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ABSTRACT 
 

This thesis consists of three essays that address questions in health economics using different 

datasets and econometric approaches. In the first essay, I apply novel non-parametric econometric 

techniques to estimate the causal effect of retirement on health using the U.S. Health and 

Retirement Study (HRS) survey. I use a non-parametric Fuzzy Regression Discontinuity Design 

(RDD) technique for my analysis to avoid restrictive assumptions on a particular functional form 

and to capture the potential reverse causality from health to retirement (endogeneity issue) by 

exploiting the exogenous variation in retirement decisions induced by U.S. pension eligibility ages 

at 62 and 65. The results show that retirement is associated with an 8% decline in the cognitive 

functioning score of retirees, and 0.42 points increase in the CESD depression scale. Retirees also 

are 13 percentage points less likely to report good general health status, 8.8 percentage points less 

likely to be drinkers, and they are 4 percentage points less likely to consume alcohol more than 

three times per week. In the second essay, I use an administrative database to investigate the impact 

of the timing of first exposure to maternal depression on a comprehensive measure of children’s 

school readiness that incorporates multidimensional developmental domains that underlie school 

class adaptation and later success. I find that exposure to maternal depression is associated with 

developmental vulnerability in emotional, physical, social, and cognitive domains. The strongest 

adverse effects on development are from exposure to depression during pregnancy, followed by 

exposure during the preschool period. In the third essay, I examine the impact of Type I Diabetes 

Mellitus (TIDM) during childhood on educational attainment and labor market outcomes in 

adulthood using the National Health Interview Survey (NHIS). The results show that individuals 

who developed Type I diabetes early in life are 7 to 17 percentage points less likely to be employed, 

work fewer hours (3 to 11 hours less per week) and are 5 to 10 percentage points more likely to 

receive social welfare assistance than non-diabetics. In addition, Type I diabetics experience less 

educational attainment than non-diabetics.  
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INTRODUCTION 

 

This thesis consists of three essays that address questions in health economics using 

different datasets and econometric approaches. In the first essay, I apply novel non-parametric 

econometric techniques to estimate the causal effect of retirement on health status and health-

related behavior using the last ten waves of the U.S. Health and Retirement Study (HRS) survey 

from 1996-2014. I use a non-parametric Fuzzy Regression Discontinuity Design (RDD) technique 

to avoid restrictive assumptions on a particular functional form and to capture the potential reverse 

causality from health to retirement (endogeneity issue) by exploiting the exogenous variation in 

retirement decisions induced by U.S. pension eligibility ages at 62 and 65. I check the robustness 

of the nonparametric RD estimates in the analysis of the effect of retirement on health using a 

variety of distinct procedures. I demonstrate that the RD estimates of the effect of retirement do 

not change across different weighting schemes that give higher weight to the observations in the 

neighborhood of the cut-off point but away from the cut-off. I also check the robustness of the 

results under different polynomial procedures, linear and quadratic, and there is no significant 

change in the results.  The robustness of the regression is verified by estimating the effect of 

retirement at different bandwidths around the cut-off point, i.e., RD treatment effect estimated for 

50 to 200 percent of the Cross-Validation optimal bandwidth (half and twice of the optimal 

bandwidth) with 5 percentage point increments. To check the validity of the RD, I run a procedure 

called the “donut hole” approach, which excludes observations that are very close to the cut-off 

point to investigate how sensitive the results are to this exclusion. The RD estimation and inference 

analysis are then repeated using the remaining sample. I also run a falsification test to check for 

the continuity of the running variable and the sensitivity of the RD to different methods of the 
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chosen bandwidths and show that the estimates were robust to different bandwidths and weighting 

kernel functions. I perform two tests to see what will happen to the estimated RD treatment effect 

when the value of the running value is a little bit further away from the cut-off point, which is 

known as the Treatment Effect Derivative (TED). This is another novel approach in this chapter. 

Finally, the parametric fuzzy RD estimation is introduced as a sensitivity check for using more 

information from the observations far away from the neighborhood of the cut-off point and the 

results were consistent.  In general, I find that retirement has a significant negative impact on 

physical and mental health status. The non-parametric fuzzy RD results show that the significant 

jump in retirement probability is associated with an 8% decline in the cognitive functioning score 

of retirees, and 0.42 points increase in the CESD depression scale. Retirees also are 13 percentage 

points less likely to report good general health status. Regarding health-related behavior, retirees 

are 8.8 percentage points less likely to be drinkers relative to non-retirees and they are 4 percentage 

points less likely to consume alcohol more than three times per week. However, they are 3 

percentage points more likely to be smokers relative to non-retired individuals. Furthermore, 

retirement has a significant heterogeneity effect across socioeconomic and retired gender groups.  

The second and third essays address questions related to the potential short and long-term 

consequences of reduced childhood human capital formation, including both cognitive and non-

cognitive skills.  These two essays focus on two potential disruptions to the formation of human 

capabilities, exposure to maternal depression (essay 2), and early childhood-onset Type I diabetes 

(essay 3). According to the human capital formation model, individuals are born with 

heterogeneous endowments of capabilities (e.g., cognitive capabilities, non-cognitive capabilities, 

and stock of mental and physical health at birth) and the technology of skill formation at any point 

in the child's life is affected by skills attainment in previous stages. Some studies show that the 
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most sensitive period of child development spans from the time of conception through the fifth 

birthday (Houston, 2014; Georgiadis et al., 2016). It is characterized by rapid physical, motor, 

cognitive, and socio-emotional development (Britto et al., 2011; Couperus & Nelson, 2006), which 

allows cognitive and socio-emotional abilities to start developing and establishes the foundation 

for a child’s short and long-term success (Deoni et al., 2015; Knudsen, Heckman, Cameron, & 

Shonkoff, 2006). In addition, some studies show that human capital stock during childhood 

predicts adult human capital and earnings (Currie and Thomas 1999; McLeod and Kaiser 2004).  

Therefore, disruption to skills formation in early childhood play an important role at school entry 

age and in the formation of human capabilities in early adulthood. 

In the second essay, I investigate the impact of the timing of first exposure to maternal 

depression on a comprehensive measure of children’s school readiness that incorporates 

multidimensional developmental domains that underlie school class adaptation and later success. 

Using the administrative database at the Manitoba Center for Health Policy, 59,413 children with 

an Early Development Instrument (EDI) score are linked to their mothers and followed over time 

from five years before the child’s birth to the child’s 5th birthday. The focus on the first exposure 

to maternal depression is necessary to help isolate the effects resulting from each exposure period 

and to control for the issue of overlapping repeated depression episodes. I assign each mother-

child dyad to 1 of 4 mutually exclusive exposure timing categories. Specifically, these are: children 

not exposed to maternal depression at any point (reference group); children first exposed to 

maternal depression during pregnancy; children first exposed to maternal depression during the 

postnatal period (birth - 12 months); children first exposed to maternal depression during the 

toddler period (12 months - 36 months); and children first exposed to maternal depression during 

the preschool period (36 months - 60 months).  I find that exposure to maternal depression is 
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associated with developmental vulnerability in emotional, physical, social, and cognitive domains.  

When controlling for health (measured by major Adjusted Diagnosis Groups (ADGs) and minor 

ADGs, and hospital admission frequency) of the child at birth, and through early childhood, and 

mother’s health prior to pregnancy, however, the effects of exposure to maternal depression on 

children’s abilities in the emotional, physical, and social domains were attenuated across the 

different exposure periods. This effect almost disappeared for cognitive and communication skills. 

That is, although maternal depression is a risk factor for children’s school readiness, children’s 

health and socioeconomic adversity remained an important factor for early child development. 

Exposure to depression during pregnancy has the strongest effect on developmental vulnerability, 

followed by the preschool period. Emotional maturity is the most sensitive domain across the 

different exposure periods. In contrast, cognitive and communication domains are the least 

sensitive to depression. Finally, there is gender and marital status heterogeneity in the effect of 

maternal depression on the emotional, physical, and social domains. These findings underscore the 

need for early detection of maternal depression, ideally by obstetricians during pregnancy, and in 

programs that focus on the mother and child together. Intervention programs should commence 

prior to the start of school to mitigate early developmental difficulties, which exacerbate if they 

are not addressed. 

In the third essay, I examine the impact of Type I Diabetes Mellitus (TIDM) during 

childhood on educational attainment and labor market outcomes in adulthood using the last ten 

waves of the National Health Interview Survey (NHIS). Individuals are identified as Type I 

diabetics during childhood if they were diagnosed for the first time with diabetes at age less than 

15 years and have been taking insulin. To avoid selection bias, a Tobit model is used to account 

for zero working hours and earnings. The results show that individuals who developed Type I 
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diabetes early in life are 7 to 17 percentage points less likely to be employed, work fewer hours (3 

to 11 hours less per week) and are 5 to 10 percentage points more likely to receive social welfare 

assistance than non-diabetic individuals. In addition, Type I diabetics experience less educational 

attainment than non-diabetics. They are 3 to 7 percentage points more likely to drop out of high 

school and 5 to 9 percentage points less likely to get a university degree.  I also find lower wages 

for type I diabetic persons. They can conservatively expect to lose more than $3,050 annually 

compared to their peers without Type I diabetes. The results show that there is socioeconomic 

heterogeneity in the impact of Type I diabetes on educational attainment and labor market 

outcomes. Individuals of parents with less than high school and who are in a low-income group 

have the worst educational attainment and labor market outcomes in adulthood. The 

socioeconomic status of the family has a positive impact on the long-run consequences of Type I 

diabetes, mitigating the negative effects of diabetes on their children. 
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Chapter 1 

The Effect of Retirement on Health and Health-related Behavior: Evidence 

from Non-parametric Fuzzy Regression Discontinuity Design (RDD) 

 

Abstract 

This paper estimates the causal effect of retirement on health status and health-related 

behavior using the last ten waves of the Health and Retirement Study (HRS) survey in the U.S. 

during the period 1996-2014. The non-parametric and parametric Fuzzy Regression 

Discontinuity Design (RDD) techniques are applied to capture the potential reverse causality 

from health to retirement (endogeneity issue) by exploiting the exogenous variation in retirement 

decisions induced by the U.S. pension eligibility ages at 62 and 65. In general, retirement has a 

significant negative impact on physical and mental health status. The non-parametric fuzzy RD 

results show that the significant jump in retirement probability is associated with an 8% decline 

in the cognitive functioning score of retirees, and 0.42 points increase in the CESD depression 

scale. Retirees also are 13 percentage points less likely to report good general health status. 

Regarding health-related behavior, retirees are 8.8 percentage points less likely to be drinkers 

relative to non-retirees and they are 4 percentage points less likely to consume alcohol more than 

three times per week. However, they are 3 percentage points more likely to be smokers relative 

to non-retired individuals. Furthermore, retirement has a significant heterogeneity effect across 

socioeconomic and retired gender groups. To address the issue of Medicare eligibility at age 65, 

I conduct different falsification tests of the RD analysis and the results remained valid. The 

parametric fuzzy RD estimation is introduced as a sensitivity check for using more information 

from the observations far away from the neighborhood of the cut-off point and the results were 

consistent. The estimates also were robust for using different bandwidths and different weighting 

kernel functions. 

 

 

 

 

 



2 

 

1.1. Introduction1 
 

Demographic change in the U.S shows that the proportion of retired individuals has 

substantially increased during the last few decades, which has also coincided with an increase in 

the life expectancy of Americans. This change means that individuals will spend a large portion 

of their life in retirement, during which a different lifestyle can affect the health of retirees 

(Bonsang, Adam, and Perelman, 2012). Theoretically, retirement may change individuals’ health 

in opposing ways. For instance, retirement may reduce work-related stress and increase leisure 

time, which can be used to invest in health through physical exercise and more sleep (Behncke, 

2009; Eibich, 2014). In addition, retirees are more likely to participate in social activities and 

reduce their alcohol and tobacco consumption (Midanik et al., 1995). In contrast, retirement is a 

fundamental change in an individual’s life, which may lead to depression and social isolation. 

For instance, individuals who are very satisfied with their work and have good work relations 

and contacts may see retirement as a stressful event that takes them away from their social 

networks and friends. Consequently, the retirement period may be accompanied by the emotional 

impacts of loneliness or feeling old (Behncke, 2009). 

 
1 All empirical estimation included in the tables in this chapter has been done using the statistical package 

“rdrobust” which has been written and developed by a group of professors at University of Michigan, U.S 

(Calonico, Cattaneo and Titiunik, CCT hereafter). Also, I used the statistical package “rddensity” which has been 

developed by Cattaneo, Ma and Jansson at University of Michigan and UC Berkeley, respectively. Actually, my 

estimation would have not been done without their seminal work on the non-parametric RD design and their codes 

to implement this design. Thanks for making the packages available for public access. All the RD estimation 

presented in the figures have been done based on my own estimation by applying the conventional RD estimator and 

using the Cross-validation optimal bandwidth as a kind of robustness to see how the RD results based on MSE-

optimal bandwidth developed by CTT are consistent with the RD results based on the CV-optimal bandwidth. The 

Fuzzy non-parametric RD treatment effect estimated for 50 to 200 percent of the CV-optimal bandwidth (half and 

twice the optimal bandwidth) with a 5 percentage points increment. Bootstrapped standard error are based on 120 

simulations to construct 95% CI. 
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Understanding the net and causal effects of retirement on health is important, especially 

as life expectancy is increasing and populations around the world are aging. There has been 

significant growth in the proportion of individuals aged 65 and older in the American population 

since the 1960s. Moreover, there are over 40 million Americans age 65 and over, comprising 

14% of the population, and this proportion is projected to increase to 20% by 2030 (U.S. Census 

Bureau, 2016).  Governments have thus realized that future contributions to the public pension 

program by the labor force may not be enough to cover their pension obligations to retirees, 

which could result in either a rise in the contribution rate by the employed or a decrease in 

pension payments. A common and easy route that politicians can use to relieve some of the 

pressure on the public pension system is to increase the official working age to keep individuals 

in the labor force longer. In fact, many developed countries have started to or are planning to 

raise the eligibility age of pension receipt to induce individuals to postpone their retirement 

(Hering and Klassen, 2010). For instance, the earliest eligibility age for receiving retirement 

pension in the U.S. is 62 and the official age to claim full social security is 65. However, the 

government plans to increase the normal retirement age from 65 by two-month increments to 67 

by 2025. The success of policies that delay the pension eligibility age in reducing government 

expenditure on social security programs will depend partially on the health effect of delaying 

retirement. For instance, if retirement has a negative effect on health, any retirement policy that 

supports late retirement will preserve health and labor force participation of older people, thereby 

reducing health care utilization and expenditure, in addition to relieving the government’s 

financial pension burden. In contrast, if retirement has positive effects on health, policies that 

increase age eligibility may increase the cost of health care utilization, and this, in turn, can 

offset savings in the government’s pension burden. Therefore, policymakers need to know the 
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effect of retirement on health, so that they can design programs that eliminate or mitigate 

negative effects.   

The literature has a large number of studies that focus on investigating the causal effect 

of retirement on health. However, the empirical results of these studies are mixed (Eibich, 2014). 

Some studies find that retirement has a positive effect on health (e.g., Ekerdt et al. 1983; 

Evenson et al. 2002; Charles 2004; Neumann 2008; Coe and Lindeboom 2008; N. B. Coe & 

Zamarro, 2008; Midanik et al., 1995), while other studies find that retirement has a negative 

effect on health (Behncke, 2009; Dave et al. 2008; Behncke 2012; Calvo et al. 2013). Some 

studies find no effect (Bound and Waidmann, 2007).  

Although these studies use varying methodologies, samples and health outcomes, many 

of them use data from the same country. Consequently, the mixed results of these studies can not 

be explained by differences in institutional settings, whether there is universal healthcare or some 

other health insurance scheme. However, the inconclusive and conflicting results of the effect of 

retirement on health may be due to an endogeneity problem and heterogeneity effects (Eibich, 

2015). Specifically, a reverse causality problem can exist when individual health has direct 

impacts on retirement decisions. Empirical studies find that workers with poor health are more 

likely to retire ((Disney, Emmerson and Wakefield 2006; Jones, Rice, and Roberts 2010 for the 

UK); (Riphahn, 1999; Lechner and Vazquez-Alvarez, 2011, for Germany); (Bound et al., 1998 

for the US) and (McGarry, 2004)). Therefore, an endogeneity issue may arise when researchers 

estimate the effect of retirement on health by comparing the health of retirees before and after 

retirement and ignoring the possibility that workers with negative health experiences are more 

likely to retire (Bound & Waidmann, 2007). If this reverse causality of health on retirement is 

not captured, the results will be negatively biased (Eibich, 2014) and methods such as ordinary 
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least squares or fixed-effects panel estimations cannot be used. Another potential explanation of 

the conflicting results of previous studies is the heterogeneity effect, where the retirement effect 

may depend on the gender or educational attainment of the retired individuals (Behncke, 2009).  

This study contributes to the current literature in four ways. First, further evidence on the 

effect of retirement on health is provided. The analysis estimates the causal effect of retirement 

not only on health status but also on health-related behaviors, such as smoking and alcohol 

consumption, which are inputs to health in Grossman’s health capital model (Grossman, 1972). 

This sheds light on the channels through which retirement can affect health. Specifically, instead 

of focusing on a narrow set of health outcomes, I will estimate the effect of retirement on more 

than one outcome. Applying the same methodology and using the same individuals in the 

estimation of the impact of retirement on multiple health outcomes provides a clearer picture of 

the retirement effect and generates results that are precise and robust. Second, this study 

proposes an alternative econometric technique to quantify the impact of retirement on health and 

health-related behavior. A non-parametric and a parametric approach of Regression 

Discontinuity Design (RDD) are applied to capture the retirement endogeneity problem. To my 

knowledge, this is the first study that uses the non-parametric approach to quantify the effect of 

retirement on health. Using non-parametric and parametric methods is a useful way to show that 

the estimation results do not rely on the approach that was used. The study also investigates the 

effect of retirement on health at multiple discontinuities, which increases the validity of the 

results. In addition, when the parametric approach is applied, this paper uses a method called 

bivariate likelihood. Most previous parametric studies of the relationship between retirement and 

health used instrumental variables (IV) to capture the retirement endogeneity problem by 

applying different instrumental variables. Although the instrumental variable estimation methods 
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are widely used in econometrics to address endogeneity, for parametric estimation bivariate 

likelihood estimation methods are theoretically and empirically superior to the traditional two-

stage instrumental variable when outcomes are binary (Marra et al., 2014; Bhattacharya et al., 

2006; Wooldridge, 2010). Third, this study examines the impact of retirement on health and 

health behavior by stratifying the models by gender, and socioeconomic status to assess a 

potential heterogeneity effect for retirement. Finally, I applied two different techniques to 

estimate the optimal bandwidth that is used to estimate the RD treatment effect: Cross-validation 

optimal bandwidth (CV) and the Mean Square Error- optimal bandwidth (MSE), which 

developed by Calonico, Cattaneo, and Titiunik (2014, CCT hereafter), as a kind of robustness 

check of the consistency between RD results based on MSE-optimal bandwidth and those based 

on the CV-optimal bandwidth. I also applied three different procedures to estimate the RD 

treatment effect to ensure the robustness of the RD results: (i) the traditional RD estimates with 

conventional variance estimator (conventional inference); (ii) Bias-corrected RD estimates with a 

conventional variance estimator (Bias-corrected inferences); (iii) and bias-corrected RD 

estimates with a robust variance estimator (Robust RD inferences), proposed by CCT. 

Specifically, this study addresses the following research questions: 

▪ What is the impact of retirement on health, where “health” is defined not exclusively as 

the absence of disease or injury but includes physical, mental and social well-being? 

▪ How does retirement affect individuals’ health behavior? Specifically, what is the effect 

of retirement on alcohol consumption and smoking (participation and intensity)?  

▪ Is there socioeconomic heterogeneity in the effect of retirement on health and health-

related behavior?   

▪ Is there gender heterogeneity in the impact of retirement on health? 
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The main issue in addressing these questions is to find exogenous variation in retirement 

status, which eliminates the potential reverse causality problem from health shocks to retirement. 

That is, individuals can retire when they become ill or injured, and as a result, poor health may 

cause retirement. This study uses the Regression Discontinuity Design (RD) to exploit 

exogenous variation in retirement decisions induced by pension eligibility ages and identifies the 

causal effects of retirement on health outcomes and behavior using the last eight waves (2000-

2014) of the American Health and Retirement Study survey (HRS). 

The other issue that affects the RD estimators is the drastic change in health care 

coverage at age 65. Specifically, the effect of retirement on health at age 65 could potentially be 

driven by Medicare eligibility and health care utilization, not necessarily be driven by retirement 

status. To address this issue, I conducted a falsification test of the RD analysis using several 

checks. First, I conducted a similar Fuzzy RD analysis at age 62, where a significant jump in 

retirement is also observed because this is the earliest age at which Americans can receive social 

security payment. Second, I run the RD analysis on the low-income subgroup. This group 

includes individuals who are in the lowest 20% of the income distribution in the dataset or 

individuals whose income is below the federal poverty line after adjustment for the number of 

persons in the family (HHS, 2018)2. This subgroup will include the persons who may be eligible 

for the Medicaid health insurance program before age 65. Medicaid is a joint federal and state 

program that helps low-income adults and people with certain disabilities cover health care costs. 

Eligibility to Medicaid is based on income and family size. Although the HRS includes a 

question about whether persons are enrolled in the Medicaid program, there are some cases in 

 
2 According to the U.S. federal poverty guidelines used to determine eligibility for certain federal programs, the 

2018 poverty guidelines in 48 states are as follow:  $12,140 for one person family, $16,460 for two person family, 

$20,780 for three person family, $25,100 for four person family, $29,420 for five person family, $33,740 for six 

persons family, $38,060 for seven person family, $42,380 for 8 persons family, and $4,320 for each additional 

person for families with more than 8 persons. 
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which individuals did not report any information about their health insurance coverage before 

age 65. Therefore, using the previous income criteria may help in identifying persons who may 

be eligible to have Medicaid insurance coverage to get a reasonable sample size to this subgroup. 

Third, I run the RD analysis at age 65 for the subgroup of individuals who were eligible for 

health care coverage before 65 or individuals who have other health care coverage, private or 

public, for at least five years before they retired. This, then, includes individuals who already had 

health insurance coverage before reaching age 65, and who continue to have health care 

coverage after age 65, whether the coverage is public or private. 

The results of this study show that retirement has a significant negative impact on health 

status. The non-parametric fuzzy RD results report that the significant jump in retirement 

probability is associated with a negative and highly significant jump in the reported total word 

recall test score. Using the MSE-optimal bandwidth, the non-parametric fuzzy RD estimator 

suggests that retired individuals experience a drop in their cognitive test score by about 0.8 

points, which is equivalent to an approximately 8% decline in the cognitive functioning score of 

retired individuals. Retirement also has a significant negative impact on mental health status as 

measured by the CESD depression scale. The non-parametric fuzzy RD estimator suggests that 

retired individuals experience dramatic increases in the CESD scale, approximately 0.42 points 

higher (95% confidence interval [0.294554, 0.550295]). Additionally, retirement is associated 

with a significant negative impact on self-reported general health. Retired individuals are 13 

percentage points less likely to report that they are in excellent, very good or good health status 

than non-retired individuals. The effects of other covariates included in the study are consistent 

with previous literature. Moreover, the effects of retirement on the three health status measures 
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(cognitive functioning, mental health, and self-reported health) are not sensitive to different 

bandwidth selections.  

Regarding health-related behavior, retirement has a negative effect on alcoholic 

consumption participation and intensity, but it has a positive impact on smoking participation. 

The non-parametric fuzzy RD estimates indicate that retirees are 8.8 percentage points less likely 

to be drinkers relative to non-retirees and that they are 4 percentage points less likely to consume 

alcohol more than three times per week, for those who continue drinking after retirement, 

relative to non-retirees. However, the effect of retirement on alcohol consumption intensity per 

week is small and not significant for any bandwidth choices and across the three different non-

parametric fuzzy RD estimators. Also, retired individuals are 3 percentage points more likely to 

be smokers relative to non-retired individuals. However, the impact of retirement on smoking 

participation is small in magnitude and very sensitive to bandwidth choice.  

The results of this paper also suggest that there is significant heterogeneity across gender 

and socioeconomic groups. In general, the transition from working to retirement has larger 

negative impacts on males than females. Across different socioeconomic groups, retirement has a 

larger negative impact on less-educated individuals compared to high-educated individuals. 

Well-educated individuals may have better health outcomes because they are more efficient at 

making health investments (Grossman and Kaestner, 1997).  For health-related behavior, 

retirement has a larger negative impact on drinking participation and drinking intensity on retired 

males compared to retired females. The non-parametric fuzzy RD results based on the CV-

optimal bandwidth selection are consistent with the RD results based on the MSE-optimal 

bandwidth selection. However, the CV-optimal bandwidth length, for all estimations, is larger 

than the MSE-optimal bandwidth. These findings are expected because the adjusted MSE-
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optimal bandwidth by CCT gives more weight to the variance and the chosen bandwidth could 

be larger to minimize both the bias and the variance under the given bandwidth. In addition, the 

non-parametric RD results are supported by the parametric RD results for the same health 

outcomes, which ensures the results are precisely estimated and robust.  

The remainder of this chapter is organized as follows. Section 2 summarizes the related 

literature; section 3 describes the data and presents summary statistics for the sample; section 4 

provides the empirical econometric specification and methodology; sections 5 and 6 show the 

results of the non-parametric and parametric regression discontinuity design (the recursive 

bivariate probit model); section 7 includes the discussion and conclusion. 

1.2. Literature Review 

There exist several studies in the literature studying the effect of health status on the 

decision to retire. Although this decision is determined by many factors, including eligibility for 

social security pension payments, access to health insurance, financial resources, and spouse’s 

retirement status, the health status of the individual plays a significant role. Persons who are in 

poor health, for example, those suffering from chronic health conditions, are more likely to retire 

early than those who are healthy (Belgrave et al., 1987). McGarry (2004) finds that individuals in 

poor health are less likely to continue working than individuals in good health, and the decision 

to retire is significantly associated with a change in individuals’ health status. Gustman and 

Steinmeier (1986) find that the onset of a long-term health problem increases the probability of 

retirement. Additionally, access to health care services has been documented as a crucial factor 

in retirement decisions: several studies find a large positive association between retiree health 

insurance offers and early retirement (Madrian, 1994; Hurd and McGarry, 1993; Karoly and 

Rogowski, 1994). 
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Complementing this literature are studies that focus on the effect that the decision to 

retire has on individual health outcomes (instead of the effect of health status on retirement). The 

empirical evidence on the causal effect of retirement on health outcomes is inconclusive (Eibich, 

2014). Some studies show that retirement has a positive effect on health (N. B. Coe & Zamarro, 

2008; Midanik et al., 1995; Insler, 2014). Coe and Zamarro (2011) used early and full retirement 

ages across European countries as instruments and found a significant positive effect of 

retirement on self-reported health. Neuman (2008) used early and official retirement ages in the 

U.S. as instruments and finds similar results. Similarly, Gorry et al. (2016), using the same set of 

instruments as Neuman (2008), finds that retirement improves self-reported health and life 

satisfaction in the U.S. Some studies used different identification strategies and also reported a 

positive association between retirement and self-reported health. For example, using the Health 

Survey for England in a regression discontinuity setting, Johnston and Lee (2009) find positive 

effects of retirement on self-reported health and mental health. The RD design used by Eibich 

(2015) exploited variation in age eligibility to pension benefits in Germany to estimate the effect 

of being retired on different dimensions of health and the mechanisms through which retirement 

can affect health. He finds that retirement improves self-reported health and that there is gender 

heterogeneity. Coe and Zamarro (2008), using the Survey of Health, Aging, and Retirement in 

Europe (SHARE), found that retirement has a significant health-preserving effect on the overall 

health status of people who retire at age 65. Contrarily, they found that retirement has no 

significant health-preserving effect for those retiring at a younger age.  

However, some studies have found that retirement has a negative effect on health 

(Behncke, 2009). Retirement was associated with lower life satisfaction (Bossé et al. 1987), 

depression (Portnoi, 1983), increases in the risk of chronic health conditions and severe 
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cardiovascular diseases (Behncke, 2009), lower well-being (Atchley and Robinson 1982, Grâce 

et al. 1994, among others), increased difficulties related to mobility and performing daily 

activities, and mental health decline (Dave et al., 2007). For example, by using the ELSA survey 

in England, Behncke (2012) applied an instrumental variable (IV) model with propensity score 

matching and concluded that retirement increases the probability that an individual is diagnosed 

with a chronic health condition. Dave, Rashad, and Spasojevic (2008) used the US Health and 

Retirement Study for the period 1992-2005 and found that full retirement causes a 5 to 16 

percent increase in difficulties associated with mobility and daily activities, a 5 to 6 percent 

increase in illnesses, and a 6 to 9 percent decrease in mental health. Numerous other studies 

show a significant negative effect of retirement on cognitive functioning (Rohwedder and Willis, 

2010; Mazzonna and Peracchi, 2012; Bonsang et al, 2013;  Bingley and Martinello, 2013). 

Results suggest that promoting labor force participation among older workers could delay 

cognitive decline (Bonsang et al., 2012; Mazzonna & Peracchi, 2010). Ayyagari (2014) used 

data from the U.S. Health and Retirement Study (HRS) to examine the relationship between 

retirement and smoking decisions from 1992 through 2008. He exploits eligibility for Social 

Security benefits at age 62 to account for the endogeneity problem of retirement. He found that 

retirement increases the probability of smoking among smokers, and he also found evidence of 

heterogeneity in the impact of retirement. Other studies, however, reported no evidence of 

negative health effects related to retirement (Bound and Waidmann, 2007).  Coe and Lindeboom 

(2008) found no negative effect of early retirement on men’s health, and Latif (2012) found that, 

in a Canadian sample, retirement has no significant effect on self-assessed health.  

These inconclusive and conflicting results of the effect of retirement on health may in 

part due to an endogeneity problem and heterogeneity effect (Behncke, 2009). Specifically, 
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reverse causality can exist when individual health directly affects retirement decisions. In fact, 

empirical studies have found that workers who experience a decline in their health are more 

likely to retire (Disney, Emmerson and Wakefield 2006; Jones, Rice, and Roberts 2010 for the 

UK; Riphahn, 1999; Lechner and Vazquez Alvarez 2011, for Germany; Bound et al., 1998 for 

the US; and McGarry, 2004). Therefore, an endogeneity issue may arise when researchers 

estimate the effect of retirement on health by comparing the health of retirees before and after 

retirement and ignoring the possibility that workers with negative health experiences are more 

likely to retire (Bound & Waidmann, 2007). If this reverse causality of health on retirement is 

not captured, the results may be negatively biased (Eibich, 2014) and we cannot use methods 

such as ordinary least squares or fixed effect panel estimations.  

To correct this bias, economists have attempted to use different techniques, including 

cross-country variations, early and unexpected retirement incentives, and official pension age 

eligibility. Regardless of the identification strategy, most economists have been looking for an 

exogenous source of variation in retirement decisions to address the endogeneity issue. 

Therefore, a recent development in the health economics literature is to use age eligibility for 

social security benefits to estimate the effect of retirement on health. For instance, in the UK, 

most retirement income programs become available at age 65 for men and 60 for women (Bound 

and Waidmann, 2007). In the United States, individuals can retire early at age 62 and receive 

some social security retirement benefits, and receive their full retirement social security at age 65 

(Bonsang et al., 2012). In recent years, the instrumental variables (IV) approach has been widely 

used by researchers to address the endogeneity problem. Most commonly, instrumental variables 

that affect the endogenous retirement decision but that do not affect health outcomes are applied, 

and usually, these are related to the social security and pension systems in the country. For 
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instance, Charles (2004) estimated the effect of retirement on wellbeing as measured by “feeling 

depressed” and “feeling lonely”. He used a group of dummy variables that define age 62, 63, 70, 

and 72 as instrumental variables by applying a 2SLS. He found a negative correlation between 

retirement and subjective well being.  To examine the mortality effects of retirement, Fitzpatrick 

and Moore (2018) assess whether there is a discontinuity in mortality when individuals are 

eligible for social security at age 62 in the U.S. using a sample of decedents born between 1930 

and 1948. They find that retirement is associated with a two percent discontinuity in male 

mortality immediately after age 62 and the discontinuity in the female mortality is smaller. They 

also document that the increase in males mortality is related to the change in their lifestyle. 

The effect of retirement on mental health and cognition has been extensively studied. 

Kofi Charles (2004) was one of the first to examine the relationship between retirement and 

mental health. He used both the age of Social Security benefit eligibility and the change in laws 

that affect when Social Security can first be withdrawn. He found that retirement reduced 

loneliness and depression, as a measure of mental health. Rohwedder and Willis (2010) argued 

that countries with a larger proportion of their labor force working later in life exhibit smaller 

differences in cognitive performance between older and younger men. Using cross-country 

variation in eligibility ages for early and official public pension benefits, they found that 

retirement reduces cognitive scores by nearly 1.5 standard deviations. Similar studies that used 

eligibility ages for public pension as instruments also found negative effects on cognitive 

function (Bonsang, Adam, and Perelman, 2012; Mazzonna and Peracchi, 2012; and Tumino et 

al., 2016). Mazzonna and Peracchi (2012) investigated the relationship between aging, cognitive 

abilities, and retirement by using a survey on health and retirement in Europe (SHARE) for 

individuals older than 50 years. They used an instrumental variables approach to exploit 
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variation in the eligibility age for retirement between and within countries. They found that there 

was an increase in the rate of cognitive ability decline after retirement and that education plays 

an important role in explaining heterogeneity in the level of cognitive abilities. Bonsang et al 

(2012) used the same dataset (SHARE) and instrumental variables. Their results confirm the 

significant negative effect of retirement on cognitive functioning and suggest that promoting 

labor force participation delays cognitive decline. Midanik et al., (1995) assessed the short-term 

effect of retirement on mental health and health behaviors of members of a health maintenance 

organization (age 60-66).  After controlling for age, gender, marital status, and education, they 

found that retired individuals were more likely to have lower stress levels and engage in regular 

exercise compared to those who did not retire during the study period. They also found that 

retired women were more likely to report no alcohol problems compared to non-retired women. 

There were no differences between the groups on self-reported mental health status, coping, 

depression, smoking, alcohol consumption, and frequency of drunkenness. Ekerdt, Bosse, and 

LoCastro (1983) showed that health may improve after retirement due to the elimination of 

work-related stress. Additionally, retirement may give individuals more time to invest in health 

through activities that promote health improvement. However, Coe and Zamarro (2011) did not 

find any effects. Coe et al. (2012) also did not find an effect using an exogenous variation of 

early retirement design.  

The literature on cognitive functioning argues that individuals’ activities, educational 

attainment, and personality could affect cognitive reserve (Stern 2002, 2003), which is formed 

through social activities, lifestyle and social networks. Individuals who engage in brain-

stimulating activities may prevent their cognitive functioning or mitigate the negative effects on 

their cognitive abilities, surrounding environment and social networks may play the same role 
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(e.g., Flicker 2009; Hertzog et al. 2008; Salthouse 1991, 2006; Scarmeas and Stern 2003; 

Fratiglioni et al. 2004; Börsch-Supan and Schuth 2013). Some studies found an association 

between individual personality traits, like risk aversion, patience, and self-esteem, and cognition 

(e.g., Frederik 2005; Benjamin et al. 2006; Dohmen et al. 2007; Midanik et al. 1995; Yates 

1990). Also, some studies documented the significant role of education in cognitive abilities 

(Banks and Mazzonna 2012; Maurer 2010; McFadden 2008; Evans et al. 1993). 

The impact of retirement on health-related behaviors has been given the least attention in 

the literature. Moreover, studies focusing on health-related outcomes come to mixed conclusions. 

Insler (2014) used individual retirement age from the Health and Retirement Survey (HRS) as an 

instrument and found that retirement increases exercise and decreases smoking. Using pension 

eligibility age in Germany, Eibich (2015) showed that retirement increases activity, sleep, and 

leisure time activities, and that it decreases smoking rates and BMI. Motegi, Nishimura, and 

Terada (2016) found that retirement in Japan increases physical exercise and reduces drinking 

but does not change smoking rates among Japanese retirees. In contrast, Müller and Shaikh 

(2017) used the Survey of Health, Ageing and Retirement in Europe (SHARE) for 19 European 

countries to investigate the impact of the partner’s retirement on the other partner’s health 

behavior. They found a significant increase in the frequency and intensity of alcohol 

consumption, combined with a significant decrease in moderate physical activities as a response 

to the partner’s retirement. However, they found that own retirement has significant positive 

effects on engaging in moderate and vigorous physical activities, but that it also led to a 

significant increase in the frequency of alcohol consumption. In sum, subjective health is 

negatively affected by spousal retirement and positively by own retirement. Stancanelli & Soest 

(2012) use a similar identification strategy to exploit the earliest age retirement laws in France. 
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Using data from the French Time Use Survey, they find that retirement not only affects own 

housework time but also affects the time allocation of the other partner. 

Overall, although many studies have investigated the impact of retirement on health 

outcomes, there is inconclusive evidence on the effect of retirement on health. Also, little 

attention has been paid to the reverse-causality problem of retirement in many of the existing 

studies, which raises the possibility of biased and inconclusive results. Little attention has also 

been paid to the effect of retirement on health-related behavior, such as smoking and alcohol 

consumption. To address these gaps this study applies regression discontinuity design to solve 

the endogeneity problem and to obtain more comprehensive results of the impact of retirement 

on health status, as well as on health-related behavior, such as drinking and smoking. Non-

parametric and parametric methods are used in the RD design estimates to show that the 

estimation results do not rely on the chosen strategy. Also, the study investigates the effect of 

retirement on health at multiple discontinuities, which increases the validity of the results. 

Moreover, when using the parametric RD design, bivariate likelihood estimation methods will be 

applied, which are theoretically and empirically superior to the traditional two-stage instrumental 

variable approach in the case of binary outcome settings (Bhattacharya et al., 2006; Wooldridge, 

2010; Marra et al., 2014). 

1.3. Data and Study Variables 

The empirical analysis in this study uses the last ten waves (1996 - 2014) from the Health 

and Retirement Study (HRS). The HRS is conducted by the survey research center at the 

University of Michigan. The original HRS data is combined with RAND HRS data, which is a 

longitudinal data set that includes a cleaner version of the most frequently used HRS variables 

for all health outcomes and covariates in this study. The RAND dataset is "a research-friendly 
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version of a subset of the Health and Retirement Study (HRS)" (St Clair, 2008). This survey 

collects rich information and detail on respondents’ health, health behavior, economic and socio-

demographic characteristics, education and labor market dynamics, which allows controlling for 

individual heterogeneity and addressing the endogeneity problem of retirement and health. The 

HRS sample has been built up over time to create a sample representative of the American 

population over age 50 and includes Americans who were born between 1931 and 1941 and their 

partners since 1992. In 1998, three birth cohorts were added to the original cohort in the HRS: 

respondents of the Assets and Health Dynamics Among the Oldest Old (AHEAD) Study who 

were born before 1924; children of the Depression Age, born between 1924 and 1930; and the 

war babies, born between 1942 and 1947. In addition, the early Baby Boomers, born between 

1948 and 1953, were added in 2004; the mid Baby Boomers, born between 1954 and 1959, were 

added in 2010; and the late Baby boomers, born between 1960 and 1964, were added in 2016 

(HRS, 2017). 

The HRS collects detailed information about the age of the respondents. The dataset 

includes information about the month and year of respondents’ birth and their ages in months 

and years. Also, the month and the year of the interview are included in the dataset. This 

information provides a precise, continuous measure of age in months, which is a crucial element 

in the RD design when choosing optimal bandwidths and optimal bin sizes to visualize the 

discontinuity graphically. There are two sample restrictions for this study. First, individuals 

between 50 and 75 years are included for flexibility in estimating the optimal bandwidth. 

Second, individuals who reported a disability or not working for mental or physical illness 

reasons are dropped from the sample.  The final sample includes 94,131 person-year 
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observations. The full sample is divided into subgroups to investigate heterogeneity in the effect 

of retirement on health. 

1.3.1 Retirement  

The main variable in this study is the retirement status of individuals. There are many 

definitions of this in the retirement literature (Coe and Zamarro, 2011 and Insler, 2014), and the 

one used here follows those in French (2005); Bonsang et al. (2012); Mazzonna and Peracchi 

(2012), and Eibich (2014). An individual is considered retired if she/he is not in the labor force 

(has exited the labor market). This includes individuals who report that they are ‘‘not in the labor 

force’’ at the time of the interview. Individuals working or looking for work (unemployed) are 

considered to be in the labor force (Mavromaras et.al, 2014).  Following Eibich (2014), I use 

self-reported retirement as a treatment variable where behavior adjustment usually happens when 

individuals regard themselves as retired.  That is, respondents are classified as being retired if 

they are out of the labor force with the intention of staying out permanently. Therefore, the study 

excludes the following respondents from the sample: respondents who reported that they had 

never worked because retirement implies a change in respondent lifestyle; respondents who 

report that they are not in the labor force because they are disabled or homemakers; respondents 

who reported that they left their jobs before age 50; and respondents who report that they are 

retired, they just left their career job, but continue to do some paid work. 

1.3.2 Measuring Health (Health Outcome Variables) 

For the empirical analysis, this paper uses three variables to capture physical and mental 

health as outcome variables.  
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1.3.2.1 Self-reported Health (General Health) 

Since objective measures of health usually ask about specific diseases, they may not be 

complete measures of health. Therefore, health economists usually use self-reported general 

health (GH) to get a more precise picture of the respondent’s overall well-being (Coe and 

Zamarro, 2011). Farmer and Ferraro (1997) and Mackenbach et al. (2002) found that 

respondents’ subjective assessment of their health is related to objective health measures. some 

literature argues that self-reported measures of health may suffer from a “justification bias” in 

the context of retirement, that is people may report that they are in worse health upon retirement 

to justify that they are retired (Currie and Madrian, 1999). Black et al., 2017 document that men 

and women overstate their disability level to justify their access to disability welfare payments, 

justification bias. The effect of this bias can be captured partially, in this study, by dropping 

individuals who reported that they are disabled (see Benitez-Silva et al., 2004). This issue also 

can be captured in the regression discontinuity setting by using different bandwidths in the 

estimation and by applying different validation tests to validate the RD estimates. Moreover, to 

compare self-reported and objective measures of health in retirement models, Bond (1991) 

constructed statistical models to incorporate the self-reported and objective measures of health. 

He finds that self-reported measures of health perform better than many researchers believe. 

In HRS, respondents are asked how they would describe their current health status in 

general on a 5-point scale. I dichotomized these responses: the best three categories (excellent, 

very good, and good) are recorded as “in good health” and the worst two categories (fair and 

poor) are recorded as “not in good health”, as in previous studies (Kunst et al., 2005; 

Mackenbach et al., 2002). That is, self-reported health status is captured by a dummy variable 

that is “1” if “in good health” and “0” if “not in good health”. 
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1.3.2.2 Mental Health Status 

Affecting functioning, an individual’s mood and emotional health, is a significant domain 

of an individual’s overall health and wellbeing (Steffick, 2000). Research has shown that the 

causal relationship between affective functioning and individual health status runs in both 

directions. For instance, Barefoot and Schroll (1996) found that individuals who experienced 

high levels of depressive symptomatology are more likely to develop myocardial infarction (MI), 

heart attack, and mortality. In contrast, Hachinski (1999) found that physical illness may increase 

the likelihood of developing depression and anxiety. He found that, among 100 ischaemic stroke 

survivors, the incidence of major depression increased over time from 6% initially, to 11% at 

year one, to almost 18% at 18 months. 

To measure mental health status, I use the HRS depression symptoms measure, which is a 

subset of the Centre for Epidemiologic Studies Depression (CESD) scale. The CESD scale 

includes 20 domains to assess the level of depressive symptoms. Starting from wave 2, 

respondents in the HRS are asked to rate the frequency of eight symptoms of psychological 

distress. The HRS shortened version of the CESD scale is the sum of five negative domains plus 

three positive domains.  

The negative domains measure whether the individual reported having the following 

symptoms all or most of the time, during the last week: depression, felt alone, felt sad, felt that 

everything is an effort, sleep is restless.  The positive domains measure whether the individual 

felt happy, felt hopeful about the future and enjoyed life, all or most of the time, during the last 

week. Positive domains are reverse-scored, with lower scores given to the response “most of the 

time”, so that higher numbers indicate more negative emotions and worse mood. The HRS 

shortened version of the CESD scale is estimated by adding up the eight domains, which yields a 
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total score ranging from zero to 8. The CESD scale has been widely used as a measure of 

depressive symptoms and tested for reliability and validity for a variety of subpopulations 

(Steffick, 2000). 

1.3.2.3 Cognition Functioning 

It is well-documented in the literature that heterogeneity in individual-level cognitive 

functioning and the rate of age-related change in cognitive functioning are associated with an 

individual’s lifestyle, such as diet, frequency of social interactions, physical activity, and the 

degree of engagement in mentally stimulating activity (Salthouse, 2006). The mental-exercise 

hypothesis (which states that keeping mentally active will prevent age-related mental decline) is 

widely used by researchers to argue that individuals have some control over their cognitive 

functioning and that policy intervention can induce individuals to participate in mentally 

stimulating activities to save resources that are otherwise used to treat issues related to cognitive 

function decline (WHO, 2002). 

The HRS has included a variety of cognitive functioning measures (including single and 

indices measures) that assess different aspects of the cognitive domain. In this study, I use the 

total word recall index as a measure of episodic memory. In the HRS, the episodic memory test 

consists of two stages, which provides two measures: immediate word recall and delayed word 

recall. For the immediate word recall measure, the interviewer read a list of 10 words (e.g., car, 

lake, book, etc.) to the respondent, and asked the respondent to recall as many words as possible 

from the list in any order. Correct responses were scored as one point, thus 10 was the highest 

attainable score. To measure delayed word recall, after around 5 minutes of other survey 

questions, respondents were asked to recall the words that were read to them for the immediate 

word recall question. Correct responses were again given one point, with 10 being the highest 
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attainable score. The total word recall test score is calculated by counting the number of 

immediate and delayed words that were recalled correctly. The test score ranges from 0 to 20 and 

has a normal distribution with a sample mean of 10.5 and a standard deviation of 3.38. 

1.3.3. Health-related Behavior 

The HRS contains a rich set of variables that measure individual health-related behavior. This 

study uses smoking participation and alcohol consumption participation and intensity (number of 

drinks) as outcome variables. There are two questions in the HRS that can be used to identify 

smoking behavior after retirement: “have you ever smoked” and “are you currently smoking”. 

The ever-smoked question is usually only asked at the respondent’s first interview, and so the 

answer is carried forward for subsequent waves. If during any wave a respondent reports that 

she/he currently smokes cigarettes, the ever-smoked question is set to yes in that survey and all 

subsequent waves. Therefore, smoking status is captured by a binary variable (“smoking”) and 

equals “1” if the individual currently smokes and “0” otherwise. For alcohol consumption, there 

are two questions in the HRS that capture drinking status and frequency. Drinking participation 

is captured by the binary variable “currently drinking”, which takes a value of “1” if the 

respondent is currently drinking any kind of alcohol and “0” otherwise.  If the respondent is 

identified as a drinker, the following question is asked about the last 3 months: "In the last three 

months, on average, how many days per week have you had any alcohol to drink? (For example, 

beer, wine, or any drink containing liquor.)". The binary variable “at least 3 days per week” 

takes a value of “1” if drinking frequency is at least 3 days or more per week and “0” otherwise.  

1.3.4. Control Variables 

I used control variables to capture heterogeneity effects, including education, age, 

household income, marital status, and gender. Marital status is represented by two dummy 
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variables. “married” which is one if the individual is married and zero otherwise, and “others” 

which is one if respondent reports that she/he is separated, divorced, or widowed and “0” 

otherwise, “Single” (reference group). The dummy variable for “female” takes value “1” if the 

respondent is female and “0” if male. The race is captured by two dummy variables: white 

(reference category), black, and other.  

Respondent’s educational attainment is captured by two dummy variables: high school 

and post-secondary degree, a university degree or postgraduate degree, and less than high school 

(reference category). Income level is captured by two dummy variables: low income (reference 

category), middle income, and high-income group. A dummy variable “spouse retired” is created 

to capture whether the respondent is living with a partner or not. Some studies found that the 

behavior of retired individuals may be significantly affected by the characteristics of the 

individuals with whom they spend time. “children number” is a continuous variable to capture 

the number of children in the respondent’s household. Children may affect an individual’s 

lifestyle, and thus individual health behaviors. Finally, different geographical regions in the US 

are captured by four dummy variables: Midwest, South, West, Others, and Northwest (reference 

group). 
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1.4. Methodology: The Regression Discontinuity Design Theoretical 

Framework  
 

In this section, I introduce the fuzzy regression discontinuity (RD) design. I begin by 

framing the traditional single-forcing variable RD design in the context of the Rubin causal 

model (Holand, 1986; Rubin, 1974) and then describing the empirical estimation of RD 

treatment effect in the context of Hahn et al., (2001). After that, I introduce the extension of CCT 

to the traditional RDD. Regression Discontinuity Design (RDD) was first conceptually 

developed and applied by Thistlethwaite and Campbell (1960) in a study of merit impact awards 

on the future academic outcomes of students. By the end of the 1990s, RD methods were widely 

used and extended by many academic researchers in economic studies (Lee, 2007; Card teal., 

2006; Chay and Green Stone, 2005; Dinardo and Lee, 2004; Van Der Klaavw, 2002; Black, 

1999; Angrist and Lavy, 1999 ). 

RD design is a quasi-experimental design with the main characteristic that the probability 

of receiving treatment changes discontinuously as a function of one or more underlying variables 

(Hahn et al., 2001; Coe and Zamarro, 2011). Generally, RD requires an assignment variable 

(Forcing or score variable) which classifies individuals below or above a threshold point, and 

individuals above this cut-off receive treatment (treatment group), while individuals below this 

cut-off will not receive treatment (control group). Direction and magnitude of the jump at the 

threshold can be used as a measure of the causal effect of the treatment for individuals close to 

the cut-off point (Lee & Lemieux, 2010; Jacob et al., 2012). 

Under the standard Robin causal model (RCM), it is assumed that there is a random 

sample  {𝑌𝑖(1), 𝑌𝑖(0), 𝑋𝑖}𝑖=1
𝑛 , where 𝑌𝑖(1), and  𝑌𝑖(0) are potential outcome variables when 

individual 𝑖 is treated and untreated, respectively, and 𝑋𝑖 is an observed running variable 

(sometimes called forcing or assignment variable), which used in determining treatment status. 
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Define 𝐷𝑖 ∈ {0, 1} as a binary decision rule where 𝐷𝑖 is determined partially or completely based 

on the value of the running variable 𝑋𝑖. Assignment to treatment is assumed to follow the rule 

𝑇𝑖 = 𝟙 ( 𝑋𝑖 ≥ 𝑥 ̅). That is, all units whose score are above the cutoff point, 𝑥 ̅, are assigned to 

treatment and all units whose score is less than the cutoff point, 𝑥 ̅, are assigned to the control 

group. In the literature, there are two distinctive types of RD, the sharp and the fuzzy RD. In the 

sharp RD setting, the binary treatment variable 𝐷𝑖 is a deterministic function of the running 

variable 𝑋𝑖 such as 𝑇𝑖 = 𝐷𝑖 = 𝟙 ( 𝑋𝑖 ≥ 𝑥 ̅) with the cutoff value 𝑋𝑖 = 𝑥̅. In contrast, in fuzzy 

RD, the relationship between treatment and running variable is stochastic such that individuals 

do not necessarily comply with the assignment to treatment when 𝑋𝑖 ≥ 𝑥̅ (imperfect 

compliance). That is, there are some units for which 𝑇𝑖 ≠ 𝐷𝑖, i.e., assignment to treatment (𝑇𝑖) 

does not necessarily mean that treatment is actually received by these units. Therefore, the 

probability of receiving the treatment, 𝑃 (𝑋)  =  𝐸(𝐷𝑖|𝑋𝑖 = 𝑥), becomes discontinuous at 𝑋𝑖 = 𝑥̅ 

for a value less than one. 

Lee and Lemieux (2010) defined the discontinuity setting as designs and not just as 

estimation methods because the running variable 𝑥 must be boosted by empirical evidence and 

institutional information. In this study, the design is partially given by the official age of 

retirement in the USA where early retirement age (62 years) and official retirement age (65 

years) represent the threshold score which forces individuals to be above the threshold value and 

claim their financial benefits.  

In this theoretical setup, I am interested in estimating the treatment effect 𝐷𝑖 (retirement) 

on the outcome variable 𝑌𝑖 (health indicator) by defining the individual treatment effect (TE) as 

𝑇𝐸𝑖 =  𝑌 𝑖(1)  −  𝑌𝑖(0), where 𝑇𝐸𝑖 denotes the difference between the value of the outcome 

variable when individual 𝑖 is treated (𝑌𝑖(1)) and the value of the same outcome variable when 
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the same individual 𝑖 is untreated (𝑌𝑖(0)). However, the fundamental problem in estimating the 

treatment effect is the unobservability of the same individual 𝑖 in both the treated and untreated 

status (Rubin, 1975, 1997). Since it is impossible to observe both factual and counterfactual 

status for individual 𝑖 at the same time, the identification of the treatment effect relies on 

comparing outcomes for different individuals with different treatments. Specifically, the focus 

will be on the average treatment effect (ATE) over a sub-population rather than on the unit level 

effect (Imbens and Lemieux, 2008). We could then identify the average treatment effect for all 

individuals in the data set by  

𝐴𝑇𝐸𝑖 = 𝔼[ 𝑌𝑖(1) −  𝑌𝑖(0)], 

where the expectation 𝔼[∙] is taken over individuals. Therefore, the observed sample is {𝑌𝑖,

𝑋𝑖}𝑖=1
𝑛 , where the observed outcome of individual 𝑖, denoted,  𝑌𝑖 , can be written as follows: 

𝑌𝑖 = 𝑌𝑖(0) + 𝐷𝑖[ 𝑌𝑖(1) −  𝑌𝑖(0)] =  {
𝑌𝑖(0)    𝑖𝑓 𝐷𝑖 = 0

𝑌𝑖(1)    𝑖𝑓 𝐷𝑖 = 1
         (1) 

Equation (1) is called the potential outcome model (POM), and it is the baseline equation that 

links unobservable with observable outcomes (Cervlli, 2015). The following standard 

assumptions are sufficient conditions to identify the conditional average treatment effect (Hahn, 

Todd, and Van der Klaauw, 2001, (HTV) hereafter): 

Assumption 1: (i) 𝑙𝑖𝑚
𝑥↓𝑥̅

𝐸[𝐷𝑖 | 𝑋𝑖 = 𝑥̅] =  𝑑
+ and 𝑙𝑖𝑚

𝑥↑𝑥̅
𝐸[𝐷𝑖 | 𝑋𝑖 = 𝑥̅] =  𝑑

− exist and (ii) 

𝑙𝑖𝑚
𝑥↓𝑥̅

𝐸[𝐷𝑖 | 𝑋𝑖 = 𝑥̅]  ≠ 𝑙𝑖𝑚
𝑥↑𝑥̅

𝐸[𝐷𝑖 | 𝑋𝑖 = 𝑥̅] 

This assumption of RD means that the probability of receiving treatment (retirement) is 

discontinuous at the cut-off point, 𝑥̅. That is, the probability of receiving the treatment may not 

change from zero to one at the cut-off, which gives  

0 < lim
𝑥↓𝑥̅

𝑝𝑟 [𝐷𝑖 | 𝑋𝑖 = 𝑥̅] − lim
𝑥↑𝑥̅
𝑝𝑟[𝐷𝑖 | 𝑋𝑖 = 𝑥̅]  <  1   
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Sometimes treatment is not fully determined by the assignment variable. That is, some 

individuals take treatment when they are not assigned, and some go beyond the cut-off point and 

do not get treatment, due to noncompliance (Trochim, 1984). In this study, retirement is not fully 

determined by age, but the probability of retirement increases at the cut-off points of early and 

official retirement age. As shown in figure 1.1, when individual approaches age 62 and 65 this 

will increase the chance of retirement discontinuously, but not completely determine the 

retirement decision in this study. Therefore, I use a “Fuzzy” RD design that allows for a jump at 

the cut-off point with probability greater than zero and less than one ( Lee & Lemieux, 2010; 

Stancanelli, 2012 ). 

Assumption 2: The two potential outcomes 𝐸[𝑌𝑖(1)|𝑋𝑖 = 𝑥] and 𝐸[𝑌𝑖(0)|𝑋𝑖 = 𝑥] are continuous 

functions in the running variable 𝑋𝑖 over the support of 𝑋̅, 𝑆𝑢𝑝𝑝 (𝑋̅), i.e., in the neighborhood of 

the threshold value 𝑋̅.  

That is, outcome variables have to be a continuous function around the cut-off in the absence of 

the treatment3. Continuity of the conditional expectation of counterfactual outcomes in the 

running variable is a sufficient condition for identification in RD design (McCrarry, 2008). 

Since the difference in the potential outcome 𝑌𝑖(1) − 𝑌𝑖(0) is unobservable, we need 

representative quantities that can be estimated with the data. Therefore, if the conditional mean 

functions 𝔼[𝑌𝑖(1)|𝑋𝑖 = 𝑥] and 𝔼[𝑌𝑖(0)|𝑋𝑖 = 𝑥] are continuous, we can contrast the right limit of 

the conditional mean, 𝑌+ = lim
𝑥↓𝑥̅

𝐸[𝑌𝑖 | 𝑋𝑖 = 𝑥], and the left limit of the conditional mean, 

 
3 Potential outcome must be continuous at the cut-off (Hahn et al., 2001; Imbens and Lemieux, 2007; Lee and 

Lemieux, 2009): 

lim
𝑥↑𝑥̅
𝐸[𝑌𝑖 (0)|𝑋𝑖 = 𝑥]   =   lim

𝑥↓𝑥̅
𝐸[𝑌𝑖 (0)| 𝑋𝑖 = 𝑥]  

lim
𝑥↑𝑥̅
𝐸[𝑌𝑖 (1)|𝑋𝑖 = 𝑥]   =   lim

𝑥↓𝑥̅
𝐸[𝑌𝑖 (1)| 𝑋𝑖 = 𝑥] 

If one or both potential outcomes are discontinuous at the cut-off, the RD estimates would be biased. 
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𝑌− =  lim
𝑥↑𝑥̅
𝐸[𝑌𝑖 |𝑋𝑖 = 𝑥], of observable outcomes to estimate the average treatment effect (Otsu, 

Xu, Matsushita, 2015 ). 

Theorem: (HTV (2001)) suppose assumption 1 and 2 hold; then, the quantity 

𝜏𝑓𝑢𝑧𝑧𝑦 = 
𝑌+ − 𝑌−

𝑑+ − 𝑑−
 

measures the average treatment effect at  𝑋 = 𝑥̅, i.e. 𝜏𝑓𝑢𝑧𝑧𝑦 = 𝐸[𝑌𝑖(1) − 𝑌𝑖(0)|𝑋𝑖 = 𝑥̅], 𝑖 ∈

𝐶, where C is the compliers set.  

That is, to estimate the causal effect of treatment, we estimate the discontinuity (jump) in the 

conditional mean of the outcome variable 𝑌𝑖 at the threshold and scale it by the discontinuity 

(jump) in the conditional treatment probability 𝐷𝑖 at the threshold point, i.e. 

 

𝜏𝑓𝑢𝑧𝑧𝑦 =
lim
𝑥↓𝑥̅

𝔼[𝑌𝑖 | 𝑋𝑖 = 𝑥] − lim
𝑥↑𝑥̅

𝔼[𝑌𝑖 |𝑋𝑖 = 𝑥]

lim
𝑥↓𝑥̅

𝔼[𝐷𝑖 | 𝑋𝑖 = 𝑥] − lim
𝑥↑𝑥̅

𝔼[𝐷𝑖 |𝑋𝑖 = 𝑥]
         (2)4 

 

 

It is very important to note that regression discontinuities are calculated at a single cutoff 

point on the support of the continuous assignment variable which leads to a very local causal 

effect.  That is, RD estimates are, by construction, local and not informative for units away from 

the cutoff point in the absence of additional assumptions.  

Empirically, the local average treatment effect, 𝜏𝑓𝑢𝑧𝑧𝑦, can be estimated non-

parametrically by running a one-sided Kernel regression at the cut-off point 𝑥̅, and obtain the 

point-wise expectation for the four limits value in equation (2). However, and like other non-

parametric methods, the one-sided Kernel regression presents some problems at the boundaries 

regarding the speed of convergence (Porter, 2003). Alternatively, a consistent estimation 

procedure to implement the LATE in formula (2) can be constructed nonparametrically by using 

 
4 See appendix A  
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the local polynomial regression estimators restricted to a window around the cut-off point. Local 

polynomial regression estimates of different order approximate the four unknown regression 

functions restricted to a window around the cut-off point. These estimators have been widely 

known by their excellent boundary property that makes them a well-suited candidate for 

estimation and inference in RD design5 (Cheng, Fan and Marron, 1997). 

Following Hahn et al., (2012) and Calonico et al., (2014), the local average treatment 

effect at the cut-off point is estimated by a local polynomial regression with the same bandwidth 

for estimation of the discontinuity in the outcome variable (health and health-related behavior) 

and treatment (retirement) regression. By defining the conditional means of both the outcome 

variable and the treatment variable as a function of the running variable Υ(𝑥), we can identify 

four values on both sides of the cutoff as follows: 

Υ+
𝑖 = lim

𝑥↓𝑥̅
Υ𝑖  (𝑥)         ,    Υ−

𝑖 = lim
𝑥↑𝑥̅

Υ𝑖  (𝑥)         ;      𝑖 ∈ {𝑌, 𝐷}          

where Y and D denote the outcome variable (health indicators) and treatment variable 

(retirement), respectively. The estimated intercept from the local weighted regression Υ̂+
𝑖  and Υ̂−

𝑖  

is an estimate of the LATE 

𝐿𝐴𝑇𝐸̂𝑓𝑢𝑧𝑧𝑦 = 
Υ̂+
𝑌 − Υ̂−

𝑌

Υ̂+
𝐷 − Υ̂−𝐷

        (3) 

Specifically, the four unknown regression functions in equation (2) can be approximated by local 

polynomial methods, which overestimate the global polynomial method, by using only 

observations that are between 𝑥̅ − ℎ and 𝑥̅ + ℎ, where ℎ > 0 is the chosen bandwidth. Moreover, 

 
5 Global polynomial approach delivers good approximation overall, but poor approximation at the boundary point 

(problem known as Runge’s phenomenon in approximation theory). Also, local polynomial approach employs a 

low-order polynomial approximation, usually linear or quadratic, and discard all observations which are extremely 

far from the cutoff. Therefore, it is more robust and less sensitive to boundary-related problems (for more details, 

see Catten et al., 2018) 
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the observations close to the cut-off are given more weight than observations that are far from it 

by a Kernel function 𝐾(∙). 

In econometric form, 

Υ+
𝑖 (ℎ) =  𝐼0

′  𝛽̂+
𝑖 (ℎ)   𝑎𝑛𝑑  Υ−

𝑖 (ℎ) =  𝐼0
′  𝛽̂−

𝑖 (ℎ)  ;   𝑖 ∈ {𝑌, 𝐷}   

where RD estimators on both sides of the discontinuity are given by 

𝛽̂+
𝑖 (ℎ) = 𝑎𝑟𝑔𝑚𝑖𝑛 ∑ 𝟙 (𝑋𝑖

𝑥̅≤𝑋𝑖≤𝑥̅+ℎ

 ≥  𝑥̅) [𝑌𝑖 − 𝛽+,0 − 𝛽+,1(𝑥𝑖 − 𝑥̅) − ⋯− 𝛽+,𝑝(𝑥𝑖 − 𝑥̅)
𝑝]
2
 𝐾ℎ (

𝑥𝑖 − 𝑥̅

ℎ
) 

𝛽̂−
𝑖 (ℎ) = 𝑎𝑟𝑔𝑚𝑖𝑛 ∑ 𝟙 (𝑋𝑖

𝑥̅−ℎ≤𝑋𝑖<𝑥̅

 <  𝑥̅) [𝑌𝑖 − 𝛽−,0 − 𝛽−,1(𝑥𝑖 − 𝑥̅) − ⋯− 𝛽−,𝑝(𝑥𝑖 − 𝑥̅)
𝑝]
2
 𝐾ℎ (

𝑥𝑖 − 𝑥̅

ℎ
) 

where 𝐼0 = (1,0,0,0,… . .0) ∈ ℝ
𝑝+1 is the first unit vector,  𝟙(∙) is an indicator function that 

equals one if the condition in parentheses is true and zero otherwise. 𝐾 (∙) is the kernel function,  

(ℎ) is the bandwidth, and (𝑝) is the degree of the polynomial function. The magnitude of the 

discontinuity in the outcome regression is estimated by 𝜏̂𝑌 = 𝛽̂+
𝑌 (ℎ)  −  𝛽̂−

𝑌 (ℎ), and the 

magnitude of the discontinuity in the treatment regression is estimated by 𝜏̂𝐷 = 𝛽̂+
𝐷 (ℎ) −

  𝛽̂−
𝐷 (ℎ). Therefore, the estimated effect  𝜏̂𝐹𝑅𝐷 (ℎ) using local polynomial RD estimator is the 

ratio of the two discontinuities  

𝜏̂𝐹𝑅𝐷 (ℎ) =  
𝜏̂𝑌(ℎ)

𝜏̂𝐷(ℎ)
 =  

𝛽̂+
𝑌 (ℎ)  −  𝛽̂−

𝑌 (ℎ)

𝛽̂+
𝐷 (ℎ)  −  𝛽̂−𝐷 (ℎ)

     (5) 

Hahn et al. (2001) showed that the non-parametric estimates of equation (5) are numerically 

equivalent to the simple IV estimation. Therefore, the treatment effect in the RD setting can also 

be estimated by a parametric approach through the IV/2SLS method (Imbens and Lemieux, 

2008; Lee and Lemieux, 2010). 

Since the fuzzy regression discontinuity estimator given by formula (5) is a special case of the 

local Wald estimator, RD estimation and inference can be parametrically run by a simple IV 
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regression of Y on D and using T as an instrument for D. Consequently, and with no loss of 

generality, we can estimate equation (5) by using a local linear regression that requires running 

four regression on left (L) and right (R) side of the cut-off point. The following two equations 

can be used to estimate the outcome variable on the left and the right side of the cut-off 

𝑌𝐿 =  𝛼𝐿 + 𝛿𝐿(𝑥𝑖 − 𝑥̅) + 𝜀𝐿,𝑖    𝑖 ∈ {𝑥̅ − ℎ ≤ 𝑋𝑖 < 𝑥̅}   (6) 

𝑌𝑅 =  𝛼𝑅 + 𝛿𝑅(𝑥𝑖 − 𝑥̅) + 𝜀𝑅,𝑖    𝑖 ∈ {𝑥̅ ≤ 𝑋𝑖 ≤ 𝑥̅ + ℎ}  (7) 

By combining the previous two equations into a unique local pooled linear regression, using the 

POM equation (1) and substituting T for D, we get: 

𝑌𝑖 = 𝛼𝐿 + (𝛼𝑅 − 𝛼𝐿) ∙ 𝑇𝑖 + 𝛿𝐿(𝑥𝑖 − 𝑥̅) + (𝛿𝑅 − 𝛿𝐿) ∙ 𝑇𝑖 ∙ (𝑥𝑖 − 𝑥̅) + 𝜀𝑖   (8) 

The equation estimates the discontinuity in the outcome at the cut-off point as the difference 

between the left and right intercepts of the regression, which is given by the coefficient of 𝑇.  

By the same logic, the following two equations can be used to estimate the probability of 

retirement on the left and right side of the cut-off 

𝐷𝐿 = 𝑃(𝐷𝑖 = 1|𝑥𝑖 = 𝑥̅) =  𝜇𝐿 + 𝜋𝐿(𝑥𝑖 − 𝑥̅) + 𝜂𝐿,𝑖    𝑖 ∈ {𝑥̅ − ℎ ≤ 𝑋𝑖 < 𝑥̅}   (9) 

𝐷𝑅 =  𝑃(𝐷𝑖 = 1|𝑥𝑖 = 𝑥̅) = 𝜇𝑅 + 𝜋𝑅(𝑥𝑖 − 𝑥̅) + 𝜂𝑅,𝑖    𝑖 ∈ {𝑥̅ ≤ 𝑋𝑖 ≤ 𝑥̅ + ℎ}  (10) 

In addition, in a fuzzy RD setting the compliers are all the units 𝑖 that satisfy the rule 

𝑖𝑓 𝑇𝑖 = 1 ⇒  𝐷𝑖 = 1   

𝑖𝑓 𝑇𝑖 = 0 ⇒  𝐷𝑖 = 0 

where  𝑇𝑖 =  𝟙(𝑥𝑖 ≥ 𝑥̅), assignment to treatment, and 𝐷𝑖 ∈ {0,1}, receiving treatment. 

Then the previous two equations can be combined into a unique pooled linear regression using 

the equation of observed treatment 𝐷𝑖 = 𝑇𝑖 ∙ 𝐷𝑖(1) + (1 − 𝑇𝑖) ∙ 𝐷𝑖(0), 

𝐷𝑖 = 𝜇𝐿 + (𝜋𝑅 − 𝜋𝐿) ∙ 𝑇𝑖 + 𝜋𝐿(𝑥𝑖 − 𝑥̅) + (𝜋𝑅 − 𝜋𝐿) ∙ 𝑇𝑖 ∙ (𝑥𝑖 − 𝑥̅) + 𝜂𝑖  (11) 
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This equation estimates the discontinuity in the treatment (retirement) at the cut-off point as the 

difference between the left and right intercepts of the regressions, which is given by the 

coefficient of T, 𝜋𝑅 − 𝜋𝐿 . Therefore, a consistent estimator for the LATE in RD setting is 

𝐿𝐴𝑇𝐸̂ =  
𝛼̂𝑅 − 𝛼̂𝐿
𝜋̂𝑅 − 𝜋̂𝐿

      (12) 

Equation (8) and (11) can be used as a reduced form two-equation structural system in which Y 

and 𝐷 are endogenous and 𝑇 is exogenous. By implementing a local polynomial regression, 

equation (12) can be estimated using the RD setting by the IV-2SLS method as follows (Hahn et 

al., 2001)  

𝑌𝑖 = 𝛼𝐿 + 𝐴𝑇𝐸 ∙  𝐷𝑖 + ∑𝛿𝐿,𝑝(𝑥𝑖 − 𝑥̅)
𝑝

𝑃

𝑝=1

+ 𝑇𝑖∑(𝛿𝑅,𝑝 − 𝛿𝐿,𝑝) 

𝑃

𝑝=1

∙  (𝑥𝑖 − 𝑥̅)
𝑝 + ℤ +  𝜀  (13) 

𝐷𝑖 = 𝜇𝐿 + (𝜇𝑅 − 𝜇𝐿)  ∙  𝑇𝑖 + ∑𝜋𝐿,𝑝

𝑃

𝑝=1

(𝑥𝑖 − 𝑥̅)
𝑝 + 𝑇𝑖∑(𝜇𝑅,𝑝 − 𝜇𝐿,𝑝)

𝑃

𝑝=1

∙ (𝑥𝑖 − 𝑥̅)
𝑝 + ℤ +  𝜂  

 

where ATE is the parametric RD average treatment effect, 𝐷𝑖 is a dummy variable where 𝐷𝑖 = 1 

if the respondent received the treatment (i.e., is retired), 𝑇𝑖 is an instrument for D, 𝑝 is the 

polynomial order of the regression, and ℤ is a vector of covariates in the model.  

Although instrumental variable estimation methods are widely used in econometrics to 

capture the endogeneity issue, the bivariate likelihood estimation methods are theoretically and 

empirically superior to the traditional two-stage instrumental variable in the case of binary 

outcome settings (Marra et al., 2014; Bhattacharya et al., 2006; Wooldridge, 2010). The 

recursive bivariate probit model is a convenient setting for estimating the effect of retirement as 

an endogenous binary covariate (“retirement”) on the binary health outcome indicators. The 

setup of this estimation is based on two latent variable equations: 
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  𝑟𝑒𝑡𝑖𝑟𝑒𝑑𝑖 =  𝟙 (𝛽0 + 𝛽1 𝑐𝑢𝑡𝑜𝑓𝑓𝑖 + 𝛽2𝐺𝑖 +  𝛽3𝐺𝑖 ∗ 𝑐𝑢𝑡𝑜𝑓𝑓𝑖 +   𝛾 𝑋𝑖 + 𝑢𝑖  > 0) ;  

                            0, otherwise                       (14) 

ℎ𝑒𝑎𝑙𝑡ℎ𝑖 = 𝟙(𝛼0 + 𝛼1 𝑐𝑢𝑡𝑜𝑓𝑓𝑖 + 𝛼2𝐺𝑖 + 𝛼3𝐺𝑖 ∗ 𝑐𝑢𝑡𝑜𝑓𝑓𝑖  +  𝜋 𝑟𝑒𝑡𝑖𝑟𝑒𝑑𝑖 +   𝜓 𝑋𝑖 + 𝜀𝑖  > 0); 

0, otherwise 

where 𝟙(∙) is an indicator function that equals one if the condition in parentheses is true and zero 

otherwise,  𝑋𝑖 is a vector of individual characteristics and demographic variables, and 𝜋 is a 

consistent estimator of the Local Average Treatment Effect (LATE) on health among retirees.  In 

the model, age is normalized to be 𝐺𝑖 = (𝑎𝑔𝑒𝑖 − 𝐶), where C = 65, so that discontinuity arises at 

𝐺𝑖 = 0. The variable 𝑐𝑢𝑡𝑜𝑓𝑓𝑖 is equal to one if 𝐺𝑖 ≥ 0 and zero otherwise. That is, it is a dummy 

variable that takes on a value of “1” if individual “𝑖” is on the right of the cut-off point of the 

treatment. The interaction term 𝐺𝑖 ∗ 𝑐𝑢𝑡𝑜𝑓𝑓𝑖 allows different slopes on either side of the 

discontinuity. That is, age is centered at the cut-off point to interpret any shift at the cut-off point 

as a shift in the intercept and the interaction term as a change in the slopes on either side of the 

cut-off point. The first equation determines whether or not treatment is received, while the 

second equation describes the health outcome as a function of a binary treatment (“retirement”) 

and latent error. The recursive bivariate probit model is used to estimate the impact of retirement 

on health behavior outcome variables.  

It is very important to note that including fixed effects in the specification of RD design 

is not necessary.  Lee and Lemieux (2010); Van Der Klaauw (2008); Imbens and Lemieux 

(2007) show that the RD analysis can be conducted for the entire pooled cross-section dataset, 

and the within-individual correlation of the errors over time can be captured by using clustered 

standard errors. They also show that the source of identification in the RD setting is a 

comparison between those just below and above the cut-off point, and this can be done with a 
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single cross-section. Consequently, imposing a specific dynamic structure introduces more 

restrictions without any marginal gain in identification (Lee and Lemieux 2010). 

 

1.5. Regression Discontinuity Visualization:  
 

One of the distinctive features of RD design is the possibility to visualize the 

discontinuity graphically. Graphical illustration associated with formal estimation, inference, and 

falsification tests enriches the transparency of the analysis by visualizing the observations used 

in the estimation.  Although individuals in the U.S. are not forced into retirement, the official 

pension claims schemes provide incentives to retire at certain ages, i.e. early and full retirement 

age at 62 and 65, respectively.  

I first visually inspect if there is an empirical discontinuity in retirement at the official 

age of retirement. In the following visualization, I will show the conditional probability of being 

assigned to the treatment given the forcing variable, 𝑝𝑟[𝑇𝑖 = 1 |𝑋𝑖 = 𝑥̅], for different values of 

the running variables 𝑥𝑖. Recall that in the fuzzy RD design, treatment assignment and treatment 

received are not identical, and the figure reflects treatment take up, not treatment assignment. 

Figure (1.1) shows the share of retirement at every age between 50 and 75 in the observed data 

set. The solid dots indicate the local sample mean of retirement over non-overlapping 3-month 

bin partitions of the actual data. The sample means help visualize the dispersion of data which 

can be used to detect any potential discontinuity. The figure shows that there is a marked 

increase in retirement at age 65, which is the full retirement age (the official age of retirement). 

There is also a noticeable jump in the probability of retirement at age 62, the early retirement 

age. 
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Figure 1.1: Age profile of retirement using non-parametric Local Polynomial Regression 

 
The optimal choice of the number of bins is based on IMSE- optimal evenly spaced partitions bins.   

Figure 1.1 is constructed by using the RD plot that has evenly spaced bins that mimic the 

underlying variability of the actual data. The global polynomial is constructed using a 4th degree 

polynomial. The graph shows how the local binned sample means approximate the underlying 

regression function. In this approach, the optimal number of bins is selected to balance squared 

bias and variance. The graph shows distinctive discontinuities at age 62 and age 65. The 

estimated 95% confidence intervals do not intersect at the threshold points, which is strong 

visual evidence for the validity of discontinuities. RD design is a research strategy that can be 

applied when selection into treatment is highly determined by specific levels of particular 

variables, called running or forcing variables, which are used to set up a threshold point to 

identify treated and untreated units. Therefore, ages 62 and 65 are good candidates for the 

discontinuity in the retirement decision. 
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Figure 1.2: The change in the retirement probability using the fixed effect estimator 

 

Figure 1.2 represents the estimated change in retirement probability between age 50 and 

75 after controlling for individual fixed effect. Following Bonsang et al. (2012), I estimated the 

following model ℜ𝑖𝑡 = 𝜌𝑖 + ∑ 𝜙𝑔Ζ𝑖𝑡
𝑔75

𝑔=51 + 𝜉𝑖𝑡, where ℜ𝑖𝑡 is the retirement dummy, Ζ𝑖𝑡
𝑔
=

1[𝑎𝑔𝑒𝑖𝑡 ≥ 𝑔], 𝜌𝑖 is the individual fixed effect, and 𝜉𝑖𝑡 is the error term. The figure reports the 

estimates of 𝜙𝑔with 95% confidence intervals. The figure shows that there is a significant 

increase in the probability of retirement at age 62, the early retirement age, and there is a 

noticeable increase in the probability of retirement at age 65, the official age of retirement. 

In general, Figures 1.1 and 1.2 show that the probability of retirement increases as 

individuals get older. In addition, there are significant discontinuities in the probability of 

retirement at ages 62 and 65 for the full sample. The sample means inside bins and the local 

polynomial smoothing of the data shows that there is a greater jump in the retirement probability 

at age 62 (early retirement age) than there is at age 65 (the official age of retirement). Since there 

is no documented reason to believe that individuals’ health would change drastically when they 

-.
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turn 62 or 65, this suggests that factors such as social norms or financial incentives provided by 

pensions plans might cause these jumps. According to Thistlethwaite and Campbell (1960), Lee 

(2007), Card et al. (2006), Chay and Greenstone (2005), and Lee & Lemieux (2010), the validity 

of the RD design does not depend on the cause of the jump but on whether there are true jumps 

in the probability of retirement at the cut-off points.  

The next step is to investigate if there are discontinuities in the outcome variables. At first 

glance, the relationship between the outcome health variables and the running variable can be 

illustrated by simply constructing a scatter plot of the observed outcome health variable against 

the score variable. However, it is hard to see jumps or discontinuities in the outcome-score 

relationship by simply looking at the raw data. The more useful approach in RD design is to 

smooth the data before plotting. Following Calonico et al., (2017), global polynomial fit and 

local sample means are combined to show the RD plot. Global polynomial fit is a smooth 

approximation to the unknown regression function that fits the original observed outcome 

variable against the score variable above and below the cut-off separately using the raw data. In 

contrast, the local sample means are created by determining the number of bins of the running 

variable and calculating the mean of the health outcome for all observation within each bin and 

then plotting the average outcome in each bin against the midpoint of the bin. Suppose that the 

total number of bins (𝒲𝑗) is 𝒥− and 𝒥+ for the number of bins chosen to the left and right of the 

cut-off point, respectively. Each local sample mean (𝑌̅) for each bin (𝒲𝒿) is computed as 

follows:  

𝑌̅−,𝒿 = 
1

#{𝑥𝑖 ∈𝒲−,𝒿}
 ∑ 𝑌𝑖𝑖:𝑥𝑖∈𝒲−,𝒿

  and  𝑌̅+,𝒿 = 
1

#{𝑥𝑖 ∈𝒲+,𝒿}
 ∑ 𝑌𝑖𝑖:𝑥𝑖∈𝒲+,𝒿

    (14) 

where 𝒥 =  1, 2, 3,⋯ , 𝒿   is the number of bins 
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In RD design, there are two different approaches to construct the RD plot, and both of them 

address two issues regarding the location and optimal numbers of the bins. The first issue is how 

to determine the location of the bins. There are two types of bins that can be used to construct the 

RD plot: evenly-spaced bins (ESB), where the entire support of the cut-off point is partitioned 

into non-overlapping intervals with the same length; and quantile-spaced bins (QSB), where the 

entire support of the cut-off point is partitioned into non-overlapping intervals with the same 

number of observations. According to CCT, right and left bins can be defined as follows 

 

𝒲−,𝒿 = {

[𝑥𝑙  ,𝓌−,1)

[𝓌−,𝒿−1 ,𝓌−,𝒿

[𝓌−,𝒿−−1 , 𝑥̅)

) 
𝒿 = 1 

𝒿 = 2,⋯⋯ , 𝒥− − 1 

𝒿 = 𝒥−  

(15) 

𝒲+,𝒿 = {

[𝑥̅,𝓌−,1) 

[𝓌+,𝒿−1 ,𝓌−,𝒿

[𝓌+,𝒥+−1 , 𝑥𝑟]

) 
𝒿 = 1 

𝒿 = 2,⋯⋯ , 𝒥+ − 1 

𝒿 = 𝒥+ 

 

where ⋃ 𝒲−,𝒿
𝒥−
𝒿=1 = [𝑥𝑙 , 𝑥̅) , ⋃ 𝒲+,𝒿

𝒥+
𝒿=1 = [𝑥̅, 𝑥𝑟] , and the set [𝑥𝑙,𝑥𝑟] is the support of the running 

variable centered at the cutoff 𝑥̅. 

Partitioning estimators of the evenly-spaced bins is given by 

𝓌−𝒿 = 𝑥𝑙 + 
𝒿(𝑥̅ − 𝑥𝑙)

𝒥−
 𝑎𝑛𝑑 𝓌+𝒿 = 𝑥̅ + 

𝒿(𝑥𝑟 − 𝑥̅)

𝒥+
      (16) 

and the partitioning estimators of the quantile-spaced bins is given by 

𝓌−𝒿 = 𝑋−, (⌊
𝒿

𝒥−
⌋)  𝑎𝑛𝑑 𝓌+𝒿 = 𝑋+, (⌊

𝒿

𝒥+
⌋)        (17) 

where 𝑋−, (∙) 𝑎𝑛𝑑 𝑋+, (∙) denotes the 𝑖𝑡ℎquantile of the control and treatment subsample, 

respectively, and ⌊∙⌋ denotes the floor function. 
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The second issue is how to determine the number of bins that can be used in the case of ES and 

QS. There are again two approaches to determine the optimal number of bins. The first approach 

is the Integrated Mean Square Error (IMSE) of the local mean estimator. According to this 

approach, when we choose a large number of bins, we get a small bias, but larger numbers of 

bins may lead to more variability within bins due to the smaller number of observations inside 

each bin. Therefore, according to IMSE, the optimal number of bins is the one that balances 

squared-bias and variance and minimizes IMSE. The IMSE optimal numbers of bins for 𝒥− and 

𝒥+ are given by the following selectors 

𝒥− = ⌈𝜑−𝑛
1/3⌉ 𝑎𝑛𝑑 𝒥+ = ⌈𝜑+𝑛

1/3⌉      (18) 

Where n is the total number of observations, and ⌈∙⌉ denotes the ceiling operator. The constant 

𝜑− and 𝜑+are unknown and their values depend on whether ES or QS partitioning selectors of 

bins are used. The unknown constants are estimated using the CCT procedure, which is based on 

some features of the underlying data generating process6. 

The second approach is the mimicking variance approach, where the optimal number of bins is 

chosen so that the overall variability of the binned means mimics the overall variability in the 

raw data (Calonico et al., 2017). The mimicking-variance selectors of the number of bins use the 

same approach of the IMSE selection, except that the form of the constant 𝜑−
𝑀𝑉 and 𝜑+

𝑀𝑉 are 

different from those included in the IMSE optimal selector. The MV procedure leads to a larger 

number of bins than the IMSE procedure for both ES and QS. Therefore, the number of dots, 

which represents the local mean inside each bin, is higher and this can give a clearer picture of 

the variability of the data. 

 
6 All details regarding how the selectors of the number of bins for control and treatment groups, and the rule of 

thumb estimates of the unknown constants can be found in Calonico, Cattaneo, and Titiunik (2015). 
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In Figure 1.3, the global fit shows that the observed regression function is close to a linear 

relation. The local average of the outcome ‘cognitive function’ in each bin shows how the 

average total word recall score behaves around the global fit. The plot visualizes the 

discontinuity at the cut-off point for complicity and helps in understanding the shape of the 

underlying regression function over the support of the running variable. The local means of total 

word recall in panels A and B  are similar. Since the observations are uniformly distributed on 

the support of the running variable, the local mean in each bin is precisely calculated and the 

local average will be directly comparable in terms of variability. The plot also reveals a negative 

jump in the value of the total word recall index at the cut-off point. That is, the cognitive 

functioning of retired individuals is lower than that of non-retired individuals within the same 

age group. Figure 1.4 shows that there is a significant positive jump in the CESD depression 

scale at the cut-off point for compliances for both Evenly and Quantile spaced methods. The RD 

plots give an initial intuition about the negative effect of retirement on the mental health of 

retirees. Figure 1.5 shows a negative jump in self-reported health for retirees in the neighborhood 

of the cut-off point. That is, the proportion of retired individuals who reported to be in good 

health is less than the proportion of non-retired individuals who reported to be in good health: 

approximately 85% of non-retirees and 73% of retirees. 

Figure 1.6 shows a significant negative jump in the proportion of retired individuals who 

drinking alcohol. The figure shows that retired individuals are around 5 percentage points less 

likely to drink. In contrast, the RD plot (Figure 1.7) shows a positive jump in the proportion of 

retired individuals who smoke relative to non-retirees.
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Figure 1.3: Cognitive Functioning (Total Word Recall Scale) – RD plot 

Panel A: Integrated Mean Square Error (IMSE) approach 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Panel B: Mimicking Variance (MV) approach    
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Figure 1.4: Mental Health – CESD depression scale – RD plot 

Panel A: Integrated Mean Square Error (IMSE) approach 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Panel B: Mimicking Variance (MV) approach 
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Figure 1.5: Self-reported General Health – RD plot 

Panel A: Integrated Mean Square Error (IMSE) approach 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Panel B: Mimicking Variance (MV) approach 

 

 

 

 

 

 

 

 

 

 

 .6
.7

.8
.9

1

S
e
lf
-r

e
p
o

rt
e

d
 h

e
a
lt
h

50 55 60 65 70 75
Running Variable

Sample average within bin Polynomial fit of order 4

All sample

Self-reported General Health

Mimic-Variance RD Plot with evenly-Spaced Bins

.6
5

.7
.7

5
.8

.8
5

S
e
lf
-r

e
p
o

rt
e

d
 h

e
a
lt
h

50 55 60 65 70 75
Running Variable

Sample average within bin Polynomial fit of order 4

All sample

Self -reported General Health

IMSE RD Plot with Evenly-Spaced Bins

.6
.7

.8
.9

1

S
e
lf
-r

e
p
o

rt
e

d
 h

e
a
lt
h

50 55 60 65 70 75
Running Variable

Sample average within bin Polynomial fit of order 4

All sample

Self-reported General Health

Mimic-Variance RD Plot with Quantile-Spaced Bins

.6
5

.7
.7

5
.8

.8
5

S
e
lf
-r

e
p
o

rt
e

d
 h

e
a
lt
h

50 55 60 65 70 75
Running Variable (age)

Sample average within bin Polynomial fit of order 4

All sample

Self-reported General Health

IMSE RD Plot with Quantile-Spaced Bins



45 

 

 

Figure 1.6: Drinking participation – RD plot 

Panel A: Integrated Mean Square Error (IMSE) approach 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Panel B: Mimicking Variance (MV) approach 
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Figure 1.7: smoking participation – RD plot 

Panel A: Integrated Mean Square Error (IMSE) approach 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Panel B: Mimicking Variance (MV) approach 
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1.6. Non-parametric Estimation Results of the Fuzzy Regression Discontinuity 

Design (FRD) 

1.6.1 Non-Parametric RD Results of Health 

Table 1.1 presents the main results of the non-parametric RD estimation of the impact of 

retirement on cognitive functioning, measured by the total word recall score (TWC). Each 

column shows the local linear point estimate using the bandwidths indicated in the first row of 

each column. The first column reports the RD treatment effect using the optimal bandwidth, 

which is selected according to the Mean Square Error (MSE) bandwidth selector. The estimates 

in the first column show that the jump in retirement probability was associated with a negative 

jump in the reported word recall test score. That is, the effect of retirement on cognitive function 

is negative and highly significant. The RD estimator suggests that retired individuals experienced 

a drop in their cognitive test score by about 0.8 points with a 95% confidence interval [-1.03411, 

-0.593943]. This decline in cognitive functioning is equivalent to an approximately 8% decline 

in the cognitive functioning score of retired individuals. Moreover, the effect of retirement on 

cognitive functioning is not sensitive to the change in the selected bandwidth for all reported 

bandwidths. 

The table also shows results for three different methods for the RD treatment effect 

estimator: the traditional RD estimates with conventional variance estimator (conventional 

inference), Bias-corrected RD estimates with a conventional variance estimator (Bias-corrected 

inferences), and bias-corrected RD estimates with a robust variance estimator (Robust RD 

inferences), which is proposed by Calonico, Cattaneo, and Titiunik (2014, CCT hereafter) and 

Calonico et al., (2016) to give more robust confidence intervals by using a bias-corrected RD 

treatment effect estimator. 
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Table 1.1: Fuzzy RD estimates - Cognitive functioning (Total word recall score) – All sample at age 65 

 

MSE-Optimal  

bandwidth  
Bandwidths (h) 

 4.8 1 2 3 4 5 

Conventional -0.81403*** -0.99274*** -0.88438*** -0.87222*** -0.82654*** -0.8142*** 

 (0.11229) (0.29964) (0.19173) (0.15071) (0.12601) (0.11054) 

𝐶𝐼95%
𝑐  [-1.03411, -0.593943]    

Bias-

Corrected -0.86067*** -1.4924*** -0.92883*** -0.92134*** -0.9233**** -0.86472*** 

 (0.11229) (0.29965) (0.19173) (0.15071) (0.12601) (0.11054) 

𝐶𝐼95%
𝑏𝑐  [-1.08073, -0.640564]     

Robust -0.86065*** -1.4924*** -0.92883*** -0.92134*** -0.9233*** -0.86472*** 

 (0.13365) (0.47549) (0.28369) (0.22048) (0.18557) (0.16322) 

𝐶𝐼95%
𝑟𝑏𝑐  [-1.1226, -0.598694]     

Obs L|R 38927| 28150 38927|28150 38927|28150 38927|28150 

38927| 

28150 

38927| 

28150 

Notes: (i) All estimates are computed using a triangular kernel (ii) The first column shows three different procedures: 

conventional RD estimates with a conventional variance estimator 𝜏̂𝐹𝑅𝐷
𝑐 ; bias-corrected RD estimates with a conventional 

variance estimator 𝜏̂𝐹𝑅𝐷
𝑏𝑐 ; and bias-corrected RD estimates with a robust variance estimator 𝜏̂𝐹𝑅𝐷

𝑟𝑏𝑐 . (iii) Standard errors are in 

parentheses. (iv) *,**,*** indicate significance level at 10%, 5%, 1% respectively. 

  

Figure 1.8: Non-parametric Fuzzy RD estimates at different bandwidths – cognitive function  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Notes: Non-parametric Regression discontinuity robustness of bandwidth choice for cognitive functioning. Each point is a 

separate non-parametric regression discontinuity point estimate. Fuzzy non-parametric RD treatment effect estimated for 50 to 

200 percent of the CV-optimal bandwidth (half and twice the optimal bandwidth) with a 5 percentage points incremental. 

Bootstrapped standard errors are based on 120 simulations to construct 95% CI. 
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The first two rows of the table show the conventional RD estimator 𝜏̂𝐹𝑅𝐷
𝑐  (ℎ), which is based on 

local polynomial non-parametric estimators and a 95% confidence interval. This approach is 

arguably the most commonly used in practice (Calonico, 2014). The bias-corrected approach 

(𝜏̂𝐹𝑅𝐷
𝑏𝑐  (ℎ)) is introduced to remove the potentially large effect of unknown leading bias of the 

RD estimator (Calonico, 2014). The robust bias-corrected approach (𝜏̂𝐹𝑅𝐷
𝑟𝑏𝑐 (ℎ)) offers an 

alternative confidence interval 𝐶𝐼95%
𝑟𝑏𝑐 on the bias-corrected RD treatment effect estimator and the 

adjusted variance that account for the additional variability in the bias-corrected RD. That is, the 

variance formula used is constructed to account for the variability of the original RD treatment 

effect estimator and the bias correction term7. The results show that the RD effect of retirement 

on cognitive functioning is negative and stable across the three RD inference methods with a 

small difference in the standard error in the robust bias-corrected approach relative to the other 

two approaches.  

The choice of the neighborhood of the cut-off point in RD estimation [𝑥̅ − ℎ, 𝑥̅ + ℎ] is 

crucial in getting consistent estimates for the treatment effect. Theoretically, the bandwidth 

choice in RD design was first introduced by Imbens and Kalyanaraman (2009, IK hereafter). 

They developed the MSE optimal bandwidth choice, which is extended further to fit the RD 

estimation using local polynomial estimators, clustered data, and inclusion of covariates, in a 

sequence of recent papers (Calonico et al., 2014b; Calonico et al., 2016; Cattaneo and Vazquez-

Bare, 2016; Bartalotti and Brummnt, 2017). Generally, smaller bandwidth tends to produce 

lower bias and higher variance. In contrast, larger bandwidth tends to produce higher bias and 

lower variance. Moreover, the optimal bandwidth in the case of fuzzy RD design will tend to be 

 
7 For further details about the theoretical implication of these alternative RD approaches see Calonico, Cattaneo, and 

Farrell (2014 
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larger due to the additional variance that arises from the estimation of the jump in the conditional 

mean of the treatment (retirement). Put all together, larger bandwidth in fuzzy design may lead to 

additional bias which, in turn, depends on the curvature of the conditional mean functions. 

Therefore, the fuzzy estimates at different bandwidths could help investigate how the RD 

treatment effect estimates depend on the chosen bandwidth. 

Figure 1.8 facilitates visualizing whether or not the RD estimates depend on the chosen 

bandwidth. The optimal bandwidth choice is based on the IM selector, a fully data-driven 

optimal bandwidth8. Generally, in this diagram, the MSE is defined as  

𝑀𝑆𝐸𝑖  (ℎ) = 𝐸[𝜏̂𝑅𝐷
𝑖 − 𝜏𝑅𝐷

𝑖 ]2 = 𝐸[(𝒥̂+
𝑖 − 𝒥+

𝑖 ) − (𝒥̂−
𝑖 − 𝒥−

𝑖 )]
2
  ;      𝑖 ∈ {𝑌, 𝐷}      (19) 

The optimal bandwidth that minimizes the MSE criterion is 

ℎ𝑖𝐼𝑀 = argmin𝑀𝑆𝐸
𝑖(ℎ) 

That is, the optimal bandwidth (ℎ𝐼𝑀) is the one that minimizes the mean square of the difference 

between the estimated 𝜏̂𝑅𝐷
𝑖  and actual value of 𝜏𝑅𝐷

𝑖 , where the observations on the left-hand side 

of the cut-off point, (𝑋𝑖 < 𝑥̅) used in the regression are 𝑥̅ − ℎ ≤ 𝑋 < 𝑥̅, and the observations on 

the right-hand side of the cut-off point (𝑋𝑖 ≥ 𝑥̅) used in the regression are 𝑥̅ ≤ 𝑋 ≤ 𝑥̅ − ℎ. In the 

FRD setting, there are four non-parametric regressions, two for the treatment variable and two 

for the outcome variable, on both sides of the cut-off point. Following Imbens and Kalyanaraman 

(2009), we have to choose the optimal bandwidth that minimizes 𝑀𝑆𝐸𝑌(ℎ) for the outcome 

variable and minimizes 𝑀𝑆𝐸𝐷(ℎ) for the treatment variable. Therefore, the optimal bandwidth 

for fuzzy RD is given by 

ℎ𝐼𝑀
∗ = 𝑚𝑖𝑛    {𝑎𝑟𝑔𝑚𝑖𝑛𝑀𝑆𝐸𝑌(ℎ)  , 𝑎𝑟𝑔𝑚𝑖𝑛𝑀𝑆𝐸𝐷(ℎ)}      (20) 

 

 
8 See Imbens and Kalyanaraman (2009) for all the details related with the formulas and algorithms of choosing the 

optimal bandwidth in RD setting. 
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The figure shows that the estimated effect of retirement on cognitive functioning is negative and 

significant at all bandwidths in a range between 50% and 200% of the estimated optimal 

bandwidth with 5 percentage points increments. The graph also confirms that variability among 

retired individuals is consistent across the different bandwidths, which increases the efficiency of 

the estimated effect. 

One challenge in the non-parametric RD setting is the choice of the kernel function: how 

observations close to the cutoff point are given a relatively high weight and observation far from 

the cut-off point a relatively low weight. I used three different kernel functions: the triangular 

kernel function, which is the most common form in the RD setting; a uniform kernel function; 

and the Epanechnikov kernel function. The goal of estimating the RD treatment effect under 

different kernel functions is to investigate if the relative weight given to the neighborhood 

observations around the cut-off affects the estimated treatment effect. Table 1.2 summarizes a 

variety of information organized in five columns. The first two columns show the RD treatment 

effect using uniform and Epanechnikov kernel functions, respectively. The estimation is 

conducted using local linear estimators (𝜌 = 1). The results in the first two columns show that 

retirement has a significant negative effect on retirees’ cognitive functioning. The results show a 

drop in retirees’ cognitive score by 0.82 and 0.79 points when using the uniform and 

Epanechnikov kernel functions, respectively.  Moreover, when the uniform and Epanechnikov 

kernel functions are used with the robust bias-corrected RD estimators, there was a drop in 

retirees’ cognitive score by 0.86 and 0.84 points with robust 95% confidence intervals [-

1.15481,-0.575584] and [-1.09997,-0.585606], respectively. The results with different kernel 

functions show that the retirement effect on cognitive functioning is consistent with the RD 

estimation using a triangular kernel.  
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Table 1.2: RD estimates for different kernel and different polynomial orders – Cognitive functioning (Total word recall score) at cut-

off age 65 

RD estimator 1 2 3 4 5 

Conventional -0.82047*** -0.79777*** -0.88619*** -0.89449*** -0.87022*** 

Conventional Std. 

Err.  (0.12288) (0.1105) (0.14525) (0.17594) (0.14827) 

Robust Bias- 

corrected -0.8652*** -0.84279*** -0.92422*** -0.89063*** -0.90864*** 

Robust Std. Err.  (0.14776) (0.13122) (0.16724) (0.20248) (0.17029) 

Robust 95% CI 

[-1.15481, -

0.575584] 

[ -1.09997, -

0.585606] 

[ -1.25201, -

0.596431] 

[-1.28748, -

0.493782] 

[ -1.2424, -

.57489] 

Kernel Type9 Uniform Epanechnikov Triangular Uniform Epanechnikov 

Order Loc policy (𝑝) 1 1 2 2 2 

BW local poly (ℎ) 3.4 4.6 6.5 4.1 5.9 

BW Type mserd mserd mserd mserd mserd 

Observations 67077 67077 67077 67077 67077 

L|R 38927|28150 38927|28150 38927|28150 38927|28150 38927|28150 

effective no of obs 6100|8235 9434|11319 15020|16053 7891|9879 13198|14518 

Notes (i) First column report two different procedures: conventional RD estimates with a conventional variance estimator 𝜏̂𝐹𝑅𝐷
𝑐 ; and bias-corrected RD estimates with a robust 

variance estimator 𝜏̂𝐹𝑅𝐷
𝑟𝑏𝑐 . (ii) Standard errors are in parentheses. (iv) *,**,*** indicate significance level at 10%, 5%, 1% respectively. 

 
9 In Triangular Kernel function, the weight is maximized at the cutoff point, 𝑋𝑖 = 𝑥̅, and decline symmetrically and linearly as the value of the score gets farther 

from the cutoff. In Epanechinkov Kernel function, the quadratic weight is maximized at the cutoff point and decline symmetrically as the value of the score gets 

farther from the cutoff. In Uniform Kernel function, all observations have the same weight. 
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The other challenge in the RD setting is the order of the polynomial function. Although a 

local linear estimator has become the standard choice in the RD setting literature since the 

seminal work of Hahn et al., (2001), it was not the best strategy in all social studies (Card and 

Pei, 2014). Therefore, I tried to be more flexible in the choice of the polynomial order 

𝑝. Following recent findings in RD design, Gelman and Imbens (2014) argue that RD estimators 

for causal effects, which rely on using high-order polynomial approximations for the conditional 

mean functions (third, fourth or higher), have been proven to be sensitive to the order of the 

polynomial and conventional inference has poor performance in these settings. They also point 

out that higher-order polynomials may assign a very large weight to observations far from the 

threshold point, which is an undesirable property of high-order polynomials10. However, I 

checked different polynomial orders for the running variable and found that there is no 

improvement in the MSE after the second-order polynomial, which is in line with the argument 

of Gelman and Imbens (2014). Therefore, I reported the results of the RD under the linear and 

quadratic polynomial smoothing function. This choice is consistent with the work of Bonsang et 

al., (2014), who assumed that second-order degree form accounts for the normal cognitive aging 

decline process, i.e. quadratic age may allow cognitive functioning to decline at an increasing 

rate with age. The last three columns report the RD estimates using local quadratic estimators 

(𝑝 = 2) with different kernel functions. Overall, the RD treatment effect is stable across the 

three different kernel functions. Retirement has a significant negative effect on retirees’ 

cognitive score, which ranges from 0.86 to 0.92. That is, the decrease in retirees’ cognitive score 

maybe around 8.6% and 9.2% according to the nonparametric RD local quadratic estimator 

 
10 For more details, see Gelman, A., and Imbens, G. (2014). Why High-Order Polynomials Should Not Be Used in 

Regression Discontinuity Designs. 
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under the conventional and robust bias-corrected variance. Moreover, the value of the RD 

estimate, using the quadratic estimate is similar to the linear estimate.  

Up to this point, the RD treatment effect estimator has assumed that the non-parametric 

local polynomial fit includes only the running variable, age, as the regressor. Although, 

according to many researchers (Imbens & Lemieux, 2008; Lee & Lemieux, 2010), this 

specification is sufficient in the RD setting, Calonico, Cattaneo, Ferrell and Titiunik, 2018 

(hereafter CCFT) suggested a formal framework for estimation and inference in RD designs 

when covariates are included in the local polynomial procedure. They argue that augmented 

covariates in RD design may achieve substantial efficiency gain relative to the standard RD 

estimator. 

Table 1.3: Covariate-adjusted RD estimates – Cognitive functioning (Total word recall score) 

whole sample at cut-off age 65 

 Without covariates  With covariates 

 Standard Fuzzy RD  

Covariate-Adjusted Fuzzy 

RD 

Inference with ℎ/𝑝 unrestricted   

RD treatment effect -0.86065***  -0.70257*** 

Robust 95% CI [-1.1226, -0.598694]  [ -.948205, -0.456944] 

CI length change (%)   -6.2 

robust p-value 0.000  0.000 

ℎ/𝑝 0.645  0.641 

Inference with ℎ/𝑝 restricted   

RD treatment effect -0.92134***  -0.77384*** 

Robust 95% CI [ -1.35347, -.489204]  [ -1.15646, -0.391214] 

CI length change (%)   -11.45 

robust p-value 0.000  0.000 

ℎ|𝑝 2|2  2|2 

𝑛 − |𝑛 + 38927|28150  38927|28150 

observations 67077  67077 

effective obs 9895|11793  5650|7864 
Notes: (i) All estimates are computed using a triangular Kernel and nearest neighbor heteroskedasticity-robust variance estimator 

as suggested by CCT framework. (ii) Bandwidth used for ℎ 𝑎𝑛𝑑 𝑏 is data-driven MSE-optimal for either standard RD estimator 

or covariate-adjusted RD estimator. (iii) *,**,*** indicate significance level at 10%, 5%, 1% respectively. 
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Table 1.3 shows the main results of the standard and covariate-adjusted RD estimate, 

which includes covariates. The covariate-adjusted RD framework imposes the same adjustment 

below and above the threshold point, which means that the covariate at the cut-off should have 

an equal conditional expectation limit from below and above at the threshold. 

The first row of the table reports the RD treatment effect using the corresponding MSE 

optimal bandwidth ℎ. The next three rows report 95% robust bias-corrected confidence intervals, 

the percentage length change of the covariate-adjusted confidence interval relative to the 

unadjusted confidence interval, and the p-value associated with the hypothesis that the RD 

treatment effect equals zero. 

The previous covariate-adjusted and unadjusted RD inference are estimated twice, once 

when bandwidth ℎ, for the RD estimator, and bandwidth 𝑏, for the bias-corrected estimator, are 

chosen separately, and then when they are chosen to be equal, ℎ = 𝑏 𝑜𝑟 ℎ/𝑏 = 1. The point 

estimates of RD range from -0.702 to -0.860 and are statistically significant at 1% in all cases. 

The results show that including covariates in the RD estimator according to the CCT framework 

does not dramatically change the point estimate of retirement on the cognitive function score. 

That is, including covariates in the RD framework, which are truly predetermined, do not 

substantially affect the RD point estimate (Calonico et al., 2018). However, augmenting the 

standard RD estimator with covariates, which is restricted to be equivalent below and above the 

cut-off, can achieve substantial efficiency gains compared to the unadjusted RD estimator. The 

rows labeled CI length change show 6.2% and 11.5% efficiency gains when bandwidths are 

unrestricted and restricted, respectively, and optimally chosen using MSE with covariates. That 

is, including covariates in our RD estimator leads to inference improvements and precise point 

estimates for the impact of retirement on cognitive function. 
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Theoretically, there are two dominant theories of intelligence that were widely used by 

cognitive psychologists to conceptualize and measure intelligence: the Cattell-Horn models of 

fluid and crystallized intelligence, and the theory of General Cognitive Ability (Postlethwaite, 

2011). According to the Cattell-Horn model of fluid intelligence and crystallized intelligence, 

different aspects of intelligence, which interact with each other to form the individual’s overall 

intelligence, can be grouped into two domains. The first domain, “fluid intelligence”, involves 

the ability of thinking, reasoning abstractly, and solving problems. This ability is independent of 

prior education and experience, which is closely related to biological and physical components 

(Mzzonna and Peracchi, 2012). The second domain, “crystallized intelligence”, includes the 

ability to use the knowledge acquired during an individual’s life from education and other life 

experience. Cognitive psychologists reported that fluid intelligence and crystallized intelligence 

have different age trajectories over the lifecycle. Fluid intelligence reaches a peak in early life 

(Anderson and Craik, 2000), and is subject to continuous decline as a person gets older 

(Anderson and Craik, 2000; Prull et al. 2000). In contrast, crystallized intelligence can be 

maintained at older ages, and is subject to a lower rate of decline after reaching its peak in 

middle age, or it can even improve with age, based on an individual’s exposure to engaged 

cognitive stimulating activities (Herzog and Wallace, 1997; Hertzog et al., 2008). 

Based on the theoretical framework of measuring cognitive function, the decline in 

cognitive function after retirement can be explained by the “disuse” or “reuse it or lose it” 

hypothesis, which states that individuals can reduce the rate of cognitive decline by engaging in 

cognitively demanding activities which keep their mind active “engaged lifestyle”. Conversely, 

the disuse of cognitive activities may accelerate the process of cognitive decline (Roberts et al., 

2011; Rohwedder and Willis, 2010). When retirees move from employment, which requires 
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regular engagement in cognitive-based activities, to a new lifestyle without cognitive activities 

this may cause mental retirement (Rohwedder and Willis, 2010) and hence their cognitive ability 

may gradually decline (Hultsch et al., 1999). However, the effect of retirement on cognitive 

function may be not immediate, because the retiree may experience a “period of honeymoon” in 

which they engage in activities that they did not do while they were working (Bonsange et al., 

2012). These activities may still stimulate their cognitive abilities and delay their decline, 

especially that of crystallized intelligence (Salthouse, 2006), and thus mitigate the effect of 

retirement on cognitive function (George and Maddox, 1977). However, presumably the 

“honeymoon” will not last long and cognitive ability will start to decline, due to the decline in 

both crystallized and fluid intelligence.  

In the previous RD analysis, I have implicitly assumed that the effect of retirement on 

cognitive functioning is constant across gender and level of education. Since the types of 

engaged cognitive-stimulated activities may vary by gender and education level, the change in 

lifestyle after retirement may have heterogeneous effects on cognitive abilities. To test this 

heterogeneity in the impact of retirement on the cognitive score, I run the RD estimation 

separately for four subgroups: low educated, high educated, males, and females. 

It is well documented that there are gender differences in cognitive ability and females 

perform better in different cognitive tasks (Upadhayay & Guragain, 2014). Tables 1.4 and 1.5 

report the RD estimation for females and males, respectively. The effect of being retired on the 

cognitive score is negative and significant for both males and females, separately. Retired 

females experienced a drop in cognitive ability by about 0.79 points, which corresponds to an 

approximately 7.1% decrease in cognitive score compared to the female subsample average 

score, 11.12, with 95% confidence interval [-1.09583, -0.49206]. The estimated drop in the 
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cognitive score for retired females is not sensitive to the choice of bandwidth for being retired at 

least one year. Moreover, the RD treatment effect of retirement on the cognitive score is 

consistent and stable across all RD point estimation procedures and their associated bandwidths. 

On the other hand, retired males experience a higher drop in the cognitive score 

compared to retired females across all bandwidth choices. The drop in retired males’ cognitive 

score is approximately 1.01 points, which corresponds to a 10.18% decrease in cognitive score 

compared to the sample average (9.92). One explanation that the RD treatment effect is higher 

for males than females is that work centrality is significantly lower among females than males 

(Mannhein, 1997; Sharabi and Harpuz, 2011), and family centrality is higher among females 

than males (Cousins and Tang, 2004). In sum, retirement has a larger and significant negative 

impact on the cognitive function of retired males compared to retired females, which means that 

retirement has a gender heterogeneity effect on the cognitive function of retired individuals. 
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Table 1.4: Fuzzy RD estimates for cognitive functioning (Total word recall)-Females only 65 age 

 optimal bandwidth bandwidths (h) 

 4.6 1 2 3 4 5 

Conventional -0.79395*** -0.92262** -0.79233*** -0.8244*** -0.78901*** -0.80096*** 

(0.15402) (0.41039) (0.258) (0.20284) (0.16933) (0.14844) 

𝐶𝐼95%
𝐶  [-1.09583, -0.49206]     

Bias-corrected -0.84551*** -1.3943*** -0.78419*** -0.83521*** -0.85251*** -0.79733*** 

(0.15402) (0.41039) (0.258) (0.20284) (0.16933) (0.14844) 

𝐶𝐼95%
𝑏𝑐  [-1.14739, -0.543627]    

Robust -0.84551*** -1.3943** -0.78419** -0.83521*** -0.85251*** -0.79733*** 

(0.18492) (0.64054) (0.38499) (0.29748) (0.25038) (0.22013) 

𝐶𝐼95%
𝑟𝑏𝑐  [-1.20795, -0.483067]    

L|R 37468 21889|15579 21889|15579 21889|15579 21889|15579 21889|15579 

effective 37468 655 |1408 1566 |2657 2574|3957 3995|5284 5429|6738 

Notes: (i) All estimates are computed using a triangular kernel. (ii) first column report three different procedures: conventional 

RD estimates with a conventional variance estimator 𝜏̂𝐹𝑅𝐷
𝑐 ; bias-corrected RD estimates with a conventional variance estimator 

𝜏̂𝐹𝑅𝐷
𝑏𝑐 ; and bias-corrected RD estimates with a robust variance estimator 𝜏̂𝐹𝑅𝐷

𝑟𝑏𝑐 . (iii) standard errors are in parentheses. (iv) 

*,**,*** indicate significance level at 10%, 5%, 1% respectively.  
  

Table 1.5: Fuzzy RD estimates for cognitive functioning (Total word recall)-Males only at age 

65  

 

optimal 

bandwidth 
bandwidth 

 4.3 1 2 3 4 5 

Conventional -1.0101*** -1.2543*** -1.2118*** -1.136*** -1.0471*** -0.97553*** 

 (0.17425) (0.42873) (0.27888) (0.21845) (0.18233) (0.15976) 

𝐶𝐼95%
𝐶  [-1.35165, -0.668619]    

Bias-corrected -1.082*** -1.871*** -1.2794*** -1.2464*** -1.2348*** -1.1695*** 

 (0.17425) (0.42873) (0.27888) (0.21845) (0.18233) (0.15976) 

𝐶𝐼95%
𝑏𝑐  [-1.42348, -0.740449]    

Robust -1.082*** -1.871*** -1.2794*** -1.2464*** -1.2348*** -1.1695*** 

 (0.20675) (0.69149) (0.40968) (0.31984) (0.2689) (0.23616) 

𝐶𝐼95%
𝑟𝑏𝑐  [-1.48719, -0.676743]    

L|R 17038|12571 
    

Notes: (i) All estimates are computed using a triangular kernel. (ii) first column report three different procedures: conventional 

RD estimates with a conventional variance estimator 𝜏̂𝐹𝑅𝐷
𝑐 ; bias-corrected RD estimates with a conventional variance 

estimator 𝜏̂𝐹𝑅𝐷
𝑏𝑐 ; and bias-corrected RD estimates with a robust variance estimator 𝜏̂𝐹𝑅𝐷

𝑟𝑏𝑐 . (iii) standard errors are in parentheses. 

(iv) *,**,*** indicate significance level at 10%, 5%, 1% respectively. 
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Figure 1.9:  RD estimates of Cognitive functioning for females and males separately 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 
Notes: Non-parametric Regression discontinuity robustness of bandwidth choice for cognitive functioning by gender. Each point 

is a separate non-parametric regression discontinuity point. Fuzzy non-parametric RD treatment effect estimated for 50 to 200 

percentage points of the CV-optimal bandwidth (half and twice the optimal bandwidth) with a 5 percentage point increments. 

Bootstrapped standard errors are based on 120 simulations to construct 95% CI. 
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To check whether the effect of retirement on cognitive functioning may vary by level of 

the education level of retirees, I run the RD estimation separately for a subsample of low-

educated individuals (less than high school) and for a subsample of high-educated individuals. 

 Tables 1.6 and 1.7 report the RD treatment effect of retirement on cognitive functioning 

for the low- and high-educated samples, respectively. At first glance, the results show that there 

is a clear and dramatic education gradient, where retirement has a negative effect on the 

cognitive score for both subgroups, but the decline in the total word recall score for low-educated 

retirees is almost twice the decline in the cognitive score of high-educated retirees. The 

conventional RD estimator suggests that low-educated retirees experience a drop in their total 

word recall score by almost 1.7 points with a 95% confidence interval [-3.06743, -0.266735] 

compared with a 0.74 point drop in the cognitive score of high-educated retirees with 95% 

confidence interval [-1.13995, -0.357512]. This negative jump in total word recall score is 

equivalent to an approximately 18% and 6.4% decline in the cognitive functioning score of low- 

and high-educated retired individuals, respectively. Moreover, the effect of retirement on 

cognitive functioning is sensitive to the change in the selected bandwidth for all reported 

bandwidths. The results show that there is a dramatic negative jump in total word recall for low-

educated retirees and this decline gets less as time since retirement increases, which means that 

longer retirement duration mitigates the cognitive functioning decline of low-educated retirees. 

High-educated retirees show a smaller jump in the cognitive score, which could be explained by 

higher acquisition rates of a cognitive reserve during their lifetime through engagement in -

stimulating cognitive activities, which mitigates the effect of the change in lifestyle after 

retirement. Neuropsychologists define cognitive reserve as the individual’s capacity to use brain 

networks to perform tasks efficiently (Coe and Zamarro, 2011; Stern, 2002). That is, although a 
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great deal of the accumulated empirical evidence reports that aging is accompanied by a 

systematic decline in the performance of different domains of cognitive tasks, this process of 

age-cognitive decline profile is not unavoidable. Certain life experiences, such as educational 

and occupational attainment, can increase an individual’s level of reserve, which manifest as a 

set of skills that increase the capacity of individuals to keep learning and adapt to age-related 

challenges (Baltes and Baltes, 1990), hence slowing cognitive decline associated with normal 

aging or Alzheimer’s disease (Adam et al., 2007). Some studies argue that individuals with a 

high level of education have lower risks of developing dementia relative to individuals with a 

low level of education (Letenneur et al., 1999; Stern et al., 1994). In addition, functional imaging 

studies argue that individuals’ common response in normal situations, when facing tasks with 

increasing difficulty, is the recruitment of an additional brain area to work on that task (Gur et 

al., 1988; Grady et al., 1996; Grasby et al., 1994). Stern (2002) argues that if we have two 

individuals with the same level of brain reserve but one of them has a more cognitive reserve, 

this individual has the ability to tolerate or cope with a larger negative effect on the brain before 

suffering from any functional impairment. Based on that, when individuals face the same task 

difficulty, high-educated retirees, who are presumably more highly skilled, experience lower 

task-related recruitment than low-educated retirees. That is, retired persons with a high cognitive 

reserve are able to cope with the normal decline in cognitive ability after retirement and still 

maintain effective functioning. Another explanation is that low-educated individuals, who 

usually work continuously in uninspiring jobs, have experienced a wearing effect in cognitive 

abilities, which negatively affects their cognitive reserve, i.e. when individuals do the same 

routines in their jobs or do less cognitive-stimulated activities for several years.  
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Table 1.6: Fuzzy RD estimates - Cognitive functioning (Total word recall) Low educated at age 65 

 Optimal bandwidth Bandwidth 

 2.6 1 2 3 4 5 

Conventional -1.6671** -3.2211** -1.7525** -1.6461** -1.451*** -1.0737** 

(0.71448) (1.461) (0.88911) (0.65724) (0.53937) (0.4731) 

𝐶𝐼95%
𝑐  [-3.06743, -0.266735]    

Bias-corrected -1.9322*** -3.4752** -2.1898** -1.8758*** -1.9355*** -1.9872*** 

(0.71448) (1.4610) (0.88911) (0.65724) (0.53937) (0.4731) 

𝐶𝐼95%
𝑏𝑐  [-3.33252, -0.531826] 

   

Robust -1.9322** -3.4752* -2.1898* -1.8758* -1.9355** -1.9872*** 

(0.80332) (2.0288) (1.2748) (1.0026) (0.81971) (0.70522) 

𝐶𝐼95%
𝑟𝑏𝑐  [-3.50665, -0.357696]    

Obs 4135 4135 4135 4135 4135 4135 

Notes: (i) All estimates are computed using a triangular kernel. (ii) first column report three different procedures: conventional 

RD estimates with a conventional variance estimator 𝜏̂𝐹𝑅𝐷
𝑐 ; bias-corrected RD estimates with a conventional variance estimator 

𝜏̂𝐹𝑅𝐷
𝑏𝑐 ; and bias-corrected RD estimates with a robust variance estimator 𝜏̂𝐹𝑅𝐷

𝑟𝑏𝑐 . (iii) standard errors are in parentheses. (iv) 

*,**,*** indicate significance level at 10%, 5%, 1% respectively. 
 

 

Table 1.7: Fuzzy RD estimates - Cognitive functioning (Total word recall) high educated at age 65 

 

Optimal 

bandwidth 
Bandwidth 

 3.2 1 2 3 4 5 

Conventional -0.74873*** -1.0079** -0.89764*** -0.78655*** -0.69182*** -0.64618*** 

 (0.19961) (0.41278) (0.26721) 0.21098 0.17692 0.15589 

𝐶𝐼95%
𝑐  [-1.13995, -0.357512]    

Bias-corrected -0.81332*** -1.0465** -0.89933*** -0.95907*** -0.89298*** -0.80091*** 

 (0.19961) (0.41278) (0.26721) (0.21098) (0.17692) (0.15589) 

𝐶𝐼95%
𝑏𝑐  [-1.20454, -0.422098]    

Robust -0.81332*** -1.0465* -0.89933** -0.95907*** -0.89298*** -0.80091*** 

 (0.23674) (0.63324) (0.38869) (0.30422) (0.25787) (0.2276) 

𝐶𝐼95%
𝑟𝑏𝑐  [-1.27731, -0.349323]    

Obs 31787 31787 31787 31787 31787 31787 

Notes: (i) All estimates are computed using a triangular kernel. (ii) first column report three different procedures: conventional 

RD estimates with a conventional variance estimator 𝜏̂𝐹𝑅𝐷
𝑐 ; bias-corrected RD estimates with a conventional variance estimator 

𝜏̂𝐹𝑅𝐷
𝑏𝑐 ; and bias-corrected RD estimates with a robust variance estimator 𝜏̂𝐹𝑅𝐷

𝑟𝑏𝑐 . (iii) standard errors are in parentheses. (iv) 

*,**,*** indicate significance level at 10%, 5%, 1% respectively. 
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Figure 1.10: Non-parametric Regression discontinuity robustness of bandwidth choice for cognitive 

functioning by educational level 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Notes: Non-parametric Regression discontinuity robustness of bandwidth choice for cognitive functioning by educational level. 

Each point is a separate non-parametric regression discontinuity point estimate. Fuzzy non-parametric RD treatment effect 

estimated for 50 to 200 percent of the CV-optimal bandwidth (half and twice the optimal bandwidth) with a 5 percentage points 

increment. Bootstrapped standard error are based on 120 simulations to construct 95% CI. 
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Figure 1.10 shows the effect of retirement on cognitive functions at different bandwidths, 

and that the negative jump in the total word recall score gets smaller as the duration of retirement 

increases. Moreover, the negative jump in cognitive score will converge to stable values for both 

less-educated and high-educated retirees. However, the improvement in cognitive abilities for 

low-educated retirees will be at a remarkable rate after 6 years of retirement. The improvement 

in low-educated retiree’s mood or mental health after a long period of change in lifestyle may 

mitigate the dramatic drop in their cognitive abilities (Grip et al., 2015) and drive down the RD 

treatment effect of retirement due to including more retirees in the neighborhood of the cut-off 

point. 

Table 1.8 shows the main results from the non-parametrical RD estimation of the impact 

of retirement on mental health as measured by the CESD depression scale. Each column reports 

the local polynomial point estimates using the corresponding bandwidth. 

The first column shows that the jump in retirement probability was associated with a 

positive jump in the CESD depression scale. That is, the impact of retirement on mental health is 

negative and highly significant. The RD estimation suggests that retired individuals experienced 

a dramatic increase in the CESD scale by approximately 0.42 points with a 95% confidence 

interval [0.294554, 0.550295]. The positive jump in the CESD depression scale is significantly 

high relative to the sample average. In addition, the RD estimation is not sensitive to changes in 

the bandwidth for all bandwidths. The RD effect of retirement on mental health is stable across 

the three RD inference methods with a small difference in standard error in the robust-bias 

corrected approach. In contrast to the cognitive function score, transition into retirement status 

has an immediate and highly significant impact on mental health without a time lag.  
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Table 1.8: Fuzzy RD estimates - Mental Health (CES-D Depression scale) all sample at age 65 

 

Optimal 

Bandwidth 
Bandwidth 

 3.9 1 2 3 4 5 

Conventional 0.42242*** 0.52908*** 0.42687*** 0.41852*** 0.42215*** 0.43155*** 

 (0.06524) (0.14331) (0.09692) (0.07672) 0.06452 0.05677 

𝐶𝐼95%
𝑐  [0.294554, 0.550295]     

Bias-corrected 0.4142*** 0.97218*** 0.54744*** 0.45831*** 0.42194*** 0.40951*** 

 (0.06524) (0.14331) (0.09692) (0.07672) (0.06452) (0.05677) 

𝐶𝐼95%
𝑏𝑐  [0.286333, 0.542073]     

Robust 0.4142*** 0.97218*** 0.54744*** 0.45831*** 0.42194*** 0.40951*** 

 (0.07797) (0.21599) (0.13627) (0.1098) (0.0938) (0.08284) 

𝐶𝐼95%
𝑟𝑏𝑐  [0.26139, 0.567016]     

L|R 43266|31261 43266|31261 43266|31261 43266 |31261 43266|31261 43266|31261 

Obs 74527 74527 74527 74527 74527 74527 

Notes: (i) All estimates are computed using a triangular kernel. (ii) first column report three different procedures: conventional 

RD estimates with a conventional variance estimator 𝜏̂𝐹𝑅𝐷
𝑐 ; bias-corrected RD estimates with a conventional variance estimator 

𝜏̂𝐹𝑅𝐷
𝑏𝑐 ; and bias-corrected RD estimates with a robust variance estimator 𝜏̂𝐹𝑅𝐷

𝑟𝑏𝑐 . (iii) standard errors are in parentheses. (iv) 

*,**,*** indicate significance level at 10%, 5%, 1% respectively. 

 
Figure 1.11: Robustness of RD estimates of retirement effect on mental health at different bandwidths 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Notes: Non-parametric Regression discontinuity robustness of bandwidth choice for mental health. Each point is a separate non-

parametric regression discontinuity point estimate. Fuzzy non-parametric RD treatment effect estimated for 50 to 200 percent of 

the CV-optimal bandwidth (half and twice the optimal bandwidth) with a 5 percentage points increment. Bootstrapped standard 

error are based on 120 simulations to construct 95% CI. 
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Table 1.9: Fuzzy RD estimates - Mental Health (CES-D Depression scale) Females only at age 65 

 

Optimal 

Bandwidth 
Bandwidth 

 3.1 1 2 3 4 5 

Conventional 0.39627*** 0.49977** 0.39081*** 0.39739*** 0.41704*** 0.43872*** 

 (0.10784) (0.2073) (0.14045) (0.11185) (0.09416) (0.08285) 

𝐶𝐼95%
𝑐  [0.184901, 0.607639]     

Bias-corrected 0.3712*** 0.9208*** 0.53028*** 0.40431*** 0.37436*** 0.37743*** 

 (0.10784) (0.2073) (0.14045) (0.11185) (0.09416) (0.08285) 

𝐶𝐼95%
𝑏𝑐  [0.159827, 0.582565]     

Robust 0.3712*** 0.9208*** 0.53028*** 0.40431** 0.37436*** 0.37743*** 

 (0.12647) (0.30843) (0.19653) (0.15904) (0.13632) (0.12077) 

𝐶𝐼95%
𝑟𝑏𝑐  [0.123317, 0.619074]     

L|R 24328|17488 24328|17488 24328|17488 24328|17488 24328|17488 24328|17488 

Obs 41816 41816 41816 41816 41816 41816 

Notes: (i) All estimates are computed using a triangular kernel. (ii) first column report three different procedures: 

conventional RD estimates with a conventional variance estimator 𝜏̂𝐹𝑅𝐷
𝑐 ; bias-corrected RD estimates with a 

conventional variance estimator 𝜏̂𝐹𝑅𝐷
𝑏𝑐 ; and bias-corrected RD estimates with a robust variance estimator 𝜏̂𝐹𝑅𝐷

𝑟𝑏𝑐 . (iii) 

standard errors are in parentheses. (iv) *,**,*** indicate significance level at 10%, 5%, 1% respectively. 
 

 

Table 1.10: Fuzzy RD estimates - Mental health (CES-D Depression scale) Males only at 65 

 

Optimal 

bandwidth Bandwidth 

 4.06 1 2 3 4 5 

Conventional 0.38498*** 0.5365*** 0.42347*** 0.39686*** 0.38573*** 0.38509*** 

 (0.08491) (0.19751) (0.13161) (0.10274) (0.08581) (0.07522) 

𝐶𝐼95%
𝑐  [0.218565, 0.551399]    

Bias-corrected 0.3799*** 0.97749*** 0.53709*** 0.47665*** 0.42908*** 0.39809*** 

 (0.08491) (0.19751) (0.13161) (0.10274) (0.08581) (0.07522) 

𝐶𝐼95%
𝑏𝑐  [0.213482, 0.546316]    

Robust 0.3799*** 0.97749*** 0.53709*** 0.47665*** 0.42908*** 0.39809*** 

 (0.10304) (0.29729) (0.18787) (0.14965) (0.12672) (0.11116) 

𝐶𝐼95%
𝑟𝑏𝑐  [0.177954, 0.581844]    

Observation 32711 32711 32711 32711 32711 32711 

L|R 18938|13773 18938|13773 18938|13773 18938|13773 18938|13773 18938|13773 

Notes: (i) All estimates are computed using a triangular kernel. (ii) first column report three different procedures: conventional 

RD estimates with a conventional variance estimator 𝜏̂𝐹𝑅𝐷
𝑐 ; bias-corrected RD estimates with a conventional variance estimator 

𝜏̂𝐹𝑅𝐷
𝑏𝑐 ; and bias-corrected RD estimates with a robust variance estimator 𝜏̂𝐹𝑅𝐷

𝑟𝑏𝑐 . (iii) standard errors are in parentheses. (iv) 

*,**,*** indicate significance level at 10%, 5%, 1% respectively. 
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Figure 1.12: Robustness of RD estimates of retirement effect on mental health at different bandwidths 

for females and males separately 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  
 

 

Notes: Non-parametric Regression discontinuity robustness of bandwidth choice for mental health. Each point is a separate non-

parametric regression discontinuity point estimate. Fuzzy non-parametric RD treatment effect estimated for 50 to 200 percent of 

the CV-optimal bandwidth (half and twice the optimal bandwidth) with a 5 percentage points increment. Bootstrapped standard 

error are based on 120 simulations to construct 95% CI. 
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The RD estimator shows that there is a significant increase in the CESD depression scale 

of retirees who have spent around one year in retirement and this effect is mitigated by the 

increase in retirement duration. The positive jump in the CESD depression scale indicates that 

when individuals move from the labor force to retirement, they may be more likely to experience 

one or more of the following mental health issues: depression, feeling lonely, feeling sad, seeing 

everything as an effort, or suffering from sleeping issues. 

To investigate whether the effect of retirement on mental health status is heterogeneous 

across individuals, RD estimation is run separately for different subsamples (gender, education, 

and income). Tables 1.9 and 1.10 show the RD estimates for males and females, respectively. 

The results show that there is no significant difference in the effect of retirement on mental 

health between males and females. Retirement has a negative effect on the mental health status 

of both females and males. Figure 1.12 indicates that there is a positive jump in the value of the 

CESD depression scale by about 0.4 for both males and females and this estimated RD jump in 

the CESD depression scale is stable for different bandwidths for both males and females.  

The highly significant increase in the CESD depression scale for males and females by 

around 0.4 points is equivalent to 27 percentage points for females and 35 percentage points for 

males with a 95% confidence interval [0.123317, 0.619074] and [0.177954, 0.581844] for 

females and males, respectively. That is, retirement has a larger negative effect for males than 

females, i.e., retired males are more likely to experience more depressive symptoms relative to 

retired females. The low relative negative effect of retirement on female’s mental health 

compared to males may be explained by the high and large prevalence of depression symptoms 

among females during their life (Nolan-Hoeksema et al., 1999), which turn the absolute 

equivalent jump in CESD into lower relative effects among females. 
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Table 1.11: Fuzzy RD estimates - Mental health (CES-D Depression scale) Low educated at age 65 

 

Optimal 

bandwidth Bandwidth 

 4.4 1 2 3 4 5 

Conventional 0.52164*** 0.58505*** 0.52603*** 0.5193*** 0.52052*** 0.53098*** 

 (0.08745) (0.21163) (0.14178) (0.11163) (0.0935) (0.08195) 

𝐶𝐼95%
𝑐  [0.350237, 0.693041]    

Bias corrected 0.52413*** 1.0089*** 0.64628*** 0.56237*** 0.5256*** 0.50886*** 

 (0.08745) (0.21163) (0.14178) (0.11163) (0.0935) (0.08195) 

𝐶𝐼95%
𝑏𝑐  [0.352728, 0.695533]    

Robust 0.52413*** 1.0089*** 0.64628*** 0.56237*** 0.5256*** 0.50886*** 

 (0.10651) (0.33076) (0.20224) (0.16222) (0.13776) (0.1212) 

𝐶𝐼95%
𝑟𝑏𝑐  [0.315366, 0.732895]    

L|R 19609|19153 19609|19153 19609|19153 19609|19153 19609|19153 19609|19153 

Obs 38762 38762 38762 38762 38762 38762 

Notes: (i) All estimates are computed using a triangular kernel. (ii) first column report three different procedures: conventional 

RD estimates with a conventional variance estimator 𝜏̂𝐹𝑅𝐷
𝑐 ; bias-corrected RD estimates with a conventional variance estimator 

𝜏̂𝐹𝑅𝐷
𝑏𝑐 ; and bias-corrected RD estimates with a robust variance estimator 𝜏̂𝐹𝑅𝐷

𝑟𝑏𝑐 . (iii) standard errors are in parentheses. (iv) 

*,**,*** indicate significance level at 10%, 5%, 1% respectively. 

 

Table 1.12: Fuzzy RD estimates - Mental health (CES-D Depression scale) High educated at age 65 

 

Optimal 

bandwidth Bandwidth 

 5.1 1 2 3 4 5 

Conventional 0.20229*** 0.31867* 0.19431 0.1879* 0.19653** 0.2007*** 

 (0.07586) (0.19314) (0.13101) (0.10387) (0.0876) (0.07725) 

𝐶𝐼95%
𝑐  [0.053603, 0.350986]    

Bias-corrected 0.18442** 0.71394*** 0.29055* 0.21673** 0.18433** 0.18491** 

 (0.07586) (0.19314) (0.13101) (0.10387) (0.0876) (0.07725) 

𝐶𝐼95%
𝑏𝑐  [ 0.035725, 0.333108]    

Robust 0.18442** 0.71394* 0.29055 0.21673 0.18433 0.18491* 

 (0.09216) (0.28403) (0.18229) (0.14685) (0.12596) (0.11147) 

𝐶𝐼95%
𝑟𝑏𝑐  [0.003795,0.365037]     

L|R 23657|12108 23657|12108 23657|12108 23657|12108 23657|12108 23657|12108 

Obs 35765 35765 35765 35765 35765 35765 

Notes: (i) All estimates are computed using a triangular kernel. (ii) first column report three different procedures: conventional 

RD estimates with a conventional variance estimator 𝜏̂𝐹𝑅𝐷
𝑐 ; bias-corrected RD estimates with a conventional variance estimator 

𝜏̂𝐹𝑅𝐷
𝑏𝑐 ; and bias-corrected RD estimates with a robust variance estimator 𝜏̂𝐹𝑅𝐷

𝑟𝑏𝑐 . (iii) standard errors are in parentheses. (iv) 

*,**,*** indicate significance level at 10%, 5%, 1% respectively. 
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Since educational attainment could affect an individual’s skills and their occupation, 

retirement may have a heterogeneous effect among different educational groups. Tables 1.11 and 

1.12 report the RD estimate for low- and high-educated subgroups to investigate if there is 

heterogeneity. The RD estimates show that there is a noticeable difference in the effect of 

retirement on low-and high-educated individuals. The positive increase in the CESD depression 

scale according to the conventional and robust bias-corrected RD estimators are 0.2 and 0.5 

points for high and low-educated retirees with 95% confidence intervals [0.003795,0.365037] 

and [0.315366, 0.732895], respectively. The increase in the CESD depression scale is equivalent 

to an 18 and 31 percentage point decline in the mental health of high and low-educated retirees 

relative to non-retirees, respectively. Some studies found that work for many men is a way to 

manage the depression where the job serves as a defense against depressive anxiety. 

Table 1.13 shows the main results of the standard and covariate-adjusted RD estimates, 

which include covariates. The first row of the table reports the RD treatment effect using the 

corresponding MSE optimal bandwidth ℎ. The next three rows report the 95% robust bias-

corrected confidence intervals, the percentage length change of the covariate-adjusted confidence 

interval relative to the unadjusted confidence interval, and the P-value associated with the 

hypothesis that the RD treatment effect equals zero. 
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Table 1.13: Covariate-adjusted RD estimates – Mental health (CES-D depression scale) at age 65 

 Not using covariates  Using covariates 

 Standard Fuzzy RD  Covariate-Adjusted Fuzzy RD 

𝐼𝑛𝑓𝑒𝑟𝑒𝑛𝑐𝑒 𝑤𝑖𝑡ℎ ℎ/𝑝 𝑢𝑛𝑟𝑒𝑠𝑡𝑟𝑖𝑐𝑡𝑒𝑑   
RD treatment effect 0.4142***  0.3174*** 

Robust 95% CI [.26139, .567016]  [ .18165, .453147] 

CI length change (%)  -11.16 

robust p-value 0.000  0.000 

rho (ℎ/𝑝) 0.660  0.667 

𝐼𝑛𝑓𝑒𝑟𝑒𝑛𝑐𝑒 𝑤𝑖𝑡ℎ ℎ/𝑝 𝑟𝑒𝑠𝑡𝑟𝑖𝑐𝑡𝑒𝑑   
RD treatment effect 0.43498***  0.37921*** 

Robust 95% CI [ .237609, .632346]  [.188748, .569678] 

CI length change (%)  -3.5 

robust p-value 0.000  0.000 

ℎ|𝑝 3.5|3.5  3.5|3.5 

n-|n+ 43266|31261  43266|31261 

obs 8374|10411  10387|12214 

effective obs 74527  74527 
Notes: (i) All estimates are computed using a triangular Kernel and nearest neighbor heteroskedasticity-robust 

variance estimator as suggested by CCT framework. (ii) bandwidth used for ℎ 𝑎𝑛𝑑 𝑏 are data-driven MSE-optimal 

for either standard RD estimator or covariate-adjusted RD estimator. *,**,*** indicate significance level at 10%, 

5%, 1% respectively. 
 

The covariates-adjusted and unadjusted RD inference is estimated twice, once when bandwidth 

ℎ, for the RD estimator, and 𝑏, for the bias-corrected estimator, are chosen separately, and then 

when they are chosen to be equal, i.e. ℎ = 𝑏 𝑜𝑟 (ℎ/𝑏 = 1). The point estimates of RD range 

from 0.3 to 0.43 and it is statistically significant at the 1% level in all cases. The results show 

that including covariates in the RD estimator according to the CCT framework does not 

dramatically change the point estimate of retirement on the CESD depression scale. That is, 

including covariates in the RD framework, which are truly predetermined, do not substantially 

affect the RD point estimate (Calonico et al., 2018). However, augmenting the standard RD 

estimator with covariates, which is restricted to be equivalent below and above the cut-off, can 

achieve substantial efficiency gains compared to the unadjusted RD estimator. The rows labeled 
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CI length change show around 11.1% and 3.5% efficiency gains when bandwidths are 

unrestricted and restricted, respectively, and optimally chosen using MSE with covariates. That 

is, including covariates in our RD estimator leads to inference improvements and precise point 

estimates for the impact of retirement on mental health.  

I checked different polynomial orders for the running variable and I found that there is no 

improvement in the MSE after the second-order polynomial. Therefore, I reported the results of 

the RD under the linear and quadratic polynomial smoothing function. The last three columns 

report the RD estimates using a local quadratic estimator (𝑝 = 2) with different kernel functions. 

Overall, the RD treatment effect is stable across the three different kernel functions. Retirement 

has a significant negative effect on retirees’ mental health as measured by the CESD depression 

scale, which indicates a positive increase in the depression scale in the range from 0.38 to 0.42 

points. That is, the increase in retirees’ depression score maybe around 29% and 32% percentage 

points according to the nonparametric RD local quadratic estimator under the conventional and 

the robust bias-corrected variance. Moreover, the value of the RD estimate, using the quadratic 

estimate, is similar to the linear estimate, which means that the speed of change in the depression 

scale when individual age is almost stable. The results in table 1.14 indicate that using different 

weighting schemes for the observations away from the cut-off point have no effect on the RD 

estimates according to the conventional estimator and the robust bias-corrected estimator. The 

only difference is related to the optimal bandwidth length.  
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Table 1.14: RD estimates for different kernel and different polynomial orders - Mental health (CESD depression scale) at age 65 

RD estimator 1 2 3 4 5 

Conventional 0.41988*** 0.42329*** 0.42165*** 0.40025*** 0.41134*** 

 Std. Err.  (0.07113) (0.05987) (0.10013) (0.08032) (0.09708) 

Robust Bias corrected 0.40468*** 0.41787*** 0.43716*** 0.38673*** 0.42069*** 

 Std. Err.  (0.08259) (0.07222) (0.11356) (0.08949) (0.1105) 

Robust 95% CI [ 0.242813, 0.566548] [ 0.276335, 0.559413] [ 0.214592, 0.659725] [0.211321, 0.562132] [.204122, .637264] 

Kernel Type Uniform Epanechnikov Triangular Uniform Epanechnikov 

Order Loc policy (𝑃) 1 1 2 2 2 

BW local poly (ℎ) 2.8 4.2 3.9 4.9 3.9 

BW Type mserd mserd mserd mserd mserd 

observations 74527 74527 74527 74527 74527 

L|R 43266|31261 43266|31261 43266|31261 43266|31261 43266|31261 

effective no 5062|7360 9366|11359 8374|10411 11446|13209 8374|10411 
Notes (i) first column report two different procedures: conventional RD estimates with a conventional variance estimator 𝜏̂𝑓𝑢𝑧𝑧𝑦

𝑐  and bias-corrected RD estimates with a robust 

variance estimator 𝜏̂𝑓𝑢𝑧𝑧𝑦
𝑟𝑏𝑐 . (ii) standard errors are in parentheses. (iii) *,**,*** indicate significance level at 10%, 5%, 1% respectively. 
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Table 1.15 and Figure 1.13 show the effects of retirement on self-reported health. Self-reported 

health has consistently been found to be an accurate predictor of future health outcomes and 

utilization (Idler and Benyamini 1997). The first column in the table indicates retired individuals 

are about 13 percentage points less likely to report that they are in excellent, very good or good 

health than non-retired individuals. The results also indicate that the drop in the proportion of 

retirees who report that they are in good health is not affected by the choice of bandwidth and are 

consistent across the different RD procedures. However, tables 1.16 and 1.17 indicate that there 

is gender heterogeneity in the effect of retirement on general health status. Table 1.16 and figure 

1.14 indicate that retirement is associated with a negative drop in the proportion of retired 

females who report that they are in excellent, very good, and good health. However, retirement 

has a larger negative effect on retired males’ self-reported health compared with females and the 

full sample. That is, retirement is associated with poorer general health among retired male than 

retired females. The negative drop in the proportion of retired males who report excellent, very 

good, or good health is about 16 to 24 percentage points against 8 to 12 percentage points for 

retired females. More specifically, the drop in the proportion of males who report that they are in 

excellent, very good or good health is almost double the drop in the proportion of females. In 

other words, females’ self-reported general health is less affected by transition into retirement 

than that of males. In addition, the RD effect of retirement on retired males’ general health status 

is more sensitive to the bandwidth choice relative to retired females, where the discontinuity in 

health status for compliers at the cut-off point ranges between 16 and 24 for retired males, and 

between 8 and 12 percentage points for retired females with 95% significant confidence 

intervals. Also, the three RD inference methods result in the same treatment effect with lower 

magnitude for the conventional method and all of them are evaluated based on the optimal 
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bandwidth. The robustness RD estimates at different bandwidths also indicate that the drop in 

general health for females is around 10 percentage points while the drop in general health for 

males begins with an almost 20 percentage point drop in general health and converges to almost 

16 percentage points at larger bandwidths. That is, the short-run effect of retirement on general 

health directly after retirement has a higher magnitude. Comparing to non-retired individuals, a 

smaller percent of retired individuals reported that they are in excellent, very good, or good 

health. Since the self-reported general health measures the overall physical and social well-being 

of the respondent, then retirement, in general, has a negative effect on retired respondents’ 

overall general health status. To check if there is socioeconomic heterogeneity in the effect of 

retirement on general health, I run the RD estimators for the low-educated and high-educated 

subgroups separately.  Tables 1.18 and 1.19 show the RD estimates for the low- and high-

educated subgroups. The results indicate that retirement has a larger negative impact on the self-

reported health of low-educated retirees than high-educated retirees. The results in table 1.18 

suggest that the low-educated retired individuals are 14 percentage points less likely to report to 

be in good health relative to low-educated non-retirees. The RD results also are consistent across 

different bandwidth selections and are highly significant. On the other hand, the RD results in 

table 1.19 suggest that the high-educated retirees are almost 8 percentage points less likely to 

report being in good health relative to high-educated non-retirees. These results are expected 

because education is documented to increase the efficiency of producing health so that highly 

educated individuals have better health outcomes (Grossman and Kaestner, 1997).  
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Table 1.15: Fuzzy RD estimates of Self-reported health - All sample at cutoff age 65 

 optimal bandwidth 

 3.2 1 2 3 4 5 

Conventional -0.1346*** -0.14212*** -0.12797*** -0.13259*** -0.13882*** -0.1395*** 

 (0.01613) (0.03304) (0.02173) (0.01716) (0.0144) (0.01266) 

𝐶𝐼95%
𝑐  [-0.16621, -0.103]     

Bias-corrected -0.13172 -0.1871 -0.15295 -0.12981 -0.12765 -0.13337 

 (0.01613) (0.03304) (0.02173) (0.01716) (0.0144) (0.01266) 

𝐶𝐼95%
𝑏𝑐  [-0.163332, -0.10012]    

Robust -0.13172 -0.1871 -0.15295 -0.12981 -0.12765 -0.13337 

 (0.01891) (0.05003) (0.03127) (0.02473) (0.02102) (0.01854) 

𝐶𝐼95%
𝑟𝑏𝑐  [-0.168785, -0.09466]    

L|R 43266|31261 43266|31261 43266|31261 43266|31261 43266|31261 43266|31261 

effective 6395|8707 1454|2722 3336|5212 5435|7820 8374|10411 11446|13209 

obs 74527 74527 74527 74527 74527 74527 
Notes: (i) All estimates are computed using a triangular kernel. (ii) first column report three different procedures: conventional RD estimates with 

a conventional variance estimator 𝜏̂𝐹𝑅𝐷
𝑐 ; bias-corrected RD estimates with a conventional variance estimator 𝜏̂𝐹𝑅𝐷

𝑏𝑐 ; and bias-corrected RD 

estimates with a robust variance estimator 𝜏̂𝐹𝑅𝐷
𝑟𝑏𝑐 . (iii) standard errors are in parentheses. (iv) *,**,*** indicate significance level at 10%, 5%, 1% 

respectively. 

Figure 1.13: Robustness of RD estimates of retirement effect on self-reported health  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Notes: Non-parametric Regression discontinuity robustness of bandwidth choice for self-reported health. Each point is a separate 

non-parametric regression discontinuity point estimate. Fuzzy non-parametric RD treatment effect estimated for 50 to 200 

percent of the CV-optimal bandwidth (half and twice the optimal bandwidth) with a 5 percentage points increment. Bootstrapped 

standard errors are based on 120 simulations to construct 95% CI. 
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Table 1.16: Fuzzy RD estimates of Self-reported Health Status - Females only at Cutoff Age 65 

 

Optimal 

bandwidth Bandwidth 

 2.8 1 2 3 4 5 

Conventional -0.10493*** -0.08127* -0.08749*** -0.10838*** -0.11773*** -0.12047*** 

 (0.02481) (0.04779) (0.03056) (0.02385) (0.01982) (0.01735) 

𝐶𝐼95%
𝑐  [-0.153567, 0.0563]     

Bias-corrected -0.09854*** -0.13322*** -0.08704*** -0.07685*** -0.09389*** -0.10585*** 

 (0.02481) (0.04779) (0.03056) (0.02385) (0.01982) (0.01735) 

𝐶𝐼95%
𝑏𝑐  [-0.147175, 0.04991]     

Robust -0.09854*** -0.13322* -0.08704** -0.07685** -0.09389*** -0.10585*** 

 (0.02889) (0.07174) (0.04479) (0.03505) (0.02953) (0.02586) 

𝐶𝐼95%
𝑟𝑏𝑐  [-0.155173, -0.04191]    

L|R 24328|17488 24328|17488 24328|17488 24328|17488 24328|17488 24328|17488 

Obs 41816 41816 41816 41816 41816 41816 

Notes: (i) All estimates are computed using a triangular kernel. (ii) first column report three different procedures: conventional 

RD estimates with a conventional variance estimator 𝜏̂𝐹𝑅𝐷
𝑐 ; bias-corrected RD estimates with a conventional variance 

estimator 𝜏̂𝐹𝑅𝐷
𝑏𝑐 ; and bias-corrected RD estimates with a robust variance estimator 𝜏̂𝐹𝑅𝐷

𝑟𝑏𝑐 . (iii) standard errors are in parentheses. 

(iv) *,**,*** indicate significance level at 10%, 5%, 1% respectively. 
 

 

 

Table 1.17: Fuzzy RD estimates – Self-reported Health Status Males only at Cutoff Age 65 

 

Optimal 

bandwidth Bandwidth 

 3.9 1 2 3 4 5 

Conventional -0.16357*** -0.20825*** -0.1752*** -0.16127*** -0.16352*** -0.16154*** 

 (0.0212) (0.04596) (0.03113) (0.02491) (0.02112) (0.01863) 

𝐶𝐼95%
𝑐  [-0.205132, -0.12201]    

Bias-corrected -0.16237*** -0.24354*** -0.22642*** -0.19086*** -0.16731*** -0.16587*** 

 (0.0212) (0.04596) (0.03113) (0.02491) (0.02112) (0.01863) 

𝐶𝐼95%
𝑏𝑐  [-0.203926, -0.12081]    

Robust -0.16237*** -0.24354*** -0.22642*** -0.19086*** -0.16731*** -0.16587*** 

 (0.02536) (0.06926) (0.04383) (0.03507) (0.03011) (0.0268) 

𝐶𝐼95%
𝑟𝑏𝑐  [-0.212075, -0.11266]    

L|R 18938|13773 18938|13773 18938|13773 18938|13773 18938|13773 18938|13773 

Obs 32711 32711 32711 32711 32711 32711 

Notes: (i) All estimates are computed using a triangular kernel. (ii) first column report three different procedures: conventional 

RD estimates with a conventional variance estimator 𝜏̂𝐹𝑅𝐷
𝑐 ; bias-corrected RD estimates with a conventional variance estimator 

𝜏̂𝐹𝑅𝐷
𝑏𝑐 ; and bias-corrected RD estimates with a robust variance estimator 𝜏̂𝐹𝑅𝐷

𝑟𝑏𝑐 . (iii) standard errors are in parentheses. (iv) 

*,**,*** indicate significance level at 10%, 5%, 1% respectively. 
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Figure 1.14: Robustness of RD estimates of retirement effect on Self-reported health at different 

bandwidths from females and males, separately. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Notes: Non-parametric Regression discontinuity robustness of bandwidth choice for self-reported health. Each point is a separate 

non-parametric regression discontinuity point estimate. Fuzzy non-parametric RD treatment effect estimated for 50 to 200 

percentage point of the CV-optimal bandwidth (half and twice the optimal bandwidth) with a 5 percentage point increment. 

Bootstrapped standard error are based on 120 simulations to construct 95% CI. 
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Table 1.18: Fuzzy RD estimates of Self-reported general health status for Low- educated at cutoff age 65 

 

Optimal 

bandwidth Bandwidth 

 3.5 1 2 3 4 5 

Conventional -0.14699*** -0.16026*** -0.14982*** -0.14617*** -0.14782*** -0.14604*** 

 (0.02377) (0.05164) (0.03353) (0.0263) (0.02198) (0.01922) 

𝐶𝐼95%
𝑐  [-0.193573, -0.14004]    

Bias-corrected -0.1455*** -0.2534*** -0.17393*** -0.15623*** -0.14774*** -0.14913*** 

 (0.02377) (0.05164) (0.03353) (0.0263) (0.02198) (0.01922) 

𝐶𝐼95%
𝑏𝑐  [-0.192087, -0.09892]    

Robust -0.1455*** -0.2534*** -0.17393*** -0.15623*** -0.14774*** -0.14913*** 

 (0.02815) (0.0797) (0.04906) (0.03855) (0.03252) (0.02854) 

𝐶𝐼95%
𝑟𝑏𝑐  [-0.200684, -0.09032]    

L|R 19609|19153 19609|19153 19609|19153 19609|19153 19609|19153 19609|19153 

Obs 38762 38762 38762 38762 38762 38762 

Notes: (i) All estimates are computed using a triangular kernel. (ii) first column report three different procedures: 

conventional RD estimates with a conventional variance estimator 𝜏̂𝐹𝑅𝐷
𝑐 ; bias-corrected RD estimates with a 

conventional variance estimator 𝜏̂𝐹𝑅𝐷
𝑏𝑐 ; and bias-corrected RD estimates with a robust variance estimator 𝜏̂𝐹𝑅𝐷

𝑟𝑏𝑐 . (iii) 

standard errors are in parentheses. (iv) *,**,*** indicate significance level at 10%, 5%, 1% respectively. 

 

Table 1.19: Fuzzy RD estimates  of Self-reported Health -  High-educated at Cutoff Age 65 

 

Optimal 

bandwidth Bandwidth 

 3.9 1 2 3 4 5 

Conventional -0.09095*** -0.07738* -0.06476** -0.0778*** -0.09118*** -0.09428*** 

 (0.01795) (0.04014) (0.02661) (0.02118) (0.01787) (0.0158) 

𝐶𝐼95%
𝑐  [-0.126141, -0.05577]    

Bias-corrected -0.08521*** -0.05374 -0.08453*** -0.06095*** -0.06368*** -0.07729*** 

 (0.01795) (0.04014) (0.02661) (0.02118) (0.01787) (0.0158) 

𝐶𝐼95%
𝑏𝑐  [-0.120396, -0.05002]    

Robust -0.08521*** -0.05374 -0.08453** -0.06095** -0.06368** -0.07729*** 

 (0.02108) (0.06098) (0.03768) (0.02985) (0.02564) (0.02275) 

𝐶𝐼95%
𝑟𝑏𝑐  [-0.126518, -0.0439]     

L|R 23657|12108 23657|12108 23657|12108 23657|12108 23657|12108 23657|12108 

Obs 35765 35765 35765 35765 35765 35765 

Notes: (i) All estimates are computed using a triangular kernel. (ii) first column report three different procedures: conventional 

RD estimates with a conventional variance estimator 𝜏̂𝐹𝑅𝐷
𝑐 ; bias-corrected RD estimates with a conventional variance estimator 

𝜏̂𝐹𝑅𝐷
𝑏𝑐 ; and bias-corrected RD estimates with a robust variance estimator 𝜏̂𝐹𝑅𝐷

𝑟𝑏𝑐 . (iii) standard errors are in parentheses. (iv) 

*,**,*** indicate significance level at 10%, 5%, 1% respectively. 
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Table 1.20 reports the RD estimates when the covariates are included in the self-reported 

general health model. The covariate-adjusted RD estimator indicates a drop in the proportion of 

retired individuals who report that they are in excellent, very good and good health by 10 

percentage points, against 13 percentage points for the standard fuzzy RD estimator using the 

conventional RD setting. Similarly, the covariate-adjusted RD estimate indicates a drop of 13 

percentage points in the self-reported general health of retirees against a 15 percentage points 

drop in the general health of retirees using the unadjusted RD estimator when the bandwidth is 

restricted. Consequently, augmenting the standard RD estimator with covariates, which is 

restricted to be equivalent below and above the cut-off, can achieve substantial efficiency gain 

compared with the unadjusted RD estimator. The rows labeled CI length change show that 

approximately 16.5% and 6.5% efficiency gain when bandwidths are unrestricted and restricted, 

respectively, and optimally chosen using MSE with covariates. That is, including covariates in 

our RD estimator leads to inference improvements and precise point estimates for the impact of 

retirement on self-reported general health. 

Table 1.21 reports that the RD estimates are homogeneous across the different weight 

schemes for observations that are far away from the cut-off point. Retirement is associated with a 

13 percentage points drop in the proportion of retired people who report that they are in 

excellent, very good or good health across the different kernel functions. The RD results also 

show that the retirement impact did not change when the quadratic form of the running variable 

is introduced in the model. That is, the age-health profile of retired individuals is almost linear. 

The results are also robust based on the conventional and the robust bias-corrected RD 

estimators. 
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Table 1.20: Covariate-adjusted RD estimates – Self-reported health at cutoff age 65 

 Not using covariates  Using covariate 

 Standard Fuzzy RD  Covariate-Adjusted Fuzzy RD 

Inference with ℎ/𝑝 unrestricted   

RD treatment effect -0.13172***  -0.10892*** 

Robust 95% CI [ -.168785, -.094664]  [-.139835, -.077995] 

CI length change (%)  -16.5 

robust p-value 0.000  0.000 

ℎ/𝑝 0.626  0.633 

Inference with ℎ/𝑝 restricted   

RD treatment effect -0.15295***  -0.13207*** 

Robust 95% CI [-.214233, -.091661]  [-.189164, -.074974] 

CI length change (%)  -6.8 

robust p-value 0.000  0.000 

ℎ|𝑝 2|2  2|2 

𝑛 − |𝑛 + 43266|31261  43266|31261 

obs 74527  74527 

effective obs 6395|8707  3336|5212 
Notes: (i) All estimates are computed using triangular Kernel and nearest neighbor heteroskedasticity-robust 

variance estimator as suggested by CCT framework. (ii) bandwidth used for h and b are data-driven MSE-optimal 

for either standard RD estimator or covariate-adjusted RD estimator. *,**,*** indicate significance level at 10%, 

5%, 1% respectively. 
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Table 1.21: RD estimates for different kernel and different polynomial orders – Self-reported health at cutoff age 65 

RD estimator 1 2 3 4 5 

Conventional -0.1377*** -0.13543*** -0.13123*** -0.13383*** -0.13214*** 

 Std. Err.  (0.01684) (0.0156) (0.02084) (0.01832) (0.02023) 

Robust Bias corrected -0.13769*** -0.13235*** -0.12986*** -0.13019*** -0.12956*** 

Std. Err.  (0.01996) (0.01829) (0.02367) (0.02032) (0.02286) 

Robust 95% CI 

[ -.176813, -

.09857] 

[ -.168198, -

.096492] 

[ -.17625, -

.083468] 

[-.170023, -

.090364] 

[-0.174371, -

0.084751] 

Kernel Type Uniform Epanechnikov Triangular Uniform Epanechnikov 

Order Loc policy (𝜌) 1 1 2 2 2 

BW local poly (ℎ) 2.5 3.2 4.4 4.8 4.4 

BW Type mserd mserd mserd mserd mserd 

observations 74527 74527 74527 74527 74527 

L|R 43266|31261 43266|31261 43266|31261 43266|31261 43266|31261 

effective no 4543|6699 6395|8707 9880|11800 10914|12720 9880|11800 
Notes (i) first column report two different procedures: conventional RD estimates with a conventional variance estimator 𝜏̂𝑓𝑢𝑧𝑧𝑦

𝑐  and bias-corrected RD estimates with a robust 

variance estimator 𝜏̂𝑓𝑢𝑧𝑧𝑦
𝑟𝑏𝑐 . (ii) standard errors are in parentheses. (iii) *,**,*** indicate significance level at 10%, 5%, 1% respectively. 
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1.6.2 Nonparametric RD Results of Health-related Behavior 

 

Table 1.22 shows the non-parametric RD estimates of the effect of retirement on retired 

individuals’ alcoholic beverages consumption behavior. The results suggest that the transition 

from work to retirement is associated with a significant and negative jump in the discontinuity of 

drinking participation at the cut-off point by 8.2 to 18 percentage points. That is, retired 

individuals are less likely to be a drinker relative to non-retirees. The RD treatment effect 

indicates also that retirement has a strong effect on drinking participation immediately after 

retirement, which is indicated by the noticeable negative drop in drinking participation when 

using a one-year bandwidth. However, the effect of retirement on drinking participation is not 

overly sensitive to changes in the bandwidth after the first year of retirement, i.e., the drop in 

drinking participation is also robust for the different RD procedures. Figure (1.15) supports the 

negative jump in drinking participation. It shows estimates of the retirement effect at the cut-off 

point with 50 to 200 percent of the CV-optimal bandwidth selector, 5 percentage points 

incremental. Moreover, the RD estimates based on MSE-optimal bandwidth is consistent with 

the RD estimates based on the CV-optimal bandwidth. This large jump in drinking discontinuity 

may reflect that drinking participation is highly sensitive to the retirement lifestyle. 

Tables 1.24 and 1.25 report the RD estimates for females and males separately. The 

results suggest that there is a significant gender heterogeneity in the effect of retirement on 

alcoholic consumption participation. Retired females are almost 6 percentage points less likely to 

be drinking relative to non-retired females while retired males are almost 12 percentage points 

less likely to be drinkers relative to non-retired males. In addition, the retirement effect on 

females’ drinking participation is very sensitive to bandwidth. 
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Table 1.22: Fuzzy RD estimates of drinking participation - all sample at age 65 

 

Optimal 

bandwidth 
Bandwidth ℎ𝑀𝑆𝐸  

 4.2 1 2 3 4 5 

 Conventional  -0.08428*** -0.13052*** -0.09603*** -0.08669*** -0.08537*** -0.08212*** 

 (0.01739) (0.04348) (0.02774) (0.02162) (0.01801) (0.01577) 

𝐶𝐼95%
𝑐  [ -.118368 , -.050196]    

Bias-corrected -0.08899*** -0.18063*** -0.12638*** -0.10256*** -0.09352*** -0.09145*** 

 (0.01739) (0.04348) (0.02774) (0.02162) (0.01801) (0.01577) 

𝐶𝐼95%
𝑏𝑐  [-0.123074, -0.054901]    

 Robust -0.08899*** -0.18063** -0.12638*** -0.10256*** -0.09352*** -0.09145*** 

 (0.02106) (0.06941) (0.04104) (0.03189) (0.02676) (0.02344) 

𝐶𝐼95%
𝑟𝑏𝑐  [ -.130274,-.047702]     

obs 74507 74507 74507 74507 74507 74507 

L|R 43254|31253 43254|31253 43254|31253 43254|31253 43254|31253 43254|31253 

effective 9133|11135 1454|2722 3336|5212 5434 |7820 8373 |10411 11444|13209 

Notes: (i) All estimates are computed using a triangular kernel. (ii) first column report three different procedures: conventional 

RD estimates with a conventional variance estimator 𝜏̂𝐹𝑅𝐷
𝑐 ; bias-corrected RD estimates with a conventional variance estimator 

𝜏̂𝐹𝑅𝐷
𝑏𝑐 ; and bias-corrected RD estimates with a robust variance estimator 𝜏̂𝐹𝑅𝐷

𝑟𝑏𝑐 . (iii) standard errors are in parentheses. (iv) 

*,**,*** indicate significance level at 10%, 5%, 1% respectively.  
 

Table 1.23: Fuzzy RD estimation of the effect of retirement on the Drinking frequency (Drinking three 

days per week) all sample 65 

 

Optimal  
bandwidth Bandwidths 

 3.9 1 2 3 4 5 

Conventional -0.0391*** -0.0638* -0.0491** -0.04543*** -0.03878*** -0.03362*** 

 (0.01454) (0.03608) (0.02248) (0.0173) (0.01431) (0.01246) 

𝐶𝐼95%
𝑐  [-0.067593, -0.0106]     

Bias-corrected -0.04424*** -0.09494*** -0.0571** -0.05407*** -0.05146*** -0.04838*** 

 (0.01454) (0.03608) (0.02248) (0.0173) (0.01431) (0.01246) 

𝐶𝐼95%
𝑏𝑐  [-0.072738, -0.01574]     

Robust -0.04424** -0.09494 -0.0571* -0.05407** -0.05146** -0.04838** 

 (0.01735) (0.05874) (0.03389) (0.0260) (0.02158) (0.01879) 

𝐶𝐼95%
𝑟𝑏𝑐  [-0.078247, -0.01024]     

obs 74527 74527 74527 74527 74527 74527 

L|R  43266|31261  43266|31261  43266|31261  43266|31261  43266|31261  43266|31261 

Notes: (i) All estimates are computed using a triangular kernel. (ii) first column report three different procedures: conventional 

RD estimates with a conventional variance estimator 𝜏̂𝐹𝑅𝐷
𝑐 ; bias-corrected RD estimates with a conventional variance estimator 

𝜏̂𝐹𝑅𝐷
𝑏𝑐 ; and bias-corrected RD estimates with a robust variance estimator 𝜏̂𝐹𝑅𝐷

𝑟𝑏𝑐 . (iii) standard errors are in parentheses. (iv) *,**,*** 

indicate significance level at 10%, 5%, 1% respectively.  
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Also, Figure 1.15 indicates that RD results based on the CV-optimal bandwidth choice are not 

consistent with RD results based on the MSE-optimal bandwidth choice for retired females. 

Although the RD results based on both bandwidth selectors report a drop in drinking 

participation for retired females, RD results based on CV-optimal bandwidth indicate confidence 

intervals that cross the zero line, which means that the retirement effect cannot be distinguished 

from zero. This difference in results can be partly due to the shorter CV-optimal bandwidth 

compared to the MSE-optimal bandwidth. Consequently, all ranges of bandwidths in Figure 

1.15, which represent a 50 to 200 percent of the CV optimal bandwidth, are less than the MSE-

optimal bandwidth. This is noticeable in figure 1.15, where retirement starts to have significant 

effects on retired females’ drinking participation when the bandwidth is larger than 3.6.  On the 

other hand, Figure 1.15 shows that retirement has a significant effect on the drinking 

participation of retired males. The RD results from the CV-optimal bandwidth are consistent 

with the RD results from the MSE-optimal bandwidth and both of them report a drop in drinking 

participation between 9 and 16 percentage points for retired males relative to non-retired males. 

Moreover, Figure 1.15 indicates that the negative drop in drinking participation for retired males 

is highly significant at all bandwidths. 

The non-parametric RD treatment effect shows that retirement also has a positive side 

effect on the intensity of drinking for those who continue to drink after retirement. The RD 

estimator shows a significant negative jump in the probability of having alcohol consumption 

more than three days per week, which means that retirement reduces drinking frequency for 

those who continue to drink after retirement. Specifically, I found that retired individuals are 4 

percentage points less likely to have alcoholic consumption more than three days per week 

relative to non-retired individuals. The RD results are consistent for both CV-optimal bandwidth 
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and MSE-optimal bandwidth and are significant for most of the bandwidth selections. The results 

also show significant gender heterogeneity in the effect of retirement on the frequency of alcohol 

consumption for retirees who continue to drink after retirement. The RD estimator indicates that 

there is a significant, but smaller, negative jump in the frequency of alcohol consumption per 

week for retired females than retired males. Retired females are around 2 percentage points less 

likely to have a drink more than 3 days per week with a confidence interval of 95%. The RD 

results of retired females based on CV-optimal bandwidth and the derived bandwidths in figure 

1.15 indicate that the confidence intervals at different bandwidths include the value zero, which 

makes the RD estimates undistinguishable from zero for retired females relative to non-retired 

females. In contrast, retired males are 5 percentage points less likely to drink for more than three 

days per week relative to non-retired individuals and the RD results based on CV-optimal 

bandwidth are consistent with the RD results based on MSE-optimal bandwidth. The RD results 

from drinking participation and drinking intensity estimations indicate that retirement has more 

benefits for males than females regarding alcohol consumption. However, since the proportion of 

females who drink is, in general, less than the proportion of males who drink, retirement may 

have a small effect on alcohol consumption, and this effect is sensitive to retirement duration, 

implied by different bandwidths. In sum, there is gender heterogeneity in the effect of retirement 

on drinking participation and frequency and the negative drop in drinking is larger for retired 

males than retired females. The negative effect of retirement on drinking is robust for different 

bandwidths and across the three RD procedures applied throughout the study. 
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Table 1.24: Fuzzy RD estimates (Drinking participation) - Females only at age 65 

 optimal bandwidth bandwidths 

 5.6 1 2 3 4 5 

Conventional -0.05883*** -0.10905* -0.03407 -0.04163 -0.05381** -0.05958*** 

 (0.02004) (0.06079) (0.03804) (0.02956) (0.02456) (0.02148) 

𝐶𝐼95%
𝑐  [-0.098119, -0.01955]     

Bias-corrected -0.05759*** -0.19369*** -0.09003* -0.03022 -0.03125 -0.03907* 

 (0.02004) (0.06079) (0.03804) (0.02956) (0.02456) (0.02148) 

𝐶𝐼95%
𝑏𝑐  [-0.096877, -0.01831]     

Robust -0.05759** -0.19369** -0.09003 -0.03022 -0.03125 -0.03907 

 (0.02481) (0.09534) (0.0570) (0.04394) (0.03673) (0.03212) 

𝐶𝐼95%
𝑟𝑏𝑐  [-0.106217, -0.00897]     

Obs 41804 41804 41804 41804 41804 41804 

L|R 24323|17481 2432317481 24323|17481 24323|17481 24323|17481 24323|17481 

Notes: (i) All estimates are computed using a triangular kernel. (ii) first column report three different procedures: conventional 

RD estimates with a conventional variance estimator 𝜏̂𝐹𝑅𝐷
𝑐 ; bias-corrected RD estimates with a conventional variance estimator 

𝜏̂𝐹𝑅𝐷
𝑏𝑐 ; and bias-corrected RD estimates with a robust variance estimator 𝜏̂𝐹𝑅𝐷

𝑟𝑏𝑐 . (iii) standard errors are in parentheses. (iv) 

*,**,*** indicate significance level at 10%, 5%, 1% respectively.  
 

 

 

Table 1.25: RD estimates (drinking participation) - Males only at age 65 

 

Optimal 

bandwidth Bandwidths 

 3.5 1 2 3 4 5 

Conventional -0.11471*** -0.14023** -0.14958*** -0.12203*** -0.10775*** -0.09656*** 

 (0.02791) (0.06201) (0.04019) (0.03131) (0.02614) (0.02291) 

𝐶𝐼95%
𝑐  [-0.169409, -0.06002]     

Bias-

corrected -0.12589*** -0.13015** -0.15091*** -0.16672*** -0.14662*** -0.13345*** 

 (0.02791) (0.06201) (0.04019) (0.03131) (0.02614) (0.02291) 

𝐶𝐼95%
𝑏𝑐  [-0.180584, -0.07119]     

Robust -0.12589*** -0.13015 -0.15091** -0.16672*** -0.14662*** -0.13345*** 

 (0.03277) (0.10081) (0.0590) (0.04598) (0.03861) (0.03383) 

𝐶𝐼95%
𝑟𝑏𝑐  [-0.190112, -0.06167]     

L|R 18931|13772 18931|13772 18931|13772 18931|13772 18931|13772 18931|13772 

Obs 32703 32703 32703 32703 32703 32703 

Notes: (i) All estimates are computed using a triangular kernel. (ii) first column report three different procedures: conventional 

RD estimates with a conventional variance estimator 𝜏̂𝐹𝑅𝐷
𝑐 ; bias-corrected RD estimates with a conventional variance estimator 

𝜏̂𝐹𝑅𝐷
𝑏𝑐 ; and bias-corrected RD estimates with a robust variance estimator 𝜏̂𝐹𝑅𝐷

𝑟𝑏𝑐 . (iii) standard errors are in parentheses. (iv) 

*,**,*** indicate significance level at 10%, 5%, 1% respectively.  
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Table 1.26: Fuzzy RD estimation on the drinking frequency – cutoff at 65 (Drinking at least 

three days/week) - Females only  

 

optimal 

bandwidth bandwidths 

 3.9 1 2 3 4 5 

Conventional -0.01684 -0.04541 -0.01555 -0.01611 -0.01714 -0.01874 

 (0.01669) (0.04362) (0.02591) (0.01994) (0.01651) (0.01441) 

𝐶𝐼95%
𝑐  [-0.049539, 0.015865]     

Bias-corrected -0.01409 -0.12772*** -0.03057 -0.017 -0.01387 -0.01358 

 (0.01669) (0.04362) (0.02591) (0.01994) (0.01651) (0.01441) 

𝐶𝐼95%
𝑏𝑐  [-0.046788, 0.018616]     

Robust -0.01409 -0.12772* -0.03057 -0.017 -0.01387 -0.01358 

 (0.02026) (0.07288) (0.04045) (0.03027) (0.02496) (0.02172) 

𝐶𝐼95%
𝑟𝑏𝑐  [-0.053794, 0.025622]     

Obs 41816 41816 41816 41816 41816 41816 

L|R  24328|17488  24328|17488  24328|17488  24328|17488  24328|17488  24328|17488 

Notes: (i) All estimates are computed using a triangular kernel. (ii) first column report three different procedures: conventional 

RD estimates with a conventional variance estimator 𝜏̂𝐹𝑅𝐷
𝑐 ; bias-corrected RD estimates with a conventional variance estimator 

𝜏̂𝐹𝑅𝐷
𝑏𝑐 ; and bias-corrected RD estimates with a robust variance estimator 𝜏̂𝐹𝑅𝐷

𝑟𝑏𝑐 . (iii) standard errors are in parentheses. (iv) 

*,**,*** indicate significance level at 10%, 5%, 1% respectively.  
 
Table 1.27: Fuzzy RD estimation of the effect of retirement on the drinking frequency - Males only at 

cutoff 65 

 

optimal 

bandwidth bandwidths 

  1 2 3 4 5 

Conventional -0.04696* -0.06378 -0.06674* -0.06017** -0.04733* -0.03661* 

 (0.02367) (0.05757) (0.03717) (0.0287) (0.02378) (0.02072) 

𝐶𝐼95%
𝑐  [-0.093364, -0.00056]     

Bias-corrected -0.05682** -0.01817 -0.06656* -0.07416** -0.07321*** -0.06774*** 

 (0.02367) (0.05757) (0.03717) (0.0287) (0.02378) (0.02072) 

𝐶𝐼95%
𝑏𝑐  [-0.10322, -0.01042]     

Robust -0.05682**   -0.01817 -0.06656 -0.07416* -0.07321** -0.06774** 

 (0.02763) (0.09418) (0.05467) (0.04263) (0.0356) (0.03107) 

𝐶𝐼95%
𝑟𝑏𝑐  [-0.110971, -0.00267]     

Obs 32711 32711 32711 32711 32711 32711 

L|R 18938|13773 18938|13773 18938|13773 18938|13773 18938|13773 18938|13773 

Notes: (i) All estimates are computed using a triangular kernel. (ii) first column report three different procedures: conventional 

RD estimates with a conventional variance estimator 𝜏̂𝐹𝑅𝐷
𝑐 ; bias-corrected RD estimates with a conventional variance 

estimator 𝜏̂𝐹𝑅𝐷
𝑏𝑐 ; and bias-corrected RD estimates with a robust variance estimator 𝜏̂𝐹𝑅𝐷

𝑟𝑏𝑐 . (iii) standard errors are in parentheses. 

(iv) *,**,*** indicate significance level at 10%, 5%, 1% respectively.  
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Figure 1.15: Fuzzy RD estimates at different bandwidth for drinking and smoking – age 65 

Notes: Non-parametric Regression discontinuity robustness of bandwidth choice for alcoholic consumption. Each point is a 

separate non-parametric regression discontinuity point estimate. Fuzzy non-parametric RD treatment effect estimated for 50 to 

200 percent of the CV-optimal bandwidth (half and twice the optimal bandwidth) with a 5 percentage points incremental. 

Bootstrapped standard error are based on 120 simulations to construct 95% CI. 
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Table 1.28 reports the non-parametric RD treatment effect of retirement on smoking 

participation. The results indicate that retirement has a positive effect on smoking. Retired 

individuals are almost 3 percentage points more likely to be a smoker than non-retirees. 

However, the RD estimates are very sensitive to bandwidth selection, which sheds light on the 

robustness of the RD effect at the cut-off. Moreover, the RD estimates are not significant at other 

bandwidths. Figure 1.16 suggests that the RD results based on the CV-optimal bandwidth are not 

consistent with the RD results based on MSE-optimal bandwidth, and although both show a 

positive jump in the smoking status of retirees, the result is not significant for the former 

bandwidth selector. The figure also reports that retirement has a positive effect on smoking 

status, but this effect is not statistically significant. To check if there is gender heterogeneity in 

the impact of retirement on smoking status, the RD effect is estimated for males and females 

separately. Tables 1.29 and 1.30 suggest that retirement has a heterogeneous impact on females 

and males. Although the RD treatment effect finds a positive impact of retirement on both males 

and females, the effect of retirement is statistically insignificant for females at all bandwidth 

selections. In contrast, the impact of retirement on retired males is positive and statistically 

significant, but the retirement effect is sensitive to bandwidth selection. The RD results based on 

the CV-optimal bandwidth support the positive impact of retirement for males and the sensitivity 

of the results to the selected bandwidth. Together, retirement impact on smoking status is 

positive and has a significant effect on retired males but not on retired females. 
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Table 1.28: Fuzzy RD treatment effect of retirement on smoking participation -All sample 65 

 

Optimal 

bandwidth Bandwidth 

 3.6 1 2 3 4 5 

Conventional 0.0303** -0.01042 0.03204 0.02718* 0.03075** 0.03247*** 

 (0.01377) (0.03184) (0.02025) (0.01567) (0.01308) (0.01147) 

𝐶𝐼95%
𝑐  [0.003316, 0.057289]     

Bias-corrected 0.02745** -0.02936 0.01589 0.02782* 0.02473* 0.02659** 

 (0.01377) (0.03184) (0.02025) (0.01567) (0.01308) (0.01147) 

𝐶𝐼95%
𝑏𝑐  [0.000468, 0.054441]     

Robust 0.02745* -0.02936 0.01589 0.02782 0.02473 0.02659 

 (0.01682) (0.0520) (0.03011) (0.02336) (0.01945) (0.01701) 

𝐶𝐼95%
𝑟𝑏𝑐  [0.005521, 0.06043]     

Obs (74108) (74108) (74108) (74108) (74108) (74108) 

L|R  43060|31048  43060|31048  43060|31048  43060|31048  43060|31048  43060|31048 

Notes: (i) All estimates are computed using a triangular kernel. (ii) first column report three different procedures: conventional 

RD estimates with a conventional variance estimator 𝜏̂𝐹𝑅𝐷
𝑐 ; bias-corrected RD estimates with a conventional variance estimator 

𝜏̂𝐹𝑅𝐷
𝑏𝑐 ; and bias-corrected RD estimates with a robust variance estimator 𝜏̂𝐹𝑅𝐷

𝑟𝑏𝑐 . (iii) standard errors are in parentheses. (iv) 

*,**,*** indicate significance level at 10%, 5%, 1% respectively.  
 

 

Figure 1.16: Fuzzy RD estimates at different bandwidth for smoking participation 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Notes: Non-parametric Regression discontinuity robustness of bandwidth choice for smoking participation. Each point is a 

separate non-parametric regression discontinuity point estimate. Fuzzy non-parametric RD treatment effect estimated for 50 to 

200 percent of the CV-optimal bandwidth (half and twice the optimal bandwidth) with a 5 percentage points incremental. 

Bootstrapped standard error are based on 120 simulations to construct 95% CI. 
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Table 1.29: Fuzzy RD treatment effect of retirement on smoking participation -Females only at cutoff  65 

 

optimal 

bandwidth bandwidth 

 4.8 1 2 3 4 5 

Conventional 0.02281 0.00558 0.03722 0.0231 0.0224 0.02316 

 (0.01539) (0.0416) (0.0264) (0.02051) (0.01717) (0.0151) 

𝐶𝐼95%
𝑐  [-0.007348, 0.052968]     

Bias-corrected 0.02199 0.02561 0.02836 0.03891* 0.02594 0.02285 

 (0.01539) (0.0416) (0.0264) (0.02051) (0.01717) (0.0151) 

𝐶𝐼95%
𝑏𝑐  [-0.008168, 0.052148]     

Robust 0.02199 0.02561 0.02836 0.03891 0.02594 0.02285 

 (0.01879) (0.06717) (0.03925) (0.03053) (0.02546) (0.02229) 

𝐶𝐼95%
𝑟𝑏𝑐  [-0.014839, 0.058819]     

obs 41581 41581 41581 41581 41581 41581 

L|R  24193|17388   24193|17388   24193|17388   24193|17388   24193|17388   24193|17388  

Notes: (i) All estimates are computed using a triangular kernel. (ii) first column report three different procedures: conventional 

RD estimates with a conventional variance estimator 𝜏̂𝐹𝑅𝐷
𝑐 ; bias-corrected RD estimates with a conventional variance estimator 

𝜏̂𝐹𝑅𝐷
𝑏𝑐 ; and bias-corrected RD estimates with a robust variance estimator 𝜏̂𝐹𝑅𝐷

𝑟𝑏𝑐 . (iii) standard errors are in parentheses. (iv) 

*,**,*** indicate significance level at 10%, 5%, 1% respectively.  
 

 

 

Table 1.30: Fuzzy RD treatment effect of retirement on smoking participation – Males only at cutoff  65 

 

optimal 

bandwidth bandwidth 

  1 2 3 4 5 

Conventional 0.04611** -0.02481 0.03047 0.03605* 0.04414** 0.04645*** 

 (0.0183) (0.04877) (0.03131) (0.02419) (0.02015) (0.01763) 

𝐶𝐼95%
𝑐  [0.010243, 0.08198]     

Bias-corrected 0.04588** -0.09283* 0.00643 0.01964 0.0279 0.03552** 

 (0.0183) (0.04877) (0.03131) (0.02419) (0.02015) (0.01763) 

𝐶𝐼95%
𝑏𝑐  [0.010011,0.081748]     

Robust 0.04588** -0.09283 0.00643 0.01964 0.0279 0.03552 

 (0.0224) (0.08126) (0.04633) (0.03597) (0.02997) (0.02619) 

𝐶𝐼95%
𝑟𝑏𝑐  [0. 001973, 0.089786]     

obs 32527 32527 32527 32527 32527 32527 

L|R  18867|13660   18867|13660   18867|13660   18867|13660   18867|13660   18867|13660  

Notes: (i) All estimates are computed using a triangular kernel. (ii) first column report three different procedures: conventional 

RD estimates with a conventional variance estimator 𝜏̂𝐹𝑅𝐷
𝑐 ; bias-corrected RD estimates with a conventional variance 

estimator 𝜏̂𝐹𝑅𝐷
𝑏𝑐 ; and bias-corrected RD estimates with a robust variance estimator 𝜏̂𝐹𝑅𝐷

𝑟𝑏𝑐 . (iii) standard errors are in parentheses. 

(iv) *,**,*** indicate significance level at 10%, 5%, 1% respectively.  
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Figure 1.17: Fuzzy RD estimates at different bandwidth for males and females separately 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Notes: Non-parametric Regression discontinuity robustness of bandwidth choice for smoking participation. Each point is a 

separate non-parametric regression discontinuity point estimate. Fuzzy non-parametric RD treatment effect estimated for 50 to 

200 percent of the CV-optimal bandwidth (half and twice the optimal bandwidth) with a 5 percentage points incremental. 

Bootstrapped standard error are based on 120 simulations to construct 95% CI. 
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1.7. Non-Parametric Fuzzy RD Robustness Check 

I checked the robustness of the RD estimates in the analysis of the effect of retirement on 

health using a variety of distinct procedures. I proved that the main findings are robust to 

different model specifications, parametric and nonparametric regression specifications. I also 

demonstrate that the RD estimates of the effect of retirement do not change across different 

weighting schemes that give higher weight to the observations in the neighborhood of the cut-off 

point but away from the cutoff. I also checked the robustness of the results under different 

polynomial procedures, linear and quadratic, and there was no significant change in the results. 

The robustness of the regression is verified by estimating the effect of retirement at different 

bandwidths around the cut-off point that shows increasing increments by 5 percentage points,  

50% to 200% of the optimal bandwidth, which firmly supports the validity of the results. Also, 

the estimations showed that adding covariates to the main model in the RD setting did not 

change the results dramatically but improved the efficiency of the estimation results. I further 

assess the robustness of the results to the dramatic increase in health insurance eligibility at age 

65. To assess the robustness of the RD results giving the positive jump in the Medicare health 

eligibility in the U.S., several robustness checks were performed.  

Medicare is the major federal program that provides health insurance coverage for nearly 

all Americans who turn 65. To be eligible for Medicare, individuals must be at least 65 years and 

have paid Medicare taxes for at least 10 years. However, some persons qualify for Medicare 

before age 65 if they received social security disability insurance (SSDI). Individuals who meet 

these eligibility requirements qualify directly for medical hospital insurance (part A) free of 

charge, but they have to choose whether or not to opt into medical insurance (part B), which is 

available for a monthly premium (Card et al., 2004). It is well-documented in empirical work 
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that health insurance coverage increases at age 65, and that access to Medicare is associated with 

a significant increase in health care utilization (Card et al., 2004, 2008, 2009). Christelis et al. 

(2014) found that Medicare coverage increased by 73 percentage points at age 65.  

Figure 1.18: Non-parametric RD plot – the probability of having insurance at age 65  

 

Note: Based on the quantile spaced mimicking variance, the figure shows that the percentage of individuals who are 

covered by insurance positively jump at age 65. 

  

The drastic change in health care coverage at age 65 could create a problem for the RD 

estimators. Specifically, the effect of retirement on health at age 65 could potentially be driven 

by Medicare eligibility and health care utilization, not necessarily be driven by retirement status. 

To address this issue, I conducted a falsification test of the RD analysis using several checks. 

First, I conducted a similar Fuzzy RD analysis at age 62, where a significant jump in retirement 

is also observed because this is the earliest age at which Americans can receive social security 

payment. Also, the positive jump in the retirement rate at age 62 is associated with a significant 
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decline in health care coverage, which can neutralize the effect of health care coverage in the 

analysis. Second, I run the RD analysis on the low-income subgroup. This group includes 

individuals who are in the lowest 20% of the income distribution in the dataset or individuals 

whose income is below the federal poverty line after adjustment for the number of persons in the 

family (HHS, 2018)11. This subgroup will include the persons who may be eligible for the 

Medicaid health insurance program before age 65. Medicaid is a joint federal and state program 

that helps low-income adults and people with certain disabilities cover health care costs. 

Eligibility to Medicaid is based on income and family size. Although the HRS includes a 

question about whether persons are enrolled in the Medicaid program, there are some cases in 

which individuals did not report any information about their health insurance coverage before 

age 65. Therefore, using the previous income criteria may help in identifying persons who may 

be eligible to have Medicaid insurance coverage to get a reasonable sample size to this subgroup. 

Third, I run the RD analysis at age 65 for the subgroup of individuals who were eligible for 

health care coverage before 65 or individuals who have other health care coverage, private or 

public, for at least five years before they retired. This, then, includes individuals who already had 

health insurance coverage before reaching age 65, and who continue to have health care 

coverage after age 65, whether the coverage is public or private. 

 

 

 

 

 

 

 

 
11 According to the U.S. federal poverty guidelines used to determine eligibility for certain federal programs, the 

2018 poverty guidelines in 48 states are as follow:  $12,140 for one person family, $16,460 for two person family, 

$20,780 for three person family, $25,100 for four person family, $29,420 for five person family, $33,740 for six 

persons family, $38,060 for seven person family, $42,380 for 8 persons family, and $4,320 for each additional 

person for families with more than 8 persons. 
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1.7.1 Regression Discontinuity at Early Retirement Discontinuity – Cut-off at Age 62. 

 

As discussed above, Medicare provides nearly universal health care coverage for Americans over 

65. Previous literature suggests that individuals may base their retirement decision on their 

Medicare eligibility status, which could create an identification issue in the fuzzy RD estimation 

strategy. Specifically, changes in health outcomes at age 65 could potentially be driven by 

Medicare eligibility, not necessarily by the retirement decision.  To address this issue, I conduct 

a falsification test of the RD analysis around the early retirement age of 62 in U.S. Table 1.31 

indicates the change in health outcomes when individuals retired at age 62. All results are based 

on the robust bias-corrected RD estimators and use the MSE-optimal bandwidth selector. Panel 

A shows that retirement at age 62 is associated with a significant decline in the cognitive 

functioning test score. The fuzzy RD estimates suggest that retired individuals experience a drop 

in the cognitive score by about 0.52 points with a 95% confidence interval [-0.824629, -

0.22317], and this is equivalent to a 5% drop in the cognitive functioning score. Panel B reports 

the impact of retirement on mental health. The RD estimates suggest that there is an increase in 

retired individuals’ CESD depression scale by almost 0.54 points, which is equivalent to a 37% 

decrease in mental health status relative to non-retirees. Similarly, retirement has a negative 

effect on the self-reported general health of retirees. The proportion of retired individuals who 

report that they are in excellent, very good, or good health dropped by almost 22% relative to 

non-retirees. In addition, the RD estimates are robust at different bandwidths except for cognitive 

functioning at one-year bandwidth, which is in line with the estimated effect of retirement at age 

65 where retirement does not affect cognitive functioning directly but with a time lag. Based on 

the RD treatment effect results of retirement at the early retirement age 62, the findings support 

the results at the official retirement age 65, i.e., the fuzzy RD retirement effects on health 
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outcomes are robust at the official age of retirement, and the change in health outcomes can be 

explained by the change in retirement status at this age. 

 

Table 1.31: Fuzzy RD Estimates at Different Bandwidths – All Sample at Cutoff Age 62 

 

optimal 

bandwidth 
Bandwidths 

Panel A: Cognitive Functioning 

 2.9 1 2 3 4 5 

Robust RD -0.5239*** -0.35244 -0.58106*** -0.5233*** -0.52915*** -0.57133*** 

 (0.15344) (0.34066) (0.20195) (0.15294) (0.12643) (0.1098) 

𝐶𝐼95%
𝑟𝑏𝑐  [-0.824629, -0.22317]   

Panel B: Mental Health 

 4.5 1 2 3 4 5 

Robust RD 0.54417*** 0.39717** 0.50182*** 0.54199*** 0.54591*** 0.53852*** 

 (0.06289) (0.17284) (0.10685) (0.0821) (0.06842) (0.05967) 

𝐶𝐼95%
𝑟𝑏𝑐  [ .420911, .667438]      

Panel C: Self-reported General Health 

 3.7 1 2 3 4 5 

Robust RD -0.21693*** -0.31057*** -0.23059*** -0.2210*** -0.21629*** -0.21038*** 

 (0.01568) (0.03746) (0.02339) (0.01803) (0.01502) (0.01311) 

𝐶𝐼95%
𝑟𝑏𝑐  [-.247664, -.186189]    

Notes: (i) All estimates are computed using a triangular kernel and MSE-optimal bandwidth selector(ii) first column report the 

bias-corrected RD estimates with a robust variance estimator 𝜏̂𝐹𝑅𝐷
𝑟𝑏𝑐 . (iii) standard errors are in parentheses. (iv) *,**,*** indicate 

significance level at 10%, 5%, 1% respectively. 

 

 

Figure 1.19 plots the RD results, which are constructed by using the conventional RD procedure 

and CV-bandwidth selector. The RD estimation is repeated at different bandwidths, with a range 

between 50% and 200% of the CV-optimal bandwidth. All estimates are based on the triangular 

kernel, and standard errors are bootstrapped using 120 simulations. These are used to construct a 

95% confidence interval for the RD estimates, as shown on each graph. Plot 1 shows that 

retirement is associated with a negative impact on the cognitive score at different bandwidths and 

that there is no significant change in the value of the cognitive functioning score when the 

bandwidth changes. Similarly, plots 2 and 3 show that retirement has a negative effect on both 
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mental health and self-reported general health of retired individuals at different bandwidths. The 

results in table 1.31 and figure 1.19 show that the RD estimation from the MSE-optimal 

bandwidth selector is consistent with the results from the CV-optimal bandwidth, and the RD 

estimates are robust at different bandwidths. Consequently, the RD estimates are robust at the 

early retirement discontinuity and the official age of retirement discontinuity. 

 

Figure 1.19: Robustness of RD estimates of health outcomes at cut-off age 62  

 

                             Plot 1                                                                       Plot 2 

 

                                                                  Plot 3 

 

 

 

 

 

 

 

 

 

 

 

 

 
Notes: Non-parametric Regression discontinuity robustness of bandwidth choice. Each point is a separate non-parametric 

regression discontinuity point estimate. Fuzzy non-parametric RD treatment effect estimated for 50 to 200 percent of the CV-

optimal bandwidth (half and twice the optimal bandwidth) with a 5 percentage points incremental. Bootstrapped standard error 

are based on 120 simulations to construct 95% CI. 
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Table 1.32 reports the RD results for health behavior at the early retirement age (62). The 

RD suggests that retirement has a negative and significant impact on drinking. Retired 

individuals are almost 7 percentage points less likely to be a drinker after retirement relative to 

non-retirees. The results are not sensitive to different bandwidths. Although the RD results 

suggest that retirement negatively impacts the drinking intensity of retired individuals, the results 

are sensitive to bandwidth choices. In contrast, retirement status is associated with a positive 

impact on smoking, where retired individuals are almost 3 percentage points more likely to 

smoke relative to non-retirees. 

The RD results based on the CV-optimal bandwidth, shown in Figure 1.20, are consistent 

with the RD results based on the MSE-optimal bandwidth selection. Figure 1.20 shows that the 

retirement impact on drinking and smoking participation is sensitive to the bandwidth selections 

and retirement practice a significant effect on them for the bandwidths at least equal to the MSE- 

optimal bandwidth. As indicated by the figure, the confidence intervals for both drinking 

participation and smoking participation include the value zero, which makes the RD estimates 

indistinguishable from the zero. In summary, the RD estimates at the early retirement age, 62, 

are in line with the RD estimates at the official retirement age, 65, which means the RD of 

retirement is not affected much by the eligibility to access Medicare at age 65, and the results are 

robust. 
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Table 1.32: Fuzzy RD estimates at different bandwidths (health-related behavior) – All sample at cutoff 

age 62 

 

Optimal 

bandwidth 
Bandwidth 

 
Panel A: Drinking participation 

 3.2 1 2 3 4 5 

Robust -0.0738*** -0.1236** -0.1164*** -0.0932*** -0.0807*** -0.0744*** 

 (0.0238) (0.0699) (0.0401) (0.0305) (0.0253) (0.0221) 

𝐶𝐼95%
𝑟𝑏𝑐  [-0.120285, -0.027205]     

 
Panel B: Drinking frequency 

 5.2 1 2 3 4 5 

Robust -0.0278** -0.0456 -0.0266 -0.0241 -0.0256* -0.0280** 

 (0.0111) (0.0374) (0.0219) (0.0164) (0.0136) (0.0118) 

𝐶𝐼95%
𝑟𝑏𝑐  [ -.04962, -.006057]     

 
Panel C: Smoking participation 

 4.1 1 2 3 4 5 

Robust 0.0381*** 0.0147 0.0292 0.0340** 0.0373*** 0.0397*** 

 (0.0137) (0.0367) (0.0223) (0.0169) (0.0140) (0.0122) 

𝐶𝐼95%
𝑟𝑏𝑐  [ .011164, .064945]     

Notes: (i) All estimates are computed using a triangular kernel and MSE-optimal bandwidth selector(ii) first column report the 

bias-corrected RD estimates with a robust variance estimator 𝜏̂𝐹𝑅𝐷
𝑟𝑏𝑐 . (iii) standard errors are in parentheses. (iv) *,**,*** indicate 

significance level at 10%, 5%, 1% respectively. 

 

Figure 1.20: Fuzzy RD robustness of drinking and smoking behavior 

 

Notes: Non-parametric Regression discontinuity robustness of bandwidth choice. Each point is a separate non-parametric 

regression discontinuity point estimate. Fuzzy non-parametric RD treatment effect estimated for 50 to 200 percent of the CV-

optimal bandwidth (half and twice the optimal bandwidth) with a 5 percentage points incremental. Bootstrapped standard error 

are based on 120 simulations to construct 95% CI. 
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1.7.2 Fuzzy RD Estimates for the  Low-Income Subgroup 

Table 1.33 reports the RD estimates for individuals in the low-income group. The RD 

estimate in the first column shows that the jump in retirement probability was associated with a 

negative jump in the reported word recall test score. That is, the effect of retirement on cognitive 

function is negative and highly significant. The RD estimator suggests that low income retired 

individuals experienced a drop in their cognitive test score by about 0.7 points with a 95% 

confidence interval [-0.946994, -0.410576]. This decline in cognitive functioning is equivalent to 

an approximately 6.7% decline in the cognitive functioning score of low-income retired 

individuals. The negative jump in total word recall for the low-income group is relatively lower 

than the average of the whole sample, 6.7% compared to 8%, respectively. Moreover, the effect 

of retirement on cognitive functioning is not sensitive to the change in the selected bandwidth for 

all reported bandwidths. 

Table 1.33: Fuzzy RD estimates - Cognitive functioning (Total word recall) low-income group at 

age 65 

 

Optimal 

bandwidth 
Bandwidth 

 4 1 2 3 4 5 

Conventional -0.67878*** -0.68736** -0.68938*** -0.71061*** -0.68166*** -0.67278*** 

(0.13684) (0.33112) (0.21103) (0.16575) (0.13872) (0.12167) 

𝐶𝐼95%
𝑐  [-0.946994, -0.410576]    

Bias-corrected -0.73075*** -1.1844*** -0.68425*** -0.70938*** -0.73223*** -0.70206*** 

(0.13684) (0.33112) (0.21103) (0.16575) (0.13872) (0.12167) 

𝐶𝐼95%
𝑏𝑐  [-0.998959, -0.462541]    

Robust -0.73075*** -1.1844** -0.68425** -0.70938*** -0.73223*** -0.70206*** 

(0.16234) (0.53633) (0.31779) (0.24587) (0.20589) (0.18081) 

𝐶𝐼95%
𝑟𝑏𝑐  [-1.04894, -0.412564]    

Obs 56314 56314 56314 56314 56314 56314 

Notes: (i) All estimates are computed using a triangular kernel. (ii) first column report three different procedures: conventional 

RD estimates with a conventional variance estimator 𝜏̂𝐹𝑅𝐷
𝑐 ; bias-corrected RD estimates with a conventional variance estimator 

𝜏̂𝐹𝑅𝐷
𝑏𝑐 ; and bias-corrected RD estimates with a robust variance estimator 𝜏̂𝐹𝑅𝐷

𝑟𝑏𝑐 . (iii) standard errors are in parentheses. (iv) 

*,**,*** indicate significance level at 10%, 5%, 1% respectively. 
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Table 1.34: Fuzzy RD estimates - Mental health (CES-D Depression scale) Low income at age 65 

 

Optimal 

bandwidth Bandwidth 

 4.4 1 2 3 4 5 

Conventional 0.28095*** 0.39379** 0.23981** 0.26609*** 0.27775*** 0.28859*** 

 (0.07744) (0.17383) (0.12243) (0.09853) (0.08285) (0.0729) 

𝐶𝐼95%
𝑐  [0.129176, 0.432716]    

Bias-corrected 0.27821*** 0.89414*** 0.37629*** 0.26616*** 0.25265*** 0.25461*** 

 (0.07744) (0.17383) (0.12243) (0.09853) (0.08285) (0.0729) 

𝐶𝐼95%
𝑏𝑐  [0.126436, 0.429976]    

Robust 0.27821*** 0.89414*** 0.37629*** 0.26616* 0.25265** 0.25461** 

 (0.09601) (0.26053) (0.17125) (0.1408) (0.12143) (0.1076) 

𝐶𝐼95%
𝑟𝑏𝑐  [0.090036, 0.466376]    

L|R 21638|30826 21638|30826 21638|30826 21638|30826 21638|30826 21638|30826 

Obs 52464 52464 52464 52464 52464 52464 

Notes: (i) All estimates are computed using a triangular kernel. (ii) first column report three different procedures: conventional 

RD estimates with a conventional variance estimator 𝜏̂𝐹𝑅𝐷
𝑐 ; bias-corrected RD estimates with a conventional variance 

estimator 𝜏̂𝐹𝑅𝐷
𝑏𝑐 ; and bias-corrected RD estimates with a robust variance estimator 𝜏̂𝐹𝑅𝐷

𝑟𝑏𝑐 . (iii) standard errors are in parentheses. 

(iv) *,**,*** indicate significance level at 10%, 5%, 1% respectively. 

 

 
Table 1.35: Fuzzy RD estimates - Self-reported health (Low-income group at age 65) 

 Optimal Bandwidth 

 4.2 1 2 3 4 5 

Conventional -0.11746*** -0.13694*** -0.10793*** -0.11092*** -0.11739*** -0.11757*** 

 (0.0173) (0.03978) (0.02678) (0.02145) (0.01802) (0.01586) 

𝐶𝐼95%
𝑐  [-0.151365, -0.08355]    

Bias-corrected -0.11535*** -0.19803*** -0.14124*** -0.1116*** -0.10586*** -0.11222*** 

 (0.0173) (0.03978) (0.02678) (0.02145) (0.01802) (0.01586) 

𝐶𝐼95%
𝑏𝑐  [-0.149253, -0.08144]    

Robust -0.11535*** -0.19803*** -0.14124*** -0.1116*** -0.10586*** -0.11222*** 

 (0.02046) (0.06215) (0.03889) (0.03108) (0.02655) (0.02347) 

𝐶𝐼95%
𝑟𝑏𝑐  [-0.155452, -0.07524]    

L|R 21638|30826 21638|30826 21638|30826 21638|30826 21638|30826 21638|30826 

Obs 52464 52464 52464 52464 52464 52464 

Notes: (i) All estimates are computed using a triangular kernel. (ii) first column report three different procedures: conventional 

RD estimates with a conventional variance estimator 𝜏̂𝐹𝑅𝐷
𝑐 ; bias-corrected RD estimates with a conventional variance estimator 

𝜏̂𝐹𝑅𝐷
𝑏𝑐 ; and bias-corrected RD estimates with a robust variance estimator 𝜏̂𝐹𝑅𝐷

𝑟𝑏𝑐 . (iii) standard errors are in parentheses. (iv) 

*,**,*** indicate significance level at 10%, 5%, 1% respectively. 
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1.7.3 Fuzzy RD Estimates for the Consistently Insured Subgroup (Before and After 

Retirement) 

Table 1.36 reports the RD results for a subpopulation of individuals who have insurance 

coverage for at least 5 years before the official age of retirement, and continue to be covered by 

insurance after retirement. This subpopulation is used to check the robustness of the RD 

estimates at age 65 and mitigate the effect of the discontinuity in Medicare eligibility at age 65. 

The non-parametric results suggest that retired individuals who were covered by insurance at 

least five years before their transition into retirement experienced a significant decline in their 

cognitive score by about 1.2 points, which is equivalent to around 12 percentage points in the 

cognitive score relative to non-retires. The RD results also are not sensitive to bandwidth 

selection, i.e., RD treatment impact on the cognitive score is robust to different bandwidths.  

Panel B in the table reports the RD estimates for mental health status. The results suggest that 

retirement is associated with a negative drop in the mental health status of retirees. Retired 

individuals experience a significant increase in their CESD depression scale by about 0.5 points 

relative to non-retired individuals. However, the results are not highly significant at all 

bandwidth selections. Panel C reports the RD results of the impact of retirement on self-reported 

health. Although the proportion of retired individuals who report they are in good health dropped 

by almost 6 percentage points, the impact of retirement on self-reported health of retirees is 

insignificant at the other bandwidths. This finding sheds light on the role of having access to 

health insurance on self-reported health status for this subpopulation. The RD results on the 

subpopulation of retirees who have health insurance coverage before the retirement is in line 

with the RD results from the whole sample at age 65, except the effect on self-reported health, 
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the results are not robust enough to support the RD treatment effect for self-reported health at 

age 65. 

Table 1.36:  RD estimates for retirees with any kind of insurance, at least 5 years before age 65 

 

MSE-Optimal 

bandwidth 
bandwidth 

Panel A: Cognitive functioning 

 4.3 1 2 3 4 5 

RD -1.2529*** -1.7269* -1.2788* -1.3252** -1.3108*** -1.1721*** 

 (0.44329) (0.95196) (0.65827) (0.53933) (0.46023) (0.4148) 

𝐶𝐼95%
𝑟𝑏𝑐  [ -2.1217, -0.384025]     

Panel B: Mental health 

 5 1 2 3 4 5 

RD 0.48331** 0.70627* 0.52568* 0.50821* 0.46698** 0.45394** 

 (0.20249) (0.39682) (0.31564) (0.27334) (0.23925) (0.2153) 

𝐶𝐼95%
𝑟𝑏𝑐  [.086447, .880176]     

Panel C: Self- reported health 

 5 1 2 3 4 5 

RD -0.06982* -0.17014* -0.03372 -0.021 -0.04444 -0.06224 

 (0.04098) (0.09396) (0.0703) (0.05926) (0.0505) (0.04642) 

𝐶𝐼95%
𝑟𝑏𝑐  [ -.150138, 0.010496]     

Notes: (i) All estimates are computed using a triangular kernel and MSE-optimal bandwidth selector (ii) first column report 

the bias-corrected RD estimates with a robust variance estimator 𝜏̂𝐹𝑅𝐷
𝑟𝑏𝑐 . (iii) standard errors are in parentheses. (iv) *,**,*** 

indicate significance level at 10%, 5%, 1% respectively. 

  
Table 1.37 reports the RD results for health-related behavior for a subgroup of individuals who 

have health insurance coverage at least 5 years before age 65 and continue to have health 

coverage after retirement. The results suggest that retirement has a negative impact on drinking, 

with retirees 9 percentage points less likely to be drinkers compared to non-retirees. However, 

the RD results are sensitive to bandwidth selection. In contrast, the RD results show an 

insignificant effect of retirement on drinking frequency and smoking. These findings are 

inconsistent with the RD results at the official age of retirement.  
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Table 1.37: RD estimates for retirees with any kind of insurance, at least 5 years before age 65 

 

MSE-Optimal 

bandwidth 
Bandwidth 

Panel A: Drinking participation 

 5.07 1 2 3 4 5 

Robust RD -0.0961** -0.1567 -0.1004 -0.1130* -0.0962* -0.0965** 

 (0.0485) (0.1187) (0.0832) (0.0672) (0.0557) (0.0489) 

𝐶𝐼95%
𝑟𝑏𝑐  [ -.191238, -.001014]      

Panel B: Drinking frequency 

 5.3 1 2 3 4 5 

Robust RD -0.0269 0.0462 -0.0182 -0.0254 -0.0100 -0.0191 

 (0.0293) (0.0734) (0.0610) (0.0517) (0.0439) (0.0386) 

𝐶𝐼95%
𝑟𝑏𝑐   [-.084332, .030638]      

Panel C: Smoking participation 

 6 1 2 3 4 5 

Robust RD -0.0051 -0.0166 -0.0362 -0.0342 -0.0254 -0.0147 

 (0.0335) (0.0977) (0.0648) (0.0523) (0.0437) (0.0384) 

𝐶𝐼95%
𝑟𝑏𝑐   [-.07075, .060649]     

Notes: (i) All estimates are computed using a triangular kernel and MSE-optimal bandwidth selector(ii) first column report the 

bias-corrected RD estimates with a robust variance estimator 𝜏̂𝐹𝑅𝐷
𝑟𝑏𝑐 . (iii) standard errors are in parentheses. (iv) *,**,*** indicate 

significance level at 10%, 5%, 1% respectively. 
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1.8. The Validity of the Regression Discontinuity Design 
 

Although the mechanism through which individuals are assigned to treatment is based on 

observable features, and the quantitative effect of the treatment can be easily identified, the 

assignment rule can be manipulated and the continuity assumption, the spirit of the RD setting, 

violated and hence estimates of the RD estimator invalidated. The validation of the RD is based 

on the continuity assumption, which is an unobservable assumption. However, the RD design has 

a variety of empirical methods that can provide plausible and indirect evidence about the validity 

of its assumptions (Cattaneo, 2018). 

1.8.1 Predetermined Covariates  

One of the most important falsification tests in the RD literature is to test whether the 

treated and untreated units near the cut-off point (threshold neighborhood) are similar in terms of 

observable features. That is, units above and below the cut-off point are similar in all variables 

that should not be affected by the treatment. The idea is simply that if covariates are strongly 

correlated to the outcome variable and they are discontinuous at the cut-off, the continuity of the 

potential expected outcome functions is unlikely to hold, and thus the validity of the design is 

violated. To implement this formal falsification test, I run the “rdrobust codes of CCT” on each 

of the covariates in the study. The null hypothesis is that predetermined covariates are not 

affected by the treatment at the cut-off. Hence, the null hypothesis should not be rejected if the 

RD design is valid.  

Although the graphical visualization for each covariate against the running variable can 

reveal if there are noticeable discontinuities at the cut-off point, quantitative statistical analysis is 

required before a more objective and formal conclusion regarding the continuity of the 

predetermined covariates can be reached. To implement the falsification tests analysis, the 
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optimal bandwidth must be chosen for each test separately. The chosen bandwidths will 

generally be different from the bandwidth that is used to run the RD estimation on the original 

outcomes. Since each covariate may have a different conditional mean function and different 

curvature, the optimal bandwidth for local polynomial estimation and inference will also be 

different for every variable; i.e., the statistical analysis is conducted separately for each covariate 

using the local polynomial estimators. Table 1.38 reports the local polynomial estimation and 

inference results for several different pre-determined covariates available in the study. The 

results show that all RD estimates are small, most of them close to zero, and all 95% confidence 

intervals contain zero, with p-values ranging from 0.13 to 0.867.  Consequently, the null 

hypothesis that predetermined covariates are not affected by treatment (continuity assumption) is 

not rejected for all variables. As a result, the assumption of continuity is empirically validated. In 

other words, there is no empirical evidence that these predetermined covariates are discontinuous 

at the cut-off. Note that the number of observations used in the analysis varies for each covariate, 

which occurs because the MSE-optimal bandwidth is different for every covariate tested for 

continuity. Some studies in the RD setting argue that CER-optimal bandwidth is more 

appropriate than MSE-optimal bandwidth when running the falsification test. According to 

Cattaneo et al. (2018), the choice between these two alternative bandwidth selectors gives a 

natural trade-off between the size and power of the falsification tests. They argue that the MSE-

optimal bandwidth leads to more powerful hypothesis testing with possibly larger size distortions 

than tests that are run using the CER-optimal bandwidth. However, when I implemented the 

falsification test using the CER-optimal bandwidth selector, there were no changes in the 

empirical conclusion for all predetermined covariates. 
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Table 1.38: Formal falsification test for the validity of the Continuity-Based Analysis for predetermined Covariates 

   
robust inference 

   

variables 

MSE Optimal 

Bandwidth 

RD 

Estimator P-value [Confidence Interval] 

Effective 

Observation L|R Observations 

Females 2.8 0.01302 0.379 -0.01602 0.042056 10931|10109 56780|37351 94131 

Married 3.7 0.02082 0.186 -0.00295 0.044593 15221|13381 5678037351 94131 

Black 4.4 -0.01017 0.243 -0.02723 0.006897 18073 |15604 56780|37351 94131 

Other races 3 -0.00328 0.574 -0.0147 0.008141 11926|10981 56780|37351 94131 

Divorced, S, W 4.8 -0.01142 0.275 -0.03192 0.009079 19485|16712 56780|37351 94131 

high school 4.4 -0.01533 0.192 -0.03835 0.007684 18073|15604 56780|37351 94131 

university degree 3.5 0.01874 0.195 -0.00323 0.040706 13423 |12074 56780|37351 94131 

Middle income 3 -0.0042 0.567 -0.01858 0.010182 11926|10981 56780|37351 94131 

High income 5 0.00061 0.867 -0.00651 0.007725 20551|17539 56780|37351 94131 

Spouse retired 3.6 0.02155 0.192 -0.0035 0.04659 14518|12846 56780|37351 94131 

U.S birth 4.5 0.0100 0.379 -0.01229 0.032291 18440|15848 56780|37351 94131 

Northwest 4.7 -0.00388 0.649 -0.02059 0.012836 19122|16390 56780|37351 94131 

Midwest 3.7 -0.01146 0.29 -0.0327 0.009775 15221|13381 56780|37351 94131 

South 3.8 0.01899 0.133 -0.00581 0.043792 15221|13381 56780|37351 94131 

West 4.6 -0.0024 0.788 -0.01983 0.015034 18781|16098 56780|37351 94131 

Others regions 4.5 -0.00096 0.271 -0.00268 0.000752 18781|16098 56780|37351 94131 

Notes: RD estimated using local polynomial estimator with triangular kernel weights and the MSE-optimal bandwidth selector  
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1.8.2 Density of Running Variable Test 

The continuity assumption of the outcome, as a function of the running variable x, rules 

out any discrete jump in the running variable at the cut-off point, so that any observed jump in 

outcomes can be attributed to the treatment effect. This assumption is more credible when the 

running variable cannot be manipulated by individuals near the threshold value, which, in this 

study, is age. That is, if there is a discontinuity in the density of the running variable at the cut-

off point, it can be an indicator that individuals can precisely manipulate the running variable. 

Consequently, if the running variable is discontinuous at the cut-off, this may invalidate the 

continuity assumption in the RD setting. 

To implement the manipulation test, the density of units in the neighborhood near the 

cutoff must be estimated to test the hypothesis that the density is discontinuous at the cut-off. 

There have been three widely documented manipulation tests in the literature. First, McCrary 

(2008) developed a test based on the nonparametric local-polynomial density estimator, which is 

an extension of the local linear density estimator of Cheng, Jianqing, and Marron (1997). The 

McCrary test is based on obtaining a histogram and then smoothing the histogram using local 

linear regression separately on either side of the cut-off.  Second, Otsu, Xu, and Matsushita 

(2014) developed an empirical likelihood method using boundary-corrected kernels. Third, 

Cattaneo, Jansson, and Ma (2017b) developed a set of manipulation tests based on a novel local-

polynomial density estimator. Their methods were shown to provide demonstrable improvements 

in both size and power under appropriate assumptions, relative to other approaches currently 

available in the literature (see Cattaneo and Escanciano, 2017; Cattaneo, Titiunik, and Vazquez-

Bare, 2017c; Calonico, Cattaneo, and Titiunik, 2015a) 
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The hypothesis test of the continuity of the density of the running variable, 𝑓(𝑥), at the cut-off is 

based on estimating the density of observations near the cut-off separately for observations 

above and below the cut-off, using the local polynomial density estimator. The null hypothesis 

can be stated as 

𝐻0 : lim
𝑥↑𝑥̅

𝑓(𝑥) =  lim
𝑥↓𝑥̅

𝑓(𝑥)      𝑣𝑠     𝐻1 : lim
𝑥↑𝑥̅
𝑓(𝑥) ≠  lim

𝑥↓𝑥̅
𝑓(𝑥)           

Therefore, failing to reject the null hypothesis implies that there is no statistical evidence of 

manipulation at the cut-off point, and thus provides evidence supporting the validity of the RD 

design. The empirical test is implemented using the “rddensity” statistical package developed by 

CCT.12 Table 1.39 reports the results from implementing the manipulation test.  I run the test 

twice using the conventional RD estimator and the robust bias-corrected RD estimator. The test 

statistic is constructed using polynomial order 𝑝 =  2 in both cases. The test statistic of the 

manipulation test according to the conventional RD setting is 𝑇 =  −1.057, with a 𝑝 − 𝑣𝑎𝑙𝑢𝑒 of 

0.2905, and the test statistics according to the robust RD estimator is 𝑇 =  −0.0102, with a 𝑝 −

𝑣𝑎𝑙𝑢𝑒 of 0.9918. Therefore, in this application, the graphical visualisation13 and the formal 

manipulation test indicate that there is no statistical evidence of systematic manipulation of the 

running variable. 

Table 1.39: Manipulation test of the running variable  

Method test statistic p-value 

Conventional -1.057 0.2905 

Robust -0.0102 0.9918 

Notes: The RD estimates are based on the conventional RD estimator and the Robust biased-corrected RD estimator. (ii) the test 

is constructed by using “lpdensity” statistical package. 

 

 
12 https://sites.google.com/site/rdpackages/rddensity 
13 This plot is constructed using the statistical package “lpdensity” for local polynomial-based density estimation for 

manipulation test. The package is developed by CCT at https://sites.google.com/site/rdpackages/rddensity 

 



113 

 

 

Figure 1.21: Running variable density test 

 
 

 

1.8.3 Sensitivity to Observations Near the Cut-off 

 

The idea behind this falsification test is to exclude observations that are very close to the 

cut-off point to investigate how sensitive the results are to this exclusion. To implement this test, 

after excluding the units close to the cut-off, the RD estimation and inference analysis are 

repeated using the remaining sample. This procedure, called a “donut hole" approach, is very 

useful to assess the sensitivity of the RD results to observations closest to the cut-off point, 

which may have the most influence on the estimated RD results when estimating the local 

polynomials, the unavoidable extrapolation14 (see Cattaneo, Idrobo, and Titiunik, 2018). 

 
14 when the few observations in the near neighborhood of  the cutoff are likely to have the most influential on the 

fitted  local polynomials. 
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Table 1.40 reports the RD estimates after excluding some observations around the cut-off. The 

results show that excluding observations in the 0.10 radius of the cut-off lead to similar results as 

the original analysis, zero radius exclusion. The exclusion of these observations changes the RD 

estimate for cognitive functioning from -0.86065 to -0.81731, with the robust confidence interval 

changing from [-1.12260, -0.598694] to [-1.16172, - 0.47289]. Similarly, excluding 0.10 of the 

observations changed the RD estimates for mental health and self-reported health from 0.4142 to 

0.36392 and from -0.13172 to -0.12299, respectively.  

Table 1.40 shows the results from the Donut hole approach by repeating this procedure 

several times to assess the actual sensitivity for different radiuses of excluded units in the 

neighborhood of the cut-off, and the figure helps visualize the results graphically. The results 

from the RD estimates at different exclusion radiuses are unchanged. Moreover, all the new RD 

estimates and the original estimates are still significant at 1%. Consequently, the fuzzy RD 

estimates are robust for the exclusion of some observations around the cut-off point for all health 

outcome variables at a 1% significance level. 

1.8.4 Sensitivity to Bandwidth Choice 

 

This falsification test is related to the sensitivity of the RD estimates to bandwidth choice. 

Intuitively, the Donut hole test assesses the sensitivity of the RD estimates to removing units 

from the center of the neighborhood of the cut-off point, while the bandwidth sensitivity test 

assesses the sensitivity of the results to removing or adding units to the endpoints, window, of 

the neighborhood. To implement this approach empirically, I reported the RD estimates at 

different bandwidths around the optimal-MSE bandwidth for all outcome variables in the study. 

When reviewing the RD estimates for all outcome variables, the results were broadly consistent 
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with the empirical findings obtained with either the MSE-optimal bandwidth selector and CV-

optimal bandwidth selector. 

Table 1.40: Fuzzy RD sensitivity test to observations near cutoff: The Donut-Hole Approach 

Donut-Hole 

Radius  

MSE-

Optimal  

bandwidth 

RD  

estimates 

Robust inference 
Excluded 

Observation 

P-value [95% Conf. intervals] Left Right 

Panel A: Cognitive Functioning 

0.0 4.8 -0.86065 0.000 [-1.12260, -0.598694] 0 0 

0.1 3.5 -0.81731 0.000 [-1.16172, - 0.47289] 117 215 

0.2 5.2 -0.74733 0.000 [-1.02606, -0.46861] 145 221 

0.3 5 -0.83853 0.000 [-1.13215, -0.54492] 140 221 

0.4 3.5 -0.87952 0.000 [-1.30431, -0.45473] 117 229 

0.5 3.5 -0.87952 0.000 [-1.30431, -0.45473] 358 399 

Panel B: Mental Health 

0.0 3.9 0.41420 0.000 [0.26139, 0.567016] 0 0 

0.1 3.8 0.36392 0.000 [0.201555, 0.526289] 117 215 

0.2 3.4 0.33869 0.001 [0.146818, 0.530553] 145 221 

0.3 3.1 0.27865 0.007 [0.049373, 0.507931] 140 221 

0.4 3.1 0.33535 0.007 [0.089778, 0.580916] 117 229 

0.5 3.3 0.39211 0.004 [0.127380, 0.656836] 358 399 

Panel C: Self-reported General Health 

0.0 3.2 -0.13172 0.000 [-0.168785, -0.09466] 0 0 

0.1 3.1 -0.12299 0.000 [-0.163779, -0.08220] 117 215 

0.2 3 -0.13106 0.000 [-0.176604, -0.08552] 145 221 

0.3 2.9 -0.12828 0.000 [-0.179902, -0.07667] 140 221 

0.4 3 -0.12414 0.000 [-0.178681, -0.06961] 117 229 

0.5 3.1 -0.12707 0.000 [-0.189147, -0.06499] 358 399 

Notes: (i) All RD estimates are computed using a triangular kernel and MSE-optimal bandwidth selector, (ii) first column report 

the radius around the cutoff point. 
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Figure 1.22: RD Estimation for the Donut-Hole Approach 
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1.8.5 Treatment Effect Derivative (TED) and Complier Probability Derivative (CPD) Test 

 

Recent work on RD design has developed a new sophisticated test of the Stability of the 

Fuzzy Regression Discontinuity Model. Although the treatment effect estimated from RDD has 

been widely documented to have high internal validity (Wing and Bello- Gomez, 2018), there are 

two issues in RD design that can affect the external validity of the estimates, which require more 

assessment. The first issue of the external validity of RD arises from estimating the treatment 

effect from the subpopulation of individuals close to the cut-off point. Since RDD estimates the 

treatment effect at the cut-off point, the LATE at the cut-off may be different from the treatment 

effect at other values of the running variables, which means that the estimated RD treatment 

effect may not be precisely estimated to reflect the overall effect of the treatment. The second 

problem of the external validity of the fuzzy RD arises from estimating treatment exposure 

among a subpopulation of compliers. 

Therefore, the logical question that should be addressed is: if the cutoff value is given by 

𝑐,  would individuals with 𝑥 ≠ 𝑐 but have 𝑥 near 𝑐 experience a similar treatment effect to those 

having 𝑥 = 𝑐 ? I perform two tests to see what will happen to the estimated RD treatment effect 

when the value of the running value is a little bit further away from the cut-off point, i.e., 
𝜕𝜏

𝜕𝑥
. The 

theoretical issue when empirically trying to estimate the value of 
𝜕𝜏

𝜕𝑥
  is that the conditional mean 

function, lim
𝑥↓𝑥̅

𝐸[𝑌(1) | 𝑋𝑖 = 𝑥] can be empirically estimated but its counterfactual 

segment, lim
𝑥↑𝑥̅

𝐸[𝑌(1) | 𝑋𝑖 = 𝑥], is always missing. By the same logic, the conditional mean 

function, lim
𝑥↑𝑥̅

𝐸[𝑌(0) | 𝑋𝑖 = 𝑥], can be estimated but its counterfactual 

segment, lim
𝑥↓𝑥̅

𝐸[𝑌(0) | 𝑋𝑖 = 𝑥], is always missing.  Therefore, the difference between 

𝑙𝑖𝑚𝐸[𝑌(1) | 𝑋𝑖 = 𝑥]  and lim𝐸[𝑌(0) | 𝑋𝑖 = 𝑥] is unknown at any point away from the cut-off 
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point,  𝑐 , because one of the counterfactual segments of the conditional mean functions is 

always missing. Fortunately, Dong and Lewbel (2015) showed that derivatives of the treatment 

effect of the RD model with respect to the running variable,  
𝜕𝜏

𝜕𝑥
, at the cut-off point, known as 

the Treatment Effect Derivative (TED), can be non-parametrically identified and can be used to 

test the external validity of the RD estimates and hence extrapolating the estimated LATE for 

subpopulation away from the cut-off point. 

The main intuition behind the TED test is to see how the treatment effect would change 

in the neighborhood of the cut-off point. That is, if the TED is significantly equal to zero, then 

the treatment effect is locally constant, and the RD estimates have strong external validity (Dong 

and Lewbel, 2015). On the other hand, if 𝜏′(𝑐) =  
𝜕𝜏(𝑐)

𝜕𝑥
 is large and significantly different from 

zero, then a slight change in the running variable would be associated with a significant change 

in the treatment effect and the external validity of the RD estimates should be addressed. 

Following Dong and Lewbel (2015) and Giovanni et al., (2016), recall 𝜏(𝑐) to be the RD 

local average treatment effect (LATE) at 𝑥 = 𝑐 among compliers, i.e., the average difference in 

health outcomes across individuals who randomly switched from working to retirement at the 

official age. 

Definition 1: let 𝑔(𝑥) = 𝔼[𝑌|𝑋 = 𝑥]. for small 𝜀 > 0, define right and left limits of the 

conditional mean function 𝑔(∙), as 𝑔+(𝑥) = lim
𝜀→0

𝑔(𝑥 +  𝜀) and  𝑔−(𝑥) = lim
𝜀→0

𝑔(𝑥 −  𝜀), 

respectively. 

Definition 2: let 𝑓 (𝑥) =  𝐸 [ 𝑇|𝑋 = 𝑥 ] is the probability of treatment (retired) given 𝑋 = 𝑥. By 

analogy to 1, for small 𝜀 > 0 define right and left limits of the conditional probability function of 

being treated 𝑝(∙) as 𝑓+(𝑥) =  lim
𝜀→0

𝑓(𝑥 +  𝜀) and 𝑓−(𝑥) =  lim
𝜀→0

𝑓(𝑥 −  𝜀), respectively. 
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According to TED identification, the derivative 𝜏′(𝑥) =  
𝜕𝜏(𝑥)

𝜕𝑥
  can be empirically estimated 

given one-sided derivatives. Holding the threshold fixed at 𝑥 = 𝑐, for small 𝜀 > 0, define the 

right and left derivatives of functions 𝑔(𝑥) and  𝑓 (𝑥)  at point 𝑥 as 

𝑔+
′ (𝑥) =  lim

𝜀→0

𝑔(𝑥 + 𝜀) − 𝑔(𝑥)

𝜀
     𝑎𝑛𝑑 𝑔−

′ (𝑥) =  lim
𝜀→0

𝑔(𝑥) − 𝑔(𝑥 − 𝜀)

𝜀
  

𝑓+
′(𝑥) =  lim

𝜀→0

𝑓(𝑥 + 𝜀) − 𝑓(𝑥)

𝜀
     𝑎𝑛𝑑 𝑓−

′(𝑥) =  lim
𝜀→0

𝑓(𝑥) − 𝑓(𝑥 − 𝜀)

𝜀
  

 

Local polynomial regressions can be used to estimate both 𝑔(∙) and 𝑓(∙) and their derivatives 

separately on each side of the threshold. 

Let  𝑞 (𝑥) = 𝐸[𝑌(1)|𝑋 = 𝑥] − 𝐸[𝑌(0)|𝑋 = 𝑥],  then 𝑞(𝑐) =  𝑔+(𝑐) − 𝑔−(𝑐). Analogously, let 

𝑝(𝑥) denote the conditional probability that someone is a complier conditional on 𝑥 =  𝑐.  

𝑝(𝑐) =  𝑓+(𝑐) − 𝑓−(𝑐). Recall the standard fuzzy RD estimator, 𝜏 at point 𝑥 = 𝑐 is identified by 

𝜏 (𝑐) =  
𝑔+(𝑐) − 𝑔−(𝑐)

𝑓+(𝑐) − 𝑓−(𝑐)
=  
𝑞(𝑐)

𝑝(𝑐)
    (21) 

if the previous assumptions of (HTV, 2001) are held, then the fuzzy treatment effect,  𝜏(𝑐),  is 

identified by equation 21 and fuzzy RD TED, 𝜏′(𝑐),  is identified by 

𝜏′(𝑐) =  
𝑔′
+
(𝑐) − 𝑔′

−
(𝑐) − [𝑓+

′(𝑐) − 𝑓−
′(𝑐)] ∙ 𝜏(𝑐)

𝑓+(𝑐) − 𝑓−(𝑐)
    (22) 

𝜏′(𝑐) =  
𝑔′
+
(𝑐) − 𝑔′

−
(𝑐)

𝑝(𝑐)
− 
𝑝′(𝑐) ∙  𝜏(𝑐)

𝑝(𝑐)
    (23)15 

 

This equation implies that if the compliance rate is locally constant, 𝑝′(𝑐) = 0, the fuzzy RD 

TED will equal the first term only. However, in fuzzy RD, the compliance rate 𝑝(𝑐) is not 

 
15 Given that 𝜏(𝑐) =

𝑞(𝑐)

𝑝(𝑐)
, then 𝜏′(𝑥) =  

𝜕𝜏(𝑥)

𝜕𝑥
= 

𝑞′(𝑥)𝑝(𝑥)−𝑞(𝑥)𝑝′(𝑥)

𝑝(𝑥)2
 or 𝜏′(𝑥) =   

𝑞′(𝑥)

𝑝(𝑥)
−
𝑞(𝑥) 𝑝′(𝑥)

𝑝(𝑥)2
=

𝑞′(𝑥)

𝑝(𝑥)
−
𝑝′(𝑥) 𝜏(𝑥)

𝑝(𝑥)
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constant and hence the second term in equation (23) will be proportional to 𝑝′(𝑐) and account for 

the effect of a change in the fraction of the population who are compliers at 𝑥 = 𝑐 when we 

move away from the threshold point (c). 

The equation also shows that fuzzy RD has two potential sources of instability. First, 

fuzzy RD treatment effect can be unstable because 𝑞′(𝑐) could be far from zero which means 

that the treatment effect for the average compliers will significantly change when the running 

variable (𝑥) moves a little bit away from the threshold (𝑐). The second source of fuzzy 

instability may arise because  𝑝′(𝑐)  is far from zero, which means that the population of 

compliers will change dramatically as the running variable 𝑥 moves away from the threshold (c). 

Tables 1.41 and 1.42 report both the CPD and TED estimates. I compare estimates from 

CPD and TED based on the common two bandwidth selectors: the CCT (Calonico, Cattaneo, and 

Titiunik, 2014), and the CV bandwidth selector (Ludwig and Miller, 2007). Also, the Kernel 

triangular function is used to estimate CPD and TED under the two bandwidth selectors where it 

is widely documented to be optimal for estimating the conditional mean function at a boundary 

point (Fan and Gijbels, 1996). The local quadratic regression is estimated separately for the 

reduced form outcome and treatment conditional mean functions and then constructed TED from 

the estimated intercepts and slopes in the four conditional mean functions using 200 simulations 

to bootstrap the standard errors. 
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Table 1.41: TED and CPD of Fuzzy RD Treatment Effects of Retirement on Health 

  CCT  CV 

  All sample Females Males  All Sample Females Males 

Panel A: Cognitive functioning 

Cognitive 

functioning 

CPD -0.0084 -0.0185 0.0045  -0.0125 -0.0199 -0.0009 

 (0.0093) (0.0124) (0.0141)  (0.0085) (0.0118) (0.0128) 

TED -0.00883 -0.00226 -0.00449  -0.00692 -0.00945 -0.00486 

 (0.0232) (0.085) (0.0212)  (0.0241) (0.1696) (0.0205) 

Panel B: Mental health 

Mental 

Health 

CPD -0.0093 -0.0165 0.0004  -0.0055 -0.0147 0.0061 

 (0.0088) (0.0117) (0.0134)  (0.0108) (0.0130) (0.0164) 

TED 0.0069 -0.0433 0.0114  0.0198 -0.0508 0.0183 

 (0.0227) (0.2257) (0.0171)  (0.0309) (0.3433) (0.0231) 

Panel C: Self-reported health 

Self-

Reported 

health 

CPD -0.0078 -0.0156 0.0026  -0.0035 0.0239 -0.0045 

 (0.0093) (0.0123) (0.0141)  (0.0122) (0.0291) (0.0397) 

TED 0.0322 0.0600 -0.0161  0.0004 -0.0146 -0.0115 

 
(0.0945) (0.2078) (0.0458) 

 
(0.1510) (0.0822) (0.1409) 

Note: All estimates are based on local quadratic regressions; CCT refers to the optimal bandwidth for local polynomial regression 

discontinuity (RD) point estimators and inference procedures developed in proposed by Calonico, Cattaneo, and Titiunik (2014) 

and Calonico et al. (2016); CV refers to the cross-validation optimal bandwidth proposed by Ludwig and Miller (2007). CPD and 

TED estimates are based on the triangular kernel, and Bootstrapped Standard errors based on 200 simulations are in 

parentheses*,**,*** indicate significance level at 10%, 5%, 1% respectively. 
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Table 1.42: TED and CPD of Fuzzy RD Treatment Effects of Retirement on Health-related behavior 

  CCT  CV 

  All sample Females Males  All sample  Females Males 

Panel A: Drinking participation 

Drinking 

participation 

CPD -0.0091 -0.0164 0.0006  -0.0034 -0.0178 -0.0009 

 (0.0088) (0.0117) (0.0134)  (0.0122) (0.0111) (0.0128) 

TED -0.0603 0.0141 0.0112  -0.1018 0.0098 -0.0049 

 (0.6104) (0.1072) (0.6956)  (0.9752) (0.0318) (0.0550) 

Panel B: Drinking intensity 

Drinking  

intensity 

CPD -0.0093 -0.0165 0.0004  -0.0055 -0.0147 0.0061 

 (0.0088) (0.0117) (0.0134)  (0.0108) (0.0130) (0.0164) 

TED -0.0221 0.0094 -0.0463  -0.0363 0.0095 -0.0464 

 (0.0427) (0.0240) (0.0517)  (0.0560) (0.0283) (0.0634) 

Smoking participation 

Smoking  

intensity 

CPD -0.0202*** -0.0149 0.0019  0.0120 0.0112 -0.0058 

 (0.0070) (0.0124) (0.0141)  (0.0219) (0.0248) (0.0331) 

TED -0.0622 0.0047 -0.5050  0.0255 -0.0807 -0.0075 

 (0.0680) (0.0322) (0.5727)  (0.1800) (0.0893) (0.0606) 

Note: All estimates are based on local quadratic regressions; CCT refers to the optimal bandwidth for local 

polynomial regression discontinuity (RD) point estimators and inference procedures developed in proposed by 

Calonico, Cattaneo, and Titiunik (2014) and Calonico et al. (2016); CV refers to the cross-validation optimal 

bandwidth proposed by Ludwig and Miller (2007). CPD and TED estimates are based on the triangular kernel, and 

Bootstrapped Standard errors based on 200 simulations are in parentheses. *,**,*** indicate significance level at 

10%, 5%, 1% respectively. 

 

Panel A in Table 1.41 reports the CPD and TED estimates for the cognitive functioning 

of retirees. CPD ranges from -0.0009 to -0.019, which are small and statistically insignificant. 

The estimates show that moving away from the threshold point by one point, the percent of 

individuals who are compliers will decline by somewhere between 0.09% and 2%. In addition, 

TED estimates are small and not statistically significant.  

Put together, these results indicate that the set of compliers is stable and the TED is 

numerically small and statistically insignificant. The near-zero TED effect suggests that the 

effect of retirement on cognitive functioning would likely remain valid at lower or higher values 

of the running variable. In other words, the TED estimates suggest that marginally raising or 
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lowering the running variable would not result in a significant change in the estimated effects of 

retirement on cognitive function. To check how the CPD and TED are sensitive to the optimal 

bandwidth choice selectors, I estimated the CPD and TED using CCT and CV and the results 

show that CPD and TED at varying bandwidth selector are almost all near zero, i.e., they are 

statistically insignificant.  

Similarly, the estimates of CPD and TED for mental health and self-reported health show 

that they are small and statistically insignificant. The results of CPD and TED for drinking 

participation and intensity are insignificant. However, the CPD for smoking participation is 

significant and equals -0.020. This estimate suggests that moving away from the cut-off point by 

one unit decreases the percent of individuals who are compliers by 2 percentage points. In 

contrast, the TED estimate is statistically insignificant. Together, the results indicate that 

although the set of compliers is not stable for RD estimation of smoking participation, the 

estimated RD retirement effect on smoking participation is stable.    

Finally, having a relatively small and insignificant TED in magnitude, or TED equal zero, 

increases the power of the external validity of the RD LATE estimate, since small changes in the 

running variable are associated with no significant change in the average treatment effect of 

retirement on health, as measured by cognitive functioning, mental health, and self-reported 

health, respectively, and health-related behavior as measured by drinking and smoking. 
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1.9. Parametric Estimation of the Fuzzy Regression Discontinuity Design 

(FRD) 

 
The non-parametric procedure tries to find the optimal data range around the cut-off point 

to estimate the local polynomial function that generates consistent estimates, while the 

parametric approach tries to pick up the right information from observations that are far away 

from the cut-off point to estimate the average outcome for observations near the cut-off (Jacob 

and Zhu, 2012). That is, non-parametric methods limit the analysis to a subpopulation of 

observations that are close to the cut-off and reduce the bias in the estimation. Therefore, the 

parametric estimation can be introduced in this part as a sensitivity check for using more 

information from the observation far away from the neighborhood of the cut-off point. 

The validity of the IV in the RD setting depends heavily on whether there is a significant 

jump in the chance of retirement at age 65. Consequently, the validity of the instrument variable 

will be verified by checking whether there is a discontinuity in the treatment variable at the cut-

off in the graphs and first-stage F statistics in our IV/2SLS regressions. Figure 1.1 uses the RD 

non-parametric local polynomial estimator for the age-retirement profile with 95% confidence 

intervals for the whole sample. The graph confirms a positive and significant jump in the 

retirement decision at the official age of eligibility for the social security fund. The magnitude of 

the discontinuity is noticeable at ages 65 and 62, indicating individuals are far more likely to 

retire when they reach the ages of 62 and 65. However, whether the jump is due to a social norm 

in the economy or due to financial incentives by the eligibility to access a pension fund will not 

affect the analysis. To test the validity of the instrument more formally, the F-statistics at the first 

stage of the 2SLS analysis is investigated and the results show that the instrument is not weak as 

all the first stage F statistics are bigger than 10 for the full sample (Stock and Yogo, 2002).  
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Table 1.43: Fuzzy parametric RD estimates – Health outcomes at cutoff age 65 (All sample) 

 

Cognitive Functioning  

Total word recall 
 

Mental health 

 CESD scale 
 

General Health  

Self-reported health 

Retired -0.5090*** (0.0288) 
 

0.5661*** (0.0164) 
 

-0.1956*** (0.0036) 

(Age-65) -0.0435*** (0.0110) 
 

-0.0775*** (0.0063) 
 

0.0153*** (0.0014) 

(Age-65)^sq -0.0024*** (0.0008) 
 

-0.0030*** (0.0004) 
 

0.0008*** (0.0001) 

T*(age-65) -0.0632*** (0.0235) 
 

0.0369*** (0.0134) 
 

-0.0074** (0.0030) 

T*(age-65)^sq -0.0004 (0.0014) 
 

0.0051*** (0.0008) 
 

-0.0014*** (0.0002) 

Female 1.3559*** (0.0219) 
 

0.1638*** (0.0125) 
 

0.0212*** (0.0027) 

Marital Status (reference single) 
      

Married 0.3729*** (0.0591) 
 

-0.3026*** (0.0331) 
 

0.0303*** (0.0073) 

Others (S,D,W) 0.2562*** (0.0547) 
 

0.1225*** (0.0306) 
 

0.0045 (0.0067) 

Races (reference White) 
       

Black -1.2200*** (0.0300) 
 

0.0953*** (0.0169) 
 

-0.0552*** (0.0037) 

Others -0.9818*** (0.0482) 
 

0.2738*** (0.0267) 
 

-0.0825*** (0.0059) 

Education (reference less than high school) 
      

High school 1.4479*** (0.0272) 
 

-0.5450*** (0.0156) 
 

0.1725*** (0.0034) 

University  2.5537*** (0.0335) 
 

-0.8448*** (0.0191) 
 

0.2474*** (0.0042) 

Middle income 0.2756*** (0.0367) 
 

-0.2263*** (0.0208) 
 

0.0507*** (0.0046) 

High income 0.4921*** (0.0600) 
 

-0.2267*** (0.0332) 
 

0.0434*** (0.0073) 

Spouse retired -0.0496* (0.0269) 
 

-0.0405*** (0.0154) 
 

0.0056* (0.0034) 

Census (Northwest reference) 
      

Midwest -0.1241*** (0.0338) 
 

-0.0546*** (0.0194) 
 

0.0091** (0.0043) 

South -0.1545*** (0.0308) 
 

0.0814*** (0.0176) 
 

-0.0239*** (0.0039) 

West 0.0099 (0.0358) 
 

-0.0116 (0.0204) 
 

-0.0097** (0.0045) 

Others 0.2457 (0.3349) 
 

0.0868 (0.1844) 
 

-0.0661 (0.0406) 

US birth 0.1950*** (0.0342) 
 

-0.2086*** (0.0193) 
 

0.0554*** (0.0042) 

Children no -0.0129** (0.0054) 
 

0.0157*** (0.0031) 
 

-0.0049*** (0.0007) 

Constant 8.7655*** (0.0705) 
 

1.5846*** (0.0399) 
   

Notes: (i) standard errors are in parentheses. (ii) *,**,*** indicate significance level at 10%, 5%, 1% respectively. 
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Table 1.43 reports the estimated treatment effect of retirement for the three health 

outcomes using the Fuzzy RD parametric analysis and the cross-validation optimal bandwidth. 

After controlling for other covariates and confounders, the table shows that retirement has a 

strong negative impact on health outcomes.  

The first column reports the RD estimates of the impact of retirement on the cognitive 

function. The results suggest that retirement has a negative effect on cognitive functioning by an 

approximately 0.5 point decrease in total word recall, which is equivalent to almost 5 percentage 

points decrease in cognitive function of retirees relative to non-retirees. The impact of other 

covariates is consistent with prior studies.  Black and other races have significantly lower 

cognitive functioning scores compared to whites.  Females experience an approximately 1.3 

point increase in their cognitive scale compared to males, i.e., females, on average, have higher 

cognitive functioning than males in the HRS dataset. The socioeconomic status has a significant 

effect on cognitive functioning. Individuals who have at least a high school degree or a 

university degree or above have 1.4 and 2.5 points higher cognitive score than the cognitive 

score of individuals with less than a high school degree, which supports the causal relationship 

between cognition and education. Income level also has a significant impact on cognitive 

functioning. The cognitive scores of individuals in the middle- and high-income groups are 

almost 0.4 and 0.7 points higher, respectively than individuals in the low-income group.  

The second column in table 1.43 shows that retirement is associated with a 0.56 point 

increase in the CESD depression scale, i.e., retirement has a negative impact on retirees’ mental 

health. The results also show that females’ CESD depression scale is 0.16 points higher than that 

of males. That is, females are more likely to experience negative mental health than males.  

Socioeconomic status has a significant effect on the depression scale. Married individuals’ 
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CESD depression scale is 0.3 points less than non-married individuals and this result is in line 

with findings from empirical research in the happiness literature that shows that married 

individuals are happier than unmarried individuals (Helliwell, 2003; Blanchflower and Oswald, 

2008). The depression scale of individuals with at least high school or university education is 

almost  0.5 to 0.8 points less, respectively, than that of individuals who have less than a high 

school degree. Individuals in the medium and high-income groups score about 0.2 points lower 

in the depression scale than those in the low-income group. Also, the results show that the 

partner’s retirement status has a small significant effect on the depression score of individuals. 

Persons whose partners are retired experience an approximately 0.04 point lower score in their 

CESD depression scale relative to persons whose partners are still in the labor force.  

The third column in table 1.43 shows that retirees are 19 percentage points less likely to 

report excellent, very good, and good health than non-retirees. Controlling for demographic 

characteristics, the results show that married individuals are 3 percentage points more likely to 

report good health than unmarried individuals. Females are 2 percentage points more likely to be 

in good health relative to males. Blacks and other races are 5 and 8 percentage points less likely 

to be in good health relative to whites. Controlling for the socioeconomic status of individuals, 

we can see that individuals with high educational attainment have good health status. For 

instance, individuals with at least high school and university and postgraduate degrees are 17 and 

24 percentage points more likely to be in good health relative to individuals with less than high 

school. This result is consistent with the empirical literature that shows that well-educated 

individuals invest more in their health (Grossman and Kaestner, 1997). In addition, individuals in 

middle and high-income groups are, respectively, 5 and 4 percentage points more likely to report 

higher levels of health satisfaction relative to individuals in low-income groups. Ettner (1996) 
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argues that income is one of the channels through which retirement can impact health, where 

health is a normal good that affects health. The results show that the partner’s retirement status 

has a small positive effect on an individual’s own physical health status and this is consistent 

with existing literature that provides evidence on intra-household retirement externalities.  

 

Table 1.44: Fuzzy parametric RD estimates – Health outcomes at official cutoff age 65 

(females only) 

 

Cognitive Functioning 

Total word recall 
 

Mental health     CESD 

scale 
 

General Health Self 

reported health 

Retired -0.5359*** (0.0389)  0.6050*** (0.0231)  -0.2017*** (0.0048) 

Age-65 -0.0247* (0.0148)  -0.0789*** (0.0088)  0.0175*** (0.0018) 

(Age-65)^sq -0.0016 (0.0010)  -0.0028*** (0.0006)  0.0009*** (0.0001) 

T*(age-65) -0.0890*** (0.0319)  0.0341* (0.0190)  -0.0082** (0.0039) 

T*(age-65)^sq -0.0014 (0.0020)  0.0055*** (0.0012)  -0.0016*** (0.0002) 

Marital Status (reference single)       
Married 0.2411*** (0.0821)  -0.2897*** (0.0477)  0.0196** (0.0099) 

Others (S,D,W) 0.2129*** (0.0722)  0.0928** (0.0420)  -0.0021 (0.0087) 

Races (reference White)         
Black -1.2689*** (0.0391)  0.0797*** (0.0230)  -0.0620*** (0.0048) 

Others -1.1395*** (0.0673)  0.3264*** (0.0387)  -0.1009*** (0.0080) 

Education (reference less than high school)   
High school 1.4472*** (0.0372)  -0.6289*** (0.0222)  0.1956*** (0.0046) 

University 2.5010*** (0.0475)  -0.9689*** (0.0283)  0.2723*** (0.0059) 

Middle income 0.1398** (0.0559)  -0.2386*** (0.0327)  0.0446*** (0.0068) 

High income 0.0984 (0.1070)  -0.2364*** (0.0610)  0.0328*** (0.0126) 

Spouse retired -0.1208*** (0.0390)  0.0397* (0.0232)  0.0055 (0.0048) 

Census (Northwest reference)     
Midwest 0.0019 (0.0456)  -0.0815*** (0.0273)  0.0140** (0.0056) 

South -0.0491 (0.0415)  0.0382 (0.0247)  -0.0145*** (0.0051) 

West 0.1219** (0.0487)  -0.0660** (0.0289)  -0.0036 (0.0060) 

Others -0.3822 (0.5057)  0.0765 (0.2819)  -0.1263** (0.0583) 

US birth 0.3063*** (0.0513)  -0.2787*** (0.0300)  0.0720*** (0.0062) 

Children no -0.0100 (0.0073)  0.0115*** (0.0044)  -0.0035*** (0.0009) 

Constant 10.2017*** (0.0946)  1.8605*** (0.0557)    
Obs 52,083   52,083   52,083  
Notes: (i) standard errors are in parentheses. (ii) *,**,*** indicate significance level at 10%, 5%, 1% respectively. 
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Table 1.45: Fuzzy parametric RD estimates – Health outcomes at cutoff age 65 (males only) 

 

Cognitive Functioning 

 Total word recall  

Mental health      

CESD scale  

General Health  

Self-reported health 

retired -0.4586*** (0.0429) 
 

0.5074*** (0.0230) 
 

-0.1885*** (0.0055) 

Age-65 -0.0642*** (0.0166) 
 

-0.0765*** (0.0089) 
 

0.0132*** (0.0021) 

(Age-65)^sq -0.0029** (0.0012) 
 

-0.0031*** (0.0007) 
 

0.0007*** (0.0002) 

T*(age-65) -0.0352 (0.0348) 
 

0.0435** (0.0187) 
 

-0.0071 (0.0045) 

T*(age-65)^sq 0.0006 (0.0021) 
 

0.0044*** (0.0011) 
 

-0.0011*** (0.0003) 

Marital Status (reference single) 

Married 0.4703*** (0.0861) 
 

-0.2940*** (0.0453) 
 

0.0387*** (0.0109) 

Others (S,D,W) 0.2828*** (0.0846) 
 

0.1703*** (0.0445) 
 

0.0197* (0.0107) 

Races (reference White) 
       

Black -1.1343*** (0.0471) 
 

0.1195*** (0.0249) 
 

-0.0432*** (0.0060) 

Others -0.8050*** (0.0689) 
 

0.2179*** (0.0358) 
 

-0.0625*** (0.0086) 

Education (reference less than high school) 

High school 1.4349*** (0.0398) 
 

-0.4467*** (0.0214) 
 

0.1429*** (0.0052) 

University 2.6173*** (0.0471) 
 

-0.7062*** (0.0253) 
 

0.2212*** (0.0061) 

Middle income 0.3972*** (0.0489) 
 

-0.2351*** (0.0262) 
 

0.0584*** (0.0063) 

High income 0.6741*** (0.0725) 
 

-0.2632*** (0.0379) 
 

0.0544*** (0.0091) 

Spouse retired 0.0109 (0.0371) 
 

-0.1092*** (0.0199) 
 

0.0039 (0.0048) 

Census (Northwest reference) 

Midwest -0.2985*** (0.0502) 
 

-0.0170 (0.0271) 
 

0.0024 (0.0065) 

South -0.2991*** (0.0461) 
 

0.1381*** (0.0248) 
 

-0.0361*** (0.0060) 

West -0.1361*** (0.0527) 
 

0.0570** (0.0282) 
 

-0.0178*** (0.0068) 

Others 0.6278 (0.4434) 
 

0.1135 (0.2346) 
 

-0.0161 (0.0565) 

US birth 0.1244*** (0.0460) 
 

-0.1582*** (0.0244) 
 

0.0391*** (0.0059) 

Children no -0.0187** (0.0079) 
 

0.0191*** (0.0042) 
 

-0.0065*** (0.0010) 

Constant 8.6911*** (0.1024) 
 

1.4532*** (0.0544) 
   

Obs 36,727    
 

40,592 
  

40,592 
 

Notes: (i) standard errors are in parentheses. (ii) *,**,*** indicate significance level at 10%, 5%, 1% respectively.  
 

To check if there is gender heterogeneity in the effect of retirement on health, the fuzzy 

parametric RD regression is estimated for each gender separately. Tables 1.44 and 1.45 indicate 

that there is a small difference in the cognitive score between males and females. Retired females 

and retired males have an almost 0.53 and 0.45 point lower cognitive score, respectively, relative 
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to non-retired females and non-retired males.  The results show that retired females have a higher 

increase in the depression score compared to retired males. Retired females experience a 0.6 

point increase in the CESD depression score relative to non-retired females, while retired males 

experience a 0.5 point increase in the depression scale relative to non-retired males. Similarly, 

the RD results indicate a small difference between retired male and females in self-reported 

general health. Retired females are 20 percentage points less likely to report being in good health 

relative to non-retired females, while retired males are 18 percentage points less likely to report 

being in good health relative to non-retired males. 

Table 1.46 shows the results of the causal effect of retirement on health-related behavior. 

Smoking and drinking are widely known to be the causes of many chronic health problems 

(Sturm, 2002). The parametric RD results indicate that transition from working to retirement 

makes retired individuals less likely to drink but more likely to smoke. However, retirement has 

a quantitative effect on drinking intensity less than drinking participation. For instance, retired 

individuals are 3 percentage points less likely to be drinkers relative to non-retirees while they 

are almost 3 percentage point more likely to be a smoker relative to non-retirees.  

The estimation results show that retirement has a negative effect on drinking participation 

but a small negative impact on the frequency of drinking during the week for those who continue 

to drink. For instance, retired individuals are 3 percentage points less likely to drink relative to 

non-retirees and they are 0.7 percentage points less likely to have a drink more than three times 

per week, for those who continue to drink. Females are not only less likely to drink but they are 

less likely to have more than three drinks per day for those who continue to drink. For instance, 

females are 11 percentage points less likely to be a drinker after retirement relative to males and 

they are 12 percentage points less likely to have more than three drinks per day. Educational 
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attainment has a positive effect on both drink participation and frequency. Individuals who have 

university and postgraduate degrees are 11 percentage points less likely to be a drinker, and 20 

percentage points less likely to have more than three drinks per week. Therefore, educational 

attainment has a significant quantitative impact on drinking and hence health. The results also 

show that individuals with a retired partner are 0.8 percentage points less likely to be a drinker 

but this has no significant effect on their drinking habits or intensity.  The positive impact of 

retirement on health-related behavior can be interpreted as a change in lifestyle after retirement 

where release from peer effects (such as drinking with coworkers or the boss as a part of work) 

and job-related stress may decrease drinking. 

The parametric RD results indicate that retired individuals are 3 percentage points less 

likely to smoke compared to non-retirees. Controlling for demographic characteristics, we can 

see that females’ smoking participation is lower than males. For instance, females are almost 5 

percentage points less likely to be smokers relative to males. Married individuals are 12 

percentage points less likely to smoke than unmarried individuals. Controlling for socioeconomic 

status, we can see that educational attainment has a significant negative effect on smoking 

participation. Individuals who have at least high school and university and postgraduate degrees 

are 6 and 14 percentage points, respectively, less likely to be smokers relative to individuals who 

have less than a high school degree.  

Tables 1.46 and 1.47 show the results for males and females separately. The results 

indicate a small difference between retired females and retired males in drinking and smoking 

participation: retired females are 4 and 3 percentage points less likely to drinkers or smokers, 

respectively, relative to non-retired females, while retired males are 2 percentage points less 

likely to be drinkers or smokers than non-retired males. 
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Table 1.46: Fuzzy parametric RD estimates – Health behavior at cutoff 65 (All sample) 

 

Drinking 

 participation  

Drinking at least 

 3 time per week  

Smoking 

 participation 

Retired -0.0356*** (0.0043) 
 

0.0069*** (0.0026) 
 

0.0317*** (0.0033) 

Age-65 -0.0031* (0.0016) 
 

-0.0051*** (0.0010) 
 

-0.0132*** (0.0013) 

(Age-65)^sq 0.0004*** (0.0001) 
 

0.0001 (0.0001) 
 

-0.0004*** (0.0001) 

T* (age-65) 0.0050 (0.0035) 
 

0.0014 (0.0021) 
 

0.0027 (0.0027) 

T*(age-65)^sq -0.0009*** (0.0002) 
 

-0.0001 (0.0001) 
 

0.0004** (0.0002) 

Female -0.1149*** (0.0032) 
 

-0.1293*** (0.0020) 
 

-0.0511*** (0.0025) 

Marital Status (reference single) 

Married -0.0181** (0.0086) 
 

-0.0439*** (0.0052) 
 

-0.1239*** (0.0066) 

Others (S,D,W) 0.0084 (0.0080) 
 

0.0119** (0.0048) 
 

0.0256*** (0.0061) 

Races (reference White) 
      

Black -0.1040*** (0.0044) 
 

-0.0206*** (0.0027) 
 

-0.0143*** (0.0034) 

Others -0.0860*** (0.0069) 
 

0.0087** (0.0042) 
 

-0.0311*** (0.0054) 

Education (reference less than high school) 

High school 0.1189*** (0.0041) 
 

-0.0079*** (0.0025) 
 

-0.0628*** (0.0031) 

University 0.2049*** (0.0050) 
 

-0.0427*** (0.0030) 
 

-0.1416*** (0.0039) 

Middle income 0.0741*** (0.0054) 
 

0.0184*** (0.0033) 
 

-0.0447*** (0.0042) 

High income 0.0958*** (0.0087) 
 

0.0037 (0.0052) 
 

-0.0769*** (0.0067) 

Spouse retired -0.0079** (0.0040) 
 

0.0027 (0.0024) 
 

0.0091*** (0.0031) 

Census (Northwest reference) 

Midwest -0.0813*** (0.0051) 
 

-0.0171*** (0.0031) 
 

-0.0024 (0.0039) 

South -0.1387*** (0.0046) 
 

-0.0187*** (0.0028) 
 

-0.0037 (0.0035) 

West -0.0310*** (0.0053) 
 

-0.0124*** (0.0032) 
 

-0.0313*** (0.0041) 

Others -0.0179 (0.0480) 
 

-0.0212 (0.0291) 
 

0.0122 (0.0369) 

US birth 0.0245*** (0.0050) 
 

0.0130*** (0.0030) 
 

0.0423*** (0.0039) 

Children no -0.0050*** (0.0008) 
 

0.0002 (0.0005) 
 

0.0022*** (0.0006) 

Observation 92,651 
  

92,675 
  

92,095 
 

Notes: (i) standard errors are in parentheses. (ii) *,**,*** indicate significance level at 10%, 5%, 1% 

respectively.  
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Table 1.47: Fuzzy parametric RD estimates – Health behavior at cutoff 65 (Females only) 

 

Drinking  

participation 
 

Drinking at least 

 3 time per week 
 

Smoking  

participation 

Retired -0.0429*** (0.0057) 
 

-0.0028 (0.0025) 
 

0.0362*** (0.0043) 

Age-65 -0.0033 (0.0022) 
 

-0.0026*** (0.0009) 
 

-0.0151*** (0.0016) 

(Age-65)^sq 0.0003** (0.0002) 
 

0.0001 (0.0001) 
 

-0.0005*** (0.0001) 

T*(age-65) 0.0055 (0.0047) 
 

0.0001 (0.0020) 
 

0.0075** (0.0035) 

T*(age-65)^sq -0.0009*** (0.0003) 
 

0.0000 (0.0001) 
 

0.0004 (0.0002) 

Marital Status (reference single) 

Married -0.0750*** (0.0118) 
 

-0.0461*** (0.0051) 
 

-0.1368*** (0.0089) 

Others (S,D,W) -0.0195* (0.0104) 
 

-0.0028 (0.0045) 
 

0.0184** (0.0078) 

Races (reference White) 
       

Black -0.1238*** (0.0057) 
 

-0.0104*** (0.0024) 
 

-0.0341*** (0.0043) 

Others -0.1274*** (0.0096) 
 

-0.0052 (0.0041) 
 

-0.0456*** (0.0072) 

Education (reference less than high school) 

High school 0.1538*** (0.0055) 
 

-0.0039 (0.0024) 
 

-0.0624*** (0.0042) 

University 0.2454*** (0.0070) 
 

-0.0147*** (0.0030) 
 

-0.1421*** (0.0053) 

Middle income 0.0814*** (0.0081) 
 

0.0099*** (0.0035) 
 

-0.0380*** (0.0061) 

High income 0.1259*** (0.0151) 
 

0.0096 (0.0065) 
 

-0.0533*** (0.0114) 

Spouse retired -0.0112** (0.0057) 
 

0.0066*** (0.0025) 
 

0.0150*** (0.0043) 

Census (Northwest reference) 

Midwest -0.0836*** (0.0067) 
 

-0.0102*** (0.0029) 
 

-0.0045 (0.0051) 

South -0.1444*** (0.0061) 
 

-0.0121*** (0.0026) 
 

-0.0143*** (0.0046) 

West -0.0188*** (0.0071) 
 

-0.0079*** (0.0031) 
 

-0.0393*** (0.0054) 

Others -0.0132 (0.0696) 
 

-0.0209 (0.0300) 
 

-0.0959* (0.0524) 

US birth 0.0783*** (0.0074) 
 

0.0252*** (0.0032) 
 

0.0527*** (0.0056) 

Children no -0.0069*** (0.0011) 
 

-0.0003 (0.0005) 
 

-0.0007 (0.0008) 

Obs 52069.0000 
  

52083.0000 
  

51755.0000 
 

Notes: (i) standard errors are in parentheses. (ii) *,**,*** indicate significance level at 10%, 5%, 1% 

respectively. 
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Table 1.48: Fuzzy parametric RD estimates – Health behavior at cutoff 65 (males only) 

 

Drinking  

participation  

Drinking at least  

3 time per week  

Smoking  

participation 

retired -0.0247*** (0.0065) 
 

0.0131*** (0.0050) 
 

0.0249*** (0.0051) 

Age-65 -0.0022 (0.0025) 
 

-0.0060*** (0.0019) 
 

-0.0106*** (0.0020) 

(Age-65)^sq 0.0005*** (0.0002) 
 

0.0002 (0.0001) 
 

-0.0002 (0.0001) 

T*(age-65) 0.0036 (0.0052) 
 

0.0003 (0.0041) 
 

-0.0035 (0.0042) 

T*(age-65)^sq -0.0008*** (0.0003) 
 

-0.0003 (0.0003) 
 

0.0004 (0.0003) 

Marital Status (reference single) 

married 0.0375*** (0.0127) 
 

-0.0379*** (0.0099) 
 

-0.1124*** (0.0101) 

Others (S,D,W) 0.0606*** (0.0125) 
 

0.0445*** (0.0097) 
 

0.0388*** (0.0099) 

Races (reference White) 
       

Black -0.0730*** (0.0070 
 

-0.0359*** (0.0054) 
 

0.0162*** (0.0056) 

Others -0.0433*** (0.0101 
 

0.0209*** (0.0078) 
 

-0.0168** (0.0080) 

Education (reference less than high school) 

High school 0.0750*** 0.0060 
 

-0.0137*** (0.0047) 
 

-0.0639*** (0.0048) 

University 0.1599*** 0.0071 
 

-0.0703*** (0.0055) 
 

-0.1406*** (0.0057) 

Middle income 0.0764*** 0.0074 
 

0.0197*** (0.0057) 
 

-0.0515*** (0.0058) 

High income 0.0994*** 0.0107 
 

0.0028 (0.0083) 
 

-0.0885*** (0.0085) 

Spouse retired -0.0109* 0.0056 
 

-0.0011 (0.0044) 
 

0.0042 (0.0044) 

Census (Northwest reference) 

Midwest -0.0769*** 0.0076 
 

-0.0271*** (0.0059) 
 

0.0017 (0.0060) 

South -0.1306*** 0.0070 
 

-0.0268*** (0.0054) 
 

0.0104* (0.0055) 

West -0.0454*** 0.0079 
 

-0.0193*** (0.0062) 
 

-0.0214*** (0.0063) 

Others -0.0336 0.0659 
 

-0.0119 (0.0513) 
 

0.1100** (0.0522) 

US birth -0.0272*** 0.0069 
 

-0.0015 (0.0053) 
 

0.0317*** (0.0054) 

Children no -0.0026** 0.0012 
 

0.0013 (0.0009) 
 

0.0056*** (0.0009) 

Obs 40,582 
  

40,592 
  

40,340 
 

Notes: (i) standard errors are in parentheses. (ii) *,**,*** indicate significance level at 10%, 5%, 1% respectively.  
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1.10. Conclusion and Discussion 

 

This paper estimates the causal effect of retirement on health status and health-related 

behavior using ten waves (1996-2014) of the U.S. Health and Retirement Study (HRS) survey. 

Non-parametric and parametric Fuzzy Regression Discontinuity Design (RDD) techniques are 

applied to address the potential reverse causality from health to retirement (endogeneity issue) by 

exploiting the exogenous variation in retirement decisions induced by U.S. pension eligibility 

ages. Using non-parametric and parametric methods is a useful way to argue that the estimation 

results do not rely on the chosen strategy. The retirement-age distribution in HRS dataset shows 

that there are two discontinuities in the retirement decision of individuals at age 62 and 65, 

where the former is the earliest age of retirement to receive partial benefits and the latter is the 

official retirement age (full claim for pension benefits) in the U.S. However, the regression 

discontinuity estimates and graphical investigation suggested that the discontinuity in retirement 

is significant and important at age 65, when there is an increasing probability of individuals 

retiring as they approach the cut-off point at age 65.  

In general, retirement has a significant negative impact on health status. The non-

parametric fuzzy RD results show that the significant jump in retirement probability is associated 

with a negative and highly significant jump in the reported total word recall test score. Using the 

MSE-optimal bandwidth, the non-parametric fuzzy RD estimator suggests that retired 

individuals experience a drop in their cognitive test score by about 0.8 points, which is 

equivalent to an approximately 8% decline in the cognitive functioning score of retired 

individuals. Retirement has a significant negative impact on mental health, as measured by the 

CESD depression scale. The non-parametric fuzzy RD estimator suggests that retired individuals 

experience a dramatic increase in the CESD scale by about 0.42 points with a 95% confidence 



136 

 

 

interval [0.294554, 0.550295]. In addition, the RD estimation is not sensitive to changes in the 

bandwidth choice. The RD effect of retirement on mental health is stable across the three RD 

inference methods with a small difference in standard errors in the robust-bias corrected 

approach. Retirement is associated with a significant negative impact on self-reported general 

health status. Retired individuals are 13 percentage points less likely to report that they are in 

excellent, very good or good health than non-retired individuals. The effects of other covariates 

used in the study are consistent with previous literature. Moreover, the effect of retirement on the 

three health status measures, cognitive functioning, mental health, and self-reported health, are 

not sensitive to different bandwidth selections.  

The non-parametric fuzzy RD results based on the CV-optimal bandwidth selection are 

consistent with the RD results based on the MSE-optimal bandwidth selection. However, the 

MSE-optimal bandwidth length, for all estimations, is larger than the CV-optimal bandwidth. 

These findings are expected because the adjusted MSE-optimal bandwidth by CCT gives more 

weight to the variance, and the chosen bandwidth could be larger to minimize both the bias and 

the variance under the given bandwidth. 

Regarding health-related behavior, retirement has a negative effect on alcohol 

consumption participation and intensity but has a positive impact on smoking participation. The 

non-parametric fuzzy RD estimates indicate that retirees are 8.8 percentage points less likely to 

be drinkers relative to non-retirees and they are 4 percentage points less likely to consume 

alcohol more than three times per week, for those who continue drinking after retirement, 

relative to non-retirees. However, the effect of retirement on alcohol consumption intensity per 

week is small and not significant for all bandwidth choices and across the three different non-

parametric fuzzy RD estimators. Also, retired individuals are 3 percentage points more likely to 
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be smokers relative to non-retired individuals. However, the impact of retirement on smoking is 

small in magnitude and very sensitive to bandwidth choice.  

The findings suggest that there is significant heterogeneity across gender and 

socioeconomic groups. In general, the transition from working to retirement status has a larger 

negative impact on retired males than retired females. Retired males experience a 1.08 point 

decline in their cognitive scale relative to non-retired males, while retired females experience a 

0.84 decline in their cognitive score relative to non-retired females. Similarly, retired males are 

16 percentage points less likely to be in excellent, very good, or good health, while retired 

females are 9 percentage points less likely to be in good health. For socioeconomic status, 

retirement has a larger negative impact on low-educated retired individuals than high-educated 

retired individuals. Low and high educated retirees have a 1.9 point and 0.8 point decline in their 

cognitive scale compared to low and high educated non-retirees, respectively. The low-educated 

retirees experience a 0.52 point increase in the CESD depression scale relative to low-educated 

non-retirees, while the highly-educated retirees experience a 0.18 point increase in the CESD 

depression scale relative to highly-educated non-retirees. That is, highly educated retirees 

experience a lower negative impact on their mental health. Also, low-educated and high educated 

retirees are 14 and 8 percentage points less likely to report that they are in good health relative to 

low and high-educated non-retirees, respectively. Previous literature has shown that well-

educated individuals have better health outcomes because they are more efficient in their health 

investment (Grossman and Kaestner, 1997).  For health-related behavior, retirement has a higher 

negative impact on drinking participation and drinking intensity for retired males compared to 

retired females. Retired females and retired males are 5 and 12 percentage points less likely to be 

drinkers, respectively, and 1 and 5 percentage points less likely to drink more than three times 
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per week among retirees who decided to continue drinking after retirement, respectively. In 

contrast, retired females and retired males are 2 and 4 percentage points more likely to be 

smokers relative to non-retired females and non-retired males, respectively.  

To address the issue of the dramatic increase in the Medicare health insurance eligibility 

at age 65, I assessed the robustness of the RD results by performing several checks. First, I 

conducted a similar RD analysis at age 62 when there is a significant jump in retirement at age 

62, the earliest age at which Americans can receive their social security payment. The fuzzy RD 

results at cut-off age 62 are consistent with the RD results at cut-off age 65 for health and health-

related behavior. Second, I run the RD analysis on subgroups of low-income individuals who are 

in the lowest 20% of the income distribution in the dataset or individuals whose income is below 

the federal poverty line after adjustment for the number of persons in the family. This subgroup 

includes persons who may be eligible for Medicaid before age 65. The RD results from this 

subgroup are consistent with the baseline RD results. Third, I run the RD analysis on a subgroup 

of individuals who continually have insurance at least 5 years before retirement and continue to 

be insured after retirement to ascertain that retirement impacts on health are not driven by 

receiving health insurance coverage or retirees’ access to health insurance coverage. The RD 

results from this subgroup are also consistent with the RD results from the low-income subgroup 

and the baseline RD results. However, the negative impacts of retirement on health outcomes are 

slightly lower in magnitude, especially for self-reported health, for both the low-income 

subgroup and the continually insured subgroup. 

During the analysis of the effect of retirement on health in this paper, I analyzed the 

robustness of the fuzzy RD estimates by using a variety of distinct procedures. I found that the 

main RD findings are robust to different model specifications, parametric and nonparametric 
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regression strategies, i.e., the RD results do not rely on the chosen strategy. I also found that the 

RD estimates of the effect of retirement do not change across the three different weighting 

schemes: Triangular, Uniform, and Epanechnikov Kernel function, which give high weight to 

observations in the neighborhood of the cut-off but the low weight to observations farther from 

the cut-off. I checked the robustness of the fuzzy RD results under different polynomial 

procedures, linear and quadratic, and there was no significant change in the fuzzy RD results for 

parametric and non-parametric procedures. The robustness of the regression is also verified by 

estimating the effect of retirement at different bandwidths around the cut-off point that shows 

increments by 5 percentage points, 50% to 200% percent of the CV-optimal bandwidth, which 

lends substantial validity to the results. Also, the estimations showed that adding covariates to 

the main model in the non-parametric RD setting did not change the results dramatically but 

improved the efficiency of the estimated results. 

The findings of this study have important policy implications. Most importantly, since the 

study suggests that retirement has a negative impact on health outcomes and improvement in 

health-related behavior, reducing drinking participation and frequency, any policy that prolongs 

the working period, such as increases in the retirement age, will be accompanied by social 

benefits which may be greater than the estimated savings in the government’s pension burden. 

Increasing the retirement age could delay the decline in cognitive function and preserve the 

impairment due to aging and could also improve mental health through mitigating factors that 

increase depression. Moreover, since late retirement is health-preserving, as measured by self-

reported health status and the other two health outcomes, labor force participation of older 

people can reduce health care utilization and expenditure, in addition to relieving the 
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government’s financial pension burden. In contrast, delaying retirement age could increase 

drinking participation and frequency among working individuals.  

The negative impact of retirement on health outcomes and the improvement in health-

related behavior related to drinking participation and intensity in this study may be also related to 

the nature of the sample used, which dropped individuals who retired due to disability or who 

retired involuntarily. When individuals decide to retire voluntarily, they may desire to improve 

their health and enjoy their life by increasing participation in healthy behaviors, which may 

result in less smoking and drinking participation and intensity, among those who continue to be 

smokers or drinkers. Future research includes extending this analysis to investigate the impact of 

voluntary and involuntary retirement on health and health behaviors, sine involuntary retirement 

may be accompanied by more stress.   
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1.11. Appendices  

APPENDIX A: 

 

The observed outcome can be written as follows 

 

𝑌𝑖 = 𝑌𝑖(0) + 𝐷𝑖 . [𝑌𝑖(1) − 𝑌(0)] 

𝔼[𝑌|𝑥] = 𝔼[𝑌(0)|𝑥] + 𝔼[𝐷(𝑌(1) − 𝑌(0))|𝑥] 

             = 𝔼[𝑌(0)|𝑥 +  𝔼[𝐷|𝑥] ∙  𝔼[𝑌(1) − 𝑌(0)|𝑥] 

             =  𝔼[𝑌(0)|𝑥] +  𝔼[𝐷|𝑥] ∙ 𝐴𝑇𝐸(𝑥)  

lim
𝑥↓𝑥̅

𝔼[𝑌 |𝑋 = 𝑥] =  lim
𝑥↓𝑥̅
 𝔼[𝑌(0)|𝑋 = 𝑥] + lim

𝑥↓𝑥̅
 𝔼[𝐷|𝑋 = 𝑥] ∙  lim

𝑥↓𝑥̅
 𝐴𝑇𝐸(𝑥) 

lim
𝑥↑𝑥̅

𝔼[𝑌 |𝑋 = 𝑥] =  lim
𝑥↑𝑥̅
 𝔼[𝑌(0)|𝑋 = 𝑥] + lim

𝑥↑𝑥̅
 𝔼[𝐷|𝑋 = 𝑥] ∙  lim

𝑥↑𝑥̅
 𝐴𝑇𝐸(𝑥) 

 

lim
𝑥↓𝑥̅

𝔼[𝑌 |𝑋 = 𝑥] − lim
𝑥↑𝑥̅

𝔼[𝑌 |𝑋 = 𝑥] =       

                           lim
𝑥↓𝑥̅
 𝔼[𝑌(0)|𝑋 = 𝑥] − lim

𝑥↑𝑥̅
 𝔼[𝑌(0)|𝑋 = 𝑥]

⏟                          
𝑤ℎ𝑖𝑐ℎ 𝑒𝑞𝑢𝑎𝑙 𝑍𝐸𝑅𝑂 𝑢𝑛𝑑𝑒𝑟 𝑐𝑜𝑛𝑡𝑖𝑛𝑢𝑖𝑡𝑦 𝑎𝑠𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛

+  

 lim
𝑥↓𝑥̅
 𝔼[𝐷|𝑋 = 𝑥] ∙  lim

𝑥↓𝑥̅
 𝐴𝑇𝐸(𝑥) − lim

𝑥↑𝑥̅
 𝔼[𝐷|𝑋 = 𝑥] ∙  lim

𝑥↑𝑥̅
 𝐴𝑇𝐸(𝑥) 

 

lim
𝑥↓𝑥̅

𝔼[𝑌 |𝑋 = 𝑥] − lim
𝑥↑𝑥̅

𝔼[𝑌 |𝑋 = 𝑥] = 

lim
𝑥↓𝑥̅
 𝔼[𝐷|𝑋 = 𝑥] ∙  lim

𝑥↓𝑥̅
 𝐴𝑇𝐸(𝑥) − lim

𝑥↑𝑥̅
 𝔼[𝐷|𝑋 = 𝑥] ∙  lim

𝑥↑𝑥̅
 𝐴𝑇𝐸(𝑥) 

     
lim
𝑥↓𝑥̅

𝔼[𝑌 |𝑋 = 𝑥] − lim
𝑥↑𝑥̅

𝔼[𝑌 |𝑋 = 𝑥] = 

                         𝐴𝑇𝐸 [lim
𝑥↓𝑥̅
 𝔼[𝐷|𝑋 = 𝑥] − lim

𝑥↑𝑥̅
 𝔼[𝐷|𝑋 = 𝑥] 

Therefore, 

𝐿𝐴𝑇𝐸 =  
lim
𝑥↓𝑥̅

𝔼[𝑌 |𝑋 = 𝑥] − lim
𝑥↑𝑥̅

𝔼[𝑌 |𝑋 = 𝑥]

[lim
𝑥↓𝑥̅
 𝔼[𝐷|𝑋 = 𝑥] − lim

𝑥↑𝑥̅
 𝔼[𝐷|𝑋 = 𝑥]
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APPENDIX B: 

 

Table B1 

Fuzzy RD estimates - cognitive functioning at different bandwidth - All sample at cutoff age 65  

Regression discontinuity robustness of bandwidth choice 

 
RD estimates 

Bootstrap 
Std. Err. 

P-value [95% Conf. Interval] 

𝐹𝑢𝑧𝑧𝑦 𝑅𝐷 -0.8545 0.1399 0.0000 -1.1286 -0.5804 

𝐹𝑢𝑧𝑧𝑦 𝑅𝐷_50 -0.8842 0.1739 0.0000 -1.2250 -0.5434 

𝐹𝑢𝑧𝑧𝑦 𝑅𝐷_55 -0.9281 0.1999 0.0000 -1.3199 -0.5363 

𝐹𝑢𝑧𝑧𝑦 𝑅𝐷_60 -0.8187 0.1760 0.0000 -1.1637 -0.4736 

𝐹𝑢𝑧𝑧𝑦 𝑅𝐷_65 -0.9049 0.1799 0.0000 -1.2575 -0.5523 

𝐹𝑢𝑧𝑧𝑦 𝑅𝐷_70 -0.8918 0.1394 0.0000 -1.1650 -0.6185 

𝐹𝑢𝑧𝑧𝑦 𝑅𝐷_75 -0.8916 0.1663 0.0000 -1.2176 -0.5657 

𝐹𝑢𝑧𝑧𝑦 𝑅𝐷_80 -0.8786 0.1588 0.0000 -1.1898 -0.5675 

𝐹𝑢𝑧𝑧𝑦 𝑅𝐷_85 -0.8665 0.1531 0.0000 -1.1667 -0.5664 

𝐹𝑢𝑧𝑧𝑦 𝑅𝐷_90 -0.8700 0.1495 0.0000 -1.1630 -0.5770 

𝐹𝑢𝑧𝑧𝑦 𝑅𝐷_95 -0.8444 0.1431 0.0000 -1.1248 -0.5639 

𝐹𝑢𝑧𝑧𝑦 𝑅𝐷_105 -0.8101 0.1292 0.0000 -1.0634 -0.5568 

𝐹𝑢𝑧𝑧𝑦 𝑅𝐷_110 -0.8205 0.1309 0.0000 -1.0770 -0.5641 

𝐹𝑢𝑧𝑧𝑦 𝑅𝐷_115 -0.8335 0.1005 0.0000 -1.0304 -0.6365 

𝐹𝑢𝑧𝑧𝑦 𝑅𝐷_120 -0.7997 0.1243 0.0000 -1.0432 -0.5561 

𝐹𝑢𝑧𝑧𝑦 𝑅𝐷_125 -0.7900 0.1213 0.0000 -1.0277 -0.5523 

𝐹𝑢𝑧𝑧𝑦 𝑅𝐷_130 -0.8116 0.0928 0.0000 -0.9935 -0.6297 

𝐹𝑢𝑧𝑧𝑦 𝑅𝐷_135 -0.8104 0.1166 0.0000 -1.0390 -0.5818 

𝐹𝑢𝑧𝑧𝑦 𝑅𝐷_140 -0.8122 0.0887 0.0000 -0.9862 -0.6383 

𝐹𝑢𝑧𝑧𝑦 𝑅𝐷_145 -0.7851 0.1079 0.0000 -0.9965 -0.5736 

𝐹𝑢𝑧𝑧𝑦 𝑅𝐷_150 -0.7720 0.1091 0.0000 -0.9858 -0.5582 

𝐹𝑢𝑧𝑧𝑦 𝑅𝐷_155 -0.8113 0.0831 0.0000 -0.9742 -0.6483 

𝐹𝑢𝑧𝑧𝑦 𝑅𝐷_160 -0.7633 0.1050 0.0000 -0.9691 -0.5574 

𝐹𝑢𝑧𝑧𝑦 𝑅𝐷_165 -0.7769 0.1003 0.0000 -0.9735 -0.5802 

𝐹𝑢𝑧𝑧𝑦 𝑅𝐷_170 -0.7980 0.1018 0.0000 -0.9976 -0.5985 

𝐹𝑢𝑧𝑧𝑦 𝑅𝐷_175 -0.7925 0.1001 0.0000 -0.9886 -0.5963 

𝐹𝑢𝑧𝑧𝑦 𝑅𝐷_180 -0.7854 0.0984 0.0000 -0.9783 -0.5925 

𝐹𝑢𝑧𝑧𝑦 𝑅𝐷_185 -0.7785 0.0968 0.0000 -0.9682 -0.5887 

𝐹𝑢𝑧𝑧𝑦 𝑅𝐷_190 -0.7487 0.0926 0.0000 -0.9303 -0.5672 

𝐹𝑢𝑧𝑧𝑦 𝑅𝐷_195 -0.7422 0.0913 0.0000 -0.9211 -0.5634 

𝐹𝑢𝑧𝑧𝑦 𝑅𝐷_200 -0.7575 0.0711 0.0000 -0.8967 -0.6182 

Notes: (i) Each row is a separate non-parametric regression discontinuity point estimate. (ii) the first row reports the 

Fuzzy RD estimate at the CV-optimal bandwidth  (iii) Fuzzy non-parametric RD treatment effect is estimated for 50 

to 200 percent of the CV-optimal bandwidth (half and twice the optimal bandwidth) with a 5 percentage points 

incremental. (iv) Bootstrapped standard error are based on 120 simulations to construct the 95% CI. 

 

 



143 

 

 

Table B2: 

Fuzzy RD estimates - cognitive functioning at different bandwidth - females only at cutoff age 65  

Regression discontinuity robustness of bandwidth choice 

 

RD  

estimates 

Bootstrap  

Std. Err. 
P-value [95% Conf. Interval] 

𝐹𝑢𝑧𝑧𝑦 𝑅𝐷 -0.7776 0.1768 0.0000 -1.1240 -0.4311 

𝐹𝑢𝑧𝑧𝑦 𝑅𝐷_50 -0.6966 0.2536 0.0060 -1.1937 -0.1995 

𝐹𝑢𝑧𝑧𝑦 𝑅𝐷_55 -0.7331 0.2398 0.0020 -1.2031 -0.2631 

𝐹𝑢𝑧𝑧𝑦 𝑅𝐷_60 -0.8304 0.2455 0.0010 -1.3115 -0.3493 

𝐹𝑢𝑧𝑧𝑦 𝑅𝐷_65 -0.8399 0.2340 0.0000 -1.2984 -0.3813 

𝐹𝑢𝑧𝑧𝑦 𝑅𝐷_70 -0.7971 0.2105 0.0000 -1.2097 -0.3844 

𝐹𝑢𝑧𝑧𝑦 𝑅𝐷_75 -0.8420 0.2152 0.0000 -1.2638 -0.4202 

𝐹𝑢𝑧𝑧𝑦 𝑅𝐷_80 -0.8152 0.2027 0.0000 -1.2126 -0.4178 

𝐹𝑢𝑧𝑧𝑦 𝑅𝐷_85 -0.8184 0.1582 0.0000 -1.1285 -0.5083 

𝐹𝑢𝑧𝑧𝑦 𝑅𝐷_90 -0.7881 0.1883 0.0000 -1.1573 -0.4190 

𝐹𝑢𝑧𝑧𝑦 𝑅𝐷_95 -0.7659 0.1771 0.0000 -1.1131 -0.4187 

𝐹𝑢𝑧𝑧𝑦 𝑅𝐷_105 -0.7605 0.1670 0.0000 -1.0879 -0.4332 

𝐹𝑢𝑧𝑧𝑦 𝑅𝐷_110 -0.7893 0.1338 0.0000 -1.0516 -0.5270 

𝐹𝑢𝑧𝑧𝑦 𝑅𝐷_115 -0.7472 0.1629 0.0000 -1.0666 -0.4279 

𝐹𝑢𝑧𝑧𝑦 𝑅𝐷_120 -0.7581 0.1548 0.0000 -1.0616 -0.4547 

𝐹𝑢𝑧𝑧𝑦 𝑅𝐷_125 -0.7390 0.1551 0.0000 -1.0431 -0.4350 

𝐹𝑢𝑧𝑧𝑦 𝑅𝐷_130 -0.7945 0.1537 0.0000 -1.0957 -0.4933 

𝐹𝑢𝑧𝑧𝑦 𝑅𝐷_135 -0.7416 0.1484 0.0000 -1.0325 -0.4508 

𝐹𝑢𝑧𝑧𝑦 𝑅𝐷_140 -0.8008 0.1145 0.0000 -1.0253 -0.5763 

𝐹𝑢𝑧𝑧𝑦 𝑅𝐷_145 -0.7971 0.1441 0.0000 -1.0795 -0.5147 

𝐹𝑢𝑧𝑧𝑦 𝑅𝐷_150 -0.7641 0.1367 0.0000 -1.0320 -0.4961 

𝐹𝑢𝑧𝑧𝑦 𝑅𝐷_155 -0.7212 0.1370 0.0000 -0.9896 -0.4528 

𝐹𝑢𝑧𝑧𝑦 𝑅𝐷_160 -0.7151 0.1345 0.0000 -0.9787 -0.4516 

𝐹𝑢𝑧𝑧𝑦 𝑅𝐷_165 -0.7465 0.1293 0.0000 -1.0000 -0.4931 

𝐹𝑢𝑧𝑧𝑦 𝑅𝐷_170 -0.6992 0.1298 0.0000 -0.9536 -0.4448 

𝐹𝑢𝑧𝑧𝑦 𝑅𝐷_175 -0.7320 0.1250 0.0000 -0.9770 -0.4871 

𝐹𝑢𝑧𝑧𝑦 𝑅𝐷_180 -0.6813 0.1255 0.0000 -0.9273 -0.4353 

𝐹𝑢𝑧𝑧𝑦 𝑅𝐷_185 -0.7369 0.0956 0.0000 -0.9244 -0.5495 

𝐹𝑢𝑧𝑧𝑦 𝑅𝐷_190 -0.7122 0.1191 0.0000 -0.9457 -0.4787 

𝐹𝑢𝑧𝑧𝑦 𝑅𝐷_195 -0.7276 0.0927 0.0000 -0.9093 -0.5458 

𝐹𝑢𝑧𝑧𝑦 𝑅𝐷_200 -0.7245 0.0907 0.0000 -0.9024 -0.5467 

Notes: (i) Each row is a separate non-parametric regression discontinuity point estimate. (ii) the first row reports the 

Fuzzy RD estimate at the CV-optimal bandwidth   (iii) Fuzzy non-parametric RD treatment effect is estimated for 50 

to 200 percent of the CV-optimal bandwidth (half and twice the optimal bandwidth) with a 5 percentage points 

incremental. (iv) Bootstrapped standard error are based on 120 simulations to construct the 95% CI. 
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Table B3: 

Fuzzy RD estimates - cognitive functioning at different bandwidth - males only at cutoff age 65  

Regression discontinuity robustness of bandwidth choice 

 

RD 

estimates 

Bootstrap 

Std. Err. 
P-value [95% Conf.Interval] 

𝐹𝑢𝑧𝑧𝑦 𝑅𝐷 -1.1586 0.2276 0.0000 -1.6047 -0.7126 

𝐹𝑢𝑧𝑧𝑦 𝑅𝐷_50 -1.2035 0.3472 0.0010 -1.8839 -0.5231 

𝐹𝑢𝑧𝑧𝑦 𝑅𝐷_55 -1.1104 0.2976 0.0000 -1.6938 -0.5271 

𝐹𝑢𝑧𝑧𝑦 𝑅𝐷_60 -1.2517 0.3136 0.0000 -1.8663 -0.6372 

𝐹𝑢𝑧𝑧𝑦 𝑅𝐷_65 -1.2462 0.2974 0.0000 -1.8290 -0.6633 

𝐹𝑢𝑧𝑧𝑦 𝑅𝐷_70 -1.2198 0.2245 0.0000 -1.6599 -0.7797 

𝐹𝑢𝑧𝑧𝑦 𝑅𝐷_75 -1.1059 0.2505 0.0000 -1.5970 -0.6149 

𝐹𝑢𝑧𝑧𝑦 𝑅𝐷_80 -1.1894 0.2608 0.0000 -1.7006 -0.6783 

𝐹𝑢𝑧𝑧𝑦 𝑅𝐷_85 -1.1717 0.2504 0.0000 -1.6625 -0.6808 

𝐹𝑢𝑧𝑧𝑦 𝑅𝐷_90 -1.1603 0.2422 0.0000 -1.6349 -0.6857 

𝐹𝑢𝑧𝑧𝑦 𝑅𝐷_95 -1.1548 0.2346 0.0000 -1.6146 -0.6951 

𝐹𝑢𝑧𝑧𝑦 𝑅𝐷_105 -1.1467 0.2213 0.0000 -1.5805 -0.7129 

𝐹𝑢𝑧𝑧𝑦 𝑅𝐷_110 -1.1159 0.2149 0.0000 -1.5371 -0.6947 

𝐹𝑢𝑧𝑧𝑦 𝑅𝐷_115 -1.1189 0.2093 0.0000 -1.5291 -0.7086 

𝐹𝑢𝑧𝑧𝑦 𝑅𝐷_120 -1.1096 0.1583 0.0000 -1.4198 -0.7994 

𝐹𝑢𝑧𝑧𝑦 𝑅𝐷_125 -1.0947 0.1984 0.0000 -1.4835 -0.7060 

𝐹𝑢𝑧𝑧𝑦 𝑅𝐷_130 -1.0642 0.1935 0.0000 -1.4435 -0.6850 

𝐹𝑢𝑧𝑧𝑦 𝑅𝐷_135 -1.0538 0.1891 0.0000 -1.4243 -0.6832 

𝐹𝑢𝑧𝑧𝑦 𝑅𝐷_140 -1.0436 0.1849 0.0000 -1.4059 -0.6812 

𝐹𝑢𝑧𝑧𝑦 𝑅𝐷_145 -1.0290 0.1810 0.0000 -1.3837 -0.6743 

𝐹𝑢𝑧𝑧𝑦 𝑅𝐷_150 -1.0269 0.1774 0.0000 -1.3745 -0.6792 

𝐹𝑢𝑧𝑧𝑦 𝑅𝐷_155 -1.0105 0.1739 0.0000 -1.3514 -0.6696 

𝐹𝑢𝑧𝑧𝑦 𝑅𝐷_160 -0.9840 0.1706 0.0000 -1.3184 -0.6496 

𝐹𝑢𝑧𝑧𝑦 𝑅𝐷_165 -0.9920 0.1677 0.0000 -1.3207 -0.6632 

𝐹𝑢𝑧𝑧𝑦 𝑅𝐷_170 -0.9675 0.1647 0.0000 -1.2904 -0.6447 

𝐹𝑢𝑧𝑧𝑦 𝑅𝐷_175 -0.9594 0.1619 0.0000 -1.2768 -0.6420 

𝐹𝑢𝑧𝑧𝑦 𝑅𝐷_180 -0.9755 0.1594 0.0000 -1.2879 -0.6630 

𝐹𝑢𝑧𝑧𝑦 𝑅𝐷_185 -0.9689 0.1568 0.0000 -1.2762 -0.6616 

𝐹𝑢𝑧𝑧𝑦 𝑅𝐷_190 -0.9308 0.1490 0.0000 -1.2228 -0.6388 

𝐹𝑢𝑧𝑧𝑦 𝑅𝐷_195 -0.9311 0.1518 0.0000 -1.2287 -0.6336 

𝐹𝑢𝑧𝑧𝑦 𝑅𝐷_200 -0.9239 0.1447 0.0000 -1.2074 -0.6403 

Notes: (i) Each row is a separate non-parametric regression discontinuity point estimate. (ii) the first row reports the 

Fuzzy RD estimate at the CV-optimal bandwidth   (iii) Fuzzy non-parametric RD treatment effect is estimated for 50 

to 200 percent of the CV-optimal bandwidth (half and twice the optimal bandwidth) with a 5 percentage points 

incremental. (iv) Bootstrapped standard error are based on 120 simulations to construct the 95% CI. 
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Table B4: 

Fuzzy RD estimates - cognitive functioning at different bandwidth - low-educated only at cutoff age 65  

Regression discontinuity robustness of bandwidth choice 

 

RD 

estimates 

Bootstrap 

Std. Err. 
P-value [95% Conf.Interval] 

𝐹𝑢𝑧𝑧𝑦 𝑅𝐷 -1.5510 0.4336 0.0000 -2.4008 -0.7012 

𝐹𝑢𝑧𝑧𝑦 𝑅𝐷_50 -1.7171 0.7268 0.0180 -3.1416 -0.2927 

𝐹𝑢𝑧𝑧𝑦 𝑅𝐷_55 -1.7774 0.8452 0.0350 -3.4340 -0.1208 

𝐹𝑢𝑧𝑧𝑦 𝑅𝐷_60 -1.7567 0.7922 0.0270 -3.3095 -0.2040 

𝐹𝑢𝑧𝑧𝑦 𝑅𝐷_65 -1.7197 0.6168 0.0050 -2.9286 -0.5107 

𝐹𝑢𝑧𝑧𝑦 𝑅𝐷_70 -1.6908 0.7023 0.0160 -3.0673 -0.3142 

𝐹𝑢𝑧𝑧𝑦 𝑅𝐷_75 -1.6646 0.5478 0.0020 -2.7384 -0.5909 

𝐹𝑢𝑧𝑧𝑦 𝑅𝐷_80 -1.6748 0.6377 0.0090 -2.9247 -0.4249 

𝐹𝑢𝑧𝑧𝑦 𝑅𝐷_85 -1.6406 0.5007 0.0010 -2.6220 -0.6591 

𝐹𝑢𝑧𝑧𝑦 𝑅𝐷_90 -1.6356 0.5876 0.0050 -2.7872 -0.4839 

𝐹𝑢𝑧𝑧𝑦 𝑅𝐷_95 -1.6065 0.4513 0.0000 -2.4909 -0.7220 

𝐹𝑢𝑧𝑧𝑦 𝑅𝐷_105 -1.4887 0.4202 0.0000 -2.3124 -0.6651 

𝐹𝑢𝑧𝑧𝑦 𝑅𝐷_110 -1.4155 0.5351 0.0080 -2.4642 -0.3667 

𝐹𝑢𝑧𝑧𝑦 𝑅𝐷_115 -1.3389 0.3925 0.0010 -2.1081 -0.5697 

𝐹𝑢𝑧𝑧𝑦 𝑅𝐷_120 -1.2379 0.4967 0.0130 -2.2114 -0.2644 

𝐹𝑢𝑧𝑧𝑦 𝑅𝐷_125 -1.1960 0.3764 0.0010 -1.9338 -0.4582 

𝐹𝑢𝑧𝑧𝑦 𝑅𝐷_130 -1.0804 0.4675 0.0210 -1.9966 -0.1641 

𝐹𝑢𝑧𝑧𝑦 𝑅𝐷_135 -1.0681 0.3555 0.0030 -1.7649 -0.3714 

𝐹𝑢𝑧𝑧𝑦 𝑅𝐷_140 -0.9886 0.4542 0.0300 -1.8788 -0.0983 

𝐹𝑢𝑧𝑧𝑦 𝑅𝐷_145 -0.9250 0.4404 0.0360 -1.7881 -0.0619 

𝐹𝑢𝑧𝑧𝑦 𝑅𝐷_150 -0.9250 0.3354 0.0060 -1.5823 -0.2677 

𝐹𝑢𝑧𝑧𝑦 𝑅𝐷_155 -0.8871 0.4387 0.0430 -1.7470 -0.0273 

𝐹𝑢𝑧𝑧𝑦 𝑅𝐷_160 -0.8185 0.4156 0.0490 -1.6331 -0.0040 

𝐹𝑢𝑧𝑧𝑦 𝑅𝐷_165 -0.7874 0.4080 0.0540 -1.5870 0.0122 

𝐹𝑢𝑧𝑧𝑦 𝑅𝐷_170 -0.7838 0.3063 0.0100 -1.3840 -0.1835 

𝐹𝑢𝑧𝑧𝑦 𝑅𝐷_175 -0.7492 0.4047 0.0640 -1.5424 0.0439 

𝐹𝑢𝑧𝑧𝑦 𝑅𝐷_180 -0.6857 0.3847 0.0750 -1.4398 0.0684 

𝐹𝑢𝑧𝑧𝑦 𝑅𝐷_185 -0.6278 0.3778 0.0970 -1.3683 0.1126 

𝐹𝑢𝑧𝑧𝑦 𝑅𝐷_190 -0.6169 0.2791 0.0270 -1.1639 -0.0699 

𝐹𝑢𝑧𝑧𝑦 𝑅𝐷_195 -0.5785 0.3744 0.1220 -1.3122 0.1553 

𝐹𝑢𝑧𝑧𝑦 𝑅𝐷_200 -0.5489 0.2675 0.0400 -1.0731 -0.0247 

Notes: (i) Each row is a separate non-parametric regression discontinuity point estimate. (ii) the first row reports the 

Fuzzy RD estimate at the CV-optimal bandwidth   (iii) Fuzzy non-parametric RD treatment effect is estimated for 50 

to 200 percent of the CV-optimal bandwidth (half and twice the optimal bandwidth) with a 5 percentage points 

incremental. (iv) Bootstrapped standard error are based on 120 simulations to construct the 95% CI. 
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Table B5: 

Fuzzy RD estimates - cognitive functioning at different bandwidth - high-educated only (cutoff age 65)  

Regression discontinuity robustness of bandwidth choice 

 
RD estimates 

Bootstrap 

Std. Err. 
P-value [95% Conf. Interval] 

𝐹𝑢𝑧𝑧𝑦 𝑅𝐷 -0.7543 0.1998 0.0000 -1.1459 -0.3628 

𝐹𝑢𝑧𝑧𝑦 𝑅𝐷_50 -0.9188 0.3074 0.0030 -1.5213 -0.3162 

𝐹𝑢𝑧𝑧𝑦 𝑅𝐷_55 -0.8937 0.2831 0.0020 -1.4487 -0.3388 

𝐹𝑢𝑧𝑧𝑦 𝑅𝐷_60 -0.8974 0.2183 0.0000 -1.3252 -0.4696 

𝐹𝑢𝑧𝑧𝑦 𝑅𝐷_65 -0.8910 0.2560 0.0010 -1.3927 -0.3893 

𝐹𝑢𝑧𝑧𝑦 𝑅𝐷_70 -0.8752 0.2454 0.0000 -1.3562 -0.3943 

𝐹𝑢𝑧𝑧𝑦 𝑅𝐷_75 -0.8515 0.2355 0.0000 -1.3130 -0.3900 

𝐹𝑢𝑧𝑧𝑦 𝑅𝐷_80 -0.8582 0.2289 0.0000 -1.3069 -0.4095 

𝐹𝑢𝑧𝑧𝑦 𝑅𝐷_85 -0.8193 0.1755 0.0000 -1.1632 -0.4754 

𝐹𝑢𝑧𝑧𝑦 𝑅𝐷_90 -0.7944 0.2120 0.0000 -1.2098 -0.3789 

𝐹𝑢𝑧𝑧𝑦 𝑅𝐷_95 -0.7713 0.2051 0.0000 -1.1733 -0.3693 

𝐹𝑢𝑧𝑧𝑦 𝑅𝐷_105 -0.7302 0.1927 0.0000 -1.1080 -0.3525 

𝐹𝑢𝑧𝑧𝑦 𝑅𝐷_110 -0.7192 0.1462 0.0000 -1.0058 -0.4326 

𝐹𝑢𝑧𝑧𝑦 𝑅𝐷_115 -0.7061 0.1834 0.0000 -1.0657 -0.3466 

𝐹𝑢𝑧𝑧𝑦 𝑅𝐷_120 -0.6938 0.1789 0.0000 -1.0444 -0.3432 

𝐹𝑢𝑧𝑧𝑦 𝑅𝐷_125 -0.6850 0.1737 0.0000 -1.0254 -0.3445 

𝐹𝑢𝑧𝑧𝑦 𝑅𝐷_130 -0.6725 0.1698 0.0000 -1.0053 -0.3396 

𝐹𝑢𝑧𝑧𝑦 𝑅𝐷_135 -0.6607 0.1663 0.0000 -0.9866 -0.3348 

𝐹𝑢𝑧𝑧𝑦 𝑅𝐷_140 -0.6268 0.1562 0.0000 -0.9330 -0.3206 

𝐹𝑢𝑧𝑧𝑦 𝑅𝐷_145 -0.6370 0.1605 0.0000 -0.9516 -0.3223 

𝐹𝑢𝑧𝑧𝑦 𝑅𝐷_150 -0.6324 0.1575 0.0000 -0.9411 -0.3238 

𝐹𝑢𝑧𝑧𝑦 𝑅𝐷_155 -0.6445 0.1539 0.0000 -0.9461 -0.3430 

𝐹𝑢𝑧𝑧𝑦 𝑅𝐷_160 -0.6228 0.1516 0.0000 -0.9199 -0.3256 

𝐹𝑢𝑧𝑧𝑦 𝑅𝐷_165 -0.6359 0.1483 0.0000 -0.9266 -0.3452 

𝐹𝑢𝑧𝑧𝑦 𝑅𝐷_170 -0.6109 0.1463 0.0000 -0.8976 -0.3242 

𝐹𝑢𝑧𝑧𝑦 𝑅𝐷_175 -0.6071 0.1383 0.0000 -0.8782 -0.3359 

𝐹𝑢𝑧𝑧𝑦 𝑅𝐷_180 -0.6255 0.1080 0.0000 -0.8373 -0.4138 

𝐹𝑢𝑧𝑧𝑦 𝑅𝐷_185 -0.6011 0.1392 0.0000 -0.8739 -0.3283 

𝐹𝑢𝑧𝑧𝑦 𝑅𝐷_190 -0.5959 0.1322 0.0000 -0.8550 -0.3368 

𝐹𝑢𝑧𝑧𝑦 𝑅𝐷_195 -0.5895 0.1303 0.0000 -0.8449 -0.3340 

𝐹𝑢𝑧𝑧𝑦 𝑅𝐷_200 -0.5811 0.1330 0.0000 -0.8418 -0.3204 

Notes: (i) Each row is a separate non-parametric regression discontinuity point estimate. (ii) the first row reports the 

Fuzzy RD estimate at the CV-optimal bandwidth   (iii) Fuzzy non-parametric RD treatment effect is estimated for 50 

to 200 percent of the CV-optimal bandwidth (half and twice the optimal bandwidth) with a 5 percentage points 

incremental. (iv) Bootstrapped standard error are based on 120 simulations to construct the 95% CI. 
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Table B6: 

Fuzzy RD estimates - cognitive functioning at different bandwidth - low income only at cutoff age 65  

Regression discontinuity robustness of bandwidth choice 

 
RD estimates 

Bootstrap 

Std. Err. 
P-value [95% Conf. Interval] 

𝐹𝑢𝑧𝑧𝑦 𝑅𝐷 -0.6735 0.1501 0.0000 -0.9677 -0.3793 

𝐹𝑢𝑧𝑧𝑦 𝑅𝐷_50 -0.7666 0.2278 0.0010 -1.2131 -0.3200 

𝐹𝑢𝑧𝑧𝑦 𝑅𝐷_55 -0.6831 0.2254 0.0020 -1.1249 -0.2414 

𝐹𝑢𝑧𝑧𝑦 𝑅𝐷_60 -0.6886 0.2128 0.0010 -1.1057 -0.2715 

𝐹𝑢𝑧𝑧𝑦 𝑅𝐷_65 -0.7016 0.1639 0.0000 -1.0228 -0.3803 

𝐹𝑢𝑧𝑧𝑦 𝑅𝐷_70 -0.6716 0.1825 0.0000 -1.0292 -0.3140 

𝐹𝑢𝑧𝑧𝑦 𝑅𝐷_75 -0.7154 0.1777 0.0000 -1.0637 -0.3672 

𝐹𝑢𝑧𝑧𝑦 𝑅𝐷_80 -0.6861 0.1698 0.0000 -1.0190 -0.3533 

𝐹𝑢𝑧𝑧𝑦 𝑅𝐷_85 -0.7232 0.1382 0.0000 -0.9941 -0.4523 

𝐹𝑢𝑧𝑧𝑦 𝑅𝐷_90 -0.7143 0.1672 0.0000 -1.0419 -0.3866 

𝐹𝑢𝑧𝑧𝑦 𝑅𝐷_95 -0.6736 0.1548 0.0000 -0.9769 -0.3702 

𝐹𝑢𝑧𝑧𝑦 𝑅𝐷_105 -0.6671 0.1458 0.0000 -0.9530 -0.3813 

𝐹𝑢𝑧𝑧𝑦 𝑅𝐷_110 -0.6598 0.1420 0.0000 -0.9381 -0.3815 

𝐹𝑢𝑧𝑧𝑦 𝑅𝐷_115 -0.6892 0.1124 0.0000 -0.9095 -0.4688 

𝐹𝑢𝑧𝑧𝑦 𝑅𝐷_120 -0.6844 0.1093 0.0000 -0.8987 -0.4701 

𝐹𝑢𝑧𝑧𝑦 𝑅𝐷_125 -0.6318 0.1319 0.0000 -0.8904 -0.3732 

𝐹𝑢𝑧𝑧𝑦 𝑅𝐷_130 -0.6222 0.1290 0.0000 -0.8749 -0.3694 

𝐹𝑢𝑧𝑧𝑦 𝑅𝐷_135 -0.6699 0.1305 0.0000 -0.9257 -0.4140 

𝐹𝑢𝑧𝑧𝑦 𝑅𝐷_140 -0.6699 0.1278 0.0000 -0.9204 -0.4193 

𝐹𝑢𝑧𝑧𝑦 𝑅𝐷_145 -0.6046 0.1212 0.0000 -0.8421 -0.3671 

𝐹𝑢𝑧𝑧𝑦 𝑅𝐷_150 -0.6737 0.1228 0.0000 -0.9144 -0.4330 

𝐹𝑢𝑧𝑧𝑦 𝑅𝐷_155 -0.6715 0.0936 0.0000 -0.8550 -0.4880 

𝐹𝑢𝑧𝑧𝑦 𝑅𝐷_160 -0.6681 0.1182 0.0000 -0.8998 -0.4364 

𝐹𝑢𝑧𝑧𝑦 𝑅𝐷_165 -0.6632 0.1161 0.0000 -0.8907 -0.4357 

𝐹𝑢𝑧𝑧𝑦 𝑅𝐷_170 -0.6572 0.0882 0.0000 -0.8301 -0.4843 

𝐹𝑢𝑧𝑧𝑦 𝑅𝐷_175 -0.6515 0.0867 0.0000 -0.8214 -0.4815 

𝐹𝑢𝑧𝑧𝑦 𝑅𝐷_180 -0.6277 0.1074 0.0000 -0.8382 -0.4171 

𝐹𝑢𝑧𝑧𝑦 𝑅𝐷_185 -0.6191 0.1058 0.0000 -0.8264 -0.4118 

𝐹𝑢𝑧𝑧𝑦 𝑅𝐷_190 -0.6264 0.0824 0.0000 -0.7879 -0.4650 

𝐹𝑢𝑧𝑧𝑦 𝑅𝐷_195 -0.6176 0.0810 0.0000 -0.7764 -0.4588 

𝐹𝑢𝑧𝑧𝑦 𝑅𝐷_200 -0.5959 0.1012 0.0000 -0.7941 -0.3976 

Notes: (i) Each row is a separate non-parametric regression discontinuity point estimate. (ii) the first row reports the 

Fuzzy RD estimate at the CV-optimal bandwidth   (iii) Fuzzy non-parametric RD treatment effect is estimated for 50 

to 200 percent of the CV-optimal bandwidth (half and twice the optimal bandwidth) with a 5 percentage points 

incremental. (iv) Bootstrapped standard error are based on 120 simulations to construct the 95% CI. 
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APPENDIX C: 

 

Table C1 

Fuzzy RD estimates -Mental health at different bandwidth - All sample at cutoff age 65  

Regression discontinuity robustness of bandwidth choice 

 

RD  

estimates 

Bootstrap 

 Std. Err. 
P-value [95% Conf. Interval] 

𝐹𝑢𝑧𝑧𝑦 𝑅𝐷 0.4091 0.0831 0.0000 0.2463 0.5719 

𝐹𝑢𝑧𝑧𝑦 𝑅𝐷_50 0.4771 0.1207 0.0000 0.2406 0.7137 

𝐹𝑢𝑧𝑧𝑦 𝑅𝐷_55 0.4779 0.1149 0.0000 0.2528 0.7031 

𝐹𝑢𝑧𝑧𝑦 𝑅𝐷_60 0.4631 0.1092 0.0000 0.2490 0.6772 

𝐹𝑢𝑧𝑧𝑦 𝑅𝐷_65 0.4312 0.1082 0.0000 0.2191 0.6432 

𝐹𝑢𝑧𝑧𝑦 𝑅𝐷_70 0.4375 0.0999 0.0000 0.2418 0.6333 

𝐹𝑢𝑧𝑧𝑦 𝑅𝐷_75 0.4252 0.0958 0.0000 0.2375 0.6129 

𝐹𝑢𝑧𝑧𝑦 𝑅𝐷_80 0.4256 0.0777 0.0000 0.2733 0.5779 

𝐹𝑢𝑧𝑧𝑦 𝑅𝐷_85 0.3978 0.0830 0.0000 0.2350 0.5605 

𝐹𝑢𝑧𝑧𝑦 𝑅𝐷_90 0.4269 0.0862 0.0000 0.2580 0.5959 

𝐹𝑢𝑧𝑧𝑦 𝑅𝐷_95 0.4250 0.0836 0.0000 0.2611 0.5889 

𝐹𝑢𝑧𝑧𝑦 𝑅𝐷_105 0.4217 0.0789 0.0000 0.2670 0.5764 

𝐹𝑢𝑧𝑧𝑦 𝑅𝐷_110 0.4186 0.0641 0.0000 0.2929 0.5442 

𝐹𝑢𝑧𝑧𝑦 𝑅𝐷_115 0.4129 0.0763 0.0000 0.2634 0.5625 

𝐹𝑢𝑧𝑧𝑦 𝑅𝐷_120 0.3925 0.0691 0.0000 0.2571 0.5279 

𝐹𝑢𝑧𝑧𝑦 𝑅𝐷_125 0.3941 0.0675 0.0000 0.2619 0.5264 

𝐹𝑢𝑧𝑧𝑦 𝑅𝐷_130 0.4166 0.0707 0.0000 0.2781 0.5552 

𝐹𝑢𝑧𝑧𝑦 𝑅𝐷_135 0.4193 0.0678 0.0000 0.2864 0.5522 

𝐹𝑢𝑧𝑧𝑦 𝑅𝐷_140 0.4019 0.0634 0.0000 0.2777 0.5260 

𝐹𝑢𝑧𝑧𝑦 𝑅𝐷_145 0.4217 0.0662 0.0000 0.2920 0.5515 

𝐹𝑢𝑧𝑧𝑦 𝑅𝐷_150 0.4216 0.0649 0.0000 0.2944 0.5488 

𝐹𝑢𝑧𝑧𝑦 𝑅𝐷_155 0.4217 0.0636 0.0000 0.2970 0.5464 

𝐹𝑢𝑧𝑧𝑦 𝑅𝐷_160 0.4225 0.0614 0.0000 0.3022 0.5429 

𝐹𝑢𝑧𝑧𝑦 𝑅𝐷_165 0.4067 0.0580 0.0000 0.2930 0.5203 

𝐹𝑢𝑧𝑧𝑦 𝑅𝐷_170 0.4253 0.0472 0.0000 0.3327 0.5179 

𝐹𝑢𝑧𝑧𝑦 𝑅𝐷_175 0.4279 0.0584 0.0000 0.3135 0.5423 

𝐹𝑢𝑧𝑧𝑦 𝑅𝐷_180 0.4303 0.0574 0.0000 0.3178 0.5429 

𝐹𝑢𝑧𝑧𝑦 𝑅𝐷_185 0.4164 0.0545 0.0000 0.3096 0.5233 

𝐹𝑢𝑧𝑧𝑦 𝑅𝐷_190 0.4183 0.0537 0.0000 0.3130 0.5236 

𝐹𝑢𝑧𝑧𝑦 𝑅𝐷_195 0.4197 0.0530 0.0000 0.3159 0.5235 

𝐹𝑢𝑧𝑧𝑦 𝑅𝐷_200 0.4338 0.0547 0.0000 0.3265 0.5410 

Notes: (i) Each row is a separate non-parametric regression discontinuity point estimate. (ii) the first row reports the 

Fuzzy RD estimate at the CV-optimal bandwidth   (iii) Fuzzy non-parametric RD treatment effect is estimated for 50 

to 200 percent of the CV-optimal bandwidth (half and twice the optimal bandwidth) with a 5 percentage points 

incremental. (iv) Bootstrapped standard error are based on 120 simulations to construct the 95% CI. 
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Table C2: 

Fuzzy RD estimates -Mental health at different bandwidth - females only at cutoff age 65  

Regression discontinuity robustness of bandwidth choice 

 

RD  

estimates 

Bootstrap  

Std. Err. 
P-value [95% Conf. Interval] 

𝐹𝑢𝑧𝑧𝑦 𝑅𝐷 0.3979 0.1132 0.0000 0.1761 0.6197 

𝐹𝑢𝑧𝑧𝑦 𝑅𝐷_50 0.3593 0.1721 0.0370 0.0219 0.6967 

𝐹𝑢𝑧𝑧𝑦 𝑅𝐷_55 0.4031 0.1445 0.0050 0.1198 0.6864 

𝐹𝑢𝑧𝑧𝑦 𝑅𝐷_60 0.4247 0.1514 0.0050 0.1280 0.7214 

𝐹𝑢𝑧𝑧𝑦 𝑅𝐷_65 0.4081 0.1266 0.0010 0.1600 0.6562 

𝐹𝑢𝑧𝑧𝑦 𝑅𝐷_70 0.3854 0.1194 0.0010 0.1513 0.6194 

𝐹𝑢𝑧𝑧𝑦 𝑅𝐷_75 0.3356 0.1342 0.0120 0.0725 0.5987 

𝐹𝑢𝑧𝑧𝑦 𝑅𝐷_80 0.3823 0.1281 0.0030 0.1312 0.6335 

𝐹𝑢𝑧𝑧𝑦 𝑅𝐷_85 0.3855 0.1240 0.0020 0.1425 0.6285 

𝐹𝑢𝑧𝑧𝑦 𝑅𝐷_90 0.3492 0.1209 0.0040 0.1122 0.5862 

𝐹𝑢𝑧𝑧𝑦 𝑅𝐷_95 0.3957 0.1165 0.0010 0.1674 0.6241 

𝐹𝑢𝑧𝑧𝑦 𝑅𝐷_105 0.3759 0.1042 0.0000 0.1717 0.5801 

𝐹𝑢𝑧𝑧𝑦 𝑅𝐷_110 0.3758 0.1014 0.0000 0.1770 0.5746 

𝐹𝑢𝑧𝑧𝑦 𝑅𝐷_115 0.3988 0.0853 0.0000 0.2316 0.5659 

𝐹𝑢𝑧𝑧𝑦 𝑅𝐷_120 0.3903 0.1018 0.0000 0.1908 0.5898 

𝐹𝑢𝑧𝑧𝑦 𝑅𝐷_125 0.3944 0.0995 0.0000 0.1995 0.5894 

𝐹𝑢𝑧𝑧𝑦 𝑅𝐷_130 0.4128 0.0787 0.0000 0.2586 0.5670 

𝐹𝑢𝑧𝑧𝑦 𝑅𝐷_135 0.4166 0.0764 0.0000 0.2668 0.5663 

𝐹𝑢𝑧𝑧𝑦 𝑅𝐷_140 0.4104 0.0931 0.0000 0.2278 0.5930 

𝐹𝑢𝑧𝑧𝑦 𝑅𝐷_145 0.4210 0.0724 0.0000 0.2791 0.5628 

𝐹𝑢𝑧𝑧𝑦 𝑅𝐷_150 0.4166 0.0895 0.0000 0.2412 0.5919 

𝐹𝑢𝑧𝑧𝑦 𝑅𝐷_155 0.4105 0.0841 0.0000 0.2458 0.5753 

𝐹𝑢𝑧𝑧𝑦 𝑅𝐷_160 0.4266 0.0862 0.0000 0.2576 0.5955 

𝐹𝑢𝑧𝑧𝑦 𝑅𝐷_165 0.4356 0.0844 0.0000 0.2703 0.6009 

𝐹𝑢𝑧𝑧𝑦 𝑅𝐷_170 0.4386 0.0829 0.0000 0.2761 0.6011 

𝐹𝑢𝑧𝑧𝑦 𝑅𝐷_175 0.4372 0.0818 0.0000 0.2769 0.5976 

𝐹𝑢𝑧𝑧𝑦 𝑅𝐷_180 0.4390 0.0805 0.0000 0.2813 0.5968 

𝐹𝑢𝑧𝑧𝑦 𝑅𝐷_185 0.4444 0.0789 0.0000 0.2897 0.5991 

𝐹𝑢𝑧𝑧𝑦 𝑅𝐷_190 0.4440 0.0777 0.0000 0.2917 0.5962 

𝐹𝑢𝑧𝑧𝑦 𝑅𝐷_195 0.4437 0.0765 0.0000 0.2938 0.5936 

𝐹𝑢𝑧𝑧𝑦 𝑅𝐷_200 0.4289 0.0730 0.0000 0.2858 0.5720 

Notes: (i) Each row is a separate non-parametric regression discontinuity point estimate. (ii) the first row reports the 

Fuzzy RD estimate at the CV-optimal bandwidth   (iii) Fuzzy non-parametric RD treatment effect is estimated for 50 

to 200 percent of the CV-optimal bandwidth (half and twice the optimal bandwidth) with a 5 percentage points 

incremental. (iv) Bootstrapped standard error are based on 120 simulations to construct the 95% CI. 
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Table C3: 

Fuzzy RD estimates -Mental health at different bandwidth - males only at cutoff age 65  

Regression discontinuity robustness of bandwidth choice 

 

RD 

 estimates 

Bootstrap  

Std. Err. 
P-value [95% Conf. Interval] 

𝐹𝑢𝑧𝑧𝑦 𝑅𝐷 0.3773 0.0992 0.0000 0.1828 0.5718 

𝐹𝑢𝑧𝑧𝑦 𝑅𝐷_50 0.4789 0.1356 0.0000 0.2131 0.7447 

𝐹𝑢𝑧𝑧𝑦 𝑅𝐷_55 0.4806 0.1621 0.0030 0.1630 0.7982 

𝐹𝑢𝑧𝑧𝑦 𝑅𝐷_60 0.4033 0.1318 0.0020 0.1450 0.6615 

𝐹𝑢𝑧𝑧𝑦 𝑅𝐷_65 0.4597 0.1448 0.0010 0.1759 0.7435 

𝐹𝑢𝑧𝑧𝑦 𝑅𝐷_70 0.3910 0.1209 0.0010 0.1540 0.6281 

𝐹𝑢𝑧𝑧𝑦 𝑅𝐷_75 0.4306 0.1257 0.0010 0.1843 0.6770 

𝐹𝑢𝑧𝑧𝑦 𝑅𝐷_80 0.4030 0.1124 0.0000 0.1827 0.6233 

𝐹𝑢𝑧𝑧𝑦 𝑅𝐷_85 0.4290 0.1163 0.0000 0.2009 0.6570 

𝐹𝑢𝑧𝑧𝑦 𝑅𝐷_90 0.3909 0.1052 0.0000 0.1846 0.5971 

𝐹𝑢𝑧𝑧𝑦 𝑅𝐷_95 0.4197 0.1131 0.0000 0.1980 0.6414 

𝐹𝑢𝑧𝑧𝑦 𝑅𝐷_105 0.3956 0.0826 0.0000 0.2338 0.5574 

𝐹𝑢𝑧𝑧𝑦 𝑅𝐷_110 0.3924 0.0993 0.0000 0.1979 0.5869 

𝐹𝑢𝑧𝑧𝑦 𝑅𝐷_115 0.3903 0.0766 0.0000 0.2402 0.5404 

𝐹𝑢𝑧𝑧𝑦 𝑅𝐷_120 0.3920 0.0938 0.0000 0.2081 0.5760 

𝐹𝑢𝑧𝑧𝑦 𝑅𝐷_125 0.3919 0.0728 0.0000 0.2493 0.5345 

𝐹𝑢𝑧𝑧𝑦 𝑅𝐷_130 0.3899 0.0705 0.0000 0.2516 0.5281 

𝐹𝑢𝑧𝑧𝑦 𝑅𝐷_135 0.3874 0.0873 0.0000 0.2163 0.5584 

𝐹𝑢𝑧𝑧𝑦 𝑅𝐷_140 0.3850 0.0854 0.0000 0.2177 0.5523 

𝐹𝑢𝑧𝑧𝑦 𝑅𝐷_145 0.3890 0.0859 0.0000 0.2207 0.5573 

𝐹𝑢𝑧𝑧𝑦 𝑅𝐷_150 0.3819 0.0819 0.0000 0.2213 0.5424 

𝐹𝑢𝑧𝑧𝑦 𝑅𝐷_155 0.3803 0.0804 0.0000 0.2229 0.5378 

𝐹𝑢𝑧𝑧𝑦 𝑅𝐷_160 0.3657 0.0758 0.0000 0.2172 0.5142 

𝐹𝑢𝑧𝑧𝑦 𝑅𝐷_165 0.3851 0.0793 0.0000 0.2297 0.5404 

𝐹𝑢𝑧𝑧𝑦 𝑅𝐷_170 0.3698 0.0733 0.0000 0.2261 0.5134 

𝐹𝑢𝑧𝑧𝑦 𝑅𝐷_175 0.3714 0.0721 0.0000 0.2301 0.5127 

𝐹𝑢𝑧𝑧𝑦 𝑅𝐷_180 0.3867 0.0575 0.0000 0.2740 0.4993 

𝐹𝑢𝑧𝑧𝑦 𝑅𝐷_185 0.3887 0.0564 0.0000 0.2783 0.4992 

𝐹𝑢𝑧𝑧𝑦 𝑅𝐷_190 0.3914 0.0712 0.0000 0.2517 0.5310 

𝐹𝑢𝑧𝑧𝑦 𝑅𝐷_195 0.3932 0.0701 0.0000 0.2557 0.5307 

𝐹𝑢𝑧𝑧𝑦 𝑅𝐷_200 0.3934 0.0691 0.0000 0.2579 0.5289 

Notes: (i) Each row is a separate non-parametric regression discontinuity point estimate. (ii) the first row reports the 

Fuzzy RD estimate at the CV-optimal bandwidth   (iii) Fuzzy non-parametric RD treatment effect is estimated for 50 

to 200 percent of the CV-optimal bandwidth (half and twice the optimal bandwidth) with a 5 percentage points 

incremental. (iv) Bootstrapped standard error are based on 120 simulations to construct the 95% CI. 
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Table C4: 

Fuzzy RD estimates -Mental health at different bandwidth - low-educated only at cutoff age 65  

Regression discontinuity robustness of bandwidth choice 

 

RD 

 estimates 

Bootstrap  

Std. Err. 
P-value [95% Conf. Interval] 

𝐹𝑢𝑧𝑧𝑦 𝑅𝐷 0.5182 0.0925 0.0000 0.3368 0.6995 

𝐹𝑢𝑧𝑧𝑦 𝑅𝐷_50 0.5811 0.1645 0.0000 0.2586 0.9036 

𝐹𝑢𝑧𝑧𝑦 𝑅𝐷_55 0.5618 0.1559 0.0000 0.2563 0.8674 

𝐹𝑢𝑧𝑧𝑦 𝑅𝐷_60 0.5463 0.1481 0.0000 0.2561 0.8365 

𝐹𝑢𝑧𝑧𝑦 𝑅𝐷_65 0.5256 0.1220 0.0000 0.2865 0.7646 

𝐹𝑢𝑧𝑧𝑦 𝑅𝐷_70 0.4897 0.1259 0.0000 0.2429 0.7365 

𝐹𝑢𝑧𝑧𝑦 𝑅𝐷_75 0.5301 0.1294 0.0000 0.2764 0.7838 

𝐹𝑢𝑧𝑧𝑦 𝑅𝐷_80 0.5314 0.1247 0.0000 0.2870 0.7758 

𝐹𝑢𝑧𝑧𝑦 𝑅𝐷_85 0.5075 0.1221 0.0000 0.2681 0.7468 

𝐹𝑢𝑧𝑧𝑦 𝑅𝐷_90 0.5269 0.1165 0.0000 0.2987 0.7551 

𝐹𝑢𝑧𝑧𝑦 𝑅𝐷_95 0.5021 0.1143 0.0000 0.2782 0.7261 

𝐹𝑢𝑧𝑧𝑦 𝑅𝐷_105 0.5140 0.1062 0.0000 0.3058 0.7222 

𝐹𝑢𝑧𝑧𝑦 𝑅𝐷_110 0.4882 0.0983 0.0000 0.2956 0.6807 

𝐹𝑢𝑧𝑧𝑦 𝑅𝐷_115 0.5161 0.0845 0.0000 0.3505 0.6817 

𝐹𝑢𝑧𝑧𝑦 𝑅𝐷_120 0.4958 0.0935 0.0000 0.3126 0.6790 

𝐹𝑢𝑧𝑧𝑦 𝑅𝐷_125 0.4984 0.0914 0.0000 0.3193 0.6775 

𝐹𝑢𝑧𝑧𝑦 𝑅𝐷_130 0.5204 0.0932 0.0000 0.3378 0.7030 

𝐹𝑢𝑧𝑧𝑦 𝑅𝐷_135 0.5065 0.0920 0.0000 0.3261 0.6869 

𝐹𝑢𝑧𝑧𝑦 𝑅𝐷_140 0.5200 0.0891 0.0000 0.3453 0.6947 

𝐹𝑢𝑧𝑧𝑦 𝑅𝐷_145 0.5084 0.0881 0.0000 0.3357 0.6811 

𝐹𝑢𝑧𝑧𝑦 𝑅𝐷_150 0.5244 0.0856 0.0000 0.3567 0.6921 

𝐹𝑢𝑧𝑧𝑦 𝑅𝐷_155 0.5275 0.0687 0.0000 0.3928 0.6622 

𝐹𝑢𝑧𝑧𝑦 𝑅𝐷_160 0.5305 0.0824 0.0000 0.3689 0.6920 

𝐹𝑢𝑧𝑧𝑦 𝑅𝐷_165 0.5323 0.0810 0.0000 0.3736 0.6910 

𝐹𝑢𝑧𝑧𝑦 𝑅𝐷_170 0.5341 0.0647 0.0000 0.4074 0.6609 

𝐹𝑢𝑧𝑧𝑦 𝑅𝐷_175 0.5205 0.0789 0.0000 0.3659 0.6750 

𝐹𝑢𝑧𝑧𝑦 𝑅𝐷_180 0.5206 0.0776 0.0000 0.3685 0.6726 

𝐹𝑢𝑧𝑧𝑦 𝑅𝐷_185 0.5208 0.0764 0.0000 0.3711 0.6704 

𝐹𝑢𝑧𝑧𝑦 𝑅𝐷_190 0.5359 0.0747 0.0000 0.3895 0.6822 

𝐹𝑢𝑧𝑧𝑦 𝑅𝐷_195 0.5190 0.0715 0.0000 0.3789 0.6592 

𝐹𝑢𝑧𝑧𝑦 𝑅𝐷_200 0.5152 0.0729 0.0000 0.3722 0.6581 

Notes: (i) Each row is a separate non-parametric regression discontinuity point estimate. (ii) the first row reports the 

Fuzzy RD estimate at the CV-optimal bandwidth   (iii) Fuzzy non-parametric RD treatment effect is estimated for 50 

to 200 percent of the CV-optimal bandwidth (half and twice the optimal bandwidth) with a 5 percentage points 

incremental. (iv) Bootstrapped standard error are based on 120 simulations to construct the 95% CI. 
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Table C5: 

Fuzzy RD estimates -Mental health at different bandwidth - high-educated only at cutoff age 65  

Regression discontinuity robustness of bandwidth choice 

 

RD 

estimates 

Bootstrap 

Std. Err. 
P-value [95% Conf. Interval] 

𝐹𝑢𝑧𝑧𝑦 𝑅𝐷 0.1757 0.0963 0.0680 -0.0130 0.3644 

𝐹𝑢𝑧𝑧𝑦 𝑅𝐷_50 0.2002 0.1588 0.2070 -0.1110 0.5115 

𝐹𝑢𝑧𝑧𝑦 𝑅𝐷_55 0.2112 0.1447 0.1440 -0.0724 0.4947 

𝐹𝑢𝑧𝑧𝑦 𝑅𝐷_60 0.1837 0.1251 0.1420 -0.0614 0.4289 

𝐹𝑢𝑧𝑧𝑦 𝑅𝐷_65 0.1943 0.1312 0.1390 -0.0629 0.4515 

𝐹𝑢𝑧𝑧𝑦 𝑅𝐷_70 0.1791 0.1157 0.1210 -0.0476 0.4058 

𝐹𝑢𝑧𝑧𝑦 𝑅𝐷_75 0.1942 0.1209 0.1080 -0.0428 0.4312 

𝐹𝑢𝑧𝑧𝑦 𝑅𝐷_80 0.1917 0.0941 0.0420 0.0072 0.3762 

𝐹𝑢𝑧𝑧𝑦 𝑅𝐷_85 0.1888 0.1125 0.0930 -0.0318 0.4093 

𝐹𝑢𝑧𝑧𝑦 𝑅𝐷_90 0.1881 0.1090 0.0840 -0.0255 0.4017 

𝐹𝑢𝑧𝑧𝑦 𝑅𝐷_95 0.1917 0.1072 0.0740 -0.0185 0.4019 

𝐹𝑢𝑧𝑧𝑦 𝑅𝐷_105 0.1749 0.0936 0.0620 -0.0086 0.3584 

𝐹𝑢𝑧𝑧𝑦 𝑅𝐷_110 0.1981 0.0979 0.0430 0.0062 0.3899 

𝐹𝑢𝑧𝑧𝑦 𝑅𝐷_115 0.1918 0.0940 0.0410 0.0075 0.3760 

𝐹𝑢𝑧𝑧𝑦 𝑅𝐷_120 0.1929 0.0917 0.0350 0.0131 0.3726 

𝐹𝑢𝑧𝑧𝑦 𝑅𝐷_125 0.1855 0.0851 0.0290 0.0186 0.3523 

𝐹𝑢𝑧𝑧𝑦 𝑅𝐷_130 0.2036 0.0886 0.0220 0.0299 0.3773 

𝐹𝑢𝑧𝑧𝑦 𝑅𝐷_135 0.2040 0.0867 0.0190 0.0341 0.3739 

𝐹𝑢𝑧𝑧𝑦 𝑅𝐷_140 0.2034 0.0849 0.0170 0.0371 0.3697 

𝐹𝑢𝑧𝑧𝑦 𝑅𝐷_145 0.1879 0.0787 0.0170 0.0336 0.3422 

𝐹𝑢𝑧𝑧𝑦 𝑅𝐷_150 0.2022 0.0816 0.0130 0.0423 0.3620 

𝐹𝑢𝑧𝑧𝑦 𝑅𝐷_155 0.1898 0.0760 0.0130 0.0408 0.3389 

𝐹𝑢𝑧𝑧𝑦 𝑅𝐷_160 0.1998 0.0582 0.0010 0.0858 0.3138 

𝐹𝑢𝑧𝑧𝑦 𝑅𝐷_165 0.2017 0.0765 0.0080 0.0516 0.3517 

𝐹𝑢𝑧𝑧𝑦 𝑅𝐷_170 0.2032 0.0752 0.0070 0.0558 0.3505 

𝐹𝑢𝑧𝑧𝑦 𝑅𝐷_175 0.2044 0.0551 0.0000 0.0964 0.3124 

𝐹𝑢𝑧𝑧𝑦 𝑅𝐷_180 0.2054 0.0726 0.0050 0.0630 0.3477 

𝐹𝑢𝑧𝑧𝑦 𝑅𝐷_185 0.1986 0.0689 0.0040 0.0636 0.3336 

𝐹𝑢𝑧𝑧𝑦 𝑅𝐷_190 0.2065 0.0520 0.0000 0.1046 0.3084 

𝐹𝑢𝑧𝑧𝑦 𝑅𝐷_195 0.2104 0.0696 0.0030 0.0740 0.3468 

𝐹𝑢𝑧𝑧𝑦 𝑅𝐷_200 0.2118 0.0685 0.0020 0.0775 0.3461 

Notes: (i) Each row is a separate non-parametric regression discontinuity point estimate. (ii) the first row reports the 

Fuzzy RD estimate at the CV-optimal bandwidth   (iii) Fuzzy non-parametric RD treatment effect is estimated for 50 

to 200 percent of the CV-optimal bandwidth (half and twice the optimal bandwidth) with a 5 percentage points 

incremental. (iv) Bootstrapped standard error are based on 120 simulations to construct the 95% CI. 

 

 

 

 

 



153 

 

 

Table C6: 

Fuzzy RD estimates -Mental health at different bandwidth - low income only at cutoff age 65  

Regression discontinuity robustness of bandwidth choice 

 

RD 

 estimates 
Bootstrap  

Std. Err. P-value 
[95% Conf. Interval] 

𝐹𝑢𝑧𝑧𝑦 𝑅𝐷 0.2580 0.1012 0.0110 0.0597 0.4564 

𝐹𝑢𝑧𝑧𝑦 𝑅𝐷_50 0.2633 0.1502 0.0800 -0.0310 0.5576 

𝐹𝑢𝑧𝑧𝑦 𝑅𝐷_55 0.2867 0.1341 0.0330 0.0238 0.5496 

𝐹𝑢𝑧𝑧𝑦 𝑅𝐷_60 0.2831 0.1413 0.0450 0.0062 0.5600 

𝐹𝑢𝑧𝑧𝑦 𝑅𝐷_65 0.2706 0.1359 0.0460 0.0042 0.5370 

𝐹𝑢𝑧𝑧𝑦 𝑅𝐷_70 0.2568 0.1132 0.0230 0.0350 0.4786 

𝐹𝑢𝑧𝑧𝑦 𝑅𝐷_75 0.2477 0.1065 0.0200 0.0390 0.4564 

𝐹𝑢𝑧𝑧𝑦 𝑅𝐷_80 0.2396 0.1209 0.0480 0.0026 0.4767 

𝐹𝑢𝑧𝑧𝑦 𝑅𝐷_85 0.2574 0.1110 0.0200 0.0399 0.4748 

𝐹𝑢𝑧𝑧𝑦 𝑅𝐷_90 0.2442 0.1084 0.0240 0.0317 0.4567 

𝐹𝑢𝑧𝑧𝑦 𝑅𝐷_95 0.2603 0.0921 0.0050 0.0798 0.4409 

𝐹𝑢𝑧𝑧𝑦 𝑅𝐷_105 0.2663 0.1046 0.0110 0.0613 0.4714 

𝐹𝑢𝑧𝑧𝑦 𝑅𝐷_110 0.2683 0.1021 0.0090 0.0682 0.4683 

𝐹𝑢𝑧𝑧𝑦 𝑅𝐷_115 0.2671 0.0995 0.0070 0.0721 0.4621 

𝐹𝑢𝑧𝑧𝑦 𝑅𝐷_120 0.2558 0.0936 0.0060 0.0723 0.4393 

𝐹𝑢𝑧𝑧𝑦 𝑅𝐷_125 0.2547 0.0914 0.0050 0.0756 0.4338 

𝐹𝑢𝑧𝑧𝑦 𝑅𝐷_130 0.2649 0.0923 0.0040 0.0840 0.4457 

𝐹𝑢𝑧𝑧𝑦 𝑅𝐷_135 0.2600 0.0872 0.0030 0.0890 0.4309 

𝐹𝑢𝑧𝑧𝑦 𝑅𝐷_140 0.2791 0.0834 0.0010 0.1155 0.4426 

𝐹𝑢𝑧𝑧𝑦 𝑅𝐷_145 0.2651 0.0838 0.0020 0.1009 0.4292 

𝐹𝑢𝑧𝑧𝑦 𝑅𝐷_150 0.2764 0.0683 0.0000 0.1425 0.4103 

𝐹𝑢𝑧𝑧𝑦 𝑅𝐷_155 0.2777 0.0831 0.0010 0.1149 0.4406 

𝐹𝑢𝑧𝑧𝑦 𝑅𝐷_160 0.2707 0.0793 0.0010 0.1153 0.4262 

𝐹𝑢𝑧𝑧𝑦 𝑅𝐷_165 0.2797 0.0801 0.0000 0.1226 0.4367 

𝐹𝑢𝑧𝑧𝑦 𝑅𝐷_170 0.2727 0.0767 0.0000 0.1224 0.4230 

𝐹𝑢𝑧𝑧𝑦 𝑅𝐷_175 0.2844 0.0735 0.0000 0.1404 0.4285 

𝐹𝑢𝑧𝑧𝑦 𝑅𝐷_180 0.2862 0.0723 0.0000 0.1445 0.4280 

𝐹𝑢𝑧𝑧𝑦 𝑅𝐷_185 0.2774 0.0733 0.0000 0.1338 0.4210 

𝐹𝑢𝑧𝑧𝑦 𝑅𝐷_190 0.2802 0.0722 0.0000 0.1387 0.4216 

𝐹𝑢𝑧𝑧𝑦 𝑅𝐷_195 0.2907 0.0690 0.0000 0.1554 0.4260 

𝐹𝑢𝑧𝑧𝑦 𝑅𝐷_200 0.2909 0.0680 0.0000 0.1576 0.4242 

Notes: (i) Each row is a separate non-parametric regression discontinuity point estimate. (ii) the first row reports the 

Fuzzy RD estimate at the CV-optimal bandwidth   (iii) Fuzzy non-parametric RD treatment effect is estimated for 50 

to 200 percent  of the CV-optimal bandwidth (half and twice the optimal bandwidth) with a 5 percentage points 

incremental. (iv) Bootstrapped standard error are based on 120 simulations to construct the 95% CI. 
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APPENDIX D: 

 

Table D1 

Fuzzy RD estimates -Self-reported health at different bandwidth - All sample at cutoff age 65  

Regression discontinuity robustness of bandwidth choice 

 

RD 

estimates 

Bootstrap 

Std. Err. 
P-value [95% Conf. Interval] 

𝐹𝑢𝑧𝑧𝑦 𝑅𝐷 -0.1331 0.0248 0.0000 -0.1818 -0.0845 

𝐹𝑢𝑧𝑧𝑦 𝑅𝐷_50 -0.1346 0.0397 0.0010 -0.2123 -0.0568 

𝐹𝑢𝑧𝑧𝑦 𝑅𝐷_55 -0.1450 0.0340 0.0000 -0.2116 -0.0784 

𝐹𝑢𝑧𝑧𝑦 𝑅𝐷_60 -0.1251 0.0283 0.0000 -0.1806 -0.0697 

𝐹𝑢𝑧𝑧𝑦 𝑅𝐷_65 -0.1257 0.0271 0.0000 -0.1788 -0.0725 

𝐹𝑢𝑧𝑧𝑦 𝑅𝐷_70 -0.1419 0.0293 0.0000 -0.1993 -0.0845 

𝐹𝑢𝑧𝑧𝑦 𝑅𝐷_75 -0.1281 0.0252 0.0000 -0.1775 -0.0787 

𝐹𝑢𝑧𝑧𝑦 𝑅𝐷_80 -0.1443 0.0271 0.0000 -0.1975 -0.0911 

𝐹𝑢𝑧𝑧𝑦 𝑅𝐷_85 -0.1292 0.0237 0.0000 -0.1756 -0.0828 

𝐹𝑢𝑧𝑧𝑦 𝑅𝐷_90 -0.1401 0.0253 0.0000 -0.1897 -0.0904 

𝐹𝑢𝑧𝑧𝑦 𝑅𝐷_95 -0.1244 0.0223 0.0000 -0.1682 -0.0807 

𝐹𝑢𝑧𝑧𝑦 𝑅𝐷_105 -0.1206 0.0211 0.0000 -0.1620 -0.0791 

𝐹𝑢𝑧𝑧𝑦 𝑅𝐷_110 -0.1193 0.0206 0.0000 -0.1597 -0.0789 

𝐹𝑢𝑧𝑧𝑦 𝑅𝐷_115 -0.1276 0.0227 0.0000 -0.1720 -0.0832 

𝐹𝑢𝑧𝑧𝑦 𝑅𝐷_120 -0.1275 0.0213 0.0000 -0.1691 -0.0858 

𝐹𝑢𝑧𝑧𝑦 𝑅𝐷_125 -0.1181 0.0192 0.0000 -0.1558 -0.0803 

𝐹𝑢𝑧𝑧𝑦 𝑅𝐷_130 -0.1263 0.0210 0.0000 -0.1674 -0.0851 

𝐹𝑢𝑧𝑧𝑦 𝑅𝐷_135 -0.1197 0.0185 0.0000 -0.1560 -0.0835 

𝐹𝑢𝑧𝑧𝑦 𝑅𝐷_140 -0.1292 0.0164 0.0000 -0.1614 -0.0970 

𝐹𝑢𝑧𝑧𝑦 𝑅𝐷_145 -0.1299 0.0190 0.0000 -0.1672 -0.0926 

𝐹𝑢𝑧𝑧𝑦 𝑅𝐷_150 -0.1307 0.0158 0.0000 -0.1616 -0.0997 

𝐹𝑢𝑧𝑧𝑦 𝑅𝐷_155 -0.1297 0.0189 0.0000 -0.1667 -0.0927 

𝐹𝑢𝑧𝑧𝑦 𝑅𝐷_160 -0.1318 0.0152 0.0000 -0.1615 -0.1021 

𝐹𝑢𝑧𝑧𝑦 𝑅𝐷_165 -0.1322 0.0149 0.0000 -0.1613 -0.1031 

𝐹𝑢𝑧𝑧𝑦 𝑅𝐷_170 -0.1248 0.0164 0.0000 -0.1569 -0.0927 

𝐹𝑢𝑧𝑧𝑦 𝑅𝐷_175 -0.1328 0.0171 0.0000 -0.1663 -0.0994 

𝐹𝑢𝑧𝑧𝑦 𝑅𝐷_180 -0.1335 0.0140 0.0000 -0.1610 -0.1060 

𝐹𝑢𝑧𝑧𝑦 𝑅𝐷_185 -0.1340 0.0165 0.0000 -0.1663 -0.1017 

𝐹𝑢𝑧𝑧𝑦 𝑅𝐷_190 -0.1344 0.0135 0.0000 -0.1609 -0.1080 

𝐹𝑢𝑧𝑧𝑦 𝑅𝐷_195 -0.1345 0.0164 0.0000 -0.1667 -0.1024 

𝐹𝑢𝑧𝑧𝑦 𝑅𝐷_200 -0.1288 0.0149 0.0000 -0.1581 -0.0996 

Notes: (i) Each row is a separate non-parametric regression discontinuity point estimate. (ii) the first row reports the 

Fuzzy RD estimate at the CV-optimal bandwidth   (iii) Fuzzy non-parametric RD treatment effect is estimated for 50 

to 200 percent of the CV-optimal bandwidth (half and twice the optimal bandwidth) with a 5 percentage points 

incremental. (iv) Bootstrapped standard error are based on 120 simulations to construct the 95% CI. 
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Table D2 

Fuzzy RD estimates -Self-reported health at different bandwidth – females only  at cutoff age 65  

Regression discontinuity robustness of bandwidth choice 

 

RD  

estimates 

Bootstrap  

Std. Err. 
P-value [95% Conf. Interval] 

𝐹𝑢𝑧𝑧𝑦 𝑅𝐷 -0.0876 0.0311 0.0050 -0.1485 -0.0267 

𝐹𝑢𝑧𝑧𝑦 𝑅𝐷_50 -0.0912 0.0556 0.1010 -0.2002 0.0179 

𝐹𝑢𝑧𝑧𝑦 𝑅𝐷_55 -0.0884 0.0475 0.0630 -0.1816 0.0048 

𝐹𝑢𝑧𝑧𝑦 𝑅𝐷_60 -0.0843 0.0493 0.0870 -0.1809 0.0123 

𝐹𝑢𝑧𝑧𝑦 𝑅𝐷_65 -0.0810 0.0415 0.0510 -0.1623 0.0003 

𝐹𝑢𝑧𝑧𝑦 𝑅𝐷_70 -0.0808 0.0391 0.0390 -0.1574 -0.0042 

𝐹𝑢𝑧𝑧𝑦 𝑅𝐷_75 -0.0818 0.0426 0.0540 -0.1653 0.0016 

𝐹𝑢𝑧𝑧𝑦 𝑅𝐷_80 -0.0870 0.0423 0.0400 -0.1699 -0.0040 

𝐹𝑢𝑧𝑧𝑦 𝑅𝐷_85 -0.0879 0.0340 0.0100 -0.1545 -0.0212 

𝐹𝑢𝑧𝑧𝑦 𝑅𝐷_90 -0.0808 0.0343 0.0190 -0.1481 -0.0136 

𝐹𝑢𝑧𝑧𝑦 𝑅𝐷_95 -0.0898 0.0323 0.0050 -0.1531 -0.0266 

𝐹𝑢𝑧𝑧𝑦 𝑅𝐷_105 -0.0792 0.0315 0.0120 -0.1409 -0.0175 

𝐹𝑢𝑧𝑧𝑦 𝑅𝐷_110 -0.0905 0.0342 0.0080 -0.1574 -0.0235 

𝐹𝑢𝑧𝑧𝑦 𝑅𝐷_115 -0.0799 0.0298 0.0070 -0.1384 -0.0214 

𝐹𝑢𝑧𝑧𝑦 𝑅𝐷_120 -0.0877 0.0316 0.0050 -0.1496 -0.0258 

𝐹𝑢𝑧𝑧𝑦 𝑅𝐷_125 -0.0876 0.0307 0.0040 -0.1479 -0.0273 

𝐹𝑢𝑧𝑧𝑦 𝑅𝐷_130 -0.0879 0.0300 0.0030 -0.1466 -0.0291 

𝐹𝑢𝑧𝑧𝑦 𝑅𝐷_135 -0.0891 0.0293 0.0020 -0.1465 -0.0317 

𝐹𝑢𝑧𝑧𝑦 𝑅𝐷_140 -0.0907 0.0241 0.0000 -0.1380 -0.0435 

𝐹𝑢𝑧𝑧𝑦 𝑅𝐷_145 -0.0861 0.0261 0.0010 -0.1373 -0.0348 

𝐹𝑢𝑧𝑧𝑦 𝑅𝐷_150 -0.0925 0.0279 0.0010 -0.1471 -0.0379 

𝐹𝑢𝑧𝑧𝑦 𝑅𝐷_155 -0.0940 0.0273 0.0010 -0.1475 -0.0405 

𝐹𝑢𝑧𝑧𝑦 𝑅𝐷_160 -0.0956 0.0268 0.0000 -0.1481 -0.0431 

𝐹𝑢𝑧𝑧𝑦 𝑅𝐷_165 -0.1001 0.0259 0.0000 -0.1509 -0.0492 

𝐹𝑢𝑧𝑧𝑦 𝑅𝐷_170 -0.1021 0.0255 0.0000 -0.1520 -0.0521 

𝐹𝑢𝑧𝑧𝑦 𝑅𝐷_175 -0.1037 0.0251 0.0000 -0.1528 -0.0546 

𝐹𝑢𝑧𝑧𝑦 𝑅𝐷_180 -0.1056 0.0246 0.0000 -0.1538 -0.0573 

𝐹𝑢𝑧𝑧𝑦 𝑅𝐷_185 -0.1071 0.0242 0.0000 -0.1546 -0.0597 

𝐹𝑢𝑧𝑧𝑦 𝑅𝐷_190 -0.1084 0.0199 0.0000 -0.1474 -0.0693 

𝐹𝑢𝑧𝑧𝑦 𝑅𝐷_195 -0.1099 0.0234 0.0000 -0.1558 -0.0640 

𝐹𝑢𝑧𝑧𝑦 𝑅𝐷_200 -0.1053 0.0218 0.0000 -0.1481 -0.0625 

Notes: (i) Each row is a separate non-parametric regression discontinuity point estimate. (ii) the first row reports the 

Fuzzy RD estimate at the CV-optimal bandwidth   (iii) Fuzzy non-parametric RD treatment effect is estimated for 50 

to 200 percent of the CV-optimal bandwidth (half and twice the optimal bandwidth) with a 5 percentage points 

incremental. (iv) Bootstrapped standard error are based on 120 simulations to construct the 95% CI. 

 

 

 

 

 



156 

 

 

Table D3: 

Fuzzy RD estimates -Self-reported health at different bandwidth – males only at cutoff age 65  

Regression discontinuity robustness of bandwidth choice 

ghealth 

RD  

estimates 

Bootstrap 

 Std. Err. 
P-value [95% Conf.Interval] 

𝐹𝑢𝑧𝑧𝑦 𝑅𝐷 -0.1738 0.0334 0.0000 -0.2392 -0.1084 

𝐹𝑢𝑧𝑧𝑦 𝑅𝐷_50 -0.1931 0.0517 0.0000 -0.2944 -0.0917 

𝐹𝑢𝑧𝑧𝑦 𝑅𝐷_55 -0.2097 0.0419 0.0000 -0.2919 -0.1275 

𝐹𝑢𝑧𝑧𝑦 𝑅𝐷_60 -0.1906 0.0457 0.0000 -0.2802 -0.1010 

𝐹𝑢𝑧𝑧𝑦 𝑅𝐷_65 -0.2066 0.0399 0.0000 -0.2847 -0.1284 

𝐹𝑢𝑧𝑧𝑦 𝑅𝐷_70 -0.1922 0.0415 0.0000 -0.2736 -0.1108 

𝐹𝑢𝑧𝑧𝑦 𝑅𝐷_75 -0.2032 0.0370 0.0000 -0.2756 -0.1308 

𝐹𝑢𝑧𝑧𝑦 𝑅𝐷_80 -0.1797 0.0323 0.0000 -0.2429 -0.1164 

𝐹𝑢𝑧𝑧𝑦 𝑅𝐷_85 -0.1920 0.0345 0.0000 -0.2596 -0.1244 

𝐹𝑢𝑧𝑧𝑦 𝑅𝐷_90 -0.1694 0.0304 0.0000 -0.2290 -0.1098 

𝐹𝑢𝑧𝑧𝑦 𝑅𝐷_95 -0.1803 0.0323 0.0000 -0.2436 -0.1171 

𝐹𝑢𝑧𝑧𝑦 𝑅𝐷_105 -0.1739 0.0271 0.0000 -0.2271 -0.1208 

𝐹𝑢𝑧𝑧𝑦 𝑅𝐷_110 -0.1717 0.0298 0.0000 -0.2301 -0.1133 

𝐹𝑢𝑧𝑧𝑦 𝑅𝐷_115 -0.1586 0.0270 0.0000 -0.2114 -0.1057 

𝐹𝑢𝑧𝑧𝑦 𝑅𝐷_120 -0.1699 0.0284 0.0000 -0.2255 -0.1143 

𝐹𝑢𝑧𝑧𝑦 𝑅𝐷_125 -0.1687 0.0277 0.0000 -0.2230 -0.1143 

𝐹𝑢𝑧𝑧𝑦 𝑅𝐷_130 -0.1676 0.0235 0.0000 -0.2136 -0.1215 

𝐹𝑢𝑧𝑧𝑦 𝑅𝐷_135 -0.1667 0.0279 0.0000 -0.2214 -0.1120 

𝐹𝑢𝑧𝑧𝑦 𝑅𝐷_140 -0.1654 0.0225 0.0000 -0.2095 -0.1212 

𝐹𝑢𝑧𝑧𝑦 𝑅𝐷_145 -0.1636 0.0256 0.0000 -0.2138 -0.1134 

𝐹𝑢𝑧𝑧𝑦 𝑅𝐷_150 -0.1619 0.0251 0.0000 -0.2112 -0.1126 

𝐹𝑢𝑧𝑧𝑦 𝑅𝐷_155 -0.1616 0.0258 0.0000 -0.2121 -0.1111 

𝐹𝑢𝑧𝑧𝑦 𝑅𝐷_160 -0.1607 0.0205 0.0000 -0.2009 -0.1204 

𝐹𝑢𝑧𝑧𝑦 𝑅𝐷_165 -0.1606 0.0201 0.0000 -0.2001 -0.1211 

𝐹𝑢𝑧𝑧𝑦 𝑅𝐷_170 -0.1525 0.0222 0.0000 -0.1959 -0.1090 

𝐹𝑢𝑧𝑧𝑦 𝑅𝐷_175 -0.1531 0.0218 0.0000 -0.1958 -0.1103 

𝐹𝑢𝑧𝑧𝑦 𝑅𝐷_180 -0.1538 0.0215 0.0000 -0.1960 -0.1117 

𝐹𝑢𝑧𝑧𝑦 𝑅𝐷_185 -0.1626 0.0223 0.0000 -0.2063 -0.1189 

𝐹𝑢𝑧𝑧𝑦 𝑅𝐷_190 -0.1634 0.0182 0.0000 -0.1990 -0.1278 

𝐹𝑢𝑧𝑧𝑦 𝑅𝐷_195 -0.1558 0.0206 0.0000 -0.1962 -0.1154 

𝐹𝑢𝑧𝑧𝑦 𝑅𝐷_200 -0.1560 0.0204 0.0000 -0.1959 -0.1162 

Notes: (i) Each row is a separate non-parametric regression discontinuity point estimate. (ii) the first row reports the 

Fuzzy RD estimate at the CV-optimal bandwidth   (iii) Fuzzy non-parametric RD treatment effect is estimated for 50 

to 200 percent of the CV-optimal bandwidth (half and twice the optimal bandwidth) with a 5 percentage points 

incremental. (iv) Bootstrapped standard error are based on 120 simulations to construct the 95% CI. 

 

 

 

 

 



157 

 

 

Table D4: 

Fuzzy RD estimates -Self-reported health at different bandwidth – low-educated only  at cutoff age 65  

Regression discontinuity robustness of bandwidth choice 

 

RD 

 estimates 

Bootstrap  

Std. Err. 
P-value [95% Conf. Interval] 

𝐹𝑢𝑧𝑧𝑦 𝑅𝐷 -0.1507 0.0294 0.0000 -0.2084 -0.0930 

𝐹𝑢𝑧𝑧𝑦 𝑅𝐷_50 -0.1638 0.0532 0.0020 -0.2680 -0.0595 

𝐹𝑢𝑧𝑧𝑦 𝑅𝐷_55 -0.1414 0.0443 0.0010 -0.2282 -0.0545 

𝐹𝑢𝑧𝑧𝑦 𝑅𝐷_60 -0.1580 0.0471 0.0010 -0.2503 -0.0657 

𝐹𝑢𝑧𝑧𝑦 𝑅𝐷_65 -0.1597 0.0395 0.0000 -0.2370 -0.0824 

𝐹𝑢𝑧𝑧𝑦 𝑅𝐷_70 -0.1475 0.0388 0.0000 -0.2234 -0.0715 

𝐹𝑢𝑧𝑧𝑦 𝑅𝐷_75 -0.1633 0.0412 0.0000 -0.2440 -0.0826 

𝐹𝑢𝑧𝑧𝑦 𝑅𝐷_80 -0.1467 0.0362 0.0000 -0.2176 -0.0758 

𝐹𝑢𝑧𝑧𝑦 𝑅𝐷_85 -0.1574 0.0382 0.0000 -0.2322 -0.0825 

𝐹𝑢𝑧𝑧𝑦 𝑅𝐷_90 -0.1420 0.0339 0.0000 -0.2085 -0.0756 

𝐹𝑢𝑧𝑧𝑦 𝑅𝐷_95 -0.1525 0.0356 0.0000 -0.2223 -0.0827 

𝐹𝑢𝑧𝑧𝑦 𝑅𝐷_105 -0.1494 0.0286 0.0000 -0.2054 -0.0935 

𝐹𝑢𝑧𝑧𝑦 𝑅𝐷_110 -0.1496 0.0326 0.0000 -0.2136 -0.0856 

𝐹𝑢𝑧𝑧𝑦 𝑅𝐷_115 -0.1485 0.0316 0.0000 -0.2105 -0.0866 

𝐹𝑢𝑧𝑧𝑦 𝑅𝐷_120 -0.1480 0.0308 0.0000 -0.2083 -0.0877 

𝐹𝑢𝑧𝑧𝑦 𝑅𝐷_125 -0.1494 0.0301 0.0000 -0.2084 -0.0903 

𝐹𝑢𝑧𝑧𝑦 𝑅𝐷_130 -0.1391 0.0276 0.0000 -0.1931 -0.0850 

𝐹𝑢𝑧𝑧𝑦 𝑅𝐷_135 -0.1396 0.0270 0.0000 -0.1925 -0.0866 

𝐹𝑢𝑧𝑧𝑦 𝑅𝐷_140 -0.1396 0.0265 0.0000 -0.1915 -0.0877 

𝐹𝑢𝑧𝑧𝑦 𝑅𝐷_145 -0.1477 0.0232 0.0000 -0.1932 -0.1023 

𝐹𝑢𝑧𝑧𝑦 𝑅𝐷_150 -0.1391 0.0255 0.0000 -0.1891 -0.0891 

𝐹𝑢𝑧𝑧𝑦 𝑅𝐷_155 -0.1482 0.0265 0.0000 -0.2001 -0.0963 

𝐹𝑢𝑧𝑧𝑦 𝑅𝐷_160 -0.1467 0.0259 0.0000 -0.1975 -0.0959 

𝐹𝑢𝑧𝑧𝑦 𝑅𝐷_165 -0.1396 0.0242 0.0000 -0.1870 -0.0922 

𝐹𝑢𝑧𝑧𝑦 𝑅𝐷_170 -0.1490 0.0250 0.0000 -0.1979 -0.1000 

𝐹𝑢𝑧𝑧𝑦 𝑅𝐷_175 -0.1490 0.0245 0.0000 -0.1971 -0.1010 

𝐹𝑢𝑧𝑧𝑦 𝑅𝐷_180 -0.1470 0.0240 0.0000 -0.1940 -0.0999 

𝐹𝑢𝑧𝑧𝑦 𝑅𝐷_185 -0.1496 0.0237 0.0000 -0.1961 -0.1031 

𝐹𝑢𝑧𝑧𝑦 𝑅𝐷_190 -0.1473 0.0232 0.0000 -0.1928 -0.1018 

𝐹𝑢𝑧𝑧𝑦 𝑅𝐷_195 -0.1413 0.0219 0.0000 -0.1842 -0.0985 

𝐹𝑢𝑧𝑧𝑦 𝑅𝐷_200 -0.1493 0.0226 0.0000 -0.1936 -0.1050 
Notes: (i) Each row is a separate non-parametric regression discontinuity point estimate. (ii) the first row reports the Fuzzy RD 

estimate at the CV-optimal bandwidth   (iii) Fuzzy non-parametric RD treatment effect is estimated for 50 to 200 percent of the 

CV-optimal bandwidth (half and twice the optimal bandwidth) with a 5 percentage points incremental. (iv) Bootstrapped standard 

error are based on 120 simulations to construct the 95% CI. 
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Table D5: 

Fuzzy RD estimates -Self-reported health at different bandwidth – high-educated only  at cutoff age 65  

Regression discontinuity robustness of bandwidth choice 

 

RD  

estimates 

Bootstrap 

 Std. Err. 
P-value [95% Conf. Interval] 

𝐹𝑢𝑧𝑧𝑦 𝑅𝐷 -0.0669 0.0275 0.0150 -0.1209 -0.0130 

𝐹𝑢𝑧𝑧𝑦 𝑅𝐷_50 -0.0578 0.0450 0.1990 -0.1460 0.0304 

𝐹𝑢𝑧𝑧𝑦 𝑅𝐷_55 -0.0791 0.0354 0.0250 -0.1484 -0.0097 

𝐹𝑢𝑧𝑧𝑦 𝑅𝐷_60 -0.0708 0.0326 0.0300 -0.1346 -0.0069 

𝐹𝑢𝑧𝑧𝑦 𝑅𝐷_65 -0.0713 0.0313 0.0230 -0.1327 -0.0100 

𝐹𝑢𝑧𝑧𝑦 𝑅𝐷_70 -0.0721 0.0302 0.0170 -0.1312 -0.0129 

𝐹𝑢𝑧𝑧𝑦 𝑅𝐷_75 -0.0761 0.0344 0.0270 -0.1436 -0.0086 

𝐹𝑢𝑧𝑧𝑦 𝑅𝐷_80 -0.0785 0.0274 0.0040 -0.1322 -0.0248 

𝐹𝑢𝑧𝑧𝑦 𝑅𝐷_85 -0.0746 0.0304 0.0140 -0.1341 -0.0151 

𝐹𝑢𝑧𝑧𝑦 𝑅𝐷_90 -0.0646 0.0265 0.0150 -0.1167 -0.0126 

𝐹𝑢𝑧𝑧𝑦 𝑅𝐷_95 -0.0686 0.0297 0.0210 -0.1269 -0.0104 

𝐹𝑢𝑧𝑧𝑦 𝑅𝐷_105 -0.0643 0.0279 0.0210 -0.1190 -0.0095 

𝐹𝑢𝑧𝑧𝑦 𝑅𝐷_110 -0.0592 0.0239 0.0130 -0.1061 -0.0123 

𝐹𝑢𝑧𝑧𝑦 𝑅𝐷_115 -0.0651 0.0218 0.0030 -0.1079 -0.0223 

𝐹𝑢𝑧𝑧𝑦 𝑅𝐷_120 -0.0611 0.0230 0.0080 -0.1061 -0.0161 

𝐹𝑢𝑧𝑧𝑦 𝑅𝐷_125 -0.0629 0.0225 0.0050 -0.1071 -0.0188 

𝐹𝑢𝑧𝑧𝑦 𝑅𝐷_130 -0.0696 0.0238 0.0030 -0.1162 -0.0231 

𝐹𝑢𝑧𝑧𝑦 𝑅𝐷_135 -0.0711 0.0194 0.0000 -0.1092 -0.0330 

𝐹𝑢𝑧𝑧𝑦 𝑅𝐷_140 -0.0724 0.0228 0.0010 -0.1171 -0.0278 

𝐹𝑢𝑧𝑧𝑦 𝑅𝐷_145 -0.0739 0.0187 0.0000 -0.1106 -0.0372 

𝐹𝑢𝑧𝑧𝑦 𝑅𝐷_150 -0.0702 0.0205 0.0010 -0.1105 -0.0299 

𝐹𝑢𝑧𝑧𝑦 𝑅𝐷_155 -0.0764 0.0215 0.0000 -0.1185 -0.0342 

𝐹𝑢𝑧𝑧𝑦 𝑅𝐷_160 -0.0753 0.0218 0.0010 -0.1180 -0.0327 

𝐹𝑢𝑧𝑧𝑦 𝑅𝐷_165 -0.0745 0.0195 0.0000 -0.1128 -0.0362 

𝐹𝑢𝑧𝑧𝑦 𝑅𝐷_170 -0.0804 0.0204 0.0000 -0.1203 -0.0405 

𝐹𝑢𝑧𝑧𝑦 𝑅𝐷_175 -0.0769 0.0189 0.0000 -0.1139 -0.0399 

𝐹𝑢𝑧𝑧𝑦 𝑅𝐷_180 -0.0782 0.0186 0.0000 -0.1147 -0.0418 

𝐹𝑢𝑧𝑧𝑦 𝑅𝐷_185 -0.0844 0.0158 0.0000 -0.1152 -0.0535 

𝐹𝑢𝑧𝑧𝑦 𝑅𝐷_190 -0.0858 0.0155 0.0000 -0.1161 -0.0554 

𝐹𝑢𝑧𝑧𝑦 𝑅𝐷_195 -0.0826 0.0178 0.0000 -0.1175 -0.0477 

𝐹𝑢𝑧𝑧𝑦 𝑅𝐷_200 -0.0841 0.0176 0.0000 -0.1185 -0.0496 

Notes: (i) Each row is a separate non-parametric regression discontinuity point estimate. (ii) the first row reports the 

Fuzzy RD estimate at the CV-optimal bandwidth   (iii) Fuzzy non-parametric RD treatment effect is estimated for 50 

to 200 percent of the CV-optimal bandwidth (half and twice the optimal bandwidth) with a 5 percentage points 

incremental. (iv) Bootstrapped standard error are based on 120 simulations to construct the 95% CI. 
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Table D6: 

 

Fuzzy RD estimates -Self-reported health at different bandwidth – low income only at cutoff age 65  

Regression discontinuity robustness of bandwidth choice 

 

RD 

estimates 

Bootstrap 

Std. Err. 
P-value [95% Conf. Interval] 

𝐹𝑢𝑧𝑧𝑦 𝑅𝐷 -0.1114 0.0281 0.0000 -0.1665 -0.0564 

𝐹𝑢𝑧𝑧𝑦 𝑅𝐷_50 -0.1157 0.0409 0.0050 -0.1959 -0.0354 

𝐹𝑢𝑧𝑧𝑦 𝑅𝐷_55 -0.1361 0.0392 0.0010 -0.2129 -0.0592 

𝐹𝑢𝑧𝑧𝑦 𝑅𝐷_60 -0.1317 0.0347 0.0000 -0.1996 -0.0637 

𝐹𝑢𝑧𝑧𝑦 𝑅𝐷_65 -0.1277 0.0356 0.0000 -0.1974 -0.0580 

𝐹𝑢𝑧𝑧𝑦 𝑅𝐷_70 -0.1270 0.0342 0.0000 -0.1939 -0.0601 

𝐹𝑢𝑧𝑧𝑦 𝑅𝐷_75 -0.1137 0.0320 0.0000 -0.1765 -0.0509 

𝐹𝑢𝑧𝑧𝑦 𝑅𝐷_80 -0.1165 0.0298 0.0000 -0.1749 -0.0581 

𝐹𝑢𝑧𝑧𝑦 𝑅𝐷_85 -0.1210 0.0308 0.0000 -0.1814 -0.0606 

𝐹𝑢𝑧𝑧𝑦 𝑅𝐷_90 -0.1177 0.0273 0.0000 -0.1713 -0.0641 

𝐹𝑢𝑧𝑧𝑦 𝑅𝐷_95 -0.1141 0.0258 0.0000 -0.1646 -0.0636 

𝐹𝑢𝑧𝑧𝑦 𝑅𝐷_105 -0.1095 0.0273 0.0000 -0.1629 -0.0561 

𝐹𝑢𝑧𝑧𝑦 𝑅𝐷_110 -0.1021 0.0252 0.0000 -0.1515 -0.0527 

𝐹𝑢𝑧𝑧𝑦 𝑅𝐷_115 -0.1067 0.0259 0.0000 -0.1574 -0.0560 

𝐹𝑢𝑧𝑧𝑦 𝑅𝐷_120 -0.1024 0.0244 0.0000 -0.1501 -0.0546 

𝐹𝑢𝑧𝑧𝑦 𝑅𝐷_125 -0.1022 0.0236 0.0000 -0.1485 -0.0560 

𝐹𝑢𝑧𝑧𝑦 𝑅𝐷_130 -0.1028 0.0233 0.0000 -0.1484 -0.0572 

𝐹𝑢𝑧𝑧𝑦 𝑅𝐷_135 -0.1035 0.0228 0.0000 -0.1482 -0.0589 

𝐹𝑢𝑧𝑧𝑦 𝑅𝐷_140 -0.1049 0.0223 0.0000 -0.1486 -0.0612 

𝐹𝑢𝑧𝑧𝑦 𝑅𝐷_145 -0.1102 0.0198 0.0000 -0.1490 -0.0714 

𝐹𝑢𝑧𝑧𝑦 𝑅𝐷_150 -0.1105 0.0224 0.0000 -0.1544 -0.0665 

𝐹𝑢𝑧𝑧𝑦 𝑅𝐷_155 -0.1067 0.0212 0.0000 -0.1483 -0.0652 

𝐹𝑢𝑧𝑧𝑦 𝑅𝐷_160 -0.1069 0.0208 0.0000 -0.1477 -0.0661 

𝐹𝑢𝑧𝑧𝑦 𝑅𝐷_165 -0.1072 0.0205 0.0000 -0.1473 -0.0670 

𝐹𝑢𝑧𝑧𝑦 𝑅𝐷_170 -0.1076 0.0201 0.0000 -0.1471 -0.0682 

𝐹𝑢𝑧𝑧𝑦 𝑅𝐷_175 -0.1080 0.0198 0.0000 -0.1468 -0.0693 

𝐹𝑢𝑧𝑧𝑦 𝑅𝐷_180 -0.1096 0.0193 0.0000 -0.1475 -0.0718 

𝐹𝑢𝑧𝑧𝑦 𝑅𝐷_185 -0.1105 0.0190 0.0000 -0.1478 -0.0732 

𝐹𝑢𝑧𝑧𝑦 𝑅𝐷_190 -0.1115 0.0187 0.0000 -0.1483 -0.0748 

𝐹𝑢𝑧𝑧𝑦 𝑅𝐷_195 -0.1146 0.0163 0.0000 -0.1466 -0.0826 

𝐹𝑢𝑧𝑧𝑦 𝑅𝐷_200 -0.1154 0.0189 0.0000 -0.1524 -0.0784 

Notes: (i) Each row is a separate non-parametric regression discontinuity point estimate. (ii) the first row reports the 

Fuzzy RD estimate at the CV-optimal bandwidth   (iii) Fuzzy non-parametric RD treatment effect is estimated for 50 

to 200 percent of the CV-optimal bandwidth (half and twice the optimal bandwidth) with a 5 percentage points 

incremental. (iv) Bootstrapped standard error are based on 120 simulations to construct the 95% CI. 
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Appendix E: 

 

Table E1 

Fuzzy RD estimates -Drinking participation at different bandwidth - All sample at cutoff age 65  

Regression discontinuity robustness of bandwidth choice 

 

RD  

estimates 
Bootstrap  

Std. Err. P-value 
[95% Conf. Interval] 

𝐹𝑢𝑧𝑧𝑦 𝑅𝐷 -0.0914 0.0274 0.0010 -0.1450 -0.0378 

𝐹𝑢𝑧𝑧𝑦 𝑅𝐷_50 -0.1174 0.0480 0.0140 -0.2115 -0.0233 

𝐹𝑢𝑧𝑧𝑦 𝑅𝐷_55 -0.1323 0.0439 0.0030 -0.2184 -0.0462 

𝐹𝑢𝑧𝑧𝑦 𝑅𝐷_60 -0.1247 0.0414 0.0030 -0.2058 -0.0436 

𝐹𝑢𝑧𝑧𝑦 𝑅𝐷_65 -0.1060 0.0348 0.0020 -0.1743 -0.0377 

𝐹𝑢𝑧𝑧𝑦 𝑅𝐷_70 -0.1049 0.0377 0.0050 -0.1788 -0.0309 

𝐹𝑢𝑧𝑧𝑦 𝑅𝐷_75 -0.1152 0.0359 0.0010 -0.1856 -0.0448 

𝐹𝑢𝑧𝑧𝑦 𝑅𝐷_80 -0.1004 0.0311 0.0010 -0.1613 -0.0395 

𝐹𝑢𝑧𝑧𝑦 𝑅𝐷_85 -0.1075 0.0266 0.0000 -0.1597 -0.0553 

𝐹𝑢𝑧𝑧𝑦 𝑅𝐷_90 -0.1007 0.0319 0.0020 -0.1633 -0.0381 

𝐹𝑢𝑧𝑧𝑦 𝑅𝐷_95 -0.1001 0.0308 0.0010 -0.1606 -0.0397 

𝐹𝑢𝑧𝑧𝑦 𝑅𝐷_105 -0.0903 0.0266 0.0010 -0.1424 -0.0382 

𝐹𝑢𝑧𝑧𝑦 𝑅𝐷_110 -0.0967 0.0281 0.0010 -0.1518 -0.0417 

𝐹𝑢𝑧𝑧𝑦 𝑅𝐷_115 -0.0954 0.0219 0.0000 -0.1382 -0.0526 

𝐹𝑢𝑧𝑧𝑦 𝑅𝐷_120 -0.0943 0.0213 0.0000 -0.1361 -0.0526 

𝐹𝑢𝑧𝑧𝑦 𝑅𝐷_125 -0.0931 0.0207 0.0000 -0.1338 -0.0525 

𝐹𝑢𝑧𝑧𝑦 𝑅𝐷_130 -0.0919 0.0202 0.0000 -0.1316 -0.0523 

𝐹𝑢𝑧𝑧𝑦 𝑅𝐷_135 -0.0908 0.0247 0.0000 -0.1393 -0.0424 

𝐹𝑢𝑧𝑧𝑦 𝑅𝐷_140 -0.0899 0.0242 0.0000 -0.1373 -0.0425 

𝐹𝑢𝑧𝑧𝑦 𝑅𝐷_145 -0.0882 0.0235 0.0000 -0.1342 -0.0422 

𝐹𝑢𝑧𝑧𝑦 𝑅𝐷_150 -0.0823 0.0218 0.0000 -0.1250 -0.0396 

𝐹𝑢𝑧𝑧𝑦 𝑅𝐷_155 -0.0866 0.0225 0.0000 -0.1308 -0.0424 

𝐹𝑢𝑧𝑧𝑦 𝑅𝐷_160 -0.0816 0.0210 0.0000 -0.1228 -0.0404 

𝐹𝑢𝑧𝑧𝑦 𝑅𝐷_165 -0.0868 0.0172 0.0000 -0.1206 -0.0531 

𝐹𝑢𝑧𝑧𝑦 𝑅𝐷_170 -0.0867 0.0215 0.0000 -0.1288 -0.0445 

𝐹𝑢𝑧𝑧𝑦 𝑅𝐷_175 -0.0818 0.0200 0.0000 -0.1209 -0.0427 

𝐹𝑢𝑧𝑧𝑦 𝑅𝐷_180 -0.0819 0.0196 0.0000 -0.1203 -0.0434 

𝐹𝑢𝑧𝑧𝑦 𝑅𝐷_185 -0.0866 0.0204 0.0000 -0.1265 -0.0467 

𝐹𝑢𝑧𝑧𝑦 𝑅𝐷_190 -0.0869 0.0157 0.0000 -0.1176 -0.0562 

𝐹𝑢𝑧𝑧𝑦 𝑅𝐷_195 -0.0871 0.0154 0.0000 -0.1173 -0.0569 

𝐹𝑢𝑧𝑧𝑦 𝑅𝐷_200 -0.0869 0.0194 0.0000 -0.1248 -0.0490 

Notes: (i) Each row is a separate non-parametric regression discontinuity point estimate. (ii) the first row reports the 

Fuzzy RD estimate at the CV-optimal bandwidth   (iii) Fuzzy non-parametric RD treatment effect is estimated for 50 

to 200 percent of the CV-optimal bandwidth (half and twice the optimal bandwidth) with a 5 percentage points 

incremental. (iv) Bootstrapped standard error are based on 120 simulations to construct the 95% CI. 
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Table E2: 

 

Fuzzy RD estimates -Drinking participation at different bandwidth - females only at cutoff age 65  

Regression discontinuity robustness of bandwidth choice 

 

RD  

estimates 
Bootstrap 

 Std. Err. P-value 
[95% Conf. Interval] 

𝐹𝑢𝑧𝑧𝑦 𝑅𝐷 -0.0381 0.0406 0.3480 -0.1178 0.0415 

𝐹𝑢𝑧𝑧𝑦 𝑅𝐷_50 -0.1236 0.0650 0.0570 -0.2511 0.0038 

𝐹𝑢𝑧𝑧𝑦 𝑅𝐷_55 -0.0954 0.0532 0.0730 -0.1997 0.0090 

𝐹𝑢𝑧𝑧𝑦 𝑅𝐷_60 -0.0672 0.0567 0.2360 -0.1784 0.0439 

𝐹𝑢𝑧𝑧𝑦 𝑅𝐷_65 -0.0739 0.0478 0.1220 -0.1677 0.0198 

𝐹𝑢𝑧𝑧𝑦 𝑅𝐷_70 -0.0551 0.0509 0.2790 -0.1549 0.0447 

𝐹𝑢𝑧𝑧𝑦 𝑅𝐷_75 -0.0672 0.0490 0.1700 -0.1632 0.0289 

𝐹𝑢𝑧𝑧𝑦 𝑅𝐷_80 -0.0588 0.0470 0.2120 -0.1509 0.0334 

𝐹𝑢𝑧𝑧𝑦 𝑅𝐷_85 -0.0466 0.0410 0.2560 -0.1270 0.0339 

𝐹𝑢𝑧𝑧𝑦 𝑅𝐷_90 -0.0421 0.0397 0.2890 -0.1199 0.0357 

𝐹𝑢𝑧𝑧𝑦 𝑅𝐷_95 -0.0371 0.0414 0.3700 -0.1182 0.0440 

𝐹𝑢𝑧𝑧𝑦 𝑅𝐷_105 -0.0326 0.0362 0.3680 -0.1035 0.0384 

𝐹𝑢𝑧𝑧𝑦 𝑅𝐷_110 -0.0357 0.0375 0.3400 -0.1091 0.0377 

𝐹𝑢𝑧𝑧𝑦 𝑅𝐷_115 -0.0328 0.0370 0.3750 -0.1053 0.0397 

𝐹𝑢𝑧𝑧𝑦 𝑅𝐷_120 -0.0316 0.0360 0.3800 -0.1022 0.0390 

𝐹𝑢𝑧𝑧𝑦 𝑅𝐷_125 -0.0303 0.0351 0.3880 -0.0991 0.0385 

𝐹𝑢𝑧𝑧𝑦 𝑅𝐷_130 -0.0302 0.0343 0.3790 -0.0973 0.0370 

𝐹𝑢𝑧𝑧𝑦 𝑅𝐷_135 -0.0309 0.0335 0.3560 -0.0965 0.0347 

𝐹𝑢𝑧𝑧𝑦 𝑅𝐷_140 -0.0319 0.0259 0.2180 -0.0827 0.0188 

𝐹𝑢𝑧𝑧𝑦 𝑅𝐷_145 -0.0334 0.0320 0.2980 -0.0962 0.0295 

𝐹𝑢𝑧𝑧𝑦 𝑅𝐷_150 -0.0390 0.0307 0.2050 -0.0992 0.0213 

𝐹𝑢𝑧𝑧𝑦 𝑅𝐷_155 -0.0410 0.0301 0.1730 -0.1001 0.0180 

𝐹𝑢𝑧𝑧𝑦 𝑅𝐷_160 -0.0398 0.0239 0.0950 -0.0866 0.0070 

𝐹𝑢𝑧𝑧𝑦 𝑅𝐷_165 -0.0417 0.0296 0.1590 -0.0997 0.0163 

𝐹𝑢𝑧𝑧𝑦 𝑅𝐷_170 -0.0468 0.0284 0.0990 -0.1025 0.0088 

𝐹𝑢𝑧𝑧𝑦 𝑅𝐷_175 -0.0449 0.0285 0.1150 -0.1007 0.0109 

𝐹𝑢𝑧𝑧𝑦 𝑅𝐷_180 -0.0438 0.0265 0.0980 -0.0958 0.0082 

𝐹𝑢𝑧𝑧𝑦 𝑅𝐷_185 -0.0475 0.0274 0.0840 -0.1012 0.0063 

𝐹𝑢𝑧𝑧𝑦 𝑅𝐷_190 -0.0486 0.0269 0.0720 -0.1014 0.0043 

𝐹𝑢𝑧𝑧𝑦 𝑅𝐷_195 -0.0495 0.0265 0.0620 -0.1014 0.0025 

𝐹𝑢𝑧𝑧𝑦 𝑅𝐷_200 -0.0536 0.0257 0.0370 -0.1039 -0.0033 

Notes: (i) Each row is a separate non-parametric regression discontinuity point estimate. (ii) the first row reports the 

Fuzzy RD estimate at the CV-optimal bandwidth   (iii) Fuzzy non-parametric RD treatment effect is estimated for 50 

to 200 percent of the CV-optimal bandwidth (half and twice the optimal bandwidth) with a 5 percentage points 

incremental. (iv) Bootstrapped standard error are based on 120 simulations to construct the 95% CI. 

 

 

 

 



162 

 

 

Table E3: 

 

Fuzzy RD estimates -Drinking participation at different bandwidth - males only at cutoff age 65  

Regression discontinuity robustness of bandwidth choice 

 

RD  

estimates 
Bootstrap  

Std. Err. P-value 
[95% Conf. Interval] 

𝐹𝑢𝑧𝑧𝑦 𝑅𝐷 -0.1490 0.0397 0.0000 -0.2268 -0.0711 

𝐹𝑢𝑧𝑧𝑦 𝑅𝐷_50 -0.1398 0.0603 0.0210 -0.2581 -0.0215 

𝐹𝑢𝑧𝑧𝑦 𝑅𝐷_55 -0.1408 0.0568 0.0130 -0.2520 -0.0295 

𝐹𝑢𝑧𝑧𝑦 𝑅𝐷_60 -0.1295 0.0480 0.0070 -0.2235 -0.0355 

𝐹𝑢𝑧𝑧𝑦 𝑅𝐷_65 -0.1459 0.0525 0.0050 -0.2487 -0.0430 

𝐹𝑢𝑧𝑧𝑦 𝑅𝐷_70 -0.1509 0.0491 0.0020 -0.2471 -0.0546 

𝐹𝑢𝑧𝑧𝑦 𝑅𝐷_75 -0.1377 0.0425 0.0010 -0.2210 -0.0545 

𝐹𝑢𝑧𝑧𝑦 𝑅𝐷_80 -0.1539 0.0460 0.0010 -0.2440 -0.0639 

𝐹𝑢𝑧𝑧𝑦 𝑅𝐷_85 -0.1524 0.0355 0.0000 -0.2219 -0.0828 

𝐹𝑢𝑧𝑧𝑦 𝑅𝐷_90 -0.1522 0.0336 0.0000 -0.2180 -0.0864 

𝐹𝑢𝑧𝑧𝑦 𝑅𝐷_95 -0.1505 0.0326 0.0000 -0.2144 -0.0866 

𝐹𝑢𝑧𝑧𝑦 𝑅𝐷_105 -0.1468 0.0385 0.0000 -0.2222 -0.0713 

𝐹𝑢𝑧𝑧𝑦 𝑅𝐷_110 -0.1443 0.0374 0.0000 -0.2175 -0.0710 

𝐹𝑢𝑧𝑧𝑦 𝑅𝐷_115 -0.1403 0.0363 0.0000 -0.2115 -0.0692 

𝐹𝑢𝑧𝑧𝑦 𝑅𝐷_120 -0.1407 0.0351 0.0000 -0.2094 -0.0719 

𝐹𝑢𝑧𝑧𝑦 𝑅𝐷_125 -0.1368 0.0342 0.0000 -0.2039 -0.0697 

𝐹𝑢𝑧𝑧𝑦 𝑅𝐷_130 -0.1325 0.0335 0.0000 -0.1980 -0.0669 

𝐹𝑢𝑧𝑧𝑦 𝑅𝐷_135 -0.1283 0.0260 0.0000 -0.1792 -0.0774 

𝐹𝑢𝑧𝑧𝑦 𝑅𝐷_140 -0.1213 0.0321 0.0000 -0.1843 -0.0583 

𝐹𝑢𝑧𝑧𝑦 𝑅𝐷_145 -0.1191 0.0315 0.0000 -0.1808 -0.0574 

𝐹𝑢𝑧𝑧𝑦 𝑅𝐷_150 -0.1136 0.0289 0.0000 -0.1702 -0.0569 

𝐹𝑢𝑧𝑧𝑦 𝑅𝐷_155 -0.1166 0.0302 0.0000 -0.1757 -0.0574 

𝐹𝑢𝑧𝑧𝑦 𝑅𝐷_160 -0.1159 0.0296 0.0000 -0.1739 -0.0579 

𝐹𝑢𝑧𝑧𝑦 𝑅𝐷_165 -0.1110 0.0273 0.0000 -0.1645 -0.0575 

𝐹𝑢𝑧𝑧𝑦 𝑅𝐷_170 -0.1163 0.0224 0.0000 -0.1602 -0.0724 

𝐹𝑢𝑧𝑧𝑦 𝑅𝐷_175 -0.1148 0.0278 0.0000 -0.1693 -0.0603 

𝐹𝑢𝑧𝑧𝑦 𝑅𝐷_180 -0.1075 0.0260 0.0000 -0.1584 -0.0566 

𝐹𝑢𝑧𝑧𝑦 𝑅𝐷_185 -0.1061 0.0256 0.0000 -0.1562 -0.0560 

𝐹𝑢𝑧𝑧𝑦 𝑅𝐷_190 -0.1045 0.0252 0.0000 -0.1538 -0.0551 

𝐹𝑢𝑧𝑧𝑦 𝑅𝐷_195 -0.1084 0.0262 0.0000 -0.1597 -0.0571 

𝐹𝑢𝑧𝑧𝑦 𝑅𝐷_200 -0.1059 0.0199 0.0000 -0.1449 -0.0669 

Notes: (i) Each row is a separate non-parametric regression discontinuity point estimate. (ii) the first row reports the 

Fuzzy RD estimate at the CV-optimal bandwidth   (iii) Fuzzy non-parametric RD treatment effect is estimated for 50 

to 200 percent of the CV-optimal bandwidth (half and twice the optimal bandwidth) with a 5 percentage points 

incremental. (iv) Bootstrapped standard error are based on 120 simulations to construct the 95% CI. 
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Table E4: 

 

Fuzzy RD estimates -Drinking intensity at different bandwidth -All sample at cutoff age 65  

Regression discontinuity robustness of bandwidth choice 

 

RD  

estimates 
Bootstrap  

Std. Err. P-value 
[95% Conf. Interval] 

𝐹𝑢𝑧𝑧𝑦 𝑅𝐷 -0.0479 0.0191 0.0120 -0.0854 -0.0105 

𝐹𝑢𝑧𝑧𝑦 𝑅𝐷_50 -0.0679 0.0311 0.0290 -0.1289 -0.0069 

𝐹𝑢𝑧𝑧𝑦 𝑅𝐷_55 -0.0566 0.0322 0.0790 -0.1197 0.0066 

𝐹𝑢𝑧𝑧𝑦 𝑅𝐷_60 -0.0643 0.0346 0.0630 -0.1321 0.0034 

𝐹𝑢𝑧𝑧𝑦 𝑅𝐷_65 -0.0641 0.0327 0.0500 -0.1282 -0.0001 

𝐹𝑢𝑧𝑧𝑦 𝑅𝐷_70 -0.0618 0.0241 0.0100 -0.1091 -0.0145 

𝐹𝑢𝑧𝑧𝑦 𝑅𝐷_75 -0.0502 0.0290 0.0840 -0.1071 0.0067 

𝐹𝑢𝑧𝑧𝑦 𝑅𝐷_80 -0.0487 0.0256 0.0580 -0.0989 0.0016 

𝐹𝑢𝑧𝑧𝑦 𝑅𝐷_85 -0.0451 0.0267 0.0910 -0.0974 0.0072 

𝐹𝑢𝑧𝑧𝑦 𝑅𝐷_90 -0.0485 0.0264 0.0660 -0.1003 0.0033 

𝐹𝑢𝑧𝑧𝑦 𝑅𝐷_95 -0.0437 0.0248 0.0780 -0.0923 0.0049 

𝐹𝑢𝑧𝑧𝑦 𝑅𝐷_105 -0.0478 0.0238 0.0440 -0.0945 -0.0012 

𝐹𝑢𝑧𝑧𝑦 𝑅𝐷_110 -0.0482 0.0230 0.0370 -0.0933 -0.0030 

𝐹𝑢𝑧𝑧𝑦 𝑅𝐷_115 -0.0492 0.0224 0.0280 -0.0930 -0.0054 

𝐹𝑢𝑧𝑧𝑦 𝑅𝐷_120 -0.0444 0.0211 0.0360 -0.0859 -0.0030 

𝐹𝑢𝑧𝑧𝑦 𝑅𝐷_125 -0.0466 0.0196 0.0170 -0.0851 -0.0082 

𝐹𝑢𝑧𝑧𝑦 𝑅𝐷_130 -0.0502 0.0157 0.0010 -0.0809 -0.0195 

𝐹𝑢𝑧𝑧𝑦 𝑅𝐷_135 -0.0427 0.0196 0.0290 -0.0810 -0.0043 

𝐹𝑢𝑧𝑧𝑦 𝑅𝐷_140 -0.0485 0.0149 0.0010 -0.0778 -0.0192 

𝐹𝑢𝑧𝑧𝑦 𝑅𝐷_145 -0.0478 0.0146 0.0010 -0.0765 -0.0192 

𝐹𝑢𝑧𝑧𝑦 𝑅𝐷_150 -0.0441 0.0176 0.0120 -0.0787 -0.0096 

𝐹𝑢𝑧𝑧𝑦 𝑅𝐷_155 -0.0465 0.0184 0.0120 -0.0826 -0.0104 

𝐹𝑢𝑧𝑧𝑦 𝑅𝐷_160 -0.0405 0.0176 0.0210 -0.0750 -0.0060 

𝐹𝑢𝑧𝑧𝑦 𝑅𝐷_165 -0.0406 0.0172 0.0190 -0.0744 -0.0067 

𝐹𝑢𝑧𝑧𝑦 𝑅𝐷_170 -0.0456 0.0133 0.0010 -0.0716 -0.0196 

𝐹𝑢𝑧𝑧𝑦 𝑅𝐷_175 -0.0449 0.0171 0.0080 -0.0784 -0.0115 

𝐹𝑢𝑧𝑧𝑦 𝑅𝐷_180 -0.0440 0.0167 0.0090 -0.0768 -0.0112 

𝐹𝑢𝑧𝑧𝑦 𝑅𝐷_185 -0.0388 0.0160 0.0160 -0.0702 -0.0073 

𝐹𝑢𝑧𝑧𝑦 𝑅𝐷_190 -0.0403 0.0153 0.0080 -0.0703 -0.0103 

𝐹𝑢𝑧𝑧𝑦 𝑅𝐷_195 -0.0419 0.0121 0.0010 -0.0656 -0.0183 

𝐹𝑢𝑧𝑧𝑦 𝑅𝐷_200 -0.0378 0.0153 0.0130 -0.0677 -0.0078 

Notes: (i) Each row is a separate non-parametric regression discontinuity point estimate. (ii) the first row reports the 

Fuzzy RD estimate at the CV-optimal bandwidth   (iii) Fuzzy non-parametric RD treatment effect is estimated for 50 

to 200 percent of the CV-optimal bandwidth (half and twice the optimal bandwidth) with a 5 percentage points 

incremental. (iv) Bootstrapped standard error are based on 120 simulations to construct the 95% CI. 
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Table E5: 

 

Fuzzy RD estimates -Drinking intensity at different bandwidth -females only at cutoff age 65  

Regression discontinuity robustness of bandwidth choice 

 

RD 

 estimates 
Bootstrap 

 Std. Err. P-value 
[95% Conf. Interval] 

𝐹𝑢𝑧𝑧𝑦 𝑅𝐷 -0.0142 0.0272 0.6010 -0.0676 0.0392 

𝐹𝑢𝑧𝑧𝑦 𝑅𝐷_50 -0.0519 0.0418 0.2140 -0.1338 0.0300 

𝐹𝑢𝑧𝑧𝑦 𝑅𝐷_55 -0.0483 0.0445 0.2780 -0.1355 0.0389 

𝐹𝑢𝑧𝑧𝑦 𝑅𝐷_60 -0.0406 0.0318 0.2020 -0.1029 0.0217 

𝐹𝑢𝑧𝑧𝑦 𝑅𝐷_65 -0.0362 0.0299 0.2260 -0.0949 0.0224 

𝐹𝑢𝑧𝑧𝑦 𝑅𝐷_70 -0.0266 0.0351 0.4470 -0.0954 0.0421 

𝐹𝑢𝑧𝑧𝑦 𝑅𝐷_75 -0.0232 0.0334 0.4880 -0.0887 0.0423 

𝐹𝑢𝑧𝑧𝑦 𝑅𝐷_80 -0.0208 0.0261 0.4250 -0.0719 0.0303 

𝐹𝑢𝑧𝑧𝑦 𝑅𝐷_85 -0.0159 0.0290 0.5840 -0.0726 0.0409 

𝐹𝑢𝑧𝑧𝑦 𝑅𝐷_90 -0.0156 0.0234 0.5050 -0.0615 0.0303 

𝐹𝑢𝑧𝑧𝑦 𝑅𝐷_95 -0.0147 0.0282 0.6030 -0.0700 0.0406 

𝐹𝑢𝑧𝑧𝑦 𝑅𝐷_105 -0.0147 0.0210 0.4850 -0.0558 0.0265 

𝐹𝑢𝑧𝑧𝑦 𝑅𝐷_110 -0.0151 0.0265 0.5680 -0.0670 0.0368 

𝐹𝑢𝑧𝑧𝑦 𝑅𝐷_115 -0.0144 0.0237 0.5430 -0.0609 0.0320 

𝐹𝑢𝑧𝑧𝑦 𝑅𝐷_120 -0.0147 0.0231 0.5230 -0.0599 0.0305 

𝐹𝑢𝑧𝑧𝑦 𝑅𝐷_125 -0.0131 0.0234 0.5740 -0.0590 0.0327 

𝐹𝑢𝑧𝑧𝑦 𝑅𝐷_130 -0.0154 0.0236 0.5140 -0.0617 0.0309 

𝐹𝑢𝑧𝑧𝑦 𝑅𝐷_135 -0.0148 0.0230 0.5210 -0.0599 0.0304 

𝐹𝑢𝑧𝑧𝑦 𝑅𝐷_140 -0.0146 0.0174 0.4010 -0.0487 0.0195 

𝐹𝑢𝑧𝑧𝑦 𝑅𝐷_145 -0.0145 0.0220 0.5120 -0.0576 0.0287 

𝐹𝑢𝑧𝑧𝑦 𝑅𝐷_150 -0.0123 0.0209 0.5560 -0.0531 0.0286 

𝐹𝑢𝑧𝑧𝑦 𝑅𝐷_155 -0.0149 0.0211 0.4800 -0.0564 0.0265 

𝐹𝑢𝑧𝑧𝑦 𝑅𝐷_160 -0.0134 0.0200 0.5050 -0.0526 0.0259 

𝐹𝑢𝑧𝑧𝑦 𝑅𝐷_165 -0.0144 0.0197 0.4650 -0.0529 0.0241 

𝐹𝑢𝑧𝑧𝑦 𝑅𝐷_170 -0.0152 0.0188 0.4190 -0.0521 0.0217 

𝐹𝑢𝑧𝑧𝑦 𝑅𝐷_175 -0.0160 0.0149 0.2830 -0.0451 0.0132 

𝐹𝑢𝑧𝑧𝑦 𝑅𝐷_180 -0.0147 0.0182 0.4190 -0.0503 0.0210 

𝐹𝑢𝑧𝑧𝑦 𝑅𝐷_185 -0.0150 0.0183 0.4130 -0.0508 0.0208 

𝐹𝑢𝑧𝑧𝑦 𝑅𝐷_190 -0.0146 0.0176 0.4050 -0.0491 0.0198 

𝐹𝑢𝑧𝑧𝑦 𝑅𝐷_195 -0.0154 0.0177 0.3830 -0.0501 0.0192 

𝐹𝑢𝑧𝑧𝑦 𝑅𝐷_200 -0.0155 0.0136 0.2550 -0.0422 0.0112 

Notes: (i) Each row is a separate non-parametric regression discontinuity point estimate. (ii) the first row reports the 

Fuzzy RD estimate at the CV-optimal bandwidth   (iii) Fuzzy non-parametric RD treatment effect is estimated for 50 

to 200 percent of the CV-optimal bandwidth (half and twice the optimal bandwidth) with a 5 percentage points 

incremental. (iv) Bootstrapped standard error are based on 120 simulations to construct the 95% CI. 

 

 

 

 



165 

 

 

Table E6: 

Fuzzy RD estimates -Drinking intensity at different bandwidth - males only at cutoff age 65  

Regression discontinuity robustness of bandwidth choice 

 

RD  

estimates 
Bootstrap  

Std. Err. P-value 
[95% Conf. Interval] 

𝐹𝑢𝑧𝑧𝑦 𝑅𝐷 -0.0665 0.0373 0.0750 -0.1396 0.0066 

𝐹𝑢𝑧𝑧𝑦 𝑅𝐷_50 -0.0631 0.0467 0.1770 -0.1546 0.0285 

𝐹𝑢𝑧𝑧𝑦 𝑅𝐷_55 -0.0598 0.0545 0.2720 -0.1665 0.0469 

𝐹𝑢𝑧𝑧𝑦 𝑅𝐷_60 -0.0672 0.0455 0.1400 -0.1564 0.0220 

𝐹𝑢𝑧𝑧𝑦 𝑅𝐷_65 -0.0757 0.0379 0.0460 -0.1500 -0.0015 

𝐹𝑢𝑧𝑧𝑦 𝑅𝐷_70 -0.0708 0.0466 0.1290 -0.1621 0.0206 

𝐹𝑢𝑧𝑧𝑦 𝑅𝐷_75 -0.0665 0.0351 0.0580 -0.1353 0.0024 

𝐹𝑢𝑧𝑧𝑦 𝑅𝐷_80 -0.0653 0.0329 0.0470 -0.1298 -0.0008 

𝐹𝑢𝑧𝑧𝑦 𝑅𝐷_85 -0.0646 0.0414 0.1190 -0.1457 0.0165 

𝐹𝑢𝑧𝑧𝑦 𝑅𝐷_90 -0.0586 0.0395 0.1380 -0.1360 0.0188 

𝐹𝑢𝑧𝑧𝑦 𝑅𝐷_95 -0.0655 0.0298 0.0280 -0.1238 -0.0072 

𝐹𝑢𝑧𝑧𝑦 𝑅𝐷_105 -0.0601 0.0358 0.0930 -0.1302 0.0100 

𝐹𝑢𝑧𝑧𝑦 𝑅𝐷_110 -0.0689 0.0351 0.0500 -0.1376 -0.0001 

𝐹𝑢𝑧𝑧𝑦 𝑅𝐷_115 -0.0642 0.0316 0.0420 -0.1262 -0.0023 

𝐹𝑢𝑧𝑧𝑦 𝑅𝐷_120 -0.0633 0.0308 0.0400 -0.1237 -0.0029 

𝐹𝑢𝑧𝑧𝑦 𝑅𝐷_125 -0.0572 0.0319 0.0730 -0.1196 0.0053 

𝐹𝑢𝑧𝑧𝑦 𝑅𝐷_130 -0.0560 0.0311 0.0720 -0.1170 0.0049 

𝐹𝑢𝑧𝑧𝑦 𝑅𝐷_135 -0.0595 0.0288 0.0390 -0.1160 -0.0031 

𝐹𝑢𝑧𝑧𝑦 𝑅𝐷_140 -0.0622 0.0301 0.0390 -0.1212 -0.0033 

𝐹𝑢𝑧𝑧𝑦 𝑅𝐷_145 -0.0615 0.0225 0.0060 -0.1057 -0.0173 

𝐹𝑢𝑧𝑧𝑦 𝑅𝐷_150 -0.0524 0.0285 0.0660 -0.1082 0.0034 

𝐹𝑢𝑧𝑧𝑦 𝑅𝐷_155 -0.0515 0.0279 0.0650 -0.1062 0.0032 

𝐹𝑢𝑧𝑧𝑦 𝑅𝐷_160 -0.0506 0.0273 0.0640 -0.1042 0.0030 

𝐹𝑢𝑧𝑧𝑦 𝑅𝐷_165 -0.0536 0.0256 0.0370 -0.1038 -0.0034 

𝐹𝑢𝑧𝑧𝑦 𝑅𝐷_170 -0.0525 0.0251 0.0370 -0.1018 -0.0032 

𝐹𝑢𝑧𝑧𝑦 𝑅𝐷_175 -0.0543 0.0198 0.0060 -0.0931 -0.0155 

𝐹𝑢𝑧𝑧𝑦 𝑅𝐷_180 -0.0470 0.0254 0.0640 -0.0967 0.0027 

𝐹𝑢𝑧𝑧𝑦 𝑅𝐷_185 -0.0458 0.0249 0.0660 -0.0947 0.0030 

𝐹𝑢𝑧𝑧𝑦 𝑅𝐷_190 -0.0501 0.0186 0.0070 -0.0866 -0.0136 

𝐹𝑢𝑧𝑧𝑦 𝑅𝐷_195 -0.0437 0.0241 0.0700 -0.0909 0.0036 

𝐹𝑢𝑧𝑧𝑦 𝑅𝐷_200 -0.0427 0.0237 0.0720 -0.0893 0.0038 

Notes: (i) Each row is a separate non-parametric regression discontinuity point estimate. (ii) the first row reports the 

Fuzzy RD estimate at the CV-optimal bandwidth   (iii) Fuzzy non-parametric RD treatment effect is estimated for 50 

to 200 percent of the CV-optimal bandwidth (half and twice the optimal bandwidth) with a 5 percentage points 

incremental. (iv) Bootstrapped standard error are based on 120 simulations to construct the 95% CI. 
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Chapter 2 

Impact of the Timing of the Initial Exposure to Maternal Depression on 

Children’s School Readiness 

Abstract 

This study investigates the impact of the timing of initial exposure to maternal depression on a 

comprehensive measure of children’s school readiness that incorporates multidimensional 

developmental domains that underlie school class adaptation and later success. The Early 

Development Instrument (EDI) scores of 59,413 children are linked to their mothers and 

followed over time from five years before the child’s birth to the child’s 5th birthday. I found that 

exposure to maternal depression was associated with developmental vulnerability in emotional, 

physical, social, and cognitive domains. When controlling for health (measured by major 

Adjusted Diagnosis Groups (ADGs) and minor ADGs, and hospital admission frequency) of the 

child at birth, and through early childhood, and mother’s health prior to pregnancy, however, the 

effects of exposure to maternal depression on children’s abilities in the emotional, physical, and 

social domains were attenuated across the different exposure periods. That is, although maternal 

depression is a risk factor for children’s school readiness, children’s health and socioeconomic 

adversity remained an important factor for early child development. Exposure to depression 

during pregnancy has the strongest effect on developmental vulnerability, followed by the 

preschool period. Emotional maturity is the most sensitive domain across the different exposure 

periods. In contrast, cognitive and communication domains are the least sensitive to depression. 

Finally, there is gender and marital status heterogeneity in the effect of maternal depression on 

the emotional, physical, and social domains. These findings underscore the need for early 

detection of maternal depression, ideally by obstetricians during pregnancy, and in programs that 

focus on the mother and child together. Intervention programs should commence prior to the 

start of school to mitigate early developmental difficulties, which exacerbate if they are not 

addressed. 
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Chapter 2 

Impact of the Timing of the Initial Exposure to Maternal Depression on 

Children’s School Readiness 

 

2.1. Introduction: 

School readiness can be defined as a child’s profile of competencies that includes 

cognitive, emotional, social, behavioral, and communication skills, as well as knowledge, at the 

time of school entry. These are important factors that influence a child’s learning, adjustment and 

later success (Snow, 2006; Forget-Dubois et al., 2007). Theoretical models of human capital 

formation show that in addition to cognitive skills formation during childhood, a variety of non-

cognitive skills, i.e., personality, social and emotional traits, and communication skills are also 

crucial factors in shaping children’s potential social and economic success (Heckman & Krueger, 

2003; Heckman et al., 2006; Cunha et al., 2010; Mukherjee, 2011). Furthermore, growing 

evidence from neuroscience recognizes that interaction between genes (nature) and early 

childhood experiences from the surrounding environment (nurture) - which includes children’s 

connection to their parents, relatives, teachers, peers - shapes the architecture of the developing 

brain in a manner that serve as a foundation for potential social, emotional, and cognitive skills 

formation (NSCDC, 2012; Pieterse, 2015). Any disruption to this developmental process may 

impair a child’s capacity to acquire and accumulate skills required to learn at school and to 

integrate into society.  

Maternal depression has been recognized as one of the most important risk factors that 

disrupt a child’s developmental processes, which span physiological, behavioral, emotional, 

social, communicational, and cognitive dimensions. These dimensions, in turn, are strong 

predictors of a child’s later school performance (Duncan et al., 2007; Forget-Dubois et al., 2007; 
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Grimm et al., 2010; Romano et al., 2010).   While a small, but growing, body of research has 

investigated the relationship between maternal depression and child development, little attention 

has been paid to the association between the timing of maternal depression exposure and child’s 

skills formation. The timing of initial exposure to maternal depression may have a heterogeneous 

impact on children’s developmental outcomes. For instance, maternal depression during the first 

year of life after birth may adversely affect secure infant attachment or the healthy emotional 

bond between children and their mothers. The lack of a secure mother-infant attachment may 

impair or delay the emotional and cognitive development in early childhood (NIHCM, 2010), 

which may lead to long-lasting human capital accumulation gaps and socioeconomic inequality. 

Moreover, many studies found that depressed women during the early postpartum period are less 

likely to initiate breastfeeding and may be at high risk of infant-breastfeeding problems, 

including reduced breastfeeding duration and a lower level of breastfeeding self-efficacy (Dennis 

& McQueen, 2009). According to the American Academy of Pediatrics (1997), consumption of 

human milk via breastfeeding during the first six months is associated with better health and 

neurological development. 

A variety of conceptual and empirical research from a broad range of disciplines, 

including economics, neurobiology, neuroscience, genetics, developmental psychology, and 

sociology, has shown adverse effects of children’s exposure to maternal depression on 

developmental competencies in middle childhood and adolescence. However, there is much less 

research on the association between the timing of maternal depression and developmental 

functioning during the early childhood period, a period that is characterized by rapid growth in a 

child’s emotional, cognitive, social, and behavioral capacities.  Consequently, children who lack 

a strong foundation in these skills and abilities at school entry may have lower academic 
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trajectories than those with a high level of school readiness. Therefore, if maternal depression 

negatively affects the formation of these skills during the optimal acquisition period, then 

children may lack the skills necessary for classroom adaptation and academic development 

(Brinkman et al., 2013; Quach and Barnett, 2015). However, few studies from this diverse 

literature have examined the outcomes of children on a comprehensive measure of school 

readiness that incorporates the multidimensional nature of human developmental domains that 

underlie academic success.  

The various dimensions of depression exposure, chronic illness, and maltreatment are 

significantly associated with later academic achievements in school (Romano et al., 2015), so 

these factors may be also important risk factors that affect child development to start school. In 

fact, later academic achievements may be the long-lasting consequence of adverse events and 

developmental delays early in life. Some studies have shown that the period from conception to 

the child 5th birthday is crucial in early child development because the interactions between 

environment and genetics shape the architecture of the brain, making it a highly sensitive period 

to stress (Shonkoff and Phillips 2000; Knudsen et al 2006; Panzer, 2008).  

This study aims to fill the gaps in the literature by investigating the impact of the timing 

of initial exposure to maternal depression on the multidimensionality of child capabilities and 

skills formation at kindergarten age, which reflects the child’s readiness to learn at school.  I 

adopt the human capital accumulation model as a framework (Heckman and Krueger, 2003; 

Heckman et al., 2006; Heckman, 2007) to understand the association between maternal 

depression exposure and developmental vulnerabilities in early childhood, with emphasis on 

distinguishing the effects of the timing of first exposure to maternal depression on several 
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developmental indices at age 5 years, which include emotional, physical, social, cognitive, and 

communication abilities.  

This paper estimates the causal effect of maternal depression on a wide range of child 

outcomes and makes four key contributions. First, I examine the impact of maternal depression 

exposure on a comprehensive measure of school readiness, the Early Developmental Instrument 

(EDI), which incorporates multidimensional developmental domains that are the foundation for 

academic adaptation and success. Second, I investigate the impact of the timing of children’s 

initial exposure to maternal depression on children’s school readiness as measured by the 

different domains in the EDI. There is a general consensus in the economics and health literature 

of the importance of experiences during the first five years of a child’s life on the long-lasting 

development of human capabilities. There are even some studies that include the time before 

birth in risk factors that affect school readiness (Aktar et al., 2019; Deave et al., 2008; Plant et 

al., 2015; O'Connor et al., 2002). Therefore, it is important to understand when maternal 

depression is more likely to have the greatest impact on children’s abilities to acquire and 

accumulate skills, which, in turn, affect readiness to learn at school. Third, although child health 

through early childhood has a very important impact on a child’s academic performance later in 

life, it is less clear whether this impact is evident at kindergarten age. It is therefore important to 

assess the impact of child health on school readiness, which will adjust for any confounding in 

the effect of maternal depression exposure. The Johns Hopkins “Adjusted Clinical Group®” 

(ACG®) system uses thousands of International Classification of Disease (ICD) diagnosis codes 

to assign each diagnosis code to one of 32 “Aggregate Diagnosis Groups” (ADGs), resulting in 8 

Major ADG’s and 24 Minor ADG’s for children. The diagnosis-to-ADG mapping system in the 

ACG® software may assign one single ICD diagnosis code to more than one ADG group, which 
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indicates more than one underlying morbidity type (John Hopkins ACG, 2014). Fourth, the 

mother’s health prior to birth, including before pregnancy, can affect child health biologically 

(genetic endowment) or child development. Mother health profiles five years before birth are 

included as controls by using the Johns Hopkins ACG® system to assign each diagnosis code 

from hospital abstracts and physician visit claims to the major illness and minor illness group. 

Empirically, some studies found that mother pre-pregnancy obesity has an increased risk for 

negative emotionality and inattentiveness in early childhood (Robinson et al., 2013). There is 

also evidence that obesity and metabolic syndrome are related to the elevated risk of depression, 

which suggests that there is a potential link between maternal metabolic health and fetal brain 

development in utero1 (Robinson et al., 2013; Koponen et al., 2008). Therefore, it is reasonable 

to postulate that children's early development could be affected by the mother’s health before 

birth. To date, however, studies of maternal depression have not considered the consequences of 

maternal health pre-pregnancy on child developmental outcomes.  

Specifically, the study addresses the following three research questions: 

▪ Does the timing of a child’s initial exposure to maternal depression have an impact on the 

child’s school readiness at kindergarten age? 

That is, is there an association between the timing of children’s initial exposure to maternal 

depression and their cognitive, physical health, emotional, social and communicational 

capabilities at kindergarten age, as a foundation for school class adaptation and success? 

▪ What is the period of maternal depression exposure that has the strongest effect on the 

child’s school readiness? 

That is, is there one period of maternal depression exposure that has stronger effects on 

children's development than others and hence should be a priority for policy interventions? 

▪ Is there socioeconomic or demographic heterogeneity in the impact of timing of maternal 

depression exposure on the child’s school readiness? 

 
1 Metabolic syndrome is a cluster of risk factors for type 2 diabetes and cardiovascular diseases. 
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That is, is the development trajectory a result of the dynamic interplay between nature 

(genes) and nurture (environment), which includes whether the mother is a teenager at birth, 

whether the family depends on income assistance (poverty), neighborhood-area 

socioeconomic status, education level of the mother, and having a single mother? For 

example, children’s development outcomes of depressed mothers may be worse among 

children living in families that depend on income assistance or among children with less-

educated mothers. Although exposure to early maternal depression may be a significant 

predictor of later developmental trajectories, response to early childhood adversity may vary 

across children.  

I overcome limitations of previous research by using a population-based administrative 

database from the Manitoba Centre for Health Policy (MCHP) Repository, which allows me to 

follow depressed mothers and their children from before pregnancy through kindergarten. The 

database includes the Early Development Instrument (EDI), which is a population-based 

assessment of children’s development in five basic domains: health, social competence, 

emotional, language and cognitive development, and communication skills and knowledge. 

Hence, I can investigate the impact of maternal depression on more than one dimension of 

children's development, rather than just one dimension as in previous studies. Another limitation 

in the literature that I address is the definition of maternal depression, which was measured as an 

indicator of depressive symptoms rather than an official diagnosis (Claessens et al., 2015). 

Rather, with the longitudinal population-based database at MCHP, I use the international 

classification of disease (ICD) coding system to identify maternal depression and the timing of 

depression exposure. An advantage of the Repository database is that I can link the child-mother 
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master file with different datasets that include rich information about child and mother health, 

social, and demographic characteristics. 

Why is this study important? Previous research found that some indicators of the early 

development instrument (EDI) at age five are strong predictors of later school performance. 

These predictors (sub-domains of EDI) include math, reading, attention (Duncan et al., 2007; 

Grimm et al., 2010; Hooper et al., 2010); language and cognitive development domain (Forget–

Dubois et al., 2007); social and emotional behaviours (Grimm et al., 2010; Pagani et al., 2010; 

Romano et al., 2010); and general knowledge (Grissmer et al., 2010). In addition, empirical 

models of human capital formation predict that an early gap in a child’s skills formation at age 

five will exacerbate long-lasting socioeconomic status inequalities. Therefore, identifying the 

impact of maternal depression on different dimensions of child skills formation and capabilities 

at age five will help to pinpoint early life channels that impair a child’s readiness to learn later at 

school and help reduce the pre-school human capital accumulation gap. This should be one of the 

top cross-sectoral priorities for policymakers. Moreover, prevention programs that target early 

adversity in children’s development should give high priority to the timing of the intervention, 

because research on sensitive periods suggest that children who do not get the appropriate skills 

and nurturing at the right timing may experience difficulties in acquiring these skills in a later 

time (Cunha et al., 2005; Heckman et al., 2006; Cunha and Heckman 2007; Heckman 2007;  

Heckman et al., 2010;  Heckman et al.,  2013). 

The remainder of this paper is organized as follows. Section 2 summarizes the related 

literature; section 3 describes the data and presents summary statistics for the sample; section 4 

provides the empirical econometric specification and methodology; sections 5 and 6 show the 
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results of the estimation and heterogeneity of maternal depression on school readiness; section 7 

discusses and concludes. 

2.2. Literature Review 

The new wave of literature in human capital development during the last decade reached 

general consensus on five principles of early childhood development: (i) child development is a 

foundation for community development and economic development (National Scientific Council 

on the Developing Child at Harvard University, 2007); (ii) early parents-child interactions and 

genetic endowment literally shape the architecture of the developing brain, which is composed of 

highly integrated sets of neural circuits that can wire fast based on continuous interaction 

between environment and genetics influences during early childhood, and hence human capital 

accumulation (Greenough, 1991; Greenough and Black, 1992; National Scientific Council on the 

Developing Child at Harvard University, 2010); (iii) the most sensitive period of child 

development spans from the time of conception through the fifth birthday (Houston, 2014; 

Georgiadis et al., 2016); iv) interventions in development that takes place during early childhood 

is likely to be more effective and less costly than targeting at a later age (Cicchetti et al., 2000; 

Field, 2002); and v) there is a negative association between toxic stress2 in early childhood and 

both the nervous system and stress hormone systems that can damage developing brain 

architecture, which creates the foundation for later problems in learning, behavior, and both 

physical and mental health ((Diego et al., 2009; Mattes et al., 2009; Center on the Developing 

Child at Harvard University, 2010; National Scientific Council on the Developing Child at 

Harvard University, 2014; Shonkoff and Phillips 2000; Knudsen et al 2006). 

 
2 For more information about the toxic stress effect on child development, see the Center on the Development Child 

online guide - Harvard University. https://developingchild.harvard.edu/science/key-concepts/toxic-stress/ 
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Maternal depression is a worrisome issue that around 10 to 20 percent of mothers 

experience, either during pregnancy or at some point during their lives, and these figures are 

worse for mothers with a history of previous depression episodes (NIHCM, 2010). 

Approximately 50% of women who received a referral for depression treatment accessed follow-

up treatment (Godman & Tyer-Viola, 2010).  

According to the Public Health Agency of Canada (2014), 15.5% of women are either 

diagnosed with depression or treated with anti-depressant drugs before they become pregnant, 

and 12.5 % of women reported some kind of stress symptoms during the 12 months before birth.  

Population-based studies from the Manitoba Center for Health Policy showed that the prevalence 

of children whose mothers had mood or anxiety disorder was stable across the study period at 

20.2% in 2000/01 – 2001/02 and 21% in 2008/09- 2009/10. Moreover, the prevalence was 20.3% 

in the first time period and 21.7% in the last time period for mothers of children 0-5 years old 

(Brownell et al., 2012). These figures make maternal depression an important public health issue, 

which should be investigated and assessed for potential impact on children’s development. 

Children’s developmental trajectories during their early life have been widely 

documented in psychology, neuroscience, medicine, and economics as an outcome of a series of 

dynamic interactions between genes (inherited at conception) and the environment with which 

children interact. For instance, the effect of genes on fetal development during pregnancy and 

birth outcome trajectories is contingent on the environment in the fetus and uterus. Similarly, the 

effect of fetal outcomes, such as growth rate, low birth weight, and preterm birth, on infants’ 

development and health trajectories are contingent on the surrounding environment during 

pregnancy, and adulthood outcomes are contingent on the lifestyle and different environmental 

factors during childhood (Wadhwa, 2005). 
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A mother’s behavior profile, such as depression, smoking, drugs, and alcohol 

consumption, can impact children’s developmental trajectories at different points in time because 

the mother’s profile of behaviors during pregnancy and her interactions with her children after 

birth has a significant impact on children’s brain development. For instance, maternal 

depression, part of the mother’s biochemical profile, may begin to affect children’s brain 

development in the fetus. Lundy et al. (1999) and Field et al. (2004) noted that prenatally 

depressed mothers have a higher level of both cortisol (stress hormones) and norepinephrine 

(neurotransmitters), and a low level of dopamine during pregnancy (Field et al., 2004). The 

mother’s elevated level of cortisol may cross the placenta and directly affect the fetus’s 

neurotransmitters/neurohormone levels (Gitau et al., 1998; Glover et al., 1999), and the elevated 

levels of catecholamine (norepinephrine and epinephrine) may reduce the uterine blood flow to 

the fetus (Glover et al., 1999) and directly affect the neurobehavioral development. Hence, 

exposure to a biochemically dysregulated environment in utero affects early brain development.  

Exposure to maternal depression during the prenatal period (time between conception and 

birth) was found to be associated with increased infant cortisol levels (Gutteling et al., 2005; 

Brennan et al., 2008), low birth weight (Field, 2011), preterm birth (Field et al., 2008), decreased 

breastfeeding initiation, disorganized sleep and less responsiveness to stimulation in the neonate 

(Field, 2011), and shorter gestational age (Field et al., 2008). Emory and Dieter (2006) found that 

fetuses of prenatally depressed mothers are more active during mid-gestation and experience a 

lower baseline heart rate and less total movement during late-term vibratory stimulation. To 

identify whether this excessive fetal activity may delay fetal growth, Diego et al (2009) used 

fetal weight and birth weight data to measure fetal growth rate and found that prenatally 

depressed mothers have elevated cortisol level and that their fetuses were smaller with lower 
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fetal growth rates and lower birth weight, which are risk factors for impaired cognitive and social 

development (Wadhwa, 2005). Romeo et al (2010) investigated the cognitive function of late 

preterm (LPT) babies during the infancy period and found that children born at 33-36 weeks 

experienced a delay in cognitive function relative to full-term infants at 12 and 18 months. Chyi 

et al (2008) compared school outcomes for infants born at 32-33 weeks (moderate preterm 

(MPT)), 34-36 weeks (late preterm (LPT)) and full-term (FT) infants using an early childhood 

longitudinal study-kindergarten cohort. The study found that LPT infants have lower reading 

scores than FT infants in kindergarten to grade one; MPT infants perform generally poorer than 

FT infants over all other periods. 

Latendreise et al (2015) found that women whose depression lasted for a long period 

during pregnancy are more likely to experience an increase in admission of their infants to the 

neonatal intensive care unit (NICU). To investigate whether NICU-admission adversely affects a 

child’s cognitive development, Baron et al (2011) assessed the cognitive outcomes of a cohort of 

complicated late preterm (CLPT) children at 35-36 weeks against full-term infants using the 

Differential Ability Scales-Second Edition (DAS-II), a well-standardized multi-subtest measure 

of General Conceptual Ability (GCA). The study found that children who got admitted to the 

NICU did poorly on non-verbal reasoning (e.g., picture similarities) and spatial (coping, pattern 

construction) cluster score, and poor performance on both GCA and verbal reasoning (verbal 

comprehension, naming vocabulary) than full-term children at preschool age. In another study, 

Barons et al (2009) found that NICU-admitted infants are more likely to have negative 

neuropsychological sequelae. Field et al (2004) assessed both maternal and neonatal 

biochemistry and found that mothers with depressive symptoms have a higher level of cortisol 
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and lower level of dopamine and their newborns mimic their hormone profile. In addition, they 

found that cortisol levels were associated with prematurity.  

Some studies investigated the effect of prenatal depression on cognitive development as 

assessed by scores on the Bayley Mental Development Index (MDI), school grade, or by a 

language development measure (Talge, 2007). They found an association between antenatal 

maternal depression and child’s temperament in early childhood and low school marks at age six 

(Niederhofer & Reiter, 2004), as well as low score on the MDI at 3 and 8 months of age 

(Huizink et al., 2003). Laplante et al (2004) investigated the impact of the prenatal level of stress 

on a child’s intellectual and language development at age 2 years using the Ice storm in Quebec 

during 1998 as a natural disaster to identify the severity of women’s stress. They found that the 

birth weight and age of the children account for 12% and 14.8% of the variance in the Bayley 

MDI and in the language development, respectively. In addition, prenatal maternal stress 

accounts for 12.1%, 11.4%, and 17.3% of the variance in Bayley MDI score, productive 

language, and receptive language abilities, respectively, after controlling for children's other 

health factors at birth.  

In addition to effects on social and cognitive development outcomes, prenatal maternal 

depression can cause disability and health-related problems during the toddler age. For example, 

one study found that women who experienced antenatal stress at 18-week gestation are more 

likely to have a mixed-handedness child when they were 42-months of age (Glover et al., 2004). 

Raposa et al (2014) used longitudinal data to investigate the impact of depression during 

pregnancy on child health during their first five years. The study found that there is a direct 

association between prenatal depression and child health before the age of five. They also 

measured maternal depression at three time periods: 3-4 days, 6 months, and 5 years after birth 
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and found that maternal depression during these periods was associated with child’s physical 

health at age five, which in turn, predicted increased health-related stress and poor social 

function at age 20. 

The first year after birth is recognized as a very sensitive period of child development. 

From a developmental cognitive neuroscience perspective, emotion and cognition are 

dynamically linked and work together during the first year of the child’s life to shape the base for 

subsequent development (Bell & Wolf, 2004). Therefore, how children relate to and interact with 

their mothers are very important for developing the child’s emotional and cognitive skills. John 

Bowlby (1982) termed the affectional bonds that develop between children and their primary 

caregivers, usually their mothers, during their early time of life “attachment”. Mother-infant 

attachment refers to the deep and lasting emotional bonds between the child and her/his mother. 

When children are frightened, fatigued, or sick, they seek their attachment figures (mothers) for 

help, protection, and soothing. When children find caregivers available and responsive to their 

needs in time of stress, their attachment system, which refers to psychological organization 

hypothesized to be within children, will activate feelings of security and safety toward their 

caregivers (Bretherton, 1985). In addition, accumulated feelings of security during attachment 

relationships are the main factor that regulates children's motivation to maintain proximity to 

caregivers and explore the surrounding environment (McCormick et al., 2016). Securely attached 

children trust that the primary caregiver is physically and psychologically available and 

responsive to their needs; their attachment systems will be deactivated and, thus, they can use 

their caregivers as a secure base from which to play and explore the world (Bretherton, 1985). In 

contrast, insecurely attached children do not trust in an appropriate physical and psychological 

availability of their caregivers in times of distress or threat. Hence, insecure children’s 
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attachment systems are more activated, and their exploratory systems are more deactivated 

(McCormick et al., 2016). Maternal depression can affect a child’s skills formation during the 

early years after birth through mother-infant attachment because mother-infant attachment 

facilitates the association between maternal depression and child’s multidimensional skills 

formation and hence school readiness. 

Various studies suggested that affective quality of mother-child attachment influence 

child’s cognitive skills formation at early childhood where children depend on their mothers for 

social and intellectual stimulation and any long-lasting disturbance to the capacity of making 

affectional bonds, or repeated disturbance for existing bonds, are potential causes of psychiatric 

disturbance in childhood (Bowlby, 1970; Cowan, 1982). Relative to unsecured mother-child 

attachment, securely attached children have more willingness to approach and persist in tasks, 

accept their caregivers’ assistance and support in solving problems, and they have social 

competence which enhances the greater flow of information between themselves and caregivers 

(Estrada, 1987). Bretherton (1985) suggests that securely attached children approach cognitive 

tasks in ways that enhance cognitive development and they show more curiosity, enthusiasm, 

persistence in their problem-solving styles than insecurely attached infants.  

There is a relatively large empirical literature that suggests an association between 

mother-child attachment and cognitive skills formation, which includes intelligence, memory, 

and reasoning (Williams et al., 1988; Spieker et al., 2003). McCormick et al (2016) examined the 

association between mother-child attachment styles and cognitive development, as measured by 

math and reading skills, at age 54 months to fifth grade. They found that insecurely attached 

infants experience a low average level of reading and math skills. They also found that children’s 

task engagement in the classroom partially mediates the association between insecure attachment 
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and reading and math skills in middle childhood. West et al (2013) investigated the mechanisms 

that mediate the association between mother-infant attachment and children’s cognitive 

performance, including both academic performance and IQ. They found that securely attached 

children at ages 24 or 36 months show better cognitive performance and this association is 

significantly mediated by maternal teaching quality and academic support to children, children’s 

social relationships with peers, support at school, and children's regulatory characteristics. In 

contrast, they also found that both insecure-ambivalent attached and disorganized attached 

children at 36 months had lower grades and IQ scores in middle childhood. 

Murray (1992) used a sample of 113 mother-infant pairs and screened mothers for 

maternal depression after childbirth. The sample was followed up to 18 months when their 

infants were assessed on a measure of cognitive, language, social and behavior development. The 

study found that infants of postnatally depressed mothers were insecurely attached to their 

mothers, perform worse on object concept tasks, had behavioral problems, but there is no impact 

on language and general health development. 

In addition to the psychological mechanism, maternal depression can impact children’s 

skills formation through children’s brain physiological mechanisms. Some studies in 

neuroscience have been working on brain biological vulnerabilities as a mechanism through 

which maternal depression can affect children's cognitive and language development. Using an 

electroencephalogram (EEG) as a measure of infant and toddler brain activity, they noted that 

positive emotion was accompanied by greater relative left frontal EEG electrical activity 

(Dawson et al., 2001; Field et al., 2004; Diego et al., 2006) and negative emotion (like sadness 

and stress) and the withdrawal was accompanied by greater relative right frontal EEG electrical 

activity (Jones et al., 2000). For instance, Davidson and Fox (1989) noted that 10-month-old 
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infants who cried during the period of mother separation showed higher relative right frontal 

EEG activation relative to infants who did not cry. Dawson et al (1997) supported this finding in 

a study of infants 13-15 months old and found that infants of depressed mothers exhibited lower 

levels of left frontal EEG electrical activity than infants of non-depressed mothers. In addition, 

Jones et al (2000) found that infants of depressed mothers showed more relative right frontal 

activity.  

These findings show that infants of depressed mothers exhibit greater right frontal EEG 

asymmetry (greater right than left EEG power), which, in turn, increases the risk of withdrawal 

and negative affect (Sohr-Preston and Scaramella, 2006). Field and Diego (2008) noted that the 

infant’s EEG profiles are stable from the neonatal stage to early infancy to preschool age and 

there is an association between the EEG profiles of depressed mothers and the EEG of their 

infants. These findings have also been interpreted as a biological marker for symptoms 

associated with depression in infants (Jones et al, 2001). Consequently, since withdrawal and 

negative affect disturb infants’ capabilities and readiness to process and interact with stimuli 

from the surrounding environment, infants of depressed mothers are more likely to experience a 

delay in cognitive and language development (Dawson et al., 1992). Moreover, Field (1995) 

found that infants of depressed mothers have lower vagal tone and high right frontal EEG 

asymmetry, and both are associated with reduced self-regulation and emotional expression. 

The literature on maternal depression reported three aspects of maternal depression that 

should be controlled to clearly identify whether there are sensitive periods during which maternal 

depression has the strongest effect on the child’s capabilities at school age. These aspects include 

the timing, severity, and chronicity of depression. The timing of initial exposure to maternal 

depression is an important issue because there may be crucial periods during which maternal 
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depression significantly impacts a child’s skills formation, which, in turn, impacts cognitive and 

non-cognitive development. For instance, Essex et al (2001) examined the impact of initial 

exposure to maternal depression on the child’s internalizing and externalizing behaviors 3in two 

time periods that include the first-year postpartum and the toddler years, age 2 to 4.5. Using a 

prospective community-based study, they found that children’s exposure to maternal depression 

during the first year after birth was associated with high internalizing symptoms, and exposure to 

depression during the toddler period was associated with an increased risk of externalizing 

symptoms among girls. Similarly, Luoma et al (2001) used a sample of 349 mother-child pairs to 

examine the association between maternal depressive symptoms at a different point in time 

(prenatal, postnatal, and children age 8 to 9) and the level of children’s psychosocial function 

and emotional and behavioral problems in school-age children. The study found that prenatal 

depression was a strong predictor of children’s high externalizing problems, and postnatal 

depressive symptoms were a good predictor of children’s low social competencies. In addition, 

they found that concurrent and prenatal depressive symptoms were associated with the lowest 

child outcomes.  

Some studies found an association between the timing of maternal depression and 

emotional disorder. For instance, Naicker et al (2012) found that adolescents whose exposure to 

maternal depression was between the ages of 2-3 and 4-5 years are twice as likely to have 

emotional disorders than adolescents of non-depressed mothers. Moreover, they found that the 

sensitive period of initial exposure to maternal depression occurs between ages 2 and 5 and not 

 
3 Externalizing behaviors are easily observable by others because they are actions in the external world, such as 

acting out, antisocial behavior, hostility, aggression, disruption, and destruction of property. Internalizing behaviors 

are quiet and often invisible because they are internalized and are generally not disruptive to others, such as feeling 

unloved or unwanted, being withdrawn, anxiety, felling sad and lonely, somatization, and depression (Winters et al., 

2008). 
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during the first year after birth as documented in previous studies. In contrast, Brennan et al 

(2000) examined the impact of timing of maternal depressive symptoms on a child’s vocabulary 

test, as a measure of cognitive functioning, and behavior in a cohort of 4,953 Australian children. 

They found that the timing of maternal depression was not significantly related to the child’s 

vocabulary score, but the chronicity and severity of maternal depression were related to more 

behavior problems and lower vocabulary scores. Although some studies investigated the impact 

of maternal depression at different points in time, there is inconsistency in their findings, which 

is partially due to investigators using different measures to assess the outcome of maternal 

depression, and partially because they used different periods of time for initial exposure to 

maternal depression. 

In brief, the impact of maternal depression on child’s development is well-documented in 

the literature but generally focuses on just one dimension or domain of the child’s development. 

However, the evidence regarding the impact of maternal depression on different dimensions of 

child’s skills, as measured, for example, by a comprehensive measure of child school readiness, 

are unclear and a number of questions regarding the association between maternal depression at 

different points in time and child’s school readiness at kindergarten age remain unanswered. For 

example, an important question that remains to be answered is when maternal depression has the 

greatest impact on the child’s profile of competencies (Timing of initial exposure). The current 

study addresses these gaps in the literature by using a population-based database that provides an 

excellent opportunity to follow up mothers and their children from the prenatal period to 

kindergarten age. This allows me to investigate the impact of timing of the child’s initial 

exposure to maternal depression on different aspects of a child’s skills and development. 

Specifically, the study examines which period of children’s initial exposure to maternal 
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depression has the greatest impact on the profile of competencies that shape school readiness at 

kindergarten age. Four specific periods that are recognized in the neuroscience literature and 

have developmental characteristics that make them independent from each other were utilized. 

Additionally, the study investigates whether a high-risk family environment in which the child 

develops exacerbates the impact of the timing of initial exposure to maternal depression. That is, 

I investigate to what extent the impact of maternal depression timing differs among different 

socioeconomic and demographic groups.  

2.3. Sample and Study Period: 

2.3.1. Sample size and study period 

This study uses six cohorts of children who are born in Manitoba, Canada, and who 

received the Early Development Instrument (EDI) assessment by their kindergarten teachers 

between February and March in all 37 public school divisions in Manitoba. Depending on the 

collection years (2005/06; 2006/07; 2008/09; 2010/11; 2012/13; 2014/2015), I linked children 

born between (2000 - 2009) to their biological mothers through a unique identifier, Personal 

Health Identification Number (PHIN), which gives a sample of approximately 70,683 mother-

child pairs. 

Mother-child pairs are followed over time from five years before the child’s birth to the 

time at which the Early Development Instrument (EDI) assessment is completed for the child. 

Since the first cohort starts in 2000 and mother-child pairs will be followed starting five years 

prior to the child’s birth, the study period will cover the time from 1995 – 2015.  Children 

cohorts used in the study, based on the available EDI assessments in 2005/06; 2006/07; 2008/09; 

2010/11; 2012/13; 2014/2015), can be identified as follows: 
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- The first cohort (2000-2005/2006): children born in 2000 and can be followed over time until 

their EDI assessment is completed in the school year 2005/06. 

- The second cohort (2001-2006/2007): children born in 2001 and can be followed over time 

until their EDI assessment is completed in the school year 2006/07. 

- Third cohort (2003-2008/09): children born in 2003 and can be followed over time until their 

EDI assessment is completed in the school year 2008/2009. 

- Fourth cohort (2005- 2010/11): children born in 2005 and can be followed over time until 

their EDI assessment is completed in the school year 2010/2011.  

- Fifth cohort (2007 - 2012/13: children born in 2007 and can be followed over time until their 

EDI assessment is completed in the school year 2012/2013. 

- Sixth cohort (2009 - 2014/15): children born in 2009 and can be followed over time until 

their EDI assessment is completed in the school year 2014/2015. 

In order to carry out the analysis in this study, I made the following exclusions: (i) 

children with invalid, duplicate, or missing PHIN, because this was required to link children to 

their mothers; (ii) children with invalid EDI; (iii) children without continuous health coverage 

from pregnancy to kindergarten age, since I needed to follow their health status. This includes 

children born out of province, not born in a hospital, or moved out of province before the EDI 

assessment date; (iv) children of multiple births (i.e., twins or triplets) were excluded from the 

analysis where they maybe not independent observations (Fransoo, 2007); (v) children linked to 

postal codes of a public trustee; and (vi) children’s mothers who did not have a valid PHIN or 

complete health status profile. After these exclusions, the final working sample that I used in my 

analysis includes 59,413 children. 
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2.3.2. Datasets  

This study uses data from the population Health Research Data Repository, which 

includes a collection of administrative databases housed at the Manitoba Centre for Health 

Policy (MCHP), University of Manitoba (Brownell, 2016). The repository data are population-

based dataset which includes nearly all residents in Manitoba. This repository database is well 

suited for this study because it contains databases across multiple domains, including health, 

education, social services, and health services utilization, that can be linked for analysis using an 

encrypted Personal Health Identification Number (PHIN). Also, the administrative data on health 

services utilization contain detailed information on every health contact with health service 

providers over time which allows following up mothers and their children using the unique 

identifier number (PHIN). The datasets that I used in this study include:  

(i) Hospital discharge abstracts. This data is a hospital form/computerized record filled out upon 

the patient’s discharge from the hospital and includes detailed information about the hospitalized 

patients in Manitoba. The abstract contains information about patient sex, date of admission and 

discharge, length of stay, diagnosis codes, and type of service (inpatient, outpatient, or surgery). 

(ii) Manitoba Health Insurance Registry (Population Health Registry).  This is a population-

based registry of all persons registered with Manitoba Health since 1970. The Registry allows for 

database linkages using scrambled PHINs. It also provides individual and family-level 

information such as birth date, sex, postal code, family size and mother’s marital status. 

(iii) Early Development Instrument (EDI). This represents a province-wide population-based 

assessment of children's early development at kindergarten age. For the current study, this 

database provides school readiness results in 5 domains: physical health and well-being, social 

competence, emotional maturity, language and cognitive development, and communication skills 
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and general knowledge for all Kindergarten children assessed in 2005/06; 2006/07; 2008/09; 

2010/11; 2012/13; and 2014/2015 and collected by Healthy Child Manitoba Office (HCMO). 

(iv) Drug Program Information Network (DPIN) Dataset. The DPIN database is maintained by 

Manitoba Health and contains transaction-based prescription drug claims from all pharmacies in 

Manitoba. The DPIN system contains information about the dispense date of medication, 

medication history, sex, and the unique patient identification number for all Manitoba residents. 

This information is linked to hospital discharge abstracts to identify mothers diagnosed with 

maternal depression and the time of the first diagnosis.   

(v) Enrollment, Marks and Assessments Database. This dataset provides information on school 

enrollment, courses, marks, standards tests, graduation status, and educational assessments for all 

Manitoba students from Kindergarten to Grade 12. The data are maintained by Manitoba 

Education and is used to identify children’s mothers who have a high school degree. 

(vi) Baby First Screen and Families First Screen. This data is from a social survey that collects 

information from the newborn’s family within a week of the newborn’s discharge from the 

hospital and is maintained by the Healthy Child Manitoba Office (HCMO). The survey includes 

questions about parent’s ethnic background, alcohol use, drug use, child abuse, and education. 

This dataset is used to identify the educational degree of children’s mothers who could not be 

identified from the enrolment, marks, and assessments dataset, and to identify mothers who 

smoked during pregnancy. The family first screen replaced the baby first screen in 2003.  

(vii) Employment/Income Assistant program (SAMIN). This dataset is maintained by the 

Department of Families and provides information on individuals and families who receive 

income assistance. This data set was used to identify families that receive income assistance 



208 

 

from the Employment and Income Assistance (EIA) Program, an individual-level measure of 

socio-economic status (SES). 

2.3.3 Outcome (Dependent) Variable 

Children’s school readiness was assessed using the Early Development Instrument (EDI). 

The EDI is a population-based, community-level measure of children's development in five 

major domains that include: physical health and well-being, social competence, emotional 

maturity, cognitive and language development, and communication skills and general knowledge 

(Janus and Offord, 2007). In Manitoba, the EDI is a 103-item close-ended questionnaire 

collected province-wide every two years on behalf of the Health Child Manitoba Office (HCMO) 

by all kindergarten teachers (Santos et al., 2012). Consequently, teachers complete the 

assessment of a child’s skills based on their knowledge of the children in their classrooms. 

Internal reliability, test-retest reliability, and external validity of EDI as a strong predictor of 

child’s readiness to learn at school have been examined in several studies (Forget-Dubois et al., 

2007; Janus and Offord, 2007; Janus and Duku, 2011; Guhn et al., 2011; Forer and Zumbo, 

2011). Moreover, extant literature reports adequate evidence on the important impact of each 

domain in EDI on children’s adjustment and success at school, as well as the predictive power of 

EDI for short- or long-term school performance (Brinkman et al. 2013; Guhn et al. 2016; Janus 

and Reid-Westoby, 2016; Davies et al. 2016;). The following are the five domains of school 

readiness to learn included in the Early Development Instrument: 

1- physical health and well-being domain: this consists of 13 items that examine three sub-

domains i) physical readiness for the school day, ii) physical independence, iii) gross and fine 

motor skills, and 4) energy level. Children who are “vulnerable” or “not ready” have average or 
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poor fine and gross motor skills, are sometimes tired or hungry, often have flagging energy 

levels and less than average overall physical development. 

2-Social competence and knowledge domain.  The social competence domain consists of 26 

items that examining four sub-domains: i) Overall social competence and cooperation, ii) 

responsibility and respect, iii) approaches to learning, and iv) readiness to explore new things 

(Janus & Offord, 2007).  Children considered “vulnerable” on this domain have challenges that 

include poor overall social skills, with regular problems in getting along with other children, 

problems following rules and class routines, showing respect for adults, children, and other’s 

property.  They can lack self-confidence, self-control, and may be unable to work independently.   

3-Emotional maturity domain.  The emotional maturity domain consists of 30 items that examine 

four sub-domains: i) pro-social and helping behavior, ii) anxious and fearful behavior, iii) 

aggressive behavior, and iv) hyperactivity and inattention (Janus & Offord, 2007).  Children 

considered “vulnerable” or “not ready” on this domain regularly have problems managing 

aggressive behavior, are prone to disobedience, and/or easily distractible, inattentive, impulsive, 

usually unable to show helping behavior towards other children, and are sometimes upset when 

left by a caregiver.  

4-The language and cognitive development domain. This consists of 26 items that examine four 

sub-domains: i) basic literacy, ii) interest in literacy/numeracy and uses memory, iii) advanced 

literacy, and iv) basic numeracy (Janus & Offord, 2007).  Children considered “vulnerable” or 

“not ready” on this domain have challenges in reading/writing and numeracy; have difficulty 

remembering things; are unable to read and write simple words; are unable to attach sounds to 

letters, cannot count to 20, are unable to recognize or compare numbers, and are not interested in 

numbers.   
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5-Communication skills and general knowledge. Communication skills and general knowledge, 

unlike the other domains, does not consist of subdomains. This domain examines children’s 

ability to communicate their needs and ideas effectively and the children’s interest in the 

surrounding world (Janus & Offord, 2007). Children considered “vulnerable” or “not ready” on 

this domain have poor communication skills and articulation, a limited command of 

English/French, have difficulties in talking to others, understanding and being understood, and 

have poor knowledge understanding about their world. 

The five domains of the EDI are evaluated separately to recognize the weak and strong 

dimensions of child development. Therefore, a child can show vulnerability in one or more 

domains and not in other ones. The core questions in each of the five domains of EDI are scored 

from “0” (lowest score or vulnerability) to “10” (highest score) and the domain total score is 

calculated as an average score of all questions in the sub-domains, scored out of “10” (Janus and 

Offord, 2007). Logically, since the score of each of the five domains is out of “10”, the total 

score of EDI is out of “50”. 

Following Janus and Offord (2007), children at kindergarten age can be classified as “not ready”, 

“ready”, and “very ready”, based on the score distribution inside each domain. That is, children 

who score in the bottom 10th percentile cut-off score are classified as ‘developmentally 

vulnerable’ or “not ready” for school, based on the skills in that domain. In contrast, children 

who score in the top 30th percentile cut-off score are classified as “very ready” for school. 

Children who score between the 11th and 69th percentile are classified as “ready” for school. For 

this study, these three categories were collapsed into two ‘vulnerable/not ready’ and ‘ready’ to 

capture established developmental vulnerability, based on documented or theoretical relevance to 

the EDI domains. 
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2.3.4 Covariate (Independent) Variables: 

2.3.4.1 Maternal Depression 

2.3.4.1.1 Algorithm of Identifying Depressed Mothers 

Using administrative data collected over time represents a unique opportunity to 

recognize depressed mothers who experienced depression for the first time in each of the 

sensitive periods of early child development in this study. I used algorithms from previous 

MCHP studies to recognize depressed mothers based on official diagnoses (Martens et al., 2004; 

Fransoo et al., 2009; Martens et al., 2010; Chartier et al., 2012). These algorithms use the 

international classification of disease (ICD) coding system to identify depressed mothers as 

follows (i) at least one hospitalization with any of ICD-9-CM diagnosis codes 296.1-296.8, 

300.0, 300.2-300.4, 300.7, 309, 311or ICD-10-CA codes F31, F32, F33, F34.1, F38.0, F38.1, 

F40, F41.0-F41.3, F41.8, F41.9, F42, F43.1, F43.2, F43.8, F45.2, F53.0, F93.0; OR (ii) at least 

one hospitalization (any diagnosis (dx) code) with ICD-9-CM code 300 or ICD-10-CA codes 

F32, F34.1, F40, F41, F42, F44, F45.0, F45.1, F48, F68.0, F99 AND one or more prescription 

for antidepressant or mood stabilizer. (iii) at least one physician visit (prefix=7) with ICD-9-CM 

codes 296, 311 (iv) at least one physician visit (prefix=7) with ICD-9-CM code 300 AND one or 

more prescription for antidepressant or mood stabilizer; OR (v) at least three physician visits 

(prefix=7) with ICD-9-CM codes 300 or 309 (must be 3 of same dx code). Drugs to treat mood 

and anxiety disorders include (i) Antidepressants, ATC code N06A; (ii) Benzodiazepine 

Derivatives Anxiolytics, ATC code N05BA and (iii) Lithium, ATC code N05AN01. 
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2.3.4.1.2 Algorithm of Identifying Sensitive Periods of Child’s First Exposure to Maternal 

Depression 

Initial exposure to maternal depression is defined as the child’s age at which maternal 

depression occurs for the first time during the mother’s pregnancy and the child’s first five years 

of life (immediately after birth through kindergarten age). Following children’s initial exposure 

to maternal depression implies children will be excluded from the remaining periods in the study. 

For instance, children who experience initial maternal depression during their first six months of 

postpartum and their mothers’ depression continued to their second postpartum will be included 

in the first postpartum initial exposure to maternal depression group and excluded from the 

second postpartum initial exposure group.  

This study investigates the impact of children's initial exposure to maternal depression 

during a different sensitive period of child development. By investigating the literature on 

neuroscience, psychology and early child development, I found two streams of literature. Both 

agree that the crucial development period of a child’s early development spans the period from 

pregnancy through age 5. However, the two streams are different in the time covered in each 

stage in child development within the common period. For example, some literature in 

psychology that investigated the effect of maternal depression or maltreatment on early 

development used the postpartum period to cover the time from birth to 6 months as a 

distinguished developmental period, while other literature used the postpartum period to cover 

the time from birth to 12 months. The time periods that are most repeated in the first stream of 

literature can be broken down into seven sensitive periods in early child’s life, which have some 

developmental characteristics that make them independent of other periods. Briefly, these 

sensitive periods cover the period from pregnancy onset to kindergarten age as follows: (i) 
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pregnancy period, which includes the nine months prior to the child’s date of birth; (ii) 

postpartum period1, which includes the time from the child’s date of birth to the last day of the 

sixth month of the child’s age; (iii) postpartum period2, which includes the time from the first 

day of the seventh month of the child’s age up to the day before the child’s first birthday; (iv) 

Toddler1, which begins from the child’s first birthday up to the last day of the eighteenth month 

of the child’s age; (v) Toddler2, which includes the time from the first day of the nineteenth 

month of the child’s age up to the day before the child’s second birthday; (vi) Toddler3, which 

begins from the child’s second birthday up to the child’s third birthday; and (vii) Toddler4, 

which begins from the child’s third birthday to kindergarten age. This classification is used in 

research that focuses on a specific time period or two to compare behavior or development in a 

specific development domain. 

The second stream argues that child development in multiple domains is affected by brain 

development and early parents’ interactions are significant input in human capital formation 

because it shapes the child’s brain architecture. Therefore, the period of crucial development 

spans the period from the time of conception through the child’s fifth birthday. Although brain 

development spans a few days after conception to early adulthood, the time between conception 

and a child’s third birthday is the most critical time because this is when the foundational neural 

circuits are set up (Shonkoff and Phillips, 2000). According to this stream, the distinguished 

periods that include significant effects on brain development and thus child developmental 

trajectories can be classified as (i) the pregnancy period that starts at conception to birth; (ii) the 

postnatal period that spans the first year after childbirth; (iii) the toddler period that spans the 

period from a child’s first birthday to the third birthday; and (iv) the preschool period that spans 

the period from a child’s third birthday to the fifth birthday. 
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I did some analysis and I found the second approach more convenient in this study 

because there is no difference between the distinguished time periods when identified according 

to the first stream of literature, inside each broad time period in the second stream. For example, 

the second approach uses longer periods of time (12 month periods from 0 up to age 1) versus 

shorter periods of time in the first approach (6 month periods). The results, not included here, 

indicated that there is no difference between the two shorter periods. Moreover, the frequency of 

the depressed mother for each time period was small based on the first approach. Therefore, I 

decided to follow the second stream of literature in specifying the distinguished periods of child 

development. 

2.3.4.2. Health Status at Birth: 

The literature on early child health reports many variables that have a significant impact 

on early children’s health and skills formation. This study adopts two credible categories of risk 

factors that were developed in previous MCHP studies by Brownell et al (2016), Santos et al 

(2012), and Fransoo et al (2008), based on variables available in the repository database. Child’s 

health status at birth, which are available on the hospital discharge abstract, can be captured by 

six latent risk factors: (i) low birth weight, which is less than 2500 grams (Cohen and 

MacWilliam, 1994; Jefferis et al., 2002; Chen et al., 2014; Brownell 2016); (ii) preterm birth, 

which is birth before 37-week gestational age (Bhutta et al., 2002; De Jong et al., 2012; Chen et 

al., 2014); (iii) Small for gestational age (SGA), which is defined as at or below the 10th 

percentile in birthweight from an infant population of the same sex and gestational age (Kramer 

et al., 2001; Jutte et al., 2010; Chen et al., 2014); (iv) Long hospital stay at birth, which exceeds 

more than 6 days; (v) baby admitted to the intensive care unit (ICU) for more than 3 days 

(Fransoo et al., 2008); (vi) Five minute Apgar score, which measures the physiological well 
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being of new babies at five minutes after birth: a score of zero, one, or two is given for each of 

five vital signs, which include the infant’s heart rate, respiration, muscle tone, reflex, and color, 

and a total score less than 7 out of 10 reflects a problem (Oreopoulos et al., 2008; Jutte et al., 

2010; Roos et al., 2011). 

Low birthweight is represented by a binary variable that has value “1” if the child’s birth 

weight was less than 2500 grams and ‘0’ otherwise.  Preterm birth is captured by a binary 

variable that has value “1” if the baby’s gestational age is less than 37 weeks at birth and “0” 

otherwise. Apgar score at 5 minutes after the child’s birth is captured by a binary variable 

“Apgar_5m” which is “1” if the APGAR score is greater than 8 and “0” otherwise. Delivery of 

child by emergency c-section is captured by a binary variable that has value “1” if the child is 

delivered by emergency c-section and “0” if naturally delivered or planned c-section. The total 

length of stay for birth hospitalization is a binary variable that has value “1” if the length of stay 

at the hospital is greater than 6 days (based on the 90th percentile value). 

2.3.4.3 Health Status during Childhood 

To capture the child's health status through the early childhood period, after birth through 

the child’s 5th birthday, I used four variables. The main two variables in this study are derived 

using the John Hopkins ACG® system, which is a statistically valid, case-mix methodology that 

provides a number of markers derived from individual patient’s diagnosis codes history over a 

one-year period. Based on thousands of International Classification of Disease (ICD) diagnosis 

codes, the ACG grouping system assigns each diagnosis code to one of 32 diagnosis groups 

called Aggregate Diagnosis Groups (ADGs). According to MCHP (2013), ICD-9 and ICD-10 

codes are assigned to one of 32 different ADGs, of which 8 are considered Major for children, 

and 24 are considered Minor. Moreover, the diagnosis-to-ADG mapping system in the ACG 
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software may assign one single ICD diagnosis code to more than one ADG group, which 

indicates more than one underlying morbidity type (John Hopkins ACG, 2014). The ADGs are 

not categorized by organ system or disease, but there are five clinical criteria that guide the 

assignment of each diagnosis code into an ADG: Duration, Severity, Diagnostic certainty, type 

of etiology, and expected need for specialty care.  

Each year, every child could be assigned any number of ADGs based on the number of 

diagnosis codes assigned to them from physician visits or hospital abstracts. These ADGs are 

classified into two main sub-groups: Major ADGs and Minor ADGs. Then the number of major 

ADGs or minor ADGs is counted for each child and summed over the entire year and repeated 

for the period from birth to the child’s 5th birthday. This process gives two variables for each 

child: the number of major ADGs-year and the number of minor ADGs-year. Children who have 

more than two major ADGs during childhood are classified as having Major ADG illness (using 

the 90th percentile value of the major ADGs distribution). That is, the child’s major illness is 

represented by a binary variable that has value “1” if the number of ADGs is greater than two 

major ADGs and “0” otherwise. Similarly, children who have more than the 90th percentile value 

of the minor ADGs distribution during early childhood are classified as having a minor ADG.  

The other two variables that capture the child's health status during early childhood are the 

number of hospital admissions and the number of physician visits from birth to their 5th birthday. 

Both are dichotomized based on the 95th percentile value of the number of hospital admissions 

and 95th percentile value of the number of physician visits from birth to their 5th birthday.  
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2.3.4.4 Mother Health Status Prior Birth 

Heckman and others proposed a model in which capabilities are formed in multistage 

throughout the child's life and this dynamic process begins with the health of the mother before 

the time of conception. Consequently, individuals are born with heterogeneous endowments of 

capabilities (e.g., cognitive capabilities, non-cognitive capabilities, and stock of mental and 

physical health at birth).  The technology of skill formation at any time point in the child's life is 

given by parental capabilities (e.g., education, genes, income, IQ, psychological factors), 

parental and government investments in child skills, and the child accumulated capabilities from 

previous periods.  Based on this dynamic model, the child's early development at any time point 

can be traced back, through recursive backward substitution in the skill formation technology, to 

a child’s initial capabilities, which are affected by a mother’s health before conception. The 

technology of capability production exhibits two important implications: (i) self-productivity, 

where skills attainment at one stage in a child’s life raises skills attainment at later stages in the 

life cycle and (ii) dynamic complementarity, where skills produced at one stage increase 

productivity of investment in subsequent stages in a child’s life cycle (early investment increases 

the productivity of later investment). In other words, skills beget skills and abilities beget 

abilities. Empirically, some studies found that mother pre-pregnancy obesity has an increased 

risk for negative emotionality and inattentiveness in early childhood (Robinson et al., 2013). 

There is also evidence that obesity and metabolic syndrome are related to an elevated risk of 

depression which postulates that there is a potential link between maternal metabolic and fetal 

brain development in utero4 (Robinson et al., 2013; Koponen et al., 2008). Therefore, it is 

reasonable to postulate that the effects of maternal depression on children's early development 

could be confounded by the mother’s health before pregnancy. To date, however, studies of 

 
4 Metabolic syndrome is a cluster of risk factors for type 2 diabetes and cardiovascular diseases. 



218 

 

maternal depression have not considered the consequences of maternal pre-pregnancy health on 

child developmental outcomes.  

Mother health status is represented by three latent variables through the five years 

preceding the child’s birth. Using the John Hopkins ACG® system, each year, mothers could be 

assigned any number of ADGs based on the number of diagnosis codes assigned to them from 

physician visits or hospital abstracts. Moreover, the ADGs are classified into two main sub-

groups: Major ADGs and Minor ADGs. Then the number of major ADGs or minor ADGs are 

counted for each mother and then summed over the entire year and repeated for the five years 

preceding the child’s birth. This process gives two variables for each mother: the number of 

major ADGs/year and the number of minor ADGs/year. The mother's major illness is 

dichotomized using the 90th percentile value of the major ADGs distribution and minor illness is 

dichotomized using the 90th percentile value of the minor ADGs distribution. The third variable 

is the number of hospital admissions prior to childbirth. It is dichotomized based on the 95th 

percentile of the distribution of the number of hospital admissions. 

2.3.4.5 Child’s and Family’s Demographic and Socioeconomic Characteristics 

Child variables include (i) age as a continuous variable: age in months was calculated 

using birthdate from the population registry and date of assessment from the EDI database; and 

(ii) gender, captured by a binary variable which has value “1” if the child is male and “0” if the 

child is female.  

Family risk factors include variables that demonstrate an association with the child’s 

health and educational outcome. I used four latent variables to capture a high-risk environment in 

which a child develops, and this data is taken from different data sources in the repository. The 

latent variables include: (i) mother is a teenager at first birth. Some studies found that children of 
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teen mothers are more likely to have poor health, low educational attainment and social 

outcomes (Jutte et al., 2010).  Teenage mothers are captured by a binary variable that has value 

“1” if the mother’s age at child’s birth is less than 19 years, and “0” otherwise. (ii) Family 

receives income assistance, which is a measure of low-income. Using the Social Assistance 

Management Information Network (SAMIN) data, receiving employment and income assistance 

(EIA) is defined as a binary measure. Mothers receiving at least two consecutive months of EIA 

are identified as receiving EIA (Brownell et al., 2016). (iii) Family with four or more children. 

Family size was first measured based on counting the number of children born to the same 

mother, identified by matching the mother’s and baby’s records using the Manitoba Health 

Registration Number. These values were dichotomized into two categories with value “1” if the 

number of children is more than four and “0” otherwise. (iv) Mother’s education level. A binary 

variable of whether the mother has less than high school or graduated from high school at the 

time of the birth of her child. This information is obtained from Family First Screen and Baby 

First Screen; (v) Neighbourhood-level socioeconomic status. Socioeconomic status was 

estimated using the Socioeconomic Factor Index – Version 2 score (SEFI-2).  This area-level 

measure uses the following variables from the Census: average household income (age 15+), 

percent of single-parent households, unemployment rate (age 15+), and high school education 

rate for a specified dissemination area (Metge et al., 2009).  The continuous SEFI-2 scores are 

interpreted as follows: Scores less than zero indicate more favorable socioeconomic conditions, 

while scores greater than zero indicate lower socioeconomic status condition. The SEFI-2 is 

linked to a mother’s postal code to assign a socioeconomic status to the child’s family. (vi) 

Smoking During Pregnancy (categorical). This is captured by a binary variable that has value “1” 

if the mother reported that she smoked during pregnancy on the BF/FF Screening Form and “0” 
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otherwise. (vii) Mother’s initiation of breastfeeding at birth. This is captured by a binary variable 

which has value “1” if the mother initiated breastfeeding or breastfeeding mixed with artificial 

feeding and “0” if the mother initiated only artificial feeding (formula). This data is obtained 

from the hospital abstract (viii) Mother marital status, captured by a binary variable with value 

“1” if the mother is married or has a partner and “0” otherwise. This data is obtained from the 

Manitoba Health Insurance Registry (for all variables, see appendix A “Variable Descriptions” 

for more details). 

2.4. Econometric Methodology 

Due to the categorized nature of the EDI domain as a measure of school readiness, linear 

model regression techniques are not appropriate. In a logistic regression setting, if 𝑌 is a binary 

outcome variable and 𝑋 is a set of explanatory variables, the conditional mean of Y given X 

when a logistic distribution is used can be given by 

𝔼(𝑌 = 1|𝑋)  ≡ 𝑝𝑟(𝑌 = 1|𝑋)  ≡  𝜋(𝑥) 

And the specific form of the logistic regression model that I used is  

𝜋(𝑥) =
𝑒𝛼+𝛽′𝑋

1 + 𝑒𝛼+ 𝛽′𝑋
  

assuming that 𝑔(𝑥) = 𝑙𝑛 [
𝜋(𝑥)

1−𝜋(𝑥)
], 

Then the logit, or log odds, of being not ready/vulnerable in EDI domains can be modeled by the 

following  

𝑔(∙) =  𝛼0 + 𝛼1 𝑡𝑖𝑚𝑖𝑛𝑔 + 𝛼2 𝑏𝑖𝑟𝑡ℎ + 𝛼3 𝑐ℎ𝑖𝑙𝑑ℎ𝑜𝑜𝑑 + 𝛼4 𝑚𝑜𝑡ℎ𝑒𝑟 + 𝛼5𝑋  



221 

 

where 𝑔(∙) denotes a set of EDI outcomes for child 𝑖, i.e., a set of a logit of being vulnerable in 

EDI domains, including emotional, physical, social, cognitive, and communication outcomes 

domains. 𝑇𝑖𝑚𝑖𝑛𝑔 denotes the timing of the first exposure to maternal depression. Timing of 

maternal depression was entered into the model as a categorical predictor variable: children not 

exposed to maternal depression at any time point (reference group), children exposed to maternal 

depression during pregnancy, children exposed to maternal depression during the postnatal 

period (birth–12 months), children exposed to maternal depression during the toddler period (12 

months - 36 months), and children exposed to maternal depression during the preschool period 

(36 months - 60 months). 𝑏𝑖𝑟𝑡ℎ denotes child’s health at birth as indicated by low birth weight, 

preterm birth, 5-minute Apgar, length of stay in hospital after birth, and emergency c-section. 

𝐶ℎ𝑖𝑙𝑑ℎ𝑜𝑜𝑑 denotes a child’s health through early childhood as indicated by a major illness, 

minor illness, and hospitalizations. 𝑀𝑜𝑡ℎ𝑒𝑟 denotes mother health status five years before the 

child’s birth as indicated by the mother’s major illness, mother’s minor illness, and mother’s 

hospitalization. 𝑋 denotes a set of child and family variables, including child gender, child age, 

mother’s marital status, teenage mother at birth, mother’s education, residence, family size, 

receiving income assistance, and neighborhood-area.  

Covariates were selected for inclusion in the models because of their documented or 

theoretical relevance to the EDI domains. Moreover, covariates were entered into the base 

multivariable models in four steps: (i) Baseline maternal depression periods (pregnancy, 

postnatal, toddler, and preschool), (ii) child health status through early childhood and child 

health status at birth,  (iii) mother’s health status five years before child’s birth (mother’s major 

illness, mother’s minor illness, and hospitalization through the five years before child’s birth), 

and (iv) child and family characteristics (child gender, child age, mother’s marital status, teenage 
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mother at birth, mother’s education, residence, family size, receiving income assistance, and a 

neighborhood-level variable - adjusting for socioeconomic status using the SEFI-2). I used the 

techniques described above for two reasons. First, to construct a series of multivariate analyses to 

test the association between maternal depression and EDI outcomes after adjusting for the 

potential confounders or mediators. Second, to test the hypothesis that controlling for child 

health through early childhood, child’s health at birth, mother’s health before birth, and social 

and demographic variables would decrease the measured association between maternal 

depression timing and EDI outcomes. 

The fact that the model specification of maternal depression and child’s development 

trajectories are taken at different points in time may include the possibility of reverse causality, 

i.e., a child’s poor health may cause maternal depression. The model includes some factors that 

control for a child’s health at birth and during childhood to allay the issue related to reverse 

causality. 

2.5. Descriptive statistics: 

Tables 2.1 through 2.4 provide descriptive statistics of the working sample. Table 2.1 

shows the descriptive statistics of the main EDI domains, the outcome (independent) variable in 

the study, with frequencies presented separately for children exposed to maternal depression and 

non-exposed children. The share of children who identified as not ready/vulnerable on the 

emotional maturity domain is 12.4% (87.6% ready), on the physical health domain is 13.8% 

(86.3% ready), on social competence domain is 12.5% (87.5% ready), on the cognitive domain is 

12.8% (87.2% ready), and on communication domain is 11.5%  (88.5% ready). This indicates 

that most of the children in the sample are identified as ‘ready’ in one or more EDI domains. The 
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number of children who identified as not ready in at least one EDI domain is 17,466 (around 

29.4%), while the number of children who are ready in at least one domain is 41,947. 

The results indicate a significant difference in EDI vulnerability between the children 

exposed to maternal depression and those in the non-exposed group for all EDI domains. For 

example, among children exposed to maternal depression, 15.1% were vulnerable in the 

emotional domain compared to 11.2% in the non-exposed group. However, this does not mean 

that there is a causal relationship between the exposure to maternal depression and the 

developmental vulnerability in EDI domains. 

Table 2.1: Descriptive Statistics of the Sample on the Main Early Development Instrument (EDI) 

 

Mean 

Not ready 

‘vulnerable’ St.Dev  

Num. 

Ready  

Num. 

 not 

ready 

Mean 

depression 

exposure 

Mean non-

depressed 

exposure t-statistic 

Emotional 0.124 0.329 51898 7327 0.151 0.112 13.29*** 

Physical 0.138 0.344 51096 8151 0.169 0.124 14.71*** 

Social 0.125 0.331 51826 7422 0.155 0.112 14.58*** 

Cognitive 0.128 0.224 51628 7598 0.148 0.120 9.76*** 

Communication 0.115 0.319 52458 6791 0.120 0.112 2.52** 

Number of not ready/vulnerable in EDI domains 

0 0.703 0.457 41790 17623 0.658 0.723 -15.91*** 

1 0.130 0.337 51664 7749 0.142 0.125 5.65*** 

2 0.069 0.254 55302 4111 0.078 0.065 6.06*** 

3 0.042 0.200 56931 2482 0.055 0.036 10.52*** 

4 0.029 0.169 57665 1748 0.034 0.027 4.41*** 

5 0.023 0.150 58037 1376 0.028 0.021 5.17*** 

At least one domain 0.294 0.456 41947 17466 0.338 0.275 15.5*** 

Notes: Columns 1 and 2 give the overall mean and standard deviation of the EDI variable. Columns 3 and 4 provide 

the number of children who are ready and not ready on the EDI domains, respectively.  Column 5 gives the 

frequency of the vulnerability for children exposed to maternal depression and the means for non-exposed children 

are given in column 6. Column 7 gives the t-statistic for the equality of means of both groups. *, **, *** indicate 

significance level at 10%, 5%, 1% respectively. 
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Table 2.2 displays the child’s health, mother’s health prior to birth, and 

sociodemographic characteristics of the cohort, with frequencies presented separately for 

children exposed to maternal depression and non-exposed children. Regarding child health 

through early childhood,  20% of children in the sample had more than two major ADGs from 

birth discharge to their 5th birthday, 8% had a number of minor illnesses greater than the 90th 

percentile of the number of minor ADGs in the population sample, 4% experienced hospital 

admission counts from birth to their 5th birthday above the 90th percentile, and 2% were admitted 

to the intensive care unit. For the child health at birth latent variables, approximately 4% of 

children are low birth (less than 2500 gm), 6% born less at than 37 weeks of gestation, 97% 

perform well on the five minutes Apgar score at birth, 4.4% stayed longer than six days in the 

hospital at birth, and 6% had birth complications. For mother’s health prior to birth, 

approximately 19% of mothers had more than two major illnesses during the five years 

preceding childbirth, 12.8% had minor illnesses above the 90th percentile of the number of minor 

ADGs distribution, and 3.6% had hospital admission counts above the 90th percentile of the 

number of hospital admission in the population distribution. For demographic and 

socioeconomic variables in the sample, the sample was practically evenly divided between boys 

(50.9%) and girls (49.1%).  The mean age of the children at the time of the EDI assessment was 

68.75 months. Approximately 40% of mothers were married at birth, 15.5% had less than high 

school degree, 25.8% were teenagers at birth, and 16.4% smoked during pregnancy. On average, 

18.8% of the children’s families had four or more children at birth, 14.3% received income 

assistance for three consecutive months from birth to the child’s 5th birthday, and 47% were 

living in a more favorable SES neighborhood area. 
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Table 2.2: Descriptive Statistics of the Study Explanatory Variables  

 Mean St.Dev 

Exposed to 

depression 

No-

exposure to 

depression t-statistic 

Timing of first exposure to maternal depression 

Pregnancy (In uterus) 0.046 0.210 --- --- --- 

Postnatal (birth -12 months) 0.053 0.224 --- --- --- 

Toddler (12 months-36 months) 0.093 0.290 --- --- --- 

Preschool (36 months-60 months) 0.119 0.324 --- --- --- 

Child's health through childhood     
Major illness (2+ major ADGs) 0.207 0.405 0.2390 0.1935 12.57*** 

Minor illness (90th+ minor ADGs 0.087 0.282 0.1195 0.0730 18.48*** 

Child hospital admission (>95th) 0.036 0.186 0.0404 0.0337 4.05*** 

ICU admission during childhood 0.019 0.137 0.0218 0.0181 3.03*** 

Child's health at birth      
Low Birth Weight (< 2500g) 0.038 0.191 0.0432 0.0358 4.32*** 

Preterm (< 37 weeks) 0.061 0.061 0.0717 0.0570 6.85*** 

5-minutes Apgar (>=8) 0.966 0.181 0.9638 0.9669 -1.86* 

5-minutes Apgar (1-10) 8.86 0.65 8.8476 8.8647 -2.93*** 

Length of hospital staying (>6days) 0.044 0.205 0.0528 0.0401 6.92*** 

Emergency c-section 0.031 0.173 0.0329 0.0302 1.74* 

Birth complications 0.065 0.246 0.0703 0.0622 3.67*** 

Mother health 5 years before the birth    
Major illness (>2+ ADGs) 0.192 0.394 0.2820 0.1540 36.69*** 

Minor illness (>90th minor ADGs) 0.128 0.334 0.2294 0.0839 49.73*** 

Mother hospital admission (>95th) 0.036 0.186 0.0886 0.0463 20.09*** 

Child, Mother, family characteristics 

Child's age (in months) 68.75 3.56 68.812 68.729 2.62** 

Child gender (male=1) 0.509 0.500 0.5069 0.5093 0.54 

Breast feeding initiation 0.823 0.382 0.7815 0.8408 -17.37*** 

Mother married 0.400 0.490 0.3291 0.4309 -23.30*** 

Mother less than HS 0.155 0.362 0.1867 0.1416 13.94*** 

Teenage mother at birth 0.258 0.437 0.3210 0.2305 23.24*** 

Smoking during pregnancy 0.164 0.370 0.2289 0.1362 28.16*** 

Neighbourhood-area SES 0.470 0.499 0.4367 0.4843 -10.66*** 

Urban residence 0.505 0.500 0.6263 0.4531 39.19*** 

Family size (> 4) 0.188 0.350 0.2059 0.1804 7.310*** 

Family receive income assistance 0.143 0.350 0.2076 0.1153 29.67*** 

Notes: Columns 1 and 2 give the overall mean and standard deviation of the model variables.  Column 3 and 

4compares depressed mothers and their children with non-depressed mothers and their children in the sample under 

study. Column 5 gives the t-statistic for the equality of means of both groups. *, **, *** indicate significance level 

at 10%, 5%, 1% respectively. 
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Columns 3 and 4 in table 2.2 compare depressed mothers and their children with non-

depressed mothers and their children in the sample under study.  As is evident from the last 

column of the table, these groups are quite different. On average, depressed mothers are more 

likely to be less healthy prior to their pregnancy (more likely to have a major and minor illness), 

to be a single mom, less educated, and teenager at birth.  Their children are more likely to be less 

healthy at birth and through childhood. Compared to children who were not exposed to maternal 

depression during any period, children exposed to depression were more likely to be less than 

normal weight at birth, to be born before reaching normal gestation age, to have lower Apgar 

scores, and to have more birth complications.  Families of children in the depressed group are 

more likely to live in less favorable SES neighborhood areas and to receive income assistance. 

Finally, there were 2739 children (4.6% of the total sample) exposed to maternal depression 

during pregnancy (in the uterus), 3135 (5.28% of the total sample) children exposed to 

depression during the postnatal period, 5510 (9.27% of the total sample) children exposed to 

depression during the toddler period, and 7094 children (11.94% of the total sample) exposed to 

depression during the preschool period. 

Table 2.3 presents the results of crosstabulations comparing all the EDI domains across 

family socioeconomic status and child gender. Children identified as ‘not ready’/’vulnerable’ on 

the domains of the EDI generally came from families with less favorable neighborhood 

socioeconomic status than children identified as ‘ready’. Results of Chi-square analyses showed 

that children identified as ‘ready’ and ‘not ready’ differed significantly by neighborhood-area 

socioeconomic status on each measure of the EDI domain.  For example, among children who 

are classified as not ready/vulnerable in one or more of the EDI domains, 63.32% of them were 

in families in low SES neighborhoods compared to 36.68% in families in favorable SES 



227 

 

neighborhoods. The proportion of children whose families were living in less favorable SES 

neighborhoods among children who classified as not ready in the separate EDI domain were 

61.65% in the emotional domain, 66.86% in the physical health domain, 65.60% in the social 

competence domain, 68.86% in the cognitive domain, 65.59% in the communication domain. 

The associated p-value of the Chi-Square statistic is less than 0.0001, which means that there is 

significant evidence of an association between child developmental vulnerability in EDI domains 

and family socioeconomic status. Children from all SES backgrounds can be vulnerable. 

However, children from low SES backgrounds may have a far greater risk of being vulnerable.  

A greater proportion of boys than girls are identified as ‘not ready’ on all sub-domains of the 

EDI. Results of Chi-square statistics showed that children identified as ‘ready’ and ‘not ready’ 

differed significantly by gender on each sub-domain of the EDI. Among children who identified 

as not ready/vulnerable in one EDI domain or more, 11136 (63.76%) children were boys while 

6330 (36.24%) were girls. The proportion of boys among children who classified as not 

ready/vulnerable in separate EDI domains were 73.84% in the emotional domain, 63.15% in the 

physical health domain, 69.95% in the social competence domain, 64.21% in the cognitive and 

language domain, and 64.78% in the communication and knowledge domain. The associated p-

value is less than 0.0001, which means that there is significant evidence of an association 

between child developmental vulnerability in EDI domains and child gender. The other chi-

square statistics (Likelihood Ratio Chi-Square Continuity Adj. Chi-Square Mantel-Haenszel Chi-

Square) have similar values and are asymptotically equivalent. 
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Table 2.3:  Descriptive Statistics of EDI by Neighborhood-area SES and Child Gender 

 Socioeconomic status 

 

Child Gender 

EDI domain 

Less 

favorable 

More 

favorable 
Chi-Square Boys Girls Chi-Square 

One or more EDI domain 

Ready 
20396 

(48.70%) 

21485 

(51.30%) 1056.3652 

p<0.0001 
 

19079 

(45.48%) 

22868 

(54.52%) 1647.76 
p<0.0001 

Not ready 
11037 

(63.32%) 

6393 

(36.68%)  

11136 

(63.76%) 

6330 

(36.24%) 

Emotional Domain 

Ready 
26801 

(51.73%) 

25011 

(48.27%) 253.0481 

p<0.0001 
 

24697 

(47.59%) 

27201 

(52.4%) 1770.0100 

p<0.0001 
Not ready 

4507 

(61.65%) 

2804 

(38.35%)  

5410 

(73.84%) 

1917 

(26.16%) 

Physical Domain 

Ready 
25884 

(50.74%) 

25130 

(49.26%) 731.1753 

p<0.0001 
 

24974 

(48.88%) 

26122 

(51.12%) 572.6656 

p<0.0001 
Not ready 

5436 

(66.86%) 

2695 

(33.14%)  

5147 

(63.15%) 

3004 

(36.85%) 

Social domain 

Ready 
26463 

(51.15%) 

25278 

(48.85%) 543.6291 

p<0.0001 
 

24927 

(48.10%) 

26899 

(51.90%) 1240.925 

p<0.0001 
Not ready 

4858 

(65.60%) 

2547 

(34.40%)  

5192 

(69.95%) 

2230 

(30.05%) 

Cognitive Domain 

Ready 
26084 

(50.61%) 

25454 

(49.39%) 884.2983 

p<0.0001 
 

25227 

(48.86%) 

26401 

(51.14%) 624.5107 

p<0.0001 
Not ready 

5224 

(68.86%) 

2362 

(31.14%)  

4879 

(64.21%) 

2719 

(35.79%) 

Communication Domain 

Ready 
26876 

(51.32%) 

25491 

(48.68%) 490.4982 

p<0.0001 
 

25722 

(49.03%) 

26736 

(50.97%) 596.2706 

p<0.0001 
Not ready 

4447 

(65.59%) 

2333 

(34.41%)  

4399 

(64.78%) 

2392 

(35.22%) 

Notes: (i) The Pearson chi-square statistic is used to assess the association between the child’s gender and the 

vulnerability in the EDI domains. (ii) The values printed under the cell count are the row percentage (iii) the null 

hypothesis is 𝐻0: 𝑛𝑜 𝑎𝑠𝑠𝑜𝑐𝑖𝑎𝑡𝑖𝑜𝑛 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑠 . p-value < 0.05 means that there is significant evidence 

of an association between the two variables. 
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2.6. Regression Results 

Table 2.4 presents the unadjusted and the fully adjusted ORs for being vulnerable/not 

ready on the emotional maturity domain, as an outcome of the timing of the first exposure to 

maternal depression. The unadjusted model (model 1) shows that maternal depression has a 

negative effect on a child’s emotional maturity skills across all four time periods. Compared to 

children who were not exposed to maternal depression at any time, children exposed to maternal 

depression in the uterus (pregnancy) are 1.58 more likely to be not ready on the emotional 

maturity domain at kindergarten age. Children exposed to maternal depression in the postnatal 

period had significantly higher odds (34%) of developmental vulnerability on emotional maturity 

skills. Children exposed to maternal depression during the toddler period had significantly higher 

odds (29% increase) to be not ready in emotional maturity. Children exposed to maternal 

depression during the preschool period had significantly higher odds (48% increase) of 

development vulnerability on their emotional maturity skills. 

After adjusting for child’s health at birth, child’s health through early childhood (model 

2), and mother’s health status during the five years before birth (model 3), the negative effect of 

maternal depression on child’s emotional maturity skills remained statistically significant across 

the four time periods. However, the effect of maternal depression on the emotional domain was 

attenuated in all periods. The odds of being not ready on emotional maturity are 18-38% higher 

across the different time points of maternal depression compared with 29-58% in the unadjusted 

model.  
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Table 2.4: Unadjusted and Fully-adjusted Odds Ratio of being Developmentally Vulnerable in 

the Emotional Maturity Domain   

 

Model 1 

Unadjusted 

OR 

Model 2 

Partially adj 

OR 

Model 3 

Partially adj 

OR 

Model 4 

Fully adj 

 OR 

Timing of first exposure to maternal depression   
Pregnancy (In uterus) 1.58*** 1.49*** 1.38***   1.32 [1.18-1.49] *** 

Postnatal (birth -12months) 1.34*** 1.28*** 1.21*** 1.13 [1.01-1.26] ** 

Toddler I (12months-36m) 1.29*** 1.24*** 1.18*** 1.10 [1.01-1.20] ** 

Preschool (36months-60m) 1.48*** 1.42*** 1.35***   1.23 [1.14-1.32] *** 

Child's health through childhood    
Major illness (2+ major ADGs) 1.34*** 1.32*** 1.17 [1.10-1.23] *** 

Minor illness (90th+ minor ADGs 1.32*** 1.27*** 1.26 [1.18-1.34] *** 

 Hospital admission (>95th)  1.70*** 1.68*** 1.44 [1.28-1.61] *** 

Child's health at birth     
Low Birth Weight (< 2500g) 1.19** 1.19** 1.33 [1.15-1.54] *** 

Preterm (< 37 weeks)  1.02 0.99    0.93 [0.83-1.06] 

5-minutes Apgar (>=8)  0.99 0.98    0.98 [0.86-1.12] 

Length of hospitalization (>6) 1.19** 1.18**    1.12 [0.97-1.28] 

Emergency c-section  1.10 1.10    1.20 [1.05-1.38] ** 

Mother health 5 years before the birth    
Major illness (>2+ ADGs)   1.15*** 1.09 [ 1.03-1.15] *** 

Minor illness (>90th minor ADGs)  1.17***   1.08 [1.01-1.15] ** 

Hospital admission (>95th)   1.19***   1.12 [1.01-1.24] ** 

Child, and family characteristics   
Child's age (in months)    0.97 [0.96--0.98] *** 

Child gender (male=1)    3.14 [2.97-3.32] *** 

Breastfeeding initiation    0.89 [0.84-0.95] *** 

Mother married    0.68 [0.65-0.73] *** 

Mother has less than HS    1.22 [1.13-1.32] *** 

Teenage mother    1.21 [1.13-1.29] *** 

Smoking during pregnancy       1.06 [0.99-1.14] * 

Neighbourhood-area SES    0.84 [0.71-0.89] *** 

Urban residence       1.06 [1.01-1.12] ** 

Family size (>4)    1.19 [1.12-1.27] *** 

The family receive income assistance   1.29 [1.19-1.39] *** 

Notes: (i) reference group is developmentally 'ready', (ii) EDI is the Early Development Instrument, (iii) OR is the 

odds ratios, CI is the confidence interval, (iv) vulnerability is the scoring in the bottom 10 th percentile of the EDI 

domains. *, **, *** indicate significance level at 10%, 5%, 1% respectively. 
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Column 4 shows the further adjustment for a child’s characteristics (age, sex), family 

variables (mother’s marital status, teenage mother, a mother with less than high school 

education, family size, family on income assistance), and the neighborhood-area socioeconomic 

status. Although there is a statistically significant association between maternal depression and 

child’s emotional maturity across all maternal depression time points, the odds of vulnerability in 

emotional skills are moderated after adjusting for these variables. The odds of being not ready on 

emotional maturity skills are 10-32% greater across the different maternal depression time 

points. Compared to children who were not exposed to maternal depression during any period, 

the odds of developmental vulnerability on emotional skills are 32%, 13%, 10%, and 35% 

greater for children exposed to maternal depression during pregnancy, postnatal, toddler, and 

preschool time points, respectively.  However, the influence of maternal depression appears to be 

stronger in the pregnancy period, followed by the preschool period than the other two time 

points. According to the fully-adjusted ORs (model 4), children exposed to maternal depression 

in the uterus could be as little as 1.32 times or as much as 1.49 times more likely to be not ready 

on emotional skills at kindergarten age compared to those who were not exposed to maternal 

depression at any time point. Similarly, children exposed to maternal depression during the 

preschool period could be as little as 1.14 times or as much as 1.32 times more likely to be 

vulnerable in emotional skills compared with those who were not exposed to maternal depression 

during any time point. 

The results show that the child’s health through early childhood has a statistically 

significant effect on the child’s emotional domain. The odds of being developmentally 

vulnerable in emotional skills are 17-70% higher for children with health vulnerability during 

early childhood. According to fully-adjusted model, the odds of being vulnerable are 1.17 times 
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greater for children with a major illness (as indicated by 2+ major ADGs) than those without 

major illness in early childhood, 1.26 times greater for children with minor illness (as indicated 

by 95th percentile minor ADGs) than those without minor illness in early childhood, and 1.44 

times greater for children who required hospitalization in early childhood compared with 

children with no hospitalization. Similarly, the odds of being vulnerable at kindergarten age in 

emotional skills are statistically significantly higher with a child’s health status at birth. The odds 

of being vulnerable are 33% higher for low birth weight than normal-weight children, 20% 

higher for children delivered through emergency c-section than natural delivery. 

The results also indicate that a child’s mother's health status during the five years before 

the child’s birth has a significant effect on a child’s emotional skills at kindergarten age even 

after controlling for other covariates. The odds of being vulnerable on the emotional domain is 

9% greater for children whose mother had the major illness before childbirth, 8% greater for 

children whose mother had minor illness prior child’s birth, and 12% greater for children whose 

mother was hospitalized more frequently than the 95th percentile of Manitobans compared to 

children whose mother did not experience any of these health problems before their birth. 

Among the child’s individual-level factors, a child’s sex has a strong effect on emotional 

maturity skills. The association appears to be stronger in boys than in girls. The odds of being 

vulnerable are 3.14 times greater for boys than girls and decrease with child age (OR= 0.97). The 

fully-adjusted ORs indicate that a child’s family characteristics have a powerful influence on the 

child’s performance on the child’s emotional skills at kindergarten age. The odds of being 

vulnerable in the emotional domain are 22% greater for children whose mothers do not have high 

school than those whose mothers have a secondary degree or higher, 21% greater for children 

whose mothers were teenagers at their birth compared to those whose mothers were not 
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teenagers. In contrast, children whose mothers were married are less likely to be vulnerable in 

the emotional domain than those whose mothers are not married, and children whose mothers 

initiated breastfeeding at birth are less likely to be vulnerable in the emotional domain than those 

whose mothers did not initiate breastfeeding. The odds of being vulnerable on the emotion 

domain are 29% greater for children in families on income assistance than for those not on 

income assistance, and 19% greater for children having more than four siblings at birth 

compared with those having less than four siblings. The neighborhood-area socioeconomic status 

of a child’s family was significantly associated with child emotional skills. Children whose 

family has favorable neighborhood-area socioeconomic status (as indicated by SEFI) have lower 

odds of being not ready in emotional skills. 

Put together, these results suggest a significant and strong influence of the child's health 

and family environment on children’s school readiness at kindergarten age. The reduction in the 

magnitude of the odds of being vulnerable in emotional skills after controlling for child health 

and family characteristics supports the hypothesis that these variables could have a potential 

confounding effect in the association between maternal depression and child’s school readiness. 

Table 2.5 shows the effect of maternal depression timing on children’s physical health 

and well- being domain at kindergarten age. The adjusted ORs (model 1) indicate that exposure 

to maternal depression for the first time has a negative effect on the child’s physical health and 

well-being domain across all time points. Moreover, the strongest effect of maternal depression 

exposure on children's physical health was found during pregnancy and the preschool period. 

However, maternal depression seemed to exert a greater effect on children's physical health 

domains during the preschool period than did the pregnancy period and other periods of maternal 

depression exposure.  
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Table 2.5: Unadjusted and Fully-adjusted odds Ratio of Being Developmentally Vulnerable in 

the Physical Health Domain. 

 

Model 1 

unadjusted  

OR 

Model 2 

partially 

adj OR 

Model 3 

partially adj 

OR 

Model 4  

fully adj 

 OR 

Timing of first exposure to maternal depression   
Pregnancy (In uterus) 1.440*** 1.362*** 1.230*** 1.157[1.035-1.294]** 

Postnatal (birth -12months) 1.317*** 1.27*** 1.186*** 1.074[0.965-1.195] 

Toddler I (12months-36m) 1.349*** 1.306*** 1.23*** 1.096[1.008-1.191]** 

Preschool (36months-60m) 1.606*** 1.559*** 1.459*** 1.228[1.141-1.322]*** 

Child's health through childhood    
Major illness (2+ major ADGs) 1.246*** 1.222*** 1.104[1.046-1.64]*** 

Minor illness (90th+ minor ADGs 1.144*** 1.086** 1.141[1.069-1.219]*** 

Child hospital admission (>95th)  
2.490*** 2.44*** 2.028[1.825-2.253]*** 

Child's health at birth     
Low Birth Weight (< 2500g) 1.244*** 1.251*** 1.305[1.137-1.497]*** 

Preterm (< 37 weeks)  
1.203*** 1.75*** 1.08[0.096-1.212] 

5-minutes Apgar (>=8)  0.847*** 0.844*** 0.768[0.678-0.870]*** 

Length of hospitalization(>6 days) 1.358*** 1.351*** 1.318[1.159-1.500]*** 

Emergency c-section  
0.973*** 0.977 1.1450.997-1.316]* 

Mother health before birth   
Major illness (>2+ ADGs)   

1.225*** 1.089[1.033-1.147]*** 

Minor illness (>90th minor ADGs)  1.170*** 1.022[0.961-1.088] 

Mother hospital admission (>95th)   
1.28*** 1.109[1.009-1.219]** 

Child, Mother, family char     
Child's age (in months)    

0.962[0.955-0.968]*** 

Child gender (male=1)    
1.844[1.753-1.940]*** 

Breastfeeding initiation    
0.878[0.827-0.933]*** 

Mother married    
0.615[0.579-0.652]*** 

Mother has less than HS    
1.203[1.122-1.290]*** 

Teenage mother    
1.398[1.318-1.483]*** 

Smoking during pregnancy    
1.175[1.101-1.254]*** 

Neighbourhood-area SES    
0.751[0.712-0.793]*** 

Urban residence    
1.037[0.986-1.092] 

Family size (>4)    
1.687[1.590-1.790]*** 

The family receive income assistance   
1.508[1.404-1.620] 

Notes: (i) reference group is developmentally 'ready', (ii) EDI is the Early Development Instrument, (iii) OR is the 

odds ratios, CI is the confidence interval, (iv) vulnerability is the scoring in the bottom 10th percentile of the EDI 

domains. *, **, *** indicate significance level at 10%, 5%, 1% respectively.  
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The odds of being vulnerable in physical health at kindergarten age were 44% and 60% 

greater in children exposed to maternal depression for the first time during pregnancy (in utero) 

and during preschool time point, respectively, compared to those who were not exposed to 

maternal depression during any time point. Similarly, children exposed to maternal depression 

during the postnatal or toddler periods had significantly higher odds of being developmentally 

vulnerable in physical health and the well- being domain by 31% and 34%, respectively, 

compared to those who were not exposed to maternal depression during any time point. 

After controlling for child health through early childhood and child health at birth, the 

odds of being vulnerable in the physical health domain for children exposed to maternal 

depression for the first time remained statistically significant across all the maternal depression 

periods. Also, the strongest effect of maternal depression on the child's physical health domain 

remained through the pregnancy and preschool time points.  After further controlling for child 

and family characteristics, the fully-adjusted odds of being not ready on physical health remained 

significant across the four periods and stronger for children exposed to maternal depression 

during pregnancy and preschool. For example, children exposed to maternal depression during 

pregnancy and preschool had odds of being developmentally vulnerable on physical health at 

kindergarten age 16% and 23% greater than children who were not exposed to maternal 

depression during any time.  

The results of the fully-adjusted ORs indicate that children's vulnerability in the physical 

health domain can be traced back to biological vulnerability at birth and the child’s mother's 

health before birth. For example, the odds of being vulnerable in physical health at kindergarten 

age are 1.10 times greater for children with major illness than children without major illness in 

early childhood, 1.14 times greater for the children with minor illness than those without minor 
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illness in early childhood, and 2.03 times greater for children who were frequently hospitalized 

in early childhood than those who were not. Similarly, the odds of being vulnerable in the 

physical health domain are 30% greater for low birth weight children than normal birth weight 

children, 31% greater for children who spent more than six days in hospital after birth compared 

with those who had a normal length of stay in hospital after birth, 15% greater for children who 

were delivered through emergency c-section than those born normally. In contrast, children who 

had a high 5-minute Apgar score were less likely to be not ready on physical health compared 

with those who had low 5-minute Apgar scores. 

Among child individual-level variables, the odds of being vulnerable in physical health 

appears to be stronger in boys than girls. Boys are 1.84 times more likely to be vulnerable in the 

physical health domain than girls and decrease with child age (OR = 0.96). Among child family 

characteristics, children whose mothers did not have high school had significantly higher odds of 

being vulnerable in physical health by 20% than those whose mothers have a high school or 

higher degree. Children whose mothers were teenagers at their birth had odds of being 

vulnerable in physical health 40% higher than those whose mothers were not teenagers. In 

contrast, children whose mothers-initiated breastfeeding at their birth are less likely to be 

vulnerable in physical health (OR= 0.87) than those whose mothers did not initiate breastfeeding 

at birth. Children in two-parent families are less likely to be not ready on the physical domain 

(OR= 0.65) than those in single-mother families. the odds of being vulnerable on the physical 

health domain are 69% greater for children who had more than four siblings at birth than those 

who had less than four siblings, and 51% greater for children in families on income assistance 

than those not on income assistance. 
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Table 2.6: Unadjusted and Fully-adjusted Odds Ratio of Being Developmentally Vulnerable in 

the Social Competence Domain. 

 

Model 1 

Unadjusted 

OR 

Model 2 

partially adj 

OR 

Model 3 

partially adj 

OR 

Model 4 

fully adj 

OR 

Timing of first exposure to maternal depression   
Pregnancy (In uterus) 1.544*** 1.464*** 1.333*** 1.240[1.108-1.389]*** 

Postnatal (birth -12m) 1.439*** 1.385*** 1.297*** 1.185[1.064-1.320]*** 

Toddler I (12m-36m) 1.313*** 1.269*** 1.199*** 1.072[0.983-1.169] 

Preschool (36m-60m) 1.570*** 1.519*** 1.425*** 1.224[1.135-1.321]*** 

Child's health through childhood    
Major illness (2+ major ADGs) 1.296*** 1.272*** 1.128[1.068-1.193]*** 

Minor illness (90th+ minor ADGs 1.203*** 1.144*** 1.158[1.083-1.238]** 

Child hospital admission (>95th) 1.973*** 1.936*** 1.593[1.425-1.178]*** 

Child's health at birth     
Low Birth Weight (< 2500g) 1.145** 1.152** 1.240[1.072-1.434]*** 

Preterm (< 37 weeks)  1.067 1.044 0.970[0.859-1.096] 

5-minutes Apgar (>=8)  0.918 0.916 0.877[0.769-1 

Length of hospital stay(>6 days) 1.322*** 1.316*** 1.243[1.086-1.422]** 

Emergency c-section  1.047 1.052 1.178[1.023-1.356]** 

Mother health 5 years before the birth    
Major illness (>2+ ADGs)   1.216*** 1.112[1.053-1.174]*** 

Minor illness (>90th minor ADGs)  1.179*** 1.062[0.997-1.132]* 

Mother hospital admission (>95th)  1.186*** 1.069[0.968-1.180] 

Child and family characteristics 

Child's age (in months)    0.962[0.968-0.969]*** 

Child gender (male=1)    2.590[2.453-2.735]*** 

Breastfeeding initiation    0.807[0.751-0.859]*** 

Mother married    0.649[0.611-0.690]*** 

Mother has less than HS    1.120[1.040-1.206]*** 

Teenage mother    1.363[1.281-1.450]*** 

Smoking during pregnancy    1.150[1.074-1.231]*** 

Neighbourhood-area SES    0.743[0.703-0.786]*** 

Urban residence    1.106[1.049-1.166]*** 

Family size (>4)    1.309[1.229-1.395]*** 

The family receive income assistance   1.388[1.288-1.497]*** 

Notes: (i) reference group is developmentally 'ready', (ii) EDI is the Early Development Instrument, (iii) OR is the 

odds ratios, CI is the confidence interval, (iv) vulnerability is the scoring in the bottom 10th percentile of the EDI 

domains. *, **, *** indicate significance level at 10%, 5%, 1% respectively.  
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Table 2.6 shows results of unadjusted ORs (model 1) indicate that the odds of being 

vulnerable/not ready on the social competence domain at kindergarten age are statistically 

significantly higher across all the time points of maternal depression. 

Compared to children who were not exposed to maternal depression during any time 

point, the odds of being developmentally vulnerable in the social domain are 54% greater for 

children exposed to maternal depression during the pregnancy period, 44% greater for children 

exposed during the postnatal period, 31% greater for children exposed to maternal depression 

during the toddler period, and 57% greater for children exposed during the preschool period. 

Exposure to maternal depression during pregnancy and preschool periods seemed to exert a 

greater effect on physical health than exposure during postnatal and toddler periods. 

After adjusting for child health through early childhood, child health at birth, and 

mother’s health before birth (models 2 & 3), the odds of being vulnerable in the social 

competence domain remained statistically significant (19%-51% increase) across all four time 

periods Also, the strongest effect of maternal depression on the odds of being not ready on the 

social competence domain remained throughout the pregnancy period and the preschool period. 

After further adjustment for child and family characteristics, the odds of being vulnerable 

in social competence at kindergarten age remained statistically significant across all maternal 

depression time points except during the toddler period. However, the odds of being vulnerable 

are attenuated after the adjustments. The odds ratios indicate that the odds of being vulnerable/at 

risk in social competence at kindergarten age are statistically significantly higher with child 

biological vulnerability across all models. The odds of being not ready on the social competence 

domain are 14-97% higher for children with vulnerable health through early childhood. For 

example, the fully-adjusted odds of being not ready on social competence are 1.13 times greater 
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for children with major illness than those without major illness, 1.16 times greater for children 

with a minor illness, and 1.59 times greater for children who required frequent hospitalization 

during early childhood. Similarly, the odds of being not ready on social competence are 1.24 

times greater for children who had low birth weight than those who had normal birth weight, and 

for children who required an extended hospital stay at birth. Children whose mothers had health 

issues before the child’s birth had higher odds of being not ready on the social competence 

domain at kindergarten age. The odds of being vulnerable in the social competence domain are 

1.11 times greater for children whose mothers had a major illness than those whose mothers did 

not have a major illness, 1.07 times greater for children whose mothers had minor illness than 

those whose mothers did not have minor illness during the five years before birth. 

Among child individual-level variables, the odds of being not ready on social competence 

at kindergarten age are 2.6 times greater for boys than for girls and decrease with child age 

(OR=0.96). Among family variables, the odds of being not ready on social competence are 1.12 

times greater for children whose mothers did not finish high school compared to those whose 

mothers had a high school or higher degree, and 1.36 times greater for children whose mothers 

were teenagers at their birth than those their mothers were adults. In contrast, children in two-

parent families are less likely to be vulnerable in social competence than children in single-

mother families, and children whose mothers initiated breastfeeding at birth are less likely to be 

not ready in social competence. Similarly, the odds of being not ready on social competence are 

1.39 times greater for children in families on income assistance than for those not on income 

assistance, and 1.31 times greater for children who had more than four siblings at birth compared 

to those with less than four siblings. These results confirm the significant effect of the childhood 

family environment on their school readiness. 
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Table 2.7: Unadjusted and Fully-adjusted Odds Ratio of Being Developmentally Vulnerable in 

the language and Cognitive Domain. 

 

Model 1 

Unadjusted 

OR 

Model 2 

Partially adj 

OR 

Model 3 

Partially adj 

OR 

Model 4 

Partially adj 

OR 

Timing of first exposure to maternal depression   
Pregnancy (In uterus) 1.279*** 1.207*** 1.089 1.032[0.916-1.161] 

Postnatal (birth -12months) 1.334*** 1.284*** 1.197*** 1.096[0.983-1.223] 

Toddler I (12months-36m) 1.275*** 1.231*** 1.157*** 1.043[0.957-1.137] 

Preschool (36months-60m) 1.337*** 1.240*** 1.204*** 1.006[0.930-1.088] 

Child's health through childhood    
Major illness (2+ major ADGs) 1.310*** 1.286*** 1.162[1.099-1.228]*** 

Minor illness (90th+ minor ADGs) 1.147*** 1.085*** 1.155[1.080-1.237]*** 

Child hospital admission (>95th) 2.640*** 2.589*** 2.063[1.854-2.296]*** 

Child's health at birth     
Low Birth Weight (< 2500g) 1.264*** 1.271*** 1.368[1.106-1.577]*** 

Preterm (< 37 weeks)  1.182*** 1.156** 1.047[0.929-1.181] 

5-minutes Apgar (>=8)  0.916 0.913 0.850[0.745-0.970]** 

Length of hospital stay(>6 days) 1.260*** 1.253*** 1.217[1.055-1.392]** 

Emergency c-section  0.947 0.951 1.099[0.950-1.271] 

Mother health 5 years before the birth    
Major illness (>2+ ADGs)   1.168*** 1.025[0.971-1.083] 

Minor illness (>90th minor ADGs)  1.214*** 1.074[1.008-1.145]** 

Mother hospital admission (>95th)  1.320*** 1.125[1.020-1.240]** 

Child and family characteristics 

Child's age (in months)    0.925[0.918-0.931]*** 

Child gender (male=1)    1.956[1.856-2.062]*** 

Breastfeeding initiation    0.751[0.707-0.798]*** 

Mother married    0.701[0.660-0.745]*** 

Mother has less than HS    1.278[1.190-1.373]*** 

Teenage mother    1.549[1.458-1.646]*** 

Smoking during pregnancy    1.006[0.939-1.077] 

Neighborhood-area SES    0.690[0.652-0.730]*** 

Urban residence    0.994[0.943-1.048] 

Family size (>4)    1.709[1.060-1.815]*** 

The family receive income assistance   1.502[1.395-1.618]*** 

Notes: (i) reference group is developmentally 'ready', (ii) EDI is the Early Development Instrument, (iii) OR is the 

odds ratios, CI is the confidence interval, (iv) vulnerability is the scoring in the bottom 10th percentile of the EDI 

domains. *, **, *** indicate significance level at 10%, 5%, 1% respectively.  
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Table 2.7 shows the unadjusted and fully-adjusted ORs of being vulnerable in the 

language and cognitive domain at kindergarten age as an outcome variable of the timing of 

maternal depression. The unadjusted odds show that children exposed to maternal depression had 

significantly higher odds of being vulnerable in language and cognitive domain across all the 

periods. For example, the odds of being not ready on language and cognitive domain are 28% 

greater for children exposed to maternal depression during pregnancy compared to children who 

were not exposed to maternal depression during any time point, 33% greater for children 

exposed to maternal depression during the postnatal period, 27% greater for children exposed to 

maternal depression during the toddler period, and 34% greater for children exposed to maternal 

depression during the preschool time period. 

After adjusting for child health through early childhood and mother’s health before birth, 

the odds of being vulnerable in language and cognitive domain remained significant across all 

initial exposure periods except during pregnancy. However, once the model is adjusted for child 

and family characteristics, the odds of being not ready were statistically insignificant across all 

the periods of initial exposure to maternal depression. 

Child health through early childhood and at birth has a significant effect on the language 

and cognitive domain even after adjusting for the other covariates in the model. The odds of 

being vulnerable in the physical health domain are 16% greater for children without major 

illness, 15% greater for children with minor illness than those without minor illness, and 106% 

greater for children with a hospital stay during early childhood than those without 

hospitalization. Similarly, the odds of being not ready on the language and cognitive domain are 

37% higher for low birth weight children than normal birth weight at birth, 22% greater for 

children who required longer hospital stay at birth than those with normal stay. 
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Among child individual-level variables, the odds of being vulnerable in the language and 

cognitive domain at kindergarten age are 1.96 times greater for boys than girls and decrease with 

child age (OR= 0.92). Among child family characteristics, the odds of being vulnerable in the 

language and cognitive domain are 28% greater for children whose mother with less than high 

school education, and 54% greater for children whose mothers were teenagers at birth than those 

whose mothers were not teenagers. Children whose mothers initiated breastfeeding at birth are 

less likely to be vulnerable in the language and cognitive domain. Children whose mother is 

married were less likely to be not ready on the cognitive domain than those whose mothers were 

single. Similarly, the odds of being vulnerable in the language and cognitive domain are 71% 

greater for children in families with more than four children than those in families with less than 

four children at birth, 50% greater for children in families on income assistance than those in 

families not on income assistance. Regarding family socioeconomic status (as indicated by 

SEFI2), children in families with favorable socioeconomic status are less likely to be vulnerable 

in the cognitive domain (OR= 0.69). 

Table 2.8 indicates the unadjusted and fully-adjusted ORs of being vulnerable in 

communication and knowledge skills across the different time points of maternal depression. The 

odds of being not ready in the communication domain are not statistically significant across 

periods except for the preschool period. Children exposed to maternal depression during the 

preschool period for the first time are 1.19 times more likely to be vulnerable in the 

communication domain. After adjusting for child health and mother health before birth, the odds 

of being not ready in the communication domain remained insignificant across all time points of 

initial exposure to maternal depression, except for the preschool period. However, after further 
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adjusting for child and family characteristics, there was no significant effect of maternal 

depression across all the timing points of depression. 

Child health through early childhood has a statistically significant effect on the child’s 

communication skills. The odds of being developmentally vulnerable in communication skills 

are 9-58% greater for children with any health problem through early childhood. According to 

the fully-adjusted OR, the odds of being vulnerable in communication skills are 16% higher for 

children with minor illness than those without minor illness and 104% higher for children who 

were frequently hospitalized during early childhood. Similarly, the odds of being vulnerable in 

communication skills are 39% greater for low birth weight children than those with normal 

weight at birth, and 26% greater for children who required longer hospital stays at birth than 

those who had a normal length of stay at birth.  Among child individual-level variables, the odds 

of being vulnerable in the communication domain are 1.96 times greater for boys than for girls 

and decline with age (OR =0.95). Among family characteristics, the odds of being not ready on 

the communication domain are 1.45 times higher for children whose mothers did not have a high 

school degree than those whose mothers had a high school degree or higher, and 1.19 times 

higher for children whose mothers were teenagers at birth than those whose mothers were adults. 

In contrast, children whose mothers initiated breastfeeding at birth are less likely to be 

vulnerable in the communication domain than those whose mothers did not initiate breastfeeding 

at birth. Children whose mothers were married are less likely to be not ready in the 

communication domain than those whose mothers were single. Similarly, the odds of being 

vulnerable in communication skills are 2.11 times greater for children whose families have more 

than four children than those whose families have less than four children at birth (family size). 
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Children in families on income assistance are 1.49 times more likely to be not ready on the 

communication domain than those in families not on income assistance. 

Table 2.8: Unadjusted and Fully-adjusted Odds Ratio of Being Developmentally Vulnerable in 

the Communication and Knowledge Domain. 

 

Model 1 

Unadjusted 

OR 

Model 2 

Partially adj 

OR 

Model 3 

Partially adj 

OR 

Model 4 

Fully adj 

OR 

Timing of first exposure to maternal depression   

Pregnancy (In uterus) 1.063 1.011 0.961 0.931 [ 0.820-1.057 ] 

Postnatal (birth -12months) 1.015 0.982 0.948 0.889 [ 0.788-1.002 ] 

Toddler I (12months-36m) 1.049 1.017 0.987 0.914 [ 0.833-1.004 ] 

Preschool (36months-60m) 1.188*** 1.151*** 1.114*** 0.968 [ 0.892-1.051 ] 

Child's health through childhood    

Major illness (2+ major ADGs) 1.179*** 1.168*** 1.058 [ 1.000-1.120 ] 

Minor illness (90th+ minor ADGs 1.119*** 1.091** 1.159 [ 1.080-1.245 ]*** 

Child hospital admission (>95th) 2.587*** 2.549*** 2.041 [ 1.828-2.278 ]*** 

Child's health at birth     

Low Birth Weight (< 2500g) 1.296*** 1.297*** 1.388 [ 1.198-1.607 ]*** 

Preterm (< 37 weeks)  1.153** 1.136** 1.034 [ 0.913-1.171 ] 

5-minutes Apgar (>=8)  0.978 0.976 0.910 [ 0.792-1.045 ] 

Length of hospitalization (>6) 1.299*** 1.295*** 1.260 [ 1.097-1.447 ]*** 

Emergency c-section  0.950 0.952 1.070 [ 0.921-1.244 ] 

Mother health 5 years before the birth    

Major illness (>2+ ADGs)   1.090*** 0.963 [ 0.910-1.019 ] 

Minor illness (>90th minor ADGs)  1.062* 0.959 [ 0.895-1.027 ] 

Mother hospital admission (>95th)  1.284*** 1.128 [ 1.017-1.251 ]*** 

Child and family characteristics 

Child's age (in months)    0.956 [ 0.949-0.963 ]*** 

Child gender (male=1)    1.962 [ 1.857-2.072 ]*** 

Breastfeeding initiation    0.713 [0.669-0.759 ]*** 

Mother married    0.900 [ 0.853-0. 963 ]*** 

Mother has less than HS    1.447 [ 1.343-1.558 ]*** 

Teenage mother    1.191 [ 1.116-1.270 ]*** 

Smoking during pregnancy    0.918 [ 0.845-0.979 ]*** 

Neighbourhood-area SES    0.779 [ 0.735-0.826 ]*** 

Urban residence    0.980 [ 0.928-1.036 ] 

Family size (>4)    2.117 [ 1.991-2.251 ] 

The family receive income assistance   1.497 [ 1.384-1.620 ] 

Notes: (i) reference group is developmentally 'ready', (ii) EDI is the Early Development Instrument, (iii) OR is the 

odds ratios, CI is the confidence interval, (iv) vulnerability is the scoring in the bottom 10th percentile of the EDI 

domains. *, **, *** indicate significance level at 10%, 5%, 1% respectively.  
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The estimated effect of maternal depression on a child’s profile of competencies across 

the four periods of maternal depression exposure is assumed to be constant across the different 

child and mother characteristics levels (i.e., health, demographic and socioeconomic status).  The 

effect of maternal depression exposure across the different periods could be more or less 

pronounced depending on the child’s health at birth, child’s health through childhood, mother’s 

health prior to birth, and demographic characteristics. I checked for all possible interactions in 

the model, but I included only statistically significant ones.  

The marginal effect of maternal depression exposure is estimated for each time period 

and each EDI domain. Also, I estimated the average marginal effect for the unadjusted and fully 

adjusted models. For each timing period, the predicted change in probability of being not ready 

on the EDI subdomains are estimated for each child based on the child’s predicted probability at 

each level of maternal depression as follows: 

𝑃̂ (𝑌 = 1|𝑋) =  Λ(𝑋𝛽̂) =  
𝑒𝑥𝑝(𝑋𝛽̂)

1 + 𝑒𝑥𝑝(𝑋𝛽̂)
 

Δ Λ(𝑋𝛽̂)

Δ 𝑋𝑘
= 𝑃(𝑌 = 1| 𝑋𝑘1) − 𝑃(𝑌 = 1| 𝑋𝑘2) 

The marginal effect for each observation is estimated by calculating the estimated (predicted) 

probabilities based on the actual values (observed values) of the other variables for each level of 

the predictor variable (maternal depression) and then the difference between the predicted 

probabilities across the predictor variable level is averaged across all the observation to get the 

average marginal effect (AME).  

Table 2.9 shows the average marginal effect of maternal depression exposure across the 

four time periods. In the unadjusted model, children exposed to maternal depression for the first 
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time during pregnancy and the preschool period are almost 5% and 4% more likely to be 

vulnerable in the emotional domain at kindergarten age, respectively, compared with those who 

were not exposed to maternal depression during any time point. Similarly, children exposed to 

maternal depression during the postnatal period or toddler period were almost 3% more likely to 

be not ready on the emotional domain than those who were not exposed to maternal depression. 

Table 2.9: Average Marginal Effect of Maternal Depression Timing - Vulnerable/Not ready in 

Emotional Maturity Domain. 

 

Model 

(1) 

Model 

(2) 

Model 

(3) 

Model 

(4) 

Model 

(5) 

Model 

(6) 

Timing of first exposure to maternal depression 

Pregnancy 0.0490*** 0.0430*** 0.0420*** 0.0340*** 0.0290*** 0.0270*** 

 
(0.0058) (0.0050) (0.0050) (0.0060) (0.0057) (0.0050) 

Postnatal 0.0317*** 0.0261*** 0.0260*** 0.0200*** 0.0125*** 0.0113*** 

 
(0.0057) (0.0057) (0.0052) (0.0054) (0.0056) (0.0057) 

Toddler 0.0278*** 0.0235*** 0.0232*** 0.0180*** 0.0098*** 0.0098*** 

 
(0.0045) (0.0045) (0.0045) (0.0044) (0.0045) (0.0040) 

Preschool 0.0424*** 0.0378*** 0.0377*** 0.0318*** 0.0206*** 0.0199*** 

 
(0.0039) (0.0039) (0.0040) (0.0039) (0.0039) (0.0039) 

Child health-childhood NO YES YES YES YES YES 

Child health-at birth NO NO YES YES YES YES 

Mother health prior to birth NO NO NO YES YES YES 

Demographic and SES  NO NO NO NO YES YES 

Interactions NO NO NO NO NO YES 

Notes: each model is adjusted for some variables that cover (i) child health through early childhood (major illness, 

minor illness, hospital admission); (ii) child health at birth (low birth weight, preterm, Apgar, hospital stay, 

emergency c-section); (iii) mother health prior birth (major illness, minor illness, hospital admission); (iv) 

demographic and socioeconomic variables; and (v) adjustment for interactions. the Standard errors are in 

parentheses. *, **, *** indicate significance level at 10%, 5%, 1% respectively. 

 

After adjusting for child health and family characteristics (models 2 to 6), the marginal 

effect of maternal depression on children's vulnerability in the emotional domain remained 

stronger among children exposed to maternal depression during pregnancy and preschool time 

points. For example, children exposed to maternal depression during pregnancy are 3% to 4% 

more likely to be not ready in emotional domain, and children exposed to depression during 
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preschool are 2% to 4% more likely to be not ready compared to children who were not exposed 

to depression at any time point. Similarly, children exposed to depression during the postnatal 

and toddler periods are 1% to 3% more likely to be not ready in emotional maturity skills at 

kindergarten age. 

The unadjusted model 1 in table 2.10 shows that the strongest effect of maternal 

depression exposure on children's physical health was during pregnancy and the preschool 

period. Children exposed to depression during pregnancy or the preschool period were 4.3 and 

5.6 percent more likely to be not ready in the physical health domain compared with those who 

were not exposed to maternal depression during any time point. On the other hand, children 

exposed to depression during the postnatal or toddler periods were 3.2 and 3.5 percent more 

likely to be not ready in the physical health domain. After adjusting for a child’s health through 

childhood health at birth and the mother’s health prior to birth, the marginal effect of maternal 

depression on child physical health was attenuated. However, children exposed to depression 

during pregnancy or the preschool period still had the highest probability of being not ready in 

the physical health domain. After further adjusting for the child’s and family’s characteristics, 

the marginal effect of maternal depression was attenuated across all the first exposure periods. 
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Table 2.10: Average Marginal Effect of Maternal Depression Timing – Vulnerable/Not ready in 

Physical Health Domain 

 

Model 

(1) 

Model 

(2) 

Model 

(3) 

Model 

(4) 

Model 

(5) 

Model 

(6) 

Timing of first exposure to maternal depression 

Pregnancy 0.0431*** 0.0379*** 0.0359*** 0.0243*** 0.0157** 0.0136** 

 
(0.00057) (0.0088) (0.0089) (0.0065) (0.0081) (0.0061) 

Postnatal 0.0325*** 0.02778*** 0.0278*** 0.0197*** 0.00766 0.01369** 

 
(0.00043) (0.0064) (0.0069) (0.0053) (0.0039) (0.0061) 

Toddler 0.0353*** 0.0316*** 0.0310*** 0.0240*** 0.0098** 0.0093** 

 
(0.0047) (0.0073) (0.0077) (0.0065) (0.0050) (0.0045) 

Preschool 0.0559*** 0.0517*** 0.0516*** 0.0437*** 0.0222*** 0.009** 

 
(0.0073) (0.0012) (0.0128) (0.0118) (0.0115) (0.0045) 

Child health-childhood NO YES YES YES YES YES 

Child health-at birth NO NO YES YES YES YES 

Mother health prior birth NO NO NO YES YES YES 

Demographic and SES  NO NO NO NO YES YES 

Interactions NO NO NO NO NO YES 

Notes: each model is adjusted for some variables that include (i) child health through early childhood (major illness, 

minor illness, hospital admission); (ii) child health at birth (low birth weight, preterm, Apgar, hospital stay, 

emergency c-section); (iii) mother health prior birth (major illness, minor illness, hospital admission); (iv) 

demographic and socioeconomic variables; and (v) adjustment for interactions. the Standard errors are in 

parentheses. *, **, *** indicate significance level at 10%, 5%, 1% respectively 

 

Table 2.11 shows the marginal effect of maternal depression exposure on the 

developmental vulnerability in the child’s social competence across the four periods. The 

unadjusted model (1) shows that children exposed to maternal depression during pregnancy are 

4.7% more likely to be vulnerable in social competence than those who were not exposed to 

maternal depression during any period. Similarly, the likelihood of being vulnerable in social 

competence is 3.9% higher for children exposed to maternal depression during the postnatal 

period, 2.9% higher for children exposed to depression during the toddler period, and 4.9% 

higher for children exposed to depression during preschool. Pregnancy and the preschool period 

have the strongest effect on social competence vulnerability. After adjusting for child health at 

birth and through the early childhood period, marginal effects of maternal depression exposure 
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are attenuated across the four periods. Controlling for a mother’s health before childbirth was 

associated with a larger decrease in the value of the marginal effects of maternal depression. 

Although the negative relationship between maternal depression and child’s social competence 

remained statistically significant after further adjustment for child and family socioeconomic and 

sociodemographic variables, there was a substantial decrease in the magnitude of the marginal 

effect of maternal depression exposure across all four periods. After adjustment for interactions 

among covariates in the model, only the association between maternal depression exposure and 

child's social competence during pregnancy and the postnatal period remained statistically 

significant. 

Table 2.11:  Average Marginal Effect of Maternal Depression Timing – Vulnerable/Not ready in 

Social Competence Domain. 

 

Model 

(1) 

Model 

(2) 

Model 

(3) 

Model 

(4) 

Model 

(5) 

Model 

(6) 

Timing of first exposure to maternal depression 

Pregnancy 0.0474*** 0.0423*** 0.0412*** 0.0310*** 0.0220*** 0.0220*** 

 (0.0066) (0.0098) (0.0099) (0.0081) (0.0118) (0.0059) 

Postnatal 0.0397*** 0.0350*** 0.0352*** 0.0281*** 0.0174*** 0.0166*** 

 (0.0055) (0.0081) (0.0085) (0.0074) (0.0093) (0.0056) 

Toddler 0.0297*** 0.0261*** 0.0257*** 0.0195*** 0.0071 0.0066 

 (0.0041) (0.0060) (0.0062) (0.0051) (0.0038) (0.0045) 

Preschool 0.0492*** 0.0452*** 0.0451*** 0.0381*** 0.0206*** 0.0066 

 (0.0069) (0.0105) (0.0109) (0.0100) (0.0111) (0.0045) 

Child health-childhood NO YES YES YES YES YES 

Child health-at birth NO NO YES YES YES YES 

Mother health prior birth NO NO NO YES YES YES 

Demographic and SES  NO NO NO NO YES YES 

Interactions NO NO NO NO NO YES 

Notes: each model is adjusted for some variables that include (i) child health through early childhood (major illness, 

minor illness, hospital admission); (ii) child health at birth (low birth weight, preterm, Apgar, hospital stay, 

emergency c-section); (iii) mother health prior birth (major illness, minor illness, hospital admission); (iv) 

demographic and socioeconomic characteristics; and (v) adjustment for interactions. the Standard errors are in 

parentheses. *, **, *** indicate significance level at 10%, 5%, 1% respectively. 
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Table 2.12 reports the marginal effects of maternal depression exposure on the 

developmental vulnerability in the child’s cognitive and language domain. The unadjusted model 

indicates that exposure to maternal depression was associated with a negative impact on the 

child’s cognitive and language domain. Compared to children who were not exposed to maternal 

depression during any period, the likelihood to be not ready in the cognitive domain was 2.7% 

higher for children who were exposed to depression during pregnancy; 3.2% higher for children 

exposed to depression in the postnatal period; 2.7% higher for children exposed to maternal 

depression in the toddler period; and 3.2% higher for children exposed to depression in the 

preschool period. After adjusting for the child's health at birth and during early childhood, the 

marginal effect of depression is attenuated across the four periods. Controlling for mother's 

health prior to birth, resulting in a substantial decrease in the magnitude of the marginal effect of 

the maternal depression exposure on the cognitive and language domain across all periods, 

especially during pregnancy, which reflects the importance of maternal health around pregnancy 

as a potential risk factor. After controlling for child and family socioeconomic and demographic 

characteristics, the effect of maternal depression on the cognitive and language domain 

disappeared, which confirms the importance of the socioeconomic status on a child’s cognitive 

skills, over and above the maternal depression exposure effect. 
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Table 2.12:  Average Marginal Effect of Maternal Depression Timing – Vulnerable/Not ready in 

Cognitive and Language Domain 

 

Model 

(1) 

Model 

(2) 

Model 

(3) 

Model 

(4) 

Model 

(5) 

Model 

(6) 

Timing of first exposure to maternal depression 

Pregnancy 0.0274*** 0.0221*** 0.0206*** 0.0094 0.0032 0.0021 

 (0.0026) (0.0052) (0.0051) (0.0025) (0.0018) (0.0061) 

Postnatal 0.0322*** 0.0274*** 0.0274*** 0.0196*** 0.0094 0.0080 

 (0.0030) (0.0064) (0.0068) (0.0053) (0.0053) (0.0056) 

Toddler 0.0271*** 0.0233*** 0.0228*** 0.0160*** 0.0043 0.0080 

 (0.0025) (0.0055) (0.0057) (0.0043) (0.0024) (0.0056) 

Preschool 0.0325*** 0.0281*** 0.0280*** 0.0204*** 0.0006 0.0002 

 (0.0030) (0.0066) (0.0069) (0.0055) (0.0003) (0.0040) 

Child health-childhood NO YES YES YES YES YES 

Child health-at birth NO NO YES YES YES YES 

Mother health prior to birth NO NO NO YES YES YES 

Demographic and SES  NO NO NO NO YES YES 

Interactions NO NO NO NO NO YES 

Notes: each model is adjusted for some variables that include (i) child health through early childhood (major illness, 

minor illness, hospital admission); (ii) child health at birth (low birth weight, preterm, Apgar, hospital stay, 

emergency c-section); (iii) mother health prior birth (major illness, minor illness, hospital admission); (iv) 

demographic and socioeconomic characteristics; and (v) adjustment for interactions. The Standard errors are in 

parentheses. *, **, *** indicate significance level at 10%, 5%, 1% respectively. 

 

Table 2.13 shows the effect of maternal depression exposure on the developmental 

vulnerability in the child’s communication and knowledge domain. Children exposed to maternal 

depression during preschool are 1.7% more likely to be not ready on the communication domain 

compared with those who were not exposed to depression at any time. After controlling for 

mother health prior to birth, the marginal effect of maternal depression exposure during 

preschool decreased to be 1.08%. This significant relation disappeared after controlling for the 

family's socioeconomic characteristics. That is, family socioeconomic characteristics have a 

strong effect on communication skills. 
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Table 2.13: Average Marginal Effect of Maternal Depression Timing – Vulnerable/Not ready in 

Communication Domain. 

 

Model 

(1) 

Model 

(2) 

Model 

(3) 

Model 

(4) 

Model 

(5) 

Model 

(6) 

Timing of first exposure to maternal depression 

Pregnancy 0.0062 0.0023 0.0011 0.0040 -0.006862 -0.0088 

 (0.0003) (0.0004) (0.0002) 0.0010 (0.0036) (0.0061) 

Postnatal 0.0015 0.0019 -0.0019 -0.0053 -0.01125* -0.0127 

 (0.0001) (0.0004) (0.0004) 0.0013 (0.0059) (0.0058) 

Toddler 0.0049 0.0021 0.0017 -0.0013 -0.008559* -0.0127 

 (0.0002) (0.0005) (0.0004) 0.0003 (0.0045) (0.0058) 

Preschool 0.0175*** 0.0142*** 0.0141*** 0.0108*** -0.003092 -0.0040 

 (0.0008) (0.0030) 0.0032 0.0026 (0.0016) (0.0039) 

Child health-childhood NO YES YES YES YES YES 

Child health-at birth NO NO YES YES YES YES 

Mother health prior birth NO NO NO YES YES YES 

Demographic and SES  NO NO NO NO YES YES 

Interactions NO NO NO NO NO YES 

Notes: each model is adjusted for some variables that cover (i) child health through early childhood (major illness, 

minor illness, hospital admission); (ii) child health at birth (low birth weight, preterm, Apgar, hospital stay, 

emergency c-section); (iii) mother health prior birth (major illness, minor illness, hospital admission); (iv) 

demographic and socioeconomic characteristics; and (v) adjustment for interactions. the Standard errors are in 

parentheses. *, **, *** indicate significance level at 10%, 5%, 1% respectively. 

 

To sum, maternal depression exposure has a direct and negative effect on a child’s 

emotional, physical, and social competence domains across all the timing points. This significant 

effect of maternal depression exposure on cognitive and communication domains disappeared 

after adjusting for child and family socioeconomic and demographic characteristics. Therefore, 

the influence of maternal depression exposure on child EDI domains may be confounded by 

family socioeconomic characteristics and this confounding is partial for the emotional, physical, 

and social domains. In contrast, the effect of maternal depression is fully confounded for both the 

cognitive and communication domains where the direct effect of maternal depression on these to 

domains appeared to be not significant after controlling for family socioeconomic characteristics.  

Maternal depression during pregnancy is sensitive to the child’s school readiness because 

of the direct and indirect effect of maternal depression during this period compared with the 
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other timing points. Exposure to maternal depression during pregnancy could be associated with 

poor health outcomes at birth. Consequently, the effect of maternal depression on a child’s EDI 

domains could be partially confounded by a child’s health outcomes at birth, as well as by family 

socioeconomic characteristics for children exposed to maternal depression during pregnancy. 

Exposure to maternal depression during pregnancy and the preschool period are the most 

sensitive periods of the child’s development in three developmental areas: emotional, physical, 

and social skills. However, the preschool period has the strongest effect on the physical health 

and well-being domain. 

To investigate if there is a difference in the developmental vulnerability among the 

maternal depression exposure periods, I compared the odds of being vulnerable in EDI domains 

for each pair of children group who were exposed to maternal depression in the four timing 

periods. Specifically, the log odds of being vulnerable in the EDI domain is modeled for each 

maternal depression time group and the difference in the log odds, or equivalently the log odds 

ratio, for each pair of maternal depression timing is reported as 

𝑙𝑜𝑔 (𝑜𝑑𝑑𝑠𝑖) −  𝑙𝑜𝑔 (𝑜𝑑𝑑𝑠𝑗) =  𝑙𝑜𝑔 (  
𝑜𝑑𝑑𝑠𝑖

𝑜𝑑𝑑𝑠𝑗
 ) =  𝑙𝑜𝑔( 𝑂𝑅𝑖𝑗 ). 

Table 2.14 presents the fully-adjusted difference in log odds and ORs of being 

developmentally vulnerable in the EDI for each pair of maternal depression timing. Results for 

the emotional domain are shown in the first column of Table 2.14. There is a significant 

difference in the odds of developmental vulnerability when comparing children exposed to 

maternal depression during pregnancy and the other three periods (postnatal, toddler, and 

preschool). There is also a significant difference in the log odds of being vulnerable in the 

emotional domain when comparing toddler and preschool groups. Children exposed to maternal 

depression during pregnancy had greater odds of being not ready on the emotional domain at 
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kindergarten age compared with those exposed to maternal depression during the postnatal 

period (17% higher odds), the toddler period (20% higher odds), and the preschool period (8% 

higher odds). That is, exposure to maternal depression during pregnancy has the strongest effect 

on the child's emotional maturity domain compared with the other periods. In contrast, there is 

no significant difference in the odds of being not ready on emotional skills for children exposed 

to maternal depression in the postnatal period compared with those exposed to maternal 

depression during the toddler period or preschool period. Children exposed to maternal 

depression during the preschool period are more likely to be not ready on emotional domain 

compared with children exposed to maternal depression during the toddler period. 

The results of the physical health domain are shown in the second column of Table 2.14. 

Two significant differences across the maternal depression timing points were found. Children 

exposed to maternal depression during preschool periods are more likely to be vulnerable in the 

physical domain compared to those exposed to maternal depression during the postnatal or 

toddler period groups. The difference in the log odds of being vulnerable in the physical domain 

between postnatal and preschool groups is – 0.1335. Similarly, children exposed to maternal 

depression during preschool are more likely to be vulnerable in the physical domain compared 

with those exposed to maternal depression during the toddler period. The difference in the log 

odds between the toddler period and the preschool period is – 0.1137. In other words, the 

preschool period is a sensitive period for physical health development. There were two 

significant differences in the odds of developmental vulnerability in the social competence 

domain when comparing the different pairs of maternal depression time points. Children exposed 

to maternal depression during pregnancy had higher odds of being vulnerable compared to those 

exposed to maternal depression during the toddler period. Similarly, children exposed to 
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maternal depression during the preschool period had higher odds of being not ready compared 

with toddler period groups. The difference in log odds of being developmentally vulnerable in 

social competence domain is 0.146 higher for children exposed to maternal depression during 

pregnancy compared to those exposed to maternal depression during toddler group, and 0. 1330 

lower for children exposed to maternal depression during preschool compared to those exposed 

to maternal depression during the toddler period. 

For both cognitive and communication domains, there was no significant difference in 

the odds of being vulnerable when comparing each pair of the maternal depression timing points. 

However, these children were also at risk of poor school readiness irrespective of the timing of 

maternal depression. 
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Table 2.14: Fully Adjusted Difference in Log Odds of being vulnerable in EDI Domains. 

  Emotional domain  Physical health  Social competence  Lang & Cognitive  Communication 

  

Diff  in log 

odds 
OR  Diff  in log 

odds 
OR  Diff  in 

log odds 
OR  Diff  in 

log odds 
OR  Diff  in 

log odds 
OR 

Pregnancy vs 

Postnatal 0.1551** 1.1678**  0.0738 1.0766  0.0448 1.0450  -0.0613 0.9406  0.0461 1.0472 

  (0.0753) (0.0879)  (0.0745) (0.0802)  (0.0750) (0.0784)  (0.0776) (0.0730)  (0.0850) (0.0891) 

  [4.2406]   [0.9805]   [0.3574]   [0.6229]   [0.2940]  
Pregnancy vs 

Toddler 0.1820*** 1.1997***  0.0540 1.0555  0.1461** 1.1570**  -0.0110 0.9890  0.0178 1.0180 

  (0.0672) (0.0806)  (0.0663) (0.0700)  (0.0677) (0.0783)  (0.0699) (0.0692)  (0.0756) (0.0770) 

  [7.3417]   [0.6643]   [4.6620]   [0.0248]   [0.0554]  
Pregnancy vs 

Preschool 0.0759** 1.0789**  -0.0597 0.9421  0.0130 1.0130  0.0251 1.0254  -0.0393 0.9614 

  (0.0637) (0.0087)  (0.0629) (0.0593)  (0.0639) (0.0648)  (0.0672) (0.0690)  (0.072) (0.0693) 

  [1.4240]   [0.8996]   [0.0416]   [0.1396]   [0.2979]  
Postnatal vs 

Toddler 0.027 1.0273  -0.0197 0.9804  0.1013 1.1066  0.0502 1.0515  -0.0283 0.9721 

  (0.0665) (0.0683)  (0.0645) (0.0632)  (0.0656) (0.0727)  (0.0662) (0.0696)  (0.0730) (0.0709) 

  [1.1642]   [0.0938]   [2.3819]   [0.5764]   [0.1505]  
Postnatal vs 

Preschool -0.0791 0.9239  -0.1335** 0.8750**  -0.0318 0.9687  0.0864 1.0902  -0.0854 0.9181 

  (0.0630) (0.0582)  (0.0611) (0.0534)  (0.0618) (0.0599)  (0.0634) (0.0691)  (0.0693) (0.0636) 

  [1.5770]   [4.7760]   [0.2641]   [1.8570]   [1.5187]  
Toddler vs 

Preschool -0.1061** 0.8990**  -0.1137** 0.8925**  

-

0.1330** 0.8754**  0.0361 1.0368  0.0571 1.0588 

  (0.0529) (0.0476)  (0.0506) (0.0452)  (0.0526) (0.0460)  (0.0536) (0.0556)  (0.0573) (0.0607) 

  [4.0206]   [5.0467]   [6.3965]   [0.4549]   [0.9938]  
Notes: (i) the null hypothesis test is 𝐻0: 𝑙𝑜𝑔(𝑜𝑑𝑑𝑠𝑖)  −  𝑙𝑜𝑔 (𝑜𝑑𝑑𝑠𝑗)  = 0, (ii) the Wald Chi-Square and P-value is used in the test (iii) 

exponentiating the difference in log odds gives an estimate for the odds ratios. (iv) numbers in parenthesis are the std error. *, **, *** indicate 

significance level at 10%, 5%, 1% respectively. 
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2.7. Heterogeneity in Effect of the Timing of Maternal Depression 

I explored if there is a heterogeneous effect of maternal depression on children's 

vulnerability by using child and family characteristics that have been identified in the literature 

of maternal depression such as child gender, mother’s education, neighborhood-area SES 

((Goyal et al., 2010; Augustine and Crosnoe, 2010; Quarini et al., 2016; Fairthorne et al., 2018; 

Wszołek et al., 2018). 

Previous research postulated that boys’ developmental skills, especially cognitive 

functioning, are more sensitive to maternal depression than girls’ (Sharp et al., 1995; Hay et al., 

2001; Kurstjens and Wolke, 2001). Females tend to have better EDI scores than males and 

children who are younger at the time of EDI assessment had lower EDI scores (Brownell et al., 

2012; Janus and Offord, 2007). Literature from brain development indicates that the amygdala5 

reaches its full growth in girls approximately 1.5 years before boys (Uematsu et al., 2012) and 

elevated maternal cortisol concentration at 15-week gestation is associated with larger right 

amygdala volumes among girls, but there was no association with right or left hippocampus6 

volume. In contrast, maternal cortisol concentration at 15 weeks was not associated with left or 

right amygdala volume in boys, but the higher maternal cortisol levels at 15 weeks were 

associated with smaller left and right hippocampal volume (Buss et al., 2012). It is thus 

reasonable to postulate that boys and girls may be affected differently by maternal depression 

exposure. 

 
5 Amygdala is one of two almond-shaped clusters of nuclei, a cluster of neurons in the central nervous system, located deeply in 

the brain's medial temporal lobe. It plays a key role in the processing of memory, emotional response (anxiety, sadness, autism, 

depression, aggression, post-traumatic stress disorder, and phobias), and decision making. 
6 There are two hippocampi (right and left) and they are located in the medial temporal lobe of the brain. Hippocampus encode 

verbal and visual-spatial memories. They have a role in the cognition domain for children of low birth weight and preterm (Isaacs 

et al., 2000). 
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In all categories of maternal depression timing, the effect of depression seemed greater 

for boys than girls on emotional skills. What can be seen is that the average marginal effect of 

maternal depression on emotional maturity skills is larger for boys compared to girls. Boys 

exposed to maternal depression are 1.6% - 3.3% more likely to be vulnerable in emotional skills 

compared to those who were not exposed to maternal depression. The strongest effect of 

maternal depression among boys was in pregnancy (3.3%), followed by the preschool period 

(2.7%) then the postnatal period (1.6%) and toddler period (1.5%). 

Table 2.15: Gender Heterogeneity: Marginal effect of Maternal Depression on Children’s School 

Readiness – Vulnerability in EDI Domains 

 

(1) 

Emotional 

(2) 

Physical 

(3) 

Social 

(4) 

Cognitive 

(5) 

Communication 

Panel (A): Boys 

Pregnancy 0.0330*** 0.0230*** 0.0324*** 0.0115 0.0067 

 (0.0095) (0.0090) (0.0117) (0.0054) (0.0020) 

Postnatal 0.0164*** 0.0147 0.0235*** 0.0182 0.0175 

 (0.0047) (0.0060) (0.0085) (0.0084) (0.0074) 

Toddler 0.0157*** 0.0159** 0.0086 0.0043 0.0211 

 (0.0045) (0.0065) (0.0031) (0.0020) (0.0091) 

Preschool 0.0272*** 0.0274*** 0.0238*** 0.0029 0.0035 

 (0.0078) (0.0114) (0.0086) (0.0014) (0.0015) 

Panel (B): Girls 

Pregnancy 0.0232*** 0.0080 0.01117 0.0060 0.0070 

 (0.0121) (0.0047) (0.0065) (0.0038) (0.0040) 

Postnatal 0.0085 0.0012 0.0012* 0.0002 0.0050 

 (0.0044) (0.0007) (0.0065) (0.0001) (0.0020) 

Toddler 0.0036 0.0040 0.0053 0.0038 0.0034 

 (0.0018) (0.0023) (0.0031) (0.0024) (0.0019) 

Preschool 0.0137*** 0.0174*** 0.01742*** 0.0014 0.0098 

 (0.0071) (0.0108) (0.00102) (0.0009) (0.0056) 
Notes: (i) Panel A shows the effect of maternal depression on boys; (ii) Panel B shows the effect of maternal depression on girls; 

(iii) All regressions control for child health, mother health, social, economic, and demographic characteristics; (iv) Standard 

errors are in parentheses. *, **, *** indicate significance level at 10%, 5%, 1% respectively. 

 

In contrast, girls exposed to maternal depression were 0.3% - 2.3% more likely to be 

vulnerable in the emotional domain. The strongest effect of depression among girls was in 

pregnancy (2.3%), followed by the preschool period (1.4%). Maternal depression appears to have 
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no effect during the postnatal and toddler periods. Regarding the physical health domain, the 

effect of depression appears to be greater for boys than girls. Boys are 1.4% - 2.7% more likely 

to be vulnerable in the physical domain compared to those who were not exposed to depression. 

However, maternal depression did not have a significant effect on boys during the postnatal 

period. In contrast, maternal depression has a significant effect on the physical domain among 

girls only during the preschool period. For the social competence domain, maternal depression 

seemed to have a greater effect on boys than girls. Boys are 0.8% - 3.2% more likely to be 

vulnerable in the social domain than those who were not exposed to maternal depression.  In 

contrast, girls are 0.5% - 1.7% more likely to be vulnerable in the social domain than girls whose 

mother did not experience maternal depression. However, exposure to maternal depression 

among girls appears to have no effect during the pregnancy and toddler periods. On the other 

hand, although the marginal effect of maternal depression on the cognitive and communication 

domains are larger for boys than girls, they are not significant. Consistent with the results for the 

full sample, I find no evidence that maternal depression impacts cognitive and communication 

ability for boys or girls across different time periods. That is, results in columns 4 and 5 suggest 

no heterogeneous effect by gender. 

I explored whether the effects of exposure to maternal depression during different periods 

vary depending on maternal characteristics by investigating the relationship separately for 

families in which the mother has a partner, as well as by maternal schooling levels. I split the 

sample by married and unmarried mothers to check the role of marital status and then by not 

having a high school degree, and having a high school degree or higher to check the role of 

mother’s education. These factors may modulate the impact of depression (Shonkoff and Phillips 

2000). Table 16 shows that, among children of unmarried mothers, there is a statistically 
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significant negative relationship between maternal depression exposure during pregnancy and 

children's emotional, physical and social domains. The relationship was somewhat stronger for 

emotional and social domains. Children of non-married (no partner) mothers who were exposed 

to depression during pregnancy were almost 3.8% more likely to be vulnerable in the emotional 

domain, 3.4% more likely to be vulnerable in the physical health domain, and 3.4% more likely 

to be vulnerable in social domain compared to children with non-marred and non-depressed 

mothers. 

Table 2.16: Mother’s Marital Status Heterogeneity: Marginal effect of Maternal Depression on 

Children’s School Readiness – Vulnerability in EDI domains 

 

(1) 

Emotional 

(2) 

Physical 

(3) 

Social 

(4) 

Cognitive 

(5) 

Communication 

Panel (A): Children of Married Mothers 

Pregnancy 0.0114 0.0157* 0.0016 0.00098 0.0239* 

 (0.0063) (0.0090) (0.0009) (0.0006) (0.0126) 

Postnatal 0.0153* 0.0145* 0.0147* 0.01855** 0.0067 

 (0.0084) (0.0084) (0.0084) (0.0114) (0.0035) 

Toddler 0.01335** 0.0103 0.01213** 0.0085 0.0065 

 (0.0073) (0.0069) (0.0069) (0.0052) (0.0034) 

Preschool 0.01729*** 0.0137** 0.0183*** 0.0022 0.00416 

 (0.00095) (0.0079) (0.0105) (0.0013) (0.0022) 

Panel (B): Children of Unmarried Mothers 

Pregnancy 0.0382*** 0.0158* 0.0344*** 0.0040 0.0001 

 (0.0179) (0.0064) (0.0155) (0.0020) (0.00005) 

Postnatal 0.01129 0.0036 0.0190** 0.0042 0.0150 

 (0.0053) (0.0014) (0.0086) (0.0020) (0.0067) 

Toddler 0.0079 0.0098 0.0042 0.0024 0.0107* 

 (0.0037) (0.0040) (0.0019) (0.0011) (0.0048) 

Preschool 0.0238*** 0.0286*** 0.0238*** 0.0030 0.0024 

 (0.0112) (0.0116) (0.0107) (0.0014) (0.0011) 

Notes: (i) Panel A shows the effect of maternal depression on children of married mothers; (ii) Panel B shows the 

effect of maternal depression on children of unmarried mothers; (iii) All regressions control for child health, mother 

health, social, economic, and demographic characteristics; (iv) Standard errors are in parentheses. *, **, *** indicate 

significance level at 10%, 5%, 1% respectively. 
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On the other hand, among children of married mothers, there is a statistically significant 

relationship between maternal depression exposure during pregnancy and children's physical 

health and communication domains only. Children exposed to depression during pregnancy, 

among married mothers, were almost 1.5% and 2% more likely to be not ready in physical and 

communication domains, respectively, compared with those whose mother was married and not 

depressed. When we compare children of married mothers and unmarried mothers during the 

pregnancy period, the results indicate that children of non-married mothers are more sensitive to 

depression exposure than children of married mothers in the emotional, physical and social 

domains. Moreover, there is no difference in the effect of maternal depression exposure during 

pregnancy on the cognitive domain across the level of mother marital status. Similarly, children 

of married and unmarried mothers who were exposed to depression during the preschool period 

are more likely to be vulnerable in emotional, physical, and social domains compared with 

children of non-depressed mothers. However, the effect of depression is stronger among children 

whose mothers were unmarried. For example, compared with children whose mothers are 

unmarried and not depressed, children of unmarried mothers and exposed to depression during 

the preschool period are 2.3% more likely to be not ready in the emotional domain (almost 1.7% 

in the married group), 2.8% more likely to be not ready on the physical domain (almost 1.3% in 

the married group), and 2.3% more likely to be not ready on the social domain (almost 1.8% in 

the married group). For cognitive and communication domains, there appears to be no difference 

in the effect of maternal depression across the level of the mother’s marital status. In sum, 

children of unmarried mothers are more sensitive to depression exposure during pregnancy and 

the toddler period. Marital status moderates the effect of maternal depression on emotional, 
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physical, and social health. However, maternal depression appears to have no different effects 

across marital status levels on cognitive and communication domains. 

The results in Table 2.17 indicate that there are no apparent differences in the effect of 

maternal depression for mothers who have a high school degree and those who do not. However, 

there are little sizable differences in children's performance on the emotional domain by mother’s 

schooling levels for children exposed to depression in pregnancy and preschool periods. Among 

children whose mothers have a high school degree, children exposed to maternal depression 

during pregnancy and preschool are, respectively, 2.6% and 1.8% more likely to be not ready in 

the emotional domain. In contrast, among children whose mothers did not have a high school 

degree, children exposed to maternal depression during pregnancy and preschool are 3.1% and 

2.1%, respectively, to be not ready in the emotional domain. In summary, the effect of maternal 

depression does not depend on the education level of the mother for all time periods and EDI 

domains, except for the emotional domain during pregnancy and the preschool period. 
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Table 2.17:  Mother Education Heterogeneity: Marginal Effect of Maternal Depression on 

Children’s School Readiness – Vulnerability in EDI Domains. 

 

(1) 

Emotional 

(2) 

Physical 

(3) 

Social 

(4) 

Cognitive 

(5) 

Communication 

Panel (A): Children of mothers with high school 

Pregnancy 0.0267*** 0.0134** 0.0212*** 0.0025 -0.0052 

 (0.0098) (0.0067) (0.0096) (0.0013) (0.0026) 

Postnatal 0.0098 0.0062 0.0182** 0.0060 0.0106 

 (0.0036) (0.0031) (0.0082) (0.0033) (0.0053) 

Toddler 0.0096** 0.0092 0.0056 0.0029 0.0104 

 (0.0035) (0.0046) (0.0025) (0.0016) (0.0052) 

Preschool 0.0186*** 0.0194* 0.0192*** 0.0017 0.0023 

 (0.0068) (0.0097) (0.0087) (0.0009) (0.0011) 

Panel (B): Children of mothers without a high school 

Pregnancy 0.0314* 0.0209 0.0199 0.000071 0.0275 

 (0.0070) (0.0047) (0.0051) (0.00002) (0.0073) 

Postnatal 0.0143 0.0004 0.0005 0.0126 0.0330* 

 (0.0032) (0.0001) (0.00013) (0.0037) (0.0087) 

Toddler 0.0008 0.0020 0.0012 0.0010 0.01145 

 (0.0001) (0.0004) (0.00032) (0.00030) (0.0030) 

Preschool 0.0212* 0.0267*** 0.0172 0.0045 0.0153 

 (0.0047) (0.0061) (0.0044) (0.0013) (0.0040) 

Notes: (i) Panel A shows the effect of maternal depression on children of mothers with high school; (ii) Panel B 

shows the effect of maternal depression on children of mothers who did not have a high school; (iii) All regressions 

control for child health, mother health, social, economic, and demographic characteristics; (iv) Standard errors are in 

parentheses. *, **, *** indicate significance level at 10%, 5%, 1% respectively. 
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In this subsection, I analyzed whether EDI outcomes vary for children of mothers with 

different neighborhood-area socioeconomic status (SES) levels. Mothers were stratified into two 

groups based on their SEFI2 score. The low neighborhood-area SES group includes mothers with 

SES scores above zero and high neighborhood-area SES group includes mothers with SES scores 

below zero. 

Table 2.18 shows the fully adjusted odds ratios of the effect of maternal depression on the 

child’s EDI domains among children whose mothers have low neighborhood socioeconomic 

status. The results show some differences in terms of how each timing period is associated with 

EDI outcomes. Maternal depression exposure has a negative effect on the emotional and social 

skills domains across all four periods. The effect of maternal depression on children’s physical 

health was significant only during the preschool period. In contrast, the effect of maternal 

depression exposure on cognitive and communication domains was not significant across all the 

timing points. Child health through early childhood has a significant effect on all the EDI 

domains and most latent variables of child’s health at birth have a significant effect on a child’s 

EDI outcomes. Further, consistent with the full sample analysis, child and family characteristics 

have a significant and strong effect on all EDI domains. The odds of being vulnerable in EDI 

domains are 77% to 192% greater for boys than girls. Furthermore, among family characteristics, 

mother’s education, teenage mother, family size, and receiving income assistance have the 

strongest effect on all EDI domains. The odds of being not ready in the EDI domains are 16% to 

47% greater for children of teenage mothers than those whose mothers were not teenagers at birth; 

18% to 101% greater for children in families with more than four children than those in families 

with less than four children; and 27% to 51% greater for children in families on income assistance 

than those in families not on income assistance. 
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Table 2.18: Fully-adjusted Odds Ratios of Vulnerability in EDI Domains – Low Socioeconomic 

Status Group. 

 

Model 1 

Emotional 

Model 2 

Physical 

Model 3 

Social 

Model 4 

Cognitive 

Model 5 

Communication 

Timing of first exposure to maternal depression    

Pregnancy (In uterus) 1.278*** 1.067 1.184*** 0.915 0.901 

Postnatal (Birth -12 months) 1.180*** 1.006 1.185*** 1.125* 0.876* 

Toddler I (12 months-36 months) 1.142*** 1.065 1.064 1.071 0.906 

Preschool (36 months-60 months) 1.200*** 1.223*** 1.194*** 1.023 0.943 

Child's health through childhood      

Major illness (2+ major ADGs) 1.196*** 1.092** 1.114*** 1.125*** 1.055 

Minor illness (90th+ minor ADGs 1.249*** 1.093** 1.137*** 1.135*** 1.181*** 

Child hospital admission (>95th) 1.371*** 1.807*** 1.501*** 1.908*** 1.897*** 

Child's health at birth      

Low Birth Weight (< 2500g) 1.391*** 1.271*** 1.208** 1.271*** 1.345*** 

Preterm (< 37 weeks) 0.958 1.090 1.014 1.084 1.054 

5-minutes Apgar (>=8) 1.123 0.787*** 1.027 0.946 0.994 

Length of hospitalization(>6 days) 1.161* 1.370*** 1.281*** 1.263*** 1.257*** 

Emergency c-section 1.194* 1.164* 1.172* 1.100 1.155 

Mother health 5 years before birth     

Major illness (>2+ ADGs) 1.089*** 1.083** 1.104** 1.063* 0.991 

Minor illness (>90th minor ADGs) 1.095*** 1.001 1.057 1.058 0.950 

Mother hospital admission (>95th) 1.121*** 1.072 1.093 1.127** 1.114* 

Child, Mother, family characteristics     

Child's age (in months) 0.975*** 0.961*** 0.962*** 0.922*** 0.949*** 

Child gender (male=1) 2.929*** 1.776*** 2.457*** 1.968*** 2.041*** 

Breast feeding initiation 0.906*** 0.883*** 0.828*** 0.764*** 0.716*** 

Mother married 0.631*** 0.603*** 0.600*** 0.640*** 0.861*** 

Mother less than HS 1.136*** 1.094** 1.030 1.170*** 1.241*** 

Teenage mother 1.193*** 1.408*** 1.326*** 1.472*** 1.167*** 

Smoking during pregnancy 0.968 1.118*** 1.062 0.936 0.899** 

Urban residence 1.010 1.024 1.071* 0.942 0.990 

Family size (>4) 1.181*** 1.638*** 1.282*** 1.667*** 2.016*** 

Family receive income assistance 1.277*** 1.485*** 1.403*** 0.516*** 1.459*** 

Notes: (i) reference group is developmentally 'ready', (ii) EDI is the Early Development Instrument, 

(iii)vulnerability is the scoring in the bottom 10th percentile of the EDI domains. *, **, *** indicate 

significance level at 10%, 5%, 1%, respectively.  
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Table 2.19: Fully-adjusted Odds Ratios of Vulnerability in EDI Domains – High Socioeconomic 

Status Group. 

 

Model 1 

Emotional 

Model 2 

Physical 

Model 3 

Social 

Model 4 

Cognitive 

Model 5 

Communication 

Timing of first exposure to maternal depression    
Pregnancy (In uterus) 1.372*** 1.314*** 1.315*** 1.259** 0.964 

Postnatal (Birth -12months) 1.036 1.167* 1.151 1.002 0.868 

Toddler I (12months-36months) 1.028 1.138* 1.070 0.976 0.915 

Preschool (36months-60months) 1.278*** 1.226*** 1.287*** 0.978 1.013 

Child's health through childhood   
Major illness (2+ major ADGs) 1.123*** 1.125*** 1.154*** 1.234*** 1.070 

Minor illness (90th+ minor ADGs 1.293*** 1.228*** 1.202*** 1.206*** 1.124* 

Child hospital admission (>95th) 1.555*** 2.707*** 1.832*** 2.512*** 2.434*** 

Child's health at birth      
Low Birth Weight (< 2500g) 1.221 1.367** 1.299** 1.594*** 1.472*** 

Preterm (< 37 week) 0.910 1.078 0.898 0.989 1.016 

5-minutes Apgar (>=8) 0.830* 0.748*** 0.702*** 0.718*** 0.794*** 

Length of hospitalization (>6 days) 1.044 1.207 1.185 1.123 1.252* 

Emergency c-section 1.202* 1.112 1.178 1.083 0.942 

Mother health 5 years before the birth 

Major illness (>2+ ADGs) 1.091* 1.100** 1.127*** 0.960 0.921* 

Minor illness (>90th minor ADGs) 1.047 1.062** 1.064 1.098 0.969 

Mother hospital admission (>95th) 1.086 1.218 0.997 1.097 1.147 

Child, Mother, family characteristics     
Child's age (in months) 0.969*** 0.964*** 0.964*** 0.930*** 0.970*** 

Child gender (male=1) 3.540*** 1.984*** 2.869*** 1.940*** 1.831*** 

Breast feeding initiation 0.873** 0.866*** 0.764*** 0.725*** 0.707*** 

Mother married 0.765*** 0.635*** 0.727*** 0.812*** 0.978 

Mother less than HS 1.506*** 1.580*** 1.431*** 1.659*** 2.102*** 

Teenage mother 1.196*** 1.296*** 1.382*** 1.668*** 1.190*** 

Smoking during pregnancy 1.311*** 1.323*** 1.382*** 1.207*** 0.935 

Urban residence 1.199*** 1.126*** 1.237*** 1.170*** 1.039 

Family size (>4) 1.223*** 1.847*** 1.401*** 1.845*** 2.367*** 

Family receive income assistance 1.450*** 1.731*** 1.472*** 1.620*** 1.828*** 

Notes: (i) reference group is developmentally 'ready', (ii) EDI is the Early Development Instrument, (iii) 

vulnerability is the scoring in the bottom 10th percentile of the EDI domains. *, **, *** indicate 

significance level at 10%, 5%, 1% respectively.  
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Table 2.19 shows the fully adjusted odds ratios of the effect of maternal depression on 

the child’s EDI domains among children with mothers in the high neighborhood 

socioeconomic status group. Maternal depression exposure during pregnancy and the 

preschool period has a negative effect on the emotional, physical and social skills domains. 

The effect of maternal depression exposure during the postnatal and toddler periods has a 

significant effect on the physical health domain only. In contrast, the effect of maternal 

depression exposure on cognitive and communication domains was not significant for all 

timing points. Child health through early childhood has a significant effect on all EDI domains 

and most latent variables of child’s health at birth have a significant effect on a child’s EDI 

outcomes. Further, consistent with the full sample analysis, the child and family characteristics 

has a significant and strong effect on all EDI domains. The odds of being vulnerable in EDI 

domains are 83% to 254% greater for boys than girls. Furthermore, among family 

characteristics, mother’s education, teenage mother, family size, and receiving income 

assistance have the strongest effect on all EDI domains. The odds of being not ready in the 

EDI domains are 19% to 66% greater for children of teenage mothers than those whose 

mothers were not teenagers at birth; 22% to 136% greater for children in families with more 

than four children than those in families with less than four children; and 45% to 82% greater 

for children in families on income assistance than those in families not on income assistance.  

When comparing the effect of maternal depression exposure across the two 

socioeconomic groups, the results indicate that impact of maternal depression exposure 

during pregnancy and the preschool period on the emotional and social competence domains 

for children whose mothers are in the low socioeconomic status group is similar to those 

whose mothers are in the high socioeconomic status group. In contrast, the effect of maternal 
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depression exposure during the postnatal and toddler periods are not similar across the two 

socioeconomic groups. Maternal depression exposure does not have a significant effect on 

emotional and social domains among children whose mothers have high socioeconomic 

status, while maternal depression exposure does not have a significant effect on physical 

domain among children whose mothers are in the low socioeconomic status group. The 

stratified analyses, by the level of socioeconomic status of the child’s family, showed that the 

child's gender effect on the EDI domains is slightly stronger among children whose mothers 

have a high level of socioeconomic status than those in the low socioeconomic status group. 

Generally, the effect of maternal depression exposure on children’s school readiness is not 

substantially moderated by the family's socioeconomic status. In other words, the effect of 

maternal depression on school readiness does not depend on the level of socioeconomic 

status. 

Table 2.20 reports the average marginal effect of maternal depression exposure on 

children's EDI domains. Panel (A) reports the marginal effect for children of mothers with high 

neighborhood-area socioeconomic status and panel (B) reports the average marginal effect of 

maternal depression for children of mothers with low neighborhood-area socioeconomic status. 

The two panels show some differences in terms of how each timing period is associated with 

EDI outcomes. Exposure to maternal depression during pregnancy and the preschool period has 

the same effect on the children's emotional and social domains across the two socioeconomic 

status groups. Children exposed to maternal depression during pregnancy and the preschool 

period are almost 2% more likely to be not ready in emotional and social competence domains 

across the two groups compared to those who were not exposed to maternal depression. In 

contrast, the effect of maternal depression exposure during the postnatal and toddler periods are 
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not similar across the two socioeconomic groups. Maternal depression exposure does not have a 

significant effect on emotional and social domains among children whose mothers have high 

socioeconomic status. Children who were exposed to depression during the postnatal and 

toddler periods are 2% and 1.5%, respectively, more likely to be not ready in the emotional 

domain among children whose mothers have low SES. Children exposed to maternal depression 

during the postnatal and toddler periods are almost 1% more likely to be not ready among 

children whose mothers have high socioeconomic status, while there is no significant effect on 

physical health among the children whose mothers have low SES. The effect of maternal 

depression exposure was not significant for both the language and cognitive domain and the 

communication skills domain, for either mother with low SES or high SES. 

Table 2.20: Marginal effect of Maternal Depression Exposure on Vulnerability in EDI Domains 

by Neighborhood-area Socioeconomic Status 

 Emotional Physical Social Cognitive Communication 

Mothers with High Socioeconomic Status SES 

Pregnancy 0.0271*** 0.0223*** 0.0215*** 0.0167** -0.0027 

 (0.0157) (0.0128) (0.0128) (0.0104) (0.0015) 

Postnatal 0.0030 0.0126* 0.0110 0.00011 -0.01025 

 (0.0017) (0.0072) (0.0066) (0.0001) (0.0058) 

Toddler 0.0023 0.0105* 0.0530 -0.0017 -0.0064 

 (0.0014) (0.0060) (0.0031) (0.0011) (0.0037) 

Preschool 0.0210*** 0.0167*** 0.0198*** -0.0016 0.0010 

 (0.0122) (0.0095) (0.0119) (0.0010) (0.0006) 

Mothers with Low Socioeconomic Status SES 

Pregnancy 0.0284*** 0.0087 0.0206** -0.0113 -0.0119 

 (0.0135) (0.0036) (0.0093) (0.0052) (0.0050) 

Postnatal 0.0190** 0.00078 0.0206** 0.0149* -0.0152 

 (0.0090) (0.0003) (0.0093) (0.0069) (0.0069) 

Toddler 0.0153** 0.0085 0.0076 0.0087 -0.0113 

 (0.0073) (0.0035) (0.0034) (0.0040) (0.0051) 

Preschool 0.0211*** 0.0268*** 0.0217*** 0.0028 -0.0066 

 (0.0101) (0.0112) (0.0098) (0.0013) (0.0030) 

Notes: (i) Panel A shows the effect of maternal depression on children of mothers with high socioeconomic 

status; (ii) Panel B shows the effect of maternal depression on children of mothers with low socioeconomic 

status; (iii) All regressions control for child health, mother health, social, economic, and demographic 

characteristics; (iv) Standard errors are in parentheses. *, **, *** indicate significance level at 10%, 5%, 1% 

respectively. 
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2.8. Robustness check   

2.8.1 Standard Approach for Identifying Vulnerability  

According to the Offord Centre, the standard approach to identify children who fall in the 

“Vulnerable” or “Not ready” for school category describes the children who score in the bottom 

10th percentile cut-off in at least one domain (Janus and Offord, 2007). In this section, I 

designed vulnerability on the EDI to include children who are not ready in one or more domains, 

not in just one domain. 

Table 2.21 reports the odds ratio of being not ready in at least one EDI domain. The 

unadjusted model shows a significant association between maternal depression exposure and 

developmental vulnerability in at least one EDI domain. The odds of being not ready in at least 

one EDI domain is 38% greater for children who were exposed to maternal depression during 

pregnancy; 25% greater for children who were exposed to maternal depression during the 

postnatal period; 29% greater for children exposed to maternal depression during the toddler 

period; and 45% greater for children exposed to maternal depression during the preschool period 

compared with children who were not exposed to maternal depression during any time period. 

After adjusting for child health at birth and throughout childhood, the odds of being not ready in 

at least one EDI domain are attenuated; however, the negative effect of maternal depression on 

vulnerability in at least one EDI domain remained significant and strong. Further adjusting for 

child and family socioeconomic and demographic characteristics were associated with a 

substantial reduction in the magnitude of the odds ratio of being not ready. According to the fully 

adjusted model, the odds of being not ready in at least one EDI domain are 14% greater for 

children who were exposed to maternal depression during pregnancy; 3% greater for children 

who were exposed to maternal depression during the postnatal period; 8% greater for children 
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who were exposed to maternal depression during the toddler period; and 15% greater for children 

who were exposed to maternal depression during the preschool period. 

Table 2.21: Unadjusted and Fully adjusted Odds Ratio of Being Developmentally Vulnerable in 

at Least one EDI Domain 

 

Model 1 

unadjusted 

Model 2 

Partially adj 

Model 3 

Partially adj 

Model 4 

Fully adj 

Timing of first exposure to maternal depression   
Pregnancy (In uterus) 1.385*** 1.326*** 1.210*** 1.145*** 

Postnatal (Birth -12m) 1.251*** 1.213*** 1.137*** 1.033 

Toddler I (12m-36m) 1.299*** 1.266*** 1.198*** 1.080** 

Preschool (36m-60m) 1.456*** 1.420*** 1.337*** 1.152*** 

Child's health through childhood    
Major illness (2+ major ADGs) 1.230*** 1.209*** 1.089*** 

Minor illness (90th+ minor ADGs) 1.140*** 1.085*** 1.131*** 

Child hospital admission (>95th) 2.326*** 2.284*** 1.883*** 

Child's health at birth     
Low Birth Weight (< 2500g) 1.226*** 1.232*** 1.328*** 

Preterm (< 37 weeks)  1.108*** 1.085* 0.993 

5-minutes Apgar (>=8)  0.918* 0.916* 0.856 

Length of hospital stay(>6) 1.204*** 1.196* 1.152*** 

Emergency c-section  0.955 0.959 1.086 

Mother health 5 years before the birth    
Major illness (>2+ ADGs)   1.161*** 1.051*** 

Minor illness (>90th minor ADGs)  1.185*** 1.062*** 

Mother hospital admission (>95th)  1.334*** 1.174*** 

Child, Mother, and family chrematistics     
Child's age (in months)    0.943*** 

Child gender (male=1)    2.275*** 

Breastfeeding initiation    0.778*** 

Mother married    0.732*** 

Mother has less than HS    1.320*** 

Teenage mother    1.470*** 

Smoking during pregnancy    1.112*** 

Neighbourhood-area SES    0.766*** 

Urban residence    1.072*** 

Family size (>4)    1.714*** 

The family receive income assistance   1.485*** 

Notes: (i) reference group is developmentally 'ready', (ii) EDI is the Early Development Instrument, (iii) OR is the 

odds ratios, CI is the confidence interval, (iv) vulnerability is the scoring in the bottom 10th percentile of the EDI 

domains. *, **, *** indicate significance level at 10%, 5%, 1% respectively.  
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These results are consistent with the analysis for each domain separately. Child family 

socioeconomic characteristics have a strong effect on child vulnerability in at least one EDI 

domain, over and above the disadvantage conferred by maternal depression exposure.   

Child health at birth and through early childhood has a significant effect on child 

vulnerability in at least one EDI domain. The number of hospital admission (accumulated from 

birth to the child's 5th birthday) has a strong negative effect on the child’s school readiness. 

Children with an accumulated number of hospital admission greater than the 95th percentile of 

the distribution of the number of hospital admission in the population are 1.88 times more likely 

to be not ready on at least one EDI domain compared with those who had a number of hospital 

admission less than the 95th percentile cut-off. Major and minor illness may be a pathway from 

poor health at birth to vulnerability in EDI domains. Low birth weight is an important risk factor 

for being not ready for school at kindergarten age. Children whose weight at birth is less than 

2500 grams are 1.32 times more likely to be not ready in at least one EDI domain compared to 

children whose weight above 2500 grams. 

For child individual-level variables, boys are more likely to be developmentally 

vulnerable in at least one EDI domain than girls and young children at the time of EDI 

assessment are more vulnerable in at least one EDI domain than older ones. The odds of being 

not ready in at least one EDI domain is 127% greater for boys than girls. Breastfeeding initiation 

was significantly associated with children's school readiness. Children whose mothers-initiated 

breastfeeding at birth are less likely to be vulnerable in at least one EDI domain. Similarly, 

children whose mothers were married or in common-law relationships at birth are less likely to 

be vulnerable than children whose mothers were single. In contrast, the odds of being not ready 

in at least one EDI domain is 32% greater for children whose mother did not have a high school 



273 

 

at their birth than children whose mothers had a high school degree, and 47% greater for children 

whose mothers were teenagers at birth than those whose mother not teenagers. Similarly, 

children in families with more than four children are more likely to be vulnerable than children 

in families with less than four children and children in families on income assistance are more 

vulnerable than those in families not on income assistance. Consequently, the child's family 

environment still has the strongest effect on the child's school readiness, over and above the 

disadvantage conferred by maternal depression exposure. These findings are consistent with the 

individual EDI domain analysis, which confirmed the negative effect of maternal depression 

exposure on children's school readiness across the four periods.  

2.8.2 Sensitive periods of Developmental Vulnerability 

The results of the analysis showed that exposure to maternal depression during pregnancy 

and the preschool period has the strongest effect on the child's developmental vulnerability in 

emotional, physical, and social domains compared with the postnatal and toddler periods. I 

compared children who were exposed to maternal depression during pregnancy or the preschool 

period to children who were exposed to depression during the postnatal or toddler periods. More 

specifically, I pooled children exposed to depression during pregnancy and preschool as one 

group and I pooled children exposed to depression in postnatal and toddler periods as another 

group. The difference in log odds of the two groups and the linear hypothesis test results of this 

difference are reported in table 2.22. 
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Table 2.22: Fully adjusted Difference in Log Odds of Being Vulnerable in EDI Domains - 

Pregnancy & Preschool vs. Postnatal & Toddler. 

EDI 

Domains 

Difference 

in log odds 

Odds Ratio 

OR 

95% OR 

confidence limits 

Wald 

Chi-Square 

Emotional 
0.2612*** 1.298*** 1.0841 - 1.555 8.0455 

(0.0921) (0.1196)  (0.0046) 

Physical 
0.1875** 1.206** 1.011 - 1.439 4.330 

(0.0901) (0.109)  (0.0374) 

Social 
0.1778 1.194 0.998 - 1.429 3.767 

(0.0916)* (0.0195)*  (0.0522) 

Cognitive 
-0.0974 0.907 0.7540 - 1.0915 1.0654 

(0.094) (0.085)  (0.302) 

Communication 
0.1032 1.108 0.9068 - 1.3557 1.0126 

(0.1026) (0.1137)  (0.3143) 

Notes: (i) the null hypothesis test is 𝐻0: 𝑙𝑜𝑔(𝑜𝑑𝑑𝑠𝑖)  −  𝑙𝑜𝑔 (𝑜𝑑𝑑𝑠𝑗)  = 0, (ii) the Wald Chi-Square and 

P-value is used in the test (iii) exponentiating the difference in log-odds gives estimates for the odds 

ratios. (iv) numbers in parenthesis are the std error. *, **, *** indicate significance level at 10%, 5%, 1% 

respectively. 

 

I found that children in the group exposed to depression for the first time during 

pregnancy or preschool are more likely to be not ready on the emotional domain compared with 

children who were exposed to depression in the postnatal or toddler periods. The difference in 

the log odds between the two groups is 0.2612. That is, the odds of being not ready in the 

emotional maturity domain are 29% greater for children who were exposed to depression in 

pregnancy or the preschool period than those who were exposed to depression during the 

postnatal or toddler periods. The difference between these two groups is statistically significant 

as shown by the Wald chi-square statistic of the linear hypothesis test. The difference in the log 

odds of being vulnerable in the physical domain between both groups is 0.1875. Children in the 

group exposed to maternal depression during pregnancy or preschool are more likely to be 

vulnerable in the physical domain compared with those exposed to maternal depression during 

the postnatal or toddler periods. The odds of being vulnerable in the physical health domain is 

20% greater for children in the pregnancy and preschool period exposed group than those in the 

postnatal and toddler period exposed group. The difference in log odds of being developmentally 
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vulnerable in the social competence domain is 0.0916 higher for children exposed to maternal 

depression during pregnancy or preschool compared to those exposed to maternal depression 

during the postnatal or toddler periods. That is the odds of being vulnerable in the social 

competence domain for children in the group exposed during pregnancy or preschool are 19% 

greater than those exposed in the postnatal or toddler periods. For both cognitive and 

communication domains, there was no significant difference in the odds of being vulnerable 

when comparing both groups. This is consistent with the main results that indicate that exposure 

to maternal depression has the strongest effect during pregnancy, followed by the preschool 

period for the emotional, physical, and social domains. For the cognitive and communications 

domains, exposure to depression puts children at risk of poor school readiness irrespective of the 

timing of maternal depression. However, this impact is not significant after adjusting for the 

child's health and family socioeconomic and demographic variables.    

2.8.3 Analysis of Healthy Children 

The literature of early childhood development showed that early chronic illness may have 

a profound influence on a child’s developmental trajectories. Some studies found that children 

and adolescents with chronic illness have lower academic outcomes compared with healthy ones 

(Case, Fertig, and Paxson, 2005; Jakson 2009). Children who have poor health before starting 

school are at greater risk of poorer cognitive and psychosocial outcomes (Quach and Barnett, 

2015; Goldfeld et al. 2012; Janus and Duku, 2007). This suggests that ill health in early 

childhood may influence the relationship between maternal depression and child’s 

developmental vulnerability in the EDI domains. Therefore, I excluded children with poor health 

status through childhood, relative to the majority of the population in the study. I repeated the 

analysis on the EDI domains after excluding children with major illnesses that exceeded the 90th 
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percentile of the major ADGs distribution, children with minor illnesses that exceeded the 90th  

percentile of the minor ADGs distribution, and children with hospital admissions that exceeded 

the 95th percentile of the number of hospital admission. I repeated each analysis separately as 

differential health status criteria. 

Table 2.23 indicates the average marginal effect of maternal depression exposure after 

excluding children with a number of major illnesses greater than the 90th percentile of the major 

ADGs through early childhood, from birth through the child's 5th birthday. 

 

Table 2.23:  Average Marginal Effect - Vulnerability in EDI Domains for Healthy Children 

(Major ADGs Criterion). 

 

Pregnancy 

Period 

Postnatal 

Period 

Toddler 

Period 

Preschool 

Period 

Emotional 0.0256*** 0.0095 0.0180*** 0.0181*** 

 0.0152 0.0056 0.0107 0.0107 

Physical 0.02593***  0.0236***  0.0188***  0.0253*** 

 (0.0017) (0.0015) (0.0012) (0.0016) 

Social 0.0342***  0.0108  0.0149** 0.0225*** 

 (0.0033) (0.0010) (0.0014) (0.0022) 

Cognitive 0.0119 0.0039 0.0110* -0.0024 

 (0.0077) (0.0025) (0.0071) (0.0015) 

Communication 0.0030 -0.0070 -0.0024 -0.0060 

 (0.0017) (0.0041) (0.0014) (0.0035) 
Notes: each model is adjusted for some variables that include (i) child health through early childhood (major illness, 

minor illness, hospital admission); (ii) child health at birth (low birth weight, preterm, Apgar, hospital stay, 

emergency c-section); (iii) mother health prior birth (major illness, minor illness, hospital admission); (iv) 

demographic and socioeconomic variables. The Standard errors are in parentheses. *, **, *** indicate significance 

level at 10%, 5%, 1% respectively. 

 

I limited the analysis to children who identified as healthy during early childhood based 

on the number of major illnesses (major ADGs). The results indicate that maternal depression 

exposure among this group has a negative effect on at least three EDI domains across the four 

timing points of depression. Exposure during pregnancy has the strongest effect on the emotional 

domain, followed by the preschool and toddler periods. Children exposed to maternal depression 

during pregnancy are 2.6% more likely to be not ready in the emotional maturity domain 
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compared with children who were not exposed to depression. This effect is 0.9% for the 

postnatal period, and 1.8% for both the toddler and preschool periods. Physical health is 

negatively affected by exposure to maternal depression across the four periods. There was a 

small difference between the postnatal period and the other periods. For the social competence 

domain, maternal depression exposure during the pregnancy has the strongest effect, followed by 

exposure during the preschool period. On the other hand, maternal depression does not have any 

significant effect on the language and cognitive domain and the communication domain. These 

results are in line with the main results of the full sample. 

Table 2.24 indicates the average marginal effect of maternal depression exposure after 

excluding children with a number of minor illnesses greater than the 90th percentile of minor 

ADGs through early childhood, from birth through the child's 5th birthday. 

Table 2.24:  Average Marginal Effect – Vulnerability in EDI Domains for Healthy Children 

(Minor ADGs Criterion). 

 

Pregnancy 

Period 

Postnatal 

Period 

Toddler 

Period 

Preschool 

Period 

Emotional 0.0270*** 
 

0.0117* 
 

0.0108** 
 

0.0227*** 

 
(0.0147) (0.0064) (0.0059) (0.0124) 

Physical 0.0164** 
 

0.0046 0.0153*** 
 

0.0279*** 

 
(0.0088) (0.0025) (0.0083) (0.0151) 

Social 0.0212*** 
 

0.0124** 
 

0.0094** 
 

0.0247*** 

 
(0.0118) (0.0069) (0.0052) (0.0138) 

Cognitive 0.0019 0.0099 0.0083* 0.0029 

 
(0.0011) (0.0058) (0.0049) (0.0017) 

Communication -0.0128 -0.0161 -0.0057 -0.0017 

 
(0.0070) (0.0088) (0.0031) (0.0009) 

Notes: each model is adjusted for some variables that include (i) child health through early childhood (major illness, 

minor illness, hospital admission); (ii) child health at birth (low birth weight, preterm, Apgar, hospital stay, 

emergency c-section); (iii) mother health prior birth (major illness, minor illness, hospital admission); (iv) 

demographic and socioeconomic variables. The Standard errors are in parentheses. *, **, *** indicate significance 

level at 10%, 5%, 1% respectively. 
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Among children who are healthy based on the number of minor illnesses (minor ADGs) 

solely, maternal depression exposure was negatively associated with three areas of child 

development. Exposure during pregnancy remained the period with the strongest effect on the 

emotional, physical, and social competence domains, followed by the preschool period. The 

findings indicate that maternal depression timing appears to have no significant effect on the 

cognitive and communication domains. The emotional and social domains are most affected and 

the preschool period has the strongest effect on the child's physical health domain. 

Table 2.25 indicates the average marginal effect of maternal depression exposure after 

excluding children with the number of hospital admissions greater than 95th percentile of the 

hospital admission distribution through early childhood, from birth through the child's 5th 

birthday. 

Table 2.25: Average Marginal Effect – Vulnerability in EDI Domains for Healthy Children 

(hospital admission criterion). 

 

Pregnancy 

Period 

Postnatal 

Period 

Toddler 

Period 

Preschool 

Period 

Emotional 0.0286***  0.0125**  0.0105**  0.0210*** 

 (0.0154) (0.0067) (0.0057_ (0.0113) 

Physical 0.0138**  0.0061  0.0114**  0.0236*** 

 (0.0021) (0.0009) (0.0017) (0.0036) 

Social 0.0237***  0.0179***  0.0084*  0.0228***  

 (0.0041) (0.0031) (0.0014) (0.0040) 

Cognitive 0.0006 0.0072 0.0027 0.0017 

 (0.0004) (0.0042) (0.0015) (0.0009) 

Communication 0.0070 -0.0123* 0.0075* -0.0035 

 (0.0037) (0.0065) (0.0039) (0.0018) 

Notes: each model is adjusted for some variables that include (i) child health through early childhood (major illness, 

minor illness, hospital admission); (ii) child health at birth (low birth weight, preterm, Apgar, hospital stay, 

emergency c-section); (iii) mother health prior to birth (major illness, minor illness, hospital admission); (iv) 

demographic and socioeconomic variables. The Standard errors are in parentheses. *, **, *** indicate significance 

level at 10%, 5%, 1% respectively. 

 

Table 2.21 indicates the effect of maternal depression exposure among children who 

identified as healthy using the number of hospital admission from birth through the child’s 5th 
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birthday criterion. Exposure to maternal depression during pregnancy period has the strongest 

effect on at least three domains of child development, followed by the preschool period. 

However, the effect of maternal depression exposure disappears on the cognitive and 

communication domains across the four timing points of maternal depression exposure. 

Moreover, Emotional and social domains are more sensitive to maternal depression across the 

four timing periods. 

2.8.4 Cut-off Sensitivity 

Some variables were dichotomized based on established cut-off values from previous 

literature. For these variables, I used their distribution to determine the 90th and 95th percentile 

values to use as a cut-off point. For all these cases sensitivity analysis was performed using 

slightly higher or lower cut-off values than reported in the literature.  The results did not change 

after changing the cut-off values. The set of variables that I re-dichotomized includes child major 

illness (ADG Major), child minor illness (Minor ADGs), number of child hospital admission 

through childhood, mother major illness (Major ADGs), mother minor illness (Minor ADGs), 

and mother hospital admission prior to pregnancy.  

2.8.5 Stepwise Selection  

When I built the main effects model, I applied the traditional and most extensively used 

procedure, the purposeful selection method, for the variables selection process. Another 

approach to select variables is a stepwise procedure in which variables are selected in a sequence 

pattern based only on statistical criteria. Some studies found that the purposeful selection method 

selects significant variables and includes variables that could be confounders of the other model 
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variables in a practical manner superior to the stepwise selection method7 (Bursac et al., 2008). 

However, I also used the stepwise selection procedure for all variables and interactions in the 

model and the selected variables were similar to the purposeful selection procedure, except for 

some variables that are clinically important in previous literature. That is, the stepwise method 

selected the previously identified variables in the main effects model.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
7 There are some other method of selection which are not used extensively in the logistic regression (e.g., Best 

Subsets Selection). However, this method, as mechanical selection, has been criticized because it can select 

irrelevant variables. For more detail see Greenland, 1989; Griffiths and Pope, 1987. 
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2.9. Discussion and Conclusion: 

This study examined the school readiness of children with a history of maternal 

depression exposure. It significantly contributes to the literature by investigating the impact of 

the timing of first exposure to maternal depression on a comprehensive measure of children’s 

school readiness that incorporates multidimensional developmental domains that underlie 

academic school class adaptation and later success. The Early Development Instrument (EDI) 

scores of 59,413 children were linked to their mothers and followed over time from five years 

before the child’s birth to the child’s 5th birthday. Understanding how the timing of maternal 

depression exposure relates to children’s school readiness is important for informing appropriate 

supportive policies for children of depressed mothers. 

One of the unique strengths of the administrative database at Manitoba Center for Health 

Policy is the ability to follow up mother-child dyads over time and to assign them to one of the 

initial exposure timing points. The focus on the first exposure to maternal depression is 

necessary to help isolate the effects resulting from each exposure period and to control for the 

issue of overlapping repeated depression episodes. Essentially, children exposed to maternal 

depression in any period were not included as exposed to maternal depression at any later period. 

I assigned each mother-child dyad to 1 of 4 mutually exclusive exposure timing categories. 

Specifically, these are: children not exposed to maternal depression at any point (reference 

group); children first exposed to maternal depression during pregnancy; children first exposed to 

maternal depression during the postnatal period (birth–12 months); children first exposed to 

maternal depression during the toddler period (12 months - 36 months); and children first 

exposed to maternal depression during the preschool period (36 months - 60 months).  
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The findings suggest that children exposed to maternal depression are at risk for poor 

school readiness due to maladaptive development of skills and abilities that are the foundation 

for school adaptation. When controlling for child health at birth, child health through early 

childhood (as indicated by major ADGs and minor ADGs, and hospital admission frequency), 

and mother’s health prior to pregnancy, however, the effects of exposure to maternal depression 

on children’s abilities in the emotional, physical, and social domains were attenuated across the 

different timing periods. This effect almost disappeared for cognitive and communication skills. 

Furthermore, in addition to child health (from birth through childhood), family environment 

(e.g., unmarried mothers, teenage mothers, a mother with less than high school education, 

families on social assistance, and families with more than four children) is also a strong risk 

factor for school readiness, over and above the disadvantage conferred by maternal depression 

exposure. The effect of family socioeconomic characteristics on the child’s EDI domains varies 

across the developmental domains, but it is very strong, especially for cognitive and 

communication skills.  These findings suggest that programs that target depressed mothers to 

support disadvantaged families and improve child and mother’s health could lead to 

improvements in school readiness. 

Generally, exposure to maternal depression during pregnancy appears to have the 

strongest effect on children's development, as measured by the EDI, followed by the preschool 

period. Sensitivity during pregnancy on children’s developmental outcomes is supported by 

studies that found that exposure to maternal depression during the prenatal period is associated 

with increased infant cortisol levels, low birth weight, preterm birth (Gutteling et al., 2005; 

Brennan et al., 2008; Field, 2011; Field et al., 2008) less mother-child attachment and decreased 

breastfeeding initiation, and therefore child development. There is a general consensus among 
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different disciplines that children who experienced early developmental difficulties may need 

additional support to increase their chance of success and unproblematic transition to school. 

Therefore, the prevention of developmental impairments in children of depressed mothers 

requires more attention to early detection of maternal depression in obstetrician offices, where 

exposure to elevated cortisol level for fetuses and low birth weight can be identified, which are 

risk factors for impaired cognitive and social development outcomes (Wadhwa, 2005). 

Additionally, interventions should commence prior to the start of school because the ongoing 

challenging school environment may exacerbate the child’s developmental difficulties (Bell et 

al., 2018). Interventions should target very young children and their mothers to mitigate early 

developmental difficulties due to maternal depression exposure. Programs should give more 

support to the emotional, physical, and social competence domains for children exposed to 

maternal depression because these are the most affected domains. Early intervention can 

moderate negative outcomes of the neurobiological response to the poor environment 

surrounding the child through the plasticity and resilience8 of brain development and other 

biological systems (Thompson, 2014). 

The findings show a significant difference in odds of developmental vulnerability 

depending on the timing of the first exposure to maternal depression. This heterogeneity in the 

effect of timing was across all EDI domains, though especially in the emotional, physical and 

social domains, even after controlling for sociodemographic characteristics.  Thus, the timing of 

maternal depression exposure exerts heterogeneous effects on school readiness. I found a 

significant difference in the odds of developmental vulnerability when comparing children 

exposed to maternal depression during pregnancy to exposure during the other three periods 

 
8 Plasticity refers to the capacity of organisms to alter with the surrounding experience.  Plasticity is highest in early 

life and declines with age. This explains why early shocks have a bigger impact on younger children than older ones 

(for more detail see Thompson, 2014). 
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(postnatal, toddler, and preschool). There is also a significant difference in the log odds of being 

vulnerable in the emotional domain when comparing toddler and preschool groups. Children 

exposed to maternal depression during pregnancy had greater odds of being not ready on the 

emotional domain at kindergarten age compared with those exposed to maternal depression 

during the postnatal period (17% higher odds), the toddler period (20% higher odds), and in 

preschool (8% higher odds). That is, exposure to maternal depression during pregnancy has the 

strongest effect on the child's emotional maturity domain compared with the other timing points. 

Children exposed to maternal depression during the preschool period are more likely to be not 

ready on the emotional domain than children exposed to maternal depression during the toddler 

period. Two significant differences across the different time periods were found for physical 

health. Children exposed to maternal depression during preschool are more likely to be 

vulnerable in the physical domain compared to those exposed to maternal depression during the 

postnatal or toddler periods. Similarly, children exposed to maternal depression during preschool 

are more likely to be vulnerable in the physical domain compared with those exposed to maternal 

depression during the toddler period. Thus, the preschool period is a sensitive period for physical 

health development. There were two significant differences in the odds of developmental 

vulnerability in the social competence domain. Children exposed to maternal depression during 

pregnancy had higher odds of being vulnerable compared to those exposed to maternal 

depression during the toddler period. Similarly, children exposed to maternal depression during 

the preschool period had higher odds of being not ready compared with those exposed during the 

toddler period. For both cognitive and communication domains, there was no significant 

difference in the odds of being vulnerable when comparing each pair of maternal depression 
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timing points. However, these children were also at risk of poor school readiness irrespective of 

the timing of maternal depression. 

A child’s emotional domain is the most sensitive domain to maternal depression exposure 

during pregnancy or the preschool period. Compared with findings from the area of a child's 

emotional development (especially during the preschool period), the latter is surprising. 

Exposure to maternal depression during the preschool period (36 months – 60 months) comes 

after the recognized child-mother attachment period. In the analyses, children in this group were 

not exposed to maternal depression at any other time point (since these include only first 

exposure) and hence they should have been able to form a healthy mother attachment bond 

before the child’s 3rd birthday. However, psychologists assume (Bowlby, 1980; Mancini et al., 

2009) that children, in the 2 – 5 year age, who lose the healthy attachment bond during a 

depression episode may experience a loss similar to the actual loss of a parent  This can explain 

the stronger effect of maternal depression during preschool than the postnatal period, where the 

emotional cost could be stronger after the establishment of the attachment bond rather than 

during the attachment period itself (Naicker et al., 2012). 

The results of this study suggest that a child’s family environment has a strong effect on 

their cognitive and communication domains compared to other domains. Family size has the 

strongest effect on the communication and knowledge domain, followed by the language and 

cognitive domains. Income assistance has the strongest negative effect on children's language 

and cognitive domain, followed by the communication domain. These results align with another 

MCHP study that found that socioeconomics status and family disadvantage have a strong effect 

on those domains (Santos et al., 2012). 
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The literature reports different channels through which maternal depression exposure can 

affect early child development. In psychology, healthy parent interactions have a pivotal role in 

how children respond to and interact with their surrounding environment. These interactions help 

children learn the expression of positive and negative emotions that can help them build their 

own coping methods, called ‘emotion regulation and knowledge’ (Kujawa et al., 2014). 

Depressed mothers represent an obstacle to the development of these skills and serve as 

maladaptive models of emotion regulation (Blandon et al., 2008).  Early impairments in 

children’s ‘emotion knowledge’ can extensively contribute to developmental vulnerability in 

social competence (Kujawa et al., 2014; Wang and Dix, 2015). Depressed mothers are less 

sensitive to their children’s needs and engage in more negative social communication (Feldman 

et al., 2009), which disrupts the needed skills during this period to build healthy social 

relationships. Children who experience maladaptive development of these skills are less socially 

involved and excluded from their peers; moreover, they usually develop aggressive 

communication and attribute blame on others (Wang and Dix, 2015).  Exposure to depression 

may also disrupt the interaction between mothers and their children through decreasing the 

stimulated-engaging activities that develop skills such as memory, language, reading ability, 

exploring the surrounding world (Stein et al., 2008; Keim et al., 2011), which results in poor 

cognitive performance (Keim et al., 2011; Perra et al., 2015). In addition to the psychological 

mechanism, maternal depression can impact children’s skills formation through children’s brain 

physiological mechanisms. Some studies in neuroscience have been working on brain biological 

vulnerabilities as a mechanism through which maternal depression can affect children's cognitive 

and language development. 
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The mother’s ill health (as indicated by Major ADGs, Minor ADGs, and the number of 

hospital admissions) prior to child’s birth has a significant negative effect on children’s school 

readiness. Among the mother’s latent health variables, the number of hospital admissions has the 

strongest effect on a child’s development across all domains. The cognitive and language domain 

is the most affected by the mother's poor health prior to birth, followed by the child’s physical 

health domains. However, the effect of the mother’s health on a child’s school readiness was 

attenuated after adjusting for child family environment factors.  

The results showed that boys are more likely to be developmentally vulnerable on all EDI 

domains than girls, and younger children at the time of EDI assessment are more vulnerable than 

older children. There is also gender heterogeneity in the effect of maternal depression exposure 

on children's school readiness. In all categories of maternal depression timing, the effect of 

depression seemed greater for boys than girls on the emotional skills. Children of unmarried 

mothers are more sensitive to depression exposure during pregnancy and the toddler period. 

Marital status moderates the effect of maternal depression on emotional, physical, and social 

health. However, maternal depression appears to have no effect by marital status on cognitive 

and communication domains. The effect of maternal depression does not depend on the 

education level of the children’s mother across all periods and EDI domains, except for the 

emotional domain during pregnancy and the preschool period.  

Further research that elaborates the overlapping impact of timing and severity of maternal 

depression could be informative in designing the appropriate programs that support children who 

are exposed to the different severity levels of maternal depression. 
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2.10. Appendices 

Appendix A:  Variables Descriptions 

Variable Explanation 

Pregnancy =1 if child exposure to maternal depression during 

pregnancy 

postnatal =1 if child exposure to maternal depression for the first time 

during the postnatal period (from birth to 12 months) 

Toddler  =1 if child exposure t maternal depression for the first time 

during toddler period (12 months – 36 months) 

Preschool  =1 if child exposure to maternal depression for the first time 

during the preschool period (36 months – 60 months) 

Major illness  =1 if a child has a number of Major ADGs greater than the 

90th percentile of the distribution of the number of major 

ADGs from birth to the child’s 5th birthday. 

Minor illness  =1 if a child has a number of Minor ADGs greater than the 

90th percentile of the distribution of the number of minor 

ADGs from birth to the child’s 5th birthday. 

Child hospital admission =1 if the number of hospital admission greater than the 95th 

of the distribution of the number of hospital admission from 

birth to child’s 5th birthday. 

Low Birth Weight  =1 if a child’s birth weight is less than 2500 gm 

Preterm  =1 if the gestation 

5-minutes Apgar =1 if child’s score on the 5minutes APGAR greater than or 

equal 8  

Length of hospital stay =1 if a child stay at the hospital more than 6 days at birth 

Emergency c-section =1 if a child is delivered by emergency c-section 

Mother Major illness  =1 if a mother has a number of Major ADGs greater than the 

90th percentile of the distribution of the number of major 

ADGs through 5 years prior to birth. 

Mother Minor illness  =1 if a mother has a number of Minor ADGs greater than the 

90th percentile of the distribution of the number of minor 

ADGs through 5 years prior to birth. 

Mother hospital admission =1 if a mother has a number of hospital admission greater 

than the 95th percentile of the distribution of the number of 

hospital admission through 5 years prior to birth. 

Child's age (in months) Continuous variable from birth to the time of EDI 



289 

 

assessment 

Child gender  = 1 if child is male 

Breastfeeding initiation =1 if the mother-initiated breastfeeding at birth or mixed 

breastfeeding with artificial milk 

Mother married =1 if a mother is married or in common law 

Mother has less than HS =1 if a mother does not have a high school degree at birth 

Teenage mother =1 if a mother is teenage at birth (less than 19 years) 

Smoking during pregnancy =1 if a mother is smoking during pregnancy 

Neighbourhood-area SES =1 if child family living in favorable socioeconomic  

Urban residence = if child family leaving in Winnipeg or Brandon 

Family size =1 if the child has more than 4 siblings 

Family receive income 

assistance 

=1 if child family receive income assistance 
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Appendix: B 

Variables Description and Database Source 

Variable Variable description Source 
Cognitive & Language 

Development (domain), 

Physical Health (domain), 

Emotional maturity 

(domain), Social 

Competence (domain), 

Communication skills & 

Knowledge (domain) 

Children at kindergarten age can be classified as “not ready”, “ready”, “very ready”, based on the score 

distribution inside each domain. That is, children who score in the bottom 10th percentile cut-off score are 

classified as “not ready” or “vulnerable” for school, based on skills in that domain. In contrast, children 

who score in the top 30th percentile cut-off score are classified as “very ready” for school. Children who 

score between 11th and 69th percentile are classified as “ready” to school. (outcome variables) 

Early Development 

Instrument (EDI) 

Database 

Maternal depression 

(Binary) 

Depressed mothers are identified as follow: (i) at least one hospitalization with any of ICD-9-CM 

diagnosis codes 296.1-296.8, 300.0, 300.2-300.4, 300.7, 309, 311or ICD-10-CA codes F31, F32, F33, 

F34.1, F38.0, F38.1, F40, F41.0-F41.3, F41.8, F41.9, F42, F43.1, F43.2, F43.8, F45.2, F53.0, F93.0; OR 

(ii) at least one hospitalization (any dx code) with ICD-9-CM code 300 or ICD-10-CA codes F32, F34.1, 

F40, F41, F42, F44, F45.0, F45.1, F48, F68.0, F99 AND one or more prescription for antidepressant or 

mode stabilizer. (iii) at least one physician visits (prefix=7) with ICD-9-CM codes 296, 311 (iv) at least 

one physician visits (prefix=7) with ICD-9-CM code 300 AND one or more prescription for 

antidepressant or mode stabilizer; OR (v) at least three physician visits (prefix=7) with ICD-9-CM codes 

300 or 309 (must be 3 of same dx code). Drugs to treat mood and anxiety disorders include (i) 

Antidepressants, ATC code N06A; (ii) Benzodiazepine Derivatives Anxiolytics, ATC code N05BA and 

(iii) Lithium, ATC code N05AN01. (Martens et al., 2004; Fransoo et al., 2009; Martens et al., 2010; 

Chartier et al., 2012). 

Hospital Abstracts 

data, Medical 

Services data and 

DPIN data 

Timing of  first exposure to 

maternal depression 

(categorical) 

This study identifies four sensitive periods in early child’s life which have some developmental 

characteristics that make them independent of other periods. these sensitive periods cover the period from 

pregnancy onset to the child’s kindergarten age as follows: (i) pregnancy period, which includes the nine 

months prior to the child’s date of birth. (ii) postnatal period, which includes the time from the child’s 

date of birth and extends up to the day before the child’s first birthday (birth – 12 months. (iii) Toddler 

period: This period begins from the child’s first birthday and extend up to the extends up to the child’s 

third birthday (12months – 36 months); (v) preschool period: this period begins from the child’s third 

birthday and extends up to the child’s kindergarten age (36months – 60 months). 

Hospital Abstracts 

data, Manitoba 

Health Insurance 

Registry, Medical 

Services data 

Child’s age 

(continuous) 

Age in months (continuous). age in months was calculated using birthdate from the population registry 

and date of assessment from the EDI database and entered as a continuous variable. 

Manitoba Health 

Insurance Registry 

Child’s sex The biological sex of the child was identified using the population registry. Manitoba Health 

Insurance Registry 

Marital status 

(Binary) 

Marital status (married/unmarried) is defined using the Manitoba Health Insurance Registry data and 

supplemented with data from the Families First Screen (Baby First screen available 2000 – 2003; 

Manitoba Health 

Insurance Registry; 
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Families First available between 2003 and 2014; maintained by Healthy Child Manitoba).   Families First 

Screen; Baby First 

Screen 

Neonatal Intensive Care 

Unit (NICU) admission at 

birth (binary). 

NICU  is a binary indicator of whether the child was admitted to an intensive or intermediate care unit 

during their birth hospitalization episode (including transfers) 

hospital abstracts 

database. 

Length of stay at birth 

(Binary). 

It measures the number of days stayed at the hospital at birth. It is calculated as the number of days of 

care from the child’s date of birth to the discharge date. This also is initially meant to serve as a proxy of 

the severity of health at birth.  It is a binary variable. Long birth staying at hospital equals 1 if the number 

of days at hospital at birth is more than 6 days; 0 otherwise. 

hospital abstracts 

database. 

Breastfeeding initiation 

(Binary) 

Breastfeeding variable was created from data in each child's birth hospital record to indicate whether 

breastfeeding was initiated in the hospital at the time of birth. Exclusive breastfeeding and breastfeeding 

mixed with artificial feeding are combined in one category, and exclusive artificial feeding is the other 

category. 

hospital abstracts 

database. 

APGAR score (continuous) Apgar score at 5 minutes after birth (scaled score: 0-10). Five-minute Apgar score, which measures the 

physiological well being of new babies at five minutes after birth. A score of zero, one, or two is given for 

each of five vital signs which include infant’s heart rate, respiration, muscle tone, reflex, and color, and a 

total score less than 8 out of 10 reflect problem (Oreopoulos et al., 2008; Jutte et al., 2010; Roos et al., 

2011). 

hospital abstracts 

database. 

Low Birthweight 

(Binary) 

Birthweight (grams) is a binary variable where low birth weight defined as less than 2500gm hospital abstracts 

database. 

Small for gestational age 

(SGA).    

(Binary) 

Gestational age (maternal self-reported number of weeks since last menstrual period). Small for 

gestational age (SGA), which is identified at or below the 10th percentile in birthweight from an infant 

population of the same sex and gestational age (Kramer et al., 2001; Jutte et al., 2010; Chen et al., 2014) 

hospital abstracts 

database. 

Preterm birth 

(Binary) 

Preterm birth is a dichotomous measure of whether the child was born 'preterm' (before 37 complete 

weeks of gestation) 

hospital abstracts 

database. 

C-Section delivery 

(Binary) 

The child is delivered by emergency Caesarean section (indicator variable: 0/1) hospital abstracts 

database. 

The Aggregated Diagnostic 

Grouping (ADG) 

-Major ADG 

-Minor ADG 

They are dichotomized 

based on the 90th percentile 

of the distribution of  the 

number of ADGs  

The Aggregated Diagnostic Grouping (ADG) variable is used as a measure of a child’s health status from 

birth to the child’s 5th birthday (Child’s major and minor illness in early childhood from birth until age 5 

years. 

Based on the Johns Hopkins ACG® Case-Mix System (computer program), patients are assigned an 

ADG if they have one or more of the ADG’s constituent diagnoses coded on at least one physician claim 

or hospital separation record (Johns Hopkins School of Public Health, 2009). According to MCHP 

(2013), ICD-9 and ICD-10 codes are assigned to one of 32 different ADGs, of which 8 are considered 

Major for children, and 24 are considered Minor. Each year, every child could be assigned to any number 

of ADGs, based on diagnoses attributed to them from physician visits or hospital episodes. For each child, 

the number of major and minor ADGs to which they are assigned each year are counted, and then 

summed over the entire preschool period (birth to 5th birthday).  

 

Hospital abstract, 

physician visits, and 

John Hopkins ACG 

system at MCHP 
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Family size 4+ 

(Binary) 

Family size 4+ children: a dichotomous measure of whether the child's mother had 4 or more children, as 

of the child's 5th birthday. Family size was first measured based on counting the number of children born 

to a mother and/or counting the number of children with the same Manitoba Health Registration Number 

at the same date(s) by matching the mother and baby records. These values were then dichotomized into 

two categories: whether the family had 4 or more children or not. 

Manitoba Health 

Insurance Registry 

Receiving income assistance 

(Binary) 

using the Social Assistance Management Information Network (SAMIN) data; this dataset is maintained 

by Manitoba Jobs and the Economy and has information for individuals starting on April 1, 1995. 

Receiving employment and income assistance (EIA) will be defined as a binary measure; mothers 

receiving at least two consecutive months of EIA in a given time period are identified as receiving EIA. 

Social Assistance 

Management 

Information 

Network (SAMIN) 

data. 

Location of Neighborhood The location of the neighborhood (urban, rural south, rural mid, rural north) at the time of the birth of the 

child will also be included as women in rural neighborhoods (particularly those in the rural north) may be 

more isolated and have less access to social services. In Manitoba, urban neighborhoods include those 

located in Winnipeg and Brandon, the rural south includes neighborhoods in the South Eastman, Central, 

and Assiniboine Regional Health Authorities, neighborhoods in rural mid/north include those in the North 

Eastman, Interlake, and Parkland Regional Health Authorities and neighborhoods in northern Manitoba 

include those in Nor-Man, Churchill, and Burntwood Regional Health Authorities. 

Manitoba Health 

Insurance Registry 

Mother is teenage at birth The mother’s age at the time of childbirth is extracted from the population registry and hospital abstract. 

The mother identifies as a teenage mom if her age at birth is less than 19 years. 

hospital abstracts 

database, and 

Manitoba Health 

Insurance Registry 

Mother has High School at 

Time of Child’s Birth 

(Binary). 

A binary variable of whether the mother graduated high school by the birth of her child.  Enrollment, Marks, 

and Assessments 

data; Families First 

Screen FF; Baby 

First Screen BF 

Substance Use During 

Pregnancy (Binary). 

A binary variable of whether the mother uses alcohol and drug during pregnancy. It includes mothers who 

self-reported consuming alcohol and the use of substances during pregnancy on the BF/FF screening 

form. 

Families First 

Screen FF; Baby 

First Screen BF 

Smoking During Pregnancy 

(Binary) 

A binary variable of whether the mother is Smoking During Pregnancy. This indicator includes women 

who self-reported smoking during pregnancy on the BF/FF Screening Form 

Families First 

Screen FF; Baby 

First Screen BF 

Neighborhood-area 

Socioeconomic status 
A child’s family socioeconomic status will be captured by using the Socioeconomics Factor 

Index II(SEFI-2) at MCHP. The SEFI-2 will be linked to the child’s mother postal code to 

determine the socioeconomic status of the child’s family. 

Canada Census 

(Statistics Canada) 

at MCHP. 
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Chapter 3 

The Impact of Childhood-Onset Type I Diabetes on Educational Attainment 

and Labor Market Outcomes in Early Adulthood 

Abstract 

This study examines the impact of Type I Diabetes Mellitus (TIDM) during childhood on 

educational attainment and labor market outcomes in adulthood using the last ten waves of the 

National Health Interview Survey (NHIS). Individuals are identified as Type I diabetics during 

childhood if they were diagnosed for the first time with diabetes at age less than 15 years and 

have been taking insulin. The logistic regression model is used for the binary outcome variables 

and the Tobit model is used for continuous outcome variables to avoid the selection bias that 

may arise from the zero working hours and earnings of unemployed individuals. The results 

show that individuals who developed Type I diabetes early in life are 7 to 17 percentage points 

less likely to be employed, work fewer hours (3 to 11 hours less per week) and are 5 to 10 

percentage points more likely to receive social welfare assistance than non-diabetic individuals. 

In addition, Type I diabetics experience less educational attainment than non-diabetics. They are 

3 to 7 percentage points more likely to drop out of high school and 5 to 9 percentage points less 

likely to get a university degree.  I also found lower wages for type I diabetic persons. They can 

conservatively expect to lose more than $3,050 annually compared to their peers without Type I 

diabetes. The results show that there is socioeconomic heterogeneity in the impact of Type I 

diabetes on educational attainment and labor market outcomes. Individuals of parents with less 

than high school and who are in a low-income group have the worst educational attainment and 

labor market outcomes in adulthood. The socioeconomic status of the family has a positive 

impact on the long-run consequences of Type I diabetes, mitigating the negative effects of 

diabetes on their children. 
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Chapter 3 

The Impact of Childhood-Onset Type I Diabetes on Educational Attainment 

and Labor Market Outcomes in Early Adulthood 

 

3.1. Introduction 

A growing body of literature in Economics and Medicine argues that childhood health 

has a vital impact on outcomes in adulthood.  Empirical studies show that health and 

socioeconomic status are highly correlated, regardless of how health status is measured (Deaton, 

2003; Gerdtham and Johannesson, 2000; Gerdtham et al., 2004). Moreover, some studies assume 

that the causal relationship between health and socioeconomic status runs in both directions. Kuh 

and Wadsworth (1993) argue that health problems early in life affect the stock of health a 

lifetime, which negatively impacts socioeconomic outcomes such as education and labor market 

outcomes. 

Studies that investigate the impact of childhood health on outcomes in adulthood link 

different measures of early life health to various outcome measures, such as earnings and 

education (Currie, 2009, Almond and Currie, 2011). Measures of early life health include 

birthweight ( Figlio et al., 2013; Almond and Currie,  2011; Black  et al. ,  2007; Behrman  

and Rosenzweig, 2004), overall health status (Hass et al., 2012;  Smith, 2009; Smith, 2007), and 

height (Lundborg et al., 2014; Case and Paxson, 2008). For example, Black et al., 2005 found 

that a 10 percent increase in the birth weight of Norwegian twins was associated with a 1 percent 

increase in total earnings. Similarly, Hass (2006) found that poor childhood health was 

associated with a 22 percent decrease in earnings. Johnson and Schoeni (2007) found that low 
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birth weight children are 5 percent less likely to be employed, have lower earnings by 10 percent 

than the healthy group at age 25, and 15 percent lower earnings at age 35. Currie et al (2010), 

using data from public health insurance records for 50,000 children born in Manitoba, 

Canada, also found a negative effect on school grades and on the probability of being on social 

assistance. There are also studies that assess the impact of different health issues during 

childhood. For instance, Lundborg et al (2014) assess the impact of mental health conditions, 

diabetes, asthma, and injury on labor market outcomes among young adults. They found that 

individuals with mental health conditions earn on average 20% less and diabetes appears to be 

almost as severe as these mental problems. 

A growing literature suggests that early heath is important for success in the labor market 

in adulthood. This relationship investigated by linking various measures of early childhood 

health to various outcomes in adulthood, such as earning and educational attainment (Currie, 

2009, Almond and Currie, 2011). However, the impact of Type I diabetes, as an early health 

shock, on the labor market participation and probability of receiving social assistance is not 

clear. Also, little is known about its impact on educational attainment. Most of the previous 

literature on the socioeconomic consequences of diabetes does not distinguish between Type I 

diabetes (T1DM) and Type II diabetes (T2DM), which are very different in many aspects, 

especially the timing of onset (Fletcher and Richards, 2012; Hass et al., 2011; Brown et al., 

2011; Minor, 2011; Case et al., 2005). 

This study aims to fill this gap by estimating the impact of the health shock of a T1DM 

diagnosis in childhood on socioeconomic status in adulthood, specifically on educational 

attainment and labor market outcomes in early adulthood. This paper contributes to the 

literature on the relationship between early childhood health shock and socioeconomic status 
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(SES) in early adulthood by exploring labor market consequences (such as labor force 

participation, average hours worked per week, earnings, and the probability of receiving social 

assistance) and educational attainment (such as the probability of dropping out of high school, and 

the probability of having a university degree) of early childhood onset Type I diabetes using a 

unique dataset from the National Health Interview Survey (NHIS) that allows for data from more 

than one year to be pooled to increase the sample size for analytic purposes.  

Specifically, the study addresses the following research questions: 

 
▪ What is the impact of having Type I diabetes during childhood on labor force 

participation? 

▪ Are individuals with Type I diabetes more likely to receive social assistance? 

▪ What is the impact on hours worked and earnings among individuals with T1DM who 

participate in the labor force? 

▪ What is the impact of T1DM on the probability of dropping out of high school and having 

a university degree? 

▪ Is there socioeconomic heterogeneity in the impact of Type I diabetes on the labor market 

outcomes and educational attainment? 

 
The remainder of this chapter is organized as follows. Sections 2 and 3 present an 

overview of diabetes, and a review of the relevant economics literature; section 4 introduces the 

dynamic capabilities formation model to show how diabetes can affect adulthood outcomes; 

section 5 describes the data and presents summary statistics for the sample; section 6 provides 

the empirical econometric specification and methodology; sections 7 and 8 present the empirical 

results and conclusion. 

 
 



319 
 

3.2. Diabetes Background 

Diabetes is the seventh leading cause of death in the U.S., and approximately 29.1 

million individuals or 9.3% of the U.S. population have diabetes (American Diabetes 

Association, 2014). In 2011, about 282,000 emergency room visits for adults aged 18 years or 

older listed hypoglycemia as the main diagnosis and diabetes as a secondary diagnosis, and 

about 175,000 emergency room visits were by people of all ages who had a hyperglycemic crisis. 

Type 1 diabetes mellitus (T1DM) is one of the most common chronic health problems in school-

aged children. According to the U.S. Centers for Disease Control and Prevention (CDCP), about 

208,000 people younger than 20 years have been diagnosed with diabetes. During the period 

2008- 2009, an estimated 18,436 people younger than 20 years were newly diagnosed with type 

1 diabetes and 5,089 people with type 2 diabetes (NDSR, 2014). 

Narayan et al (2003) estimated the lifetime risk of any diabetes mellitus diagnosis for an 

individual born in the U.S. in 2000 to be one out of three for males and two out of five for 

females over a lifetime. The incidence rate of T1DM in 2002-2003 peaked in age groups 5-9 

years and 10-14 years. The incidence rates per 100,000 persons by age group are as follows: 0-4 

years, 14.3; 5-9 years, 22.1; 10-14 years 25.9; 15-19 years, 13.1. Although disease onset can occur 

at any age, the peak age for diagnosis is in the mid-teens, between 10 and 14 years (NDSR, 

2014). 

Type I diabetes mellitus (T1DM) also known as “juvenile diabetes” or “insulin-

dependent diabetes” is an autoimmune disorder in which the beta cells that produce the insulin 

hormone in the pancreas are destroyed and not able to produce the insulin to control the amount 

of glucose in the body (Daneman, 2006). People with type I diabetes produce no insulin, so 

glucose cannot get into the body’s cells for use as energy. People with type 1 diabetes must use 
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insulin injections or pump infusions to control their blood glucose levels. The causes of type I 

diabetes are not fully understood, it has not been possible to identify a single underlying cause of 

T1DM, and there is currently no cure (Dahlquist 1998; Dahlquist et al., 1999; Daneman 2006; 

Akerblom et al. 2002). However, the exogenous injected insulin is not able to simulate the 

natural functions of the pancreas in producing insulin. Individuals with type 1 diabetes face 

some fluctuations in the bloodstream glucose level throughout the day depending on their diet, 

physical exercise, amount of insulin injected during the day (Homes et al, 1999). For instance, 

hypoglycemia (low blood glucose) in most cases occurs when there is too much insulin and not 

enough glucose in the body. Warning signs for hypoglycemia include dizziness, weakness, 

lightheadedness, sweaty/clammy skin, irritability, unusual behavior and lack of concentration. In 

contrast, hyperglycemia (high blood glucose) occurs when the body does not have enough insulin 

or cannot use the insulin it does have. Both hypo and hyperglycemia can be dangerous. 

The brain is one of the most metabolically active organs in the body.  It uses 

approximately 20% to 23% of the body’s total energy requirements, despite accounting for only 

2% of the body’s mass (Cunnane et al., 2011; Prins, 2008; Mosconi et al., 2008). Since 90% of 

the brain’s metabolic fuel energy is provided by glucose and cerebral cells can only save 

glucose for few minutes (Prins, 2008), the acute fluctuations in blood glucose (e.g., 

hypoglycemia and hyperglycemia) can have negative physiological, neurological, and cognitive 

outcomes (Mooredian, 1988). For instance, acute hypoglycemia can cause a decrease in 

metabolic activity of the brain (neuroglycopenic manifestations), increasing activity of t h e  

autonomic nervous system (adrenergic response), and hormonal responses. Such dysfunctions 

can cause different physical, social, and psychological problems such as headache, coma, 

seizures, sweating, hunger, nervousness, irritability (Meo et al., 2013; Cheach and Amiel, 2012; 
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James et al, 2002). Also, children with T1DM experience mild to moderate cognitive ability and 

neuropsychological difficulties such as impaired memory, attention, motor skills when compared 

to children without diabetes (Bade-White and Obrzut, 2009; Homes et al., 1999; Kucera and 

Sullivan 2011; Northam et al., 2001; Ryan, 1988). Since academic performance in schools 

depends strongly on many neuropsychological functions and cognitive ability, children with type I 

diabetes may experience problems with their academic performance and educational attainment 

(Desrocher and Rovet, 2004; Meo et al., 2013). Many studies have shown that diabetes in 

children has a significant effect on the neurocognitive function of the brain and consequently 

low academic achievement (Gaudieri et al., 2008; Abozaid, 2014). 

3.3. Literature Review 

There is a growing literature that links early life health to future outcomes. Several 

studies in the U.S., Canada, and Europe show a link between low birth weight and lower 

educational attainment and labor market outcomes, even among siblings or twins. Lawlor et al 

(2006) used Scottish siblings born between1950 and 1956 and found that lower birth weight 

siblings have lower scores on a test of intelligence at age 7. Black et al (2007) used a sample of 

Norwegian twins and found that a 10 percentage point increase in birth weight is associated with 

a one percentage point increase in the likelihood of graduating from high school and a one 

percentage point increase in earnings. Oreopoulos et al. (2005) used data from the province of 

Manitoba and found that children whose weight fell into the range of 1,500 to 2,500 grams are 8 

percentage points less likely to complete grade twelve by age 17 than siblings who weighed over 

3,500 grams. Royer (2005) found that an increase in birth weight by 1,000 grams is associated 

with a gain of 0.16 years of education. Currie and Hyson (1999) used the 1958 British birth cohort 

and found that low birth weight children have lower test scores, educational attainment, wages, 
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and the probability of being employed by age 33.  Case et al (2005) extended the Currie and 

Hyson (1999) study and found that children who developed chronic health conditions during 

early life have lower educational attainment, wages, and the probability of being employed in 

adulthood by age 42. 

 

The impacts of early mental health problems in childhood have been increasingly 

investigated in economics, epidemiology, and psychology. Almost 1 in 5 children in the U.S. 

have some impairment from a mental or behavioral disorder; 11% have significant functional 

impairments; 5% suffer extreme functional impairment. Currie and Madrian (1999) found that 

mental health problems are one of the leading causes of days missed at work. Farmer (1993, 1995) 

used data from the 1958 British birth cohort and found that children who are in the top decile of an 

aggregate behavior problems score at ages 7, 11 and 16 have lower educational attainment, 

earnings, and the probability of being employed at age 23. Gregg and Machin (1998) used the 

same data and found that behavioral problems at age 7 are associated with lower educational 

attainment at age 16, which in turn is associated with poor labor market outcomes at ages 22 and 

23. Kessler et al. (1995) used data from the U.S. National Comorbidity Study and found that 

children who developed early-onset psychiatric problems were less likely to graduate from high 

school or attend college. Miech et al. (1999) used a cohort of New Zealand children and found 

that youths with hyperactivity and conduct disorders have less schooling, while anxiety and 

depression have little impact on schooling levels. Similarly, McLeod and Kaiser (2004), using 

data from the National Longitudinal Survey of Youth (NLSY), found that children who have 

behavior problems at ages 6 to 8 are less likely to graduate from high school or to attend college. 

Health shocks in early life due to wars and other crises can have lasting effects on health 

(Doblhammer, 2004). For instance, Almond (2006) examines the direct impact of the influenza 
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epidemic on education and labor market outcomes of individuals affected by the disease in utero. 

He found that children of infected mothers were 15% less likely to have a high school degree, 

are more likely to receive social assistance, and the wages of affected men were 5 to 9 

percentage point less than unaffected ones. Salm and Schunk (2011) used a sample of German 

children to examine the impact of childhood health on cognitive and verbal development at age 

six. They found that mental health problems capture a big portion of the variation in cognitive 

and verbal test scores. 

The health economics literature on diabetes is based on two streams of research. The first 

focuses on estimating the direct medical cost of diabetes at both the macro (i.e., total expenditure) 

and the micro-level (i.e., health care providers and employers) (see: Daggan et al., 2006; Gilmer 

et al., 2005; Olivia et al., 2004; Brown et al., 1999; Selby et al., 1997). The second stream 

focuses on estimating the socioeconomic consequences of diabetes on individuals who 

experience diabetes. 

Some studies find that individuals who were diagnosed with Type I diabetes during their 

childhood are less likely to be employed than non-diabetic individuals (Songer et al., 1989; 

Masato et al., 1993; Ingberg et al., 1996; Matsushimal et al 1993). For instance, Ingberg et al 

(1996) compared young adults who experience a childhood-onset type I diabetes to a control 

group of healthy young adults with matching characteristics on sex and age. They found that the 

probability of employment was lower among people with diabetes (71% versus 85%, p<0.05). 

They also found that diabetic individuals are more likely to depend on social welfare benefits 

than individuals without diabetes(15% versus 3%, p<0.01). 

To explain the low rate of employability of individuals with diabetes, Songer et al (1989) 

used data of children with insulin-dependent diabetes mellitus diagnosed during the period 1950 
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– 1964 from the patient registry of the Children’s Hospital of Pittsburgh. Using a case-control 

design they found that children diagnosed at age less than 17 years with insulin-dependent 

diabetes were more likely to report job-refusal than their non-diabetic siblings (56% versus 42%, 

p<0.02). Moreover, individuals who told the job interviewers in advance about their diabetes 

were more likely to report job refusal than their siblings (64% versus 42%, p<0.005) whereas 

respondents who did not tell the job interviewers about their diabetes experienced a job refusal 

rate similar to their siblings (44% versus 41%). They also found that insulin-dependent diabetes 

respondents are more likely to report a work disability relative to their siblings (32.4% versus 

4.6%, p<0.001). Respondents with insulin-dependent diabetes report that diabetic complication is 

the main factor behind work disability and the most common disabling conditions were kidney 

disorder, blindness, severe retinopathy, heart disorder, and eye disorders. Along the same lines, 

Matsushimal et al. (1993) conducted a case-control study on diabetic patients in Japan whose age 

at onset was 19.5 years. Using sex and age-matched siblings as a control group, they found that 

patients with diabetes are more likely to be refused a job in their lifetime than their sibling 

controls (20% versus 0%). Moreover, they found that the majority of diabetic patients who were 

refused a job told the interviewers in advance about their diabetes. 

Steen et al. (2010)  estimated the long term detrimental consequence of Type I diabetes on 

annual earnings, using the national Diabetes Incidence Study in Sweden (DISS) database, which 

is a register of persons with diabetes onset between the ages 14-34 year since 1983. They 

compared the progression of annual earnings of all persons registered with Type I diabetes onset 

during 1983-2005 (n=3650 cases) with a control group (n=14629). They found that there is no 

difference in median earnings between individuals before their diabetes onset and the control 

group. In contrast, the annual earnings of individuals after the onset of diabetes gradually 
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decreased below that of the control group. That is, their annual earnings were less than the 

control group in each year from 1995-2005. Moreover, the onset of more than 10 years ago was 

associated with a decline in annual earnings by 4.2% for men and 8.1% for women. 

 

Overall, this growing literature establishes that early-life health has a vital impact on 

outcomes in adulthood. However, prior research has not yet investigated the effect of specific 

diagnoses early in life, such as Type I diabetes in childhood, on labor market outcomes and 

educational attainment in adulthood. This paper contributes to this literature by estimating the 

effect of type I diabetes in childhood on labor market outcomes and educational attainment, using 

a unique data set from NHIS. 

3.4. Theoretical Framework 

Literature has shown that health shock during childhood can have lasting effects on 

adulthood health and labor market outcomes. Theoretically, the dynamic of the capabilities 

formation model can be used to explain the impact of an early health shock on early adulthood 

and later periods through its impact on cognitive and non-cognitive abilities, and stock of mental 

and physical health. According to this model, developed by Heckman (2007), individuals are 

born with heterogeneous endowments of capabilities (skills & abilities) 

Ω𝑖 = (𝑤1
𝑐,   𝑤1

𝑁 ,   𝑤1
𝐻) 

where 𝑤1
𝑐

 is a vector of cognitive abilities at birth (e.g., fluid intelligence, which reflects the rate at 

which people learn and is measured by IQ; crystallized intelligence, which reflects acquired 

knowledge and is captured by achievements test (Kautz et al., 2014), 𝑤1
𝑁

 is a vector of non-cognitive 

abilities at birth (e.g., motivation, perseverance, time preference, risk aversion, self-control, 

preference for leisure, patience, self-esteem, neuroticism), and 𝑤1
𝐻

 is a vector of mental and physical 
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health stock at birth. Assuming the child lives multiple periods 𝑡 ∈ {1, ⋯ ⋯ , 𝑇}, the accumulated 

stock of a child’s abilities at age (𝑡) is 

Ω𝑡 = 𝑓𝑡  (∑𝑤𝑡
𝐶

𝑡

,   ∑𝑤𝑡
𝑁

𝑡

,   ∑𝑤𝑡
𝐻

𝑡

) 

The technology of skill (𝑘) formation at any period (𝑡) of a child’s lifetime can be given by 

Ω𝑘,𝑡+1 = 𝑓𝑘,𝑡 (Ω𝑘,𝑡,   𝜃𝑝, 𝐼𝑘,𝑡) 

where 𝜃𝑝  = (𝜃𝑝
𝐶 , 𝜃𝑝

𝑁 , 𝜃𝑝
𝐻) denotes parental capabilities (e.g., education, income, genes, IQ, 

psychological factors) and 𝐼𝑘,𝑡  is parental and government investment in child skills at a period 

(𝑡). The function 𝑓𝑘,𝑡(∙) is increasing in its argument and is a twice continuously differentiable 

function. Capability production exhibits self-productivity, where skill attainment at one stage in a 

child’s life raises skill attainment at later stages in the life cycle and it is also Dynamic 

Complementarity, where skills produced at one stage increase productivity of investment in 

subsequent stages in a child’s life cycle (early investment increases the productivity of later 

investment). In other words, skills beget skills and abilities beget abilities. By recursive backward 

substitution for Ω𝑡, Ω𝑡−1, ⋯ ⋯ in the skill formation function, the stock of a child’s capability at the 

period (𝑡 + 1) can be expressed as a function of all past investments during the past period, 

Ω𝑡+1 = 𝑔𝑡(Ω1,   𝜃𝑝,   I1 ,   ⋯⋯,   𝐼𝑡) 

Consequently, an adult’s stock of capabilities (H) at the period (𝑇 + 1) can be expressed as a 

function of the initial endowment of capabilities, parental endowment of capabilities, and all past 

investments in capabilities during childhood, 

H𝑇+1 = 𝑚𝑇+1(Ω1,   𝜃𝑝,   I1 ,   ⋯⋯,   𝐼𝑡) 

Adult’s outcome, 𝑗, 𝑎𝑡 𝑝𝑒𝑟𝑖𝑜𝑑 (𝑇 + 1) is based on the accumulated skills and abilities during 

her/his childhood period, 
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𝑌𝑗,𝑇+1 = 𝑛𝑗(𝐻𝑇+1),                      𝐽 ∈ {1,⋯⋯ , 𝐽} 

𝑌𝑗,𝑇+1 = 𝜆𝑗

(

 
 
   ∑𝜔𝑡

𝐶

𝑇

𝑡=1

,   ∑𝜔𝑡
𝑁 ,   ∑𝜔𝑡

𝐻

𝑇

𝑡=1

𝑇

𝑡=1⏟                
Ω𝑗,𝑇+1

,   𝑒𝑗,𝑇+1

)

 
 

 

 

where (𝜆 𝑗) is a multiplier that can take any positive value, and (𝑒𝑗,𝑇+1) is the level of the adult’s 

effort at the period (𝑇 + 1). These abilities are used with different weights and importance to 

explain the differences in labor market outcomes: employment probability, the difference in 

income, worked hours, days missed.  

It is assumed that there are two stages of childhood development, 𝑠 ∈ {1,2}, followed by 

adulthood working lifetime. Let 𝜀𝑡 denote a shock during early childhood (Type I diabetes), 

which can affect the accumulation of capabilities during the rest of the lifetime. Then, the 

technology of producing capabilities at stage s is as follows: 

Ω𝑘,𝑡+1,𝑠 = 𝑓𝑘,𝑠(Ω𝑡,𝑠,   𝐼𝑘,𝑡,𝑠,   𝜃𝑝,   𝜀𝑘,𝑡), 

For 𝑘∈{𝐶,𝑁}, 𝑡∈{1,2, ⋯⋯, 𝑇}, and 𝑠∈{1,2}. Parental investment decisions in every period of 

childhood are now endogenous in the model and affected by the health shock (Type I diabetes) at 

age (𝑡), 

I𝑘,𝑡,𝑠 = 𝑛𝑘,𝑠(Ω𝑘,𝑡,𝑠,   𝜃𝑝,   𝜀𝑘,𝑡). 

When a child is first diagnosed with Type I diabetes at any time 𝑡 ∈ {1,⋯⋯,𝑇}  in this 

two-stage model, her/his skills and abilities can be affected in the next period 𝑠2, and the final 

effect on the accumulated capabilities in adulthood will depend on two effects: 

 
𝑑Ω𝑘,𝑠2
𝑑𝜀𝑠1

= 
𝜕Ω𝑠2
𝜕𝜀𝑠1⏟

𝑀𝑒𝑑𝑖𝑐𝑎𝑙 𝑒𝑓𝑓𝑒𝑐𝑡

+ 
𝜕Ω𝑠2
𝜕𝐼𝑠2

  
𝜕𝐼𝑠2
𝜕𝜀𝑠1⏟      

𝑝𝑎𝑟𝑒𝑛𝑡𝑎𝑙 𝑖𝑛𝑣𝑒𝑠𝑡𝑚𝑒𝑛𝑡 𝑒𝑓𝑓𝑒𝑐𝑡
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The first term of the right-hand side of the equation captures the biological (medical) effect of 

a Type I diabetes shock at the early life and is expected to be negative (i.e., reduce the 

capabilities of the child). The second term captures the effect of parental investment responses to 

the child’s health shock in the first period when the child is diagnosed with Type I diabetes. The 

final effect on the child’s capabilities and hence early adulthood labor market outcomes and 

educational attainment will depend on the net effect of biological and parental investments. 

3.5. Data and Variables 

This study uses the last ten waves (2004 – 2014) of the National Health Interview Survey 

(NHIS), which is conducted by the National Center for Health Statistics (NCHS) in the U.S. 

since 1957. The survey includes approximately 35,000 households containing about 87,500 

persons. There are two sample restrictions for this study. First, the sample includes only 

individuals who are between 20 and 45 years, so that the impact of type I diabetes on labor 

market outcomes in early adulthood can be estimated. Second, the sample includes only 

individuals who are diagnosed with Type I diabetes during early childhood and excludes any 

individual who experiences diabetes during any point in time in adulthood. The final complete 

sample consists of 240,980 individuals with full information for the study variables. 

Although NHIS is not a panel data that follows individuals over their life course and does 

not distinguish between Type I diabetes and Type II diabetes, it is one of the few surveys that 

includes specific questions about diabetes that can be used to identify Type I and type II. 

Specifically, this study uses three questions from the survey that cover different dimensions of the 

timing of diabetes: “Have you EVER been told by a doctor or health professional that you have 

diabetes or sugar diabetes?”, “How old were you when a doctor FIRST told you that you had 

diabetes or sugar diabetes?”, “Are you NOW taking insulin?”. One of the most important 
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distinctions between Type I and Type II diabetes is the timing of the diagnosis. Type I diabetes, 

often referred to as juvenile or insulin-dependent diabetes, is diagnosed early in childhood. 

Therefore, for this study, individuals with type 1 diabetes are captured by a dummy variable 

(Diabetes) that takes the value “1” if an individual was diagnosed with diabetes before age 15 

and he/she is taking insulin at the time of onset. 

3.5.1. Outcome Variables 

The individual’s employment status is captured by a dummy variable (employed) that 

takes the value “1” if the respondent is working for pay and “0” if not working. “Total annual 

earnings” is total earnings from employment during the last year, which is measured on a 

discrete scale ranging from zero to eleven (Minor, 2011). Individuals who choose not to 

participate in the labor market are assigned “0”, and the values from 1 to 11 are used as 

continuous variables for individuals who choose to participate in the labor market. On this scale, 

a value of “1” means earnings range from 1$ to $4999, and each successive value captures a 

$5,000 increment in the level of earnings up to level “5”, then $10,000 increments for levels “6” 

to “10”, and level 11 captures all with income above $75,000. “Worked Hours” are the average 

hours worked per week during the last year. “receiving social assistance” is a dummy variable 

that takes the value “1” if the respondent receives social assistance and “0” if not. Educational 

attainment is measured by two binary outcome measures. “dropping out of high school” which 

takes the value “1” if the respondent reported completing 9 to 12 years of schooling but had no 

credentials, or did not have a high school degree, and “0” otherwise. “university degree” which 

takes value “1” if the respondent has completed a university degree and “0” otherwise. 
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3.5.2. Control Variables 

Control variables were added to capture heterogeneity effects, e.g. education, age, an 

individual’s family income, marital status, and gender. Marital status is captured by a dummy 

variable which equals “1” if the individual is married or in a common-law relationship and “0” 

otherwise. The race has four categories: white (reference group), black, Asian, and others. 

Respondent’s mother or father’s educational attainment has four levels: less than high school 

(reference category), high school, some post-secondary degree (i.e., college or any certificate), 

and university degree. An individual’s family income level is divided into three levels: low 

income (reference category), middle income, and high income. An individual’s weight is 

captured by one of four levels: healthy weight (reference group), underweight, overweight, and 

obese. A complete list of other covariates, which include comorbidities and family health, are 

shown in Table 3.1. 

Table 3.1: Summary Statistics and Variables Description  

 Diabetic  Non-diabetic  

 Mean St Dev Mean St.Dev 

 (1) (2) (3) (4) 

Employed 0.7257 0.4472 0.841 0.366 

On Social Assistance 0.1416 0.3494 0.038 0.191 

Hours worked per week 27.153 21.589 36.703 16.231 

Earnings 6.39 3.446 7.414 3.309 

Full time work 0.114 0.323 0.255 0.436 

Dropout out of high school 0.169 0.375 0.096 0.294 

Has a university degree 0.195 0.396 0.315 0.464 

Age (in years) 31.806 7.463 32.552 7.467 

Female 0.565 0.497 0.52 0.5 

Married 0.383 0.487 0.601 0.49 

White 0.748 0.435 0.74 0.439 

Black 0.159 0.366 0.142 0.349 

Asian 0.028 0.167 0.081 0.273 

Others races 0.065 0.247 0.037 0.19 
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Low-income family 0.529 0.501 0.314 0.464 

Middle income family 0.289 0.455 0.3 0.458 

High income family 0.174 0.38 0.366 0.482 

Mother has no high school 0.202 0.402 0.171 0.377 

Mother has a high school 0.206 0.405 0.217 0.412 

Mother has some post secondary  0.367 0.483 0.326 0.469 

Mother has a university degree 0.226 0.419 0.286 0.452 

Functional limitation 0.403 0.492 0.079 0.27 

Underweight 0.020 0.141 0.019 0.136 

Healthy weight 0.270 0.445 0.368 0.482 

Overweight 0.331 0.471 0.311 0.463 

Obesity 0.379 0.486 0.302 0.459 

Live with both parents 0.060 0.239 0.115 0.319 

ADHD during childhood 0.085 0.279 0.006 0.075 

Hypertension in early childhood 0.379 0.486 0.132 0.339 

Cholesterol 0.278 0.449 0.109 0.312 

Asthma in early childhood 0.024 0.154 0.003 0.054 

Coronary Heart Diesese 0.020 0.141 0.005 0.073 

Mother has Diabetes 0.367 0.483 0.005 0.068 

Father has Diabetes 0.254 0.436 0.003 0.054 

Work at private sector 0.815 0.389 0.802 0.398 

Self-employee 0.050 0.218 0.057 0.231 

Work at public sector 0.131 0.338 0.138 0.345 

Work at family business 0.005 0.067 0.003 0.052 

Live in Northeast region 0.141 0.349 0.155 0.362 

Live in Midwest region 0.226 0.419 0.193 0.395 

Live in South region 0.359 0.481 0.353 0.478 

Live in West region 0.274 0.447 0.299 0.458 

Age_group0 (20-25) 0.245 0.431 0.192 0.394 

Age_group1 (26-30) 0.224 0.418 0.199 0.399 

Age_group2 (31-35) 0.198 0.4 0.195 0.396 

Age_group3 (36-40) 0.122 0.328 0.184 0.388 
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Table 3.1 reports the summary statistics for the working sample. Columns 3 and 4 show 

the mean and standard deviation for the treatment group (respondents with type I diabetes) and 

columns 5 and 6 show the mean and standard deviation of the control group  (respondents 

without diabetes).  Comparing the two groups, parents’ diabetic history is significantly different 

between the treatment and control groups. About 37% of diabetic respondents report that their 

mothers have been diagnosed with diabetes, compared to less than 1% of non-diabetics. In 

addition, almost 25% of diabetic respondents report that their fathers have been diagnosed with 

diabetes compared to  0.3% of non-diabetics. This may reflect the effect of genetic factors. 

Labour market outcomes among the type I diabetes population are different from the 

non-diabetic group. Around 72% of type I diabetes respondents have been employed during the 

last year, while almost 84% of non-diabetics have a job. This reflects lower labor force 

participation for people with Type I diabetes. Non-diabetics who are working reported working 

an average of 36 hours per week while type I diabetics reported 27 hours. Around 14 percent of 

type I diabetics report that they are on social assistance while around 4 percent of the non-

diabetic control group are on social assistance. 

The average annual earnings of non-diabetics are $37,000 compared to $34,000 for 

diabetics. On average, this would imply that individuals who develop Type I diabetes early in 

life can expect to lose more than $135,000 during their working lifetime. Individuals with type 1 

diabetes report lower educational outcomes compared to non-diabetics. Almost 17% of 

individuals with type 1 diabetes do not complete their high school degree while 10% of non-

diabetics drop out of high school. In addition, 19% of diabetics have a  university degree 

compared with 31% of non- diabetics. Finally, the results show that 40% of individuals who 
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experienced Type I diabetes during childhood have a functional limitation compared with almost 

8% for non-diabetics. 

3.6. Empirical Methodology 

The goal of this study is to estimate the impact of a Type I diabetes diagnosis during early 

childhood on the educational attainment and various labor market outcomes in early adulthood. 

The baseline model controls for basic demographic variables, which include age, sex, marital 

status, race, and region, and estimates the impact of type 1 diabetes on labor market outcomes 

and educational attainment. Different sets of covariates will subsequently be added to the 

baseline model to measure the accumulating effect of each (Fletcher and Richards, 2012). Three 

sets of control variables are used: Family socioeconomic background controls is an indicator of 

family socioeconomic status that includes family income, mother’s and father’s education, and 

whether the child is born into a family with both parents present; Comorbidities controls are 

indicators of child health, specifically the presence of certain chronic diseases during early 

childhood such as Attention Deficit Hypertension Disorder (ADHD), depression, cholesterol, 

obesity, asthma, and functional limitation. Family health controls are indicators of family 

health status, such as whether the mother and/or father have diabetes. I use two econometric 

models to estimate the effect of Type I diabetes on labor market outcomes and educational 

attainment. I use the logistic regression model for binary outcome variables and the Tobit model 

for continuous outcome variables.  

A logistic regression model is used to empirically estimate the impact of Type I diabetes 

on the probability of being employed, the probability of receiving social assistance, the 

probability of dropping out of high school, and the probability of having a university degree. The 

conditional probability of 𝑌 = 1 is specified as 
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𝑃𝑟(𝑌𝑖 = 1 |𝑋𝑖)  ≡  𝜋(𝑋𝑖) =  
𝑒𝛽0+ ∑𝛽𝑋

1 + 𝑒𝛽0+ ∑𝛽𝑋
       (1) 

and log transformation gives the following model 

𝑙𝑛 (
𝜋(𝑥)

1 − 𝜋(𝑥)
) =  𝛽0 + ∑𝛽𝑖 𝑋    (2) 

𝑔(𝑥)𝑖 = 𝛼0 + 𝛼1𝐷𝑖𝑎𝑏𝑒𝑡𝑒𝑠𝑖 + 𝛼2𝑍𝑖 + 𝛼3𝑋𝑖 + 𝛼4𝐺𝑖 + 𝜀𝑖      (3) 
 

where the dependent variable 𝑔(𝑥)𝑖 (either labor market outcomes or educational attainment in 

adulthood) for the individual (𝑖) is a function of time-invariant 𝐷𝑖𝑎𝑏𝑒𝑡𝑒𝑠𝑖 and other covariates. 

Labor market outcomes include the probability of being employed and the probability of 

receiving social welfare. Educational attainment is measured by the probability of dropping out 

of high school, and the probability of having a university degree. 𝐷𝑖𝑎𝑏𝑒𝑡𝑒𝑠𝑖 is a dummy variable 

that takes value “1” if respondent 𝑖 has type I diabetes and “0” otherwise. 𝑍𝑖 is a vector of 

controls. 𝑋𝑖 is a vector of individual characteristics such as age, age squared, gender, marital 

status, region, and race. 𝐺𝑖 is a vector of dummy variables that represent the age categories: 20-

25 (reference category), 26-30, 31-35, 36-40, 41-45. 

Estimating the impact of type I diabetes on other labor market outcomes, such as working 

hours and earnings, will include only the individuals who participate in the labor market, which 

means that working hours and earnings are censored variables. Hence to avoid selection bias, a 

Tobit model is used to estimate the impact of type I diabetes on working hours and earnings: 

 

𝑦𝑖
∗ = 𝛽0 + 𝛽1𝑇𝑦𝑝𝑒𝐼𝑖 + 𝛽2𝑍𝑖 + 𝛽3𝑋𝑖 + 𝛽4𝐺𝑖 + 𝜀𝑖     (4) 

 

𝑦𝑖 = {
𝑦𝑖
∗       𝑖𝑓 𝑦𝑖

∗  > 0

0         𝑖𝑓 𝑦𝑖
∗ ≤ 0

 

where 𝑦𝑖
∗ 𝑎𝑛𝑑 𝑦𝑖 are latent and observed, respectively, working hours and earnings. Maximum 

likelihood estimation is used to estimate the Tobit model, and the likelihood function consists of 
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two parts: the first part captures censored working hours and earnings observations and the 

second part captures the linear uncensored property of observed working hours and earnings. 

Hence, the likelihood function is given by 

𝑳 =  ∏[𝟏 −  𝚽(
𝑿𝒊
′𝜷

𝝈
)]∏

𝟏

𝝈
𝒚𝒊>𝟎𝒚𝒊=𝟎

𝝓(
𝒚𝒊−𝑿𝒊′𝜷 

𝝈
)     (𝟓) 

 
Where Φ(∙)  is the cumulative distribution function (CDF) of the standard normal distribution, 

and 𝜙(∙) is the corresponding density function (pdf). 

3.7. Estimated results 

3.7.1. Labor force participation 

Table 3.2 reports the odds ratio of the impact of a Type I diabetes diagnosis during early 

life on the probability of being employed during early adulthood. When controlling for basic 

demographic covariates, we found that individuals who experience early onset Type I diabetes 

are less likely to be employed relative to non-diabetics when they are adults. The odds of being 

employed are 60% lower for individuals who experienced type I diabetes than non-diabetics. 

Moreover, the odds ratio of diabetes increased from 0.40 to 0.47 after controlling for family 

socioeconomic status and to 0.63 and 0.74 after controlling for early comorbidities and family 

health during childhood, respectively. The increase in the odds ratio of diabetes by almost 85 

percent, from 0.40 to 0.74, after adding family socioeconomic status, comorbidities, and family 

health status to the baseline model reflects the significant importance of these factors during early 

childhood on the likelihood of participating in the labor market in adulthood. For instance, 

controlling for family socioeconomic status, we can see that children who were born and raised 

in middle- and high-income families are 3 and 4 times more likely to be employed relative to those in a 

low-income family.  
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Table 3.2: The Odds Ration of Impact of Type I Diabetes on Employment in Adulthood 

 Model (1) Model (2) Model (3) Model (4) 

Type I diabetes 0.409*** (0.037) 0.473*** (0.065)) 0.630*** (0.090) 0.745** (0.108)) 

Age 1.134*** (0.003) 1.094*** (0.005) 1.117*** (0.005) - - 

Age-squared 0.998*** (0.0001)) 0.998*** (0.001) 0.998*** (0.001) - - 

Female 0.647*** (0.010) 0.651*** (0.015) 0.689*** (0.017) 0.672*** (0.017) 

Married 1.112*** (0.017) 0.652*** (0.017) 0.620*** (0.017) 0.626*** (0.017) 

White (reference group) 

Black 0.741*** (0.016) 0.930*** (0.031) 0.908*** (0.031) 0.921*** (0.032) 

Asian 1.161*** (0.041) 1.115** (0.063) 1.031 (0.060) 1.046 (0.061) 

Others 0.637*** (0.026) 0.786*** (0.049) 0.844*** (0.054) 0.847*** (0.055) 

(West region) reference group)      

Northeast 1.195*** (0.028) 1.051 (0.038) 1.080** (0.040) 1.076** (0.040) 

Midwest 1.210*** (0.027) 1.214*** (0.041) 1.273*** (0.044) 1.265*** (0.044) 

South 0.957*** (0.019) 0.933*** (0.028) 0.959 (0.029) 0.955 (0.029) 

Self employed 0.422*** (0.064) 0.346*** (0.083) 0.318*** (0.077) 0.314 (0.077) 

Gov emp 0.221*** (0.033) 0.128*** (0.030) 0.122*** (0.029) 0.119 (0.029) 

Private emp 0.188*** (0.028) 0.152*** (0.036) 0.142*** (0.034) 0.139*** (0.034) 

Mother has less than high school (reference group) 

High school   1.397*** (0.049) 1.350*** (0.049) 1.318*** (0.048) 

Some post-secondary 1.421*** (0.048) 1.402*** (0.049) 1.370*** (0.048) 

University degree  1.820*** (0.069) 1.672*** (0.066) 1.668*** (0.066) 

Low-income family (reference group) 

Middle income   3.112*** (0.091) 2.836*** (0.086) 2.866*** (0.087) 

High income   4.860*** (0.168) 4.248*** (0.151) 4.213*** (0.150) 

Live with both parents  1.313*** (0.028) 1.303*** (0.028) 1.340*** (0.029) 

Health weight - BMI (reference group) 

Underweight     0.741*** (0.068) 0.724*** (0.067) 

Overweight     1.304*** (0.039) 1.322*** (0.040) 

Obesity     1.269*** (0.039) 1.314*** (0.041) 

ADHD     0.429*** (0.029) 0.433*** (0.030) 

Asthma     0.475*** (0.035) 0.470*** (0.035) 

Coronary heart     0.704*** (0.038) 0.730*** (0.040) 

Cholesterol     0.836*** (0.023) 0.843*** (0.023) 

Hypertension     0.799*** (0.022) 0.810*** (0.022) 

Function limitation    0.459*** (0.012) 0.460*** (0.012) 

Mother diabetes       0.830*** (0.048) 

Father diabetes       0.626*** (0.037) 

Age group 20 - 25 (reference group)       

age_group1 (26-30)      0.631*** (0.035) 

age_group2 (31-35)     0.590*** (0.031) 

age_group3 (36-40)      0.635*** (0.033) 

age_group4 (41-45)      0.756*** (0.038) 

Notes: Standard errors in parentheses. **, **, *** indicate significance level at 10%, 5%, 1% respectively 
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Also, children whose mothers achieved post-secondary education or a university degree 

are almost respectively 1.3 and 1.6 times more likely to be employed, relative to children of the non-

educated mother. Therefore, the socioeconomic status of the family has a positive impact on the 

likelihood of being employed and moderates the negative effect of diabetes, apparent from the 

increase in the value of the odds ratio. When controlling for comorbidities during early 

childhood, the results show that individuals who experienced Attention Deficit Hypertension 

Disorder (ADHD) during early childhood are less likely to be employed than those without 

ADHD. The odds of being employed are 57% lower for an individual with ADHD during 

childhood than those who did not experience ADHD. This result is consistent with other 

studies, which found that the impact of ADHD on labor market outcomes depends on the timing of 

the disorder (Fletcher, 2014 & Currie et al., 2010).  Individuals who developed asthma during 

early childhood are 53 percentage points less likely to be employed as adults. 

The estimated odds ratios of model 3 assume implicitly that the effect of TIDM in early 

life on labor market participation in adulthood is constant across age groups, family 

socioeconomic status, and gender. However, the impact of type I diabetes could be more or less 

pronounced depending on the child’s family’s educational attainment and income, age, and 

gender of the individuals with diabetes, and these could be important for policy implications to 

mitigate the negative impacts of diabetes on labor market participation. Therefore, to capture this 

heterogeneity, interaction terms are included. Estimated odds ratios are reported in table 3.3, and 

the first column shows the odds ratio of the interaction terms. 
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Table 3.3: Odds Ratios of the Heterogeneity effect of Type I diabetes 

Comparisons 
Labor market 

participation 

                                                                                                                                Odds Ratio 

Diabetic group 

(Females versus Males) 
0.694*** 

Female group 

(diabetics versus non-diabetics) 
0.484*** 

Male group 

(diabetics versus non-diabetics) 
0.569*** 

Diabetic group 

(Middle income versus Low income) 
7.968*** 

Diabetic group 

(High income versus Low income) 
10.318*** 

Low income group 

(diabetics versus non-diabetics) 
0.320*** 

Middle income group 

(diabetics versus non-diabetics) 
0.556*** 

High-income group 

(diabetics versus non-diabetics) 
1.035*** 

Mother dropped out of high school 

(diabetics versus no-diabetics) 
0.230*** 

Mother has a high school degree 

(diabetics versus non-diabetics) 
0.356*** 

mother has some post-secondary certificates 

(diabetics versus non-diabetics) 
0.622*** 

mother has a university degree 

(diabetics versus non-diabetics) 
0.768*** 

Diabetic groups 

(high school degree versus have no high school degree) 
1.860*** 

Diabetic group 

(some post-secondary degrees versus have no high school degree) 
3.993*** 

diabetic group 

(university degree versus have no high school) 
6.757*** 

mother has no high school degree and family in a low-income group 

(diabetic versus nondiabetics) 
0.147*** 

mother has some post-secondary certificates and family in the middle-

income group 

(diabetic versus nondiabetics) 

0.550*** 

mother has a university degree and family in the high-income group 

(diabetics versus nondiabetics) 
0.665*** 

Notes: *, **, *** indicate significance level at 10%, 5%, 1% respectively. 
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Type I diabetic females are less likely to be employed relative to non-diabetic females, 

while diabetic males less likely to be employed relative to non-diabetic males. Odds of being 

employed are 52% lower for type I diabetic females than non-diabetic females, and 44% lower 

for diabetic males than non-diabetic males. In the diabetic subgroup, diabetic females are less 

likely to be employed relative to diabetic males. 

The results also show that there is heterogeneity with respect to parent’s educational 

attainment, i.e. individuals with Type I diabetes born to and raised by parents with less than high 

school are less likely to be employed relative to non-diabetic individuals in the same group. 

Odds of being employed are 77% lower for individuals whose parents have less than a high 

school degree than non-diabetic individuals. Odds of being employed for diabetic individuals 

of parents with high school, some post-secondary degrees (i.e college or certificate), or a 

university degree are, respectively, 65%, 48% and 24% lower relative to non-diabetics in each 

group. Within the subgroup of individuals with diabetes, those of parents with high school 

degrees are 2 times more likely to be employed relative to the diabetic individual whose parents 

have less than high school and diabetic individuals whose parents have a post-secondary degree 

or a university degree are 4 and 7 times more likely to be employed relative to diabetic 

individuals whose parents have less than high school. 

Controlling for heterogeneity across family income, individuals from low income and 

middle-income families are less likely to be employed relative to non- diabetics in those same 

income groups. In contrast, individuals from high-income families are more likely to be 

employed relative to nondiabetic individuals, but the result is not significant. Within the diabetes 

subgroup, children with early-onset diabetes in middle and high-income families are 7 and 10 

times more likely to be employed than Type I diabetics who grew up in low-income families. 
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Table 3.4: Average Marginal Effect of Type I Diabetes on Labor Market Participation and social 

assistance. 

 

Model 

 (1) 

Model  

(2) 

Model  

(3) 

Model  

(4) 

Employed -0.1740*** -0.1383*** -0.0981*** -0.0664*** 

 
(0.01273) (0.01231) (0.0123) (0.0134) 

On Social Assistance 0.1020*** 0.093*** 0.06624*** 0.0488*** 

 
(0.0060) (0.006) (0.0061) (0.0066) 

Demographic  YES YES YES YES 

Family socioeconomic NO YES YES YES 

Childhood health NO NO YES YES 

Family health & age group  NO NO NO YES 

Notes: each model is adjusted for some variables that include (i) age, gender, race, marital status, geographic area; 

(ii) living with two parents, mother and father education, and family income; (iii) obesity, cholesterol, hypertension, 

depression, asthma, ADHD; and (v) father and mother diabetes, and age groups. the Standard errors are in 

parentheses. *, **, *** indicate significance level at 10%, 5%, 1% respectively.  
 

Table 3.4 shows the average marginal effect of Type I diabetes on the probability of 

being employed and on the probability of receiving income assistance. In the unadjusted model 

(1), individuals who experience type I diabetes in childhood are almost 17 percentage points less 

likely to be employed, compared with those who did not experience diabetes during early 

childhood. After controlling for family socioeconomic status, the effect of type I diabetes on the 

likelihood of being employed is attenuated. Individuals with type I diabetes are 13 percentage 

points less likely to be employed. After further controlling for childhood health and family 

health, individuals who developed type I diabetes are almost 7 percentage points less likely to be 

employed than non-diabetic individuals. 

In summary, individuals who are diagnosed with Type I diabetes during childhood are less 

likely to be employed in adulthood and there is heterogeneity in gender and family 

socioeconomic status. Educational achievement of parents and their income group have a 

significant mitigating role. 
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3.7. 2. Social assistance 

Table 3.5 results show that Type I diabetes in early childhood has a significant effect on 

receiving social assistance in early adulthood. Controlling for basic demographic variables, type 

I diabetic individuals are 3 times more likely to receive social assistance in early adulthood 

relative to non-diabetics. The odds ratio of receiving social assistance decreased from 3.23 to 

2.46 after controlling for family socioeconomic status and to 1.66 and 1.44 after controlling for 

early comorbidities and family health during childhood, respectively. The decrease in the odds 

ratio of diabetes by almost 55 percent, from 3.23 to 1.44, after adding the family socioeconomic 

status, comorbidities, and family health status to the baseline model reflects the significant 

importance of these factors during early childhood in explaining the variation in receiving social 

welfare in early adulthood. The results also show that the odds of depending on social 

welfare in adulthood for individuals who experience ADHD or asthma during early 

childhood are 59% and 44% greater than individuals who did not experience ADHD or asthma 

likely to depend on social welfare in adulthood, respectively. 

Controlling for heterogeneity across gender and family socioeconomic status, Table 3.6 

shows that there is no substantial gender heterogeneity in the impact of diabetes on social 

assistance in adulthood. Diabetic females and males are almost 1.98 and 2.18 times more likely 

to receive social assistance relative to non-diabetic females and males respectively. Within the 

subgroup of individuals with diabetes, the odds of depending on social welfare in adulthood 

for type I diabetic females are 3% greater relative to diabetic males. Controlling for family 

income heterogeneity, the odds of depending on social welfare in adulthood for diabetic 

individuals in middle- and high-income families are 33% and 62% lower relative to diabetic 

individuals in low-income families.  
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Table 3.5: The Odds Ratio of the Impact of Type I Diabetes on Receiving Social Assistance 

 Model (1) Model (2) Model (3) Model (4) 

Type I Diabetes 3.230*** (0.363) 2.467*** (0.416) 1.662*** (0.296) 1.446** -0.261 

Age 1.080*** (0.005) 1.126*** (0.008) 1.081*** (0.008) - - 

Female 1.380*** (0.038) 1.358*** (0.057) 1.248*** (0.054) 1.325*** (0.063) 

Married 0.288*** (0.009) 0.526*** (0.026) 0.545*** (0.028) 0.553*** (0.028) 

White (reference group) 

Black 2.364*** (0.075) 1.954*** (0.094) 2.041*** (0.103) 2.022*** (0.102) 

Asian 0.858** (0.060) 1.071 (0.117) 1.235* (0.141) 1.223* (0.140) 

Others 2.300*** (0.137) 1.814*** (0.160) 1.699*** (0.154) 1.678*** (0.153) 

West region (reference group) 

Northeast 1.046 (0.041) 1.190*** (0.070) 1.128*** (0.068) 1.131** (0.069) 

Midwest 0.751*** (0.030) 0.756*** (0.045) 0.694*** (0.043) 0.696*** (0.043) 

South 0.679*** (0.024) 0.624*** (0.034) 0.578*** (0.032) 0.580*** (0.032) 

Self employed 0.423*** (0.077) 0.525** (0.146) 0.558** (0.161) 0.559*** (0.162) 

Gov employed 0.278*** (0.049) 0.519** (0.143) 0.493*** (0.140) 0.489*** (0.140) 

Private employed 0.532*** (0.093) 0.623* (0.168) 0.617*** (0.172) 0.613* (0.171) 

Mother has Less than high school (reference group) 

High school   0.570*** (0.030) 0.589*** (0.032) 0.591*** (0.032) 

Some post-secondary  0.523*** (0.026) 0.532*** (0.028) 0.533*** (0.028) 

University   0.302 (0.023) 0.333*** (0.026) 0.329*** (0.026) 

Low-income family (reference group) 

Middle income  0.179 (0.012) 0.209*** (0.015) 0.210*** (0.015) 

High income   0.099 (0.010) 0.125*** (0.013) 0.127*** (0.013) 

Live with both parents  0.878 (0.030) 0.899*** (0.031) 0.892*** (0.031) 

Normal weight - BMI (reference group) 

Underweight    1.093 (0.162) 1.094 (0.162) 

Overweight    0.845*** (0.047) 0.839 (0.047) 

Obesity    0.937 (0.049) 0.914* (0.048) 

ADHD     1.578*** (0.136) 1.593*** (0.138) 

Asthma     1.447*** (0.119) 1.442*** (0.119) 

Coronary heart disease     1.402*** (0.106) 1.359*** (0.103) 

Cholesterol     1.183*** (0.057) 1.145*** (0.056) 

Hypertension     1.273*** (0.063) 1.245*** (0.062) 

Function limitation    3.381*** (0.173) 3.352*** (0.171) 

Mother diabetes      1.141* (0.085) 

Father diabetes       1.622*** (0.149) 

Age group 20 - 25 (reference group) 

Age_group1 (26-30)      1.328*** (0.119) 

Age_group2 (31-35)      0.964 (0.086) 

Age_group3 (36-40)      0.976 (0.086) 

Age_group4 (41-45)      0.853* (0.073) 

Notes: The Standard errors are in parentheses. *, **, *** indicate significance level at 10%, 5%, 1% respectively. 
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Table 3.6: Odds Ratios of the Heterogeneity effect of Type I diabetes 

Comparisons Social Assistance 

 Odds Ratio 

Diabetic group 

(Females versus Males) 
1.033*** 

Female group 

(diabetics versus non-diabetics) 
1.989*** 

Male group 

(diabetics versus non-diabetics) 
2.188*** 

Diabetic group 

(Middle income versus Low income 
0.383*** 

Diabetic group 

(High income versus Low income 
0.778*** 

Low-income group 

(diabetics versus non-diabetics) 
1.67*** 

Middle income group 

(diabetics versus non-diabetics) 
1.2*** 

High-income group 

(diabetics versus non-diabetics) 
1.07*** 

Mother does not have a high school 

(diabetics versus no-diabetics) 
5.16*** 

Mother has a high school degree 

(Diabetics versus non-diabetics) 
2.19*** 

mother has some post-secondary certificates 

(diabetics versus non-diabetics) 
1.49*** 

mother has a university degree 

(diabetics versus non-diabetics) 
1.19*** 

Diabetic groups 

(high school degree versus have no high school degree) 
0.95*** 

Diabetic group 

(some post-secondary degree versus have no high school degree) 
0.868*** 

diabetic group 

(university degree versus have no high school) 
0.599*** 

mother has no high school degree and family in the low-income group (diabetic 

versus nondiabetics) 
5.34*** 

mother has some post-secondary certificates and family in the middle-income 

group 

(diabetic versus nondiabetics) 

1.32*** 

mother has a university degree and family in high-income group 

(diabetics versus nondiabetics) 
1.09*** 

Notes: *, **, *** indicate significance level at 10%, 5%, 1% respectively.  
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Type I diabetic individuals’ parental educational attainment has a heterogeneous effect 

on the probability of receiving social assistance in adulthood. The odds of depending on social 

welfare in adulthood for diabetic individuals whose parent has completed high school are 5% 

lower relative to diabetic children whose parents did not complete high school. Similarly, the 

odds of depending on social welfare in adulthood for diabetic individuals whose parents have 

some post-secondary degree or university degree are 14% and 44% lower relative to diabetic 

individuals whose parents did not complete high school. 

For the probability of receiving social assistance in adulthood, the unadjusted model 1 in 

table 3.4 indicates that individuals experience Type I diabetes in childhood are almost 10 

percentage points more likely to receive social assistance, compared with those who did not 

experience diabetes during early childhood. After controlling for family socioeconomic status, 

the effect of Type I diabetes on the likelihood of being receiving social assistance is attenuated. 

Individuals with Type I diabetes are 9 percentage points more likely to depend on social 

assistance. After further controlling for childhood health and family health, individuals who 

developed type I diabetes are almost 5 percentage points more likely to be employed than non-

diabetic individuals.  

3.7.3 Earnings 

Table 3.7 reports the impact of Type I diabetes during early childhood on earnings in 

adulthood. Controlling for basic socioeconomic factors, the initial estimate shows a loss of 

$15,000 per year by having Type I diabetes in childhood for individuals who participate in the 

labor force. Controlling for family socioeconomic status reduces the coefficient on diabetes to 

1.799, which reflects a loss of about $8,950 per year in earnings and this may be consistent with 

the intergenerational transmission of socioeconomic status. That is, family education and income 
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during early life have a significant impact on adults’ labor market earnings. Moreover, parental 

income and education moderate the negative effect of diabetes on earnings. 

Table 3.7: The Impact of Type I Diabetes on Earnings (Tobit Model) 

 Model (1) Model (2) Model (3) Model (4) 

Type I diabetes -3.195*** (0.177) -1.799*** (0.202) -0.997*** (0.253) -0.610** (0.257) 

Age 0.671*** (0.003) 0.530*** (0.004) 0.562*** (0.007) - - 

Age squared -0.008*** (0.000) -0.006*** (0.000) -0.007*** (0.000)  - - 

Female -1.585*** (0.018) -1.533*** (0.020) -1.596*** (0.035) -1.618*** (0.036) 

Married 1.295*** (0.020) -0.268*** (0.024) -1.481*** (0.040) -1.479*** (0.040) 

Races (white is a reference group) 

Black -0.801*** (0.027) -0.119*** (0.032) -0.239*** (0.052) -0.223*** (0.052) 

Asian 0.126*** (0.036) -0.204*** (0.042) -0.451*** (0.076) -0.429*** (0.075) 

Others -0.877*** (0.051) -0.276*** (0.058) -0.318*** (0.099) -0.309*** (0.099) 

Mother education (less than high school is reference group) 

High school  0.700*** (0.035) 0.931*** (0.060) 0.895*** (0.060) 

Some post-secondary  0.964*** (0.033) 1.276*** (0.056) 1.242*** (0.056) 

University degree  1.971*** (0.035) 2.177*** (0.060) 2.146*** (0.060) 

Family income (low income is a reference group) 

Middle income  2.877*** (0.028) 3.533*** (0.045) 3.536*** (0.045) 

High income  4.851*** (0.029) 5.698*** (0.051) 5.706*** (0.051) 

Live with both parents  0.529*** (0.017) 1.165*** (0.035) 1.178*** (0.035) 

Individuals BMI (healthy weight is a reference group) 

Underweight    -0.862*** (0.144) -0.868*** (0.144) 

Overweight    0.432*** (0.044) 0.445*** (0.044) 

Obesity    0.288*** (0.045) 0.337*** (0.045) 

ADHD    -2.788*** (0.135) -2.774*** (0.135) 

Asthma    -2.457*** (0.149) -2.462*** (0.149) 

Coronary heart disease    -1.035*** (0.102) -0.942*** (0.103) 

Cholesterol    -0.301*** (0.044) -0.274*** (0.044) 

Hypertension    -0.471*** (0.044) -0.440*** (0.044) 

Mother diabetes      -0.502*** (0.105) 

Father diabetes      -0.939*** (0.107) 

Age groups (reference group 20 – 25) 

Age_group1 (26-30)     0.147** (0.067) 

Age_group2 (31-35)     -0.334*** (0.065) 

Age_group3 (36-40)      -0.665*** (0.066) 

Age_group4 (41-45)       -0.670*** (0.066) 

Notes: The Standard errors are in parentheses. *, **, *** indicate significance level at 10%, 5%, 1% 

respectively.  
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Controlling for comorbidities reduces the coefficient of Type I diabetes on earnings to 

0.997 less than non-diabetics. The decline in the predictive power of diabetes to 0.997 once 

comorbidities are added to the model shows that chronic health problems during childhood, 

especially attention deficit hypertension disorder (ADHD) and asthma, may capture part of the 

negative effect of diabetes on the labor market earnings. Individuals who developed ADHD 

early in life earn, on average, $13,900 less than individuals without ADHD, and individuals 

who develop asthma earn, on average, $12,250 less than individuals without asthma. 

Controlling for family health reduces the coefficient of diabetes to 0.610, which means 

that the earnings of individuals with type I diabetes are $3,050 less annually than non-diabetics’ 

earnings. The decline in the predictive power of diabetes when family health is introduced into 

the model shows that parents’ diabetes and obesity capture some of the negative impacts on 

labor market earnings. That is, parents’ health and whether or not they have diabetes have 

significant impacts on their children’s long-run earnings. This may reflect the effect of 

biological and environmental factors during childhood on labor market earnings in adulthood. 

The results show that the loss in earnings is higher for older age groups. Individuals’ earnings in 

age category 31-35, 36-40, 41–45 are, respectively, $1,600, $3,300, $3,350 less than 

individuals’ earnings in age category 20 – 25. 

3.7.4. Hours Worked 

Table 3.8 reports the effect of an early life Type I diabetes diagnosis on the average hours 

worked. Change in hours worked is statistically significantly associated with type I diabetes. 

Individuals with type I diabetes report less working hours (3 to 11 hours) compared to non- 

diabetics. This may be due to complications of diabetes and the inability to work a full day. On 
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the other hand, diabetic individuals may have less capacity or preference to work than healthy 

individuals. 

Controlling for basic demographic factors, we can see that individuals who experienced 

Type I diabetes in childhood work 11 hours less per week than their peers who were not 

diagnosed with type I diabetes during childhood. The difference in hours worked declined by 

another 24 percent after controlling for family socioeconomic status. It further decreases by 37 

percent when comorbidities during childhood were included as controls, and another 46 percent 

after controlling for family health. The reductions in hours worked after controlling for parents’ 

socioeconomic and health status reflect the significant importance of these factors in estimating 

the effect of diabetes on working hours for individuals who choose to participate in the labor 

market. The results also show that individuals who were diagnosed with asthma or ADHD 

during childhood report the lowest hours worked, 12 and 11 hours less. 

Overall, the estimated results show that type I diabetes may reduce the likelihood of 

being employed, average hours worked, total income earnings, and increase the probability of 

social welfare dependency. These results can be explained by different factors. Type I diabetic 

complications, especially acute hypoglycemia or hyperglycemia may prevent individuals from 

working a full day or may increase absenteeism (Julius et al., 1993). Individuals with type I 

diabetes may also experience discrimination. For instance, employers may discriminate against 

individuals with diabetes, who may be at risk of hypoglycemia, and not allow them to work on 

jobs that require high levels of safety and concentration (Matsuuhima et al., 1993; Songer et 

al., 1989; Kraut et al., 2001). 
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Table 3.8: The Impact of Type I Diabetes on Worked Hours (Tobit Model) 

 Model (1) Model (2) Model (3) Model (4) 

Type I diabetes -11.180*** (1.121) -8.486*** (1.526) -5.287*** (1.500) -2.864** (1.521) 

Age 3.057*** (0.030) 2.418*** (0.041) 2.452*** (0.041) - - 

Female -7.819*** (0.153) -7.338*** (0.209) -6.530*** (0.209) - - 

Married 0.886*** (0.157) -5.076*** (0.237) -5.212*** (0.232) -4.994*** (0.232) 

Races (white reference) 

Black -3.889*** (0.227) -1.043*** (0.320) -1.305*** (0.315) -1.140*** (0.315) 

Asian 0.581* (0.325) -0.429 (0.460) -0.801* (0.452) -0.562 (0.452) 

Others -5.266*** (0.448) -2.301*** (0.599) -1.481*** (0.587) -1.455** (0.586) 

West region reference  

Northeast 1.791*** (0.240) 0.195 (0.330) 0.360 (0.323) 0.287 (0.323) 

Midwest 2.335*** (0.222) 1.888*** (0.299) 2.129*** (0.293) 2.033*** (0.293) 

South 0.512*** (0.200) 0.290 (0.272) 0.456* (0.267) 0.412 (0.266) 

Self employed -3.472*** (1.264) -4.253** (1.776) -4.951*** (1.737) -5.092*** (1.733) 

Gov employed -8.307*** (1.250) -11.87*** (1.757) -11.85*** (1.719) -12.08*** (1.715) 

Private employed -9.307*** (1.240) -9.652*** (1.743) -9.816*** (1.705) -10.044*** (1.701) 

Mother has less than HS 

High school   4.066*** (0.360) 3.563*** (0.353) 3.211*** (0.353) 

Some post-secondary  3.932*** (0.339) 3.561*** (0.333) 3.236*** (0.333) 

University degree   5.876*** (0.363) 4.999*** (0.357) 4.943*** (0.357) 

Family income (low-income reference) 

Middle income   14.204*** (0.272) 12.821*** (0.267) 12.962*** (0.267) 

High income   18.714*** (0.305) 16.834*** (0.300) 16.860*** (0.300) 

Live with both parents  3.376*** (0.205) 3.169*** (0.200) 3.523*** (0.201) 

Healthy weight reference 

Underweight     -2.623*** (0.859) -2.837*** (0.859) 

Overweight     2.645*** (0.257) 2.817*** (0.257) 

Obesity     3.071*** (0.269) 3.473*** (0.269) 

ADHD     -12.468*** (0.801) -12.446*** (0.800) 

Asthma     -11.593*** (0.860) -11.663*** (0.862) 

Coronary health      -6.007*** (0.602) -5.360*** (0.607) 

Cholesterol     -1.825*** (0.259) -1.762*** (0.260) 

Hypertension     -2.233*** (0.259) -2.058*** (0.260) 

Function limitation     -8.308*** (0.248) -8.256*** (0.248) 

Mother diabetes       -3.468*** (0.623) 

Father diabetes       -5.671*** (0.634) 

Age group 20-25 reference 

Age_Group1 (26-30)      -3.057*** (0.400) 

Age_Group2 (31-35)      -5.787*** (0.383) 

Age_Group3 (36-40)      -6.208*** (0.388) 

Age_Group4 (41-45)       -5.413*** (0.383) 

Notes: The Standard errors are in parentheses *, **, *** indicate significance level at 10%, 5%, 1% respectively. 
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3.7.5. High School Dropout 

Table 3.9 reports the results of the effect of Type I diabetes on the probability of 

dropping out of high school. Individuals who experienced Type I diabetes during childhood are 

at high risk of dropping out of high school. Controlling for basic demographic factors, Type I 

diabetics are more likely to drop out of high school than non-diabetics. The odds of dropping out 

the high school for Type I diabetics are 67% greater than non-diabetics. 

 Controlling for family socioeconomic status and health reduced the odds ratio by 60 

percent, which reflects the importance of these factors in mitigating the negative impacts of 

diabetes on school attendance. The odds of dropping out the high school are 10% lower for 

individuals of mothers with a high school degree, 13% lower for individuals of mothers with 

some post-secondary certificate, 29% lower for individuals whose mothers have a university 

degree relative to individuals of mothers without a high school diploma, respectively. Moreover, 

individuals in middle- and high-income families are less likely to drop out of high school relative 

to children in low-income families. The odds of dropping out of high school are 62% and 89% 

less for individuals in middle- and high-income families, respectively. Controlling for 

comorbidities, diagnosis with early chronic conditions and functional limitations are associated 

with much more high school dropout. The individual with ADHD or asthma diagnoses during 

childhood are 43 and 32 percentage points more likely to drop out of high school. Individuals 

with functional limitations are around 16 percentage points to drop out of high school. 
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Table 3.9: Odds Ratio of the Impact of Type I Diabetes on Dropping Out of High School 

 Model (1) Model (2) Model (3) Model (4) 

Type I Diabetes 1.678*** (0.174) 1.239*** (0.103) 1.270*** (0.092) 1.170*** (0.032) 

Age 0.980*** (0.002) 1.016*** (0.003) 1.016*** (0.005) 1.015*** (0.005) 

Female 0.895*** (0.012) 0.849*** (0.017) 0.857*** (0.026) 0.836*** (0.026) 

Married 0.796*** (0.011) 1.326*** (0.029) 1.531*** (0.049) 1.542*** (0.050) 

White reference 

Black 1.425*** (0.025) 1.151*** (0.031) 1.268*** (0.049) 1.261*** (0.049) 

Asian 0.581*** (0.019) 0.660*** (0.033) 0.612*** (0.051) 0.610*** (0.051) 

Others 1.387*** (0.047) 1.247*** (0.064) 1.071 (0.084) 1.069 (0.084) 

West region reference 

Northeast 0.779*** (0.016) 0.860*** (0.028) 0.906** (0.043) 0.907** (0.043) 

Midwest 0.748*** (0.015) 0.767*** (0.023) 0.808 (0.036) 0.808*** (0.036) 

South 1.059*** (0.017) 1.045* (0.027) 1.076* (0.041) 1.075* (0.041) 

Mother without HS reference 

High school   0.901*** (0.032) 0.892*** (0.092) 0.890*** (0.043) 

Some post-secondary  0.871*** (0.040) 0.869*** (0.053) 0.868*** (0.035) 

University degree  0.718*** (0.028) 0.692*** (0.027) 0.690*** (0.036) 

Family income (low-income reference) 

Middle income   0.384*** (0.009) 0.333*** (0.012) 0.335*** (0.012) 

High income   0.115*** (0.004) 0.101*** (0.006) 0.102*** (0.006) 

Live with both parents  0.864*** (0.012) 0.806*** (0.020) 0.805*** (0.020) 

Healthy weight reference 

Underweight   0.245*** (0.021) 1.203* (0.133) 1.211* (0.134) 

Overweight     1.114*** (0.042) 1.110*** (0.042) 

Obesity     1.101*** (0.042) 1.089** (0.042) 

ADHD     1.432*** (0.082) 1.331*** (0.082) 

Asthma     1.328*** (0.099) 1.317*** (0.098) 

Coronary Health    1.119* (0.068) 1.109* (0.068) 

Cholesterol     0.973 (0.035) 0.960 (0.035) 

Hypertension     1.106*** (0.039) 1.095*** (0.039) 

Function limitation    1.167*** (0.040) 1.163*** (0.040) 

Mother diabetes       1.263*** (0.080) 

Father diabetes        1.007 (0.076) 

Notes: The Standard errors are in parentheses. *, **, *** indicate significance level at 10%, 5%, 1% 

respectively.  
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Table 3.10 shows the average marginal effect of Type I diabetes on the probability of 

dropping out of high school and on the probability of having a university degree. In the 

unadjusted model (1), individuals who experience type I diabetes in childhood are almost 7 

percentage points more likely to drop out of high school, compared with those who did not 

experience diabetes during early childhood. After controlling for family socioeconomic status, 

the effect of type I diabetes on the likelihood of being employed is attenuated. Individuals with 

type I diabetes are 6 percentage points more likely to drop out of high school. After further 

controlling for childhood health and family health, individuals who developed type I diabetes are 

almost 3 percentage points more likely to drop out of high school than non-diabetic individuals. 

Table 3.10: Average Marginal Effect of Type I Diabetes on Dropping out of High School and 

Have a University Degree 

 

Model 

(1) 

Model 

(2) 

Model 

(3) 

Model 

(4) 

Dropping out of high school 0.0730*** 0.0602*** 0.0553*** 0.0265* 

 
(0.01327) (0.0131) (0.01337) (0.0145) 

Have a university degree -0.0932*** -0.070*** -0.06218*** -0.0484*** 

 
(0.0116) (0.0112) (0.0115) (0.0125) 

Demographic  YES YES YES YES 

Family socioeconomic NO YES YES YES 

Childhood health NO NO YES YES 

Family health & age groups NO NO NO YES 

Notes: each model is adjusted for some variables that include (i) age, gender, race, marital status, geographic area; 

(ii) living with two parents, mother and father education, and family income; (iii) obesity, cholesterol, hypertension, 

depression, asthma, ADHD; and (v) father and mother diabetes, and age groups. the Standard errors are in 

parentheses. *, **, *** indicate significance level at 10%, 5%, 1% respectively. 
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3.7.6. University Degree 

Table 3.11 shows the effect of the Type I diabetes on the probability of having a 

university degree. Individuals with type I diabetes are 10 to 38 percentage points less likely to 

have a university degree relative to non-diabetics. Type I diabetes in children as a chronic health 

shock may increase uncertainty about future health and the negative impacts of complications 

on productivity, which in turn may decrease the incentive to invest in higher education, 

especially after getting a high school degree. Controlling for basic demographic factors, 

individuals who experienced Type I diabetes during childhood are 38 percentage points less 

likely to have a university degree. The probability of not having a university degree decreased 

to 10 percentage points after controlling for family socioeconomic status and comorbidities 

during childhood. Controlling for family socioeconomic status, the results also show that 

individuals of mothers with a high school diploma are almost 9 percentage points more likely to 

have a university degree relative to individuals of mothers with less than high school. In 

addition, individuals of mothers with a post-secondary certificate or university degree are 10 

and 20 percentage points more likely to have a university degree than individuals of mothers 

who did not complete high school. Controlling for comorbidities, individuals diagnosed with 

chronic conditions during early childhood have worse educational outcomes: individuals 

diagnosed with ADHD and asthma are almost 30 percentage points less likely to have a 

university degree.  This evidence is consistent with the previous literature on the relationship 

between early health shocks and educational attainment. For instance, Kessler et al. (1995) found 

that children who developed early ADHD or mental health shock are less likely to graduate 

from high school or to attend college. 
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Table 3.10 reports the average marginal effect of having Type I diabetes in childhood on 

the likelihood of having a university degree. The unadjusted model (1) shows that individuals 

experience type I diabetes in childhood are almost 9 percentage points less likely to attend and 

get a university degree, compared with those who did not experience diabetes during early 

childhood. After controlling for family socioeconomic status, the effect of type I diabetes on the 

likelihood of being employed is attenuated. Individuals with type I diabetes are 7 percentage 

points less likely to have a university degree. After further controlling for childhood health and 

family health, individuals who developed type I diabetes are almost 5 percentage points less 

likely to have a university degree than non-diabetic individuals. 

In summary, a childhood Type I diabetes diagnosis has a negative effect on an 

individual’s educational attainment and the size of the effect is especially large for dropping out 

of high school. Moreover, other health conditions and functional limitation have negative 

effects on both dropping out of high school and having a university degree; specifically, adding 

comorbidities to the basic model has a significant impact on the other coefficient estimates, which 

implies that parents’ education and income can be a pathway for children’s health which, in 

turn, can serve as a channel to improve long-run outcomes. 
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Table 3.11: Odds Ratio of the Impact of Type I Diabetes on Having a University Degree. 

 Model (1) Model (2) Model (3) Model (4) 

Type I diabetes 0.623*** (0.062) 0.904*** (0.031) 0.847*** (0.026) 0.901*** (0.036) 
Age 1.062*** (0.002) 1.019*** (0.002) 1.009*** (0.004) 1.009*** (0.004) 

Female 1.037*** (0.009) 1.103*** (0.015) 1.054*** (0.021) 1.062*** (0.022) 

Married 1.436*** (0.014) 0.792*** (0.013) 0.619*** (0.014) 0.616*** (0.014) 

White reference 

Black 0.591*** (0.008) 0.750*** (0.017) 0.748*** (0.024) 0.750*** (0.024) 

Asian 2.509*** (0.039) 2.612*** (0.066) 2.613*** (0.106) 2.618*** (0.106) 

Others 0.633*** (0.018) 0.708*** (0.030) 0.779*** (0.048) 0.779*** (0.048) 

West region reference 

Northeast 1.342*** (0.017) 1.375*** (0.028) 1.332*** (0.040) 1.331*** (0.040) 

Midwest 1.043*** (0.013) 1.074*** (0.021) 1.064*** (0.030) 1.064*** (0.030) 

South 1.109*** (0.012) 1.207*** (0.021) 1.228*** (0.032) 1.228*** (0.032) 

Mother does not have HS reference 

High school   1.103*** (0.089) 1.091*** (0.092) 1.086*** (0.087) 

Some post-secondary  1.122*** (0.099) 1.101*** (0.091) 1.100*** (0.001) 

University degree  1.371*** (0.011) 1.322*** (0.001) 1.202*** (0.019) 

Family income (low-income reference) 

Middle income   2.388*** (0.047) 2.833*** (0.075) 2.824*** (0.075) 

High income   7.210*** (0.138) 8.215*** (0.232) 8.180*** (0.232) 

Live with both parents  1.538*** (0.020) 1.747*** (0.046) 1.748*** (0.047) 

Healthy weight reference 

Underweight     0.829*** (0.064) 0.827*** (0.064) 

Overweight     0.787*** (0.019) 0.788*** (0.019) 

Obesity     0.619*** (0.016) 0.622*** (0.016) 

ADHD     0.725 (0.014) 0.712 (0.015) 

Asthma     0.656*** (0.049) 0.699*** (0.049) 

Coronary heart     1.107** (0.056) 1.114*** (0.057) 

Cholesterol     1.089*** (0.026) 1.096*** (0.027) 

Hypertension     0.788*** (0.019) 0.792*** (0.020) 

Function limitation    0.806*** (0.019) 0.808*** (0.019) 

Mother diabetes       0.848*** (0.051) 

Father diabetes        0.966 (0.058) 

Notes: The Standard errors are in parentheses. *, **, *** indicate significance level at 10%, 5%, 1% 

respectively.  
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3.8. Conclusion 

This study estimates the impact of type I diabetes diagnosis in early life on educational 

attainment and labor market outcomes in early adulthood. Type I diabetes is used as an 

exogenous health shock during early life to investigate one type of health shock on long-run 

outcomes. This study extends the current literature on the impacts of diabetes by explicitly 

including only type I diabetes. Furthermore, this study also addresses selection bias, which can 

appear when type I diabetics decide not to participate in the labor force. The results show 

negative impacts on both educational attainment and labor market outcomes during early 

adulthood (20 – 45) for those who developed type I diabetes in childhood (before the age of 15). 

The negative impact on labor market outcomes is clearer after age 26 when benefits from 

investment in education exercise their role. On average, individuals who were diagnosed with 

type I diabetes in childhood have a lower probability of being employed, work fewer hours per 

week on average, have lower total earnings, and a higher probability of receiving social 

assistance. There are several explanations for these results. Complications from type 1 diabetes, 

especially acute hypoglycemia, may prevent individuals from working a full day or may 

increase absenteeism and this explanation is consistent with other literature (Julius et al., 1993). 

Individuals with type I diabetes may experience discrimination. For instance, employers may 

discriminate against individuals with diabetes who are at risk of hypoglycemia, by not allowing 

them to work on jobs that require high levels of safety and concentration (Matsuuhima et al., 

1993; Songer et al., 1989; Kraut et al., 2001). Overall, Type I diabetes as a health shock in early 

life may affect cognitive and non-cognitive and mental and physical health stock in early 

adulthood, which may, in turn, affect health, productivity, labor force participation and 
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consequently earnings. In addition, diabetic individuals may have weaker preferences for work 

and miss more days due to poor health conditions. 

The results also show that there is a socioeconomic heterogeneity in the impact of type I 

diabetes on labor market outcomes. That is, the impact of type I diabetes in childhood on labor 

force outcomes in adulthood varies with parental income and educational attainment. Type I 

diabetic individuals whose parents did not complete high school and who are low income are at 

higher risk with respect to different labor market outcomes. 

The results also suggest that individuals with type 1 diabetes have lower educational 

attainment than non-diabetics.  They are more likely to drop out o f  high school and to get 

a university degree.  The socioeconomic status of the family has a positive impact on the 

long- run consequences of diabetes, mitigating the negative effects. Since type I diabetes 

management is costly, a more negative impact on educational attainment can be expected 

among children of parents with low education and income. According to the theoretical model, 

parental investment in children in their early stages in life is more productive – in terms of 

cognitive and non-cognitive abilities - than later investment, when accumulated skills increase 

the success probability of getting more abilities and skills in the future. 

One major limitation of this study is the cross-sectional nature of the NHIS survey. Panel 

data would provide a more comprehensive analysis, by allowing follow up over the years in 

question and a more complete picture of the evolution of skills and abilities from the health 

shock during childhood to outcomes in adulthood. 
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CONCLUSION 

The findings of my chapters have important policy implications. In Chapter 1, the results 

show that retirement has a negative impact on health outcomes, and so any policy that prolongs 

the working period, such as increases in the retirement age, will be accompanied by social benefits 

that may be greater than the estimated savings in the government’s pension burden. Increasing the 

retirement age may delay the decline in cognitive function and impairment due to aging and may 

also improve mental health through mitigating factors that increase depression. Moreover, since 

late retirement is health-preserving, as measured by self-reported health status and two other health 

outcomes, labor force participation of older people may reduce health care utilization and 

expenditure, which may add to relieve the government’s financial pension burden. In contrast, 

delaying retirement age could increase drinking participation and intensity among working 

individuals. Therefore, intervention policies should address the negative impact of delaying 

retirement age on health-related behavior. The results also shed light on the important role of the 

retiree’s partner’s retirement decision on health and health-related behavior of retirees. The costs 

and benefits arising due to retirement should be internalized when retirement policies are formed. 

Also, the findings suggest that there is significant heterogeneity across gender and socioeconomic 

groups. In general, the transition from working to retirement status has a larger negative impact on 

retired males than retired females. Therefore, a policy that raises the retirement age for men more 

than females could narrow the gender gap effect of retirement on health.  

In Chapter 2, I find that the postnatal period is not the most sensitive for the effect of first-

time maternal depression exposure on emotional, physical, cognitive, and social domains. 

Maternal depression exposure has an effect whenever exposure first occurs, but with a stronger 

effect during the prenatal period, followed by the preschool period.  That is, depression exposure 
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during the prenatal period is more detrimental than the postnatal period for several profiles of child 

development at kindergarten age. These findings underscore the need for early detection of 

maternal depression through several maternal depression screening instruments, ideally by 

obstetricians during pregnancy and by pediatricians through birth to the preschool period, to reach 

mothers and children exposed to maternal depression in the most effective manner. Additionally, 

educational handouts of the effects of maternal depression should target programs that focus on 

the mother and child together. According to human capital accumulation, intervention during 

pregnancy may provide a valuable opportunity to improve child early development.  Intervention 

programs should commence prior to the start of school to mitigate early developmental difficulties, 

which exacerbate if they are not addressed. I also find that among socioeconomically 

disadvantaged families, the children of teenage mothers at first childbirth, children in families 

living on income assistance, and children of mothers who have not completed high school are the 

most at-risk. Therefore, policy interventions that target these at-risk families should be given 

priority, and they can be identified and reached through existing social services authorities (income 

assistance system, healthy child program, Healthy child office). I also find that boys are more 

likely to be vulnerable in EDI domains than girls. Therefore, policy interventions that target 

vulnerable boys should be prioritized to improve school readiness. These findings are relevant to 

policymakers in Manitoba, such as Manitoba Health, the Department of Education and Training, 

the Department of Families, Healthy Child Manitoba, and health care professionals, in particular 

obstetricians and pediatricians. They are also relevant to the school division, so that they can 

deliver better policies through their programs. 

Finally, in Chapter 3, I find that type I diabetes in childhood has negative impacts on human 

capital accumulation in early adulthood. Individuals diagnosed with Type I diabetes in childhood 



366 
 

are less likely to be employed, and if they are, they may experience discrimination. For instance, 

employers may discriminate against Type I diabetics suffering from high-risk hypoglycemia by 

not allowing them to work on jobs that require a high level of safety and concentration 

(Matsuuhima et al., 1993; Songer et al., 1989; Kraut et al., 2001). Type I diabetic complications, 

especially in the case of acute hypoglycemia, may prevent individuals from working a full day or 

may increase the absence rate (Julius et al., 1993). As Type I diabetes management is costly, a 

more negative impact of diabetes on educational attainment can be expected among children of 

parents with low education and income level. Therefore, policy intervention should target the most 

at-risk families to help them get access to the resources that help them in manage the disease. 

According to the dynamic complementary effect and self-productivity effect in the human capital 

model, early intervention through policies or parental investment to mitigate the negative effect of 

the onset of Type I diabetes are more productive, in terms of human capital accumulation, than 

later intervention or investment, because accumulated skills increase the success of getting more 

abilities and skills in the future. Therefore, early detection of Type I diabetes through enforcing 

screening instruments early in schools will help policymakers to design the programs that mitigate 

the negative impact of diabetes on individuals’ learning and academic performance early in life. 

This thesis has presented three chapters that evaluate health effects at different life stages. 

Two chapters focus on capital accumulation of young people; one chapter focuses on the exit from 

the labour force at retirement. Health affects outcomes at all stages. The policy implications largely 

focus on early intervention to minimize the negative effects, at any stage in life. 
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