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Abstract

The aim of this thesis is to first give a brief review of waiting line problems which

often is a subject related to queueing theory. Simple counting processes such as the

Poisson process and the duration of service time of each customer being exponentially

distributed are often taught in a undergraduate or graduate stochastic process course.

In this thesis, we will continue discussing such waiting line problems with priority

assignment on each customer. This type of queueing processes are called priority

queueing models.

Patients requiring ER service are triaged and the order of providing service to

patients more than often reflects early symptoms and complaints than final diagnoses.

Triage systems used in hospitals vary from country to country and region to region.

However, the goal of using a triage system is to ensure that the sickest patients are

seen first. Such wait line system is much comparable to a priority queueing system in

our study. The finite Markov chain imbedding technique is very effective in obtaining

the waiting time distribution of runs and patterns. Applying this technique, we are

able to obtain the probability distribution of customer wait time of priority queues.

The results of this research can be applied directly when studying patient wait time

of emergency medical service. Lengthy ER wait time issue often is studied from the

view of limited spacing and complications in hospital administration and allocation

of resources. In this thesis, we would like to study priority queueing systems by

mathematical and probabilistic modeling.
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Chapter 1

Introduction

ER Wait-Time Stories “Despite growing public pressure and a request from Man-

itoba’s health minister, the Winnipeg health authority refused Tuesday to release an

internal investigation into the death of Brian Sinclair last September.” Winnipeg Free

Press reported in February of 2009 regarding the tragedy happened in September of

2008. Brian Sinclair, a 45 year-old First Nation’s double leg amputee died at the

Winnipeg Health Sciences Centre (WHSC) while waiting for more than 30 hours for

care. The cause of his death was later determined due to a catheter blockage and

a bladder infection which were entirely preventable. Dr. Brock Wright, the head of

the Winnipeg Regional Health Authority (WRHA), confirmed by examining security

tapes days after the tragedy that Sinclair had spoken to an employee at the triage

desk within an hour of his arrival, to housekeeping staff and a security guard during

his time in the emergency department, but was never properly triaged, registered
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or assessed by any medical staff. It was also reported that short of staff was not a

problem at the WHSC, for during the day and early evening there were at least three

health workers helping to process emergent patients.

“‘A disgrace’ Senior waiting in ER at Montfort was ignored for nine hours as

fellow patients brought him water, blankets”, reported by the Ottawa Citizen in

September of 2008. Yatendra Varshni, the 76 year-old professor emeritus of the Uni-

versity of Ottawa, was sent to the hospital by ambulance around 3 p.m. on September

26, 2008 and later was determined that he suffered from rheumatoid arthritis. Mr.

Varshni was admitted around 12:30 a.m. the next morning, waiting for more than 9

hours in the hospital’s ER while other fellow patients brought him water and blankets,

and later testify to CTV Ottawa that the on-duty nurse ignored him.

A quick search on the Internet returns many news and reports on topics of hospi-

tal wait times. Though many studies focus on hospital staff management and policy

reformation, we wish to the study emergency department wait time from the perspec-

tive of statistical and probabilistic modeling using the finite Markov chain imbedding

(FMCI) technique.

1.1 Background of Queueing

A queueing system, in its simplest description, consists of customers arriving at

some random times to a waiting line, each waits for some random amount of time

before receiving service, and the service-time of each customer is random according
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to some probability distribution F . Customers depart from the system after being

served. The word customers is used as a generic term and it may refer to, for example,

airplanes arriving to an airport, shoppers in a grocery store waiting in line to checkout

their goods purchased, incoming calls in a telecommunication system waiting to be

transmitted, or tasks in a computer system waiting to be executed by the processing

unit, and etc. In another setting, locations requires, stochastically in time, service can

also be seen as customers, ie. sites on fire waiting for fire fighters to arrive and put

out fire; crime scenes waiting for police force to arrive, etc. In applications, priority

queues can be used to model an objective function as to reduce measures such as

system cost or outcome casualty.

Agner Krarup Erlang, a Danish engineer at the Copenhagen Telephone Company

in Denmark, published his first paper The theory of probabilities and telephone conver-

sations in 1909, showed that incoming calls in telephone traffic can be characterized

by the Poisson distribution. At the time, J. Jensen (of Jensen’s inequality) was the

chief engineer at the company. Later, Erlang published another paper Solution of

some Problems in the Theory of Probabilities of Significance in Automatic Telephone

Exchanges in 1917 that includes the famous Erlang loss and waiting time formulas.

The two and his many other papers were translated into English, French and German.

His concept of “statistical equilibrium” were used to justify some ergodic results and

study system behavior. Although rigorous proofs were not presented, Erlang laid the

foundations for modern queueing theory.
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In general, a formal mathematical modeling of a queueing system requires one to

specify assumptions made about (i) the input process, (ii) the queueing discipline,

and (iii) the service mechanism.

The input process describes the way customers arrive to a system. In this section

only, let tk, for k ≥ 1, denote the arrival time of the kth customer, t0 < t1 < t2 < tk <

· · · . With loss of generality, let t0 = 0 be the initial time when we began to observe

the input process. Let Tk > 0, Tk = tk − tk−1, be the inter-arrival time between

the (k − 1)th and kth customer. The usual assumption is that Tk, k = 1, 2, · · · , be

a sequence of independent and identically distributed random variables with some

distribution G(x) = P (Tk < x). G(x) is referred to as the distribution of inter-

arrival time and often is assumed to have the form of an exponential distribution,

G(x) = 1− exp{−λx}, having mean inter-arrival time 1/λ. Hence, λ can be regarded

as the mean arrival rate. Under such setting, it can be shown that the counting

process N(t), the number of arrivals to time t, follows the Poisson distribution having

density

Pr{N(t) = n} =
(λt)n

n!
exp{−λt},

see [18].

Jaiswal [18] in his book Priority Queues distinguishes the source from which

customers emanate either being finite for infinite. The distribution of inter-arrival

time differs slightly depending on the source being finite or infinite, and the definition

of the inter-arrival times. For our purposes, we assume that the source is always
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infinite in this thesis.

A queueing discipline consists of rules by which customers are ordered in line

for service. The simplest rule in a single-server system is the first come, first serve

(FCFS) discipline by which customers receive service in the order of their arrival.

Other service policies, such as random-service, last come, first serve, batch-service,

service with vacations, priority service, deadline-ordered service, and many others are

possible to be employed depending on operational requirement and system efficiency

to be achieved.

The service mechanism of a queueing system describes the output end of the

system. The output process contains information on the number of servers and the

service-time distribution. A system can have one or more servers, or sometimes

called service channels. Systems with only one channel are called single-server queues.

Systems with more than one channel are called multi-server queues. Let Sk > 0

denote the service time of the kth arrived customer. The usual assumption is that

Sk, k = 1, 2, · · · , be a sequence of independent and identically distributed random

variables with a distribution F (x) = P (Sk < x). F (x) is commonly being referred to

as the service-time distribution with mean service time

1

µ
=

∫ ∞

0

(1− F (x))dx =

∫ ∞

0

xdF (x) (1.1.1)

where d
dx
F (x) is assumed to exist.

Here, µ can be interpreted as the expected number of customer departures from

the service channel per unit time when F (x) is an exponential distribution. If W
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denotes the expected time a customer spent waiting in line before receiving service,

then the expected number of customers waiting in line

L = λ×W (1.1.2)

which depends only on the “long run mass flow balance relations” as described in

Taylor and Karlin [32] page 543. This equation is of great importance in queueing

theory in evaluating the performance of queueing systems in many application, since

it directly relates two of the most important factors which are the average queue size

L and the average customer waiting time W . For example, in an emergency hospital,

patient satisfaction often is related to the amount of time they need to wait before

receiving treatments. Therefore, waiting time reduction may be of great importance

in a hospital queueing system, see Anderson, Black, Dun and etc. [30] and Spaite,

Bartholomeaux, Guisto and etc. [3] for example.

David G. Kendall in 1953 introduced the A/B/C Kendall’s notation to simplify

the way of describing and classifying queueing systems. When one wishes to describe

a queueing system, the lengthy procedure of having to specify the input process,

the queueing discipline, and the service mechanism becomes compact and standard.

The first component of A/B/C describes the input or arrival process. Sometimes

the first letter also is used to denote the probability distribution of inter-arrival time

length. The first component of A/B/C describes the output process, or sometimes it

is used to denote the probability distribution of service time of each customer. The

third letter denotes the number of servers in the system. An example of using such
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notation system is a M/M/1 queue where of arrival process the inter-arrival time is

assumed to follow an exponential distribution (the letter ‘M ’ may be used to remind

the Markovian property of exponential distributions), the service-time distribution is

again exponential, and there is only one server in the described system. For a few

other commonly studied queueing systems such as Ek/G/1 and GI/M/s etc., please

see Kendall [20].

Under the assumption that customers arrive to the system as a Poisson process

with rate λ, there is only a single server, and the mean service-time of priority class

i customers be finite and without specifying the form of service-time distribution,

Cobham([7, 8]) was the first to consider the waiting line problem with service priorities

assigned to customers and found an expression for the expectation of waiting time.

In [7], essentially the model considered is now what we called the non-preemptive

priority queue in which only one customer at a time can be in service. Further results

by Holley [16], Kesten and Runnenberg [21], Aczel [1] and Miller [28], some under

different settings in the output process, generated many applications in the analysis

of priority queues.

1.2 Early Results of Priority Queuing Model

After reviewing the earliest papers on priority queues, we will use Cobham’s [7]

definitions and notation to understand some of the early results and how they were

derived. Suppose that each customer arriving at a single-channel waiting line can
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be categorized into one of r classes (r is a finite positive integer) corresponding to r

independent Poisson processes with rates λ1, λ2, . . . , λr, respectively.

A customer U of priority p (denoted by Up from now on), 1 ≤ p ≤ r (1 indicates

the highest priority and r the lowest), enters a system and is moved ahead of all

customers with priority level k > p larger than p and behind all with priority level

k < p. If there already exist customers with priority level p in the waiting line,

customers of the same level will be served in the first-come, first serve order within

class p. Let Fp(t) be an arbitrary customer service-time distribution of unit Up. Then,

F (t) =
r∑

p=1

λp

λ
Fp(t) (1.2.1)

was defined by some as the combined customer service-time distribution.

Recall from equation (1.1.1), we then let

1

µp

=

∞∫

0

t dFp(t). (1.2.2)

denote the expected service time of a priority p customer, in a M/M/1 priority queue,

independent of other priority customers.

Now, for a simple and clear presentation of the derivation of some of the results

in Cobham [7], we will continue but with the notations used in Holley’s [16] paper.

Suppose that a customer Up enters the waiting line at time t0 and receives service at

time t1. Thus the length of time Up waited in line is T = t1 − t0. Suppose at time t0,

there is n0 customer in service (n0 = 0 or 1), and there are nk customers of priority

k (k = 1, 2, . . . , p) in the line ahead of Up. To complete the service of the customer



9

already at the counter will take time T0 and to serve the nk customers of priority k

currently in line ahead of Up will take time Tk. The variable T is random and during

the entire time T , customers of priority level less than p will continue to enter the

system and take places in the line ahead of Up. Suppose n′
k customers of priority k

(for k = 1, 2, . . . , p − 1) entered during T and it takes T ′
k amount of time to service

them. Under the assumption that there is a single server and customers receive their

service in succession without time gaps in between, the length of T must equal the

sum of T0, the p quantities Tk and p − 1 quantities T ′
k. Taking expectation of T , as

equation (6) in Holley [16], we have the wait time model

E[T ] =

p−1∑

k=1

E[T ′
k] +

p∑

k=1

E[Tk] + E[T0] (1.2.3)

If we were to use Holley’s [16] notation, set

W0 =

∞∫

0

1

2
λt2 dF (t) = E[T0]

which in Cobham [7] is the expected service time of the customer at the counter at

time t0 the instant Up arrives at the waiting line. The intuition for the definition of

the W0 is unclear to us. Let Wk denote the expected waiting time for a customer of

priority k (k = 1, 2, . . . , p). It is clear that Wp = E[T ]. In [7], Wp was derived to be

Wp =
W0(

1−
p−1∑
k=1

λk

µk

)(
1−

p∑

k=1

λk

µk

)

We will attempt to show the derivation of the above expression in the following.
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The expected time E[Tk] required for the service of nk customers of priority k

in line at time t0 is the expected service time 1
µk

multiplied by the expected value

E[nk] = λkWk, by (1.1.2). The expected time E[T ′
k] required for the service of n′

k

customers of priority k (1 ≤ k ≤ p − 1) entering the waiting line after the arrival

of Up, similarly, is the expected service time 1
µk

multiplied by the expected value

E[n′
k] = λkE[T ] where E[T ] = Wp. Thus, equation (6) in Holley [16] can be written

as

Wp =

p−1∑

k=1

λk

µk

Wp +

p∑

k=1

λk

µk

Wk +W0 (1.2.4)

By re-arranging the above equation to isolate Wp, it follows that

Wp =

p−1∑

k=1

λk

µk

Wp +

p∑

k=1

λk

µk

Wk +W0

(
1−

p−1∑

k=1

λk

µk

)
Wp =

p∑

k=1

λk

µk

Wk +W0

Wp =

p∑
k=1

λk

µk

Wk +W0

(
1−

p−1∑
k=1

λk

µk

)
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Alternatively, from (1.2.4), Wp can also be expressed as

Wp =

p−1∑

k=1

λk

µk

Wp +

p∑

k=1

λk

µk

Wk +W0

Wp = Wp

p∑

k=1

λk

µk

+

p−1∑

k=1

λk

µk

Wk +W0

(
1−

p∑

k=1

λk

µk

)
Wp =

p−1∑

k=1

λk

µk

Wk +W0

Wp =

p−1∑
k=1

λk

µk

Wk +W0

(
1−

p∑
k=1

λk

µk

)

with λ0

µ0
= 0.

In this form, we can showW1 =
µ1

µ1−λ1
W0. Dropping the index 1 gives the expected

waiting time W of the classical single-server Poisson process with a mean arrival rate

λ and service-time distribution F (t), of which the mean service rate (rate of customer

departure) is µ as defined in (1.1.1). By (1.2.5) and substituting W1 =
µ1

µ1−λ1
W0, W2

can be solved to be

W2 =

λ1

µ1
W1 +W0

(
1−

2∑

k=1

λk

µk

)

=

λ1

µ1 − λ1
W0 +W0









1−

2∑

k=1

λk

µk









=
W0

(
1−

λ1

µ1

)(
1−

2∑

k=1

λk

µk

)
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By induction on p, for p ≥ 2, Wp can be solved to be

Wp =
W0(

1−

p−1∑

k=1

λk

µk

)(
1−

p∑

k=1

λk

µk

)

which is equation (3) in Cobham [7]. Under very specific settings, we see that only

the expectations can be derived but not the probability distribution of the random

variables Wp, p = 1, 2, . . . , r.

Kesten and Runnenburg [21] in 1957 gave a rigorous proof in a more detailed

account of the single service-counter situation described in Cobham’s [7] setting by

analysis of continuous time Markov chain. They proved that, independent of the ini-

tial state of the queue, the probability distribution function (Hp(t) in their notation)

of waiting time Wp of a customer assigned arbitrarily priority p ∈ {1, . . . , r} exists

in the very restriction that only when the system is in stationary and non-saturation

state. By non-saturation, it means
r∑

i=1

λi

µi
< 1.

If we were to treat the priority queue system as a first-come, first-serve combined

queue system, meaning there is no priority assignment to units in a single service line,

then Aczel [1] showed that the expected queue length, name it L1, can be expressed

as

L1 =

W0

r∑
k=1

λk

1−

r∑

k=1

λk

µk

For the same priority queue system, Cobham [7] gave the expected queue length,
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name it L2, to be

L2 =

r∑

j=1

λjW0(
1−

j−1∑

k=1

λk

µk

)(
1−

j∑

k=1

λk

µk

)

By some algebraic work, Aczel in [1] showed that

L2 − L1 =
r∑

j=2




λjW0(
1−

j−1∑

k=1

λk

µk

)(
1−

j∑

k=1

λk

µk

)
j−1∑

i=1

λi

(
1

µi

−
1

µj

)




From this expression, we can see that if we were able to choose
(

1
µi

− 1
µj

)
≤ 0

for i ≤ j, to assign higher priority to serve first the customers with shorter expected

service time, then the expected queue length can be reduced in a queueing system

with priority assignment compared to one with the FCFS rule.

Early papers studying these types of queue system were done by solving math-

ematical differential equations of deterministic models. Then method of induction

were used to obtain the expectation of wait times.

The idea of using an imbedded Markov chain to study the behavior of a queueing

system was also first roused by Kendall ([19],[20]). Miller [28] attacked waiting-

line problem of M/G/1 preemptive-resume priority queues using the Markov chain

imbedding approach. Both authors examine systems at epochs of customer depar-

tures. Stanford [31] studied waiting time and inter-departure time of
∑

M i +GI/Gi/1

single-server multi-class priority queues under non-preemptive and preemptive resume

disciplines. In [31], a comprehensive review of literatures studying priority queues is
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given since Cobham ([7],[8]) in the mid nineteen fifties. Solutions of waiting-time dis-

tribution classically are provided as LSTs in earlier papers, compare to more recent

approach by Alfa [2], Wagner [36], and Ramachandran [29] where matrix-analytical

methods are employed. LSTs often are still used in matrix-analytical methods when

the inter-arrival time and service-time distributions are not exponential. Wagner [37]

and Wagner et al. [38] studied the stationary and waiting distributions of finite-

capacity non-preemptive priority queues. In [37], Wagner considered M/M/s multi-

class priority with customer service times being identically and exponentially dis-

tributed. In [38], M/M/1 two-class priority model are considered with class depen-

dent exponential service times. In both papers, stationary distributions are analysed

by solving system of Chapman-Kolmogorov equations. By applying matrix-analytic

methods, meaningful conditional waiting-time distributions of each priority class are

obtained in LSTs. A recursive algorithm to compute the mean waiting time is derived

by first-passage-time analysis in [38].

In more recent years, Bedford and Zeephongsekul [5] adopted the approach of [37]

and [38] to study the stationary distribution of M/M/1 two-class preemptive priority

dual queue model with finite capacity. Zeephongsekul and Bedford later in [40] carried

out waiting time analysis complementing the work of [5]. Li and Zhao [24] studied

the tail asymptotics of the stationary distribution of M/M/1 two-class preemptive

priority queues by studying the generating function of the joint stationary distribution

for the number of customers in both classes. Xie et al. [39] studied the tail asymptotics
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of the stationary distribution of M/M/s multi-class preemptive priority queues by

matrix-analytic methods. Zhang and Shi [41] studied M/M/1 two-class preemptive

priority queue with infinite queue capacity using the QBD process that its stationary

distribution can be exactly computed in principle.

We wish to dissect the priority queueing problem using finite Markov chains. This

approach saves us from solving complicated system of equations, if they are solvable,

also it allows us to obtain the distribution of wait times easily. Desirable results such

as tail probabilities and various moments of the distribution can also be obtained

through a relatively simple setup.

1.3 Definitions, Models, Notations and Variables

of Interest

1.3.1 Emergency Service Flow

Borrowing from one of the public reports [6] made available by the Canadian

Institute of Health Information (CIHI), with some modification we made the follow-

ing diagram to clearly present the typical emergency medical service flow and some

variables of interest later being formulated in our problem.

When patients arrive on their own at an emergency department, they are first

triaged by a triage nurse to evaluate the severity of their injury or illness and may be

assigned a score according to the 5-level Canadian Triage and Acuity Scale (CTAS).
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Figure 1.1: Emergency Service Flow Diagram

The CTAS is designed to ensure that patients who require immediate care receive

medical attention first. Those with less urgent conditions, such as mild abdominal

pain, headache, or conditions related to chronicle problems etc. usually can wait

to receive treatment. Then a nurse would input patient information (basic data

such as the symptoms observed, vital signs, trauma mechanism and other medical

information such as allergies, medications taken and medical attention received prior
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to arrival etc.) acquired from patients themselves, their accompaniment, or sometimes

by estimation. The triage process usually should take no longer than a few minutes.

An arrival (or the accompaniment) then would be asked to register and be iden-

tified as a patient requiring care, then be provided with his/her medical record. For

patients arrived by ambulance, the registration process might differ, but the severity

of patients’ injuries or illness still would be assessed. Upon the completion of reg-

istration, patients would rest in waiting areas and wait for an emergency physician

(EP) to attend. From time to time, nurses would reassess patients’ condition. A

patient might be placed ahead in queue or require immediate attention if condition

deteriorated. For our purpose, we define the time from the completion of triage and

registration to the time of initial assessment of a patient by an EP the ED wait

time.

Starting from the time a patient is triaged to the time the patient departs from

the ED, we define this to be the length of stay. This length of time includes the

waiting time plus the length of time from initial visit of an EP to the patient until

patient departure. During such period, the EP may order for additional diagnostic

examinations. The EP may or may not attend other patients while waiting for results

from orders, then provides interventions and treatments with assisting nursing staff.

Finally decisions are made that either patients would be discharged home, admitted

to a ward, or transferred to another department or hospital, and be considered as

departed from the ED.
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1.3.2 Model Description and Notation

We will introduce in this section some of the notations frequently used in Chapter

3 and after in describing priority queues. Some other new ones may be defined along

as they are needed. In this thesis, we may use the word customer(s) in place of

patient(s) when describing a queueing model. We mainly consider that:

1. customers are of R classes indicating their service priority class;

2. there can be no more than b customers in the queueing system at any time,

including the one(s) receiving service and those waiting in line yet to receive

service;

3. no more than c customer(s) are allowed to receive service at any given time.

Further we assume that customers arrive to the system from R independent unsched-

uled Poisson arrival processes. Customers of class i arrive to the system at a mean

arrival rate λi > 0 for i = 1, . . . , R. We use lower indices to indicate higher priorities.

As ∆t → 0, the probability of having one arrival of class i customer in [t−∆t, t)

is λi∆t+ o(∆t), the probability of having more than one arrival in [t−∆t,t) is o(∆t)

for any t. We use o(∆t) to denote a function of ∆t such that lim
∆t→0

o(∆t)/∆t = 0.

Jaiswal in [18] distinguishes the source from which customers emanate either being

finite for infinite. We assume here that the source is infinite.

Let B(t), 0 ≤ B(t) ≤ b, be the number of customers occupying the system (in-

cluding the ones in service and those waiting for service) and C(t), 0 ≤ C(t) ≤ c < b,
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be the number of customers in service at time t. We assume in our model that when

B(t) ≤ c, then service would be provided to all customer in the system keeping no

one waiting. If c < B(t) ≤ b, service would be provided to c customers and keeping

B(t)− c waiting in line.

Suppose a customer of priority i, denoted by Ui, arrived to the system during a

time interval [t − ∆t, t). If Ui is admitted to the system, then, departure of Ui is

not allowed during the same time interval [t−∆t, t). If the system is not empty and

Ui has to wait in the queue, Ui would be placed ahead of all customers with service

priority scores larger than i and behind all with priority scores of i or smaller starting

at time t.

Suppose Ui is to join the queueing system while c ≤ B(t−∆t) < b customers are in

the system. Denote the largest service priority score among those in service by K1(t)

at time t. We consider in this situation both the preemptive repeat-different (PRD)

and the non-preemptive (NP) disciplines which have the definitions as in Jaiswal [18]

Chapter III :

(a) Preemptive repeat-different: If there is no customer of priority score i or smaller

waiting for service, Ui would displace a customer in service with the highest

service priority score K1(t). The preempted customer UK1(t) then waits at the

first position in the priority K1(t) group. When UK1(t) resumes to service, the

remaining service time required is random and is independent of past preemptions

and services and has the same exponential service time distribution of class K1(t).
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(b) Non-preemptive: Ui waits behind all with priority scores of i or smaller albeit

any customer Uj , j > i, is in service at the time of arrival of Ui. The service of

Uj , for any j > i, continues until completion.

The order of customer service given is based on their priority, and within each

priority class FCFS. In this entire thesis, customer service time is assumed to be

exponential and is class dependent, and there is only a single server in the system.

Priority i customers have an exponential service-time distribution with mean service

time 1/µi, for i = 1, 2, . . . , R.

We will use the notation M/M/1-R/b/c to characterize priority queueing system

in our model where the the first three characters bear the same information as those

introduced by Kendall [20], the parameters R, b and c are as introduced earlier.

For example, in the applications of health-care, an ED typically has only one EP

attending several patients. There are several emergency beds for patients who are in

treatment or are under observation after initial treatment. At the same time there

are more beds for patients who require attention before receiving any treatment and

some patients need to wait without a bed available for them. But due to the nature

of operations, the models of a priority queue for ED service is not quite the same as

a multi-server priority queue studied by others.

Results in [7] can not be readily applied here. In the later chapters, we will discuss

more in detail about priority queues and demonstrate the use of the finite Markov

chain imbedding technique to obtain the probability distribution of ER wait times.
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Chapter 2

Markov Chain

2.1 Basic Definitions

For convenience, we use the notation X = {Xt : t ∈ T} to denote a stochastic

process where Xt is a random variable and T is an index set. In this thesis we will

treat T a collection of discrete times otherwise indicated. For simplicity, T commonly

starts with the value 0 to denote initial time, and often T = N ∪ {0} = {0, 1, 2, · · · }.

But for theoretical purposes and some applications, T can be treated as a continuous

set over [0,∞). In this case, [0, t) ⊂ T .

A Markov process {Xt} is a stochastic process with the property that given the

value of Xt at some time t, future values Xu for u > t does not depend on past values

Xs for s < t. We will give more formal terms of the discrete version of a Markov chain

in a probabilistic sense that, let X = {X0, X1, X2, · · · } be a discrete time, discrete
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state space stochastic process with state space Ω. Xt is in Ω for any t and X is said

to be a Markov Chain if given states it+1, it, it−1, . . . , i1, i0 ∈ Ω and any time t, we

observe

Pr {Xt+1 = it+1 | X0 = i0, X1 = i1, . . . , Xt−1 = it−1, Xt = it}

= Pr {Xt+1 = it+1 | Xt = it}

It is generally accepted to use Xt = i to denote that the process is in state i at

time t. Also the conditional probability of Xt+1 = j given that Xt = i, the process

enters state j at time t + 1 from state i at time t, is called the one-step transition

probability and is denoted by pt,t+1
ij = P (Xt+1 = j | Xt = i). In this thesis, we

consider only time-homogeneous discrete-time discrete state space Markov chains,

which means that transition probabilities pt,t+1
ij = pij are independent of time t for

all i, j ∈ Ω. Moreover, for any Xt = i, the process must enter some state Xt+1 = j in

the finite state space Ω, and clearly pij must satisfy the following conditions:

0 ≤ pij ≤ 1 for all i, j ∈ Ω,

∑
j∈Ω

pij = 1 for all i.

For computational convenience, the one-step transition probabilities pij are often

arranged in a square matrix

P = (pij) =




p11 p12 p13 · · ·

p21 p22 p23 · · ·

p31 p32 p33 · · ·

...
...

...
. . .




(2.1.1)
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where pij is the entry of the ith row and the jth column. P is called a transition

probability matrix. A Markov process is completely defined once the transition prob-

ability matrix is given or constructed. An initial state probability distribution of a

Markov chain is defined as in the following

Definition 2.0.1. Initial probability distribution of a Markov chain X is the proba-

bility mass function ξ = (ξi)i∈Ω of the initial state Xi0 , ie. P (Xi0 = k) = ξk.

Typically ξ is a row vector. In this thesis, all vectors are in rows unless they are

indicated by the symbol ′ as a superscript on the right, ie. ξ is a row vector and ξ′ is a

column vector — the transpose of ξ. We will show a simple example of calculating the

probability of a two-event and three-event Markov process in the following. Suppose

there is a sample of four events E0, E1, E2 and E3 happened sequentially, with E0

being the state or event where the process has started. We may have the interest to

calculate the probability of the process X starts with event zero followed by event

one. By the definition of conditional probabilities and properties of a Markov process

we have

P (X0 = E0, X1 = E1) = P (E0, E1) = P (E1 | E0)P (E0) = ξ0p01

By the same token, the probability of a process of three events must be

P (E0, E1, E2) = P (E2 | E0, E1)P (E0, E1)

= P (E2 | E1)P (E1 | E0)P (E0)

= ξ0p01p12
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and it can be generalized that

P (Ei0, Ei1 , · · · , Eit) = ξi0pi0i1pi1i2 · · · pit−2it−1
pit−1it

If we denote by p
(m)
ij the probability of a Markov process starting from state Ei and

entering state Ej in exactly m steps, and let again ξi be the probability of the initial

state be Ei of a Markov process, the unconditional probability p
(m)
∗j of the process

being in state Ej in exactly m steps can be calculated as

p
(m)
∗j =

∑

i∈Ω

ξip
(m)
ij

(see Feller [9]).

In matrix analysis it is easy to recognize that with a proper arrangement of ξ and

the transition probability matrix P , the probability of the process entering state j

given that it started in state i in m steps is the entry in the ith row and jth column

of the m-step transition matrix

P (m) = P × P × · · · × P = Pm (2.1.2)

and the kth element of the resultant vector of the product of ξ and the m-step

transition probability matrix P (m)

ξP (m) = ξ × P × P × · · · × P = ξ × Pm (2.1.3)

is P
(m)
∗ik

, for all ik ∈ Ω.
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2.2 Introducing the Finite Markov Chain Imbed-

ding

To the best of our searching ability, the first paper published using Markov chains

to study queues was by David G. Kendall [19] in 1951. In his paper, Kendall explained

in detail a very original idea of looking at “regeneration points” at which customers

depart to study the stochastic process describing the fluctuations of queue-size, non-

Markovian in general, by making it a Markovian one. The M/G/1 queue system was

studied by considering the behavior of a certain imbedded Markov chain and obtained

the distribution of queue length in statistical equilibrium. The ergodic properties of

the system in relation to the value of the relative traffic intensity ρ (ρ < 1, ρ = 1

and ρ > 1) was closely examined by Kendall when there was no special condition

made on an maximum queue size (the queue size was only assumed to be countable,

the maximum value was not assumed, and therefore the dimension of the probability

transition matrices of imbedded Markov chains were stochastic but infinite). This

paper received rather many discussions, comments and remarks regarding the analysis

of a queueing system by Markov chain imbedding. As Kendall mentioned, the same

results were first obtained by Pollaczek [27] in his paper published in German and

another paper in Russian by Khintchine [22], each using quite different methods.

Pollaczek’s paper involved much of a difficult method of analysis. Khintchine however

used a different and more simpler approach, but an English translation of the paper
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was not available at that time. The term Markov chain imbedding actually first

appeared later in Kendall’s [20] paper in 1953.

Fu and Koutras [10] first introduced a unified approach which provides a sys-

tematically developed theory and method dealing with some problems of runs and

patterns based on the finite Markov chain imbedding (FMCI) technique.

Fu and Lou [13] “provides a rigorous, comprehensive introduction to the finite

Markov chain imbedding technique for studying the distributions of runs and pat-

terns from a unified and intuitive viewpoint, away from the lines of traditional com-

binatorics”. The concept of finite Markov chain imbedding is re-visited and the book

provides ample of theoretical backgrounds with formal definitions, many important

theoretical derivations and concepts were presented by which a systematic approach

of using such technique to turn many statistical problems into ones in terms of find-

ing runs and patterns now have solutions. Its utility is illustrated through practical

applications to a variety of fields, including the reliability of engineering systems, hy-

pothesis testing, quality control, and continuity measurement in the health care sec-

tor. The technique itself continues to receive attentions in the theoretical framework,

as well as its direct applications in studying probability distribution and recognition

of patterns in DNA sequencing, modeling of longitudinal and survival data and the

developing of methods for health care monitoring.

In the paper by Fu [11], the exact and limiting distribution of number of succes-

sions of size 2 ≤ k ≤ n in a random permutation generated by n distinct positive
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integers is obtained by the finite Markov chain approach instead of the traditional

combinatorial analysis. Also by Fu [12], a simple formula of the distribution of the

scan statistics of window size r for a sequence of n Bernoulli trials or Markov depen-

dent bistate trials was derived. The relative small window size r and short length of

sequence n limitation in deriving the formula of the distribution of the scan statis-

tics at the time was overcame. In connection to biology, one result Grégory Nuel

demonstrated in [25] was using the FMCI technique to device recursive algorithms to

compute the exact CDF or complementary CDF of the local score of one sequence

and therefore computing the exact p-value of a statistic for the first time when find-

ing hydrophobic segments in a protein database. These is only a small sample of

applications of the finite Markov chain imbedding technique.

In a sketch, the approach of our studying the wait time of patient in ED under

the priority queue setting is as the following.

1. Recognize the various status (ie. extract sufficient information such as the

number of patients in every priority category, time points of observation, etc.)

of an ED and represent them by a collection of patterns.

2. Apply the finite Markov chain technique to construct a Markov process for the

study of our interest.

3. In most cases, we are interested in obtaining the distribution of the waiting

time, first occurrence or first-passage time in Feller’s [9] term, of the above
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constructed Markov chain reaching some sub-collection of patterns in the state

space given an initial condition.

To avoid duplication and further confusion of readers, we will use the definitions

and notation in [13]. Some most important theorems used in later chapters of this

thesis will simply be stated at this time, for details and proofs of the theorems and

many applications of the Finite Markov Chain Imbedding technique, please see [13].

Let Γ = 0, 1, . . . , n be an index set, and let Ω = a1, a2, . . . , am be a finite state

space.

Definition 2.0.2. The non-negative integer-valued random variable Xn(Λ) is finite

Markov chain imbeddable if:

1. there exists a finite Markov chain {Yt : t ∈ Γt} defined on a finite state space Ω

with initial probability vector ξ0,

2. there exists a finite partition {Cx : x = 0, 1, . . . , lt} on the state space Ω, and

3. for every x = 0, 1, . . . , ln, we have

P (Xn(Λ) = x) = P (Yn ∈ Cx | ξ0).

Theorem 2.1. If Xn(Λ) is imbeddable by a time homogeneous finite Markov chain,

then

P (Xn(Λ) = x) = ξ0M
nU′(Cx), (2.2.1)
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where U′(Cx) =
∑

r:ar∈Cx

er, er is a 1 ×m unit vector corresponding to state ar, ξ0 is

the initial probability vector, and M is the transition probability matrix of imbedded

Markov chain.

If the imbedded Markov chain is non-homogenous, the above theorem still holds

with a modification of equation (2.2.1) to

P (Xn(Λ) = x) = ξ0

(
n∏

t=1

Mt

)
U(Cx), (2.2.2)

where {Mt}
n
t=1 is the sequence of m×m transition probability matrices of the imbed-

ded finite Markov chain Yt defined on the state space Ω with initial probability dis-

tribution ξ0 = (P (Y0 = a1), P (Y0 = a2), . . . , P (Y0 = am)).

Let M be the m × m transition probability matrix of the finite Markov chain

Yi defined on the state space Ω with initial probability distribution ξ0 = (P (Y0 =

a1), P (Y0 = a2), . . . , P (Y0 = am)).

A state α ∈ Ω is called an absorbing state if once the Markov process enters state

α and never leaves the state again; ie. pαα ≡ 1, or pαβ ≡ 0 for any β 6= α ∈ Ω. Let

A = {α1, . . . , αk} be the set of all absorbing states of a time-homogeneous Markov

chain Yt with transition probability matrix M . With proper arrangement of the state

space, M can always be expressed in the form:

M =




N(m−k)×(m−k) C(m−k)×k

Ok×(m−k) Ik×k


 (2.2.3)

where m and k (m > k) are the numbers of states in Ω and A, respectively. Let row
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vector ξ0 = (ξ : 0)1×m be the initial distribution, where ξ = (ξ1, . . . , ξm−k),
m−k∑
i=1

ξi = 1,

and 0 = (0, . . . , 0)1×k.

Theorem 2.2. For a time-homogeneous Markov chain {Yi} having transition proba-

bility matrix of the form in (2.2.3), the probability of the time index t when the chain

first enters a set of absorbing states can be obtained from

P (Yt ∈ A, Yt−1 /∈ A, . . . , Y1 /∈ A | ξ0) = ξ0N
t−1(I −N)1′ (2.2.4)

where 11×(m−k) is a unit row vector.
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Chapter 3

Single-Server Preemptive Priority

Queues Serving One Customer at a

Time

In this chapter, we demonstrate the construction of a finite Markov chain to

imbed M/M/1-R/b/1 preemptive priority queues which were meticulously described

in Section 1.3 and using the notations introduced in §1.3.2. Let b < ∞ be an integer

indicating the maximum number of customers, either are in service or are waiting to

receive service, allowed to stay in a system at any time. For example, bed-space is very

limited in hospital emergency departments. If an ER is over crowded, patients who

are not in treatment have to wait outside of ER. If the emergency department is over

crowded, then newly arrived patients may have to be deferred to nearby hospitals.
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We will show the procedure to follow for obtaining the probability distribution of the

variable wait time defined slightly different in two ways: in the health care sector,

much attention focuses on the time length (1) starting from the time a patient is

registered to the time of departure (this time length may also be called the length of

stay (LOS); in other queueing systems, the time length (2) starting from the time a

customer enters the queue to the time the customer begins receiving service for the

first time receive more interest (this time length is called wait time).

To obtain the distribution of the random variable wait time, our approach to model

a priority queueing system is to monitor information about the queue at discrete

time points in increments of ∆t and study first the limiting behavior of the system

by an imbedded finite Markov chain. For fixed ∆t, the long run system behavior

can be described by a vector-valued discrete time stochastic process {X(t0 +m∆t),

m = 0, 1, 2, · · · } which stores information about the system at the beginning of every

interval [t0 + m∆t, t0 + (m + 1)∆t). Without loss of generality and for simplicity,

we may let t0 = 0 and write X(t0 + m∆t) = Xm. Instead of directly analyzing the

continuous time process X(t), we consider a discrete time stochastic process which

has vector-valued information {Xm = (Xs
m, X

w
1,m, . . . , X

w
r,m), m = 0, 1, 2, · · · } where

Xs
m = i if a priority i customer is in service at m∆t, or Xs

m = 0 if no one is in service

and in the queue. Xw
i,m informs the number of priority i customers waiting in queue at

m∆t. Let Bm be the number of customers in the queueing system at time m∆t that

we will need later when establishing state transition rules and transition probabilities.
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3.1 Customers of Urgent and Non-urgent Types

This principle of introducing a discrete priority index parameter to derive the

general expected-value formula of machine-repair waiting-line problems is very much

applicable to the studying of hospital emergency department wait-line.

For the simplest model of a priority queue in which a customer is categorized

either to an urgent or a non-urgent group, let urgent customers be assigned higher

service priority over the non-urgent group. Assuming that customers of urgent type

arrive to the system at a mean rate λ1 and non-urgent customers arrive to the system

at a mean rate λ2. The service-time of urgent customers has a mean of 1/µ1 and

distribution F (s1) = 1− exp{−µ1s1}, non-urgent customers has a mean of 1/µ2 and

distribution F (s2) = 1− exp{−µ1s2}. The mean rates of departure from the system

is µ1 and µ2 for urgent and non-urgent customers, respectively.

Suppose a non-urgent customer is in service and within a time interval of [t−∆t, t),

the non-urgent customer in service either departs from the queueing system with

probability µ2∆t, or stays in the system with probability 1 − µ2∆t at time t. If the

non-urgent customer stays and, within the same time interval ∆t, an urgent customer

arrives to the system, then we assume the preemptive-repeat scheduling of the arrived

higher priority customer. It means that the service for the non-urgent customer

would be interrupted and beginning at time t the arrived urgent customer will take

on service. The preempted non-urgent customer would wait at the first position in

the non-urgent section of the queue until the departure of any urgent customer in
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service and there is no urgent customer waiting in line in order to resume to service

again. Under such discipline, it is clear that the only time a non-urgent customer

can be in service is when there is no urgent customer waiting in line or in service.

When the preempted non-urgent customer resumes back to service, the service-time

distribution is again exponential with mean 1/µ2. For any other situation regarding

the arrival process, service for the non-urgent customer would not be interrupted.

3.1.1 State Space and State Transition Rules

We assume that the queue does not go into a state that no customer is in service

while at least one customer is waiting in queue. A finite state space ΩX is induced

by the definition of Xm where ΩX consists of states satisfying the following set of

criteria:

ΩX = (0, 0, 0)
⋃{

(xs, xw
1 , x

w
2 ) | x

s = 1 or xs = 2, 0 ≤ xw
1 ≤ b− 1,

0 ≤ xw
2 ≤ b− 1− xw

1 , x
s = 2 only if xw

1 = 0, and

for each (xs, xw
1 , x

w
2 ), x

s = 0 only if both

xw
1 = 0 and xw

2 = 0
}

where

xs =





0 if no customer is receiving service,

1 if an urgent customer is in service,

2 if a non-urgent customer is in service,

xw
1 monitors the number of urgent customers waiting in queue and xw

2 monitors the

number of non-urgent customers waiting in queue.



35

In help to describe state transitions of the process, we use a bi-variate random

variable (Za,m, Zd,m) to describe the arrival and departure process during [m∆t, (m+

1)∆t) for m = 0, 1, 2, · · · where

Za,m =





0 if no customer arrives to the queue,

1 if an urgent subject arrives to the queue,

2 if a non-urgent subject arrives to the queue,

Zd,m =





0 if no customer departs from the system,

xs if the customer of service priority xs > 0

in service departs from the system.

For the convenience when describing a one-step transition probability by puv =

Pr{Xm+1 = v | Xm = u} for any m, we use the notation u → v to describe

a one-step state transition of the process going from Xm = (us, uw
1 , u

w
2 ) = u to

Xm+1 = (vs, vw1 , v
w
2 ) = v. For a fixed b, we state the transition rules by describing all

possible states and their transitions in the following.

When the queue capacity is not reached, Bm < b,

(0, 0, 0) → (Za,m, 0, 0) if (A1)
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(1, uw
1 , u

w
2 ) →





(1, uw
1 , u

w
2 ) if (A2)

(1, uw
1 + 1, uw

2 ) if (A3)

(1, uw
1 , u

w
2 + 1) if (A4)

(1, uw
1 − 1, uw

2 ) if (A5)

(2, 0, uw
2 − 1) if (A6)

(2, 0, uw
2 ) if (A7)

(0, 0, 0) if (A8)

(2, 0, uw
2 ) →





(1, 0, uw
2 ) if (A9)

(2, 0, uw
2 − 1) if (A10)

(0, 0, 0) if (A11)

(2, 0, uw
2 ) if (A12)

(2, 0, uw
2 + 1) if (A13)

(1, 0, uw
2 + 1) if (A14)

where

(A1) the system is empty at timem∆t and it stays empty at time (m+1)∆t if Za,m =

0, or service begins for any new arrival with service priority score Za,m > 0, note

that Zd,m must be zero if Xm is a zero vector,

(A2) Za,m = 1 and Zd,m = 1: the urgent customer in service departs from the system

and a new urgent customer arrives to the system, or if Za,m = 0 and Zd,m = 0:

the system stays unchanged since there is no arrival nor departure,
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(A3) Za,m = 1 and Zd,m = 0: the urgent customer in service remains in service,

an urgent customer arrives and must wait at the last position in the urgent

customer section of the queue,

(A4) Za,m = 2 and Zd,m = 0: the urgent customer in service remains in service, a

non-urgent customer arrives and must wait at the end of the line for service,

(A5) Za,m = 0 and Zd,m = 1 and uw
1 > 0: the urgent customer in service departs

from the system and there is no new arrival, the urgent customer who waits at

the first position begins service next,

(A6) Za,m = 0 and Zd,m = 1, uw
1 = 0 and uw

2 > 0: the urgent customer in service

departs from the system, there is no new arrival and no urgent customer waits

in line, the non-urgent customer who waits at the first position begins service

next,

(A7) Za,m = 2 and Zd,m = 1 and uw
1 = 0: the urgent customer in service departs from

the system, a new non-urgent customer arrives, and there is no urgent customer

waiting in line,

(A8) Za,m = 0 and Zd,m = 1, uw
1 = 0 and uw

2 = 0: the urgent customer in service

departs from the system, there is no new arrival and no customer waiting in

line for service.

(A9) Za,m = 1 and Zd,m = 2: the non-urgent customer in service departs from the
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system and a newly arrived urgent customer begins service next,

(A10) Za,m = 0 and Zd,m = 2 and uw
2 > 0: the non-urgent customer in service departs

from the system and there is no new arrival, the non-urgent customer who waits

at the first position in line begins service next,

(A11) Za,m = 0 and Zd,m = 2 and uw
2 = 0: the non-urgent customer in service departs

from the system, there is no new arrival and no customer waiting in line for

service,

(A12) Za,m = 0 and Zd,m = 0: no arrival and no departure,

(A13) Za,m = 2 and Zd,m = 0: the non-urgent customer in service remains in service

and a newly arrived non-urgent customer waits at the end of the line for service,

(A14) Za,m = 1 and Zd,m = 0: the non-urgent customer in service remains and has

service interrupted due to the arrival of an urgent customer, the preempted

non-urgent customer waits at the first position in line and service begins for the

arrived urgent customer next.

The preemptive discipline of the priority queue can be seen in the last state transition

rule above. Note that for any m, us = 2 only if uw
1 = 0.
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When the system capacity is reached, Bm = b, then for any m, Za,m = 0 and

(1, uw
1 , u

w
2 ) →





(1, uw
1 , u

w
2 ) if (B1)

(1, uw
1 − 1, uw

2 ) if (B2)

(2, 0, uw
2 − 1) if (B3)

(2, 0, uw
2 ) →





(2, 0, uw
2 ) if (B4)

(2, 0, uw
2 − 1) if (B5)

where

(B1) Za,m = 0 and Zd,m = 0: the system remains unchanged since there is no depar-

ture,

(B2) Za,m = 0 and Zd,m = 1 and uw
1 > 0: the urgent customer in service departs

from the system and the urgent customer who waits in the first position begins

service next,

(B3) Za,m = 0 and Zd,m = 1 and uw
1 = 0: the urgent customer in service departs from

the system and no urgent customer waits in line, the non-urgent customer who

waits in the first position begins service next,

(B4) Za,m = 0 and Zd,m = 0: the system remains unchanged since there is no depar-

ture,

(B5) Za,m = 0 and Zd,m = 2: the non-urgent customer in service departs from the

system and there is no urgent customer waiting in line, the non-urgent customer

who waits in the first position begins service next.
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In our definition, if the system is full at time m∆t, no new arrival is allowed to enter

the system during the time interval [m∆t, (m + 1)∆t) for any m independent of the

output process.

3.1.2 Assigning Transition Probabilities and Finding the Er-

godic Distribution

For convenience, we let puv denote the one-step transition probability Pr{Xm+1 =

(vs, vw1 , v
w
2 ) = v | Xm = (us, uw

1 , u
w
2 ) = u} for m = 0, 1, 2, · · · . When defining the

transition probabilities of the imbedded Markov chain, we need to give heed to the

requirement that
∑
v

puv = 1 for any given (us, uw
1 , u

w
2 ).

Assuming that urgent and non-urgent customers arrive to the priority queue as

independent Poisson processes with mean rates λ1 and λ2, respectively, and assuming

that the service-time distributions of both types of customer are independent and

are exponentially distributed. The mean rate of departure from the system is µ1 for

urgent customers, and the mean rate is µ2 for non-urgent customers. For any time

m, if there is an arrival of a customer during the time interval [m∆t, (m + 1)∆t),

the customer will only be admitted into the queue system if the system is not full

at time m∆t. Suppose there is a customer who, regardless of priority, arrived to the

system during the time interval [m∆t, (m+1)∆t), we do not allow the same customer

to depart from the system during [m∆t, (m + 1)∆t) and service may begin for the

same customer at a time no sooner than (m + 1)∆t. We list explicitly the state
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transition probabilities of M/M/1-2/b/1 preemptive repeat-different priority queues

in the following.

For any m, if the system is empty, Xm = (0, 0, 0), then

puv =





1− λ1∆t− λ2∆t + o(∆t) if Za,m = 0,

λZa,m
∆t+ o(∆t) if Za,m > 0, for Za,m = 1, 2.

If the system is full, us
m > 0 and Bm = b, then

puv =





1− µus∆t+ o(∆t) if Za,m = 0 and Zd,m = 0,

µus∆t + o(∆t) if Za,m = 0 and Zd,m = us.

If the system is not empty nor full, us > 0 and 1 ≤ Bm < b, then

puv =





(1− λ1∆t− λ2∆t + o(∆t)) (1− µus∆t+ o(∆t)) if (1a)

+
(
λZa,m

∆t + o(∆t)
)
(µus∆t+ o(∆t))

(λZa,m
∆t + o(∆t))(1− µus∆t+ o(∆t)) if (2a)

(1− λ1∆t− λ2∆t + o(∆t))(µus∆t + o(∆t)) if (3a)

(λZa,m
∆t + o(∆t))(µus∆t + o(∆t)) if (4a)

(1a) Za,m = 0 and Zd,m = 0 or Za,m = Zd,m = us,

(2a) Za,m > 0 and Zd,m = 0, for Za,m = 1, 2,

(3a) Za,m = 0 and Zd,m = us,

(4a) Za,m > 0 and Zd,m = us, for Za,m = 1, 2 and Za,m 6= us.
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3.1.3 Irreducible Chain and Existence of a Unique Ergodic

Distribution

To study hospital emergency wait time, we have the assumption that there is a

threshold on the maximum number of patients allowed in an emergency department.

Therefore, an imbedded Markov chain in describing a hospital emergency department

as a priority queueing system always has a finite state space Ω. In practice, it is

reasonable to assume that no patient will spend infinite amount of time waiting for

and be in a treatment. We further assume that whenever there is available waiting

bed-space in an emergency department, new patients continue to be allowed to enter.

While the waiting room is temporarily full, newly arrived patients will be re-directed

to other hospitals until there is space available again. From every state in Ω, there

is a positive probability to reach, in finite amount of time, the empty state where

all patients received treatment and left the emergency department. From this empty

state, there is a positive probability that any non-empty state of X(t) ∈ Ω can be

reached again in a finite amount of time.

In the following, we go through a simple yet a routine argument to show the

existence of an ergodic state distribution of our priority queueing model.

For convenience, we write 0 < λi∆t = λi(∆t) < 1 and 0 < µi∆t = µi(∆t) < 1 in

this section for the purpose of showing irreducibility of the imbedded finite Markov

chains. We may interpret λ1 = 30 arrivals per hour and ∆t = 1/60 to express

λ1∆t = 0.5 arrivals per minute, or simply write λ1(∆t) = 0.5 arrivals per minute and
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let ∆t be 1 minute intervals as a matter of re-scaling λi and µi.

We use the vector (0, 0, 0) to denote the empty state when no patient is waiting nor

is undergoing treatment, and we assign it to be the initial state to show irreducibility.

By the properties of a Poisson arrival process, the one-step transition (0, 0, 0) →

(0, 0, 0) has a transition probability of p
[1]
(0,0,0)→(0,0,0) = (1−λ1(∆t)−λ2(∆t)+o(∆t)) > 0

and it is not difficult to see that (0, 0, 0) is an aperiodic state. The one-step transition

(0, 0, 0) → (1, 0, 0) has a transition probability of p
[1]
(0,0,0)→(1,0,0) = λ1(∆t) + o(∆t) > 0.

Similarly the one-step transition probability p
[1]
(0,0,0)→(2,0,0) is greater than zero.

For the process to have a two-step transition (0, 0, 0) → (1, 0, 0) → (1, 1, 0), by the

independent increment property of a Poisson process, the assumption that the arrival

process is independent of the departure process and since this is the only path to

reach the state (1, 1, 0) in two steps from the empty state, the transition probability

must be p
[2]
(0,0,0)→(1,1,0) = Pr{(1, 0, 0) | (0, 0, 0)}×Pr{(1, 1, 0) | (1, 0, 0)} > 0. Similarly,

other two-step transition probabilities p
[2]
(0,0,0)→(2,0,0), p

[2]
(0,0,0)→(1,1,0), p

[2]
(0,0,0)→(1,0,1), and

p
[2]
(0,0,0)→(2,0,1) all can easily be shown to be greater than zero.

Furthermore, suppose we are interested in the three-step transition of entering

the state (1, 1, 1), the state when an urgent patient is undergoing treatment and

an urgent and a non-urgent patient are waiting in line, one possible path to reach

this state from the empty state is (0, 0, 0) → (1, 0, 0) → (1, 1, 0) → (1, 1, 1) with a

probability Pr{(1, 0, 0) | (0, 0, 0)}×Pr{(1, 1, 0) | (1, 0, 0)}×Pr{(1, 1, 1) | (1, 1, 0)} > 0.

However, since there are other possible paths to reach (1, 1, 1) in three steps from
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the empty state, ie. (0, 0, 0) → (2, 0, 0) → (1, 0, 1) → (1, 1, 1), therefore we have the

inequality p
[3]
(0,0,0)→(1,1,1) ≥Pr{(1, 0, 0) | (0, 0, 0)}×Pr{(1, 1, 0) | (1, 0, 0)}×Pr{(1, 1, 1) |

(1, 1, 0)} > 0 which is a direct result from the Chapman-Kolmogorov identity.

Similarly, for any nonempty state (1, xw
1 , x

w
2 ) or (2, 0, xw

2 ), and under the condi-

tions (xw
1 + xw

2 ) ≤ (b − 1), xw
1 ≥ 0 and xw

2 ≥ 0, it is not difficult to see that there

exists an integer m, (xw
1 + xw

2 ) ≤ m < ∞, that in m steps, p
[m]
(0,0,0)→(1,xw

1
,xw

2
) > 0 or

p
[m]
(0,0,0)→(2,0,xw

2
) > 0.

It is trivial that the state (0, 0, 0) is aperiodic and all other non-empty states

communicate with it. All states can reach one another in a finite number of steps

with positive probabilities. By the following criterion and theorem:

Criterion 3.0.1. A chain is irreducible if, and only if, every state can be reached

from every other state.

Theorem 3.1. In an irreducible Markov chain, all states belong to the same class:

they are all transient, all persistent null states, or all persistent non-null states. In

every case they have the same period. Moreover, every state can be reached from every

other state. · · ·

as stated in Feller [9] Chapter XV Section 4 and Section 5, all states in the finite

state space ΩX are therefore aperiodic and persistent. It is intuitive that there exists

no null or transient states in a finite irreducible aperiodic Markov chain. By the

Theorem (b) in Chapter XV section 6, Feller [9] also showed that there exists an

unique stationary distribution with no zeros (ergodic distribution) for the states in
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ΩX . Alternatively, results of Isaacson and Madsen [17] can also be used to show the

existence of a unique ergodic distribution (or steady-state) distribution.

3.1.4 Obtaining the Unique Ergodic Distribution

We show in this section that there are two methods in obtaining the ergodic

distribution given a transition probability matrix Mk×k(∆t,λ,µ), k < ∞, in our

setting.

First Algorithm

Lemma 3.1.1. If all entries of a matrix A are positive, aij > 0, and v′ is an eigen-

vector of A with vj ≥ 0 for all j, then all entries of v′ are strictly positive.

Proof for the above Lemma is trivial.

Lemma 3.1.2. If a matrix A with all entries non-negative, but A is not a zero

matrix, has a right eigenvector v′ (a column vector), having only positive elements,

associated with eigenvalue λ, then every left eigenvector u (a row vector) of A, having

only non-negative elements, also has the same eigenvalue λ.

Proof. Since u and v′ can not be zero vectors and v′ has only positive elements and

some elements of u are positive, we note that uv′ > 0. Suppose u has eigenvalue λ∗,

we have

λuv′ = u(Av′) = (uA)v′ = λ∗uv′.

So the eigenvalues λ∗ must be equal to λ.
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Theorem 3.2. (Perron-Frobenius) Let A = [aij ] be a real n× n matrix and is non-

negative and irreducible, then the following statements hold:

1. there is a positive real eigenvalue λ of A such that any other eigenvalue λ′ of A

satisfy | λ′ |< λ;

2. there is a left (or respectively a right) eigenvector, associated with λ of A, having

all positive elements;

3. λ is simple, or has algebraic multiplicity 1.

For the proof of the above theorem, please see Theorem 1 in Lancaster and Tismenet-

sky [23] Chapter 15 Section 3.

One property of a transition probability matrix Mk×k(∆t,λ,µ) is that all row

sums are one, so we have

Mk×k(∆t,λ,µ) · 1′ = 1′

where 1 is a k×1 unit row vector. By Lemma 3.1.2, every left non-negative eigenvector

of Mk×k(∆t,λ,µ) has eigenvalue 1. By Theorem 3.2, we see that the absolute values

of all other eigenvalues of Mk×k(∆t,λ,µ) is less than λ = 1 in this case. Since λ has

algebraic multiplicity 1, there exist only one normalized left eigenvector unormal of

the transition probability matrix Mk×k(∆t,λ,µ) associated with eigenvalue 1 that is

the ergodic distribution having only positive elements.
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Second Algorithm

Under closer examination, transition probability matrices defining priority queues

under the Poisson arrival and exponential service assumption in this thesis have a

particular form Mk×k(∆t,λ,µ) = Ik×k +∆t ·Mk×k(λ,µ) if numerically the function

o(∆t) wherever it appears is replaced by 0. λ and µ can be singular or vectors of

positive parameters, Ik×k is an identity matrix and Mk×k(λ,µ) is a non-zero matrix.

Theorem 3.3. Given that a finite irreducible aperiodic Markov chain having transi-

tion probability matrix Mk×k(∆t,λ,µ) = Ik×k +∆t ·Mk×k(λ,µ) and there exists an

ergodic distribution, such distribution is independent of ∆t.

Proof. Suppose we have two transition probability matrices M(∆t, λ, µ) and M(∆τ ,

λ, µ) that differ only in ∆t and ∆τ , ∆t > 0, ∆τ > 0 and ∆t 6= ∆τ . Suppose

uM(∆t,λ,µ) = u

vM(∆τ,λ,µ) = v

u · 1′ = 1

v · 1′ = 1

u = (u1, u2, · · · )

v = (v1, v2, · · · )

1 = (1, 1, · · · )

(3.1.1)

u and v are non-negative vectors and 1 is a unit row vector of proper length.
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Since

u ·Mm(∆t,λ,µ) = u

for m = 1, 2, · · · trivially, then

u · lim
m→∞

Mm(∆t,λ,µ) = u

where u is an ergodic distribution of the finite Markov chain and lim
m→∞

Mm(∆t,λ,µ)

is of identical rows of u. u is unique, see Feller [9]. Same can we say about v with

respect to lim
m→∞

Mm(∆τ,λ,µ). It suffices to show that u = v.

From (3.1.1), we have

u = u ·M(∆t,λ,µ) = u (I +∆tM(λ,µ))

u = u+ u ·∆t ·M(λ,µ)

u ·M(λ,µ) = 0

By the same token, we can show that vT M(λ,µ) = 0T . Thus,

v ·M(λ,µ) = 0

v ·∆tM(λ,µ) = 0

v + v ·∆t ·M(λ,µ) = v

v · (I +∆tM(λ,µ)) = v ·M(∆t,λ,µ) = v

and trivially

v · lim
m→∞

Mm(∆t,λ,µ) = v.

v is an ergodic distribution of the same finite irreducible aperiodic Markov chain,

and by the uniqueness of u with respect to lim
m→∞

Mm(∆t,λ,µ), we have v = u and

our theorem is proved.
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Furthermore, it is easy to see that rank(M(∆t,λ,µ)) = rank(M(λ,µ)) = k − 1

and u can be determined by M(λ,µ) in solving the following system of equations:

u ·M(λ,µ) = 0

u · 1′ = 1

(3.1.2)

From (3.1.2), we get

u ·M∗(λ,µ) = (0, . . . , 0, 1)

where, for convenience, M∗(λ,µ) is M(λ,µ) with the last column added by a k × 1

unit vector. Now M∗(λ,µ) is of full rank and

u = (0, . . . , 0, 1)(M∗(λ,µ))−1

can be obtained to be the last row of the inverse of M∗(λ,µ).

Example 3.1.1. To illustrate the method to obtain the ergodic distribution of a

two class preemptive priority queue which may be used to model ER service, we

synthesize the parameter values in this numerical example. Suppose that arrived

patients are to be categorized either as a priority I (urgent) or a priority II (less

urgent) patient. The hospital does not allow more than three patients to occupy the

emergency department, either in treatment or are waiting for treatment, and only

one patient at a time can be receiving treatment. In our notation, we are modeling a

M/M/1-2/3/1 priority queue. Furthermore, suppose priority I and II patients arrive

to the hospital at mean rates of λ1 = 1 and λ2 = 3 per two hours, respectively. The

mean treatment times for priority II and II patients are µ1 = 80, µ2 = 30 minutes.
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Let ∆t be 10-minute intervals. The state space consists of the states

{(0, 0, 0), (1, 0, 0), (1, 1, 0), (1, 2, 0), (1, 0, 1), (1, 1, 1), (1, 0, 2), (2, 0, 0), (2, 0, 1), (2, 0, 2)}.

By Section 3.1.2, the transition probability matrix corresponding to the above

finite state space can be constructed to be

(0, 0, 0)

(1, 0, 0)

(1, 1, 0)

(1, 2, 0)

(1, 0, 1)

(1, 1, 1)

(1, 0, 2)

(2, 0, 0)

(2, 0, 1)

(2, 0, 2)




0.667 0.083 0 0 0 0 0 0.250 0 0

0.083 0.594 0.073 0 0.219 0 0 0.031 0 0

0 0.083 0.594 0.073 0.031 0.219 0 0 0 0

0 0 0.125 0.875 0 0 0 0 0 0

0 0 0 0 0.594 0.073 0.219 0.083 0.031 0

0 0 0 0 0.125 0.875 0 0 0 0

0 0 0 0 0 0 0.875 0 0.125 0

0.222 0 0 0 0.083 0 0 0.528 0.167 0

0 0 0 0 0 0 0.083 0.222 0.528 0.167

0 0 0 0 0 0 0 0 0.333 0.667




For limited spacing, the transition probabilities were reported to the nearest third

decimal. The ergodic state distribution π can be obtained to be

π = (0.1225, 0.0263, 0.0058, 0.0034, 0.0651, 0.0480, 0.2496, 0.1739, 0.2036, 0.1018).



51

3.2 More Than Two Priority Classes

After seeing examples of how transition probability matrix and the steady state

distributions can be constructed for a two class priority queueing model, we now

extend our work to preemptive-repeat priority queues that have customers of more

than two categories. Using our notation, we studyM/M/1-R/b/1 preemptive priority

queues. Suppose that each customer arriving to the system can first be classified into

one of 1 < R < ∞ priority classes. For fixed b, the finite state space ΩX consists of

states which satisfy the following criteria:

ΩX = {0}
⋃{

X = (xs, xw
1 , . . . , x

w
R) | x

s ∈ {1, . . . , R},

0 ≤ xw
1 ≤ b− 1, 0 ≤ xw

i ≤ b− 1−
i−1∑
j=1

xw
j

for i = 2, . . . , R, and xw
i = 0 for all

i = 1, . . . , xs − 1
}

where 0 is a zero vector of proper length, xs monitors the priority class of the customer

in service, xs is in {1, . . . , R} or xs = 0 if no one is in service, and xw
i monitors the

number of priority i customers waiting in queue, i = 1, 2, . . . , R.

Let (Za,m, Zd,m) be defined the same way as in the previous. Za,m is in {0, . . . , R}

and Zd,m can either be Xs
m or be 0 during [m∆t, (m+1)∆t) for all m. Assuming that

priority class i customers arrive to the system as a Poisson process with rate λi and is

independent of all other classes for i = 1, 2, . . . , R. Under the same preemptive-repeat

priority discipline and the assumptions in Section §3.1, we may generalize the state

transition rules and probabilities, for R > 2, as in the following for the purpose of
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obtaining the ergodic state distribution.

3.2.1 Transition Rules and Transition Probabilities for Pre-

emptive Priority Queues Allowing up to One Customer

in Service

For the convenience of describing one-step state transitions, we let (Xs
m, X

w
1,m, . . . ,

Xw
R,m) = (us, uw

1 , . . . , u
w
R) = u and (Xs

m, X
w
1,m+1, . . . , X

w
R,m+1) = (vs, vw1 , . . . , v

w
R) = v.

In this chapter, let K∗
m = min{k : Xw

k,m > 0, k = 1, . . . , R}. K∗
m essentially is the

priority class of the customer waiting at the first position in line at time m∆t.

We establish the state transition rules using a more compact form to express

state transitions. For fixed b and any m ∈ N0, if the system is completely empty,

(Xs
m, X

w
1,m, . . . , X

w
R,m) = 0, then Zd,m = 0 and

vs = IZa,m>0(Za,m)× Za,m

vwi = 0 for i = 1, . . . , R.

If the system has a customer in service such that there may or may not be cus-

tomers waiting in line and the system is not full, us > 0 and 0 ≤
R∑
i=1

uw
i < b − 1,
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then

vs =





us if Zd,m = 0 and Zd,m = 0,

min(Za,m, u
s) if Zd,m = 0 and Za,m > 0,

Za,m if Zd,m = us and
R∑
i=1

uw
i = 0,

K∗
m if Zd,m = us, Za,m = 0 and

R∑
i=1

uw
i > 0,

min(Za,m, K
∗
m) if Zd,m = us, Za,m > 0 and

R∑
i=1

uw
i > 0

The transition rule of the ℓth entry in (uw
1 , . . . , u

w
R) for ℓ = 1, . . . , R can be expressed

as

vwℓ = uw
ℓ + I1(Za,m, Zd,m, ℓ)− I2(Za,m, Zd,m, ℓ)

where

I1(Za,m, Zd,m, ℓ) =





1 if Zd,m = 0, Za,m > 0 and ℓ = max(us, Za,m), or

if Zd,m = us,
R∑
i=1

uw
i > 0, Za,m ≥ K∗

m and ℓ = Za,m,

0 otherwise,

and

I2(Za,m, Zd,m, ℓ) =





1 if Zd,m = us,
R∑
i=1

uw
i > 0, Za,m = 0 or Za,m ≥ K∗

m,

and ℓ = K∗
m,

0 otherwise,

are indicator functions to control whether the number of customer of the ith priority

group has been increased, decreased by a unit, or stays unchanged from m∆t to

(m+ 1)∆t.
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Else, if the system capacity is reached at time m∆t, meaning us > 0 and
R∑
i=1

uw
i =

b− 1, then for sure Za,m = 0 and

vs =





us if Zd,m = 0,

K∗
m if Zd,m = us,

vwℓ = uw
ℓ − I(Zd,m, ℓ)

where

I(Zd,m, ℓ) =





1 if Zd,m = us and ℓ = K∗
m,

0 otherwise.

For any m and fixed value of b, given Xm = u, the one-step state transition

probabilities of the imbedded Markov chain can be generalized as in the following.

If (Xs
m, X

w
1,m, . . . , X

w
R,m) = 0, then

puv =





1−
R∑
i=1

λi∆t+ o(∆t) if Za,m = 0,

λZa,m
∆t + o(∆t) if Za,m > 0 for Za,m = 1, . . . , R.

If us > 0 and
R∑
i=1

uw
i = b− 1, then

puv =





1− µus∆t + o(∆t) if Za,m = 0 and Zd,m = 0,

µus∆t + o(∆t) if Zd,m = us.
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If us > 0 and 0 ≤
R∑
i=1

uw
i < b− 1, then

puv =





(
1−

R∑
i=1

λi∆t + o(∆t)

)
(1− µus∆t+ o(∆t)) if (1b)

+(λZa,m
∆t + o(∆t)) (µus∆t + o(∆t))

(λZa,m
∆t + o(∆t)) (1− µus∆t+ o(∆t)) if (2b)

(
1−

R∑
i=1

λi∆t + o(∆t)

)
(µus∆t + o(∆t)) if (3b)

(λZa,m
∆t + o(∆t)) (µus∆t + o(∆t)) if (4b)

where

(1b) Za,m = 0 and Zd,m = 0, or Za,m = us and Zd,m = us,

(2b) Za,m > 0 and Zd,m = 0, for Za,m = 1, . . . , R,

(3b) Za,m = 0 and Zd,m = us,

(4b) Za,m > 0 and Zd,m = us, for Za,m = 1, . . . , R and Za,m 6= us.

Once the transition probability matrix is obtained, the ergodic distribution of the

system can easily be calculated as we have shown for the two-priority preemptive-

repeat queues. In the next section, we will show the imbedding procedure to ob-

tain the tail distribution of the random variable, length of stay, which is commonly

recorded in databases of emergency medical centres.
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3.2.2 Finding the Distribution of the Variable Length of Stay

(LOS) from the Completion of Triage and Registration

to the Time of Patient Departure

In the application of hospital emergency patient treatment, suppose our focus is

on the probability distribution of the total duration of stay of a particular priority r

(1 ≤ r ≤ R) patient who arrives to the hospital during [t0 − ∆t, t0) for some t0. In

other words, we want to obtain the tail distribution of the time length from t0 to the

time of departure of the same priority r patient, say tα, from the emergency hospital.

Using the FMCI technique, we need to re-imbed a Markov chain starting at time t0.

Redefining the state transition rules and transition probabilities is then necessary in

order to obtain the tail distribution of the variable LOS.

With the same queueing and service discipline assumed as described in Sections

3.1 and 3.2, now we use a new vector (Y s
m, Y

w
1,m, . . . , Y

w
r,m, Y

w
r+1,m) to store informa-

tion of the queue system for a fixed r for m = 0, 1, · · · . Since our attention on

the system begins at time t0 and at least there should be one patient with priority

level r in the system, for sure we know Y s
0 > 0. For m > 0, entries of the vector

(Y s
m, Y

w
1,m, . . . , Y

w
r,m, Y

w
r+1,m) monitors the following information: Y s

m ∈ {1, . . . , r} mon-

itors the priority score of the patient in treatment at time t0 + m∆t; Y w
i,m monitors

the number of priority i, for i = 1, 2, . . . , r, patients waiting to receive treatment

at time t0 + m∆t; and Y w
r+1,m monitors: (1) the total number of patients who have
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priority scores larger than r and are waiting for treatment when m = 0; and (2) the

total number of patients with priority scores larger than r waiting for treatment at

time t0 +m∆t for m = 1, 2, · · · plus the total number of priority r patients admitted

after time t0. Note the difference in information which Y w
r+1,0 and Y w

r+1,m stores for

m = 1, 2, · · · .

By the definition of the process Yrm for m = 0, 1, · · · , a finite state space Ωr also

is induced consisting of αr and all states which satisfy the following criteria:

Ωr = {αr}
⋃

{(ys, yw1 , . . . , y
w
r+1) | 1 ≤ ys ≤ r, 0 ≤ yw1 ≤ b− 1,

0 ≤ yw2 ≤ b− 1− yw1 , 0 ≤ ywi ≤ b− 1−
i−1∑
j=1

ywj

for i = 3, . . . , r + 1 and for each (ys, yw1 , . . . , y
w
r+1),

ywj = 0 for all j = 1, . . . , ys − 1 when ys > 1}

where αr is a vector state denoting the absorbing state of the process. It is a state

used to indicate the departure of the priority r patient of interest from the emergency

department.

Note that for any m, ys = 0 only if ywi = 0 for all i = 1, . . . , r. When {Yrm,

m = 1, 2, · · · }, has reached 0 for the first time, the system has entered the absorb-

ing state αr. Our main problem can be properly formulated as to obtaining the

tail probability distribution of the variable W (αr), such that the absorbing state

is reached for the first time after t0. Observe that for fixed R, b, and r, Y w
r+1,m is

non-decreasing from time t0 and subsequent times t0 + m∆t for m = 1, 2, · · · . Fur-

thermore, let the arrival-departure information (Za,m, Zd,m) be defined as before, and
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for the convenience in describing one step transition rules and state transition prob-

abilities of the stochastic process describing the queue, we suppose given (Za,m, Zd,m)

and (Y s
m, Y

w
1,m, . . . , Y

w
r,m, Y

w
r+1,m) = (us, uw

1 , . . . , u
w
r , u

w
r+1) the process will make a tran-

sition to a state (Y s
m+1, Y

w
1,m+1, . . . , Y

w
r,m+1, Y

w
r+1,m+1) = (vs, vw1 , . . . , v

w
r , v

w
r+1) for any

m ∈ N0.

Transition Rules for Obtaining the Waiting-Time Distribution of LOS

When the system has only the particular priority r patient of interest undergoing

treatment and there is no patient waiting in line with priority score less than r nor is

the threshold on the maximum number of patients allowed in the system reached, that

is, (Y s
m, Y

w
1,m, . . . , Y

w
r,m, Y

w
r+1,m) = (us, 0, . . . , 0, uw

r+1) where us = r and uw
r+1 < b − 1,

then

vs =





r if Za,m = 0 and Zd,m = 0,

min(Za,m, r) if Za,m > 0 and Zd,m = 0,

αs if Zd,m = r,

for ℓ = 1, . . . , r − 1,

vwℓ =





0 for any Za,m and Zd,m = 0,

αw
ℓ if Zd,m = r,

vwr =





0 if Zd,m = 0 and, Za,m = 0 or Za,m ≥ r,

1 if Zd,m = 0 and 0 < Za,m < r,

αw
r if Zd,m = r,
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vwr+1 =





uw
r+1 + 1 if Zd,m = 0 and Za,m ≥ r,

uw
r+1 if Zd,m = 0 and Za,m < r,

αw
r+1 if Zd,m = r,

where αs and αw
ℓ for ℓ = 1, . . . , r + 1 are the components of the absorbing state

αr = (αs, αw
1 , . . . , α

w
r , α

w
r+1).

If the particular priority r patient of interest has to wait in line after arriving to

the system, and the threshold on the maximum number of patients allowed in the

system is not reached, that is, 0 < us ≤ r, uw
r > 0 and

r+1∑
i=1

uw
i < b − 1, then for

m = 1, 2, · · · ,

vs =





us if Zd,m = 0, and Za,m = 0 or Za,m ≥ r,

min(Za,m, u
s) if Zd,m = 0 and 0 < Za,m < r,

K∗
m if Zd,m = ys and Za,m = 0 or Za,m ≥ r,

min(Za,m, K
∗
m) if Zd,m = us and 0 < Za,m < r.

For ℓ = 1, . . . , r − 1,

vwℓ = uw
ℓ + I1(Zd,m, Za,m, ℓ)− I2(Zd,m, Za,m, ℓ)

where

I1(Zd,m, Za,m, ℓ) =





1 if Zd,m = 0, 0 < Za,m < r, us < r and

ℓ = max(us, Za,m), or

if Zd,m = us, 0 < Za,m < r and ℓ = Za,m,

0 otherwise,
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I2(Zd,m, Za,m, ℓ) =





1 if Zd,m = us, Za,m = 0 and ℓ = K∗
m, or

if Zd,m = us, 0 < Za,m < r, and ℓ = min(K∗
m, Za,m),

0 otherwise,

and

vwr =





uw
r − 1 if Zd,m = us,

r−1∑
i=1

uw
i = 0, and Za,m = 0 or Za,m ≥ r,

uw
r + 1 if us = r, Zd,m = 0, and 0 < Za,m < r,

uw
r otherwise,

vwr+1 =





uw
r+1 + 1 if Za,m ≥ r,

uw
r+1 otherwise.

If the threshold on the maximum number of patients allowed in the system is

reached, uw
r > 0 and

r+1∑
i=1

uw
i = b− 1, then

vs =





us if Zd,m = 0,

K∗
m if Zd,m = us,

for ℓ = 1, . . . , r,

vwℓ = uw
ℓ − I(Zd,m, ℓ)

where

I(Zd,m, ℓ) =





1 if Zd,m = us and ℓ = K∗
m

0 otherwise,

and

vwr+1 = uw
r+1.
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If (Y s
m, Y

w
1,m, . . . , Y

w
r,m, Y

w
r+1,m) = (us, 0, . . . , 0, uw

r+1) where us = r and uw
r+1 = b− 1,

then

(Y s
m+1, Y

w
1,m+1, . . . , Y

w
r,m+1, Y

w
r+1,m+1) =





αr if Zd,m = us = r,

(us, 0, . . . , 0, uw
r+1) otherwise.

Assigning Transition Probabilities for the Waiting-Time Transition Prob-

ability Matrix

For m = 0, 1, 2, · · · , explicitly the one step transition probabilities, puv for deter-

mining the waiting-time distribution can be summarized as in the following.

If Yr(t0 +m∆t) = (us, 0, . . . , 0, uw
r+1) where us = r and Bm < b− 1, then

pu→v 6=αr
=





(1− µr∆t+ o(∆t))

(
1−

R∑
i=1

λi∆t+ o(∆t)

)
if Zd,m = 0 and

Za,m = 0,

(1− µr∆t+ o(∆t))
(
λZa,m

∆t+ o(∆t)
)

if Zd,m = 0 and

Za,m > 0, for

Za,m = 1, . . . , R

or

pu→αr
= µr∆t+ o(∆t) if Zd,m = us.

If (Y s
m, Y

w
1,m, . . . , Y

w
r,m, Y

w
r+1,m) = (us, 0, . . . , 0, uw

r+1) where us = r and Bm = b − 1,

then

pu→αr
= µr∆t + o(∆t) if Zd,m = us
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or

pu→u = 1− µr∆t + o(∆t) if Zd,m = 0.

If 0 < us ≤ r, uw
r > 0 and Bm < b− 1, then

pu→v 6=αr
=





(
1−

R∑
i=1

λi∆t+ o(∆t)

)
(1− µus∆t + o(∆t)) if (1c)

+(λus∆t+ o(∆t)) (µus∆t + o(∆t))

(
1−

R∑
i=1

λi∆t+ o(∆t)

)
(µus∆t+ o(∆t)) if (2c)

(
λZa,m

∆t+ o(∆t)
)
(1− µus∆t + o(∆t)) if (3c)

(
λZa,m

∆t+ o(∆t)
)
(µus∆t + o(∆t)) if (4c)

where

(1c) Za,m = 0 and Zd,m = 0, or if Zd,m = us < r and Za,m = us,

(2c) Zd,m = us and Za,m = 0,

(3c) Zd,m = 0 and Za,m > 0, for Za,m = 1, . . . , R,

(4c) Zd,m = us and Za,m > 0, for Za,m = 1, . . . , R and Za,m 6= us.

Else, if uw
r > 0 and Bm = b− 1, then

pu→v =





µus∆t+ o(∆t) if Zd,m = us,

1− µus∆t + o(∆t) if Zd,m = 0.

Since our interest is only in the LOS of the priority r patient receiving complete

treatment without regarding all other patients lining up after, we may denote one

single absorbing state αr for the Markov chain, where dim(αr) = r + 2.
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Following the procedures as in Fu and Lou [13] Chapters 2 and 3, with appropriate

arrangement of Ωr, the one-step time-homogeneous transition probability matrix can

be partitioned in the form

Mr =




Nr c′r

O1×(card(Ωr)−1) 1




where 1 corresponds to the transition probability of the transition from the absorbing

state to itself. For m = 1, 2, · · · , Nr = (puv) is a matrix, called essential transition

probability matrix, of one-step transition probabilities associated with non-absorbing

states. cr is a row vector whose entries are transition probabilities, pu→αr
≥ 0,

associated with non-absorbing states making a transition to the absorbing state.

LetW (αr) denote the waiting time of the first occurrence of event αr. Discretising

time and for any m ≥ 1, W (αr) = n implies

{
Yrn = αr, Yr(n−1) 6= αr, . . . , Yr2 6= αr, Yr1 6= αr, Yr0 6= αr

}

conditioning on (Y s
0 , Y

w
1,0, . . . , Y

w
r,0, Y

w
r+1,0) 6= αr.

Our main interest is to obtain the tail probability distribution

P (n)
y→αr

= P (W (αr) ≤ n | (Y s
0 , Y

w
1,0, . . . , Y

w
r,0, Y

w
r+1,0) = y) y 6= αr (3.2.1)

of a priority r patient being admitted to the emergency department at time t0 to the

time the patient receives complete treatment and departs in less than or equal to

n intervals of ∆t.
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If we were not to assume a particular starting state (Y s
0 , Y

w
1,0, . . . , Y

w
r,0, Y

w
r+1,0) =

(ys0, y
w
1,0, . . . , y

w
r−1,0, y

w
r,0, y

w
r+1,0) = y, we consider all possible initial states (Y s

0 , Y
w
1,0, . . . ,

Y w
r,0, Y

w
r+1,0) ∈ Ωr \αr, when a priority r patient is admitted to the system at time t0,

by assigning to each possible initial state an appropriate initial-state probability. We

may find the waiting-time distribution of priority class r patients, for any t0, to be of

the form

P (W (αr) ≤ n | ξr) = ξrM
n
r c

′, (3.2.2)

where ξr is a row vector being the initial distribution, and c = (O1×(card(Ωr\αr)) : 1).

Obviously (3.2.1) is a special case of (3.2.2) having a single probability value 1 in

ξr. Note that both (3.2.1) and (3.2.2) still should be considered as conditional, in

the sense that the arrived customer is able to join the queue at time t0, waiting time

distributions.

Example 3.2.1. Recall in Example 3.1.1, suppose now our focus is to obtain the

waiting-time distribution of a priority II patient who is admitted by the emergency

department during some interval of time [t0 − ∆t, t0). The initial state distribu-

tion for the process Y[2]m(t) having state space {α2, (1, 0, 1, 0), (1, 1, 1, 0), (1, 0, 2, 0),

(1, 0, 1, 1), (2, 0, 0, 0), (2, 0, 1, 0), (2, 0, 2, 0), (2, 0, 1, 1), (2, 0, 0, 2)} has entries corre-

spond to the following ergodic states

{(0, 0, 0), (1, 0, 0), (1, 1, 0), (1, 0, 1), (2, 0, 0), (2, 0, 1)} (3.2.3)

just before the arrival of a priority II patient. The state α2 denotes the absorbing
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state, in this example, indicating the completion of treatment of a priority II patient

being admitted to the emergency department during some interval of time [t0−∆t, t0).

We keep π̂k, the kth entry of π̂, for all k’s corresponding to the states in (3.2.3),

and assign π̂k′ = 0 for all k′’s corresponding to the states not in (3.2.3). We then

normalize the non-zero entries such that the sum then is 1. Therefore, the initial

distribution, denoted by ξ2, for obtaining the waiting-time distribution of the entry

of a priority II patient is

ξ2 = (0, 0.2051, 0.0440, 0.0097, 0, 0.1090, 0.2912, 0.3409, 0, 0)

with non-zero entries correspond to the initial states (1, 0, 1, 0), (1, 1, 1, 0), (1, 0, 2, 0),

(2, 0, 0, 0), (2, 0, 1, 0) and (2, 0, 2, 0).

Suppose one is interested in the waiting-time probability distribution of a priority

r patient from the time of admission to an emergency department at time t0 to the

time the patient departs in exactly n intervals of time. Applying Theorem 2.2 in

Fu and Lou [13], we have

P (W (αr) = n | ξr) = ξrN
n−1
r (I −Nr)1

′ (3.2.4)

where I is an identity matrix having the same dimension of Nr and 1 is a unit row

vector of proper length.
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3.2.3 Deriving the Expectation of Wait Time

By the definition of a generating function as in Feller [9] Chapter XI, without

duplication and confusion but in the context of our problem, we will use notations

similar to those in Fu and Lou [13] Chapters 3 and 5. The probability generating

function of W (αr), denoted by ϕW (s) and by definition, can be written as

ϕW (s) =
∞∑

k=0

skPr {W (αr) = k | ξr} =
∞∑

k=1

skPr {W (αr) = k | ξr} (3.2.5)

if we assume Pr{W (αr) = 0} = 0. By this definition, it is not difficult to see that if

we differentiate ϕW (s) once and evaluate the function at s = 1, we will obtain

ϕ
(1)
W (s)

∣∣
s=1

=

∞∑

k=1

kPr{W (αr) = k | ξr} = E[W (αr)] (3.2.6)

which is the expected waiting-time of a priority i patient in an emergency department

since he or she being admitted at some time t0 to the time of his or her departure.

Note that in general, the assumption Pr{W (αr) = 0} = 0 is not needed for the

derivation of (3.2.6) when the definition of W (αr) is other than the LOS we defined

to be in this section.

Fu and Lou [13] in Section 5.4 clearly proved that (3.2.5) and (3.2.6) can be

expressed in terms of ξr and Nr as

ϕW (s) = 1 + (s− 1)ξr(I − sNr)
−11′, (3.2.7)

and

E[W (αr)] = ξr(I −Nr)
−11′. (3.2.8)
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3.2.4 Deriving the Variance of Waiting-Time

Commonly, the variance of a random variable Z is calculated using the formula

Var(Z) = E[Z2]− (E[Z])2. Since we have an expression for E[W (αr)], an expression

for E[W 2(αr)] be determined enables us to compute the variance of W (αr). We will

show that

E[W 2(αr)] = ξr(I −Nr)
−1(I +Nr)(I −Nr)

−11′ (3.2.9)

Alternatively, Fu, Spiring and Xie in [14] Theorem 1 (iii) gives an expression of

E[W 2(αr)] as ξr(I + Nr)(I − Nr)
−21′ and we will show that this expression and

(3.2.9) are equivalent. First, we attempt to show the derivation of E[W 2(αr)] in [14].

Differentiating ϕW (s), by its definition as in (3.2.5), twice and evaluating the

function at s = 1 yields

ϕ
(2)
W (s)

∣∣
s=1

=
∞∑

k=2

k(k − 1)Pr {W (αr) = k | ξr}

=

∞∑

n=1

k(k − 1)Pr {W (αr) = k | ξr}

= E
[
W 2(αr)

]
−E [W (αr)] (3.2.10)

By (3.2.5), ϕ
(2)
W (s) can also be expressed as

ϕ
(2)
W (s) =

∞∑

k=2

k(k − 1)sk−2ξrN
k−1
r (I −Nr)1

′

= ξrNr

(
∞∑

k=2

k(k − 1)sk−2Nk−2
r

)
(I −Nr)1

′

= 2 ξrNr(I − sNr)
−3(I −Nr)1

′
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Therefore,

E[W 2(αr)] = ϕ
(2)
W (s)

∣∣
s=1

+ E[W (αr)]

= 2 ξrNr(I −Nr)
−21′ + ξr(I −Nr)

−11′

= ξr(I +Nr)(I −Nr)
−21′ (3.2.11)

Our method to derive the form of ϕ
(2)
W (s) in product of matrices is by differentiating

equation (3.2.7) twice and evaluating the expression at the value s = 1,

dϕW (s)

ds
= ξr(I − sNr)

−11′ + (s− 1)
d

ds

[
ξr(I − sNr)

−11′
]

d2ϕW (s)

(ds)2
=

d

ds

[
ξr(I − sNr)

−11′
]
+

d

ds

[
ξr(I − sNr)

−11′
]

+ (s− 1)
d

ds

(
d

ds

[
ξr(I − sNr)

−11′
])

(3.2.12)

Evaluating (3.2.12) at s = 1 is to evaluate

2
d

ds

[
ξr(I − sNr)

−11′
]

at s = 1. The main term to look for in the above is d
ds
[ξr(I − sNr)

−11′]. Let

A−1(s) = (I − sNr)
−1 and using the basic rule of differentiating the inverse of a

matrix

d

ds
A−1(s) = −A−1(s)

[
d

ds
A(s)

]
A−1(s)

(see [26]). It is not difficult to show

d2ϕW (s)

(ds)2

∣∣∣∣
s=1

= 2 ξr(I −Nr)
−1Nr(I −Nr)

−11′ (3.2.13)
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From (3.2.10) and (3.2.13), we have

E[W 2(αr)] = ϕ
(2)
W (s)

∣∣
s=1

+ E[W (αr)]

= 2 ξr(I −Nr)
−1Nr(I −Nr)

−11′ + ξr(I −Nr)
−11′

= ξr(I −Nr)
−1(I +Nr)(I −Nr)

−11′

(3.2.14)

To show that (3.2.11) and the last line of (3.2.14) are equivalent, it suffices to

show that (I −Nr)
−1 and (I +Nr) commute. First, since

(I −Nr)(I +Nr) = I −Nr +Nr −NrNr

= Nr −NrNr + I − A

= Nr(I −Nr) + (I −Nr)

= (I +Nr)(I −Nr),

we have (I+Nr) and (I−Nr) commute. By Proposition 3.3.1, (I−Nr)
−1 and (I+Nr)

commute.

Proposition 3.3.1. If two square matrices A and B commutate and A is invertible,

then A−1 and B also commute.

Proof. Since A and B commute and A is invertible, we can write

AB = BA

A−1ABA−1 = A−1BAA−1

BA−1 = A−1B.

Thanks to Dr. Brad Johnson at the Department of Statistics, University of Manitoba,

for the idea and discussion of this simple proof.



70

With the form of E [W 2(αr)] = ξr(I − Nr)
−1(I + Nr)(I − Nr)

−11′, the variance

of the random variable W (αr) is

Var (W (αr)) = E [W 2(αr)]− (E[W (αr)])
2

= ξr(I −Nr)
−1(I +Nr)(I −Nr)

−11′ − [ξr(I −Nr)
−11′]2

= ξr(I −Nr)
−1(I +Nr − 1′ξr)(I −Nr)

−11′

3.2.5 Re-defining the Variable Wait Time

If our interest is to obtain the distribution of the re-defined variable wait time:

starting from the point a customer joined the queueing system to the time service

begins on the same customer for the first time. This is where the FMCI technique

glows as only a minor modification on the imbedding and the state space will allow

us to obtain the distribution of the re-defined W (αr). We will illustrate the proce-

dure on preemptive priority queues directly in determining the transition rules and

probabilities of the process.

Finding the Exact Tail Distribution of Wait time

Conditioning on that a customer of service priority r (1 ≤ r ≤ R) arrived and

is admitted to the queueing system during [t0 − ∆t, t0) for some t0. Re-defining the

state transition rules and transition probabilities is necessary in order to calculate the

tail probabilities of wait time. Let Yrm = (Y s
m, Y

w
1,m, . . . , Y

w
r,m, Y

w
r+1,m) be as previously

defined and let W (αr) denote the waiting time of the event αr where αr ∈ Ωr is

a vector used to denote the absorbing state indicating that service begins for the
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first time on the priority r customer of interest. If during [t0 − ∆t, t0) the queueing

system ever becomes empty or that a service priority j > r customer is in service,

then Yr0 = αr and W (αr) = 0 trivially under the preemptive discipline. Otherwise,

discretising time and for any n ≥ 1, W (αr) = n implies

{
Yrn = αr, Yr(n−1) 6= αr, . . . , Yr1 6= αr, Yr0 6= αr

}
.

With the new definition of αr and W (αr), the newly induced state space of the

process Yrm consists of collection of states which satisfies the following criteria:

Ωr = {αr}
⋃

{(ys, yw1 , . . . , y
w
r ) | 1 ≤ ys ≤ r, 0 ≤ yw1 ≤ b− 1,

0 ≤ yw2 ≤ b− 1− yw1 , 0 ≤ ywi ≤ b− 1−
i−1∑
j=1

ywj

for i = 3, . . . , (r − 1), 1 ≤ ywr ≤ b− 1−
r−1∑
j=1

ywj ,

0 ≤ ywr+1 ≤ b− 1−
r∑

j=1

ywj and for each (ys, yw1 , . . . , y
w
r ),

ywj = 0 for all j = 1, . . . , ys − 1 when ys > 1}.

For the convenience of stating the state transition rules and state transition

probabilities, suppose we are given (Za,m, Zd,m) and (Y s
m, Y

w
1,m, . . . , Y

w
r,m, Y

w
r+1,m) =

(us, uw
1 , . . . , u

w
r , u

w
r+1) = u and the process will make a transition to a state (Y s

m+1,

Y w
1,m+1, . . . , Y

w
r,m+1, Y

w
r+1,m+1) = (vs, vw1 , . . . , v

w
r , v

w
r+1) = v for any m ∈ N0.

Observe that by definition, from t0 and for subsequent moments t0 + m∆t,m =

1, 2, · · · , Y w
r+1,m is non-decreasing and Y s

m = r only if Y w
i,m = 0 for all i = 1, . . . , r − 1.

When the system reaches the state (Y s
m = r, 0, . . . , 0, Y w

r+1,m) at some m for the first

time, the system has entered the absorbing state αr. Our main interest can be
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properly formulated as to obtaining the tail probability distribution of the variable

W (αr)

P
(n)
(Y s

0
,Y w

1,0,...,Y
w
r,0,Y

w
r+1,0)→αr

= P (W (αr) ≤ n∆t | ξr) (3.2.15)

such that the absorbing state is reached for the first time at or after time t0. It is the

probability that given a service priority r customer be admitted to the system at time

t0, this customer waits less than or equal to n increments of ∆t, n = 0, 1, 2, · · · ,

until service begins for the same priority r customer for first time since the customer

joined the system.

If a particular priority r customer of interest arrived during [t0−∆t, t0) and begins

to receive service at time t0, then the state αr is reached. However, we want to closely

examine the case when the particular priority r customer of interest waits in line for

service after arriving to the system. We give the state transition rules and transition

probabilities as in the following.

State Transition Rules

For m = 0, 1, 2, · · · , if 0 < us ≤ r, uw
i = 0 for i = 1, . . . , r−1, uw

r = 1, and Bm < b,

then

vs =





min(Za,m, u
s) if Zd,m = 0 and 0 < Za,m < r,

Za,m if Zd,m = us and 0 < Za,m < r,

αs if Zd,m = us and, Za,m = 0 or Za,m ≥ r,

us otherwise,
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for ℓ = 1, . . . , r − 1,

vwℓ =





1 if Zd,m = 0 and 0 < Za,m < r and ℓ = max(Za,m, u
s),

αw
ℓ if Zd,m = us and, Za,m = 0 or Za,m ≥ r,

uw
ℓ otherwise,

vwr =





2 if us = r, Zd,m = 0 and 0 < Za,m < r,

αw
r if Zd,m = us and, Za,m = 0 or Za,m ≥ r,

1 otherwise,

vwr+1 =





uw
r+1 + 1 if Zd,m = 0 and Za,m ≥ r,

αw
r+1 if Zd,m = us and, Za,m = 0 or Za,m ≥ r,

uw
r+1 otherwise,

where αs and αw
ℓ for ℓ = 1, . . . , r + 1 are the components of the absorbing state

αr = (αs, αw
1 , . . . , α

w
r , α

w
r+1).

For m = 1, 2, · · · , if 0 < us ≤ r, uw
r > 1 or uw

r > 0 and uw
i > 0 for some

i ∈ {1, . . . , r − 1} and Bm < b, then

vs =





min(Za,m, u
s) if Zd,m = 0 and 0 < Za,m < r,

min(Za,m, K
∗
m) if Zd,m = us and 0 < Za,m < r,

K∗
m if Zd,m = us and, Za,m = 0 or Za,m > K∗

m,

us otherwise,
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for ℓ = 1, . . . , r − 1,

vwℓ =





uw
ℓ + 1 if Zd,m = 0, 0 < Za,m < r and ℓ = max(Za,m, u

s),

uw
ℓ − 1 if Zd,m = us, Za,m = 0 or za > K∗

m, and ℓ = K∗
m,

uw
ℓ otherwise,

vwr =





uw
r + 1 if us = r, Zd,m = 0 and 0 < Za,m < r,

uw
r − 1 if uw

r > 1, Zd,m = us and, Za,m = 0 or Za,m ≥ r,

uw
r otherwise,

vwr+1 =





uw
r+1 + 1 if Za,m ≥ r,

uw
r+1 otherwise.

For m = 1, 2, · · · , if Bm = b, then Za,m = 0 and

vs =





K∗
m if Zd,m = us, uw

r > 1 or, uw
r > 0 and uw

k > 0 for

some k ∈ {1, . . . , r − 1},

αs if Zd,m = us, uw
r = 1 and uw

k = 0 for k = 1, . . . , r − 1,

us otherwise,

for ℓ = 1, . . . , r − 1,

vwℓ =





uw
ℓ − 1 if Zd,m = us, uw

r > 1, or uw
r > 0 and uw

k > 0

for some k ∈ {1, . . . , r − 1}, and ℓ = K∗
m,

αw
ℓ if Zd,m = us, uw

r = 1 and uw
k = 0 for all

k = 1, . . . , r − 1,

uw
ℓ otherwise,
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vwr =





uw
r − 1 if uw

r > 1, Zd,m = us and uw
k = 0 for k = 1, . . . , r − 1,

αw
r if Zd,m = us, uw

r = 1 and uw
k = 0 for k = 1, . . . , r − 1,

uw
r otherwise,

vwr+1 =





αw
r+1 if Zd,m = us, uw

r = 1 and uw
k = 0 for k = 1, . . . , r − 1,

uw
r+1 otherwise.

State Transition Probabilities

For m = 0, 1, 2, · · · , the one-step transition probabilities for determining the

waiting-time distribution can be summarized as in the following.

Assuming that the service priority r customer is waiting in queue and the queue

capacity is not reached, if uw
r = 1, uw

i = 0 for i = 1, . . . , r − 1, then Zd,m = us and,

Za,m = 0 or Za,m ≥ r with probability

pu→αr
=

(
1−

r−1∑
i=1

λi∆t + o(∆t)

)
(µus∆t + o(∆t))

or

pu→v 6=αr
=





(
1−

r∑
i=1

λi∆t + o(∆t)

)
(1− µus∆t+ o(∆t)) if (1d)

+ (λus∆t + o(∆t)) (µus∆t + o(∆t))

(
λZa,m

∆t + o(∆t)
)
(µus∆t+ o(∆t)) if (2d)

(
λZa,m

∆t + o(∆t)
)
(1− µus∆t + o(∆t)) if (3d)

where

(1d) Zd,m = 0 and Za,m = 0, or Zd,m = us < r and Za,m = us,
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(2d) Zd,m = us and Za,m > 0 for Za,m = 1, . . . , r − 1, Za,m 6= us,

(3d) Zd,m = 0 and Za,m > 0 for Za,m = 1, . . . , r.

If uw
r > 1 or uw

i > 0 for some i ∈ {1, . . . , r − 1}, then

pu→v 6=αr
=





(
1−

r∑
i=1

λi∆t+ o(∆t)

)
(1− µus∆t + o(∆t)) if (1e)

+ (λus∆t+ o(∆t)) (µus∆t + o(∆t))

(
1−

r∑
i=1

λi∆t+ o(∆t)

)
(µus∆t+ o(∆t)) if (2e)

(
λZa,m

∆t+ o(∆t)
)
(1− µus∆t + o(∆t)) if (3e)

(
λZa,m

∆t+ o(∆t)
)
(µus∆t + o(∆t)) if (4e)

where

(1e) Zd,m = 0 and Za,m = 0, or if Zd,m = us < r and Za,m = us,

(2e) Zd,m = us and Za,m = 0,

(3e) Zd,m = 0 and Za,m > 0, for Za,m = 1, . . . , r,

(4e) Zd,m = us and Za,m > 0 for Za,m = 1, . . . , r, Za,m 6= us.

Assuming that the service priority r customer is waiting in queue and Bm = b, if

uw
r = 1, uw

i = 0 for i = 1, . . . , r − 1, then Zd,m = us with probability

pu→αr
= µus∆t + o(∆t)

or Zd,m = 0 with probability

pu→u = 1− µus∆t + o(∆t).
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Else, if uw
r > 1 or uw

k > 0 for some k ∈ {1, . . . , r − 1}, then

pu→v 6=αr
=





µus∆t + o(∆t) if Zd,m = us,

1− µus∆t + o(∆t) if Zd,m = 0.

Similarly, with appropriate arrangement of Ωr, the one-step time homogeneous

tpm Mr can be partitioned as

Mr =




Nr c′r

O1×(card(Ωr)−1) 1


 . (3.2.16)

Considering all possible initial status (Y s
0 , Y

w
1,0, . . . , Y

w
r,0, Y

w
r+1,0) ∈ Ωr at time t0 and

assigning to each possible starting state an appropriate initial-state probability such

that
∑

y∈Ωr

Pr{(Y s
0 , Y

w
1,0, . . . , Y

w
r,0, Y

w
r+1,0) = y} = 1. The general waiting-time distribu-

tion of a priority r customer, for any t0, now is of the form

P (W (αr) ≤ n∆t | ξr)

=
∑

y∈Ωr

Pr{(Y s
0 , Y

w
1,0, . . . , Y

w
r,0, Y

w
r+1,0) = y} · P

(n)
y→αr

(3.2.17)

with lim
n→∞

∑
y∈Ωr

Pr{(Y s
0 , Y

w
1,0, . . . , Y

w
r,0, Y

w
r+1,0) = y} · P

(n)
y→αr = 1.

Equation (3.2.17) can be expressed as a product

ξrM
n
r c

′, (3.2.18)

where ξr is a row vector being the initial-state distribution having non-negative entries

summing to one, and c = (01×(card(Ωr−1)) : 1). Obviously (3.2.15) is a special case of

(3.2.17) which has a single probability value 1 in ξr. To obtain the first and second

moments of W (αr), equations (3.2.8) and (3.2.14) also can be applied here.
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Example 3.2.2. Continuing from Example 3.1.1, from the ergodic states an urgent

patient can only be admitted into the system in the following possible states

{(0, 0, 0), (1, 0, 0), (1, 1, 0), (1, 0, 1), (2, 0, 0)}.

Y[1]m has a state space

Ω1 = {(1, 1, 0), (1, 2, 0), (1, 1, 1),α1}

and a normalized initial distribution

ξ1 = (0.0562, 0.0125, 0.1059, 0.8255). (3.2.19)

The expectation of wait time of an urgent patient admitted to ED is 14.96 minutes

and s.d. is 48.11 minutes.

If a non-urgent type patient is admitted and has to wait, Y[2]m has a state space

Ω2 =





(1, 0, 1, 0), (2, 0, 1, 0), (1, 1, 1, 0), (1, 0, 2, 0),

(2, 0, 2, 0), (1, 0, 1, 1), (2, 0, 1, 1),α2





and a normalized initial distribution

ξ2 = (0.0562, 0.2670, 0.0125, 0.1059, 0.2800, 0, 0, 0.2785). (3.2.20)

The expectation of wait time of a non-urgent patient admitted to ED is 51.81 minutes

and s.d. is 74.51 minutes.
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Chapter 4

Single-Server Priority Queues with

Service Thresholds

In this chapter, we will demonstrate using the same technique to model M/M/1-

R/b/c preemptive and non-preemptive priority queues. Now, instead of allowing only

one customer at a time to be in service, we allow at the same time up to c to be in

service. Then we show the procedure for obtaining the probability distribution of the

variable wait time - starting from the time a customer joins the queueing system to

the time of receiving service for the first time.

4.1 Preemptive Model

Detailed description of a preemptive priority queue is discussed in Section §1.3 and

in Chapter 3. In this section, we continue to assume the preemptive repeat-different
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discipline where a preempted customer keeps no memory of previous service done and

resumes service afresh after returning to service from preemptions. Some application

of this model can be seen in a hospital emergency department where a medical team

can provide treatment to, whether a physician was on site or was temporarily off site

waiting for new diagnostic reports on patients, a number of patients at the same time

up to some threshold.

Now, with the parameter c > 1, the states used to describe the status of the prior-

ity queue requires modification. We will use a vectorXm = (Xs
1,m, . . . , X

s
R,m, X

w
1,m, . . . ,

Xw
R,m) where at time points m∆t for m = 0, 1, 2, · · · , Xs

i,m monitors the number of

priority i customers in service and Xw
i,m monitors the number of priority i customers

waiting for service for i = 1, . . . , R. With a service threshold c, 1 < c < b, and a sys-

tem capacity b < ∞, the Xm induces a finite state space ΩX which can be constructed

according to the following criteria:

ΩX =
{
0
}⋃ {

(xs
1, . . . , x

s
R, x

w
1 , . . . , x

w
R) | 0 ≤ xs

1 ≤ c, 0 ≤ xw
1 ≤ b− c,

0 ≤ xs
i ≤ c−

i−1∑
k=1

xs
k for i = 2, . . . , R,

0 ≤ xw
i ≤ b− c−

i−1∑
k=1

xw
k for i = 2, . . . , R,

and for each (xs
1, . . . , x

s
R, x

w
1 , . . . , x

w
R), x

w
i = 0 for

i = 1, . . . , k∗ − 1
}

where k∗ = max{k : xs
k > 0 for k = 1, . . . , R | (xs

1, . . . , x
s
R, x

w
1 , . . . , x

w
R) 6= 0}.

Let Bm =
R∑
i=1

(Xs
i,m + Xw

i,m) and Cm =
R∑
i=1

Xs
i,m be the number of customers in

the system and the number of customers in service, respectively, at time m∆t for
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m = 0, 1, · · · . For the convenience when describing a one-step transition probability

by puv = Pr{Xm+1 = v | Xm = u} for anym, we use the notation u → v to describe a

one-step state transition of the process going from (Xs
1,m, . . . , X

s
R,m, X

w
1,m, . . . , X

w
R,m) =

(us
1, . . . , u

s
R, u

w
1 , . . . , u

w
R) = u to (Xs

1,m+1, . . . , X
s
R,m+1, X

w
1,m+1, . . . , X

w
R,m+1) = (vs1, . . . ,

vsR, v
w
1 , . . . , v

w
R) = v. In this chapter, we define K1,m = max{k : Xs

k,m > 0 for k =

1, . . . , R} and K2,m = min{k : Xw
k,m > 0 for k = 1, . . . , R} be, respectively, the highest

priority index of the customers in service and the priority index of the customer

waiting at the first position in queue at time m∆t for m = 0, 1, · · · . Let (Za,m, Za,m)

now describe the arrival and departure process during [m∆t, (m + 1)∆t) for m =

0, 1, · · · where Za,m monitors the service priority of a customer entering into the queue,

Za,m ∈ {0, . . . , R}. Za,m is 0 if no customer arrives to the system, and Zd,m monitors

the service priority of a customer departing from the system, Zd,m ∈ {j : Xs
j,m > 0

for j = 1, . . . , R} or Zd,m = 0 if no customer departs from the system.

The way of storing information about the state of the queueing system in a vector

over time is analogue to taking snapshots in photography starting at some initial time

and then at every time points incremented by a fixed ∆t thereafter. By the properties

of M/M/1 queues, the probability of observing more than one arrival is negligible,

the probability of observing more than one departure is negligible, and the probability

of observing one arrival and one departure within the same ∆t is also negligible.
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4.1.1 Steady State Transition Rules

In order to establish the state transition rules, we first specify how customers are

arranged under some circumstances in order to properly study the limiting behavior

of priority queues. Besides the usual first-come, first-serve rule within each of the

priority classes, when there is a customer Uj with priority j in service and a customer

from a higher priority class i, i < j, enters the queue, we assume the preemptive

repeat-different scheduling. It means that if customer Uj in service does not depart

from the system, the service of Uj would be interrupted. Uj then would retreat to the

first waiting position in queue within the group of class j customers and Ui begins to

receive service at the start of the next ∆t of time. On the other hand, any customer

in service has a certain probability of departing from the system either for completion

of treatment or other reasons. We further assume that if a customer arrives during a

short interval of time ∆t, this customer does not depart from the system within the

same ∆t.

Under such discipline, when a customer with a service priority level i is in service,

it means that there is no customer with service priority score lower than i waiting in

the queue. When a preempted lower service priority customer resumes service, the

service process starts afresh and the service-time probability distribution is assumed

to be the same as before. For fixed values of R, b and c, we establish the state

transition rules of an imbedded M/M/1-R/b/c preemptive repeat-different priority

queue in the following.
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When 0 ≤
R∑
i=1

us
i < c, then for ℓ = 1, . . . , R,

vsℓ = us
ℓ + I(Za,m, ℓ)− I(Zd,m, ℓ),

vwℓ = uw
ℓ = 0,

where

I(Za,m, ℓ) =





1 if 0 < Za,m ≤ R and ℓ = Za,m,

0 otherwise,

I(Zd,m, ℓ) =





1 if
R∑
i=1

us
i > 0, Zd,m > 0 and ℓ = Zd,m,

0 otherwise,

are indicator functions to control that the ℓth component of (Xs
1,m, . . . , X

s
R,m) should

be added by 1, be subtracted by 1, or stays unchanged depending on Za,m and

Zd,m. Note that, in our service rule, if
R∑
i=1

us
i < c, then

R∑
i=1

uw
i = 0, also that if

(Xs
1,m, . . . , X

s
R,m, X

w
1,m, . . . , X

w
R,m) = 0, then Zd,m = 0.

When the threshold on the number of customers in service is reached but not the

queue capacity, i.e., Cm = c and Bm < b, then

vsℓ = us
ℓ + I1(Za,m, Zd,m, ℓ)− I2(Za,m, Zd,m, ℓ),

vwℓ = uw
ℓ + I3(Za,m, Zd,m, ℓ)− I4(Za,m, Zd,m, ℓ),

where Ik(Za,m, Zd,m, ℓ) for k = 1, . . . , 4 are indicator functions determined by the
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following:

I1(Za,m, Zd,m, ℓ) =





1 if (C1)

0 otherwise,

I2(Za,m, Zd,m, ℓ) =





1 if (C2)

0 otherwise,

I3(Za,m, Zd,m, ℓ) =





1 if (C3)

0 otherwise,

I4(Za,m, Zd,m, ℓ) =





1 if (C4)

0 otherwise,

where

(C1) Zd,m = 0, 0 < Za,m < K1,m and ℓ = Za,m, or

Zd,m > 0, Za,m = 0,
R∑
i=1

uw
i > 0 and ℓ = K2,m, or

Zd,m > 0, Za,m > 0,
R∑
i=1

uw
k > 0 and ℓ = min(Za,m, K2,m), or

Zd,m > 0, Za,m > 0,
R∑
i=1

uw
i = 0 and ℓ = Za,m,

(C2) Zd,m = 0, 0 < Za,m < K1,m and ℓ = K1,m, or

Zd,m > 0 and ℓ = Zd,m,

(C3) Zd,m = 0, Za,m > 0, ℓ = max(Za,m, K1,m), or

Zd,m > 0, Za,m ≥ K2,m > 0 and ℓ = Za,m,

(C4) Zd,m > 0, Za,m = 0 or Za,m ≥ K2,m and ℓ = K2,m.
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Else, when the queue capacity is reached, Bm = b, then no new arrival will be

accepted to enter the queueing system, Za,m = 0 with probability 1, and

vsℓ = us
ℓ + I1(Zd,m, ℓ)− I2(Zd,m, ℓ),

vsℓ = us
ℓ − I3(Zd,m, ℓ).

where

I1(Zd,m, ℓ) =





1 if Zd,m > 0 and ℓ = K2,m,

0 otherwise,

I2(Zd,m, ℓ) =





1 if Zd,m > 0 and ℓ = Zd,m,

0 otherwise,

I3(Zd,m, ℓ) =





1 if Zd,m > 0 and ℓ = K2,m,

0 otherwise.

Example 4.1.1. For an emergency department having parameters R = 3, b = 10

and c = 3, arrivals are categorized as service priority I (highest), II or III (lowest), a

working emergency service team allows up to 3 patients at the same time to undergo

treatment process, and the department can allow up to 10 patients in the system (ie.

allowing up to 7 in the wait room). We give a sample of possible state of arrival as a

priority II patient arrives to the ED and a possible state transition with description.

One-step Transition

(0,0,0,0,0,0) → (0,1,0,0,0,0) The queue system is empty and treatment begins for

any new arrival.
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(1,0,1,0,0,0) → (1,1,1,0,0,0) One of each of priority I and III patients are in treat-

ment and are not departing, no one is waiting in queue and the service threshold

is not reached, hence treatment begins for a newly arrived priority II patient.

(1,2,0,0,1,1) → (1,2,0,1,2,1) One priority I and two priority II patients are in

treatment process and are not departing, hence the new arrival waits in queue

behind all other priority II patients already waiting in line.

(1,1,1,0,0,1) → (0,2,1,0,0,1) One patient of each category are undergoing treat-

ment, the priority I patient in treatment is departing while no other priority I

or II patient is waiting in line, hence the new arrival begins treatment process

at time.

(1,1,1,0,0,1) → (1,2,0,0,0,2) One patient of each priority class are undergoing

treatment and no one is departing, the treatment process of the priority III

patient is interrupted and is queued to the first waiting position of all patients

of priority class III, treatment begins for the newly arrived priority II patient.

4.1.2 Transition Probabilities for Finding the Ergodic Dis-

tribution

Once the state transition rules with their corresponding probabilities are defined

for all states in ΩX , steady-state probability distribution π of all states in the finite
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state space can be proved to always exist under our assumptions and be obtained

first.

Unlike the case of the preemptive repeat-different priority queue capable of provid-

ing service to at most one customer, the structure of the transition probabilities now is

rather complicated. It is not impossible to lay out the state transition probabilities but

rather arduous to do so. However, given (Xs
1,m, . . . , X

s
R,m, X

w
1,m, . . . , X

w
R,m) = u, the

one-step transition probabilities puv = Pr{(Xs
1,m+1, . . . , X

s
R,m+1, X

w
1,m+1, . . . , X

w
R,m+1)

= v | (Xs
1,m, . . . , X

s
R,m, X

w
1,m, . . . , X

w
R,m) = u} now not only depend on a single cus-

tomer in treatment process, but on the number and the service priority of customers

who are undergoing treatment processes by

Proposition 4.0.2. Consider an experiment in which a certain event occurs with

probability µ∆t+o(∆t) and does not occur with probability 1−µ∆t+o(∆t) as ∆t → 0,

where ∆t is arbitrarily small and 0 < ∆t < 1
µ
. In a number x > 0 independent trials

of the experiment,

1. the probability that the event never occurs in x trials is (1− xµ∆t+ o(∆t));

2. the probability that the event occurs once in x trials is xµ∆t + o(∆t);

3. the probability that the event occurs more than once in x trials is o(∆t).

Proof. Let Y denote the number of occurrence of the event in x trials, then the
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probability that the event never occurs in x trials is

P (Y = 0) =
(
x

0

)
(µ∆t+ o(∆t))0(1− µ∆t + o(∆t))x

= (1− µ∆t + o(∆t))x

=
x∑

i=0

(−1)i
(
x

i

)
1x−i(µ∆t+ o(∆t))i

= 1−
(
x

1

)
(µ∆t+ o(∆t)) +

(
x

2

)
(µ∆t + o(∆t))2 − · · ·

= 1− xµ∆t + o(∆t).

By the same token, the probability that the event occurs once in x trials is

P (Y = 1) =
(
x

1

)
(µ∆t+ o(∆t))1(1− µ∆t + o(∆t))x−1

= x · (µ∆t + o(∆t)) ·
x−1∑
i=0

(−1)i
(
x−1
i

)
1x−1−i(µ∆t+ o(∆t))i

= x · (µ∆t + o(∆t)) ·
(
1−

(
x−1
1

)
(µ∆t + o(∆t)) +

(
x−1
2

)
(µ∆t+ o(∆t))2

− · · ·
)

= xµ∆t + o(∆t),

and the probability that the event occurs more than once in x trials is

P (Y ≥ 2) =
x∑

y=2

(
x

y

)
(µ∆t + o(∆t))y(1− µ∆t+ o(∆t))x−y

=
(
x

2

)
(µ∆t+ o(∆t))2(1− µ∆t+ o(∆t))x−2 + · · ·

+
(
x

x

)
(µ∆t+ o(∆t))x(1− µ∆t+ o(∆t))0

= o(∆t)

where o(∆t) denotes a function of ∆t such that lim
∆t→0

o(∆t)/∆t = 0

So, in conjunction to the state transition rules, the one-step steady state transition

probability puv’s can be calculated according to the following.



89

If (Xs
1,m, . . . , X

s
R,m, X

w
1,m, . . . , X

w
R,m) = 0, then Zd,m = 0 and

puv =





(
1−

R∑
i=1

λi∆t + o(∆t)

)
if Za,m = 0,

λZa,m
∆t + o(∆t) if Za,m > 0, for Za,m = 1, . . . , R,

0 otherwise.

If 0 < Bm < b, we have

puv =





(
1−

R∑
i=1

λi∆t + o(∆t)

)(
1−

R∑
i=1

us
iµi∆t + o(∆t)

)
if (1f)

(
1−

r∑
i=1

λi∆t + o(∆t)

)(
us
Zd,m

µZd,m
∆t+ o(∆t)

)
if (2f)

(
λZa,m

∆t + o(∆t)
)(

1−
R∑
i=1

us
iµi∆t + o(∆t)

)
if (3f)

(
λZa,m

∆t + o(∆t)
) (

us
Zd,m

µZd,m
∆t + o(∆t)

)
if (4f)

0 otherwise,

where

(1f) Zd,m = 0 and Za,m = 0,

(2f) Zd,m > 0 and Za,m = 0

(3f) Zd,m = 0 and Za,m > 0, for Za,m = 1, . . . , R,

(4f) Zd,m > 0 and Za,m > 0, for Za,m = 1, . . . , R.

If Bm = b, then Za,m = 0 and

puv =





(
1−

R∑
i=1

us
iµi∆t+ o(∆t)

)
if Zd,m = 0,

us
Zd,m

µZd,m
∆t + o(∆t) if Zd,m > 0,

0 otherwise.
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4.1.3 Obtaining the Distribution of Wait Time

Now we focus on computing the distribution of the length of wait time, W (αr), of

a particular priority r (1 ≤ r ≤ R) customer who arrived to the queue in the interval

∆t just before some t0 and begins to receive service for the first time later at some

time tαr
≥ t0. Our main focus here is to obtain the distribution of the length of time

W (αr) = tαr
− t0.

As a priority r customer is entering the system, the initial state can only be in

one of the three categories: (1) the system capacity is full at time t0 − ∆t and no

new arrival can join the queue; (2) either the service threshold is not reached at time

t0−∆t, or there are at least c customers in service during [t0−∆t, t0) yet the system

capacity is not full and there is at least one customer of class j, j > r, in service,

therefore, service of the customer who has the highest priority index is interrupted

to begin service on the arrived priority r customer starting at time t0. In this case,

the absorbing state αr is reached in terms of the imbedded Markov chain; or (3)

the priority r customer has to wait in queue, indicating that at time t0, there is no

customer with priority index j > r in service.

This section differs from Section §3.2.2 in two aspects. First, as mentioned in the

preceding, states of the imbedded Markov chain depend on the number of and the

priority class of customers who are in service. Secondly, the state of interest is the

state at the instance when the priority r customer of our focus starts to receive service

for the first time, not the state at the time of customer’s departure. In the modeling
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of hospital emergency service, the random variable wait time can be defined to be

the length from the time of customer’s triage or registration time to the time of the

customer first visited by an emergency physician.

When studying wait time, we use Yrm = (Y s
1,m, . . . , Y

s
r,m, Y

w
1,m, . . . , Y

w
r,m, Y

w
r+1,m) to

describe the status of the system at time m∆t after t0 for m = 0, 1, 2, · · · where Y s
i,m

monitors the number of class i customers in service, i = 1, . . . , r, Y w
i,m monitors the

number of class i waiting customers, i = 1, . . . , r, Y w
r+1,m records the number of class

j > r waiting customers when m = 0 and Y w
r+1,m monitors the number of class j > r

waiting customers plus the number of class r waiting customers who joined the queue

after time t0 for m = 1, 2, · · · . Yrm induces a finite state space ΩYr
which consists of

states satisfying the following criteria:

ΩYr
=

{
αr

}⋃ {
(ys1, . . . , y

s
r, y

w
1 , . . . , y

w
r , y

w
r+1) | 0 ≤ ys1 ≤ c,

0 ≤ yw1 ≤ b− c− 1, 0 ≤ ysi ≤ c−
i−1∑
k=1

ysk for i = 2, . . . , r,

0 ≤ yw2 ≤ b− c− 1− yw1 , 0 ≤ ywj ≤ b− c− 1−
j−1∑
k=1

ywk

for j = 3, . . . , r − 1, 1 ≤ ywr ≤ b− c− 1−
r−1∑
k=1

ywk ,

0 ≤ ywr+1 ≤ b− c− 1−
r∑

k=1

ywk and for each

(ys1, . . . , y
s
r, y

w
1 , . . . , y

w
r , y

w
r+1), y

w
k = 0 for all

k = 1, . . . , k∗ − 1
}

where k∗ = max{k : ysk > 0 for k = 1, . . . , r | (ys1, . . . , y
s
r, y

w
1 , . . . , y

w
r , y

w
r+1) 6= 0} in the

above. αr denotes the state of system at the instance tαr
.

For the convenience when describing a one-step state transition and transition
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probability denoted by puv = Pr{Y[r]m+1 = v | Yrm = u} for m = 0, 1, · · · , we

use the notation u → v to describe a one-step state transition of the process go-

ing from (Y s
1,m, . . . , Y

s
r,m, Y

w
1,m, . . . , Y

w
r,m, Y

w
r+1,m) = (us

1, . . . , u
s
r, u

w
1 , . . . , u

w
r , u

w
r+1) = u to

(Y s
1,m+1, . . . , Y

s
r,m+1, Y

w
1,m+1, . . . , Y

w
r,m+1, Y

w
r+1,m+1) = (vs1, . . . , v

s
r, v

w
1 , . . . , v

w
r , v

w
r+1) = v.

In this section, we define K3,m = max{k : Y s
k,m > 0 for k = 1, . . . , r} and K4,m =

min{k : Y w
k,m > 0 for k = 1, . . . , r} be, respectively, the highest priority index of the

customers in service and the priority index of the customer waiting at the first posi-

tion in queue at time m∆t for m = 0, 1, · · · since t0. Let (Za,m, Za,m) now describe

the arrival and departure process during [m∆t, (m + 1)∆t) for m = 0, 1, · · · since

t0 where Za,m monitors the service priority of a customer entering into the queue,

Za,m ∈ {0, . . . , R}. Za,m is 0 if no customer arrives to the system, and Zd,m monitors

the service priority of a customer departing from the system, Zd,m ∈ {j : Y s
j,m > 0 for

j = 1, . . . , r} or Zd,m = 0 if no customer departs from the system.

Suppose a priority r customer arrives and joins the system is essentially in condi-

tion (3) above at time t0, then Y w
r,m ≥ 1. We will set forth the state transition rules

and probabilities for obtaining the conditional, in the sense that the arrived customer

is able to join the queue, waiting time distribution. The only case where transition

rules and probabilities need to be discussed about is the case when the arrived priority

r customer is queued at the position behind all waiting customers of priority score of

i or lower.
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Transition Rules and Transition Probabilities

When Cm = c, Bm < b and (Y s
1,m, . . . , Y

s
r,m, Y

w
1,m, . . . , Y

w
r,m, Y

w
r+1,m) = (us

1, . . . , u
s
r, 0,

. . . , 0, uw
r = 1, uw

r+1), then

vsℓ =





us
ℓ + I1(Za,m, Zd,m, ℓ)− I2(Za,m, Zd,m, ℓ)

αs
ℓ if (∗)

vsr =





us
r − I3(Za,m, Zd,m)

αs
r if (∗)

vwℓ =





uw
ℓ + I4(Za,m, Zd,m, ℓ)

αw
ℓ if (∗)

vwr =





uw
r + I5(Za,m, Zd,m, ℓ)

αw
r if (∗)

vwr+1 =





uw
r+1 + I6(Za,m, Zd,m)

αw
r+1 if (∗)

(4.1.1)

for ℓ = 1, . . . , r − 1 where (∗) in (4.1.1) is the condition: Zd,m > 0 and, Za,m = 0 or

Za,m ≥ r. Ik in (4.1.1) for k = 1, . . . , 6 are defined as in the following:

I1(Za,m, Zd,m, ℓ) =





1 if (D1)

0 otherwise,

I2(Za,m, Zd,m, ℓ) =





1 if (D2)

0 otherwise,
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I3(Za,m, Zd,m) =





1 if (D3)

0 otherwise,

I4(Za,m, Zd,m, ℓ) =





1 if (D4)

0 otherwise,

I5(Za,m, Zd,m, ℓ) =





1 if (D5)

0 otherwise,

I6(Za,m) =





1 if (D6)

0 otherwise,

where

(D1) 0 < Za,m < K3,m, Zd,m = 0 and ℓ = Za,m, or if 0 < Za,m < r, Zd,m > 0 and

ℓ = Za,m,

(D2) 0 < Za,m < K3,m, Zd,m = 0 and ℓ = K3,m, or if 0 < Za,m < r and ℓ = Zd,m > 0,

(D3) us
r > 0, 0 < Za,m < r, and Zd,m = 0 or Zd,m = r,

(D4) Zd,m = 0, 0 < Za,m < K3,m and ℓ = K3,m, or if Zd,m > 0, K3,m < ℓ = Za,m < r,

(D5) us
r > 0, 0 < Za,m < r, and Zd,m = 0,

(D6) Za,m ≥ r and Zd,m = 0.
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If Cm = c, Bm < b, 1 <
r∑

k=1

us
k and uw

r ≥ 1, then

vsℓ = us
ℓ + I1(Za,m, Zd,m, ℓ)− I2(Za,m, Zd,m, ℓ),

vsr = us
r + I3(Za,m, Zd,m)− I4(Za,m, Zd,m),

vwℓ = uw
ℓ + I5(Za,m, Zd,m, ℓ)− I6(Za,m, Zd,m, ℓ),

vwr = uw
r + I7(Za,m, Zd,m)− I8(Za,m, Zd,m),

vwr+1 = uw
r+1 + I9(Za,m)

for ℓ = 1, . . . , r − 1, where

I1(Za,m, Zd,m, ℓ) =





1 if (E1)

0 otherwise,

I2(Za,m, Zd,m, ℓ) =





1 if (E2)

0 otherwise,

I3(Za,m, Zd,m) =





1 if (E3)

0 otherwise,

I4(Za,m, Zd,m) =





1 if (E4)

0 otherwise,

I5(Za,m, Zd,m, ℓ) =





1 if (E5)

0 otherwise,

I6(Za,m, Zd,m, ℓ) =





1 if (E6)

0 otherwise,
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I7(Za,m, Zd,m) =





1 if (E7)

0 otherwise,

I8(Za,m, Zd,m) =





1 if (E8)

0 otherwise,

I9(Za,m) =





1 if (E9)

0 otherwise,

where

(E1) Zd,m = 0, 0 < Za,m < K3,m and ℓ = Za,m, or if Zd,m > 0, 0 < Za,m < r and ℓ =

min(Za,m, K4,m), or if Zd,m > 0, Za,m = 0, and ℓ = K4,m,

(E2) Zd,m = 0, 0 < Za,m < K3,m and ℓ = K3,m, or if Zd,m > 0 and ℓ = Zd,m,

(E3)
r−1∑
k=1

uw
k = 0, uw

r > 1, Zd,m > 0, and Za,m = 0 or Za,m ≥ r,

(E4)
r−1∑
k=1

uw
k = 0, us

r > 0, Zd,m = 0 and Za,m < r, or if
r−1∑
k=1

uw
k = 0, us

r > 0 and

Zd,m = r,

(E5) Zd,m = 0, 0 < Za,m < r and ℓ = max(Za,m, K3,m), or if Zd,m > 0, Kr,m ≤ Za,m <

r and ℓ = Za,m,

(E6) Zd,m > 0, Za,m = 0 or Za,m ≥ K4,m, and ℓ = K4,m,

(E7) Zd,m = 0, 0 < Za,m < r and us
r > 0,

(E8)
r−1∑
k=1

uw
k = 0, Zd,m > 0 and, Za,m = 0 or Za,m ≥ r,
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(E9) Za,m ≥ r.

When Bm = b, uw
k = 0 for k = 1, . . . , r − 1 and uw

r = 1, then Za,m = 0 and

Y[r](m+1) =





αr if Zd,m > 0,

Yrm otherwise,

else, if uw
k > 0 for some k = 1, . . . , r−1 or uw

r > 1, then Za,m = 0 and for ℓ = 1, . . . , r,

vsℓ = us
ℓ + I1(Zd,m, ℓ)− I2(Zd,m, ℓ)

vwℓ = uw
ℓ − I3(Zd,m, ℓ)

vwr+1 = uw
r+1

where

I1(Zd,m, ℓ) =





1 if Zd,m > 0 and ℓ = K4,m,

0 otherwise,

I2(Zd,m, ℓ) =





1 if Zd,m > 0 and ℓ = Zd,m,

0 otherwise,

I3(Zd,m, ℓ) =





1 if Zd,m > 0 and ℓ = K4,m,

0 otherwise.

In conjunction to the state transition rules above, the one-step transition proba-

bility matrix used to obtain the waiting-time distribution of αr can be constructed

according to the the following conditions.
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If Cm = c and Bm < b,

puv =





(
1−

R∑
k=1

λk∆t+ o(∆t)

)(
1−

r∑
k=1

us
kµk∆t + o(∆t)

)
if (1g)

(
1−

R∑
k=1

λk∆t+ o(∆t)

)
(us

Zd,m
µZd,m

∆t + o(∆t)) if (2g)

(λZa,m
∆t + o(∆t))

(
1−

r∑
k=1

us
kµk∆t + o(∆t)

)
if (3g)

(λZa,m
∆t + o(∆t))(us

Zd,m
µZd,m

∆t + o(∆t)) if (4g)

0 otherwise,

where

(1g) Zd,m = 0 and Za,m = 0,

(2g) Zd,m > 0 and Za,m = 0,

(3g) Zd,m = 0 and Za,m > 0, for Za,m = 1, . . . , R,

(4g) Zd,m > 0 and Za,m > 0, for Za,m = 1, . . . , R.

If Cm = c and Bm = b, then

puv =





(
1−

r∑
k=1

us
kµk∆t + o(∆t)

)
if Zd,m = 0 and Za,m = 0,

us
Zd,m

µZd,m
∆t+ o(∆t) if Zd,m > 0 and Za,m = 0,

0, otherwise.

For anym ≥ 1, if Yrm = αr, then the one-step transition probability is pαr→αr
= 1.

Once the transition probability matrix Mr is constructed, the distribution of wait

time P (W (αr) ≤ n | (Y s
1,0, . . . , Y

s
r,0, Y

w
1,0, . . . , Y

w
r,0, Y

w
r+1,0)) can again easily be calcu-
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lated by

P (W (αr) ≤ n | ξr) = ξrM
n
r c

′. (4.1.2)

However, remember that (4.1.2) here is a conditional distribution in the sense that

we assumed in the first place a priority class r customer was able to join the queue

at some time t0 in order for this distribution to be meaningful.

As a result, a meaningful mean and variance of the variable W (αr) can again be

calculated by

E[W (αr)] = ξr(I −Nr)
−11′,

and

Var(W (αr)) = ξr(I −Nr)
−1(I +Nr − 1′ξr)(I −Nr)

−11′,

see Section §3.2.3 and §3.2.4.

Example 4.1.2. Here we will demonstrate through an example of computing the

waiting time distribution, expected wait time and the standard deviation of wait

time of patients in a M/M/1-3/b/c preemptive repeat-different priority queueing

system. A data set was obtained with authorization from the Changhua Christian

Hospital Erlin Branch in Taiwan. Many variables were provided and the following

variables (English translated) in the data set were used for analysis:

• Patient Triage and Acuity Scale upon Arrival;

• Patient Registration Time and Date;

• Time of First Physician Order Issued;
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• Time and Date of Patient Departure from the ED.

Variables such as Patient Triage Time and Time of Initial Assessment by a Physi-

cian were not given, therefore we treat the time from patient registration to the time

of first order given by an EP after initial examination as patient wait time. The time

from the first order given by an EP after initial examination to the time of patient

departure from ED is defined as the length of treatment time in this example. In the

Changhua Christian Hospital Erlin Branch patients visiting the ED actually can be

of four priority categories. But, since the data set from January 01 to December 31

of 2007 contains only five priority IV patients, we decided to combine the five priority

IV patient records with the priority III group to perform analyses. Within the 2007

fiscal year, the following descriptive statistics were calculated and tabulated in Table

4.1. Average wait times and treatment times are measured in minutes. It is surprising

Table 4.1: Raw Statistics

Patient Total Number of Average Wait Average

Priority Visits to ED Time (Std. Dev.) Treatment Time

I 3,501 7.42 (7.01) 78.5036

II 9,267 7.3644 (6.01) 92.8010

III 13,918 7.9785 (5.61) 103.6516

to us that the rates of arrival and the average treatment times are quite dissimilar

among the three priority classes, yet the average wait times (defined in this context)
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are quite similar (between 7 to 8 minutes).

If we analyze the wait time as if patients are being seen without priority discipline

but only by FCFS rule, then the calculated overall average wait time is 7.692 minutes

with standard deviation of 5.957 minutes from the data. If we were to use the FMCI

method and assuming first-come, first-serve of a single server queue, the estimated

mean wait time and standard deviation is summarized in Table 4.2 with respect to

parameter values of b = 11, b = 12 and b = 13, and reasonably assigned c = 7.

Table 4.2: Estimated Mean Wait-Time in minutes (Standard Deviation)

b = 11 b = 12 b = 13

c = 7 6.8617 (16.9007) 8.1723 (19.4408) 9.2338 (21.5803)

The estimated mean wait times look very reasonable in this FCFS setting. Withal,

no precise parameter values of the Changhua Christian Hospital Erlin Branch Emer-

gency Department were given to us specifically regarding the number of patients an

emergency medical service team can attend to and the maximum number of patents

allowed in the emergency department.

If we model the patient wait times by the FMCI method and assuming a M/M/1-

3/b/c preemptive repeat-different priority queue, we summarize the expected wait

times with respect to different values of b and c in Table 4.3. In the table, we use 0+

to denote positive real values that are close to 0. Looking at the estimation results

and compare to the results in Tables 4.1 and 4.2, we began to suspect that patients are
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Table 4.3: Estimated Mean Wait-Time in Minutes

b c I II III

10 6 0+ 0.097 19.437

11 6 0+ 0.116 22.775

12 6 0+ 0.130 25.259

13 7 0+ 0.014 5.552

14 7 0+ 0.015 5.691

15 7 0+ 0.015 5.779

not always being seen according to the rules of a preemptive repeat-different priority

queue.

Later we consulted with one of the Changhua Christian Hospital Erlin Branch

emergency departmental staff and were confirmed that in the emergency department

there are seven beds available in total including one for first aid purposes. There is

always one physician on duty in an eight-hour shift rotation through out a day. Each

regular shift then is reduced to six hours during holidays. For a very rough estimate,

an emergency medical service team can attend to 5 or 6 patients at times and post

doctor attendance there are nurse practitioner (NP) to assist in writing physician’s

orders and report on examination and treatment procedures. The emergency depart-

ment can hold 13 to 15 patients being treated or waiting, and additional patient bed

space can be arranged for service when confronted by an unforeseen large volume
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influx.

We wish to extend this modeling in the future by looking at cases where there

is more than one emergency medical service teams available (multi-channel priority

queue problem) attending multiple patients and allowing multiple departures, within

a ∆t, from the hospital. This may more closely resemble the practice in bigger medical

centres and therefore requires estimates in its own setting. But in the next section, we

would like to demonstrate again the application of the finite Markov chain imbedding

technique on the Non-preemptive priority queueing model.

4.2 Non-preemptive Model

In contrast to Section §4.1, we will modify the preemptive-repeat priority queueing

model to a non-preemptive one. By non-preemptive, suppose a customer has arrived

at the system and is assigned with priority score i (1 ≤ i ≤ R). The priority i

customer starts receiving service immediately if the current number of customers in

service is less than c or is equal to c with one departure occurring. Otherwise, if

the the total number of customers in the system is less than b, the newly arrived

would be queued in the waiting line even if there is at least one customer of priority

score j > i in service. Services in progress are never interrupted as is possible in

the preemptive priority queues. The arrived customer with priority number i begins

to receive service only when there is no customer of priority score of k ≤ i waiting

ahead in queue, a customer departs from the system and there is no arrival of a higher
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service priority customer before service began. We translate such service discipline

into a mathematical form in terms of the state transition rules in two parts for the

purpose of: studying the limiting system behavior; and obtaining the waiting time

distribution.

4.2.1 Transition Rules and Probabilities for Finding Ergodic

Distribution of the System

The imbedding procedure is very similar to the case of the preemptive priority

queueing model but requiring small modifications on state transition rules to adapt

to the non-preemptive feature. We will see next an example of state transition which

differs from those in the preemptive model. For an instance of the M/M/1-R/b/c

non-preemptive priority queue when R = 2, b = 5, and c = 2, suppose the current

state of the system is (Xs
1,m, X

s
2,m, X

w
1,m, X

w
2,m) = (1, 1, 0, 1): the state having one non-

urgent customer and no urgent customer waiting in queue and one of each urgent and

non-urgent customers in service. Suppose there is an arrival of an urgent customer

and neither of the customers in service had departed during the ∆t of the new arrival,

then the next state of the system should be:

(Xs
1,m+1, X

s
2,m+1, X

w
1,m+1, X

w
2,m+1) =





(2, 0, 0, 2) under the preemptive priority

scheme,

(1, 1, 1, 1) under the non-preemptive priority

scheme.
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Next we establish the general state transition rules under different conditions of the

system as we did for the preemptive model.

For the convenience when describing one-step state transition rules and probabil-

ities, let (Xs
1,m, . . . , X

s
R,m, X

w
1,m, . . . , X

w
R,m) = u and (Xs

1,m+1, . . . , X
s
R,m+1, X

w
1,m+1, . . . ,

Xw
R,m+1) = v as we did in the previous. The stochastic process {(Xs

1,m, . . . , X
s
R,m, X

w
1,m,

. . . , Xw
R,m) for m = 0, 1, · · · } induces a finite state space consisting of states satisfying

the following criteria:

ΩX =
{
0
}⋃{

X = (xs
1, . . . , x

s
R, x

w
1 , . . . , x

w
R) | 0 ≤ xs

1 ≤ c, 0 ≤ xw
1 ≤ b− c,

0 ≤ xs
i ≤ c−

i−1∑
k=1

xs
k for i = 2, . . . , R,

0 ≤ xw
i ≤ b− c−

i−1∑
k=1

xw
k for i = 2, . . . , R

}

When the system is under the conditions that the threshold on the number of

customers can be in service is not reached or the queue capacity of the system is

reached, the transition rules are exactly the same as the ones shown in the preemptive-

repeat priority queues. In other words, the preemptive or non-preemptive feature does

not affect state transitions when the system is in one of the above two conditions.

The time when we will see differences is when Cm = c and Bm < b, for ℓ = 1, . . . , R,

vsℓ,m = us
ℓ,m + I1(Za,m, Zd,m, ℓ)− I2(Zd,m, ℓ)

vwℓ,m = uw
ℓ,m + I3(Za,m, ℓ)− I4(Za,m, Zd,m, ℓ)

where I1(Za,m, Zd,m, ℓ), I2(Za,m, Zd,m, ℓ), I3(Za,m, ℓ) and I4(Za,m, Zd,m, ℓ) are indicator
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functions determined by Za,m and Zd,m as in the following:

I1(Za,m, Zd,m, ℓ) =





1 if (F1)

0 otherwise,

I2(Zd,m, ℓ) =





1 if (F2)

0 otherwise,

I3(Za,m, ℓ) =





1 if (F3)

0 otherwise,

I4(Za,m, Zd,m, ℓ) =





1 if (F4)

0 otherwise,

where

(F1) Zd,m > 0, Za,m = 0 or Za,m ≥ K2,m, and ℓ = K2,m, or if Zd,m > 0, 0 < Za,m <

K2,m and ℓ = Za,m, or if Zd,m > 0, Za,m > 0,
R∑

k=1

uw
k = 0 and ℓ = Za,m,

(F2) Zd,m > 0 and ℓ = Zd,m,

(F3) Za,m > 0 and ℓ = Za,m,

(F4) Zd,m > 0,
R∑

k=1

uw
k > 0, Za,m = 0 or Za,m ≥ K2,m and ℓ = K2,m, or if Zd,m > 0,

R∑
k=1

uw
k = 0 or 0 < Za,m < K2,m and ℓ = Za,m.

Example 4.2.1. For an emergency department having parameters R = 3, b = 10

and c = 3, arrivals are categorized as service priority I (highest), II or III (lowest), a

working emergency service team allows up to 3 patients at the same time to undergo
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treatment process, and the department can allow up to 10 patients in the system (ie.

allowing up to 7 in the wait room). We give a sample of possible status of the system

as a new patient arrives to the ED, the state transitions given the state of arrival:

(0, 0, 0, 0, 0, 0) → (0, 0, 0, 1, 0, 0) The emergency department is empty and treatment

begins immediately on a newly arrived third priority patient.

(0, 0, 0, 1, 0, 1) → (0, 0, 0, 1, 1, 1) One of each first and third priority patient is in treat-

ment and not departing, there is no one waiting in queue, hence, treatment

begins on a newly arrived second priority patient.

(0, 1, 0, 0, 2, 1) → (0, 2, 0, 0, 2, 1) A first priority and two second priority patients are

in treatment process and are not departing, hence the new entry waits in queue

behind all other first, second or third priority patients in the queue.

(1, 0, 0, 1, 1, 1) → (1, 0, 0, 1, 1, 1) One patient of each category are undergoing treat-

ment, the second priority patient in treatment is departing while no other first

and second priority patient is waiting in queue, hence a newly arrived second

priority patients begins treatment process.

(1, 1, 1, 1, 1, 1) → (1, 1, 2, 1, 1, 1) One patient of each category are undergoing treat-

ment and no one is departing, a newly arrived first priority patient waits in

queue behind other first priority patients but in front of all other second and

third priority patients already waiting.
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In conjunction to the above new transition rules, given Xm = u, the one-step state

transition probabilities puv can be constructed the same way and can be summarized

in a similar fashino as in the preemptive repeat-different priority queueing model.

Various information can be derived from the ergodic distribution of all states in ΩX .

In the next section, we set forth the state transition rules when the interest is on wait

time.

4.2.2 Obtaining the Distribution of Wait Time

Now we focus on computing the distribution of the length of wait time, W (αr), of

a particular priority r (1 ≤ r ≤ R) customer who arrived to the queue in the interval

∆t just before some t0 and begins to receive service for the first time later at some

time tαr
≥ t0. Our main focus here is to obtain the distribution of the length of time

W (αr) = tαr
− t0.

When studying wait time, we imbed the system information in a vector Yrm =

(Y s
1,m, . . . , Y

s
R,m, Y

w
1,m, . . . , Y

w
r,m, Y

w
r+1,m) to describe the status of the system at time

m∆t after t0 for m = 0, 1, 2, · · · where Y s
i,m monitors the number of class i customers

in service, i = 1, . . . , R, Y w
j,m monitors the number of class j waiting customers,

j = 1, . . . , r, Y w
r+1,m records the number of class j > r waiting customers when m = 0

and Y w
r+1,m monitors the number of class j > r waiting customers plus the number

of class r waiting customers who joined the queue after time t0 for m = 1, 2, · · · .

Notice that it requires more amount of system information to obtain the waiting time
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distribution of a priority queue under the non-preemptive scheduling, and Yrm induces

a finite state space ΩYr
which consists of states satisfying the following criteria

ΩYr
=

{
αr

}⋃{
(ys1, . . . , y

s
R, y

w
1 , . . . , y

w
r , y

w
r+1) | 0 ≤ ys1 ≤ c,

0 ≤ yw1 ≤ b− c− 1, 0 ≤ ysi ≤ c−
i−1∑
k=1

ysk for i = 2, . . . , R,

0 ≤ yw2 ≤ b− c− 1− yw1 , 0 ≤ ywj ≤ b− c− 1−
j−1∑
k=1

ywk

for j = 3, . . . , r − 1, 1 ≤ ywr ≤ b− c− 1−
r−1∑
k=1

ywk

and 0 ≤ ywr+1 ≤ b− c− 1−
r∑

k=1

ywk
}

where αr denotes the state of system at the instance tαr
.

Differences in the state space ΩYr
under the preemptive and non-preemptive pri-

ority scheduling is obvious, the differences in state transition rules and probabilities

can easily be identified as we lay the transition rules out under the non-preemptive

scheduling.

Transition Rules and Transition Probabilities

For m = 1, 2, · · · , if Cm = c, Bm < b and (Y s
1,m, . . . , Y

s
R,m, Y

w
1,m, . . . , Y

w
r,m, Y

w
r+1,m) =

(us
1, . . . , u

s
R, 0, . . . , 0, u

w
r = 1, uw

r+1), then

vsℓ =





us
ℓ + I1(Za,m, Zd,m, ℓ)− I2(Za,m, Zd,m, ℓ)

αs
ℓ if (∗),

vwj =





uw
j + I3(Za,m, Zd,m, j)

αw
j if (∗),
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vwr =





uw
r if Zd,m = 0,

αw
r if (∗),

vwr+1 =





uw
r+1 + I4(Za,m, Zd,m)

αw
r+1 if (∗),

for ℓ = 1, . . . , R and j = 1, . . . , r − 1, where the condition (∗) in the above is: if

Zd,m > 0 and, Za,m = 0 or Za,m ≥ r. This is when there is any departure and either

there is no arrival or there is an arrival and the service priority of the arrived customer

must be of r or greater. The indicator functions Ik for k = 1, . . . , 4 in the above are:

I1(Za,m, Zd,m, ℓ) =





1 if (G1)

0 otherwise,

I2(Za,m, Zd,m, ℓ) =





1 if (G2)

0 otherwise,

I3(Za,m, Zd,m, j) =





1 if (G3)

0 otherwise,

I4(Za,m, Zd,m) =





1 if (G4)

0 otherwise,

where

(G1) Zd,m > 0, 0 < Za,m < r and ℓ = Za,m,

(G2) Zd,m > 0, 0 < Za,m < r and ℓ = Zd,m,

(G3) Zd,m = 0, 0 < Za,m < r and j = Za,m,
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(G4) Zd,m = 0 and Za,m ≥ r.

If Cm = c, Bm < b, uw
r > 1 or, uw

r ≥ 1 and uw
j > 0 for some j ∈ {1, . . . , r − 1},

then for m = 0, 1, 2, · · · , the state transition rules are

vsℓ = us
ℓ + I1(Za,m, Zd,m, ℓ)− I2(Zd,m, ℓ)

vwj = uw
j + I3(Za,m, j)− I4(Za,m, Zd,m, j)

vwr = uw
r − I5(Za,m, Zd,m)

vwr+1 = uw
r+1 + I6(Za,m)

for ℓ = 1, . . . , R, and j = 1, . . . , r − 1,

I1(Za,m, Zd,m, ℓ) =





1 if (H1)

0 otherwise,

I2(Zd,m, ℓ) =





1 if (H2)

0 otherwise,

I3(Za,m, j) =





1 if (H3)

0 otherwise,

I4(Za,m, Zd,m, j) =





1 if (H4)

0 otherwise,

I5(Za,m, Zd,m) =





1 if (H5)

0 otherwise,

I6(Za,m) =





1 if (H6)

0 otherwise.
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(H1) Zd,m > 0, 0 < Za,m < r and ℓ = min(Za,m, K4,m), or if Zd,m > 0, Za,m = 0 and

ℓ = K4,m,

(H2) Zd,m > 0 and ℓ = Zd,m,

(H3) 0 < Za,m < r and j = Za,m,

(H4) Zd,m > 0, Za,m = 0 and j = K4,m, or if Zd,m > 0, 0 < Za,m < r and j =

min(Za,m, K4,m),

(H5) uw
k = 0 for k = 1, . . . , r − 1, uw

r > 1, Zd,m > 0, Za,m = 0 or Za,m ≥ r,

(H6) Za,m ≥ r

where the variable K4,m is defined as in Section §4.1.3.

If Bm = b and: (1) if uw
k = 0 for k = 1, . . . , r − 1 and uw

r = 1, then Za,m = 0 and

v =





αr if Zd,m > 0,

u otherwise;

(2) if uw
k > 0 for some k ∈ {1, . . . , r− 1} or uw

r > 1, then Za,m = 0 and for ℓ = 1, . . . ,

R and j = 1, . . . , r,

vsℓ = us
ℓ + I1(Zd,m, ℓ)− I2(Zd,m, ℓ)

vwj = uw
j − I3(Zd,m, j)

vwr+1 = uw
r+1
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where

I1(Zd,m, ℓ) =





1, if Zd,m > 0 and ℓ = K4,m,

0, otherwise,

I2(Zd,m, ℓ) =





1, if Zd,m > 0 and ℓ = Zd,m,

0, otherwise,

I3(Zd,m, j) =





1, if Zd,m > 0 and j = K4,m,

0, otherwise.

By the above rules, state transition probabilities puv can easily be determined

depending on Za,m and Zd,m as for the preemptive priority queues. Once the transi-

tion probability matrix is constructed and partitioned as in (3.2.16), the conditional

waiting time distribution and moments of the variable wait time can all be obtained

for a non-preemptive priority queue.

In this chapter, we clearly see that the finite Markov chain imbedding technique

provides us an unified approach to study priority queues. Not only can we know the

limiting behavior of a system by examining the steady states, it also conveniently

provides a method to obtain the distribution of wait time whose definition is custom

from problem to problem and from investigator to investigator. We have adopted the

methodology found in [10] and formulate the wait time problem into an analysis of

first passage time of a particular pattern in an induced finite state space of a Markov

chain.
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Chapter 5

Discussion - Misclassification Effect

on Priority Queue

Up till now we have been assuming that there is no error in the assignment of the

relative priority of treatment (service) to patients (customers). But in application,

such assumption may not be practical. Taking a close look at ED visits, arrivals

first enter the triage station and be assessed by a nurse for signs and symptoms. It

is expected that the triage process should not take up much time. In emergency

medicine there are growing number of reviews and studies on the validity of triage

systems used in different regions. To name a few of the triage systems, there are

the Australasian Triage Scale (ATS), the Canadian Triage Acuity Scale (CTAS), the

Paediatric Canadian Triage and Acuity Score (paedCTAS), the Manchester Triage

Scale (MTS), the Emergency Severity Index (ESI) and the Singapore Patient Acuity
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Category Scale, etc. Validity here refers to the closeness of the acuity level measured

by nurses to patients’ true acuity at the time of triage. In statistical language, we

say that patient acuity level measured according to the systems is subject to error.

It was also pointed out that there is not a gold standard by which the true patient

acuity could be measured. In practice, often an algorithm is designed to calculate

some index as a proxy to assess validity based on surrogate outcome markers, such

as hospitalization, total length of stay in the ED, cost of the ED visit, intensive care

unit admission and ED resource usage, etc. (See papers by M. R. Baumann and T.

D. Strout [4] and by S. Gouin, J. Gravel, D. K. Amre and S. Bergeron [15].) M.

van Veen and H. A. Moll wrote a good review paper [35] providing an overview on

the matter of reliability and validity of triage systems. I. van der Wulp, M. E. van

Baar and A. J. P. Schrijvers published [33] a simulation study, an example for our

understanding from the perspective of medical science, to assess the reliability and

validity of the MTS.

We give a simple illustration of misclassification in emergency medical service.

A patient who had headache might be assigned with priority 4 as if the headache

was non life-threatening according to a triage system of four levels. But, if in fact

the headache was due to a blockage in blood flow in the brain which may ultimately

lead to a stroke by which the patient requires immediate attention. In this case, the

patient really belong to the relatively priority 1 category and the aim is to detect

the real underlying health concern giving present symptoms. We will dedicate this
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chapter to discuss on some important issues of patient priority misclassification.

Zee and Theil [34] were the ones first to consider misclassification problem in

priority queues for the case of R = 2 only. Suppose in an ED there are only two

categories of patients. True urgent patients arrive to the system as a Poisson process

with mean rate λ1 are mistakenly assigned to be in the non-urgent group at random

at a mean rate δ12. Non-urgent patents arrive to the system as a Poisson process

with mean rate λ2 and are mistakenly assigned to be in the urgent group at random

at a mean rate δ21. Under the condition of misclassification, Zee and Theil showed

that the overall expected wait time can still be better than the mean wait time of a

system where patients are treated simply by FCFS when the following criteria

(
δ12
λ1

+
δ21
λ2

)
< 1

1

µ1
< 1

µ2

are met and relying on an implicit assumption that the treatment time of each patient

does not depend on their assigned treatment priority at triage but on the true patient

acuity which can be correctly assessed by a physician.

They proposed a method to allocate patients with uncertain treatment priority

from either category to a mixture group with treatment priority after the most urgent

but before the less urgent type. Suppose urgent patients are classified into the mixture

group at a rate of ǫ1 and non-urgent patients at a rate of ǫ2. Under the assumption

that ǫ1 > δ12 and ǫ2 > δ21, the overall mean wait time under such allocation when

misclassification exists can be no worse compare to the FCFS system.
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Zee and Theil’s model assumptions are very practical but restrictive, and their

results are very insightful for a two-priority single-channel system. The extension of

introducing mixture groups is possible in priority queueing systems with R > 2, but

currently there are no published papers studying such proposal. Again, our analysis

deviates from the line of Cobham’s [7] method but resource to the more general

approach of using the FMCI technique when misclassification exists in patient triage

prior to treatment, compare to the case if misclassification does not occur in triage

from the beginning.

Suppose all patients are of R treatment priority classes corresponding to their true

acuity levels. Ideally, we would like the priority queue to operate in the condition

that all true acuity level i patients are correctly assigned treatment priority i at

triage and patients are treated in the order of their priority between priority groups.

If misclassification occurs at triage, suppose with probability pij an arrived true acuity

level i patient is assigned treatment priority j by triage having mean treatment time

1/µij for all i, j ∈ {1, . . . , R}, then with probability pii = 1 −
R∑

j=1,j 6=i

pij an acuity

level i patient is assigned the correct treatment priority i having mean treatment

time 1/µii. If the mean treatment times are not affected by misclassification, then

1/µij = 1/µii for all j.
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5.0.3 Defining and Estimating Mean Treatment Times Un-

der Misclassification for Priority Queues

Two-Priority Queues

Let N1(t) and N2(t) denote the total number of arrivals of true acuity level 1 (more

urgent) and level 2 (less urgent), respectively, during [0, t) assuming N1(t) and N2(t)

are independent Poisson processes with rates λ1t and λ2t, respectively. Assuming from

N1(t), an arrived acuity level 1 patient is misclassified to be of treatment priority 2

at random with probability p12, and from N2(t), an arrived acuity level 2 patient

is misclassified to be of priority 1 at random with probability p21. Let Nij be the

number of true acuity level i patients being classified to be of treatment priority j,

i = 1, 2 and j = 1, 2.

Theorem 5.1. Nij(t) are independent Poisson processes with rates pijλit where p11 =

(1− p12) and p22 = (1− p21).

By definition, we have N1(t) = N11(t) +N12(t) and N2(t) = N21(t) +N22(t). We

define N1e(t) = N11(t) + N21(t) and N1e(t) is a Poisson process with rate λ1et =

p11λ1t+p21λ2t denoting the number of treatment priority 1 patients arrived by triage

under misclassification, and N2e(t) = N12(t) + N22(t) a Poisson process with rate

λ1et = p12λ1t + p22λ2t with treatment priority 2 by triage. The letter ‘e’ in the sub-

script is used to identify variables being subject to the condition of misclassification

through out the chapter.
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Theorem 5.2. Given N1e, N21 is BIN(N1e, δ21) distributed, δ21 =
p21λ2

(1− p12)λ1 + p21λ2
,

and given N2e, N12 is BIN(N2e, δ12) distributed, δ12 =
p12λ1

p12λ1 + (1− p12)λ2
.

δ21 can be interpreted as the proportion of acuity level 2 patients in the priority

1 group under misclassification, and similarly δ12 the proportion of acuity level 1

patients in the priority 2 group under misclassification.

Then the following relations are true:

E[N21|N1e] = δ21N1e

E[N11|N1e] = N1e − δ21N1e = (1− δ21)N1e

E[N12|N2e] = δ12N2e

E[N22|N2e] = N2e − δ12N2e = (1− δ12)N2e

Typically in an emergency hospital, we assume that patients arrived to the emer-

gency department first are tagged with their treatment priority according to their

acuity at the triage station, and we assume that the treatment priority assignment

may be subject to error. If the TRUE treatment priority can be measured with

respect to patient acuity, then the misclassification error rate pij can be estimated.

Each patient being admitted to the ED spends Sijk amount of time in treatment

before departure from the system. Sijk denotes the treatment time spent in ER of

the kth patient whose true service priority score is i and is assigned with priority j.

If j = i, then the classification is correct. If j 6= i, misclassification has occurred. For

k = 1, 2, . . . , Nij, if we assume Sijk are i.i.d. random variables having a distribution
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Fi(s) with mean E[Sijk] = 1/µi, then we are assuming that the mean treatment time

of true priority i patient is not affected by misclassification.

We denote

S·1 =

N11∑

k=1

S11k +

N21∑

k=1

S21k =

N1e−N21∑

k=1

S11k +

N21∑

k=1

S21k (5.0.1)

the total service time rendered to patients being classified having treatment priority

1, and similarly,

S·2 =

N12∑

k=1

S12k +

N22∑

k=1

S22k =

N12∑

k=1

S12k +

N2e−N12∑

k=1

S22k (5.0.2)

for treatment priority 2 patients.

From (5.0.1) and (5.0.2), we denote

S̄·1 =
1

N1e
S·1 =

1
N1e

(
N1e−N21∑

k=1

S11k +
N21∑
k=1

S21k

)

S̄·2 =
1

N2e
S·2 =

1
N2e

(
N12∑
k=1

S12k +
N2e−N12∑

k=1

S22k

) (5.0.3)

the average patient time spent in ER by the misclassification.

In application, N1e and N2e are observable. If we reasonably assume that N1e, N2e,

N12 and N21 are independent of Sijk, then by the law of total probability, expectation
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of the relations in (5.0.3) are

1

µ1e

def
= E

[
S̄·1|N1e

]
= E

[
1

N1e

(
N1e−N21∑

k=1

S11k +
N21∑
k=1

S21k

)∣∣∣∣N1e

]

= EN21|N1e

{
E

[
1

N1e

(
N1e−N21∑

k=1

S11k +
N21∑
k=1

S21k

)∣∣∣∣N21

]}

= EN21|N1e

{
(N1e−N21)

N1e
E[S11k] +

N21

N1e
E[S21k]

}

=
(1− δ21)N1e

N1e

1

µ1

+
δ21N1e

N1e

1

µ2

= (1− δ21)
1

µ1

+ δ21
1

µ2

(5.0.4)

and similarly

1

µ2e

def
= E

[
S̄·1|N2e

]
= δ12

1

µ1
+ (1− δ12)

1

µ2

(5.0.5)

Note, the above two equations do not work well if δ12 and δ21 are 0.5, that which the

two equations are linearly dependent and there are infinitely many solutions of 1
µ1

and 1
µ2
.

If δ21 and δ12 are not known and 1/µ1 and 1/µ2 are to be estimated, the solution

of equations (5.0.4) and (5.0.4) depends on the estimation of δ21, δ12, 1/µ1e and 1/µ2e.

Naturally we propose to use the estimates δ̂21 = n21/n1e and δ̂12 = n12/n2e with

1̂

µ1e
=

1

n1e

(
n11∑

k=1

s11k +

n21∑

k=1

s21k

)

and

1̂

µ2e
=

1

n2e

(
n12∑

k=1

s12k +

n22∑

k=1

s22k

)
.

On the other hand, in a given sample 1/µ1 can also be estimated by calculating the

sample average treatment time of patients re-assessed of true acuity score 1 who are
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under correct triage and those of re-assessed true acuity score 1 assigned to treatment

priority 2 group,

1̂

µ1

=
1

n11 + n12

(
n11∑

k=1

s11k +

n12∑

k=1

s12k

)

Similarly, 1/µ2 can be estimated by

1̂

µ2

=
1

n21 + n22

(
n21∑

k=1

s21k +
n22∑

k=1

s22k

)
.

Then 1/µ1e and 1/µ2e can be estimated using equations (5.0.4) and (5.0.5) by replac-

ing δij with δ̂ij and 1/µi with 1̂/µi.

If 1/µ12 differs from 1/µ1 and 1/µ21 differs from 1/µ2 under the influence of mis-

classification, then equations (5.0.4) and (5.0.5) should be restated as

1

µ1e

def
= (1− δ21)

1

µ11
+ δ21

1

µ21

1

µ2e

def
= δ12

1

µ12
+ (1− δ12)

1

µ22

(5.0.6)

For each i = 1, 2 and j = 1, 2, 1/µij can be estimated by

1̂

µij

=
1

nij

nij∑

k=1

sijk

and then 1/µ1e and 1/µ2e of equations in (5.0.6) should be estimated by replacing

1/µij with 1̂/µij.

Extension to More-than-Two Priority Model Under Misclassification

Suppose now arrivals are of r categories. In a fixed time interval [0, t), for some

large enough t, category i, i = 1, . . . , R, patients arrive to the ED according to a
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Poisson process at a mean rate of λit. Let N(t) denote the total number of arrivals

during [0, t), δij be the rate at which true acuity level i patients are classified to

be of priority j, and Nij(t) be the number of true service priority i patients being

classified to be of treatment priority j, i = 1, . . . , R and j = 1, . . . , R. Let Nje =

N1j+N2j+· · ·+NRj denote the number of treatment priority j patientss arrived under

the condition of misclassification and is observable for all j in practice. Theorem 5.1

applies here.

Theorem 5.3. Condition on that Nje, N1j , . . . , NRj are independent binomial random

variables, Nij ∼ BIN(Nje, δij), i = 1, . . . , R, for j = 1, . . . , R where

δij =





pijλi
(

1−
R
∑

k=1,k 6=j

pjk

)

λj+
R
∑

k=1,k 6=j

pkjλk

for i 6= j,

1−
R∑

i=1,i 6=j

δij for i = j.

It follows that

E [Nij | Nje] =





δijNje for i 6= j,
(
1−

R∑
i=1,i 6=j

δij

)
Nje for i = j.

In hospital service, if ER patients were triaged upon arrival and the triage score

were re-determined post treatment to serve as the true patient acuity scale, the score

re-determined post treatment may be concordant or discordant to the triage score

measured upon arrival. δij has the interpretation as the expected proportion of pa-

tients with post treatment score i in an observed sample of patients with triage score
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j measured at arrival.

For models of more than two service priorities, equations in (5.0.6) can easily be

extended as

1

µje

def
= E

[
S̄·1|Nje = nje

]
=

(
1−

R∑

i=1,i 6=j

δij

)
1

µjj

+

R∑

i=1,i 6=j

δij
1

µij

(5.0.7)

for j = 1, . . . , R in general. For each i = 1, . . . , R and j = 1, . . . , R, 1/µij can be

estimated by

1̂

µij

=
1

nij

nij∑

k=1

sijk (5.0.8)

and δij by

δ̂ij =
nij

nje

(5.0.9)

for all i and j.

Then, 1/µje in equation (5.0.7) can be estimated by replacing δij with δ̂ij and

1/µij with 1̂/µij. For the special case under the assumption that mean treatment

times are not affected by misclassification, we have 1/µij = 1/µi for all j that can be

estimated by

1̂/µi =
1

(ni1 + · · ·+ niR)

R∑

j=1

nij∑

k=1

sijk

in an observed sample data.

For example, in a larger hospital centre, there may be up to 200 patients visiting

ER in a typical week. Suppose patients were triaged on an acuity scale of three to

determine their treatment priority. We have n1e +n2e +n3e = 200. From nje for each

j = 1, 2, 3, if time and resources permits, re-assess each patient’s true acuity level
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post treatment to determine nij for all j. Estimates 1̂/µij and δ̂ij can be obtained as

in equations (5.0.8) and (5.0.9) for i, j = 1, 2, 3.

When a large data set is available, one approach to estimate the δij ’s is to use the

stratified sampling technique to estimate the misclassification rates in each treatment

priority category. At the same time, estimates of 1/µij’s can be obtained.

With respect to the nurse triage score, the weighted mean treatment time of

patients with triage score j in an observed sample is

1

µje

=

(
1−

R∑

i=1,i 6=j

δij

)
1

µjj

+

R∑

i=1,i 6=j

δij
1

µij

, (5.0.10)

or is

1

µje

=

(
1−

R∑

i=1,i 6=j

δij

)
1

µj

+
R∑

i=1,i 6=j

δij
1

µi

, (5.0.11)

depending on whether or not misclassification affects the mean treatment times of

true acuity i patients.

To study the effects of misclassification on waiting times in our priority queueing

models as in Chapters 3 and 4, we simply replace known parameters of 1/µj by 1̂/µje

calculated using (5.0.10) or (5.0.11) in the imbedding procedure when constructing

tpm’s. Comparing to the system behaviour and the waiting-time distribution under

the condition that the triage process was perfectly conducted, then we obtain the

waiting time distributions replacing the parameters 1/µj by 1̂/µjj from (5.0.10), or

simply by 1̂/µj from (5.0.11), in the imbedding procedure when constructing tpm’s.

When comparing models with and without priority misclassification, numerical stud-

ies can be used to devise some kind of tolerance on rates of misclassification so that
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mean wait times do not get prolonged over a threshold from the effect of error in

priority assignment.
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Chapter 6

Conclusion and Some Discussions

With the help of the finite Markov chain imbedding technique, we are now able to

model M/M/1 preemptive repeat-different and non-preemptive priority queues with

thresholds on the maximum number of customers allowed to be in service and in the

queueing system. In this thesis, we consider only queueing processes having two major

assumption that customers arrive to the system as Poisson processes and the service-

time distribution being exponential. The same technique can definitely be used to

model priority queues beyond the scope of the aforementioned two restrictive assump-

tions. One can see that the waiting time distribution of a queueing process can easily

be obtained as the waiting time distribution of a set of particular events or patterns

of an imbedded Markov chain which portrays the original queueing process. Since a

Markov process is completely characterized by its transition probability matrix and

an initial state, a priority queueing system can be characterized by a Markov process
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with sufficient information of the system known. The imbedding procedure induces

a finite state space consists of all possible events or realizations of a Markov process

over a discretised time horizon. Properly imposed state transition rules defined by

the queueing discipline together with determined state transition probabilities and

an initial state distribution, can be custom selected, is required to calculate the wait-

ing time distribution. Next, we provided a few future research topics which can be

considered in the last section of this thesis.

6.1 Extensions to other Queues and Research Top-

ics Envisaged

Priority queueing models with the following features have real applications in

queueing theory, various priority scheduling to control/reduce wait-time of a queue,

emergency department service system, reliability theory, repairing systems and police

and fire fighting rescue aiming to reduce some measure of casualty, etc.:

• allowing multiple departures and therefore allowing also from the buffer zone to

have multiple waiting customers entering service within an interval [t −∆t, t),

for any t;

• consider M/M/1-r/b/c1, . . . ,cR model with service thresholds ci on class i cus-

tomers for i = 1, . . . , R;
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• possible priority jump, particularly a customer from class j to class i, j > i,

allowing reassessment of patient status over some interval of time and therefore

making patient priority reassignment possible;

• other priority queues having other than Poisson arrival process or exponential

service assumptions;

• multi-channel priority queues;

• various priority scheduling such as preemptive-resume and preemptive repeat-

identical, etc.
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