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Abstract

The thesis aimed to develop a method for optimizing design subject to matching

the pre-defined baseline characteristics in clinical trials. As part of a clinical trial,

a new treatment must be compared with a competitor treatment in order to deter-

mine its effect on the patient before the new treatment is launched. Ideally, we can

directly compare the new treatment with competitor treatment in randomized con-

trolled trials (RCTs). However, direct comparison is difficult to achieve due to various

factors, such as time, price, regulation, and patents. A matching-adjusted indirect

comparison (MAIC) method leverages all available data by adjusting average patient

characteristics in trials with Individual patient data (IPD) to match those reported in

the aggregate trials data (AgD). MAIC is a reweighting method in which the weights

are calculated by deriving the propensity scores in the Individual patient’s data. This

can reduce the bias.

As IPD matches to the pre-defined baseline characteristics, we make use of op-

timal design theory and convert this into a constrained optimization problem. The

Lagrangian method is used to determine the optimal design subject to satisfying

the constraints of baseline characteristics. We formulate the Lagrangian and then

transform the constrained problem to one where we simultaneously maximize sev-

eral functions of the design weights. These functions have a common maximum of

zero. In order to find the optimal design, we used the software R and a class of

multiplicative algorithms. We then perform a sensitivity analysis and compare the

Lagrangian method and the MAIC method by calculating the effective sample sizes

(ESS). The higher the value of ESS the less information is lost due to reweighting.
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The Lagrangian method performs better than the MAIC method.

Owing to the broad applicability of optimal design, we have tried to make use of

this theory in order to obtain a better methodology in MAIC. The proposed methodol-

ogy is quite flexible and can be applied to different types of constraints. The method-

ology can be applied to situation where there is a lack of direct comparison. It will

also reduce the time and cost of running experiments.
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Chapter 1

Introduction

1.1 Background

Methodologies of experimental design were first proposed by Sir Ronald Fisher in

the 1920s and early 1930s. Since then, they have been applied broadly in many areas

(Montgomery, 2017). Researchers seek answers for various problems in their research

areas of interest based on experimental designs. A design is characterized by variables

of interest. For example, we compare two drugs for a specific disease, recruit patients

and assign them to a treatment group for each drug. For each patient, we consider

baseline characteristics, such as age, gender, weight, etc. How to specify values or

levels of those variables such that the design gives less bias and best estimation of

the parameters of interest is an important question to design an experiment. After

specifying the values or levels of the variables (called the design variables), we need

to decide how many observations are assigned to each value or level. Answering these

two questions is fundamental in optimal design, which is the main focus of this study.
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1.1.1 Optimal Design

When designing an experiment, it is essential to ensure the design provides good

estimation of the parameters of the model. A good design guarantees capturing

the actual treatment effect precisely without needlessly wasting materials and sub-

jects. In statistics, there are many problems calculating one or more optimizing

probability distributions. We can obtain a high-efficient design utilizing method-

ologies of optimal design theories (see, e.g., Berger and Wong (2009), Silvey (2013),

Pukelsheim (2006), Berger and Wong (2009), Fedorov (2013), Torsney (1977), Mandal

and Torsney (2006)). It is an important aspect of many statistical research areas to

study how to construct optimal designs. Examples include optimal response-adaptive

design, maximum likelihood estimation, response surface design, model selection and

discrimination, stratified sampling, image processing and optimal structure design.

One of the essential aspects is constructing optimal design subject to specific con-

straints of interest. It evolved into a very crucial topic because the constrained op-

timization technique can be applied to any circumstances where the restrictions are

needed. Once a statistical model is specified based on the objectives of the study, the

optimal design is identified based on pre-defined criteria. We denote an optimal design

criterion by ϕ, which could be a function of the variance of a parameter estimator of

a statistical model, or the generalized variance of the parameter estimators or simply

the average variance. Reducing variance yields good estimates, which is desirable.

Thus, selecting a design with a minimal variance is an important objective which

is also achieved via optimizing functions called optimality criteria. Atkinson et al.

(2007) categorized optimal design criteria based on a range of perspectives, which is
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explained in detail in the next chapter, comprising of D-, A-, G- and E-optimality.

1.1.2 Matching-Adjusted Indirect Comparison

In clinical trials, optimal design can help investigators achieve higher quality re-

sults for the given resource constraints (Sverdlov et al., 2020). Before a new medical

treatment comes out, it requires comparing the treatment effect between the new

treatment with the competitor treatment. Ideally, we can apply direct comparison

between new treatment and the competitor treatment in randomized controlled trials

(RCTs). However, direct comparison is difficult to achieve due to various factors,

such as time, price, regulation, patents and other constraints. Bucher et al. (1997)

first presented an indirect statistical method that adjusted the indirect comparison

of treatment effects without head-to-head randomized trials. The method compares

the magnitude of the treatment effects between two treatments relative to a common

competitor, which serves as a link between the two treatments. Consequently, indi-

rect treatment comparisons are becoming more common in the field (Deodhar, 2018).

When a common competitor arm between RCTs (typically placebo) is available, the

network meta-analysis method can be performed. Network meta-analysis deals with

multiple treatment comparison, and it combines information from all randomized

comparisons among a set of treatments that are considered in a given medical condi-

tion. In fact, network meta-analysis is a generalization of a pairwise meta-analysis,

and has been a popular research topic recently. This method has been very useful

in evidence-based medicine (Nietert et al., 2013). However, this method relies on

analyzing aggregate data, and it must assume that the trial populations are similar.
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This can lead to potential bias in the presence of uneven treatment effect modifiers

(Deodhar, 2018). Signorovitch et al. (2010) proposed a matching-adjusted indirect

comparison method that leverages all available data by adjusting average patient

characteristics in trials with individual patient’s data (IPD) in order to match those

reported for trials without IPD. This method can avoid some limitations, such as dis-

parities between populations, lack of common competitors, sensitivity to modelling

assumptions and different definitions or reporting methods for outcome measures

(Dias et al., 2013). Matching-adjusted indirect comparison (MAIC) is the most com-

monly used approach for population adjustment, and it has been acknowledged as a

valid and robust method when comparing differences between trial populations. For

more information, we refer to Rugo et al. (2021), Signorovitch et al. (2010), Deodhar

(2018), Phillippo et al. (2016), and Phillippo et al. (2018).

1.2 Motivation and Objective

In practice, people are not only interested in minimizing covariance matrix to

construct optimal design but also want to match their baseline characteristics to

be balanced with those of the patients from the aggregate data of the competitor’s

trails. However, in practice, individual competitor data is hard to obtain. For new

medical treatments and pharmaceutical product studies, due to cost or competition

issues, there is always only a small amount of reference data available to assess a

product’s or treatment’s impact on patient outcomes. There are many reasons for

lack of available data on a common competitor’s treatment against two competing
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interventions. Planning clinical trials can be very expensive, investigators need to run

significant lengths of time to finish the plan, execution and analysis. Due to policy

and many reasons that may change in the course of running a lengthy clinical, there

will be a lot of uncertainty that can hinder to identify the common competitor. Also,

in some cases, it cannot be assured that assigning patients randomly to a particular

treatment arm of clinical trials is ethical. Ideally, the new medical treatments and

pharmaceutical products will follow current standards of care to evaluate and to test

against all relevant alternatives from marketing in randomized trials. However, this

process may take several years before a direct study is performed, and it will delay

healthcare decision-makers in approving new treatments for reimbursement. The

new technique, Matching-Adjusted Indirect Comparison (MAIC), was published in

2010 (Signorovitch et al., 2010) to solve this problem. Matching-adjusted indirect

comparison is a reweighting method in which the weights are calculated by deriving

propensity scores in the individual patient’s data (IPD) to match summaries reported

(typically using mean) in the aggregate trials data (AgD). This can reduce the bias

in the results. IPD are such as age and gender characteristics data. In AgD, the

summaries reported data can be the mean of age and proportion of gender of aggregate

trials data. After matching, each IPD is assigned a re-weighting weight that we

denote by w∗. The MAIC method uses individual patient data (IPD) to equalize

baseline characteristics across trials from different studies. In one popular criterion

(known as D-optimality) in optimal design theory, we minimize the determinant of

the covariance matrix of the estimators (generalized variance) of the parameters in

a pre-defined statistical model. Equivalently, we maximize the determinant of the
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information matrix. In each design point, we assign an optimal design weight, say p∗.

Optimal design reduces the time and costs of experimentation. The MAIC method is

applied for indirect comparison by matching IPD to AgD. The optimal design theory

is applied to reduce the cost of the experiment with fewer experiment runs. We did

not find any study that combines these two areas, namely the MAIC and the optimal

design.

This motivates us to study this novel unified approach to match the IPD to AgD.

We want to create a design that not only satisfies the IPD match to AgD but also

the design is optimal. This new methodology can be applied to situation where there

is a lack of direct comparison.

Let us consider a problem. Assuming that we have treatment A, we want to

know whether treatment A is efficient; we already know that treatment B is efficient,

and treatment B is verified its effectiveness through a control group experiment by

comparing it with control treatment C. In the ideal case, we know the individual

patient data baseline characteristics of AC trials, so we can apply indirect compar-

isons through a common competitor. However, we do not have individual baseline

characteristics of AC trials, such as Age, Gender, Region, etc. Only the aggregated

characteristics data of AC trials, such as the mean age of patients and the proportion

of males attending, can be found. For easy understanding, we denote the aggregated

data as AgD. The available individual patient data is IPD. Under this condition, how

can we make a design? The matching adjusted indirect comparison (MAIC) method

can be applied in this situation. The idea is to leverage all available individual patient

data by adjusting average patient characteristics in our trial to match with AgD. In
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optimal design theory, this is called a constraint. We can construct an optimal design

subject to this constraint. Now, the problem becomes a constrained optimal design

problem.

Construction of constrained optimal design is an important topic from both the-

oretical and practical point of view. Torsney and Mandal (2001) and Mandal et al.

(2005) proposed some approaches that can transform the constrained optimization

problem into the problem of maximizing a number of functions of the design weights.

Torsney and Mandal (2006) extended their work by applying a class of multiplicative

algorithms indexed by a function f(.) to construct optimal design with constraints.

For the MAIC method re-weighted IPD to match the distribution at the aggre-

gate data (AgD), we refer to Rugo et al. (2021) and Alsop and Pont (2022). For

the Lagrangian method we refer to the works of Torsney and Mandal (2001), and

Mandal et al. (2005). In this thesis, we develop a unified approach by combining the

Lagrangian approach and the MAIC method.

1.3 Overview of the Dissertation

This thesis is organized into five chapters. Below is a brief description of each of

the remaining four chapters.

Chapter 2 is concerned with optimal design and matching-adjusted indirect com-

parison methodologies. The first part reviews the existing optimization design meth-

ods, related basic knowledge of optimal design framework, and a brief discussion

on discrete optimization and related algorithm. The second part reviews the basic

7



knowledge of matching adjusted indirect comparison procedure.

Chapter 3 shows in detail how to formulate the problems using the Lagrangian ap-

proach and how to construct an optimal design subject to the constraints of matching

the pre-defined values.

Chapter 4 performs a sensitivity analysis and compares the methods using the

effective sample sizes (ESS).

Chapter 5 summarizes the thesis and discusses the limitation and future work.
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Chapter 2

Overview of Methodologies and

Concepts

2.1 Optimal Design Concepts

Linear models were initially used to develop optimal design theory, and with the

development of computer science, there have been significant advances in generating

optimal design using algorithms. The optimal design has been implemented in many

applications of research areas, such as medical science and marketing research in

business (Montgomery, 2017).

Let us begin with the problem of experimental design with a model of the type:

y ∼ π(y|x,θ, σ) (2.1)

where y is the response variable and x = (x1, x2, ..., xm)
T are design variables that
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can be chosen by the experimenter, x ∈ χ ⊆ R,χ is referred to as the design space.

This is typically continuous, but it can also be discrete. θ = (θ1, θ2, ..., θm)
T are k-

dimensional unknown parameters, θ ∈ Θ ⊆ Rk. σ is a nuisance parameter, which

is fixed and unknown and not of primary interest. π(.) is a probability model. For

each x ∈ χ, an experiment is performed and the outcome is the response variable

y = y(x), where var(y(x)) = σ2 and σ is assumed to be independent with the

experimental condition x.

In linear model, y(x) can be written in the explicit form

E(y|x,θ, σ) = fT (x)θ (2.2)

where f(x) = (f1(x), ..., fk(x))
T is a vector of k real-valued functions. The function

f is known to the experimenter.

Now, the question naturally arises what values of x should we select to have the

best inference for the parameters θ. Let us suppose that it is on point estimation.

It needs first to select n supports points (x1, x2, x3, ..., xn) ∈ χ. Suppose the esti-

mator θ̂ is unbiased estimator for θ. In order to have an accuracy of θ̂, we need

to ensure the variance is as small as possible. We can write the k × k dispersion

matrix (variance-covariance matrix) as D(θ̂) = E([θ̂ − θ][θ̂ − θ]T ). The dispersion

contains information about accuracy of not only the diagonal elements of θ̂ but also

its off-diagonal elements. In general, smaller D(θ̂) means better accuracy of θ̂.

Assume the model (2.2) is true, and that yi’s are independent random variables
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with equal variance σ2, then the standard linear model is given by:

E(Y ) = Xθ, D(Y ) = σ2In (2.3)

where Y = (y1, y2, ..., yn), X is n × k design matrix, In is n × n identity matrix.

D(Y ) denotes the variance-covariance matrix of Y .

In the linear model, we can obtain the best linear unbiased estimator (BLUE)

using the least squares estimation method. The estimators θ̂ are the solutions of:

(XTX)θ̂ = XTY (2.4)

where XTX is the information matrix. The larger the matrix XTX, the greater is

the information in the experiment. If we suppose all the parameters θ are interested,

then we must ensure that the matrix XTX is non-singular. Then the unique solution

for (2.4) is expressed as:

θ̂ = (XTX)−1XTY (2.5)

with

E(θ̂) = θ, D(θ̂) = σ2(XTX)−1.

The predicted response at x is

Ŷ (x) = f1(x)θ̂1 + f2(x)θ̂2 + ...+ fk(x)θ̂k = fT (x)θ̂.

11



From the above equation, the dispersion matrix θ depends proportionately on σ2,

not on θ. Therefore, to obtain a better inference for θ, we need more information in

an experiment. That is, we need to have a maximum information matrix. Then the

goal is to maximize the information matrix XTX or equivalently we can minimize

the inverse of the information matrix.

2.1.1 Exact and Approximate Designs

The linear model in (2.2) can be expressed as:

E(y|v,θ, σ) = vTθ (2.6)

where

v = (f1(x),f2(x), ...fk(x))
T ,v ∈ V ;

V = {v ∈ Rk : v = (f1(x),f2(x), ...fk(x))
T ,x ∈ χ}

From the above, it is apparent that the choice of a vector x in the design space χ is

equivalent to the choice of a k-vector v in the closed bounded k-dimensional space

V = f(x), where V is the vector function (f1,f2, ...,fk)
T and is the image under f of

χ. That is V is the induced design space. This design space is normally continuous,

but it can be assumed to be discrete. It can be justified using Caratheodory’s theorem.
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For assumed discrete design space V consisting of J distinct vectors v1,v2, ...,vJ ,

we must first choose a value of v from the J elements of V to obtain observation on

y.

After discretization, the design problem becomes more concise. Then we need to

consider what points vj should be taken, and the number of observations, that is, nj

at these points that should be taken to determine the best estimator of θ. Given n

observations in total, we have now to choose how many observations of nj we must

take at vj , subject to
∑J

j=1 nj = n. Therefore, we can express the information matrix

in the form:

XTX = M(n) =
J∑

j=1

njvjv
T
j = V NV T (2.7)

where n = (n1, n2, .., nJ)
T ,N = diag(n1, n2, .., nJ).

Suppose we would like to determine the values of the vector n to make the matrix

M(n) as large as possible. It is an integer programming problem to find the exact

integer values nj, and so it becomes an exact design problem. However, the use of

calculus theory cannot be accustomed to find the optimal solutions. Even without

additional constraints, it is still hard to solve integer programming problems. In order

to solve this problem, we can find a proportion pj as defined by pj = nj/n. That is,

pj ≥ 0 and
∑J

j pj = 1. So (2.7) can be expressed as:

M(n) =
J∑
j

njvjv
T
j = n

J∑
j

pjvjv
T
j = nM(p) (2.8)

Thus, our problem is selecting design point p to make information M(p) as large

13



as possible, subject to pj = nj/n. Now, it has become an approximate design prob-

lem. The corresponding weight is continuous for approximate design, and the sum

of corresponding weights is 1. Whereas for exact design, the weight is discrete, and

the sum of corresponding numbers of subjects of an exact design is n. Approximate

design is a preferred choice over the original design and is given by np∗, rounded to

the nearest exact design.

Let us look at the expression of information matrix closely. We notice the expec-

tation of vvT by viewing p as probability distribution on V that is M(p) = Ep[vv
T ],

where P (v = vj) = pj. The design can be thought of by a set of probabilities or

weights pj, pj being assigned to vj. Note the points that are not support points of

the design are assigned to zero weights.

2.1.2 Design measure

The form of a design measure can write as:

ξ =

x1 x2 ... xJ

p1 p2 ... pJ

 (2.9)

where the first line is the location of the design points xj, the second line is the design

weights p
′
js. xj ∈ χ and

∑J
j=1 pj = 1, 0 ≤ pj ≤ 1 for all j. We also can use notation

p instead of ξ.
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2.1.3 Support of a Design Measure

The support of design measure ξ in the design space V is defined as a set of vectors

vj that we consider to have nonzero weights under p. It is given by:

Supp(ξ) = {vj ∈ V : pj > 0, j = 1, 2, ...J}. (2.10)

Assuming p∗ is an optimal design, the support of the design measure under design p∗

may be a strict subset of V .

2.1.4 Standardized Variance of the Predicted Response

The standardized variance of the predicted response on y at x for the design (2.9)

represented as:

d(x,p) = fT (x)M−1(p)f(x) (2.11)

whereM−1(p) is the inverse of the information matrix, that is, the covariance matrix.

2.1.5 The information matrix M(p)

The information matrix M(p) can be written as:

M(p) =
J∑

j=1

pjvjv
T = V PV T . (2.12)

where V = [v1,v2, . . . ,vJ ] and P = diag(p1, p2, . . . , pJ).

There are two essential properties of an information matrix that are symmetric
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and non-negative definite. The symmetry property follows from its definition. The

non-negativeness property can be easily verified as:

xTM(p)x = xTEp[vv
T ]x = Ep[x

TvvTx] = Ep[(x
Tv)2] ≥ 0.

The information matrix is used widely in optimal experimental design. The in-

verse of the variance-covariance matrix (dispersion matrix) is the information matrix.

Minimizing the variance corresponds to maximizing the information.

2.2 Criteria in Optimal Design and Properties

2.2.1 D-optimality

D-optimality is the most popular and important design criterion in the literature.

The criterion function is defined as:

ϕD(p) = ψD{M(p)} = logdet{M(p)} = −logdet{M−1(p)} (2.13)

In D-optimality, we maximize the determinant of information matrix M(p), or

its logarithm logdet{M(p)}. Because of the reciprocity property of the covariance

matrix and information matrix, maximizing the determinant of the information ma-

trix is equivalent to minimizing the determinant of the covariance matrix. Hence, we

minimize the generalized variance of the parameter estimates in D-optimality.

D-optimality has some useful properties. It has a connection between D-optimality

and the standardized variance of the predicted response.
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Suppose we have a given model with design variable x and have a D-optimal

design, that is p∗, then

supxd(x,p
∗) = k (2.14)

where d(x, p) is the standardized variance of the predicted response as defined in

(2.11), and k is the number of parameters in the model (Kiefer and Wolfowitz, 1960).

In the linear model, assume the normality of the errors. The volume of the con-

fidence ellipsoid for the parameters is proportional to the D-optimal criterion. The

joint confidence region for the vectors of unknown parameters θ ∈ Θ is given by:

{θ : (θ − θ̂)TM(p)(θ − θ̂) ≤ c)}, for some critical value c (2.15)

where θ̂ is the least squares estimate or the maximum likelihood estimate of θ. Gen-

erally speaking, the smaller the volume of the confidence interval the more accurate

estimators. In other words, D-optimality is equivalent to minimizing the volume of

the ellipsoid, where the volume is proportional to [det(M(p)−1]1/2.

The D-optimality can be also explained in terms of the eigenvalues of the infor-

mation matrix M(p). Let us denote (λ1, λ2, .., λk) are the eigenvalues of M(p). The

eigenvalues of inverse of M(p) that is M(p)−1 would be (1/λ1, 1/λ2, .., 1/λk). The

half length of the axes of the confidence ellipsoid is the form of c
√

(1/λk). So, the

eigenvalues of M(p)−1 are proportional to the squared of the lengths of the axes of

the confidence ellipsoid. In other words, the D-optimal design can be obtained by

minimizing the product of the eigenvalues of M(p)−1, i.e.
∏k

i=1
1
λi
.
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The D-optimality criterion is a concave function of the positive definite symmetric

matrices. The criterion function ϕD is differentiable whenever it is finite, and the

first partial derivatives are given by:

∂ϕD

∂pj
= vT

j M
−1(p)vj. (2.16)

Moreover, another property of the D-optimality criterion is invariant under a non-

singular linear transformation of the design place. The most extensive references of

this area can be found in Kiefer and Wolfowitz (1959), Fedorov (2013), Silvey (2013),

Berger and Wong (2009), Atkinson et al. (2007), Mandal and Torsney (2006), Mandal

et al. (2005).

2.2.2 DA-optimality

DA-optimality is only interested in some of the unknown parameters or some linear

combinations of the parameters of the linear model. This criterion has very similar

properties to the D-optimality criterion. Sibson (1972) called this as DA-optimality

in order to emphasize the dependence of the design on the matrix of coefficients A.

The criterion function of DA-optimality is given by:

ϕDA(p) = ψDA{M(p)} = −logdet{AM−1(p)AT} (2.17)

Suppose s linear combinations of the parameters θ1, θ2, .., θk we are interested in.

The elements of s linear combinations of the vector α = Aθ, where A is s×k matrix
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of rank s ≤ k. If we assume M(p) is non-singular, then the covariance matrix of the

least squares estimator of Aθ is proportional to the matrix AM−1(p)AT .

The partial derivatives of DA-optimality criterion are given by:

∂ϕDA

∂pj
= vT

j M
−1(p)AT [AM−1(p)AT ]−1AM−1(p)vj. (2.18)

2.2.3 Ds-optimality

Ds-optimality is an important special case of DA-optimality. In Ds-optimality, we

are interested in a subset of s parameters. In DA-optimality, if A = [Is : O], where

Is is the identity matrix with dimension s× s and O is zero matrix with s× (k − s)

dimension. If we are only interested in estimating the first s parameters. Then the

criterion becomes a Ds-optimality criterion. In this case, without loss of generality,

considering the first s parameters θ1 to θs in θ ∈ Θ, the information matrix of M(p)

can be written as:

M(p) =

M11
s×s M12

s×(k−s)

M12
T M22

(k−s)×(k−s)

 (2.19)

From Rohde (1965), the inverse of AM−1(p)AT can be expressed as:

(AM−1(p)AT )−1 = M11 − M12M
−1
22 MT

12. (2.20)

Therefore, Ds design criterion becomes that selecting the design p to maximize

the determinant of (AM−1(p)AT )−1 = M11 − M12M
−1
22 MT

12. It is easy to see,

that maximizing ϕDA
is equivalent to maximizing the ϕDs criterion:
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ϕDs(p) = logdet{M11 − M12M
−1
22 MT

12} (2.21)

For more details we refer to Karlin and Studden (1966), Atwood (1969), and Silvey

(2013).

2.2.4 A-optimality

A-optimality is defined by maximizing criterion function:

ϕA(p) = ψA{M(p)} = −trace{M−1(p)} (2.22)

Because of the property of the covariance matrix and the information matrix, the

A-optimal design minimizes the sum of the variances of all the parameter estimates

or the average variance but ignores the correlation structures of these estimators.

The partial derivatives of the criterion are given by:

∂ϕA

∂pj
= vj

TM(p)−2vj (2.23)

Unlike D-optimality, the A-optimality criterion may not be invariant under the

linear transformation of the scale of the independent variables. Compared with other

criteria from the computational aspect, it only requires the addition of the k diago-

nal elements of the M(p)−1. The more discussion can be found in Elfving (1952),

Atkinson et al. (2007) and Berger and Wong (2009).
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2.2.5 G-optimality

In G-optimality (Global optimality), we maximize the criterion function given by:

ϕG(p) = ψG{M(p)} = −Maxv∈Vv
TM−1(p)v. (2.24)

This criterion seeks to minimize the maximum value of standadrdized variance of

predicted response, vTM(p)−1v, which is proportional to the variance of vT θ̂. Kiefer

and Wolfowitz (1960) prove that this criterion and D-optimal criterion are equivalent.

To understand the connection between G-optimality and D-optimality. We say

that under the optimal design p∗, the standardized variance for a G-optimal design

is less than or equal to k, where k is the number of parameters in the model. That

is, d(x, p∗) ≤ k with equality at the support points. Thus, we can use this inequality

to check whether a design is D-optimal or not. G-optimality is also invariant under a

non-singular linear transformation of the scale of the independent variables. Suppose

uniquely vj
TM(p)−1vj =Maxtvt

TM(p)−1vt, then the partial derivative of ϕG can

write as:

∂ϕG

∂pj
= [vj

TM−1(p)vj ]
2. (2.25)

2.2.6 Linear Optimality

A linear or L-optimal design criterion function is given by:

ϕL(p) = ψL{M(p)} = −tr{M−1(p)L} (2.26)
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It is linear in the elements of the covariance matrix M(p)−1, where L is k × k

matrix of coefficients. L can be writen as L = ATA whereA is a matrix of dimension

s× k with rank s. There is a relationship between L-optimal design and DA-optimal

design:

ϕL(p) = ψL{M(p)} = −tr{M−1(p)L}

= −tr{M−1(p)ATA}

= −tr{AM−1(p)AT}

(2.27)

We minimize the trace of the matrix AM−1(p)A in L-optimal design while we

minimize the log determinant of the matrix AM−1(p)A in DA-optimal design. If

this matrix of coefficients L is an identity matrix I, then this criterion is simply an

A-optimality criterion.

The first partial derivatives of ϕL are given by:

∂ϕL

∂pj
= vj

TM−1(p)ATAM−1(p)vj (2.28)

2.3 A Class of Algorithms in Optimal Design

In the previous section, we discussed different optimality criterion function ϕ(p)

which is a function of the information matrix M(p). Recall an approximate design
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in one design variable:

ξ =


x1 x2 · · · xJ

p1 p2 · · · pJ

 (2.29)

The first line are the locations of the design points, the second line are associated

design weights pj satisfying the constraints pj ≥ 0,
∑J

j=1 pj = 1. Generally, our

problem is to maximize the criterion function ϕ(p) subject to satisfying the constraints

pj ≥ 0,
∑J

j=1 pj = 1.

In order to find an optimal design, we use the directional derivative Fϕ{p, q} tool

to determine optimality conditions. The multiplicative algorithm is used to construct

the optimal design. We will now review the directional derivations, multiplicative

algorithms and the required function f(.).

2.3.1 Directional Derivatives

The directional derivatives Fϕ{p, q} of a criterion function ϕ(.) at p in the direction

of q is defined as:

Fϕ{p, q} = lim
ε↓0

ϕ{(1− ε)p+ εq} − ϕ(p)

ε
(2.30)

Denoting jth unit vector in Rj by ej , dj =
∂ϕ
∂p
, the partial derivative of ϕ respect

to pj, we can simplify the directional derivatives
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Fj = Fϕ{p, ej} =
J∑

i=1

(qi − pi)di

=
∂ϕ

∂pj
−

J∑
i=1

pi
∂ϕ

∂pj

= dj −
J∑

i=1

pidi

(2.31)

This derivative exists even if ϕ(.) is not differentiable. Fj is called the vertex

directional derivative of ϕ(.) at p.

2.3.2 Optimality Conditions

If ϕ(p) is differentiable at p∗, then the first order conditions for ϕ(p∗) to be a local

maximum of ϕ(p) in the feasible region of the general problem are

F ∗
j = Fϕ{p, ej}


= 0 if p∗j > 0

≤ 0 if p∗j = 0

(2.32)

Based on the General Equivalence Theorem, if ϕ(p) is concave on its feasible

region, then the first-order stationarity conditions are both necessary and sufficient

for optimality (Kiefer, 1974).

2.3.3 Multiplicative Algorithm

Because optimal solution typically is not always obtained analytically, it often

requires algorithms to solve. A class of algorithms with neatly satisfying the basic
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constraints of the design is the multiplicative algorithm:

p
(r+1)
j =

p
(r)
j f(d

(r)
j )∑J

i=1 p
r
jf(d

(r)
i )

(2.33)

where d
(r)
j = ∂ϕ

∂pj
at rth iterate p = p(r), and the function f(.) satisfies following

conditions and depend on a free positive parameter δ. This type of iteration by

taking f(d) = dδ was first proposed by Torsney (1977). The choice of the free positive

parameter δ can affect the convergence rates. The more references for choosing the

function f(.) and the free parameter δ can be found at Torsney and Alahmadi (1992),

Torsney and Mandal (2001), Mandal and Torsney (2006) and Mandal et al. (2017).

2.4 Matching Adjusted Indirect Comparison (MAIC)

As discussed in the Chapter 1, matching adjusted indirect comparison is a re-

weighting method where the weights are calculated by deriving propensity scores in

the individual patient data (IPD) and matching the summaries reported (typically

mean and variance) in the Aggregate data (AgD). See figure 2.1.
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Figure 2.1: Idea of MAIC

There are two types of MAIC, if IPD and AgD are linked by a common treatment,

it is called anchored MAIC, otherwise, it is called unanchored MAIC. This is depicted

in the image below:

(a) Anchord MAIC (b) Unanchored MAIC

Figure 2.2: Two case of MAIC

In general, to explain the MAIC procedure, we need to make sure the studies are

satisfied by an important assumption. The important assumption of MAIC is that

the IPD and AgD are from a common underlying patient population. Let us denote

A, B, C by three treatments. We will give an example of an anchored MAIC here.
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We do not consider the Unanchored cases here. It can be shown below:

(a) Anchored MAIC (b) Unanchored MAIC

Figure 2.3: MAIC weighting procedure

Let us describe the situation in figure 2.3a. Treatment A and treatment C have

common treatment B. The IPD is only available from AB trials. For BC trials we

have AgD. The emoji face with a head bandage is a severe patient, face with a

thermometer is a non-severe patient. In AB trials, 60 percent of patients are served

patients compared to 80 percent of served patients in BC trials. There may be severe

patient effects of different treatments. Without any adjustment comparison of AB,

trials will cause bias. By using MAIC, re-weight the percentage of patients in AB

trials, increase the contribution of the effect sizes of severe patients and decrease the

contribution of the non-severe patients that matches the actual percentage of served

patients in the indirect comparison AC trials.

The main idea behind MAIC is to derive propensity scores in the IPD group

AB trials and use the propensity scores to calculate weights for each patient to bal-

ance prognostic variables and effect modifiers between AC trials. This reweighting
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approach was originally published by Signorovitch et al. (2010).

2.4.1 MAIC Methodology

After a general explanation, we now give a theoretical example. Let us suppose

that IPD is available for treatment t=0 for our own trial. But only AgD is available

for treatment t=1, which is the competitor’s trial. The purpose of MAIC here is

to reweight IPD to match AgD characteristics for treatment t=1. Suppose that the

baseline characteristics are age which is an effect modifier and gender, which is a

prognostic variable. Individual patient i is assigned to treatment t and has baseline

characteristics Xit, Xi1 is baseline characteristics for treatment t=1 (AgD), which is

for AgD. Xi0 is individual patient data for treatment t=0 (IPD). The weights are

derived from a propensity score equation that will be applied to the patients. The

weights are defined by

wit =
P (ti = 1|xit)
P (ti = 0|xit)

(2.34)

The probabilities indicated here refer to the probability of the patient assigned

treatment t=1 vs treatment t=0, and wit is the odd ratio that patient i receives

treatment t=1 to t=0. In other words, re-weight the patients assigned treatment 0 to

match the distribution of patients assigned treatment 1. In order to find the re-weight

weight, the weights are calculated by estimating the logistics propensity score model:

log(wit) = α + x′itβ (2.35)

We also can re-write as:
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wit = eα+x′
itβ = eαex

′
itβ

where α and β are the parameters.

In order to estimate wit, we need to estimate the parameters first. The weight for

subject i is: wit = exp(α + x′itβ).

The maximum likelihood estimation(MLE) is normally used to estimate the pa-

rameters for the logistic regression model. However, that is not possible here, because

there is no individual patient data (IPD) for t=1; we only have aggregate data (AgD).

In this case, to estimate β, we use the method of moment, which is a key feature for

the MAIC method (Signorovitch et al., 2010). A detailed description can be found

in Appendix B of the Supplemental Digital Content of the reference. We want the

mean of the weighted IPD is equal to the mean of the baseline characteristics for the

AgD. The mean of the weighted IPD can be represented as when t = 0:

∑
i:t=0 xitŵit∑
i:t=0 ŵit

=

∑
i:t=0 xite

αex
′
itβ̂∑

i:t=0 e
αex

′
itβ̂

=

∑
i:t=0 xite

x′
itβ̂∑

i:t=0 e
x′
itβ̂

(2.36)

Thus we see that we only need to estimate the β. Now β can be estimated by

solving the equation:

∑
i:t=0 xitexp(x

′
itβ̂)∑

i:t=0 exp(x
′
itβ̂)

− x̄1 = 0

The mean of the weighted single-arm IPD will be matched to the mean of the

given AgD. The mean of the weighted IPD is set to equal x̄1.
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∑
i:t=0

(xit − x̄1))exp(x
′
itβ̂) = 0

Without loss generality, assume that x̄1 = 0, so we get

∑
i:t=0

xitexp(x
′
itβ) = 0

We see that this is a derivative of an objective function

Q(β) =
∑
i:t=0

exp(x′itβ).

The objective function is convex, therefore, the minimum of the objective function

has a unique solution. We will get an estimate β̂ by minimizing the objective function

Q(β). Note that β̂ can be obtained by minimizing Q(β) using Newton-Raphson

method. The BFGS algorithm is used in a Technical Support Document (TSD)

produced for the National Institute for Health and Care Excellence (NICE) (Phillippo

et al., 2018).

We can now calculate the weight (ŵit) of each individual that is related to design

weight p. That is, the mean of the weighted IPD is equal to the mean of the baseline

characteristics for the AgD. Then the MAIC weight will be calculated as:

ŵit∑
i ŵit

. (2.37)
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Chapter 3

Construction of the Optimal

Designs subject to Matching

Pre-defined Baseline

Characteristics

3.1 Formulation of the Constrained Optimization

Problem

In this chapter, we develop the methodologies and provide a step by step approach

on constructing optimal designs subject to matching pre-defined baseline character-

istics in MAIC by using a Lagrangian method.

We consider D-optimality as our main criterion function. We consider age and
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gender in the baseline characteristics. As discussed earlier, the available individual

patient data are IPD, and the aggregated data that needs to be matched are AgD.

We start with the linear model as discussed in Chapter 2. We consider the design

variables x as the baseline characteristics variables in MAIC. The model can be

written as

E(y|v,θ, σ) = vTθ (3.1)

where

v = (f1(x),f2(x), ...fk(x))
T ,v ∈ V ;

V = {v ∈ Rk : v = (f1(x),f2(x), ...fk(x))
T ,x ∈ χ}

In this context, the approximate design is characterized by a probability measure p,

the design space must be discretized. p is characterized by a set of weights p1, p2, ..., pJ

satisfying pJ ≥ 0, j = 1, 2, ..., J and
∑
pj = 1 with weights pj assigned to vj. The

design is given by

ξ =


x1 x2 · · · xJ

p1 p2 · · · pJ

 (3.2)

The objective is to construct optimal design subject to matching pre-defined base-

line characteristics which are denoted by µ = {µ1, ..., µJ}T . As mentioned above, we

take D-optimality (ϕ(p), the log-determinant of the information matrix) as our main
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criterion function. Thus, we wish to maximize

ϕ(p) subject to
J∑

j=1

pjxj = µ (3.3)

with pj ≥ 0 and
∑
pj = 1.

Here, the baseline characteristics constraints
∑J

j=1 pjxj = µ can be written as

V p = µ, where V consists of the rows the values of the baseline characteristics

variable xi, and p is the vector (p1, p2, · · · , pJ)T . An example with two variable

model is given in Section (3.2).

As we have V p = µ, we can write

(V p − µ)T (V p − µ) = 0

Let

D(p) = (V p − µ)T (V p − µ) = pTV TV p− 2(V Tµ)Tp+ µTµ

So, the baseline characteristics constraints are written as D(p) = 0. In general,

D(p) could be equal to a constant, say c. In our case, c = 0. So, in general, the

constraints can be D(p) = c. Thus, our problem becomes:

Maximize

ϕ(p)

subject to D(p) = c

(3.4)
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with pj ≥ 0 and
∑
pj = 1.

We now formulate the Lagrangian function as given by

L(ϕ,p, λ, γ) = ϕ(p) + λ[D(p)− c] + γ(
∑

pj − 1) (3.5)

where ϕ(p) = logdet(M(p)), constraint function is D(p), the Lagrange multipliers

λ and γ are the rates of change of function being maximized as a function of the

constraint parameter.

We consider first partial derivatives with respect to p for j = 1, 2, ..., J :

∂L

∂pj
= dLj

=
∂ϕ

∂pj
+ λ

∂D

∂pj
+ γ

= dϕj + λdDj + γ

(3.6)

L is the Lagrange function, so dLj must be zero. It implies that we must have:

dLj = 0

i.e.

J∑
j=1

pjd
L
j = 0

i.e.
J∑

j=1

pj(d
ϕ
j + λdDj + γ) = 0

Thus,

γ = −
J∑

j=1

pj(d
ϕ
j + λdDj ) (3.7)
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So, the vertex directional derivatives of L are obtained as:

FL
j = dLj −

J∑
j=1

pjd
L
j

= dϕj + λdDj − [
J∑

j=1

pjd
ϕ
j +

J∑
j=1

pjd
D
j ]

= (dϕj −
J∑

j=1

pjd
ϕ
j ) + λ[dDj −

J∑
j=1

pjd
D
j ]

= F ϕ
j + λFD

j

≡ 0

(3.8)

where F ϕ
j = (dϕj −

∑J
j=1 pjd

ϕ
j ), F

D
j = dDj −

∑J
j=1 pjd

D
j .

Equivalently, we can write in matrix form:

FL = F ϕ + λFD = 0 (3.9)

Hence,

FDλ = −F ϕ (3.10)

where FD = [FD
1 , F

D
2 , .., F

D
J ]T and F ϕ = [F ϕ

1 , F
ϕ
2 , .., F

ϕ
J ]

T .

That is, we have a system of linear equations on λ, say Aλ = b, where A = FD,

λ = λ, and b = −F ϕ.

The set of solutions is given by:

λ = A−b + (I − A−A)z for any z

35



where A− is any generalized inverse of A. If ATA is nonsingular, then one choice is

the Moore-Penrose inverse which is given by:

A− = (ATA)−1AT

= ((FD)TFD)−1(FD)T
(3.11)

Then

λ̂ = A−b = −((FD)TFD)−1(FD)TF ϕ (3.12)

Now, our optimal design, say p∗, must satisfy:

FDλ̂ = −F ϕ

i.e. FDλ̂+ F ϕ = 0

(3.13)

Substituting the value λ̂, we obtain u :

u = [(FD)
T
FD]F ϕ − [((FD)

T
F ϕ]FD = 0

i.e. uTu = 0

(3.14)

So the optimal design p∗ must satisfy:

u = (u1, u2, ...uJ)
T = 0 (3.15)

where

ui = [(FD)
T
FD]F ϕ

i − [((FD)
T
F ϕ]FD

i (3.16)
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That is, the elements of u are functions of the directional derivatives of ϕ and D.

Equivalently, we can say that the optimal design p∗ must satisfy uTu = 0.

As uTu ≥ 0, p∗ should minimize uTu or equivalently p∗ should maximize the

function U = −[uTu] with a maximum value of zero, because −[uTu] ≤ 0.

After simplification, we can write down U as:

U = −[(FD)
T
FD]2[(F ϕ)

T
F ϕ][1−R] (3.17)

where

R =
[(FD)

T
F ϕ]2

[(F ϕ)
T
F ϕ][(FD)

T
FD]

=
ζ21
ζ2ζ3

(3.18)

and

ζ1 = (FD)TF ϕ

ζ2 = (F ϕ)TF ϕ

ζ3 = (FD)TFD

(3.19)

Substituting the R above, we obtain U :

U = −[(FD)
T
FD]2[(F ϕ)

T
F ϕ][1−R]

= ζ21ζ3 − ζ2ζ
2
3

(3.20)

Ensuring the constraint can be done by transforming to a maximization problem,
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we maximize

T = −[D(p)− c]2 = −[D(p)]2 (without loss of generality we can take c = 0) (3.21)

Hence, our optimal design p∗ should simultaneously maximize both U and T with

a common maximum of zero.

Because functions U and T are negative and have a common maximum of zero.

The sum of two functions U + T will also have a maximum of zero at the common

optimizing p∗. Also, it is equivalent to maximizing the minimum of U and T , that is,

min{U, T}. We use algorithms outlined in Chapter 2. The form of the algorithm at

(r + 1)th step is

p
(r+1)
j =

p
(r)
j f(z

(r)
j , δ),∑J

i=1 p
(r)
j f(z

(r)
i , δ)

(3.22)

where f(z, δ) is a positive and strictly increasing function in z, and it may depend on

a positive parameter δ.

The choice of the function f(z, δ) depends on what type of optimization problem

is used.

In our problem, the choices of z are:

z
(r+1)
j


= FU

j + F T
j if maximize U + T

= F
min{U,T}
j if maximize min{U, T}

(3.23)

where FU
j , F

T
j are the directional derivatives of U, T , respectively as given by:
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FU
j = dUj −

J∑
j=1

pjd
U
j

F T
j = dTj −

J∑
j=1

pjd
T
j

(3.24)

Here dUj and dTj are the first order partial derivative of the functions U and T respec-

tively.

Refer to optimality conditions in chapter 2, the criterion has both positive and

negative vertex directional derivatives, so the f(.) needs to be defined for positive and

negatives F ′
js. The directional derivatives must satisfy the optimality conditions.

We now provide the steps for the calculations in the following.

3.1.1 Calculation Procedure

The calculation procedures are as follows:

dϕj dϕij ; dDj dDij ; dUj FU
j ; dTj F T

j

1. Calculate Derivatives of D-optimality: ϕ(p) = logdetM(p)

(a) First derivative

dϕj = vT
j M

−1vj

(b) Second derivative

dϕij = −[vT
j M

−1vi]
2
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2. Calculate Derivatives of Constraint Function: D(p)

(a) First derivative

dDj

(b) Second derivative

dDij

The exact expressions of dDj and dDij are given in the following section.

3. Calculate Derivatives of U Function: U = −uTu = ζ21ζ3 − ζ2ζ
2
3

(a) First derivative

dUj = 2ζ1ζ3
∂ζ1
∂pj

+ ζ21
∂ζ3
∂pj

− ζ23
∂ζ2
∂pj

− 2ζ2ζ3
∂ζ3
∂pj

where ζ1 = (FD)TF ϕ, ζ2 = (F ϕ)TF ϕ, ζ3 = (FD)TFD,

FD =



FD
1

FD
2

..

FD
J


, FD

j = dDj −
J∑

i=1

pid
D
i

F ϕ =



F ϕ
1

F ϕ
2

..

F ϕ
J


, Fϕ

j = dϕj −
J∑

i=1

pid
ϕ
i
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∂ζ1
∂pj

=
J∑

i=1

[Fϕ
i

∂FD
i

∂pi
+ FD

i

∂F ϕ
i

∂pi
]

∂ζ2
∂pj

= 2
J∑

i=1

Fϕ
i

∂F ϕ
i

∂pi

∂ζ3
∂pj

= 2
J∑

i=1

FD
i

∂FD
i

∂pi

∂F ϕ
j

∂pi
=

∂2ϕ

∂pipj
− [

∂ϕ

∂pi
+

J∑
i=1

pt
∂2ϕ

∂ptpi
]

∂FD
j

∂pi
=

∂2D

∂pipj
− [

∂D

∂pi
+

J∑
i=1

pt
∂2D

∂ptpi
]

(b) Directional derivative

FU
j = dUj −

J∑
i=1

pid
U
i

4. Calculate Derivatives of T Function: T = −[D(p)]2

(a) First derivative

dTj = −2[D(p)− c]dDj

(b) Directional derivative

F T
j = dTj −

∑
pid

T
i

We now consider some models of interest. We first consider a regression model

with two variables in the following section.
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3.2 Two Variable Model without Interaction Term

The model is

E(y|x1, x2) = θ0 + θ1x1 + θ2x2

= vTθ

(3.25)

where

vx = (1, x1, x2)
T ,v ∈ V ;

V = {v ∈ Rk : v = (1, x1, x2)
T ,x ∈ χ}.

For optimal design in two variables we consider the discretized design space con-

sisting of all pairs (x1i, x2j) of the values for each x1 and x2. That is, the space will

consists of i × j = J pairs of (x1, x2). We set up J as the number of total pairs.

Variable x can be continuous variable or binary variable (0, 1). Then, we can write

the design with arbitrary weights as:

p =


(x11, x21) (x12, x22) · · · (x1J , x2J)

p1 p2 · · · pJ

 (3.26)

After we define the model and the corresponding optimal design in two variables,

we can go back to our objective problem. We wish to construct optimal design in

which we maximize ϕ(p) subject pj ≥ 0,
∑
pj = 1 and pj also match the AgD defined

values µ.
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3.2.1 Formulation of the Problem

Let yi be a continuous or binary outcome for individual i. We consider x1 as age

characteristic variable, x2 as gender characteristic variable. In AgD µ1 is aggregate

baseline characteristic age, µ2 is the proportion of aggregate baseline characteristic

male.

• x1: Age

• x2: Gender, male=0, female=1

• µ = (µ1, µ2)

• µ1: mean of age

• µ2: proportion of male

The objective is to construct optimal design subject to matching pre-defined base-

line characteristics, µ = {µ1, ..., µJ}. That is, the constraints are

J∑
j=1

pjx1j = p1x11 + p2x12 + p3x13 + ...+ pJx1J = µ1

J∑
j=1

pjx2j = p1x21 + p2x22 + p3x23 + ...+ pJx2J = µ2

(3.27)

As discussed earlier in this chapter, the matching pre-defined baseline character-

istics could formulate a constraint function as D(p). Thus, the problem is:
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Maximize

ϕ(p)

subject to D(p) = c

(3.28)

with pj ≥ 0 and
∑
pj = 1.

For the above model, the matrix V = [v1,v2, . . . ,vJ ] of (2.12) is given by

V =


1 1 · · · 1

x11 x12 · · · x1J

x21 x22 · · · x2J

 (3.29)

where vi = (1, x1i, x2i)
T . µ and p are given by

µ =


1

µ1

µ2

 (3.30)

p =



p1

p2

...

pJ


.
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Thus, using the above we can obtain D(p):

D(p) = (V p − µ)T (V p − µ) = pTV TV p− 2(V Tµ)Tp+ µTµ

Then we can formulate the Lagrangian function:

L(ϕ,p,λ, γ) = ϕ(p) + λ[D(p)− c] + γ(
∑

pj − 1) (3.31)

Ensuring the constraints can be done by transforming into a maximization prob-

lem. Taking c = 0, we maximize

T = −[D(p)− c]2 = −[D(p)]2 (3.32)

At this point, we need to make sure the constraints satisfy the first order conditions

with respect to the Lagrange multipliers. Therefore, optimal design p∗ simultaneously

maximizes both U and T with a common maximum of zero. The algorithm is

p
(r+1)
j =

p
(r)
j f(z

(r)
j , δ)∑J

i=1 p
(r)
j f(z

(r)
i , δ)

(3.33)

where f(z, δ) is strictly increasing and positive function in z, and depends on a free

positive parameter δ.

As discussed earlier, we have two choices for the maximization problem:

ϕL(p) = U(p) + T (p)

or, ϕL(p) = min{U(p), T (p)}
(3.34)
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We need directional derivatives of both F T and FU :

FU
j = dUj −

J∑
j=1

pjd
U
j

F T
j = dTj −

J∑
j=1

pjd
T
j

where dTj and dUj are first partial derivatives for the two function T and U respectively.

T (p) = −D(p)2

D(p) = pTV TV p− 2(V Tµ)Tp+ µTµ

dDj = 2V TV p− 2V Tµ

dTj =
∂T

∂pi

=
∂(−[D(p)]2)

∂pi

= −2[D(p)]dDj

= −2[pTV TV p− 2(V Tµ)Tp+ µTµ]dDj

= −2[(V p− µ)T (V p− µ)]2V TV p− 2V T

For U = −uTu = ζ21ζ3 − ζ2ζ
2
3 , d

U
j is given by:

dUj =
∂U

∂pi

= 2ζ1ζ3
∂ζ1
∂pj

+ ζ21
∂ζ3
∂pj

− ζ23
∂ζ2
∂pj

− 2ζ2ζ3
∂ζ3
∂pj

ζi are given by ζ1 = (FD)TF ϕ, ζ2 = (F ϕ)TF ϕ, ζ3 = (FD)TFD.
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∂ζi
∂pj

are given by

∂ζ1
∂pj

=
J∑

i=1

[F ϕ
i

∂FD
i

∂pi
+ FD

i

∂F ϕ
i

∂pi
]

∂ζ2
∂pj

= 2
J∑

i=1

F ϕ
i

∂F ϕ
i

∂pi

∂ζ3
∂pj

= 2
J∑

i=1

FD
i

∂FD
i

∂pi

and

∂F ϕ
j

∂pi
=

∂2ϕ

∂pipj
− [

∂ϕ

∂pi
+

J∑
i=1

pt
∂2ϕ

∂ptpi
]

∂FD
j

∂pi
=

∂2D

∂pipj
− [

∂D

∂pi
+

J∑
i=1

pt
∂2D

∂ptpi
]

First and second derivatives of D(p):

∂D

∂pi
= dDi = 2V TV p− 2V Tµ

∂2D

∂ptpi
= dDij = 2V TV

First and second derivatives of ϕ depend on the choice of the criterion function ϕ.

For D-optimality,

∂ϕ

∂pi
= dϕj = vj

TM−1vj
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∂2ϕ

∂pipj
= dϕij = −[vj

TM−1vi]
2

We finally make sure that we simultaneously maximize U and T (that is, we

maximize either U(p)+T (p) or min{U(p), T (p)}) with a common maximum of zero.

In the following sub-section, we will set up the problem and report the results.

3.2.2 Example: Problem Specification

We assume IPD are generated 10 values for x1 (age), from 15 to 30. The length

out is 10. For x2 (gender), we have 0 and 1 (0 for male and 1 for female). For AgD,

we take µ1 and µ2 as 24 and 0.3 respectively. We choose D-optimalily as our main

criterion.

age 15, 16.66667, 18.33333, 20, 21.66667, 23.33333, 25, 26.66667, 28.33333, 30

gender 0 1

So we have

IPD :
x1 = (15, 16.66667, 18.3333320, ..., 28.33333, 30)

x2 = (0, 1)

and

AgD :
µ1 = 24

µ2 = 0.3
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As we mentioned earlier, the design space consisting of all pairs (x1, x2), x1 are

the values of age, x2 is binary variable 0 or 1. The space consists of 10× 2 = 20 pairs

(x1, x2). So, we can write the design as:

p =


(x11, x21) (x12, x22) · · · (x120, x220)

p1 p2 · · · p20


Baseline characteristics constraints are given in the following:

20∑
j=1

pjx1j = p1(15) + p2(16.66667) + p3(18.33333) + ...+ p20(30) = 24

20∑
j=1

pjx2j = p1(0) + p2(0) + p3(0) + ...+ p20(1) = 0.3

According to the above setup, V matrix is given by

V =


1 1 · · · 1 1 1

15.00000 16.66667 · · · 26.66667 28.33333 30.00000

0 0 · · · 1 1 1


The matrix V is (3 x 20). µ is a (3× 1) vector and p is a (20× 1) vector.

µ =


1

24

0.3
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p =



p1

p2

· · ·

p19

p20


3.2.3 Results

The choice of f(.) plays an essential role in the convergence of the algorithms. The

convergence rates depends on function f(.). The free positive parameter δ could also

affect the convergence rates. Three functions would be considered in this work. A

suitable choice is a function which is centred on zero and changes reasonably quickly

about zero.

f(z) = exp(δz)

f(z) = exp(δz)/(1 + exp(δz)) the logistic c.d.f.

f(z) = Φ(δz) the normal c.d.f

(3.35)

We start with choice of f(z) = exp(δz), with z as the sum for the directional

derivatives U and T , where z
(r+1)
j = dUj +dTj , δ = 0.01. We take the initial weights as:

p0j = 1/J , J = 20. The above setup gives the starting values: U = −264102410, T =

−5.2441, −103.966 ≤ F T
j ≤ 103.966, 0 ≤ FU

j ≤ 0.
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After 141120 iterations, the direction derivatives F ′
js of U, T and z are given by

T = −0.0000001551191

U = −0.002132791

−0.00002126505 ≤ F T
j ≤ 0.000009999988

FU
j = 0

−0.00002126505 ≤ F z
j ≤ 0.000009999988

The optimal design p∗ leads to:

20∑
j=1

p∗jx1j = 24

20∑
j=1

p∗jx2j = 0.3198457

We obtain the optimal design as given by:

Table 3.1: Optimal design points on without interaction model

x1 x2 p∗

15.00000 0 0.03917533

16.66667 0 0.04378956

18.33333 0 0.04894728

20.00000 0 0.05471249

21.66667 0 0.06115676
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23.33333 0 0.06836005

25.00000 0 0.07641178

26.66667 0 0.08541188

28.33333 0 0.09547204

30.00000 0 0.10671713

15.00000 1 0.01842238

16.66667 1 0.02059224

18.33333 1 0.02301768

20.00000 1 0.02572880

21.66667 1 0.02875925

23.33333 1 0.03214663

25.00000 1 0.03593299

26.66667 1 0.04016533

28.33333 1 0.04489617

30.00000 1 0.05018422

To ensure the method provides good solutions, there are prerequisites that need

to be checked. We first check the optimality conditions. The directional derivatives

must satisfy the first order conditions. Second, we check the constraint conditions.

The design must match the pre-defined baseline characteristics.

From the above result, we can see the maximum directional derivatives are less

than equal to 0.00000999998, almost equal to 0. The range of directional derivatives
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values is almost close to zero. This satisfies the optimality conditions. Substituting

the design weights p∗ into constraint functions, the sum of IPD on Age of design

weights is equal to the AgD µ1, the sum of proportion IPD on male is equal to

0.3199457, which is close to the AgD µ2. In other words, the design is not only optimal

but also matches with the pre-defined baseline characteristics µ. The methodology

performed really well. Convergence rates of algorithm depends on the choice of the

function f(z) and the positive parameter δ.

We chose f(z) = exp(δz), f(z) = Φ(δz), and f(z) = exp(δz)/(1 + exp(δz)), with

δ values δ = 0.001, δ = 0.007 and δ = 0.01. We record the number of iterations (for n

= 1, 2, 3, 4, 5) to achieve the first order condition max{Fj} ≤ 10n, for j = 1, 2, ..., J .

The initial design was p0j = 1/J, j = 1, 2, ..., J .

Now compare the result of Table 3.2, Table 3.3 and Table 3.4, we can see that

the function f(z) = exp(δz) gives the fast convergence result. For example, with

f(z) = exp(δz) and δ = 0.001, the number of iterations needed to achieve the first

order condition for n=5 is 1412109. For f(z) = Φ(δz) with δ = 0.001, the num-

ber of iterations needed to achieve the first order condition for n=5 is 1769995. For

f(z) = exp(δz)/(1+exp(δz)), with δ = 0.001 the number of iterations needed for n=5

is 2824377. Now consider the suitable choice of δ. For example f(z) = exp(δz) with

δ = 0.01, the number of iterations needed to achieve the condition for n=5 is 141120,

whereas for δ = 0.001 is 1412109, for δ = 0.007 is 201700. Therefore, if we compare

the number of iterations in this case, the best choice is the function f(z) = exp(δz)

with δ = 0.01.
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Table 3.2: Without interaction term model, f(z) = exp(δz)

f(z) = exp(δz)
Number of iterations needed to achieve max{Fj} ≤ 10−n

δ n=1 n=2 n=3 n=4 n=5
0.001 292 3440 55384 294321 1412109
0.007 54 466 7884 42017 201700
0.01 22 262 5450 29343 141120

Table 3.3: Without interaction term model, f(z) = Φ(δz)

f(z) = Φ(δz)
Number of iterations needed to achieve max{Fj} ≤ 10−n

δ n=1 n=2 n=3 n=4 n=5
0.001 367 4309 69418 368911 1769995
0.007 48 656 9975 52843 253400
0.01 53 396 6934 36998 177657

Table 3.4: Without interaction term model, f(z) = exp(δz)/(1 + exp(δz))

f(z) = exp(δz)/(1 + exp(δz))
Number of iterations needed to achieve max{Fj} ≤ 10−n

δ n=1 n=2 n=3 n=4 n=5
0.001 586 6864 110760 588664 2824377
0.007 79 1022 15874 84198 403836
0.01 2 755 11159 59023 282949
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Let us consider one more example with the initial design using the observed

data referred to the above example. We change the value δ to 0.0001, in function

f(zδ) = exp(δz), we take n=6 in the first order condition Fj ≤ 10−n. After 66389674

iterations, the direction derivatives F ′
js of U , T and z we get the following results:

T = 0.000000007528679

U = −0.000106369

0.000002232951 ≤ F T
j ≤ 0.000001

FU
j = 0

0.000002232951 ≤ F z
j ≤ 0.000001

And the p∗ leads to

20∑
j=1

p∗jx1j = 24

20∑
j=1

p∗jx2j = 0.3093149

Here we see the directional derivatives closely satisfy the first order condition, the

U is more close to 0. The design gives more closer match to the pre-defined baseline

characteristics µ2 = 0.3 for gender, where
∑20

j=1 p
∗
jx2j = 0.3093149. In the previous

example we had
∑20

j=1 p
∗
jx2j = 0.3198457.

In order to make an honest comparison, we report the algorithm running time in

Tables 3.5 to 3.7 for the three choices of the function in the multiplicative algorithm,

namely the exponential function, the normal cdf and the logistic cdf. As we see in

55



Table 3.5: Algorithm running time: without interaction term model, f(z) = exp(δz)

f(z) = exp(δz)
Algorithm running time needed to achieve max{Fj} ≤ 10−n

δ n=1 n=2 n=3 n=4 n=5
0.001 0.367733 secs 2.607782 secs 40.39536 secs 3.616298 mins 12.57052 mins
0.007 0.191402 secs 0.4745774 secs 5.804641 secs 31.71404 secs 3.041113 mins
0.01 0.1424165 secs 0.3463619 secs 3.936565 secs 21.35258 secs 1.874617 mins

Table 3.6: Algorithm running time: without interaction term model, f(z) = Φ(δz)

f(z) = Φ(δz)
Algorithm running time needed to achieve max{Fj} ≤ 10−n

δ n=1 n=2 n=3 n=4 n=5
0.001 0.8483758 secs 4.212314 secs 51.99371 secs 4.696498 mins 21.1393 mins
0.007 0.4318831 secs 0.6111541 secs 7.703218 secs 39.40134 secs 3.177345 mins
0.01 0.1894691 secs 0.4503889 secs 5.021205 secs 28.18651 secs 2.148628 mins

Table 3.7: Algorithm running time: without interaction term model, f(z) =
exp(δz)/(1 + exp(δz))

f(z) = exp(δz)/(1 + exp(δz))
Algorithm running time needed to achieve max{Fj} ≤ 10−n

δ n=1 n=2 n=3 n=4 n=5
0.001 1.029904 secs 5.191191 secs 1.385527 mins 7.361828 mins 33.91572 mins
0.007 0.5444775 secs 1.286603 secs 12.44664 secs 1.092825 mins 5.250727 mins
0.01 0.1392734 secs 0.7136967 secs 8.283533 secs 44.18676 secs 3.71339 mins
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the tables, running time depends on both the choice and the function f(z) and the

tuning parameter δ. When δ takes the value 0.01, running time is minimum for the

exponential function. It is important to note here is that running time also depends

for different criteria, for example, if we choose a different criterion (other than D-

optimality) in our main criterion in the Lagrangian formulation. Running time also

depends on the number of constraints we have in the Lagrangian formulation.

3.3 Two Variable Model with Interaction Term

Now we consider the two-variable model and add the interaction between the two

variables x1 and x2. The model is

E(y|x1, x2) = θ0 + θ1x1 + θ2x2 + θ3x1x2

= vTθ

(3.36)

where

vx = (1, x1, x2, x1x2)
T ,v ∈ V ;

V = {v ∈ Rk : v = (1, x1, x2, x1x2)
T ,x ∈ χ}

We consider the discretized design space consisting of all pairs (x1, x2). The space
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will consists of i× j = J pairs (x1, x2). The design is given by

p =


(x11, x21) (x12, x22) · · · (x1J , x2J)

p1 p2 · · · pJ

 . (3.37)

3.3.1 Formulation of the Problem

As we did before, we define x1 as the age characteristic variable, x2 as the gender

characteristic variable. In AgD, µ1 is the aggregate baseline characteristic age, and

µ2 is the proportion of aggregate baseline characteristic male. Here the V matrix is

given by

V =



1 1 · · · 1

x11 x12 · · · x1J

x21 x22 · · · x2J

x11x21 x12x22 · · · x1Jx2J


(3.38)

In two variable without interaction model, matching pre-defined baseline charac-

teristic constraint functions satisfy
∑J

j=1 pjx1j = µ1, and
∑J

j=1 pjx2j = µ2. In the

two-variable model with interaction, adding an interaction is like adding one more

variable, so the constraint function needs to satisfy for the interaction term as well.

As we mentioned earlier, we use the D-optimality criterion, so we maximize the D-

optimality criterion subject to the constraints as given below:
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Maximize ϕ(p) = logdet(M(p)), subject to

J∑
j=1

pjx1j = p1x11 + p2x12 + p3x13 + ...+ pJx1J = µ1

J∑
j=1

pjx2j = p1x21 + p2x22 + p3x23 + ...+ pJx2J = µ2

J∑
j=1

pjx1j

J∑
j=1

pjx2j = µ1µ2

(3.39)

Set up µ and p:

µ =



1

µ1

µ2

µ1µ2


(3.40)

p =



p1

p2

· · ·

pJ


Then for V p = µ, the constraint function would be:

D(p) = (V p − µ)T (V p − µ) = pTV TV p− 2(V Tµ)Tp+ µTµ (3.41)

We now choose the specifications for the variables and the constraints and con-

struct the design in the following.

59



3.3.2 Example: Problem Specification

We use the same data as we used in the model without interaction. We assume

IPD are generated for 10 values for x1 (age), from 15 to 30. For x2 (gender), we have

0 and 1 (0 for male and 1 for female). For AgD, we take µ1 and µ2 as 24 and 0.3

respectively. We choose the D-optimalily as our main criterion.

age 15, 16.66667, 18.33333, 20, 21.66667, 23.33333, 25, 26.66667, 28.33333, 30

gender 0 1

IPD :
x1 = (15, 16.66667, 18.3333320, ..., 28.33333, 30)

x2 = (0, 1)

and

AgD :
µ1 = 24

µ2 = 0.3
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Where vector matrix is (4× 20):

V =



1 1 · · · 1 1 1

15.00000 16.66667 · · · 26.66667 28.33333 30

0 0 · · · 1 1 1

0 0 · · · 26.66667 28.33333 30


µ is a (1× 4) matrix

µ =



1

24

0.3

7.2


and p is a (20× 1) matrix with elements p1, p2, . . . , p20.

Baseline characteristic constraints are given below.

20∑
j=1

pjx1j = p1(15) + p2(16.66667) + p3(18.33333) + ...+ p20(30) = 24

20∑
j=1

pjx2j = p1(0) + p2(0) + p3(0) + ...+ p20(1) = 0.3

20∑
j=1

pjx1j

20∑
j=1

pjx2j = 7.2

We now report the results in the following.
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3.3.3 Results

We first choose f(zδ) = exp(δz), δ = 0.0001. We take n=5 in the directional

derivatives Fj ≤ 10−n at p∗. The initial weights start at p0j = 1/20. After 1185605

iterations, the directional derivatives F ′
js of U , T and z are given by

T = −0.000000005409875

U = −0.064057

−0.00001552158 ≤ F T
j ≤ 0.00001

FU
j = 0

−0.00001552158 ≤ F z
j ≤ 0.00001

And the p∗ lead

20∑
j=1

p∗jx1j = 23.99456

20∑
j=1

p∗jx2j = 0.3066285

20∑
j=1

pjx1j

20∑
j=1

pjx2j = 7.357416

We can write the optimal design as given below:
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Table 3.8: Optimal design points on with interaction model

x1 x2 p∗

15.00000 0 0.03632907

16.66667 0 0.04131745

18.33333 0 0.04699079

20.00000 0 0.05344314

21.66667 0 0.06078147

23.33333 0 0.06912744

25.00000 0 0.07861939

26.66667 0 0.08941470

28.33333 0 0.10169232

30.00000 0 0.11565579

15.00000 1 0.02171471

16.66667 1 0.02333478

18.33333 1 0.02507571

20.00000 1 0.02694653

21.66667 1 0.02895693

23.33333 1 0.03111731

25.00000 1 0.03343887

26.66667 1 0.03593364

28.33333 1 0.03861453

30.00000 1 0.04149544
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To ensure the methodology performs well, the prerequisites need to be checked.

First is the optimality conditions. The directional derivatives must be less than or

equal to 0. The second is the constraint conditions. The design weight must match

the pre-defined baseline characteristics.

From the above result, we can see the maximum directional derivatives of z, F z
j

are less than equal to 0.00001, almost equal to 0. The range of directional derivatives

values is almost close to zero. This satisfies the optimality conditions. Substitute

design weights p∗ into constraint functions, the sum of IPD Age of design weights is

equal to 23.99456, the sum of proportion IPD male is equal to 0.3066285, the AgD

µ1 = 24 and µ2 = 0.3. In other words, the optimal design approximately matches the

pre-defined baseline characteristics µ.

Table 3.9: With interaction term model, f(z) = exp(δz)

f(z) = exp(δz)
Number of iterations needed to achieve max{Fj} ≤ 10−n

δ n=1 n=2 n=3 n=4 n=5
0.00007 3238 15179 70941 336294 1693723
0.0001 2267 10625 49659 235405 1185606
0.0002 1115 5293 24810 117683 592784

Now we look at the results of Table 3.6, Table 3.7 and Table 3.8. Choice of

δ = 0.002 gives the fast convergence result. In Table 3.6 the function f(z) = exp(δz)

with δ = 0.0002 gives the fast convergence result. The number of iterations needed

to achieve the first order conditions for n=5 is 592784. In Table 3.7, with function

f(z) = Φ(δz), δ = 0.0002, the number of iterations needed to achieve the first order
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Table 3.10: With interaction term model, f(z) = Φ(δz)

f(z) = Φ(δz)
Number of iterations needed to achieve max{Fj} ≤ 10−n

δ n=1 n=2 n=3 n=4 n=5
0.00007 4059 19025 88926 421864 2129195
0.0001 2842 13313 62235 295590 1496572
0.0002 1408 6620 31045 149105 768019

Table 3.11: With interaction term model, f(z) = exp(δz)/(1 + exp(δz))

f(z) = exp(δz)/(1 + exp(δz))
Number of iterations needed to achieve max{Fj} ≤ 10−n

δ n=1 n=2 n=3 n=4 n=5
0.00007 6476 30363 141914 672844 3390305
0.0001 4534 21253 99341 471139 2376039
0.0002 2268 10620 49656 236020 1197201

conditions for n=5 is 768019. In table 3.8, with f(z) = exp(δz)/(1 + exp(δz)),

δ = 0.0002 the number of iterations needed to achieve the first order condition for

n=5 is 1197201. Comparing the three functions, the f(z) = exp(δz) gives fastest

convergence result as we see the number of iterations needed to achieve the first order

condition for n=5 has minimum iterations.
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Chapter 4

Sensitivity Analysis and

Comparison of the Methods

4.1 Introduction

We discussed using the Lagrangian method to construct the optimal designs sub-

ject to matching pre-defined baseline characteristics in Chapter 3. This method pro-

vides the desired result. As we mentioned earlier, the research problem was inspired by

applying the optimal design theory to matching-adjusted indirect comparison method.

The objective was to construct optimal design subject to independent patient data

(IPD) matches to baseline characteristics of AgD. In optimization theory, minimum

variance is the goal achieved by optimizing the variance function. We add constraints

that the design needs to match the baseline characteristics of AgD. We use Lagrangian

method to achieve this combined goal. The Lagrangian method is a strategy for find-

ing the local maxima and minima of a function subject to constraints. The optimal
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design obtained by the Lagrangian method is denoted by p∗. The MAIC method

reweighs IPD to match the distribution at the aggregate data (AgD), most often

using the mean and standard deviation of baseline characteristics (Alsop and Pont,

2022). The design weight obtained by the MAIC method is denoted by w.

In this chapter, we use Kish’s (approximate) effective sample size (ESS) to compare

the two methods. For MAIC method, the ESS is usually used to measure the accuracy

and precision of matching. More references can be found at Alsop and Pont (2022),

and Signorovitch et al. (2010). Kish’s (approximate) effective sample size (ESS) is

a simplified formula used for unequal weights of effective sample size (Kish, 1965).

Effective sample size is the original sample size divided by the design effect, that is,

n
Deff

. Here Deff is design effect, which is the ratio of two variances for estimators of

some parameters, and n is the sample size. Optimal design minimizes the variance.

Because of the variance connection between ESS and optimal design, we can calculate

the ESS for the corresponding optimal design. The formula of ESS is given by

ESS =
(
∑n

i=1wi)
2∑n

i=1w
2
i

(4.1)

where wi is the estimated weight for ith patient. For the Lagrangian method, we

replace weight wi to weight p∗i . The ESS represents the number of patients included

in the analysis after weighting. The sum of the weights is constrained to be the

number of patients n and all weights are non-negative. The effective sample size

(ESS) is maximum at n when all wi are equal to 1, in which case we weigh each

patient equally in the analysis and there is no loss of information due to re-weighting.
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However, weighting always reduces the effective sample size. The higher the value

of ESS, the less information will be lost due to reweighting. That is, the larger the

effective sample size, the better effective performance will be (Alsop and Pont, 2022).

The estimated weights can be achieved by multiple sets. For example, suppose we

want to match IPD from 4 patients to AgD baseline on a mean of 4.3. We denote four

patients with baseline responses: 2, 3, 4, and 7. How do we choose the four weights

(w1, w2, w3, w4)?

One set of weights

w1 = 0.19, w2 = 1.23, w3 = 1.66, w4 = 0.92

The ESS is

ESS =
(0.19 + 1.23 + 1.66 + 0.92)2

0.192 + 1.232 + 1.662 + 0.922
= 3.1

Alternative set of weights

w1 = 0.57, w2 = 0.17, w3 = 2.38, w4 = 0.88

The ESS is

ESS =
(0.57 + 0.17 + 2.38 + 0.88)2

0.572 + 0.172 + 2.382 + 0.882
= 2.4

Comparing the two sets of weights, the alternative set of weights should be avoided,

because this choice results in a loss of information.
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4.2 Illustrative Examples for the Model without

Interaction Term

Now, let us give some examples in model: E(y|x1, x2) = θ0+θ1x1+θ2x2. Suppose

age in IPD generates from a normal distribution. We consider age as a symmetrical

and continuous distribution. So normal distribution is a natural choice. Another

possibility is the uniform distribution. We wish to match IPD from n patients to AgD

on baseline characteristics age µ1 and gender proportion µ2. Consider an example

with number of patients n = 200, and Age ∼ N(µ = 30, σ = 2). Gender is defined by

1 or 0. The design space consists of 200 pairs. The design with equal initial weights

is given by

p =


(x11, x21) (x12, x22) · · · (x1200x2200)

0.005 0.005 · · · 0.005


The match value of AgD must be within the range of IPD in order to have a

numerically meaningful result. For example, when there is only one baseline variable

to match, if AgD is 40, whereas the IPD ranges from minimum value 18 to 35, then

MAIC will not be able to match the IPD data onto the AgD. In this example, the

sample mean age is 29.97436, the sample proportion of male 0.5. We set µ1 = 31.5,

the proportion of male is µ2 = 0.2.

Let us first obtain the effective sample size (ESS) associated with the MAIC

method. Let xi be the individual patients data, i = 1, 2, ..n. From chapter 2, given
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IPD, the odds that patients assigned for AgD versus patients assigned to IPD is

wi =
P (AgD|xi)
P (IPD|xi)

.

Now, we are ready to proceed with our analysis. We use the designed R package

to calculate the MAIC weight. The R code is formulated from the Technical Support

Document of Signorovitch et al. (2010).

4.2.1 Calculation process

Simulated IPD

We tabulate the IPD and we aggregate the IPD to obtain the summaries. We

printed the results shown below. In the IPD table, each row represents baseline

characteristics of patients, 0 represents male, and 1 represents female. There is a

total of 200 patients. The mean age in IPD is 29.97436, and the proportion of males

is 0.5.

1 # Generate age

2 age <-rnorm (100 ,30 ,2)

3 # Define gender

4 gender <-c(0,1)

5 # Candidate set for age and gender assigned to patient

6 t = expand.grid(age ,gender)

7 # Create IPD data set

8 IPD <-data.frame( age = t$Var1 , # Generate ages

9 gender = t$Var2) # Generate genders)
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10 # Summary IPD data set

11 Summarise_IPD <- IPD <-data.frame(mean(age),mean(gender))

Simulated AgD

After simulated IPD, we can define AgD, µ1 = 31.5 and µ2 = 0.3 in AgD.

1 # Define value of AgD

2 mu_1<-31.5 # aggregate age

3 mu_2 <-0.3 # aggregate proportion of male

4 # Create IPD data set

5 AgD <-data.frame(mu_1,mu_2)
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Calculate MAIC weights

We first estimate the individual weights by estimating the logistics propensity

score model:

log(wi) = α + αT
1X

EM

It is equivalent to minimizing

ŵi = exp(αT
1X

EM) (4.2)

when X̄EM = 0.

To solve this, we define the objective for minimizing the above function. The

gradient function will be used by the minimization algorithm.

1 # Objective function

2 objfn <- function(a1, X){

3 sum(exp(X %*% a1))

4 }

5

6 # Gradient function

7 gradfn <- function(a1 , X){

8 colSums(sweep(X, 1, exp(X %*% a1), "*"))

9 }

To make sure the X̄EM = 0, we subtract mean of IPD to AgD.

1

2 X.EM.0<-sweep(with(IPD , cbind(IPD$age ,IPD$gender)),2,
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3 with(AgD ,

4 c(mu_1,mu_2),’-’))

α1 is estimated by using the function optim that minimized the function objfn.

In R, we can call the method BFGS (after Broyden, Fletcher, Goldfarb and Shanno)

to make the gradient function gradfn for minimization. For the initial value in the

par argument we specify as c(0,0), and X=X.EM.0 is passed to objfn and gradfn as

an additional argument in here.

1 # Estimate weights BFGS" a quasi -Newton method

2 print(opt1 <- optim(par = c(0,0), fn = objfn ,

3 gr =gradfn , X = X.EM.0, method = "BFGS"))

4 a1 <- opt1$par

Each individual patient weight data is estimated by ŵit

1 # Estimated weights for each individual

2 wt <- exp(X.EM.0 %*% a1)

After estimating weights for each individual ŵit, we calculate the MAIC weight

as:

wi =
ŵit∑
i,t ŵit

1 # MAIC wight

2 w <- (wt / sum(wt))
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Calculate MAIC weighted average characteristics

After calculating MAIC weight wi, we calculate the weighted characteristics:

200∑
j=1

wix1j = 31.5

200∑
j=1

wix2j = 0.3

Calculate ESS of MAIC

We calculate the ESS for the MAIC method:

ESSMAIC =
(
∑n

i wi)
2∑n

i w
2
i

= 103.8

Lagrangian Method

We now need to find weighted average of characteristics and ESS using Lagrangian

method. In Chapter 3, the optimal design weight p∗ is calculated by the Lagrangian

method. We consider Age ∼ N(µ = 30, σ = 2), sample size n = 200. We choose

f(zδ) = exp(δz), δ = 0.005. We take n = 6 in the directional derivatives Fj ≤ 10−n

at p∗. The initial weights start at p0j = 1/20. After 1327225 iterations, the direction
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derivatives F ′
js of U , T and z are given by

T = −0.000000007528671

U = −0.03964046

−0.000002232949 ≤ F T
j ≤ 0.0000009999991

FU
j = 0

−0.000002232949 ≤ F z
j ≤ 0.0000009999991

The p∗ leads to

200∑
j=1

p∗jx1j = 31.5

200∑
j=1

p∗jx2j = 0.3

Then, we calculate the ESS for the Lagrangian method:

ESS =
(
∑n

i p
∗
i )

2∑n
i p

∗2
i

= 105.1

We will further consider more examples in this model, and combine all the results

together.

Further examples

1. E(y|x1, x2) = θ0 + θ1x1 + θ2x2,

(a) Age ∼ N(µ = 30, σ = 2), Number of patients n= 400
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(b) Age ∼ N(µ = 50, σ = 5), Number of patients n= 200

(c) Age ∼ N(µ = 50, σ = 5), Number of patients n= 400

4.2.2 Summary of Results

We already gave an example of the calculation procedure of Lagrangian method

and MAIC method. We will now focus on interpretation. The summary result is

shown in table 4.1. The values are rounded to 1 decimal place. The Age column listed

the distribution of age selection, the AgD column listed the pre-defined baseline char-

acteristics, mean of age µ1 and the proportion of gender µ2 in AgD, the Lagrangian/-

MAIC column shows the weighted average of characteristics match to µ1 and µ2 in

AgD by using Lagrangian method and MAIC method. The ESSL/ESSMAIC listed

the value of ESS calculated by optimal design weights (using Lagrangian method) and

ESS calculated by MAIC weight. The sample size column is the number of patients

assigned in design.
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Table 4.1: ESS in Model: E(y|x1, x2) = θ0 + θ1x1 + θ2x2

Age AgD Lagrangian/MAIC ESSL/ESSMAIC Sample size

N(µ = 30, σ = 2)
µ1 = 31.5 31.5/31.5

105.14/103.8 200
µ2 = 0.3 0.3/0.3

N(µ = 30, σ = 2)
µ1 = 31.5 31.5/31.5

204.2/199.2 400
µ2 = 0.3 0.3/0.3

N(µ = 50, σ = 5)
µ1 = 51.5 51.5/51.5

160.2/158.1 200
µ2 = 0.3 0.3/0.3

N(µ = 50, σ = 5)
µ1 = 51.5 51.5/51.5

321.9/314.4 400
µ2 = 0.3 0.3/0.3

Look at the age generated from N(µ = 30, σ = 2), AgD µ1 = 31.5, µ2 = 0.3. By

using Lagrangian method, we obtained optimal design p∗ that matches to baseline

characteristics of AgD, which are 31.5 and 0.3. The MAIC method obtained same

weighted average of characteristics that matches the characteristics of AgD, which

are 31.5 and 0.3. The ESS of Lagrangian method is greater than the ESS of MAIC

ESSL = 105.1 > ESSMAIC = 103.8. It is a reduction from the sample size of 200,

but it is still reasonably large. If we increase the sample size to 400, when applied

Lagrangian method we choose the same function f(zδ) = exp(δz), and parameter

δ = 0.005, n=6 in the directional derivatives Fj ≤ 10−n at p∗. The Lagrangian method

and MAIC method obtained the same values that matched the baseline characteristics

in AgD. The ESSL = 204.2 > ESSMAIC = 199.2. For age generated from N(µ =
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50, σ = 5), µ1 = 51.5 and µ2 = 0.3 in AgD. Both the Lagrangian method and MAIC

method obtain same matched values according to AgD and the ESSL is greater than

ESSMAIC . In sample size 200, ESSL = 160.2 > ESSMAIC = 158.1; in sample size

400, ESSL = 321.9 > ESSMAIC = 314.4. A high ESS related to the sample size in

the IPD would make the application of the Lagrangian method lose less information

than the MAIC method. In model E(y|x1, x2) = θ0 + θ1x1 + θ2x2, we can conclude

that the Lagrangian method and MAIC can obtain the same matched value, whereas

applying the Langrangian method the sample size reduced from n to ESS less than

the MAIC Method, the sample size in the IPD would make the application of the

Lagrangian method lose less information than the MAIC method.

4.3 Illustrative Examples for the Model with In-

teraction Term

We now consider some examples with the model E(y|x1, x2) = θ0 + θ1x1 + θ2x2 +

θ3x1x2. We will consider the following examples. When we apply Lagrangian method,

we choose f(zδ) = exp(δz), δ = 0.005. We take n=5 in the directional derivatives

Fj ≤ 10−n at p∗ in the following examples.

1. E(y|x1, x2) = θ0 + θ1x1 + θ2x2 + θ3x1x2

(a) Age ∼ N(µ = 20, σ = 0.8), Number of patients n= 40

(b) Age ∼ N(µ = 20, σ = 0.8), Number of patients n=100

(c) Age ∼ N(µ = 30, σ = 1), Number of patients n= 80
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(d) Age ∼ N(µ = 30, σ = 1), Number of patients n= 100

4.3.1 Summary of Results

Table 4.2: ESS in Model: E(y|x1, x2) = θ0 + θ1x1 + θ2x2 + θ3x1x2

Age AgD Lagrangian/MAIC ESSL/ESSMAIC Sample size

N(µ = 20, σ = 0.8)
µ1 = 20.2 20.2/20.2

22.2/21.9 40
µ2 = 0.3 0.3/0.3

N(µ = 20, σ = 0.8)
µ1 = 20.2 20.2/20.2

75.1/74.8 100
µ2 =0.3 0.3/0.3

N(µ = 30, σ = 1)
µ1 = 30.8 30.8/30.8

28.4/26.9 80
µ2 = 0.7 0.7/0.7

N(µ = 30, σ = 1)
µ1 = 30.8 30.8/30.8

46.3/44.0 100
µ2 = 0.7 0.7/0.7

Look at Table 4.2, the results are rounded to one decimal. For Age ∼ N(µ =

20, σ = 0.8), sample size n=40, the Lagrangian method and the MAIC method gave

the same matched values according to characteristics of AgD, which are 20.2 and 0.3.

The ESSL = 22.2 > ESSMAIC = 21.9. For the sample size 100, the ESSL = 75.1 >

ESSMAIC = 74.8.

For age generated from N(µ = 30, σ = 1), baseline characteristics of AgD is

µ1 = 30.8 and µ2 = 0.7. The Lagrangian and MAIC methods obtained the same

values that matched the AgD. The ESSL = 28.4 > ESSMAIC = 26.9 in sample size
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80. The ESSL = 46.3 > ESSMAIC = 44.0 in sample size 100. We can summarize

that the ESS of Lagrangian is greater than ESS of MAIC. The sample size in the IPD

would make the application of the Lagrangian method lose less information than the

MAIC method in the model of E(y|x1, x2) = θ0 + θ1x1 + θ2x2 + θ3x1x2.

In conclusion, the Lagrangian method performs better than the MAIC method.

Also, the Lagrangian method is quite flexible and can be implemented to different

types of constraints (for example, other than the means in baseline characteristics).
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Chapter 5

Conclusions and Future Work

5.1 Discussions

This thesis aimed to develop a method for optimizing design subject to matching

the pre-defined baseline characteristics. This research was inspired by applying the

optimal design theory to matching-adjusted indirect comparisons in clinical trials.

We know that before a pharmaceutical company launches a new drug, an important

step is to compare the new drug’s effectiveness with existing similar drugs. Ideally,

the two drugs can be compared directly. However, in practice, a direct comparison

is normally impossible to achieve. Indirect comparisons with MAIC are increasingly

being used in comparative validity studies. This method is to re-weight the existing

individual new drug data to match the aggregated data of the existing drugs. In

this way, comparisons can be made effectively. The critical point of this method

is to match the summary data of the drugs that need to be compared. However,

the experiments designed by this method only focus on the matching results and
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cannot take into account the optimization problem of the experiment. Based on the

above inspiration, we convert this indirect matching problem into an experiment with

optimization constraints through our optimal design theory to satisfy the matching

conditions.

In Chapter 2, we first reviewed methods and concepts in optimal design and

determined the required optimality conditions of our problem along with a class of

multiplication algorithms, indexed by functions that satisfy certain conditions. We

also gave an overview of the application of matching adjusted indirect comparison

methodology and its concept.

In Chapter 3, we formulated the problem as a constrained optimization problem

using Lagrangian methods. We focused on constrained optimal design under the

two variable models with and without the interaction term. We defined the available

individual patient variables in the model as baseline characteristics of age and gender.

We focused on the D-optimality criterion as we are interested in all of the parameters

in the models. We successfully constructed optimal designs subject to matching the

pre-defined baseline characteristics using Lagrangian method implemented by the

multiplicative algorithm. This method worked out very well.

In Chapter 4, we compared the Lagrangian and MAIC methods in different mod-

els by calculating each method’s effective sample size (ESS). We also summarized the

weighted characteristics. We first compared their summarized weighted characteris-

tics values. The two methods obtained the same matched value. Then, we compared

their ESS values. The Lagrangian method outperforms the MAIC method in the

two-variable model either with or without interaction term. We lose less information
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in the Lagrangian method compared to the MAIC method.

5.2 Limitation and Future Work

This method also has certain limitations. First, not all the values can be matched.

Second, the choice of f(.) and the free parameter δ plays an important role here; not

all f(.) can be used. In this thesis, we only chose three functions, namely the logistic

c.d.f f(z) = exp(δz)/(1+ exp(δz)), the normal cdf f(z) = Φ(δz) and the exponential

function f(z) = exp(δz). Since the derivatives of the Lagrangian function are very

large and logistic c.d.f has a bounded value, so it behaves better than unbounded

exp(δz). Third, the directional derivatives satisfy the optimality conditions when

taking more n. If we take more n, the result more closely matches pre-defined values.

Thus, it will take more interactions, and so it requires high performance computing.

We only discussed the two baseline characteristics of age and gender and the

D-optimal criteria. As for future work, we can extend to more variables, such as

weight, region, and treatment, as well as using other optimality criteria such as the

A-optimality and c-optimality criterion. When we deal with the constrained optimiza-

tion problem, we only considered the one case by choosing the transformed problem

that maximized the sum of two functions with common maximum of zero. Where

maximized ϕL(p) = U(p) + T (p). We can extend to the Maximin problem in which

we maximize min{U(p), T (p)}. For data generation, we only considered the normal

distribution. We can extend to uniform and other distributions as well.
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