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ABSTRACT 

Linkage and association mapping are two of the most common ways to identify genes or 

quantitative trait loci (QTL) associated with quantitative traits. The identified genes or QTL can 

then be used in marker-assisted selection (MAS) with various breeding methodologies. Although 

MAS has gained great success in improving traits controlled by fewer genes or QTL with large 

effects, its application is limited in improving traits controlled by many loci with small effects. 

Genomic selection (GS), as a variant of MAS, was proposed to address this issue by utilizing 

markers along the whole genome instead of only focusing on the major-effect markers. Currently, 

the application of GS in Brassica napus L. breeding is at a preliminary stage. Therefore, this 

research was conducted to explore the potential of applying GS in B. napus breeding. Chapter 3 

demonstrated the application of genome-wide association mapping (GWAS) in B. napus on 

important agronomic and seed quality traits. In total, 141 significant MTAs were detected. Thirty 

candidate genes had been previously identified in B. napus associated with abiotic stress responses 

and pathogen infection. Chapter 4 investigated the factors that could affect GS prediction 

accuracies in hybrid B. napus including training population (TP) size and composition, marker 

density and the choice of GS model. The prediction accuracy significantly improved by combining 

91 parents and 345 hybrids in the TP, indicating the composition and size of the TP are crucial to 

GS performance. Higher marker density did not necessarily increase the prediction accuracy, 

which was possibly due to the high relatedness among the individuals in the TP and test population. 

Chapter 5 explored the application of GWAS-guided GS and the prediction accuracies were 

compared across different traits, marker sets and GS models. Compared to conventional GS, 

GWAS-guided GS showed improvements in prediction accuracy, yet the improvements were not 

consistent across traits, models or marker sets. In addition, Bayesian models required significantly 
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longer computational time than penalized approaches (rrBLUP and GBLUP). Taken together, the 

work presented here demonstrated the potential and impact of GS in assisting and optimizing 

hybrid B. napus breeding programs. 
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FOREWORD 

This thesis has been written in the manuscript style and follows the format guidelines outlined by 

the Faculty of Graduate Studies at the University of Manitoba. This thesis includes a general 

introduction, literature review, three manuscripts, a general discussion and future work 

recommendations. The machine learning section in the literature review (2.5.1.4.2) was written 

based on a draft completed by Dr. Mike Domaratzki (Department of Computer Science, Western 

University). The first manuscript “Genome-wide association study (GWAS) of agronomic and 

seed quality traits in Brassica napus L.” will be submitted to the journal Scientific Reports or 

. The second manuscript “Genomic selection of agronomic and seed quality 

traits in hybrid Brassica napus L. based on parametric and machine learning methods” will be 

submitted to the journal Theoretical and Applied Genetics or another suitable journal or 

. The machine learning section was collaborative research completed and mostly 

written by Dr. Mike Domaratzki. The third manuscript “GWAS-guided GS of agronomic and seed 

quality traits in Brassica napus L.” will be submitted to the journal Frontiers in Plant Science or 

another suitable journal.  
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1. GENERAL INTRODUCTION 

Brassica crops are among the earliest crops known to humans (Rakow 2004). Canola (Brassica 

napus L.), following soybean [Glycine max (L.) Merr.] and oil palm (Elaeis guineensis Jacq.), 

ranks as the third-largest oilseed crop produced in the world (FAO 2021). Canada has the largest 

production of canola in the world, followed by the European Union and China (USDA 2020). As 

the world's leading canola exporter, Canada exports about 90% of its canola to over 50 countries 

worldwide (Canola Council of Canada 2017). Canola's contribution to Canadian economic output 

has increased by 35% in the last decade, reaching $29.9 billion annually (LMC International 2020). 

By 2025, the market demand for Canadian canola production will need to exceed 2,914 kg ha-1 (52 

bushels/acre) to achieve the 26 Mt production goal (Canola Council of Canada 2014). Therefore, 

canola breeders have always sought to improve yield and its related traits.  

A major contributor to canola yield increases during 2000-2013 was the improvement of canola 

genetics, particularly the transition from open-pollinated to hybrid cultivars and herbicide-resistant 

cultivars (Morrison et al. 2016). One of the major challenges in hybrid canola breeding concerns 

the identification of ideal parental combinations that can lead to larger heterosis in the offspring, 

contributing to better agronomic performance and superior seed quality (Starmer et al. 1998). Even 

though numerous previous studies have been undertaken to investigate heterosis in order to 

improve hybrid performance, the development of heterotic pools in canola has not progressed due 

to the limited diversity of this new crop species (Bus et al. 2011; Habibur et al. 2015; Jan et al. 

2016). 

Ideal canola cultivars need to have high seed yield, ease of cultivation for growers (disease 

resistance, lodging tolerance, shattering tolerance, appropriate maturity, among other agronomic 

traits) and the appropriate nutritional value for consumers (seed quality traits). Linkage mapping 
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[quantitative trait loci (QTL) mapping] is one of the most common methods for identifying QTL 

that are associated with complex traits. Linkage mapping has been routinely implemented in canola 

breeding for investigating or improving the complex traits mentioned above (Chen et al. 2010; 

Chen et al. 2007; Fu et al. 2015; Huang et al. 2016; Mei et al. 2009; Nesi et al. 2008; Zhao et al. 

2006). However, most of the reported studies focused on the identification of the QTL and only a 

few reported applying the identified QTL in breeding new genotypes through marker-assisted 

selection (MAS).  

A newer tool, genome-wide association study (GWAS), has emerged in identifying marker-trait 

associations (MTAs) (Huang and Han 2014), which could assist breeders in understanding the 

genetic structure underlying complex but important economic traits in canola (Honsdorf et al. 

2010). Numerous GWAS studies have been conducted to investigate traits related to seed yield 

and seed quality (Kittipol et al. 2019; Korber et al. 2016; Li et al. 2016a; Li et al. 2014b; Liu et al. 

2016a; Schiessl et al. 2015; Sun et al. 2016a; Sun et al. 2016b; Wang et al. 2018a; Wei et al. 2019a; 

Wu et al. 2016b; Xiao et al. 2019; Zheng et al. 2017). However, the results of GWAS often differed 

depending on the difference in population size and structure, as well as the target population 

composition. 

With the availability of low-cost genomic information, a variety of molecular breeding methods 

are now widely used, including marker-assisted selection and whole genome prediction/selection 

(GS) (Bernardo 2016). Though considered as a variant of MAS, GS does not focus on major-effect 

QTL. Instead, GS considers all markers that have small effects on the target traits (Heffner et al. 

2009). Many economically important traits are controlled by multiple QTL with small effect, 

which makes GS advantageous when compared to QTL mapping since genomic selection 

considers markers along the whole genome, regardless of the amount contributed to a particular 
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trait (Desta and Ortiz 2014; Goddard and Hayes 2007). Genomic selection has been more 

commonly applied in maize and soybean breeding (Bernardo 2016), but its use in canola breeding 

has been somewhat limited. Genomic selection has also been combined with GWAS research to 

improve the prediction accuracy, where the results from GWAS were implemented into GS as 

fixed effects (Bian and Holland 2017; Fiedler et al. 2017; Tsai et al. 2020). Overall, GS has shown 

potential as a plant breeding tool. 

The accuracy of GS can be influenced by a number of factors, including training population size 

and composition, marker density, trait heritability, and model performance (Tan et al. 2017; Zhang 

et al. 2019a). The challenge breeders encounter when choosing a GS model is that there is no "one 

size fits all" solution; thus, there is no model that works equally well for all crops, or even the same 

crop with different traits (Lorenz et al. 2011). These factors need to be carefully considered 

depending upon the specific purpose when applying GS in breeding.  

Genomic selection has shown potential in canola breeding, where a few studies have been reported 

for investigating traits such as time to flowering (Li et al. 2015a), plant height (Würschum et al. 

2014), grain yield and seed glucosinolate content (Jan et al. 2016) and blackleg [Leptosphaeria 

maculans (Desm.) Ces. & de Not.] resistance (Fikere et al. 2018). However, none of these studies 

examined the seed yield, plant height, seed protein content, seed oil content and seed glucosinolate 

content at the same time and none of them applied GWAS-guided GS in canola breeding. 

Based on genotypic data obtained from high-throughput genotyping (Brassica 60K array) and 

unbalanced phenotypic data for B. napus from multi-year, multi-location field trials, three 

experiments were designed to explore the potential of GWAS in examining the marker-trait 

associations and that of GS in predicting progeny performance. The objectives of the first 

experiment, genome-wide association study (GWAS) of agronomic and seed quality traits in 
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rapeseed (B. napus L.), were to examine the structure of the populations of interest (one consisting 

of parental genotypes and the second consisting of parental genotypes and hybrids), and then to 

identify the significant MTAs and potential genes associated with the selected agronomic and seed 

quality traits. This was accomplished using different GWAS models and comparing the 

performance of the selected GWAS models. The objectives of the second experiment, genomic 

selection and performance prediction in hybrid B. napus L., were to evaluate the effects of training 

population (TP) and marker density on prediction accuracy, to evaluate the prediction accuracy of 

GS on selected traits (seed yield, plant height, seed protein content, seed oil content and seed 

glucosinolate content) and to compare the performance of different GS models. The objectives of 

the third experiment, GWAS-guided GS of agronomic and seed quality traits in B. napus L., were 

to evaluate and compare the performance of GWAS-guided GS through different models and 

marker sets on the traits mentioned above. The results from this research will offer valuable 

information on utilizing unbalanced phenotypic data in GWAS and GS. The discovery of 

significant MTAs and genes will provide insight into improving agronomic performance and seed 

quality in B. napus using GWAS and GS.  
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2. LITERATURE REVIEW 

2.1 Background 

2.1.1 Origin of Brassica napus L. 

Brassica crops are among the most ancient crops known to humans (Rakow 2004). The family 

Brassicaceae is also known as the mustard family, containing over 3,700 species in 338 genera 

(Hayward 2011). The “Triangle of U” (Figure 2.1) shows the relationships amongst six 

economically important Brassica species across the world (Rakow 2004). Three allotetraploid 

species, B. juncea L., B. napus L., and B. carinata A. Braun, are derived from interspecific crosses 

of the three diploid species B. rapa L. (syn. campestris), B. nigra L., and B. oleracea L. (Morinaga 

1934; U 1935). Canola (Brassica napus L.), also known as oil rapeseed, contains both the AA and 

CC genomes (AACC, 2n = 38) (Falk 2009; Hayward 2011; Morrison et al. 2016). About 7,500 

years ago, hybridization events occurred between B. rapa (genome AA, 2n = 20) and B. oleracea 

(genome CC, 2n = 18), and the subsequent allopolyploid led to the formation of B. napus 

(Chalhoub et al. 2014; Falk 2009; Hayward 2011; Wang et al. 2011), which is also confirmed by 

recent genomic and cytological analysis (Allender and King 2010; Chalhoub et al. 2014; Snowdon 

et al. 2002). Southern Europe is believed to be the centre of origin of B. napus, which was then 

introduced into Asia in the 1700s (Daun 2011). Currently, B. napus is well adapted to growth in a 

wide range of areas including Canada, the United States, China, Japan, India, Western and Eastern 

Europe, Australia, Argentina, Chile, South Africa, Egypt and Iran (Daun 2011).  
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Figure 2.1 Triangle of U showing the relationship among six major cultivated Brassica species. 

The six genomes are denoted as AA (Brassica rapa, 2n=20), BB (Brassica nigra, 2n=16), CC 

(Brassica oleracea, 2n=18), AABB (Brassica juncea, 2n=36), AACC (Brassica napus, 2n= 38), 

and BBCC (Brassica carinata, 2n=34). Figure modified from Snowdon (2007). 
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2.1.2 History and development of canola 

Since the end of 19th century, petroleum replaced B. napus as the major source for lamp oil 

(Snowdon et al. 2007). Oilseed rape was first introduced to Canada in 1936 by a Polish immigrant 

farmer Fred Solvonik, who lived in Shellbrook, Saskatchewan and received Brassica campestris 

(also known as B. rapa) seeds from Poland (Bell 1982). During World War II, the Canadian 

government expanded oilseed rape production in Canada (Morrison et al. 2016). In Western 

Canada, rapeseed oil was in high demand mainly for steam and marine engine service (Morrison 

et al. 2016). Due to their relatively high yield, good quality and adaption to the Canadian Prairies, 

B. napus and B. rapa quickly became a common oilseed crop in Canada (Daun 2011).  

Double-low B. napus (low erucic acid and low glucosinolate levels) is a relatively new crop 

developed in the 1970s by Canadian breeders Drs. Keith Downey (Agriculture and Agri-food 

Canada Saskatoon) and Baldur R. Stefansson (University of Manitoba) (Stefansson and Kondra 

1975). There were two breakthroughs leading to the development of canola. The first was the 

discovery of an erucic acid-free genotype derived from a German cultivar “Liho” in the early 1960s 

(Snowdon et al. 2007; Stefansson et al. 1961). This discovery was of great importance in studying 

the genetic inheritance of the erucic acid content in the seed oil of B. napus. Researchers found 

that low erucic acid content was controlled by two genes with little or no dominance (Downey and 

Harvey 1963; Harvey and Downey 1964; Stefansson and Hougen 1964). The second breakthrough 

was the discovery of a low-glucosinolate Polish canola cultivar Bronowski in 1969 (Kondra and 

Stefansson 1970). Using backcross techniques, these two desired traits (low erucic acid content 

and low glucosinolate content) were successfully transferred from Liho and Bronowski to Target 

and Turret (Stefansson and Kondra 1975). After generations of selection, the first double-low 
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“canola” cultivar was derived and registered as “Tower” in 1974 (Morrison et al. 2016; Stefansson 

and Kondra 1975).  

Today, B. napus production provides raw materials for a more diverse range of end products, 

including livestock feed, biofuel, biodegradable plastics, industrial lubricants, as well as edible 

oils for human consumption (Jan et al. 2016; Snowdon et al. 2007). Specifically, rapeseed cultivars 

produce oils with 45% or higher erucic acid (C22:1), which were often used as lamp oil, lubricating 

oil, and in plastics manufacturing (Raymer 2002). Compared with rapeseed cultivars, canola seed 

contains less than 2% erucic acid and less than 30 𝜇mol g-1 of aliphatic glucosinolate (Eskin and 

McDonald 1991). These two characteristics make canola oil readily usable for human consumption 

(Raymer 2002). The byproduct of B. napus, seed meal (known as canola meal), has been 

commonly used in poultry and dairy cow diets (Huhtanen et al. 2011). 

2.1.3 Growth and development of Brassica napus 

Three ecotypes of B. napus (winter, semi-winter and spring types) are currently grown worldwide 

(Zou et al. 2019). Grown predominantly in Europe due to the mild climates, winter-type cultivars 

are biannual and require vernalization (Watts 2013; Wei et al. 2017). Derived from winter-type 

cultivars that were adapted to the local climate after being introduced to China, semi-winter type 

cultivars are also biannual, but require moderate vernalization (Wang et al. 2011; Wei et al. 2017). 

Spring cultivars, that do not require vernalization are grown in Northern Europe, Australia, and 

Canada (Wang et al. 2011; Watts 2013).  

There are two major stages in the growth and development of a B. napus plant: the vegetative stage 

and reproductive stage (Harper and Berkenkamp 1975). Lancashire et al. (1991) proposed a 

universal scale (known as the BBCH scale) which characterized the growth and development 

stages of common crops and weeds. Based on this two-decimal-coded scale, B. napus has ten 
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general growth stages (stages 0 to 9). Within each general stage, more detailed stages are coded 

with two-digit numbers (Table 2.1). For example, stages 10-19 are the leaf development stages 

that describe the changes starting from the unfolding of the cotyledons to the development of more 

than 9 leaves on the main stem. Stages 60-69 describe the flowering stages starting from the 

beginning of flowering to the end of flowering. Maturity of canola plants varies depending upon 

the genotype, location, the growing season and the seeding date. The growth and development of 

B. napus is also measured in growing degree days (GDDs), which is an equation used to calculate 

the accumulated heat over a particular period of time (Derscheid and Lytle 1977). In the Canadian 

Prairies, B. napus needs about 1,500 GDDs to reach the stage ready for swathing, which 

corresponds to growth stage 8.4 in the BBCH scale (Canola Council of Canada 2013). Typically 

canola plants need 90 to 120 days after seeding to reach physiological maturity in the western 

prairies (Canola Council of Canada 2021a; Koscielny 2018).  

2.1.4 Factors that affect growth and development of Brassica napus 

Temperature critically impacts the growth and development of canola (Nuttall et al. 1992). As a 

cool-season crop (Karamanos et al. 2002; Koscielny et al. 2018; Morrison and Stewart 2002), 

canola performs the best between 12 and 20 °C (Assefa et al. 2018; Morrison et al. 2016). High 

temperature during the day (>25°C) and warm night temperatures can adversely affect the 

development by resulting in male and female sterility, leading to a negative effect on canola yield 

and quality (Harker et al. 2012; Polowick and Sawhney 1988). Kutcher et al. (2010) showed that 

a 75.5 kg ha-1 yield loss in canola could occur corresponding to every 1C increase, based on an 

analysis of canola yield data collected over 34 years in Saskatchewan. Koscielny et al. (2020) also 

demonstrated that heat stress caused a 14.6% to 18.2% seed yield reduction in canola in all testing 

locations.  
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Table 2.1 A summarized biologische bundesanstalt, bundessortenamt and chemical industry 

(BBCH) scale of Brassica napus1.  

Stage BBCH 

code 

Description 

Beginning of the stage End of the stage 

0: Germination 00-09 Dry seed  Emergence 

1: Leaf development 10-19 Cotyledons 

completely unfold  
 9 leaves 

2: Formation of side shoots 20-29 No side shoots  9 side shoots 

3: Stem elongation 30-39 No internodes   9 visibly extended 

internodes 

4: Development of harvestable 

vegetative plant parts 

40-49 N/A NA 

5: Inflorescence emergence 50-59 Flower buds present, 

yet still enclosed by 

leaves 

First petals visible, 

flower buds still closed 

6: Flowering 60-69 First flower open End of flowering 

7: Development of fruit 70-79 10% of pods reach 

final size 

Nearly all pods reach 

final size 

8: Ripening 80-89 Seed green, filling pod 

cavity 

Nearly all pods ripe, 

seeds black and hard 

9: Senescence 90-99 Plants dead and dry Harvested product 
1 Information retrieved from Lancashire et al. (1991).   
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Another environmental factor affecting B. napus growth and development is precipitation. Nuttall 

et al. (1992) found an increase in B. napus grain yield as the total precipitation increased. Harker 

et al. (2015) examined the effects of crop rotation on B. napus yield and observed a higher yield 

in cooler locations with sufficient, consistent precipitation. Meng et al. (2017) confirmed the 

positive effects of precipitation on B. napus yield based on their analysis of the 1987-2010 period 

in Saskatchewan. More specifically, a 10% increase in precipitation that occurred during October 

and April increased seed yield by 0.7% (Meng et al. 2017).  

Appropriate field management practices are also crucial in increasing productivity of B. napus and 

maintaining the quality of the final product (Sokólski et al. 2020). Assefa et al. (2018) thoroughly 

reviewed the management factors that limited B. napus yield potential in North America and found 

that different growing regions had specific managing practices in terms of seeding rate, planting 

depth, nutrient requirements, crop rotation and tillage. All these specific requirements need to be 

coordinated to optimize the performance of B. napus, which in return, lead to higher yield 

(Morrison et al. 2016; Sidlauskas and Bernotas 2003). Zheng et al. (2020) also stated that crop 

rotation was utilized as an effective method in controlling soil-borne diseases in B. napus and 

played a significant role in affecting yield of B. napus. As stated by Assefa et al. (2018), to fulfill 

the current yield gap of 25% to 50% between the actual and potential seed yield, researchers must 

learn to manage the negative impacts caused by limited resources and a changing climate. 

2.1.5 Current canola production in the world and Canada 

Canola is currently the third-largest oilseed crop in the world, only after soybean [Glycine max (L.) 

Merr] and oil palm (Elaeis guineensis Jacq.) (FAO 2021). In 2018/19, 72.41 Mt of canola/rapeseed 

were produced worldwide (USDA 2020). Canada is the largest canola producer globally, followed 

by the European Union and China (USDA 2020). Within Canada, canola is mostly grown in the 
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western prairies, while there is some production in southern Ontario and Quebec (Canola Council 

of Canada 2016). Brassica napus, also known as Argentine canola, is the most commonly grown 

canola species in Canada (Canola Council of Canada 2021b). In 2019, Canadian farmers harvested 

18.65 Mt of canola from a harvested area of 8.32 million hectares, where Saskatchewan led canola 

production, followed by Alberta, Manitoba, British Columbia and Ontario (Figure 2.2) (Statistics 

Canada 2019). 

As the largest global exporter of canola, Canada exports about 90% of its canola/rapeseed to more 

than 50 countries worldwide, including the United States, China, Mexico, Japan, India and the 

European Union (Canola Council of Canada 2017). In 2018/19, 747.7 tonnes of canola/rapeseed 

seeds were exported from Canada (Figure 2.3).  

2.1.6 Brassica napus genome 

In 2014, the genome of a European winter oilseed cultivar “Darmor-bzh” (B. napus) was 

assembled (Chalhoub et al. 2014). The assembled An and Cn subgenomes are 314.2 Mb and 525.8 

Mb, respectively (Chalhoub et al. 2014). Numerous homeologous exchanges between the two 

subgenomes vary in size (Chalhoub et al. 2014). In 2019, Lu et al. (2019) revealed that the A 

subgenome was possibly originated from the progenitor of European turnip, while the C 

subgenome was possibly originated from the common progenitor of cauliflower, broccoli, and 

Chinese kale.   
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Figure 2.2 Canola/rapeseed harvested area and production in Canada by province in 2019. Data 

retrieved from Statistics Canada (2019). 
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Figure 2.3 Canadian canola/rapeseed seeds exports by country in 2018-2019. Data retrieved from 

Canola Council of Canada (2019). 
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Recently, two pan-genomes were constructed for B. napus: one based on eight accessions and 

consisted of winter, semi-winter and spring types of B. napus (Song et al. 2020) and another based 

on 12 different rapeseed genotypes (NRGene 2021). Tettelin et al. (2005) first came up with the 

concept of pan-genome based on a bacterial species Streptococcus agalactiae. The term “pan-

genome” was proposed to capture the diversity of a particular species by including multiple 

accessions from this species and characterizing the consensus genes shared across different 

accessions of the same species and the genes only presented in some of the accessions (Bayer et 

al. 2020). The development of a pan-genome addressed the issue that the diversity of a species 

cannot be sufficiently demonstrated by only one particular genome (Song et al. 2020). With pan-

genomes, it is possible to compare multiple individuals of the same species at the genome level 

and achieve a more thorough understanding of the traits of interest (Bayer et al. 2020).  

2.2 Plant breeding and selection 

2.2.1 Challenges in conventional breeding 

With an increasing global population, a changing climate, decreasing resources and more diverse 

consumer preferences, breeders are targeting higher yield, more durable disease resistance and 

abiotic stress tolerance for most crops (Collard and Mackill 2008; Fess et al. 2011). In contrast 

with the increasing global population and a rising demand for food resources, farmland worldwide 

has been decreasing for the past 40 years. These contrasting trends increase the difficulty of 

positively impacting total crop production moving forward (Fess et al. 2011). 

Canola is in high demand as the world population grows. During 2000-2013, Canadian land sown 

to canola increased from 4.9 to 8.3 million hectares, while canola seed yield increased from 1.33 

to 2.02 t ha-1 (Canola council of Canada 2018; Morrison et al. 2016). By 2025, the market demand 

for Canadian production will need to exceed 26 Mt. The main factor contributing to canola yield 
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gain during 2000-2013 was the improvement of canola genetics (i.e. the conversion from open-

pollinated cultivars to hybrid and herbicide-tolerant cultivars) (Morrison et al. 2016). Agronomic 

practices or field management contributed to 13% of the yield gain (Morrison et al. 2016). This 

means that exploring and improving canola genetics is a key contributor to reach the ultimate yield 

goal of 2.9 t ha-1, and a production goal of 26 Mt by 2025 (Canola Council of Canada 2014). 

Over the last century, conventional breeding has been continuously improving yield in most major 

crops (Ahmar et al. 2020; Fedoroff 2010; Hickey et al. 2019; Prohens 2011). However, despite the 

2.2% increase between 1950 and 1990 globally, the annual increase in the world grain yield was 

only 1.3% from 1990 to 2011 (Brown 2012). “Upper yield plateau” is a term used to describe the 

situation in some cereal-producing areas where yield has not increased for some time after a 

consistent linear increase (Grassini et al. 2013). Rice (Oryza sativa L.) and wheat (Triticum 

aestivum L.) yield increases reached a plateau or a potential decline during 1986-1999 in Asia 

(Pingali and Heisey 2001). In East Asia, where there is 33% of the world’s rice production, a yield 

plateau has been observed (Brown 2012). Statistically significant upper yield plateaus were also 

observed in wheat production in Northwestern Europe, including the UK, France, Germany, the 

Netherlands and Denmark, based on a study that analyzed the crop production in 36 countries 

(Grassini et al. 2013).  

Improving the genetics of a crop is the primary goal of a breeding program. The improvement is 

often quantified as “genetic gain” (ΔG), which is the genetic improvement of a trait in a population 

over a breeding cycle (Rutkoski 2019). Previous improvement on crop yield has mainly depended 

on selection of observed phenotypic variation, also known as the phenotypic selection (Fu et al. 

2017). Phenotypic selection is effective for selecting traits that are controlled by major alleles with 

larger effects (Prohens 2011). As a result, the favourable alleles that contributed to quantitative 
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traits, yet only had minor effects, were harder to capture in the selection process. This reality leads 

to a significant limitation in conventional breeding (Prohens 2011). Developing new cultivars 

solely with conventional breeding can also be time-consuming and labour-intensive (Ashkani et 

al. 2015). This process can take decades depending on the crop (Wieczorek and Wright 2012). Due 

to these limitations, it is evident that the adoption of newer breeding tools/methodologies is critical 

to advancing genetic gain. 

The gap between the current crop yield increase and potential future demand emphasizes the need 

for plant breeders to accelerate crop genetic gain (Voss-Fels et al. 2019). Modern technologies that 

can contribute to accelerating genetic gain can include marker-assisted selection (MAS) and 

genomic selection (GS), which are reviewed in sections 2.2.2 and 2.5, respectively. These tools 

have become promising supporting approaches for breeders to continue the increase in crop yield 

(Collard and Mackill 2008; Huang et al. 1997; Ortiz 1998; Ruttan 1999; Voss-Fels et al. 2019). 

2.2.2 Marker-assisted selection  

Individuals or species can be distinguished by genetic markers, and these markers can be 

morphological, biochemical or molecular (Collard et al. 2005). Marker-assisted selection, which 

is the application of molecular makers in plant breeding, has been applied in plant breeding since 

the 1990s (Collard and Mackill 2008). Marker-assisted selection uses molecular markers to select 

desirable genotypes via indirect selection (Ashraf et al. 2012; Desta and Ortiz 2014).  

The basic concepts of MAS have been thoroughly reviewed (Collard et al. 2005; Francia et al. 

2005; Ribaut and Hoisington 1998; Xu and Crouch 2008). Briefly, there are four steps in MAS. 

The very first step in the marker development process is to develop a suitable population for 

linkage mapping which labels the positions of the markers and aligns them based on their relative 

genetic distances (Collard and Mackill 2008; Collard et al. 2005). Commonly used population 
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types in constructing a linkage map include F2, doubled-haploid (DH), backcross (BC) and 

recombinant inbred line (RIL) populations (Collard and Mackill 2008). The occurrence of genetic 

recombination events during meiosis leads to segregation in genes or markers (Collard et al. 2005). 

In the second step, a linkage map that illustrates the relative arrangement of markers is constructed 

based on the analysis of segregation (Collard et al. 2005). In the third step, the Quantitative Trait 

Loci (QTL), which are the genomic regions associated with a trait of interest, can be identified 

from the linkage map by examining the difference between phenotypic means of different 

genotypic groups (Langridge and Chalmers 2005; Sleper and Poehlman 2006). The next step is to 

validate the detected QTL across different conditions and genetic backgrounds to confirm that they 

are reliable in predicting the phenotypes (Collard and Mackill 2008). The validated markers can 

then be used in MAS, assisting breeders in selecting individuals with the desired traits of interest 

(Nadeem et al. 2017). 

Different types of molecular markers have been used in MAS in plant breeding. These markers 

include restriction fragment length polymorphism (RFLP) (Botstein et al. 1980), microsatellites or 

simple sequence repeat (SSR) (Jeffreys et al. 1985; Litt and Luty 1989), random amplified 

polymorphic DNA (RAPD) (Williams et al. 1990), sequence characterized amplified region 

(SCAR) (Paran and Michelmore 1993), amplified fragment length polymorphism (AFLP) (Vos et 

al. 1995), single nucleotide polymorphism (SNP) (Wang et al. 1998) and diversity arrays 

technology (DarT) (Jaccoud et al. 2001). Today, most high-throughput detection platforms utilize 

SNPs, the variation that occurs on a single nucleotide at a certain point in the genome (Celton et 

al. 2010). Mammadov et al. (2012) reviewed the impacts of SNP markers on plant breeding. 

Essentially, SNP markers are excellent to distinguish individuals within a population and have 
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become popular due to their genome-wide abundance (John 2012). Details on SNP arrays are 

discussed in section 2.3.2. 

2.2.2.1 Advantages in marker-assisted selection 

Marker-assisted selection has brought many opportunities and challenges to breeding and has been 

practised as a standard tool in breeding programs for some time (Jiang 2015). Compared with 

phenotypic selection, MAS is more efficient for transferring target genomic regions for traits of 

interest in a precise manner (Wijerathna 2015). Selection can be made at a very early stage of plant 

development (Jiang 2015), for example at the seedling stage (Collard and Mackill 2008) or even 

directly from the seed, prior to planting (Xu and Crouch 2008). Thus, the total number of plants 

phenotypically evaluated can be reduced, and the cost of greenhouse or field research would 

decrease accordingly. With the advancements in genotyping technologies and innovative gene-

editing technologies, MAS will continue to be a useful breeding tool in future plant breeding (Cobb 

et al. 2019).  

2.2.2.2 Limitations in marker-assisted selection 

Although there are many advantages to utilizing MAS in plant breeding, there are several factors 

that limit additional genetic gains using MAS. Examples of the limitations include: (a) limited 

proportion of genetic variance that can be explained by markers; (b) limited accuracy of estimated 

QTL effects; (c) limited ability in shortening the breeding cycle; and (d) limited accuracy of 

estimated breeding value (EBV) (Goddard and Hayes 2007). A breeder must consider these 

limitations when utilizing MAS. For example, one has to be cautious of the reliability and accuracy 

of QTL mapping, or the interaction between QTL and the environment (Cobb et al. 2019; Collard 

and Mackill 2008). As an indirect selection method, MAS relies on the association between 
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phenotypic variation and the markers, thus the existence and significance of QTL might vary 

depending upon the environments the field data were collected from, as well as the population that 

they were identified from (Cobb et al. 2019). In addition, minor gene effects were often difficult 

to detect using MAS and association genetics (Desta and Ortiz 2014). Compared to complex traits 

controlled by many genes, MAS is more effective in selecting qualitative traits or traits controlled 

by a few major genes (Fu et al. 2017; Jiang 2013; Snowdon and Friedt 2004). 

2.2.2.3 The success of marker-assisted selection in some major crops  

Marker-assisted selection has been widely used in different breeding programs in various crops. 

For example, MAS has been effective at improving seed oil and seed protein content, which have 

been two of the most important traits being studied in soybean (Leite et al. 2016; Patil et al. 2018; 

Zhang et al. 2016; Zhang et al. 2019b; Zhang et al. 2018b; Zhang et al. 2015b). Marker-assisted 

selection was also used in maize (Zea mays L.) breeding. In maize, molecular markers have been 

frequently used to investigate and develop high-quality protein maize cultivars (Gibbon and 

Larkins 2005; Hossain et al. 2018; Krishna et al. 2017). In hybrid maize breeding programs, MAS 

was utilized to evaluate heterosis (Collard and Mackill 2008). Marker-assisted selection was also 

used to evaluate and improve yield performance in maize (Abdulmalik et al. 2017; Beyene et al. 

2016; Ribaut and Ragot 2007) and has been shown to be more effective than pedigree breeding 

(Beyene et al. 2016). In wheat, MAS has gained success in developing drought-resistant cultivars 

(Fleury et al. 2010; Tuberosa and Salvi 2006). The development of disease-resistant wheat 

cultivars for powdery mildew (Blumeria graminis DC. Speer f. sp. tritici) resistance (Li et al. 

2018a; Ma et al. 2018), stripe rust (Puccinia striiformis Westend.) resistance (Miedaner and 

Korzun 2012) and Fusarium head blight (Fusarium graminearum Schwabe sensu lato; FHB) 

resistance was enabled by MAS (Anderson 2007; Clark et al. 2016; Liu et al. 2019). In Canada, 
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nine wheat cultivars developed through MAS have been released, including rust, FHB, wheat 

midge [Sitodiplosis mosellana (Gehin)] and wheat stem sawfly resistant cultivars (Randhawa et al. 

2013). In other crops such as barley (Hordeum vulgare L.), MAS has been applied in breeding 

disease resistant cultivars (Miedaner and Korzun 2012). In rice, cooking qualities and abiotic stress 

tolerance have also been successfully improved by MAS as reviewed by Phing Lau et al. (2016). 

In upland cotton (Gossypium hirsutum L.), MAS has been used in improving fibre quality (Ijaz et 

al. 2019). Regardless of the disadvantages of MAS, numerous achievements have been obtained 

through its application, and previously reviewed (Boopathi 2013; Francia et al. 2005; Wijerathna 

2015; Xu and Crouch 2008).  

2.2.2.4 Marker-assisted selection in Brassica napus 

The development of DNA marker technologies has enabled the generation of high-density 

molecular maps, QTL and associated markers, followed by MAS within Brassica crop species 

(Snowdon and Friedt 2004). Numerous studies have been conducted in identifying QTL on 

different traits in B. napus in the past, however, only a few reported cases have applied MAS in 

improving the genetics of new B. napus cultivars. For example, MAS has been successfully applied 

in improving seed quality traits such as linolenic acid, oleic acid, oil content (Cheung et al. 1998; 

Jourdren et al. 1996; Rakow et al. 1999; Somers et al. 1999; Spasibionek et al. 2020) and erucic 

acid content in B. napus (Rahman et al. 2008). Yellow seed coat colour was investigated by 

utilizing MAS in B. napus (Liu et al. 2005; Rakow et al. 1999; Somers et al. 2001). Marker-assisted 

selection has also been applied in selecting for traits related to disease resistance such as white rust 

resistance [Albugo candida (Pers) Kunze] (Cheung et al. 1998; Jourdren et al. 1996; Somers et al. 

1999) and clubroot (Plasmodiophora brassicae Woronin) resistance (Hirani et al. 2016; Rahman 

et al. 2014). In addition, self-incompatibility alleles can be screened in early developmental stages 
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in B. napus using genes as markers (Žaludová et al. 2013). Although there have been abundant 

QTL identified on many traits, the application of MAS primarily focused on traits controlled by 

fewer genes. 

2.3 High-throughput genotyping 

High-throughput genotyping is a type of genotyping that can process hundreds to thousands of 

individuals using hundreds to thousands of markers simultaneously, which quickly became a 

popular approach to identify SNPs because of the high efficiency and cost effectiveness (Edwards 

et al. 2013; Singh and Singh 2015). The most commonly used genotyping methods have been 

reviewed by Scheben et al. (2017). To date, genotyping-by-sequencing (GBS) and SNP arrays are 

the most widely utilized platforms (You et al. 2018b). 

2.3.1 Genotype-by-sequencing and single nucleotide polymorphism arrays 

Genotyping-by-sequencing is a highly multiplexed high-throughput genotyping method that 

utilizes restriction enzymes (RE) to sequence genome subsets and can be modified to apply to any 

species (Elshire et al. 2011). It is both time and cost-effective since the process of genomic DNA 

digestion and adaptor ligation all take place within one well, which avoids errors that could occur 

in transferring samples between wells or plates (Elshire et al. 2011).  

A DNA microarray is a solid surface where a collection of nucleic acids is attached to and typically 

used to measure the relative concentrations of the nucleic acid species in solution through 

hybridization (Bumgarner 2013). A SNP array is a type of DNA microarray used in detecting 

polymorphisms (LaFramboise 2009), which has also been widely used in high-throughput 

genotyping. (You et al. 2018b). The probes on the array were designed to hybridize with the target 

DNA fragments, which will then produce signals that can be measured and determine the specific 

alleles of the SNPs (LaFramboise 2009). SNPs scored using this method are reliable and have been 
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widely applied in plant breeding in different crops (Elbasyoni et al. 2018). For example, in cereal 

crops such as wheat and oat, various SNP array platforms have been made available such as the 

Illumina Wheat 9K iSelect SNP array (Cavanagh et al. 2013), the Illumina Wheat 90K iSelect SNP 

array (Wang et al. 2014), the Axiom® Wheat 660K SNP array (Sun et al. 2020) and the Illumina 

Oat 6K array etc. All of these platforms provide great opportunities in shortening the breeding 

cycle and improving economically important traits in crops (Rasheed et al. 2017). 

2.3.2 Brassica napus Illumina InfiniumTM SNP Array 

Genotyping B. napus can be challenging since B. napus has a complex genome due to the historical 

genome duplications that occurred in its ancestors of B. rapa (AA) and B. oleracea (CC), as well 

as the homeologous exchanges between the A- and C- subgenomes of B. napus (Chalhoub et al. 

2014; Fu et al. 2016). Developed for allotetraploid B. napus, the Brassica napus Illumina 

InfiniumTM SNP array (60K SNP Chip) became commercially available in 2013 (Mason et al. 

2017). It is a high-density SNP array containing 52,157 markers (Mason et al. 2017). This brought 

new possibilities for genomic selection, as it is a new cost-efficient method that offers high-density, 

high-throughput whole genome screening for polymorphism in B. napus populations (Liu et al. 

2013; Snowdon and Iniguez Luy 2012). The initial processing of the genotypic data generated 

from the 60K SNP array could be completed in GenomeStudio®, software developed by Illumina® 

for the preliminary data screening, filtration, and cluster adjustment (Illumina Inc 2016).  

Since its release, the B. napus 60K SNP genotyping array has been applied in numerous studies 

that covered a wide range of research topics (Mason et al. 2017). The 60K SNP was used in 

investigating seed quality traits such as oleic acid content (Yao et al. 2020b), oil content (Liu et al. 

2016a), erucic acid, stearic acid and glucosinolate content (Zou et al. 2016), as well as disease 

resistance related traits such as Sclerotinia sclerotiorum (Lib.) de Bary stem rot resistance (Wei et 
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al. 2016) and clubroot resistance caused by Plasmodiophora Brassicae Woronin (Fredua-

Agyeman et al. 2020). It has also been used in genomic prediction in B. napus such as performance 

prediction of B. napus hybrids (Knoch et al. 2021; Werner et al. 2018a), evaluation of the effect 

of low marker density on prediction accuracy (Werner et al. 2018b) and population effect on 

prediction accuracy in cross-validation (Werner et al. 2020).  

2.4 Genome-wide association study  

Genome-wide association study (GWAS) examines the relationship between the traits of interest 

and the associated genes, QTL or SNPs through various statistical comparisons (Scherer and 

Christensen 2016). It was initially applied in human genetic studies, mainly focusing on identifying 

the association between SNP markers and diseases (Klein et al. 2005; Rafalski 2010; Visscher et 

al. 2012). Currently, GWAS has been widely accepted and utilized in human genetic research, 

especially for common diseases, which have shown great impact in determining the molecular 

mechanisms and genetic basis (Huang and Han 2014). Following the establishment in human 

genetic research of GWAS, the application of GWAS has been extended into non-human species 

and has become a new tool for animal and plant breeders to improve the genetics of breeding 

materials (Scherer and Christensen 2016).  

The population used clearly impacts the final results of GWAS (Gupta et al. 2014) and various 

types of plant populations can be used. For example, historical germplasm, bi-parental mapping 

populations and breeding populations are frequently used (Gupta et al. 2014). Considering that 

phenotypic data is regularly collected from breeding populations, implementing GWAS based on 

breeding populations is relatively cost-effective (Gupta et al. 2014). Multi-parental populations are 

also used in GWAS such as multi-parental advanced generation intercrosses (MAGIC) (Cavanagh 

et al. 2008) and nested association mapping (NAM) populations (Yu et al. 2008). To construct a 
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typical MAGIC population, usually four, eight or 16 parents (generation 0) are used to produce F1 

hybrids (generation I) and subsequent crosses are made between the F1 hybrids to produce 

generation II. Crosses are then made between generation II individuals that do not share common 

ancestors followed by selfing until the individuals reach a desired inbred level (Cavanagh et al. 

2008). To construct a NAM population, crosses are performed between one parental genotype and 

several founder parental genotypes instead of performing crosses among the selected parental 

genotypes, which therefore makes the NAM population desirable for joint linkage association 

mapping (Gupta et al. 2014).  

Genome-wide association study has also been combined with other techniques in finding candidate 

genes and looking into genetic architecture of a particular trait. These techniques include bulk 

segregant analysis (BSA) (Gyawali et al. 2019), linkage mapping (Deng et al. 2017; Li et al. 2016d; 

Li et al. 2015b; Liu et al. 2020a; Wang et al. 2018b), QTL mapping (Ju et al. 2017; Peiffer et al. 

2014; Zhao et al. 2018b), and genomic prediction/selection (Bian and Holland 2017; Fiedler et al. 

2017; Tsai et al. 2020). With the support from other techniques, GWAS is a more powerful tool in 

dissecting genetic architecture of traits. 

2.4.1 Advantages and limitations of genome-wide association study 

Compared to studies that focus solely on QTL identification, GWAS has shown numerous 

advantages. Genome-wide association study can be directly performed on breeding populations or 

a collection of germplasm, which is time-efficient as it does not require a population development 

process (Cortes et al. 2021; Gupta et al. 2014). The resolution from GWAS was often higher than 

QTL studies using a bi-parental population (Huang and Han 2014). Bi-parental crosses limit the 

diversity of genetic variations that can be evaluated in the target population (Korte and Farlow 

2013). Genome-wide association study has become a great tool in examining complex traits and 
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examining the genetic variation involved in crop plants (Huang and Han 2014). In fact, there were 

more advantages in applying GWAS in plants than in human studies (Rafalski 2010). For example, 

constructing a sizeable population consisting of homozygous individuals and testing its 

performance on different traits is more feasible in plants compared to humans (Rafalski 2010). 

These advantages demonstrate why genome-wide association studies can be so efficient and 

effective in understanding the genetics of a trait.  

Genome-wide association studies also have several limitations. False negatives are quite common 

when the trait of interest is easily affected by environmental effects (Brachi et al. 2011). In most 

GWAS studies, markers with minor allele frequencies (MAF) under 5% or 10% are removed from 

association analysis, due to the fact that rare variants can cause an artificial increase in association 

score estimation, which makes it challenging to identify SNPs that have true associations with the 

phenotypic variations (Miyagawa et al. 2008). The power of GWAS decreases when the trait of 

interest is controlled by many alleles with small effects (Korte and Farlow 2013). Researchers also 

have to be cautious when constructing a GWAS population, since population structure can also 

affect the power of GWAS or any genome-wide studies (Asoro et al. 2011; Liu and Yan 2019). 

The stratification underlying the population structure will cause linkage disequilibrium (LD) even 

though the involved loci are not physically linked, which then may cause increases in the false 

positive rate and possible inflations in the test results in typical GWAS that use single locus models 

(Segura et al. 2012). In other words, it may make it difficult to decide whether the identified 

associations are true or false (Atwell et al. 2010). This also leads to the difficulty in detecting 

epistasis in a population that consists of unrelated individuals (Liu and Yan 2019). Several 

statistical methods have been proposed to address this issue including a multi-locus mixed-model 

(MLMM) (Segura et al. 2012), efficient mixed-model association (EMMA) (Kang et al. 2008), 
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empirical Bayesian method (EB) (Wang et al. 2016b) and fast-empirical Bayesian linear model 

(FAST-EB-LMM) (Chang et al. 2019). 

2.4.2 Application of genome-wide association study in major crops  

Using GWAS in soybean, numerous significant SNPs/genes were associated with yield-related 

traits such as time to flowering and maturity (Zatybekov et al. 2017), seed weight (Zatybekov et 

al. 2017; Zhao et al. 2019b), pod dehiscence (Hu et al. 2019), internode number, seed yield per 

plant, plant height (Assefa et al. 2019; Zatybekov et al. 2017) and seeds per plant (Zatybekov et 

al. 2017). Genomic regions significantly associated with seed quality traits on seed protein and oil 

content were also identified (Hwang et al. 2014). Significant quantitative trait nucleotides (QTNs) 

were identified in abiotic stress-tolerant characteristics such as seed-flooding tolerance (Yu et al. 

2019). Pest resistant QTL for soybean aphids (Aphis glycines Matsumura) and soybean cyst 

nematodes (Heterodera glycines Ichinohe) have also been identified by GWAS (Neupane et al. 

2019).  

In maize, GWAS has been widely accepted (Xiao et al. 2017). Using GWAS, various significant 

SNPs/genes were associated with agronomic traits such as plant height (Gyawali et al. 2019; 

Peiffer et al. 2014; Zhang et al. 2019c), flowering traits (days to tassel, days to silk, days to anthesis 

and anthesis-silking interval) in a multiple hybrid population (Wang et al. 2017a) and husk traits 

(number of layers, length, width, and thickness) from a diverse panel that consisted of 508 

genotypes (Cui et al. 2016). Marker-trait associations (MTA) were also identified with abiotic 

stress resistant traits such as drought tolerance at the seedling stage (Wang et al. 2016c) and cold 

tolerance (Revilla et al. 2016). In a study that focused on forage quality traits (acid detergent fiber, 

neutral detergent fiber and in vitro dry matter digestibility) in mature stalks, SNPs were identified 

from a diverse population consisting of 369 inbred genotypes, with each SNP accounting for 4.2% 
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to 6.2% of the phenotypic variation (Wang et al. 2016a). The abundant discoveries derived from 

GWAS studies mentioned above have assisted maize breeders in improving the agronomic traits 

as well as abiotic resistance in maize cultivars. 

In wheat, GWAS has been well-established and applied. Significantly associated SNPs have been 

detected for numerous traits including heading date (Ogbonnaya et al. 2017; Zhang et al. 2018a), 

spike length (Ogbonnaya et al. 2017), flowering date (Zhang et al. 2018a), plant height (Li et al. 

2019a), thousand kernel weight (Liu et al. 2017c; Ogbonnaya et al. 2017; Sun et al. 2017), grain 

yield (Ogbonnaya et al. 2017) and pre-harvest sprouting resistance (Lin et al. 2016; Lin et al. 2017). 

Significant MTA were also identified with disease-resistant traits such as powdery mildew 

resistance (Liu et al. 2017a), seedling leaf rust resistance (Li et al. 2016b) and FHB resistance 

(Wang et al. 2017c). In terms of seed quality of winter wheat, Lin et al. (2016) identified four QTL 

that were significantly associated with grain colour, while Tsai et al. (2020) identified two SNPs 

associated with seed moisture and one SNP associated with seed starch content. These studies 

increased the understanding of wheat genetics through GWAS and the identified SNPs could be 

useful in MAS in wheat breeding. 

Aside from the major crops mentioned above, GWAS has also been applied in barley (Bellucci et 

al. 2017; Jabbari et al. 2018; Tsai et al. 2020), rice (Pantaliao et al. 2016; Yang et al. 2018; Yano 

et al. 2016), oat (Carlson et al. 2019; Newell et al. 2011), flax (He et al. 2018; Soto-Cerda et al. 

2018; Xie et al. 2019; You et al. 2018a), and pulse crops such as common bean (Phaseolus vulgaris 

L.) (Hoyos-Villegas et al. 2017; Nascimento et al. 2018), chickpea (Cicer arietinum L.) (Bajaj et 

al. 2016; Basu et al. 2018; Upadhyaya et al. 2015), and lentil (Khazaei et al. 2017), as well as in 

many other crops.  
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2.4.3 Application of genome-wide association study in Brassica napus 

Similar to other major crops, GWAS has been well established in B. napus, allowing scientists to 

have a better understanding of the genetic structure of numerous traits in B. napus. It was used to 

detect SNPs/QTL/candidate genes that were significantly associated with yield-related traits such 

as flowering time (Korber et al. 2016; Raman et al. 2019; Schiessl et al. 2015; Xu et al. 2016; Zhou 

et al. 2018), maturity time (Zhou et al. 2018), plant height (Korber et al. 2016; Li et al. 2016a; 

Schiessl et al. 2015; Sun et al. 2016a; Zheng et al. 2017), stem strength (Li et al. 2018b), primary 

branch number (He et al. 2017; Li et al. 2016a), number of seeds per pod, number of pods per 

branch, number of pods per plant, number of pods on main inflorescence, branch yield, main 

inflorescence yield (Lu et al. 2017), harvest index (Lu et al. 2016), seed weight (Li et al. 2014b; 

Lu et al. 2017), seed yield (Korber et al. 2016; Schiessl et al. 2015) and lodging coefficient (Li et 

al. 2018b).  

Marker-trait association has also been identified in seed quality traits such as seed coat colour 

(Wang et al. 2017b), erucic acid content (Korber et al. 2016; Li et al. 2014b; Wang et al. 2018a), 

fatty acid composition (Gacek et al. 2016; Qu et al. 2017; Xue et al. 2018), oleic acid content (Zhao 

et al. 2019a), seed oil content (Korber et al. 2016; Li et al. 2014b; Liu et al. 2016a; Sun et al. 2016b; 

Wang et al. 2018a; Wu et al. 2016b; Xiao et al. 2019), glucosinolate content (Kittipol et al. 2019; 

Korber et al. 2016; Li et al. 2014b; Wang et al. 2018a; Wei et al. 2019a) and seed acid detergent 

lignin and hull content (Wang et al. 2015a). 

Significant associations have also been identified in physiological characteristics such as 

hypocotyl elongation (Luo et al. 2017), seed germination and vigour (Hatzig et al. 2015), root 

system architecture traits (primary root length, shoot dry weight, root dry weight, total root length, 

lateral root density, lateral root length, lateral root number and mean lateral root length) (Wang et 
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al. 2017d), calcium accumulation (Alcock et al. 2017; Chen et al. 2018) and magnesium 

accumulation (Alcock et al. 2017). For abiotic stress tolerant characteristics, MTAs have also been 

identified in salt tolerance (Wan et al. 2017; Yong et al. 2015). In addition, MTAs have been 

identified for disease resistant characteristics such as Sclerotinia stem rot resistance (Wei et al. 

2016; Wu et al. 2016a), clubroot resistance (Li et al. 2016c) and blackleg resistance (Raman et al. 

2016). 

2.5 Genomic selection  

It is commonly recognized that many traits are often controlled by numerous markers that have 

small effects on a trait, which is difficult to depict by QTL mapping or MAS (Cobb et al. 2019; de 

Los Campos et al. 2013). Genomic selection (GS) is considered as a variant of MAS which 

assumes that “at least one marker is in linkage disequilibrium (LD) with the locus/loci” that 

control(s) the trait of interest instead of focusing on major marker effects or novel genes as in QTL 

mapping or MAS (Desta and Ortiz 2014; Goddard and Hayes 2007). Genomic selection attempts 

to examine and evaluate all gene/marker effects along the entire genome for traits of interest for 

each genotype (Heffner et al. 2011a; Newell and Jannink 2014). 

Genomic selection was initially used for improving the rate of genetic gain in animal breeding 

(Meuwissen et al. 2001). In GS, a training population (TP, also known as reference population) is 

often divided into a training set and a validation set (Desta and Ortiz 2014). All individuals in the 

TP have been phenotyped and genotyped and are used to train a model (Heffner et al. 2011a; 

Jannink et al. 2010). This is called the “cross validation” process (Equation 2.1).  

𝑦 = 𝜇 +  ∑ 𝜒𝑘𝛽𝑘 + 𝑒𝑘   [2.1] (Desta and Ortiz 2014) 
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where 𝑦 is the vector of phenotype of the given trait, 𝜇 is the population mean of the phenotype, 𝑘 

stands for the locus, 𝜒𝑘 is the allelic status at locus k, and 𝛽𝑘 is marker effect at locus 𝑘, and 𝑒 is 

the residual effects ranging from 0~𝜎𝑒
2, where 𝜎𝑒

2 is the residual variance. 

Based on the genotypic data of the untested test population (or the candidate /breeding population), 

this model is then used to evaluate and predict the phenotypic performance of each individual in 

the test population (Isidro et al. 2015; Mangin et al. 2017) (Equation 2.2).  

𝐺𝐸𝐵𝑉 =  𝑥𝑛𝑒𝑤𝛽�̂�  [2.2] (Desta and Ortiz 2014) 

where 𝑥𝑛𝑒𝑤 represents a matrix consisting of the allelic status of individuals in a test population, 

and 𝛽�̂� is the regression coefficient of 𝛽𝑘. 

Then the genomic estimated breeding value (GEBV) of a genotype can be calculated by summing 

all its SNP effects (Su et al. 2010). The identified highest GEBVs can then be used as the selection 

criteria without phenotypic data by breeders (Desta and Ortiz 2014; Heffner et al. 2011a; Jannink 

et al. 2010; Thavamanikumar et al. 2015). Correlation between GEBVs and empirically EBV is 

then computed for prediction accuracy of the applied model (Desta and Ortiz 2014) (Equation 2.3). 

𝑟𝐴 =  √
ℎ2

ℎ2+ 
𝑀𝑒
𝑁𝑝

   [2.3] (Desta and Ortiz 2014) 

where  ℎ2 stands for the narrow sense heritability, 

𝑀𝑒 stands for the number of independent chromosome blocks,  

𝑁𝑝 stands for the number of individuals in the TP. 

2.5.1 Factors that affect prediction accuracy of genomic selection 

When breeders try to choose a model for GS, unfortunately there is no such thing as “one size fits 

all” (Lorenz et al. 2011). Numerous factors, such as size and components of the TP, marker density, 

trait heritability and model performances can all influence prediction accuracy (Tan et al. 2017; 
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Zhang et al. 2019a). In fact, there is no perfect GS model that can be applied to all species of crops, 

or even on the same species for different traits (Lorenz et al. 2011). Therefore, these related (but 

not limited to) factors should be adjusted according to specific purposes. 

2.5.1.1 Training population 

2.5.1.1.1 Size of the training population and relatedness within training population 

Prediction accuracy in GS is largely affected by the size of the TP (Robertsen et al. 2019). 

Although other factors need to be considered, prediction accuracy increases when TP size 

increases (Desta and Ortiz 2014). In structured populations, population size is a crucial factor when 

estimating genomic heritability and evaluating genomic prediction (Guo et al. 2014). Theoretically, 

when constructing a TP, it should include a wide range of genotypes, which offer diverse genetic 

background information to allow more accurate predictions in the next steps (Calus 2010). 

However, this is neither feasible, nor practical, which makes it reasonable to construct a TP that is 

genetically closely related to the test population to improve prediction accuracy (Calus 2010). Thus, 

the design and structure of the TP becomes another important factor to consider. 

2.5.1.1.2 Genetic structure of training population 

An appropriate design of the TP is crucial in a successful GS project. Size of the TP and the 

relatedness between training set and validation set could greatly impact prediction accuracy 

(Lozada et al. 2019). When the test population is closely related to the TP, GS produces more 

precise GEBV values (Calus 2010; Clark and van der Werf 2013). This is because the relatedness 

between TP and test population can help capture the genetic relationship within the test population 

(Clark et al. 2011). Schulz-Streeck et al. (2012) found that combining different population groups 

or genotypes clusters improved prediction accuracy in maize.  



 33 

Genomic selection accuracy can also be affected by population structure in a stratified population 

(de Los Campos et al. 2015; Guo et al. 2014). Genomic selection assumes that population structure 

is consistent amongst the training set, the validation set, and the candidate set, which makes it 

possible to predict the performance of the test population based on genotypic and phenotypic 

information from the training population. 

2.5.1.2 Markers 

Marker density is among the major factors that affect prediction accuracy. Generally, higher 

marker density is preferred, since lower marker density results in lower GS prediction accuracy 

(Moser et al. 2009). Assuming at least one marker is in LD with loci that contribute to the trait of 

interest is the fundamental concept of GS. Thus, higher marker density would ensure the 

association between markers and QTL/genes, and therefore produce higher prediction accuracy 

(Desta and Ortiz 2014). It was reported that in winter wheat, when the marker number decreased 

from 1158 to 192, prediction accuracy decreased by 10% (Heffner et al. 2011a). However, “the 

more the better” is not always the case for marker density in GS (Combs and Bernardo 2013). 

Although prediction accuracy increased with higher marker density, gains in the genome-wide 

prediction accuracy stayed at the same level when a relatively high marker density was reached 

(Combs and Bernardo 2013). In addition, the issue of overfitting might arise when GS models 

were fitted with a large number of markers, meaning that non-genetic effects are ascribed to 

markers (Hickey et al. 2014).  

The ideal marker density actually relies on the LD span of the species of interest and the population 

size (Desta and Ortiz 2014). For example, compared with wheat and barley whose LD span is 

longer, maize would prefer a higher marker density since its LD span is shorter (Desta and Ortiz 

2014). When the relatedness between the training population and the test population is high, fewer 
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markers are needed due to the common LD blocks (Hickey et al. 2014). Therefore when using a 

diverse TP to predict the performance of a poorly related test population the increase in prediction 

accuracy corresponding to greater marker density was higher (Norman et al. 2018). The ideal 

marker density needed in GS is also related to the trait of interest since the response to greater 

marker density varied depending on the particular trait being investigated (Norman et al. 2018).  

Different types of markers could be used in GS (Heffner et al. 2011a; Solberg et al. 2008). Heffner 

et al. (2011a) used SSR and DarT markers to predict grain quality traits in wheat. Low density 

SCAR markers were used in GS with good performance in predicting seed weight in soybean (Shu 

et al. 2013). SSR markers were also used in genomic selection in oil palm (Elaeis guineensis Jacq.) 

(Cros et al. 2015). Elbasyoni et al. (2018) found that GBS-scored SNPs performed similar or better 

compared to array-scored SNPs in terms of GS prediction accuracy. Marker density is also related 

with the type of markers used in GS. For example, Solberg et al. (2008) found that compared to 

SSR markers, two to three times greater SNP marker density was needed to obtain a comparable 

accuracy of GS.  

2.5.1.3 Trait heritability 

It is expected that GS prediction accuracy is often higher on traits with high heritability compared 

to traits with low heritability (Moser et al. 2009). However, it is also stated that ℎ2 × 𝑛 (where ℎ2 

is the heritability of the trait and 𝑛 is the TP size) is the most important factor that affects the 

prediction accuracy instead of ℎ2 or 𝑛 individually (Combs and Bernardo 2013). Thus, a sufficient 

TP size can compensate for the impact of low trait heritability to produce an accurate prediction 

model (Combs and Bernardo 2013; Solberg et al. 2008). 
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2.5.1.4 Model performances 

In GS, a statistical model is used to predict the breeding values of the individuals in the test 

population whose phenotypic performance is unknown (Bassi et al. 2016). Whole-genome 

regression (WGR) models in general are categorized into parametric and non-parametric 

regressions (Desta and Ortiz 2014) (Table 2.2). Specifically, a parametric model characterizes the 

parameters of a probability distribution, while a non-parametric model focuses more on the shape 

of the function (Roehrig 1988).  

Different models based on varying assumptions have been applied to estimate marker effects in 

GS (Desta and Ortiz 2014; Lorenz et al. 2011). As summarized by Desta and Ortiz (2014) (Table 

2.3) the most commonly used models include ridge regression best linear unbiased prediction 

(rrBLUP) (Endelman 2011), Bayesian shrinkage regression methods (BayesA, BayesB, BayesCπ) 

(Calus et al. 2008; Meuwissen et al. 2001; ter Braak et al. 2005; Xu 2003) and reproducing kernel 

hilbert spaces regression (RKHS regression) (Gianola et al. 2006).  

2.5.1.4.1 Parametric models 

The major factor that differentiates these prediction models is their assumptions on how much 

genetic variance could be explained by the individual loci (Clark et al. 2011; Tan et al. 2017). 

GBLUP and rrBLUP are the basic and most widely applied models, and are considered equivalent 

in general (Habier et al. 2007). Both of them assume all loci contribute equally to the genetic 

variance (Clark et al. 2011; Tan et al. 2017; Whittaker et al. 2000; Würschum et al. 2014). GBLUP 

applies a genomic relationship matrix (GRM) to estimate the additive effects (Tan et al. 2017), 

while rrBLUP relies on the estimated marker effects (Endelman 2011). In rrBLUP, the penalization 

is equal to all markers (Resende et al. 2012). One of the main differences between them is that the 

size of genetic effects matrix in GBLUP is 𝑛 × 𝑚, where 𝑛 is the number of individuals in the   
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Table 2.2 Classification of whole-genome regression models1. 

Parametric 

regressions 

Penalized 

approach 

Ridge regression best linear unbiased prediction (rrBLUP) 

Lease absolute shrinkage and selector operator (LASSO) 

Elastic net (EN) 

Support vector regression (SVR) 

Neural networks (NN) 

Reproducing kernels Hilbert spaces regression (RKHS) 

Genomic best linear unbiased prediction (GBLUP) 

Bayesian 

approach 

Genomic best linear unbiased prediction (GBLUP) 

Bayesian ridge regressions (BRR) 

Bayesian LASSO (BL) 

BayesA 

BayesB 

BayesC 

Neural networks (NN) 

Reproducing kernels Hilbert spaces regression (RKHS) 

Non-

parametric 

regressions 

Support vector regression (SVR)2 

Random forest (RF)2 

Neural networks (NN)2 

Reproducing kernels Hilbert spaces regression (RKHS)2 
1 This table is adapted from Figure 2 of “Genomic selection: genome-wide prediction in plant 

improvement” (Desta and Ortiz 2014) 
2 Machine-learning methods 
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Table 2.3 Main features of genome-wide prediction models1  

Model Features 

rrBLUP 

Assumes that all markers have equal variances with small but non-zero effect. 

Applies homogeneous shrinkage of predictors towards zero but allows for markers 

to have uneven effects. 

Computed from a realized-relation matrix based on markers. 

Some QTL are in LD to marker loci, whereas others are not. 

LASSO 

Combines both shrinkage and variable selection methods. 

rrBLUP does not use variable selection but outsmarts LASSO when there is multi-

colinearity between the predictors. 

EN 
Double regularization using ℓ1 and ℓ2 penalty norms combines the merited features 

of these norms to confront the challenge of high-dimensional data. 

BRR 

Induces homogeneous shrinkage of all marker effects towards zero and yields a 

Gaussian distribution of marker effects. 

Similar to RR-BLUP, there is a problem of QTL linkages to the marker loci. 

BL 

Applies to both shrinkage and variable selection. 

Has an exponential prior on marker variances resulting in a double exponential (DE) 

distribution 

The DE distribution has a higher mass density at zero and heavier prior tails 

compared with a Gaussian distribution 

BayesA 

Utilizes an inverse chi-square (χ2) on marker variances yielding a scaled t-

distribution for marker effects 

Similar to BL and in contrast to BRR, it shrinks tiny marker effects towards zero 

and larger values survive 

Has a higher peak of mass density zero compared with the DE distribution 

BayesB 

Similar to BayesA, uses an inverse χ2 resulting in a scaled t-distribution 

Unlike BayesA, utilizes both shrinkage and variable selection methods 

When π = 0, then it is similar to BayesA 

BayesC 

Applies both shrinkage and variable selection methods 

Characterized by a Gaussian distribution 

BayesB and BayesC consist of point of mass at zero in their slab priors 

BayesCπ 

A modified variant of BayesB 

Used to alleviate the shortcomings of BayesA and BayesB 

Unlike BayesB, π is not fixed, but estimated from the data 

RKHS 

Based on genetic distance and a kernel function with a smoothing parameter to 

regulate the distribution of QTL effects 

Effective for detecting nonadditive gene effects 

RF 

Uses the regression model rooted in bootstrapping sample observations 

Takes the average of all tree nodes to find the best prediction model 

Captures the interactions between markers 
1 This table is adapted from Table 1 of “Genomic selection: genome-wide prediction in plant 

improvement” (Desta and Ortiz 2014) 
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population, while that in rrBLUP is 𝑚 × 𝑚, where 𝑚 is the number of markers, which is often 

significantly larger than 𝑛 (Clark and van der Werf 2013).  

Each method of Bayesian models has its own prior distribution of the genetic variance explained 

by the loci, and they assume that markers could have different effects across the loci (Perez and 

de los Campos 2014; Thavamanikumar et al. 2015). BayesA (π = 0) assumes the prior specification 

of marker effects follow a scaled-t distribution (Perez and de los Campos 2014) and allows some 

of the markers to be treated as zero since they do not contribute to the phenotype (Habier et al. 

2011a). BayesB method (π > 0) allows the probability that some markers might not have any 

effects at all and thus can be excluded from the model, meaning that genetic variances are only 

found on a few loci (Meuwissen et al. 2001). BayesC was developed based on BayesB, which 

utilizes a common effect variance in substitution for the variance specific to a certain loci in 

BayesB (Colombani et al. 2013). Unlike the previous Bayesian models, π is treated as unknown in 

BayesCπ method (Colombani et al. 2013). Bayesian LASSO (BL) assumes a double exponential 

(DE) prior specification, while Bayesian Ridge Regression (BRR) assumes a similar prior 

specification with Gaussian or normal distribution, with similar-level shrunk effects (Perez and de 

los Campos 2014). Although these Bayesian models have different assumptions, it was reported 

that their performance was very similar with each other (Colombani et al. 2013; Resende et al. 

2012). 

It has been reported that GS model prediction accuracy can be improved if a non-linear model is 

used to evaluate non-additive genetic effects (Desta and Ortiz 2014). The RKHS regression model 

linearly combines the basic feature of reproducing kernel, meaning that it is an additive genetic 

model combined with a kernel function to generate a matrix that can be used in a linear model (de 

Los Campos et al. 2009; Gianola et al. 2006; Tan et al. 2017). As a nonparametric method, RKHS 
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was proposed to cope with problems such as “dimensionality, multicollinearity, and the inability 

to deal effectively with epistasis” that exists in current popular models (eg.: rrBLUP, BayesA, 

BayesB) (Sun et al. 2012).  

There are models that could include G × E effects into GS prediction as well, and they were found 

to be more accurate than those that do not consider G × E effects (Acosta-Pech et al. 2017; Crossa 

et al. 2014; Cuevas et al. 2017; Montesinos-Lopez et al. 2019). As a result, when utilizing models 

that account for G × E effects, breeders would have a better idea about the stability of the genotypes 

and thus be able to select the genotypes with the best performance within a certain site or across 

sites (Roorkiwal et al. 2018). Heslot et al. (2014) proposed a model that integrated weather data 

which improved prediction accuracy using a large historical winter wheat breeding dataset. In 

hybrid maize breeding, Acosta-Pech et al. (2017) found that the prediction performance was better 

when the model included interaction of general and specific combining ability with environments. 

Gapare et al. (2018) demonstrated that GS prediction accuracy of the model that included marker-

by-environment effect performed better than the single-location and the across-location models 

for both fibre length and fibre strength.  

Some models can capture epistasis, which would improve prediction accuracy. For example, 

extended genomic best linear unbiased prediction (EG-BLUP) was found to improve prediction 

accuracy in self-pollinated crops (Jiang and Reif 2015). Another example is the RKHS regression, 

which could take epistasis or dominance into consideration (de Los Campos et al. 2009; Gianola 

et al. 2006). He et al. (2016) found that models that considered both additive and epistasis effects 

improved prediction accuracy compared to models that only considered additive effects in a 

commercial winter wheat population.  
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2.5.1.4.2 Non-parametric models 

In addition to the parametric models described above, non-parametric models such as machine 

learning (ML) methods have also been applied in GS in plant breeding (van Dijk et al. 2021). 

Machine learning is a subdivision of artificial intelligence that develops algorithms based on 

training data and uses them to perform specific tasks (van Dijk et al. 2021). In GS, ML algorithms 

are more flexible in managing complicated associations (Montesinos-Lopez et al. 2021) since they 

are expected to capture relationships between markers and phenotypes differently from the linear 

models for GS (Heslot et al. 2012).  

Support-vector regression (SVR) is a machine learning algorithm that considers data instances in 

the training set as points in a high-dimensional vectors space (that is, the vector space has a 

dimension equal to the number of features for each instance) (Drucker et al. 1997). With SVR, a 

hyperplane is constructed to perform regression, but with a different optimization compared to 

traditional regression such as least-squares or Lasso regression: the quadratic optimization seeks 

to minimize coefficients associated with the slope of the hyperplane (Drucker et al. 1997). The 

formulation of the SVR ensures that the solution is sparse, in that it depends on few instances in 

the training set, which reduces overfitting and improves efficiency.  

Two tree-based ensemble methods have also been used in GS: extreme gradient boosting 

(XGBoost) (Chen and Guestrin 2016; Friedman 2001) and random forests (RF) (Breiman 2001). 

Both methods rely on decision trees, which are flowcharts based on binary decisions for a single 

feature. Building a decision tree from a training set is accomplished by growing a tree from the 

root to the leaves by finding decisions for new internal nodes that split the training set into two 

subsets that are as uniform as possible in their output values (Myles et al. 2004). Each tree is a set 

of decision rules for characterizing instances – the rules are based on values of single features 
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(Myles et al. 2004). The predicted value from each tree is averaged to achieve a final prediction 

from the entire ensemble (Chen and Guestrin 2016). Random forests are an ensemble ML method 

where large collections of trees are used to obtain a prediction (Breiman 2001). The number of 

trees in a RF is a hyperparameter, as is the maximum depth of the trees. Typically, the number of 

trees in a RF is in the range of 10s to 100s, while the depth is typically less than 50 (Breiman 2001). 

To obtain a prediction from a RF, each tree is used to obtain an output prediction, and the results 

for all trees are averaged to obtain a final prediction (Holliday et al. 2012). XGBoost shares many 

aspects with RFs – both are ensemble techniques consisting of a collection of decision trees 

(Friedman 2001). The primary difference is that while the trees are constructed independently for 

RFs, in XGBoost, each tree is constructed using information from all previously constructed trees.  

As a relatively newer approach in plant breeding, GS still has its limitations (Desta and Ortiz 2014; 

Jonas and de Koning 2013). Although a great amount of GS models have been proposed for plant 

breeding, so far none of them can outperform all the others in all circumstances, due to different 

genetic architectures and the specific traits of interest (Lorenz et al. 2011).  

2.5.2 Advantages and limitations of genomic selection  

With the help of GS, breeders can make selections with predicted performance of a breeding 

population instead of the observed performance (Combs and Bernardo 2013), which theoretically 

shortens the breeding cycle and reduces the cost in phenotyping potential candidates (Desta and 

Ortiz 2014). One of the greatest advantages of GS is that it has the potential to accurately predict 

GEBVs without repeated phenotyping over multiple generations, which should cut down the cost 

of phenotyping as well as generation interval (Habier et al. 2007; Jannink et al. 2010). Genomic 

selection is also a promising tool for integrating historical data from a breeding program to aid 

with current research (Heslot et al. 2014). Annicchiarico et al. (2015) found that GS for biomass 
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yield was more effective than conventional selection. Genomic selection had a higher prediction 

accuracy than MAS in a wheat population that included multiple families (Heffner et al. 2011b). 

Genomic selection also outperformed in MAS predicting seed weight in soybean (Zhang et al. 

2016). However, Beyene et al. (2019) also compared the efficiency of GS versus phenotypic 

selection in hybrid maize and concluded that GS did not necessarily perform better than phenotypic 

selection, although it did reduce cost by 32%, which was one of the greatest advantages in 

incorporating GS into maize breeding.  

A major limitation when implementing GS into breeding programs was the limited number of 

markers available as well as the very high cost of genotyping (Goddard and Hayes 2007). This has 

now become less of an issue due to the fast development and improvement of newer sequencing 

technologies, which has led to a dramatic reduction in the cost of genotyping (Rasheed et al. 2017). 

Another limitation is the loss of genetic diversity in the GS process. In some conventional GS 

approaches, short-term gain is achieved at the cost of the long term potential, due to the reduction 

in genetic diversity (Moeinizade et al. 2019). A new approach called the optimal population value 

(OPV) was developed to address this issue (Goiffon et al. 2017). However, this method could be 

time-consuming since its GEBV calculation is based on the best individuals derived from the 

unlimited generation of the best group of the population (Goiffon et al. 2017). Future GS studies 

also need to address the issues of evaluating marker effects more accurately, examining the 

effectiveness of GS in populations with variable LD structures, as well as optimizing the scheme 

in resource allocation (Moeinizade et al. 2019).  

2.5.3 Current application of genomic selection in plant breeding 

Over the last decade, following the success of its application in animal breeding, GS has become 

a useful tool in selecting complex traits in crop breeding (Heffner et al. 2011a). Genomic selection 
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has been evaluated for its potential performance in various major crops such as soybean (Shu et al. 

2013), wheat (Crossa et al. 2010; Fleury et al. 2010; Heffner et al. 2011a; Heffner et al. 2011b), 

maize (Crossa et al. 2010; Lorenzana and Bernardo 2009; Riedelsheimer et al. 2012), barley 

(Lorenzana and Bernardo 2009), rice (Grenier et al. 2015; Spindel et al. 2015), and rapeseed (Jan 

et al. 2016; Snowdon and Iniguez Luy 2012; Würschum et al. 2014).  

In wheat, GS has been applied extensively in predicting yield related traits such as heading date 

(Elbasyoni et al. 2018; Lozada et al. 2019; Sarinelli et al. 2019; Zhao et al. 2014), flowering time 

(Bentley et al. 2014; Watson et al. 2019), maturity time (Elbasyoni et al. 2018), plant height 

(Bentley et al. 2014; Elbasyoni et al. 2018; Lozada et al. 2019; Sarinelli et al. 2019; Watson et al. 

2019; Zhao et al. 2014) and grain yield (Bentley et al. 2014; Elbasyoni et al. 2018; Hoffstetter et 

al. 2016; Lozada et al. 2019; Michel et al. 2019). It has also been used in predicting seed quality 

traits such as protein content (Michel et al. 2019), processing quality and end use quality 

(Battenfield et al. 2016; Michel et al. 2019). GS has also been applied in breeding for disease 

resistance in wheat such as rust resistance (Daetwyler et al. 2014; Ornella et al. 2017), FHB 

severity (Schulthess et al. 2018), FHB resistance (Hoffstetter et al. 2016) and powdery mildew 

resistance (Sarinelli et al. 2019). In addition, GS has been utilized in hybrid wheat breeding 

(Longin et al. 2015). 

In maize, GS has been utilized in predicting flowering time, ear height and grain yield (Guo et al. 

2019) root length (Pace et al. 2015), drought resistance (Vivek et al. 2017), drought tolerance (Dias 

et al. 2018), and witchweed (Striga hermonthica (Del.) Benth.) resistance (Badu-Apraku et al. 

2019). Genomic selection was also intensively studied in predicting hybrid performance in maize 

(Andorf et al. 2019; Guo et al. 2019; Technow et al. 2012; Technow et al. 2014). For example, 

Acosta-Pech et al. (2017) examined the effect of adding a GxE term in to the prediction model and 
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found that the prediction accuracy increased by 16.73%, 12.30% and 21.74 for silage yield, starch 

content and dry matter content, respectively.  

Genomic selection has been utilized for numerous traits in B. napus. Würschum et al. (2014) 

described that the rrBLUP method had the highest prediction accuracy in predicting plant height 

but the lowest prediction accuracy in glucosinolate content and grain yield in a DH winter rapeseed 

population. Li et al. (2015a) reported using GS in flowering time prediction in B. napus and 

obtained relatively high prediction accuracy using different models. Zou et al. (2016) reported 

applying genomic prediction in predicting seed quality traits with high prediction accuracies in B. 

napus, and found that the choice of prediction models did not impact prediction accuracies 

significantly. Werner et al. (2018b) reported that high prediction accuracies were achievable 

through utilizing low density markers, ranging from hundreds to a few thousand, and the results 

were comparable to that through high density arrays. Fikere et al. (2018) reported that previously 

known QTL information on blackleg resistance only accounted for less than 30% of its genetic 

variance, and a big chunk of the genetic variation remained unknown, which could be characterized 

by genomic selection.  

Genomic selection is a relatively new approach to estimate hybrid performance in rapeseed 

breeding. Only a limited number of studies have been reported. Jan et al (2016) reported that 

genomic selection was applied in a testcross study in order to select the best parental combination 

for hybrids. Liu et al. (2017b) found that the performance of the hybrids in an immortalized F2 

population was determined by additive, dominance and epistatic effects together. Similar with Zou 

et al (2016), Wener et al. (2018a) also stated that compared to the choice of models, prediction 

accuracy of genomic prediction relied more on the nature of the traits of interest. In terms of 
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genotyping platform, the Brassica 60K genotyping array was reported to be of great value in 

predicting hybrid performance in B. napus (Werner et al. 2018a). 

With the increasing availability of genomic sequencing data as well as the decreasing cost for high-

throughput genotyping (Edwards et al. 2013), genotypic information is no longer among the major 

limitations in implementing GS into B. napus breeding. In fact, one of the major challenges for B. 

napus breeders is how to relate the huge amount of genomic information to the corresponding 

phenotypic data (Snowdon and Iniguez Luy 2012). In addition, more comprehensive statistical 

models are needed to identify favourable cross combinations to give better hybrid performance 

predictions. Another tool that can be implemented in GS in B. napus breeding is high-throughput 

phenotyping that has been utilized in wheat breeding (Rutkoski et al. 2016), which would offer 

more accurate phenotypic data in the analysis and therefore help improve the prediction accuracy. 

The objectives of the following three experiments were as follows: (1) the first experiment, 

genome-wide association study (GWAS) of agronomic and seed quality traits in rapeseed (B. 

napus L.), examined the effects of population structure, population size, population composition, 

marker density and choice of models on GWAS and GS; (2) the second experiment GS and 

performance prediction in hybrid B. napus L., assessed the potential of GS in predicting the 

agronomic performance and seed quality traits of hybrid canola using various conventional GS 

models; (3) the final experiment, GWAS-guided GS of agronomic and seed quality traits in B. 

napus L., compared the performance of conventional GS models and the GS + de novo GWAS 

models.  
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3. GENOME-WIDE ASSOCIATION STUDY OF AGRONOMIC AND SEED QUALITY 

TRAITS IN Brassica napus L. 

 

3.1 Abstract 

Canola (Brassica napus L.) is currently the third-largest oilseed crop in the world, after soybean 

[Glycine max (L.) Merr.] and palm (Elaeis guineensis Jacq.). In canola, the majority of agronomic 

traits are controlled quantitatively, and the environment greatly impacts the phenotypic 

performance of these traits. To improve canola production performance, it is critical to understand 

the underlying genetics of canola traits related with yield and seed quality. In this research, five 

traits were investigated: seed yield, plant height, seed protein content, seed oil content and seed 

glucosinolate content. A parental population and a combined population (parents and hybrids) 

were examined in this research. Phenotypic data of the parental genotypes were collected from 

five site-years across southern Manitoba, while hybrid data were collected from 43 site-years 

across western Canada. Population structure analysis revealed that the genetic background of both 

the parental population and the combined population had a relatively low level of diversity. Two 

marker sets that contained 26,651 and 16,855 single nucleotide polymorphisms (SNPs), 

respectively, were used in genome-wide association study analysis with six models. The multiple 

locus mixed linear model (MLMM), fixed and random model circulating probability unification 

(FarmCPU) and compressed mixed linear model (CMLM) performed better than three mixed 

linear models that considered population structure (MLM+K, MLM+K+PCA and MLM+K+Q). 

In total, 141 significant marker-trait associations (MTAs) were identified based on the two marker 

sets, and 222 genes were predicted and annotated under the Brassicales order. Thirty genes were 
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identified in this research that had been previously identified in B. napus associated with abiotic 

stress response, disease resistance and glucosinolate synthesis.  

3.2 Introduction 

Canola (Brassica napus L.) is an economically important crop (Paterson et al. 2001) and is one of 

the most important sources of plant-based edible oil (Cartea et al. 2019). Currently, 13.3% to 16.0% 

of the global vegetable seed oil for human consumption and industrial products is provided by 

canola production (Delourme et al. 2006; Wang et al. 2018a). Canola contribution to the Canadian 

economy has increased by 35% to $29.9 billion per year in the past ten years (LMC International 

2020). As a result, improving canola yield and yield-related traits is a major breeding and 

production goal. By 2025, the market demand for Canadian canola production will need to exceed 

2,914 kg ha-1 (52 bushels/acre) to reach the 26 Mt production goal (Canola Council of Canada 

2014). Canola breeding efforts have focused on yield-related agronomic traits (seed yield, plant 

height, disease resistance, lodging resistance and shattering resistance) and seed quality traits (oil 

content, fatty acid profile, glucosinolate content and more recently seed protein content). Plant 

height (HT) is an important trait in canola as it is significantly correlated with lodging and seed 

yield (YLD), and serves as an important selection criterion in canola breeding (Ivanovska et al. 

2007; Wu and Ma 2016). As an oilseed crop, seed oil content (SOC) confers the most important 

economic value in B. napus and has been extensively studied (Delourme et al. 2006; Jiang et al. 

2014; Sun et al. 2016b; Tang et al. 2021; Vigeolas et al. 2007; Wang et al. 2010; Zou et al. 2010).  

Numerous studies have also been conducted on protein content (SPC) (Chao et al. 2017; Jolivet et 

al. 2009; Nesi et al. 2008), since canola protein contains a balanced amino acid profile, and has 

been suggested as an alternative protein for human consumption (Poisson et al. 2019). 

Glucosinolate content is also an important trait in canola as low seed glucosinolate content (GSL) 
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is essential for human consumption. High leaf glucosinolate content helps resistance against pests 

and diseases (Liu et al. 2020b), therefore manipulating GSL has always been important in canola 

breeding (Li et al. 2014a; Qu et al. 2015; Zhao and Meng 2003). It is vital to understand the genetic 

basis of these important yield-related and seed quality traits in order to produce high-yielding 

cultivars with improved quality. 

Genome-wide association study (GWAS) examines the marker-trait associations (MTAs) through 

statistical analysis on the whole genome of an organism (Lekklar et al. 2019). As an effective 

method to analyze agronomic traits (Li et al. 2014a), GWAS has been widely used in numerous 

crops such as soybean [Glycine max (L.) Merr.] (Hwang et al. 2014; Yu et al. 2019; Zatybekov et 

al. 2017), maize (Zea mays L.) (Chen et al. 2015; Gyawali et al. 2019; Wang et al. 2016c) and 

wheat (Triticum aestivum L.) (Ogbonnaya et al. 2017; Wang et al. 2017c) to identify genes or 

markers that are associated with complex traits. Compared with linkage mapping [quantitative trait 

loci (QTL) mapping] that only offers information on the trait of interest relative to a specific 

population that is genetically related, GWAS can be applied to more diverse populations and 

therefore, covers a broader genetic background (Gupta et al. 2014). As a result, GWAS allows for 

a higher mapping resolution using single nucleotide polymorphism (SNP) markers in comparison 

to linkage mapping (Lekklar et al. 2019). Another advantage of GWAS is that it is usually 

considered more time-efficient and cost-effective as it is does not require the development of a 

specific population (Cortes et al. 2021). However, the power of GWAS can be significantly 

affected by population structure (Asoro et al. 2011; Liu and Yan 2019). Due to the stratification 

underlying the population structure, linkage disequilibrium (LD) exists even though the loci 

involved are not physically linked. This can cause increased false positive rates and inflation in 

test results for GWAS using single locus models (Segura et al. 2012). This problem has been 
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addressed by several statistical methods including multi-locus mixed-model (MLMM) (Segura et 

al. 2012), fixed and random model circulating probability unification (FarmCPU) (Liu et al. 

2016b), and efficient mixed-model association (EMMA) (Kang et al. 2008). Another effective way 

to account for population structure is to implement a kinship matrix that recognizes the 

relationships between individuals (Zhang et al. 2010). 

Genome-wide association studies have been used to identify SNPs significantly associated with 

numerous traits in canola such as YLD, HT and seed quality traits such as SPC, SOC, and GSL 

(Kittipol et al. 2019; Korber et al. 2016; Li et al. 2016a; Li et al. 2014b; Liu et al. 2016a; Schiessl 

et al. 2015; Sun et al. 2016a; Sun et al. 2016b; Wang et al. 2018a; Wei et al. 2019a; Wu et al. 

2016b; Xiao et al. 2019; Zheng et al. 2017). However, these studies rarely used unbalanced data 

from hybrid breeding experiments with spring-type canola, in combination with the effects of SNP 

marker density on GWAS analysis. Thus, the objectives of the current research were to evaluate 

the effects of population composition and marker density on the accuracy of GWAS based on 

different single-locus and multi-locus models, as well as to identify the markers associated with 

YLD, HT, SOC, SPC and GSL in spring-type B. napus. Based on the objectives we hypothesize 

that the population composition, different marker density and choice of GWAS models have 

impacts on the identification of MTAs related with YLD, HT, SOC, SPC and GSL in spring-type 

B. napus. 

3.3 Materials and methods 

3.3.1  Plant materials and phenotypic data 

Ninety-two parents including 31 females (“B-line”) and 61 males (“R-line”) within the ogu 

Institute for Agricultural Research (INRA) (now National Research Institute for Agriculture, Food 

and Environment, INREA) cytoplasmic male sterility (CMS) pollination control system (Ogura 
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1968) and 362 F1 hybrid genotypes (developed from the parents listed above) were evaluated under 

the field conditions in this research. The parents were phenotyped in five site-years across southern 

Manitoba, Canada in locations with different soil types (Table 3.1). Each site-year contained three 

sub-experiments. In each sub-experiment one third of the parental genotypes and control genotypes 

were tested using a randomized complete block design (RCBD) with three replicates (blocks). 

Among all five site-years, Glenlea 2016 used 3 m double-nursery rows with a row spacing of 0.40 

m, and the remaining site-years used six-row plots of 6 m by 1.6 m , with 0.20 m row spacing.  

Edge® Granular Herbicide (5%) (Gowman Canada, Winnipeg) was incorporated into the soil at 

30.9 kg ha-1 in the fall before each field experiment took place. All seeds were treated with HELIX 

XTra® (Syngenta Canada Inc., Calgary) at 15 ml kg-1 seed before seeding. Fertilizer application 

rates for a yield goal of 2.5 t ha-1 were calculated based on the nutrient recommandations from the 

Canola Council of Canada (2020) (Table 3.2). Soil tests were conducted in the fall to determine 

appropriate fertilizer application rates, which varied depending upon the year, but averaged 110 

kg N, 44 kg P, 13 kg S and 18 kg K per hectare. The fertilizer was broadcast applied (46-0-0, 43%), 

(11-52-0, 31%), (20-0-0-24, 19%), (0-0-60, 7%). During the growing season, insecticides were 

applied five days after emergence followed by another application one week after the first 

application. Decis® (Bayer CropScience, Leverkusen, Germany) was applied at 0.2 L ha-1 when 

it was under 25 °C for control of flea beetles. When the temperature was higher than 25 °C, 

Matador® (Syngenta Canada Inc., Calgary) was applied at 0.08 L ha-1. After seeding, herbicides 

were applied at the 2-4 leaf stages (BBCH 12-14). A mixture of Poast® Ultra (BASF, 

Ludwigshafen, Germany), Muster® (DuPont Canada, Mississauga, ON), and LontrelTM 360   



 51 

Table 3.1 Five site-years of field experiments that included 92 Brassica napus L. parental 

genotypes. 

Site-year Geographic 

coordinates 

Plot size Soil type description 

Glenlea  

2016 

49.6° N, 97.1° 

W 

3 m  

double-row  

Rego black chernozem (typic 

hapludert) of scantenbury series1 

Carman  

2017 

49.5° N, 98.0° 

W 

5 m x 2 m Orthic blacks developed on sandy, 

coarse loamy, fine loamy and clayey 

sediments2 

Portage la Prairie  

2017 

50.0° N, 98.3° 

W 

5 m x 2 m Chernozemic with occurrence of 

regosolic and gleysolic3 

Glenlea  

2018 

49.6° N, 97.1° 

W 

5 m x 2 m Rego black chernozem (typic 

hapludert) of scantenbury series 

Portage la Prairie  

2018 

50.0° N, 98.3° 

W 

5 m x 2 m Chernozemic with occurrence of 

regosolic and gleysolic 
1 Information retrieved from Xu et al. (2013) 
2 Information retrieved from Mills and Haluschak (1993) 
3 Information retrieved from Michalyna and Smith (1972) 
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Table 3.2 Canola nutrient requirements of N, P, S, K for a target yield of 2.5 t ha-1. Calculation 

was based on recommendations from Canola Council of Canada (2020). 

Soil nutrient Recommended rate for one kg seed 

yield (kg) 

Recommended rate for the target yield 

(kg ha-1) 

Nitrogen (N) 0.88 to 0.13 100.80 to 151.20 

Phosphate (P) 0.06 to 0.07 63.00 to 75.60 

Sulphur (S) 0.02 to 0.04 25.20 to 40.30 

Potassium (K) 0.10 to 0.11 115.92 to 126.00  
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(Dow AgroSciences, Indianapolis, IN) were applied during BBCH 12-16 at 0.67 L ha-1, 4.9 g ha-1 

and 0.67 L ha-1, respectively, for grassy weed and broadleaf weed control. Fungicide PROLINE® 

(Bayer CropScience, Leverkusen, Germany) was applied during flowering time (BBCH 61-65) at 

0.37 L ha-1 for management of Sclerotinia stem rot caused by Sclerotinia sclerotiorum (Lib.) de 

Bary. When necessary, Pounce® 384EC Insecticide was applied at 0.18 L ha-1 for control of flea 

beetles prior to swathing (BBCH 83, 30% of pods ripe, seeds black and hard). 

Plant height (HT) was measured in cm from the centre of each plot at growth stage BBCH 80-83. 

Swathing took place at growth stage BBCH 87, when the majority of seeds had reached 

physiological maturity, with approximately 30 to 35% average seed moisture. Harvest was 

completed by combining the plants at growth stage BBCH 99 where plants were dry (8 - 10% seed 

moisture). After harvest, seeds from each plot were dried and cleaned manually. Seed yield (YLD) 

was recorded after cleaning and converted to kg ha-1 for consistency in data processing. Seed 

quality traits, including seed protein content (SPC), seed oil content (SOC), and seed glucosinolate 

content (GSL) were phenotyped using six grams of cleaned seed at 0% moisture using a FOSS 

NIR System (Model 6500, Foss NIR Systems Inc., Maryland, USA) at the Canadian Grain 

Commission certified seed quality lab at the University of Manitoba. The NIR instrument was 

calibrated and verified based on the description by DeClercq et al. (1998). The measurements 

followed the protocol described by Elahi et al. (2016).  

The same phenotypic data for hybrid genotypes were collected during 2014-2018 from 19 

locations across Alberta, Saskatchewan and Manitoba, totalling 43 different site-years (See Table 

S3.1 in the Appendix for details). Fertilizer, herbicide, insecticide, and fungicide were applied as 

described above. Briefly, 279 out of 362 hybrid genotypes were replicated five to nine times. 
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Thirty-four genotypes were replicated ten to 15 times. Forty-nine genotypes were replicated more 

than 15 times, among which genotype 13OH76 had 120 replicates.  

PROC UNIVARIATE in SAS® Studio V. 3.8 was used to examine the distribution of the residuals. 

Data with large deviation (studentized residuals larger than 5) were identified as outliers and were 

removed from the analysis. The parent and the hybrid phenotypic data were combined to compute 

the best linear unbiased prediction (BLUP) in SAS® Studio V. 3.8 using the Proc Mixed statement. 

Since not every genotype was replicated in the same site-year, the site-year effect was nested 

within the genotype effect. Furthermore, since the block effect was nested within the site-year 

effect, it was accounted for as nested within genotype-by-site-year effect. The genotype, site-year 

nested within genotype and block within site-year-by-genotype were all modeled as random effects. 

The operational model to compute the BLUP value of each genotype is shown in [3.1]:  

𝑦 = 𝜇 + 𝑔𝑖 + 𝑠𝑖𝑗 + 𝑟𝑗𝑘 + 𝑒𝑖𝑗𝑘  [3.1] 

where: 𝜇   = overall population mean of a specific trait; 

𝑔𝑖    = effect of the ith genotype; 

𝑠𝑖𝑗  = effect of the jth site-year nested within the ith genotype; 

𝑟𝑗𝑘  = effect of the kth block nested within the jth site-year; 

𝑒𝑖𝑗𝑘= residual 

3.3.2 Genotypic data 

An average of 0.05 g leaf tissue of each genotype was sampled from the first two true leaves of 

one plant (BBCH 11-12) grown in the greenhouse facility at the Department of Plant Science, 

University of Manitoba (day temperature 25 °C; night temperature 22 °C; relative humidity 40 – 

50%; light cycle 16 h light, 8 h dark). Tissue samples were stored at -80 °C until DNA extraction 

could occur. Genomic DNA was extracted following a standard CTAB protocol (Porebski et al. 
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1997), with modifications that excluded the use of polyvinylpyrrolidone and 2-mercaptoethanol, 

and the replacement of octanol with phenol. The quantification of isolated DNA was completed 

using a NanoDropTM 2000 Spectrophotometer (Thermo Scientific, MA, USA) as per manufacturer 

protocols. Isolated DNA samples were adjusted to 50 ng/µL for genotyping.  

Isolated DNA of all 454 genotypes were sent to and genotyped at Agriculture and Agri-Food 

Canada (AAFC) Saskatoon (Dr. Isobel Parkin’s lab) using the Brassica 60K Illumina Infinium 

SNP array (Illumina Inc., CA, USA) (Clarke et al. 2016). After the completion of genotyping, raw 

intensity data files and a custom cluster file were obtained from AAFC for data analysis (Clarke 

et al. 2016). All markers were mapped to the B. napus "Darmor-bzh" reference genome (Chalhoub 

et al. 2014) obtained from AAFC. In GenomeStudio 2.0 software V. 2.0.4 (Illumina Inc., CA, 

USA), all markers with more than 5% missing data and a Gentrain score of zero were excluded. 

All markers without chromosome number and position were removed. Genotypes with more than 

20% missing data were removed for marker quality control. In the end, 436 genotypes and 26,651 

markers were used in the GWAS (hereinafter referred to as MS-1) analyses (see a complete list of 

genotypes in the Appendix Table S3.2). A second set of markers was created by applying one more 

filter in GenomeStudio 2.0 to remove markers with a minor allele frequency (MAF) less than 0.05, 

which contained 16,855 SNP markers (hereinafter referred to as MS-2). 

3.3.3 Linkage disequilibrium evaluation 

The squared correlation (r2) between markers was calculated in PLINK V. 1.90b6.16 (Chang et al. 

2015). In PLINK, the flags applied were “--r2 --ld-window-r2 0 --ld-window 999999 --ld-window-

kb 71850”. Linkage disequilibrium (LD) was evaluated between SNPs within a window of 71,850 

kb which was the length of the longest chromosome based on the Darmor-bzh reference genome 

(Bayer et al. 2017). Markers were binned by 10 kb across the genome and for each bin the mean 
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r2 was calculated. The mean r2 values were then ordered from the smallest to the largest. The LD 

decay distance was assessed where the r2 value dropped below 0.2. The results were visualized in 

RStudio V. 1.3.1073 (RStudio Team 2020). RStudio: Integrated Development for R. RStudio, PBC, 

Boston, MA URL http://www.rstudio.com/) using R code adapted from Biostars 

(https://www.biostars.org/p/300381/). Linkage disequilibrium decay was plotted by A- and C- 

sub-genomes, the whole genome as well as each chromosome.  

3.3.4 Population structure 

A LD-pruned subset of markers were created using PLINK 1.9 (Chang et al. 2015). By applying a 

50-5-0.2 filter, the whole genome was scanned at an r2 threshold of 0.2 with a 50-marker-window 

and a scanning interval of five markers during the scanning. Following the scanning, a subset of 

3,205 independent markers was extracted for population structure analysis (hereinafter referred to 

as "LD-pruned markers" in this chapter).  

STRUCTURE V. 2.3.4 (Pritchard et al. 2000) and principal component analysis (PCA) were 

applied in population structure analysis using the LD-pruned markers. In STRUCTURE, Bayesian 

clustering was performed and an admixture model was applied with 100,000 Markov Chain Monte 

Carlo (MCMC) iterations and burn-in period both set as 100,000. The value range for k, which 

was the number of potential subpopulations, was set from one to ten. The STRUCTURE results 

were then uploaded to Structure Harvester Web V. 0.6.94 (July 2014) (Earl 2012) to determine 

and visualize the optimal k value. The STRUCTURE analysis was repeated by setting the k value 

as 2 to extract the Q matrix of the population. 

Principal component analysis (PCA) was conducted in RStudio V. 1.3.1073. Missing data in the 

marker dataset was imputed using the "A.mat" function from R package "rrBLUP" (Endelman 

2011) and were treated as the mean value of the specific marker across the population. R built-in 

http://www.rstudio.com/
https://www.biostars.org/p/300381/
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function "prcomp" was used in conducting PCA using the LD-pruned marker set as well as 

phenotypic data of all five traits, including HT, YLD, SPC, SOC and GSL. The results were 

visualized using the R package "ggplot2" (Wickham 2016) based on the category of the genotype 

("R-line", "B-line" or "Hybrid"). 

3.3.5 Identification of marker-trait associations 

Two sets of markers (MS-1 and MS-2) were used in GWAS analysis. Six GWAS models were 

applied to all five traits (YLD, HT, SPC, SOC and GSL). In TASSEL5 (Bradbury et al. 2007), 

three mixed linear models (MLM) models were used (Zhang et al. 2010) including MLM+K, 

MLM+K+Q and MLM+K+PCA. The difference between these three models was the 

implementation of the population structure. K represented the kinship matrix, which was 

calculated in TASSEL using the default Centered IBS algorithm. Q represented the population 

structure extracted from the previous STRUCTURE analysis based on Bayesian clustering, and 

PCA represented the principal components from marker based PCA. In GAPIT V. 3 (Wang and 

Zhang 2020), three models were used including compression mixed linear model (CMLM) (Zhang 

et al. 2010), multi-locus mixed linear model (MLMM) (Segura et al. 2012), and fixed and random 

model circulating probability unification (FarmCPU) (Liu et al. 2016b).  

To compare the performance of the six GWAS models, Quantile-quantile (Q-Q) plots were created 

using the R package "dplyr" V. 1.0.6 by plotting the observed p values plotted against the expected 

p values. The root mean square error (RMSE) of each model was computed in RStudio to evaluate 

the accuracy. Smaller RMSE indicated better accuracy. The average deviation of the observed p 

values was plotted against expected p values to visualize model performances. 
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A Bonferroni-corrected threshold was used to identify MTAs. The computation of the Bonferroni-

corrected threshold is shown in [2]. GWAS results were then plotted as Manhattan plots using the 

R package "CMplot" (Yin et al. 2020). 

𝐵𝑜𝑛𝑓𝑒𝑟𝑟𝑜𝑛𝑖 − 𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑒𝑑 𝑝 =
𝛼

𝑛
  [2] 

where: 𝛼 = the original p value, in this study 0.05 was used; 

 n = the total number of markers, in this study n either equaled 26,651 or 16,855. 

3.3.6 Identification of candidate genes 

Haplotype blocks were identified using PLINK V.1.9 with a window of 10 Mb using both MS-1 

and MS-2 based on both the parental and the combined populations. If a significant MTA was 

found within a haplotype block corresponding to the population and marker set where the MTA 

was identified from, the flanking markers of this block were used to extract genes from the 

“Brassica napus Genome Browser” (Chalhoub et al. 2014). If a significant MTA was not found in 

any haplotype block corresponding to the population and marker set where the MTA was identified 

from, the flanking markers of this marker were used for the extraction. The extracted information 

was organized as .fasta files and loaded into Omicsbox V. 1.4.11 (BioBam, Valencia, Spain) for 

functional annotation using the default annotation pipeline (Gotz et al. 2008). All sequences were 

BLASTed against the Arabidopsis (3701) and B. napus (3708) query databases. A list of GO ID 

was created based on the identified genes for enrichment analysis through Fisher’s exact analysis 

(Gotz et al. 2008). The top GO terms were visualized using the R package "ggplot2" (Wickham 

2016). 
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3.4 Results 

3.4.1 Phenotypic variations 

Large variation was observed in the raw data for parental genotypes as well as the hybrids. The 

YLD of parental genotypes ranged between 53.0 and 3086.2 kg ha-1 with a mean of 1118.0  kg ha-

1 and a median of 1066.0 kg ha-1), while that of the hybrid genotypes ranged between 686.4 and 

5312.9 kg ha-1 with a mean of 2304.8 kg ha-1 and a median of 2122.8 kg ha-1. The HT ranged from 

50.0 to 150.0 cm in the parental genotypes with a mean of 92.8 cm and a median of 93 cm, and 

65.0 to 172.0 cm in hybrid genotypes with a mean of 113.1 cm and a median of 110.0 cm. The 

SPC ranged 22.5 to 37.7% in the parental genotypes with a mean of 30.0% and a median of 29.9%, 

while in the hybrids it ranged between 16.5 to 31.4% with a mean of 25.7% and a median of 26.0%. 

The SOC of parental genotypes ranged between 32.7 and 52.3% with a mean of 43.5% and a 

median of 43.7%, while that of the hybrid genotypes ranged between 40.6 and 57.1% with a mean 

of 48.3% and a median of 48.0%. Lastly, GSL ranged 3.1 to 50.5 𝜇mol g-1 in the parental genotypes 

with a mean of 18.6 𝜇mol g-1 and a median of 17. 𝜇mol g-1  and 0.19 to 24.7 𝜇mol g-1 in the hybrid 

genotypes with a mean of 9.63 𝜇mol g-1  and a median of 10.0 𝜇mol g-1. See a more detailed 

summary of the phenotype data of the parental genotypes in separate site-years in the Appendix 

(Table S3.3). 

The best linear unbiased predictions (BLUPs) corrected the unbalance in the raw data by taking 

the site-year effect and the unequal replications into account (Table 3.3). The YLD of the combined 

population ranged between 1276.9 and 2813.2 kg ha-1 with a mean of 2161.0 kg ha-1. Height varied 

from 82.2 to 122.6 cm with a mean of 106.9 cm. Seed protein content ranged from 23.6 to 29.7% 

with a mean of 26.1% while the SOC of the combined population ranged from 43.4 to 53.0% with  
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Table 3.3 A summary of phenotype best linear unbiased predictions (BLUPs) of 30 B-lines, 60 R-

lines and 345 hybrid genotypes derived from the 91 parental genotypes in the combined Brassica 

napus L. population. The computation of BLUPs were based on field experiments across Canadian 

Prairies conducted in 2014-2018. 

Trait Min Max Mean SD CV (%) 

YLD1 (kg ha-1) 1276.86 2813.16 2160.96 235.57 10.90 

HT2 (cm) 82.21 122.55 106.91 6.45 6.04 

SPC3 (%) 23.59 29.72 26.05 0.99 3.82 

SOC4 (%) 43.41 53.03 48.97 1.51 3.08 

GSL5 (𝜇mol g-1) 7.73 37.32 16.65 4.76 28.57 
1 Yield.  
2 Plant height.  
3 Seed protein content. 
4 Seed oil content. 
5 Seed glucosinolate content. 
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a mean of 49.0%. And lastly, GSL ranged from 7.7 to 37.3 𝜇mol g-1  with a mean of 16.7 𝜇mol g-

1. 

All traits were significantly correlated with each other (Figure 3.1). HT and SOC had significant 

positive correlations with YLD, while SPC and GSL had significant negative correlations with 

YLD (p < 0.001). SOC and SPC had a significant negative correlation (r = -0.900, p < 0.001). SOC 

was also significantly negatively correlated with GSL (r = -0.525, p < 0.001).  

Principal component analysis (PCA) was conducted based on the LD-pruned markers of all 

genotypes (Figure 3.2). PC1, PC2 and PC3 explained 93.51% of the phenotypic variation. While 

there were clear clusters for B- and R-lines in (A) PC1 vs. PC2 and (C) PC1 vs PC3, they 

overlapped in (B) PC2 vs. PC3 and could not be separated from each other. Although hybrid 

genotypes tended to cluster together, it was difficult to separate the hybrids from their parental 

genotypes. 

3.4.2 Marker density 

Marker densities of each chromosome, A- and C- subgenomes and the whole genome were 

calculated by dividing the distance by the total number of markers and expressing the marker 

density as kb/marker (Clarke et al. 2016). Marker density varied among the three marker sets. 

Based on MS-1, the whole genome had dense coverage (Figure 3.3.A). Marker density ranged 

from 10 kb/marker on chromosome A7 to 49 kb/marker on chromosome C9 (Table 3.4). Compared 

to the C-subgenome (28 kb/marker), the A-subgenome had a higher marker density (20 kb/marker) 

on average, consistent with Clarke et al. (2016). For the whole genome, marker density was 24 

kb/marker.  
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Figure 3.1 Correlation matrix of the traits based on the phenotype best linear unbiased predictions 

(BLUPs) from the combined Brassica napus L. population including all the parental and hybrid 

genotypes. The computation of BLUPs were based on field experiments across Alberta, 

Saskatchewan and Manitoba conducted in 2014-2018. The 31 B-lines, 60 R-lines and 345 hybrids 

are represented by red, blue and green, respectively. The upper half of the panel shows the 

correlations among the traits. The level of significance is noted by asterisks. The diagonal shows 

the distribution of the phenotype BLUPs of all traits. The lower half of the panel shows the 

scatterplot of the traits and each data point represents the BLUP for a genotype. Abbreviations: 

YLD: seed yield; HT: plant height; SPC: seed protein; SOC: seed oil content; GSL: seed 

glucosinolate content.   
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Figure 3.2 Principal component analysis (PCA) showing the subpopulation structure of a Brassica napus 

L. population consisting of 30 B-lines (blue circles), 61 R-lines (red squares) and 345 hybrids (yellow 

triangles) based on the phenotype best linear unbiased predictions (BLUPs). Three PCs are shown: (A) 

PC1 VS. PC2; (B) PC2 VS. PC3; (C) PC1 VS. PC3. 
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Figure 3.3 Marker density distribution in a Brassica napus L. population consisting of 31 B-lines, 

60 R-lines and the 345 hybrids. Colour scale represents number of SNP markers per megabase. 

(A) Marker distribution based on MS-1 (26,651 SNP markers); (B) Marker distribution based on 

MS-2 (16,855 SNP markers); (C) Marker distribution based on LD-pruned markers (3,205 SNP 

markers).   

C. 



 66 

Table 3.4 Marker density on each chromosome, subgenome and the whole genome based on a 

Brassica napus L. population consisting of 31 B-lines, 60 R-lines and the 345 hybrids, calculated 

using MS-1 (26,651 SNP markers). 

Chromosome Distance (kb) Total number of markers Mean marker density 

(kb/marker) 

Whole Genome 642,535 26,651 24 

A-subgenome 237,707 12,182 20 

C-subgenome 404,827 14,469 28 

A1 22,744 1,077 21 

A2 24,768 905 27 

A3 29,728 1,680 18 

A4 19,104 418 46 

A5 23,015 1,236 19 

A6 24,381 1,157 21 

A7 23,912 2,462 10 

A8 18,931 1,086 17 

A9 33,757 835 40 

A10 17,366 1,242 14 

C1 38,752 1,528 25 

C2 46,131 1,711 27 

C3 60,522 2,183 28 

C4 48,891 2,896 17 

C5 42,857 992 43 

C6 36,888 1,179 31 

C7 44,462 1,582 28 

C8 38,243 1,419 27 

C9 48,080 979 49 
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Marker density based on MS-2 was generally lower than using MS-1 (Figure 3.3.B), which was 

expected since the total number of markers dropped by 9,796. Marker density ranged from 17 

kb/marker on chromosome A10 to 103 kb/marker on chromosome C5 (Table 3.5). On average,  

marker densities of the A-, C- subgenomes and the whole genome were 31 kb/marker, 43 

kb/marker and 38 kb/marker, respectively. 

Compared with MS 1 and 2, LD pruned markers had even lower marker densities, which resulted 

from a drastically reduced number of markers (Figure 3.3.C). Using LD pruned markers, mean 

marker densities of the A- and C- subgenomes and the whole genome were 138 kb, 239 kb and 

188 kb, respectively (Table 3.6). It was consistent with the results from MS-1 and MS-2 that the 

A-subgenome had relatively higher marker densities than the C-subgenome.  

3.4.3 Population structure 

The results from STUCTURE were visualized and revealed peaks at k=2 (i.e. two subdivisions) 

for both the parental population and the combined population (Figure 3.4). This indicated that both 

populations can be grouped into two clusters. 

PCA analysis was then performed to evaluate the population structure (Figure 3.5). The first 15 

principal components explained 24.61% of the total genotypic variation while PC1, PC2 and PC3 

explained 8.20% combined. There were no clear clusters formed based on the type of individuals 

(i.e. B-lines, R-lines or hybrids) although Figure 3.5.C showed that the majority of the parental 

genotypes gathered in the upper portion of the figure. The hybrid genotypes were evenly 

distributed among the parental genotypes. This indicated that there was no clear stratification in 

the target population. 
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Table 3.5 Marker density on each chromosome, subgenome and the whole genome based on a 

Brassica napus L. population consisting of 31 B-lines, 60 R-lines and the 345 hybrids, calculated 

using MS-2 (16,855 SNP markers). 

Chromosome Distance (kb) Total number of markers Mean marker density 

(kb/marker) 

Whole Genome 637,850 168,55 38 

A-subgenome 236,761 7521 31 

C-subgenome 401,089 9,334 43 

A1 22,744 688 33 

A2 24,727 446 55 

A3 29,728 1,202 25 

A4 19,008 805 24 

A5 22,986 698 33 

A6 24,349 764 32 

A7 23,911 884 27 

A8 18,848 468 40 

A9 33,376 557 60 

A10 17,083 1,009 17 

C1 36,957 1,134 33 

C2 46,025 1,371 34 

C3 60,447 1,707 35 

C4 48,859 2,082 23 

C5 42,113 410 103 

C6 36,888 582 63 

C7 44,386 963 46 

C8 38,105 564 68 

C9 47,310 521 91 
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Table 3.6 Marker density on each chromosome, subgenome and the whole genome based on a 

Brassica napus L. population consisting of 31 B-lines, 60 R-lines and the 345 hybrids, calculated 

using LD-pruned markers (3,205 SNPs). 

Chromosome Distance (kb) Total number of markers Mean marker density 

(kb/marker) 

Whole Genome 636,256 3376 188 

A-subgenome 234,682 1,699 138 

C-subgenome 401,574 1,677 239 

A1 22,631 167 136 

A2 24,768 157 158 

A3 29,490 309 95 

A4 18,381 309 59 

A5 22,544 122 185 

A6 24,354 137 178 

A7 23,796 218 109 

A8 18,921 97 195 

A9 32,903 58 567 

A10 16,892 125 135 

C1 38,121 153 249 

C2 45,581 160 285 

C3 60,434 276 219 

C4 48,842 290 168 

C5 42,857 142 302 

C6 36,258 147 247 

C7 44,219 181 244 

C8 37,841 191 198 

C9 47,422 137 346 
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Figure 3.4 Population structure of two Brassica napus L. populations. (A) subpopulation of the parental 

genotypes consisting of 31 B-lines and 60 R-lines. (B) represents the combined population consisting of 

the parental population and 345 hybrid genotypes.   
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Figure 3.5 Principal component analysis (PCA) on the B. napus population consisting of 31 B-lines, 60 

R-lines and 345 hybrids based on the LD-pruned markers (3,205 SNPs). A represents PC1 vs. PC2; B 

represents PC1 vs. PC3 and C represents PC2 vs. PC3. 
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3.4.4 Linkage disequilibrium 

The threshold for linkage disequilibrium (LD) decay was set as r2 = 0.2. Based on MS-1, the whole 

genome decayed at ~4.0 Mb, and the A- and C-subgenome decayed at ~400.0 kb and 5.6 Mb, 

respectively (Figure 3.6A). Based on MS-2 the whole genome decayed at ~5.2 Mb, and the A- and 

C-subgenome decayed at ~600.0 kb and 6.0 Mb, respectively (Figure 3.6B). The LD decay 

generally occurred faster on chromosomes 1 to 10 (the A-subgenome) compared to chromosomes 

11 to 19 (the C-subgenome) (Figure 3.7). Based on MS-1, the intrachromosomal LD decay within 

A- and C- subgenomes varied between 350 kb ~ 1.1 Mb and 250 kb ~ 7.2 Mb, respectively (Figure 

3.7.A). Based on MS-2, the intrachromosomal LD decay within A- and C-subgenomes varied 

between 250 kb ~ 2.1 Mb and 450 kb ~ 9.0 Mb, respectively (Figure 3.7.B). 

3.4.5 Model comparison 

3.4.5.1 Parental population 

Six GWAS models used to identify significant MTAs in this study were CMLM, FarmCPU, 

MLMM, MLM+K, MLM+K+Q, MLM+PCA+Q. For the parental population, the six models 

performed similar (Figure 3.8 and Figure 3.9) with two groups based on the RMSE values (Table 

3.7). The first group consisted of the three mixed linear models: MLM+K, MLM+K+Q and 

MLM+K+PCA, and the second group consisted of MLMM, FarmCPU and CMLM. The second 

group generally had smaller RMSE values, which indicated that this group was more accurate than 

the first group. Root mean square errors of the models varied between 0.03 (MLM+K on GSL) 

and 0.32 (MLM+K+PCA on SPC) (Table 3.7), indicating the fitness of the GWAS models differed 

depending on the trait of interest. In the Q-Q plots for each trait, the x-axis represented the negative 

logarithms of the p values from the six GWAS models and the y axis represented their expected 

value under the null hypothesis, which assumed no association between SNP markers with the trait.   
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Figure 3.6 Linkage disequilibrium (LD) decay of the whole genome (blue line), A-subgenome (red line) and C-subgenome (green line) 

evaluated in a Brassica napus L. population consisting of 31 B-lines, 60 R-lines and 345 hybrids based on MS-1 that contained 26,651 SNP 

markers (A) and MS-2 that contained 16,855 SNP markers (B). 
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Figure 3.7 Linkage disequilibrium decay plots of all 19 chromosomes (chromosomes A1 to C9) in a 

Brassica napus L. population consisting of 31 B-lines, 60 R-lines and 345 hybrids based on MS-1 (26,651 

SNPs) (A) and MS-2 (16,855 SNPs) (B). 
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Figure 3.8 Model performance comparison among CMLM, FarmCPU, MLMM, MLM+K, MLM+K+Q, 

MLM+PCA+Q for the Brassica napus L. parental population based on MS-1 (26,651 markers). Observed 

p values were plotted against the expected p values in the quantile-quantile plots on all five traits (A) 

YLD (seed yield); (B) HT (plant height); (C) SPC (seed protein content); (D) SOC (seed oil content); (E) 

GSL (seed glucosinolate content). Abbreviations of models: CMLM: compression mixed linear model; 

FarmCPU: fixed and random model circulating probability unification; MLM: mixed linear model; K: 

kinship matrix; Q: population structure matrix based on Bayesian clustering; PCA: principal component 

analysis; and MLMM: multi-locus mixed linear model.  
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Figure 3.9 Model performance comparison among CMLM, FarmCPU, MLMM, MLM+K, MLM+K+Q, 

MLM+PCA+Q for the Brassica napus L. parental population based on MS-2 (16,855 markers). Observed 

p values were plotted against the expected p values in the quantile-quantile plots on all five traits (A) 

YLD (seed yield); (B) HT (plant height); (C) SPC (seed protein content); (D) SOC (seed oil content); (E) 

GSL (seed glucosinolate content). Abbreviations of models: CMLM: compression mixed linear model; 

FarmCPU: fixed and random model circulating probability unification; MLM: mixed linear model; K: 

kinship matrix; Q: population structure matrix based on Bayesian clustering; PCA: principal component 

analysis; and MLMM: multi-locus mixed linear model.  
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Table 3.7 Root mean square error (RMSE) values of GWAS models applied on the parental 

Brassica napus L. population consisting of 31 B-lines and 60 R lines. Traits evaluated included 

seed yield (YLD), plant height (HT), seed protein content (SPC), seed oil content (SOC) and seed 

glucosinolate content (GSL). 

Markers Model YLD HT SPC SOC GSL 

MS-1 

(26,651) 

MLM+K1 0.24 0.13 0.29 0.19 0.03 

MLM+K+Q2 0.23 0.12 0.28 0.17 0.08 

MLM+K+PCA3 0.22 0.15 0.32 0.18 0.05 

MLMM4 0.10 0.11 0.13 0.13 0.11 

FarmCPU5 0.17 0.21 0.18 0.18 0.14 

CMLM6 0.11 0.12 0.12 0.14 0.10 

MS-2 

(16,855) 

MLM+K 0.30 0.14 0.37 0.23 0.04 

MLM+K+Q 0.34 0.14 0.29 0.21 0.30 

MLM+K+PCA 0.25 0.16 0.41 0.23 0.06 

MLMM 0.09 0.05 0.06 0.06 0.05 

FarmCPU 0.18 0.15 0.16 0.13 0.11 

CMLM 0.06 0.05 0.06 0.09 0.04 
1 mixed linear model considering kinship. 
2 mixed linear model considering kinship and subpopulation structure via Bayesian clustering. 
3 mixed linear model considering kinship and subpopulation structure via principal component 

analysis. 
4 multi-locus mixed linear model. 
5 fixed and random model circulating probability unification. 
6 compression mixed linear model. 
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For the parental population (91 genotypes) the performance of these six models based on MS-1 

were similar to each other especially in the case of glucosinolate content (Figure 3.8). 

This was the same for the parental genotypes based on MS-2 as well. Again, there was variation 

in the RMSE values of the models using MS-2, where the lowest RMSE was identified on GSL 

content based on MLM+K model (0.04) and the highest RMSE on SPC based on MLM+K+PCA 

model (0.41) (Table 3.7). All six models performed similar for each trait (Figure 3.9) with slight 

differences among traits. This indicated that different traits had dissimilar responses to the choice 

of a particular GWAS model, which would result in variation in the accuracy. All models were 

included in the process of MTA identification based on the parental population. 

3.4.5.2 Combined population 

In terms of model performance based on all 436 genotypes, there were clear differences based on 

the choice of models. The RMSE values were larger than that of the parental population (Table 

3.8), which suggested that there were larger differences between observed and predicted values in 

the combined population compared to the training population (Nakano et al. 2020). The lowest 

RMSE value based on MS-1 was 0.07 (SPC based on MLMM) and the highest was 3.55 (HT based 

on MLM+K). The lowest RMSE value based on MS-2 was 0.03 (SOC based on CLMM) and the 

highest was 4.53 (HT based on MLM+K+Q). Larger deviations were observed in the Q-Q plots 

for all traits with both MS-1 and 2 (Figure 3.10 and Figure 3.11). Overall, CMLM, FarmCPU and 

MLMM performed better than the MLM models for all five traits. Therefore, only three models 

(CMLM. FarmCPU, MLMM) were applied in the identification of significant MTAs to avoid false 

positives.  

  



 81 

Table 3.8 Root mean square error (RMSE) values of six GWAS models applied on the combined 

population of Brassica napus L. (436 genotypes). Traits evaluated included seed yield (YLD), 

plant height (HT), seed protein contend (SPC), seed oil content (SOC) and seed glucosinolate 

content (GSL). 

Markers Model YLD HT SPC SOC GSL 

MS-1 

(26,651) 

MLM+K1 3.44 3.55 0.81 1.53 2.72 

MLM+K+Q2 3.41 3.52 0.81 1.52 2.67 

MLM+K+PCA3 2.60 3.09 0.80 1.14 0.64 

MLMM4 0.11 0.11 0.07 0.08 0.17 

FarmCPU5 0.09 0.11 0.11 0.09 0.22 

CMLM6 0.25 0.23 0.08 0.11 0.22 

MS-2 

(16,855) 

MLM+K 4.17 4.52 1.66 0.86 3.78 

MLM+K+Q 4.14 4.53 1.68 0.86 3.77 

MLM+K+PCA 3.31 4.00 1.58 0.77 3.43 

MLMM 0.12 0.10 0.04 0.09 0.21 

FarmCPU 0.14 0.15 0.11 0.12 0.49 

CMLM 0.20 0.23 0.07 0.03 0.20 
1 mixed linear model considering kinship. 
2 mixed linear model considering kinship and subpopulation structure via Bayesian clustering. 
3 mixed linear model considering kinship and subpopulation structure via principal component 

analysis. 
4 multi-locus mixed linear model. 
5 fixed and random model circulating probability unification. 
6 compression mixed linear model. 
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Figure 3.10 Model performance comparison among CMLM, FarmCPU, MLMM, MLM+K, 

MLM+K+Q, MLM+PCA+Q for the Brassica napus L. combined population based on MS-1 

(26,651 markers). Observed p values were plotted against the expected p values in the quantile-

quantile (Q-Q) plots on all five traits (A) YLD (seed yield); (B) HT (plant height); (C) SPC (seed 

protein content); (D) SOC (seed oil content); (E) GSL (seed glucosinolate content). Abbreviations: 

CMLM: compression mixed linear model; FarmCPU: fixed and random model circulating 

probability unification; MLM: mixed linear model; K: kinship matrix; Q: population structure 

matrix based on Bayesian clustering; PCA: principal component analysis; and MLMM: multi-

locus mixed linear model.   
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Figure 3.11 Model performance comparison among CMLM, FarmCPU, MLMM, MLM+K, 

MLM+K+Q, MLM+PCA+Q for the Brassica napus L. combined population based on MS-2 

(16,855 markers). Observed p values were plotted against the expected p values in the quantile-

quantile (Q-Q) plots on all five traits (A) YLD (seed yield); (B) HT (plant height); (C) SPC (seed 

protein content); (D) SOC (seed oil content); (E) GSL (seed glucosinolate content). Abbreviations 

of models: CMLM: compression mixed linear model; FarmCPU: fixed and random model 

circulating probability unification; MLM: mixed linear model; K: kinship matrix; Q: population 

structure matrix based on Bayesian clustering; PCA: principal component analysis; and MLMM: 

multi-locus mixed linear model. 
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3.4.6 Marker-trait association identification 

After combing results from all traits there were 141 significant MTAs identified from the parental 

populations and the combined population, based on two sets of markers. Most of the significant 

MTAs were unique as per the population or the marker set, while some of the significant MTAs 

were shared between populations or marker sets (Figure 3.12). Based on the parental population, 

there were 13 consensus significant MTAs shared between MS-1 and MS-2. Based on the 

combined population, there were 17 consensus markers identified when comparing results from 

MS-1 and MS-2. The full lists of significant SNP markers identified from the parental and hybrid 

population based on two marker sets and their corresponding traits can be found in the Appendix 

(Tables S3.4-S.3.7). 

Five common SNPs were identified as significant across populations as well as marker sets (Table 

3.9). Interestingly, they were all significantly associated with SOC in the parental population, 

while in the combined population they were all significantly associated with GSL. Some of the 

significant MTAs identified were pleiotropic, meaning that they were found to be associated with 

multiple traits. More specifically, one pleiotropic and two pleiotropic SNPs were identified from 

the parental population based on MS-1 and MS-2, respectively. In the combined population, 33 

and 12 pleiotropic SNPs were identified based on MS-1 and MS-2, respectively. 

As mentioned earlier, different traits from the same population based on the same markers 

responded differently to the models. There was variation in the number of significant MTAs 

detected by the same model on the same trait when comparing across the populations and marker 

sets (Table 3.10).  
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Figure 3.12 A Venn diagram demonstrating the number of significant marker-trait associations 

(MTAs) detected across the parental and combined populations of Brassica napus L. and marker 

sets 1 and 2 that contained 26,651 and 16,855 SNPs. Abbreviations: Par: parental population; Com: 

combined population; MS-1: marker set 1; MS-2: marker set 2. 
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Table 3.9 Significant MTAs commonly shared between the Brassica napus L. parental and 

combined population based on both MS-1 (26,651 SNP markers) and MS-2 (16,855 SNP markers). 

The parental population consisted of 31 B-lines and 60 R-lines, while the combined population 

consisted of the parental population and 345 hybrids. 

SNP Chromo-

some 

Parental Population Combined population 

MS-1 MS-2 MS-1 MS-2 

Bn-scaff_15712_13-

p63324 

A2 SOC1 SOC YLD2, HT3, 

GSL4  

YLD, GSL 

Bn-A09-p264743 A9 YLD ,HT, 

SPC5, SOC  

YLD, HT, 

SPC, SOC  

HT, GSL GSL 

Bn-scaff_18514_1-

p28001 

C2 SOC SOC, GSL GSL GSL 

Bn-scaff_15712_13-

p38138 

C2 SOC SOC GSL GSL 

Bn-scaff_15712_13-

p43168 

C2 SOC SOC YLD, GSL YLD, GSL 

1 Seed oil content. 
2 Seed yield. 
3 Plant height. 
4 Seed glucosinolate content. 
5 Seed protein content. 
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Table 3.10 Number of significant SNPs identified by six models based on MS-1 (26,651 SNP 

markers) and MS-2 (16,855 SNP markers) based on two Brassica napus L. populations. The 

parental population consisted of 31 B-lines and 60 R-lines, while combined population consisted 

of the parental population and 345 hybrids. Traits evaluated included seed yield (YLD), plant 

height (HT), seed protein content (SPC), seed oil content (SOC) and seed glucosinolate content 

(GSL).  

Population Marker Model YLD HT SPC SOC GSL Unique 

SNPs 

Parental MS-1 MLM+K1 0 0 1 5 0 - 

MLM+K+Q2 0 0 1 5 0  

MLM+K+PCA3 0 0 1 4 0  

MLMM4 1 1 1 1 1  

FarmCPU5 2 3 4 2 4  

CMLM6 0 0 1 1 1  

Unique SNPs 2 3 4 6 4 16 

MS-2 MLM+K 0 0 1 5 0 - 

MLM+K+Q 0 0 1 5 3  

MLM+K+PCA 0 0 1 1 0  

MLMM 2 3 1 1 1  

FarmCPU 0 1 3 4 5  

CMLM 0 0 1 1 1  

Unique SNPs 2 3 3 8 8 20 

Combined MS-1 MLMM 5 3 2 1 5 - 

FarmCPU 6 11 3 12 14  

CMLM 37 35 9 0 19  

Unique SNPs 44 44 12 13 34 110 

MS-2 MLMM 4 3 2 4 15 - 

FarmCPU 7 10 12 5 17  

CMLM 19 34 4 1 15  

Unique SNPs 24 42 14 10 29 86 
1 mixed linear model considering kinship. 
2 mixed linear model considering kinship and subpopulation structure via Bayesian clustering. 
3 mixed linear model considering kinship and subpopulation structure via principal component 

analysis. 
4 multi-locus mixed linear model. 
5 fixed and random model circulating probability unification. 
6 compression mixed linear model. 
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3.4.6.1 Seed yield 

Results from across the populations and marker sets were pooled together for further interpretation. 

There were 47 significant MTAs identified for YLD in the association analysis, located across the 

entire genome along every chromosome except C7. There were three SNP peaks located on 

chromosomes A2, A8 and C2 that were detected by CMLM from the combined population. The 

analysis based on the MS-1 detected the most abundant MTAs (Figure 3.13). All Manhattan plots 

for yield based on MS-2 can be found in the Appendix (Figure S3.1).  

In total there were 773 candidate genes identified based on the regions identified by the significant 

MTAs. Regarding biological processes, the top three GO terms included nucleic acid metabolic 

processes (GO:0090304), gene expression (GO:0010467) and macromolecule biosynthetic 

processes (GO:0009059) (Figure 3.14). The top three GO terms for cellular components were 

intracellular membrane-bounded organelle (GO:0043231), chloroplast (GO:0009507) and cell-cell 

junction (GO:0005911). For molecular function, the top three GO terms were metal ion binding 

(GO:0046872), purine nucleotide binding (GO:0017076) and purine ribonucleotide binding 

(GO:0032555). Seventeen GO terms were enriched in biological processes, molecular function 

and cellular components. Out of the 773 candidate genes, 56 were predicted genes belonged to the 

Brassicales order and were related to different aspects of growth and development stages in plants. 

See the full list of the genes identified under Brassicales in the Appendix (Table S3.8). Seven of 

the 56 predicted genes were previously identified in B. napus (Table 3.11), which are c-repeat 

Binding Factor 5 (CBF5), cytokinin dehydrogenase 3 (CKX3), calcium-dependent protein kinase 

18 and 23 (CPK18 and CPK 23), sucrose transporters 2 (SUT2), WRKY41 and WRKY72.  
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Figure 3.13 Manhattan plots of seed yield (YLD) based on the MS-1 (26,651 SNP markers). 

Bonferroni-corrected significance threshold was shown as the red horizontal line at -

log10(0.05/26651) =5.73. (A) Results from was the Brassica napus L. parental population based 

on six models including mixed linear models considering kinship (MLM+K), mixed linear models 

considering subpopulation structure via Bayesian clustering (MLM+K+Q), mixed linear models 

considering subpopulation structure via principal component analysis (MLM+K+PCA), multi-loci 

mixed model (MLMM), Fixed and random model circulating probability unification (FarmCPU) 

and compression mixed linear model (CMLM). (B) Results from the Brassica napus L. combined 

population based on three models MLMM, FarmCPU and CMLM.  

A. 

B. 
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Figure 3.14 The distribution of top five gene ontology (GO) terms associated with YLD (seed 

yield) identified from pooled results from GWAS conducted on a parental and a hybrid population 

of Brassica napus L. based on two sets of makers that contained 26,651 and 16,855 SNP markers 

with six GWAS models. The number on the end of each bar represents the number of mapped 

sequences. The x- axis represents the proportion of sequences mapped to the GO terms out of the 

total number of sequences, representing the abundance of the GO term. The y-axis represents the 

name of the GO term. 
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Table 3.11 Predicted genes that were previously identified and described in Brassica napus. 

Trait Gene name Description Query ID Reference 

YLD1 C-repeat Binding 

Factor 5 (CBF5) 

related with the 

development of essential 

cold tolerance 

BnaA02g21770D Savitch et 

al. (2005) 

Cytokinin 

dehydrogenase 3 

(CKX3) 

involved in pod 

development and stress 

response 

BnaA02g08420D Liu et al. 

(2018). 

Calcium-dependent 

protein kinase 3 

(CPK18) 

gene family involved in 

stress-related signal 

transduction pathways 

BnaA08g04270D Zhang et al. 

(2014a). 

Calcium-dependent 

protein kinase 

(CPK23) 

gene family involved in 

stress-related signal 

transduction pathways 

BnaA02g21060D Zhang et al. 

(2014a). 

Sucrose 

transporters 2 

(SUT2) 

sucrose transporter, 

ameliorating impacts from 

drought stress 

BnaC02g34840D La et al. 

(2019) 

WRKY41 regulation of anthocyanin 

biosynthesis 

BnaA02g21850D Duan et al. 

(2018) 

WRKY72 response to cold stress and 

Sclerotinia sclerotiorum 

inoculation 

BnaA02g02500D Li et al. 

(2019b) 

HT2 Calcium-dependent 

protein kinase 18 

(CPK18) 

gene family involved in 

stress-related signal 

transduction pathways 

BnaA08g04270D Zhang et al. 

(2014a) 

Calcium-dependent 

protein kinase 24 

(CPK24) 

gene family involved in 

stress-related signal 

transduction pathways 

BnaC04g13100D Zhang et al. 

(2014a) 

Fatty acid 

desaturase 3 

(FAD3) 

control of the oleic acid 

(C18:1) and linolenic acid 

(C18:3) contents 

BnaC04g14820D Yang et al. 

(2012) 

SPC3 Cell wall invertase 

(CWINV) 

potentially associated with 

providing hexoses in the 

process of anther and 

ovary development and 

petal expansion 

BnaC01g37450D Song et al. 

(2015) 

Fatty acid 

desaturase 7 

(FAD7) 

synthesis of linolenic acid 

(C18:3) from linoleic in 

the plastids 

BnaC09g18650D Dar et al. 

(2017) 

Glutathione 

transferases F2 

(GSTF2) 

important gene related to 

resistance to blackleg 

disease caused by 

Leptosphaeria maculans 

BnaA09g00850D, 

BnaA09g00860D 

Wei et al. 

(2019b) 

Light harvesting 

complex gene 3 

(LHCA3) 

involved in photosynthesis 

or light absorption 

BnaA09g13710D Marmagne 

et al. (2010) 



 96 

Sodium hydrogen 

exchanger (NHX1) 

antioxidant defense gene BnaA09g03600D Zhao et al. 

(2018a) 

The pyrabactin 

resistance 1-like 

(PYL) 

important candidates for 

improving tolerance to 

abiotic stresses. 

BnaC09g19620D Di et al. 

(2018) 

Somatic 

embryogenesis 

receptor-like 

kinases 1 (SERK1) 

involved in the process of 

microspore embryogenesis 

induction, development, 

and plantlet regeneration. 

BnaC06g32810D Ahmadi et 

al. (2016) 

SHOOT 

MERISTEMLESS 

(STM) 

promoting seed SOC 

production and desirable 

alterations of fatty acid 

and GSL levels 

BnaA09g13310D Elhiti et al. 

(2012) 

Vacuolar protein 

sorting 34 (VPS34) 

potentially needed in 

division and development 

of flower organs and 

germinated seeds 

BnaA09g14140D Das et al. 

(2005) 

WRKY13 cadmium accumulation 

and sensitivity 

BnaC07g47230D Sheng et al. 

(2019) 

SOC4 C-repeat Binding 

Factor 5 (CBF5) 

enhancement of energy 

conversion efficiency 

under low temperature 

BnaA07g17200D Huang et al. 

(2020) 

Calcineurin B-like 

proteins (CBL) 

response to different 

abiotic or hormone 

signaling 

BnaA07g17150D Zhang et al. 

(2014b) 

Calcineurin B-like 

proteins (CBL2) 

gene families respond to 

different abiotic or 

hormone signaling 

BnaC02g12710D Zhang et al. 

(2014b) 

DICER‐LIKE 4 

(DCL4) 

response to verticillium 

wilt (Verticillium dahliae) 

BnaC09g37430D Shen et al. 

(2014) 

EF-Tu receptor 

(EFR) 

response to low 

temperature stress  

BnaC09g37350D Luo et al. 

(2019) 

Fatty acid 

desaturase 7 

(FAD7) 

synthesis of linolenic acid 

(C18:3) from linoleic in 

the plastids 

BnaC09g18650D Dar et al. 

(2017) 

pyrabactin 

resistance 1-like 1 

(PYL1) 

might be important 

candidates for improving 

tolerance to abiotic 

stresses 

BnaC09g19620D Di et al. 

(2018) 

GSL5 Calcineurin B-like 

proteins (CBL2) 

gene families respond to 

different abiotic or 

hormone signaling 

BnaC02g12710D Zhang et al. 

(2014b) 

Calcium-dependent 

protein kinase 2 

(CPK2) 

gene family involved in 

stress-related signal 

transduction pathways 

BnaC03g36720D, 

BnaC03g36730D 

Zhang et al. 

(2014a) 
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Calcium-dependent 

protein kinase 20 

(CPK20) 

gene family involved in 

stress-related signal 

transduction pathways 

BnaC03g21760D Zhang et al. 

(2014a) 

Cytochrome P450 

family 83 

subfamily A 

polypeptide 1 

(CYP83A1) 

GSL synthesis genes; 

highly responsive to S. 

sclerotiorum and B. 

cinerea infection 

BnaA04g06630D Zhang et al. 

(2015a) 

Fatty acid 

desaturase 7 

(FAD7) 

synthesis of linolenic acid 

(C18:3) from linoleic in 

the plastids 

BnaC03g37090D Dar et al. 

(2017) 

RNA-dependent 

RNA polymerase 1 

(RDR1) 

may contribute to B. napus 

defense against S. 

sclerotiorum 

BnaC05g10980D Cao et al. 

(2016) 

WRKY69 response to jasmonic acid 

and S. sclerotiorum 

induction 

BnaC08g29410D Yao et al. 

(2020a) 

1 Yield. 
2 Plant height. 
3 Seed protein content. 
4 Seed oil content. 
5 Seed glucosinolate content.  
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3.4.6.2 Plant height  

In the combined population, there were 47 significant MTAs with plant height identified above 

the threshold 5.73 and they were distributed on 17 chromosomes excluding chromosomes A1 and 

A3 (Figure 3.15). Based on the parental population there was one SNP peak on chromosome A9 

(Figure 3.15.A), which was also identified based on the combined population. SNP peaks were 

detected on chromosomes A2, A5, A6, A8, A10 and C2 by CMLM, FarmCPU and CMLM (Figure 

3.15.B). All Manhattan plots for HT based on MS-2 can be found in the Appendix (Figure S3.2).  

Figure 3.16 shows the distribution of the top five GO terms associated with HT. The top three GO 

terms in biological process were cellular protein metabolic process (GO:0044267), nucleic acid 

metabolic process (GO:0090304) and macromolecule biosynthetic process (GO:0009059). The top 

three GO terms in the cellular component were intracellular membrane-bounded organelle 

(GO:0043231), chloroplast (GO:0009507) and cell-cell junction (GO:0005911). The top three GO 

terms in molecular function were metal ion binding (GO:0046872), purine nucleotide binding 

(GO:0017076) and purine ribonucleotide binding (GO:0032555). One GO term (GO:0008234) for 

molecular function was enriched in cysteine-type peptidase activity. In total, there were 1,236 

candidate genes identified that were associated with plant height. Out of the 1,236 candidate genes, 

78 predicted genes belonged to the Brassicales order. The full list of the predicted genes can be 

found in the Appendix (Table S3.8). Among the 78 predicted genes, three were previously 

described in B. napus (Table 3.11) which are fatty acid desaturase 3 (FAD3), CPK18 and CPK24 

(calcium-dependent protein kinase (CPK) gene family).  
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Figure 3.15 Manhattan plots of plant height (HT) based on the MS-1 (26,651 SNP markers). 

Bonferroni-corrected significance threshold was shown as the red horizontal line at -log10 

(0.05/26651) =5.73. (A) Results from was the Brassica napus L. parental population based on six 

models including mixed linear models considering kinship (MLM+K), mixed linear models 

considering subpopulation structure via Bayesian clustering (MLM+K+Q), mixed linear models 

considering subpopulation structure via principal component analysis (MLM+K+PCA), multi-loci 

mixed model (MLMM), Fixed and random model circulating probability unification (FarmCPU) 

and compression mixed linear model (CMLM). (B) Results from the Brassica napus L. combined 

population based on three models MLMM, FarmCPU and CMLM.  

A. 

B. 
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Figure 3.16 The distribution of top five gene ontology (GO) terms associated with HT (plant 

height) identified from pooled results from GWAS conducted on a parental and a hybrid 

population of Brassica napus L. based on two sets of makers that contained 26,651 and 16,855 

SNP markers with six GWAS models. The number on the end of each bar represents the number 

of mapped sequences. The x- axis represents the proportion of sequences mapped to the GO terms 

out of the total number of sequences, representing the abundance of the GO term. The y-axis 

represents the name of the GO term.  
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3.4.6.3 Seed protein content 

There were 12 MTAs detected for SPC above the threshold 5.73. Nine of them were located on 

the A-subgenome (chromosomes A2, A3, A5, A8 and A9) and three of them were located on the 

C-subgenome (chromosomes C3, C5 and C9) (Figure 3.17). There was one SNP peak identified 

from the parental population on chromosome A9 by all models expect MLM+K+Q. However, this 

peak wasn’t identified in the combined population. All Manhattan plots for SPC based on MS-2 

can be found in the Appendix (Figure S3.3). 

In total there were 972 candidate genes identified based in the regions identified by the significant 

MTAs (see the full list of the genes identified under Brassicales in Table S3.6). The top three GO 

terms in biological process were gene expression (GO:0010467), nucleic acid metabolic process 

(GO:0090304) and macromolecule biosynthetic process (GO:0009059) (Figure 3.18). The top 

three GO terms in cellular components were intracellular membrane-bounded organelle 

(GO:0043231), chloroplast (GO:0009507) and cell-cell junction (GO:0005911). The top three GO 

terms in molecular function were purine nucleotide binding (GO:0017076), purine ribonucleotide 

binding (GO:0032555) and metal ion binding (GO:0046872). Thirteen GO terms were 

significantly enriched in biological process, molecular function, and cell component. Among the 

54 genes predicted under the Brassicales order, ten were previously identified in B. napus (Table 

3.11): cell wall invertase (CWINV) gene, fatty acid desaturase 7 (FAD7), glutathione transferases 

F2 (GSTF2) and light harvesting complex gene 3 (LHCA3), Sodium hydrogen exchanger (NHX1), 

pyrabactin resistance 1-like (PYL), somatic embryogenesis receptor-like kinases 1 (SERK1), 

SHOOT MERISTEMLESS (STM), vacuolar protein sorting 34 (VPS34) and WRKY13. 
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Figure 3.17 Manhattan plots of seed protein content (SPC) based on the MS-1 (26,651 SNP 

markers). Bonferroni-corrected significance threshold was shown as the red horizontal line at -

log10 (0.05/26651) =5.73. (A) Results from was the Brassica napus L. parental population based 

on six models including mixed linear models considering kinship (MLM+K), mixed linear models 

considering subpopulation structure via Bayesian clustering (MLM+K+Q), mixed linear models 

considering subpopulation structure via principal component analysis (MLM+K+PCA), multi-loci 

mixed model (MLMM), Fixed and random model circulating probability unification (FarmCPU) 

and compression mixed linear model (CMLM). (B) Results from the Brassica napus L. combined 

population based on three models MLMM, FarmCPU and CMLM. 

  

A. 

B. 
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Figure 3.18 The distribution of top five gene ontology (GO) terms associated with SPC (seed 

protein content) identified from pooled results from GWAS conducted on a parental and a hybrid 

population of Brassica napus L. based on two sets of makers that contained 26,651 and 16,855 

SNP markers with six GWAS models. The number on the end of each bar represents the number 

of mapped sequences. The x- axis represents the proportion of sequences mapped to the GO terms 

out of the total number of sequences, representing the abundance of the GO term. The y-axis 

represents the name of the GO term.  
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3.4.6.4 Seed oil content 

For SOC there were 36 MTAs detected from 13 different chromosomes (A2, A5, A7, A9, C2, C3, 

C5 and C9) (Figure 3.19). FarmCPU and MLMM detected 12 and one significant SNP, 

respectively. Based on the parental population, there were three SNP peaks identified which 

located on chromosomes A2, A9 and C2 (Figure 3.19.A). The distribution of significant MTAs 

was more dispersed on multiple chromosomes compared to the parental population. All Manhattan 

plots for SOC based on MS-2 can be found in the Appendix (Figure S3.4). 

There were 873 candidate genes identified, but no GO term was significantly enriched. See the full 

list of the genes identified under Brassicales in the Appendix (Table S3.8). The top three GO terms 

in biological process were nucleic acid metabolic process (GO:0090304), gene expression 

(GO:0010467) and macromolecule biosynthetic process (GO:0009059) (Figure 3.20). The top 

three GO terms in cellular component were intracellular membrane-bounded organelle 

(GO:0043231), chloroplast (GO:0009507) and bounding membrane of organelle (GO:0098588). 

The top three GO terms in molecular function were purine ribonucleotide binding (GO:0032555), 

purine nucleotide binding (GO:0017076) and metal ion binding (GO:0046872). Under the 

Brassicales order there were 799 candidate genes and seven of them were previously characterised 

in B. napus including c-repeat binding factor 5 (CBF5), calcineurin B-like proteins (CBL), 

calcineurin B-like proteins 2 (CBL2), DICER‐LIKE 4 (DCL4), EF-Tu receptor (EFR), fatty acid 

desaturase 7 (FAD7) and the pyrabactin resistance 1-like 1 (PYL1) (Table 3.11).  
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Figure 3.19 Manhattan plots of seed oil content (SOC) based on the MS-1 (26,651 SNP markers). 

Bonferroni-corrected significance threshold was shown as the red horizontal line at -log10 

(0.05/26651) =5.73. (A) Results from was the Brassica napus L. parental population based on six 

models including mixed linear models considering kinship (MLM+K), mixed linear models 

considering subpopulation structure via Bayesian clustering (MLM+K+Q), mixed linear models 

considering subpopulation structure via principal component analysis (MLM+K+PCA), multi-loci 

mixed model (MLMM), Fixed and random model circulating probability unification (FarmCPU) 

and compression mixed linear model (CMLM). (B) Results from the Brassica napus L. combined 

population based on three models MLMM, FarmCPU and CMLM. 

  

A. 

B. 
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Figure 3.20 The distribution of top five gene ontology (GO) terms associated with SOC (seed oil 

content) identified from pooled results from GWAS conducted on a parental and a hybrid 

population of Brassica napus L. based on two sets of makers that contained 26,651 and 16,855 

SNP markers with six GWAS models. The number on the end of each bar represents the number 

of mapped sequences. The x- axis represents the proportion of sequences mapped to the GO terms 

out of the total number of sequences, representing the abundance of the GO term. The y-axis 

represents the name of the GO term.  
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3.4.6.5 Seed glucosinolate content 

Thirty-four significant MTAs were detected for GSL (Figure 3.21). CMLM, MLMM and 

FarmCPU detected 19, 5, and 14 significant MTAs, respectively. SNP peaks were observed on 

chromosomes C2 and C5. Based on the parental population, there was a peak of SNPs on 

chromosome A5 detected by multiple models (MLM+K+Q, MLMM, FarmCPU and CMLM). 

However, this peak was not detected based on the combined population. All Manhattan plots for 

GSL based on MS-2 can be found in the Appendix (Figure S3.5). 

There were 815 candidate genes identified, but no GO term was significantly enriched. The full 

list of the genes identified under Brassicales in the Appendix (Table S3.8). The top three GO terms 

were nucleic acid metabolic process (GO:0090304), cellular protein metabolic process 

(GO:0044267) and gene expression (GO:0010467) (Figure 3.22). The top three GO terms in 

cellular component were intracellular membrane-bounded organelle (GO:0043231), chloroplast 

(GO:0009507) and bounding membrane of organelle (GO:0098588). The top three GO terms in 

molecular function were purine ribonucleotide binding (GO:0032555), purine nucleotide binding 

(GO:0017076) and metal ion binding (GO:0046872). 560 candidate genes were predicted under 

the Brassicale order and seven of them were previously identified in B. napus including calcineurin 

B-like proteins (CBL2), calcium-dependent protein kinase 2 (CPK2), calcium-dependent protein 

kinase 20 (CPK20), cytochrome P450 family 83 subfamily A polypeptide 1 (CYP83A1), fatty acid 

desaturase 7 (FAD7), RNA-dependent RNA polymerase 1 (RDR1) and WRKY69 (Table 3.11). 
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Figure 3.21 Manhattan plots showing seed glucosinolate content (GSL) based on the MS-1 (26,651 

SNP markers). Bonferroni-corrected significance threshold was shown as the red horizontal line 

at -log10 (0.05/26651) =5.73. (A) Results from was the Brassica napus L. parental population based 

on six models including mixed linear models considering kinship (MLM+K), mixed linear models 

considering subpopulation structure via Bayesian clustering (MLM+K+Q), mixed linear models 

considering subpopulation structure via principal component analysis (MLM+K+PCA), multi-loci 

mixed model (MLMM), Fixed and random model circulating probability unification (FarmCPU) 

and compression mixed linear model (CMLM). (B) Results from the Brassica napus L. combined 

population based on three models MLMM, FarmCPU and CMLM. 

  

A. 

B. 
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Figure 3.22 The distribution of top five gene ontology (GO) terms associated with GSL (seed 

glucosinolate content) identified from pooled results from GWAS conducted on a parental and a 

hybrid population of Brassica napus L. based on two sets of makers that contained 26,651 and 

16,855 SNP markers with six GWAS models. The number on the end of each bar represents the 

number of mapped sequences. The x- axis represents the proportion of sequences mapped to the 

GO terms out of the total number of sequences, representing the abundance of the GO term. The 

y-axis represents the name of the GO term.  
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3.5 Discussion 

Genome-wide association mapping is often considered as a complementary investigation method 

to linkage or QTL mapping in identifying candidate QTL or genes that control a certain trait (Korte 

and Farlow 2013). The detection of a true MTA by GWAS (i.e. the power of GWAS) depends on 

the phenotypic variance of the population that can be explained by the SNP(s) applied (Korte and 

Farlow 2013). Therefore, the target population size and structure as well as marker density could 

all affect the power of GWAS (Ibrahim et al. 2020). To improve the accuracy of GWAS, 

understanding the structure of the target population is crucial (Li et al. 2014a). This research 

examined the effects of population size as well as population composition on GWAS. As stated by 

Sebastiani et al. (2009), a small population is often not ideal for GWAS studies. There is a sample 

size threshold above which the rate of locus discovery increases since increased population size 

and marker density could improve the power of GWAS based on empirical evidence (Alseekh et 

al. 2021). Therefore, a larger population with relatively more diversity is preferred when 

conducting GWAS as it provides more statistical power.  

In this research, we included hybrids in the analysis for two reasons. First, by adding the hybrid 

genotypes (F1) in the combined population, the target population size increased and offered greater 

power in detecting possible MTAs. For example, using MS-1, the total number of significant 

MTAs detected increased from 16 to 110 when comparing the results from the parental population 

with the combined population (Table 3.10). Using MS-2, the number of MTAs increased from 20 

to 64. Another reason to include the hybrid genotypes in this research was GWAS conducted on 

an inbred population could not be applied in evaluating hybrid performance. Research using 

inbreds is unable to disclose what lies hidden in hybrids, nor does it reveal the variables that 

contribute to hybrid performance (Wang et al. 2017a). Instead, a multiple hybrid population 
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comprised of a large number of hybrids derived from a certain mating design (Diallel, North 

Carolina Designs, triple test crosses or simplified triple testcrosses) is more appropriate and 

powerful in GWAS for hybrid crops compared with bi-/multi-parental populations or natural 

populations (Wang et al. 2017a). Therefore, the addition of hybrid genotypes provided greater 

insight into the performance of the population over multiple environments (Zhang et al. 2019c). 

This is crucial to the Canadian canola industry since hybrid cultivars account for more than 95% 

of all cultivars grown in the Canadian Prairies(Morrison et al. 2016).  

Marker density is another factor that could affect GWAS accuracy (Ibrahim et al. 2020). In GWAS, 

the design of the marker panel should take several factors into account such as genome size, the 

LD extent and the traits of interest (Ballesta et al. 2020). Higher marker density is required for 

plants with a larger genome size and fast LD decay (Ballesta et al. 2020; Cui et al. 2020). Maize, 

for example, requires 0.5–1.0 million or more markers to perform successful GWAS (Yan et al. 

2011). In this study, MS-1 contained 9,796 more markers than MS-2, which provided increased 

coverage along the genome (Figure 3.3). Therefore, MS-1 was able to detect more significant 

MTAs in the combined population. However, in the parental population, MS-2 performed better 

than MS-1. This might be due to a reduction in the SNP effects associated with QTL as the marker 

density increases (Chang et al. 2018), especially considering that the parental population had a 

smaller population size. Another possible explanation is that often higher marker density is needed 

for populations with shorter LD decay so that QTL associated with a certain trait is in linkage with 

one or more markers (Kainer et al. 2019). Muller et al. (2017) found there was no difference in 

predictive ability when using subsets of SNP markers (~5000 to 10,000 SNPs) instead of full sets 

of markers (3,787 and 19,506 SNPs) in two breeding populations of Eucalyptus. Thus, it is likely 

that MS-2 that contained 16,855 SNP markers already provided sufficient coverage for the parental 
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population and therefore reduced potential noise that could affect the power to detect significant 

MTAs. 

In this research, MLMM, FarmCPU and CMLM performed better in both the parental populations 

and the combined populations. This is due to the difference amongst the computational methods 

of these models. Even though MLM models manage the p-value inflation effectively, it also 

generates false negatives, which could cause a reduction in the power to identify of the true 

associations (Zhang et al. 2010). Therefore, CMLM was proposed to address this issue in which 

individuals were clustered into groups and their genetic values are fit in the model as random 

effects (Kaler et al. 2019). The biggest advantage of CMLM is that it simplified the iteration 

process and is more computational efficient than MLM that considers the relatedness within the 

population (Zhang et al. 2010). CMLM groups similar individuals together and utilizes a reduced 

kinship in the analysis, which was found to have more statistical power as well (Zhang et al. 2010). 

MLMM and FarmCPU are models based on multiple loci, which, compared with single-locus 

models, have better control on issues that arise from existing population structure in the target 

populations (Wang and Zhang 2020). Kaler et al. (2019) compared the performance of eight 

GWAS models including analysis of variance (ANOVA), general linear model (GLM), MLM, 

CMLM, enriched compressed MLM (ECMLM), Settlement of MLM Under Progressively 

Exclusive Relationship (SUPER), MLMM and FarmCPU. The authors found that complex models 

(MLM, CMLM and ECMLM) were able to control false positives effectively, but increased false 

negatives, while the multi-locus model FarmCPU controlled both false positives and false 

negatives effectively. The current research found that the three MLM models were able to control 

both false positives and false negatives well in the parental population, as the Q-Q plots showed a 

straight line close to 1:1 line with a sharp deviated tail for all traits (Figure 3.8 and Figure 3.9). 
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However, in the combined population the MLM models deviated from the 1:1 line in the Q-Q plots. 

In contrast, MLMM, FarmCPU and CMLM performed well in controlling both the false positives 

and negatives. However, despite the fact that MLMM, FarmCPU and CMLM performed better 

than the other three models in this study, and that the populations we used in this study did not 

show significant population structure, the deviations observed in the Q-Q plots still revealed 

stratifications that were not accounted for by the models (Ehret 2010).  

Understanding the genetics of complex traits is crucial in improving traits of interest in plant 

breeding. In this study, a total of 29 different predicted genes for critical agronomic or seed quality 

traits were identified that had been previously identified in B. napus. In general, genes predicted 

based on the identified MTAs in this research are involved in abiotic stress responses (such as cold, 

heat and drought) and pathogen infection. In this research, several predicted genes associated with 

seed yield were previously identified (Table 3.11). For example, CKX3 was found to play a role in 

enhancing yield in the model plant Arabidopsis thaliana (L.) Heynh., as well as crop plants such 

as wheat and chickpea (Cicer arietinum L.) (Bartrina et al. 2011; Chen et al. 2020). WRKY72 was 

involved in responding to cold stress and S. sclerotiorum, the causal agent of Sclerotinia stem rot 

(Khan et al. 2020). CBF5 also responds to cold stress (Savitch et al. 2005). SUT2 responds to heat 

stress, a crucial gene in improving B. napus yield since fertility can be adversely affected by high 

temperature (Harker et al. 2012; Polowick and Sawhney 1988). In terms of predicted genes 

associated with seed quality traits, predicted genes from SOC were found to be involved in 

response to low temperature (CBF5) and abiotic or hormone signaling (CBL and CBL2). Previous 

studies have demonstrated that temperature can affect the performance and quality traits of crops 

(Odukoya et al. 2019). More specifically, in canola, the composition of fatty acids can be altered 

under low temperature such that the content of highly unsaturated fatty acids decreases and the 
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content of oleic acid increases (Canvin 1965). CYP83A1 was previously identified as an important 

gene in GSL synthesis. Besides, CYP83A1 was found to be an important enzyme in glucosinolate 

biosynthesis in Brassica oleracea var. acephala (Cuong et al. 2019). The characteristics listed 

above are important factors associated with traits related to yield and seed quality in canola, which 

may require further investigation to gain a better understanding of the roles they play in the 

development of the crop. 

3.6 Conclusion 

The size and structure of the target population can significantly affect the performance of GWAS. 

Marker density and the choice of models can also impact GWAS; therefore, models that 

appropriately fit the trait and data need to be selected. In this research, genes associated with abiotic 

stress response, disease resistance and glucosinolate synthesis were predicted, which offers 

valuable information for future research in improving the genetics of these traits in canola.  
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4. GENOMIC SELECTION OF AGRONOMIC AND SEED QUALITY TRAITS IN 

HYBRID Brassica napus L. BASED ON PARAMETRIC AND MACHINE LEARNING 

METHODS 

 

4.1 Abstract 

Genomic selection (GS) has become a useful tool in plant breeding for its advantages in shortening 

the breeding cycle and improving cost efficiencies due to its potential to reduce the number of field 

experiments. As an important commodity in Canada, canola (Brassica napus L.) contributes $29.9 

billion to Canadian economy annually. In this study, various factors that affect the prediction 

accuracy of important agronomic and seed quality traits on hybrid Brassica napus were examined 

based on a mixed population consisting of 91 parental genotypes and 345 F1 hybrids derived from 

the parental genotypes. Five traits were studied: seed yield (YLD), plant height (HT), seed protein 

content (SPC), seed oil content (SOC) and seed glucosinolates content (GSL). Based on rrBLUP, 

we found that the prediction of hybrid performance using the 91 parental genotypes (NTP = 91) 

produced a prediction accuracy that varied between 1% to 2% and 23 to 24% on seed YLD and 

SPC, respectively. Meanwhile a mixed training population (TP) (NTP = 91) consisting of both 

parental and hybrid genotypes performed significantly better (28% and 45% for YLD and SPC, 

respectively). A greater prediction accuracy was shown as the mixed TP size increased (NTP = 262) 

(38% and 58% for YLD and SPC, respectively). Marker density also impacted the prediction 

accuracy. Three sets of markers (26,651, 16,855, and 3,205 markers) were also compared in this 

research. Interestingly, we found that the set that had the highest marker density (26,651 SNPs) 

did not produce the highest prediction accuracy based on rrBLUP. The marker set that contained 

16,855 performed the best amongst the three marker sets. In addition, we compared the model 
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performance of rrBLUP (ridge regression best linear unbiased prediction), GBLUP (Genomic best 

linear unbiased prediction), Bayesian A (BayesA), Bayesian B (BayesB), Bayesian C (BayesC) 

and Bayesian Ridge Regression regression method (BRR). We found that even though considered 

equivalent to GBLUP mathematically, rrBLUP had the poorest performance among all models 

across different traits. As one of the most used GS models, GBLUP performed quite similar to the 

Bayesian models. Although the prediction accuracy based on GBLUP was slightly lower than the 

Bayesian models on YLD and HT, it had equal performance with BayesA on SPC, SOC and GSL, 

while its computational time was significantly shorter than BayesA. Lastly, we compared the 

performance of three machine learning (ML) algorithms including support vector regression 

(SVR), Extreme Gradient Boosting (XGBoost) and random forest (RF). All these ML methods 

showed strong robustness in predicting the five traits, with the lowest prediction accuracy 

produced on YLD (69% to 72%) and the highest on GSL (84% to 87%). Taken together, this 

research offers valuable information on implementing GS in hybrid breeding of B. napus. 

4.2 Introduction 

Canola (Brassica napus L.), together with soybean [Glycine max (L.) Merr.] and oil palm (Elaeis 

guineensis Jacq.), are currently the three largest oilseed crops in the world(FAO 2021). Today, 

canola production provides raw materials for a wide range of end products, including livestock 

feed, biofuel, biodegradable plastics, industrial lubricants, as well as edible oils for human 

consumption (Jan et al. 2016; Snowdon et al. 2007). As the largest global producer and exporter 

of canola, Canada exports about 90% of its canola to more than 50 countries worldwide (Canola 

Council of Canada 2017; USDA 2020).  

The improvement of canola genetics has been a major contributing factor to yield increases during 

2000-2013. Two main improvements during this time included the conversion from open-
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pollinated cultivars to hybrid and herbicide-tolerant cultivars (Morrison et al. 2016). In the 

development of high-performance hybrids, a critical consideration is how to identify the best 

parental combinations with the potential to create superior agronomic performance and 

outstanding seed quality (Starmer et al. 1998).  

Genomic selection (GS) was first proposed by Meuwissen et al. (2001) in the early 2000s to 

improve the efficiency in animal breeding. Genomic selection is considered a variant of MAS, but 

instead of focusing on major-effect QTL, GS utilizes all markers on the whole genome and 

assumes one or more markers are in linkage disequilibrium (LD) with the loci that control the trait 

of interest (Desta and Ortiz 2014). Recently, plant breeders have adopted it as a tool to improve 

efficiency in plant breeding in various crops such as wheat (Triticum aestivum L.) (Elbasyoni et 

al. 2018; Lozada et al. 2019; Sarinelli et al. 2019; Zhao et al. 2014), maize (Zea mays L.) (Dias et 

al. 2018; Guo et al. 2019; Pace et al. 2015; Vivek et al. 2017), soybean (Shu et al. 2013), barley 

(Hordeum vulgare L.) (Lorenzana and Bernardo 2009) and rice (Oryza sativa L.) (Grenier et al. 

2015; Spindel et al. 2015). Genomic selection has also being applied to canola breeding (Jan et al. 

2016; Snowdon and Iniguez Luy 2012; Würschum et al. 2014) on various traits such as flowering 

time (Li et al. 2015a), plant height (Würschum et al. 2014), grain yield and seed glucosinolate 

content (Jan et al. 2016), and blackleg [Leptosphaeria maculans (Desm.) Ces. & de Not.] 

resistance (Fikere et al. 2018).  

Genomic selection is a relatively new approach to estimate hybrid performance in canola breeding. 

Only a limited number of studies have been reported. Based on 950 F1 testcross hybrids, Jan et al. 

(2016) examined the testcross performance through genomic prediction and obtained moderate to 

high prediction accuracy in seed glucosinolate content (61%) and seed oil content (81%). The 

authors suggested that the moderate to high prediction accuracy estimated based on the additive 
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effects indicated the low heterotic levels in their population. Effects of training population (TP) 

size were also examined, and the authors found that the prediction accuracy plateaued when the 

size of TP accounted for 70% to 80% of the whole population (Jan et al. 2016). Liu et al. (2017b) 

found that the performance of the hybrids in an immortalized F2 population was determined by a 

combination of additive, dominance and epistatic effects. Knoch et al. (2021) compared the 

prediction accuracy using parental omics data to predict hybrids and found that using 

transcriptomic data instead of genetic marker data could improve the accuracy in B. napus. 

However, it is still unclear how GS can be applied to obtain reliable prediction accuracies in hybrid 

B. napus, considering that many factors can affect the prediction accuracy.  

In this study, a mixed population consisting of 91 parental genotypes and 345 hybrid genotypes 

derived from the 91 parental genotypes were used as the training/validation population. The effects 

of different training set (TP) and validation set (VP) were examined based on the rrBLUP model. 

Genomic selection was performed with three different marker sets representing different marker 

densities (26,651 SNPs, 16,855 SNPs and 3,205 SNPs). Two penalized approaches (rrBLUP, 

GBLUP), four Bayesian approaches (BayesA, BayesB, BayesC and Bayes Ridge Regression) and 

three machine leaning (ML) approaches (Support-vector regression, Extreme Gradient Boosting 

and Random Forests) were used in the prediction of the target traits including seed yield (YLD), 

plant height (HT), seed protein content (SPC), seed oil content (SOC) and seed glucosinolate 

content (GSL) to compare the model performance. We hypothesize that for all the traits of interest, 

the TP size and composition will affect GS prediction accuracy on the as well as  marker density, 

the choice of GS models, and the nature of the target trait.  
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4.3 Materials and methods 

4.3.1 Phenotypic data and genotypic data 

The details of the phenotypic data collection and curation were described thoroughly in Chapter 3 

under 3.3.1. Briefly, the training and validation populations used the “combined population” which 

consisted of the 91 parental genotypes and 345 hybrid genotypes (see Table S3.2 in Appendix for 

details). Phenotypic data were collected on seed yield (YLD), plant height (HT), seed protein 

content (SPC), seed oil content (SOC) and seed glucosinolates content (GSL).  

The parental genotypes were tested under field conditions in RCBD experiments with three 

replications per site-year for five site-years in southern Manitoba (Glenlea 2016, Carman 2017, 

Portage 2017, Glenlea 2018, Portage 2018). The hybrid genotypes were tested in RCBD across 19 

locations in Western Canada, totalling 43 site-years. However, unlike the parental genotypes, these 

hybrid genotypes did not have an equal number of replicates due to the nature of selection within 

a breeding program where only the favoured genotypes were selected for further field experiments. 

This led to an unbalanced phenotypic data set in the hybrids. To correct the unevenness, a best 

linear unbiased prediction (BLUP) value was calculated for each genotype, which was then used 

as the phenotype input for this chapter (see 3.3.1 for details).  

DNA samples of all genotypes were extracted following a modified standard CTAB protocol 

(Porebski et al. 1997) that eliminated polyvinylpyrrolidone and 2-mercaptoethanol and replaced 

octanol with phenol. Genotyping took place at Agriculture and Agri-Food Canada (AAFC) 

Saskatoon (Dr. Isobel Parkin’s lab) using the Brassica 60K Illumina Infinium SNP array (Illumina 

Inc., CA, USA). All three sets of markers described in sections 3.3.2 (MS-1 and MS-2) and 3.3.4 

(the LD pruned markers) were used in this study.  
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4.3.2 Effect of training and validation population 

The effect of training and validation population was completed based on the ridge regression best 

linear unbiased prediction (rrBLUP) (Endelman 2011). To estimate the effects of training 

population on prediction accuracy on the five traits of interest, two different approaches were used. 

In the first approach, all 91 parental genotypes were used as the TP (NTP = 91) to predict the 

performance of the hybrids. In this approach, three methods to subsample the validation set (VP) 

were used including: 1) 69 random hybrid genotypes (20% of all hybrids) as the VP; 2) 207 random 

hybrid genotypes (60% of all hybrid genotypes) as the VP; and 3) all 345 hybrid genotypes as the 

VP. In the second approach, two methods were applied in selecting individuals as the TP. First, 91 

random individuals were selected from the entire population (parents and hybrids) as the TP (NTP 

= 91), which accounted for approximately 20% of the entire population. Secondly, a random subset 

of 262 individuals were selected as the TP (NTP = 262), which also contained a mix of parental 

genotypes as well as hybrid genotypes and accounted for approximately 60% of the entire 

population.  

4.3.3 Genomic selection with different marker density 

In the previous chapter, a pruned set of markers that contained 3,205 SNPs (hereinafter referred to 

as MS-3 in this chapter) were used to analyze the population structure, while two sets of markers 

(MS-1 contained 26,651 SNPs and MS-2 contained 16,855 SNPs) were used in conducting the 

association analysis (see 3.3.2 for details). To estimate the effects of marker density in GS, all 

three sets of markers were used in this research. The model used in evaluating marker density 

effect was rrBLUP, as it is one of the most basic models in GS. When performing GS, all marker 

sets were imputed using the “A.mat” function in R package rrBLUP V. 4.6.1 (Endelman 2011), 

which replaced the missing data of a particular marker with its mean value across the population. 
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4.3.4 Parametric regression models 

Two penalized approach GS models were used in this research including ridge regression best 

linear unbiased prediction (rrBLUP) (Endelman 2011) and genomic best linear unbiased prediction 

(GBLUP) (Clark and van der Werf 2013). The performance of four Bayesian models including 

Bayesian A (BayesA), Bayesian B (BayesB) (Meuwissen et al. 2001), Bayesian C (BayesC) 

(Habier et al. 2011b), Bayesian Ridge Regression (BRR) (Perez and de los Campos 2014) were 

compared.  

The rrBLUP model was fit using the ridge regression and other kernels for genomic selection 

(rrBLUP) package V. 4.6.1. The rrBLUP package was developed mainly for performing GS based 

on mixed models (Endelman 2011). The core function of this package is “mixed solve”, which 

solves single-variance mixed models (i.e. only one variance in the model except the error term) 

(Endelman 2011). The GBLUP and Bayesian models were fit using the R package Bayesian 

generalized linear regression (BGLR) V. 1.0.8 (Perez and de los Campos 2014). The default 

settings of BGLR were applied, i.e. the degrees of freedom was set as 5 and the scaled parameter 

was solved to coordinate with the partition of the phenotype variance (Perez and de los Campos 

2014). The assumptions of the models were described in detail in section 2.5.1.4.  

4.3.4.1 Cross validation 

The cross-validation process (CV) was based on a subset of the population to validate another 

subset of the population (Haile 2018). The marker effect was computed based on a TP. The marker 

effect matrix obtained was then used in estimating the genomic predictions for the corresponding 

validation set (VP). Specifically, the marker effect matrix of the TP was multiplied with the marker 

matrix of the VP, and the product was the genomic estimated breeding values (GEBVs) of the 

genotypes in the VP. The Pearson’s correlation values (r) were then computed between the GEBVs 
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and the observed phenotype of a trait, which was the prediction accuracy of the model. For the 

rrBLUP model, the TP sets used were described in detail in section 4.2.2. In rrBLUP, this process 

was iterated 500 times and the prediction accuracy was calculated as the grand mean of the 500 

iterations. For the Bayesian models, the TP was 262 randomly sampled genotypes (60% of the 

entire population), and the VP represented the rest of the population. All Bayesian models were 

iterated 12,000 times and the burn-in was set as 5,000, meaning that the results from first 5,000 

samples were discarded.  

4.3.5 Non-parametric regression algorithms 

Three ML algorithms were also considered for each trait: two tree-based ensemble ML methods 

[Extreme Gradient Boosting (XGBoost) (Chen and Guestrin 2016; Friedman 2001) and Random 

Forests (RF) (Breiman 2001)] as well as support-vector regression (SVR) using the MS-2 set of 

markers. As with the rrBLUP and GBLUP methods, 60% of the data was used for training and 40% 

for evaluation. The split of data into training and test sets was randomly performed 500 times. 

Support-vector regression is a ML algorithm that considers data instances in the training set as 

points in a high-dimensional vectors space (that is, the vector space has a dimension equal to the 

number of features for each instance) (Drucker et al. 1997).  

All training and evaluation were done using Python 3.5 with the Scikit-learn package for RFs (SKL) 

(Pedregosa et al. 2011) and the XGBoost library (XGB) (Chen and Guestrin 2016). Missing 

training data were imputed using the most frequent value for that marker, then all data were 

encoded with a one-hot encoding, which was observed to improve prediction accuracy. For each 

training set, a grid search on hyperparameters with CV was performed (5-fold CV). That is, for 

each fold of the CV, all combinations of hyperparameters were considered and a model was trained 
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for each combination. The performance of all choices of hyperparameters was calculated for each 

fold.  

The hyperparameters for the grid search of the three ML algorithms are listed in Table 4.1, – thus, 

on each fold, 6 x 5 x 4= 120 different XGBoost models were trained and evaluated. For CV, the 

folds were scored using Pearson’s Correlation coefficient between the observed and predicted trait 

values. The best set of hyperparameters was chosen over all folds and the model was evaluated on 

the training data using these hyperparameters. The mean and standard deviation of the Pearson’s 

Correlation coefficient on the testing set over the 500 iterations were reported. 

4.4 Results 

4.4.1 Genomic selection with different training population 

The prediction accuracy tended to be very low when the TP only included parental genotypes, 

regardless of the size of the validation population, or the trait being predicted (Figure 4.1). When 

using the parental genotypes to predict a small subset of the hybrids (20%, 69 genotypes), the 

prediction accuracy for YLD was as low as 2%, which dropped to even lower (1%) when the VP 

size increased to 207 or 345, which accounted for 60% and 100% of the hybrid genotypes, 

respectively. The prediction accuracy was higher for height and the seed quality traits (SPC, SOC 

and GSL). The highest prediction accuracy was observed for GSL which varied between 32% to 

33%. 

When the TP consisted of a mix of parental and hybrid genotypes, the prediction accuracy 

increased significantly. Overall, a larger TP population size resulted in a higher prediction 

accuracy for YLD, when the TP of the same size with the parental genotypes was sampled 

randomly from the entire population (NTP = 91), the prediction accuracy increased to 28%. It 

increased even higher to 38% when the randomly sampled TP size increased to 262 (NTP = 262).   
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Table 4.1 Hyperparameters for grid search using three machine learning algorithms.  

Machine learning algorithm Hyperparameter Range of values 

Extreme Gradient Boosting 

(XGBoost)  

Number of Trees 10, 50, 100, 200, 300, 400 

Maximum Depth of Tree 2, 5, 7, 10, 15 

Learning Rate 10-4, 10-3, 10-2, 10-1 

Random Forest (RF) Number of Trees 10, 50, 100, 200, 300, 400 

Maximum Depth of Tree 2, 5, 7, 10, 15 

Support vector regression 

(SVR) 

RBF1 Kernel - gamma 2n for n = -17, -14, -11, -8, -5, -2, 

1 

RBF Kernel - C 2n for n = -5, -1, 3, 8, 12, 16 

Linear Kernel – C 1, 10, 100, 1000 
1 Radial basis function.  
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Figure 4.1 Prediction accuracy (Pearson’s Correlation (%) between predicted and actual values) 

by rrBLUP (ridge regression best linear unbiased prediction) based on MS-1 that contained 26,651 

SNP markers based on a combined population of Brassica napus L. consisting of 31 B-lines, 60 

R-lines and 345 hybrids. The x-axis represents the different TP and VP types. Traits evaluated 

included YLD (seed yield), HT (plant height), SPC (seed protein content), SOC (seed oil content) 

and GSL (seed glucosinolate content). From left to right: using all parental genotypes to predict 

the performance of a subset of the hybrid genotypes (20% of hybrids); using all parental genotypes 

to predict the performance of a subset of the hybrid genotypes (60% of hybrids); using all parental 

genotypes to predict the performance of all hybrid genotypes; using randomly sampled 91 

genotypes across the entire population, which accounted for about 20% of the population, to 

predict all hybrid genotypes; using randomly sampled 262 genotypes across the entire population, 

which accounted for about 60% of the population, to predict all hybrid genotypes. The y-axis 

represents the prediction accuracy in percentage. Traits are denoted by different colours.  
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This trend was consistent for HT and the seed quality traits (Figure 4.1). For example, the 

prediction accuracy of HT increased to 43% (overlapped with GSL in Figure 4.1) when based on 

a mixed TP of 91 genotypes, 31% higher than using a TP consisted of 91 parents. Prediction 

accuracy of SPC and SOC also increased to 45% and 49%, respectively. When the mixed TP 

increased to 262 randomly sampled genotypes, the prediction on HT increased to 54%. The 

prediction accuracy also improved on SPC, SOC and GSL when increasing the size of the mixed 

TP to 262 genotypes, reaching 58%, 61% and 55%, respectively. 

4.4.2 Marker density affected prediction accuracy 

Prediction accuracy varied as the marker density changed. As described in Chapter 3 section 3.4.2, 

marker density of MS-1, MS-2, and MS-3 were 24 kb/marker, 38 kb/marker and 188 kb/marker 

on the whole genome, respectively. This indicated that among the three marker sets, MS-1 had the 

best genome coverage while MS-3 had lower coverage (see details in section 3.4.2). Since the 

predictions were similar based solely on the parental genotypes regardless of the VP sizes as 

described in section 4.4.2, the group that was based on parental genotypes to predict all hybrid 

genotypes were chosen to present in the evaluation of the marker density effect.  

The prediction accuracy varied with the rrBLUP model and different marker sets, although the 

difference varied depending on the trait (Figure 4.2). Based on a TP of 91 parents, MS-1, MS-2 

and MS-3 produced similar prediction accuracy for YLD (0% to 6%), HT (12 to 14%), SPC (21% 

to 23%) and SOC (23% to 27%), but performed differently for GSL. Based on MS-2 the GSL 

prediction accuracy (51%) was significantly higher compared to MS-1 (33%) and MS-3 (31%).  

The same trend was identified based on a mixed TP consisting of 91 or 262 randomly sampled 

individuals. Based on a TP consisting of 91 randomly sampled individuals MS-1, MS-2 and MS-

3 produced similar prediction accuracy for YLD (28% to 30%), HT (43% to 44%), SPC (44% to   
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Figure 4.2 Prediction accuracy (Pearson’s Correlation (%) between predicted and actual values) 

using rrBLUP (ridge regression best linear unbiased prediction) based on all three marker sets and 

a combined population of Brassica napus L. consisting of 31 B-lines, 60 R-lines and 345 hybrids. 

MS-1, MS-2 and MS3 contained 26,651, 16855 and 3,205 SNP markers, respectively. Traits 

evaluated included YLD (seed yield), HT (plant height), SPC (seed protein content), SOC (seed 

oil content) and GSL (seed glucosinolate content). Each panel represents prediction accuracy from 

a marker set. The x-axis represents the different training set, and the y-axis represents the 

prediction accuracy in percentage. Traits are denoted with different colours. 
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45%) and SOC (49% to 50%) but performed differently for GSL. The highest prediction for GSL 

(56%) was produced with MS-2, which was higher compared to MS-1 (43%) and MS-2 (43%). 

Based on the TP that consisted of 262 randomly sampled individuals MS-1, MS-2 and MS-3 

produced similar prediction accuracy for YLD (38% to 41%), HT (54% to 56%), SPC (58% to 

59%) and SOC (57% to 64%) but performed differently for GSL. Marker set-2 produced the 

highest prediction for GSL (71%) which was higher compared to MS-1 (55%) and MS-2 (55%). 

4.4.3 Model performance comparison 

Since MS-2 performed the best using the TP consisting of 262 randomly selected genotypes (60% 

of the entire population), the comparison of model effects was performed based on these two 

attributes (NTP=262 and MS-2). Overall, moderate to high predictions were obtained based on the 

Bayesian models, GBLUP and the ML algorithms, which all performed better compared to 

rrBLUP (Figure 4.3). 

4.4.3.1 Parametric regressions 

Within the Bayesian models, BayeB produced a prediction accuracy of 76% for YLD, which 

performed slightly better than the BayesA (73%), BayesC (69%) or BRR (69%) (Figure 4.3). 

BayesB also produced the highest prediction accuracy for HT (88%), which was slightly better 

than BayesA (87%), Bayes C (84%) and BRR (84%). For the seed quality traits SPC, SOC and 

GSL, the Bayesian models performed quite similar with each other. Among all traits the biggest 

difference in prediction accuracy due to the choice of models was observed in YLD. The prediction 

accuracy difference on seed quality was very minimal for SPC, SOC and GSL.  

GBLUP was more efficient in terms of computation time while producing similar prediction 

accuracy with the Bayesian models. For YLD, even though lower than BayesB by 8%, GBLUP’s  
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Figure 4.3 Prediction accuracy (Pearson’s Correlation (%) between predicted and actual values)  

comparison based on BayesA, BayesB, BayesC, BRR, GBLUP and rrBLUP using MS-2 using 

262 randomly sampled individuals as the TP based on a combined population of Brassica napus 

L. consisting of 31 B-lines, 60 R-lines and 345 hybrids. Traits evaluated included YLD (seed 

yield), HT (plant height), SPC (seed protein content), SOC (seed oil content) and GSL (seed 

glucosinolate content). The x-axis represents the traits. The y-axis represents the prediction 

accuracy. Abbreviations: BRR: Bayesian Ridge Regression; rrBLUP: (ridge regression best linear 

unbiased prediction); GBLUP: genomic best linear unbiased prediction.  
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prediction accuracy (68%) was only 1% lower than BayesC and BRR. For HT, GBLUP had a 

slightly lower prediction accuracy (82%) compared to the Bayesian models (84% to 88%).  

For SPC, SOC and GSL, GBLUP had the same prediction accuracy with BayesA. Using the 

rrBLUP model, YLD had the lowest prediction accuracy (41%), while HT, SPC, SOC and GSL 

obtained moderate prediction accuracy which varied between 56% to 71%, depending on the trait. 

4.4.3.2 Non-parametric regressions 

Example scatter plots of a random run of the grid search for each of the three ML models are 

shown in Figure 4.4. For SVR (Figure 4.4.A), this figure shows the performance of one of the 500 

train-test iterations. In particular, the behaviour of the optimal model, given by the 

hyperparameters chosen by the 5-fold CV, is shown on both the training and test set. In this 

example, the Pearson’s Correlation coefficient on the test set was 73%, while on the training set, 

it is 85%. The difference between training and test performance was similar for the other two 

models (Figure 4.4.B and Figure 4.4 .C) and this comparison between ML methods was similar 

for all traits (not shown in the results). While the model shows somewhat higher performance on 

the training set, an indication of possible overfitting was also observed in the scatter plot where 

the test set (black dots) were not identified in the tail of the training set (red dots) (Figure 4.4.C). 

The overall performance of the model (i.e. the correlation between the predicted and actual values) 

on the test sets and the competitiveness with the other methods demonstrated that the results were 

suitable for general use (Table 4.2). Among all non-parametric methods BayesB had the best 

prediction accuracy overall and therefore, was selected for comparison with the ML methods. With 

the ML models, the YLD was the most difficult to predict, as YLD had the lowest prediction 

accuracy among all traits (69% to 72%), which was slightly lower than BayesB (76%). For HT, 

SPC and SOC, ML algorithms also performed well and produced slightly lower   
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Figure 4.4 Example scatter plots of a random run (one of the 500 train-test iterations) of the grid 

search for (A) Support-vector machines (gamma = 2-14, C=2048); (B) Extreme gradient boosting 

scatter (PCC test 0.688), and (C) Random forests scatter (PCC test 0.744) based on seed yield of 

a Brassica napus L. population consisting of 31 B-line, 60 R lines and 345 hybrids. Black dots 

represent model performance based on the test set (VP) and the red X’s represent model 

performance based on the training set (TP). The x-axis represents the observed yield and the y-

axis represents the predicted yield.  

A. 

B. 

C. 
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Table 4.2 Mean Pearson’s Correlation between predicted and actual values over 500 iterations of 

three machine learning algorithms: Support vector regression (SVR), Extreme Gradient Boosting 

(XGBoost) and Random Forests (RF) and BayesianB (BayesB) (the best performing parametric 

model in this research) based on a Brassica napus L. population consisting of 31 B-lines, 60 R-

lines and the 345 hybrids. Five traits evaluated included seed yield (YLD), plant height (HT), seed 

protein content (SPC), seed oil content (SOC) and seed glucosinolate content (GSL). 

 YLD HT SPC SOC GSL 

XGBoost 69% 81% 73% 73% 84% 

RF 70% 82% 71% 72% 84% 

SVR 72% 81% 74% 73% 87% 

BayesB 76% 88% 78% 76% 83% 
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predictions (81% to 82%, 71% to 74%, and 72% to 73% for HT, SPC and SOC, respectively) than 

BayesB (88%, 78% and 76%). All ML algorithms had higher prediction accuracy than BayesB on 

GSL. XGBoost and RF outperformed BayesB by 1% and SVR outperformed it by 4%. Standard 

deviations were also calculated for the ML methods and found to be minimal (varied between 0.04 

to 0.08 for 500 iterations). 

4.5 Discussion 

The composition of the TP is a key factor for the success of GS (Voss-Fels et al. 2019). Results 

from this study showed that both the composition of the population and the size of the population 

had effects on the prediction accuracy of GS. When using parents only to predict the performance 

of the hybrid genotypes, the prediction accuracy was quite low. The size of the VP did not have 

significant impacts on the prediction accuracy. When the TP only contained parents, the prediction 

accuracy of the same trait was quite similar. Daetwyler et al. (2013) and Asoro et al. (2011) 

demonstrated that the prediction accuracy tended to be higher when the TP was closely related to 

the genotypes being predicted. Norman et al. (2018) suggested implementing a TP highly related 

to the individuals being predicted to increase the genetic response. This research revealed that the 

prediction accuracy increased with the addition of the hybrids into the TP. A randomly sampled 

TP (parents and hybrids) had a higher predictive ability (for all traits), which indicated that 

prediction of hybrid genotypes cannot solely rely on the parental genotypes. Similarly, Liang et al. 

(2018) found in pearl millet [Cenchrus americanus (L.) Morrone.] hybrids that the addition of 

inbred parents (i.e. computing the BLUPs of the population after adding inbred parents to hybrids) 

instead of accounting for impacts of heterosis actually reduced the prediction accuracy, especially 

for traits with high heterosis. By implementing phenotype BLUP of parental and hybrid genotypes 

into GS, this negative effect caused by simply combining inbred and hybrid data could be cancelled 
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and therefore increase the prediction accuracy for some traits compared to performing genomic 

prediction based on hybrid genotypes alone (Liang et al. 2018). In terms of TP size effects, the 

prediction accuracy increased as a randomly sampled TP increased in size (91 to 262 genotypes). 

This indicated that a larger TP produced a higher prediction accuracy and is consistent with 

previous studies (Asoro et al. 2011; Norman et al. 2018; Tayeh et al. 2015; Xu et al. 2018).  

A difference in prediction accuracy among traits was also observed in this study. Overall, the 

lowest prediction was observed for YLD, which was expected due to the very complex nature of 

the trait. The prediction accuracy of 0% for yield based on MS-3 indicated a negative impact of 

low marker density on prediction accuracy for a complex trait. Norman et al. (2018) suggested that 

more variation in prediction accuracy was identified in grain yield when the prediction was based 

on a smaller TP. Differences in the prediction accuracy can be affected by the genetic complexity 

of the trait. Therefore, a larger TP is needed to provide more allelic observations for the prediction 

of small effect QTL on more complex traits (Gilmour 2007). However, Maulana et al. (2021) found 

that the variation in the prediction accuracy responding to the TP size change was very minimal 

when investigating a complex trait, and suggested that the relatedness between TP and VP is more 

important in achieving higher prediction accuracies. In this research, we observed that compared 

with the seed quality traits, YLD had large variation responding to a TP size increase, TP 

composition change, and marker density, as well as different models. Therefore, we suggest the 

complexity of the target trait has a large impact on the prediction accuracy.  

Overall, the impact of marker density was not as great as the TP effect, which is consistent with 

results from a study on hybrid rice (Xu et al. 2018). Although MS-1 had the highest maker density, 

it did not have the best prediction accuracy among the three marker sets. Hickey et al. (2014) 

described this situation as the model overfitting by a large number of markers, where markers 
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accounted for non-genetic effects. This can cause a decrease in the prediction accuracy when the 

prediction was performed on data sets that do not have common non-genetic effects (Jannink et al. 

2010). In particular, higher marker densities are more advantageous when a large TP is utilized, 

especially when prediction is performed among unrelated individuals (Meuwissen 2009). Authors 

of a previous study conducted in a wheat population found that the prediction accuracy increased 

with an increased marker density when the TP and VP were more distinct (Norman et al. 2018). 

Therefore, marker density required in GS is indeed associated with the relatedness among 

individuals in the target population. In this research we found that MS-2 performed well compared 

with a larger number of markers (MS-1), which indicated that lower marker density is needed 

when there is high relatedness between the TP and VP. As stated by Meuwissen (2009), the 

required marker density is lower when the individuals being predicted are the progenies of the 

individuals from the training set. Hickey et al. (2014) had the same findings based on a simulated 

maize population, suggesting that lower marker density is needed when the TP and VP share highly 

related genotypes. Some studies also demonstrated that increasing the phenotypic data had larger 

impacts on GS prediction accuracy than increasing marker density (Lorenz et al. 2011; VanRaden 

et al. 2009). This suggests that even though MS-2 (16,855) performed the best in this research, the 

predictive ability could still be improved if the size of the TP increased. The results from this study 

also indicated that a subset of markers evenly distributed along the genome could be sufficient to 

perform GS. This has benefits in reducing the cost of genotyping as well as the computation time. 

In this research, most of the models performed quite similar except for rrBLUP. GBLUP was found 

to be as good as more complicated models such as Bayesian models. Knoch et al. (2021) examined 

prediction accuracy of hybrid performance based on parental empirical data and large omics 

datasets using GBLUP and obtained moderate to high prediction accuracies on SOC, SPC and 
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GSL, which is consistent with our results. Even though GBLUP was described as mathematically 

equivalent with rrBLUP (Habier et al. 2007) there are still some differences between them. More 

specifically, they compute GEBVs through different approaches. In rrBLUP, all markers are 

assumed to have equal variances while the marker effects shrink to zero, and GEBVs are estimated 

based on marker effects (Endelman 2011). In GBLUP, the markers are used to compute a genomic 

relationship matrix (GRM), which is then used to estimate the breeding value of an individual 

(Clark and van der Werf 2013), meaning that the computation of GEBVs does not depend on the 

marker effect estimation (Tan et al. 2017). The comparison on prediction accuracy between 

GBLUP and rrBLUP was not consistent in the past. For example, studies found rrBLUP could 

outperform GBLUP (Wang et al. 2015b; Wang et al. 2015c); whereas in other studies, the 

performance of GBLUP was quite similar with rrBLUP (Bhering et al. 2015; Gilmour 2007; 

Habier et al. 2007; Tan et al. 2017). In the current research, GBLUP performed significantly better 

than rrBLUP for all traits. In fact, rrBLUP had the lowest prediction accuracy among all six models 

evaluated. We assume this might be caused by the difference in the algorithms as well as the 

assumptions of the variances of these models. More specifically, since marker effects estimated 

are based on a 𝑚 × 𝑚 matrix in rrBLUP, where 𝑚 represents the number of markers, it potentially 

introduces too much noise, negatively affecting the prediction accuracy. It is commonly known 

that rrBLUP can only capture additive effects in the model, which leads to the fact that the heterosis 

in the hybrids cannot be well captured. Therefore, we assume the deficiency observed in this 

research in rrBLUP compared with other models was possibly due to rrBLUP not being capable 

of characterizing the actual QTL effects.  

In a simulation study that compared rrBLUP, GBLUP, BayesA, BayesB, BayesC 𝜋  and 

BayesLASSO, Wang et al. (2015c) found that BayesB produced the highest prediction accuracy 
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when the target trait had a lower heritability (0.3 and 0.5), or when the trait was impacted by a 

small number of QTL (20). In another simulation study that compared GBLUP and BayesB based 

on different population sizes and numbers of QTL, Daetwyler et al. (2013) found that BayesB 

performed better than GBLUP when the number of QTL was low. However, as the number of 

QTL increased, GBLUP outperformed BayesB. These findings are consistent with Wang et al. 

(2015b), based on simulations that BayesB outperformed GBLUP in some cases where a large 

number of markers were applied and the marker effects were assumed to follow a non-normal 

distribution. In our research, BayesB slightly outperformed other models on YLD, HT and GSL, 

while obtaining the same prediction accuracy with BayesC and BRR on SPC and SOC. Even 

though BayesB could produce higher prediction accuracy in some situations (e.g. the trait being 

controlled by moderate to large-effect QTL), it is not computationally efficient compared to 

GBLUP due to the algorithm of BayesB (Metropolis Hastings algorithm) (Wang et al. 2015b). 

BayesA uses Gibbs sampling which often needs less computation time, but is still slow when large 

numbers of markers and genotypes are applied (Wang et al. 2015b). Although the difference in 

prediction accuracy among the models was minimal, our results align with BayesB having the 

highest prediction accuracy on YLD. The similarity in prediction accuracy between GBLUP and 

the Bayesian models indicated the complexity in the traits being predicted or the differences need 

larger data sets for accurate prediction (Daetwyler et al. 2013). Ali et al. (2020) investigated six 

traits and seven GS models in winter wheat and found that no GS models consistently 

outperformed others. Similarly, Daetwyler et al. (2013) also stated no single GS model could be 

used as the benchmark for genomic prediction. Therefore, they recommended comparing methods 

where all loci are treated as equal contributors to the target trait with a variable selection model 

where some loci contribute more to the target trait (eg. BayesB).  
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In this research we also applied three commonly used ML algorithms, which produced medium to 

high prediction accuracy for all five traits of interest. As non-parametric models, ML algorithms 

are expected to capture different relationships between markers and phenotypes compared to the 

linear models for GS (Heslot et al. 2012). Therefore, ML algorithms are more flexible in managing 

complicated associations (Montesinos-Lopez et al. 2021). Despite the minimal differences 

observed between the different algorithms, our results showed consistency between BLUP and the 

ML models, as they performed relatively similarly on all traits. Compared to the other four traits, 

YLD had lowest prediction accuracy based on the ML algorithms which might be due to the nature 

of the trait. Except for the genetic nature, other factors could affect seed yield such as agronomic 

practice and environmental effects, as well as the interaction among these factors (Parmley et al. 

2019). In our research, on both the training and test set, the SVR model had reduced ability to 

make predictions accurately for YLD at the top range of performance. This was observed relatively 

consistently over all iterations. However, the overall selection of promising candidates (i.e., those 

with high YLD) would not be significantly compromised. All three ML algorisms outperformed 

the parametric regressions for GSL. This could be related with the high heritability of GSL in B. 

napus (Kittipol et al. 2019). Deep learning (DL) is a subset of ML procedures (Abdollahi-Arpanahi 

et al. 2020). Montesinos-Lopez et al. (2021) reviewed the applications of DL in GS for animal and 

plant breeding and concluded that high quality data of the TP and a large TP are essential for DL 

approaches. In our research, the ML methods performed well and produced high prediction 

accuracy with low standard deviation. However, similar to Montesinos-Lopez et al. (2021), we did 

not identify significant improvement on the prediction power based on ML algorithms compared 

to conventional GS methods. 



 139 

4.6 Conclusion 

Genomic selection is a promising tool in predicting the performance of B. napus hybrids. Breeders 

may decrease the number of hybrids that require development and field evaluation and as a result 

perform selection more efficiently based on the results of GS. Even though multiple factors could 

affect prediction accuracy simultaneously, we found that the magnitude of their impacts did vary. 

In this research, TP composition and size has significantly higher impacts on prediction accuracy 

than marker density. Model performance, on the other hand, did not affect prediction accuracy 

greatly as most of them had very similar prediction accuracy. However, it is still recommended 

that the breeders try applying various models at the same time on different traits of interest. 

Importantly, the prediction of hybrid performance needs to include parental and hybrid data. 

Machine learning algorithms performed very similar to the conventional GS models and produced 

high prediction accuracy in this research, but would require larger TP with high data quality to 

obtain better performance. When taking all these factors mentioned above (nature of trait, marker 

density, TP effect, prediction model) into account, moderate to high prediction accuracy can be 

produced for the important traits we investigated based on models that only consider additive 

effects.  
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5. GENOME-WIDE ASSOCIATION STUDY – GUIDED GENOMIC SELECTION OF 

AGRONOMIC AND SEED QUALITY TRAITS IN Brassica napus L. 

 

 Abstract 

The use of genomic selection (GS) in plant breeding has gained popularity because it offers several 

advantages over conventional phenotypic selection such as reduced breeding cycles and cost 

effectiveness through reducing required field experiments. Genomic selection has been applied in 

improving seed yield as well as seed quality traits in canola. However, none of the currently 

available models have performed consistently across populations or traits in canola. We examined 

the prediction accuracy of genome-wide association study (GWAS) – guided genomic selection 

(GS). First proposed in 2016, this method uses significant SNPs identified from the training set to 

fit GS models as fixed effects and the results are then validated using a cross-validation (CV) 

technique. FarmCPU (Fixed and random model circulating probability unification) was applied to 

identify the significant SNPs that were fit in the GS models as fixed effects. Six parametric GS 

models including BayesianA (BayesA), BayesianB (BayesB), BayesianC (BayesC), Bayesian 

Ridge Regression (BRR), genomic best linear unbiased prediction (GBLUP) and ridge regression 

best linear unbiased prediction (rrBLUP) were applied in evaluating the prediction accuracies for 

five traits including seed yield (YLD), plant height (HT), seed protein content (SPC), seed oil 

content (SOC) and seed glucosinolates content (GSL). Two marker sets with different marker 

densities were used in the analysis. The results revealed that the prediction accuracies of GWAS-

guided GS varied based on the choice of GS models and were higher than conventional GS 

methods in several situations. Conventional GBLUP and rrBLUP were robust and had stable 

performance across different traits based on marker set 1 (MS-1, 26,651 SNPs). However, based 
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on MS-2, Farm-CPU guided Bayesian models had better performance compared to conventional 

Bayesian models across all traits. Marker density did not have significant impacts on the prediction 

accuracy of conventional GS but did have impacts on that of the FarmCPU-guided GS models. In 

general, prediction accuracy increased based on MS-2 compared to MS-1 for FarmCPU-guided 

GS approaches  for all traits except SOC. Marker density also greatly affected the computational 

efficiency. Compared with FarmCPU-guided Bayesian approaches based on MS-2, conventional 

Bayesian models took an extra 4.6 to 6.4 h to complete based on MS-1. Overall, GWAS-guided 

GS is a promising tool, but will need to be performed with caution as its prediction accuracy is 

impacted by multiple factors. 

 Introduction 

In the early 2000s, genomic selection (GS) was first proposed as a method to increase the 

efficiency of animal breeding (Meuwissen et al. 2001). Although considered as a variant of marker 

assisted selection (MAS), GS does not focus on major-effect quantitative trait loci (QTL). 

Genomic selection utilizes all markers across the whole genome and assumes the loci that control 

the target trait are in linkage disequilibrium (LD) with one or more markers (Desta and Ortiz 2014). 

Since the first applications in animal breeding, GS has gained great success and has been embraced 

by plant breeders as a new method to improve plant breeding efficiency for a wide range of crops 

including canola (Jan et al. 2016; Snowdon and Iniguez Luy 2012; Würschum et al. 2014). 

However, none of the existing GS models can serve as a benchmark in all situations due to 

variations in multiple aspects (e.g., population history and genome structure) (Daetwyler et al. 

2013).  

Several approaches have been proposed to combine genome-wide association study (GWAS) and 

GS to improve the prediction accuracy (Bian and Holland 2017; Fiedler et al. 2017; Spindel et al. 
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2015; Tsai et al. 2020; Zhang et al. 2014c). Most of these studies attempted to integrate GWAS 

results in GS models as fixed effects. For example, Zhang et al. (2014c) proposed a GS model 

called “BLUP|GA” that applied previous knowledge of significant loci detected by GWAS. 

However, this method could be problematic considering that the GWAS results are often affected 

by the population structure (Ibrahim et al. 2020). This indicates that previous GWAS results might 

not reflect the true genetic structure of the traits in the population of interest (Spindel et al. 2016). 

Bian and Holland (2017) proposed new main and nested-effect GWAS models based on a multi-

parental NAM population in maize and combined it with GBLUP for genomic prediction on 

simulated traits. Genomic selection was also conducted simultaneously on advanced breeding lines 

with GWAS in barley (Hordeum vulgare L.) and wheat (Triticum aestivum L.) to study the genetic 

structure of the traits of interest and examine the prediction accuracy (Tsai et al. 2020). A major 

issue remained in this type of research regarding how to avoid bias and validate that the identified 

significant SNPs are truly contributing to the traits of interest. More specifically, breeders need to 

remain cautious regarding the significant markers implemented in the GS model, and whether they 

could provide comprehensive background information about the genetic architecture of a certain 

trait. Therefore, Spindel et al. (2016) proposed a new approach that incorporated GS and de novo 

GWAS to improve the prediction accuracy. Instead of utilizing the existing knowledge of QTL 

obtained from previous GWAS research, their “GS + de novo GWAS” method uses significant 

SNPs identified from the training set to fit into the GS models as fixed effects and the results were 

validated using a cross-validation (CV) technique. This approach, in theory, should perform more 

efficiently than the GS + historical GWAS method or conventional GS as it utilizes significant 

SNPs that are obtained from the population being investigated (Spindel et al. 2016).  
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Genomic selection, as a newer tool in canola breeding, has been applied in predicting flowering 

time (Li et al. 2015a), plant height (Würschum et al. 2014), grain yield and seed glucosinolate 

content (Jan et al. 2016), and blackleg [Leptosphaeria maculans (Desm.) Ces. & de Not.] 

resistance (Fikere et al. 2018). However, to our knowledge, there has been no reported GWAS-

guided GS research on canola based on the “GS + de novo GWAS” method. Therefore, we 

performed GWAS-guided GS to examine its effectiveness in improving the prediction accuracy 

based on a population of parents and their hybrids. The GS + de novo GWAS approach proposed 

by Spindel et al. (2016) was used in this research. One GWAS model (FarmCPU) and six GS 

models (four Bayesian models, GBLUP and rrBLUP) were used to evaluate the prediction 

accuracy.  

 Materials and methods 

5.3.1 Phenotypic data and genotypic data 

An in-depth description of the collection and curation of phenotypic data was provided in chapter 

3 in section 3.3.1. Briefly, the training and validation population in this chapter consisted of the 

"combined population" which included 91 parental genotypes (31 B-lines and 60 R-lines) and 345 

hybrid genotypes (see Table S3.2 in Appendix for details). The following phenotypic data were 

collected: seed yield (YLD), plant height (HT), seed protein content (SPC), seed oil content (SOC) 

and seed glucosinolates content (GSL) as described in section 3.3.1. 

The parental genotypes were tested under field conditions in multiple RCBD experiments with 

three replications per site-year for five site-years in southern Manitoba (Glenlea 2016, Carman 

2017, Portage 2017, Glenlea 2018, Portage 2018). The hybrid genotypes were tested in 19 

locations in Western Canada, totalling 43 site-years. Due to the manner the hybrid selection was 

conducted, only selected genotypes were advanced for further field evaluation, leading to hybrid 
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genotypes with unequal numbers of replications. Consequently, there was unevenness in the 

phenotype data. Thus, a BLUP (best linear unbiased prediction) value was computed for each 

genotype to standardize the data for each trait (Piepho et al. 2008; Robinson 1991). The BLUP 

values served as the phenotypic input of this section (see section 3.3.1 for further details).  

5.3.2 Genotypic data 

Genotyping of the population took place at Agriculture and Agri-Food Canada (AAFC) Saskatoon 

(Dr. Isobel Parkin’s Lab) using the Brassica 60K Illumina Infinium SNP array (Illumina Inc., CA, 

USA). The genotypic data were exported from GenomeStudio 2.0 software version 2.0.4 (Illumina 

Inc., CA, USA). Two marker sets, MS-1 with 26,651 SNPs and MS-2 with 16,855 SNPs were used 

in this chapter as the genotypic data. They were then converted to hapmap format in Trait Analysis 

by Association Evolution and Linkage (Tassel) 5 version 20200110 (Bradbury et al. 2007) and 

imported to Intelligent Prediction and Association Tool (iPat) version 1.0 (15.0.1) (Chen and 

Zhang 2018) for data conversion. Two output files were created after the conversion. One 

converted file, called the dat file (.dat), included the genotype names and their corresponding 

marker information in a numeric format. Homozygous genotypes were converted to 0s and 2s 

while heterozygous genotypes were converted to 1s. Missing data was formatted as NA. The other 

converted dataset was called the map file (.map), containing the name of the SNP markers as well 

as their chromosome numbers and positions in base pairs (bp).  
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5.3.3 Genome-wide association-guided genomic selection based on rrBLUP and GBLUP 

Methods described here were modified from a previous study on combining GWAS in GS by 

implementing significant markers identified from GWAS as the fixed effects in GS (Spindel et al. 

2016). The phenotype data (BLUPs), genotype file (.dat) and SNP marker information file (.map) 

were loaded into iPat for the GWAS analysis. Since iPat could not process a large marker data set 

in FarmCPU-guided GS analysis based on rrBLUP and GBLUP, GWAS and GS analysis were 

conducted separately for GWAS-rrBLUP and GWAS-GBLUP based on MS-1 in this research, as 

suggested by the author of iPat (Dr. Chunpeng James Chen, University of California, Davis). 

FarmCPU is a multi-locus GWAS model that provides control in both false positives and false 

negatives (Liu et al. 2016b). Based on the results from Chapter 3 (Figure 3.10 and Figure 3.11), 

FarmCPU controlled both false positives and false negatives better than other GWAS models since 

it “followed closely to the 1:1 line with a sharp upward deviated tail” (Kaler et al. 2019). This was 

consistently observed based on both MS-1 and MS-2 in the combined population (see details under 

section 3.5.2). Therefore, FarmCPU was selected to identify significant MTAs in this research. 

Genome Association and Prediction Integrated Tool (GAPIT) 3 (Wang and Zhang 2020) 

(previously used in chapter 3) was implemented to iPat, which included fixed and random model 

circulating probability unification (FarmCPU) (Liu et al. 2016b). The number of principal 

components (PCs) included in the GWAS analysis was set as 3 which was the default setting of 

the program. After the completion of the GWAS analysis, three SNP markers with the lowest false 

discovery rate (FDR) adjusted p values of each trait from each GWAS model were extracted from 

the original marker data. The genotypic data of these SNPs were then converted to a numeric 

format as described in section 5.3.2 and this was saved as the covariate input file (.cov), which 

was later fit in the GS models as fixed effects. The genotypic data without the extracted SNPs was 
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saved as the genotype input for each trait in GS. Thus, each trait has its own set of genotypic data 

covariates for the GS process.  

The phenotypic data, genotypic data, map file and the covariates were then loaded into iPat for the 

GS analysis. For MS-2, iPat was able to process the marker data set and the input data were directly 

loaded into iPat for analysis. For both rrBLUP and GBLUP, the validation on accuracy option was 

selected and the fold number was set as 5 for CV, with 100 iterations which was the highest number 

of iterations available. Computation time was recorded for each analysis for efficiency comparison 

between models.  

5.3.4 Genome-wide association-guided genomic selection based on Bayesian models 

In this section, the input data were the same as section 5.3.3 and both MS-1 and MS-2 were used. 

The “BGLR” package (Perez and de los Campos 2014) was implemented in iPat and BayesA, 

BayesB, BayesC and Bayes Ridge Regression (BRR) were used in the GS step. The parameter for 

number of iterations (nIter) was set as 10,000 and the burn-in period was set as 3,000. For the CV 

process, CV fold number was set as 5, and the iteration number was set as 10. Computation time 

was recorded for each analysis.  

5.3.5 Conventional genomic selection 

Instead of directly comparing results from this chapter and Chapter 4, conventional GS was 

conducted in iPat since iPat utilizes a different CV technique from Chapter 4. In this technique, 

the population was divided into five subsets of approximately equal size. In each fold, four of these 

subsets were combined to form the training set, with the remaining subset representing the 

validation set. This process was repeated until the five subsets rotated, and each was used as the 

validation set once. Pearson's correlation coefficients (r) were calculated between the predicted 

genomic estimated breeding values (GEBVs) and the observed phenotype of the validation set. 
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The mean of the Pearson's correlation coefficients from each fold was reported as the final 

prediction accuracy of a particular trait based on a specific model or marker set. 

The input data were the same as section 5.3.3 and both MS-1 and MS-2 were used. For rrBLUP 

and GBLUP, the CV fold number and iteration number were set as 5 and 100, respectively. For 

Bayesian models, the same settings as described in section 5.3.4 were used. Computation times 

were recorded for all models to compare the efficiency of different models.  

 Results 

5.4.1 Genome-wide association-guided genomic selection based on 26,651 SNPs 

Prediction accuracies on YLD were relatively low overall and had large variation in FarmCPU-

guided GS (Figure 3.1). The highest prediction accuracy was 37% (FarmCPU-guided rrBLUP) 

and the lowest was 0 (FarmCPU-guided BayesA and FarmCPU-guided BRR). Conventional GS 

had more uniform performance across different GS models, which varied between 22% to 29%. 

For HT, there was larger variation in the prediction accuracy which varied between 4% to 45% 

based on FarmCPU-guided GS, with the lowest produced by FarmCPU-guided BayesA and the 

highest produced by FarmCPU-guided rrBLUP. Based on the conventional GS models the 

prediction accuracy was more uniform, which varied between 40% to 46% for HT. Similarly, 

based on FarmCPU-guided GS models prediction accuracy on SPC also had large variation (2% 

to 48%). FarmCPU-guided Bayesian models had relatively higher prediction accuracy (47% to 

48%) while FarmCPU-guided GBLUP and FarmCPU-guided rrBLUP had lower prediction 

accuracy (2% and 30%).   
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Figure 5.1 Prediction accuracy (Pearson’s Correlation (%) between predicted and actual values) 

based on FarmCPU-guided GS and conventional GS using five-fold cross-validation technique 

with MS-1 (26,651 SNP markers) based on a combined population of Brassica napus L. consisting 

of 31 B-lines, 60 R-lines and 345 hybrids. Genomic selection models applied included BayesA, 

BayesB, BayesC, BRR, GBLUP and rrBLUP. The x-axis represents the traits evaluated: YLD 

(seed yield), HT (plant height), SPC (seed protein content), SOC (seed oil content) and GSL (seed 

glucosinolate content). The y-axis represents the prediction accuracy. Abbreviations: GS: genomic 

selection; FarmCPU: Fixed and random model circulating probability unification; BRR: Bayesian 

ridge regression; rrBLUP: ridge regression best linear unbiased prediction; GBLUP: genomic best 

linear unbiased prediction. 
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Conventional GS had small variation, but performed relatively poor on predicting SPC, which 

varied between 39% to 40%. FarmCPU-guided Bayesian models on SOC had higher prediction 

accuracies (54% to 57%) compared with conventional GS models (44% to 45%), whereas 

FarmCPU-guided GBLUP and FarmCPU-guided rrBLUP only had prediction accuracies of 1% 

and 32%. The prediction accuracies on GSL based on conventional GS models were relatively 

stable with prediction accuracies between 58% to 65%. FarmCPU-guided GS had similar 

prediction accuracy based on BayesB and rrBLUP but had significant lower prediction accuracy 

of GSL based on other GS models (13% to 34%). When comparing FarmCPU-guided GS and 

conventional GS horizontally, FarmCPU did not improve the prediction accuracy consistently 

based on MS-1 (Table 5.1). Conventional GS showed strong robustness and mostly performed 

better than FarmCPU except for SPC and SOC based on Bayesian models.  

5.4.2 Genome-wide association-guided genomic selection based on 16,855 SNPs 

Overall, FarmCPU-guided GS had better prediction accuracy when using MS-2 (16,855 SNPs) 

(Figure 5.2). For conventional GS, the difference in prediction accuracy (Pearson’s Correlation 

(%) values between predicted and actual values) was minimal when comparing results based on 

the two marker sets (Figure 3.1 and Figure 5.2). 

For FarmCPU-guided GS models (YLD), the prediction accuracy varied between 41% to 43%, 

while FarmCPU-guided GBLUP had a relatively low prediction accuracy (26%). Compared with 

FarmCPU-guided GS models, conventional GS had lower prediction accuracy on YLD, which 

varied between 19% to 25%, with the lowest produced from BayesC, GBLUP and rrBLUP and 

the highest produced from BayesB. For HT, FarmCPU-guided Bayesian and FarmCPU-guided 

rrBLUP prediction accuracies varied between 46% to 57%. FarmCPU-guided GBLUP had a lower   
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Table 5.1 Prediction accuracy (Pearson’s Correlation (%) values between predicted and actual 

values) difference between FarmCPU-guided GS and conventional GS based on MS-1 (26,651 

SNPs). “Difference” was calculated by deducting prediction accuracy of conventional GS models 

from that of FarmCPU-guided GS models of the same trait. All values were in percentages.  

Trait GS model FarmCPU-guided GS Conventional GS Difference 

YLD 

BA 0 27 -27 

BB 3 29 -26 

BC 1 24 -23 

BRR 0 22 -22 

GBLUP 17 23 -6 

rrBLUP 37 22 15 

HT 

BA 4 44 -40 

BB 21 46 -25 

BC 22 40 -18 

BRR 15 42 -27 

GBLUP 8 41 -33 

rrBLUP 45 41 4 

SPC 

BA 47 40 7 

BB 47 40 7 

BC 48 40 8 

BRR 47 39 8 

GBLUP 2 39 -37 

rrBLUP 30 40 -10 

SOC 

BA 54 45 9 

BB 57 45 12 

BC 56 44 12 

BRR 56 44 12 

GBLUP 1 45 -44 

rrBLUP 32 45 -13 

GSL 

BA 15 62 -47 

BB 62 65 -3 

BC 13 59 -46 

BRR 34 58 -24 

GBLUP 32 58 -26 

rrBLUP 57 58 -1 
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Figure 5.2 Prediction accuracy (Pearson’s Correlation (%) values between predicted and actual 

values) comparison based on FarmCPU-guided GS and conventional GS using five-fold cross-

validation technique with MS-2 (16,855 SNP markers) based on a combined population of 

Brassica napus L consisting of 31 B-lines, 60 R-lines and 345 hybrids. Genomic selection models 

applied include BayesA, BayesB, BayesC, BRR, GBLUP and rrBLUP. The x-axis represents the 

traits evaluated: YLD (seed yield), HT (plant height), SPC (seed protein content), SOC (seed oil 

content) and GSL (seed glucosinolate content). The y-axis represents the prediction accuracy. 

Abbreviations: GS: genomic selection; FarmCPU: Fixed and random model circulating probability 

unification; BRR: Bayesian ridge regression; rrBLUP: ridge regression best linear unbiased 

prediction; GBLUP: genomic best linear unbiased prediction. 
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prediction accuracy (11%). Conventional GS performed relatively uniformly, with prediction 

accuracies between 35% to 44% with the lowest produced from Bayes C and highest from BayesB. 

For SPC, FarmCPU-guided Bayesian models also had higher prediction accuracy (51% to 52%) 

while FarmCPU-guided GBLUP and FarmCPU-guided rrBLUP had lower prediction accuracy (3% 

and 33%). Similar with HT, conventional GS had lower prediction accuracy (37% to 38%) for 

SPC. For SOC, Farm-CPU guided Bayesian models had prediction accuracy varied between 47% 

to 48% while FarmCPU-guided GBLUP and FarmCPU-guided rrBLUP had lower prediction 

accuracy (0% and 32%). Conventional GS models had similar prediction accuracy which varied 

between 42% to 44%. Compared with other traits, GSL had very high prediction accuracy based 

on FarmCPU-guided Bayesian models and FarmCPU-guided rrBLUP (68% to 69%) while a lower 

prediction accuracy (36%) was obtained by FarmCPU-guided GBLUP. Conventional GS also 

obtained moderate-high prediction accuracy of 55% to 64% for GSL, with the lowest produced 

based on BayesC, BRR, GBLUP and rrBLUP and the highest produced based on BayesB.  

When comparing FarmCPU-guided GS and conventional GS, FarmCPU consistently improved 

prediction accuracy based on MS-2 (Table 5.2). More specifically, FarmCPU-guided Bayesian 

models performed better than conventional GS on all traits. FarmCPU-guided GBLUP and 

FarmCPU-guided rrBLUP underperformed conventional GBLUP and rrBLUP for YLD, but 

outperformed for the other four traits.  

When comparing the performance of MS-1 and MS-2, fewer markers resulted in an increase in the 

prediction accuracy of FarmCPU-guided models, except for SOC. For example, prediction 

accuracy on YLD based on MS-1 varied between 0% to 3% based on FarmCPU-guided Bayesian 

models, while that of YLD based on MS-2 varied between 42% to 43%. This trend was also 

observed based on rrBLUP and GBLUP, where the prediction accuracy of FarmCPU-guided   
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Table 5.2 Prediction accuracy (Pearson’s Correlation (%) values between predicted and actual 

values) difference between FarmCPU-guided GS and conventional GS based on MS-2 (16,855 

SNPs). “Difference” was calculated by deducting prediction accuracy of conventional GS models 

from that of FarmCPU-guided GS models of the same trait. All values were in percentages. 

Trait GS Model FarmCPU-guided GS Conventional GS Difference 

YLD 

BA 43 24 19 

BB 42 25 17 

BC 42 19 23 

BRR 43 20 23 

GBLUP 26 19 7 

rrBLUP 41 19 22 

HT 

BA 57 42 15 

BB 56 44 12 

BC 56 35 21 

BRR 56 36 20 

GBLUP 11 36 -25 

rrBLUP 46 36 10 

SPC 

BA 52 38 14 

BB 51 38 13 

BC 52 38 14 

BRR 52 38 14 

GBLUP 3 37 -34 

rrBLUP 33 37 -4 

SOC 

BA 48 43 5 

BB 48 44 4 

BC 48 44 4 

BRR 47 42 5 

GBLUP 0 43 -43 

rrBLUP 32 44 -12 

GSL 

BA 69 62 7 

BB 69 64 5 

BC 69 55 14 

BRR 69 55 14 

GBLUP 36 55 -19 

rrBLUP 68 55 13 
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GBLUP and FarmCPU-guided rrBLUP based on MS-1 were 17% and 37%, respectively, which 

increased to 26% and 41% based on MS-2, respectively. 

5.4.3 Computational efficiency 

With a larger marker set (MS-1), the computation time was significantly higher than MS-2 (Table 

5.3). For instance, FarmCPU-guided BayesA based on MS-1 both took 14.8 h, while the 

conventional BayesA took 16.4 h. In comparison, FarmCPU-guided BayesA based on MS-2 took 

9.3 h, while the conventional BayesA took 14.2 h. This was consistent across other Bayesian 

models, GBLUP and rrBLUP. When comparing the computation time difference based on the 

same model but different marker sets, larger differences were observed in the FarmCPU-guided 

GS models than the conventional GS approaches.  

Regardless of the choice of marker set, GBLUP and rrBLUP were more efficient than the Bayesian 

models in terms of computation time. Between GBLUP and rrBLUP, GBLUP was even faster than 

rrBLUP. Computation time based on FarmCPU-guided GS varied based on the choice of GS 

models. In general, the difference between these two approaches were not significant. 

 Discussion 

In the initial GS + de novo GWAS research, the authors found that GS combined with the de novo 

GWAS (i.e. GWAS-guided GS) performed better than the standard rrBLUP approach in every 

case (Spindel et al. 2016). In our research, the performance of GWAS-guided rrBLUP using MS-

1 exceeded conventional rrBLUP on YLD and HT by 15% and 4%, respectively (Figure 3.1). 

Meanwhile, FarmCPU-guided rrBLUP had a lower prediction accuracy on SPC (30%), SOC (32%) 

and GSL (57%) than conventional rrBLUP (40%, 45% and 58%, respectively) based on MS-1.   
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Table 5.3 Computation time of conventional GS models and FarmCPU-guided models. The 

Brassica napus L. population consisted of 31 B- lines, 60 R-lines and 345 hybrids. The unit of 

computation time is hour. Genomic selection models applied include BayesA, BayesB, BayesC, 

BRR, rrBLUP and GBLUP. Traits evaluated included YLD (seed yield), HT (plant height), SPC 

(seed protein content), SOC (seed oil content) and GSL (seed glucosinolate content).  

Marker  Set GS1 Model FarmCPU-guided2 Conventional GS 

MS3-1 

BA4 14.8 16.4 

BB5 17.0 18.5 

BC6 15.1 14.9 

BRR7 12.8 20.1 

GBLUP8 0.8 0.4 

rrBLUP9 6.0 3.7 

MS-2 

BA 9.3 14.2 

BB 10.6 15.6 

BC 9.4 9.6 

BRR 8.2 6.4 

GBLUP 0.2 0.2 

rrBLUP 2.4 3.8 
1 Genomic selection. 
2 FarmCPU: Fixed and random model circulating probability unification. 
3 MS: marker set. 
4 BA: BayesA. 
5 BB: BayesB. 
6 BC: BayesC. 
7 BRR: Bayesian ridge regression. 
8 GBLUP: genomic best linear unbiased prediction. 
9 rrBLUP: ridge regression best linear unbiased prediction. 
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Based on MS-2, FarmCPU-guided rrBLUP exceeded conventional rrBLUP on YLD, HT and GSL 

by 22%, 10% and 13%, respectively (Figure 5.2). These results suggested that the prediction 

performance of GWAS-guided GS was better for some traits when compared with conventional 

GS. The performance was also impacted by marker density and choice of model (Tan et al. 2017; 

Zhang et al. 2019a).  

As expected, different GS models produced different prediction accuracies even on the same trait. 

This is due to the fact that the models have different pre-assumptions for the distribution of the 

variances (Perez and de los Campos 2014). Interestingly, in this research FarmCPU-guided 

rrBLUP showed improvements in prediction accuracies for YLD and HT, yet, adversely affected 

the prediction accuracies on all three seed quality traits. This unexpected result suggested that the 

SNPs fit in the GS models as fixed effects might not link to the true QTL that positively contribute 

to the trait of interest (Spindel et al. 2016). GWAS-guided Bayesian models in general performed 

similar to each other on the same trait with some minor variation, which is consistent with results 

from the previous chapter (section 4.3.3). These similar prediction accuracies again pointed to the 

complexity of the traits being predicted and the need to analyze data sets of larger size to identify 

the potential differences (Daetwyler et al. 2013).  

There is large variation when comparing prediction accuracies among different traits. For instance, 

YLD exhibited the largest variation when prediction accuracies were compared across different 

models and marker sets. As a highly complex trait, YLD can be severely affected by the 

environment, thus, yield can be difficult to characterize even if the marker set applied had uniform 

coverage along the genome. Based on FarmCPU-guided GS models, YLD had low to medium 

prediction accuracy regardless of marker sets or models which varied between 0% to 37% or 26% 

to 43% based on MS-1 and MS-2, respectively. As Zhang et al. (2014c) stated, genetic architecture 
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can affect the performance of whole genome prediction (GS) as traits with higher heritability are 

controlled by fewer loci tend to produce higher prediction accuracies in genomic prediction. 

Bernardo (2014) also found that fitting major genes as fixed effects increases the prediction 

accuracy in GS when a quantitative trait is mainly controlled by one to three genes, with each gene 

accounting for 10% of the genetic variance.  

Differences in prediction accuracy were also observed when comparing results from Chapter 4. 

For YLD, the prediction accuracy was as high as 76% based on MS-2 with a training population 

size of 262, which decreased to 42% in this research based on conventional BayesB with MS-2. 

This was possibly caused by the different cross-validation (CV) techniques applied. Previously, to 

simulate the issues that may be encountered in the prediction process, different CV approaches 

have been created for GS (Crossa et al. 2017). Haile (2018) identified variation in prediction 

accuracies due to different CV techniques and recommended choosing a CV technique that mimics 

the real prediction problem. Similar variation was also observed in other traits such as SPC and 

SOC based on MS-2. Taken together, the difference observed in prediction accuracy caused by the 

application of different CV indicated that the CV method used in Chapter 4 was more suitable for 

this research. 

From a cost-efficiency perspective, it is crucial to understand the optimal marker density applied 

in GS studies, as a lower marker density would be more cost-effective if similar prediction 

accuracies can be reached compared to higher marker densities. The optimal marker density 

depends on the nature of the species and traits being investigated as well as the genotyping platform 

(Kriaridou et al. 2020). In theory, higher marker density would produce higher prediction accuracy 

since more markers are assumed to be in LD with the loci that control the traits of interest (Desta 

and Ortiz 2014; Heffner et al. 2009). However, in this research, we found that more markers did 
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not necessarily improve the prediction accuracy in FarmCPU-guided GS, or in conventional GS. 

This was consistent with the previous chapter, where the prediction accuracies based on the larger 

marker set (MS-1, 26,651 SNPs) were lower than the smaller marker set (MS-2, 16,855 SNPs). 

This possibly resulted from the high relatedness amongst the individuals in the population, which 

is among the factors that could affect the optimal marker density needed in GS studies (Meuwissen 

2009). 

Computation efficiency is another factor to consider when conducting GS studies. In general, 

GWAS-guided GS in this research required similar computation time with conventional GS. 

FarmCPU-guided Bayesian models required significantly longer than FarmCPU-guided GBLUP 

and FarmCPU-guided rrBLUP, which is consistent with previous studies (Wang et al. 2015b; 

Zhang et al. 2014c).  

 Conclusion 

In conclusion, GWAS-guided GS showed some improvements compared to conventional GS 

approaches. Using an optimized marker set (MS-2), GWAS-guided GS showed improvements in 

all traits using Bayesian models. These improvements were model specific and impacted by the 

marker density. To further develop our understanding GWAS-guided GS prediction accuracy, it is 

recommended to apply GWAS-guided GS on additional Brassica napus populations, but it is clear 

that prediction performance will differ depending upon the trait of interest.  
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6 GENERAL DISCUSSION 

As an economically important crop, canola (Brassica napus L.) is a crucial source of plant-based 

edible oils (Cartea et al. 2019; Paterson et al. 2001). Canada is the largest canola producer globally 

(USDA 2020), and canola's annual economic contribution to the Canadian economy has increased 

35% in the past ten years to $29.9 billion CAD (LMC International 2020). Today, B. napus is also 

grown to provide raw materials for a wide range of end products such as livestock feed, biofuel, 

biodegradable plastics and industrial lubricants (Jan et al. 2016; Snowdon et al. 2007). As the 

global population grows, environmental change and resource shortages increase, and consumer 

preferences change, breeders are targeting higher yields, stronger disease resistance, and greater 

abiotic stress tolerance for most crops (Collard and Mackill 2008; Fess et al. 2011). As a result, 

improving canola yield and yield-related traits will continue to be a major breeding goal for canola 

breeders. To meet market demand by 2025, Canada's canola production must reach 2,914 kg ha-1 

to meet the 26 Mt production goal (Canola Council of Canada 2014). 

To efficiently improve canola traits related with yield and seed quality, it is crucial to understand 

the genetic architecture of the traits of interest and the genetic variation in the target population. 

In Chapter 3, a genome-wide association study (GWAS) was conducted to identify marker-trait 

associations (MTAs) related to seed yield, plant height, seed protein content, seed oil content and 

seed glucosinolates content. In this research we examined different factors that could affect the 

power of GWAS, for example population size and composition. We found that GWAS based on 

the parental genotypes performed (tested across five site-years) poorly, but with the addition of 

hybrids (tested across 43 site-years) to the parental genotypes, the performance of GWAS on 

hybrids was enhanced by not only increasing the population size, but also accounting for the multi-

environment effect. This finding was consistent with a previous GWAS study conducted on a 
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hybrid maize (Zea mays L.) population where the authors stated GWAS results from the inbred 

population cannot be directly applied in understanding the genetic background of a hybrid 

population (Zhang et al. 2019c). We also compared the marker density effects on GWAS and 

found that the higher marker density did not necessarily perform better than the lower marker 

density in this research. In a previous study conducted on Eucalyptus, the authors found that the 

predictive ability based on subsets of SNP markers did not differ from that based on full SNP 

marker sets. Often, a higher marker density is needed when the linkage disequilibrium decays fast 

(Kainer et al. 2019), while in our population linkage disequilibrium decayed relatively slow (~ 4.0 

Mb based on MS-1 and 5.3 Mb based on MS-2). In terms of model performance, consistent with 

what was previously characterised by Kaler et al. (2019), complex models such as MLMM, 

FarmCPU and CMLM performed well in controlling false positives in GWAS. However, there 

indeed were stratifications that were not controlled well by the complex models since there were 

deviations observed in the Q-Q plots (Ehret 2010). This research provided a foundation in 

understanding the population effect of our target populations and the effect of marker density for 

Chapters 4 and 5.  

In addition to understanding the genetics of the traits of interest, appropriate selection models are 

required. In the Canadian Prairies, more than 95% of all cultivars grown are hybrid cultivars 

(Morrison et al. 2016). Thus, it is important to identify efficient methodologies for selecting 

parental combinations that produce the best hybrids. In Chapter 4, we preformed genomic selection 

(GS) and evaluated the factors that affect the prediction accuracies such as training population, 

marker density and model performance. We found that prediction accuracies increased when 

hybrid genotypes were included in the training population, which was consistent with a previous 

study where the authors stated that simply adding parental genotypes (i.e computing BLUPs based 
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on combined inbreds and hybirds instead of computing their BLUPs separately before combining) 

reduced the prediction accuracy in hybrid pearl millet [Cenchrus americanus (L.) Morrone.], 

especially for traits with high heterosis (Liang et al. 2018). We also found that with a larger training 

population, the prediction accuracies tend to be higher. This is consistent with previous research 

since a larger training population can offer a wider range of allelic observations for the prediction 

of small effect QTL on complex quantitative traits (Asoro et al. 2011; Gilmour 2007; Norman et 

al. 2018; Tayeh et al. 2015; Xu et al. 2018). Similar with the findings from Chapter 3 on marker 

density, the highest marker density did not produce the highest prediction accuracy. This is 

possibly caused by the high relatedness amongst the individuals in the population. Previous 

research has indicated that the required marker density is lower when the relatedness is high 

(Meuwissen 2009). In terms of variation in the prediction accuracies of different traits, we found 

that compared with seed yield and plant height, the three seed quality traits tended to have higher 

prediction accuracies, which is consistent with Knoch et al. (2021). Model performance also 

affected prediction accuracy in this research. Bayesian models performed quite similar to each 

other, which indicated a larger population may be needed to reveal the differences in the model 

performances (Daetwyler et al. 2013). In summary of Chapter 4, many factors affect the prediction 

accuracy of GS (training population size and composition, marker density and model choice). 

Therefore, one has to consider all of these factors when developing a GS methodology.  

Even though GS selection is regarded as a promising tool, breeders are continuing to improve the 

prediction accuracy. In an effort to improve the performance of GS, results from GWAS were 

integrated to GS models as fixed effects in previous studies (Bian and Holland 2017; Fiedler et al. 

2017; Spindel et al. 2015; Tsai et al. 2020; Zhang et al. 2014c). In Chapter 5 we followed the 

approach proposed by Spindel et al. (2016) where a GS + de novo GWAS was performed to 
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examine if the prediction accuracies were improved compared to conventional GS approaches. By 

comparing the results from Chapter 4 and Chapter 5 we found that different cross validation 

techniques could affect prediction accuracy, and proper validation techniques need to be applied 

when performing GS (Haile 2018). In the initial GS + de novo GWAS research, Spindel et al. 

(2016) found that the prediction accuracy based on GS + de novo GWAS was consistently higher 

than that of the conventional rrBLUP. In contrast, the improvements in the performance of GS + 

de novo GWAS compared to conventional rrBLUP were not consistent across traits in our research. 

Similarly, in a GS study on wheat, the authors found no significant difference on prediction 

accuracy between GS + de novo GWAS and conventional rrBLUP (Haile 2018). We also 

compared the computation efficiency of different models and identified that GBLUP and rrBLUP 

(both GWAS-guided and conventional) had the shortest computation duration compared with the 

Bayesian models. In conclusion, GWAS-guided GS could improve the prediction accuracy 

compared to conventional GS, but may need more empirical studies to verify its power, since its 

performance may vary depending on the trait, marker set and the GS model. 

Collectively, this research used GWAS in identifying significant SNPs associated with important 

agronomic and seed quality traits and demonstrated the application of conventional and GWAS-

guided GS in hybrid canola development. The methods and results provide valuable information 

required for implementing GS into canola breeding programs, ultimately advancing the canola 

industry. 
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7 FUTURE RESEARCH RECOMMENDATIONS 

In this research, we found that genome-wide association study (GWAS) and genomic selection 

(GS) have strong potential in improving canola breeding efficiencies; however, we suggest the 

following to improve GS in future breeding efforts. 

The research in Chapter 3 would benefit from including a greater number of globally-collected 

accessions, increasing the genetic diversity of the population, which will also increase the 

statistical power in detecting significant SNPs associated with the trait of interest. At the same 

time, traits of interest can be expanded to include flowering, maturity, other seed quality traits and 

thousand seed weight to identify significant markers.  

Regarding Chapters 4 and 5, the performance of GS can be improved by increasing the size of the 

population, particularly on traits with a lower heritability. Increasing population size will also 

provide more information to differentiate the performance of different models or markers densities. 

This will aid in optimizing the performance of GS in its practical application. In addition, high-

throughput phenotyping can be implemented in collecting phenotypic data from the field 

experiments, which could offer more accurate phenotypic data and avoid human error during the 

phenotyping process. Moreover, covariates can be added to GS models including, but not limited 

to, annual precipitation, average growing season temperatures of the site-year, soil texture and 

pest/disease severity. Additional research could also focus on exploring more machine learning 

methods such multilayer perceptrons (MLPs), recurrent neural networks (RNN) and convolutional 

neural networks (CNN). Collectively, the above recommendations will facilitate the establishment 

of GS in the hybrid canola breeding industry in the future.  



 164 

8. REFERENCE MATTER 

8.1 Literature cited 

Abdollahi-Arpanahi R, Gianola D, Penagaricano F (2020) Deep learning versus parametric and 

ensemble methods for genomic prediction of complex phenotypes. Genet Sel Evol 52:12 

Abdulmalik RO, Menkir A, Meseka SK, Unachukwu N, Ado SG, Olarewaju JD, Aba DA, Hearne 

S, Crossa J, Gedil M (2017) Genetic gains in grain yield of a maize population improved through 

marker assisted recurrent selection under stress and non-stress conditions in west Africa. Front 

Plant Sci 8:841 

Acosta-Pech R, Crossa J, de Los Campos G, Teyssedre S, Claustres B, Perez-Elizalde S, Perez-

Rodriguez P (2017) Genomic models with genotype x environment interaction for predicting 

hybrid performance: an application in maize hybrids. Theor Appl Genet 130:1431-1440 

Ahmadi B, Masoomi-Aladizgeh F, Shariatpanahi ME, Azadi P, Keshavarz-Alizadeh M (2016) 

Molecular characterization and expression analysis of SERK1 and SERK2 in Brassica napus L.: 

implication for microspore embryogenesis and plant regeneration. Plant Cell Rep 35:185-193 

Ahmar S, Gill RA, Jung KH, Faheem A, Qasim MU, Mubeen M, Zhou W (2020) Conventional 

and molecular techniques from simple breeding to speed breeding in crop plants: recent advances 

and future outlook. Int J Mol Sci 21:2590 

Alcock TD, Havlickova L, He Z, Bancroft I, White PJ, Broadley MR, Graham NS (2017) 

Identification of candidate genes for calcium and magnesium accumulation in Brassica napus L. 

by association genetics. Front Plant Sci 8:1968 

Ali M, Zhang Y, Rasheed A, Wang J, Zhang L (2020) Genomic prediction for grain yield and 

yield-related traits in chinese winter wheat. Int J Mol Sci 21:1342 

Allender CJ, King GJ (2010) Origins of the amphiploid species Brassica napus L. investigated by 

chloroplast and nuclear molecular markers. BMC Plant Biol 10:1-9 

Alseekh S, Kostova D, Bulut M, Fernie AR (2021) Genome-wide association studies: assessing 

trait characteristics in model and crop plants. Cell Mol Life Sci 78:5743–5754 

Anderson JA (2007) Marker-assisted selection for Fusarium head blight resistance in wheat. Int J 

Food Microbiol 119:51-53 



 165 

Andorf C, Beavis WD, Hufford M, Smith S, Suza WP, Wang K, Woodhouse M, Yu J, Lubberstedt 

T (2019) Technological advances in maize breeding: past, present and future. Theor Appl Genet 

132:817-849 

Annicchiarico P, Nazzicari N, Li X, Wei Y, Pecetti L, Brummer EC (2015) Accuracy of genomic 

selection for alfalfa biomass yield in different reference populations. BMC Genomics 16:1020 

Ashkani S, Rafii MY, Shabanimofrad M, Miah G, Sahebi M, Azizi P, Tanweer FA, Akhtar MS, 

Nasehi A (2015) Molecular breeding strategy and challenges towards improvement of blast disease 

resistance in rice crop. Front Plant Sci 6:886 

Ashraf M, Akram NA, Mehboob-ur-Rahman, Foolad MR (2012) Marker-Assisted Selection in 

Plant Breeding for Salinity Tolerance. In: Shabala S, Cuin AT (eds) Plant Salt Tolerance: Methods 

and Protocols. Humana Press, Totowa, NJ, pp 305-333 

Asoro FG, Newell MA, Beavis W, Scott M, Jannink J (2011) Accuracy and training population 

design for genomic selection on quantitative traits in elite North American oats. Plant Genome 

4:132-144 

Assefa T, Otyama PI, Brown AV, Kalberer SR, Kulkarni RS, Cannon SB (2019) Genome-wide 

associations and epistatic interactions for internode number, plant height, seed weight and seed 

yield in soybean. BMC Genomics 20:527 

Assefa Y, Prasad PVV, Foster C, Wright Y, Young S, Bradley P, Stamm M, Ciampitti IA (2018) 

Major management factors determining spring and winter canola yield in North America. Crop 

Sci 58:1-16 

Atwell S, Huang YS, Vilhjalmsson BJ, Willems G, Horton M, Li Y, Meng D, Platt A, Tarone AM, 

Hu TT, Jiang R, Muliyati NW, Zhang X, Amer MA, Baxter I, Brachi B, Chory J, Dean C, Debieu 

M, de Meaux J, Ecker JR, Faure N, Kniskern JM, Jones JD, Michael T, Nemri A, Roux F, Salt 

DE, Tang C, Todesco M, Traw MB, Weigel D, Marjoram P, Borevitz JO, Bergelson J, Nordborg 

M (2010) Genome-wide association study of 107 phenotypes in Arabidopsis thaliana inbred lines. 

Nature 465:627-631 

Badu-Apraku B, Talabi AO, Fakorede MAB, Fasanmade Y, Gedil M, Magorokosho C, Asiedu R 

(2019) Yield gains and associated changes in an early yellow bi-parental maize population 

following genomic selection for Striga resistance and drought tolerance. BMC Plant Biol 19:129 



 166 

Bajaj D, Upadhyaya HD, Das S, Kumar V, Gowda CL, Sharma S, Tyagi AK, Parida SK (2016) 

Identification of candidate genes for dissecting complex branch number trait in chickpea. Plant Sci 

245:61-70 

Ballesta P, Bush D, Silva FF, Mora F (2020) Genomic predictions using low-density snp markers, 

pedigree and gwas information: a case study with the non-model species Eucalyptus cladocalyx. 

Plants (Basel) 9:99 

Bartrina I, Otto E, Strnad M, Werner T, Schmulling T (2011) Cytokinin regulates the activity of 

reproductive meristems, flower organ size, ovule formation, and thus seed yield in Arabidopsis 

thaliana. Plant Cell 23:69-80 

Bassi FM, Bentley AR, Charmet G, Ortiz R, Crossa J (2016) Breeding schemes for the 

implementation of genomic selection in wheat (Triticum spp.). Plant Sci 242:23-36 

Basu U, Srivastava R, Bajaj D, Thakro V, Daware A, Malik N, Upadhyaya HD, Parida SK (2018) 

Genome-wide generation and genotyping of informative SNPs to scan molecular signatures for 

seed yield in chickpea. Sci Rep 8:13240 

Battenfield SD, Guzman C, Gaynor RC, Singh RP, Pena RJ, Dreisigacker S, Fritz AK, Poland JA 

(2016) Genomic selection for processing and end-use quality traits in the CIMMYT spring bread 

wheat breeding program. Plant Genome 9:1-12 

Bayer PE, Golicz AA, Scheben A, Batley J, Edwards D (2020) Plant pan-genomes are the new 

reference. Nat Plants 6:914-920 

Bayer PE, Hurgobin B, Golicz AA, Chan CK, Yuan Y, Lee H, Renton M, Meng J, Li R, Long Y, 

Zou J, Bancroft I, Chalhoub B, King GJ, Batley J, Edwards D (2017) Assembly and comparison 

of two closely related Brassica napus genomes. Plant Biotechnol J 15:1602-1610 

Bell JM (1982) From rapeseed to canola: a brief history of research for superior meal and edible 

oil. Poultry Science 61:613-622 

Bellucci A, Tondelli A, Fangel JU, Torp AM, Xu X, Willats WG, Flavell A, Cattivelli L, 

Rasmussen SK (2017) Genome-wide association mapping in winter barley for grain yield and 

culm cell wall polymer content using the high-throughput CoMPP technique. PLoS One 

12:e0173313 



 167 

Bentley AR, Scutari M, Gosman N, Faure S, Bedford F, Howell P, Cockram J, Rose GA, Barber 

T, Irigoyen J, Horsnell R, Pumfrey C, Winnie E, Schacht J, Beauchene K, Praud S, Greenland A, 

Balding D, Mackay IJ (2014) Applying association mapping and genomic selection to the 

dissection of key traits in elite European wheat. Theor Appl Genet 127:2619-2633 

Bernardo R (2014) Genomewide selection when major genes are known. Crop Sci 54:68-75 

Bernardo R (2016) Bandwagons I, too, have known. Theor Appl Genet 129:2323-2332 

Beyene Y, Gowda M, Olsen M, Robbins KR, Perez-Rodriguez P, Alvarado G, Dreher K, Gao SY, 

Mugo S, Prasanna BM, Crossa J (2019) Empirical comparison of tropical maize hybrids selected 

through genomic and phenotypic selections. Front Plant Sci 10:1502 

Beyene Y, Semagn K, Mugo S, Prasanna BM, Tarekegne A, Gakunga J, Sehabiague P, Meisel B, 

Oikeh SO, Olsen M, Crossa J (2016) Performance and grain yield stability of maize populations 

developed using marker-assisted recurrent selection and pedigree selection procedures. Euphytica 

208:285-297 

Bhering L, Junqueira V, Peixoto L, Cruz C, Laviola B (2015) Comparison of methods used to 

identify superior individuals in genomic selection in plant breeding. Genet Mol Res 14:10888-

10896 

Bian Y, Holland JB (2017) Enhancing genomic prediction with genome-wide association studies 

in multiparental maize populations. Heredity (Edinb) 118:585-593 

Boopathi NM (2013) Marker-Assisted Selection.  Genetic Mapping and Marker Assisted 

Selection: Basics, Practice and Benefits. Springer India, India, pp 173-186 

Botstein D, White RL, Skolnick M, Davis RW (1980) Construction of a genetic linkage map in 

man using restriction fragment length polymorphisms. Am J Hum Genet 32:314-331 

Brachi B, Morris GP, Borevitz JO (2011) Genome-wide association studies in plants: the missing 

heritability is in the field. Genome Biol 12:232 

Bradbury PJ, Zhang Z, Kroon DE, Casstevens TM, Ramdoss Y, Buckler ES (2007) TASSEL: 

software for association mapping of complex traits in diverse samples. Bioinformatics 23:2633-

2635 



 168 

Breiman L (2001) Random Forests. Machine Learning 45:5-32 

Brown LR (2012) Grain yields starting to plateau.  Full Planet, Empty Plates: The New Geopolitics 

of Food Scarcity, 1 edn. Earth Policy Institute, New York, pp 72-82 

Bumgarner R (2013) Overview of DNA microarrays: types, applications, and their future. Curr 

Protoc Mol Biol 101:22.21.21-22.21.11 

Bus A, Korber N, Snowdon RJ, Stich B (2011) Patterns of molecular variation in a species-wide 

germplasm set of Brassica napus. Theor Appl Genet 123:1413-1423 

Calus MP (2010) Genomic breeding value prediction: methods and procedures. Animal 4:157-164 

Calus MP, Meuwissen TH, de Roos AP, Veerkamp RF (2008) Accuracy of genomic selection 

using different methods to define haplotypes. Genetics 178:553-561 

Canola Council of Canada (2013) GDDs to date.  

Canola Council of Canada (2014) Canada’s canola industry sets bold new target for 2025.  

Canola Council of Canada (2016) Canadian Canola Harvested Acreage.  

Canola Council of Canada (2017) Markets of Canadian canola.  

Canola council of Canada (2018) Canadian canola yield (tonnes/acre).  

Canola council of Canada (2019) Canadian canola seed exports.  

Canola Council of Canada (2020) How much fertilizer does canola need?  

Canola Council of Canada (2021a) Growth stages of the canola plant.  

Canola Council of Canada (2021b) History of canola seed development.  



 169 

Canvin DT (1965) The effect of temperature on the oil content and fatty acid composition of the 

oils from several oil seed crops. Can J Bot 43:63-69 

Cao JY, Xu YP, Li W, Li SS, Rahman H, Cai XZ (2016) Genome-Wide identification of dicer-

like, argonaute, and rna-dependent rna polymerase gene families in Brassica Species and 

functional analyses of their Arabidopsis homologs in resistance to Sclerotinia sclerotiorum. Front 

Plant Sci 7:1614 

Carlson MO, Montilla-Bascon G, Hoekenga OA, Tinker NA, Poland J, Baseggio M, Sorrells ME, 

Jannink JL, Gore MA, Yeats TH (2019) Multivariate genome-wide association analyses reveal the 

genetic basis of seed fatty acid composition in oat (Avena sativa L.). G3 (Bethesda) 9:2963-2975 

Cartea E, De Haro-Bailon A, Padilla G, Obregon-Cano S, Del Rio-Celestino M, Ordas A (2019) 

Seed oil quality of Brassica napus and Brassica rapa germplasm from Northwestern Spain. Foods 

8:292 

Cavanagh C, Morell M, Mackay I, Powell W (2008) From mutations to MAGIC: resources for 

gene discovery, validation and delivery in crop plants. Curr Opin Plant Biol 11:215-221 

Cavanagh CR, Chao S, Wang S, Huang BE, Stephen S, Kiani S, Forrest K, Saintenac C, Brown-

Guedira GL, Akhunova A, See D, Bai G, Pumphrey M, Tomar L, Wong D, Kong S, Reynolds M, 

da Silva ML, Bockelman H, Talbert L, Anderson JA, Dreisigacker S, Baenziger S, Carter A, 

Korzun V, Morrell PL, Dubcovsky J, Morell MK, Sorrells ME, Hayden MJ, Akhunov E (2013) 

Genome-wide comparative diversity uncovers multiple targets of selection for improvement in 

hexaploid wheat landraces and cultivars. Proc Natl Acad Sci U S A 110:8057-8062 

Celton JM, Christoffels A, Sargent DJ, Xu X, Rees DJ (2010) Genome-wide SNP identification 

by high-throughput sequencing and selective mapping allows sequence assembly positioning using 

a framework genetic linkage map. BMC Biol 8:155 

Chalhoub B, Denoeud F, Liu S, Parkin IA, Tang H, Wang X, Chiquet J, Belcram H, Tong C, 

Samans B, Correa M, Da Silva C, Just J, Falentin C, Koh CS, Le Clainche I, Bernard M, Bento P, 

Noel B, Labadie K, Alberti A, Charles M, Arnaud D, Guo H, Daviaud C, Alamery S, Jabbari K, 

Zhao M, Edger PP, Chelaifa H, Tack D, Lassalle G, Mestiri I, Schnel N, Le Paslier MC, Fan G, 

Renault V, Bayer PE, Golicz AA, Manoli S, Lee TH, Thi VH, Chalabi S, Hu Q, Fan C, Tollenaere 

R, Lu Y, Battail C, Shen J, Sidebottom CH, Wang X, Canaguier A, Chauveau A, Berard A, Deniot 

G, Guan M, Liu Z, Sun F, Lim YP, Lyons E, Town CD, Bancroft I, Wang X, Meng J, Ma J, Pires 

JC, King GJ, Brunel D, Delourme R, Renard M, Aury JM, Adams KL, Batley J, Snowdon RJ, Tost 

J, Edwards D, Zhou Y, Hua W, Sharpe AG, Paterson AH, Guan C, Wincker P (2014) Early 

allopolyploid evolution in the post-Neolithic Brassica napus oilseed genome. Science 345:950-

953 



 170 

Chang CC, Chow CC, Tellier LC, Vattikuti S, Purcell SM, Lee JJ (2015) Second-generation 

PLINK: rising to the challenge of larger and richer datasets. Gigascience 4:7 

Chang LY, Toghiani S, Ling A, Aggrey SE, Rekaya R (2018) High density marker panels, SNPs 

prioritizing and accuracy of genomic selection. BMC Genet 19:4 

Chang T, Wei J, Liang M, An B, Wang X, Zhu B, Xu L, Zhang L, Gao X, Chen Y, Li J, Gao H 

(2019) A fast and powerful empirical Bayes method for genome-wide association studies. Animals 

(Basel) 9 

Chao H, Wang H, Wang X, Guo L, Gu J, Zhao W, Li B, Chen D, Raboanatahiry N, Li M (2017) 

Genetic dissection of seed oil and protein content and identification of networks associated with 

oil content in Brassica napus. Sci Rep 7:46295 

Chen CJ, Zhang Z (2018) iPat: intelligent prediction and association tool for genomic research. 

Bioinformatics 34:1925-1927 

Chen G, Geng J, Rahman M, Liu X, Tu J, Fu T, Li G, McVetty PBE, Tahir M (2010) Identification 

of QTL for oil content, seed yield, and flowering time in oilseed rape (Brassica napus). Euphytica 

175:161-174 

Chen G, Wang X, Hao J, Yan J, Ding J (2015) Genome-wide association implicates candidate 

genes conferring resistance to maize rough dwarf disease in maize. PLoS One 10:e0142001 

Chen L, Wan H, Qian J, Guo J, Sun C, Wen J, Yi B, Ma C, Tu J, Song L, Fu T, Shen J (2018) 

Genome-wide association study of cadmium accumulation at the seedling stage in rapeseed 

(Brassica napus L.). Front Plant Sci 9:375 

Chen L, Zhao J, Song J, Jameson PE (2020) Cytokinin dehydrogenase: a genetic target for yield 

improvement in wheat. Plant Biotechnol J 18:614-630 

Chen T, Guestrin C (2016) XGBoost: A scalable tree boosting system.  Proceedings of the 22nd 

acm sigkdd international conference on knowledge discovery and data mining, pp 785-794 

Chen W, Zhang Y, Liu X, Chen B, Tu J, Fu T (2007) Detection of QTL for six yield-related traits 

in oilseed rape (Brassica napus) using DH and immortalized F2 populations. Theor Appl Genet 

115:849-858 



 171 

Cheung WY, Gugel RK, Landry BS (1998) Identification of RFLP markers linked to the white 

rust resistance gene (Acr) in mustard (Brassica juncea (L.) Czern. and Coss.). Genome 41:626-

628 

Clark AJ, Sarti-Dvorjak D, Brown-Guedira G, Dong Y, Baik BK, Van Sanford DA (2016) 

Identifying rare FHB-resistant segregants in intransigent backcross and F2 winter wheat 

populations. Front Microbiol 7:277 

Clark SA, Hickey JM, van der Werf JH (2011) Different models of genetic variation and their 

effect on genomic evaluation. Genet Sel Evol 43:18 

Clark SA, van der Werf J (2013) Genomic best linear unbiased prediction (gBLUP) for the 

estimation of genomic breeding values. In: Gondro C, Werf Jvd, Hayes B (eds) Genome-Wide 

Association Studies and Genomic Prediction, pp 321-330 

Clarke WE, Higgins EE, Plieske J, Wieseke R, Sidebottom C, Khedikar Y, Batley J, Edwards D, 

Meng J, Li R, Lawley CT, Pauquet J, Laga B, Cheung W, Iniguez-Luy F, Dyrszka E, Rae S, Stich 

B, Snowdon RJ, Sharpe AG, Ganal MW, Parkin IA (2016) A high-density SNP genotyping array 

for Brassica napus and its ancestral diploid species based on optimised selection of single-locus 

markers in the allotetraploid genome. Theor Appl Genet 129:1887-1899 

Cobb JN, Biswas PS, Platten JD (2019) Back to the future: revisiting MAS as a tool for modern 

plant breeding. Theor Appl Genet 132:647-667 

Collard BC, Mackill DJ (2008) Marker-assisted selection: an approach for precision plant breeding 

in the twenty-first century. Philosophical Transactions of the Royal Society B 363:557-572 

Collard BCY, Jahufer MZZ, Brouwer JB, Pang ECK (2005) An introduction to markers, 

quantitative trait loci (QTL) mapping and marker-assisted selection for crop improvement: The 

basic concepts. Euphytica 142:169-196 

Colombani C, Legarra A, Fritz S, Guillaume F, Croiseau P, Ducrocq V, Robert-Granie C (2013) 

Application of Bayesian least absolute shrinkage and selection operator (LASSO) and BayesCpi 

methods for genomic selection in French Holstein and Montbeliarde breeds. J Dairy Sci 96:575-

591 

Combs E, Bernardo R (2013) Accuracy of genomewide selection for different traits with constant 

population size, heritability, and number of markers. Plant Genome 6:1-7 



 172 

Cortes LT, Zhang Z, Yu J (2021) Status and prospects of genome-wide association studies in 

plants. Plant Genome 14:e20077 

Cros D, Denis M, Sanchez L, Cochard B, Flori A, Durand-Gasselin T, Nouy B, Omore A, Pomies 

V, Riou V, Suryana E, Bouvet JM (2015) Genomic selection prediction accuracy in a perennial 

crop: case study of oil palm (Elaeis guineensis Jacq.). Theor Appl Genet 128:397-410 

Crossa J, Campos Gde L, Perez P, Gianola D, Burgueno J, Araus JL, Makumbi D, Singh RP, 

Dreisigacker S, Yan J, Arief V, Banziger M, Braun HJ (2010) Prediction of genetic values of 

quantitative traits in plant breeding using pedigree and molecular markers. Genetics 186:713-724 

Crossa J, Perez P, Hickey J, Burgueno J, Ornella L, Ceron-Rojas J, Zhang X, Dreisigacker S, Babu 

R, Li Y, Bonnett D, Mathews K (2014) Genomic prediction in CIMMYT maize and wheat 

breeding programs. Heredity (Edinb) 112:48-60 

Crossa J, Pérez-Rodríguez P, Cuevas J, Montesinos-López O, Jarquín D, de los Campos G, 

Burgueño J, González-Camacho JM, Pérez-Elizalde S, Beyene Y, Dreisigacker S, Singh R, Zhang 

X, Gowda M, Roorkiwal M, Rutkoski J, Varshney RK (2017) Genomic Selection in Plant 

Breeding: Methods, Models, and Perspectives. Trends Plant Sci 22:961-975 

Cuevas J, Crossa J, Montesinos-Lopez OA, Burgueno J, Perez-Rodriguez P, de Los Campos G 

(2017) Bayesian genomic prediction with genotype x environment interaction kernel models. G3 

(Bethesda) 7:41-53 

Cui Z, Dong H, Zhang A, Ruan Y, Jiang S, He Y, Zhang Z (2020) Denser markers and advanced 

statistical method identified more genetic loci associated with husk traits in maize. Sci Rep 

10:8165 

Cui Z, Luo J, Qi C, Ruan Y, Li J, Zhang A, Yang X, He Y (2016) Genome-wide association study 

(GWAS) reveals the genetic architecture of four husk traits in maize. BMC Genomics 17:946 

Cuong DM, Park SU, Park CH, Kim NS, Bong SJ, Lee SY (2019) Comparative analysis of 

glucosinolate production in hairy roots of green and red kale (Brassica oleracea var. acephala). 

Prep Biochem Biotechnol 49:775-782 

Daetwyler HD, Bansal UK, Bariana HS, Hayden MJ, Hayes BJ (2014) Genomic prediction for 

rust resistance in diverse wheat landraces. Theor Appl Genet 127:1795-1803 



 173 

Daetwyler HD, Calus MP, Pong-Wong R, de Los Campos G, Hickey JM (2013) Genomic 

prediction in animals and plants: simulation of data, validation, reporting, and benchmarking. 

Genetics 193:347-365 

Dar AA, Choudhury AR, Kancharla PK, Arumugam N (2017) The FAD2 Gene in Plants: 

Occurrence, Regulation, and Role. Front Plant Sci 8:1789 

Das S, Hussain A, Bock C, Keller WA, Georges F (2005) Cloning of Brassica napus 

phospholipase C2 (BnPLC2), phosphatidylinositol 3-kinase (BnVPS34) and phosphatidylinositol 

synthase1 (BnPtdIns S1)--comparative analysis of the effect of abiotic stresses on the expression 

of phosphatidylinositol signal transduction-related genes in B. napus. Planta 220:777-784 

Daun JK (2011) Origin, distribution, and production. In: Daun JK, Eskin NAM, Hickling D (eds) 

Canola: chemistry, production, processing, and utilization. AOCS Press, Champaign, pp 1-27 

de Los Campos G, Gianola D, Rosa GJ (2009) Reproducing kernel Hilbert spaces regression: a 

general framework for genetic evaluation. J Anim Sci 87:1883-1887 

de Los Campos G, Hickey JM, Pong-Wong R, Daetwyler HD, Calus MP (2013) Whole-genome 

regression and prediction methods applied to plant and animal breeding. Genetics 193:327-345 

de Los Campos G, Sorensen D, Gianola D (2015) Genomic heritability: what is it? PLoS Genet 

11:e1005048 

DeClercq DR, Daun JK, Tipples K (1998) Quality of western Canadian canola. Canadian Grain 

Commission 

Delourme R, Falentin C, Huteau V, Clouet V, Horvais R, Gandon B, Specel S, Hanneton L, Dheu 

JE, Deschamps M, Margale E, Vincourt P, Renard M (2006) Genetic control of oil content in 

oilseed rape (Brassica napus L.). Theor Appl Genet 113:1331-1345 

Deng M, Li D, Luo J, Xiao Y, Liu H, Pan Q, Zhang X, Jin M, Zhao M, Yan J (2017) The genetic 

architecture of amino acids dissection by association and linkage analysis in maize. Plant 

Biotechnol J 15:1250-1263 

Derscheid LA, Lytle WF (1977) Growing degree days (GDD) 



 174 

Desta ZA, Ortiz R (2014) Genomic selection: genome-wide prediction in plant improvement. 

Trends Plant Sci 19:592-601 

Di F, Jian H, Wang T, Chen X, Ding Y, Du H, Lu K, Li J, Liu L (2018) Genome-Wide analysis of 

the PYL gene family and identification of PYL genes that respond to abiotic stress in Brassica 

napus. Genes (Basel) 9:156 

Dias K, Gezan SA, Guimaraes CT, Nazarian A, da Costa ESL, Parentoni SN, de Oliveira 

Guimaraes PE, de Oliveira Anoni C, Padua JMV, de Oliveira Pinto M, Noda RW, Ribeiro CAG, 

de Magalhaes JV, Garcia AAF, de Souza JC, Guimaraes LJM, Pastina MM (2018) Improving 

accuracies of genomic predictions for drought tolerance in maize by joint modeling of additive 

and dominance effects in multi-environment trials. Heredity (Edinb) 121:24-37 

Downey RK, Harvey BL (1963) Methods of breeding for oil quality in rape. Can J Plant Sci 

43:271-275 

Drucker H, Burges C, Kaufman L, Smola A, Vapnik V (1997) Support vector regression machines. 

Adv Neural Inf Process Syst 9:155-161 

Duan S, Wang J, Gao C, Jin C, Li D, Peng D, Du G, Li Y, Chen M (2018) Functional 

characterization of a heterologously expressed Brassica napus WRKY41-1 transcription factor in 

regulating anthocyanin biosynthesis in Arabidopsis thaliana. Plant Sci 268:47-53 

Earl DA (2012) STRUCTURE HARVESTER: a website and program for visualizing 

STRUCTURE output and implementing the Evanno method. Conservation Genetics Resources 

4:359-361 

Edwards D, Batley J, Snowdon RJ (2013) Accessing complex crop genomes with next-generation 

sequencing. Theor Appl Genet 126:1-11 

Ehret GB (2010) Genome-wide association studies: contribution of genomics to understanding 

blood pressure and essential hypertension. Curr Hypertens Rep 12:17-25 

Elahi N, Duncan RW, Stasolla C (2016) Modification of oil and glucosinolate content in canola 

seeds with altered expression of Brassica napus LEAFY COTYLEDON1. Plant Physiol Biochem 

100:52-63 



 175 

Elbasyoni IS, Lorenz AJ, Guttieri M, Frels K, Baenziger PS, Poland J, Akhunov E (2018) A 

comparison between genotyping-by-sequencing and array-based scoring of SNPs for genomic 

prediction accuracy in winter wheat. Plant Sci 270:123-130 

Elhiti M, Yang C, Chan A, Durnin DC, Belmonte MF, Ayele BT, Tahir M, Stasolla C (2012) 

Altered seed oil and glucosinolate levels in transgenic plants overexpressing the Brassica napus 

SHOOTMERISTEMLESS gene. J Exp Bot 63:4447-4461 

Elshire RJ, Glaubitz JC, Sun Q, Poland JA, Kawamoto K, Buckler ES, Mitchell SE (2011) A 

Robust, simple genotyping-by-sequencing (GBS) approach for high diversity species. PLOS ONE 

6:e19379 

Endelman JB (2011) Ridge regression and other kernels for genomic selection with R package 

rrBLUP. Plant Genome 4:250-255 

Eskin NM, McDonald B (1991) Canola oil. Nutrition Bulletin 16:138-146 

Falk K (2009) Heterosis assessment for agronomic and seed quality traits in hybrid canola 

(Brassica napus L.).  Plant Sci. University of Manitoba, Winnipeg, p 132 

FAO (2021) Crops and livestock products. In: Food and Agriculture Organization of the United 

Nations (FAO) (ed) 

Fedoroff NV (2010) The past, present and future of crop genetic modification. N Biotechnol 

27:461-465 

Fess TL, Kotcon JB, Benedito VA (2011) Crop breeding for low input agriculture: a sustainable 

response to feed a growing world population. Sustainability 3:1742 

Fiedler JD, Salsman E, Liu Y, Michalak de Jimenez M, Hegstad JB, Chen B, Manthey FA, Chao 

S, Xu S, Elias EM, Li X (2017) Genome-wide association and prediction of grain and semolina 

quality traits in durum wheat breeding populations. Plant Genome 10:1-12 

Fikere M, Barbulescu DM, Malmberg MM, Shi F, Koh JCO, Slater AT, MacLeod IM, Bowman 

PJ, Salisbury PA, Spangenberg GC, Cogan NOI, Daetwyler HD (2018) Genomic prediction using 

prior quantitative trait loci information reveals a large reservoir of underutilised blackleg resistance 

in diverse canola (Brassica napus L.) lines. Plant Genome 11:1-16 



 176 

Fleury D, Jefferies S, Kuchel H, Langridge P (2010) Genetic and genomic tools to improve drought 

tolerance in wheat. J Exp Bot 61:3211-3222 

Francia E, Tacconi G, Crosatti C, Barabaschi D, Bulgarelli D, Dall’Aglio E, Valè G (2005) Marker 

assisted selection in crop plants. Plant Cell Tiss Org Cult 82:317-342 

Fredua-Agyeman R, Yu Z, Hwang S-F, Strelkov SE (2020) Genome-wide mapping of loci 

associated with resistance to clubroot in Brassica napus ssp. napobrassica (rutabaga) accessions 

from Nordic countries. Front Plant Sci 11:742 

Friedman JH (2001) Greedy function approximation: A gradient boosting machine. Ann Stat 

29:1189-1232, 1144 

Fu D, Mason AS, Xiao M, Yan H (2016) Effects of genome structure variation, homeologous 

genes and repetitive DNA on polyploid crop research in the age of genomics. Plant Sci 242:37-46 

Fu Y, Lu K, Qian L, Mei J, Wei D, Peng X, Xu X, Li J, Frauen M, Dreyer F, Snowdon RJ, Qian 

W (2015) Development of genic cleavage markers in association with seed glucosinolate content 

in canola. Theor Appl Genet 128:1029-1037 

Fu YB, Yang MH, Zeng F, Biligetu B (2017) Searching for an accurate marker-based prediction 

of an individual quantitative trait in molecular plant breeding. Front Plant Sci 8:1182 

Gacek K, Bayer PE, Bartkowiak-Broda I, Szala L, Bocianowski J, Edwards D, Batley J (2016) 

Genome-wide association study of genetic control of seed fatty acid biosynthesis in Brassica 

napus. Front Plant Sci 7:2062 

Gapare W, Liu S, Conaty W, Zhu QH, Gillespie V, Llewellyn D, Stiller W, Wilson I (2018) 

Historical datasets support genomic selection models for the prediction of cotton fiber quality 

phenotypes across multiple environments. G3 (Bethesda) 8:1721-1732 

Gianola D, Fernando RL, Stella A (2006) Genomic-assisted prediction of genetic value with 

semiparametric procedures. Genetics 173:1761-1776 

Gibbon BC, Larkins BA (2005) Molecular genetic approaches to developing quality protein maize. 

Trends Genet 21:227-233 



 177 

Gilmour AR (2007) Mixed model regression mapping for QTL detection in experimental crosses. 

Comput Stat Data Anal 51:3749-3764 

Goddard ME, Hayes BJ (2007) Genomic selection. J Anim Breed Genet 124:323-330 

Goiffon M, Kusmec A, Wang L, Hu G, Schnable PS (2017) Improving Response in Genomic 

Selection with a Population-Based Selection Strategy: Optimal Population Value Selection. 

Genetics 206:1675-1682 

Gotz S, Garcia-Gomez JM, Terol J, Williams TD, Nagaraj SH, Nueda MJ, Robles M, Talon M, 

Dopazo J, Conesa A (2008) High-throughput functional annotation and data mining with the 

Blast2GO suite. Nucleic Acids Res 36:3420-3435 

Grassini P, Eskridge KM, Cassman KG (2013) Distinguishing between yield advances and yield 

plateaus in historical crop production trends. Nat Commun 4:2918 

Grenier C, Cao TV, Ospina Y, Quintero C, Chatel MH, Tohme J, Courtois B, Ahmadi N (2015) 

Accuracy of genomic selection in a rice synthetic population developed for recurrent selection 

breeding. PLoS One 10:e0136594 

Guo T, Yu X, Li X, Zhang H, Zhu C, Flint-Garcia S, McMullen MD, Holland JB, Szalma SJ, 

Wisser RJ, Yu J (2019) Optimal designs for genomic selection in hybrid crops. Mol Plant 12:390-

401 

Guo Z, Tucker DM, Basten CJ, Gandhi H, Ersoz E, Guo B, Xu Z, Wang D, Gay G (2014) The 

impact of population structure on genomic prediction in stratified populations. Theor Appl Genet 

127:749-762 

Gupta PK, Kulwal PL, Jaiswal V (2014) Association mapping in crop plants: opportunities and 

challenges. Adv Genet 85:109-147 

Gyawali A, Shrestha V, Guill KE, Flint-Garcia S, Beissinger TM (2019) Single-plant GWAS 

coupled with bulk segregant analysis allows rapid identification and corroboration of plant-height 

candidate SNPs. BMC Plant Biol 19:412 

Habibur R, A. BR, Ginette S-S (2015) Broadening genetic diversity in Brassica napus canola: 

Development of canola-quality spring B. napus from B. napus×B. oleracea var. alboglabra 

interspecific crosses. Can J Plant Sci 95:29-41 



 178 

Habier D, Fernando RL, Dekkers JC (2007) The impact of genetic relationship information on 

genome-assisted breeding values. Genetics 177:2389-2397 

Habier D, Fernando RL, Kizilkaya K, Garrick DJ (2011a) Extension of the bayesian alphabet for 

genomic selection. BMC Bioinformatics 12:186 

Habier D, Fernando RL, Kizilkaya K, Garrick DJ (2011b) Extension of the bayesian alphabet for 

genomic selection. BMC Bioinformatics 12:186 

Haile TA (2018) Genomic selection, quantitative trait loci and genome-wide association mapping 

for spring bread wheat (Triticum aestivum L.) improvement. University of Saskatchewan 

Harker KN, O'Donovan JT, Turkington TK, Blackshaw RE, Lupwayi NZ, Smith EG, Klein-

Gebbinck H, Dosdall LM, Hall LM, Willenborg CJ (2012) High-yield no-till canola production on 

the Canadian Prairies. Can J Plant Sci 92:221-233 

Harker KN, O’Donovan JT, Turkington TK, Blackshaw RE, Lupwayi NZ, Smith EG, Johnson 

EN, Gan Y, Kutcher HR, Dosdall LM, Peng G (2015) Canola rotation frequency impacts canola 

yield and associated pest species. Can J Plant Sci 95:9-20 

Harper FR, Berkenkamp B (1975) Revised growth-stage key for Brassica campestris and B. napus. 

Can J Plant Sci 55:657-658 

Harvey BL, Downey RK (1964) The inheritance of erucic acid content in rapeseed (Brassica 

napus). Can J Plant Sci 44:104-111 

Hatzig SV, Frisch M, Breuer F, Nesi N, Ducournau S, Wagner MH, Leckband G, Abbadi A, 

Snowdon RJ (2015) Genome-wide association mapping unravels the genetic control of seed 

germination and vigor in Brassica napus. Front Plant Sci 6:221 

Hayward A (2011) Introduction: Oilseed Brassicas.  Genetics, Genomics and Breeding of Oilseed 

Brassicas. Science Publishers, pp 1-13 

He L, Xiao J, Rashid KY, Yao Z, Li P, Jia G, Wang X, Cloutier S, You FM (2018) Genome-wide 

association studies for pasmo resistance in flax (Linum usitatissimum L.). Front Plant Sci 9:1982 

He S, Schulthess AW, Mirdita V, Zhao Y, Korzun V, Bothe R, Ebmeyer E, Reif JC, Jiang Y (2016) 

Genomic selection in a commercial winter wheat population. Theor Appl Genet 129:641-651 



 179 

He Y, Wu D, Wei D, Fu Y, Cui Y, Dong H, Tan C, Qian W (2017) GWAS, QTL mapping and 

gene expression analyses in Brassica napus reveal genetic control of branching morphogenesis. 

Sci Rep 7:15971 

Heffner EL, Jannink J-L, Iwata H, Souza E, Sorrells ME (2011a) Genomic selection accuracy for 

grain quality traits in biparental wheat populations. Crop Sci 51:2597-2606 

Heffner EL, Jannink JL, Sorrells ME (2011b) Genomic selection accuracy using multifamily 

prediction models in a wheat breeding program. Plant Genome 4:65-75 

Heffner EL, Sorrells ME, Jannink J-L (2009) Genomic selection for crop improvement. Crop Sci 

49:1-12 

Heslot N, Akdemir D, Sorrells ME, Jannink JL (2014) Integrating environmental covariates and 

crop modeling into the genomic selection framework to predict genotype by environment 

interactions. Theor Appl Genet 127:463-480 

Heslot N, Yang HP, Sorrells ME, Jannink JL (2012) Genomic selection in plant breeding: a 

comparison of models. Crop Sci 52:146-160 

Hickey JM, Dreisigacker S, Crossa J, Hearne S, Babu R, Prasanna BM, Grondona M, Zambelli A, 

Windhausen VS, Mathews K, Gorjanc G (2014) Evaluation of genomic selection training 

population designs and genotyping strategies in plant breeding programs using simulation. Crop 

Sci 54:1476-1488 

Hickey LT, Hafeez AN, Robinson H, Jackson SA, Leal-Bertioli SCM, Tester M, Gao C, Godwin 

ID, Hayes BJ, Wulff BBH (2019) Breeding crops to feed 10 billion. Nat Biotechnol 37:744-754 

Hirani AH, Gao F, Liu J, Fu G, Wu C, Yuan Y, Li W, Hou J, Duncan R, Li G (2016) Transferring 

clubroot resistance from Chinese cabbage (Brassica rapa) to canola (B. napus). Can J Plant Pathol 

38:82-90 

Hoffstetter A, Cabrera A, Huang M, Sneller C (2016) Optimizing training population data and 

validation of genomic selection for economic traits in soft winter wheat. G3 (Bethesda) 6:2919-

2928 

Holliday JA, Wang T, Aitken S (2012) Predicting adaptive phenotypes from multilocus genotypes 

in sitka spruce (Picea sitchensis) using random forest. G3 (Bethesda) 2:1085-1093 



 180 

Honsdorf N, Becker HC, Ecke W (2010) Association mapping for phenological, morphological, 

and quality traits in canola quality winter rapeseed (Brassica napus L.). Genome 53:899-907 

Hossain F, Muthusamy V, Pandey N, Vishwakarma AK, Baveja A, Zunjare RU, Thirunavukkarasu 

N, Saha S, Manjaiah KMM, Prasanna BM, Gupta HS (2018) Marker-assisted introgression of 

opaque2 allele for rapid conversion of elite hybrids into quality protein maize. J Genet 97:287-298 

Hoyos-Villegas V, Song Q, Kelly JD (2017) Genome-wide association analysis for drought 

tolerance and associated traits in common bean. Plant Genome 10:1-17 

Hu D, Kan G, Hu W, Li Y, Hao D, Li X, Yang H, Yang Z, He X, Huang F, Yu D (2019) 

Identification of loci and candidate genes responsible for pod dehiscence in soybean via genome-

wide association analysis across multiple environments. Front Plant Sci 10:811 

Huang N, Angeles ER, Domingo J, Magpantay G, Singh S, Zhang G, Kumaravadivel N, Bennett 

J, Khush GS (1997) Pyramiding of bacterial blight resistance genes in rice: marker-assisted 

selection using RFLP and PCR. Theor Appl Genet 95:313-320 

Huang X, Han B (2014) Natural variations and genome-wide association studies in crop plants. 

Annu Rev Plant Biol 65:531-551 

Huang X-Q, Huang T, Hou G-Z, Li L, Hou Y, Lu Y-H (2016) Identification of QTLs for seed 

quality traits in rapeseed (Brassica napus L.) using recombinant inbred lines (RILs). Euphytica 

210:1-16 

Huang Y, Hussain MA, Luo D, Xu H, Zeng C, Havlickova L, Bancroft I, Tian Z, Zhang X, Cheng 

Y, Zou X, Lu G, Lv Y (2020) A Brassica napus reductase gene dissected by associative 

transcriptomics enhances plant adaption to freezing stress. Front Plant Sci 11:971 

Huhtanen P, Hetta M, Swensson C (2011) Evaluation of canola meal as a protein supplement for 

dairy cows: A review and a meta-analysis. Can J Anim Sci 91:529-543 

Hwang EY, Song Q, Jia G, Specht JE, Hyten DL, Costa J, Cregan PB (2014) A genome-wide 

association study of seed protein and oil content in soybean. BMC Genomics 15:1 

Ibrahim AK, Zhang L, Niyitanga S, Afzal MZ, Xu Y, Zhang L, Zhang L, Qi J (2020) Principles 

and approaches of association mapping in plant breeding. Trop Plant Biol 13:212-224 



 181 

Ijaz B, Zhao N, Kong J, Hua J (2019) Fiber quality improvement in upland cotton (Gossypium 

hirsutum L.): quantitative trait loci mapping and marker assisted selection application. Front Plant 

Sci 10:1585 

Illumina Inc (2016) GenomeStudio® Genotyping Module v2.0 Software Guide. Illumina 

Proprietary 

Isidro J, Jannink JL, Akdemir D, Poland J, Heslot N, Sorrells ME (2015) Training set optimization 

under population structure in genomic selection. Theor Appl Genet 128:145-158 

Ivanovska S, Stojkovski C, Dimov Z, Marjanović-Jeromela A, Jankulovska M, Jankuloski L 

(2007) Interrelationship between yield and yield related traits of spring canola (Brassica napus L.) 

genotypes. Genetika 39:325-332 

Jabbari M, Fakheri BA, Aghnoum R, Mahdi Nezhad N, Ataei R (2018) GWAS analysis in spring 

barley (Hordeum vulgare L.) for morphological traits exposed to drought. PLoS One 13:e0204952 

Jaccoud D, Peng K, Feinstein D, Kilian A (2001) Diversity arrays: a solid state technology for 

sequence information independent genotyping. Nucleic Acids Res 29:E25 

Jan HU, Abbadi A, Lucke S, Nichols RA, Snowdon RJ (2016) Genomic prediction of testcross 

performance in canola (Brassica napus). PLoS One 11:e0147769 

Jannink JL, Lorenz AJ, Iwata H (2010) Genomic selection in plant breeding: from theory to 

practice. Brief Funct Genomics 9:166-177 

Jeffreys AJ, Wilson V, Thein SL (1985) Hypervariable 'minisatellite' regions in human DNA. 

Nature 314:67-73 

Jiang C, Shi J, Li R, Long Y, Wang H, Li D, Zhao J, Meng J (2014) Quantitative trait loci that 

control the oil content variation of rapeseed (Brassica napus L.). Theor Appl Genet 127:957-968 

Jiang G-L (2013) Molecular markers and marker-assisted breeding in plants. In: Andersen SB (ed) 

Plant Breeding from Laboratories to Fields. In Tech, pp 45-83 

Jiang G-L (2015) Molecular marker-assisted breeding: a plant breeder’s review. In: Al-Khayri JM, 

Jain SM, Johnson DV (eds) Advances in Plant Breeding Strategies: Breeding, Biotechnology and 

Molecular Tools. Springer International Publishing, Cham, pp 431-472 



 182 

Jiang Y, Reif JC (2015) Modeling epistasis in genomic selection. Genetics 201:759-768 

John MB (2012) Single nucleotide polymorphisms and applications.  Advanced Topics in Forensic 

DNA Typing: Methodology. Academic Press, Walthan, MA, pp 347-369 

Jolivet P, Boulard C, Bellamy A, Larre C, Barre M, Rogniaux H, d'Andréa S, Chardot T, Nesi N 

(2009) Protein composition of oil bodies from mature Brassica napus seeds. Proteomics 9:3268-

3284 

Jonas E, de Koning DJ (2013) Does genomic selection have a future in plant breeding? Trends 

Biotechnol 31:497-504 

Jourdren C, Barret P, Brunel D, Delourme R, Renard M (1996) Specific molecular marker of the 

genes controlling linolenic acid content in rapeseed. Theor Appl Genet 93:512-518 

Ju M, Zhou Z, Mu C, Zhang X, Gao J, Liang Y, Chen J, Wu Y, Li X, Wang S, Wen J, Yang L, 

Wu J (2017) Dissecting the genetic architecture of Fusarium verticillioides seed rot resistance in 

maize by combining QTL mapping and genome-wide association analysis. Sci Rep 7:46446 

Kainer D, Padovan A, Degenhardt J, Krause S, Mondal P, Foley WJ, Külheim C (2019) High 

marker density GWAS provides novel insights into the genomic architecture of terpene oil yield 

in Eucalyptus. New Phytol 223:1489-1504 

Kaler AS, Gillman JD, Beissinger T, Purcell LC (2019) Comparing different statistical models and 

multiple testing corrections for association mapping in soybean and maize. Front Plant Sci 10:1794 

Kang HM, Zaitlen NA, Wade CM, Kirby A, Heckerman D, Daly MJ, Eskin E (2008) Efficient 

control of population structure in model organism association mapping. Genetics 178:1709-1723 

Karamanos RE, Harapiak J, Flore NA (2002) Fall and early spring seeding of canola (Brassica 

napus L.) using different methods of seeding and phosphorus placement. Can J Plant Sci 82:21-26 

Khan MA, Cowling W, Banga SS, You MP, Tyagi V, Bharti B, Barbetti MJ (2020) Patterns of 

inheritance for cotyledon resistance against Sclerotinia sclerotiorum in Brassica napus. Euphytica 

216:79 



 183 

Khazaei H, Podder R, Caron CT, Kundu SS, Diapari M, Vandenberg A, Bett KE (2017) Marker-

trait association analysis of iron and zinc concentration in lentil (Lens culinaris Medik.) seeds. 

Plant Genome 10:1-8 

Kittipol V, He Z, Wang L, Doheny-Adams T, Langer S, Bancroft I (2019) Genetic architecture of 

glucosinolate variation in Brassica napus. J Plant Physiol 240:152988 

Klein RJ, Zeiss C, Chew EY, Tsai JY, Sackler RS, Haynes C, Henning AK, SanGiovanni JP, Mane 

SM, Mayne ST, Bracken MB, Ferris FL, Ott J, Barnstable C, Hoh J (2005) Complement factor H 

polymorphism in age-related macular degeneration. Science 308:385-389 

Knoch D, Werner CR, Meyer RC, Riewe D, Abbadi A, Lucke S, Snowdon RJ, Altmann T (2021) 

Multi-omics-based prediction of hybrid performance in canola. Theor Appl Genet 134:1147-1165 

Kondra Z, Stefansson B (1970) Inheritance of the major glucosinolates of rapeseed (Brassica 

napus) meal. Can J Plant Sci 50:643-647 

Korber N, Bus A, Li J, Parkin IA, Wittkop B, Snowdon RJ, Stich B (2016) Agronomic and seed 

quality traits dissected by genome-wide association mapping in Brassica napus. Front Plant Sci 

7:386 

Korte A, Farlow A (2013) The advantages and limitations of trait analysis with GWAS: a review. 

Plant Methods 9:29 

Koscielny CB (2018) Analysis of thermotolerance in Brassica napus L.  Department of Plant 

Science. University of Manitoba, Winnipeg 

Koscielny CB, Gardner SW, Technow F, Duncan RW (2020) Linkage mapping and whole-genome 

predictions in canola (Brassica napus) subjected to differing temperature treatments. Crop Pasture 

Sci 71:229-238 

Koscielny CB, Hazebroek J, Duncan RW (2018) Phenotypic and metabolic variation among spring 

Brassica napus genotypes during heat stress. Crop Pasture Sci 69:284-295 

Kriaridou C, Tsairidou S, Houston RD, Robledo D (2020) Genomic prediction using low density 

marker panels in aquaculture: performance across species, traits, and genotyping platforms. Front 

Genet 11:124 



 184 

Krishna MSR, Sokka Reddy S, Satyanarayana SDV (2017) Marker-assisted breeding for 

introgression of opaque-2 allele into elite maize inbred line BML-7. 3 Biotech 7:165 

Kutcher HR, Warland JS, Brandt SA (2010) Temperature and precipitation effects on canola yields 

in Saskatchewan, Canada. Agric For Meteorol 150:161-165 

La VH, Lee B-R, Islam MT, Park S-H, Lee H, Bae D-W, Kim T-H (2019) Antagonistic shifting 

from abscisic acid- to salicylic acid-mediated sucrose accumulation contributes to drought 

tolerance in Brassica napus. Environ Exp Bot 162:38-47 

LaFramboise T (2009) Single nucleotide polymorphism arrays: a decade of biological, 

computational and technological advances. Nucleic Acids Res 37:4181-4193 

Lancashire PD, Bleiholder H, Boom TVD, LangelÜDdeke P, Stauss R, Weber E, Witzenberger A 

(1991) A uniform decimal code for growth stages of crops and weeds. Ann Appl Biol 119:561-

601 

Langridge P, Chalmers K (2005) The principle: identification and application of molecular 

markers. In: H. L, G. W (eds) Molecular Marker Systems in Plant Breeding and Crop 

Improvement. Springer, Berlin Heidelberg, pp 3-22 

Leite DC, Pinheiro JB, Campos JB, Di Mauro AO, Uneda-Trevisoli SH (2016) QTL mapping of 

soybean oil content for marker-assisted selection in plant breeding program. Genet Mol Res 15:1-

11 

Lekklar C, Pongpanich M, Suriya-Arunroj D, Chinpongpanich A, Tsai H, Comai L, Chadchawan 

S, Buaboocha T (2019) Genome-wide association study for salinity tolerance at the flowering stage 

in a panel of rice accessions from Thailand. BMC Genomics 20:76 

Li CX, Xu WG, Guo R, Zhang JZ, Qi XL, Hu L, Zhao MZ (2018a) Molecular marker assisted 

breeding and genome composition analysis of Zhengmai 7698, an elite winter wheat cultivar. Sci 

Rep 8:322 

Li F, Chen B, Xu K, Gao G, Yan G, Qiao J, Li J, Li H, Li L, Xiao X, Zhang T, Nishio T, Wu X 

(2016a) A genome-wide association study of plant height and primary branch number in rapeseed 

(Brassica napus). Plant Sci 242:169-177 

Li F, Chen B, Xu K, Wu J, Song W, Bancroft I, Harper AL, Trick M, Liu S, Gao G, Wang N, Yan 

G, Qiao J, Li J, Li H, Xiao X, Zhang T, Wu X (2014a) Genome-wide association study dissects 



 185 

the genetic architecture of seed weight and seed quality in rapeseed (Brassica napus L.). DNA Res 

21:355-367 

Li F, Chen B, Xu K, Wu J, Song W, Bancroft I, Harper AL, Trick M, Liu S, Gao G, Wang N, Yan 

G, Qiao J, Li J, Li H, Xiao X, Zhang T, Wu X (2014b) Genome-wide association study dissects 

the genetic architecture of seed weight and seed quality in rapeseed (Brassica napus L.). DNA Res 

21:355-367 

Li G, Xu X, Bai G, Carver BF, Hunger R, Bonman JM, Kolmer J, Dong H (2016b) Genome-wide 

association mapping reveals novel QTL for seedling leaf rust resistance in a worldwide collection 

of winter wheat. Plant Genome 9:1-12 

Li H, Cheng X, Zhang L, Hu J, Zhang F, Chen B, Xu K, Gao G, Li H, Li L, Huang Q, Li Z, Yan 

G, Wu X (2018b) An integration of genome-wide association study and gene co-expression 

network analysis identifies candidate genes of stem lodging-related traits in Brassica napus. Front 

Plant Sci 9:796 

Li L, Long Y, Zhang L, Dalton-Morgan J, Batley J, Yu L, Meng J, Li M (2015a) Genome wide 

analysis of flowering time trait in multiple environments via high-throughput genotyping 

technique in Brassica napus L. PLoS One 10:e0119425 

Li L, Luo Y, Chen B, Xu K, Zhang F, Li H, Huang Q, Xiao X, Zhang T, Hu J, Li F, Wu X (2016c) 

A genome-wide association study reveals new loci for resistance to clubroot disease in Brassica 

napus. Front Plant Sci 7:1483 

Li L, Peng Z, Mao X, Wang J, Chang X, Reynolds M, Jing R (2019a) Genome-wide association 

study reveals genomic regions controlling root and shoot traits at late growth stages in wheat. Ann 

Bot 124:993-1006 

Li Q, LI C, Wang C, Sun Y, Jiang Y, Yang B (2019b) Gene cloning, expression analysis and 

identification of interacting proteins of transcription factor WRKY72 in oilseed rape (Brassica 

napus). J Agric Biotechnol 27:761-772 

Li X, Zhou Z, Ding J, Wu Y, Zhou B, Wang R, Ma J, Wang S, Zhang X, Xia Z, Chen J, Wu J 

(2016d) Combined linkage and association mapping reveals QTL and candidate genes for plant 

and ear height in maize. Front Plant Sci 7:833 

Li YX, Wu X, Jaqueth J, Zhang D, Cui D, Li C, Hu G, Dong H, Song YC, Shi YS, Wang T, Li B, 

Li Y (2015b) The identification of two head smut resistance-related QTL in maize by the joint 

approach of linkage mapping and association analysis. PLoS One 10:e0145549 



 186 

Liang Z, Gupta SK, Yeh C-T, Zhang Y, Ngu DW, Kumar R, Patil HT, Mungra KD, Yadav DV, 

Rathore A, Srivastava RK, Gupta R, Yang J, Varshney RK, Schnable PS, Schnable JC (2018) 

Phenotypic data from inbred parents can improve genomic prediction in pearl millet hybrids. G3 

(Bethesda, Md) 8:2513-2522 

Lin M, Zhang D, Liu S, Zhang G, Yu J, Fritz AK, Bai G (2016) Genome-wide association analysis 

on pre-harvest sprouting resistance and grain color in U.S. winter wheat. BMC Genomics 17:794 

Lin Y, Liu S, Liu Y, Liu Y, Chen G, Xu J, Deng M, Jiang Q, Wei Y, Lu Y, Zheng Y (2017) 

Genome-wide association study of pre-harvest sprouting resistance in Chinese wheat founder 

parents. Genet Mol Biol 40:620-629 

Litt M, Luty JA (1989) A hypervariable microsatellite revealed by in vitro amplification of a 

dinucleotide repeat within the cardiac muscle actin gene. Am J Hum Genet 44:397-401 

Liu HJ, Yan J (2019) Crop genome-wide association study: a harvest of biological relevance. Plant 

J 97:8-18 

Liu L, Qu C, Wittkop B, Yi B, Xiao Y, He Y, Snowdon RJ, Li J (2013) A high-density SNP map 

for accurate mapping of seed fibre QTL in Brassica napus L. PLoS One 8:e83052 

Liu M, Tan X, Yang Y, Liu P, Zhang X, Zhang Y, Wang L, Hu Y, Ma L, Li Z, Zhang Y, Zou C, 

Lin H, Gao S, Lee M, Lubberstedt T, Pan G, Shen Y (2020a) Analysis of the genetic architecture 

of maize kernel size traits by combined linkage and association mapping. Plant Biotechnol J 

18:207-221 

Liu N, Bai G, Lin M, Xu X, Zheng W (2017a) Genome-wide association analysis of powdery 

mildew resistance in U.S. winter wheat. Sci Rep 7:11743 

Liu P, Zhang C, Ma J-Q, Zhang L-Y, Yang B, Tang X-Y, Huang L, Zhou X-T, Lu K, Li J-N (2018) 

Genome-wide identification and expression profiling of cytokinin oxidase/dehydrogenase (CKX) 

genes reveal likely roles in pod development and stress responses in oilseed rape (Brassica napus 

L.). Genes (Basel) 9:168 

Liu P, Zhao Y, Liu G, Wang M, Hu D, Hu J, Meng J, Reif JC, Zou J (2017b) Hybrid performance 

of an immortalized F2 rapeseed population is driven by additive, dominance, and epistatic effects. 

Front Plant Sci 8:815 



 187 

Liu S, Fan C, Li J, Cai G, Yang Q, Wu J, Yi X, Zhang C, Zhou Y (2016a) A genome-wide 

association study reveals novel elite allelic variations in seed oil content of Brassica napus. Theor 

Appl Genet 129:1203-1215 

Liu S, Huang H, Yi X, Zhang Y, Yang Q, Zhang C, Fan C, Zhou Y (2020b) Dissection of genetic 

architecture for glucosinolate accumulations in leaves and seeds of Brassica napus by genome-

wide association study. Plant Biotechnol J 18:1472-1484 

Liu X, Huang M, Fan B, Buckler ES, Zhang Z (2016b) Iterative usage of fixed and random effect 

models for powerful and efficient genome-wide association studies. PLoS Genet 12:e1005767 

Liu Y, Lin Y, Gao S, Li Z, Ma J, Deng M, Chen G, Wei Y, Zheng Y (2017c) A genome-wide 

association study of 23 agronomic traits in Chinese wheat landraces. Plant J 91:861-873 

Liu Y, Salsman E, Fiedler JD, Hegstad JB, Green A, Mergoum M, Zhong S, Li X (2019) Genetic 

mapping and prediction analysis of FHB resistance in a hard red spring wheat breeding population. 

Front Plant Sci 10:1007 

Liu Z-W, Fu T-D, Tu J-X, Chen B-y (2005) Inheritance of seed colour and identification of RAPD 

and AFLP markers linked to the seed colour gene in rapeseed (Brassica napus L.). Theor Appl 

Genet 110:303-310 

LMC International (2020) The economic impact of canola on the Canadian cconomy: 2020 

Update. Canola Council of Canada 

Longin CF, Mi X, Wurschum T (2015) Genomic selection in wheat: optimum allocation of test 

resources and comparison of breeding strategies for line and hybrid breeding. Theor Appl Genet 

128:1297-1306 

Lorenz AJ, Chao S, Asoro FG, Heffner EL, Hayashi T, Iwata H, Smith KP, Sorrells ME, Jannink 

J-L (2011) Genomic selection in plant breeding: knowledge and prospects. Adv Agron 110:77 

Lorenzana RE, Bernardo R (2009) Accuracy of genotypic value predictions for marker-based 

selection in biparental plant populations. Theor Appl Genet 120:151-161 

Lozada DN, Mason RE, Sarinelli JM, Brown-Guedira G (2019) Accuracy of genomic selection 

for grain yield and agronomic traits in soft red winter wheat. BMC Genet 20:82 



 188 

Lu K, Peng L, Zhang C, Lu J, Yang B, Xiao Z, Liang Y, Xu X, Qu C, Zhang K, Liu L, Zhu Q, Fu 

M, Yuan X, Li J (2017) Genome-wide association and transcriptome analyses reveal candidate 

genes underlying yield-determining traits in Brassica napus. Front Plant Sci 8:206 

Lu K, Wei L, Li X, Wang Y, Wu J, Liu M, Zhang C, Chen Z, Xiao Z, Jian H, Cheng F, Zhang K, 

Du H, Cheng X, Qu C, Qian W, Liu L, Wang R, Zou Q, Ying J, Xu X, Mei J, Liang Y, Chai YR, 

Tang Z, Wan H, Ni Y, He Y, Lin N, Fan Y, Sun W, Li NN, Zhou G, Zheng H, Wang X, Paterson 

AH, Li J (2019) Whole-genome resequencing reveals Brassica napus origin and genetic loci 

involved in its improvement. Nat Commun 10:1154 

Lu K, Xiao Z, Jian H, Peng L, Qu C, Fu M, He B, Tie L, Liang Y, Xu X, Li J (2016) A combination 

of genome-wide association and transcriptome analysis reveals candidate genes controlling harvest 

index-related traits in Brassica napus. Sci Rep 6:36452 

Luo T, Xian M, Zhang C, Zhang C, Hu L, Xu Z (2019) Associating transcriptional regulation for 

rapid germination of rapeseed (Brassica napus L.) under low temperature stress through weighted 

gene co-expression network analysis. Sci Rep 9:55 

Luo X, Xue Z, Ma C, Hu K, Zeng Z, Dou S, Tu J, Shen J, Yi B, Fu T (2017) Joint genome-wide 

association and transcriptome sequencing reveals a complex polygenic network underlying 

hypocotyl elongation in rapeseed (Brassica napus L.). Sci Rep 7:41561 

Ma P, Xu H, Xu Y, Song L, Liang S, Sheng Y, Han G, Zhang X, An D (2018) Characterization of 

a powdery mildew resistance gene in wheat breeding line 10V-2 and its application in marker-

assisted selection. Plant Dis 102:925-931 

Mammadov J, Aggarwal R, Buyyarapu R, Kumpatla S (2012) SNP markers and their impact on 

plant breeding. Int J Plant Genomics 2012:728398 

Mangin B, Bonnafous F, Blanchet N, Boniface MC, Bret-Mestries E, Carrere S, Cottret L, Legrand 

L, Marage G, Pegot-Espagnet P, Munos S, Pouilly N, Vear F, Vincourt P, Langlade NB (2017) 

Genomic prediction of sunflower hybrids oil content. Front Plant Sci 8:1633 

Marmagne A, Brabant P, Thiellement H, Alix K (2010) Analysis of gene expression in 

resynthesized Brassica napus allotetraploids: transcriptional changes do not explain differential 

protein regulation. New Phytol 186:216-227 

Mason AS, Higgins EE, Snowdon RJ, Batley J, Stein A, Werner C, Parkin IA (2017) A user guide 

to the Brassica 60K Illumina Infinium SNP genotyping array. Theor Appl Genet 130:621-633 



 189 

Maulana F, Kim K-S, Anderson JD, Sorrells ME, Butler TJ, Liu S, Baenziger PS, Byrne PF, Ma 

X-F (2021) Genomic selection of forage agronomic traits in winter wheat. Crop Sci 61:410-421 

Mei DS, Wang HZ, Hu Q, Li YD, Xu YS, Li YC (2009) QTL analysis on plant height and 

flowering time in Brassica napus. Plant Breed 128:458-465 

Meng T, Carew R, Florkowski WJ, Klepacka AM (2017) Analyzing temperature and precipitation 

influences on yield distributions of canola and spring wheat in Saskatchewan. J Appl Meteorol 

Climatol 56:897-913 

Meuwissen TH, Hayes BJ, Goddard ME (2001) Prediction of total genetic value using genome-

wide dense marker maps. Genetics 157:1819-1829 

Meuwissen THE (2009) Accuracy of breeding values of 'unrelated' individuals predicted by dense 

SNP genotyping. Genet Sel Evol 41:35 

Michalyna W, Smith RE (1972) Soils of the Portage la Prairie area.  Soils Report 

Michel S, Loschenberger F, Ametz C, Pachler B, Sparry E, Burstmayr H (2019) Combining grain 

yield, protein content and protein quality by multi-trait genomic selection in bread wheat. Theor 

Appl Genet 132:2767-2780 

Miedaner T, Korzun V (2012) Marker-assisted selection for disease resistance in wheat and barley 

breeding. Phytopathology 102:560-566 

Mills GF, Haluschak P (1993) Soils of the Carman research station.  Canada-Manitoba Soil 

Survey. Agriculture Canada,Manitoba Department of Agriculture,Department of Soil Science, 

University of Manitoba 

Miyagawa T, Nishida N, Ohashi J, Kimura R, Fujimoto A, Kawashima M, Koike A, Sasaki T, 

Tanii H, Otowa T, Momose Y, Nakahara Y, Gotoh J, Okazaki Y, Tsuji S, Tokunaga K (2008) 

Appropriate data cleaning methods for genome-wide association study. J Hum Genet 53:886-893 

Moeinizade S, Hu G, Wang L, Schnable PS (2019) Optimizing selection and mating in genomic 

selection with a look-ahead approach: an operations research framework. G3 (Bethesda) 9:2123-

2133 



 190 

Montesinos-Lopez OA, Montesinos-Lopez A, Perez-Rodriguez P, Barron-Lopez JA, Martini 

JWR, Fajardo-Flores SB, Gaytan-Lugo LS, Santana-Mancilla PC, Crossa J (2021) A review of 

deep learning applications for genomic selection. BMC Genomics 22:19 

Montesinos-Lopez OA, Montesinos-Lopez A, Tuberosa R, Maccaferri M, Sciara G, Ammar K, 

Crossa J (2019) Multi-trait, multi-environment genomic prediction of durum wheat with genomic 

best linear unbiased predictor and deep learning methods. Front Plant Sci 10:1311 

Morinaga T (1934) Interspecific hybridization in Brassica. VI. The cytology of F1 hybrids of B. 

juncea and B. nigra. Cytologia 6:62-67 

Morrison MJ, Harker KN, Blackshaw RE, Holzapfel CJ, O’Donovan JT (2016) Canola yield 

improvement on the Canadian Prairies from 2000 to 2013. Crop Pasture Sci 67:245-252 

Morrison MJ, Stewart DW (2002) Heat stress during flowering in summer Brassica. Crop Sci 

42:797-803 

Moser G, Tier B, Crump RE, Khatkar MS, Raadsma HW (2009) A comparison of five methods to 

predict genomic breeding values of dairy bulls from genome-wide SNP markers. Genet Sel Evol 

41:56 

Muller BSF, Neves LG, de Almeida Filho JE, Resende MFR, Jr., Munoz PR, Dos Santos PET, 

Filho EP, Kirst M, Grattapaglia D (2017) Genomic prediction in contrast to a genome-wide 

association study in explaining heritable variation of complex growth traits in breeding populations 

of Eucalyptus. BMC Genomics 18:524 

Myles AJ, Feudale RN, Liu Y, Woody NA, Brown SD (2004) An introduction to decision tree 

modeling. J Chemometrics 18:275-285 

Nadeem MA, Nawaz MA, Shahid MQ, Doğan Y, Comertpay G, Yıldız M, Hatipoğlu R, Ahmad 

F, Alsaleh A, Labhane N, Özkan H, Chung G, Baloch FS (2017) DNA molecular markers in plant 

breeding: current status and recent advancements in genomic selection and genome editing. 

Biotechnol Biotechnol Equip 32:261-285 

Nakano Y, Kusunoki K, Hoekenga OA, Tanaka K, Iuchi S, Sakata Y, Kobayashi M, Yamamoto 

YY, Koyama H, Kobayashi Y (2020) Genome-wide association study and genomic prediction 

elucidate the distinct genetic architecture of aluminum and proton tolerance in Arabidopsis 

thaliana. Front Plant Sci 11:405 



 191 

Nascimento M, Nascimento ACC, Silva FFE, Barili LD, Vale NMD, Carneiro JE, Cruz CD, 

Carneiro PCS, Serao NVL (2018) Quantile regression for genome-wide association study of 

flowering time-related traits in common bean. PLoS One 13:e0190303 

Nesi N, Delourme R, Brégeon M, Falentin C, Renard M (2008) Genetic and molecular approaches 

to improve nutritional value of Brassica napus L. seed. C R Biol 331:763-771 

Neupane S, Purintun JM, Mathew FM, Varenhorst AJ, Nepal MP (2019) Molecular basis of 

soybean resistance to soybean aphids and soybean cyst nematodes. Plants (Basel) 8:374 

Newell MA, Cook D, Tinker NA, Jannink JL (2011) Population structure and linkage 

disequilibrium in oat (Avena sativa L.): implications for genome-wide association studies. Theor 

Appl Genet 122:623-632 

Newell MA, Jannink JL (2014) Genomic selection in plant breeding. Methods Mol Biol 1145:117-

130 

Norman A, Taylor J, Edwards J, Kuchel H (2018) Optimising genomic selection in wheat: effect 

of marker density, population size and population structure on prediction accuracy. G3 (Bethesda) 

8:2889-2899 

NRGene (2021) Canola/rapeseed pan-genome consortium results reveal broad genetic diversity of 

the crop. NRGene 

Nuttall WF, Moulin AP, Townley‐Smith LJ (1992) Yield response of canola to nitrogen, 

phosphorus, precipitation, and temperature. Agron J 84:765-768 

Odukoya J, Lambert R, Sakrabani R (2019) Understanding the impacts of crude oil and its induced 

abiotic stresses on agrifood production: A review. Horticulturae 5:47 

Ogbonnaya FC, Rasheed A, Okechukwu EC, Jighly A, Makdis F, Wuletaw T, Hagras A, Uguru 

MI, Agbo CU (2017) Genome-wide association study for agronomic and physiological traits in 

spring wheat evaluated in a range of heat prone environments. Theor Appl Genet 130:1819-1835 

Ogura H (1968) Studies on the new male sterility in Japanese radish, with special references on 

the utilization of this sterility towards the practical raising of hybrid seeds. Mem Fac Agric 

Kagoshima Univ 6:40-75 



 192 

Ornella L, Gonzalez-Camacho JM, Dreisigacker S, Crossa J (2017) Applications of genomic 

selection in breeding wheat for rust resistance. Methods Mol Biol 1659:173-182 

Ortiz R (1998) Critical role of plant biotechnology for the genetic improvement of food crops: 

perspectives for the next millennium. Electron J Biotechnol 1:16-17 

Pace J, Yu X, Lubberstedt T (2015) Genomic prediction of seedling root length in maize (Zea 

mays L.). Plant J 83:903-912 

Pantaliao GF, Narciso M, Guimaraes C, Castro A, Colombari JM, Breseghello F, Rodrigues L, 

Vianello RP, Borba TO, Brondani C (2016) Genome wide association study (GWAS) for grain 

yield in rice cultivated under water deficit. Genetica 144:651-664 

Paran I, Michelmore RW (1993) Development of reliable PCR-based markers linked to downy 

mildew resistance genes in lettuce. Theor Appl Genet 85:985-993 

Parmley KA, Higgins RH, Ganapathysubramanian B, Sarkar S, Singh AK (2019) Machine 

learning approach for prescriptive plant breeding. Sci Rep 9:17132 

Paterson AH, Lan TH, Amasino R, Osborn TC, Quiros C (2001) Brassica genomics: a complement 

to, and early beneficiary of, the Arabidopsis sequence. Genome Biol 2:1-4 

Patil G, Vuong TD, Kale S, Valliyodan B, Deshmukh R, Zhu C, Wu X, Bai Y, Yungbluth D, Lu 

F, Kumpatla S, Shannon JG, Varshney RK, Nguyen HT (2018) Dissecting genomic hotspots 

underlying seed protein, oil, and sucrose content in an interspecific mapping population of soybean 

using high-density linkage mapping. Plant Biotechnol J 16:1939-1953 

Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, Blondel M, Prettenhofer 

P, Weiss R, Dubourg V (2011) Scikit-learn: Machine learning in Python. J Mach Learn Res 

12:2825-2830 

Peiffer JA, Romay MC, Gore MA, Flint-Garcia SA, Zhang Z, Millard MJ, Gardner CA, McMullen 

MD, Holland JB, Bradbury PJ, Buckler ES (2014) The genetic architecture of maize height. 

Genetics 196:1337-1356 

Perez P, de los Campos G (2014) Genome-wide regression and prediction with the BGLR 

statistical package. Genetics 198:483-495 



 193 

Phing Lau WC, Latif MA, M YR, Ismail MR, Puteh A (2016) Advances to improve the eating and 

cooking qualities of rice by marker-assisted breeding. Crit Rev Biotechnol 36:87-98 

Piepho HP, Möhring J, Melchinger AE, Büchse A (2008) BLUP for phenotypic selection in plant 

breeding and variety testing. Euphytica 161:209-228 

Pingali PL, Heisey PW (2001) Cereal-crop productivity in developing countries: past trends and 

future prospects. In: Alston JM, Pardey PG, Taylor MJ (eds) Agricultural science policy: Changing 

global agendas. The Johns Hopkins University Press, pp 56-82 

Poisson E, Trouverie J, Brunel-Muguet S, Akmouche Y, Pontet C, Pinochet X, Avice JC (2019) 

Seed yield components and seed quality of oilseed rape are impacted by sulfur fertilization and its 

interactions with nitrogen fertilization. Front Plant Sci 10:458 

Polowick PL, Sawhney VK (1988) High temperature induced male and female sterility in canola 

(Brassica napus L.). Ann Bot 62:83-86 

Porebski S, Bailey LG, Baum BR (1997) Modification of a CTAB DNA extraction protocol for 

plants containing high polysaccharide and polyphenol components. Plant Mol Biol Report 15:8-

15 

Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus 

genotype data. Genetics 155:945-959 

Prohens J (2011) Plant breeding: a success story to be continued thanks to the advances in 

genomics. Front Plant Sci 2:51 

Qu C, Jia L, Fu F, Zhao H, Lu K, Wei L, Xu X, Liang Y, Li S, Wang R, Li J (2017) Genome-wide 

association mapping and Identification of candidate genes for fatty acid composition in Brassica 

napus L. using SNP markers. BMC Genomics 18:232 

Qu C-M, Li S-M, Duan X-J, Fan J-H, Jia L-D, Zhao H-Y, Lu K, Li J-N, Xu X-F, Wang R (2015) 

Identification of candidate genes for seed glucosinolate content using association mapping in 

Brassica napus L. Genes (Basel) 6:1215-1229 

Rafalski JA (2010) Association genetics in crop improvement. Curr Opin Plant Biol 13:174-180 



 194 

Rahman H, Peng G, Yu F, Falk KC, Kulkarni M, Selvaraj G (2014) Genetics and breeding for 

clubroot resistance in Canadian spring canola (Brassica napus L.). Can J Plant Pathol 36:122-134 

Rahman M, Sun Z, McVetty PB, Li G (2008) High throughput genome-specific and gene-specific 

molecular markers for erucic acid genes in Brassica napus (L.) for marker-assisted selection in 

plant breeding. Theor Appl Genet 117:895-904 

Rakow G (2004) Species Origin and Economic Importance of Brassica. In: Pua E-C, Douglas CJ 

(eds) Brassica. Springer Berlin Heidelberg, Berlin, Heidelberg, pp 3-11 

Rakow G, Raney J, Relf-Eckstein J (1999) Agronomic performance and seed quality of a new 

source of yellow seeded Brassica napus.  10th International Rapeseed Congress, Canberra, 

Australia 

Raman H, Raman R, Coombes N, Song J, Diffey S, Kilian A, Lindbeck K, Barbulescu DM, Batley 

J, Edwards D, Salisbury PA, Marcroft S (2016) Genome-wide association study identifies new loci 

for resistance to Leptosphaeria maculans in canola. Front Plant Sci 7:1513 

Raman H, Raman R, Qiu Y, Yadav AS, Sureshkumar S, Borg L, Rohan M, Wheeler D, Owen O, 

Menz I, Balasubramanian S (2019) GWAS hints at pleiotropic roles for FLOWERING LOCUS T 

in flowering time and yield-related traits in canola. BMC Genomics 20:636 

Randhawa HS, Asif M, Pozniak C, Clarke JM, Graf RJ, Fox SL, Humphreys DG, Knox RE, 

DePauw RM, Singh AK, Cuthbert RD, Hucl P, Spaner D, Gupta P (2013) Application of molecular 

markers to wheat breeding in Canada. Plant Breed 132:458-471 

Rasheed A, Hao Y, Xia X, Khan A, Xu Y, Varshney RK, He Z (2017) Crop breeding chips and 

genotyping platforms: progress, challenges, and perspectives. Mol Plant 10:1047-1064 

Raymer PL (2002) Canola: an emerging oilseed crop. In: Janick J, Whipkey A (eds) Trends in 

New Crops and New Uses. ASHS Press, Alexandria, Virginia, pp 122-126 

Resende MF, Jr., Munoz P, Resende MD, Garrick DJ, Fernando RL, Davis JM, Jokela EJ, Martin 

TA, Peter GF, Kirst M (2012) Accuracy of genomic selection methods in a standard data set of 

loblolly pine (Pinus taeda L.). Genetics 190:1503-1510 

Revilla P, Rodriguez VM, Ordas A, Rincent R, Charcosset A, Giauffret C, Melchinger AE, Schon 

CC, Bauer E, Altmann T, Brunel D, Moreno-Gonzalez J, Campo L, Ouzunova M, Alvarez A, Ruiz 



 195 

de Galarreta JI, Laborde J, Malvar RA (2016) Association mapping for cold tolerance in two large 

maize inbred panels. BMC Plant Biol 16:127 

Ribaut J-M, Hoisington D (1998) Marker-assisted selection: new tools and strategies. Trends Plant 

Sci 3:236-239 

Ribaut JM, Ragot M (2007) Marker-assisted selection to improve drought adaptation in maize: the 

backcross approach, perspectives, limitations, and alternatives. J Exp Bot 58:351-360 

Riedelsheimer C, Czedik-Eysenberg A, Grieder C, Lisec J, Technow F, Sulpice R, Altmann T, 

Stitt M, Willmitzer L, Melchinger AE (2012) Genomic and metabolic prediction of complex 

heterotic traits in hybrid maize. Nat Genet 44:217-220 

Robertsen C, Hjortshøj R, Janss L (2019) Genomic selection in cereal breeding. Agronomy 9:95 

Robinson GK (1991) That BLUP is a good thing: the estimation of random effects. Statistical 

science 6:15-32 

Roehrig CS (1988) Conditions for identification in nonparametric and parametric models. 

Econometrica 56:433-447 

Roorkiwal M, Jarquin D, Singh MK, Gaur PM, Bharadwaj C, Rathore A, Howard R, Srinivasan 

S, Jain A, Garg V, Kale S, Chitikineni A, Tripathi S, Jones E, Robbins KR, Crossa J, Varshney 

RK (2018) Genomic-enabled prediction models using multi-environment trials to estimate the 

effect of genotype x environment interaction on prediction accuracy in chickpea. Sci Rep 8:11701 

RStudio Team (2020) RStudio: Integrated Development for R. 1.3.1073 edn. RStudio, PBC, 

Boston, MA 

Rutkoski J, Poland J, Mondal S, Autrique E, Perez LG, Crossa J, Reynolds M, Singh R (2016) 

Canopy temperature and vegetation indices from high-throughput phenotyping improve accuracy 

of pedigree and genomic selection for grain yield in wheat. G3 (Bethesda) 6:2799-2808 

Rutkoski JE (2019) A practical guide to genetic gain. In: Sparks DL (ed) Adv Agron. Academic 

Press, pp 217-249 

Ruttan VW (1999) The transition to agricultural sustainability. Proceedings of the National 

Academy of Sciences of the USA 96:5960-5967 



 196 

Sarinelli JM, Murphy JP, Tyagi P, Holland JB, Johnson JW, Mergoum M, Mason RE, Babar A, 

Harrison S, Sutton R, Griffey CA, Brown-Guedira G (2019) Training population selection and use 

of fixed effects to optimize genomic predictions in a historical USA winter wheat panel. Theor 

Appl Genet 132:1247-1261 

Savitch LV, Allard G, Seki M, Robert LS, Tinker NA, Huner NP, Shinozaki K, Singh J (2005) 

The effect of overexpression of two Brassica CBF/DREB1-like transcription factors on 

photosynthetic capacity and freezing tolerance in Brassica napus. Plant Cell Physiol 46:1525-1539 

Scheben A, Batley J, Edwards D (2017) Genotyping-by-sequencing approaches to characterize 

crop genomes: choosing the right tool for the right application. Plant Biotechnol J 15:149-161 

Scherer A, Christensen GB (2016) Concepts and relevance of genome-wide association studies. 

Sci Prog 99:59-67 

Schiessl S, Iniguez-Luy F, Qian W, Snowdon RJ (2015) Diverse regulatory factors associate with 

flowering time and yield responses in winter-type Brassica napus. BMC Genomics 16:737 

Schulthess AW, Zhao Y, Longin CFH, Reif JC (2018) Advantages and limitations of multiple-

trait genomic prediction for Fusarium head blight severity in hybrid wheat (Triticum aestivum L.). 

Theor Appl Genet 131:685-701 

Schulz-Streeck T, Ogutu JO, Karaman Z, Knaak C, Piepho HP (2012) Genomic selection using 

multiple populations. Crop Sci 52:2453-2461 

Sebastiani P, Timofeev N, Dworkis DA, Perls TT, Steinberg MH (2009) Genome-wide association 

studies and the genetic dissection of complex traits. Am J Hematol 84:504-515 

Segura V, Vilhjalmsson BJ, Platt A, Korte A, Seren U, Long Q, Nordborg M (2012) An efficient 

multi-locus mixed-model approach for genome-wide association studies in structured populations. 

Nat Genet 44:825-830 

Shen D, Suhrkamp I, Wang Y, Liu S, Menkhaus J, Verreet JA, Fan L, Cai D (2014) Identification 

and characterization of microRNAs in oilseed rape (Brassica napus) responsive to infection with 

the pathogenic fungus Verticillium longisporum using Brassica AA (Brassica rapa) and CC 

(Brassica oleracea) as reference genomes. New Phytol 204:577-594 



 197 

Sheng Y, Yan X, Huang Y, Han Y, Zhang C, Ren Y, Fan T, Xiao F, Liu Y, Cao S (2019) The 

WRKY transcription factor, WRKY13, activates PDR8 expression to positively regulate cadmium 

tolerance in Arabidopsis. Plant Cell Environ 42:891-903 

Shu YJ, Yu DS, Wang D, Bai X, Zhu YM, Guo CH (2013) Genomic selection of seed weight 

based on low-density SCAR markers in soybean. Genet Mol Res 12:2178-2188 

Sidlauskas G, Bernotas S (2003) Some factors affecting seed yield of spring oilseed rape (Brassica 

napus L.). Agron Res 1:229-243 

Singh BD, Singh AK (2015) High-throughput SNP genotyping.  Marker-Assisted Plant Breeding: 

Principles and Practices. Springer, India, New Delhi, pp 367-400 

Sleper DA, Poehlman JM (2006) Biotechnology and Plant Breeding.  Breeding Field Crops, 5 edn. 

Blackwell Publishing, Ames, Iowa, pp 115-134 

Snowdon RJ (2007) Cytogenetics and genome analysis in Brassica crops. Chromosome Res 15:85-

95 

Snowdon RJ, Friedrich T, Friedt W, Köhler W (2002) Identifying the chromosomes of the A- and 

C-genome diploid Brassica species B. rapa (syn. campestris) and B. oleracea in their amphidiploid 

B. napus. Theor Appl Genet 104:533-538 

Snowdon RJ, Friedt W (2004) Molecular markers in Brassica oilseed breeding: current status and 

future possibilities. Plant Breed 123:1-8 

Snowdon RJ, Iniguez Luy FL (2012) Potential to improve oilseed rape and canola breeding in the 

genomics era. Plant Breed 131:351-360 
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8.2 Appendices  

8.2.1 List of abbreviations  

AFLP Amplified fragment length polymorphism  

ANOVA Analysis of variance 

BayesA Bayesian A regression method 

BayesB Bayesian B regression method 

BayesC Bayesian C regression method 

BC Backcross 

BGLR Bayesian Generalized Linear Regression 

BLUP  Best linear unbiased prediction  

bp Base pairs  

BRR Bayesian Ridge Regression method 

C.V. Coefficient of variation 

CMLM Compression mixed linear model  

CMS Cytoplasmic male sterility  

CTAB  Cetyl methylammonium bromide  

CV Cross validation 

DarT Diversity arrays technology 

DE Double exponential 

DH Doubled haploid 

EB Empirical Bayesian 

EG-BLUP Extended genomic best linear unbiased prediction  

EMMA Efficient mixed-model association  

FarmCPU Fixed and random model circulating probability unification 

FAST-EB-LMM Fast-empirical Bayesian linear model  

Gapit Genome Association and Prediction Integrated Tool 

GBLUP Genomic best linear unbiased prediction  

GBS Genotyping-by-sequencing 

GDD Growing degree days 

GEBV Genomic estimated breeding value 
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GO Gene ontology 

GRM Genomic relationship matrix 

GS Genomic selection 

GSL Glucosinolate 

GWAS Genome-wide association study 

HT Height 

INRA Institut National de la Recherche Agronomique  

iPat Intelligent prediction and association tool 

kb Kilo base pairs 

LD Linkage disequilibrium  

MAF Minor allele frequency 

MAS Marker-assisted selection 

Mb Mega base pairs 

ML Machine learning 

MLM Mixed linear model 

MLM+K Mixed linear models considering kinship 

MLM+K+PCA Mixed linear models considering kinship and subpopulation structure 

via principal component analysis 

MLM+K+Q Mixed linear models considering kinship and subpopulation structure 

via Bayesian clustering 

MLMM Multi-locus mixed model  

MS Marker set 

Mt Million tonnes 

MTA Marker-trait association 

PCA Principal component analysis  

QTL Quantitative trait loci  

Quantile-Quantile Q-Q 

RAPD Random amplified polymorphic DNA 

RBF Radial basis function 

RCBD Randomized complete block design 

RF Random forest  
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RFLP Restriction fragment length polymorphism  

RIL Recombinant inbred line 

RMSE Root mean square error 

rrBLUP Ridge regression best linear unbiased prediction  

SCAR Sequence characterized amplified region  

SNP Single nucleotide polymorphism  

SOC Seed oil content 

SPC Seed protein content 

SSR Simple sequence repeat, or microsatellites 

SVR Support vector regression 

TASSEL Trait analysis by association, evolution and linkage 

TP Training population/set 

VP Validation population/set 

WGR Whole-genome regression 

XGB/XGBoost Extreme gradient boosting  

YLD Yield 
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8.2.2 Supplemental tables and figures from Chapter 3 

Table S3.1 Summary of locations and number of 362 Brassica napus L. hybrid genotypes tested 

across Alberta, Saskatchewan and Manitoba during 2014-2018. 

Site-year # Year Site Number of genotypes evaluated 

1 2014 Bison (Winnipeg), MB 34 

2 2014 Carman, MB 37 

3 2015 Arboretum (Winnipeg), MB 31 

4 2015 Bison (Winnipeg), MB 182 

5 2015 Carman, MB 182 

6 2015 Portage la Prairie, MB 182 

7 2016 Arboretum (Winnipeg), MB 35 

8 2016 Bison (Winnipeg), MB 198 

9 2016 Carman, MB 236 

10 2016 Holland, MB 3 

11 2016 Killam, AB 3 

12 2016 North Battleford, SK 3 

13 2016 Pense, SK 3 

14 2016 Portage la Prairie, MB 233 

15 2016 Rosebank, MB 3 

16 2016 Rosetown, SK 3 

17 2016 Saint Albert, AB 3 

18 2016 Thornhill, MB 3 

19 2016 Wawanesa, MB 3 

20 2016 Yellow Grass, SK 3 

21 2017 Bison (Winnipeg), MB 35 

22 2017 Carman, MB 45 

23 2017 Holland, MB 10 

24 2017 Killam, AB 10 

25 2017 Lake Lenore, SK 10 

26 2017 Marquis, SK 10 

27 2017 Portage la Prairie, MB 35 

28 2017 Rosebank, MB 10 

29 2017 Rosetown, SK 10 

30 2017 Saint Albert, AB 10 

31 2017 Thornhill, MB 10 

32 2017 Vanscoy, SK 10 

33 2017 Watrous, SK 10 

34 2018 Carman, MB 15 

35 2018 Carstairs, AB 9 
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36 2018 Killam, AB 1 

37 2018 Lake Lenore, SK 9 

38 2018 Marquis, SK 9 

39 2018 Portage la Prairie, MB 15 

40 2018 Rosebank, MB 9 

41 2018 Saint Albert, AB 10 

42 2018 Vanscoy, SK 10 

43 2018 Watrous, SK 10 
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Table S3.2 List of 436 Brassica napus accessions used in genome-wideassociation analysis. There 

were 61 restorer lines (R), 30 maintainer lines (B) and 345 hybrids (H), totalling 436 accessions. 

Genotype # Name Line Paternal Parent Maternal Parent 

1 11DH91 R RedRiver1997 NR06-24122 

2 11DH92 R RedRiver1997 NR06-24122 

3 11DH97 R RedRiver1997 NR06-24122 

4 11DH108 R RedRiver1997 NR06-24122 

5 11DH109 R RedRiver1997 NR06-24122 

6 11DH114 R RedRiver1997 NR06-24122 

7 11DH122 R RedRiver1997 NR06-24122 

8 11DH137 R RedRiver1997 NR06-24122 

9 11DH144 R RedRiver1997 NR06-24122 

10 11DH148 R RedRiver1997 NR06-24122 

11 11DH149 R RedRiver1997 NR06-24122 

12 11DH162 R RedRiver1997 NR06-24122 

13 12DH384 R Castor NR07-29768 

14 12DH430 R RedRiver1997 4434 

15 12DH478 R RedRiver1997 71-45 

16 12DH915 R RedRiver1861 NR07-29768 

17 12DH949 R RedRiver1861 NR07-29768 

18 14DH1 R RedRiver1861 NE06-20351 

19 14DH3 R RedRiver1861 NE06-20351 

20 14DH4 R RedRiver1861 NE06-20351 

21 14DH5 R RedRiver1861 NE06-20351 

22 14DH7 R RedRiver1861 NE06-20351 

23 14DH9 R LLHR1074 NE06-20351 

24 14DH31 R LLHR1074 NE06-20351 

25 14DH33 R LLHR1074 NE06-20351 

26 14DH35 R LLHR1074 NE06-20351 

27 14DH36 R LLHR1074 NE06-20351 

28 14DH52 R LLHR1112 NE06-20351 

29 14DH53 R LLHR1112 NE06-20351 

30 14DH54 R LLHR1112 NE06-20351 

31 14DH66 R RedRiver1861 NE06-20351 

32 14DH89 R LLHR1074 NE06-21498 

33 14DH90 R LLHR1074 NE06-21498 

34 14DH94 R LLHR1074 NE06-21498 

35 14DH101 R LLHR1079 NE06-21498 

36 14QL370 R Castor NR07-29768 

37 14QL375 R Castor NR07-29768 
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38 14QL397 R Castor NR07-29768 

39 14QL434 R Castor NR07-29768 

40 14QL531 R Industry FU27_4Mill03__NE06-

20351 

41 14QL544 R Industry FU27_4Mill03__NE06-

20351 

42 14QL545 R Industry FU27_4Mill03__NE06-

20351 

43 14QL645 R Savery FU27_4Mill03__NE06-

20351 

44 14QL647 R Savery FU27_4Mill03__NE06-

20351 

45 14R8181 R RedRiver1861 NR06-24122 

46 14R8351 R RedRiver1861 NR07-29768 

47 14R8752-1-1 R RedRiver1861 4414RR 

48 14R8762-1-1 R RedRiver1861 4414RR 

49 ZSDH8135 R ZSDH2602 FU27_5M03__NE06-

20351 

50 ZSDH8136 R ZSDH2602 FU27_5M03__NE06-

20351 

51 ZSDH8153 R ZSDH2602 FU27_5M03__NE06-

20351 

52 ZSDH8173 R ZSDH2602 FU27_5M03__NE06-

20351 

53 ZSDH8175 R ZSDH2631 FU27_5M03__NE06-

20380 

54 ZSDH8193 R ZSDH2634 FU27_5M03__NE06-

20383 

55 ZSDH8196 R ZSDH2602 FU27_5M03__NE06-

20351 

56 ZSDH8205 R ZSDH2602 FU27_5M03__NE06-

20351 

57 ZSDH8230 R ZSDH2650 FU27_5M03__NE06-

20399 

58 ZSDH8238 R ZSDH2602 FU27_5M03__NE06-

20351 

59 ZSDH8488 R ZSDH2602 FU27_5M03__NE06-

20351 

60 ZSDH8511 R ZSDH2673 FU27_5M03__NE06-

20422 

61 Industry B Industry Industry 

62 Savery B Savery Savery 

63 Mill03 B Mercury Cyclone 

64 RedRiver1826 B UM1-73 Castor 

65 RedRiver1852 B UM1-73 Castor 
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66 RedRiver1861 B SPBucky Castor_UM1-73 

67 RedRiver1997 B SPBucky Mill03_LG3333207-143 

68 RRHR204 B 35-25 Mill03 

69 RRHR404 B Kelsey Mill03 

70 RRHR503 B UM1-73 Castor 

71 RRHR5815 B UM1-73 Castor 

72 RRHR9707 B 33-95 RedRiver1826 

73 08C702 B SPBucky Castor_UM1-73 

74 08C712 B 33-95 Mill03_LG3333 

75 08C847 B PR6336 RedRiver1826 

76 ZSDH5225 B Savery Savery 

77 ZSDH5825 B 04R2026_Mill03 ZSDH582514-

24_SHEAR69 

78 ZSDH6550 B 04R2026_Mill03 ZSDH582514-

24_SHEAR69 

79 13728 B RedRiver1826 Canterra1768S 

80 13729 B RedRiver1826 Canterra1768S 

81 13738 B RedRiver1997 30412-B6RR 

82 13742 B RedRiver1997 30412-B6RR 

83 13755 B ZSDH2602 RedRiver1826 

84 13774 B ZSDH2602 RedRiver1852 

85 13776 B ZSDH2602 RedRiver1852 

86 13778 B ZSDH2602 RedRiver1852 

87 13785 B ZSDH2602 RedRiver1852 

88 13786 B ZSDH2602 RedRiver1852 

89 13810 B 30216-C7RR RedRiver1997 

90 13831 B 30220-D8RR RedRiver1997 

91 13851 B 30408-C7RR RedRiver1997 

92 12OH1 H 08C702 Industry 

93 12OH2 H 08C702 Savery 

94 12OH7 H RedRiver1852 Industry 

95 12OH14 H RRHR503 Mill03 

96 13OH55 H 11DH92 Savery 

97 13OH56 H 11DH97 Savery 

98 13OH57 H 11DH108 Savery 

99 13OH58 H 11DH109 Savery 

100 13OH59 H 11DH114 Savery 

101 13OH60 H 11DH122 Savery 

102 13OH61 H 11DH137 Savery 

103 13OH62 H 11DH144 Savery 
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104 13OH63 H 11DH148 Savery 

105 13OH64 H 11DH149 Savery 

106 13OH68 H 12DH915 Industry 

107 13OH69 H 12DH915 Savery 

108 13OH71 H 12DH949 Industry 

109 13OH72 H 12DH949 Savery 

110 13OH75 H 11DH137 RedRiver1826 

111 13OH76 H 11DH137 RedRiver1861 

112 13OH77 H 11DH137 RedRiver1861 

113 13OH78 H 11DH137 RRHR204 

114 13OH79 H 11DH137 RRHR404 

115 13OH80 H 11DH137 RRHR5815 

116 13OH81 H 11DH137 08C702 

117 13OH82 H 11DH137 08C712 

118 13OH83 H 11DH137 08C847 

119 13OH84 H 11DH137 RRHR9707 

120 13OH85 H 12DH915 RedRiver1997 

121 13OH86 H 12DH915 RedRiver1997 

122 13OH87 H 12DH915 RRHR404 

123 13OH88 H 12DH915 08C712 

124 13OH89 H 12DH949 RedRiver1997 

125 13OH90 H 12DH949 RedRiver1997 

126 13OH91 H 12DH949 RRHR404 

127 13OH92 H 12DH949 08C712 

128 13OH93 H RRHR503 Industry 

129 13OH100 H RedRiver1826 Savery 

130 14OH101 H 14DH101 RedRiver1826 

131 14OH102 H 14DH101 RedRiver1861 

132 14OH103 H 14DH101 RRHR503 

133 14OH104 H 14DH101 RRHR404 

134 14OH105 H 14DH101 RedRiver1826 

135 14OH106 H 14DH101 RedRiver1826 

136 14OH107 H 14DH101 RedRiver1826 

137 14OH108 H 14DH101 RedRiver1852 

138 14OH109 H 14DH101 RedRiver1852 

139 14OH112 H 14DH101 RedRiver1861 

140 14OH113 H 14DH101 RRHR204 

141 14OH115 H 14DH101 08C702 

142 14OH116 H 14DH101 08C712 

143 14OH117 H 14DH101 08C847 
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144 14OH118 H 14DH101 RRHR9707 

145 14OH119 H 14DH3 RedRiver1826 

146 14OH120 H 14DH3 RRHR503 

147 14OH121 H 14DH3 RRHR404 

148 14OH124 H 14DH5 RRHR404 

149 14OH125 H 14DH31 RedRiver1826 

150 14OH126 H 14DH31 RedRiver1861 

151 14OH127 H 14DH31 RRHR503 

152 14OH128 H 14DH31 RRHR404 

153 14OH130 H 14DH52 RedRiver1861 

154 14OH131 H 14DH52 RRHR503 

155 14OH132 H 14DH52 RRHR404 

156 14OH133 H 14DH53 RedRiver1826 

157 14OH135 H 14DH53 RRHR503 

158 14OH136 H 14DH53 RRHR404 

159 14OH137 H 14DH54 RedRiver1826 

160 14OH139 H 14DH54 RRHR503 

161 14OH140 H 14DH54 RRHR404 

162 14OH141 H 14DH90 RedRiver1826 

163 14OH142 H 14DH90 RedRiver1861 

164 14OH143 H 14DH90 RRHR503 

165 14OH144 H 14DH90 RRHR404 

166 14OH145 H 14QL370 RedRiver1826 

167 14OH146 H 14QL370 RedRiver1861 

168 14OH147 H 14QL370 RRHR503 

169 14OH148 H 14QL370 RRHR404 

170 14OH149 H 14QL375 RedRiver1826 

171 14OH150 H 14QL375 RedRiver1861 

172 14OH151 H 14QL375 RRHR503 

173 14OH152 H 14QL375 RRHR404 

174 14OH153 H 14QL397 RedRiver1826 

175 14OH154 H 14QL397 RedRiver1861 

176 14OH155 H 14QL397 RRHR503 

177 14OH156 H 14QL397 RRHR404 

178 14OH157 H 14QL434 RedRiver1826 

179 14OH158 H 14QL434 RedRiver1861 

180 14OH159 H 14QL434 RRHR503 

181 14OH160 H 14QL434 RRHR404 

182 14OH161 H 14QL531 RedRiver1826 

183 14OH162 H 14QL531 RedRiver1861 
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184 14OH163 H 14QL531 RRHR503 

185 14OH164 H 14QL531 RRHR404 

186 14OH165 H 14QL545 RedRiver1826 

187 14OH166 H 14QL545 RedRiver1861 

188 14OH168 H 14QL545 RRHR404 

189 14OH169 H 14QL645 RedRiver1826 

190 14OH170 H 14QL645 RedRiver1861 

191 14OH171 H 14QL645 RRHR503 

192 14OH172 H 14QL645 RRHR404 

193 14OH173 H 14QL647 RedRiver1826 

194 14OH174 H 14QL647 RedRiver1861 

195 14OH175 H 14QL647 RRHR503 

196 14OH176 H 14QL647 RRHR404 

197 14OH177 H 12DH378 RedRiver1826 

198 14OH178 H 12DH378 RedRiver1861 

199 14OH179 H 12DH378 RRHR503 

200 14OH180 H 12DH378 RRHR404 

201 14OH181 H 14DH4 RedRiver1826 

202 14OH182 H 14DH4 RRHR503 

203 14OH183 H 14DH4 RRHR404 

204 14OH184 H 14DH4 RedRiver1826 

205 14OH185 H 14DH4 RedRiver1826 

206 14OH186 H 14DH4 RedRiver1826 

207 14OH187 H 14DH4 RedRiver1852 

208 14OH188 H 14DH4 RedRiver1852 

209 14OH189 H 14DH4 RedRiver1997 

210 14OH190 H 14DH4 RedRiver1997 

211 14OH191 H 14DH4 RRHR204 

212 14OH192 H 14DH4 RRHR5815 

213 14OH193 H 14DH4 08C702 

214 14OH194 H 14DH4 08C712 

215 14OH195 H 14DH4 08C847 

216 14OH196 H 14DH4 RRHR9707 

217 14OH197 H 14DH1 RedRiver1826 

218 14OH198 H 14DH1 RRHR503 

219 14OH199 H 14DH1 RRHR404 

220 14OH200 H 14DH7 RedRiver1826 

221 14OH201 H 14DH7 RRHR503 

222 14OH202 H 14DH7 RRHR404 

223 14OH203 H 14DH9 RedRiver1826 
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224 14OH204 H 14DH9 RRHR503 

225 14OH205 H 14DH9 RRHR404 

226 14OH206 H 14DH66 RedRiver1826 

227 14OH207 H 14DH66 RRHR503 

228 14OH208 H 14DH66 RRHR404 

229 14OH209 H 12DH384 RedRiver1826 

230 14OH210 H 12DH384 RedRiver1861 

231 14OH211 H 12DH384 RRHR503 

232 14OH212 H 12DH384 RRHR404 

233 14OH213 H 12DH430 RedRiver1826 

234 14OH214 H 12DH430 RedRiver1861 

235 14OH215 H 12DH430 RRHR503 

236 14OH216 H 12DH430 RRHR404 

237 14OH217 H 12DH478 RedRiver1826 

238 14OH218 H 12DH478 RedRiver1861 

239 14OH219 H 12DH478 RRHR503 

240 14OH220 H 12DH478 RRHR404 

241 14OH221 H 12DH915 RedRiver1826 

242 14OH222 H 12DH915 RRHR503 

243 14OH223 H 12DH949 RedRiver1826 

244 14OH224 H 12DH949 RRHR503 

245 14OH225 H 14DH4 Mill03 

246 14OH226 H 14DH4 Savery_ZSDH5225 

247 14OH227 H 14DH4 Savery_ZSDH5825 

248 14OH228 H 14DH4 Savery_ZSDH6550 

249 14OH229 H 14DH1 Mill03 

250 14OH230 H 14DH1 Savery_ZSDH5225 

251 14OH231 H 14DH1 Savery_ZSDH5825 

252 14OH232 H 14DH1 Savery_ZSDH6550 

253 14OH233 H 14DH7 Mill03 

254 14OH234 H 14DH7 Savery_ZSDH5225 

255 14OH235 H 14DH7 Savery_ZSDH5825 

256 14OH236 H 14DH7 Savery_ZSDH6550 

257 14OH237 H 14DH9 Mill03 

258 14OH238 H 14DH9 Savery_ZSDH5225 

259 14OH239 H 14DH9 Savery_ZSDH5825 

260 14OH243 H 14DH66 Savery_ZSDH5225 

261 14OH246 H 14DH66 Savery_ZSDH5825 

262 14OH247 H 12DH384 Savery_ZSDH5225 

263 14OH250 H 12DH430 Savery_ZSDH5225 
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264 14OH167 H 14QL545 RRHR503 

265 14OH254 H 12DH478 Savery_ZSDH5225 

266 14OH255 H 12DH478 Savery_ZSDH5825 

267 14OH257 H 12DH915 Mill03 

268 14OH258 H 12DH915 Savery_ZSDH5225 

269 14OH259 H 12DH915 Savery_ZSDH5825 

270 14OH260 H 12DH915 Savery_ZSDH6550 

271 14OH261 H 12DH949 Mill03 

272 14OH262 H 12DH949 Savery_ZSDH5225 

273 14OH263 H 12DH949 Savery_ZSDH5825 

274 15OH265 H 14DH3 RRHR5815 

275 15OH266 H 14DH3 08C712 

276 15OH267 H 14DH3 08C847 

277 15OH268 H 14DH3 RRHR9707 

278 15OH269 H 14DH5 RRHR5815 

279 15OH271 H 14DH5 08C847 

280 15OH272 H 14DH5 08C847 

281 15OH273 H 14DH31 RedRiver1861 

282 15OH274 H 14DH31 RRHR5815 

283 15OH275 H 14DH31 08C702 

284 15OH276 H 14DH31 08C712 

285 15OH277 H 14DH31 08C847 

286 15OH278 H 14DH31 RRHR9707 

287 15OH279 H 14DH52 RedRiver1861 

288 15OH280 H 14DH52 RRHR5815 

289 15OH281 H 14DH52 08C702 

290 15OH282 H 14DH52 08C712 

291 15OH283 H 14DH52 08C847 

292 15OH284 H 14DH52 RRHR9707 

293 15OH285 H 14DH53 RedRiver1861 

294 15OH286 H 14DH53 RRHR5815 

295 15OH287 H 14DH53 08C702 

296 15OH288 H 14DH53 08C712 

297 15OH290 H 14DH53 RRHR9707 

298 15OH291 H 14DH54 RedRiver1861 

299 15OH292 H 14DH54 RRHR5815 

300 15OH293 H 14DH54 08C702 

301 15OH294 H 14DH54 08C712 

302 15OH296 H 14DH54 RRHR9707 

303 15OH297 H 14QL545 RedRiver1861 
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304 15OH298 H 14QL545 RRHR5815 

305 15OH299 H 14QL545 08C702 

306 15OH300 H 14QL545 08C712 

307 15OH301 H 14QL545 08C847 

308 15OH302 H 14QL545 RRHR9707 

309 15OH303 H 11DH137 Mill03 

310 15OH305 H 11DH137 Savery_ZSDH5825 

311 15OH306 H 11DH137 Savery_ZSDH6550 

312 15OH307 H 12DH478 RedRiver1861 

313 15OH308 H 12DH478 RRHR5815 

314 15OH309 H 12DH478 08C702 

315 15OH310 H 12DH478 08C712 

316 15OH311 H 12DH478 08C847 

317 15OH312 H 12DH478 RRHR9707 

318 15OH314 H 12DH915 RRHR9707 

319 15OH316 H 12DH949 RRHR9707 

320 15OH317 H 14DH1 RRHR5815 

321 15OH318 H 14DH1 08C712 

322 15OH319 H 14DH1 08C847 

323 15OH320 H 14DH1 RRHR9707 

324 15OH321 H 14DH7 RRHR5815 

325 15OH322 H 14DH7 08C712 

326 15OH323 H 14DH7 08C847 

327 15OH324 H 14DH7 RRHR9707 

328 15OH325 H 14DH9 RRHR5815 

329 15OH326 H 14DH9 08C712 

330 15OH327 H 14DH9 08C847 

331 15OH328 H 14DH9 RRHR9707 

332 15OH329 H 14DH66 RRHR5815 

333 15OH330 H 14DH66 08C712 

334 15OH331 H 14DH66 08C847 

335 15OH332 H 14DH66 RRHR9707 

336 15OH333 H 14QL544 RedRiver1861 

337 15OH334 H 14QL544 RedRiver1861 

338 15OH335 H 14QL544 RRHR503 

339 15OH336 H 14QL544 RRHR5815 

340 15OH337 H 14QL544 08C702 

341 15OH338 H 14QL544 08C712 

342 15OH339 H 14QL544 08C847 

343 15OH340 H 14QL544 RRHR9707 
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344 15OH342 H 14QL547 RedRiver1861 

345 15OH343 H 14QL547 RRHR503 

346 15OH344 H 14QL547 RRHR5815 

347 15OH345 H 14QL547 08C702 

348 15OH346 H 14QL547 08C712 

349 15OH347 H 14QL547 08C847 

350 15OH348 H 14QL547 RRHR9707 

351 15OH349 H 14DH33 RedRiver1861 

352 15OH350 H 14DH33 RedRiver1861 

353 15OH351 H 14DH33 RRHR503 

354 15OH352 H 14DH33 RRHR5815 

355 15OH353 H 14DH33 08C702 

356 15OH354 H 14DH33 08C712 

357 15OH355 H 14DH33 08C847 

358 15OH356 H 14DH33 RRHR9707 

359 15OH357 H 14DH35 RedRiver1861 

360 15OH358 H 14DH35 RedRiver1861 

361 15OH359 H 14DH35 RRHR503 

362 15OH360 H 14DH35 RRHR5815 

363 15OH361 H 14DH35 08C702 

364 15OH362 H 14DH35 08C712 

365 15OH363 H 14DH35 08C847 

366 15OH364 H 14DH35 RRHR9707 

367 15OH365 H 14DH36 RedRiver1861 

368 15OH366 H 14DH36 RedRiver1861 

369 15OH367 H 14DH36 RRHR503 

370 15OH368 H 14DH36 RRHR5815 

371 15OH369 H 14DH36 08C702 

372 15OH370 H 14DH36 08C712 

373 15OH371 H 14DH36 08C847 

374 15OH372 H 14DH36 RRHR9707 

375 15OH373 H 14DH89 RedRiver1861 

376 15OH374 H 14DH89 RedRiver1861 

377 15OH375 H 14DH89 RRHR503 

378 15OH376 H 14DH89 RRHR5815 

379 15OH377 H 14DH89 08C702 

380 15OH378 H 14DH89 08C712 

381 15OH379 H 14DH89 08C847 

382 15OH380 H 14DH89 RRHR9707 

383 15OH381 H 14DH94 RedRiver1861 
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384 15OH382 H 14DH94 RedRiver1861 

385 15OH383 H 14DH94 RRHR503 

386 15OH384 H 14DH94 RRHR5815 

387 15OH385 H 14DH94 08C702 

388 15OH386 H 14DH94 08C712 

389 15OH387 H 14DH94 08C847 

390 15OH388 H 14DH94 RRHR9707 

391 15OH389 H 14R8181 Mill03 

392 15OH391 H 14R8181 Savery 

393 15OH393 H 14R8181 Savery_ZSDH5825 

394 15OH394 H 14R8181 Savery_ZSDH6550 

395 15OH395 H 14R8181 RRHR503 

396 15OH396 H 14R8181 08C712 

397 15OH397 H 14R8181 08C847 

398 15OH399 H 14R8351 Mill03 

399 15OH401 H 14R8351 Savery 

400 15OH403 H 14R8351 Savery_ZSDH5825 

401 15OH404 H 14R8351 Savery_ZSDH6550 

402 15OH405 H 14R8351 RRHR503 

403 15OH406 H 14R8351 08C712 

404 15OH407 H 14R8351 08C847 

405 15OH408 H 14R8351 RRHR9707 

406 15OH409 H 14R8712 Mill03 

407 15OH410 H 14R8712 Industry 

408 15OH411 H 14R8712 Savery 

409 15OH413 H 14R8712 Savery_ZSDH5825 

410 15OH414 H 14R8712 Savery_ZSDH6550 

411 15OH415 H 14R8712 RRHR503 

412 15OH416 H 14R8712 08C712 

413 15OH417 H 14R8712 08C847 

414 15OH418 H 14R8712 RRHR9707 

415 15OH419 H 14R8793 Mill03 

416 15OH421 H 14R8793 Savery 

417 15OH423 H 14R8793 Savery_ZSDH5825 

418 15OH424 H 14R8793 Savery_ZSDH6550 

419 15OH425 H 14R8793 RRHR503 

420 15OH426 H 14R8793 08C712 

421 15OH427 H 14R8793 08C847 

422 15OH428 H 14R8793 RRHR9707 

423 15OH429 H 14R8762-1-1 Mill03 
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424 15OH431 H 14R8762-1-1 Savery 

425 15OH433 H 14R8762-1-1 Savery_ZSDH5825 

426 15OH434 H 14R8762-1-1 Savery_ZSDH6550 

427 15OH435 H 14R8762-1-1 RRHR503 

428 15OH436 H 14R8762-1-1 08C712 

429 15OH437 H 14R8762-1-1 08C847 

430 15OH438 H 14R8762-1-1 RRHR9707 

431 15OH439 H 14R8752-1-1 Mill03 

432 15OH441 H 14R8752-1-1 Savery 

433 15OH443 H 14R8752-1-1 Savery_ZSDH5825 

434 15OH444 H 14R8752-1-1 Savery_ZSDH6550 

435 15OH446 H 14R8752-1-1 08C712 

436 15OH448 H 14R8752-1-1 RRHR9707 
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Table S3.3 A summary of raw phenotype data of the Brassica napus L. parental genotypes. Data 

were collected from five site-years across southern Manitoba: Glenlea 2016, Carman 2017, 

Portage la Prairie 2017, Glenlea 2018 and Portage la Prairie 2018. 

Site-year Trait Min Max SD Mean C.V.1 (%) 

Portage 

2018 

YLD2 121.0 2370.0 401.9 1062.2 37.8 

HT3 50.0 113.0 11.3 87.0 13.0 

SPC4 25.9 34.6 1.7 30.6 5.7 

SOC5 34.8 49.9 2.8 43.3 6.6 

GSL6 8.9 50.5 6.2 19.1 32.6 

Glenlea 

2018 

YLD 53.0 1610.0 289.0 686.8 42.1 

HT 52.0 93.0 8.2 70.5 11.6 

SPC 24.2 35.6 2.2 31.4 7.1 

SOC 36.1 49.9 3.3 42.6 7.6 

GSL 8.7 47.2 6.7 20.9 31.9 

Portage 

2017 

YLD 108.0 2704.0 445.3 1640.0 27.2 

HT 78.0 150.0 14.8 113.7 13.0 

SPC 22.5 36.8 2.2 27.8 7.5 

SOC 36.6 52.3 2.4 45.2 5.4 

GSL 3.1 34.1 5.7 16.5 34.7 

Carman 

2017 

YLD 77.0 2356.0 405.9 1115.3 36.4 

HT 57.0 133.0 13.7 94.6 14.5 

SPC 24.1 32.4 1.8 28.5 6.3 

SOC 35.3 51.8 2.7 44.4 612 

GSL 6.0 37.0 5.4 18.3 29.3 

Glenlea 

2016 

YLD 100.2 3086.2 528.8 1095.3 48.3 

HT 57.5 120.0 10.8 98.7 11.0 

SPC 25.9 37.7 2.1 31.5 6.72 

SOC 32.7 48.7 3.1 41.7 7.4 

GSL 5.3 46.3 5.9 18.2 32.2 

1C.V. values represent the population variation of a certain trait (𝐶𝑉𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 =  
𝑆𝐷𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛

𝑚𝑒𝑎𝑛𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛
). 

2 Seed yield (kg ha-1). 
3 Plant height (cm). 
4 Seed protein content (%). 
5 Seed oil content (%). 
6 Seed glucosinolates content (𝜇mol g-1). 
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Table S3.4 Significant MTAs identified based on the Brassica napus L. parental population based 

on MS-1 (26,651 SNP markers) on all five traits: seed yield (YLD), plant height (HT), seed protein 

content (SPC), seed oil content (SOC) and seed glucosinolate content (GSL).  

Trait SNP Model Chromosome Position (bp) 

YLD 
Bn-Scaffold000253-p27839 FarmCPU A1 826,013 

Bn-A09-p264743 FarmCPU, MLMM A9 429,423 

HT 

Bn-A09-p264743 FarmCPU A9 429,423 

Bn-scaff_17441_3-p31296 FarmCPU C5 40,328,601 

Bn-scaff_16510_1-p242507 FarmCPU C6 14,081,295 

Bn-A09-p264743 MLMM A9 429,423 

SPC 

Bn-A09-p264743 CMLM A9 429,423 

Bn-scaff_15712_5-p649917 FarmCPU A2 20,655,454 

Bn-A03-p25949676 FarmCPU A3 24,308,492 

Bn-A08-p13303525 FarmCPU A8 1,664,920 

Bn-A09-p264743 FarmCPU, MLM+K, 

MLM+K+PCA, 

MLM+K+Q, MLMM 

A9 429,423 

SOC 

Bn-A09-p264743 FarmCPU, CMLM A9 429,423 

Bn-A09-p264743 CMLM A9 429,423 

Bn-A10-p2535072 FarmCPU A10 13,530 

Bn-scaff_15712_13-p63324 MLM+K A2 4,500,718 

Bn-A09-p264743 MLM+K A9 429,423 

Bn-scaff_18514_1-p28001 MLM+K C2 7,925,571 

Bn-scaff_15712_13-p38138 MLM+K C2 8,302,329 

Bn-scaff_15712_13-p43168 MLM+K C2 8,307,658 

Bn-A09-p264743 MLM+K+PCA A9 429,423 

Bn-scaff_18514_1-p28001 MLM+K+PCA C2 7,925,571 

Bn-scaff_15712_13-p38138 MLM+K+PCA C2 8,302,329 

Bn-scaff_15712_13-p43168 MLM+K+PCA C2 8,307,658 

Bn-scaff_15712_13-p63324 MLM+K+Q A2 4,500,718 

Bn-A09-p264743 MLM+K+Q A9 429,423 

Bn-scaff_18514_1-p28001 MLM+K+Q C2 7,925,571 

Bn-scaff_15712_13-p38138 MLM+K+Q C2 8,302,329 
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Bn-scaff_15712_13-p43168 MLM+K+Q C2 8,307,658 

Bn-A09-p264743 MLMM A9 429,423 

GSL 

 

Bn-A05-p23873413 CMLM, FarmCPU A5 22,850,229 

Bn-A08-p7496720 FarmCPU A8 6,503,838 

Bn-scaff_16002_1-p2298646 FarmCPU C3 12,092,758 

Bn-scaff_16361_1-p2115007 FarmCPU C8 29,655,788 

Bn-A05-p23873413 MLMM A5 22,850,229 

Abbreviations: SNP: single nucleotide polymorphism; CMLM: compression mixed linear model; 

FarmCPU: fixed and random model circulating probability unification; MLM: mixed linear model; 

K: kinship matrix; Q: population structure matrix based on Bayesian clustering; PCA: principal 

component analysis; MLMM: multi-locus mixed linear model. 
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Table S3.5 Significant MTAs identified based on the Brassica napus L. combined population 

based on MS-1 (26,651 SNP markers) on all five traits: seed yield (YLD), plant height (HT), seed 

protein content (SPC), seed oil content (SOC) and seed glucosinolate content (GSL).  

Trait SNP Model Chromosome Position (bp) 

YLD 

Bn-A02-p6751482 CMLM A2 188,202 

Bn-A02-p7351109 CMLM A2 270,573 

Bn-A02-p2851231 CMLM A2 393,886 

Bn-A02-p7004091 CMLM A2 4,037,640 

Bn-scaff_15712_13-p63324 CMLM A2 4,500,718 

Bn-A02-p16666866 CMLM A2 13,863,707 

Bn-A02-p23836232 CMLM A2 22,068,630 

Bn-A03-p19501529 CMLM A3 18,476,014 

Bn-A04-p6389136 CMLM A4 7,593,915 

Bn-A05-p2143241 CMLM A4 18,442,758 

Bn-A05-p6405021 CMLM A5 5,956,466 

Bn-A05-p6405336 CMLM A5 5,956,781 

Bn-A02-p27262588 CMLM A6 487,133 

Bn-A06-p1874196 CMLM A6 1,839,761 

Bn-A06-p19419215 CMLM A6 15,432,566 

Bn-A07-p9115370 CMLM A7 10,581,719 

Bn-A08-p10147092 CMLM A8 1,382,860 

Bn-A08-p2585836 CMLM A8 2,022,032 

Bn-A08-p4146148 CMLM A8 3,547,924 

Bn-A08-p4537897 CMLM A8 3,956,547 

Bn-A08-p13214314 CMLM A8 10,959,702 

Bn-A08-p15945454 CMLM A8 13,407,212 

Bn-A09-p35656352 CMLM A9 32,788,001 

Bn-A10-p8409315 CMLM A10 9,898,825 

Bn-A10-p11268601 CMLM A10 12,562,289 

Bn-A09-p5267535 CMLM A10 15,656,938 

Bn-A10-p17125825 CMLM C1 32,941,300 

Bn-scaff_15714_1-p346291 CMLM C2 4,012,095 

Bn-scaff_16269_1-p192431 CMLM C2 6,421,917 

Bn-scaff_18374_1-p23965 CMLM C2 7,565,729 

Bn-scaff_16804_4-p112136 CMLM C2 7,610,450 

Bn-scaff_15712_5-p1021105 CMLM C2 8,512,187 

Bn-scaff_21312_1-p895326 CMLM C3 9,539,709 

Bn-scaff_16534_1-p259614 CMLM C4 854,745 

Bn-scaff_15695_2-p413042 CMLM C5 30,679,838 

Bn-scaff_16485_1-p630261 CMLM C6 3,538,459 
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Bn-A08-p7355372 CMLM C8 9,556,938 

Bn-A02-p22443535 FarmCPU A2 20,723,010 

Bn-A04-p6389136 FarmCPU A4 7,593,915 

Bn-scaff_15712_13-p43168 FarmCPU C2 8,307,658 

Bn-A10-p4553957 FarmCPU C5 369,884 

Bn-scaff_23408_1-p96976 FarmCPU C5 37,805,713 

Bn-scaff_20619_1-p169094 FarmCPU C9 31,677,194 

Bn-A04-p6389136 MLMM A4 7,593,915 

Bn-A09-p35656352 MLMM A9 32,788,001 

Bn-scaff_16269_1-p192431 MLMM C2 6,421,917 

Bn-scaff_17048_1-p243085 MLMM C9 1,985,336 

Bn-scaff_16246_2-p3090 MLMM C9 2,856,998 

HT 

Bn-A02-p6751482 CMLM A2 188,202 

Bn-A02-p7004091 CMLM A2 4,037,640 

Bn-scaff_15712_13-p63324 CMLM A2 4,500,718 

Bn-A04-p14023419 CMLM A4 1,021,817 

Bn-A04-p6389136 CMLM A4 7,593,915 

Bn-A05-p2143241 CMLM A4 18,442,758 

Bn-A05-p5058143 CMLM A5 4,877,416 

Bn-A05-p6405021 CMLM A5 5,956,466 

Bn-A05-p6405336 CMLM A5 5,956,781 

Bn-A06-p1874196 CMLM A6 1,839,761 

Bn-A06-p2365869 CMLM A6 2,381,259 

Bn-A06-p19419215 CMLM A6 15,432,566 

Bn-A07-p9115370 CMLM A7 10,581,719 

Bn-A08-p10147092 CMLM A8 1,382,860 

Bn-A08-p2585836 CMLM A8 2,022,032 

Bn-A08-p4146148 CMLM A8 3,547,924 

Bn-A08-p4207231 CMLM A8 3,626,293 

Bn-A08-p4452888 CMLM A8 3,865,227 

Bn-A08-p4537897 CMLM A8 3,956,547 

Bn-A09-p264743 CMLM A9 429,423 

Bn-A10-p8409315 CMLM A10 9,898,825 

Bn-A10-p11268601 CMLM A10 12,562,289 

Bn-A10-p11376164 CMLM A10 12,679,162 

Bn-scaff_16553_1-p34303 CMLM C1 4,026,215 

Bn-scaff_15714_1-p357596 CMLM C2 4,003,578 

Bn-scaff_15714_1-p346291 CMLM C2 4,012,095 

Bn-scaff_16269_1-p192431 CMLM C2 6,421,917 

Bn-scaff_18374_1-p23965 CMLM C2 7,565,729 
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Bn-scaff_16804_4-p112136 CMLM C2 7,610,450 

Bn-scaff_15712_5-p1021105 CMLM C2 8,512,187 

Bn-scaff_18936_1-p744477 CMLM C3 3,325,084 

Bn-scaff_16996_1-p230771 CMLM C3 56,423,745 

Bn-scaff_16534_1-p259614 CMLM C4 854,745 

Bn-scaff_19253_1-p285404 CMLM C4 15,292,281 

Bn-scaff_17580_1-p281057 CMLM C7 13,974,728 

Bn-A05-p1107888 FarmCPU A5 1,243,846 

Bn-A05-p6405336 FarmCPU A5 5,956,781 

Bn-A07-p4097388 FarmCPU A7 6,014,828 

Bn-A07-p9115370 FarmCPU A7 10,581,719 

Bn-A10-p10847605 FarmCPU A8 12,590,859 

Bn-A09-p26532777 FarmCPU A9 24,583,494 

Bn-scaff_15712_5-p1021105 FarmCPU C2 8,512,187 

Bn-scaff_18505_1-p288572 FarmCPU C4 14,546,495 

Bn-scaff_16197_1-p2958698 FarmCPU C8 31,316,266 

Bn-scaff_20619_1-p167640 FarmCPU C9 31,678,632 

Bn-scaff_17750_1-p1839429 FarmCPU C9 46,646,099 

Bn-A05-p6405336 MLMM A5 5,956,781 

Bn-A07-p9115370 MLMM A7 10,581,719 

Bn-scaff_19614_1-p53484 MLMM C1 13,527,850 

SPC 

Bn-A04-p6389136 CMLM A4 7,593,915 

Bn-A02-p26975795 CMLM A5 3,004,035 

Bn-A05-p11689852 CMLM A5 10,221,712 

Bn-A05-p21081145 CMLM A5 19,232,253 

Bn-A02-p23280472 CMLM A5 21,444,314 

Bn-A05-p11702049 CMLM A8 88,915 

Bn-A09-p8635608 CMLM A9 8,062,605 

Bn-scaff_15695_2-p413042 CMLM C5 30,679,838 

Bn-scaff_17801_1-p220808 CMLM C9 15,322,388 

Bn-A02-p8169424 FarmCPU A2 5,160,109 

Bn-A05-p11689852 FarmCPU A5 10,221,712 

Bn-scaff_26642_1-p55504 FarmCPU C3 52,941,890 

Bn-scaff_16069_1-p1204477 MLMM A3 22,019,044 

Bn-scaff_15695_2-p413042 MLMM C5 30,679,838 

SOC 

Bn-A02-p3121742 FarmCPU A2 605,811 

Bn-A02-p23280472 FarmCPU A5 21,444,314 

Bn-A07-p22398500 FarmCPU A7 23,796,382 

Bn-A01-p8821722 FarmCPU A9 1,770,199 

Bn-scaff_27039_1-p405965 FarmCPU C2 1,452,154 
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Bn-scaff_20942_1-p432654 FarmCPU C2 10,800,822 

Bn-scaff_23761_1-p736623 FarmCPU C3 6,000,302 

Bn-scaff_18602_1-p263207 FarmCPU C3 51,660,331 

Bn-scaffold5411-p214 FarmCPU C5 4,957,352 

Bn-scaff_20219_1-p200426 FarmCPU C5 40,827,867 

Bn-scaff_17801_1-p220808 FarmCPU C9 15,322,388 

Bn-scaff_19899_1-p356624 FarmCPU C9 40,719,329 

Bn-scaff_15695_2-p413042 MLMM C5 30,679,838 

GSL 

Bn-scaff_15712_13-p63324 CMLM A2 4,500,718 

Bn-scaff_23957_1-p127219 CMLM A7 20,022,579 

Bn-A09-p264743 CMLM A9 429,423 

Bn-scaff_15714_1-p346291 CMLM C2 4,012,095 

Bn-scaff_16269_1-p192431 CMLM C2 6,421,917 

Bn-scaff_16269_1-p57060 CMLM C2 6,574,199 

Bn-scaff_16804_1-p635989 CMLM C2 7,408,306 

Bn-scaff_18374_1-p23965 CMLM C2 7,565,729 

Bn-scaff_16804_4-p107537 CMLM C2 7,605,785 

Bn-scaff_16804_4-p111688 CMLM C2 7,610,005 

Bn-scaff_16804_4-p112136 CMLM C2 7,610,450 

Bn-scaff_18514_1-p28001 CMLM C2 7,925,571 

Bn-scaff_15712_13-p38138 CMLM C2 8,302,329 

Bn-scaff_15712_13-p43168 CMLM C2 8,307,658 

Bn-scaff_15712_5-p1021105 CMLM C2 8,512,187 

Bn-scaff_16414_1-p863592 CMLM C5 1,091,262 

Bn-scaff_22728_1-p947436 CMLM C5 6,146,830 

Bn-scaff_15746_1-p176373 CMLM C6 23,292,130 

Bn-scaff_17580_1-p281057 CMLM C7 13,974,728 

Bn-A01-p5567077 FarmCPU A1 322,699 

Bn-A02-p11248742 FarmCPU A2 8,255,799 

Bn-A06-p5741557 FarmCPU A6 5,182,655 

Bn-A06-p10297153 FarmCPU A6 9,686,244 

Bn-A07-p1450961 FarmCPU A7 210,238 

Bn-A07-p132150 FarmCPU A7 323,068 

Bn-scaff_23957_1-p127219 FarmCPU A7 20,022,579 

Bn-A10-p2311797 FarmCPU A10 1,540,475 

Bn-scaff_21778_1-p262139 FarmCPU C3 5,054,038 

Bn-scaff_16394_1-p73139 FarmCPU C4 31,472,468 

Bn-scaff_20270_1-p1013122 FarmCPU C4 47,080,450 

Bn-scaff_22728_1-p947436 FarmCPU C5 6,146,830 

Bn-scaff_15818_2-p1146207 FarmCPU C6 17,529,142 
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Bn-scaff_20619_1-p167640 FarmCPU C9 31,678,632 

Bn-scaff_15712_13-p63324 MLMM A2 4,500,718 

Bn-scaff_17731_1-p166950 MLMM C1 114,921 

Bn-scaff_16092_1-p494537 MLMM C3 28,173,069 

Bn-scaff_22728_1-p947436 MLMM C5 6,146,830 

Bn-scaff_17910_1-p132433 MLMM C9 33,581,091 

Abbreviations: SNP: single nucleotide polymorphism; CMLM: compression mixed linear model; 

FarmCPU: fixed and random model circulating probability unification; MLMM: multi-locus 

mixed linear model. 
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Table S3.6 Significant MTAs identified based on the Brassica napus L. parental population using 

MS-2 (16,855 SNP markers) on all five traits: seed yield (YLD), plant height (HT), seed protein 

content (SPC), seed oil content (SOC) and seed glucosinolate content (GSL).  

Trait SNP Model Chromosome Position 

YLD 

Bn-A09-p264743 MLMM A9 429,423 

Bn-scaff_15712_5-

p332728 

MLMM C1 13,638,163 

HT 

Bn-A09-p264743 FarmCPU, MLMM A9 429,423 

Bn-scaff_17441_3-

p31296 

MLMM C5 40,328,601 

Bn-scaff_16510_1-

p88138 

MLMM C6 1,437,302 

SPC 

Bn-A09-p264743 CLMM A9 429,423 

Bn-A08-p13303525 FarmCPU A8 1,664,920 

Bn-A09-p264743 FarmCPU A9 429,423 

Bn-scaff_15712_2-

p767471 

FarmCPU C2 38,977,697 

Bn-A09-p264743 MLM+K, MLM+L+PCA, 

MLM+L+Q, MLMM 

A9 429,423 

SOC 

Bn-A09-p264743 CMLM A9 429,423 

Bn-A10-p2535072 FarmCPU A10 13,530 

Bn-A06-p2268393 FarmCPU A6 2,274,725 

Bn-scaff_18206_3-

p536950 

FarmCPU A7 14,459,805 

Bn-A09-p264743 FarmCPU A9 429,423 

Bn-scaff_15712_13-

p63324 

MLM+K A2 4,500,718 

Bn-A09-p264743 MLM+K A9 429,423 

Bn-scaff_18514_1-

p28001 

MLM+K C2 7,925,571 

Bn-scaff_15712_13-

p38138 

MLM+K C2 8,302,329 

Bn-scaff_15712_13-

p43168 

MLM+K C2 8,307,658 

Bn-A09-p264743 MLM+K+PCA A9 429,423 

Bn-scaff_15712_13-

p63324 

MLM+K+Q A2 4,500,718 

Bn-A09-p264743 MLM+K+Q A9 429,423 

Bn-scaff_18514_1-

p28001 

MLM+K+Q C2 7,925,571 

Bn-scaff_15712_13-

p38138 

MLM+K+Q C2 8,302,329 

Bn-scaff_15712_13-

p43168 

MLM+K+Q C2 8,307,658 
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Bn-A09-p264743 MLMM A9 429,423 

GSL 

Bn-A05-p23873413 CMLM A5 22,850,229 

Bn-A05-p23873413 FarmCPU A5 22,850,229 

Bn-A08-p7496720 FarmCPU A8 6,503,838 

Bn-scaff_18514_1-

p28001 

FarmCPU C2 7,925,571 

Bn-scaff_16002_1-

p2298646 

FarmCPU C3 12,092,758 

Bn-scaff_16361_1-

p2115007 

FarmCPU C8 29,655,788 

Bn-A07-p1227140 MLM+K+Q A7 861,713 

GSL 
Bn-scaff_15838_5-

p886564 

MLM+K+Q C1 3,719,679 

GSL 
Bn-scaff_19523_1-

p28969 

MLM+K+Q C3 18,526,881 

GSL Bn-A05-p23873413 MLMM A5 22,850,229 

Abbreviations: SNP: single nucleotide polymorphism; CMLM: compression mixed linear model; 

FarmCPU: fixed and random model circulating probability unification; MLM: mixed linear model; 

K: kinship matrix; Q: population structure matrix based on Bayesian clustering; PCA: principal 

component analysis; MLMM: multi-locus mixed linear model. 
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Table S3.7 Significant MTAs identified based on the Brassica napus L. combined population 

based on MS-2 (16,855 SNP markers) on all five traits: seed yield (YLD), plant height (HT), seed 

protein content (SPC), seed oil content (SOC) and seed glucosinolate content (GSL).  

Trait Marker Model Chromosome Position (bp) 

YLD 

Bn-A02-p6766615 CMLM A2 204,182 

Bn-A02-p7351109 CMLM A2 270,573 

Bn-A02-p3658139 CMLM A2 1,093,648 

Bn-A02-p7004091 CMLM A2 4,037,640 

Bn-scaff_15712_13-p63324 CMLM A2 4,500,718 

Bn-A02-p16666866 CMLM A2 13,863,707 

Bn-A02-p23836232 CMLM A2 22,068,630 

Bn-A02-p26154951 CMLM A2 23,778,815 

Bn-A04-p6389136 CMLM A4 7,593,915 

Bn-A05-p6405336 CMLM A5 5,956,781 

Bn-A07-p9115370 CMLM A7 10,581,719 

Bn-A08-p4207231 CMLM A8 3,626,293 

Bn-A10-p8409315 CMLM A10 9,898,825 

Bn-scaff_16269_1-p192431 CMLM C2 6,421,917 

Bn-scaff_18374_1-p23965 CMLM C2 7,565,729 

Bn-scaff_16804_4-p112136 CMLM C2 7,610,450 

Bn-scaff_15712_5-p1021105 CMLM C2 8,512,187 

Bn-scaff_16534_1-p259614 CMLM C4 854,745 

Bn-scaff_18520_1-p622295 CMLM C7 32,478,815 

Bn-A04-p6389136 FarmCPU A4 7,593,915 

Bn-A10-p16164252 FarmCPU A10 15,400,988 

Bn-scaff_15712_13-p43168 FarmCPU C2 8,307,658 

Bn-scaff_20270_1-p1324392 FarmCPU C5 41,751,856 

Bn-scaff_18520_1-p622295 FarmCPU C7 32,478,815 

Bn-scaff_17048_1-p243085 FarmCPU C9 1,985,336 

Bn-scaff_16246_2-p3090 FarmCPU C9 2,856,998 

Bn-A04-p6389136 MLMM A4 7,593,915 

Bn-scaff_16269_1-p192431 MLMM C2 6,421,917 

Bn-scaff_17048_1-p243085 MLMM C9 1,985,336 

Bn-scaff_16246_2-p3090 MLMM C9 2,856,998 

HT 

Bn-scaff_15911_1-p546022 CMLM A1 14,317,565 

Bn-A02-p6766615 CMLM A2 204,182 

Bn-A02-p7004091 CMLM A2 4,037,640 

Bn-scaff_15712_13-p63324 CMLM A2 4,500,718 

Bn-A02-p16666866 CMLM A2 13,863,707 

Bn-A02-p23836232 CMLM A2 22,068,630 
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Bn-A03-p9605319 CMLM A3 787,447 

Bn-A04-p6389136 CMLM A4 7,593,915 

Bn-A05-p5058143 CMLM A5 4,877,416 

Bn-A05-p6405336 CMLM A5 5,956,781 

Bn-A06-p3206017 CMLM A6 196,789 

Bn-A06-p2365869 CMLM A6 2,381,259 

Bn-A07-p9115370 CMLM A7 10,581,719 

Bn-scaff_23957_1-p127219 CMLM A7 20,022,579 

Bn-A08-p4145883 CMLM A8 3,547,660 

Bn-A08-p4146394 CMLM A8 3,548,169 

Bn-A08-p4146828 CMLM A8 3,550,256 

Bn-A08-p4147963 CMLM A8 3,551,391 

Bn-A08-p4207231 CMLM A8 3,626,293 

Bn-A09-p264743 CMLM A9 429,423 

Bn-A10-p8409315 CMLM A10 9,898,825 

Bn-A10-p15437444 CMLM A10 16,055,360 

Bn-scaff_16553_1-p34303 CMLM C1 4,026,215 

Bn-scaff_16269_1-p192431 CMLM C2 6,421,917 

Bn-scaff_18374_1-p23965 CMLM C2 7,565,729 

Bn-scaff_16804_4-p112136 CMLM C2 7,610,450 

Bn-scaff_15712_5-p1021105 CMLM C2 8,512,187 

Bn-scaff_18675_1-p421921 CMLM C2 22,122,071 

Bn-scaff_18936_1-p744477 CMLM C3 3,325,084 

Bn-scaff_16996_1-p230771 CMLM C3 56,423,745 

Bn-scaff_16534_1-p259614 CMLM C4 854,745 

Bn-scaff_19253_1-p285404 CMLM C4 15,292,281 

Bn-scaff_16888_1-p1803454 CMLM C4 45,940,032 

Bn-scaff_20376_1-p218414 CMLM C5 42,120,912 

Bn-scaff_15712_13-p63324 FarmCPU A2 4,500,718 

Bn-A05-p6405336 FarmCPU A5 5,956,781 

Bn-A06-p2940743 FarmCPU A6 2,840,416 

Bn-A06-p10297153 FarmCPU A6 9,686,244 

Bn-A07-p4097388 FarmCPU A7 6,014,828 

Bn-A10-p13016246 FarmCPU A10 13,051,612 

Bn-scaff_20376_1-p218414 FarmCPU C5 42,120,912 

Bn-scaff_20619_1-p167640 FarmCPU C9 31,678,632 

Bn-scaff_19899_1-p283181 FarmCPU C9 40,792,238 

Bn-scaff_17750_1-p1839429 FarmCPU C9 46,646,099 

Bn-A03-p23996628 MLMM A3 22,640,491 

Bn-A05-p6405336 MLMM A5 5,956,781 
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Bn-A07-p9115370 MLMM A7 10,581,719 

SPC 

Bn-A04-p6389136 CMLM A4 7,593,915 

Bn-A07-p9115370 CMLM A7 10,581,719 

Bn-A09-p8635608 CMLM A9 8,062,605 

Bn-scaff_17801_1-p220808 CMLM C9 15,322,388 

Bn-A07-p9115370 FarmCPU A7 10,581,719 

Bn-A09-p135892 FarmCPU A9 539,846 

Bn-A01-p8821722 FarmCPU A9 1,770,199 

Bn-A09-p8635608 FarmCPU A9 8,062,605 

Bn-scaff_15936_1-p245327 FarmCPU C1 36,380,585 

Bn-scaff_26642_1-p13971 FarmCPU C3 52,895,415 

Bn-A05-p23290863 FarmCPU C5 41,789,253 

Bn-scaff_16397_1-p114405 FarmCPU C6 32,795,141 

Bn-scaff_16110_1-p436278 FarmCPU C7 44,461,558 

Bn-scaff_17048_1-p243085 FarmCPU C9 1,985,336 

Bn-scaff_16246_2-p3090 FarmCPU C9 2,856,998 

Bn-scaff_17750_1-p1810873 FarmCPU C9 46,663,402 

Bn-A04-p6389136 MLMM A4 7,593,915 

Bn-A09-p8635608 MLMM A9 8,062,605 

SOC 

Bn-A02-p8169424 CMLM A2 5,160,109 

Bn-A02-p3121742 FarmCPU A2 605,811 

Bn-scaff_18602_1-p263207 FarmCPU C3 51,660,331 

Bn-scaff_20219_1-p200426 FarmCPU C5 40,827,867 

Bn-scaff_17801_1-p220808 FarmCPU C9 15,322,388 

Bn-scaff_19899_1-p356624 FarmCPU C9 40,719,329 

Bn-scaff_18374_1-p23965 MLMM C2 7,565,729 

Bn-scaff_15818_2-p1146207 MLMM C6 17,529,142 

Bn-scaff_17048_1-p243085 MLMM C9 1,985,336 

Bn-scaff_20619_1-p112877 MLMM C9 31,738,963 

GSL 

Bn-scaff_15712_13-p63324 CMLM A2 4,500,718 

Bn-A07-p9115370 CMLM A7 10,581,719 

Bn-scaff_23957_1-p127219 CMLM A7 20,022,579 

Bn-A09-p264743 CMLM A9 429,423 

Bn-scaff_16269_1-p192431 CMLM C2 6,421,917 

Bn-scaff_16269_1-p57060 CMLM C2 6,574,199 

Bn-scaff_16804_1-p635989 CMLM C2 7,408,306 

Bn-scaff_18374_1-p23965 CMLM C2 7,565,729 

Bn-scaff_16804_4-p112136 CMLM C2 7,610,450 

Bn-scaff_18514_1-p28001 CMLM C2 7,925,571 

Bn-scaff_15712_13-p38138 CMLM C2 8,302,329 
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Bn-scaff_15712_13-p43168 CMLM C2 8,307,658 

Bn-scaff_15712_5-p1021105 CMLM C2 8,512,187 

Bn-scaff_18936_1-p744477 CMLM C3 3,325,084 

Bn-scaff_22728_1-p947436 CMLM C5 6,146,830 

Bn-A01-p5567077 FarmCPU A1 322,699 

Bn-scaff_26139_1-p322324 FarmCPU A4 5,291,782 

Bn-scaff_26787_1-p6892 FarmCPU A4 17,975,686 

Bn-A05-p671910 FarmCPU A5 793,277 

Bn-A06-p18438509 FarmCPU A6 19,808,118 

Bn-scaff_23957_1-p127219 FarmCPU A7 20,022,579 

Bn-A08-p19575209 FarmCPU A8 2,027,576 

Bn-A10-p2311797 FarmCPU A10 1,540,475 

Bn-scaff_15838_1-p2212925 FarmCPU C1 2,576,689 

Bn-A02-p10719296 FarmCPU C2 13,849,225 

Bn-scaff_18936_1-p744477 FarmCPU C3 3,325,084 

Bn-scaff_23761_1-p738056 FarmCPU C3 6,013,746 

Bn-scaff_17298_1-p35170 FarmCPU C3 22,345,273 

Bn-scaff_16888_1-p1803454 FarmCPU C4 45,940,032 

Bn-scaff_22728_1-p947436 FarmCPU C5 6,146,830 

Bn-scaff_15892_1-p368466 FarmCPU C6 26,266,184 

Bn-scaff_16394_1-p83655 FarmCPU C7 24,655,094 

Bn-scaff_15712_13-p63324 MLMM A2 4,500,718 

Bn-A07-p9115370 MLMM A7 10,581,719 

Bn-scaff_23957_1-p127219 MLMM A7 20,022,579 

Bn-A09-p264743 MLMM A9 429,423 

Bn-scaff_16269_1-p192431 MLMM C2 6,421,917 

Bn-scaff_16269_1-p57060 MLMM C2 6,574,199 

Bn-scaff_16804_1-p635989 MLMM C2 7,408,306 

Bn-scaff_18374_1-p23965 MLMM C2 7,565,729 

Bn-scaff_16804_4-p112136 MLMM C2 7,610,450 

Bn-scaff_18514_1-p28001 MLMM C2 7,925,571 

Bn-scaff_15712_13-p38138 MLMM C2 8,302,329 

Bn-scaff_15712_13-p43168 MLMM C2 8,307,658 

Bn-scaff_15712_5-p1021105 MLMM C2 8,512,187 

Bn-scaff_18936_1-p744477 MLMM C3 3,325,084 

Bn-scaff_22728_1-p947436 MLMM C5 6,146,830 

Abbreviations: SNP: single nucleotide polymorphism; CMLM: compression mixed linear model; 

FarmCPU: fixed and random model circulating probability unification; MLMM: multi-locus 

mixed linear model.  
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Figure S3.1 Manhattan plots showing seed yield (YLD) based on the MS-2 (16,855 SNP markers). 

Bonferroni-corrected significance threshold was shown as the red horizontal line at -

log10(0.05/16855) =5.53. (A) Results from the Brassica napus L. parental population based on six 

models including mixed linear models considering kinship (MLM+K), mixed linear models 

considering subpopulation structure via Bayesian clustering (MLM+K+Q), mixed linear models 

considering subpopulation structure via principal component analysis (MLM+K+PCA), multi-loci 

mixed model (MLMM), Fixed and random model circulating probability unification (FarmCPU) 

and compression mixed linear model (CMLM). (B) Results from the Brassica napus L. combined 

population based on three models MLMM, FarmCPU and CMLM. 

  

A. 

B. 
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Table S3.8 Candidate genes predicted under the Brassicales order based on combined significant 

MTAs identified from the parental population and combined population of Brassica napus L. 

Traits evaluated are YLD (seed yield), HT (plant height), seed protein content (SPC), seed oil 

content (SOC) and GSL (seed glucosinloate content). 

Trait Query ID Gene Name EggNOG Description E-Value Bit-

Score 

YLD BnaC02g36370D AFB2 auxin signaling f-box 0 1171.8 

YLD BnaA02g33110D AGD1 ADP-ribosylation factor 

GTPase-activating protein 

0 1565.4 

YLD BnaA02g21070D ATPC ATP synthase gamma 

chain 1 

2.50E-171 608.6 

YLD BnaA02g20870D BSL1 Serine threonine-protein 

phosphatase 

0 1780.8 

YLD BnaC02g34690D CAND1 Cullin-associated 0 2268.4 

YLD BnaA02g21770D CBF5 H ACA ribonucleoprotein 

complex subunit 

5.60E-241 840.1 

YLD BnaA02g30320D CHS2 Chalcone and stilbene 

synthases, N-terminal 

domain 

2.20E-226 791.2 

YLD BnaA02g30340D CHS2 Chalcone and stilbene 

synthases, N-terminal 

domain 

1.60E-28 132.1 

YLD BnaC01g19610D CIP7 COP1-interacting protein 7 0 1690.6 

YLD BnaC01g19600D CIP7 COP1-interacting protein 7 4.70E-29 134.4 

YLD BnaA02g08420D CKX3 Cytokinin dehydrogenase 

1, FAD and cytokinin 

binding 

2.70E-304 1050.4 

YLD BnaA02g00750D CM2 chorismate mutase 1.70E-137 495.4 
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YLD BnaC02g13300D CNX5 Plays a central role in 2-

thiolation of mcm(5)S(2)U 

at tRNA wobble positions 

of cytosolic tRNA(Lys), 

tRNA(Glu) and 

tRNA(Gln). Also essential 

during biosynthesis of the 

molybdenum cofactor. 

Acts by mediating the C-

terminal thiocarboxylation 

of sulfur carriers URM1 

and MOCS2A. Its N-

terminus first activates 

URM1 and MOCS2A as 

acyl-adenylates (-

COAMP), then the 

persulfide sulfur on the 

catalytic cysteine is 

transferred to URM1 and 

MOCS2A to form 

thiocarboxylation (-COSH) 

of their C-terminus. The 

reaction probably involves 

hydrogen sulfide that is 

generated from the 

persulfide intermediate and 

that acts as nucleophile 

towards URM1 and 

MOCS2A. Subsequently, a 

transient disulfide bond is 

formed. Does not use 

thiosulfate as sulfur donor 

5.80E-258 896.3 

YLD BnaA08g04270D CPK18 calcium-dependent protein 

kinase 

7.20E-17 92.4 

YLD BnaA02g21060D CPK23 Calcium-dependent protein 

kinase 

2.20E-298 1030.8 

YLD BnaA08g04030D CYCA3-1 Belongs to the cyclin 

family 

8.70E-201 706.1 

YLD BnaA08g04010D CYCA3-1 Belongs to the cyclin 

family 

4.50E-197 693.7 

YLD BnaC02g36490D DRB3 dsRNA-binding protein 8.00E-189 666.4 

YLD BnaC02g36690D DREB2A Dehydration-responsive 

element-binding protein 

6.00E-34 149.8 
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YLD BnaC02g36700D DREB2A Dehydration-responsive 

element-binding protein 

2.30E-93 348.2 

YLD BnaA02g33430D EB1 Microtubule-associated 

protein RP EB family 

member 

7.30E-147 526.6 

YLD BnaA02g21720D EIF3A RNA-binding component 

of the eukaryotic 

translation initiation factor 

3 (eIF-3) complex, which 

is involved in protein 

synthesis of a specialized 

repertoire of mRNAs and, 

together with other 

initiation factors, 

stimulates binding of 

mRNA and methionyl-

tRNAi to the 40S 

ribosome. The eIF-3 

complex specifically 

targets and initiates 

translation of a subset of 

mRNAs involved in cell 

proliferation 

0 1452.2 

YLD BnaC02g11150D EIF4G translation initiation factor 0 1469.9 

YLD BnaC07g26600D FKBP15-2 peptidyl-prolyl cis-trans 

isomerase 

7.00E-86 323.2 

YLD BnaC02g13190D FTSZ1-1 Cell division protein FtsZ 

homolog 1 

6.40E-227 793.1 

YLD BnaA02g21470D GAE5 4-epimerase 5 8.90E-245 852.4 

YLD BnaC02g36240D GAPA Belongs to the 

glyceraldehyde-3-

phosphate dehydrogenase 

family 

3.00E-212 744.2 

YLD BnaC09g04970D HCF136 Photosystem II stability 

assembly factor 

2.00E-18 97.8 

YLD BnaC09g04960D HCF136 Photosystem II stability 

assembly factor 

2.90E-49 201.4 
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YLD BnaA02g21580D HMGS This enzyme condenses 

acetyl-CoA with 

acetoacetyl-CoA to form 

HMG-CoA, which is the 

substrate for HMG-CoA 

reductase 

1.40E-267 928.3 

YLD BnaC02g35320D HSP90C Hsp90 protein 2.9E-311 1073.9 

YLD BnaA02g33000D HUA2 enhancer of ag-4 1.30E-111 409.1 

YLD BnaA02g33010D HUA2 enhancer of ag-4 0 1650.6 

YLD BnaC02g34780D IQD29 IQ-domain 6.30E-246 856.7 

YLD BnaC02g35130D Lhcb6-1 The light-harvesting 

complex (LHC) functions 

as a light receptor, it 

captures and delivers 

excitation energy to 

photosystems with which it 

is closely associated 

0.0018 49.7 

YLD BnaA08g04050D MAF1 WPP domain-containing 

protein 

1.20E-75 289.3 

YLD BnaA02g02390D MAN2A2 alpha-mannosidase 0 2393.6 

YLD BnaA02g33410D MYB31 RNA polymerase II 

transcription regulator 

recruiting activity 

7.50E-141 506.5 

YLD BnaC02g34810D MYB88 RNA polymerase II 

transcription regulator 

recruiting activity 

3.00E-241 840.9 
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YLD BnaA02g33590D NBP35 Component of the 

cytosolic iron-sulfur (Fe-S) 

protein assembly (CIA) 

machinery. Required for 

maturation of 

extramitochondrial Fe-S 

proteins. Functions as Fe-S 

scaffold, mediating the de 

novo assembly of an Fe-S 

cluster and its transfer to 

target apoproteins. 

Essential for embryo 

development 

1.40E-13 82.8 

YLD BnaC02g35480D NIK2 Belongs to the protein 

kinase superfamily. Ser 

Thr protein kinase family 

2.90E-25 121.3 

YLD BnaC02g35750D NIMIN-2 Nim1-interacting 2 6.20E-34 149.8 

YLD BnaA08g03990D PAF2 The proteasome is a 

multicatalytic proteinase 

complex which is 

characterized by its ability 

to cleave peptides with 

Arg, Phe, Tyr, Leu, and 

Glu adjacent to the leaving 

group at neutral or slightly 

basic pH 

2.10E-135 488.4 

YLD BnaA02g33180D PER1 Per1-like family 6.10E-204 716.5 

YLD BnaC02g10920D PHOT2 FMN binding blue light 

photoreceptor kinase 

protein serine threonine 

kinase 

0 1666.4 

YLD BnaA02g08340D PIN2 May act as a component of 

the auxin efflux carrier 

2.80E-303 1047.3 

YLD BnaC01g19630D PORA Protochlorophyllide 

reductase 

4.90E-213 746.9 

YLD BnaC02g13600D PRPL24 Belongs to the universal 

ribosomal protein uL24 

family 

1.00E-102 379.4 
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YLD BnaC09g04920D PYR4 Belongs to the 

dihydroorotate 

dehydrogenase family. 

Type 2 subfamily 

3.20E-264 917.1 

YLD BnaC02g13240D RAN1 GTP-binding protein 

involved in 

nucleocytoplasmic 

transport. Required for the 

import of protein into the 

nucleus and also for RNA 

export. Involved in 

chromatin condensation 

and control of cell cycle 

5.00E-115 420.6 

YLD BnaC02g35650D RAV1 AP2 ERF and B3 domain-

containing transcription 

factor 

4.60E-188 663.7 

YLD BnaC02g12070D RPL31 60s ribosomal protein 5.40E-59 233.4 

YLD BnaC02g12080D RPS30 Belongs to the eukaryotic 

ribosomal protein eS30 

family 

5.70E-31 140.2 

YLD BnaC02g34840D SUT2 PUCC protein 1.30E-298 1031.6 

YLD BnaC02g36550D TCP20 Transcription factor 6.50E-11 73.9 

YLD BnaC02g36570D TCP20 Transcription factor 1.30E-09 68.9 

YLD BnaC02g13170D TOP1 DNA Topoisomerase I 

(eukaryota) 

0 1242.6 

YLD BnaA02g33480D UBC3 ubiquitin-conjugating 

enzyme 

1.20E-84 318.9 

YLD BnaA02g00690D UBP22 ubiquitin carboxyl-terminal 

hydrolase 

0 1094.3 

YLD BnaA08g04100D WOX4 Homeodomain 3.80E-134 484.2 

YLD BnaC02g34990D WRKY3 Transcription factor 1.60E-205 722.2 

YLD BnaA02g21850D WRKY41 DNA binding domain 3.60E-185 654.1 

YLD BnaA02g02500D WRKY72 transcription factor 2.20E-136 491.9 

HT BnaA03g45080D APR1 reductase 1 2.70E-263 914.1 

HT BnaC04g19270D APR1 reductase 2 1.50E-261 908.3 
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HT BnaA06g03040D ABF1 DNA binding protein 

binding transcription 

activator transcription 

factor 

6.10E-161 573.5 

HT BnaC04g18780D ACA1 This magnesium-

dependent enzyme 

catalyzes the hydrolysis of 

ATP coupled with the 

transport of calcium 

3.80E-32 143.7 

HT BnaC06g11800D APC7 Tetratricopeptide repeat 4.60E-73 280.4 

HT BnaC04g18310D APE2 Triose phosphate 

phosphate translocator 

6.30E-107 393.7 

HT BnaA10g16550D APY2 nucleoside-diphosphatase 

activity 

5.70E-269 932.9 

HT BnaC04g15900D ARF10 Auxin response factors 

(ARFs) are transcriptional 

factors that bind 

specifically to the DNA 

sequence 5'-TGTCTC-3' 

found in the auxin-

responsive promoter 

elements (AuxREs) 

0 1351.3 

HT BnaC04g13500D ATG9 Involved in autophagy and 

cytoplasm to vacuole 

transport (Cvt) vesicle 

formation. Plays a key role 

in the organization of the 

preautophagosomal 

structure phagophore 

assembly site (PAS), the 

nucleating site for 

formation of the 

sequestering vesicle 

2.30E-153 548.1 

HT BnaC09g47340D AtpB Produces ATP from ADP 

in the presence of a proton 

gradient across the 

membrane 

0.00E+00 1067.4 
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HT BnaC09g47330D AtpB Produces ATP from ADP 

in the presence of a proton 

gradient across the 

membrane 

7.10E-253 879.4 

HT BnaC03g66580D BAK1 Belongs to the protein 

kinase superfamily. Ser 

Thr protein kinase family 

7.20E-140 503.8 

HT BnaC04g16300D BBX30 zinc finger 6.00E-69 266.5 

HT BnaC03g07000D BCCP2 first, biotin carboxylase 

catalyzes the carboxylation 

of the carrier protein and 

then the transcarboxylase 

transfers the carboxyl 

group to form malonyl-

CoA 

2.20E-97 362.1 

HT BnaC04g15750D BGAL8 beta-galactosidase 0 1733.8 

HT BnaA03g44890D BGLU47 Belongs to the glycosyl 

hydrolase 1 family 

5.80E-304 1049.3 

HT BnaA03g44900D BGLU47 Belongs to the glycosyl 

hydrolase 1 family 

2.60E-109 401.4 

HT BnaA03g44910D BGLU47 Belongs to the glycosyl 

hydrolase 1 family 

3.10E-172 610.9 

HT BnaA08g15040D BTI1 Reticulon-like protein 5.00E-124 450.7 

HT BnaC04g14970D CDC6 cell division control 1.50E-264 918.3 

HT BnaA04g25810D CHL-CPN10 Belongs to the GroES 

chaperonin family 

8.50E-72 276.2 

HT BnaC04g14410D CIPK11 Non-specific serine 

threonine protein kinase 

1.00E-256 892.1 

HT BnaA06g03950D CIPK17 CBL-interacting protein 

kinase 

1.40E-237 828.6 

HT BnaA06g03930D CIPK17 CBL-interacting protein 

kinase 

2.30E-232 811.2 

HT BnaC04g17180D CMK GHMP kinases N terminal 

domain 

1.50E-219 768.5 
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HT BnaC02g13300D CNX5 Plays a central role in 2-

thiolation of mcm(5)S(2)U 

at tRNA wobble positions 

of cytosolic tRNA(Lys), 

tRNA(Glu) and 

tRNA(Gln). Also essential 

during biosynthesis of the 

molybdenum cofactor. 

Acts by mediating the C-

terminal thiocarboxylation 

of sulfur carriers URM1 

and MOCS2A. Its N-

terminus first activates 

URM1 and MOCS2A as 

acyl-adenylates (-

COAMP), then the 

persulfide sulfur on the 

catalytic cysteine is 

transferred to URM1 and 

MOCS2A to form 

thiocarboxylation (-COSH) 

of their C-terminus. The 

reaction probably involves 

hydrogen sulfide that is 

generated from the 

persulfide intermediate and 

that acts as nucleophile 

towards URM1 and 

MOCS2A. Subsequently, a 

transient disulfide bond is 

formed. Does not use 

thiosulfate as sulfur donor 

5.80E-258 896.3 

HT BnaC04g13690D COQ3 Belongs to the class I-like 

SAM-binding 

methyltransferase 

superfamily. UbiG COQ3 

family 

8.50E-21 105.9 

HT BnaA08g04270D CPK18 calcium-dependent protein 

kinase 

7.20E-17 92.4 
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HT BnaC04g13100D CPK24 ATP binding calcium ion 

binding calmodulin-

dependent protein kinase 

kinase protein kinase 

protein serine threonine 

kinase 

9.70E-273 945.7 

HT BnaC04g16310D CPN60A Belongs to the chaperonin 

(HSP60) family 

1.10E-252 879 

HT BnaA08g04010D CYCA3-1 Belongs to the cyclin 

family 

4.50E-197 693.7 

HT BnaA08g04030D CYCA3-1 Belongs to the cyclin 

family 

8.70E-201 706.1 

HT BnaC04g15310D CYP707A2 Belongs to the cytochrome 

P450 family 

1.50E-277 961.4 

HT BnaC04g14620D DRP4A Belongs to the TRAFAC 

class dynamin-like GTPase 

superfamily. Dynamin Fzo 

YdjA family 

9.60E-215 753.1 

HT BnaC04g18250D EF1Bgamma2 elongation factor 5.20E-94 350.9 

HT BnaC06g11860D EGY1 zinc metalloprotease 

EGY1, chloroplastic 

6.10E-54 216.5 

HT BnaC06g11850D EGY1 zinc metalloprotease 

EGY1, chloroplastic 

0 1094.7 

HT BnaC06g11880D eIF(iso)4E Initiation factor 2.10E-100 371.7 

HT BnaC02g11150D EIF4G translation initiation factor 0 1469.9 

HT BnaC03g66460D EX1 Domain of unknown 

function (DUF3506) 

0 1135.9 

HT BnaC04g15200D EXPA6 Rare lipoprotein A (RlpA)-

like double-psi beta-barrel 

2.60E-96 358.2 

HT BnaC04g14590D FABD carrier protein transacylase 8.70E-199 699.5 

HT BnaC04g14820D FAD3 omega-3 fatty acid 

desaturase 

3.60E-229 800.4 

HT BnaC02g13190D FTSZ1-1 Cell division protein FtsZ 

homolog 1 

6.40E-227 793.1 

HT BnaA05g08850D HAK11 Potassium transporter 0 1464.1 
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HT BnaC04g14350D HSI2 High-level expression of 

sugar-inducible gene 2 

0 1520 

HT BnaA03g45240D IleS Belongs to the class-I 

aminoacyl-tRNA 

synthetase family 

0 1616.7 

HT BnaA03g45250D IleS Belongs to the class-I 

aminoacyl-tRNA 

synthetase family 

1.30E-89 336.3 

HT BnaA08g04050D MAF1 WPP domain-containing 

protein 

1.20E-75 289.3 

HT BnaA03g44930D MSRB2 methionine sulfoxide 

reductase 

1.20E-109 402.5 

HT BnaC01g19550D NAC4 (NAC) domain-containing 

protein 

9.20E-172 609.4 

HT BnaC09g29150D ndhH NDH shuttles electrons 

from NAD(P)H 

plastoquinone, via FMN 

and iron-sulfur (Fe-S) 

centers, to quinones in the 

photosynthetic chain and 

possibly in a chloroplast 

respiratory chain. The 

immediate electron 

acceptor for the enzyme in 

this species is believed to 

be plastoquinone. Couples 

the redox reaction to 

proton translocation, and 

thus conserves the redox 

energy in a proton gradient 

1.10E-71 275.8 
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HT BnaC09g29160D ndhH NDH shuttles electrons 

from NAD(P)H 

plastoquinone, via FMN 

and iron-sulfur (Fe-S) 

centers, to quinones in the 

photosynthetic chain and 

possibly in a chloroplast 

respiratory chain. The 

immediate electron 

acceptor for the enzyme in 

this species is believed to 

be plastoquinone. Couples 

the redox reaction to 

proton translocation, and 

thus conserves the redox 

energy in a proton gradient 

3.30E-140 504.2 

HT BnaC04g16320D NPC1 Niemann-Pick C1 protein-

like 

0 2439.8 

HT BnaA08g03990D PAF2 The proteasome is a 

multicatalytic proteinase 

complex which is 

characterized by its ability 

to cleave peptides with 

Arg, Phe, Tyr, Leu, and 

Glu adjacent to the leaving 

group at neutral or slightly 

basic pH 

2.10E-135 488.4 

HT BnaC04g17530D PAF2 The proteasome is a 

multicatalytic proteinase 

complex which is 

characterized by its ability 

to cleave peptides with 

Arg, Phe, Tyr, Leu, and 

Glu adjacent to the leaving 

group at neutral or slightly 

basic pH 

3.10E-150 537.7 
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HT BnaC04g17110D PAG1 The proteasome is a 

multicatalytic proteinase 

complex which is 

characterized by its ability 

to cleave peptides with 

Arg, Phe, Tyr, Leu, and 

Glu adjacent to the leaving 

group at neutral or slightly 

basic pH 

2.10E-137 495 

HT BnaC04g13660D PARP1 poly ADP-ribose 

polymerase 

0 1830.8 

HT BnaC04g18160D PBG1 The proteasome is a 

multicatalytic proteinase 

complex which is 

characterized by its ability 

to cleave peptides with 

Arg, Phe, Tyr, Leu, and 

Glu adjacent to the leaving 

group at neutral or slightly 

basic pH 

6.80E-141 506.5 

HT BnaC02g10920D PHOT2 FMN binding blue light 

photoreceptor kinase 

protein serine threonine 

kinase 

0 1666.4 

HT BnaC06g11890D PHYC Regulatory photoreceptor 

which exists in two forms 

that are reversibly 

interconvertible by light 

the Pr form that absorbs 

maximally in the red 

region of the spectrum and 

the Pfr form that absorbs 

maximally in the far-red 

region 

0 2194.1 
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HT BnaA08g15050D PPT1 Catalyzes the prenylation 

of para-hydroxybenzoate 

(PHB) with an all-trans 

polyprenyl group. 

Mediates the second step 

in the final reaction 

sequence of coenzyme Q 

(CoQ) biosynthesis, which 

is the condensation of the 

polyisoprenoid side chain 

with PHB, generating the 

first membrane-bound Q 

intermediate 

4.70E-120 437.6 

HT BnaC02g13600D PRPL24 Belongs to the universal 

ribosomal protein uL24 

family 

1.00E-102 379.4 

HT BnaC04g15570D psaA PsaA and PsaB bind P700, 

the primary electron donor 

of photosystem I (PSI), as 

well as the electron 

acceptors A0, A1 and FX. 

PSI is a plastocyanin-

ferredoxin oxidoreductase, 

converting photonic 

excitation into a charge 

separation, which transfers 

an electron from the donor 

P700 chlorophyll pair to 

the spectroscopically 

characterized acceptors 

A0, A1, FX, FA and FB in 

turn. Oxidized P700 is 

reduced on the lumenal 

side of the thylakoid 

membrane by plastocyanin 

0 1550.4 
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HT BnaC04g15560D psaB PsaA and PsaB bind P700, 

the primary electron donor 

of photosystem I (PSI), as 

well as the electron 

acceptors A0, A1 and FX. 

PSI is a plastocyanin-

ferredoxin oxidoreductase, 

converting photonic 

excitation into a charge 

separation, which transfers 

an electron from the donor 

P700 chlorophyll pair to 

the spectroscopically 

characterized acceptors 

A0, A1, FX, FA and FB in 

turn. Oxidized P700 is 

reduced on the lumenal 

side of the thylakoid 

membrane by plastocyanin 

0 1100.1 

HT BnaC02g13240D RAN1 GTP-binding protein 

involved in 

nucleocytoplasmic 

transport. Required for the 

import of protein into the 

nucleus and also for RNA 

export. Involved in 

chromatin condensation 

and control of cell cycle 

5.00E-115 420.6 

HT BnaC04g15270D RBL1 Rhomboid family 1.00E-215 755.7 
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HT BnaA03g44840D RPB2 DNA-dependent RNA 

polymerase catalyzes the 

transcription of DNA into 

RNA using the four 

ribonucleoside 

triphosphates as substrates 

0 2344.3 

HT BnaC02g12070D RPL31 60s ribosomal protein 5.40E-59 233.4 

HT BnaC04g13530D RPS25 ribosomal protein 2.30E-09 68.2 

HT BnaC04g13040D RPS3 40S ribosomal protein 1.30E-132 479.2 

HT BnaC02g12080D RPS30 Belongs to the eukaryotic 

ribosomal protein eS30 

family 

5.70E-31 140.2 

HT BnaA02g00470D RPS6 Belongs to the eukaryotic 

ribosomal protein eS6 

family 

7.00E-133 479.9 

HT BnaC04g17690D RPT4A Belongs to the AAA 

ATPase family 

3.40E-222 777.3 

HT BnaA03g45360D SCD1 DENN domain and WD 

repeat-containing protein 

SCD1 

4.10E-118 431 

HT BnaC09g29060D TAP46 TAP42-like family 2.20E-200 704.9 

HT BnaC02g13170D TOP1 DNA Topoisomerase I 

(eukaryota) 

0 1242.6 

HT BnaA03g44620D TPP2 Tripeptidyl-peptidase 0 2507.6 

HT BnaC09g29430D TRY transcription regulator 

recruiting activity 

3.20E-50 204.1 

HT BnaA03g44640D TUB9 Tubulin is the major 

constituent of 

microtubules. It binds two 

moles of GTP, one at an 

exchangeable site on the 

beta chain and one at a 

non-exchangeable site on 

the alpha chain 

3.10E-256 890.6 

HT BnaC04g14640D UBA1 Belongs to the ubiquitin-

activating E1 family 

0 2107.8 
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HT BnaC09g28960D UGT84B2 Belongs to the UDP-

glycosyltransferase family 

4.30E-28 131.3 

HT BnaC04g14870D VLN1 Villin headpiece domain 0 1788.9 

HT BnaA08g04100D WOX4 Homeodomain 3.80E-134 484.2 

HT BnaC04g13870D WRKY21 Transcription factor 1.20E-180 639 

HT BnaC04g19430D WRKY6 Transcription factor 1.30E-231 808.9 

HT BnaC09g29130D ycf1 BEST Arabidopsis thaliana 

protein match is Ycf1 

protein (TAIR 

0 1855.1 

HT BnaC09g29140D ycf1 BEST Arabidopsis thaliana 

protein match is Ycf1 

protein (TAIR 

7.50E-152 543.5 

HT BnaC09g29210D ycf1 BEST Arabidopsis thaliana 

protein match is Ycf1 

protein (TAIR 

5.40E-184 650.2 

HT BnaC04g14740D ZIP6 Transporter 1.60E-175 622.1 

SPC BnaA09g13300D ACO1 Belongs to the iron 

ascorbate-dependent 

oxidoreductase family 

1.10E-186 659.1 

SPC BnaC03g62970D AG Floral homeotic protein 1.10E-125 456.1 

SPC BnaC03g64810D BGLU3 Belongs to the glycosyl 

hydrolase 1 family 

1.20E-100 372.5 

SPC BnaC03g64790D BGLU5 Belongs to the glycosyl 

hydrolase 1 family 

1.60E-94 352.8 

SPC BnaC09g20030D BI-1 Belongs to the BI1 family 5.00E-123 447.2 

SPC BnaC07g47240D BRI1 Belongs to the protein 

kinase superfamily. Ser 

Thr protein kinase family 

0 1262.7 

SPC BnaC09g19210D CUL4 Belongs to the cullin 

family 

0 1461.4 

SPC BnaC01g37450D CWINV Belongs to the glycosyl 

hydrolase 32 family 

0 1212.2 

SPC BnaC03g63590D CYCT1 Belongs to the cyclin 

family 

9.90E-286 988.8 

SPC BnaC09g18860D CYP707A1 Belongs to the cytochrome 

P450 family 

2.10E-271 941 
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SPC BnaC03g63040D ERD3 AT4G19120 (E 0.0) ERD3 

ERD3 (early-responsive to 

dehydration 3) 

0 1253 

SPC BnaC09g18650D FAD7 omega-3 fatty acid 

desaturase 

1.90E-174 618.2 

SPC BnaA09g13190D FMOGS-OX1 flavin-containing 

monooxygenase 

8.30E-273 945.7 

SPC BnaA03g47400D GA20ox1 Belongs to the iron 

ascorbate-dependent 

oxidoreductase family 

3.20E-208 730.7 

SPC BnaA09g14180D GolS4 Belongs to the 

glycosyltransferase 8 

family 

3.20E-197 694.1 

SPC BnaC01g37200D GOX1 (S)-2-hydroxy-acid oxidase 5.50E-195 686.8 

SPC BnaA09g03700D GSH2 glutathione synthetase 7.50E-266 922.5 

SPC BnaA09g00850D GSTF2 Belongs to the GST 

superfamily 

7.50E-58 229.6 

SPC BnaA09g00860D GSTF2 Belongs to the GST 

superfamily 

1.90E-14 84.7 

SPC BnaC09g04960D HCF136 Photosystem II stability 

assembly factor 

2.90E-49 201.4 

SPC BnaC09g04970D HCF136 Photosystem II stability 

assembly factor 

2.00E-18 97.8 

SPC BnaC09g19280D KAS1 Belongs to the beta-

ketoacyl-ACP synthases 

family 

1.10E-269 935.3 

SPC BnaC09g19900D LBA1 Regulator of nonsense 

transcripts 1 homolog 

0 1402.1 

SPC BnaA09g13710D LHCA3 The light-harvesting 

complex (LHC) functions 

as a light receptor, it 

captures and delivers 

excitation energy to 

photosystems with which it 

is closely associated 

1.70E-153 548.5 

SPC BnaC09g20020D LIL Lil3 protein 5.70E-135 486.9 

SPC BnaA09g13650D LIS S-( )-linalool synthase 6.80E-106 390.2 

SPC BnaA09g13640D LIS S-( )-linalool synthase 3.90E-62 244.2 
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SPC BnaC05g31340D NFU4 NIFU-like protein 5.80E-152 543.5 

SPC BnaA09g03600D NHX1 Sodium hydrogen 

exchanger 

7.00E-300 1035.8 

SPC BnaA09g03590D NOP5 Nucleolar protein 9.70E-249 865.9 

SPC BnaA08g00080D NOP56 Nucleolar protein 3.00E-247 860.9 

SPC BnaA05g05760D P5CS P5CS plays a key role in 

proline biosynthesis, 

leading to osmoregulation 

in plants 

0 1382.9 

SPC BnaC03g64690D PER1 Per1-like family 1.30E-52 212.2 

SPC BnaC03g64700D PER1 Per1-like family 4.10E-64 250.8 

SPC BnaA09g04240D PWD1 Phosphoglucan, water 

dikinase 

0 2219.5 

SPC BnaC09g19620D PYL1 Polyketide cyclase / 

dehydrase and lipid 

transport 

6.60E-99 366.7 

SPC BnaC09g04920D PYR4 Belongs to the 

dihydroorotate 

dehydrogenase family. 

Type 2 subfamily 

3.20E-264 917.1 

SPC BnaC03g62330D RHA3B Ring-H2 finger 2.30E-91 341.7 

SPC BnaC03g62560D RPB1 DNA-dependent RNA 

polymerase catalyzes the 

transcription of DNA into 

RNA using the four 

ribonucleoside 

triphosphates as substrates 

1.10E-06 59.3 

SPC BnaC03g64530D RPB2 DNA-dependent RNA 

polymerase catalyzes the 

transcription of DNA into 

RNA using the four 

ribonucleoside 

triphosphates as substrates 

0 1143.3 
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SPC BnaC03g64540D RPB2 DNA-dependent RNA 

polymerase catalyzes the 

transcription of DNA into 

RNA using the four 

ribonucleoside 

triphosphates as substrates 

2.20E-117 428.3 

SPC BnaC03g63980D RPB2 DNA-dependent RNA 

polymerase catalyzes the 

transcription of DNA into 

RNA using the four 

ribonucleoside 

triphosphates as substrates 

0 2248.8 

SPC BnaC05g46250D RPL22 60s ribosomal protein 3.50E-61 240.7 

SPC BnaA09g03840D RPS21 Belongs to the eukaryotic 

ribosomal protein eS21 

family 

2.30E-40 171 

SPC BnaC07g47340D RPS25 40s ribosomal protein 2.10E-36 158.3 

SPC BnaC05g46270D RPT5A Belongs to the AAA 

ATPase family 

1.80E-237 828.2 

SPC BnaC06g32810D SERK1 Belongs to the protein 

kinase superfamily. Ser 

Thr protein kinase family 

1.40E-294 1018.5 

SPC BnaA09g13310D STM ELK 4.40E-187 660.6 

SPC BnaC03g63800D TAF11 tbp-associated factor 4.90E-39 167.5 
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SPC BnaA02g27980D THI1 Involved in biosynthesis of 

the thiamine precursor 

thiazole. Catalyzes the 

conversion of NAD and 

glycine to adenosine 

diphosphate 5-(2-

hydroxyethyl)-4-

methylthiazole-2-

carboxylic acid (ADT), an 

adenylated thiazole 

intermediate. The reaction 

includes an iron-dependent 

sulfide transfer from a 

conserved cysteine residue 

of the protein to a thiazole 

intermediate. The enzyme 

can only undergo a single 

turnover, which suggests it 

is a suicide enzyme. May 

have additional roles in 

adaptation to various stress 

conditions and in DNA 

damage tolerance 

2.80E-154 551.2 

SPC BnaA08g00200D TIM50 Mitochondrial import inner 

membrane translocase 

subunit 

8.40E-183 646.4 

SPC BnaA09g13040D TIM9 Belongs to the small Tim 

family 

1.00E-44 185.7 

SPC BnaA08g02120D UBC20 protein modification by 

small protein conjugation 

3.00E-63 247.7 

SPC BnaC03g64120D VPS28 Component of the ESCRT-

I complex (endosomal 

sorting complex required 

for transport I), a regulator 

of vesicular trafficking 

process 

3.30E-104 384.4 
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SPC BnaA09g14140D VPS34 Belongs to the PI3 PI4-

kinase family 

0 1629 

SPC BnaC07g47230D WRKY13 transcription factor 3.10E-145 521.2 

SPC BnaA09g13370D WRKY6 Transcription factor 1.10E-290 1005.4 

SPC BnaC09g19320D WRKY8 transcription factor 8.40E-139 500 

SPC BnaC03g64360D ZAC ADP-ribosylation factor 

GTPase-activating protein 

1.30E-164 585.9 

SOC BnaC06g14830D AFC1 ATP binding kinase 

protein kinase protein 

serine threonine kinase 

protein tyrosine kinase 

0 1515.4 

SOC BnaC03g62970D AG Floral homeotic protein 1.10E-125 456.1 

SOC BnaA07g16990D AREB3 ABSCISIC ACID-

INSENSITIVE 5-like 

protein 2 

4.90E-113 414.1 

SOC BnaA07g17010D AREB3 ABSCISIC ACID-

INSENSITIVE 5-like 

protein 2 

1.50E-44 186 

SOC BnaC02g12420D ARP8 cytoskeleton organization 2.80E-268 930.6 

SOC BnaA02g01640D ATP5 ATP synthase 1.10E-124 452.6 

SOC BnaA07g17230D BG3 Belongs to the glycosyl 

hydrolase 17 family 

2.60E-191 674.5 

SOC BnaC03g64810D BGLU3 Belongs to the glycosyl 

hydrolase 1 family 

1.20E-100 372.5 

SOC BnaC03g64790D BGLU5 Belongs to the glycosyl 

hydrolase 1 family 

1.60E-94 352.8 

SOC BnaC09g20030D BI-1 Belongs to the BI1 family 5.00E-123 447.2 

SOC BnaA07g17200D CBF5 H ACA ribonucleoprotein 

complex subunit 

1.00E-245 855.9 

SOC BnaA07g17150D CBL cystathionine beta-lyase 2.60E-26 124.8 

SOC BnaC02g12710D CBL2 Calcineurin B-like protein 

2 

3.70E-125 454.1 

SOC BnaA07g17040D CRD1 magnesium-protoporphyrin 

IX monomethyl ester 

(oxidative) cyclase 

7.50E-225 786.2 

SOC BnaC09g19210D CUL4 Belongs to the cullin 

family 

0 1461.4 
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SOC BnaC03g63590D CYCT1 Belongs to the cyclin 

family 

9.90E-286 988.8 

SOC BnaC09g18860D CYP707A1 Belongs to the cytochrome 

P450 family 

2.10E-271 941 

SOC BnaC09g37430D DCL4 Belongs to the helicase 

family. Dicer subfamily 

0 3107.4 

SOC BnaA02g01720D DCP2 hydrolase m7G(5')pppN 

diphosphatase mRNA 

binding protein 

homodimerization 

3.10E-173 614.4 

SOC BnaC09g37350D EFR Belongs to the protein 

kinase superfamily. Ser 

Thr protein kinase family 

4.40E-224 784.6 

SOC BnaC03g63040D ERD3 AT4G19120 (E 0.0) ERD3 

ERD3 (early-responsive to 

dehydration 3) 

0 1253 

SOC BnaC02g12340D EXPA14 Rare lipoprotein A (RlpA)-

like double-psi beta-barrel 

1.30E-147 528.9 

SOC BnaC09g18650D FAD7 omega-3 fatty acid 

desaturase 

1.90E-174 618.2 

SOC BnaC02g13190D FTSZ1-1 Cell division protein FtsZ 

homolog 1 

6.40E-227 793.1 

SOC BnaC02g12750D HSP81-3 heat shock protein 6.70E-272 943 

SOC BnaC02g12680D HSP81-3 heat shock protein 9.60E-37 159.5 

SOC BnaA02g01650D IQD11 IQ-domain 3.60E-184 651 

SOC BnaC09g19280D KAS1 Belongs to the beta-

ketoacyl-ACP synthases 

family 

1.10E-269 935.3 

SOC BnaC09g19900D LBA1 Regulator of nonsense 

transcripts 1 homolog 

0 1402.1 

SOC BnaC09g20020D LIL Lil3 protein 5.70E-135 486.9 

SOC BnaA02g01700D LKHA4 peptidase M1 family 

protein 

0 1206.4 
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SOC BnaC09g29160D ndhH NDH shuttles electrons 

from NAD(P)H 

plastoquinone, via FMN 

and iron-sulfur (Fe-S) 

centers, to quinones in the 

photosynthetic chain and 

possibly in a chloroplast 

respiratory chain. The 

immediate electron 

acceptor for the enzyme in 

this species is believed to 

be plastoquinone. Couples 

the redox reaction to 

proton translocation, and 

thus conserves the redox 

energy in a proton gradient 

3.30E-140 504.2 

SOC BnaC09g29150D ndhH NDH shuttles electrons 

from NAD(P)H 

plastoquinone, via FMN 

and iron-sulfur (Fe-S) 

centers, to quinones in the 

photosynthetic chain and 

possibly in a chloroplast 

respiratory chain. The 

immediate electron 

acceptor for the enzyme in 

this species is believed to 

be plastoquinone. Couples 

the redox reaction to 

proton translocation, and 

thus conserves the redox 

energy in a proton gradient 

1.10E-71 275.8 

SOC BnaC05g44530D NS2 asparagine-tRNA ligase 0 1132.9 
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SOC BnaA07g17160D ORC5 Origin recognition 

complex (ORC) subunit 5 

C-terminus 

2.90E-290 1003.8 

SOC BnaC03g64700D PER1 Per1-like family 4.10E-64 250.8 

SOC BnaC03g64690D PER1 Per1-like family 1.30E-52 212.2 

SOC BnaA02g01880D PPH Alpha/beta hydrolase 

family 

8.90E-269 932.6 

SOC BnaC09g19620D PYL1 Polyketide cyclase / 

dehydrase and lipid 

transport 

6.60E-99 366.7 

SOC BnaA06g03620D RACK1A Guanine nucleotide-

binding protein subunit 

beta-like protein 

1.70E-133 482.3 

SOC BnaC02g13240D RAN1 GTP-binding protein 

involved in 

nucleocytoplasmic 

transport. Required for the 

import of protein into the 

nucleus and also for RNA 

export. Involved in 

chromatin condensation 

and control of cell cycle 

5.00E-115 420.6 

SOC BnaC09g37280D RBX1 RING-box protein 9.20E-59 232.6 

SOC BnaC03g62330D RHA3B Ring-H2 finger 2.30E-91 341.7 

SOC BnaC03g62560D RPB1 DNA-dependent RNA 

polymerase catalyzes the 

transcription of DNA into 

RNA using the four 

ribonucleoside 

triphosphates as substrates 

1.10E-06 59.3 

SOC BnaC03g64530D RPB2 DNA-dependent RNA 

polymerase catalyzes the 

transcription of DNA into 

RNA using the four 

ribonucleoside 

triphosphates as substrates 

0 1143.3 



 267 

SOC BnaC03g63980D RPB2 DNA-dependent RNA 

polymerase catalyzes the 

transcription of DNA into 

RNA using the four 

ribonucleoside 

triphosphates as substrates 

0 2248.8 

SOC BnaC03g64540D RPB2 DNA-dependent RNA 

polymerase catalyzes the 

transcription of DNA into 

RNA using the four 

ribonucleoside 

triphosphates as substrates 

2.20E-117 428.3 

SOC BnaC02g12070D RPL31 60s ribosomal protein 5.40E-59 233.4 

SOC BnaC02g12080D RPS30 Belongs to the eukaryotic 

ribosomal protein eS30 

family 

5.70E-31 140.2 

SOC BnaA07g17050D SIP2-1 Belongs to the MIP 

aquaporin (TC 1.A.8) 

family 

2.00E-129 468.4 

SOC BnaC09g37040D SUS1 Sucrose-cleaving enzyme 

that provides UDP-glucose 

and fructose for various 

metabolic pathways 

0 1638.2 

SOC BnaC03g63800D TAF11 tbp-associated factor 4.90E-39 167.5 

SOC BnaC09g29060D TAP46 TAP42-like family 2.20E-200 704.9 

SOC BnaA06g03690D TOC64-1 Translocon at the outer 

membrane of chloroplasts 

64-III 

2.10E-300 1037.7 

SOC BnaC02g13170D TOP1 DNA Topoisomerase I 

(eukaryota) 

0 1242.6 

SOC BnaC09g29430D TRY transcription regulator 

recruiting activity 

3.20E-50 204.1 

SOC BnaC09g28960D UGT84B2 Belongs to the UDP-

glycosyltransferase family 

4.30E-28 131.3 
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SOC BnaC03g64120D VPS28 Component of the ESCRT-

I complex (endosomal 

sorting complex required 

for transport I), a regulator 

of vesicular trafficking 

process 

3.30E-104 384.4 

SOC BnaC09g19320D WRKY8 transcription factor 8.40E-139 500 

SOC BnaC09g29130D ycf1 BEST Arabidopsis thaliana 

protein match is Ycf1 

protein (TAIR 

0 1855.1 

SOC BnaC09g29210D ycf1 BEST Arabidopsis thaliana 

protein match is Ycf1 

protein (TAIR 

5.40E-184 650.2 

SOC BnaC09g29140D ycf1 BEST Arabidopsis thaliana 

protein match is Ycf1 

protein (TAIR 

7.50E-152 543.5 

SOC BnaC03g64360D ZAC ADP-ribosylation factor 

GTPase-activating protein 

1.30E-164 585.9 

GSL BnaC08g29410D WRKY69 transcription factor 3.70E-84 317.8 

GSL BnaC05g10200D WRKY4 Transcription factor 3.40E-218 764.2 

GSL BnaA08g06570D UPF3 ATUPF3, UPF3 Smg-4 

UPF3 family protein 

6.30E-113 414.1 

GSL BnaA08g06560D UPF3 ATUPF3, UPF3 Smg-4 

UPF3 family protein 

3.60E-258 897.1 

GSL BnaC03g21990D UPF2 Up-frameshift suppressor 2 0 2032.7 

GSL BnaC02g13170D TOP1 DNA Topoisomerase I 

(eukaryota) 

0 1242.6 

GSL BnaC05g10850D SOS1 sodium hydrogen 0 1388.2 

GSL BnaC03g36650D SIR1 Sulfite reductase 0 1297.3 

GSL BnaC03g36500D SEC8 exocyst complex 0 1897.9 

GSL BnaC05g10920D SDS Belongs to the cyclin 

family 

3.40E-308 1063.5 

GSL BnaC06g24140D SDP1 Transcription factor 3.70E-227 794.3 
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GSL BnaC06g24350D RPSa Required for the assembly 

and or stability of the 40S 

ribosomal subunit. 

Required for the 

processing of the 20S 

rRNA- precursor to mature 

18S rRNA in a late step of 

the maturation of 40S 

ribosomal subunits 

1.60E-165 588.6 

GSL BnaC02g12080D RPS30 Belongs to the eukaryotic 

ribosomal protein eS30 

family 

5.70E-31 140.2 

GSL BnaC02g12070D RPL31 60s ribosomal protein 5.40E-59 233.4 

GSL BnaC05g10550D RPL10 Ribosomal protein 

L16p/L10e 

1.20E-126 459.1 

GSL BnaC05g10980D RDR1 Probably involved in the 

RNA silencing pathway 

and required for the 

generation of small 

interfering RNAs 

(siRNAs) 

0 2184.5 

GSL BnaC03g36360D RAPTOR1 Regulatory-associated 

protein of TOR 

0 2610.9 

GSL BnaC02g13240D RAN1 GTP-binding protein 

involved in 

nucleocytoplasmic 

transport. Required for the 

import of protein into the 

nucleus and also for RNA 

export. Involved in 

chromatin condensation 

and control of cell cycle 

5.00E-115 420.6 

GSL BnaC07g18200D RAN1 Copper-transporting 

ATPase 

0 1847.4 

GSL BnaC02g13600D PRPL24 Belongs to the universal 

ribosomal protein uL24 

family 

1.00E-102 379.4 
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GSL BnaC02g10920D PHOT2 FMN binding blue light 

photoreceptor kinase 

protein serine threonine 

kinase 

0 1666.4 

GSL BnaA06g28960D NOP5 Nucleolar protein 1.00E-250 872.5 

GSL BnaC03g12430D NADP-MDH lactate/malate 

dehydrogenase, alpha/beta 

C-terminal domain 

1.70E-251 874.8 

GSL BnaC06g24580D MAK16 Belongs to the MAK16 

family 

1.70E-109 402.5 

GSL BnaC02g12680D HSP81-3 heat shock protein 9.60E-37 159.5 

GSL BnaC02g12750D HSP81-3 heat shock protein 6.70E-272 943 

GSL BnaA08g06530D HLIP One-helix protein 6.40E-69 266.9 

GSL BnaC03g36740D GYRA DNA gyrase subunit A 0 1750.7 

GSL BnaC02g13190D FTSZ1-1 Cell division protein FtsZ 

homolog 1 

6.40E-227 793.1 

GSL BnaC03g36510D FLD flowering locus 0 1677.5 

GSL BnaC03g37090D FAD7 omega-3 fatty acid 

desaturase 

4.90E-267 926.4 

GSL BnaC02g12340D EXPA14 Rare lipoprotein A (RlpA)-

like double-psi beta-barrel 

1.30E-147 528.9 

GSL BnaC03g30750D EOL1 Tetratricopeptide repeats 0 1604.7 

GSL BnaC02g11150D EIF4G translation initiation factor 0 1469.9 

GSL BnaC03g37030D DREB2A Dehydration-responsive 

element-binding protein 

5.60E-47 194.5 

GSL BnaA04g06630D CYP83A1 cytochrome P450 1.50E-291 1008.1 

GSL BnaA07g27740D CRC YABBY protein 5.70E-68 263.8 

GSL BnaC03g21760D CPK20 calcium-dependent protein 

kinase 

0 1088.6 

GSL BnaC03g36720D CPK2 calmodulin-domain protein 

kinase cdpk isoform 2 

1.50E-258 898.7 

GSL BnaC03g36730D CPK2 calmodulin-domain protein 

kinase cdpk isoform 2 

2.40E-181 641.3 
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GSL BnaC04g46710D COI1 coi1 coi1 (coronatine 

insensitive 1) 

0 1198.3 

GSL BnaC02g13300D CNX5 Plays a central role in 2-

thiolation of mcm(5)S(2)U 

at tRNA wobble positions 

of cytosolic tRNA(Lys), 

tRNA(Glu) and 

tRNA(Gln). Also essential 

during biosynthesis of the 

molybdenum cofactor. 

Acts by mediating the C-

terminal thiocarboxylation 

of sulfur carriers URM1 

and MOCS2A. Its N-

terminus first activates 

URM1 and MOCS2A as 

acyl-adenylates (-

COAMP), then the 

persulfide sulfur on the 

catalytic cysteine is 

transferred to URM1 and 

MOCS2A to form 

thiocarboxylation (-COSH) 

of their C-terminus. The 

reaction probably involves 

hydrogen sulfide that is 

generated from the 

persulfide intermediate and 

that acts as nucleophile 

towards URM1 and 

MOCS2A. Subsequently, a 

transient disulfide bond is 

formed. Does not use 

thiosulfate as sulfur donor 

5.80E-258 896.3 

GSL BnaC03g36530D CBP3 serine carboxypeptidase-

like 49 

3.40E-291 1006.9 

GSL BnaC02g12710D CBL2 Calcineurin B-like protein 

2 

3.70E-125 454.1 

GSL BnaC03g22180D BIK1 belongs to the protein 

kinase superfamily 

5.90E-227 793.1 
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GSL BnaC03g07000D BCCP2 first, biotin carboxylase 

catalyzes the carboxylation 

of the carrier protein and 

then the transcarboxylase 

transfers the carboxyl 

group to form malonyl-

CoA 

2.20E-97 362.1 

GSL BnaC05g10870D BBR/BPC1 basic pentacysteine 8.20E-256 889.4 

GSL BnaC03g36760D ASD1 Alpha-L-

arabinofuranosidase 

0 1370.5 

GSL BnaC02g12420D ARP8 cytoskeleton organization 2.80E-268 930.6 

GSL BnaA05g01310D ARF1 Auxin response factors 

(ARFs) are transcriptional 

factors that bind 

specifically to the DNA 

sequence 5'-TGTCTC-3' 

found in the auxin-

responsive promoter 

elements (AuxREs) 

0 1151 

GSL BnaA07g27710D AP1 transcription factor that 

promotes early floral 

meristem identity in 

synergy with APETALA1, 

FRUITFULL and LEAFY. 

Is required subsequently 

for the transition of an 

inflorescence meristem 

into a floral meristem. 

Seems to be partially 

redundant to the function 

of APETALA1 

6.50E-126 456.8 

GSL BnaC08g29530D AG Agamous-like MADS-box 

protein 

4.60E-67 260.4 

GSL BnaC08g29520D AG Agamous-like MADS-box 

protein 

1.00E-66 259.2 

GSL BnaA07g27660D ACR4 ACT domain 6.10E-252 876.3 

GSL BnaC03g30470D ABP1 Auxin binding protein 3.50E-111 407.5 
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Figure S3.2 Manhattan plots showing plant height (HT) based on the MS-2 (16,855 SNP markers). 

Bonferroni-corrected significance threshold was shown as the red horizontal line at -log10 

(0.05/16855) =5.53. (A) Results from the Brassica napus L. parental population based on six 

models including mixed linear models considering kinship (MLM+K), mixed linear models 

considering subpopulation structure via Bayesian clustering (MLM+K+Q), mixed linear models 

considering subpopulation structure via principal component analysis (MLM+K+PCA), multi-loci 

mixed model (MLMM), Fixed and random model circulating probability unification (FarmCPU) 

and compression mixed linear model (CMLM). (B) Results from the Brassica napus L. combined 

population based on three models MLMM, FarmCPU and CMLM. 

  

A. 

B. 
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Figure S3.3 Manhattan plots showing seed protein content (SPC) based on the MS-2 (16,855 SNP 

markers). Bonferroni-corrected significance threshold was shown as the red horizontal line at -

log10 (0.05/16855) =5.53. (A) Results from the Brassica napus L. parental population based on six 

models including mixed linear models considering kinship (MLM+K), mixed linear models 

considering subpopulation structure via Bayesian clustering (MLM+K+Q), mixed linear models 

considering subpopulation structure via principal component analysis (MLM+K+PCA), multi-loci 

mixed model (MLMM), Fixed and random model circulating probability unification (FarmCPU) 

and compression mixed linear model (CMLM). (B) Results from the Brassica napus L. combined 

population based on three models MLMM, FarmCPU and CMLM. 

  

A. 

B. 
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Figure S3.4 Manhattan plots showing seed oil content (SOC) based on the MS-2 (16,855 SNP 

markers). Bonferroni-corrected significance threshold was shown as the red horizontal line at -

log10(0.05/16855) =5.53. (A) Results from the Brassica napus L. parental population based on six 

models including mixed linear models considering kinship (MLM+K), mixed linear models 

considering subpopulation structure via Bayesian clustering (MLM+K+Q), mixed linear models 

considering subpopulation structure via principal component analysis (MLM+K+PCA), multi-loci 

mixed model (MLMM), Fixed and random model circulating probability unification (FarmCPU) 

and compression mixed linear model (CMLM). (B) Results from the Brassica napus L. combined 

population based on three models MLMM, FarmCPU and CMLM. 

  

A. 

B. 
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Figure S3.5 Manhattan plots showing seed glucosinolate content (GSL) based on the MS-2 (16,855 

SNP markers). Bonferroni-corrected significance threshold was shown as the red horizontal line 

at -log10(0.05/16855) =5.53. (A) Results from the Brassica napus L. parental population based on 

six models including mixed linear models considering kinship (MLM+K), mixed linear models 

considering subpopulation structure via Bayesian clustering (MLM+K+Q), mixed linear models 

considering subpopulation structure via principal component analysis (MLM+K+PCA), multi-loci 

mixed model (MLMM), Fixed and random model circulating probability unification (FarmCPU) 

and compression mixed linear model (CMLM). (B) Results from the Brassica napus L. combined 

population based on three models MLMM, FarmCPU and CMLM. 

 

A. 

B 
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