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University of Manitoba

Abstract

New Preprocessing Methods for Better Classification of MR and
IR Spectra

by Alexandre Nikouline

We introduce a global feature extraction method specifically designed to
preprocess magnetic resonance spectra of biomedical origin. Such preprocessing
is essential for the accurate and reliable classification of diseases or disease stages
manifest in the spectra. The new method is Genetic Algorithm-guided. It is
compared with our enhanced version of the Forward Selection algorithm
(“Dynamic Programming”). Both seek and select optimal spectral subregions.
These subregions necessarily retain spectral information, thus aiding the eventual
identification of the biochemistry of disease presence and progression.

Both methods proved to be very useful for large datasets. The danger of
overfitting related to the small number of samples in the datasets was
demonstrated for both the artificial and real-life data. A bilinear regression model
was used to quantitate the consequences of overfitting. Taking this in account,

optimal parameters for the GA guided algorithm were recommended.
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1. Introduction and Literature Review

Noninvasive diagnostic techniques are finding their way into medicine. In many
cases, €.g., MR or IR spectroscopy, the diagnosis (classification) is done based on a
relatively small number of samples of high dimension. Thus, a typical classification
problem in a biomedical application of MR involves 1024-dimensional spectra with at
best 100 samples per class. From the mathematical point of view we are trying to classify
an extremely sparse data set in a high dimensional space. Many classification methods
applied to the raw data will fail, or will not be reliable. The problem is aggravated if we
take into account that real life data are noisy, and classes are often assigned ambiguously.

Fortunately, the intrinsic dimensionality is usually smaller than the data size. This
thesis is devoted to developing new methods of dimensionality reduction. The most
popular current method is Principal Component Analysis (PCA). This method does not
need a detailed introduction, and we'll only mention some basic facts in the literature
review, since we use our own routine to carry out the PCA.

PCA is an unsupervised method, i.e., we do not need to know the class labels
(diagnosis) to reduce the dimensionality. This is its main advantage, but frequently it is
also the main disadvantage. Very often the magnitude of discriminating features of our
spectra are comparable to noise in their contribution to the data. PCA is not capable of
extracting such features.

Linear and Quadratic Discriminant Analysis are by far the most popular supervised
methods. This is why the next part of our literature review will be devoted to them and to
the relatively new Regularized Discriminant Analysis.

Recently, powerful Genetic Algorithms (GAs) have been used as feature selection

methods /18,19/. Since a GA implementation will be the main preprocessing method



considered and developed in this work, the next topic of the literature review will be the
GA.

A short review of the feature selection/extraction methods will follow the GA, since
many new implementations are based on the GA.

The developed method can be used for data of different origin, but it was designed
with NMR spectra as the input data in mind, so we will finish the literature review with

the description of typical problems in spectra analysis.



1.1 Principal Component Analysis

We do not need to describe the history of PCA, or PCA itself in great detail. It can
be found in any book on this subject, /1/ for example. Our purpose here will be to define
some terms, which will be used throughout the work, and to discuss the limitations of the
PCA.

Let £ be a random n-dimensional vector, a sample from a distribution with
covariance matrix X. Since X is a covariance matrix, it is symmetric and positive
semidefinite. Thus it can be represented in the form = = W-A-¥', where ¥ is an
orthogonal matrix and A = diag(Ai,...,Aq) With A, 2 A, >...A, 20. Since ¥ = (¥,...,¥)
comprise an orthonormal basis in R", § can be rewritten in the form
E=ay, +..+a,y,, with [E]° = a’+...+a. The (yi,...,ys) are called Principal
Components. Vectors a and § are connected by the simple equation a = ¥' -§ .
Cov(a)=¥'-Z-¥ = A and this explains what we need the principal components for. In
the new system of coordinates (the principal components) our random vector is
uncorrelated. Moreover, we can reduce the dimensionality of our problem, if some

eigenvalues equal zero or are very close to it, since the fraction of total variance explained

>,

by the first p dimensions of a equal “='—, which can be very close to 1. The problem

21,

tu]

of choosing p (stopping rule) is extensively explored in the literature. In /2/ several
stopping rules are discussed, including the mentioned fraction of total variation
explained. This rule tends to overestimate the number of nontrivial dimensions, but as we
will see later, we must keep some small eigenvalues and corresponding eigenvectors for

classification purposes.



In applied statistical analysis, the covariance matrix is usually unknown and
replaced by its estimate. The popular choice of this estimate is the sample covariance

matrix. Let x;,..., Xy denote independent realizations of the random vector  ; then

N
Z 1.1

2|~—~

and

zI

i(x, _%)-(x, - ) 12

are unbiased estimates of the mean vector and the covariance matrix. Now we can apply
eigenvector decomposition to the matrix S. The principal components are ¥ x,,.. ¥ xn.

In addition to the known problems of PCA, we have yet another one, the quality of
estimates. It has been shown /3/ that the sample covariance matrix increases the spread of
eigenvalues. It tends to overestimate the highest and to underestimate the lowest. Even if
we had a positive definite covariance matrix, the sample covariance matrix will be
singular if the number of samples is less than or equal to the number of dimensions.

In such cases, the larger eigenvalues and corresponding eigenvectors can be
calculated using Lanczos' method /4/. An implementation of the method can be found in
/5/.

PCA for the classification problem has two severe drawbacks. First, it is an
unsupervised technique. This means that to all our errors in the sample covariance matrix
estimate we add another one, that of combining several classes into one, classes with
different mean vectors and different covariance matrices. It distorts the estimate further.
Second, the larger the eigenvalue the more variance is explained by the corresponding
component, which does not necessarily mean better classification. Moreover, in MR or IR

spectroscopy, the first principal component is usually non-discriminating.



As a result of these drawbacks, PCA is usually combined with feature selection
/47/. Of the first k principal components, the best p are selected using a supervised

classifier that will be described in the following part of Chapter 1.



1.2 Discriminant analysis

The purpose of classification or discriminant analysis is to assign objects to one of

q classes, based on a set of measurements x = (x,,...,xp) obtained for each object. We will

suppose that the k-th class can be described by the normal distribution with mean vector

u, and covariance matrix Z,. Let us also assume that we know the unconditional prior

probability .. The probability density function of the k-th class is given by

b x)=@-m) % % exp[ Y- (- ) 22 (k-] 13
and the classification rule is: choose k such that
p; (x)- m; = maxp, (x)-m, 1.4

1.3 and 1.4 lead to the classification rule

di(x)= glkisr:dk(x) 1.5
where
dk(x)=(x‘l"~k)"z;l'(x"'llk)'*'lnizkl"zm“k 1.6

Using this rule is called quadratic discriminant analysis (QDA). If we assume that
the covariance matrix is the same for all classes, we end up with the classification rule for
Linear Discriminant Analysis (LDA), where the rule is the same, but the discriminant
function is simplified significantly:

d(x)=p -Z"-p -2-x°-27'-p -2Inm, 1.7
Terms common to all classes were canceled.

A detailed description of QDA and LDA can be found in /6/.

In practical applications we have to solve some additional problems. First, we have
to estimate the mean vectors and covariance matrices for each class, or the pooled
covariance matrix in the case of LDA. The estimates 1.1 and 1.2 are usually adequate,
assuming that summation is done over all the samples of the same class.

The pooled covariance matrix is a weighted sum of the sample covariance matrix of

each class, with n, used as the weights.



Another problem to solve is the reliability of classification. Lachenbruch suggested
an elegant way to assess the reliability without high computing cost /7/. He suggested
excluding each sample from the training set before classifying it, the so called leave-one-
out (LOO) cross-validation approach. However, we do not need to recalculate our sample
covariance matrix and (more importantly) invert it ab initio every time. We need to do it
only once and afterwards update these matrices, with a cost which is comparable to the
calculations of the a posteriori probabilities.

Since the same formulae are used to estimate the parameters in discriminant
analysis as in PCA, the same problem persists. The estimate, despite being unbiased, still
can be badly distorted. The consequences of such distortion are very severe now, because
of matrix inversion. As it has been said already, we typically have more dimensions in
our data than samples in the training set. Therefore the sample covariance matrix for the
entire data set is unavoidably singular. One can use a generalized inverse in place of the
nonexistent inverse matrix, but this creates problems of its own. First, to get a robust
generalized inverse matrix one must estimate the rank of the matrix precisely. In /2/ it has
been shown for PCA applications that even sophisticated methods tend to overestimate
the rank. It creates only marginal problems in PCA, but can be intolerable in discriminant
analysis, as we shall see later.

Even if the matrix is not singular, the small eigenvalues can be underestimated, and
they can dominate the inverse matrix. This means that discrimination will be done, based
on factors such as accuracy of calculations, order of the data etc., which are unrelated to
the classification problem.

To prevent this from happening Friedman suggested an approach called
Regularized Discriminant Analysis /9/. He introduces two new parametric estimates of
the covariance matrix. Let m, be the sample mean vector, S, be the sample covariance

matrix of the k-th class and S be the pooled covariance matrix. Then
S.(A)=(-2)-8, +r-S 1.8



and

S,,(l,y)=(l—y)~St(l)+-E-tr(S,‘(J\.))-I , 1.9
where 0 <A <1,0<y <1, are these estimates.

The four comers defining the extremes of the A,y plane represent well-known
classification procedures. The lower left comer (4 = 0,y = 0) represents QDA, the lower
right comer (4 = 1,7 = 0) represents LDA. The upper right corner (1 =1,y =1)
corresponds to the nearest-means classifier: an observation is assigned to the class with
the closest (in Euclidean distance) mean. The upper left corner (1 =0,y = 1) represents a
weighted version of that classifier, with the class weights inversely proportional to the
average variance of the variable within the class.

A good pair of values A,y can be found based on the training set. After testing RDA
both on simulated and real life data, Friedman concludes that RDA can increase
classification accuracy dramatically. Another interesting conclusion of his analysis is that
in many cases LDA outperforms QDA "on its own turf”, i.e., with significantly different
covariance matrices for the different classes. The reason behind such a result is that the
individual class covariance matrices are estimated poorly, whereas the pooled covariance
matrix is generally more reliable.

Friedman has used error counting as the objective function when choosing A,y. In
/10/ some other candidates for the objective function are discussed. Their choice of

"appreciation” (objective) function is

A=ﬁ:a(x,) 1.10

=l

where

%. Ii[ [P(mm |x' )_ P(mk|xl ﬂ + %,P(a)"' |x' )> P(mk |X, ) X, €0,
ate)={ 1
L TTlPlo.te)- Pl )+ L. Plo e )> Pl ), <o,



and P(a)_lx,) is the conditional probability of class m given the observation x, . This

objective function will make classification as crisp as possible for the correctly predicted
observations and as fuzzy as possible for the misclassified observations.

Yet another objective functions was suggested in /1 1/. In essence, the authors are
minimizing

dGoy)=3 S dl ) 11
=l y=l

where d(x',,l,y)= (xl - m,) S (A, y)- (x; -m, )+ InS,(A,y) and x| is the j-th
observation from class i.

As we will see later, the problem of selecting the objective function for RDA
optimization resembles that for feature selection.

Another interesting modification of the LDA was suggested in /44/. The authors
assumed that each class is a Gaussian mixture with different subclasses differing only in
theirs means, while having a common covariance matrix. Moreover, the covariance
matrix is common for all the classes. To solve the problem the authors suggested a
method resembling fuzzy clustering /46/. They initialize the numbers of subclasses and
their centroids, then iteratively estimate the covariance matrix, a posteriori probabilities,
the updated centroids, and the updated covariance matrix. Such an approach will depend
heavily on the correct estimate of the number of subclasses. The authors use two
strategies to obtain the estimates and starting values for the means, the covariance matrix

and the cluster probabilities. These are either the k-means /46/ clustering algorithm or the

LVQ /47/ algorithm.



The method performed favourably against a range of competitors the authors used
for comparison. As does the LDA, it also allows to reduce number of features in a dataset.

The major problem with the method is that it is slow.

10



1.3 Genetic Algorithms

After the publication of Holland's book /12/, Genetic Algorithms (GA) started to
conquer the world of optimization. They have been successfully implemented for many
optimization problems. This is a rapidly evolving area of research and we can find in the
literature descriptions of a wide variety of GAs, but in this thesis we will restrict
ourselves to the classical variant.

Any GA application consists of three components: a method of encoding the real
life problem in the GA's terms, an objective function, and a GA engine. The first two
components tie the problem to the GA engine and the latter solves it. Since in our GA
program we implement both a novel encoding and a new (for GA) objective function, we
will not pay too much attention to these components in the literature review. We will
concentrate instead on the GA engine.

Before stating Holland's schema theorem, we need some definitions. A classical GA
is working with bit strings. A set of bit strings comprise the population. Let

s, = (s Doy 8P ) be a bit string or a binary vector of length p, Q the population of bit

strings, n the size of the population. The population is evolving with time, therefore

Q(r) = {5,(t),i =1,...,n}. As we have mentioned, the evaluation function is part of the

GA. We will denote this function by F. The function operates on each member of the

population (chromosome) and returns the fitness of that member.

11



In /13/ the following description of GA is given:

1. Initialize a population of chromosomes.

2. Evaluate each chromosome in the population.

3. Create new chromosomes by mating current chromosomes; apply
mutation and recombination as the parent chromosomes mate.

4. Delete members of the population to make room for the new
chromosomes.

5. Evaluate the new chromosomes and insert them into the population.

6. If time is up, stop and return the best chromosome; if not, go to 3.

Of course, this description is too general. We have to clarify some aspects and the
clarification will give us the classical GA. First, we have to define the genetic operators,
mutation and crossover.

Mutation requires a probability of mutation p,,. Given this probability, we generate
a random number uniformly distributed in [0,1] for each bit in the chromosome. If the
number is less or equal of p,,, we mutate the bit. There are two different approaches to
this process. We can either “flip” the bit, or generate the new value randomly. The actual
mutation rate is less than p_, with the second approach.

The crossover operator requires two parent chromosomes and returns two children.

We can illustrate it with the following scheme:
Crossover

parent | —-——————=———o—— child] ---—————-mm-====

parent 2 child 2 -——-

Fig 1.1

12



After parents have been chosen, we choose a random position (uniformly distributed) in

the chromosome and exchange the parts of chromosomes, as it shown above. Again, there

is a probability p_ assigned to this operator, which is the probability of a crossover to

occur. A typical value for p_ is 60-90%.

Now we discuss how to evaluate the population. The fitness function is a very
important part of the GA. However, without preventive measures we can end up with a
population in which each chromosome has almost the same fitness as the best one. This
will essentially mean no selection pressure at all. To avoid this, a linear normalization is
introduced, where the probability a chromosome to be selected for breeding depends on
its rank rather than the fitness. We order the population by decreasing fitness, and replace
the initial fitness function by the final one:

f(s.)=a-i-b 1.12
with appropriate constants a and b. Of course, we must ensure that @ —n-b 2 0. This
linear normalization is a very important part of the classical GA, since the probability of a
chromosome being chosen as a parent is proportional to its fitness.

Now we can discuss a very critical issue concerning any population: how to delete
old chromosomes and insert new ones. The classical GA is very “cruel” and makes
almost no exception. The entire population is replaced by its offspring at once. The only
exception in the classical GA is the best solution. This strategy of keeping the best
chromosome(s) intact is called elitism.

GA is inspired by natural evolution and its success. It cannot be called genetic
without using the concept of the gene. The analog of a gene in GA is called schema. We
will define schema as a string of three symbols:

h='...h°")e O,1*} 1.13
We will say that a binary string s satisfies a scherna h if for each 1 <i < p, either B=*

or k' =s'. For example, for h = (11*00) there are only two satisfying bit strings, namely

13



(11100) and (11000). We can pick all the chromosomes satisfying a given schema h out
of the entire population. Sometimes this subpopulation is also called schema.

Let m(h,t) be the number of the chromosomes in that subpopulation. Now we are

ready to formulate the schema theorem:
m(h,z+1)2 m(h,z)--f%)-[l-p -Lh)l—p,,-o(h):l 1.14
p ——

(4

where o(h) is the order of the schema (the number of defining symbols, O or 1, in the
schema), 5(h) is the defining length of the schema, i.e., the physical distance between the
outermost defining symbols of the schema, f(h) is the average fitness of the

chromosomes satisfying the schema and f-' is the average fitness of the entire population.

In the example above, o(h=(11*00)) =4, and &h) = 5. All other functions in 1.14 will be
determined by the entire population.

This theorem is the cornerstone of the GA; it says in essence, that schemata with an
above average fitness will grow in the population, provided that they are not diluted by
crossovers and mutations. In short, the schema theorem guarantees the convergence of the
GA.

However, it says nothing about the quality of the solution. Will it converge to the
first local minimum, in case of a minimization problem, will it go a little bit further, or
will it find a narrow global maximum? The schema theorem does not answer those
questions. The clue to the quality of the solution lies in the diversity of the population. It
will help to explore a high dimensional space using a relatively small population.

An interesting way to maintain diversity in the population is suggested in /14/. The
authors proposed a modification of the original fitness function to prevent overcrowding
near some good solution. They called it a sharing function.

Let the fitness function be f. We introduce the sharing radius o, and the distance

between two chromosomes:

14



2
d(s,,s,)=‘/i(sf—s'l‘) .15

The sharing function is defined by

d (- 4
1| &
#d) = (a,,,) 4 < 116

0, otherwise

where a and oy, are predetermined constants. Then, the sharing-modified fitness function

becomes:
fa(s,)= —&— 1.17
Z ¢(d (S, ’ s/ ))

=

Changing the control parameters a and oy, with time we can either prevent the
stagnation of population at the cost of accuracy, or ignore the stagnation and reduce the
sharing-modified fitness function to the original one.

In /15/ the authors suggested this strategy for the entire GA design. This means that
at the first stage we are looking for the first apprpoximation with reduced chromosome
size; as time passes, the chromosome size is increased and the fitness function is also
refined. This approach is a direct analog to the simulated annealing method.

One of the implications of inequality 1.14 is that there are two competing
tendencies in the population. On one hand, the selection process is trying to improve the
fitness of our population. On the other hand, mutation and crossover are working against
it. Actually, they are working independently of any fitness considerations. Since to
improve the fitness if it is already high is quite improbable, they work against the fitness.
However, the main purpose of the genetic operators is to give flexibility to the
population. A proper combination of these two tendencies will determine the success of
the GA implementation. This means that parameter optimization is an important part of
any GA realization. This is, of course, problem-dependent. Many papers are devoted to

this aspect of GA implementation. In /16/ the authors suggest a way to determine the

15



population size adaptively. The size depends on the schema fitness variance. The results
are not particularly interesting for us, since they are specific for a certain GA architecture.
In /17/ a nonlinear differential equation was suggested to optimize the GA parameters.
One can even find GA applied to the GA parameter optimization. Again, most of these
results are applicable only for specific GA architectures.

Another theoretical aspect of the GA is an assessment of its convergence. As we
mentioned, the schemata theorem was the major step in that direction. In /36/ a Markov
chain framework was suggested to explore the convergence of the GA. The authors have
used a nonstationary GA, with the probability of mutation reducing asymptotically to zero
via a schedule. They have obtained a bound on the probability of mutation to facilitate the
convergence. The simulation results have shown that convergence for GA is faster than
for simulated annealing.

Similar results were obtained in /35/, where the convergence of GA and simulated
annealing was compared.

D.E. Goldberg in /33/ brings the well-developed techniques from simulated
annealing into the GA area to prove the asymptotic convergence of GA.

As a logical development the authors of /34/ have suggested a hybrid of those two

methods to solve some NP-hard problems.

16



1.4 Feature selection/extraction

J. Kittler in /47/ gives an overview of the feature selection/extraction methods. If
the number of original attributes is relatively low, forward selection or backward
elimination would be reasonable choices. These two method are closely related, except
that in the former we start from the best attribute and expand the feature set by adding the
attribute that improves the objective function the most, whereas for backward elimination
we start with the entire set of attributes and eliminate attributes sequentially.

Of course, the first approach is much faster because it works with low-
dimensional data. The second allows to monitor continuously the amount of information
loss incurred.

Different objective functions were described in this review but all of them are
monotonic on the set of subsets of the attributes. In that case a branch-and-bound
algorithm obtains the best subset of attributes much faster than an exhaustive search.

Most of the feature extraction methods considered by J. Kittler are based on the
Karhunen-Loeve expansion, which is based on the eigenvectors of the covariance matrix.
As we already mentioned, this approach will not allow easy interpretation of the results.

In /18/ a simple GA was used to select the best subset of attributes out of the
original set, best with respect to the known classification. An interesting aspect of its
implementation is the objective function. The authors are minimizing the number of
attributes to achieve a given accuracy of classification. A similar approach was used in

/19/ for selecting an optimal subset of principal components. In /28/ the author exploits

17



the inherent paralielism of the GA applied to the feature selection. Two GA-based
methods were also compared to a random search and proved to be superior.

Another area of application of the feature selection/extraction methods is the
regression problem. In /31/ many aspects of the subset selection in regression are covered.
There is a significant overlap in the methods used in the classification and the regression
problem. The main difference is in the objective function, because the “probability of
error” concept does not make sense in the regression problem. GA-based feature
extraction methods /27,30/ are relatively new and were not mentioned in /31/. Both
implementations use an encoding similar to the one in/18/, 1.e., “1” in a chromosome
represents a selected attribute, “0” represents an ignored attribute. This implies that they
cannot work with the entire spectral range in most cases, because uncontrollably high
number of attributes in the analysis will undermine the result’s relevance.

The authors of /29/ demonstrate that the feature subset selection methods are
susceptible to overfitting. They suggest the use of a “wrapper method”, such as bootstrap

or cross-validation, to estimate the prediction accuracy.
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1.5. MR spectra, ideal and noisy

Magnetic resonance spectroscopy (MRS) is the primary field of application of our
methods. Therefore we must describe these spectra in some detail and show the problems
we are encountering.

The contemporary MRS is pulse spectroscopy. The sample is irradiated by a radio
frequency pulse and then the same equipment that was used to generate the pulse is used
to register the sample response. The ideal impulse response (free induction decay or FID)

is 2 sum of decaying complex exponentials:

F(t):il,-exp(—Rz,-t+j-(2m/,-t+¢p,)) 1.18

=]

where /, is the amplitude of the i-th resonance, v, is its chemical shift, R,, is its
transverse relaxation rate, and ¢, is its phase. It is expected that I, reflects the amount of

the compound present with chemical shift v,, which itself is determined by the chemical

structure of that compound. The Fourier transform of 1.18 gives us a frequency response
function
S(v) = IF(i) -exp(—j-2mvt)dt =

z":lj.exp(j-qp,) 1 1.19

pr R, l_j.(27r(v, - V)J

RZ:

which is just a sum of phased Lorentzians.

If one would like to compare the relative concentrations of two compounds, one
isolates the corresponding peaks in the spectrum and integrates the real part of 1.19 in the
vicinity of the peaks. But this is ideal and unrealistic. First, white noise is present in the

spectrum. It can have different sources, due to the sample, electronic noise, or something
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else. To increase the signal to noise ratio (SNR), the MR spectrum of the same sample is
obtained repeatedly. The SNR increases J/n -fold with n repetitions.

As we have mentioned already, the same equipment is used to generate the pulse
and to record the response. Therefore, after the pulse we must wait until all residual
oscillations have decayed (dead time), losing the first and most informative points of the
FID, thus losing in SNR.

The dead time has another implication for the spectra, i.e., phase shift. Since we
have lost the first points of the FID, the real part of the spectrum appears as if each peak
had its own phase. The simplest way to avoid the phasing problem is to work with

magnitude spectra. This can be costly if one is trying to fit spectra, because for the real

part the signal drops proportionally to whereas in magnitude only to

1
(V—V,)2 ’ |V—V.|.

Thus the accuracy of fitting the amplitude spectra suffers dramatically. For an attempt to
compensate for the loss see /20/.

Another typical problem in MRS is the baseline. Again, baseline distortions can
have different causes. One of them is the discreteness of our calculations /21/. Indeed, we
do not have a continuous FID, we sample it over a finite period of time and carry out a

discrete FT. As a result, we obtain a slightly different spectrum:

- 1- 22(v, —v)-R,, )-T,

= Ll(rl o) R) ) 1.20
e B exp((jZn'(V, —v)-R, )/ SW)

where 4, =1, -exp(( j2nv, ~R,, )Tm + j(o,), T, is the dead time, 7, is an acquisition

time, and SW is the sweep width, which is determined by the sampling rate. It can be

shown that

§(V)ES(V)+iAI 1.21

=]
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thus giving a baseline. Unfortunately, the main reason for the baseline is not the data
processing, but the hardware itself, and we cannot predict the shape of the baseline. In
/22/ it is shown that the baseline can be eliminated simply by the appropriate choice of
the sampling time, i.e., moving the initial point within one sampling interval can reduce
baseline artifacts dramatically. We can also reformulate the last statement, i.e., that the
inappropriate choice of the sampling points distorts the spectra dramatically. That paper
was published in 1983, but we still have the very same problem in many experimental
settings. Furthermore, there are problems even beyond hardware. Medical applications of
MRS are complicated by the fact that the human body is mostly water. In proton
spectroscopy, a spectrum of any human tissue will have just one peak, a water peak. All
other information is present as tiny irregularities on the shoulders of the water peak.
There exist experimental techniques to suppress the water signal; nevertheless, there is
always some residual influence even in case of a successful implementation of those
techniques.

Finally, the last problem. Due to fluctuation of hardware parameters or to individual
preferences of the experimentalist the spectra may be linearly distorted, i.e., peak
positions (chemical shifts) may be shifted with respect to the canonical ones. Such a
distortion does not create any problem if one is analyzing an individual spectrum, but in
the case of comparative spectral analysis it creates additional difficulties. This problem
can be alleviated to some extent by aligning the spectra, but can not be eliminated
completely, due to the presence of the white noise.

Since the different peaks in the spectra represent different metabolites or groups of
metabolites, a logical way to extract the information from the spectra is to fit them by a
sum of Lorentzians. The fitting can be done either in the frequency or in the time domain.
In /39/ different methods of fitting were compared. Namely, HLSVD /40/, VARPRO /41/
and FITPLA /42/. The first two methods work in the time domain. HLSVD is a linear

prediction method. It is very fast and requires minimal user interaction. The main
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disadvantage of the method is its sensitivity to noise. This problem is aggravated in the
typical MR experimental setting by the “deadtime”.

HLSVD is not a maximum likelihood method. In contrast, the VARPRO (variable
projection) method is a maximum likelihood method and is, in essence a nonlinear least
squares fitting. The disadvantages of the VARPRO are the need for increased user-
interaction and longer calculations times.

The last method is a nonlinear fitting based on the equation 1.20.

The comparison of these three methods has shown that they give similar results in
demanding conditions with many overlapped peaks. They predict well the peak positions,
but fail to estimate accurately the peak width /43/. Because of the possibility of baseline
distirtions, this can lead to severe errors in the metabolite concentrations.

Thus arises the need to develop a method that allows us to extract relevant features
from the spectra primarily for the purpose of classification (medical diagnosis). The
method must retain the spectral identity of the features and must be robust enough to
work with the highly variable and noisy spectra obtainable from human tissues and

biofluids.
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2. Preprocessing methods

This Chapter is devoted to the preprocessing methods we have used in our data

analysis. The objective function used in these methods is given by

F=ii(pk—lk)2 2.1

c=| =]
where p;. is the probability that sample i belongs to class c, /i is a class indicator, i.e., 1
for the true class and O for all others. The term “fitness function” is commonly used in the
GA literature, but other terms like “objective function” or “evaluation function” have
their own niche /13,32,38/. Since we are going to use different feature selection/extraction
methods, we have chosen a term, that is not connected to the GA specifically.

The objective function 2.1 is not monotonic on the set of feature subsets, and as a
result the branch-and-bound algorithm not only will give a suboptimal solution, but can
be misleading. Therefore, a different approach is used for feature selection.

These methods all use weighted LDA as the primary classification method. In tﬁe
case of weighted discriminant analysis (each observation comes with its own weight
reflecting its reliability or importance) IMSL's estimates /8/ are biased. Therefore, we had
to derive unbiased estimates ourselves. The results are presented in Appendix A. This
chapter will open with a brief description of the DP-based feature selection method.

Subsequently, the GA-based algorithm will be described.



2.1. DP as a feature selection method

The Dynamic Programming (DP)-based feature selection was inspired by Viterbi's
algorithm /23/. This is the reason it was named DP, being actually a forward selection
algorithm.

We have a training set with known class labels and the following parameters: q is
the number of classes, p is the number of attributes in the original data set. OQur goal is to

select a subset of attributes, which optimizes the objective function 2.1. For a fixed,

!
desired number of attributes k we have C: = ﬁ possible combinations of
L(p-k)

attributes. Thus, exhaustive search is not feasible, even for moderate values of p. We have
chosen a faster way of selecting a suboptimal subset of attributes.

On the first step of the algorithm, p sets of attributes are initialized by placing the
individual attributes in corresponding sets (2, ={1},...Q, = {p}).

Now for i=2,...,k we repeat the same process, each Q,, i=1,p is updated by the
attribute that gives the best result in combination with those already included in £2,.

This approach was implemented in combination with PCA, when a few principal
components were selected out of those corresponding to positive eigenvalues, and gave
promising results /24/. The method was also applied to the spectra themselves. However,
first we had to reduce the feature space dimensionality by averaging several adjacent
spectral points, since it is still impractical to use DP for 1000 attributes. The reduction
had its own merit, since we had averaged out some noise. The main drawback of this
approach is its inflexibility, i.e., we cannot move the border of the averaging window

freely, they are fixed as soon the size of the window is determined.
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This gave us the idea to use GA for the same purpose, where now we have more

freedom to select the regions of interest.
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2.2. GA-quided optimal attribute selection for spectra

Because our problem is special, we did not use the standard GA but designed and
implemented a problem-specific version. There are two aspects of our GA
implementation. 1) Mapping the original attribute space onto a bit string set. 2) Designing
an overall scheme to create the population and allowing its evolution with subsequent
generations. (The objective function F that drives the algorithm has already been
defined.) Before we describe these in detail, we present a simple pseudo code for the
overall operation of the algorithm:

1. Select M, the maximum number of desired attributes/subregions, G,
the number of generations, P, the size of the population;

2.  Create P binary strings of length L (P chromosomes), each
containing M subregions, i.e., different sets of contiguous but non-overlapping
ones; the remaining chromosome locations are filled with zeroes;

3. Process the M subregions to derive the M features;

4. For each of the P strings evaluate the previously defined fitness
function F, applying an M-feature LDA/LOO classifier to the training set. Sort
the P fitness values in ascending order (because of our definition of F, the lower
its value the fitter the chromosome). In this sorted list the P.j;. best

chromosomes are referred to as the elite.
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5. “Breed” the population by mutation and/or crossover. Steps 3-5
constitute one generation.
6. Go to step 3 and repeat until the number of generations equals the

preset G.

Mapping

The problem of mapping the original feature space onto a bit string (zeroes and ones)
has not received much attention in the literature. A possible reason is that the typical
feature set for the standard GA application is a collection of numerical values, each
represented by its own bit string in the computer. We have a somewhat different problem.
A spectrum is a set of L different intensity values, one at each of L frequencies. The
natural and simplest mapping onto a bit string is to put L “zeroes” into a logical array (a
“chromosome™) of L dimensions. Thus our initial input parameters are the positions of the
spectral frequencies. Selecting subregions from the spectrum translates to converting some
of the “zeroes” into “ones”. However, because we plan to do more than simply eliminate a
subset of the frequencies, we have extended the above simple representation. Thus, further
dimension reduction is possible if in each subregion we replace the individual intensities by
fewer attributes via additional processing. Such processing would create and associate a
single attribute, e.g., the average value, or the variance, with each subregion.

To achieve such flexibility, we treat a spectrum as a set of segments; each comprised
of a pair of adjacent data points. Hence, an L-point spectrum becomes an (L-1)-point

“chromosome”. Now a “one” in the i th position means that points / and i+/ are

27



connected. A “‘zero” means the opposite. A set of consecutive “ones™ corresponds to an
attribute range. Therefore, any given chromosome is a combination of a set of connected
spectral subregions, and unconnected spectral points.

This is illustrated in Fig 2.1 below. The chromosome 10011100110 is encoded into
three spectral regions (positions 1-2, 4-7, 9-11). The 12-point spectra would be replaced
by three attributes, one per region. For example, the points 1-2, 4-7, 9-11 could be
replaced by their averages, but any other function of the original attributes in these ranges

could be used.

Encoding of the spectral points

1 2 3 4 5 6 7 8 9 1011 # 1n chromosome

10011100110 chromosome
€—0 ¢ 6-0¢—0—¢ ¢ ¢—0—¢ ¢ spectral points

1 2 3 4 5 6 7 8 9 1011 12 #inthespectrum

Fig 2.1

With the above construction we have two opportunities to reduce dimensionality: by
selecting subregions, and by further processing (by some transformation) the data points
within the subregions. If this transformation is averaging, then the influence of noise is

also decreased.
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The GA Architecture

We now introduce the genetic operators we use, and the details of how the population
is created for any given generation.

There are two canonical genetic operators, mutation and crossover. Our
implementation of crossover is the same as that descnibed in the literature. We select two
parents randomly from the current population, and choose a random crossover point at
which the chromosomes are to be cleaved. Exchanging the parts of the parent
chromosomes creates two new chromosomes. This operation makes GA very flexible and
enables the search to move far away from the initial locations in the high dimensional
feature space. The other genetic operator, mutation, is specifically tailored to our problem.
Its distinguishing characteristics are that it is not a single-point operator, and that its size
evolves with evolving generations. Extensive experimentation showed that in early
generations we must change more than one bit in our chromosomes, hence the introduction
of a k-block mutation. A large mutation size (large k) allows a rapid but coarse-grained
initial exploration of the feature space, but as the process evolves, we need finer tuning,
hence the size k of the k-block mutation is decreasing with increasing generations. The
initial size of point mutation is 1/64th of the full spectral range, i.e., k = L/64, and k is
decreased gradually as the optimization proceeds.

The input parameter set consists of the size P of the population, the maximum
number of subregions allowed, the number of generations G, and the mutation p, and

Crossover pc probabilities.
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To help create an initial population that is representative of the data, we build a
separability profile using the ¢ statistic. For two-class problems this computed statistic is
stored for each spectral position. For many-class problems all pairwise statistics are
computed and the profile produced as their sum. Then the tnitial subregions are chosen
randomly but with relative probabilities proportional to the profile.

The algorithm starts by generating a population of P random bit strings according to
the above initialization. A generation consists of 1) changing members of the population
by the above outlined mutation and crossover rules (“breeding”), 2) sorting the entire
population according to their fitness (F) values. The best P, strings (the elite) are kept
intact, the rest, P - P, is produced randomly by a process governed by the assigned
mutation and crossover probabilities, and by the current fitness ranking. Two random
chromosomes are chosen, with probabilities depending linearly on the rank of the
chromosomes in the ordered generation list. They are first mutated with probability pm,
and either mated via crossover with probability p., or added directly to the new generation.
This process is continued until a new generation is formed. We stop when either the size
of point mutation is zero or the pre-set number of generations G has been reached.

Of course there are some drawbacks to this scheme. First, the best fitted strings are
not changed, i.e. we do not explore the vicinity of the best solutions; second, there is
danger of stagnation, when the entire population consists of copies of the same string.
However, if we solve the second problem, we also solve the first. Indeed, in the evolving
process, the best solutions will become next best on the subsequent generations, therefore
will be subject to change in some way or another. Moreover, the best solutions usually

have "close relatives" beyond the elite, therefore stagnation is the only real problem. There
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are different solutions to this problem. The most elegant is the sharing function introduced
in/14/.

We have chosen a very simple and primitive way of preventing stagnation. We do not
allow two copies of the same string in the elite group. This means, that after sorting, we
replace all the duplicates in the elite by the next best chromosomes.

Our mapping allows a huge number of potential features for classification, up to half
the size of the full spectrum. However, any classifier that uses many attributes will be
unstable and slow. Therefore, in our GA implementation: we restrict the maximum number
of features allowed, treating it as an input parameter under user control. All the regions in a
chromosome are sorted according to size, distance to the neighbours, and other tie-breaking
criteria and only best of them are used.

The question arises immediately, what to do with those regions that were not chosen.
One solution is to eliminate them from a chromosome altogether (to zero all the
corresponding positions). However, another option is more interesting. We can keep the
unselected regions in the chromosome and allow mutations to take place there, thus
imitating life. Indeed, in "real life" evolution, the silent mutations play a very important
role, especially in a changing environment, preparing some species for extinction and
others for prosperity. Currently, only the first way is implemented, but it will be interesting

to compare the two in terms of time required to achieve the same fitness.
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3. Algorithm testing and tuning.

This chapter is devoted to testing the methods described previously. To test the
algorithm thoroughly we have designed artificial datasets. The design will be described in
detail at the beginning of the chapter 3.

One of the biggest problems we encountered during the testing is the predictive
power of the selection process. To illustrate what can happen, let us consider two
identical classes of spectra. This means that each spectral position has identical
distribution for both classes. If we had known the parameters of the distributions, we
could conclude that the classes are undistinguishable. Unfortunately, in a typical situation
the parameters in question are unknown and estimated based on the training set. Of
course, the estimated parameters are not equal anymore. Since we are averaging spectral
points in some region, we can expect that the estimation error will be less. It will be so for
most of the regions. However, for some the estimation error may be correlated and we
can get well-defined “features™ for theoretically identical classes. The selection, guided
by the LDA performance, guarantees that such regions will be found. When true
discriminating features exist, the false ones will not present serious danger, however they
can still influence the predictive power of the entire selection process.

We shall explore this problem, which we call overfitting, in greater detail in this
chapter. We shall estimate the severity of the problem based on the dependence of the

results for the training and test sets.
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It is known that the probability of error in LDA is determined by the Mahalonobis
distance d;; between i-th and j-th class centroids /45/. Let us assume that there is a
minimal value dmi, that implies a pair of classes is different. Then, for a 2-class problem
we must satisfy the following inequality: di2 > dmin. For a 3-class problem we must satisfy
three inequalities: d2 > dmin, d13 > Qmin, and d23 > dmin- Of course, these inequalities are
not independent, and some of our assumptions are unnecessarily strong, but this
reasoning suggests that the 3-class problem is less vulnerable with regard to overfitting.

After we have stated the problem of overfitting and explored it for both artificial
and real life data, we will try to estimate the optimal parameters for our methods, taking
the overfitting into account.

Ways to prevent overfitting or minimize its severity will be discussed in the

Conclusions.
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3.1. Artificial data sets.

Artificial data sets were created to test the GA-based attribute selection. The data
sets were designed to imitate typical problems in MR spectroscopy. We have started from
a two-class data set, but a three-class data set was also generated, since in classification a
two-class problem has very often its own flavor and differs from many-class problems.

For each problem a set of peak heights was generated, and all the modifications of
the spectral data were based on the same peak heights. The peak heights were normally
and independently distributed around a given mean value h, the variance was chosen to
create approximately 5% of class overlapping. To separate the classes, some designated
peaks have the mean value shifted ( h+d or h-d for different classes). The designation is
done according the following table (the values in the table are the multipliers of d by
which the mean value is shifted from h):

Table 3.1 Design of the datasets with peak heights.

Peak Number

Class |1 2345678910

2-class problem 1 01-10110-1-10

2 0-1t10-1-10110

3-class problem 1 01-10110-1-10
2 01-10-1-10110

3 0-110110110
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For both problems 10 peaks were used, 4 of which had identical distribution for all
classes. Six others served to distinguish the classes. For the 3-class problem each pair of
classes differed only in 4 peaks.

900 samples were generated, 300 for the training set and 600 for the test set, thus
giving 100 samples per class in the training set for the 3-class problem and 150 for the 2-
class one. The peak height data were saved and used to generate the spectral data, thus for
each type of spectral noise the same underlying peak heights data were used, providing
that our analysis is concerned the spectral noise only, not the fluctuations in the
underlying peak heights data (the latter imitates the “real life” variety within a given
class).

The Kolmogorov-Smirnov (KS) /48/ test was used to confirm the correspondence
of the generated sets to design criteria. Table 3.2 summarizes results for the 2-class

problem

Table 3.2 Kolmogorov-Smirnov test for the 2-class problem (p-values)

Peak Training set Class 1 Class 2
Classl <> Class 2 | Trainset > Testset | Train set <> Test set
1 p=ns. P =n.s. P =ns.
2 p <0.001 p=ns. p=ns.
3 p <0.001 pP=0S. p=ns.
4 p =1.s. p=ns. p=ns.
5 p <0.001 p=ns. p=ns.
6 p <0.001 p<0.05 p=ns.
7 p=ns. p =a.s. p=ns.
8 p<0.001 p =1L.S. p=n.s.
9 p <0.001 p=ns. p=ns.
10 P =n.s. p=ns. p=ns.
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n.s. stands for not significant, i.e.; the difference in distribution is not statistically
significant. The KS test confirms that all peaks, except one were generated correctly, i.e.,
that in the training set classes are separated very well for those peaks which were selected
to be discriminative. The irrelevant peaks have identical distribution for both classes. For
the second class peaks are distributed identically for the training and test sets. The same is
true for all but the 6th peak of class 1. Due to sampling fluctuations arising from the use
of random samples the 6th peak is distributed differently for the test set, compared to the
training set. Nevertheless, this difference is much less significant than the between class
difference and the test data of different classes are still very well separated for this peak
(data not provided).

The following table summarizes results for the 3-class problem:

Table 3.3 Kolmogorov-Smirnov test for the 3-class problem

Peak Training set Training set <> Test set

12 13 263 Class | Class 2 Class 3
1 p =n.s. p =n.s. p =1s. p=10s. p=ns. P =ns.
2 p <0.05 p<0.001 | p<0.001 p <0.05 p =0.s. p=ns.
3 p =N.s. p<0.001 | p<0.001 P =NS. p=n.s. P =ILS.
4 p=n.s. p=n.s. p=0s. ~ p=ns. p = n.s. p = n.s.
5 <0.001 p=n.s. p <0.001 p =n.s. p =n.s. ~p=n.s.
6 p <0.001 p=n.s. p<0.00l | p=ns. p=ns. p =1.s.
7 p =N.S. p=n.s. p =1.S. p = n.s. p=ns. P =0.s.
8 p <0.001 | p<0.001 p = I.S. p=n.s. p=ns. p =n.s.
9 p <0.001 p <0.001 p =n.s. p =I.S. p =n.s. p=n.s.
10 p =n.s. p =n.s. _p=n.s. p = I.S. p =n.s. P =n.s.
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Again 9 peaks out of 10 were generated according to specifications, the only
exception for the 3-class problem is the second peak, and again we can ignore the
fluctuation.

After the satisfactory peak heights generation, we switch to generating the spectra.

The spectral data (magnitude spectra) were generated according to 1.20. Since the
peak width was chosen to be identical for all the peaks and the phase can be ignored for
the magnitude spectra, the ideal spectra were just linear combinations of the peak heights.

Each spectrum contained 1024 points, the peak positions were distributed uniformly
along the spectral range.

In addition to the ideal noise-free spectra, we have considered three types of "noise”
we have mentioned in chapter 1. The white noise was modeled by adding a normally
distributed random number (with zero mean and a given o) to the each spectral point. To
imitate a randomized peak position for any given spectrum we have replaced by a linear
function a+b*x the canonical peak position x, where a and b were generated randomly
for each spectrum. Baseline was modeled by the sum of two random, small, but very
broad peaks. Fig. 3.1 illustrates this for a particular spectrum. In addition to the
magnitudes of the noise free spectrum, baseline, and white noise, the magnitude of the
difference between the noise free spectrum and one with randomized peak positions is
also displayed. We can see readily that this particular kind of noise can be the largest, but
it is localized. One comment regarding the baseline simulation. It creates bigger distortion
than it appears, since only its magnitude was plotted. The "wave height" is much bigger

for the real or imaginary part of the baseline.
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The data were generated separately for each type of distortion as well as for some

combinations, thus giving us 7 types of spectral data:
1) noise-free spectra
2) white noise (wn)
3) randomized peak position (rpp)
4) random baseline (rb)
5) wn + rpp
6) wn +r1b

7) wn +1b +1pp
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To summarize:
e Despite many simplifications, the data were generated so that even for the noise-
free spectra the classes had a significant overlap.
. We know the number of features in the data and where the features are located.
. The classification of the peak height data gives us a gold standard for the spectral
data analysis.
. The test set is twice as large as the training set, allowing for reliable results.

Given this "tool", we can explore the behavior of our feature selection/extraction
methods, optimize their parameters, and answer the main question: are the methods
adequate for the problems we encounter.

All random numbers were generated using the functions genunf and gennor of the
freeware statistical library RANLIB. Normaily, the seed value was not changed. To
achieve the same effect, the corresponding modules of the program were executed
consequently within one run of the program, thus a new run will start with a seed valués
which were left from the previous run. This provides with a completely reproducible

results.
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3.2. Overfitting with GA-ORS for artificial data sets

Before parameter optimization, we must decide what criterion to use. The most
natural candidate is the outcome of the feature selection/extraction. Unfortunately,
because of the possibility of overfitting, this is not advisable. To show this we have
calculated mean squared error (MSE) not only for the training set (MSE,) but also for the

test set (MSE,).
We plot the MSE (y axis) against MSE,, (x axis) in Fig. 3.2.

Comparison of Linear and Bilinear madels
3 classes, 30600 points)
Linear RSS=17.88, Bilinear RSS=5.599

(12

MSE,,

™« linear model
0.2 i
0.15 0.25 035 0.45 0.55 0.65 075  biinear model
MSE,
Fig. 3.2

As can be seen linear regression is not the best model to describe the dependence.
As an alternative, we decided to use a bilinear regression (also shown on the plot), where
one of the lines is a constant. The detailed mathematical description of the model is
given in Appendix B. Essentially, this model implies that after some critical value, any
further improvement in the training set does not do improve the test set. If we were to use

a more complicated bilinear model, allowing an arbitrary slope for both lines, we would
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probably get negative correlation for the low values of MSE,;. This would mean that the
further we improve MSE,, the worse MSE would become. However, for this work the
simpler model is sufficient.

In this chapter we shall attempt to show that our model describes better the
dependence between MSE,; and MSE,. Thus we'll assume that:
MSE =y, + a (MSE, - xp) + e, where e is assumed to be a normally distributed error
term.

We'll start with the artificial data sets. As can be seen in Fig. 3.2, for any model
MSE,; has significant variance for similar values of MSE,. Therefore, we cannot base
our analysis on a single run of the feature selection/extraction process. To reduce the
variance, 10 runs for the same dataset and same parameters were used. The only
difference was in the seed value for the random number generator. Each run consisted of
50 generations, with population size equal to 300. Taking into account the initial
generation, we get 51.300=15300 datapoints for our analysis. We required to find the 10
best regions and ran LDA in the 10-dimensional space to get each point. Multiply this by
7 different types of noise generation and two types of problem (2-class and 3-class).

Thus, more than 10 runs for each dataset was found to be too timeconsuming. The
only solution was to use robust statistics, namely median and lower/upper quartiles,
because mean value and variance are too sensitive to outliers. The statistics were
computed in Statistica 4.3.

To compare different models we have used three numbers: the total variance of
MSE; (TotalSS) and residual sums of squares for the linear regression (LR-RSS) and for
the bilinear regression (BR-RSS). The results are given in the Tables 3.4 and 3.5.
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Table 3.4. Total Sum of Squares and Residual Sums of Squares for the 2-class problem

TotalSS LR-RSS/TotalSS BR-RSS/LR-RSS
Noise type | Median | Lower Upper | Median Lower Upper | Median | Lower Upper
Quartile | Quartile Quartile | Quartile Quartile | Quartile
No noise .1880 .1590 2018 .5795 4722 6179 .6989 .6458 7101
wn .9630 .6569 1.2957 .8646 .5961 9543 .9057 .8088 1.0000
pp 14.2886 | 12.5986 | 154808 | .1318 .1067 .1626 .9091 6211 9724
baseline 3.3353 )} 2.9463 | 3.5232 .1472 .0987 1717 .3894 .7855 .9283
wnHrpp 11.1840 | 9.9458 | 124846 | .2518 .1520 2781 4736 .3944 .5280
wn+b 3.6551 | 3.5495 | 3.9306 3492 2844 3931 4773 4245 5177
wn+rpp+b | 17.4901 | 14.8459 | 18.6228 | .1341 0773 .1965 .3656 3259 4725

The first conclusion we can draw from the Table 3.4 is that randomization of peak
positions dramatically increases the variance of MSE,,. This is an interesting observation
and we shall discuss it later. For now, we are more interested in the quality of both the
linear regression and the bilinear regression models.

For noise-free data neither linear nor bilinear regression work well, nethertheless
the bilinear regression reduces the residual sum of squares by approximately one third
compared to the linear regression. This is confirmed by the fact that correlation between
MSE, and MSE; at the linear level is only 70% (see a in table 3.5).

We have obtained very peculiar results when only white noise was added to the
data. This peculiarity is better seen from table 3.5. Out of ten runs 4 gave negative value
for a; in essence this means that practically all the points were in the overfit area and that
the dependence between MSE,, and MSE;; in this region is negative, i.e., the smaller
MSE, the larger MSE, grows. Thus the general bilinear model would probably describe
the dependence better.
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Table 3.5. Parameters of the bilinear model for the 2-class problem

Median | Lower Upper | Median | Lower Upper | Median | Lower | Upper

Quartile | Quartile Quartile | Quartile Quartile | Quartile
noise free .0368 0361 .0373 .6907 .6600 7408 .0450 0437 .0468
wn .0590 .0443 .0607 3884 -.2343 4974 .0287 .0050 .0460
pp .0486 .0416 .0539 .9435 .9092 .9606 .0386 0293 0466

baseline .0378 .0369 .0404 .8894 .8455 .9243 .0440 .0403 .0467

wn+Tpp .0646 .0610 .0662 .8456 .8292 .8563 0593 .0493 .0610

wn+b .0696 .0666 .0728 .8809 8241 .8871 0492 .0476 .0519

witrpp+b .1041 .0948 1129 .8545 .8335 .8637 .0808 .0644 .0893

The other cases of a single type of noise are described quite well by a linear model
(more than 85% of the total variance was explained by the model), nevertheless the
bilinear model gave on average ("on median") 10% improvement.

Results for the combined noise are even more impressive. Despite a moderate to
good fit with a linear model, the bilinear model significantly improved this. The residual
sum of squares was reduced by a factor of 3. Thus our bilinear model explains the
dependence much better for the data with complex "noise". This could be partially due to
the fact that data with a single type of noise are either too easy to optimize and we get to
the overfit area very soon, or too hard to optimize and we get only a few points in the
overfit area. Parameters of the bilinear model are also more stable for the complex
"noise". This conclusion is very important since we are going to use y, as the main factor
in the GA_ORS parameter optimization.

Results for the 3-class problem given below in Tables 3.6 and 3.7 confirm these

conclusions. Again, randomization of the peak positions increased the variance of MSE;;.
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White noise did not create such a severe case of overfitting as for the 2-class problem and
the dependence in this case is explained quite well by a bilinear regression model. The
only dataset for which bilinear regression did not give significant improvement was the
one with randomized peak positions. Combined with the fact that the linear model is
working very well, this "abnormal” behavior can be easily explained by the lack of
overfitting.

As for the 2-class problem, most complex data with all three types of noise added
are explained much better by the bilinear model. The residual sum of squares decreased

threefold compared to the linear model.

Table 3.6. Total Sum of Squares and residual Sums of squares for the 3-class problem

TotalSS LR-RSS/TotalSS BR-RSS/LR-RSS
Noise type | Median | Lower Upper | Median | Lower Upper | Median { Lower Upper
Quartile | Quartile Quartile | Quartile Quartile | Quartile
No noise 1.6464 | 1.3409 | 1.8741 .6374 5311 .6968 .5447 4219 5747
wn 3.1857 | 2.6937 | 3.4030 .8909 .7643 9655 .5369 4944 .5670
Ipp 36.9197 | 29.3748 | 38.8872 | .0418 .0370 .0485 .9613 9111 .9708
baseline | 12.0569 { 9.3862 [ 13.9694 | .1056 .0819 .1581 .6106 .5451 .8400

wn+rpp 25.1771 | 23.0065 | 26.6477 | .1453 .0875 .1640 .6045 4328 .6734

wn+b 9.6476 | 8.2257 | 13.2014 | .2644 .1638 2742 .5439 .3800 5841

wn+rpp+b | 25.6281 | 22.9355 | 27.3072 | 2214 .1255 2671 .3639 2837 4998

The parameters of the bilinear model for the 3-class model are also more stable,
with all but two quartiles for y, within 5% of the median. These two exceptions are the
lower quartiles for the "wn+rpp" (8%) and "wn+b" (6%) datasets. For x, there are three

such exceptions: the "baseline” (7.4%), the "wn+rpp" (7.6%) and the "wn+b" (6.6%).




Table 3.7. Parameters of the bilinear model for the 3-class probiem

) a X9
Median | Lower Upper | Median | Lower Upper Median | Lower Upper
Quartile | Quartile Quartile | Quartile Quartile | Quartile
noise free .1754 .1738 1771 1.0489 .9055 1.0718 2170 2077 2223
wn .1987 .1932 2014 9548 .8952 9790 2200 2130 2217
pp .1787 1717 .1867 1.0092 .9530 1.0289 .1978 .1956 2025
baseline .1827 1744 .1887 1.0752 1.0135 1.0834 2222 .2058 2255
wn+rpp 2216 2037 2243 8331 .7748 .8586 2081 .1923 2137
wn+b 2174 2047 2249 .8700 7749 .8840 2184 .2039 .2240
wntrpptb | 2953 .2864 2991 .8839 .8373 .8949 .2899 2752 .2953

We have shown in this chapter that for the artificial data with complex noise the
bilinear model is superior to the linear one. It greatly reduces the residual sum of squres,
and has stable parameters. One of those parameters (xg) is essentially the mean of the
minimal value of MSE,. There is no sense to continue optimization once MSE,; < x,,

since further improvement in MSE is unlikely.
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3.3. Overfitting with DP for artificial data

Dynamic programming requires some modifications to the described scheme to
explore the possibility of overfitting. First, we cannot afford to start with 1024 variables,
therefore the datasets were condensed to 128 attributes each, by averaging each 8 adjacent
points. Second, subsets of variables have been chosen in a deterministic way. As a result,
each run of the program gives identical results, unless the parameters are changed. To
overcome the second obstacle we have created 8 condensed datasets instead of one using
each time a different starting point. Thus we got 8 points to estimate each parameter in
question.

For a fair comparison, the same number (10) of attributes were requested as in
GA_ORS. MSE; and MSE, were recorded for all considered combinations of ten
attributes and were used to estimate the model parameters. The results for the 2-class
problem are given in the Tables 3.8 and 3.9.

As we can see from Table 3.8, the bilinear regression model does not give any
significant improvement over the linear one. Moreover, the linear regression model
practically does not change the total sum of squares. This means that there is no

correlation between MSE,; and MSE; i.e., all our points fell into the overfit area.

This conclusion is confirmed by parameter a in Table 3.9. It is either extremely
unstable, changing from negative to large positive values, or is very stable but close to
zero, as it happened for the noise-free data. There are two exceptions (the "rpp" and

"baseline" datasets), but the fact that the linear model only marginally decreased the sum
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of squares tells us that we have only few points in the linear area, all the others falling

into the overfit area.

Table 3.8. Total Sum of Squares and Residual Sums of Squares for the 2-class problem

TotalSS LR-RSS/TotalSS BR-RSS/LR-RSS
Noise type | Median Lower Upper Median Lower Upper Median Lower Upper
Quartile | Quartile Quartile | Quartile Quartile | Quartile
. .0566 0458 .0634 .9868 9779 9918 9979 9972 .9994
noise free
wn AT 3615 .7505 9550 9160 .9860 9934 9425 .9988
p. 2.2781 2.2387 | 2.3878 9134 .8405 .9685 9956 9887 9994
. .2836 2700 2973 9341 9246 9651 9778 .9696 .9898
baseline
1.1184 1.0453 1.9376 9342 9015 9657 9956 9570 1.0000
wn+rpp
wi+b 7528 .5673 1.3259 9778 .9498 9931 .9962 .9540 .9999
1.5272 1.0476 | 2.7020 8771 .8331 9526 .9909 9355 9932
wn+rpp+b

Table 3.9. Parameters of the bilinear model for the 2-class problem

Jo a X0
Median Lower Upper Median Lower Upper Median Lower Upper
Quartile | Quartile Quartile | Quartile Quartile | Quartile
. .0373 .0373 .0375 -.1010 -1116 -.0632 0339 .0332 .0349
noise free
wn .0597 .0553 0653 -.3819 -.5174 1.3899 0232 .0190 0336
1o 0590 .0546 .0609 .6810 .5055 8617 0416 .0382 .0503
. .0462 .0458 .0464 5167 4597 T127 0479 .0476 0494
baseline
0810 0786 .0893 2607 -.3682 1.1218 0579 .0383 .0600
wn+rpp
wirth 0774 .0746 .0811 3708 -.1675 9912 .0487 0314 0526
. - . . ; .0779
wirtpp+b 1259 1151 .1286 0931 6437 7635 0729 0664 077
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Resuits for the 3-class problem (Tables 3.10 and 3.11) confirm the trend. Despite

the relative stability of the a parameter, there is no improvement over the most trivial

model y = y, , the model which gives the total sum of squares as the residual sum of

squares. In other words MSEj; is essentially independent of MSE,,.

Table 3.10. Total Sum of Squares and Residual Sums of Squares for the 3-class problem

TotalSS LR-RSS/TotalSS BR-RSS/LR-RSS
Noise type Med. Lower Upper | Med. | Lower Upper Med. Lower Upper
Quartile | Quartile Quartile | Quartile Quartile | Quartile
. 4415 4163 .6682 | .9852 9455 .9907 1.0000 | .9988 1.0000
noise free
wn 1.4863 .7482 2.5264 | .9897 .9850 9916 .9997 9774 1.0000
D 2.5429 | 22219 | 2.8877 | .6146 4811 7134 9967 .9907 .9984
. 1.3942 1.1749 | 1.5921 | 9079 { .8536 9375 9873 9812 9973
baseline
2.8399 | 24754 | 4.3573 | .8859 .7496 9501 9662 .8955 1.0000
wn+rpp
witb 3.1103 1.7541 | 4.4845 | .9645 .8220 .9933 9371 .8460 9950
3.1630 | 2.7083 | 4.3403 | .9895 9815 9970 9709 9635 .9946
wn+rpp+b
Table 3.11. Parameters of the bilinear model for the 3-class problem
Yo a X0
Med. | Lower Upper Med. Lower Upper Med. Lower Upper
Quartile | Quartile Quartile | Quartile Quartile | Quartile
. 1692 .1688 1704 | -.1681 -.2819 -1119 .1766 1751 .1819
noise free
wn .2086 | .2078 2133 .0079 -2182 .5045 1819 1776 .1901
oD 1937 1891 .1958 .7400 .6945 8734 2140 2110 2161
baseline .1801 1773 .1818 9718 .6823 14144 2215 2125 2236
2325 2316 2371 6315 .3031 1.2032 2169 .2004 2310
wn+rpp
wirtb 2349 | 2294 2432 1.1790 3618 1.5646 2333 2259 2363
.3090 3062 3133 1.1564 7754 1.9007 .3047 2917 3111
wn+rpp+b
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Unlike for the 2-class problem, we now have got very stable x¢, and what is even
more impressive, its values for the different noise types are close to those obtained for the
GA-based attribute extraction. This is promising, since it shows that the parameters of the
bilinear model are intrinsic properties of the data set, not only of the method of attribute
selection.

Thus we have shown that DP is also susceptible to overfitting, even to a greater
degree than GA_ORS. This is due to the algorithm itself, since to obtain the 10th attribute
only "good" combinations of 9 attributes were used. Therefore we come to the final step
of algorithm with the burden of overfitting at the previous steps. Thus all points of a
possible linear trend in the model can be eliminated even before we started to collect
them. Unfortunately, we cannot start collecting at the previous steps, since the parameters
of the model depend most likely on the number of requested attributes.

We have several ways to overcome the overfitting problem. One way (which shall
be discussed later) is to reduce the number of features sought. The other two involve
either increasing the number of samples or enlarging the averaging window. The former
will never fail, but generally it is very expensive and therefore not always realistic. The
latter will simply reduce the power of the method, since with a large window there is a
good chance that a discriminative feature will be averaged with irrelevant information

and will disappear.
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3.4. Overfitting with real life data

Artificial data sets were a very convenient tool for the regression model
comparisons, but without real life data our results could be attributed to the way the data
were generated. Unfortunately, it is quite difficult to get real life data with a reliable test
set, especially MR spectral data.

We have a data set with infrared (IR) spectra at our disposal. It has1362 IR spectra
of blood samples belonging to 3 different classes. Each spectrum is 1816 points long.
Classes are of different sizes, varying from 320 to 640 samples per class. Half the
samples chosen randomly comprise the training set, the rest were included in the test set.
Since the full data set did not show a tendency for overfitting, 3 other versions of the data
were created with 50, 100, and 150 samples per class in the training set, selecting the
samples randomly.

The results are given in the Tables 3.12 and 3.13. The bilinear regression model
does not have any advantage over the linear one, but this could be for various reasons.
Either there is no overfitting at all (all MSE, > xy), or all points are in the overfit area (all
MSE; < xp). Analyzing the ratio LR-RSS/TotalSS we see that for the full data set and the
one with 150 samples per class, there is no overfitting. The ratio is low, meaning that the
linear regression model describes the dependence very well, a is large and stable.

When the number of samples was decreased to 100 per class, neither model
worked well; with 50 samples per class, we were entirely in the overfit area. The

parameter a is extremely unstable, switching from negative to positive values.
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Table 3.12. Total Sum of Squares and Residual Sums of Squares for the IR data.

TotalSS LR-RSS/TotalSS BR-RSS/LR-RSS
Datasets | Median | Lower Upper | Median | Lower Upper | Median | Lower Upper
Quartile | Quartile Quartile | Quartile Quartile | Quartile
full data 66.165 | 50.607 | 74.427 .1494 1282 .1646 1.0000 9993 1.0000
150 79.757 | 63.439 | 85.784 2627 2056 2728 9717 9003 9999
100 88399 | 35772 | 107.279 | .4653 .2908 5129 .9999 9651 1.0000
50 20.8896 | 17.1616 | 33.4280 | .8066 .7406 8683 1.0000 9933 1.0000
Table 3.13. Parameters of the bilinear model for the IR data.
Yo a X0
Data sets | Median | Lower Upper | Median | Lower Upper | Median | Lower Upper
Quartile | Quartile Quartile | Quartile Quartile | Quartile
full data 2069 .1825 2131 1.3518 1.3081 1.3923 1735 .1638 1770
150 2165 .2009 2282 1.3349 1.2871 1.4486 1225 1134 1261
100 .2685 .0000 .3055 1.4161 .7831 1.6675 0926 -.0423 .1061
50 .5566 .0000 .5640 -3756 -.4075 4309 06652 | -.4787 0751

We did not succeed in showing any advantage of the bilinear model for real life

data, since practically all the points in the MSEs-MSE,; plane were either in the overfit or

in the linear area. The advantage of the bilinear regression model is best seen when we

have a balanced set of points, i.e. with both the overfit and the linear range present

significantly. Nevertheless we can still see the danger of overfitting. As soon as the

training set became small enough (50 samples), the MSE;s is not longer linearly related to

MSEj, thus indicating that the predictive power of the algorithm was lost.
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3.5. Parameter optimization for GA-ORS.

2-class problem

The bilinear regression model was introduced to find a way to optimize the
parameters. GA-ORS has 4 major parameters defining the behavior of the algorithm.
These parameters are: the number of generations (n), the population size (J), the
probability of mutation (pn), and the probability of crossover (pc). Due to the extensive
computations required, we cannot afford a 4-dimensional optimization, therefore the
problem will be solved in two steps. First we find the "optimal” generation size and the
number of generations; subsequently, the "optimal” probabilities will be obtained. The
word optimal is in quotes since, due to the relatively large variance of the resuits, we
cannot always differentiate reliably between two sets of parameters and only a few of the
possible combinations could be explored.

On the first step of optimization, the population size was selected from the set
{50, 100, 200, 300, 400, 500, 600}. For each value of the population size 10 runs of GA-
ORS were carried out with 50 generations each. The probabilities were set to the
normally recommended values pr=0.001 and p.=0.66.

Since GA-ORS is time consuming, the parameter optimization for artificial
datasets was carried out with only one dataset, with all types of noise present.

MSE;, for the 2-class problem is plotted in Fig. 3.3. For reference the median

value and the quartiles of the xo parameter in the bilinear regression model are also
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plotted. As we can see, 20 generations is enough for MSE,, to go below the lower quartile
of xg regardless of the population size. Unfortunately, xq is probably the least stable
parameter of the model, so any conclusion based on it would be the least reliable.
Nevertheless, even here we can see that /=200 is the best choice; further increasing /

either made things worse (/=300) or gave insignificant improvement.

Changing of MSE,, for 2-class problem
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Unlike x, y is the most stable parameter of the model, and MSE,; would be a
better predictor for the quality of the resulting classifier. Unfortunately, as can be seen in
Fig. 3.4, MSE is very noisy. As a result, we must make our decision by exclusion. /=100
is unsatisfactory since the median of MSEs does not decrease below yj, thus indicating
underfitting. For /=50 it does go slightly below yj, but this result is compromised by the
one for /=100. /=500 ard /=600 do not give improvement compared to /=200 or /=400,
therefore these choices simply waste computational time. /=300 is definitely worse than

/=200 and can be eliminated. Out of the remaining two values, surprisingly enough, /=400
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requires more generations to achieve its minimum and this minimum is higher than for

[=200. Thus /=200 is the only reasonable choice.

Changing of MSEts for 2-class problem
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To select the optimal value for n we have plotted not only the median of MSEg,
but alsc the quartiles (Fig. 3.5). The distinct rise of the median MSE; between the 9th and
32nd generations is caused by random factors, since its lower quartile, aside from some
fluctuations, is close to the lower quartile of xo¢. Only after the 32nd generation is there a
robust trend of increasing. Thus any value between 9 and 32 is acceptable for n. We have

chosen n=20, in the middle.
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Median and quartiles of MSEts, the 2-class problem, L=200
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To optimize the values of py, and p., we have chosen 5 values for pn, -{0.0001,
0.0003, 0.001, 0.003, 0.01} and 5 values for p. - {0.60, 0.63, 0.66, 0.69, 0.72}. A 2-
dimensional grid was created with these values and GA-ORS was run 10 times for each
node of the grid.

To choose the best combinations of probabilities, the quality control methods of
Statistica were used. Thus we have switched to mean values instead of medians. There
are two justification for this choice. First, the problem resembles a typical quality control
problem. We have 250 observations overall, for a given combination of probabilities, we
must decide, based on ten samples, if there is a significant difference between the
distribution of these ten samples and the rest. Second, all but a few samples are
distributed normally (see Fig. 3.6). We realize that ANOVA is more appropriate tool for
the problem, but the de facto implementation of the quality control charts demonstrated
that the artificial data are almost indifferent to the change in the values of the

probabilities.
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The upper and lower control limits for the X-BAR chart were chosen at 2 sigmas.
Results are given in the Fig. 3.7. It can be easily seen that there are three combinations of
probabilities with MSE s beyond the control limits. For two of them, (0.63,0.01) and
(0.66,0.01), MSE;; is higher than the upper control limit which means that these
combinations are particularly bad. The combination (0.60,0.003) gave MSE, lower than
the lower control limit (LCL), two others ( (0.66,0.003) and (0.69,0.0003) ) produced

values which are very close to the LCL.
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Normal Probahility Plot for 250 samples
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3-class problem

Like for the 2-class problem, after a few generations MSE;; is below the lower
quartile of x,, thus indicating overfitting. Therefore we switched our attention to the
MSE’s behavior. Again, out of the 7 possible / values, only 3 are worth analysing in
detail (see Fig.3.8), namely /=200, /=300, or /=400. The erratic behavior of MSE for

=300 allows us to choose from the two remaining values.
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For /=200, the minimum of MSE is achieved at n=28. For /=400 there are two
minima, at n=6 and at n=17. Again, we pick a value in the middle (n=11) and we see that
the latter case requires 400*(11+1)=4800 runs of LDA, while the former requires
200*(28+1)=5800 runs, thus leaving us with =400 and n=11.

Repeating the analysis done for the 2-class problem, we discover (Fig. 3.9) that all

but two combinations produced MSE, values within the control limits. The two
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exceptions are (0.60,0.0001) and (0.72,0.01), the two extremes. We must avoid etther of
these.
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Although we have found five values beyond the control limits (2-class problem
and 3-class problem combined), to do so we had to set the control limits to 2 sigma rather
than the more common 3 sigma. Therefore we can give only cautious recommendations
regarding the choice of probabilities. The only definite recommendation is to avoid too
high or too low probabilities of mutation. The range [0.0003,0.003] will probably work
well. All the analyzed values of pcoss are acceptable. The difference between the best
combinations and the others is marginal.

Thus, recommended values are: the population size — 200-400, the number of
generations ~ below 30, the probability of crossover — 0.60-0.72, and the probability of

mutation — 0.0003-0.003. We have increased slightly the recommended number of
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generations, compared to the optimal values we had chosen, since those number were
obtained for two very specific artificially generated data sets. The real life data might

need more generations to converge and might do so without overfitting.



3.6. Number of selected regions.

Although the number of selected regions is one of parameters, we decided to
analyze its influence in a separate chapter, because of the special role it plays in the
algorithm.

It is obvious that the more regions are selected, the greater is the danger of
overfitting. Less obvious is the algorithm’s behavior in the case when number of the
regions is equal to or less than the number of features in the data. In our case, only 6 peak
heights out of 10 were discriminative, while the other 4 were generated identically
distributed for all classes (see Table 3.1). Therefore we have 6 discriminatory peaks and
we need at least 6 regions to use all the information contained in the spectra. With greater
number of regions (L) some of them can be chosen in the nondiscriminatory areas; this
also can happen with a smaller number.

To test the method we have run the program 10 times for each value of L and
followed the parameters of the bilinear model and the residual sum of squares. One would
expect that with increased overfitting the results would be better described by the bilinear
model, whereas without of overfitting the bilinear model would not decrease the residual
sum of squares and the results for the training and test sets would be highly correlated
(a~1). The last condition is very important, because we saw that the bilinear model can
work as well as the linear when all the points on the MSE-MSE plane lie in the overfit

area.
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The mean values of the parameters of the bilinear model for the 2-class problem

are plotted in Fig. 3.10. As we can see, xo and yy are very stable and practically identical

for all L values. The a parameter decreases slightly with increasing L.
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Dependence of the residual sum of squares on the number of regions.
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An analysis of the residual errors reveals the true picture regarding the overfitting

(Fig. 3.11). The ratio of the residual sum of squares (RSS) in the linear model and the

total sum of squares (LR-RSS/TotalSS) increases dramatically with L, implying that the

quality of the linear model decreases. In contrast, the ratio of the RSS in the bilinear and

linear models decreases significantly, therefore, the bilinear model describes the data

better for greater values of L. Thus, while the overfitting influences the resulits for small

L, the severity of the problem increases with L.
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The parameters of the bilinear model for the 3-class problem behave similarly to

those for the 2-class problem (Fig. 3.12) with one notable exception. Both xq and yo have

well-defined minima at L=5. Detailed analysis of the minima revealed that one of the 10

runs with L=5 gave no overfitting at all. As a result, xo and y, could be chosen arbitrarily
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(see Appendix B.). In this case xp was very close to 0 and y, was negative. If we correct
this artifact, the conclusion will be the same as for the 2-class problem: xq and yy are
intrinsic characteristics of the data and do not depend on the parameters.

The a parameter for the 3-class problem is slightly higher, suggesting better
correlation between results for the training and test sets, and less overfitting. Thus the 2-
class problem seems more susceptible to overfitting, supporting our hypothesis stated
earlier.

Analysis of the residual sums of squares for the 3-class problem (Fig. 3.13) also
shows that fewer regions reduce the overfitting. Moreover, the BR-RSS/LR-RSS has a

maximum at L=5, i.e, at one region less than the true number of features in the spectra.

Dependence of the residual sum of squares on the number of regians.
{3 class problem)
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Fig.3.13
Five out of nine values on the a curve are higher for the 3-class problem, the rest
are higher for the 2-class problem, therefore this parameter cannot signal the tendency for

overfitting.



We have demonstrated an increasing overfitting with increasing number of
features for both datasets. To recommend an optimal value of L we need an additional
criterion. Despite low variability, yo can fulfill this role. Indeed, yy is in essence a2 !ower
bound for the expectation of the MSE,s. The lower this bound the better the results on a
test set. For the 2-class problem the minimum was achieved at L=9, for the 3-class
problem, ignoring the artifact at L=5, the true minimum was achieved at L=10. Therefore,
although the overfitting increased when the number of sought features exceeded the
actual number of features present, we may expect a slight improvement with a few extra
features. This was probably achieved at the expense of increased variance in yp, but we

did not obtain enough data to support this statement.
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Conclusions and future development

An evolutionary process of development of the methods of MR spectral analysis
brought us from handpicked peaks, through PCA and/or DP-based methods of feature
selection to a GA-based feature extraction method. Our contribution varies from method
to method. In the case of the PCA, we simply coded the known algorithm. In the case of
the Dynamic Programming (DP)-based feature selection, the published algorithm was
modified and improved. The GA implementation is original for feature selection, as
applied to the analysis of spectra. An original encoding method implemented in our
algorithm allows combining of the power and flexibility of the GA while retaining the
spectral identity of the new features, thus facilitating the interpretation of the results.

As we showed, the powerful methods of feature extraction/selection are
susceptible to overfitting. This means that the results for the test set (MSEs) are weakly
correlated with the results for the training test (MSE). To demonstrate this we developed
a simplified bilinear model for the dependence of MSE,; on MSE,, for which we assumed
that beyond a critical value MSEj is a constant (steady-state).

To test both the method and the bilinear model, artificial data sets were created to
simulate typical problems of MR spectroscopy. The artificial data were used to
demonstrate the superiority of the bilinear model over the linear. It was also shown that
the xo and yo parameters of the bilinear model are intrinsic properties of the data and vary
slightly, whereas the a value is very sensitive to the method’s parameters. The bilinear

model gave us reasonable means of selecting parameters for the feature extraction



methods. It would have been extremely dangerous to base our conclusions just on MSEy,
since it loses its predictive power due to overfitting. In contrast, MSE, allowed us to
choose the parameters that would produce a classifier delivering its promises.

The results also confirmed the superiority of the GA-based feature extraction
algorithm over the DP. We have shown that the probability of error for noise-free data is
close to the designed probabilities of error. As expected, noise deteriorates the results, but
we don’t have benchmarks to fully assess this case. A very peculiar result was produced
for the 2-class problem when only white noise was present. For some runs of the methods
the a parameter of the model became negative. This means that the assumed linear phase
in our model is not present, but the steady-state phase surprisingly degenerated into a
linear one with 2 negative slope. The problem was less severe for the 3-class data, and
was negligible in the presence of complex noise.

The method gave good results for real-life IR data. Due to availability of many
spectra, we have obtained a linear dependence of the MSEs on MSE, without the
constant stage. However, reducing the size of the data set created the same overfitting
problem as for artificial data. Thus we illustrated once again the importance of the size of
the dataset.

We paid a lot of attention to the overfitting problem; unfortunately, it is not clear
yet how to prevent it without dramatically decreasing the power of the method. The most
obvious way is to increase the number of samples in both training and test sets. This will
never fail, but may be unrealistic due to the high cost of the data collection.

If we have enough data, we can use the approach that is often used in PLS

regression /31/. The data set is divided into three groups instead of two. The groups are
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the training set, the test set, and the validation set. The terminology in the literature is not

consistent; we’ll use the above definition in the following.

First, the training set is used to guide the GA_ORS. Then we’ll use the test set to
choose the best solution out of the elite group. The validation set will help us to estimate
the overall performance of such a two-stage process. The hope is that the small size of the
elite group would not leave enough room for overfitting.

Another possible method development is a modification of the bilinear model,
allowing an arbitrary (maybe only negative) slope instead of the constant stage. As we
have seen, this modification has some merits. If this model had described the MSEjs-
MSE,: dependence better, this would mean that overfitting could be costly, not just
indifferent.

The algorithm itself can be improved in many ways. One possible development is
a modification of the objective function. As we have seen in the literature review, what
objective function is used is important for RDA. Since RDA requires a two-parameter
optimization, it is also susceptible to overfitting, and we can expect that the choice of the
objective function can also be important in our case.

One of the recent developments in GA theory, sharing functions, was not yet
implemented in our program. The sharing function can prevent premature collapse of the
population into a smaller set of chromosomes, and as a result, allows us to get better
results, or to reach the same results faster. An obvious drawback of this approach is that

one additional parameter has to be optimized.
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Both GA- and DP- regions selections methods are impiemented in software. The
program has been used successfully for the analysis of both MR and IR data. The results
were presented at several annual meetings of the Society of Magnetic Resonance as

refereed contributions /24,25/. A paper, describing the methods is in print /49/.
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Appendix A. Update of the statistics for the weighted LDA

with leave-one-out cross validation

Let us consider the problem of a weighted discriminant analysis. This means that

for each of the independent and identically distributed p-dimensional observations

X,,i =1,...,n, we are given weights w,. Then the estimates of the mean vector X and the

covariance matrix S are calculated according to the following formulae:

W=Z“:wi Al

i=l

)
3x, w
i=1

X=— A2
w
Zwi "W
w=4=t A3
w
R A A4

It will be convenient to introduce another matrix:
C=(W-w)-8 AS
These estimates are unbiased. This is obvious for the mean vector:

iE(x,)-w, i E(g‘)-gw,iw,

E(i) = .=l W W i=l = E(g)

where & is a random vector we have sampled. The proof is slightly longer for the estimate

of the covariance matrix:
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E(S)= ! lz::w,E[(x, -x)-(x, - i)"]:

wW-w
e 2w Ellx, ~E(E)+ BE)-)-(x, -E@)+ EE)- %) ]
s 2w leove)-2 B(x - E@)- - EE) )+ Elx-E@)- = -EE) )

Since x, are identically independently distributed,

E((x, ~E())- (x ) E(g))r )= {z:;i(;; 1sz 7 therefore

E(x, -E@) -BEY)- E[(x, -B(a))-[g‘::;,. - -E(é)] }

i w, -B(x, -EE)) & -E@)) w, - Cov(E)

= int
w W

and

ixl "W, ixi "W, r
B(x-E@)-@-EQ) )- E[[ W -B(a)]-["‘ W —E(é)] J

> w? E(x, ~B()-( ~E@Y) vl -Cov®)

w? w2

Finally,
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1

ES)=9—w

w.cov(g)_z.im+

(& wf -Cov(E)

Sw|3

_ 1m] w =] \ /=l wZ
W-w
n wl n WZ )
w-2. — +W —1 -
2w [ZWJ w-2

= Cov(&) . T

W-w

_ c0v(g)-(w - W] = Cofg)

Thus, we have shown that the above estimates are indeed unbiased.

= Cov(t)- Wow

. iw,[c:ov(g)- Z-E((x, ~B(E) % s, —E(&;))r)+E((i—B(§))' (f-E(«';))’)]

To update the covariance matrix for the leave-one-out method, we will follow

Lachenbruch /7/.

Suppose we have deleted the j-th observation x;; then we can calculate the

difference between that observation and the mean vector:

I1=XJ—X

Now we can update our estimates:

W:W—wj
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To show this, one must simply substitute the new variables into the definitions of
our estimates.

To update the probabilities in the leave-one-out method we also need an updated
determinant of the covariance matrix. As we have seen, the updated covariance matrix

differs from the original by a rank 1 matrix and a scaling factor. Let A = - (B +u- vr)

and B=V-A-V7 is the eigenvalue decomposition of B (i.e., V-VT =1 and
A =diag(p,,++,7, ), then
detA =’ -detB-[l+£y%),where i=V'.-uand v=V7T-v.

r=] i

Indeed,
detA=a’ -detB+u-v )=0 -det(V-A- V" +u-v’)
=a? -detV-det V7 -det{A + T-¥" )=’ - det(A + @i - ¥"

;

but
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A, +U, -V, LV, .- u-v,
u-v, A+, -V, u, v,
~ =T .
det(A+u~v )=det =
up-l.vl
U,V .- A, +u,-v,
A, u, v, - u-v, u, - v, A u v,
0 A, +u4,-V, u-v, U, v, A, +U,-V, uy-v,
det] : . : + det :
0 u,, v,
0 e A tU, 0V, u,-v, - A, +u
-~ ~ -~ u, 0 - 0
A, +U, -V, - u,-v, -
. . u, A, 0
A, -det : +V, -det| : =
= . .
—~ ~ -~ —~ p—]
u,-v, A, +u,-v, = 0 Y
14 P
A, +U, -V, . . Uy v,
: u -v Iﬂ[
kl-det . i S BN k'=
1 r=)]
u,-v, . A, +u, v,

---=I£[A., -(l+ia‘l:‘v')=detB-[1+ia'7;V']

=i r=|

Thus, we know how to update the covariance matrix and its determinant. Now we

can update the inverse of the covariance matrix. Following Lachenbruch, we'll use

Bartlett's identity: if B=A +u-v',then B' =A™ -A~ .u-v" -A"/(l +vi-A™ -u)

In our case this means:

—~ ~ -1
§-,_W-—z. S - —t W~ ~u-u’
W-w
= SV +c-S'-u-u” S (1-c-u” S -u
LA A e )
w,-W
where ¢c= LA
(W %)W
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This formula can be applied both to linear and quadratic discriminant analyses. The
only difference consists in the calculation of W — w and its update. In the case of LDA we

P
have to replace them by the sums of all individual terms for each class (D (W, - W,) and

1=l

the corresponding update)
Finally :
~ -wyY W ~2
detS=(u) detS1- st o S % A.13
-w (w - W)' W r=l A'l
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Appendix B. The solution for a nonlinear regression model

Y(x)=yota «(x-Xxo) « u(x-x13)

Let us consider a nonlinear model y(x) =y, +a-(x—x,)-u(x —x,), where u(x)

is the unit step function. This means that

#(x) ={J’o, if x<x,

Yo +a-(x-x,), if x>x,

B.1

Let us also have a set of experimental points (X,,Y,),i=1,...,N withthe X
values sorted in ascending order. The problem is to choose a,y,,x, such that the mean
square error (MSE) between experimental and theoretical data is minimal. If x, is given,

we can partition all the experimental points into two groups, those which are less and
those which are greater than x,. Therefore we’ll have an analytical expression for t.he.
MSE, which can be minimized provided that the point partition is unchanged. Thus our
problem looks like a linear programming problem. We have a set of experimental X
values which divides the set of real numbers into intervals. For each interval the MSE can
be calculated analytically and minimized. The minimum can be achieved either inside or

on the boundary of the interval.

After we have described the main idea of the algorithm, we’ll solve the problem

for each interval separately, starting from two half-open infinite intervals.
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Before doing the actual minimization we’ll introduce some useful definitions:

E Ly
(Z)=W'er

=]

l k
Ek(z) =_°zzr
k [
l N

EN-.Q(Z)=__. Z,
N_k J-kZH

where Z = f(X,Y) is any function of two variables and Z, = f(X,,Y)).

The statistics are the standard sample estimate of the average and its truncated

modifications. We’ll need the following equations, which easily follow from the

definitions:
E\(Z2)=EY(Z)= E(2) B.2
E(Z2)=2, B3
E'(2)= Z, B4
E,., = k-E (2)+Z,,, B
k+1
EN-ktl = (N_k)'EN-k(Z)"'Zk B.6
N-k+1 |
. . EN-E

N
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B.1 Two extreme cases of the problem.

These two cases are eitherx, e(—0,X;] or x, €[X,,©). We’ll start with the
latter.
In this case y(x) = y, and the solution is obvious:

Xo E[Xhhm)

a=0

»=EWD B8
MSE = E(Y?) - E(Y)?

When x, € (—o, X;] we have got a standard linear regression model with a

known solution again:

X, € (=0, X,]

g = E(XY) — E(X)- E(Y)
E(X?) - E(X)?

Yo=E(Y)-a-[E(X)—-x,]

MSE = E(¥?) - E(v)? — LEUXY) — E(X) -EW)T’
E(X7) - E(X)’

B.9

As we can easily see, if there is correlation between the X and Y values
(E(XY)- E(X)-E(Y) = 0), MSE is less for the linear regression, otherwise those two

solutions will coincide.
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B.2 The minimum is achieved inside

We assume that X, < x, < X,,,, then

N k N
N-MSE =3 (Y, =y(X)) =2 (Y, =y)* + 2 [t =y —a-(X, —x,)]" =

=1 Tl 1mk+}l
s 2 2 u 2 ud
MY -y) +at - D (X, —x) =2-a- D (X, —xy)-(¥, —y) = B.10
=] 1=kt imk+l

N-[E(Y)-2-y, - E()+y31+a* -(N—k)-[EN*(X?) = 2-x, - E¥* (X) + x2]
2-a-(N=k)-[E"*(XV) ~ x5 - E¥* (1) = yo - EY*(X) + X030 ]

Differentiating with respect to a, x,, and y,, we’ll get:

N-MSE/L =—2.(N-k)-{EV*(X¥) - EM*(X)-yo — %o - EN* (D) + X, - 3o -
a-[EV*(X*)=2-x, - EM*(X) + 3]}
N-MSE/ =—2-N-(E(¥)-ys)+2-a-(N~k)-(E"*(X) - %,)

N-MSE/f =2.a-(N-K)-(EM*(V)~y, ~a-E"*(X)+a-x,)
0

At the minimum the partial derivatives are equal to zero and the Hessian matrix is
positive definite. Therefore to get the minimum we must solve the following system:
[EY*(X1) = E"*(X)-ys — %o - E¥* (D) 4 2 -y, =
a-[EVH(X?)~2-x0 - ENH(X) + x3]
1B -y =a- E2E (274 00 50 >
E* (1) -y, = a-[E**(X)—x,]

To get the last equation we have ignored the case a=0, since the solution for this is

given by B.8.
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Muitiplying the third equation by i};—k and subtracting it from the second one,

we get:

E(Y)—yoij\-‘,—’i-[s“(n—y.,] or

k.yo=N'E(Y)—(N—k)—E”’*(Y); B.12
k-E, (Y)+(N—-k)-EY*(¥)-(N ~k)-EN*(Y) = k- E,(Y), therefore
Yo=E.(Y)

Multiplying the third equation of B.11 by E“™*(X) — x, and subtracting it from

the first one we get:

EVH(XY)-EY*(X)-EN* (V) =a - [EY*(X?)-EY(X)'], or
4o E¥ Y (XY)-EY*(X)-EY*(Y) B.13
- EN-k(XZ)_EN—k(X)Z

Based on B.11-B.13 we find that:

N-k
% = BVt - 20

[E"* (N - EM-[E™X*) - ETH(X0']
EN-&(XY)_EN—E(X).EN—k(Y)

EN* (X - B.14

Close examination of B.12 and B.13 reveals that the overall solution is a

combination of independent solutions of the regression model y(x) =y, for the first k
points and the linear regression model y(x) = a-x +(y, —a-x,) for the rest of data.

Therefore
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MSE=—11-,-{Ic-[E,‘(Yz)—E,,(Y)2]+
gy e LEVEXN - ENHO-EMPONE
(N - k)-[EV4 (1) - EN4(D) B Vo

oy popy L Nk [EY M) - EVH 0 - ENH P
E(Y")- E(Y) N EN-k(XZ)_EN-k(X)Z B.15

The Hessian is positive definite iff all three leading principal minors are positive

/26/. That is:

AV - MSE &N - MSE AV - MSE

AN - MSE éN - MSE ? &,¥, G,
AV - MSE &l &5, AN - MSE &N - MSE &N - MSE

——>0, > 0, and 3 >0

&’ AN - MSE &N - MSE & B Bodd

&H, P, AN - MSE &N - MSE N - MSE
Zoa o A&

To verify this we first calculate the partial second derivatives at the optimum

point:

N - MSE

px =2.a*(N-k)
&N - MSE
T 2.4 (N-k)
&0@0
N - MSE

Fa 2V RET -y - 2ea B0 x5

~2-a-(N=K)-(E¥*(X) - x,)

N - MSE _

¥

N - MSE
Hoca

2N

=2-(N=K)-(E"*(X) - x,)
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%:2-(N-k)-[g"'*(xz)-2-E”‘*<X)-xo +x2]
=2‘(N—k)‘[EN-k(XZ)—EN-*(X)Z +(EN-k(X)__x°)2]

The first principal minor 2-a® - (N - k) is obviously positive, unless k=N or a=0.

2.4’ (N-k) -2-a-(N-k

The second is equal to
-2-a-(N-k) 2-N

)“ =4-a* -k-(N —k) and is positive

under the same conditions, plus k>0. Finally, the determinant of the Hessian itself is

equal to
2-a*-(N-k) -2-a-(N-k) -2-a-(N-k)-(EY*(X)-xg)
2-a-(N-k) 2-N 2-(N=-k)-(EN* (0 -x4)
2a(N ~kXEN ™ (X)-x0) 2AN-kXEM (X0 -x,) 2N -BIEY*(X1)-EN () +(EY™* (0 -x0)* )
0 2-a-k 0
~2-a-(N-k) 2-N 2(N=k)-(E¥*(X0)-x¢)
20N~ KNEV (X0 -x5) 20N —kXEY*(X)~x0) 2N -BIEN*(XP)-EV*(0)? +(EV* (X0)-x0)* )
gk ~2-a-(N-k) 2-(N = k)-(EY* (X0 -xo) _

20 (V-0 (E¥ (0 -x0) 2-(N=k)-[E¥*(X2)- ENF (0% +(E¥*(0-x0)?]
8.02 .k.(N_k)z _[EN-k(XZ)_EN-k(X)Z]

It is positive under the same conditions, plus the condition of positive variance of

X, not satisfied only if X is a constant.

Therefore the optimum obtained is indeed the minimum. If the basic assumption

(X, € xy <X,,,) is also met, then the minimum is achieved inside, otherwise the

minimum of MSE for the given interval is at x, = X, oratx, = X, .
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B.3. The minimum is achieved at a sampling point.

Now we assume that x, = X, . The minimization involves only two variables and

B.11 reduces to

EYY XN -E"*(X) -y =X, - E" (N + X, -y, =
: a-[EN*(X)-2-X,-EN*(X)+ X} ]

E(N) -y, =a- N;" [EM(X) - X,)]

The solution to B.16 and the problem itself is:

x, =X,
E¥H D) - B0 B (1) + o (B (0 - X, [E™ (- £, (7))

a=
N4 (X)) - EYH 00 (B (0 - X T

N-k
N

Yo =E(Y)-a- ‘[EN-k(X)"Xk]

MSE can be calculated according to B.10.
Finally, we must verify that the Hessian is positive definite. Indeed

&N - MSE
¥
N - MSE N - MSE
S
AN - MSE &N - MSE
Foda &

=4-(N-k)-{N-[E"*(X*)- E"* (0 1+ k-[ET (- X, 1} > 0

=2-N>0and
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B.4 The Algorithm
Now we can formulate the algorithm giving the solution to our problem.

1. Calculate E(X),E(Y), E(XY), E(X?), E(Y?) and initialize the current minimal MSE
according to B.9; set k=0

2. k=k+1; if k==N backtrack the values of x,,y,,a to where the current minimal MSE
was achieved and exit, otherwise update E"*(X), EY™*(Y), EY™* (XY),
EY*(X?), ENY(Y?), E,(Y), E,(Y?) according to B.5-B.7

3. Find x,according to B.14; if x, < X, or x, > X, go to the next step, otherwise find

MSE according to B.15 and compare it with the current minimal MSE; if there is no
improvement go to step 2, otherwise update the current minimal MSE, calculate

a and y, according to B.13 and B.12 and save all three parameters for future use. Go

to step 2.

4. Assign x, = X, ; calculate a and y, according to B.17, calculate MSE according to

B.10 and compare it with the current minimal MSE; if there is no improvement go to
step 2, otherwise update the current minimal MSE and save all three parameters for

future use. Go to step 2.

Note that if the minimum was achieved at a boundary point, we check only one

them, the left one. The right point will be checked, if necessary, on the next step.

It proved to be more reliable to calculate MSE always according to B.10, since

using B.9 or B.15 can give negative values for the sum of squares. This happens due to



the inprecise nature of computer calculations. These expressions can be calculated in a
robust way, i.e., sort the numbers in the ascending order and start summation from the
lowest ones. Unfortunately, we are loosing the benefits of faster computation of
EY*(X), EY '), ENH(XY), ENH(X?), ENH(Y?), E (Y), E,(Y?), since they must be
recalculated at each step. Therefore this procedure does not give any computational

advantages.
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