AN EXPERT SYSTEM FOR

ANALYSIS OF GRAIN BIN LOADS

Zhiping Ni

A thesis
presented to the University of Manitoba
in partial fulfilment of the
requirements for the degree of
Master of Science
in
Agricultural Engineering

Winnipeg, Manitoba

(c) Zhiping Ni , 1997



il

National Library

of Canada
Acquisitions and
Bibliographic Services

Bibliothéque nationale
du Canada

Acquisitions et
services bibliographiques

395 Waellington Street 395, rue Wellington
Ottawa ON K1A ON4 Ottawa ON K1A ON4
Canada Canada
Your fiie Votre reférence
Our file Notre reférence
The author has granted a non- L’auteur a accordé une licence non
exclusive licence allowing the exclusive permettant a la
National Library of Canada to Bibliothéque nationale du Canada de
reproduce, loan, distribute or sell reproduire, préter, distribuer ou
copies of this thesis in microform, vendre des copies de cette thése sous
paper or electronic formats. la forme de microfiche/film, de

reproduction sur papier ou sur format
électronique.

The author retains ownership of the L’auteur conserve la propriété du
copyright in this thesis. Neither the droit d’auteur qui protége cette thése.
thesis nor substantial extracts from it Ni la thése ni des extraits substantiels

may be printed or otherwise de celle-ci ne doivent étre imprimés
reproduced without the author’s ou autrement reproduits sans son
permission. autorisation.

0-612-23441-X

Canada



THE UNIVERSITY OF MANITOBA
FACULTY OF GRADUATE STUDIES

hhdd

COPYRIGHT PERMISSION PAGE

AN EXPERT SYSTEM FOR ANALYSIS OF GRAIN BIN LOADS

BY

ZHIPING NI

A Thesis/Practicam submitted to the Faculty of Graduate Studies of The University
of Manitoba in partial fulfillment of the requirements of the degree
of

MASTER OF SCIENCE

Zhiping Ni 1997 (¢)

Permission has been granted to the Library of The University of Manitoba to lend or sell
copies of this thesis/practicum, to the National Library of Canada to microfilm this thesis
and to lend or sell copies of the film, and to Dissertations Abstracts International to publish
an abstract of this thesis/practicum.

The author reserves other publication rights, and neither this thesis/practicam nor
extensive extracts from it may be printed or otherwise reproduced without the author's
written permission.



ABSTRACT

An expert system was developed as a design aid to assist in the design of grain storage bins.
The expertise embodied in this expert system was extracted from Canadian Farm Building Code and
ASAE EP433. This expert system, developed in LevelS Object expert system shell, consists of
knowledge base, databases, and external programs. The knowledge base serves as overall integrator
handling user interaction, accessing databases, passing parameters to external programs , and running
plotter programs. Databases provide bin geometry and material properties. The external programs

present the pressure distribution on screen.

Based on the code selected by user, this system selects design parameters and calculates static
pressures and dynamic pressures exerted by stored material, then reduces those pressures to loads
on specific components of a grain bin. This expert system can provide bin designers with a rapid

and accurate means of determining loads applied to individual bin components.



ACKNOWLEDGEMENTS

I wish to express my sincerest appreciation to Dr. M.G. Britton, my major professor, for his

encouragement and guidance during this study.

I would like to thank other members of my advisory committee, Dr. Q. Zhang , Dr. J. L. Glanville

, and Dr. D. Polyzois, for their suggestion toward this study.

I would like to thank my wife Yuexian and my son Chong dearly for the patience and understanding
when I was working on this thesis. They have taken on the inconveniences imposed by an absent

husband and father without complaint.



Table
4.1
42
4.3

4.4

LIST OF TABLES

Bolt pattern coefficients
Moisture content of CFBC
Material properties for EP433

Overpressure factors for CFBC

Page
25

43

56



42

43

4.4

4.5

LIST OF FIGURES

Basic structure of an expert system
Structural breakdown of a LevelS Object
Basic structure of this expert system
General flowchart of this expert system
Flowchart of CFBC subprogram

Flowchart of ASAE subprogram

17

27

29

30

31

32



TABLE OF CONTENTS

ABSTRACT
ACKNOWLEDGEMENTS
LIST OF TABLES
LIST OF FIGURES
Chapter
1. INTRODUCTION
2. REVIEW OF LITERATURE
2.1. Loads Applied to Grain Bin Wall
2.1.1. Static Loads
2.1.2. Dynamic Loads and Thermal Loads
2.2. Codes and Standards
2.2.1. German Code
2.2.2. ASAE Engineering Practice
2.2.3. American Concrete Institute Standard
2.2.4. Canadian Farm Building Code
2.3. CAD in Agricultural Engineering Design
3. EXPERT SYSTEM
3.1. Introduction
3.2. Components of an Expert System
3.3. Expert System Development Tool
3.3.1. Expert System Shell

3.32. Level5 Object Expert System Shell

Ve JERYo) o S N S — E
o

10

11

12

15

15

16

19

19

21



4. DEVELOPMENT OF THIS EXPERT SYSTEM 23

4.1. Knowledge Domain 23
4.2. Development Tool 26
4.3. System Architecture 28
4 4. Structure of This Expert System 29
4.4.1. Defining Class Structure 33

4 42 Defining Attribute Structure 33

4.4 3. Creating Display 34

5. TEST AND EVALUATION 72
5.1. Testing 72
5.2. Example Application for CFBC 1990 73
5.3. Evaluation of Level5 Object 92

5.3.1. Integrating Expert System Technology with Database Technology 92

5.3.2. Calling External Program from a Knowledge-Base System 93

5.3.3. Knowledge Base Management 97
6. CONCLUSIONS AND SUGGESTION FOR FURTHER DEVELOPMENT 99
LIST OF REFERENCE 102

Appendix
Database for Bin Geometry

A
B. Databse for Grain Properties
C.

List of External Program Code



Chapter 1

Introduction

Many kinds of bulk solids structure have been used in farm for storage and handling of grain
over the last century. These include different bin shapes both circular cross-section and rectangular
cross-section, and various bin wall materials such as plywood, concrete, smooth steel, and corrugated
steel. However, corrugated steel bins with circular cross-section represent the major component of
the on-farm grain storage market ( Britton and Zhang, 1989). Modern farming practices have
increased production of cereal grains and other field crops. Increased grain production and high
capacity handling systems have led to large-capacity storage bin. These large storage structures,
where bin depth could exceed the diameter, were generally commercially manufactured storage
structures which were durable, long lasting and simple to erect. This created considerable pressure
on bin manufactures to optimize their designs because overdesign of large storage structures greatly

affected the cost of the bin, and underdesign compromised safety.

Although statistics are not available, it has been estimated that about 1000 industrial and farm
silos, bins or hopper fail, in one way or another, each year in North America ( Jenkyn and Goodwill,
1987). In the meantime, the incidence of structure failure in metal grain bins seems to have increased

in recent years. This is maybe a result of the trend to the large storage structure.



Designing structural components of a grain bin involves two steps. First, one must estimate
pressures exerted by the stored material and second, select structural members capable of carrying
these loads safely and economically. Accurate design of grain storage bins requires the ability to
determine loads applied to the bin wall. Many failures are caused at least in part by underestimates
of the forces exerted by the bulk solids ( Trahair, 1985 ). To help ensure safe and better-quality bin
structure, several countries have adopted codes and standard for bin design. Those most commonly
discussed include the German Standard DIN 1055 (DIN, 1987), and American Concrete Institute 313
(ACT, 1983), EP433 (ASE, 1991), and Canadian Farm Building Code (NRC, 1990). Loads due to
nature are neglected in most codes because they tend to be much smaller than loads due to grain.
Most of these codes use Janssen's equation to predict material pressure. When using Janssen's
equation to predict material pressure, the predicted pressure will depend on variables which include
bulk density, the coefficient of friction on various surfaces and K value. These variables vary with
the type of material stored, the methods of filling and emptying, and the conditions of storage.
Therefore, the selection of appropriate variables is critical in the application of the design documents
(Britton and Zhang, 1989). Although extensive research has been done on this area, the prediction
of grain bin loads is still as much an art as a science. No real evidence can be presented to
completely verify the accuracy of any one design theory. The selection of the design method and
physical properties to be used is dependent on the personal experience and preference of the

individual designer.

Several computer programs which are little more than automated calculations have been
developed to predict grain bin loads. However, these programs contain few suggestions as to how

2



to pick the variables. Most programs give little or no guidance toward the development of optimum

solutions.

The job of design could be made easier and more efficient if a computer aid was available

that could help guide the designer from the selection of the code and material properties to load

analysis.

Expert system is a recently created branch of computer programming which appears to have
the potential judgmental decision making. Compared with a traditional program which is mainly
dealt with large amounts of data, complex mathematical calculations, and graphical display, expert
system which can closely mimic the human approach is well suited to solving problems that are very

complex in nature, and generally involve uncertain facts and heuristic knowledge.

The objective of this project was to develop an expert system for analysis of grain bin loads
and reduction to individual component loads. The knowledge base was focused on the Canadian
Farm Building Code (1990) and ASAE EP433. Only the loads exerted by grain are dealt with in this
project. It is intended that this expert system will provide designers with loads applied to specific
bin components such as a sheet, a bolt, or a stiffener in order to optimize bin design. On the one
hand, this expert system will provide the technical assistance necessary to raise the level of
performance of a novice design to the level of that of an expert. On the other, the program can

improve the productivity of an expert decision maker.



Chapter 2

Literature Review

Based on the feature of this project, three aspects of literature were reviewed:
1. Loads applied to grain bin walls
2. Codes and standards for the design of grain storage bins, and

3. CAD in agricultural engineering design

2.1 Loads Applied to Grain Bin Wall

2.1.1 Static Loads

Grain pressure theory has long been divided into shallow bin theory and deep bin theory,
depending on the ratio of bin height to bin diameter. There are two basic theories for predicting
lateral pressure exerted by stored material in shallow bins, i.e., Rankine's theory and Coulomb's
theory ( Ketchum,1919). Both of theory do not account for friction between the wall and stored
material and lead to a lateral pressure linearly increased with depth. Based on Rankine's theory, the

theory of equivalent fluid density was developed (shown in Eq.2.1).

L=wxKxHxg @.1)

where:



L - lateral pressure

w - grain bulk density

K - ratio of lateral to vertical pressure
H - depth below grain surfaces

g - acceleration due to gravity

This approach was adopted by Canadian Farm Building Code before 1983 edition for predicting
lateral pressure in shallow bins. The Rankine's theory was not applicable to bins with rough or
corrugated walls because of the assumption of a frictionless wall. For bins with sloped walls,
Coulomb's equation is recommended. Robert's experiment ( Ketchum, 1919 ) confirmed there is no
increase in bottom pressure after the grain has a depth more than twice the width of the bin. This
revealed friction force between the wall and the grain existed. Based on this knowledge, Janssen (
Ketchum,1919) in 1895 developed a mathematical model to predict static loads applied to grain bin
walls. This theory was developed by considering the equilibrium of a slice of grain bin wall. It
accounts for the arching effect within the grain mass and transfers a part of the grain weight to the
bin's wall. By assuming a constant density, w; coefficient of wall friction, ., and a constant value

of the ratio of lateral to vertical pressure, k, he was able to solve the differential equation to yield:

x -Kxuxff
=R -7 )
u
V=L/K (2.2)

F=(@xgxH-V)xR

5



where:
L - lateral pressure against the bin wall
V - vertical pressure acting on the bin floor or within the grain mass
F - vertical loads per unit of a wall perimeter due to friction
u - coefficient of friction between the fill material and bin wall
K - ratio of lateral to vertical pressure
® - unit weight of grain
R - hydraulic radiuses
H - depth below grain surfaces

g - acceleration due to gravity

Assuming the pressure on the wall as due to a wedge of grain between the wall and plane of
rupture, Airy (1897) advanced a method for computing lateral and vertical loads of a bin. Airy's
theory which considered both shallow bins and deep bins is basically an expansion of the Coulomb's
theory. In his book, Ketchum (1919) indicated that both Janssen's solution and Airy's solution agree
very closely with experiments. However, the Janssen's theory become the more widely used in view

of its relative simplicity (Britton, 1969).

There are other theories for predicting the static loads in deep bins. One theory of worth
mentioning here is Reimbert's theory. Using an empirical basis, Reimbert and Reimbert (1956)
considered the ratio of lateral to vertical pressure to be a function of the height of the stored material
and proposed a set of prediction equation for static loads. This theory is more compatible with real

6



storage than Janssen's and Airy' theories because of the consideration of a surcharge effect.

In order to use Janssen's equation properly, it is necessary to use valid values of the factors
K and . In the derivation of his theory, Janssen (Ketchum,1919) assumed the pressure ratio K is a
constant. However, some researchers have speculated that K is not a constant. Ketchum and
Willians (Ketchum,1919), Kramer (1944) , and Lenczner(1963) all found that K increased with
increasing depth of grain. On the other hand, Pleissner (Ketchum,1919) found that the pressure ratio
decreased with depth. Jaky (1948) and Reimbert and Reimbert (1976) found K to be variable but
following no simple pattern with increasing depth. Versavel and Britton (1986) found that K

decreased with increased overpressure.

Design values for coefficient of friction of agricultural materials on various surfaces are not
widely available. The coefficient of friction varies not only with each type of grain, but also with the
experiment condition such as moisture content (Abdel-Sayed et al. 1985). Because of the variable
surface and test methods, the tabulated values of coefficient of friction are of limited use ( Versavel
and Britton, 1986). The selection of the coefficient of friction will depend on the personal experience

of individual designer.

2.1.2 Dynamic Load and Thermal Load

Bin failures have caused serious doubts on the scope and adequacy of static loads based on

design theories (Britton and Zhang, 1989). Although a definition of dynamic effect was not given,

7



early researchers found the lateral pressure due to moving grain are materially increased on the side
opposite the gate and slightly decreased on the side in which the gate is placed (Ketchum,1919).

Experimental measurement of the dynamic stress in the model thin-walled, flat-bottomed, grain bins
during centric discharge shows that no dynamic overpressure occurs in shallow bins (H/D = 1.25)
while significant overpressure develops in deep bins (H/D = 5.0) (Manbeck et al. 1977). Dynamic
loads during discharge have been identified to be the major cause of structural failures of grain
storage bins (Jenike and Johanson, 1968). Although experimental work has revealed higher loads
develop during emptying of grain storage bins, no coherent mechanistic explanation and adequate
prediction theory have been advanced (Britton and Zhang, 1989). Therefore, in most modern design
codes and standards, dynamic loads are simply predicted by multiplying static loads by overpressure

factors.

Temperature drops result in a contraction of the steel wall to cause thermal loads. Although
much experimental work has been carried out to determine the magnitudes of the thermal loads (
Britton, 1973; Manbeck and Muzzelo, 1985; Blight, 1985), no practical prediction theory has been
developed. Therefore, some design codes and standards recommend the use of thermal overpressure

coefficients for predicting thermal loads in steel bins.

2.2 Codes and Standards

Bin failures tend to be the result of under estimates of the forces exerted by grain on the bin

wall, eccentric loading and unloading problems, over estimating structural resistance of members,

8



or inaccurate structurai performance characteristics of structural members ( Trahair, 1985 ). To help
ensure safety and better-quality bin structures, several countries have adopted codes and standards
for bin design. These most commonly discussed include the German standard DIN 1055 (DIN 1987),
the American Concrete Institute Standard 313 (ACI, 1983), ASAE Engineering Practice EP433

(ASAE,1991), and the Canadian Farm Building Code (NRCC,1990).

2.2.1 German Code

First published in 1964, the German Code DIN 1055 was based largely on earlier works by
Pieper and Wenzel (Safarian,1985). This code was revised with supplementary provisions in 1977.
Current code (DIN 1055, 1987) recommends the use of Janssen's equation for calculating the
material pressure, and with modified values of the factors, K and ., to calculate the dynamic loads.
It specifies separate value of K and . for filling and emptying as follows:
1) for the case of filling k = 0.5, i« = tan(0.75 x ¢ ); and
2) for the case of emptying k= 1.0, ;2 =tan (0.6 x ).
where: ¢ - the angle of internal friction of the stored grain.
In general case, the filling condition results in the large values for vertical pressure, and the

emptying condition results in the large values for horizontal pressure( Abdel-Sayed et al., 1985).

2.2.2 ASAE Engineering Practice

First edition (EP433,1989) was adopted by ASAE in December 1988. This code was revised

9



editorially in February 1991 and approved by ANSI as an American National Standard in September
1991. In this practice, the static pressures are calculated by Janssen's equation. Based on the flow
pattern, material movement in funnel flow bins ( H/D <2 ) occurs in a center core of the mass, and
overpressures are not generated. However, the pressures in mass flow ( H/D >= 2 ) bins are greater
than those static pressures predicted by Janssen's equation. This practice specifies that an
overpressure factor of 1.4 may be used in mass flow. Based on the effect of the stationary grain along
the bottom of the bin wall, a reduction in the overpressure factor is allowed within a distance of D/4
from the base of flat bottom bins. This practice specifies a maximum value of 834 kg/m® (52 Ibs/ft’)
of bulk density instead of a various density of stored material, and suggests that the thermal pressure
may be estimated as 8% of the static pressure for temperature declines of 10 ¢%h and 15% for 20

c%h.

2.2.3 American Concrete Institute Standard

[n 1977, the American Concrete Institute published its standard " Recommended Practice
for Design and Construction of Concrete Bins, Silos, and Bunkers for Stored Granular Materials and
Commentary”. A revised edition ( ACI, 1983) of this standard appeared in 1983. This code
recommends the use of either Janssen or Reimbert's (1976) equations for calculating static pressure.
When using these two equations, caution must be taken the dimension defined by each method. This
code uses a slightly modified form of Janssen's equation for vertical friction force. Dynamic lateral
pressure is obtained by simply multiplying the static pressure by the appreciated overpressure factor.
This code suggests various overpressure factors (between 1.5 and 2.0 ) for bins of different height-

10



diameter ratios. The difference in the values of overpressure factors for two methods ( Janssen's and
Reimbert's ) tends to bring the results into closer agreement, although the Reimbert’s pressure will
still be larger than the Janssen's lateral pressure in the upper position of shallow bin, and small in the
lower portion of deep bin ( Gaylord and Gaylord, 1985). The effect of buckling stresses is not

considered in this code because it is only applicable to concrete bins.

2.2.4 Canadian Farm Build Code (CFBC)

Early Canadian Farm Building Code (NRCC, 1977) recommends the use of Janssen's
equation for deep bins and equivalent fluid density equation for shallow bins which are defined that
depth of grain is less than or equal to bin diameter. This code does not consider the effect of a

surcharge, a regular occurrence in agricultural storage structures.

A revised edition (NRCC, 1983) appeared in 1983 recommended Rankine’s equation for
predicting lateral load for bins in which the ratio of grain depth to bin diameter is 0.75 or less. Under
the condition of " heaped fill", the predicted loads are increased by a factor of 1.33. Although
Rankine's theory does not account for friction between the wall and stored material, this code
considers the vertical load to be equal to the lateral load multiplied by the coefficient of friction
between the wall and stored material. Before 1983 code, nothing beyond the static loading condition

is considered.

In the current Canadian code (NRCC, 1990), static loads in both deep and shallow bins with

11



vertical walls are predicted by Janssen's equation. This code specifies that an overpressure factor 1.4
to 1.6 may be used for central discharge and 2.0 to 2.5 for eccentric discharge. This code considers
an increasing of 6% for the bulk density due to consolidation. It is applicable to variety of stored

material and wall materials.

2.3 CAD in Agricultural Engineering Design

Several computer programs were developed to predict grain bin loads. Jofriet and Negi
(1988) developed a program to aid in the rapid determination of a pressure diagram and of the
resulting hoop force. Based on the silo geometry, model of unloading operation, and the moisture
content of the silage, the program carries out the various design calculations and presents a summary
table of the output and a graph for pressure distribution. Moran (1991) developed an interaction
computer program to predict the static design crop loads on shallow, circular grain storage
structures. In accordance with the options and solution parameters specified by the user, the program
selects the appropriate solution procedure. This program makes it possible to take more parameters
into account than classical theory such as Coulomb's theory. A computer technique (Ross et. al.,
1979) has been developed to estimate the wall pressures and average bulk density of materials in
bins. The program uses Janssen's approach where the material properties and K value are allowed

to vary within the bin as functions of the vertical pressure and the motisture content.

The programs mentioned above are based on well- defined domain knowledge. However,

many engineering problems involve uncertain factor and heuristic knowledge. A knowledge-base

12



approach to problems solving is appropriate if the problem to be solved is not well-defined, the

knowledge is incomplete or uncertain (Brzezinski, 1993).

Expert system is a recently created branch of computer programming where appear to have
the potential judgmental decision making. The first commercial expert systems were developed in
the early 1980's and they were the first successful real-would Al application (Turban and Watkins,
1988). Early expert systems were developed using a programming language such as LISP or
PROLOG. Often they had to be run on Lisp-machines or other expensive hardware. This lead to a
poor application of expert system in real world. With the emerge of expert system shell in the middle
of eighties, expert system technology was becoming cheaper and more affordable. There have been
successful agricultural-related applications of expert system reported in the literature ( Doluschity
and Schmisseur, 1986). For this thesis, literature review will now focus on the application of expert

system in relative design.

ASD developed by Watson and Brook (1990) is an expert system for the design of aecration
system for flat grain storage. This expert system consists of interview, calculation, design drawing,
and management recommendation components. ASD offers the capability of rapidly designing an

aeration system and changing design guidelines to study the effects upon the design.

MET-X-Pert is an expert system for optimizing designs of metal-clad post-frame building
(Gebremedhin et al., 1989). The novel part of the system was the development of a procedure for
linking and sharing information between the conventional CAD program and the expert system.

13



First, a post-frame structure including diaphragm action was accomplished by using a FRAME
program. Then, the solutions (stresses and deflections) obtained from the FRAME program were
used by the knowledge base of the expert system. The expert system optimized the design based on
specified rules. This systemn was directly developed in Turbo Pascal rather than a shell due to the

limitations of the shells.

Embleton (1990) successfully embodied the design code and design routine of snow loads
and wind loads into an expert system shell (PcPLUS). An external program was developed to
perform mathematical operations that could not be handled in the shell environment. The database
files of weather data were accessed through the PcCPLUS-DOS link. Although this resulted in extra
work for the system developer and slowed the speed of consultations, it provided a means to avoid

shell limitations.

An expert system for the fire protection requirements of the National Building Code of
Canada 1990 was developed by Olynick (1993). The expert system development tool used in this
study was PcPLUS. This system can closely mimic the human approach used in the fire protection
analysis. One of the important aspects of this study was the development of decision trees for each

fire protection topic. The decision tree approach made programming relatively simple and effective.

14



Chapter 3

Expert System

3.1 Introduction

An expert system (ES) is a computer program that represents and reasons with knowledge
of some specialist subject with a view to solving problems or giving advice ( Jackson, 1990). Expert
system technology evolved as a result of many years of attempts by Artificial Intelligence (AI)
researchers to create real-world Al application. The first commercial expert systems were developed
in the early 1980's and they were the first successful real-world Al application ( Brzezinski, 1993).
These expert systems were usually developed in LISP, PROLOG, or other Al-special programming
languages, and often they had to be run on LISP-machine or other expensive hardware. Dedicated
hardware together with specialized programming languages which were difficult to interface to the
external computing world, resulted in a poor application of expert system. In the middle of eighties,
the first expert system development tools capable of running on personal computer appeared in the
market place. This resulted in increasingly applications that were economically justifiable on

inexpensive hardware.

Expert systems share some characteristics with traditional programs. Both kinds of programs
reach conclusions. Similar to expert system to some extent, some traditional programs are interactive
and communicative with users in a natural language. However, there are several fundamental

1S



differences. Conventional computer programs are based on algorithms or ciearly defined procedures
that solve a problem directly. Development of a conventional application typically is based on a
classic design - implement - test cycle (Brzezinski, 1993). Every aspect of the application must be
defined in terms of a precise algorithm. This machine based calculation are very fast and accurate.
However, user interaction is difficult. In contrast to conventional programming technology, Expert
system techniques focus on representing and manipulating symbolic data. By encoding the
knowledge of domain experts, expert system can simulate human approach to solve a real-world
problem. Development of a knowledge-base system does not start with a complete design, instead
incremental development and rapid prototype techniques are used. As opposed to a conventional
system, knowledge is explicitly separated from the problem solving part of a knowledge-based
system. This enables easier modification and maintenance of knowledge. Therefore, expert system
technology is best suited to solving problems that are very complex in nature, and generally involve
uncertain facts and heuristic knowledge. On the other hand, tasks involving large amounts of data,
complex mathematical calculations, graphical display are better suited to conventional programming
technology. However, real-world problems involve both types of tasks. In order for expert system
technology to be useful in solving problems, it must be integrated with conventional programming
technology. In recent years this requirement has been realized and various expert system packages

have appeared on the market capable to varying degree of integrating with conventional

programming technology.

3.2 Components of an Expert System

16



An expert system is composed of the following sections:
-— a knowledge base

-—-- an inference engine

--—- a user interface

--— a working memory

—-- an explanation subsystem and

- a knowledge acquisition subsystem.

A general block diagram of an expert system is illustrated in Fig. 3.1.

Knowledge Working
Base Memory

[} i
! =

' :
Interface :
Engine

L}

i
1 P

1 1 1

, §n°“;il"“:_ge Explanation User
cLusilon Subsystem Interface

L Subsvstem |

| ,r

i |
System User
Developer

Fig.3.1. Basic Structure of an expert system

The description of these components is provided as follows:

17



The knowledge base contains the basic knowledge for understanding, formulating, and

solving the problem, including facts, rules, and methods.

The inference engine controls the execution of the system, and determines how to solve a
particular problem. It uses the knowledge base to modify and expand the contents of working
memory. Most expert systems are based on backward or forward chaining, and some are based on
both rules and methods. In backward chaining, the system begins with the desired goal of the system
and moves toward the requisite conditions to satisfy this goal. On the other hand, forward chaining

uses the known conditions to work toward the desired goal of the consultation.

The user interface allows a user to communicate with the system and creates and uses a
database for specific cases. Its basic function is to gather information from the user and present the
results of a consultation session back to the user. The features of a user interface include data input,
reporting, natural language modules, and graphics displays. These items determine the ease with
which a user can learn and use a program as well as the ease of program development. Therefore,
the capability of a user interface is the main factor by which the performance of an expert system

is evaluated.

The working memory is a part of the knowledge base. It initially contains user specified facts,
but as the system reasons with the data, facts may be added, modified, or deleted. The process

concludes when the desired problem solving process ends.

18



The explanation subsystem provides the means for the expert system to explain to the user
how it arrives at a particular conclusion or why a particular question is asked. It is important during

the development and debugging of an expert system and consultation.

The knowledge acquisition subsystem is used for developing and modifying the knowledge
base. It consists of a knowledge editor and an induction tool. The editor ensures that knowledge data
are properly configured to the form required by the inference mechanisms of the system. Induction

tools facilitate data transfer to the ES program from extemal information sources, e¢.g. database and

analytical programs.

The above-mentioned six components are fundamental to all expert systems. Of the six
components, only the knowledge base is problem specific. Early expert systems were developed
using Al-specific programming language for six components. It soon became apparent that only the
knowledge base was different for various problems, and all other components were the same in every

expert system. These components or programs thus became known as shells.

3.3 Expert System Development Tool

3.3.1 Expert System Shell

The expert system shell is an expert system with an empty knowledge base. It consists of all

the basic components needed to support an ES program but the problem specific knowledge.

19



Generally speaking, an expert system shell is application independent. Once constructed it can be
reused in many applications. On the other hand, the knowledge base determines what problems an

expert system will be able to solve.

By using the shell approach, the task of an expert system developer is to translate domain
knowledge (from human experts, textbook, database, literature, and reference books, etc. ) into the
shell. Therefore, expert system shells greatly simplify and speed up the creation of an expert system,
because they alleviate the programming problem and allow the developer to concentrate on building
the knowledge base. There are many different types of expert system shells available now and each
of them has its strengths and limitations. For example, some shells support only rule-based
knowledge representation, such as VP-Expert, PcPLUS, EXSYS expert system shell. In this category
some shells provide only backward chaining or only forward chaining inference mechanisms. Other
shells support both rule-based and frame-based knowledge representation such as Level5 OBJECT
and KES expert system shell. Shells vary from one to another with respect to knowledge base
capacity, price, inference mechanisms used, facilities to make use of external information sources,
graphics capabilities, and explanation facilities. Despite the wealth of knowledge accumulated about
constructing expert system, choosing an appropriate tool for building a particular system remains
a difficult yet crucial. A tool that in some sense well suits a particular problems area can facilitate
the development process, shorten the development time, and lead to a finished product that performs
with a high degree of efficiency. Four key shell characteristics should be reviewed when a shell is
chosen (Embleton, 1990):

--—- the ease of graphics incorporation

20



- the screen formation features
-— the ease of knowledge base entry and management, and
—- the ease of external access to other programs and data files.
The selection of the shell should be based on the problem to be solved, the abilities of the developer,

and the needs of the user.

3.3.2 Level5 OBJECT Expert System Shell

Level5 OBJECT, developed by Information Builders, Inc., is the expert system shell used
to develop this expert system. It is a Microsoft window-based expert system shell which allows both
rule-based and frame-based (object-oriented) knowledge representative.

Hardware requirements:

* An IBM PC or 100% compatible with a 286 or above processor.
* A hard disk drive with a minimum of 4MB free hard disk space.
* At least 2MB of memory.

Software requirements:

* Microsoft windows version 3.0.

The main features of Level5S OBJECT are:

1) Both rule-based and frame-based (object-oriented) knowledge representation.
2) English-like rule syntax.

3) Three different methods of integrating with database technology.
4) Dynamic data exchange.

21



5) Ability to call an external program or function from within a knowledge-base system.
6) Client-server architecture.

7) Very high-quality knowledge management facilities.

22



Chapter 4

Development of the Expert System

4.1 Knowledge Domain

The Canadian Farm Building Code (1990) and EP433 (ASAE, 1991) are the principal
sources of knowledge used to build the present expert system. Both codes recommend the use of
Janssen's equation to calculate static loads. CFBC (1990) specifies a central discharge overpressure
factor range from 1.4 to 1.6 and an eccentric discharge overpressure factor between 2.0 and 2.5.
EP433 specifies that an overpressure factor of 1.4 may be used in mass flow bins (H/D >= 2).
Because the corrugated steel grain bin is the domain system in the market, development efforts were

restricted to corrugated steel bins with circular cross-sections.

For cylindrical bins, calculation of three "grain induced” pressure is important (Fankhauser,
1977). These pressures are:
1. Horizontal pressure creating hoop tension in the bin walls.
2. Vertical pressure acting on the cross-sectional area of the bin foundation or grain mass.

. Vertical wall load introduced into bin side walls through friction between the grain mass and

W

corrugated sheets.

Fankhauser suggested that the design of the bin shell was primarily dependent on the magnitude of



horizontal pressure and vertical wall load, and the vertical pressure was used for foundation analysis.
Since the purpose of expert system related to bin shell design, attention was focused on horizontal
pressure and vertical wall load. Those material pressures were determined by Janssen's equation.

This expert system will reduce those pressures to the loads on specific bin components.

Horizontal pressure due to the stored material is assumed to be uniform around the
circumference of the bin at any particular grain depth. Pressure is converted to hoop tension (T) at

any specified grain depth based on the relationship:

T=pxD/2 (4.1)
where
T = hoop tension at a specified grain depth (N/m)
p = horizontal pressure at the specified depth (N/m?)

D = bin diameter (m)

Hoop tension can then be specified as a tensile force in any given tier of bin sheets. This
value can be used to specify the required wall sheet thickness at any vertical location in the bin wall.
Bin sheet information with regard to the pitch of the corrugations allows hoop tension to be reduced
further to the tensile force applied over the vertical dimension of a single corrugation. A table of bolt
pattern coefficients (Table 4.1) was developed to define the number of bolts that would be available

to carry this force (Ni et al., 1994). Shear force carried by a single bolt is specified as:

24



S=CxTxd 4.2
where:
S = shear force applied to each bolt (N)
T = hoop tension at a specified grain depth (N/m)
d = sheet pitch (m)

C = constant related to bolt pattern, given by Table 4.1.

Table 4.1. Boilt pattern coefficients

Bolt Pattern C

one row of boits with space equal to 1

one corrugation pitch

one row of bolts with space equal to 2
half of a corrugation pitch
two rows of bolts with space equal to 2

one corrugation pitch

two rows of boits with space equal to 4
half of a corrugation pitch

It is assumed that vertical wall load will be transferred from the wall panel to the stiffener

through bolted connections, and this load is considered to be taken entirely by the stiffeners

25



(Schott, 1990). The vertical load per stiffener is:

P=nxDxF/N (4.3)
where:
P = vertical load in a single stiffener (N)
D = bin diameter (m)
F = vertical wall friction (N/m)

N = numbers of stiffeners around bin circumference.

4.2 Development tool

Level 5 Object, developed by Information Building Inc. (1990), is the expert system shell
used to develop this design aid. LevelS Object is a Microsoft Window-based expert system shell
which allows both rule-based and frame-based (object-oriented) knowledge representation. Level
5 Object was selected because of the object-oriented style which seems to adapt well to engineering
design. This is a good learning tool for new developer to catch the idea how to quickly develop a

prototype expert system.

Level5 Object is a hybrid application development tool that integrates object-oriented
techniques and expert system technology with traditional, procedural programming. The structural

breakdown of a LevelS Object is shown in Fig.4.1.

26



Name

CLASS Properties

Type
O Attributes
Name
B
J
E
C
T I Facets | Isrethods | | Croup | I gjg“fpn
INSTANCE Values

Fig.4.1. Structural breakdown of a Level5 Object

Objects are one of the basic structure components for Level5 knowledge representation.
Objects have a class structure to define their characteristics and an instance to hold current data
values from the knowledge base. In Level5, there are different kinds of objects, i.e. user-defined and
system-defined class. User-defined objects are those you create during development and are specific
to each individual application. Usually, at the beginning of development, knowledge engineer will
define several classes in Object Editor based on the problem to be solved. System objects are a set
of predefined objects that Level5 automatically creates in all application such as display, windows
etc.. Level5 automatically creates system class when a new knowledge base is created. System class

27



allows you to control the inferencing and windowing environments, as well as displays, messages,
database interaction. Each knowledge base also contains a single, predefined instance of the
DOMALIN class created by LevelS which allows you to build applications without explicitly defining
your own class. At an initial stage of this expert system development, a small prototype expert

system was developed under DOMAIN class.

Within Level5S OBJECT, A class is defined by a collection of attributes, which represent the
information contained within the object. Each attribute of a class has a specific attribute type. The
Level$ attribute types are compound, multicompound, simple, numeric, string, picture, rectangular,
colour, time and interval. Each attribute can have when-needed and when-changed methods attached.
Attributes of objects can be assigned values which can be accessed later in when-needed and when-
changed methods. They can also be accessed in rules. Parts of the knowledge base in Level$ can be
represented as rules. There are two types of rules: demons (forward-chaining rules) and rules

(backward-chaining rules). Rules can use attributes of objects both in promises and conclusions.

4.3 System Architecture

The basic structure of this expert system is shown in Figure 4.2. The knowledge base serves
as the overall system integrator handling user interaction, accessing database, passing parameters
to external programs and running the plotter programs. Databases ({BASE III format) are used to

store bin geometry and material properties. These databases are accessed by the knowledge base

28



directly. External programs, written in Pascal, are used to present the pressure distribution on the
screen. Parameters determined by the knowledge base and those specified by the user are passed to

external programs using ASCII files.

Inf Database for
nierence P bin geometry
engine and material

K3

properties

Knowledge External pro—
dae gram for load

base calculation

//
'
1
User Plotter pro-—
\J gram for

interface plotting load
T curves

Fig.4.2. Basic structure of this expert system

4.4 Structure of the Bin Loads Analysis Program

The CFBC (NRCC, 1990) and EP433 (ASAE, 1991) recommend that the use of Janssen's
equation for calculate the static pressures. When using Janssen's equation to predict material
pressures, the predicted value for the material pressures will depend on variables which were
specified. Important variables include the bulk density, coefficient of friction on various surface and
K value. These variables vary with the type of material stored, the methods of filling and emptying,
and conditions of storage. This expert system will help designer to pick up appropriate values. The
key part of this ES is to reduce those pressures to the loads on specific component of a grain bin. The

general flowchart of this program is shown in Fig.4.3. The flowchart of CFBC and ASAE

29



sheet

subprogram are shown in Fig.4.4. and Fig.4.5.

{ start

N~

RS S —
; pre—selection of,
' bin geometry '

[
{

RN S

. Code selection

R S——
material '
properties

-

R E—

' sheet length
and width

—_—
. real bin height :

' and diameter

-
static and '
. dynamic loads

which

]

. which tier want!
to checked

. hoop tensile

component
?

holt

_—
sheet pitch

—_
bolt pattern
-1

'shear force
applied to bolts !

1

stiffener number
_around bin wall’

force applied
. to stiffeners

i
'
T
|

ol

Fig.4.3. General flowchart of this expert system program

30



CFBC

1
!
|
L

grain type

i

H
moisture
content

1
wall
material

1

L
material
properties

1
sheet width
and length

'3

real bin
dimension
l
static
loads

1]
1
dynamic
loads

:
component
check

Fig.4.4. Flowchart of CFBC subprogram

31



EP433

i
wall
material

1
material
properties

:
static
loads

component
check

flat bottom

bottom
type 2

'

i hopper

] 1
hopper dynamic
angle load

'
i
| ¢

1
dynamic '
load

2
component
check

Fig.4.5. Flowchart of ASAE subprogram

32



4.4.1 Defining class structure

In Object Editor, five classes were created. They are:
1) Action display of CFBC, which contains all the "action" to control display and inferencing of
CFBC.

2) Action display of ASAE, which contains all the "action” to control display and inferencing of
ASAE.

3) Action display of load analysis, which contains all the common "action" to control display and
inferencing during load analysis.

4) CFBC , which consists of all the attributes stand for the parameters to calculate the loads in

CFBC.
5) ASAE , which consists of all the attributes stand for the parameters to calculate the loads in

ASAE.

4.4.2 Defining attribute structure

The attribute represents the information contained within the object. A knowledge base
makes recommendation and conclusion as a result of the values LevelS obtains for the attribute of

a class. The attribute of a class can be defined during the development of knowledge base.

The attributes of a class define the qualities of the class and the type of information

33



associated with the class. The following outlines the basic structure of Level5 attributes and the

components.

A name —- The name must be unique from ail other attributes of the class. But different

classes may have attributes with the same name.
A type -—— Each attribute of a class has a specific attribute type. The Level5 attribute
tyeps are compound, multicompound, simple, numeric, string, picture,

rectangular, color, time, and interval.

Its facets --— Each attribute can have many facets associated with it. Facets provide

control over how the inference engines process and use attributes.

Its method -—- Each attribute can also have methods associated with it. Methods establish

developer-defined procedures associated with each attribute.

4.4.3 Creating Display

1. Title Display

Display Editor allows developer to display a collection of objects used for prompt form,

graphic or reports. Usually every expert system can have a Title Display, which will appear at the

34



start of a knowledge base session. This is achieved by assigning this display name to the attribute

Title Display in the Application System Class.

In title display, a picturebox presented a grain storage bin and several pushbuttons were built.
Picturebox can display a graphic bit-map image in a rectangular area. To read the bit-map data in
from a disk resident file, it is necessary to assign the path and filename to the attribute filename. The
disk resident file must be in BMP file format. The PRL (production rule language) below declares

the instance of the picture system class.

INSTANCE Picturebox 1 ISA Picturebox
WITH location := 0, 0, 500, 450.
WITH clipped := TRUE

WITH filename = "C:\L5025\Ni\Title.BMP"

* Title. BMP is implement in the paintbrush of window 3.1.

Three pushbuttons ( run, exit, and about ) were created for different cases. During a knowledge base
session, selecting a pushbutton changes the value of a simple attribute attached to this pushbutton
in the context. Selecting a pushbutton can also cause a display to be sent to the current window or

initiate an action. The PRL below declares the instance of the pushbutton Run.

INSTANCE Pushbutton

WITH location := 391,339,461,364

35



WITH label := "Run”

WITH display attachment := Grain Amount Display

When the user selects a pushbutton, the value of the reference attribute changes. Assigning
a display instance name (grain amount display) to the display attachment causes Level5 activated

that display when the end user selects this pushbutton.

2. Grain Amount Display

To establish the bin geometry, two parameters must be determined. One is the grain amount
to be stored in the bin and the other is the bulk density of stored grain. CFBC specifies a different
grain bulk density due to variety of stored grain. A database (shown in appendix A) contained the
relationship between the bin geometry (bin diameter and height) and the grain amount was
established in Paradox for Window based on the lowest grain density - the barley which will lead
to a conservation design. In this display, the user will be asked to inter the grain amount (Tons) in
promptbox, which prompts the end user for an attribute's value. The end user can modify any current
value displayed in the promptbox or enter a new value. The PRL below declares an instance of the

promptbox system class.

INSTANCE promptbox ISA promptbox
WITH location := 410, 212, 467, 248
WITH justify IS left

WITH frame := TRUE

36



WITH show current := TRUE

WITH attachment := Grain Amount

A pushbutton Continue attached to attribute Continues Weight display OF Action display of
CFBC was created. This attribute references a when-changed method to find qualified geometry bins
through the database. Level5 Object can create a class corresponding to a given dBase file
automatically. The class will inherit all attributes of the dB3 system class. The Database
automatically generates the class structure of Level5 database objects from the external database
structure. The PRL below declares the when-changed method to find qualified bins from a database

file.

WITH Continues Weight display SIMPLE

WHEN CHANGED

BEGIN

FIND dB3 WEIGHT 1

WHERE weight of dB3 WEIGHT1 > = amount of grain
AND weight of dB3 WEIGHT1 <= amount of grain + 30
WHEN FOUND

MAKE qualified bin

WITH bin diameter := bin_diameter OF dB3 WEIGHT1
WITH bin height := bin_height OF dB3 WEIGHT1
WITH weight := weight of dB3 WEIGHT1

FIND END

visible OF main window := FALSE

output OF Main Window := qualified bin display
visible OF main window := TRUE

END

37



WHEN CHANGED is a method containing a sequence of procedural statements that Level5
executes when an attribute's value changes. A WHEN CHANGED block can include one or more
of the statements listed below. These statements can occur in any order and can be nested within a
single block. LevelS evaluates them from top to bottom. Whenever the user select a pushbutton, the
when-changed method attached to this pushbutton will fire. FIND command compares the instance
values of one or more classes to find those instances that meet conditions specified in a WHERE
clause. When values are found satisfying the conditions specified in the WHERE clause, the
specified WHEN FOUND clause is exerted. The MAKE command creates a new instance of a
class (qualified bin) during the session, and WITH clause assign values which were found in a
database to the attribute of the instance. The statement sends the qualified bin display to the main

window and make the window visible.

3. Qualified Bin Display

A table was created to show all the eligible bins which are satisfied grain amounts. Table

system class allows you to display the instance values of a class as data within a table. The PRL

below declares an instance of this table system class

Class table

WITH attachment qualified bin

WITH columns REFERENCE COLLECTION
WITH heading SIMPLE

INIT TRUE

38



WITH heading height NUMERIC
WITH row height NUMERIC
WITH fill colour COLOUR
WITH column lines SIMPLE
INIT TRUE

WITH row lines SIMPLE

INIT TRUE

WITH frame SIMPLE

INIT TRUE

WITH selected SIMPLE

WITH double clicked SIMPLE

The attachment attribute references the qualified bin class whose instance values will appear in the

table. One row in the table represents one instance of the attached class.

The simpie attribute selected has a value of TRUE at run time when you select a row in a table. This
attribute also sets the instance in the selected row as the current instance of its class. This tells Level5
Object when and what instance was selected in a table. If an end user forgets to select one item from

the table, knowledge base will prompt the user to select one.

A pushbutton Other was created for the purpose when users want to enter other bin geometry other

than one of the tables.

4. Code Selection Display

39



In this display, a radiobutton group was attached to a compound attribute Code Name .
Compound attribute represents an attribute that assumes a single values from a logically related
group of symbolic values. The CFBC, ASAE, ACI, DIN 1055 are designated as the values of Code
Name. ACI and DIN 1055 are included for the purpose of further development. Radiobutton group
displays a group of radiobuttons which represent the possible values of a compound attribute.
Radiobuttons appear in groups, and are used to respond to questions where the choices are mutually

exclusive. The PRL system of the radiobutton system class is:

INSTANCE radiobutton ISA radiobutton group
WITH location =179, 115, 363, 262

WITH pen colour :=0, 0, 255

WITH fill colour == 192, 192, 192

WITH frame := FALSE

WITH label := "Code Name"

WITH show current := TRUE

WITH attachment := Code Name

A pushbutton attached to the when-changed method Continues code display was created in this
display. If the user selects CFBC, this when-changed method fires, and Grain Type Display will
appear. If the user selects ASAE, this when-changed method also fires, and Wall Material of ASAE

Display will appear. The PRL below declares this method.

WITH Continues code display SIMPLE

WHEN CHANGED

40



BEGIN

IF Code name IS CFBC 1990 THEN

BEGIN

visible OF main window := FALSE

output OF subwindow1 := Grain type display of CFBC
visible OF subwindowl = TRUE

END

IF Code name IS EP433 1991 THEN

BEGIN

visible OF main window = FALSE

output OF subwindowl := wall material display of ASAE
visible OF subwindow1 := TRUE

END

END

5. a. Grain Type oF CFBC Display

In CFBC, the value of bulk density, coefficient of friction and K value will depend on grain

type, moisture content and bin wall material. Grain type includes Wheat, Barley, Shelled Com,
Soybeans, Flaxseed, and Canola. A table was created for displaying grain type. Different grain will
hold different moisture content. Therefore, knowledge base should present suitable moisture content

corresponding to the grain type selected by the user. This is accomplished by following when-

changed method.

WITH Continues grain type selection SIMPLE

41



WHEN CHANGED
BEGIN

IF select OF table grain type = TRUE THEN

BEGIN

load MC OF Action display of CFBC :=TRUE

visible OF subwindowl := FALSE

output OF subwindow1 := Moisture Content of CFBC display
visible OF subwindow! == TRUE

END

ELSE

BEGIN

text OF validationMessage := "Please select a grain from the table before selecting Continue pushbutton”
AskValidationMessage

END

END

When the user chooses the Continue pushbutton which attached to above when-changed method
after selecting a grain, the when-changed method Load MC OF Action display of CFBC will fire.

The PRL below declares this when-changed method.

WITH Load MC SIMPLE
WHEN CHANGED
BEGIN

FORGET M_C list

FIND M_C list

WHERE grain name OF M_C = grain name OF grain

42



WHEN FOUND
MAKE M_C list

WITH M_C =MC OF M_C
FIND END

END

FORGET command removes values of attribute and sets its confidence to undetermined. Where
clause matches the grain type defined by user with that of the M_C Class. Then MAKE command
lists the moisture content in M_C list class. The instance of M_C class was created at editing time

(shown in Table 4.2).

Table 4.2. Moisture content of CFBC

Grain name Moisture Content
Wheat 11
Wheat 13
Barley 11
Barley 13
Shelled Corn 11
Shelled Corn 16
Soybeans 11
Flaxseed 9
Flaxseed 11.5
Canola 9

Canola 12.5

43



5. b. Wall Material of ASAE Display

In EP433, a maximum of 834 kg/m’ is reccommended for the bulk density of any free-flowing
grain, and other material properties only depend on wall material (shown in table 4.3. ).

Table 4.3. Matenal properties for EP433

Wall Material 73 K

Smooth Steel 0.30 0.5
Concrete 0.40 0.5
Corrugate Steel 0.37 0.5

A radiobutton group is attached to a compound attribute Wall Material , which consists of Steel,
Concrete, and Corrugate Steel. A pushbutton Continue attached to following when-changed method

was created in this display to find material properties («, K ).

WITH Continue WM of ASAE SIMPLE

BEGIN

PURSUE K OF qualified grain

visible OF main window := FALSE

output OF main window := Grain Property Display
visible OF main widow := TRUE

END

PURSUE command allows you to invoke a backward-chaining inference engine from any point
within an application. This command tells LevelS Object to follow the search order for a specified
attribute ( K OF qualified grain ) until a value is obtained for the attribute. The material properties
( &, K ) were determined by following when-needed method.



ATTRIBUTE K OF qualified grain NUMERIC
WHEN NEEDED

BEGIN

I[F Wall Material IS Smooth Steel THEN

BEGIN

Density OF Qualified Grain := 834

Coefficient of friction OF Qualified Grain :=0.30
K Of Qualified Grain :=0.5

END

[F Wall Material IS Concrete THEN

BEGIN

Density OF Qualified Grain := 834

Coeflicient of friction OF Qualified Grain := 0.40
K Of Qualified Grain == 0.5

END

IF Wall Material IS Corrugate Steel THEN
BEGIN

Density OF Qualified Grain := 834

Coeflicient of friction OF Qualified Grain :=0.37
K Of Qualified Grain :=0.5

END

END

6. Moisture Content of CFBC Display

A table attached to M_C list class was created to display the moisture content corresponding

to selected grain. The user can pick up one moisture content based on his/her own experience, and

click Continue pushbutton to go over Wall Material OF CFBC Display.

7. Wall Material of CFBC Display

Wall Material is a compound attribute, which consists of Smooth Steel, Corrugate Steel,

Plywood, and Concrete. A Radiobutton attached to Wall Material attribute was created. The user

45



can select one of wall materials. A when-changed method is attached to Continue pushbutton to
determine material properties such as bulk density, coefficient of friction, and K value. The PRL

below declares this when-changed method.

WITH Continue WM OF CFBC selection SEIMPLE
BEGIN

FIND dB3 Propertyl

WHERE grain_type OF Propertyl = grain name OF grain
AND mois_cont OF Propertyl = MC OF M_C list

AND wall_mate OF Propertyl = material name OF Wall Material
WHEN FIND

MAKE Qualified Grain

WITH Density := density OF Propertyl

WITH Coefficient of friction := coef_fric OF Propertyl
With K := K OF Propertyl

FIND END

visible OF subwindow1 := FALSE

output OF main window := Grain Property Display

visible OF main window := TRUE

END

In this when-changed method, knowledge base will match the grain type, moisture content, and wall
material specified by user with dB3 Propertyl which stored the material properties (shown in
Appendix B). MAKE command will create the instance of Qualified Grain class.

8. Grain Property Display

The material properties (w, «, K) will be presented to the user in promptboxes, which allow
the user to modify any current value or enter a new value. In the mean time, help screen will provide
the user with some information about the influence some factors on material properties by selecting
Help pushbutton. Many research work has done in this area. In help screen, the user can get

summary information about how to pick up a suitable value. Also, the user can optionally select

46



Change pushbutton if he/she want to change material properties according to his/her own

experience.

9. Sheet Dimension Display

As mentioned before, this expert system will focus on the corrugated steel bins which stand
for most of on-farm grain storage bins. Sheet length and sheet width were asked to recalculate
suggested bin dimensions on the basis of "full” sheets. Storage capacity will be recalculated for each
set of suggested dimensions. The user can enter this two dimensions or pick it up from the table
which stand for several sheets used in WESTEEL. The PRL below declares when-changed method
for recalculating bin dimension and storage capability.

WITH Continues sheet display SIMPLE

WHEN CHANGED

BEGIN

IF bin height OF qualified bin / sheet width = INT (bin height OF qualified bin / sheet width) THEN
Tier Number :=bin height OF qualified bin / sheet width

ELSE

Tier Number := INT (bin height OF qualified bin / sheet width +1)

BEGIN

FORGET Tablel

i:=0

WHERE (i < Tier Number )

BEGIN

i=i+l

MAKE Tablel

WITH Tire Number :=i

END

Bin Height := Tier Number x sheet width

Bin Diameter := INT ( bin diameter OF qualified bin x ©t / sheet width + 1) x sheet length /
Grain Amount :=( © x SQR (Bin Diameter/2) x Bin Height x density OF qualified grain x 1.06 / 1000
Grain Amount := ROUND (Grain Amount)

output OF subwindow?2 := Real bin display

47



visibie OF subwindow?2 := TRUE
END
END

MAKE command creates the instance of Tablel class. A Display pushbutton attached to above
when-changed method was created to display real bin dimension and storage capability. A Close
pushbutton lets user return to main window from subwindow?2. A Continue pushbutton attached to
continues sheet dimension display was created to continue knowledge session. This when-changed
method will lead to the load data and curve display.

10. Static Load and Curve Display

Until now, knowledge base has obtained all the information for determining static loads.
Therefore, the user can select to see load data or view load curves.

If the user selects see load data Yes, following when-changed method Continues load data
yes display will exert.

WITH Continues load data yes display SIMPLE
WHEN CHANGED

BEGIN

{F Code name IS CFBC 1990 THEN

BEGIN

PURSUE Sta_Hori_Pressure [1] OF CFBC
FORGET Table2

i=1

WHILE (i< Tier Number +1)

BEGIN

i=i+1

MAKE Table2

WITH A := Height [i] OF CFBC

WITH B :=Sta_Hori_Pressure [i] OF CFBC /1000
WITH C := Vert_Pressure [i] OF CFBC /1000
WITH D := Vert_Friction [i] OF CFBC/ 1000

48



END

output OF subwindow3 := Static Load display of CFBC
visible OF subwindow3 := TRUE

END

IF Code name IS EP433 1991 THEN

BEGIN

PURSUE Sta_Hori_Pressure [1] OF ASAE
FORGET Table3

i=1

WHILE (i< Tier Number +1)

BEGIN

i=i+1

MAKE Table3

WITH A := Height [i] OF ASAE

WITH B :=Sta_Hori_Pressure [i] OF ASAE / 1000
WITH C := Vert_Pressure [i] OF ASAE / 1000
WITH D :=Shear_Stresses [i] OF ASAE / 1000
WITH E := Vert_Wall_Load [i] OF ASAE / 1000
END

output OF subwindow3 := Static Load display of ASAE
visible OF subwindow3 := TRUE

END

END

Sta_Hori_Pressure OF CFBC is an array type attribute, which can be declared in Attribute Type
Dialog. The value of array elements can be assigned at run time from methods, rules, or demons. The
attribute Sta_Hori_Pressure OF CFBC and Sta_Hori_Pressure OF ASAE respectively reference
a when_needed method which specifies a procedure that LevelS uses when determining an attribute
value. When you declare a when-needed method for an attribute, Level5 Object automatically
replaces the default search order list ( C, W, R, Q, D) with a search order list containing just when-
needed. The PRL below declares the when-needed method to determined Sta_Hori_Pressure OF

49



ATTRIBUTE Sta_Hori_Pressure OF CFBC NUMERIC

ARRAY SIZE 100

WHEN NEEDED

BEGIN

h:=0

i=1

WHILE (h <= Tier Number x Sheet Width)

BEGIN

Sta_Hori_Pressure [i] OF CFBC := 1.06 x 9.81 x Density OF qualified grain x R/ Coefficient of friction OF

qualified grain x ( 1 - EXP (-K OF qualified grain xCoefficient OF
qualified grain xh /R))

Vert_Pressure [i] OF CFBC :=Sta_Hori_Pressure [i] OF CFBC x K OF qualified grain

Vert_Friction [i] OF CFBC := 1.06 x 9.81 x Density OF qualified grain x R x ( h - R/ (K OF qualified grain
xCoeflicient of friction OF qualified grain) + R / (K OF qualified grain x
CoefTicient of friction OF qualified grainx EXP (-K OF qualified grain x
Coeflicient OF qualified grain xh/R)))

Height[i] OF CFBC :=i-1

h := h + sheet width

i=i+l

END

END

The static loads of ASAE are determined by another when-needed method similar to the above

when-needed method to determine static loads of CFBC.

When finishing to pursue Sta_Hori_Pressure, MAKE command creates the instance of Table2

class and sends the values of Height, Sta_Hori_Pressure, Vert_Pressure, and Vert_Friction to

Numeric attribute A, B, C, and D. The statement sends static load display to subwindow3 and make

the window visible. A table attached to table2 class was created to display static loads in

subwindow3. A pushbutton Clese is attached to a when-changed method to close this subwindow.

If the user selects view load curve Yes, when-changed method Display Curves exerts. The PRL
below declares this method.

50



WITH Display Curves SIMPLE

WHEN CHANGED

BEGIN

IF Code Name IS CFBC 1990 THEN

BEGIN

filename OF file 1 := "C:\I5025\ni\height.txt"

action OF file 1 IS open new := TRUE

write line OF file 1 := TO STRING(Tier Number)

action OF file 1 IS close := TRUE

filename OF file 2 := "C:\I5025\ni\Cstaload.txt"

action OF file 2 IS open new :=TRUE

FOR (i:=1 TO Tier Number +1)

BEGIN

write line OF file 2 := TO STRING(Sta_Hori_Pressure[i] OF CFBC)
write line OF file 2 := TO STRING(Vert_Pressure[i] OF CFBC)
write line OF file 2 := TO STRING(Vert_Friction{i] OF CFBC)
END

action OF file 2 IS close := TRUE

ESTABLISH "IPU, EXTERN, C:\BP\NI\Cstaload.exe"

END

IF Code Name IS EP433 1991 THEN

BEGIN

filename OF file 1 :="C:\I5025\ni\height.txt"

action OF file 1 IS open new := TRUE

write line OF file 1 := TO STRING(Tier Number)

action OF file 1 IS close := TRUE

filename OF file 2 := "C:\ISo25\ni\Astaload.txt"

action OF file 2 IS open new := TRUE

FOR (i:=1 TO Tier Number + 1)

BEGIN

write line OF file 2 := TO STRING(Sta_Hori_Pressure{i] OF ASAE)
write line OF file 2 := TO STRING(Vert_Pressurefi] OF ASAE)
write line OF file 2 := TO STRING(Shear_Stress[i] OF ASAE)
write line OF file 2 := TO STRING(Vert_WAIl Load [i] OF ASAE)

51



END

action OF file 2 IS close := TRUE

ESTABLISH "IPU, EXTERN, C:\BP\NI\Astsioad.exe"
END

END

This method is used for caliing an external program which is used te display load curves. Parameters
to the external program are passed through ASCII files. LevelS Object creates an ASCII file by
setting the action OF a file attribute to open new, writes the parameters to the file by To STRING
function which converts a numeric attribute type to a string, and closes the file by setting the action
OF a file attribute to close. Next, Level5 Object calls the external program (shown in Appendix C),
written in Pascal, using ESTABLISH command. The external program will display static load

curves on the screen.

A pushbutton Continue is attached to following when-changed method for examining dynamic

effect.

WITH Continues static load display SIMPLE

WHEN CHANGED

BEGIN

IF Code Name IS CFBC 1990 THEN

BEGIN

visible OF main window := FALSE

output OF main window = dynamic effect prompt OF CFBC display
visible OF main window := TRUE

END

IF Code Name IS EP433 1991

AND Bin Height / Bin Diameter >=2 THEN

BEGIN

visible OF main window := FALSE

output OF main window := dynamic effect prompt OF ASAE display
visible OF main window := TRUE

END

52



IF Code Name [S EP433 1991

AND Bin Height / Bin Diameter <2 THEN

BEGIN

visible OF main window := FALSE

output OF main window := component check display
visible OF main window = TRUE

END

END

11. a. Dynamic Effect Prompt of CFBC Display

According to CFBC, it is necessary to check dynamic horizontal pressure. In this display, a
textbox was created to provide the user with some information about dynamic effect during

discharge. A pushbutton Continue leads to the user to examine dynamic loads.

11. b. Dynamic Effect Prompt of ASAE Display

According to EP433, the dynamic effect must be considered in mass flow bins ( H/D >= 2).
The overpressure factor differs by bin bottom type, ie. flat bottom bin and hopper bin. A pushbutton
Continue is attached to bottom type display OF ASAE.

12. a. Dynamic Load and Curve Display

Like static loads, the user can select see dynamic load data or view load curves. If user
selecting see load data Yes, the when-changed method Continues Dy Load Data Yes Display
fires. The PRL below declares this method.

WITH Continues Dy Load Yes Display SIMPLE
WHEN CHANGED

BEGIN

IF Code Name IS CFBC 1990 THEN

53



BEGIN

PURSUE Dyn_Hori_Pressure [1] OF CFBC
FORGET Table4

i=1

WHILE (i < Tier Number +1)

BEGIN

i=i+l1

MAKE Tabled

WITH A:= Height[i] OF CFBC

WITH B :=Sta_Hori_Pressure [i] OF CFBC / 1000
WITH C = Dyn_Hori_Pressure [i] OF CFBC / 1000
END

output OF subwindow3 := Dynamic Load Display
visible OF subwindow3 := TRUE

END

IF Code Name [S EP 433 1991 AND Bin Type OF ASAE IS Flat Bottom Bin THEN
BEGIN

PURSUE Dyan_Hori_Pressure flat [1] OF ASAE
FORGET Tabled

i=1

WHILE (i < Tier Number +1)

BEGIN

i=i+1

MAKE Table4

WITH A:= Height[i] OF ASAE

WITH B := Sta_Hori_Pressure [i] OF ASAE / 1000
WITH C := Dyn_Hori_Pressure flat [ij OF CFBC/ 1000
END

output OF subwindow3 := Dynamic Load Display
visible OF subwindow3 := TRUE

END

[F Code Name IS EP433 1991 AND Bin Type OF ASAE IS Hopper Bin THEN
BEGIN
PURSUE Dyn_Hori_Pressure hopper [1] OF ASAE

54



FORGET Tabled

i=1

WHILE (i < Tier Number +1)

BEGIN

i=i+1

MAKE Table4

WITH A:= Height[i] OF ASAE

WITH B := Sta_Hori_Pressure [i] OF ASAE / 1000
WITH C :=Dyn_Hori_Pressure hopper [i] OF CFBC / 1000
END

output OF subwindow3 := Dynamic Load Display
visible OF subwindow3 = TRUE

END

END

The dynamic horizontal pressure in CFBC is determined by following when-needed method:

ATTRIBUTE Dyn_Hori_Pressure OF CFBC NUMERIC
ARRAY SIZE 100

WHEN NEEDED

BEGIN

i=1

WHILE (i=<Tier Number +1)

BEGIN

Dyn_Hori_Pressure [i] OF CFBC := Overpressure_Factor x Sta_Hori_Pressure [i] OF CFBC
Height [i] OF CFBC =i-1

i=i+l1

END

END

The Overpressure Factor in CFBC is shown in Table 4.4 .

55



Table 4.4. Overpressure Factors for CFBC

Overpressure Factor for Stored Grain

Overpressure factor

Grain stored
H/4R<=2.5*u H/4R>=5*u

Cereal grains, shelled

corn, soybeans and L.0 L.4

canola

Flaxseed and canola t.0 1.6

Overpressure factor is determined by following Rule Group

Rule 1.

{F Bin Height / Bin Diameter <= 2.5 x Coefficient of Friction OF qualified grain
THEN Overpressure_factor :==1

Rule 2.

IF Bin Height / Bin Diameter >=5 x Coefficient of Friction OF qualified grain
AND grain name OF grain = "Flaxseed"

THEN Overpressure_factor := 1.6

Rule 3.

IF Bin Height / Bin Diameter >= S x Coefficient of Friction OF qualified grain

AND grain name OF grain < "Flaxseed"
THEN Overpressure_factor := 1.4

Rule 4.
IF Bin Height / Bin Diameter > 2.5 x Coefficient of Friction OF qualified grain

IF Bin Height / Bin Diameter < 5 x Coefficient of Friction OF qualified grain
AND grain name OF grain < "Flaxseed"

56



THEN Overpressure_factor := 1 + (Bin Height/Bin Diameter - 2.5 x Coefficient of
friction OF qualified grain ) x 0.4/ (2.5% u)

Rule §.

[F Bin Height / Bin Diameter > 2.5 x Coeflicient of Friction OF qualified grain

IF Bin Height / Bin Diameter <5 x Coefficient of Friction OF qualified grain

AND grain name OF grain = "Flaxseed"”

THEN Overpressure_factor := 1 + (Bin Height/Bin Diameter - 2.5 x Coefficient of
friction OF qualified grain ) x 0.6 / (2.5x u)

Level5 Object uses [IF-THEN-ELSE statements to express backward-chaining rules. When the
antecedents of the rule are true, the conclusion is reached. The optional ELSE clause contains the
alternate conclusion. An alternate conclusion is reached when the rule's antecedents fail.

The Static and dynamic horizontal pressures are presented on subwindow3 for comparison.

The dynamic horizontal pressure in ASAE is determined by following when-needed methods.

ATTRIBUTE Dyn_Hori_Pressure flat OF ASAE NUMERIC

ARRAY SIZE 100

WHEN NEEDED

BEGIN

h=0

i=1

WHILE ( h <= Tier Number x Sheet width + 1)

BEGIN

IF h <= ( Tier number x sheet width - Bin diameter / 4 ) THEN
Dyn_Hori_Pressure flat [i] OF ASAE := 1.4 x Sta_Hori_Pressure [i] OF ASAE

ELSE

Dyn_Hori_Pressure flat [i] OF ASAE :=( 1 +( Tier number x sheet width - h ) x 0.4/ R) x Sta_Hori_Pressure
[i] OF ASAE

h :=h + sheet width

i=i+1

END

END

ATTRIBUTE Dyn_Hori_Pressure hopper OF ASAE NUMERIC

57



ARRAY SIZE 100

WHEN NEEDED

BEGIN

i=1

WHILE (i <= Tier Number+1)

BEGIN

Dyn_Hori_Pressure hopper {i] OF ASAE := 1.4 x Sta_Hori_Pressure [i] OF ASAE
i=i+1

END

END

IF the user selects view load curve Yes, the following when-changed method fires. The PRL
below declares this method.

WITH Continues dynamic load curve display SIMPLE

WHEN CHANGE

BEGIN

IF Code Name IS CFBC 1990 THEN

BEGIN

filename OF file 3 := " C:\I5025\ni\height.txt"

action OF file 3 IS open new := TRUE

write line OF file 3 := TO STRING (Tier Number)

action OF file 3 IS close :=TRUE

filename OF file 4 := " C:\I5¢25\ni\dyload.txt"

action OF file 4 IS open new := TRUE

FOR (i:= 1 TO Tier Number + 1)

BEGIN

write line OF file 4 := TO STRING (Sta_Hori_Pressure(i] OF CFBC)
write line OF file 4 := TO STRING (Dy_Hori_Pressure{i] OF CFBC)
END

action OF file 3 IS close :=TRUE

ESTABLISH "IPU, EXTERN, C:\BP\ni\Cdyload.exe”

END

IF Code Name IS EP433 1991 AND Bin Type IS Hopper Bin THEN
BEGIN

58



filename OF file 3 := "C:\IS025\ni\height.txt"

action OF file 3 IS open new := TRUE

write line OF file 3 := TO STRING (Tier Number)

action OF file 3 IS close := TRUE

filename OF file 4 := "C:\I5025\ni\dyload.txt"

action OF file 4 IS open new := TRUE

FOR (i:=1 TO Tier Number + 1)

BEGIN

write line OF file 4 := TO STRING (Sta_Hori_Pressure hopper {i] OF ASAE)
write line OF file 4 := TO STRING (Dy_Hori_Pressure hopper [i] OF ASAE)
END

action OF file 3 IS close := TRUE

ESTABLISH "IPU, EXTERN, C:\BP\ni\Cdyload.exe"

END

IF Code Name IS EP433 1991 AND Bin Type IS Flat Bottom Bin THEN

BEGIN

filename OF file 3 := "C:\15025\ni\height.txt"

action OF file 3 IS open new := TRUE

write line OF file 3 := TO STRING (Tier Number)

action OF file 3 IS close := TRUE

filename OF file 4 := "C:\15025\ni\dyload.txt"”

action OF file 4 IS open new := TRUE

FOR (i:= 1 TO Tier Number + 1)

BEGIN

write line OF file 4 := TO STRING (Sta_Hori_Pressure flat [i] OF ASAE)
write line OF file 4 := TO STRING (Dy_Hori_Pressure flat [i] OF ASAE)
END

action OF file 3 IS close := TRUE

ESTABLISH "IPU, EXTERN, C:\BP\ni\Cdyload.exe"

END

END

TO STRING function sends the value of other numeric types to a file by converting the value to
string. When finishing bin load consultation, knowledge base will prompt end user to continue the

59



load analysis session.

12. b. Bottom Type of ASAE Display

A radiobox attached to the compound attribute Bin Type was created in this display. The Bin
Type consists of Hopper Bin and Flat Bottom Bin. A pushbutton Continue was attached to
following when-changed method Continues bin type display.

WITH Continues bin type display SIMPLE
BEGIN

IF Bin Type OF ASAE IS Flat Bottom Bin THEN
BEGIN

visible OF main window := FALSE

output OF main window := Dynamic load and curve display
visible OF main window := TRUE

END

IF Bin Type OF ASAE IS Hopper Bin THEN
BEGIN

visible OF main window := FALSE

output OF main window := Hopper angle display
visible OF main window := TRUE

END

END

If the user selects flat bottom bin to be examined, the Dynamic load and curve display will appear.
Like dynamic load and curve display OF CFBC, user can see dynamic load data or view load

curves.

12.b.1 Hopper Angle Display

If the user selects a hopper bin to be examined, the hopper angle display will appear. A
promptbox attached to hopper angle was created in this display. A picturebox will display a hopper

60



to show the user which angle is needed. A pushbutton Continue is attached to Dy_Hori_Pressure
hopper OF ASAE display.

12.b.2 Dy_Hori_Pressure hopper OF ASAE Display

Four pushbuttons were created in this display for seeing dynamic load data and curves on
bin body and hopper respectively. The dynamic load applied on bin body is similar to that of CFBC.
The PRL below declares a when-changed method to display dynamic loads applied to hopper.

WITH Continues dynamic data at hopper display SIMPLE
WHEN CHANGED
BEGIN
PURSUE Normal Pressure [1] OF ASAE
FORGET Tables
i:=0
WHILE (i <Count OF ASAE)
BEGIN
i=i+l
MAKE TableS
WITH A := Height [i] OF ASAE
WITH B := Normal Pressure [i] OF ASAE / 1000
WITH C:= Tangential Stress [i] OF ASAE / 1000
END
END

The Normal Pressure is determined by following when-needed method.

WITH Normal Pressure NUMERIC
ARRAY SIZE 100

WHEN NEEDED

BEGIN

h:=0

i=1

61



WHILE ( k <= Hopper height OF ASAE)

BEGIN

Normal Pressure [i] OF ASAE := (1 + (Hopper height OF ASAE - h ) / Hopper height OF ASAE x 0.4)
x ( 1.08 x 9.81 x 834 x R/ Coefficient of friction OF ASAE x (1 - EXP
(- KOF ASAE xCosefficient of friction OF ASAE x ( h + Bin Height ) / R
)) xSQR (COS ( Hopper angle OF ASAE x 1t /180))/ KOF ASAE +SQR
( SIN (Hopper angle OF ASAE x 1t/ 180)))

Tangential Stress [i] OF ASAE := Coefficient of friction OF ASAE x Normal Pressure [i] OF ASAE

Height [i] OF ASAE :=h

h:=h+0.2

i=i+1

END

Count OF ASAE :=i+1

END

The Hopper height is determined by following when-needed method.

WITH Hopper height NUMERIC

WHEN NEEDED

BEGIN

Hopper height OF ASAE = Bin Diameter / 2 x TAN (Hopper angie OF ASAE x 7/ 180)
END

The method to display load curve on hopper is same as the curve display mentioned before.

13. Component Check Display

A radiobox attached to the compound attribute component was created in this display. The
component consists of sheet, bolt, and stiffener. The user can select one for examination.A
pushbutton Continue is attached to following when-changed method Continues component check
display. The PRL below declares this method.

WITH Continues component check display SIMPLE

62



WHEN CHANGED

BEGIN

IF Component IS Sheet THEN

BEGIN

visible OF main window := FALSE

output OF main window := Sheet analysis display
visible OF main window := TRUE

END

IF Component IS Bolt THEN

BEGIN

visible OF main window := FALSE

output OF main window := Bolt analysis display
visible OF main window := TRUE

END

[F Component IS Stiffener THEN

BEGIN

visible OF main window := FALSE

output OF main window := Stiffener analysis display
visible OF main window := TRUE

END

END

Based on the user selection, knowledge base will send different display to the user.
If sheet is selected to be examined, the sheet analysis display will appear.
14. Sheet Analysis Display

A table attached to Tier Number, which was determined in sheet dimension display, was
created. Tier number is defined as the first tier from bin top. The user can select a specific tier for
examining. A valuebox by the table will display the depth from the top of grain to the top of selected
tier ( Depth from grain top). The pushbutton Continue is attached to when-changed method
Continues sheet analysis display. The PRL below declares this method:

63



WITH Continues Sheet Analysis display SIMPLE
WHEN CHANGE

PURSUE Hoop tensile at sheet bottom

output OF subwindow4 := Hoop Tensile Display
visible OF subwindow4 := TRUE

The value of hoop tenstle at sheet bottom is determined by following when-need method.

Attribute Hoop tensile at sheet bottom NUMERIC

WHEN NEEDED

BEGIN

IF Code Name IS CFBC 1990 THEN

BEGIN

Hoop tensile at sheet bottom := Dyn_Hori_Pressure at sheet bottom of CFBC x Bin Diameter / 2
Hoop tensile at sheet middle := Dyn_Hori_Pressure at sheet middle of CFBC x Bin Diameter / 2
Hoop tensile at sheet top := Dyn_Hori_Pressure at sheet top of CFBC x Bin Diameter / 2

END

IF Code Name IS EP433 1991 AND Bin Height / Bin Diameter >=2 THEN

BEGIG

Hoop tensile at sheet bottom := Dyn_Hori_Pressure at sheet bottom of ASAE x Bin Diameter /2
Hoop tensile at sheet middle := Dyn_Hori_Pressure at sheet middle of ASAE x Bin Diameter /2
Hoop tensile at sheet top := Dyn_Hori_Pressure at sheet top of ASAE x Bin Diameter /2

END

IF Code Name IS EP433 1991 AND Bin Height/ Bin Diameter < 2

BEGIN

Hoop tensile at sheet bottom := Sta_Hori_Pressure at sheet bottom of ASAE x Bin Diameter /2
Hoop tensile at sheet middle := Sta_Hori_Pressure at sheet middle of ASAE x Bin Diameter /2
Hoop tensile at sheet top := Sta_Hori_Pressure at sheet top of ASAE x Bin Diameter /2

END

END

Attribute Dyn_hori_pressure at sheet bottom NUMERIC

64



WHEN NEEDED

BEGIN

Dyn_Hori_Pressure at sheet bottom of CFBC := Overpressure_factor x 1.06 x 9.81 x Density OF qualified
grain x R/ Coefficient of friction OF qualified grain x ( 1 - EXP (-K OF qualified grain x
Cocflicient OF qualified grain x Depth from grain top / R))/1000

Dyn_Hori_Pressure at sheet middle of CFBC := Overpressure_factor x 1.06 x 9.81 x Density OF qualified
grain x R/ Coefficient of friction OF qualified grain x ( 1 - EXP (-K OF qualified grain x
Coeflicient OF qualified grain x (Depth from grain top - sheet width/2) / R))/1000

Dyn_Hori_Pressure at sheet top of CFBC := Overpressure_factor x 1.06 x 9.81 x Density OF qualified
grain x R/ Coefficient of friction OF qualified grain x ( 1 - EXP (-K OF qualified grain x
Coefficient OF qualified grain x (Depth from grain top - sheet width) / R))/1000

END

Three valueboxes were created to display hoop tensile at sheet bottom, middle, and top respectively
in Hoop tensile display. The designer can pick up one of the values to determine sheet thickness
based on his/her own experience. A Close pushbutton in hoop tensile display lets user return to sheet
analysis display. A Go Back pushbutton in sheet analysis display allows user return to component
check display.

If the user selects bolt to be examined in Component Check Display, the bolt analysis
display will appear.

15. Bolt Analysis Display

A promptbox attached to sheet pitch was created for the requirement of determining the bolt
space. A when-changed method is used to check the user whether the sheet pitch entered is satisfied

the following requirement:
Sheet Width / Sheet Pitch = Integer
The PRL below declares this method

65



ATTRIBUTE Sheet Pitch NUMERIC

WHEN CHANGED

BEGIN

IF Sheet Width / Sheet Pitch <> INT (Sheet Width / Sheet Pitch) THEN

BEGIN

text OF ValidationMessage := "please enter another sheet pitch to make sure that sheet width
divided by sheet pitch is an Integer”

ASK ValidationMessage

END

END

As sheet analysis display, the user can select any tier for examining. A pushbutton Continue is

attached to following when-changed method.

WITH Coantinues bolt analysis display SIMPLE
WHEN CHANGED

BEGIN

PURSUE tensile force at sheet bottom

visible OF main window := FALSE

output OF main window := Bolt Pattern Display
visible OF main window := TRUE

END

The tensile force at sheet bottom is determined by following when-needed method:

ATTRIBUTE tensile force at sheet bottom NUMERIC

WHEN NEEDED

BEGIN

tensile force at sheet bottom := Hoop tensile at sheet bottom x sheet width

END

A Radiobutton attached to compound attribute Bolt Pattern was created. Usually, there are four

kinds of bolt patterns used in corrugated sheet bins, i.e.

66



1) one row of bolts with space equals to one corrugation pitch

2) one row of bolts with space equals to half of corrugation pitch
3) two rows of bolts with space equals to one corrugation pitch

4) two rows of bolts with space equals to balf of corrugation pitch

A Display pushbutton attached to following when-changed method to display shear force applied
to each bolt in bolt force display. The PRL below declares this method.

WITH Continues bolt display Display SIMPLE
WHEN CHANGED

BEGIN

PURSUE Shear Force in Each Bolt

output OF subwindow4 := Bolt Force Display
visible OF subwindow4 := TRUE

END

The shear force in each bolt will be determined by following when-needed method.

Attribute shear force in each boit NUMERIC
BEGIN
shear force in each bolit := tensile force at sheet bottom / bolt number

END

The bolt number will be determined by following when-needed method.

ATTRIBUTE Bolt Number NUMERIC

WHEN NEEDED

BEGIN

IF Bolt Pattern IS one row of bolts with space equals to one corrugation pitch THEN
BEGIN

Bolt number := sheet width / sheet pitch

END

IF Bolt Pattern IS one row of bolts with space equals to half of corrugation pitch

67



OR Bolt Pattern IS two rows of bolts with space equals to one corrugation pitch THEN
BEGIN

Bolt number := 2 x sheet width / sheet pitch

END

[F Bolt Pattern IS two rows of bolts with space equals to half of corrugation pitch THEN
BEGIN

Boit number = 4 x sheet width / sheet pitch

END

END

A pushbutton Continue attached to following when-changed method was created to determine bolt
diameter based on the shear force applied to each bolt.

WITH Continue bolt pattern display SIMPLE
WHEN CHANGED

BEGIN

visible OF main window = FALSE

output OF main window := Bolt Material Display
visible OF main window := TRUE

END

16. Bolt Material Display

A Radiobutton attached to compound attribute Bolt Material was created in this display.
This compound attribute consists of Gradel, Grade2, GradeS, Grade7, and Grade8. The user can
select one kind of bolt material. A Continue pushbutton was attached to following when-changed

method.

WITH Continues boit material display SIMPLE
WHEN CHANGED

BEGIN

PURSUE Bolt Diameter

output OF subwindow4 := Bolt Diameter Display
visible OF subwindow4 := TRUE

68



END

The bolt diameter will be determined by following when-needed method:

ATTRIBUTE Bolt Diameter NUMERIC
BEGIN
Bolt Diameter := SQUR ( 4 x shear force in each bolt/ ( 0.62 x teasile strength x 1000 x 0.145) x 1000

END
The tensile strength will be determined by following rule group.

RULE 6:
IF Bolt Material IS SAE Grade 1 THEN
Tensile Strength := 60

RULE 7:
IF Bolt Material IS SAE Grade 2 THEN
Tensile Strength := 74

RULE 8:

IF Bolt Material IS SAE Grade 5§ THEN
Tensile Strength == 120

RULE 9:

IF Bolt Material IS SAE Grade 7 THEN
Tensile Strength := 133

RULE 10:

IF Bolt Material IS SAE Grade 8 THEN
Tensile Strength := 150

A Go Back pushbutton in bolt material display allows user return to component check display.

If the user select stiffener to be checked in component check dispiay, the stiffener analysis

69



display will appear.

17. Stiffener Analysis Display

A promptbox attached to attribute stiffener number around circamference was created.

A pushbutton Continue was attached to following when-changed method.

WITH Continues stiffener display SIMPLE
WHEN CHANGED

BEGIN

PURSUE Force applied to each stiffener

output OF subwindow4 := Stiffener Force Display
visible OF subwindow4 := TRUE

END

The stiffener force will be determined by following when-needed method.

Attribute force applied to each stiffener NUMERIC

WHEN NEEDED

BEGIN

[F Code Name IS CFBC 1990 THEN

BEGIN

force applied to each stiffener := (1t x Bin Diameter / Number of Stiffener) x Vert_Fric_Pressure [ Tier

Number OF Tablel] OF CFBC/ 1000

END

IF Code Name IS ASAE THEN

BEGIN

force applied to stiffener := (1 x Bin Diameter / Number of Stiffener) x Vert_ Wall_Load [ Tier Number OF
Tablel | OF ASAE / 1000

END

END

A Continue pushbutton in stiffener analysis display is attached to Output display to present

70



the results of load consultation.

18. Output Display
Output display from the expert system includes tensile force in bin sheets, shear force on

individual bolt, and compression force on each stiffener. Loads are provided for each tier of bin

sheets over the full wall height.

71



Chapter 5

Test and Evaluation

5.1. Testing

The obvious objective of testing is to ensure that the expert system gives the correct results
and prompts presented in the order which would mimic a human expert. Testing cannot be strictly
separated as a phase in the development procedure, rather, it occurs continuously throughout
development. As each new piece of knowledge is learned from the expert, it is added to the
system and the expert must then perform a detailed evaluation of the system. Expert system tools
are designed to complement this incremental development approach. Through testing, any errors
or bias should be removed from the system. The reliability of this expert system has been
evaluated for the Canadian Farm Building Code(1990) and EP433(1991). This was accomplished
by comparing system output with hand calculations for a series of assumed conditions. In all

cases, the expert system results agree with the hand calculations.

As well, data from the design office at Westeel were compared to system output. The
error of lateral pressure between Westeel and this system is less than 6%, and error of vertical

friction loads is less than 10%.

72



This program was tested extensively by the expert system developer and operated without
any apparent computer error. The domain expert, Dr. M.G.Britton, who is an expert experienced
in the design of grain storage bins, also tested the program and was satisfied with the user

interface and the accuracy of results.

5.2. Example Application for CFBC 1990

The following example application illustrates the required inputs and outputs to run this
expert system.
After starting progarm, the user is shown a title screen. the user clicks < Run > to

continue.

Program for Analysis

of Grain Bin Loads

Exit iAbout Run

73



The user is then asked to enter the grain amount (T) to be stored. After entering grain

amount (in this example, the grain amount to be stored in the bin is 180 Tons), the user clicks <

Continue > button.

How many tons of grain do you

want to store in the bin ?

180

Exit Continue

The program then accesses the dBase file in which bin geometry was stored , and sends
several qualified bins to screen. The user is asked to pick up one from the table. The user can get
some information about how to select bin geometry by clicking < Help > button. Optionally,
the user cam click < Other > button to enter his/her own bin geometry. After selecting bin

geometry, the user clicks < Continue > button to continue.

74



There are several geometric bins which

satisfy vour need. please select one. If

you want to try different geometric bin,
please press "Other button.

Bin Diameter Bin Height Weight
(m) (m) (T)
6 7 185 Other
8 8 208 |
|
7 5 149
Exit Help Continue

Next, the user is asked whether or not want to examine rectangular bins. The user clicks

< NO > in this example to code selection display.

This is based on the calculation
of circular bins. Would you like

to try rectangular bins ?

Yes No

75



In code selection display, the user is asked to select one code to be examined. The user

selects CFBC 1990 and clicks < Continue > button.

Please select a code you

want to examine

. O  CFBC 1990
O EP433 1991
- Act 1983 ;
O DIN 1055 1987 |
Exit Help Continue

Then the user is asked to select one type of grains to be stored in the bin. The user selects
Wheat in this example and clicks < Continue > button.

Next, the user is asked to pick up a moisture content from list. In this example, the user
pick up a 11 of moisture content, and clicks < Continue > button.

The user is then asked to select one wall material. After selecting corrugated steel, the

user clicks < Continue > button.

76



Please select a grain from list

Wheat
Barley
Shelled Corn

'
'
'
i
i
1

Soybeans
\' Flaxseed
| Canola

Exit Continue

Please select a moisture
content (%) from list

! 11 |
13 :

Exit Continue

77




Please select a wall material
from list

i Smooth Steel

f Corrug. Steel

Plywood

i Concrete

Exit Continue

The program then accesses the dBase file in which material properties were stored, and

sends the material properties to the user.

According to CFBC (1990) , the properties
of selected grain is shown as follows

Coefficient of friction I 035
K - value | 0.8

Bulk density

Would you like to change the properties
of selected grain ?

Exit Yes No

78



At this point, the user is asked if a different value would be chosen. This option allows the
user enter a new value of material properties based on his/her own experience. In this example,
the user clicks < NO > button.

Next, the user is asked to inter a sheet length and sheet width. After entering this two

dimension, the user clicks < Display > button to display real bin geometry in subwindow.

Please enter sheet length 20 (m)

Please enter sheet width - 08 ! (m)

Display Continue

79



The real bin diameter is “g35  (m)

The real bin height is 8.00 (m)

The amount of grain to

be stored in this bin is =228 ™

Close

The user clicks < Close > button to close subwindow and returns to main window. Then

user clicks < Continue > button to next screen.

Would you like to v
see load data ? es
Would you like to

. Yes
view load curves ?

Continue

80



In static load display screen, if user clicks < Yes > to see load data, the subwindow

appears to display static loads in table.

Tier Sta_Hori_Pressure Vert pressure Vert_ friction
Number (kPa} (kPa) (KN/m)
: L 3.64 6.07 0.51
i 2 6.92 11.54 2.00
3 9.88 16.47 4.36
4 12.54 20.90 7.51
5 14.93 24.88 11.36
6 17.08 28.47 15.85
7 19.01 31.69 20.91
8 20.76 34.60 26.48
9 22.32 37.21 32.52
1Q} 23.73 39.56 18.97
Close

By clicking < Close > button, the user will be brought to main window. If user clicks
< Yes > to view load curves, the knowledge base calls external program, passes the parameters
to external program. External program will send load curves to the screen. The user presses

< Enter > to return to consultation.

81



0 Io 20 30 10

I L i L

‘—\,\\ Pressure
2 4 - = \'s
~ I~
4 4 t - T~
=l ~.
6 . ::_:- - -\.
= ~.
- \
84 = s
104 = " - horizontal pressure (kPa)
Please press "Enter
‘:_,: to return to design ~r=-=-=-=-= vertical pressure (kPa)
= session
=

R ~ vertical friction load (KN/m)

Then the user clicks < Continue > button in load dispaly to continue dynamic effect

examination.

According to CFBC (1990),
It is necessary to examine
dynamic effect during

discharge

Exit Continue

82



The user can obtain some information on dynamic effect during discharge from dynamic
effect prompt display.

Like static load display, the user can select to see dynamic load data or to view dynamic
load curves in dynamic load display. If user clicks < Yes > to see load data, a table which
presents the comparison dynamic horizontal pressure with static horizontal pressure will be

shown in subwindow.

Tier Static horizontal Dynamic horizontal
; Number pressure (kPa) pressure (kPa)
1 3.6+ .82
2 6.92 8.13
3 9.88 11.60
+ 12.54 14.72
5 14.93 17.53
6 17.08 20.06
7 19.01 22.33
8 20.78 24.38
9 2232 26.22
1Q 23.73 27.88
Close

If the user clicks < Yes > to view load curves, the program calls external program to

display dynamic load curves.

83



0 10 20 30 40

L

Pressure (kPa)

N
i
¢

104 Static horizontal pressure

' Please press ~“Enter”
to return to design

| session ; ---------- - Dynamic horizontal pressure

@
Depth from bin top (m)

Next, the user is asked whether a eccentric discharge will be examined. In this example,

the user clicks < NO > button to continue.

The user is then asked to select one kind of components to be examined.

item which

you want to examine ?

Please select an

O Sheet

i O Bolt

O Stiffener !
Exit Restart Continue

84




If the user selects sheet to be checked , the sheet analysis display appears after user clicks
< Continue > button. In this display, the user is asked to select one tier of sheets. If user picks up
tier No.6 to be examined, the depth ( 4.80 m ) from bin top to the bottom of selected sheet will
be presented in promptbox beside table. After user clicks < Display > button, the hoop tensile

force will be shown in following subwindow.

Please select a tier you
want to examine

. Tier No. Depth from bin top to
1
‘ 2 selected sheet bottom
‘ 3
N
) .
% ] '
LI 48  (m)
8
‘ 9
10
Help Display Go Back

The < Go Back > button in sheet analysis display lets user to return to component check

display.

85



The hoop tensile force per unit
height of bin wall

At sheet bottom '63.86 .
At sheet middle '59.94 (KN/m)
At sheet top :55.81

Nate: The hcop tensile force con be used ‘o
determine sheet thickness

Close

If user select bolt to be checked, the bolt analysis display will appear. The user is asked to

enter sheet pitch. In this example, a 0.1 (m) of sheet pitch is entered.

Please enter sheet pitch (m) 0.1
Please select a tier you want
to check
»Tie_r.\’o_.‘; Depth from bin top to
. ; ) selected sheet bottom
2 :
‘ ; f
::'9, ‘ +8  (m)
f 8 | -
i 9
‘ 10
Help Continue

86



After picking up a tier, the user clicks < Continue > button to continue. Next, the user is asked to
select a bolt pattern. The user can get graphic help about bolt pattern by clicking < Help >
buttton. In this example, the bolt pattern is set to two rows of bolts with bolt space equal to half
of one corrugation pitch. The user then clicks < Display > for presenting bolt numbles for each

vertical joint and shear force applied to each bolt in subwindow.

The tensile force (hoop tensile * shhet
width) applied to this sheet is
51 (KN)

Please select bolt pattern

one row of bolls with space equal to one corrugation pilch

one row of bolts writh space equal to half of a corrugation pilch

OO0 0

two rows of bolts unth space equal to one corrugation pitch

O two rows oy halts with space equal to half of a corrugalion ptch

Help Display Continue

87



The number of bolts in each vertical
joint is
32

The shear force applied to each bolt is

1.59 (KN)

Close

After clicking < Continue > button, the user is asked to select a kind of bolt materials. In this

example, the user selects SAE GradeS and clicks < Display ) button to get bolt diameter.

Please select a bolt material

C SAE CGrade 7
C SAE CGrade 2
O  S4AE Crade 5 |
> SAE Crade 7
O SAE Grade 8
Display Go Back

88



The bolt diameter is

. 24.33 (mm)

Close

The < Go Back > button lets user to return to component check display again.

Last, if user selects stiffener to be examined, the stiffener check display will appear. The user
is asked to enter the amount of stiffeners around bin circumference. The user enters ten stiffeners in
this example and picks up tier No.6 to be checked, then clicks < Display > button to display
compression force applied to the select stiffener.

Then, the user clicks <Continue> button to see the output of load consultation.

89



How many stiffeners are there

R . 10
around bin circumference ?

Please select a tier you want

to check
&:r_ﬁ Depth from bin top to
) 1
: 2 selected sheet bottom
! 3 :
: 4 :
— — i
6 : v
I . 48
N ” M
; 9
: 10
Continue Display Go Back

The compression force applied to

selected stiffener is

:31.70 (KN)

Note: Assume “Column” length equals to bolt space

we can determine the dimension of this stiffener

Close

90




Output of Load Consultation
Tier Number Q 6

Tensile Force | §3.86
at Sheet Bottom (KN/m) i

Shear Force on " 159
Each Bolt (kN) :

Compression Force 31.70
on Each Stiffener (KN) ’

Exit Restart

91




5.3. Evaluation of LevelS Object

5.3.1. Integrating Expert System Technology with Database Technology

The advantage of integration of expert system with database technology is enormous. It
can analyze the data stored in a database, create results, and store the results in a database so that

other system can process it further.

The LevelS Object supports two database systems: dBase IIT and Focus. It also offers a
more generic database interface through SQL (Structural Query Language) and third-part

subsystem for remote database.

Level5 Object implements its dBase interface using an object-oriented approach. The dB3
system class provides direct read / write access to dBase III databases. The structure of the

database file is brought into LEVELS by creating an instance of the dB3 system class.

In order to use a database file, a class corresponding to that file must be created. All
attributes of that class, both attribute names and type, must correspond to the field of the dBase
file. Level5 Object can create a class corresponding to a given dBase file automatically in

Database Editor. The class will inherit all attributes of the dB3 system class.

Once a database has been incorporated as an object in a knowledge base, you can access

92



its data, and develop rules, demons and methods. The attributes of the dB3-derived classes can

be used both in rules and methods within LevelS Object.

The LevelS Object's implementation of dBase interface is quite complete and is both easy
to understand and use. Its object-oriented approach integrates well with the rest of the system.
Most function needed for efficient database processing are supported but are some limitations in
the dBase interface.

1) It requires the use of one particular database system - dBase.

2) Only 10 files can be open simultaneously and when index files are used only six files can be
open.

However, the ability to integrate databases in LevelS is enough for developing the expert

systems with limited database processing.

5.3.2. Calling external programs from a knowledge-base system

Expert system tools typically are very limited in math and graphic functions and those
functions that they do have are very inefficient when compared to conventional programming
languages. By allowing the expert system shell to call an external program or function, many of
the above limitations can be eliminated. Allowing calls to external functions can significantly
increase the capability and the performance of an expert system.

Two levels of implementation are possible in Level5 Object:

- calling an external program without further communication;

93



- calling an external program with the parameters and results passing.
The first method is very easy to use and does not require any special support from a caller other
than the ability to start an external program. The second method is much more flexible and useful
but also much more difficult to implement, especially when the parameters and results are passed

through memory as opposed to disk files.

Level5 Object provides two commands for external programs
- ACTIVATE: used when an external program is to be called only once;
- ESTABLISH: used when an external program will be called more than once ( it will

stay in memory after the first call).

Two types of programs can be called from Level5 Object: EXTERN and SERVER.
EXTERN program is an external program that is called with optional command-line parameters
and no further communication exerts between the external program and LEVELS Object. It can
be any MS Dos or MS window application. SERVER is an external program that can receive

parameters from LEVER Object and pass back the results upon termination.

5.3.2.1 Calling an EXTERN program

An EXTERN program does not have to be written specifically to communicate with
Level5 Object. Any program that runs under MS Dos or MS Window can be executed as an
EXTERN program. The following is an example of a call to an EXTERN program.

94



WITH Load Display SIMPLE

WHEN CHANGED

BEGIN
filename OF filel := "C:\I15025\ni\variable.txt"
action OF filel IS open new := TRUE
write line OF lilel := TO STRING (Bulk density)
write line OF lilel := TO STRING (Coefficient of friction)
write line OF lilel := TO STRING (K_value)
write line OF lilel := TO STRING (Bin Diameter)
write line OF lilel := TO STRING (Bin Height)
action OF file 1 IS close := TRUE
ESTABLISH "IPU, EXTERN, C:\BP\ni\load.exe
filename OF file2 := " C:\IS025\ni\Count.txt"
action OF file2 IS open old := TRUE
read line OF file2 := TRUE
Count := TO NUMERIC ( current line OF file2)
action OF file2 IS close := TRUE
filename OF file3 := " C:\ISo25\ni\load.txt"
action OF file3 IS open old := TRUE
read line OF file3 := TRUE
FOR (i :=i TO Count)

BEGIN

95



Sta_Hori_pressure [i] := TO NUMERIC ( current line OF file3 )
END
action OF file3 IS close := TRUE

END

After user clicks the Display button which attached to when-changed method " Load Display”,
LevelS Object calls the external program, passing the parameters to it through a text file. The
external program reads the parameters from the file, calculates the static loads, and passes the

results ( static loads ) back to LevelS Object through another text file.

5.3.2.2. Calling a SERVER program

A SERVER program is written specifically to communicate with Level5 Object. It calls
functions that read the values of attributes in SEND statement and that writes values to
RECEIVE statements. A SERVER program must be a MS Windows program. The following

is an example of a call to a SERVER program from Level5 Object:

ACTIVATE "IPU, SERVER, C:\ 15025\ Prog.exe"
SEND name OF employer

SEND employee.sex IS male

RECEIVE salary OF employee

96



The ACTIVATE command starts the SERVER program Prog.exe and establishes
communication between the server and Level5 Object. Next, Level5 Object sends two parameters
to the server using SEND commands which should have the corresponding 15-read statements.
After the last SEND command LevelS Object yields control to the server. After finishing the
processing, the server returns the result to LevelS Object using one of 15-write statements. LevelS
Object reads the result using the RECEIVE command. At this point the server terminates and
control is returned to Level5 Object. If a LevelS Object application does not use the RECEIVE
command, the server should use 15-quit statement to inform LevelS Object that it can continue

processing.

Through the development of this expert system, it is clear that all the functionality
necessary to call an external program is provided by Level5 Object. Calling EXTERN program
is much easier and does not impose any special requirements on the external program. Parameters
can be passed on the command-line, through ASCII files, or through dBase files. If passing
parameters through the files is not efficient enough then SERVER program must be used.
Writing a SERVER program imposes special requirements on the program and can be

cumbersome but it allows passing parameters and results efficiently through memory.

5.3.3. Knowledge Base Management

Knowledge base management facilities become increasingly important when a knowledge
base becomes larger and more complex. LevelS Object provides easy-to-use and well-designed

97



editors for the following elements of a knowledge base: rules, methods, objects and attributes. All

editors are well integrated and easily accessed from menus and icon bars.

Level5 Object provides a history facility. It allows a user to store a history of a session to
a text file in a readable format. The history shows all actions performed by LevelS Object's

inference engine. The history facility is a very useful debugging and testing tool.

Level5 Object offers explanation facility through the expanded facet that can be attached
to attributes. The expanded facet associates an attribute with a display window that can contain
both textual and graphical explanation of the attribute, for example it can explain why the system

is trying to determine a value of the attribute.

LevelS Object allows exporting a knowledge base to a text file. The knowledge base is
stored in a readable text format - it is translated to Level5 Object's PRL (Production Rule
Language). It is also possible to import a previously exported knowledge base. This allows

developer to port LevelS Object-based applications to other hardware platforms.

Level5 Object offers a very-quality development tools when compared with other expert
system shells, for example PcPLUS. It provides a wide range of tools which should satisfy most

developers. Its extensive support for user interface allows quick development of attractive

prototype system.

98



Chapter 6
Conclusions and Suggestion

for Further Development

From the experience gained through the process of developing this expert system, and

from the performance of the present system, the following conclusions are drawn:

1. An expert system was successfully developed to analyze grain bin pressures and reduce those
pressures to loads on specific components of a grain bin. This expert system consists of

knowledge base, database files, and external programs.

2. The information both from published source and unpublished heuristics of the domain experts
was effectively captured into a frame-based expert system shell. Level5 Object expert system

shell was found to be an acceptable platform upon which to develop this type of design aid.

3. This expert system was developed to provided bin designers with a rapid and accurate means
of determining loads applied to individual bin components. The applicability of this technology
to engineering design specific to steel grain bins has been confirmed.

4. Preliminary evaluation of the system indicated that its performance was satisfactory in

99



addressing the domain targeted. The system has been evaluated against conventional design
calculations based on codes, In all trial, expert system results agree with the hand calculation.
However, some areas of the knowledge base need to be improved a large domain addressed to
provide solutions of better quality so that it may be developed for use. The following

recommendations are given for further expansion of this expert system:

1. The standard database file including sheet dimensions should be established for user selection.

2. Although the corrugate steel grain bin is the domain system in the market, the smooth steel bin
is still needed by farmer. Therefore, the expansion of this system for smooth steel bins is valuable.

It can be easily done by adding some domain knowledge to knowledge base.

3. The principal loads for bin design come from of the action of the stored material. However,
bins will be designed to resist other applicable loads such as dead load, snow loads, wind or
earthquake loads, and thermal loads. For a practical program, the generalization of those loads
must be considered. The determination of those loads is more arts than science. The bottleneck

for developing is knowledge acquisition from domain expert.

4. The present system only can predict loads applied to specific components of a grain bin. The
further study should expend this system to a practical system for optimizing the selection of
structural members capable of carrying loads safely and economically. For example the further
system should provide the user with sheet thickness, bolt and stiffener dimension for a selected

100



tier.

101



REFERENCES

Abdel-Sayed, G., F. Monasa, and W. Siddall. 1985. Cold-formed steel farm structures Part I:
Grain Bins. J. of Struc. Eng. 111(10): 2065-2089.

ACI. 1983. Recommended practice for design and construction of concrete bins, silos and
bunkers for storing granular materials and commentary. ACI 313, American Concrete
Institute, Detroit, M1.

Airy, W. 1897. The pressure of grain. Proceedings of the Institute of Civil Engineers. 131 : 347-
358.

ASAE. 1991. Loads exerted by free-flowing grain on bins. ASAE Standards. EP433. American
Society of Agricultural Engineering. St. Joseph, MI. 509-512.

Blight, G.E. 1985. Temperature changes affect overpressures in steel bins. Intemational Journal
of Bulk Solids Storage in Silos. 1(3): 1-7.

Britton, M.G. 1969. Lateral pressures in deep bulk fertilizer storage bins. Unpublished M.Sc.
Thesis, The University of Manitoba.

Britton, M.G. 1973. Strain on deep bin walls due to ambient temperature decrease. Ph.D. Thesis.
Texas A & M. Coliege Station, TX, USA.

Britton, M.G. and Q. Zhang. 1989. State-of-art in the design of grain storage structures. ASAE
Paper No. 89-4535.

Brzezinski, A. 1993. An evaluation of techniques and tools for integrating knowledge-base and
conventional-computing systems. Unpublished M.Sc. Thesis. The University of Manitoba.

CFBC. 1990. Canadian Farm Building Code. 1990. NRCC No. 21312, National Research Council
of Canada. Ottawa, Canada.

DIN. 1987. Design loads for buildings: loads on silos. DIN 1055. German Standard. Blatt 6.
Deutsche Normen, Berlin.

Doluschitz, R. and W.E. Schmisseur. 1987. Expert system : application to agricultural and farm
management. Computers and Electronics in Agricultural. 2(1) : 173-182.

Embleton, K.M. 1990. An expert system approach to establish design snow and wind loads.

102



Unpublished M.Sc. Thesis, The University of Manitoba.
Fankhauser, C.D. 1977. Analysis and design of corrugated grain tank. ASAE Paper No: 77-4502.

Gebremedhin, K.G., S.S. Jagdale and R. Gupta. 1989. An expert system for optimizing computer
aided design of post frame buildings. Applied Engineering in Agriculture. 5(3):447-452.

Gaylord, E.H. and C.N. Gaylord. 1985. Design of steel bins for storage of bulk solids. Prentice-
Hill. New Jersey.

Hough, B.K. 1957. Basic Soils Engineering. New York, NY. The Ronald Press Co.
[nformation Buildings Inc. 1990. Level5 Object User's Guide. New York. NY 10001.
Jackson, P. 1990. Introduction to expert system. Saint Louis, Missour. Addision-Wesley.

Jaky, J. 1948. Pressure in silos. Proceedings of second international conference on soil mechanics
and foundation engineering, Rotterdam. 1 : 103-107.

Jenkyn, K.T. and D. J. Goodwill. 1987. Silo failures: lessons to be learned. Engineering
Digest. September 1987. 17-22.

Jenike, A.W. and J.R. Johanson. 1968. Bin loads. Journal of Structural Division, Proceeding of
ASCE, 94(ST4): 1011-1041.

Jofriet, J. C. and S.C. Negi. 1988. Tower silo design: Principles and computer implementation.
J. Agric. Eng. Res.. (40): 9-21.

Ketchum, M.S. 1919. The design of wells, bins and grain elevators. Third edition. Book Co.,
New York. NY.

Kramer, H.A. 1944. Factors inferencing the design of bulk bins for rough rice. Agricultural
Engineering 25: 463-466.

Lenczner, D. 1963. An investigation into the behaviour of sand in a model silo. The Structural
Engineering. 41(12): 389-398.

Manbeck, H.B., M.G. Goyal, G.L. Nelson and M.G. Singh. 1977. Dynamic overpressure in
model bins during emptying. ASAE Paper No. 77-4505.

Manbeck, H.B. and L. M. Muzzelo. 1985. Meassurement of thermally induced pressure in a model
grain bin. Transaction of the ASAE. 28(4):1253-1258.

103



Moran, P. 1991. Static design loads on circular plan retaining walls for granular materials. J.
Agric. Engng. Res.. 48: 145-152.

Ni, Z., M.G. Britton and Q. Zhang. 1994. An expert system for analysis of grain bin loads.
ASAE Paper No. 94-4026.

Olynick, D.M. 1993. An expert system for the fire protection requirements of the national
building code of Canada 1990. Unpublished M.Sc. Thesis, The University of Manitoba.

Reimbert, M. and A. Reimbert. 1956. Silos traite theorique et practique. Edition Eyrollas, Paris.

Reimbert, M. and A. Reimbert. 1976. Silos: theory and practice. Clauathal, Germany: Trans Tech
Publications.

Reimbert, M. and A. Reimbert. 1987. Silos - theory and practice, 2nd Edition in English.
Lavoisier Publishing, New York, NY, USA.

Ross, L.J., T.C. Gridges, O.J. Loewer and J.N. Walker. 1979. Grain bin loads as affected by
grain moisture content and vertical pressure. Transactions of ASAE. 26(4): 592-597.

Safarian, S.S. and E.C. Harris. 1985. Design and construction of silos and bunkers. Van
Nostrand Reinhold Company Inc.

Schott, R'W. 1990. Vertical strength examination of grain bin stiffeners. Unpublished M.Sc.
Thesis. The University of Manitoba.

Trahair, N.S. 1985. Structural design criteria for steel bins and silos. Int. J. Bulk Solids Storage
in Silos 1(2). 11-20.

Turban, E. and P. Watkins. 1988. Applied expert system. Amsterdan.

Versavel, P.A. and M.G. Britton. 1986. Interaction of bulk wheat with bin wall configuration in
model bins. ASAE. 29(2) : 533 - 537.

Watson, D.G. and R.C. 1990. Aeration system design for flat grain storages with an expert
system. ASAE 6(2) : 183-188.

104



Appendix A. Database for bin geometry

Bin Diameter Bin Height Stored Capability

(m) (m) (Tom)
4.0 3.0 38
4.0 4.0 48
4.0 5.0 58
4.0 6.0 68
4.0 7.0 79
4.0 8.0 89
4.0 9.0 99
4.0 10.0 109
5.0 3.0 61
5.0 4.0 77
5.0 5.0 93
5.0 6.0 110
5.0 7.0 126
5.0 8.0 142
5.0 9.0 158
5.0 10 174
6.0 4.0 115
6.0 5.0 138
6.0 6.0 162
6.0 7.0 185
6.0 8.0 208
6.0 9.0 237
6.0 10 254
7.0 4.0 162
7.0 5.0 194
7.0 6.0 225
7.0 7.0 256
7.0 8.0 288
7.0 9.0 319
7.0 10 351
8.0 4.0 218
8.0 5.0 260
8.0 6.0 301
8.0 7.0 342
8.0 8.0 383
8.0 9.0 424

8.0 10 465




Appendix B. Database for Grain Properties

Grain MC (%) WM n K w (kg/m’)
Wheat 11.0 Smooth Steel 0.10 04 770
Wheat 11.0 Corrug. Steel 0.35 0.6 770
Wheat 11.0 Plywood 0.30 0.6 770
Wheat 11.0 Concrete 035 0.6 770
Wheat 13.0 Smooth Steel 0.25 04 770
Wheat i3.0 Corrug. Steel 0.35 0.6 770
Wheat 13.0 Plywood 0.30 0.6 770
Wheat 13.0 Concrete 035 0.6 770
Barley 1.0 Smooth Steel 0.10 04 620
Barley 11.0 Corrug. Steel 035 0.6 620
Barley 11.0 Plywood 0.30 0.6 620
Barley 11.0 Concrete 035 0.6 620
Barley 13.0 Smooth Steel 0.25 0.4 620
Barley 13.0 Corrug. Steel 035 0.6 620
Barley 13.0 Plywood 030 0.6 620
Barley 13.0 Concrete 035 0.6 620
Shelled Com 11.0 Smooth Steel 020 04 720
Shelled Comn 11.0 Corrug. Steel 035 0.6 720
Shelled Comn 11.0 Plywood 030 0.6 720
Shelled Cbrn 1.0 Concrete 0.35 0.6 720
Shelled Corn 16.0 Smoaoth Steel 0.35 04 720
Shelled Com 16.0 Corrug. Steel 035 0.6 720
Shelled Com 16.0 Plywood 045 0.6 720
Shelied Com 16.0 Concrete 0.60 0.6 720
Soybeans 110 Smooth Steel 0.20 04 770
Soybeans 1.0 Corrug. Steel 0.35 0.6 770
Soybeans 1.0 Plywood 0.30 0.6 770
Soybeans 11.0 Concrete 0.50 0.6 770
Flaxseed 9.0 Smooth Steel 0.20 04 770
Flaxseed 9.0 Corrug. Steel 035 0.6 770
Flaxseed 9.0 Plywood 0.35 0.6 770
Flaxseed 9.0 Concrete 035 0.6 770
Flaxseed LL.S Smooth Steel 0.25 04 770



Flaxseed
Flaxseed
Flaxsed
Canola
Canola
Canola
Canola
Canola
Canola
Canola

Canola

11.5
1L.5
L5
9.0
9.0
9.0
9.0
12.5
12.5
12.5
12.5

Corrug. Steel
Plywood
Concrete
Smooth Steel
Carrug. Steel
Plywood
Concrete
Smooth Steel
Corrug. Steel
Plywood
Concrete

035
040
045
0.20
035
03s
035
0.25
0.35
035
035

0.6
0.6
0.6
04
0.6
0.6
0.6
04
0.6
0.6
0.6

770

770

770

640

640
640

640




Appendix C. List of External Program Code

3 ke 3k 3fe 36 3k 2fe 24 3 e e e 3 e e e e 3k e e 3k e A e e 3¢ e e 3 sk 3k e 3 e e e e e 3 e e A e e e e e e e ke 3 e e e e e e ke e e e e e e Ak ok

Program for displaying static loads of CFBC 1990

3k 2 e 26 e 26 380 e 20 e 2k 2l e sfe A e e s 3 e s e 2 e e e 3 e 26 24 2 2 240 20038 2 308 20 32 26 o 30 e 30 30 5 2 e 3 3 e e 2 s 28 3 30 30 26 e A e e 2 e e e e e ofe ke 3 o sk ol ok

Program Loads;
Uses Crt, Graph;

Var
k, Tier_Number, Height : Integer;
Static_hori_pressure, Static_vert_pressure, Static_vert_friction : Real;
tf, ef : Text;
a,b,c,d : ARRAYT[0..30] OF Word;

Procedure Graphic ;
Var
grDriver, grMode, grError : Integer;
i, x0, x1, yO, y! : Integer;
factor_x, factor_y : Real;
Pressure, Height : String [4];
Begin
grDriver = Detect;
InitGraph( grDriver, grMode, 'C:\bp\bgi' );
SetViewPort(50, 50, 200, 150, Clipoff); { set origin to (50, 50) }
SetLinestyle(0, 0, 3);
SetBkColor (1);

x0 =0;
xi = 300;
Y0 :=0;
Y1 =300;

factor_x = (x1-x0) / (c[k]/1000);
factor_y = (250) / Tier_Number;
OutTextXY (x0, y0-20, '0");



Fori =1 To Round (c[k]}/1000 +10) Do { make x axis and y axis }
If (i¥©10) =i Div 10 Then
Begin
Str(i, Pressure);
MoveTo(Round(i * factor_x), y0);
LineTo(Round(i * factor_x), -5);
OutTextXY (Round(x0 + i ®factor_x) - 5, YO - 20, Pressure);
End;
Fori =1 To Tier_Number + 1 Do
Begin
Str(i, Height);
MoveTo(x0, Round(i * factor_y));
LineTo(5, Round(i * factor_y));
OutTextXY (x0 - 20, Round(YO + i * factor_y -3), Height);
End;
SetColor( Red );
For i := 0 To Tier_Number -1 Do
Begin
Line( Round(a[i] * factor_x / 1000), Round(b(i] * factor_y), Round( a{i+1] * factor_x / 1000) , Round(b[i+1] *
factor_y ));
End;
SetColor( Green );
For i-== 0 To Tier_Number -1 Do
Begin
Line( Round(c[i] * factor_x / 1000), Round(b[i] * factor_y), Round( c[i+1] ® factor_x / 1000) , Round(b[i+1] *
factor_y ));
End;
SetColor(Yellow);
For i== 0 To Tier Number -1 Do
Begin
Line( Round(d[i] * factor_x / 1000), Round(b{i] *® factor_y), Round( d[i+1] ® factor_x /1000) , Round(b[i+1] *
factor_y ));
end;
SetColor( White );
MoveTo (0,0 );
LineTo (440, 0);
MoveTo (0, 0);



LineTo (0, 360);

MoveTo (410, Q);

LineTo (410, 3);

LineTo (440, 0);

LineTo (410, -3);

LineTo (410, 0);

MoveTo (-3, 330);

LineTo (3, 330);

LineTo (0, 360);

LineTo (-3, 330);

SetColor( White );

SetTextStyle(0,0,1);

OutTextXY(360, 20, 'Pressures ' );

SetTextStyle( 0, 1,1 );

OutTextXY(20, 220, 'Tier Number ' );

SetTextStyle( 0, 0, 1);

SetColor( Red );

MoveTo( 250, y1 + 60 );

LineTo( 310, y1 +60 );

SetColor( Green );

MoveTo( 250, y1 + 80 );

LineTo( 310, yl +80);

SetColor (Yellow);

MoveTo(250, y1 + 100);

LineTo(310, yl + 100);

SetColor( White );

SetTextStyle( 0,0, 1 );

OutTextXY(320, yl + 58, 'Static Horizontal Pressure (kPa)’ );
OutTextXY(320, yl + 75,'Static Vertical Pressure (kPa)' );
OutTextXY(320, yl + 95,'Static Vertical Friction (KN/m)");
SetFillStyle (SolidFill, 3);

Bar(10, y1 + 685, 230, Y1 + 105); {make an area for text}
SetColor (Yellow);

SetTextStyle(0, 0, 1);

OutTextXY( 15, Y1 + 70, ' Please press "Enter” to' );
OutTextXY( 15, Y1 + 90, ' return to design session');
Readln;



CloseGraph;
End;

Begin
Assign (ef, 'c:\ISo25\ni\height.txt");
Reset (ef);
Read (ef, Tier_Number);
Close (ef);
Assign (tf, 'c:\IS025\ni\staload.txt’);
Reset (tf);
For Height == 0 To Tier_Number Do
Begin
Read (tf, Static_hori_pressure, Static_vert_pressure, Static_vert_friction);
a[Height] = Round (Static_hori_pressure);
b[Height] = Height;
c[Height] = Round (Static_vert_pressure);
d{Height] = Round (Static_vert_friction);
End;
Close (tf);
k = Tier_Number;
Graphic;
End.

e 2k 24c 3 e 20 38e e e e e 3k e 3¢ e 3¢ e e e e e e e e e e e ke 2l e 4 2 e e e 26 e e e e 3 20 3k e e e ke e 2l 3¢ A e e e e e e e vk e e e e ol e ok

Program for displaying dynamic horizontal pressure of CFBC 1990

3k 3k 3ke e 3k e 3je e sk e e e 2 2 26 e e 3¢ e e 3¢ e e e e e e e e e ke alk e e 35 e e ke A e e e e e e e e e 25 e e 3 e e e e 3 e e e ke ke desde

Program Loads;
Uses Crt, Graph;

Var
k, Tier_Number, Height : [nteger;



Static_hori_pressure, Dynamic_hori_pressure : Real;
tf, ef : Text;
a,b,c : ARRAY[0..30] OF Word;

Procedure Graphic ;
Var
grDriver, grMode, grError : Integer;
1, x0, x1, y0, y1 : Integer;
factor_x, factor_y : Real;
Pressure, Height : String [4];
Begin
grDriver == Detect;
InitGraph( grDriver, grMode, 'C:\bp\bgi’ );
SetViewPort(50, 50, 200, 150, Clipoff);
SetLinestyle(0, 0, 3);
SetBkColor (1);
x0 =0;
x1 =300;
Y0 =0;
Y1 =300;
factor_x = (x1-x0) / (c[k]/1000);
factor_y = (250) / Tier_Number;
OutTextXY (x0, y0-20, '0%);
Fori =1 To Round (c[k}/1000 +10) Do
If (¥10) =1 Div 10 Then
Begin
Str(i, Pressure);
MoveTo(Round(i * factor_x), y0);
LineTo(Round(i * factor_x), -5);
OutTextXY (Round(x0 + i * factor_x) - 5, YO - 20, Pressure);
End;
Fori =1 To Tier_Number + 1 Do
Begin
Str(i, Height);
MoveTo(x0, Round(i * factor_y));
LineTo(5, Round(i * factor_y));
OutTextXY (x0 - 20, Round(Y0 + 1 * factor_y -3), Height);



End;
SetColor( Red );
For i = 0 To Tier_Number -1 Do
Begin
Line( Round(a[i] * factor_x / 1000), Round(b(i] * factor_y), Round( afi+1] * factor_x / 1000) ,Round(b(i+1] *
factor_y ));
End;
SetColor( Green );
For i==0 To Tier_Number -1 Do
Begin
Line( Round(c[i] * factor_x / 1000), Round(b{i] * factor_y), Round( c[i+1] * factor_x / 1000) ,Round(b[i+1] *
factor_y ));
End;
SetColor( White );
MoveTo (0,0);
LineTo (440, 0);
MoveTo (0,0);
LineTo (0, 360);
MoveTo (410, 0);
LineTo (410, 3);
LineTo (440, 0);
LineTo (410, -3);
LineTo (410, 0);
MoveTo (-3, 330);
LineTo (3, 330);
LineTo (0, 360);
LineTo (-3, 330);
SetColor( White );
SetTextStyle( 0,0, 1 );
OutTextXY (360, 20, Pressures ' );
SetTextStyle(0,1,1);
OutTextXY (20, 220, 'Tier Number ' );
SetTextStyle( 0, 0, 1);
SetColor( Red );
MoveTo( 250, y1 +60);
LineTo( 310, yl +60);
SetColor( Green );



MoveTo( 250, y1 + 90 );
LineTo( 310, yl +90);
SetColor( White );
SetTextStyle( 0,0, 1 );
OutTextXY (320, yl + 5§, 'Static Horizontal Pressure (kPa)' );
OutTextXY (320, yl + 85, DynamicHorizontal Pressure (kPa)’ );
SetFillStyle (SolidFill, 3);
Bar(10, yi + 55, 230, Y1 + 95);
SetColor (Yellow);
SetTextStyle(C, 0, 1);
OutTextXY( 15, Y1 + 60, ' Please press "Enter” to');
OutTextXY( 15, Y1 + 80, ' return to design session’);
ReadIn;
CloseGraph;
End;

Begin
Assign (ef] 'c:\iS025\ni\height.txt’);
Reset (ef);
Read (ef, Tier_Number);
Close (ef);
Assign (tf, 'c:\I5025\ni\dyload. txt’);
Reset (tf);
For Height == 0 To Tier_Number Do
Begin
Read (tf, Static_hori_pressure, Dynamic_hori_pressure);
a[Height] := Round (Static_hori_pressure);
b{Height] := Height;
c[Height] = Round (Dynamic_hori_pressure);
End;
Close (tf);
k = Tier Number ;
Graphic;
End.



e e e e e e 20 e A0 e 260 2 e 35 280 e 38 55 200 30 23 2 2 A e e e e e e e e A e 24 250 36 20 0 e e 240 20 e e e s e e e ke 36 e e e e S o 2 e 346 38 30 30 o0 A ok e e e ke ke e ok ok ke ok K

Program for displaying static loads of EP433 1991

LRt 2 S ad 2222 222 2222222222 2 D222 22 2222222222222 2R 20 2R T 2 R R e e e

Program Loads;
Uses Crt, Graph;

Var
k, Tier_Number, Height : Integer;
Static_hori_pressure, Static_vert_pressure, Shear_stress, Vertical_wall_pressure : Real;
tf, ef : Text;
a,b,c,d : ARRAY[0..30] OF Word;
e : ARRAY[0..30] OF Longlnt;

Procedure Graphic ;
Var

grDniver, grtMode, grError : Integer;

i, x0, x1, y0, yl : Integer;

factor_x, factor_y : Real;

Pressure, Height : String [4];
Begin

grDriver == Detect;

[nitGraph( grDriver, grMode, 'C:\bp\bgi' );

SetViewPort(50, 50, 200, 150, Clipoff);

SetLinestyle(0, 0, 3);

SetBkColor (1);
x0 =0;

x1 =300;

Y0 =0;

Y1 =300;

factor_x = (x1-x0) / {e[k]/1000);
factor_y = (250) / Tier_Number;
OutTextXY (x0, y0-20, '0");

Fori =1 To Round (e[k]}/1000 +10) Do
[f(i/10) = i Div 10 Then



Begin
Str(i, Pressure);
MoveTo(Round(i * factor_x), y0);
LineTo(Round(i * factor_x), -5);
OutTextXY (Round(x0 + i * factor_x) - 5, YO - 20, Pressure);
End;
Fori =1 To Tier_Number + | Do
Begin
Str(i, Height);
MoveTo(x0, Round(i * factor_y));
LineTo(S, Round(i * factor_y));
OutTextXY (x0 - 20, Round(YO + i * factor_y -3), Height);
End;
SetColor( Red );
Fori := 0 To Tier_Number -1 Do
Begin
Line( Round(a{i] * factor_x / 1000), Round(b{i] * factor_y), Round( a[i+1] * factor_x / 1000) , Round(b[i+1] *
factor_y ));
End;
SetColor( Green );
For i=0 To Tier_Number -1 Do
Begin
Line( Round(c[i] * factor_x / 1000), Round(b[i] * factor_y), Round( c[i+1] * factor_x / 1000) , Round(b[i+1] *
factor_y ));
End;
SetColor(Yellow);
For i= 0 To Tier_Number -1 Do
Begin
Line( Round(d[i] ® factor_x / 1000), Round(b{i] ® factor_y), Round( d[i+1] * factor_x /1000) , Round(b[i+1] *
factor_y ));
end;
SetColor(11);
For i=0 To Tier_Number -1 Do
Begin
Line( Round(efi] ® factor_x / 1000), Round(b[i] * factor_y), Round( e[i+1] * factor_x /1000) , Round(b{i+1] *
factor_y));

end;



SetColor( White );

MoveTo (0,0 );

LineTo (440, 0);

MoveTo (0,0);

LineTo (0, 360);

MoveTo (410, 0);

LineTo (410, 3);

LineTo (440, 0);

LineTo (410, -3);

LineTo (4190, 0);

MoveTo (-3, 330);

LineTo (3, 330);

LineTo (0, 360);

LineTo (-3, 330);

SetColor( White );
SetTextStyle(0,0,1);
OutTextXY(360, 20, Pressures ' );
SetTextStyle(0, 1,1 );

OutTextXY (20, 220, 'Tier Number ' );
SetTextStyle( 0, 0, 1);

SetColor( Red );

MoveTo( 250, yl + 60 );

LineTo( 310, yl1 + 60 );

SetColor( Green );

MoveTo( 250, y1 + 80 );

LineTo( 310, yl +80);

SetColor (Yellow);

MoveTo(250, yl + 100);
LineTo(310, y!1 + 100);

SetColor (11);

MoveTo(250, y! + 120);
LineTo(310, yt + 120);

SetColor( White );

SetTextStyle( 0,0, 1 );

OutTextXY (320, yl + 55, 'Static Horizontal Pressure (kPa)' );
OutTextXY(320, yl + 75,'Static Vertical Pressure (kPa)' );
OutTextXY (320, yl + 95,'Shear Stress (KPa)");



OutTextXY (320, yl + 115, Vertical Wall Friction (KN/m)");
SetFillStyle (SolidFill, 3);
Bar(10, yl + 75,230, Y1 + 115);
SetColor (Yellow);
SetTextStyle(0, 0, 1);
OutTextXY( 15, Y1 + 80, ' Please press "Enter” to' );
OutTextXY( 15, Y1 + 100, ' return to design session’);
ReadlIn;
CloseGraph;

End:

Begin
Assign (ef, 'c:\ISo25\ni\height.txt’);
Reset (ef);
Read (ef, Tier_Number);
Close (ef);
Assign (tf, 'c:\I5025\ni\Astaload.txt’);
Reset (tf);
For Height == 0 To Tier_Number Do
Begin
Read (tf, Static_hori_pressure, Static_vert_pressure, Shear_stress, Vertical _wall_pressure);
a[Height} = Round (Static_hori_pressure);
b{Height] = Height;
c[Height] == Round (Static_vert_pressure);
d[Height] = Round (Shear_stress);
e[Height] == Round (Vertical_wall_pressure);
End;
Close (tf);
k = Tier_Number;
Graphic;
End.



3 ok e e 2k 35 s e e e 3 e 3¢ e ke e 30 e e e e e e e s e ke e e A e e ke e e e e ke s 30k e ke e e e e 3 30 A e 0 e ke 3 ke e e e e ke ke e ke e ek

Program for display dynamic loads applied to the hopper of EP433 1991

e 3 e e e e e 2k 20 30 20 22 30 24000 363025 205 200200 200 38 20 58 3 3 20 2 2 2 20 2 2 e 300 20 26 26 20 2 260 23 350 206 3 08 20 28 20 2 2 o8 e 3 2 s afe ol e e e 2 e 3k ok e o 3 o e ke ok ok e ok

Program Hopper_Loads;
Uses Crt, Graph;

Var
Depth, Hopper_height, Normal_pressure, Tangential_stress : Real;
tf, ef = Text;
a,c : ARRAY(0..100] OF Longint;
b : ARRAYT[0..100] OF Real;
Count, i, k : [nteger;
x0, x1, y0, yl : Word;
factor_x, factor_y : Real;
Pressure, Height : String [4];

Procedure Graphic ;
Var
grDriver, grMode, grError : Integer;
ij : Integer;
x0, x1, y0, yl : integer;
factor_x, factor_y : Real;
Pressure, Height : String [4];
Begin
grDriver = Detect;
InitGraph( grDriver, grMode, "C:\bp\bgi' );
SetViewPor(50,50, 200,150, Clipoff);
SetLineStyle (0, 0, 3);
SetBkColor (1);
X0 =0;
x| = 300;
Y0 =0;
Y1 = 300;
factor_x = (x1 - x0)/ (a[1}/1000) ;
factor_y = (yl - y0)/ Hopper_height;



OutTextXY (x0, yO - 20, '0");
Fori == | To Round (a[1])/1000 + 10) Do
If(i/10)=1i Div 10 Then
Begin
Str(i, Pressure);
MoveTo(Round(i * factor_x), y0);
LineTo(Round(i *factor_x), -5);
OutTextXY (Round(x0 + i * factor_x) - 5, YO - 20, Pressure);
End;
If (Hopper_height <= 2.0) Then
For i == 1 To Round( Hopper_height * 10 + 1) Do
If (i /2) =i Div 2 Then
Begin
Str(i/10 : 3 - [, Height);
MoveTo(x0, Round(i/10 * factor_y));
LineTo( 5, Round(i/10 * factor_y));
OutTextXY (X0 + 20, Round(y0 + i/10 * factor_y - 3) , Height);
End;
[f (Hopper_height > 2.0) Then
For i = 1 To Round(Hopper_height *10 + 4) Do
If(i/5)=iDiv 5 Then
Begin
Str(i/10 : 3 : 1, Height);
MoveTo(x0, Round(i/10 * factor_y));
LineTo( 5, Round(i/10 * factor_y));
OutTextXY (X0 + 20, Round(y0 + /10 * factor_y - 3) , Height);
End;
SetColor( Red );
Forj =1 To k-1 Do
Begin
Line( Round(a[j] * factor_x / 1000), Round(b[j] * factor_y) , Round(a[j+1] * factor_x / 1000), Round(b[j+1] *
factor_y));
End;
SetColor( Yellow );
Forj =1 To k-1 Do
Begin
Line( Round(c[j] * factor_x / 1000), Round(b[j] * factor_y), Round(c[j+1] ® factor_x /1000), Round(b{j+1] *



factor_y));
End;
SetColor( White );
MoveTo (0,0 );
LineTo (440, 0);
MoveTo (0,0 );
LineTo (0, 360);
SetColor ( White );
MoveTo (410, 0);
LineTo (410, 3);
LineTo (440, 0);
LineTo (410, -3);
LineTo (410, 0);
MoveTo (-3, 330);
LineTo (3, 330);
LineTo (0, 360);
LineTo (-3,330);
SetColor( White );
SetTextStyle(0,0,1);
OutTextXY (360, 20, 'Pressures ' );
SetTextStyle(0,1,1);
OutTextXY(-15, 160, 'Height from hopper top (m) ' );
SetTextStyle (0, 0, 1);
SetColor( Yeilow );
MoveTo( 250, yl + 60);
LineTo(310, yl + 60);
SetColor( Red );
MoveTo( 250, y1 + 90);
LineTo( 310, yl + 90);
SetTextStyle( 0,0, 1 );
SetColor(White);
OutTextXY(320, yl + 55, 'Dynamic Tangential Stress (kPa)’ );
OutTextXY(320, Y1 + 85, 'Dynamic Normal Pressure (kPa) ' );
SetFiliStyle (SolidFill, 3);
Bar(10, yl + 55, 230, Y1+95);
SetColor (Yellow);
SetTextStyle(0, 0, 1);



OutTextXY(15, Y1 + 60, 'Please press "Enter” to');
OutTextXY(15, yl + 80, 'return to design session');

CloseGraph;
End;

Begin
Assign (ef] 'c\lSo25\ni\count.txt’);
Reset (ef);
Read (ef, Count, Hopper height);
Close (ef);
Assign (tf, ‘c:\I5025\ni\A dyload.txt’);
Reset (tf);
i=1;
While i <= Count Do
Begin
Read (tf, Depth, Normal_pressure, Tangential_stress);
a[i] = Round (Normal_pressure);
b[i] = Depth;
c[i] = Round (Tangential_stress);
i=i+1;
End;
Close (tf);
k=i-1;
Graphic;

End.





