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University of Manitoba 

New Preprocessing Methods for Better Classification of MR and 
IR Spectra 

by Alexandre Nikouline 

We introduce a global feature exûaction method specifically designed to 

preprocess magnetic resonance spectra of biomedical origin. Such preprocessing 

is essential for the accurate and reliable classification of diseases or disease stages 

manifest in the spectra. The new method is Genetic Algorithm-guided. It is 

compared with our enhanced version of the Forward Selection algorithm 

("Dynamic Programming"). Both seek and select optimal spectral subregions. 

These subregions necessarily retain spectral information, thus aiding the eventual 

identification of the biochemistry of disease presence and progression. 

Both methods proved to be very usehl for large datasets. The danger of 

overfitting related to the small nurnber of samples in the datasets was 

demonsûated for both the artificial and real-Iife data. A bilinear regression mode1 

was used to quantitate the consequences of overfitting. Taking this in account, 

optimal parameters for the GA guided algorithm were recommended. 
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1. Introduction and Literature Review 

Noninvasive diagnostic techniques are finding their way into medicine. in many 

cases, e.g., MR or IR spectroscopy, the diagnosis (classification) is done based on a 

relatively small number of samples of high dimension. nius, a typical classification 

problern in a biomedical application of MR involves 10244imensional spectra with at 

best 100 samples per class. From the mathematical point of view we are trying to classify 

an extremely sparse data set in a hi& dimensional space. Many classification methods 

applied to the raw data will fail, or will not be reliable. The problem is aggravated if we 

take into account that real life data are noisy, and classes are often assigned arnbiguously. 

Fortunately, the intrinsic dimensionality is usually smaller than the data size. This 

thesis is devoted to developing new methods of dimensionality reduction. The most 

popular current method is Principal Component Analysis (PCA). This method does not 

need a detailed introduction, and well only mention some basic facts in the literature 

review, since we use our own routine to carry out the PCA. 

PCA is an unsupervised method, Le., we do not need to know the class labels 

(diagnosis) to reduce the dimensionality. This is its main advantage, but fiequently it is 

also the main disadvantage. Very often the magnitude of discriminating features of our 

spectra are comparable to noise in their contribution to the data. PCA is not capable of 

extracting such features. 

Linear and Quadratic Discriminant Anaiysis are by far the most popular supervised 

methods. This is why the aext part of our literature review will be devoted to them and to 

the relatively new Regularized Discriminant Analysis. 

Recently, powemil Genetic Algorithms (GAs) have been used as feature selection 

methods 11 8,19/. Since a GA implementation will be the main preprocessing method 



considered and developed in this work, the next topic of the literahire review will be the 

GA. 

A short review of the feature selectionlextraction methods will follow the GA, since 

many new implementations are based on the GA. 

The developed method c m  be used for data of different ongin, but it was designed 

with NMR spectn as the input data in mind, so we will finish the literahire review with 

the description of typical problems in spectra analysis. 



1.1 Principal Com~onent Analvsis 

We do not need to describe the history of PCA, or PCA itself in great detail. It can 

be found in any book on this subject, /1/ for example. Our purpose here will be to define 

some terms, which will be used throughout the work and to discuss the limitations of the 

PCA. 

Let 5 be a random n-dimensional vector, a sarnple fiom a distribution with 

covariance matrix L . Since Z is a covariance matrix, it is symmetric and positive 

semidefinite. Thus it can be represented in the form Z = 'Y-A\~", where Y is an 

orthogonal matrix andA=diag(hi ,..., An) with ith, > h, 2 . .A ,  2 O .  Since Y =(VI ,..., 

comprise an orthonormal basis in RE, 5 can be rewritten in the form 

5 = =,y, +...+ anWn, with = a:+ ...+ a:. The (vi,. ..,fi) are called Principal 

Components. Vectors a and 5 are comected by the simple equation a = Y' 5 . 

COV(U) = Y' Z Y = A and this explains what we need the principal components for. In 

the new system of coordinates (the principal components) our random vector is 

uncorrelated. Moreover, we can reduce the dimensionality of our problem, if some 

eigenvalues equal zero or are very close to it, since the fraction of total variance explained 

by the first p dimensions of a equal +, which cm be very close to 1. The problem 

of choosing p (stopping nile) is extensively explored in the literature. In /2/ several 

stopping rules are discussed, iacluding the mentioned fraction of total variation 

explained. This rule tends to overestimate the number of nontrivial dimensions, but as we 

will see later, we must keep some small eigenvalues and corresponding eigenvecton for 

classification purposes. 



in applied statistical analysis, the covariance matrix is usually unknown and 

replaced by its estimate. The popular choice of this estimate is the sample covariance 

matrix. Let xi , . . . , XN denote independent realizations of the random vector 5 ; then 

and 

are unbiased estimates of the mean vector and the covariance matrix. Now we can apply 

eigenvector decomposition to the matxix S. The principal components are \Y' xi,. . .,$ XN. 

In addition to the b o w n  problems of PCA, we have yet another one, the quality of 

estimates. It has been shown /3/ that the sample covariance matrix increases the spread of 

eigenvalues. It tends to overestimate the highest and to underestimate the lowest. Even if 

we had a positive definite c o v ~ a n c e  matrix, the sample covariance matrix will be 

singular if the number of sarnples is less than or equal to the number of dimensions. 

In such cases, the larger eigenvalues and corresponding eigenvectors can be 

calculated using Lanczost method /4/. An implementation of the method can be found in 

151. 

PCA for the classification problem has two severe drawbacks. First, it is an 

unsupervised technique. This means that to al1 our errors in the sample covariance rnahix 

estimate we add another one, that of combining several classes into one, classes with 

different mean vectors and different covariance matrices. It distorts the estimate M e r .  

Second, the larger the eigenvalue the more variance is explained by the corresponding 

component, which does not necessarily mean better classification. Moreover, in MR or IR 

spectroscopy, the first principal component is usually non-discriminating. 



As a result of these drawbacks, PCA is usually combined with feature selection 

1471. Of the fÜst k principal components, the best p are selected using a supervised 

classifier that will be described in the following part of Chapter 1 .  



1.2 Discriminant analvsis 

The purpose of classification or discriminant analysis is to assign objects to one of 

q classes, based on a set of measurements x = (x ,,..., x, ) obtained for each object. We will 

suppose that the k-th class can be described by the normal distribution with mean vector 

p, and covariance matrix X,. Let us also assume that we know the unconditional prior 

probability nk. nie probability density function of the k-th class is given by 

pk(x)=(2*rj% -P,I -% -exp[-j+P,y Oz;1 -6 -ri,)] 1.3 

and the classification nile is: choose k such that 
Pr (x). nt = max pk (x). zt 

1- 

1.3 and 1.4 lead to the classification rule 
d&) = min d, (x) 

15- 

Using this mle is called quadratic discriminant andysis (QDA). Ifwe assume that 

the covariance matrix is the same for al1 classes, we end up with the classification rule for 

Linear Discriminant Analysis (LDA), where the rule is the same, but the discriminant 

function is simplified significantly: 

~ , ( X ) = ~ ~ ' - Z - '  -pK -2.1' -z-' -2hzk  1.7 

Terms common to ail classes were canceled. 

A detailed description of QDA and LDA can be found in /6/. 

in practical applications we have to solve some additional problems. Firsf we have 

to estimate the mean vectors and covariance matrices for each class, or the pooled 

covariance matrix in the case of LDA. The estimates 1- 1 and 1.2 are usuaily adequate, 

assurning that surnmation is done over al1 the samples of the same class. 

The pooled covariance matrix is a weighted sum of the sample covariance matrix of 

each class, with xk used as the weights. 



Another problem to solve is the reliability of classification. Lachenbruch suggested 

an elegant way to assess the reliability without high computing cost /7/. He suggested 

excluding each sample fkom the training set before classimg it, the so called leave-one- 

out (LOO) cross-validation approach. However, we do not need to recalculate our sample 

covariance matrix and (more importantly) invert it ab initio every tirne. We need to do it 

only once and afterwards update these matrices, with a cost which is comparable to the 

calculations of the a posteriori probabilities. 

Since the same formulae are used to estimate the parameters in discriminant 

analysis as in PCA, the same problem persists. The estimate, despite being unbiased, still 

can be badly distorted. The consequences of such distortion are very severe now, because 

of matrix inversion. As it has been said already, we typically have more dimensions in 

our data than samples in the training set. Therefore the sample covariance matrix for the 

entire data set is unavoidably singular. One can use a generalized inverse in place of the 

nonexistent inverse matrix, but this creates probiems of its own. First, to get a robust 

generalized inverse rnatrix one rnust estirnate the rank of the matrix precisely. In /2/ it has 

been shown for PCA applications that even sophisticated methods tend to overestimate 

the rank. It creates only marginal problems in PCA, but can be intolerable in discriminant 

analysis, as we shall see later. 

Even if the matrix is not singular, the small eigenvalues can be underestimated, and 

they can dominate the inverse matrix. This means that discrimination will be done, based 

on factors such as accuracy of calculations, order of the data etc., which are unrelated to 

the classification problem. 

To prevent this fiom happening Friedman suggested an approach called 

Regularized Discriminant Analysis /9/. He introduces two new parametnc estimates of 

the covariance matrix. Let m, be the sample mean vector, S, be the sample covariance 

matrix of the k-th class and S be the pooled covariance matrix. Then 

s , (h )=( l -A) -S ,  + A - s  1.8 



and 

where O < ;h I 1,O S y I 1 , are these estirnates. 

The four corners defining the extremes of the 7c,y plane represent well-known 

classification procedures. The lower left corner ( A  = O, y = O) represents QDA, the lower 

nght corner ( A  = 1, y = 0) represents LDA. The upper right corner ( A  = 1, y = 1) 

corresponds to the nearest-means classifier: an observation is assigned to the class with 

the closest (in Euclidean distance) mean. The upper left comer (A. = O, y = 1) represents a 

weighted version of that classifier, with the class weights inversely proportional to the 

average variance of the variable within the class. 

A good pair of values h,y can be found based on the training set. Afier testing RDA 

both on simulated and real life data, Friedman concludes that RDA can increase 

classification accuracy dramatically. Another intereshg conclusion of his analysis is that 

in many cases LDA outperforms QDA "on its own turf", i.e., with significantly different 

covariance matrices for the different classes. The reason behind such a result is that the 

individual class covariance matrices are estirnated poorly, whereas the pooled covariance 

matrix is generally more reliable. 

Friedman has used error counting as the objective function when choosing A,y. In 

/IO/ some other candidates for the objective fiinction are discussed. Their choice of 

"appreciation" (objective) function is 

where 



and ~ ( m ,  lx,) is the conditional probability of class m given the observation x, . This 

objective fûnction will make classification as cnsp as possible for the correctly predicted 

observations and as fuzy as possible for the misclassified observations. 

Yet another objective functions was suggested in /Il l .  In essence, the authon are 

minimizing 

observation fiom class i. 

As we will see later, the problem of selecting the objective fûnction for RDA 

optimization resembles that for feature selection. 

Another interesting modification of the LDA was suggested in /44/. The authors 

assumed that each class is a Gaussian mixture with different subclasses differing only in 

theirs means, while having a common covariance matrïx. Moreover, the covariance 

matrix is common for al1 the classes. To solve the problem the authon suggested a 

method resembling fiizy clustering /46/. They initialize the numbers of subclasses and 

their centroids, then iteratively estimate the covariance matrix, a posteriori probabilities, 

the updated centroids, and the updated covariance matrix. Such an approach will depend 

heavily on the correct estimate of the number of subclasses. The authors use hvo 

strategies to obtain the estimates and starting values for the means, the covariance matrix 

and the cluster probabilities. These are either the k-means /461 clustenng algorithm or the 

LVQ 1471 algorithm. 



The method performed favourably against a range of cornpetitors the authon used 

for cornparison. As does the LDA, it also allows to reduce number of features in a dataset. 

The major problern with the method is that it is slow. 



1.3 Genetic Alciorithrns 

Afier the publication of Holland's book /1U, Genetic Algorithrns (GA) started to 

conquer the world of optimization. They have been successfully implemented for many 

optimization problems. This is a rapidly evolving area of research and we can find in the 

literature descriptions of a wide variety of GAs, but in this thesis we will restrict 

ourselves to the classical variant. 

Any GA application consists of three components: a method of encoding the real 

life problem in the GA'S terms, an objective function, and a GA engine. The fint two 

components tie the problem to the GA engine and the latter solves it. Since in our GA 

program we implement both a novel encoding and a new (for GA) objective function, we 

will not pay too much attention to these components in the literature review. We will 

concentrate instead on the GA engine. 

Before stating Holland's schema theorem, we need some definitions. A classical GA 

is working with bit sûings. A set of bit strings comprise the population. Let 

3 ,  = (s f ,..., s 1 ) be a bit string or a binary vector of length p, R the population of bit 

strings, n the size of the population. The population is evolving with time, therefore 

n(t) = {s,(t), i = 1, ..., n). As we have mentioned, the evaluation function is part of the 

GA. We will denote this function by F. The function operates on each member of the 

population (chromosome) and r e m s  the fitness of that member. 



In 11 3/ the following description of GA is given: 

Initialize a population of chromosomes. 

Evaluate each chromosome in the population. 

Create new chromosomes by mating current chromosomes; apply 

mutation and recombination as the parent chromosomes mate. 

Delete members of the population to make room for the new 

chromosomes. 

Evaluate the new chromosomes and insert them into the population. 

If time is up, stop and return the best chromosome; if not, go to 3. 

Of course, this description is too general. We have to clarify some aspects and the 

clarification will give us the ciassical GA. Fint, we have to define the genetic operators, 

mutation and crossover. 

Mutation requires a probability of mutation p,. Given this probability, we generate 

a random number uniformly distributed in [O. 11 for each bit in the chromosome. If the 

number is less or equal of p,, we mutate the bit. There are two different approaches to 

this process. We can either "flip" the bit, or generate the new value randomly. The actual 

mutation rate is less than p, with the second approach. 

The crossover operator requires two parent chromosomes and retums two children. 

We can illustrate it with the following scheme: 

Crossover 

Fig 1.1 



Afîer parents have been chosen, we choose a random position (unifomly distributed) in 

the chromosome and exchange the parts of chromosomes, as it shown above. Again, there 

is a probability p, assigned to this operator, which is the probability of a crossover to 

occur. A typical value for p, is 60-90%. 

Now we discuss how to evaluate the population. The fitness function is a very 

important part of the GA. However, without preventive measures we can end up with a 

population in which each chromosome has almost the same fitness as the best one. This 

will essentially mean no selection pressure at d l .  To avoid this, a linear normalization is 

introduced, where the probability a chromosome to be selected for breeding depends on 

its rank rather than the fitness. We order the population by decreasing fitness, and replace 

the initial fitness function by the final one: 

f ( s , ) = u - i - b  

with appropnate constants a and b. Of course, we must ensure that a - n b 2 O .  This 

linear normalization is a very important part of the classical GA, since the probability of a 

chromosome being chosen as a parent is proportional to its fitness. 

Now we can discuss a very critical issue concerning any population: how to delete 

old chromosomes and insert new ones. The classical GA is very "cruel" and makes 

almost no exception. The entire population is replaced by its offspring at once. The only 

exception in the classical GA is the best solution. This strategy of keeping the best 

chromosome(s) intact is called elitism. 

GA is inspired by natural evolution and its success. It cannot be called genetic 

without using the concept of the gene. The analog of a gene in GA is called schema. We 

will define schema as a string of three symbols: 

h = (hi. ..., h p ) ~  {0,l,*)P 1.13 

We will Say that a binary string s satisfies a schema h if for each 1 5 i S p , either h' = '*' 

or h' = s' . For example, for h = (1 1 *00) there are only two satisfying bit strings, namely 



(1 1 LOO) and (1 1000). We can pick al1 the chromosomes satisvng a given schema h out 

of the entire population. Sometimes this subpopulation is also called schema. 

Let m(h, f) be the nurnber of the chromosomes in that subpopulation. Now we are 

ready to fonnulate the schema theorem: 

where o(h) is the order of the schema (the number of defining symbols, O or 1, in the 

schema), 6(h) is the defining length of the schema, Le., the physical distance between the 

outermost defining symbols of the schema, f (h) is the average fitness of the 
- 

chromosomes satisfying the schema and f i s  the average fitness of the entire population. 

In the example above, o(h=(11*00)) = 4, and 4h) = 5. Al1 other functions in 1.14 will be 

determined by the entire population. 

This theorem is the cornerstone of the GA; it says in essence, that schemata with an 

above average fitness will grow in the population, provided that they are not diluted by 

crossovers and mutations. In short, the schema theorem guarantees the convergence of the 

GA. 

However, it says nothing about the quality of the solution. Will it converge to the 

first local minimum, in case of a rninimization problem, will it go a little bit M e r ,  or 

will it find a n m w  global maximum? The schema theorem does not answer those 

questions. The clue to the quality of the solution lies in the diversity of the population. It 

will help to explore a high dimensional space using a relatively small population. 

An interesting way to maintain diversity in the population is suggested in /14/. The 

authors proposed a modification of the original fitness function to prevent overcrowding 

near some good solution. They called it a sharing function. 

Let the fitness function bef: We introduce the sharing radius ash, and the distance 

between two chromosomes: 



The sharing function is defined by 

where a and o s h  are predetemined constants. Then, the sharing-modified fitness function 

becomes: 

Changing the control parameters a and a,h with time we can either prevent the 

stagnation of population at the cost of accuracy, or ignore the stagnation and reduce the 

sharing-modified fitness fûnction to the original one. 

In 11 5 /  the authors suggested this strategy for the entire GA design. This means that 

at the first stage we are looking for the fint apprpoximation with reduced chromosome 

size; as time passes, the chromosome size is increased and the fitness function is also 

refïned. This approach is a direct analog to the simulated annealing rnethod. 

One of the implications of inequality 1.14 is that there are two competing 

tendencies in the population. On one han& the selection process is trying to improve the 

fitness of our population. On the other hand, mutation and crossover are working against 

it. Actually, they are working independently of any fitness considerations. Since to 

improve the fitness if it is already high is quite improbable, they work against the fitness. 

However, the main purpose of the genetic operators is to give flexibility to the 

population. A proper combination of these two tendencies will detexmine the success of 

the GA implementation. This means that parameter optimization is an important part of 

any GA realization. This is, of course, problem-dependent Many papers are devoted to 

this aspect of GA implementation. In /16/ the authors suggest a way to detemine the 



population size adaptively. The size depends on the schema fitness variance. The results 

are not particularly interesting for us, since they are specific for a certain GA architecture. 

in 11 71 a nonlinear differential equation was suggested to optimize the GA parameten. 

One can even find GA applied to the GA parameter optimization. Again, most of these 

results are applicable only for specific GA architectures. 

Another theoretical aspect of the GA is an assessrnent of its convergence. As we 

mentioned, the schemata theorern was the major step in that direction. In B6/ a Markov 

chain fhmework was suggested to explore the convergence of the GA. The authon have 

used a nonstationary GA, with the probability of mutation reducing asymptotically to zero 

via a schedule. They have obtahed a bound on the probability of mutation to facilitate the 

convergence. The simulation results have shown that convergence for GA is faster than 

for simulated annealing. 

Similar results were obtained in 1 3 9 ,  where the convergence of GA and simulated 

annealing was compared. 

D.E. Goldberg in 1331 brings the well-developed techniques fkom simulated 

annealing into the GA area to prove the asymptotic convergence of GA. 

As a logical development the authors of /34/ have suggested a hybrid of those two 

methods to solve some NP-hard problems. 



1.4 Feature selectionlextraction 

I. Kittler in /47/ gives an oveMew of the feature selection/extraction methods. If 

the number of original attributes is relatively low, forward seiection or backward 

elimination would be reasonable choices. These two method are closely related, except 

that in the former we start h m  the best attribute and expand the feature set by adding the 

attribute that improves the objective b c t i o n  the most, whereas for backward elimination 

we start with the entire set of atîributes and elirninate attributes sequentially. 

Of course, the fint approach is much faster because it works with low- 

dimensional data. The second allows to monitor continuously the amount of information 

loss incured. 

Different objective fûnctions were described in this review but al1 of them are 

monotonic on the set of subsets of the attributes. In that case a branch-and-bound 

algorithm obtains the best subset of attributes much faster than an exhaustive search. 

Most of the feature extraction methods considered by J. Kittler are based on the 

Karhunen-Loeve expansion, which is based on the eigenvectors of the covariance rnatrix. 

As we already mentioned, this approach will not allow easy interpretation of the results. 

In /18/ a simple GA was used to select the best subset of attributes out of the 

original set, best with respect to the known classification. An interesting aspect of its 

implementation is the objective function. The authors are rninimizing the number of 

attributes to achieve a given accuracy of classification. A similar approach was used in 

/19/ for selecting an optimal subset of principal components. In /28/ the author exploits 



the inherent parallelism of the GA applied to the feahire selection. Two GA-based 

methods were also compared to a random search and proved to be supenor. 

Another area of appkation of the feature selectiodextraction methods is the 

regression problem. In /3 1/ many aspects of the subset selection in regression are covered. 

There is a significant overlap in the methods used in the classification and the regression 

problem. The main difference is in the objective functioo, because the "probability of 

error" concept does not make sense in the regression problem. GA-based feaîure 

extraction methods /27,30/ are relatively new and were not mentioned in /3 11. Both 

implementations use an encoding similar to the one in /18/, i.e., "1" in a chromosome 

represents a selected attribute, "0" represents an ignored attribute. This implies that they 

carmot work with the entire spectral range in rnost cases, because uncontrollably high 

number of attributes in the malysis will undermine the result's relevance. 

The authors of /29/ demonstrate that the feature subset selection methods are 

susceptible to overfitting. They suggest the use of a "wrapper method", such as bootstrap 

or cross-validation, to estimate the prediction accuracy. 



1.5. MR spectra, ideal and noisv 

Magnetic resonance spectroscopy (MRS) is the primary field of application of our 

rnethods. Therefore we must describe these spectra in some detail and show the problems 

we are encountering. 

The contemporary MRS is pulse spectroscopy. The sample is imdiated by a radio 

fkequency pulse and then the same equipment that was used to generate the pulse is used 

to register the sarnple response. The ideal impulse response (fiee induction decay or FID) 

is a sum of decaying complex exponentials: 

where 1, is the amplitude of the i-th resonance, v, is its chemical shift, R,, is its 

transverse relaxation rate, and 9, is its phase. It is expected that 1, reflects the amount of 

the compound present with chemical shift v, , which itself is determined by the chemical 

structure of that compound. The Fourier transform of 1-18 gives us a fiequency response 

which is just a sum of phased Lorentzians. 

If one would like to compare the relative concentrations of two compounds, one 

isolates the corresponding peaks in the spectnun and integrates the real part of 1.19 in the 

vicinity of the peaks. But this is ideal and unrealistic. First, white noise is present in the 

spec tm.  It can have different sources, due to the sarnple, electronic noise, or something 



else. To increase the signal to noise ratio (SNR), the MR spectnim of the same sample is 

obtained repeatedly. The SNR increases & -fold with n repetitions. 

As we have mentioned already, the sarne equipment is used to generate the pulse 

and to record the response. Therefore, after the pulse we must wait until al1 residual 

oscillations have decayed (dead time), losing the first and most informative points of the 

FID, thus Losing in S M .  

The dead time has another implication for the spectra, Le., phase shift. Since we 

have lost the first points of the FID, the real part of the spectnim appears as if each peak 

had its own phase. The simplest way to avoid the phasing problem is to work with 

magnitude spectra. This can be costly if one is trying to fit spectra, because for the real 

part the signal drops proportiooally to 
1 1 

whereas in magnitude only to - 
( v -  VJ2 y IV-YI ' 

Thus the accuracy of fitting the amplitude spectra suffers dramatically. For an attempt to 

compensate for the loss see /2O/. 

Another typical problem in MRS is the baseline. Again, baseline distortions can 

have different causes. One of them is the discreteness of our calculations /2 1/. Indeed., we 

do not have a continuous FID, we sample it over a finite period of tirne and carry out a 

discrete FT. As a result, we obtain a slightly different spectnim: 

where A, = 1, exp((j2ml - 4 , ) ~ ~  + jp,), Tm is the dead time, T, is an acquisition 

tirne, and SW is the sweep width, which is determined by the sampling rate. It can be 

shown that 



thus giving a baseline. Unfortunately, the main reason for the baseline is not the data 

processing, but the hardware itself, and we cannot predict the shape of the baseline. In 

/22/ it is shown that the baseline can be eliminated simply by the appropnate choice of 

the sampling time, Le., moving the initial point within one sampling interval cm reduce 

baseline artifacts dramatically. We can also reformulate the last statement, Le., that the 

inappropnate choice of the sampling points distorts the spectra dramatically. That paper 

was published in 1983, but we still have the very same problem in many expenmental 

setthgs. Furthemore, there are problems even beyond hardware. Medical applications of 

MRS are complicated by the fact that the human body is mostly water. In proton 

spectroscopy, a spectnun of any human tissue will have just one peak, a water peak. Al1 

other information is present as tiny irregularities on the shoulders of the water peak. 

There exist experimental techniques to suppress the water signal; nevertheless, there is 

always some residual influence even in case of a successfUl implernentation of those 

techniques. 

Finally, the last problem. Due to fluctuation of hardware parameten or to individual 

preferences of the experimentalist the spectra may be linearly distorted, i.e., peak 

positions (chemical shifts) may be shifted with respect to the canonical ones. Such a 

distortion does not create any problem if one is analyzing an individual spectnun, but in 

the case of comparative spectral analysis it creates additional difficulties. This problern 

can be alleviated to some extent by alignïng the spectra, but c m  not be eliminated 

completely, due to the presence of the white noise. 

Since the different peaks in the spectra represent different metabolites or groups of 

metabolites, a logical way to extract the information fkom the spectra is to fit them by a 

sum of Lorentzians. The fitthg can be done either in the nequency or in the time domain. 

In /39/ different methods of fitting were compared. Namely, HLSVD /40/, VARPRO /41/ 

and ETïPLA /42L The first two rnethods work in the time domain. HLSVD is a linear 

prediction method. It is very fast and requires minimal user interaction. The main 



disadvantage of the method is its sensitivity to noise. This problem is aggravated in the 

typical MR experimental setting by the "deadtirne". 

HLSVD is not a maximum likelihood method. in contrast, the VARPRO (variable 

projection) method is a maximum likelihood method and is, in essence a nonlinear least 

squares fitting. The disadvantages of the VARPRO are the need for increased user- 

interaction and longer calculations times. 

The last method is a nonlinear fitting based on the equation 1.20. 

The cornparison of these thme methods has shown that they give similar results in 

demanding conditions with many overlapped peaks. They predict well the peak positions, 

but fail to estimate accurately the peak width /43/. Because of the possibility of baseline 

distirtions, this can lead to severe errors in the metabolite concentrations, 

Thus &ses the need to develop a method that allows us to extract relevant features 

f?om the spectra primarily for the purpose of classification (medical diagnosis). The 

method must retain the spectral identity of the features and must be robust enough to 

work with the highly variable and noisy spectra obtainable fion human tissues and 

biofluids. 



2. Prenrocessina methods 

This Chapter is devoted to the preprocessing methods we have used in our data 

analysis. The objective function used in these methods is given by 

where pic is the probability that sample i belongs to class c, iic is a claçs indicator, Le., 1 

for the true class and O for al1 others. The t em "fitness function" is commonly used in the 

GA literahire, but other terms like "objective fhction" or "evaluation fûnction" have 

their own niche /13,32,38/. Since we are going to use different feature selection/extraction 

methods, we have chosen a term, that is not comected to the GA specifically. 

The objective firnction 2.1 is not rnonotonic on the set of feature subsets, and as a 

result the branch-and-bound algorithm not only will give a suboptimal solution, but can 

be misleading. Therefore, a different approach is used for feature selection. 

These methods al1 use weighted LDA as the pnmary classification method. In the 

case of weighted discriminant analysis (each observation cornes with its own weight 

reflecting its reliability or importance) IMSL's estimates /8/ are biased. Therefore, we had 

to denve unbiased estimates ourselves. The results are presented in Appendix A. This 

chapter will open with a brief description of the DP-based feature selection method. 

Subsequently, the GA-based algorithm will be described. 



2.1. DP as a feature selection method 

The Dynamic Programming @P)-based feature selection was inspired by Viterbi's 

algorithm 1231. This is the reason it was narned DP, being actually a forward selection 

algori thm. 

We have a training set with known class labels and the following parameten: q is 

the number of classes, p is the number of attributes in the original data set. Our goal is to 

select a subset of attributes, which optirnizes the objective function 2.1. For a fixe& 

desired number of attributes k we have C: = P ! possible combinations of 
k -  ( p  - k)! 

attributes. Thus, exhaustive search is not feasible, even for moderate values of p. We have 

chosen a faster way of selecting a suboptimal subset of attributes. 

On the first step of the algorithm, p sets of attributes are initialized by placing the 

individual attributes in corresponding sets (R,  = (l),  . . .Q, = { p }  ). 

Now for i=2,. . . ,k we repeat the same process, each R ,, i= 1 ,p is updated by the 

attribute that gives the best result in combination with those already included in R,. 

This approach was implemented in combination with PCA, when a few principal 

components were selected out of those corresponding to positive eigenvalues, and gave 

promising results /24/. The method was also applied to the spectra themselves. However, 

first we had to reduce the feature space dimensionality by averaging several adjacent 

spectral points, since it is still irnpractical to use DP for 1000 attributes. The reduction 

had its own ment, since we had averaged out some noise. The main drawback of this 

approach is its inflexibility, i.e., we cannot move the border of the averaging window 

fieely, they are fixed as soon the size of the window is detemined. 



This gave us the idea to use GA for the same purpose, where now we have more 

fieedom to select the regions of interest. 



2.2. GA-quided o~timal atttibute selection for soectra 

Because our problem is special, we did not use the standard GA but designed and 

implernented a problem-specific version. There are two aspects of our GA 

implernentation. 1) Mapping the original attribute space ont0 a bit string set. 2) Designing 

ao overall scheme to create the population and allowing its evolution with subsequent 

generations. (The objective function F that drives the algorithm has already been 

defined.) Before we describe these in detail, we present a simple pseudo code for the 

overall operation of the algorith: 

1. Select M, the maximum number of desired attnbutes/subregions, G, 

the number of generutiom, P, the size of the population; 

2. Create P binary strings of length L (P chromosomes), each 

containing M subregions, i.e., different sets of contiguous but non-overlapping 

ones; the remaining chromosome locations are filled with zeroes; 

3. Process the M subregions to derive the M features; 

4. For each of the P strings evaluate the previously defined fitness 

function F, applying an M-feature LDA/LOO classifier to the training set- Sort 

the P fitness values in ascending order (because of our definition of F, the lower 

its value the fitter the chromosome). In this sorted list the Pelie best 

chromosomes are referred to as the elite. 



5 .  "Breed" the population by mutation ancilor crossover. Steps 3-5 

constitute one generation. 

6 .  Go to step 3 and repeat until the number of generations equals the 

preset G. 

Mapping 

The problem of mapping the original feature space onto a bit string (zeroes and ones) 

has not received much attention in the literature. A possible reason is that the typical 

feature set for the standard GA application is a collection of numerical values, each 

represented by its own bit string in the computer. We have a somewhat different problem. 

A spectnim is a set of L different intensity values, one at each of L fkequencies. The 

natural and simplest mapping onto a bit string is to put L "zeroes" into a logical array (a 

"chromosome'') of L dimensions. Thus our initial input parameters are the positions of the 

spectral fiequencies. Selecting subregions from the spectrum translates to converting some 

of the "zeroes" into "ones". However, because we plan to do more than simply eliminate a 

subset of the fiequencies, we have extended the above simple representation. Thus, further 

dimension reduction is possible if in each subregion we replace the individual intensities by 

fewer attributes via additional processing. Such processing would create and associate a 

single attribute, e.g., the average value, or the variance, with each subregion. 

To achieve such flexibility, we treat a spectrum as a set of segments; each comprised 

of a pair of adjacent data points. Hence, an L-point spectnun becomes an (L- 1)-point 

"chromosome". Now a "one" in the i th position means that points i and i+l are 



comected. A "zero" means the opposite. A set of consecutive "ones" corresponds to an 

attribute range. Therefore, any given chromosome is a combination of a set of connected 

spectral subregions, and uncomected spectral points. 

This is illustrated in Fig 2.1 below. The chromosome 1 O0 1 1 1 O0 1 1 O is encoded into 

three spectral regions (positions 1-2,4-7,9- 1 1). The 12-point spectra would be replaced 

by three attributes, one per region. For example, the points 1-2,4-7,9- 1 1 could be 

replaced by their averages, but any other function of the original attributes in these ranges 

could be used. 

Encoding of the spectral points 

1 2 3 4 5 6 7 8 9 IO 1 1  # inchromosorne 

1 O O 1 1 1 O O 1 1 O chromosome 

+-+ + +-+-+-+ + +-+-+ + spectral points 

r 2 3 4 5 6 7 8 9 IO I I  12 #inthespectnim 

Fig 2.1 

With the above constxuction we have two opportunities to reduce dimensionality: by 

selecting subregions, and by M e r  processing @y sorne transformation) the data points 

within the subregions. If this transformation is averaging, then the influence of noise is 

also decreased. 



The GA Architecture 

We now introduce the genetic operaton we use, and the details of how the population 

is created for any given generation. 

There are wo canonical genetic operators, mutation and crossover. Our 

implementation of crossover is the same as that described in the literature. We select two 

parents randomly from the curent population, and choose a randorn crossover point at 

which the chromosomes are to be cleaved. Exchanging the parts of the parent 

chromosomes creates two new chromosomes. This operation makes GA very flexible and 

enables the search to move far away fkom the initial locations in the high dimensional 

feature space. The other genetic operator, mutation, is specifically tailored to our problem. 

Its distinguishing characteristics are that it is not a single-point operator, and that its size 

evolves with evolving generations. Extensive experimentation showed that in early 

generations we must change more than one bit in our chromosomes, hence the introduction 

of a k-block mutation. A large mutation size (large k) allows a rapid but coarse-grained 

initial exploration of the feahue space, but as the process evolves, we need f i e r  tuning, 

hence the size k of the k-block mutation is decreasing with increasing generations. The 

initial size of point mutation is 1/64th of the full spectral range, Le., k = W64, and k is 

decreased gradually as the optimization proceeds. 

The input parameter set consists of the size P of the population, the maximum 

nurnber of subregions allowed, the nurnber of generations G, and the mutation p, and 

crossover p, probabilities. 



To help create an initial population that is representative of the data, we build a 

separability profile using the t2 statistic. For two-class problems this computed statistic is 

stored for each spectral position. For many-class problems al1 painvise statistics are 

computed and the profile produced as their sum. Then the initial subregions are chosen 

randomly but with relative probabilities proportional to the profile. 

The algorithm starts by generating a population of P random bit strings according to 

the above initialization. A generation consists of 1) changing members of the population 

by the above outlined mutation and crossover d e s  ("breeding"), 2) sorting the entire 

population according to their fitness (F) values. The best PI strings (the elite) are kept 

intact, the rest, P - Pi ,  is produced randomly by a process govemed by the assigned 

mutation and crossover probabilities, and by the current fitness ranking. Two random 

chromosomes are chosen, with probabilities depending linearly on the rank of the 

chromosomes in the ordered generation list. They are first mutated with probability p,, 

and either mated via crossover with probability p,, or added directly to the new generation. 

This process is continued until a new generation is formed. We stop when either the size 

of point mutation is zero or the pre-set number of generations G has been reached. 

Of course there are some drawbacks to this scheme. First, the best fitted strings are 

not changeâ, i.e. we do not explore the vicinity of the best solutions; second, there is 

danger of stagnation, when the entire population consists of copies of the same string. 

However, if we solve the second problem, we also solve the first. Indeed, in the evolving 

process, the best solutions will become next best on the subsequent generations, therefore 

will be subject to change in some way or another. Moreover, the best solutions usually 

have "close relatives" beyond the elite, therefore stagnation is the only real problem. There 



are different solutions to this problem. The most elegant is the sharing function introduced 

in /14/. 

We have chosen a very simple and primitive way of preventing stagnation. We do not 

allow two copies of the sarne string in the elite group. This means, that afier sorting, we 

replace al1 the duplicates in the elite by the next best chromosomes. 

Chu mapping allows a huge number of potential features for classification, up to half 

the size of the full spectnim. However, any classifier that uses many attributes will be 

unstable and slow. Therefore, in our GA implementation we restrict the maximum number 

of features allowed, trniting it as an input parameter under user control. Al1 the regions in a 

chromosome are sorted according to size, distance to the neighbours, and other tie-breaking 

critena and only best of them are used. 

The question arises imediateiy, what to do with those regions that were not chosen. 

One solution is to eliminate them fkom a chromosome altogether (to zero al1 the 

corresponding positions). However, another option is more interesting. We can keep the 

unselected regions in the chromosome and allow mutations to take place there, thus 

imitating life. Indeed, in "real life" evolution, the silent mutations play a very important 

role, especially in a changing environment, preparing some species for extinction and 

others for prosperity. Currently, only the first way is implemented, but it will be interesting 

to compare the two in terms of time requued to achieve the same fitness. 



3. Alaorithm testinci and tunina, 

This chapter is devoted to testing the methods descnbed previously. To test the 

algorithm thoroughly we have designed artificial datasets. The design will be descnbed in 

detail at the beginning of the chapter 3. 

One of the biggest problems we encountered during the testing is the predictive 

power of the selection process. To illustrate what can happen, let us consider two 

identical classes of spectm This means that each spectral position has identical 

distribution for both classes. If we had known the parameters of the distributions, we 

could conclude that the classes are undistinguishable. Unfortunately, in a typical situation 

the parameten in question are unknown and estimated based on the naining set. Of 

course, the estimated parameters are not qua1 anymore. Since we are averaging spectral 

points in some region, we can expect that the estimation error will be less. It will be so for 

most of the regions. However, for some the estimation error may be correlated and we 

can get well-defined "features" for theoretically identical classes. The selection, guided 

by the LDA performance, guarantees that such regions will be found. When true 

discriminating features exist, the fdse ones will not present senous danger, however they 

can still influence the predictive power of the entire selection process. 

We shall explore this problem, which we cal1 overfitting, in greater detail in this 

chapter. We shall estimate the seventy of the problem based on the dependence of the 

results for the training and test sets. 



It is known that the probability of error in LDA is determined by the Mahalonobis 

distance di, between i-th and j-th class centroids 145L Let us assume that there is a 

minimal value dmin that implies a pair of classes is different. Then, for a 2slass problem 

we must satisQ the following inequality: diz > dm,. For a 3-class problem we must satisQ 

three inequalities: di2 > dmin, d13 > dm,, and du > d,.. Of course, these inequaiities are 

not independent, and some of our assurnptions are unnecessarily strong, but this 

reasoning suggests that the 3-class problem is less vulnerable with regard to overfitting. 

After we have stated the problem of overfitting and explored it for both artificial 

and red life data, we will try to estirnate the optimal parameten for our methods, taking 

the overfitting into account. 

Ways to prevent overfitting or minimue its severity will be discussed in the 

Conclusions. 



3.1. Artificial data sets. 

Artificial data sets were created to test the GA-based attribute selection. The data 

sets were designed to imitate typical problems in MR spectroscopy. We have started from 

a two-class data set, but a three-class data set was also generated, since in classification a 

two-class problem has very often its own flavor and differs from many-class problems. 

For each problem a set of peak heights was generated, and al1 the modifications of 

the spectraî data were based on the same peak heights. The peak heights were normally 

and independently distributed around a given rnean value h, the variance was chosen to 

create approximately 5% of class overlapping. To separate the classes, some designated 

peaks have the mean value shifted ( h+d or h-d for different classes). The designation is 

done according the following table (the values in the table are the multipliers of d by 

which the mean value is shifted fiom h): 

Table 3-1 Design of the datasets witb peak heights. 



For both problems 10 peaks were used, 4 of which had identical distribution for ail 

classes. Six others served to distinguish the classes. For the 3-class problem each pair of 

classes differed only in 4 peaks. 

900 samples were generated, 300 for the training set and 600 for the test set, thus 

giving 100 samples per class in the training set for the 3-class problem and 150 for the 2- 

class one. The peak height data were saved and used to generate the spectral data, thus for 

each type of spectral noise the same underlying peak heights data were used, providing 

that our analysis is concemed the spectral noise only, not the fluctuations in the 

underlying peak heights data (the latter imitates the 'kal life" variety within a given 

class). 

The Kolmogorov-Srnirnov (KS) /48/ test was used to confirm the correspondence 

of the generated sets to design criteria Table 3.2 summarizes results for the 2-class 

problem 

Table 3.2 KolmogorovSmirnov test for the 2-class problem (pvalues) 

1 1 Class 1 H Class 2 1 Train set ct Test set 1 Train set cr Test set I 
I C l a s  1 

1 1 1  p = n s .  1 p = as. I p = as. I 

Class 2 

2 

p = n.s. I p = Ls. I 

3 

4 

I 1 I 

6 1 p < 0.00 1 1 p < 0.05 1 p = ILS. I 

p < 0.00 1 

I I I 

9 1 p < 0.00 1 I p = as. I p = ILS. I 

p = ILS. 

p = ILS. 

p = as. 

1 

7 

8 

p = n.s. 

p < 0.00 1 

p = as. 

p = as, 

p = n.s. 

1 

p = ES. p = as. I 
p < 0.00 1 p = as, 

I I 

I O  1 p = ns. p = as. I 

p = n.s. 

p = as. 

p = n.s. 



as. stands for not significant, Le.; the difference in distribution is not statistically 

significant. The KS test confirms that al1 peaks, except one were generated correctly, i.e., 

that in the training set classes are separated very well for those peaks which were selected 

to be discriminative. The irrelevant peaks have identical distribution for both classes. For 

the second class peaks are distributed identically for the training and test sets. The same is 

tme for al1 but the 6th peak of class 1. Due to sampling fluctuations arising f?om the use 

of random samples the 6th peak is distnbuted diffierently for the test set, compared to the 

training set. Nevertheless, this difference is much less significant than the between class 

ciifference and the test data of different classes are still very well separated for this peak 

(data not provided). 

The following tabIe summarizes results for the 3-class problem: 

Table 3 3  Kolmogorov-Smimov test for the 3-class problem 

Peak 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

Training set Training set o Test set 

1 0 2  

. p  = &S. 

p < 0.05 

- p - n.s. 
- p - n.s. 

p < 0.00 1 

p < 0.00 1 

p = ns. 

p<O.OOl 

p < 0.00 1 

p = as. 

Class 3 

- p - ns. 

p = as. 

p = as. 

- p - as. 

p = as. 

p = ILS. 

p = as. 

p = ns. 

p = n.s. 

p = n.s. 

Class 1 

- p - n.s. 

p < 0.05 

p = ns. 

p = ILS. 

p = ILS. 

p = as. 

p = as. 

p = n.s. 

p = as. 

p = ILS. 

1 w 3  

- p - n-S. 

p<O.OOl 

p < 0.001 

p = ns. 

p = as. 

p = as. 

p = ns. 

p<O.OOI 

p < 0.00 1 

p = ns. 

Class 2 

- p - as. 

p = ns. 

p = XLS. 

p = n.s. 

p = as. 

p = as. 

p = as. 

p = ns. 

p = as. 

- p - n.s. 
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p = as. 

p<O.OOl 

p < 0.001 

- p - n.s. 

p < 0.00 1 

p < 0.001 

p - as. - 

p = LS. 

p = ILS. 

- p - n.s. 



Again 9 peaks out of 10 were generated according to specifications. the only 

exception for the 3-class problem is the second peak, and again we can ignore the 

fluctuation, 

M e r  the satisfactory peak heights generation, we switch to generating the spectra. 

The spectral data (magnitude spectra) were generated according to 1.20. Since the 

peak width was chosen to be identicai for al1 the peaks and the phase c m  be ignored for 

the magnitude spectra, the ideal spectra were just linear combinations of the peak heights. 

Each spectrum contained 1024 points, the peak positions were distributed uniformiy 

dong the spectral range. 

In addition to the ideal noise-fiee spectra, we have considered three types of "noise" 

we have mentioned in chapter 1. nie white noise was modeled by adding a normally 

distributed random number (with zero mean and a given O) to the each spectral point. To 

imitate a randomized peak position for any given spectrum we have replaced by a linear 

fiinction a+b*x the canonid peak position x, where a and b were generated randomly 

for each spectnun. Baseline was modeled by the sum of two random, small, but very 

broad peaks. Fig. 3.1 illustrates this for a particular spectnim. In addition to the 

magnitudes of the noise fiee spectnim, baseline, and white noise, the magnitude of the 

difference between the noise fiee spectnim and one with randomized peak positions is 

dso displayed. We can see readily that this particular kind of noise can be the largest, but 

it is localized. One comment regarding the baseline simulation. It creates bigger distortion 

than it appears, since only its magnitude was plotted. The "wave height" is much bigger 

for the real or imaginary part of the baseline. 



ldeal spectrum with 3 types of mise . - . -  - - - - - - - - - . . . - - - - - - - - - - - - - - -  - - -  - - -  - - - - . - - - - - - - -  

The data were generated separately for each type of distortion as well as for some 

combinations, thus giving us 7 types of spectral data: 

1) noise-free spectra 

2) white noise (wn) 

3) randornized peak position (rpp) 

4) randorn baseline (rb) 



To summarize: 

O Despite many simplifications, the data were generated so that even for the noise- 

free spectra the classes had a significant overlap. 

O We know the number of features in the data and where the features are located. 

O The classification of the peak height data gives us a gold standard for the spectral 

data analysis. 

m The test set is twice as large as the training set, allowing for reliable results. 

Given this "tool", we can explore the behavior of our feature selectiodextraction 

methods, optimize their parameten, and answer the main question: are the methods 

adequate for the problems we encounter. 

Al1 random numben were generated using the functions genunf and gennor of the 

fieeware statistical library RANLIB. Normally, the seed value was not changed. To 

achieve the same effect, the corresponding modules of the program were executed 

consequentiy within one run of the program, thus a new run will start with a seed values 

which were left fiom the previous run. This provides with a completely reproducible 

results. 



3.2. Overfittinq with GA-ORS for artificial data sets 

Before parameter optimization, we must decide what cnterion to use. The most 

natural candidate is the outcome of the feature selection/extraction. Unfortunately, 

because of the possibility of overfitting, this is not advisable. To show this we have 

calculated mean squared error (MSE) not only for the training set (MSE,) but also for the 

test set (MSk).  

We plot the MSE, (j~ axis) against MSE, (x axis) in Fig. 3.2. 

Cornparison of Linear and Bilinear models 
classes, 3GGûû points) 

Linear RSS=I 7.88, Bilinear RSS=5.599 

0.2 ' 
0.15 0.25 0.35 0.45 0.55 0 . s  0.75 \ bifinear model 

As can be seen Iinear regression is not the best model to describe the dependence. 

As an alternative, we decided to use a bilinear regression (also shown on the plot), where 

one of the lines is a constant. The detailed mathematical description of the model is 

given in Appendix B. Essentially, this model irnplies that after some critical value, any 

M e r  improvement in the training set does not do improve the test set. If we were to use 

a more complicated bilinear model, allowing an arbitrary slope for both lines, we would 



probably get negative correlation for the low values of MS&. This would mean that the 

m e r  we improve MSE, the woae MSE, would become. However, for this work the 

simpler modei is sufficient. 

In this chapter we shall attempt to show that our model describes better the 

dependence between MSE, and MS&. Thus we'll assume that: 

MSE, =y, + a (MSE, - xo) + e, where e is assumed to be a normally distributed error 

terrn. 

We'll start with the artificial data sets. As can be seen in Fig. 3.2, for any model 

MSE, has signincant variance for similar vaiues of MS&. Therefore, we cannot base 

our analysis on a single run of the feature selection/extraction process. To reduce the 

variance, 10 runs for the same dataset and same parameters were used. The only 

difference was in the seed value for the random number generator. Each run consisted of 

50 generations, with population size equal to 300. Taking into account the initiai 

generation, we get 5 lJOO=lS3OO datapoints for our analysis. We required to find the 10 

best regions and ran LDA in the 10-dimensional space to get each point. Multiply this by 

7 different types of noise generation and two types of problem (2-class and 3-class). 

Thus, more than 10 runs for each dataset was found to be too timeconsuming. The 

only solution was to use robust statistics, namely median and lowedupper quartiles, 

because mean value and variance are too sensitive to outliers. The statistics were 

computed in Statistica 4.3. 

To compare different models we have used three numben: the total variance of 

MSE, (TotalSS) and residual sums of squares for the linear regression (LR-RSS) and for 

the bilinear regression (BR-RSS). The results are given in the Tables 3.4 and 3.5. 



Table 3.4. Total Sum of  Squares and Residual Sums of  Squares for the 2-class problem 

Noise type 1 Mcdian 1 Lower 

Quartile 

No noise 1 -1880 [ -1590 
I I 

Quartile 1 1 Quartile 1 Quartile 1 1 QuartiIe 1 Quartile 
1 1 1 I 1 1 

The f~ conclusion we can draw from the Table 3.4 is that randornization of peak 

positions dramatically increases the variance of MS&. This is an interesthg observation 

and we shall discuss it later. For now, we are more interested in the quality of both the 

Iinear regression and the bilinear regression models. 

For noise-fiee data neither linear nor bilinear regression work well, nethertheless 

the bilinear regression reduces the residual sum of squares by approximately one third 

compared to the linear regression. This is confirmed by the fact that correlation between 

MSE, and MSE, at the linear level is only 70% (see a in table 3.5). 

We have obtained very peculia. results when only white noise was added to the 

data. This peculiarity is better seen fkom table 3.5. Out of ten nins 4 gave negative value 

for a; in essence this means that practically al1 the points were in the overfit area and that 

the dependence between MSE, and MSE, in this region is negative, Le., the smaller 

MSE, the larger MSE, grows. Thus the general bilinear mode1 would probably descnbe 

the dependence better. 



Table 3.5. Parameten of the bilinear mode1 for the 2-ciass problem 

The other cases of a single type of noise are described quite well by a linear model 

(more than 85% of the total variance was explained by the model), nevertheless the 

bilinear model gave on average ("on median") 10% irnprovement. 

Results for the combined noise are even more impressive. Despite a moderate to 

good fit with a linear model, the bilinear model significantly irnproved this. The residual 

sum of squares was reduced by a factor of 3. Thus our bilinear model explains the 

dependence much better for the data with complex "noise". This could be partially due to 

the fact that data with a single type of noise are either too easy to optimize and we get to 

the overfit area very soon, or too hard to optimize and we get only a few points in the 

ovefit area. Parameten of the bilinear model are also more stable for the complex 

"noise". This conclusion is very important since we are going to use y0 as the main factor 

in the GA - ORS parameter optimization. 

Results for the 3-class problem given below in Tables 3.6 and 3.7 c o n h  these 

conclusions. Again, randomization of the peak positions increased the variance of MSL.  

noise fiee , 
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White noise did not create such a severe case of overfitting as for the 2-class problem and 

the dependence in this case is explained quite well by a bilinear regression model. The 

ody  dataset for which bilinear regression did not give significant improvement was the 

one with randomized peak positions. Combined with the fact that the linear model is 

working very well, this "abnormal" behavior can be easily explained by the lack of 

As for the 2-class problem, most complex data with al1 three types of noise added 

are explained much better by the bilinear model. The residual sum of squares decreased 

threefold cornpared to the linear model. 

Table 3.6. Total Sum of Squares and residual Sums of squares for the 3-dsss problem 

Noise type 1 Median 1 Lower 

No noise 1 1.6464 1.3409 
I 

U p p r  1 Median 1 Lover 1 Upper 1 Median 1 Lowei 1 Upper 1 
Quartile 1 1 Quamle 1 Quartile 1 1 Q d I e  1 

1 I 1 I i I 

The parameters of the bilinear model for the 3tlass model are also more stable, 

with al1 but two quartiles for y. within 5% of the median. These two exceptions are the 

lower quartiles for the "wn+rppW (8%) and "wn+bW (6%) datasets. For xo there are three 

such exceptions: the "baseline" (7.4%), the "wn+rppW (7.6%) and the "wn+b" (6.6%). 



Table 3.7. Parameten of the bilinear mode1 for the 3-clas probfem 

Lower 1 Upper 1 Median 1 Lower 1 Upper 

noise fiee 

wn 

rPP 

basehe 

wntrpp 

wn+b 

- - 

.1754 

.1987 

.1787 

-1827 

.2216 

.2174 

We have show in this chapter that for the artifcial data with complex noise the 

biiinear mode1 is superior to the linear one. It greatly reduces the residuai sum of squres, 

and has stable parameters. One of those parameters (xo) is essentiaily the mean of the 

minimal value of M S L .  There is no sense to continue optimization once MSE, xo, 

since M e r  irnprovement in MSE, is unlikely. 
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wrr+rpp+b 

Quartile 

2953 
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3.3. Overfittina with DP for artificial data 

Dynamic prognunming requires some modifications to the described scheme to 

explore the possibility of overfitting. First, we cannot afford to start with 1024 variables, 

therefore the datasets were condensed to 128 attributes each, by averaging each 8 adjacent 

points. Second, subsets of variables have been chosen in a deterrninistic way. As a result, 

each run of the program gives identical results, unless the parameters are changed. To 

overcome the second obstacle we have created 8 condensed datasets instead of one using 

each time a different starting point. Thus we got 8 points to estimate each parameter in 

question. 

For a fair cornparison, the same number (10) of attributes were requested as in 

GA-ORS. MS& and MSE, were recorded for al1 considered combinations of ten 

attributes and were used to estimate the model parameters. The results for the 2-class 

problem are given in the Tables 3.8 and 3.9. 

As we can see fiom Table 3.8, the bilinear regression model does not give any 

significant improvement over the linear one. Moreover, the linear regression model 

practically does not change the total sum of squares. This means that there is no 

correlation between MSEU and MSEu i.e., al1 our points fell into the overfit area. 

This conclusion is confhed by parameter a in Table 3.9. It is either extremely 

unstable, changing corn negative to large positive values, or is very stable but close to 

mro, as it happened for the noise-free data. There are two exceptions (the "rpp" and 

"baseline" datasets), but the fact that the linear model only marginally decreased the sum 



of squares tells us that we have only few points in the linear area, al1 the others failing 

into the overfit area. 

Table 3.8. Total Sum of Squares and Residual Surns of Squares for the 2-class problem 

Noise type Median t Upper 1 Median 1 Lower Median 1 Lower Lower 

Quartile 
.O458 

Quartile 
-9918 

noise fiee -0566 

Table 3.9. Parameters of the biiinear mode1 for the 2-class problem 

I I I I 
xo 

Lower Upper 1 Median 1 Lomr 1 Upper Median I 
Quartile 
.O373 

Quartile Quartile Quartile 
-0375 -.IO10 -.1 116 -.O632 -0339 

Quartile 
.O332 

Quartile 
,0349 noise fke 1 .O373 



Results for the 3-class problem (Tables 3.10 and 3. I l )  confirm the trend. Despite 

the relative stability of the a parameter, there is no improvement over the most trivial 

mode1 y =y* , the model which gives the total surn of squares as the residual sum of 

squares. In other words MSE, is essentially independent of MSEI. 

Table 3.10. Total Sum of Squares and Residual Sums of Squares for the 3-class problem 

Noise type 

noise k e  

Table 3.11. Parameters of the bilinear model for the 3-class problem 
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Unlike for the 2-class problern, we now have got very stable xo, and what is even 

more impressive. its values for the different noise types are close to those obtained for the 

GA-based attribute extraction. This is promising, since it shows that the parameters of the 

bilinear model are intrinsic properties of the data set, not only of the method of attribute 

selection. 

Thus we have shown that DP is also susceptible to overfitting, even to a greater 

degree than GA-ORS. This is due to the algorithm itself, since to obtain the 10th amibute 

only "good" combinations of 9 attributes were used. Therefore we corne to the final step 

of algorithm with the burden of overfitting at the previous steps. Thus al1 points of a 

possible linear trend in the model can be eliminated even before we started to collect 

them. Unfortunately, we cannot start collecting at the previous steps, since the parameters 

of the model depend most likely on the number of requested amibutes. 

We have several ways to overcome the overfitting problem. One way (which shall 

be discussed later) is to reduce the number of features sought. The other two involve 

either increasing the number of samples or enlarging the averaging window. The former 

will never fail, but generally it is very expensive and therefore not always redistic. The 

latter will simply reduce the power of the method, since with a large window there is a 

good chance that a discriminative feature will be averaged with irrelevant information 

and will disappear. 



3.4. Overfittina with real life data 

Artificiaf data sets were a very convenient tool for the regression model 

comparisons, but without real life data our results could be attributed to the way the data 

were generated. Unfortunately, it is quite difficult to get real life data with a reliable test 

set, especially MR spectral data 

We have a data set with infraed (IR) spectra at our disposal. It has 1362 IR spectra 

of blood samples belonging to 3 different classes. Each spectnim is 18 16 points long. 

Classes are of different sizes, varying fiom 320 to 640 samples per class. Half the 

samples chosen randomly comprise the training set, the rest were included in the test set. 

Since the full data set did not show a tendency for overfitting, 3 other versions of the data 

were created with 50, 100, and 150 samples per class in the training set, selecting the 

samples randomly. 

The results are given in the Tables 3.12 and 3.13. The bihear regression model 

does not have any advantage over the linear one, but this could be for various reasons. 

Either there is no overfitting at al1 (dl MSEll > xo), or al1 points are in the ovefit area (al1 

MSE, < xo). Analyzing the ratio LR-RSSITotalSS we see that for the hi11 data set and the 

one with 150 samples per class, there is no overfitting. The ratio is low, meaning that the 

linear regression model describes the dependence very well, a is large and stable. 

When the number of samples was decreased to 100 per class, neither model 

worked well; with 50 samples per class, we were entirely in the ovefit area The 

parameter a is extremely unstable, switching fkom negative to positive values. 



Table 3.12. Total Sum of Squares and Residual Sums of Squares for the IR data. 

I 

fui1 data 1 66.165 

Table 3.13. Parameters of the bilinear model for the IR data. 
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in the linear area. The advantage of the bilinear regression model is best seen when we 
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training set becarne small enough (50 sarnples), the MSEü is not longer linearly related to 
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MSEo, thus indicating that the predictive power of the algorithm was lost. 
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3.5. Parameter ootimization for GA-ORS. 

2class problem 

The bilinear regression model was introduced to find a way to optimize the 

parameten. GA-ORS has 4 major parameters defïning the behavior of the algorithm. 

These pararneters are: the number of generations (n), the population size (0, the 

probability of mutation @,), and the probability of crossover (p,). Due to the extensive 

computations required, we cannot mord  a Cdimensional optimization, therefore the 

problem will be solved in two steps. First we b d  the "optimal" generation size and the 

number of generations; subsequently, the "optimal" probabilities will be obtained. The 

word optimal is in quotes since, due to the relatively large variance of the results, we 

cannot always differentiate reliably between two sets of pararneters and only a few of the 

possible combinations could be explored. 

On the first step of optïmization, the population sue  was selected fiom the set 

{50, 100,200,300,400,500,600). For each value of the population size 10 runs of GA- 

ORS were carried out with 50 generations each. The probabilities were set to the 

normally recommended values pm=O.OO 1 and ~ ~ 0 . 6 6 .  

Since GA-ORS is time consuming, the parameter optimization for artificial 

datasets was carried out with oniy one dataset, with al1 types of noise present. 

MSEo for the 2-class problem is plotted in Fig. 3.3. For reference the median 

value and the quartiles of the xo parameter in the bilinear regression model are also 



plotted. As we can see, 20 generations is enough for MSE, to go below the lower quartile 

of xo regardless of the population size. Unfortunately, xo is probably the least stable 

parameter of the model, so any conclusion based on it would be the least reliable. 

Nevertheless, even here we can see that 1=200 is the best choice; M e r  increasing 1 

either made things worse (1=300) or gave insignificant improvement. 

Changing of for 2-class problem 

Unlike xo, y0 is the most stable parameter of the model, and MSE, would be a 

better predictor for the quality of the resulting classifier. Unfortunately, as can be seen in 

Fig. 3.4, MSEo is very noisy. As a result, we must make our decision by exclusion. 1= 100 

is unsatisfactory since the median of MSE, does not decrease below yo, thus indicating 

underfitting. For 1=50 it does go slightly below yo, but this result is compromised by the 

one for 1=100.1=500 ar.d 1=600 do not give improvement compared to 1=200 or 1400,  

therefore these choices simply waste computational time. l=300 is definitely worse than 

1=200 and can be eliminated. Out of the remaining two values, surprisingly enough, 1400  



requires more generations to achieve its minimum and this minimum is higher than for 

1=200. Thus 1=200 is the only reasonable choice. 

Changuig of MSEts For 2-class problern 

To select the optimal vaiue for n we have plotted not only the median of MSE,, 

but also the quartiles (Fig. 3.5). The distinct rise of the median MSE, between the 9th and 

32nd generations is caused by random factors, since its lower quartile, aside from some 

fluctuations, is close to the lower quartile ofxo. Only after the 32nd generation is there a 

robust trend of increasing. Thus any value between 9 and 32 is acceptable for n. We have 

chosen n=20, in the middle. 
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Fig. 35 

To optimize the values of p, and pc, we have chosen 5 values for p, - (0.000 1, 

0.0003,0.00 1,0.003,0.0 1 } and 5 values for pc - {0.60,0.63, 0.66,0.69,0.72}. A 2- 

dimensional grid was created with these values and GA-ORS was run 10 times for each 

node of the grid. 

To choose the best combinations of probabilities, the quality control methods of 

Statistica were used, Thus we have switched to mean values instead of medians, There 

are two justification for this choice. First, the problem resembles a typical quality control 

problem. We have 250 observations overall, for a given combination of probabilities, we 

m u t  decide, based on ten samples, if there is a significant difference between the 

distribution of these ten samples and the rest. Second, al1 but a few samples are 

distributed normally (see Fig. 3.6). We realize that ANOVA is more appropnate tool for 

the problem, but the de facto implementation of the quality contml charts demonstrated 

that the artificial data are ahos t  indifferent to the change in the values of the 

probabilities. 



The upper and lower control limits for the X-BAR chart were chosen at 2 sigmas. 

Results are given in the Fig. 3.7. It can be easily seen that there are three combinations of 

probabilities with MSE, beyond the control Iimits. For two of them, (0.63,O.O 1) and 

(0.66,0.01), MSE, is higher than the upper control limit which means that these 

combinations are particularly bad The combination (0.60,0.003) gave MSE, lower than 

the lower control limit (LCL), two others ( (0.66,0.003) and (0.69,0.0003) ) produced 

values which are very close to the LCL. 
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3-class problern 

Like for the Z-class problem, after a few generations MSE, is below the lower 

quartile of xo, thus indicating overfitting. Therefore we switched our attention to the 

MSE& behavior. Again, out of the 7 possible 1 values, only 3 are worth anaiysing in 

detail (see Fig.3.8), namely 1=200,[=300, or 1=400. The erratic behavior of MSE, for 

1=300 allows us to choose fiom the two remaining values. 

3-class problern, Test set 

For 1=200, the minimum of MSE& is achieved at n=28. For 1=400 there are two 

minima, at n=6 and at n= 17. Again, we pick a value in the middle (n= 1 1) and we see that 

the latter case requires 400*(11+1)=4800 nins of LDA, while the former requires 

200*(28+1)=5800 m, thus leaving us with 1=400 and n=l 1. 

Repeating the analysis done for the 2-class problem, we discover (Fig. 3.9) that al1 

but two combinations produced MSEo values within the control limits. The two 



exceptions are (0.60,0.000 1) and (0.72.0.0 L), the two extremes. We must avoid either of 

No of obs 

%BAR Mean:.294141 (.29#7#) Pmc. sigma:.012418 ciX2479 n:10 

Fig 3.9 

Although we have found five values beyond the control limits (2-class problem 

and 3-class problem combined), to do so we had to set the control limits to 2 sigma rather 

than the more common 3 sigma. Therefore we can give only cautious recornmendations 

regarding the choice of probabilities. The only definite recommendation is to avoid too 

high or too Iow probabilities of mutation. The range [0.0003,0.003] will probably work 

well. Al1 the analyzed values of p- are acceptable. The difference between the best 

combinations and the othen is marginal. 

Thus, recommended values are: the population size - 200-400, the number of 

generations - below 30, the probability of crossover - 0.60-0.72, and the probability of 

mutation - 0.0003-0.003. We have increased slightly the recommended number of 



generations, compared to the optimal values we had chosen, since those number were 

obtained for two very specific artificidly generated data sets. The real life data might 

need more generations to converge and might do so without overfitting. 



3.6. Number of selected reaions. 

Although the number of selected regions is one of parameters, we decided to 

analyze its influence in a separate chapter, because of the special role it plays in the 

algori thm. 

It is obvious that the more regions are selected, the greater is the danger of 

overfitting. Less obvious is the algorithm's behavior in the case when number of the 

regions is equd to or less than the number of features in the data. In our case, only 6 peak 

heights out of 10 were discriminative, while the other 4 were generated identically 

distributed for al1 classes (see Table 3.1). Therefore we have 6 discriminatory peaks and 

we need at least 6 regions to use al1 the infoxmation contained in the spectra. With greater 

number of regions (L) some of them can be chosen in the nondiscriminatory areas; this 

also can happen with a smaller number. 

To test the method we have run the program 10 times for each value of L and 

followed the parameters of the bilinear model and the residual s u m  of squares. One would 

expect that with increased overfitting the results would be better descnbed by the bilinear 

model, whereas without of overfitting the bilinear model would not decrease the residual 

sum of squares and the results for the training and test sets would be highly correlated 

(e l ) .  The last condition is very important, because we saw that the bilinear model c m  

work as well as the linear when al1 the points on the MSErMSEu plane lie in the overfit 

area, 



The mean values of the parameten of the bilinear model for the 2-class problem 

are plotted in Fig. 3.10. As we cm see, xo and y* are very stable and practically identical 

for al1 L values. The a parameter decreases slightly with increasing L. 

Parameters of the bilinear model for 2-class problem 

Number of selected regions 

Fig. 3.10 

Dependence of the residual sum of squares on the number of regions. 
(2-class pmblem) 

Number of regions 
Flg. 3.11 



An analysis of the residual errors reveals the ûue pichire regarding the overfitting 

(Fig. 3.1 1). The ratio of the residual sum of squares (RSS) in the linear model and the 

total sum of squares (LR-RSSlTotalSS) increases dramatically with L, implying that the 

quality of the linear model decreases. In contras& the ratio of the RSS in the bilinear and 

linear models decreases significantly, therefore, the bilinear model describes the data 

better for greater values of L. Thus, while the overfitting influences the results for small 

L, the severity of the problem increases with L. 

Parameters of the bilinear model for 3-class problem 

Number of selected regions 
Fig. 3.12 

The paraxneters of the bilinear mode1 for the 3-class problem behave similarly to 

those for the 2-class problem (Fig. 3.12) with one notable exception. Both xo and y* have 

welldefïned minima at L=5. Detailed analysis of the minima revealed that one of the 10 

nuis with L=5 gave no overfitting at all. As a result, xo and y0 could be chosen arbitrarily 



(see Appendix B.). In this case xo was very close to O andyo was negative. If we correct 

this artifact, the conclusion will be the same as for the 2-class problem: xo and y. are 

intrinsic characteristics of the data and do not depend on the parameters. 

The a parameter for the 3-class problem is slightly higher, suggesting better 

correlation between results for the training and test sets, and less overfitting. Thus the 2- 

class problem seems more susceptible to overfitting, supporting our hypothesis stated 

Analysis of the residual sums of squares for the 3-class problem (Fig. 3.13) also 

shows that fewer regions reduce the ovefining. Moreover, the BR-RSSILR-RSS has a 

maximum at L=5, i.e., at one region less than the true number of features in the spectra. 

Dependence of the residual surn of squares on the number of regions. 
(3 class problem) 

Number of regions 
Fig. 3.13 

Five out of nine values on the a curve are higher for the 3-class problem, the rest 

are higher for the 2-class problem, therefore this parameter cannot signal the tendency for 

overfitting. 



We have demonstrated an increasing overfitting with increasing number of 

features for both datasets. To recommend an optimal value of L we need an additional 

- ~ w e r  criterion. Despite low variability, y0 can fulfill this role. Indeed, y0 is in essence - ' 
bound for the expectation of the MSE&. The lower this bound the better the results on a 

test set. For the 2-class problem the minimum was achieved at L=9, for the 3-class 

problem, ignoring the artifact at L=5, the tme minimum was achieved at L=10. Therefore, 

although the overfitting increased when the number of sought feanires exceeded the 

actual number of features presenh we may expect a slight improvement with a few extra 

features. This was probably achieved at the expense of increased variance in yo, but we 

did not obtain enough data to support this statement. 



Conclusions and future develoement 

An evolutionary process of development of the methods of MR spectral analysis 

brought us fkom handpicked peaks, through PCA and/or DP-based methods of feature 

selection to a GA-based feature extraction method. Our contribution varies fkom method 

to method ui the case of the PCA, we simply coded the known algorithm. In the case of 

the Dynamic Programming @P)-based feature selection, the published algorithm was 

rnodified and improved. The GA implementation is original for feature selection, as 

applied to the analysis of spectra. An original encoding method implemented in our 

algorithm allows combining of the power and flexibility of the GA while retaining the 

spectral identity of the new features, thus facilitating the interpretation of the results. 

As we showed, the powerfil methods of feature extractionlselection are 

susceptible to overfitting. This means that the results for the test set (MSE,) are weakly 

comelated with the results for the training test (MSEu). To demonstrate this we developed 

a simplified bilinear model for the dependence of MSED on M S E ,  for which we assumed 

that beyond a critical value MSED is a constant (steady-state). 

To test both the method and the bilinear model, artificial data sets were created to 

simulate typical problems of MR spectroscopy. The artificial data were used to 

demonstrate the superiority of the bilinear model over the linear. It was also shown that 

the xo andyo parameters of the bilinear model are ineinsic properties of the data and vary 

slightly, whereas the a value is very sensitive to the method's parameters. The bilinear 

model gave us reasonable means of selecting parameters for the feahve extraction 



methods. It would have been extremeiy dangerous to base Our conclusions just on MSE,, 

since it loses its predictive power due to ovefitting. in contrast, MSEe allowed us to 

choose the parameters that would produce a classifier delivering its promises. 

The results also confirmed the supenonty of the GA-based feature extraction 

algorithm over the DP. We have shown that the probability of error for noise-f?ee data is 

close to the designed probabilities of error. As expected, noise deteriorates the results, but 

we don? have benchmarks to fully assess this case. A very peculiar result was produced 

for the 2-class problem when only white noise was present. For some runs of the methods 

the a parameter of the mode1 becarne negative. This means that the assumed linear phase 

in our mode1 is not present, but the steady-state phase surprisingly degenerated into a 

linear one with a negative slope. The problem was less severe for the 3-class data, and 

was negligible in the presence of complex noise. 

The method gave good results for real-life IR data. Due to availability of many 

spectra, we have obtained a linear dependence of the MSE, on MSE, without the 

constant stage. However, reducing the size of the data set created the same overfitting 

problem as for artificial data. Thus we illustrated once again the importance of the size of 

the dataset. 

We paid a lot of attention to the overfitting problem; unfortunately, it is not clear 

yet how to prevent it without dramatically decreasing the power of the method. The most 

obvious way is to increase the nurnber of sarnples in both training and test sets. This will 

never fail, but may be unrealistic due to the high cost of the data collection. 

If we have enough data, we can use the approach that is often used in PLS 

regression /3 1/. The data set is divided into three groups instead of two. The groups are 



the training set, the test set, and the validation set. The teminology in the literature is not 

consistent; we'll use the above defmition in the following. 

First, the training set is used to guide the GA-ORS. Then we'll use the test set to 

choose the best solution out of the elite group. The validation set will help us to estimate 

the overall performance of such a two-stage process. The hope is that the small size of the 

elite group would not leave enough room for overfitting. 

Another possible method development is a modification of the bilinear model, 

allowing an arbitras, (maybe only negative) dope instead of the constant stage. As we 

have seen, this modification has some m e ~ t s .  If this model had descnbed the MSE,- 

MSE, dependence beîter, this would mean that overfitting could be costly, not just 

indi fferent. 

The algorithm itself can be improved in rnany ways. One possible development is 

a modification of the objective fuoction. As we have seen in the literature review, what 

objective fimction is used is important for RDA. Since RDA requires a two-parameter 

optimization, it is also susceptible to overfitting, and we c m  expect that the choice of the 

objective function c m  also be important in our case. 

One of the recent developments in GA theory, sharing functions, was not yet 

implemented in our program. The sharing function can prevent premature collapse of the 

population into a smaller set of chromosomes, and as a result, allows us to get better 

results, or to reach the same results faster. An obvious drawback of this approach is that 

one additional parameter has to be optirnized. 



Both GA- and DP- regions selections methods are irnpiemented in software. The 

program has been used successfully for the analysis of both MR and IR data. The results 

were presented at several annual meetings of the Society of Magnetic Resonance as 

refereed contributions /24,25/. A paper, describing the methods is in print /49/. 



Amendix A. Undate of the statistics for the weiahted LDA 

with leavesne-out cross validation 

Let us consider the problem of a weighted discriminant analysis. This means that 

for each of the independent and identically disûibuted pdimensional observations 

xi, i = 1, ..., n , we are given weights w, . Then the estimates of the mean vector Z and the 

covariance matrix S are calculated according to the following fonnulae: 

It will be convenient to introduce another matrix: 

c = ( w  -K+s 

These estimates are unbiased. This is obvious for the mean vector: 

where 5 is a random vector we have sampled. The proof is slightly longer for the estimate 

of the covariance matrix: 



Since x, are identically independently dishibuted, 
O, if i # j 

, therefore 
COV(C), if i = j 

W 

and 
f 

~ ( ( r  - ~ ( 6 ) )  (3 - E(S))')= E 

\ 

Finally, 



w-E7 
= cov(5) - ( ) = C O V ( ~ )  w-w 
T'us, we have shown that the above estimates are indeed unbiased. 

To update the covariance rnatrix for the leave-one-out method, we will follow 

Lachenbruch /7/. 

Suppose we have deleted the j-th observation xl; then we cm calculate the 

difference between that observation and the mean vector 
- - 
u = x j - X  

Now we can update our estimates: 

- w-w w, *W - - *(s- 
W-w u d )  (w - w)W 



To show this, one must simply substitute the new variables into the definitions of 

our estimates. 

To update the probabilities in the leave-one-out method we also need an updated 

deteminant o f  the covariance matrix. As we have seen, the updated covariance matrix 

diffen nom the original by a lank 1 rnaîrix and a scaling factor. Let A = a ( B  + u - v ' ) 
and B = V . A V' is the eigenvalue decomposition of B (i.e., V VT = 1 and 

A = dia&., , --,A,)), then 

but 



Al 

O 

det i 
O 

O 

Thus, we h o w  how to update the covariance ma& and its determuiant. Now we 

can update the inverse of the covariance matrk Following Lachenbmch, we'll use 

Bartlett's identity: if B = A + n vT then B-' = A-' - A-' - u - vT A-'/(I + vT A-' - u) 
In our case this means: 

w, -W 
where c = 

(w -ïù)E- 



This formula can be applied both to linear and quadratic discriminant analyses. The 

only difference consists in the calculation of W - F and its update. In the case of LDA we 
P 

have to replace them by the sums of al1 individual texms for each class ( ( W, - Fi ) and 
1-1 

the corresponding update) 

Finally : 



Amendix B. The solution for a nonlinear regression model 

Let us consider a nonlinear model y(x) = y, + a .  (x - x, ) - u(x - x, ) , where u(x) 

is the unit step function. This means that 

Let us also have a set of experimental points (X,, Y;), i = 1,. . ., N with the X 

values sorted in ascending order. The problem is to choose a,y, ,x, such that the mean 

square error (MSE) between experimental and theoretical data is minimal. If x, is given, 

we can partition al1 the experimental points into two groups, those which are less and 

those which are greater than x, . Therefore we'll have an analytical expression for the 

MSE, which c m  be minimized provided that the point partition is unchanged. Thus our 

problem looks like a linear programhg problem. We have a set of experimental X 

values which divides the set of real numbers into intervals. For each interval the MSE can 

be calcuiated analytically and minimized. The minimum can be achieved either inside or 

on the boundary of the interval. 

Aâer we have described the main idea of the algorithm, we'lI solve the problem 

for each interval separately, stamng from two half-open infinite intervals. 



Before doing the actual minimization we'll introduce some useful definitions: 

where Z = f (X, Y) is any function of two variables and 2, = f ( X ,  , Y, ) . 

The statistics are the standard sample estimate of the average and its tmcated 

modifications. We'll need the following equations, which easily follow nom the 

definitions: 



B.1 Two extreme cases of the problem. 

These two cases are either xo E (4, Xo ] or xo E [X'.,, a) . We'll start with the 

latter. 

In this case y(x)  = y, and the solution is obvious: 

When xo E (-, Xo ] we have got a standard 

known solution again: 

linear regression mode1 with a 

MSE = E(y2)  - E(Y)* - [ E ( m  - E ( X )  E(Y)I' 
E(x*) - E(x)' 

As we can easily see, if there is correlation between the X and Y values 

( E ( X Y )  - E(X)  E(Y) + O ), MSE is less for the linear regression, otherwise those two 

solutions wili coincide. 



B.2 The minimum is achieved inside 

We assume that Xk I xo < Xk+, , then 

Differentiating with respect to a ,  x, , and y, , we'll get: 

At the minimum the p h a l  derivaiives are equal to zero and the Hessian m a t e  is 

positive definite. nerefore to get the minimum we must solve the following system: 

To get the Iast equation we have ignored the case FO, since the solution for this is 



N - k  
Multiplying the third equation by - and subtracting it fiom the second one, 

N 

we get: 

k-y, = N-E(Y)-(N-~)-E~*~(Y) 8.7 = B. 12 

k - Ek (Y) + ( N  - k ) )  - E N-k ( Y )  - ( N  - k) E N-k (Y) = k - Ek (Y), therefore 

Y0 = Ek(Y) 

Multiplying the tbird equation of B. 1 1 by E N-k (X) - x,, and subtracting it fkom 

the first one we get: 

Based on B. 1 1-B. 13 we find that: 

Close examination of B. 12 and B. 13 reveals that the overall solution is a 

combination of independent solutions of the regression model y (x )  = y, for the first k 

points and the linear regression model y(x)  = a x + (y, - a x, ) for the rest of data. 

Therefore 



The Hessian is positive defmite iff al1 three leading principal minon are positive 

/26/. That is: 

a* MSE dV- MSE 

LN* MSE a- MSE 
> 0, and 

a* MSE a- MSE LN- MSE 
- 

a040 &O& 

6N* MSE MSE a- MSE 
-- - - 

0 a: &O& 

a- MSE a- MSE dV- MSE 

&O& &a al2 

To ver@ this we first calculate the partial second derivatives at the optimum 

point: 

a MSE 
= 2 * a 2  - ( N - k )  

& 

dV MSE = 2 - ( ~ - k ) - [ ~ ~ - ~ ( ( y ) -  y. - 2 = a - ( ~ ~ - ~ ( X ) - x ~ ) ] = = ~  

&O& 

a MSE 
= 2 * ( N  - k ) o ( ~ ~ - ' ( X )  - x o )  

aL,a 



a/ MSE = 2 - ( ~ - k ) = [ ~ ' - ' ( ~ ~ ) - 2 *  E ~ - ~ ( X ) - X ,  + x i ]  
a2 

The first principal minor 2 - a* =(N - k) is obviously positive, unless k=N or a=O. 

2-a' - ( N - k )  -2-a-(N-k) 
The second is equal to A = 4 - a " k - ( N - k )  andis positive 

- 2 - a - ( N - k )  2 4  

under the same conditions, plus k>O. Finally, the determinant of the Hessian itself is 

It is positive under the same conditions, plus the condition of positive variance of 

X, not satisfied only if X is a constant. 

Therefore the optimum obtained is indeed the minimum. If the basic assumption 

(X, 2 x, c X',, ) is also met, then the minimum is achieved inside, otherwise the 

minimum of MSE for the given interval is at x, = X, or at x, = XI+, . 



B.3. The minimum is achieved at a sampling point. 

Now we assume that xo = Xk . The minimization involves only two variables and 

B. 1 1 reduces to 

The solution to B. 16 and the problem itself is: 

MSE cm be caIcu1ated according to B. 10. 

Finally, we must verim that the Hessian is positive definite. Indeed 



B.4 The Algorithm 

Now we can formulate the algorithm giving the solution to o u  problem. 

1. Calculate E(X), E(Y), E(XY), E(X~ ), E(Y' ) and initialize the current minimal MSE 

according to B.9; set k=û 

2. k=k+ 1 ; if k=N backtrack the values of x, ,y,, a to where the current minimal MSE 

was achieved and exit, othenuise update E N-k (a, E *-' (Y), E *-' (m, 

E ~ - '  (x2), EN-'(y2), Ek(Y), E~(Y')  accordhg to B.5-B.7 

3. Find x, according to B. 14; if x, < X, or x, > Xk+, go to the next step, otherwise f5nd 

MSE according to B. 15 and compare it with the cumnt minimal MSE; if there is no 

improvement go to step 2, otherwise update the current minimal MSE, calculate 

a and y, according to B. 13 and B. 12 and Save al1 three parameters for fiiture use. Go 

to step 2. 

4. Assign x, = Xk ; calculate a and y, according to B. 17, calculate MSE according to 

B. 10 and compare it with the current minimal MSE; if there is no improvement go to 

step 2, otherwise update the curent minimal MSE and Save al1 three parameters for 

friture use. Go to step 2. 

Note that if the minimum was achieved at a boundary point, we check only one 

them, the lefi one. The right point will be checked, if necessary, on the next step. 

It proved to be more reliable to calculate MSE always according to B.10, since 

using B.9 or B. 15 can give negative values for the sum of squares. This happens due to 



the inprecise nature of cornputer calculations. These expressions can be calculated in a 

robust way, i.e., sort the numbea in the ascending order and start summation fiom the 

lowest ones. Unfominately, we are loosing the benefits of faster computation of 

E N-k (X),  E '-' (Y)¶ E N-k (XY)¶ E*-& (x2 )¶ E N-k (y2 ), Et (Y), Et ( y 2  ) , since they m u t  be 

recalculated at each step. Therefore this procedure does not give any computational 

advantages. 
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