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Abstract  

Smart laminated composite cylindrical shells are widely used in many engineering applications 

such as aerospace, mechanical, civil, and marine structures. Dynamics (wave propagation and 

vibration) analysis of smart laminated composite shell structures plays an important role in design 

and fabrication of such structures. Understanding the dynamic characteristics of composite 

structures can be used for detecting possible defects in a structure and monitoring its structural 

integrity. Proper dynamics analysis of composite cylindrical shells has significant importance in 

accurate determination of wave propagation and vibration characteristics. In this thesis, a set of 

mathematical models is developed to model wave propagation and free vibration in smart 

laminated composite cylindrical shells reinforced with fibers with different sizes and arrangements 

based on different shell theories. The resulting effective material properties for composite 

structures reinforced with carbon nanotubes are estimated using the Mori-Tanaka micromechanics 

model. The hygrothermal environmental conditions are also considered in the proposed models. 

Wave dispersion and free vibration analyses are performed by solving an eigenvalue problem and 

finding the wave phase velocities and natural frequencies for different wave and vibration modes. 

Through numerical simulations, the effects of various parameters such as hygrothermal 

environmental conditions, axial and circumferential wavenumbers, arrangement and distribution 

of reinforcing fibers and carbon nanotubes, stacking sequence of the laminate, shell geometry 

parameters, piezoelectricity, and mechanical boundary conditions on the dynamic characteristics 

of different composites are examined. It is concluded that the shear effects on wave dynamics of 

smart laminated composite cylindrical shells are much more noticeable than its effects on wave 

dynamics of smart isotropic cylindrical shells. Furthermore, the effects of reinforcing fibers and 

carbon nanotubes and their volume fraction and geometrical distribution within the structure on 
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wave propagation characteristics are significant and must be carefully considered in the analyses 

of such structures. The hygrothermal environmental conditions have a moderate impact on the 

wave propagation and vibration characteristics. Shell geometry and boundary conditions have 

noticeable effects on dynamic characteristics of smart composite cylindrical shells. The theoretical 

and mathematical framework developed in this thesis can be used by designers and manufacturers 

for the analyses of structural integrity and health monitoring of smart laminated composite 

cylindrical shell structures. It can also be used for energy harvesting through the piezoelectric 

materials embedded in such structures under different environmental conditions.                                  
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Chapter 1 
 

 

Introduction  

 

1.1. Background and Scope 

Due to outstanding material properties of advanced composite materials superior to the material 

properties of traditional materials such as steel, aluminium, etc., they are widely used in many 

engineering applications such as mechanical, aerospace, civil, marine, and offshore structures. A 

study on wave propagation and vibration of composite structures helps us to understand their 

dynamic characteristics and failure mechanism. An analysis of wave propagation behavior is a 

perquisite to seismic and/or acoustic Non-Destructive Evaluation (NDE) techniques. Analysis of 

elastic waves in smart anisotropic materials is much more complicated than that for smart isotropic 

materials. Hence, to accurately predict the dynamic behaviors of such media, it is of significant 

importance to develop appropriate analytical and numerical models considering all the anisotropic 

properties. In the following subsections, a brief introduction of shell structures, composite 

structures, and smart structures with their applications is presented. 
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1.1.1. Shell Structures 

A shell structure is a three-dimensional structure which is thin in one direction (thickness 

direction) and long in the other two directions. Shell structures’ curvature plays an important role 

in their structural behavior. Shell structures are abundantly present in the nature, for example sea-

shells. Indeed, due to the curvature of the middle surface, shells are very strong and stiff under 

both in-plane and bending loadings; hence, they can span over relatively large areas and hold 

applied loads in a very effective way with a minimum amount of material [1].  

Shells are largely employed in engineering designs and applications mainly due to their light 

weight and mechanical properties. In automotive engineering, the bodies of cars are shell 

structures; in aeronautical engineering, the airplane bodies are shell structures; in naval 

engineering, the ship hulls are made of shells; in civil engineering, shells are used for roofs, 

bridges, silos, tanks, cooling towers, and aesthetic and architectural structures; and in 

biomechanics, arteries conveying flow can be considered as shell structures. Some examples of 

shell structures are: the roof of the Montreal Olympic stadium shown in Fig. 1.1, the fuselage and 

wing panel of the huge Boeing 777 aircraft shown in Fig. 1.2, and the hull of the Queen Mary 2 

transatlantic boat shown in Fig. 1.3.   
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Figure 1.1. Olympic stadium, Montreal, Canada. Used with permission [2].  

In the design of shell structures, one of the main objectives is to make the thickness as thin as 

possible to reduce the material usage and consequently provide a lighter structure. The difficulty 

in the analysis of shell structures is related to their spatial form, e.g. curvature. Curvature, which 

is the reason for a higher carrying load capacity, causes different failure modes as well as often 

unknown behaviors. Hence, these features of shells make their analysis more difficult than other 

structural element such as conventional bars, beams, and plates. In reality,  the strength properties 

of shell structures depend on their spatial curvature form [1]. The analytical formulae for shell 

structures are very complicated in comparison with other structural elements. Due to an optimum 

distribution of materials, shell structures may collapse due to buckling, which may occur much 

before the failure strength of the material. Because shell structures are thin, large displacements 

usually happen with respect to the shell thickness, which is related to small strains before collapse. 

Shell structures are often exposed to dynamic loads which lead to their vibrations [3]. 
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Figure 1.2. Boeing 777. Used with permission [4]. 

 

 

 

Figure 1.3. The Queen Mary 2 transatlantic boat. Used with permission [5]. 
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1.1.2. Composite Materials and Structures 

1.1.2.1. Definition and Characteristics 

A composite material is made up of two or more phases on a macroscopic scale, whose 

mechanical properties and performance are superior of those of the constituent materials alone. 

The discontinuous, stiffer, and stronger phase is called the reinforcement, while the continuous, 

less stiff, and weaker phase is called the matrix (Fig. 1.4). In some cases, due to chemical 

interactions or other processing effects, an additional phase is created between the reinforcement 

and the matrix which is called the interface phase. The properties of a composite material is 

function of the properties of constituents, their geometry, and spatial distribution. One of the most 

important parameters affecting on the properties of a composite material is the volume (or weight) 

fraction of the reinforcement or the fiber volume ratio. The distribution of the reinforcement in the 

matrix specifies the homogeneity or the uniformity of a composite martial system. More non-

uniform distribution of the reinforcement in a composite material leads to more heterogeneity. The 

orientation and geometry of the reinforcement also influence on the anisotropy of a composite 

material. Different materials are used for the reinforcement and the matrix phases [6]. The most 

common reinforcing fibers are Carbon, Kevlar, E-Glass, S-Glass, Boron, and Silicon Carbide. The 

matrix can be made of polymers, ceramics, and metals. Typical polymer matrices are Epoxy, 

Polyesters, Vinylester, Polyimides, and Poly-ether-ether-ketone.  
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Figure 1.4. Phases of a composite material. Used with permission [6]. 

1.1.2.2. Nanocomposites 

Nanocomposite is a multiphase solid material where one of the phases has one, two or three 

dimensions of less than 100 nanometers (𝑛𝑚). In mechanical terms, nanocomposites differ from 

conventional composite materials due to the exceptionally high surface to volume ratio of the 

reinforcing phase and/or its exceptionally high aspect ratio. The reinforcing material can be made 

up of particles (e.g. minerals), sheets (e.g. exfoliated clay stacks) or fibres (e.g. carbon nanotubes 

or electrospun fibres). The area of the interface between the matrix and reinforcement phases is 

typically an order of magnitude greater than the one for conventional composite materials. The 

matrix material properties are significantly affected in the vicinity of the reinforcement.  

Since their discovery by Iijima [7], carbon nanotubes (CNTs) have attracted much attention of 

researchers because of their extraordinary enhanced material properties. Fig. 1.5 displays CNTs 

originally reported by Iijima [7]. CNTs are a class of nanomaterials that consist of a two-

dimensional hexagonal lattice of carbon atoms, bent and joined in one direction so as to form a 

hollow cylinder. CNTs can be found as single individual cylinders, as a single-walled carbon 

nanotubes (SWCNTs), or as coaxial cylindrical structures bonded by van der Waals forces called 

https://en.wikipedia.org/wiki/Nanometers
https://en.wikipedia.org/wiki/Composite_material
https://en.wikipedia.org/wiki/Aspect_ratio
https://en.wikipedia.org/wiki/Nanomaterials
https://en.wikipedia.org/wiki/Hexagonal_tiling
https://en.wikipedia.org/wiki/Cylinder
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multi-walled carbon nanotubes (MWCNTs). Carbon nanotubes can also be found as double-walled 

carbon nanotubes (DWCNTs) with particular properties. Fig. 1.6 presents single-, double- and 

multi-walled carbon nanotubes [8]. 

As reported in the literature [9–13], the material properties of SWCNTs are anisotropic, 

chirality- and size – dependent  and temperature – dependent . It is noted that the effective wall 

thickness obtained for the SWCNT (10, 10) is 0.067 𝑛𝑚 which satisfies the Vodenitcharova–

Zhang criterion [14], and the wide used value of 0.34 𝑛𝑚 for tube wall thickness is thoroughly 

inappropriate for SWCNTs. Radius of the SWCNT (10, 10) is considered 0.68 𝑛𝑚 [15,16]. While 

micro-sized fibers have larger diameter; for example, the diameter of carbon and E-glass fibers 

are, respectively, 7 𝜇𝑚 and 8 𝜇𝑚 [6].   

 

 

 

 

 

 

 

 

 

 

Figure 1.5. Carbon nanotubes as originally reported by Iijima in 1991. Used with permission [7]. 
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Figure 1.6. (a) Single-walled carbon nanotube, (b) Double-walled carbon nanotube, and (c) multi-

walled carbon nanotube. Used with permission [8]. 

 The outstanding mechanical, electrical, and thermal properties of CNTs made them as a 

potential reinforcing constituent in polymer matrices. The most important properties of CNTs are 

their extraordinary high strength-to-weight and stiffness-to-weight ratios. Among the most 

remarkable properties, it is interesting to report that the tensile strength of SWCNTs and MWCNTs 

is in the range from 13  to 52 𝐺𝑃𝑎  and from 11  to 63 𝐺𝑃𝑎 , respectively [17,18], and both 

SWCNTs and MWCNTs have Young’s modulus about 1𝑇𝑃𝑎 [17–20]. According to molecular 

mechanics and molecular dynamics, CNTs have high tensile strength, much higher than that of 

carbon fibers and steels [20–22]. At the same time, CNTs exhibit high flexibility [23], high thermal 

conductivity [24], and low density [25]. Due to their outstanding material properties, CNTs have 

been proposed in many applications such as material reinforcing [26,27], gas sensing [28–30], 

field emission emitters [31,32], nanomechanics [33], atomic force microscopy tips [34], 

membranes [35], etc.  

1.1.2.3. Types and Classification of Composite Materials 

Two-phase composite materials are usually classified in three categories based on the type, 

geometry, and orientation of the reinforcement phase in the matrix as explained in the chart of Fig. 

1.7 [6]:  
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 Particulate composites contain particles of various sizes and shapes randomly dispersed in 

the matrix. This group of composites may consist of non-metallic particles in a non-

metallic matrix, metallic particles in non-metallic matrices, metallic particles in metallic 

matrices, and non-metallic particles in metallic matrices.  

 Discontinuous or short – fiber composites consist of short fibers, nanotubes, or whiskers 

as the reinforcing phase. Short fibers can be either all along a specific direction or randomly 

oriented. Nanocomposites reinforced with carbon nanotubes (approximately 1 𝑛𝑚  in 

diameter and 1000 𝑛𝑚 in length) are an example of this type of composites. 

 Continuous – fiber composites are reinforced by long continuous fibers and are the most 

efficient form in term of strength and stiffness. The continuous fibers in the matrix can be 

all parallel in as unidirectional continuous-fiber composites, oriented at right angles to each 

other as cross-ply or woven fabric continuous-fiber composite, or oriented along several 

directions as multidirectional continuous-fiber composite. For some cases of fiber 

orientation and distribution, the composite can be classified as a quasi-isotropic material.    

In addition to the above – discussed types of matrix, there are laminated composites made up 

of thin layers of different materials bonded together, such as clad metals, bimetals, Formica, 

plywood, and so on [6]. Continuous fiber – reinforced composites have higher strength and elastic 

moduli than discontinuous fiber – reinforced composites [36].    

1.1.2.4. Lamina and Laminate  

Composite structures in engineering applications are commonly made up of a stack of plies 

called laminate and each ply is called lamina. A lamina (or ply, or layer) is a typical sheet of 

composite material representing a fundamental building block. A fiber – reinforced lamina consists 

of many fibers embedded in a matrix material. Unidirectional fiber-reinforced laminae have the 
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highest strength and modulus in the direction of the fibers, but they show very low strength and 

elastic modulus in the transverse direction to the fibers. A weak bonding between a fiber and matrix 

leads to poor transverse properties and failures due to fiber breakage, fiber pull out, and fiber 

buckling. 

A laminate is a collection of stacked laminae (or plies, or layers) to obtain the desired thickness 

and stiffness. For example, unidirectional fiber-reinforced laminae can be stacked with various 

fiber orientation in each lamina (see Fig. 1.8). The sequence of various orientations of a fiber-

reinforced composite lamina in a laminate is expressed the lamination scheme or stacking 

sequence. The stacking sequence and the material properties of individual lamina provide the 

possibility of various designs with tailored stiffness and strength of the laminate to satisfy the 

structural stiffness and strength requirements [36].  
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Figure 1.7. Classification of composite material systems. Used with permission [6]. 
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Figure 1.8. A laminate made up of laminae with different fiber orientations. Used with permission 

[36]. 

 

1.1.2.5. Scales of Analysis of Composite Materials 

Composite materials can be investigated and analyzed at different scales. A schematic diagram 

of different levels of analysis and consideration is shown in Fig. 1.9 [6].  

Micromechanics is related to the study of the interaction of the constituents at the microscopic 

level. This scale considers the state of deformation and stress in the constituents and local failures 

such as fiber failure (tensile, buckling, and splitting), matrix failure (tensile, compressive, and 

shear), and interface/interphase failure (debonding). Micromechanics is very important when 

studying properties such as failure mechanism and strength, fracture toughness, and fatigue life. 
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Micromechanics also provides the estimation of average behavior of the lamina as a function of 

its constituent material properties and local conditions. The objective of micromechanics methods 

is to characterize the elastic response of a Representative Volume Element (RVE) of the lamina as 

a function of the material and geometric properties of the constituents. Average properties of a 

composite lamina are determined in response of the RVE under simple loadings, such as 

longitudinal, transverse, in-plane shear, and transverse shear. The relevant engineering elastic 

properties are Young’s moduli (𝐸11 , 𝐸22 , and 𝐸33 ), shear moduli (𝐺12 , 𝐺23 , and 𝐺13 ), and 

Poisson’s ratio (𝑣12, 𝑣23, and 𝑣13). 

Macromechanics scale considers the unidirectional lamina as a quasi-homogenous anisotropic 

material with its own average stiffness and strength properties. This method, assuming material 

continuity, is considered to study the elastic, viscoelastic, or hygrothermal behavior of composite 

laminates and structures. At the laminate level, the macromechanical analysis is used in the form 

of lamination theory considering overall behavior as a function of lamina properties and stacking 

sequence. 

Finally, at the structure level, methods such as analytical approach or finite element analysis 

coupled with lamination theory are able to predict the overall behavior of the structure under static 

and dynamic conditions as well as the state of stress in each lamina. 

1.1.2.6. Constitutive Equations of a Lamina 

In formulating the constitutive equations of a lamina, it is assumed that: (i) a lamina is a 

continuum with no gaps or empty spaces, and (ii) a lamina is a linear elastic material. From the 

microscopic point of view, composite materials are inherently heterogeneous. While, composite 

materials are assumed to be homogenous from the macroscopic point of view, in which the 
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effective material properties of a composite are estimated from a weighted average of its 

constituent materials (fiber and matrix) [36].  

The generalized Hooke’s law for an anisotropic material is given in contracted notation by, 

𝜎𝑖𝑗 = 𝐶𝑖𝑗𝜀𝑖𝑗                                                                                                                                                                  (1.1) 

where 𝜎𝑖𝑗  represent the stress components, 𝜀𝑖𝑗  stand for the strain components, and 𝐶𝑖𝑗  are the 

elastic constants or the material properties coefficients. Table 1.1 shows the independent elastic 

constants for various types of materials.   

 

Figure 1.9. Levels of consideration and types of analysis for composite materials. Used with 

permission [6]. 
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Table 1.1. Independent elastic constants for various types of materials  [6]. 

Material Number of independent elastic constants 

General anisotropic material 81 

Anisotropic material considering symmetry of stress and strain 

tensors (𝜎𝑖𝑗 = 𝜎𝑗𝑖 , 𝜀𝑖𝑗 = 𝜀𝑗𝑖) 

36 

Anisotropic material with elastic energy considerations  21 

General orthotropic material  9 

Orthotropic material with transverse isotropy 5 

Isotropic material 2 

 

1.1.3. Smart Structures and Their Application 

Nowadays, developments in aeronautical and space industries, advanced structures, and 

automotive and shipbuilding industries are significantly affected by the development of so-called 

smart structures. Since late 1970s, the definition of smart structures has been discussed 

extensively. Based on a workshop organized by the US Army Research Office in 1988, the 

definition of smart system/structures was adopted by the scientific community [37] as: “A system 

or material which has built-in or intrinsic sensor(s), actuator(s) and control mechanism(s) whereby 

it is capable of sensing a stimulus, responding to it in a predetermined manner and extent, in a 

short/appropriate time, and reverting to its original state as soon as the stimulus is removed”. 

Early damage and delamination detection in composite structures using health monitoring 

techniques leads to prevention of catastrophic failures. To detect any damage in a composite 

structure, we need to first make a smart structure system. Based on the design practice, smart 

structures and systems are able to sense or react to their environment using the integration of 

sensors and actuators. Smart structures are capable to change their shape to very high precision 

and without using classical mechanical actuators, diminish vibrations and acoustic noise, and even 

monitor their own structural health. 
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Piezoelectric, piezomagnetic, electrostrictive, and magnetostrictive materials, due to their self-

actuating electro-mechanical coupling properties, are of interest in design of smart structures, 

where they are bonded on the surface of the structure or embedded in the structure. With the 

advantage of piezoelectricity, mechanical energy can be transformed into electrical energy and 

vice versa. In piezoelectric materials, an electrical charge is generated when mechanical pressure 

is applied; which is so-called direct effect (sensor configuration). Conversely, the material shape 

changes when an electrical charge is applied; that is, the inverse effect (actuator configuration). 

With such reciprocal energy transforming characteristics, piezoelectric materials can be used at 

the same time as sensors and actuators, called self-sensing piezoelectric actuator [38]. As an 

actuator, the input voltage is transformed to mechanical strains, and the high frequency input signal 

is transformed into mechanical wave. While, as a sensor, when the input mechanical signal is 

applied, electrical signals are produced.  

To apply wave propagation in a smart structure, an interdigital transducer (IDT) is used. An 

IDT is a device that consists of two interlocking comb-shaped arrays of metallic electrodes (in the 

fashion of zipper). These metallic electrodes are deposited on the surface of a piezoelectric 

substrate as shown in Fig. 1.10. IDTs convert electric signals to surface acoustic waves (SAW) by 

generating periodically distributed mechanical forces via piezoelectric effect (an input transducer). 

Based on the same principle, SAW is converted to electric signals (an output transducer). Hence, 

IDTs made up of piezoelectric materials can also be used as both actuators and sensors in a smart 

structure (piezoelectric coupled structure) for the analysis of wave signal for the purpose of damage 

detection [39].   
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Figure 1.10. Schematic picture of a typical SAW signal processing device containing two 

interdigital transducers. Used with permission [40]. 

Nowadays, smart structures are applied in many different applications such as structural health 

monitoring, vibration control, shape morphing, active optics, and microelectromechanical systems 

(MEMS). A typical example of a smart structure is displayed in Fig. 1.11, where a network of 

sensors and actuators is embedded in a plate to control the deformation and apply corrections.    

 

Figure 1.11. Example of a smart structure: the sensor–actuator network for a plate. Used with 

permission [41]. 
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Piezoelectricity can be found in some natural crystals (such as quartz and tourmaline) or 

synthetic crystals (lithium sulfate), and some polymers and polarized ceramics. Piezoceramic 

barium titanate (BaTiO3) and piezo lead zirconate titanate (PZT) are the most common 

piezoelectric materials. The crystal lattice of piezoelectric materials is of the face-centered cubic 

(FCC) type. Oxygen atoms are at the center of the cube’s faces, while metallic atoms are placed at 

the vortex of the cube as shown in Fig. 1.12. Heavier atom located at the center of the cube can 

move slightly to locations with less energy leading to the deformation of the crystal lattice. When 

an electric field is applied to the structure, because the central atom can exceed the potential energy 

threshold, it can move to a lower energy position. This causes the rupture of symmetry and an 

electric dipole (Fig. 1.12). This phenomenon occurs only below the so-called Curie temperature 

(𝑇𝐶 ). Above this temperature (𝑇 > 𝑇𝐶), due to high thermal agitation, the piezoelectric effect 

disappears. We can obtain polarized piezoceramics by heating them above their Curie temperature 

and subjecting to a sever electric field during thermal cooling. By this process, all the dipoles can 

be oriented in the same direction and a stable polarization can be obtained for the material. After 

the polarization process, a temporary deformation is obtained by a very small electric potential and 

vice versa [41]. 
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Figure 1.12. Intrinsic piezoelectric effect in piezo lead zirconate titanate (PZT), showing a 

crystallite (a) above and (b) below the Curie temperature 𝑇𝐶, where the charged zirconium or 

titanium ion moves relative to the center position. Used with permission [42]. 

Therefore, to impart piezoelectric properties and effects, piezoelectric materials must be 

subjected to a process called poling or polarization. Group of dipoles with the same alignments are 

called Weiss domains. Because of the random distribution of Weiss domains with various 

directions and alignments inside the ceramics as displayed in Fig. 1.13a, macroscopic piezoelectric 

effect is negligible. Applying a strong electric field leads to an arrangement of the Weiss domains 

(as depicted in Fig. 1.13b), and then the ceramics can be polarized. The ceramics are now ready to 

use and present piezoelectric properties, i.e. converting electrical signals to mechanical strains, or 

converting mechanical strains to electrical voltages. As shown in Fig. 1.13c, after poling, Weiss 

(a) (b) 

- 

+ 
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domains are slightly misaligned compared to the case shown in Fig. 1.13b due to aging which 

leads to a reduction in piezoelectric effects [42].         

Figure 1.13. Polarization of polycrystalline piezoelectric ceramic causes (a) the as-fired random domain 

polarity to align to (b) a net positive polarity, which (c) relaxes or ages over time. Used with permission 

[42]. 

For piezoelectric materials in the shell structures, different polarization directions may be 

considered and they can be polarized in the axial, circumferential, and radial (thickness) directions 

and or a combination of different directions. 

  It is very important to accurately study and analyze the dynamics of smart laminated composite 

cylindrical shells by considering the shear effects with the stacked plies and piezoelectric coupling, 

advanced nanocomposite materials, hygrothermal environmental conditions, and electrical and 

mechanical boundary conditions. This investigation helps us to clearly understand the dynamic 

behaviors of smart laminated composite shells integrated with the piezoelectric materials and build 

a theoretical framework for the composites NDE. The research development in this field is 

reviewed in the following section. 

(a) (b) (c) 
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1.1.4. Waves in Elastic Solids 

1.1.4.1. Definition and Characteristics 

Waves are a disturbance propagating in a medium such as water, air, or solid. Waves in solids 

are inaudible to human ears and invisible to human eyes, while acoustic waves in air is audible 

and surface waves in water is visible. Waves in solids are physical, real, and very important to 

engineering applications. Mathematical and numerical approaches are needed to analyze and 

simulate the wave phenomena in solids. These approaches can provide virtual views of waves in 

our mind. When solids are subjected to external forces, they are stressed. The stresses produce 

strains observed in form of deformation or displacement. In solid mechanics and structural 

mechanics, relationship between stresses and strains, displacements and forces, and stresses 

(strains) and forces are investigated for given boundary conditions applied on solids. These 

relationships are required to analyze wave motion in solids.  

Under dynamic forces varying with time, solids will experience dynamic motion. The stress, 

strain, and the displacement due to dynamic forces will also be functions of time, and theories of 

dynamics must be applied. The dynamic motion is often observed in form of wave motion or 

vibration. We cannot draw a clear line between wave motion and vibration, but, in general, wave 

is a localized vibration and a vibration is a motion of waves with very long wavelength. When 

talking regarding waves, one is concerned with the motion or propagation of a localized 

mechanical disturbance, while in vibration, one usually consider the global motion of the entire 

structure. Mathematically, both wave motion and vibration are governed by the same dynamic 

motion equations, which are derived based on the Newton’s Law.  

Free wave motion is related to wave motion in media free of external excitation. Our aim is to 

study what could be happening in the media under its natural status, rather than what will be 
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happening under a special loading condition. In free wave motion analysis, one needs to find the 

velocity, natural frequency, and wave modes in relation to wavelength or wavenumber. In contrast, 

forced wave motion refers to waves in media excited by an external excitation. The excitation can 

be harmonic or transient. The response of the media to a harmonic excitation is presented in the 

form of frequency spectrum of displacement response. Analysis of waves generated by harmonic 

excitation is called frequency analysis or wave analysis in frequency domain. Transient response 

is related to the response of the media under a transient excitation where the results are presented 

in form of time history of displacement response. Analysis of transient waves is called transient 

analysis which is also referred to as wave analysis in time domain [43]. The complexity of wave 

propagation problem is also dependent on the complexity of the geometry of the domain where 

waves are propagating.   

 Materials are elastic if they are stressed below the limit called yield stress, while they are plastic 

if stress beyond this certain limit is applied. Waves propagating in elastic material are expressed 

elastic waves. One of the major applications of elastic waves is in the field of NDE. In this 

application, stress level is kept as low as possible and within the elastic range. Otherwise, it could 

be destructive. Hence, damage detection in structures can be destructive or non-destructive. In 

NDE, the defect is detected without causing any damage to the structure components and materials 

through investigation. Elastic wave propagation in solids is one of the NDE techniques serving as 

a convenient, flexible, and safe method for damage detection developed since 1960s. Hence, wave 

propagation in solids are usually divided into three categories. The first one is the elastic waves, 

in which stress relations follow the Hooke’s law. The second type of waves is the visco-elastic 

waves, where viscosity as well as elasticity is applied in the governing equations. The next type of 

waves is the plastic waves, in which the material yield stress is exceeded. Elastic wave propagation 
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is the most commonly studied wave due to its simplicity relative to other two waves, used for 

damage detection aim considering the required low strain/stress level. Hence, elastic wave 

propagation will be investigated in the present research work.                  

Studies on wave propagation and vibration of laminated composite shells with different 

reinforcing materials and under different working conditions are very helpful to understand their 

dynamic characteristics and failure mechanism. In addition, ultrasonic-based NDE is used to 

determine the material properties and detect defects (cracks and flaws) in composites. An analysis 

of wave behaviors, especially the high frequency analysis, is prerequisite in applying NDE 

techniques effectively using ultrasonic and elastic waves as the theoretical foundation [43]. 

Analysis of wave propagation in smart laminated composite structures as laminated anisotropic 

media is much more complicated than the one for isotropic media because of complexity in 

piezoelectric coupling, boundary condition modeling, micromechanical modeling, and solving 

procedure.  

1.1.4.2. Motion Equation for a Free Wave Motion 

To explain how the equation of motion for a free wave motion can be derived, consider a 

uniform and isotropic thin bar or rod, whose lateral dimension is much smaller than its 

longitudinal, as shown in Fig. 1.14. The bar is subjected to a uniform traction, 𝑝(𝑥), at its cross-

section at point 𝑥 and in the 𝑥 (axial) direction. As the traction 𝑝 is applied uniformly in the 𝑥 

direction, the displacement 𝑢 in the 𝑥 direction will be dominant. Therefore, the problem can be 

considered as one dimensional and variables are only function of 𝑥 and independent of 𝑦 and 𝑧. 

The governing equation for the one-dimensional wave motion problem can be derived as follows 

[43]. 
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Consider a representative cell (shaded portion) as shown in Fig. 1.15 isolated from a uniform, 

isotropic and elastic bar. Let to introduce the linear strain-displacement relation as, 

𝜀 =
𝜕𝑢

𝜕𝑥
                                                                                                                                                                         (1.2) 

where 𝜀 is the strain in the material and 𝑢 is the displacement at point 𝑥 in the bar.   

 

Figure 1.14. Thin bar subjected to axial dynamic force. Used with permission [43]. 

 

 

Figure 1.15. Motion of a representative cell in a bar. Used with permission [43]. 

Using Hooke’s law of linear elastic material of the bar, the linear stress-strain relation can be 

written as,  

𝜎 = 𝐸𝜀                                                                                                                                                                         (1.3) 
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where 𝜎 is the stress in the material, and 𝐸 is Young’s modulus of the material of the bar. Hook’s 

law for higher dimensional problem is often termed as constitutive equation. By substituting Eq. 

(1.2) into Eq. (1.3), we obtain,  

𝜕𝑢

𝜕𝑥
=
𝜎

𝐸
=

𝑠

𝐴𝐸
                                                                                                                                                            (1.4) 

where 𝑠 = 𝜎𝐴 is the total axial internal force acting on the cross-section. By differentiating Eq. 

(1.4) with respect to 𝑥, we have, 

𝐴𝐸
𝜕2𝑢

𝜕𝑥2
=
𝜕𝑠

𝜕𝑥
                                                                                                                                                             (1.5) 

The motion equation of the representative cell can be obtained by Newton’s law, indicating that 

the summation of all unbalanced forces is equal to the product of the mass and acceleration of the 

cell, i.e., 

𝜕𝑠

𝜕𝑥
𝑑𝑥 = 𝜌𝐴𝑑𝑥

𝜕2𝑢

𝜕𝑡2
                                                                                                                                                  (1.6) 

where 𝜌 is the mass density of the material of the cell. Using Eq. (1.5), Eq. (1.6) is reduced to, 

𝜕2𝑢

𝜕𝑡2
= (

𝐸

𝜌
)
𝜕2𝑢

𝜕𝑥2
                                                                                                                                                         (1.7) 

or 

𝜕2𝑢

𝜕𝑥2
=

1

𝑐2
𝜕2𝑢

𝜕𝑡2
                                                                                                                                                            (1.8) 

where  

𝑐 = √
𝐸

𝜌
                                                                                                                                                                        (1.9) 

Eq. (1.8) is the so-called wave motion equation, which governs the free wave motion in the bar 

and 𝑐 represents the wave velocity.  
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1.1.4.3. Solution of a Free Wave Motion  

The solution of Eq. (1.8) can be considered as,  

𝑢 = 𝐹1(𝑥 − 𝑐𝑡) + 𝐹2(𝑥 + 𝑐𝑡)                                                                                                                             (1.10)  

where 𝐹1 and 𝐹2 are arbitrary functions representing the shape of propagating waves. Function 𝐹1 

represents the shape of waves propagating in the positive 𝑥 direction and function 𝐹2 demonstrates 

the shape of waves propagating in the negative 𝑥  direction. According to Eq. (1.10), 𝑐 is the 

velocity of the shape of waves propagating along the bar. Eq. (1.9) indicates that the wave velocity 

is only dependent on the material properties, Young’s modulus, and mass density, and is 

independent of the excitation frequency. Waves with constant velocity are called nondispersive 

waves. While for dispersive waves, the velocity is frequency (or wavelength and or wavenumber) 

dependent. As illustrated in Fig. 1.16, functions 𝐹1 and 𝐹2 are not necessarily the same, but they 

propagate at the same velocity, and keep the same shape during the propagation in the bar. Eq. 

(1.10) is often called D’Alembert’s solution. In the following, the procedure to determine the 

explicit solution of functions 𝐹1 and 𝐹2 are explained.   

 

Figure 1.16. Wave propagation in a bar. Used with permission [43]. 
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Let to first consider the harmonic motion of waves generating by a harmonic force. The 

harmonic force varies with time harmonically. The harmonic force can be expressed 

mathematically in one of the following sine, cosine, and exponential forms of excitation,  

𝑝(𝑥, 𝑡) = 𝑃(𝑥) sin(𝜔𝑡)                                                                                                                                        (1.11)  

𝑝(𝑥, 𝑡) = 𝑃(𝑥) cos(𝜔𝑡)                                                                                                                                        (1.12) 

𝑝(𝑥, 𝑡) = 𝑃(𝑥) exp(−𝑖𝜔𝑡)                                                                                                                                   (1.13) 

where 𝑖 = √−1. In Eqs. (1.11) - (1.13), 𝑃 is a given function of 𝑥, and 𝜔 is the angular frequency 

of the force related to the frequency 𝑓, as  𝜔 = 2𝜋𝑓. 

Although the three expressions given in Eqs. (1.11) - (1.13) have different forms, but all can 

represent a harmonic force. Eq. (1.13) is used commonly because it is the most convenient form 

in deriving analytical solutions for wave propagation problems. In addition, Eq. (1.13) can be 

rewritten as, 

𝑝(𝑥, 𝑡) = 𝑃(𝑥) exp(−𝑖𝜔𝑡) = 𝑃(𝑥)(𝑐𝑜𝑠𝜔𝑡 − 𝑖𝑠𝑖𝑛𝜔𝑡) = 𝑃(𝑥)𝑐𝑜𝑠𝜔𝑡 − 𝑖𝑃(𝑥)𝑠𝑖𝑛𝜔𝑡                            (1.14) 

where the real part represents the cosine excitation and the imaginary part corresponds for the sine 

excitation. Therefore, the response of the system to an exponential excitation includes real and 

imaginary parts. 

Under the excitation of a harmonic force, the particles in the solid undergo a harmonic motion. 

Hence, if the wave motion is due to a harmonic excitation, the displacement 𝑢  must also be 

harmonic. Therefore, it can be rewritten as, 

𝑢(𝑥, 𝑡) = 𝑈𝑐(𝑥) exp(−𝑖𝜔𝑡)                                                                                                                                 (1.15) 

where 𝑈𝑐 is a function of 𝑥, and 𝜔 is the angular frequency of the wave. Substituting Eq. (1.15) 

into Eq. (1.8) gives,        
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𝜕2𝑈𝑐
𝜕𝑥2

=
−𝜔2

𝑐2
𝑈𝑐                                                                                                                                                       (1.16) 

or  

𝜕2𝑈𝑐
𝜕𝑥2

+ 𝛾2𝑈𝑐 = 0                                                                                                                                                   (1.17) 

where 

𝛾 =
𝜔

𝑐
                                                                                                                                                                        (1.18) 

is expressed as wavenumber. 𝑐 − 𝛾 and 𝜔 − 𝛾 curves are called, respectively, dispersion curve 

and frequency curve. For nondispersive waves with constant velocity 𝑐, the wavenumber 𝛾 is 

proportional to the angular frequency 𝜔, and 𝜔 − 𝛾 curve will be a straight line with slope of 𝑐. 

For dispersive waves with frequency dependent velocity, the relation between 𝑐 (or 𝜔) and 𝛾 is 

much more complicated.          

Solution of Eq. (1.17), as a homogenous differential equation of the second order, can be 

assumed by,  

𝑈𝑐(𝑥) = 𝐶 exp(𝑖𝛼𝑥)                                                                                                                                              (1.19) 

where 𝐶 is an arbitrary constant. By substituting Eq. (1.19) into Eq. (1.17), we obtain, 

−𝛼2 + 𝛾2 = 0                                                                                                                                                         (1.20) 

This polynomial equation of 𝛼 has two roots of  

𝛼 = ±𝛾                                                                                                                                                                      (1.21) 

which indicates that 𝑈𝑐 has two possible solutions in the form of Eq. (1.19). By superimposing 

these two possible solutions, the solution of Eq. (1.17) is obtained as,   

𝑈𝑐 = 𝐶1 exp(𝑖𝛾𝑥) + 𝐶2 exp(−𝑖𝛾𝑥)                                                                                                                    (1.22) 

where 𝐶1  and 𝐶2  are arbitrary constants to be determined. By substituting Eq. (1.22) into Eq. 

(1.17), this solution can be verified. 𝑈𝑐, as a function of coordinate 𝑥, represents the shape of 
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propagating waves. Substituting Eq. (1.22) into Eq. (1.15), we obtain the complete solution for 

harmonic wave motion in a bar as,   

𝑢(𝑥, 𝑡) = 𝐶1 exp[𝑖𝛾(𝑥 − 𝑐𝑡)] + 𝐶2 exp[−𝑖𝛾(𝑥 + 𝑐𝑡)]                                                                                  (1.23) 

It is noted that Eq. (1.23) has the same form of Eq. (1.10). Eq. (1.22) is called a complementary 

solution for free wave motion in infinite bars, where 𝐶1  and 𝐶2  are determined based on the 

boundary conditions at the two ends of the bar [43].  

Therefore, based on the above logic and procedure, analytical models can be developed to 

derive the governing equations of wave motion and solve the wave propagation problem for 

various geometries and material properties with the effects of different parameters by combining 

appropriate theories. 

1.1.4.4. Definition of Important Terms  

Definitions of some important terms commonly used in structural dynamics and wave 

propagation analysis are given in the following: 

Frequency ( 𝒇 ): is the number of occurrences of a repeating event per unit of time. 

For cyclical processes, such as rotation, oscillations, or waves, frequency is defined as a number 

of cycles per unit time [44].  

Period (𝑻): is the duration of time of one cycle in a repeating event, so the period is the reciprocal 

of the frequency. The relation between the frequency and the period of a repeating event or 

oscillation is given by [44],  

𝑓 =
1

𝑇
                                                                                                                                                                        (1.24) 

The SI derived unit of frequency 𝑓 is Hertz (Hz). One Hz means that an event repeats once 

per second. 

https://en.wikipedia.org/wiki/Turn_(geometry)
https://en.wikipedia.org/wiki/Rotation
https://en.wikipedia.org/wiki/Oscillation
https://en.wikipedia.org/wiki/Wave
https://en.wikipedia.org/wiki/SI_derived_unit
https://en.wikipedia.org/wiki/Hertz
https://en.wikipedia.org/wiki/Second
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Angular frequency (𝝎): is defined as the rate of change of angular displacement, 𝜃, (during 

rotation), or the rate of change of the phase of a sinusoidal waveform (notably in oscillations and 

waves). Angular frequency 𝜔 is commonly measured in radian per second (𝑟𝑎𝑑/𝑠) and relates to 

frequency 𝑓 by [45], 

𝜔 = 2𝜋𝑓                                                                                                                                                                   (1.25) 

Wavelength (𝝀): is the spatial period of a periodic wave and the distance over which the wave's 

shape repeats. It is usually determined by considering the distance between consecutive 

corresponding points of the same phase, such as crests, troughs, or zero crossings (see Fig. 1.17). 

The SI unit of wavelength is meter (𝑚) [46]. 

Assuming a sinusoidal wave moving at a fixed wave speed, wavelength is inversely 

proportional to the frequency of the wave. Waves with higher frequencies have shorter 

wavelengths (or higher wavenumbers), and lower frequencies have longer wavelengths (or lower 

wavenumbers). 

 

Figure 1.17. Wavelength of a sine wave. Used with permission [46]. 

Wavenumber (𝜸): is the spatial frequency of a periodic wave, defined as the number of radians 

per unit distance. In general, wavenumber in the axial direction (𝑥) is given by [47], 

https://en.wikipedia.org/wiki/Angular_frequency
https://en.wikipedia.org/wiki/Angular_displacement
https://en.wikipedia.org/wiki/Phase_(waves)
https://en.wikipedia.org/wiki/Sine_wave
https://en.wikipedia.org/wiki/SI_derived_unit
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𝛾 =
2𝜋

𝜆
=
𝜔

𝑐
                                                                                                                                                             (1.26) 

Wavenumber equation in the circumferential direction (𝜃) is given by, 

𝛾𝜃0 = 𝑛(2𝜋)                                                                                                                                                            (1.27)   

where for a complete cylinder 𝜃0 = 2𝜋,  so  𝛾 = 𝑛. 

Wave phase velocity (𝐜): The phase velocity of a wave is the rate at which the phase of the wave 

propagates in space. For such a component, any given phase of the wave (for example, the crest) 

will appear to travel at the phase velocity. The phase velocity is given in term of the 

wavelength 𝜆 and period 𝑇 as [48], 

𝑐 =
𝜆

𝑇
                                                                                                                                                                         (1.28)  

Wavenumber 𝛾  is related to wavelength 𝜆 , frequency 𝑓 , angular frequency 𝜔  , and phase 

velocity 𝑐 as [43], 

𝛾 =
2𝜋

𝜆
=

𝜔

𝑐
=

2𝜋𝑓

𝑐
                                                                                                                                                  (1.29)          

Important fundamental relations are listed in Table 1.2.  

Table 1.2. Fundamental relations [43]. 

Parameter 𝑓 𝜔 𝑇 𝜆 𝛾 𝑐 

Frequency 𝑓 1 𝜔 2𝜋⁄  1 𝑇⁄  𝑐 𝜆⁄  𝑐𝛾 2𝜋⁄  𝑐 𝜆⁄  

Angular frequency 𝜔 2𝜋𝑓 1 2𝜋 𝑇⁄  2𝜋𝑐 𝜆⁄  𝑐𝛾 2𝜋𝑐 𝜆⁄  

Period 𝑇 1 𝑓⁄  2𝜋 𝜔⁄  1 𝜆 𝑐⁄  2𝜋 𝑐𝛾⁄  𝜆 𝑐⁄  

Wavelength 𝜆  𝑐 𝑓⁄  2𝜋𝑐 𝜔⁄  𝑐𝑇 1 2𝜋 𝛾⁄  𝑐 𝑓⁄  

Wavenumber 𝛾  2𝜋𝑓 𝑐⁄  𝜔 𝑐⁄  2𝜋 𝑇𝑐⁄  2𝜋 𝜆⁄  1 𝜔 𝑐⁄  

Velocity 𝑐 𝜆𝑓 𝜔 𝛾⁄  𝜆 𝑇⁄  𝜆 𝑇⁄  𝜔 𝛾⁄  1 
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1.2. Literature Review 

This section presents a comprehensive literature review with the basics to reviewing research 

works which have been done in the research field with the existing gaps.  

1.2.1. Wave Propagation and Vibration of Smart Composites  

In this section, a review is presented regarding the methods used for modeling and analysis of 

structural dynamics of smart composites as well as related research works in this field.   

1.2.1.1. Brief History of Shell Theories 

Different shell theories were developed over the past decades, which can help to model and 

understand dynamics of shell structures. The lowest-order shell theory, i.e. the membrane shell 

theory, was developed by Love [49], in which transverse or out-of-plane shear forces (𝑉𝑥𝑧 and 

𝑉𝜃𝑧), bending and twisting moments (𝑀𝑥𝑥, 𝑀𝜃𝜃, and 𝑀𝑥𝜃) are assumed to be negligibly small. 

Such model is applicable to very thin shell structures in which only the in-plane normal and shear 

forces (𝑁𝑥𝑥, 𝑁𝜃𝜃, and 𝑁𝑥𝜃) applying in the midsurface of the shell are considered. This lower-

order shell model presents the essential features of the shell and is used as a fundamental model 

for higher-order shell theories. Some notable works based on this simplified model were presented 

by Donnel [50], Flügge [51], Vlasov [52], and Sanders [53].  

The classical shell theory, proposed by Love [49] and Reissner [54] as the first approximation 

to thin shell theory, is based on the following assumptions: (a) the laminate is thin compared to its 

lateral dimension; (b) the deflection of shell is small; (c) straight lines normal to the middle surface 

remain straight and normal to that surface after deformation; and (d) the transverse shear stresses 

(𝜏𝑥𝑧, 𝜏𝜃𝑧) are zero. Usually, the model developed based on the above assumptions is referred as 

the Love’s bending shell theory or the classical shell theory. Many studies were performed on shell 
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structures based on the Membrane and the Love’s bending shell theories. However, the above 

assumptions are not valid for thicker shells and shells with low stiffness central plies undergoing 

significant transverse shear deformation. Mirsky and Hermmann [55] considered the shear effects 

in both axial and circumferential directions and the rotary inertia effects for cylindrical shells with 

moderate thickness. Lin and Morgan [56] developed equations for axillary symmetric motions 

considering shear effects and rotary inertia. Cooper and Naghdi [57] developed a theory including 

both transverse shear effects and rotary inertia for non-axillary symmetric motion of shell 

structures. Greenspon [58] showed that the Cooper-Naghdi shell theory [57], considering both 

transverse shear effect and rotary inertia, is sufficient for wave propagation analysis in thicker 

cylindrical shells. The Cooper-Naghdi shell theory is also known as the first-order shear 

deformation shell theory (FSDT). Based on the first-order shear deformation shell theory, the 

assumption of normality of straight lines is removed, that is, straight lines normal to the middle 

surface remain straight but not normal to that surface after deformation.  

Therefore, in the membrane and bending shell theories, concentration is only on the 

displacement of the middle surface of the shell, while in the theories including shear and rotary 

inertia, such as the first-order shear deformation shell theory, the slopes of the shell element are 

also considered. Hence, for moderately thick shells, theories including shear deformation and 

rotary inertia would be desirable. However, for very thick shells such as pipes, three-dimensional 

theory of elasticity is more appropriate and reliable than thin shell theories. According to this 

theory, normal stress in thickness direction as well as other stresses is considered in the constitutive 

relations.    
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The shear effects should be considered and studied properly for smart laminated composites 

and piezoelectric materials with significant shear piezoelectric coefficients considering different 

poling directions. 

1.2.1.2. Finite Element Method in Wave Propagation and Vibration Applications 

The finite element method (FEM) is an effective numerical approach for solving boundary value 

problems on complex domains [59]. However, standard FEM is not much effective to solve wave 

propagation and frequency problems [59,60]. Some errors occur in wave propagation and vibration 

analysis using piecewise polynomial approximations of standard FEM [61,62]. It was reported that 

in the case of time harmonic wave propagation and vibration solution, the accuracy of numerical 

solution decreases rapidly with the increase of wavenumber [63–65]. Thus, for short wavelength 

problem, fine meshes are required to attain reasonable solutions considering the high frequency 

wave motions with large wavenumbers. In the case of transient wave propagation and frequency 

problem, the numerical wave propagation velocity and natural frequency may be noticeably 

different from the physical velocity and frequency, due to the numerical period elongation leading 

to the dispersion errors [59,66]. When a wave travels in a long distance, larger errors occur and 

more inaccurate numerical solutions are obtained. So, whenever high frequency is required, 

considerable errors happen in the numerical solutions unless the mesh is fine enough to reduce the 

errors and variations. 

The spectral FEM is a formulation of the FEM that uses high degree piecewise polynomials as 

basic functions. This method is a numerical approach that can provide numerical solutions very 

close to the exact solutions because of high degree piecewise polynomials (harmonic functions) 

used as basic functions, where the solutions of wave equations are basically harmonic functions. 

However, the spectral finite element method is difficult to be utilized for complicated geometries 
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as used in a real case, since it uses global basic functions. Thus, this method has some limitations 

to be used in practical cases for analysis of structures. The spectral element method has lower 

numerical errors in comparison to the standard finite element method. Moreover, this method has 

been developed to solve effectively wave propagation and vibration problems by approximating 

the solutions with trigonometric polynomials [67–69]. However, the spectral finite element method 

is an expensive approach and also difficult to develop and extend for general nonlinear analysis. 

It is difficult or even impossible to assign various distributions of CNTs in a composite based 

on the finite element methods, and a combination of micromechanics models and numerical 

approaches is needed for this purpose. Hence, developing an analytical approach for solving wave 

propagation and vibration problem in composites is more beneficial, while it will not have the 

limitation and drawbacks of finite element methods.  

Mazuch [70] obtained wave dispersion solutions for anisotropic shells and rods using the finite 

element method where the results were compared with those obtained based on the lower order 

theories. Datta and Kishore [71] used a two-dimensional plane strain finite element model to 

investigate the features of ultrasonic wave propagation to identify defects in composite materials. 

Chakraborty et al. [72] performed a finite element analysis (FEA) of free vibration and wave 

propagation in composite beams with structural discontinuities. A spectral finite element model 

was presented by Mahapatra and Gopalakrishnan [73] for analysis of wave propagation in 

composite tubular structure where its performance was compared with analytical solution based 

on the membrane shell model. Manconi and Mace [74] presented a wave finite element method 

for prediction of wave characteristics of cylindrical and curved panels by combining the 

conventional finite elements and the theory of wave propagation. Xiao et al. [75] investigated the 

dispersion characteristics of guided waves in a multilayered magneto-electro-elastic curved in 
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which the spectral finite element method was applied to obtain the dispersion equation of waves. 

In another study by Liang et al. [76], wave propagation in piezoelectric helical waveguides was 

studied using the spectral finite element method. Tsai and Palazotto [77] determined the non-linear 

vibration of cylindrical shells using the finite element analysis with high-order shear deformation 

theory. Ramesh and Ganesan [78] obtained vibration and damping characteristics of multi-layered 

cylindrical shells with a viscoelastic core using the finite element analysis. In another study, 

Chakravorty et al. [79] used the finite element method for free vibration analysis of point supported 

laminated composite cylindrical shells.    

Although the dynamic behaviors of smart composites can be modeled and studied by FEA and 

the results of analysis can be used as a guidance for NDE applications and to possibly solve the 

wave propagation and frequency problems, but the accurate finite element modeling of composites 

and calculations are usually not efficient requiring significant calculation costs especially for 

vibration and wave propagation in infinite media (both computer power and calculation time). 

Hence, based on the limitations of FEM, analytical approaches are developed in this thesis to 

investigate wave dynamics and vibration behaviors of smart laminated composite cylindrical shells 

with the effects of various parameters.   

1.2.1.3. Dynamics of Piezoelectric Structures 

In the literature, piezoelectric materials were modeled and studied by considering the axial 

poling [80,81], circumferential polarization [81], and polarizing in the thickness direction (or radial 

polarization) [81–90]. Buckling behavior of pure piezoelectric shells and piezoelectric-coupled 

composite shells have been investigated in the literature. For example, Dai and Zheng [91] 

investigated the buckling behavior of a laminated cylindrical shell of functionally graded material 

(FGM) with the piezoelectric fiber-reinforced composite (PFRC) actuators with the radial 
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polarization in thermal environment without considering the transverse shear effects and rotary 

inertia in the mathematical modeling. In another study, Nasihatgozar et al. [92] investigated the 

buckling response of piezoelectric composite panels reinforced with carbon nanotubes with the 

axial poling using the classical laminated plate theory (CLPT) in which the transverse shear effects 

and rotary inertia were not included. 

 Analysis of wave propagation and vibration characteristics of piezoelectric materials and 

structures have also been performed previously in the literature. Hussein and Heyliger [93] 

analyzed free vibration behavior of laminated piezoelectric cylindrical shells using a semi-

analytical layer model. They used piecewise-linear variation method to find approximate solutions 

for static and dynamic problems and finite element approximations for the transverse 

displacement. David and Touratier [85] presented a two-dimensional theory for analysis of a 

multilayered piezoelectric shell, where the theory is based on a hybrid approach in which 

continuity conditions at layer interfaces as well as the boundary conditions are satisfied. Jiangong 

et al. [81] used linear three-dimensional piezoelectricity to determine wave propagation 

characteristics in hollow cylinders composed of the functionally graded piezoelectric materials, 

where the displacements and electric potentials are expressed in a series of Legendre polynomials. 

Sheng and Wang [94] investigated the thermo-elastic vibration and buckling characteristics of the 

functionally graded piezoelectric cylindrical shell using the Hamilton’s principle and Maxwell 

equation with a quadratic variation of the electric potential along the thickness direction. In their 

study, the effects of material composition, thermal loading, external voltage, and shell geometry 

parameters on the free vibration characteristics were also studied. Hasheminejad et al. [95,96] 

employed an exact three-dimensional piezoelectric model to investigate the free vibration of a 

smart piezocomposite hollow cylinder and a thick-walled liquid-coupled piezo-laminated 
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cylindrical vessel, where the piezoelectric cylinder is considered to be infinitely long, and short 

circuit electrical boundary condition is applied at the inner and outer surfaces of the shell. They 

utilized the transfer matrix approach along with the state space method to calculate the natural 

frequencies of an infinite cylinder. 

Studying wave propagation in piezocomposites reinforced with nanoparticles is still a gap in 

the literature. It is very important to propose an appropriate wave propagation model to evaluate 

the effects of nano-sized reinforcements such as CNTs on dynamics and wave propagation 

characteristics of piezocomposites. This problem is very important to be solved and developing 

analytical models considering nanocomposite effects on wave dynamics helps us to clearly 

understand wave dispersion results of piezocomposites reinforced with nanofibers leading to 

optimize the nanocomposite designs for various engineering applications such as energy 

harvesting and structural health monitoring with NDE.  

1.2.1.4. Dynamics of Smart Laminated Shell Structures 

Wave propagation in smart cylindrical shells integrated with piezoelectric actuators has also 

been studied in the literature. For example, Wang [39,97] and Wang and Liew [98] studied 

analytically the wave propagation in piezoelectric coupled metallic cylindrical shells by the 

membrane, the Love bending, and the Cooper-Naghdi shell theories. Dong and Wang [99–101] 

investigated wave propagation characteristics in the piezoelectric coupled cylindrical shell with 

the effects of large deformation and rotary inertia, however, they did not consider the effects of 

the transverse shear, and only the in-plane stresses were considered in their study and transverse 

shear stresses and the resultant shear forces were assumed negligible. Hasheminejad and Alaei-

Varnosfaderani [102] investigated the steady-state non-axisymmetric fluid-structure-coupled 

vibrations of thick hollow cylinder of finite length coupled with axially/circumferentially/radially 



Chapter 1. Introduction 

 

39 
 

polarized functionally graded piezo-ceramic material using the linear three-dimensional elasticity 

theory in conjunction with the transfer matrix approach. In another study by Hasheminejad and 

Alaei-Varnosfaderani [103], they used the three-dimensional piezo-elasticity theory and the spatial 

state-space approach to study the steady-state non-axisymmetric sound radiation and scattering 

characteristics of an infinitely long, arbitrarily thick, orthotropic functionally graded hollow 

circular cylinder, coupled with a functionally graded piezo-ceramic material.  

Based on the above literature review, the processes considering the nano-sized reinforcing fiber 

and its effects on the composite wave model, the exact piezoelectric effects with different poling 

directions on the wave behaviors of smart composites as well as the transverse shear effects of 

composite shells are still gaps in the related research field. By accurate modeling of piezoelectric 

effects with considering shear effects on wave dynamics, we can design an appropriate smart 

laminated composite shells for the applications of noise and vibration control, structural stability 

analysis, and structural health monitoring with NDE. 

1.2.2. CNT Effects on Structural Dynamics 

1.2.2.1. A Brief Introduction to Modeling CNTs in Composites  

The material properties of a composite lamina are function of its constituent properties, 

geometric characteristics, such as fiber volume fraction and distribution. To estimate the effective 

material properties of CNT-reinforced composites, some micromechanics models such as the 

Mori-Tanaka [104] and the rule of mixture [105] models can be applied. One major advantage of 

the Mori-Tanaka model rather to other micromechanics models such as the rule of mixture is that 

it can be used in the case of composites reinforced with both aligned and randomly oriented, 

straight CNTs. While, the rule of mixture model does not differentiate between these two cases 

[106]. Moreover, the Mori-Tanaka model is capable to estimate the effective elastic properties for 
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the case that CNTs are agglomerated in a matrix. On the other hand, the rule of mixture model is 

simpler than the Mori-Tanaka model [106]. The Mori-Tanaka model has been led to a successful 

estimation of the resulting effective elastic properties of composites reinforced with both aligned 

and randomly oriented, straight CNTs [92,106–109]. This is because of its accuracy even at high 

volume fraction of inclusion [107]. Hence, the straight-forward Mori-Tanaka model [104] is 

employed in this thesis to calculate the resulting effective elastic properties of cylindrical 

composite shells reinforced with angled, randomly oriented, and agglomerated CNTs for the wave 

propagation and vibration studies. 

  There are other methods such nonlocal continuum mechanics theory and molecular dynamics 

simulations which can estimate the mechanical behaviors of nanoscale structures in which small 

effects are considered. In this study, we consider CNTs that are embedded in a composite shell 

which is in macro scale, therefore, the nanoscale effect of CNTs is usually simplified by the 

micromechanical modeling, similar to other studies in the literature [92,107,15,16]. Considering 

the small-scale effect is usually essential when the mechanical behavior of an individual CNT is 

studied. 

1.2.2.2. Dynamics of CNT-Reinforced Composite Structures 

Regarding dynamics of CNT-reinforced composite structures, there are many research works 

in the literature which studied buckling and free vibration behaviors of CNT-reinforced plates and 

shells. For example, Shen and Zhang [110] investigated the thermal buckling and post-buckling 

behaviors of functionally graded nanocomposite plates reinforced by SWCNTs subjected to in-

plane temperature variation. Shen and Xiang [111] studied the post-buckling response for CNT-

reinforced composite cylindrical panels resting on elastic foundations in thermal conditions. 

Keleshteri et al. [112] analyzed the post-buckling behavior of smart functionally graded CNT-
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reinforced annular sector plates coupled with the piezoelectric layers using generalized differential 

quadrature method. Kiani [113] presented a research dealing with the post-buckling phenomenon 

in CNT-reinforced composite plates exposed to a temperature change. In another research by 

Keleshteri et al. [114], post-buckling characteristics were determined for CNT-reinforced 

composite rectangular plates coupled with piezoelectric layers subjected to in-plane compressive 

loads.  

Heydarpour et al. [115] carried out free vibration analysis for functionally graded CNT-

reinforced composite truncated conical shells based on the first-order shear deformation shell 

theory. Alibeigloo [116] investigated free vibration behavior of functionally graded CNT-

reinforced cylindrical panels coupled with the piezoelectric layers with simply supported boundary 

conditions using three-dimensional theory of elasticity. Mirzaei and Kiani [117] studied free 

vibration behavior of functionally graded CNT-reinforced composite cylindrical panels using the 

first-order shear deformation shell theory and Donnell-type kinematic assumptions. Wang et al. 

[118] performed a vibration analysis of the functionally graded CNT-reinforced composite shallow 

shells with arbitrary boundary conditions using the first-order shear deformation shell theory. Free 

vibration analysis of functionally graded CNT-reinforced composite spherical shell panels was 

performed by Kiani [119] based on the first-order shear deformation shell theory and the Sanders 

kinematics. Torabi and Ansari [120] carried out a nonlinear free vibration analysis of thermally 

induced functionally graded CNT-reinforced annular plates. In another study by Kiani [121], free 

vibration behavior of functionally graded CNT-reinforced composite plates integrated with the 

piezoelectric layers at the bottom and top surfaces was analyzed. Mohammadzadeh-Keleshteri et 

al. [122] obtained the nonlinear free vibration responses of functionally graded CNT-reinforced 

composite annular sector plates coupled with the piezoelectric layers. Free vibration responses of 
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a functionally graded piezoelectric cylindrical nanoshell were obtained by Razavi et al. [123] based 

on consistent couple stress theory. Kamarian et al. [124] investigated the effect of CNT 

agglomeration on free vibration behaviors of CNT-reinforced composite conical shells. A free 

vibration analysis of laminated CNT-reinforced composite doubly-curved shells and panels 

considering the effect of CNT agglomeration was performed by Tornabene et al. [125]. 

Furthermore, Wang [126] studied wave propagation in CNTs with two nonlocal continuum 

mechanics models: elastic Euler-Bernoulli and Timoshenko beam models. The effect of shear 

deformation on wave propagation in fluid-filled MWCNTs embedded in an elastic matrix has also 

been investigated in Refs. [127,128]. Janghorban and Nami [129], investigated the wave 

propagation characteristics of functionally graded nanocomposite plates reinforced with carbon 

nanotubes using the second-order shear deformation theory. 

Wave propagation study of smart CNT-reinforced composite shells with various nanoparticle 

distributions is still a void in the literature, where an efficient and appropriate analytical model is 

required to investigate their effects clearly. By developing analytical models considering 

nanoparticle effects with various distributions on wave dispersion results, we can clearly interpret 

and analyze the results and data of structural health monitoring of smart nanocomposites and or 

optimize the design of smart nanocomposites for the application of energy harvesting and 

structural enhancement in dynamic testing.  

1.2.3. Wave Propagation and Vibration Characteristics of Smart Composite 

Shell Structures in Hygrothermal Environments 

Constituents of composite materials are sensitive to the temperature/moisture change. As a 

result, composite materials may be exposed to hygrothermal loading as well as mechanical loading. 
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Therefore, the effects of hygrothermal environmental conditions should be considered accurately 

in wave propagation and vibration characteristics of smart composite structures. 

 Composite shells are commonly subjected to dynamic loading under different boundary 

conditions based on their applications, hence, determining vibration characteristics of composite 

shells has a great importance in their successful applications. It was reported that the elastic moduli 

and strength of composites decrease at high temperature and moisture [130–132]. Therefore, the 

environmental conditions may influence on the wave dynamics, vibrational behaviors, and natural 

frequencies of composite shell structures. Boundary conditions of shell structures lead to different 

vibration characteristics which should be investigated clearly. 

Many methods, ranging from analytical methods to energy methods based on the Rayleigh-Ritz 

approach in which, respectively, iterative solution methods and closed form solutions of the 

governing equations were used [133,134,55,135,136], have been developed to determine vibration 

characteristics  of thin shells. In the literature, methods commonly used to investigate vibration of 

cylindrical shells with various boundary conditions are based on the state-space approach 

[135,137–139] and a numerical approach by assuming an unknown axial modal function [140–

142]. Using beam functions as the axial modal functions is a straight forward approach for treating 

cylindrical shells with various boundary conditions. This method is relatively less computationally 

intensive and leads to more accurate and reasonable natural frequencies. The new feature of this 

method is the use of beam functions as the axial modal functions to determine vibration 

characteristics of smart laminated CNT-reinforced composite cylindrical shells in general 

environment under different boundary conditions which has not been seen in the literature. The 

three-dimensional linear elasticity and an iterative approach were employed by Soldatos and 

Hadjigeoriou [141] to investigate the free vibration of cylindrical panels and shells. Lam and Loy 
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[143] investigated the free vibration behaviors of a multi-layered isotropic cylindrical shell under 

various boundary conditions using beam functions as the axial modal functions based on the Love 

bending shell theory. Lam and Loy [144] studied the vibrational behaviors of thin cylindrical 

panels with simply supported boundary condition based on the Flügge shell theory. In another 

study, Lam and Loy [136] obtained vibration characteristics of rotating cylindrical panels under 

simply supported boundary condition. Loy et al. [145] investigated vibrational behaviors of 

cylindrical shells with different boundary conditions using the generalized differential quadrature 

(GDQ) method. Zhang et al. [146] carried out vibration analysis for cylindrical panels using the 

wave propagation approach. 

Numerous research works have been made on vibration and wave propagation analysis of 

laminated composite plates and shells. For example, Ng et al. [147] conducted the free vibrational 

analysis for a rotating thin truncated circular symmetrical cross-ply laminated composite conical 

shell with various boundary conditions by the GDQ method. Malekzadeh et al. [148] performed 

three-dimensional free vibration analysis of arbitrary laminated circular cylindrical shells using a 

mixed layer wise theory and differential quadrature method (LW-DQ). An exact solution method 

was developed by Jin et al. [149] to determine free vibrational behaviors of laminated composite 

cylindrical shells with different stacking sequences under general boundary conditions. 

Mechanics, dynamics, and vibration of pure CNTs have been studied in many research works 

[150–154]. On the other hand, vibration and dynamics of composite plates, panels, and shells 

reinforced with CNTs under different boundary conditions have been investigated in the literature 

[117,155–162]. Yas et al. [156] studied the vibrational behavior of functionally graded 

nanocomposite panels reinforced with SWCNTs with simply supported boundary condition based 

on the three-dimensional theory of elasticity for different distributions and volume fractions of 



Chapter 1. Introduction 

 

45 
 

CNTs. Safaei et al. [162] studied the dynamics of nanocomposite sandwich plates with the effects 

of loading frequency for periodic thermo-mechanical loadings.       

Many studies have also been conducted on vibration, bending, and buckling of laminated 

composite plates [15,163–165,16,166–171], and shells [172–181] in hygrothermal environments. 

For example, Shen [15] presented an investigation on the nonlinear bending of simply supported 

functionally graded nanocomposite plates reinforced with SWCNTs subjected to a transverse 

uniform or sinusoidal load in thermal environment, where the results showed that characteristics 

of nonlinear bending are influenced by the temperature rise. A free vibration analysis of 

functionally graded nanocomposite plates reinforced by SWCNTs was presented by Lei et al. [16] 

using the element-free kp-Ritz method in thermal environment, where the governing equations 

were obtained based on the first-order shear deformation plate theory and the two-dimensional 

displacement fields are approximated by mesh-free kernel particle functions. Atanasov et al. [169] 

studied the dynamic stability of a double microbeam system under thermal effect. Naidu and Sinha 

[172] used the finite element method to investigate the nonlinear free vibration characteristics of 

laminated composite shells in hygrothermal environmental conditions. Malekzadeh and 

Heydarpour [174] investigated the free vibration behavior of rotating functionally graded 

cylindrical shells subjected to the temperature change using the first-order shear deformation shell 

theory. The effects of hygrothermal environmental conditions on the linear and nonlinear free 

flexural vibration of anisotropic shear deformable laminated cylindrical shells were investigated 

by Shen and Yang [176], where the cylindrical shell is made up of fiber-reinforced composites 

with the reinforcement being distributed either uniformly or functionally graded of piece-wise type 

along the thickness of the shells and the motion equations were derived based on a higher order 

shear deformation shell theory with a von Kármán-type of kinematic nonlinearity, and the results 
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displayed that the temperature and moisture variations have a moderate effect on the natural 

frequencies.  Biswal et al. [178]  studied the effects of hygrothermal environmental conditions on 

free vibration of woven fiber glass/epoxy laminated composite cylindrical shallow shells both 

numerically and experimentally based on the FEA and the first-order shear deformation shell 

theory, where the results showed that the frequency of vibration decreases with the increase of 

temperature and moisture. An investigation on the nonlinear vibration behavior of graphene-

reinforced composite laminated cylindrical shells in thermal environment has been done by Shen 

at al. [180]  based on the Reddy’s third-order shear deformation theory and the von Kármán-type 

kinematic nonlinearity, where the results of their study revealed that the nonlinear vibration 

characteristics of the shells are significantly influenced by the temperature variation, the shell 

geometric parameter, the shell end conditions, and the stacking sequence. However, investigating 

vibration and wave propagation characteristics of smart laminated composite plates and shells 

integrated with the piezoelectric materials in hygrothermal environmental conditions are limited 

in number. Wang et al. [182] investigated the hygrothermal effects on dynamic inter-laminar 

stresses in laminated plates with the piezoelectric actuator layers under free vibration. Dong and 

Wang [99,101] studied the influence of large deformation and rotary inertia on wave propagation 

in long piezoelectric cylindrically laminated shells in thermal environment. Aeroelastic 

performances of smart composite plates under aerodynamic loading in hygrothermal environments 

were investigated by Mahato and Maiti [183]. Nanda [184] studied non-linear free vibration and 

transient response of laminated composite cylindrical and spherical shells with piezoelectric layers 

in thermal environment. An analysis of delaminated fiber-reinforced composite plates with 

integrated active fibre composite actuators and sensor under hygrothermal environments has been 
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investigated by Shankar et al. [185], where the results of this study illustrated that there will be a 

reduction in the natural frequencies in the presence of delamination and hygrothermal loading. 

Due to temperature- and moisture-dependent material properties of CNT-reinforced 

composites, it is very important to consider the effects of temperature/moisture variation on wave 

propagation and vibration characteristics of smart laminated CNT-reinforced composites with the 

influence of various boundary conditions using wave propagation approach. By developing an 

analytical model considering hygrothermal effects on wave dynamics and vibration characteristics 

using the wave propagation approach, we can design smart laminated composite shells according 

to unexpected environmental conditions and different mechanical boundary conditions required 

for various engineering applications such as energy harvesting and or interpret the results of 

structural health monitoring by NDE.  

1.3. Problems Definition and Motivation 

According to the literature review which has been done in the previous section, there are still 

some meaningful gaps in the research field related to wave dynamics and vibration characteristics 

of smart composite shell structures, where (i) wave propagation characteristics of smart laminated 

fiber-reinforced composite cylindrical shells with the coupling effects of piezoelectricity, 

transverse shear, and rotary inertia, (ii) wave dynamics of smart composite cylindrical shells 

reinforced with high stiffness nano-sized fibers such as CNTs with different distributions, (iii) 

hygrothermal effects on wave dynamics of smart laminated CNT-reinforced composite cylindrical 

shells, and  (iv) vibration characteristics of smart laminated CNT-reinforced composite cylindrical 

shells using  the wave propagation approach under various boundary conditions are still unsolved 

and should be studied. These problems are important due to the significant effects of transverse 
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shear, piezoelectricity, nanoparticles, hygrothermal environmental conditions, and boundary 

conditions on wave dynamics and vibration characteristics of smart composite cylindrical shells.       

Since high wavenumbers (or frequencies) are required to determine dynamics and wave 

propagation characteristics of smart laminated composite shell structures, theories considering the 

transverse shear effects as well as in-plane stresses are desired to see the dispersion results in all 

wave modes. In smart structures made up of host stacked composite and piezoelectric layers, shear 

may occur between layers. Therefore, for smart laminated composite structures, transverse shear 

stresses should be considered in the mathematical modeling for wave propagation studies. By 

including the transverse shear effects, wave modes corresponding to the shear planes are obtained 

as well as axial, circumferential, and radial wave modes. Considering piezoelectricity and shear 

effects is very helpful in design of smart laminated composites used for noise and vibration control, 

structural stability analysis, and structural health monitoring with NDE. The transverse shear 

effects were not considered in the previous research studies in wave propagation modeling of smart 

laminated fiber-reinforced composite cylindrical shell structures, because of the complexity in 

mathematical modeling considering the resultant shear forces and challenge in numerical 

computations corresponding to higher shear wave modes for smart multi-layered composites with 

piezoelectric coupling effects. Hence, in this research, an analytical approach, including the 

transverse shear effects and rotary inertia, is proposed to investigate wave propagation in smart 

laminated fiber-reinforced composite cylindrical shell structures and the results are compared with 

those obtained without the effects of transverse shear and rotary inertia. 

Effects of CNTs on buckling and vibration of CNT-reinforced composite plates and shells were 

studied in many research works. However, their effects on wave dispersion solutions have not been 

modeled and investigated by considering different CNT distributions and volume fractions in the 
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piezocomposite cylindrical shells as well as the shear effects. Wave propagation problem in CNT-

reinforced composites has some challenges considering the nano-sized fiber reinforcement with 

different distributions and volume fractions. As discussed before, available methods to consider 

nano-fiber reinforcement effects are non-local mechanics, molecular dynamics, and 

micromechanics models. The micromechanics model is chosen as the feasible analytical method 

due to its advantages in directly obtaining the effective material properties for the resultant 

composite with various nanotube distributions, where a simple and efficient analytical model can 

be developed to analyze the wave propagation in smart CNT-reinforced composites. The accuracy 

of the micromechanical model was proven with experimental testing by validating the estimated 

effective mechanical properties for the resultant composite reinforced with nanoparticles for a 

specific orientation and volume fraction [186]. It is very important to model wave propagation in 

CNT-reinforced composites to understand their dynamics when a wave is excited on their surface 

for the structural health monitoring and energy harvesting applications. To perform this 

investigation, micromechanical modeling must be developed for the wave propagation problem 

which is not simple and has some difficulties in the mathematical modeling due to the CNT 

reinforcement, where in this research, appropriate wave propagation models for different types of 

CNT orientation and distribution are developed by incorporating the micromechanics model and 

shell theory. Analysis of wave propagation in composites reinforced with nanoparticles helps us 

to understand their wave behaviors at various axial and circumferential wavenumbers as well as 

wave modes. Understanding the effects of CNT distributions on wave dynamics helps us to 

optimize the design process of customized CNT-reinforced piezocomposites for various 

engineering applications such as energy harvesting and structural health monitoring by NDE.       



Chapter 1. Introduction 

 

50 
 

 Constituents of composite materials are temperature-and moisture-dependant, where their 

effects on dynamics of composite structures are important and significant. Material properties of 

CNTs are also temperature-dependant. For the design of advanced smart structures used in energy 

harvesting application and analysis of data of structural health monitoring by NDE, we hence need 

to study the wave dispersion results for smart laminated CNT-reinforced composite shells in the 

hygrothermal environments to characterize wave behaviors for the case of temperature and 

moisture variations in order to optimize the design. This study was not presented before due to the 

challenge of mechanical-temperature and -moisture coupling effects with applied hygrothermal 

strains and also obtaining the effective thermal and moisture coefficients. An analytical model 

considering temperature and moisture couplings is proposed and developed in this research to find 

the effects of hygrothermal environmental conditions on wave propagation and vibration 

characteristics of smart composites. 

Vibration characteristics of smart laminated CNT-reinforced composite cylindrical shells with 

finite length under various boundary conditions lead to an accurate design of smart composites for 

various engineering applications such as energy harvesting and stability analysis. Developing an 

analytical model using the wave propagation approach leads to determine vibration characteristics 

of smart laminated composite cylindrical shells simpler and easier than other existing approaches. 

Hence, an approach based on the wave propagation method is developed in this thesis to find the 

natural frequencies of smart laminated CNT-reinforced composite cylindrical shells under various 

mechanical boundary conditions.  

According to the above-mentioned voids in the research field, analytical models are developed 

by combining the existing theories/models to bridge the existing gapes in the wave dynamics and 

vibration problems of smart laminated composite cylindrical shells by considering the effects of 
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various parameters. Composite materials, especially CNT-reinforced composites, are totally 

different from other isotropic materials such as steel and aluminium with different constitutive 

equations, not like just replacing some numbers for the material properties. We need to first obtain 

and develop the corresponding constitutive equations and governing equations of motion for smart 

customized composite structures used in the wave propagation and vibration problems with the 

effects of transverse shear, piezoelectric coupling, CNT distribution, hygrothermal environmental 

conditions, and mechanical boundary conditions, and then model and solve the wave dynamics 

and vibration problems. 

Removing the existing gaps by developing analytical models including the parameters 

neglected in previous studies contributes the research fields utilizing the wave propagation and 

vibration modeling such as structural health monitoring, energy harvesting, and structural stability 

analysis.           

1.4. Research Objectives and Innovations/Novelties 

 Based on the gaps introduced in the previous section, the objectives of this research thesis are 

summarized as following:  

 Developing a theoretical foundation/framework to study the wave propagation and 

vibration characteristics of smart laminated fiber-reinforced composite cylindrical 

shells. 

 Modeling and solving the wave propagation problem in smart laminated fiber-

reinforced composite cylindrical shells integrated by the piezoelectric layer and 

studying the effects of transverse shear and rotary inertia with the proposed analytical 

model, which provides detailed description and understanding of the wave parameters 

and physical phenomena. 
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 Modeling and studying the effects of nano-sized reinforcement on wave propagation 

characteristics of customized smart composite cylindrical shells with various types of 

nanoparticle distribution by presenting an analytical approach combining the Mori-

Tanaka micromechanics model and the first-order shear deformation shell theory.  

 Modeling and studying the effects of temperature and moisture variations on the 

structural dynamics of smart laminated CNT-reinforced composites by a developed 

analytical model considering the hygrothermal effects.  

 Modeling free vibration problem in finite length smart laminated CNT-reinforced 

composite cylindrical shells using the wave propagation approach and determining 

vibration characteristics under various mechanical boundary conditions and 

hygrothermal environmental conditions.  

1.5. Outline of the Thesis    

Smart composite cylindrical shells reinforced with Carbon, E-Glass, and CNT fibers and 

integrated with the piezoelectric materials are the studied objects of this thesis and their dynamic 

behaviors are modeled and studied considering the effects of various parameters. The focus of this 

thesis is to propose and develop analytical models to investigate structural dynamic characteristics 

of smart laminated composite cylindrical shells and build a theoretical foundation and framework 

for composite NDE by combining the existing mathematical and micromechanical models. 

Accordingly, this thesis is organized into four Chapters.  

The first Chapter introduces the background, scope, and motivation, and also indicates the 

necessity of the present study. Literature review is conducted in the related areas including 

dynamics of smart composites, CNT effects on structural dynamics, and hygrothermal effects on 
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structural dynamics of smart composite shell structures. Problems definition and research 

objectives and innovations are also explained in detail.  

Chapter two of the thesis presents the derivation of constitutive equations for laminated fiber-

reinforced composite cylindrical shells and piezoelectric cylindrical shells with different 

polarization directions based on the classical shell theory and the first-order shear deformation 

shell theory. Then wave propagation problem in laminated fiber-reinforced composite cylindrical 

shells coupled with the piezoelectric layer is modeled based on various shell theories with the 

coupling effects of transverse shear and piezoelectricity. Afterward, an analytical model 

combining mathematical and micromechanical models is developed to model wave dynamics of 

CNT-reinforced piezocomposite shells with different CNT distributions. The effective material 

properties for piezocomposite shells reinforced with CNTs are estimated using the Mori-Tanaka 

micromechanics model. Then, the constitutive equations are derived for various CNT 

arrangements (angled and randomly CNT distributions and agglomerated CNTs with different 

volume fractions) and the wave propagation problem is modeled and solved based on the first-

order shear deformation shell theory. In the next step, a structural dynamic model in combination 

with the micromechanics model and the shell theory is developed to simulate the hygrothermal 

environmental conditions on wave dynamics of smart laminated CNT-reinforced composite 

cylindrical shells based on the first-order shear deformation shell theory. Finally, free vibration 

problem is modeled for finite length smart laminated CNT-reinforced composite cylindrical shells 

using the wave propagation approach to determine vibration characteristics under various 

mechanical boundary conditions.   

Chapter three mainly presents the results obtained based on the structural dynamic modeling 

presented in Chapter two. The presented analytical approach, computer programming, and 
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numerical implementation are evaluated and validated against the available results in the literature. 

The effects of transverse shear and rotary inertia, piezoelectric coupling, composite stacking 

sequence, shell geometry, and material properties on wave dispersion solutions are examined. A 

comparison of dispersion solutions by different shell theories is also provided. Furthermore, the 

results present the influence of nanotube distribution and fraction on wave propagation 

characteristics of smart composite cylindrical shell structures. Effects of temperature and moisture 

variations on the wave propagation and vibration characteristics are also studied and investigated. 

Finally, the effects of shell boundary conditions, axial and circumferential modes, temperature and 

moisture variations, nanoparticles, and shell geometry parameters on vibration characteristics are 

investigated and discussed. 

Finally, Chapter four summarizes key findings and implications of the results, as well as 

conclusions and recommendations for future works. 

To summarize, a methodology, which is described schematically in Fig. 1.18, is adopted in the 

present thesis in order to develop appropriate correlations for predicting structural dynamics of 

smart composite shell structures with the coupling effects of various parameters including 

transverse shear, rotary inertia, piezoelectricity, nanoparticles, hygrothermal environmental 

conditions, shell geometry, and boundary conditions.  

Presented methodology in this thesis and the obtained results were published in eight journal 

papers [187–194]. 
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Figure 1.18. A schematic flow of the adopted methodology. 

 

Constitutive relations for 

laminated fiber-reinforced 

composite shells 

Constitutive relations for 

piezoelectric shells with 

various polarizations  

Constitutive relations for CNT-

reinforced composite shells with 

various CNT distributions based 

on the micromechanics theory 

Constitutive relations for CNT-

reinforced composite shells 

with hygrothermal effects  

Derivation of motion 

equations with various 

coupling effects 

Solving motion equations 

by solving an eigenvalue 

problem    

Wave characteristics with 

coupling effects of 

piezoelectricity and transverse 

shear  

Wave characteristics of 

smart composite shells with 

hygrothermal effects  

Effects of nanoparticles on 

wave behaviors 

Vibration characteristics of 

smart composite shells with 

various boundary conditions  



56 
 

Chapter 2 
 

 

Structural Dynamic Modeling of Smart 

Composite Cylindrical Shells 

 

In this Chapter, structural dynamic modeling of smart composite cylindrical shells are proposed 

and presented and constitutive equations are derived and developed by considering the effects of 

transverse shear, piezoelectricity, nanoparticles, and hygrothermal environmental conditions by 

incorporating the composite lamination, wave propagation, and shell theories/models. 

Firstly, the geometry of the problem is portrayed (section 2.1) and then constitutive relations 

for laminated fiber-reinforced composite cylindrical shells and piezoelectric cylindrical shells are 

derived based on shell theories and piezoelectricity polarizations (section 2.2). Afterward, wave 

propagation problems are modeled and solved with coupling effects of various parameters 

including transverse shear (section 2.3), nanoparticles (section 2.4), and temperature and moisture 

variations (section 2.5). Finally, the free vibration problem is modeled and solved using the wave 

propagation approach with the effects of various mechanical boundary conditions (section 2.6).                                                                                                                                                                                                                                                        
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2.1. Geometry of a Smart Laminated Fiber-Reinforced Composite 

Cylindrical Shell 

Configuration of a laminated fiber-reinforced composite cylinder, layout of a laminated fiber-

reinforced composite cylindrical shell coupled with the piezoelectric layers at the top and bottom 

surfaces, and a single ply of fiber-reinforced unidirectional composite cylindrical shell with its 

material principle and cylindrical coordinate systems are shown in Fig. 2.1. A cross-sectional view 

of a laminated composite cylindrical shell coupled with the piezoelectric layers at the top and 

bottom surfaces with coordinate notation of individual plies are displayed in Fig. 2.2. Coordinate 

𝑥 represents the direction along the shell axial direction, 𝜃 for the circumferential direction, and 𝑧 

for the radial direction. Material principle axes along fiber and in transverse directions of fiber are 

presented by 1, 2, and 3, respectively. The angle 𝛽 is measured positive counter clockwise from 

the 𝑥-axis to 1-axis. The 𝑥 − 𝜃 plane is equidistant from the top and bottom surfaces of the shell 

and is called the reference plane or the midplane. 𝑅 is the reference plane radius, ℎ𝑝 denotes the 

piezoelectric layer thickness, and ℎ is the total thickness of the laminated composite cylindrical 

shell which is sum of the thickness of each lamina or ply (ℎ𝐾) as,  

ℎ = ∑ ℎ𝐾

𝑁

𝐾=1

                                                                                                                                                                 (2.1) 

where 𝑁 is is the total number of plies. Abovementioned notations are constant throughout the 

theoretical development. The force and moment resultants at an infinitesimal element of the shell 

are shown in Fig. 2.3. 

 

 

 



Chapter 2. Structural Dynamic Modeling of Smart Composite Cylindrical Shells 

58 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.1. (a) Configuration of a laminated fiber-reinforced composite cylinder, (b) layout of a 

laminated fiber-reinforced composite cylindrical shell coated with the piezoelectric layers at the 

top and bottom surfaces, (c) a single ply of fiber-reinforced unidirectional composite cylindrical 

shell with its material principle and cylindrical coordinate systems.  
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Figure 2.2. A cross-sectional view of a laminated composite cylindrical shell  coupled with the 

piezoelectric layers at the top and bottom surfaces with coordinate notation of individual plies. 
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Figure 2.3. The force and moment resultants at an infinitesimal element of the shell. 

 

2.2. Constitutive Equations for Laminated Fiber-Reinforced 

Composite Cylindrical Shells and Piezoelectric Cylindrical Shells 

2.2.1. Strain-Displacement Relations in the Cylindrical Coordinate System 

The general strain-displacement relations in the cylindrical coordinate system (𝑥, 𝜃, 𝑧)  are 

given by Ref. [195] as,  

𝜀𝑥𝑥 = 
𝜕𝑢

𝜕𝑥
                      𝜀𝜃𝜃 =

1

𝑅
(
𝜕𝑣

𝜕𝜃
+𝑤)                𝜀𝑧𝑧 = 

𝜕𝑤

𝜕𝑧
               

𝛾𝑥𝜃 = 
𝜕𝑣

𝜕𝑥
+

𝜕𝑢

𝑅𝜕𝜃
       𝛾𝑥𝑧 = 

𝜕𝑤

𝜕𝑥
+
𝜕𝑢

𝜕𝑧
                    𝛾𝜃𝑧 = 

1

𝑅

𝜕𝑤

𝜕𝜃
+
𝜕𝑣

𝜕𝑧
−
𝑣

𝑅
                                                  (2.2) 

where 𝑢, 𝑣, and 𝑤 represent the displacements of a generic point of cylinder in 𝑥 −, 𝜃 −, and 𝑧 − 

directions, respectively. Eq. (2.2) is used in the derivation of governing or field equations in this 

Chapter.   

𝑁𝜃𝜃 
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𝑁 𝑥𝑥 

𝑁 𝜃𝑥  

𝑁 𝜃𝜃 

𝑁 𝑥𝑥 = 𝑁𝑥𝑥 +
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2.2.1.1. Strain-Displacement Relations using the Classical Shell Theory 

In this section, the strain-displacement relations are derived for a cylindrical shell using the 

classical shell theory in which the transverse shear effects are neglected (𝛾𝑥𝑧 = 𝛾𝜃𝑧 = 0)[6]. Fig. 

2.4 shows a section of a laminate normal to the 𝜃 −axis before and after deformation without 

considering the transverse shear effects, where straight lines normal to the middle surface remain 

straight and normal to that surface after deformation [6,196]. First of all, the displacement fields 

are needed to derive the strain field equations based on the classical shell theory, where the 

displacement kinematics based on this theory are given by Ref. [196] as,    

𝑢(𝑥, 𝜃, 𝑧, 𝑡) =  𝑢0(𝑥, 𝜃, 𝑡) − 𝑧
𝜕𝑤0(𝑥, 𝜃, 𝑧, 𝑡)

𝜕𝑥
                                                                                                  (2.3𝑎) 

𝑣(𝑥, 𝜃, 𝑧, 𝑡) =  𝑣0(𝑥, 𝜃, 𝑡) −
𝑧

𝑅

𝜕𝑤0(𝑥, 𝜃, 𝑧, 𝑡)

𝜕𝜃
                                                                                                  (2.3𝑏) 

𝑤(𝑥, 𝜃, 𝑧, 𝑡) =  𝑤0(𝑥, 𝜃, 𝑡)                                                                                                                                    (2.3𝑐) 

where 𝑢0(𝑥, 𝜃, 𝑡), 𝑣0(𝑥, 𝜃, 𝑡), and 𝑤0(𝑥, 𝜃, 𝑡) denote the reference plane displacements in 𝑥 −, 𝜃 −, 

and 𝑧 −directions, respectively, where they are not function of 𝑧 for a thin shell structure, thus, 

their derivatives with respect to 𝑧 will vanish in further calculations throughout the theoretical 

development.  

In the classical shell theory, it is assumed that the transverse shear strains 𝛾𝑥𝑧  and 𝛾𝜃𝑧  are 

negligibly small. Thus, by substituting Eq. (2.3) into Eq. (2.2), the in-plane strain-displacement 

relations are derived as,  

𝜀𝑥𝑥 = 
𝜕𝑢0

𝜕𝑥
− 𝑧

𝜕2𝑤0

𝜕𝑥2
         𝜀𝜃𝜃 =

1

𝑅
(
𝜕𝑣0

𝜕𝜃
+𝑤0) −

𝑧

𝑅2
𝜕2𝑤0

𝜕𝜃2
            𝛾𝑥𝜃 = (

𝜕𝑣0

𝜕𝑥
+

𝜕𝑢0

𝑅𝜕𝜃
) −

2𝑧

𝑅

𝜕2𝑤0

𝜕𝑥𝜕𝜃
                (2.4)  

By defining the in-plane strain components on the reference plane (𝑥 − 𝜃) of the shell as, 

𝜀𝑥𝑥
0 = 

𝜕𝑢0

𝜕𝑥
                    𝜀𝜃𝜃

0 =
1

𝑅
(
𝜕𝑣0

𝜕𝜃
+𝑤0)                  𝛾𝑥𝜃

0 = 
𝜕𝑣0

𝜕𝑥
+

𝜕𝑢0

𝑅𝜕𝜃
                                                         (2.5)  

and the in-plane curvatures of the shell as, 
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 Ƙ𝑥𝑥 = −
𝜕2𝑤0

𝜕𝑥2
                          Ƙ𝜃𝜃 = −

𝜕2𝑤0

𝑅2𝜕𝜃2
                 Ƙ𝑥𝜃 = −

2

𝑅

𝜕2𝑤0

𝜕𝑥𝜕𝜃
                                                       (2.6)    

the in-plane strains at any point in the cylindrical shell can be related to the in-plane strains of the 

reference plane and the in-plane curvatures of the shell as follows, 

{

𝜀𝑥𝑥
𝜀𝜃𝜃
𝛾𝑥𝜃

} = {

𝜀𝑥𝑥
0

 𝜀𝜃𝜃
0

𝛾𝑥𝜃
0

} + 𝑧 {

Ƙ𝑥𝑥
 Ƙ𝜃𝜃
Ƙ𝑥𝜃

}                                                                                                                                     (2.7) 

where 𝑧 is the distance of any point from the reference plane.  

 

Figure 2.4. Shell section before (ABCD) and after (A′B′C′D′) deformation [6]. 

 

2.2.1.2. Strain-Displacement Relations using the First-Order Shear Deformation 

Shell Theory 

Strain-displacement relations are derived in this section for a cylindrical shell based on the first-

order shear deformation shell theory in which the transverse shear effects are included. Fig. 2.5 

shows a section of a cylindrical shell normal to the 𝜃-axis before and after deformation, including 

the effects of transverse shear, where straight lines normal to the middle surface remain straight 

but not normal to that surface after deformation. The result of this deformation is the rotation of 

the cross-section 𝐴𝐵𝐶𝐷 by angle 𝛼𝑥 to a location 𝐴́𝐵́𝐶́𝐷́, which is normal to the deformed middle 



Chapter 2. Structural Dynamic Modeling of Smart Composite Cylindrical Shells 

63 
 

surface [6,196]. The displacement kinematics required to derive the strain-displacement relations 

based on the first-order shear deformation shell theory are given by Ref. [196] as, 

 𝑢(𝑥, 𝜃, 𝑧, 𝑡) = 𝑢0(𝑥, 𝜃, 𝑡) + 𝑧𝛼𝑥(𝑥, 𝜃, 𝑡)                                                                                                          (2.8𝑎) 

𝑣(𝑥, 𝜃, 𝑧, 𝑡) =  𝑣0(𝑥, 𝜃, 𝑡) + 𝑧𝛼𝜃(𝑥, 𝜃, 𝑡)                                                                                                           (2.8𝑏) 

𝑤(𝑥, 𝜃, 𝑧, 𝑡) =  𝑤0(𝑥, 𝜃, 𝑡)                                                                                                                                    (2.8𝑐) 

where 𝛼𝑥(𝑥, 𝜃, 𝑡) and 𝛼𝜃(𝑥, 𝜃, 𝑡) are the rotation of the cross-section normal to 𝑥 -axis and 𝜃-axis, 

respectively, where they are not also function of 𝑧 for a thin shell structure, thus, their derivatives 

with respect to 𝑧 will vanish in subsequent computations throughout this thesis. By using the 

displacement kinematics introduced in Eq. (2.8), the transverse shear effects are included in the 

mathematical modeling. Substituting Eq. (2.8) into Eq. (2.2) yields the strain field equations based 

on the first-order shear deformation shell theory as follows, 

𝜀𝑥𝑥 = 
𝜕𝑢0
𝜕𝑥

+ 𝑧
𝜕𝛼𝑥
𝜕𝑥

                𝜀𝜃𝜃 =
1

𝑅
(
𝜕𝑣0
𝜕𝜃

+ 𝑤0) +
𝑧

𝑅

𝜕𝛼𝜃
𝜕𝜃

                   𝜀𝑧𝑧 = 0        

𝛾𝑥𝜃 = 
𝜕𝑣0
𝜕𝑥

+
𝜕𝑢0
𝑅𝜕𝜃

+ 𝑧 (
𝜕𝛼𝜃
𝜕𝑥

+
𝜕𝛼𝑥
𝑅𝜕𝜃

)        𝛾𝑥𝑧 = 
𝜕𝑤0

𝜕𝑥
+ 𝛼𝑥            𝛾𝜃𝑧 = 

𝜕𝑤0

𝑅𝜕𝜃
−
𝑣0
𝑅
+ 𝛼𝜃                      (2.9) 

 

 

Figure 2.5. Shell section before (ABCD) and after (A′B′C′D′) deformation with noticeable effects of 

transverse shear [6]. 
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From the above relations, it is observed that the transverse shear strains 𝛾𝑥𝑧 and 𝛾𝜃𝑧 are equal 

to the rotations of the cross sections relative to the normal to the middle surface after deformation. 

Therefore, the in-plane strain components on the reference plane (𝜀𝑥𝑥
0 , 𝜀𝜃𝜃

0 , and 𝛾𝑥𝜃
0 ) are the same 

as Eq. (2.5), but the in-plane curvatures are attained as, 

Ƙ𝑥𝑥 =
𝜕𝛼𝑥
𝜕𝑥

                       Ƙ𝜃𝜃 =
𝜕𝛼𝜃
𝑅𝜕𝜃

                       Ƙ𝑥𝜃 =
𝜕𝛼𝜃
𝜕𝑥

+
𝜕𝛼𝑥
𝑅𝜕𝜃

                                                        (2.10) 

 So, for the first-order shear deformation shell theory, we use Eq. (2.9) or Eq. (2.7) with the in-

plane curvatures introduced in Eq. (2.10), as the in-plane strain components of any point in a 

cylindrical shell with distance 𝑧 from the reference plane. 

2.2.2. Constitutive Relations for a Laminated Fiber-Reinforced Composite 

Cylindrical Shell 

The in-plane strains at any point in a laminated composite cylindrical shell are given by Eq. 

(2.7). The in-plane stress-strain relations of lamina (layer) 𝐾  within the laminate, which are 

decoupled from the transverse shear terms, are given by Ref. [6] as, 

{

𝜎𝑥𝑥
(1)

𝜎𝜃𝜃
(1)

𝜏𝑥𝜃
(1)

}

𝐾

= [

 𝑄𝑥𝑥    𝑄𝑥𝜃     𝑄𝑥𝑠 
𝑄𝜃𝑥    𝑄𝜃𝜃    𝑄𝜃𝑠
𝑄𝑠𝑥    𝑄𝑠𝜃    𝑄𝑠𝑠

]

𝐾

{

𝜀𝑥𝑥
𝜀𝜃𝜃
𝛾𝑥𝜃

}

𝐾

                                                                                                           (2.11) 

where [𝑄𝑖𝑗]𝐾 (𝑖, 𝑗 = 𝑥, 𝜃, 𝑠) is the transformed reduced stiffness matrix for lamina 𝐾 in the 𝑥 − 𝜃 

system of coordinates as a function of the principal stiffness matrix [𝑄𝑖𝑗]𝐾 (𝑖, 𝑗 = 1, 2, 6) of the 

lamina reinforced with fibers, where their components are given in Appendix A, superscript (1) 

represents variables corresponding to the host laminated composite cylindrical shell, and the 

subscript 𝑠 in the above equations corresponds to shear stress and strain components referred to 

the 𝑥 − 𝜃 system of coordinates. Substituting Eq. (2.7) into Eq. (2.11) yields,  
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{

𝜎𝑥𝑥
(1)

𝜎𝜃𝜃
(1)

𝜏𝑥𝜃
(1)

}

𝐾

= [

 𝑄𝑥𝑥    𝑄𝑥𝜃     𝑄𝑥𝑠 
𝑄𝜃𝑥    𝑄𝜃𝜃    𝑄𝜃𝑠
𝑄𝑠𝑥    𝑄𝑠𝜃    𝑄𝑠𝑠

]

𝐾

{

𝜀𝑥𝑥
0

 𝜀𝜃𝜃
0

𝛾𝑥𝜃
0

} + 𝑧 [

 𝑄𝑥𝑥   𝑄𝑥𝜃     𝑄𝑥𝑠 
𝑄𝜃𝑥    𝑄𝜃𝜃    𝑄𝜃𝑠
𝑄𝑠𝑥    𝑄𝑠𝜃    𝑄𝑠𝑠

]

𝐾

{

Ƙ𝑥𝑥
 Ƙ𝜃𝜃
Ƙ𝑥𝜃

}                                                (2.12) 

as the in-plane stress-strain relations for an individual lamina 𝐾 whose midplane is at a distance 𝑧 

from the laminate reference plane. The transverse shear stress-strain relations for an individual 

lamina 𝐾, which are decoupled from the in-plane stress and strain terms, are given by Ref. [6] as, 

{
𝜏𝜃𝑧
(1)

𝜏𝑥𝑧
(1)
}

𝐾

= [
𝐶𝑞𝑞 𝐶𝑞𝑟
𝐶𝑟𝑞 𝐶𝑟𝑟

]
𝐾

{
𝛾𝜃𝑧
𝛾𝑥𝑧

}
𝐾
                                                                                                                           (2.13) 

where 𝐶𝑞𝑞, 𝐶𝑞𝑟, 𝐶𝑟𝑞, and  𝐶𝑟𝑟 are given in Appendix A, and 𝛾𝜃𝑧 and 𝛾𝑥𝑧 are given in Eq. (2.9).  

The in-plane force and moment resultants and the transverse shear (out-of-plane) force 

resultants for a laminated fiber-reinforced composite cylindrical shell are obtained by integrating 

the corresponding stresses across the shell thickness as, 

{

𝑁𝑥𝑥
(1)

𝑁𝜃𝜃
(1)

𝑁𝑥𝜃
(1)

} = ∑ ∫ {

𝜎𝑥𝑥
(1)

𝜎𝜃𝜃
(1)

𝜏𝑥𝜃
(1)

}

𝐾

𝑧𝐾

𝑧𝐾−1

𝑁

𝐾=1

𝑑𝑧                                                                                                                       (2.14𝑎) 

{

𝑀𝑥𝑥
(1)

𝑀𝜃𝜃
(1)

𝑀𝑥𝜃
(1)

} = ∑ ∫ {

𝜎𝑥𝑥
(1)

𝜎𝜃𝜃
(1)

𝜏𝑥𝜃
(1)

}

𝐾

𝑧𝐾

𝑧𝐾−1

𝑁

𝐾=1

𝑧𝑑𝑧                                                                                                                    (2.14𝑏) 

{
𝑉𝜃𝑧
(1)

𝑉𝑥𝑧
(1)
} = 𝐾𝑠 ∑ ∫ {

𝜏𝜃𝑧
(1)

𝜏𝑥𝑧
(1)
}

𝐾

𝑧𝐾

𝑧𝐾−1

𝑁

𝐾=1

𝑑𝑧                                                                                                                        (2.14𝑐) 

where 𝑧𝐾−1  and 𝑧𝐾  stand for the 𝑧 −coordinate of the lower and upper surfaces of lamina 𝐾 , 

respectively, as shown in Fig. 2.2, and 𝐾𝑠 is the so-called shear correction factor introduced to 

account for the uniform distribution of transverse shear stress through the thickness of the layer. 

Based on  to the work by Mirsky [197], shear correction factor 𝐾𝑠 is chosen 0.8333 throughout 

this thesis. According to Eq. (2.14), the force and moment resultants for a laminated fiber-
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reinforced composite cylindrical shell made up of 𝑁 layers can be obtained. Hence, substituting 

Eqs. (2.12) and (2.13) for the lamina (layer) in-plane and out-of-plane (transverse shear) stresses, 

respectively, into Eq. (2.14) and taking integration across the shell thickness yields to the in-plane 

force and moment resultants and the out-of-plane (transverse shear) force resultants for a laminated 

fiber-reinforced composite cylindrical shell as, 

{

𝑁𝑥𝑥
(1)

𝑁𝜃𝜃
(1)

𝑁𝑥𝜃
(1)

} = [

 𝐴𝑥𝑥    𝐴𝑥𝜃     𝐴𝑥𝑠 
𝐴𝜃𝑥    𝐴𝜃𝜃    𝐴𝜃𝑠
𝐴𝑠𝑥    𝐴𝑠𝜃    𝐴𝑠𝑠

] {

𝜀𝑥𝑥
0

 𝜀𝜃𝜃
0

𝛾𝑥𝜃
0

} + [

 𝐵𝑥𝑥     𝐵𝑥𝜃     𝐵𝑥𝑠 
𝐵𝜃𝑥    𝐵𝜃𝜃    𝐵𝜃𝑠
𝐵𝑠𝑥     𝐵𝑠𝜃     𝐵𝑠𝑠

] {

Ƙ𝑥𝑥
 Ƙ𝜃𝜃
Ƙ𝑥𝜃

}                                                        (2.15𝑎) 

{

𝑀𝑥𝑥
(1)

𝑀𝜃𝜃
(1)

𝑀𝑥𝜃
(1)

} = [

 𝐵𝑥𝑥     𝐵𝑥𝜃     𝐵𝑥𝑠 
𝐵𝜃𝑥    𝐵𝜃𝜃     𝐵𝜃𝑠
𝐵𝑠𝑥     𝐵𝑠𝜃      𝐵𝑠𝑠

] {

𝜀𝑥𝑥
0

 𝜀𝜃𝜃
0

𝛾𝑥𝜃
0

} + [

 𝐷𝑥𝑥    𝐷𝑥𝜃     𝐷𝑥𝑠 
𝐷𝜃𝑥   𝐷𝜃𝜃    𝐷𝜃𝑠
𝐷𝑠𝑥     𝐷𝑠𝜃     𝐷𝑠𝑠

] {

Ƙ𝑥𝑥
 Ƙ𝜃𝜃
Ƙ𝑥𝜃

}                                                      (2.15𝑏) 

{
𝑉𝜃𝑧
(1)

𝑉𝑥𝑧
(1)
} = 𝐾𝑠 [

𝐴́𝑞𝑞 𝐴́𝑞𝑟

𝐴́𝑟𝑞 𝐴́𝑟𝑟
] {
𝛾𝜃𝑧
𝛾𝑥𝑧

}                                                                                                                          (2.15𝑐) 

where  

[𝐴𝑖𝑗] = ∑[𝑄𝑖𝑗]𝐾
(𝑧𝐾 − 𝑧𝐾−1)

𝑁

𝐾=1

                                                                                                                        (2.16𝑎) 

[𝐵𝑖𝑗] =
1

2
∑[𝑄𝑖𝑗]𝐾

(𝑧𝐾
2 − 𝑧𝐾−1

2 )

𝑁

𝐾=1

                                                                                                                     (2.16𝑏) 

[𝐷𝑖𝑗] =
1

3
∑[𝑄𝑖𝑗]𝐾

(𝑧𝐾
3 − 𝑧𝐾−1

3 )

𝑁

𝐾=1

                                                                                                                      (2.16𝑐) 

[𝐴́𝑖𝑗] = ∑[𝐶𝑖𝑗]𝐾
(𝑧𝐾 − 𝑧𝐾−1)

𝑁

𝐾=1

                                                                                                                         (2.16𝑑) 

where  𝐴𝑖𝑗 =  𝐴𝑗𝑖 ,  𝐵𝑖𝑗 =  𝐵𝑗𝑖 ,  𝐷𝑖𝑗 =  𝐷𝑗𝑖  (𝑖, 𝑗 = 𝑥, 𝜃, 𝑠), and  𝐴́𝑖𝑗 =  𝐴́𝑗𝑖 (𝑖, 𝑗 = 𝑞, 𝑟). [ 𝐴𝑖𝑗], [ 𝐵𝑖𝑗], 

[ 𝐷𝑖𝑗], and [ 𝐴́𝑖𝑗] are laminate stiffness matrices, which are function of the geometry, material 

properties, and stacking sequence of the individual plies. 
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2.2.3. Constitutive Relations for a Piezoelectric Cylindrical Shell 

The generalized constitutive equations for a piezoelectric shell in the cylindrical coordinate 

system (𝑥, 𝜃, 𝑧) are given by Ref. [81] as,  

{
 
 
 
 

 
 
 
 𝜎𝜃𝜃

(2)

𝜎𝑥𝑥
(2)

𝜎𝑧𝑧
(2)

𝜏𝑥𝑧
(2)

𝜏𝜃𝑧
(2)

𝜏𝑥𝜃
(2)
}
 
 
 
 

 
 
 
 

=

[
 
 
 
 
 
𝑐11
𝑐12
𝑐13
0
0
0

𝑐12
𝑐22
𝑐23
0
0
0

𝑐13
𝑐23
𝑐33
0
0
0

0
0
0
𝑐44
0
0

0
0
0
0
𝑐55
0

0
0
0
0
0
𝑐66]

 
 
 
 
 

{
 
 

 
 
𝜀𝜃𝜃
𝜀𝑥𝑥
𝜀𝑧𝑧
𝛾𝑥𝑧
𝛾𝜃𝑧
𝛾𝑥𝜃}

 
 

 
 

−

[
 
 
 
 
𝑒11
𝑒12
𝑒13
𝑒14
𝑒15
𝑒16

𝑒21
𝑒22
𝑒23
𝑒24
𝑒25
𝑒26

𝑒31
𝑒32
𝑒33
𝑒34
𝑒35
𝑒36]

 
 
 
 

{

𝐸𝜃𝜃
𝐸𝑥𝑥
𝐸𝑧𝑧

}                                   (2.17𝑎) 

{

𝐷𝜃𝜃
𝐷𝑥𝑥
𝐷𝑧𝑧

} = [

𝑒11 𝑒12 𝑒13 𝑒14 𝑒15 𝑒16
𝑒21 𝑒22 𝑒23 𝑒24 𝑒25 𝑒26
𝑒31 𝑒32 𝑒33 𝑒34 𝑒35 𝑒36

]

{
 
 

 
 
𝜀𝜃𝜃
𝜀𝑥𝑥
𝜀𝑧𝑧
𝛾𝑥𝑧
𝛾𝜃𝑧
𝛾𝑥𝜃}

 
 

 
 

+ [
∈11
0
0

0
∈22
0

0
0
∈33

] {

𝐸𝜃𝜃
𝐸𝑥𝑥
𝐸𝑧𝑧

}                                  (2.17𝑏) 

where 𝜎𝑖𝑗, 𝜀𝑖𝑗 (𝑖, 𝑗 = 𝑥, 𝜃, 𝑧), and 𝐷𝑖𝑖, 𝐸𝑖𝑖 (𝑖 = 𝑥, 𝜃, 𝑧) represent the stresses, the strains, the electric 

displacements, and the electric field intensities, respectively; 𝑐𝑖𝑗 , 𝑒𝑖𝑗, ∈𝑖𝑗 (𝑖, 𝑗 = 1,2, … ,6) denote 

the elastic constants, the piezoelectric constants, and the dielectric constants, respectively; and 

superscript (2) stands for variables corresponding to the piezoelectric layer. It is noted that 

regardless of the direction of polarization, there should be only five nonzero piezoelectric 

constants. The electric field intensities 𝐸𝑖𝑖  (𝑖 = 𝑥, 𝜃, 𝑧), which are function of the electric potential 

𝜑(𝑥, 𝜃, 𝑡), in the cylindrical coordinate system are given by Ref. [81] as, 

 𝐸𝑥𝑥 = −
𝜕𝜑

𝜕𝑥
              𝐸𝜃𝜃 = −

𝜕𝜑

𝑅𝜕𝜃
               𝐸𝑧𝑧 = −

𝜕𝜑

𝜕𝑧
                                                                                  (2.18)        

In the following subsections, the constitutive equations are developed for a piezoelectric 

cylindrical shell by considering different polarization directions and without (based on the classical 

shell theory) and with the transverse shear effects (based on the first-order shear deformation shell 

theory).  
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2.2.3.1. Constitutive Equations for a Piezoelectric Cylindrical Shell with Axial 

Polarization 

For the axial polarization of the piezoelectricity, there are only five piezoelectric constants 𝑒16, 

𝑒21, 𝑒22, 𝑒23, 𝑒34, and other piezoelectric constants are considered zero. Coefficients 𝑒21, 𝑒22, and 

𝑒23 relate the normal stresses in the 1, 2, and 3 directions, respectively, to a field along the poling 

direction,  𝐸𝑥𝑥. The coefficients 𝑒16 and 𝑒34, respectively, relate the shear stress in the 𝜃 − 𝑥 plane 

to the field 𝐸𝜃𝜃, and shear stress in the 𝑧 − 𝑥 plane to the field 𝐸𝑧𝑧. Note that it is usually not 

possible to obtain shear in the 𝜃 − 𝑧  plane purely by application of the electric field 𝐸𝑥𝑥 

considering the transverse isotropic property of the perfect polled piezoelectric material studied 

here.  Hence, the constitutive relations, Eq. (2.17), for a piezoelectric shell with the axial 

polarization in the cylindrical coordinate system (𝑥, 𝜃, 𝑧) are reduced to,     

{
 
 
 
 

 
 
 
 𝜎𝜃𝜃

(2)

𝜎𝑥𝑥
(2)

𝜎𝑧𝑧
(2)

𝜏𝑥𝑧
(2)

𝜏𝜃𝑧
(2)

𝜏𝑥𝜃
(2)
}
 
 
 
 

 
 
 
 

=

[
 
 
 
 
 
𝑐11
𝑐12
𝑐13
0
0
0

𝑐12
𝑐22
𝑐23
0
0
0

𝑐13
𝑐23
𝑐33
0
0
0

0
0
0
𝑐44
0
0

0
0
0
0
𝑐55
0

0
0
0
0
0
𝑐66]

 
 
 
 
 

{
 
 

 
 
𝜀𝜃𝜃
𝜀𝑥𝑥
𝜀𝑧𝑧
𝛾𝑥𝑧
𝛾𝜃𝑧
𝛾𝑥𝜃}

 
 

 
 

−

[
 
 
 
 
0
0
0
0
0
𝑒16

𝑒21
𝑒22
𝑒23
0
0
0

0
0
0
𝑒34
0
0 ]
 
 
 
 

{

𝐸𝜃𝜃
𝐸𝑥𝑥
𝐸𝑧𝑧

}                                   (2.19𝑎) 

{

𝐷𝜃𝜃
𝐷𝑥𝑥
𝐷𝑧𝑧

} = [
0 0 0 0 0 𝑒16

𝑒21 𝑒22 𝑒23 0 0 0

0 0 0 𝑒34 0 0
]

{
 
 

 
 
𝜀𝜃𝜃
𝜀𝑥𝑥
𝜀𝑧𝑧
𝛾𝑥𝑧
𝛾𝜃𝑧
𝛾𝑥𝜃}

 
 

 
 

+ [
∈11
0
0

0
∈22
0

0
0
∈33

] {

𝐸𝜃𝜃
𝐸𝑥𝑥
𝐸𝑧𝑧

}                                             (2.19𝑏) 
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2.2.3.1.1. Constitutive Equations for a Piezoelectric Cylindrical Shell with Axial Polarization 

Based on the Classical Shell Theory 

Based on the classical shell theory, the normal stress in the shell thickness direction, 𝜎𝑧𝑧, the 

transverse shear stresses, 𝜏𝑥𝑧  and 𝜏𝜃𝑧 , are assumed to be negligible. Therefore, based on this 

theory, from 𝜎𝑧𝑧 = 0, 𝜏𝑥𝑧 = 0, and 𝜏𝜃𝑧 = 0 in Eq. (2.19a), one obtains,  

𝜀𝑧𝑧 =
𝑒23
𝑐33

𝐸𝑥𝑥 −
𝑐13
𝑐33

𝜀𝜃𝜃 −
𝑐23
𝑐33

𝜀𝑥𝑥           𝛾𝑥𝑧 =
𝑒34
𝑐44

𝐸𝑧𝑧              𝛾𝜃𝑧 = 0                                                      (2.20) 

Substituting Eq. (2.20) into Eq. (2.19) yields, 

{

𝜎𝜃𝜃
(2)

𝜎𝑥𝑥
(2)

𝜏𝑥𝜃
(2)

} = [

𝑐1̅1 𝑐1̅2 0
𝑐1̅2 𝑐2̅2 0
0 0 𝑐6̅6

] {

𝜀𝜃𝜃
𝜀𝑥𝑥
𝛾𝑥𝜃

} − [

0 𝑒̅21 0
0 𝑒̅22 0
𝑒̅16 0 0

] {

𝐸𝜃𝜃
𝐸𝑥𝑥
𝐸𝑧𝑧

}                                                                              (2.21𝑎) 

{

𝐷𝜃𝜃
𝐷𝑥𝑥
𝐷𝑧𝑧

} = [
0
𝑒̅21
0

0
𝑒̅22
0

𝑒̅16
0
0
] {
𝜀𝜃𝜃
𝜀𝑥𝑥
𝛾𝑥𝜃

} + [
∈ 11
0
0

0
∈ 22
0

0
0
∈ 33

] {

𝐸𝜃𝜃
𝐸𝑥𝑥
𝐸𝑧𝑧

}                                                                    (2.21𝑏) 

where 𝑐1̅1, 𝑐1̅2, 𝑐2̅2, 𝑐6̅6, 𝑒̅16, 𝑒̅21, 𝑒̅22, and ∈ 11, ∈ 22, ∈ 33 are given in Appendix B.  

2.2.3.1.2. Constitutive Equations for a Piezoelectric Cylindrical Shell with Axial Polarization 

Based on the First-Order Shear Deformation Shell Theory  

According to the first-order shear deformation shell theory, the transverse shear stresses, 𝜏𝑥𝑧 

and 𝜏𝜃𝑧, are not zero and only the normal stress in the piezoelectric shell thickness direction, 𝜎𝑧𝑧, 

is assumed to be infinitesimal. Thus, from Eq. (2.19a) by considering 𝜎𝑧𝑧 = 0, we obtain, 

𝜀𝑧𝑧 =
𝑒23
𝑐33

𝐸𝑥𝑥 −
𝑐13
𝑐33

𝜀𝜃𝜃 −
𝑐23
𝑐33

𝜀𝑥𝑥                                                                                                                       (2.22) 

Substituting Eq. (2.22) into Eq. (2.19) leads to, 
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{
  
 

  
 𝜎𝜃𝜃

(2)

𝜎𝑥𝑥
(2)

𝜏𝑥𝑧
(2)

𝜏𝜃𝑧
(2)

𝜏𝑥𝜃
(2)

}
  
 

  
 

=

[
 
 
 
 
𝑐1̅1 𝑐1̅2 0 0 0
𝑐1̅2 𝑐2̅2 0 0 0
0 0 𝑐4̅4 0 0
0 0 0 𝑐5̅5 0

0 0 0 0 𝑐6̅6 ]
 
 
 
 

{
 
 

 
 
𝜀𝜃𝜃
𝜀𝑥𝑥
𝛾𝑥𝑧
𝛾𝜃𝑧
𝛾𝑥𝜃}

 
 

 
 

−

[
 
 
 
 
0 𝑒̅21 0
0 𝑒̅22 0
0 0 𝑒̅34
0 0 0
𝑒̅16 0 0]

 
 
 
 

{

𝐸𝜃𝜃
𝐸𝑥𝑥
𝐸𝑧𝑧

}                                                               (2.23𝑎) 

{

𝐷𝜃𝜃
𝐷𝑥𝑥
𝐷𝑧𝑧

} = [
0 0 0 𝑒̅16
𝑒̅21 𝑒̅22 0 0

0 0 𝑒̅34 0
] {

𝜀𝜃𝜃
𝜀𝑥𝑥
𝛾𝑥𝑧
𝛾𝑥𝜃

} + [
∈ 11
0
0

0
∈ 22
0

0
0
∈ 33

] {

𝐸𝜃𝜃
𝐸𝑥𝑥
𝐸𝑧𝑧

}                                                               (2.23𝑏) 

where 𝑐1̅1, 𝑐1̅2, 𝑐2̅2, 𝑐4̅4, 𝑐5̅5, 𝑐6̅6, 𝑒̅16, 𝑒̅21, 𝑒̅22, 𝑒̅34, and ∈ 11, ∈ 22, ∈ 33 are given in Appendix B.  

2.2.3.2. Constitutive Equations for a Piezoelectric Cylindrical Shell with 

Circumferential Polarization  

Five piezoelectric constants 𝑒11, 𝑒12, 𝑒13, 𝑒26, and 𝑒35 are considered for the circumferential 

polarization of the piezoelectricity. Coefficients 𝑒11, 𝑒12, and 𝑒13 relate the normal stresses in the 

1, 2, and 3 directions, respectively, to a field along the poling direction, 𝐸𝜃𝜃. The coefficients 𝑒26 

and 𝑒35, respectively, relate the shear stress in the 𝑥 − 𝜃 plane to the field 𝐸𝑥𝑥, and shear stress in 

the 𝑧 − 𝜃 plane to the field 𝐸𝑧𝑧. Note that it is not possible to obtain shear in the 𝑥 − 𝑧 plane purely 

by application of the electric field 𝐸𝜃𝜃 . Hence, the constitutive relations, Eq. (2.17), for a 

piezoelectric cylindrical shell with the circumferential polarization are reduced to,     

{
 
 
 
 

 
 
 
 𝜎𝜃𝜃

(2)

𝜎𝑥𝑥
(2)

𝜎𝑧𝑧
(2)

𝜏𝑥𝑧
(2)

𝜏𝜃𝑧
(2)

𝜏𝑥𝜃
(2)
}
 
 
 
 

 
 
 
 

=

[
 
 
 
 
 
𝑐11
𝑐12
𝑐13
0
0
0

𝑐12
𝑐22
𝑐23
0
0
0

𝑐13
𝑐23
𝑐33
0
0
0

0
0
0
𝑐44
0
0

0
0
0
0
𝑐55
0

0
0
0
0
0
𝑐66]

 
 
 
 
 

{
 
 

 
 
𝜀𝜃𝜃
𝜀𝑥𝑥
𝜀𝑧𝑧
𝛾𝑥𝑧
𝛾𝜃𝑧
𝛾𝑥𝜃}

 
 

 
 

−

[
 
 
 
 
𝑒11
𝑒12
𝑒13
0
0
0

0
0
0
0
0
𝑒26

0
0
0
0
𝑒35
0 ]
 
 
 
 

{

𝐸𝜃𝜃
𝐸𝑥𝑥
𝐸𝑧𝑧

}                                   (2.24𝑎) 

{

𝐷𝜃𝜃
𝐷𝑥𝑥
𝐷𝑧𝑧

} = [
𝑒11 𝑒12 𝑒13 0 0 0

0 0 0 0 0 𝑒26
0 0 0 0 𝑒35 0

]

{
 
 

 
 
𝜀𝜃𝜃
𝜀𝑥𝑥
𝜀𝑧𝑧
𝛾𝑥𝑧
𝛾𝜃𝑧
𝛾𝑥𝜃}

 
 

 
 

+ [
∈11
0
0

0
∈22
0

0
0
∈33

] {

𝐸𝜃𝜃
𝐸𝑥𝑥
𝐸𝑧𝑧

}                                             (2.24𝑏) 



Chapter 2. Structural Dynamic Modeling of Smart Composite Cylindrical Shells 

71 
 

2.2.3.2.1. Constitutive Equations for a Piezoelectric Cylindrical Shell with Circumferential 

Polarization Based on the Classical Shell Theory 

Based on the classical shell theory, by assuming 𝜎𝑧𝑧 = 0, 𝜏𝑥𝑧 = 0, and 𝜏𝜃𝑧 = 0  in Eq. (2.24a), 

one obtains, 

𝜀𝑧𝑧 =
𝑒13
𝑐33

𝐸𝜃𝜃 −
𝑐13
𝑐33

𝜀𝜃𝜃 −
𝑐23
𝑐33

𝜀𝑥𝑥                                                                                                                      (2.25) 

Replacing Eq. (2.25) into Eq. (2.24) gives, 

{

𝜎𝜃𝜃
(2)

𝜎𝑥𝑥
(2)

𝜏𝑥𝜃
(2)

} = [

𝑐1̅1 𝑐1̅2 0
𝑐1̅2 𝑐2̅2 0
0 0 𝑐6̅6

] {
𝜀𝜃𝜃
𝜀𝑥𝑥
𝛾𝑥𝜃

} − [

𝑒̅11 0 0
𝑒̅12 0 0
0 𝑒̅26 0

] {

𝐸𝜃𝜃
𝐸𝑥𝑥
𝐸𝑧𝑧

}                                                                              (2.26𝑎) 

{

𝐷𝜃𝜃
𝐷𝑥𝑥
𝐷𝑧𝑧

} = [
𝑒̅11
0
0

𝑒̅12
0
0

0
𝑒̅26
0
] {
𝜀𝜃𝜃
𝜀𝑥𝑥
𝛾𝑥𝜃

} + [
∈ 11
0
0

0
∈ 22
0

0
0
∈ 33

] {

𝐸𝜃𝜃
𝐸𝑥𝑥
𝐸𝑧𝑧

}                                                                    (2.26𝑏) 

where 𝑐1̅1, 𝑐1̅2, 𝑐2̅2, 𝑐6̅6, 𝑒̅11, 𝑒̅12, 𝑒̅26, and ∈ 11, ∈ 22, ∈ 33 are given in Appendix C. 

2.2.3.2.2. Constitutive Equations for a Piezoelectric Cylindrical Shell with Circumferential 

Polarization Based on the First-Order Shear Deformation Shell Theory 

By considering the transverse shear effects via the first-order shear deformation shell theory, 

only the normal stress is considered zero (𝜎𝑧𝑧 = 0). Thus, assuming 𝜎𝑧𝑧 = 0 in Eq. (2.24a) yields,   

𝜀𝑧𝑧 =
𝑒13
𝑐33

𝐸𝜃𝜃 −
𝑐13
𝑐33

𝜀𝜃𝜃 −
𝑐23
𝑐33

𝜀𝑥𝑥                                                                                                                      (2.27) 

Substituting Eq. (2.27) into Eq. (2.24) leads to, 

{
  
 

  
 𝜎𝜃𝜃

(2)

𝜎𝑥𝑥
(2)

𝜏𝑥𝑧
(2)

𝜏𝜃𝑧
(2)

𝜏𝑥𝜃
(2)
}
  
 

  
 

=

[
 
 
 
 
𝑐1̅1 𝑐1̅2 0 0 0
𝑐1̅2 𝑐2̅2 0 0 0
0 0 𝑐4̅4 0 0
0 0 0 𝑐5̅5 0
0 0 0 0 𝑐6̅6 ]

 
 
 
 

{
 
 

 
 
𝜀𝜃𝜃
𝜀𝑥𝑥
𝛾𝑥𝑧
𝛾𝜃𝑧
𝛾𝑥𝜃}

 
 

 
 

−

[
 
 
 
 
𝑒̅11 0 0
𝑒̅12 0 0

0 0 0
0 0 𝑒̅35
0 𝑒̅26 0]

 
 
 
 

{

𝐸𝜃𝜃
𝐸𝑥𝑥
𝐸𝑧𝑧

}                                                               (2.28𝑎) 
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{

𝐷𝜃𝜃
𝐷𝑥𝑥
𝐷𝑧𝑧

} = [

𝑒̅11 𝑒̅12 0 0
0 0 0 𝑒̅26
0 0 𝑒̅35 0

] {

𝜀𝜃𝜃
𝜀𝑥𝑥
𝛾𝜃𝑧
𝛾𝑥𝜃

} + [
∈ 11
0
0

0
∈ 22
0

0
0
∈ 33

] {

𝐸𝜃𝜃
𝐸𝑥𝑥
𝐸𝑧𝑧

}                                                               (2.28𝑏) 

where 𝑐1̅1, 𝑐1̅2, 𝑐2̅2, 𝑐4̅4, 𝑐5̅5, 𝑐6̅6, 𝑒̅11, 𝑒̅12, 𝑒̅26, 𝑒̅35, and ∈ 11, ∈ 22, ∈ 33 are given in Appendix C. 

2.2.3.3. Constitutive Equations for a Piezoelectric Cylindrical shell with Radial 

Polarization  

The five piezoelectric constants for the radial polarization of the piezoelectricity are 𝑒15, 𝑒24, 

𝑒31 , 𝑒32 , and 𝑒33 . Coefficients 𝑒31 , 𝑒32 , and 𝑒33  relate the normal stresses in the 1, 2, and 3 

directions, respectively, to a field along the poling direction,  𝐸𝑧𝑧. The coefficients 𝑒15 and 𝑒24, 

respectively, relate the shear stress in the 𝜃 − 𝑧 plane to the field 𝐸𝜃𝜃, and shear stress in the 𝑥 − 𝑧 

plane to the field 𝐸𝑥𝑥. Note that it is not possible to obtain shear in the 𝑥 − 𝜃 plane purely by 

application of the electric field 𝐸𝑧𝑧. So, Eq. (2.17) for the radial polarization is reduced to,     

{
 
 
 
 

 
 
 
 𝜎𝜃𝜃

(2)

𝜎𝑥𝑥
(2)

𝜎𝑧𝑧
(2)

𝜏𝑥𝑧
(2)

𝜏𝜃𝑧
(2)

𝜏𝑥𝜃
(2)
}
 
 
 
 

 
 
 
 

=

[
 
 
 
 
 
𝑐11
𝑐12
𝑐13
0
0
0

𝑐12
𝑐22
𝑐23
0
0
0

𝑐13
𝑐23
𝑐33
0
0
0

0
0
0
𝑐44
0
0

0
0
0
0
𝑐55
0

0
0
0
0
0
𝑐66]

 
 
 
 
 

{
 
 

 
 
𝜀𝜃𝜃
𝜀𝑥𝑥
𝜀𝑧𝑧
𝛾𝑥𝑧
𝛾𝜃𝑧
𝛾𝑥𝜃}

 
 

 
 

−

[
 
 
 
 
0
0
0
0
𝑒15
0

0
0
0
𝑒24
0
0

𝑒31
𝑒32
𝑒33
0
0
0 ]
 
 
 
 

{

𝐸𝜃𝜃
𝐸𝑥𝑥
𝐸𝑧𝑧

}                                   (2.29𝑎) 

{

𝐷𝜃𝜃
𝐷𝑥𝑥
𝐷𝑧𝑧

} = [
0 0 0 0 𝑒15 0
0 0 0 𝑒24 0 0

𝑒31 𝑒32 𝑒33 0 0 0
]

{
 
 

 
 
𝜀𝜃𝜃
𝜀𝑥𝑥
𝜀𝑧𝑧
𝛾𝑥𝑧
𝛾𝜃𝑧
𝛾𝑥𝜃}

 
 

 
 

+ [
∈11
0
0

0
∈22
0

0
0
∈33

] {

𝐸𝜃𝜃
𝐸𝑥𝑥
𝐸𝑧𝑧

}                                             (2.29𝑏) 

2.2.3.3.1. Constitutive Equations for a Piezoelectric Cylindrical Shell with Radial 

Polarization Based on the Classical Shell Theory 

Considering 𝜎𝑧𝑧 = 0, 𝜏𝑥𝑧 = 0, and 𝜏𝜃𝑧 = 0  in Eq. (2.29a), based on the classical shell theory, 

we obtain,  
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𝜀𝑧𝑧 =
𝑒33
𝑐33

𝐸𝑧𝑧 −
𝑐13
𝑐33

𝜀𝜃𝜃 −
𝑐23
𝑐33

𝜀𝑥𝑥                                                                                                                       (2.30) 

By substituting Eq. (2.30) into Eq. (2.29), one obtains, 

{

𝜎𝜃𝜃
(2)

𝜎𝑥𝑥
(2)

𝜏𝑥𝜃
(2)

} = [

𝑐1̅1 𝑐1̅2 0
𝑐1̅2 𝑐2̅2 0
0 0 𝑐6̅6

] {

𝜀𝜃𝜃
𝜀𝑥𝑥
𝛾𝑥𝜃

} − [
0 0 𝑒̅31
0 0 𝑒̅32
0 0 0

] {

𝐸𝜃𝜃
𝐸𝑥𝑥
𝐸𝑧𝑧

}                                                                              (2.31𝑎) 

{

𝐷𝜃𝜃
𝐷𝑥𝑥
𝐷𝑧𝑧

} = [
0
0
𝑒̅31

0
0
𝑒̅32

0
0
0
] {

𝜀𝜃𝜃
𝜀𝑥𝑥
𝛾𝑥𝜃

} + [
∈ 11
0
0

0
∈ 22
0

0
0
∈ 33

] {

𝐸𝜃𝜃
𝐸𝑥𝑥
𝐸𝑧𝑧

}                                                                       (2.31𝑏) 

where 𝑐1̅1, 𝑐1̅2, 𝑐2̅2, 𝑐6̅6, 𝑒̅31, 𝑒̅32, and ∈ 11, ∈ 22, ∈ 33 are given in Appendix D. 

2.2.3.3.2. Constitutive Equations for a Piezoelectric Cylindrical shell with Radial 

Polarization Based on the First-Order Shear Deformation Shell Theory 

Including the transverse shear stresses (𝜏𝑥𝑧 and 𝜏𝜃𝑧) and assuming negligible normal stress in 

the piezoelectric thickness direction (𝜎𝑧𝑧 = 0) in Eq. (2.29a) yields, 

𝜀𝑧𝑧 =
𝑒33
𝑐33

𝐸𝑧𝑧 −
𝑐13
𝑐33

𝜀𝜃𝜃 −
𝑐23
𝑐33

𝜀𝑥𝑥                                                                                                                       (2.32) 

By substituting Eq. (2.32) into Eq. (2.29), we obtain, 

{
  
 

  
 𝜎𝜃𝜃

(2)

𝜎𝑥𝑥
(2)

𝜏𝑥𝑧
(2)

𝜏𝜃𝑧
(2)

𝜏𝑥𝜃
(2)
}
  
 

  
 

=

[
 
 
 
 
𝑐1̅1 𝑐1̅2 0 0 0
𝑐1̅2 𝑐2̅2 0 0 0
0 0 𝑐4̅4 0 0
0 0 0 𝑐5̅5 0
0 0 0 0 𝑐6̅6 ]

 
 
 
 

{
 
 

 
 
𝜀𝜃𝜃
𝜀𝑥𝑥
𝛾𝑥𝑧
𝛾𝜃𝑧
𝛾𝑥𝜃}

 
 

 
 

−

[
 
 
 
 
0 0 𝑒̅31
0 0 𝑒̅32
0 𝑒̅24 0
𝑒̅15 0 0

0 0 0 ]
 
 
 
 

{

𝐸𝜃𝜃
𝐸𝑥𝑥
𝐸𝑧𝑧

}                                                               (2.33𝑎) 

{

𝐷𝜃𝜃
𝐷𝑥𝑥
𝐷𝑧𝑧

} = [
0 0 0 𝑒̅15
0 0 𝑒̅24 0
𝑒̅31 𝑒̅32 0 0

] {

𝜀𝜃𝜃
𝜀𝑥𝑥
𝛾𝑥𝑧
𝛾𝜃𝑧

} + [
∈ 11
0
0

0
∈ 22
0

0
0
∈ 33

] {

𝐸𝜃𝜃
𝐸𝑥𝑥
𝐸𝑧𝑧

}                                                               (2.33𝑏) 

where 𝑐1̅1, 𝑐1̅2, 𝑐2̅2, 𝑐4̅4, 𝑐5̅5, 𝑐6̅6, 𝑒̅15, 𝑒̅24, 𝑒̅31, 𝑒̅32, and ∈ 11, ∈ 22, ∈ 33 are given in Appendix D. 
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2.3. Wave Propagation Modeling in Piezoelectric Coupled Laminated 

Fiber-Reinforced Composite Cylindrical Shells  

 In this section, wave propagation problem in an infinitely long unbounded laminated fiber-

reinforced composite cylindrical shell coupled with a piezoelectric layer at the top surface with the 

axial polarization is modeled and solved.   

2.3.1. Force and Moment Resultants in a Piezoelectric Coupled Laminated 

Fiber-Reinforced Composite Cylindrical Shell 

To consider the piezoelectric coupling effects, the force and moment resultants for a laminated 

composite cylindrical shell coupled with a piezoelectric layer at the top surface are obtained as 

sum of the force and moment resultants of the host laminated fiber-reinforced composite 

cylindrical shell and the piezoelectric layer ones.  

The in-plane force resultants (𝑁𝑥𝑥
(1)

, 𝑁𝜃𝜃
(1)

, and 𝑁𝑥𝜃
(1)

), bending and twisting moment resultants 

(𝑀𝑥𝑥
(1)

, 𝑀𝜃𝜃
(1)

, and 𝑀𝑥𝜃
(1)

), and the transverse shear force resultants (𝑉𝑥𝑧
(1)

 and 𝑉𝜃𝑧
(1)

) for a laminated 

fiber-reinforced composite cylindrical shell are given by Eq. (2.15).  

The in-plane force and moment resultants and the transverse shear force resultants 

corresponding to a piezoelectric layer bonded to the top surface of a laminated composite 

cylindrical shell are also obtained by integrating the corresponding stresses across the thickness of 

the piezoelectric layer, i.e.   

{

𝑁𝑥𝑥
(2)

𝑁𝜃𝜃
(2)

𝑁𝑥𝜃
(2)

} = ∫ {

𝜎𝑥𝑥
(2)

𝜎𝜃𝜃
(2)

𝜏𝑥𝜃
(2)

}

ℎ
2⁄ +ℎ𝑝

ℎ
2⁄

𝑑𝑧                                                                                                                          (2.34𝑎) 
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{

𝑀𝑥𝑥
(2)

𝑀𝜃𝜃
(2)

𝑀𝑥𝜃
(2)

} = ∫ {

𝜎𝑥𝑥
(2)

𝜎𝜃𝜃
(2)

𝜏𝑥𝜃
(2)

}

ℎ
2⁄ +ℎ𝑝

ℎ
2⁄

𝑧𝑑𝑧                                                                                                                       (2.34𝑏) 

{
𝑉𝜃𝑧
(2)

𝑉𝑥𝑧
(2)
} = 𝐾𝑠∫ {

𝜏𝜃𝑧
(2)

𝜏𝑥𝑧
(2)
}

ℎ
2⁄ +ℎ𝑝

ℎ
2⁄

𝑑𝑧                                                                                                                           (2.34𝑐) 

where 𝜎𝑥𝑥
(2)

, 𝜎𝜃𝜃
(2)

, 𝜏𝑥𝜃
(2)

, 𝜏𝜃𝑧
(2)

, and 𝜏𝑥𝑧
(2)

 are corresponding stresses of a piezoelectric cylindrical shell 

introduced in section 2.2.3  for the axial, circumferential, and radial polarization directions based 

on the classical shell theory and the first-order shear deformation shell theory.   

Thus, the in-plane force resultants (𝑁𝑥𝑥, 𝑁𝜃𝜃, and 𝑁𝑥𝜃) are sum of Eq. (2.15a) and Eq. (2.34a), 

the bending and twisting moment resultants (𝑀𝑥𝑥, 𝑀𝜃𝜃, and 𝑀𝑥𝜃) are sum of Eq. (2.15b) and Eq. 

(2.34b), and the transverse shear force resultants (𝑉𝑥𝑧, and 𝑉𝜃𝑧) are sum of Eq. (2.15c) and Eq. 

(2.34c) as, 

𝑁𝑥𝑥 = 𝑁𝑥𝑥
(1) + 𝑁𝑥𝑥

(2)                      𝑁𝜃𝜃 = 𝑁𝜃𝜃
(1)

+ 𝑁𝜃𝜃
(2)
                 𝑁𝑥𝜃 = 𝑁𝑥𝜃

(1)
+ 𝑁𝑥𝜃

(2)
   

𝑀𝑥𝑥 = 𝑀𝑥𝑥
(1) + 𝑀𝑥𝑥

(2)                    𝑀𝜃𝜃 = 𝑀𝜃𝜃
(1)

+ 𝑀𝜃𝜃
(2)
               𝑀𝑥𝜃 = 𝑀𝑥𝜃

(1)
+ 𝑀𝑥𝜃

(2)
  

𝑉𝑥𝑧 = 𝑉𝑥𝑧
(1)

+ 𝑉𝑥𝑧
(2)
                      𝑉𝜃𝑧 = 𝑉𝜃𝑧

(1)
+ 𝑉𝜃𝑧

(2)
                                                                                         (2.35)    

By some manipulations, the force and moment resultants for a laminated composite cylindrical 

shell integrated with a piezoelectric layer at the top surface with axial poling based on the first-

order shear deformation shell theory are obtained as, 

𝑁𝑥𝑥 = 𝐴1
𝜕𝑢0
𝜕𝑥

+
𝐴2

𝑅
(𝑤0 +

𝜕𝑣0
𝜕𝜃

) + 𝐴3 (
𝜕𝑢0
𝑅𝜕𝜃

+
𝜕𝑣0
𝜕𝑥

) + 𝐴4

𝜕𝛼𝑥
𝜕𝑥

+ 𝐴5

𝜕𝛼𝜃
𝑅𝜕𝜃

+ 𝐴6(
𝜕𝛼𝑥
𝑅𝜕𝜃

+
𝜕𝛼𝜃
𝜕𝑥

) + 𝐴7

𝜕𝜑

𝜕𝑥
           (2.36𝑎) 

𝑁𝜃𝜃 = 𝐵1
𝜕𝑢0
𝜕𝑥

+
𝐵2
𝑅
(𝑤0 +

𝜕𝑣0
𝜕𝜃

) + 𝐵3 (
𝜕𝑢0
𝑅𝜕𝜃

+
𝜕𝑣0
𝜕𝑥

) + 𝐵4
𝜕𝛼𝑥
𝜕𝑥

+ 𝐵5
𝜕𝛼𝜃
𝑅𝜕𝜃

+ 𝐵6(
𝜕𝛼𝑥
𝑅𝜕𝜃

+
𝜕𝛼𝜃
𝜕𝑥

) + 𝐵7
𝜕𝜑

𝜕𝑥
            (2.36𝑏) 

𝑁𝑥𝜃 = 𝐶1
𝜕𝑢0
𝜕𝑥

+
𝐶2
𝑅
(𝑤0 +

𝜕𝑣0
𝜕𝜃

) + 𝐶3 (
𝜕𝑢0
𝑅𝜕𝜃

+
𝜕𝑣0
𝜕𝑥

) + 𝐶4
𝜕𝛼𝑥
𝜕𝑥

+ 𝐶5
𝜕𝛼𝜃
𝑅𝜕𝜃

+ 𝐶6(
𝜕𝛼𝑥
𝑅𝜕𝜃

+
𝜕𝛼𝜃
𝜕𝑥

) + 𝐶7
𝜕𝜑

𝑅𝜕𝜃
            (2.36𝑐) 

𝑀𝑥𝑥 = 𝐷1
𝜕𝑢0
𝜕𝑥

+
𝐷2
𝑅
(𝑤0 +

𝜕𝑣0
𝜕𝜃

) + 𝐷3 (
𝜕𝑢0
𝑅𝜕𝜃

+
𝜕𝑣0
𝜕𝑥

) + 𝐷4
𝜕𝛼𝑥
𝜕𝑥

+ 𝐷5
𝜕𝛼𝜃
𝑅𝜕𝜃

+ 𝐷6(
𝜕𝛼𝑥
𝑅𝜕𝜃

+
𝜕𝛼𝜃
𝜕𝑥

) + 𝐷7
𝜕𝜑

𝜕𝑥
           (2.36𝑑) 
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𝑀𝜃𝜃 = 𝐸1
𝜕𝑢0
𝜕𝑥

+
𝐸2
𝑅
(𝑤0 +

𝜕𝑣0
𝜕𝜃

) + 𝐸3 (
𝜕𝑢0
𝑅𝜕𝜃

+
𝜕𝑣0
𝜕𝑥

) + 𝐸4
𝜕𝛼𝑥
𝜕𝑥

+ 𝐸5
𝜕𝛼𝜃
𝑅𝜕𝜃

+ 𝐸6(
𝜕𝛼𝑥
𝑅𝜕𝜃

+
𝜕𝛼𝜃
𝜕𝑥

) + 𝐸7
𝜕𝜑

𝜕𝑥
             (2.36𝑒) 

𝑀𝑥𝜃 = 𝐹1
𝜕𝑢0
𝜕𝑥

+
𝐹2
𝑅
(𝑤0 +

𝜕𝑣0
𝜕𝜃

) + 𝐹3 (
𝜕𝑢0
𝑅𝜕𝜃

+
𝜕𝑣0
𝜕𝑥

) + 𝐹4
𝜕𝛼𝑥
𝜕𝑥

+ 𝐹5
𝜕𝛼𝜃
𝑅𝜕𝜃

+ 𝐹6(
𝜕𝛼𝑥
𝑅𝜕𝜃

+
𝜕𝛼𝜃
𝜕𝑥

) + 𝐹7
𝜕𝜑

𝑅𝜕𝜃
             (2.36𝑓) 

 𝑉𝑥𝑧 = 𝐺1 (
𝜕𝑤0

𝑅𝜕𝜃
−

𝑣0

𝑅
+ 𝛼𝜃) + 𝐺2 (

𝜕𝑤0

𝜕𝑥
+ 𝛼𝑥)                                                                                                                    (2.36𝑔)       

 𝑉𝜃𝑧 = 𝐻1 (
𝜕𝑤0

𝑅𝜕𝜃
−

𝑣0

𝑅
+ 𝛼𝜃) + 𝐻2 (

𝜕𝑤0

𝜕𝑥
+ 𝛼𝑥)                                                                                                                   (2.36ℎ) 

The force and moment resultants based on the classical shell theory are attained as, 

𝑁𝑥𝑥 = 𝐴́1
𝜕𝑢0
𝜕𝑥

+
𝐴́2

𝑅
(𝑤0 +

𝜕𝑣0
𝜕𝜃

) + 𝐴́3 (
𝜕𝑢0
𝑅𝜕𝜃

+
𝜕𝑣0
𝜕𝑥

) + 𝐴́4

𝜕2𝑤0

𝜕𝑥2
+ 𝐴́5

𝜕2𝑤0

𝑅2𝜕𝜃2
+ 𝐴́6

𝜕2𝑤0

𝑅𝜕𝑥𝜕𝜃
+ 𝐴́7

𝜕𝜑

𝜕𝑥
                (2.37𝑎) 

𝑁𝜃𝜃 = 𝐵́1
𝜕𝑢0
𝜕𝑥

+
𝐵́2
𝑅
(𝑤0 +

𝜕𝑣0
𝜕𝜃

) + 𝐵́3 (
𝜕𝑢0
𝑅𝜕𝜃

+
𝜕𝑣0
𝜕𝑥

) + 𝐵́4
𝜕2𝑤0

𝜕𝑥2
+ 𝐵́5

𝜕2𝑤0

𝑅2𝜕𝜃2
+ 𝐵́6

𝜕2𝑤0

𝑅𝜕𝑥𝜕𝜃
+ 𝐵́7

𝜕𝜑

𝜕𝑥
                (2.37𝑏) 

𝑁𝑥𝜃 = 𝐶́1
𝜕𝑢0
𝜕𝑥

+
𝐶́2
𝑅
(𝑤0 +

𝜕𝑣0
𝜕𝜃

) + 𝐶́3 (
𝜕𝑢0
𝑅𝜕𝜃

+
𝜕𝑣0
𝜕𝑥

) + 𝐶́4
𝜕2𝑤0

𝜕𝑥2
+ 𝐶́5

𝜕2𝑤0

𝑅2𝜕𝜃2
+ 𝐶́6

𝜕2𝑤0

𝑅𝜕𝑥𝜕𝜃
+ 𝐶́7

𝜕𝜑

𝑅𝜕𝜃
                 (2.37𝑐) 

𝑀𝑥𝑥 = 𝐷́1
𝜕𝑢0
𝜕𝑥

+
𝐷́2

𝑅
(𝑤0 +

𝜕𝑣0
𝜕𝜃

) + 𝐷́3 (
𝜕𝑢0
𝑅𝜕𝜃

+
𝜕𝑣0
𝜕𝑥

) + 𝐷́4

𝜕2𝑤0

𝜕𝑥2
+ 𝐷́5

𝜕2𝑤0

𝑅2𝜕𝜃2
+ 𝐷́6

𝜕2𝑤0

𝑅𝜕𝑥𝜕𝜃
+ 𝐷́7

𝜕𝜑

𝜕𝑥
               (2.37𝑑) 

𝑀𝜃𝜃 = 𝐸́1
𝜕𝑢0
𝜕𝑥

+
𝐸́2
𝑅
(𝑤0 +

𝜕𝑣0
𝜕𝜃

) + 𝐸́3 (
𝜕𝑢0
𝑅𝜕𝜃

+
𝜕𝑣0
𝜕𝑥

) + 𝐸́4
𝜕2𝑤0

𝜕𝑥2
+ 𝐸́5

𝜕2𝑤0

𝑅2𝜕𝜃2
+ 𝐸́6

𝜕2𝑤0

𝑅𝜕𝑥𝜕𝜃
+ 𝐸́7

𝜕𝜑

𝜕𝑥
                 (2.37𝑒) 

𝑀𝑥𝜃 = 𝐹́1
𝜕𝑢0
𝜕𝑥

+
𝐹́2
𝑅
(𝑤0 +

𝜕𝑣0
𝜕𝜃

) + 𝐹́3 (
𝜕𝑢0
𝑅𝜕𝜃

+
𝜕𝑣0
𝜕𝑥

) + 𝐹́4
𝜕2𝑤0

𝜕𝑥2
+ 𝐹́5

𝜕2𝑤0

𝑅2𝜕𝜃2
+ 𝐹́6

𝜕2𝑤0

𝑅𝜕𝑥𝜕𝜃
+ 𝐹́7

𝜕𝜑

𝑅𝜕𝜃
                 (2.37𝑓) 

The expression of coefficients, 𝐴𝑖(𝑖 = 1,… ,7), 𝐵𝑖(𝑖 = 1,… ,7), 𝐶𝑖(𝑖 = 1,… ,7), 𝐷𝑖(𝑖 = 1,… ,7),

𝐸𝑖(𝑖 = 1,… ,7), 𝐹𝑖(𝑖 = 1,… ,7), 𝐺𝑖(𝑖 = 1,2), 𝐻𝑖(𝑖 = 1,2) , 𝐴́𝑖(𝑖 = 1,… ,7), 𝐵́𝑖(𝑖 = 1,… ,7), 𝐶́𝑖(𝑖 =

1,… ,7), 𝐷́𝑖(𝑖 = 1,… ,7), 𝐸́𝑖(𝑖 = 1,… ,7), 𝐹́𝑖(𝑖 = 1,… ,7) are given in Appendices E and F. 

By substituting corresponding stresses of a piezoelectric cylindrical shell with circumferential 

and radial polarizations into Eq. (2.34) and performing mathematical procedure as explained in 

Eqs. (2.35) – (2.37), we can also obtain the force and moment resultants for piezoelectric coupled 

laminated fiber-reinforced composite cylindrical shells with circumferential and radial 
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polarizations which can be used for determining dispersion characteristics based on 

circumferential and radial polarizations of the piezoelectric material.  

2.3.2. Equations of Motion 

The equations of motion are illustrated in this section based on the first-order shear deformation 

shell theory, the Love bending shell theory, and the membrane shell theory. The kinematics of 

displacements, the strain and stress fields, and the force and moment resultants used in the 

membrane and Love bending shell theories are given by those obtained from the classical shell 

theory.    

2.3.2.1. Equations of Motion for a Piezoelectric Coupled Laminated Composite 

Cylindrical Shell Based on the First-Order Shear Deformation Shell Theory 

The equations of motion are derived in this section based on the first-order shear deformation 

shell theory. To derive the equations of motion for a laminated fiber-reinforced composite 

cylindrical shell coupled with a piezoelectric layer at the top surface, the Hamilton’s principle 

extended to the shell structure is given by, 

∫ (𝛿𝐸𝑘 − 𝛿𝐸𝑠)𝑑𝑡
𝑇

0

= 0                                                                                                                                         (2.38) 

where 𝐸𝑘 and 𝐸𝑠 denote the kinetic energy and the strain energy, respectively, which are given by, 

𝐸𝑘 =
1

2
∬ [∫ 𝜌(𝑢̇2 + 𝑣̇2 + 𝑤̇2)𝑅𝑑𝑧

ℎ
2
+ℎ𝑝

−
ℎ
2

]𝑑𝑥𝑑𝜃 
𝐴

                                                                                       (2.39) 

and 
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𝐸𝑠 =
1

2
∬ [∫ (𝜎𝑥𝑥

(1)
𝜀𝑥𝑥 + 𝜎𝜃𝜃

(1)
𝜀𝜃𝜃 + 𝜎𝑧𝑧

(1)
𝜀𝑧𝑧 + 𝜏𝑥𝜃

(1)
𝛾𝑥𝜃 + 𝐾𝑠𝜏𝑥𝑧

(1)
𝛾𝑥𝑧 + 𝐾𝑠𝜏𝜃𝑧

(1)
𝛾𝜃𝑧)𝑅𝑑𝑧

ℎ
2

−
ℎ
2

] 𝑑𝑥𝑑𝜃
𝐴

+
1

2
∬ [∫ (𝜎𝑥𝑥

(2)
𝜀𝑥𝑥 + 𝜎𝜃𝜃

(2)
𝜀𝜃𝜃 + 𝜎𝑧𝑧

(2)
𝜀𝑧𝑧 + 𝜏𝑥𝜃

(2)
𝛾𝑥𝜃 + 𝐾𝑠𝜏𝑥𝑧

(2)
𝛾𝑥𝑧

ℎ
2
+ℎ𝑝

ℎ
2

𝐴

+ 𝐾𝑠𝜏𝜃𝑧
(2)
𝛾𝜃𝑧)𝑅𝑑𝑧] 𝑑𝑥𝑑𝜃                                                                                                        (2.40) 

where 𝜌 is the mass density. Considering the effect of transverse shear, in-surface and rotary 

inertias, and using Eqs. (2.8), (2.14), and (2.34) and substituting the expressions for 𝐸𝑘 and 𝐸𝑠, 

Eqs. (2.39) and (2.40), in to Eq. (2.38) and then integrating the expressions by parts, the equations 

of motion for a laminated fiber-reinforced composite cylindrical shell coupled with a piezoelectric 

layer at the top surface are derived as,  

𝛿𝑢0 :     
𝜕𝑁𝑥𝑥
𝜕𝑥

+
𝜕𝑁𝑥𝜃
𝑅𝜕𝜃

= 𝐼0
𝜕2𝑢0
𝜕𝑡2

+ 𝐼1
𝜕2𝛼𝑥
𝜕𝑡2

                                                                                                   (2.41𝑎) 

𝛿𝑣0 :     
𝜕𝑁𝜃𝜃
𝑅𝜕𝜃

+
𝜕𝑁𝑥𝜃
𝜕𝑥

+
𝑉𝜃𝑧
𝑅

= 𝐼0
𝜕2𝑣0
𝜕𝑡2

+ 𝐼1
𝜕2𝛼𝜃
𝜕𝑡2

                                                                                       (2.41𝑏) 

𝛿𝑤0 :     
𝜕𝑉𝑥𝑧
𝜕𝑥

+
𝜕𝑉𝜃𝑧
𝑅𝜕𝜃

−
𝑁𝜃𝜃
𝑅

= 𝐼0
𝜕2𝑤0

𝜕𝑡2
                                                                                                           (2.41𝑐) 

𝛿𝛼𝑥 :     
𝜕𝑀𝑥𝑥

𝜕𝑥
+
𝜕𝑀𝑥𝜃

𝑅𝜕𝜃
− 𝑉𝑥𝑧 = 𝐼1

𝜕2𝑢0
𝜕𝑡2

+ 𝐼2
𝜕2𝛼𝑥
𝜕𝑡2

                                                                                      (2.41𝑑) 

𝛿𝛼𝜃 :     
𝜕𝑀𝑥𝜃

𝜕𝑥
+
𝜕𝑀𝜃𝜃

𝑅𝜕𝜃
− 𝑉𝜃𝑧 = 𝐼1

𝜕2𝑣0
𝜕𝑡2

+ 𝐼2
𝜕2𝛼𝜃
𝜕𝑡2

                                                                                     (2.41𝑒) 

where 𝐼𝑖  (𝑖 = 0,1,2) are the inertias which for a laminated fiber-reinforced composite cylindrical 

shell coupled with a piezoelectric layer at the top surface are obtained as, 

𝐼0 = ∑∫ 𝜌𝐾𝑑𝑧
𝑧𝐾

𝑧𝐾−1

𝑁

𝐾=1

+∫ 𝜌𝑝𝑑𝑧

ℎ
2
+ℎ𝑝

ℎ
2

= ∑ 𝜌𝐾(𝑧𝐾 − 𝑧𝐾−1)

𝑁

𝐾=1

+ 𝜌𝑝ℎ𝑝                                                        (2.42𝑎) 
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𝐼1 = ∑∫ 𝜌𝐾𝑧𝑑𝑧
𝑧𝐾

𝑧𝐾−1

𝑁

𝐾=1

+∫ 𝜌𝑝𝑧𝑑𝑧

ℎ
2
+ℎ𝑝

ℎ
2

=
1

2
∑ 𝜌𝐾(𝑧𝐾

2 − 𝑧𝐾−1
2 )

𝑁

𝐾=1

+
𝜌𝑝

2
(ℎℎ𝑝 + ℎ𝑝

2)                               (2.42𝑏) 

𝐼2 = ∑∫ 𝜌𝐾𝑧
2𝑑𝑧

𝑧𝐾

𝑧𝐾−1

𝑁

𝐾=1

+∫ 𝜌𝑝𝑧
2𝑑𝑧

ℎ
2
+ℎ𝑝

ℎ
2

=
1

3
∑ 𝜌𝐾(𝑧𝐾

3 − 𝑧𝐾−1
3 )

𝑁

𝐾=1

+ 𝜌𝑝 (
ℎ𝑝ℎ

2

4
+
ℎℎ𝑝

2

2
+
ℎ𝑝
3

3
)          (2.42𝑐) 

where 𝜌𝐾 and 𝜌𝑝 are the mass densities of each host composite layer and the piezoelectric layer, 

respectively. 

2.3.2.2. Equations of Motion for a Piezoelectric Coupled Laminated Composite 

Cylindrical Shell Based on the Love Bending Shell Theory 

Based on the Love bending shell theory, the rotary inertias, 𝐼1 and 𝐼2, are assumed negligible. 

In this theory, shell is with bending resistance based on the Love’s shear-rigidity assumption. Thus, 

the equations of motion based on this theory are given by Ref. [97] as, 

𝜕𝑁𝑥𝑥
𝜕𝑥

+
𝜕𝑁𝜃𝑥
𝑅𝜕𝜃

= 𝐼0
𝜕2𝑢0
𝜕𝑡2

                                                                                                                                    (2.43𝑎) 

𝜕𝑁𝜃𝜃
𝑅𝜕𝜃

+
𝜕𝑁𝑥𝜃
𝜕𝑥

−
𝑉𝜃𝑧
𝑅

= 𝐼0
𝜕2𝑣0
𝜕𝑡2

                                                                                                                        (2.43𝑏) 

𝜕𝑉𝑥𝑧
𝜕𝑥

+
𝜕𝑉𝜃𝑧
𝑅𝜕𝜃

−
𝑁𝜃𝜃
𝑅

= 𝐼0
𝜕2𝑤0

𝜕𝑡2
                                                                                                                          (2.43𝑐) 

𝜕𝑀𝑥𝑥

𝜕𝑥
+
𝜕𝑀𝑥𝜃

𝑅𝜕𝜃
− 𝑉𝑥𝑧 = 0                                                                                                                                    (2.43𝑑) 

𝜕𝑀𝑥𝜃

𝜕𝑥
+
𝜕𝑀𝜃𝜃

𝑅𝜕𝜃
− 𝑉𝜃𝑧 = 0                                                                                                                                   (2.43𝑒) 

From Eqs. (2.43d) and (2.43e), the transverse shear forces, 𝑉𝑥𝑧 and 𝑉𝜃𝑧, are obtained as, 

 𝑉𝑥𝑧 =
𝜕𝑀𝑥𝑥

𝜕𝑥
+

𝜕𝑀𝑥𝜃

𝑅𝜕𝜃
                             𝑉𝜃𝑧 =

𝜕𝑀𝑥𝜃

𝜕𝑥
+

𝜕𝑀𝜃𝜃

𝑅𝜕𝜃
                                                                                (2.44) 

By substituting Eq. (2.44) into Eqs. (2.43b) and (2.43c), the equations of motion based on the 

Love bending shell theory in the longitudinal (𝑥 ), tangential (𝜃 ), and radial (𝑧 ) directions, 

respectively, are reduced to, 
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𝜕𝑁𝑥𝑥
𝜕𝑥

+
𝜕𝑁𝜃𝑥
𝑅𝜕𝜃

= 𝐼0
𝜕2𝑢0
𝜕𝑡2

                                                                                                                                    (2.45𝑎) 

𝜕𝑁𝜃𝜃
𝑅𝜕𝜃

+
𝜕𝑁𝑥𝜃
𝜕𝑥

−
1

𝑅
(
𝜕𝑀𝑥𝜃

𝜕𝑥
+
𝜕𝑀𝜃𝜃

𝑅𝜕𝜃
) = 𝐼0

𝜕2𝑣0
𝜕𝑡2

                                                                                             (2.45𝑏) 

𝜕2𝑀𝑥𝑥

𝜕𝑥2
+
2𝜕2𝑀𝑥𝜃

𝑅𝜕𝑥𝜕𝜃
+
𝜕2𝑀𝜃𝜃

𝑅2𝜕𝜃2
−
𝑁𝜃𝜃
𝑅

= 𝐼0
𝜕2𝑤0

𝜕𝑡2
                                                                                             (2.45𝑐) 

2.3.2.3. Equations of Motion for a Piezoelectric Coupled Laminated Composite 

Cylindrical Shell Based on the Membrane Shell Theory 

According to the membrane shell theory, in addition to the rotary inertias ( 𝐼1  and 𝐼2), the 

transverse shear forces (𝑉𝑥𝑧 and 𝑉𝜃𝑧) and the bending and twisting moments (𝑀𝑥𝑥, 𝑀𝜃𝜃, and 𝑀𝑥𝜃) 

are assumed negligible and only the in-plane normal and shear forces (𝑁𝑥𝑥, 𝑁𝜃𝜃, and 𝑁𝑥𝜃) applying 

on the mid-surface of the shell are considered. Thus, the  equations of motion based on this theory 

in the longitudinal (𝑥), tangential (𝜃), and radial (𝑧) directions are, respectively, given by Ref. 

[198] as,  

𝜕𝑁𝑥𝑥
𝜕𝑥

+
𝜕𝑁𝜃𝑥
𝑅𝜕𝜃

= 𝐼0
𝜕2𝑢0
𝜕𝑡2

                                                                                                                                    (2.46𝑎) 

𝜕𝑁𝜃𝜃
𝑅𝜕𝜃

+
𝜕𝑁𝑥𝜃
𝜕𝑥

= 𝐼0
𝜕2𝑣0
𝜕𝑡2

                                                                                                                                    (2.46𝑏) 

−
𝑁𝜃𝜃
𝑅

= 𝐼0
𝜕2𝑤0

𝜕𝑡2
                                                                                                                                                  (2.46𝑐) 

2.3.3. Dispersion Characteristics for a Piezoelectric Coupled Laminated Fiber-

Reinforced Composite Cylindrical Shell 

In this section, dispersion characteristics are derived for a laminated fiber-reinforced composite 

cylindrical shell coupled with a piezoelectric layer at the top surface based on the first-order shear 

deformation shell theory, the Love bending shell theory, and the membrane shell theory in the 

following subsections.  
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2.3.3.1. Dispersion Characteristics Based on the First-Order Shear Deformation Shell 

Theory 

Substituting the derived force and moment resultants with the effects of transvers shear 

according to the first-order shear deformation shell theory, Eq. (2.36), into the equilibrium 

equations of motion based on the first-order shear deformation shell theory, Eq. (2.41), yields the 

following equations in terms of 𝑢0, 𝑣0, 𝑤0, 𝛼𝑥, 𝛼𝜃, and 𝜑, 

𝐴1
𝜕2𝑢0

𝜕𝑥2
+

𝐴2

𝑅
(
𝜕𝑤0

𝜕𝑥
+

𝜕2𝑣0

𝜕𝑥𝜕𝜃
) + 𝐴3 (

𝜕2𝑢0

𝑅𝜕𝑥𝜕𝜃
+

𝜕2𝑣0

𝜕𝑥2
) + 𝐴4

𝜕2𝛼𝑥

𝜕𝑥2
+ 𝐴5

𝜕2𝛼𝜃

𝑅𝜕𝑥𝜕𝜃
+ 𝐴6 (

𝜕2𝛼𝜃

𝜕𝑥2
+

𝜕2𝛼𝑥

𝑅𝜕𝑥𝜕𝜃
) + 𝐴7

𝜕2𝜑

𝜕𝑥2
+

𝐶1
𝜕2𝑢0

𝑅𝜕𝑥𝜕𝜃
+

𝐶2

𝑅2
(
𝜕𝑤0

𝜕𝜃
+

𝜕2𝑣0

𝜕𝜃2
) +

𝐶3

𝑅
(
𝜕2𝑢0

𝑅𝜕𝜃2
+

𝜕2𝑣0

𝜕𝑥𝜕𝜃
) + 𝐶4

𝜕2𝛼𝑥

𝑅𝜕𝑥𝜕𝜃
+ 𝐶5

𝜕2𝛼𝜃

𝑅2𝜕𝜃2
+

𝐶6

𝑅
(
𝜕2𝛼𝜃

𝜕𝑥𝜕𝜃
+

𝜕2𝛼𝑥

𝑅𝜕𝜃2
) + 𝐶7

𝜕2𝜑

𝑅2𝜕𝜃2
=

𝐼0
𝜕2𝑢0

𝜕𝑡2
+ 𝐼1

𝜕2𝛼𝑥

𝜕𝑡2
                                                                                                                                                    (2.47𝑎)       

𝐵1
𝜕2𝑢0

𝑅𝜕𝑥𝜕𝜃
+

𝐵2

𝑅2
(
𝜕𝑤0

𝜕𝜃
+

𝜕2𝑣0

𝜕𝜃2
) +

𝐵3

𝑅
(
𝜕2𝑢0

𝑅𝜕𝜃2
+

𝜕2𝑣0

𝜕𝑥𝜕𝜃
) + 𝐵4

𝜕2𝛼𝑥

𝑅𝜕𝑥𝜕𝜃
+ 𝐵5

𝜕2𝛼𝜃

𝑅2𝜕𝜃2
+

𝐵6

𝑅
(
𝜕2𝛼𝜃

𝜕𝑥𝜕𝜃
+

𝜕2𝛼𝑥

𝑅𝜕𝜃2
) + 𝐵7

𝜕2𝜑

𝑅𝜕𝑥𝜕𝜃
+

𝐶1
𝜕2𝑢0

𝜕𝑥2
+

𝐶2

𝑅
(
𝜕𝑤0

𝜕𝑥
+

𝜕2𝑣0

𝜕𝑥𝜕𝜃
) + 𝐶3 (

𝜕2𝑢0

𝑅𝜕𝑥𝜕𝜃
+

𝜕2𝑣0

𝜕𝑥2
) + 𝐶4

𝜕2𝛼𝑥

𝜕𝑥2
+ 𝐶5

𝜕2𝛼𝜃

𝑅𝜕𝑥𝜕𝜃
+ 𝐶6 (

𝜕2𝛼𝜃

𝜕𝑥2
+

𝜕2𝛼𝑥

𝑅𝜕𝑥𝜕𝜃
) + 𝐶7

𝜕2𝜑

𝑅𝜕𝑥𝜕𝜃
+

𝐻1

𝑅
(
𝜕𝑤0

𝑅𝜕𝜃
−

𝑣0

𝑅
+ 𝛼𝜃) +

𝐻2

𝑅
(
𝜕𝑤0

𝜕𝑥
+ 𝛼𝑥) = 𝐼0

𝜕2𝑣0

𝜕𝑡2
+ 𝐼1

𝜕2𝛼𝜃

𝜕𝑡2
                                                                           (2.47𝑏)       

𝐺1 (
𝜕2𝑤0

𝑅𝜕𝑥𝜕𝜃
−
𝜕𝑣0
𝑅𝜕𝑥

+
𝜕𝛼𝜃
𝜕𝑥

) + 𝐺2 (
𝜕2𝑤0

𝜕𝑥2
+
𝜕𝛼𝑥
𝜕𝑥

) +
𝐻1
𝑅
(
𝜕2𝑤0

𝑅𝜕𝜃2
−
𝜕𝑣0
𝑅𝜕𝜃

+
𝜕𝛼𝜃
𝜕𝜃

) +
𝐻2

𝑅
(
𝜕2𝑤0

𝜕𝑥𝜕𝜃
+
𝜕𝛼𝑥
𝜕𝜃

)

− 𝐵1
𝜕𝑢0
𝑅𝜕𝑥

−
𝐵2
𝑅2

(𝑤0 +
𝜕𝑣0
𝜕𝜃

) −
𝐵3
𝑅
(
𝜕𝑣0
𝜕𝑥

+
𝜕𝑢0
𝑅𝜕𝜃

) −
𝐵4
𝑅

𝜕𝛼𝑥
𝜕𝑥

−
𝐵5
𝑅2

𝜕𝛼𝜃
𝜕𝜃

−
𝐵6
𝑅
(
𝜕𝛼𝜃
𝜕𝑥

+
𝜕𝛼𝑥
𝑅𝜕𝜃

)

−
𝐵7
𝑅

𝜕𝜑

𝜕𝑥
= 𝐼0

𝜕2𝑤0

𝜕𝑡2
                                                                                                                (2.47𝑐) 

𝐷1
𝜕2𝑢0

𝜕𝑥2
+

𝐷2

𝑅
(
𝜕𝑤0

𝜕𝑥
+

𝜕2𝑣0

𝜕𝑥𝜕𝜃
) + 𝐷3 (

𝜕2𝑢0

𝑅𝜕𝑥𝜕𝜃
+

𝜕2𝑣0

𝜕𝑥2
) + 𝐷4

𝜕2𝛼𝑥

𝜕𝑥2
+ 𝐷5

𝜕2𝛼𝜃

𝑅𝜕𝑥𝜕𝜃
+ 𝐷6 (

𝜕2𝛼𝜃

𝜕𝑥2
+

𝜕2𝛼𝑥

𝑅𝜕𝑥𝜕𝜃
) + 𝐷7

𝜕2𝜑

𝜕𝑥2
+

𝐹1
𝜕2𝑢0

𝑅𝜕𝑥𝜕𝜃
+

𝐹2

𝑅2
(
𝜕𝑤0

𝜕𝜃
+

𝜕2𝑣0

𝜕𝜃2
) +

𝐹3

𝑅
(
𝜕2𝑢0

𝑅𝜕𝜃2
+

𝜕2𝑣0

𝜕𝑥𝜕𝜃
) + 𝐹4

𝜕2𝛼𝑥

𝑅𝜕𝑥𝜕𝜃
+ 𝐹5

𝜕2𝛼𝜃

𝑅2𝜕𝜃2
+

𝐹6

𝑅
(
𝜕2𝛼𝜃

𝜕𝑥𝜕𝜃
+

𝜕2𝛼𝑥

𝑅𝜕𝜃2
) + 𝐹7

𝜕2𝜑

𝑅2𝜕𝜃2
−

𝐺1 (
𝜕𝑤0

𝑅𝜕𝜃
−

𝑣0

𝑅
+ 𝛼𝜃) − 𝐺2 (

𝜕𝑤0

𝜕𝑥
+ 𝛼𝑥) = 𝐼1

𝜕2𝑢0

𝜕𝑡2
+ 𝐼2

𝜕2𝛼𝑥

𝜕𝑡2
                                                                         (2.47𝑑)       
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𝐹1
𝜕2𝑢0
𝜕𝑥2

+
𝐹2
𝑅
(
𝜕𝑤0

𝜕𝑥
+
𝜕2𝑣0
𝜕𝑥𝜕𝜃

) + 𝐹3 (
𝜕2𝑢0
𝑅𝜕𝑥𝜕𝜃

+
𝜕2𝑣0
𝜕𝑥2

) + 𝐹4
𝜕2𝛼𝑥
𝜕𝑥2

+ 𝐹5
𝜕2𝛼𝜃
𝑅𝜕𝑥𝜕𝜃

+ 𝐹6 (
𝜕2𝛼𝜃
𝜕𝑥2

+
𝜕2𝛼𝑥
𝑅𝜕𝑥𝜕𝜃

)

+ 𝐹7
𝜕2𝜑

𝑅𝜕𝑥𝜕𝜃
+ 𝐸1

𝜕2𝑢0
𝑅𝜕𝑥𝜕𝜃

+
𝐸2
𝑅2 (

𝜕𝑤0

𝜕𝜃
+
𝜕2𝑣0
𝜕𝜃2

) +
𝐸3
𝑅
(
𝜕2𝑢0
𝑅𝜕𝜃2

+
𝜕2𝑣0
𝜕𝑥𝜕𝜃

) + 𝐸4
𝜕2𝛼𝑥
𝑅𝜕𝑥𝜕𝜃

+ 𝐸5
𝜕2𝛼𝜃
𝑅2𝜕𝜃2

+
𝐸6
𝑅
(
𝜕2𝛼𝜃
𝜕𝑥𝜕𝜃

+
𝜕2𝛼𝑥
𝑅𝜕𝜃2

) + 𝐸7
𝜕2𝜑

𝑅𝜕𝑥𝜕𝜃
− 𝐻1 (

𝜕𝑤0

𝑅𝜕𝜃
−
𝑣0
𝑅
+ 𝛼𝜃)

− 𝐻2 (
𝜕𝑤0

𝜕𝑥
+ 𝛼𝑥) = 𝐼1

𝜕2𝑣0
𝜕𝑡2

+ 𝐼2
𝜕2𝛼𝜃
𝜕𝑡2

                                                                           (2.47𝑒) 

The electric variables should satisfy the Maxwell’s static electricity equation in which the 

divergence of the electric displacement vanishes at any point within the piezoelectric media. To 

fulfill this condition, it is enforced that the integration of the divergence of the electric 

displacement across the thickness of the piezoelectric layer vanishes. 

By substituting the strain-displacement relations based on the first-order shear deformation 

shell theory, Eq. (2.9), into the electric displacements of the piezoelectric layer with the axial 

polarization based on this theory, Eq. (2.23b), we obtain, 

𝐷𝜃𝜃 = 𝑒̅16 (
𝜕𝑣0
𝜕𝑥

+
𝜕𝑢0
𝑅𝜕𝜃

) + 𝑒̅16𝑧 (
𝜕𝛼𝜃
𝜕𝑥

+
𝜕𝛼𝑥
𝑅𝜕𝜃

) −∈ 11
𝜕𝜑

𝑅𝜕𝜃
                                                                       (2.48𝑎) 

𝐷𝑥𝑥 =
𝑒̅21
𝑅

(𝑤0 +
𝜕𝑣0
𝜕𝜃

) + 𝑒̅21𝑧
𝜕𝛼𝜃
𝑅𝜕𝜃

+ 𝑒̅22 (
𝜕𝑢0
𝜕𝑥

+ 𝑧
𝜕𝛼𝑥
𝜕𝑥

) −∈ 22
𝜕𝜑

𝜕𝑥
                                                      (2.48𝑏) 

𝐷𝑧𝑧 = 𝑒̅34 (
𝜕𝑤0

𝜕𝑥
+ 𝛼𝑥)                                                                                                                                       (2.48𝑐) 

Satisfying the Maxwell equation ∫ ∇𝐷𝑑𝑧 = 0
ℎ

2
+ℎ𝑝

ℎ

2

 for the piezoelectric layer, in view of Eq. 

(2.48), yields, 

𝑒̅22
𝜕2𝑢0
𝜕𝑥2

+
𝑒̅22
2
(ℎ + ℎ𝑝)

𝜕2𝛼𝑥
𝜕𝑥2

+
𝑒̅21
𝑅

(
𝜕𝑤0

𝜕𝑥
+
𝜕2𝑣0
𝜕𝑥𝜕𝜃

) +
𝑒̅21
2
(ℎ + ℎ𝑝)

𝜕2𝛼𝜃
𝑅𝜕𝑥𝜕𝜃

+ 𝑒̅16 (
𝜕2𝑢0
𝑅2𝜕𝜃2

+
𝜕2𝑣0
𝑅𝜕𝑥𝜕𝜃

)

+
𝑒̅16
2
(ℎ + ℎ𝑝)(

𝜕2𝛼𝜃
𝑅𝜕𝑥𝜕𝜃

+
𝜕2𝛼𝑥
𝑅2𝜕𝜃2

) −∈ 22
𝜕2𝜑

𝜕𝑥2
−∈ 11

𝜕2𝜑

𝑅2𝜕𝜃2
= 0                                (2.49) 
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Eqs. (2.47) and (2.49) show the equations of motion in term of the shell displacements (𝑢0, 𝑣0, 

and  𝑤0), the rotations of shell cross-section normal to 𝑥 –axis and 𝜃-axis or shear effects (𝛼𝑥 and 

𝛼𝜃), and the electric potential (𝜑) for a laminated fiber-reinforced composite cylindrical shell 

coupled with a piezoelectric layer at the top surface based on first-order shear deformation shell 

theory.  

2.3.3.2. Dispersion Characteristics Based on the Love Bending Shell Theory 

By substituting the derived force and moment resultants based on the classical shell theory, Eq. 

(2.37), into the equations of motion based on the Love bending shell theory, Eq. (2.45), one obtains 

the following equations in terms of 𝑢0, 𝑣0, 𝑤0, and 𝜑, 

𝐴́1
𝜕2𝑢0
𝜕𝑥2

+
𝐴́2
𝑅
(
𝜕𝑤0

𝜕𝑥
+
𝜕2𝑣0
𝜕𝑥𝜕𝜃

) + 𝐴́3 (
𝜕2𝑢0
𝑅𝜕𝑥𝜕𝜃

+
𝜕2𝑣0
𝜕𝑥2

) + 𝐴́4
𝜕3𝑤0

𝜕𝑥3
+ 𝐴́5

𝜕3𝑤0

𝑅2𝜕𝑥𝜕𝜃2
+ 𝐴́6

𝜕3𝑤0

𝑅𝜕𝑥2𝜕𝜃

+ 𝐴́7
𝜕2𝜑

𝜕𝑥2
+ 𝐶́1

𝜕2𝑢0
𝑅𝜕𝑥𝜕𝜃

+
𝐶́2
𝑅2 (

𝜕𝑤0

𝜕𝜃
+
𝜕2𝑣0
𝜕𝜃2

) +
𝐶́3
𝑅
(
𝜕2𝑢0
𝑅𝜕𝜃2

+
𝜕2𝑣0
𝜕𝑥𝜕𝜃

) + 𝐶́4
𝜕3𝑤0

𝑅𝜕𝑥2𝜕𝜃

+ 𝐶́5
𝜕3𝑤0

𝑅3𝜕𝜃3
+ 𝐶́6

𝜕3𝑤0

𝑅2𝜕𝑥𝜕𝜃2
+ 𝐶́7

𝜕2𝜑

𝑅2𝜕𝜃2
= 𝐼0

𝜕2𝑢0
𝜕𝑡2

                                                      (2.50𝑎) 

𝐵́1
𝑅

𝜕2𝑢0
𝜕𝑥𝜕𝜃

+
𝐵́2
𝑅2 (

𝜕𝑤0

𝜕𝜃
+
𝜕2𝑣0
𝜕𝜃2

) +
𝐵́3
𝑅
(
𝜕2𝑢0
𝑅𝜕𝜃2

+
𝜕2𝑣0
𝜕𝑥𝜕𝜃

) + 𝐵́4
𝜕3𝑤0

𝑅𝜕𝑥2𝜕𝜃
+ 𝐵́5

𝜕3𝑤0

𝑅3𝜕𝜃3
+ 𝐵́6

𝜕3𝑤0

𝑅2𝜕𝑥𝜕𝜃2

+
𝐵́7
𝑅

𝜕2𝜑

𝜕𝑥𝜕𝜃
+ 𝐶́1

𝜕2𝑢0
𝜕𝑥2

+
𝐶́2
𝑅
(
𝜕𝑤0

𝜕𝑥
+
𝜕2𝑣0
𝜕𝑥𝜕𝜃

) + 𝐶́3 (
𝜕2𝑢0
𝑅𝜕𝑥𝜕𝜃

+
𝜕2𝑣0
𝜕𝑥2

) + 𝐶́4
𝜕3𝑤0

𝜕𝑥3

+ 𝐶́5
𝜕3𝑤0

𝑅2𝜕𝑥𝜕𝜃2
+ 𝐶́6

𝜕3𝑤0

𝑅𝜕𝑥2𝜕𝜃
+ 𝐶́7

𝜕2𝜑

𝑅𝜕𝑥𝜕𝜃
−
𝐹́1
𝑅

𝜕2𝑢0
𝜕𝑥2

−
𝐹́2
𝑅2 (

𝜕𝑤0

𝜕𝑥
+
𝜕2𝑣0
𝜕𝑥𝜕𝜃

)

−
𝐹́3
𝑅
(
𝜕2𝑢0
𝑅𝜕𝑥𝜕𝜃

+
𝜕2𝑣0
𝜕𝑥2

) −
𝐹́4
𝑅

𝜕3𝑤0

𝜕𝑥3
−𝐹́5

𝜕3𝑤0

𝑅3𝜕𝑥𝜕𝜃2
−𝐹́6

𝜕3𝑤0

𝑅2𝜕𝑥2𝜕𝜃
−𝐹́7

𝜕2𝜑

𝑅2𝜕𝑥𝜕𝜃

− 𝐸́1
𝜕2𝑢0

𝑅2𝜕𝑥𝜕𝜃
−
𝐸́2
𝑅3 (

𝜕𝑤0

𝜕𝜃
+
𝜕2𝑣0
𝜕𝜃2

) −
𝐸́3
𝑅2 (

𝜕2𝑢0
𝑅𝜕𝜃2

+
𝜕2𝑣0
𝜕𝑥𝜕𝜃

) − 𝐸́4
𝜕3𝑤0

𝑅2𝜕𝑥2𝜕𝜃
−
𝐸́5
𝑅4

𝜕3𝑤0

𝜕𝜃3

− 𝐸́6
𝜕3𝑤0

𝑅3𝜕𝑥𝜕𝜃2
−𝐸́7

𝜕2𝜑

𝑅2𝜕𝑥𝜕𝜃
 = 𝐼0

𝜕2𝑣0
𝜕𝑡2

                                                                           (2.50𝑏) 
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𝐷́1
𝜕3𝑢0

𝜕𝑥3
+

𝐷́2

𝑅
(
𝜕2𝑤0

𝜕𝑥2
+

𝜕3𝑣0

𝜕𝑥2𝜕𝜃
) + 𝐷́3 (

𝜕3𝑢0

𝑅𝜕𝑥2𝜕𝜃
+

𝜕3𝑣0

𝜕𝑥3
) + 𝐷́4

𝜕4𝑤0

𝜕𝑥4
+ 𝐷́5

𝜕4𝑤0

𝑅2𝜕𝑥2𝜕𝜃2
+ 𝐷́6

𝜕4𝑤0

𝑅𝜕𝑥3𝜕𝜃
+ 𝐷́7

𝜕3𝜑

𝜕𝑥3
+

2𝐹́1

𝑅

𝜕3𝑢0

𝜕𝑥2𝜕𝜃
+

2𝐹́2

𝑅2
(
𝜕2𝑤0

𝜕𝑥𝜕𝜃
+

𝜕3𝑣0

𝜕𝑥𝜕𝜃2
) +

2𝐹́3

𝑅
(

𝜕3𝑢0

𝑅𝜕𝑥𝜕𝜃2
+

𝜕3𝑣0

𝜕𝑥2𝜕𝜃
) + 2𝐹́4

𝜕4𝑤0

𝑅𝜕𝑥3𝜕𝜃
+ 2𝐹́5

𝜕4𝑤0

𝑅3𝜕𝑥𝜕𝜃3
+ 2𝐹́6

𝜕4𝑤0

𝑅2𝜕𝑥2𝜕𝜃2
+

2𝐹́7
𝜕3𝜑

𝑅2𝜕𝑥𝜕𝜃2
+ 𝐸́1

𝜕3𝑢0

𝑅2𝜕𝑥𝜕𝜃2
+

𝐸́2

𝑅3
(
𝜕2𝑤0

𝜕𝜃2
+

𝜕3𝑣0

𝜕𝜃3
) +

𝐸́3

𝑅2
(
𝜕3𝑢0

𝑅𝜕𝜃3
+

𝜕3𝑣0

𝜕𝑥𝜕𝜃2
) + 𝐸́4

𝜕4𝑤0

𝑅2𝜕𝑥2𝜕𝜃2
+ 𝐸́5

𝜕4𝑤0

𝑅4𝜕𝜃4
+

𝐸́6
𝜕4𝑤0

𝑅3𝜕𝑥𝜕𝜃3
+ 𝐸́7

𝜕3𝜑

𝑅2𝜕𝑥𝜕𝜃2
−

𝐵́1

𝑅

𝜕𝑢0

𝜕𝑥
−

𝐵́2

𝑅2
(𝑤0 +

𝜕𝑣0

𝜕𝜃
) −

𝐵́3

𝑅
(
𝜕𝑢0

𝑅𝜕𝜃
+

𝜕𝑣0

𝜕𝑥
) −

𝐵́4

𝑅

𝜕2𝑤0

𝜕𝑥2
− 𝐵́5

𝜕2𝑤0

𝑅3𝜕𝜃2
− 𝐵́6

𝜕2𝑤0

𝑅2𝜕𝑥𝜕𝜃
−

𝐵́7

𝑅

𝜕𝜑

𝜕𝑥
= 𝐼0

𝜕2𝑤0

𝜕𝑡2
                                                                                                                                                      (2.50𝑐)  

Replacing the strain-displacement relations based on the classical shell theory, Eq. (2.4), into 

the electric displacements in the piezoelectric layer with the axial polarization based on this theory, 

Eq. (2.21b), yields, 

𝐷𝜃𝜃 = 𝑒̅16 (
𝜕𝑣0
𝜕𝑥

+
𝜕𝑢0
𝑅𝜕𝜃

) − 𝑒̅162𝑧
𝜕2𝑤0

𝑅𝜕𝑥𝜕𝜃
−∈ 11

𝜕𝜑

𝑅𝜕𝜃
                                                                                 (2.51𝑎) 

𝐷𝑥𝑥 =
𝑒̅21
𝑅

(𝑤0 +
𝜕𝑣0
𝜕𝜃

) − 𝑒̅21𝑧
𝜕2𝑤0

𝑅2𝜕𝜃2
+ 𝑒̅22 (

𝜕𝑢0
𝜕𝑥

− 𝑧
𝜕2𝑤0

𝜕𝑥2
) −∈ 22

𝜕𝜑

𝜕𝑥
                                              (2.51𝑏) 

𝐷𝑧𝑧 = 0                                                                                                                                                                   (2.51𝑐) 

Satisfying the Maxwell equation ∫ ∇𝐷𝑑𝑧 = 0
ℎ

2
+ℎ𝑝

ℎ

2

, in view of Eq. (2.51), leads to, 

𝑒̅22
𝜕2𝑢0
𝜕𝑥2

−
𝑒̅22
2
(ℎ + ℎ𝑝)

𝜕3𝑤0

𝜕𝑥3
+
𝑒̅21
𝑅

(
𝜕𝑤0

𝜕𝑥
+
𝜕2𝑣0
𝜕𝑥𝜕𝜃

) − 𝑒̅21(ℎ + ℎ𝑝)
𝜕3𝑤0

𝑅2𝜕𝑥𝜕𝜃2
+
𝑒̅16
𝑅

(
𝜕2𝑢0
𝑅𝜕𝜃2

+
𝜕2𝑣0
𝜕𝑥𝜕𝜃

)

− 𝑒̅16(ℎ + ℎ𝑝)
𝜕3𝑤0

𝑅2𝜕𝑥𝜕𝜃2
−∈ 22

𝜕2𝜑

𝜕𝑥2
−∈ 11

𝜕2𝜑

𝑅2𝜕𝜃2
= 0                                                   (2.52) 

Eqs. (2.50) and (2.52) represent the equations of motion in term of the shell displacements 

(𝑢0, 𝑣0,  and  𝑤0 ) and the electric potential (𝜑 ) for a laminated fiber-reinforced composite 

cylindrical shell integrated with a piezoelectric layer at the top surface according to the Love 

bending shell theory. 
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2.3.3.3. Dispersion Characteristics Based on the Membrane Shell Theory 

By substituting the in-plane force resultants (𝑁𝑥𝑥, 𝑁𝜃𝜃, and 𝑁𝑥𝜃) according to the classical shell 

theory, Eqs. (2.37a) - (2.37c), into the equations of motion based on the membrane shell theory, 

Eq. (2.46), the following equations in terms of 𝑢0, 𝑣0, 𝑤0, and 𝜑 are obtained, 

𝐴́1
𝜕2𝑢0
𝜕𝑥2

+
𝐴́2
𝑅
(
𝜕𝑤0

𝜕𝑥
+
𝜕2𝑣0
𝜕𝑥𝜕𝜃

) + 𝐴́3 (
𝜕2𝑢0
𝑅𝜕𝑥𝜕𝜃

+
𝜕2𝑣0
𝜕𝑥2

) + 𝐴́4
𝜕3𝑤0

𝜕𝑥3
+ 𝐴́5

𝜕3𝑤0

𝑅2𝜕𝑥𝜕𝜃2
+ 𝐴́6

𝜕3𝑤0

𝑅𝜕𝑥2𝜕𝜃

+ 𝐴́7
𝜕2𝜑

𝜕𝑥2
+ 𝐶́1

𝜕2𝑢0
𝑅𝜕𝑥𝜕𝜃

+
𝐶́2
𝑅2 (

𝜕𝑤0

𝜕𝜃
+
𝜕2𝑣0
𝜕𝜃2

) + 𝐶́3 (
𝜕2𝑢0
𝑅2𝜕𝜃2

+
𝜕2𝑣0
𝑅𝜕𝑥𝜕𝜃

) + 𝐶́4
𝜕3𝑤0

𝑅𝜕𝑥2𝜕𝜃

+ 𝐶́5
𝜕3𝑤0

𝑅3𝜕𝜃3
+ 𝐶́6

𝜕3𝑤0

𝑅2𝜕𝑥𝜕𝜃2
+ 𝐶́7

𝜕2𝜑

𝑅2𝜕𝜃2
= 𝐼0

𝜕2𝑢0
𝜕𝑡2

                                                      (2.53𝑎) 

𝐵́1
𝑅

𝜕2𝑢0
𝜕𝑥𝜕𝜃

+
𝐵́2
𝑅2 (

𝜕𝑤0

𝜕𝜃
+
𝜕2𝑣0
𝜕𝜃2

) + 𝐵́3 (
𝜕2𝑢0
𝑅2𝜕𝜃2

+
𝜕2𝑣0
𝑅𝜕𝑥𝜕𝜃

) +
𝐵́4
𝑅

𝜕3𝑤0

𝜕𝑥2𝜕𝜃
+ 𝐵́5

𝜕3𝑤0

𝑅3𝜕𝜃3
+ 𝐵́6

𝜕3𝑤0

𝑅2𝜕𝑥𝜕𝜃2

+
𝐵́7
𝑅

𝜕2𝜑

𝜕𝑥𝜕𝜃
+ 𝐶́1

𝜕2𝑢0
𝜕𝑥2

+
𝐶́2
𝑅
(
𝜕𝑤0

𝜕𝑥
+
𝜕2𝑣0
𝜕𝑥𝜕𝜃

) + 𝐶́3 (
𝜕2𝑢0
𝑅𝜕𝑥𝜕𝜃

+
𝜕2𝑣0
𝜕𝑥2

) + 𝐶́4
𝜕3𝑤0

𝜕𝑥3

+ 𝐶́5
𝜕3𝑤0

𝑅2𝜕𝑥𝜕𝜃2
+ 𝐶́6

𝜕3𝑤0

𝑅𝜕𝑥2𝜕𝜃
+ 𝐶́7

𝜕2𝜑

𝑅𝜕𝑥𝜕𝜃
= 𝐼0

𝜕2𝑣0
𝜕𝑡2

                                                   (2.53𝑏) 

−
𝐵́1
𝑅

𝜕𝑢0
𝜕𝑥

−
𝐵́2
𝑅2

(𝑤0 +
𝜕𝑣0
𝜕𝜃

) −
𝐵́3
𝑅
(
𝜕𝑢0
𝑅𝜕𝜃

+
𝜕𝑣0
𝜕𝑥

) −
𝐵́4
𝑅

𝜕2𝑤0

𝜕𝑥2
− 𝐵́5

𝜕2𝑤0

𝑅3𝜕𝜃2
− 𝐵́6

𝜕2𝑤0

𝑅2𝜕𝑥𝜕𝜃
−
𝐵́7
𝑅

𝜕𝜑

𝜕𝑥

= 𝐼0
𝜕2𝑤0

𝜕𝑡2
                                                                                                                                 (2.53𝑐) 

The electric displacements and the equations of motion for a piezoelectric layer based on the 

membrane shell theory are the same as those for the Love bending shell theory, Eqs. (2.51) and 

(2.52). Thus, Eqs. (2.53) and (2.52) express the equations of motion in term of the shell 

displacements (𝑢0, 𝑣0, and  𝑤0) and the electric potential (𝜑) for a laminated fiber-reinforced 

composite cylindrical shell coupled with a piezoelectric layer at the top surface based on the 

membrane shell theory. 
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2.3.4. Solution Procedure 

The shell displacements (𝑢0, 𝑣0, and  𝑤0), the rotations of shell cross-section normal to 𝑥 -axis 

and 𝜃-axis or shear effects (𝛼𝑥 and 𝛼𝜃), and the electric potential (𝜑) for wave propagation are 

assumed to be in the following forms, 

𝑢0(𝑥, 𝜃, 𝑡) = 𝑈𝑒𝑖𝑛𝜃𝑒𝑖𝛾(𝑥−𝑐𝑡)                                                                                                                             (2.54𝑎) 

𝑣0(𝑥, 𝜃, 𝑡) = 𝑉𝑒𝑖𝑛𝜃𝑒𝑖𝛾(𝑥−𝑐𝑡)                                                                                                                              (2.54𝑏) 

𝑤0(𝑥, 𝜃, 𝑡) = 𝑊𝑒𝑖𝑛𝜃𝑒𝑖𝛾(𝑥−𝑐𝑡)                                                                                                                            (2.54𝑐) 

𝛼𝑥(𝑥, 𝜃, 𝑡) = 𝐴𝑥𝑒
𝑖𝑛𝜃𝑒𝑖𝛾(𝑥−𝑐𝑡)                                                                                                                           (2.54𝑑) 

𝛼𝜃(𝑥, 𝜃, 𝑡) = 𝐴𝜃𝑒
𝑖𝑛𝜃𝑒𝑖𝛾(𝑥−𝑐𝑡)                                                                                                                           (2.54𝑒) 

𝜑(𝑥, 𝜃, 𝑡) = Φ𝑒𝑖𝑛𝜃𝑒𝑖𝛾(𝑥−𝑐𝑡)                                                                                                                              (2.54𝑓) 

where 𝛾, 𝑛, and 𝑐 are axial wavenumber, circumferential wavenumber, and wave phase velocity, 

respectively; 𝑈,  𝑉, 𝑊, 𝐴𝑥, 𝐴𝜃 and Φ are the wave amplitudes; and 𝜔 = 𝑐𝛾 is the corresponding 

frequency. 

Substituting Eq. (2.54) into the equations of motion according to the first-order shear 

deformation shell theory, Eqs. (2.47) and (2.49), yields a set of homogenous equations as, 

[
 
 
 
 
 
𝐿11    𝐿12    𝐿13    𝐿14 𝐿15 𝐿16
𝐿21    𝐿22    𝐿23    𝐿24 𝐿25 𝐿26
𝐿31    𝐿32    𝐿33    𝐿34 𝐿35 𝐿36
𝐿41
𝐿51
𝐿61

    
𝐿42
𝐿52
𝐿62

   
 𝐿43
𝐿53
𝐿63

    
𝐿44
𝐿54
𝐿64

𝐿45
𝐿55
𝐿65

𝐿46
𝐿56
𝐿66]

 
 
 
 
 

{
 
 

 
 
𝑈
𝑉
𝑊
𝐴𝑥
𝐴𝜃
Φ}
 
 

 
 

= {0}                                                                                             (2.55) 

Substituting the displacements and electric potential for wave propagation from Eq. (2.54) into 

the equations of motion based on the Love bending shell theory, Eqs. (2.50) and (2.52), leads to a 

set of homogenous equations as, 

[

𝑆11    𝑆12    𝑆13    𝑆14
𝑆21    𝑆22    𝑆23    𝑆24
𝑆31    𝑆32    𝑆33    𝑆34
𝑆41    𝑆42    𝑆43    𝑆44

]{

𝑈
𝑉
𝑊
Φ

} = {0}                                                                                                                     (2.56) 
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By substituting the displacements and electric potential for wave propagation from Eq. (2.54) 

into the equations of motion according to the membrane shell theory, Eqs. (2.53) and (2.52), one 

obtains a set of homogenous equations as, 

[

𝑇11    𝑇12    𝑇13    𝑇14
𝑇21    𝑇22    𝑇23    𝑇24
𝑇31    𝑇32    𝑇33    𝑇34
𝑇41    𝑇42    𝑇43    𝑇44

]{

𝑈
𝑉
𝑊
Φ

} = {0}                                                                                                                     (2.57) 

where the components of matrices [𝐿𝑖𝑗]6×6, [𝑆𝑖𝑗]4×4, and [𝑇𝑖𝑗]4×4 are given in Appendices  G, H, 

and I, respectively. Due to the eigenvalue problem, the above matrix equations has a nontrivial 

solution for 𝑈, 𝑉, 𝑊, 𝐴𝑥, 𝐴𝜃, and Φ only if, the determinant of matrices [𝐿𝑖𝑗], [𝑆𝑖𝑗], and [𝑇𝑖𝑗] is 

equal to zero. By solving Eq. (2.55), five positive roots are obtained for any specific axial 

wavenumber 𝛾 and circumferential wavenumber 𝑛 which are the wave phase velocities 𝑐 for the 

laminated composite cylindrical shell motions corresponding to the axial (𝑥), circumferential (𝜃), 

and radial (𝑧) displacements, and the rotations of the shell cross-section normal to 𝑥 -axis (𝑧 − 𝜃 

plane) and 𝜃-axis (𝑥 − 𝑧 plane), respectively. These five roots are called the wave phase velocities 

corresponding to the first five wave modes denoted, respectively, by 𝑀1, 𝑀2, 𝑀3, 𝑀4 and 𝑀5 in 

this thesis. While one obtains three positive roots by solving Eqs. (2.56) and (2.57) as the wave 

phase velocities 𝑐 corresponding to the first three wave modes 𝑀1, 𝑀2, and 𝑀3. The lowest of 

the five roots (𝑀1) represents the flexural (forward) motion of the shell particles and other roots 

(𝑀2 - 𝑀5) are in-plane and out-of-plane motions of the shell particles.  

To solve the eigenvalue problem addressing the real roots of Eqs. (2.55) - (2.57), a Matlab code 

is provided based on the Bisection method where it is an iterative discretization root-finding 

method solving the equation 𝑓(𝑥) = 0  for real variable 𝑥  with continuous function 𝑓 . If the 

continuous function 𝑓  is defined on an interval [𝑎, 𝑏] and where 𝑓(𝑎) and 𝑓(𝑏) have opposite 
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signs (𝑓(𝑎) × 𝑓(𝑏) < 0),  𝑎 and 𝑏 bracket a root, and the continuous function 𝑓 must have at least 

one root in the interval [𝑎, 𝑏].  

Firstly, a relatively small interval (< 5% of the whole variable range [𝑎, 𝑏]) is defined to scan 

the whole variable range during the Bisection root search. At each iterative step at the interval 

[𝑎, 𝑏] with 𝑓(𝑎) × 𝑓(𝑏) < 0, the method divides the interval in two by computing the midpoint 

𝑐 =  (𝑎 + 𝑏) / 2 of the interval and the value of the function 𝑓(𝑐) at that point. Unless 𝑐 is itself 

a root of 𝑓(𝑥) = 0 (this is very unlikely but could be possible), there are two possibilities: either 

𝑓(𝑎) and 𝑓(𝑐) have opposite signs and bracket a root, or 𝑓(𝑐) and 𝑓(𝑏) have opposite signs and 

bracket a root. We then select the subinterval that is guaranteed to bracket the root as the new 

interval to be used in the next iteration. In this way, the size of an interval that contains 𝑓(𝑥) = 0 

is reduced by half at each iteration step. The process is continued until the interval is sufficiently 

small (< 0.1% of whole variable range) with 𝑐 very close to the analytical root of 𝑓(𝑥) = 0 [199]. 

Therefore, by using the above method, the dispersion or frequency curves for different wave 

modes can be obtained by finding the wave phase velocity 𝑐 or the frequency 𝜔 at any specific 

axial wavenumber 𝛾 and circumferential wavenumber 𝑛.    

Carbon/epoxy and E-glass/epoxy unidirectional composites are considered for the host 

laminated composite cylindrical shell where their material properties are given in Table 2.1, and 

for the piezoelectric actuator, PZT-4 is chosen where its material properties are listed in Table 2.2. 

 To investigate wave propagation in a laminated fiber-reinforced composite cylindrical shell 

coupled with a piezoelectric layer, the non-dimensional wave phase velocity is employed in the 

numerical analysis. The axial wavenumber is defined by, 

𝛾 =
2𝜋

𝜆
                                                                                                                                                                      (2.58) 
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where 𝛾 is the axial wavenumber with unit 
𝑟𝑎𝑑

𝑚
 and 𝜆 is the wavelength with unit meter (𝑚). By 

multiplying the axial wavenumber 𝛾  with  
𝐻

2𝜋
(𝑚 𝑟𝑎𝑑⁄ ), we obtain the non-dimensional axial 

wavenumber as,  

𝜉 =
𝛾𝐻

2𝜋
=
𝐻

𝜆
                                                                                                                                                            (2.59) 

where 𝐻 = ℎ + ℎ𝑝 is the total thickness of a laminated composite cylindrical shell coupled with a 

piezoelectric layer at the top surface. For any specific non-dimensional axial wavenumber 𝜉, its 

corresponding axial wavenumber 𝛾  or wavelength 𝜆 is obtained from Eq. (2.59), and then by 

substituting the calculated corresponding axial wavenumber 𝛾  or wavelength 𝜆  and a specific 

value of circumferential wavenumber  𝑛 (𝑛 = 0,1,2, …) into Eqs. (2.55) - (2.57), the corresponding 

wave phase velocities 𝑐 are calculated, respectively, based on the first-order deformation shell 

theory, the Love bending shell theory, and the membrane shell theory for different wave modes. 

The non-dimensional wave phase velocity is defined as, 

v =
𝑐

𝑐𝑡
                                                                                                                                                                        (2.60) 

where 𝑐 is the wave phase velocity computed from Eqs. (2.55) - (2.57), and 𝑐𝑡 is the torsional wave 

phase velocity which for the first-order shear deformation shell theory and the Love bending shell 

theory is employed as [97,98],   

𝑐𝑡 = √
𝐺12ℎ + 𝑐6̅6ℎ𝑝(1 − ((ℎ + ℎ𝑝)/𝑅))

𝜌𝐾ℎ + 𝜌𝑝ℎ𝑝
                                                                                                       (2.61) 

and for the membrane shell theory is employed as [39],  

𝑐𝑡 = √
𝐺12ℎ + 𝑐6̅6ℎ𝑝
𝜌𝐾ℎ + 𝜌𝑝ℎ𝑝

                                                                                                                                            (2.62) 
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in the numerical simulations, because all simulations here are compared with those of the Refs. 

[39,97,98] and 𝐺12 is the in-plane shear modulus of a fiber-reinforced unidirectional composite 

given in Table 2.1 and 𝑐6̅6 is the effective in-plane shear modulus for the piezoelectric layer. In 

the case of no piezoelectric layer (ℎ𝑝 = 0), Eqs. (2.61) and (2.62) are reduced to,  

𝑐𝑡 = √
𝐺12
𝜌𝐾

                                                                                                                                                                (2.63) 

The ratio of piezoelectric layer thickness (ℎ𝑝) to the host laminated composite shell thickness 

(ℎ) is defined as 𝑟 =
ℎ𝑝

ℎ
. 

 

Table 2.1. Material properties for fiber-reinforced unidirectional composites [6]. 

Property 
Carbon/Epoxy 

(AS4/3501-6) 
E-Glass/Epoxy 

Fiber volume fraction, 𝑓𝑟 0.63 0.55 

Mass density, 𝜌, (kg m3⁄ ) 1600 1970 

Longitudinal modulus, 𝐸11, (GPa) 149 41 

Transverse modulus, 𝐸22, (GPa) 10.3 10.4 

In-plane shear modulus, 𝐺12, (GPa) 7 4.3 

Major Poisson’s ratio, 𝑣12 0.27 0.28 

Longitudinal coefficient of thermal expansion, 𝛤11, (10
−6 K⁄ ) -0.9 7 

Transverse coefficient of thermal expansion, 𝛤22, (10
−6 K⁄ ) 27 26 

Longitudinal coefficient of moisture expansion, 𝛶11 0.01 0 

Transverse coefficient of moisture expansion, 𝛶22 0.2 0.2 
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Table 2.2. Material properties for the PZT-4 [92,103]. 

𝜌 = 7500 (kg m3⁄ ),      𝐸 = 78 (𝐺𝑃𝑎),       𝑣 = 0.31 

Elastic constants, 𝑐𝑖𝑗 (GPa) 

𝑐11 = 139 ,  𝑐12 = 78 ,  𝑐13 = 74 ,   𝑐22 = 139 ,    𝑐23 = 74 ,    𝑐33 = 115 ,   𝑐44 = 25.6 ,   𝑐55 = 25.6 ,   𝑐66 = 30.5 

  
Dielectric constants, 

∈𝑖𝑗  (× 10−11𝐹 𝑚2⁄ ) 

Polarization Piezoelectric constants, 𝑒𝑖𝑗 (𝐶 𝑚2⁄ ) ∈11 ∈22 ∈33 

Axial 𝑒16 = −12.7 ,   𝑒21 = −15.1 ,   𝑒22 = 5.2 ,   𝑒23 = 5.2 ,   𝑒34 = −12.7    650 560 650 

Circumferential 𝑒11 = −15.1 ,   𝑒12 = 5.2 ,   𝑒13 = 5.2 ,   𝑒26 = −12.7 ,   𝑒35 = −12.7 560 650 650 

Radial 𝑒15 = 12.7 ,   𝑒24 = 12.7 ,   𝑒31 = −5.2 ,   𝑒32 = −5.2 ,   𝑒33 = 15.1 650 650 560 

 

 

2.4. Wave Propagation Modeling in Piezocomposite Cylindrical 

Shells Reinforced with Carbon Nanotubes  

As particles in nano sizes, CNTs can be dispersed in a matrix in different manners. They can 

be angled dispersed with a specific orientation to the global coordinate system, randomly oriented 

particles, and or agglomerated partially and completely in the matrix. Various dispersions of CNTs 

in the matrix lead to different dynamic properties of composites. Modeling CNTs embedded in 

composites has always been a challenge and been studied through different methodologies such as 

the Mori-Tanaka model [104] and the rule of mixture model [105]. Wave propagation behaviors 

for piezocomposite cylindrical shells reinforced with CNTs with different orientations and 

distributions have not been investigated in the literature. Hence, in this section, wave propagation 

in CNT-reinforced piezocomposites is modeled.   

(a) 

(a) 

(c) 
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2.4.1. Constitutive Relations for Piezoelectric Composite Cylindrical Shells 

Reinforced with CNTs 

The poling direction of the piezoelectric cylindrical shell is assumed to be in the axial 𝑥- 

direction of the shell, which also means the 𝑥-direction is the axis of symmetry of the piezoelectric 

shell. In view of Eq. (2.19), the generalized constitutive relations for a piezoelectric cylindrical 

shell with the axial polarization in the cylindrical coordinate system (𝑥, 𝜃, 𝑧) can be developed to 

[81],     

{
 
 

 
 
𝜎𝜃𝜃
𝜎𝑥𝑥
𝜎𝑧𝑧
𝜏𝑥𝑧
𝜏𝜃𝑧
𝜏𝑥𝜃}

 
 

 
 

=

[
 
 
 
 
 
𝐶𝜃𝜃
𝐶𝜃𝑥
𝐶𝜃𝑧
0
0
𝐶𝜃𝑠

𝐶𝜃𝑥
𝐶𝑥𝑥
𝐶𝑥𝑧
0
0
𝐶𝑥𝑠

𝐶𝜃𝑧
𝐶𝑥𝑧
𝐶𝑧𝑧
0
0
𝐶𝑧𝑠

0
0
0
𝐶𝑟𝑟
𝐶𝑟𝑞
0

0
0
0
𝐶𝑟𝑞
𝐶𝑞𝑞
0

𝐶𝜃𝑠
𝐶𝑥𝑠
𝐶𝑧𝑠
0
0
𝐶𝑠𝑠]

 
 
 
 
 

{
 
 

 
 
𝜀𝜃𝜃
𝜀𝑥𝑥
𝜀𝑧𝑧
𝛾𝑥𝑧
𝛾𝜃𝑧
𝛾𝑥𝜃}

 
 

 
 

−

[
 
 
 
 
0
0
0
0
0
𝑒16

𝑒21
𝑒22
𝑒23
0
0
0

0
0
0
𝑒34
0
0 ]
 
 
 
 

{

𝐸𝜃𝜃
𝐸𝑥𝑥
𝐸𝑧𝑧

}                                (2.64𝑎) 

{

𝐷𝜃𝜃
𝐷𝑥𝑥
𝐷𝑧𝑧

} = [
0 0 0 0 0 𝑒16

𝑒21 𝑒22 𝑒23 0 0 0

0 0 0 𝑒34 0 0
]

{
 
 

 
 
𝜀𝜃𝜃
𝜀𝑥𝑥
𝜀𝑧𝑧
𝛾𝑥𝑧
𝛾𝜃𝑧
𝛾𝑥𝜃}

 
 

 
 

+ [
∈11
0
0

0
∈22
0

0
0
∈33

] {

𝐸𝜃𝜃
𝐸𝑥𝑥
𝐸𝑧𝑧

}                                             (2.64𝑏) 

In view of Eq. (2.34), the in-plane force and moment resultants and the transverse shear force 

resultants for a piezocomposite cylindrical shell reinforced by CNTs are obtained by integrating 

the corresponding stresses across the piezoelectric thickness as, 

{

𝑁𝑥𝑥
𝑁𝜃𝜃
𝑁𝑥𝜃

} = ∫ {

𝜎𝑥𝑥
𝜎𝜃𝜃
𝜏𝑥𝜃

}

ℎ
2

−
ℎ
2

𝑑𝑧                                                                                                                                          (2.65𝑎) 

{

𝑀𝑥𝑥

𝑀𝜃𝜃

𝑀𝑥𝜃

} =  ∫ {

𝜎𝑥𝑥
𝜎𝜃𝜃
𝜏𝑥𝜃

}

ℎ
2

−
ℎ
2

𝑧𝑑𝑧                                                                                                                                      (2.65𝑏) 

 {
𝑉𝜃𝑧
𝑉𝑥𝑧

} = 𝐾𝑠∫ {
𝜏𝜃𝑧
𝜏𝑥𝑧

}

ℎ
2

−
ℎ
2

𝑑𝑧                                                                                                                                     (2.65𝑐) 



Chapter 2. Structural Dynamic Modeling of Smart Composite Cylindrical Shells 

93 
 

In this section, ℎ represents the thickness of the piezoelectric cylindrical shell. In the following 

subsections, constitutive equations are derived and developed by considering various CNT 

distributions in piezocomposite cylindrical shells. The proposed model leads to derive the stiffness 

matrix and material properties and then develop a composite wave propagation approach for any 

kind of customized composites with various distributions of CNTs.     

2.4.2. Constitutive Relations for a Piezoelectric Composite Cylindrical Shell 

Reinforced with Angled, Straight CNTs 

In this section, constitutive equations are derived and developed for a linear elastic piezoelectric 

composite reinforced by a large number of dispersed CNTs which are angled and straight. 

Configuration of an infinitely long unbounded piezoelectric composite cylindrical shells 

reinforced with angled, straight CNTs is shown in Fig. 2.6 with corresponding material principle 

(1, 2, 3) and cylindrical coordinate (𝑥, 𝜃, 𝑧) systems. 

Due to the advantages of the Mori-Tanaka [104] micromechanics model rather to the rule of 

mixture [105] micromechanics model, as explained in section 1.2.2.1, the Mori-Tanaka model is 

employed to estimate the resulting effective elastic properties of a piezoelectric composite 

cylindrical shell reinforced with aligned, straight CNTs.   
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Figure 2.6. Configuration of a piezoelectric composite cylindrical shell reinforced with angled, 

straight CNTs. 

We consider a piezoelectric composite cylindrical shell reinforced with straight CNTs which 

have angle 𝛽 with the 𝑥-axis (see Fig. 2.6). The matrix is considered to be elastic and isotropic 

with Young’s modulus 𝐸𝑚 and Poisson’s ratio 𝑣𝑚. Each straight CNT is modeled as a long fiber 

with transversely isotropic elastic properties. The resulting composite shell is also transversely 

isotropic with 2 − 3 plane of isotropy and its constitutive relations in the principle coordinate 

system (1,2,3), 𝝈 = 𝑪: 𝜺, based on the Mori-Tanaka micromechanics model are given by Ref. 

[107] as,    

{
 
 

 
 
𝜎11
𝜎22
𝜎33
𝜏23
𝜏13
𝜏12}

 
 

 
 

=

[
 
 
 
 
 
𝑛
𝑙
𝑙
0
0
0

𝑙
𝑘 + 𝑚
𝑘 −𝑚
0
0
0

𝑙
𝑘 − 𝑚
𝑘 +𝑚
0
0
0

0
0
0
𝑚
0
0

0
0
0
0
𝑝
0

0
0
0
0
0
𝑝]
 
 
 
 
 

{
 
 

 
 
𝜀11
𝜀22
𝜀33
𝛾23
𝛾13
𝛾12}

 
 

 
 

                                                                                      (2.66)     

where 𝑘, 𝑙, 𝑚, 𝑛, and 𝑝 are the Hill’s elastic moduli [200]; 𝑘 is the plane strain bulk modulus 

normal to the fiber direction, 𝑛 is the uniaxial tension modulus in the fiber direction, 𝑙 is the 

𝛽 

3, 𝑧, 𝑤 

𝜃, 𝑣 
𝑥, 𝑢 

1 

2 

𝜃 

𝑅 

Piezoelectric cylindrical shell 

(Matrix) 

CNT 

ℎ 

ℎ 2⁄  

−ℎ 2⁄  
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associated cross modulus, 𝑚 and 𝑝 are the shear moduli in planes normal and parallel to the fiber 

direction, respectively. The Hill’s elastic moduli are defined as [200], 

𝑘 =
𝐸𝑚{𝐸𝑚𝑓𝑚 + 2𝑘𝑟(1 + 𝑣𝑚)[1 + 𝑓𝑟(1 − 2𝑣𝑚)]}

2(1 + 𝑣𝑚)[𝐸𝑚(1 + 𝑓𝑟 − 2𝑣𝑚) + 2𝑓𝑚𝑘𝑟(1 − 𝑣𝑚 − 2𝑣𝑚
2 )]

                                                               (2.67𝑎) 

𝑙 =
𝐸𝑚{𝑓𝑚𝑣𝑚[𝐸𝑚 + 2𝑘𝑟(1 + 𝑣𝑚)] + 2𝑓𝑟𝑙𝑟(1 − 𝑣𝑚

2 )}

(1 + 𝑣𝑚)[𝐸𝑚(1 + 𝑓𝑟 − 2𝑣𝑚) + 2𝑓𝑚𝑘𝑟(1 − 𝑣𝑚 − 2𝑣𝑚
2 )]

                                                                  (2.67𝑏) 

𝑛 =
𝐸𝑚
2 𝑓𝑚(1 + 𝑓𝑟 − 𝑓𝑚𝑣𝑚) + 2𝑓𝑚𝑓𝑟(𝑘𝑟𝑛𝑟 − 𝑙𝑟

2)(1 + 𝑣𝑚)
2(1 − 2𝑣𝑚)

(1 + 𝑣𝑚)[𝐸𝑚(1 + 𝑓𝑟 − 2𝑣𝑚) + 2𝑓𝑚𝑘𝑟(1 − 𝑣𝑚 − 2𝑣𝑚
2 )]

+
𝐸𝑚[2𝑓𝑚

2𝑘𝑟(1 − 𝑣𝑚) + 𝑓𝑟𝑛𝑟(1 + 𝑓𝑟 − 2𝑣𝑚) − 4𝑓𝑚𝑙𝑟𝑣𝑚]

𝐸𝑚(1 + 𝑓𝑟 − 2𝑣𝑚) + 2𝑓𝑚𝑘𝑟(1 − 𝑣𝑚 − 2𝑣𝑚
2 )

                                         (2.67𝑐) 

𝑝 =
𝐸𝑚[𝐸𝑚𝑓𝑚 + 2𝑝𝑟(1 + 𝑣𝑚)(1 + 𝑓𝑟)]

2(1 + 𝑣𝑚)[𝐸𝑚(1 + 𝑓𝑟) + 2𝑓𝑚𝑝𝑟(1 + 𝑣𝑚)]
                                                                                          (2.67𝑑) 

𝑚 =
𝐸𝑚[𝐸𝑚𝑓𝑚 + 2𝑚𝑟(1 + 𝑣𝑚)(3 + 𝑓𝑟 − 4𝑣𝑚)]

2(1 + 𝑣𝑚){𝐸𝑚[𝑓𝑚 + 4𝑓𝑟(1 − 𝑣𝑚)] + 2𝑓𝑚𝑚𝑟(3 − 𝑣𝑚 − 4𝑣𝑚
2 )}

                                                    (2.67𝑒) 

where 𝑓𝑚  and 𝑓𝑟  stand for the volume fraction for the matrix and the reinforcement phases, 

respectively; 𝑘𝑟 , 𝑙𝑟 , 𝑚𝑟 , 𝑛𝑟 , and  𝑝𝑟  are the Hill’s elastic moduli for the reinforcement phase 

(SWCNTs) obtained from the analytical solutions [201], in which the elastic moduli of CNTs are 

computed. Subscripts 𝑚  and  𝑟  stand for the quantities corresponding to the matrix and the 

reinforcement phase, respectively. For CNT-reinforced composites, the SWCNT (10, 10) is used 

as the reinforcement phase where its properties are listed in Table 2.3.  

Table 2.3. Material properties for the SWCNT (10, 10) [202,16]. 

Temperature (K) 𝐸11(TPa)  𝐸22(TPa) 𝐺12(TPa) 𝛤11(10
−6 K⁄ ) 𝛤22 (10

−6 K⁄ ) 

300 5.6466  7.0800 1.9445 3.4584 5.1682 

500 5.5308  6.9348 1.9643 4.5361 5.0189 

700 5.4744  6.8641 1.9644 4.6677 4.8943 

Mass density (kg m3⁄ ),   𝜌 = 1400;   Poisson’s ratio, 𝑣12 = 0.175 

Hill elastic moduli (GPa):   𝑘𝑟 = 271 ,      𝑙𝑟 = 88 ,      𝑚𝑟 = 17,      𝑛𝑟 = 1089,      𝑝𝑟 = 442 
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Therefore, the components of stiffness matrix in the principle coordinate system (1,2,3), 

𝐶𝑖𝑗 (𝑖, 𝑗 = 1,2, … ,6), for a piezoelectric composite cylindrical shell reinforced with angled, straight 

CNTs are obtained from Eq. (2.66) as,  

𝐶11 = 𝑛    𝐶22 = 𝐶33 = 𝑘 +𝑚,    𝐶12 = 𝐶13 = 𝑙,    𝐶23 = 𝑘 −𝑚,     𝐶44 = 𝑚, 𝐶55 = 𝐶66 = 𝑝     (2.68) 

where 𝐶𝑖𝑗 = 𝐶𝑗𝑖 . The stiffness matrix in the cylindrical coordinate system (𝑥, 𝜃, 𝑧 ) for a 

composite reinforced with angled CNTs is obtained as,  

[𝐶](𝑥,𝜃,𝑧) = [𝑇𝑖𝑗
−1] [𝐶](1,2,3)[𝑇𝑖𝑗]                                                                                                                         (2.69)                                                         

where the transformation matrix [𝑇𝑖𝑗] and its inverse [𝑇𝑖𝑗
−1], and components of the stiffness matrix 

[𝐶](𝑥,𝜃,𝑧) are given in Appendix J.  

According to the first-order shear deformation shell theory, the transverse shear effects are 

included (𝜏𝑥𝑧 ≠ 𝜏𝜃𝑧 ≠ 0), and only the normal stress in the shell thickness direction (𝜎𝑧𝑧) is 

assumed to be negligibly small. Thus, from Eq. (2.64a) by assuming 𝜎𝑧𝑧 = 0, one obtains,  

𝜀𝑧𝑧 =
𝑒23
𝐶𝑧𝑧

𝐸𝑥𝑥 −
𝐶𝜃𝑧
𝐶𝑧𝑧

𝜀𝜃𝜃 −
𝐶𝑥𝑧
𝐶𝑧𝑧

𝜀𝑥𝑥 −
𝐶𝑧𝑠
𝐶𝑧𝑧

𝛾𝑥𝜃                                                                                                  (2.70) 

Substituting Eq. (2.70) into the stress-strain relations, Eq. (2.64a), and the electric displacement 

relation, Eq. (2.64b), yields, 

{
 
 

 
 
𝜎𝜃𝜃
𝜎𝑥𝑥
𝜏𝑥𝑧
𝜏𝜃𝑧
𝜏𝑥𝜃}

 
 

 
 

=

[
 
 
 
 
 
𝐶𝜃̅𝜃 𝐶𝜃̅𝑥 0 0 𝐶𝜃̅𝑠
𝐶𝜃̅𝑥 𝐶𝑥̅𝑥 0 0 𝐶𝑥̅𝑠
0 0 𝐶𝑟̅𝑟 𝐶𝑟̅𝑞 0

0 0 𝐶𝑟̅𝑞 𝐶𝑞̅𝑞 0

𝐶𝜃̅𝑠 𝐶𝑥̅𝑠 0 0 𝐶𝑠̅𝑠 ]
 
 
 
 
 

{
 
 

 
 
𝜀𝜃𝜃
𝜀𝑥𝑥
𝛾𝑥𝑧
𝛾𝜃𝑧
𝛾𝑥𝜃}

 
 

 
 

−

[
 
 
 
 
0 𝑒̅21 0
0 𝑒̅22 0
0 0 𝑒̅34
0 0 0

𝑒̅16 𝑒̅23 0]
 
 
 
 

{

𝐸𝜃𝜃
𝐸𝑥𝑥
𝐸𝑧𝑧

}                                                      (2.71𝑎) 

{

𝐷𝜃𝜃
𝐷𝑥𝑥
𝐷𝑧𝑧

} = [

0 0 0 𝑒̅16
𝑒̅21 𝑒̅22 0 𝑒̅23
0 0 𝑒̅34 0

]{

𝜀𝜃𝜃
𝜀𝑥𝑥
𝛾𝑥𝑧
𝛾𝑥𝜃

} + [
∈ 11
0
0

0
∈ 22
0

0
0
∈ 33

] {

𝐸𝜃𝜃
𝐸𝑥𝑥
𝐸𝑧𝑧

}                                                           (2.71𝑏) 

where 𝐶𝜃̅𝜃 , 𝐶𝜃̅𝑥 , 𝐶𝜃̅𝑠 , 𝐶𝑥̅𝑥 , 𝐶𝑥̅𝑠 , 𝐶𝑟̅𝑟, 𝐶𝑟̅𝑞, 𝐶𝑞̅𝑞, 𝐶𝑠̅𝑠 , 𝑒̅16, 𝑒̅21, 𝑒̅22, 𝑒̅23, 𝑒̅34, and ∈ 11, ∈ 22, ∈ 33 for a 

piezoelectric cylindrical composite shell reinforced with angled, straight CNTs are given in 
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Appendix K. Therefore, Eq. (2.71) leads to derivation of constitutive equations for piezocomposite 

cylindrical shells reinforced with angled, straight CNTs considering the effects of transverse shear.    

2.4.3. Constitutive Equations for a Piezoelectric Composite Cylindrical Shell 

Reinforced with Randomly Oriented, Straight CNTs 

Constitutive equations are derived in this section for a linear elastic piezocomposite reinforced 

by a large number of dispersed CNTs which are randomly oriented and straight. Layout of an 

infinitely long unbounded piezoelectric composite cylindrical shell reinforced with randomly 

oriented, straight CNTs is shown in Fig. 2.7. The orientation of a straight CNT is determined by 

two Euler angles 𝛼 and 𝛽, as shown in Fig. 2.7.  

 

 

 

 

 

 

 

 

 

 

 

Figure 2.7. Configuration of a piezoelectric composite cylindrical shell reinforced with randomly 

oriented, straight CNTs. 

When CNTs are completely randomly oriented in the matrix, the composite is then isotropic 

and its bulk modulus 𝐾 and shear modulus 𝐺 are derived as [107],  
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𝛽 

𝛼 

𝜃 

𝑅 
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𝐾 = 𝐾𝑚 +
𝑓𝑟(𝛿𝑟 − 3𝐾𝑚𝛼𝑟)

3(𝑓𝑚 + 𝑓𝑟𝛼𝑟)
                                                                                                                              (2.72𝑎) 

𝐺 = 𝐺𝑚 +
𝑓𝑟(𝜂𝑟 − 2𝐺𝑚𝛽𝑟)

2(𝑓𝑚 + 𝑓𝑟𝛽𝑟)
                                                                                                                               (2.72𝑏) 

where 

𝐾𝑚 =
𝐸𝑚

3(1 − 2𝑣𝑚)
                                                                                                                                               (2.73𝑎) 

𝐺𝑚 =
𝐸𝑚

2(1 + 𝑣𝑚)
                                                                                                                                                  (2.73𝑏) 

𝛼𝑟 =
3(𝐾𝑚 + 𝐺𝑚) + 𝑘𝑟 − 𝑙𝑟

3(𝐺𝑚 + 𝑘𝑟)
                                                                                                                            (2.73𝑐) 

𝛽𝑟 =
1

5
{
4𝐺𝑚 + 2𝑘𝑟 + 𝑙𝑟
3(𝐺𝑚 + 𝑘𝑟)

+
4𝐺𝑚

𝐺𝑚 + 𝑝𝑟
+
2[𝐺𝑚(3𝐾𝑚 + 𝐺𝑚) + 𝐺𝑚(3𝐾𝑚 + 7𝐺𝑚)]

𝐺𝑚(3𝐾𝑚 + 𝐺𝑚) +𝑚𝑟(3𝐾𝑚 + 7𝐺𝑚)
}                             (2.73𝑑) 

𝛿𝑟 =
1

3
[𝑛𝑟 + 2𝑙𝑟 +

(2𝑘𝑟 + 𝑙𝑟)(3𝐾𝑚 + 2𝐺𝑚 − 𝑙𝑟)

𝐺𝑚 + 𝑘𝑟
]                                                                                    (2.73𝑒) 

𝜂𝑟 =
1

5
[
2

3
(𝑛𝑟 − 𝑙𝑟) +

8𝐺𝑚𝑝𝑟
𝐺𝑚 + 𝑝𝑟

+
8𝑚𝑟𝐺𝑚(3𝐾𝑚 + 4𝐺𝑚)

3𝐾𝑚(𝑚𝑟 + 𝐺𝑚) + 𝐺𝑚(7𝑚𝑟 + 𝐺𝑚)

+
2(𝑘𝑟 − 𝑙𝑟)(2𝐺𝑚 + 𝑙𝑟)

3(𝐺𝑚 + 𝑘𝑟)
]                                                                                                    (2.73𝑓) 

where 𝐸𝑚, 𝐾𝑚, 𝐺𝑚, and 𝑣𝑚 are Young’s modulus, bulk modulus, shear modulus, and Poisson’s 

ratio of the isotropic matrix, respectively. The effective Young’s modulus 𝐸, Poisson’s ratio 𝑣, 

and shear modulus 𝐺 of the resulting composite are given by, 

𝐸 =
9𝐾𝐺

3𝐾 + 𝐺
                                                                                                                                                          (2.74𝑎) 

𝑣 =
3𝐾 − 2𝐺

6𝐾 + 2𝐺
                                                                                                                                                        (2.74𝑏) 

𝐺 =
𝐸

2(1 + 𝑣)
                                                                                                                                                        (2.74𝑐) 
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Therefore, the stress-strain relations in the cylindrical coordinate system (𝑥, 𝜃, 𝑧 ) for the 

resulting isotropic composite cylindrical shell, which is only function of the effective Young’s 

modulus 𝐸 and Poisson’s ratio 𝑣, will be, 

{
 
 

 
 
𝜎𝜃𝜃
𝜎𝑥𝑥
𝜎𝑧𝑧
𝜏𝑥𝑧
𝜏𝜃𝑧
𝜏𝑥𝜃}

 
 

 
 

=

[
 
 
 
 
 
𝐶𝜃𝜃
𝐶𝜃𝑥
𝐶𝜃𝑧
0
0
0

𝐶𝜃𝑥
𝐶𝑥𝑥
𝐶𝑥𝑧
0
0
0

𝐶𝜃𝑧
𝐶𝑥𝑧
𝐶𝑧𝑧
0
0
0

0
0
0
𝐶𝑟𝑟
0
0

0
0
0
0
𝐶𝑞𝑞
0

0
0
0
0
0
𝐶𝑠𝑠]

 
 
 
 
 

{
 
 

 
 
𝜀𝜃𝜃
𝜀𝑥𝑥
𝜀𝑧𝑧
𝛾𝑥𝑧
𝛾𝜃𝑧
𝛾𝑥𝜃}

 
 

 
 

                                                                                  (2.75) 

where the components of stiffness matrix in the cylindrical coordinate system (𝑥, 𝜃, 𝑧) for a 

composite reinforced with randomly oriented CNTs are obtained as,  

𝐶𝜃𝜃 = 𝐶𝑥𝑥 = 𝐶𝑧𝑧 =
𝐸(1 − 𝑣)

(1 − 2𝑣)(1 + 𝑣)
                                                                                                            (2.76𝑎) 

𝐶𝜃𝑥 = 𝐶𝜃𝑧 = 𝐶𝑥𝑧 =
𝐸𝑣

(1 − 2𝑣)(1 + 𝑣)
                                                                                                             (2.76𝑏) 

𝐶𝑟𝑟 = 𝐶𝑞𝑞 = 𝐶𝑠𝑠 = 𝐺 =
𝐸

2(1 + 𝑣)
                                                                                                                   (2.76𝑐) 

Thus, the general stress-strain relations for a piezoelectric composite cylindrical shell reinforced 

with completely randomly oriented, straight CNTs with the axial polarization in the cylindrical 

coordinate system (𝑥, 𝜃, 𝑧) are given by,  

{
 
 

 
 
𝜎𝜃𝜃
𝜎𝑥𝑥
𝜎𝑧𝑧
𝜏𝑥𝑧
𝜏𝜃𝑧
𝜏𝑥𝜃}

 
 

 
 

=

[
 
 
 
 
 
𝐶𝜃𝜃
𝐶𝜃𝑥
𝐶𝜃𝑧
0
0
0

𝐶𝜃𝑥
𝐶𝑥𝑥
𝐶𝑥𝑧
0
0
0

𝐶𝜃𝑧
𝐶𝑥𝑧
𝐶𝑧𝑧
0
0
0

0
0
0
𝐶𝑟𝑟
0
0

0
0
0
0
𝐶𝑞𝑞
0

0
0
0
0
0
𝐶𝑠𝑠]

 
 
 
 
 

{
 
 

 
 
𝜀𝜃𝜃
𝜀𝑥𝑥
𝜀𝑧𝑧
𝛾𝑥𝑧
𝛾𝜃𝑧
𝛾𝑥𝜃}

 
 

 
 

−

[
 
 
 
 
0
0
0
0
0
𝑒16

𝑒21
𝑒22
𝑒23
0
0
0

0
0
0
𝑒34
0
0 ]
 
 
 
 

{

𝐸𝜃𝜃
𝐸𝑥𝑥
𝐸𝑧𝑧

}                                   (2.77) 

where 𝐶𝑖𝑗(𝑖, 𝑗 = 𝑥, 𝜃, 𝑧, 𝑟, 𝑞, 𝑠)  are given by Eq. (2.76), which are only function of Young’s 

modulus 𝐸 and Poisson’s ratio 𝑣 of the resulting isotropic composite given by Eq. (2.74). 

Based on the first-order shear deformation shell theory, considering the transverse shear stresses 

(𝜏𝑥𝑧 and 𝜏𝜃𝑧) and assuming negligible normal stress in the shell thickness direction (𝜎𝑧𝑧 = 0) in 

Eq. (2.77) yields, 
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𝜀𝑧𝑧 =
𝑒23
𝐶𝑧𝑧

𝐸𝑥𝑥 −
𝐶𝜃𝑧
𝐶𝑧𝑧

𝜀𝜃𝜃 −
𝐶𝑥𝑧
𝐶𝑧𝑧

𝜀𝑥𝑥                                                                                                                      (2.78) 

Substituting Eq. (2.78), into the stress-strain relations, Eq. (2.77), and the electric displacement 

relations, Eq. (2.64b), yields, 

{
 
 

 
 
𝜎𝜃𝜃
𝜎𝑥𝑥
𝜏𝑥𝑧
𝜏𝜃𝑧
𝜏𝑥𝜃}

 
 

 
 

=

[
 
 
 
 
 
𝐶𝜃̅𝜃 𝐶𝜃̅𝑥 0 0 0

𝐶𝜃̅𝑥 𝐶𝑥̅𝑥 0 0 0

0 0 𝐶𝑟̅𝑟 0 0

0 0 0 𝐶𝑞̅𝑞 0

0 0 0 0 𝐶𝑠̅𝑠 ]
 
 
 
 
 

{
 
 

 
 
𝜀𝜃𝜃
𝜀𝑥𝑥
𝛾𝑥𝑧
𝛾𝜃𝑧
𝛾𝑥𝜃}

 
 

 
 

−

[
 
 
 
 
0 𝑒̅21 0
0 𝑒̅22 0
0 0 𝑒̅34
0 0 0
𝑒̅16 0 0]

 
 
 
 

{

𝐸𝜃𝜃
𝐸𝑥𝑥
𝐸𝑧𝑧

}                                                              (2.79𝑎) 

{

𝐷𝜃𝜃
𝐷𝑥𝑥
𝐷𝑧𝑧

} = [
0 0 0 𝑒̅16
𝑒̅21 𝑒̅22 0 0

0 0 𝑒̅34 0
] {

𝜀𝜃𝜃
𝜀𝑥𝑥
𝛾𝑥𝑧
𝛾𝑥𝜃

} + [
∈ 11
0
0

0
∈ 22
0

0
0
∈ 33

] {

𝐸𝜃𝜃
𝐸𝑥𝑥
𝐸𝑧𝑧

}                                                               (2.79𝑏) 

where 𝐶𝜃̅𝜃 , 𝐶𝜃̅𝑥 , 𝐶𝑥̅𝑥 , 𝐶𝑟̅𝑟 , 𝐶𝑞̅𝑞 , 𝐶𝑠̅𝑠 , 𝑒̅16 , 𝑒̅21 , 𝑒̅22 , 𝑒̅34 , and ∈ 11 , ∈ 22 , ∈ 33  for a piezoelectric 

cylindrical composite shell reinforced with randomly oriented, straight CNTs are given in 

Appendix K. Eq. (2.79) provides a derivation of constitutive equations for piezocomposite 

cylindrical shells reinforced with randomly oriented CNTs in which the transverse shear is 

included as well. 

2.4.4. Constitutive Equations for a Piezoelectric Composite Cylindrical Shell 

Reinforced with Agglomerated CNTs 

In this section the constitutive equations in the cylindrical coordinate system (𝑥, 𝜃, 𝑧) are 

derived for a piezocomposite cylindrical shell reinforced with agglomerated CNTs. To obtain the 

desired properties for a CNT-reinforced composite, CNTs must be dispersed uniformly in the 

matrix [107]. However, relative low bending stiffness of CNTs (because of their small diameter 

and low elastic modulus in the radial direction) and their high aspect ratio lead to their 

agglomeration in a polymer matrix [203,204]. Therefore, CNT agglomeration prevents to achieve 

the desired properties for a CNT-reinforced composite where its effect on dynamic responses of 



Chapter 2. Structural Dynamic Modeling of Smart Composite Cylindrical Shells 

101 
 

composite materials reinforced with CNTs should be considered and studied if the agglomeration 

happens at certain location of composite structures.                

The influence of a CNT agglomeration on the mechanical properties of CNT-reinforced 

composites is explained herein based on a two-parameter micromechanics model developed in 

Ref. [107]. The spatial distribution of CNTs in the matrix is non-uniform leading to higher 

concentration of CNTs at some local regions than the average volume fraction in the material. It 

is assumed that the regions with concentrated CNTs have spherical shapes and are considered as 

“inclusions” with different elastic properties from the surrounding material. The total volume 𝑉𝑟 

of CNTs in the Representative Volume Element (RVE) is given by, 

𝑉𝑟 = 𝑉𝑟
𝑖𝑛 + 𝑉𝑟

𝑚                                                                                                                                                        (2.80) 

where 𝑉𝑟
𝑖𝑛  and 𝑉𝑟

𝑚  represent the volumes of CNTs dispersed in the inclusions (concentrated 

regions) and in the matrix, respectively.  

Agglomeration is described by two parameters 𝜇 and 𝜂 as [107],    

𝜇 =
𝑉𝑖𝑛
𝑉
                          𝜂 =

𝑉𝑟
𝑖𝑛

𝑉𝑟
                                                                                                                            (2.81) 

where 𝑉𝑖𝑛 is the volume of sphere inclusions in the RVE, 𝑉 stands for the total volume of the RVE, 

parameter 𝜇 denotes the volume fraction of inclusions with respect to the volume 𝑉 of the RVE, 

and parameter 𝜂 represents the volume ratio of nanotubes that are dispersed in the inclusions and 

the total volume of nanotubes in the RVE. According to Eq. (2.81), when 𝜇 = 1 , CNTs are 

uniformly dispersed in the matrix and decrease in 𝜇 leads to the increase of agglomeration degree. 

The case 𝜂 = 1 indicates that all CNTs are dispersed in the inclusions. When 𝜇 = 𝜂, all CNTs are 

dispersed uniformly in the matrix and the volume fractions of CNTs inside and outside the 

inclusions are exactly the same. Therefore, as shown in Fig. 2.8, based on the spatial distribution 

of CNTs, three cases occur as following: (a) uniformly dispersion of CNTs in the matrix with 𝜇 =
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𝜂 , (b) partial agglomeration of CNTs in the matrix with 𝜇 ≤ 𝜂 , and (c) complete CNT 

agglomeration with 𝜂 = 1 and 𝜇 ≤ 𝜂. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.8. Explanation of CNT agglomeration: (a) uniformly dispersion of CNTs in a piezo-shell 

element with 𝜇 =  𝜂 = 1; (b) example of partial agglomeration of CNTs with 𝜇 ≤ 𝜂; and (c) 

example of complete CNT agglomeration with 𝜂 = 1 and 𝜇 ≤ 𝜂. 

The effective bulk modulus 𝐾𝑖𝑛 and shear modulus 𝐺𝑖𝑛 of the inclusion, and the effective bulk 

modulus 𝐾𝑜𝑢𝑡 and shear modulus 𝐺𝑜𝑢𝑡 of the equivalent matrix outside the inclusion are given by 

[107],    

𝐾𝑖𝑛 = 𝐾𝑚 +
𝑓𝑟𝜂(𝛿𝑟 − 3𝐾𝑚𝛼𝑟)

3(𝜇 − 𝑓𝑟𝜂 + 𝑓𝑟𝜂𝛼𝑟)
                                                                                                                    (2.82𝑎) 

𝐾𝑜𝑢𝑡 = 𝐾𝑚 +
𝑓𝑟(1 − 𝜂)(𝛿𝑟 − 3𝐾𝑚𝛼𝑟)

3[1 − 𝜇 − 𝑓𝑟(1 − 𝜂) + 𝑓𝑟(1 − 𝜂)𝛼𝑟]
                                                                                    (2.82𝑏) 

𝐺𝑖𝑛 = 𝐺𝑚 +
𝑓𝑟𝜂(𝜂𝑟 − 2𝐺𝑚𝛽𝑟)

2(𝜇 − 𝑓𝑟𝜂 + 𝑓𝑟𝜂𝛽𝑟)
                                                                                                                     (2.82𝑐) 

(a) 𝜇 = 1, 𝜂 = 1 

CNT particle 

(b) 𝜇 ≤ 𝜂 

Inclusion 

Piezoelectric cylindrical shell 

(Matrix) 

(c) 𝜂 = 1,  𝜇 ≤ 𝜂 
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𝐺𝑜𝑢𝑡 = 𝐺𝑚 +
𝑓𝑟(1 − 𝜂)(𝜂𝑟 − 2𝐺𝑚𝛽𝑟)

2[1 − 𝜇 − 𝑓𝑟(1 − 𝜂) + 𝑓𝑟(1 − 𝜂)𝛽𝑟]
                                                                                    (2.82𝑑) 

The effective bulk modulus 𝐾 and the effective shear modulus 𝐺 of the resulting composite are 

derived from the Mori-Tanaka micromechanics model as [107],  

𝐾 = 𝐾𝑜𝑢𝑡 [1 +
𝜇 (

𝐾𝑖𝑛
𝐾𝑜𝑢𝑡

− 1)

1 + 𝛼𝑐(1 − 𝜇) (
𝐾𝑖𝑛
𝐾𝑜𝑢𝑡

− 1)
]                                                                                                  (2.83𝑎) 

𝐺 = 𝐺𝑜𝑢𝑡 [1 +
𝜇 (

𝐺𝑖𝑛
𝐺𝑜𝑢𝑡

− 1)

1 + 𝛽𝑐(1 − 𝜇) (
𝐺𝑖𝑛
𝐺𝑜𝑢𝑡

− 1)
]                                                                                                   (2.83𝑏) 

where 

𝛼𝑐 =
1 + 𝑣𝑜𝑢𝑡

3(1 − 𝑣𝑜𝑢𝑡)
                                                                                                                                                (2.84𝑎) 

𝛽𝑐 =
8 − 10𝑣𝑜𝑢𝑡
15(1 − 𝑣𝑜𝑢𝑡)

                                                                                                                                              (2.84𝑏) 

where 𝑣𝑜𝑢𝑡 is given by, 

𝑣𝑜𝑢𝑡 =
3𝐾𝑜𝑢𝑡−2𝐺𝑜𝑢𝑡

2(3𝐾𝑜𝑢𝑡+𝐺𝑜𝑢𝑡)
                                                                                                                                              (2.85)  

Finally, the effective Young’s modulus 𝐸 and Poisson’s ratio 𝑣 of the resulting composite with 

the effects of CNT agglomeration are defined by substituting Eq. (2.83) in to Eq. (2.74). Other 

procedures to derive the constitutive equations for a CNT-reinforced piezocomposite cylindrical 

shell affected by CNT agglomeration are the same as those for a piezocomposite cylindrical shell 

reinforced with randomly oriented CNTs as shown in Eqs. (2.75) – (2.79).  
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2.4.5. Force and Moment Resultants for Piezoelectric Composite Cylindrical 

Shells Reinforced with Angled and Randomly Oriented (or 

Agglomerated) CNTs 

The in-plane force resultants (𝑁𝑥𝑥 , 𝑁𝜃𝜃 , 𝑁𝑥𝜃 ), the bending and twisting moment resultants 

(𝑀𝑥𝑥,𝑀𝜃𝜃, 𝑀𝑥𝜃), and the transverse shear force resultants (𝑉𝑥𝑧, 𝑉𝜃𝑧) for a piezoelectric composite 

cylindrical shell reinforced with angled, straight CNTs are obtained by substituting the 

corresponding stresses, Eq. (2.71a), into Eq. (2.65) and integrating across the thickness of the 

piezoelectric composite shell as follows, 

𝑁𝑥𝑥 = 𝐴1
𝜕𝑢0
𝜕𝑥

+ 𝐴2 (
𝜕𝑢0
𝑅𝜕𝜃

+
𝜕𝑣0
𝜕𝑥

) +
𝐴3
𝑅
(𝑤0 +

𝜕𝑣0
𝜕𝜃

) + 𝐴4
𝜕𝜑

𝜕𝑥
                                                                (2.86𝑎) 

𝑁𝜃𝜃 = 𝐵1
𝜕𝑢0
𝜕𝑥

+ 𝐵2 (
𝜕𝑢0
𝑅𝜕𝜃

+
𝜕𝑣0
𝜕𝑥

) +
𝐵3
𝑅
(𝑤0 +

𝜕𝑣0
𝜕𝜃

) + 𝐵4
𝜕𝜑

𝜕𝑥
                                                                 (2.86𝑏) 

𝑁𝑥𝜃 = 𝐶1
𝜕𝑢0
𝜕𝑥

+ 𝐶2 (
𝜕𝑢0
𝑅𝜕𝜃

+
𝜕𝑣0
𝜕𝑥

) +
𝐶3
𝑅
(𝑤0 +

𝜕𝑣0
𝜕𝜃

) + 𝐶4
𝜕𝜑

𝜕𝑥
+ 𝐶5

𝜕𝜑

𝑅𝜕𝜃
                                                (2.86𝑐) 

𝑀𝑥𝑥 = 𝐷1
𝜕𝛼𝑥
𝜕𝑥

+ 𝐷2
𝜕𝛼𝜃
𝑅𝜕𝜃

+ 𝐷3 (
𝜕𝛼𝜃
𝜕𝑥

+
𝜕𝛼𝑥
𝑅𝜕𝜃

)                                                                                              (2.86𝑑) 

𝑀𝜃𝜃 = 𝐸1
𝜕𝛼𝑥
𝜕𝑥

+ 𝐸2
𝜕𝛼𝜃
𝑅𝜕𝜃

+ 𝐸3 (
𝜕𝛼𝜃
𝜕𝑥

+
𝜕𝛼𝑥
𝑅𝜕𝜃

)                                                                                               (2.86𝑒) 

𝑀𝑥𝜃 = 𝐹1
𝜕𝛼𝑥
𝜕𝑥

+ 𝐹2
𝜕𝛼𝜃
𝑅𝜕𝜃

+ 𝐹3 (
𝜕𝛼𝜃
𝜕𝑥

+
𝜕𝛼𝑥
𝑅𝜕𝜃

)                                                                                                (2.86𝑓) 

𝑉𝑥𝑧 = 𝐺1 (
𝜕𝑤0

𝜕𝑥
+ 𝛼𝑥) + 𝐺2 (

𝜕𝑤0

𝑅𝜕𝜃
−

𝑣0

𝑅
+ 𝛼𝜃)                                                                                                  (2.86g)       

𝑉𝜃𝑧 = 𝐻1 (
𝜕𝑤0

𝜕𝑥
+ 𝛼𝑥) + 𝐻2 (

𝜕𝑤0

𝑅𝜕𝜃
−
𝑣0
𝑅
+ 𝛼𝜃)                                                                                            (2.86ℎ) 

where expression of coefficients 𝐴𝑖 (𝑖 = 1, … ,4) , 𝐵𝑖 (𝑖 = 1,… ,4) , 𝐶𝑖 (𝑖 = 1,… ,5) , 𝐷𝑖 (𝑖 =

1,2,3), 𝐸𝑖 (𝑖 = 1,2,3), 𝐹𝑖  (𝑖 = 1,2,3), 𝐺𝑖  (𝑖 = 1,2), and 𝐻𝑖  (𝑖 = 1,2) are given in Appendix L. 

The force and moment resultants for a piezoelectric composite cylindrical shell reinforced with 

randomly oriented (or agglomerated) straight CNTs are obtained by substituting the corresponding 
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stresses, Eq. (2.79a), into Eq. (2.65) and integrating across the thickness of the piezoelectric 

composite shell as follows, 

𝑁𝑥𝑥 = 𝐴́1
𝜕𝑢0
𝜕𝑥

+
𝐴́2
𝑅
(𝑤0 +

𝜕𝑣0
𝜕𝜃

) + 𝐴́3
𝜕𝜑

𝜕𝑥
                                                                                                     (2.87𝑎) 

𝑁𝜃𝜃 = 𝐵́1
𝜕𝑢0
𝜕𝑥

+
𝐵́2
𝑅
(𝑤0 +

𝜕𝑣0
𝜕𝜃

) + 𝐵́3
𝜕𝜑

𝜕𝑥
                                                                                                     (2.87𝑏) 

𝑁𝑥𝜃 = 𝐶́1 (
𝜕𝑢0
𝑅𝜕𝜃

+
𝜕𝑣0
𝜕𝑥

) + 𝐶́2
𝜕𝜑

𝑅𝜕𝜃
                                                                                                                   (2.87𝑐) 

𝑀𝑥𝑥 = 𝐷́1
𝜕𝛼𝑥
𝜕𝑥

+ 𝐷́2
𝜕𝛼𝜃
𝑅𝜕𝜃

                                                                                                                                   (2.87𝑑) 

𝑀𝜃𝜃 = 𝐸́1
𝜕𝛼𝑥
𝜕𝑥

+ 𝐸́2
𝜕𝛼𝜃
𝑅𝜕𝜃

                                                                                                                                   (2.87𝑒) 

𝑀𝑥𝜃 = 𝐹́1 (
𝜕𝛼𝜃
𝜕𝑥

+
𝜕𝛼𝑥
𝑅𝜕𝜃

)                                                                                                                                    (2.87𝑓) 

𝑉𝑥𝑧 = 𝐺́1 (
𝜕𝑤0

𝜕𝑥
+ 𝛼𝑥)                                                                                                                                           (2.87g)       

𝑉𝜃𝑧 = 𝐻́1 (
𝜕𝑤0

𝑅𝜕𝜃
−
𝑣0
𝑅
+ 𝛼𝜃)                                                                                                                              (2.87ℎ) 

where expression of coefficients 𝐴́𝑖 (𝑖 = 1,2,3), 𝐵́𝑖 (𝑖 = 1,2,3), 𝐶́𝑖(𝑖 = 1,2), 𝐷́𝑖(𝑖 = 1,2),

𝐸́𝑖(𝑖 = 1,2), 𝐹́𝑖  (𝑖 = 1), 𝐺́𝑖 (𝑖 = 1), and 𝐻́𝑖(𝑖 = 1) are given in Appendix L. 

2.4.6.  Equations of Motion for Piezoelectric Composite Cylindrical Shells 

Reinforced with Angled and Randomly Oriented (or Agglomerated) 

CNTs 

The derivation of equations of motion based on the first-order shear deformation shell theory 

has been explained in details in section 2.3.2.1 and are given by Eq. (2.41). The mass inertias 

𝐼𝑖 (𝑖 = 0,1,2) required for the motion equations for a piezoelectric cylindrical shell with thickness 

ℎ are given by, 
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𝐼𝑖 = ∫ 𝜌𝑧𝑖 𝑑𝑧

ℎ
2

−
ℎ
2

                 (𝑖 = 0,1,2)                                                                                                                  (2.88) 

where 𝜌 is the mass density of a piezoelectric composite cylindrical shell reinforced with CNTs, 

which is given by, 

𝜌 = 𝜌𝑚𝑓𝑚 + 𝜌𝑟𝑓𝑟                                                                                                                                                    (2.89) 

where 𝜌𝑚 and 𝜌𝑟 are the mass densities of the matrix phase, PZT-4, and the reinforcement phase, 

CNT, respectively.  

Substituting the force and moment resultants for a piezoelectric composite cylindrical shell 

reinforced with angled and randomly oriented (or agglomerated) straight CNTs, Eqs. (2.86) and 

(2.87), into Eq. (2.41) yields the equations of motion, respectively, for angled and randomly (or 

agglomerated) distributions of CNTs in a piezoelectric composite cylindrical shell in terms of 𝑢0, 

𝑣0, 𝑤0, 𝛼𝑥, 𝛼𝜃, and 𝜑. 

Replacing the strain-displacement relations based on the first-order shear deformation shell 

theory, Eq. (2.9), and the electric field intensities, Eq. (2.18), into the electric displacements for a 

piezoelectric composite cylindrical shell reinforced with angled and randomly oriented (or 

agglomerated) CNTs, Eqs. (2.71b) and Eq. (2.79b), and satisfying the Maxwell equation 

∫ ∇𝐷𝑑𝑧 = 0
ℎ

2

−
ℎ

2

, yields the following governing equations, respectively, for angled and randomly 

(or agglomerated)  distributions of CNTs in a piezoelectric cylindrical shell, 

𝑒̅22
𝜕2𝑢0
𝜕𝑥2

+ 𝑒̅16 (
𝜕2𝑢0
𝑅2𝜕𝜃2

+
𝜕2𝑣0
𝑅𝜕𝑥𝜕𝜃

) + 𝑒̅23 (
𝜕2𝑢0
𝑅𝜕𝑥𝜕𝜃

+
𝜕2𝑣0
𝜕𝑥2

) +
𝑒̅21
𝑅

(
𝜕𝑤0

𝜕𝑥
+
𝜕2𝑣0
𝜕𝑥𝜕𝜃

) −∈ 22
𝜕2𝜑

𝜕𝑥2

−∈ 11
𝜕2𝜑

𝑅2𝜕𝜃2
= 0                                                                                                                      (2.90) 

𝑒̅22
𝜕2𝑢0
𝜕𝑥2

+ 𝑒̅16 (
𝜕2𝑢0
𝑅2𝜕𝜃2

+
𝜕2𝑣0
𝑅𝜕𝑥𝜕𝜃

) +
𝑒̅21
𝑅

(
𝜕𝑤0

𝜕𝑥
+
𝜕2𝑣0
𝜕𝑥𝜕𝜃

) −∈ 22
𝜕2𝜑

𝜕𝑥2
−∈ 11

𝜕2𝜑

𝑅2𝜕𝜃2
= 0                     (2.91) 



Chapter 2. Structural Dynamic Modeling of Smart Composite Cylindrical Shells 

107 
 

Eq. (2.41), in view of Eq. (2.86), and Eq. (2.90), represent the equations of motion when angled 

CNTs are dispersed in a piezoelectric cylindrical shell, and Eq. (2.41), in view of Eq. (2.87), and 

Eq. (2.91) express the equations of motion in the case of randomly (or agglomerated) distribution 

of CNTs in a piezoelectric cylindrical shell.  

2.4.7. Solution Method 

The shell displacements (𝑢0, 𝑣0, and 𝑤0 ), the rotations of shell cross-section normal to 𝑥 -axis 

and 𝜃-axis or shear effects (𝛼𝑥 and 𝛼𝜃), and the electric potential (𝜑) for wave propagation are 

given by Eq. (2.54). Substituting Eq. (2.54) into the  equations of motion, obtained using the first-

order shear deformation shell theory in the previous section for piezoelectric composite cylindrical 

shells reinforced with angled and randomly oriented (or agglomerated) CNTs, leads to a set of 

homogenous equations as obtained in Eq. (2.55). The components of characteristics matrix 

[𝐿𝑖𝑗] 6×6(𝑖, 𝑗 = 1,… ,6) for piezoelectric composite cylindrical shells reinforced with angled and 

randomly oriented (agglomerated), straight CNTs are given in Appendix M. The wave phase 

velocities 𝑐 for different wave modes are calculated based on the Bisection method presented in 

section 2.3.4. 

The PZT-4 and the SWCNT (10, 10) are chosen as the matrix and the reinforcement phases, 

respectively, where their material properties are listed in Tables 2.2 and 2.3, respectively. The non-

dimensional wave phase velocity (v =
𝑐

𝑐𝑡
) is used for analysis of wave propagation characteristics 

as illustrated in section 2.3.4, where the piezoelectric shell thickness is only considered in Eq. 

(2.59), and the torsional wave phase velocity 𝑐𝑡 is employed as,   

𝑐𝑡 = √
𝐺𝑚
𝜌𝑚

                                                                                                                                                                 (2.92) 
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2.5. Wave Propagation Modeling in Smart Laminated CNT-

Reinforced Composite Cylindrical Shells in Hygrothermal 

Environments  

In this section, an analytical model is developed for wave propagation in smart laminated CNT-

reinforced composite cylindrical shells considering the effects of hygrothermal environmental 

conditions. For this purpose, an infinitely long unbounded laminated CNT-reinforced composite 

cylindrical shell coated with the piezoelectric layers at the top and bottom surfaces is considered. 

Axial polarization is also assumed for the piezoelectric layers. First of all, we need to derive the 

hygrothermal strains when a temperature/moisture change occurs in the structure. 

2.5.1. Coefficients of Thermal and Moisture Expansion of a Unidirectional 

Lamina  

The hygrothermal behavior of a unidirectional lamina is fully determined in terms of two 

principal coefficients of thermal expansion (CTEs), 𝛤11 and 𝛤22, and two principal coefficients of 

moisture expansion (CMEs), 𝛶11 and 𝛶22. These coefficients can be related to the geometric and 

material properties of the constituents. 

 The expressions for the principle longitudinal coefficient of thermal expansion (CTE), 𝛤11, and 

the principle transverse coefficient of thermal expansion (CTE), 𝛤22 , for a fiber-reinforced 

unidirectional composite with orthotropic reinforcement phase (fiber) and isotropic matrix phase 

are given by [6], 

𝛤11 =
𝐸11𝑟𝛤11𝑟𝑓𝑟+𝐸𝑚𝛤𝑚𝑓𝑚

𝐸11
                                                                                                                                        (2.93)   

𝛤22 = 𝛤22𝑟𝑓𝑟 [1 + 𝑣12𝑟
𝛤11𝑟
𝛤22𝑟

] + (1 + 𝑣𝑚)𝛤𝑚𝑓𝑚 − 𝑣12𝛤11                                                                               (2.94) 
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where 

𝐸11 = 𝐸11𝑟𝑓𝑟 + 𝐸𝑚𝑓𝑚                                                                                                                                            (2.95) 

𝑣12 = 𝑣12𝑟𝑓𝑟 + 𝑣𝑚𝑓𝑚                                                                                                                                            (2.96) 

and 𝑓𝑟  and 𝑓𝑚  stand for the volume fraction for the reinforcement and the matrix phases, 

respectively, 𝐸11𝑟 is the longitudinal modulus of the reinforcing phase (fiber), 𝐸𝑚 is the elastic 

modulus of the matrix phase, 𝐸11 is the longitudinal composite modulus as obtained by the rule of 

mixture, 𝑣12𝑟 and 𝑣𝑚 are Poisson’s ratio of the reinforcement and the matrix phases, respectively, 

𝑣12 is the major Poisson’s ratio of composite lamina as obtained by the rule of mixture, 𝛤11𝑟 and 

𝛤22𝑟 are the longitudinal and the transverse CTE of the reinforcement phase, and 𝛤𝑚 is the CTE of 

the matrix phase. The longitudinal modulus 𝐸11 and the major Poisson’s ratio 𝑣12 for a polymer 

composite reinforced with CNTs based on the Mori-Tanaka micromechanics model are given in 

Eq. (2.111).    

Micromechanical relations for the coefficient of moisture expansion are entirely analogous. 

However, based on the fact that in most cases the reinforcing fiber does not absorb moisture, its 

principle CMEs are zero (𝛶11𝑟 = 𝛶22𝑟 = 0 ). The expressions for the principle longitudinal 

coefficient of moisture expansion (CME), 𝛶11, and the principle transverse coefficient of moisture 

expansion (CME), 𝛶22 , for a fiber-reinforced unidirectional composite with orthotropic 

reinforcement phase (fiber) and isotropic matrix phase are given by [6], 

𝛶11 = 𝛶𝑚
𝐸𝑚𝑓𝑚
𝐸11

                                                                                                                                                       (2.97) 

𝛶22 = 𝛶𝑚
𝑓𝑚
𝐸11

[𝐸11 + 𝑓𝑟(𝑣𝑚𝐸11𝑟 − 𝑣12𝑟𝐸𝑚)]                                                                                                   (2.98) 

where 𝛶𝑚 is the CME of the matrix phase. 
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Once the principal CTEs, 𝛤11and 𝛤22, and the principal CMEs, 𝛶11and 𝛶22 are known (𝛤12 =

𝛶12 = 0), the coefficients referred to any system of coordinates (𝑥, 𝜃) can be obtained by the 

following transformation relations as, 

{

𝛤𝑥𝑥
𝛤𝜃𝜃
𝛤𝑥𝜃

} = [
𝑚́2 𝑛́2 −2𝑚́𝑛́
𝑛́2 𝑚́2 2𝑚́𝑛́
2𝑚́𝑛́ −2𝑚́𝑛́ 2(𝑚́2 − 𝑛́2)

] {
𝛤11
𝛤22
0
}                                                                                                 (2.99) 

{

𝛶𝑥𝑥
𝛶𝜃𝜃
𝛶𝑥𝜃

} = [
𝑚́2 𝑛́2 −2𝑚́𝑛́
𝑛́2 𝑚́2 2𝑚́𝑛́
2𝑚́𝑛́ −2𝑚́𝑛́ 2(𝑚́2 − 𝑛́2)

] {
𝛶11
𝛶22
0
}                                                                                              (2.100) 

where 

𝑚́ = 𝑐𝑜𝑠𝛽,             𝑛́ = 𝑠𝑖𝑛𝛽                                                                                                                               (2.101) 

and  𝛤𝑥𝑥, 𝛤𝜃𝜃, and 𝛤𝑥𝜃 are the transformed lamina CTEs , and 𝛶𝑥𝑥, 𝛶𝜃𝜃, and 𝛶𝑥𝜃 are the transformed 

lamina CMEs  in the cylindrical coordinate system (𝑥, 𝜃).  

2.5.2. Hygrothermal Strains in a Unidirectional Lamina    

When a lamina is subjected to a uniform change in temperature, Θ, and change in moisture 

concentration, Λ, from its reference hygrothermal state, it undergoes a hygrothermal deformation. 

The hygrothermal strains referred to the principle material axes of the lamina (1,2) are given by 

[6],   

𝑒11
(1)

= 𝛤11Θ+ 𝛶11Λ                                                                                                                                            (2.102a) 

𝑒22
(1)

= 𝛤22Θ+ 𝛶22Λ                                                                                                                                           (2.102b) 

𝑒12
(1)

= 0                                                                                                                                                                (2.102𝑐) 

The transformed hygrothermal strains referred to the 𝑥 − 𝜃 coordinate system are obtained as,  

{

𝑒𝑥𝑥
(1)

𝑒𝜃𝜃
(1)

𝑒𝑥𝜃
(1)

} = [
𝑚́2 𝑛́2 −2𝑚́𝑛́
𝑛́2 𝑚́2 2𝑚́𝑛́
2𝑚́𝑛́ −2𝑚́𝑛́ 2(𝑚́2 − 𝑛́2)

] {

𝑒11
(1)

𝑒22
(1)

0

}                                                                                        (2.103) 
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Substituting 𝑒11
(1)

 and 𝑒22
(1)

 from Eq. (2.102) into Eq. (2.103) and in view of relations in Eqs. 

(2.99) and (2.100), we obtain,    

{

𝑒𝑥𝑥
(1)

𝑒𝜃𝜃
(1)

𝑒𝑥𝜃
(1)

} = {

𝛤𝑥𝑥
𝛤𝜃𝜃
𝛤𝑥𝜃

} Θ + {

𝛶𝑥𝑥
𝛶𝜃𝜃
𝛶𝑥𝜃

} 𝛬                                                                                                                              (2.104) 

2.5.3. Hygrothermoelastic Load-Deformation Relations 

The hygrothermal effects are considered as the resultant forces due to the temperature/moisture 

change and by substituting these forces in the dynamic governing equations. When a 

multidirectional laminate is subjected to mechanical and hygrothermal loadings, a lamina (layer) 

𝐾 within the laminate is under a state of stress [𝜎]𝑥,𝜃
𝐾  and strain [𝜀]𝑥,𝜃

𝐾 . The in-plane stress relations 

of lamina 𝐾 within the laminate are given by [6],  

{

𝜎𝑥𝑥
(1)

𝜎𝜃𝜃
(1)

𝜏𝑥𝜃
(1)

}

𝐾

= [

 𝑄𝑥𝑥    𝑄𝑥𝜃     𝑄𝑥𝑠 
𝑄𝜃𝑥    𝑄𝜃𝜃    𝑄𝜃𝑠
𝑄𝑠𝑥    𝑄𝑠𝜃    𝑄𝑠𝑠

]

𝐾

[{

𝜀𝑥𝑥
(1)

𝜀𝜃𝜃
(1)

𝛾𝑥𝜃
(1)

} − {

𝑒𝑥𝑥
(1)

𝑒𝜃𝜃
(1)

𝑒𝑥𝜃
(1)

}]

𝐾

                                                                              (2.105) 

where [𝑄𝑖𝑗]𝐾 (𝑖, 𝑗 = 𝑥, 𝜃, 𝑠) is the transformed reduced stiffness matrix for each lamina (layer) in 

𝑥 − 𝜃 direction as a function of the principal stiffness matrix [𝑄𝑖𝑗]𝐾 (𝑖, 𝑗 = 1, 2, 6) of the lamina 

reinforced with fibers, where their components are given in Appendix A. As explained before, in 

the contracted notation used here, the subscript 𝑠 in the above equations corresponds to shear stress 

and strain components referred to the 𝑥 − 𝜃 system of coordinates. Substituting the mechanical 

strains, Eq. (2.7), and hygrothermal strains, Eq. (2.104) into Eq. (2.105) yields,    

{

𝜎𝑥𝑥
(1)

𝜎𝜃𝜃
(1)

𝜏𝑥𝜃
(1)

}

𝐾

= [

 𝑄𝑥𝑥    𝑄𝑥𝜃     𝑄𝑥𝑠 
𝑄𝜃𝑥    𝑄𝜃𝜃    𝑄𝜃𝑠
𝑄𝑠𝑥    𝑄𝑠𝜃    𝑄𝑠𝑠

]

𝐾

[{

𝜀𝑥𝑥
0

 𝜀𝜃𝜃
0

𝛾𝑥𝜃
0

} + 𝑧 {

Ƙ𝑥𝑥
 Ƙ𝜃𝜃
Ƙ𝑥𝜃

} − {

𝛤𝑥𝑥
𝛤𝜃𝜃
𝛤𝑥𝜃

} Θ − {

𝛶𝑥𝑥
𝛶𝜃𝜃
𝛶𝑥𝜃

} 𝛬]

𝐾

                                       (2.106) 

or, in brief,  
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[𝜎(1)]
𝑥,𝜃

𝐾
= [𝑄]𝑥,𝜃

𝐾 [𝜀0]𝑥,𝜃 + [𝑄]𝑥,𝜃
𝐾 [Ƙ]𝑥,𝜃𝑧 − [𝑄]𝑥,𝜃

𝐾 [𝛤]𝑥,𝜃
𝐾 𝛩 − [𝑄]𝑥,𝜃

𝐾 [𝛶]𝑥,𝜃
𝐾 𝛬                                       (2.107) 

Eq. (2.106) is the in-plane stress-strain relations due to the mechanical and hygrothermal 

loadings for an individual lamina (layer) 𝐾 whose midplane is at a distance 𝑧 from the reference 

plane. The transverse shear stress-strain relations for an individual lamina 𝐾, which are decoupled 

from the in-plane stress and strain terms are given by [6], 

{
𝜏𝜃𝑧
(1)

𝜏𝑥𝑧
(1)
}

𝐾

= [
𝐶𝑞𝑞 𝐶𝑞𝑟
𝐶𝑟𝑞 𝐶𝑟𝑟

]
𝐾

{
𝛾𝜃𝑧
(1)

𝛾𝑥𝑧
(1)
}

𝐾

                                                                                                                        (2.108) 

where 𝐶𝑞𝑞, 𝐶𝑞𝑟, 𝐶𝑟𝑞, and  𝐶𝑟𝑟 are given in Appendix A, and 𝛾𝜃𝑧
(1)

 and 𝛾𝑥𝑧
(1)

 are given by Eq. (2.9). 

The in-plane force and moment resultants and the transverse shear (out-of-plane) force 

resultants of a laminated fiber-reinforced composite cylindrical shell are obtained by integrating 

the corresponding stresses across the shell thickness as shown in Eq. (2.14). 

Substituting Eqs. (2.106) and (2.108) for the layer in-plane and out-of-plane (transverse shear) 

stresses, respectively, into Eq. (2.14) and taking integration across the shell thickness yields the 

in-plane force and moment resultants and the transverse shear (out-of-plane) force resultants as, 

{

𝑁𝑥𝑥
(1)

𝑁𝜃𝜃
(1)

𝑁𝑥𝜃
(1)

} = [

 𝐴𝑥𝑥    𝐴𝑥𝜃     𝐴𝑥𝑠 
𝐴𝜃𝑥    𝐴𝜃𝜃    𝐴𝜃𝑠
𝐴𝑠𝑥    𝐴𝑠𝜃    𝐴𝑠𝑠

] {

𝜀𝑥𝑥
0

 𝜀𝜃𝜃
0

𝛾𝑥𝜃
0

} + [

 𝐵𝑥𝑥     𝐵𝑥𝜃     𝐵𝑥𝑠 
𝐵𝜃𝑥    𝐵𝜃𝜃    𝐵𝜃𝑠
𝐵𝑠𝑥     𝐵𝑠𝜃     𝐵𝑠𝑠

] {

Ƙ𝑥𝑥
 Ƙ𝜃𝜃
Ƙ𝑥𝜃

} − {

𝐸𝑥𝑥
 𝐸𝜃𝜃
𝐸𝑥𝜃

}𝛩 − {

𝐹𝑥𝑥
 𝐹𝜃𝜃
𝐹𝑥𝜃

}𝛬            (2.109𝑎) 

{

𝑀𝑥𝑥
(1)

𝑀𝜃𝜃
(1)

𝑀𝑥𝜃
(1)

} = [

 𝐵𝑥𝑥     𝐵𝑥𝜃     𝐵𝑥𝑠 
𝐵𝜃𝑥    𝐵𝜃𝜃     𝐵𝜃𝑠
𝐵𝑠𝑥     𝐵𝑠𝜃      𝐵𝑠𝑠

] {

𝜀𝑥𝑥
0

 𝜀𝜃𝜃
0

𝛾𝑥𝜃
0

} + [

 𝐷𝑥𝑥    𝐷𝑥𝜃     𝐷𝑥𝑠 
𝐷𝜃𝑥   𝐷𝜃𝜃    𝐷𝜃𝑠
𝐷𝑠𝑥     𝐷𝑠𝜃     𝐷𝑠𝑠

] {

Ƙ𝑥𝑥
 Ƙ𝜃𝜃
Ƙ𝑥𝜃

} − {

𝐺𝑥𝑥
 𝐺𝜃𝜃
𝐺𝑥𝜃

}𝛩 − {

𝐻𝑥𝑥

 𝐻𝜃𝜃

𝐻𝑥𝜃

} 𝛬          (2.109𝑏) 

{
𝑉𝜃𝑧
(1)

𝑉𝑥𝑧
(1)
} = 𝐾𝑠 [

𝐴́𝑞𝑞 𝐴́𝑞𝑟

𝐴́𝑟𝑞 𝐴́𝑟𝑟
] {
𝛾𝜃𝑧
(1)

𝛾𝑥𝑧
(1)
}                                                                                                                      (2.109𝑐) 

where [𝐴𝑖𝑗], [𝐵𝑖𝑗], [𝐷𝑖𝑗], and [𝐴́𝑖𝑗] are given by Eq. (2.16) and {𝐸𝑖𝑗}, {𝐹𝑖𝑗}, {𝐺𝑖𝑗}, and {𝐻𝑖𝑗} are 

given by,  
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{𝐸𝑖𝑗} = ∑ [𝑄𝑖𝑗]𝐾
{𝛤𝑖𝑗}𝐾

(𝑧𝐾 − 𝑧𝐾−1)

𝑁

𝐾=1

                                                                                                         (2.110𝑎) 

{𝐹𝑖𝑗} = ∑ [𝑄𝑖𝑗]𝐾
{𝛶𝑖𝑗}𝐾

(𝑧𝐾 − 𝑧𝐾−1)

𝑁

𝐾=1

                                                                                                         (2.110𝑏) 

{𝐺𝑖𝑗} =
1

2
∑ [𝑄𝑖𝑗]𝐾

{𝛤𝑖𝑗}𝐾
(𝑧𝐾

2 − 𝑧𝐾−1
2 )

𝑁

𝐾=1

                                                                                                      (2.110𝑐) 

{𝐻𝑖𝑗} =
1

2
∑ [𝑄𝑖𝑗]𝐾

{𝛶𝑖𝑗}𝐾
(𝑧𝐾

2 − 𝑧𝐾−1
2 )

𝑁

𝐾=1

                                                                                                     (2.110𝑑) 

Eq. (2.109) is the stress-strain relations when there is hygrothermal loading as well as 

mechanical loading in a laminated composite cylindrical shell.  

2.5.4. Constitutive Equations for a CNT-Reinforced Unidirectional Composite  

In section 2.4.2, the estimation of effective material properties based on the Mori-Tanaka model 

has been explained for a linear elastic polymer matrix reinforced with angled, straight CNTs. 

Therefore, the components of stiffness matrix in the principle coordinate system (1,2,3), 𝐶𝑖𝑗  (𝑖, 𝑗 =

1,2, … ,6)  for a composite cylindrical shell reinforced with angled, straight CNTs, which are 

required in the calculation of components of principal stiffness matrix [𝑄𝑖𝑗]𝑘 (𝑖, 𝑗 = 1,2,6) (see 

Appendix A), are given by Eq. (2.68).  

The effective elastic moduli 𝐸11  and 𝐸22 , respectively, parallel and normal to the CNT 

orientation, the effective Poisson’s ratio 𝑣12 , and the effective shear moduli for a polymer 

composite reinforced by straight CNTs are given by [106,107], 

𝐸11 = 𝑛 −
𝑙2

𝑘
 ,          𝐸22 = 

4𝑚(𝑘𝑛 − 𝑙2)

𝑘𝑛 − 𝑙2 +𝑚𝑛
 ,          𝑣12 =

1

2𝑘
 ,         𝐺12 = 𝐺13 = 𝑝,        𝐺23 = 𝑚      (2.111) 
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2.5.5. Constitutive Equations for Piezoelectric Layers Bonded to the Top and 

Bottom Surfaces of the Host Composite Shell  

The poling direction of the piezoelectric layers is assumed to be in the axial 𝑥- direction of the 

shell. The constitutive relations for a piezoelectric layer with the axial polarization in the 

cylindrical coordinate system (𝑥, 𝜃, 𝑧) based on the first-order shear deformation shell theory are 

given by Eq. (2.23).  

The in-plane force and moment resultants and the transverse shear force resultants 

corresponding to the piezoelectric layers bonded to the top and bottom surfaces of a laminated 

composite cylindrical shell are obtained by integrating the corresponding stresses, Eq. (2.23a), 

across the thickness of the piezoelectric layers, i.e.   

{

𝑁𝑥𝑥
(2)

𝑁𝜃𝜃
(2)

𝑁𝑥𝜃
(2)

} = ∫ {

𝜎𝑥𝑥
(2)

𝜎𝜃𝜃
(2)

𝜏𝑥𝜃
(2)

}
−
ℎ
2

−
ℎ
2
−ℎ𝑝

𝑑𝑧 + ∫ {

𝜎𝑥𝑥
(2)

𝜎𝜃𝜃
(2)

𝜏𝑥𝜃
(2)

}

ℎ
2
+ℎ𝑝

ℎ
2

𝑑𝑧                                                                                    (2.112𝑎) 

{

𝑀𝑥𝑥
(2)

𝑀𝜃𝜃
(2)

𝑀𝑥𝜃
(2)

} = ∫ {

𝜎𝑥𝑥
(2)

𝜎𝜃𝜃
(2)

𝜏𝑥𝜃
(2)

}𝑧
−
ℎ
2

−
ℎ
2
−ℎ𝑝

𝑑𝑧 +∫ {

𝜎𝑥𝑥
(2)

𝜎𝜃𝜃
(2)

𝜏𝑥𝜃
(2)

}

ℎ
2
+ℎ𝑝

ℎ
2

𝑧𝑑𝑧                                                                             (2.112𝑏)  

{
𝑉𝜃𝑧
(2)

𝑉𝑥𝑧
(2)
} = 𝐾𝑠∫ {

𝜏𝜃𝑧
(2)

𝜏𝑥𝑧
(2)
}

−
ℎ
2

−
ℎ
2
−ℎ𝑝

𝑑𝑧 + 𝐾𝑠∫ {
𝜏𝜃𝑧
(2)

𝜏𝑥𝑧
(2)
}

ℎ
2
+ℎ𝑝

ℎ
2

𝑑𝑧                                                                                  (2.112𝑐) 

2.5.6. Force and Moment Resultants for a Piezoelectric Coupled Laminated 

CNT-Reinforced Composite Cylindrical Shell Considering the 

Hygrothermal Effects 

The force and moment resultants in a laminated CNT-reinforced composite cylindrical shell 

coupled with the piezoelectric layers at the top and bottom surfaces are attained as sum of the force 

and moment resultants of the host substrate laminated CNT-reinforced composite shell and the 
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piezoelectric layers ones. Thus, the in-plane force resultants (𝑁𝑥𝑥 , 𝑁𝜃𝜃 , 𝑁𝑥𝜃 ) are sum of Eq. 

(2.109a) and Eq. (2.112a), the bending and twisting moment resultants (𝑀𝑥𝑥, 𝑀𝜃𝜃, 𝑀𝑥𝜃) are sum 

of Eq. (2.109b) and Eq. (2.112b), and the transverse shear force resultants (𝑉𝑥𝑧, 𝑉𝜃𝑧) are sum of 

Eq. (2.109c) and Eq. (2.112c) as, 

𝑁𝑥𝑥 = 𝐴1
𝜕𝑢0
𝜕𝑥

+
𝐴2
𝑅
(𝑤0 +

𝜕𝑣0
𝜕𝜃

) + 𝐴3 (
𝜕𝑢0
𝑅𝜕𝜃

+
𝜕𝑣0
𝜕𝑥

) + 𝐴4
𝜕𝛼𝑥
𝜕𝑥

+ 𝐴5
𝜕𝛼𝜃
𝑅𝜕𝜃

+ 𝐴6 (
𝜕𝛼𝑥
𝑅𝜕𝜃

+
𝜕𝛼𝜃
𝜕𝑥

) + 𝐴7
𝜕𝜑

𝜕𝑥

+ 𝐴8𝛩 + 𝐴9𝛬                                                                                                                        (2.113𝑎) 

𝑁𝜃𝜃 = 𝐵1
𝜕𝑢0
𝜕𝑥

+
𝐵2
𝑅
(𝑤0 +

𝜕𝑣0
𝜕𝜃

) + 𝐵3 (
𝜕𝑢0
𝑅𝜕𝜃

+
𝜕𝑣0
𝜕𝑥

) + 𝐵4
𝜕𝛼𝑥
𝜕𝑥

+ 𝐵5
𝜕𝛼𝜃
𝑅𝜕𝜃

+ 𝐵6 (
𝜕𝛼𝑥
𝑅𝜕𝜃

+
𝜕𝛼𝜃
𝜕𝑥

) + 𝐵7
𝜕𝜑

𝜕𝑥

+ 𝐵8𝛩 + 𝐵9𝛬                                                                                                                        (2.113𝑏) 

𝑁𝑥𝜃 = 𝐶1
𝜕𝑢0
𝜕𝑥

+
𝐶2
𝑅
(𝑤0 +

𝜕𝑣0
𝜕𝜃

) + 𝐶3 (
𝜕𝑢0
𝑅𝜕𝜃

+
𝜕𝑣0
𝜕𝑥

) + 𝐶4
𝜕𝛼𝑥
𝜕𝑥

+ 𝐶5
𝜕𝛼𝜃
𝑅𝜕𝜃

+ 𝐶6 (
𝜕𝛼𝑥
𝑅𝜕𝜃

+
𝜕𝛼𝜃
𝜕𝑥

) + 𝐶7
𝜕𝜑

𝑅𝜕𝜃

+ 𝐶8𝛩 + 𝐶9𝛬                                                                                                                         (2.113𝑐) 

𝑀𝑥𝑥 = 𝐷1
𝜕𝑢0
𝜕𝑥

+
𝐷2
𝑅
(𝑤0 +

𝜕𝑣0
𝜕𝜃

) + 𝐷3 (
𝜕𝑢0
𝑅𝜕𝜃

+
𝜕𝑣0
𝜕𝑥

) + 𝐷4
𝜕𝛼𝑥
𝜕𝑥

+ 𝐷5
𝜕𝛼𝜃
𝑅𝜕𝜃

+ 𝐷6 (
𝜕𝛼𝑥
𝑅𝜕𝜃

+
𝜕𝛼𝜃
𝜕𝑥

) + 𝐷7𝛩

+ 𝐷8𝛬                                                                                                                                     (2.113𝑑) 

𝑀𝜃𝜃 = 𝐸1
𝜕𝑢0
𝜕𝑥

+
𝐸2
𝑅
(𝑤0 +

𝜕𝑣0
𝜕𝜃

) + 𝐸3 (
𝜕𝑢0
𝑅𝜕𝜃

+
𝜕𝑣0
𝜕𝑥

) + 𝐸4
𝜕𝛼𝑥
𝜕𝑥

+ 𝐸5
𝜕𝛼𝜃
𝑅𝜕𝜃

+ 𝐸6 (
𝜕𝛼𝑥
𝑅𝜕𝜃

+
𝜕𝛼𝜃
𝜕𝑥

) + 𝐸7𝛩

+ 𝐸8𝛬                                                                                                                                      (2.113𝑒) 

𝑀𝑥𝜃 = 𝐹1
𝜕𝑢0
𝜕𝑥

+
𝐹2
𝑅
(𝑤0 +

𝜕𝑣0
𝜕𝜃

) + 𝐹3 (
𝜕𝑢0
𝑅𝜕𝜃

+
𝜕𝑣0
𝜕𝑥

) + 𝐹4
𝜕𝛼𝑥
𝜕𝑥

+ 𝐹5
𝜕𝛼𝜃
𝑅𝜕𝜃

+ 𝐹6 (
𝜕𝛼𝑥
𝑅𝜕𝜃

+
𝜕𝛼𝜃
𝜕𝑥

) + 𝐹7𝛩

+ 𝐹8𝛬                                                                                                                                      (2.113𝑓) 

𝑉𝑥𝑧 = 𝐺1 (
𝜕𝑤0

𝑅𝜕𝜃
−
𝑣0
𝑅
+ 𝛼𝜃) + 𝐺2 (

𝜕𝑤0

𝜕𝑥
+ 𝛼𝑥)                                                                                          (2.113𝑔) 

𝑉𝜃𝑧 = 𝐻1 (
𝜕𝑤0

𝑅𝜕𝜃
−
𝑣0
𝑅
+ 𝛼𝜃) + 𝐻2 (

𝜕𝑤0

𝜕𝑥
+ 𝛼𝑥)                                                                                        (2. .113ℎ) 

where expression of coefficients, 𝐴𝑖(𝑖 = 1, … ,9), 𝐵𝑖(𝑖 = 1,… ,9), 𝐶𝑖(𝑖 = 1,… ,9), 𝐷𝑖(𝑖 =

1, … ,8), 𝐸𝑖(𝑖 = 1,… ,8), 𝐹𝑖(𝑖 = 1,… ,8), 𝐺𝑖(𝑖 = 1,2), and 𝐻𝑖(𝑖 = 1,2) are given in Appendix N.   
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2.5.7. Equations of Motion for a Piezoelectric Coupled Laminated CNT-

Reinforced Composite Cylindrical Shell Considering the Hygrothermal 

Effects 

The equations of motion based on the first-order shear deformation shell theory are given by 

Eq. (2.41). The mass inertias 𝐼𝑖  (𝑖 = 0,1,2) required for the equations of motion for a laminated 

CNT-reinforced composite cylindrical shell coated with the piezoelectric layers at the top and 

bottom surfaces are defined by,  

𝐼0 = ∑∫ 𝜌𝐾𝑑𝑧
𝑧𝐾

𝑧𝐾−1

𝑁

𝐾=1

+∫ 𝜌𝑝𝑑𝑧
−
ℎ
2

−
ℎ
2
−ℎ𝑝

+∫ 𝜌𝑝𝑑𝑧

ℎ
2
+ℎ𝑝

ℎ
2

= ∑ 𝜌𝐾(𝑧𝐾 − 𝑧𝐾−1)

𝑁

𝐾=1

+ 2𝜌𝑝ℎ𝑝                      (2.114𝑎) 

𝐼1 = ∑∫ 𝜌𝐾𝑧𝑑𝑧
𝑧𝐾

𝑧𝐾−1

𝑁

𝐾=1

+∫ 𝜌𝑝𝑧𝑑𝑧
−
ℎ
2

−
ℎ
2
−ℎ𝑝

+∫ 𝜌𝑝𝑧𝑑𝑧

ℎ
2
+ℎ𝑝

ℎ
2

=
1

2
∑ 𝜌𝐾(𝑧𝐾

2 − 𝑧𝐾−1
2 )

𝑁

𝐾=1

                             (2.114𝑏) 

𝐼2 = ∑∫ 𝜌𝐾𝑧
2𝑑𝑧

𝑧𝐾

𝑧𝐾−1

𝑁

𝐾=1

+∫ 𝜌𝑝𝑧
2𝑑𝑧

−
ℎ
2

−
ℎ
2
−ℎ𝑝

+∫ 𝜌𝑝𝑧
2𝑑𝑧

ℎ
2
+ℎ𝑝

ℎ
2

=
1

3
∑ 𝜌𝐾(𝑧𝐾

3 − 𝑧𝐾−1
3 )

𝑁

𝐾=1

+ 𝜌𝑝 (
ℎ𝑝ℎ

2

2
+ ℎℎ𝑝

2 +
2ℎ𝑝

3

3
)                                                  (2.114𝑐) 

where 𝜌𝑝 is the mass density of the piezoelectric layer, and  𝜌𝐾 is the mass density of the lamina 

(layer) 𝐾 reinforced with CNTs which is given by, 

𝜌𝐾 = 𝜌
𝑟
𝑓
𝑟
+ 𝜌

𝑚
𝑓
𝑚
                                                                                                                                             (2.115) 

where 𝜌𝑟 and 𝜌𝑚  are the mass densities of the reinforcement phase (CNT), and the polymer matrix 

phase, respectively.  

Substituting the force and moment resultants, Eq. (2.113), into Eq. (2.41), leads to the 

equations of motion for a laminated CNT-reinforced composite cylindrical shell coupled with the 
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piezoelectric layers at the top and bottom surfaces based on the first-order shear deformation shell 

theory in terms of 𝑢0, 𝑣0, 𝑤0, 𝛼𝑥, 𝛼𝜃, 𝜑, 𝛩, and 𝛬. 

The electric displacements of the piezoelectric layer with the axial polarization based on the 

first-order shear deformation shell theory are given by Eq. (2.48). 

Satisfying the Maxwell’s static electricity equation, ∫ ∇𝐷𝑑𝑧
−
ℎ

2

−
ℎ

2
−ℎ𝑝

+ ∫ ∇𝐷𝑑𝑧
ℎ

2
+ℎ𝑝

ℎ

2

= 0, for the 

piezoelectric layers, in view of Eq. (2.48), yields, 

𝑒̅22
𝜕2𝑢0
𝜕𝑥2

+
𝑒̅21
𝑅

(
𝜕𝑤0

𝜕𝑥
+
𝜕2𝑣0
𝜕𝑥𝜕𝜃

) + 𝑒̅16 (
𝜕2𝑢0
𝑅2𝜕𝜃2

+
𝜕2𝑣0
𝑅𝜕𝑥𝜕𝜃

) −∈ 22
𝜕2𝜑

𝜕𝑥2
−∈ 11

𝜕2𝜑

𝑅2𝜕𝜃2
= 0                  (2.116) 

Concerning hygrothermal modeling, the heat conduction and the moisture diffusion equations 

should be considered. The moisture diffusion equation is analogous to the heat conduction 

equation [205]. By assuming constant thermal conductivity coefficients and constant moisture 

diffusivity coefficients in longitudinal, circumferential, and radial directions, the steady-state 

Fourier heat conduction equation without internal heat source, and the Fickian moisture diffusion 

equation in  cylindrical coordinate system are, respectively, reduced to,  

𝜕2𝛩

𝜕𝑥2
+

𝜕2𝛩

𝑅2𝜕𝜃2
= 0                                                                                                                                                (2.117) 

𝜕2𝛬

𝜕𝑥2
+

𝜕2𝛬

𝑅2𝜕𝜃2
= 0                                                                                                                                                (2.118) 

Eq. (2.41), in view of Eq. (2.113), and Eqs. (2.116) - (2.118) express the equations of motion 

in term of the shell displacements (𝑢0, 𝑣0, and  𝑤0), the rotations of shell cross-section normal to 

𝑥 -axis and 𝜃-axis or shear effects (𝛼𝑥 and 𝛼𝜃), the electric potential (𝜑), the temperature change 

(𝛩 ), and the moisture concentration change (𝛬 ) for a laminated CNT-reinforced composite 

cylindrical shell coupled with the piezoelectric layers at the top and bottom surfaces. The analytical 
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model presented in the above is capable to capture the effects of temperature/moisture change as 

well as the effects of transverse shear, nanoparticles, and piezoelectric coupling.   

2.5.8. Solution Methodology 

To solve the wave propagation problem, the shell displacements (𝑢0, 𝑣0, and  𝑤0), the rotations 

of shell cross-section normal to 𝑥  -axis and 𝜃-axis or shear effects (𝛼𝑥  and 𝛼𝜃 ), the electric 

potential (𝜑 ), the temperature change (𝛩 ), and the moisture concentration change (𝛬 ) are 

considered in the following forms, 

𝑢0(𝑥, 𝜃, 𝑡) = 𝑈𝑒𝑖𝑛𝜃𝑒𝑖𝛾(𝑥−𝑐𝑡)                                                                                                                           (2.119𝑎) 

𝑣0(𝑥, 𝜃, 𝑡) = 𝑉𝑒𝑖𝑛𝜃𝑒𝑖𝛾(𝑥−𝑐𝑡)                                                                                                                           (2.119𝑏) 

𝑤0(𝑥, 𝜃, 𝑡) = 𝑊𝑒𝑖𝑛𝜃𝑒𝑖𝛾(𝑥−𝑐𝑡)                                                                                                                         (2.119𝑐) 

𝛼𝑥(𝑥, 𝜃, 𝑡) = 𝐴𝑥𝑒
𝑖𝑛𝜃𝑒𝑖𝛾(𝑥−𝑐𝑡)                                                                                                                        (2.119𝑑) 

𝛼𝜃(𝑥, 𝜃, 𝑡) = 𝐴𝜃𝑒
𝑖𝑛𝜃𝑒𝑖𝛾(𝑥−𝑐𝑡)                                                                                                                         (2.119𝑒) 

𝜑(𝑥, 𝜃, 𝑡) = Φ𝑒𝑖𝑛𝜃𝑒𝑖𝛾(𝑥−𝑐𝑡)                                                                                                                            (2.119𝑓) 

𝛩(𝑥, 𝜃, 𝑡) = 𝑇𝑒𝑖𝑛𝜃𝑒𝑖𝛾(𝑥−𝑐𝑡)                                                                                                                            (2.119𝑔) 

𝛬(𝑥, 𝜃, 𝑡) = 𝐶𝑒𝑖𝑛𝜃𝑒𝑖𝛾(𝑥−𝑐𝑡)                                                                                                                             (2.119ℎ) 

Substituting Eq. (2.119) into the equations of motion yields a set of homogenous equations as, 

[
 
 
 
 
 
 
 
 
𝐿11    𝐿12    𝐿13    𝐿14 𝐿15 𝐿16 𝐿17 𝐿18
𝐿21    𝐿22    𝐿23    𝐿24 𝐿25 𝐿26 𝐿27 𝐿28
𝐿31    𝐿32    𝐿33    𝐿34 𝐿35 𝐿36 𝐿37 𝐿38
𝐿41
𝐿51
𝐿61
𝐿71
𝐿81

    

𝐿42
𝐿52
𝐿62
𝐿72
𝐿82

   

 𝐿43
𝐿53
𝐿63
𝐿73
𝐿83

    

𝐿44
𝐿54
𝐿64
𝐿74
𝐿84

𝐿45
𝐿55
𝐿65
𝐿75
𝐿85

𝐿46 𝐿47 𝐿48
𝐿56 𝐿57 𝐿58
𝐿66 𝐿67 𝐿68
𝐿76 𝐿77 𝐿78
𝐿86 𝐿87 𝐿88]

 
 
 
 
 
 
 
 

{
 
 
 

 
 
 
𝑈
𝑉
𝑊
𝐴𝑥
𝐴𝜃
Φ
𝑇
𝐶 }
 
 
 

 
 
 

= {0}                                                                     (2.120) 
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where the components of characteristics matrix [𝐿𝑖𝑗] (𝑖, 𝑗 = 1,… ,8) are given in Appendix O. 

From the above matrix equation, a nontrivial solution for 𝑈, 𝑉, 𝑊, 𝐴𝑥, 𝐴𝜃, Φ, 𝑇, and 𝐶 is obtained 

only if, the determinant of matrix [𝐿𝑖𝑗] is equal to zero, i.e. 

|

|

|

𝐿11    𝐿12    𝐿13    𝐿14 𝐿15 𝐿16 𝐿17 𝐿18
𝐿21    𝐿22    𝐿23    𝐿24 𝐿25 𝐿26 𝐿27 𝐿28
𝐿31    𝐿32    𝐿33    𝐿34 𝐿35 𝐿36 𝐿37 𝐿38
𝐿41
𝐿51
𝐿61
𝐿71
𝐿81

    

𝐿42
𝐿52
𝐿62
𝐿72
𝐿82

   

 𝐿43
𝐿53
𝐿63
𝐿73
𝐿83

    

𝐿44
𝐿54
𝐿64
𝐿74
𝐿84

𝐿45
𝐿55
𝐿65
𝐿75
𝐿85

𝐿46 𝐿47 𝐿48
𝐿56 𝐿57 𝐿58
𝐿66 𝐿67 𝐿68
𝐿76 𝐿77 𝐿78
𝐿86 𝐿87 𝐿88

|

|

|

= 0                                                                                     (2.121) 

where |… | denotes the determinant of a matrix. By solving Eq. (2.121) based on the method 

illustrated in section 2.3.4, five positive roots are obtained for any specific axial wavenumber 𝛾 

and circumferential wavenumber 𝑛 which are the wave phase velocities 𝑐 corresponding to the 

first five wave modes 𝑀1, 𝑀2, 𝑀3, 𝑀4, and 𝑀5.    

Numerical results are obtained for laminated CNT-reinforced composite cylindrical shells 

integrated with the piezoelectric layers at the top and bottom surfaces in hygrothermal 

environmental conditions. The SWCNT (10, 10) is chosen as the reinforcement phase where its 

properties at different temperatures are listed in Table 2.3. The material properties of polymer used 

as the matrix phase are assumed to be 𝜌𝑚 = 1200 kg m3⁄ , 𝑣𝑚 = 0.34, Υ𝑚 = 2.68 × 10−3 wt⁄  

percent 𝐻2𝑂 , Γ𝑚 = 45 × (1 + 0.001∆𝑇) × 10−6 𝐾⁄  and E𝑚 = (3.51 − 0.003𝑇 − 0.142𝐶)GPa, 

in which 𝑇 = 𝑇0 + ∆𝑇  and 𝑇0 = 300𝐾  (room temperature), and 𝐶 = 𝐶0 + ∆𝐶  and 𝐶0 = 0  wt 

percent H2O [176]. The PZT-4 with the axial polarization is chosen for the piezoelectric layers 

where its material properties are given in Table 2.2.  

The non-dimensional wave phase velocity (v =
𝑐

𝑐𝑡
) is employed to analysis wave propagation 

characteristics as illustrated in section 2.3.4, where 𝐻 = ℎ + 2ℎ𝑝 is considered in Eq. (2.59) as the 
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total thickness of a laminated CNT-reinforced composite cylindrical shell coupled with the 

piezoelectric layers at the top and bottom surfaces, and the torsional wave phase velocity 𝑐𝑡 is 

employed as,   

𝑐𝑡 = √
𝐺12ℎ + 𝑐6̅6(2ℎ𝑝)(1 − ((ℎ + 2ℎ𝑝)/𝑅))

𝜌𝐾ℎ + 𝜌𝑝(2ℎ𝑝)
                                                                                           (2.122) 

 

2.6. Vibration Characteristics of Smart Laminated CNT-Reinforced 

Composite Cylindrical Shells under Various Boundary 

Conditions in Hygrothermal Environments 

In this section, an analytical model is presented to characterize vibration behaviors of finite 

length smart laminated CNT-reinforced composite cylindrical shells coupled with the piezoelectric 

layers at the top and bottom surfaces under various mechanical boundary conditions in 

hygrothermal environments using the wave propagation approach.  

Constitutive relations and equations of motion are the same as those presented in section 2.5. 

In the following subsections, an analytical model based on the wave propagation approach with 

beam mode shape functions used as the axial modal functions is presented to solve the free 

vibration problem in smart laminated CNT-reinforced composite cylindrical shells under various 

mechanical boundary conditions. 

2.6.1. Wave Propagation Approach 

For any continuous system, its natural modes of vibration are obtained from superposition of 

equal but opposite-going propagating waves [146]. Understanding the physics of this phenomenon 

can help us to develop simple formulae to calculate the frequencies corresponding to free modes 
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of vibration. In the present study, the natural modes of vibration for a laminated CNT-reinforced 

composite cylindrical shell are treated as a mix of standing waves in the axial and circumferential 

directions. The axial standing wave is denoted by the axial modal parameter 𝑚 , and the 

circumferential standing wave is described by the circumferential modal parameter 𝑛 . The 

relationship of the natural frequency with the axial and circumferential modal parameters 𝑚 and 

𝑛 is obtained. The axial and circumferential wavenumbers of standing waves are approximated 

from the wavenumber of the equivalent beam that has similar boundary conditions as the shell 

such as simply supported, clamped, sliding, free, etc. The abovementioned method is relatively 

simple so that the wavenumbers for different boundary conditions are determined quickly. This 

method, is less complicated than other methods and leads to more reasonable and accurate natural 

frequencies [146].  

The expressions for the shell displacements (𝑢0, 𝑣0, and  𝑤0), the rotations of shell cross-section 

normal to 𝑥  -axis and 𝜃 -axis or shear effects (𝛼𝑥  and 𝛼𝜃 ), the electric potential (𝜑 ), the 

temperature change (𝛩), and the moisture change (𝛬) of the shell can be approximated in the form 

of wave propagation related to axial wavenumber 𝛾𝑚 and circumferential mode number 𝑛, as,   

𝑢0(𝑥, 𝜃, 𝑡) = 𝑈𝑚𝑛𝑒
𝑖(𝛾𝑚𝑥+𝑛𝜃−𝜔𝑡)                                                                                                                   (2.123𝑎) 

𝑣0(𝑥, 𝜃, 𝑡) = 𝑉𝑚𝑛𝑒
𝑖(𝛾𝑚𝑥+𝑛𝜃−𝜔𝑡)                                                                                                                     (2.123𝑏) 

𝑤0(𝑥, 𝜃, 𝑡) = 𝑊𝑚𝑛𝑒
𝑖(𝛾𝑚𝑥+𝑛𝜃−𝜔𝑡)                                                                                                                   (2.123𝑐) 

𝛼𝑥(𝑥, 𝜃, 𝑡) = 𝐴𝑥𝑚𝑛
𝑒𝑖(𝛾𝑚𝑥+𝑛𝜃−𝜔𝑡)                                                                                                                  (2.123𝑑) 

𝛼𝜃(𝑥, 𝜃, 𝑡) = 𝐴𝜃𝑚𝑛
𝑒𝑖(𝛾𝑚𝑥+𝑛𝜃−𝜔𝑡)                                                                                                                  (2.123𝑒) 

𝜑(𝑥, 𝜃, 𝑡) = Φ𝑚𝑛𝑒
𝑖(𝛾𝑚𝑥+𝑛𝜃−𝜔𝑡)                                                                                                                    (2.123𝑓) 

𝛩(𝑥, 𝜃, 𝑡) = 𝑇𝑚𝑛𝑒
𝑖(𝛾𝑚𝑥+𝑛𝜃−𝜔𝑡)                                                                                                                     (2.123𝑔) 

𝛬(𝑥, 𝜃, 𝑡) = 𝐶𝑚𝑛𝑒
𝑖(𝛾𝑚𝑥+𝑛𝜃−𝜔𝑡)                                                                                                                      (2.123ℎ) 
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where 𝛾𝑚 , 𝑚, 𝑛, and 𝜔 are the axial wavenumber, the axial mode number, the circumferential 

mode number, and the angular (circular) frequency of natural vibration mode (𝑚, 𝑛), respectively, 

for free vibration of the cylindrical shell, and 𝑈𝑚𝑛, 𝑉𝑚𝑛, 𝑊𝑚𝑛, 𝐴𝑥𝑚𝑛
, 𝐴𝜃𝑚𝑛

, Φ𝑚𝑛, 𝑇𝑚𝑛, and 𝐶𝑚𝑛 

are the wave amplitudes. For vibration analysis of a finite length cylindrical shell, axial 

wavenumber 𝛾𝑚 is dependent on the axial mode number 𝑚 according to the considered boundary 

condition (which will be explained in detail in section 2.6.2). While, for vibration of a complete 

cylindrical shell, circumferential wavenumber 𝛾𝑛  and circumferential modal number 𝑛  are the 

same (𝛾𝑛 = 𝑛), and they will be different if we consider a cylindrical panel with various boundary 

conditions which is not the topic of this research study.  

By replacing Eq. (2.123) into the equations of motion, Eq. (2.41), in view of Eq. (2.113), and 

Eqs. (2.116) - (2.118), one obtains a set of homogenous equations as, 

[
 
 
 
 
 
 
 
 
𝐿11    𝐿12    𝐿13    𝐿14 𝐿15 𝐿16 𝐿17 𝐿18
𝐿21    𝐿22    𝐿23    𝐿24 𝐿25 𝐿26 𝐿27 𝐿28
𝐿31    𝐿32    𝐿33    𝐿34 𝐿35 𝐿36 𝐿37 𝐿38
𝐿41
𝐿51
𝐿61
𝐿71
𝐿81

    

𝐿42
𝐿52
𝐿62
𝐿72
𝐿82

   

 𝐿43
𝐿53
𝐿63
𝐿73
𝐿83

    

𝐿44
𝐿54
𝐿64
𝐿74
𝐿84

𝐿45
𝐿55
𝐿65
𝐿75
𝐿85

𝐿46 𝐿47 𝐿48
𝐿56 𝐿57 𝐿58
𝐿66 𝐿67 𝐿68
𝐿76 𝐿77 𝐿78
𝐿86 𝐿87 𝐿88]

 
 
 
 
 
 
 
 

{
 
 
 
 

 
 
 
 
𝑈𝑚𝑛

𝑉𝑚𝑛

𝑊𝑚𝑛

𝐴𝑥𝑚𝑛

𝐴𝜃𝑚𝑛

Φ𝑚𝑛

𝑇𝑚𝑛

𝐶𝑚𝑛 }
 
 
 
 

 
 
 
 

= {0}                                                                 (2.124) 

where components of characteristics matrix [𝐿𝑖𝑗] (𝑖, 𝑗 = 1,… ,8) are given in Appendix P. The 

above matrix equation, due to the eigenvalue problem, has a nontrivial solution for 𝑈𝑚𝑛, 𝑉𝑚𝑛, 

𝑊𝑚𝑛, 𝐴𝑥𝑚𝑛
, 𝐴𝜃𝑚𝑛

, Φ𝑚𝑛, 𝑇𝑚𝑛, and 𝐶𝑚𝑛 only if, the determinant of matrix [𝐿𝑖𝑗] is equal to zero. 

Eq. (2.124) is the system characteristics equation that can be used to determine the natural 

frequencies of a smart laminated composite cylindrical shell as well as wave propagation 

characteristics. 

By solving Eq. (2.124) based on the Bisection method illustrated in section 2.3.4, one can obtain 

five positive roots for any axial and circumferential modes (𝑚, 𝑛). The first three roots are the 
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angular frequencies corresponding to the cylindrical shell motion in the axial (𝑥), circumferential 

(𝜃), and radial (𝑧) directions, respectively, and the fourth and fifth roots are, respectively, the 

angular frequencies corresponding to the rotations of shell cross-section normal to 𝑥 -axis (𝑧 − 𝜃 

plane) and 𝜃-axis (𝑥 − 𝑧 plane), respectively [146,206–209]. These five roots are corresponding 

to the angular frequencies of the first five wave modes of the laminated composite cylindrical shell 

denoted by 𝑀1, 𝑀2, 𝑀3, 𝑀4, and 𝑀5, respectively, in this study. The lowest of the five roots 

(𝑀1) represents the flexural (forward) vibration and other roots (𝑀2 - 𝑀5) are corresponding to 

in-plane and out-of-plane vibrations [146,206–209]. In the other words, the lowest frequency is 

called the frequency of the fundamental mode or the fundamental natural frequency and all other 

frequencies are called the frequencies of higher harmonics, or overtones [210]. The fundamental 

frequency provides the sound with its strongest audible pitch reference - it is the predominant 

frequency in any complex waveform. The fundamental frequency is the frequency we actually 

hear the sound at. Therefore, overtones are frequencies of a waveform that are higher than, but not 

directly related to, the fundamental frequency. From a graphical numerical method based on the 

Bisection method (as explained in section 2.3.4), one can obtain the frequency curves and the 

natural frequencies at any specific axial and circumferential modes (𝑚, 𝑛) corresponding to the 

first five roots of Eq. (2.124) (𝑀1, 𝑀2, 𝑀3, 𝑀4, and 𝑀5). 

2.6.2. Wavenumbers 

An accurate axial wavenumber 𝛾𝑚 must be calculated to satisfy the applied boundary conditions 

at the both ends of a cylindrical shell in order to compute the frequency of the shell from Eq. 

(2.124). The wave propagation in the axial direction of the shell is approximately obtained by 

studying the wave propagation in a similar beam. Wave propagation characteristics in a beam at 

any frequency are determined by the wavenumber 𝛾[=  2𝜋/𝜆 (𝑤𝑎𝑣𝑒𝑙𝑒𝑛𝑔𝑡ℎ)]. This represents the 
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phase difference between two points in a continuous system. In the other words, when a wave 

propagates, its phase changes by 𝛾 per unit length. When wave propagates from the left-hand end 

to the right-hand end of the beam over the distance 𝐿, the total phase change is 𝛾𝐿. An identical 

but opposite-going wave is reflected from the right-hand end which is back toward the left-hand 

end. Thus, the phase of the wave varies by another 𝛾𝐿. A phase difference is defined between the 

incoming and reflected waves at each of the reflecting boundaries. In the case of a simply 

supported-simply supported (SS-SS) beam, the phase difference at the ends is zero. Thus, the total 

phase change as the “wave travels one complete circuit around the beam” is 2𝛾𝐿. When the total 

phase change is an integral number of 2𝜋′𝑠, natural vibration modes of the beam happen [146]. 

For the simply supported-simply supported (SS-SS) boundary condition, the characteristics 

equation for the beam is 𝑆𝑖𝑛(2𝛾𝐿) = 0 , so that wavenumber equation for SS-SS boundary 

condition can be written as  𝛾𝐿 = 𝑚𝜋. Thus, for a shell with SS-SS boundary condition, 𝛾𝑚 =
𝑚𝜋

𝐿
 

and 𝑛 can be considered in Eq. (2.124) to find the natural frequencies of the cylindrical shell for 

axial and circumferential mode numbers (𝑚, 𝑛).  

For other types of boundary conditions, the characteristic equations are not as simple as that for 

the SS-SS boundary condition. However, approximate wavenumbers were proposed for other 

boundary conditions in Ref. [146]. In this study, we calculate the natural frequencies for clamped-

clamped (C-C), clamped-simply supported (C-SS), simply supported-simply supported (SS-SS), 

clamped-sliding (C-SL), and clamped-free (C-F) boundary conditions, where axial wavenumber 

for these boundary conditions are listed in Table 2.4. The clamped end means it is completely 

prevented from any displacement and rotation. Simply supported boundary condition means that 

all translations (3 in three-dimensional) are fixed but rotations are unconstrained. A sliding 



Chapter 2. Structural Dynamic Modeling of Smart Composite Cylindrical Shells 

125 
 

boundary condition is used to force a point to remain on a given surface and in the direction of 

force, displacement is zero, and other two displacements and all rotations are unconstrained. 

  Figs. 2.9 and 2.10 illustrate, respectively, the axial modal parameter 𝑚 and the circumferential 

modal parameter 𝑛 by presenting axial and circumferential modal patterns. The patterns shown in 

Figs. 2.9 and 2.10 describe the mode shapes along the axial and the circumferential directions of 

the shell, respectively. However, an exact particle motion of the shell can be along axial, 

circumferential, and radial directions or a combination of the axial and circumferential modes.  

From Figs. 2.9 and 2.10, the typical mode shapes can be explained as: i) when 𝑛 = 0 , the 

circumferential modal type is a circle illustrating an extensional mode corresponding to a breathing 

type mode, ii) when 𝑚 = 0, the mode is a pure radial mode so that a constant cross-sectional shape 

along the length of cylinder is obtained, iii) when 𝑚 and 𝑛 are both equal to one, a circumferential 

mode is obtained. The mode is an axial bending mode when 𝑛 = 1 and 𝑚 ≠ 1, and for 𝑚 = 1 and 

𝑛 ≠ 1, the mode is radial motion with shearing mode [211]. 

Table 2.4. Axial wavenumber for different boundary conditions [146]. 

Boundary condition Axial wavenumber 

Clamped-Clamped (C-C) 𝛾𝑚 = (2𝑚 + 1)𝜋 2𝐿⁄  

Clamped-Simply Supported (C-SS) 𝛾𝑚 = (4𝑚 + 1)𝜋 4𝐿⁄  

Simply Supported-Simply Supported (SS-SS) 𝛾𝑚 = 𝑚𝜋 𝐿⁄  

Clamped-Sliding (C-SL) 𝛾𝑚 = (4𝑚 − 1)𝜋 4𝐿⁄  

Clamped-Free (C-F) 𝛾𝑚 = (2𝑚 − 1)𝜋 2⁄ 𝐿 
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Figure 2.9. Axial modal parameter 𝑚 identifying axial mode shapes for a cylinder [3]. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.10. Circumferential modal parameter 𝑛 identifying circumferential mode shapes for a 

cylinder [3]. 
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2.6.3. Numerical Implementation 

In numerical solution to find the free vibration characteristics of  finite length smart laminated 

CNT-reinforced composite cylindrical shells with the effects of hygrothermal environmental 

conditions and different mechanical boundary conditions, the SWCNT (10, 10) is chosen for the 

reinforcement phase, where its properties are given in Table 2.3, and for the matrix phase, a 

polymer is considered with the material properties 𝜌𝑚 = 1200 kg m3⁄ , 𝑣𝑚 = 0.34, Υ𝑚 = 2.68 ×

10−3 wt⁄  percent 𝐻2𝑂 , Γ𝑚 = 45 × (1 + 0.001∆𝑇) × 10−6 𝐾⁄  and E𝑚 = (3.51 − 0.003𝑇 −

0.142𝐶)GPa, in which 𝑇 = 𝑇0 + ∆𝑇 and 𝑇0 = 300𝐾 (room temperature), and 𝐶 = 𝐶0 + ∆𝐶 and 

𝐶0 = 0 wt percent H2O [176]. For the piezoelectric layers, the PZT-4 with axial polarization is 

considered where its mechanical and electrical properties are listed in Table 2.2. 

To determine vibration characteristics of a piezoelectric coupled laminated composite 

cylindrical shell reinforced with CNTs, a non-dimensional frequency parameter is employed as, 

𝛺 =
𝜔𝐻

𝜋𝑐𝑡
                                                                                                                                                                 (2.125) 

where 𝐻 = ℎ + 2ℎ𝑝 expresses the total thickness of the piezoelectric coupled laminated composite 

cylindrical shell, 𝜔 is the frequency computed from Eq. (2.124) for axial and circumferential 

modes (𝑚, 𝑛), and 𝑐𝑡 is the torsional wave phase velocity that for a CNT-reinforced composite 

cylindrical shell integrated with the piezoelectric layers at the top and bottom surfaces is given by,   

𝑐𝑡 = √
𝐺12ℎ + 𝑐6̅6(2ℎ𝑝)

𝜌𝐾ℎ + 𝜌𝑝(2ℎ𝑝)
                                                                                                                                   (2.126) 
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Chapter 3 
 

 

 

Results and Discussions 

Validations of the developed analytical models and the corresponding codes generating the 

numerical results in this study are first reported in this Chapter. Furthermore, wave propagation 

and vibration characteristics of smart composite cylindrical shell structures are obtained and 

discussed with the effects of transverse shear, piezoelectricity, nanoparticles, hygrothermal 

environmental conditions, and boundary conditions based on the analytical models and solution 

methods developed and presented in Chapter 2.   

3.1. Validation of the Present Methodology and Solution Method 

3.1.1. Verification of Numerical Implementation in Micromechanical Modeling 

Numerical implementation in the micromechanical modeling is required to be verified in 

estimating the effective elastic properties of CNT-reinforced composites. Hence, in this section, 

the results of the Mori-Tanaka micromechanics model used in this research are compared with the 

existing results in the study by Li Shi et al. [107]. To this purpose, we use the following 

representative values of the elastic constants for SWCNTs: 𝑛𝑟 = 450 GPa, 𝑘𝑟 = 30 GPa, 𝑚𝑟 =

𝑝𝑟 = 1 GPa, and 𝑙𝑟 = 10 GPa [201]; and for the matrix material, the polystyrene with Young’s 

modulus 𝐸𝑚 = 1.9 GPa and Poisson’s ratio 𝑣𝑚 = 0.3 is considered [107]. 
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At the first step, the micromechanical modeling presented for the estimation of the elastic 

constants of a composite reinforced with angled CNTs is validated. For this case, longitudinal and 

transverse elastic moduli (𝐸11  and 𝐸22 ) of a polystyrene composite reinforced with 0°  CNTs 

(aligned CNTs) for various CNT volume fractions (𝑓𝑟) are calculated and then compared with the 

results of the study of Li Shi et al. [107]. As shown in Fig. 3.1, a good agreement is observed and 

we can conclude that the presented model and numerical implementation are valid in estimating 

the effective elastic properties of composites reinforced with angled CNTs.    

 

Figure 3.1. Comparison of the presented micromechanics model in estimating the longitudinal and 

transverse elastic moduli (𝐸11 and 𝐸22) of a polystyrene composite reinforced with 0° CNTs 

(aligned CNTs) for various CNT volume fractions (𝑓𝑟). 

In Chapter 2, a micromechanics model for calculating the effective elastic constants of 

composites reinforced with randomly oriented CNTs was also presented. To assure that the 

modeling is correct, a comparison is presented in Fig. 3.2 in estimating the effective Young’s 

modulus (𝐸) of  a polystyrene composite reinforced with randomly oriented CNTs for various 
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CNT volume fractions (𝑓𝑟) by the presented model in this study with the results obtained from the 

study of Li Shi et al. [107]. It can be seen that there is a good agreement between the results of the 

present study and those of the Ref. [107]. So, it can be inferred that the presented model is also 

capable to compute the effective elastic properties for composites reinforced with randomly 

oriented CNTs. 

 

Figure 3.2. Comparison of the presented micromechanics model in estimating the effective 

Young’s modulus (𝐸) of a polystyrene composite reinforced with randomly oriented CNTs for 

various CNT volume fractions (𝑓𝑟). 

Finally, the results obtained from the micromechanics model presented for computing the 

effective elastic properties of agglomerated CNT-reinforced composites are verified and compared 

with the results of the study of Li Shi et al. [107] in estimating the effective Young’s modulus (𝐸) 

of  a polystyrene composite reinforced with agglomerated CNTs. For this case, both complete 

agglomeration (when 𝜂 = 1) and partial agglomeration (when 𝜇 = 0.5) are considered. Table 3.1 

presents a comparison study in estimating the effective Young’s modulus (𝐸) for a polystyrene 
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composite reinforced with agglomerated CNTs within various agglomeration parameters μ when 

𝜂 = 1 at different CNT volume fractions (𝑓𝑟 ). Furthermore, Table 3.2 compares the effective 

Young’s modulus (𝐸) computed by the present micromechanics model and that obtained from the 

Ref. [107] for various agglomeration parameters 𝜂  when 𝜇 = 0.5  at different CNT volume 

fractions (𝑓𝑟). The provided comparison study indicates that the presented micromechanics model 

has enough accuracy in estimating the elastic properties for composites reinforced with 

agglomerated CNTs.      

Table 3.1. A comparison study in estimating the effective Young’s modulus (𝐸) for a polystyrene 

composite reinforced with agglomerated CNTs within various agglomeration parameters 𝜇 when 

𝜂 = 1 at different CNT volume fractions (𝑓𝑟). 

CNT volume fraction (𝑓𝑟) 
Agglomeration parameter (𝜇) 

0.4 0.5 0.6 0.7 0.8 0.9 1 

𝑓𝑟 = 0.05 (Present Study) 3.4467 3.8281 4.2076 4.5852 4.9609 5.3348 5.707 

𝑓𝑟 = 0.05  (Li Shi et al. [107]) 3.60953 3.90919 4.20648 4.50377 4.97824 5.27434 5.75238 

        

𝑓𝑟 = 0.1  (Present Study) 3.8461 4.4913 5.227 6.074 7.0596 8.221 9.61 

𝑓𝑟 = 0.1  (Li Shi et al. [107]) 3.96627 4.62268 5.27672 6.10913 7.11872 8.13069 9.49702 

        

𝑓𝑟 = 0.2  (Present Study) 4.1346 5.0298 6.1712 7.6771 9.7558 12.8113 17.7442 

𝑓𝑟 = 0.2  (Li Shi et al. [107]) 4.32421 5.1578 6.34577 7.71567 9.61713 12.4105 17.1671 

        

𝑓𝑟 = 0.4  (Present Study) 4.3136 5.3929 6.8779 9.0513 12.5373 19.0411 35.4761 

𝑓𝑟 = 0.4   (Li Shi et al. [107]) 4.50258 5.69173 7.05926 9.14028 12.4699 18.8319 34.2921 
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Table 3.2. A comparison study in estimating the effective Young’s modulus (𝐸) for a polystyrene 

composite reinforced with agglomerated CNTs within various agglomeration parameters 𝜂 when 

𝜇 = 0.5 at different CNT volume fractions (𝑓𝑟). 

CNT volume fraction (𝑓𝑟) 
Agglomeration parameter (𝜂) 

0.5   0.6  0.7 0.8   0.9  1 

𝑓𝑟 = 0.05 (Present Study) 5.707 5.6536 5.4763 5.1438 4.6137 3.8281 

𝑓𝑟 = 0.05  (Li Shi et al. [107]) 5.48837 5.4697 5.26499 5.05931 4.57649 3.8146 

       

𝑓𝑟 = 0.1  (Present Study) 9.61 9.4771 9.0248 8.1504 6.7096 4.4913 

𝑓𝑟 = 0.1  (Li Shi et al. [107]) 9.2093 9.00459 8.61382 7.85065 6.52998 4.46544 

       

𝑓𝑟 = 0.2  (Present Study) 17.7442 17.4346 16.3563 14.2237 10.6392 5.0298 

𝑓𝑟 = 0.2  (Li Shi et al. [107]) 16.9302 16.6325 15.5906 13.7118 10.2506 5.02358 

 

3.1.2. Verification of Solution Method and Numerical Implementation in 

Determining Wave Propagation Characteristics 

As a part of validation, the dispersion results of the presented models are compared with those 

of the Ref. [98] for piezoelectric coupled metallic cylindrical shells. For this purpose, the 

dispersion curves are obtained for a piezoelectric coupled aluminium cylindrical shell with the 

piezoelectric thickness ratio 𝑟 = ℎ𝑝/ℎ = 0.05 and ℎ/𝑅 = 1/30 for wave modes 1 and 3 (𝑀1 and 

𝑀3) at circumferential wavenumber 𝑛 = 0 . Material properties of aluminium is listed in Table 

3.3. From Fig. 3.3,  it is observed that there is a good agreement between the results of the present 

model based on the membrane shell theory, the Love bending shell theory, and the first-order shear 

deformation shell theory and those of the Ref. [98].    
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Table 3.3. Material properties for the aluminium [39]. 

Property Aluminium 

Mass density, 𝜌, (kg/m3) 2800 

Young’s modulus, 𝐸, (GPa) 70 

Shear modulus, 𝐺, (GPa) 26.6 

 Poisson’s ratio, 𝑣 0.33 

 

  

 

Figure 3.3. Comparison of dispersion curves of the present model and those of the Wang and 

Liew’s study [98] for a piezoelectric coupled aluminium cylindrical shell with  𝑟 = 0.05 and 

ℎ/𝑅 = 1/30 for wave modes 1 and 3 (𝑀1 and 𝑀3) at 𝑛 = 0 based on (a) the membrane shell 

theory, (b) the Love bending shell theory, and (c) the first-order shear deformation shell theory. 
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3.1.3. Verification of the Present Model in Estimating Vibration 

Characteristics 

To validate the presented methodology and solution method in characterizing vibration 

behaviors of smart laminated composite cylindrical shells using the beam modal functions based 

on the wave propagation approach, the natural frequencies corresponding to the first root of Eq. 

(2.124) (𝑀1) are calculated for three examples and compared with the existing results in the 

literature.  

In the first example, the non-dimensional frequencies 𝛺 = 𝜔𝑅√𝜌 𝐸22⁄  for a [0°/90°/0°] cross-

ply laminated composite cylindrical shell with SS-SS boundary condition are calculated and 

compared in Table 3.4 with the results of Zhang [206] and Lam and Loy [212] based on the Love 

bending shell theory for the first axial mode (i.e. 𝑚 = 1) and the lowest six circumferential modes 

(i.e. 𝑛 = 1, 2, 3, 4, 5, 6). In Table 3.4, comparisons are presented for the shell thickness to radius 

ratio ℎ 𝑅⁄ = 0.002 and the shell length to radius ratios 𝐿 𝑅⁄ = 1, 5, 10, and 20.  

As the second example, a  [0°/90°/0°] cross-ply laminated composite cylindrical shell with C-

C boundary condition is considered and the non-dimensional frequencies 𝛺 = 𝜔𝑅√𝜌 𝐸22⁄   are 

computed and compared in Table 3.5 with the results of Jin et al. [149] based on the Love bending 

shell theory for axial mode 𝑚 = 1 and circumferential modes 𝑛 = 1, 2, 3, 4, 5, 6. For the second 

example, compressions are given for ℎ 𝑅⁄ = 0.002 and 𝐿 𝑅⁄ = 1, 5, and 20. In both first and 

second examples, the material properties are given as: 𝐸22 = 7.6𝐺𝑃𝑎 , 𝐸11 𝐸22⁄ = 2.5 , 𝐺12 =

4.1 𝐺𝑃𝑎, 𝑣12 = 0.26, 𝜌 = 1643 kg m3⁄ .  

As the last example, the non-dimensional frequencies 𝛺 = 𝜔(𝐿2 100ℎ⁄ )√𝜌 𝐸22⁄  for[0°/90°] 

and [0°/90°/0°]  cross-ply laminated composite cylindrical shells with various boundary 
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conditions are calculated and compared in Table 3.6 with the results of Malekzadeh et al. [148] 

based on the layer wise-differential quadrature (LW-DQ) method, the results of Khdeir et al. [138] 

based on the state-space technique, the results of Shen and Yang [176] using the higher-order shear 

deformation shell theory, and the results of Lam et al. [213] using the Ritz method. For the third 

example, the results are compared for (𝑚, 𝑛) = (1, 1), ℎ 𝑅⁄ = 0.2, and 𝐿 𝑅⁄ = 1, and 2, and the 

material properties are given as: 𝐸11 = 40𝐺𝑃𝑎 , 𝐸22 = 𝐸33 = 1𝐺𝑃𝑎 , 𝐺12 = 𝐺13 = 0.6 𝐺𝑃𝑎 , 

𝐺23 = 0.5 𝐺𝑃𝑎, 𝑣12 = 𝑣13 = 𝑣23 = 0.25, 𝜌 = 1kg m3⁄ .  

Based on these comparison studies, a good agreement has been observed between the results of 

the present model and solution method and the available results of cross-ply laminated cylindrical 

shells in the literature.  It should be noted that small deviations between the results could be related 

to different solution methods and computer powers used in the considered studies for the 

comparison. It should be noted that the material properties for the above examples are considered 

independent of temperature and moisture.  
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Table 3.4. Comparison of the non-dimensional frequency parameter 𝛺 = 𝜔𝑅√𝜌 𝐸22⁄   for a 

[0°/90°/0°]  cross-ply laminated composite cylindrical shell with SS-SS boundary condition (𝐸22 =

7.6𝐺𝑃𝑎, 𝐸11 𝐸22⁄ = 2.5, 𝐺12 = 4.1 𝐺𝑃𝑎, 𝑣12 = 0.26, 𝜌 = 1643kg m3⁄ , ℎ 𝑅⁄ = 0.002, 𝑚 = 1). 

𝐿/𝑅 Source 𝑛 = 1 𝑛 = 2 𝑛 = 3 𝑛 = 4 𝑛 = 5 𝑛 = 6 

1 Present Study 1.0613 0.8041 0.5984 0.4502 0.3453 0.2708 

Zhang [206]  1.061283 0.804052 0.598328 0.45014 0.345248 0.270747 

Lam & Loy [212] 1.061284 0.804054 0.598331 0.450144 0.345253 0.270754 

 

5 Present Study 0.2486 0.1072 0.0551 0.0339 0.0259 0.0261 

Zhang [206]  0.248634 0.107202 0.055085 0.033788 0.02579 0.025873 

Lam & Loy  [212] 0.248635 0.107203 0.055087 0.03379 0.025794 0.025873 

 

10 Present Study 0.0839 0.03 0.0153 0.0124 0.0155 0.0215 

Zhang [206] 0.083908 0.030008 0.015191 0.012174 0.01523 0.021178 

Lam & Loy [212]  0.083908 0.030009 0.015193 0.012176 0.015231 0.021179 

 

20 Present Study 0.0236 0.008 0.0061 0.0093 0.0145 0.0211 

Zhang [206]  0.023589 0.007903 0.005868 0.009019 0.014235 0.0208 

Lam & Loy [212] 0.02359 0.007904 0.005869 0.00902 0.014236 0.020801 

 

Table 3.5. Comparison of the non-dimensional frequency parameter 𝛺 = 𝜔𝑅√𝜌 𝐸22⁄  for a 

[0°/90°/0°] cross-ply laminated composite cylindrical shell with C-C boundary condition (𝐸22 =

7.6𝐺𝑃𝑎, 𝐸11 𝐸22⁄ = 2.5, 𝐺12 = 4.1 𝐺𝑃𝑎, 𝑣12 = 0.26, 𝜌 = 1643kg m3⁄ , ℎ 𝑅⁄ = 0.002, 𝑚 = 1). 

𝐿/𝑅 Source 𝑛 = 1 𝑛 = 2 𝑛 = 3 𝑛 = 4 𝑛 = 5 𝑛 = 6 

1 Present Study 1.1546 0.9939 0.8228 0.6741 0.5534 0.4579 

Jin et al. [149]  1.062242 0.813717 0.629498 0.500846 0.409156 0.341724 

 

5 Present Study 0.4189 0.2081 0.1142 0.0705 0.049 0.0396 

Jin et al. [149] 0.303609 0.167527 0.099667 0.064699 0.046345 0.038222 

 

20 Present Study 0.0503 0.0173 0.0095 0.0102 0.0148 0.0212 

Jin et al. [149]  0.04651 0.016933 0.009371 0.009975 0.014506 0.020895 
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Table 3.6. Comparison of the non-dimensional frequency parameter 𝛺 = 𝜔(𝐿2 100ℎ⁄ )√𝜌 𝐸22⁄   for 

cross-ply laminated composite cylindrical shells with various boundary conditions (𝐸11 = 40𝐺𝑃𝑎, 

𝐸22 = 𝐸33 = 1𝐺𝑃𝑎, 𝐺12 = 𝐺13 = 0.6 𝐺𝑃𝑎, 𝐺23 = 0.5 𝐺𝑃𝑎, 𝑣12 = 𝑣13 = 𝑣23 = 0.25, 𝜌 = 1kg m3⁄ , 

ℎ 𝑅⁄ = 0.2, 𝑚 = 𝑛 = 1). 

Lay-Up Source 

SS-SS 
 

C-SS 
 

C-C 
 

C-F 

𝐿/𝑅 = 1 𝐿/𝑅 = 2 
 

𝐿/𝑅 = 1 𝐿/𝑅 = 2 
 

 
𝐿/𝑅 = 1 𝐿/𝑅 = 2 

 
𝐿/𝑅 = 1 𝐿/𝑅 = 2 

[0°/90°] Present Study 0.0912 0.1692  0.1177 0.2155  0.1452 0.2636  0.0423 0.0809 

Malekzadeh et al. 

[148] 
0.1012 0.1908 

 
0.1067 0.2016 

 
0.1191  0.2142  

 
0.0518 0.0983 

Khdeir et al. [138]  0.0791 0.1552  0.0893 0.1697  0.1002  0.1876   0.0435 0.0914 

Shen & Yang [176]  0.0896 0.1816  --- ---  --- ---  --- --- 

  

[0°/90°/0°] Present Study 0.1072 0.1958  0.1365 0.2529  0.1657 0.3111  0.049 0.0892 

Malekzadeh et al. 

[148] 
0.1226 0.2242 

 
0.1162 0.2334 

 
0.1312  

0.2511 

 

 
0.0603 0.1122 

Khdeir et al. [138]  0.1004 0.1779  0.1036 0.1945  0.1093 0.2129  0.0495 0.0988 

Shen & Yang [176]  0.1085 0.1973  --- ---  --- ---  --- --- 

Lam et al. [213]  0.1014 0.1885  --- ---  --- ---  --- --- 

 

 

3.2. Parametric Studies on Wave Propagation Characteristics of 

Smart Composite Cylindrical Shells 

3.2.1. Variation of Dispersion Curves for Different Wave Modes 

The dispersion curves for the first five wave modes (𝑀1,𝑀2 , 𝑀3 , 𝑀4 , and 𝑀5) at the 

circumferential wavenumbers 𝑛 = 0, 1, and 2, when ℎ/𝑅 =  1/30 are displayed in Fig. 3.4 for a 

[0°/45°/90°]𝑠 laminated carbon/epoxy composite cylindrical shell coupled with the piezoelectric 

layer at the top surface with the thickness ratio 𝑟 = 0.1 by considering the transverse shear effects 

and rotary inertia via the first-order shear deformation shell theory. As shown in Fig. 3.4, within a 

very small range of axial wavenumbers, the non-dimensional wave phase velocity decreases 

dramatically at first, and then it changes smoothly with higher axial wavenumbers. However, the 
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non-dimensional wave phase velocity at 𝑛 = 2  is a bit higher than that at 𝑛 = 1  and 𝑛 = 0 , 

respectively.  

Without considering the shear effects, no higher wave mode (> 3) solutions can be obtained. 

Only by using the proposed analytical model, we can attain the dispersion solutions in necessary 

shear wave modes for a smart laminated composite cylindrical shell. However, the trend of 

dispersion curves for a smart laminated fiber-reinforced composite cylindrical shell is different 

with the trend of dispersion curves for a smart isotropic cylindrical shell [98], especially at higher 

wave modes.   
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Figure 3.4. Dispersion curves for a [0°/45°/90°]𝑠  laminated carbon/epoxy composite cylindrical 

shell coupled with a piezoelectric layer with 𝑟 = 0.1 and ℎ/𝑅 = 1/30 for the first five wave modes 

(𝑀1,𝑀2, 𝑀3, 𝑀4, and 𝑀5) at (a) 𝑛 =  0, (b) 𝑛 = 1, and (c) 𝑛 = 2 using the first-order shear 

deformation shell theory. 
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3.2.2. Effect of Piezoelectric Coupling on Wave Dispersion Solutions 

Fig. 3.5 illustrates the piezoelectric coupling effect on the dispersion curves of a [0°/45°/90°]𝑠 

laminated carbon/epoxy composite cylindrical shell for the first five wave modes (𝑀1,𝑀2, 𝑀3, 

𝑀4, and 𝑀5) at 𝑛 = 1 and ℎ/𝑅 =  1/30 based on the first-order shear deformation shell theory. 

For this purpose, dispersion curves for a pure [0°/45°/90°]𝑠 laminated carbon/epoxy composite 

cylindrical shell (𝑟 = 0) and piezoelectric coupled ones with thickness ratios 𝑟 =
ℎ𝑝

ℎ
= 0.1, 0.2, 

and 0.3 are plotted in Fig. 3.5. In this case study, axial poling for the piezoelectric layer is 

considered. For the first wave mode (𝑀1), at very low axial wavenumbers (𝜉 ≤ 0.04), there is no 

significant difference between the four dispersion curves with different piezoelectric layer 

thicknesses; while at the portion of medium axial wavenumbers (0.04 < 𝜉 < 0.3), difference 

between four dispersion curves is more apparent and the non-dimensional wave phase velocity is 

higher with lower piezoelectric thickness ratio (𝑟); and at higher axial wavenumbers there is not 

significant difference between four dispersion curves (see Fig. 3.5a). For the next four wave modes 

(𝑀2, 𝑀3, 𝑀4, and 𝑀5), it is evident that, the non-dimensional wave phase velocity decreases 

dramatically within very small range of axial wavenumbers (𝜉 < 0.02 for 𝑀2 and 𝑀3; 𝜉 < 0.06 

for 𝑀4 and 𝑀5) and there is not obvious difference between four dispersion curves with different 

piezoelectric layer thicknesses, while at higher axial wavenumbers the velocity varies slightly and 

difference between four dispersion curves with different piezoelectric layer thicknesses is more 

apparent; thus, at higher axial wavenumbers in wave modes 2, 3, 4, and 5, by increasing the 

piezoelectric layer thickness, the non-dimensional wave phase velocity decreases (see Fig. 3.5b-

e). For wave mode 2 (𝑀2), the piezoelectricity also changes the dispersion curve trend at higher 

axial wavenumbers leading to the decrease of wave phase velocity with the increase of axial 

wavenumbers, while at other wave modes, it does not change the trend of dispersion curves. 
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Similar trend is also observed for other circumferential wavenumbers (𝑛) where for brevity, the 

results are not shown here for other 𝑛. Since the stiffness of the piezoelectric layer is smaller than 

that of the host laminated CNT-reinforced composite, it is natural to see from Fig. 3.5 that wave 

phase velocity decreases as the thickness of the piezoelectric layer increases. It is interesting to see 

that this effect is much significant at higher non-dimensional axial wavenumbers (𝜉 > 0.1) for 

wave modes 2, 4, and 5, but more obvious for lower axial wavenumbers (𝜉 < 0.5) for wave mode 

3. This decreasing effect is also observed in some isotropic materials such as steel and aluminium 

which are stiffer than the piezoelectric material, while for some other isotropic materials such as 

gold with lower stiffness than the piezoelectric material, the integration of piezoelectric material 

to the host shell with increasing piezo-layer thickness leads to the increase of the wave phase 

velocities. In addition, it is interesting to see that for higher wave modes (𝑀4 and 𝑀5), the 

piezoelectric effect on the host composites is more significant compared with the piezo-coupled 

isotropic cases which can be due to the more significant shear effects in the piezo-composites 

[39,97,98]. In summary, it is concluded that the wave phase velocity at a pure laminated composite 

cylindrical shell is higher than that of piezoelectric coupled ones, and usually integrating 

piezoelectric material to the surfaces of host laminated composite shells and increasing its 

thickness leads to the reduction of the wave phase velocity due to the effect of electric fields, so 

by adjusting an applied electric field strength, we can control the wave phase velocity in smart 

laminated composite cylindrical shells coupled with the piezoelectric layers. However, the 

decreasing effect of the piezoelectric layer on the wave phase velocity depends on the 

wavenumbers and wave modes, where for some wavenumbers and wave modes (𝑀1 and 𝑀3), this 

effect is almost negligible. These observations are not common sense and without this study we 

could not find them.  
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Therefore, the proposed mathematical model is capable to describe the piezoelectric coupling 

effects including shear, thickness, and polarization directions on wave propagation behaviors of 

smart laminated composite shells at various axial and circumferential wavenumbers and wave 

modes. The findings of piezoelectricity effects on wave dynamics of smart composites are helpful 

and applicable for the design of smart composite structures for vibration, noise, and instability 

control, and structural health monitoring by NDE. 
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Figure 3.5. Dispersion curves for a [0°/45°/90°]𝑠 laminated carbon/epoxy composite cylindrical 

shell coupled with a piezoelectric layer with different thickness ratios (𝑟) and ℎ/𝑅 = 1/30 for the 

first five wave modes (𝑀1,𝑀2, 𝑀3, 𝑀4, and 𝑀5) at 𝑛 = 1 using the first-order shear deformation 

shell theory. 
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The variation of the non-dimensional wave phase velocity (v) with the changes of the 

piezoelectric layer thickness with the axial, circumferential, and radial polarizations for a 

[0°/45°/90°]𝑠 laminated carbon/epoxy composite cylindrical shell with ℎ/𝑅 = 1/30 is shown in 

Fig. 3.6 for the first five wave modes (𝑀1,𝑀2, 𝑀3, 𝑀4, and 𝑀5) at 𝜉 = 0.01 and 𝑛 = 1. As it is 

clearly shown, for the first three wave modes (𝑀1, 𝑀2, and 𝑀3), for all three poling directions, 

the non-dimensional wave phase velocity decreases with the increase of the piezoelectric electric 

layer thickness ratio (𝑟); while at wave modes 4 and 5 (𝑀4 and 𝑀5), the non-dimensional wave 

phase velocity for all three poling directions decreases first for 𝑟 ≤ 0.05, and then it increases with 

the increase of the piezoelectric electric layer thickness ratio (𝑟). For the first wave mode (𝑀1), 

the circumferential and radial polarizations lead to the highest and lowest values of the non-

dimensional wave phase velocities with the increase of the piezoelectric layer thickness ratio (𝑟), 

respectively (see Fig. 3.6 a). For wave mode 2 (𝑀2), the reduction of the non-dimensional wave 

phase velocity with the increment of 𝑟 for the axial poling is the slowest, and the radial poling 

leads to the fastest reduction of the non-dimensional wave phase velocity and the lowest wave 

phase velocity values as well (see Fig. 3.6 b). For wave mode 3 (𝑀3), the radial polarization also 

leads to faster decrease of the non-dimensional wave phase velocity with the increase of 𝑟, while 

the axial and circumferential polarizations have the same decrease trend of the non-dimensional 

wave phase velocity with the increase of 𝑟 (see Fig. 3.6 c). For wave modes 4 and 5 (𝑀4, and 𝑀5), 

for 𝑟 ≤ 0.05, all three polarizations lead to similar results, and at higher 𝑟, the results of the axial 

and circumferential polarizations coincide completely and the radial polarization provides slower 

increase of the wave phase velocity with the increment of the piezoelectric electric layer thickness 

ratio (𝑟) (see Fig. 3.6 d and e). Thus, it can be concluded that for wave modes 1, 2, and 3 (M1-

M3), the radial polarization leads to faster decrement of the wave phase velocity, and for wave 
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modes 4 and 5 (𝑀4 and 𝑀5), it causes to slower increment of the wave phase velocity as the 

piezoelectric layer thickness increases. Furthermore, depending on the wave mode, various trends 

for wave phase velocity versus piezoelectric layer thickness are obtained. In summary, the effect 

of the piezoelectric layer thickness on wave behavior for radial polarization is lower than its effect 

for other two polarization directions.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Chapter 3. Results and Discussions 

146 
 

 

  

 

Figure 3.6. Variation of the non-dimensional wave phase velocity (v) with the piezoelectric 

thickness ratio (𝑟) for a [0°/45°/90°]𝑠 laminated carbon/epoxy composite cylindrical shell coupled 

with the piezoelectric layer with axial, circumferential, and radial polarizations when ℎ/𝑅 =  1/30 

at 𝜉 = 0.01 and 𝑛 = 1 for the first five wave modes (𝑀1,𝑀2, 𝑀3, 𝑀4, and 𝑀5). 
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3.2.3. Effect of Stacking Sequence on Wave Dispersion Solutions 

The effects of stacking sequence on wave dispersion behaviors of a piezoelectric coupled 

laminated carbon/epoxy composite shell with 𝑟 = 0.1 and ℎ/𝑅 = 1/30 are illustrated in Fig. 3.7 

for the first five wave modes (𝑀1,𝑀2, 𝑀3, 𝑀4, and 𝑀5) at 𝑛 = 1 using the first-order shear 

deformation shell theory. For this purpose, [45°/−45°]𝑠, [0
°/90°]𝑠, and [0°/45°/90°]𝑠  stacking 

sequences are considered for the host composite shell. There is a noticeable difference between 

the dispersion curves of these three stacking sequences. For the first wave mode (𝑀1), angle-ply 

stacking sequence, [45°/−45°]𝑠 , has lower wave phase velocities than [0°/90°]𝑠  and [0°/45°/

90°]𝑠  sequences, particularly at lower axial wavenumbers ( 𝜉 < 0.7 ); and at higher axial 

wavenumbers (specially 𝜉 ≥ 0.7), there is no significant difference between the dispersion curves 

of these three stacking sequences; however, within different axial wavenumbers, the wave phase 

velocities of [0°/90°]𝑠, and [0°/45°/90°]𝑠 stacking sequences are very close to each other (see 

Fig. 3.7a). For the second wave mode (𝑀2), the dispersion curve trend is different, where the 

[45°/−45°]𝑠 stacking sequence has the highest wave phase velocities and the cross-ply lamination 

[0°/90°]𝑠  has the lowest ones (see Fig. 3.7b). For wave mode 2 of [45°/−45°]𝑠  composite 

stacking sequence, sharp wave phase velocity increment is observed at non-dimensional axial 

wavenumber around 0.02 , while this phenomenon is not noticed for the composites with 

[0°/90°]𝑠, and [0°/45°/90°]𝑠 stacking sequences. At lower axial wavenumbers of the third wave 

mode (𝑀3) (𝜉 < 0.2), wave phase velocities for the angle-ply lamination [45°/−45°]𝑠 are lower 

than those of the other two stacking sequences, while at higher axial wavenumbers, the cross-ply 

lamination [0°/90°]𝑠  leads to the lowest non-dimensional wave phase velocities and the 

[45°/−45°]𝑠 stacking sequence is with the highest ones (see Fig. 3.7c). In wave mode 3 (𝑀3), 

there is a crossing  point in the curves (at 𝜉 = 0.2) showing the different wave phase velocity 
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variation trends after the certain wavenumber for different composite designs, which could not be 

seen without considering the shear effects. Dispersion curves for the fourth and fifth wave modes 

(𝑀4 and 𝑀5) have similar trends and as shown in Fig. 3.7d and e, the cross-ply lamination 

[0°/90°]𝑠  has the highest non-dimensional wave phase velocities and the angle-ply stacking 

sequence [45°/−45°]𝑠 has the lowest ones. Thus, in all five wave modes, the non-dimensional 

wave phase velocities of the [0°/45°/90°]𝑠 stacking sequence within different axial wavenumbers 

are between those of the [45°/−45°]𝑠 and [0°/90°]𝑠 sequences. Therefore, the present analytical 

model can determine the effects of stacking sequence on wave dynamics of smart laminated 

composite cylindrical shells. It can be concluded that various stacking sequences have clear effects 

on wave dispersion behaviors of smart laminated composite cylindrical shells due to their effects 

on the resultant constitutive equations, and depending on the wavenumber and wave mode, various 

trends for dispersion curves are attained for different stacking sequences. These results are 

important showing the composite effects on wave motion with different composite designs which 

means why the wave propagation in smart composite shells is studied in this thesis. 
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Figure 3.7. Dispersion curves for [45°/−45°]𝑠, [0
°/90°]𝑠, and [0°/45°/90°]𝑠 laminated 

carbon/epoxy composite cylindrical shells coupled with a piezoelectric layer with 𝑟 = 0.1 and 

ℎ/𝑅 = 1/30 for the first five wave modes (𝑀1,𝑀2, 𝑀3, 𝑀4, and 𝑀5) at 𝑛 = 1 using the first-order 

shear deformation shell theory. 

0.1

0.3

0.5

0.7

0.9

-0 .1 0 .1 0 .3 0 .5 0 .7 0 .9

v

𝜉

[45/-45]s

[0/90]s

[0/45/90]s

(a)

𝑀1

0

1

2

3

4

-0 .1 0 .1 0 .3 0 .5 0 .7 0 .9

v

𝜉

[45/-45]s

[0/90]s

[0/45/90]s

(b)

𝑀2

1

2

3

4

5

6

-0 .1 0 .1 0 .3 0 .5 0 .7 0 .9

v

𝜉

[45/-45]s

[0/90]s

[0/45/90]s

(c)

𝑀3

1

2

3

4

5

6

7

-0 .1 0 .1 0 .3 0 .5 0 .7 0 .9

v

𝜉

[45/-45]s

[0/90]s

[0/45/90]s

(d)

𝑀4

2

3

4

5

6

7

8

-0 .1 0 .1 0 .3 0 .5 0 .7 0 .9

v

𝜉

[45/-45]s

[0/90]s

[0/45/90]s

(e)

𝑀5



Chapter 3. Results and Discussions 

150 
 

3.2.4. Comparison of Different Shell Theories on Wave Dispersion Solutions 

The dispersion characteristics for a [0°/45°/90°]𝑠  laminated carbon/epoxy composite 

cylindrical shell coated with a piezoelectric layer at the top surface with 𝑟 = 0.1 by different shell 

theories are compared in Fig. 3.8 for the first three wave modes (𝑀1,𝑀2, and 𝑀3) at 𝑛 = 1 when 

ℎ/𝑅 = 1/30 . Dispersion solutions are provided using the membrane shell theory, the Love 

bending shell theory, and the first-order shear deformation shell theory (FSDT). As shown clearly 

in Fig. 3.8, the three shell theories lead to similar wave phase velocities at lower axial 

wavenumbers (𝜉 ≤ 0.04 for 𝑀1, 𝜉 ≤ 0.2 for 𝑀2, and 𝜉 ≤ 0.1 for 𝑀3). However, at higher axial 

wavenumbers, the wave phase velocities obtained by the three shell models contrast each other 

completely. For the first wave mode (𝑀1) at higher axial wavenumbers, the wave phase velocities 

computed by the membrane shell model are lower than those of other shell models, the wave phase 

velocities provided by the Love bending shell model have the highest values, and the results by 

the FSDT presents a compromise for the non-dimensional wave phase velocity (see Fig. 3.8a). 

However, for wave modes 2 and 3 (𝑀2 and 𝑀3) at higher axial wavenumbers, the FSDT provides 

the lowest estimate of the non-dimensional wave phase velocity, while the Love bending shell 

theory provides the highest estimate of the non-dimensional wave phase velocity (see Fig. 3.8b 

and c). Therefore, it can be concluded that the Love bending shell theory leads to upper limit of 

the wave phase velocity and the transverses shear and rotary inertia have decreasing effect on the 

wave phase velocity at higher wave modes (𝑀2 and 𝑀3). 

The finding for isotropic host materials such as aluminum shell is different. For example, in 

wave mode 3 (𝑀3), three shell theories lead to similar results at 𝜉 ≤ 0.3 for a piezoelectric coupled 

aluminum shell [98]. This indicates that the shear effects on dynamics of composite shells are more 

important and significant, where for composites at lower axial wavenumbers (𝜉 > 0.04 for 𝑀1, 
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𝜉 > 0.2  for 𝑀2 , and 𝜉 > 0.1  for 𝑀3) this discrepancy on wave behaviors occurs, while for 

isotropic materials, difference between various shell theories was observed at higher axial 

wavenumbers especially for higher wave modes (for example 𝜉 > 0.3 for 𝑀3) [98].  

The effects of transverse shear and rotary inertia are important for the applications that higher 

wavenumbers (frequencies) are required such as structural health monitoring by NDE and design 

of smart composites for energy harvesting, where we need to consider their effects in modeling 

accurately.     
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Figure 3.8. Comparison of dispersion curves of a [0°/45°/90°]𝑠 laminated carbon/epoxy composite 

cylindrical shell coupled with a piezoelectric layer with 𝑟 = 0.1 and ℎ/𝑅 = 1/30 for the first three 

wave modes (𝑀1,𝑀2, and 𝑀3) at 𝑛 = 1 by different shell theories. 

The variations of the non-dimensional wave phase velocity (v) as a function of the 

circumferential wavenumber ( 𝑛 ) are plotted in Fig. 3.9 for a [0°/45°/90°]𝑠  laminated 

carbon/epoxy composite cylindrical shell integrated with a piezoelectric layer at the top surface 

with 𝑟 = 0.1, and ℎ/𝑅 = 1/30, at 𝜉 = 0.1 and 1, by different shell theories for the first three 

wave modes (𝑀1,𝑀2, and 𝑀3). At low axial wavenumber 𝜉 = 0.1; for wave mode 1 (𝑀1), based 

on the Love bending shell theory and the FSDT, the non-dimensional wave phase velocity 
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increases slightly as 𝑛 increases (from 0.6548 to 0.8099 for the Love bending shell model, and 

from 0.522 to 0.6115 for the FSDT within 0 ≤ 𝑛 ≤ 10), while for the membrane shell theory, the 

non-dimensional wave phase velocity changes smoothly with the increase of 𝑛  (from 0.1685 to 

0.1265 within 0 ≤ 𝑛 ≤ 10) (see Fig. 3.9a); for wave modes 2 and 3 (𝑀2 and 𝑀3), the three shell 

models lead to similar trends of the wave phase velocity curve and the velocity increases sharply 

with the increase of 𝑛 (from 1.3521 to 2.0086 for 𝑀2, and from 2.8231 to 3.5145 for 𝑀3 within 

0 ≤ 𝑛 ≤ 10) (see Fig. 3.9c and e). However, at high axial wavenumber 𝜉 = 1; the three shell 

models provide a smooth variation of the dispersion curve with the variation of circumferential 

wavenumber (𝑛) for all three wave modes (see Fig. 3.9b, d and f). It is clearly shown that for the 

first three wave modes, the Love bending shell theory exhibits upper limit of the non-dimensional 

wave phase velocity at both low and high axial wavenumbers (𝜉 = 0.1 and 1). However, for wave 

mode 1 (𝑀1), the membrane shell model leads to the lowest wave phase velocities among the other 

shell models at both low and high axial wavenumbers (𝜉 = 0.1 and 1); for wave mode 2 (𝑀2), at 

𝜉 = 0.1, the three shell models lead to similar wave phase velocities, and at 𝜉 = 1, the FSDT 

provides the lowest non-dimensional wave phase velocities; and finally for the third wave mode 

(𝑀3), the results of the membrane shell theory and the FSDT coincide completely when 𝜉 = 0.1, 

and at 𝜉 = 1, again the FSDT leads to the lowest estimate of the non-dimensional wave phase 

velocity. It is interesting that we observe the same discrepancy between wave phase velocities 

obtained by different shell models within various circumferential wavenumbers (𝑛) as that attained 

within various axial wavenumbers in Fig. 3.8. Therefore, we can infer that at higher axial 

wavenumbers, based on different shell theories, the variation of non-dimensional wave phase 

velocity with 𝑛 is negligible, and wave motion is independent of the circumferential direction and 
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circumferential wavenumber (𝑛), which indicates axisymmetric wave motion can be considered at 

higher axial wavenumbers.     

 

 



Chapter 3. Results and Discussions 

155 
 

 

 

  

Figure 3.9. Effect of the circumferential wavenumber (𝑛) on the non-dimensional wave phase 

velocity (v) for the first three wave modes (𝑀1,𝑀2, and 𝑀3) of a [0°/45°/90°]𝑠 laminated 

carbon/epoxy composite cylindrical shell coupled with a piezoelectric layer with 𝑟 = 0.1 and 

ℎ/𝑅 = 1/30 at 𝜉 = 0.1 and 1 by different shell theories. 
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The variations of the non-dimensional wave phase velocity (v) with the changes of the 

piezoelectric layer thickness based on the three shell theories for a [0°/45°/90°]𝑠  laminated 

carbon/epoxy composite cylindrical shell with ℎ/𝑅 = 1/30 are shown in Fig. 3.10 for the first 

three wave modes (𝑀1,𝑀2, and 𝑀3) at 𝜉 = 0.1 and 1. For the first wave mode (𝑀1), based on 

the membrane shell model, the effect of the piezoelectric layer thickness on the dispersion curve 

is not significant at both 𝜉 = 0.1 and 1; while the Love bending shell theory leads to the decrease 

of non-dimensional wave phase velocity as the thickness of the piezoelectric layer increases at 

both 𝜉 = 0.1 and 1; and the FSDT provides a slight reduction in the non-dimensional wave phase 

velocity (from 0.5639 to 0.4729) with the thickness increment at 𝜉 = 0.1, and a smooth variation 

at 𝜉 = 1. Furthermore, in wave mode 1 (𝑀1), the membrane shell model provides the lowest wave 

phase velocities and the Love bending shell model leads to the highest ones (see Fig. 3.10a and b). 

In wave mode 2 (𝑀2), the increase of the piezoelectric layer thickness leads to the non-dimensional 

wave phase velocity reduction for the three shell models at both 𝜉 = 0.1 and 1, while at 𝜉 = 0.1, 

the results of the three shell models are similar, but at 𝜉 = 1, the FSDT and the Love bending shell 

theory lead to the lowest and highest estimates of the non-dimensional wave phase velocity, 

respectively (see Fig. 3.10c and d). Finally, for the third wave mode (𝑀3), the non-dimensional 

wave phase velocity decreases with the increase of the piezoelectric layer thickness for the three 

shell models at 𝜉 = 0.1 , while at 𝜉 = 1 , the FSDT leads to a smooth variation of the non-

dimensional wave phase velocity, the membrane shell model provides a slight decrease of the non-

dimensional wave phase velocity (from 3.1915 to 2.4693) with the increase of thickness, and the 

Love bending shell theory shows a clear non-dimensional wave phase velocity decrease (from 

7.4145 to 5.762) as the piezoelectric layer thickness increases. In addition, as shown in Fig. 3.10e 

and f, for wave mode 3 (𝑀3), the Love bending shell theory presents a higher estimate of the non-
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dimensional wave phase velocity and the FSDT provides a lower estimate one at both 𝜉 = 0.1 and 

1. However, for all three wave modes, the Love bending shell theory exhibits upper limit of the 

non-dimensional wave phase velocity with the variation of the piezoelectric layer thickness at both 

low and high axial wavenumbers (𝜉 = 0.1 and 1). 

Therefore, based on the above results, we can conclude that the developed analytical model is 

able to clearly portray the effects of transverse shear and rotary inertia which are very important 

to be included in the modeling of wave propagation in multi-layered shells stacked with the 

piezoelectric layers as a moderate thick shell. At lower axial wavenumbers, the effect of transverse 

shear is not important, while at higher axial wavenumbers, its effect is much significant and the 

obtained dispersion results are completely different from those of models ignoring the shear 

effects. It is recommended that the shear effects and rotary inertia are necessary to be included in 

the mathematical modeling when higher axial wavenumbers (frequencies) are desired. By 

including shear effects, necessary shear wave modes can be attained as well as axial, 

circumferential, and radial wave modes.  
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Figure 3.10. Variation of the non-dimensional wave phase velocity (v) with the piezoelectric 

thickness ratio (𝑟) for a [0°/45°/90°]𝑠 laminated carbon/epoxy composite cylindrical shell coupled 

with a piezoelectric layer with ℎ/𝑅 = 1/30  for the first three wave modes (𝑀1,𝑀2, and 𝑀3) at 

𝑛 = 1 and 𝜉 = 0.1 and 1  by different shell theories. 
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3.2.5. Effects of CNT Volume Fraction and Distribution on Wave Dispersion 

Solutions   

Fig. 3.11 illustrates the effects of CNT volume fraction (𝑓𝑟) and distribution on the dispersion 

curves of CNT-reinforced piezoelectric composite cylindrical shells with ℎ/𝑅 =  1/30 within 

different non-dimensional axial wavenumbers (𝜉) for the first wave mode (𝑀1) at 𝑛 = 1. In this 

example, CNTs with 0°, 45°, 90°, and random orientations are considered. As shown in Fig. 3.11, 

the non-dimensional wave phase velocity increases with the increase of CNT volume fraction for 

all four CNT distributions and this increase is higher at higher axial wavenumbers because of 

increasing effect of axial wavenumber on the wave phase velocity. The effect of CNT volume 

fraction on the variation of wave phase velocity with axial wavenumber is more noticeable for 0° 

orientation of CNTs, while this effect for 90° orientation is lower than that of 45°, randomly, and 

0° oriented CNTs, respectively. For example, at 𝜉 = 1, for 0° oriented CNTs, the non-dimensional 

wave phase velocity increases from 0.8324 to 1.5703 (88.64%) with the increase of CNT volume 

fraction from  𝑓𝑟 = 0 to 𝑓𝑟 = 0.4 (see Fig. 3.11a); while for 90° orientation, the increase of CNT 

volume fraction from 0 to 0.4 leads to the increase of the non-dimensional wave phase velocity 

from 0.8636 to 0.9454 (9.47%) (see Fig. 3.11c). The CNT reinforcing effect increases the wave 

phase velocity significantly, when the non-dimensional axial wavenumber (𝜉) is larger than 0.1 

for CNT orientations of 0°, 45° and random. However, this effect is not much significant for the 

90° CNT orientation case. It means that the 90° CNT orientation will enhance the mechanical 

properties of the shell structure (such as elastic moduli) without changing the axial direction 

distributed wave behavior much at least for the lowest wave mode (𝑀1). This phenomenon can be 

explained that when only axial wavenumber is increasing and the circumferential wavenumber is 

fixed, the wave phase velocity (the rate at which the phase of the wave propagates in space) 
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increases and this increase can be magnified by reinforcing the shell with CNTs along the axial 

wave direction because of an increase in the shell stiffness in the axial direction (𝑥). This finding 

is useful for structural enhancement and health monitoring which can enhance the structure but 

still use similar condition monitoring process and equipment. Therefore, it is concluded that for 

CNTs along the direction of axial wavenumber (0° oriented CNTs), the rate of wave phase velocity 

increase with the increment of CNT volume fraction is higher than that for other orientations.   
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Figure 3.11. Effects of CNT volume fraction (𝑓𝑟) and distribution on the variation of the non-

dimensional wave phase velocity (v) with the non-dimensional axial wavenumber (𝜉) for CNT-

reinforced piezoelectric composite cylindrical shells with ℎ 𝑅⁄ = 1 30⁄  for the first wave mode 

(𝑀1) at 𝑛 = 1. 

The effect of CNT volume fraction (𝑓𝑟) on the variation of the non-dimensional wave phase 

velocity (v) with the circumferential wavenumber (𝑛) is depicted in Fig. 3.12 for piezoelectric 

composite cylindrical shells reinforced with 0° , 45° , 90° , and randomly oriented CNTs (when 

ℎ/𝑅 = 1/30) for the wave mode 3 (𝑀3) at 𝜉 = 0.01. It can be seen that the wave phase velocity 

increases sharply with the increase of circumferential wavenumber ( 𝑛 ), because when 
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circumferential wavenumber (𝑛) increases, the wave phase velocity (representing the rate at which 

the phase of the wave propagates in space) and the corresponding frequency increases. As shown 

in Fig. 3.12, the non-dimensional wave phase velocity increases with the increase of CNT volume 

fraction for all four CNT distributions and this increase is higher at higher circumferential 

wavenumbers (𝑛) because of increasing effect of circumferential wavenumber on the wave phase 

velocity. In this example, in which the axial wavenumber ( 𝜉 ) is a fixed value and the 

circumferential wavenumber (𝑛) is changing, the increase of CNT volume fraction influences more 

on the non-dimensional wave velocity when CNTs are oriented in 90° in comparison to other CNT 

orientations. As seen in Fig. 3.12, the rate of wave phase velocity increase for 0° oriented CNTs is 

lower than that for randomly, 45°, and 90° oriented CNTs, respectively. For instance, at 𝑛 = 20, 

for the 0° orientation of CNTs, by increasing the CNT volume fraction from 0 to 0.4, the non-

dimensional wave phase velocity increases from 18.57 to 23.62 (27.19%) (see Fig. 3.12a); while 

for the same situation, the non-dimensional wave phase velocity increases from 16.07 to 50.07 

(211.57%) when CNTs are oriented in 90° (see Fig. 3.12c). Therefore, it can be concluded that 

when circumferential wavenumber (𝑛) is changing with a fixed value of axial wavenumber, the 

influence of CNT enhancement on the wave phase velocity will be more significant at higher 

circumferential wavenumbers (𝑛) especially for composites reinforced with 90° oriented CNTs 

(along the direction of the circumferential wave). This phenomenon indicates that CNTs oriented 

in the same direction of the circumferential wave (90°) have more significant reinforcing effect on 

the wave phase velocity with increasing the circumferential wavenumber (𝑛). This phenomenon 

can be explained that when only circumferential wavenumber (𝑛) is increasing and the axial 

wavenumber is fixed, the wave phase velocity increases and this increase can be magnified by 
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reinforcing the shell with CNTs along the circumferential wave direction because of an increase 

in the shell stiffness in the circumferential direction (𝜃).  

Therefore, CNT volume fraction has significant effects on the wave dispersion solutions, where 

the effects of CNT volume fraction on the wave phase velocity for CNTs along the wave direction 

are relatively higher than those for other CNT orientations. On the other hand, the CNT 

reinforcement effect increasing the wave phase velocity is not much obvious with CNTs arranged 

perpendicular to the wave direction, while the composite mechanical properties (elastic moduli) 

are still enhanced by the CNTs. Therefore, it can be concluded that the effects of CNT volume 

fraction on the dispersion results are dependent on the CNT orientation and distribution.  

The findings of Figs. 3.11 and 3.12 are important in design of nanocomposites used for energy 

harvesting application to increase the wave velocity and frequency to harvest more energies by 

considering the CNT orientation in the same direction of wave motion. The results of this study 

also helps us to design nanocomposite structures with high stiffness and lower wave phase velocity 

(frequency) increase without acoustic wave calibration.    
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Figure 3.12. Effects of CNT volume fraction (𝑓𝑟) and distribution on the variation of the non-

dimensional wave phase velocity (v) with the circumferential wavenumber (𝑛) for CNT-reinforced 

piezoelectric composite cylindrical shells with ℎ 𝑅⁄ = 1 30⁄  for wave modes 3 (𝑀3) at 𝜉 = 0.01. 
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3.2.6. Effect of CNT Agglomeration on Wave Dispersion Solutions 

In this section, the effect of CNT agglomeration on wave propagation behaviors of a CNT-

reinforced piezocomposite cylindrical shell (with ℎ 𝑅⁄ = 1 30⁄ ) are investigated by changing 

agglomeration parameters 𝜇 and 𝜂. As explained before in Chapter 2, agglomeration parameter 𝜇 

stands for the volume fraction of inclusions in the composite and parameter 𝜂  represents the 

volume fraction of CNTs which are concentrated in the inclusions. 

Consider complete agglomeration of CNTs, i.e., 𝜂 = 1  and 𝜇 ≤ 𝜂 , where all CNTs are 

concentrated in spherical inclusions. In this case, we have only one agglomeration parameter 𝜇 

(the volume fraction of inclusions). The non-dimensional wave phase velocities (v) for the first 

five wave modes (𝑀1, 𝑀2, 𝑀3, 𝑀4, and 𝑀5) at 𝜉 = 0.1 and 𝑛 = 1 are plotted in Fig. 3.13 versus 

to the agglomeration parameter 𝜇 for different CNT volume fractions 𝑓𝑟 . With the increase of 

parameter 𝜇 (increasing the volume fraction of inclusions), the velocity also increases where for 

uniformly dispersion of CNTs in the piezocomposite, i.e., 𝜇 = 1, the velocity has the maximum 

value. This phenomenon can be explained that in the presence of a complete CNT agglomeration 

(𝜂 = 1), an increase of the volume fraction of inclusions (𝜇 ) leads to the increase of CNT 

uniformity in the composite and consequently enhances the effective elastic properties and 

increases the wave phase velocities. By decreasing the agglomeration parameter 𝜇 from unity, the 

wave phase velocity decreases very rapidly. The effect of agglomeration parameter 𝜇 on the wave 

phase velocity is more noticeable at higher CNT volume fraction (𝑓𝑟), because at higher 𝑓𝑟, the 

parameter 𝜇 influences more on the rate of uniformity of CNTs in the matrix and the effective 

elastic properties. With lower CNT volume fraction (𝑓𝑟 = 0.1), the effect of inclusion volume 

fraction (𝜇) variation on the wave phase velocity change is not much significant.  
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To describe generally the agglomeration of CNTs, both parameters 𝜇 and 𝜂 are needed. In the 

case 𝜇 ≤ 𝜂 and 𝜂 ≠ 1, we have partial CNT agglomeration in the piezocomposite. Under different 

CNT volume fractions (𝑓𝑟), the non-dimensional wave phase velocities (v) for the first five wave 

modes (𝑀1, 𝑀2, 𝑀3, 𝑀4, and 𝑀5) at 𝜉 = 0.1 and 𝑛 = 1 versus the agglomeration parameter 𝜂 

when 𝜇 = 0.5 are displayed in Fig. 3.14. It is observed that an increase in the agglomeration 

parameter 𝜂 (increasing the amount of CNTs concentrated in the inclusions) leads to the rapid 

decrease of the wave phase velocity of CNT-reinforced piezocomposite shells. In the case 𝜇 =

 𝜂 = 0.5, where CNTs are dispersed uniformly in the piezocomposite, maximum value of the 

velocity is obtained. It is seen that the decrease of the wave phase velocity with the increase of 

parameter 𝜂 is more observable at higher CNT volume fraction. This phenomenon is explained 

that the increase of agglomeration parameter 𝜂 leads to an increase of nanotube agglomeration by 

the increase of amount of CNTs in the inclusions and consequently leading to the decrease of 

effective elastic properties and corresponding wave phase velocities. It is concluded from Figs. 

3.13 and 3.14 that the CNT agglomeration reduces the wave phase velocities of CNT-reinforced 

piezocomposites because of its weakening influence on the effective elastic properties.  

A comparison on the non-dimensional wave velocities (v) obtained based on different 

distributions of CNTs in a piezocomposite cylindrical shell within various non-dimensional axial 

wavenumbers (𝜉) and circumferential wavenumbers (𝑛), respectively, is shown in Tables 3.7 and 

3.8. The results indicate that with 𝜇 = 𝜂 (uniformly dispersed CNTs), the wave phase velocities 

are obtained the same as those calculated for randomly oriented CNTs, while by increasing the 

rate of agglomeration, the wave phase velocities decrease where the lowest velocities are attained 

for the complete agglomeration of CNTs within all considered non-dimensional axial 

wavenumbers (𝜉) and circumferential wavenumbers (𝑛).  



Chapter 3. Results and Discussions 

167 
 

Therefore, it can be concluded that agglomeration of CNTs in the nanocomposites leads to the 

decrease of the wave phase velocities because of a decrease in the effective elastic properties. 

Therefore, it is very important to have minimum agglomeration of CNTs in composites to reduce 

its effect on structural dynamics. 

The developed analytical modeling can be useful to estimate the rate of agglomeration of CNTs 

in the composites after fabrication process by comparing the results of NDE and the results of 

analytical approach presented in this study. Due to the possibility of CNT agglomeration (because 

of low bending stiffness of CNTs) in the matrix during manufacturing process, we need to 

approximate the rate of agglomeration and understand its effect on the structural dynamics clearly.  
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Figure 3.13. Variation of the non-dimensional wave phase velocity (v) with the agglomeration 

parameter 𝜇 (when 𝜂 = 1) for a piezocomposite cylindrical shell with ℎ 𝑅⁄ = 1 30⁄  for the first five 

wave modes (𝑀1, 𝑀2, 𝑀3, 𝑀4, and 𝑀5) at 𝜉 = 0.1 and 𝑛 = 1 for various CNT volume fractions 

(𝑓𝑟). 
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Figure 3.14. Variation of the non-dimensional wave phase velocity (v) with the agglomeration 

parameter 𝜂 (when 𝜇 = 0.5) for a piezocomposite cylindrical shell with ℎ 𝑅⁄ = 1 30⁄  for the first 

five wave modes (𝑀1, 𝑀2, 𝑀3, 𝑀4, and 𝑀5) at 𝜉 = 0.1 and 𝑛 = 1 for various CNT volume 

fractions (𝑓𝑟). 
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Table 3.7. Comparison of non-dimensional wave phase velocities (v) for various distributions of 

CNTs in a piezocomposite cylindrical shell within different non-dimensional axial wavenumbers 

(𝜉) for the first five wave modes (𝑀1, 𝑀2, 𝑀3, 𝑀4, and 𝑀5) at 𝑛 = 1 when 𝑓𝑟 = 0.4 and  ℎ 𝑅⁄ =

1 30⁄ . 

Wave mode CNT distribution 
Non-dimensional axial wavenumber (𝜉) 

0.2 0.4 0.6 0.8 1 

M1 Randomly oriented 0.8962 1.2771 1.4388 1.5176 1.5602 

Uniformly dispersed  

(𝜇 = 𝜂 = 1) 

0.8962 1.2771 1.4388 1.5176 1.5602 

Partially agglomerated 

(𝜇 = 0.5, 𝜂 = 0.75) 
0.8806 1.2545 1.4137 1.4904 1.5326 

Completely agglomerated 

(𝜇 = 0.5, 𝜂 = 1) 
0.8159 1.1617 1.3083 1.3795 1.4182 

       

M2 Randomly oriented 1.8117 1.8097 1.8097 1.8092 1.8092 

Uniformly dispersed 

(𝜇 = 𝜂 = 1) 
1.8117 1.8097 1.8097 1.8092 1.8092 

Partially agglomerated 

(𝜇 = 0.5, 𝜂 = 0.75) 
1.7796 1.7775 1.777 1.777 1.777 

Completely agglomerated 

(𝜇 = 0.5, 𝜂 = 1) 
1.646 1.644 1.644 1.6435 1.6435 

       

M3 Randomly oriented 3.0655 2.9079 2.3613 2.1374 2.0255 

Uniformly dispersed 

(𝜇 = 𝜂 = 1) 
3.0655 2.9079 2.3613 2.1374 2.0255 

Partially agglomerated 

(𝜇 = 0.5, 𝜂 = 0.75) 
3.0128 2.8562 2.3196 2.0993 1.9894 

Completely agglomerated 

(𝜇 = 0.5, 𝜂 = 1) 
2.7954 2.6414 2.1455 1.9417 1.8398 

       

M4 Randomly oriented 4.8995 3.065 3.065 3.0645 3.0645 

Uniformly dispersed  

(𝜇 = 𝜂 = 1) 
4.8995 3.065 3.065 3.0645 3.0645 

Partially agglomerated 

(𝜇 = 0.5, 𝜂 = 0.75) 
4.8122 3.0118 3.0118 3.0118 3.0118 

Completely agglomerated 

(𝜇 = 0.5, 𝜂 = 1) 
4.4508 2.7944 2.7944 2.7944 2.7944 

       

M5 Randomly oriented 5.6554 3.9494 3.5036 3.322 3.2306 

Uniformly dispersed  

(𝜇 = 𝜂 = 1) 
5.6554 3.9494 3.5036 3.322 3.2306 

Partially agglomerated 

(𝜇 = 0.5, 𝜂 = 0.75) 
5.555 3.8796 3.4424 3.2637 3.1744 

Completely agglomerated 

(𝜇 = 0.5, 𝜂 = 1) 
5.1414 3.5935 3.1894 3.0253 2.9425 
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Table 3.8. Comparison of non-dimensional wave phase velocities (v) for various distributions of 

CNTs in a piezocomposite cylindrical shell within different circumferential wavenumbers (𝑛) for 

the first five wave modes (𝑀1, 𝑀2, 𝑀3, 𝑀4, and 𝑀5) at ξ = 0.1 when 𝑓𝑟 = 0.4 and  ℎ 𝑅⁄ = 1 30⁄ . 

Wave mode CNT distribution 
Circumferential wavenumber (𝑛) 

0 2 4 6 8 10 

M1 Randomly oriented 0.5473 0.5509 0.5629 0.5845 0.6176 0.6623 

Uniformly dispersed  

(𝜇 = 𝜂 = 1) 

0.5473 0.5509 0.5629 0.5845 0.6176 0.6623 

Partially agglomerated  

(𝜇 = 0.5, 𝜂 = 0.75) 
0.5378 0.5413 0.5529 0.5744 0.6071 0.6507 

Completely agglomerated 

(𝜇 = 0.5, 𝜂 = 1) 
0.4997 0.5027 0.5132 0.5328 0.5629 0.6031 

        

M2 Randomly oriented 1.8092 1.8478 1.9492 2.0817 2.2112 2.3201 

Uniformly dispersed  

(𝜇 = 𝜂 = 1) 
1.8092 1.8478 1.9492 2.0817 2.2112 2.3201 

Partially agglomerated 

(𝜇 = 0.5, 𝜂 = 0.75) 
1.777 1.8157 1.9181 2.0506 2.1796 2.287 

Completely agglomerated 

(𝜇 = 0.5, 𝜂 = 1) 
1.6435 1.6837 1.7891 1.9236 2.0506 2.151 

        

M3 Randomly oriented 3.065 3.078 3.1217 3.2055 3.34 3.5267 

Uniformly dispersed  

(𝜇 = 𝜂 = 1) 
3.065 3.078 3.1217 3.2055 3.34 3.5267 

Partially agglomerated 

(𝜇 = 0.5, 𝜂 = 0.75) 
3.0123 3.0248 3.0675 3.1498 3.2828 3.4685 

Completely agglomerated 

(𝜇 = 0.5, 𝜂 = 1) 
2.7944 2.806 2.8446 2.9214 3.0489 3.2301 

        

M4 Randomly oriented 9.2838 9.2858 9.2918 9.3013 9.3154 9.3329 

Uniformly dispersed 

(𝜇 = 𝜂 = 1) 
9.2838 9.2858 9.2918 9.3013 9.3154 9.3329 

Partially agglomerated 

(𝜇 = 0.5, 𝜂 = 0.75) 
9.1181 9.1201 9.1261 9.1357 9.1492 9.1668 

Completely agglomerated 

(𝜇 = 0.5, 𝜂 = 1) 
8.4335 8.4355 8.4405 8.4496 8.4621 8.4782 

        

M5 Randomly oriented 9.7305 9.737 9.7571 9.7902 9.8364 9.8951 

Uniformly dispersed  

(𝜇 = 𝜂 = 1) 
9.7305 9.737 9.7571 9.7902 9.8364 9.8951 

Partially agglomerated  

(𝜇 = 0.5, 𝜂 = 0.75) 
9.5573 9.5638 9.5834 9.616 9.6617 9.7194 

Completely agglomerated 

(𝜇 = 0.5, 𝜂 = 1) 
8.8421 8.8481 8.8662 8.8963 8.9384 8.9921 
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3.2.7. Effect of CNT Orientation on Wave Dispersion Solutions 

To illustrate the effect of CNT orientation on the wave phase velocity variation more clearly, 

the non-dimensional wave phase velocities (v) for the third and the fifth wave modes (𝑀3 and 𝑀5) 

are displayed in Fig. 3.15 for a single layer of CNT-reinforced composite cylindrical shell coupled 

with the piezoelectric layers at the top and bottom surfaces with different CNT orientations 𝛽 (in 

degree) for fixed values of 𝑓𝑟 = 0.6, 𝑟 = 0.1, and ℎ/𝑅 = 1/30, at 𝜉 = 0.01, 0.1, 1 and 𝑛 = 0, 1,

2, 3, 4, 5. The material properties of polymer used as the matrix phase are assumed to be 𝜌𝑚 =

1200 kg m3⁄ , 𝑣𝑚 = 0.34, and E𝑚 = 2.61 and the material properties of PZT-4 are given in Table 

2.2. It is obvious that at 𝑛 = 0, for both wave modes 𝑀3 and 𝑀5 at 𝜉 = 0.01, 0.1, 1, the wave 

phase velocity for [𝛽°] orientation is the same as that for [−𝛽°] orientation, indicating the non-

dimensional wave phase velocity curves are symmetric with respect to 0° orientation. While, at 

𝑛 = 1, 2, 3, 4 and 5, the non-dimensional wave phase velocity curves are no longer symmetric in 

respect to 0° orientation, especially at 𝜉 = 0.01, and 0.1, where the wave phase velocity for [𝛽°] 

orientation of CNTs differs from that for [−𝛽°] orientation, but for [−90°] and [90°] orientations, 

the wave phase velocities are the same. This non symmetry is more noticeable at 𝜉 = 0.01, and 

0.1 , and the difference between the wave phase velocities for [𝛽°]  orientation and [−𝛽°] 

orientation at higher 𝑛 is more significant than this difference at lower 𝑛 (see Fig. 3.15a-d). It can 

be seen that at 𝜉 = 1, this non-symmetry is negligible, and also there is no significant difference 

between the non-dimensional wave phase velocities with different circumferential wavenumbers 

(𝑛) (see Fig. 3.15e and f). Therefore, it can be concluded that at lower axial wavenumbers, 

circumferential wavenumber with 𝑛 > 0  breaks the symmetry of the wave phase velocities 

corresponding to the negative and the positive CNT orientations. While at higher axial 

wavenumbers disregarding to the circumferential wavenumber, [−𝛽°] and [𝛽°] orientations give 
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approximately the same wave phase velocities. This phenomenon can be explained that when there 

is an axisymmetric wave propagation in the shell independent of the circumferential direction 𝜃  

(when 𝑛 = 0), we have only axial wave motion in the shell leading to symmetric wave responses 

for symmetric fiber angles with respect to 0°. Considering circumferential wave propagation as 

well as axial wave motion for lower axial wavenumbers provides an unbalance motion of the shell 

particles leading to asymmetry wave responses for [𝛽°] and [−𝛽°] fiber angles where at lower 

axial wavenumbers (long wavelengths) and higher circumferential wavenumbers ( 𝑛 ), this 

asymmetry can become more significant. Higher axial wavenumbers may neutralize the effect of 

circumferential wave motion where even for higher circumferential wavenumbers, the wave 

responses are still symmetric with respect to 0°. This observation is in agreement with this fact that 

for 𝑛 > 0, asymmetric wave response is obtained [3].        

This result illustrates the importance of taking into consideration the CNT orientation in order 

to understand and/or optimize the dynamic response of smart laminated CNT-reinforced composite 

cylindrical shells for different applications. Hence, for applications that higher axial wavenumbers 

(or frequencies) are required or excited such as energy harvesting and structural health monitoring 

by NDE, [𝛽°] or [−𝛽°] orientation can be considered in design of smart composite shells leading 

to similar wave behaviors disregarding to the circumferential wavenumber (𝑛), otherwise, for the 

applications with lower wavenumbers (long wavelength) such as vibration analysis, the fiber 

orientation should be carefully chosen. 
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Figure 3.15. Effect of CNT orientation (𝛽°) on the non-dimensional wave phase velocity (v) for the 

third and the fifth wave modes (𝑀3 and 𝑀5) of a single layer of CNT-reinforced composite 

cylindrical shell coupled with the piezoelectric layers at the top and bottom surfaces with 𝑟 = 0.1, 

𝑓𝑟 = 0.6,  and ℎ/𝑅 = 1/30 at 𝜉 = 0.01, 0.1, 1, and 𝑛 = 0, 1, 2, 3, 4, 5. 
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3.2.8. Effect of Composite Material Properties on Wave Dispersion Solutions 

Fig. 3.16 shows the effect of material properties of the host substrate laminated composite 

cylindrical shell on the dispersion curves. We consider a piezoelectric coupled laminated 

composite cylindrical shell with [0°/45°/90°]𝑠  stacking sequence with CNT/epoxy, 

carbon/epoxy, and E-glass/epoxy as the core material of the host substrate laminated composite 

shell for fixed values of 𝑟 = 0.1 and ℎ/𝑅 = 1/30. The material properties of epoxy (3501-6) 

matrix are assumed to be 𝜌𝑚 = 1200 kg 𝑚3⁄ , 𝑣𝑚 = 0.35, and 𝐸𝑚 = 4.3𝐺𝑃𝑎 [6]. CNT volume 

fraction in the polymer matrix is considered 𝑓𝑟 = 0.6, while for carbon/epoxy and E-glass/epoxy 

unidirectional composites, volume fractions of carbon and E-glass fibers are considered 0.63 and 

0.55, respectively [6]. Material properties of carbon/epoxy and E-glass/epoxy unidirectional 

composites are given in Table 2.1 and the material properties of PZT-4 are given in Table 2.2. The 

non-dimensional wave phase velocity (v) curves versus the non-dimensional axial wavenumbers 

(𝜉) are obtained for the first five wave modes (𝑀1,𝑀2, 𝑀3, 𝑀4, and 𝑀5) at 𝑛 = 1. As shown in 

Fig. 3.16, for all wave modes, CNT and E-glass fibers lead to the highest and the lowest wave 

phase velocities, respectively. This discrepancy in wave propagation results can be explained by 

different material properties of CNT, carbon, and E-glass reinforcing fibers dispersed in the epoxy 

matrix, where a CNT/epoxy, due to higher effective elastic moduli and strength than the 

carbon/epoxy and the E-glass/epoxy, leads to higher wave phase velocities. This is kind of 

common sense that stiffer materials lead to higher wave phase velocities, but the phenomenon is 

not noticed for all cases, for example, for 𝑀1 at higher axial wavenumbers, and for 𝑀3 at specific 

axial wavenumber 0.2. It is noted that for 𝑀3, the carbon and E-glass fibers lead to roughly the 

same wave phase velocities with axial wavenumber higher than 0.2, while the CNT fiber also leads 

to very close wave phase velocity at axial wavenumber 0.2. In addition, for wave mode 2, the CNT 
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fiber reinforced composite shows more significant wave phase velocity drop at the axial 

wavenumber changing from 0.2 to 0.4.  

In summary, considering CNTs as the reinforcement phase leads to higher wave phase 

velocities than the carbon and E-glass fibers, which is related to higher specific stiffness and 

strength of CNTs, but researchers and designers should be careful with exceptions at some specific 

wave modes and wavenumbers. 
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Figure 3.16. Effect of material properties of the host substrate laminated shell on the dispersion 

curves of a [0°/45°/90°]𝑠 laminated composite cylindrical shell coupled with the piezoelectric 

layers at the top and bottom surfaces with 𝑟 = 0.1, 𝑓𝑟 = 0.6, and ℎ/𝑅 = 1/30 for the first five 

modes (𝑀1, 𝑀2, 𝑀3, 𝑀4, and 𝑀5) at 𝑛 =  1. 
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3.2.9. Effects of Hygrothermal Environmental Conditions on Wave Dispersion 

Solutions  

The effects of hygrothermal environmental conditions on the variation of the non-dimensional 

wave phase velocity (v) with the non-dimensional axial wavenumber (𝜉) and the circumferential 

wavenumber (𝑛) are illustrated, respectively, in Tables 3.9 and 3.10 for the first five wave modes 

(𝑀1,𝑀2, 𝑀3, 𝑀4, and 𝑀5). For these examples, a [0°/45°/90°]𝑠  laminated CNT-reinforced 

composite cylindrical shell coupled with the piezoelectric layers at the top and bottom surfaces 

with 𝑓𝑟 = 0.6 , 𝑟 = 0.1 , and ℎ/𝑅 =  1/30  is considered. Seven sets of hygrothermal 

environmental conditions, i.e. (∆𝑇(𝐾), ∆𝐶(%)) = (0, 0),

(0, 2), (0, 4), (200, 0), (200, 2), (400, 0), and (400, 4), are considered. It is observed that the non-

dimensional wave phase velocity decreases with the increase of temperature and/or moisture for 

various non-dimensional axial wavenumbers (𝜉 ) and circumferential wavenumbers (𝑛). This 

phenomenon can be explained by the temperature- and moisture-dependant material properties of 

the CNT reinforcing fiber and the polymer matrix. The increase of temperature/moisture reduces 

the elastic moduli and degrades the strength of the composites. It can also be seen that the effect 

of temperature change on the wave phase velocity is much more significant than the effect of 

moisture change. The results show that hygrothermal environmental conditions have more effect 

on the reduction of the wave phase velocity based on the variation of the axial wavenumber (𝜉) 

than the variation of the circumferential wavenumber (𝑛).    

Table 3.11 describes the effects of stacking sequence of the host laminated CNT-reinforced 

composite cylindrical shell and hygrothermal environmental conditions on the non-dimensional 

wave phase velocity (v) for various non-dimensional axial wavenumbers (𝜉) for wave modes 3 

and 5 (𝑀3 and 𝑀5) at 𝑛 = 1. Three sets of stacking sequences, i.e.  [45°/−45°]𝑠, [0
°/90°]𝑠, and 
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[0°/45°/90°]𝑠  are considered for the host laminated CNT-reinforced composite cylindrical shell 

coupled with the piezoelectric layers at the top and bottom surfaces with 𝑓𝑟 = 0.6, 𝑟 = 0.1, and 

ℎ/𝑅 =  1/30. The hygrothermal environmental conditions are taken to be (∆𝑇(𝐾), ∆𝐶(%)) =

(0, 0), (200, 2), and (400, 4). It can be seen that for all three stacking sequences, the increase of 

temperature and moisture leads to the decrease of the non-dimensional wave phase velocities for 

different non-dimensional axial wavenumbers. For all three sets of hygrothermal environmental 

conditions, for wave mode 3 (𝑀3), the cross-ply stacking sequence [0°/90°]𝑠 and the angle-ply 

stacking sequence [45°/−45°]𝑠 lead to the lowest and the highest non-dimensional wave phase 

velocities, respectively, while for the fifth wave mode (𝑀5), the [45°/−45°]𝑠  and [0°/90°]𝑠 

stacking sequences provide the lowest and the highest non-dimensional wave phase velocities, 

respectively. However, for both wave modes 3 and 5, the non-dimensional wave phase velocities 

of the [0°/45°/90°]𝑠  stacking sequence are between those of the [45°/−45°]𝑠  and [0°/90°]𝑠 

stacking sequences. So, the effect of stacking sequence on wave propagation characteristics of 

smart laminated composite shells is noticeable.  

Therefore, the analytical model developed in section 2.5 is capable of capturing the effects of 

hygrothermal environmental conditions, where it indicates that increasing the temperature or the 

moisture leads to the decrease of the wave phase velocity, due to the degrading in the material 

stiffness and strength. The developed analytical model, considering the effects of hygrothermal 

environmental conditions, can be useful in design of smart laminated nanocomposites for energy 

harvesting application exposed to unexpected environmental conditions, and also for structural 

health monitoring application to compare the trends of wave dispersion curves for 

temperature/moisture variation with the dispersion curve trends obtained by the analytical model 

to detect any damage in the structure.     
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Table 3.9. Effects of temperature/moisture changes on the variation of the non-dimensional wave 

phase velocity (v) with the non-dimensional axial wavenumber (𝜉) for a [0°/45°/90°]𝑠 laminated 

CNT-reinforced composite cylindrical shell coupled with the piezoelectric layers at the top and 

bottom surfaces (𝑛 = 1, 𝑓𝑟 = 0.6, 𝑟 = 0.1, ℎ 𝑅⁄ = 1 30⁄ ). 

Wave mode ∆𝑇(𝐾), ∆𝐶(%) 
Non-dimensional axial wavenumber (𝜉) 

0.2 0.4 0.6 0.8 1 

M1 (0,0) 0.8142 0.8422 0.8481 0.8502 0.8513 

(0,2) 0.8136 0.8416 0.8476 0.8497 0.8508 

(0,4) 0.8136 0.8416 0.8476 0.8497 0.8508 

(200,0) 0.7829 0.8061 0.8109 0.8125 0.8136 

(200,2) 0.7829 0.8061 0.8109 0.8125 0.8136 

(400,0) 0.7495 0.7673 0.7711 0.7727 0.7732 

(400,4) 0.7490 0.7668 0.7705 0.7721 0.7727 

 

M2 (0,0) 2.3256 1.8904 1.7611 1.7126 1.6895 

(0,2) 2.3256 1.8904 1.7606 1.7126 1.6895 

(0,4) 2.3250 1.8898 1.7606 1.7126 1.6895 

(200,0) 2.3089 1.8629 1.7428 1.6981 1.6771 

(200,2) 2.3089 1.8629 1.7428 1.6981 1.6771 

(400,0) 2.2917 1.8349 1.7245 1.6835 1.6641 

(400,4) 2.2917 1.8349 1.7245 1.6835 1.6641 

 

M3 (0,0) 2.4689 2.3019 2.2949 2.2911 2.2890 

(0,2) 2.4683 2.3019 2.2943 2.2911 2.2890 

(0,4) 2.4678 2.3019 2.2943 2.2911 2.2890 

(200,0) 2.4042 2.2852 2.2782 2.2744 2.2723 

(200,2) 2.4042 2.2852 2.2776 2.2744 2.2723 

(400,0) 2.3369 2.2685 2.2610 2.2572 2.2550 

(400,4) 2.3364 2.2685 2.2604 2.2572 2.2550 

 

M4 (0,0) 5.2483 4.9913 4.9412 4.9229 4.9143 

(0,2) 5.2477 4.9913 4.9412 4.9229 4.9143 

(0,4) 5.2477 4.9913 4.9407 4.9229 4.9143 

(200,0) 5.2176 4.9822 4.9358 4.9197 4.9116 

(200,2) 5.2176 4.9822 4.9358 4.9197 4.9116 

(400,0) 5.1863 4.9725 4.9310 4.9159 4.9089 

(400,4) 5.1858 4.9725 4.9310 4.9159 4.9089 

 

M5 (0,0) 5.6021 5.5784 5.5704 5.5666 5.5644 

(0,2) 5.6021 5.5784 5.5704 5.5666 5.5644 

(0,4) 5.6021 5.5784 5.5704 5.5666 5.5644 

(200,0) 5.5930 5.5693 5.5617 5.5574 5.5553 

(200,2) 5.5930 5.5693 5.5612 5.5574 5.5553 

(400,0) 5.5838 5.5601 5.5521 5.5483 5.5461 

(400,4) 5.5838 5.5601 5.5521 5.5483 5.5456 



Chapter 3. Results and Discussions 

181 
 

Table 3.10. Effects of temperature/moisture changes on the variation of the non-dimensional wave 

phase velocity (v) with the circumferential wavenumber (𝑛) for a [0°/45°/90°]𝑠 laminated CNT-

reinforced composite cylindrical shell coupled with the piezoelectric layers at the top and bottom 

surfaces (𝜉 = 0.1, 𝑓𝑟 = 0.6, 𝑟 = 0.1, ℎ 𝑅⁄ = 1 30⁄ ). 

Wave mode ∆𝑇(𝐾), ∆𝐶(%) 
Circumferential wavenumber (𝑛) 

0 2 4 6 8 10 

M1 (0,0) 0.7533 0.7452 0.7468 0.7608 0.7883 0.8271 

(0,2) 0.7533 0.7452 0.7468 0.7608 0.7883 0.8271 

(0,4) 0.7533 0.7452 0.7463 0.7608 0.7878 0.8265 

(200,0) 0.7350 0.7258 0.7264 0.7393 0.7646 0.8018 

(200,2) 0.7350 0.7258 0.7264 0.7393 0.7646 0.8018 

(400,0) 0.71450 0.7043 0.7032 0.7145 0.7387 0.7738 

(400,4) 0.71450 0.7043 0.7027 0.7145 0.7382 0.7732 

 

M2 (0,0) 2.2841 2.5157 2.8475 3.2224 3.6022 3.9663 

(0,2) 2.2836 2.5157 2.8475 3.2224 3.6022 3.9663 

(0,4) 2.2836 2.5157 2.8475 3.2224 3.6022 3.9663 

(200,0) 2.2669 2.5017 2.8357 3.2122 3.5925 3.9566 

(200,2) 2.2669 2.5017 2.8357 3.2117 3.5925 3.9566 

(400,0) 2.2496 2.4872 2.8233 3.2014 3.5828 3.9458 

(400,4) 2.2496 2.4872 2.8233 3.2014 3.5828 3.9458 

 

M3 (0,0) 3.9884 4.0347 4.0972 4.1726 4.2593 4.3552 

(0,2) 3.9878 4.0342 4.0966 4.1721 4.2588 4.3547 

(0,4) 3.9873 4.0336 4.0956 4.1715 4.2582 4.3541 

(200,0) 3.8397 3.8887 3.9539 4.0325 4.1225 4.2216 

(200,2) 3.8392 3.8882 3.9534 4.032 4.1220 4.2205 

(400,0) 3.6803 3.7320 3.8004 3.8823 3.9760 4.0794 

(400,4) 3.6787 3.7309 3.7988 3.8812 3.9744 4.0783 

 

M4 (0,0) 5.5558 5.7578 6.0029 6.2954 6.4182 6.5259 

(0,2) 5.5558 5.7578 6.0029 6.2954 6.4177 6.5254 

(0,4) 5.5558 5.7578 6.0024 6.2948 6.4177 6.5248 

(200,0) 5.5467 5.7492 5.9937 6.2259 6.3202 6.4284 

(200,2) 5.5467 5.7492 5.9937 6.2254 6.3196 6.4279 

(400,0) 5.5375 5.7400 5.9846 6.1241 6.2184 6.3272 

(400,4) 5.5370 5.7400 5.9846 6.1230 6.2173 6.3261 

 

M5 (0,0) 6.1268 6.1801 6.2464 6.3277 6.6460 7.0500 

(0,2) 6.1262 6.1796 6.2458 6.3272 6.6460 7.0500 

(0,4) 6.1257 6.1790 6.2453 6.3266 6.6460 7.0495 

(200,0) 6.0271 6.0805 6.1473 6.2889 6.6369 7.0398 

(200,2) 6.0266 6.0799 6.1467 6.2889 6.6369 7.0398 

(400,0) 5.9232 5.9770 6.0444 6.2798 6.6272 7.0301 

(400,4) 5.9221 5.9760 6.0438 6.2792 6.6272 7.0295 

 



Chapter 3. Results and Discussions 

182 
 

Table 3.11. Effects of temperature/moisture changes and stacking sequence on the variation of the 

non-dimensional wave phase velocity (v) with the non-dimensional axial wavenumber (𝜉) for a 

laminated CNT-reinforced composite cylindrical shell coupled with the piezoelectric layers at the 

top and bottom surfaces (𝑛 = 1, 𝑓𝑟 = 0.6, 𝑟 = 0.1, ℎ 𝑅⁄ = 1 30⁄ ). 

Wave mode ∆𝑇(𝐾), ∆𝐶(%) Stacking sequence 
Non-dimensional axial wavenumber (𝜉) 

0.2 0.4 0.6 0.8 1 

M3 (0,0) [45°/−45°]𝑠 4.0783 3.9087 3.8295 3.7993 3.7837 

[0°/90°]𝑠 2.1058 1.3948 1.2181 1.1503 1.1174 

[0°/45°/90°]𝑠 2.4689 2.3019 2.2949 2.2911 2.2890 

  

(200,2) [45°/−45°]𝑠 4.0729 3.8952 3.8219 3.7928 3.7783 

[0°/90°]𝑠 2.0266 1.3544 1.1891 1.1255 1.0948 

[0°/45°/90°]𝑠 2.4042 2.2852 2.2776 2.2744 2.2723 

  

(400,4) [45°/−45°]𝑠 4.0665 3.8817 3.8139 3.7869 3.7729 

[0°/90°]𝑠 1.9426 1.3124 1.1589 1.1002 1.0716 

[0°/45°/90°]𝑠 2.3364 2.2685 2.2604 2.2572 2.2550 

  

M5 (0,0) [45°/−45°]𝑠 4.4144 4.3719 4.3627 4.3590 4.3573 

[0°/90°]𝑠 5.9194 5.9194 5.9194 5.9194 5.9194 

[0°/45°/90°]𝑠 5.6021 5.5784 5.5704 5.5666 5.5644 

  

(200,2) [45°/−45°]𝑠 4.3994 4.3552 4.345 4.3417 4.3396 

[0°/90°]𝑠 5.9119 5.9119 5.9119 5.9119 5.9119 

[0°/45°/90°]𝑠 5.5930 5.5693 5.5612 5.5574 5.5553 

  

(400,4) [45°/−45°]𝑠 4.3843 4.3380 4.3277 4.3234 4.3218 

[0°/90°]𝑠 5.9043 5.9043 5.9043 5.9043 5.9043 

[0°/45°/90°]𝑠 5.5838 5.5601 5.5521 5.5483 5.5456 
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3.2.10. Effect of Shell Geometry on Wave Dispersion Solutions 

The effects of thickness to radius ratio of the host substrate laminated composite shell (ℎ/𝑅) on 

the variation of the non-dimensional wave phase velocity (v) with the non-dimensional axial 

wavenumber (ξ) and the circumferential wavenumber (𝑛) are described, respectively, in Figs. 3.17 

and 3.18 for a [0°/45°/90°]𝑠 laminated CNT-reinforced composite cylindrical shell coupled with 

the piezoelectric layers at the top and bottom surfaces with 𝑓𝑟 = 0.6 and 𝑟 = 0.1 when ∆𝑇 =

200𝐾 and ∆𝐶 = 2%. 

 Fig. 3.17 displays the non-dimensional wave phase velocity curves versus the non-dimensional 

axial wavenumbers (𝜉) for the first five wave modes (𝑀1,𝑀2, 𝑀3, 𝑀4, and 𝑀5) at 𝑛 = 1 for 

different ℎ/𝑅 ratios. It is observed that at lower non-dimensional axial wavenumbers (𝜉), higher 

ℎ/𝑅 ratio leads to higher non-dimensional wave phase velocity, while this effect is not much 

significant at higher 𝜉 and higher wave modes (see Fig. 3.17). 

 Fig. 3.18 shows the non-dimensional wave phase velocity curves versus the circumferential 

wavenumbers (𝑛) for wave modes 2 and 5 (𝑀2 and 𝑀5) at 𝜉 = 0.01, 0.1, and 1 for different ℎ/𝑅 

ratios. It can be seen that thicker shells (with higher ℎ/𝑅 ratio) lead to higher wave phase velocities 

particularly at higher circumferential wavenumbers. This increase in the wave phase velocities 

with the increase of ℎ/𝑅 ratio is because of an increase in the stiffness of the shell as a result of 

increase in the shell thickness, and this effect is more significant at higher circumferential 

wavenumbers due to increasing effect of circumferential wavenumber on the wave phase velocity. 

Furthermore, it is shown that the increment rate of the wave phase velocity with the increase of 

the circumferential wavenumber (𝑛) at higher ℎ 𝑅⁄  ratio is higher than that at lower ℎ 𝑅⁄  ratio. In 

addition, this variation at lower non-dimensional axial wavenumbers (𝜉 = 0.01and 0.1 ) is more 

significant (see Fig. 3.18). 
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Another interesting finding is that at higher axial wavenumbers, axisymmetric wave motion 

independent of the circumferential direction (𝜃) and the circumferential wavenumber (𝑛) can be 

considered, while at lower axial wavenumbers the increase of circumferential wavenumber leads 

to a sharp increase in wave phase velocities (see Fig. 3.18). 

Therefore, based on the presented methodology in this research, we are also able to obtain the 

influence of shell geometry on structural dynamics by changing thickness to radius ratio (ℎ/𝑅) of 

the shell, where the results express that thicker shells with higher ℎ/𝑅 ratio lead to higher wave 

phase velocities especially at lower axial wavenumbers and higher circumferential wavenumbers. 
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Figure 3.17. Effect of thickness to radius ratio of the host shell (ℎ 𝑅⁄ ) on the dispersion curves of a 

[0°/45°/90°]𝑠 laminated CNT-reinforced composite cylindrical shell coupled with the piezoelectric 

layers at the top and bottom surfaces with 𝑟 = 0.1 and 𝑓𝑟 = 0.6 for the first five wave modes (𝑀1, 

𝑀2, 𝑀3, 𝑀4, and 𝑀5) at 𝑛 = 1 when ∆𝑇 = 200𝐾 and ∆𝐶 = 2%. 
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Figure 3.18. Effect of thickness to radius ratio of the host shell (ℎ 𝑅⁄ ) on the variation of the non-

dimensional phase velocity (v) with the circumferential wavenumber (𝑛) for a [0°/45°/90°]𝑠 

laminated CNT-reinforced composite cylindrical shell coupled with the piezoelectric layers at the 

top and bottom surfaces with 𝑟 = 0.1 and 𝑓𝑟 = 0.6 for wave modes 2 and 5 (𝑀2 and 𝑀5) at 𝜉 =

0.01, 0.1, and 1 when ∆𝑇 = 200𝐾 and ∆𝐶 = 2%. 

0

7

14

21

28

35

0 4 8 1 2 1 6 2 0

v

n

h/R = 1/30

h/R = 1/60

h/R = 1/100

h/R = 1/200

𝑀2
ξ = 0.01

(a)

30

40

50

60

70

80

0 4 8 1 2 1 6 2 0

v

n

h/R = 1/30

h/R = 1/60

h/R = 1/100

h/R = 1/200

𝑀5
ξ = 0.01

(b)

2

3

4

5

6

0 4 8 1 2 1 6 2 0

v

n

h/R = 1/30

h/R = 1/60

h/R = 1/100

h/R = 1/200

𝑀2
ξ = 0.1

(c)

5

7

9

11

0 4 8 1 2 1 6 2 0

v

n

h/R = 1/30

h/R = 1/60

h/R = 1/100

h/R = 1/200

𝑀5
ξ = 0.1

(d)

1.7

1.75

1.8

1.85

1.9

0 4 8 1 2 1 6 2 0

v

n

h/R = 1/30

h/R = 1/60

h/R = 1/100

h/R = 1/200

𝑀2
ξ = 1

(e)

5.6

5.8

6

6.2

0 4 8 1 2 1 6 2 0

v

n

h/R = 1/30

h/R = 1/60

h/R = 1/100

h/R = 1/200

𝑀5
ξ = 1

(f)



Chapter 3. Results and Discussions 

187 
 

3.3. Parametric Studies on Vibration Characteristics of Smart 

Laminated Composite Cylindrical Shells 

3.3.1. Effects of Hygrothermal Environmental Conditions on the Natural 

Frequencies with Various Boundary Conditions 

The effects of hygrothermal environmental conditions on the change of the non-dimensional 

fundamental frequency parameter 𝛺 = 𝜔𝐻 𝜋𝑐𝑡⁄ , corresponding to the first root of Eq. (2.124) 

(𝑀1), with the axial mode number 𝑚  and the circumferential mode number 𝑛  are described, 

respectively, in Tables 3.12 and 3.13 for C-C, C-SS, SS-SS, C-SL, and C-F boundary conditions. 

The non-dimensional frequencies are presented for axial modes 𝑚 = 0 , 1, …, 10 and 

circumferential mode 𝑛 = 1 in Table 3.12, and for axial mode 𝑚 = 1 and circumferential modes 

𝑛 = 0, 1, … ,10 in Table 3.13. A [0°/45°/90°]𝑠 laminated CNT-reinforced composite cylindrical 

shell integrated with the piezoelectric layers at the top and bottom surfaces with 𝑟 = 0.1, 𝑓𝑟 = 0.6, 

ℎ/𝑅 =  0.03, and 𝐿/𝑅 = 6  is considered for these examples. Frequencies are calculated for 

seven series of hygrothermal conditions, i.e. (∆𝑇(𝐾), ∆𝐶(%)) = (0, 0),

(0, 2), (0, 4), (200, 0), (200, 2), (400, 0),  and (400, 4) . As seen in Tables 3.12 and 3.13, an 

increase in temperature and/or moisture leads to a moderate decrease of the frequencies for various 

boundary conditions. This phenomenon again can be explained by the temperature-dependant and 

moisture-dependant material properties of the polymer matrix and the CNT reinforcing fiber, 

where an increase in temperature/moisture decreases the elastic moduli of the composites.  

It is observed that the temperature variation has more significant effect on the frequencies than 

the moisture variation. It is seen from Tables 3.12 and 3.13 that at higher axial mode 𝑚 and 

circumferential mode 𝑛 , the temperature/moisture increase leads to more decrease of the 
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frequencies. For example, for C-C boundary condition, at 𝑚 = 1, the non-dimensional frequency 

parameter 𝛺  decreases from 0.0102  to 0.0101  (%0.98 ) by an increase of temperature and 

moisture set from (0,0) to (400,4), while for 𝑚 = 10 under the same hygrothermal increase, the 

non-dimensional frequency parameter decreases from 0.0504 to 0.0497  ( %1.388 ). This 

phenomenon can be explained that at higher axial mode 𝑚  and circumferential mode 𝑛 , 

considering the same particle motion, we have higher frequency than that at lower modes, hence, 

the material stiffness variation induced by an increase of temperature/moisture leads to more drop 

of the frequency at higher modes than lower ones.  
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Table 3.12. Effects of temperature/moisture variation and axial mode 𝑚 on the non-dimensional 

fundamental frequency parameter 𝛺 = 𝜔𝐻 𝜋𝑐𝑡⁄  for a [0°/45°/90°]𝑠 laminated CNT-reinforced 

composite cylindrical shell coupled with the piezoelectric layers at the top and bottom surfaces 

under various boundary conditions (𝑛 = 1, 𝑓𝑟 = 0.6, 𝑟 = 0.1, ℎ 𝑅⁄ = 0.03, 𝐿 𝑅⁄ = 6). 

Boundary 

conditions 
(∆𝑇(𝐾), ∆𝐶%) 

Axial mode 𝑚 

0 1 2 3 4 5 6 7 8 9 10 

C-C (0,0) 0.0021 0.0102 0.0180 0.0246 0.0301 0.0348 0.0386 0.0420 0.0449 0.0477 0.0504 

            

(200,2) 0.0021 0.0102 0.0178 0.0244 0.0299 0.0345 0.0383 0.0416 0.0446 0.0474 0.0501 

            

(400,4) 0.0021 0.0101 0.0176 0.0241 0.0296 0.0342 0.0380 0.0413 0.0443 0.0470 0.0497 

             

 

C-SS (0,0) 0.0006 0.0082 0.0161 0.0230 0.0288 0.0337 0.0377 0.0412 0.0442 0.0470 0.0497 

            

(200,2) 0.0006 0.0081 0.0160 0.0228 0.0286 0.0334 0.0374 0.0409 0.0439 0.0467 0.0494 

            

(400,4) 0.0006 0.0080 0.0158 0.0226 0.0283 0.0331 0.0371 0.0405 0.0436 0.0464 0.0490 

             

 

SS-SS (0,0) 0 0.0061 0.0142 0.0214 0.0275 0.0326 0.0368 0.0404 0.0435 0.0463 0.0491 

            

(200,2) 0 0.0060 0.0141 0.0212 0.0272 0.0323 0.0365 0.0400 0.0432 0.0460 0.0487 

            

(400,4) 0 0.0060 0.0140 0.0210 0.0270 0.0320 0.0362 0.0397 0.0428 0.0457 0.0484 

             

 

C-SL (0,0) 0.0007 0.0040 0.0123 0.0197 0.0261 0.0314 0.0358 0.0395 0.0427 0.0456 0.0484 

            

(200,2) 0.0007 0.0040 0.0122 0.0195 0.0258 0.0311 0.0355 0.0392 0.0424 0.0453 0.0480 

            

(400,4) 0.0007 0.0039 0.0121 0.0194 0.0256 0.0308 0.0352 0.0389 0.0421 0.0450 0.0477 

             

 

C-F (0,0) 0.0028 0.0021 0.0102 0.0180 0.0246 0.0301 0.0348 0.0386 0.0420 0.0449 0.0477 

            

(200,2) 0.0028 0.0021 0.0102 0.0178 0.0244 0.0299 0.0345 0.0383 0.0416 0.0446 0.0474 

            

(400,4) 0.0028 0.0021 0.0101 0.0176 0.0241 0.0296 0.0342 0.0380 0.0413 0.0443 0.0470 

 

 

 

 

 



Chapter 3. Results and Discussions 

190 
 

Table 3.13. Effects of temperature/moisture variation and circumferential mode 𝑛 on the non-

dimensional fundamental frequency parameter 𝛺 = 𝜔𝐻 𝜋𝑐𝑡⁄  for a [0°/45°/90°]𝑠 laminated CNT-

reinforced composite cylindrical shell coupled with the piezoelectric layers at the top and bottom 

surfaces under various boundary conditions (𝑚 = 1, 𝑓𝑟 = 0.6, 𝑟 = 0.1, ℎ 𝑅⁄ = 0.03, 𝐿 𝑅⁄ = 6). 

Boundary 

conditions 
(∆𝑇(𝐾), ∆𝐶%) 

Circumferential mode 𝑛 

0 1 2 3 4 5 6 7 8 9 10 

C-C (0,0) 0.0191 0.0102 0.0053 0.0045 0.0064 0.0096 0.0136 0.0182 0.0234 0.0291 0.0353 

            

(200,2) 0.0189 0.0102 0.0052 0.0045 0.0064 0.0096 0.0135 0.0181 0.0232 0.0288 0.0349 

            

(400,4) 0.0187 0.0101 0.0052 0.0044 0.0064 0.0095 0.0134 0.0179 0.0229 0.0284 0.0344 

             

 

C-SS (0,0) 0.0159 0.0082 0.0041 0.0039 0.0062 0.0094 0.0134 0.0180 0.0231 0.0288 0.0350 

            

(200,2) 0.0158 0.0081 0.0040 0.0039 0.0061 0.0093 0.0133 0.0178 0.0229 0.0285 0.0346 

            

(400,4) 0.0156 0.0080 0.0040 0.0039 0.0061 0.0093 0.0132 0.0176 0.0227 0.0282 0.0341 

             

 

SS-SS (0,0) 0.0128 0.0061 0.0029 0.0035 0.0059 0.0092 0.0131 0.0177 0.0229 0.0286 0.0347 

            

(200,2) 0.0126 0.0060 0.0029 0.0035 0.0059 0.0091 0.0130 0.0176 0.0227 0.0282 0.0343 

            

(400,4) 0.0125 0.0060 0.0029 0.0035 0.0058 0.0091 0.0129 0.0174 0.0224 0.0279 0.0339 

             

 

C-SL (0,0) 0.0096 0.0040 0.0020 0.0032 0.0057 0.0090 0.0129 0.0175 0.0226 0.0283 0.0345 

            

(200,2) 0.0095 0.0040 0.0020 0.0032 0.0057 0.0089 0.0128 0.0173 0.0224 0.0280 0.0341 

            

(400,4) 0.0094 0.0039 0.0020 0.0032 0.0056 0.0089 0.0127 0.0172 0.0222 0.0277 0.0336 

             

 

C-F (0,0) 0.0064 0.0021 0.0014 0.0030 0.0056 0.0088 0.0128 0.0173 0.0224 0.0281 0.0342 

            

(200,2) 0.0063 0.0021 0.0013 0.0030 0.0055 0.0088 0.0126 0.0171 0.0222 0.0278 0.0338 

            

(400,4) 0.0063 0.0021 0.0013 0.0030 0.0055 0.0087 0.0125 0.0170 0.0219 0.0274 0.0333 
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3.3.2. Effects of Axial and Circumferential Modes (𝒎,𝒏 ) on the Natural 

Frequencies for Various Boundary Conditions  

The effects of the axial mode number 𝑚 and the circumferential mode number 𝑛 on the non-

dimensional frequency parameters 𝛺 = 𝜔𝐻 𝜋𝑐𝑡⁄  corresponding to the first five roots of Eq. 

(2.124) (𝑀1, 𝑀2, 𝑀3, 𝑀4, and 𝑀5)  are shown, respectively, in Figs. 3.19 and 3.20 for  C-C, C-

SS, SS-SS, C-SL, and C-F boundary conditions of the shell. A [0°/45°/90°]𝑠 laminated CNT-

reinforced composite cylindrical shell integrated with the piezoelectric layers at the top and bottom 

surfaces with 𝑟 = 0.1, 𝑓𝑟 = 0.6, ℎ/𝑅 =  0.03, and 𝐿/𝑅 = 6 when ∆𝑇 = 200𝐾 and ∆𝐶 = 2% is 

considered for these examples. As shown in Fig. 3.19, the frequencies corresponding to all five 

roots and five boundary conditions increase with the increase of axial mode 𝑚, and C-F and C-C 

boundary conditions, respectively, lead to the lowest and the highest frequencies. From Fig. 3.20, 

it can be seen that the frequencies corresponding to the first root of Eq. (2.124) (𝑀1) for the five 

boundary conditions C-C, C-SS, SS-SS, C-SL, and C-F decrease first and then increase with the 

circumferential mode 𝑛 which may be related to the type of shell motion corresponding to 𝑀1. 

For higher circumferential mode numbers 𝑛 , all five boundary conditions lead to similar 

frequencies, illustrating the effect of boundary conditions decreases at higher circumferential mode 

numbers 𝑛, while for lower circumferential mode numbers 𝑛, the effect of boundary conditions is 

significant and C-F boundary condition provides the lowest frequencies and C-C boundary 

condition has the highest ones (see Fig. 3.20a). For other roots (𝑀2, 𝑀3, 𝑀4, and 𝑀5), the 

frequencies for the five boundary conditions C-C, C-SS, SS-SS, C-SL, and C-F increase as the 

circumferential mode 𝑛 increases, and for 𝑀2 and 𝑀5, C-F and C-C boundary conditions lead to 

the lowest and the highest frequencies, respectively, within different circumferential modes 𝑛, 

while for 𝑀3 and 𝑀4, the influence of boundary condition is not significant (see Fig. 3.20b-e).  
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Therefore, it is resulted that the frequency normally increases with the increase of axial and 

circumferential mode numbers (𝑚, 𝑛), and at higher vibration modes, higher frequencies are 

obtained for all five boundary conditions considered in this study. From the obtained results, it can 

also be concluded that more constraints at the edges of a smart laminated CNT-reinforced 

composite cylindrical shell increase its natural frequencies. This trend is due the fact that more 

constraints at the edges increase the flexural rigidity of the shell with stiffening the edge support, 

leading to higher frequencies. Hence, this phenomenon is to be expected that the clamped (C) edge 

is stronger and leads to higher frequencies than the simply supported (SS) edge, the sliding (SL) 

edge, and the free (F) edge without any constraint. It can also be concluded that the effect of 

boundary conditions on the natural frequencies is more observable by the variation of axial mode 

number 𝑚.  
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Figure 3.19. Effect of axial mode 𝑚 on the non-dimensional frequency parameters 𝛺 = 𝜔𝐻 𝜋𝑐𝑡⁄  

for 𝑀1, 𝑀2, 𝑀3, 𝑀4, and 𝑀5 at 𝑛 = 1 for a [0°/45°/90°]𝑠 laminated CNT-reinforced composite 

cylindrical shell coupled with the piezoelectric layers at the top and bottom surfaces with 𝑟 = 0.1, 

𝑓𝑟 = 0.6, ℎ/𝑅 =  0.03, and 𝐿/𝑅 = 6 when ∆𝑇 = 200𝐾 and ∆𝐶 = 2% under C-C, C-SS, SS-SS, C-

SL, and C-F boundary conditions. 
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Figure 3.20. Effect of circumferential mode 𝑛 on the non-dimensional frequency parameters 𝛺 =

𝜔𝐻 𝜋𝑐𝑡⁄  for 𝑀1, 𝑀2, 𝑀3, 𝑀4, and 𝑀5 at 𝑚 = 1 for a [0°/45°/90°]𝑠 laminated CNT-reinforced 

composite cylindrical shell coupled with the piezoelectric layers at the top and bottom surfaces 

with 𝑟 = 0.1, 𝑓𝑟 = 0.6, ℎ/𝑅 =  0.03, and 𝐿/𝑅 = 6 when ∆𝑇 = 200𝐾 and ∆𝐶 = 2% under C-C, C-

SS, SS-SS, C-SL, and C-F boundary conditions. 
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3.3.3. Effect of CNT Volume Fraction on the Natural Frequencies for Various 

Boundary Conditions  

Fig. 3.21 displays the influence of CNT volume fraction (𝑓𝑟) on the non-dimensional frequency 

parameters 𝛺 = 𝜔𝐻 𝜋𝑐𝑡⁄  corresponding to the first five roots of Eq. (2.124) (𝑀1, 𝑀2, 𝑀3, 𝑀4 

and 𝑀5) for a [0°/45°/90°]𝑠  laminated CNT-reinforced composite cylindrical shell integrated 

with the piezoelectric layers at the top and bottom surfaces with 𝑟 = 0.1, ℎ/𝑅 =  0.03 , and 

𝐿/𝑅 = 6  when ∆𝑇 = 200𝐾  and ∆𝐶 = 2% . Frequencies are calculated for the five boundary 

conditions C-C, C-SS, SS-SS, C-SL, and C-F and axial and circumferential modes (𝑚, 𝑛) =

(1, 3). It is found that for the five boundary conditions, the frequencies increase as the CNT volume 

fraction increases in the polymer matrix. This increase in the frequencies with the CNT volume 

fraction can be explained by an increase in the stiffness and the strength of the CNT-reinforced 

composite cylindrical shell as a result of increase in the CNT volume fraction. For 𝑀1, 𝑀2, and 

𝑀3, the influence of boundary conditions is more noticeable at higher CNT volume fraction due 

to the stiffening effect of boundary condition as well as CNT reinforcing effect, where C-C 

boundary condition has the highest frequencies and C-F boundary condition leads to the lowest 

ones, while for 𝑀4 and 𝑀5, for different CNT volume fractions the effect of boundary conditions 

is negligible (see Fig. 3.21a-e). Not only the frequency trend, but also the values of this result can 

be useful to guide the possible design of CNT-reinforced composites under vibration for various 

applications.      
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Figure 3.21. Effect of CNT volume fraction (𝑓𝑟) on the non-dimensional frequency parameters 𝛺 =

𝜔𝐻 𝜋𝑐𝑡⁄  for  𝑀1, 𝑀2, 𝑀3, 𝑀4, and 𝑀5 at (𝑚, 𝑛) = (1, 3) for a [0°/45°/90°]𝑠 laminated CNT-

reinforced composite cylindrical shell coupled with the piezoelectric layers at the top and bottom 

surfaces with 𝑟 = 0.1, ℎ/𝑅 =  0.03, and 𝐿/𝑅 = 6 when ∆𝑇 = 200𝐾 and ∆𝐶 = 2% under C-C, C-

SS, SS-SS, C-SL, and C-F boundary conditions. 
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3.3.4. Effects of Shell Geometry Parameters on the Natural Frequencies for 

Various Boundary Conditions 

To see the effect of the host laminated composite cylindrical shell geometry on the non-

dimensional frequency parameters 𝛺 = 𝜔𝐻 𝜋𝑐𝑡⁄  corresponding to the first five roots of Eq. 

(2.124) (𝑀1, 𝑀2, 𝑀3, 𝑀4, and 𝑀5), thickness to radius ratio of the host shell ℎ/𝑅 and length to 

radius ratio of the host shell 𝐿/𝑅 are chosen as parameters of study. For this investigation, a 

[0°/45°/90°]𝑠 CNT-reinforced composite cylindrical shell integrated with the piezoelectric layers 

at the top and bottom surfaces with 𝑟 = 0.1 and 𝑓𝑟 = 0.6  when ∆𝑇 = 200𝐾  and ∆𝐶 = 2%  is 

considered. The non-dimensional frequency parameters 𝛺 = 𝜔𝐻 2𝜋𝑐𝑡⁄  are plotted in Figs. 3.22 

and 3.23, respectively, for different ℎ/𝑅 and 𝐿/𝑅 ratios of the host shell with C-C, C-SS, SS-SS, 

C-SL, and C-F boundary conditions with given axial and circumferential modes (𝑚, 𝑛) = (1,3).  

The variation of the frequency parameter 𝛺 with the thickness to radius ratio of the shell (ℎ/𝑅) 

is shown in Fig. 3.22 when 𝐿/𝑅 = 6. It is observed that for thicker shells with higher ℎ/𝑅 ratio, 

the frequencies corresponding to the first five roots (𝑀1, 𝑀2, 𝑀3, 𝑀4, and 𝑀5) and the five 

boundary conditions are always higher than those with lower ℎ/𝑅  ratio. This increase in the 

frequency parameter with the increment of ℎ/𝑅 ratio is because of an increase in the shell stiffness 

as a result of increase in the shell thickness. It is also seen that the effect of boundary conditions 

at higher ℎ/𝑅 ratio is relatively much significant where C-C boundary condition has the highest 

natural frequencies followed by C-SS, SS-SS, C-SL, and C-F boundary conditions. This 

phenomenon can be explained that an increase of shell thickness leads to the increase of shell 

rigidity and this property can be magnified with consideration of more constraints at the shell ends, 

where the difference between natural frequencies of different boundary conditions with different 

constraint levels is much significant for thicker shells (with higher ℎ/𝑅 ratio).  
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Fig. 3.23 displays the frequency parameter 𝛺 variation with the length to radius ratio of the 

shell (𝐿/𝑅) when ℎ/𝑅 = 0.03. It is observed that for the first five roots (𝑀1, 𝑀2, 𝑀3, 𝑀4, and 

𝑀5) and the five boundary conditions, the frequencies first decrease noticeably for lower 𝐿/𝑅 ratio 

and then change smoothly for higher 𝐿/𝑅 ratio. Hence, we can say the natural frequency variations 

are much sensitive to the change of shell length when the host composite cylindrical shell is 

relatively short. The decrease of frequencies with the increase of 𝐿/𝑅 ratio is due to the smaller 

shell flexural rigidity at larger 𝐿/𝑅  ratio. Significant effect of boundary conditions on the 

frequencies is observed for lower 𝐿/𝑅 ratio, and discrepancies between the frequencies of C-C, C-

SS, SS-SS, C-SL, and C-F boundary conditions are larger at lower 𝐿/𝑅 ratio (shorter cylindrical 

shells) where the C-C and C-F boundary conditions lead to the highest and lowest frequencies, 

respectively. While for long cylindrical shells (with higher 𝐿/𝑅 ratio), the influence of boundary 

condition is not noticeable and diminishes. This phenomenon can be explained that a decrease of 

shell length leads to the increase of shell rigidity and this property can be magnified with 

consideration of more constraints at the shell ends, where difference between natural frequencies 

of different boundary conditions with different constraint levels is much significant for shorter 

shells (with lower 𝐿/𝑅 ratio).  
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Figure 3.22. Effect of thickness to radius ratio of the host shell (ℎ/𝑅) on the non-dimensional 

frequency parameters 𝛺 = 𝜔𝐻 𝜋𝑐𝑡⁄  for 𝑀1, 𝑀2, 𝑀3, 𝑀4, and 𝑀5 at (𝑚, 𝑛) = (1, 3) for a 

[0°/45°/90°]𝑠 laminated CNT-reinforced composite cylindrical shell coupled with the piezoelectric 

layers at the top and bottom surfaces with 𝑟 = 0.1, 𝑓𝑟 = 0.6, and 𝐿/𝑅 = 6 when ∆𝑇 = 200𝐾 and 

∆𝐶 = 2% under C-C, C-SS, SS-SS, C-SL, and C-F boundary conditions. 
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Figure 3.23. Effect of length to radius ratio of the host shell (𝐿/𝑅) on the non-dimensional 

frequency parameter 𝛺 = 𝜔𝐻 𝜋𝑐𝑡⁄  for 𝑀1, 𝑀2, 𝑀3, 𝑀4, and 𝑀5 at (𝑚, 𝑛) = (1, 3) for a 

[0°/45°/90°]𝑠 laminated CNT-reinforced composite cylindrical shell coupled with the piezoelectric 

layers at the top and bottom surfaces with 𝑟 = 0.1, 𝑓𝑟 = 0.6, and ℎ/𝑅 = 0.03 when ∆𝑇 = 200𝐾 and 

∆𝐶 = 2% under C-C, C-SS, SS-SS, C-SL, and C-F boundary conditions. 
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Chapter 4 
 

 

 

Summary and Conclusions 

 

A summary of the research presented in this thesis is given below. In addition, major findings 

and concluding remarks of this research are highlighted along with some suggested future research 

plans and directions. 

4.1. Research Summary  

Numerous research studies have been presented in the literature regarding analysis of wave 

propagation and vibration of laminated composite cylindrical shells using various numerical 

methods based on different shell theories. However, there is still a lack of research associated with 

analytical modeling and detailed analysis of wave propagation and vibration characteristics of 

smart laminated composite cylindrical shells with coupling effects of transverse shear, 

piezoelectricity, nanoparticles, hygrothermal environmental conditions, and mechanical boundary 

conditions where with FEA, it is difficult to study the effects of different composite designs on its 

wave propagation behaviors and vibration characteristics. The main objective of the present 

research is to establish a simple and comprehensive theoretical foundation and framework studying 

the structural dynamics of smart composite shells for possible NDE, structural enhancement or 
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energy harvesting applications by proposing and developing analytical models combining the 

existing theories to determine wave propagation and vibration characteristics of smart laminated 

composite cylindrical shell structures affected by various parameters such as the transverse shear, 

piezoelectric coupling,  nanoparticles, hygrothermal environmental conditions, and mechanical 

boundary conditions. Analytical models were developed in the present research against the 

numerical simulation methods such as FEA. By the FEA, it is usually very difficult (or even 

impossible) to consider different CNT distributions as well as estimating the resulting composite 

hygrothermal properties in wave propagation and vibration modeling by the numerical approach 

where it requires extremely high calculation cost especially for the wave propagation analysis in 

infinite media. 

A comprehensive theoretical foundation studying the structural dynamics of smart composite 

shells reinforced with different micro- and nano-sized fibers is established. The developed 

analytical models provide a valuable tool to derive more reliable and comprehensive correlations 

for predicting wave dispersion responses and vibration behaviors of smart laminated composite 

cylindrical shells with coupling effects of piezoelectricity, transverse shear and rotary inertia, 

nanoparticles, temperature and moisture variations, and boundary conditions. The predictions of 

the present micromechanics model and analytical solution of wave propagation and vibration 

problems for the effective elastic properties and structural dynamics of smart laminated composite 

cylindrical shells are compared with the existing results in the literature, where a good agreement 

is observed. Therefore, it can be concluded that the developed analytical models in the present 

research can be a useful tool contributing to obtain wave dispersion results and vibration 

characteristics for both smart isotropic and anisotropic multi-layered shells with coupling effects 
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of piezoelectric actuators and sensors, transverse shear and rotary inertia, nanoparticles, 

hygrothermal environmental conditions, and boundary conditions. 

The analytical models developed in this thesis can be used for future research studies in 

determining wave propagation and vibration characteristics of smart laminated CNT-reinforced 

composites with different CNT distributions subjected to hygrothermal loading as well as 

mechanical loading for various engineering applications such as dynamic stability analysis, 

structural health monitoring, and energy harvesting. 

However, the developed models in this thesis may not be appropriate for thick shells and 

nonlinear and large deformation problems, where we need to employ higher-order shell theories 

or the three-dimensional elasticity theory with higher accuracy.    

4.2. Concluding Remarks             

Major findings and concluding remarks of the accomplished research are listed as follows:  

1) The effects of transverse shear and rotary inertia on structural dynamics of smart laminated 

composite shells are different from their effects on smart isotropic shells where it leads to 

higher wave phase velocities for smart laminated composite shells especially at higher 

wave modes. This is because of staked plies in which shear may occur between layers. 

Therefore, the model presented in this thesis is desired and capable to accurately consider 

the shear effects for smart laminated composite shells where its effects are more significant 

than on smart isotropic shells.  

2)  Since a piezoelectric layer is staked on the host laminated composite shell, it is very 

important to describe its coupling effects including shear, thickness, and polarization 

directions on wave propagation and vibration characteristics. Due to the importance of 

shear effects in smart laminated composites especially at higher wave modes, the effects 
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of coupled piezoelectric material on the wave propagation and vibration of a host laminated 

composite shell are more significant than its effects on the structural dynamics of a host 

isotropic shell.   

3) The results from incorporating the micromechanics, wave, and shell theories indicate that 

the nanotubes aligned along the wave direction have more effects of the wave dynamics, 

where the effects of CNT volume fraction on the wave phase velocity considering CNTs 

along the direction of wave waviness are relatively higher than those with other CNT 

orientations. It is also found that the agglomeration of CNTs leads to the decrease of wave 

phase velocity in comparison to CNT fibers dispersed in the matrix along specific 

orientations. These findings cannot be obtained by the lamination theory considering for 

micro-sized fibers. Although CNT fibers generally lead to higher wave phase velocities 

than traditional fibers such as carbon and E-glass, but at higher wavenumbers of wave mod 

1 (𝑀1) and at a specific wavenumber (𝜉 = 0.2) of wave mode 2 (𝑀2), the wave phase 

velocities of CNT fiber and carbon and E-glass fibers are almost the same.   

4) Coupled hygrothermal strains considered in the constitutive equations allows us to include 

the effects of temperature and moisture variations on the wave dynamics of smart 

composite shells. A reduction in wave phase velocities and natural frequencies is observed 

when temperature/moisture increases in comparison to the case there is no 

temperature/moisture variation. Models ignoring hygrothermal strains are not able to 

describe the necessary influence of environmental conditions. 

5) A formulation based on the first-order shear deformation shell theory and wave 

propagation approach with beam modal functions was developed to study the effects of 

various boundary conditions on the natural frequencies of smart laminated CNT-reinforced 



Chapter 4. Summary and Conclusions 

205 
 

composite cylindrical shells. The influence of mechanical boundary conditions on the 

natural frequencies is much significant for the composite shells with small circumferential 

modes, thick cylindrical shells (with large ℎ/𝑅 ratio), and short cylindrical shells (with 

small 𝐿/𝑅 ratio).  

4.3. Research Plans and Future Works    

There are still many gaps in relation to structural dynamics of smart laminated composite 

shells, which requires further research studies. Suggestions for possible future works and 

directions are listed as follows:  

 It was not possible to do experimental verification due the limitations of existing 

equipment and funding in our lab. Hence, as a future work, experimental validation is 

required to investigate the accuracy of the analytical models derived for analysis of wave 

dynamics and vibration of smart laminated composite shells with coupling effects of 

transverse shear, piezoelectricity, nanoparticles, hygrothermal environmental 

conditions, and mechanical boundary conditions. For this purpose, after fabrication of a 

smart composite sample, an acoustic wave via IDT can be applied on the surface of the 

sample to obtain wave propagation behaviors in the structure.  

 Vibration analysis of smart fluid-filled laminated CNT-reinforced composite cylindrical 

shells resting on elastic foundation is still a gap in this research filed. Therefore, as a 

future work, a study can be conducted to solve this problem using the wave propagation 

approach. One application of this research can be in analysis of structural dynamics of 

smart laminated composite cylindrical shells used as clock spring sleeve in oil pipelines 

for the repair of damaged pipes. 
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 Considering the effects of electrical boundary conditions and actuations on wave 

propagation characteristics of smart CNT-reinforced composites is still an unsolved 

problem for the active control of smart composites and its NDE applications. Hence, a 

future study can be performed on dispersion solutions of piezoelectric coupled 

laminated CNT-reinforced composite cylindrical shells with various electrical boundary 

conditions and actuations. 

 It is noted that the shell models (the ones used in this study and even the higher-order 

ones) developed to study the structural dynamics are only considered to be accurate for 

thin shell structures at lower dynamics modes. To understand the accuracy of the shell 

theories in estimating wave propagation and vibration characteristics of smart laminated 

composite thick shells (such as the ones with thickness to radius ratio larger than 1/10 

or even 1/5), a future study can be conducted to model dynamics of wave motion and 

vibration using the general three-dimensional elasticity theory and compare the results 

with those obtained based on the shell theories. 
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Appendices 
 

Appendix A 

The components of the transformed reduced stiffness matrix [𝑄𝑖𝑗] (𝑖, 𝑗 = 𝑥, 𝜃, 𝑠), relating the 

in-plane stresses (𝜎𝑥𝑥, 𝜎𝜃𝜃 , 𝜏𝑥𝜃 ) to the in-plane strains (𝛾𝑥𝑥, 𝛾𝜃𝜃, 𝛾𝑥𝜃 ), as a function of the 

components of the principal lamina stiffness matrix [𝑄𝑖𝑗] (𝑖, 𝑗 = 1, 2, 6)  are given by, 

𝑄𝑥𝑥 = 𝑚́4𝑄11 + 𝑛́4𝑄22 + 2𝑚́2𝑛́2𝑄12 + 4𝑚́2𝑛́2𝑄66  

𝑄𝜃𝜃 = 𝑛́4𝑄11 + 𝑚́4𝑄22 + 2𝑚́2𝑛́2𝑄12 + 4𝑚́2𝑛́2𝑄66  

𝑄𝑥𝜃 = 𝑚́2𝑛́2𝑄11 + 𝑚́2𝑛́2𝑄22 + (𝑚́4 + 𝑛́4)𝑄12 − 4𝑚́2𝑛́2𝑄66  

𝑄𝑥𝑠 = 𝑚́3𝑛́𝑄11 − 𝑚́𝑛́3𝑄22 − 𝑚́𝑛́(𝑚́2 − 𝑛́2)𝑄12 − 2𝑚́𝑛́(𝑚́2 − 𝑛́2)𝑄66  

𝑄𝜃𝑠 = 𝑚́𝑛́3𝑄11 − 𝑚́3𝑛́𝑄22 + 𝑚́𝑛́(𝑚́2 − 𝑛́2)𝑄12 + 2𝑚́𝑛́(𝑚́2 − 𝑛́2)𝑄66  

𝑄𝑠𝑠 = 𝑚́2𝑛́2𝑄11 + 𝑚́
2𝑛́2𝑄22 − 2𝑚́2𝑛́2𝑄12 + (𝑚́2 − 𝑛́2)2𝑄66                                                                    (𝐴. 1) 

where  

𝑚́ = 𝑐𝑜𝑠𝛽,             𝑛́ = 𝑠𝑖𝑛𝛽                                                                                                                                   (𝐴. 2) 

The components of the principal lamina stiffness matrix [𝑄𝑖𝑗] (𝑖, 𝑗 = 1, 2, 6) are function of 

material properties of the lamina as,  

𝑄11 = 𝐶11 −
𝐶13𝐶13
𝐶33

=
𝐸11

1 − 𝑣12𝑣21
                  𝑄12 = 𝐶12 −

𝐶13𝐶23
𝐶33

=
𝑣21𝐸11

1 − 𝑣12𝑣21
 

 𝑄21 = 𝐶21 −
𝐶23𝐶13
𝐶33

=
𝑣12𝐸22

1 − 𝑣12𝑣21
                𝑄22 = 𝐶22 −

𝐶23𝐶23
𝐶33

=
𝐸22

1 − 𝑣12𝑣21
  

  𝑄66 = 𝐶66 = 𝐺12                                                                                                                                                   (𝐴. 3) 

The components of the stiffness matrix [𝐶𝑖𝑗] (𝑖, 𝑗 = 𝑞, 𝑟) relating the transverse shear stresses 

(𝜏𝜃𝑧 , 𝜏𝑥𝑧) to the transverse shear strains (𝛾𝜃𝑧, 𝛾𝑥𝑧) are given by, 
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𝐶𝑞𝑞 = 𝑚́2𝐶44 + 𝑛́2𝐶55                               𝐶𝑞𝑟 = 𝐶𝑟𝑞 = −𝑚́𝑛́𝐶44 + 𝑚́𝑛́𝐶55   

𝐶𝑟𝑟 = 𝑛́2𝐶44 + 𝑚́2𝐶55                                                                                                                                             (𝐴. 4) 

where 𝐶44 = 𝐺23  and 𝐶55 = 𝐺13 . In above equations, 𝐶𝑖𝑗(1, … ,6), 𝐸11 , 𝐸22 , 𝑣12 , 𝐺12 , 𝐺13 , and 

𝐺23  for a CNT-reinforced lamina are given by Eqs. (2.68) and (2.111), and 𝑄𝑖𝑗 =  𝑄𝑗𝑖 and  𝐶𝑖𝑗 =

 𝐶𝑗𝑖. 
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Appendix B 

𝑐1̅1, 𝑐1̅2, 𝑐2̅2, 𝑐6̅6, 𝑒̅16, 𝑒̅21, 𝑒̅22, and ∈ 11, ∈ 22, ∈ 33 required for the constitutive equations of a  

piezoelectric cylindrical shell with the axial polarization based on the classical shell theory, Eq. 

(2.21), are obtained as, 

𝑐1̅1 = 𝑐11 −
𝑐13
2

𝑐33
                  𝑐1̅2 = 𝑐12 −

𝑐13𝑐23

𝑐33
                   𝑐2̅2 = 𝑐22 −

𝑐23
2

𝑐33
                     𝑐6̅6 = 𝑐66                                      

𝑒̅16 = 𝑒16                             𝑒̅21 = 𝑒21 −
𝑐13𝑒23

𝑐33
                  𝑒̅22 = 𝑒22 −

𝑐23𝑒23

𝑐33
                                        

∈ 11=∈11                             ∈ 22=∈22+
𝑒23
2

𝑐33
                         ∈ 33=∈33+

𝑒34
2

𝑐44
                                                        (𝐵. 1)     

and 𝑐1̅1, 𝑐1̅2, 𝑐2̅2, 𝑐4̅4, 𝑐5̅5, 𝑐6̅6, 𝑒̅16, 𝑒̅21, 𝑒̅22, 𝑒̅34, and ∈ 11, ∈ 22, ∈ 33 required for the constitutive 

equations of a piezoelectric cylindrical shell with the axial polarization according to the first-order 

shear deformation shell theory, Eq. (2.23) are attained as, 

𝑐1̅1 = 𝑐11 −
𝑐13
2

𝑐33
       𝑐1̅2 = 𝑐12 −

𝑐13𝑐23

𝑐33
           𝑐2̅2 = 𝑐22 −

𝑐23
2

𝑐33
         𝑐4̅4 = 𝑐44       𝑐5̅5 = 𝑐55      𝑐6̅6 = 𝑐66        

𝑒̅16 = 𝑒16                 𝑒̅21 = 𝑒21 −
𝑐13𝑒23

𝑐33
            𝑒̅22 = 𝑒22 −

𝑐23𝑒23

𝑐33
          𝑒̅34 = 𝑒34                                          

∈ 11=∈11                   ∈ 22=∈22+
𝑒23
2

𝑐33
                ∈ 33=∈33                                                                                    (𝐵. 2) 
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Appendix C 

𝑐1̅1 , 𝑐1̅2 , 𝑐2̅2 , 𝑐6̅6 , 𝑒̅11 , 𝑒̅12 , 𝑒̅26 , and ∈ 11 , ∈ 22 , ∈ 33  used in the constitutive relations of a 

piezoelectric cylindrical shell with the circumferential polarization based on the classical shell 

theory, Eq. (2.26), are given by,  

𝑐1̅1 = 𝑐11 −
𝑐13
2

𝑐33
                     𝑐1̅2 = 𝑐12 −

𝑐13𝑐23

𝑐33
              𝑐2̅2 = 𝑐22 −

𝑐23
2

𝑐33
                   𝑐6̅6 = 𝑐66                 

𝑒̅11 = 𝑒11 −
𝑐13𝑒13
𝑐33

              𝑒̅12 = 𝑒12 −
𝑐23𝑒13
𝑐33

           𝑒̅26 = 𝑒26   

∈ 11=∈11+
𝑒13
2

𝑐33
                     ∈ 22=∈22                              ∈ 33=∈33+

𝑒35
2

𝑐55
                                                         (𝐶. 1) 

and 𝑐1̅1 , 𝑐1̅2 , 𝑐2̅2 , 𝑐4̅4 , 𝑐5̅5 , 𝑐6̅6 , 𝑒̅11 , 𝑒̅12 , 𝑒̅26 , 𝑒̅35 , and ∈ 11 , ∈ 22 , ∈ 33  used in the constitutive 

relations of a piezoelectric cylindrical shell with the circumferential polarization according to the 

first-order shear deformation shell theory, Eq. (2.28), are acquired as,  

𝑐1̅1 = 𝑐11 −
𝑐13
2

𝑐33
           𝑐1̅2 = 𝑐12 −

𝑐13𝑐23

𝑐33
         𝑐2̅2 = 𝑐22 −

𝑐23
2

𝑐33
          𝑐4̅4 = 𝑐44         𝑐5̅5 = 𝑐55         𝑐6̅6 = 𝑐66                 

𝑒̅11 = 𝑒11 −
𝑐13𝑒13

𝑐33
          𝑒̅12 = 𝑒12 −

𝑐23𝑒13

𝑐33
          𝑒̅26 = 𝑒26          𝑒̅35 = 𝑒35                                      

∈ 11=∈11+
𝑒13
2

𝑐33
                ∈ 22=∈22                            ∈ 33=∈33                                                                            (𝐶. 2)         
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Appendix D 

𝑐1̅1 , 𝑐1̅2 , 𝑐2̅2 , 𝑐6̅6 , 𝑒̅31 , 𝑒̅32 , and ∈ 11 , ∈ 22 , ∈ 33  required in the constitutive relations of a 

piezoelectric cylindrical shell with the radial polarization based on the classical shell theory, Eq. 

(2.31), are obtained as,  

𝑐1̅1 = 𝑐11 −
𝑐13
2

𝑐33
                     𝑐1̅2 = 𝑐12 −

𝑐13𝑐23

𝑐33
            𝑐2̅2 = 𝑐22 −

𝑐23
2

𝑐33
              𝑐6̅6 = 𝑐66                 

𝑒̅31 = 𝑒31 −
𝑐13𝑒33

𝑐33
                𝑒̅32 = 𝑒32 −

𝑐23𝑒33

𝑐33
                                                        

∈ 11=∈11+
𝑒15
2

𝑐55
                       ∈ 22=∈22+

𝑒24
2

𝑐44
                   ∈ 33=∈33+

𝑒33
2

𝑐33
                                                         (𝐷. 1)     

and 𝑐1̅1 , 𝑐1̅2 , 𝑐2̅2 , 𝑐4̅4 , 𝑐5̅5 , 𝑐6̅6 , 𝑒̅15 , 𝑒̅24 , 𝑒̅31 , 𝑒̅32 , and ∈ 11 , ∈ 22 , ∈ 33  used in the constitutive 

relations of a piezoelectric cylindrical shell with the radial polarization according to the first-order 

shear deformation shell theory, Eq. (2.33), are determined by,  

𝑐1̅1 = 𝑐11 −
𝑐13
2

𝑐33
         𝑐1̅2 = 𝑐12 −

𝑐13𝑐23

𝑐33
           𝑐2̅2 = 𝑐22 −

𝑐23
2

𝑐33
          𝑐4̅4 = 𝑐44         𝑐5̅5 = 𝑐55         𝑐6̅6 = 𝑐66                 

𝑒̅15 = 𝑒15                    𝑒̅24 = 𝑒24                          𝑒̅31 = 𝑒31 −
𝑐13𝑒33

𝑐33
                  𝑒̅32 = 𝑒32 −

𝑐23𝑒33

𝑐33
                                                       

∈ 11=∈11                     ∈ 22=∈22                           ∈ 33=∈33+
𝑒33
2

𝑐33
                                                                        (𝐷. 2)     
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Appendix E 

The expression of coefficients of Eq. (2.36) are given by, 

𝐴1 = 𝐴𝑥𝑥 + 𝑐2̅2ℎ𝑝                𝐴2 = 𝐴𝑥𝜃 + 𝑐1̅2ℎ𝑝          𝐴3 = 𝐴𝑥𝑠              𝐴4 = 𝐵𝑥𝑥 +
𝑐2̅2

2
(ℎℎ𝑝 + ℎ𝑝

2) 

𝐴5 = 𝐵𝑥𝜃 +
𝑐1̅2

2
(ℎℎ𝑝 + ℎ𝑝

2)           𝐴6 = 𝐵𝑥𝑠,               𝐴7 = 𝑒̅22ℎ𝑝   

𝐵1 = 𝐴𝜃𝑥 + 𝑐1̅2ℎ𝑝            𝐵2 = 𝐴𝜃𝜃 + 𝑐1̅1ℎ𝑝              𝐵3 = 𝐴𝜃𝑠           𝐵4 = 𝐵𝜃𝑥 +
𝑐1̅2

2
(ℎℎ𝑝 + ℎ𝑝

2) 

𝐵5 = 𝐵𝜃𝜃 +
𝑐1̅1

2
(ℎℎ𝑝 + ℎ𝑝

2)          𝐵6 = 𝐵𝜃𝑠                𝐵7 = 𝑒̅21ℎ𝑝   

 𝐶1 = 𝐴𝑠𝑥            𝐶2 = 𝐴𝑠𝜃          𝐶3 = 𝐴𝑠𝑠 + 𝑐6̅6ℎ𝑝               𝐶4 = 𝐵𝑠𝑥  

𝐶5 = 𝐵𝑠𝜃             𝐶6 = 𝐵𝑠𝑠 +
𝑐6̅6

2
(ℎℎ𝑝 + ℎ𝑝

2)                 𝐶7 = 𝑒̅16ℎ𝑝    

𝐷1 = 𝐵𝑥𝑥 +
𝑐2̅2
2
(ℎℎ𝑝 + ℎ𝑝

2)          𝐷2 = 𝐵𝑥𝜃 +
𝑐1̅2
2
(ℎℎ𝑝 + ℎ𝑝

2)             𝐷3 = 𝐵𝑥𝑠  

𝐷4 = 𝐷𝑥𝑥 + 𝑐2̅2 (
ℎ𝑝ℎ

2

4
+
ℎℎ𝑝

2

2
+
ℎ𝑝
3

3
)           𝐷5 = 𝐷𝑥𝜃 + 𝑐1̅2 (

ℎ𝑝ℎ
2

4
+
ℎℎ𝑝

2

2
+
ℎ𝑝
3

3
)  

𝐷6 = 𝐷𝑥𝑠                 𝐷7 =
𝑒̅22
2
(ℎℎ𝑝 + ℎ𝑝

2)    

𝐸1 = 𝐵𝜃𝑥 +
𝑐1̅2
2
(ℎℎ𝑝 + ℎ𝑝

2)               𝐸2 = 𝐵𝜃𝜃 +
𝑐1̅1
2
(ℎℎ𝑝 + ℎ𝑝

2)                    𝐸3 = 𝐵𝜃𝑠  

𝐸4 = 𝐷𝜃𝑥 + 𝑐1̅2 (
ℎ𝑝ℎ

2

4
+
ℎℎ𝑝

2

2
+
ℎ𝑝
3

3
)               𝐸5 = 𝐷𝜃𝜃 + 𝑐1̅1 (

ℎ𝑝ℎ
2

4
+
ℎℎ𝑝

2

2
+
ℎ𝑝
3

3
)  

𝐸6 = 𝐷𝜃𝑠                𝐸7 =
𝑒̅21
2
(ℎℎ𝑝 + ℎ𝑝

2)  

𝐹1 = 𝐵𝑠𝑥            𝐹2 = 𝐵𝑠𝜃             𝐹3 = 𝐵𝑠𝑠 +
𝑐6̅6
2
(ℎℎ𝑝 + ℎ𝑝

2)                 𝐹4 = 𝐷𝑠𝑥                𝐹5 = 𝐷𝑠𝜃     

𝐹6 = 𝐷𝑠𝑠 + 𝑐6̅6 (
ℎ𝑝ℎ

2

4
+
ℎℎ𝑝

2

2
+
ℎ𝑝
3

3
)                      𝐹7 =

𝑒̅16
2
(ℎℎ𝑝 + ℎ𝑝

2)    

𝐺1 = 𝐾𝑠𝐴́𝑟𝑞           𝐺2 = 𝐾𝑠(𝐴́𝑟𝑟 + 𝑐4̅4ℎ𝑝)          𝐻1 = 𝐾𝑠(𝐴́𝑞𝑞 + 𝑐5̅5ℎ𝑝)          𝐻2 = 𝐾𝑠𝐴́𝑞𝑟                      (𝐸. 1)  
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Appendix F 

The expression of coefficients of Eq. (2.37) are given by, 

𝐴́1 = 𝐴𝑥𝑥 + 𝑐2̅2ℎ𝑝        𝐴́2 = 𝐴𝑥𝜃 + 𝑐1̅2ℎ𝑝      𝐴́3 = 𝐴𝑥𝑠          𝐴́4 = −𝐵𝑥𝑥 −
𝑐2̅2

2
(ℎℎ𝑝 + ℎ𝑝

2)  

𝐴́5 = −𝐵𝑥𝜃 −
𝑐1̅2

2
(ℎℎ𝑝 + ℎ𝑝

2)           𝐴́6 = −2𝐵𝑥𝑠               𝐴́7 = 𝑒̅22ℎ𝑝    

𝐵́1 = 𝐴𝜃𝑥 + 𝑐1̅2ℎ𝑝        𝐵́2 = 𝐴𝜃𝜃 + 𝑐1̅1ℎ𝑝        𝐵́3 = 𝐴𝜃𝑠          𝐵́4 = −𝐵𝜃𝑥 −
𝑐1̅2

2
(ℎℎ𝑝 + ℎ𝑝

2)  

𝐵́5 = −𝐵𝜃𝜃 −
𝑐1̅1

2
(ℎℎ𝑝 + ℎ𝑝

2)           𝐵́6 = −2𝐵𝜃𝑠               𝐵́7 = 𝑒̅21ℎ𝑝    

 𝐶́1 = 𝐴𝑠𝑥            𝐶́2 = 𝐴𝑠𝜃         𝐶́3 = 𝐴𝑠𝑠 + 𝑐6̅6ℎ𝑝              𝐶́4 = −𝐵𝑠𝑥  

𝐶́5 = −𝐵𝑠𝜃          𝐶́6 = −2𝐵𝑠𝑠 − 𝑐6̅6(ℎℎ𝑝 + ℎ𝑝
2)                𝐶́7 = 𝑒̅16ℎ𝑝   

𝐷́1 = 𝐵𝑥𝑥 +
𝑐2̅2
2
(ℎℎ𝑝 + ℎ𝑝

2)        𝐷́2 = 𝐵𝑥𝜃 +
𝑐1̅2
2
(ℎℎ𝑝 + ℎ𝑝

2)          𝐷́3 = 𝐵𝑥𝑠  

𝐷́4 = −𝐷𝑥𝑥 − 𝑐2̅2 (
ℎ𝑝ℎ

2

4
+
ℎℎ𝑝

2

2
+
ℎ𝑝
3

3
)           𝐷́5 = −𝐷𝑥𝜃 − 𝑐1̅2 (

ℎ𝑝ℎ
2

4
+
ℎℎ𝑝

2

2
+
ℎ𝑝
3

3
)  

𝐷́6 = −2𝐷𝑥𝑠                𝐷́7 =
𝑒̅22
2
(ℎℎ𝑝 + ℎ𝑝

2)  

𝐸́1 = 𝐵𝜃𝑥 +
𝑐1̅2
2
(ℎℎ𝑝 + ℎ𝑝

2)           𝐸́2 = 𝐵𝜃𝜃 +
𝑐1̅1
2
(ℎℎ𝑝 + ℎ𝑝

2)            𝐸́3 = 𝐵𝜃𝑠  

𝐸́4 = −𝐷𝜃𝑥 − 𝑐1̅2 (
ℎ𝑝ℎ

2

4
+
ℎℎ𝑝

2

2
+
ℎ𝑝
3

3
)            𝐸́5 = −𝐷𝜃𝜃 − 𝑐1̅1 (

ℎ𝑝ℎ
2

4
+
ℎℎ𝑝

2

2
+
ℎ𝑝
3

3
)  

𝐸́6 = −2𝐷𝜃𝑠               𝐸́7 =
𝑒̅21
2
(ℎℎ𝑝 + ℎ𝑝

2)  

𝐹́1 = 𝐵𝑠𝑥              𝐹́2 = 𝐵𝑠𝜃             𝐹́3 = 𝐵𝑠𝑠 +
𝑐6̅6
2
(ℎℎ𝑝 + ℎ𝑝

2)                𝐹́4 = −𝐷𝑠𝑥                 𝐹́5 = −𝐷𝑠𝜃   

𝐹́6 = −2𝐷𝑠𝑠 − 𝑐6̅6 (
ℎ𝑝ℎ

2

2
+ ℎℎ𝑝

2 +
2ℎ𝑝

3

3
)                    𝐹́7 =

𝑒̅16
2
(ℎℎ𝑝 + ℎ𝑝

2)                                               (𝐹. 1) 
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Appendix G 

The components of matrix [𝐿𝑖𝑗]6×6, Eq. (2.55), are given by, 

𝐿11 = 𝐼0(𝑐𝛾)
2 − 𝐴1𝛾

2 −
𝑛𝛾

𝑅
(𝐴3 + 𝐶1) − 𝐶3

𝑛2

𝑅2
                           𝐿12 = −

𝑛𝛾

𝑅
(𝐴2 + 𝐶3) − 𝐴3𝛾

2 − 𝐶2
𝑛2

𝑅2
 

𝐿13 = 𝐴2
𝑖𝛾

𝑅
+ 𝐶2

𝑖𝑛

𝑅2
                𝐿14 = 𝐼1(𝑐𝛾)

2 − 𝐴4𝛾
2 −

𝑛𝛾

𝑅
(𝐴6 + 𝐶4) − 𝐶6

𝑛2

𝑅2
       

𝐿15 = −
𝑛𝛾

𝑅
(𝐴5 + 𝐶6) − 𝐴6𝛾

2 − 𝐶5
𝑛2

𝑅2
                          𝐿16 = −𝐴7𝛾

2 − 𝐶7
𝑛2

𝑅2
                    

𝐿21 = −
𝑛𝛾

𝑅
(𝐵1 + 𝐶3) − 𝐵3

𝑛2

𝑅2
− 𝐶1𝛾

2             𝐿22 = 𝐼0(𝑐𝛾)
2 − 𝐵2

𝑛2

𝑅2
−

𝑛𝛾

𝑅
(𝐵3 + 𝐶2) − 𝐶3𝛾

2 −
𝐻1

𝑅2
            

𝐿23 =
𝑖𝑛

𝑅2
(𝐵2 +𝐻1) +

𝑖𝛾

𝑅
(𝐶2 +𝐻2)                𝐿24 = −

𝑛𝛾

𝑅
(𝐵4 + 𝐶6) − 𝐵6

𝑛2

𝑅2
− 𝐶4𝛾

2 +
𝐻2

𝑅
 

𝐿25 = 𝐼1(𝑐𝛾)
2 −

𝑛𝛾

𝑅
(𝐵6 + 𝐶5) − 𝐵5

𝑛2

𝑅2
− 𝐶6𝛾

2 +
𝐻1
𝑅
                  𝐿26 = −

𝑛𝛾

𝑅
(𝐵7 + 𝐶7)  

𝐿31 = −𝐵1
𝑖𝛾

𝑅
− 𝐵3

𝑖𝑛

𝑅2
                            𝐿32 = −

𝑖𝑛

𝑅2
(𝐵2 +𝐻1) −

𝑖𝛾

𝑅
(𝐵3 + 𝐺1)       

𝐿33 = 𝐼0(𝑐𝛾)
2 −

𝐵2

𝑅2
−

𝑛𝛾

𝑅
(𝐺1 + 𝐻2) − 𝐺2𝛾

2 −𝐻1
𝑛2

𝑅2
                𝐿34 = −𝐵4

𝑖𝛾

𝑅
− 𝐵6

𝑖𝑛

𝑅2
+ 𝐺2𝑖𝛾 + 𝐻2

𝑖𝑛

𝑅
       

 𝐿35 = −𝐵5
𝑖𝑛

𝑅2
−𝐵6

𝑖𝛾

𝑅
+ 𝐺1𝑖𝛾 + 𝐻1

𝑖𝑛

𝑅
                  𝐿36 = −𝐵7

𝑖𝛾

𝑅
   

𝐿41 = 𝐼1(𝑐𝛾)
2 − 𝐷1𝛾

2 −
𝑛𝛾

𝑅
(𝐷3 + 𝐹1) − 𝐹3

𝑛2

𝑅2
           𝐿42 = −

𝑛𝛾

𝑅
(𝐷2 + 𝐹3) − 𝐷3𝛾

2 − 𝐹2
𝑛2

𝑅2
+
𝐺1
𝑅
    

𝐿43 = 𝐷2
𝑖𝛾

𝑅
+ 𝐹2

𝑖𝑛

𝑅2
− 𝐺1

𝑖𝑛

𝑅
− 𝐺2𝑖𝛾                           𝐿44 = 𝐼2(𝑐𝛾)

2 −𝐷4𝛾
2 −

𝑛𝛾

𝑅
(𝐷6 + 𝐹4) − 𝐹6

𝑛2

𝑅2
− 𝐺2    

𝐿45 = −
𝑛𝛾

𝑅
(𝐷5 + 𝐹6) − 𝐷6𝛾

2 − 𝐹5
𝑛2

𝑅2
− 𝐺1                   𝐿46 = −𝐷7𝛾

2 − 𝐹7
𝑛2

𝑅2
   

𝐿51 = −
𝑛𝛾

𝑅
(𝐸1 + 𝐹3) − 𝐸3

𝑛2

𝑅2
− 𝐹1𝛾

2            𝐿52 = 𝐼1(𝑐𝛾)
2 −

𝑛𝛾

𝑅
(𝐸3 + 𝐹2) − 𝐹3𝛾

2 − 𝐸2
𝑛2

𝑅2
+
𝐻1
𝑅
   

𝐿53 = 𝐸2
𝑖𝑛

𝑅2
+ 𝐹2

𝑖𝛾

𝑅
− 𝐻1

𝑖𝑛

𝑅
− 𝐻2𝑖𝛾                𝐿54 = −

𝑛𝛾

𝑅
(𝐸4 + 𝐹6) − 𝐹4𝛾

2 − 𝐸6
𝑛2

𝑅2
−𝐻2   

𝐿55 = 𝐼2(𝑐𝛾)
2 −

𝑛𝛾

𝑅
(𝐸6 + 𝐹5) − 𝐹6𝛾

2 − 𝐸5
𝑛2

𝑅2
−𝐻1            𝐿56 = −

𝑛𝛾

𝑅
(𝐸7 + 𝐹7)  

𝐿61 = −𝑒̅16
𝑛2

𝑅2
− 𝑒̅22𝛾

2                    𝐿62 = −
𝑛𝛾

𝑅
(𝑒̅16 + 𝑒̅21)                       𝐿63 = 𝑒̅21

𝑖𝛾

𝑅
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𝐿64 = −
𝑒̅16
2𝑅2 (ℎ + ℎ𝑝)𝑛

2 − 𝑒̅22
(ℎ + ℎ𝑝)

2
𝛾2                        𝐿65 = −

𝑛𝛾

2𝑅
(ℎ + ℎ𝑝)(𝑒̅16 + 𝑒̅21)   

𝐿66 =∈ 11
𝑛2

𝑅2
+∈ 22 𝛾

2                                                                                                                                            (𝐺. 1) 
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Appendix H 

The components of matrix [𝑆𝑖𝑗]4×4, Eq. (2.56), are given by, 

𝑆11 = 𝐼0(𝑐𝛾)
2 − 𝐴1𝛾

2 −
𝑛𝛾

𝑅
(𝐴3 + 𝐶1) − 𝐶3

𝑛2

𝑅2
                          𝑆12 = −

𝑛𝛾

𝑅
(𝐴2 + 𝐶3) − 𝐴3𝛾

2 − 𝐶2
𝑛2

𝑅2
   

𝑆13 = 𝐴2
𝑖𝛾

𝑅
− 𝐴4𝑖𝛾

3 −
𝑖𝛾𝑛2

𝑅2
(𝐴5 + 𝐶6) −

𝑖𝑛𝛾2

𝑅
(𝐴6 + 𝐶4) +

𝐶2

𝑅2
𝑖𝑛 − 𝐶5

𝑖𝑛3

𝑅3
            𝑆14 = −𝐴7𝛾

2 − 𝐶7
𝑛2

𝑅2
    

𝑆21 = −
𝑛𝛾

𝑅
(𝐵1 + 𝐶3) − 𝐵3

𝑛2

𝑅2
− 𝐶1𝛾

2 + 𝐹1
𝛾2

𝑅
+

𝑛𝛾

𝑅2
(𝐸1 + 𝐹3) + 𝐸3

𝑛2

𝑅3
     

𝑆22 = 𝐼0(𝑐𝛾)
2 − 𝐵2

𝑛2

𝑅2
−

𝑛𝛾

𝑅
(𝐵3 + 𝐶2) − 𝐶3𝛾

2 +
𝑛𝛾

𝑅2
(𝐸3 + 𝐹2) + 𝐸2

𝑛2

𝑅3
+ 𝐹3

𝛾2

𝑅
            

𝑆23 =
𝐵2

𝑅2
𝑖𝑛 −

𝑖𝑛𝛾2

𝑅
(𝐵4 + 𝐶6) − 𝐵5

𝑖𝑛3

𝑅3
−

𝑖𝛾𝑛2

𝑅2
(𝐵6 + 𝐶5) + 𝐶2

𝑖𝛾

𝑅
− 𝐶4𝑖𝛾

3 − 𝐹2
𝑖𝛾

𝑅2
+ 𝐹4

𝑖𝛾3

𝑅
+

𝑖𝛾𝑛2

𝑅3
(𝐸6 + 𝐹5) +

𝑖𝑛𝛾2

𝑅2
(𝐸4 + 𝐹6) − 𝐸2

𝑖𝑛

𝑅3
+ 𝐸5

𝑖𝑛3

𝑅4
              

𝑆24 = −
𝑛𝛾

𝑅
(𝐵7 + 𝐶7) +

𝑛𝛾

𝑅2
(𝐸7 + 𝐹7) 

𝑆31 = −𝐵1
𝑖𝛾

𝑅
− 𝐵3

𝑖𝑛

𝑅2
− 𝐷1𝑖𝛾

3 −
𝑖𝑛𝛾2

𝑅
(𝐷3 + 2𝐹1) − 𝐸3

𝑖𝑛3

𝑅3
−

𝑖𝛾𝑛2

𝑅2
(𝐸1 + 2𝐹3)       

𝑆32 = −𝐵2
𝑖𝑛

𝑅2
− 𝐵3

𝑖𝛾

𝑅
−

𝑖𝑛𝛾2

𝑅
(𝐷2 + 2𝐹3) − 𝐷3𝑖𝛾

3 −
𝑖𝛾𝑛2

𝑅2
(𝐸3 + 2𝐹2) − 𝐸2

𝑖𝑛3

𝑅3
     

𝑆33 = 𝐼0(𝑐𝛾)
2 −

𝐵2

𝑅2
+

𝛾2

𝑅
(𝐵4 − 𝐷2) +

𝛾2𝑛2

𝑅2
(𝐷5 + 𝐸4 + 2𝐹6) +

𝑛𝛾3

𝑅
(𝐷6 + 2𝐹4) + 𝐷4𝛾

4 −
𝑛𝛾

𝑅2
(2𝐹2−𝐵6) +

𝛾𝑛3

𝑅3
(𝐸6 + 2𝐹5) +

𝑛2

𝑅3
(𝐵5 − 𝐸2) + 𝐸5

𝑛4

𝑅4
      

 𝑆34 = −𝐵7
𝑖𝛾

𝑅
− 𝐷7𝑖𝛾

3 −
𝑖𝛾𝑛2

𝑅2
(𝐸7 + 2𝐹7)  

𝑆41 = −𝑒̅16
𝑛2

𝑅2
− 𝑒̅22𝛾

2                   𝑆42 = −
𝑛𝛾

𝑅
(𝑒̅16 + 𝑒̅21)                  

 𝑆43 = 𝑒̅21
𝑖𝛾

𝑅
+ 𝑒̅22

(ℎ+ℎ𝑝)

2
𝑖𝛾3 +

(ℎ+ℎ𝑝)𝑖𝛾𝑛
2

𝑅2
(𝑒̅16 + 𝑒̅21)            𝑆44 =∈ 11

𝑛2

𝑅2
+∈ 22 𝛾

2                           (𝐻. 1) 
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Appendix I 

The components of matrix [𝑇𝑖𝑗]4×4, Eq. (2.57), are given by, 

𝑇11 = 𝐼0(𝑐𝛾)
2 − 𝐴1𝛾

2 −
𝑛𝛾

𝑅
(𝐴3 + 𝐶1) − 𝐶3

𝑛2

𝑅2
                               𝑇12 = −

𝑛𝛾

𝑅
(𝐴2 + 𝐶3) − 𝐴3𝛾

2 − 𝐶2
𝑛2

𝑅2
   

𝑇13 =
𝐴2

𝑅
𝑖𝛾 − 𝐴4𝑖𝛾

3 −
𝑖𝛾𝑛2

𝑅2
(𝐴5 + 𝐶6) −

𝑖𝑛𝛾2

𝑅
(𝐴6 + 𝐶4) + 𝐶2

𝑖𝑛

𝑅2
− 𝐶5

𝑖𝑛3

𝑅3
          𝑇14 = −𝐴7𝛾

2 − 𝐶7
𝑛2

𝑅2
                     

𝑇21 = −
𝑛𝛾

𝑅
(𝐵1 + 𝐶3) − 𝐵3

𝑛2

𝑅2
− 𝐶1𝛾

2                         𝑇22 = 𝐼0(𝑐𝛾)
2 − 𝐵2

𝑛2

𝑅2
−

𝑛𝛾

𝑅
(𝐵3 + 𝐶2) − 𝐶3𝛾

2            

𝑇23 = 𝐵2
𝑖𝑛

𝑅2
−

𝑖𝑛𝛾2

𝑅
(𝐵4 + 𝐶6) − 𝐵5

𝑖𝑛3

𝑅3
−

𝑖𝛾𝑛2

𝑅2
(𝐵6 + 𝐶5) + 𝐶2

𝑖𝛾

𝑅
− 𝐶4𝑖𝛾

3         𝑇24 = −
𝑛𝛾

𝑅
(𝐵7 + 𝐶7)  

𝑇31 = −𝐵1
𝑖𝛾

𝑅
− 𝐵3

𝑖𝑛

𝑅2
       𝑇32 = −𝐵2

𝑖𝑛

𝑅2
     𝑇33 = 𝐼0(𝑐𝛾)

2 −
𝐵2

𝑅2
+ 𝐵4

𝛾2

𝑅
+ 𝐵5

𝑛2

𝑅3
+𝐵6

𝑛𝛾

𝑅2
      𝑇34 = −𝐵7

𝑖𝛾

𝑅
 

𝑇41 = −𝑒̅16
𝑛2

𝑅2
− 𝑒̅22𝛾

2                   𝑇42 = −
𝑛𝛾

𝑅
(𝑒̅16 + 𝑒̅21)                    

𝑇43 = 𝑒̅21
𝑖𝛾

𝑅
+ 𝑒̅22

(ℎ+ℎ𝑝)

2
𝑖𝛾3 +

(ℎ+ℎ𝑝)𝑖𝛾𝑛
2

𝑅2
(𝑒̅16 + 𝑒̅21)             𝑇44 =∈ 11

𝑛2

𝑅2
+∈ 22 𝛾

2                             (𝐼. 1) 
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Appendix J 

Transformation matrix [𝑇𝑖𝑗] and its inverse [𝑇𝑖𝑗
−1], required for Eq. (2.69), are given by, 

[𝑇𝑖𝑗] =

[
 
 
 
 
 
𝑚́2

𝑛́2

0
0
0

−𝑚́𝑛́

𝑛́2

𝑚́2

0
0
0
𝑚́𝑛́

0
0
1
0
0
0

0
0
0
𝑚́
𝑛́
0

0
0
0
−𝑛́
𝑚́
0

2𝑚́𝑛́
−2𝑚́𝑛́
0
0
0

𝑚́2 − 𝑛́2]
 
 
 
 
 

                                                                                                 (𝐽. 1) 

[𝑇𝑖𝑗
−1] =

[
 
 
 
 
 
𝑚́2

𝑛́2

0
0
0
𝑚́𝑛́

𝑛́2

𝑚́2

0
0
0

−𝑚́𝑛́

0
0
1
0
0
0

0
0
0
𝑚́
−𝑛́
0

0
0
0
𝑛́
𝑚́
0

−2𝑚́𝑛́
2𝑚́𝑛́
0
0
0

𝑚́2 − 𝑛́2]
 
 
 
 
 

                                                                                              (𝐽. 2) 

where  

𝑚́ = 𝑐𝑜𝑠𝛽,              𝑛́ = 𝑠𝑖𝑛𝛽                                                                                                                                   (𝐽. 3) 

The components of the stiffness matrix [𝐶](𝑥,𝜃,𝑧) in the cylindrical coordinate system (𝑥, 𝜃, 𝑧) 

are given by, 

𝐶𝑥𝑥 = 𝑚́4𝐶11 + 2𝑚́2𝑛́2𝐶12 + 𝑛́4𝐶22 + 4𝑚́2𝑛́2𝐶66  

𝐶𝑥𝜃 = 𝑚́2𝑛́2𝐶11 + (𝑚́4 + 𝑛́4)𝐶12 + 𝑚́2𝑛́2𝐶22 − 4𝑚́2𝑛́2𝐶66  

𝐶𝑥𝑧 = 𝑚́2𝐶13 + 𝑛́2𝐶23 

𝐶𝑥𝑠 = 𝑚́3𝑛́𝐶11 − 𝑚́𝑛́(𝑚́2 − 𝑛́2)𝐶12 − 𝑚́𝑛́3𝐶22 − 2𝑚́𝑛́(𝑚́2 − 𝑛́2)𝐶66  

𝐶𝜃𝜃 = 𝑛́4𝐶11 + 2𝑚́2𝑛́2𝐶12 + 𝑚́4𝐶22 + 4𝑚́2𝑛́2𝐶66  

𝐶𝜃𝑧 = 𝑛́2𝐶13 + 𝑚́2𝐶23 

𝐶𝜃𝑠 = 𝑚́𝑛́3𝐶11 + 𝑚́𝑛́(𝑚́2 − 𝑛́2)𝐶12 − 𝑚́3𝑛́𝐶22 + 2𝑚́𝑛́(𝑚́2 − 𝑛́2)𝐶66  

𝐶𝑧𝑧 = 𝐶33 

𝐶𝑧𝑠 = 𝑚́𝑛́𝐶13 − 𝑚́𝑛́𝐶23 

𝐶𝑞𝑞 = 𝑚́2𝐶44 + 𝑛́2𝐶55 

𝐶𝑟𝑞 = −𝑚́𝑛́𝐶44 + 𝑚́𝑛́𝐶55 
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𝐶𝑟𝑟 = 𝑛́2𝐶44 + 𝑚́2𝐶55 

𝐶𝑠𝑠 = 𝑚́2𝑛́2𝐶11 − 2𝑚́2𝑛́2𝐶12 + 𝑚́2𝑛́2𝐶22 + (𝑚́2 − 𝑛́2)2𝐶66                                                                        (𝐽. 4) 
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Appendix K 

𝐶𝜃̅𝜃 , 𝐶𝜃̅𝑥 , 𝐶𝜃̅𝑠 , 𝐶𝑥̅𝑥 , 𝐶𝑥̅𝑠 , 𝐶𝑟̅𝑟 , 𝐶𝑟̅𝑞 , 𝐶𝑞̅𝑞 , 𝐶𝑠̅𝑠 , 𝑒̅16 , 𝑒̅21 , 𝑒̅22 , 𝑒̅23 , 𝑒̅34 , and ∈ 11 , ∈ 22 , ∈ 33   for Eq. 

(2.71) are given by, 

𝐶𝜃̅𝜃 = 𝐶𝜃𝜃 −
𝐶𝜃𝑧
2

𝐶𝑧𝑧
              𝐶𝜃̅𝑥 = 𝐶𝜃𝑥 −

𝐶𝜃𝑧𝐶𝑥𝑧
𝐶𝑧𝑧

            𝐶𝜃̅𝑠 = 𝐶𝜃𝑠 −
𝐶𝜃𝑧𝐶𝑧𝑠
𝐶𝑧𝑧

                    𝐶𝑥̅𝑥 = 𝐶𝑥𝑥 −
𝐶𝑥𝑧
2

𝐶𝑧𝑧
       

𝐶𝑥̅𝑠 = 𝐶𝑥𝑠 −
𝐶𝑥𝑧𝐶𝑧𝑠

𝐶𝑧𝑧
              𝐶𝑟̅𝑟 = 𝐶𝑟𝑟              𝐶𝑟̅𝑞 = 𝐶𝑟𝑞                  𝐶𝑞̅𝑞 = 𝐶𝑞𝑞                  𝐶𝑠̅𝑠 = 𝐶𝑠𝑠 −

𝐶𝑧𝑠
2

𝐶𝑧𝑧
        

𝑒̅16 = 𝑒16        𝑒̅21 = 𝑒21 − 𝑒23
𝐶𝜃𝑧

𝐶𝑧𝑧
          𝑒̅22 = 𝑒22 − 𝑒23

𝐶𝑥𝑧

𝐶𝑧𝑧
          𝑒̅23 = −𝑒23

𝐶𝑧𝑠

𝐶𝑧𝑧
,            𝑒̅34 = 𝑒34                                           

∈ 11=∈11                  ∈ 22=∈22+
𝑒23
2

𝐶𝑧𝑧
                   ∈ 33=∈33                                                                                  (𝐾. 1)                                           

and 𝐶𝜃̅𝜃, 𝐶𝜃̅𝑥, 𝐶𝑥̅𝑥, 𝐶𝑟̅𝑟, 𝐶𝑞̅𝑞, 𝐶𝑠̅𝑠, 𝑒̅16, 𝑒̅21, 𝑒̅22, 𝑒̅34, and ∈ 11, ∈ 22, ∈ 33  for Eq. (2.79) are given by,  

𝐶𝜃̅𝜃 = 𝐶𝜃𝜃 −
𝐶𝜃𝑧
2

𝐶𝑧𝑧
         𝐶𝜃̅𝑥 = 𝐶𝜃𝑥 −

𝐶𝜃𝑧𝐶𝑥𝑧

𝐶𝑧𝑧
        𝐶𝑥̅𝑥 = 𝐶𝑥𝑥 −

𝐶𝑥𝑧
2

𝐶𝑧𝑧
       𝐶𝑟̅𝑟 = 𝐶𝑟𝑟       𝐶𝑞̅𝑞 = 𝐶𝑞𝑞        𝐶𝑠̅𝑠 = 𝐶𝑠𝑠        

𝑒̅16 = 𝑒16             𝑒̅21 = 𝑒21 − 𝑒23
𝐶𝜃𝑧

𝐶𝑧𝑧
                 𝑒̅22 = 𝑒22 − 𝑒23

𝐶𝑥𝑧

𝐶𝑧𝑧
               𝑒̅34 = 𝑒34                                          

∈ 11=∈11              ∈ 22=∈22+
𝑒23
2

𝐶𝑧𝑧
                    ∈ 33=∈33                                                                                     (𝐾. 2)       
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Appendix L 

The expression of coefficients of Eq. (2.86) are given by, 

𝐴1 = 𝐶𝑥̅𝑥ℎ             𝐴2 = 𝐶𝑥̅𝑠ℎ             𝐴3 = 𝐶𝑥̅𝜃ℎ           𝐴4 = 𝑒̅22ℎ     

𝐵1 = 𝐶𝜃̅𝑥ℎ             𝐵2 = 𝐶𝜃̅𝑠ℎ             𝐵3 = 𝐶𝜃̅𝜃ℎ           𝐵4 = 𝑒̅21ℎ    

𝐶1 = 𝐶𝑥̅𝑠ℎ              𝐶2 = 𝐶𝑠̅𝑠ℎ              𝐶3 = 𝐶𝜃̅𝑠ℎ           𝐶4 = 𝑒̅23ℎ        𝐶5 = 𝑒̅16ℎ     

𝐷1 = 𝐶𝑥̅𝑥
ℎ3

12
            𝐷2 = 𝐶𝜃̅𝑥

ℎ3

12
            𝐷3 = 𝐶𝑥̅𝑠

ℎ3

12
  

𝐸1 = 𝐶𝜃̅𝑥
ℎ3

12
           𝐸2 = 𝐶𝜃̅𝜃

ℎ3

12
           𝐸3 = 𝐶𝜃̅𝑠

ℎ3

12
 

𝐹1 = 𝐶𝑥̅𝑠
ℎ3

12
            𝐹2 = 𝐶𝜃̅𝑠

ℎ3

12
             𝐹3 = 𝐶𝑠̅𝑠

ℎ3

12
 

𝐺1 = 𝐾𝑠𝐶𝑟̅𝑟ℎ           𝐺2 = 𝐾𝑠𝐶𝑟̅𝑞ℎ   

𝐻1 = 𝐾𝑠𝐶𝑟̅𝑞ℎ           𝐻2 = 𝐾𝑠𝐶𝑞̅𝑞ℎ                                                                                                                          (𝐿. 1) 

The expression of coefficients of Eq. (2.87) are given by, 

𝐴́1 = 𝐶𝑥̅𝑥ℎ           𝐴́2 = 𝐶𝜃̅𝑥ℎ           𝐴́3 = 𝑒̅22ℎ             𝐵́1 = 𝐶𝜃̅𝑥ℎ           𝐵́2 = 𝐶𝜃̅𝜃ℎ             𝐵́3 = 𝑒̅21ℎ           

𝐶́1 = 𝐶𝑠̅𝑠ℎ            𝐶́2 = 𝑒̅16ℎ            𝐷́1 = 𝐶𝑥̅𝑥
ℎ3

12
            𝐷́2 = 𝐶𝜃̅𝑥

ℎ3

12
         𝐸́1 = 𝐶𝜃̅𝑥

ℎ3

12
             𝐸́2 = 𝐶𝜃̅𝜃

ℎ3

12
   

𝐹́1 = 𝐶𝑠̅𝑠
ℎ3

12
         𝐺́1 = 𝐾𝑠𝐶𝑟̅𝑟ℎ         𝐻́1 = 𝐾𝑠𝐶𝑞̅𝑞ℎ                                                                                             (𝐿. 2) 
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Appendix M 

The components of characteristics matrix [𝐿𝑖𝑗] (𝑖, 𝑗 = 1,… ,6) for a piezoelectric composite 

cylindrical shell reinforced with angled, straight CNTs (section 2.4.7) are obtained as, 

𝐿11 = 𝐼0(𝑐𝛾)
2 − 𝐴1𝛾

2 −
𝑛𝛾

𝑅
(𝐴2 + 𝐶1) − 𝐶2

𝑛2

𝑅2
              𝐿12 = −𝐴2𝛾

2 −
𝑛𝛾

𝑅
(𝐴3 + 𝐶2) − 𝐶3

𝑛2

𝑅2
                 

𝐿13 = 𝐴3
𝑖𝛾

𝑅
+ 𝐶3

𝑖𝑛

𝑅2
            𝐿14 = 𝐼1(𝑐𝛾)

2               𝐿15 = 0          𝐿16 = −𝐴4𝛾
2 − 𝐶4

𝑛𝛾

𝑅
− 𝐶5

𝑛2

𝑅2
                     

𝐿21 = −
𝑛𝛾

𝑅
(𝐵1 + 𝐶2) − 𝐵2

𝑛2

𝑅2
− 𝐶1𝛾

2       𝐿22 = 𝐼0(𝑐𝛾)
2 −

𝑛𝛾

𝑅
(𝐵2 + 𝐶3) − 𝐵3

𝑛2

𝑅2
− 𝐶2𝛾

2 −
𝐻2

𝑅2
             

𝐿23 =
𝑖𝑛

𝑅2
(𝐵3 +𝐻2) +

𝑖𝛾

𝑅
(𝐶3 + 𝐻1)       𝐿24 =

𝐻1

𝑅
      𝐿25 = 𝐼1(𝑐𝛾)

2 +
𝐻2

𝑅
      𝐿26 = −

𝑛𝛾

𝑅
(𝐵4 + 𝐶5) − 𝐶4𝛾

2  

𝐿31 = −𝐵1
𝑖𝛾

𝑅
− 𝐵2

𝑖𝑛

𝑅2
                  𝐿32 = −

𝑖𝛾

𝑅
(𝐵2 + 𝐺2) −

𝑖𝑛

𝑅2
(𝐵3 +𝐻2)      

𝐿33 = 𝐼0(𝑐𝛾)
2 −

𝐵3

𝑅2
− 𝐺1𝛾

2 −
𝑛𝛾

𝑅
(𝐻1 + 𝐺2) − 𝐻2

𝑛2

𝑅2
                𝐿34 = 𝐺1𝑖𝛾 + 𝐻1

𝑖𝑛

𝑅
  

 𝐿35 = 𝐺2𝑖𝛾 + 𝐻2
𝑖𝑛

𝑅
                            𝐿36 = −𝐵4

𝑖𝛾

𝑅
   

𝐿41 = 𝐼1(𝑐𝛾)
2                  𝐿42 =

𝐺2
𝑅
                   𝐿43 = −𝐺1𝑖𝛾 − 𝐺2

𝑖𝑛

𝑅
    

 𝐿44 = 𝐼2(𝑐𝛾)
2 − 𝐷1𝛾

2 −
𝑛𝛾

𝑅
(𝐷3 + 𝐹1) − 𝐹3

𝑛2

𝑅2
− 𝐺1    

𝐿45 = −
𝑛𝛾

𝑅
(𝐷2 + 𝐹3) − 𝐷3𝛾

2 − 𝐹2
𝑛2

𝑅2
− 𝐺2                   𝐿46 = 0  

 𝐿51 = 0                𝐿52 = 𝐼1(𝑐𝛾)
2 +

𝐻2

𝑅
           𝐿53 = −𝐻1𝑖𝛾 − 𝐻2

𝑖𝑛

𝑅
    

𝐿54 = −𝐹1𝛾
2 −

𝑛𝛾

𝑅
(𝐹3 + 𝐸1) − 𝐸3

𝑛2

𝑅2
−𝐻1              

𝐿55 = 𝐼2(𝑐𝛾)
2 −

𝑛𝛾

𝑅
(𝐹2 + 𝐸3) − 𝐹3𝛾

2 − 𝐸2
𝑛2

𝑅2
−𝐻2                        𝐿56 = 0  

𝐿61 = −𝑒̅22𝛾
2 − 𝑒̅16

𝑛2

𝑅2
− 𝑒̅23

𝑛𝛾

𝑅
                   𝐿62 = −

𝑛𝛾

𝑅
(𝑒̅16 + 𝑒̅21) − 𝑒̅23𝛾

2                  𝐿63 = 𝑒̅21
𝑖𝛾

𝑅
      

𝐿64 = 0                𝐿65 = 0                     𝐿66 =∈ 11
𝑛2

𝑅2
+∈ 22 𝛾

2                                                                         (𝑀. 1) 
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The components of characteristics matrix [𝐿𝑖𝑗] (𝑖, 𝑗 = 1,… ,6) for a piezoelectric composite 

cylindrical shell reinforced with randomly oriented (agglomerated), straight CNTs (section 2.4.7) 

are obtained as, 

𝐿11 = 𝐼0(𝑐𝛾)
2 − 𝐴́1𝛾

2 − 𝐶́1
𝑛2

𝑅2
             𝐿12 = −

𝑛𝛾

𝑅
(𝐴́2 + 𝐶́1)              𝐿13 = 𝐴́2

𝑖𝛾

𝑅
                𝐿14 = 𝐼1(𝑐𝛾)

2       

𝐿15 = 0                          𝐿16 = −𝐴́3𝛾
2 − 𝐶́2

𝑛2

𝑅2
                     

𝐿21 = −
𝑛𝛾

𝑅
(𝐵́1 + 𝐶́1)         𝐿22 = 𝐼0(𝑐𝛾)

2 − 𝐵́2
𝑛2

𝑅2
− 𝐶́1𝛾

2 −
𝐻́1

𝑅2
             

𝐿23 =
𝑖𝑛

𝑅2
(𝐵́2 + 𝐻́1)           𝐿24 = 0           𝐿25 = 𝐼1(𝑐𝛾)

2 +
𝐻́1

𝑅
                   𝐿26 = −

𝑛𝛾

𝑅
(𝐵́3 + 𝐶́2)  

𝐿31 = −𝐵́1
𝑖𝛾

𝑅
                   𝐿32 = −

𝑖𝑛

𝑅2
(𝐵́2 + 𝐻́1)           𝐿33 = 𝐼0(𝑐𝛾)

2 −
𝐵́2

𝑅2
− 𝐺́1𝛾

2 − 𝐻́1
𝑛2

𝑅2
   

𝐿34 = 𝐺́1𝑖𝛾                      𝐿35 = 𝐻́1
𝑖𝑛

𝑅
                           𝐿36 = −𝐵́3

𝑖𝛾

𝑅
   

𝐿41 = 𝐼1(𝑐𝛾)
2                  𝐿42 = 0                   𝐿43 = −𝐺́1𝑖𝛾   

 𝐿44 = 𝐼2(𝑐𝛾)
2 − 𝐷́1𝛾

2 − 𝐹́1
𝑛2

𝑅2
− 𝐺́1          𝐿45 = −

𝑛𝛾

𝑅
(𝐷́2 + 𝐹́1)                   𝐿46 = 0  

 𝐿51 = 0                𝐿52 = 𝐼1(𝑐𝛾)
2 +

𝐻́1

𝑅
          𝐿53 = −𝐻́1

𝑖𝑛

𝑅
    

𝐿54 = −
𝑛𝛾

𝑅
(𝐹́1 + 𝐸́1)             𝐿55 = 𝐼2(𝑐𝛾)

2 − 𝐹́1𝛾
2 − 𝐸́2

𝑛2

𝑅2
− 𝐻́1               𝐿56 = 0  

𝐿61 = −𝑒̅22𝛾
2 − 𝑒̅16

𝑛2

𝑅2
                  𝐿62 = −

𝑛𝛾

𝑅
(𝑒̅16 + 𝑒̅21)                  𝐿63 = 𝑒̅21

𝑖𝛾

𝑅
     

𝐿64 = 0                𝐿65 = 0                     𝐿66 =∈ 11
𝑛2

𝑅2
+∈ 22 𝛾

2                                                                         (𝑀. 2) 
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Appendix N 

The expression of coefficients of Eq. (2.113) are given by, 

𝐴1 = 𝐴𝑥𝑥 + 2𝑐2̅2ℎ𝑝         𝐴2 = 𝐴𝑥𝜃 + 2𝑐1̅2ℎ𝑝        𝐴3 = 𝐴𝑥𝑠            𝐴4 = 𝐵𝑥𝑥   

𝐴5 = 𝐵𝑥𝜃            𝐴6 = 𝐵𝑥𝑠               𝐴7 = 2𝑒̅22ℎ𝑝       𝐴8 = −𝐸𝑥𝑥        𝐴9 = −𝐹𝑥𝑥   

𝐵1 = 𝐴𝜃𝑥 + 2𝑐1̅2ℎ𝑝         𝐵2 = 𝐴𝜃𝜃 + 2𝑐1̅1ℎ𝑝         𝐵3 = 𝐴𝜃𝑠           𝐵4 = 𝐵𝜃𝑥   

𝐵5 = 𝐵𝜃𝜃            𝐵6 = 𝐵𝜃𝑠          𝐵7 = 2𝑒̅21ℎ𝑝          𝐵8 = −𝐸𝜃𝜃          𝐵9 = −𝐹𝜃𝜃   

 𝐶1 = 𝐴𝑠𝑥              𝐶2 = 𝐴𝑠𝜃          𝐶3 = 𝐴𝑠𝑠 + 2𝑐6̅6ℎ𝑝              𝐶4 = 𝐵𝑠𝑥   

𝐶5 = 𝐵𝑠𝜃             𝐶6 = 𝐵𝑠𝑠            𝐶7 = 2𝑒̅16ℎ𝑝          𝐶8 = −𝐸𝑥𝜃          𝐶9 = −𝐹𝑥𝜃   

𝐷1 = 𝐵𝑥𝑥               𝐷2 = 𝐵𝑥𝜃         𝐷3 = 𝐵𝑥𝑠                𝐷4 = 𝐷𝑥𝑥 + 𝑐2̅2 (
ℎ𝑝ℎ

2

2
+ ℎℎ𝑝

2 +
2ℎ𝑝

3

3
)   

𝐷5 = 𝐷𝑥𝜃 + 𝑐1̅2 (
ℎ𝑝ℎ

2

2
+ ℎℎ𝑝

2 +
2ℎ𝑝

3

3
)           𝐷6 = 𝐷𝑥𝑠               𝐷7 = −𝐺𝑥𝑥              𝐷8 = −𝐻𝑥𝑥     

𝐸1 = 𝐵𝜃𝑥              𝐸2 = 𝐵𝜃𝜃             𝐸3 = 𝐵𝜃𝑠            𝐸4 = 𝐷𝜃𝑥 + 𝑐1̅2 (
ℎ𝑝ℎ

2

2
+ ℎℎ𝑝

2 +
2ℎ𝑝

3

3
)   

𝐸5 = 𝐷𝜃𝜃 + 𝑐1̅1 (
ℎ𝑝ℎ

2

2
+ ℎℎ𝑝

2 +
2ℎ𝑝

3

3
)       𝐸6 = 𝐷𝜃𝑠           𝐸7 = −𝐺𝜃𝜃        𝐸8 = −𝐻𝜃𝜃     

𝐹1 = 𝐵𝑠𝑥        𝐹2 = 𝐵𝑠𝜃          𝐹3 = 𝐵𝑠𝑠               𝐹4 = 𝐷𝑠𝑥              𝐹5 = 𝐷𝑠𝜃     

𝐹6 = 𝐷𝑠𝑠 + 𝑐6̅6 (
ℎ𝑝ℎ

2

2
+ ℎℎ𝑝

2 +
2ℎ𝑝

3

3
)               𝐹7 = −𝐺𝑥𝜃            𝐹8 = −𝐻𝑥𝜃    

𝐺1 = 𝐾𝑠𝐴́𝑟𝑞        𝐺2 = 𝐾𝑠(𝐴́𝑟𝑟 + 2𝑐4̅4ℎ𝑝)         𝐻1 = 𝐾𝑠(𝐴́𝑞𝑞 + 2𝑐5̅5ℎ𝑝)         𝐻2 = 𝐾𝑠𝐴́𝑞𝑟                     (𝑁. 1)  
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Appendix O 

The components of matrix [𝐿𝑖𝑗]8×8, Eq. (2.120), are given by, 

𝐿11 = 𝐼0(𝑐𝛾)
2 − 𝐴1𝛾

2 −
𝑛𝛾

𝑅
(𝐴3 + 𝐶1) − 𝐶3

𝑛2

𝑅2
                             𝐿12 = −

𝑛𝛾

𝑅
(𝐴2 + 𝐶3) − 𝐴3𝛾

2 − 𝐶2
𝑛2

𝑅2
   

𝐿13 = 𝐴2
𝑖𝛾

𝑅
+ 𝐶2

𝑖𝑛

𝑅2
                 𝐿14 = 𝐼1(𝑐𝛾)

2 − 𝐴4𝛾
2 −

𝑛𝛾

𝑅
(𝐴6 + 𝐶4) − 𝐶6

𝑛2

𝑅2
        

𝐿15 = −
𝑛𝛾

𝑅
(𝐴5 + 𝐶6) − 𝐴6𝛾

2 − 𝐶5
𝑛2

𝑅2
                        𝐿16 = −𝐴7𝛾

2 − 𝐶7
𝑛2

𝑅2
    

𝐿17 = 𝐴8𝑖𝛾 + 𝐶8
𝑖𝑛

𝑅
                                                             𝐿18 = 𝐴9𝑖𝛾 + 𝐶9

𝑖𝑛

𝑅
                     

𝐿21 = −
𝑛𝛾

𝑅
(𝐵1 + 𝐶3) − 𝐵3

𝑛2

𝑅2
− 𝐶1𝛾

2          𝐿22 = 𝐼0(𝑐𝛾)
2 − 𝐵2

𝑛2

𝑅2
−

𝑛𝛾

𝑅
(𝐵3 + 𝐶2) − 𝐶3𝛾

2 −
𝐻1

𝑅2
            

𝐿23 =
𝑖𝑛

𝑅2
(𝐵2 +𝐻1) +

𝑖𝛾

𝑅
(𝐶2 +𝐻2)                𝐿24 = −

𝑛𝛾

𝑅
(𝐵4 + 𝐶6) − 𝐵6

𝑛2

𝑅2
− 𝐶4𝛾

2 +
𝐻2

𝑅
  

𝐿25 = 𝐼1(𝑐𝛾)
2 − 𝐵5

𝑛2

𝑅2
−
𝑛𝛾

𝑅
(𝐵6 + 𝐶5) − 𝐶6𝛾

2 +
𝐻1
𝑅
                 𝐿26 = −

𝑛𝛾

𝑅
(𝐵7 + 𝐶7)  

𝐿27 = 𝐵8
𝑖𝑛

𝑅
+ 𝐶8𝑖𝛾                         𝐿28 = 𝐵9

𝑖𝑛

𝑅
+ 𝐶9𝑖𝛾  

𝐿31 = −𝐵1
𝑖𝛾

𝑅
− 𝐵3

𝑖𝑛

𝑅2
                           𝐿32 = −

𝑖𝑛

𝑅2
(𝐵2 +𝐻1) −

𝑖𝛾

𝑅
(𝐵3 + 𝐺1)        

𝐿33 = 𝐼0(𝑐𝛾)
2 −

𝐵2

𝑅2
−

𝑛𝛾

𝑅
(𝐺1 + 𝐻2) − 𝐺2𝛾

2 −𝐻1
𝑛2

𝑅2
                𝐿34 = −𝐵4

𝑖𝛾

𝑅
− 𝐵6

𝑖𝑛

𝑅2
+ 𝐺2𝑖𝛾 + 𝐻2

𝑖𝑛

𝑅
       

 𝐿35 = −𝐵5
𝑖𝑛

𝑅2
−𝐵6

𝑖𝛾

𝑅
+ 𝐺1𝑖𝛾 + 𝐻1

𝑖𝑛

𝑅
                𝐿36 = −𝐵7

𝑖𝛾

𝑅
           𝐿37 = −

𝐵8

𝑅
            𝐿38 = −

𝐵9

𝑅
   

𝐿41 = 𝐼1(𝑐𝛾)
2 − 𝐷1𝛾

2 −
𝑛𝛾

𝑅
(𝐷3 + 𝐹1) − 𝐹3

𝑛2

𝑅2
        𝐿42 = −

𝑛𝛾

𝑅
(𝐷2 + 𝐹3) − 𝐷3𝛾

2 − 𝐹2
𝑛2

𝑅2
+
𝐺1
𝑅
     

𝐿43 = 𝐷2
𝑖𝛾

𝑅
+ 𝐹2

𝑖𝑛

𝑅2
− 𝐺1

𝑖𝑛

𝑅
− 𝐺2𝑖𝛾                      𝐿44 = 𝐼2(𝑐𝛾)

2 − 𝐷4𝛾
2 −

𝑛𝛾

𝑅
(𝐷6 + 𝐹4) − 𝐹6

𝑛2

𝑅2
− 𝐺2   

𝐿45 = −
𝑛𝛾

𝑅
(𝐷5 + 𝐹6) − 𝐷6𝛾

2 − 𝐹5
𝑛2

𝑅2
− 𝐺1      𝐿46 = 0      𝐿47 = 𝐷7𝑖𝛾 + 𝐹7

𝑖𝑛

𝑅
        𝐿48 = 𝐷8𝑖𝛾 + 𝐹8

𝑖𝑛

𝑅
   

𝐿51 = −
𝑛𝛾

𝑅
(𝐸1 + 𝐹3) − 𝐸3

𝑛2

𝑅2
− 𝐹1𝛾

2           𝐿52 = 𝐼1(𝑐𝛾)
2 −

𝑛𝛾

𝑅
(𝐸3 + 𝐹2) − 𝐹3𝛾

2 − 𝐸2
𝑛2

𝑅2
+
𝐻1
𝑅
  

𝐿53 = 𝐸2
𝑖𝑛

𝑅2
+ 𝐹2

𝑖𝛾

𝑅
− 𝐻1

𝑖𝑛

𝑅
− 𝐻2𝑖𝛾               𝐿54 = −

𝑛𝛾

𝑅
(𝐸4 + 𝐹6) − 𝐹4𝛾

2 − 𝐸6
𝑛2

𝑅2
−𝐻2   
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𝐿55 = 𝐼2(𝑐𝛾)
2 −

𝑛𝛾

𝑅
(𝐸6 + 𝐹5) − 𝐹6𝛾

2 − 𝐸5
𝑛2

𝑅2
−𝐻1              𝐿56 = 0   

𝐿57 = 𝐹7𝑖𝛾 + 𝐸7
𝑖𝑛

𝑅
                    𝐿58 = 𝐹8𝑖𝛾 + 𝐸8

𝑖𝑛

𝑅
   

𝐿61 = −𝑒̅16
𝑛2

𝑅2
− 𝑒̅22𝛾

2                   𝐿62 = −
𝑛𝛾

𝑅
(𝑒̅16 + 𝑒̅21)                      𝐿63 = 𝑒̅21

𝑖𝛾

𝑅
     

𝐿64 = 𝐿65 = 0              𝐿66 = ∈ 11
𝑛2

𝑅2
+∈ 22 𝛾

2               𝐿67 = 𝐿68 = 0   

𝐿71 = 𝐿72 = 𝐿73 = 𝐿74 = 𝐿75 = 𝐿76 = 0         𝐿77 = −𝛾2 −
𝑛2

𝑅2
            𝐿78 = 0  

𝐿81 = 𝐿82 = 𝐿83 = 𝐿84 = 𝐿85 = 𝐿86 = 𝐿87 = 0          𝐿88 = −𝛾2 −
𝑛2

𝑅2
                                                   (𝑂. 1) 
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Appendix P 

The components of matrix [𝐿𝑖𝑗]8×8, Eq. (2.124), are given by, 

𝐿11 = 𝐼0𝜔
2 − 𝐴1𝛾𝑚

2 −
𝑛𝛾𝑚

𝑅
(𝐴3 + 𝐶1) − 𝐶3

𝑛2

𝑅2
                            𝐿12 = −

𝑛𝛾𝑚

𝑅
(𝐴2 + 𝐶3) − 𝐴3𝛾𝑚

2 − 𝐶2
𝑛2

𝑅2
   

𝐿13 = 𝐴2
𝑖𝛾𝑚

𝑅
+ 𝐶2

𝑖𝑛

𝑅2
                 𝐿14 = 𝐼1𝜔

2 − 𝐴4𝛾𝑚
2 −

𝑛𝛾𝑚

𝑅
(𝐴6 + 𝐶4) − 𝐶6

𝑛2

𝑅2
        

𝐿15 = −
𝑛𝛾𝑚
𝑅

(𝐴5 + 𝐶6) − 𝐴6𝛾𝑚
2 − 𝐶5

𝑛2

𝑅2
                       𝐿16 = −𝐴7𝛾𝑚

2 − 𝐶7
𝑛2

𝑅2
   

𝐿17 = 𝐴8𝑖𝛾𝑚 + 𝐶8
𝑖𝑛

𝑅
                                                             𝐿18 = 𝐴9𝑖𝛾𝑚 + 𝐶9

𝑖𝑛

𝑅
                    

𝐿21 = −
𝑛𝛾𝑚

𝑅
(𝐵1 + 𝐶3) − 𝐵3

𝑛2

𝑅2
− 𝐶1𝛾𝑚

2           𝐿22 = 𝐼0𝜔
2 −𝐵2

𝑛2

𝑅2
−

𝑛𝛾𝑚

𝑅
(𝐵3 + 𝐶2) − 𝐶3𝛾𝑚

2 −
𝐻1

𝑅2
           

𝐿23 =
𝑖𝑛

𝑅2
(𝐵2 +𝐻1) +

𝑖𝛾𝑚

𝑅
(𝐶2 +𝐻2)                𝐿24 = −

𝑛𝛾𝑚

𝑅
(𝐵4 + 𝐶6) − 𝐵6

𝑛2

𝑅2
− 𝐶4𝛾𝑚

2 +
𝐻2

𝑅
   

𝐿25 = 𝐼1𝜔
2 − 𝐵5

𝑛2

𝑅2
−
𝑛𝛾𝑚
𝑅

(𝐵6 + 𝐶5) − 𝐶6𝛾𝑚
2 +

𝐻1
𝑅
                 𝐿26 = −

𝑛𝛾𝑚
𝑅

(𝐵7 + 𝐶7)  

𝐿27 = 𝐵8
𝑖𝑛

𝑅
+ 𝐶8𝑖𝛾𝑚                          𝐿28 = 𝐵9

𝑖𝑛

𝑅
+ 𝐶9𝑖𝛾𝑚  

𝐿31 = −𝐵1
𝑖𝛾𝑚

𝑅
−𝐵3

𝑖𝑛

𝑅2
                           𝐿32 = −

𝑖𝑛

𝑅2
(𝐵2 +𝐻1) −

𝑖𝛾𝑚

𝑅
(𝐵3 + 𝐺1)        

𝐿33 = 𝐼0𝜔
2 −

𝐵2

𝑅2
−

𝑛𝛾𝑚

𝑅
(𝐺1 + 𝐻2) − 𝐺2𝛾𝑚

2 −𝐻1
𝑛2

𝑅2
               𝐿34 = −𝐵4

𝑖𝛾𝑚

𝑅
−𝐵6

𝑖𝑛

𝑅2
+ 𝐺2𝑖𝛾𝑚 +𝐻2

𝑖𝑛

𝑅
       

 𝐿35 = −𝐵5
𝑖𝑛

𝑅2
−𝐵6

𝑖𝛾𝑚

𝑅
+ 𝐺1𝑖𝛾𝑚 +𝐻1

𝑖𝑛

𝑅
                 𝐿36 = −𝐵7

𝑖𝛾𝑚

𝑅
         𝐿37 = −

𝐵8

𝑅
          𝐿38 = −

𝐵9

𝑅
   

𝐿41 = 𝐼1𝜔
2 − 𝐷1𝛾𝑚

2 −
𝑛𝛾𝑚
𝑅

(𝐷3 + 𝐹1) − 𝐹3
𝑛2

𝑅2
         𝐿42 = −

𝑛𝛾𝑚
𝑅

(𝐷2 + 𝐹3) − 𝐷3𝛾𝑚
2 − 𝐹2

𝑛2

𝑅2
+
𝐺1
𝑅
     

𝐿43 = 𝐷2
𝑖𝛾𝑚

𝑅
+ 𝐹2

𝑖𝑛

𝑅2
− 𝐺1

𝑖𝑛

𝑅
− 𝐺2𝑖𝛾𝑚                      𝐿44 = 𝐼2𝜔

2 −𝐷4𝛾𝑚
2 −

𝑛𝛾𝑚

𝑅
(𝐷6 + 𝐹4) − 𝐹6

𝑛2

𝑅2
− 𝐺2   

𝐿45 = −
𝑛𝛾𝑚
𝑅

(𝐷5 + 𝐹6) − 𝐷6𝛾𝑚
2 − 𝐹5

𝑛2

𝑅2
− 𝐺1           𝐿46 = 0  

 𝐿47 = 𝐷7𝑖𝛾𝑚 + 𝐹7
𝑖𝑛

𝑅
                     𝐿48 = 𝐷8𝑖𝛾𝑚 + 𝐹8

𝑖𝑛

𝑅
   

𝐿51 = −
𝑛𝛾𝑚
𝑅

(𝐸1 + 𝐹3) − 𝐸3
𝑛2

𝑅2
− 𝐹1𝛾𝑚

2            𝐿52 = 𝐼1𝜔
2 −

𝑛𝛾𝑚
𝑅

(𝐸3 + 𝐹2) − 𝐹3𝛾𝑚
2 − 𝐸2

𝑛2

𝑅2
+
𝐻1
𝑅
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𝐿53 = 𝐸2
𝑖𝑛

𝑅2
+ 𝐹2

𝑖𝛾𝑚
𝑅

− 𝐻1
𝑖𝑛

𝑅
− 𝐻2𝑖𝛾𝑚               𝐿54 = −

𝑛𝛾𝑚
𝑅

(𝐸4 + 𝐹6) − 𝐹4𝛾𝑚
2 − 𝐸6

𝑛2

𝑅2
−𝐻2   

𝐿55 = 𝐼2𝜔
2 −

𝑛𝛾𝑚
𝑅

(𝐸6 + 𝐹5) − 𝐹6𝛾𝑚
2 − 𝐸5

𝑛2

𝑅2
−𝐻1                𝐿56 = 0    

𝐿57 = 𝐹7𝑖𝛾𝑚 + 𝐸7
𝑖𝑛

𝑅
                          𝐿58 = 𝐹8𝑖𝛾𝑚 + 𝐸8

𝑖𝑛

𝑅
   

𝐿61 = −𝑒̅16
𝑛2

𝑅2
− 𝑒̅22𝛾𝑚

2                    𝐿62 = −
𝑛𝛾𝑚

𝑅
(𝑒̅16 + 𝑒̅21)                      𝐿63 = 𝑒̅21

𝑖𝛾𝑚

𝑅
       

𝐿64 = 𝐿65 = 0              𝐿66 = ∈ 11
𝑛2

𝑅2
+∈ 22 𝛾𝑚

2                𝐿67 = 𝐿68 = 0  

𝐿71 = 𝐿72 = 𝐿73 = 𝐿74 = 𝐿75 = 𝐿76 = 0          𝐿77 = −𝛾𝑚
2 −

𝑛2

𝑅2
            𝐿78 = 0   

𝐿81 = 𝐿82 = 𝐿83 = 𝐿84 = 𝐿85 = 𝐿86 = 𝐿87 = 0             𝐿88 = −𝛾𝑚
2 −

𝑛2

𝑅2
                                                (𝑃. 1) 
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