60

.55

.57

.57

.56

1.37
1.39
1.27
t.32
l.38
1.28
1.33
1.32
1.35
1.33
t.36
1.31
t.43
1.42
r.37
1.43
1.43
1.44
1.42
1.46
1.48
1.49
1.47
1.46
1.51

l.4l
1.49
1.48
1'43
1.46

1.36
1.35
1.29
r.39
1.33

1.23
1.41

1.24
t.25
1.24
1.40

1.39
r.44
1.47

1.49
1.45

1.42
1.40
1.4s
t.41

t.80
t.7 |
1.79
1.'73

1.74
t.7 t
1.82
l.1t
1.19
r.77
1.79
1.74
1.19
1.68
1.71
t.1t
1.67
1.78
1.10
1.68
1.70
1.70
1.70
1.69
1.68
1.70
1.79
1.68
1.68
r.68
1.74
t.t0
1.72
1.75
1.74
t.73
t.7t
1.78
l.7t
t.77
1.72
1.66

1.68

t.73
I.7r
1.72
1.67

t.'14
1.72
1.78

1.13
L68
1.13

t.64
1.70
1.77
1.78
t.t I
r.70
1.73
1.77
1.79
t.82
1.81

1.18
t.82
1.80
t.92
t.13
1.80
1.65
l,64
t.66
r.65
1.72
r.65
t.64
1'63
1.72
t.70
1.78
t.7 5
1.18
1.66
1.10
1.66
1.64
1.70

1.69
1.6'7

t.7 5

1.76
1.78

l.7t
1.73

1.77

1,71

1.75
1.78
t.7 5

t.41
1.55
t.45
1.50
1.46

t.44
1.52
t.41
t.49
1.39
1.42
1.48
1.48

1.46
t.45
1.35
1.50

1.44
1.46
1.38
t.42
1.45
1^36

1.39
1.32
1.35
1.32
1.40
1.45
t.4l
1.55
1.54

l.6 r
1.58

t.62
1.57
1.49

1.58
1.60
t.6l

t4s


