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ABSTRACT

This thesis studies the optimal control of a
synchronous generatort The control minimizes the ex-
-.cﬁrsion of the squared values of the system parameters
during disturbances and faults. The effect of different
system models of varying complexity is investigated. Then
using a fifth order model with practical data supplied by
the Manitoba Hydro, a linear feedback control is obtained
by'sblving the corresponding matrix Ricatti equation. The
solution is by a new numerical method called the "Matrix
Derivative Method." This method is compared with various
existing numerical techniqﬁes for solving the matrix Ricatti
equation. This control is then applied to the system. For
comparison purposes, the optimal control is also derived
for a similar system with much lighter damping. The pos-
sibilities of suboptimal control and implementation problems

are also considered.




I. INTRODUCTION

3

- With the rapid dévelopment of modern control theory,
applications of thése new concepts to power systems become
a popular topic. Some try to minimize the time needed to
restore the system to normal operating conditions after a

fault or a disturbance using the 'bang bang' principle.

Others try to minimize the excursions of the variables such
as frequency, power, etc., or in other words, to increase
stability. An actual power system is a highly complicated
thing, but an understanding can be gained by representing it
by a simplified system that contains the main features and
studying tne various aspects in dériving an optimal control
for it.

In this thesis, we try to represent a simplified
generator by a 5th order differential equation and aerive

an optimal control that will minimize the excursion of the

variables after a fault or disturbance. The generator has
both voltage regulator and speed governor controls, though
both of these are simplified. The damper windings of the
machine are neglected. Emphasis is not on the actual

"optimal control" derived, but in studying the problens,

difficulties and insights in going through the process.



IT. MODELING OF THE SYSTEM

The simplest form of a generating unit is a single syn-
chronous generator connected to an infinite bus by a trans-
"mission line. The synchronous machine's prime mover is driven
by hydraulic power. The transmission line is assumed to be so
short that it has negligible resistance and reactance. This is
the system that we want td study.

"This system‘can be modelled to different degrees of ac-
curacy by different numbers of differential equations. One may
take into account all aspects of the synchronous machine as well
as the régulating devices and end up with a 10th or 12th order
.system, but for the purpose of this paper, a model that includes
only the main features of the system is adequate.

fhere are various forms of representation of a machine
by a set of equations. The classical books and papers represent
the machine in the form of a voltage current relationship*3’4’5
or the circuit form

V=2I.
But the modern.trend is to representithe system in state

variable form
X =Ax .

This form has the advantage of being easily programmed and com-

puted by modern high speed computers. Also, since much research




has been done in this direction, the mathematical basis for dif-
ferential equations of th?s form is very well founded and well
khown. For example, the effect of the eigenvalues of A on
the system stability is well studied and well known. Also, a
- large number of theories have been established or conjectured
for systems of this form. So in this paper, we shall represent
our system by a set of state equations.

In order to.determine the complexity of our model that
is needed to achieve appropriate accuracy and also to study
the relative weights and interactions of various parameters,
we shall study systems of various orders and with different
state variables. A set of data is obtained from one of the
stations of Manitoba Hydro and applied to various models under

study.




TABLE I

Nomenclature:

§ - power angle

w - frequency

wf - field flux linkage

Vf -- excitation voltage

Pm - input power of prime mover

X4 - synchronous reactance, d-axis
xé - transient reactance, d-axis

xq - synchronous reactance, g-axis
Td0 - open circuit time constant of field
Te - exciter time constant

T4 -- equivalent time constant of turbine unit
T - water time constant

Tga - governor actuator time constant
Tg -— governor time constant

D - damping coefficient

H - inertia constant

Vo - infinite bus voltage

W - infinite bus frequency

Pe - electrical power

- Pa - accelerating power of turbine
ue,ug -- control signals

60 - power angle at operating point

g - gate position of governor-turbine unit




Data

Rated power = 115 MVA

Rated voltage = 13.8 KV

”
ol
1l

X
1

]
1l

<
il

0.23 for 25% load
0.53 for 50% load
0.84 for 80% load

1.05 for 100% locad

634.42 MW - sec?

69.6%
29.8%
20.1%
6.21 sec
0.05 sec
5.5 sec
12.2 sec
2.43 sec
23°

1 p.u. (13.8 KV)

TABLE IL



The simplest form is the 2nd order system (also known as
1

*
the inertial model)

| o' | 9
Hs + D S
K,
Fﬁg.z—l Inertial Model
2 2 .
V -
K, = Yo ©5 8 + Vo ©0528,(%3 = ¥3) - 118.0431 p.u.
' ]
Xd Xd Xq

The primed variables indicate deviations from operating point;
thus the differential equations represent the relations between
the incremental changes of the variables. This notation will
be used throughout the thesis.

Suppose the system is disturbed from normal operating con-
ditions so that &6'(0) = 0.8 pu, w'(0) = 0.9 pu, the subsequent
behaviour of the system, calculated and plotted by a digital com-
puter using an incremental time of 0.0002 sec., is shown in Fig.
_2.2 .

The system behaviour with the application of an optimal
. control up* which minimizes the performance index

2 2 2

Jo (108" +10w'”™ + uy, ) dt

T up = shaft input power
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is also shown in Fig. 2.2. Details of obtaining the optimal

control will be discussed later.

There is a significant improvement, but this model is im-
practicable as it is impossible to make the shaft power change
instantaneously with change of states and therefore Pm' can-
not be made an optimal control signal.

Then a 3rd order system with Pm' (input shaft power)
as the third variable is introduced. With control signal u
fed to the governor of the hydraulic turbine, there are several

steps between the control signal and the shaft power.

|k | ¢ | t-ws | &
L +7T,8 1+Ias j

hydraalic g?vznar—furbine unit

PLANT =

Fig. 2-3
The step response of the hydraulic governor-turbine unit

is as shown: »
hydraulic-governor turbine

equivalent block

L R A I

L

100/.-— —_— . - e - e - - e ——
_.--0‘—'"""‘—
’/"—’--

L/ o

6327 =
-~
-
4
’
Vd
V4

Fig. 2-4 Step response of hydraulic governor-turbine unit



To reduce the order of the system, the governor-turbine

*2 __Kg
1 + 1.8
a

unit is approximated by a transfer function
T, being the time for the governor-turbine unit to reach 63.2%
of its step response.

Furthermore, since ug (optimal control) is a linear
combination of state variables, the gquantities Kg and -uw'

can be eliminated from the block diagram as they are included

in ug. The simplified system is:

U3 1 Pm
[ + T,8

Y

Fig. 2-5 Approximate governor-turbine unit.

With Tg = 5.5 sec., T~ 2.43 sec., the equivalent

T_ = 9.0 sec.
a

The block diagram and the uncontrolled response of the

whole system are shown in Fig. 2-6 and Fig. 2-7 respectively.

Y
v

1 + Tys Hs+D S

Fig. 2-6 ,Third order system.
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"We can also take into account the transient electromagnetic
effects of the machine by including the field flux linkage 4%.

The model becomes

Fig. 2-=8 4th order svstem.

Kl is as before
L}
X
K, = _4
3 %3 (x.~x")T.
K4 = + V_ sin ¢ d "d’ do
o o) X4
K2 - VO sin 60
1 1
Tdo== 6.2]1 sec.

This model and the constants are modifications of the

. *
Heffron~-Phillips models. 3

With an initial disturbance of ¢&'(0) 0.8, w'(0) = 0.9,
q%(O) = 0.5, P&(O) = +0.3, the system response is shown in
Fig. 2-9.
Finally, to represent the system more accurately, the

effect of the field voltage is included. This produces a 5th

order system:




1.00

2.00

Lﬂggm‘

o PR PP MY R P PR R R RPT AR

datatated 00000

28

>

DO

PP R PP P P P P Y P Y P F R YT P T EF YT

LA B RR B ASRCE GBI RS D)

Y

T T
1.00 1. 50 2.0 2.50
Fig. 2-9. 4th order system (ungontro-rllydg

3.00

4.00




14

P" | | o 1 . S' Ue
e — 1 Hs+D S
P ]
] K, L | + Tes
, + Iag '
%
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Uy
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' + Ksrdo’ S

.Fig. 2-10 5th order system.

Again, as u_ is a linear combination of the state variables

there is no need to feed any other signdl to the voltage regulator.

T = 0.05 sec.
e
With initial disturbances §'(0) = 0.8 pu, w'(0) = 0.9 pu,
w%(O) = ~-0.5 pu, V1f(0) = -0.8 pu, P&(O) = 0,3 pu, the system

response is shown in Fig. 2.11 .

This model, which includes all the basic dynamics of the
synchronous generator; will be used in the following text of this
thesis. Howéver, it is worth noting that the simpler models give
a fairly good picture of the dynamics of the two most important
parameters, namely &' (power angle deviation which is associated

with the power generated) and ' (freguency deviation).




{
1
3
&
b
&
3
<
Eé
ﬁ
g
a
P
&

2
Fig. 2-11 5th order system (uncontrollgd; ME

SO
j' ,,(,gcff
| r‘m’ I‘jtt'lllj)llll_l_l.l.
& | GJV) * ;...:.:,:.-,;.1:-::;;,:
(_I:F:’ I G _,...111111'
—n ‘;
|y .
L7 e L
= {%“M <t gt
(S
.‘-—'O -
dJ =
e
7
A
_ &) ‘
'
©
=
P ' l e ! T =7 T !
C. G2 0.5¢ 1.0C 1.50 ¢.ug .50 3.00 3.50 4.00 4.50

ST




¢

16

IIXI. THE LINEAR REGULATOR PROBLEM

v

.In optimal éontrol df a system, a perforhance index must
be defined. The optimal control is then defined as the control
function that minimizes the performance index. If a system is
in the state—variable form

é = AX + Bu

and a performance index is defined as

T

o (g_T ox + ETRE) dt

J=%/

which is known as the quadratic-form cost functional, then the
optimal control will be a linear combination of the states. This
is known as the feedback Fform

* -1 T . .
u =R B KX where K is some matrix.

The problem of finding E*r the optimal control, is called
the linear regulator problem. The derivation of these equations
Can.be found in standard texts on optimal control theory.*

The pbwer system considered in this paper is represented

by the 5th order differential equation

~ v -~ '( - r’ ~,
s 0 1 0 0 0 s 0 0
o ! l '
W asr asz2 azs 0 "H W 0 0
o 1 u
Wf = azy O ass 0 v + 0 0 €
Ve 0 0 o =X 0 v! R u

Te f Te g

P 0 0 0 o =% ph 1

7 \ fa L) L 9
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- +
where dzy T —7% ( ¥ T Y 9
H X X X
d d “gq
~ _ =D
222 = g
-~V _ sin §
a =
3= 0 70
da do .
as; = -Vo sin 60 (xd xd)
L)
%3
azs = 3 —
L}
,Xd Tdo

The state'vaxiables,-all measured in per unit quantities,
are deviations of the parameters from normal operating point after

a disturbance. The performance index is chosen to be

o

J (§T Q§_+9_T_Rg) dt

o
where 10 0 0 0 dﬁ
0 10 6 0 O
Q = 0 © 1 0 0

-
1 o

R = i
~ 0 1J

This performance index penalizes the excursions of the state

variables after a disturbance with emphasis on §' and w'. The
penalty on the control vector is required to make the control sys-
tem practical because otherwise, the control vector will have an

infinite magnitude.
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The choice of the relative weights of the penalties on the state
variables is arbitrary. In fact, scme research has been done in how to

choose the "best" or optimal Q so that an optimal "optimal control" can

5

*
be found. With the upper time limit T = » the problem is significantly

simplified. An important equation associated with optﬁnal'control;theory;:‘"i
The Ricatti Equation,is |
KA + A'K + KBR 'B'K = Q
The feedback cohtrol u is given by
u= R 1gTkx  where K is the solution of the Ricatti Equation.

With u decided, the closed loop system equations beccme
X=Gx
where G = A + BR Bk,

Thus the eigenvalues of the closed loop system G depend upon the selection
of Q.

To stabilize the system, Fhe daninant eigenvalue of G is shifted as
far left on the canplex plane as practically possible. For the eigenvalue
shift of an n-th order system, it is found that adjusting the diagonal ele-
ments in/ Q will be enough. The shift is restricted to the real part and
to the left.

The actual theory is very involved and details can be found in the
reference papers. The algorithm can be sumarized as follows:

1. Start with a small arbitrary Q.
2. Find the eigenvalues A and eigenvectors x of the matrix

A -BR BT
M=
o -a'

' *
3. Calculate K from the stable eigenvectors of ¥ loto check the

controller gains at each shift,




4., Find AQ from the sensitivity coefficient A&Xx |
AQ
5. Update Q and repeat the process until a satisfactory eigenvalue
shift is made or until the practical controller's limit is reached.

Schematic of operation:

Q=20
A and x
of M
AQ
1 . y
S check
controller
gains
AQ
"where S = Real ( A, 9 ) (sensitivity matrix)

Fig. 3-1. Finding Optimal Q.

The optimal control for a linear regulator problem is
*
u =R B Kx
The only unknown is K which is a matrix of the same order as the
*
system. It can be shown that K satisfies the Riccatti Equation 4
Kk =Ka+AK+ KR BK-OQ .
If T=w, K will be a constant for all finite time (K = 0 when T > «)
and the Ricatti Equation is simplified to

F(K) “KA+AK +KBR T BK -Q=0 ..

The solution of this Ricatti Equation is not easy. In fact, for
high order systems, it is impossible to solve analytically. With the help
of high speed digital computers, several schemes of solving this equation

are available:



1)

2)

3)

4)

*
Iterative method based on Kleinman's iteration scheme 7. Given an initial

estimate Ko’ a sequence Ki' i=1,2, 3, ... is determined by solving
the Lyapunov's Equation
T T T T _
K, B-BB" K; )) + (A-BB K, )) K, +K, BB K _,+0=0 .

The solution requires a number of multiplications and additions which

grow as n3 or n4 depending on the method used to solve the Lyapunov's
Equation. .

Iterative method based on finite difference approximation

K, =K, ; —aF (K;_

1)
The parameter o must be judiciously chosen to avoid instability while
yielding K in a reasonable time. Computations grow as n3.

*
Direct method based on spectral factorization approach. 8 A matrix

A -l
W= o
0 -na

is formed and the solutions of the Ricatti Equation can be constructed
from the eigenvectors of W. This method suffers from the need to de-
termine eigenvectors of a 2n X 2n matrix which can be tedious when
n is large.

Direct analog simulation:
2

The Ricatti Equation can be written out as —2———;—3— simul taneous

first order quadratic differential equations which can be solved on
the analog computer. This solution can also be done on the digital

*
camputer numerically using the C S M P program. ?
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The solution is obtained directly using reverse time as the
elements of K are constants except near the final time.

The last method is a powerful one. But in this thesis
another numerical method is tried.

It is known that for a real analytic function F(x)

the solution of the equation F(x) = 0 can be obtained from
the algorithm X, = X, - Fi—i
i i-1 -
Fia

where X is chosen arbitrarily. This is illustrated in

Fig. 3.1
Fto V

\.—. °

Fig. 3-2. Iterative algorithm.

This iteration scheme is used in solving our Ricatti
Equation here.

The method uses the algorithm
- _ £
X, = X. 4 T 1 .
f.

i-1

In our case, the variable is a matrix and F is also a matrix

K. = K - PR )
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The expressions in this equation are not strictly mathematically

valid, and need to be defined.

. 1 dr
First F (K) ax
ordinary definition of a derivative is:

df = lim f(x+e) - £(x)
dx £>0 £

K consists of n X n elements the change of each of which
affects K and hence F(K). Recall the chain rule for single-

valued functions

-

af (u,v) =%§du+% av .

But K is not exactly a function of n x n variables.

The only reasonable way to represent this relationship of g%
where K consists of n X n elements is:
7 ~
9F 3F
oka1 9Kkao -
oF
dks,
n : = oF
’ 9K
3F
0Knn
Y L /
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BEach element %% is an n X n matrix defined as
ij '
lim 7

where F(K)ij means the 1i-j th element of K is increased
by € while the rest of the elements are unchanged and F is

computed of this new K.

Hence we have defined. %% = F'(K) .

The next step is to define and calculate E%El . Treat F'(K) as an
F (K)
nxn matrix (each element of which is an nxn matrix).

FR) . F (K) (F'(K))_—l = D(K) (nx n),
F'(K)
F'(K) D(K) = F(K)-

In the computer storage, an n X n matrix A is stored

-as a list of numbers in the order Qyy 1 Qg 7 8y y eeey an1’ a,, r

* ,
Bgg 7 voor a, - Therefore the mathematical operation of the

solution of the equation

F'(K) D(K) = F(K) which in matrix form is

[ nxn { nxXn [

nxn

n nxn = nxn

{' nxn

In PL-1, the order is different, but the principle is the same.
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is equivalent to

"r 1 I
r dyq ] fi:
d21 .
ds; *
n? = n?
ni
di» M
d f
nn nn
\v, L JL p L P Y
n? >

Care has to be taken in "stretching" this out, but if
the proper terms are multiplied together, the two operations

are identical. The second operation is of the standard form

Ax = b
and the n? vector d can be solved readily using standard matrix
- routines. Then'it is converted back to an n X n matrix D(X).

The iteration scheme

K, = K, , - F K1)
i TR T L
PRy )

= Ky 7 D(Ryy)

can now be performed.
Using this scheme, namely,

K, = K, . - F(&;_q)

i-1)
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the solution of the Ricatti Equation is obtained very rapidly.
The solution is checked with those obtained using the finite
difference method (method 2) and CSMP program (method 4) and
this method is much faster with wvirtually no error. (The exit
criterion is set to be 0.001 for each element of F(K) ).
For a 5th . order systemnm,

CSMP -- 9.36 unit CPU

Matrix Derivative -- 1.93 unit.
For a 3rd order system, the matrix iteration finite difference
method takes 124 iterations to arrive at the solution which the
matrix derivative method takes 8 iterations to get to with the
same accuracy.

However, powerful as this method is, the theoretical grounds
are not well founded. The method may theoretically give an answer
that is not the optimal control, although with a KX  chosen’ to
be -I, the négative identity matrix, this has not happened. It
'is not the intention of this paper to investigate into details of
this method, but it is certainly a point of interest both from.the
control and numerical analysis point of view.

It is of interest, therefore, to see what effect the start-
ing value K, will have on this scheme. In Chapter IV we solve
for the optimal control of the 5th order system with Ko = -TI.

The same databare used using Ko = @ (null matrix) and X, =1

(identity matrix). The results are of interest. With K5 = 9,
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the result which is identical with that using K = -I is
obtained in 4 iterations as compared to 8 using K, = -I.
But with Kg = I, the algorithm does not converge even though
corrective measures are applied in the program and the algorithm
ends up in an oscillation. This is intuitively reasonable as

u = R—l BKx, and a positive K implies a positive feedback

which is physically unstable. On the other hand, Ko = ¢

and - I do not lead to this situation.
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Iv. OPTIMAL CONTROL OF THE SYNCHRONOUS GENERATOR

*
A set of data was obtained from the Grand Rapids Station
of the Manitoba Hydro and used in our 5th order model. The fol-

lowing state equation was obtained.

( N o : N r
o ¥ ' 1
§ 0 1 0 0 0 8
L] ' '
w -118.0431 -35.8774 -10.696 O 34.169 w
o ! . ]
Ve |= | -0-9622 0 -0.5576 1 0 Ve
o ! '
Ve 0 0 0 -20 O Ve
o ! 1
P 0 0 0 0 -0.1111 P
L m P L J \ m‘
\
(0 o
0 0
u
+1 0 0 ©
20 0 Uy
| 0 0.1111]

- The algebraic Ricatti Equation
F(K) = KA + A'K + KBR 'B'K - Q = 0

was solved using the matrix derivative method up to an accuracy

of less than 0.00001 error in each entry of the matrix F(K).

The resultant K, obtained in 8 iterations is:

* Table II.
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. ,
-17.7345 -0.0332 -0.8615 ~0.0283 3.9004
-0.0332 -0.1403 0.0176 -0.0002 -0.0248
K = -0.8615 0.0176 -0.8946 -0.0305 0.7326
~-0.0283 -0.0002 -0.0305 ~0.0218 0.0251
3.9004 -0.0248 0.7326 0.0251 -7.6068
N : /
. . * T -1
The optimal control is u = -B"R "Kx
0 0 0 20 0 1 0 u,
RN K§ = -
0 0 0 0 0.1111 0 1 Yy
L] | 1 l l
u, = 20 * (~0.02838 - 0.0002w =~ 0.0305¢y. - 0.0218V. + 0.0251P )
¥ L} ' 1 L)
vy = 0.1111* (3.90046 =~ 0.0248w + 0.7326y. + 0.0231V. - 7.6968F

The system is disturbed to give an initial disturbance
]
x (0) = [0.8 0.9

The uncontrolled response was shown in Fig. 2-11; If the op-
timal éontrol is applied, the response will be as shown in

Fig. 4-2, 4-3, 4-4, 4-5, 4-6.

- It can be seen by comparing Fig. 4-1 and Fig. 2-11 and
froﬁ Fig. 4-2 through Fig. 4-6 that the improvement in stability
by applying the optimal control is not too significant. Indeed,
in the first 1.9 sec., the performance index of the uncontrolled
system is lower than the performance index of the optimally con-
After

trolled system. T = 1.9 sec., the controlled system has




a smaller performance index, but the state variables are sovclose
to zero in both systems that the deviation in performance indices
never becomes very large as both curves are rather horizontal
(small slope).

This fact is not surprising because the uncontrolled sys-
tem (which actually has other forms of control, but not an opti-
mal linear feedback control) is one that is in service and there-
fore must have a higﬁ'degree of stability. The reason that the
optimal control does not show a great effect on the system is due
to its large damping coefficient, large time constants of the hy-
draulic governor-turbine unit and the open circuit time constant
of the field.

The control signals g and Ug are fed into the gover-
nor and voltage regulator. The field voltage Ve responds quickly

to u, but it has no direct effect on other parameters because

e
its effect is felt through Ve, the field flux linkage. Due to
the large time constants of both the governor-turbine unit (equi-
valent time constant T, = 9 sec.) and the machine (open-circuit
field constant T3, = 6.21 sec.) the effect of the control vector

*

u = [ u u ]T is not felt until a certain length of time has

e g

elapsed. But long before this, in approximately 2 seconds, the
oscillations are damped out by the large dampimg coefficient of
the system, as shown in Fig. 2-11, and by the time the control

signals become effective, the system has no more oscillations

.(practically) so the control seems redundant.
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To show that this is actually the case, and not that the

"optimal control" is wrong, we repeat the process of calculating

1.05
115.00 ’

D = 1.05 and everything else identical, and agéin plot the re-

the optimal control for a system with D = instead of
spnse of the uncontrolled and optimally controlled systems sub-
ject to the same initial conditions. The performance indices

are also plotted. The great improvement can be noted in Fig. 4-9
to Fig. 4-13. This model will hence be referred to as model A.

The optimal control is:

£+0.3734Pm')

0.1111 (129.46'—l.2961w'+12.1897w%+0.3734V£—44.1049Pm') .

u, = 20 (-1.2344 6'-0.02w'—0.l3SW%—0.0254V

u
g9

This optimal control which minimizes a cost functional
is in continuous linear state feedback form. To be able to put
it into practice, one must be able to continuously measure the

state variables and transduce them into electrical signals in

‘the case of ug (ug, the input to the voltage regulator, is a

voltage) or mechanical signals in the case of Ug (ug, the input
to the governor-turbine unit, is a frequency signal).

The power angle deviation 6' can be measured by measuring
the power output aﬁd the power factor. In fact, there are differenﬁ
kinds of instruments for sensinglchange in power factor in the power
industry being used.

The measurement of frequency is also a routine job in the
power system operations. However the accuracy of these measure-

ments still has ample room for improvement.




The direct measurement of the field flux linkage wf is
not an easy task. However, according to the Heffron-Phillips
3 '

* 3 , .
model ~, VvV, = K6wf+K56 where K

‘ —
£ K_ are constants wf = _

5 K¢
Kg Kg

Vt the terminal voltage can be easily determined using a

voltmeter, and K K for the system can be determined from ex-

5" 76
periment.

Measurement of°vf can be done with a voltmeter.

The measurement of the shaft power Pm is probably the
hardest. It is possible to derive the mechanical input power
signal from the nominal (operating point) value of the electrical
power output signal*ll; or one may try some direct measurement
methods . . .

Some research has been done in "observers" which are net-
works attached to the outputs of the sYstem to transduce the
state variables into electrical signals. Since outputs are
measurable quantities, the problem of measuring state variables
is solved. However, the research is still in development stage,

and is beyond the scope of this thesis.
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V. SUBOPTIMAL AND ADAPTIVE CONTROL

3

The difficulty and inaccuracy in the meaéurement of some
state variables make the.continuous state feedback control not
directly physically réélizable. It is more practical to feed back
only those states which can readily be measured or some output
quantities (such as términal voltage) which may be a linear com-
binétion of some states or'nonlinear functions of the states. 1In
the case of feedback output of quantities which are nonlinear
functions of states, linearization and approximations have to be
maae or we would get into involved.honlinear problems beyond the
scope of "linear regulator problem" which we are investigating.

In the simpler case of feedback of output quantifies that are
linear combinations of states and the case of partial feedback of
states, we are looking into the problem of suboptimal control,
because.the control we obtained is not optimal according to our
inginal definition.

| There are many forms of suboptimal control péssible.

*¥12,10,6

Using the "minimum norm" suboptimal control, it can be shown

*
that 13

the suboptimal control can be obtained from the optimal
control by deleting the terms involving the state variables whose
feedback is not desired.

The stability of the suboptimal control is not guaranteed

and has to be checked. The performance of this "minimum norm"
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suboptimal control depends greatly on the proper choice of Q,
the weighting matrix in the cost functional. ©No analytical
relationship is known to exist between the weigh%ing coeffi-
cients and the behaviour of the machine and the choice of Q is
therefore empirical. It is, however, intuitively reasonable to
assume that a large weighting coefficient will cause a large feed-
back of that particular state variable, therefore when the feed-
back of a state variable is not needed, the weighting coefficient
of it should be relatively small.

With our model, we tried the suboptimal control obtained
from the optimal control by deleting the feedback of wf,vf and
Pm'. Then we tried suboptimal control on the model A (with
small damping coefficient and everything else identical) where
the effect of the control is more markedly shown. The responses
of the.two systems are shown in Fig. 5-1 and Fig., 5-2., The
Q matrix in all cases remained the same as previously set.

With Q changed to ¢ = diag [10 10 0 0 0] the pro-
cess was repeated and the responses plotted in Fig. 5-3 through
5-4.

From the figures it can be seen that the application of
suboptimal control, whether with the original Q matrix (as in
Fig. 5-1 and Fig. 5-2) or with a reduced Q matrix (Fig. 5-3 and

Fig 5-4) leads to less stability. 1In fact, in the case of the

lightly damped model A, the system becomes unstable. In this




case, the suboptimal control derived from the original Q (penalty
on every state variable) is more stable than the suboptimally con-
trolled system with a reduced Q matrix, but this is not conclu~
sive as in these suboptimal-control systems, the choice of 0Q
based on eigenvalue-shifting techniques*5 is of paramount importance.
By reducing the :=zighting coefficient on the control vectors
in the cost functional (i.e. R), a slightly better system is ob-
tained, but the difference is very small as seen in Fig. 5-5.
Another aspect of the optimal control of the synchronous
generator and other systems as well is the variation of the opera-
ting point and variation of parameters. The operating point will
not be varied continuously all the time. It is usually fixed on
a few ratings, e.g. 115 MVA, 13-8KV, 0.8 p.f. lagging etc., so it
is possible to derive a few sets of control to suit the wvarious
standard ratings.
But another problem is the variation of pafameters with
respec£ to the change of load, temperature, etc.*l4 Assuming
some tests have been done to obtain the characteristic cﬁrve of
a certain parameter with respect to another quantity, e.q. load,*15
it now remains to design a control device that can constantly up-
date the feedback matrix in the light of the parameter values.
It is impossible to perform repeated solutions of the Ricatti

Equation; (it takes too much time even for a 5th-order system

like this, and is highly uneconomical). So a formulation that




can constantly update the feedback matrix upon a nominal pre-
computed feedback matrix without repeated solutions of the
Ricatti Equation, given this characteristic curve of the para-
meters, is needed to maintain near optimality.

If the parameter dependence is not known then the system
will be even harder to control, but it is still possible, to a
certain extent, to constantly update the model and find a con-
trol for it. These techniques require an application of the
model-reference adaptive control techniques and will not be dealt

with here.

To illustrate the relation between the K matrix and the
operating conditions, we take the most common situation of change
of operating point, namely, the change of electrical power, or
load. The two optimal controls u, and ug corresponding to
different values of Pe' the electricél power output, were plotted
in Fig. 5-6 and Fig. 5-7.

The power is limited by the power angle 8§ which cannot ex-
ceed 30° according to Manitoba Hydro data. The variation of the
K matrix is rather linear. So it should not be difficult to
develop a function generator in the feedback mechanism that varies
linearly with the electrical power. In this way, loading should

not affect the stability very much.
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CONCLUSION

The application of optimal control to power systems has been
a popular topic for researchers in the past few years, but has not
reached the point where it can be widely and economically implemented
yet. This thesis, therefore, should be considered as a contribution
to . the development in the application of optimal control to a power
system, and not the derivation of a practical controller that can be
implemented immediately. As it is now, the optimal control does not
seem superior to the conventional methods. But once other problems,
such as measurement of parameter, choice of optimal Q matrix etc.,
have been overcome, the optimal control method allows the designer to
emphasize on whichever aspect he desires whether it be time, fuel, or
stability and is therefore a very versatile tool.

The new matrix derivative method used in this thesis is very
powerful in solving the problem in this thesis. It also makes sense
intuitively. The drawback is that its ﬁathematical background is not
well established. It may theoretically lead to a different solution
from the'optimal one if there exist more than one solution. And in
the case of a 5th order quadratic matrix equation, there ére certainly
more than one solution. However, other iterétive methods have the
same problem but some of them have methods to guide the iterative
scheme towards the optimal solution (along eigenvalue lines or slope
of steepest descent). The same may be applied to this method. 1In all,
this method is worth studying.

The linear relationship of elements of K and the power is most
encouraging. It means a feedback mechanism can cope with nonlinear
plants at varying load conditions in a rather simple way. It makes

implementation of this type of control more practicable.
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APPENDIX I.

Machine Equations:

Power Conversion:

P =P + P + P
m a loss e
P = Hp
a
Ploss = Dw
p = Vo Sin d?f + (Xd - Xq) sin 26
e [] 1 2X PYe
da

X3 Tdo

Linearize about an operating point; the incremental equation:is:

! ' V. sin§ '  V_cosd§ ¥ v, (xx ) '
P, =Ho +Du + o  _© be + O _©° fo s+ 4 d o 260 § — (1)
%3 Tao *3 Tdo *a %q

Simplified governor—turbine unit:

o 1 t
a .
Exciter unit:
1
. t _ _V u
Ve L+ e )
T T
e e

Transient property of machine:

—_— = V_ - + : V_ cos 6
o

X3 Tao

Linearizing, it becomes

' ' X ' (x, - X2) '
U = - d - __g____é_ i -
lpf = Vf x—,—-’:——r— lbf x, VO sS1in 60 § (4)
d do d
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By definition:

1 ' - (5)

Equations (1) to (5) form the state equations of the system.

Assumptions and approximations are:

1. All damper windiﬁgs excluded;

2. Subtransients excluded;

3. Property of the governor-turbine unit approximated by a
simpler transfer function;

4, Transmission line between generator and imfinite bus has
negligible impedence;

5. Saturation of machine excluded.
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APPENDIX III.

The computer program for the numerical solution of the
matrix Ricatti Equation using the "Matrix Derivative Method" is
quite complicated and sectionalized. A schematic of the method

~is as follows:
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