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Abstract 
 

This project implements a parallel algorithm for Computed Tomography based on 

the Algebraic Reconstruction Technique (ART) algorithm.  This technique for 

reconstructing pictures from projections is useful for applications such as 

Computed Tomography (CT or CAT).  The algorithm requires fewer views, and 

hence less radiation, to produce an image of comparable or better quality.  

However, the approach is not widely used because of its computationally 

intensive nature in comparison with rival technologies.  A faster ART algorithm 

could reduce the amount of radiation needed for CT imaging by producing a 

better image with fewer projections. 

 

A reconstruction from projections version of the ART algorithm for two 

dimensions was implemented in parallel using the Message Passing Interface 

(MPI) and OpenMP extensions for C.  The message passing implementation did 

not result in faster reconstructions due to prohibitively long and variant 

communication latency.  The shared memory implementation produced positive 

results, showing a clear computational advantage for multiple processors and 

measured efficiency ranging from 60-95%.  Consistent with the literature, image 

quality proved to be significantly better compared to the industry standard 

Filtered Backprojection algorithm especially when reconstructing from fewer 

projection angles. 
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1 Introduction 

1.1 Purpose 
This paper examines possible parallelization schemes for the ART algorithm for 

Computed Tomography.  As X-ray tube and detector technologies improve, 

Computed Tomography (CT) is increasingly used for diagnostic imaging small 

anatomical bodies.  Cancerous lesions are of particular interest; however the 

carcinogenic nature of X-ray imaging deters the use of CT imaging in many 

cases, especially suspected cancers such as brain (head) and breast.  The 

greatest advantage of the ART family of algorithms is the ability to produce 

better images with fewer projections, where each projection requires additional 

radiation dose. 

The prohibitive aspect of the ART algorithm is the processing time required in 

comparison with Fourier Backprojection (FBP) techniques. In order to realize the 

radiation dose advantages, a faster form of the ART must be implemented.  The 

purpose of this paper is to show that the proposed parallel ART algorithm 

exhibits an efficient speedup while maintaining the superior image quality of the 

ART algorithm.  Timing results will be measured against a serial implementation 

as well as a FBP implementation.  The Image quality of the parallel ART 

reconstructed images will be examined empirically and qualitatively in 

comparison with an FBP implementation 
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1.2 Scope 
First, an introductory explanation of Computed Tomography will be given.  Then 

the ART algorithm will be briefly developed, along with two of its variations 

MART and SPARTAF.  An introduction to a competing algorithm family, the 

Fourier Backprojection, is also given.   

The data dependencies present in the basic ART algorithm are assessed.  An 

analysis of development options in pursuing parallel versions of this algorithm 

follows, leading to a conclusion regarding the best method for parallelization of 

the ART algorithm.  2-Dimensional, parallel beam geometry will be considered. 

A brief description of the experimental platforms for message passing and shared 

memory implementations follows. A description of the shared memory 

implementation for two dimensional reconstruction is presented. Timing results 

of the message passing and shared memory implementations are presented.  

MSE (Mean Squared Error) and Entropy are used to quantitatively assess the 

image quality of the result images.  In addition, result images are compared to a 

basic form of the Fourier Backprojection algorithm. 

1.3 Prior Work 
Published works in the field of Computed Tomography reconstruction fall into 

one of the following three categories:  CT algorithm advancements, dedicated 
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reconstruction hardware, or parallel processing.  The new work presented in this 

thesis is a new parallel processing technique.  In the interests of completeness, 

previous works in all three areas will be discussed here. 

Vector computer were used by Guerrini and Spaletta [12] for image 

reconstruction.  The major limitation in that implementation was the speed and 

memory capacity of the hardware used. 

3D reconstructions by Chen, Lee, and Cho [13] used convolution backprojection 

on an Intel iSPC/2 multiprocessor.  Their incremental backprojection algorithm 

considers one ray at a time, as opposed to processing pixel-wise, and proved to 

be faster than the conventional backprojection algorithm.  Convolution and 

backprojection functions were both parallelized using pipelining.  Speedup 

ranged from 5 to 27, depending on problem size and number or processing 

elements. 

 

Although the work does not appear in a peer reviewed publication, cone beam 

tomography in 2D was done in parallel by Rao, Kriz, Abbott, and Ribbens [14].   

This work used both CM5 and Intel Paragon platforms using message passing 
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technology.  Fourier operations were performed on the CM5 using Connection 

Machine Scientific Subroutine Library.  This library allowed Rao et al. to easily 

map FFT operations to the CM5’s massively parallel architecture.  Up to 256 

processors were required in experiments to achieve speedup on the CM5, while 

only 8 processors produced speedup on the Intel Paragon.  Paradoxically, the 

message passing overhead begins dominate processing when increasing the 

number of processors in the CM5 implementation to the 200-500 processor 

range. 

Based a an efficient 3D cone beam algorithm known as the Feldkamp algorithm 

[16], Reimann et al. [15] implemented this Fourier backprojection method on a 

shared memory architecture, as well as a message passing implementation on a 

cluster of workstations (COW).  Using small scale machines, the authors 

discovered load balancing issues inherent in the algorithm and presented two 

methods to overcome.  Their COW method increased utilization on the 6 

machine cluster from 58.2% to 71.7%.  The shared memory technique achieved 

a speedup of 1.92 with 2 processors, for a utilization of 95.1%.   

Laurent et al. [17] examined three different algorithms for 3D cone beam 

reconstruction. The authors examined Feldkamp, block ART, and SIRT 

(Simultaneous Iterative Reconstruction Technique) analytically as well as 

empirically using five different MIMD (Multiple Instruction Multiple Data) 
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computers.  These included a network of workstations (Sparc), a workstation 

network of 16 AXP processors, a 32-way Paragon (i860), a 128-way 3D Torus of 

AXP’s (TD3), and a 32-way SP1 using RS6000 processors.  Parallel programming 

used the Parallel Virtual Machine (PVM) library.  The TD3 produced best speedup 

results. 

Smallen et al. implemented 3D cone beam reconstruction using grid computing.  

The Computational Grid Parallel Tomography (GTOMO) method used both a 

network combining 7 workstations and 128-way SP2 supercomputers.  The work 

explored scheduling strategies for queuing work for image reconstruction. 

The work discussed thus far is primarily focused on Fourier techniques, with a 

lack of development of parallel approaches for ART techniques.  Other iterative 

techniques such as Maximum Likelihood (ML), Expectation Maximization (EM), 

and Simultaneous ART (SART) [19], [20], [21].  EM work has been primarily 

focused on Positron Emission Tomography (PET) to compensate for high noise 

levels in that imaging modality.  Transputer [22],[23], Butterfly network and 

Paragon[24], Beowulf cluster [25], and peer to peer approaches [21] have all 

been used to parallelize the EM algorithm.   

Gordon et al. [38] first introduced the ART algorithm for use in image 

reconstruction in electron microscopy prior to the first commercial CT scanner.  
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Gordon [39], [41], [42], and others developed ART based and other iterative 

algorithms for CT. Continuing work by other researchers has yielded advances 

such as Rangayyan et al. [26][40], who improved streak formation for small 

numbers of views (angles).  Deblurring methods for artifact reduction were 

introduced by Wang et al. [27],[28]. 

With iterative algorithms, faster convergence to a solution will reduce iterations 

and significantly speed processing time, resulting in a substantial body of work 

focused in this direction.  Herman and Meyer [29] suggested non-uniform angles 

between projections, while Guan and Gordon [43] found that considering 

uniform angles in a different order improved convergence.  Specifically, Guan 

and Gordon found that considering angles in an order such that consecutive 

angles are approximately orthogonal produced an optimal rate of convergence.  

The paper claimed that in addition to improved convergence rate over the ART 

method, their algorithm over all produced superior image quality when compared 

to Fourier backprojection, especially for limited views (few projections).  Mueller 

et al. [44] advise a weighting scheme that according to their results produces 

better, reduced noise images. 

A major advancement to ART came with SART.  However, convergence for this 

technique was not theoretically established until recently by Jiang and Wang 

[30],[31]. 
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Hardware focused work such as Lin and Jain in 1994 [1] and Shieh et al. [4] 

pursues a ground up hardware design.  Coric et al. [5] presented an FPGA based 

parallel approach, discussing some of the major tradeoffs inherent in FPGA 

implementations.  The most significant drawback is the use of fixed point 

arithmetic, leading to quantization errors not seen on CPU-based floating point 

implementations. In general, the hardware is normally algorithm dependant and 

any algorithm changes would require hardware changes. 

Lattard et al. [6], [7] and Fitchett [3] used a hardware approach to 

reconstruction.  Both projects used a SIMD array of processing elements, 

differing in the elements used.  Lattard et al. proposed an array of cell 

processors, with a one-to-one mapping of processors to pixels.  In addition to 

the inherent weakness of algorithm-specific hardware, the one-to-one mapping 

of processors to pixels imposes a further restriction to the data-set.  The 

hardware is limited to a single image size.  Although the architecture is 

theoretically scalable, advances in CT technology leading to larger 

reconstructions would still require either a larger scale processor array, or a 

different pixel-to-processor mapping. Lattard and Mazare suggest that many-to-

one mappings are possible, but the effort required to change the pixel-to-

processor mapping scheme is not clear.\ 
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Lattard and Mazare present further possibilities in [7], admitting that, “The 

specificity of the processing part demands that we must redesign it for each 

application but leads to very fast computing and low complexity.”  Mueller and 

Yagel [32] proposed a more financially feasible solution by using PC graphics 

hardware and texture mapping to produce promising speedup for SART. 

The approach presented in this thesis differs from other parallel iterative 

methods in that it is relatively hardware independent.  One key advantage of the 

approach presented in this paper is its practicality and portability.  Porting the 

solution to different platforms is relatively straight forward.  While it is designed 

to take advantage of shared memory architectures, it can be run with equally 

valid results on a single processor machine, and can scale to various numbers of 

processors without re-compiling.   CT manufacturers could potentially use not 

only off-the-shelf processors and peripherals, but whole systems off-the-shelf for 

the image reconstruction unit of a CT scanner.  In addition, algorithm 

improvements could be implemented going forward with relative ease in 

comparison with the hardware changes required for improvements to any 

custom hardware configurations. 

Specifically an 8-way IBM P-server (a scaled down version of the Cortex server 

used in experiments for this research) can be purchased off the shelf from IBM 

for cost in the range of $48,000 CDN.  A scaled down 4 processor model is in the 
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range of $28,000 CDN.  With newer 64-slice CT machines selling for prices in the 

order of $2,000,000 CDN, the incremental cost and simplicity of this solution 

make it feasible if dose and/or image quality can be improved. 

While limited work on parallel iterative techniques was done by Laurent et al. 

[17] using a block-ART algorithm for 3-D cone beam geometries, the advantage 

of block-ART is only evident for noisy data sets as seen in Carvalho and Herman 

[32].  With single photon release x-ray emitters around the corner [34], 

performance in low noise situations will certainly be important in future work.  In 

addition, the nature of the block-ART approach lends itself easily to the finer 

grained parallelism presented by Laurent et al.  This finer grained parallelism 

presumably comes at a cost of more frequent communication in comparison with 

a courser grained parallelization of ART.  Carvalho and Herman also showed that 

the ART family of algorithms shows a distinct advantage to Fourier 

Backprojection techniques in that the quality of ART reconstructions are not 

adversely affected by increased cone beam angle.   

ART shows advantages over Fourier Backprojection for smaller numbers of views 

and a broader range of cone beam angles.  ART shows advantage over similar 

algorithms such as block-ART for performance in low-noise data sets.  While 

FPGA’s are more flexible than ASIC-based approaches [5], platform independent 

software-based solutions offer the most adaptable approach for future advances. 
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With the fast paced progress and evolution of 3-D medical imaging technologies, 

flexibility is a key attribute for any lasting technology.  Based on this body of 

literature, the potential advantages of a parallel ART algorithm are evident, and 

warrant exploration. 
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2 Introduction 
2.1 Computed Tomography 

Computed Tomography (CT) is an imaging modality which uses the technique of 

image reconstruction from projections.  CT can be used to produce a 2D image 

from 1D projection data, although newer techniques produce 3D volumes from 

complex projection data sets.  In order to simplify the discussion, reconstruction 

of 2D images will be considered.  All results can be generalized to 3 dimensions, 

although a 3D problem would introduce another possibility for parallelization.   

First, an X-ray projection of an object is taken, as shown below in Figure 1.    

The x-ray source emits radiation, and the detector collects the radiation that is 

not absorbed passing through the object.  Computer Tomography estimates the 

absorption of radiation at each small section of the object, based on the total 

amount of radiation detected through each path.  Each small section becomes a 

pixel in the image representation. 
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Figure 1: Schematic diagram of X-ray projection acquisition.  In this simplified 

scheme, a row of X-ray sources (Si) supply parallel beams passing through the object.  

Each beam is attenuated as it passes through the object, with the resultant 

attenuated beams measured by a row of detectors (Di) [37]. 

 

Then several more projections are taken as the X-ray source and detector rotate 

around the object concentrically, with projections sampled at varying angles.  In 

practice, the projection angles are usually equally spaced and taken in 

consecutive order, although this need not be the case (see Guan and Gordon 

[43]). 

This item has been removed due to 

copyright issues. 
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In practice, modern computer tomography machines collect data in one of two 

ways:  concentric circles or spiral path. 

Concentric circle data is collected by collecting data by rotating the X-ray tube 

and detector array around the subject in two dimensions, without any change in 

depth.  Once a full set of angle data is collected, the depth is changed by one 

discrete step and another set of data is collected around the same axis but now 

at a different depth along the axis of rotation.  In this case, data is collected in 

discrete sections – the projections for a single slice of the object are collected 

together in one pass.  Two dimensional reconstruction algorithms such as the 

one presented in this paper are ideal for this type of data. 

Spiral path data is collected by changing the depth of the X-Ray tube and 

detector array continuously as they rotate, forming a helical path around the 

object.  Several commercial CT machines acquire data in this fashion but  

transform it into concentric circle pseudo-data for convenience in reconstruction 

and processing.  Two dimensional reconstruction techniques then, are also 

applicable to this data collection method. 

2.2 Algebraic Reconstruction Technique (ART) 

One of the first reconstruction algorithms for CT was the Algebraic 

Reconstruction Technique (ART) developed by Gordon, et al. [1].  The ART 
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algorithm is the basis of many variations, developed to improve various flaws 

and non-idealities not addressed by the original ART. 

The ART algorithm begins with some initial estimate of the image to be 

reconstructed (usually taken as a uniformly gray image).  It modifies this 

estimate repeatedly until the pixel values appear to converge by some criterion.  

ART decides how to modify the image by summing the pixels along some 

straight path and comparing this sum to the measured ray sum (referred to 

earlier as an “X-ray projection”).  The difference between projections calculated 

from the image estimate, and the measured ray is calculated, and the 

adjustment is divided among the pixels in the ray sum.  Our new estimate for the 

picture, Pq+1(i,j), is as follows: 

( ) ( ) ( ) ( )( )
( )klN

klSklRjiPjiP
q

qq

,
,,

,,1 −−=+       (1) 

Where: 

Pq(i,j) = the current estimate of the image (after the qth iteration) 

Pq+1(i,j) = the updated (q+1th iteration) estimate of the image  

R(l,k) = choosing the projection at angle θl, selecting the ray k from that 

projection 

Sq(l,k) = the calculated ray sum at angle θl, selecting the ray k 

N(l,k) = the number of pixels in the ray (l,k) 
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A suitable criterion must be introduced for terminating this repetitive operation.  

One such criterion is based on the error in the calculated ray sums: 

ionsNumprojectM
klSklR

E l k q
q •

−
= ∑ ∑ ),(),(

        (2) 

Where: 

M = number of pixels in the image 

N = number of pixels on one side of the image (M = nxn) 

NumProjections  = the number of projections used 

 

P0(i,j) = constant 
while  q < 20 

for l = 1 to NumProjections 
for i = 1 to n 

for j = 1 to n 
if P(i,j) ∈ R(l,k) 

Pq+1(i,j) = Pq(i,j) + (R(l,k) - Sq(l,k))/ N(l,k) 
next j 

next i 
next l 

next while… 
 

2.3 Multiplicative ART 

The original ART algorithm, sometimes referred to as the Additive ART algorithm, 

adjusts discrepancies between measured and calculated ray sums by adding an 

error term to each pixel in a ray.  This has the distinct disadvantage that 

negative values for Pq+1(i,j) are possible.  One possible approach is to set all 
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negative pixel values to zero.  This, however, introduces additional “truncation” 

errors.  Instead, a Multiplicative ART (MART) algorithm can be used: 

 

( ) ( ) ( )
( ) ( )klNklS

klRjiPjiP q
qq

,,
,,,1

•
•=+         (3) 

 

        (3 shows the approach employed in the Parallel ART 

algorithm presented in this paper. 

 

2.4 SPARTAF – Streak Prevention 

Images reconstructed using ART algorithms will display streaking artifacts along 

the angles θl used in the reconstruction.  The streaks arise because of high 

contrast edges (such as metal and bone) in the projections.  Since the 

adjustments in the ART algorithm are applied to all pixels in a projected ray, the 

brightness (or lack of brightness) is spread out over the pixels in the ray.  The 

Streak Preventive ART with Adaptive Filtering (SPARTAF) is designed to reduce 

streaks before they are introduced by using the 8-neighborhood of each pixel to 

determine if a streak is forming.  According to Rangayyan and Gordon [3], 

comparison testing indicated that the SPARTAF increased computation time from 

the ART algorithm by a factor of 2.6.  This highlights the need for faster 

processing to produce better images. 
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Before showing the pseudo-code for the SPARTAF algorithm, we must first define 

a few measures of developing contrast, as defined by Rangayyan and Gordon: 

 

Along the Streak: 

( ) ( ) ( ) ( )
( ) ( ) ( )jipjipjip

jipjipjipjip
c

,2,,

,,,,
1 •++

−+−
=

+−

+−
      (4) 

 

Across the Streak: 

( ) ( ) ( ) ( )
( ) ( ) ( )jipjirjim

jipjirjipjim
c

,2,,
,,,,

2 •++
−+−

=         (5) 

 

On either side of the Streak: 

( ) ( )
( ) ( )jirjim

jirjim
c

,,
,,

3 +
−

=            (6) 

 

Where:  

p(i,j) is in the ray (l,k) 

p_(i,j) and p+(i,j) are the neighbors of p(i,j) along the ray (l,k) at the 

previous iteration q 

m(i,j) = current average of the neighbors of p(i,j) in the ray R (l, k-1) 

r(i,j) = current average of the neighbors of p(i,j) in the ray R (l, k+1) 

(see Figure 2) 
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Figure 2:  Reconstruction ray geometry [40]. 

 

 

We now use these defined measures of contrast, along with threshold 

parameters l1, l2, l3 to produce the pseudo-code for SPARTAF: 

while q < 20 
for l = 1 to P 

for i = 1 to n 
for j = 1 to n 

if P(i,j) ∈ R(l,k) 
Pq+1(i,j) = Pq(i,j) + (R(l,k) - Sq(l,k))/ N(l,k) 

(c1 < l1) AND (c2 > l2) //then a streak!! 
if c1 > l3  

if ⎜m(i,j) – pq+1(i,j)⎜< ⎜r(i,j) – pq(i,j)⎜ 
a(i,j) = m(i,j) 

else 
a(i,j) = r(i,j) 

else 
a(i,j) = (m(i,j) + r(i,j))/2 

else //no streak, proceed with ART 
a(i,j) = Pq+1(i,j) 

next j 
next i 

next l 
next while… 

This item has been 

removed due to copyright 

issues. 
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2.5 Fourier Backprojection 

2.5.1 Fourier Slice Theorem 

The current industry standard family of algorithms are commonly known as the 

Fourier Backprojection [1,11].  Based on the Fourier Slice Theorem, this 

algorithm takes advantage of the fact that the one dimensional Fourier transform 

of each projection is actually a slice of the two dimensional Fourier transform of 

original object (Figure 3).  By using the 1D Fourier transform of projections from 

several angles, a rough estimate of the original object can be calculated. 

 

Figure 3:  The Fourier transform of an objects projection at a particular angle gives a 

slice of the 2D Fourier transform of the object [47]. 

 

If our object is represented by a function f(x,y), then the two dimensional 

Fourier transform is given by 

This item has been removed due to copyright 

issues. 
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∫ ∫
∞

∞−

∞
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For a projection at angle θ, Pθ(t), the corresponding 1D Fourier transform is 

given by 

∫
∞

∞−

−= dtetPwS wtj π
θθ

2)()(           (8) 

 

Consider the Fourier transform of the object along the line v = 0, shown here:  

∫ ∫
∞

∞−

∞

∞−

−= dxdyeyxfuF uxj π2),()0,(         (9) 

 

This expression can be further manipulated to  

dxedyyxfuF uxj π2),()0,( −∞

∞−

∞

∞−∫ ∫ ⎥⎦
⎤

⎢⎣
⎡=         (10) 

 

 

The term in the square brackets is in fact a parallel projection along a line where 

x is constant.  In other words,  

∫
∞

∞−= = dyyxfxP ),()(0θ            (11) 

 

Substituting this Pθ=0 into Equation         (10 yields 

dxexPuF uxj π
θ

2
0 )()0,( −∞

∞− =∫=           (12) 

 

And we have shown that  

)()0,( 0 uSuF == θ             (13) 
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Clearly, this result is equally as valid if the object were rotated.  Thus, we can 

see that this result is valid for any orientation of the coordinate axis with respect 

to the object, and valid for all θ. 

 

By measuring projections at several θ, we can calculate F(u,v) along several 

radial lines, as shown in Figure 4.  These values calculated in this way can be 

used to estimate the rest of the 2D Fourier transform and “connect the dots”.  

Section 3.3 develops the Fourier Backprojection method for reconstruction from 

projections.  This algorithm takes advantage of the Fourier Slice theorem and a 

filtering/interpolation scheme to estimate the Fourier Transform of the object. 

 

Figure 4:  The radial lines represent points in the object’s 2D Fourier transform [47]. 

 

 

2.5.2 Filtered Backprojection 

From the Fourier Slice Theorem, we know that the 1D Fourier transform of a 

projection gives the values along a line in the 2D Fourier transform of the object.  

This item has been 

removed due to 

copyright issues. 
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In this sense, taking an object’s projection can be seen as a filtering operation on 

the object’s 2D Fourier transform. 

 

Because we are limited to collecting a finite number of projections, we can only 

calculate the concentric radial lines of the object’s 2D Fourier Transform (Figure 

5).  A simple method to estimate the rest of the 2D Fourier transform is to use 

the width of the wedge (Figure 5a) to weight the values along the line θ (Figure 

5b), producing a weighted line shown in Figure 5c. For example, with K 

projections over 180o, each wedge would have a width of  
K

wπ2
 at frequency w.  

In graphical terms, w is the distance from the center of the graph, or the point of 

the wedge.  When many projections are taken and the wedge is narrow, we can  

approximate the wedge by simply weighting the line by a factor of  
K
wπ2

, as 

shown in Figure 5c. 
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Figure 5:  Using the slice to estimate a section of the 2D Fourier Transform: (a) shows 

the wedge represented by a single line.  (b) shows the actual line of elements 

calculated, and (c) shows a weighting scheme which, when applied to (b), 

approximates the wedge in (a) [47]. 

 

 

The 2D inverse Fourier transform of the estimate in Figure 5c produces a very 

fuzzy reconstruction of the original object.  We can refine this estimate by 

summing it with the 2D inverse Fourier transforms of the weighted transforms of 

projections from other angles. 

The greatest advantage of this method is that reconstruction can begin as soon 

as the first projection is acquired.  The other advantage is that the interpolation 

is generally more accurate in the spatial domain than in the frequency domain. 

This item has been removed due to copyright 

issues. 
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3 Parallel ART 

3.1 Introduction 

The Algebraic Reconstruction Technique and Fourier Backprojection families of 

algorithms both have advantages and disadvantages.  The main disadvantage of 

the FBP algorithms is the requirement of many projection angles, and hence 

more radiation dose required for patients.  This is due to the interpolative nature 

of the FBP, as opposed to the iterative nature of the ART family.  The primary 

disadvantage of the ART algorithms is the long processing time.  In order to 

speed up an ART type algorithm, parallel processing can preserve the superior 

image quality while improving the processing time.  The sections below discuss 

the nature of the ART algorithm and propose several redesigned algorithms for 

parallel processing.  Both message passing and shared memory alternatives are 

explored. 

 

3.2 Data Dependencies 

The first consideration when parallelizing a sequential algorithm is determining 

the existence of data dependencies.  CT reconstruction algorithms are solutions 

to the problem of “image reconstruction from projections”.  This problem is 

usually characterized by a set of underdetermined equations; in other words, the 

result is an approximation to the solution, as opposed to the actual solution.  

Consequently, the data dependencies inherent in iterative algorithms such as 
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ART are not necessarily inherent to the problem.  Most importantly, violating an 

algorithm’s data dependencies may change the particular solution, but not 

necessarily degrade the quality of the resulting solution. 

 

An excellent example of this is Guan and Gordon’s idea [6] of changing the order 

in which projections are considered in the reconstructions.  Guan and Gordon 

suggested a multilevel access scheme (MAS), attempting to order projections so 

that consecutive projections are about 90° apart.  They showed that such an 

MAS would dramatically increase the speed of the convergence of an ART 

algorithm.  In fact, they also showed that a random access scheme (RAS) was 

nearly as fast in convergence as with an MAS. 

 

Regardless, we must identify the data dependencies inherent in the ART 

algorithm before deciding whether or not they can be ignored.  The 3-nested-

loop structure of the algorithms implies that the data dependencies, when 

present, will generally exist between successive iterations of the loops.  Thus, 

there will be three possible levels of data dependencies: between successive 

iterations (estimate at different values of q), between consideration of 

projections (value of Pq(i,j) as different projection angles θl are considered), and 

between different rays (value of Pq(i,j) as different rays, k, in projection at angle 

θl are considered) 
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The most obvious dependency is the relationship between iterations, i.e., image 

estimate Pq+1(i,j) cannot be calculated before image estimate Pq(i,j). 

 

Next, there is the dependency of the new estimate of pixel value Pq+1(i,j)  on 

previous estimates at angles already considered in the same iteration.  For 

example, for some angle θl, the newly calculated Pq+1(i,j) becomes Pq(i,j) in the 

calculation of Pq+1(i,j) for θl+1.  In addition, this new Pq(i,j) is also used in the 

calculation of the sum Sq(l,k+1).  In this way the notation used above in the 

formula for Pq+1(i,j) and Sq(l,k+1) is somewhat misleading.  However, since this 

notation is consistent with existing literature, this paper will preserve it.  Note 

that it is the order of this dependency that Guan and Gordon found was actually 

hindering the convergence of the algorithm. 

 

Finally, dependencies arise in the calculation of Pq+1(i,j) as each ray in a 

particular projection is considered.  The ray width is usually calculated such that 

each ray contains only one pixel in a particular row or column.  In addition, pixels 

are often approximated as points such that each pixel is part of only one ray [6].  

In this case, the calculation of the pixels in a particular ray is independent of the 

calculations of the pixels for all the other rays.  This is not true, however, for the 

SPARTAF algorithm.  Thus the SPARTAF introduces a dependency between the 

pixel Pq+1(i,j) and all of it’s 8-neighbors, which belong to adjacent rays. 
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3.3 Alternatives 

3.3.1 Message Passing 

In any imaging problem, the most logical starting place is to attempt to partition 

the image data using some scheme and assign one or more partitions to each 

processor.  Due to data dependencies explained above, The ART algorithm is not 

suitable for image partitioning and options must be weighed carefully. 

 

The three loops of the basic ART imply the possibility of loop unrolling: 

 WHILE loop (until the current estimate is very close to previous estimate) 

 FOR loop (over all projection angles) 

 FOR loop (over all rays of the current projection angle) 

 

A logical place to begin is with the coarsest grain division - the outer-most loop.  

This WHILE loop iterates once for each successive estimate of the reconstructed 

picture.  As revealed in the analysis of data dependencies, each estimate is 

based on the previous estimate.  The process vaguely resembles a pipline type 

process.  Unfortunately, the pipelining approach will not work because each 

stage of the pipeline will only see one unit of data in the two dimensional case 

considered here.  (Three-dimensional slice CT may avail itself to this approach, 

but that consideration is beyond the scope of this paper.)  Conversely, unrolling 

this loop (assuming n iterations) using n processors would give us n identical 

estimates, each equal to the first iteration of the sequential algorithm.  This 
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tactic clearly breaks the unavoidable data dependency between iterations and 

accomplishes no advantage in comparison with the sequential algorithm. 

 

The FOR loop which controls the consideration of projection angles might also be 

unrolled.  The current image estimate adjusted to accommodate each projection, 

starting with the projection at angle θ0 and ending with the projection at angle 

θl.  The estimate at each angle is based on the estimate produced by the 

previous angle.  As discussed above, the angles can be considered in a random 

order without deteriorating the quality of the estimate.  Unfortunately, even with 

this random ordering, the estimate of the image after θx is still based on the 

estimate after θx-1. 

 

Let us consider the ramifications of ignoring this data dependency.  Looking at 

the very first iteration, and the very first projection considered in that iteration, 

the resulting image will be the projection “smeared” back across the rays, with 

all pixels of a particular ray having the same value.  If the next angle θ1 is 

considered based on the initial constant value instead of on P1(i,j) (after θ0), the 

result will similarly be the projection smeared back across its rays.  If all angles 

are considered this way, we can form a crude estimate by adding these 

“smeared” images together.  A discussion found in Gordon, et al., [4] displays an 

image thus reconstructed.  Presumably averaging would be more appropriate to 

achieve pixel values within the proper range.  Successive iterations could use this 
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averaged image as Pq(i,j), instead of the incrementally modified Pq(i,j) resulting 

from the original algorithm.  Such an alteration is easily parallelized by dividing 

the projections among the processors, collecting the averaged result, and 

continuing the next iteration (next q).   

 

A pseudo-code representation of this alteration is shown below, using 

communication routines similar to Message Passing Interface (MPI).  The 

number of processors n is assumed equal to the number of projections.   

 

ALGORITHM 1m 

E = threshold 
if (my_rank == root) 

P0(i,j) = constant 
// send projection for angle n to processor n 
Scatter( R(l,k), Projections(k), root)  
while q < 20 

Bcast(Pq(i,j), root) 
for i = 1 to n 

for j = 1 to n 
if P(i,j) ∈ R(n,k) 

Pq+1(i,j) = Pq(i,j) + (Projections(k) - 
Sq(n,k))/ N(n,k) 

next j 
next i 
Reduce(Pq+1(i,j), Pq(i,j), AVERAGE) 
Bcast(Pq+1, root) 

next while… 
 

A generalization to cases where n is not equal to the number of projections is 

straight forward from this implementation, using a mapping such as cyclic or 

block cyclic assignment of projections to processors. 
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This alteration will most likely cause a slower convergence, requiring more 

iterations and resulting in a sub-optimal parallelization.  However, if the work is 

divided on 10 processors, and takes twice as many iterations to converge, a 

speed up of 5 times is still achieved (in an ideal situation ignoring communication 

latency).  This is still a significant improvement and well worth investigating by 

experiment.  This Parallel ART (PART) algorithm does not violate the data 

dependency between neighboring pixels introduced by the SPARTAF, and so 

could be used to implement each of the ART, MART, or SPARTAF algorithms. 

 

The inner FOR loop controls the consideration of rays within a projection.   For 

the ART and MART, dependencies do not exist between pixels of adjoining 

arrays, so this loop could be unrolled, similar to the PART algorithm above.  Each 

processor would consider a particular ray k of each projection. 

 

A pseudo-code representation of this alteration is shown below, again using 

communication routines similar to Message Passing Interface (MPI).  The 

number of processors n is assumed equal to the number of rays in a projection.   

 

ALGORITHM 2m 

if (my_rank == root) 
P0(i,j) = ETC 

 
while q < 20 

for l = 0 to NumProjections-1 
Bcast(Pq(i,j), root) 
Pq+1(i,j) = 0 
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// send ray sum for angle l, ray my_rank to 
processor my_rank 

Scatter( R(l,k), RaySum, root)  
if P(i,j) ∈ R(l,my_rank) 

Pq+1(i,j) = Pq(i,j) + RaySum - Sq(l, my_rank))/ 
N(l,my_rank) 
Reduce(Pq+1(i,j), Pq(i,j), ADD) 

next l 
if (my_rank == root) 

calculateE 
Bcast(E, root) 

next while… 
 

This parallelization is somewhat more complex than the PART algorithm above. 

Its finer grain division requires significantly more communication between 

processors.  The Broadcast of Pq(i,j), the Scatter of projection data, and the 

Reduce operation are all being executed inside the FOR l loop.  This results is an 

increase in the number of communication calls by a factor of NumProjections.  

For the Scatter operation the amount of data sent each time is less, but the total 

amount of data sent is equal.  The Broadcast and Reduce operations, however, 

are still communicating the entire Pq(i,j) image array each time through the loop.  

The amount of data sent could be decreased by only sending the needed pixels, 

but this requires a significant amount of processing to determine which pixels fall 

in which rays.  With enough memory, these could be calculated ahead of time, 

but communicating this information to all the nodes would be a bottleneck. 

 

Another complication to this latest implementation is that the workload cannot 

easily be distributed evenly among processors.  The number of rays per 

projection is not constant.  The ray width, however, is usually constant (see [1]), 
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so that projections at some angles (e.g. 45°) are wider and require more rays.  

The minimum number of rays occurs at angles of 0° and 90°, so that at these 

angles, several processors with low ranks and high ranks will have no pixels in 

the rays assigned to them.  They will not be able to do work until the angle has 

changed such that they do have some pixels in their assigned rays.  Even at the 

maximum projection width at an angle of 45°, these “end” processors will have 

very few pixels compared to processors near the center of the projection.   Thus, 

these processors at the “ends” will always have a light workload.  A possible 

solution to this is some sort of non-linear assignment scheme to give the “end” 

processors more rays than processors near the middle.  For the case where the 

number of processors is much less than the number of rays, a cyclic assignment 

scheme is ideal to even out the workloads. 

 

The flaw of this algorithm is that it violates the data dependencies of the 

SPARTAF algorithm.  However, as SPARTAF is designed to suppress the growth 

of nascent (newly forming) streaks, this may not matter. 

 

3.3.2  Shared Memory  

The message passing approach reveals disappointing experimental results (see 

Section 4.2).  Closer examination reveals that the MPI alternatives are 

communication laden.  A shared memory approach offers an attractive 

alternative, eliminating the inefficiency of this communication. 
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Both Algorithm 1m and Algorithm 2m presented above can be more efficiently 

implemented with a shared memory architecture.  The following describe 

modified algorithms, 1s and 2s, using the shared memory directives of OpenMP. 

As in Algorithm 1m, Algorithm 1s unrolls the first for loop (for l).  As with the 

serial algorithm, averaging is presumably an appropriate operation to reduce the 

images calculated by each thread. This makes sense for the simple case where 

each thread processes the angles of a single projection (one angle).  In general 

though, this may not be the case.  Allocating several angles to each thread may 

in fact prove to be more efficient.  As discussed above, Guan and Gordon [6] 

showed that a Multilevel Access Scheme produced faster convergence of the 

MART algorithm. A round robin allocation of projection angles would approximate 

this approach while maximizing the benefit of parallel threads.  However, as the 

individual threads attempt to modify the shared image estimate data, collisions 

become possible.  If two different threads attempt to apply a multiplicative 

adjustment to the same pixel at the same time, a collision occurs.  Assuming a 

FIFO queue waiting to access a single picture element, and a large number of 

image elements (relative to the number of threads), the waiting time will be 

negligible.  With this approach, the pixel value used to calculate the multiplier 

may be changed by another thread before the multiplier can be applied.  Such a 

value, which is modified by another process between when it is read and when it 

is processed, is said to be a “stale”.  Using stale pixel values may delay 
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convergence, but any convergent solution is equally as valid.   As discussed 

earlier, the ART algorithm is an approximation of the image solution.   

The OpenMP specification document ([8]) states, “The correctness of a program 

must not depend on which thread executes a particular iteration.”  Further, “An 

OpenMP-compliant program should not rely on … a schedule kind conforming 

precisely to the description … because it is possible to have variations in the 

implementations of the same schedule kind across different compilers.”  We are 

proposing a new variation of the MART and we’ve noted that ART an MART are 

approximate solutions, with other equally correct solutions possible. Because of 

this we are not concerned with strictly adhering to order in which processing 

takes place in ART or MART, or “correctness” in relation to the classical 

sequential ART or MART.  We are more concerned with a convergent solution 

that is correct in the sense that it approaches the original object.  However, it 

should be noted that this algorithm may produce slightly variant results on a 

different platform.   

A pseudo-code representation of this alteration is shown below, using directives 

similar to the OpenMP application programming interface for shared memory 

programming.  The number of processors n is assumed equal to the number of 

projections.   
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ALGORITHM 1s 

#parallel shared P0(i,j) = constant 
 
//share projection matrix 
parallel shared projections( R(l,k), Projections(k))  
 
// do 20 iterations 
while q < 20 

#parallel shared Pq+1(i,j) = 0 
 #parallel for schedule (static scheduling, blocksize 1) 

//each thread gets one angle’s projection 
for l = 1 to numProjections 

for k = 1 to numRays 
for i = 1 to n 

for j = 1 to n 
if P(i,j) ∈ R(n,k) 

Pq+1(i,j) = Pq(i,j) + (Projections(k) - 
Sq(n,k))/ N(n,k) 

next j 
next i 

next k 
next l 

next while… 
 

The inner FOR loop controls the consideration of rays within a projection.   For 

the ART and MART, dependencies do not exist between pixels of adjoining rays, 

so this loop could be unrolled, similar to the PART algorithm above.  Each 

processor would consider a particular ray k of each projection, as shown below 

in Algorithm 2s. 

 

This finer grained parallelism requires more overhead because threads will be 

initialized and rejoined for every single ray of every projection of every iteration.  

In other words, each thread does less work, requiring more threads to 

accomplish the same amount of work.  The advantage of this approach is that it 

does not require any modification of the original and proven MART algorithm.  
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A pseudo-code representation of this direct parallelization is shown below, again 

using shared memory directives similar to OpenMP.  The number of processors n 

is assumed equal to the number of rays in a projection.   

 

ALGORITHM 2s 

#parallel shared P0(i,j) = constant 
 
//share projection matrix 
parallel shared projections( R(l,k), Projections(k))  
 
// do 20 iterations 
while q < 20 

#parallel shared Pq+1(i,j) = 0 
for l = 1 to numProjections// for each angle 

#parallel section 
#parallel for schedule (static scheduling, blocksize 

1) 
//each thread gets one ray of the projection 
for k = 1 to numRays 

for i = 1 to n 
for j = 1 to n 

if P(i,j) ∈ R(l,k) 
Pq+1(i,j) = Pq(i,j) + (Projections(l,k) 

- Sq(l,k))/ N(n,k) 
next j 

next i 
next k 

next l 
next while… 
 

Similar to the contrast between the message passing algorithms, Algorithm 1s 

utilizes a finer grained parallelism than Algorithm 2s.  In practical terms, finer 

grained parallelism in the shared memory realm requires more overhead in 

creation of threads.  In addition, finer grained parallelism implies the need to 

divide labour in calculating which pixels fall into which rays, as well as sharing 
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the resulting information.  And as with Algorithm 2m, Algorithm 1m introduces a 

load balancing issue because of the variation in the number of rays per 

projection and the number of pixels per ray as well as violating the data 

dependencies of the SPARTAF algorithm. 

 

It would seem more logical then to use a courser grained parallelism, with a 

simpler division of labour and less overhead in spite of the potential for collisions 

in accessing a particular pixel value.  
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4 Implementation 

4.1 Experimental Platform 

4.1.1 Message Passing 

The Parallel ART algorithm was coded in C language, using Message Passing 

Interface (MPI) for communication.  The program was run on the UNIX network 

of the Electrical and Computer Engineering Department at the University of 

Manitoba.  This network uses the SunOS 5.9 operating system and employs the 

MPICH implementation of MPI on a Beowulf cluster. 

 

4.1.2 Shared Memory  

4.1.2.1 Mercury 

The shared memory PART was coded in C language using OpenMP directives.  

The program was initially run on the Mercury shared memory machine of the 

Computer Science Department at the University of Manitoba.  The machine has 8 

processors capable of running 72 threads each, for a total of 576 threads 

possible.  The Linux Red Hat 7.1 operating system is the base for the Omni 

OpenMP library, currently running Omni compiler version 1.3s.  Code was initially 

compiled and run on this machine. 

 

4.1.2.2 WestGrid 

PART was subsequently ported to the Western Canadian Research Grid 

(WestGrid).   WestGrid is a high powered computing (HPC) consortium offering 
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HPC and networking facilities to several member institutions in Western Canada, 

listed in Table 1. 

 

Table 1: WestGrid member facilities. 

 

 

Researchers from other affiliated institutions, such as the University of Manitoba, 

can apply to access the 10% of resource time earmarked for outside projects.  

The $50 million dollar initiative offers several grid-enabled clusters.  Nexus and 

Cortex are the only groups to feature architectures favorable for OpenMP shared 

memory applications. 

 

4.1.2.2.1 Nexus 

Nexus is a group of Silicon Graphics Inc (SGI) symmetric multiprocessing (SMP) 

machines.  According to Flynn’s Taxonomy, these machines are classified as 

Multiple Instruction, Multiple Data (MIMD).  Each machine in this group is an SGI 

Origin, with varying models but similar architectures.  Table 2 shows a summary 

of hardware specifications for this group. 

 

Facility Name 

Simon Frasier University 
The Banff Centre 
TRIUMF 
University of Alberta 
University of Calgary 
University of Lethbridge 
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Table 2: Nexus group hardware summary. 

Machine 
Name 

Model Number of 
processors 

CPU 

Nexus Origin 350 8 MIPS R16000 rev2.1 @ 700 MHz 
Arcturus Origin 3900 256 MIPS R16000 rev2.1 @ 700 MHz 
Aurora Origin 2000 36 MIPS R10000 rev2.6 @ 195 MHz 
Borealis Origin 2400 64 MIPS R12000 rev2.1 @ 400 MHz 
Australis Origin 3800 64 MIPS R12000 rev3.5 @ 400 MHz 
Helios Origin 300 32 MIPS R14000 rev1.4 @ 500 MHz 
Corona Origin 300 32 MIPS R14000 rev1.4 @ 500 MHz 
 

Specific experiments on the Nexus group were run on Australis (64 processors) 

and Helios (32 processors).   

 

Because the Origin has memory scattered through the system with all memory 

accessible globally by all other processors, it is known as a distributed shared 

memory (DSM) system.  In such architectures, memory access latency varies 

depending on the physical location of the data.  For example, access time for 

memory on a processor’s local memory section is faster than access time for 

memory stored on another processor’s local memory section.  This is known as 

Non-Uniform Memory Access, or NUMA. 

 

One design feature of Australis that reduces memory access latency is the 

cached memory local (and private) to each processor.  However, cached copies 

of shared memory pose a risk of that cached memory becoming out of date 

when another processor modifies the global master copy of those values.  The 

out of date values in cached memory are known as stale values. The Origin 
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addresses this with a memory architecture named Cache Coherent Non-uniform 

Memory Access, or ccNUMA.  Cache coherency is maintained by a memory 

directory system that tracks cached copies of memory locations at the block level 

(128 bytes).  Before processor A modifies its cached memory, the directory calls 

a method to purge all unmodified (stale) copies of the memory and grants 

processor A exclusive rights to that block, or blocks of memory.   

 

Processors are grouped together in modules called “C-Bricks” in SGI terminology.  

A C-brick in an Origin 3800 such as Australis contains 4 processors and a block of 

memory, as shown in Figure 6 below [51]. 

 

Figure 6:  Block diagram of an SGI Origin 3000 series “c-brick” [51]. 

 

 

This item has been removed due to 

copyright issues. 
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The four processors share the local main memory block, and are connected to 

other c-bricks via an “r-brick” or router module.  The interconnection of the 

processor modules (c-bricks) can be seen in Figure 7. 

 

Figure 7:   Interconnection of modules in an SGI Origin 3800 [51]. 

 

 

This item has been removed 

due to copyright issues. 
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Each router block in this configuration has 8 connections, forming an eight-port 

crossbar switch as shown in Figure 8.   

 

Figure 8:  Origin3000 Router interconnect schematic [51]. 

 

 

The interconnection of processors and memory in the Origin 3000 forms a mesh 

topology with several paths between each processor and between processors 

and memory banks.  Each C-brick contains a single block of memory.  Looking at 

the connections of one router brick, you can see that each memory block is 

connected by one hop to 3 other memory blocks, and connected by at most 2 

hops to every other memory block in the system.  Thus the system is more 

connected than a hypercube, but not quite fully connected. 

 

The operating system for all machines in the Nexus group is Irix 6.5 UNIX, using 

SGI’s MIPSPro 7.4 C compiler, with support for OpenMP 2.0.  

This item has been 

removed due to 

copyright issues. 



 

- 53 - 

 

4.1.2.2.2 Cortex 

The Cortex group is a new collection of IBM p5 systems with OpenMP capability.  

Cortex is the head node, with Dendrite and Synapse being strictly batch 

processing machines.  Table 3 shows a hardware summary of this group. 

 

Table 3:  Hardware summary of Cortex group of WestGrid. 

Machine 
Name 

Model Number of 
processors 

CPU 

Cortex IBM 550 4 Power5 @ 1.5 GHz 
Dendrite IBM 595 64 Power5 @ 1.9 GHz 
Synapse IBM 595 64 Power5 @ 1.9 GHz 

 

 

The p5 chip encapsulates two identical processor cores, each capable of 2 logical 

threads.  In this sense, it appears as a 4-way symmetric multiprocessor to the 

operating system. IBM considers each core of the chip one processor, so that a 

multiple chip module (MCM) containing 4 p5 chips is actually 8 processors.   

Processors are physically and logically organized into processor books.  Each 

book contains 2 MCM’s for a total of 16 processors in a processor book.  Figure 9 

shows the memory interconnections within a processor book.  Within the 

processor book, each chip is directly connected to 3 other chips, forming a cubic 

topology.  
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Figure 9:  IBM p595 memory interconnect diagram (16 processors) [54]. 

 

 

Figure 10 shows the connections between the 4 processor books of a 64 

processor p595 such as Dendrite or Synapse.  Here, each processor is also 

connected to a processor in another book.  Because Book0 and Book3 in the 

diagram are not connected, the 64 processor interconnection is not quite a 

hypercube topology, though it still qualifies as a mesh topology. 

 

All three machines of the Cortex group run IBM’s AIX v5.3 operating system and 

xlc v8.0 compiler.   

 

This item has been removed due to copyright 

issues. 
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Figure 10:  IBM p595 memory interconnect diagram (64 processors) [54]. 

 

 

4.1.2.3 Portability 

Changing platforms from Mercury to the WestGrid group was initially undertaken 

to prove the portability of the code and explore the technology offerings of 

WestGrid.  The movement to the Nexus and Cortex platforms resulted in 3 

technological advantages.  First, with images larger than 512x512 pixels, the 

output data for 50 iterations surpasses the storage available under a student 

computing account on Mercury.   A second advantage of the Nexus and Cortex 

machines is the additional stack space available.  Initial code versions used 

statically declared arrays for input data and image estimates data structures.  

While theoretically faster, statically declared data breached the limits for stack 

space for images larger than 1024x1024 pixels.  Finally, WestGrid provides a job 

queuing structure so that jobs can run with exclusive control over the processors 

This item has been removed due to copyright 

issues. 
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they use.  This provides an additional dimension of reliability and accuracy to 

timing measurements.  Minor compiler differences were encountered but easily 

overcome.   

 

The P5 processors used on the Cortex machines feature 64 bit computing 

capability.  Taking advantage of this offering is not entirely straight forward.  

When compiling applications for 64 bit capability, a few key differences can lead 

to problems.  One prime example is the difference in storage size between 

pointers and integers on 64-bit platforms.  On 32-bit platforms, both integers 

and pointers require 4 bytes of storage, whereas the expanded memory space 

on 64-bit platforms require 8 bytes of storage for pointers, with integers still 

requiring 4 bytes. 

 

Pointers can be implicitly cast to integers and visa versa on 32-bit platforms 

without penalty.  However, applications which use this implicit casting will 

experience truncation of pointers which are implicitly cast to integers.  One 

example of this is seen below, provided by IBM’s xlc programming guide: 

 

a=(char*) calloc(25); 

 

If calloc is not prototyped, the compiler assumes that it returns an integer.  

Compilers run in 64-bit mode will truncate the 8byte pointer returned in order to 

implicitly cast it to a 4 byte integer, even though it will be subsequently re-cast 
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to an 8 byte char pointer.  This particular problem can be solved by including 

stdllib.h, which includes a function prototype for calloc. 

 

The example presented is in itself not a major difficulty, although it could be 

extremely hard to diagnose without prior knowledge.  The example does, 

however, underline the need for adherence to explicit programming techniques 

to maximize the portability of an application. 

 

The major difficulty with WestGrid was the waiting time for experiments.  

Interactive use is limited to at most 2 processors, and is only allowed on the 

head node NEXUS (not allowed at all on Cortex).  This is sufficient for simple 

code debugging, but does not provide the ability of the code to execute for many 

threads.  

 

Experiments and more advanced debugging have to be submitted for queuing 

using Portable Batch System.  Using a priority scheme, this system allocates 

exclusive use of the required number of processors for the duration of each job.  

Unfortunately, most other jobs in the queue require runtimes on the order of 24 

hours or longer, so waiting for results of a single experiment can take several 

days even though the queues are relatively short and the experiment itself might 

take less than one hour.  Any small errors in the batch script or PART code can 

result in substantial delays in development and experimentation. Cortex was 
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favored over Nexus in the end because it’s newer, more advanced technology led 

to shorter queuing times. 

 

While the code itself could be debugged on Nexus before being submitted on 

Cortex, the different operating system and compilers on the IBM machines 

(Cortex) required significant changes to batch scripts used for debugging and 

testing on Nexus.  Because Cortex does not allow interactive use, batch scripts 

developed for Cortex could not be tested before being submitted to its queuing 

system.   This resulted in a steep curve for development of batch scripts. 

 

Another consideration is the problem of monitoring the progress of the software 

as it runs.  Because standard out is be default piped to a file instead of the 

terminal, monitoring progress and debugging requires a few extra steps.  In 

order to ensure the timely writing of messages from the standard out buffer to 

the output file, the fflush() function had to be called after each message call. 

 

Timing of WestGrid executed programs can be done with the SpeedShop utilities.  

After code is compiled normally, it is executed using ssrun, producing a data file 

which is subsequently processed using prof.  The utility counts actual clock 

cycles used for segments of the program, showing percentage and actual time 

used.  This utility is valuable for analyzing CPU resource consumption within a 
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program, but the required overhead significantly skews the total runtime 

measurements.   

 

Timing results presented in this paper were measured using the UNIX time 

command.  These simple results measure the total execution time without any 

profiling overhead to distort the subject’s performance.  An additional advantage 

of this utility is universally available on almost all UNIX systems 

 

4.2 Load Balancing and Threads 

 

The pseudocode presented in Chapter 3 assumes an equal number of angles and 

processors.  This will most likely not be the case in clinical applications, since 

many projections can be taken and manufacturers will not likely implement 

reconstruction hardware as expensive and complex as a 64-way symmetric 

multiprocessor for such applications.   

 

Mercury, Nexus, and Cortex behave similarly in the way that they associate 

threads with processors.  If the number of processors available is greater or 

equal to the number of threads requested in an OpenMP program, then each 

thread gets a dedicated processor.  An error results when the number of 

OpenMP threads is greater than the number of processors, so that each 

processor will have at most a single thread running on it. 
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The PART reconstruction software, and even other reconstruction software, 

require little or no I/O in parallel regions outside of memory access.  

Theoretically, the only possible wasted clock cycles would occur when a memory 

is requested which is not stored in the local memory cache, resulting in a “cache 

miss”.  Cache misses would include cache purged by the cache coherency 

mechanisms.  Assuming few cache misses, multithreading on a single processor 

is approximately as efficient as running a single thread on one processors.  In 

other words, running PART using 8 threads on 8 processors would be about as 

fast as using 16 threads on 8 processors    

 

The PART code was designed to request one thread per angle of projection data.  

A single thread executes the serial section, including loading input data files into 

memory and initializing variables.  During the main body of each iteration, the 

software instantiates a thread for each row of the projection data.  The threads 

rejoin at the end of each iteration to do some cleanup operations.  In this way, 

each iteration is only as fast as its slowest thread.  On a symmetric multi-

processor machine like those on WestGrid, one expects each thread to complete 

its processing in approximately the same amount of time whenever the 

processors in question are dedicated exclusively to the application. 

 

When fewer processors are available than data items to process, a method is 

required to best group together and assign the work associated with projection 
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data.  Guan and Gordon [6], and further by Mueller, et al. [7], showed that ART-

type algorithms produce better images with faster convergence with non-

sequential schemes for considering projections.  A random order was found to 

produce good results, while the best results were achieved when the order that 

projections are considered is such that the angles between the next projection 

and previous projections are as close as possible to 90°.   Therefore a load 

balancing scheme can be implemented which attempts to assign a set of 

projections for each process which are as orthogonal as possible. 

 

A round robin allocation of work could approximate orthogonal angles depending 

on the number of angles, angle spacing and the number of processors.  

However, the number of rows (angles) of data to process and the angle spacing  

are highly variable, even on the same CT machine from one data acquisition to 

the next.  The number of processors available for reconstruction would also vary 

between CT machines.  The code presented here could be modified to 

accommodate a dynamic allocation scheme to maximize the orthogonality of 

sequentially considered data units.  Results for this modification are not 

presented. 
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5 Implementation 
 

5.1 Analytical Results 

The problem size for this algorithm is best represented by the size of the 

“reconstruction grid” - in other words the size of the image to be reconstructed.  

Hence a problem size N will refer to an image with N pixels on an edge – an NxN 

image.  In addition, two other parameters affect the computation time for CT 

algorithms.  These are the number of projections in the input data (l), and the 

number of elements in each projection (k).  Both of these parameters are usually 

of the same order as the image size n, so in this analysis we will consider 

l~=k~=n for simplicity.  One last parameter is the number of iterations required 

to reconstruct the image (q). 

 

5.1.1 The Serial Algorithm 

The first action of the serial algorithm is the reading in of input data in the order 

O(l·k)~=O(n2).  Then for each iteration, each of the following operations are 

executed: 

• initialize reconstruction projections O(q·l·k)~=O(q·n2) 

• for the l projections scattered to each processor 

o calculate reconstruction projections of seed image O(q·l·n2)~= 

O(q· n3) 

o calculate the adjustment vector O(q·l·k)~= O(q· n2) 

o apply adjustments to image O(q·l·n2)~= O(q· n3) 



 

- 63 - 

• normalize the image values O(q·n2) 

Thus, it is clear that the dominating section of this serial algorithm is of order 

O(q· n3). 

 

By comparison, the standard serial FBP algorithm is O(n3) according to Bassu 

and Bresler [53]. 

 

5.1.2 The Parallel Algorithm 

The serial portion of the parallel algorithm includes reading in of input data, 

scaling the current image estimation after each iteration, and writing the final 

output to file.  Reading the input file is O(l·k)~=O(n2), scaling the input image 

is O(n2), and writing the final reconstruction image to file is O(n2).  Thus the 

serial portion of this algorithm is O(n2). 

 

Before processing begins, projection data is scattered to all processors, which is 

of the order O(l·k)~=O(n2).  Then, each of the following operations are 

executed for each iteration: 

• current image estimate is broadcast to all processors, O(q·n2) 

• initialize local reconstruction projections O(q·l·k)~=O(q·n2) 

• for the 
p
l

 projections scattered to each processor 

o calculate reconstruction projections of seed image or previous 

iteration reconstruction O(q·
p
l n2)~= O(q·

p
n3

) 
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o calculate the adjustment vector O(q·
p
l ·k)~= O(q·

p
n2

) 

o apply adjustments to image O(q·
p
l n2)~= O(q·

p
n3

) 

• reduce the image from each processor (sum) O(q·n2) 

• scale the image values O(q·n2) 

 

Thus, it is clear that the dominating processing of this parallel program will be of 

order O(q·
p

n3

). 

 

5.1.3 Speedup 

According to Amdahl speedup of the PART algorithm, defined as 
parallel

serial

T
T , is given 

by S = 

p
nq

nq
3

3

•

•
 = p .  This is clearly a theoretical value, which will be reduced by 

barriers and reduction operations.  Both the MPI and OpenMP implementations 

exploited the same loop to employ parallelism, so this analytical result applies to 

both scenarios. 

 

5.2 Experimental Results 

 

5.2.1 Convergence 

Iterative algorithms require some criteria to term terminate the iterative process.  

The concept of an iterative approach to image reconstruction from projection 
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uses an algebraic approximation to iteratively approach a solution.  The image is 

gradually bettered with each iteration, with the improvements lessening with 

each additional iteration.  As the improvement dwindles with higher numbers of 

iterations, the solution is said to be converging. 

 

As discussed earlier, one common measure of the quality and accuracy of a 

reconstruction technique is the mean squared error of the resulting image in 

comparison with the original phantom.  In analogy, a common convergence 

criterion for ART based algorithms is a measurement of the error in of the 

calculated projections of the reconstructed image, with respect to the actual 

projection data.  The results presented in this paper use the formula offered by 

Gordon, Bender, and Herman [38] , and revisited by Fitchett [3].  The definition 

of this quantity is shown below. 

 

 
( )

∑ =

−
= M

j
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jj
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qp

M
E

1

21
          (14) 

 

In this equation: 

  M = the total number of rays for a set of projections 

  N = total number of pixels 

  Pj = actual projection values 

  qj = calculated projection values from the current iteration 
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Figure 11 shows the Mean Squared Error between iterations for a reconstruction 

of the breast phantom (256x256). 

  

Figure 11:  MSE between iterations for breast image, 256x256. 

 

 

This quantity essentially measures the difference between successive iterations, 

and is calculated according to the following formula: 

 

2

2
,, )(

N

CP
MSE i j

jiji

i

∑∑ −
=          (15) 
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Where: 

  P = previous image estimate 

C = current image estimate 

 N2 = number of pixels in the image 

 

The same data is plotted on a log scale in Figure 12.   

 

Figure 12:  Log plot of MSE between iterations for breast image 256x256. 

 

 

The graph clearly shows the mean squared error approaching zero.  By 

inspecting the actual values, it is determined that the error oscillates about a 
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value of approximately 0.0020 after 30 iterations.  Clearly each successive image 

is approaching a single solution. 

 

Regardless of the image size or number of projections, the time to process each 

iteration is relatively consistent within the scope of a single reconstruction.  

Figure 13 below shows the runtimes for numbers of iterations varying from 1 to 

100 for 2 processors.  The graph displays the linearity of the run time from one 

iteration to the next, with similar results for other numbers of processors.  From 

this linearity, we can easily talk about the amount of time to reach convergence 

as a ratio of the time to complete the total number of iterations.  For the 256 x 

256 breast image reconstruction, the solution converges at approximately 30 

iterations, so we can reliably say the run time to finish is 30% of the time to 

complete 100 iterations. 
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Figure 13: Run time in seconds versus number of iterations. 

 

 

 

5.2.2 Computation Time 

Empirical results for message passing results exhibited a great deal of variation.  

In an attempt to smooth the resulting curves, all run times were averaged over a 

minimum of 4 trials.  Several images were reconstructed, varying in size from 

16x16 pixels to 128x128 pixels.  All data sets included 32 projections, with the 

number of detector elements in each projection equal to the image size – i.e., for 

16x16 image, 16 detector elements. 
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Figure 14:  MPI Run times for various inputs and numbers of processors 

 

 

The theoretical speedup of p is clearly not supported by the experimental results 

shown in Figure 14.  As illustrated above, the run times showed a great deal of 

variance.  The two factors which could cause this inconsistent performance are 

network (communication) latency and shared processing time.  Both of these 

factors were uncontrollable on this experimental platform.  Performance gains in 

processing times were lost due to high communication latencies.  This is not 

surprising when surveying other message passing work, such as Rao, Kriz, 

Abbott, and Ribbens [14], who also experienced a communication dominant 

result.  The problem of communication latency gets even more significant for 
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larger problem sizes.  The author discusses MPI implementation and results more 

thoroughly in Melvin et al. [35]. 

 

Initial shared memory experiments were run on the Mercury machine of 

University of Manitoba.  Execution times for these experiments are shown in 

Figure 15 for numbers of threads ranging from 1 to 37.  The parallelization 

scheme implemented requires that the number of threads be less than or equal 

to the number of projection angles, which in this case is 37.  A clear advantage is 

seen for increasing numbers of threads.  However we also note an apparent 

optimum at approximately 8-10 threads.  By inspecting the timing profiles for 

these trials, we note that comparatively little time is spent in the OpenMP barrier 

and lock functions.  Presumably, the ratio of threads to data chunks is 

particularly favorable for this particular situation, perhaps indicating that the 

implementation is not an optimal one for greater numbers of threads.  The 

probable root cause is the hardware limitation on Mercury of having 8 

processors, thereby forcing multiple threads to run on each processor for higher 

numbers of threads. 



 

- 72 - 

Figure 15:  Run time versus number of threads for PART reconstruction of the breast 

phantom 256x256 on Mercury. 

 

 

In order to overcome this limitation of the Mercury experiments, the PART code 

was ported to Nexus and Cortex of the WestGrid high powered computing 

consortium. Experiments run on the Nexus group showed positive results, 

however prohibitively long queuing time made extensive experimentation 

impractical.  Results hereafter presented are run on the Cortex group, specifically 

the 64 processor machine Dendrite (see section 4.1.2.2.2). 
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According to Amdahl speedup is given by of the PART algorithm, defined as 

parallel

serial

T
T

, is given by S = 

p
nq

nq
3

3

•

•
 = p .  This theoretical value will be reduced by 

memory access latency, communication time, and other overhead.  A measure of 

the practical cost when implementing a parallel algorithm is the Efficiency, given 

by 
p

Speedup
. 

 

Table 4 shows runtimes, speedup, and efficiency for several numbers of 

processors on Dendrite, reconstructing to 30 iterations.   

 

Table 4:  Run times for PART to reconstruct Shepp and Logan phantom to 30 

iterations on various numbers of processors. Experiments were run on Dentrite 

(Cortex group of WestGrid) 

Run times for PART to 30 iterations 

Number of 
Processors 

Run time 
(seconds) 

Speedup 

(
parallel

serial

T
T

) 

Efficiency % 
(Speedup/Num 

Processors) 

1 (serial) 28.218 1 100 
2 14.583 1.935 96.750 
3 10.775 2.6188 87.295 
4 10.191 2.7689 69.223 
6 5.038 5.601 93.351 
9 4.657 6.0593 67.325 
12 3.951 7.142 59.517 
18 1.885 14.97 83.165 
36 1.183 23.853 66.258 

 

Run times are shown graphically in Figure 16, with speedup graphed in Figure 

17. Images were reconstructed using 36 angle projection data. With a block-
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cyclic data distribution pattern, it makes sense to use numbers of processors that 

are factors of 36. 

 

Figure 16:  Run times for PART reconstructions on Dendrite.  Shepp and Logan 

phantom 512x512 was reconstructed from 36 angles (30 iterations). 

 

 

The speedup shows positive results, with efficiency ranging from 96.75% to 

66.26%.  Note that the efficiency for 6 processors is 93.35%.  Since the most 

practical hardware for CT manufacturers will likely be 4 to 12 processors, 6 

processors may prove to be a good choice in commercial applications, depending 

on the most common number of angles used when collecting data. 
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Figure 17:   Speedup for PART reconstructions on Dendrite.  Shepp and Logan 

phantom 512x512 was reconstructed from 36 angles (30 iterations). 

 

 

For 36 processors, it takes 1.183 seconds to reach 30 iterations.  The parallel 

technique presented here need only be on the same order of magnitude as the 

FBP to prove worthwhile, considering the image quality improvements evident in 

the literature and empirically shown in Section 5.2.3. 
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Figure 18:  Run times to reach different numbers of iterations for PART algorithm 

reconstruction Shepp and Logon phantom on 36 processors. 

 

 

In order to compare run times directly, a serial Fourier Backprojection 

implementation was coded in C for the Cortex P-servers. Table 5 shows the 

results for these experiments.   The implementation required 2.0700 seconds to 

reconstruct the 512x512 Shepp and Logan image from 36 projection angles, 

averaged over 4 trials. 
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Table 5: Run times for a serial Fourier Backprojection image reconstruction 

from various angles.  Data is averaged over 4 trials, compiled and run in 32 

bit mode on Dendrite machine of WestGrid. 

Run times for Fourier Backprojection 

Number of Angles Average Run time (seconds) 

36 2.0700 
90 4.6107 
180 8.9645 

 

Using 36 processors, the parallel part took only 1.183 seconds to reach 

convergence on the same 36-angle data set that took the FBP implementation 

2.0700 seconds to reconstruct.  Considering that FBP reconstructions usually 

require on the order of 180 angles, it might be more apt to compare the FBP 

time for 180 angles to the PART reconstruction for 36 angles. In this case, the 

FBP takes 8.9645 seconds compared to the PART reconstruction at 1.183 

seconds.  The parallel ART implementation presented here speeds up 

computation of ART reconstructions to the same order of magnitude as the FBP, 

if not better.   

 

5.2.3 Image Quality 

In gauging the usefulness of any speedup to a reconstruction algorithm, it is 

necessary to quantitatively evaluate the image quality to ensure accurate image 

results.  Mean Square Error (MSE) provides a general feel for the algebraic 

distance of each pixel to the ideal goal value, when comparing an output image 

to the original phantom.  MSE is also useful in measuring convergence when 
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comparing output images from successive iterations.  To avoid some of the 

variation seen for smaller images and fewer angles, the following image quality 

discussions refer to results using breast phantom of size 256 x 256 pixels, 

reconstructed from 37-angle projection data. 

 

Figure 19 shows the MSE between the current estimate and the original phantom 

for the shared memory PART implementation. This quantity is calculated 

according to the following formula: 
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Where: 

  O = original image phantom 

C = current image estimate 

N2 = number of pixels in the image 

 

The graph shows this mean squared error also approaching zero.  The individual 

values show the MSE converging to 0.0344.  The convergent solution then, is 

approaching the original phantom (the ideal solution) with acceptably small 

error. 
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Figure 19:  MSE between iteration image and original phantom. 

 

 

Another way to gauge the validity of the given solution is to compare the entropy 

of that solution to the entropy of the known ideal solution (i.e. the original breast 

phantom).  This quantity is commonly measured by the following formula: 
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Where: 

  C = current image estimate 
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Entropy is usually interpreted as the amount of information present in a signal, 

or alternatively a measure of the randomness of a signal.  In the context of 

image reconstructions, we can interpret entropy as one way to measure the 

valuable information contained in the image. 

 

In order to effectively compare this measure with the original image, a ratio of 

the entropy of the original phantom to the reconstruction is taken, calculated 

according to the following formula: 

 

tionreconstruc

original

Entropy
Entropy

ioEntropyRat =         (18) 

 

Figure 20 shows a graph of the ratio of the entropy of the original image to that 

of the current estimate, vs. iterations.  The ratio approaches the ideal 1, 

achieving a ratio of 1.0019 after 50 iterations. 
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Figure 20:  Entropy ratio of original to iteration image. 

 

 

The following images (Figure 22, Figure 23, and Figure 24) were reconstructed 

from the famous Shepp and Logan phantom, shown in Figure 21. 
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Figure 21:  Original image:  Shepp and Logan Phantom 512x512. 
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Figure 22:  PART reconstruction after 5 iterations. 
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Figure 23:  PART reconstruction after 10 iterations. 

 

 



 

- 85 - 

Figure 24:  PART reconstruction after 50 iterations. 

 

 

The streaks visible in the images are characteristic of CT images.  These streaks 

are especially apparent in images reconstructed from fewer numbers of angles, 

such as these, reconstructed from 19 angles. 

 

The MPI ART implementation is very similar to the shared memory 

implementation in the level of parallelism employed, and nearly identical in 
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image quality results.  Because of the lack of computational advantage found 

with the MPI implementation [35], specific image quality results for that work will 

not be presented here. 

 

Wei et al. [52] compared Fourier Backprojection to simple Backprojection 

techniques using the common error measurement, shown in Equation   

     (19 below. 
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where  xi,j = original image phantom 

 xi,j’ = current image estimate 

 M2 = number of pixels in the image 

 

This formula is slightly different than the error calculation used earlier in this 

paper.  The problem with comparing to this value is that it is not adjusted for 

image size.  The images used in the work of Wei et al. were 256x256, so we 

cannot compare directly to error for reconstructions of images of other sizes.  

However, if we use the modified Equation         (20 below, 

we can adjust Wei et al.’s error values for comparison with other image sizes, 
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such as the 512x512 Shepp and Logan images used for some of the experiments 

presented in this thesis. 
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Wei et al., found that on average, FBP had an error of 0.1005 when 

reconstructing from 256 angles.  Adjusting for the image size, this would be 

0.3925 x 103.  The recalculated error for PART reconstruction of the Shepp and 

Logan phantom using Equation         (20 is 0.399 x 103.  The 

error for these two reconstructions varies by only 1.63%, with the PART 

reconstruction using only 36 angles compared with the FBP’s 256 angles.  For 

similar MSE values, the PART required 85.9% fewer angles, or more generally 

85.9% less dose. 

 

Consistent with the literature, FBP reconstructed images showed poor image 

quality for low numbers of projections.  Qualitatively, the PART reconstructed 

images are clearly higher in quality seen in Figure 25 and Figure 26. 
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Figure 25:  PART Reconstruction of Shepp & Logan 512x512 from 37 angles. 
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Figure 26:  FBP reconstruction of Shepp & Logan 512x512 from 37 angles 

 

 

With no post processing, the PART reconstructed image in Figure 25 is clearly 

superior.   Although post processing is not within the scope of this paper, a 

simple window and level (brightness and contrast) adjustment is appropriate to 

compare these images on a more level playing field.  Finding an optimal window 

and level adjustment is user specific, but a general improvement is achieved with 
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simple histogram equalization.  This was achieved by using the image 

adjustment features of Adobe Photoshop 7.0.  After using Photoshop’s “auto 

levels” adjustment, the FBP image was not significantly improved and manual 

adjustment was required to see the “anatomical” structures of the phantom.  The 

resulting FBP image is shown in Figure 27. 

Figure 27:  FBP reconstruction of Shepp & Logan 512x512 from 37 angles with 

manual window and level adjustment. 
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A similar adjustment was performed on the corresponding PART reconstruction, 

with a small amount of improvement (shown in Figure 28). 

 

Figure 28:  PART reconstruction of Shepp & Logan 512x512 from 37 angles with 

manual window and level adjustment. 

 

 

Aside from the general aesthetic differences in the image, two key clinical 

problems with the FBP reconstruction of Figure 28 should be noted.  First, the 
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outer rim of the major anatomical body, in this case representing the outside of 

the skull, is white in the original phantom and the PART reconstruction, whereas 

it is black in the FBP reconstruction.  Another significant discrepancy is the gray 

level of the two larger elliptical bodies.  In the original phantom and the PART 

reconstruction, these bodies are darker, specifically in relation to the large 

circular body.  In the FBP reconstruction, these elliptical regions are a lighter 

shade of gray than the circle.  This problem cannot be remedied with post 

processing and poses an important clinical problem, which is the reliable 

determination of the density (or more specifically X-ray opacity) of anatomical 

structures. 

 

In quantitative terms, the MSE of the FBP image at 37 angles is 0.1352, while 

the MSE of the PART image is 0.057076.  

 

The entropy ratio measured for the FBP image was 1.3923, while the PART 

reconstructed image was measured at 1.1138.  As previously discussed, the ideal 

value for this measure is 1, which would denote that the reconstructed image 

contains approximately the same amount of information as the original. This 

result reinforces the already existing body of literature, showing better image 

quality for the PART reconstruction for limited projections when compared to 

FBP. 
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5.2.4 Problem Size 

Images commonly reconstructed in a clinical setting are on the order of 128 by 

128 pixels to 512 by 512 pixels.  Images of size up to 1024 by 1024 pixels were 

reconstructed successfully using the PART technique.  Attempts to reconstruct 

larger images, specifically 2048 by 2048 pixel images, were initially unsuccessful.  

Images of this size require 32 megabytes to store as an array of data type 

double.  Original code versions used several arrays of this size, allocated 

statically.  For images of this size, the PART program with static memory 

allocation requires stack space on the order of 128 megabytes.   

 

In C, statically allocated arrays are defined in the declaration section, for 

example: 

 double current[IMAGEWIDTH][IMAGEWIDTH]; 

The memory allocated for variables declared in this way is located on the stack 

space of the program.  This limited memory space (8 megabytes on Mecury by 

default) cannot handle variables of the size required for large images.  Dynamic 

memory allocation circumvents this issue. 

 

Dynamically allocated variables are stored on the heap instead of the stack.  In 

C, these variables are declared as pointers and physically allocated by calling a 

memory allocation function such as malloc(memsize).   
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The code below shows how this might be done for an image array: 

double  *seed; 

seed = (double *)malloc(sizeof(double)*IMAGEWIDTH*IMAGEWIDTH); 

 

Declaring, allocating, and manipulating dynamic variables is more difficult 

programmatically, but provides performance advantages in addition to the 

memory management advantages for large images. 
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6 Conclusion 

The proposed message passing parallel algorithm presents encouraging 

theoretical results in terms of speedup.  However, empirical data was 

inconclusive.  Erratic data collected implies that the communication latency in the 

message passing implementation presented in this paper is far too variable to 

achieve reliable results.  

 

In addition to the prohibitive communication latency of the message passing 

approach, most commercial CT machines are equipped with dedicated 

computational power, and occasionally custom architectures.  As a result, a 

shared memory implementation would be more practical than a message passing 

implementation in industry.  Timing results of the shared memory 

implementation show a clear advantage with greater numbers of threads.  

Speedup increased steadily for increasing numbers of processors, with efficiency 

ranging from 59.52% to 96.75%.  The number of processors should be a factor 

of the total number of angles for optimal speedup for maximum efficiency. 

 

In more practical terms, a 6 processor IBM P-server could reconstruct the same 

image from 36 angles in approximately 5.038 seconds, with an efficiency of 

93.35%.  In other words, a PART reconstruction could be done in about the 

same amount of time as a 180 angle serial FBP reconstruction, yielding 
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approximately equivalent image quality, but at an 80% reduction in dose.  

Alternatively, for the same dose, the 5.038 second PART reconstruction produces 

a higher quality image in approximately the same amount of time.  Such an off-

the-the shelf IBM system is valued in the range of $30,000-$50,000.  When 

replacing a manufacturer’s existing reconstruction hardware, this would account 

for about 1 to 2% of the $2M cost of a modern CT system. 
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7 Future Work 

Before being commercially used, the PART algorithm should go through some 

additional experimentation using real CT data instead of the simulated data used 

in this thesis.  Such experiments would further validate the results presented, 

and might expose some yet unforeseen flaws in the approach.  In addition, the 

code would need to be ported to whatever hardware platform the 

reconstructions would be done on.  With the strict adherence to ANSI standards, 

porting the code to any platform should be relatively straight forward. 

 

Commercial CT machines vary in the method by which they gather data.  Several 

newer machines in the market, such as Toshiba’s newest Aquillion models, use a 

helical cone beam acquisition scheme.  As discussed earlier, preprocessing is 

often done in commercial CT machines to conform the machine’s native 

acquisition data to a data form suitable for the reconstruction algorithm being 

employed.  For example, helical cone beam data is sometimes interpolated or re- 

projected to produce sequential slice data before reconstruction. The most 

common native algorithm in use for this type of data is the Fourier 

backprojection-based code introduced by Feldkamp et al. [16].  Rival cone beam 

algorithms include block-ART and ART-based approaches.  The parallel ART 

introduced in this thesis could be extended to a cone beam case, to process 

native helical cone-beam data without any preprocessing.  
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Further in the future, single photon X-ray and CT machines may be available 

[34].  Current CT machines use X-ray tubes producing X-ray photons in a 

random fashion, characterized by a Poisson distribution.  When single photon X-

ray emitters are available, a new class of CT algorithms will be needed.  An ART 

based algorithm for this application might easily be parallelized based on the 

work in this thesis. 
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