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Chapter 1

Introduction

Computational eletromagnetics (CEM) is a field of applied mathematics, physics,

and engineering that uses numerical techniques for determining the interac-

tions between eletromagnetic fields and the physical medium in which the fields

propagate. Pioneering efforts in numerical methods for electromagnetics prob-

lems can be dated back to the 1940s [1], and since that time CEM has grown

into a vibrant research area. The ability to simulate electromagnetic interac-

tions has many applications, including expedient and cost efficient optimized

designs of electronic systems [2–6], and non-invasive electromagnetic imaging

for biomedical and agricultural applications [7–9].

Today, the field of CEM provides many approaches and formulations, each with

strengths and weaknesses in terms of the range of applications and computa-

tional performance. Field problems can be solved in either the time-domain,

where transient effects are present and critical, or in the frequency-domain,

where steady-state field behaviour is assumed. Formulations may also be based

on either partial-differential-equation (PDE) formulations or integral equation

(IE) formulations. Popular methods include finite difference methods [10], fi-

nite element methods [11], finite volume methods [12], integral equation formu-

1



Chapter 1 Introduction 2

lations [1], pseudo-spectral methods [13] and discontinuous Galerkin methods

[14].

Numerical solutions to time-harmonic problems generally lead to a system of

linear equations that must be solved to determine approximations to the elec-

tromagnetic fields. Researchers and designers of electronic systems continually

seek the ability to solve problems faster, or to solve more complicated (larger)

problems that will help improve their products, servcies, and understanding of

electromagnetic behaviour. While increased computational power and paral-

lelism offer significant benefits [15], solution methods are ultimately hampered

by the cost complexity associated with solving large systems of equations [16].

Consequently there is steady work on novel formulations and fast algorithms

(acceleration methods) that aim to cut the cost of computations. Relevant fast

algorithms include the multi-level fast multipole method (MLFMM) [2], pre-

corrected fast Fourier transform (FFT) approaches [17], adaptive cross approxi-

mation (ACA) and its variants [4], domain decomposition techniques [3], multi-

grid methods [18], and the relatively new approaches of hierarchical matrices

(commonly denoted as H-matrices) [19] [20] and hierarchically semi-separable

matrices [21].

The diversity of formulations and acceleration schemes available in CEM is

staggering, and developing skills in, and/or advancing, this area requires focus.

This thesis focuses on the application ofH-matrix acceleration to discontinuous

Galerkin method formulations for time-harmonic problems. Motivation for this

choice, the goals and scope of study, an outline of the thesis, and a summary of

contributions are provided in this chapter.
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1.1 Motivation

The University of Manitoba’s Electromagnetic Imaging Lab (EIL) designs elec-

tromagnetic imaging systems and algorithms, focusing on biomedical [9] and

agricultural [7] applications. While a precise theory of electromagnetic imaging

is beyond the scope of this thesis, we can briefly summarize the technology as

follows: i) a target is interrogated with electromagnetic sources, ii) the resulting

electromagnetic fields are sampled external to the target, and iii) an algorithm

attempts to determine the electrical properties of the target from the field mea-

surements. The imaging algorithms are optimization methods: estimates of the

target parameters are iteratively updated based on comparisions of field simu-

lations for a target estimate with the measured field data. The capabilities and

computational cost of electromangetic imaging is tied to the choice of forward

solver, that is to the method selected for performing the field simulations.

Recently, the EIL has expanded their imaging capabilities by implementing al-

gorithms based on the time-harmonic discontinuous Galerkin method (DGM)

[22]. This forward solver formulation enables imaging of electric and magnetic

targets, simulation and reconstruction of high-order target properties, flexibile

use of inhomogeneous backgrounds, and electric and/or magnetic field mea-

surements. For modest problem sizes, and single-frequency imaging applica-

tions, it is possible, though expensive, to solve the DGM linear system of equa-

tions directly without any acceleration. However, to improve imaging speeds

and capabilities, there is a need to accelerate the DGM forward solver solution.

While many acceleration schemes are possible, this work focuses on accelera-

tion of a DGM forward solver by means of hierarchical matrices (H-matrices), a

relatively new fast-algorithm framework for accelerating the solution to linear

systems of equations (Figure 1.1) [19] [20]. The motivation for this choice of

acceleration scheme is primarily driven by curiousity and flexibility; H-matrix
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FIGURE 1.1: Conceptual acceleration of field prob-
lems with H-matrices. The H-matrix framework
can improve the performance of storage require-
ments for solving systems of equations arising from
field problems.

theory can be applied, without extensive modifications, to many different time-

harmonic field solvers.

1.2 Goals and Scope

The goal of the work presented in this thesis was to understand, implement, and

study the performance ofH-matrix acceleration for solving the system of equa-

tions arising from a time-harmonic DGM formulation of Maxwell’s equations.

As a result, this thesis serves as a survey of the overall H-matrix framework, a

guide towards implementation, and demonstrates performance for DGM accel-

eration.

The scope of this thesis is:
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• H-matrices are applied to the DGM solution of the two-dimensional (2D)

transverse magnetic (TM) time-harmonic electric vector wave equation.

• Special attention is paid to the effects of exact radiating boundary conditions

(ERBCs) in the DGM formulation as they relate to changes in the discrete

forward operator.

• MATLAB [23] is used to implement an H-matrix library of routines. The

choice of implementation is consistent with the use of a pre-existing 2D

TM DGM solver and the desire to produce a software solution that can be

used as a teaching tool, i.e., MATLAB offers a path towards an easy-to-

follow implementation that is not convoluted by dynamic memory man-

agement or complicated BLAS [24] routine calls.

• The developedH-matrix software library is used to precondition iterative

solutions to the resulting DGM system of equations.

Limiting the scope of this work to 2D problems does not greatly affect the over-

all goal of producing an H-matrix code library as the H-matrix approach is

largely independent of the problem dimensions. It should be noted that com-

mercialH-matrix libraries exist [25], but the development of an in-house code is

consistent with the goal of an in-depth understanding of H-matrices and their

implementation.

1.3 Outline

The remainder of this thesis is structured as follows:

• Chapter 2 summarizes the relevant electromagnetic theory, namely Maxwell’s

equations, the vector wave equation, and boundary conditions.
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• Chapter 3 introduces the Discontinuous Galerkin Method (DGM) for the

vector wave equation, with sufficient details provided to reach the system

of linear equations whose solution provides approximations to the fields.

Special consideration is given to ERBCs.

• Chapter 4 reviews some common methods for solving the linear system

of equations, including direct solutions (specifically LU decomposition),

and iterative techniques (specifically the Generalized Minimum Residual

Method, GMRES). We end this chapter by emphasizing the need for a

good error controllable preconditioner to improve iterative convergence.

• Chapter 5 presents the H-matrix framework, structure, and arithmetic

that enables approximate LU decompositions of the system matrix that

are suitable to precoditioning GMRES.

• Chapter 6 consists of a variety of numerical results testing the perfor-

mance ofH-matrices related to a number of solution parameters.

• Finally, Chapter 7 concludes the thesis and provides suggestions for future

development.

1.4 Contributions

While H-matrices are not a new theory, and have been used for solving many

CEM problems in the literature [26], to the best of our knowledge this is the

first time that H-matrices have been applied to DGM based systems. More-

over, exploiting H-matrices for ERBC-enabled DGM formulations appears to

be a novel synthesis of numerical techniques that has promise for solving large-

scale complicated electromagnetic interaction problems in an expedient way.

From the perspective of the Electromagnetic Imaging Lab at the University of
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Manitoba, this project serves a major contribution in terms of an understanding

of H-matrix theory and the development of a MATLAB code library that has

immediate applications to the MATLAB imaging codes previously developed

in the lab. Full-scale 3D codes used in the EIL are primarily C/C++ [27] and the

MATLAB H-matrix implementation will serve as a guide to implementation in

other programming languages. This work onH-matrix accleration of ERBCs for

DGM problems has resulted in a conference publication “H-Matrix Compres-

sion of Discontinuous Galerkin Method Exact Radiating Boundary Conditions”

[28].



Chapter 2

Relevant Electromagnetic Theory

In this chapter, theory relevant to solving an electromagnetic scattering prob-

lem using the vector wave equation is presented. Maxwell’s curl equations for

isotropic linear media are presented and used to derive both a scattered-field

formulation and the vector wave equation. Electromagnetic boundary condi-

tions are also summarized. A time-harmonic problem, at a frequency f with

associated radial frequency ω = 2πf , and with an ejωt time-dependence for time

t is assumed, where j =
√
−1 is the imaginary unit. The general presentation is

for 3D problems, but the restriction to 2D transverse magnetic (TM) problems

is discussed [29].

2.1 Maxwell’s Curl Equations

We consider solving a time-harmonic field problem in a domain Ω that is gov-

erned by the interaction of impressed electric sources ~J(~x), magnetic sources

~M(~x) and a physical medium governed by isotropic electrical consitutive pa-

rameters, namely the complex dielectric ε(~x) and permeability µ(~x). Here, ~x =

xx̂+yŷ+zẑ is the Cartesian position vector. For linear isotropic media, the total

8
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FIGURE 2.1: Interdependence of electromagnetic
fields. An electromagnetic plane wave includes
electric field ( ~E) and magnetic field ( ~H) that are
coupled through Maxwell’s equations.

fields resulting from this interaction of sources and medium satisfy Maxwell’s

curl equations1:

jωε(~x) ~Etot(~x)−∇× ~H tot(~x) = − ~J(~x)

jωµ(~x) ~H tot(~x) +∇× ~Etot(~x) = − ~M(~x)

(2.1)

at any point ~x ∈ Ω where ~Etot is the total electric field and ~H tot is the total mag-

netic field. Maxwell’s curl equations are a system of coupled PDEs for the fields;

at any point in space ~Etot is related to ~H tot and vice-versa, as illustrated in Fig-

ure 2.1. Solving these PDEs requires the specification of appropriate boundary

conditions, discussed further in Section 2.4.

To isolate the effects of the medium ε(~x) and µ(~x), scattered field formulations

are beneficial. We assume without any loss of generality that incident fields

~Einc(~x) and ~H inc(~x) are supported by the same sources as the total fields but

propagate in a background medium having a permittivity εb(~x) and permeability

1For linear media there is an assumed relationship between electric flux density ~D, magnetic
flux density ~B, and the fields ~E and ~H : ~D = ε ~E and ~B = µ ~H . Consequently we will not require
the divergence equations.
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µb(~x):

jωεb(~r) ~E
inc −∇× ~H inc = − ~J

jωµb(~r) ~H
inc +∇× ~Einc = − ~M

(2.2)

One of the benefits of a scattered-field formulation is that the incident fields, for

a variety of problems, are known analytically. For example, in homogeneous

media, where εb(~x) = εb and µb(~x) = µb are independent of position, both plane-

wave and point-source incident fields have closed forms. The scattered fields,

i.e., field arising from differences between the medium ε(~x) and µ(~x) and the

assumed background εb(~x) and µb(~x) are defined to satisfy:

~Etot = ~Einc + ~Esct

~H tot = ~H inc + ~Hsct.

(2.3)

From (2.1), and (2.2) it is straightforward to show that the scattered fields sat-

isfy:

jωε ~Esct −∇× ~Hsct = − ~Jsct

jωµ ~Hsct +∇× ~Esct = − ~M sct

(2.4)

where ~Jsct = −jω(ε− εb) ~Einc and ~M sct = −jω(µ− µb) ~H inc.

Note that in the scattered-field equations above, explicit dependence on ~x has

been dropped. This convention will be followed throughout this thesis unless

additional clarity is required.
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2.2 Vector Wave Equation

While Maxwell’s scattered-field curl equations (2.4) can be numerically solved

for approximations to the fields for a particular scattering problem, such solu-

tions generally require solving for six field components, namely the three scalar

components of ~Esct and the three scalar components of ~Hsct. To circumvent

this additional computational cost it is beneficial to consider the vector wave

equations.

Solving for the curl of ~Hsct in the second equation of (2.4) and substituting into

the first equation of (2.4) leads to the electric vector wave equation:

(jω)2ε ~Esct +∇× (
1

µ
∇× ~Esct) = −jω ~Jsct −∇× (

1

µ
~M sct). (2.5)

The magnetic vector wave equation can be obtained by duality 2:

(jω)2µ ~Hsct +∇× (
1

ε
∇× ~Hsct) = −jω ~M sct +∇× (

1

ε
~Jsct). (2.6)

The benefits of the vector wave equations is that they operate on only a single

vector field; the solution of a 3D vector wave equation requires discretizing

three field components. However, the additional derivatives introduced by the

vector wave equation must be handled appropriately. It should be noted that

the magnetic fields are recoverable from the electric vector wave equation by

means of the local operation

~Hsct =
− ~M sct

jωµ
− ∇×

~Esct

jωµ
. (2.7)

2Here the duality substitution used is:

~E → ~H, ~H → − ~E, ε(~r)→ µ(~r), µ(~r)→ ε(~r), ~J → ~M, ~M → − ~J
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2.3 Transverse Magnetic Problems

Simplifications to Maxwell’s equations (or correspondingly the vector wave

equation) occur when a problem geometry is invariant in one or more dimen-

sions. A 2D problem arises when invariance exists in one dimension. If we

assume that the problem is invariant in the z-direction, then any z-derivative

of the fields or sources becomes zero. In this configuration, Maxwell’s equa-

tions decouple into two independent problems, one involving Ez, Hx, and Hy,

and the other involving Ex, Ey and Hz. The former case is referred to as a TM

(transverse magnetic) problem and the latter as a TE (transverse electric) prob-

lem. The reduced dimensionality of 2D problems results in a reduction in the

number of equations that must be solved. Throughout this thesis we consider a

TM problem and the vector wave equation, in which case only the z-component

of the electric field is involved in the partial differential operator.

2.4 Boundary Conditions

Regardless of the form that the PDEs representing Maxwell’s equations take,

boundary conditions are required to solve the mathematical problem. Briefly,

the relevant boundary conditions for solving Maxwell’s curl equations, or the

vector wave equation, are summarized in the following subsections.

2.4.1 Material Interfaces

A material interface is denoted by a discontinuity in the constitutive parame-

ters ε(~x) and/or µ(~x). If the discontinuity is characterized as being between

two regions, the first having parameters ε1(~x) and µ1(~x), and the other having
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FIGURE 2.2: An example of a material boundary
and its tangential field.

parameters ε2(~x) and µ2(~x) then, the tangential fields are continuous across the

interface. That is [30],

n̂× ~E1 = n̂× ~E2, n̂× ~H1 = n̂× ~H2, (2.8)

where we note that for a unit normal n̂ directed from medium 1 to medium 2,

shown in Figure 2.2 the tangential electric field is actually given by −n̂× n̂× ~E,

but that enforcing continuous tangential fields is equivalent to enforcing (2.8).

2.4.2 Perfect Conductors

Perfect electric conductors (PECs), and/or perfect magnetic conductors (PMCs)

are useful approximations to highly conductive materials [31, 32]. Both PECs

and PMCs permit approximating a volumetric effect from a good conductor

with an easily imposed boundary condition. It can be shown that at a PEC

boundary:

n̂× ~Etot = 0, → n̂× ~Esct = −n̂× ~Einc (2.9)
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while at a PMC boundary:

n̂× ~H tot = 0, → n̂× ~Hsct = −n̂× ~H inc. (2.10)

Once again, n̂ is the unit normal to the boundary.

2.4.3 Radiation Boundary Conditions

A final boundary condition of note, as it relates to numerical solutions to Maxwell’s

equations, is field behaviour at very large distances from sources and scatterers,

conditions commonly referred to as Sommerfeld radiation conditions [33]. Numer-

ical techniques that must approximate infinite unbounded domains with finite

bounded regions require imposing a radiation condition in some form.

2.5 Huygens’ Principle and Kirchhoff’s Integral

In closing the theory presented in this chapter we briefly introduce the concept

of a Huygens’ surface. It can be shown that given a closed surface Γ ∈ Ω that

contains all electromagnetic sources, which implies it contains all scatterers of

a scattered-field problem, the fields on Γ can be used to determine the fields

anywhere outside of Γ. Mathematically, this Huygens’ surface results in an

integral, also referred to as Kirchhoff’s integral, that is given by [34][22]:

~E(~x) =

ˆ

Γ

(
− jωµb[~n(~x ′)× ~H(~x ′)]Gb(~x, ~x

′) + [~n(~x ′) · ~E(~x ′)]∇′G(~x, ~x ′)

+ [~n(~x ′)× ~E(~x ′)]×∇′Gb(~x, ~x
′)

)
ds′, ~x ′ ∈ Γ,

(2.11)
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where Gb(~x, ~x
′) is the Green’s function for the background medium character-

ized by εb(~x) and µb(~x) external to the integration surface Γ. If the medium

external to Γ is homogeneous, then this Green’s function is known analytically.

Equation (2.11) provides a way of computing the electric fields anywhere out-

side of the surface Γ and will be exploited in developing radiation boundary

conditions for DGM in the next chapter. Note that the presence of the magnetic

fields in (2.11) can be replaced with electric fields by means of (2.7).

2.6 Chapter Summary

In this chapter the relevant electromagnetic theory for the electric vector wave

equation has been presented. The goal of the next chapter is to formulate a

numerical solution to scattered field problems.



Chapter 3

The Time-Harmonic Discontinuous

Galerkin Method

This chapter presents the Discontinuous Galerkin Method (DGM) discretization

of a generic electromagnetic scattering problem. The goal of the exposition is to

provide a sense of the types of matrices that arise from DGM formulations, fo-

cused primarily on the structure of the matrix entries. As DGM is a high-order

method, emphasis is placed both on the effects of order selection (p-refinement)

and mesh density (h-refinement). Specifically, DGM is presented for discretiz-

ing the vector wave equation, but the concepts are the same as those that would

be used to directly discretize Maxwell’s curl equations, and are similar to the

concepts used in more advanced formulations such as the Hybridizable Dis-

continuous Galerkin Method [35]. The presentation closely follows the work of

Hesthaven and Warburton [14] and the discretization of the vector wave equa-

tion presented in [22]. The presentation in this chapter is for 3D problems, but

as we ultimately end up solving 2D TM problems, restriction to the TM case is

provided.

16
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3.1 Overview

The Discontinuous Galerkin Method can be summarized succinctly as follows.

We assume we solving an electromagnetic scattering problem in a domain Ω

(which may be unbounded) and apply the following steps:

1. discretize the domain Ω into a discrete mesh consisting of mesh elements (or

simply elements);

2. expand all unknown field components in each element as p-th order poly-

nomials;

3. substitute these field expansions into the relevant electromagnetic equa-

tions;

4. weight (or test) the residuals of the relevant equations with the same poly-

nomials used to expand the fields, while also applying appropriate bound-

ary conditions; and

5. solve the resulting system of equations to determine the field coefficients,

and hence recover an approximation to the fields.

The remainder of this chapter is focused on providing sufficient details of this

procedure to clarify the structure of the resulting system of equations.

3.2 Discretization of The Problem Domain

In order to numerically solve the electric vector wave equation for the scattered

field problem (2.5), repeated here for convenience

(jω)2ε ~Esct +∇× (
1

µ
∇× ~Esct) = −jω ~Jsct −∇× (

1

µ
~M sct) (3.1)
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we must specify the domain (space) of interest Ω, the sources ~Jsct and ~M sct, and

the scattering targets via the profiles ε(~x) and µ(~x). The geometry, namely the

domain Ω and geometric extent of the scatterers ε(~x) and µ(~x) can be repre-

sented by a geometric model in any number of CAD programs such as Gmsh

[36]. Once specified, we break the problem domain (space) into a set of el-

ements by mesh generation supported by the CAD program. This produces a

model consisting of a number of volumetric elements and surface elements1. The

set of elements produces an approximate partition Ωh of the computational do-

main Ω, as illustrated in Figure 3.1. It should be emphasized that the domain

Ω may have infinite extent, but that Ωh must be finite. In this case, appropri-

ate absorbing boundary conditions are required to effectively enforce the radiation

conditions discussed in Section 3.6.

FIGURE 3.1: An example of mesh generation de-
picting the approximate partition Ωh (mesh) for a
2D domain. Each triangle is referred to as a mesh
element

1Here, a volumetric element has the same dimension as the problem space, i.e., for 2D prob-
lems we consider 2D volumes, while a surface element has a reduced dimension, i.e., for 2D
problems we consider 1D surfaces.



Chapter 3 The Time-Harmonic Discontinuous Galerkin Method 19

3.3 Nodal Basis Expansion

The next step in the DGM numerical scheme is to expand all unknown field

components in a basis2. For the 3D vector wave equation this implies expand-

ing all three scalar components of ~Esct, while for a 2D TM problem only a single

field component is required. A convenient and standard basis for this applica-

tion is the nodal Lagrange basis, i.e., the basis is chosen to be pth order Lagrange

interpolating polynomials on any given mesh element [37]. As the polynomial

expansion varies from element to element, the expansion is discontinuous as the

name DGM suggests. One advantage of this basis choice is that it leads to a

numerical-integration-free implementation of the method for first-order geo-

metric elements [14].

A pth order expansion uses the basis functions `0(~x), `1(~x), . . . , `Np−1(~x), where

Np is the total number of basis functions required to span the space of at most

pth-order polynomials in either two or three dimensions. Corresponding to the

set of basis functions {`i} is a set of nodal points {~xi} that define the polynomi-

als such that `i(~xj) = δij where δij is the Kronecker delta.

Expanding a field component in this basis is straightforward: field values at the

nodal points {~xi} serve as the basis coefficients. For example, the z-component

of the electric field anywhere in the nth mesh element Vn is now assumed to

2A basis for any function space is a minimum set of linearly independent functions that
spans the space.
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take the form

Esct
z (~x) =

Np−1∑
i=0

Esct
z (~xi)`i(~x) ~x ∈ Vn

= [`0(~x), `1(~x), ..., `Np−1(~x)][Esct
z (~x0), Esct

z (~x1), ..., Esct
z (~xNp−1)]T

= `(~x)TEsct
z

(3.2)

where the nodal points {~xi} are confined to Vn and where we have introduced

the vectors (arrays) `(~x) and Esct
z that respectively contain the basis functions

and the field coefficients, and where superscript T denotes transposition.

With this basis we are now in the position to approximate the unknown fields

everywhere in the computational domain as polynomials on each mesh ele-

ment.

3.4 Residual Testing

Given that we have the nodal expansion (3.2) available to expand field compo-

nents on every element, we can now consider the effect of substituting these

expansions into the vector wave equation (3.1). It is not necessary to explicitly

make this substitution to recognize the result: given NV mesh elements, a pth

order expansion in each element, and Nf field components, the total number of

nodal basis unknowns resulting from basis expansion is NV ×Np ×Nf . As the

vector wave equation itself provides NV × Nf equations we immediately rec-

ognize that there is a deficiency in the number of equations provided by mere

substitution. Therefore our goal is to generate enough equations to recover all of

the coefficients. The DGM accomplishes this by appropriately weighting/test-

ing the resulting expanded field equations on each mesh element with the same

set of polynomials used to expand the fields. Testing is achieved by projecting

the residual onto the basis functions via an inner product, with the net result
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being a system of equations for determining the polynomial basis coefficients

that represent the fields. Using the expansion functions as testing functions

is referred to as Galerkin testing, and contributes to the moniker DGM. As it

turns out, the testing procedure is also critical to the DGM formulation in that

it serves to couple field solutions in neighbouring elements3.

To illustrate the importance of residual testing in the DGM formulation assume

that a single testing function is represented by ψ(~x), ~x ∈ Vn. Testing the vector

wave equation and applying integration by parts twice, (i.e., twice applying the

identity ψ∇× ~F = ∇× (ψ ~F )−∇ψ × ~F ) and using Stoke’s theorem, gives:

(jω)2

ˆ

Vn

ψε~Esctdv +

ˆ

Vn

ψ∇× (
1

µ
∇× ~Esct)dv +

ˆ̂
©
∂Vn

ψ

(
(~n× (

1

µ
∇× ~Esct))∧

−(~n× (
1

µ
∇× ~Esct))

)
ds = −jω

ˆ

Vn

ψ ~Jsctdv −
ˆ

Vn

ψ∇× (
1

µ
~M sct)dv

(3.3)

The magnetic vector wave equation equivalent form can be obtained by du-

ality. The above equation is referred to as the strong form of the DGM testing

procedure (the weak form is obtained by applying integration by parts once)

[14]. Here, special attention should be paid to the resulting surface integral

around the boundary ∂Vn of the element Vn. Close examination of the vector

wave equation (3.1) suggests that this surface integral should evaluate to zero.

A key concept in Discontinuous Galerkin formulations is that this surface in-

tegral must be used to couple information between neighbouring elements. It

is important to recognize that the surface integral makes reference to a bound-

ary value denoted by superscript ∧ that can be reconstructed using information

from both an element and its neighbours to ensure that the boundary condi-

tions required for Maxwell’s equations are enforced. Without this term, the

DGM would be an entirely local formulation on each element and would not

provide a method for solving Maxwell’s equations.

3Here, elements are neighbours if they share a common face.
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3.5 Constructing the DGM System of Equations

To illustrate the construction of the desired DGM system of equations we limit

our formulation to consider i) constant constitutive parameters εn and µn on

each mesh element Vn, and ii) that fields in each element are expanded to the

same order p. These assumptions are not necessary and are only made to

simplify the exposition. In fact, one of the strengths of DGM formulations is

that they permit polynomial expansions of the constitutive parameters in each

element and variable solution orders to be applied over the mesh elements

[22][14].

Substitution of the nodal basis expansion and subsequent testing using each ba-

sis function in the set {`i(~x)} leads to a local system of equations in Vn. Specifi-

cally, expanding and testing the z-component of the vector wave equation leads

to:(
(jω)2εnMn − Sn

y

1

µn
Dn
y − Sn

x

1

µn
Dn
x

)
Esct,n
z + Sn

x

1

µn
Dn
zE

sct,n
x + Sn

y

1

µn
Dn
zE

sct,n
y

+ FE,n
z = −jωMnJsct,nz − (−Sn

y

1

µn
M sct,n

x + Sn
x

1

µn
M sct,n

y )

(3.4)

where the x- and y-components of the vector wave equation lead to similar

expressions that can be obtained from (3.4) through cyclic interchange of the

coordinates x → y → z → x. In the discrete equations the quantities Esct,n
x,y,z,

Jsct,nx,y,z and M sct,n
x,y,z are nodal coefficients for the field and source components in Vn

and the matrices Mn, Sn
x,y,z and Dn

x,y,z are respectively referred to as the local

mass, stiffness, and derivative matrices for the nodal basis in Vn. These matrices
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arise from the weighted residual testing procedure and are given by:

Mn ,
ˆ

Vn

`(~x)`(~x)Tdv, Sn
ζ ,
ˆ

Vn

`(~x)
∂

∂ζ
`(~x)Tdv, Dn

ζ = (Mn)−1 Sn
ζ

(3.5)

Construction of these matrices is straightfoward in the nodal basis and, for first-

order geometric elements, lead to analytic (numerical-integration-free) evalua-

tions. The interested reader can refer to [14] for details. The remaining, and

perhaps most important, quantity in (3.4) is the flux term FE,n
z that arises from

the evaluation of the surface integral in (3.3). For an element Vn this flux term

involves contributions from the fields in Vn and each of its neighbours. For ex-

ample, if Vn′ neighbours Vn, its contribution to FE,n
z , which we denote as FE,n,n′

z

can be shown to take the form

FE,n,n′

z = Fn,−
z Esct,n + Fn,+

z Esct,n′
(3.6)

where Esct,n encompasses all nodal coefficients for all electric field values in Vn.

In this way, both the unknowns in Vn and its immediate neighbours contribute

the overall field solution, i.e., the fields become globally coupled. Through these

flux terms, boundary conditions for Maxwell’s equations such as dielectric in-

terfaces, perfect electric conductors, and absorbing boundary conditions can be

readily enforced. A complete description of the evaluation of these flux terms

is beyond the scope of this thesis, but details can be found in [14] [22] [38]. The

importance of these flux terms for enforcing absorbing boundary conditions is

presented in Section 3.6.

We now examine the structure of the resulting global system of equations ob-

tained by constructing the discrete local system (3.4) for each element. To sim-
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plify the notation we define

αnζξ = (jω)2εnMn − Sn
y

1

µn
Dn
y − Sn

x

1

µn
Dn
x

βnζξ = Sn
ζ

1

µn
Dn
ξ

(3.7)

and collect the equations for the x-, y-, and z-components of the vector wave

equation discretization (3.4) leading to the following equations enforced on Vn

(where the explicit dependence on n has been suppressed):


αyz βyx βzx

βxy αzx βzy

βxz βyz αyx



Esct
x

Esct
y

Esct
z

+


FE,n
x

FE,n
y

FE,n
z

 =

− jω


M

M

M



Jsctx

Jscty

Jsctz

− µ−1


−Sz Sy

Sz −Sx

−Sy Sx



M sct

x

M sct
y

M sct
z


(3.8)

For 2D TM problems this system reduces to:

αyxE
sct
z + FE,n

z = −jωMJsctz + µ−1SyM
sct
x − µ−1SxM

sct
y

(3.9)

Examining the systems arising on Vn provides the following insight:

• The dimensions of the system for a single element for the 3D vector wave

equation are 3Np × 3Np. Enforcing an equivalent system on each element

will result in a global system of equations of size 3NVNp × 3NVNp.

• For the 2D vector wave equation the local system dimension are Np ×Np.

The global system of equations has dimensions NVNp ×NVNp.

• Without the flux term, the resulting global system in either 2D or 3D, ob-

tained by enforcing the required equations on each element would be block
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diagonal.

• Including the flux term introduces off-diagonal blocks in a global matrix

that has a blockwise structure. The number of faces on each element dic-

tates the number of off-diagonal blocks introduced by each element.

• Increasing the solution order p on each element, increases the size of the

block structure in the global system.

• Increasing the number of elementsNV in the mesh, does not affect the size

of the block structure but increases the total number of blocks.

Proper construction of the DGM equations for the vector wave equation, in-

cluding evaluation of appropriate flux terms for imposed boundary conditions

leads to the following global system of eqautions

KEsct = RJJ
sct + RMM

sct (3.10)

where the global system K and has dimensionsNfNVNp×NfNVNp whereNf =

3 for 3D problems, and Nf = 1 for 2D TM problems. The quantities Esct, Jsct

and M sct are NfNVNp × 1 column vectors respectively containing all field and

source nodal coefficients over the entire discrete domain Ωh. By construction,

K and RJ,M are sparse matrices, where RJ,M accounts for appropriate testing

of the sources.

In order to determine the global nodal coefficients for the scattered field, we

must solve the sparse block system of equations given in (3.10). That is, solving

the DGM problem now amounts to solving a system of equationsAx = b, where

the matrixA and right-hand-side b are known.
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3.6 Absorbing Boundary Conditions

For unbounded field problems it is necessary to truncate the domain Ω leading

to a finite discrete domain Ωh. The DGM formulation presented in the previous

section is complete with the exception of how to handle the flux terms required

for the scheme at the boundary of the computational domain. At this boundary,

which we denote ΓABC for a surface where an absorbing boundary condition (ABC)

is needed, elements Vn are without neighbours over one or more of their faces

and special handling of the flux terms is required.

One common way of handling absorbing boundary conditions through the flux

terms is to assume that the contribution from the neighbour is zero but oth-

erwise leave the flux decomposition the same as any other dielectric interface

[39]. This condition is known as a Silver-Müller absorbing boundary condition.

The drawback of this approach is that it is only accurate if the boundary is suf-

ficiently far from all scatterers that fields impinging on the boundary are well

approximated by plane waves normally incident on the boundary [22].

Another method for handling absorbing boundary conditions more rigorously

is to impose an exact radiating boundary condition (ERBC) by means of a Huy-

gens’ surface. As discussed in Section 2.5 the field values on a surface enclosing

all sources can be used to determine the field values required from non-existing

neighbours of an element adjacent to ΓABC . The idea is shown in Figure 3.2.

An additional surface ΓERBC is built into the mesh (denoted in red in the fig-

ure) and elements connected to this surface (also shown in red) are identified as

contributors to the boundary condition on ΓABC . Elements connected to ΓABC

(denoted in blue) use the fields on ΓERBC in order to produce the values re-

quired to evaluate their fluxes. This is accomplished by simply specifying the

surface integral and observation points in (2.11) as follows:
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~E(~x) =

ˆ

ΓERBC

(
− jωµb[~n(~x ′)× ~H(~x ′)]Gb(~x, ~x

′) + [~n(~x ′) · ~E(~x ′)]∇′G(~x, ~x ′)

+ [~n(~x ′)× ~E(~x ′)]×∇′Gb(~x, ~x
′)

)
ds′, ~x ′ ∈ ΓERBC , ~x ∈ ΓABC

(3.11)

While enforcing ERBCs is far more accurate than Silver-Müller boundary con-

ditions and permits mesh truncation boundaries ΓABC to be closer to scatterers

than simpler absorbing conditions, ERBCs come with a significant price. Specif-

ically if ΓERBC consists of NERBC mesh edges, and ΓABC consists of NABC mesh

edges, then a block of dense matrix entries proportional to NERBC ×NABC (de-

pending on expansion order) is introduced into the DGM system matrix and

FIGURE 3.2: Geometric surfaces for imposing
Silver-Müller boundary conditions and exact radi-
ating boundary conditions: a) Silver-Müller bound-
ary conditions; b) Exact radiating boundary condi-
tions; c) The elements inside the ERBC surface (red)
are used to determine fields on the problem bound-
ary (blue).
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FIGURE 3.3: Matrix entries introduced by exact ra-
diating boundary conditions: a) The sparse block
matrix for Silver-Müller boundary conditions; and
b) Additional matrix entries introduced as an effec-
tive dense sub-block as a result of ERBCs.

have a great affect on performance. An example of the matrix structures ob-

tained for Silver-Müller ABCs and ERBCs is shown for emphasis in Figure 3.3.

3.6.1 Chapter Summary

In this chapter we have formally presented the important aspects of DGM for-

mulations as they relate toH-matrix preconditioning of the global DGM system

(3.10). A complete implementation of DGM for the 2D TM vector wave equa-

tion, developed by Dr. Ian Jeffrey, Nicholas Geddert, Kevin Brown, and Dr. Joe

LoVetri [22], was used throughout the remainder of this work. Although only

briefly introduced, the effects of ERBC boundary conditions on the structure of

the DGM system matrix have been empahsized. While ERBCs can improve the

accuracy of the DGM solution, they add significant data to the global matrix

that can largely affect the computational time and memory. In the upcoming

chapters, we will formalize an H-matrix framework that permits efficient and

error-controllable solutions to DGM problems, with a focus on ERBC-enabled

DGM.



Chapter 4

Preconditioned GMRES

Having constructed the discrete DGM system for the electric vector wave equa-

tion (3.10) we recognize that solving this system amounts to solving a square

non-singular matrix equation

Ax = b (4.1)

for system An×n and right-hand-side vector bn×1 in order to determine the un-

knowns xn×1. Of note is the fact that the DGM system for time-harmonic prob-

lems is complex. The task at hand is to therefore produce the solution vector

x in an efficient and scalable manner for a large problem size. This chapter

surveys the choices that we’ve made to solve the DGM system of equations.

The literature on techniques of solving systems of equations is vast, and sum-

marizing all available options is prohibitive. Instead, we simply note that adop-

tion of the generalized minimum residual method (GMRES) [40] is a common choice

for large complex systems. GMRES, an iterative method, benefits from accu-

rate preconditioners to improve convergence [16]. H-matrices, described in the

next chapter, provide an error-controllable framework for producing an accu-

rate preconditioner.

29
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In this chapter we briefly discuss LU decomposition and review the precondi-

tioned GMRES algorithm. It is assumed that the reader is familiar with Gaus-

sian elimination.

4.1 Direct Solutions Methods

Direct solution methods may perhaps be best described as being non-iterative.

By brute force these techniques aim to provide a guaranteed direct path to

the solution to a system of equations. Common direct methods are Gaussian

elimination [41], QR decomposition [16], and LU decomposition [16]. Decom-

position (or factorization) methods such as QR and LU offer the benefit of in-

creased performance when solving multiple right-hand-sides. The complexity

of these methods for dense matrices is generally O(n3) where n is the number

of unknowns (although improvements are possible). For a fixed problem size

LU decomposition is more efficient than QR. For sparse matrices, such as the

DGM system (3.10), complexity depends largely on the ordering of the matrix,

and pivoting strategies that attempt to reorder to matrix to improve performance

are important [16]. For our applications, LU decomposition is an appropriate

choice and we summarize the approach in the following section.

4.2 LU Decomposition

The Lower-Upper (LU) Decomposition of a matrix A seeks to represent the

matrix as a product of lower- and upper-triangular matrices L and U . This

decomposition is theoretically possible for any non-singular matrixA (pivoting
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may be required) and can be obtained directly from Gaussian elimination [41,

42]. Formally the decomposition produces

A = LU , Lij = 0 ∀ i < j, Uij = 0 ∀ i > j (4.2)

where Aij indicates the entry at row i, column j of matrixA.

Once the decomposition is available, solving the system of equations Ax = b is

equivalent to solving LUx = b which can be solved as follows:

Let Ux = d

Solve Ld = b for d

Solve Ux = d for x

(4.3)

thus, solving a system of equations using LU decomposition requires solving

two triangular systems of equations once the decomposition is known. These

solutions are readily computed using forward and backward substitution respec-

tively [42]. From the above procedure it is clear that changing the right-hand-

side b leaves the decomposition unchanged. Forward-substitution and backward-

substitution requireO(n2) operations for dense systems [16], while the elimina-

tion steps required to produce the decomposition requiren
3

3
+O(n) operations.

While this approach works very well for relatively small problems, the cubic

complexity implies that this method does not scale appropriately for larger

problems, especially considering that even when systems are sparse, there is

no guarantee that their decompositions are sparse [16]. Again we stress the

need for pivoting strategies [43] that are not considered herein due to the com-

plications that they impose on a basic H-matrix implementation discussed in

the next chapter.
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4.3 GMRES

For large systems of equations, the cost of direct methods such as LU decompo-

sition is prohibitive. Iterative methods alleviate this cost by formulating solution

procedures that iteratively update a solution estimate. Iterative update schemes

typically incur the cost of performing matrix-vector-products at each iteration,

a cost that is O(n2) for dense matrices and generally O(n) for sparse matrices.

Provided the total number of iterations required to converge to a given tolerance

is small compared to n, iterative solutions provide expedient solutions meth-

ods.

One common iterative technique for solving general systems of equations (in-

cluding complex systems) is the generalized minimum residual method (GMRES).

MATLAB contains a built-in GMRES routine, that was used to produce the nu-

merical results presented in Chapter 6. For completeness in this work, what

follows outline the GMRES algorithm.

A general iterative method for solving a linear system of equations Ax = b

can be summarized as iteratively updating the solution vector x(i) at iteration i,

while minimizing the residual vector r(i) at each iteration:

x(i+1) = x(i) + γ(i)d(i)

r(i+1) = Ax(i+1) − b
(4.4)

where γ(i) is the step length taken in the search direction d(i) at the ith iteration.

GMRES is one of a class of iterative solvers commonly referred to as Krylov

subspace solvers [16, 44]. GMRES can be presented in a number of ways, but

we use the projection method approach summarized in [16].
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Projection methods use two affine subspacesK andL to seek appropriate spaces

for representing the solution and residual. It is assumed that the solution vector

x can be represented in K, while constraints on the residual are enforced in

L. Given bases for the spaces, V and W , it can be shown that the projection

method update scheme is [16]:

x(i+1) = x(i) + V (WHAV )−1WHr(i) (4.5)

So long as the dimensions of the subspaces K and L are relatively small com-

pared to the system size, that is V andW have one relatively small dimension,

the solution method is expedient.

GMRES is a projection method that specifically chooses the subspace K as the

Krylov subspaceKm(A, r) = span{r,Ar,A2r, . . . ,Am−1r} and chooses the con-

straint space L = AK. Note that for a non-zero initial guess these spaces are

shifted from the origin and are thus affine spaces. The choice of L = AK

imposes an oblique projection method, which guarantees that WHAV is non-

singular [16].

The following pseudocode summarizes the basic GMRES algorithm. It is based

on the presentation in [16] and is an efficient implementation of the generation

of the bases V andW based on Householder transformations. Note than when

m increases, storage requirements and computational time increase; choosing

very large m is not practical. There are a number of variations and improve-

ments that can be made to GMRES in order to overcome this problem. One is to

restart the algorithm (step 4), and the other is to use preconditioners to improve

convergence.
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Algorithm 1 GMRES without preconditioning

1- Start: Choose x(0) and dimension m of the Krylov subspaces
2- Efficient computation of subspaces using orthogonalization (Arnoldi pro-
cess)

Compute r(0) = b−Ax(0), β := ||r(0)||2 and v1 = r(0)

β

For j = 1, . . . ,m Do
Compute ωj := Avj
For i = 1, . . . , j , Do

hi,j := (ωj, vi) and ωj := ωj − hi,jvi
EndDo
hj+1,1 = ||ωj||2 If hj+1,j = 0 Stop vj+1 =

ωj

hj+1,1

EndDo
Define V m := [v1, . . . vm] andHm = {hi,j}

3 Form the approximate solution: Compute x(m) = x(0) + V my
(m)

where y(m) = argminy||βe1 −Hmy||2 and e1 = [1, 0, . . . , 0]T .
4 Restart:

if satisfied then stop
else set x(0) ← x(m) and go to 2

4.4 Preconditioned GMRES

For iterative solvers, the spectrum (singular values) of operator A dictate the

convergence rate [16]. Large systems of equations with poor spectral properties

(often referred to as ill-conditioned systems), converges very slowly, if at all.

As the spectrum of the system dictates convergence, it is natural to attempt to

condition the system so as to have better spectral properties before solving the

system, that is preconditioning the system. The general idea is that instead of

solvingAx = b, we solve:

M−1Ax = M−1b (4.6)

The problem is then the determination of a pre-conditionerM that is both easily

an efficiently inverted (or more precisely systems involving the preconditioner

can be easily solved) while providing better spectral properties of the product

M−1A. The ideal preconditioner is to choose M = A which would lead to an

identity matrix for the system of equations. Of course this is not feasible in prac-
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tice, as solving systems with M = A amounts to solving the original problem

and we get nowhere. Augmenting GMRES to support a (left) preconditioner as

in (4.6) is straightforward requiring only minor modifications [16]:

Algorithm 2 GMRES – with left Pre-conditioning

1- Start: Choose x(0) and dimension m of the Krylov subspaces
2- Efficient computation of subspaces using orthogonalization (Arnoldi pro-
cess)

Compute r(0) = M−1(b−Ax(0)), β := ||r(0)||2 and v1 = r(0)

β

For j = 1, . . . ,m Do
Compute ω := M−1Avj
For i = 1, . . . , j , Do

hi,j := (ω, vi) and ω := ω − hi,jvi
EndDo
hj+1,j = ||ω||2 and vj+1 = ω

hj+1,j

EndDo
Define V m := [v1, . . . vm] andHm = {hi,j}

3 From the approximate solution: Compute x(m) = x(0) + V my
(m)

where y(m) = argminy||βe1 −Hmy||2 and e1 = [1, 0, . . . , 0]T .
4 Restart:

if satisfied then stop
else set x(0) ← x(m) and go to 2

4.4.1 Choosing a Preconditioner

As illustrated in the previous algorithm, preconditioners come with the asso-

ciated cost of solving systems of equations. Preconditioners that are easily in-

verted rarely give good performance. One example of a common precondi-

tioner is the incomplete LU decomposition (ILU) [45]. One drawback of ILU

preconditioners is that they are not error-controllable, and preconditioners ca-

pable of providing error-controllable approximate solutions via either approxi-

mate inversion or approximate decompositions are desirable. An interesting re-

cent approach that shows promise for providing this type of error-controllable

framework for solving systems of equations is hiearchical matrices, a framework

that permits inversion and or decomposition with controllable accuracy where
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we can sacrifice accuracy for performance. In the context of preconditioned it-

erative solvers, preconditioner accuracy requirements may be low enough that

significant savings can be obtained by choosing just enough preconditioner ac-

curacy for rapid convergence.

4.5 Chapter Summary

This chapter has briefly summarized both LU decomposition and precondi-

tioned GMRES, approaches that are used for solving the DGM system of equa-

tions. LU decomposition was employed for solving the required preconditioner

equations within the GMRES framework. The MATLAB implementation of

GMRES is exploited in Chapter 6. In the next chapter the hierarchical matrix

framework is developed so that we can represent, multiply, invert, and decom-

pose, the DGM system matrix.
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H-Matrices

A hierarchical matrix, or an H-matrix, is a structured representation of a matrix

that aims to permit efficient compression of matrix storage, while also attempt-

ing to enable acceleration of standard matrix operations, including decompo-

sitions, matrix-vector products and even matrix inversion. In this chapter the

theory of H-matrices is presented from the basic concept of approximating a

matrix in a memory efficient way, to a complete description and implementa-

tion of H-matrix LU decomposition. As we will see, H-matrix representations

and operations are error-controllable, where precision is gained by sacrificing

time and memory gains. This suggests that H-matrices are worth investigating

as preconditioners for iterative solvers.

5.1 Introduction

The theory of H-matrices presented in this chapter closely follows the work of

both Bebendorf [19] and Hackbush [46]. As our overall goal of understanding

and implementingH-matrices is to accelerate DGM solutions to computational

electromagnetics problems, cost complexity ofH-matrix arithmetic is provided

37
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but without proof; readers interested in formal arguments for the cost complex-

ity can refer to [20].

5.1.1 Why and How is Compression Possible?

Before formally introducingH-matrices and their theory, it is worth briefly dis-

cussing why it is generally possible to compress matrices and accelerate matrix

operations arising from time-harmonic electromagnetics problems. A physical

argument serves as motivation. Consider the light emitted by each individ-

ual star in a galaxy. An observer within the galaxy itself would be able to see

the effect of many individual stars throughout the sky. A second observer lo-

cated a very large distance from the galaxy may only be able to distinguish the

galaxy as a single point in the night sky, that is, the complicated interaction

between many sources and an observer at a large distance may be well approx-

imated by a simplified source model. An illustration is provided in Figure 5.1.

This observation is not new, and in fact is the theoretical basis for the multi-

level fast multipole method (MLFMM) [2], a well-known acceleration scheme

for time-harmonic electromagnetics problems. While MLFMM requires rigor-

ous analytic mathematics related to the propagation of electromagnetic fields,

an H-matrix approximation to a given matrix attempts to obtain similar accler-

ation and compression by simply discarding information stored in the matrix

according to some desired accuracy.

In the case of a DGM solution to a scattering problem, we can tie the compres-

sion concept to the system matrix as follows: a sub-block of the matrix rep-

resents interactions between a set of sources within the mesh and a set of field

points. Sub-blocks can be examined to determine if the sources and observation

points represented by the sub-block are well-separated and warrant compres-

sion. We need to ensure that a matrix is represented in a way that it contains
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FIGURE 5.1: An illustration of source compression
of light from distant sources. To an observer at a
great distance, multiple sources may appear as a
single source and can be represented with a sim-
plified model.

compressible sub-blocks, i.e., sub-blocks represent interactions between sources

and observation points that are well-separated. In this work, we order the rows

and columns of a matrix based on geometric partitioning, as described in Section

5.2.1. Another approach is possible, algebraic partitioning which considers only

the structure of a sparse matrix [47], and is especially valuable when no knowl-

edge of the origins of the matrix (e.g., basis, mesh, etc.) are available. Note that

in the context of (sparse) DGM systems it is actually the matrix inverse, or ma-

trix factorization, that warrants compression. As is shown, the structure used to

represent the DGM system matrix is the same structure used to represent either

its inverse or its factorization. This ensures compression is possible.

5.1.2 Exploiting a Hierarchical Tree Structure

We may now begin to see an overall goal of identifying regions in a matrix

that can be efficiently compressed. It turns out that a tree structure is a very
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FIGURE 5.2: An abstract representation of a (quad)
tree structure. Note that only elements on the left
quadrant are shown. The level of the tree indicates
the distance of a node to the root.

good tool for helping achieve this goal. Briefly, in the context of data structures

(and mathematics), a hierarchical tree (rooted tree) is a structure in which each

node of the tree may have children (other nodes), which may themselves have

children, and so on. The maximum number of permitted children indicates the

type of tree, e.g., a binary tree where each node has at most two children, or a

quad tree where each node has at most four children. Tree structures are used

extensively throughout H-matrix theory and it is assumed that the reader is

familiar with tree structures. An illustration is provided in Figure 5.2.

5.2 Building a Hierarchical Matrix

Constructing anH-matrix can be summarized as a three step procedure:

1. partition the unknowns: this involves the technical step of building a clus-

ter tree;
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2. build a hierarchical data structure for representing the matrix: the techni-

cal step is building a block cluster tree; and

3. store the matrix entries in the hierarchical structure, compressing when

possible: this requires the technical step of rank compression.

In order to understand H-matrices, we next describe these three steps: con-

structing a cluster tree, building the block cluster tree, and a rank compression

technique known asRk-matrices.

5.2.1 Constructing a Cluster Tree

The goal of a cluster tree is to provide a way of hierarchically partitioning a set.

For simplicity we assume that we partition an index set whose entries 1, 2, . . . NV

index a set of elements of interest. ForH-matrix acceleration of DGM problems,

our aim is to partition the set of mesh elements. As will become clear, this

partitioning aims to provide a way of localizing the DGM elements in space in

such a way that the global DGM matrix can be hierarchically partitioned in a

convenient way.

An informal definition of a (binary) cluster tree TI for an index set I = {1, 2, . . . n}

is [19]

• the root of the tree is associated with the index set I

• each node of the tree either has no children (a leaf node) or it has two

children

• the index sets of the children of any non-leaf node form a partition of the

node’s index set
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FIGURE 5.3: Construction of a 3-level cluster tree.
The original index set is represented in a permuted
order at the leaf nodes. The permuted order cap-
tures geometric locality of the elements referred to
by the index set.

An illustration of a 3-level cluster tree can be seen in Figure 5.3.

In order to build a cluster tree we must specify a condition at which a node’s

index set is no longer subdivided to its two children. This is accomplished by

specifying a quantity Nmax such that only cluster tree nodes with associated

index sets having more entries than Nmax are partitioned. We also need to pro-

vide a way for determining how to subdivide the index set itself. A suitable

partitioning scheme can be based on the geometry of the associated elements.

One common way of doing this is Orthogonal Recursive Bisection (ORB) [48].

At each level of the tree a new coordinate x, y, or z is selected and the elements

in a node’s index set are sorted according to increasing coordinate and divided

according to this coordinate into two sets of roughly equal size. The index set

is correspondingly divided and the resulting two index sets are associated with

the node’s children. An example of the geometric partitioning that results from

an ORB-generated cluster tree for a 2D problem is shown in Figure 5.4.
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FIGURE 5.4: An example of an ORB constructed
cluster tree’s affect on element ordering. Elements
are coloured according to their leaf node index in
the tree. Elements sharing the same colour are geo-
metrically close together.

Note that through the ORB construction, each leaf node of the cluster tree will

contain elements that are spatially localized, and that the set of all cluster tree

leaf nodes effectively re-orders the element index set into an ordering that has

spatial localization. For example, in the Figure 5.3 the original ordering [1, 2,

. . . , 10] may have no spatial structure, while the leaf-node ordering has spatial

structure.

5.2.2 Building a Block Cluster Tree

While a cluster tree can be used to partition an index set, or a set of elements,

our next goal is to partition the interactions between two sets of elements. That

is, we want to hierarchically partition the Cartesian product I×J for index sets

I and J . This is motivated by the fact that a DGM system matrix ultimately
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represents the interactions between all mesh elements (fields) with all mesh

elements (sources). A hierarchical partition of I × J is referred to as a block

cluster tree [19], which is obtained by recursively taking the Cartesian product

of the index sets of the children of two cluster trees TI and TJ . That is, any node

τ×σ in a block cluster tree (corresponding to two cluster trees τ and σ), is either

a leaf node or has four children corresponding to τ1 × σ1, τ1 × σ2, τ2 × σ1 and

τ2 × σ2, where τ1 and τ2 are the children of the cluster tree node τ and where

σ1 and σ2 are the children of σ. If the block cluster tree node corrsponding to τ

and σ is a leaf node then it represents the interactions of index sets τ and σ. An

example is shown in Figure 5.5.

FIGURE 5.5: An illustration of a block cluster tree
based on two cluster trees τ and σ. Nodes in the
block cluster tree correspond to regions of element
interactions.

5.3 Rank Compression and Tree Pruning

Based on the discussion in Section 5.1.1 and given that we have a structured rep-

resentation of element interactions via a block cluster tree, it is natural to seek
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to compress interactions for given blocks in the tree, provided that the blocks

represent well-separated interactions. Before formalizing the definition of an

H-matrix, we need to introduce the technique used to compress compressible

blocks to a desired tolerance. This leads to the concept ofRk-matrices, that pro-

vide the critical compression required for H-matrices to offer acceleration and

memory savings.

5.3.1 Rk-Matrices

A general matrix A can be written in outer product form. The rank of a matrix is

the number of linearly independent rows (or equivalently columns), and if the

matrixAm×n has rank r then the outer product form can be written as:

Am×n = Um×r(V n×r)H (5.1)

where we are assuming complex matrices, and where H denotes the complex

conjugate transpose (or Hermitian) operator. As an obvious example of this

outer product form for a square matrix An×n is A = UV H where U = A

and V = I . For full-rank matrices, that is matrices whose rank is equal to

the number of rows or columns, there is little benefit in representing a matrix in

outer-product form. However, for low rank matrices, where r is small relative

to the number of rows or columns, an outer-product representation can be very

convenient.

A rank-k or Rk matrix is a matrix having rank at most k. From the proceeding

discussion we know that a generalRk-matrixAk can be represented as

Am×n
k = Um×k(V n×k)H (5.2)
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Rk-matrices are also often called low-rank matrices, as there is little point in

representing a (near) full-rank matrix in outer-product form. Throughout this

work we use the termsRk-matrix and low-rank matrix interchangeably. At that

core of H-matrices is the concept of an Rk-matrix approximation Ak to a given

matrixA.

5.3.2 Rk-Matrix Approximations

If we seek an approximation to a general m×nmatrixA among the set ofm×n

Rk-matrices, the natural question is which approximation should be used? It

can be shown that an error-controllable approximation is obtained through the

singular value decomposition (SVD) ofA. Specifically we let:

A = ŨΣṼ
H

(5.3)

be the generalized singular value decomposition (SVD) of An×m where Σ is a

diagonal matrix where the diagonal entries are the singular values of A, which

may be assumed to be given in non-increasing order. The truncated singular

value decomposition of A is then obtained by zeroing the singular values with

indexes greater than k in the SVD ofA:

A ≈ ŨΣkṼ
H
. (5.4)

The presence of zero singular values implies that corresponding rows of Ũ and

columns of Ṽ do not contribute to the approximation. Therefore the truncated

SVD enables determining the approximation:

A ≈ Ak = UV H (5.5)
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where Um×k and V n×k are computed from the truncated SVD. It can be shown

that the error in this approximation is bounded by:

||A−Ak||2 ≤ σk+1 (5.6)

which implies that if a relative error tolerance ε is desired for approximatingA,

then we can enforce that σk+1/σ1 ≤ ε [19].

The net result is an error-controllable Rk-matrix approximation to A given by

(5.5) where the error tolerance dictates the rank k of the resulting low-rank ap-

proximation. An Rk-matrix approximation implies a significant reduction in

storage and improved performance when computing operations like matrix-

vector products provided k is sufficiently small [49].

Two brief points are worth discussing. First, we do not seek low-rank approx-

imations to the global system. As we must invert the global system it should

have full rank and compressing its overall global rank would be disastrous.

Instead, only sub-blocks of the matrix are approximated, the choice of these

subblocks being based on their position in the block cluster tree representing

the matrix and an admissible condition discussed in Section 5.3.4. The second

important point is that SVD is an expensive routine and attempts to minimize

the size of the matrices that are being decomposed should be sought or other

low-rank approximation yielding methods such as adaptive low-rank approx-

imation [49], adaptive cross approximation (ACA) [50] [51], or a combination

of SVD and ACA to compute the low rank approximation [52]. An investiga-

tion of these techniques is beyond the scope of this thesis, in which Matlab’s

SVD routine has been used, but future performance benefits could be obtained

through other techniques.
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5.3.3 Re-compression of anRk-matrix

Performance ofRk-matrix generation (or matrix compression), is often efficient

if the matrix in question is already low rank. ThroughoutH-matrix algorithms,

there are many requirements for re-compressing a matrix that is already repre-

sented in outer-product form. An efficent approach to re-compressing an Rk-

matrix to a tolerance ε, is to use a rank-revealing (economical) QR-factorization

as follows. First, assume that the current rank of the approximation is k′ and

that the decompositionAk′ = U ′V ′H is known.

• Calculate an economical QR-factorization U ′ = QU ′RU ′ .

• Calculate an economical QR-factorization V ′ = QV ′RV ′ .

• Note that the matrix A = U ′(V ′)H = QU ′(RU ′RH
V ′)QH

V ′ where QU ′ and

QV ′ are unitary matrices as a consequence of the QR decomposition [53].

• Calculate the singular value decomposition ofRU ′RH
V ′ .

• Truncate this decomposition to get the approximationRUR
H
V ≈ RU ′RH

V ′ .

• Set U =: QURU

• Set V =: QVRV .

This procedure will produce a (potentially new) approximation Ak = UV H

based on compression of Ak′ = U ′V ′H . Critically, the rank-revealing nature of

the QR decomposition ensures that the matrix RU ′R′HV has dimensions at most

k′ × k′, implying reduced effort to compute the required truncated SVD. The

computational cost of the truncation can be shown to beO(k2(n+m) + k3) [49].
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5.3.4 Admissible Condition

Now that a compression method in the form of Rk-matrices is available, and a

block cluster tree structure allows us to analyze blocks of interactions, we must

next decide which blocks of a given matrix should be considered for compres-

sion. This decision is based on an admissible condition. A node τ × σ in a block

cluster tree, representing interactions between elements τ and σ is admissible if,

for an admissibility parameter η,

η × distance(τ, σ) ≥ min(diameter(τ), diameter(σ)) (5.7)

where distance(τ, σ) is a measure of the distance between the groups of ele-

ments represented by τ and σ. For the geometric partitioning considered in

this work, this distance is calculated based on the minimum distance between

bounding boxes containing the elements. This distance is compared to the size

of the smaller bounding box1. A block cluster tree node representing τ × σ is

admissible if the distance between the boxes of appreciable size compared to

the size of the boxes themselves. Admissible boxes are tagged for compression.

5.3.5 Final construction of anH-Matrix

Having partitioned and labelled potentially compressible blocks, we can now

formally introduce the structure of an H-matrix. An H-matrix is nothing more

than a block cluster tree associated with a matrix, whose leaf nodes contain the

corresponding entries in the matrix. All admissible nodes become leaf nodes,

and any structure below an admissible node is pruned. Admissible leaf nodes

1We define the diameter of a bounding box as the distance between the the lower left and
upper right corner of the smallest box containing all vertices of all elements indexed.s
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FIGURE 5.6: Illustration of an H-matrix structure;
(left) levels progressing from the root (back) to the
leaf nodes (front), (right) a single level showing ad-
missible leaf nodes R, inadmissible leaf nodes F
and inadmissible nodes that have children (no sym-
bol).

are compressed, and store the associated matrix blocks as Rk-matrices. Inad-

missible leaf nodes (leaf nodes where the admissibility condition fails) store

their portion of the matrix in uncompressed format. All other non-leaf nodes

in theH-matrix are inadmissible and simply provide hierarchical access to four

children that represent four lower-level sub-blocks of the matrix structure. It is

important to realize that any node in a H-matrix can also be thought of as an

H-matrix due to the recursive nature of the block cluster tree. An example of

the structure is shown in Figure 5.6.

As a node in an H-matrix can itself be thought of as an H-matrix it is ben-

eficial to assign each node in the structure a type. The symbol H is used to

refer to nodes that are hierarchical (have children),R is used to represent rank-

compressed admissible leaf nodes, andF is used to represent inadmissible (full)

leaf nodes. This labelling (with the exception ofH) is also shown in Figure 5.6.

Having introduced the concept of H-matrices, we can now move on to a de-

scription of useful H-matrix operations, and ultimately to a description of H-
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matrix LU decomposition.

5.4 Basic H-matrix Operations

While the overall goal of the presentation on H-matrices is to provide an algo-

rithm for computing the approximate LU decompostion of a matrix, we first

need to spend time on matrix operations that is required to implement the fac-

torization. First, we should note that there are two ways that we can implement

H-matrix operations: we can assume a fixed-rank approach, in which the rank

imposed in each subblock of the matrix is fixed, or we can implement an adap-

tive method, in which the blockwise rank of the matrix is permitted to vary,

as necessary, to retain a certain accuracy. To ensure that operations are error-

controllable, we chose adaptiveH-matrix operations.

5.4.1 Rk-matrix Addition

Assuming we have the twoRk matrices:

A = UAV
H
A , B = UBV

H
B , (5.8)

with respective ranks kA and kB, the sum C = A + B will have rank kC ≤

kA + kB. Construction of C can easily be implemented by understanding the

outer-product as a sum of rank-1 matrices. That is:

A = UAV
H
A =

kA∑
k=1

uA,kv
H
A,k (5.9)
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where uA,k is the kth column of UA. It follows that:

C = A+B = UAV
H
A +UBV

H
B

=

kA∑
k=1

uA,kv
H
A,k +

kB∑
k=1

uB,kv
H
B,k

(5.10)

Therefore, letting [UA,UB] denote concatenation of the columns UA and UB

we have:

C = A+B = [UA,UB][V A,V B]H

= UCV
H
C

(5.11)

Once the preliminary decomposition in terms of the defined UC and V C have

been constructed, the resulting Rk-matrix can be re-compressed to a given tol-

erance using the compression scheme presented in Section 5.3.3.

5.4.2 H-matrix-vector Product

Computing the product of a general H-matrix with a given vector, that is to

compute

b = AHx (5.12)

where AH is an H-matrix, and where b and x are standard vectors (arrays),

is most easily done recursively. An easy understanding of the procedure is to

consider a blockwise interpretation of the matrix-vector-product operation. If

we assume that the four children of AH (should they exist) are denoted by

AH,ij
where i, j = 1, 2 then the desired product is:

AHx =

AH,11
AH,12

AH,21
AH,22


x1

x2

 =

AH,11
x1 +AH,12

x2

AH,21
x1 +AH,22

x2

 =

b1

b2

 (5.13)
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where x1 and x2 correspond to the rows of x associated with the column parti-

tioning of AH and where b1 and b2 correspond to the row partitioning of AH.

This block-wise interpretation shows that the entries in b can be computed by

recursive calls to smallerH-matrix-vector products provided that results can be

added together. For this reason, anH-matrix implementation of a matrix vector

product typically evaluates:

b = b+ cAHx (5.14)

where the factor c can be used to either add (c = 1) or subtract (c = -1) the results

from b as desired.

The general procedure can now be described as:

• If AH is an H-matrix, recursively call the matrix-vector-product for each

child AH,ij
, operating on the appropriate portions of x and adding the

result (appropriately scaled by c) in the appropriate locations in b.

• If AH is an Rk-matrix, efficiently calculate AHx = UA(UH
V x) and add

it appropriately to the result. Note that based on the dimensions of UA

and V A, the order of operations (indicated by parenthesis here), is impor-

tant to ensure an efficient implementation. The computational cost of this

product isO(k(n+m)) for anRk-matrix with dimensions m×n and rank

k [49].

• IfAH is a standard (full) matrix, calculateAHx directly and add it appro-

priately to the result.

The base cases of this recursion are the Rk-matrix-vector product and/or stan-

dard matrix-vector products incurred at leaf nodes of the H-matrix. Note that

vector-matrix products, i.e., computing bT = xTAH can be handled analo-

gously. For square matrices, the general complexity of the H-matrix-vector

product isO(n log n) compared to standard (dense) matrix-vector products with
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a cost that isO(n2). More precisely the complexity of theH-matrix-vector prod-

uct is O(k(|τ | + |σ|)) where (τ, σ) ∈ TI × TI are a pair of admissible blocks and

k is the rank of the matrix [49].

5.4.3 H-matrix-H-matrix Products

Another operation required forH-matrix factorizations and/or inversions is the

computation of the product of twoH-matrices. We assume we are interested in

computing the product

CH = AHBH (5.15)

and impose the constraint that the H-matrix structure of CH, AH, and BH
are the same2. Corresponding block structures are assumed because they are

imposed for bothH-matrix LU decomposition and inversion.

The product of two H-matrices is arguably the most complicated feature of H-

matrix arithmetic. Thankfully, an understanding and proper implementation of

this operation makes both LU decomposition and inversion straightforward.

As in the case of a matrix-vector-product, we leverage the fact that H-matrices

are subdivided according to their block cluster tree structure. We have:

CH =

CH,11
CH,12

CH,21
CH,22

 = AHBH =

AH,11
AH,12

AH,21
AH,22


BH,11

BH,12

BH,21
BH,22


=

AH,11
BH,11

+AH,12
BH,21

AH,11
BH,12

+AH,12
BH,22

AH,21
BH,11

+AH,22
BH,21

AH,21
BH,12

+AH,22
BH,22


(5.16)

2Having the same structure does not place constraints on the rank of the product, which
may increase or decrease as necessary for adaptiveH-matrix operations
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or simply,

CH,ij
= AH,i1

BH,1j
+AH,i2

BH,2j
(5.17)

As in the case of the matrix-vector-product, flexibility is built into this calcula-

tion by evaluating it as:

CH,ij
= CH,ij

+AH,i1
BH,1j

CH,ij
= CH,ij

+AH,i2
BH,2j

(5.18)

and so we benefit by simply implementing a routine for computing

CH = CH + cAHBH (5.19)

for generalH-matrices and a constant c.

To describe the general procedure we break the procedure into three steps:

1. We will first describe computing the product AHBH based on the types

(H,F ,R) of the matrices (scaling by a constant is trivial).

2. We will next address the evaluation of the sum of twoH-matrices.

5.4.3.1 MultiplyingH-matrices

The approach required to multiply two H-matrices is dependent on the types

of the matrices. There are 9 possibilities and they are handled as follows:

• [H×H]: A recursive call according to the structure given in (5.16) is made.

• [F ×F ], [R×F ], [F ×R], [R×R]: These case refers to any combination of

Rk-matrices of standard (full) matrices being present multiplied. In these

cases standard matrix arithmetic can be used.
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• [H × F ], [H × R], [R × H], [F × H]: As full matrices are small, and as

efficient rank-compressed matrices have at least one small dimension k,

each of these cases can be efficiently handled by multiple applications of

H-matrix-vector products (or vector-matrix products). For example ifAH
is anH-matrix, andBH is anRk-matrix, then we seek to compute

AHUBV
H
B =

(
kB∑
k=1

AHuB,k

)
V H

B (5.20)

where uB,k is the kth column or UB which has kB total columns. The

quantity in parentheses is simply multiple matrix-vector-products. The

net result of any of these operations is eitherR or F .

5.4.3.2 AddingH-matrices

The approach required to add two H-matrices is again dependent on the types

of the matrices. We assume that when adding two matrices the structure of

the left-operand is the target structure. For example H + R should result in a

H structure. This is consistent with the operations required for matrix-matrix-

products according to (5.19). As the left operand dictates the output format,

there remain 9 cases, despite the fact that matrix addition is commutative.

• [H +H]: A recursive call according to the blockwise structure is made.

• [H+R], [H+F ] In these cases, the full or rank-compressed matrix formats

must be distributed to the leaf nodes of the matrix inH format and added

to the leaf-node data. This simple operation is referred to as deglommer-

ation [19].

• [R + H], [F + H]: In these cases, the matrix subblocks stored in the leaf

nodes of H must be converted to either R or F matrices. This simple

operation is referred to as agglomeration [19].
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• [R+ F ], [R+R], [F +R], [F + F ]: These cases are treated directly.

The complexity of H-matrix multiplication, for is O(k2n log2(n)) where k de-

notes the (assumed block-wise constant) rank of the matrix. Proof and details

of the complexity can be found in [19].

5.5 H-Matrix Coarsening

Once an H-matrix has been built, or calculated from products or factorizations

etc., there may be an opportunity to reduce storage requirements and increase

performance by simplifying the matrix structure. Effectively this is accom-

plished by agglomeration [19], the same operation that is required forH-matrix

addition described in 5.4.3.2. The procedure is simple: a depth-first search of

the H-matrix tree is performed. At each node, the memory requirements for

storing all child information as an Rk-matrix (agglomerating the children) is

compared to the sum of the storage requirements for each child. If it is more

efficient to agglomerate the children then they are agglomerated and removed

from the structure. To ensure proper functionality of operations, the newly ag-

glomerated block is marked as admissible. A simple illustrative example is

provided in Figure 5.7.

FIGURE 5.7: An illustration of H-matrix agglom-
eration or coarsening; if memory is reduced, four
children are combined to a single rank-compressed
matrix.
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5.6 Hierarchical Inversion

Although we do not consider approximate inversion of H-matrices in the re-

sults present in Chapter 6, it is worth showing how to compute the inverse of

an H-matrix. Having a working knowledge of H-matrix products, makes the

presentation straightforward. Assume we have a general (not necessarily an

H-matrix) 2× 2 block matrixA such that:

A =

A11 A12

A21 A22


and assume that the 2× 2 block matrixB is equal to the inverse ofA:

A−1 =

B11 B12

B21 B22

 .
Then, by definition:

B11 B12

B21 B22


A11 A12

A21 A22

 =

I 0

0 I

 (5.21)

Using the Schur complement approach to solving a block system of equations

[19] leads to the following sequence of operations:

1. T 12 = T 12 −A−1
11A12

2. T 21 = T 21 −A21A
−1
11

3. A22 = A22 +A21T 12

4. B22 = A−1
22

5. B12 = B12 + T 12B22
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6. B21 = B21 +B−1
22 T 21

7. B11 = B11 + T 12B21

where T is a temporary matrix with the same block-wise structure as A and

B. Note that in step 3 above, we destroy the contents of A to save storage

requirements, and that after step 3, A22 contains the Schur complement of the

2× 2 block matrix.

An implementation ofH-matrix inversion uses the preceding sequence of steps

and proceeds recursively: if an operation is performed on an H-matrix block,

it is called recursively for the children should they exist. Operations at the leaf

nodes are done using standard matrix inversion. H-matrix products are called

as required with the appropriate constant indicating addition or subtraction.

The complexity of the hierarchical inversion is bounded by the cost ofH-matrix

multiplication. The cost complexity of H-Inverse is bounded by O(k2n log2 n)

for fixed-rank matrices having at most block-wise rank k. Proof and details of

the complexity analysis can be found in [19].

5.7 Hierarchical LU Decomposition

Although the complexity of H-matrix inversion is relativity low, the number

of numerical computational steps to compute the overall inversion is still high.

An alternative way of formulating the solution to anH-matrix equation is to use

LU decomposition [20] [19]. An H-matrix LU factorization with high precision

can be used as a fast direct solver [54] while lower precision can be used for

preconditioning [55]. We refer to an H-matrix LU decomposition as H-LU. It

can be shown that the complexity of anH-LU factorization isO(k2n log2 n) [56].
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FIGURE 5.8: H-LU and the hierarchical factors. An
H-LU factorization results in the decomposition of
theH-matrix (left) into the product of lower (green)
and upper (red) triangularH-matrices.

5.7.1 Obtaining Hierarchical L and U Factors

In Section 4.2 we described the general LU decomposition method. Like all

otherH-matrix operations previously discussed,H-LU exploits the block struc-

ture of theH-matrix and recursion. For simplicity we limit consideration to the

case where the LU factors have the same block structure as the original matrix.

Assuming LH and UH are the factors for the matrix AH, the steps required

for hierarchical LU decomposition can be obtained directly from the block-wise

factorization

AH = LHUH =⇒

A11 A12

A21 A22

 =

L11

L21 L22


U 11 U 12

U 22

 (5.22)

Note that LH andUH are lower and upper triangularH-matrices respectively.

This implies that L11 and L22 are lower triangular whileU 11 andU 22 are upper

triangular. Expanding the equations in (5.22) leads to the following steps for

computing the LU decomposition:
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1. Perform H-LU factorization on A11 to get L11U 11. If a recursive call is

necessary, then apply it. The base case is thatA11 has no children in which

case the sub-block must be a full matrix because it lies on the diagonal and

the admissible condition for diagonal blocks can never be satisfied. In this

case, we perform a standard LU decomposition to determineL11 andU 11.

2. Given L11 solve A12 = L11U 12 for U 12. This requires solving a lower tri-

angular system of equations, which forH-matrices is described in Section

5.7.3.

3. Given U 11 solve A21 = L21U 11 for L21. This requires solving a (right-

sided) upper triangular system of equations and can be cast through a

transposition as a left-sided lower-triangular solve.

4. PerformH-LU factorization onA22−L21U 12 to determine L22 andU 22. If

a recursive call is required, apply it.

Notice that this algorithm requires H-matrix products, recursive calls to the H-

LU factorization. and a standard LU factorization routine in steps 1 and 4.

5.7.2 Comments on Pivoting Strategies

As we’re dealing with H-matrix representations of sparse matrices, pivoting

strategies that aim to reduce the amount of fill-in during LU decomposition

can be very beneficial [57]. However, pivoting strategies forH-matrices add an

additional layer of complication to the overallH-matrix structure and routines,

and are considered beyond the scope of this thesis.
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5.7.3 Hierarchical Triangular Solvers

Triangular solvers are required both for computing the LU decomposition (which

requires block solutions) as discussed in Section 5.7.1, as well as for applying

the final LU decomposition to solving linear systems as described in Section 4.2.

The solvers effectively perform block-wise forward or backwards substitution

[58]. For brevity we present the block-wise Hierarchical forward substitution

routine (lower triangular solver). The forward substitution routine operating

on a vector is analogous [58] and the required upper triangular routines follow

similar implementations [58].

Consider solving the lower-triangular equations LX = B where L is a lower

triangular 2× 2 block matrix,B is a known 2× 2 block matrix, having the same

structure as the unknown matrixX . That is, the unknowns and the right-hand-

side have the same structure, but are not required to have the same structure as

the system L. This setup is consistent with the hierarchical LU decomposition

routine presented in Section 5.7.1. Then:

L11

L21 L22


X11 X12

X21 X22

 =

B11 B12

B21 B22


and the solution can be obtained by (recursively) applying the following steps:

1. Solve L11X11 = B11 to getX11

2. Solve L11X12 = B12 to getX12

3. Solve L22X21 = B21 −L21X11 to getX21

4. Solve L22X22 = B22 −L21X12 to getX22

Note that the base case for each of the above recursive calls should be computed

considering the sub-blocks type of L,X andB.
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5.8 Chapter Summary

Based on the formulations provided in this chapter, and the GMRES formula-

tion and DGM system presented in Chapters 3 and 4, we are now prepared to

apply H-matrices either for direct solutions or to preconditioning iterative so-

lutions to the DGM system. Performance results and scaling are presented in

the next chapter.



Chapter 6

Numerical Results

The goal of this thesis is to demonstrate a successful implementation of H-

matrices and to apply it to the system of equations arising from time-harmonic

discontinuous Galerkin methods. In this chapter we provide the numerical sim-

ulation results validating the implementation and performance as compared to

both built-in MATLAB solution methods (without H-matrices) and expected

complexity scaling.

6.1 DGM Problem Specifications

For a given 2D TM DGM problem, formulated on a mesh Ωh, there are a number

of physical and numerical parameters that should be considered. These are:

• the frequency f of the time-harmonic fields

• the mesh density h which implies a number of mesh elements NV

• the solution order p which implies Np nodes per element

• the geometry of the mesh, scatterers ε(~x) and µ(~x), and sources

64
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• the choice of absorbing boundary conditions

FIGURE 6.1: The electromagnetic geometry for nu-
merical testing: (left) a U-shaped target represented
in Gmsh [36] with ERBC surface and ABC surface,
the relative permittivity of the target is ε = 2.0;
(right) a sample mesh discretization for the prob-
lem geometry.

To limit the scope of producing numerical results, we only consider a single

mesh geometry, shown Figure 6.1. This problem consists of a single U -shaped

target having a relative complex permittivity of ε = 2.0 − j0.0. The back-

ground medium is assumed to be free space. A single line source located at

(x, y) = (0.18, 0)m is the source for all problems. In all cases, ERBCs are applied

as boundary conditions. While selecting a single, relatively simple problem is

not all that exciting from an applications perspective, the selected problem is

representative of an electromagnetic imaging configuration. Besides, we are

only concerned with validating theH-matrix performance and as is shown, the

remaining parameters provide significant variation in testing. Specifically we

test h-refinement (increasing the number of mesh elements), p-refinement (in-

creasing the solution order), and the effects of increasing frequency (more com-

plicated field patterns) on the block-wise rank of theH-matrices.
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6.2 Iterative Solution Specifications

All tests presented herein constitute applying H-LU preconditioned GMRES

to solving the 2D TM DGM electric vector wave equation (3.10) presented in

Chapter 3. In order to analyze the performance of this approach we vary both

the adaptive H-matrix error tolerance ε and the admissible condition η. The

number of elements in each leaf node of the H-cluster tree Nmax can also be

varied and experiments have shown the benefits of small modifications of the

parameter.

TheH-matrix framework was implemented in MATLAB. Limitations of this im-

plementation include the inability to dynamically allocate memory, forcing po-

tential memory thrashing when constructing systems. However, the benefits of

optimized built-in MATLAB routines for SVD, GMRES, and so on greatly sim-

plified the implementation. Another limitation in our implementation is the use

of SVD for rank compression. Other methods such as ACA would likely speed

up the implementation. Further, as discussed in Chapters 4 and 5 we do not

employ a pivoting strategy. For fair comparisons with direct methods supplied

by MATLAB we also enforce no pivoting strategy for MATLAB routines.

In MATLAB you may specify a number of a parameters for GMRES including

the desired error tolerance, the total number of iterations, the restart m, and an

LU-decomposed preconditioner [23]. As is shown, the performance ofH-LU as

a preconditioner is quite good, providing convergence to 10−7 relative error in

just a few iterations. Consequently we fix the GMRES error tolerance 10−7 for

all examples.

All the simulations were performed on a Windows 10 machine with an In-

tel Core i7-5820K Haswell-E 6-Core Desktop Processor CPU @ Over-clocked

4.2Ghz, 32 GB of DDR4 RAM and M.2 storage.
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6.3 H-matrix Tolerance Testing

In this section we present the results for scaling the H-matrix tolerance ε on

the performance of theH-LU preconditioner. All other solution parameters are

fixed. Of note, the frequency f was chosen as 2 GHz, giving the entire domain

Ωh an electrical diameter of approximately 2 wavelengths. The mesh consisted

of 30, 250 elements and a first-order solution, p = 1 and Np = 3 was selected.

The total degrees of freedom (matrix dimension size) is n = 90, 750. The mesh

contained 252 ERBC edges and 378 ABC edges. The admissible condition was

selected as η = 2 and Nmax = 12 was chosen. After construction of the H-

matrix, coarsening (agglomeration) as described in Section 5.5 is applied with

the same tolerance as originally used to build the matrix to reduce storage and

time costs [19]. Relevant evaluated metrics are broken into three categories:

memory usage, accuracy, and speed/time and are summarized as:

• Memory: H-matrix (memory to store theH-matrix), AgglH-matrix (mem-

ory to store the coarsened matrix),H-L (memory forL) andH-U (memory

for U )

• Accuracy: Hkmax (maximum rank in the H-matrix), Agglkmax (maximum

rank in the coarsened matrix), H-Lkmax (maximum rank in L), H-Ukmax

(maximum rank inU ),H-L Err (relative error in a lower triangular solve),

andH-U Err (relative error in an upper triangular solve)

• Time: H (time to build the H-matrix, AgglH (time to coarsen the matrix),

LU (time to perform MATLAB LU), H-LU (time for H-matrix LU), GM-

RES (total time for all GMRES iterations), Iter (total number of GMRES

iterations)



Chapter 6 Numerical Results 68

Note that the metricsH-L/U Err are computed by solving a lower/upper trian-

gular system of equations using the H-LU decomposition for a random right-

hand-side and comparing the result to a MATLAB computed direct LU decom-

position solution on the original DGM matrix.

Tables 6.1, 6.2 and 6.3 show the effects of varying the tolerance ε from 10−1 to

10−8 on these performance metrics.

Tol ε H-matrix (MB) AgglH(MB) H-L (MB) H-U (MB)

0.1 770.23 282.19 380.76 399.37

0.01 770.71 284.70 418.70 440.35

0.001 771.53 285.52 461.12 478.18

0.0001 772.18 286.16 501.04 517.50

1e-05 772.98 286.97 543.82 554.30

1e-06 773.66 287.64 583.32 593.09

1e-07 774.49 288.47 622.97 630.03

1e-08 775.18 289.16 660.71 665.32

TABLE 6.1: H-matrix memory scaling as a function of
tolerance.

Tol ε Hkmax Aggl kmax H-L kmax H-U kmax H-L Err H-U Err

0.1 3.00 3.00 3.00 3.00 0.0564 0.0223

0.01 4.00 4.00 7.00 6.00 0.0048 0.0023

0.001 6.00 6.00 10.00 9.00 5.6e-04 2.5e-04

0.0001 8.00 8.00 13.00 11.00 6.4e-05 2.7e-05

1e-05 10.00 10.00 15.00 14.00 9.4e-06 3.1e-06

1e-06 11.00 11.00 18.00 16.00 1.0e-06 3.3e-07

1e-07 13.00 13.00 19.00 19.00 1.0e-07 3.2e-08

1e-08 14.00 14.00 21.00 20.00 9.4e-09 3.2e-09

TABLE 6.2: H-matrix accuracy as a function of tolerance.
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Tol H(s) Aggl (s) LU (s) H-LU (s) GMRES (s) Iter

0.1 29.17 25.78 126.43 44.42 47.68 7.00

0.01 97.75 28.79 126.83 53.83 32.17 4.00

0.001 111.79 29.08 127.28 62.18 21.45 3.00

0.0001 132.55 30.36 126.56 65.16 21.42 2.00

1e-05 163.73 31.95 126.28 77.28 16.40 2.00

1e-06 164.83 31.25 126.64 79.62 16.43 2.00

1e-07 191.07 31.55 126.36 85.75 16.54 2.00

1e-08 201.83 32.10 127.19 93.57 16.40 1.00

TABLE 6.3: H-matrix computational time scaling as a function
of tolerance.

The first conclusion to draw from the results is that the implementation is er-

ror controllable. Indeed, the LU decomposition error shown in Table 6.2 shows

accuracy below the requested tolerance for all cases. The next interesting con-

clusion to draw is that the convergence of GMRES in terms of total number of

iterations varies only slightly as the tolerance is decreased as shown in the last

column of Table 6.3. Certainly the H-LU preconditioner for all selected toler-

ance levels is sufficient to guarantee convergence in a handful of iterations. An-

other interesting observation is that the time to construct the H and to perform

H-LU increases with decreased tolerance as expected, but that the memory re-

quired to store theH-matrix does not as seen in Table 6.1. This can be attributed

to the fact that the DGM system matrix is quite sparse, and that large portions

of the ERBC compress quite well. Finally we note from Table 6.3 the total time

to perform theH-LU and GMRES iterations is comparable to the time required

for MATLAB’s LU decomposition (without pivoting).

At this point we have confidence that our implementation is functional, and can

proceed to validating the effects of h- and p-refinement.
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6.4 h-Refinement

To test the effects of h-refinement on the H-LU preconditioned GMRES solu-

tion to the 2D TM DGM equations, we produce four different meshes for the

problem studied in the previous section. For these tests the H-matrix tolerance

was chosen as ε = 10−3 based on the results in Table 6.3. In fact, this tolerance

is fixed for the remainder of the results presented in this work. Note that by

increasing the mesh density, we effectively increase the number of ERBC and

ABC edges in the mesh. The results are summarized in Tables 6.4, 6.5 and 6.6.

Note that in the second table we have added the total number of degrees of

freedom (DOF) resulting from the number of elements NV times the number of

nodes for the assumed first-order p = 1 solution.

Elements H(MB) Aggl (MB) H-L (MB) H-U (MB)

4970 79.52 37.74 62.22 65.80

19598 355.56 148.52 248.89 261.93

43658 750.95 298.77 534.03 567.71

78654 1499.28 591.58 1017.65 1069.95

TABLE 6.4: H-matrix memory scaling as a function of element
size.

Elements DOF Hkmax Aggl kmax H-L kmax H-U kmax

4970 14910 4.00 4.00 7.00 7.00

19598 58794 4.00 4.00 8.00 7.00

43658 130974 4.00 4.00 7.00 7.00

78654 235962 4.00 4.00 7.00 7.00

TABLE 6.5: H-matrix accuracy as a function of element size.
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Elements H(s) Aggl (s) LU (s) H-LU (s) GMRES (s) Iter

4970 2.08 3.22 3.67 7.06 0.72 3.00

19598 17.77 13.90 55.63 26.48 3.70 3.00

43658 88.97 37.28 324.44 58.69 36.19 3.00

78654 273.75 93.13 932.32 135.71 128.76 3.00

TABLE 6.6: H-matrix computational time scaling as a function
of element size.

According to standard complexity analysis on H-matrix operations, the com-

plexity of H-LU is O(k2n log2 n) [56] where n is the number of DOF. As the fre-

quency for this problem is fixed, increasing the mesh density should not greatly

increase the overall block-wise rank considering the fact that the leaf-node sizes

are fixed at Nmax = 12 elements. From Table 6.6 the H-LU time scales approxi-

mately linearly with the number of elements (and hence the DOF) as expected.

For example, going from 43, 658 elements to 78, 654 elements results in a time

scaling of 2.3 times. A bothersome result is that the GMRES time does not scale

almost linearly. At the time of writing this thesis, it is unclear why this is the

case. It could be that our H-LU triangular solvers are inefficient, or perhaps

some way that MATLAB’s GMRES is handling the preconditioning steps.

6.5 p-Refinement

As DGM is a higher order solver we have the capability of increasing the poly-

nomial expansion order p. This section presents results for p-refinement. We

note that we are not interested in the overall accuracy of the pth order DGM

method itself, but rather only care about the comparison of H-LU to direct

methods for a fixed order. To explore the effects of p-refinement we consider
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a mesh having 19, 598 elements at different expansion orders. All other prob-

lem parameters are the same as previous examples, specifically Nmax is still 12.

This implies that the overall block sizes of leaf nodes in the H-matrix approxi-

mation to the DGM system get larger as p increases. Results are summarized in

Tables 6.7, 6.8 and 6.9. Of interest is that we have also added the memory re-

quirements for MATLAB built-in LU decomposition (without pivoting) in Table

6.7.

Order H(GB) Aggl (GB) L (GB) U (GB) H-L (GB) H-U (GB)

1 0.35 0.15 0.95 0.95 0.25 0.27

2 0.39 0.18 2.89 4.33 0.46 0.54

3 0.46 0.24 6.64 9.97 0.86 1.10

4 0.57 0.35 8.64 19.46 1.50 2.09

5 0.75 0.53 - - 2.49 3.72

6 1.02 0.78 - - 3.90 6.23

7 1.39 1.14 - - 5.90 9.90

TABLE 6.7: H-matrix memory scaling as a function of
polynomial order.

Order DOF Hkmax Aggl kmax H-L kmax H-U kmax

1 58794 5.00 5.00 10.00 8.00

2 117588 5.00 5.00 11.00 10.00

3 195980 5.00 5.00 13.00 11.00

4 293970 5.00 5.00 14.00 12.00

5 411558 5.00 5.00 15.00 13.00

6 548744 5.00 5.00 15.00 13.00

7 705528 5.00 5.00 17.00 13.00

TABLE 6.8: H-matrix accuracy as a function of polynomial
order.
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Order H(s) Aggl (s) LU (s) H-LU (s) GMRES (s) Iter

1 10.86 13.04 56.25 28.63 3.95 3.00

2 39.49 23.43 326.33 42.48 13.96 3.00

3 62.28 45.04 1293.68 70.40 22.76 3.00

4 89.50 80.00 3821.58 122.20 77.40 3.00

5 123.54 117.64 - 209.76 77.45 4.00

6 169.92 247.50 - 356.91 126.14 5.00

7 230.51 452.64 - 634.86 186.49 6.00

TABLE 6.9: H-matrix computational time scaling as a function
of polynomial order.

Overall the tables summarize expected performance forH-LU. and GMRES. As

the degrees of freedom grow, the memory and time requirements grow almost

linearly. Of particular interest is the fact that changing the solution order from

4 to 7 means roughly doubling the GMRES time and iterations. This result

is consistent with expectations making it seem like the results of the previous

section where GMRES did not perform as expected are suspect.

Most importantly, these tables illustrate the capabilities ofH-LU preconditioned

GMRES to solve high-order ERBC-enabled DGM problems. MATLAB’s built-in

LU decomposition (without pivoting) fails to produce a decomposition in the

available system memory after order 4 as shown in Tables 6.7 and 6.9. Further-

more, the H-matrix computation time is at least an order of magnitude faster

that the direct LU decomposition (without pivoting).

Note that in all cases the total number of GMRES iterations is very small, which

indicates that additional savings may yet be available by increasing the H-

matrix tolerance. We have not pursued these tests.
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6.6 Frequency Scaling - The Effect of Problem Rank

The results presented in this section correspond to changing the frequency f

of the time-harmonic fields for a fixed problem geometry. Increasing the fre-

quency reduces the wavelength and complicates the field pattern. Recovering

more complicated fields ultimately implies that the block-wise rank of the DGM

operator is increased. Thus, frequency scaling is roughly equivalent to increas-

ing the overall block-wise rank. For this problem a mesh of 4970 elements and

a p = 6th order expansion was used resulting in the total degrees of freedom

being 139,160. For this problem, Nmax was chosen as 10. Six frequencies, rang-

ing from 500 MHz to 20 GHz and corresponding roughly to domain diameters

of 1/2 a wavelength to 20 wavelengths respectively. The resulting field patterns

for select frequencies produced by a direct MATLAB solution (with pivoting)

are shown for interests sake in Figure 6.2, while the H-matrix solutions are not

shown but are visibly indistinguishable. Tables 6.10, 6.11, and 6.12 summarize

the results.

Frequency H(MB) Aggl (MB) H-L (MB) H-U (MB)

500Mhz 253.77 204.44 1027.59 1682.31

1Ghz 254.14 204.81 1027.50 1690.20

2Ghz 254.97 205.63 1033.77 1703.15

5Ghz 255.87 206.53 1057.25 1728.09

10Ghz 256.79 207.45 1098.57 1769.62

20Ghz 258.52 209.19 1169.79 1836.94

TABLE 6.10: H-matrix memory scaling as a function of
frequency.
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(a) (b)

(c) (d)

FIGURE 6.2: DGM field solution simulation results for various
frequencies: a) 2 GHz, b) 5 GHz, c) 10 GHz and d) 20 GHz. Only
the real part of the z-component of the electric field is shown.

Frequency Hkmax Aggl kmax H-L kmax H-U kmax

500Mhz 4.00 4.00 14.00 13.00

1Ghz 4.00 4.00 13.00 13.00

2Ghz 5.00 5.00 13.00 13.00

5Ghz 7.00 7.00 15.00 13.00

10Ghz 8.00 8.00 18.00 16.00

20Ghz 12.00 12.00 24.00 23.00

TABLE 6.11: H-matrix accuracy as a function of frequency.
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Frequency H(s) Aggl (s) LU (s) H-LU (s) GMRES (s) Iter

500Mhz 19.00 59.08 1058.81 85.39 9.62 5.00

1Ghz 22.44 67.99 1058.89 87.57 6.88 3.00

2Ghz 22.45 68.67 1056.71 90.13 6.88 3.00

5Ghz 23.00 69.09 1073.45 91.88 5.60 3.00

10Ghz 23.95 75.82 1053.04 102.65 5.67 3.00

20Ghz 23.47 71.66 1055.21 104.08 5.73 3.00

TABLE 6.12: H-matrix computational time scaling as a
function of frequency.

The previous results can be summarized by noting that while the overall storage

requirements for the H-LU decomposition to not significantly increase, there is

a small increase which can be correlated to the increased rank of the matrix

and its factorization shown in Figure 6.11. The growth in the complexity is

less than the growth expected if kmax was the same rank for all blocks. For

example, moving from 2 GHz to 20 GHz increases the maximum rank from

5 to 12, and based on the complexity of H-LU we would expect an increased

time proportional to the square of this increase. However, the time to factor the

system only slightly increases from 90 seconds to 104 seconds. The is largely

due to the fact that average block-wise rank of the matrix is not the maximum

rank of the matrix.

6.7 Chapter Summary

In this chapter we have verified the MATLAB implement of theH-matrix devel-

oped in this work for solving 2D TM DGM systems. The results have demon-

strated the error-controllable nature of the solution, the behaviour for both h-
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and p-refinement, as well as looked at the effects of increasing problem fre-

quency. The performance of theH-matrix framework has been verified by com-

paring obtained results to the theoretical complexity. Most importantly the re-

sults have demonstrated thatH-matrix preconditioned GMRES can solve prob-

lems that direct LU factorization (without pivoting) cannot.



Chapter 7

Conclusions and Future Work

The focus of this work has been on understanding, implementing, and testing

anH-matrix software library programmed in MATLAB. The desire was to eval-

uate the performance ofH-matrices compared to other direct solution methods

for solving systems of equations that arise from 2D TM ERBC-enabled DGM

systems that might be found in electromagnetic imaging applications. Overall,

the work has been educational, enjoyable, and difficult.

Previous chapters have aimed to show a concrete understanding of concepts re-

lated to electromagnetics1, preconditioning iterative matrix solvers and the en-

tire H-matrix framework. Results demonstrate that the implementation works

as expected.

A number of future improvements to the existing code should be pursued if the

intention is to develop an in-houseH-matrix framework as opposed to leverag-

ing the understanding of the framework that this thesis provides against exist-

ing commercial implementations [25]:

1Note that as a computer engineer this was initially completely foreign

78
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• While MATLAB provides an excellent rapid prototyping environment,

it is believed that control over dynamic memory provided by other lan-

guages would be beneficial.

• A major potential bottleneck in the developed code is the use of the sin-

gular value decomposition for rank compression. Alternative methods

including ACA should be investigated.

• Next steps should also consider any number of high-performance com-

puting options including shared-memory parallelism, co-processor accel-

eration, or distributed parallelism for large problems.

• Probably most importantly is that pivoting strategies for H-matrices will

likely greatly improve the overall performance should they be straightfor-

ward to implement. This concept has not been consider nor investigated

herein.

It is hoped that theH-matrix software developed in this work will have longevity

as a prototyping and teaching tool. One of the most striking features of H-

matrices is that ultimately they can be used to attempt to accelerate any number

of scientific computing applications, including both the electromagnetics and

acoustics problems that are the current focus of the University of Manitoba’s

Electromagnetics Imaging Lab.
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