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Predicting breast cancer drug response
using a multiple-layer cell line drug
response network model
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Abstract

Background: Predicting patient drug response based on a patient’s molecular profile is one of the key goals of
precision medicine in breast cancer (BC). Multiple drug response prediction models have been developed to
address this problem. However, most of them were developed to make sensitivity predictions for multiple single
drugs within cell lines from various cancer types instead of a single cancer type, do not take into account drug
properties, and have not been validated in cancer patient-derived data. Among the multi-omics data, gene
expression profiles have been shown to be the most informative data for drug response prediction. However, these
models were often developed with individual genes. Therefore, this study aimed to develop a drug response
prediction model for BC using multiple data types from both cell lines and drugs.

Methods: We first collected the baseline gene expression profiles of 49 BC cell lines along with IC50 values for 220
drugs tested in these cell lines from Genomics of Drug Sensitivity in Cancer (GDSC). Using these data, we
developed a multiple-layer cell line-drug response network (ML-CDN2) by integrating a one-layer cell line similarity
network based on the pathway activity profiles and a three-layer drug similarity network based on the drug
structures, targets, and pan-cancer IC50 profiles. We further used ML-CDN2 to predict the drug response for new BC
cell lines or patient-derived samples.

Results: ML-CDN2 demonstrated a good predictive performance, with the Pearson correlation coefficient between the
observed and predicted IC50 values for all GDSC cell line-drug pairs of 0.873. Also, ML-CDN2 showed a good
performance when used to predict drug response in new BC cell lines from the Cancer Cell Line Encyclopedia (CCLE),
with a Pearson correlation coefficient of 0.718. Moreover, we found that the cell line-derived ML-CDN2 model could be
applied to predict drug response in the BC patient-derived samples from The Cancer Genome Atlas (TCGA).

Conclusions: The ML-CDN2 model was built to predict BC drug response using comprehensive information
from both cell lines and drugs. Compared with existing methods, it has the potential to predict the drug
response for BC patient-derived samples.
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Background
One of the key goals of precision medicine in breast can-
cer (BC) is to predict how a cancer patient will respond
to a particular chemotherapy or targeted therapy, which
could help clinicians prescribe the most effective and
least toxic therapeutic strategy. To this end, researchers
have been developing computational models to predict
the anti-cancer drug response of cancer cells based on
their molecular profiles (especially gene expression pro-
files) using cell line-derived (in vitro) datasets. Ideally, a
drug response prediction model should be first trained
using existing patient-derived (in vivo) data and then
used to predict the response of new patients to a par-
ticular drug. However, currently available in vivo data-
sets, such as The Cancer Genome Atlas (TCGA) [1], do
not have enough drug response data to train the drug
response prediction models whereas in vitro datasets
such as the Genomics of Drug Sensitivity in Cancer
(GDSC) [2, 3] and the Cancer Cell Line Encyclopedia
(CCLE) [4, 5], provide the response data of hundreds of
cell lines to many drugs. Therefore, given the available
datasets, cancer cell line-derived datasets provide an al-
ternative method of training in silico drug response pre-
diction models. However, such models should be
augmented with drug property data and must eventually
be validated with BC patient drug response data.
Many computational models have been developed to

predict anti-cancer drug response using cell lines from
various cancer types and these models are known as
pan-cancer prediction models [6]. Most of these models
have been built using the gene expression profiles of
cancer cells as input, which have been shown to be the
most informative data for drug response prediction in
cancer research [3, 7–9]. For instance, Dong et al. [10]
developed a support vector machine model to predict
the response of various cancer cell lines to particular
drugs. The model was trained on the CCLE dataset and
used gene expression data as input features. Other types
of data, such as gene mutation, copy number variation
(CNV), have also been incorporated into prediction
models to improve predictive power [3]. For example,
Sharifi-Noghab et al. [11] proposed a deep learning-
based model to take gene somatic mutation, CNV, and
gene expression data of a particular cell line as input,
and predict the response of the cell line to a given drug
as the output. In addition, the physical, chemical, and
pharmacological properties of drugs such as chemical
structure, aqueous solubility, and potency (IC50) also
play important roles in drug response prediction. Thus,
computational models combining genomic profiles with
information about the drug’s chemical structure would
improve drug response prediction in vitro and in vivo
[12, 13]. Menden et al. [12] developed a neural network
model which took mutation, CNV and microsatellite

instability data of cell lines together with chemical prop-
erties of drugs as inputs to predict drug response in the
GDSC dataset. Zhang et al. [14] proposed a dual-layer
network, which integrated a cell line similarity network
based on gene expression profiles and drug similarity
network based on drug chemical structures. Very re-
cently, Wei et al. [15] proposed a new dual-layer
network model, which captures different contributions
of all available cell line-drug responses through cell line
similarities and drug similarities. The model was applied
to CCLE and GDSC independently and demonstrated
better performance than some existing studies including
the Zhang et al. study [14]. We note that in Wei et al.’s
study [15]: 1) the similarity between cell lines was only
based on their gene expression profiles while the other
omics data types were ignored; 2) the relationships
among genes were also overlooked; 3) the similarity be-
tween drugs was based on their chemical structures
while the other data types, such as drug targets, were
not taken into consideration.
More importantly, the models mentioned above were

trained only on a per-drug and pan-cancer basis, but
they do not take the heterogeneity of cancer types into
consideration. Thus, new efforts have been focused on
making predictions for drugs for a specific cancer type
and are referred to as cancer-specific response predic-
tion models [6]. Some BC-specific models have been de-
veloped. The most well-known work is the NCI-DREAM
Drug Sensitivity Prediction Challenge [16], which pro-
vided drug sensitivity data screened on BC cell lines and
along with molecular profiles of BC cell lines to the par-
ticipants. It aimed to predict drug sensitivity in BC cell
lines by integrating multiple-omics data. Forty four drug
response prediction models were submitted to the NCI-
DREAM Drug Sensitivity Prediction Challenge and the
Bayesian multitask multiple kernel learning method
demonstrated the best performance [16]. We note that
these approaches overlooked the multivariate relation-
ships among genomic features and ignored the fact that
functionally similar cell lines may have similar thera-
peutic response to drugs. In addition, these BC-specific
models did not take the information from drugs into
consideration and ignored the fact that functionally simi-
lar drugs may have similar drug responses on the tested
cell lines [16, 17].
In the present study, inspired by Wei et al.’s dual-layer

network model [15] and the NCI-DREAM Drug Sensitiv-
ity Prediction Challenge [16], we constructed several
multiple-layer cell line-drug response network (ML-CDN)
models focusing on BC. In the ML-CDN modeling
method, cell line similarity networks (CSNs) were first
constructed using either one or all of three types (i.e.,
layers) of molecular profiles: pathway activity profiles,
CNV, and mutation profiles. In parallel, drug similarity
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networks (DSNs) were constructed using either one or all
of three drug data types: structures, targets, and pan-
cancer sensitivity profiles. Next, each of the CSNs and
each of the DSNs were connected by linking the cell lines
in the first network to their corresponding (previously
tested) drugs in the second network. In the end, a final
ML-CDN was selected to predict anti-cancer drug re-
sponse of TCGA BC patients by estimating the similarities
between these patients with BC cell lines.

Methods
Data resources and preprocessing
We used the GDSC release 7.0 dataset (ftp://ftp.sanger.ac.
uk/pub4/cancerrxgene/releases/release-7.0) as a bench-
mark dataset in this study, which consists of 1065 cancer
cell lines and 266 tested drugs. We downloaded the gene
expression, CNV and mutation profiles for 49 BC cell
lines. For gene expression data, we used the Robust Multi-
chip Average (RMA) [18] to normalize baseline expression
profiles (i.e. coming from untreated samples) for all the
BC cell lines. For gene mutation data, the list of genomic
somatic variants found in BC cell lines by whole exome
sequencing were downloaded and further described as
binary features (1 =mutation and 0 = wild type). A gene
mutation is annotated if a sequence variation (changes in
the protein sequence, e.g. non-synonymous single nucleo-
tide polymorphism) is detected while a gene for which a
mutation is not detected in a given cell line is annotated
as wild type. CNV data for all genes across all BC cell line
samples derived from the Predict Integral Copy Numbers
In Cancer analysis [19] of Affymetrix SNP6.0 segmenta-
tion data were downloaded and further treated as binary
features (1 = amplification or deletion and 0 = wild type).
For a gene to be classified as amplified, the entire coding
sequence must be contained in one contiguous segment
defined by the Predict Integral Copy Numbers In Cancer
analysis [19], and have a total copy number of eight or
more. Deletions must occur within a single contiguous
segment with copy number zero. Wild type corresponds
to a copy number range between 0 and 8, excluding both
0 and 8. Genes annotated as wild-type across all BC cell
lines in terms of either CNV and mutation were removed.
We also downloaded the dose-response curves for 266
drugs tested in 1065 cancer cell lines (including the 49 BC
cell lines). Each curve is summarized by its IC50 value
(potency).
RNA-Seq expression profiles of 28 BC cell lines, as

well as their response measured by IC50 to 13 out of the
GDSC drugs downloaded from CCLE (https://portals.
broadinstitute.org/ccle) were used for model validation
in this study. For the RNA-Seq data, we used expression
level computed using the RNA-Seq by Expectation-
Maximization (RSEM) method [20] provided by CCLE,
multiplied by 106 to obtain Transcripts Per Million

(TPM) [20] and log2-transformed. Different drugs have
different baseline values and ranges of response and in
particular IC50 values can vary widely depending on
experimental conditions. Therefore, for each of the two
datasets (GDSC and CCLE), we subtracted the mean
IC50 value (for all drugs) from each IC50 value and then
divided this value by the standard deviation of IC50

values for all drugs. This normalization process gives
different drugs the same baseline value and range across
all BC cell lines for the GDSC and CCLE studies.
Drug chemical structure data were also curated. In

order to reduce 3D drug chemical structure data into a
1D string variable we used the simplified molecular-
input line-entry system (SMILES). We extracted the ca-
nonical SMILES strings for 220 out of the 266 GDSC
small molecules from PubChem [21], a database of more
than 60 million unique structures. We then used the
parse.smiles function of the R package rcdk [22] to parse
the annotated SMILES strings for existing drugs.
Extended connectivity fingerprints (hash-based finger-
prints, default length 1024) across all drugs were subse-
quently calculated using the get.fingerprints function of
the R package rcdk. Regarding the drug targets, we
extract the interactions between the 220 drugs and 272
target proteins from GDSC.
For the TCGA BC cohort, the patient-specific RNA-Seq

gene expression data computed by the RSEM algorithm
[20] were downloaded from Firehose Broad GDAC
(https://gdac.broadinstitute.org), multiplied by 106 to ob-
tain TPM [20] and log2-transformed. We used clinical
annotations of the drug response for some patients which
were obtained from supplementary material of Ding
et al.’s study [8]. We also used TCGA BC patients without
drug response in their records. The data used in this study
are summarized in Table 1.

Pathway activity score calculation
Gene sets of 1329 canonical pathways, which were
curated from various pathway databases (e.g., KEGG,
PID, REACTOME, and BIOCARTA), were extracted
from the Molecular Signatures Database (MSigDB)
website [23]. As described by Wang et al. [24], we
scored the pathway activities using the gene expres-
sion profiles of BC cell lines or patients from GDSC,
CCLE or TCGA datasets. Note that we first standard-
ized gene expression within each cohort, and then
performed pairwise homogenization procedure before
scoring pathway activities as described in other stud-
ies [7, 25] to make the expression measures in differ-
ent datasets comparable. Briefly, we kept only genes
presenting in all the three gene expression datasets
(GDSC, CCLE and TCGA datasets) and applied the
ComBat function from the sva R package [26] to ad-
just the potential batch effect in the data sets.
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Cell line similarity network construction
We estimated the cell line similarities by constructing
three CSNs using CNV, mutation, and pathway activity
profiles (Fig. 1a): 1) CSNcnv, where associations between
every two cell lines C and Ci are measured by the
Tanimoto correlation (ρcnv(C,Ci)) between their CNV
profiles; 2) CSNmut, which connects every cell line pair C
and Ci using the Tanimoto correlation (ρmut(C,Ci)) cal-
culated based on their gene mutation profiles; and 3)
CSNpath, which connects every two cell lines C and Ci

based on their Pearson correlation (ρpath(C,Ci)) of path-
way activity profiles. Hence, these CNSs are weighted
networks. The CSNs were generated using GDSC data
and all of them are complete graphs of 49 BC cell lines,
where the weights of the interactions between each pair
of the cell lines were measured by the correlation
coefficients of their respective pathway activity, CNV,
and mutation profiles. Each of the three CSNs is a
single-layer CSN since each was constructed using a
single data type. Next, we used the Similarity Network
Fusion (SNF) algorithm in the R SNFtool package [27]
to integrate the three CSNs in two steps: 1) an affinity
matrix was calculated from each CSN using the affinity-
Matrix function with default parameters; 2) the three
affinity matrices were fused into a cell line similarity
network fusion (CSNF) using the SNF function, which
connects every cell line pair C and Ci by the SNF al-
gorithm-derived correlation (ρCSNF(C,Ci)). The CSNF is a
three-layer CSN since it combined CSNpath, CSNcnv, and
CSNmut.

Drug similarity network construction
Three drug data types (drug structure, target, and pan-
cancer response information) were used to construct
three DSNs to estimate drug similarities (Fig. 1b): 1)

DSNstru, which connects every two drugs D and Dj based
on the Tanimoto correlation (ρstru(D,Dj)) of their mo-
lecular fingerprint properties; 2) DSNtarg, where associa-
tions between every two drugs D and Dj are measured
by the Jaccard correlation (ρtarg(D,Dj)) between their tar-
get information; and 3) DSNsens, which connects every
drug pair D and Dj using the Pearson correlation
(ρsens(D,Dj)) calculated based on their sensitivity profiles
with respect to the IC50 values across the 1065 cell lines
from all cancer types. Next, we integrated the three
single-layer DSNs into a three-layer drug similarity net-
work fusion (DSNF) using the SNFtool package [27] by
connecting every drug pair D and Dj using the SNF
correlation (ρDSNF(D,Dj)).

Multiple-layer cell line-drug response network prediction
construction
We next integrated each of the four CSNs and each of
the four DSNs together to develop a multiple-layer cell
line-drug response network (ML-CDNs), which predicts
drug response in previously tested BC cell lines (Fig. 1c).
In this ML-CDN model, a layer denotes a data type from
either the cell lines or the drugs. A ML-CDN connects a
CSN and a DSN by linking the cell lines in the first
network to their corresponding (previously tested) drugs
in the second network. A ML-CDN is a bipartite graph
of all cell lines and drugs, labeled with the corresponding
response values (IC50 values). Note that a ML-CDN is
not a complete bipartite graph due to some missing
values in the GDSC dataset. With the four CSNs and
four DSNs constructed in the above two sections, we
obtained a total of 16 ML-CDNs: 1) nine dual-layer
CDNs were built using each of the three single-layer
CSNs (CSNpath, CSNcnv and CSNmut) and each of the
three single-layer DSNs (DSNstru, DSNtarg, DSNsens);

Table 1 Data collected from multiple platforms

Dataset Data type Platform Samples

GDSC Gene expression Affymetrix Human Genome U219 array 49 cell lines × 14,770 genes

CNV Affymetrix SNP6 array 49 cell lines × 3037 genes

Mutation Whole exome sequencing 49 cell lines × 8849 genes

Drug response IC50 49 cell lines × 220 drugs

CCLE Gene expression Illumina Hiseq 2000 28 cell lines × 14,770 genes

Drug response IC50 28 cell lines × 13 drugs

TCGA Gene expression Illumina Hiseq 2000 1100 tumors × 14,770 genes

Drug response RECIST response categories a 110 tumors × 5 drugs

Drugs Chemical structure rcdk b 220 drugs × 1024 fingerprints

Target Curated 220 drugs × 272 targets

MSigDB Canonical pathways Curated 1329 pathway gene sets
a Response Evaluation Criteria in Solid Tumours (RECIST), a standard way to categorize treatment response of a cancer patient, including complete response, a
partial response, progressive disease, and stable disease
b An R package which can take the SMILES string of a drug as input and output the fingerprints, 1D- and 2D-structres of the drug
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2) three four-layer CDNs were built using the three-
layer CSNF combined with each of the three single-
layer DSNs; 3) similarly, another three four-layer
CDNs were built using the three-layer DSNF com-
bined with each of the three single-layer CSNs; 4) fi-
nally, a six-layer CDN was built using the two
integrated similarity networks, CSNF and DSNF. In
this study, we referred to the ML-CDN based on
CSNF and DSNF as ML-CDN1 and the one based on
CSNpath and DSNF as ML-CDN2.
For a given cell line-drug pair (C, D), we are able to

make a prediction of the response of the cell line C to the
drug D using Eq. 1, where Ω is the set of all possible cell
line-drug pairs, Ω\{(C,D)} is the set of all other pairs (Ci,
Dj) except (C, D), R(Ci,Dj) denotes the observed response
of the pair (Ci, Dj). R̂ðC;DÞ is the predicted response value

for the pair (C, D). The product of w(C,Ci) and w(D,Dj)
reflects the contribution of R(Ci,Dj) to R̂ðC;DÞ.

R̂ C;Dð Þ ¼
P

Ci;D jð Þ∈Ωn C;Dð Þf gw C;Cið Þw D;Dj
� �

R Ci;Dj
� �

P
Ci;D jð Þ∈Ω C;Dð Þf gw C;Cið Þw D;Dj

� �

ð1Þ

where w(C, Ci) is the weight function between cell
lines C and Ci and w(D,Dj) is the weight function
between drugs D and Dj, which can be calculated as
Eqs. 2 and 3. The weight w(C, Ci) increases with re-
spect to the cell line similarity correlation ρ(C, Ci),
and σ measures the decay rate when ρ(C, Ci) de-
creases. Similarly, the parameter τ measures the decay
rate with the decrease of ρ(D,Dj).

Fig. 1 Study design. This study included four major steps: a four CSNs (CSNcnv, CSNmut, CSNpath, CSNF) were constructed separately; b four DSNs
(DSNstru, DSNtarg, DSNsens, DSNF) were also constructed separately. c 16 ML-CDNs were constructed by connecting one of the four CDNs to one
of the four DSNs, and here only ML-CDN2 was presented which was based CDNpath and DSNF. d ML-CDN2 was employed to predict the
response of new breast cancer cell line samples from CCLE or new breast tumor tissue samples from TCGA to the existing drugs
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w C;Cið Þ ¼ e−
1−ρ C;Cið Þ½ �2

2σ2 ð2Þ

w D;Dj
� � ¼ e−

1−ρ D;D jð Þ½ �2
2τ2 ð3Þ

The ML-CDN models contain two decay parameters
(σ, τ), to be used in the weight function of cell lines and
drugs, respectively. The decay parameter pair (σ, τ) was
optimized by minimizing the sum of the squared errors
for all possible cell line-drug pairs using Eq. 4 as the re-
sponse prediction model. In detail, the overall error
function is defined as Eq. 4, where R(C,D) is the ob-
served response value of cell line C to drug D, and R̂ðC;
DÞ is the predicted value of the cell line C to the drug D.
σ and τ are both ranged from 0 to 1 with an increment
of 0.01, and the pair (σ, τ) takes all possible
combinations.

J σ; τð Þ ¼
X

C;Dð Þ∈Ω R C;Dð Þ−R̂ C;Dð Þ� �2 ð4Þ

To compare the performance of the 16 ML-CDN
models, we split all cell line-drug pairs into three folds.
Two folds were used as the training set for optimizing
the decay parameter pairs (σ, τ) while the remaining fold
used as the test set for estimating the prediction per-
formance of the models. The performance was evaluated
using Pearson correlation coefficient and root mean
squared error (RMSE) between the predicted and the
observed drug responses for all drugs. RMSE is the
square root of the mean squared error. A higher Pearson
correlation coefficient and lower RMSE indicate a better
prediction performance of a method.

Multiple-layer cell line-drug response network model to
predict drug response for a new sample
Although the ML-CDN models can be used to predict
drug response in a new cell line or tumor tissue sample
based on the CSN, or cell line response to a new drug
based on the DSN, we focused on the former in this
study. We therefore expected that the BC cell line-derived
ML-CDNs could have good predictive performance in BC
patient-derived data. Among the 16 ML-CDN models,
ML-CDN2, which was constructed by connecting CSNpath

and DSNF and demonstrated good prediction perform-
ance in terms of Pearson correlation and RMSE (See the
Results Section), was chosen for predicting the response
of a new BC patient- or cell line-derived sample S to a
known drug D (R̂ðS;DÞÞ (Fig. 1d) as defined in Eq. 5. To
make a prediction for R(S,D), we first estimated the simi-
larity between the new sample S and any existing cell line
Ci by calculating the Pearson correlation (ρpath(S,Ci)) in
terms of their pathway activity profiles and further
obtained the weight (wpath(S,Ci)) between S and Ci using
Eq. 2 with σ optimized from ML-CDN2. In parallel, the

similarity between D and any existing drugs Dj was mea-
sured using ρDSNF(D,Dj) from DSNF and further weighted
using Eq. 3 with τ optimized from ML-CDN2 to obtain
wDSFN(D,Di). R(Ci,Dj) is the observed response value of
existing cell line Ci to existing drug Dj. Thus, R(S,D) can
be predicted by taking advantage of response data from all
existing cell lines Ci based on their weighted similarities
with the new sample S and all existing drugs Dj based
their weighted similarities with D as shown in Eq. 5. The
predictions of the response to the existing drugs in the
benchmark dataset (i.e., GDSC) were made for new BC
cell lines from CCLE or new breast tumor tissue samples
from TCGA.

R̂ S;Dð Þ ¼
P

Ci;D jð Þ∈Ωwpath S;Cið Þ wDSFN D;Dj
� �

R Ci;Dj
� �

P
Ci;D jð Þ∈Ωwpath S;Cið Þ wDSFN D;Dj

� �

ð5Þ

Drug response prediction for CCLE cell lines
To validate the performance of ML-CDN2, we employed
the ML-CDN2 model, which was trained using the
GDSC dataset. We then predicted the drug response of
the same drugs in new BC cell lines from the CCLE
dataset using Eq. 5. First, we measured the similarities
between new cell lines from CCLE and the existing cell
lines from GDSC using the Pearson correlations of their
pathway activity profiles and then obtained the weights
between the CCLE and GDSC BC cell lines using Eq. 2
with σ optimized from ML-CDN2. The prediction of the
drug response could then be made using Eq. 5.

Drug response prediction for TCGA patients
To further study ML-CDN2’s performance in vivo, we
employed the model to predict the drug response of five
drugs for patients in the TCGA BC dataset for which
drug response was recorded. Five drugs were tested in
the GDSC study, including paclitaxel, fluorouracil, tam-
oxifen, doxorubicin, and docetaxel. For each of the five
drugs, the patients were assigned to two groups based
on the recorded drug response: Responder (patients
showing a “complete response”) and Non-responder (pa-
tients showing a “partial response”, “progressive disease”,
or “stable disease”). For these patients, we first calculated
their pathway activity scores based on their whole-
genome gene expression profiles and then measured the
similarity between these BC tumors and the GDSC BC
cell lines using the Pearson correlations of their pathway
activity profiles. The Pearson correlations were further
weighted using Eq. 2 with σ optimized from ML-CDN2.
In the end, the responses of these TCGA BC patients to
the five drugs were made with Eq. 5. Since the IC50

values in the GDSC study were measured using cell
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viability, we expected that patients in the Responder
group would have a lower predicted IC50 value than pa-
tients in the Non-responder group.
Using Eq. 5, we also predicted the response of all

TCGA BC patients to lapatinib, and tamoxifen, which
were included in the GDSC study. Lapatinib is a tyrosine
kinase inhibitor targeting HER2/EGFR receptors and is
used to treat HER2-overexpressing breast cancers.
Tamoxifen is a selective estrogen receptor modulator
(SERM) that targets ER receptors and is used to treat
ER-positive breast cancers. For lapatinib, we separated
the BC patients based on their HER2 overexpression
level measured by immunohistochemistry (IHC) into
four groups: 0, 1+, 2+, 3+, indicating the increasing ex-
pression level of HER2. We then compared the predicted
IC50 values for lapatinib among the four groups. We ex-
pected to see that groups with higher HER2 expression
levels would demonstrate lower predicted IC50 values.
BC patients treated with tamoxifen were divided into
two groups (Negative and Positive) based on the IHC
status of ER. Then the predicted IC50 values for tamoxi-
fen were compared between the two groups. We ex-
pected that the predicted IC50 values for patients in the
ER Positive group would be lower than the IC50 values
from the patients in the ER Negative group.
In addition, we used Eq. 5 to predict the drug response

of the EGFR and PI3K pathway inhibitors for TCGA BC
patients for which there was no drug response recorded.
Since these drugs target either the EGFR pathway or the
PI3K pathway, we expected the expression level of the
EGFR pathway genes to be strongly correlated with the
predicted EGFR inhibitor response while the expression
level of the PI3K pathway genes would be strongly
correlated with the predicted PI3K inhibitor response.
We obtain the gene lists for the EGFR and PI3K
pathways from MSigDB [23]. To study the correlation
between genes in a pathway and an inhibitor of the
pathway, we employed multiple linear regression be-
tween the predicted IC50 value (response variable) of
the inhibitor and the expression levels of the pathway
genes (predictors). We obtained the p-value for each
gene and corrected them for multiple comparison,
using Bonferroni correction (α = 0.05).

Results
The cell line and drug data types are associated with
drug response
To measure the similarity of cell line pairs, we calculated
the correlations between pairs of cell lines using
their CNV, mutation, and pathway activity profiles
(Additional file 1: Table S1). The mean correlation
of all cell line pairs is 88.12% for CNV, 88.10% for
mutation and 96.83% for pathway activity. The Pearson
correlation between the drug response similarity and the

cell line pair similarity is 0.16 for CNV, 0.23 for mutation,
and 0.47 for pathway activity (Fig. 2). Figure 2 shows that
if two BC cell lines show similar patterns in terms of the
CNV (Fig. 2a), mutation (Fig. 2b), and pathway activity
(Fig. 2c) profiles, their responses to certain drugs will be
similar. We also found that drug pairs with similar
structures (Fig. 2d), targets (Fig. 2e), and pan-cancer IC50

profiles (Fig. 2f) exhibit similar IC50 values across the BC
cell lines tested. For example, the mammary gland cell
lines BT-20 and HCC1187 have a correlation of 0.99 for
their CNV profiles, and their correlation in terms of their
response to all tested drugs in GDSC is 0.81 (Additional
file 1: Table S1). These results suggest that integrating cell
line and drug data types may improve drug response
prediction.

Comparison of ML-CDN models
The three types of cell line information enumerated, and
the three types of drug information enumerated in Fig. 2
are associated with drug response. We therefore used
each of the four CSNs (CSNcnv, CSNmut, CSNpath, and
CSNF) and each of the four DSNs (DSNstru, DSNtarg,
DSNsens, and DSNF) to build a total of 16 ML-CDNs
and compared their prediction performance (Table 2).
The optimal model is ML-CDN1 which was constructed
with CSNF and DSNF. Among the other models with
high predictive capabilities, we focused on ML-CDN2
which was constructed from CSNpath and DSNF. This is
because pathway activity profiles derived from the tran-
scriptome are the most widely available data for tumor
tissue or cell line samples in public databases and the
DSNF integrated three types of information from drugs.
We optimized the decay parameters for ML-CDN1

and ML-CDN2 models using all cell line-drug pairs. The
optimized parameter pair (σ, τ) is (0.07, 0.06) for ML-
CDN1 and (0.01, 0.06) for ML-CDN2. The IC50 values
were predicted for all pairs using the ML-CDN1 and
ML-CDN2 models to calculate the Pearson correlation
and RMSE. The scatter plots for ML-CDN1 (Fig. 3a) and
ML-CDN2 (Fig. 3b) indicate good correlations between
observed versus predicted responses which did not arise
from a small number of outliers. We decided to use ML-
CDN2 to predict drug response for new cell line-derived
from tumor tissue samples because the two models do
not differ much in their performance and ML-CDN2
does not use CNV and mutation data whereas the ML-
CDN1 model does.

Comparing ML-CDN2 with other methods
We compared the performance of ML-CDN2 with a
dual-layer network proposed by Zhang et al. [14]. Our
ML-CDN2 model is similar to the method of Zhang
because both use CSN and DSN to predict the drug
response for a given cell line-drug pair but it differs
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because Zhang et al constructed a dual-layer integrated
cell line-drug network model by combining the predic-
tions from the individual layers. We used the same 220
drugs and 49 BC cell lines from the GDSC study for
evaluation in order to make fair comparisons. Following
the method of Zhang et al., the CSN was generated
using the cell line pairwise Pearson correlations of their
gene expression profiles. We extracted the 1-D and 2-D
structural features of each drug using PaDEL [28] and
calculated the Pearson correlation between each pair of

the drugs using these structural features to build the
DSN. Our ML-CDN2 performed better than Zhang
et al.’s method (Fig. 4). The ML-CDN2 model obtained
a correlation between the predicted and the observed
responses of 0.873, while Zhang et al.’s method had a
value of 0.670 (Fig. 4).
We also compared our method with that of Wei et al.

[15], which predicts anticancer drug response by capturing
the different contributions of existing cell line-drug re-
sponses through cell line similarities and drug similarities.

Fig. 2 Similar cell lines and similar drugs have similar responses. a, b, and c Box plots show that cell lines with similar CNV (a), mutation (b), and
pathway activity (c) profiles respond similarly to the same drugs. The X-axis indicates the similarity level between all possible BC cell line pairs. We
divided the similarity level between two cell lines into “low” (minimum <= ρ(C, Ci) < 1st quantile), “interlow” (1st quantile <= ρ(C, Ci) < median),
“interhigh” (median < = ρ(C, Ci) < 3rd quantile) and “high” (3rd quantile <= cc < maximum) based on CNV (a), mutation (b), and pathway activity
(c) correlations. The y-axis shows the correlations of their drug response vectors as measured by IC50. d, c, e Box plots show that drugs with
similar structure (d), targets (e), and pan-cancer cell line sensitivity (f) profiles have similar effects on BC cell lines. The drug pairs were separated
into “low” (minimum <= ρ(D, Dj) < 1st quantile), “interlow” (1st quantile <= ρ(D, Dj) < median), “interhigh” (median < = ρ(D, Dj) < 3rd quantile) and
“high” (3rd quantile <= ρ(D, Dj) < maximum) groups based on the correlations of structure (a) and pan-cancer cell line sensitivity (c) profiles. Drug
pairs were divided into “low” (ρtarg(D, Dj) <= 0) and “high” (ρtarg(D, Dj) > 0) groups using their target correlations. The Y-axis shows the correlations
of their sensitivity vectors tested in BC cell lines as measured by IC50
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Our ML-CDN2 method uses the same strategy to inte-
grate the CSN and DSN. However, Wei et al.’s method
measured cell line similarity using only gene expression
profiles and the drug similarity using only fingerprint-
based chemical structures. Our ML-CDN2 performed bet-
ter than the model of Wei et al. (Fig. 4).

Predicting missing drug responses in GDSC
Out of the possible 49 × 220 BC cell line-drug combina-
tions in the GDSC study, only 81% have corresponding
drug response data. With the cell line similarity and

drug similarity data, we applied our ML-CDN2 model to
predict the missing IC50 values for these pairs without
responses (predicted missing) and compared this to
those with responses (available observed). We predicted
the missing responses to five EGFR tyrosine kinase in-
hibitors (afatinib, erlotinib, gefitinib and lapatinib). Since
such EGFR inhibitors are more potent (lower IC50) in in-
dividuals with mutations in EGFR, we stratified the data
into wild type and mutant groups. The predicted missing
median IC50 values of EGFR inhibitors for the EGFR
wild type and mutant cell lines are − 0.09 and − 0.32, re-
spectively, and the available observed median IC50 values
for the EGFR wild type and mutant groups are 0.10 and
− 0.28, respectively (Fig. 5a). Although the wild-type me-
dian EGFR IC50 values appear to be consistently higher
than the mutant median EGFR IC50 values, these differ-
ences are not significant within the available observed,
and predicted missing groups. For example, the pre-
dicted missing wild type and mutant IC50 values are not
significantly different (p-value = 0.73, two-tailed t-test),
likely because there are only two data points in the
mutant group. However, we found that the predicted
missing median IC50 of the EGFR-wild type group was
significantly higher than the available observed median
IC50 of the EGFR-mutant cell lines (p-value = 0.05 two-
tailed t-test) (Fig. 5a). Our findings agree with previously
published studies [15, 29]. Moreover, these results are
consistent with the fact that EGFR tyrosine kinase
inhibitors usually only work in individuals with activat-
ing mutations in the EGFR tyrosine kinase domain
which makes the drugs have lower IC50 values in these
individuals.
Similar to the EGFR inhibitors, we predicted the miss-

ing responses of three mitogen-activated protein kinase

Table 2 Performance of the 16 ML-CDN models

CSN DSN RMSE R

CSNcnv DSNstru 0.513 0.864

CSNcnv DSNtarg 0.562 0.834

CSNcnv DSNsens 0.504 0.869

CSNcnv DSNF 0.504 0.869

CSNmut DSNstru 0.513 0.864

CSNmut DSNtarg 0.562 0.834

CSNmut DSNsens 0.505 0.869

CSNmut DSNF 0.504 0.869

CSNpath DSNstru 0.510 0.866

CSNpath DSNtarg 0.563 0.833

CSNpath DSNsens 0.496 0.873

CSNpath DSNF 0.497 0.873

CSNF DSNstru 0.511 0.865

CSNF DSNtarg 0.561 0.834

CSNF DSNsens 0.496 0.873

CSNF DSNF 0.493 0.875

R Pearson correlation coefficient, RMSE Root mean squared error

Fig. 3 Comparison of ML-CDN1 and ML-CDN2. a The scatter plot of observed and predicted drug responses (IC50 values) for all drugs in GDSC
using the ML-CDN1 model. b The scatter plot of observed and predicted drug responses (IC50 values) for all drugs in GDSC using the ML-CDN2
model. R: Pearson correlation coefficient; RMSE: root mean squared error
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inhibitors (AZD6244, RDEA119 and PD-0325901).
These compounds are expected to be more potent and
therefore have lower IC50 values in cells that harbour a
specific mutation in the BRAF kinase [30], so we strati-
fied the data into wild type and mutant groups. We
found that all of the cell lines with missing responses to
the three inhibitors were BRAF wild type, so we could
not predict missing BRAF mutant values. The predicted
missing median IC50 value in the BRAF-wild type cell
lines using ML-CDN2 is 0.29 which is close to the avail-
able observed median IC50 of − 0.03, and both values are
higher than the available observed median IC50 of − 0.28
in the BRAF-mutant cell lines (Fig. 5b). However, we did

not find a significant difference between the predicted
missing median IC50 value in BRAF-wild type cell lines
and the available observed IC50 value in the BRAF-
mutant cell lines (p-value = 0.3, two-tailed t-test). Over-
all, our results suggest that our ML-CDN2 model can
correctly predict the drug responses of missing data in
the GDSC dataset.

Validating ML-CDN2 in CCLE
We next validated ML-CDN2 in the CCLE dataset
using 13 drugs tested in both CCLE and GDSC and
28 BC cell lines with gene expression data available.
Treating each cell line as a new sample, we employed
ML-CDN2 to predict the responses of the new
sample to the 13 drugs. The Pearson correlation
coefficient between the observed and predicted drug
responses is 0.718 with a RMSE of 0.783 (Fig. 6). The
results suggest that the ML-CDN2 model can be used
to predict response values of new BC cell lines to the
existing drugs. However, the model did not work well
with cell-drug pairs with observed IC50 values of
8 μM or higher. In CCLE, drugs were tested in eight
doses with 8 μM being the maximum. Thus, some
drugs ended up having an IC50 of 8 μM or higher in
some cell lines but these are all listed as having an
IC50 of 8 μM. The IC50 of 8 μM is 0.55 after
normalization, hence all IC50 values of 8 μM or higher
from CCLE are represented as the observed normal-
ized value of 0.55 (Fig. 6). Unfortunately, we cannot
exclude the 8 μM IC50 values because we don’t know
which IC50 values are legitimately 8 μM and which
are higher. Therefore, some of the predicted IC50

values cannot be linearly correlated with the normal-
ized observed IC50 values of 0.55 because of a limita-
tion in the data from CCLE.

Fig. 5 Comparison of the predicted missing response values using ML-CDN2 and the existed response values for two types of inhibitors. a
Comparison of predicted missing and available observed IC50 values for EGFR mutant and wild-type cell lines for which experimental IC50 values
were missing from the GDSC dataset for EGFR inhibitors, including afatinib, cetuximab, erlotinib, gefitinib and lapatinib. b Comparison of
predicted missing and available observed IC50 values for BRAF mutant and wildtype cell lines for which experimental IC50 values were missing in
the GDSC dataset for three MEK inhibitors, including AZD6244, RDEA119 and PD-0325901

Fig. 4 Comparison of ML-CDN2 and other network-based models.
The bar graph shows the predictive performance of three models,
which was estimated based on Pearson correlations (the number on
the top of bars) between the predicted and observed IC50 values.
The first (Zhang) is Zhang et al.’s method. The second (Wei) is Wei
et al.’s method. The third is the ML-CDN2 model from in this study
using the CSNpath and DSNF
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Evaluating ML-CDN2 in TCGA
Although drug response data in BC cell lines is more
widely available and easier to obtain, it is less representa-
tive of the disease than human tumor samples. In
addition, a goal of models such as ours is to predict suc-
cessful cancer drug treatment based on BC patient
tumor samples. We therefore tested our ML-CDN2
against the TCGA dataset on a subset of BC patients

where their drug response was recorded as “Responder”
or “Non-responder”. The predicted drug IC50 values
were lower in the “Responder” group to paclitaxel treat-
ment, compared to the “Non-responder” group (Fig. 7a,
p-value = 0.01, two-tailed t-test). In the tamoxifen treat-
ment group, patients in the “Responder” group appeared
to have a lower median predicted IC50 value than pa-
tients in the “Non-responder” group but the results are
not statistically significant (Fig. 7b, p-value = 0.93, two-
tailed t-test).
ML-CDN2 was used to predict the response of all

TCGA BC samples to lapatinib, a HER2/EGFR tyrosine
kinase inhibitor used to treat HER2 positive BC, and
tamoxifen, a SERM used to treat ER positive BC. When
grouping the TCGA BC patients based on their HER2
IHC status. We found that the predicted responses
among the four groups were significantly different
(Fig. 8a, p-value = 0.01 by ANOVA). Tamoxifen re-
sponses were similarly grouped by ER status. Although
tamoxifen appeared to be more sensitive in the ER-
positive than in the ER-negative group this result was
not statistically significant (Fig. 8b). These results further
suggest that the GDSC BC cell line-derived ML-CDN2
could be used to predict the responses of BC patients to
existing drugs.

Drug response predictions for TCGA samples have
significant associations with expression levels of targeted
pathway genes
We applied the ML-CDN2 model to the gene expression
data from TCGA BC samples that did not have drug re-
sponse data and predicted the response to seven drugs
targeting the EGFR signaling pathway: erlotinib, gefi-
tinib, afatinib, cetuximab, lapatinib, CP724714, and peli-
tinib. A number of strong associations between the

Fig. 6 Correlation between the predicted and observed drug
responses using ML-CDN2 in CCLE. Many cell lines have an observed
IC50 of 0.55 corresponding to the maximum dose of 8 μM in the
CCLE IC50 curves. The true value of the IC50 for these points is 8 μM
or higher. However, the IC50 values predicted by ML-CDN2 were not
subject to this limitation. Therefore, we cannot see a good
correlation between the predicted and observed IC50 values for the
pairs that had an observed IC50 value of 8 μM or more

Fig. 7 Predicted IC50 values for TCGA BC samples with recorded drug response. a The boxplot shows the predicted IC50 values for TCGA
responders and non-responders to paclitaxel treatment. b The boxplot shows the predicted IC50 values for TCGA responders and non-responders
to tamoxifen treatment
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EGFR pathway genes and the responses to the six drugs
were predicted by ML-CDN2 (Table 3). For example, for
erlotinib, we observed statistically significant associations
between the expression of EGFR pathway genes ADCY7,
CDK1, FOXO1, MAPK1, and PAG1 and the predicted
responses. However, no such significant associations
were observed with gefitinib.
We also employed the ML-CDN2 model to predict the

drug response of several phosphoinositide 3-kinase
(PI3K) / mechanistic target of rapamycin (mTOR)
signaling pathway inhibitors for TCGA breast tumor
samples. 20 PI3K inhibitors were tested in the GDSC
study and we observed statistically significant associa-
tions between the level of pathway gene expression and
predicted drug responses for each inhibitor. A total of
120 associations were obtained for seven inhibitors
(Additional file 2: Table S2). For example, we observed
significant associations between the predicted responses
to dactolisib and the expression of the genes CXCR4
(p-value = 2.16 × 10− 3) and FASLG (p-value = 2.60 × 10− 2).

Discussion
All of the 16 ML-CDN models we constructed show
good predictive performance, with Pearson correlation
coefficients greater than 0.8. When the same CSN was
used, the ML-CDN model derived from DSNtarg shows a
smaller Pearson correlation while having a greater RMSE
than the ML-CDN models derived from DSNstru,
DSNsens, and DSNF. These findings suggest that the
drug targets are less predictive of drug response in the
ML-CDN models compared to the drug structures, pan-
cancer IC50 profiles, and DSNF. When the same DSN
(except DSNtarg) was used, the ML-CDN models derived
from CSNpath and CSNF show a higher Pearson correl-
ation and a lower RMSE than the ML-CDN models de-
rived from CSNcnv and CSNmut, implying that pathway
activity profiles and CSNF are more informative than

Fig. 8 Predicted IC50 values for TCGA BC samples without recorded drug response. a The boxplot shows the predicted lapatinib response values
in TCGA BC groups with different HER2 overexpression level, which was measured by IHC. b The boxplot shows the predicted tamoxifen
response values in TCGA BC groups with different ER expression status, which was also measured by IHC

Table 3 Associations between the expression level of EGFR
pathway genes and EGFR inhibitor responses predicted by
ML-CDN2

Drug Gene Adjusted p-value

Erlotinib ADCY7 1.51 × 10−3

CDK1 2.00 × 10−31

FOXO1 4.22 × 10−2

MAPK1 1.02 × 10−2

PAG1 2.64 × 10−3

Afatinib ADAM12 1.64 × 10−5

ADCY7 4.63 × 10−4

CDK1 8.88 × 10− 3

EGF 2.94 × 10− 2

Cetuximab ADCY6 2.67 × 10− 2

ADRBK1 1.02 × 10− 2

CDK1 1.59 × 10−19

SPRY2 2.18 × 10− 4

Lapatinib AKT3 8.00 × 10−3

CDK1 5.68 × 10−17

ITPR2 2.39 × 10−5

CP724714 CDK1 6.22 × 10−9

FOXO1 3.18 × 10−2

PDPK1 2.17 × 10−2

Pelitinib ADCY9 4.06 × 10−4

CDK1 9.07 × 10−5

EGFR 2.90 × 10−2

ITPR3 3.03 × 10−3

PAG1 3.87 × 10−2

PIK3R1 1.04 × 10−2
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the CNV and mutation profiles. The best-preforming
model is ML-CDN1, derived from CSNF and DSNF,
suggesting that integration of the three types of data
from cell lines along with the three types of data from
drugs improve predictive performance of the model.
It is noteworthy that the 16 ML-CDNs do not differ

much in their predictive performance. The Pearson cor-
relation ranges from 0.833 to 0.875 while the RMSE
ranges from 0.493 to 0.563. A possible reason for this
could be that the ML-CDN models are BC-specific
models. The idea behind the ML-CDN modeling
method is that similar cell lines exhibit similar drug re-
sponse. These models were trained on 49 BC cell lines,
which show high similarity among each other in terms
of pathway activity, CNV, or gene mutation profiles.
Therefore, any of the three types of profiles can be used
by the ML-CDN model to accurately predict drug
response.
When we tested our ML-CDN2 against the TCGA

dataset, the model predicted significantly lower IC50

values for the paclitaxel “Responders” than the “Non-re-
sponders” (Fig. 7a). Our model did not capture variabil-
ity in clinical response to the other four drugs. Notably,
for tamoxifen, patients in the “Responder” group had a
lower median predicted IC50 value than patients in the
“Non-responder” group (Fig. 7b). However, given that
there were only five individuals in the Non-responder
group, it is not surprising that we did not establish stat-
istical significance. Consequently, a larger clinical cohort
may be required to assess rigorously whether our models
capture variability in tamoxifen response for BC.
Recent studies have demonstrated that computational

models built on cell line-derived data are applicable to
the prediction of drug response for cancer patient sam-
ples [7, 11, 31]. For example, Geeleher et al. [7] devel-
oped ridge regression models for single drugs using the
baseline gene expression data of cancer cell lines as in-
put and the in vitro drug IC50 values as output. Geeleher
et al. [31] also applied this ridge regression model to the
gene expression profiles of the TCGA tumors to deter-
mine drug response and showed that their cell line-
derived models can be used for the accurate prediction
of drug response in TCGA tumor samples. In our study,
the ML-CDN2 model, which was developed on the
GDSC dataset, has demonstrated the potential to predict
anti-cancer drug response for breast tumor tissue sam-
ples from TCGA. These findings suggest that cell-line
derived CNV, gene expression, and mutation data can
be used for developing computational drug response
prediction models, which could be applied to precision
medicine .
Gene expression data have been extensively used both

as a single input and in combination with other omics
data for in silico drug response prediction [6]. However,

most of these models focused on the expression of indi-
vidual genes. Recent evidence has shown that drug re-
sponses are mediated by the coordinated function of a
set of genes (i.e., a pathway) instead of individual genes
[32]. In this study, we inferred the pathway activity pro-
files from the gene expression data. We estimated the
similarity between two GDSC cell lines by calculating
the Pearson correlation of their pathway activity profiles,
resulting in a mean correlation of all possible cell line
pairs of 97.49%, which is higher than the mean (96.83%)
of cell line pairwise correlations of the gene expression
profiles (Additional file 3: Fig. S1). We also estimated
the similarity between pairs of TCGA BC tumors by
computing the Pearson correlation with respect to their
gene expression profiles as well as their pathway activity
profiles. The mean correlation of all BC tumors pairs is
80.33% for gene expression and 97.49% for pathway activ-
ity (Additional file 3: Fig. S1). Moreover, we measured the
similarity between the GDSC BC cell lines and the TCGA
breast tumor samples. The mean correlation of all possible
cell line-tumor pairs is 88.20% for gene expression and
96.57% for pathway activity (Additional file 3: Fig. S1).
These findings suggest that pathway activity profiles pro-
vide a better way to estimate the similarity of cancer cell
line pairs, tumor pairs, as well as cell line-tumor pairs,
than the expression profiles of individual genes.
A limitation of this study was that our model did not

take into account cell lines that are known to be resist-
ant to specific chemotherapeutic drugs. Therefore, when
we validated our model in the CCLE dataset, it did not
work well with cell-drug pairs with observed IC50 values
of 8 μM or higher. Triple-negative breast cancer (TNBC)
is the most aggressive BC subtype with the lowest sur-
vival time and having few effective therapies. Our model
was developed with different BC subtypes taken into
consideration and was validated using different BC sub-
types represented by cell lines in CCLE and patient-
derived samples in TCGA. It would be interesting to
look at the performance of our model specifically in the
TNBC subtype in future work.

Conclusions
We developed a BC-specific computational model by inte-
grating multiple cell line and drug data types to predict
anticancer drug responses. One of the main contributions
is that this BC cell line-derived model has the potential to
predict the drug response for BC tissue samples. Such a
model may one day be used to predict drug response and
influence drug selection for BC treatment.
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Additional file 1: Table S1. Correlations of cell line pairs with respect
to their CNV, mutation and pathway activity profiles, as well as their
response to all tested drugs in the GDSC.

Additional file 2: Table S2. Associations between the expression level
of PI3K pathway genes and PI3K inhibitor responses predicted by ML-
CDN2. This table lists the PI3K pathway genes which show significant as-
sociation between their expression levels with the predicted IC50 values
of the PI3K pathway inhibitors.

Additional file 3: Figure S1. Correlations of cell line pairs, tumor pairs
and cell line-tumor pairs. (a) The pairwise Pearson correlation of the 49
BC cell lines from GDSC was calculated based on their gene expression
profiles. (b) The pairwise Pearson correlation of the 1100 BC samples from
TCGA was calculated based their gene expression profiles. (c) The pair-
wise Pearson correlation between the 49 BC cell lines and the 1100 BC
samples was calculated based their gene expression profiles. (d) The pair-
wise Pearson correlation of the 49 BC cell lines was calculated based on
their pathway activity profiles. (e) The pairwise Pearson correlation of the
1100 BC samples from TCGA was calculated based their pathway activity
profiles. (f) The pairwise Pearson correlation between the 49 BC cell lines
and the 1100 BC samples was calculated based their pathway activity
profiles.
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