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ABSTRACT

This thesis studies the optimal control of a

synchronous genet.tot. The control minimizes the ex-

cursion of the squared values of the system parameters

during disturbances and faul-ts. The effect of different

system models of varying complexity is investigated. Then

using a fifth order model with practical data supplied by

the Manitoba Hydro, a linear feedback control is obtained

by solving the corresponding matrix Ricatti equation. The

solution is by a new numerical method called the "Matrix

Derivative Method." This method is compared with varíous

existing numerical techniques for solving the matrix Ricatti

equation. This control is then applied to the system. For

comparison purposes, the optimal control is al-so derived'

for a similar system with much lighter damping. The pos-

sibilities of suboptimal control and implementation problems

are also considered.



I. TNTRODUCTION

With the rapid development of modern control theory,

apptications of these new concepts to power systems become

a popular topic. Some try to minimize the time needed to

restore the system to normal operating condj-tions after a

fault or a disturbance usJ-ng the 'bang bang' principle.

Others try to minimize the excursions of the variables such

as frequency, power, etc., or in other words, to increase

stability. An actual- power system is a highly complicated

thing, but an understanding can be gained by representing it.

by a simplified system that contains the main features and

stud.ying tne various aspects in deriving an optimal control

for it,

In this thesis, we try to represent a simplified

generator by a 5th order differential equation and derive

an optimal control that will minimize the excursion of the

varíables after a faul-t or disturbance. The gienerator has

both voltage regulator and speed governor controls, though

both of these are simplified. The damper windings of the

machine are neglected. Emphasis is not on the actual

"optimal control" derived, but in studying the problems'

d.ifficulties and. insights in going through the process.



II. MODELING OF THE SYSTEM

The simplest form ôf a generating unit is a single syn-

chronous generator connected to an infinite bus by a trans-

mission line. The synchronous machine's prime mover is driven

by hydraulic power. The transmission line is assumed to be so

short that it has negligible resistance and reactance. This is

the system that we want to study.

This system can be modelled to d.ifferent degrees of ac-

curacy by different numbers of differential equations. One may

take into account all aspects of the synchronous machine as well

as the regulating devices and end up with a 10th or 12th order

system, but for the purpose of this paper, a model that includes

only the main features of the system is adequate.

There are various forms of representation of a machine

by a set of equations. The classical books and papers represent

the machine in the form of a voltage current relationship*3'4'5

or the circuit form

V - ZT

But the modern trend Ís to represenL the system in state

variable form

X = Ax

This form has the advantage of being easily programmed and com-

puted. by modern high speed computers. Also, since much research



hasbeendone in this directj-on, the mathematical basis for dif-

ferential equations of this form is very well founded and well

known. For example, the effect of the eigenvalues of A on

the system stability is well studied and well known. AIso, a

large number of Lheories have been established or conjectured

for systems of this form. So in this paperr \¡Iê shall represent

our system by a set of state equations"

In order to.determine the complexity of our model that

is needed to achieve appropriate accuracy and also to study

the relative weights and interactions of various parameters,

we shall study systems of various orders and with different

state variables" A set of data is obtained from one of the

stations of Manitoba Hydro and applied to various models under

study.



TABLE I

Nomenclature:

6 -- power angle

(.r) f requency

qrf fiel-d flux linkage

Vt excitation voltage

Pm input power of Prime mover

*d synchronous reactance, d-axis

xl transient. reactance, d-axis
cl

x- synchronous reactance, q-axis
q

rdo open circuit time constant of field

T -- exciter time constant
e

r -- equivalent time constant of turbine unit
a

T -- water ti-me constant
w

T -- governor actuator time constantga

T -- governor time constantg

D damping coefficient

H inertia constant

V^ infinite bus voltage
o

(¡)^ infinite bus frequencY
o

Pe electrical Power

Pa accelerating Power of turbine

u ru control signalse- I
ô^ power angle at oPerating Pointo

g gate position of governor-turbine unit



TABLE IT

Data

Rated power = 115 MVA

Rated voltage = 13. B KV

0.23 for 25e" load

0.53 for 50% load
þ=

0.84 for B0å load

1.05 for fOOZ load

t
I{ = 634.42 MW - seco

x- = 69.62
cl

x = 29.82q

x 1 = 2O.Is"
ct

t1 = 6.2I sec
cl0

t = 0.05 sece

T = 5.5 secI
T = 12.2 secga.

T = 2.43 sec
w

$=23oo

v_ = 1 p.u. (f3.8 KV)o



the simplest

the inertial model)

form is the 2nd order system (also known as
*1

Fig. 2-1 Inertial Model

))v" cos 6 v" cos26 (xl - x )= o o + o o'g___a_ = 118.0431 p.u.
xq

The prir',ed variables indicate deviations from operating point;

thus the differential equations represent the relations between

the incremental changes of the variables. This notation will

be used throughout the thesis

Suppose the system is disturbed from normal operating con-

ditions so that 6'16¡ = 0.8 pur o'(0) = 0.9 Pü, the subsequent

behaviour of the system, calculated and plotted by a digital com-

puter using an incremental time of 0.0002 sec., is shown in Fig.

2.2 .

Kt

The

control

Ix-
ct

Ix-
ct

system behaviour with the application of an optímal
$

tp which minimizes the performance index

co " Lor.Z *rp2 ) dtÍo ( 10ôr-+:
*) up = shaft l-nput por¡rer
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is also shown in Fig. 2.2. Details of obtaining the optimal

control will be discussed later.

There is a significant improvement, but this model is im-

practicable as it is impossible to make the shaft power change

instantaneously with change of states and therefore Pm' can-

not be made an optimal control signal.

Then a 3rd order system with Pmr (input shaft power)

as the third variable is introduced. With control sígna1 rg

fed to the governor of the hydraulic turbine, there are several

steps between the control signal and the shaft power.

Fig. 2-3

The step response of the hyd.raulic governor-turbine unit

is as shown:
hydraulic-governor turbine
ggylvj_I_"nt b_Iock

Fig. 2-4
t

ludra"l;c çovecnoy-fu*ínc unif

PLANT

Step response of hydraulic governor-turbine unit
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To reduce the order of the systemr the governor-turbine

unit is approximated by a transfer function*2 *Y"=

r^ being the time for the governor-turbine unit to reach 63,22
d.

of its step response.

Furthermore' since tg (optimal control) is a linear

combination of state variables, the guantities Kg and -û)'

can be eliminated from the block diagram as they are included

inu
cf

The simpJ-if ied system is:

Fig. 2- 5 Approximate governor-turbine unit.

With r- = 5.5 sec. t T..= 2.43 sec., the equivalentgû)

ta = 9.0 sec.

. The block diagram and the uncontrolled response of the

whole system are shov¡n in Fig. 2-6 and Fig. 2-7 respectively.

Fig. 2-6 , Thircl order system.
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îig. 2-7. 3rrl order systsn.



T2

We can also take

effects of the machine

The model becomes

transient electromagnetic

f ield f lux linkage .¡|,f .

into account

by including

the

the

l

I +Í*$
I-F

AS
I*g

x-
Cl

Fig. 2-B 4th orrler sl/stem"

before

(xu-xål tåo
X.

ct

R2=
'I

do

This model and'the constants are modifications of the

Hef fron-Phi11ips model=. 
*3

With an initial disturbance of 6'(0) = 0.8, tl'(0) = 0.9'

,ti { Ol = 0. 5, P; ( 0) = *0. 3 , the. system response is shown in

Fig. 2-9.

Finally, to represent the system more accurately, the

effect of the field voltage is íncluded. This produces a 5th

order system:

Kl is
K3=

Ka= +V sinôoo
V sinôoo
- XT-TT-ddo
6.2I sec.
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t4

I * KaT¿í s

.Fig. 2-L0 5th order system.

Againr âs

there is no need

is a linear combination

feed any other signall- to

of the state variables

the voltage regulator.

u
e

to

= 0.05 sec.
e

With initial disturbances ô' (0) = O.B Pu, t¡' (0) = 0.9 Pü,

Ui(0) = -0.5 pu, V'f(0) = -0.8 pü, PÅ(0) = 0.3 pur the system

response is shown in Fig. z.IL

This model, which includes all the basic dynamics of the

synchronous generator, will be used in the following text of this

thesis. However, it is worth noting that the simpler models give

a fairly good picture of the dynamics of the two most important

parameters, namely ô' (power angle deviation which is associated

wíth the power generated) and r.,l' (frequency d.eviation).



Lli,Õir::
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rig. 2-11 5th order system (r¡ncont-roff&l ME

Pø



16

III. THE LTNEAR REGULATOR PROBLEM

In optimal control of a system, a performance index must

be defined. The optimal control is then defined as the control

function that minimizes the performance index. If a system is

in the state-varíable form
dx=Ax+Bu

and a performance index is defined as

J = U tT- (xT e* * ,.,TRrr) dt.o

which is

optimal

is known

known

control

as the

as the quadratic-form cost functional, then the

will be a linear combi-nation of the states. This

feedback lorm

= R-I BT K x where K

The problem of finding

is some matrix.

u , the optimal control, is called

u

the linear regulator problem. The derivation of these equatJ.ons
1k /l

can be found in standard texts on optimal control theory. =

. T.hê power system considered in this paper is represented

the 5th order differential equationby

ô'
.l
û)

,¡;
rl

\7"f
Pñ

0100
dzt dzz dZS 0

âgr 0 asa 1

000-1 te
0000

00
00
00
1o
Te

0l rg

^t0

üJ,

.t1, '

vi
Pñ

0

I
ñ
0

0

-I
Ta

L:;l



L7

where dzl =

C¡22

423

d31

Q=

- v2cosô-r,o oHt_E-
-D

H

-v sin ôoo-mr
(1oo

-vo sin ôo (xu-xj)

v2 cos2ô (xl -x )oo(1q-
æ

xl
cl

€r ¡ g "g__

The state va¡iables, -a11 measured in per unit quantities,
are deviations of the parameters from normal operating point after
a disturbance. The performance index is chosen to be

where

R_

This performance index penalizes the excursions of the sLate

variables after a disturbance with emphasis on $' and u)'. The

penalty on the control vecLor is required to make the control sys-

tem practical because otherwise, the control vector will have an

infinite magnitude.

00
0 10

00
00
00

00
00
10
01
0" 0

[' 'l
L. 'l
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Tte choice of the relative weights of ttre penalties on tl¡e state

r¡ariables is arbitrarlz. In fact., scfie research has beer¡ done in hcr¡¡ to

ct¡oose the "best" or optimal 0 so tlrat an optimal "optimal control,' can
*E

be found. - Wittr the upper tine Umit T = - the problem is sign-ificantly

sirçlified. Ari important. equation associated with optinril control-tlreory; '

The Ricatti Equationris

xe+aTx+loillgTx=e
TL¡e feedbacL corrtrot u is given by

,, = fl¡Tf* *"t* is the solution of the Ricatti EquaLion.

vùith u decided, the closed loop system equations beccne

i=er
vùrere G=A+eRhTr.
Tlrus the eigenvalues of the closed loop system G depencl upon the selection

of 0.

To st¡bilize the systern, t}re dcminant eigenvalue of G is strifted as

far left on the corplex plane as practically ¡nssiJrle. For the eigenvalue

st¡:ift of an n-tÌ¡ order systen, it is for:nd that adjusting the diagonal ele-

nents i¡r. Q will be enough. the sh:ift is restrictd to the real part and

to the left.

Ihe actual theory is verry involved and details can be found i¡r the

reference papers. The algorittrn can be surrrnarized as follcnvs:

1. Start w-itJ: a snall arbitrarlz 0.
2. Find the eigenvalues l1 and eigenvectors x of the nratrix

r'¡ A -BRlBr I!l= I - |

l-o -A'1' 
.,

3. Calculate K frorn the stable eigenvectors of X*Xoao check the

controller gaìns at each shift.



19

Find À q frcrn the sensitivity coefficient AÀ

^Q(þdate O and repeat the process unLil a satj-sfactory eigenvalue

shift is made or r:ntil the practical controller's lirnit is reached.

Schsnatic of operation:

vùrere S = Real ( À' q )

rig. 3-1. Finding Optirnal O.

(sensitivity natrix)

The optimal control for a linear regr:lator probløn is
*-1 rn

u = Q -B'Kx.

ftre only unl<novnr is K uih-ich is a natrix of thre sane order as tåe

qfstsn. , It can be shrown that K satisfies the Riccatti f.guation*4

-Ii = r(A + .fK + ien 1¡Tr - o .

If T=-r K willbeaconstantforallfi¡riteti¡re {K=0 vrhen T-}-)

ard the Ricatti Equation is sinplified to

F(K) = Xe + eTi< + IGfl BTK - Q = 0 ..

lrhe solution of this Ric'atti Equation is not eaq/' rn fact' for

high order systems, it is irçossible to solve ana11ticaL1y. with the help

of high spe€d digitål ccrryuters, several schsres of sotrvjlg this equation

are available:

4.

5.
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1) Iterative nethod based on l(leinman's iteratio., ="1***7. Given an initial
esti¡nte Ko, . sequence Ki, i = I, 2, 3, . is deterrni¡ed by solving

tte Lyapunovr s Equatj-on

Ki (A - BBT Ki-r) + (A - BBT *i_r)t *, * *i_r_ *t Ki_l * O = 0

It€ solution regui-res a ntnnber of rm:ltiplicaticsls and additions vùl-ich

34grcul as n- or n' depending on the nethod used to solve tlre Lyapr:rrov's

Equation.

2) rterative netlrod based on fi¡ite d.ifference approx[rnation

K. = K._, - oF (Ki_f)

fhe ¡nraneter o nn:st be judiciously chosen to arroid j¡rstability vfr-ile

yielding K i¡r a reasonable ti¡re. Conputations gtow as ,r3.

3) Dj¡ect ¡rethod based on E>ectral factorization .pp*.h. *B 
A rnatrjx

r ,JI a -BBr I

''=L; -l 
I

is forned and ttre solutions of the Ricatti Eguaticn can be constructed.

trorn t¡re eigenvectors of Vü. TLris nethod suffers frcrn the need to de-

tenLine eigenvectors of a 2n x 2n nratrix wtr-ich ø¡ be ted.ious vùren

n is large.

4) Direct analog sj¡rulation:

fhe Ricatti Equation can be r,,¡ritten out as "' I " si¡mltaneous2-
first order guadratic differential equations wirlch can be solved on

the analog ccnputer. ÍLris solution can also be done on the digital
ccnputer nr¡erically using tl-e c S M p progr*r.*g
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The solution is obtained directly using reverse time as the

elements of K are constants except near the final time.

The last method is a powerful one. But in this thesis
another numerical method is tried.

It is known that for a real
the solution of the equation F (x)

the algorithm *i = *i_l

is chosen arbitrarify.

analytic function F (x)

= 0 can be obtained from
F.1- l-

F.
r_-l_

This is il]ustrated inwhere xo

Fig. 3 .L

Fig. 3-2. Iterative algoritlm.

This iteration scheme is used in
Equation here.

solving our Ricatti

The method uses

:
I A--L

the algorithm
ÊI.

l_-l_
_lti-t

ïn our case, the variable is a matrix

K.
.I

F' (Ki_1)

and F is also a matrix
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Thc expressions in this equation are not strictly mathematicaJ-1y

valid, and need to be defined.

First F' (K) = å* :

ordinary definition of a derivative is:

df = lim f (x+e¡ f (x)
Ax e+o e

K consists of n x n elements the change of each of which

affects K and hence F (K) . Recall the chain rule for single-

valued functions

d.f(u,v) =ffiau+ffi dv

But K is not exactly a function of n x n variables.

The only reasonable way to represent this relationship of åä

where K consistsof nxn elementsis:

aFaFôF.......
art t aLt, iF, 3

AF AF
5F, I ã82 2

AF
dKe r

a

!

o

a

a

a

a

AF
a-h,,

n =ðF
ôK

n
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Each element åä. is an n x n
].l

lim 1

.*ä á I F(K)ij F(K) l

where F (K) . - means the i-j th element" r-l

by e while the rest of the elements are

computed of this new K.

Hence we have defined. åä = F'(K)

matrix defined as

of K is increased

unchanged and F is

The next step is to define and calculate LglL . Treat
F' (K)

n x n matrix (each element of whj-ch is an n x n matrix) .

f$J- = F (K) (r,' (x))-f = D(K) (n x n),r' (r)
F'(K) D(K) = F(K).

In the computer storager ârr n x n matrix A is
as a list of numbers in the order â, , ãzt , â3t , ..., ân

*âlr , ... , .rrr, . Therefore the mathematical operation of
solution of the equation

F' (K) D (K) = F (K) which in matrix form is

F' (K) as an

stored

l' 
ãt2'

the

n nxn nxn

In PL-I, the order is different, but the principle is the same.
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is equivalent to

dlr

dzt

T,'
dni
dt z

dnn

--n?

Care has to be taken in "stretching" this out, but if
the proper terms are multiplied together, the two operations

are identical. The second operation is of the standard form

n2

Ir11

f nn

n'

Ax=b
and the n2 vector d

routines. Thentt is
The iteration

can be solved readily

converted back to an

scheme

F(K. ,)
L -,L

F (Ki_1)

using standard matrix

n x n matrix D(K).

F' (Ki_1)

= Ki_l D (Ki_f )

can now be performed.

Using this scheme, namely,

F' (Ki_1)
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the solution of the Ricatti Equation is obtained very rapid.ly.

The solution is checked with those obtained using the finite

difference method (method 2) and CSMP program (method 4) and

this method is much faster with virtually no error. (The exit

criteríon is set to be 0.001 for each element of F(K) ).
For a 5th order system,

csM.P 9.36 unit CPU

Ivlatrix nLrivative 1.93 unit.

For a 3rd order system, the matrix iteration finite difference

method takes L24 iterations to arrive at the solution which the

matrix derivative method takes B iterations to get to with the

same accuracy.

However, powerful as this method is, the theoretical grounds

are not well founded. The method may theoretically give an ansvrer

that is not the optimal control, although with a Ko chosen to

be -f, the negative identity matrix, this has not happened. It

is not the intention of this paper to investigate into details of

this method, but it is certainly a point of interest both from the

control and. numerical analysis point of view.

It is of interest, therefore, to see what effect the start-

ing value Ko will have on this scheme. In Chapter IV we solve

for the optimal control of the 5th order system with Ko = -I.

The same data are used using Ko = 0 (nulI matrix) and Ko = I

(identity matrix). The results are of interest. with Ko = 0,
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the result which is identical with that using Ko = -I is

obtaíned in 4 iterations as compared to B using Ko = -I.
But with Ko = I, the algorithm does not converge even though

corrective measures are applied j-n the program and the algorithm

ends up in an oscillation. This is intuitively reasonable as

-1tJ = R * BKx, and a positive K implies a positive feedback

which is physically unstable. On the other hand, Ko = 0

and
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TV. OPTIMAL CONTROL OF THE SYNCHRONOUS GENERÀTOR

of the

lowing

A set of data was

Manitoba Hydro and

state equation was

obtained from

used in our

obtained.

*
the Grand Rapids Station

5th order model. The fol-

0

34.169

0

0

-0.L111

I

ô

I
u)

I

,!f
Ivf
I

P
m

.l
ô

.t
û)

.t
vf
.tvf
.l
P

m

0

-118.0431

-0.9622

0

0

1

-35.877 4

0'

0

0

0

-10. 696

-0.5576

0

0

0

0

1

-20

0

0

0

0

20

0 1,,,1[:;]
The algebraic Ricatti Equation

F(K) = KA * ATx * ren-lnTr - o - o

$tas solved using the matrix derivative method up to an accuracy

of less than 0.00001 error in each entry of the matrix F(K).

The resultant K, obtained in 8 iterations is:

* Table II.
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l(=

-I7.7345

-0 " 0332

-0 " 8615

-0.0283

3.9004

The optimal

-0.0332

-0.14 03

0. 0r76

-0. 0002

-0. o24B

control is

-0. 8615

0.0176

-0. 8946

-0.0305

0 .7 326

*u=

-0.0283

-0"ooo2

-0. 030s

-0.0218

0.0251

rr| -1-B'R -Kx

3.9004

-0 .0248

0.7326

0. 0251

-7.6068

lo o o

I' o o

20ol
o o.l111.l

f ' ol ** =[""1lo '.J 
"= 

["r]

o.03os,f,i o.ozrav, + o.o

0.732611'- + o.o25rv'- - 7.6968n''t f m

u = 20x (-0.02836 0.0002oe

I
0.1111* (3.9004ô - 0.0248t¡

The system is disturbed to give an

0.9 -0. s

initial disturbance

T-0.8 0.31'

I
25IP )

m

g

I
x (0) = [0.8

The uncontrolled response was shown in Fig. 2'IL. If the op-

timal control is applied, the response will be as shown in

Fig. 4-2, 4-3, 4-4, 4-5, 4-6.

' It can be seen by comparing Fig. 4-1- and Fig. 2-IL and

from Fig. 4-2 through Fig. 4-6 that the improvement in stability

by applying the optimal control is not too significant. Indeed,

in the first 1.9 sec., the performance index of the uncontrolled

system is lower than the performance index of the optimally con-

trolled system. After r = 1.9 sec., the controlled system has
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a smaller performance index, but

to zero in both systems that the

never becomes very large as both

(small slope).

the state variables are so close

deviation in performance indices

curves are rather horizontal

This fact is not surprising because the uncontrolled sys-

tem (which actually has other forms of control, but not an opti-

mal linear feedback control) is one that is in service and there-

fore must have a high degree of stability. The reason that the

optimal control does not show a great effect on the system is due

to its large damping coefficient, large tj-me constants of the hy-

draulic governor-turbine unit and the open circuit time constant

of the field.

The control signals üe and rg are fed into the gover-

nor and voltage regulator. The field voltage Vf responds quickly

to üe but it has no direct effect on other parameters because

its effect is felt through þf, the field flux linkage. Due to

the large time constants of both the giovernor-llurbine unit (equi-

valent time constant ra = 9 sec. ) and the mactrine (open-circuit

field constant rdo = 6.2I sec.) the effect of the control vector
*fnu = [ ue rg] ^ is not felt until a certain length of time has

elapsed. But long before this, in approximatetry 2 seconds, the

oscillations are damped out by the large damping coefficient of

the systemr âS shown in Fr*g. 2-II, and by the time the control

signals become effective, the system has no more oscillations

(practically) so the control seems redundant.
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To show that this is actually the case, and not that the

"optimal control" is wrong, we repeat the process of calculating

the optimal control for a system with D - ffi ', instead of

D - 1.05 and everything else identical, and again plot the re-

spnse of the uncontroÌled and optimally controlled systems sub-

ject to the same initial conditions. The performance indices

are also plotted. The great improvement can be noted in Fig. 4-9

to Fig " 4-L3. This. model will hence be referred to as model A.

The optimal control is:
= 20 (-L.2344 ô'-0. 02r¡'-O.13AVå-O .O254Vi+0. 3734pm' )

= 0. 1111 (r29.4ô' -1 .296ru' +r2.1897V;+O .3734V'f-44.L049em' ¡

This optimal control which minimizes a cost functional

is in continuous linear state feedback form. To be able to put

it into practice, one must be able to continuously measure the

state variables and transduce thern into electrical signals in

rthe case of ue (ue, the input to the voltage regulator, is a

voltage) or mechanical signals in the case of tg (ug, the input

to the governor-turbine unit, is a frequency signal).

. The po\,ter angle deviation 6' can be measured by measuring

the power output and the power factor. In fact, there are different

kinds of instruments for sensing change in power factor in the power

industry being used.

The measurement of frequency is also a routine job in the

po\Á/er system operations. However the accuracy of these measure-

ments still has ample room for improvement.

ue

ug
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The direct measurement of the field frux linkage qrf is
not an easy task. However, according to the Heffron-phi1lips
model*3, ui = xurli+xro ' where K5, *6 are constants ül = Ë - þ u't*rKe

Va the terminal voltage can be easily determined using a

voltmeter, and K5, *O for the system can be determined from ex-
periment.

lvleasurement of "V, can be done with a voltmeter.

The measurement of the shaft power pm is probably the

hardest. rt is possible to derive the mechanical input power

signal from the nominal (operatÍng point) value of the electrical
power output sig.r.1*11; or one may try some direct measurement

method.s

Some research has been done in "ebservers" which are net-
works attached to the outputs of the system to transduce the

state variabres into electrical signals. since outputs are

measurable quantities, the problem of measuring state variables
is solved. However, the research is still in development stage,

and is beyond the scope of this thesis.



CI
t-
_)
LrJ
cl

o
fr)

(]

Fis.
:'.00 r.50

4-9. Variation of 6'

l.onfrotlcl

e. 50 3. 00
T I ME

\.o



J

(:l

(\J

c)
o
00

CIo
.^O

LrJ .*

Cl

Þ
CJ

Õ

cl

I

o
C:

t¡-
'c, t.ug

Fig.
r..5u a. û0

4-10. Variation of or

Xo;t'ott'¡

z. 5u 3. 00
T i ME

o



lrt
HT\
(,oc
o_

0. 5û

Fig.
l.tjo I.50

4-11. Variation of

-..oJ'.jjd

e. û0

ú¡

z. 50 3. s0
TIME

3. 50 rl. 0g q. 50

P



'o

(c

oÉ
t!
>.J

olol,I
eJ -1.¡l

U. 0.50 ¡.00 t.
Fig. 4-12. Variation of v:I

e. 50 3. 0s
TIME

,Þ
t\)



o
c.,

=ô- c-)

o: 50

Fig.
r .00 I .50

4-13. Variat,ion of P'
m

e. 50 3. Ds
T I ME

CJ



44

v. SUBOPTTMAL AND ADAPTIVE CONTROL

The difficulty and inaccuracy in the measurement of some

state variables make the continuous state feedback control- not
directly physically réa1izable. It is more praètical to feed back

only those states which can readily be measured or some output
quantities (such as terminar voltage) which may be a linear com-

bination of some st'ates or nonlinear functions of the states. In
the case of feedback output of.quantities which are nonlinear
functions of states, linearization and approximations have to be

made or we would get into invol-ved. nonlinear problems beyond the
scope of "linear regulator problem" which we are investigating.
ïn the simpler case of feed.back of output quantities that are

linear combinations of states and the case of partial feedback of
states r 

.\dê 
are looking into the problem of suboptimal control,

because the control we obtained is not optimal according to our

original definition.

there. are many forms of subopti-maI control possible.*12 r10¡6

Using the "minimum norm" suboptimal control , iL can be shown
*1"that LJ the suboptimal control can be obtained from the optimal

control by deleting the terms involving the state variables whose

feedback is not desired.

The stability of the suboptirnal control is not guaranteed

and has to be checked. The performance of this "minimum norm"
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suboptimal control depends greatly on the þroper choice of Q,

the weighting matrix in the cost functional. No analytical

relationship is known to exist between the weighting coeffi-

cients and the behaviour of the machine and the choice of 0 is

therefore empirical. It is, however, intuitively reasonable to

assume that a large weighting coefficient will cause a large feed-

back of that particular state variable, therefore when the feed-

back of a state variable is not needed, the weighting coefficient

of it should be relati-vely smaII.

$Iith our model, r,'re tried the suboptimal control obtained.

from the optimal control by deleting the feedback of ürrvf .rd
Pm'. Then we tried suboptimal control on the model A (wit.h

small d.amping coefficient and everything else identical) where

the effect of the control is more markedly shown. The responses

of the two systems are shown in Fig. 5-1 and pig. 5-2.. The

0 matrix in all cases remained the same as previously set.

With O changed to Q = diag IfO 10 0 0 0l the pro-

cess was repeated and the responses plotted in Fig. 5-3 through

5-4.

From the figures it can be seen that the application of

suboptimal control, whether with the original a matrix (as in

Fig. 5-1 and Fig. 5-2) or with a reduced O matrix (rig. 5-3 and

Fig 5-+) leads to less stability. In fact, Ín the case of the

light,Iy damped model- A, the system becomes unstable. In this
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case, the suboptimal control derived from the original 0 (penalty

on every state variable) is more stable than the suboptimally con-

trolled system with a reduced 0 matrix, but this is not conclu-

sive as in these suboptimal--control systems, the choice of O

based on eigenvalue-shifting techniqu."*5 is of paramount importance.

By reducing the ,,:ígþting coefficient on the control vectors

in the cost functiona:l (i.e. R), a stight.ly better system is ob-

tained, but the difference is very smal1 as seen in Fig. 5-5.

Another aspect of the optimal control of the synchronous

generator and other systems as well is the variation of the opera-

ting point and variation of parameters. The operating point will
not be varied continuously all the time. It is usually fixed on

a few ratings, e. g. 115 l,ll/4, 13-8KV, 0. I p. f . lagging etc. r so iÈ

is possible to derive a few sets of control to suit the various

standard ratings.

.But another problem is the variation of parameters with
respect to the change of load, temperature, etc.*I4 Assuming

some tests have been done to obtain the characteristic curve of

a certain parameter with respect to another quantityr €.g. loadr*IU

it now remains to design a control device that can constantly up-

date t.he feedback matrix in the light of the parameter values.

It is impossible to perform repeated solutions of the Ricatti
Equation; (it takes too much time even for a Sth-order system

like this, and is highly uneconomical). So a formulation that
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can constantly update the feedback matrix upon a nominal pre-

computed feedback matrix without repeated solutions of the

Ricatti Equation, given this characteristic curve of the para-

meters, is needed to maintain near optimality.
If the parameter dependence is not knor¿'n then the system

will be even harder to control, but it is stilI possj-ble, to a

certain extent, to co¡lstantly update the model- and find a con-

trol for it. These techni-ques require an appì-ication of the

model-reference adaptive control techniques and will not be dealt
with here.

To illustrate the relation between the K matrix and the

operating conditions, we take the most common situation of change

of operating point, namely, the change of electrical powerr or

load. The two optimal controls r" and rg corresponding to

different values of Pe, the electrical po$rer output, were plotted

in Fig. 5-6 and Fig. 5-7.

The power is limited by the power angle ô which cannot ex-

ceed 30o according to Manitoba Hydro data. The variatíon of the

K matrix is rather linear. So it should not be difficult to

develop a function generator in the feedback mechanism that varies

linearly with the electrical power. In this way, loading should

not affect the stabilit.y very much.
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CONCLUSION

The application of optimaJ- control to power systems has been

a popurar topic for researchers in the past few years, but has not
reached the point where it can be widely and economically implemented

yet. This thesis, therefore, should be considered as a contribution
to the development in the application of opti-mal control to a por¡/er

system, and not the derivation of a practical controller that can be

implemented immediat"ly. As it is now, the optimal control does not
seem superior to the conventional methods. But once other problems,

such as measurement of parameter, choice of optimal Q matrix etc.,
have been overcome, the optimal control method allows the designer to
emphasize on whichever aspect he desires whether it be time, fue1, or

stability and is therefore a very versatile tool.
The new matrix derivative method used in this thesis is very

powerful in solving the problem in this thesis. It also makes sense

intuitively. The drawback is that its mathematical background is not

!,/d11 established. It may theoretically lead to a different solution
from the optimal one if there exist more than one solution. And in
the case of a 5th order quad.ratic matrj-x equation, there are certainly
more than one solution. However, other iterative methods have the

same problem but some of them have methods to guíde the iterative
scheme towards the optimal solution (along eigenvalue lines or slope

of steepest descent). The same may be applied to this method. In all,
this method is worth studying.

. The linear relationship of elements of K and the power is most

encouragiing. It means a feedback mechanism can cope with nonlinear
plants at varying load conditions in a rather simple way. It makes

imprementation of this type of contror more practicable.
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APPENDIX I.

Ivlachine Equations:

Power Conversion:

P -P +P. +P
MAIOSSE

P = grir,a

P- = Dr¡
I-OSS

P^ = uo "it itr * (*d - *q) .ir, 26e ___T_ _Zx- 
x*d rdo cl q

Linearize about an operating point; the incremental equat-ion'is:

' .,' * Drt * vo =h 6o u,l * vo cos ôo üfo ", * 
(xu-x,r)P =Hc-m 

----i-': 
^ Y cos 2ð^ ð - (1)

x-T- x-T- x.x o
d(locldoo.q

SjJrplified goveïnor-turbi¡re unit:

(2)Ë*' = +" t-e* + rnl

Exciter unit:
.,-v:u

t7V-= t+ e
.I

TTee
Transient property of machine:

aüf *d üf (*¿ ' xd)
¡¡i=tf Vocosô

*d tdo *d

Linearizirg, it becomes

.r , ud .,., 
(xa - ";) 17 ^.:- 

|

tf = Vf - -¡--:-î- üf Vo sin ôo ô -- (4)
*d tdo *d
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By definition:

t'l=ô
.l I
ô -o

Equations (1) to (5) forr¡ the state equations of the system.

Assumptions and approximations are:

1. All damper windings excluded;

2. Subtransients excluded;

3. Property of the governor-turbine unit appnoximated. by a

simpler transfer function;

4. Transmission line between generator and i¡r,f inite bus has

negligible impedence;

5. Saturation of machine excluded.



58

APPENDIX II.

References:

1. "Automatic Control in Electric Power Systemsr" (notes)
R. J. Fleming, University of Saskatchewan

2. "Detailed Hydrogovernor Representation for System Stability
Studyr" Ramey a Skooglund, IEEE Trans. PAS 89, Jan., 1970,
p. 106.

3. "Effects of Modern Amplidyne Voltage Regulators on the
Underexcited Operation of Large Turbine Generatorsr" AIEE-PAS,
Vol. 7I, August, 1952.

4. "Principles of Modern Control Theoryr" Hsu & Meyer

"Optimal Controlr" ch. 9, M. Athans & P. L. Falb, McGraw-Hill,
L966.

5. "Design of Optimal Control Systems with Prescribed Eigenvalues,"
D. A. Solheim, International Journal of Control, Vol. 15, L972.,
pp. 143-160.

"Derivation of Weighting Ratios Towards Satisfying Eigenvalue
Requirementsr" D. Graupe, International Journal of Control'
Vol. 16, L972, pp. BBl-BBB.

"Optimal Power System Stabilization Through Excitation and
Governor Controlr" H. MouSSa & Y.N. Yu, IIEE Trans. PAS' I97L,
pp.. 1166.

6. "suboptimal Control of Linear Time-Invariant Systems' Subject
to-Control Structure Constraintsr" R. L. Kosut, Proceedings of
Joint Automatic Control Conference, L970r PP. 820-

7. "On the Linear Regulator-Problem c.the -MaÈrix Ricatti Equation,"D. L. Kleinman, t4IT Electronics System Lab, Cambridge, ¡4ass.,Report 27L, 1966. -
8. "A Negative Exponential Solution for the Matrix Ricatti Equationr"D. Vaughan, IEEE Trans_., AC, Feb. 1969, p 72.

"Eigenvalue Scaling in a Solution of the Matrix Ricatti Equationr"O. !'Ialter, IEEE Trans. AC, Aug. LgTOr pp. 486-4g7.
"A Nonrecursive Algebraic solution for the Discrete RicattiEquationr" D. Vaughan, IEEE Trans. AC, Oct. L970, p. 5g7.



59

9. "Continuous System Modelling Program" by California Comp.
Inc.

10. "A Class of Suboptimal Linear Controlsr" J. S. Meditch,
IEEE Trans. AC 11, 1966, pp. 433.

l-l. "Stabilization of paralleled Static-and-Amptidyme-Excited
Synchronous Machines," S. Sud, M.Sc. Thesis, University
of Manitoba, 1969.

L2. "suboptimal Control of Power Systems with Measurable Out-
put State Variablesr" Elangovan, Venkataseshaiah, Kuppurajulu,
IEEE paper, C73,490-0.

13. "stabilization of a Synchronous Machine Through Output Feeb-
back Controlr" DeSarkar & Dharma Rao, IEEE Trans. PAS.
Jan. L973.

14. "Dynamic Models For Steam & Hydro Turbines in Power System
Studies," IEEE Committee Report, IEEE Trans. PAS-92' Nov. 73-

15. Manitoba Hydro has such curves available.

16. "Application of an optímal Control Theory to a Power Systemr"
Yu, Vongsuriya & Wedman' IEEE lfgns., PAS-89, Jan. L970.

L7. "Two-Reaction Theory of Synchronous Machines," R.H. Park'
AIEE Trans. VoI. 48, July, 1929.

18. "Unif ied l{achine Theoryr" C. Jones, Butterworth.

19. "General Purpose Turbo-Alternator Models," Proc- IEEE,
Apri1, L963, p. 710.

20. "Irfatrix Quadratic Solutionsr" J.E. Potter, SIAM Journal of
Applied Maths., Vol. :-.4, No. 3, L966, PP. 496.



60

APPENDÏX ITI.

matrix

quite

is as

I

The computer program for the numerical solution of the

Ricatti Equation using the "Matrix Derivative l'lethod" is

complicated and sectiorralized. A schematic of the method

follows:

READ DAÍA

r{rB,ûrR

- F(x¡/r'6¡= K¡+fr¡+ ryøa'tøÎx.-a

Fß¡=o I
F ß¿t

PRlur RÉsulr

t
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