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ABSTRACT

This thesis examines the use of impedance walled cylindrical and conicz!
waveguides as feeds for prime-focus parabolic reflectors. Firstly, a review of
several feeds is presented to outline the importance of feeds with lew cross-
polarisation. The boundary value problem is then solved for both cylindrical and

conical waveguide by applying impedance boundary conditions.

The analysis of conical horns is often simplified by simulating a narrow flare-
angle horn by seciions of cylindrical waveguide with different radii. This
simplification is sometimes applied to large flare angle Lorns, leading to some
misconceptions. Whereas an impedance wall is sufficient to support hybrid modes
in a cylindrical waveguide, it is found that the surface impedance on the wall of a
dielectric lined corical horn must be tapered as a function of distance along the
horn in order to satisfy the same characteristic equation as a corrugated horn. A
method of achieving this impedance taper is presented as a possible means of con-
structing hybrid mode horns without corrugating the wall. Finally, the aperture

and far-field plots of a hybrid mode conical horn are calculated and presented.
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Chapter 1 : INTRODUCTION

The advent of satellite communication systems greatly increased the need for
high performance pencil-beam antennas. A large aperture is neccessary to satisfy
the gain requirements of these systems. Quasi-optical antennas such as reflector
and lens antennas are obvious candidates for these applications since they are
structurally and conceptually simple and at the same time offer high gain. This
thesis will be concerned with the feeds used for reflector type antennas;

specifically with the prime-focus parabolic type as shown in Fig. 1.1.

There are two major components in reflector systems; the reflector and the
feed. The reflector modifies the path of the incoming or outgoing rays so there
are two focal points; one at the feed position and the other at infinity. The most
important factor affecting antenna performance with regard to the reflector is the
accuracy of it’s shape. A very small error in the shape of the reflector results in
an imprecise focal point, thereby reducing the efficiency of the antenna system.
The second critical component is the performance of the feed. The radiation pat-
tern of the feed together with the geometry of the reflector determines the illumi-

nation, polarisation purity and ultimately the efficiency of the entire system.

Together, the feed and the reflector both contribute to the polarisation pro-
perties of an antenna system. However, the reflector shape is generally chosen to
satisfy specific conditions on weight, ease of production, aperture blockage and
noise performance, leaving the feed design responsible for the polarisation perfor-
mance. So, it can be seen that control over the radiated field from the feed is

extremely important for the success of any quasi-optical antenna system.

The use of spatially orthogonal channels for microwave communication has
greatly increased the need for antenna systems with a high degree of polarisation
purity. An understanding of primary and secondary field patterns and their rela-

tion to the polarisation performance of the antenna system is neccessary before
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criteria for feed design can be established.

The primary feed pattern is the radiation pattern of the horn or wire feed
which is placed at the focal point of the reflector system. This pattern can be
obtained from the aperture field of the feed. There are several methods for
obtaining the far field of a specific aperture distribution including the equivalent
source method and the Fourier transform method. Feed design is largely knowing
what primary feed pattern is desirable, working backwards to the aperture field
distribution and then trying to obtain this distribution by modifying the feed

structure.

If the E and H -plane primary patterns are equal then there will be no cross-
polarised surface currents on the reflector and the secondary pattern wiil be
linearily polarised according to the third definition of polarization given by
Ludwig [1973]. This gives us an insight into some of the characterisiics of an ideal

feed for a prime-focus parabaloid reflector antenna system.

The definition of cross- polarisation used most commonly for aperture anten-
nas is Ludwig’s third definition [Ludwig 1973]. This corresponds to the standard
\]

cross-polar antenna measurment sct-up. The definition for the co-polar and

cross-polar field vectors under this definition are;
oo =aycos(P—d,)—a sin(b—d,)
a, =agsin($p—¢,)—azcos(d—d,)

where a4 and a4, are unit vectors in the spherical coordinate system and & is the
inclination of the reference polarisation with respect to the x-axis. One major
advantage of using this definition of polarisation is that a purely polarised primary
pattern will tend to produce a purely polarised secondary pattern in spite of the

reflector. The three conditions under which this effect is true are that;



1. the patterns of the feed and the reflector share a common central axis,
2. the reflector does not focus the far field to a point, and

3. the feed focal area should be a single point.

It can be reasoned from the above points that offset and dual reflecting
antenna systems will not preserve the polarity of a purely polarised primary feed.
The standard parabolic reflector in a prime focus configuration does however
satisfy these conditions. For this reason this discussion will deal exclusively with
feeds which are used in systems which require a purely polarised primary pattern.
Multimode horns can, of course, be used in systems which require any arbitrary
aperture field distribution. The problem then becomes one of discovering the

optimum aperture distribution for a given reflector configuration.

Chapter 2 is a review of the feed designs presently used for prime-focus para-
bolic refiecting antennas. Chapter 3 of this thesis deals with the propagation of
waves in a circular cylindrical waveguide when impedance boundary conditions
are applied at the walls. Chapter 4 is a similar study of the conical waveguide.
Both of these chapters are useful in understanding the theory behind feeds with a
higily polarised aperture distribution. In chapter 4, conditions on the wall
impedance of a conical horn are presented which could cause a horn to support
hybrid modes without being corrugated. This idea is expanded in chapter 5 where
a horn design is presented which could satisfy these impedance conditions.
Chapter 6 presents aperture distributon plots of the first three HE |, and EH 4,
modes in a large conical horn. In the second part of the chapter the far field of
the same six hybrid modes are calculated and presented as well as some comparis-

ons with previously published results. The conclusions are presented in chapter 7.



Chapter 2 : PROGRESSION OF FEED DESIGNS

As we have seen, one of the most important components of a reflecting
antenna system is the feed. There are several feed types which can be used suc-
cessfully with parabolic refiectors, Liowever, it is important that the proper feed is
chosen to match the level of performance needed. This section briefly outlines
the characteristics and performance of several popular feeds in order to highlight

the role of the hybrid-mode horn.

2.1 Dipole Sources

Dipoles are seldom used as feeds in reflector systems dve mainly to thelr
poor directivity. However, an investigation of a system which uses an idealizec
dipole as a feed provides some useful information about the optimum characteris-

tics of an aperture feed.

Assume a parabolic reflector with a focal axis lying along the z-axis. If a
short dipole is placed at the focus of a parabolic reflector with the dipole parallel
to the x-axis, there would be coasiderable cross-polarisation in the aperture of the
paraboloid and therefore in the far field. The field distribution in the aperture of
the paraboloid is shown in Fig. 2.1a. This pattern can be improved by placiag a
flat reflector at a distance of one-half wavelength behind the dipole, however,
even this feed is poorly suited for use with a circular paraboloid since the taper is
not equal in both planes.

A magnetic dipole oriented along the y-axis of the séme paraboleid yields an
aperture field distribution as shown in Fig. 2.1b. It is readily seen from both
figures that a combination of these two distributions in the correct phase and
amplitude would lead to a linearly polarised aperture field distribution, as shown
in Fig. 2.1c. Jones [1954], discovered that the optimum ratio of magnetic to elec-

tric currents in the dipoles was approximately 377, the impedance of free-space.

LS
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A source which displays this circular symmetry using an orthogonal pair of elec-
tric and magnetic dipoles is called a Huygen’s source since it closely resembles a

free-space source.

When a Huygen’s source is used as a primary feed for a reflector with

%=0u25, there would result a -12 dB illumination taper [Rudge et al 1982]. If

this reflector is 25\ in diameter, the cross-polarisation level due to the axial

currents on the reflector will be -44 dB. This theoretical limit to the performance

of a re{~ctor antenna can be reduced by increasing the % ratio of the reflector.

Although practical dipole feeds are interesting in themselves, this thesis will
not discuss them further except to say that the combining of electric and magnztic

dipoles suggests the use of multimoded horns as we shall see in the next sectior.

2.2 Horn and Waveguide Feeds

One of the simplest feeds is an open ended rectangular waveguide or smull
pyramidal Lorn operating in the TE 3; mode. One drawback of this type cf iced is
that it can only be used for linear polarisation. The dimensions of any fecd with
a rectangular aperture can be optimized by field matching at the aperture of the
feed [Rudge and Withers 197C]. By assuming a linearly polarised planz wave
incident on the reflector surface and calculating the field across an imaginary
L

aperture at the focus, the feed may be matched to the refiector for any raiio.

Rectangular feeds are best suited for linearly polarised systems but for cual
or circularly polarised systems the circular waveguide or conical horn is more use-
ful. This is due mainly to the symmetry inherent in a circular aperture. The radi-
ation from a circular waveguide can be calculated exactly, and thus it is possible
to find the theoretical performance of an open ended cylindrical waveguide [Col-

lin 1985]. While operating in the TE;; mode, and for waveguide diameters



between 0.8\; and 1.12\; the cross-polarised field in the $=45° plane remazins

below 30 dB [Collin 1985].

2.3 Multimode Horn Feeds

In the same way that the electric and magnetic dipoles can be combined to
yielc : linearily polarised radiated field, the modes inside a waveguide can be
combinud to improve the cross-polarisation performance of a waveguide or horn
feed. Any combination of modes will satisfy the boundary conditions and, since
the modal vestors are a complete orthogonal set of solutions to the wave equa-
tion, virtually any arbitrary aperture field may be synthesised by combining

enough modes in the proper amplitude and phase.

Potter was the first to use a multimode horn to obtain a prescribed aperture
field. In the Potter horn [1963], the TM {; mose was added in the proper phase
with the TE {; mode to obtain a linear aperture field with equal £ and # - planc
radiation patterns. As was described in the introduction, these conditions are

neccessary if the antenna system is to have a low cross-polarised component.

In the Potter horn the mode conversion was accomplished by a rapid chaags
in the radius of a cylindrical waveguide, as is shown in Fig. 2.2. After a phase
matching section of cylindrical waveguide, the horn then flares toward the aper-
ture. The phase matching section is neccessary so that the two modes ada wit
the correct phase at the aperture. In the paper by Potter [1963], the cross-
polarised component in the worst case (/ -plane) was -27 dB. No bandwidth
information is given for this horn, and the above quoted cross-polarisation perios-
mance is at the design frequency. An additional ad>vantage of this horn is that

the phase centers in the two principle planes are at the same point.

Turrin [1969] presented another, more simple design which facilitates mode

conversion by making an abrupt junction at the throat area of a coaical horn, as
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shown in Fig. 2.3. In this case the length of the hood (!) is chosen so the spheri-
cal modes generated at the throat add with the correct phase at the aperture. In
this case the optimum ratio of TM y; to TE {; content is calculated to cancel the
electric field at the wall of the the horn, a different condition than that used by
Potter. This dual-mode horn developed by Turrin therefore does not have equal

aperture field distributions in the £ and H planes.

Another simple method of obtaining a dual mode feed is to excite the 74 1y
mode with an internal bifurcation junction as was done by Collin and Schilling
[Collin 1985]. This design depends on the distance between the aperture and the
internal waveguide to obtain the correct addition of the two modes at the aper-

ture. This horn is illustrated in Fig. 2.4.

All of the above structures are inherently narrow-band structures since the
aperture field is dependent on the electrical length of the waveguide between the
mode converter and the aperture. There have been several attempts at increasing
the bandwidth of multi-mode feeds by utilizing dielectric discontinuities in the

mode-conversion structures.

One method of broad-banding the mode converter in a cylindrical waveguide
was developed by Agarwal and Nagelberg [1970]. This device used a dielectric
ring made of polystyrene at the discontinuity as shown in Fig. 25. The mode
transducer was tested over a 26% bandwidth, however, no estimate was given as

to how much of that bandwidth is useful.

Another simple and effective dual mode horn was deveioped by Satch [1572],
shown in Fig. 2.6. The Satch horn uses a dielectric ring mountcd at a stategic
place on the walls of a conical horn. A bandwidih of 10% is claimed and this
extended bandwidth is attributed to the use of a dielectric ring instead of a metal-

lic discontinuity.
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A recent extension of the Satoh horn has been developed by Wong involving
concentric dielectric rings placed in a conical horn [Wong and Brandt, 1979].
Wong claims that this double ringed horn Las a bandwidth greater than that of

the Satoh horn as well as improved matching,.

The major disadvantage of multimode feeds is that the relative phase of the
constituent modes at the aperture is Lighly frequency dependent and this drasti-
cally degrades the performance of these horns in wide bandwidth applications.
This disadvantage is partially overcome by using diclectric inserts in the feed to

extend the bandwidth.

2.4 Hybrid Mode Feeds

Although improved antenna efficiency and reduced spillover were originally
the impetus for developing hybrid wrode feeds, the inkerent symmetry and polari-
sation purity of the aperture field surpass that obtainable for stancard horns or
waveguides. There is also the added benefit of a much greater bandwidih with

hybrid mode feeds than with dual mode feeds.

There are several structures which have been found to support hybrid modes.
These siructures include the dielectric-loaded circular waveguide [Clarricoats and
Taylor 1964], the corrugated waveguide or horn [Clarricoats and Olver 1984], the
dielguide [Clarricoats and Salema 1973], the dielectric filled conical hora [Lies
1986], and the large diameter waveguide with impedance walls [Dragone 1981].
This thesis presents yet another structure which could support Lybrid moces

[Stanier and Hamid 1986].

The basic reason that hybrid mode waveguides are useful as feeds for para-
bolic reflecting antennas is that the fundamental hybrid mode , the balanced £y
mode, has a nearly linear aperture distribution. Fig. 2.7 displays the lines of elec-

tric field of the HE ;; mode. This linear field distribution is very similar to that of
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Fig. 2.7
Aperture field distribution of the

balanced fundamental hybrid mode
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the dual-n~de feeds described in the last section. The major advantage of a
hybrid mode horn is that the TE {; and the TM ;; components of the fundamental
mode satisfy the same boundary conditions and thus travel together in the
waveguide. This means that the two components wiil be coupled together every-
where in the waveguide regardless of the frequency or length of the hern. The

analysis of hybrid modes in conical structures is presented in sections 4.3 and 4.4.

One of the earliest investigations of hybrid-mode devices was by Clarricoats
and Taylor [1964]. It was found that complex hybrid-modes exist in dielectric
lcaded circular waveguides. In that case, the loading was a rod of dieicctric in the

center of the waveguide.

In the early 1960’s, the search for high performance horn feeds spawned
what is now known as the corrugated horn. The scalar horn, as it was then
termed, was first investigated by Kay [1964] and Simmons and Kay [1966]. At
about the same time others were investigating similar structures [Lawrie and
Peters 1966],[Minnett and Thomas 1966]. In the paper by Minnett and Thomas
[1966], some theory is presented which clearly outlines the concept of TE and
TM components combining into a single hybrid mode. The fundamental hybrid
mode is then presented as forming a linearly pclarised aperture field with equal E
and H plane radiation patterns. In a companion paper by Rumsey [1966] it is
further stressed that the reason for the coupling of the two component miodes is
that both the TE and TM modes are forced to satisfy the same boundary condi-

tions at the wall. Fig. 2.8 shows the basic structure of a corrugated horn.

It was claimed that corrugated horns performed well over nearly an octave
[Simmons and Kay 1966],[Lawrie and Peters 1966], which was signifigantly better
than the multi-mode horn.

In 1969, Clarricoats analysed the corrugated horn using a spherical modal

expansion [Clarricoats 1969]. In that paper, the hybridicity factor was introduced
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as a measure of the relative strengths of the TE and T/ components of an HE
mode. Clarricoats also showed good agreement with the experimental results
obtained by Kay. The many subsequent :»apers written by Clarricoats and his col-

legues are presented in an excellent book by Clarricoats and Olver [1934].

Experimental results were published by Jeuken [1969] and Jeuken and Lan:-
brechtse [1969] which showed that the bandwidth of a corrugated conical hora
was about 1:1.3 ; considerably less than what others had claimed. It is presently

considered that the useful bandwidth of these devices ic about 1:1.25 [Love 1986].

In an attempt to simplify the analysis of corrugated horns, Narasimhan [1970]
used a Bessel function approximation for the 0 dependence of the fields inside a
conical horn. This approximation , known as McDonald’s formula, is extremely
useful since the more complicated Associated Legendre functions no longer hava
to be calculated. Although this approximation is strictly valid only for small flarc
angles, Narasimhan [1970] shows that it is accurate up to a flare semi-angle of 309,
A more complete analysis of this approximation is given by Narasimban and Rao
[1969].

The analysis which has been done on dielectric ioaded conical waveguide to
date has treated the problem from several different viewpoints. The investigators
include Felson [1959], Bahar [1967], Hamid et al. [969], Dragone [1980], Clarricoats
and Salema [1973], Lier [1986] and Hadidi [1985].

Felson [1959] analysed conical and wedge shaped structures with suriace
impedances and showed that by linearily varying the surface impedance the boun-

dary value problem can be simplified.

Dragone [1980,1981] has presented the analysis of hybrid modes in large
diameter conical waveguide with a finite surface impedance on the wall. This
analysis is applicable only to waveguides with a smali flare-angle only since the

waveguide is treated as a cylindrical waveguide with a slowly varying cross-section.
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Of particular interest in these papers is the labelling of the two types of hybrid
modes which are present in these struciures. The method presented by Dragone
depends on the fields approaching zero in the limit as 6~ 04; where 6y is the hali-
flare angle of the horn. This precludes the EH modes presented in the analysis
by Clarricoats [1969] since these modes have maximums at the walls of the horn.
Dragone calls the standard EH modes *surface waves’. This thesis has adopted
the terminology proposed by Clarricoats since this corresponds to the corrugated

waveguide case.

Clarricoats and Salema [1973a,b] have analysed the solid dielectric conical
waveguide called the *dielguide’. This structure has been found to support hybrid

modes similar to those in corrugated conical waveguide.

Another dielectric structure found to support spherical hybrid modes is the
‘dual cone’ structure investigated by Lier [1986]. This structure is similar to the
dielguide except that on the outside wall of the dielectric cone a layer of lower
permittivity, constant- thickness dielectric is placed between the outer wall of the
central dielectric and the inner metal surface of the conical horn. The theory
presented is based on circular waveguide analysis and tested experimentally using
a narrow flare-angle horn. By assuming a long narrow horn, the dependance of
the eigenvalue on the radial distance is neglected and a constant thickness gap is

sufficient to support hybrid modes. This design is shown in Fig. 2.9.

Recently, the analysis of a conical horn with an arbitrary wall impedance has
been published [Knop, Cheng and Ostertag 1986]. The analysis is restricted to
both the area of the cone well away from the apex and to narrow flare-angles.
Under these conditions, the horn almost becomes an oversized circular waveguide

and not a conical horn.

Another recent investigation of a dielectric-lined conical horn by Rao is a

theoretical analysis of the dual-mode horn developed by Satoh [Rao 1986],{Satoh
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1972]. The dielectric region is assumed to propagate hybrid modes and mode
matching is applied at both ends of this region to determine the relative ampli-
tudes of the TE {; and TM ;; modes at the aperture. A major part of the analysis
is to solve the boundary value problem for a dielectric lined conical waveguide by
assuming a field in both the dielectric and the air regions and applying the boun-
dary conditions at the wall and the air-dielectric interface. Unfortunately, the
analysis neglects the radial dependance of the fields by using the far-field approxi-
mation. A second simplification is to assume that only the fundamental hybrid
mode is propagating in the waveguide.

It can be seen from the above discussion that most of the work done on diec-
tric lined conical horns has used the small flare angle approximation. This thesis
avoids this approximation in an attempt to clarify the conditions neccessary for

the propagation of hybrid modes in conical horns.
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Chapter 3 : THE BOUNDARY VALUE PROBLEM FOR CYLINDRICAL STRUCTURES

3.1 Surface Impedance Beundary Conditions

The idea of using surface impedance boundary conditions was first credited
to Leontovich. The boundary conditicn, for a surface with a finite surface

impedance is given by [Senicr 1962,Leontovich 1948] ;
E—(WE)A =nm, (1 xH) (3.1.1)

where 7 is the unit outward normal at the surface and 7, the impedance of free
space. Eq. (3.1.1) is valid for any surface with a radius of curvature which is large
compared to the wavelength [Senior 1962].

For a circular cylindrical waveguide with radius @ the boundary conditions

on the inner wall are given in circular cylindrical coordinates by
E,=—m, gty , r=a (3.12)
E¢= TMe Mo I'lyz s F=a (313)

where 7, and my are the relative wall impedances in the Z and ¢ directions,
. B0y . T
respectively, and np=(-—)" is the intrinsic impedance of free space.
€0
Expanding Eq. (3.1.1) in spherical coordinates and assuming a ccnical

geometry yields;
ER=—T]R Mo Hd? and E¢=T]¢ Mo HR ait 0=01 (314)

These expressions for the boundary conditions have been used in the analysis of

both cylindrical and the conical waveguides in this thesis.

The concept of using impedance surfaces to simplify boundary value prob-

lems is not strictly valid as described by Waldron [1969]. In general, a surface
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impedance is used to model a lossy dielectric, a dielectric coating or a corrugated
surface. The impedance boundary conditions are used to simplify the geometry of
the surface so it is more easily described within a specific coordinate system. For
instance, a corrugated surface cannot be conveniently included in a boundary
value problem since the surface cannot fit into any coordinate system. By model-
ling the corrugated surface as an impedance surface, the problem can then be
solved. The objection raised by Waldron [1969] is that without solving the original
boundary value prdblem exactly, we can only guess at the equivalent surface
impedance of a corrugated surface in any geometrical shape. So, in order to apply
the impedance boundary conditions we must first solve the exact boundary value
problem and, once solved, we no longer need to use the impedance boundary con-

ditions since we have solved the problem exactly.

Although the validity of the solution of boundary-value problems using sur-
face impedance concepts hias been criticized, such solutions have been successfully
used for circular cylindrical waveguides by several authors [Mohsen and Hamid
1970],[Dragone 1981],[Lier 1986]. The use of this concept greatly simplifies the
solution and allows the fields in the waveguide to be expressed in a simple form

for easy comparison with other types of circular waveguides.

Previous investigators, using perturbation techniques, have found that hybrid
modes can propagate in cylindrical waveguides [Papadopoulos 1954],[Karbowial
1955]. However, their analysis is only valid for wall impedances whicli are nearly
zero. The present analysis extends the concept to arbitrary wall impedances. Dra-
gone [1981] has analysed circular cylindrical waveguide and established the exis-
tance of hybrid modes for non-zero wall impedances. The same conclusion is
reached in this paper using a more basic approach and the concept is extended to
several types of cylindrical structures including smooth-walled, corrugated, and

impedance-walled waveguides.
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3.2 Solution of the Genera! Beundary Value Problem
Using the cylindrical coordinates (r, ¢, z) and assuming an e /e time
depzndence, the fields in a circular cylindrical waveguide can be written as a com-

bination of TE and TM components in the form [Harrington 1961]

E, = (k2=k}2) ¢* (3.2.1)
Egy=] f:-][%e-]ﬂ W a—;}’-;-] (3.2.2)
E, = jk, a;,r i w:’"o a(;;:;"] (3.23)

H, = (k2~k2) y™ (3.2.4)
Y LY L e 629
H, = jk, [a;": }_j[w:o][aaq:; ] (3.2.6)

where {¢ and ™ are the scalar electric and magnetic potentials, g and €p are
the permeability and permittivity of free space respectively, v is the anguler fre-
quency, k, the propagation constant in the Z direction and & the free space

wavenumber. The coordinate system is shown in Fig. 3.1.

Substituting the field components into Egs. (3.1.2) and (3.1.3) leads to

) aYst 1k, |{aw)y
(kz“kzz)‘.f:"ﬂz Mo Jweo[ ar }ﬂ[-;—][—(,)—(;—] , r=a (3.2.9)
| k M RV e W
2. 2 - 1 %2 n| . Y -
(k =k, %6 Mo LJ[ ; ]{ 2 ] Jwhg ar ]-, r=a (3.2.10)
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where
Ye=a,cos (nd) J,[(k2~k2)%re/** (32.11)
Ym=b_sin (1$) J, [(k2—k2)*r |/ (32.12)

and J, (x) is the Eessel function of the first kind of order n and argument x.

Substituting Egs. (3.2.11) and (3.2.12) into (3.2.9) and (3.2.10) and simplifying

the result yields the transceadental equation
[unzp Jn (unp) +‘j nl ka uilp Jn’(u”p )][un% Jll (unp) + -;‘l; ka unp Jn’(urzp )]

M, )
+-:‘-]: n? (k%a? - u,,%,) J,,z(u,,p) =0 (3.2.13)

where the prime denotes differentiation with respect to the argument. The order

of the zeros of this transcendental equation are given by the subscript p and

u,, = k%= kH*a. (3.2.14)

When my = 1, = m corresponding to an isotropic wall impedance condition,

Eq. (3.2.13) leads to
[uniz Jn (unp) + ] n ka Unp Jn’(unp )][uni Jn (unp) + ';l]_ ka u Jn’(uup)]

+n? (k2% - ul2) J Hu,y) =0 (32.15)

which is identical to Eq. 1 in a paper by Mohsen and Hamid [1970].
By setting mgy = m, = 0, the case for perfectly conducting walls, Eq. (3.2.13)

becomes

[1,27,, (,,)] Likatt,J gy (5] = 0 (32.16)
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therefore;
Jo () =0 or J,(u,)=0 (32.17)

which are the characteristic equations for the TE and TM modes in a circular

cylindrical waveguide with a perfectly conducting wall.

For large ka and imperfectly conducting wazlls, Eq. (3.2.13) reduces to
nJ,(u,,) £ u, J,;(u,,p) =0 (32.18)

provided neither my nor m, is zero. Egs. (3.2.18) are the characteristic equations
for balanced HE and EH modes in a circular cylindrical waveguide [Clarricoats

and Olver 1584].

Form, = ® and nyg = 0, which corresponds to a corrugated waveguide with

one-quarter wavelength slots, Substitution into Eq. (3.2.13) yields;

)y=0 (32.19)

k .
nt, (unp) x T Ynp Jn (unp
z

which are the characteristic equations for the unbalanced hybrid modes in a circu-

lar cylindriczt waveguide.

3.3 RESULTS

Equation (3.2.13) shows explicitly how the eigenvalues (u,,p) of the propagat-
ing modes are dependent on the mode number, ka, frequeacy and wall
impedance. Furthermore, it is evident that for imaginary wall impedances with k
greater than k, the resulting eigenvalues are real. However, for complex or real
vafues of wall impedance the resulting eigenvalues and propagation constant &,
are complex, signifying attenuation of a Z directed wave. This is expected since a
real surface impedance corresponds to lossy walls which would obviously attenu-

ate the waves. The ecigenvalues are determined numerically using the ZXSSQ
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minimization routine (IMSL [1984]). The sum of the squares of the real and ima-
ginary parts of the transcendental equation is minimized using a finite difference
Levenberg-Marquardt algorithm and the resulting eigenvalues are accurate up to

at least 5 decimal points.

In the paper by Mohsen and Hamid [1970] only real vaiues of the relative sur-
face impedance are considered, leading to complex eigenvalues which are
incorrect. Corrections have been made to table 1 in Mohsen and Hamid [1970]
and are presented in table 3.1 for ka = 10 and m, = my = 1. In tables 3.2 and 3.3

values of u,, are also shown fo mg =m, =1 and ka =5 and 20, respectively.

np
Table 3.4 iists the eigenvalues of the characteristic equation for a cylindrical
waveguide with a lossless wall impedance for ka=10, m, = j2.5 and m4 = j0.4.
As expected from the earlier analysis, all of the eigenvalues are real in this case.
Although these eigenvalues are for hybrid modes, these modes are not necces-

sarily balanced hybrid modes, and are useful in designing feeds for center-fed par-

abolic reflector antennas.

Figure 3.2 diplays the graph of the eigenvalue of the fundamental mode
(HE {1) vs. ka based on Eq. (3.2.13) for various values of wall impedance. In all of
these cases the wall impedances in the two tangential directions are related by the
expression Mg m, = —1. It was found that if n4 = j0.41583 and m, = j2.40483
then u; = 2.40483 for all values of ka above cutoff (ka = 1.3569), which is the
smallest allowable value of ka for the TE ;; mode to propagate in a perfectly con-
ducting waveguide). This eigenvalue signifies the balanced HE ;; mode and shows
that balanced hybrid conditions can be established in cylindrical waveguides with

a small ka without using corrugations.
Figure 3.3 presents the asymptotic behavior of the eigenvalue of the HE

mode as ka increases for real wall impedance, evaluated using Eq. (3.2.15). As

can be seen from the figure, the real part of the eigenvalue approaches 2.4048
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7

w

0 1 2 3 4 5
1} 3765-70389 | 2379-j0243 | 3805-j0405 | 5.122-j0.573 | 6.393- j 0.765 | 7.637 - j 1.004
2 | 6816-j0.792 | 5009-j0525 | 6.169 - jO651 | 8239-j1.152 | 8301-j0862 | 9273-j0917
3 | 9517-j1201 | 5431-j0.606 | 9.565-j1343 |10.182-j1.040 | 9365-j1475 [12.428 - j 0.732
4 112067 -j1076 | 8047-j0951 |11.823-j0.955 {13.339-j1.192 |11.254 - j 0.891 [12.968 - j 1.447
5 |15.018-j0.790 | 8316 -j1.087 |12.058 - j 1253 |16.332 - j 0.873 |14.425-j 0.645 |15.904 - j 1.078
6 |18.110- j0.618 | 10.635- j 1.146 |14.933- j 0.925 19457 - j 0.674 | 14.624 - j 1.131 [19.057 - j 0.798
7 121.233-j0.510 |10.793 - j 1.284 |18.016 - j 0.704 |22.608 - j 0550 |17.640 - j 0.516 |22255 - j 0.629
8 |24.365-j0.436 |13.446- j 0.858 |21.145- j 0.568 | 13.111- j 0.774 {20868 - j 0.650 |25.451 - j 0.520
Table 3.1
Uy forka = 10and ng =1, = 1.0.
n
p
0 1 2 3 4 5

1 | 3487-j0.731 | 2277-j0490 | 3573-j0.895 | 6.494-j0.631 | 5458 -j1541 | 8.797 - j 0399
2 5930-j0943 | 4508 - 0851 | 5450 -j0.807 | 9.788 - j 0.424 | 7.637-j0.490 | 9263 - j 1.139
3 | 8740-j0.635 [ 4.798-j1.044 | 8472-j0533 | 9907 -j0.783 | 8.150-j 1.155 | 12348 - 30303
4 111.820-j0.449 | 7.154-j0.710 | 8.605-j0.831 [13.027 - j 0327 {11.183-j0.743 |12.439 - j0.711
5 114944 - 70347 | 7278-j0.891 | 11.670 - j 0.551 |13.057 - j 0.524 |14.380-j0282 | 15732 - j 0.485
6 18078 -j0284 10237 - j0.586 |14.816 - j 0.406 |16.241- j 0391 | 14.408 - j 0.503 | 18.994 - j 0367
7 |21.216 - j 0.240 [13.347 - j 0.425 |17.970 - j 0322 |19.418 - j 0312 |17.631- j 0378 |22.225 - j 0.296
8 |24355-j0208 |16.482-j0.333 121.123 - j 0267 [22.588 - j 0.260 |20.835 - j 0.303 |28.629 - j 0214

Table 3.2

Uy, forka = Sandng =1, = 1.0.
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Upp forka = 10 andm, = j 25and g = j 04.

n
D
0 1 2 3 4 5
1 3817-j0.193 | 2399 -j0.121 | 3.827 - j 0.194 5.135-j0263 | 6388 -j0.331 | 7.608 - j 0.400
2 | 6985-j0363 | 5505-j0283 | 6337-j0323 7.526-j0385 | 8.685-j0.447 | 9.821 - j 0508
3 [10.120- j 0554 | 8366 - j 0.441 | 7.004 - j 0.367 10.955-j0594 | 9.770 - j 0535 {11.092 - j 0.624
4 113226-j0.786 | 8.625-j0.461 |10.150 - j 0.561 |11.607 - j0.666 |12.188 - j 0.670 |14.397 - j 0.909
5 16262 -j1.093 {11.738 - j 0.672 | 12.883 - j 0.741 | 14.181 - j 0836 |13.018 - j 0.780 |16.636 - j 1.024
6 |19.049 - j 1.445 | 14.635- j 0.903 |13.273 - j 0.800 | 17.751 - j1.367 |16.178 - j 1.127 | 17.548 - j 1.357
7 [21615-j1.409 |14.820- ;0943 {15972 - j1.023 [19.978 - j 1356 |18.428 - j 1231 |19.542 - j 1265
8 [24.498-j1.118 |17.600-j 1237 |16.332 - j 1.133 |20.328 - j 1660 [19.026 - j 1.618 {22375 - j 1.066
Table 3.3
Un, forka =20 and my = m, = 1.0.
n
p
0 1 2 3 4 5
1 3.993 2.404 3815 5092 6.295 7.444
2 6.756 5067 6344 7.586 8814 | 10.040
3 7.305 8214 7.079 | 10927 9751 | 10.996
4 9.806 | 12.167 9591 | 11801 | 12238 | 13536
5 | 12857 | 14352 | 12.710 | 14092 | 15448 | 16.784
6 | 13838 | 15424 | 13676 | 15.126 | 18595 | 17.861
7 | 15913 | 17.418 | 15.799 | 18.419 | 19850 | 19959
8 | 20308 | 20489 | 18.882 | 20314 | 21.720 | 21.246
9 |22.047 121893 | 20.197 | 21.684 | 23.136 | 24.556
Table 3.4
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Fig. 3.2 : u,, vs. ka for various values of 7,
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which is the eigenvalue of the balanced HE |; mode. At the same time, the ima-
ginary part of the eigenvalue approaches zero. This result is supported in a paper
by Dragone [1981] which predicts the propagation of hybrid modes for waveguides
with impedance walls and only for large ka. This result is also verified by Eq.
(3.2.18) which shows that for large values of ka the balanced hybrid mode pro-
pagates for any non-zero value of wall impedance. The one exception to this is if
both tangential impedances are equal and approach infinity. This case is shown in
Fig. 34 where it can be seen that the eigenvalue of the fundamental mode
approaches the TE ; eigenvalue for large m and for several values of ka. Fig. 3.5
displays the corresponding behavior of the propagation constant for the same

values of ka as in Fig. 3.4 as a function of the isotropic wall impedance 7.
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Fig. 3.5 : Real and Imaginary parts of k vs. 7
for n = p =1L
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Chapter 4 : THE BOUNDARY VALUE PROBLEM FOR CONICAL STRUCTURES

One method of investigating the propagation of electromagnetic energy in
conical horns is to solve the corresponding problem in a conical waveguide. Since
a conical waveguide can be simply described by a spherical coordinate system, it is
possible to solve the wave equation by a separation of variables technique. The
solution becomes a summation of spherical modes whose eigenvalues depend on

the boundary conditions at the wall.

For a conical waveguide with perfectly conducting walls, the tangential E -
field at the walls must be zero. This produces TE and TM modes analogous to
the cylindrical waveguide case [Schorr and Beck 1950]. An azimuthally corrugated
conical waveguide can support hybrid modes since the tangential E -field in the
radial direction at the boundary no longer has to vanish, while the azimuthal com-

ponents of the electric and magnetic fields vanish simultaneously.

A third situation arises when a dielectric is placed inside the horn. One such
structure consists of a solid dislectric insert held away from the wall by ancther
shell of dielectric of a lower permittivity. [Lier 1986]. This structure will support

hybrid modes as long as the innermost dielectric cone is of a higher permittivity.

This thesis presents yet another conical structure which can support hybrid
modes. This new structure consists of a dielectric lining on the walls of a conical
horn. It is found that in order to support hybrid modes it is necessary to taper

the surface impedance of the dielectric-air interface.

If the dielectric is not tapered, the transverse eigenvalue method cannot be
applied and it is necessary to resort to the radial eigenvalue method [Hadidi 1985].
The transverse method fails even for a tapered dielectric insert since the eigen-
values become a function of the radial distance except for a special case hich

will be discussed later.
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4.1 Solution of the Wave Equation

The Helmholtz wave equation in spherical coordinates is given by,

2dd> 1 d ,. du 1 . d% |,
sin@ +k“4=0 (4.11
R2 dR( ) RZ%sins de( dO) R%in%8 d $? ¥=0 (1)
where the coordinate system used is shown in Fig. 4.1.
Letting
V=G (R) H (8) P (). (4.12)

Now, dividing Eq. (4.1.1) by (4.1.2) and multplying through by R7%sin%0 we obtain;

. 2 .
sin‘6 d ,,,dG.,sin@ d dH ld(b 2522
————(R + né +k R =0 (4.13
T AT A B TR T, S (4.13)
1 4% 2
By setting E—-d—d:-z-=—m and substituting into Eq. (4.1.3) and dividing by sin“0
we obtain;
1 d |,.dG 1 d | . .dH m 252
——1IR sin@—— | ———— +k “R“=0. 414
G dR dR| Hsin9 do [ d® | sin%g ( )

Now the R and ¢ dependence has been separated. Choosing

1 d dH |__m?
ng——1{- =— -1 4.15
H'sin d o [ do] snt "D (4.15)

and substituting this into Eq. (4.1.4) we obtain;

1 d

G dR

RZE_G_

—a(n+1)+k 2R2=,
dR

Eq. (4.1.1) is now separated into three equations, each dependent on a single

variable. The three equations are;
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Fig. 4.7 :

- Spherical Coordinate System
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d |p2dG | [ ov2 \_
IR R IR +l(kR) n(n +1))—0 (4.1.6a)
1 d}. .dH m?
6 +1)— =0 1.
Sin0 40 [sm del n{n+1) sinze] (4.1.6b)
2
47D | m2p=0. (41.6¢)
d ¢*

The solution to equation (4.1.6¢) is;

QJ =q 1e (_'jm d’)+a ze (jmd’)’

while the solution to Eq. (4.1.6b) is the associated Legendre function which can be

written as;

H(8) = P7 (cos (8)).

An alternative method for solving Eq. (4.1.6b) is to make an approximation
for small 6. By making the approximation sin6=0 Eq. (4.1.6b) is reduced to the

Bessel equation [Narasimhan 1972]. The asymptotic solution is given as ;

H(0) = J,(490)

%

P
where g =(s {s +1))* and s =—5+(25+(~—=)?) . In this case, p,, is dependent
&g

on the type of waveguide being investigated but in general it can be found frem
the roots of a function involving the Bessel function and/or its derivatives. This
approximation is extremely useful for numerical work or for applying analytic
solutions to practical problems, due mainly to the difficulties involved in calculat-
ing the associated Legendre function. Although the approximation is only valid
for small values of 0 it has been found to be useful even for wide flare angles

[Narasimhan 1973].
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The solution to Eq. (4.1.6a) is the spherical Hankel function. In most cases
involving conical horns the Hankel function of the second kind is used since this
represents an outward travelling wave if the e/®' time convention is used.
Although the Hankel function becomes infinite at R =0, this is not a problem in
practical horn design for two reasons. Firstly, a horn is usually fed by a cylindri-
cal waveguide at the apex end. In this case, the horn never does reach a point
where R =0. Secondly, the region at the apex of conical waveguide is very highly
attenuating and no i)ower ever reaches the apex (Schorr and Beck 1950). Thus,

the solutions to Eq. (4.1.6a) can be written as;
G =H, (kR).

This spherical Hankel function can be written in terms of the cylindrical Hankel

function as;

hn (kR)= Hn+1.‘z(kR)'

L
2kR
Thus the complete solution to the wave equation in a conical region may be

written as;
$=P™ (cos 8)h, (kR)e/™® (exact) (4.17)
=7, (q0)h, (kR )e’™ ¢ (approximate). (4.1.8)
Scalar electric and magnetic potentials can be written as;
Ap=Y , Fp={

The vector potentials can be written as;
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However, the scalar potentials are not solutions of the scalar Helmholtz

equation since V 2AR # (V 2A)z. The solution to the scalar Helmholtz equation

Ag R
is, in fact; —R— and —R— The Vecter potentials can therefore be written as;

A=Ry%8, , F=Ry/ ap
The fields in the horn can now be found from the following expressions;

1

E=-V XR{/ +=V XV XR{§* (4.19)
y
H =V xR¢“+—1;V XV xRS (4.1.10)
V4

In the last equation the §’s are all multiplied by R so we can use the spheri-

cal Hankel function defined by Schelkunoff[1943].

H, (kR)Y=kRh, (kR).

Now, from Egs. (4.1.9/10) we can write out the fields explicitly as;

ER—-;- f;;% (4.111)
Eo= R;iilﬁ fﬁﬁ +_5,11? :;31; (4112)
E¢=% d:g +§‘Rslir16 :1::}; (4.1.13)

Hp =-§; ;‘j—:—2+k2 Fp (4.1.14)

1 dAx 1 4T (4.1.15)

H =
0" Rsin® dd sR dRd©



—1 dAg 1 d%Fg
H, =— + 4.1.16
® R dO ;Rsind dRdd ( )

where;
Ag or Fp = P {cos0) H, (kR) e/™®  (exact)

Ap or Fp =7J,(q9) H,(kR) e/™®  (approximute).
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4.2 A Perfectly Conducting Wall

Up to this point in the analysis there have becen no boundary conditions
applied to these solutions since they are valid for any region which can be
described in the spherical coordinate system. In the case of a conical waveguide

with a perfectly conducting wall the boundary conditions at the wall are;
E =0 and Ex =0 (4.2.1)
Both TE and TM modes can exist in conical waveguide so we may write;
Fp=0,TM modes

Ap=0,TE modes. (4.2.2)

Applying the boundary conditions at the wall we obtain, for the exact formu-

lation;

P™(cos 6;) =0 for TM modes

-—i—Pﬁ‘(cos 6) =0 for TE modes. (4.2.3)
de 0=01

The solution of these eigenfunctions will supply values for v, the order of the
Legendre function. Likewise, the boundary conditions may be applied to the

approximate solution for the fields to yield;

J.(g8)) =0 for TM modes

[-‘LJ,,i (g 0)] =0 for TE modes. (4.2.4)

de =0,

Although there are graphs in a report by Kay [1962], there is no complete set of

tables available for the eigenvalues of Eq. (4.2.3), which is one of the reasons why
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the approximate eigenfunctions given in Eq. (4.2.4) are very useful. In practice
this approximate solution is much easier to work with and, although it is valid
only for small flare angles, it has been shown to provide acceptable results for
flare angles up to 60 degrees [Narisimhan 1973]. The field expressions for a coni-

cal waveguide are now completely known from Egs. (4.1.11)-(4.1.16).
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4.3 Corrugated Walls

As has been described in section 4.1, surface impedances have been used to
model corrugated walls in several types of waveguides including circular cylindri-
cal [Clarricoats and Olver 1984] and conical [Clarricoats and Saha 1971]
waveguides. The analysis of the corrugated conical waveguide leads directly to
spherical hybrid modes whichk are analogous to the hybrid modes develeped in

cylindrical waveguide.

Corrugated conical waveguides have been analyzed in the literature using
two models. For horns with a narrow flare angle (less than approximately 30
degrees) the waveguide can be treated as a circular cylindrical waveguide with a
varying diameter [Dragone 1980]. Horns with half-flare angles greater than 30
degrees must be analysed using spherical coordinates [Clarricoats and Olver 1984].

This section is concerned with the analysis using a spherical coordinate system.
The boundary conditions for a conical waveguide with corrugations in the ¢
direction are;
"""—=Zl =0 and —=Y1 at 6 = 61 . (431)
Hpy Ep
In the above equation Z { is equal to zero since the E -field in the ¢ direction
is shorted by the continuous ridge of metal in the ¢ direction. In the radial (R)
direction the waveguide wall is discontinuous and the impedance is dependent on
the depth, shape and width of the corrugations. Setting ¥'; = O gives rise to the

spherical hybrid modes in corrugated waveguide. Fig. 4.2 shows the geometry of a

corrugated horn.

Assuming an e/®! time dependence, the radial fields of a spherical mode in a

conical waveguide can be written as;

Eg = ‘—“l_g;'gll HZ(kR) P (cos8) cos md (432)
J
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Fig. 4.2
Geometry of the

Corrugated Horn
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Y Hp = A—Ajf—;%-zﬂl H?2(kR) P™(cosb) sin m & (4.33)

where P (cos) is the associated Legendre function of order m and degree
L

1?3 (kR) is the spherical Hankel function of the second kind and order v ;

Y o is the admittance of free space;

A is the hybrid factor possessing a characteristic frequency dependent value

for each mode,
and the coordinate systen: used is shown in Fig. 4.1.

The transverse fields can be obtained from Egs. (4.3.2) and (4.3.3) as;

P (cosb)
RE y=—AH (kR) ppm™ (cosB)+m A-————e—-—- cos m (4.3.4)
sin
. PT(cosB) | .
REd,-AH 2 (kR) AP™ (cose)+m BT sin m ¢ (4.3.5)
g P7(cos8) | .
Y oRH =—AH ; (kR) AﬁPm (COSG)-*—m-—;;;é——"‘ sin n: (4.2.6)
—y ’ —— P (cosB)
Y oRH =—AH ; (kR)|P} (cos)+m AB_—S— cos m (4.37)
sin
. JHYE®&R)
where B(R)==———;—2-E]-<—T and the prime indicates differentiation with respect to
H2 kR ‘

the arguement.
Up to this point in the analysis these equations are not dependent on which
type of horn is being considered.

The tangential fields at the boundary of the waveguide may be written in

terms of the boundary conditions as;
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Hd) _ jweOR
E, Cp(v+1)

singL—+ 27
P

Ey _ JopoR
H, v(v+l)

By matching the boundary conditions at 6=0; we have;

pm(6)=—2B

Asin®,
and,
P @) = Tv(pn)="20E
where;
dP(,"(cosl)
d
py (8 = m at =0,
and;

- —jY
7= J 1710.
kR

The average slot admittance, Y 4, is given to a good approximation by;

1
t kd + ——————
(CO 2kR Siﬂel)

Mo

Yy=-j

(438)

(439)

(4.3.10)

(4.3.11)

(43.12)

(43.13)

where d is the depth of the slot and there are at least 3 slots per wavelength.

Multiplying Eqgs. (4.3.8) and (4.3.9) yields;

— 232
PrEpr @)-Fyv+n) = ZE
sIn“04

(4.3.14)
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Subtracting Eq. (4.3.8) from (4.3.9) yields;

Y v(v+1)sin6
%= ( - : (43.15)

Eq. (4.3.14) is the modal equation for v and Eq. (4.3.15) gives the hybrid fac-

tor A in terms of the normalized wall admittance, ¥ .

Eq. (4.3.14) is inconsistent with the separation-of-variables assumption made

in section 4.1 unless the normalized admittance, }7, is independent of R. This

inconsistency can be avoided by choosing kd =-121, thus setting ¥ = 0. For m=1

(lowest order mode) we may write equation (4.3.14) as;
f Hcoso)) = =1 (43.16)
for the balanced case, where
f v (cos81) = py'(8) sind; .
Also, from Eqgs. (4.3.15)
A== (4.3.17)
The solutions of the two previous equations corresponding to the negative
sign are termed the HE modes whereas the solutions corresponding to the posi-
tive sign are termed the £ modes. Of the two types of modes, the HZX modes
are more useful since they have a maximum on axis. The balanced HE {; mode is

similar to a linear combination of the TE {1 and the T/{ {; modes found in smooth

conical waveguides since it provides a nearly linearly polarized aperture field.

The Legendre functions used to describe the hybrid-mode fields inside a coa-

ical structure can be approximated by making use of the following relations;

P lcos0)=J(q0) (4.3.18)
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P} (cos0)=qlJ1(g0)]
where;
q = Vv(v+l).

The approximation to the field expressions can then be written as;

=2 = ~J1(q8)
RE y=—AH ; (kR)q|BJ 1 (¢ 8)+A 20 cosd

_ —- . B. 6
RE¢=AHE(I<R)q AJ (g 6)+PJ—;(§—)] sind
_ . J(q6) ]
Y oRH g=—AH % (kR )q|BAJ { (g 6)+ 1(¢9) sind
_ , BAJ (q6) |
Y (RH ,=—AH [ (kR)q Jl(qe)+E——£3—-)- cosd

where A> 0 signifies HE modes and A <0 signifies EH modes.

(4.3.19)

(43.20)

(4321)

(4322)

(4323)

Under balanced conditions, (K=i 1), Egs. (4.3.11) and (4.3.12) can be furincr

simplified. Using the Bessel recurrence relations;

J 1 ()= o(x ) =T 5(x)]

1) o) 475000

and dropping the radial dependence, the field expressions may be written as;

Eg=—q[J o(q08)]cosd
E 4=+q[Jo(g0)}sind

Hg=+q[J (g 8)]cosd

(43.24)

(43.25)

(4.3.26)
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Hy=+q[J2(q6)}sind . (4327)

Using Egs. (4.3.18) and (4.3.19), the characteristic equation (Eq. (4.3.16)) may

be written as;

J(x)

X

(1-v) =Jox) (43.28)

where y < 0 for EH,, modes and v > 0 for HE;, modes. The eigenvalues of

Eq. (4.3.28) are given in table 4.1 for the first five modes.



g g
-

Table 4.1a : HE ;, Mode Eigenvalues

Mode Number

v 1 2 3 4 5
0.00 | 1.8412 | 53314 | 85363 | 11.706 | 14.8636
020 | 19844 | 53702 | 85600 | 11.7232 | 14.8771
0.40 | 2.1092 | 54085 | 85836 | 11.7404 | 14.8906
0.60 | 22192 | 54463 | 8.6072 | 11.7575 | 14.9041
0.80 | 23171 | 5.4835 | 8.6305 | 11.7745 | 149175
1.00 | 2.4048 | 5.5201 | 8.6537 | 11.7915 | 14.9309

Table 4.1b : EH 1, Mode Eigenvalues
Mode Number
Y 1 2 3 4 5
-0.00 1 8412 | 53314 | 85363 | 11.7060 | 14.8636
-0.20 | 1.6741 | 52925 | 85126 | 11.6838 | 14.8501
-0.40 | 1.4739 | 52533 | 8.4887 | 11.6716 | 14.8366
-0.60 | 12235 | 52140 | 8.4649 | 11.6543 | 14.8230
-0.80 | 0.8797 | 51747 | 8.4411 | 11.6371 | 14.8095

-1.00

0.0000 | 5.1357 | 8.4173 | 11.6199 | 14.7960
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4.6 A Dicleciric Lined Wall

The following is an analysis of yet another conical structure which may sup-
port spherical hybsid modes. In this section the walis are handled simply as an
impedance boundary and the conditions on this impedance are then found which
will support hybrid modes. Figure 4.3 displays the general layout of the conical
horn with surface impedances on the wall.

: : b g e

Followinp Clarricoats [196%], we have -I-I—R—=Z 1 and -E; =Y . From dhe field

expressions in 3 cenical region from section 4.1, if we set;

. dPT(cos8y) .. dH ,(R)
"~ d(cosé,) " d(kR)

A

P =D"“,‘ (COS@l) H =I% v(‘(‘?

1‘1

s b mn | €0 i
Y=/ T
Crn | B0

then we may write;

b, R N m_ H
—==f wey———" |sinf— + ~=Yi{=Y1 , 4.4.1)
Ex f"’“"v(vﬂ)[ AFTOW R e
E, R P’ m -’:I’ 1
N N . - N
2 e =i 0 e e S =2 4.4.2
Hp J @k v(v+1) Lp sinfy; H oy 1 ( )

By solving for vy in Eq. (4.4.2) and substituting into Eq. (4.4.1), we can eliminate

{ -
v. Alicwing R to become large so that l% - —j} further simplifics Egs. (4.4.1)
: J

and (4.4.2). After some manipulation we obtain:

2. P20 P 2
sin“G;——(sin“@,~—--¢ )=m 443
i 1P( 1p ) (4.43)
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Fig. 4.5
Cone Represented in

Spherical Coordinate System
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viw+1)?  Jjsin8pp(v+1)(eoZ 1~ o y)
P ‘eguoRw? wegpgR ’

é=PZ IYI (444)

In order for Eq. (4.43) to be consistent with the separation of variables
assumption used to obtain the field expressions, it must be independent of K. In
the analysis of hybrid modes in corrugated waveguide this inconsistency is avoided

by setting ¥ 1=0. In the present analysis it can be avoided by setting & =0.

Setting Eq. (4.4 .4) to zero yiclds;

PoVim€Zy | P v(vil) (4.45)
Z,Y, P’ sinBjwR |’ o

Since both Y, and Z; are complex, ancther relation is reeded in order to solve
for them explicitly. There are, however, certain restrictions placed on Y and £

by Eq. (4.4.5). These restrictions are;

Y €l
Re —'—Lﬁji—f’zl]xo (4.4.6)
Z,Yy
Y |—coZ
mi el P v(piD) (4.4.7)
244 p’ sinfwR

This is as far as the analysis can proceed without further knowledge of the
relationship between the angular and radial surface impedances at the wall of a
dielectric lined conical wavegu.de.

One possible condition on these impedances is that they are equal in both

. , o : 1 .
directions. This condition correspends to setting ¥ {=-——— and Z =nmng. From
~M7Mo

this process we obtain a quadratic of the form:

SR ] Clnse ) RS SO (4.4.8)
P moR Jwsindieg
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the solutions to which are:

¥,

_P v(v+l) 1 | =P2 vi(v+1)? 1 _1| (e

P’ 2R jusindiey | (P2 4nER?  wsin%0 e’

My &

The analysis of the modes now proceeds exactly as in the corrugated
waveguide case. Substituting ¢ =0 into Eq. (4.43) we obtain the eigenfunction

identical to the corrugated waveguide case, ie.;

sir.201%=t m . (4.4.10)

Equation (4.4.10) has been solved in the HE;; case (m=1) for flare semi-
angles ranging between 16° and 90° [Clarricoats 1969]. Table 4.2 tabulates the
impedance taper necessary to support an HE {1 mode in a conical waveguide with
a flare semi- angle of 16%, 45° and 90° over a three decade range of R at 6 GHz.
Figure 4.4 is a plot of the data in Table 42 for practical values of R. Only the

positive roots of Eq. (4.4.8) kave been plotted.
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Table 4.2 : Roots of quadratic equ=rtion (4.4.8)

8,=16° 6,=45° 8,=90°

R N+ M- M+ - M+ M-
01 | j1029 | -j00971 | j3559 | -j02809 | j15.82 | -j.06319
02 | j5151 | -j01941 | j17.841 | -j.0560 | j8.005 | -j.1249
05 | j20.64 | -j04843 | j7252 | -1379 | 34428 | -j.2905

1 | j1039 | -j09619 | j3819 | -j2619 | j2061 | -j4851
2 | js397 | -jasra | 227 | -jaeso | juaso | -jssss

5 | j2465 | -j4056 | j1.417 | -j7057 | j1.170 | -j.8547
10 | j1.639 | -j.6098 | j1193 | -j8378 | j1.082 | -j9240
20 | j1290 | 37751 | jL.093 | -j9150 | j1.040 | -j.9610
50 | j1.108 | -j9023 | j1.036 | -j9651 | j1.010 | -j9840
100 | j1.053 | -j9498 | j1.018 | -j9824 | j1.008 | -19922
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Chapter 5 : DESIGN OF A DIELECTRIC LINED CONICAL HORN

The next logical step in this analysis is to attempt to develop a practical
design for use as a hybrid mode feed. Dragone [1981] cites several structures
which can be used to simulate a surface impedance in a waveguide. The first sec-
tion of this chapter will review these structures and present a basic analysis. The
next section uses a variable thickness dielectric lining to provide the neccessary

surface impedance taper.

5.1 Surface Impedances

The idea of an equivalent surface impedance at an air-dielectric boundary
was investigated by several authors. In a book by Collin [1960] both thick and
thin dieleciric sheets over perfectly conducting metal plates are discussed. In both
cases, the analysis is accomplished by treating the dielectric slab as a transmission
line and transforming the zero impedance condition at the dielectric-conducior
interface to an approximate value at the air-dielctric interface. In this analysis the
equivalent surface impedance at the air- dielectric interface is dependent on the
angle of incidence, frequency and polarisation of the incoming wavs and the pesr-

mittivity, permeability and thickness of the dielectric.

Wait [1962] has investigated the surface impedance of a multi- layered space
in order to investigate propagation over the earth’s surface. He presents numeri-
cal results for several situations using lossy dielectric layers. In the two layer case,
Wait [1964 p.54] shows that if the argument, (o pw)*4,, is greater than about 3,
the amplitude of the surface impedance is equal to unity and the phase is zero. In
this case, hq is the thickness of the dielectric layer and o is the conductivity of
the dielectric. Thus, the effect of the conductor on the surface impedance gradu-
ally decreases as the thickness of the layer increases. It can also be seen that the

surface impedance does not vary wildly as a function of dielectric thickness, as is
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the case with the lossless layer.

It must be remembered that even if the problem of the equivalent surface
impedance has been solved for a flat surface it is not neccessarily valid to apply
this situation to the interior of a waveguide. Waldron [1969] warns that the cnly
sure method of finding the equivalent surface impedance of a dielectric/metal
structure is to solve the boudary value problem exactly and then take the ratic of
the appropriate E and H fields at the air-dielectric surface. Waldron goes cn to
comment that there are situations where the surface impedance boundary condi-
tions can be used to solve a waveguide probiem. He verifies that the surface
impedance model will work for a circular waveguide with dielectric lining if the
impedance of the lining is taken to be the same as the impedance of an equivalent
thickness of dielectric over a plane metallic plate. Dragone [1981] has used this
method to solve for the fields in a large diameter, narrow flare-angle conical horn.
By choosing the thickness of the dielectric carefully the cone can be made to sup-

port hybrid modes.

To obtain the surface impedance taper neccessary to satisfy the conditions set
forth in section 4.4 it was assumed that the surface impedance model uszd by Dra-
gone was applicable. This may not, in fact, be the case but in order to find the
exact expression for the surface impedance it would be neccessary to solve the
boundary value problem in both regions. This boundary value problem has been
solved but only in terms of a radial eigenfunction expansion which is not easily
applicable to the angular eigenfunction approach taken here [Hadidi 1985]. An
obvious extension of this work, one that would encompass this work and mauy
others, would be to solve the boudary value problem to find simple expressions for

the field in a dielectric lined conical waveguide.
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5.2 Tapered Surface Impedance

The neccessary surface impedance taper to support the hybrid modes in a

dielectric lined conical waveguide is given from section 4.4 by;

%
-1| (21

_ P v(v+] 1 N ~P2 v2(v+1)? 1

MNe =~ — =l
* P’ 2noR jusinGiey | (P) 4ngR?  wisinZ6e,’

The resent task is to {ind methods of achieving this taper in practice.

The use of tapered surface impedances has been applied to this type of prob-
lem in the past. Felsen [1959] wrote a general paper which used a linearily
tapered surface impedance to simplify the problem of scattering from lossy cones
and wedges. Bahar [1967] has also used a linearly varying surface impedance to
simplify the analysis for a conical waveguide. Although neither o these works
include hybrid mode analysis it is important to note the precedent set by these
papers. Neither of the above two authors offered any methods for obtainiag the

desired surface impedance taper physically.

The model used to simulate the surface impedance of a dielectric slab over
the top of a metal surface is taken from Dragone’s paper on waveguides [Dragone
1981]. The general situation is shown in Fig. 5.1 for a three-layered sandwicl: of
dielectric and metal. For this particular application the upper dielectric is taken
to be air. The expressions for the impedance in the radial and the roll directions

are;

n
Zp =jrpy -;1 o T + R, (1+4T2) (522)
2
.1 7 2
r1 n2

where;
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metal

Fig. 5.1
Diagram of a Dielectric

Coating on a Metallic Wall
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T =tan {KO \Vn$ -—nlzd}

— ‘\/’E
Mo ”

ni-ni
r —
21 "y

In the above equations, ny and n, are the respective indices of refraction for each

dielectric, K is the wave impedance of free space and these expressions are valid

. is the resistivity of the conducting wall. This coundition is

R, 1
for — << T ,—. R
VA T
certainly met by assumming R; =0 as would be applicable to a perfec:ly cenduct-

ing metal wall. This simplifies Eqns. (5.2.2) and (5.2.3) to obtzin;

. ni .
Zp=jra—meT (524)
nj
.1 m
ra1 n2

This thesis has assumed that the central cone of dielectric is air, therefore n=1.0.
A further simplification to the wall impedances is to assume that nZ>>n#=1.0.

Under this condition the two impedances are equal and can be written as;

. 1
2

Equaticn (5.2.5) is very useful for the present purpose. It is possible under
the above approximations to simulate the impedance surface by varying the thick-
ness of the dielectric. There is, however, one disadvantage to this tyve of simula-
tion. Since the inner surface of the dielectric was assumed to be in the shape of a

cone (i.e. with straight walls) it is the surface at the metal dielectric interiace
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which must be curved to accomodate the changing thickness of the dielectric lin-
ing. Figure 5.2 displays the general shape of the structure which could support

hybrid modes in a cone.

Another possible method of achieving the same results but using a constant
thickness dielectric layer on the walls, is to vary the dielectric properties of the
layer as a function of the radial distance. This may appear to be a more favour-
able solution since the dielectric structure could then be added to any standard
conical horn with smooth walls in order to convert it to a hybrid-mode horn. This
solution may not be very practical since the manufacturing of an insert with care-
fully tapered dielectric properties may be very difficult. This is certainly one area

of interest for the commercial applications of this idea.
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dielectric metal wall

nsert

Fig. 5.2 : Conical Horn with @

Tapered Dielectric Insert
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Chapter 6 : RADIATION FROM A DIELECTRIC LINED HORWN

Once the field distribution in the aperture of any horn is known it is a rela-
tively simple procedure to obtain the far field radiation characteristics by employ-

ing the field equivalence principles.

The first section of this chapter calulates and plots the aperture field distri-
butions for the $=0° case for the first three HE;, and EH ,, modes. The radi-
ated fields for these modes are then presented in the second section along with a

brief description of how these radiation patterns were calculated.

6.1 Aperture Field Distribution

In section 4.3 the aperture fields due to spherical hybrid modes were

analysed. The aperture field for the $=0° plane is,

. BJ (g
Eq=AJ{(g0) + L ;(: ) (6.1.1)
and for the ¢$=90° plane;
—_ . K.ll(qe)
Eq=pJ(g8) + 0 (6.12)

Figures 6.1 through 6.3 display the E-plane aperture fields (b=0° plane) for
the first three HE ;, modes. Figures 6.4 through 6.6 do likewise for the first threz
EH ;, modes. Since the modes are assumed to be balanced hybrid modes, the H-
plane ($=80°) aperture distribution is identical to the E -plane distribution.
These plots are for a large, hybrid mode conical antenna with an aperture diame-
ter of 89 inches. The flare angle is assumed to be small so the aperture can be

considered in cylindrical coordinates rather than spherical.
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d in inches (measured from horn axis)

Fig. 6.2 : E-plane aperture field of the HE 1, mode.
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Fig. 6.3 : E-plane aperture field of the HE 5 mode.
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Fig. 6.6 : E-plane aperture field of the EH ;3 mode.
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6.2 Radiated Fields from a Dielectric Lined Horn

The radiated fields from a specific aperture distribution can be found usiag
the well known field equivalence principles. The vector potentials can be found

from the equivalent electric and magnetic currents over the aperture as;

Ko

A, (r)=z;r—fs.l—e(r Ve kR g5 ” (6.2.1)
- €9 - " —j .
An(r)=7> JTm (e KR g8 (6.2.2)

Figure 6.7 displays the coordinate system used in this analysis. The source is
denoted by the primed coordinates and the far field by the unprimed; as is the

standard conventiol:.

Using the far field approximations for R, written below in equations (6.2.3)

and (6.2.4);
R=r—rcosy for phase term (6.2.3)
R=r for amplitude term (6.2.4)

Eqs. (6.2.1) and (6.2.2) reduce to

()=t it (6.2.5)
dnr

I (r)=—Y , —ikor _

()= y— L (6.2.6)

where,
N =] [ 7.0 )R as”

L=f T )ehe s’



Fig. 6.7
Coordinate System

Used in the Analysis
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In the radiation zone the expressions for the electric and magnetic fields can

be found from the potentials as;

E .= (6.2.7)
jkoe
_ ke
E¢—*—4'r(L9—T]N ») (6.29)
H,=0 (6.2.10)
. 194
jk,e 0t Ly
= N ,—— 6.2.11
0 . (N T) ) ( )
. ko1
jkoe %o ch
H,=— N.+—). 6.2.12
é yea GF . (62.12)

For a flat aperture, the expressions for N and L can be written in terms oif

Cartesian cocrdinates as;
No=f fs [, cosbcosd +J, cosbsin —J, sin@Je’* o Vg (€2.13)
Ny=f [ [~ sind-+,cosple’™ cosbygs” (62.14)
Lo=f fs [M, cosBcosd +M,, cosBsing —M, sinb]e jkorcosbge (5 15)
Ly={ J [M,sind+M,cosple’™ cosbgs (62.16)

A transformation of coordinates is neccessary to apply these expressions o
the spherical aperture of the conical horn. The alternative option would be to use
a cylindrical aperture model for the conical horn and account for the spherical

phase front by modifying the phase of the aperture distribution. It was decided
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that using the spherical aperture method was moie useful since the transformation
of the radiation integrals to spherical coordinates would be applicable to other
problems and may be useful in future work. The expressions for the radiation

integrals from a spherical aperture are presented below.
No=[ [J, {sin0 cos8 cos(b—¢) — cosd sind)
+J o(cos8” cos® cos(d—d) + sind sin6’) + J ,(cos sin($p~4))

ejkr' sind sin® cos(d—¢) + cosd cose'r' 26in6 4o d d) (6.2.17)

Ng=[[ 1 (sin0 sin(¢—¢) — J4cos8 sin(¢—=d) + J , cos(d—¢)

g Jkr  sin®’ sind cos(¢—d) + cosd cosd’ .° 2 ing” 19" g ¢ (6.2.18)

Identical expressions are obtained for Lg and L 4 by replacing J by M in the

above two equations.

These expressions were utilized to generate the radiation patterns shown in
Figs. 6.8 through 6.13. Since the fields corresponding to the HE modes in the
conical structure are largely concentrated in the center of the aperture it was
expected that the contribution of the fields diffracted from the edges of the horn
will be negligible when compared to the radiated fields. This is not trus cf the
EH modes since these modes have a large field at the walls of the horn. The
diffracted field from the edges of the horn was not computed into the far field
plots for two reasons. Firstly, the edge of this structure is not a simple metal edge
but a metal edge covered partially by dielectric. In this case it is somewhat more
difficult to calculate the diffracted field unless a model for the fields inside the
dielectric lining is found. This is one area of future work which could be contin-
ued. The second reason is that most applications of hybrid-mode horns utilize

only the HE,;; mode; the EH modes and higher order HE modes being
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Fig. 6.8 : E-plane plot of the far field of the balanced HE ;; mode.
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Fig. 6.9 : E-plane plot of the far field of the balanced HE ;; mode.
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Fig. 6.10 : E-plane plot of the far field of the balanced HE {3 mode.
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Fig. 6.11 : E-plane plot of the far field of the balanced EH y; mode.
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Fig. 6.12 : E-plane plot of the far field of the balanced EH ;; mode.
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undesirable. Thus, these radiation patterns provide a first order approximation
which is useful in gaining a fundamental understanding of the behavior of each
type of mode. In comparing the theoretical plots with previously published expear-
imental plots it was found thzt the effect of diffraction can indeed be important,
especially in small aperture horns. The sharp nulls in the experimental plots are
masked by contributions from diffraction at the edges of the horn in the experi-

mental plots.

Figure 6.14 shows the E and H —plane fields of a smooth-walled conical
horn given in a paper by Potter [1963] for a hors with a half-flare angle of 6.25,
an aperture radius of 7.3 cm. and at a frequency of 9.6 GHz. The comparison in
this figure between the theoretical and measured plots points out the deficiencies
in the aperture integration method. For comparison, Fig. 6.15 shows the far field
as calculated by the aperture integration method of a conical horn of the same
dimensions as in Fig. 6.14 but with hybrid-modc excitation. Both of these patterns
(figs. 6.14 and 6.15) have a similar envelope, however, the symmetry of the patterns
of the hybrid-mode feed make it a better choice for high performance applica-
tions. The sidelobes in the experimental curve of Fig. 6.14 are at about —18 dB.,
or about 7 dB. above the values predicted in the theoretical curves. If this same
7 dB. factor is applied to the plots in Fig. 6.15 then a sidelobe level of less than
—25 dB. is predicted for a hybrid-mode horn; an improvement over the smooth-

walled horn.

A further comparison was done for a horn with a half-flare angle of 159, a
length of 21 ¢m. and at a frequency of 7.4 GHz. Figure 6.16 is a previously pub-
lished result by Jeuken [1969]. Figure 6.17 is the result obtained by the aperture
integration technique. It was found that the envelope of the theoretical plot of
Fig. 6.17 approximates the measured plot of Fig. 6.16 quite closely except for the

nulis.
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(half-fiare angle = 6.259).
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CONCLUSIONS

This thesis presents the analysis of circular cylindrical waveguide for the gen-
eral case of an impedance boundary at the wall of the waveguide. It was found
that hybrid modes exist in circular waveguide provided that the wall impedance is
not zero or infinity. These modes will approach the balanced state as the radius
of the waveguide is increased. For the special case of tiie wall impedances in the
two tangential directions being reciprocal and the normalized impedance in the
radial (Z) direction being equal to approximately 2.404, the eigenvalue of that

mode is that of the balanced I{E {1 mode even for small diameter waveguides.

In the case of the conical waveguide with a constant impedance wall it was
found that this waveguide will not support the hybrid modes that are associated
with the corrugated waveguide. In order to satisfy the same characteristic equa-
tion as in the analysis of the corrugated waveguide it was found that it was nec-
cessary to taper the impedance of the wall as a function of radial distance along

the waveguide.
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