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Abstract

Smart laminated composite cylindrical shells are widely used in many engineering applications
such as aerospace, mechanical, civil, and marine structures. Dynamics (wave propagation and
vibration) analysis of smart laminated composite shell structures plays an important role in design
and fabrication of such structures. Understanding the dynamic characteristics of composite
structures can be used for detecting possible defects in a structure and monitoring its structural
integrity. Proper dynamics analysis of composite cylindrical shells has significant importance in
accurate determination of wave propagation and vibration characteristics. In this thesis, a set of
mathematical models is developed to model wave propagation and free vibration in smart
laminated composite cylindrical shells reinforced with fibers with different sizes and arrangements
based on different shell theories. The resulting effective material properties for composite
structures reinforced with carbon nanotubes are estimated using the Mori-Tanaka micromechanics
model. The hygrothermal environmental conditions are also considered in the proposed models.
Wave dispersion and free vibration analyses are performed by solving an eigenvalue problem and
finding the wave phase velocities and natural frequencies for different wave and vibration modes.
Through numerical simulations, the effects of various parameters such as hygrothermal
environmental conditions, axial and circumferential wavenumbers, arrangement and distribution
of reinforcing fibers and carbon nanotubes, stacking sequence of the laminate, shell geometry
parameters, piezoelectricity, and mechanical boundary conditions on the dynamic characteristics
of different composites are examined. It is concluded that the shear effects on wave dynamics of
smart laminated composite cylindrical shells are much more noticeable than its effects on wave
dynamics of smart isotropic cylindrical shells. Furthermore, the effects of reinforcing fibers and

carbon nanotubes and their volume fraction and geometrical distribution within the structure on



wave propagation characteristics are significant and must be carefully considered in the analyses
of such structures. The hygrothermal environmental conditions have a moderate impact on the
wave propagation and vibration characteristics. Shell geometry and boundary conditions have
noticeable effects on dynamic characteristics of smart composite cylindrical shells. The theoretical
and mathematical framework developed in this thesis can be used by designers and manufacturers
for the analyses of structural integrity and health monitoring of smart laminated composite
cylindrical shell structures. It can also be used for energy harvesting through the piezoelectric

materials embedded in such structures under different environmental conditions.
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Chapter 1

Introduction

1.1. Background and Scope

Due to outstanding material properties of advanced composite materials superior to the material
properties of traditional materials such as steel, aluminium, etc., they are widely used in many
engineering applications such as mechanical, aerospace, civil, marine, and offshore structures. A
study on wave propagation and vibration of composite structures helps us to understand their
dynamic characteristics and failure mechanism. An analysis of wave propagation behavior is a
perquisite to seismic and/or acoustic Non-Destructive Evaluation (NDE) techniques. Analysis of
elastic waves in smart anisotropic materials is much more complicated than that for smart isotropic
materials. Hence, to accurately predict the dynamic behaviors of such media, it is of significant
importance to develop appropriate analytical and numerical models considering all the anisotropic
properties. In the following subsections, a brief introduction of shell structures, composite

structures, and smart structures with their applications is presented.
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1.1.1. Shell Structures

A shell structure is a three-dimensional structure which is thin in one direction (thickness
direction) and long in the other two directions. Shell structures’ curvature plays an important role
in their structural behavior. Shell structures are abundantly present in the nature, for example sea-
shells. Indeed, due to the curvature of the middle surface, shells are very strong and stiff under
both in-plane and bending loadings; hence, they can span over relatively large areas and hold
applied loads in a very effective way with a minimum amount of material [1].

Shells are largely employed in engineering designs and applications mainly due to their light
weight and mechanical properties. In automotive engineering, the bodies of cars are shell
structures; in aeronautical engineering, the airplane bodies are shell structures; in naval
engineering, the ship hulls are made of shells; in civil engineering, shells are used for roofs,
bridges, silos, tanks, cooling towers, and aesthetic and architectural structures; and in
biomechanics, arteries conveying flow can be considered as shell structures. Some examples of
shell structures are: the roof of the Montreal Olympic stadium shown in Fig. 1.1, the fuselage and
wing panel of the huge Boeing 777 aircraft shown in Fig. 1.2, and the hull of the Queen Mary 2

transatlantic boat shown in Fig. 1.3.
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Figure 1.1. Olympic stadium, Montreal, Canada. Used with permission [2].

In the design of shell structures, one of the main objectives is to make the thickness as thin as
possible to reduce the material usage and consequently provide a lighter structure. The difficulty
in the analysis of shell structures is related to their spatial form, e.g. curvature. Curvature, which
is the reason for a higher carrying load capacity, causes different failure modes as well as often
unknown behaviors. Hence, these features of shells make their analysis more difficult than other
structural element such as conventional bars, beams, and plates. In reality, the strength properties
of shell structures depend on their spatial curvature form [1]. The analytical formulae for shell
structures are very complicated in comparison with other structural elements. Due to an optimum
distribution of materials, shell structures may collapse due to buckling, which may occur much
before the failure strength of the material. Because shell structures are thin, large displacements
usually happen with respect to the shell thickness, which is related to small strains before collapse.

Shell structures are often exposed to dynamic loads which lead to their vibrations [3].
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Figure 1.2. Boeing 777. Used with permission [4].
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Figure 1.3. The Queen Mary 2 transatlantic boat. Used with permission [5].
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1.1.2. Composite Materials and Structures

1.1.2.1. Definition and Characteristics

A composite material is made up of two or more phases on a macroscopic scale, whose
mechanical properties and performance are superior of those of the constituent materials alone.
The discontinuous, stiffer, and stronger phase is called the reinforcement, while the continuous,
less stiff, and weaker phase is called the matrix (Fig. 1.4). In some cases, due to chemical
interactions or other processing effects, an additional phase is created between the reinforcement
and the matrix which is called the interface phase. The properties of a composite material is
function of the properties of constituents, their geometry, and spatial distribution. One of the most
important parameters affecting on the properties of a composite material is the volume (or weight)
fraction of the reinforcement or the fiber volume ratio. The distribution of the reinforcement in the
matrix specifies the homogeneity or the uniformity of a composite martial system. More non-
uniform distribution of the reinforcement in a composite material leads to more heterogeneity. The
orientation and geometry of the reinforcement also influence on the anisotropy of a composite
material. Different materials are used for the reinforcement and the matrix phases [6]. The most
common reinforcing fibers are Carbon, Kevlar, E-Glass, S-Glass, Boron, and Silicon Carbide. The
matrix can be made of polymers, ceramics, and metals. Typical polymer matrices are Epoxy,

Polyesters, Vinylester, Polyimides, and Poly-ether-ether-ketone.
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Continuous phase
{matrix)

Dispersed phase
(reinforcement)

Figure 1.4. Phases of a composite material. Used with permission [6].

1.1.2.2. Nanocomposites

Nanocomposite is a multiphase solid material where one of the phases has one, two or three
dimensions of less than 100 nanometers (nm). In mechanical terms, nanocomposites differ from
conventional composite materials due to the exceptionally high surface to volume ratio of the
reinforcing phase and/or its exceptionally high aspect ratio. The reinforcing material can be made
up of particles (e.g. minerals), sheets (e.g. exfoliated clay stacks) or fibres (e.g. carbon nanotubes
or electrospun fibres). The area of the interface between the matrix and reinforcement phases is
typically an order of magnitude greater than the one for conventional composite materials. The
matrix material properties are significantly affected in the vicinity of the reinforcement.

Since their discovery by lijima [7], carbon nanotubes (CNTSs) have attracted much attention of
researchers because of their extraordinary enhanced material properties. Fig. 1.5 displays CNTs
originally reported by lijima [7]. CNTs are a class of nanomaterials that consist of a two-
dimensional hexagonal lattice of carbon atoms, bent and joined in one direction so as to form a
hollow cylinder. CNTs can be found as single individual cylinders, as a single-walled carbon

nanotubes (SWCNTS), or as coaxial cylindrical structures bonded by van der Waals forces called


https://en.wikipedia.org/wiki/Nanometers
https://en.wikipedia.org/wiki/Composite_material
https://en.wikipedia.org/wiki/Aspect_ratio
https://en.wikipedia.org/wiki/Nanomaterials
https://en.wikipedia.org/wiki/Hexagonal_tiling
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multi-walled carbon nanotubes (MWCNTS). Carbon nanotubes can also be found as double-walled
carbon nanotubes (DWCNTS) with particular properties. Fig. 1.6 presents single-, double- and
multi-walled carbon nanotubes [8].

As reported in the literature [9-13], the material properties of SWCNTSs are anisotropic,
chirality- and size — dependent and temperature — dependent . It is noted that the effective wall
thickness obtained for the SWCNT (10, 10) is 0.067 nm which satisfies the VVodenitcharova—
Zhang criterion [14], and the wide used value of 0.34 nm for tube wall thickness is thoroughly
inappropriate for SWCNTSs. Radius of the SWCNT (10, 10) is considered 0.68 nm [15,16]. While
micro-sized fibers have larger diameter; for example, the diameter of carbon and E-glass fibers

are, respectively, 7 um and 8 um [6].

Figure 1.5. Carbon nanotubes as originally reported by lijima in 1991. Used with permission [7].
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Figure 1.6. (a) Single-walled carbon nanotube, (b) Double-walled carbon nanotube, and (¢) multi-

walled carbon nanotube. Used with permission [8].

The outstanding mechanical, electrical, and thermal properties of CNTs made them as a
potential reinforcing constituent in polymer matrices. The most important properties of CNTs are
their extraordinary high strength-to-weight and stiffness-to-weight ratios. Among the most
remarkable properties, it is interesting to report that the tensile strength of SWCNTs and MWCNTS
is in the range from 13 to 52 GPa and from 11 to 63 GPa, respectively [17,18], and both
SWCNTs and MWCNTSs have Young’s modulus about 1TPa [17-20]. According to molecular
mechanics and molecular dynamics, CNTs have high tensile strength, much higher than that of
carbon fibers and steels [20-22]. At the same time, CNTs exhibit high flexibility [23], high thermal
conductivity [24], and low density [25]. Due to their outstanding material properties, CNTs have
been proposed in many applications such as material reinforcing [26,27], gas sensing [28-30],
field emission emitters [31,32], nanomechanics [33], atomic force microscopy tips [34],

membranes [35], etc.

1.1.2.3. Types and Classification of Composite Materials
Two-phase composite materials are usually classified in three categories based on the type,
geometry, and orientation of the reinforcement phase in the matrix as explained in the chart of Fig.

1.7 [6]:
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Particulate composites contain particles of various sizes and shapes randomly dispersed in
the matrix. This group of composites may consist of non-metallic particles in a non-
metallic matrix, metallic particles in non-metallic matrices, metallic particles in metallic
matrices, and non-metallic particles in metallic matrices.

Discontinuous or short — fiber composites consist of short fibers, nanotubes, or whiskers
as the reinforcing phase. Short fibers can be either all along a specific direction or randomly
oriented. Nanocomposites reinforced with carbon nanotubes (approximately 1 nm in
diameter and 1000 nm in length) are an example of this type of composites.

Continuous — fiber composites are reinforced by long continuous fibers and are the most
efficient form in term of strength and stiffness. The continuous fibers in the matrix can be
all parallel in as unidirectional continuous-fiber composites, oriented at right angles to each
other as cross-ply or woven fabric continuous-fiber composite, or oriented along several
directions as multidirectional continuous-fiber composite. For some cases of fiber

orientation and distribution, the composite can be classified as a quasi-isotropic material.

In addition to the above — discussed types of matrix, there are laminated composites made up

of thin layers of different materials bonded together, such as clad metals, bimetals, Formica,

plywood, and so on [6]. Continuous fiber — reinforced composites have higher strength and elastic

moduli than discontinuous fiber — reinforced composites [36].

1.1.2.4. Lamina and Laminate

Composite structures in engineering applications are commonly made up of a stack of plies

called laminate and each ply is called lamina. A lamina (or ply, or layer) is a typical sheet of

composite material representing a fundamental building block. A fiber — reinforced lamina consists

of many fibers embedded in a matrix material. Unidirectional fiber-reinforced laminae have the
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highest strength and modulus in the direction of the fibers, but they show very low strength and
elastic modulus in the transverse direction to the fibers. A weak bonding between a fiber and matrix
leads to poor transverse properties and failures due to fiber breakage, fiber pull out, and fiber
buckling.

A laminate is a collection of stacked laminae (or plies, or layers) to obtain the desired thickness
and stiffness. For example, unidirectional fiber-reinforced laminae can be stacked with various
fiber orientation in each lamina (see Fig. 1.8). The sequence of various orientations of a fiber-
reinforced composite lamina in a laminate is expressed the lamination scheme or stacking
sequence. The stacking sequence and the material properties of individual lamina provide the
possibility of various designs with tailored stiffness and strength of the laminate to satisfy the

structural stiffness and strength requirements [36].

10
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Figure 1.7. Classification of composite material systems. Used with permission [6].
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Figure 1.8. A laminate made up of laminae with different fiber orientations. Used with permission
[36].

1.1.2.5. Scales of Analysis of Composite Materials

Composite materials can be investigated and analyzed at different scales. A schematic diagram
of different levels of analysis and consideration is shown in Fig. 1.9 [6].

Micromechanics is related to the study of the interaction of the constituents at the microscopic
level. This scale considers the state of deformation and stress in the constituents and local failures
such as fiber failure (tensile, buckling, and splitting), matrix failure (tensile, compressive, and
shear), and interface/interphase failure (debonding). Micromechanics is very important when

studying properties such as failure mechanism and strength, fracture toughness, and fatigue life.

12
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Micromechanics also provides the estimation of average behavior of the lamina as a function of
its constituent material properties and local conditions. The objective of micromechanics methods
IS to characterize the elastic response of a Representative Volume Element (RVE) of the lamina as
a function of the material and geometric properties of the constituents. Average properties of a
composite lamina are determined in response of the RVE under simple loadings, such as
longitudinal, transverse, in-plane shear, and transverse shear. The relevant engineering elastic
properties are Young’s moduli (Ey;, E,,, and E33), shear moduli (G,,, G,3, and G;3), and
Poisson’s ratio (vy,, V,3, and v;3).

Macromechanics scale considers the unidirectional lamina as a quasi-homogenous anisotropic
material with its own average stiffness and strength properties. This method, assuming material
continuity, is considered to study the elastic, viscoelastic, or hygrothermal behavior of composite
laminates and structures. At the laminate level, the macromechanical analysis is used in the form
of lamination theory considering overall behavior as a function of lamina properties and stacking
sequence.

Finally, at the structure level, methods such as analytical approach or finite element analysis
coupled with lamination theory are able to predict the overall behavior of the structure under static

and dynamic conditions as well as the state of stress in each lamina.

1.1.2.6. Constitutive Equations of a Lamina

In formulating the constitutive equations of a lamina, it is assumed that: (i) a lamina is a
continuum with no gaps or empty spaces, and (ii) a lamina is a linear elastic material. From the
microscopic point of view, composite materials are inherently heterogeneous. While, composite

materials are assumed to be homogenous from the macroscopic point of view, in which the

13
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effective material properties of a composite are estimated from a weighted average of its
constituent materials (fiber and matrix) [36].

The generalized Hooke’s law for an anisotropic material is given in contracted notation by,

oij = Cij&j; (1.1)
where g;; represent the stress components, ;; stand for the strain components, and C;; are the
elastic constants or the material properties coefficients. Table 1.1 shows the independent elastic

constants for various types of materials.

Matrix
Fiber

Laminate

Structure

Figure 1.9. Levels of consideration and types of analysis for composite materials. Used with

permission [6].
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Table 1.1. Independent elastic constants for various types of materials [6].

Material Number of independent elastic constants
General anisotropic material 81
Anisotropic material considering symmetry of stress and strain 36

tensors (0;; = 0j;, & = €j;)

Anisotropic material with elastic energy considerations 21
General orthotropic material 9
Orthotropic material with transverse isotropy 5
Isotropic material 2

1.1.3. Smart Structures and Their Application

Nowadays, developments in aeronautical and space industries, advanced structures, and
automotive and shipbuilding industries are significantly affected by the development of so-called
smart structures. Since late 1970s, the definition of smart structures has been discussed
extensively. Based on a workshop organized by the US Army Research Office in 1988, the
definition of smart system/structures was adopted by the scientific community [37] as: “A system
or material which has built-in or intrinsic sensor(s), actuator(s) and control mechanism(s) whereby
it is capable of sensing a stimulus, responding to it in a predetermined manner and extent, in a
short/appropriate time, and reverting to its original state as soon as the stimulus is removed”.

Early damage and delamination detection in composite structures using health monitoring
techniques leads to prevention of catastrophic failures. To detect any damage in a composite
structure, we need to first make a smart structure system. Based on the design practice, smart
structures and systems are able to sense or react to their environment using the integration of
sensors and actuators. Smart structures are capable to change their shape to very high precision
and without using classical mechanical actuators, diminish vibrations and acoustic noise, and even

monitor their own structural health.
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Piezoelectric, piezomagnetic, electrostrictive, and magnetostrictive materials, due to their self-
actuating electro-mechanical coupling properties, are of interest in design of smart structures,
where they are bonded on the surface of the structure or embedded in the structure. With the
advantage of piezoelectricity, mechanical energy can be transformed into electrical energy and
vice versa. In piezoelectric materials, an electrical charge is generated when mechanical pressure
is applied; which is so-called direct effect (sensor configuration). Conversely, the material shape
changes when an electrical charge is applied; that is, the inverse effect (actuator configuration).
With such reciprocal energy transforming characteristics, piezoelectric materials can be used at
the same time as sensors and actuators, called self-sensing piezoelectric actuator [38]. As an
actuator, the input voltage is transformed to mechanical strains, and the high frequency input signal
is transformed into mechanical wave. While, as a sensor, when the input mechanical signal is
applied, electrical signals are produced.

To apply wave propagation in a smart structure, an interdigital transducer (IDT) is used. An
IDT is a device that consists of two interlocking comb-shaped arrays of metallic electrodes (in the
fashion of zipper). These metallic electrodes are deposited on the surface of a piezoelectric
substrate as shown in Fig. 1.10. IDTs convert electric signals to surface acoustic waves (SAW) by
generating periodically distributed mechanical forces via piezoelectric effect (an input transducer).
Based on the same principle, SAW is converted to electric signals (an output transducer). Hence,
IDTs made up of piezoelectric materials can also be used as both actuators and sensors in a smart
structure (piezoelectric coupled structure) for the analysis of wave signal for the purpose of damage

detection [39].
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Input Transducer Output Transducer

SAW
— R

Piezoelectric Substrate

Figure 1.10. Schematic picture of a typical SAW signal processing device containing two
interdigital transducers. Used with permission [40].

Nowadays, smart structures are applied in many different applications such as structural health
monitoring, vibration control, shape morphing, active optics, and microelectromechanical systems
(MEMS). A typical example of a smart structure is displayed in Fig. 1.11, where a network of

sensors and actuators is embedded in a plate to control the deformation and apply corrections.
actuators

N ..\\\

nn |.‘ \\\\\\ ' -'
“‘ .

sensors

TARGET:
damping, noise,
shape control,
reduction,...

ower amplifier . . -
P P control unit measuring amplifier

Figure 1.11. Example of a smart structure: the sensor—actuator network for a plate. Used with

permission [41].
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Piezoelectricity can be found in some natural crystals (such as quartz and tourmaline) or
synthetic crystals (lithium sulfate), and some polymers and polarized ceramics. Piezoceramic
barium titanate (BaTiO3) and piezo lead zirconate titanate (PZT) are the most common
piezoelectric materials. The crystal lattice of piezoelectric materials is of the face-centered cubic
(FCC) type. Oxygen atoms are at the center of the cube’s faces, while metallic atoms are placed at
the vortex of the cube as shown in Fig. 1.12. Heavier atom located at the center of the cube can
move slightly to locations with less energy leading to the deformation of the crystal lattice. When
an electric field is applied to the structure, because the central atom can exceed the potential energy
threshold, it can move to a lower energy position. This causes the rupture of symmetry and an
electric dipole (Fig. 1.12). This phenomenon occurs only below the so-called Curie temperature
(T¢). Above this temperature (T > T,), due to high thermal agitation, the piezoelectric effect
disappears. We can obtain polarized piezoceramics by heating them above their Curie temperature
and subjecting to a sever electric field during thermal cooling. By this process, all the dipoles can
be oriented in the same direction and a stable polarization can be obtained for the material. After
the polarization process, a temporary deformation is obtained by a very small electric potential and

vice versa [41].
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Figure 1.12. Intrinsic piezoelectric effect in piezo lead zirconate titanate (PZT), showing a
crystallite (a) above and (b) below the Curie temperature T, where the charged zirconium or

titanium ion moves relative to the center position. Used with permission [42].

Therefore, to impart piezoelectric properties and effects, piezoelectric materials must be
subjected to a process called poling or polarization. Group of dipoles with the same alignments are
called Weiss domains. Because of the random distribution of Weiss domains with various
directions and alignments inside the ceramics as displayed in Fig. 1.13a, macroscopic piezoelectric
effect is negligible. Applying a strong electric field leads to an arrangement of the Weiss domains
(as depicted in Fig. 1.13b), and then the ceramics can be polarized. The ceramics are now ready to
use and present piezoelectric properties, i.e. converting electrical signals to mechanical strains, or

converting mechanical strains to electrical voltages. As shown in Fig. 1.13c, after poling, Weiss
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domains are slightly misaligned compared to the case shown in Fig. 1.13b due to aging which

leads to a reduction in piezoelectric effects [42].

(a) (b) (©)

Figure 1.13. Polarization of polycrystalline piezoelectric ceramic causes (a) the as-fired random domain
polarity to align to (b) a net positive polarity, which (c) relaxes or ages over time. Used with permission
[42].

For piezoelectric materials in the shell structures, different polarization directions may be
considered and they can be polarized in the axial, circumferential, and radial (thickness) directions
and or a combination of different directions.

Itis very important to accurately study and analyze the dynamics of smart laminated composite
cylindrical shells by considering the shear effects with the stacked plies and piezoelectric coupling,
advanced nanocomposite materials, hygrothermal environmental conditions, and electrical and
mechanical boundary conditions. This investigation helps us to clearly understand the dynamic
behaviors of smart laminated composite shells integrated with the piezoelectric materials and build
a theoretical framework for the composites NDE. The research development in this field is

reviewed in the following section.
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1.1.4. Waves in Elastic Solids

1.1.4.1. Definition and Characteristics

Waves are a disturbance propagating in a medium such as water, air, or solid. Waves in solids
are inaudible to human ears and invisible to human eyes, while acoustic waves in air is audible
and surface waves in water is visible. Waves in solids are physical, real, and very important to
engineering applications. Mathematical and numerical approaches are needed to analyze and
simulate the wave phenomena in solids. These approaches can provide virtual views of waves in
our mind. When solids are subjected to external forces, they are stressed. The stresses produce
strains observed in form of deformation or displacement. In solid mechanics and structural
mechanics, relationship between stresses and strains, displacements and forces, and stresses
(strains) and forces are investigated for given boundary conditions applied on solids. These
relationships are required to analyze wave motion in solids.

Under dynamic forces varying with time, solids will experience dynamic motion. The stress,
strain, and the displacement due to dynamic forces will also be functions of time, and theories of
dynamics must be applied. The dynamic motion is often observed in form of wave motion or
vibration. We cannot draw a clear line between wave motion and vibration, but, in general, wave
is a localized vibration and a vibration is a motion of waves with very long wavelength. When
talking regarding waves, one is concerned with the motion or propagation of a localized
mechanical disturbance, while in vibration, one usually consider the global motion of the entire
structure. Mathematically, both wave motion and vibration are governed by the same dynamic
motion equations, which are derived based on the Newton’s Law.

Free wave motion is related to wave motion in media free of external excitation. Our aim is to

study what could be happening in the media under its natural status, rather than what will be
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happening under a special loading condition. In free wave motion analysis, one needs to find the
velocity, natural frequency, and wave modes in relation to wavelength or wavenumber. In contrast,
forced wave motion refers to waves in media excited by an external excitation. The excitation can
be harmonic or transient. The response of the media to a harmonic excitation is presented in the
form of frequency spectrum of displacement response. Analysis of waves generated by harmonic
excitation is called frequency analysis or wave analysis in frequency domain. Transient response
is related to the response of the media under a transient excitation where the results are presented
in form of time history of displacement response. Analysis of transient waves is called transient
analysis which is also referred to as wave analysis in time domain [43]. The complexity of wave
propagation problem is also dependent on the complexity of the geometry of the domain where
waves are propagating.

Materials are elastic if they are stressed below the limit called yield stress, while they are plastic
if stress beyond this certain limit is applied. Waves propagating in elastic material are expressed
elastic waves. One of the major applications of elastic waves is in the field of NDE. In this
application, stress level is kept as low as possible and within the elastic range. Otherwise, it could
be destructive. Hence, damage detection in structures can be destructive or non-destructive. In
NDE, the defect is detected without causing any damage to the structure components and materials
through investigation. Elastic wave propagation in solids is one of the NDE techniques serving as
a convenient, flexible, and safe method for damage detection developed since 1960s. Hence, wave
propagation in solids are usually divided into three categories. The first one is the elastic waves,
in which stress relations follow the Hooke’s law. The second type of waves is the visco-elastic
waves, where viscosity as well as elasticity is applied in the governing equations. The next type of

waves is the plastic waves, in which the material yield stress is exceeded. Elastic wave propagation
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is the most commonly studied wave due to its simplicity relative to other two waves, used for
damage detection aim considering the required low strain/stress level. Hence, elastic wave
propagation will be investigated in the present research work.

Studies on wave propagation and vibration of laminated composite shells with different
reinforcing materials and under different working conditions are very helpful to understand their
dynamic characteristics and failure mechanism. In addition, ultrasonic-based NDE is used to
determine the material properties and detect defects (cracks and flaws) in composites. An analysis
of wave behaviors, especially the high frequency analysis, is prerequisite in applying NDE
techniques effectively using ultrasonic and elastic waves as the theoretical foundation [43].
Analysis of wave propagation in smart laminated composite structures as laminated anisotropic
media is much more complicated than the one for isotropic media because of complexity in
piezoelectric coupling, boundary condition modeling, micromechanical modeling, and solving

procedure.

1.1.4.2. Motion Equation for a Free Wave Motion

To explain how the equation of motion for a free wave motion can be derived, consider a
uniform and isotropic thin bar or rod, whose lateral dimension is much smaller than its
longitudinal, as shown in Fig. 1.14. The bar is subjected to a uniform traction, p(x), at its cross-
section at point x and in the x (axial) direction. As the traction p is applied uniformly in the x
direction, the displacement u in the x direction will be dominant. Therefore, the problem can be
considered as one dimensional and variables are only function of x and independent of y and z.
The governing equation for the one-dimensional wave motion problem can be derived as follows

[43].
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Consider a representative cell (shaded portion) as shown in Fig. 1.15 isolated from a uniform,
isotropic and elastic bar. Let to introduce the linear strain-displacement relation as,

Ju

o (1.2)

&

where ¢ is the strain in the material and u is the displacement at point x in the bar.

Figure 1.14. Thin bar subjected to axial dynamic force. Used with permission [43].
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Figure 1.15. Motion of a representative cell in a bar. Used with permission [43].

Using Hooke’s law of linear elastic material of the bar, the linear stress-strain relation can be

written as,

o=Ee (1.3)
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where o is the stress in the material, and E is Young’s modulus of the material of the bar. Hook’s
law for higher dimensional problem is often termed as constitutive equation. By substituting Eq.
(1.2) into Eq. (1.3), we obtain,

Ju o S

w=E=AF (1

where s = gA is the total axial internal force acting on the cross-section. By differentiating Eq.

(1.4) with respect to x, we have,

0%u  0ds

The motion equation of the representative cell can be obtained by Newton’s law, indicating that

the summation of all unbalanced forces is equal to the product of the mass and acceleration of the

cell, i.e.,
ds d%u

where p is the mass density of the material of the cell. Using Eg. (1.5), Eq. (1.6) is reduced to,

0%u EN 0%u
o (E)ﬁ a7
or
0%u 1 0%u
oz - Zoz (18)
where
E
CcC = ; (19)

Eqg. (1.8) is the so-called wave motion equation, which governs the free wave motion in the bar

and c represents the wave velocity.
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1.1.4.3. Solution of a Free Wave Motion

The solution of Eq. (1.8) can be considered as,

u=F((x—ct)+F,(x+ct) (1.10)

where F; and F, are arbitrary functions representing the shape of propagating waves. Function F;
represents the shape of waves propagating in the positive x direction and function F, demonstrates
the shape of waves propagating in the negative x direction. According to Eq. (1.10), c is the
velocity of the shape of waves propagating along the bar. Eq. (1.9) indicates that the wave velocity
is only dependent on the material properties, Young’s modulus, and mass density, and is
independent of the excitation frequency. Waves with constant velocity are called nondispersive
waves. While for dispersive waves, the velocity is frequency (or wavelength and or wavenumber)
dependent. As illustrated in Fig. 1.16, functions F; and F, are not necessarily the same, but they
propagate at the same velocity, and keep the same shape during the propagation in the bar. Eq.
(1.10) is often called D’Alembert’s solution. In the following, the procedure to determine the

explicit solution of functions F; and F, are explained.

(=i 1=t l l

Figure 1.16. Wave propagation in a bar. Used with permission [43].
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Let to first consider the harmonic motion of waves generating by a harmonic force. The
harmonic force varies with time harmonically. The harmonic force can be expressed

mathematically in one of the following sine, cosine, and exponential forms of excitation,

p(x,t) = P(x) sin(wt) (1.11)
p(x,t) = P(x) cos(wt) (1.12)
p(x,t) = P(x) exp(—iwt) (1.13)

where i = +/—1. In Egs. (1.11) - (1.13), P is a given function of x, and w is the angular frequency
of the force related to the frequency f, as w = 2xf.

Although the three expressions given in Egs. (1.11) - (1.13) have different forms, but all can

represent a harmonic force. Eq. (1.13) is used commonly because it is the most convenient form
in deriving analytical solutions for wave propagation problems. In addition, Eqg. (1.13) can be
rewritten as,
p(x,t) = P(x) exp(—iwt) = P(x)(coswt — isinwt) = P(x)coswt — iP(x)sinwt (1.14)
where the real part represents the cosine excitation and the imaginary part corresponds for the sine
excitation. Therefore, the response of the system to an exponential excitation includes real and
imaginary parts.

Under the excitation of a harmonic force, the particles in the solid undergo a harmonic motion.
Hence, if the wave motion is due to a harmonic excitation, the displacement u must also be
harmonic. Therefore, it can be rewritten as,

u(x,t) = U.(x) exp(—iwt) (1.15)
where U, is a function of x, and w is the angular frequency of the wave. Substituting Eq. (1.15)

into Eq. (1.8) gives,
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02U, —w?

O0x? c?

U, (1.16)

or

22U,

where

L w
y_c

(1.18)
is expressed as wavenumber. ¢ —y and w — y curves are called, respectively, dispersion curve
and frequency curve. For nondispersive waves with constant velocity c, the wavenumber y is
proportional to the angular frequency w, and w — y curve will be a straight line with slope of c.
For dispersive waves with frequency dependent velocity, the relation between ¢ (or w) and y is
much more complicated.

Solution of Eq. (1.17), as a homogenous differential equation of the second order, can be
assumed by,
U:.(x) = C exp(iax) (1.19)
where C is an arbitrary constant. By substituting Eq. (1.19) into Eq. (1.17), we obtain,
—a?+y2=0 (1.20)
This polynomial equation of a has two roots of
a=zy (1.21)
which indicates that U, has two possible solutions in the form of Eq. (1.19). By superimposing
these two possible solutions, the solution of Eq. (1.17) is obtained as,
U, = C; exp(iyx) + C, exp(—iyx) (1.22)
where C; and C, are arbitrary constants to be determined. By substituting Eqg. (1.22) into Eq.

(1.17), this solution can be verified. U., as a function of coordinate x, represents the shape of
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propagating waves. Substituting Eq. (1.22) into Eq. (1.15), we obtain the complete solution for
harmonic wave motion in a bar as,
u(x, t) = C, expliy(x — ct)] + C, exp[—iy(x + ct)] (1.23)
It is noted that Eq. (1.23) has the same form of Eq. (1.10). Eq. (1.22) is called a complementary
solution for free wave motion in infinite bars, where C; and C, are determined based on the
boundary conditions at the two ends of the bar [43].
Therefore, based on the above logic and procedure, analytical models can be developed to
derive the governing equations of wave motion and solve the wave propagation problem for
various geometries and material properties with the effects of different parameters by combining

appropriate theories.

1.1.4.4. Definition of Important Terms
Definitions of some important terms commonly used in structural dynamics and wave

propagation analysis are given in the following:

Frequency (f): is the number of occurrences of a repeating event per unit of time.
For cyclical processes, such as rotation, oscillations, or waves, frequency is defined as a number

of cycles per unit time [44].

Period (T): is the duration of time of one cycle in a repeating event, so the period is the reciprocal
of the frequency. The relation between the frequency and the period of a repeating event or

oscillation is given by [44],

f== (1.24)
The SI derived unit of frequency f is Hertz (Hz). One Hz means that an event repeats once

per second.
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Angular frequency (w): is defined as the rate of change of angular displacement, 6, (during
rotation), or the rate of change of the phase of a sinusoidal waveform (notably in oscillations and
waves). Angular frequency w is commonly measured in radian per second (rad/s) and relates to
frequency f by [45],
w = 2nf (1.25)
Wavelength (4): is the spatial period of a periodic wave and the distance over which the wave's
shape repeats. It is usually determined by considering the distance between consecutive
corresponding points of the same phase, such as crests, troughs, or zero crossings (see Fig. 1.17).
The Sl unit of wavelength is meter (m) [46].

Assuming a sinusoidal wave moving at a fixed wave speed, wavelength is inversely
proportional to the frequency of the wave. Waves with higher frequencies have shorter
wavelengths (or higher wavenumbers), and lower frequencies have longer wavelengths (or lower

wavenumbers).

f-"h-\
"
N

Figure 1.17. Wavelength of a sine wave. Used with permission [46].

Wavenumber (y): is the spatial frequency of a periodic wave, defined as the number of radians

per unit distance. In general, wavenumber in the axial direction (x) is given by [47],
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_ 21 L w 126
=TT (20
Wavenumber equation in the circumferential direction (6) is given by,

Y60 = n(2m) (1.27)

where for a complete cylinder 6, = 2m, so y = n.

Wave phase velocity (c): The phase velocity of a wave is the rate at which the phase of the wave
propagates in space. For such a component, any given phase of the wave (for example, the crest)

will appear to travel at the phase velocity. The phase velocity is given in term of the

wavelength A and period T as [48],

c= % (1.28)
Wavenumber y is related to wavelength A, frequency f, angular frequency w , and phase

velocity c as [43],

y=2-2_2 (1.29)

Important fundamental relations are listed in Table 1.2.

Table 1.2. Fundamental relations [43].

Parameter f ) T A y c
Frequency f 1 w/2m 1/T c/2 cy/2m c/A
Angular frequency w 2nf 1 2nt/T 2nc/A cy 2nc/A
Period T 1/f 2n/w 1 Afc 21 /cy Afc
Wavelength 1 c/f 2mc/w cT 1 21 /y c/f
Wavenumber y 2nf/c w/c 2m/Tc 2w/ 1 w/c
Velocity ¢ Af w/y AJT AJT w/y 1
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1.2. Literature Review

This section presents a comprehensive literature review with the basics to reviewing research

works which have been done in the research field with the existing gaps.

1.2.1. Wave Propagation and Vibration of Smart Composites

In this section, a review is presented regarding the methods used for modeling and analysis of

structural dynamics of smart composites as well as related research works in this field.

1.2.1.1. Brief History of Shell Theories

Different shell theories were developed over the past decades, which can help to model and
understand dynamics of shell structures. The lowest-order shell theory, i.e. the membrane shell
theory, was developed by Love [49], in which transverse or out-of-plane shear forces (V,, and
Vy,), bending and twisting moments (M,.,, Mgg, and M,o) are assumed to be negligibly small.
Such model is applicable to very thin shell structures in which only the in-plane normal and shear
forces (N,., Ngg, and N,.¢) applying in the midsurface of the shell are considered. This lower-
order shell model presents the essential features of the shell and is used as a fundamental model
for higher-order shell theories. Some notable works based on this simplified model were presented
by Donnel [50], Fllgge [51], Vlasov [52], and Sanders [53].

The classical shell theory, proposed by Love [49] and Reissner [54] as the first approximation
to thin shell theory, is based on the following assumptions: (a) the laminate is thin compared to its
lateral dimension; (b) the deflection of shell is small; (c) straight lines normal to the middle surface
remain straight and normal to that surface after deformation; and (d) the transverse shear stresses
(T2, Tg,) are zero. Usually, the model developed based on the above assumptions is referred as

the Love’s bending shell theory or the classical shell theory. Many studies were performed on shell
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structures based on the Membrane and the Love’s bending shell theories. However, the above
assumptions are not valid for thicker shells and shells with low stiffness central plies undergoing
significant transverse shear deformation. Mirsky and Hermmann [55] considered the shear effects
in both axial and circumferential directions and the rotary inertia effects for cylindrical shells with
moderate thickness. Lin and Morgan [56] developed equations for axillary symmetric motions
considering shear effects and rotary inertia. Cooper and Naghdi [57] developed a theory including
both transverse shear effects and rotary inertia for non-axillary symmetric motion of shell
structures. Greenspon [58] showed that the Cooper-Naghdi shell theory [57], considering both
transverse shear effect and rotary inertia, is sufficient for wave propagation analysis in thicker
cylindrical shells. The Cooper-Naghdi shell theory is also known as the first-order shear
deformation shell theory (FSDT). Based on the first-order shear deformation shell theory, the
assumption of normality of straight lines is removed, that is, straight lines normal to the middle
surface remain straight but not normal to that surface after deformation.

Therefore, in the membrane and bending shell theories, concentration is only on the
displacement of the middle surface of the shell, while in the theories including shear and rotary
inertia, such as the first-order shear deformation shell theory, the slopes of the shell element are
also considered. Hence, for moderately thick shells, theories including shear deformation and
rotary inertia would be desirable. However, for very thick shells such as pipes, three-dimensional
theory of elasticity is more appropriate and reliable than thin shell theories. According to this
theory, normal stress in thickness direction as well as other stresses is considered in the constitutive

relations.
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The shear effects should be considered and studied properly for smart laminated composites
and piezoelectric materials with significant shear piezoelectric coefficients considering different

poling directions.

1.2.1.2. Finite Element Method in Wave Propagation and Vibration Applications

The finite element method (FEM) is an effective numerical approach for solving boundary value
problems on complex domains [59]. However, standard FEM is not much effective to solve wave
propagation and frequency problems [59,60]. Some errors occur in wave propagation and vibration
analysis using piecewise polynomial approximations of standard FEM [61,62]. It was reported that
in the case of time harmonic wave propagation and vibration solution, the accuracy of numerical
solution decreases rapidly with the increase of wavenumber [63-65]. Thus, for short wavelength
problem, fine meshes are required to attain reasonable solutions considering the high frequency
wave motions with large wavenumbers. In the case of transient wave propagation and frequency
problem, the numerical wave propagation velocity and natural frequency may be noticeably
different from the physical velocity and frequency, due to the numerical period elongation leading
to the dispersion errors [59,66]. When a wave travels in a long distance, larger errors occur and
more inaccurate numerical solutions are obtained. So, whenever high frequency is required,
considerable errors happen in the numerical solutions unless the mesh is fine enough to reduce the
errors and variations.

The spectral FEM is a formulation of the FEM that uses high degree piecewise polynomials as
basic functions. This method is a numerical approach that can provide numerical solutions very
close to the exact solutions because of high degree piecewise polynomials (harmonic functions)
used as basic functions, where the solutions of wave equations are basically harmonic functions.

However, the spectral finite element method is difficult to be utilized for complicated geometries
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as used in a real case, since it uses global basic functions. Thus, this method has some limitations
to be used in practical cases for analysis of structures. The spectral element method has lower
numerical errors in comparison to the standard finite element method. Moreover, this method has
been developed to solve effectively wave propagation and vibration problems by approximating
the solutions with trigonometric polynomials [67—69]. However, the spectral finite element method
IS an expensive approach and also difficult to develop and extend for general nonlinear analysis.

It is difficult or even impossible to assign various distributions of CNTs in a composite based
on the finite element methods, and a combination of micromechanics models and numerical
approaches is needed for this purpose. Hence, developing an analytical approach for solving wave
propagation and vibration problem in composites is more beneficial, while it will not have the
limitation and drawbacks of finite element methods.

Mazuch [70] obtained wave dispersion solutions for anisotropic shells and rods using the finite
element method where the results were compared with those obtained based on the lower order
theories. Datta and Kishore [71] used a two-dimensional plane strain finite element model to
investigate the features of ultrasonic wave propagation to identify defects in composite materials.
Chakraborty et al. [72] performed a finite element analysis (FEA) of free vibration and wave
propagation in composite beams with structural discontinuities. A spectral finite element model
was presented by Mahapatra and Gopalakrishnan [73] for analysis of wave propagation in
composite tubular structure where its performance was compared with analytical solution based
on the membrane shell model. Manconi and Mace [74] presented a wave finite element method
for prediction of wave characteristics of cylindrical and curved panels by combining the
conventional finite elements and the theory of wave propagation. Xiao et al. [75] investigated the

dispersion characteristics of guided waves in a multilayered magneto-electro-elastic curved in
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which the spectral finite element method was applied to obtain the dispersion equation of waves.
In another study by Liang et al. [76], wave propagation in piezoelectric helical waveguides was
studied using the spectral finite element method. Tsai and Palazotto [77] determined the non-linear
vibration of cylindrical shells using the finite element analysis with high-order shear deformation
theory. Ramesh and Ganesan [78] obtained vibration and damping characteristics of multi-layered
cylindrical shells with a viscoelastic core using the finite element analysis. In another study,
Chakravorty et al. [79] used the finite element method for free vibration analysis of point supported
laminated composite cylindrical shells.

Although the dynamic behaviors of smart composites can be modeled and studied by FEA and
the results of analysis can be used as a guidance for NDE applications and to possibly solve the
wave propagation and frequency problems, but the accurate finite element modeling of composites
and calculations are usually not efficient requiring significant calculation costs especially for
vibration and wave propagation in infinite media (both computer power and calculation time).
Hence, based on the limitations of FEM, analytical approaches are developed in this thesis to
investigate wave dynamics and vibration behaviors of smart laminated composite cylindrical shells

with the effects of various parameters.

1.2.1.3. Dynamics of Piezoelectric Structures

In the literature, piezoelectric materials were modeled and studied by considering the axial
poling [80,81], circumferential polarization [81], and polarizing in the thickness direction (or radial
polarization) [81-90]. Buckling behavior of pure piezoelectric shells and piezoelectric-coupled
composite shells have been investigated in the literature. For example, Dai and Zheng [91]
investigated the buckling behavior of a laminated cylindrical shell of functionally graded material

(FGM) with the piezoelectric fiber-reinforced composite (PFRC) actuators with the radial
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polarization in thermal environment without considering the transverse shear effects and rotary
inertia in the mathematical modeling. In another study, Nasihatgozar et al. [92] investigated the
buckling response of piezoelectric composite panels reinforced with carbon nanotubes with the
axial poling using the classical laminated plate theory (CLPT) in which the transverse shear effects
and rotary inertia were not included.

Analysis of wave propagation and vibration characteristics of piezoelectric materials and
structures have also been performed previously in the literature. Hussein and Heyliger [93]
analyzed free vibration behavior of laminated piezoelectric cylindrical shells using a semi-
analytical layer model. They used piecewise-linear variation method to find approximate solutions
for static and dynamic problems and finite element approximations for the transverse
displacement. David and Touratier [85] presented a two-dimensional theory for analysis of a
multilayered piezoelectric shell, where the theory is based on a hybrid approach in which
continuity conditions at layer interfaces as well as the boundary conditions are satisfied. Jiangong
et al. [81] used linear three-dimensional piezoelectricity to determine wave propagation
characteristics in hollow cylinders composed of the functionally graded piezoelectric materials,
where the displacements and electric potentials are expressed in a series of Legendre polynomials.
Sheng and Wang [94] investigated the thermo-elastic vibration and buckling characteristics of the
functionally graded piezoelectric cylindrical shell using the Hamilton’s principle and Maxwell
equation with a quadratic variation of the electric potential along the thickness direction. In their
study, the effects of material composition, thermal loading, external voltage, and shell geometry
parameters on the free vibration characteristics were also studied. Hasheminejad et al. [95,96]
employed an exact three-dimensional piezoelectric model to investigate the free vibration of a

smart piezocomposite hollow cylinder and a thick-walled liquid-coupled piezo-laminated
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cylindrical vessel, where the piezoelectric cylinder is considered to be infinitely long, and short
circuit electrical boundary condition is applied at the inner and outer surfaces of the shell. They
utilized the transfer matrix approach along with the state space method to calculate the natural
frequencies of an infinite cylinder.

Studying wave propagation in piezocomposites reinforced with nanoparticles is still a gap in
the literature. It is very important to propose an appropriate wave propagation model to evaluate
the effects of nano-sized reinforcements such as CNTs on dynamics and wave propagation
characteristics of piezocomposites. This problem is very important to be solved and developing
analytical models considering nanocomposite effects on wave dynamics helps us to clearly
understand wave dispersion results of piezocomposites reinforced with nanofibers leading to
optimize the nanocomposite designs for various engineering applications such as energy

harvesting and structural health monitoring with NDE.

1.2.1.4. Dynamics of Smart Laminated Shell Structures

Wave propagation in smart cylindrical shells integrated with piezoelectric actuators has also
been studied in the literature. For example, Wang [39,97] and Wang and Liew [98] studied
analytically the wave propagation in piezoelectric coupled metallic cylindrical shells by the
membrane, the Love bending, and the Cooper-Naghdi shell theories. Dong and Wang [99-101]
investigated wave propagation characteristics in the piezoelectric coupled cylindrical shell with
the effects of large deformation and rotary inertia, however, they did not consider the effects of
the transverse shear, and only the in-plane stresses were considered in their study and transverse
shear stresses and the resultant shear forces were assumed negligible. Hasheminejad and Alaei-
Varnosfaderani [102] investigated the steady-state non-axisymmetric fluid-structure-coupled

vibrations of thick hollow cylinder of finite length coupled with axially/circumferentially/radially
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polarized functionally graded piezo-ceramic material using the linear three-dimensional elasticity
theory in conjunction with the transfer matrix approach. In another study by Hasheminejad and
Alaei-Varnosfaderani [103], they used the three-dimensional piezo-elasticity theory and the spatial
state-space approach to study the steady-state non-axisymmetric sound radiation and scattering
characteristics of an infinitely long, arbitrarily thick, orthotropic functionally graded hollow
circular cylinder, coupled with a functionally graded piezo-ceramic material.

Based on the above literature review, the processes considering the nano-sized reinforcing fiber
and its effects on the composite wave model, the exact piezoelectric effects with different poling
directions on the wave behaviors of smart composites as well as the transverse shear effects of
composite shells are still gaps in the related research field. By accurate modeling of piezoelectric
effects with considering shear effects on wave dynamics, we can design an appropriate smart
laminated composite shells for the applications of noise and vibration control, structural stability

analysis, and structural health monitoring with NDE.

1.2.2. CNT Effects on Structural Dynamics

1.2.2.1. A Brief Introduction to Modeling CNTs in Composites

The material properties of a composite lamina are function of its constituent properties,
geometric characteristics, such as fiber volume fraction and distribution. To estimate the effective
material properties of CNT-reinforced composites, some micromechanics models such as the
Mori-Tanaka [104] and the rule of mixture [105] models can be applied. One major advantage of
the Mori-Tanaka model rather to other micromechanics models such as the rule of mixture is that
it can be used in the case of composites reinforced with both aligned and randomly oriented,
straight CNTs. While, the rule of mixture model does not differentiate between these two cases

[106]. Moreover, the Mori-Tanaka model is capable to estimate the effective elastic properties for
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the case that CNTs are agglomerated in a matrix. On the other hand, the rule of mixture model is
simpler than the Mori-Tanaka model [106]. The Mori-Tanaka model has been led to a successful
estimation of the resulting effective elastic properties of composites reinforced with both aligned
and randomly oriented, straight CNTs [92,106-109]. This is because of its accuracy even at high
volume fraction of inclusion [107]. Hence, the straight-forward Mori-Tanaka model [104] is
employed in this thesis to calculate the resulting effective elastic properties of cylindrical
composite shells reinforced with angled, randomly oriented, and agglomerated CNTs for the wave
propagation and vibration studies.

There are other methods such nonlocal continuum mechanics theory and molecular dynamics
simulations which can estimate the mechanical behaviors of nanoscale structures in which small
effects are considered. In this study, we consider CNTs that are embedded in a composite shell
which is in macro scale, therefore, the nanoscale effect of CNTs is usually simplified by the
micromechanical modeling, similar to other studies in the literature [92,107,15,16]. Considering
the small-scale effect is usually essential when the mechanical behavior of an individual CNT is

studied.

1.2.2.2. Dynamics of CNT-Reinforced Composite Structures

Regarding dynamics of CNT-reinforced composite structures, there are many research works
in the literature which studied buckling and free vibration behaviors of CNT-reinforced plates and
shells. For example, Shen and Zhang [110] investigated the thermal buckling and post-buckling
behaviors of functionally graded nanocomposite plates reinforced by SWCNTSs subjected to in-
plane temperature variation. Shen and Xiang [111] studied the post-buckling response for CNT-
reinforced composite cylindrical panels resting on elastic foundations in thermal conditions.

Keleshteri et al. [112] analyzed the post-buckling behavior of smart functionally graded CNT-
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reinforced annular sector plates coupled with the piezoelectric layers using generalized differential
quadrature method. Kiani [113] presented a research dealing with the post-buckling phenomenon
in CNT-reinforced composite plates exposed to a temperature change. In another research by
Keleshteri et al. [114], post-buckling characteristics were determined for CNT-reinforced
composite rectangular plates coupled with piezoelectric layers subjected to in-plane compressive
loads.

Heydarpour et al. [115] carried out free vibration analysis for functionally graded CNT-
reinforced composite truncated conical shells based on the first-order shear deformation shell
theory. Alibeigloo [116] investigated free vibration behavior of functionally graded CNT-
reinforced cylindrical panels coupled with the piezoelectric layers with simply supported boundary
conditions using three-dimensional theory of elasticity. Mirzaei and Kiani [117] studied free
vibration behavior of functionally graded CNT-reinforced composite cylindrical panels using the
first-order shear deformation shell theory and Donnell-type kinematic assumptions. Wang et al.
[118] performed a vibration analysis of the functionally graded CNT-reinforced composite shallow
shells with arbitrary boundary conditions using the first-order shear deformation shell theory. Free
vibration analysis of functionally graded CNT-reinforced composite spherical shell panels was
performed by Kiani [119] based on the first-order shear deformation shell theory and the Sanders
kinematics. Torabi and Ansari [120] carried out a nonlinear free vibration analysis of thermally
induced functionally graded CNT-reinforced annular plates. In another study by Kiani [121], free
vibration behavior of functionally graded CNT-reinforced composite plates integrated with the
piezoelectric layers at the bottom and top surfaces was analyzed. Mohammadzadeh-Keleshteri et
al. [122] obtained the nonlinear free vibration responses of functionally graded CNT-reinforced

composite annular sector plates coupled with the piezoelectric layers. Free vibration responses of
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a functionally graded piezoelectric cylindrical nanoshell were obtained by Razavi et al. [123] based
on consistent couple stress theory. Kamarian et al. [124] investigated the effect of CNT
agglomeration on free vibration behaviors of CNT-reinforced composite conical shells. A free
vibration analysis of laminated CNT-reinforced composite doubly-curved shells and panels
considering the effect of CNT agglomeration was performed by Tornabene et al. [125].
Furthermore, Wang [126] studied wave propagation in CNTs with two nonlocal continuum
mechanics models: elastic Euler-Bernoulli and Timoshenko beam models. The effect of shear
deformation on wave propagation in fluid-filled MWCNTSs embedded in an elastic matrix has also
been investigated in Refs. [127,128]. Janghorban and Nami [129], investigated the wave
propagation characteristics of functionally graded nanocomposite plates reinforced with carbon
nanotubes using the second-order shear deformation theory.

Wave propagation study of smart CNT-reinforced composite shells with various nanoparticle
distributions is still a void in the literature, where an efficient and appropriate analytical model is
required to investigate their effects clearly. By developing analytical models considering
nanoparticle effects with various distributions on wave dispersion results, we can clearly interpret
and analyze the results and data of structural health monitoring of smart nanocomposites and or
optimize the design of smart nanocomposites for the application of energy harvesting and

structural enhancement in dynamic testing.

1.2.3. Wave Propagation and Vibration Characteristics of Smart Composite

Shell Structures in Hygrothermal Environments

Constituents of composite materials are sensitive to the temperature/moisture change. As a

result, composite materials may be exposed to hygrothermal loading as well as mechanical loading.
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Therefore, the effects of hygrothermal environmental conditions should be considered accurately
in wave propagation and vibration characteristics of smart composite structures.

Composite shells are commonly subjected to dynamic loading under different boundary
conditions based on their applications, hence, determining vibration characteristics of composite
shells has a great importance in their successful applications. It was reported that the elastic moduli
and strength of composites decrease at high temperature and moisture [130-132]. Therefore, the
environmental conditions may influence on the wave dynamics, vibrational behaviors, and natural
frequencies of composite shell structures. Boundary conditions of shell structures lead to different
vibration characteristics which should be investigated clearly.

Many methods, ranging from analytical methods to energy methods based on the Rayleigh-Ritz
approach in which, respectively, iterative solution methods and closed form solutions of the
governing equations were used [133,134,55,135,136], have been developed to determine vibration
characteristics of thin shells. In the literature, methods commonly used to investigate vibration of
cylindrical shells with various boundary conditions are based on the state-space approach
[135,137-139] and a numerical approach by assuming an unknown axial modal function [140-
142]. Using beam functions as the axial modal functions is a straight forward approach for treating
cylindrical shells with various boundary conditions. This method is relatively less computationally
intensive and leads to more accurate and reasonable natural frequencies. The new feature of this
method is the use of beam functions as the axial modal functions to determine vibration
characteristics of smart laminated CNT-reinforced composite cylindrical shells in general
environment under different boundary conditions which has not been seen in the literature. The
three-dimensional linear elasticity and an iterative approach were employed by Soldatos and

Hadjigeoriou [141] to investigate the free vibration of cylindrical panels and shells. Lam and Loy
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[143] investigated the free vibration behaviors of a multi-layered isotropic cylindrical shell under
various boundary conditions using beam functions as the axial modal functions based on the Love
bending shell theory. Lam and Loy [144] studied the vibrational behaviors of thin cylindrical
panels with simply supported boundary condition based on the Fliigge shell theory. In another
study, Lam and Loy [136] obtained vibration characteristics of rotating cylindrical panels under
simply supported boundary condition. Loy et al. [145] investigated vibrational behaviors of
cylindrical shells with different boundary conditions using the generalized differential quadrature
(GDQ) method. Zhang et al. [146] carried out vibration analysis for cylindrical panels using the
wave propagation approach.

Numerous research works have been made on vibration and wave propagation analysis of
laminated composite plates and shells. For example, Ng et al. [147] conducted the free vibrational
analysis for a rotating thin truncated circular symmetrical cross-ply laminated composite conical
shell with various boundary conditions by the GDQ method. Malekzadeh et al. [148] performed
three-dimensional free vibration analysis of arbitrary laminated circular cylindrical shells using a
mixed layer wise theory and differential quadrature method (LW-DQ). An exact solution method
was developed by Jin et al. [149] to determine free vibrational behaviors of laminated composite
cylindrical shells with different stacking sequences under general boundary conditions.
Mechanics, dynamics, and vibration of pure CNTs have been studied in many research works
[150-154]. On the other hand, vibration and dynamics of composite plates, panels, and shells
reinforced with CNTs under different boundary conditions have been investigated in the literature
[117,155-162]. Yas et al. [156] studied the vibrational behavior of functionally graded
nanocomposite panels reinforced with SWCNTSs with simply supported boundary condition based

on the three-dimensional theory of elasticity for different distributions and volume fractions of
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CNTs. Safaei et al. [162] studied the dynamics of nanocomposite sandwich plates with the effects
of loading frequency for periodic thermo-mechanical loadings.

Many studies have also been conducted on vibration, bending, and buckling of laminated
composite plates [15,163-165,16,166—-171], and shells [172-181] in hygrothermal environments.
For example, Shen [15] presented an investigation on the nonlinear bending of simply supported
functionally graded nanocomposite plates reinforced with SWCNTSs subjected to a transverse
uniform or sinusoidal load in thermal environment, where the results showed that characteristics
of nonlinear bending are influenced by the temperature rise. A free vibration analysis of
functionally graded nanocomposite plates reinforced by SWCNTSs was presented by Lei et al. [16]
using the element-free kp-Ritz method in thermal environment, where the governing equations
were obtained based on the first-order shear deformation plate theory and the two-dimensional
displacement fields are approximated by mesh-free kernel particle functions. Atanasov et al. [169]
studied the dynamic stability of a double microbeam system under thermal effect. Naidu and Sinha
[172] used the finite element method to investigate the nonlinear free vibration characteristics of
laminated composite shells in hygrothermal environmental conditions. Malekzadeh and
Heydarpour [174] investigated the free vibration behavior of rotating functionally graded
cylindrical shells subjected to the temperature change using the first-order shear deformation shell
theory. The effects of hygrothermal environmental conditions on the linear and nonlinear free
flexural vibration of anisotropic shear deformable laminated cylindrical shells were investigated
by Shen and Yang [176], where the cylindrical shell is made up of fiber-reinforced composites
with the reinforcement being distributed either uniformly or functionally graded of piece-wise type
along the thickness of the shells and the motion equations were derived based on a higher order

shear deformation shell theory with a von Karman-type of kinematic nonlinearity, and the results
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displayed that the temperature and moisture variations have a moderate effect on the natural
frequencies. Biswal et al. [178] studied the effects of hygrothermal environmental conditions on
free vibration of woven fiber glass/epoxy laminated composite cylindrical shallow shells both
numerically and experimentally based on the FEA and the first-order shear deformation shell
theory, where the results showed that the frequency of vibration decreases with the increase of
temperature and moisture. An investigation on the nonlinear vibration behavior of graphene-
reinforced composite laminated cylindrical shells in thermal environment has been done by Shen
at al. [180] based on the Reddy’s third-order shear deformation theory and the von Karman-type
kinematic nonlinearity, where the results of their study revealed that the nonlinear vibration
characteristics of the shells are significantly influenced by the temperature variation, the shell
geometric parameter, the shell end conditions, and the stacking sequence. However, investigating
vibration and wave propagation characteristics of smart laminated composite plates and shells
integrated with the piezoelectric materials in hygrothermal environmental conditions are limited
in number. Wang et al. [182] investigated the hygrothermal effects on dynamic inter-laminar
stresses in laminated plates with the piezoelectric actuator layers under free vibration. Dong and
Wang [99,101] studied the influence of large deformation and rotary inertia on wave propagation
in long piezoelectric cylindrically laminated shells in thermal environment. Aeroelastic
performances of smart composite plates under aerodynamic loading in hygrothermal environments
were investigated by Mahato and Maiti [183]. Nanda [184] studied non-linear free vibration and
transient response of laminated composite cylindrical and spherical shells with piezoelectric layers
in thermal environment. An analysis of delaminated fiber-reinforced composite plates with

integrated active fibre composite actuators and sensor under hygrothermal environments has been
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investigated by Shankar et al. [185], where the results of this study illustrated that there will be a
reduction in the natural frequencies in the presence of delamination and hygrothermal loading.
Due to temperature- and moisture-dependent material properties of CNT-reinforced
composites, it is very important to consider the effects of temperature/moisture variation on wave
propagation and vibration characteristics of smart laminated CNT-reinforced composites with the
influence of various boundary conditions using wave propagation approach. By developing an
analytical model considering hygrothermal effects on wave dynamics and vibration characteristics
using the wave propagation approach, we can design smart laminated composite shells according
to unexpected environmental conditions and different mechanical boundary conditions required
for various engineering applications such as energy harvesting and or interpret the results of

structural health monitoring by NDE.

1.3. Problems Definition and Motivation

According to the literature review which has been done in the previous section, there are still
some meaningful gaps in the research field related to wave dynamics and vibration characteristics
of smart composite shell structures, where (i) wave propagation characteristics of smart laminated
fiber-reinforced composite cylindrical shells with the coupling effects of piezoelectricity,
transverse shear, and rotary inertia, (ii) wave dynamics of smart composite cylindrical shells
reinforced with high stiffness nano-sized fibers such as CNTs with different distributions, (iii)
hygrothermal effects on wave dynamics of smart laminated CNT-reinforced composite cylindrical
shells, and (iv) vibration characteristics of smart laminated CNT-reinforced composite cylindrical
shells using the wave propagation approach under various boundary conditions are still unsolved

and should be studied. These problems are important due to the significant effects of transverse
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shear, piezoelectricity, nanoparticles, hygrothermal environmental conditions, and boundary
conditions on wave dynamics and vibration characteristics of smart composite cylindrical shells.

Since high wavenumbers (or frequencies) are required to determine dynamics and wave
propagation characteristics of smart laminated composite shell structures, theories considering the
transverse shear effects as well as in-plane stresses are desired to see the dispersion results in all
wave modes. In smart structures made up of host stacked composite and piezoelectric layers, shear
may occur between layers. Therefore, for smart laminated composite structures, transverse shear
stresses should be considered in the mathematical modeling for wave propagation studies. By
including the transverse shear effects, wave modes corresponding to the shear planes are obtained
as well as axial, circumferential, and radial wave modes. Considering piezoelectricity and shear
effects is very helpful in design of smart laminated composites used for noise and vibration control,
structural stability analysis, and structural health monitoring with NDE. The transverse shear
effects were not considered in the previous research studies in wave propagation modeling of smart
laminated fiber-reinforced composite cylindrical shell structures, because of the complexity in
mathematical modeling considering the resultant shear forces and challenge in numerical
computations corresponding to higher shear wave modes for smart multi-layered composites with
piezoelectric coupling effects. Hence, in this research, an analytical approach, including the
transverse shear effects and rotary inertia, is proposed to investigate wave propagation in smart
laminated fiber-reinforced composite cylindrical shell structures and the results are compared with
those obtained without the effects of transverse shear and rotary inertia.

Effects of CNTs on buckling and vibration of CNT-reinforced composite plates and shells were
studied in many research works. However, their effects on wave dispersion solutions have not been

modeled and investigated by considering different CNT distributions and volume fractions in the
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piezocomposite cylindrical shells as well as the shear effects. Wave propagation problem in CNT-
reinforced composites has some challenges considering the nano-sized fiber reinforcement with
different distributions and volume fractions. As discussed before, available methods to consider
nano-fiber reinforcement effects are non-local mechanics, molecular dynamics, and
micromechanics models. The micromechanics model is chosen as the feasible analytical method
due to its advantages in directly obtaining the effective material properties for the resultant
composite with various nanotube distributions, where a simple and efficient analytical model can
be developed to analyze the wave propagation in smart CNT-reinforced composites. The accuracy
of the micromechanical model was proven with experimental testing by validating the estimated
effective mechanical properties for the resultant composite reinforced with nanoparticles for a
specific orientation and volume fraction [186]. It is very important to model wave propagation in
CNT-reinforced composites to understand their dynamics when a wave is excited on their surface
for the structural health monitoring and energy harvesting applications. To perform this
investigation, micromechanical modeling must be developed for the wave propagation problem
which is not simple and has some difficulties in the mathematical modeling due to the CNT
reinforcement, where in this research, appropriate wave propagation models for different types of
CNT orientation and distribution are developed by incorporating the micromechanics model and
shell theory. Analysis of wave propagation in composites reinforced with nanoparticles helps us
to understand their wave behaviors at various axial and circumferential wavenumbers as well as
wave modes. Understanding the effects of CNT distributions on wave dynamics helps us to
optimize the design process of customized CNT-reinforced piezocomposites for various

engineering applications such as energy harvesting and structural health monitoring by NDE.
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Constituents of composite materials are temperature-and moisture-dependant, where their
effects on dynamics of composite structures are important and significant. Material properties of
CNTs are also temperature-dependant. For the design of advanced smart structures used in energy
harvesting application and analysis of data of structural health monitoring by NDE, we hence need
to study the wave dispersion results for smart laminated CNT-reinforced composite shells in the
hygrothermal environments to characterize wave behaviors for the case of temperature and
moisture variations in order to optimize the design. This study was not presented before due to the
challenge of mechanical-temperature and -moisture coupling effects with applied hygrothermal
strains and also obtaining the effective thermal and moisture coefficients. An analytical model
considering temperature and moisture couplings is proposed and developed in this research to find
the effects of hygrothermal environmental conditions on wave propagation and vibration
characteristics of smart composites.

Vibration characteristics of smart laminated CNT-reinforced composite cylindrical shells with
finite length under various boundary conditions lead to an accurate design of smart composites for
various engineering applications such as energy harvesting and stability analysis. Developing an
analytical model using the wave propagation approach leads to determine vibration characteristics
of smart laminated composite cylindrical shells simpler and easier than other existing approaches.
Hence, an approach based on the wave propagation method is developed in this thesis to find the
natural frequencies of smart laminated CNT-reinforced composite cylindrical shells under various
mechanical boundary conditions.

According to the above-mentioned voids in the research field, analytical models are developed
by combining the existing theories/models to bridge the existing gapes in the wave dynamics and

vibration problems of smart laminated composite cylindrical shells by considering the effects of
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various parameters. Composite materials, especially CNT-reinforced composites, are totally
different from other isotropic materials such as steel and aluminium with different constitutive
equations, not like just replacing some numbers for the material properties. We need to first obtain
and develop the corresponding constitutive equations and governing equations of motion for smart
customized composite structures used in the wave propagation and vibration problems with the
effects of transverse shear, piezoelectric coupling, CNT distribution, hygrothermal environmental
conditions, and mechanical boundary conditions, and then model and solve the wave dynamics
and vibration problems.

Removing the existing gaps by developing analytical models including the parameters
neglected in previous studies contributes the research fields utilizing the wave propagation and
vibration modeling such as structural health monitoring, energy harvesting, and structural stability

analysis.

1.4. Research Objectives and Innovations/Novelties

Based on the gaps introduced in the previous section, the objectives of this research thesis are
summarized as following:

e Developing a theoretical foundation/framework to study the wave propagation and
vibration characteristics of smart laminated fiber-reinforced composite cylindrical
shells.

e Modeling and solving the wave propagation problem in smart laminated fiber-
reinforced composite cylindrical shells integrated by the piezoelectric layer and
studying the effects of transverse shear and rotary inertia with the proposed analytical
model, which provides detailed description and understanding of the wave parameters

and physical phenomena.
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e Modeling and studying the effects of nano-sized reinforcement on wave propagation
characteristics of customized smart composite cylindrical shells with various types of
nanoparticle distribution by presenting an analytical approach combining the Mori-
Tanaka micromechanics model and the first-order shear deformation shell theory.

e Modeling and studying the effects of temperature and moisture variations on the
structural dynamics of smart laminated CNT-reinforced composites by a developed
analytical model considering the hygrothermal effects.

e Modeling free vibration problem in finite length smart laminated CNT-reinforced
composite cylindrical shells using the wave propagation approach and determining
vibration characteristics under various mechanical boundary conditions and

hygrothermal environmental conditions.

1.5. Outline of the Thesis

Smart composite cylindrical shells reinforced with Carbon, E-Glass, and CNT fibers and
integrated with the piezoelectric materials are the studied objects of this thesis and their dynamic
behaviors are modeled and studied considering the effects of various parameters. The focus of this
thesis is to propose and develop analytical models to investigate structural dynamic characteristics
of smart laminated composite cylindrical shells and build a theoretical foundation and framework
for composite NDE by combining the existing mathematical and micromechanical models.
Accordingly, this thesis is organized into four Chapters.

The first Chapter introduces the background, scope, and motivation, and also indicates the
necessity of the present study. Literature review is conducted in the related areas including

dynamics of smart composites, CNT effects on structural dynamics, and hygrothermal effects on
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structural dynamics of smart composite shell structures. Problems definition and research
objectives and innovations are also explained in detail.

Chapter two of the thesis presents the derivation of constitutive equations for laminated fiber-
reinforced composite cylindrical shells and piezoelectric cylindrical shells with different
polarization directions based on the classical shell theory and the first-order shear deformation
shell theory. Then wave propagation problem in laminated fiber-reinforced composite cylindrical
shells coupled with the piezoelectric layer is modeled based on various shell theories with the
coupling effects of transverse shear and piezoelectricity. Afterward, an analytical model
combining mathematical and micromechanical models is developed to model wave dynamics of
CNT-reinforced piezocomposite shells with different CNT distributions. The effective material
properties for piezocomposite shells reinforced with CNTSs are estimated using the Mori-Tanaka
micromechanics model. Then, the constitutive equations are derived for various CNT
arrangements (angled and randomly CNT distributions and agglomerated CNTs with different
volume fractions) and the wave propagation problem is modeled and solved based on the first-
order shear deformation shell theory. In the next step, a structural dynamic model in combination
with the micromechanics model and the shell theory is developed to simulate the hygrothermal
environmental conditions on wave dynamics of smart laminated CNT-reinforced composite
cylindrical shells based on the first-order shear deformation shell theory. Finally, free vibration
problem is modeled for finite length smart laminated CNT-reinforced composite cylindrical shells
using the wave propagation approach to determine vibration characteristics under various
mechanical boundary conditions.

Chapter three mainly presents the results obtained based on the structural dynamic modeling

presented in Chapter two. The presented analytical approach, computer programming, and
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numerical implementation are evaluated and validated against the available results in the literature.
The effects of transverse shear and rotary inertia, piezoelectric coupling, composite stacking
sequence, shell geometry, and material properties on wave dispersion solutions are examined. A
comparison of dispersion solutions by different shell theories is also provided. Furthermore, the
results present the influence of nanotube distribution and fraction on wave propagation
characteristics of smart composite cylindrical shell structures. Effects of temperature and moisture
variations on the wave propagation and vibration characteristics are also studied and investigated.
Finally, the effects of shell boundary conditions, axial and circumferential modes, temperature and
moisture variations, nanoparticles, and shell geometry parameters on vibration characteristics are
investigated and discussed.

Finally, Chapter four summarizes key findings and implications of the results, as well as
conclusions and recommendations for future works.

To summarize, a methodology, which is described schematically in Fig. 1.18, is adopted in the
present thesis in order to develop appropriate correlations for predicting structural dynamics of
smart composite shell structures with the coupling effects of various parameters including
transverse shear, rotary inertia, piezoelectricity, nanoparticles, hygrothermal environmental
conditions, shell geometry, and boundary conditions.

Presented methodology in this thesis and the obtained results were published in eight journal

papers [187-194].
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Figure 1.18. A schematic flow of the adopted methodology.
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Structural Dynamic Modeling of Smart

Composite Cylindrical Shells

In this Chapter, structural dynamic modeling of smart composite cylindrical shells are proposed
and presented and constitutive equations are derived and developed by considering the effects of
transverse shear, piezoelectricity, nanoparticles, and hygrothermal environmental conditions by
incorporating the composite lamination, wave propagation, and shell theories/models.

Firstly, the geometry of the problem is portrayed (section 2.1) and then constitutive relations
for laminated fiber-reinforced composite cylindrical shells and piezoelectric cylindrical shells are
derived based on shell theories and piezoelectricity polarizations (section 2.2). Afterward, wave
propagation problems are modeled and solved with coupling effects of various parameters
including transverse shear (section 2.3), nanoparticles (section 2.4), and temperature and moisture
variations (section 2.5). Finally, the free vibration problem is modeled and solved using the wave

propagation approach with the effects of various mechanical boundary conditions (section 2.6).
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2.1. Geometry of a Smart Laminated Fiber-Reinforced Composite

Cylindrical Shell

Configuration of a laminated fiber-reinforced composite cylinder, layout of a laminated fiber-
reinforced composite cylindrical shell coupled with the piezoelectric layers at the top and bottom
surfaces, and a single ply of fiber-reinforced unidirectional composite cylindrical shell with its
material principle and cylindrical coordinate systems are shown in Fig. 2.1. A cross-sectional view
of a laminated composite cylindrical shell coupled with the piezoelectric layers at the top and
bottom surfaces with coordinate notation of individual plies are displayed in Fig. 2.2. Coordinate
x represents the direction along the shell axial direction, 8 for the circumferential direction, and z
for the radial direction. Material principle axes along fiber and in transverse directions of fiber are
presented by 1, 2, and 3, respectively. The angle g is measured positive counter clockwise from
the x-axis to 1-axis. The x — 8 plane is equidistant from the top and bottom surfaces of the shell
and is called the reference plane or the midplane. R is the reference plane radius, h,, denotes the
piezoelectric layer thickness, and h is the total thickness of the laminated composite cylindrical
shell which is sum of the thickness of each lamina or ply (hy) as,

N
h= Z hy 2.1)

K=1

where N is is the total number of plies. Abovementioned notations are constant throughout the
theoretical development. The force and moment resultants at an infinitesimal element of the shell

are shown in Fig. 2.3.

57



Chapter 2. Structural Dynamic Modeling of Smart Composite Cylindrical Shells

x Laminated fiber-reinforced
composite cylinder

Piezoelectric layers

(b) Laminated fiber-reinforced
composite cylindrical shell

z,3

Fiber
© hy

Figure 2.1. (a) Configuration of a laminated fiber-reinforced composite cylinder, (b) layout of a
laminated fiber-reinforced composite cylindrical shell coated with the piezoelectric layers at the
top and bottom surfaces, (c) a single ply of fiber-reinforced unidirectional composite cylindrical

shell with its material principle and cylindrical coordinate systems.
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z
Piezoelectric A
K=N | . A A
—+h
| po| 2t
| v 3
K J A ZN-1
T A
| ZK
: ZKk-1
_________ » 0
z
3 |z,
x Az | oy
% - % Yy 2 _k_,
. k=1 \ A / P
Piezoelectric I \ 4 R

Figure 2.2. A cross-sectional view of a laminated composite cylindrical shell coupled with the

piezoelectric layers at the top and bottom surfaces with coordinate notation of individual plies.
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——F—> Ny

_ N, ONgy Ny oM,
Nxx=Nxx+de' Ngg = Ngg +Wd9, Ny = N,g +de, M,, =M,, + ax dx,
_ Mgy oMy oV, _ oV,
Mgg =M99 +Td9, ng =ng + a; dx, sz =Vx2+ a;de, VgZ=V92+a_ezd9.

Figure 2.3. The force and moment resultants at an infinitesimal element of the shell.

2.2. Constitutive

Equations for

Laminated Fiber-Reinforced

Composite Cylindrical Shells and Piezoelectric Cylindrical Shells

2.2.1. Strain-Displacement Relations in the Cylindrical Coordinate System

The general strain-displacement relations in the cylindrical coordinate system (x,6,z) are

given by Ref. [195] as,

a 1/9 d
Exx = ﬁ 566=5(£+W) Ezz = a_vzv
_6v+ Ju _6W+6u _1(’)W+
Yx6 = 5x T Rae 12T ox "oz Yoz = R0

(2.2)

where u, v, and w represent the displacements of a generic point of cylinderin x —, 8 —, and z —

directions, respectively. Eq. (2.2) is used in the derivation of governing or field equations in this

Chapter.
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2.2.1.1. Strain-Displacement Relations using the Classical Shell Theory

In this section, the strain-displacement relations are derived for a cylindrical shell using the
classical shell theory in which the transverse shear effects are neglected (y,, = vg, = 0)[6]. Fig.
2.4 shows a section of a laminate normal to the 8 —axis before and after deformation without
considering the transverse shear effects, where straight lines normal to the middle surface remain
straight and normal to that surface after deformation [6,196]. First of all, the displacement fields
are needed to derive the strain field equations based on the classical shell theory, where the

displacement kinematics based on this theory are given by Ref. [196] as,

owy(x,0,z,t
u(x,0,z,t) = uy(x,0,t) — z% (2.3a)
(.0,2,6) = vy(x.0,0) z 0wy (x,0,z,t) 23
v(x,0,z,t) = vy(x,0, 7 50 (2.3b)
w(x,0,z,t) = wy(x,0,t) (2.30)

where uy(x, 6,t), vy(x, 6,t), and wy(x, 6, t) denote the reference plane displacements in x —, 6 —,
and z —directions, respectively, where they are not function of z for a thin shell structure, thus,
their derivatives with respect to z will vanish in further calculations throughout the theoretical
development.

In the classical shell theory, it is assumed that the transverse shear strains y,, and yq, are
negligibly small. Thus, by substituting Eq. (2.3) into Eq. (2.2), the in-plane strain-displacement

relations are derived as,

_ Juo 9w _1(% )_162% _ (% %)_2_262%
Cax T By T ox2 €60 = x\ 59 T W0) ~ Rz 502 Yx6 = \5x T rao) ~ & axo0 (2.4)
By defining the in-plane strain components on the reference plane (x — 6) of the shell as,
0 _ Odug 0 _ 1[0y 0 _ 9, dug
Exx = G o = (G5 +wo) Vxo = 5 t rao (25)

and the in-plane curvatures of the shell as,
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. 9%w,
R20672

9%w,
0x?

2 2%w,

Kox = — R 0x00

Kgg = Kyg =

(2.6)
the in-plane strains at any point in the cylindrical shell can be related to the in-plane strains of the
reference plane and the in-plane curvatures of the shell as follows,
Exx Eygx Kxx
{599} ={eggt+ z{ Kgg} (2.7)
Yxo ]/;(C)g Kx@

where z is the distance of any point from the reference plane.

A
|
B
. ‘
Zp
? T
T
D

Figure 2.4. Shell section before (ABCD) and after (A'B’C’'D’) deformation [6].

2.2.1.2. Strain-Displacement Relations using the First-Order Shear Deformation
Shell Theory
Strain-displacement relations are derived in this section for a cylindrical shell based on the first-
order shear deformation shell theory in which the transverse shear effects are included. Fig. 2.5
shows a section of a cylindrical shell normal to the 8-axis before and after deformation, including
the effects of transverse shear, where straight lines normal to the middle surface remain straight
but not normal to that surface after deformation. The result of this deformation is the rotation of

s 7z

the cross-section ABCD by angle a,, to a location ABCD, which is normal to the deformed middle
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surface [6,196]. The displacement kinematics required to derive the strain-displacement relations

based on the first-order shear deformation shell theory are given by Ref. [196] as,

u(x,0,z,t) =uy(x,0,t) + za,(x,0,t) (2.8a)
v(x,0,z,t) = vo(x,0,t) + zag(x,0,t) (2.8b)
w(x,0,z,t) = wy(x,0,t) (2.8¢)

where a, (x, 6,t) and ag(x, 6, t) are the rotation of the cross-section normal to x -axis and 8-axis,
respectively, where they are not also function of z for a thin shell structure, thus, their derivatives
with respect to z will vanish in subsequent computations throughout this thesis. By using the
displacement kinematics introduced in Eq. (2.8), the transverse shear effects are included in the
mathematical modeling. Substituting Eq. (2.8) into Eq. (2.2) yields the strain field equations based

on the first-order shear deformation shell theory as follows,

_ 0Oug Jda, 1 (avo N ) z dag _ 0
fe = G T2 5k €0 =7\ 90 ") "R 90 faz =
dvg  0uy Jdag OJda, dw, dwy vy
ro= 5 trast (3 thos) e g% Y= pogm gt (2.9)

A
_____________ e
Zp
> ¥
C
D

Figure 2.5. Shell section before (ABCD) and after (A'B'C'D’) deformation with noticeable effects of

transverse shear [6].
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From the above relations, it is observed that the transverse shear strains y,, and y,, are equal
to the rotations of the cross sections relative to the normal to the middle surface after deformation.
Therefore, the in-plane strain components on the reference plane (e, 34, and y2,) are the same

as Eq. (2.5), but the in-plane curvatures are attained as,

aa, dag _Oag  Oay

Kax =55 Koo = 239 Ko =35 T Roe

(2.10)
So, for the first-order shear deformation shell theory, we use Eq. (2.9) or Eq. (2.7) with the in-
plane curvatures introduced in Eq. (2.10), as the in-plane strain components of any point in a

cylindrical shell with distance z from the reference plane.

2.2.2. Constitutive Relations for a Laminated Fiber-Reinforced Composite

Cylindrical Shell

The in-plane strains at any point in a laminated composite cylindrical shell are given by Eq.
(2.7). The in-plane stress-strain relations of lamina (layer) K within the laminate, which are

decoupled from the transverse shear terms, are given by Ref. [6] as,

®

O-’E’lc) Qxx Qxo OQxs Exx

Ogg = Qex QBB QBs €00 (211)
T(l) Qsx Oso Uss K Yx0)k

x0 7 g

where [Qij]K (i,j = x,0,s) is the transformed reduced stiffness matrix for lamina K in the x — 6

system of coordinates as a function of the principal stiffness matrix [Qij]K (i,j =1,2,6) of the

lamina reinforced with fibers, where their components are given in Appendix A, superscript (1)
represents variables corresponding to the host laminated composite cylindrical shell, and the
subscript s in the above equations corresponds to shear stress and strain components referred to

the x — 6 system of coordinates. Substituting Eq. (2.7) into Eq. (2.11) yields,
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® 0

O-’Ejlc) Qxx Qx(-) st gagx Qxx Qxe st Kxx

0gs ( = | Qox Qos Qos o ( + 7| Qox Qoo Qos | Koo (2.12)
T(Z) Qsx Oso Uss K V)?B Qsx Oso Uss K Ko

x6 /g

as the in-plane stress-strain relations for an individual lamina K whose midplane is at a distance z
from the laminate reference plane. The transverse shear stress-strain relations for an individual
lamina K, which are decoupled from the in-plane stress and strain terms, are given by Ref. [6] as,

(1)
Ty, :[qu qu] {Yez} (2.13)
(1) er CTT' K yxz K

K

TX Z

where Cqq, Cqry Crq,

and C,, are given in Appendix A, and yg, and y,, are given in Eq. (2.9).
The in-plane force and moment resultants and the transverse shear (out-of-plane) force
resultants for a laminated fiber-reinforced composite cylindrical shell are obtained by integrating

the corresponding stresses across the shell thickness as,

N v o= (o
INSD b= z f o5y ¢ dz (2.14a)
) k=g, (L@
Nx9 K- Txo K
MY N = (o
My o= z o5y ¢ zdz (2.14b)
) k=g, (L@
Mx9 K- Txo K
@ NI (1)
1% T
0z ( _ 0z
{V(l)}_xsz f { <1)} dz (2.14¢)
Xz K=1z4_, \*xz /g

where z,_, and zg stand for the z —coordinate of the lower and upper surfaces of lamina K,
respectively, as shown in Fig. 2.2, and K is the so-called shear correction factor introduced to
account for the uniform distribution of transverse shear stress through the thickness of the layer.
Based on to the work by Mirsky [197], shear correction factor K is chosen 0.8333 throughout

this thesis. According to Eq. (2.14), the force and moment resultants for a laminated fiber-
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reinforced composite cylindrical shell made up of N layers can be obtained. Hence, substituting

Egs. (2.12) and (2.13) for the lamina (layer) in-plane and out-of-plane (transverse shear) stresses,

respectively, into Eq. (2.14) and taking integration across the shell thickness yields to the in-plane

force and moment resultants and the out-of-plane (transverse shear) force resultants for a laminated

fiber-reinforced composite cylindrical shell as,

N(l) 0
xx Axx Ax9 Axs Exx Bxx Bxe
<N§119) = [ Aox Ago Ass |{ €69 Bgx Beg Bas
N,g;) Asx Asg Ags y£6 Bsx Bsg
1)
Mxx Bxx Bx9 Bxs ‘S?(C)x Dxx Dxe
1
<Me()9) = | Box Boo Bas |1 6 Dgx Dgg Degs
Ma(cé) Bsxy Bsg Bss 79?9 Dy Dgg
€] 7 7
Ve K Agq A {V@z}
A 14 A, | Waz
Xz rq
where

N
[4;;] = Z [Qij]K(ZK - Zg_1)
K=1
U] Z[QU] (ZK ZK 1)
[Dy] = Z[QU] (7%~ 72 -0)

N
(4] = > [Cofl, G = 7-0)
K=1

where AU = Ajil BU = Bji’

Dij = D]l (l;] =X, 915)1 and AU =

(2.15q)

(2.15b)

(2.15¢)

(2.16a)

(2.16b)

(2.16¢)

(2.16d)

A (b = q,). [Ay], [ Byl,

[ D;;], and [ 4;;] are laminate stiffness matrices, which are function of the geometry, material

properties, and stacking sequence of the individual plies.
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2.2.3. Constitutive Relations for a Piezoelectric Cylindrical Shell

The generalized constitutive equations for a piezoelectric shell in the cylindrical coordinate

system (x, 6, z) are given by Ref. [81] as,

(2)

Tgg |

a2 [C11 €12 €3 0 o0 0] {899] €11 €1 €31

) |C12 C22 C23 0 0 0| Exx €12 e €3] (E,,
<O_zz L — €13 €3 €33 0 0 0 {Ezz¥_ €13 ep3 €33 E (217a)
T(Z) 10 0 0 Cas 0 0 Yxz €14 €74 €34 Exx '

)(sz) 0 0 0 0 ¢s5 O lyez €15 ez5 e35| -zz

Tg, 0 0 0 0 0  ceed \Vyp €16 €26 €36

©)
\Tyg /

(227)

Dgg €1 €2 €3 ey €15 €16 ix" €1 O 0 71(Egg

Dyt =€y €y, €23 €24 €25 €26 {y”}+ 0 € 0 |{Ex (2.17b)
Dzz €31 €3 €33 €34 €35 €36 xi 0 0 €33 EZZ

where o;;, &; (i,j = x,0,z),and Dy, E; (i = x, 6, z) represent the stresses, the strains, the electric
displacements, and the electric field intensities, respectively; c;; , e;;, €;; (i,j = 1,2, ...,6) denote
the elastic constants, the piezoelectric constants, and the dielectric constants, respectively; and
superscript (2) stands for variables corresponding to the piezoelectric layer. It is noted that
regardless of the direction of polarization, there should be only five nonzero piezoelectric
constants. The electric field intensities E;; (i = x, 6, z), which are function of the electric potential

@(x,0,t), in the cylindrical coordinate system are given by Ref. [81] as,

7] 7] [7]
By = =50 Egg = —— > Epp=—%2 (2.18)

In the following subsections, the constitutive equations are developed for a piezoelectric
cylindrical shell by considering different polarization directions and without (based on the classical

shell theory) and with the transverse shear effects (based on the first-order shear deformation shell

theory).
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2.2.3.1. Constitutive Equations for a Piezoelectric Cylindrical Shell with Axial

Polarization

For the axial polarization of the piezoelectricity, there are only five piezoelectric constants ey,
€21, €22, €23, €34, and other piezoelectric constants are considered zero. Coefficients e, , e,,, and
e, relate the normal stresses in the 1, 2, and 3 directions, respectively, to a field along the poling
direction, E,,. The coefficients e, and es,, respectively, relate the shear stress in the 8 — x plane
to the field Egg, and shear stress in the z — x plane to the field E,,. Note that it is usually not
possible to obtain shear in the 8 — z plane purely by application of the electric field E,,
considering the transverse isotropic property of the perfect polled piezoelectric material studied
here. Hence, the constitutive relations, Eq. (2.17), for a piezoelectric shell with the axial

polarization in the cylindrical coordinate system (x, 6, z) are reduced to,

(055
(2) C c c 0 0 0 €00 0 e 0
o [€11 €12 C13 1 (€69 21
)EJZC) |€12 €22 C23 0 0 0 || &xx |[0 €22 0]| Epo
Jom L _fes s ez 00 O f)Ezl |0 en 0|l (2.19)
T(Z) 0 0 0 Caq 0 0 Vxz |0 0 €34 Exx '
Zl fo 0 0 0 s 0flve 10 0 0|f=
2l Lo 0 0 0 0 el les 0 0
@
x6 7/
€00
Dy 0 0 0 0 0 e ‘Zj €1 0 0 71(Ege
Dxx = 821 622 823 0 0 0 ,yxz + 0 622 0 EXX (2191))
D, 0 0 O ez 0 O lyeZJ 0 0 €331 \Ey;
Yxo
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2.2.3.1.1. Constitutive Equations for a Piezoelectric Cylindrical Shell with Axial Polarization
Based on the Classical Shell Theory

Based on the classical shell theory, the normal stress in the shell thickness direction, o,,, the

transverse shear stresses, t,, and 7q,, are assumed to be negligible. Therefore, based on this

theory, fromg,, = 0, 7, = 0, and 74, = 0 in Eq. (2.19a), one obtains,

€23 C13 C23 €34
Ez7 = Eyy — oo — Exx VYxz = E;; Yoz =0 (2-20)
C33 C33 C33 Cas

Substituting Eq. (2.20) into Eq. (2.19) yields,

2

Og¢ 511 512 0 Ego 0 6_21 0 Egg

GJEJZC) = |:E]_2 522 0] {gxx} — [0 3_22 0 {Exx} (221(1)
(2) 0 0 566 Vx@ 6_16 0 0 EZZ

Txo

DGB 0 0 e_16 €00 Ell 0 0 E99

Dxx = 3_21 6_22 0 {Sxx} +1 0 ézz _0 Exx (221b)

D,, 0 0 0 1\¥Yxo 0 0 E33llE,

where €1, €12, €22, Cog €16, €21, €22, aNd €1, €55, E33 are given in Appendix B.

2.2.3.1.2. Constitutive Equations for a Piezoelectric Cylindrical Shell with Axial Polarization
Based on the First-Order Shear Deformation Shell Theory

According to the first-order shear deformation shell theory, the transverse shear stresses, 7.,

and 4, are not zero and only the normal stress in the piezoelectric shell thickness direction, a,,,

is assumed to be infinitesimal. Thus, from Eq. (2.19a) by considering ag,, = 0, we obtain,

€23 C13 C23
€7 = Evx — g — Exx (2.22)
C33 C33 C33

Substituting Eqg. (2.22) into Eq. (2.19) leads to,
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[ ~(2))
706 Gii Gz 0 0 0 0 0
@ [_11 12 '| {599] [ €21 '|
xx Ci12 Cz 0 0 O Exx 0 ep O Egg
{e@3=10 0 G 0 0 {yxz}—lo 0 ‘34|{Exx}
@ 0 0 0 ¢Csz 0 [1Yez [0 0 oJ E,,
oz Lo o 0 0 Gl leg 0 0
Ty /
Dgg 0 0 0 e 299 €4 0 0 7(Eee
e[ ! ol fem [ 8
Dzz 0 0 éé4 0 Yx0 0 0 E33 E}z

(2.23a)

(2.23b)

Where €11, C12, C22, Caa, Css, Copr €161 €21+ €22, 834, AN €44, €y, E33 are given in Appendix B.

2.2.3.2. Constitutive Equations for a Piezoelectric Cylindrical

Circumferential Polarization

with

Five piezoelectric constants e;4, e1,, €13, €26, and ezs are considered for the circumferential

polarization of the piezoelectricity. Coefficients e, 4, e;,, and e, 5 relate the normal stresses in the

1, 2, and 3 directions, respectively, to a field along the poling direction, Egq. The coefficients e,

and esc, respectively, relate the shear stress in the x — 0 plane to the field E,,., and shear stress in

the z — 0 plane to the field E,,. Note that it is not possible to obtain shear in the x — z plane purely

by application of the electric field Egg . Hence, the constitutive relations, Eq. (2.17), for a

piezoelectric cylindrical shell with the circumferential polarization are reduced to,

(950
0.95326) |'C11 Ci2 (13 0 0 0 ] (899\ €11 0 0
@ Ciz C2 C3 0 0 O f[x [612 0 0 ] Ege
) Ozz >=|C13 €z €33 0 o0 O | €z _[€13 0 0 [)g
e 0 0 0 Ca 0 O}y 00 o7
Zlfo 0 0 0 s Oflve| |0 o ess|
ng l 0 0 0 0 0 C66J kyxgj 0 €26 0
)
\Txg

Dgg e;1 €2 €3 0 0 0 s
Dixt=| 0 0 0 0 0 ey 4ZZ+

DZZ 0 0 0 O €35 0
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2.2.3.2.1. Constitutive Equations for a Piezoelectric Cylindrical Shell with Circumferential
Polarization Based on the Classical Shell Theory

Based on the classical shell theory, by assuming ¢,, = 0, 7,., = 0, and 74, = 0 in Eq. (2.24a),

one obtains,
€13 C13 C23

€2 =—Egg ——€gp — — Exx (2-25)
C33 C33 C33

Replacing Eq. (2.25) into Eq. (2.24) gives,

(2)

%00 €11 C12 07 €00 e;; 0 07(Egg

U}Ei) = [512 522 0] {Sxx} —_ [e_lz 0 0 {EXX} (22661)
2) 0 0 666 Vx6 0 6_26 0 EZZ

Txo

Dgg €11 &5, 07 (%0 €, O 0 71(Ee0

D,, 0 0 01 0 0 €E33llE,

where ¢4, €12, C22, Cog, €11, €12+ €26, ANd €11, €45, E33 are given in Appendix C.

2.2.3.2.2. Constitutive Equations for a Piezoelectric Cylindrical Shell with Circumferential
Polarization Based on the First-Order Shear Deformation Shell Theory
By considering the transverse shear effects via the first-order shear deformation shell theory,

only the normal stress is considered zero (o,, = 0). Thus, assuming a,, = 0 in Eq. (2.24a) yields,

€13 C13 C23
&2 =——FEg9 — €90 — — Exx (2.27)
C33 C33 C33

Substituting Eq. (2.27) into Eqg. (2.24) leads to,

.
@) [C11 Cr2 0 o0 01 (€66} [612 O O
Oucx |_12 Caz 0 0 0]]é&y €1, 0 O0f(Egs
<TJ(CZZ)>: 0 0 Ca 0 O0fVezp—[0 0 0 |§Exx (2.28a)
ol o0 0 & O|Ly92J 0 0 é5lE,
oz |~0 0 0 0 C_'66J )/XG lO 8_26 OJ
2
\Txg}
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_ € _

Dgg €1 €2 0 0 599 €1 O 0 7(Ees

De(={0 0 0 & [{,%4+0 &, 0 [Ex (2.28b)
D,, 0 0 &s 0l(, " 0 0 €331 E,

where ¢4, €12, C22, Caa, Css, Coer €11, €12, €26, €35, ANd €44, €,,, E33 are given in Appendix C.

2.2.3.3. Constitutive Equations for a Piezoelectric Cylindrical shell with Radial
Polarization

The five piezoelectric constants for the radial polarization of the piezoelectricity are ey, €4,

esq1, €32, and es3. Coefficients esq, e3,, and e;5 relate the normal stresses in the 1, 2, and 3

directions, respectively, to a field along the poling direction, E,,. The coefficients e;s and e,,,

respectively, relate the shear stress in the 8 — z plane to the field Egg, and shear stress in the x — z

plane to the field E,,.. Note that it is not possible to obtain shear in the x — 8 plane purely by

application of the electric field E,,. So, Eq. (2.17) for the radial polarization is reduced to,

(055
G)EJZC) [011 €12 €13 0 0 0](599\ 0 0 631
@ Ciz €2 C3 0 0 O ]|&x [0 0 632] Egpo
) 02z >=|013 €23 €3 0 0 0| fzz{ _|0 0 ®s3|lp (2.29q)
@ 0 0 0 Cia O 0 1) Vaz 0 ey O Exx '
e lo 0 0 0 css Of|ves| |eis o 0|\Ez
Tg, lo 0 0 0 0 CeeJ )/xgj 0 0 0
T(Z)
x0 /
€90
Dgg 0 00 0 e5 O ‘Zxx €41 0 0 7(Ees
{Dxx}=[ 0 0 0 ey 0O ] YZ +]0 €, O {Exx} (2.29b)
Dzz €31 €33 €33 0 00 lyezJ 0 0 E33 Ezz
Yxo

2.2.3.3.1. Constitutive Equations for a Piezoelectric Cylindrical Shell with Radial
Polarization Based on the Classical Shell Theory
Considering o,, = 0, 7,, = 0, and 75, = 0 in EQ. (2.29a), based on the classical shell theory,

we obtain,
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Ez7z = E,; ———¢€pg — —&xx (2.30)
C33 C33 C33

By substituting Eq. (2.30) into Eqg. (2.29), one obtains,

2

0(59) €11 Ciz 07 (€00 0 0 &3] (Ees

5@ :[c‘lz Cas ol{exx}—[o 0 &, {Exx} (2.31a)
e 0 0 Co 1'xe 0 0 0llE,

x6
Dgg 0 0 0](%e0 €, 0 0 7(Eee
r M W -
D,, e31 €2 0l'\Vxe 0 0 EzzllE,

where €1, €12, €22, o6, €31, €32, ANd €44, €45, E35 are given in Appendix D.

2.2.3.3.2. Constitutive Equations for a Piezoelectric Cylindrical shell with Radial
Polarization Based on the First-Order Shear Deformation Shell Theory
Including the transverse shear stresses (z,., and 7g,) and assuming negligible normal stress in

the piezoelectric thickness direction (o,, = 0) in Eq. (2.29a) yields,

€33 C13 C23
€7 = _Ezz — &0 — T Exx (2'32)
3

By substituting Eq. (2.32) into Eq. (2.29), we obtain,

(P

06 _ _

) [(11 G2 0 0 0]rege) [0 0 &3

Oxx |‘12 Gz 0 0 0f]ey 0 0 &,]|(Eoe
<T,(CZZ)>= 0 0 Caa 0 O [{Vxzp—|0 &, Of{Exx (2.33a)
ol 00 0 & OILVezJ &s 0 OllE,

o lo 0 0 0 el Ly o ol

Txo

_ € _

Dgg 0 0 (_) €15 Szz €11 _0 0 Egg

Dxx = 0 0 624 0 sz + 0 622 _0 Exx (233b)
Dzz é31 é32 0 0 0 0 E33 Ezz

Yoz

where ¢;4, €15, Co2, Caa, Css, Coer €15, €24, €31, €32, aNd €1, €E,,, E35 are given in Appendix D.
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2.3. Wave Propagation Modeling in Piezoelectric Coupled Laminated

Fiber-Reinforced Composite Cylindrical Shells

In this section, wave propagation problem in an infinitely long unbounded laminated fiber-
reinforced composite cylindrical shell coupled with a piezoelectric layer at the top surface with the

axial polarization is modeled and solved.

2.3.1. Force and Moment Resultants in a Piezoelectric Coupled Laminated

Fiber-Reinforced Composite Cylindrical Shell

To consider the piezoelectric coupling effects, the force and moment resultants for a laminated
composite cylindrical shell coupled with a piezoelectric layer at the top surface are obtained as
sum of the force and moment resultants of the host laminated fiber-reinforced composite

cylindrical shell and the piezoelectric layer ones.
The in-plane force resultants (NS, NS3), and N'3), bending and twisting moment resultants

(MY, M§y), and M()), and the transverse shear force resultants (V.5 and V1) for a laminated
fiber-reinforced composite cylindrical shell are given by Eqg. (2.15).

The in-plane force and moment resultants and the transverse shear force resultants
corresponding to a piezoelectric layer bonded to the top surface of a laminated composite
cylindrical shell are also obtained by integrating the corresponding stresses across the thickness of

the piezoelectric layer, i.e.

2 2
Nagx) h/ +h O_ng)
vol_ [7277) @, (2.34a)
60 ( — Ogg (42 Saa
2 2 )
Nx9 Txo
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2 2
M@ @

) "zt 09?25)
Mgy ¢ = f Oy 24z (2.34b)
h
M@ /2 @
X X
o) Ryt (2
f’é) =K, f ‘(’ZZ) dz (2.34¢)
V;cz h/z sz

where o2, a(gf,), rfc?, Tézz), and t{2) are corresponding stresses of a piezoelectric cylindrical shell

introduced in section 2.2.3 for the axial, circumferential, and radial polarization directions based
on the classical shell theory and the first-order shear deformation shell theory.

Thus, the in-plane force resultants (N,.., Ngg, and N,) are sum of Eq. (2.15a) and Eq. (2.34a),
the bending and twisting moment resultants (M,,., Mg, and M,.) are sum of Eq. (2.15b) and Eq.

(2.34b), and the transverse shear force resultants (V,,, and Vp,) are sum of Eq. (2.15¢) and Eq.

(2.34c) as,

Nyw = NG + NP Ngg = Nog + Ngg) Nyg = N3 + N

My = MY + MP Mgg = Mgy + Mgy Myg = Mg + My

Ve = VD 4 v@ Vo, =V + v (2.35)

By some manipulations, the force and moment resultants for a laminated composite cylindrical
shell integrated with a piezoelectric layer at the top surface with axial poling based on the first-

order shear deformation shell theory are obtained as,

Nxx=A1%+é(Wo+%) 3(%+%)+ Sy, 000 Ly 9% 030y, 0P 36q
dx R a6 R0O  0x dx RO6O R0O  0x dx

N99=B1%+%(WO+%) 3(%+%) 4%+35%+36(zg;+%)+373—f (2.36b)
Nx9=C1%+%(WO ‘%)+C3(%+%)+c4%+cs%+ce(zgg+%)+c7% (2.36¢)
Mxx=D1%+%(wo+%)+ 3(%+%) 4%+D5%+D6(%+%)+D7g—f (2.36d)
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ou, E v Jdu v Jda, Jda Jda Jda 0
Mg = By 52+ —2(w+ 0) E3( Mo °> By S+ By B (ot + S0 E, 22

a0 RO ' 9x RO 7ax
du, F2 av, du, 0dv, Jda, Jdag da, OJdag do
My, =F — — 4+ 2)+F F, 4+ (e + —) 4+ Fy——
Tox (W°+ae) 3(R69+6x>+ vax " F5rae T GRag T o) T 7 Rag
a 7]
o= 6y (222 00) 6o (204 )

The force and moment resultants based on the classical shell theory are attained as,

. du, A, v, . (0u, 0v, 02w, 02w, 22w, . dg
N A1—+_<W0+—)+A3(—+ )+A4 a 2 +A5 +A6 +A7a

F) 26 RIO  ox R2062 ROx06
N Bau0+32( +6v0) B(6u0+6v0)+Bazw LB 9%w, LB %w, LB o9
00 = P17 Yo 5g) T 73 \Rag T ax ) T 4 axz T "SR2902 T S Roxae " 7 ox
_ ¢ o ou, CZ( +6v0)+c, <6u0 +6v0) ¢ 0%wy, L e 9%wy, L e 0%w, L e o
Vox Yo T 5 \R0O ' ox * 9x2 ' T°R2002  "°ROxd0 = 7 RO
M, _[,)au [)2< +6v0>+D, (6u0+6v0) Dazw +h 2w, b 9w, D,ago
~ 1y TR\ T g 3\R36 ' ox * 0x2 *R2002  °ROx00 ' 7 ox
Mo = g 00 ou, EZ( 6170) i} (6u0 +6v0>+E 0%w 0, g 92wy, L E 92wy, L E 2@
90 = "1 9x 26 3\RoO ' ox *9x2 " °R2062 " °ROx00 7 dx
Mg Fau°+F2( +av°)+1'3"(au"+av°>+Fa +F 0"w +F 0"y 1520
X =Ty Yo T 59 RO = dx *9x2 ' "°R2002 ' "°ROxd6 RO
The expression of coefficients, 4;(i=1,..,7), B;(i=1,..,7), G;(i=1,..
E(i=1,..7), F(i=1,..,7), G(i=12), Hi(i=12), 4@(=1,...7), Bi(i=1,..
1,..,7),0;(i=1,..,7), E;(i=1,..,7), F;(i =1, ...,7) are given in Appendices E and F.

(2.36€)

(2.36f)

(2.369)

(2.36h)

(2.37a)

(2.37b)

(2.37¢)

(2.37d)

(2.37¢)

(2.37f)

I7)' Di(i = 11 "'17)1

7)), (i =

By substituting corresponding stresses of a piezoelectric cylindrical shell with circumferential

and radial polarizations into Eq. (2.34) and performing mathematical procedure as explained in

Egs. (2.35) — (2.37), we can also obtain the force and moment resultants for piezoelectric coupled

laminated fiber-reinforced composite cylindrical shells with circumferential and radial
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polarizations which can be used for determining dispersion characteristics based on

circumferential and radial polarizations of the piezoelectric material.

2.3.2. Equations of Motion

The equations of motion are illustrated in this section based on the first-order shear deformation
shell theory, the Love bending shell theory, and the membrane shell theory. The kinematics of
displacements, the strain and stress fields, and the force and moment resultants used in the
membrane and Love bending shell theories are given by those obtained from the classical shell

theory.

2.3.2.1. Equations of Motion for a Piezoelectric Coupled Laminated Composite

Cylindrical Shell Based on the First-Order Shear Deformation Shell Theory

The equations of motion are derived in this section based on the first-order shear deformation
shell theory. To derive the equations of motion for a laminated fiber-reinforced composite
cylindrical shell coupled with a piezoelectric layer at the top surface, the Hamilton’s principle

extended to the shell structure is given by,
T

j (6E, — 8E;)dt =0 (2.38)
0

where E; and E; denote the kinetic energy and the strain energy, respectively, which are given by,

h

E, =L 2 P 457 4 DRz dxdo (2.39)
k 2 ; h P w yA X .

2

and
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h
1 2/ 1 1 1 1 1 1
E, = Eff [f N (a,gx)sxx + 0'9(9)899 + oz(z)ezz + T}Eg)yxg + KsT;(cz)sz + KSTéZ))/gZ) Rdz|dxd6
A —_

2

h
1 (g @ @ @ @
+ 2 h (Gxx Exx T 0gg' €00 + 055822 + T g Vxo + KsTyy Vaz
A —

2

+ Kst$2)ve,) Rdz| dxd6 (2.40)

where p is the mass density. Considering the effect of transverse shear, in-surface and rotary
inertias, and using Egs. (2.8), (2.14), and (2.34) and substituting the expressions for E} and E,
Egs. (2.39) and (2.40), in to Eq. (2.38) and then integrating the expressions by parts, the equations
of motion for a laminated fiber-reinforced composite cylindrical shell coupled with a piezoelectric
layer at the top surface are derived as,

ONy, ONyg 0%uy, 0%a,
: B B s 2.41
Ouo: 5 =+ hag ~logez Thge (241a)

aNgg ang Vo, 62170 62019

Bvg: i t o= g (2.41b)
Swo: agiz %9; - N}z" =1, a;:;“ (2.41¢)
Say: agf’“ 1";’;" —V, = 11% + 2% (2.41d)
Satg: m:—;" aRA;If; —Vy, = 11% +1, a;:;" (2.41e)

where [; (i = 0,1,2) are the inertias which for a laminated fiber-reinforced composite cylindrical

shell coupled with a piezoelectric layer at the top surface are obtained as,

N

Zg E+hp N
Iy = Z J Py dz +Jh ppdz = Z Py (Zx — zg_1) + pphyp (2.42a)
K K=1

=1"7K-1 2
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||
Mz

+hp 1 N
f Pyzdz + f ppzdz = 5 Z pK(Z,% —zE_1) + (hh + h2) (2.42b)
z K=1

1 K-1

N
1]

||
Mz

h,h? hh% h3
(4 +T+?> (2.42C)

where pyx and p,, are the mass densities of each host composite layer and the piezoelectric layer,

2+hp 1 N
f Pg? 2dz+f ppzzdzzgz Py (i — zi¢_1) + pp
z K=1

1 K-1

=
1l

respectively.

2.3.2.2. Equations of Motion for a Piezoelectric Coupled Laminated Composite
Cylindrical Shell Based on the Love Bending Shell Theory

Based on the Love bending shell theory, the rotary inertias, I; and I,, are assumed negligible.

In this theory, shell is with bending resistance based on the Love’s shear-rigidity assumption. Thus,

the equations of motion based on this theory are given by Ref. [97] as,

ON,y N ONgy p 9%u,
dx = RO ~ 0 9t2

(2.43a)

aNgg ang ng E)Zvo

Roo T ax R e (2:43b)

Wy, Vo, Nog  0%wy

ax "Ra6 R %o (243¢)
ag&x N EZVITX; v, =0 (2.43d)
81;4;9 61;\/1% Yy, =0 (2.43e)
From Egs. (2.43d) and (2.43e), the transverse shear forces, V,., and V,, are obtained as,

hp = T 4 20 Vg, = 20 4 2000 (2.44)

By substituting Eq. (2.44) into Egs. (2.43b) and (2.43c), the equations of motion based on the
Love bending shell theory in the longitudinal (x), tangential (6), and radial (z) directions,

respectively, are reduced to,
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ON,, ONg,  0%u,
o = Iy (2.45a)

6N99 ang 1 ang aMgg 021]0
- — =] 2.45b
RO6 dx R" 0x RO6O ) ( )

0 52

OZMXX 262Mx9 62M99 Ngg _ aZWO
dx2 ~ ROxd0  R2302 R ~ ° ot?

(2.45¢)

2.3.2.3. Equations of Motion for a Piezoelectric Coupled Laminated Composite
Cylindrical Shell Based on the Membrane Shell Theory
According to the membrane shell theory, in addition to the rotary inertias ( I, and 1,), the
transverse shear forces (V,, and Vy,) and the bending and twisting moments (M,.,, Mgg, and M)
are assumed negligible and only the in-plane normal and shear forces (N,.,, Ngg, and N,.¢) applying
on the mid-surface of the shell are considered. Thus, the equations of motion based on this theory
in the longitudinal (x), tangential (6), and radial (z) directions are, respectively, given by Ref.

[198] as,

=1 (2.46a)

Ra® ' ax — ° a2 (246D)
Ngg aZW

2.3.3. Dispersion Characteristics for a Piezoelectric Coupled Laminated Fiber-

Reinforced Composite Cylindrical Shell
In this section, dispersion characteristics are derived for a laminated fiber-reinforced composite
cylindrical shell coupled with a piezoelectric layer at the top surface based on the first-order shear
deformation shell theory, the Love bending shell theory, and the membrane shell theory in the

following subsections.
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2.3.3.1. Dispersion Characteristics Based on the First-Order Shear Deformation Shell

Theory
Substituting the derived force and moment resultants with the effects of transvers shear
according to the first-order shear deformation shell theory, Eq. (2.36), into the equilibrium
equations of motion based on the first-order shear deformation shell theory, Eq. (2.41), yields the

following equations in terms of u,, vy, wy, a,, ag, and ¢,

a2 uo %a, a2 0%ag
6x2

%ag n 0%a,
ROx06

A
1 x2 | RAxd6

~+As—=

Az (3w, azvo) ( 8%u, ) ( ) 29
( ax + 9x90 +43 ROx0 + dx2 t A4' +4 +4; dx? t

C3 (0%u 9%y 2%a %ag | Co (0%ag , 0%a
)+?3( 2t 0)+C4 e+ Cs +?6( + x)+C7R2602=

Cl azuo + _(BWO +

ROx36 962 ROOZ ' 9x00 ROx36 R2362 9x00 ' ROOZ
0%u 0%a
IS+ 1 5 (2.47a)
d’uo | By (dwg | 97 vo) §(azu0 62170) 0%ay, %ag ﬁ(azag azax) %
B, roxo6 T ( t902) T = \roez T oxae) T By Roxo6 T Bs 77062 T & \oxa0 T Roe? + By roxod T
C a2 Uo | _(6w0 n )+ C (azuo +62v0) iC a2 ax iC %ag iC (azag n %a, ) ic %¢ n
1 gx2 ax ' 0x08 3\Rox98 ' axz 4 5 Rox00 6\ 9x2 ' RAx36 7 ROx30
Hy (0wo _ v Hy (0w, ) =, L 2%a
(Rae “ )+ 22 (20 4 ay) = [ 22+ 1, 25 (2.47b)
02w,  dv, N dag c %w, N oa, N Hy (0%w, 0v, N dag N H, (9%w, N oa,
RAxd0 Rdx ' dx 2\ ax2 ' ox R \R362 ROO ' 96 R \oxd0 ' a6
Jduy B, ( 6170) B; (6170 N auo) B,0a, Bsdag Bg <6a9 N aax>
— — — c— W — — — — — — — — — —
YRox R2\"° " 96 dx  RAO) R dx R2? 96 dx ' RO
B7 6<p 02 )
R ax 0 atz (2.47¢)
0%ug | Dy (dwg 9%u, 0%a, %ag %ag %a, 2’
Dy dx2 + (ax +6x69)+D3(R6x66+ ax2)+D4 +D5Raxae+D6(ax2 +Raxae)+D7ax2 t
uy | Fp (9w F3 (0%uy | 01 %a, 0%ag | Fs (0%ag , 0%ay e
1%axo6 T ( + ) TR (R692 + 6x69) tF roxo T Fs R700% 1 R (6x69 t R692) + 5 R2362
ow v ow 9%u 9%a
G, (Eg —%t ag) -G, ( ot x) =L 1,2 (2.47d)
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v 92 u0+F2 6W0+ 9%v, +F, d%u, +62v0 CF 0%a, g 0%ag F 62a9+ 0%a,
Yoax2 " R\ ox ' o9xo0 ROxd0 = 0x * 9x2 ' SRox00 ' "\ 9x2 ' ROxd0
0%¢ 0%uy E, (0w, 0%vy\ E3[0%u, 0%v, 0%a,
F. E 222y 043 E
T "7 Raxa0 T "1 Roxo0 T R? < FRMTE ) "R (Raez * axae) * 4 Rox00
0%ay E¢(0%ap 0%a, %¢ owy, v
E - — - -
T s R2992 T R <6x69 +R692> i R
OWO a UO 02a9
— HZ <6—+ ax> 11 atz + IZW (2476)

The electric variables should satisfy the Maxwell’s static electricity equation in which the
divergence of the electric displacement vanishes at any point within the piezoelectric media. To
fulfill this condition, it is enforced that the integration of the divergence of the electric
displacement across the thickness of the piezoelectric layer vanishes.

By substituting the strain-displacement relations based on the first-order shear deformation
shell theory, Eq. (2.9), into the electric displacements of the piezoelectric layer with the axial

polarization based on this theory, Eq. (2.23b), we obtain,

Don— & (6170 4 auo) ts <6a9 aax> e do 248
06 = €16\ 5 " Rrae) T “1¢”\ox T Rae) "' Roe (2.48a)
2. ov Ja ou oa 0
_f Y 0,5 (P, %%\ _¢ 99
Dy, = R (W0+ 69)+6212R89+622<ax +Zax) = o (2.48b)
_ (9w
D,, = e ( o ax) (2.48¢)

h
~+h

Satisfying the Maxwell equation ff PVDdz = 0 for the piezoelectric layer, in view of Eq.
2

(2.48), yields,

_ 0%uy ezz ay 621 wy 0%vy\ &y 0%ay 0%u, 9%y,
ezt (bt h”) ax taxae) T2 1 e) Rage + s R2692+Rax69>

0%«a 0%a 0? 0?
0 ") Epal g, 2% _g (2.49)

16
7 (1) (Raxaa T RZ7962) T2 5x7 ~S11 R2g62
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Egs. (2.47) and (2.49) show the equations of motion in term of the shell displacements (u,, vy,
and wy), the rotations of shell cross-section normal to x —axis and 6-axis or shear effects (a, and
ay), and the electric potential (¢) for a laminated fiber-reinforced composite cylindrical shell
coupled with a piezoelectric layer at the top surface based on first-order shear deformation shell

theory.

2.3.3.2. Dispersion Characteristics Based on the Love Bending Shell Theory
By substituting the derived force and moment resultants based on the classical shell theory, Eq.
(2.37), into the equations of motion based on the Love bending shell theory, Eq. (2.45), one obtains

the following equations in terms of u,, vy, wy, and ¢,

i 0%uy, A, [ow, 0%v, i 9%u, +62v0 i 63W0+A d3wq LA 3w,
ox2 " R\ ax ' oxo0 3\Rox30 ' 9x? 4 9x3 >R29x962 ' “°ROx200
. 02 . 0%u C, (ow, 0%v Cs (0%u, 0%v . 03w
+ 4,20 ¢ T 22 (TWo 0 To) Z3(T R0 T o) T W0
O0x? ROx060  RZ%\ 00 002 R \R0O?%  0x06 R0x2%2060
+C Wy +C 0wy +C Ty =1 0"ug 2.50
5R390°3 © “°R20x062 ' “"R206% ' 0t2 (2:50a)
B, 0%uy, B, (0w, 0%V B, (0%u, 0%v . 33w . 03w, . 03w
= - _i - 20 = (;'*' 2 + B, 20 + B 3 03"'36 2 02
R 0x068 R4\ 00 a0 R \ROO 0x00 R0x%00 R3060 R?0x00
B, 92 . 0%u, C, (0w, 0%*v . [ 0%u 2%v , 03w
T A R e Y Sl 2+ 63 o+ = | + G
R 0x00 0x2 R\ ox 0x00 ROx00  0x?2 0x3
. 03w ., 03w, ., 072 F,0%u, F, (0w, 0%*v
+Cs 0 4l jg,— 2 17 %0 2(T% 0
R20x00?2 R0x200 Roxd8 R 0x% R2\ ox 0x00
Fy( 0%uy 0%v,\ FE,0%w, f 3w, P 3w, ‘ 9%
R \R9xd0 = 9x? R 9x3 "SR30x002 °R29x200 ' R20x00
£ 0%u, K, 6M@_+62v0 E; 62u04_62v0 , 93wy E< 03w,
YR29x060 R3\ 00 ' 0602 ) R2\R3O? ' 0x00 *R20x200 R* 963
. 03w, . 0% 0%v,

—F —E =1 2.
6 R30x00%2 7 R29x00 ~ ° ot2 (2.500)
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., 33 5 2 3 . 3 . 33
D16u0+%(6w0+6v0)+D3(6u0 +av0)+D4aw0+D5 atw, b atw, L p. e

dx3 dx2 0x206 R0x2060 ax3 ox* R20x2002 + 6 RAX306 7 9x3
ZF]_ 63u0 ZFZ (62W0 63170 ) 2F3( 63u0 63170 ) Z, 64W0 z 64W0 Z, 64Wo
R 0x200 9x30 ' 9x062 R \ROx062 + 9x200 +2F, ROx308 +2Fs R39x963 +2Fs R29x2002 +
EER) 83u, E, (62w0 63170) (a uy . 93v, ) L 9w, . 9tw,
2F7 R20x062 + E1 R20x002 + R3 \ 902 + 963 txe RAO3 + 9x0602 +E, R20x2902 +Es R496* +
Boo g, Y0 Bl By, 0v0) (e, vy Bidtwo_ g Otwe g 0w
6 R39x963 7R29x362 R Odx  RZ 96 ROO ' ax R 0x2 5 R3962 6 R29x00
B,dp . 0%w,
~ o = o5z (2.50¢)

Replacing the strain-displacement relations based on the classical shell theory, Eq. (2.4), into
the electric displacements in the piezoelectric layer with the axial polarization based on this theory,

Eq. (2.21b), yields,

b (8170 auo) 5 o %w, - op 251

00 = €16\ 3 Y Rag) ~ ©19°“Raxae ' Roe (2:51a)
ey vy . 0%wy, auo ’wy\ _ do

Do =7 (WO + ae) €217 pagp2 T ox  “oxz | %22 5x (2.51b)

D,, =0 (2.51¢)

h
Satisfying the Maxwell equation f;”lp VDdz = 0, in view of Eq. (2.51), leads to,
2

_ 0%uy ey WO e21 awy 0%v, 3w, &6 (0%uy, 0%v,
@2 gz~ (hthp) x| 9x00 921(h+hP)Rza 262" R \Rog2 * 3%36

3W 62(p az(p
RZ9x00% €22 g5z 11 Rzge2

—é16(h +hy) =0 (2.52)

Egs. (2.50) and (2.52) represent the equations of motion in term of the shell displacements
(ug, vy, and wy) and the electric potential (¢) for a laminated fiber-reinforced composite
cylindrical shell integrated with a piezoelectric layer at the top surface according to the Love

bending shell theory.
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2.3.3.3. Dispersion Characteristics Based on the Membrane Shell Theory
By substituting the in-plane force resultants (N,.,, Ngg, and N,g) according to the classical shell
theory, Egs. (2.37a) - (2.37c), into the equations of motion based on the membrane shell theory,

Eq. (2.46), the following equations in terms of u,, vy, wy, and ¢ are obtained,

i 62u0+A2 6W0+62v0 ) azuo +62v0 A 63W0+A 3wy, A 3w,
'9x2 " R\ ox ' 0x00 ROx00 = 0x2 * 9x3 >R20x002 ' ® R9x200
. az(p a uO 0W0 021]0 , azuo 0 170 , 63W0
+ A +C + + C + +C
79x2 " "' RAxd6 R2<69 692> 3<R2692 R6x69> *Rox206
Lo S0 e W o O 07U 253
5R3003 ' “5R20x aez "R2002  ° 9¢2 (2:53)
B, 0%u, B, [dw, 0%v . [ 9%u 0% B, 93w . 03wy, 23w,
= s e N e B iy - 8 + By
R 9x060  RzZ\ 96 ' 90 R2062 ' RAxd0) R 0x206 R3963 R29x06
+B7 9% L 9%u, Cz aw, 9%v, . [ 9%u, +62v0 . 93w,
R 0x00 1 0x2 9x | 0x06 3\ Rox00 = 9x2 4 9x3
p T e W0 . 0%, 0% 2.53b
5R20x002 T CRax200 T ‘" Roxoe 0 32 (2.53D)
Bow by, o) Byou ovy Bty 0wy, 0w o
R ax R2\"°" 99 RO ' Ox R 0x2 SR3902 “°R29x00 R ox
%w,

The electric displacements and the equations of motion for a piezoelectric layer based on the
membrane shell theory are the same as those for the Love bending shell theory, Egs. (2.51) and
(2.52). Thus, Egs. (2.53) and (2.52) express the equations of motion in term of the shell
displacements (u,, vy, and w,) and the electric potential (¢) for a laminated fiber-reinforced
composite cylindrical shell coupled with a piezoelectric layer at the top surface based on the

membrane shell theory.
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2.3.4. Solution Procedure

The shell displacements (u,, vy, and wy), the rotations of shell cross-section normal to x -axis
and @-axis or shear effects (a, and ay), and the electric potential (¢) for wave propagation are

assumed to be in the following forms,

uy(x,0,t) = UemPelr(x=cH) (2.54a)
vo(x,0,t) = Veindelv(x—ct) (2.54b)
wo(x,0,t) = Wendely(x—ct) (2.54¢)
a,(x,0,t) = Aenfeivx—ct) (2.54d)
ag(x,0,t) = Agefely(x—ct) (2.54¢)
o(x,0,t) = Peinbelyx—ch) (2.54f)

where y, n, and c are axial wavenumber, circumferential wavenumber, and wave phase velocity,
respectively; U, V, W, A,, Ay and @ are the wave amplitudes; and w = cy is the corresponding
frequency.

Substituting Eg. (2.54) into the equations of motion according to the first-order shear
deformation shell theory, Egs. (2.47) and (2.49), yields a set of homogenous equations as,
Lyy Lip Liz Lia Lis Lig (
Lyi Loy Lys Lpy Lps Lyg

U
|74
L3y L3 L3z L3y L3zs Lzg| )] W
A

L4-1 L42 L43 L44 L45 L4’6
Ls; Ls; Lsz Lsy Lss Lsgl |4
(o]

)

= {0} (2.55)

> R

-L61 L62 L63 L64 L65 L66—
Substituting the displacements and electric potential for wave propagation from Eq. (2.54) into

the equations of motion based on the Love bending shell theory, Egs. (2.50) and (2.52), leads to a

set of homogenous equations as,

U

Vi_ (0 (2.56)
S31 S3z S3z3 Ssa| |W

(o}
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By substituting the displacements and electric potential for wave propagation from Eqg. (2.54)
into the equations of motion according to the membrane shell theory, Egs. (2.53) and (2.52), one

obtains a set of homogenous equations as,

U

Vo) (2.57)
T31 T3 Tz3 Tsa| | W

()

where the components of matrices [Lii]exe’ [Sii]4x4’ and [Tl-j]4><4 are given in Appendices G, H,
and 1, respectively. Due to the eigenvalue problem, the above matrix equations has a nontrivial
solution for U, V, W, A,, Ag, and @ only if, the determinant of matrices [L;;], [S;;], and [T;;] is
equal to zero. By solving Eq. (2.55), five positive roots are obtained for any specific axial
wavenumber y and circumferential wavenumber n which are the wave phase velocities ¢ for the
laminated composite cylindrical shell motions corresponding to the axial (x), circumferential (6),
and radial (z) displacements, and the rotations of the shell cross-section normal to x -axis (z — 6
plane) and 6-axis (x — z plane), respectively. These five roots are called the wave phase velocities
corresponding to the first five wave modes denoted, respectively, by M1, M2, M3, M4 and M5 in
this thesis. While one obtains three positive roots by solving Eqgs. (2.56) and (2.57) as the wave
phase velocities ¢ corresponding to the first three wave modes M1, M2, and M3. The lowest of
the five roots (M1) represents the flexural (forward) motion of the shell particles and other roots
(M2 - M5) are in-plane and out-of-plane motions of the shell particles.

To solve the eigenvalue problem addressing the real roots of Egs. (2.55) - (2.57), a Matlab code
is provided based on the Bisection method where it is an iterative discretization root-finding
method solving the equation f(x) = 0 for real variable x with continuous function f. If the

continuous function f is defined on an interval [a, b] and where f(a) and f(b) have opposite
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signs (f(a) X f(b) < 0), a and b bracket a root, and the continuous function f must have at least
one root in the interval [a, b].

Firstly, a relatively small interval (< 5% of the whole variable range [a, b]) is defined to scan
the whole variable range during the Bisection root search. At each iterative step at the interval
[a, b] with f(a) X f(b) < 0, the method divides the interval in two by computing the midpoint
c = (a+ b) /2 of the interval and the value of the function f(c) at that point. Unless c is itself
a root of f(x) = 0 (this is very unlikely but could be possible), there are two possibilities: either
f(a) and f(c) have opposite signs and bracket a root, or f(c) and f(b) have opposite signs and
bracket a root. We then select the subinterval that is guaranteed to bracket the root as the new
interval to be used in the next iteration. In this way, the size of an interval that contains f(x) = 0
is reduced by half at each iteration step. The process is continued until the interval is sufficiently
small (< 0.1% of whole variable range) with ¢ very close to the analytical root of f(x) = 0 [199].

Therefore, by using the above method, the dispersion or frequency curves for different wave
modes can be obtained by finding the wave phase velocity c or the frequency w at any specific
axial wavenumber y and circumferential wavenumber n.

Carbon/epoxy and E-glass/epoxy unidirectional composites are considered for the host
laminated composite cylindrical shell where their material properties are given in Table 2.1, and
for the piezoelectric actuator, PZT-4 is chosen where its material properties are listed in Table 2.2.

To investigate wave propagation in a laminated fiber-reinforced composite cylindrical shell
coupled with a piezoelectric layer, the non-dimensional wave phase velocity is employed in the

numerical analysis. The axial wavenumber is defined by,

v="7 (2.58)
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where y is the axial wavenumber with unit % and A is the wavelength with unit meter (m). By

multiplying the axial wavenumber y with %(m/md), we obtain the non-dimensional axial

wavenumber as,

_yH_H

== 2.59
2t A ( )

§
where H = h + h,, is the total thickness of a laminated composite cylindrical shell coupled with a
piezoelectric layer at the top surface. For any specific non-dimensional axial wavenumber &, its
corresponding axial wavenumber y or wavelength A is obtained from Eqg. (2.59), and then by
substituting the calculated corresponding axial wavenumber y or wavelength A and a specific
value of circumferential wavenumber n (n = 0,1,2, ...) into Egs. (2.55) - (2.57), the corresponding
wave phase velocities ¢ are calculated, respectively, based on the first-order deformation shell
theory, the Love bending shell theory, and the membrane shell theory for different wave modes.

The non-dimensional wave phase velocity is defined as,
v=— (2.60)
where c is the wave phase velocity computed from Egs. (2.55) - (2.57), and c; is the torsional wave

phase velocity which for the first-order shear deformation shell theory and the Love bending shell

theory is employed as [97,98],

~ ]Guh + Coshp(1— ((h+ hp)/R)) (2.61)

b pxh+p,hy

and for the membrane shell theory is employed as [39],

Gioh + Coeh
o = [Tt T Cecllp (2.62)
pKh+pphp

t
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in the numerical simulations, because all simulations here are compared with those of the Refs.
[39,97,98] and G, is the in-plane shear modulus of a fiber-reinforced unidirectional composite
given in Table 2.1 and ¢4 is the effective in-plane shear modulus for the piezoelectric layer. In

the case of no piezoelectric layer (h, = 0), Egs. (2.61) and (2.62) are reduced to,

,G
= =2 (2.63)
Pk

The ratio of piezoelectric layer thickness (h,,) to the host laminated composite shell thickness

(h) is defined as r = -

Table 2.1. Material properties for fiber-reinforced unidirectional composites [6].

Property Carbon/Epoxy E-Glass/Epoxy
(AS4/3501-6)
Fiber volume fraction, f; 0.63 0.55
Mass density, p, (kg/m?3) 1600 1970
Longitudinal modulus, E;,, (GPa) 149 41
Transverse modulus, E,,, (GPa) 10.3 10.4
In-plane shear modulus, G,,, (GPa) 7 4.3
Major Poisson’s ratio, v;, 0.27 0.28
Longitudinal coefficient of thermal expansion, I;,, (107¢/K) 0.9 7
Transverse coefficient of thermal expansion, I, (1076 /K) 27 26
Longitudinal coefficient of moisture expansion, ¥;, 0.01 0
0.2 0.2

Transverse coefficient of moisture expansion, Y,,
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Table 2.2. Material properties for the PZT-4 [92,103].

p = 7500 (kg/m3), E =78(GPa), v=031

Elastic constants, c;; (GPa)

C11 :139, C12 :78, C13 :74, C22 = 139, C23 :74’, C33 = 115,

C44 = 25.6 y C55 = 25.6, C66 = 30.5

Dielectric constants,

€; (x107"'F/m?)

Polarization Piezoelectric constants, e; (C/m?) €11 €y €33
Axial e = —12.7, ey, = =151, e,; =52, e,3 =52, ey =—127 650 560 650
Circumferential  e;; = —=15.1, e, =52, e;3 =52, ey =—127, e;s =—127 560 650 650
Radial e =12.7, ey =127, e33 = =52, e3; = =52, es33 =151 650 650 560

2.4. Wave Propagation Modeling in Piezocomposite Cylindrical

Shells Reinforced with Carbon Nanotubes

As particles in nano sizes, CNTs can be dispersed in a matrix in different manners. They can

be angled dispersed with a specific orientation to the global coordinate system, randomly oriented

particles, and or agglomerated partially and completely in the matrix. Various dispersions of CNTs

in the matrix lead to different dynamic properties of composites. Modeling CNTs embedded in

composites has always been a challenge and been studied through different methodologies such as

the Mori-Tanaka model [104] and the rule of mixture model [105]. Wave propagation behaviors

for piezocomposite cylindrical shells reinforced with CNTs with different orientations and

distributions have not been investigated in the literature. Hence, in this section, wave propagation

in CNT-reinforced piezocomposites is modeled.
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2.4.1. Constitutive Relations for Piezoelectric Composite Cylindrical Shells

Reinforced with CNTs

The poling direction of the piezoelectric cylindrical shell is assumed to be in the axial x-
direction of the shell, which also means the x-direction is the axis of symmetry of the piezoelectric
shell. In view of Eq. (2.19), the generalized constitutive relations for a piezoelectric cylindrical

shell with the axial polarization in the cylindrical coordinate system (x, 8, z) can be developed to

[81],
(000 [Coo Cox Coz 0 0 Cos] oo [0 €1 0]
| Oxx | Cox Cxx Cxz O 0 Cys {Sxx] 0 en 0| 06
Ozz — Coz Cxz (g 0 0 Cys { €2z ¥ _ | 0 €23 0 E (2 64-(1)
Trz | 0 0 0 Gr G 0NVef 0 0 e '
o] |00 0 G Gy O lyez 10 0 ot
Tx6 Cos Cxs Cyrs 0 0 CSSJ Yx6 et 0 0
(£00)
Dgg 0 0 0 0 0 e ?zmzc €11 0 0 Egg
D,, 0 0 O ez 0 O IU/GZJ 0 0 €331 \Ey;
Vx6

In view of Eq. (2.34), the in-plane force and moment resultants and the transverse shear force
resultants for a piezocomposite cylindrical shell reinforced by CNTs are obtained by integrating

the corresponding stresses across the piezoelectric thickness as,

Nxx % O-xx
Nog( = |, {90 dz (2.65a)
Nyg ACT
Mxx % Gxx
Moo= | | {060 (zdz (2.65b)
Mg AT
v h
0z _ 2 (Tgz
{V;Z} =K J_E{sz}dz (2.65¢)
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In this section, h represents the thickness of the piezoelectric cylindrical shell. In the following
subsections, constitutive equations are derived and developed by considering various CNT
distributions in piezocomposite cylindrical shells. The proposed model leads to derive the stiffness
matrix and material properties and then develop a composite wave propagation approach for any

kind of customized composites with various distributions of CNTs.

2.4.2. Constitutive Relations for a Piezoelectric Composite Cylindrical Shell

Reinforced with Angled, Straight CNTs

In this section, constitutive equations are derived and developed for a linear elastic piezoelectric
composite reinforced by a large number of dispersed CNTs which are angled and straight.
Configuration of an infinitely long unbounded piezoelectric composite cylindrical shells
reinforced with angled, straight CNTSs is shown in Fig. 2.6 with corresponding material principle
(1,2, 3) and cylindrical coordinate (x, 6, z) systems.

Due to the advantages of the Mori-Tanaka [104] micromechanics model rather to the rule of
mixture [105] micromechanics model, as explained in section 1.2.2.1, the Mori-Tanaka model is
employed to estimate the resulting effective elastic properties of a piezoelectric composite

cylindrical shell reinforced with aligned, straight CNTSs.
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) 0 Piezoelectric cylindrical shell
\_‘ - ﬂ (Matrix)

Figure 2.6. Configuration of a piezoelectric composite cylindrical shell reinforced with angled,
straight CNTSs.

We consider a piezoelectric composite cylindrical shell reinforced with straight CNTs which
have angle g with the x-axis (see Fig. 2.6). The matrix is considered to be elastic and isotropic
with Young’s modulus E,,, and Poisson’s ratio v,,. Each straight CNT is modeled as a long fiber
with transversely isotropic elastic properties. The resulting composite shell is also transversely
isotropic with 2 — 3 plane of isotropy and its constitutive relations in the principle coordinate

system (1,2,3), 0 = C: &, based on the Mori-Tanaka micromechanics model are given by Ref.

[107] as,
(011 n l l 0 0 07,11
| 022 | |§ k+m k-m o o 0] (522]
033 | _ k—m k+m o o 0])¢s3
T3 |0 0 0 m o O { V23 ? (2.66)
T13 [0 0 0 0 p J V13)
T12 0 0 0 0 0 pliyp

where k, I, m, n, and p are the Hill’s elastic moduli [200]; k is the plane strain bulk modulus

normal to the fiber direction, n is the uniaxial tension modulus in the fiber direction, [ is the
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associated cross modulus, m and p are the shear moduli in planes normal and parallel to the fiber

direction, respectively. The Hill’s elastic moduli are defined as [200],

Em{Emfm + Zkr(l + Vm)[l + fr(l - va)]}

T 20+ o) Em (L + f; — 2Vm) + 2fkr (1 — Uy — 202)] (2.67a)
_ En{favmlEn + 2k, (1 + vl + 2,1, (1 = v)}
t= (1 + vm)[Em(l + fr - va) + mekr(l —Um — 2177%1)] (2.67b)
_ Erznfm(l +fr— fmvm) + 2 fr (krny — l%)(l + vm)z(l — 2vp)
T A+ En(L + fr = 20m) + 2fmke (1= v — 205)]
Em[zfnzlkr(l - Vm) + frnr(l + f;” - va) - 4‘fmlrvm]
Em(1 + fr - va) + mekr(l —Um — 2171%1) (2.67C)
_ EnlEmfm + 20-(1 + v) (1 + £)]
P = 20+ ) Em (L + 1) + 2fpr (L + )] (2.67d)
EnlEmfm +2m-(1 + v,) B + fr — 4vy,)] (2.67€)

" 2+ v Bl fon + 4 (L — 0] + 2y (3 — vy — 4V2)}
where f,, and f,. stand for the volume fraction for the matrix and the reinforcement phases,
respectively; k., I, m,, n,., and p, are the Hill’s elastic moduli for the reinforcement phase
(SWCNTSs) obtained from the analytical solutions [201], in which the elastic moduli of CNTs are
computed. Subscripts m and r stand for the quantities corresponding to the matrix and the
reinforcement phase, respectively. For CNT-reinforced composites, the SWCNT (10, 10) is used

as the reinforcement phase where its properties are listed in Table 2.3.

Table 2.3. Material properties for the SWCNT (10, 10) [202,16].

Temperature (K) E;;(TPa) E,;(TPa)  G,(TPa) 1[;;(107%/K) I, (107¢/K)
300 5.6466 7.0800 1.9445 3.4584 5.1682
500 5.5308 6.9348 1.9643 4.5361 5.0189
700 5.4744 6.8641 1.9644 4.6677 4.8943

Mass density (kg/m3), p = 1400; Poisson’s ratio, vy, = 0.175

Hill elastic moduli (GPa): k, =271, [.=88, m,=17, n,=1089, p, =442
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Therefore, the components of stiffness matrix in the principle coordinate system (1,2,3),
Cij (i,j = 1,2,...,6), for a piezoelectric composite cylindrical shell reinforced with angled, straight
CNTs are obtained from Eq. (2.66) as,

Cii=n Cpy=C33=k+m, C=C3=1, Cz3=k—m, Cuy=m, Css = Ce6 =p (2.68)

where C;; = Cj;. The stiffness matrix in the cylindrical coordinate system (x,0,z) for a
composite reinforced with angled CNTSs is obtained as,

[Clxon = [T [Claz)[Ti] (2.69)
where the transformation matrix [T;;] and its inverse [T;;*], and components of the stiffness matrix
[Cl 6,7 are given in Appendix J.

According to the first-order shear deformation shell theory, the transverse shear effects are

included (t,, # T9, # 0), and only the normal stress in the shell thickness direction (a,,) is

assumed to be negligibly small. Thus, from Eqg. (2.64a) by assuming o,, = 0, one obtains,

€323 CQZ sz Czs
= 2, — gy — ey — 2.70
€22 sz xx sz €00 sz Exx sz Yxo ( )

Substituting Eq. (2.70) into the stress-strain relations, Eq. (2.64a), and the electric displacement

relation, Eq. (2.64b), yields,

666 Ci@x

(090 - 00 C_GS] (€66 0 & O
Oox Cox Cxx_ 0 _0 x5 1| €xx 0 &, 0 |(Ees
Txz _| 0 0 Gy GCygq O Yaz p—| 0 0 &34 |{Exx (2.71a)
To ~ ~ Yo
erZJ 100 Crq Cag O |leZJ BT
1Cps Coe 0 0 Gyl 16 €23
— & —
Dg@ 0 0 O 6’19 899 €11 0 0 E@g
Dxx = 6_21 6_22 0 823 y);)ZC + 0 éZZ _O Exx (271b)
D,, 0 0 &4 0 I(,° 0 0 €E33llE,

where CGB’ CBx’ CGS1 Cxx’ Cx51 Crri er1 qu, CSS’ e_161 6_21, 6_22, éZBa 534a and élla €221 €33 for a

piezoelectric cylindrical composite shell reinforced with angled, straight CNTs are given in
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Appendix K. Therefore, Eq. (2.71) leads to derivation of constitutive equations for piezocomposite

cylindrical shells reinforced with angled, straight CNTs considering the effects of transverse shear.

2.4.3. Constitutive Equations for a Piezoelectric Composite Cylindrical Shell

Reinforced with Randomly Oriented, Straight CNTs

Constitutive equations are derived in this section for a linear elastic piezocomposite reinforced
by a large number of dispersed CNTs which are randomly oriented and straight. Layout of an
infinitely long unbounded piezoelectric composite cylindrical shell reinforced with randomly
oriented, straight CNTSs is shown in Fig. 2.7. The orientation of a straight CNT is determined by

two Euler angles « and g, as shown in Fig. 2.7.

Piezoelectric cylindrical shell

Figure 2.7. Configuration of a piezoelectric composite cylindrical shell reinforced with randomly
oriented, straight CNTSs.

When CNTs are completely randomly oriented in the matrix, the composite is then isotropic

and its bulk modulus K and shear modulus G are derived as [107],
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fr (5r - 3Kmar)

K=K, + 2.72a
m S T frar) (272a)
fr(nr - ZGm.Br)
G=GaG,,+ 2.72b
™ o ) (272b)
where
En
En
3K + G + ky — 1
= 2.7
%r 3G, + k) (2.73¢)
g = 1 (4G + 2ky + 1y N 4G,, N 2[G BKp + Gp) + Gy 3Ky, + 7Gr)] 273d)
50 3Gm+ky)  Gun+pr  Gu(BKm + Gp) +my(BKpy + 7Gp)
1 Qky + 1) 8Ky + 26y — 1)
5 =3 [nr +20 4+ —— ] (2.73¢)
1[2 8Gmpr 8mM,-Gp (3K, + 4Gyp)
Nr =2 _(nr_ lr) +
513 Gn +pr 3K,(m.+G,)+G,(Tm, + Gp)
2(k, —1)(2G,, +1
3(Gm + kr)

where E,,, K, G, and v, are Young’s modulus, bulk modulus, shear modulus, and Poisson’s
ratio of the isotropic matrix, respectively. The effective Young’s modulus E, Poisson’s ratio v,

and shear modulus G of the resulting composite are given by,

9KG
_ 2.74
3K+ G (2.74a)
3K — 26
V=K T G (2.74b)
E
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Therefore, the stress-strain relations in the cylindrical coordinate system (x,8,z) for the
resulting isotropic composite cylindrical shell, which is only function of the effective Young’s

modulus E and Poisson’s ratio v, will be,

099 Cop Cox Cozr O 0 0 '| (€66
jo-xxl ng Cxx sz 0 0 0 SXX
Ozz _ CBZ sz sz 0 0 0 Ezz
Txz 0 0 0 Crr 0 0 Vxz (2 7 5)
TGZJ 0 0 0 0 qu YQZJ
Tx6 0 0 0 0 0 Csl\yxe

where the components of stiffness matrix in the cylindrical coordinate system (x,8,z) for a

composite reinforced with randomly oriented CNTSs are obtained as,

Cop = Cox = Cpp = i V) 2.76

00 — “xx — ZZ_(l—Zv)(1+v) (2.76a)

Cox = Co; = Cyy = Ev 2.76b

Ox — Y0z — xz_(l—ZV)(l‘l'U) ( )
E

Crr:qu:Css:G:m (276C)

Thus, the general stress-strain relations for a piezoelectric composite cylindrical shell reinforced
with completely randomly oriented, straight CNTs with the axial polarization in the cylindrical

coordinate system (x, 8, z) are given by,

Opg Cop Cox Co, 0 0 O ] (€66 0 e1 0
Jo-xxl Cox Cyx Cyx 8 0 8 Exx [ 8 €22 0 ] Ego

Ozz | _ CGZ sz Czz 0 €2z _ €23 0 E

Tz |0 0 o Gr O 0 [) ¥az | 0 0 €34 Exx 2.77)
lTBZJ 0 0 0 0 Coq Of]ves )1 0 o o0 |

Txo 0 0 0 0 0 Css Yxo €16 0 0

where C;j(i,j = x,0,z,7,q,s) are given by Eq. (2.76), which are only function of Young’s
modulus E and Poisson’s ratio v of the resulting isotropic composite given by Eq. (2.74).

Based on the first-order shear deformation shell theory, considering the transverse shear stresses
(t4, and 14,) and assuming negligible normal stress in the shell thickness direction (o,, = 0) in
Eq. (2.77) yields,
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€y3 Cg C
€2z = C_Exx - C_ZSBB - C_ngxx (2.78)
zz zz zz

Substituting Eq. (2.78), into the stress-strain relations, Eq. (2.77), and the electric displacement

relations, Eq. (2.64b), yields,

(Uee] [Coo Cox O 0 0] (599 0 é&; O
Oxx I Ox Cxx_ 0 0 Exx [0 €32 0] Egg
{%}: 00 C, 0O {yxz}— 0 0 &340 Ex (2.79a)
oz 0 00 Cp 0]z 0 0 0B,
T CICI_ _
A P CSSJUXB} e 0 0
— & —
Do 0 0 0 &g 599 €1 0 0 7(Egg
Dzz 0 0 6_34 0 Yx0 0 0 €33 Ezz

where Cag, Cox, Cyxs Crr, Cyq, Css, €16, €21, €22, €34, and €y, €,,, €33 for a piezoelectric
cylindrical composite shell reinforced with randomly oriented, straight CNTs are given in
Appendix K. Eg. (2.79) provides a derivation of constitutive equations for piezocomposite
cylindrical shells reinforced with randomly oriented CNTs in which the transverse shear is

included as well.

2.4.4. Constitutive Equations for a Piezoelectric Composite Cylindrical Shell

Reinforced with Agglomerated CNTs

In this section the constitutive equations in the cylindrical coordinate system (x,6,z) are
derived for a piezocomposite cylindrical shell reinforced with agglomerated CNTs. To obtain the
desired properties for a CNT-reinforced composite, CNTs must be dispersed uniformly in the
matrix [107]. However, relative low bending stiffness of CNTs (because of their small diameter
and low elastic modulus in the radial direction) and their high aspect ratio lead to their
agglomeration in a polymer matrix [203,204]. Therefore, CNT agglomeration prevents to achieve

the desired properties for a CNT-reinforced composite where its effect on dynamic responses of
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composite materials reinforced with CNTs should be considered and studied if the agglomeration
happens at certain location of composite structures.

The influence of a CNT agglomeration on the mechanical properties of CNT-reinforced
composites is explained herein based on a two-parameter micromechanics model developed in
Ref. [107]. The spatial distribution of CNTs in the matrix is non-uniform leading to higher
concentration of CNTs at some local regions than the average volume fraction in the material. It
is assumed that the regions with concentrated CNTs have spherical shapes and are considered as
“inclusions” with different elastic properties from the surrounding material. The total volume V,
of CNTs in the Representative Volume Element (RVE) is given by,

Vo =Ky (2.80)
where V' and V™ represent the volumes of CNTs dispersed in the inclusions (concentrated
regions) and in the matrix, respectively.

Agglomeration is described by two parameters u and n as [107],

V_ Vln
h=— n=— (2.81)

where V;,, is the volume of sphere inclusions in the RVE, V stands for the total volume of the RVE,
parameter u denotes the volume fraction of inclusions with respect to the volume V of the RVE,
and parameter n represents the volume ratio of nanotubes that are dispersed in the inclusions and
the total volume of nanotubes in the RVE. According to Eq. (2.81), when u =1, CNTs are
uniformly dispersed in the matrix and decrease in u leads to the increase of agglomeration degree.
The case n = 1 indicates that all CNTSs are dispersed in the inclusions. When u = n, all CNTs are
dispersed uniformly in the matrix and the volume fractions of CNTSs inside and outside the
inclusions are exactly the same. Therefore, as shown in Fig. 2.8, based on the spatial distribution

of CNTSs, three cases occur as following: (a) uniformly dispersion of CNTSs in the matrix with u =
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n, (b) partial agglomeration of CNTs in the matrix with u <n, and (c) complete CNT

agglomeration withn = 1and u < 7.

=

CNT particle

@u=1n=1

©n=1u<n

Inclusion

Piezoelectric cylindrical shell

(Matrix)

Figure 2.8. Explanation of CNT agglomeration: (a) uniformly dispersion of CNTs in a piezo-shell

element with u = n = 1; (b) example of partial agglomeration of CNTs with u < n; and (c)

example of complete CNT agglomeration with n = 1and u < n.

The effective bulk modulus K;,, and shear modulus G;,, of the inclusion, and the effective bulk

modulus K,,,; and shear modulus G, of the equivalent matrix outside the inclusion are given by

[107],

5, — 3K,
K. = K. + frn (6, mar)
3(u— frn + frnay)

fr(l - 77)(5r - 3Kmar)
3[1 —u _fr(l - TI) +f;"(1 - n)ar]

_ frn(my — 26y Byr)
Gin = Om ¥ 20— fn + fonB)

Kout = Km +
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fr(l - U)(ﬂr - ZGmﬁr)
[1-p—-frA=—m)+ (A —m)p]

Gout = Gm +5 (2.82d)

The effective bulk modulus K and the effective shear modulus G of the resulting composite are

derived from the Mori-Tanaka micromechanics model as [107],

k(- 1)
K=Ky, |1+ out (2.83a)
Kin
1+ac(1—u)(m—1)
()
G=Goye |1+ out (2.83b)
Gin
1+ 81— (g2~ 1)
where
1+ voue
oa, =——— (28461)
¢ 3(1 - 17out)
8 — 10V,
= 2.84b
‘ 15(1 = voue) ( )
where v, IS given by,
_ 3Kout—2Gout
Vout = 2(3Kout+Gout) (285)

Finally, the effective Young’s modulus E and Poisson’s ratio v of the resulting composite with
the effects of CNT agglomeration are defined by substituting Eq. (2.83) in to Eq. (2.74). Other
procedures to derive the constitutive equations for a CNT-reinforced piezocomposite cylindrical
shell affected by CNT agglomeration are the same as those for a piezocomposite cylindrical shell

reinforced with randomly oriented CNTSs as shown in Egs. (2.75) — (2.79).
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2.4.5. Force and Moment Resultants for Piezoelectric Composite Cylindrical
Shells Reinforced with Angled and Randomly Oriented (or

Agglomerated) CNTs

The in-plane force resultants (N,., Ngg, Nyg), the bending and twisting moment resultants
(M,.,, Mgg, M), and the transverse shear force resultants (V,,, Vy,) for a piezoelectric composite
cylindrical shell reinforced with angled, straight CNTs are obtained by substituting the
corresponding stresses, Eqg. (2.71a), into Eg. (2.65) and integrating across the thickness of the

piezoelectric composite shell as follows,

0y Juy 0Odvy\ A4; dv, dp
Now =15t 42 (ROQ o ) TR (WO ae) S (2.864)
auo auo 6170) B3 ( 6170) a(p
Nop = By —2 + B, [—2 -0 - 2,
o0 = P15+ 2<R69+ 9% Wot 59 )t Pagy (2:86b)
0y duy, dvg C3 6170) dp dp
Neo =G5+ G (ROQ + ax) ( T 50) T gt S Rrag (2:86¢)
M. =p, 2%, p 9% , (aa" + aax> 2.86d
e = 1T T 2o T 73 ax T Ra6 (2:86d)
Mgg = E; 0x | Ey—o +E, (aag + aa") (2.86¢)
ox R(’)H ax | ROO
My =F 0% g 0% | g (aa6+aa") (2.86f)
X6~ 15 " 2R T 3\ ox ' Ro@ '
ow ow
- Gl( 04 )+ G, (ﬁg—gw@) (2.86g)
Vo, = H Iwg +H OWo _ Vo 2.86h
bz = Hi =+ ax |+ Hy | oy — 2+ a0 (2.86h)

where expression of coefficients 4; (i=1,..,4), B;(i=1,..,4), C;(i=1,..,5, D; (i =
1,2,3),E; (i =1,2,3), F; (i = 1,2,3), G; (i = 1,2), and H; (i = 1,2) are given in Appendix L.
The force and moment resultants for a piezoelectric composite cylindrical shell reinforced with

randomly oriented (or agglomerated) straight CNTs are obtained by substituting the corresponding
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stresses, Eqg. (2.79a), into Eq. (2.65) and integrating across the thickness of the piezoelectric

composite shell as follows,

ouy, A, dv, . do
Ny =A — —_— —_— 2.87
1% ( ae) 3 9x (287a)
. duy, B, dvg . do
Ngg = Bla_+_< + 69) By — I (2.87b)
duy, 0dv, . 0p
Nyg =C —_— C,—— 2.87
1(Rae + ax) 2Ro0 (287¢)
. da, , Odag
. da, . Odag
Mgg = Elg-i' Ezﬁ (2876)
My = F (aa" aa") (2.87f)
0 R0OO
Ve = Gy (32 + a) (2.87g)
, aWO Vo
ng = Hl (R_a@ - F + CZQ) (287h)

where expression of coefficients A; (i = 1,2,3), B; (i = 1,2,3), C;(i = 1,2), D;(i = 1,2),

E(i=12), F;(i=1), G; (i =1),and H;(i = 1) are given in Appendix L.
2.4.6. Equations of Motion for Piezoelectric Composite Cylindrical Shells

Reinforced with Angled and Randomly Oriented (or Agglomerated)

CNTs

The derivation of equations of motion based on the first-order shear deformation shell theory
has been explained in details in section 2.3.2.1 and are given by Eq. (2.41). The mass inertias
I; (i = 0,1,2) required for the motion equations for a piezoelectric cylindrical shell with thickness

h are given by,
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h
2 ,
I = f pztdz (i=012) (2.88)

where p is the mass density of a piezoelectric composite cylindrical shell reinforced with CNTSs,
which is given by,
P = Pmfm + Prfr (2.89)
where p,,, and p,- are the mass densities of the matrix phase, PZT-4, and the reinforcement phase,
CNT, respectively.

Substituting the force and moment resultants for a piezoelectric composite cylindrical shell
reinforced with angled and randomly oriented (or agglomerated) straight CNTs, Eqgs. (2.86) and
(2.87), into Eq. (2.41) yields the equations of motion, respectively, for angled and randomly (or
agglomerated) distributions of CNTs in a piezoelectric composite cylindrical shell in terms of u,,
Vo, Wo, Oy, g, and @.

Replacing the strain-displacement relations based on the first-order shear deformation shell
theory, Eq. (2.9), and the electric field intensities, Eq. (2.18), into the electric displacements for a
piezoelectric composite cylindrical shell reinforced with angled and randomly oriented (or

agglomerated) CNTs, Egs. (2.71b) and Eq. (2.79b), and satisfying the Maxwell equation

h
f_ZE VDdz = 0, yields the following governing equations, respectively, for angled and randomly
2

(or agglomerated) distributions of CNTs in a piezoelectric cylindrical shell,

0%u 0%u 9%v 0%u, 0%v €y (Owy 0%vy\ _ 07
e‘zz—ax2°+e‘16< >+ °>+e‘23< ° +—°>+ﬁ< >+ °> €22 ——0

R2062 ' ROx06 Roxd6  9x2 ) R \ ax = 0xd0) ~** ox2
_ 0%
—€11 W =0 (290)
0%u, 0%uy,  9%v, &y, (0w, 0%vy\ _ 0% _ 0%
2y —— + & b undd €, —— —€jy———==0 2.91
€22 Gz T C16 <R2802 * R6x69> TR ( ox (')x(')9> 22 952 ~ -1 R2pg2 (2.91)

106



Chapter 2. Structural Dynamic Modeling of Smart Composite Cylindrical Shells

Eq. (2.41), in view of Eq. (2.86), and Eq. (2.90), represent the equations of motion when angled
CNTs are dispersed in a piezoelectric cylindrical shell, and Eq. (2.41), in view of Eq. (2.87), and
Eq. (2.91) express the equations of motion in the case of randomly (or agglomerated) distribution

of CNTs in a piezoelectric cylindrical shell.

2.4.7. Solution Method

The shell displacements (u,, vy, and wy ), the rotations of shell cross-section normal to x -axis
and 6-axis or shear effects (a, and ay), and the electric potential (¢) for wave propagation are
given by Eq. (2.54). Substituting Eg. (2.54) into the equations of motion, obtained using the first-
order shear deformation shell theory in the previous section for piezoelectric composite cylindrical
shells reinforced with angled and randomly oriented (or agglomerated) CNTSs, leads to a set of
homogenous equations as obtained in Eq. (2.55). The components of characteristics matrix
[Ll-j] oxe(i,j = 1,...,6) for piezoelectric composite cylindrical shells reinforced with angled and
randomly oriented (agglomerated), straight CNTs are given in Appendix M. The wave phase
velocities ¢ for different wave modes are calculated based on the Bisection method presented in
section 2.3.4.

The PZT-4 and the SWCNT (10, 10) are chosen as the matrix and the reinforcement phases,

respectively, where their material properties are listed in Tables 2.2 and 2.3, respectively. The non-

dimensional wave phase velocity (v = Ci) is used for analysis of wave propagation characteristics
t

as illustrated in section 2.3.4, where the piezoelectric shell thickness is only considered in Eq.

(2.59), and the torsional wave phase velocity c; is employed as,

Gm
¢, = |-m (2.92)
N
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2.5. Wave Propagation Modeling in Smart Laminated CNT-
Reinforced Composite Cylindrical Shells in Hygrothermal

Environments

In this section, an analytical model is developed for wave propagation in smart laminated CNT-
reinforced composite cylindrical shells considering the effects of hygrothermal environmental
conditions. For this purpose, an infinitely long unbounded laminated CNT-reinforced composite
cylindrical shell coated with the piezoelectric layers at the top and bottom surfaces is considered.
Axial polarization is also assumed for the piezoelectric layers. First of all, we need to derive the

hygrothermal strains when a temperature/moisture change occurs in the structure.

2.5.1. Coefficients of Thermal and Moisture Expansion of a Unidirectional

Lamina

The hygrothermal behavior of a unidirectional lamina is fully determined in terms of two
principal coefficients of thermal expansion (CTES), I7; and I5,, and two principal coefficients of
moisture expansion (CMES), ¥;; and Y,,. These coefficients can be related to the geometric and
material properties of the constituents.

The expressions for the principle longitudinal coefficient of thermal expansion (CTE), I3, and
the principle transverse coefficient of thermal expansion (CTE), I,, for a fiber-reinforced
unidirectional composite with orthotropic reinforcement phase (fiber) and isotropic matrix phase

are given by [6],

1111 — Ellrrllr};:l-Emrmfm (293)
_ Ii1r

Ip = Do fr |1+ v12r T + (1 + vp) o fn — V12011 (2.94)
221
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where
Eyy = Eyirfr + Emfm (2.95)
V12 = Viarfr + Vmfm (2.96)

and £, and f,, stand for the volume fraction for the reinforcement and the matrix phases,
respectively, E; 4, is the longitudinal modulus of the reinforcing phase (fiber), E,,, is the elastic
modulus of the matrix phase, E; is the longitudinal composite modulus as obtained by the rule of
mixture, v,,, and v, are Poisson’s ratio of the reinforcement and the matrix phases, respectively,
V1, is the major Poisson’s ratio of composite lamina as obtained by the rule of mixture, I34,- and
I,,, are the longitudinal and the transverse CTE of the reinforcement phase, and I;,, is the CTE of
the matrix phase. The longitudinal modulus E;; and the major Poisson’s ratio v, for a polymer
composite reinforced with CNTs based on the Mori-Tanaka micromechanics model are given in
Eqg. (2.111).

Micromechanical relations for the coefficient of moisture expansion are entirely analogous.
However, based on the fact that in most cases the reinforcing fiber does not absorb moisture, its
principle CMEs are zero (Y;;, = Y2, = 0). The expressions for the principle longitudinal
coefficient of moisture expansion (CME), Y;,, and the principle transverse coefficient of moisture
expansion (CME), Y,, , for a fiber-reinforced unidirectional composite with orthotropic
reinforcement phase (fiber) and isotropic matrix phase are given by [6],

Emfm

Eiq
I
Y5, = YmE_ [E11 + fr(WmEi1r — Vi2rEm)] (2.98)
11

where Y, is the CME of the matrix phase.
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Once the principal CTEs, I7;and I5,, and the principal CMEs, Y;,and Y,, are known (I, =
Y;, = 0), the coefficients referred to any system of coordinates (x,8) can be obtained by the

following transformation relations as,

Lex [ 172 n? —2hnh | 1
{rgg}: n? h? 21hn {1*22} (2.99)

L) |2hn —2mn 20h* —7%)| (0

Yir) [m2  n2 —2mn | (Yiy

{Y99}= n? M2 21 {YZZ} (2.100)
Yie) |21hn —2mn 20h* -n?)|L 0

where

m = cosp, n = sinf (2.101)

and T, Ipg, and I are the transformed lamina CTEs , and Y., Yag, and Y,.4 are the transformed

lamina CMEs in the cylindrical coordinate system (x, 8).

2.5.2. Hygrothermal Strains in a Unidirectional Lamina
When a lamina is subjected to a uniform change in temperature, ©, and change in moisture
concentration, A, from its reference hygrothermal state, it undergoes a hygrothermal deformation.

The hygrothermal strains referred to the principle material axes of the lamina (1,2) are given by

[6],

eV =r,0+1,A (2.102a)
el = 0,0 + VA (2.102b)
eD =0 (2.102¢)

The transformed hygrothermal strains referred to the x — 6 coordinate system are obtained as,

&) ) ¢))

Cxx m? A2 —21hn e

el o =|n* 2 2mh [, (2.103)
N 2hh —2mn 2(m? — 7?) %2

€xo
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Substituting e Y and e(l) from Eqg. (2.102) into Eg. (2.103) and in view of relations in EQs.

(2.99) and (2.100), we obtain,

(1)
Cxx Lex Yox
elt) b = {rgg} 0 + {Y%}A (2.104)

(1) Ixo Yo
€xo

2.5.3. Hygrothermoelastic Load-Deformation Relations

The hygrothermal effects are considered as the resultant forces due to the temperature/moisture
change and by substituting these forces in the dynamic governing equations. When a
multidirectional laminate is subjected to mechanical and hygrothermal loadings, a lamina (layer)
K within the laminate is under a state of stress [a]§ g and strain [s]f_ g- The in-plane stress relations

of lamina K within the laminate are given by [6],

o Qox Qoo Qas et v —{ el (2.105)

(€] (€] 1

Oxx Qxx Qxo OQxs Exx Cxx
990

st Q59 st (1) (1)

x9

e

xHK K

where [Qij]K (i,j = x,0,5s) is the transformed reduced stiffness matrix for each lamina (layer) in
x — 0 direction as a function of the principal stiffness matrix [Qij]K (i,j = 1,2, 6) of the lamina

reinforced with fibers, where their components are given in Appendix A. As explained before, in
the contracted notation used here, the subscript s in the above equations corresponds to shear stress
and strain components referred to the x — 8 system of coordinates. Substituting the mechanical

strains, Eq. (2.7), and hygrothermal strains, Eq. (2.104) into Eq. (2.105) yields,
®

O-)E)lc) Qxx QxB st I}x Yxx

Ogg =| Qox Qoo QBS 599 +z Kee Tp9t© —{Ygg A
(1) Qsx Qs6 Qs Ieo Yo
Txo K

(2.106)

or, in brief,
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[a(”]fﬁ = [Q156[e%]x0 + [Q1F6[Klrpz — [Q156[1560 — [Ql5 (Y1504 (2.107)

Eqg. (2.106) is the in-plane stress-strain relations due to the mechanical and hygrothermal
loadings for an individual lamina (layer) K whose midplane is at a distance z from the reference
plane. The transverse shear stress-strain relations for an individual lamina K, which are decoupled
from the in-plane stress and strain terms are given by [6],

1 ¢}
Toz | _ [qu Cor] Yo, (2.108)
D Tl Gl [,

XZ yxz

where Cyq, Cqrs Crq» and G, are given in Appendix A, and v and v, are given by Eq. (2.9).
The in-plane force and moment resultants and the transverse shear (out-of-plane) force
resultants of a laminated fiber-reinforced composite cylindrical shell are obtained by integrating
the corresponding stresses across the shell thickness as shown in Eq. (2.14).
Substituting Egs. (2.106) and (2.108) for the layer in-plane and out-of-plane (transverse shear)

stresses, respectively, into Eq. (2.14) and taking integration across the shell thickness yields the

in-plane force and moment resultants and the transverse shear (out-of-plane) force resultants as,

1
N’Sx) -Axx Axe Axs 89?" Bxx Bx9 Bxs Kxx Exx Fxx
INgg ¢ = | Aox Aos Ass |1 8o +| Box Bao Bos {Kee} - {Eee}@ —{FGG}A (2.109a)
Nié) | Asx Ase Ass VJ?G Bsx Bsg  Bss Ky Exe Fye
M(l) ) 0
xx Byx Bxe Bys Exx Dyx Dyxo Dys7(Kix Gx Hyy
. Mf%) = | Box Boo Bos |{ €89 ¢+ | Dox Doa Das { Kee} - { Gee} 0 - { Hee}ll (2.109b)
k1\/19519) L Bsx BSG Bss YJ(C)Q sz D59 Dss Kx@ Gx9 HxG
€)) i i (€3]
{Vgé)} — K, [/}‘” 4‘”] {yg(i)} (2.109¢)
Vez Ar‘l Arr Vxz

where [4;;], [Bi;], [Di;], and [4;;] are given by Eq. (2.16) and {E;;}, {F;;}, {G;;}, and {H;;} are

given by,
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N
{Ey}= Z |0y (T} (o = 2c-0) (2.110a)
K=1
N
{Fy} = Z Q4] (Vi) G = 2-0) (2.110b)
K=1
1 N
{Gy} =3 Z 4 l-,-]K {ry} (z& — 21 (2.110¢)
K=1
1 N
{Hy} = gz [QU] Yy}, 2k — zk-1) (2.110d)
K=1

Eq. (2.109) is the stress-strain relations when there is hygrothermal loading as well as

mechanical loading in a laminated composite cylindrical shell.

2.5.4. Constitutive Equations for a CNT-Reinforced Unidirectional Composite

In section 2.4.2, the estimation of effective material properties based on the Mori-Tanaka model
has been explained for a linear elastic polymer matrix reinforced with angled, straight CNTSs.
Therefore, the components of stiffness matrix in the principle coordinate system (1,2,3), C;; (i,j =
1,2,...,6) for a composite cylindrical shell reinforced with angled, straight CNTs, which are
required in the calculation of components of principal stiffness matrix [Qif]k (i,j = 1,2,6) (see
Appendix A), are given by Eq. (2.68).

The effective elastic moduli E;; and E,,, respectively, parallel and normal to the CNT
orientation, the effective Poisson’s ratio v;,, and the effective shear moduli for a polymer
composite reinforced by straight CNTs are given by [106,107],

1? am(kn — 1?)

E11=n—z, Ezz=m: V12=ﬁ; G2 = G13 =D,
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2.5.5. Constitutive Equations for Piezoelectric Layers Bonded to the Top and

Bottom Surfaces of the Host Composite Shell

The poling direction of the piezoelectric layers is assumed to be in the axial x- direction of the
shell. The constitutive relations for a piezoelectric layer with the axial polarization in the
cylindrical coordinate system (x, 6, z) based on the first-order shear deformation shell theory are
given by Eqg. (2.23).

The in-plane force and moment resultants and the transverse shear force resultants
corresponding to the piezoelectric layers bonded to the top and bottom surfaces of a laminated
composite cylindrical shell are obtained by integrating the corresponding stresses, Eq. (2.23a),

across the thickness of the piezoelectric layers, i.e.

N@ @ N @)

xx _% Oxx Z+hp Oxx
<N9({29) =fh . aég) dz+ﬁl Ue%) dz (2.112a)
2 27" @ 2 2
Nyg Txo Txo
2 2 2
MDY w (0@) m (o2
IMP L = J ° @ zdz+f2 {6¥ ) zdz (2.112b)
06 o, 760 h 06 '
(2) 27" 2 (2)
kng Tx@ Txe
h h
@) = K 0 @ dz + K 8 @ dz (2.112¢)
sz _E_hp Txz 2 Txz

2.5.6. Force and Moment Resultants for a Piezoelectric Coupled Laminated
CNT-Reinforced Composite Cylindrical Shell Considering the

Hygrothermal Effects

The force and moment resultants in a laminated CNT-reinforced composite cylindrical shell
coupled with the piezoelectric layers at the top and bottom surfaces are attained as sum of the force
and moment resultants of the host substrate laminated CNT-reinforced composite shell and the
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piezoelectric layers ones. Thus, the in-plane force resultants (N,,, Ngg, N,g) are sum of Eq.
(2.109a) and Eq. (2.112a), the bending and twisting moment resultants (M,.,,, Mg, M,) are sum
of Eg. (2.109b) and Eq. (2.112b), and the transverse shear force resultants (V,.,, Vy,) are sum of

Eg. (2.109¢) and Eq. (2.112c) as,

N, = A Jdug Ouo A, ( N 6v0) 4, (auo N 8170) +a Jda, x4 Jdag +a <0ax N 0a9> do
Y9x R 00 RO ' 8 *9x  "SRag ' "°\Roo " ax 7 dx
+ AgB + Ao/ (2.113a)
Jduy, B, avo) (auo 6170) Jda, Jdag (aax 6a9> do
Ngg =B — o B; B, B B —_—
1 ox ( 30 706+ ax) B ax T Bskag e lras t ax ) T B ax
+ BgO + By (2.113b)
auo C, avo) (auo avo) Jda, (aax aag) do
=G5 ( 59) G \rag T o) TG TG R60 6+ Colras + ax ) * O 7oe
+ (g0 + Co/l (2.113¢)
M _Dauo DZ( +6v0> D(6u0+6v0)+D da, +D dag +D <6ax+6a9)+D0
xx 1 gy 36 RAO ' 9 *9x ' T°ROO ' T°\RaO ' ox 7
+ Dg/ (2.113d)
Mo = g o du, E2< 6v0> E, <6u0 N 8170) L E da, L E dag L E (aax N c’)ag) 1 E8
06 = 5175, RCRRPT RO6 " 9 *ox T 55Rae TP \Rae T ox 7
+ EgA (2.113¢)
Juy F, dvg duy, Jvg Jda, dag da, Odag
Muo = Fugt 4 (wo +55) + (56 + 3) * Foge * Foag + Folag + ) + O
+ Fg/ (2.113f)
dwy, vy dwy
sz= G1 (ﬁ—E-FO(g)-FGZ (W+ax) (2113g)
dwy 1y adw
ng = Hl (R—M—E+a9)+H2 (Wﬁ'dx) (2113h)

where expression of coefficients, A;(i=1,..,9), Bi(i=1,..,9), C;(i=1,..,9),D;(i =

1,..,8), E(i=1,..,8), F,(i=1,..,8), G;(i =1,2),and H;(i = 1,2) are given in Appendix N.
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2.5.7. Equations of Motion for a Piezoelectric Coupled Laminated CNT-
Reinforced Composite Cylindrical Shell Considering the Hygrothermal

Effects

The equations of motion based on the first-order shear deformation shell theory are given by
Eq. (2.41). The mass inertias I; (i = 0,1,2) required for the equations of motion for a laminated
CNT-reinforced composite cylindrical shell coated with the piezoelectric layers at the top and

bottom surfaces are defined by,

N,z -2 >+h N
K 2 2t hp
Iy = Z f pKdZ +f ppdz +_[h ppdz = Z Py (zx — zg_1) + 2pphy (2.114a)
K=1"%K- —5~hp 7 K=1
N ZK -2 +h,,
I = Z f Px zdz +f ppzdz +f ,DpZdZ Z pK(ZK ZK D (2.114b)
K=1"%2K-1 ———hp 5
L, o —% §+hp
K=1"%K-1 —7—hp 5
hy, h2 ,  2hy
z Py (zi — zi_1) + pp | —5—+ hhy + T (2.114¢)

where p,, is the mass density of the piezoelectric layer, and py is the mass density of the lamina
(layer) K reinforced with CNTs which is given by,
Pk =P .+ P, 0 (2.115)
where p, and p,, are the mass densities of the reinforcement phase (CNT), and the polymer matrix
phase, respectively.

Substituting the force and moment resultants, Eq. (2.113), into Eq. (2.41), leads to the

equations of motion for a laminated CNT-reinforced composite cylindrical shell coupled with the
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piezoelectric layers at the top and bottom surfaces based on the first-order shear deformation shell
theory in terms of u,, vy, wy, a,, ag, @, 6, and A.
The electric displacements of the piezoelectric layer with the axial polarization based on the

first-order shear deformation shell theory are given by Eq. (2.48).

h h
-2 )
Satisfying the Maxwell’s static electricity equation, [ 2 , VDdz + f,3+ PVDdz = 0, for the
2w 2

piezoelectric layers, in view of Eq. (2.48), yields,

_ 62u0+e_21 ow, 0%v, s 0%u, N 92%v, - 0%¢ - 79
€252 TR \ox " ox00) T ¢6\R206% T Rox00) "2 ax2 "' RZgg2

0 (2.116)

Concerning hygrothermal modeling, the heat conduction and the moisture diffusion equations
should be considered. The moisture diffusion equation is analogous to the heat conduction
equation [205]. By assuming constant thermal conductivity coefficients and constant moisture
diffusivity coefficients in longitudinal, circumferential, and radial directions, the steady-state

Fourier heat conduction equation without internal heat source, and the Fickian moisture diffusion

equation in cylindrical coordinate system are, respectively, reduced to,

%0, 9% _, 2117
0x% ~ R206% (2117)
oaL ot 2.118
oxz " RZ362 (2.118)

Eq. (2.41), in view of Eq. (2.113), and Egs. (2.116) - (2.118) express the equations of motion
in term of the shell displacements (u,, vy, and wy), the rotations of shell cross-section normal to
x -axis and #-axis or shear effects (a, and ayp), the electric potential (¢), the temperature change
(©), and the moisture concentration change (A) for a laminated CNT-reinforced composite

cylindrical shell coupled with the piezoelectric layers at the top and bottom surfaces. The analytical
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model presented in the above is capable to capture the effects of temperature/moisture change as

well as the effects of transverse shear, nanoparticles, and piezoelectric coupling.

2.5.8. Solution Methodology

To solve the wave propagation problem, the shell displacements (u,, vy, and wy), the rotations
of shell cross-section normal to x -axis and @-axis or shear effects (a, and agy), the electric
potential (¢), the temperature change (©), and the moisture concentration change (A) are

considered in the following forms,

ug(x, 0, t) = Uemdelv(x=ct) (2.119q)
vo(x,0,t) = Veindelv(x—ct) (2.119h)
wo(x,0,t) = Wenfely(x=ct) (2.119¢)
a,(x,0,t) = Aemfeivx—ct) (2.119d)
ag(x,0,t) = Agenfely(x—ch) (2.119¢)
o(x,0,t) = Peinbely(x—ct) (2.119f)
0(x,0,t) = Tendeir(x=ct) (2.1199)
A(x,0,t) = CenPely(x—ct) (2.119h)

Substituting Eqg. (2.119) into the equations of motion yields a set of homogenous equations as,

[L11 Liz Liz Lis Lis Lig L1z Lig) U A
Lyy Lyp Loz Lay Lys Lae L2z Lag||

Ly; L3y L3z Las L3s Lze L3z Lsg||W

Lyg Lap Laz Lys Las Lae Laz Lag ) Ay L — (0} (2.120)
Lsy Ls; Lss Lssa Lss Lse Ls7 Lsg||Ag ’

Le1 Lez Les Lea Les Les Le7 Leg|| @

L7y Lyp L7z Lyg Lys Lyg Ly7 Log T
|Lg1 Lgz Lgz Lgs Lgs Lgg Lgy Lggl

c/
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where the components of characteristics matrix [Ll-j] (i,j =1,...,8) are given in Appendix O.
From the above matrix equation, a nontrivial solution for U, V, W, A,, Ay, ®, T, and C is obtained

only if, the determinant of matrix [Lij] is equal to zero, i.e.

Loy Laz Lyz Lag Lgs Las Laz Lag =0 (2.121)

L71 L72 L73 L74 L75 L76 L77 L78

where |...| denotes the determinant of a matrix. By solving Eqg. (2.121) based on the method
illustrated in section 2.3.4, five positive roots are obtained for any specific axial wavenumber y
and circumferential wavenumber n which are the wave phase velocities ¢ corresponding to the
first five wave modes M1, M2, M3, M4, and M5.

Numerical results are obtained for laminated CNT-reinforced composite cylindrical shells
integrated with the piezoelectric layers at the top and bottom surfaces in hygrothermal
environmental conditions. The SWCNT (10, 10) is chosen as the reinforcement phase where its
properties at different temperatures are listed in Table 2.3. The material properties of polymer used
as the matrix phase are assumed to be p,, = 1200 kg/m3, v, = 0.34,Y,, = 2.68 X 1073 /wt
percent H,0, T,,, = 45 x (1 4+ 0.001AT) x 10~¢/K and E,, = (3.51 — 0.003T — 0.142C)GPa,
in which T =T, + AT and T, = 300K (room temperature), and C = C, + AC and C, = 0 wt
percent H,0 [176]. The PZT-4 with the axial polarization is chosen for the piezoelectric layers

where its material properties are given in Table 2.2.

The non-dimensional wave phase velocity (v = Ci) is employed to analysis wave propagation
t

characteristics as illustrated in section 2.3.4, where H = h + 2h,, is considered in Eg. (2.59) as the
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total thickness of a laminated CNT-reinforced composite cylindrical shell coupled with the
piezoelectric layers at the top and bottom surfaces, and the torsional wave phase velocity c; is

employed as,

= lezh + Co6(2hy)(1 — ((h + 2h,)/R)) (2.122)

pKh + pp(th)

2.6. Vibration Characteristics of Smart Laminated CNT-Reinforced
Composite Cylindrical Shells under Various Boundary

Conditions in Hygrothermal Environments

In this section, an analytical model is presented to characterize vibration behaviors of finite
length smart laminated CNT-reinforced composite cylindrical shells coupled with the piezoelectric
layers at the top and bottom surfaces under various mechanical boundary conditions in
hygrothermal environments using the wave propagation approach.

Constitutive relations and equations of motion are the same as those presented in section 2.5.
In the following subsections, an analytical model based on the wave propagation approach with
beam mode shape functions used as the axial modal functions is presented to solve the free
vibration problem in smart laminated CNT-reinforced composite cylindrical shells under various

mechanical boundary conditions.

2.6.1. Wave Propagation Approach

For any continuous system, its natural modes of vibration are obtained from superposition of
equal but opposite-going propagating waves [146]. Understanding the physics of this phenomenon
can help us to develop simple formulae to calculate the frequencies corresponding to free modes
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of vibration. In the present study, the natural modes of vibration for a laminated CNT-reinforced
composite cylindrical shell are treated as a mix of standing waves in the axial and circumferential
directions. The axial standing wave is denoted by the axial modal parameter m, and the
circumferential standing wave is described by the circumferential modal parameter n. The
relationship of the natural frequency with the axial and circumferential modal parameters m and
n is obtained. The axial and circumferential wavenumbers of standing waves are approximated
from the wavenumber of the equivalent beam that has similar boundary conditions as the shell
such as simply supported, clamped, sliding, free, etc. The abovementioned method is relatively
simple so that the wavenumbers for different boundary conditions are determined quickly. This
method, is less complicated than other methods and leads to more reasonable and accurate natural
frequencies [146].

The expressions for the shell displacements (u,, v, and wy), the rotations of shell cross-section
normal to x -axis and @ -axis or shear effects (a, and ay), the electric potential (¢), the
temperature change (@), and the moisture change (A) of the shell can be approximated in the form

of wave propagation related to axial wavenumber y,, and circumferential mode number n, as,

Uy (x, 0, t) = U,y e Ymx+nf-ot) (2.123q)
Vo(x,0,t) = Ve Ym¥+nb-awt) (2.123b)
wo (%, 0,t) = W, e ymx+nf-wb) (2.123¢)
ay(x,0,0) = 4, e ¥Ymx+nf-owt) (2.123d)
ag(x,0,t) = Ag e Ymx+nf-wb) (2.123e)
o(x,0,t) = &,,,e!ymx+nf-wD) (2.123f)
0(x,0,t) = Ty,e Ym¥+no-wb) (2.1239)
A(x,0,t) = Cpppelym¥+né-wt) (2.123h)
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where y,,,, m, n, and w are the axial wavenumber, the axial mode number, the circumferential
mode number, and the angular (circular) frequency of natural vibration mode (m, n), respectively,
for free vibration of the cylindrical shell, and Us,, Vinn, Winn Ax,..» A6,,,» Pmns Tns @Nd Gy
are the wave amplitudes. For vibration analysis of a finite length cylindrical shell, axial
wavenumber y,,, is dependent on the axial mode number m according to the considered boundary
condition (which will be explained in detail in section 2.6.2). While, for vibration of a complete
cylindrical shell, circumferential wavenumber y,, and circumferential modal number n are the
same (y,, = n), and they will be different if we consider a cylindrical panel with various boundary
conditions which is not the topic of this research study.

By replacing Eq. (2.123) into the equations of motion, Eq. (2.41), in view of Eq. (2.113), and
Egs. (2.116) - (2.118), one obtains a set of homogenous equations as,
Liy Lip Ly Lis Lis Lig L1z Lig) ( Umn

Xmn
r =10 2.124
Lsy Ls; Ls3 Lsy Lss Lsg Lsy Lsg AGmn 0} ( )

Lev Lez Les Lea Les Leg L7 Leg|| Pmn
L71 Lyy Lzz Lys Lzs Lyg L7y Lig|| Tnn
-L81 L82 L83 L84~ L85 L86 L87 L88— K Cmn J

where components of characteristics matrix [Ll-j] (i,j =1,...,8) are given in Appendix P. The
above matrix equation, due to the eigenvalue problem, has a nontrivial solution for U,,,,, Viun,
Winn, Ax, v Ag,. s Py T, @Nd Gy ONly i, the determinant of matrix [Lij] is equal to zero.
Eqg. (2.124) is the system characteristics equation that can be used to determine the natural
frequencies of a smart laminated composite cylindrical shell as well as wave propagation
characteristics.

By solving Eq. (2.124) based on the Bisection method illustrated in section 2.3.4, one can obtain

five positive roots for any axial and circumferential modes (m, n). The first three roots are the
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angular frequencies corresponding to the cylindrical shell motion in the axial (x), circumferential
(8), and radial (z) directions, respectively, and the fourth and fifth roots are, respectively, the
angular frequencies corresponding to the rotations of shell cross-section normal to x -axis (z — 6
plane) and 6-axis (x — z plane), respectively [146,206—209]. These five roots are corresponding
to the angular frequencies of the first five wave modes of the laminated composite cylindrical shell
denoted by M1, M2, M3, M4, and M5, respectively, in this study. The lowest of the five roots
(M1) represents the flexural (forward) vibration and other roots (M2 - M5) are corresponding to
in-plane and out-of-plane vibrations [146,206-209]. In the other words, the lowest frequency is
called the frequency of the fundamental mode or the fundamental natural frequency and all other
frequencies are called the frequencies of higher harmonics, or overtones [210]. The fundamental
frequency provides the sound with its strongest audible pitch reference - it is the predominant
frequency in any complex waveform. The fundamental frequency is the frequency we actually
hear the sound at. Therefore, overtones are frequencies of a waveform that are higher than, but not
directly related to, the fundamental frequency. From a graphical numerical method based on the
Bisection method (as explained in section 2.3.4), one can obtain the frequency curves and the
natural frequencies at any specific axial and circumferential modes (m, n) corresponding to the

first five roots of Eq. (2.124) (M1, M2, M3, M4, and M5).

2.6.2. Wavenumbers

An accurate axial wavenumber y,,, must be calculated to satisfy the applied boundary conditions
at the both ends of a cylindrical shell in order to compute the frequency of the shell from Eq.
(2.124). The wave propagation in the axial direction of the shell is approximately obtained by
studying the wave propagation in a similar beam. Wave propagation characteristics in a beam at

any frequency are determined by the wavenumber y[= 2m/A (wavelength)]. This represents the
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phase difference between two points in a continuous system. In the other words, when a wave
propagates, its phase changes by y per unit length. When wave propagates from the left-hand end
to the right-hand end of the beam over the distance L, the total phase change is yL. An identical
but opposite-going wave is reflected from the right-hand end which is back toward the left-hand
end. Thus, the phase of the wave varies by another yL. A phase difference is defined between the
incoming and reflected waves at each of the reflecting boundaries. In the case of a simply
supported-simply supported (SS-SS) beam, the phase difference at the ends is zero. Thus, the total
phase change as the “wave travels one complete circuit around the beam” is 2y L. When the total
phase change is an integral number of 27’s, natural vibration modes of the beam happen [146].
For the simply supported-simply supported (SS-SS) boundary condition, the characteristics

equation for the beam is Sin(2yL) = 0, so that wavenumber equation for SS-SS boundary
condition can be written as yL = mm. Thus, for a shell with SS-SS boundary condition, y,, = %

and n can be considered in Eq. (2.124) to find the natural frequencies of the cylindrical shell for
axial and circumferential mode numbers (m, n).

For other types of boundary conditions, the characteristic equations are not as simple as that for
the SS-SS boundary condition. However, approximate wavenumbers were proposed for other
boundary conditions in Ref. [146]. In this study, we calculate the natural frequencies for clamped-
clamped (C-C), clamped-simply supported (C-SS), simply supported-simply supported (SS-SS),
clamped-sliding (C-SL), and clamped-free (C-F) boundary conditions, where axial wavenumber
for these boundary conditions are listed in Table 2.4. The clamped end means it is completely
prevented from any displacement and rotation. Simply supported boundary condition means that

all translations (3 in three-dimensional) are fixed but rotations are unconstrained. A sliding
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boundary condition is used to force a point to remain on a given surface and in the direction of
force, displacement is zero, and other two displacements and all rotations are unconstrained.

Figs. 2.9 and 2.10 illustrate, respectively, the axial modal parameter m and the circumferential
modal parameter n by presenting axial and circumferential modal patterns. The patterns shown in
Figs. 2.9 and 2.10 describe the mode shapes along the axial and the circumferential directions of
the shell, respectively. However, an exact particle motion of the shell can be along axial,
circumferential, and radial directions or a combination of the axial and circumferential modes.
From Figs. 2.9 and 2.10, the typical mode shapes can be explained as: i) when n =0, the
circumferential modal type is a circle illustrating an extensional mode corresponding to a breathing
type mode, ii) when m = 0, the mode is a pure radial mode so that a constant cross-sectional shape
along the length of cylinder is obtained, iii) when m and n are both equal to one, a circumferential
mode is obtained. The mode is an axial bending mode when n = 1 and m # 1, and for m = 1 and

n # 1, the mode is radial motion with shearing mode [211].

Table 2.4. Axial wavenumber for different boundary conditions [146].

Boundary condition Axial wavenumber
Clamped-Clamped (C-C) Ym = (2m+ 1) /2L
Clamped-Simply Supported (C-SS) Ym = (dm+ 1) /4L
Simply Supported-Simply Supported (SS-SS) Ym = mmn/L
Clamped-Sliding (C-SL) Ym = (dm — 1) /4L
Clamped-Free (C-F) Ym=02m—-1n/2L
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Figure 2.9. Axial modal parameter m identifying axial mode shapes for a cylinder [3].
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Figure 2.10. Circumferential modal parameter n identifying circumferential mode shapes for a

cylinder [3].
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2.6.3. Numerical Implementation

In numerical solution to find the free vibration characteristics of finite length smart laminated
CNT-reinforced composite cylindrical shells with the effects of hygrothermal environmental
conditions and different mechanical boundary conditions, the SWCNT (10, 10) is chosen for the
reinforcement phase, where its properties are given in Table 2.3, and for the matrix phase, a
polymer is considered with the material properties p,, = 1200 kg/m3, v,,, = 0.34, Y,,, = 2.68 X
1073/wt percent H,0 , T,, = 45 X (1 + 0.001AT) x 107%/K and E,, = (3.51 — 0.003T —
0.142C)GPa, in which T = T, + AT and T, = 300K (room temperature), and C = C, + AC and
Co, = 0 wt percent H,O [176]. For the piezoelectric layers, the PZT-4 with axial polarization is
considered where its mechanical and electrical properties are listed in Table 2.2,

To determine vibration characteristics of a piezoelectric coupled laminated composite

cylindrical shell reinforced with CNTSs, a non-dimensional frequency parameter is employed as,

_a)H

n=
Cy

(2.125)

where H = h + 2h,, expresses the total thickness of the piezoelectric coupled laminated composite
cylindrical shell, w is the frequency computed from Eq. (2.124) for axial and circumferential
modes (m,n), and c; is the torsional wave phase velocity that for a CNT-reinforced composite

cylindrical shell integrated with the piezoelectric layers at the top and bottom surfaces is given by,

~ Jclzh + Co6(2hy) 2126)

Cr =
‘ pKh +pp(2hp)
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Chapter 3

Results and Discussions

Validations of the developed analytical models and the corresponding codes generating the
numerical results in this study are first reported in this Chapter. Furthermore, wave propagation
and vibration characteristics of smart composite cylindrical shell structures are obtained and
discussed with the effects of transverse shear, piezoelectricity, nanoparticles, hygrothermal
environmental conditions, and boundary conditions based on the analytical models and solution

methods developed and presented in Chapter 2.

3.1. Validation of the Present Methodology and Solution Method

3.1.1. Verification of Numerical Implementation in Micromechanical Modeling

Numerical implementation in the micromechanical modeling is required to be verified in
estimating the effective elastic properties of CNT-reinforced composites. Hence, in this section,
the results of the Mori-Tanaka micromechanics model used in this research are compared with the
existing results in the study by Li Shi et al. [107]. To this purpose, we use the following
representative values of the elastic constants for SWCNTs: n,. = 450 GPa, k,, = 30 GPa, m, =
pr = 1 GPa, and [, = 10 GPa [201]; and for the matrix material, the polystyrene with Young’s
modulus E,,, = 1.9 GPa and Poisson’s ratio v,,, = 0.3 is considered [107].
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At the first step, the micromechanical modeling presented for the estimation of the elastic
constants of a composite reinforced with angled CNTSs is validated. For this case, longitudinal and
transverse elastic moduli (E;; and E,,) of a polystyrene composite reinforced with 0° CNTs
(aligned CNTs) for various CNT volume fractions (f;.) are calculated and then compared with the
results of the study of Li Shi et al. [107]. As shown in Fig. 3.1, a good agreement is observed and
we can conclude that the presented model and numerical implementation are valid in estimating

the effective elastic properties of composites reinforced with angled CNTSs.

1000
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2 -->-- E11 - Li Shietal. [107]
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Figure 3.1. Comparison of the presented micromechanics model in estimating the longitudinal and
transverse elastic moduli (E;; and E,,) of a polystyrene composite reinforced with 0° CNTs

(aligned CNTs) for various CNT volume fractions (f;.).

In Chapter 2, a micromechanics model for calculating the effective elastic constants of
composites reinforced with randomly oriented CNTs was also presented. To assure that the
modeling is correct, a comparison is presented in Fig. 3.2 in estimating the effective Young’s

modulus (E) of a polystyrene composite reinforced with randomly oriented CNTs for various
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CNT volume fractions (f;-) by the presented model in this study with the results obtained from the
study of Li Shi et al. [107]. It can be seen that there is a good agreement between the results of the
present study and those of the Ref. [107]. So, it can be inferred that the presented model is also
capable to compute the effective elastic properties for composites reinforced with randomly

oriented CNTSs.

10

—0o— Present Study

--2-- Li Shi et al. [107]

0 0.05 0.1
fr

Figure 3.2. Comparison of the presented micromechanics model in estimating the effective
Young’s modulus (E) of a polystyrene composite reinforced with randomly oriented CNTs for

various CNT volume fractions (f;.).

Finally, the results obtained from the micromechanics model presented for computing the
effective elastic properties of agglomerated CNT-reinforced composites are verified and compared
with the results of the study of Li Shi et al. [107] in estimating the effective Young’s modulus (E)
of a polystyrene composite reinforced with agglomerated CNTs. For this case, both complete
agglomeration (when n = 1) and partial agglomeration (when u = 0.5) are considered. Table 3.1

presents a comparison study in estimating the effective Young’s modulus (E) for a polystyrene

130



Chapter 3. Results and Discussions

composite reinforced with agglomerated CNTs within various agglomeration parameters p when

n = 1 at different CNT volume fractions (f,.). Furthermore, Table 3.2 compares the effective

Young’s modulus (E') computed by the present micromechanics model and that obtained from the

Ref. [107] for various agglomeration parameters n when pu = 0.5 at different CNT volume

fractions (f,-). The provided comparison study indicates that the presented micromechanics model

has enough accuracy in estimating the elastic properties for composites reinforced with

agglomerated CNTSs.

Table 3.1. A comparison study in estimating the effective Young’s modulus (E) for a polystyrene

composite reinforced with agglomerated CNTs within various agglomeration parameters u when

n = 1 at different CNT volume fractions (f,.).

Agglomeration parameter (u)

CNT volume fraction (f;.)

0.4 05 0.6 0.7 0.8 0.9 1
f. = 0.05 (Present Study) 34467 38281 42076 45852  4.9609  5.3348 5.707
f.=0.05 (LiShietal. [107]) 3.60953 3.90919 420648 450377 4.97824 527434 575238
£ = 0.1 (Present Study) 3.8461 44913 5227 6.074  7.0596  8.221 9.61
f.=0.1 (LiShietal. [107])  3.96627 4.62268 527672 610913 7.11872 813069  9.49702
f. = 0.2 (Present Study) 41346 50298 61712 76771 97558  12.8113  17.7442
f.=0.2 (LiShietal.[107])  4.32421 51578  6.34577 7.71567 9.61713 124105  17.1671
f. = 0.4 (Present Study) 43136 53929 68779 90513 125373  10.0411  35.4761
f. =04 (LisShietal.[107]) 450258 569173 7.05926  9.14028 12.4699  18.8319  34.2921
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Table 3.2. A comparison study in estimating the effective Young’s modulus (E) for a polystyrene
composite reinforced with agglomerated CNTs within various agglomeration parameters n when
u = 0.5 at different CNT volume fractions (f;.).

Agglomeration parameter (1)

CNT volume fraction (f;.)

0.5 0.6 0.7 0.8 0.9 1

fr = 0.05 (Present Study) 5.707 5.6536 5.4763 5.1438 4.6137 3.8281
fr =0.05 (LiShietal. [107]) 548837  5.4697 5.26499 5.05931 457649 3.8146
fr = 0.1 (Present Study) 9.61 9.4771 9.0248 8.1504 6.7096 4.4913

fr=0.1 (LiShietal. [107]) 92093  9.00459 8.61382 7.85065 6.52998 4.46544

fr = 0.2 (Present Study) 17.7442  17.4346 16.3563 14.2237 10.6392 5.0298
fr=0.2 (LiShietal [107]) 16,9302 16.6325 15.5906 13.7118 10.2506 5.02358

3.1.2. Verification of Solution Method and Numerical Implementation in

Determining Wave Propagation Characteristics

As a part of validation, the dispersion results of the presented models are compared with those
of the Ref. [98] for piezoelectric coupled metallic cylindrical shells. For this purpose, the
dispersion curves are obtained for a piezoelectric coupled aluminium cylindrical shell with the
piezoelectric thickness ratio r = h,,/h = 0.05 and h/R = 1/30 for wave modes 1 and 3 (M1 and
M3) at circumferential wavenumber n = 0 . Material properties of aluminium is listed in Table
3.3. From Fig. 3.3, it is observed that there is a good agreement between the results of the present
model based on the membrane shell theory, the Love bending shell theory, and the first-order shear

deformation shell theory and those of the Ref. [98].
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Table 3.3. Material properties for the aluminium [39].

Property Aluminium
Mass density, p, (kg/m?) 2800
Young’s modulus, E, (GPa) 70
Shear modulus, G, (GPa) 26.6
Poisson’s ratio, v 0.33
3 3
- —O0— M1 - Present Study ] —oO— M1 - Present Study
25 ---o--- M1 - Wang & Liew [98] 2.5 1 - M1 - Wang & Liew [98]
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Figure 3.3. Comparison of dispersion curves of the present model and those of the Wang and

Liew’s study [98] for a piezoelectric coupled aluminium cylindrical shell with r = 0.05 and

h/R = 1/30 for wave modes 1 and 3 (M1 and M3) at n = 0 based on (a) the membrane shell
theory, (b) the Love bending shell theory, and (c) the first-order shear deformation shell theory.
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3.1.3. Verification of the Present Model in Estimating Vibration

Characteristics
To validate the presented methodology and solution method in characterizing vibration
behaviors of smart laminated composite cylindrical shells using the beam modal functions based
on the wave propagation approach, the natural frequencies corresponding to the first root of Eq.
(2.124) (M1) are calculated for three examples and compared with the existing results in the

literature.

In the first example, the non-dimensional frequencies 2 = wR+/p/E,, fora [0°/90°/0°] cross-
ply laminated composite cylindrical shell with SS-SS boundary condition are calculated and
compared in Table 3.4 with the results of Zhang [206] and Lam and Loy [212] based on the Love
bending shell theory for the first axial mode (i.e. m = 1) and the lowest six circumferential modes
(ie.n=1,2,3,4,5,6). In Table 3.4, comparisons are presented for the shell thickness to radius
ratio h/R = 0.002 and the shell length to radius ratios L/R = 1, 5, 10, and 20.

As the second example, a [0°/90°/0°] cross-ply laminated composite cylindrical shell with C-

C boundary condition is considered and the non-dimensional frequencies 2 = wR+/p/E,, are
computed and compared in Table 3.5 with the results of Jin et al. [149] based on the Love bending
shell theory for axial mode m = 1 and circumferential modes n = 1, 2, 3,4, 5, 6. For the second
example, compressions are given for h/R = 0.002 and L/R =1, 5, and 20. In both first and
second examples, the material properties are given as: E,, = 7.6GPa, E{,/E,, = 2.5, Gy, =
4.1 GPa, v;, = 0.26, p = 1643 kg/m3.

As the last example, the non-dimensional frequencies 2 = w(LZ/looh)\/m for[0°/90°]

and [0°/90°/0°] cross-ply laminated composite cylindrical shells with various boundary
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conditions are calculated and compared in Table 3.6 with the results of Malekzadeh et al. [148]
based on the layer wise-differential quadrature (LW-DQ) method, the results of Khdeir et al. [138]
based on the state-space technique, the results of Shen and Yang [176] using the higher-order shear
deformation shell theory, and the results of Lam et al. [213] using the Ritz method. For the third
example, the results are compared for (m,n) = (1,1), h/R = 0.2, and L/R = 1, and 2, and the
material properties are given as: E;; = 40GPa, E,, = E53 = 1GPa, G, = G;3 = 0.6 GPa,
G,3 = 0.5 GPa, vy, = V13 = V3 = 0.25, p = 1kg/m3.

Based on these comparison studies, a good agreement has been observed between the results of
the present model and solution method and the available results of cross-ply laminated cylindrical
shells in the literature. It should be noted that small deviations between the results could be related
to different solution methods and computer powers used in the considered studies for the
comparison. It should be noted that the material properties for the above examples are considered

independent of temperature and moisture.
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Table 3.4. Comparison of the non-dimensional frequency parameter 2 = wR+/p/E,, fora

[0°/90°/0°] cross-ply laminated composite cylindrical shell with SS-SS boundary condition (E,, =
7.6GPa, Ey1/Eyy = 2.5, G, = 4.1 GPa, vy, = 0.26, p = 1643 kg/m3, h/R = 0.002, m = 1).

L/R Source n=1 n=2 n=3 n=4 n=>5 n==6
1 Present Study 1.0613 0.8041 0.5984 0.4502 0.3453 0.2708
Zhang [206] 1.061283 0.804052 0.598328  0.45014 0.345248 0.270747
Lam & Loy [212] 1.061284 0.804054  0.598331 0.450144 0.345253 0.270754
5 Present Study 0.2486 0.1072 0.0551 0.0339 0.0259 0.0261
Zhang [206] 0.248634 0.107202 0.055085 0.033788 0.02579  0.025873
Lam & Loy [212] 0.248635 0.107203  0.055087  0.03379 0.025794 0.025873
10 Present Study 0.0839 0.03 0.0153 0.0124 0.0155 0.0215
Zhang [206] 0.083908 0.030008  0.015191 0.012174 0.01523 0.021178
Lam & Loy [212] 0.083908 0.030009 0.015193 0.012176 0.015231 0.021179
20 Present Study 0.0236 0.008 0.0061 0.0093 0.0145 0.0211
Zhang [206] 0.023589 0.007903  0.005868 0.009019 0.014235 0.0208
Lam & Loy [212] 0.02359 0.007904  0.005869  0.00902 0.014236 0.020801

Table 3.5. Comparison of the non-dimensional frequency parameter 2 = wR+/p/E,, for a

[0°/90°/0%] cross-ply laminated composite cylindrical shell with C-C boundary condition (E, =
7.6GPa, Ey1/Eyy = 2.5, G5 = 4.1 GPa, vy, = 0.26, p = 1643kg/m?, h/R = 0.002, m = 1).

L/R Source n=1 n=2 n=3 n=+4% n=>5 n==6

1 Present Study 1.1546 0.9939 0.8228 0.6741 0.5534 0.4579
Jinetal. [149]  1.062242  0.813717  0.629498  0.500846  0.409156  0.341724

5 Present Study 0.4189 0.2081 0.1142 0.0705 0.049 0.0396
Jinetal.[149]  0.303609  0.167527  0.099667  0.064699  0.046345  0.038222

20 Present Study 0.0503 0.0173 0.0095 0.0102 0.0148 0.0212
Jinetal. [149] 0.04651 0.016933  0.009371  0.009975  0.014506  0.020895
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Table 3.6. Comparison of the non-dimensional frequency parameter 2 = w(L2/100h)\/m for
cross-ply laminated composite cylindrical shells with various boundary conditions (E;; = 40GPa,
E,, = E33 = 1GPa, Gy, = G153 = 0.6 GPa, G,3 = 0.5 GPa, vy, = V13 = V3 = 0.25, p = 1kg/m?3,
h/R =02, m=n=1).

SS-SS C-SS c-C C-F
Lay-Up Source
L/R=1 L/R=2 L/R=1 L/R=2 L/R=1 L/R=2 L/R=1 L/R=2
[0°/907] Present Study 0.0912  0.1692 01177  0.2155 01452  0.2636 00423  0.0809
Ma'e"[szg]h etal. 51012 0.1908 01067  0.2016 01191  0.2142 00518  0.0983
0.0914

Khdeiretal. [138]  0.0791  0.1552 0.0893  0.1697 01002  0.1876 0.0435
Shen & Yang[176]  0.0896  0.1816

[0°/90°/0] Present Study 0.1072  0.1958 0.1365  0.2529 0.1657 0.3111 0.049
Ma'e"[szge]he‘ta" 0.1226  0.2242 01162  0.2334 01312 0%®U 0.0603

Khdeiretal. [138] ~ 0.1004  0.1779 01036  0.1945 01093  0.2129 0.0495
Shen & Yang [176] ~ 0.1085  0.1973
Lam et al. [213] 0.1014  0.1885

0.0892
0.1122
0.0988

3.2. Parametric Studies on Wave Propagation Characteristics of

Smart Composite Cylindrical Shells

3.2.1. Variation of Dispersion Curves for Different Wave Modes

The dispersion curves for the first five wave modes (M1,M2, M3, M4, and M5) at the
circumferential wavenumbers n = 0, 1, and 2, when h/R = 1/30 are displayed in Fig. 3.4 for a
[0°/45° /90°], laminated carbon/epoxy composite cylindrical shell coupled with the piezoelectric
layer at the top surface with the thickness ratio » = 0.1 by considering the transverse shear effects
and rotary inertia via the first-order shear deformation shell theory. As shown in Fig. 3.4, within a
very small range of axial wavenumbers, the non-dimensional wave phase velocity decreases

dramatically at first, and then it changes smoothly with higher axial wavenumbers. However, the
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non-dimensional wave phase velocity at n = 2 is a bit higher than that at n =1 and n =0,
respectively.

Without considering the shear effects, no higher wave mode (> 3) solutions can be obtained.
Only by using the proposed analytical model, we can attain the dispersion solutions in necessary
shear wave modes for a smart laminated composite cylindrical shell. However, the trend of
dispersion curves for a smart laminated fiber-reinforced composite cylindrical shell is different
with the trend of dispersion curves for a smart isotropic cylindrical shell [98], especially at higher

wave modes.
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Figure 3.4. Dispersion curves for a [0°/45°/90°]; laminated carbon/epoxy composite cylindrical
shell coupled with a piezoelectric layer with r = 0.1 and h/R = 1/30 for the first five wave modes
(M1,M2, M3, M4, and M5) at () n = 0, (b) n =1, and (c) n = 2 using the first-order shear

deformation shell theory.
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3.2.2. Effect of Piezoelectric Coupling on Wave Dispersion Solutions

Fig. 3.5 illustrates the piezoelectric coupling effect on the dispersion curves of a [0°/45°/90°]
laminated carbon/epoxy composite cylindrical shell for the first five wave modes (M1, M2, M3,
M4, and M5)atn =1 and h/R = 1/30 based on the first-order shear deformation shell theory.
For this purpose, dispersion curves for a pure [0°/45°/90°], laminated carbon/epoxy composite

cylindrical shell (r = 0) and piezoelectric coupled ones with thickness ratios r = %” =0.1,0.2,

and 0.3 are plotted in Fig. 3.5. In this case study, axial poling for the piezoelectric layer is
considered. For the first wave mode (M1), at very low axial wavenumbers (¢ < 0.04), there is no
significant difference between the four dispersion curves with different piezoelectric layer
thicknesses; while at the portion of medium axial wavenumbers (0.04 < ¢ < 0.3), difference
between four dispersion curves is more apparent and the non-dimensional wave phase velocity is
higher with lower piezoelectric thickness ratio (r); and at higher axial wavenumbers there is not
significant difference between four dispersion curves (see Fig. 3.5a). For the next four wave modes
(M2, M3, M4, and M5), it is evident that, the non-dimensional wave phase velocity decreases
dramatically within very small range of axial wavenumbers (¢ < 0.02 for M2 and M3; & < 0.06
for M4 and M5) and there is not obvious difference between four dispersion curves with different
piezoelectric layer thicknesses, while at higher axial wavenumbers the velocity varies slightly and
difference between four dispersion curves with different piezoelectric layer thicknesses is more
apparent; thus, at higher axial wavenumbers in wave modes 2, 3, 4, and 5, by increasing the
piezoelectric layer thickness, the non-dimensional wave phase velocity decreases (see Fig. 3.5b-
e). For wave mode 2 (M2), the piezoelectricity also changes the dispersion curve trend at higher
axial wavenumbers leading to the decrease of wave phase velocity with the increase of axial

wavenumbers, while at other wave modes, it does not change the trend of dispersion curves.
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Similar trend is also observed for other circumferential wavenumbers (n) where for brevity, the
results are not shown here for other n. Since the stiffness of the piezoelectric layer is smaller than
that of the host laminated CNT-reinforced composite, it is natural to see from Fig. 3.5 that wave
phase velocity decreases as the thickness of the piezoelectric layer increases. It is interesting to see
that this effect is much significant at higher non-dimensional axial wavenumbers (¢ > 0.1) for
wave modes 2, 4, and 5, but more obvious for lower axial wavenumbers (¢ < 0.5) for wave mode
3. This decreasing effect is also observed in some isotropic materials such as steel and aluminium
which are stiffer than the piezoelectric material, while for some other isotropic materials such as
gold with lower stiffness than the piezoelectric material, the integration of piezoelectric material
to the host shell with increasing piezo-layer thickness leads to the increase of the wave phase
velocities. In addition, it is interesting to see that for higher wave modes (M4 and M5), the
piezoelectric effect on the host composites is more significant compared with the piezo-coupled
isotropic cases which can be due to the more significant shear effects in the piezo-composites
[39,97,98]. In summary, it is concluded that the wave phase velocity at a pure laminated composite
cylindrical shell is higher than that of piezoelectric coupled ones, and usually integrating
piezoelectric material to the surfaces of host laminated composite shells and increasing its
thickness leads to the reduction of the wave phase velocity due to the effect of electric fields, so
by adjusting an applied electric field strength, we can control the wave phase velocity in smart
laminated composite cylindrical shells coupled with the piezoelectric layers. However, the
decreasing effect of the piezoelectric layer on the wave phase velocity depends on the
wavenumbers and wave modes, where for some wavenumbers and wave modes (M1 and M3), this
effect is almost negligible. These observations are not common sense and without this study we

could not find them.
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Therefore, the proposed mathematical model is capable to describe the piezoelectric coupling
effects including shear, thickness, and polarization directions on wave propagation behaviors of
smart laminated composite shells at various axial and circumferential wavenumbers and wave
modes. The findings of piezoelectricity effects on wave dynamics of smart composites are helpful
and applicable for the design of smart composite structures for vibration, noise, and instability

control, and structural health monitoring by NDE.
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Figure 3.5. Dispersion curves for a [0°/45°/90°], laminated carbon/epoxy composite cylindrical

shell coupled with a piezoelectric layer with different thickness ratios (r) and h/R = 1/30 for the

first five wave modes (M1, M2, M3, M4, and M5) at n = 1 using the first-order shear deformation
shell theory.
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The variation of the non-dimensional wave phase velocity (v) with the changes of the
piezoelectric layer thickness with the axial, circumferential, and radial polarizations for a
[0°/45° /90°] laminated carbon/epoxy composite cylindrical shell with h/R = 1/30 is shown in
Fig. 3.6 for the first five wave modes (M1, M2, M3, M4, and M5)at{ = 0.0l andn = 1. Asitis
clearly shown, for the first three wave modes (M1, M2, and M3), for all three poling directions,
the non-dimensional wave phase velocity decreases with the increase of the piezoelectric electric
layer thickness ratio (r); while at wave modes 4 and 5 (M4 and M5), the non-dimensional wave
phase velocity for all three poling directions decreases first for » < 0.05, and then it increases with
the increase of the piezoelectric electric layer thickness ratio (). For the first wave mode (M1),
the circumferential and radial polarizations lead to the highest and lowest values of the non-
dimensional wave phase velocities with the increase of the piezoelectric layer thickness ratio (r),
respectively (see Fig. 3.6 a). For wave mode 2 (M2), the reduction of the non-dimensional wave
phase velocity with the increment of r for the axial poling is the slowest, and the radial poling
leads to the fastest reduction of the non-dimensional wave phase velocity and the lowest wave
phase velocity values as well (see Fig. 3.6 b). For wave mode 3 (M3), the radial polarization also
leads to faster decrease of the non-dimensional wave phase velocity with the increase of r, while
the axial and circumferential polarizations have the same decrease trend of the non-dimensional
wave phase velocity with the increase of r (see Fig. 3.6 ¢). For wave modes 4 and 5 (M4, and M5),
for r < 0.05, all three polarizations lead to similar results, and at higher r, the results of the axial
and circumferential polarizations coincide completely and the radial polarization provides slower
increase of the wave phase velocity with the increment of the piezoelectric electric layer thickness
ratio (r) (see Fig. 3.6 d and e). Thus, it can be concluded that for wave modes 1, 2, and 3 (M1-

M3), the radial polarization leads to faster decrement of the wave phase velocity, and for wave

144



Chapter 3. Results and Discussions

modes 4 and 5 (M4 and M5), it causes to slower increment of the wave phase velocity as the
piezoelectric layer thickness increases. Furthermore, depending on the wave mode, various trends
for wave phase velocity versus piezoelectric layer thickness are obtained. In summary, the effect
of the piezoelectric layer thickness on wave behavior for radial polarization is lower than its effect

for other two polarization directions.
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Figure 3.6. Variation of the non-dimensional wave phase velocity (v) with the piezoelectric
thickness ratio (r) for a [0°/45°/90°]s laminated carbon/epoxy composite cylindrical shell coupled

with the piezoelectric layer with axial, circumferential, and radial polarizations when h/R = 1/30

at £ = 0.01 and n = 1 for the first five wave modes (M1, M2, M3, M4, and M5).
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3.2.3. Effect of Stacking Sequence on Wave Dispersion Solutions

The effects of stacking sequence on wave dispersion behaviors of a piezoelectric coupled
laminated carbon/epoxy composite shell with r = 0.1 and h/R = 1/30 are illustrated in Fig. 3.7
for the first five wave modes (M1, M2, M3, M4, and M5) at n = 1 using the first-order shear
deformation shell theory. For this purpose, [45°/—45"],, [0°/90°],, and [0°/45°/90°], stacking
sequences are considered for the host composite shell. There is a noticeable difference between
the dispersion curves of these three stacking sequences. For the first wave mode (M1), angle-ply
stacking sequence, [45°/—45°],, has lower wave phase velocities than [0°/90°], and [0°/45°/
90°], sequences, particularly at lower axial wavenumbers (& < 0.7); and at higher axial
wavenumbers (specially & > 0.7), there is no significant difference between the dispersion curves
of these three stacking sequences; however, within different axial wavenumbers, the wave phase
velocities of [0°/90°],, and [0°/45°/90°], stacking sequences are very close to each other (see
Fig. 3.7a). For the second wave mode (M2), the dispersion curve trend is different, where the
[45° /—45"], stacking sequence has the highest wave phase velocities and the cross-ply lamination
[0°/90°], has the lowest ones (see Fig. 3.7b). For wave mode 2 of [45°/—45"]; composite
stacking sequence, sharp wave phase velocity increment is observed at non-dimensional axial
wavenumber around 0.02, while this phenomenon is not noticed for the composites with
[0°/90°],, and [0°/45°/90°], stacking sequences. At lower axial wavenumbers of the third wave
mode (M3) (¢ < 0.2), wave phase velocities for the angle-ply lamination [45°/—45"] are lower
than those of the other two stacking sequences, while at higher axial wavenumbers, the cross-ply
lamination [0°/90°]; leads to the lowest non-dimensional wave phase velocities and the
[45° /—45"], stacking sequence is with the highest ones (see Fig. 3.7c). In wave mode 3 (M3),

there is a crossing point in the curves (at & = 0.2) showing the different wave phase velocity
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variation trends after the certain wavenumber for different composite designs, which could not be
seen without considering the shear effects. Dispersion curves for the fourth and fifth wave modes
(M4 and M5) have similar trends and as shown in Fig. 3.7d and e, the cross-ply lamination
[0°/90°], has the highest non-dimensional wave phase velocities and the angle-ply stacking
sequence [45°/—45"], has the lowest ones. Thus, in all five wave modes, the non-dimensional
wave phase velocities of the [0°/45°/90°] stacking sequence within different axial wavenumbers
are between those of the [45°/—45"], and [0°/90°], sequences. Therefore, the present analytical
model can determine the effects of stacking sequence on wave dynamics of smart laminated
composite cylindrical shells. It can be concluded that various stacking sequences have clear effects
on wave dispersion behaviors of smart laminated composite cylindrical shells due to their effects
on the resultant constitutive equations, and depending on the wavenumber and wave mode, various
trends for dispersion curves are attained for different stacking sequences. These results are
important showing the composite effects on wave motion with different composite designs which

means why the wave propagation in smart composite shells is studied in this thesis.
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Figure 3.7. Dispersion curves for [45°/—45°],, [0°/90°],, and [0°/45°/90°], laminated
carbon/epoxy composite cylindrical shells coupled with a piezoelectric layer with » = 0.1 and
h/R = 1/30 for the first five wave modes (M1, M2, M3, M4, and M5) at n = 1 using the first-order

shear deformation shell theory.
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3.2.4. Comparison of Different Shell Theories on Wave Dispersion Solutions

The dispersion characteristics for a [0°/45°/90°], laminated carbon/epoxy composite
cylindrical shell coated with a piezoelectric layer at the top surface with » = 0.1 by different shell
theories are compared in Fig. 3.8 for the first three wave modes (M1, M2, and M3) at n = 1 when
h/R = 1/30. Dispersion solutions are provided using the membrane shell theory, the Love
bending shell theory, and the first-order shear deformation shell theory (FSDT). As shown clearly
in Fig. 3.8, the three shell theories lead to similar wave phase velocities at lower axial
wavenumbers (¢ < 0.04 for M1, ¢ < 0.2 for M2, and & < 0.1 for M3). However, at higher axial
wavenumbers, the wave phase velocities obtained by the three shell models contrast each other
completely. For the first wave mode (M 1) at higher axial wavenumbers, the wave phase velocities
computed by the membrane shell model are lower than those of other shell models, the wave phase
velocities provided by the Love bending shell model have the highest values, and the results by
the FSDT presents a compromise for the non-dimensional wave phase velocity (see Fig. 3.8a).
However, for wave modes 2 and 3 (M2 and M3) at higher axial wavenumbers, the FSDT provides
the lowest estimate of the non-dimensional wave phase velocity, while the Love bending shell
theory provides the highest estimate of the non-dimensional wave phase velocity (see Fig. 3.8b
and c). Therefore, it can be concluded that the Love bending shell theory leads to upper limit of
the wave phase velocity and the transverses shear and rotary inertia have decreasing effect on the
wave phase velocity at higher wave modes (M2 and M3).

The finding for isotropic host materials such as aluminum shell is different. For example, in
wave mode 3 (M 3), three shell theories lead to similar results at ¢ < 0.3 for a piezoelectric coupled
aluminum shell [98]. This indicates that the shear effects on dynamics of composite shells are more

important and significant, where for composites at lower axial wavenumbers (¢ > 0.04 for M1,
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&> 0.2 for M2, and & > 0.1 for M3) this discrepancy on wave behaviors occurs, while for
isotropic materials, difference between various shell theories was observed at higher axial
wavenumbers especially for higher wave modes (for example ¢ > 0.3 for M3) [98].

The effects of transverse shear and rotary inertia are important for the applications that higher
wavenumbers (frequencies) are required such as structural health monitoring by NDE and design
of smart composites for energy harvesting, where we need to consider their effects in modeling

accurately.
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Figure 3.8. Comparison of dispersion curves of a [0°/45°/90°]s laminated carbon/epoxy composite
cylindrical shell coupled with a piezoelectric layer with r = 0.1 and h/R = 1/30 for the first three
wave modes (M1, M2, and M3) at n = 1 by different shell theories.

The variations of the non-dimensional wave phase velocity (v) as a function of the
circumferential wavenumber (n) are plotted in Fig. 3.9 for a [0°/45°/90°] laminated
carbon/epoxy composite cylindrical shell integrated with a piezoelectric layer at the top surface
withr = 0.1, and h/R = 1/30, at £ = 0.1 and 1, by different shell theories for the first three
wave modes (M1, M2, and M3). At low axial wavenumber ¢ = 0.1; for wave mode 1 (M1), based

on the Love bending shell theory and the FSDT, the non-dimensional wave phase velocity

152



Chapter 3. Results and Discussions

increases slightly as n increases (from 0.6548 to 0.8099 for the Love bending shell model, and
from 0.522 to 0.6115 for the FSDT within 0 < n < 10), while for the membrane shell theory, the
non-dimensional wave phase velocity changes smoothly with the increase of n (from 0.1685 to
0.1265 within 0 < n < 10) (see Fig. 3.9a); for wave modes 2 and 3 (M2 and M3), the three shell
models lead to similar trends of the wave phase velocity curve and the velocity increases sharply
with the increase of n (from 1.3521 to 2.0086 for M2, and from 2.8231 to 3.5145 for M3 within
0 <n <10) (see Fig. 3.9c and e). However, at high axial wavenumber & = 1; the three shell
models provide a smooth variation of the dispersion curve with the variation of circumferential
wavenumber (n) for all three wave modes (see Fig. 3.9b, d and f). It is clearly shown that for the
first three wave modes, the Love bending shell theory exhibits upper limit of the non-dimensional
wave phase velocity at both low and high axial wavenumbers (¢ = 0.1 and 1). However, for wave
mode 1 (M1), the membrane shell model leads to the lowest wave phase velocities among the other
shell models at both low and high axial wavenumbers (¢ = 0.1 and 1); for wave mode 2 (M2), at
& = 0.1, the three shell models lead to similar wave phase velocities, and at ¢ = 1, the FSDT
provides the lowest non-dimensional wave phase velocities; and finally for the third wave mode
(M3), the results of the membrane shell theory and the FSDT coincide completely when & = 0.1,
and at &£ = 1, again the FSDT leads to the lowest estimate of the non-dimensional wave phase
velocity. It is interesting that we observe the same discrepancy between wave phase velocities
obtained by different shell models within various circumferential wavenumbers (n) as that attained
within various axial wavenumbers in Fig. 3.8. Therefore, we can infer that at higher axial
wavenumbers, based on different shell theories, the variation of non-dimensional wave phase

velocity with n is negligible, and wave motion is independent of the circumferential direction and
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circumferential wavenumber (n), which indicates axisymmetric wave motion can be considered at

higher axial wavenumbers.
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Figure 3.9. Effect of the circumferential wavenumber (n) on the non-dimensional wave phase
velocity (v) for the first three wave modes (M1, M2, and M3) of a [0°/45°/90°], laminated
carbon/epoxy composite cylindrical shell coupled with a piezoelectric layer with » = 0.1 and
h/R =1/30at ¢ = 0.1 and 1 by different shell theories.
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The variations of the non-dimensional wave phase velocity (v) with the changes of the
piezoelectric layer thickness based on the three shell theories for a [0°/45°/90°], laminated
carbon/epoxy composite cylindrical shell with h/R = 1/30 are shown in Fig. 3.10 for the first
three wave modes (M1, M2, and M3) at ¢ = 0.1 and 1. For the first wave mode (M 1), based on
the membrane shell model, the effect of the piezoelectric layer thickness on the dispersion curve
is not significant at both ¢ = 0.1 and 1; while the Love bending shell theory leads to the decrease
of non-dimensional wave phase velocity as the thickness of the piezoelectric layer increases at
both ¢ = 0.1 and 1; and the FSDT provides a slight reduction in the non-dimensional wave phase
velocity (from 0.5639 to 0.4729) with the thickness increment at ¢ = 0.1, and a smooth variation
at & = 1. Furthermore, in wave mode 1 (M 1), the membrane shell model provides the lowest wave
phase velocities and the Love bending shell model leads to the highest ones (see Fig. 3.10a and b).
In wave mode 2 (M2), the increase of the piezoelectric layer thickness leads to the non-dimensional
wave phase velocity reduction for the three shell models at both ¢ = 0.1 and 1, while at & = 0.1,
the results of the three shell models are similar, but at ¢ = 1, the FSDT and the Love bending shell
theory lead to the lowest and highest estimates of the non-dimensional wave phase velocity,
respectively (see Fig. 3.10c and d). Finally, for the third wave mode (M3), the non-dimensional
wave phase velocity decreases with the increase of the piezoelectric layer thickness for the three
shell models at & = 0.1, while at ¢ =1, the FSDT leads to a smooth variation of the non-
dimensional wave phase velocity, the membrane shell model provides a slight decrease of the non-
dimensional wave phase velocity (from 3.1915 to 2.4693) with the increase of thickness, and the
Love bending shell theory shows a clear non-dimensional wave phase velocity decrease (from
7.4145 to 5.762) as the piezoelectric layer thickness increases. In addition, as shown in Fig. 3.10e

and f, for wave mode 3 (M 3), the Love bending shell theory presents a higher estimate of the non-
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dimensional wave phase velocity and the FSDT provides a lower estimate one at both ¢ = 0.1 and
1. However, for all three wave modes, the Love bending shell theory exhibits upper limit of the
non-dimensional wave phase velocity with the variation of the piezoelectric layer thickness at both
low and high axial wavenumbers (¢ = 0.1 and 1).

Therefore, based on the above results, we can conclude that the developed analytical model is
able to clearly portray the effects of transverse shear and rotary inertia which are very important
to be included in the modeling of wave propagation in multi-layered shells stacked with the
piezoelectric layers as a moderate thick shell. At lower axial wavenumbers, the effect of transverse
shear is not important, while at higher axial wavenumbers, its effect is much significant and the
obtained dispersion results are completely different from those of models ignoring the shear
effects. It is recommended that the shear effects and rotary inertia are necessary to be included in
the mathematical modeling when higher axial wavenumbers (frequencies) are desired. By
including shear effects, necessary shear wave modes can be attained as well as axial,

circumferential, and radial wave modes.
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Figure 3.10. Variation of the non-dimensional wave phase velocity (v) with the piezoelectric
thickness ratio (r) for a [0°/45°/90°], laminated carbon/epoxy composite cylindrical shell coupled
with a piezoelectric layer with h/R = 1/30 for the first three wave modes (M1, M2, and M3) at
n=1and ¢ =0.1and 1 by different shell theories.
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3.2.5. Effects of CNT Volume Fraction and Distribution on Wave Dispersion

Solutions

Fig. 3.11 illustrates the effects of CNT volume fraction (f,-) and distribution on the dispersion
curves of CNT-reinforced piezoelectric composite cylindrical shells with h/R = 1/30 within
different non-dimensional axial wavenumbers () for the first wave mode (M1) at n = 1. In this
example, CNTs with 0°, 45°, 90°, and random orientations are considered. As shown in Fig. 3.11,
the non-dimensional wave phase velocity increases with the increase of CNT volume fraction for
all four CNT distributions and this increase is higher at higher axial wavenumbers because of
increasing effect of axial wavenumber on the wave phase velocity. The effect of CNT volume
fraction on the variation of wave phase velocity with axial wavenumber is more noticeable for 0°
orientation of CNTs, while this effect for 90” orientation is lower than that of 45°, randomly, and
0° oriented CNTs, respectively. For example, at § = 1, for 0° oriented CNTSs, the non-dimensional
wave phase velocity increases from 0.8324 to 1.5703 (88.64%) with the increase of CNT volume
fraction from f. = 0to f. = 0.4 (see Fig. 3.11a); while for 90" orientation, the increase of CNT
volume fraction from 0 to 0.4 leads to the increase of the non-dimensional wave phase velocity
from 0.8636 t0 0.9454 (9.47%) (see Fig. 3.11c). The CNT reinforcing effect increases the wave
phase velocity significantly, when the non-dimensional axial wavenumber (£) is larger than 0.1
for CNT orientations of 0°, 45" and random. However, this effect is not much significant for the
90° CNT orientation case. It means that the 90° CNT orientation will enhance the mechanical
properties of the shell structure (such as elastic moduli) without changing the axial direction
distributed wave behavior much at least for the lowest wave mode (M1). This phenomenon can be
explained that when only axial wavenumber is increasing and the circumferential wavenumber is
fixed, the wave phase velocity (the rate at which the phase of the wave propagates in space)
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increases and this increase can be magnified by reinforcing the shell with CNTs along the axial
wave direction because of an increase in the shell stiffness in the axial direction (x). This finding
is useful for structural enhancement and health monitoring which can enhance the structure but
still use similar condition monitoring process and equipment. Therefore, it is concluded that for
CNTs along the direction of axial wavenumber (0° oriented CNTS), the rate of wave phase velocity

increase with the increment of CNT volume fraction is higher than that for other orientations.
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Figure 3.11. Effects of CNT volume fraction (f;-) and distribution on the variation of the non-

dimensional wave phase velocity (v) with the non-dimensional axial wavenumber (&) for CNT-

reinforced piezoelectric composite cylindrical shells with h/R = 1/30 for the first wave mode
(M1) atn = 1.

The effect of CNT volume fraction (f,.) on the variation of the non-dimensional wave phase
velocity (v) with the circumferential wavenumber (n) is depicted in Fig. 3.12 for piezoelectric
composite cylindrical shells reinforced with 0%, 45°, 90°, and randomly oriented CNTs (when
h/R = 1/30) for the wave mode 3 (M3) at & = 0.01. It can be seen that the wave phase velocity
increases sharply with the increase of circumferential wavenumber (n ), because when
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circumferential wavenumber (n) increases, the wave phase velocity (representing the rate at which
the phase of the wave propagates in space) and the corresponding frequency increases. As shown
in Fig. 3.12, the non-dimensional wave phase velocity increases with the increase of CNT volume
fraction for all four CNT distributions and this increase is higher at higher circumferential
wavenumbers (n) because of increasing effect of circumferential wavenumber on the wave phase
velocity. In this example, in which the axial wavenumber (&) is a fixed value and the
circumferential wavenumber (n) is changing, the increase of CNT volume fraction influences more
on the non-dimensional wave velocity when CNTs are oriented in 90° in comparison to other CNT
orientations. As seen in Fig. 3.12, the rate of wave phase velocity increase for 0° oriented CNTSs is
lower than that for randomly, 45°, and 90" oriented CNTSs, respectively. For instance, at n = 20,
for the 0° orientation of CNTSs, by increasing the CNT volume fraction from 0 to 0.4, the non-
dimensional wave phase velocity increases from 18.57 to 23.62 (27.19%) (see Fig. 3.12a); while
for the same situation, the non-dimensional wave phase velocity increases from 16.07 to 50.07
(211.57%) when CNTSs are oriented in 90" (see Fig. 3.12c). Therefore, it can be concluded that
when circumferential wavenumber (n) is changing with a fixed value of axial wavenumber, the
influence of CNT enhancement on the wave phase velocity will be more significant at higher
circumferential wavenumbers (n) especially for composites reinforced with 90° oriented CNTSs
(along the direction of the circumferential wave). This phenomenon indicates that CNTs oriented
in the same direction of the circumferential wave (90°) have more significant reinforcing effect on
the wave phase velocity with increasing the circumferential wavenumber (n). This phenomenon
can be explained that when only circumferential wavenumber (n) is increasing and the axial

wavenumber is fixed, the wave phase velocity increases and this increase can be magnified by
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reinforcing the shell with CNTs along the circumferential wave direction because of an increase
in the shell stiffness in the circumferential direction (6).

Therefore, CNT volume fraction has significant effects on the wave dispersion solutions, where
the effects of CNT volume fraction on the wave phase velocity for CNTs along the wave direction
are relatively higher than those for other CNT orientations. On the other hand, the CNT
reinforcement effect increasing the wave phase velocity is not much obvious with CNTs arranged
perpendicular to the wave direction, while the composite mechanical properties (elastic moduli)
are still enhanced by the CNTs. Therefore, it can be concluded that the effects of CNT volume
fraction on the dispersion results are dependent on the CNT orientation and distribution.

The findings of Figs. 3.11 and 3.12 are important in design of nanocomposites used for energy
harvesting application to increase the wave velocity and frequency to harvest more energies by
considering the CNT orientation in the same direction of wave motion. The results of this study
also helps us to design nanocomposite structures with high stiffness and lower wave phase velocity

(frequency) increase without acoustic wave calibration.
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Figure 3.12. Effects of CNT volume fraction (f,.) and distribution on the variation of the non-
dimensional wave phase velocity (v) with the circumferential wavenumber (n) for CNT-reinforced

piezoelectric composite cylindrical shells with h/R = 1/30 for wave modes 3 (M3) at £ = 0.01.
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3.2.6. Effect of CNT Agglomeration on Wave Dispersion Solutions

In this section, the effect of CNT agglomeration on wave propagation behaviors of a CNT-
reinforced piezocomposite cylindrical shell (with h/R = 1/30) are investigated by changing
agglomeration parameters u and n. As explained before in Chapter 2, agglomeration parameter u
stands for the volume fraction of inclusions in the composite and parameter n represents the
volume fraction of CNTs which are concentrated in the inclusions.

Consider complete agglomeration of CNTs, i.e., n =1 and u <n, where all CNTs are
concentrated in spherical inclusions. In this case, we have only one agglomeration parameter u
(the volume fraction of inclusions). The non-dimensional wave phase velocities (v) for the first
five wave modes (M1, M2, M3, M4, and M5) at ¢ = 0.1 and n = 1 are plotted in Fig. 3.13 versus
to the agglomeration parameter u for different CNT volume fractions f,.. With the increase of
parameter u (increasing the volume fraction of inclusions), the velocity also increases where for
uniformly dispersion of CNTSs in the piezocomposite, i.e., u = 1, the velocity has the maximum
value. This phenomenon can be explained that in the presence of a complete CNT agglomeration
(n = 1), an increase of the volume fraction of inclusions (u) leads to the increase of CNT
uniformity in the composite and consequently enhances the effective elastic properties and
increases the wave phase velocities. By decreasing the agglomeration parameter u from unity, the
wave phase velocity decreases very rapidly. The effect of agglomeration parameter u on the wave
phase velocity is more noticeable at higher CNT volume fraction (f,.), because at higher f,., the
parameter u influences more on the rate of uniformity of CNTs in the matrix and the effective
elastic properties. With lower CNT volume fraction (f,, = 0.1), the effect of inclusion volume

fraction (u) variation on the wave phase velocity change is not much significant.
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To describe generally the agglomeration of CNTs, both parameters u and n are needed. In the
case u < nandn # 1, we have partial CNT agglomeration in the piezocomposite. Under different
CNT volume fractions (f;-), the non-dimensional wave phase velocities (v) for the first five wave
modes (M1, M2, M3, M4, and M5) at ¢ = 0.1 and n = 1 versus the agglomeration parameter n
when u = 0.5 are displayed in Fig. 3.14. It is observed that an increase in the agglomeration
parameter n (increasing the amount of CNTs concentrated in the inclusions) leads to the rapid
decrease of the wave phase velocity of CNT-reinforced piezocomposite shells. In the case u =
n = 0.5, where CNTs are dispersed uniformly in the piezocomposite, maximum value of the
velocity is obtained. It is seen that the decrease of the wave phase velocity with the increase of
parameter n is more observable at higher CNT volume fraction. This phenomenon is explained
that the increase of agglomeration parameter n leads to an increase of nanotube agglomeration by
the increase of amount of CNTs in the inclusions and consequently leading to the decrease of
effective elastic properties and corresponding wave phase velocities. It is concluded from Figs.
3.13 and 3.14 that the CNT agglomeration reduces the wave phase velocities of CNT-reinforced
piezocomposites because of its weakening influence on the effective elastic properties.

A comparison on the non-dimensional wave velocities (v) obtained based on different
distributions of CNTSs in a piezocomposite cylindrical shell within various non-dimensional axial
wavenumbers (&) and circumferential wavenumbers (n), respectively, is shown in Tables 3.7 and
3.8. The results indicate that with u = n (uniformly dispersed CNTSs), the wave phase velocities
are obtained the same as those calculated for randomly oriented CNTSs, while by increasing the
rate of agglomeration, the wave phase velocities decrease where the lowest velocities are attained
for the complete agglomeration of CNTs within all considered non-dimensional axial

wavenumbers (&) and circumferential wavenumbers (n).
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Therefore, it can be concluded that agglomeration of CNTSs in the nanocomposites leads to the
decrease of the wave phase velocities because of a decrease in the effective elastic properties.
Therefore, it is very important to have minimum agglomeration of CNTs in composites to reduce
its effect on structural dynamics.

The developed analytical modeling can be useful to estimate the rate of agglomeration of CNTs
in the composites after fabrication process by comparing the results of NDE and the results of
analytical approach presented in this study. Due to the possibility of CNT agglomeration (because
of low bending stiffness of CNTSs) in the matrix during manufacturing process, we need to

approximate the rate of agglomeration and understand its effect on the structural dynamics clearly.
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Figure 3.13. Variation of the non-dimensional wave phase velocity (v) with the agglomeration
parameter u (when n = 1) for a piezocomposite cylindrical shell with h/R = 1/30 for the first five
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Figure 3.14. Variation of the non-dimensional wave phase velocity (v) with the agglomeration
parameter n (when u = 0.5) for a piezocomposite cylindrical shell with h/R = 1/30 for the first
five wave modes (M1, M2, M3, M4, and M5) at £ = 0.1 and n = 1 for various CNT volume
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Table 3.7. Comparison of non-dimensional wave phase velocities (v) for various distributions of
CNTs in a piezocomposite cylindrical shell within different non-dimensional axial wavenumbers

(§) for the first five wave modes (M1, M2, M3, M4, and M5) at n = 1 when f,, = 0.4 and h/R =

1/30.
W d CNT distributi Non-dimensional axial wavenumber (&)
ave mode istribution 02 04 06 08 1
M1 Randomly oriented 0.8962 1.2771 1.4388 15176  1.5602
Uniformly dispersed 0.8962 1.2771 1.4388 15176  1.5602
(u=n=1)
Partially agglomerated 0.8806 1.2545 1.4137 1.4904 1.5326

(u=10.5,n7=0.75)
Completely agglomerated 0.8159 1.1617 1.3083 1.3795 1.4182

(u=0.5mn=1)

M2 Randomly oriented 1.8117 1.8097 1.8097  1.8092 1.8092
Uniformly dispersed 1.8117 1.8097 1.8097  1.8092 1.8092
(w=n=1)
Partially agglomerated 1.7796 1.7775 1.777 1.777 1.777
(u=0.5n=0.75)
Completely agglomerated 1.646 1.644 1.644 1.6435 1.6435
(u=0.5mn=1)

M3 Randomly oriented 3.0655 2.9079 2.3613  2.1374  2.0255
Uniformly dispersed 3.0655 2.9079 2.3613 2.1374  2.0255
(w=n=1)
Partially agglomerated 3.0128 2.8562 2.3196 2.0993 1.9894

(u=0.5n=0.75)
Completely agglomerated 2.7954 2.6414 2.1455 1.9417  1.8398

(u=0.5mn=1)

M4 Randomly oriented 4.8995 3.065 3.065 3.0645  3.0645
Uniformly dispersed 4.8995 3.065 3.065 3.0645  3.0645
(L=n=1)
Partially agglomerated 4.8122 3.0118 3.0118 3.0118 3.0118

(u=0.5n=0.75)
Completely agglomerated 4.4508 2.7944 27944 27944  2.7944

(u=0.5mn=1)

M5 Randomly oriented 5.6554 3.9494 3.5036 3.322  3.2306
Uniformly dispersed 5.6554 3.9494 3.5036 3.322  3.2306
(w=n=1)
Partially agglomerated 5.555 3.8796 3.4424 3.2637 3.1744

(u=0.5n=0.75)
Completely agglomerated 5.1414 3.5935 3.1894 3.0253  2.9425
(n=05n=1)
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Table 3.8. Comparison of non-dimensional wave phase velocities (v) for various distributions of
CNTs in a piezocomposite cylindrical shell within different circumferential wavenumbers (n) for
the first five wave modes (M1, M2, M3, M4, and M5) at §£ = 0.1 when f,, = 0.4 and h/R = 1/30.

N Circumferential wavenumber (n)
Wave mode CNT distribution

0 2 4 6 8 10
M1 Randomly oriented 05473 05509 05629 0.5845 0.6176 0.6623
Uniformly dispersed 05473 0.5509 05629 0.5845 0.6176 0.6623
m=n=1)
Partially agglomerated 05378 0.5413 05529 05744 0.6071 0.6507

(u=0.5,n=0.75)
Completely agglomerated 0.4997 0.5027 05132 0.5328 0.5629 0.6031

(un=05n=1)

M2 Randomly oriented 1.8092 1.8478 19492 2.0817 22112 23201
Uniformly dispersed 1.8092 1.8478 19492 2.0817 2.2112 2.3201
(u=n=1)
Partially agglomerated 1777 18157 1.9181 2.0506 2.1796 2.287

(u=10.51n=0.75)
Completely agglomerated 1.6435 1.6837 1.7891 1.9236 2.0506 2.151

(u=05n=1)

M3 Randomly oriented 3.065 3.078 3.1217 3.2055 3.34  3.5267
Uniformly dispersed 3.065 3.078 3.1217 3.2055 3.34  3.5267
(u=n=1
Partially agglomerated 3.0123 3.0248 3.0675 3.1498 3.2828  3.4685

(u=10.51n=0.75)
Completely agglomerated 2.7944  2.806  2.8446 29214 3.0489 3.2301

(u=0.5mn=1)

M4 Randomly oriented 9.2838 9.2858 9.2918 9.3013 9.3154  9.3329
Uniformly dispersed 9.2838 9.2858 9.2918 9.3013 9.3154  9.3329
(w=n=1)
Partially agglomerated 9.1181 9.1201 9.1261 9.1357 9.1492  9.1668

(u=0.5n=0.75)
Completely agglomerated 8.4335 8.4355 8.4405 8.4496 8.4621 8.4782

(u=05mn=1)

M5 Randomly oriented 9.7305 9.737  9.7571 9.7902 9.8364  9.8951
Uniformly dispersed 9.7305 9.737  9.7571 9.7902 9.8364  9.8951
(w=n=1)
Partially agglomerated 9.5573 9.5638 9.5834 9.616 9.6617 9.7194

(u=0.51n=0.75)
Completely agglomerated 8.8421 8.8481 8.8662 8.8963 8.9384 8.9921
(u=05n=1)
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3.2.7. Effect of CNT Orientation on Wave Dispersion Solutions

To illustrate the effect of CNT orientation on the wave phase velocity variation more clearly,
the non-dimensional wave phase velocities (v) for the third and the fifth wave modes (M3 and M5)
are displayed in Fig. 3.15 for a single layer of CNT-reinforced composite cylindrical shell coupled
with the piezoelectric layers at the top and bottom surfaces with different CNT orientations g (in
degree) for fixed values of f,, = 0.6, 7 = 0.1,and h/R =1/30,at¢ =0.01,0.1,1andn =0, 1,
2, 3, 4, 5. The material properties of polymer used as the matrix phase are assumed to be p,, =
1200 kg/m3, v,, = 0.34, and E,,, = 2.61 and the material properties of PZT-4 are given in Table
2.2. It is obvious that at n = 0, for both wave modes M3 and M5 at ¢ = 0.01,0.1, 1, the wave
phase velocity for [3°] orientation is the same as that for [—°] orientation, indicating the non-
dimensional wave phase velocity curves are symmetric with respect to 0° orientation. While, at
n =1,2,3,4 and 5, the non-dimensional wave phase velocity curves are no longer symmetric in
respect to 0° orientation, especially at & = 0.01, and 0.1, where the wave phase velocity for [3°]
orientation of CNTs differs from that for [—°] orientation, but for [-90°] and [90°] orientations,
the wave phase velocities are the same. This non symmetry is more noticeable at ¢ = 0.01, and
0.1, and the difference between the wave phase velocities for [B°] orientation and [—S°]
orientation at higher n is more significant than this difference at lower n (see Fig. 3.15a-d). It can
be seen that at ¢ = 1, this non-symmetry is negligible, and also there is no significant difference
between the non-dimensional wave phase velocities with different circumferential wavenumbers
(n) (see Fig. 3.15e and f). Therefore, it can be concluded that at lower axial wavenumbers,
circumferential wavenumber with n > 0 breaks the symmetry of the wave phase velocities
corresponding to the negative and the positive CNT orientations. While at higher axial

wavenumbers disregarding to the circumferential wavenumber, [—°] and [°] orientations give
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approximately the same wave phase velocities. This phenomenon can be explained that when there
is an axisymmetric wave propagation in the shell independent of the circumferential direction 8
(when n = 0), we have only axial wave motion in the shell leading to symmetric wave responses
for symmetric fiber angles with respect to 0°. Considering circumferential wave propagation as
well as axial wave motion for lower axial wavenumbers provides an unbalance motion of the shell
particles leading to asymmetry wave responses for [°] and [—S] fiber angles where at lower
axial wavenumbers (long wavelengths) and higher circumferential wavenumbers (n), this
asymmetry can become more significant. Higher axial wavenumbers may neutralize the effect of
circumferential wave motion where even for higher circumferential wavenumbers, the wave
responses are still symmetric with respect to 0°. This observation is in agreement with this fact that
for n > 0, asymmetric wave response is obtained [3].

This result illustrates the importance of taking into consideration the CNT orientation in order
to understand and/or optimize the dynamic response of smart laminated CNT-reinforced composite
cylindrical shells for different applications. Hence, for applications that higher axial wavenumbers
(or frequencies) are required or excited such as energy harvesting and structural health monitoring
by NDE, [B°] or [—°] orientation can be considered in design of smart composite shells leading
to similar wave behaviors disregarding to the circumferential wavenumber (n), otherwise, for the
applications with lower wavenumbers (long wavelength) such as vibration analysis, the fiber

orientation should be carefully chosen.
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Figure 3.15. Effect of CNT orientation (8°) on the non-dimensional wave phase velocity (v) for the

third and the fifth wave modes (M3 and M5) of a single layer of CNT-reinforced composite

cylindrical shell coupled with the piezoelectric layers at the top and bottom surfaces with r = 0.1,
fr=20.6, and h/R =1/30até =0.01,0.1,1,andn=0, 1, 2, 3, 4, 5.
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3.2.8. Effect of Composite Material Properties on Wave Dispersion Solutions

Fig. 3.16 shows the effect of material properties of the host substrate laminated composite
cylindrical shell on the dispersion curves. We consider a piezoelectric coupled laminated
composite cylindrical shell with [0°/45°/90°]s stacking sequence with CNT/epoxy,
carbon/epoxy, and E-glass/epoxy as the core material of the host substrate laminated composite
shell for fixed values of r = 0.1 and h/R = 1/30. The material properties of epoxy (3501-6)
matrix are assumed to be p,, = 1200kg/m3, v,, = 0.35, and E,,, = 4.3GPa [6]. CNT volume
fraction in the polymer matrix is considered f,, = 0.6, while for carbon/epoxy and E-glass/epoxy
unidirectional composites, volume fractions of carbon and E-glass fibers are considered 0.63 and
0.55, respectively [6]. Material properties of carbon/epoxy and E-glass/epoxy unidirectional
composites are given in Table 2.1 and the material properties of PZT-4 are given in Table 2.2. The
non-dimensional wave phase velocity (v) curves versus the non-dimensional axial wavenumbers
(&) are obtained for the first five wave modes (M1, M2, M3, M4, and M5) at n = 1. As shown in
Fig. 3.16, for all wave modes, CNT and E-glass fibers lead to the highest and the lowest wave
phase velocities, respectively. This discrepancy in wave propagation results can be explained by
different material properties of CNT, carbon, and E-glass reinforcing fibers dispersed in the epoxy
matrix, where a CNT/epoxy, due to higher effective elastic moduli and strength than the
carbon/epoxy and the E-glass/epoxy, leads to higher wave phase velocities. This is kind of
common sense that stiffer materials lead to higher wave phase velocities, but the phenomenon is
not noticed for all cases, for example, for M1 at higher axial wavenumbers, and for M3 at specific
axial wavenumber 0.2. It is noted that for M3, the carbon and E-glass fibers lead to roughly the
same wave phase velocities with axial wavenumber higher than 0.2, while the CNT fiber also leads

to very close wave phase velocity at axial wavenumber 0.2. In addition, for wave mode 2, the CNT
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fiber reinforced composite shows more significant wave phase velocity drop at the axial
wavenumber changing from 0.2 to 0.4.

In summary, considering CNTs as the reinforcement phase leads to higher wave phase
velocities than the carbon and E-glass fibers, which is related to higher specific stiffness and
strength of CNTSs, but researchers and designers should be careful with exceptions at some specific

wave modes and wavenumbers.
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Figure 3.16. Effect of material properties of the host substrate laminated shell on the dispersion

curves of a [07/45°/90°] laminated composite cylindrical shell coupled with the piezoelectric

layers at the top and bottom surfaces with r = 0.1, f,, = 0.6, and h/R = 1/30 for the first five

modes (M1, M2, M3, M4, and M5) atn = 1.
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3.2.9. Effects of Hygrothermal Environmental Conditions on Wave Dispersion

Solutions

The effects of hygrothermal environmental conditions on the variation of the non-dimensional
wave phase velocity (v) with the non-dimensional axial wavenumber (&) and the circumferential
wavenumber (n) are illustrated, respectively, in Tables 3.9 and 3.10 for the first five wave modes
(M1,M2, M3, M4, and M5). For these examples, a [0°/45°/90°], laminated CNT-reinforced
composite cylindrical shell coupled with the piezoelectric layers at the top and bottom surfaces
with f, =06, r=0.1, and h/R = 1/30 is considered. Seven sets of hygrothermal
environmental conditions, i.e. (AT(K), AC(%)) = (0,0),
(0,2),(0,4),(200,0), (200, 2),(400,0), and (400, 4), are considered. It is observed that the non-
dimensional wave phase velocity decreases with the increase of temperature and/or moisture for
various non-dimensional axial wavenumbers (&) and circumferential wavenumbers (n). This
phenomenon can be explained by the temperature- and moisture-dependant material properties of
the CNT reinforcing fiber and the polymer matrix. The increase of temperature/moisture reduces
the elastic moduli and degrades the strength of the composites. It can also be seen that the effect
of temperature change on the wave phase velocity is much more significant than the effect of
moisture change. The results show that hygrothermal environmental conditions have more effect
on the reduction of the wave phase velocity based on the variation of the axial wavenumber (¢)
than the variation of the circumferential wavenumber (n).

Table 3.11 describes the effects of stacking sequence of the host laminated CNT-reinforced
composite cylindrical shell and hygrothermal environmental conditions on the non-dimensional
wave phase velocity (v) for various non-dimensional axial wavenumbers (&) for wave modes 3

and 5 (M3 and M5) at n = 1. Three sets of stacking sequences, i.e. [45°/—45"],, [0°/90°];, and
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[0°/45°/90°], are considered for the host laminated CNT-reinforced composite cylindrical shell
coupled with the piezoelectric layers at the top and bottom surfaces with f,. = 0.6, r = 0.1, and
h/R = 1/30. The hygrothermal environmental conditions are taken to be (AT (K), AC(%)) =
(0,0),(200,2),and (400,4). It can be seen that for all three stacking sequences, the increase of
temperature and moisture leads to the decrease of the non-dimensional wave phase velocities for
different non-dimensional axial wavenumbers. For all three sets of hygrothermal environmental
conditions, for wave mode 3 (M3), the cross-ply stacking sequence [0°/90°], and the angle-ply
stacking sequence [45°/—45°], lead to the lowest and the highest non-dimensional wave phase
velocities, respectively, while for the fifth wave mode (M5), the [45°/—45"]; and [0°/90°]
stacking sequences provide the lowest and the highest non-dimensional wave phase velocities,
respectively. However, for both wave modes 3 and 5, the non-dimensional wave phase velocities
of the [0°/45°/90°], stacking sequence are between those of the [45°/—45°]; and [0°/90°],
stacking sequences. So, the effect of stacking sequence on wave propagation characteristics of
smart laminated composite shells is noticeable.

Therefore, the analytical model developed in section 2.5 is capable of capturing the effects of
hygrothermal environmental conditions, where it indicates that increasing the temperature or the
moisture leads to the decrease of the wave phase velocity, due to the degrading in the material
stiffness and strength. The developed analytical model, considering the effects of hygrothermal
environmental conditions, can be useful in design of smart laminated nanocomposites for energy
harvesting application exposed to unexpected environmental conditions, and also for structural
health monitoring application to compare the trends of wave dispersion curves for
temperature/moisture variation with the dispersion curve trends obtained by the analytical model

to detect any damage in the structure.
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Table 3.9. Effects of temperature/moisture changes on the variation of the non-dimensional wave
phase velocity (v) with the non-dimensional axial wavenumber () for a [0°/45°/90°], laminated
CNT-reinforced composite cylindrical shell coupled with the piezoelectric layers at the top and

bottom surfaces (n =1, f,, = 0.6, r = 0.1, h/R = 1/30).

Non-dimensional axial wavenumber (&)
Wave mode  AT(K),AC(%)

0.2 0.4 0.6 08 1

M1 (0,0) 08142  0.8422 0.8481 0.8502 0.8513
0,2) 08136  0.8416 0.8476 0.8497 0.8508

(0,4) 08136  0.8416 0.8476 0.8497 0.8508

(200,0) 07829  0.8061 0.8109 0.8125 0.8136

(200,2) 07829  0.8061 0.8109 0.8125 0.8136

(400,0) 07495  0.7673 0.7711 0.7727 0.7732

(400,4) 0.7490  0.7668 0.7705 0.7721 0.7727

M2 (0,0) 2.3256  1.8904 1.7611 1.7126 1.6895
0,2) 2.3256  1.8904 1.7606 1.7126 1.6895

(0,4) 2.3250  1.8898 1.7606 1.7126 1.6895

(200,0) 2.3089  1.8629 1.7428 1.6981 16771

(200,2) 23089  1.8629 1.7428 1.6981 16771

(400,0) 22917  1.8349 1.7245 1.6835 1.6641

(400,4) 22917  1.8349 1.7245 1.6835 1.6641

M3 (0,0) 24689  2.3019 2.2949 2.2911 2.2890
0,2) 24683  2.3019 2.2943 2.2911 2.2890

(0,4) 24678  2.3019 2.2943 2.2911 2.2890

(200,0) 24042  2.2852 2.2782 2.2744 2.2723

(200,2) 24042  2.2852 2.2776 2.2744 2.2723

(400,0) 2.3369  2.2685 2.2610 2.2572 2.2550

(400,4) 23364  2.2685 2.2604 2.2572 2.2550

M4 (0,0) 52483  4.9913 4.9412 4.9229 4.9143
0,2) 52477  4.9913 4.9412 4.9229 4.9143

(0,4) 52477  4.9913 4.9407 4.9229 4.9143

(200,0) 52176  4.9822 4.9358 4.9197 4.9116

(200,2) 52176  4.9822 4.9358 4.9197 4.9116

(400,0) 51863  4.9725 4.9310 4.9159 4.9089

(400,4) 51858  4.9725 4.9310 4.9159 4.9089

M5 (0,0) 56021 55784 5.5704 5.5666 5.5644
0,2) 56021 55784 5.5704 5.5666 5.5644

(0,4) 56021 55784 5.5704 5.5666 5.5644

(200,0) 55930  5.5693 5.5617 5.5574 5.5553

(200,2) 55930  5.5693 5.5612 5.5574 5.5553

(400,0) 55838  5.5601 5.5521 5.5483 5.5461

(400,4) 55838 55601 5.5521 5.5483 5.5456
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Table 3.10. Effects of temperature/moisture changes on the variation of the non-dimensional wave
phase velocity (v) with the circumferential wavenumber (n) for a [0°/45°/90°], laminated CNT-
reinforced composite cylindrical shell coupled with the piezoelectric layers at the top and bottom

surfaces (¢ = 0.1, f,, = 0.6, r = 0.1, h/R = 1/30).

Circumferential wavenumber (n)
Wave mode AT (K),AC(%)

2 4 6 8 10
M1 (0,0) 0.7533 0.7452 0.7468 0.7608 0.7883 0.8271
0,2) 0.7533 0.7452 0.7468 0.7608 0.7883 0.8271

(0,4) 0.7533 0.7452 0.7463 0.7608 0.7878 0.8265

(200,0) 0.7350 0.7258 0.7264 0.7393 0.7646 0.8018

(200,2) 0.7350 0.7258 0.7264 0.7393 0.7646 0.8018

(400,0) 0.71450 0.7043 0.7032 0.7145 0.7387 0.7738

(400,4) 0.71450 0.7043 0.7027 0.7145 0.7382 0.7732

M2 (0,0) 2.2841 2.5157 2.8475 3.2224 3.6022 3.9663
(0,2) 2.2836 2.5157 2.8475 3.2224 3.6022 3.9663

(0.4) 2.2836 2.5157 2.8475 3.2224 3.6022 3.9663

(200,0) 2.2669 2.5017 2.8357 3.2122 3.5925 3.9566

(200,2) 2.2669 2.5017 2.8357 3.2117 3.5925 3.9566

(400,0) 2.2496 2.4872 2.8233 3.2014 3.5828 3.9458

(400,4) 2.2496 2.4872 2.8233 3.2014 3.5828 3.9458

M3 (0,0) 3.9884 4.0347 4.0972 4.1726 4.2593 4.3552
0,2) 3.9878 4.0342 4.0966 41721 4.2588 4.3547

(0,4) 3.9873 4.0336 4.0956 4.1715 4.2582 4.3541

(200,0) 3.8397 3.8887 3.9539 4.0325 4.1225 4.2216

(200,2) 3.8392 3.8882 3.9534 4.032 4.1220 4.2205

(400,0) 3.6803 3.7320 3.8004 3.8823 3.9760 4.0794

(400,4) 3.6787 3.7309 3.7988 3.8812 3.9744 4.0783

M4 (0,0) 5.5558 5.7578 6.0029 6.2954 6.4182 6.5259
0,2) 5.5558 5.7578 6.0029 6.2954 6.4177 6.5254

(0,4) 5.5558 5.7578 6.0024 6.2948 6.4177 6.5248

(200,0) 5.5467 5.7492 5.9937 6.2259 6.3202 6.4284

(200,2) 5.5467 5.7492 5.9937 6.2254 6.3196 6.4279

(400,0) 5.5375 5.7400 5.9846 6.1241 6.2184 6.3272

(400,4) 5.5370 5.7400 5.9846 6.1230 6.2173 6.3261

M5 (0,0) 6.1268 6.1801 6.2464 6.3277 6.6460 7.0500
0,2) 6.1262 6.1796 6.2458 6.3272 6.6460 7.0500

(0,4) 6.1257 6.1790 6.2453 6.3266 6.6460 7.0495

(200,0) 6.0271 6.0805 6.1473 6.2889 6.6369 7.0398

(200,2) 6.0266 6.0799 6.1467 6.2889 6.6369 7.0398

(400,0) 5.9232 5.9770 6.0444 6.2798 6.6272 7.0301

(400,4) 5.9221 5.9760 6.0438 6.2792 6.6272 7.0295
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Table 3.11. Effects of temperature/moisture changes and stacking sequence on the variation of the
non-dimensional wave phase velocity (v) with the non-dimensional axial wavenumber (&) for a
laminated CNT-reinforced composite cylindrical shell coupled with the piezoelectric layers at the
top and bottom surfaces (n =1, f,, = 0.6, r = 0.1, h/R = 1/30).

) Non-dimensional axial wavenumber (§)
Wave mode AT (K),AC(%) Stacking sequence

0.2 0.4 0.6 0.8 1
M3 (0,0) [45°/—45"], 4.0783 3.9087 3.8295 3.7993  3.7837
[0°/90°], 21058 1.3948 12181 1.1503 1.1174

[0°/45°/90°],  2.4689 2.3019 22949 22911 2.2890

(200,2) [45°/—45], 4.0729 3.8952 3.8219 3.7928 3.7783
[0°/90°], 2.0266  1.3544 1.1891 1.1255 1.0948
[0°/45°/90°],  2.4042 2.2852 22776 2.2744 22723

(400,4) [45°/—45°], 40665 3.8817 3.8139 3.7869  3.7729
[0°/90°], 1.9426 13124 11589 1.1002 1.0716
[0°/457/90°],  2.3364 2.2685 22604 22572 2.2550

M5 (0,0) [45°/—45], 4.4144 43719 43627 43590 4.3573
[0°/90°], 59194 59194 59194 59194 59194
[0°/457/90°],  5.6021 55784 55704 55666 5.5644

(200.2) [457/-457,  4.3994 43552 4345 43417 4.339
[0°/90°] 59119 59119 59119 59119 59119
[0°/457/90°], 55930 55693 55612 55574 55553

(400,4) [45°/—45"], 43843 43380 4.3277 43234  4.3218
[0°/90°], 5.9043 5.9043 59043 59043 5.9043
[0°/45°/90°], 55838 55601 55521 55483 5.5456
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3.2.10. Effect of Shell Geometry on Wave Dispersion Solutions

The effects of thickness to radius ratio of the host substrate laminated composite shell (h/R) on
the variation of the non-dimensional wave phase velocity (v) with the non-dimensional axial
wavenumber (¢) and the circumferential wavenumber (n) are described, respectively, in Figs. 3.17
and 3.18 for a [0°/45°/90°] laminated CNT-reinforced composite cylindrical shell coupled with
the piezoelectric layers at the top and bottom surfaces with f,. = 0.6 and r = 0.1 when AT =
200K and AC = 2%.

Fig. 3.17 displays the non-dimensional wave phase velocity curves versus the non-dimensional
axial wavenumbers (&) for the first five wave modes (M1, M2, M3, M4, and M5) atn = 1 for
different h/R ratios. It is observed that at lower non-dimensional axial wavenumbers (§), higher
h/R ratio leads to higher non-dimensional wave phase velocity, while this effect is not much
significant at higher & and higher wave modes (see Fig. 3.17).

Fig. 3.18 shows the non-dimensional wave phase velocity curves versus the circumferential
wavenumbers (n) for wave modes 2 and 5 (M2 and M5) at ¢ = 0.01, 0.1, and 1 for different h/R
ratios. It can be seen that thicker shells (with higher h/R ratio) lead to higher wave phase velocities
particularly at higher circumferential wavenumbers. This increase in the wave phase velocities
with the increase of h/R ratio is because of an increase in the stiffness of the shell as a result of
increase in the shell thickness, and this effect is more significant at higher circumferential
wavenumbers due to increasing effect of circumferential wavenumber on the wave phase velocity.
Furthermore, it is shown that the increment rate of the wave phase velocity with the increase of
the circumferential wavenumber (n) at higher h/R ratio is higher than that at lower h/R ratio. In
addition, this variation at lower non-dimensional axial wavenumbers (¢ = 0.01and 0.1 ) is more

significant (see Fig. 3.18).
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Another interesting finding is that at higher axial wavenumbers, axisymmetric wave motion
independent of the circumferential direction (8) and the circumferential wavenumber (n) can be
considered, while at lower axial wavenumbers the increase of circumferential wavenumber leads
to a sharp increase in wave phase velocities (see Fig. 3.18).

Therefore, based on the presented methodology in this research, we are also able to obtain the
influence of shell geometry on structural dynamics by changing thickness to radius ratio (h/R) of
the shell, where the results express that thicker shells with higher h/R ratio lead to higher wave

phase velocities especially at lower axial wavenumbers and higher circumferential wavenumbers.
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Figure 3.17. Effect of thickness to radius ratio of the host shell (h/R) on the dispersion curves of a

[0°/45°/90°], laminated CNT-reinforced composite cylindrical shell coupled with the piezoelectric

layers at the top and bottom surfaces with » = 0.1 and f,. = 0.6 for the first five wave modes (M1,
M2, M3, M4, and M5) at n = 1 when AT = 200K and AC = 2%.
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Figure 3.18. Effect of thickness to radius ratio of the host shell (h/R) on the variation of the non-
dimensional phase velocity (v) with the circumferential wavenumber (n) for a [0°/45°/90°]
laminated CNT-reinforced composite cylindrical shell coupled with the piezoelectric layers at the
top and bottom surfaces with r = 0.1 and f,. = 0.6 for wave modes 2 and 5 (M2 and M5) at & =
0.01,0.1, and 1 when AT = 200K and AC = 2%.
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3.3. Parametric Studies on Vibration Characteristics of Smart

Laminated Composite Cylindrical Shells

3.3.1. Effects of Hygrothermal Environmental Conditions on the Natural

Frequencies with VVarious Boundary Conditions

The effects of hygrothermal environmental conditions on the change of the non-dimensional
fundamental frequency parameter 2 = wH /mc,, corresponding to the first root of Eq. (2.124)
(M1), with the axial mode number m and the circumferential mode number n are described,
respectively, in Tables 3.12 and 3.13 for C-C, C-SS, SS-SS, C-SL, and C-F boundary conditions.
The non-dimensional frequencies are presented for axial modes m =0, 1, ..., 10 and
circumferential mode n = 1 in Table 3.12, and for axial mode m = 1 and circumferential modes
n=0,1,..,10 in Table 3.13. A[0°/45°/90°], laminated CNT-reinforced composite cylindrical
shell integrated with the piezoelectric layers at the top and bottom surfaces with r = 0.1, f,. = 0.6,
h/R = 0.03, and L/R = 6 is considered for these examples. Frequencies are calculated for
seven series of hygrothermal conditions, i.e. (AT(K), AC(%)) = (0,0),
(0,2),(0,4),(200,0), (200, 2),(400,0), and (400,4). As seen in Tables 3.12 and 3.13, an
increase in temperature and/or moisture leads to a moderate decrease of the frequencies for various
boundary conditions. This phenomenon again can be explained by the temperature-dependant and
moisture-dependant material properties of the polymer matrix and the CNT reinforcing fiber,
where an increase in temperature/moisture decreases the elastic moduli of the composites.

It is observed that the temperature variation has more significant effect on the frequencies than
the moisture variation. It is seen from Tables 3.12 and 3.13 that at higher axial mode m and

circumferential mode n, the temperature/moisture increase leads to more decrease of the

187



Chapter 3. Results and Discussions

frequencies. For example, for C-C boundary condition, at m = 1, the non-dimensional frequency
parameter 2 decreases from 0.0102 to 0.0101 (%0.98) by an increase of temperature and
moisture set from (0,0) to (400,4), while for m = 10 under the same hygrothermal increase, the
non-dimensional frequency parameter decreases from 0.0504 to 0.0497 ( %1.388). This
phenomenon can be explained that at higher axial mode m and circumferential mode n,
considering the same particle motion, we have higher frequency than that at lower modes, hence,
the material stiffness variation induced by an increase of temperature/moisture leads to more drop

of the frequency at higher modes than lower ones.
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Table 3.12. Effects of temperature/moisture variation and axial mode m on the non-dimensional

fundamental frequency parameter 2 = wH /mc, for a [0°/45°/90°]¢ laminated CNT-reinforced

composite cylindrical shell coupled with the piezoelectric layers at the top and bottom surfaces

under various boundary conditions (n =1, f,, = 0.6, r = 0.1, h/R = 0.03, L/R = 6).

conditions (AT (K), AC%)
0 1 2 3 4 5 6 7 8 9 10

C-C (0,0) 0.0021 0.0102 0.0180 0.0246 0.0301 0.0348 0.0386 0.0420 0.0449 0.0477 0.0504
(200,2) 0.0021 0.0102 0.0178 0.0244 0.0299 0.0345 0.0383 0.0416 0.0446 0.0474 0.0501

(400,4) 0.0021 0.0101 0.0176 0.0241 0.0296 0.0342 0.0380 0.0413 0.0443 0.0470 0.0497

C-SS (0,0) 0.0006 0.0082 0.0161 0.0230 0.0288 0.0337 0.0377 0.0412 0.0442 0.0470 0.0497
(200,2) 0.0006 0.0081 0.0160 0.0228 0.0286 0.0334 0.0374 0.0409 0.0439 0.0467 0.0494

(400,4) 0.0006 0.0080 0.0158 0.0226 0.0283 0.0331 0.0371 0.0405 0.0436 0.0464 0.0490

SS-SS (0,0) 0 0.0061 0.0142 0.0214 0.0275 0.0326 0.0368 0.0404 0.0435 0.0463 0.0491
(200,2) 0 0.0060 0.0141 0.0212 0.0272 0.0323 0.0365 0.0400 0.0432 0.0460 0.0487

(400,4) 0 0.0060 0.0140 0.0210 0.0270 0.0320 0.0362 0.0397 0.0428 0.0457 0.0484

C-SL (0,0) 0.0007 0.0040 0.0123 0.0197 0.0261 0.0314 0.0358 0.0395 0.0427 0.0456 0.0484
(200,2) 0.0007 0.0040 0.0122 0.0195 0.0258 0.0311 0.0355 0.0392 0.0424 0.0453 0.0480

(400,4) 0.0007 0.0039 0.0121 0.0194 0.0256 0.0308 0.0352 0.0389 0.0421 0.0450 0.0477

C-F (0,0) 0.0028 0.0021 0.0102 0.0180 0.0246 0.0301 0.0348 0.0386 0.0420 0.0449 0.0477
(200,2) 0.0028 0.0021 0.0102 0.0178 0.0244 0.0299 0.0345 0.0383 0.0416 0.0446 0.0474

(400,4) 0.0028 0.0021 0.0101 0.0176 0.0241 0.0296 0.0342 0.0380 0.0413 0.0443 0.0470
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Table 3.13. Effects of temperature/moisture variation and circumferential mode n on the non-

dimensional fundamental frequency parameter 2 = wH /mc, for a [0°/45°/90°]; laminated CNT-

reinforced composite cylindrical shell coupled with the piezoelectric layers at the top and bottom

surfaces under various boundary conditions (m =1, f,, = 0.6, r = 0.1, h/R = 0.03, L/R = 6).

Boundary Circumferential mode n
conditions (AT (K), AC%)
0 1 2 3 4 5 6 7 8 9 10

c-C (0,0) 0.0191 0.0102 0.0053 0.0045 0.0064 0.0096 0.0136 0.0182 0.0234 0.0291 0.0353
(200,2) 0.0189 0.0102 0.0052 0.0045 0.0064 0.0096 0.0135 0.0181 0.0232 0.0288  0.0349
(400,4) 0.0187 0.0101 0.0052 0.0044 0.0064 0.0095 0.0134 0.0179 0.0229 0.0284 0.0344
C-ss (0,0) 0.0159 0.0082 0.0041 0.0039 0.0062 0.0094 0.0134 0.0180 0.0231 0.0288  0.0350
(200,2) 0.0158 0.0081 0.0040 0.0039 0.0061 0.0093 0.0133 0.0178 0.0229 0.0285 0.0346
(400,4) 0.0156  0.0080 0.0040 0.0039 0.0061 0.0093 0.0132 0.0176 0.0227 0.0282 0.0341
SS-SS (0,0) 0.0128 0.0061 0.0029 0.0035 0.0059 0.0092 0.0131 0.0177 0.0229 0.0286  0.0347
(200,2) 0.0126  0.0060 0.0029 0.0035 0.0059 0.0091 0.0130 0.0176 0.0227 0.0282  0.0343
(400,4) 0.0125 0.0060 0.0029 0.0035 0.0058 0.0091 0.0129 0.0174 0.0224 0.0279  0.0339
C-SL (0,0) 0.0096 0.0040 0.0020 0.0032 0.0057 0.0090 0.0129 0.0175 0.0226 0.0283  0.0345
(200,2) 0.0095 0.0040 0.0020 0.0032 0.0057 0.0089 0.0128 0.0173 0.0224 0.0280 0.0341
(400,4) 0.0094 0.0039 0.0020 0.0032 0.0056 0.0089 0.0127 0.0172 0.0222 0.0277 0.0336
C-F (0,0) 0.0064 0.0021 0.0014 0.0030 0.0056 0.0088 0.0128 0.0173 0.0224 0.0281  0.0342
(200,2) 0.0063 0.0021 0.0013 0.0030 0.0055 0.0088 0.0126 0.0171 0.0222 0.0278 0.0338
(400,4) 0.0063 0.0021 0.0013 0.0030 0.0055 0.0087 0.0125 0.0170 0.0219 0.0274 0.0333
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3.3.2. Effects of Axial and Circumferential Modes (m,n) on the Natural

Frequencies for VVarious Boundary Conditions

The effects of the axial mode number m and the circumferential mode number n on the non-
dimensional frequency parameters 2 = wH/mc, corresponding to the first five roots of Eg.
(2.124) (M1, M2, M3, M4, and M5) are shown, respectively, in Figs. 3.19 and 3.20 for C-C, C-
SS, SS-SS, C-SL, and C-F boundary conditions of the shell. A [0°/45°/90°], laminated CNT-
reinforced composite cylindrical shell integrated with the piezoelectric layers at the top and bottom
surfaces withr = 0.1, f, = 0.6, h/R = 0.03, and L/R = 6 when AT = 200K and AC = 2% is
considered for these examples. As shown in Fig. 3.19, the frequencies corresponding to all five
roots and five boundary conditions increase with the increase of axial mode m, and C-F and C-C
boundary conditions, respectively, lead to the lowest and the highest frequencies. From Fig. 3.20,
it can be seen that the frequencies corresponding to the first root of Eq. (2.124) (M1) for the five
boundary conditions C-C, C-SS, SS-SS, C-SL, and C-F decrease first and then increase with the
circumferential mode n which may be related to the type of shell motion corresponding to M1.
For higher circumferential mode numbers n, all five boundary conditions lead to similar
frequencies, illustrating the effect of boundary conditions decreases at higher circumferential mode
numbers n, while for lower circumferential mode numbers n, the effect of boundary conditions is
significant and C-F boundary condition provides the lowest frequencies and C-C boundary
condition has the highest ones (see Fig. 3.20a). For other roots (M2, M3, M4, and M5), the
frequencies for the five boundary conditions C-C, C-SS, SS-SS, C-SL, and C-F increase as the
circumferential mode n increases, and for M2 and M5, C-F and C-C boundary conditions lead to
the lowest and the highest frequencies, respectively, within different circumferential modes n,

while for M3 and M4, the influence of boundary condition is not significant (see Fig. 3.20b-e).
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Therefore, it is resulted that the frequency normally increases with the increase of axial and
circumferential mode numbers (m,n), and at higher vibration modes, higher frequencies are
obtained for all five boundary conditions considered in this study. From the obtained results, it can
also be concluded that more constraints at the edges of a smart laminated CNT-reinforced
composite cylindrical shell increase its natural frequencies. This trend is due the fact that more
constraints at the edges increase the flexural rigidity of the shell with stiffening the edge support,
leading to higher frequencies. Hence, this phenomenon is to be expected that the clamped (C) edge
is stronger and leads to higher frequencies than the simply supported (SS) edge, the sliding (SL)
edge, and the free (F) edge without any constraint. It can also be concluded that the effect of
boundary conditions on the natural frequencies is more observable by the variation of axial mode

number m.
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Figure 3.19. Effect of axial mode m on the non-dimensional frequency parameters 2 = wH /mc;
for M1, M2, M3, M4, and M5 at n = 1 for a [0°/45°/90°], laminated CNT-reinforced composite
cylindrical shell coupled with the piezoelectric layers at the top and bottom surfaces with r = 0.1,
fr=0.6, h/R = 0.03,and L/R = 6 when AT = 200K and AC = 2% under C-C, C-SS, SS-SS, C-
SL, and C-F boundary conditions.
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Figure 3.20. Effect of circumferential mode n on the non-dimensional frequency parameters 2 =
wH /mc, for M1, M2, M3, M4, and M5 at m = 1 for a [0°/45°/90°], laminated CNT-reinforced
composite cylindrical shell coupled with the piezoelectric layers at the top and bottom surfaces

withr = 0.1, f,, = 0.6, h/R = 0.03, and L/R = 6 when AT = 200K and AC = 2% under C-C, C-

SS, SS-SS, C-SL, and C-F boundary conditions.
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3.3.3. Effect of CNT Volume Fraction on the Natural Frequencies for Various

Boundary Conditions

Fig. 3.21 displays the influence of CNT volume fraction (f,.) on the non-dimensional frequency
parameters 2 = wH /mc, corresponding to the first five roots of Eq. (2.124) (M1, M2, M3, M4
and M5) for a [0°/45°/90°], laminated CNT-reinforced composite cylindrical shell integrated
with the piezoelectric layers at the top and bottom surfaces with r = 0.1, h/R = 0.03, and
L/R = 6 when AT = 200K and AC = 2%. Frequencies are calculated for the five boundary
conditions C-C, C-SS, SS-SS, C-SL, and C-F and axial and circumferential modes (m,n) =
(1, 3). Itis found that for the five boundary conditions, the frequencies increase as the CNT volume
fraction increases in the polymer matrix. This increase in the frequencies with the CNT volume
fraction can be explained by an increase in the stiffness and the strength of the CNT-reinforced
composite cylindrical shell as a result of increase in the CNT volume fraction. For M1, M2, and
M3, the influence of boundary conditions is more noticeable at higher CNT volume fraction due
to the stiffening effect of boundary condition as well as CNT reinforcing effect, where C-C
boundary condition has the highest frequencies and C-F boundary condition leads to the lowest
ones, while for M4 and M5, for different CNT volume fractions the effect of boundary conditions
is negligible (see Fig. 3.21a-e). Not only the frequency trend, but also the values of this result can
be useful to guide the possible design of CNT-reinforced composites under vibration for various

applications.
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Figure 3.21. Effect of CNT volume fraction (f,-) on the non-dimensional frequency parameters 2 =
wH /mc, for M1, M2, M3, M4, and M5 at (m,n) = (1,3) for a [0°/45°/90°], laminated CNT-
reinforced composite cylindrical shell coupled with the piezoelectric layers at the top and bottom
surfaces withr = 0.1, h/R = 0.03, and L/R = 6 when AT = 200K and AC = 2% under C-C, C-
SS, SS-SS, C-SL, and C-F boundary conditions.
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3.3.4. Effects of Shell Geometry Parameters on the Natural Frequencies for

Various Boundary Conditions

To see the effect of the host laminated composite cylindrical shell geometry on the non-
dimensional frequency parameters 2 = wH /mc, corresponding to the first five roots of Eq.
(2.124) (M1, M2, M3, M4, and M5), thickness to radius ratio of the host shell h/R and length to
radius ratio of the host shell L/R are chosen as parameters of study. For this investigation, a
[0°/45° /90°]s CNT-reinforced composite cylindrical shell integrated with the piezoelectric layers
at the top and bottom surfaces with r = 0.1 and f,, = 0.6 when AT = 200K and AC = 2% is
considered. The non-dimensional frequency parameters 2 = wH /2mc, are plotted in Figs. 3.22
and 3.23, respectively, for different h/R and L /R ratios of the host shell with C-C, C-SS, SS-SS,
C-SL, and C-F boundary conditions with given axial and circumferential modes (m,n) = (1,3).

The variation of the frequency parameter 2 with the thickness to radius ratio of the shell (h/R)
is shown in Fig. 3.22 when L/R = 6. It is observed that for thicker shells with higher h/R ratio,
the frequencies corresponding to the first five roots (M1, M2, M3, M4, and M5) and the five
boundary conditions are always higher than those with lower h/R ratio. This increase in the
frequency parameter with the increment of h/R ratio is because of an increase in the shell stiffness
as a result of increase in the shell thickness. It is also seen that the effect of boundary conditions
at higher h/R ratio is relatively much significant where C-C boundary condition has the highest
natural frequencies followed by C-SS, SS-SS, C-SL, and C-F boundary conditions. This
phenomenon can be explained that an increase of shell thickness leads to the increase of shell
rigidity and this property can be magnified with consideration of more constraints at the shell ends,
where the difference between natural frequencies of different boundary conditions with different

constraint levels is much significant for thicker shells (with higher h/R ratio).
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Fig. 3.23 displays the frequency parameter £ variation with the length to radius ratio of the
shell (L/R) when h/R = 0.03. It is observed that for the first five roots (M1, M2, M3, M4, and
M5) and the five boundary conditions, the frequencies first decrease noticeably for lower L/R ratio
and then change smoothly for higher L /R ratio. Hence, we can say the natural frequency variations
are much sensitive to the change of shell length when the host composite cylindrical shell is
relatively short. The decrease of frequencies with the increase of L/R ratio is due to the smaller
shell flexural rigidity at larger L/R ratio. Significant effect of boundary conditions on the
frequencies is observed for lower L /R ratio, and discrepancies between the frequencies of C-C, C-
SS, SS-SS, C-SL, and C-F boundary conditions are larger at lower L/R ratio (shorter cylindrical
shells) where the C-C and C-F boundary conditions lead to the highest and lowest frequencies,
respectively. While for long cylindrical shells (with higher L/R ratio), the influence of boundary
condition is not noticeable and diminishes. This phenomenon can be explained that a decrease of
shell length leads to the increase of shell rigidity and this property can be magnified with
consideration of more constraints at the shell ends, where difference between natural frequencies
of different boundary conditions with different constraint levels is much significant for shorter

shells (with lower L/R ratio).
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Figure 3.22. Effect of thickness to radius ratio of the host shell (h/R) on the non-dimensional
frequency parameters 2 = wH /mc; for M1, M2, M3, M4, and M5 at (m,n) = (1,3) fora
[0°/45°/90°], laminated CNT-reinforced composite cylindrical shell coupled with the piezoelectric
layers at the top and bottom surfaces with r = 0.1, f, = 0.6, and L/R = 6 when AT = 200K and
AC = 2% under C-C, C-SS, SS-SS, C-SL, and C-F boundary conditions.
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Figure 3.23. Effect of length to radius ratio of the host shell (L/R) on the non-dimensional
frequency parameter 2 = wH /mc; for M1, M2, M3, M4, and M5 at (m,n) = (1,3) for a
[0°/45°/90°], laminated CNT-reinforced composite cylindrical shell coupled with the piezoelectric
layers at the top and bottom surfaces with r = 0.1, f, = 0.6, and h/R = 0.03 when AT = 200K and
AC = 2% under C-C, C-SS, SS-SS, C-SL, and C-F boundary conditions.
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Chapter 4

Summary and Conclusions

A summary of the research presented in this thesis is given below. In addition, major findings
and concluding remarks of this research are highlighted along with some suggested future research

plans and directions.

4.1. Research Summary

Numerous research studies have been presented in the literature regarding analysis of wave
propagation and vibration of laminated composite cylindrical shells using various numerical
methods based on different shell theories. However, there is still a lack of research associated with
analytical modeling and detailed analysis of wave propagation and vibration characteristics of
smart laminated composite cylindrical shells with coupling effects of transverse shear,
piezoelectricity, nanoparticles, hygrothermal environmental conditions, and mechanical boundary
conditions where with FEA, it is difficult to study the effects of different composite designs on its
wave propagation behaviors and vibration characteristics. The main objective of the present
research is to establish a simple and comprehensive theoretical foundation and framework studying

the structural dynamics of smart composite shells for possible NDE, structural enhancement or
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energy harvesting applications by proposing and developing analytical models combining the
existing theories to determine wave propagation and vibration characteristics of smart laminated
composite cylindrical shell structures affected by various parameters such as the transverse shear,
piezoelectric coupling, nanoparticles, hygrothermal environmental conditions, and mechanical
boundary conditions. Analytical models were developed in the present research against the
numerical simulation methods such as FEA. By the FEA, it is usually very difficult (or even
impossible) to consider different CNT distributions as well as estimating the resulting composite
hygrothermal properties in wave propagation and vibration modeling by the numerical approach
where it requires extremely high calculation cost especially for the wave propagation analysis in
infinite media.

A comprehensive theoretical foundation studying the structural dynamics of smart composite
shells reinforced with different micro- and nano-sized fibers is established. The developed
analytical models provide a valuable tool to derive more reliable and comprehensive correlations
for predicting wave dispersion responses and vibration behaviors of smart laminated composite
cylindrical shells with coupling effects of piezoelectricity, transverse shear and rotary inertia,
nanoparticles, temperature and moisture variations, and boundary conditions. The predictions of
the present micromechanics model and analytical solution of wave propagation and vibration
problems for the effective elastic properties and structural dynamics of smart laminated composite
cylindrical shells are compared with the existing results in the literature, where a good agreement
is observed. Therefore, it can be concluded that the developed analytical models in the present
research can be a useful tool contributing to obtain wave dispersion results and vibration

characteristics for both smart isotropic and anisotropic multi-layered shells with coupling effects
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of piezoelectric actuators and sensors, transverse shear and rotary inertia, nanoparticles,
hygrothermal environmental conditions, and boundary conditions.

The analytical models developed in this thesis can be used for future research studies in
determining wave propagation and vibration characteristics of smart laminated CNT-reinforced
composites with different CNT distributions subjected to hygrothermal loading as well as
mechanical loading for various engineering applications such as dynamic stability analysis,
structural health monitoring, and energy harvesting.

However, the developed models in this thesis may not be appropriate for thick shells and
nonlinear and large deformation problems, where we need to employ higher-order shell theories

or the three-dimensional elasticity theory with higher accuracy.

4.2. Concluding Remarks

Major findings and concluding remarks of the accomplished research are listed as follows:

1) The effects of transverse shear and rotary inertia on structural dynamics of smart laminated
composite shells are different from their effects on smart isotropic shells where it leads to
higher wave phase velocities for smart laminated composite shells especially at higher
wave modes. This is because of staked plies in which shear may occur between layers.
Therefore, the model presented in this thesis is desired and capable to accurately consider
the shear effects for smart laminated composite shells where its effects are more significant
than on smart isotropic shells.

2) Since a piezoelectric layer is staked on the host laminated composite shell, it is very
important to describe its coupling effects including shear, thickness, and polarization
directions on wave propagation and vibration characteristics. Due to the importance of

shear effects in smart laminated composites especially at higher wave modes, the effects
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3)

4)

5)

of coupled piezoelectric material on the wave propagation and vibration of a host laminated
composite shell are more significant than its effects on the structural dynamics of a host
isotropic shell.

The results from incorporating the micromechanics, wave, and shell theories indicate that
the nanotubes aligned along the wave direction have more effects of the wave dynamics,
where the effects of CNT volume fraction on the wave phase velocity considering CNTs
along the direction of wave waviness are relatively higher than those with other CNT
orientations. It is also found that the agglomeration of CNTs leads to the decrease of wave
phase velocity in comparison to CNT fibers dispersed in the matrix along specific
orientations. These findings cannot be obtained by the lamination theory considering for
micro-sized fibers. Although CNT fibers generally lead to higher wave phase velocities
than traditional fibers such as carbon and E-glass, but at higher wavenumbers of wave mod
1 (M1) and at a specific wavenumber (¢ = 0.2) of wave mode 2 (M2), the wave phase
velocities of CNT fiber and carbon and E-glass fibers are almost the same.

Coupled hygrothermal strains considered in the constitutive equations allows us to include
the effects of temperature and moisture variations on the wave dynamics of smart
composite shells. A reduction in wave phase velocities and natural frequencies is observed
when temperature/moisture increases in comparison to the case there is no
temperature/moisture variation. Models ignoring hygrothermal strains are not able to
describe the necessary influence of environmental conditions.

A formulation based on the first-order shear deformation shell theory and wave
propagation approach with beam modal functions was developed to study the effects of

various boundary conditions on the natural frequencies of smart laminated CNT-reinforced
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composite cylindrical shells. The influence of mechanical boundary conditions on the

natural frequencies is much significant for the composite shells with small circumferential

modes, thick cylindrical shells (with large h/R ratio), and short cylindrical shells (with

small L /R ratio).

4.3. Research Plans and Future Works

There are still many gaps in relation to structural dynamics of smart laminated composite

shells, which requires further research studies. Suggestions for possible future works and

directions are listed as follows:

It was not possible to do experimental verification due the limitations of existing
equipment and funding in our lab. Hence, as a future work, experimental validation is
required to investigate the accuracy of the analytical models derived for analysis of wave
dynamics and vibration of smart laminated composite shells with coupling effects of
transverse shear, piezoelectricity, nanoparticles, hygrothermal environmental
conditions, and mechanical boundary conditions. For this purpose, after fabrication of a
smart composite sample, an acoustic wave via IDT can be applied on the surface of the
sample to obtain wave propagation behaviors in the structure.

Vibration analysis of smart fluid-filled laminated CNT-reinforced composite cylindrical
shells resting on elastic foundation is still a gap in this research filed. Therefore, as a
future work, a study can be conducted to solve this problem using the wave propagation
approach. One application of this research can be in analysis of structural dynamics of
smart laminated composite cylindrical shells used as clock spring sleeve in oil pipelines

for the repair of damaged pipes.
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Considering the effects of electrical boundary conditions and actuations on wave
propagation characteristics of smart CNT-reinforced composites is still an unsolved
problem for the active control of smart composites and its NDE applications. Hence, a
future study can be performed on dispersion solutions of piezoelectric coupled
laminated CNT-reinforced composite cylindrical shells with various electrical boundary
conditions and actuations.

It is noted that the shell models (the ones used in this study and even the higher-order
ones) developed to study the structural dynamics are only considered to be accurate for
thin shell structures at lower dynamics modes. To understand the accuracy of the shell
theories in estimating wave propagation and vibration characteristics of smart laminated
composite thick shells (such as the ones with thickness to radius ratio larger than 1/10
or even 1/5), a future study can be conducted to model dynamics of wave motion and
vibration using the general three-dimensional elasticity theory and compare the results

with those obtained based on the shell theories.
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Appendix A

The components of the transformed reduced stiffness matrix [Qi j] (i,j = x,0,s), relating the
in-plane stresses ( 0y, 0gg, Txe) tO the in-plane strains (v, Yee,Yxe), @S @ function of the
components of the principal lamina stiffness matrix [Q;;] (i,j = 1,2,6) are given by,

Qux = M*Qq1 + 1*Qpp + 211212 Q5 + 4170%1H% Qg

Qoo = 1*Qq1 +1M*Qpp + 2i%1% Q1 + 417*1% Qg

Qo = M*1%Qq1 + M*N2Qy, + (M* + A*) Q1 — 417%1H% Qg

Qs = M*1Q1y — Mm13Qgy — MA(NR? — 1?)Qq, — 2 (1 — 17) Q6

Qos = M3Q11 — 3hQ,, + MN(h% — A%)Qq, + 21AN(M% — 7%) Qg

Qss = M*12Qq1 + M?R2Qy, — 21H2A%Qq, + (1% — 712)% Qe (A.1)
where
m = cosp, n = sinf (A.2)

The components of the principal lamina stiffness matrix [Qij] (i,j = 1,2,6) are function of

material properties of the lamina as,

C13Cy3 Ei4 C13C23 vy1E11
@ua H C33 1-v5,vp Gz 12 C33 1-=v5,v2
C23Cy3 v12E5; Cy3C53 Esr
Q2 2 C33 1—vy,vy Q22 22 C33 1—vy,vp
Q6 = Co = G12 (A.3)

The components of the stiffness matrix [Ci j] (i,j = q,r) relating the transverse shear stresses

(o5 T,) to the transverse shear strains (yq,, ¥xz) are given by,
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qu = ThZC44 + ‘ﬁZCSS qu = er = _mﬁC44 + ThﬁCSS
CT'T = ‘ﬁz 644 + ﬁlz 655 (A 4‘)
where Cyy = G,3 and Css = Gq3. In above equations, C;(1,...,6), E1q, Ezz, V12, Gi2, Gy3, and

G,3 for a CNT-reinforced lamina are given by Eqgs. (2.68) and (2.111), and Q;; = Qj; and C;; =

Cji-
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Appendix B

C11: C121 €22, Cee, €161 €21, €22, ANA €

11, €22, €33 required for the constitutive equations of a

piezoelectric cylindrical shell with the axial polarization based on the classical shell theory, Eq.

(2.21), are obtained as,

=~ Cfs ~ C13C23 _ C223 = _
C11 = C11 — - Ci2 =C12 —— Ca2 = Cop — Ce6 = Co6
C33 C33 C33
s _ =~ C13€23 =~ _ C23€23
€16 = €16 €21 = €21 —— €22 = €32 —
C33 C33
2 2
€,,=€ €pp=Egy+ 22 €a3=E35+ 2 (B.1)
11711 22=C227T 33=C337T .
33 44

and €11, C12, C22, Ca4, Css, Copr €161 €21,

€52, €34, aNd €44, €,,, €35 required for the constitutive

equations of a piezoelectric cylindrical shell with the axial polarization according to the first-order

shear deformation shell theory, Eq. (2.23) are attained as,

e R O F 1 SR 5 = = =
C11 = C11 C12 = C12 Cy2 = C2 Caq = Cyq Css = Cs5 Cee = Cop
C33 C33 C33
5. — 5 — C13€23 — C23€23 -
€16 = €16 €21 = €21 — P €22 = €22 — . €34 = €34
3223
€11=€11 €22=€Expt P €33=E33 (B.2)
33
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Appendix C

C11r €12, C22, Cog, €11, €12, €26, aNd €44, €,,, E33 USed in the constitutive relations of a
piezoelectric cylindrical shell with the circumferential polarization based on the classical shell

theory, Eq. (2.26), are given by,

=~ Cfs ~ C13C23 ~ €23 = _
C11 = C11 — - C12 =C12 —— Co2 = Co2 — 7 Ce6 = Co6

C33 C33 C33
. C13€13 . C23€13 .
€11 = €11 — €12 = €12 — €26 = €26

C33 C33

2 2
— €13 — — €35
€11=€11t— €22=€2 €33=€33+ — (€.1)

€33 Css

and i1, Ci2, €22, Cas, Css, Cepyr €11, €12, €26, €35, ANd €11, €42, E33 USed in the constitutive
relations of a piezoelectric cylindrical shell with the circumferential polarization according to the

first-order shear deformation shell theory, Eq. (2.28), are acquired as,

2 2
~ Ci3 ~ C13C23 - _ C = = _ =~ _
C11 =C1— C12 =C12 —— C22 = Co2 — 7 Caq = Cyq C55 = (55 Ce6 = Co6
C33 C33 C33
= _ C13€13 = _ C23€13 = _ = _
€11 =€11 —— €12 = €12 —— €26 = €26 €35 = €35
C33 C33
2
€=+ €,,=€ €;5=€ (€.2)
115117 22=€22 33=E33 .

33
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Appendix D

Ci1y €12, Ca2, Ceg, €31, €32, aNd €11, €,,, €35 required in the constitutive relations of a

piezoelectric cylindrical shell with the radial polarization based on the classical shell theory, Eq.

(2.31), are obtained as,

_ c2,
€11 = C1 =

33
=~ C13€33
€31 = €31 — Can

= 3125
€n=€nt_—
55

C13C23

C12 = C12 — Can Co2 = Co2 — Cas Ce6 = Co6
=~ C23€33
€32 = €33 — e
2 2
= _ €24 = _ €33
€22=€t+ = €33=€33+ -
44 33

(D.1)

and C€;1, €12, Coz, Caa, Cssy Cepr €15, €24, €31, €35, ANd €141, €45, E33 USed in the constitutive

relations of a piezoelectric cylindrical shell with the radial polarization according to the first-order

shear deformation shell theory, Eq. (2.33), are determined by,

_ c2, _

C11 = C11 — Cas C12
€15 = €15 €24 =
€11=€11

=C12

€,,=€y;

__C13C23 = _ i = -
Tea Cr2 = C22 Cas Ca4 = Cyq C55 = (55
- C13€33 - _ C23€33
€24 €31 = €31 — e €32 = €32 — e

= eds
633=633+ _C
33
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Appendix E

The expression of coefficients of Eq. (2.36) are given by,

Ay = Ayy + Cyzhy Ay = Agg + Ciohy  As = Ay Ay = By + 2 (hhy + h2)
As = Byp + 22 22 (hhy, + h3) Ag = By, A; = &yh,
By = Agy + E12hy B, = Agg + C11hy B; = Ags B, = By, +22 22 (hhy, + h3)
Bs = Bgy + 22 12 (hhy + h3) By = Bgs B; = &y1h,
C, = Agy C, = Agg C3 = Ass + Coshy Cy = Bgy
Cs = Bgg Co = Bys + 22 (hhy + h3) C; = &16hy
D, Bxx+ (hh +h3) D2=Bx9+ (hh +h3) D3 = By
Dy = Dy + Gy <h”4h2 + hTh?’ + ?) Ds = Dyg + C1z (hp4h2 + hzﬁ + h?‘%)
Dg = Dys D; = e_zﬁ(hhp + hlz?)
E, = By, + (hh + h3) E2_399+—(hh +h3) E; = By,
E4=Dgx+512<hph2+%+h—g> ES_Dgg+cn<h h2+h—h‘%’+h—g>
4 2 3 4 2 3
Eg = Dy E, (hh +h3)
Fy = Bsx F; = Bgg F3 = Bss + (hh +h3) Fy = Dgy F5 = Dgg

Fy = 2% (hhy + h3)

I
4 2 3

F6:DSS+C_'66<p +

-,

Gy = KsAyq Gy = Ks(Arr + Caahyp) Hy = Ks(Aqq + Css5hyp) H; = KsAqr (E.1)
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Appendix F

The expression of coefficients of Eq. (2.37) are given by,

Al = Axx + EZth AZ = Ax@ + 512hp A3 = AXS A4 = _B C22 (hh + h )
AS = B 612 (hh + h ) A6 = ZBXS A7 = e_zzhp
Bl == Agx + Elzhp Bz == Agg + Ellhp B3 - AGS B4 == _Bex C12 (hh + h )
Bg=—Bgy -2 =2 (hhy + h3) By = —2Bg, B, = &yh,
C"1 = Agy CZ = Agg 63 = Ags + 566hp C4 = —Bgy
C‘S = _BSQ 66 = _ZBSS C66(hh + h ) C7 = 6716hp
D, Bxx+ (hh +h3) D2=Bx9+ (hh +h3) D3 = By,
, _ (h,h? hh%Z h3 , _ (h,h* hh% h3
D4=—Dxx—c22<p4 +Tp+§p> D5=_Dx6_C12<p4 Tp %)
< - €22
D¢ = —2D, D, = (hh +h3)
£, = Boy + 222 (hh, + h2 £, = Bog + 2L (hhy, + hZ E;=B
1= 9x+7( p T p) 2 = 99+7( p T p) 3 = Bgs
, _ (h,h? hh% h3 i _ (h,h®* hh% h3
Ey = =Dgx — C12 <pT + Tp + ?p> Es = —Dgg — C11 < p4 Tp ?p>
= —2Dy; E, (hh +h3)
F1=Bsx FZZBSB FS_Bss+ (hh +h) F4=_sz FSZ_DSG
, h,h? 2h3
F6:—2Dss—c_66< ”2 +hh§,+7”> E, (hh + h2)
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Appendix G

The components of matrix [Lif]exe’ Eq. (2.55), are given by,

G,

2 2
Ly; = Io(cy)* — Ary? — %V(A3 +Cy) — C3% Li; = —%(Az +C3) — Azy? — Cz%
. . 5
Lz = Az%"‘ Cz;_nz L1y = L(cy)* — Agy? — %(Ae + Cy) — Cs%
2 2
Lis = ==X (As + Cg) — Agy? — Cs 75 Lig = —A7y* = Cro3
2 2 H
Ly, = —%(31 +C3) —Ba%— Cﬂ/z Ly, = IO(CV)Z _Bz%—%(33 + Cy) — C3V2 —R_é
. . 2
in iy ny n H,
L23=ﬁ(32 +H1)+E(62+H2) L24=—7(B4+C6)—BGE—C4)/2+?
, ny n? ,  Hi ny
Lys = I (cy) _F(B6+CS)_BSE_C6V +? L26:_§(B7+C7)
iy - - oy
L3y = —B1~ — B3 Lsp = =5 (By + H) — = (B3 + Gy)
B ny n? iy in . in
Lz = Io(cy)® =23 =2 (Gy + Hp) — Goy* — Hy = Lsq = =By~ — Bez + Goly + Hy
Lys = —Bs 3 —Bs - + Gyiy + Hy = Ly = —B; L
2 2
Ly1 = I1(cy)* — Dyy? —E(D3 + Fy) _an_ Lyp = —ﬂ(Dz + F3) — D3y? —an_'|'ﬂ
R R2 R R?2 R
. . . )
L43=D2%+F2%—Gl%—62i7/ L4-4-=12(CY)2_D4y2_%(D6+F4)_F6%_
ny 5 n? 5 n?
L45=_E(D5+F6)_D6V —Fsﬁ—cl L6 = —D7y —F7ﬁ
L =—Q(E +F)—-E n—z—F 2 L =I(c)2—ﬂ(E + F,) — F;y% —E n—2+ﬂ
51 R \F1 3 332 1Y 52 1(cy R \E3 2 3V 2p2 TR
in iy in ) ny 5 n?
L53=E2ﬁ+FZE—H1E—H2W L54=—7(E4+F6)—F4V —Eeﬁ—Hz
2
Lee =1 2—ﬂE F.)—F, 2—En——H L ——ﬂE F.
55 = l2(cy) R(6+ 5) — Fey sz~ 56 = R(7+ 7)
2 .
Ley = _é16% - 3_22}’2 Lep = _%(616 + 521) Les = 6_’21%
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€14 _ (h + hp) 5 _ony _ _
L64 = _W(h + hp)nz - 622 T]/ L65 = _ﬁ(h + hp)(816 + 321)
en ™ ie,, G.1)
Les =€11 Rz T€22V (@.
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Appendix H

The components of matrix [Sif]4x4’ Eq. (2.56), are given by,

2 2

S11 = Io(cy)? — Ayy? - 7:%(143 +C) - C3% S12 = —%(Az +C3) — Asy® — CZ%

. 3 2

Si3= AL~ iy~ U+ C) ~ L U+ C)+ Lin— T Sy = Ayt G
Sp1 = —L(By+C) ~ By — Gy + F L+ TL (B + Fy) + By

2 2 2
S22 = Io(cy)? —Bz%—%y(l% + C;) — C3y? +Z—Z(E3 +F2)+Ez%+F3V;

iny? iyn?

i3
Spa = 2in — " (By + o) — B or — Lo (B + o) + C, L = Cuiy® — Fy 2+ Fy L

lyn

(Eg + F5) + = ”W (Ey + Fo) — By o3 + Es

S24 = —_(37 +C7) + (E7 +Fy)

Ss1= =By L~ By — Dyiy® — (D + 2F) — By e — L2 (B, + 2Fy)

Ss2 = —B, 2~ B, L~ (D, + 2Fy) - +2F,) - E,'%

S33 = Io(cy)® - _2 _(34 —Dy) +—- y i - (Ds + Ey + 2F) + ™~ (De +2F,) + Dyy* — (ZFz—Bs) +

yn3 n? n*
F(E6 + 2F%) +E(BS —E;) +ESF

iy . lyn
S34 = —B7§ — Dyiy3 — (E7 + 2F7)
_ n? _ ny ,_ _
S41 = —€167; — e22Y? Saz = — 7 (€16 + €21)
_ iy _ (h+hy). (h+hy)iyn? , _ _ — n?
Syz =€y — + €21y + +(316 +é21) S4a =€11 72 T€22 Y2 (H.1)
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Appendix |

The components of matrix [T;;] . EQ- (2.57), are given by,

4x
2 2
Tiy = Io(cy)? — Ayy? - T;TV(A3 +C) - C3% Tip = —%(Az +C3) — Azy® - Cz%
A, . . 3 iyn? iny? in in3 2 n?
Tiz =2y —Ayiy” =7 (As + ) ——— (A + C) + G5 — Cs o3 Tia = —A7y" = (G703
2 2
Ty = _%(31 +0C3) — B3 % - Cy? Tyy = Io(cy)* — B, % - %(33 +C3) — Cay?
. . 2 . 3 . 2 .
Tp3 = Byy — 2= (By + Cg) = Bs = — - (Bo + C5) + Co X — Cuiy®  Tpu= =L (B; +Cy)

iy in in B y? n? ny iy
T31==Bi4=B3; Tso=-Byz T33= Io(cy)? — =+ By -+ Bs 5+ Bem;  Tza=—B;

n2

_ 5 - __ny _
T1 = —€16 77 — €22V Ty = == (€16 + €21)
_ iy _ (h+hyp). (h+hy)iyn? , _ _ — n? _
Ty3 = €215 T €z 2 iy 3 Ifz (é16 t €21) Ths =€11 72 T€22 y? (1.1)

217



Appendices

Appendix J

Transformation matrix [T;;] and its inverse [T;;"], required for Eq. (2.69), are given by,

[mz ng 0 0 O 21hn ]
| A2 wm?2 0 0 0 —2mhn |
|l o 0 1 0 O 0

0 0 0 n m 0
—mn a0 0 0 1h*—n?
[R*? #%2 0 0 0 —2mn
2 m2 0 0 0 2mn
-11_10 0 1 0 0 0
lo o o -~ m o |
i —in 0 0 0 m2—n2)
where
m = cosp, n = sinf (J.3)

The components of the stiffness matrix [C], g ) in the cylindrical coordinate system (x, 6, z)

are given by,

Cyx = H*Cyq + 21h%12C, + N Cyp + 4172112 Cyq

Cro = 212Cy4 + (1h* + AH)Cyy + h2R2Cyy — 4172A2Chy

Cyz = H?Ci3 + 1%Cp3

Cys = 311Cy, — A — 712)Cyy — 113 C,y — 2R (HZ — 112) Cyg
Cop = 1*Cyq + 211212 C, + H*Cyy + 411212 Cq

Coz = 1?C13 +1M*Co3

Cos = N3Cyq + hL(ThE — 112)Cyy — T3HCyy + 21AT(THE — 112)Cyg
Czz = C33

C,s = MAC,5 — iCys

Cqq = M?Chq + 12Cs5

C-rq = —TﬁfLC44 + ThT’lCSS
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Crp = 12Cyy + M?Css

CSS = Thz'flzcll - ZThZﬁZClZ + mz'leCZZ + (Tﬁz - ﬁ2)2C66 U- 4')
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Appendix K

699! E@x! E@S! éxx! CxSl CTT! er! qu! ESS’ e_16! e_Zl! 8_22, 8_23, 8_34, and éll! éZZ’ €33 for Eq

(2.71) are given by,

2 2
Con = C CGZ Co =C CozCxz Co.=C CozCzs Co.=C Cxz
06 — BB_C Ox — “ox — C fs — LO0s — I xx — xx_C
ZZ zZZ ZZ ZZ
= CxzC = = = = C2
C,.=0C, —2% C.=C C.,=°C C,=C Coc = Coe — -2
xs xs Cur rr rr rq rq qq qq ss $S ¢y,
5 5 — Coz 5 Cxz 5 — Czs 5 —
€16 = €16 €21 = €21 — 9230_” €22 = €22 — 3230_” €23 = —€23 ' €34 = €34
_ _ e _
€11=€11 €22=€E3pF C €33=E€33 (K.1)

and Cog, Cox, Cyx, Crr Caqy Css, €16, €21, €22, €34, aNd €;4, €5y, Ez3 for Eq. (2.79) are given by,

2

~ _ CGz ~ _ CozCxz ~ _ C:%z ~ _ ~ _ ~

699 - CBG - C_ CQx - CBx - C Cxx - Cxx - C_ Crr - Crr qu - qu Css - Css
ZZ ZZ ZZ

Cl6 = gy = — e, lz 5, = — o Caz 5

€16 = €16 €21 = €21 — €23 Cry €22 = €22 — €33 Crr €34 = €34

_ _ eZ, _

€11=€n1 €22=€Ep+ T €33=€33 (K.2)
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Appendix L

The expression of coefficients of Eq. (2.86) are given by,

A1 = Cxxh
Bl - C_‘th
Cl - EXSh

- R
D, = XX 15

_ h3
E. =

_ h3
Fl stﬁ
Gy = KsCrrh
Hy = K;Cyqh

Ay = Cysh Az = ExGh
BZ = Egsh B3 = C_‘ggh
CZ == C_‘SSh C3 = C_‘Qsh
_ h3 _ h3
DZZCQxE D; = xs 15
_ hd _ hd
E, = Cop— E; = Cps—
_ hd _ h3
FZZCOSE F3:CSSE
G, = K;Crgh
H, = K;Cyqh

A4_ = e_zzh
B4 = 6_21h
C4 = 6_’23h

The expression of coefficients of Eq. (2.87) are given by,

Al == C_‘xxh
él = Essh

, _ h3
F; = SSE

AZ == C_‘gxh A3 == e_zzh
- _ L _ h3
Cy; = é6h Dy = CxxE

Gl = Ks rrh I:Il

KsCqqh
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B,

I
>
x®

ol

Cs == 6_’16h
B, = Cygh
, ~ h3
Ey = Cox 3

(L.1)
Bg = 3_21h
, ~  h3
E; = Coo
(L.2)
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Appendix M

The components of characteristics matrix [Lij] (i,j = 1,..,6) for a piezoelectric composite

cylindrical shell reinforced with angled, straight CNTs (section 2.4.7) are obtained as,

2 2

Ly; = Io(cy)* — Ay? — %V(Az +Cy) — Cz% Li; = —Ayy? — %(As +Cy) — Cs%
. . 5
Lz = A3%+ C3;_n2 Liy = L (cy)? Lis =0 Lig = —Agy? — C4T;Ty— Cs%
2 2 H
Ly =="L(By+Cp) =Bz — Ciy?  Lyp = Ip(cy)* ==X (B +C3) =By 5 — Cpy? — 22

. : H H
Ly3 = ;12(33 + Hy) +%(C3 +H) Lp=7 L= I (cy)? + = L= —"L(By + C5) — Cay?

R
Ly =—B;L— B, = Ly, = —L(B, + G;) — = (B + Hy)
Lsz = Io(cy)* — % —Gy* — %(Hl + Gy) — Hz:—z L3y = Giiy + Hl%n
Lss = Goiy + Hy Lys =B, L
Lyy = L (cy)? Lyp = % Lyz = —Gyiy — Gz%n

2
ny n
Lys = Iz(CV)Z - D1V2 - E(D3 +F) — F3ﬁ -G

2

ny 5 n
L45=—?(D2+F3)—D3V _FZE_GZ Lye=0
H ) j
Lsy =0 Lsp = L(cy)* +=2  Lsz=—Hiiy —Hy

, Ny n?
Lsy = —Fyy —?(F3 +Ep) _E3ﬁ_Hl

2

2 _ Y 2 n
Lss = I(cy) _?(Fz +E3) — Fy —Ezﬁ—Hz Lsg =0
_ _ n? _ _ _ _ _ iy
Loy = —&37% — 916% €23 % Lez = _% (16 + 21) — Ep3” Les =enp
_ n* _
Loy =0 Les =0 Les =€11 R +€5, 2 (M.1)
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The components of characteristics matrix [L;;] (i,j = 1,

...,6) for a piezoelectric composite

cylindrical shell reinforced with randomly oriented (agglomerated), straight CNTs (section 2.4.7)

are obtained as,
2 A2 4 n?
Ly = Io(cy)® — Ay = Ci5

- 2 - nz
Lis=0 Lie = —A3y" — (23

: n? 4 H
Ly = Ip(cy)* — B, Rz Ciy? =23

Ly =—"L(By + () 72

R

i - - H
Ly = ;12(32 + H1) Ly =0 Lys = I (cy)? +?1

- 1y in , .~ -
Ly = =B~ Lyp = =3 (B + Hy)
Lsq = Gyly Lss = H1% L3¢ = —93%
Lyy = I1(cy)? Ly =0 Lyz = —Gyly

_ R ) L
L4y = I (cy)* — D1y —F1E—G1

in

H .
Ls; =0 Lsy = Li(cy)* + Lss = —H;

n,. . 2
L54 == —F(Fl + El)

2

_ _ n ny ,_ _
Ley = —922]/2 ~Cegz Lep = _?(616 + &31)
2
_ nc _ )
Les =0 Les =0 Les =€11 R +€x2 Y
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By 4
Laz = Io(cy)? - R—é — Gy —H,

n , ,
L45 = _%(DZ + Fl)

, ., n ,
Lss = Iz(CV)Z - F1V2 ) RZ Hy

Lz =4, % Lyy = I (cy)?

L6 = —%(33 +C;)

,nz

R?

Ly =0

(M.2)
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Appendix N

The expression of coefficients of Eq. (2.113) are given by,

A1 = Axx + 2522hp AZ = Ax9 + 2512hp A3 = AJCS A4, = Bxx
A5 = Bx9 A6 = Bxs A7 = Ze_zzhp A8 = —Exx Ag — _Fxx
Bl = Agx + Zflzhp Bz = Agg + 2(,_‘11hp B3 = AQS B4 = ng
B5 = B99 BG = BBS B7 = 26_21hp B8 = _E99 B9 — _Fee
Cl = Asx CZ = As@ C3 == ASS + 2566hp C4 = BS.X
Cs = By Ce = Bgs C; = 2e_16hp Cg = —Exg Co = —Fyp
_ (R, 2k
Dy = Byx D; = Byg D3 = Bys Dy = Dy + Cy2 T+th+T
= hPhZ 2 2 7?3
Ds = Dyg + C12 T + hhp + T Dg = Dys D; = =G,y Dg = —H,,
_ (hph* 2h)
Ey = Box E; = Bog E3 = Bys Ey = Dox + Cip | —— + hhy +—=

_ (R, 2Ry
Es = Do + C1 — T hhy + 3 Eg = Dgs E; = —Ggg  Eg = —Hpyg

F; = By F, = Bgg F3 = Bg; Fy = Dy F5 = Dgg

_ (hph* 2k
F6:DSS+CG6 T'{'th +T F7=_GX6 F8=_ x0
G1=KArq Gy =Ks(Ay +2E44hy)  Hy =Ki(Agq + 2Cssh,)  Hy = KAy,
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Appendix O

The components of matrix [Lif]8xs’ Eq. (2.120), are given by,

2 2
Ly; = Io(cy)* — Ary? — %V(A3 +Cy) — C3% Li; = —_(Az + C3) — Azy? Cz%
Liz =4, % + Cz;_nz Lig = Li(cy)* — Agy? — %(As +Cy) — Cs n2
ny 5 n? 5 n?
L15=_?(A5+Cs)_146}’ _Csﬁ Lig = —Ayy —C7ﬁ
L17 = Agly + Cg% L18 = Agly + Cg%
2 H
Ly = —_(31 +C3) — B3 — Cyy? Loy = Io(cy)® — y o — ok (B3 +C,) — C3y? — _1
ny n? , H,
L23— (Bz +H1)+ (Cz+H2) L24:_7(B4+C6)_BGE_C4V +F
5 n? ny ,  Hi ny
Lys = I (cy) —BSE—F(Bs"‘Cs)—CeV +? L26:_§(B7+C7)
Ly, = Bs R + Cgiy L,g = 39 R + Coly
L31=—Bl%—33% L32=—%(32+Hl)—%(33+61)
Lz = Io(cy)? — % __(Gl +Hy) — G¥* —Hy— L3y = _34%_36;%'{'621.)/'{'1{2%
in iy . in iy B B.
L3s = —Bs ;=B + Gily + Hy L3¢ = —B7; Ly; =—=2 Lzg=—=
2 2
ny n ny n G,
Ly = Ii(cy)* = Dyy? — ?(D_% +F) — F3ﬁ Lyp = —?(Dz + F3) — D3y? — Fzﬁ + R
. . . 2
Lyz = Dz%‘*‘ Fz}%— Gl%_ Gpiy Lyy = I (cy)? — Dyy? —%(De +F) - Fe% — Gy

ny 5 n? _ in _ in
Lys = —?(Ds + F¢) — Dgy* — FSF_ G1  Lae=0 L4y = Dyiy + F7E L4g = Dgly + Fsﬁ

ny n? " , Ny n? H,
Lsy =—F(E1+F3)—E3E—F1V Lsy = I (cy) —?(E3+F2)—F3V Ezﬁ"‘f
iy in ) ny 5 n?
Ls3 EZR +F2R—H1E—H2W L54=—7(E4+F6)—F4V —Eeﬁ—Hz
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2 W 2 n
Lss = I(cy) _?(Ee‘*‘Fs)_FeV _Esﬁ_l‘h Lsg =0
. in _ in
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R R
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Appendix P

The components of matrix [Lif]8xs’ Eq. (2.124), are given by,

2 2
Ly; = Iyw? — Ayvh — nmi(A3 +Cy) — C3% Li; = —nmi(Az +C3) — Azy — Cz%
. . 2
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2 2
ny, n
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o 2 2 m H
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