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ABSTRACT

This thesis exa¡nines the use of impedance walled cylindrical and conica.l

waveguides as feeds for prime-focus paratrolic reflectors. Firstly, a revierv oi

several feeds is presented to outline the importance of feeds with l<;w cross-

polarisation. The bounclary value problem is then solved for bcth cylindrical anC

conical waveguide by applying impedance boundary conditions.

The analysis of conical horns is often simplified by simulating a narrow flare-

angle horn by sections of cylindrical waveguicle with different radii. This

simpliûcation is sc,metimes applied to large flare angle i;orns, leading to scn]'?

misconceptions. Whereas an impedance wall is sufficient to support hyLrrid mciles

in a cytindrical waveguiCe, it is found that the surface impedance on the r¿all oÍ a

dielectric lined conical horn m:.rst be tapered as a iunction of distance along the

horn in order to satisfy the same characteristic equation as a corrugated horn' A

method of achieving this impedance taper is presented as a possible means of ccn-

sttucting hybricl nnode horns without corrugating the wall. Finally, the aperture

and far-field plots of a hybrid mode conical horn a¡e calculated and presented.
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Chapter 1 : INTRODUCTION

The advent of satellite communication systems greatly increased the need for

high performance pencil-beam antennas. A large aperture is neccessary to satisfy

the gain requirements of these systems. Quasi-optical antennas such as reflector

and lens antennas are obvious candidates for these applications since they are

structurally and conceptually simple and at the same time offer high gain. This

thesis will be concerned with the feeds used for reflector type antennas;

specifically with the prime-focus parabolic type as shcwn in Fig. 1.1.

There aie two major components in reflector systems; the reflector and tbe

feed. The reflector modifies the path of the incoming or outgoing rays so there

are t\r/o focal points; one at the feed position and the other at inÊnity. The most

important factor affecting antenna performance with regard to the reflector is the

accuracy of it's shape. A very small error in the shape of the reflector resuits in

an imprecise focal point, thereby reducing the efficiency of the antenna system.

The second critical component is the performance of the feed" The radiatioo pat-

tern of the feed together with the geometry of the reflector determines the illumi-

nation, polarisation purity and ultimately the efficiency of the entire systeri.

Together, the feed and the reflector both contribute to tbe polarisatioû irro-

perties of an antenna system. However, the refiector shape is generally chosen tc

satisfy specific conditions on weight, ease of production, aperture blocliage and

noise performance, leaving the feed design responsible for the polarisation perfoi-

mance. So, it can be seen that control over the radiated field from the feecl is

extremely important for the success of any quasi'optical antenna system.

The use of spatially orthogonal channels for microwave com¡nunication has

greatly increased the need for antenna systems with a high degree of polarisation

purity. An understanding of primary and secondary field patterns and their rela-

tion to tbe polarisation performance of the antenna system is neccessary before
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criteria for feed design can be establishecl.

The primary feed pattern is the radiation pattern of the horn or wi¡e feed

which is placed at the focal point of the reflector system. This pattern can be

obtained from the aperture field of the feed. There are sevel'al methods fo¡

obtaining the far field of a specific aperture distribution including the equivaleilt

source method and the Fourier transform method. Feed design is largely kirowing

wtrat primary feed pattern is desirable, working backwards to the aperture field

distribution and then trying to obtain this distribution by modifying the feed

structure.

If the ^E and I{ -plane prirnary patterns are equal then there will be no closs-

polarised surface currents on the reflector and the secondary Pattern will be

linearily polarised according to the third deûnition of polarizatiou given b1'

Ludwig [1973]. This gives us an insight into some of the characteristics of an ideal

feed for a prime-focus parabaloid reflector antenna system.

The definition of cross- polarisation used most commonly for aperture anten-

nas is Ludwig's third definition [Ludwig 7973]. This corresponds to tlie standard

cross-polar antenRa measur¡ûent set-up. TI¡e definition for tire co-polar and

cross-polar ûeld vectors under this definition are;

ß,o=ûscos(Ö -0o )-o osin(c¿ -0, )

d, =a6sin($ -$o ) -ø acos($ -Ö, )

where øs and a4îte unit vectors in the spherical coordinate system and $g is the

inclination of the reference polarisation with respect to the x-ariis. One major

advantage of using this deûnition of polarisation is that a purely polarised primary

pattern will tend to produce a purely polarised secondary pattern in spite of the

reflector. The three conditions under which this effect is true are that;
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1. tbe patterns of the feed and the reflector share a common central axis,

2. the reflector does Dot focus ttre far field to a point, and

3. tbe feed focal area should be a single point.

It can be reasoned from the above points that offset and dual reflecting

antenna systems wiil not preserve the polarity of a purely polarised primary feed.

The standard parabolic reflector in a prime focus confrguration does however

satisfy these conditions. For this reason this discussion will deal exclusively with

feeds which are used in systems which require a purely polarised primary pattern.

Multimode horns can, of course, be used in systems which require any arbitrary

apÉ.xture field distribution, Tbe problem then beeornes one of discovering the

optimum aperture clistribution for a given reflector configuration.

Chapter 2 is a review of the feed designs presently used for prime-focus para-

bolic reffecting anteûnas. Chapter 3 of this thesis deals with tbe propagation of

waves in a circular cylindrical waveguide when impedance boundary conditions

are applied at tl¡e walls. Chapter 4 is a similar study of the conical waveguide.

Bo:l¡ of these chapters are useful in understanding the theory betrind feeds with a

liiEiil¡ polarised aperture distribution" In chapter 4, conditions on the wall

impedance of a conical horn are presented which could cause a horn to support

hybrid modes without being corrugated. This idea is expanded in chapter 5 where

a horn design is presented which could satisfy these impedance conditions.

Chapter 6 presents aperture distributon plots of the first three IIEr,, and EH ¡,,

modes in a large conical horn. In the second part of the chapter the far ûeld of

the same six hybrid modes are calculated and presented as well as some comparis-

ons with previously published results. The conclusions are presented in chapter 7.
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Chapter 2 : PROGRESSION OF FEED DESIGNS

As we have seen, one of the most important components of a reflecting

antenna system is the feed. There are several feed types which can be used suc-

cessfully with parabolic refiectors, horvever, it is important that ttre proper feed is

chosen to match the level of performance needed. This section briefly outlines

the characteristics and perforrnance of several popular feeds in order to highlight

the role of the hybrid-mode horn.

2.1 Dipole Sources

Dipoles are seldom used as feeds in reflector systems due naainly to the:r

poor directivity. However, an investigation of a system which uses an idealizeC

dipole as a feed provides some useful informaticn about the optimum charact¿ris-

tics of an aperture feed.

Assume a parabolic reflector with a focal axis lying alcng tlle z-aulis. if a

short dipole is ptaced at the focus of a parabolic reflector with the dipcle peiallel

to the x-axis, there would be considerable cross-polarisation in the aPeriu;e of tire

paraboloid and therefore in the far fleld. The field distributiou in tl¡e apcrture of

the paraboloid is shorva in Fig. 2.1a. This pattern can be irnprovecl by placing a

flat reflector at a distance of one-half wavelength behinC the dipcle, hoì'cl'er,

even this feed is poorly suited for use v¡ith a circular paraboloid si:rce tlie taper is

not equal in both Planes.

A magnetic clipole oriented along the y-axis of the sarne paratroloicl yielC; al

aperture field distribution as shown in Fig. 2.1b. It is readily seen frour both

figures that a combination of these two dist¡ibutions in the correct phase and

amplitude would lead to a linearly polalised aperture field distribution, as showrt

in Fig. 2.lc" Jones [1954], discovered that the optimum ratio of magnetic to elec-

tric currents in the dipoles was approximately 3'17, tbe irnpedance of f ree-space.



6

o) elect r ic

c) cor-r'rbined

b) moqnetic

treld Potterns of cr shor-t

electrìc and mcgnetic Cipole

riq 21



,l

A source wt¡ich displays this circular symmetry using an orthogonal pair of elec-

tric and magnetic dipoles is called a Huygen's source since it closely resembles a

free-space source.

When a Huygen's source is used as a primary feed for a reflector with

fJ==0"25, there would result a -72 dts illumination taper [Rudge et al 1982]. If
D

this reflector is 25À in diameter, the cross-polarisation level due to the a-riiai

currents on the reflector will be -44 dB. This theoretical limit to the perforßtance

of a reÍl.:ctor antenna can be reduced by increasing the { ,utio of the reíÌector.
D

Although practical dipole feeds are interesting in themselves, this thesis will

not discuss them further except to say that the combining of electric and magrreti.c

dipoles suggests the use of multirnoded horns as we shall see in the next seciiott.

2.2 ÍIorn and lVaveguir!e Feeds

One of tbe simplest feeds is an open ended rectangular waveg':ide or s;';::¡li

pyramidal liorn operati.ng ín the TEgl mode. One drawback of this type cf feeil is

that it can oniy be used for linear polarisation. The dimensions of an5' fecd wi'lh

a rectaûgulai aperture can be optimized by fielcl matching at the aperture oi the

feed [Rudge and Witbers 191q. By assurring a linearly polarised plaue rvave

incident on the reflector surface and calculating the field acioss an imagirtarl'

aperture at the focus, the feed may tre matched to the refiector for any { ,utio.'D

Rectangular feeds are best suited for linearly polarised systems but for iual

or circularly polarised systems the circular vraveguide or conical horn is mote use-

ful. Thís is due mainly to the symmetry inherent in a circu!ar aperture. The radi-

ation from a circular waveguide can be calculated exactly, and thus it is possiÌrle

to find the theoretical performance of an open ended cylindrlcal waveguide [Ccl-

lin 1985]. ritfhile operating in the ÎE 11 mode, and for waveguide diernete¡'s
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between 0.8À0 and 1.12\s tl¡e cross-polarised field in the 0:450 plane remains

below 30 dB [Collin 1985]

2.3 Multtmode Horu Fecds

In the sâme \\,ay that the electric and magnetic dipoles can be cornbined to

yielc * linearily polarised radiateci field, tbe modes inside a waveguide can be

combin*'d to improve the cross-polarisation performance of a waveguide or horn

feed. Auy combination of modes wili satisfy the boundary conditions and, since

the ¡-jodal ve')tots afe a complcte orthogonal set of solutions to the v/a\¡e equa-

tion, virtually any arbitrary aperture ûeld may be synthesised by combirling

enough modes in tl¡e proper arnplitude and phase.

Potter was the first to use a multimode horn to obtain a prescribed apei.ture

ûeld. In the Potter horn [1963], the TM t mode was added in the pfoper phase

with the TE 11 mode to obtain a linear aperture field with equirl E and IJ - plane

radiation patterns. As was described in the introduction, these conditioirs are

neccessary if the antenna system is to have a low cross-polarised component.

In the Potter horn the mode conversion was accomplished by a rapid cliaag:

in the radius of a cylindrical waveguide, as is shown in Fig, 2.2. After a pltace

matching section of cylindrical waveguide, the horn tl¡en flares torvard the apcr-

ture. The phase nnatching section is neccessary so that the two moCes add wi,.:

the colrect phase at tl¡e aperture. In the paper by Potter [1963], tlie crcss-

polarised component in the ì,vorst case (I/-plane) was -27 dB. No ban'l'*'i'l'rh

information is given for this born, and the above quoted cross-polarisction perfci-

mance is at the design frequency. An additional advantage of this horn is that

the phase centers in the two principle planes are at the same point'

Turrin [1969] presenied another, more simple design which facilitates mode

conversion by making an abnrpt junction at the throat area of a conical horn, as
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shorvn in Fig. 23. In this case the length of the hood (/ ) is chosen so tl¡e spheri-

cal modes generated at the throat add with the correct phase at the aperture. In

this case the optimum ratio of. TM ¡ to TE 11 content is calculated to cancel the

electric ûetd ar the wall of the the horn, a different condition than that used b1'

Potter. This dual-mode horn developed by Turrin therefore does not have equal

aperture teld distributions in the E and Ë1 planes.

Another simple method of obtaining ,.': dual mode feed is to excite the ?'lU 11

mode with an internal bifurcation junction as wâs done by Collin and Schilling

[Collin 1985]. This design depends oû the distance between the aperture and the

internal waveguide to obtain the correct addition of the two modes at the aper-

ture. This horn is illustrated in Fig. 2.4.

All of the above structures are inherently narrow-band structures since the

aperture ûeld is depenclent on the electrical length of the waveguide between the

mode converter and the aperture. There have been seve¡al attempts at increasing

the bandwidth of multi-mode feeds by utilizing dielectric discontinuities in the

mode-conversion structures.

One method ,¡f broad-banding the mode converter in a cylindrical waveguide

was developed by Agarwal and Nagelberg [1970]. This device used a dielectric

ring made of polystyrene at the discontinuity as shown in Fig. 2.5. The mode

transducer was tested over a 26Vo bandwidth, however, no estimate was given as

to how much of that bandwidth is useful'

Another simple and effective dual mode horn was deveioped by Satoh Llç721,

shown in Fig. 2.6. The Satc¡l¡ horn uses a dielectric ring mountcd at a staregic

place on tbe walls of a conical horn. ^A bandwidth of 70o/o is claimed and this

extended bandwidth is attributed to the use of a dielectric ring instead of a metal-

lic discontinuity.
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A recent extension of the Satoh horn has been developed by V/ong involving

concenrric dielectric rings placcd in a conical horn [lVong and Bi-andt, 1979].

Wong claims that this double ringed horn has a bandwidth greater than that of

the Satoh horn as well as improved matcbing'

Tbe major disadvantage of multimode feeds is that the relative pbase of the

constituent rnodes at the aplerture is highly frequency dependent and this drasti-

cally degrades the perforrnance of these horns in wide bandwidttr applications.

Tbis disadvantage is partially overcome by using dielectric inserts in tlre feed to

extencl the bandwidth.

2.4 trJybrid Mode Feeds

Although improved antcnna efficiency ancl reduced spillover were originally

the impetus for developing b),brid i.lode feeds, the inherent symüIetry and pohri-

sation purity of the aperture fìeld surpass that obtainable for stanCard horns or

waveguides. There is also the added benefit of a much gre ter bandwidtir with

hybrid mode feeds than with dual mode feeds'

There are seve¡al structures which have been found to support hybrid modes.

Thesc structures include the dielectric-loaded circular waveguide [Clarricoats and

Taylor 1964], the corrugated waveguide or horn [Clarricoats and Olver 1984], the

dielguide [Clarricoats and Salema 7n3J, the dielectric filled conical horn [Liei

1986], and the large cliameter waveguide with impedance walls [Dragoiie 1981].

This thesis presents yet another structure which could support liybrid n¡oies

[Stanier and Hamid 1986].

The basic reason that hybrid mode waveguides are useful as feeds for para-

bolic reflecting antennas is that the fundamental hybrid mode , the balanced HE 11

mode, has a nearly linear aperture distribution. Fig. 2.7 displays the lines of elec-

tric field of the HE n mode. This linear field distribution is very similar to that of
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the dual "lde feeds described in the last section. The major advantage of a

hybrid mode horn is that the TE11 and theTM 11 components of the fundamental

mode satisfy the same boundary conditions and thus travel together in the

waveguide. This means that the turo components wili be coupled togetber every-

where in the waveguide regardless of the frequency c,r length of the horn. The

analysis of hybrid modes in conical structures is presented in sectiorrs 4.3 and 4.4.

One of the earliest investigations of hybrid-mode devices was by Clarricoats

and Taylor [196a]. It was found that complex hybrid-modes exist in dielectric

lcaded circular waveguides. In that case, the loading was a rod of dieiectric in the

center of the waveguide.

In the early 1960's, the search for high performance horn feeds spawned

what is now knor'¿n as the corrugated horn. The scalar horn, as it was then

termed, was first investigated by Kay [1964] and Simmons and Kay [1966]. At

about the same time others were investigating similar structures [Larvrie aircl

Peters 196ó],[Ìvfinnett and Thomas 1966]" In the paper by h{innett and Tlionras

[1966], some theory is presented which clearly outlines the concept oÎ TE ¿nd

TM conponents combining into a single hybrid mode. The fundamental hybriil

mode is then presented as fornning a linearly polarised aperture field rvith equal E

and I{ plane radiation patterns. In a companion paper by Rumsey [19ó6] it is

further stressed that the reason for the coupling of the two compcnent nir¡Ces is

that both the TE and TM modes are forced to satisfy the same boundary concìi-

tions at the wall. Fig. 2.8 shorvs the basic structufe of a corrugated horn.

It was claimed that corrugated horns performed well over nearly an octave

[Simmons and Kay 196ó],[Lawrie and Peters 1966], which u'as signifigantly better

than the multi-mode horn.

In 1969, Clarricoats analysed the corrugated horn using a spherical modal

expansion [Clarricoats 1969]. In that paper, the hybridicity factor was introduced
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as a measure of tbe relative strengths of the ÎE and TÌd components of an IfE

mode. Clarricoats also showed good agreement rvith the experirnental results

obtained by Kay. The many subsequent plpers rvritten by Clarricoats and his col-

legues are presented in an excellent book by Clarricoats and Olver [19E4].

Experimental results were published by Jeuken [1969] and Jeuken and Lan:"

brechtse [1969] which sbowed that the L,andwidth of a corrugated conical hcnt

was abour 1:1.3; considerably less than what others had claimed. It is presently

considered tbat the useful bandwidth of these devices is about 1,:1..25 [Love 1986],

In an attempt to simplify the analysis of corrugated horns, lllarasimhan [1970]

used a Bessel function approximation for the 0 dependence of the fielcis inside e

conlcal horn. This approximation , knowû as McDonald's formula, is extÍemely

usefui since the more complicated Associated Legendre functions no longer hav;

to be calculated. Although this approximation is strictly valid only for small flarc

angles, Narasimhan [1970] shows thât it is accurate up to a flare semi-angle of 3Cc.

A more complete analysis of this approximation is given by Narasimhan and Rao

ue6el.

The analysis which has been done on dielectric loaded conical waveguicle to

date has treated the proble¡n from several different viewpoints. The investiga.ior:;

include Felson [1959], Bahar U9671, Fiamid et al. [969], Dragone [198C1], Clarricoats

and Salema17973), Lier [1986] and Hadidi [1985]'

Felson [1959] analysed conica! and wedge shapcd siructuros witt¡ surface

impedances and showed that by linearily varying the surface impedance the bouir-

dary value problem can be sinnplified.

Dragone [1980,1981] has presented the analysis of hybrid moCes in largc

diameter conical waveguide with a finite surface impedance on the wall. This

analysis is applicable only to ìvaveguides with a small flare-angle only sir'ce tire

waveguide is treated as a cylindrical waveguide with a slowly varying cross-section.
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Of particula¡ interest in these papers is the labeiling of the two types of hybrid

modes which ¿ue present in these structures. The method Presented by Dragone

depends on the ûelds approachingzeîo in the limit as 0* Oti where 01 is the half-

flare angle of the horn. This precludes tbe E^[/ modes presented in ti¡e analysi.s

by Clarricoats [1969] since these modes have maximums at the walls of tire horn.

Dragone calls the standard EÌI n¡odes 'surface waves'. This thesis has adopted

the terminology proposed by Clarricoats since this corresponds to the corrugated

waveguide case.

Clarricoats and Salema [1973a,b] have analysed the solid dielectric conical

waveguide called tbe 'dielguide'. This structure has been found to suPpol't tiybriC

modcs similar to those in corrugated conical waveguide'

Anothe¡ dielectric structure found to support spherical hybrid modes is the

'dual cone' structure investigated by Lier [1986]. This structure is similar to tire

dielguide except that on the outside wall of the dielectric cone a layer of lower

permittivity, constant- thickness dielectric is placed between the outer wall of the

central dielectric and the inner metal surface of the conical horn. The theory

presented is based on circular waveguide analysis and tested experimentally usilrg

a narro\r flare-angle horn. By assuming a long narrow horn, the dependance of

the eigenvalue on the radial distance is neglected and a constant thickness ga¡r is

sufficient to support trybrid modes. This design is shown in Fig. 2.9.

Recently, the analysis of a conical horn with an arbitraiy rvall impedance has

been published [Knop, Cheng and Ostertag 1986]. The analysis is restricte¡i to

both the area of the cone well avray from the apex and to narrow flare-angles.

Under these conditions, the horn atmost becomes an oversized circular waveguide

and not a conical horn.

Another recent investigation of a dielectric-lined conical horn by Rao is a

theoretical analysis of the dual-mode horn developed by Satoh [Rao 1986],lSatoh
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1972J. The dielectric region is assumed to propagate hybrid modes and mode

matching is applied at both ends of this region to determine the relative ampli-

tudes of the IE11 and TI,In modes at the aperture. A major part of the analysis

is to solve the boundary value problem for a dielectric lined conical wavegui<le by

assuming a field in both the dielectric and the air regions and applying the boun-

dary conditions at the wall and the air-dielectric interface. Unfortunatel;-', the

analysis neglects the radial dependance of the fields by using the far-field approxi'

mation. A second simpliûcation is to assume that only the fundamental hybricl

mode is propagating in the waveguide,

It can be seen from the above discussion that most of the work done on diec-

tric lined conical horns has used the small flare angle approximation. This thesis

avoids this approximation in an attempt to clarify the conditions neccesslry for

the propagation of hybrid modes in conical horns'
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Chapter 3 : TFIE BOUNDARY VALUE PROBLEVÍ FOR CYLINDRICAL STRUCTURES

3.1 Surfsce Innpedance Baundary Condl{.ions

The idea of using surface impedance bor-lndary conditions was first credited

to Leontovich. The boundary condition, for a surface with a finite surface

impedance is given by [Senior \962,Leontovich 19a8] ;

E - (ñ'e) n = rìoîz Cn *a) (3.1.1)

where Ê is the unit outward normal at the surface and r¡g, the impedance of free

späce. Eq. (3.1.1) is valid for any surface with a radius of curvature v¡hich ís large

compared to tbe wavelengtlr [Senior 1962].

For a circular cylindrical rvaveguide with radius ¿ the boundary conditions

on the inner wall are given in circular cylindrical coordinates by

Er=-1, rlo IIO , | =a (3.1.2)

Eó= rlô To II, , r =e (3.1.3)

where r¡, and r¡0 are the relative watl impedances in the å ancl {r directicns,

respectively, and 'r¡0:1 
Iq 

¡v' is the intrinsic impedance cf free space.-€6

Expanding Eq. (3.1.1) in spherical coordinates and assuri:ing a cciti.:i:l

geometry yields;

ER:-1R r¡o HO and Eô:tìó r¡o I/n aÍ 0:0r (3,1.4)

These expressions for the boundary conditions have been used in the analysis of

both cylindrical and tt.re conical waveguides in this thesis.

The concept of using impedance surfaces to simplify boundary value prob-

lems is not strictly valid as described by WalCron [1969]. In general, a surface
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impedance is used to model a lossy dielectric, a dielectric coating or a corrugated

surface. The impedance boundary conditions aie used to simplify the geometry of

the surface so it is more easily described rvithin a specific coordinate systenì. For

instance, a corrugated surface cannot be conveniently included in a boundary

value problem since the surface cannot fit into any coorcìinate system. By model-

ling tbe corrugated surface as aû impedance surface, the problem can then be

solved. The objection raised by Waldron [1969] is that without solving the original

boundary value problem exactly, we can only guess at the equivalent surface

impedance of a corrugated surface in any geometrical shape. So, in o¡der to apply

the impedance boundary conditions we must ûrst solve the exact boundary value

problem and, once solved, we no longer need to use the impeelance boundary con-

ditions since we have solved the problem exactly.

Although the validity of the solution of boundary-value problems using sur-

face impedânce concepts has been criticized, such solutions have been successfully

used for circular cylindrical waveguides by several authors [Mohsen and Flami.l

1970],[Dragone 1981],[Lier 1986]. The use of this concept greatly simpli.Íies tlre

solution and allows the fields in the waveguide to be expressed in a simple form

for easy comparison with other types of circular waveguides.

Previous investigators, using perturbation techniques, have found that hybrid

modes can propagate in cylindrical waveguides [Papadopoulos 1954],[üarbowiali

1955]. However, their analysis is only valid for wall impedances whicll are neerly

zero. The present analysis extends the concept to arbitrary wall impedances. D¡a-

gone [1981] has analysed circular cylindrical vraveguide and established the exis-

tance of hybrid modes for non-zero wall impedances, The same conclusion is

reached in this paper using a more basic approach and the concept is extended to

several types of cylindrical structures including smooth-walled, corrugated, and

impedance-walled wavegu ides.
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3.2 Solutlon of the Generul Eoundary V¡¡l:.¡e Problern

Using the cylindrical coordinates (t, Ö, z) ancl assuming an e-i't time

dependence, the ûelds in a circular cylindrical waveguide can be written as a com-

bination of TE and TM comPonents in the form [Harrington 1961]

E, : (t:z-t<j),4t' (3.2.1)

Ë* = ,l+
)t

)t

ð,þ' ô,lri
-/ o¡pO (3.7.2)

(3.2.3)

(3.2.4)

(3.2.s>

r:a (3.2.e>

E, : ik,
ot ìþo

).,I

ârC¿ô

örôr

(¡)p0 ô,1'n

ð)t

H, = &2-k:),lt^

k ð.Jr'ftr6= i
ð 0r

0aôr

*j oree _qi{_
ðr

H, : jk, ð,þt aù" (3.2.6)

where rþ¿ and $n are the scalar electric and roagnetrc potentials, ¡.ug and eg a;:e

the permeability and permittivity cf free space respectively, o is the angular fre-

quency, k, the pro¡ragation constaût in the â direction and & the free space

wavenumber. The coordinate system is shown in Fig.3.1.

Substituting the field components into Eqs. (3.1.2) and (3.1.3) leads to

-'[+)

(kT-k,t)q';=-r¡, 
"lo

1

J.,I
a.þ,í k

r0r

ð.þf
t),þkk

þ,.,I Iti+)l

(
)l

2_ m
n î6 rlo þt+lt*) -i orlro

ôr
r:a (3.2.10)
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where

úÍ=oucos (n0) J, lGT-kh+rlejk" (3.2.11)

ú,ll=bnsin (rr dr) J, [Gz-k)hrf¿ik" (3.2.12)

arid Jn (x ) is the Bessel function of the frrst kind of order z and argument f .

Sulrstituting Eqs. (3.2.11) and (3.7.72) into (3.2.9> and (3.2.10) and simpHfying

the result yields the tfanscerdental equation

lulo l,(unp ) *' i \" ka u,,p J,,(u,,,)lï"Î, J n(unp) * Í; 
¡16¡ un. t 

^(u,r))

+ r:- ,r2 (kloz - ulo¡ t |qu,r) = o
rlO

(3.2.13)

where tbe prime denotes differentietion with respect to the argument. The order

of the zefos of this transcendental equation are given by the subscript p and

u,,p &2 - k])* ". 
(3.2.14)

When r¡ó = \, = r¡ corresponding to an isotropic wall impedance ccncli:icn,

Eq. (3.2.13) leads to

Lulo Jr(r,,r) * i nka unn J,(u,,0)lÍr,2rJn(u,p) + * ka u J,,(u,,,,)f
rl

+ nz (k2o2 -' "]r¡ t]1",r) : o (3.2.15)

which is identical to Eq.1 in a paper by Mohsen and llamid [1970].

By setting îìó = \, = 0, the case for perfectly conducting walls, Eq' (3'2'13)

becomes

l",trJ ^(u,,r)f likaunrJ ,r(uno )l = 0 (3.2.16)
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therefore;

Jr(unp)=0 or lr(",p)=0 (3.2.17)

which are the cl¡aracteristic equations for the TE and TM modes in a circular

cylindrical waveguide with a perfectly conducting wall.

For large ka and imperfectly conducting wrlls, Eq' (3.2'13) reduces to

n Jr(wnr) t u^p J^(u,p) = 0 (3.2.15)

providecl neither î6 nor r¡, is zelo. Eqs. (3.2.18) are the characteristic equations

for balanced HE and EÉJ modes in a circular cylindrical waveguide [Clarricoats

and Olver 19841.

For r¡, = æ and Tó = 0, which corresponds to a corrugated waveguide with

one-quarter wavelengtlr slots, Substitution into E,q. (3"2.13) yields;

,,Jn(uup) * t ",0 
J^(u,r) = 0 (3.2.1e)

which are the characteristic equations for the unbalanced hybrid modes in a circur-

lar cylindricif rvaveguide.

3.3 RESULTS

Equation (3.2.13) shows explicitly how the eigenvalues (urp) of the propagat'

ing modes are dependent on the rrode number, ka, frequency and wall

impedance. Further¡¡ore, it is evident that for imaginary wall impedances with È

greater than k, the resulting eigenvalues are real. However, for complex or real

values of wall impedance the resulting eigenvalues and propagation constant I(z

are complex, signifying attenuation of a â directed wave. This is expected s;.nce a

real surface impedance corresponds to lossy walls which would obviously attenu-

ate the waves. The eigenvalues are determined numerically using the ZXSSQ
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minimization routine (IMSL [1984]). The sum of the squares of the real and ima-

ginary parts of the transcendental equation is minimized using a finite difference

Levenberg-Marquardt algorithnr a"rd the resulting eigenvalues are accurate up to

ât least 5 decimal points.

In the paper by Mohsen and Hamid U970] only real vaiues of the relative sur-

f ace impedance are considered, leading to complex eigenvalues which are

incorrect. Corrections have been made to table 1 in lvfohsen and Ilamid [1970]

anci are presented in table 3.1 for ka :10 and \, = r¡ô : 1. In tablesS'Z and3'3

values of u,r, are also shown fo r¡ô = \z = 1 and ka = 5 and 2Û, respectively.

Table 3.4 lists the eigenvalues of the characteristic equation for a cylindrical

waveguide with a lossless wall impedance for ka=t0, T, : i2-5 and rì6 = j0.4'

As expected from the earlier analysis, all of the eigenvalues are real in this case.

Although these eigenvalues are for trybrid modes, these modes are not necccs-

sarily balanced hybrid modes, and are useful in designing feeds for center-fed par-

abolic reflector antennas.

Figure 3.2 diplays the graph of the eigenvalue of the fundamental mocle

(HE',) vs. Êø l¡ased on Eq. (3.2.13) for various values of wall impedance. In all ol

these cases the wall incpedances in the two tangential directions are related by the

expression 116 îz = -1. It was found that if îó = j0.41583 and r¡" = j2.40483

then u t = 2.40483 for all values oL ka above cutoff (ka : 1.3569), which is the

smallest allowable value of. ka for the ÎE 11 mode to proPagate in a perfectly con'

ducting waveguide). This eigenvalue signifies the balanced HE 11 mode and sltows

that balanced hybrid conditions can be established in cylindrical waveguides rvith

a small /<ø without using corrugations,

Figure 33 presents the asymptotic behavior of the eigenvalue of the HE t
mode as ka increases for real wall impedance, evaluated using Eq. (3.2.15)' As

can be seen from the figure, the real part of the eigenvalue approaches 2.4048
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Table 3.1

unp f.or ka : l0 and r¡6 : tì, : 1.0.

Table 3.2

8.797 - j 0399

9263 - j 1.13e

t2s48 - j 0303

t2.439 - j 0.711

ts.7E2 - j 0.48s

18.e94 - i OX7

22225 - j 0296

28.62e - i O2r4

P
n

0 1 2 3 4 5

I
2

3

4

5

6

7

I

3.765 - j 03E9

6816 - i 0.7y2

9.517 - j 1201

t2.067 - i 1.076

1s.018 - j 0.790

18.110 - j 0.618

21233 - j 0510

243É,5 - j 0.436

2s79 - i0243
5.009 - j 052s

5.431 - j 0.60ó

8.047 - j 0.951

8316 - j 1.087

10.635 - j 1.146

10.793 - i t284

t3.4Æ - j 08sr

3805 - j 0.4Os

ó.169 - j 0.6s1

9565 - j 1343

rt823 - i 0.9ss

12.05r - i L2s3

14.e33 - j 0.e25

18.016 - j 0.704

2t.t45 - j 0568

5.122 - j 0573

8239 - i 1.ts2

10.182 - j 1.040

13339 - i 1.t92

ß3n - j 0873

te.157 - i0.674

22.&8 - j 05s0

13.111 - j0.774

6393 - j 0.7ó5

8301 - i0862
93ó5 - i 1.47s

112s4 - j 0.891

14.42s - j 0.645

14.624 - j 1.131

t7.6Q - j0516

20868 - j 0.ó50

7.637 - j 1.004

9273 - j 0.e17

12.428 - j 0.732

t2.%8 - j t.447

15.904 - j 1.078

19.0s7 - j 0.798

22255 - i 0.629

25.451- j 0520

p
n

0 l 2 3 4 5

1

2

3

4

5

6

7

I

3.487 - j 0.731

s.e30 - j 0.e43

8140 - j 0.ó15

11.820 - j 0.449

t4.944 - iO.y7
18078 - j 0284

21216 - j0240

24355 - j 0208

2277 - j 0.490

4508 - j 08s1

4.7e8 - j 1.044

7.t54 - j 0.710

7278-j0891

t02E7 - j 0586

13.y7 - i0.425

76.482 - j 0333

3573 - j 0895

5.4s0 - j 08û7

8.472 - j 0533

8.6Os - j 0.831

1t.670 - j 0551

1431ó - j 0.406

17.970 - i0322
27.t23 - i 0267

6.494 - j 0.631

9.788 - j0.424

9.et7 - j 0.783

t3.027 - i0327
13.057 - iOSz.
t6.24t - j 03e1

19.418 - i Oitz
2258lt - j 0260

5.4s8 - j 1541

7ß37-j0.490

8.1s0 - j l.1ss

11.183 - i 0.743

14380 - j0282

14.408 - j 0503

t7.631- j 0378

20.83s - j 0303

u,v Í.ot ka : 5 and r¡4 : rl, : 1.0.
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Table 3.3

u* Íor kø = 20 and r¡4 - 1ìz : 1.0

Table 3.4

'p
n

0 1 2 3 4 5

1

2

3

4

5

6

7

I

3ßr7 - j 0.193

6.985 - j 0363

10.120 - j 05s4

t3226 - j 0.78ó

t6.262, j 1.093

19.049 - j 1.445

27.615 - j1.409

24.498 - j 1.118

zsee - j 0.121

5505 - j o2E3

8366 - i 0.441

8.625 - j 0.4ó1

11.738 - i0.672

14.óa5 - j 0.903

t4ß2O - j 0.943

t7.ffi - i t237

3827 - j 0.194

6337 - i0323
7.n4 - i ox1

10.150 - j 0561

12.883 - j 0.741

132t3 - j0800

7s.972 - iLms
76332 - j 1.133

s.13s - j 02ó3

7526-j038s

10.955 - j 0594

tt.ñI - j 0.66ó

14.181- j 083ó

tTJsr-j1.%7

1e.e78 - j 13só

20.328 - j 1.660

6388 - j 0331

8.685 - i 0.447

9.770 - j 0535

12.188 - j 0.670

13.018 - j 0.780

16.178 - i Ltn
18.428 - j 1231

79.V¿6 - j 1.ó18

7.û8 - j o.4oo

e.821 - j oJOs

tt.0v2 - j0.624

u3n - j0.909

t6.636 - j 1.t24

L7.vB - j 1.3s7

19542 - i t26s

2237s - j 1.066

P
n

0 1 2 3 4 5

I
2

3

4

5

6

7

I
9

3.993

6.7ft

73p.5

9.806

t2.857

1383E

15.913

æ308

22.M7

2.4U

5.067

8214

t2.t67

t4352

t5.424

17.418

20.489

2t.893

3815

6344

7.079

9591

12J70

t3.676

t5J99

18882

20.t97

5.t92

7586

70927

1r801

14.w2

15.126

18.419

203t4

2t.6U

6295

8814

9:t57

t2238

15.448

18595

19350

2t.720

23.tX

7.444

10.040

10.996

1353ó

76.784

17391

19.959

21.246

24556

t¿rp Î,olka : l0 and r¡" = i 25 and r¡4 = i 0.4.
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which is the eigenvalue of the balanced ÍIEfl mode. At the same tinre, tire ima-

ginary part of the eigenvalue approaches zero. This result is supported in a paper

by Dragone [1981] which predicts the propagation of hybrid modes for waveguides

with irnpedance walis and only for large kø. This result is also verified by Eq.

(3.2.18) which shows that for large values of Ëa the balanced hybrid mode pro-

pagates for any non-zero value of wall impedance. The one exception to this is if

both tangential impedances are eqrral and approach infinity. This case is shc'wn in

Fig. 3.4 where it can be seen that the eigenvalue of the fundamental mode

approaches the TE11 eigenvalue for large r¡ and for several values of, ka. Fig.3.5

displays the corresponding behavior of the propagation constant for the sam,e

values of. ka as in Fig.3.4 as a function of the isotropic wall impedance q.
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Chapter 4 : THE BOUNDARY VALUE PROBLEM FOR CONICAL STRUCTURES

One method of investigating the propagation of electromagnetic energy in

conical horns is to solve the corresponding problem in a conical waveguide. Since

a conical waveguide can be simply described by a spherical coordinate system, it is

possible to solve the wave equation by a separation of variables technique. The

solution becomes a summation of spherical modes whose eigenvalues deperrd on

the boundary conditions at the wall.

For a conical waveguide with perfectly conducting walls, the tangential ð -

field at the walls nnust be zero. This produces TE and TM modes analogous to

the cylindrical waveguide case [Schorr and Beck 1950.1. An azimuthally corrugatecl

conical waveguide can support h¡,þ¡id nrodes since the tangential ^Ð 
-field in the

radial direction at the bourrdary no longer has to t'anish, while the azimuthal com-

ponents of the electric and magnetic fields vanish simultaneously.

A third situation arises when a dielectric is placed inside the horn. One sucl¡

structure consists of a solicl dielectric insert held away from the wali by atlcthe¡

shell of dielectric of a lower permittivity. [Lier 1986]. This structure will support

hybrid modes as long as the innermost dielectric cone is of a higher permittivíty'

This thesis presents yet another conical structure rvhich can support hybrid

modes. This new structure consists of a dielectric lining on the walls of a conicnl

horn. It is found that in order to support hybrid modes it is necessary to taper

the surface impedance of the dielectric'air interface.

If the dielectric is not tapered, the transverse eigenvalue method cannct be

applied and it is necessary to resort to the radial eigenvalue method [Hadidi 1985].

The transverse method fails even for a tapered dielectric insert since the eigen-

values become a function of the radial distance except for a special case ':,'hich

will be discussed later.
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4.1 Solutlon of the Wave Equation

The Helmholtz wave equation in spherical coordinates is given by,

#**zdþ
dR

l+ 1- d lrino' P2rin6 d0'
4_v
dg )r orfi* #*ftzr¡=s 

(4 1'1)

where the coordinate system used is shown in Fig' 4.1

Letting

ù =G (R ) H (o) P (.þ). (4.1,.2)

Now, dividing Eq. (a.1.1) by (.1.2) and multplying through bylt2sin20 we obtain;

(4.1.3)

L dzÞ
þ aþ2

By setting =-*2 and substituting into Eq. (4.1.3) and dividing by sin2Û

we obtain;

i!"tu- * ro, #) * 
-ry fi r.tnu #,. t #+fr 

2R 2sin20 :0

+*þ'*J.,,k# þ'"' x) * +kz.z:t

Now the R and $ dependence has been separated. Choosing

(4.i.4)

(4.1.5)1 ¿ 
[r,,ru dø ì *2 - t..

r-lsino do [ frf -"tr =-¡¡(r¡-1)

and substituting this into Eq. (a.1.a) rve obtain;

LLí*
cdRI

dG
dR

t
L -n(n +1)+k 2R2:0

Eq. (a.1.1) is now separated into three equations, each dependent on a single

variable. The three equations are;
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*þ' #ì . [*- )2 -" (n+r¡) :o

**[""'#)þ,"*',-#)='
t+ +m?e:o.
dö"

(4.1.6a)

(4.1.6b)

(a.1.6c)

The solution to equation (4.1.6c) is;

@:a ç1-¡nö) ¡a2eU^6),

while the solution to Eq. (4.1.61) is the associated Legendre function r'¿hich ca:r be

written as;

¡/(0) : rT (cos(0))

An alternative method for solving Eq. (4.1.6b) is to make an approximation

for small 0. By making the approximation sin0=0 Eq. (4.1.6b) is reduced to the

Bessel equation [Narasimhan 7973]. The asymptotic solution is given as ;

¡{ (0) : J^(q0)

wlrere q =(s (s +1))+ and s =-.5+(25nç!rc¡'¡*. In this case, pnt, is clep';n<leni
ag

on the type of waveguide being investigated but in general it can be found frcnl

the roots of a function involving the Bessel function and/or its deiivativcs. This

approximation is extremely useful for numerical work or for applying analt,tic

solutions to practical problems, due mainly to the difficulties involved in calculat-

ing the associated Legendre function. Although the approximation is only valid

for small values of 0 it has been found to be useful even for wide flare angles

[Narasimhan 1973].
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The solution to Eq. (4.1.6a) is the spherical Hankel function. In most cases

involving conical horns the Hankel function of the second kind is used since this

represents an outward travelling wave if the ei't time convention is used.

Although the Hankel function l¡ecomes infinite at R =0, tbis is not a problem in

practical horn design for tìvo reasons. Firstly, a horn is usually fed by a cylindri-

cal waveguide at the apex end. In this case, the l¡o¡n never does reach a point

where R =0. Secondly, the region at the apex of conical waveguide is very highly

attenuating and no po\iler ever reacbes the apex (Schorr and Beck 1950). Thus,

the solutions to Eq" (a.1.6a) can be written as;

G =H ^(kR)

This spherical Hankel function can be written in terms of the cylindricr,l Hankel

function as;

Ifhn(kR)= H n+ry,(kR)2kR

Thus the complete solution to the wave equation in a conical region may be

written as;

*:Pi (cos 0)hn(kn¡¿i^+ (exact) (4.1l)

ù:J ^(qg)h,(kn¡ei^ö 
(approxímate). (4'1.8)

Scalar electric and magnetic potentials can be written as;

An=ü , FR=ù

The vector potentials can be written as;

A=âpAp , F =âpAp



However, the scalar potentials are not solutions of the scalar llelmholtz

equation since V'A^* (V 2Ã)*. The solution to the scalar Helmholtz equation

Ao F"
is, in fact; Ë *O f . fne Vecter potentials can therefore be written as;

Ã=Rùoán , F=Ãù/ ân

The ûelds in the horn can now be found from the following expressions;
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-1
E =-Y xR{r/ +;v xV xrtìjr¿

v

1F:Y xn,þo ++v xv xRû/
z

(4.1,.e)

(4.1.10)

(4.1.11)

(4.1.12)

(1.1.13)

(4.1.14)

In the last equation the rl.r's are all multiplied by R so we can use the spiieri-

cal Hankel function defined by Schelkunoff[1943].

É,,1tR):ÈAtr" (kR)

Now, from Eqs. (4.1.9/10) we can write out the fields explicitly as;

t-:i 
I

,r:Il*+r'z)r"

#*')^R

ldFn, 1 dzA*
Þ6: R d0 't¡ring dftdd,

I dAn I d'F*
Rsin0 dö îRdRds

Ha (4.1.1s)
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-1dAn, 1 dzFo
äo: R- d0 -tpring dQdþ

Ap or FR : P! (cosO) ¡i, (kR) ej"ö @xact)

Ap or Fn = J^(q8) É,,1ÊR) ¿i'"6 (approxímate)

(4.1.16)

where;
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4.2 
^ 

Perfectly Conductlng WalI

Up to this point in tbe analysis there have b-een no boundary conditions

applied to these solutions since they are valid for any region which can be

described in the spherical coordinate s1'stem. In the case of a conical waveguide

with a perfectly conducting wall the boundary conditions at tl¡e wall are;

Ðô=0 and ð" =g

Both TE and TM ¡rodes can exist in conical rvaveguide so we may write;

Fn=0 ,Tful ntodes

(4.2.1)

(4.2.7)

(4.2.4)

Á¡ =0 , TE modes

Applying the boundary conditions at the wall we obtain, for the exact foÍmu-

lation;

Pf'(cos 0J : 0 f.ot TM modes

: [ Lor TE modes (4.2.3)

The solution of tliese eigenfunctions will supply values for v, the order of the

Legendre function. Likewise, the boundary conditions may be applied to the

approximate solution for the flelds to yield;

Jr(qo) = 0 I'or TM modes

[*"f;(cosu,),=0,

(*'^*, - 0 f.or TE modes
0:0 r

Although there are graphs in a report by Ifuy Í79621, there is no complete set of

tables available for the eigenvalues of Eq. (4.2.3), which is one of the reasons wh1'

wMøwxMp

w ffieffi@
@þse¡rl@

{pmm,q KIËs
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the approximate eigenfunctions given in Eq. (4.2.4) are very useful. In practice

this approximate solution is much easier to work with and, although it is valid

only for small flare angles, it has been shown to provide acceptable results for

flare angles up to 60 degrees [Narisimhan 1973]. The field expressions for a coni-

cal waveguide are now completely known from Eqs. (4.1.11)'(4.1.16).
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4.3 Corn¡gated Wslts

As has been described in section 4.1, surface impedances have been used to

model corrugated walls in several types of waveguides including circular cylindri-

cal [Clarricoats and Olver 1984] and conical [Clarricoats and Saha 1971]

waveguides. The analysis of the corrugated conical vraveguide leads directly to

spherical hybrid modes which are analogous to the hybrid modes develcped in

cylindrical waveguide.

Corrugated conical waveguides have been analyzed ín the literature using

two models. For horns with a narrow flare angle (less than approximately 30

degrees) the waveguide can be treated as a circular cylindrical waveguide v¿ith a

varying diameter [Dragone 1980]. Iforns with half-flare angles greater than 30

degrees must be analysed using spherical coordinates [Clarricoats and Olver 198,i].

This section is concerned with the analysis using a spherical coordinate system.

The boundary conditions for a conical waveguide with corrugations in the Ö

direction are;

Eö

Irn =Zt=0 and
H6
ER

=11 øtB=01 (4.J.1)

In the above equation Z 1is equal to zero since the E -field in the $ <iirec-.io^r

is shorted by the continuous ridge of metal in the $ direction. ln the radial (A)

direction the waveguide wall is discontinuous and the impedance is dependent on

the depth, shape and width of the corrugations. Setting Yt:0 gives rise to the

spherical hybrid modes in corrugated waveguide. Fig. 4.2 shows the geornetry of a

corrugated horn.

Assuming an ei'' time dependence, the radial ûelds of a spherical mode in a

conical waveguide can be written as;

ER : W 
niçrn) Pf;(coso) cos m$ (4.3.2)
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AA,V v*l
(4.3.3)YúIn = n 2, 

çt n) P f; (coso) sin nr g
jkRz

where Pf;(cos0) is the associated Legendre function of order m and degree

v;

n l lt n) is the spherical Hankel f unction of the second k ind and order u ;

lg is the admittance of free space;

Ã is the hybrid factor possessing a characteristic frequency dependent value

for each mode,

and the coordinate systeni used is shown in Fig. 4.1.

The transverse fields can be obtained from Eqs. (4.3.2) and (4.3.3) as;

- I -P!:(coso)ìREs=-Áif 3 Qrnl[Fr;''(cos0)+nrÃ#J cos nz0 9.3.4)

(

Æa=AH31ml[n_rf;(cos0)+'F#),in,,,+(4'3.5)

( Pi (coso) ì
Y *P;,r o: -AH 3 (Ên ) 

IÃFP 
f (coso) +'IffiY 

J 
sin r: ö (4.3.6)

( 
-- PT (cose) ì

YßH ø=-AH?(kR)lPf; (coso)+'^-BA#J cos r;r4, Ø.s7)

where Bf*l=ü-P anct the prime indicates differenriaticn with respecr to' Hf(Ètt)

the arguement.

Up to this point in the analysis these equations are not dependent on which

type of horn is being considered.

Tbe tangential fields at the boundary of the waveguide may be v¿ritten in

terms of the boundary conditions as;
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By matching the boundary conditions at 0=01 we have;

[,'"++-z: #^) = ,,

[-";uÊP +* +11 =0.
I p sino H L)

pT@ì=+
/\srn01

Pi @t): fv(u+1)= -t ÂÞ
/ sin01

dPT(cos 0)

pi; $t)= pfth-

(cot krt . ****;,

Hr- ioeoR
E r u(u +1)

E r :itl'4-
H, u(u+l)

(4.3.8)

(4.3.e)

(4.3.1,t)

(4.3.11)

(4.3,12)

(4.3.13)

and,

where;

at 0=0y

and;

_-j Ír1o
KR

The average slot admittance, f 1, is given to a good approximation by;

v

Yt= -j rl0

where d is the deptlr of the slot and there are at least 3 slots per wavelength

I\'fultiplying Eqs. (4.3.8) and (4.3.9) yields;

^'þ'pT @t)þr tu,i-t v(v +1)) =
sin2o 1

(4.3.7t)
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Subtracting Eq.(43.8) from (4.3.9) yields;

î 1 Yu(u+1)sin01
a 

-- ,1mþ (4.3.1s)

Eq. (a.3.14) is the modal equation for u and Eq. (4.3.15) gives the hybrid fac-

tor Ã in terms of the normalized wall admittanc", F.

Eq. (a3.1a) is inconsistent with the separation-of-variables assumption made

in section 4.1 unless the normalized admittance, f-, ir independent of R. This

inconsistency can be avoided by choosingkd=t, thus setting F:0. For ¡n=7

(lowest order rnode) we may write equation (43.14) as;

f j(cosOr) : * 1 (4.3.16)

for the balanced case, whete

f ] (cos 0r) : pi (sr) sin01 .

Also, from Eqs. (43.15)

Â:È j (4.3.17)

The solutions of the two previous equations corresponding to the negative

sign are termed tbe Ë18 modes whereas the solutions corresponding to the posi-

tive sign are termed the .EIl modes. Of the two types of modes, the Ii^Û modes

are more useful since they have a maximum on axis. The balanced HE11 mode is

similar to a linear combination of the TE1¡andtheTþ111 modes found in smooth

conical waveguides since it provides a nearly linearly polarized aperture field.

The Legendre functions used to describe the hybrid-mode fields inside a con-

ical structure can be approximated by making use of the following relations;

r j (cos 0):/ 1(q 0) (4.3.18)
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P ]'(cos 0):q U r'(q 0)l

where;

q = llþ +1)

The approximation to the field expressions can then be written as;

(4.3.1e)

(3.2a)

(4.3.21)

(4.3.22)

{4.3.23>

(4.3.24)

(4.3.2s)

RE 6=-¡fi j Q,n)qlur t,n o)+Ã#] ".,u

[r,r*o).ry] ,,"*REo :AF3r kR)q

rvhere Ã> O signifies Ë18 modes and Ã< 0 signifies .EÈI modes.

Under balanced conditions, (Ã=+ 1), Eqs. (4.3.11) and (4.3.12) can be fur;irer

simplified. Using the Bessel recurrence relations;

J, çx ¡=r¡¡J g(x )-.1 2@ ))

y 
oRH s=-AHl &R)q[u^r-rno¡*S-] ,,'*

roRH ø=-AH j(kn)qþ r*u)*Illj4] "",*

* =$[l s(x)+J2(x)]

t

and dropping the raclial dependence, the field expressions may be written as;

E s=-e Ue(q 0)lcos$

E ö=*q [Jo(q 0)]sin$

fl s:*qV z(q 0)lcos$ (4.3.26)
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H 6=*qlJ z(q0)lsin$ . (4.3.27)

where ^y < 0 lor EH ¡, ûtodes and ^y ) 0 for HEt, modes. The eigenvalues of

Eq. (a3.2S) are given in table 4"1 for the first five modes.

Using Eqs. (4.3.18) and (4.3.19), the characteristic equation (Eq. (a3.16)) may

be written as;

(1-r) +:ro(r) (4.3.28)
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Table 4.7a : HE 1n h{ode Eigenvalues

Mode Number

"v 1 2 3 4 5

0.00

0.20

0.40

0.60

0.80

1,00

t.B4t2

1.98l'4

2.7092

2.2192

23171

2.4048

53314

5.3702

5.4085

5.4463

5.4835

5.5201

85363

85600

8.5836

8.6072

8.630:5

8.6s37

11.7060

77.7232

71.7404

11.7575

17.7745

11.7915

74.8636

14.8777

14.8906

14.9041

74.9175

ß.%49

Table 4.1b : EH tn Mode Eigenvalues

N4ode Number

T 1 2 3 4 5

-0.00

-0.20

-0.40

-0.60

-0.80

-1.00

1.8412

7.6741

1.4739

72235

0.8797

0.0000

5.337¿,

5.2925

5.2533

5.2140

5.t747

5.1357

85363

8.5126

8.4887

8.4649

8.4411

8.4173

11.7060

11.6888

71.6716

17.6543

11.6371

11.6199

74.8636

14.8501

14.8366

14.8230

14.8095

1,4.t960



51

4.4 A Dlelectric Llned Wnil

Tbe following is an analysis of yet another conical structure which ñay sup-

port sphericat hybrid moçles. In this section the walls are lrandlecl simply as an

impedance boundary and the contlitions on this impedance are thett found which

witl suppoit hybrid modes. Figure 4.3 <lisplays the gen,:rai lay':ut of tlre ccnical

har'n with surface impedances on tt¡* lvall.

Foliowitg Ciarricoats [19ó{¡], v¡e have þ:r1 andHR ¡

I! 
E-

ËÀ
=Y 1. Frort rhe fìelci

expressions ir¡ a corical region fron: section 4.1, if we set;

dP'| (cos01)
- 

d (cosû1)
^ ._¿È,Q:n)

rr - d (frÀ)

P =P;¡(cosoi) Ê =tâ 
"(e^¡î 

)

tl¡en we may write;

"y. Alicwing lR to become large so that

å'r' I uo ìT=j--- l-"1arut l{'o )

H¿þ

EÆ
=¡,.u#tÐ [.,"0,ä.;å;#r):n,,

Eþ

[rn
. Rl

="t col,ol1ra¡ 
[

P' m r7't_srnsr 
- 

-r--:-- -;- -' p sin01 f/ T

4r

(4.4.1)

-..7-Ll (4.4.2)

By solving for 1 in Eq. (4.42) and substituting into Et¡. (4.4.1), \ile can elimina,te

HI

t I
J

and (4.4.2). After some manipulatiou v¡e obtain:

furtl.rer simplifies Eqs. (4.4.1)
H

sin2o,| 1 uinzo yf,- +ô )=mz (4.43)
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(4.4.4)

In order for Eq. (4.43) to be consistent with the separation of variables

assumption used to obtain the field expressions, it must be independent of Il. In

the analysis of hybrid modes in corrugated wa'reguide this inconsistency is avoi.ded

by setting Ír=0. In the present analysis it can be avoided by setting â =0.

Setting Eq. (a.a.a) to zero yields;

a _D.y ,, "rþ_J1¡z _ i sin0ru(,.lX.jUI-_þr t)-
L -' {¿ t' t p aopoR2r2 trt€glr,gR

53

ttoY;e&t _
ztYt

P v(v+11
p' sinO1c,:Ã

j (4,45)

(4.4.6)

Since both Í1 and Zy arc connplex, another relation is needed in order to salve

for them explicitly. There are, however, cerfain restrictions placed on l1 aad Z7

by Eq. (4.4.5). These restrictions are;

Re

this process we obtai.n a quadratic of the form:

f por r-oÉ r ìl-"n J

1

directions. This condition corresponds to setting f 1=--- and Z r:rltì0. From-rlrlo

í prv r-.# r ì

l-7'Y ' l
=Q

Im : P :þlII
p' sin0lorR

(4.4.7)

This is as far as the analysis can proceed without further knowledge of the

relationship between the angular and radial surface impe.rlances ai the wall of a

dielectric lined conical wavegu ;ile.

One possible condition on tf¡ese impedances is that they are equal in both

rlz+!-tþlÐ
P' îoR

1-n *1-0j rrrsin0lc¡
(4.4.8)
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sin20,
P

-=!lnP

(4.4.e)

(4.4.10)

P r,(vl1)--1 *qt=-{ irt-R ¡'*inot.o=
-Pz ,2fu+l\2 _ 1 __'
W 4\e" 

",'zsinfuC 
-r

Yr

The analysis of the modes now proceeds exactly as in the corrugated

waveguide case. Substituting ô:0 into Eq. (4.43) we obtain the eigenfunction

identical to tbe corrugated waveguide case, i.e.;

Equation (4.4.10) has bee¡r solved in the HE1¡ case (m:1) for flare senti-

angles ranging between 160 and 900 [Clarricoats 1969]. Table 4.2 tabulates the

irnpeclance taper necessary to support an IIE 11 mode in a conical waveguide with

a fiare semi- angle of 160, 450 anct 900 over a three decade range of R at 6 Gi{z,

Figure 4.4 is a plot of the data in Table 4.2 f.ot practical values of R. Only the

positive roots of Eq. (a.a.8) have been plotted.
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Table 4.2 : Roots of quadratic equitiort (a.a.8)

0t=160 0r=450 or:900

R rl+ rl_ rl+ rì_ rl+ rl_

.01

.02

.û5

.1

n

5

1.0

2.0

5,0

10.0

itOz.e

js1.sl

i20.64

j103e

is.337

i2.46s

it.63e

it2e0

j1.108

j1.0s3

-j.00e71

-j.01e41

-i.04843

-j.0e61e

-j.1874

-j.4os6

-j.60eB

-i.77sl

-i9023

-j.e4e8

j3s5e

i17.841

j7.2s2

j3.81e

i2.227

tl.417

j1.1e3

j1.0e3

j1.036

j1.018

-j.0280e

-j.0s60

-j.137e

-i.z61e

-j.44ea

-j.70s7

-j.8378

-j.e1s0

-j.e651

-j.e824

its.82

j8.00s

i3.4428

iz.a('1.

jt.46e

jl.170

j1.082

j1.040

j1.010

j1.008

-j.0631e

-j.124e

-j.zeas

-j.48s1,

-j.6808

-j.Bs4]

-j.ez40

-j.e610

-j.e840

-j.eezz
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Chapter 5 : DESIGN OF A DIELECTRIC LINED CONICAL HORÌ,I

The next logical step in this analysis is to attempt to develop a practical

design for use as a hybrid mode feed. Dragone [1981] cites several structures

which can be used to simulate a surface impedance in a waveguide. The ûrst sec-

tíon of this chapter will review these structures and present a basic analysis. The

next section uses a variable thickness dielectric lining to provide the neccessar¡'

suiface impedance taper.

5.1 Surface Impedances

The idea of an equivalent surface impedance at ân air-dielectric boundary

was investigated by several authors. In a book by Collin [196C] both thick an<l

thin dielectric sheets over perfectly conducting metal plates are discussed. In both

cases, the analysis is accomplished by treating the dieiectric slab as a transmissic;r

line and transforming the zero impedance condition at the dielecric-conducËor

interface to an approximate value at the air-dielchic interface. In this analysis the

equivalent surface impedance at the air- dielectric interface is dependent oir the

angle of incidence, frequency and polarisation of the incoming wave and the pe,-

mittivity, permeability and tlìickness of the dielectric.

Wait [1962] has investigated the surface impedance of a multi- layered space

in order to investigate propagation over the earth's surface. IIe preserrts numeri-

cal results for seve¡al situatiorrs using lossy dielectric layers. In the two layer case,

Wait [1964 p.54] shows that if the argument, (o p"a)+hr, i* gr"ut"r than a'uout 3,

the amplitude of the surface impedance is equal to unity and the phase is zero. In

this case, å 1 is the thickness of the dielectric layer and o is the conducti'vity of

the dielectric. Thus, the effect of the conductor on the surface impedance gradu-

ally decreases as the thichness of the layer increases. It can also be seen that the

surface impedance does not vary wildly as a function of dielectric thickness, as is
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tbe case witb the lossless layer.

It must be remembered that even if the problenr of the equivalent surface

impedance bas been solved for a flat surface it is not neccessarily valid io apply

this situation to the interior of a waveguide. Waldron [1969] warns that tbe only

sure method of finding the equivalent surface impedance of a dielectric/metal

structure is to solve the boudary value problem exactly and then take tl¡e ratio of

the appropriate E and H fields at the air-dielectric surface. Waldron goes on to

comment that there are situations where the surface impedance boundary condi-

tions can be used to solve a wal'eguide problem. He verifies that the surface

impedance model will work for a circular waveguide with dielectric lining if the

impedance of the lining is taksn to be tl¡e same as the impedance of an equivalent

thickness of dielectric over a plane metallic plate. Dragone [1981] has used this

method to solve for the fields in a large diameter, narrolv flare-angle conical born.

By choosing the thickness of the dielectric carefully the cone can be made to sup-

port hybrid modes.

To obtain the surface impedance taper neccessary to satisfy the corrditions set

forth in section 4.4 it rvas assumed that the surface impedance mo,jel useC by l)ra-

gone was applicable. This roay not, in fact, be the case trut in order to f;nd the

exact expression for the surface in'lpedance it would be neccessaty tc solve the

boundary value problem in both regions. This boundary value problem has beeir

solved but only in terms of a radial eigenfunction expansion whicil is not easiiy

applicable to the angular eigenfunction approach taken here [Hadidi 1985]. /,n

obvious extension of this work, one that v¿ould encompass this woik and mauy

others, would be to solve the boudary value problem to find simple explessions for

the field in a dielectric lined conical waveguide.
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5.2 Tapered Surface Erupedunce

The neccessary surface in:ipedance taper to support the hybrid modes in a

dielectric lined conical waveguide is given from section 4,4 by;

th
P v(u+l) I *frl* = -' itìoR- J'.ti"ot.r = 

[

-Pz v v*7 1

@)z +n&R' c,zsinzo1e 62

.(s.2.1)

Thc ¡,resent task is to iincl methods of achieving tliis taper in practice.

The use of tapered surface impedances has been applied to this type of prob-

Iem in the past. Felsen [1959] wrote a general paper which used a linearily

tapered surface impedance to simplify the problem of scattering front lossy cones

and wedges. Bahar [1967) has also used a linearly varying surface impedance to

si¡nplifv the analysis for a conical waveguide. Although neither of these rvorlis

include hybrid mode analysis it is important to note the precedent set by these

papers. Neither of the above two authors offered any methods for obtainir.g ilre

desired surface impedance taper physically.

The model used to simulate the surface impedance of a dielectric slab over

the top of a metal surface is taken from Dragone's paper on r.vaveguides [Dragone

1981]. The general situation is shown in Fig. 5.1 for a three-layered sandr'¿ici' of

dielectric and metal. For this particular application the upper dielectric is takeit

to be air. The expressions for the impedance in the radial and the roll directions

are;

1

ZR=i rztf 
"rr 

+&(l+rz) (s.2.2)

where;

.1 n1
L6= TroT +4(1+f2)- rzr nz

(s.2.3)
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Fo

€g

\rffi7
rzr=

n2

In the above equations, xl and fl2ate the respective indices of refraction for eacfr

dielectric, Kg is tlie rvave i:npedance of free space and these expressions a:¡e vaÏJ

f", +- 
<< T,f . n" is the resistivity of the conclucting wall. This corrcìrtion is

certainiy naet by assumming R, :0 as would be applicable to a perfec:iy cc.nduc¡l-

ing metal wall. This simplifies Eqns. (5.2.2) and (5.2.3) to obtain;

¡/-\
T =tantt ovr I -"1 ¿)

.n1 .zn=j ,n i noT

. 1 n1
Z a:i --:- -i qO T' rzr nz

1

Zn--Z ö=i ,r, qo T

rl0

(s.2.4)

(s.2.s)

This thesis has assumed that the central cone of dielectric is air, therefore n1=l.g

A further simpliûcation to the wall impedances is to assume that r îr, ,rt2 =1.0

Under this conclition the two impedances are equal and can be written as;

I

(s.2.6)

Equation (5.2.5) is very useful for the present purpose. It is possible under

the above approxinations to simulate the impedance surface by varying the thich-

ness of the dielectric. There is, however, one disadvantage to this tyue of sirnuli¡-

tion. Since the inner surface of the dielectric was assumed to be in the shape of a

cone (i.e. with straight walls) it is the surface at the metal dielectric interface
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which must l¡e curved to accomodate the changing thickness of the dielectric lin-

ing. Figure 5.2 displays the general shape of the structure which could support

hybrid modes in a cone.

Another possible method of achieving the same results but using a constant

thickness dielectric layer on tbe walls, is to vary the dielectric properties of the

layer as a function of the radial distance. This may appear to be a more favour-

able solution since the dielectric structure could then be added to any standard

conical horn with smooth walls in order to convert it to a hybrid-mode l¡orü. Tbis

solution may not be very practical since the rnanufacturing of an insert with care-

fully tapered dielectric properties rriay be very difficult. This is certainly one area

of interest for the commercial applications of this idea.
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Cbapter ó : RADIATION FROM A DIELECTRIC LINED FIORì.I

Once tl¡e ûeld distribution in the aperture of any horn is known it is a rela-

tively simple procedure to olitain the far field radiation characteristics by employ-

ing the field equivalence principles.

The first section of this chapter calulates and plots the aperture field distri-

butions for the 0=0o case for the first three HEu and EII6 modes. The radi-

ated ûelds for these modes are then presented in the second section along with a

brief description of how these radiation patterns were calculated.

6.1 Á,perture Field Dlstrlbr¡tlcn

In section 4.3 the aperture fields due to spherical hybrid modes were

analysed. The aperture field for the ô=0o plane is,

E6=T¡í(qu). ¡# (6.1.1)

and for the $=9go plane;

Es:p¡i(qr) -|- # (,.1.2)

Figures 6.1 througir 6.3 display the E-plane aperture ûelds (0:C' ¡rlane) for

the first three HE rn modes. Figures 6.4 through 6.6 do likewise for the first three

EH rn modes. Since the modes are assumed to be balanced hybrid modes, t!,e FI-

plane (0=900) aperture distribution is identical to the E-plane distribution.

These plots are for a large, hybrid mode conical antenna with an aperture diarne-

ter of 89 inches. The flare angle is assumed to be small so the aperture can be

considered in cylindrical coordinates rather than spherical.
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6.2 Redieted Fields from s Die[ectric Lüned Horn

The radiated fields from a specific aperture distribution can be found using

the well known field equivalence principles. The vector potentials can be found

from tbe equivalent electric and magnetic currents over the apertu:e as;

(6.2.2)

Figure 6.7 displays the coordinate system used in this analysis. The source is

denoted by the primed coordinates and the far field by the unprimed; as is the

staadard conventiori.

Using the far ñeld approximations for R, written below in equations (6.2.3)

and (62.4);

R-r -r 'cos.þ 
Lc¡r phûse term (6.2.3>

It:r f.or amplitude term (6.2.4)

E<¡n. (6.2.h) and (6.2.2) reduce to

á-, (r )= #t, t 
"qr'¡e-ikÅ 

d,s

Ã^ (rl: #1, l^ 1r )e-rÈoR ds

Ã,(r)=+r-ikú N
+7Í r

Ã,n(r)=*r-ikor L

N =l I rl"lr)¿i*t 
cosùrt'

(6.2.1)

(6.2.s)

(6.2.6)

where,

L =l I rl^(r')¿itv 
cos'l'ds' 

.
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In the radiation zone the expressions for the electric and magnetic ûelds can

be found from the potentials as;

E (6.2.7>-0r

ik ^ e- 
jk"

r u:-fto (¿ó+r¡No) (6.2.8)

(6.2.e\

H r:o (6.2.10)

H r:iV.-iw (¡¿.-fu) (6.2.11>
+fir rl

H , -_ikoe-ih" (N, +fu) . ( 6.2.12)" ó- 4rr rl

For a flat aperture, the expressions for N and L can be written in terms of

Cartesian coordinates as;

ff o=.[ l, tJr cos0cos$ *JrcosOsinö -J, sin0]ei¿o' 
costÙrt ' ((,.2.13)

N o 
:f .f, t -r, sin g *J, cosq ]e 

ie o' cosÙrt ' (5.2.14)

L o= I l rlu,cos0cosg 
*M, cosos ínS-M,sin0]ciÀd tssù/s (6.2.ls)

L +: Í ! ,Iu ,sing *it4, cos6]eird cosÙ¿t ' (6.2.16)

A transformation of coordinates is neccessary to apply these expressions to

the spherical aperture of the conical horn. The alternative option would be to use

a cylindrical aperture model for the conical horn and account for the spherical

phase front by modifying the phase of the aperture distribution. It was decidecl
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that using the spherical aperture method was mo¡'e useful since the transformation

of the radiation integrals to spherical coordinates would be applicable to other

problems and may be useful in future work. Ttre expressions for the radiation

integrals from a spherical aperture are presented belolv.

Ne=J ! l,{stn0'cos0 cos(0-0) - cosO sinO)

*Ju(coso'coso cos($-ô) + sinO sinO') * J*.(cos0 sin($-$))

,iÈr'sinO' sin0 cos(ó-Ö') + coso coso r' 2 sing' d g' d ö' (6.2.17)

Nó = [ I -1,(tin0'sin(g-ö) -Jucoso'sin(ô-$') +Jo.cos(ô-cÞ)

,ikr'srn6' sino cos($-$) + cosO coso'r'2 sing' dg' d ö' (6.2.1g)

Identical expressions are obtained for L6 and LOby replacing J by IvI in the

above two equations.

These expressions were utilized to generate the radiation patterns shorvn in

Figs. 6.8 through 6.13. Since the ûelds corresponding to the HE modes in the

conical structure are largely concentrated in the center of the aperture it v¿as

expected that the contribution of the fields diffracted from the edges of the horn

will be negligible when compared to the radiated fields, This is not true cf the

EH modes since tt¡ese modes have a large field at the walls of the horn. The

diffracted field from the edges of the horn was not computed into the fa; field

plots for two reasons. Firstly, the edge of this structure is not a simple metal edge

but a metal edge covered partially by dielectric. In this case it is somervhat more

difficult to calculate the diffracted field unless a model for the fields inside the

dielectric lining is found. This is one area of future work which could be contin-

ued. The second reason is that most applications of hybrid-mode horns utilize

only the HE n mode; the EI-I modes and higher order HE modes being
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undesirable. Thus, these radiation petterns provide a ûrst order a.pproximation

which is useful in gaining a fundamental understanding of the befiavior of each

type of mode. In comparing the tbeoretical plots with previously published exper-

imental plots it was found tha". the effect of diffraction can indee<Ì be importanî,

especially in small aperture horns. The sharp nulls in the experimental plots are

masked by contributions f¡om diffraction at the edges of the horn in the experi-

mental plots.

Figure 6.14 shows the E and I/ -plane ûelds of a smooth-walled corrical

horn given in a paper by Potter U963] for a horn w;th a half-flare angle of. 6.250,

an aperture radius ot 73 cm. and at a frequency of 9.6 GHz. The comparison in

this figure between the theoretical and measured plots points out the delìciencies

in the aperture integration method. For comparison, Fig.6.15 shows the far field

as calculated bt' the aperture integration method of a conical l¡orn of tl¡e same

dimensions as in Fig.6.14 but with hybrid-modc excitation. Both of these patterns

(figs. 6.14 and 6.15) have a similar envelope, however, the symmetry of the patterns

of the hybrid-mode feed make it a better choice for high performance api:lic;r-

tions. The sidelobes in the experimental curve of Fig. 6.74 are at about -18 dB.,

or about 7 dB- above the values predicted in the theoretical curves. If this same

7 dB. factor is applied to the plots in Fig.6.15 tiren a sidelobe level of less than

-25 dB. is predicted for a hybrid-mode horn; an irnprovement over the surootll-

walled horn.

A further conrparison was done for a horn with a half-flare angle of 150, a

length of 27 cm. and at a frequency of 7.4 GHz. Figure 6.16 is a previously pub-

lished result by Jeuken [1969]. Figure 6.17 is the result obtained by ttre aperture

integration technique. It was found that the envelope of the theoretical plot of

Fig. 6.17 approximates the nteasured plot of Fig, 6.16 quite closely except for the

nulis.
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CONCLUSIONS

This thesis presents the analysis of circular cylindrical waveguide for the gen-

eral case of an impedance boundary at the wall of the waveguide. It was found

that hybrid modes exist in circular waveguide provided that the wall inrpedance is

not zero or in6nity. These modes will approach tihe balanced state as the radius

of the waveguide is increased. For the special case of tl¡e wall impedances in the

two tangential directions being reciprocal and the normalized impedance in the

radial (Z ) direction being equal to approximately 2.404, the eigenvalue of that

mode is that of the balanced I'tr8 fl mode even for small diameter waveguides.

In the case of the conical waveguide with a constant impedance wall it was

found that this waveguide will not support the hybrid modes that are associated

with the corrugated waveguide. In order to satisfy the same characteristic equa-

tion as in the analysis of the corrugated waveguide it was found that it was nec-

cessary to taper the impedance of the wall as a function of radial distance along

the waveguide.
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