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ABSTRACT

In this thesis an algorithm is presented for the evalua-
tion of the field guantities at the surface of a monopolar
coronating conductor. The basic goal of this work is to de-
termine, numerically, the variation and magnitude of the
electric field intensity around the surface of the coronat-
ing conductor. A finite element based scheme has been used
to solve the ionized field problem. The algorithm has been
implemented for conductors of both positive and negative po-
larity. In the proposed scheme the third boundary condition-
required to obtain a solution to the ionized field problem
is supplied in the form of measured ionic current density

distribution at ground level.

The results show that, following the onset, the average
conductor gradient drops below Peek's onset value. The ex-
tent of this drop is shown to depend on the applied voltage.
It is also shown that the electric field at the surface of a
coronating conductor varies around 1its periphery. The ex-

tent of variation is greater than that before onset.
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Chapter I

INTRODUCTION

One of the important factors which affects the design of
e HVDC transmission line is its corona performance. Corona
is an electric field related phenomenon which occurs when
the electric field at the surface of a conductor exceeds a
critical value known as the onset gradient[14]. Consider
the case of a single conductor situated at a constant height
above a perfectly conducting ground. 1If the voltage applied
+o the conductor is increased, the associated electric field
also increases in direct proportion. The field is Laplacian
arnd remains so until the electric gradient at the surface of
the energized conductor exceeds the onset gradient. At this
=-int, the surrounding air gets ionized; i.e. the air may no
longer be considered as a perfect dielectric. In fact due
to ionization, ions exist in the space between the conductor
and ground. It is the movement of these ions that consti-

tutes corona current and the associated power loss.

HVDC transmission line corona is an extremely complex
phenomenon. It depends on design factors such as applied
voltage, line geometry and other parameters such as conduc-
tor éurface irregularities, weather conditions(relative hu-
midity,rain,fog,snow etc.) and atmosbheric purity(dust con-

tent).



The phenomenon of corona on overhead HVDC transmission
lines manifests itself aé a steady unidirectional flow of
ionic species, away from the electrode in corona. In the
case of unipolar corona, the polarity of the ionic species
coincides with that of the coronating electrode. 1In bipolar
corona, 1ions of each polarity are generated near the corre-
sponding pole of the HVDC line. Positive ions dominate the
region between the positive pole and ground, while negative
jons take up the corresponding space near the opposite pole.
in the zone between the two poles, ionic species of both po-

larities are present.

The occurrence of corona generates audible noise, radio
and TV interference; besides as already mentioned, it causes
power loss[11]. Also, the generated ions cause the electric
field at ground 1level to increase beyond the electrostatic
value. The ions close to the coronating conductor have ve-
locities far in excess of normal wind velocities. However,
as the ions move away from the energized conductor their ve-
locities decline and, in the low field areas, become compa-
rable to typical wind velocities. Under such conditions the
movement of ions can be influenced by wind[21]. Consequent-
ly it is possible for ions generated by a transmission line
to accumulate on metallic or dielectric objects situated
downwind and remote from the line. This process results in
the charging ué of the objects and thus constitutes a éhock

hazard[20]. There is also considerable concern regarding



the biological effects of the ionic current. All the above
mentioned effects are of practical importance because the
present day practice 1is to design transmission Jlines which
operate at voltage levels well beyond onset. For example,
the conductors of the Nelson river transmission line are
scheduled to operate at a theoretical gradient of 25 kV/cm.
Taking into account a surface factor of 0.5[21], the effec-
tive gradient is approximately 50 kV/cm and the line will be
operating well into corona. It should be clear from the
above that the predetermination of the corona performance of

a line is important.

1.1 Problem formulation

For all cases of DC corona, the flow of ions is deter-
mined by the magnitude and direction of the local electric
field intensity E. This qQuantity in turn, is the result of,
on the one hand, the effects of electrode geometry and on
:ne other the influences of all charges distributed in
space. As a conseguence, the electric field intensity vec-
tor is governed by both, the potentials applied to the elec-
trodes, and the space charge distribution which 1is influ-
enced by the electric field E. This mutual interaction
between the fundamental guantities is reflected in the math-
ematical formulation where the permittivity of free space,

€ and ion mobility k are also taken into account.



The system of equations describing the monopolar corona

discharge in the steady state are

VV &=-ple (1.1)
ViV ®d)=0 (1.2)

These equations represent the Poisson's eguation and the
inhomogeneous Laplace's eguation respectively. The electric

field as derived from the scalar potential ¢ is
E=-9V & (1.3)

In eguation (1.2) p , volume charge density, is a func-
tion of position. The simultaneous solution of & and p
from equations (1.1) and (1.2) yields the solution to the

corona problem.

Equations (1.1) and (1.2) can be represented by a single

third order, nonlinear partial differential equation, namely

vV . ((V.VO)VE)=0 (1.4)

This is the general form of eguation describing monopolar

corona.

Solution of the DC ionized field is in general, extremely
difficult because of the nonlinearity of the equations de-
scribing it. Furthermore, the main difficulty in the theo-

retical analysis is that, at the conductor surface no elec-



trical quantities except its potential are known. Thus all
attempts in the literature are based on some simplifying as-
sumptions.

1.2 Boundary conditions

The following boundary conditions are used in the analysis

of the problem.
The potential on the coronating conductor is known.

&=V (1.5)

The potential on the ground plane is zero.

® = 0 (1.6)

Since for transmission line configura;ions, the domain is
unbounded, an artificial boundary is placed at a suitable
distance from the energized conductor, with the potential on
that boundary assumed to be egual to the corresponding
electrostatic value

® =&
es

The two boundary conditions equations (1.5) and (1.6) are
not sufficient to obtain a unigue solution to the problem.
Therefore, the first attempts at a solution were based on

the Deutsch assumption which states that the presence of the



space charge affects only the magnitude and not the direc-
tion of the electric field. The assumption simplifies the
problem because it reduces 2-dimensional ionized field prob-
lems to a 1-dimensional problem. However, the methods em-
ploying Deutsch's assumption yield accurate results at low

levels of corona current only[11].

Deutsch's assumption has been waived by many researchers
who adopted a finite element technigue to solve the ionized
field problem. However, a third boundary condition is still
necessary. To fulfill this condition the researchers have
used the Kaptzov assumption which states that after onset of
corona the magnitude of the electric field intensity on the
conductor surface remains constant at 1its onset value, re-

gardless of the magnitude of the applied voltage.

Yet another group of researchers [17] have provided the
third boundary condition in the form of constant charge den-
sity of the corresponding polarity on the surface of each
source conductor. The drawback of their method is that p,
the charge density is not known a priori. In order to ar-
rive at a solution the authors use experimentally determined
values of total current emitted by a full scale model of the
transmission line. The authors, however do not present any
results concerning the variation of field guantities around

the coronating conductor surface.



The invalidity of the Kaptzov's assumption is easily as-
certained from physical considerations[10]. Consider a mo-
nopolar transmission line with the conductor energized at
positive polarity, at a voltage greater than the onset val-
ue. In this case the electrons are attracted towards the
conductor. In the high field areas they are effective ion-
izers and positive ions are produced. The fast moving elec-
trons are neutralized at the anode leaving behind a cloud of
slow moving positive ions which effectively lower the elec-
tric field at the conductor surface. The percent decrease
n the surface electric field depends on the positive ion
charge density and will not be the same at all points on the
conductor periphery. The situation about a negative charged
monopolar conductor is different. Here, the electrons are
repelled from the conductor and form avalanches in the high
field region. The electrons move quickly away from the cor-
:-ating conductor leaving behind a cloud of positive ions
which journey slowly towards the conductor where, eventual-
iy, they get neutralized. However the presence of the ionic
space charge increases the electric field at the conductor
surface. As in the previous case the percent increase is
not uniform at all points on the circumference but depends

on the space charge density.

Experimental evidence provided by Popkov [15] supports
the éonclusions arrived at above from consideration of the

basic physical process. Popkov's inVéstigation of fields at



the conductor surface was carried out by using an incandes-
cent probe. His experimental line consisted of a conductor
of radius 0.056 cm which was held at a constant height of 25
cm above a ground plane. Measurements were carried out at
both positive and negative polarities to yield the distribu-
tion of ion density, potential and electric field E. Popkov
concluded that there is a variation in the electric field
around the conductor surface; the extent of variation was

found to depend on the charge density.

1.3 Thesis obiective

The main objective of this thesis is to determine, numer-
ically, the nature of the variation and magnitude of the
electric field around the surface of a coronating monopolar
conductor; i.e. to examine the validity of Kaptzov's assump-
tion. A finite element based technigue has been wused to
solve eguations (1.1) and (1.2) iteratively and calculations
have been performed for both positively and negatively
charged conductor. As explained earlier a third boundary
condition is necessary to enable a solution of the ionized
field problem. In the present work this is supplied in the
form of known values of ionic current density at the ground
as determined experimentally. Using this value, an algor-
ithm has been developed which enables the determination of
all the field guantities at the surface of the coronating

conductor.



Three geometries have been examined in this thesis; in
each case, for the voltage levels considered, accurate val-
ves of ionic current density at ground level measured under

still air conditions were available from literature.

Before a finite element solution could be implemented it
was found necessary to examine certain aspects concerning
the accuracy of the electrostatic field solution and its de-
pendance on mesh size, growth, shape and nature of the in-
terpolating polynomial. This work 1is presented in chapter

TI.

Chapter III deals with the solution of the ionized field.
The field guantities at the conductor surface have been com-

puted. Chapter IV presents the conclusions of this work.



Chapter 11

ELECTROSTATIC FIELD SOLUTION OF A MONOPOLAR DC
TRANSMISSION LINE

The electrostatic field solution under HVDC lines ob-
tained by application of the finite element method, FEM, is
important not only by itself but also because it may be used
to evaluate the accuracy of the FEM solution of the associ-
ated ionized field. Indeed, the solution of the ionized
field problem employs the same Laplacian operator; the accu-
racy of this solution which is obtained on an iterative ba-
sis can not be checked because an exact analytical solution
does not exist. The determination of the accuracy of the
Finite Element electrostatic solution for the monopolar sin-
gle conductor geometry, on the other hand, is possible be-
cause of the existence of an exact method for the calcula-

tion of the electrostatic field.

Another important reason for «considering the analysis of
the electrostatic field is that the algorithm set up in this
thesis(Chapter 3) for the calculation of the electric field
at the surface of the coronating conductor employs, initial-
ly, the electrostatic value. Naturally it is desirable to
use accurate values. Also, the potential at nodes on the
artificial boundary is maintained at its electrostatic val-

ue. It is therefore obvious that the electrostatic analysis



is very important. Furthermore, it is known that the accu-
racy of a finite element solution is dependent on the type
of the mesh, mesh density and growth[3]. Since the same
mesh has been used for the ionized field solution, the accu-
racy of the electrostatic solution will provide some infor-
mation regarding the accuracy of the ionized £field results

obtainable from that mesh.

The accuracy of the FEM electrostatic solution was as-
sessed by performing computations on two models of a trans-
mission line of the general geometry shown in Figure 2.1
which also shows the wvalues of the H and r in the two mod-

els.

Due to the large H/r ratio, typical of transmission
lines, the choice of element shape, density and growth pat-
tern becomes critical especially in the high field region.
mhLe choice of the interpolating polynomial is also important

and is related to mesh density.

Two different meshes were used in the analysis. For mod-
el 1, a mesh composed of 195 principle nodes and 335 ele-
ments was used with 15 conductor nodes and 14 ground nodes.
For model 2 the mesh consisted of 121 principle nodes , 195
elements, 11 conductor nodes and 10 ground nodes. This fi-
nite element mesh is shown in Figure 2.2 which also shows
the artificial boundary. It may be noted that that the ar-
tificial boundary meets the ground at a lateral distance of

6.3 where H is the conductor height. The bipolar system of
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® =0

Y
ST

Figure 2.1 Conductor to plane geometry
model 1 model 2
H (em) 200.0 40.0
r (cm) 0.25 0.165
H/r 800 242
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Figure 2.2 Finite Element Mesh of model 2
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coordinates (Chapter 3) was employed to fix the location of
the nodes, the basis for which will be made clear 1in the

next chapter. .

Dirichlet conditions were enforced on the conductor and
ground. The potential at nodes on the artificial boundary
was calculated by replacing the conductor with a filamentary
line charge at its geometrical center and imaging it with
respect the ground plane. For the chosen configuration, the

expression for potential at any point (x,y) is given by

_ (2+(y +2H P)
® = A In (x2 +y?) (2.1)

and the electric field is evaluated using its component

values,

B ~-8AHx(H +y)
E, =
(2 4y2) (22 +(y 4 2H ¥) (2.2)

4AH(y*+2H y —x?)
(22 +y2) (22 + G2+ 2H P)

E, (2.3)

In equations (2.1)-(2.3) A is a constant and can be found
by enforcing the Dirichlet condition in eguation (2.1). For
large H/r values i.e. H/r > 100, equations (2.1)-(2.3) may

be considered to yield almost exact values[21].

The accuracy of the electrostatic solution was assessed
by comparing the numerical results with those obtained from

equations (2.1)-(2.3). This comparison was carried out at

- 14 -



nodes on the ground, the conductor surface and along the

vertical line joining the center of the conductor to ground.

Initial computations were carried out using linear, quad-
ratic and cubic elements; the accuracy of the results ob-
tained wusing these interpolating polynomials were com-
pared[18] with each other. The comparison study indicated
that best results are obtained with the use of guadratic el-
ements. An advantage of employing guadratic elements is
that the conductor surface can be modelled faithfully, using

isoparametric elements.

Since a node 1is shared by more than one element, there
are as many values for E as there are elements which share
that node. In order to obtain a unique value for E, an av-
eraging process has to be resorted to. For example, one may
compute the arithmetic mean or the area-weighted mean value

or the value obtained from centroidal length weighting; i.e.

n arithmetic mean weighted average-

E e = —— area weighted average (2.4)

Enpge = wem—— centroidal length weighted average



where

# = number of elements which share a common node

E,

electric field of the i element

A, area of the * element

A comparison study indicated[18] that, except on the con-
ductor surface, there is not much difference in the values
of E obtained by employing the three averaging methods. On
the conductor surface, the use of the area weighting tech-
nigue provides only a slightly better result. Based on
these findings, it was decided to use guadratic interpolat-
ing polynomials and calculate the electric field at a node
by computing the arithmetic mean of the field values con-

tributed by all elements sharing that node.

2.1 Discussion of results

The results obtained from the electrostatic analysis of
monopolar single conductor geometry, for both models are
presented in Tables 2.1-2.6. The conductors of models 1 and
2 were assigned potentials of 300 and 80 kV respectively.
The variation of electrostatic potential and field along the
vertical line joining the center of the conductor to ground
is shown in Table 2.1 for model 1 and Table 2.4 for model 2.
Tables 2.2 and 2.5 present information regarding the varia-
tion of the electrostatic field intensity around the conduc-
tor surface for the two models. Field variations along the

ground are shown in Tables 2.3 and 2.6 for models 1 and 2

- 16 -



respectively. From these Tables it is seen that all errors,
in both field and potential, are less than 1%. Tables 2.1
and 2.4 show that for both models, the error in potential is
maximum at a node next to the ground node on the vertical
line joining the center of the conductor to ground. The
maximum error in the electric field, however, does not occur
at this node, but at a location much closer to the conduc-
tor. Comparison of the data in Tables 2.2,2.3,2.5 and 2.6
shows that the maximum error in |E| along the vertical line
joining the conductor center to ground is greater than the

errors around the conductor and along the ground.

It may be noted that, along the ground the maximum error:
in!F! occurs at a lateral distance in excess of four times

the conductor height in both models. The magnitude of the

error is less than 1%. Errors in the angle of E were also
monitored. They were found to be much lower than errors in

the corresponding magnitudes of E. Figures 2.3 and 2.4 show
the variation of the electrostatic field around the conduc-

tor surface. In model 1 the variation, defined by:
[Max. |E| - Min. |g|]1/Max. |E|

is 0.133%. The corresponding value for model 2 is 0.363%.
The reason for the large variation in the latter case is due

to reduced value of the ratio H/r.

From the above, it is concluded that the use of guadratic
clements and the arithmetic mean averaging technigue of
electric field calculation results in extremely good accura-

- 17 -



cy for the finite element electrostatic solution of the ge-
ometry of models 1 and 2. Since the same mesh 1is used to
obtain the ionized field solution, one expects that the mesh
characteristics and the finite element field calculation
technigues adopted will contribute insignificantly to the

overall error.

A brief discussion of the finite element method and its

implementation is included in Appendix A.



S Exact Computed Exact |[Computed
v potential| potential|%Error E field| E field|%Error
(cm) (kV) (kv) kv/cm kV/cm
0.25 300.00 300.00 0.000 162.77 162.64 0.086
R 274.96 275,13 0.050 88.105 88.018 0.089
i 0285 250.01 250.13 0.048 47.754 47.583 0.358
! 1.58 225.01 225.11 0.042 25.920 25.790 0.498
.50 200.01 200.18 0.082 14.110 14.030 0.585
| ©.24 175.01 175.15 0.080 7.724 7.669 0.712
hm_9:;6 150.01 150.10 0.062 4,272 4.245 0.632
177 125,01 125.12 0.088 2.407 0.389 0.748
| é?.s 100.01 100.09 0.086 1.401 1.383 0.571
) é£16 75.01 75.11 0.137 0.862 0.858 0.464
€C.8 50.00 50.13 0.244 0.581 0.577 0.688
140.4 25.00 25.08 0.316 0.446 0.443 0.673
200C.0 0.00 0.00 - 0.407 0.4064 0.067
Taple 2.1 Variation of ®and E along the line 6= 0

(model 1, ®= 300 kV)
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Exact Computed
a° E field E field Error

kV/cm kV/cm
0.0 162.766 162.626 0.086
12.847 162.762 162.476 0.175
25.663 162.757 162.346 0.253
38.509 162.745 162.322 .259
51.365 162.727 162.309 0.257
64.204 162.712 162.301 0.253
77.059 162.688 162.292 0.243
90.000 162.664 162.284 0.234
102.74 162.641 162.277 0.224
115.62 162.623 162.268 0.218
128.47 162.601 162.260 0.209
141.38 162.591 162.257 0.205
154.24 162.571 162.246 0.200
167.12 162.563 162.239 0.198
180.00 162.55 162.228 .198

Table 2.2 Variation of E around the conductor

(model 1, ®= 300 kV)
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Exact Computed
E field E field Error
kV/cm kV/cm
406.662 406.389 0.067
401.564 401.236 0.082
386.526 386.189 0.087
362.302 362.127 0.048
380.106 329.863 0.074
291,553 291.243 0.106
248.577 248.391 0.075
203,332 203.284 0.024
158.086 158.008 .0489
115.109 115.046 .064
76.558 76.436 .158
44,361 44.281 .179
20.136 20.088 . 191

Table 2.3 Variation of E along ground

(model 1, ®= 300 kV)
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Exact Computed Exact |Computed
y potential| potential| %Error E field| fF field|%Error

cm kv kv kV/cm kV/cm
0.165 80.000 80.000 0.000 78.590 78.486 0.132
0.305 72.001 72.047 0.065 42.536 42.448 0.207
0.565 64.013 64.043 0.047 23.081 22,997 0.364
1.041 56.004 56.032 0.050 12.591 12.509 0.651
1.911 48.003 48.028 0.052 6.937 6.879 0.836
3.476 40.002 40.024 0.055 3.892 3.856 0.925
6.219 32.010 32.019 0.028 2.256 2.249 0.310
10.822 24.007 24.014 0.029 1.383 1.377 0.434
18.000 16.004 16.011 0.044 0.927 0.924 0.324
28.012 8.001 8.021 0.249 0.711 0.708 0.428
40.000 0.000 0.000 - 0.647 0.6468 0.568

Table 2.4 Variation of ¢and E along the line 6= 0

(model 2, &= B0 kV)
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Exact Computed
a° E field E field SError

kV/cm kV/cm
0.0 78.580 78.486 0.132
17.93 78.582 78.441 0.179
35.86 78.561 78.424 0.174
53.79 78.527 78.403 0.158
71.72 78.482 78.384 0.125
89.65 78.432 78.318 .0.145
107.58 78.385 78.271 0.145
125.51 78.344 78.239 0.134
143.44 78.311 78.207 0.133
161.37 78.298 78.204 0.120
180.00 78.288 78.201 0.111

Table 2.5 Variation of E around the conductor
(model 2, ®= 80 kV)
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Exact Computed
E field E field SError

cm kV/cm kV/cm
0.00 647.064 646.873 0.187
6.34 631.209 630.982 0.358
12.99 585.276 585.109 0.285
20.38 513.701 513.584 0.228
28.06 423.512 423.396 0.274
40.00 323.535 323.46°9 0.204
55.06 223.558 223.491 0.304
78.50 133.367 133.286 0.607
121.11 61.791 61.736 0.890
252.55 15.835 15.826 0.568

Table 2.6 Variation of E along ground
(model 2,% = B0 kV)
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Chapter I1I1I

ANALYSIS OF DC IONIZED FIELD

As pointed out earlier, the basic goal of this thesis is
is to evaluate the magnitude and variation of the field
guantities E and p around the surface of a coronating monop-
olar conductor and to examine the dependence of these guan-
tities on conductor potential. Such an analysis requires,
that the conductor field gradient, for potentials greater
than the onset value, is not constant at the onset value i.e.
the Kaptzov assumption can not be utilized. Therefore the
third boundary condition is supplied 1in the form of experi-
mental values of current density at ground level. These ex-
perimental values will have to be obtaimed wunder still air
condition as the analysis does not take into account wind
effects. No measurements were conducted in this work; the
experimental values were obtained from literature. The
analysis has been carried out for three different models,
some characterstics of which are included 1in Table 3.1,
Figure 3.1 shows the experimentally obtained current density

distribution at ground level for each of the models.

For the sake of completeness, the eguations governing mo-

nopolar corona are described below.
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Model 1

Model 2

Model 3

Reference #

[8]

[2]

[15]

Abdel Salam

V.1. Popkov

Author M. Hara et. al
H 200 cm 40 cm 25 cm
r 0.25 cm 0.165 cm 0.056 cm
H/r 800 242 446
Data available J,E J J,!I
® 200v,300 kV 80 kV 50 kv
Onset voltage 93.8kV 56.55 kV 27.75 kV
+ve onset
gradient 50.84kV/cm 55.42kV/cm 72.92kV/cm
- ve onset
gradient 52.92kV/cm
Table 3.1 Some features of the models under consideration

- 28 -




Figure 3.1.1
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for model 1 obtained from [8]
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I, is the total corona current.

- 31 -



3.1 Mathematical model of monopolar corona

The system of eqguations describing the monopolar corona

discharge in the steady state are

VY &=—pl (3.1)
ViV ®)=0 (3.2)

The electric field as derived from the scalar potential

is

E -9 & (3.3)

The above system of equations (3.1)-(3.2) can be replaced
by a single third order, nonlinear partial differential

eguation namely,

V . ((V.V®)V &)=0 (3.4)

Equation (3.4) requires three boundary conditions for its
solution. However, only two are available in the form of
conductor potential and ground potential. The selection of
the third boundary condition plays an important role in the
solution of equations (3.1)-(3.2). Besides, no information
is available regarding the distribution of E,® and ¢ in the

interelectrode space.

An analytical treatment yielding closed-form expressions

is possible only in a few simple cases which exhibit high
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symmetry i.e. infinite parallel plates, infinitely long co-
axial cylinders and concentric spheres. In such cases equa-

tion (3.4) reduces to an ordinary differential equation.

As an example consider the geometry of an infinitely long
coaxial cylinder shown in Figure 3.2. The inner conductor
is held at a potential V while the outer one 1is grounded.
Symmetry dictates that all electrical guantities viz. ¢, E

and p are functions of radial position r in cylindrical co-

ordinates. The governing equations in cylindrical coordi-
nates are

(1/r) d/dr(rd ®/dr) = —pJe (3.5)

(3.6)

1/r d/dr (rod®/dr) =20

From equation (3.6),

r pdd/dr =K

-ryp. E, =K (3.7)

From equation (3.7),

r d® /dr =-ryp, E_/p

From equation (3.5),

(/r) djdr(ryp, E,/p) = ¢/c

(Eo pe ry)/r d/dr(1/p) = p/e
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Figure 3.2 Coaxial cylindrical geometry.
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(—E,p.ry/r) (oD dp/dr =p/e

-d(p/p’) =r dr /(¢ E, p, r})

(1/2) (1/p?) = r*/(2¢, E, p, ry)

Vp? = 1p2 + (r*=r¥)e, Z, p, ry

€& E,p, ry

p =V
(,.2_,.’2)+€o Eo rl/pc ) (3'8)

d®/dr = (ky/r) Vii+p?

where

kl = Vzrl Pe Eo/i)

and p2=€Ea rllpc - r)2

O(r) = —ky[Mr2+p?-p n(@+V(r?+p?/r)} 3

Imposing the boundary condition at r=71 we obtain,

&(r) =V =kylf 1 (r)—katks(n(r [ri)+in(ks+k D-in(ks+f (P (3.9)

where

ky=kye/p,
ky=WVr,E, ¢ peyf1(r)

£10y=V(ri-ri+ki)
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From the foregoing analysis, it is evident that it is
very difficult to obtain a closed form solution of the ion-
ized field problem. It can also be noted that one has to
solve the transcendental equation (3.9) to obtain the value
of Pe. Knowing p,, the value of E and all other field quan-
tities at any radial distance can be found. Two other sim-
ple cases which can be dealt with 1in similar fashion are
geometries of the infinite parallel plate and concentric
spherical configurations. All other cases must rely on some

simplifying assumptions and numerical formulations.

3.2 Steps involved in the ionized field solution of
monopolar corona

A logical iterative scheme using a numerical method (FEM)

consists of the following steps.
Step 1: Discretize the problem domain into finite elements.

Step 2: Specify initial values of p in the problem domain

at all nodes.

Step 3: Solve equation (3.1) for potential, with the values
of p chosen as 1in step 2 and compute E and J values at all
nodes. The mobility, k*or k™, depending on the polarity of

the energized conductor, is assumed to be constant.

Step 4: Using the same values of p used in step 2, solve
equation (3.2) for potential and compute the field quanti-

ties £ and J at all nodes in the problem domain.
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Step 5: The field solution obtained 1in steps 3 and 4 will
differ if the distribution of p is incorrect. i.e. the po-
tential and field values at any node obtained in steps 3 and
4 will differ. Therefore, in step 5, the value of p is cor-
rected so as to bring the potential and field values comput-
ed from equations (3.1)-(3.2) as close to each other as pos-
sible at all nodes. This is accomplished by using the most
recent field values from steps 3 and 4 in an updating formu-

la for the charge density.

Step 6: Steps 3-5 are repeated until specified convergence

criterion are met.

Each of the above steps is discussed below in detail.

Step 1; construction of the Finite Element mesh

Table 3.2 summarizes the characterstics of the meshes

used to obtain the ionized field solution of models 1 - 3.

In all cases a quadratic 1interpolating polynomial was
used. The electric field was calculated using the arith-
metic mean technique as explained 1in chapter II. In the
case of model 3 with an H/r ratio of 446, as shown in Table
3.1, the mesh is identical to the one used for analyzing
model 2. as already mentioned, the solution of the differ-
ential eqguations governing corona, using FEM, requires the
problem domain to be subdivided into small elemeﬁts. In
this work the location of the nodes is chosen so as to re-
produce the bipolar coordinate system (%,7).
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Model 1

Model 2

Model 3

Reference#

(8]

(2]

(15]

H/r

800

242

446

Number
of nodes

195(727)

121(440)

121(440)

Number
of elements

335

195

195

Number
of ground
nodes

14

10

10

Number
of conductor
nodes

15

11

11

Tateral
distance of
the farthest

ground node
from the
conductor
center

8.75H

6.3H

6.3H

Tahle 3.2 Characterstics of the meshes used in the analysis.




While the nodes are defined and identified by their
cartesian coordinates(x,y), the numerical values for the
latter are selected in such a way so as to sati;fy the con-
ditions

g = Constant

n = Constant

The relations between the two sets of coordinates, carte-

sian(x,y) and bipolar (f,n) are

sin m
(cosh & + cos )
— sinh &
where (cosh & + cos M)

C =VH?-r* and

H is the height of the conductor above ground and r is

the conductor radius.

1f ¢ 1is kept constant, the locus of points plotted in
cartesian coordinates, traces out a circle. The center of
the circle is located on the y axis at the point (0,C cothf)

and its radius is C cosh¢f¢ .

Similarly if ¢ is allowed to vary keeping n constant, the
circles are centered at (-C cotn ,0.0) with a radius of C

cosecn .

As t and n are independent of each other and since the
constant ¢ and n circles are centered along the x and y axes
respectively, the two families of circles are mutually or-

thogonal to each other at the point of intersection. In-
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deed, for the geometry considered i.e. cylindrical conductor
at constant height above a plane, the constant ¢ circles de-
fine egquipotential lines and constant 7 circles . define the
flux lines 1in the absence of corona. Choice of the node
placement as described above proves to be advantageous while

executing the numerical procedure.

The finite element mesh was generated by using a semiau-
t»matic procedure, the program for implementation of which

is shown in Appendix C.

3.2.2 Step 2 selection of initial p distribution

The initial values of p at all nodes were specified as

llows. First the total current emitted by the conductor

+n
C

n

+ 2 particular voltage was computed by finding the area en-
closed by the ground ionic current density profiles(i.e.
Figqure 3.1.1 for model 1). Alternatively, this current may

be obtained directly from the VI characterstic if available.

Next, since the corona current density around the conduc-
tor surface is known to be cosinusoidal, [13] the conductor
current density value at any angular position, @, J was writ-
ten as,

J(8) = Jppr. cos(%) (3.10)

where
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The total corona current, It, is calculated by integrat-

ing J around the conductor surface.

2r [J(8)d(8) (3.11)

P
-
I

which Yyields

I
T %

The charge density values at conductor nodes was calcu-

lated using the relation

J =kpE, (3.12)
where

J=J(0) and
k=ktor r~ depending on the conductor polarity and

E,, = electrostatic field guantity at that node.

As mentioned earlier,the finite element nodes are located
using the bipolar coordinate system. Consider the set of
nodes A,...,J which are located at the intersection of the
yeees £ = FE . as in Fig-

] 10
ure 3.3. These nodes lie on an electrostatic flux line

circle nn = n3and the circles & = ¢

AJ.

In order to find the initial value of p at nodes such as
A,B and C the following procedure was adopted. An eguiva-
lent coaxial cylindrical system was constructed with the in-
ner radius egqual to the conductor radius and outer radius

egual to the length of the line OJ.
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FPigure 3.3 Finite Element Mesh
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With the potential gradient on the inner conductor chosen to
be equal to the approximate corona onset value given by the
empirical Peek's formula, the analytical solution for the
coaxial cylindrical geometry equation (3.8) was then applied
to obtain the initial space charge distribution at any
point inside this equivalent «coaxial cylindrical system.
For example the initial value of p at say node C 1is then
easily obtained by finding p from equation (3.8) corre-
sponding to a radial distance equal to the length of the
line OC. For all nodes lying on the flux line AJ, the value
of p in eguation (3.8) is obtained using eqguation (3.13)
which yields the charge density at the node on the conductor

surface lying on the flux line AJ.

The above procedure was followed to determine the initial
space charge density at all nodes lying on all 1lines for
which a ground node exists corresponding to a conductor
node. Such a situation does not prevail 1if one considers
nodes lying on flux lines which meet the artificial bound-
ary. In these cases the procedure followed was identical
except that the outer radius of the equivalent coaxial cyl-
indrical system was chosen to be egual to the length of the
line joining the centre of the conductor to the farthest

ground node i.e. 1line OZ.
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3.2.3 Steps 3 and &

In this step equations (3.1)-(3.2) are solved separately
by application of the FEM with proper boundary conditions; &
=V at all conductor nodes, & =0 on ground nodes and ® = @aat
nodes lying on the artificial boundary. The initial value
of p at all nodes is obtained in step 2. It should be noted
that the conductor potential, ® =V, is that value which cor-
recsponds to the experimental values of J at ground level
used in step 2 to determine the initial charge distribution

in the problem region.

The solution yields the values of E and & at all interior

nodes.

3.2.4 Step 5; application of the proposed algorithm

1f the p distribution does not correspond to the true
value, the solution of field guantities obtained from equa-
tions (3.1)-(3.2) will differ. The charge density distribu-
tion is therefore updated at all nodes in accordance with an
update algorithm which takes into account the 1location of
the nodes. Generally these nodes may be classified into the

following categories.

1. Conductor and interior nodes lying on ¢ circles(n
=constant) at the extremeties of which both conductor

and ground nodes are present.
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2. Nodes which lie on ¢ <circles terminating on the ar-
tificial boundary including conductor nodes and nodes
lying on the artificial boundary. -

3. Ground nodes.

Update algorithm for nodes of category 1

The charge density distribution 1is wupdated using the

.scheme
; s E +E
0 2E
p* = 05 [p™ +(zﬁ‘;) P (‘%;;) ¥ ] (3.13)
Bew

wvhere p is the updated value of the volume charge density at
any node, :dis the charge density at the same node from the
previous iteration and ;ois the value of the charge density
at the conductor node lying on the same { circle as the node
under consideration determined from the previous iteration.
E. and E, are the electric field intensities determined from
equations (3.1)-(3.2) respectively at the conductor node ly-
ing on the same £ circle (n =constant) as the node under

consideration. Finally, J_ is the experimental values of J

”
and J,, and J,, are the computed values of J at a ground node
which lies on the same ¢ circle as the node under considera-

tion.

Update algorithm for nodes of category 2

Under this category, there are three types of nodes. i.e.

conductor nodes, interior nodes and nodes lying on the arti-
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ficial boundary. For conductor nodes the wvalue of p is
found by guadratic extrapolation using the most recent val-

ues of p at the two neighboring conductor nodes. _

For other nodes the updating algorithm uses the relation

. (Ey +Eo)

[4 3

pr = 05 [p% + p° (B—) T ] (3.14)
where p° = most recent value of p at the conductor node ly-

ing on the same flux line as the node under consideration.

Update algorithm for nodes of category 3

The p values at these nodes are updated at the beginning
~% each iteration(with the exception of the first)using the
relation

J

REw A m

£ « T

k(E,,,+ E;.) (3.15)
where J_,is the experimental value of J and E,,and Ezr are the
E field values at ground level obtained from equations

(3.1)-(3.2) in the previous iteration.

Equations (3.13) - (3.15) reflect the fact that the space
charge distribution 1is affected not only by the conductor
surface potential gradient alone, but also by the combined

effect of J and E.
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3.2.5 Step 6

Following the first iteration, wusing the initial p dis-
tribution, the finite element solution of" equations
(3.1)-(3.2) 1is obtained again using the new updated distri-
bution of p. This iteration process is continued until the
following conditions are simultaneously satisfied at all
nodes in the interelectrode region with the exception of

nodes lying on the artificial boundary.

(®;, - &)
8,

¢5V
(E; - E;)

E, = 5 (3.16)

new _ ,old

(p wp ) < 5,

p

where 8,,8,and 8; are the small deviations specified in terms
of the desired accuracy. In this work the values assigned
to 8,,8,and 5;were 0.025,0.03 and 0.025 respectively. In
equation (3.16) ®,,9,,E,,E, are the potential and field val-
ues from eguations (3.1) and (3.2). E,, and @, are ob-

tained by averaging E,, E, and &,, ®, respectively.
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3.3 Performance of the proposed algorithm

In contrast to the procedure usually employed to deter-
mine the ionized field, the updating scheme does not contain
any imposed value for the electric field on the conductor
surface and hence the algorithm does not utilize Kaptzov's
assumption. However the corona onset gradient at the coro-
nating conductor surface as determined from Peek's formula
is necessary to start the iterative process. In all itera-
tions the field intensity on the conductor surface is let
free to vary as dictated by the wupdating algorithm. This
vields a field variation on the conductor surface after con-
vergence has been achieved. It was found that about 15 it—'
erations were needed to attain the specified convergence in
all field quantities with an accuracy of 2.5% in |E| on the
conductor surface and 1% in |E| anywhere in the interior re-
gion. The algorithm is therefore efficient and yields good
accuracy. For example in reference[2] it is reported that
70 iterations were necessary to obtain an accuracy of 5% in

the potential values.

Figure 3.4 shows a detailed flow chart, which includes
the steps discussed earlier, which were implemented in order
to arrive at field quantities on the surface of a coronating
monopolar single conductor given experimental values of ion-

ic current density at ground level.



Gencerate the mesh
Enforce boundary
conditions.

|

Compute total current
ard
fix initial p
distribution at all
nodes.

Set the iteration cournt
IT = 1. Select the equation
to be solved ie. ¢cquaiica
(3.1) or (32).

Update the value of p using

applicabic updating formulac;
equation (3.13) - (3.15)

Solve equation (3.1) for
@ and compute E und
J at all nodes. Store
all field quantitics.

\

IT=IT+1

Using the sanie p
distribution solve
equation (32) for
® and compute all fizld
quantities and store them.

&

Print IT,®,, ©,,

BI'E’ ‘E2 '62 v

P, p™™, B,
and E_,

N

Compute total
Current /, eqr. (3.19)

Figure 3.4 Flow chart indicating the steps involved

involved in solving the ionized field problem



3.4 Solution, errors and convergence of the iterative
process

The method of solution described above was applied to
each of the three chosen geometries mentioned earlier in Ta-
ble 3.1, In all cases the finite element solution was im-
plemented over one half of the total region taking advantage
of the problem symmetry; the line of symmetry in all cases
being the vertical line joining the centre of the conductor

to the ground plane. Along this line the normal derivative
5 &

n

of the potential = 0.

Initially the errors and convergence rate of the solution
was examined in all cases; details are presented below for

model 1 only with the conductor energized at +300 kV.

Table 3.3 shows the errors in [E|and & along the vertical

line joining the conductor centre to ground.

These errors are defined as

]

Error in @

(3.17)

Error in E =

The maximum error in potential is 0.591% at height of 177 cm
from the ground while the maximum error in |E{is 1.615% which
occurs at a height of 60 cm from the ground.
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y ®, o, %Error E, £, %Error
cm kv kV kv/cm kv/cm
0.25 300.00 300.00 6.0 45.38 44.420 2.138
0.40 282.86 292,31 0.188 24.420 24.230 0.781
.85 285.75 284.86 0.312 13.830 13.650 1.327
1.58 278.65 277.62 0.370 7.189 7.088 1.269
2.90 271.47 269.87 0.58%1 4.071 3.996 1.26
5.24 263.98 262.89 0.414 2.326 2.321 0.215
9.7 255.27 254.82 0.176 2.156 2.139 0.792
17.00 244,58 244,23 0.143 2.054 2.083 0.526
| 31.51 227.81 228.66 ~-0.372 2.014 2.008 0.298
54.61 200.73 200.34 0.1594 1.964 1.938 0.770
;6:;0 155,23 156.649 0.910 1.886 1.864 1.173
140.39 89.808 89.632 0.196 1.873 1.843 1.615
200.0 0.0 0.0 - 1.856 1.838 0.837
Table 3.3 Errors in®and g along the line 8 =0

(model 1, =300 kV)
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Table 3.4 shows the error in |E| along the ground and
around the conductor surface. The position 9=6>corresponds
to the point on the conductor surface which lies on the ver-
tical line joining the conductor centre to grouné. On the
conductor surface the maximum error in |E| occurs at @ =0
and is slightly over 2%; all other errors are less than or
equal to 2%. Along the ground, most - errors are less than
1%: the maximum error is equal to 2.09% and this occurs at a
iateral distance of 8.2m 1i.e. 4.1 times the conductor
height. Figures 3.5 and 3.6 show the variation of the maxi-
mum error in potential and maximum deviation in P . This
iatter gquantity is the maximum deviation of the ratio

(~"¥ — p°) “to pre . These quantities were calcu-
1ated at all nodes in the problem region with the exception

cf nodes on the artificial boundary.

Figures 3.7 and 3.8 show the variation of the computed

value of the total corona current I defined by

n
(EJ‘\ 2w
= ot
n

4

(3.18)

and the variation of the average value of the electric field

on the conductor surface, Eag, versus the number of itera-
tions. At each node on the conductor surface the electric
field is obtained by averaging E, and E;. The average of

this quantity over all conductor nodes is E

avg °
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k@)tm ké}cm %Error ; kviém ké}cm %Error
0.00 45.3844.42 | 2.138 0.0 185.7 183.9( 0.987
12.85 | 45.39144.51 1.958 0.225 |184.0 182.5| 0.805
25.66 | 45.42]44.58 1.867 0.456 |182.1 179.8) 1.28
-38.51 45.4644.64 1.82 0.700 |168.8 167.6| 0.663
51.37 45.49(44.69 1.772 0.859 |164.3 164.1| 0.150
64.2 45.53(44.75 1.728 1.259 |148.2 148.2| 0.678
-—77.06 45.61144.81 1.769 1.595 135.2 134.5| 0.539
80.0 45.63144.87 1.679 2.0 119.0 117.4] 1.430
162.74 45.70{44.90 1.766 2.51 107.6 105.9| 1.58
15.62 45.68(44.86 1.813 3.20 81.76 | 81.08| 0.836
8.47 | 45.62)44.82 1.77 4.15 |63.21 62.54| 1.069
141,38 | 45.58|44.76 1.817 8.20 |29.54 28.92} 2.09
154.23 | 45.57[44.73 1.862
167.12 45.52144.70 1.820
180.0 45.51/44.61 2.00
Table 3.4 Error in‘EIarcund the conductor surface and

along ground (model 1, &= 300 kV)
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3.5 Variation of field guantities on and around conductor
surface for model 1 (positive polarity)

Figures 3.9,3.10 and 3.11 show the variation ©f p ,J and
| ] around the conductor surface when the conductor is ener-
gized at a polarity with a voltage of 300 kV. The electric
field values at the conductor nodes are the average values
of £, and Ej. The ionic current density values were ob-

‘tained by computing the value of k ¢ E, at each node.

From Figure 3.9, P is maximum at 8=0"and minimum at @
o . . .
=180 , as expected. From Figure 3.10 J is maximum at 6 =0°
.. o . . . .
and minimum at 6 =180 . The wvariation of J with 6 1s

quite similar to that of p thus indicating that E, does

not a exhibit large variation with angular position.

From Figure 3.11 it is seen that E_, peaks at 8 =10§%
the minimum occurs at 8 =0? The value of Ew.at ] =5)is
less than that at @ =1Bd? The average value of the conduc-
tor gradient E,, is 45.12 kV/cm which is 11.26% below the
onset gradient, E,» as determined from Peek's formula. The
difference between the values of E, at 8=0"and 8 =180 and
the average value of the conductor gradient , Eg,., expressed
as a percent of E,, 1is 0.488 and 0.124% respectively. The
value of (Ewn-—E,h,»@m%is 0.755% which is greater than the
corresponding value for the electrostatic field, i.e.

0.133%.
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From reference [8] data concerning J at ground level was
also available at ® = 200 kv. and it was therefore possible
to calculate the variation of E, around the conductor sur-
face at this voltage. Although data was also available in
reference[8] for & =100 kV, a similar calculation could not
be performed due to the difficulty in obtaining current den-
sity values at ground level from the graph provided. Figure
3.12 shows the variation of E, vs 8 for & =200 kV. From
this Figure it 1is seen that g, ~ peaks once again at 6=10§
the minimum value of E, occurs at @ =§. The average value
of the conductor gradient E.,, is 46.05 kV/cm which is 9.42%

below E, as determined by Peek's formula.

Since the variation of the electric field around the con-
ductor surface is of the same order as the errors in |E| re-
perted in Table 3.4 on page 59, one may be tempted to con-
clude that the reported variation with angular position of
the conductor gradient on the ccronating conductor's surface
iz of doubtful validity. However, this is not the case. An
examination of the results showed that the errors in the
computed value of the electric field are in the same direc-
tion at all nodes i.e. all positive. It is therefore possi-
ple to conclude that Figure 3.11 represents the nature of
%e variation of the electric field variation of the elec-

tric field with angular position to an accuracy of 2%.
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3.6 Effect of the voltage level on the field variation
around the conductor surface

From Figures 3.11 and 3.12 it is seen that although the con-

ductor voltage has decreased by 33%, the averaée value of
the conductor gradient E,, increases only by 1.84%. Also
it is seen that the variation of E, with 8 around the con-
ductor periphery is more pronounced at =200 kV. Figure

C s C s . E,, —~E
3.13 indicates the variation of the quantity £—~1—~ o)

as
Ia function of the applied voltage. At © =¢o=93.5 kV the
electric field is equal to the onset value calculated from
Peek's formula. As the voltage is increased beyond the on-
set value the deviation of the E,, from the onset gradient
£, increases nonlinearly. The slope of the curve of Figure
3.13 decreases and eventually approaches zero. In figure 3.13
a smooth curve has been.drawn through 3 points corresponding

to ®,,200 and 300 kV. It is seen that the slope of the

curve decreases and eventually approaches zero.

3.7 Discussion of results

The above results show that the electric field on the
coronating conductor surface does vary with position, and
that the percentage variation depends on the applied volt-
age. The greater the voltage the lesser the variation.
Also the average value of |E| on the conductor surface is
lesser than that calculated by Peek's formula. As the volt-
age is increased beyond onset the average conductor gradi-

ent, Ean, drops noticeably at first but this trend does not
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continue indefinitely; eventually, E,, stabilizes at a par-

ticular value.

These findings reported in Figures 3.11 and 3.13 are sup-

ported by consideration of the physical process of corona.

With a positive coronating conductor, space charge of
like polarity surrounds the conductor. In the steady state
this layer is responsible for the lowering of potential gra-
dient from the onset value. This effect is more pronounced
where the space charge density is greatest i.e. @ =0". Hence
the conductor gradient registers a minimum at this
point (Figure 3.11). In order to explain, gualitatively, the
shape of the curve in Figure 3.13 one has to consider the
angular variation of p and the electrostatic conductor gra-
dient. At @ =180 the space charge density is weak and the
electric field is not affected much. In between, at 8 =102

the charge density is greater than at 186) but so is the
electrostatic gradient. These two factors combine in such a

manner so as to yield a maximum.

The trend exhibited by Figure 3.9 can also be explained
gualitatively. As the applied voltage is increased beyond
the onset value the density of the space charge in the ioni-
zation layer increases dramatically resulting in a notice-
able drop in the average value of the conductor gradient
from its onset value; with a further increase in the ap-

plied voltage the space charge density increases but not in
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the same proportion. Eventually the ionization layer may be
considered to be saturated with space charge. At this point

the average conductor gradient stabilizes.

3.8 Models 2 and 3(positive polarity)

Data available in references [2] and [15] were wused to
calculate the variation of E around the conductor surface in
both cases as shown in Figures 3.14 and 3.15. These Figures
show that the variation is similar to that shown earlier.
The value of E,, are once again lower than the onset values
calculated by Peek's formula. Table 3.5 summarizes some sa-
lient features which emerge from the analysis of the three

models.

3.9 Results with -ve polarity

Experimental data was available in reference[8] concern-
ing model 1 for -ve polarity at conductor voltages of 200
and 300 kV. A procedure similar to that adopted for the po-
sitively charged conductor was followed. The only change is
that the mobility k: of negative ions, has to be used in-
stead of k¥ In this study k~ was chosen to be 1.8 cmz/Vs
[8]. It was found that the average value of the conductor
surface gradient, £E,, , was lower than the onset gradient as

calculated from the Peek's formula; In fact the results
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Model 1 Model 2 Model 3
Reference [8] [2] [15]
H 200 cm 40 cm 25 cm
r 0.25 cm 0.165 cm 0.056 cm
H/r 800 242 446
@ 200,300 80 50
Onset voltage 83.8kV 56.55 kv 27.75 kV
/0, 2.13,3.2 1.42 1.802
+ Onset grad. 50.84 55.42 72.92
- Onset grad. 52.592
| S 46.051,45.116 48.4 62.87
(Eqng —E,) 9.42,11.26% 12.26% 13.78%
E,

Table 3.5 Some salient features resulting from the analysis

of three models
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obtained were similar in character to those obtained with

the conductor energized at positive polarity.

These results can not be justified from physical consid-
erations. With a negatively charged coronating conductor it
is known that, in the steady state, the presence of the po-
sitive space charge in the ionization layer contributes to

an increase in the value of the conductor surface gradient.

In the analysis, however, the positive space charge is
not considered at all which accounts for the fact that an
increase in the average value of the E field is not shown by

calculations.

However, since the positive space charge may be consid-
ered to occupy a thin layer surrounding the coronating elec-
trode, the thickness of which 1is usually three orders of
magnitude smaller than the interelectrode distance,[21], the
computed values of the electric field on the conductor sur-
tace may be considered to be applicable at the edge of the

ionization layer.



Chapter 1V

CONCLUSIONS

The results of this study show that following onset of
corona, the electric field at the surface of a monopolar
single conductor does not remain constant at the onset val-
ue. With a positively charged conductor, the average sur-
face electric field decreases from the onset gradient. As
the conductor voltage is increased above the onset voltage,
this decrease is rapid at first but eventually the average
conductor gradient stabilizes at a particular 1level. The
electric field also varies around the periphery of the con-
ductor surface; the extent of variation, which increases
with the applied voltage, is small when compared to the drop
in the value of the average conductor surface gradient from
the onset gradient as provided by Peek's formula. The ex-
perimental results of Popkov[15] support the conclusions ar-
rived at for positive polarity. Popkov's experimental work

utilized the geometry of model 3.

The computations performed with a negatively charged con-
ductor indicate results similar to those obtained with posi-
tive polarity. It has been pointed out that this 1is not
correct and is, infact, in contradiction with results ex-

pected from consideration of the physical process. This oc-
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curs because, the steady state model ignores the presence of
positive space charge which is responsible for the increased

conductor gradient. -

Finally, the conclusions drawn from positively charged
conductor enable one to appreciate the reason for the occur-
rence of rather large errors in electric field values on the
conductor surface in conventional ionized field analysis of
menopolar single conductor geometries. In such an analysis,
one usually invokes the Kaptzov assumption and solves for
field guantities at ground level. Since the Kaptzov assump-
tion is unrealistic one should, logically, not expect small
errors in the electric field on the coronating conductor's

surface.
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Appendix A

FINITE ELEMENT ANALYSIS

In this appendix, the basic principles of the Finite Ele-
ment Method are discussed. Over the years, this method has
developed into a very appealing, powerful and flexible ap-
proach to obtain numerical solutions of boundary value prob-
lems. It must be stressed that only two boundary conditions
are required to solve a boundary value problem described by
a second order differential egquation. The third boundary
condition is an essential part of the formulation of the
jonized field problem. In this work it is employed to com-
pute the initial and subsequent values of space charge den-

sity after every iteration.

The standard way of numerically solving the boundary val-
ue problem consists of superimposing a suitable grid over
the region of interest and locally fitting the known basis
functions. By doing so the differential eguations are
transformed into set of algebraic equations which can be

solved.for the unknown variables.

For the sake of convenience the eguations governing the

monopolar corona can be written as

VeleaV &)= (A.1)
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The guantities a, ®and § are functions of space coordinates
which represent the region Q. The solution is accomplished
through the use of variational FEM. The preliminary step in
the VFEM is the formulation of the functional. However, the
requirement of the variational equivalent of the differen-
tial eguation limits significantly the types of the problems

to which the concept of finite elements may be applied.

Application of FEM proceeds by first discretizing the re-
gion of interest 9 into smaller subregions. Most often, the
subregions are triangular in shape. In 3-d problems tetra-
hedrons are used. The attention 1is confined only to
2-dimensional regions of interest and is focussed on the

methods for the minimization of the functional of the form

F=f(a(V®)-2pd)d0 (A.2)
Q

Trial functions are constructed in a piecewise manner.
As in any variational method, approximate finite element so-
Jutions are obtained through extremization of the function-
al. This requires the first derivative of the functional
with respect to all the variational parameters be zero,
which is a necessary condition for stationarity. An alge-
braic system of eguations is formed whose solution give an

approximate solution to the problem under consideration.
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A1 Isoparametric transformation

Consider the use of the 2nd order quadratic finite ele-
ments. Same set of functions is used to map the-master ele-
ment from the local simplex to the global coordinates and
also for the expansion of the unknown potential within the
element. In order to transform the triangular simplex, fol-

lowing transformations are introduced.

6
X = ‘Elx:ax &.m)

6 (A.3)
y = Elyzc.' (&.m)
l:

In the ¢ - n simplex, the unknown function ¢ with in the

element is approximated by using the same shape functions as

6
®(Em) = 12]¢ici (¢.m) (A.4)

where a (¢ ,n) are the Lagrangian shape functions defined

unaer the node numbering scheme in Figure 4.1 are given by

ay€m) = 2(1-§—) (1/2-¢—7)

ar€.m) =2¢ (£-1/2)

azém) =219 (n-1/2)

ay€m) =4¢q (A.5)
ds€m) =4§ (1-¢-v)

ag€m) =47 (1-¢-n)
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All the necessary calculations are can be done in the lo-
cal simplex using transformations (Aa.3). The compatibility
can be ensured by assigning the same coordinates and the po-
tential value to the nodes that are shared by adjacent ele-
ments. Assuming the transformation does not entail exces-

sive distortion of the element, the mapping is one to one.

A.2 Seeking a stationary point

In fact, numerically it is rarely possible to ensure the to-
tal arbitrariness of ¢ and so, the stationary point located
~#ill approximate the solution. Since a stationary point
corresponds to a solution, and since there can not be more
than a single solution for a positive definite operator, it
is cliear that there is only a single stationary point of the

fonctional.

In the £-n simplex, the unknown function ¢ within the el-

erent k is approximated using same set of shape functions as

6
®(En) =3, ®la;(Em)
i=]

with the domain © divided into N subregions the functional

becomes

N [ 6 [
F=S [[x 3 3(VelVaj)-2B 3®fefldl (a.6)
k=10y i=1 j=1 i=)
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For the extremization of the functional, one requires the
derivatives of (A.6) with respect to all of the variational
parameters be zero. The variational parameters'are the no-

dal potentials ®f that are unknown.

6
8F/8¢,"=‘{[K 21(‘7 ui-vaj)q’j’“aaikl (A.7)
& i=

Using (A.6) and (A.7) and identifying those ®:that are
unknown, one then obtains a system of simultaneous equations

from which the unknowns @f‘can be solved.

All integrations will be performed in the local t(-n sim-
plex. This makes the finite element analysis systematic and
allows the application of standard quadrature formulae that

are readily available.

To test the feasibility of the proposed algotithm number
of cases were tested. The program written in FORTRAN was
developed and all cases were tested on Amdahl 5850 system at
the University of Manitoba. The program listed in Appendix
B can be used to solve any eguation of the kindV (aV ®) =
e and f can be chosen according to the type of equation be-
ing solved. The total number can changed by varying IT.

The amount of CPU time reguired to solve is problem depen-
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dent. Discretization and the type of the element also play
a2 vital role. The program stores the elements on and below
the main diagonal. The data input sheet is furnished which
makes the program user's friendly. The program listed in
Appendix C would draw the mesh for a given set of node coor-
dinates and numbering. appendix D gives the storage scheme

emploved by the Finite Element Program listed in Appendix B.
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Appendix B

FINITE ELEMENT PROGRAM

//VENKA JOB ',L=30,,,T=32M',CLASS=1
EXEC WATFIV,SIZE=3900K
/SYSIN DD *
JOB WATFIV VENKA,NOEXT,NOWARN

C

C

C.....REF: IEEE TRANSACTIONS OF PA AND S
C

C

C..... AUTHOR: MASANORI HARA (JAPANESE)

....DATA AVAILABLE: J-GROUND AND I-TOTAL
.....CONFIGURATION: CONDUCTOR TO PLANE.

...R=0.25 CM, H=200.0 CM, V=-300KV, H/R=800.00, IT=39.85 MUA//M/

QOOO0O0O0000000

v ...MU=199,99937,00=7.37

.....MESH HAS 121 PRINCIPLE NODES WITH 199 ELEMENTS. THERE ARE

vss..11 CONDUCTOR NODES. TDN=40, TN=440, CPU TIME=3 MINUTES 40 SEC

OO0 00n0n

REAL GPX(9),GPY(9),w(9),3(9,2,6),AGP(9,6),XxX(727),¥v(727)
,XG(6),¥G(6),5(727,727),DV(75),C(727) ,EA,J11(9),J312(9),
J21(9),322(9),EPSI(10),DET(9),AA(9),BB(9),CC(9),DD(9)
,EE(9),FF(9),F,ES,RO(10) ,ROU(727),C1(727),C2(727),C3(727)
* ,ROV(727),C23(727),U1(727),U02(727),03(727),U4(727)
*,RM2(727),RM3(727),THETA2(727),THETA3(727),ETA(727)
REAL US5(727),R(6),0(5,5),WARA(15),PX(150),AITA(727),
YMN(800) ,PP(800),¥YND(800),EP(382),DP(800),EPN(800),
# EFL(182),EMTP(800),RNA(500)
INTEGER E(335,6),TE,TN,TDN,DN(?S),T,Z,U,TALT,TAD,H,LIST(SOO)
COMMON /VENKA /A (230000),B(750) ,MAXA(700) ,N,NN,NWA, KKK
PI=3.14159
ALPHA= 1.0

* % %
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54

- -

52
S

7744

102

(6]
Ut

BEETA=1.0
READ,TE,TN,TDN, TALT, TAD, NGP
PRINT 301,TE,TN,TDN,TALT, TAD,NGP
FORMAT('0',10X,618)

READ, ((E(M,N) ,N=1,3) ,M=1,TE) -
PRINT 302, ((E{(M,N),N=1,3),M=1,TE)
FORMAT('0',10X,318)

READ, (xX(1),Y¥(1),I=1,TN)

PRINT 303, (XX(1),YY(I),I=1,TN)
FORMAT('0',10X,2F15.8)

GENERATE SECONDARY NODES

NN=1
DO 51 I1=1,TE
NC=3
DO 52 M=1,2
MM=M+1
DO 53 N=MM, 3
NC=NC+1
XS=(XX(E(I,M))+XX(E(I,N)))/2.0
vs=(YY(E(I,M))+YY(E(I,N)))/2.0
NEW=1
DO 54 K=1,NN
IF(XS.EQ.XX(TN+K-1) .AND.Y¥S.EQ.YY(TN+K~-1)) THEN D
NEW=0
E(I,NC)=TN+K-1
END IF
CONTINUE
IF(NEW .EQ. 1) THEN DO
XX (TN+NN) =XS
YY(TN+NN)=YS
E(I,NC)=TN+NN
NN=NN+1
END IF
CONTINUE
CONTINUE
CONTINUE
TN=TN+NN-1
PRINT ,TN

PRINT 7744,(1,(E(I,N),N=1,6),I=1,TE)

FORMAT('0',14,10X,615)

DO 102 1=1,TN
YY(1)=YY(1)-200.0

CONTINUE

ALTER COORDINATES OF THE GENERATED NODES

IF(TALT .NE. 0) THEN DO

DO 55 I=1,TALT
READ,M,N,X,Y
PRINT 305,M,N,X,Y

FORMAT('0',11X,216,2F15.8)
XX(E(M,3+N) )=
YY(E(M,3+N))=

CONTINUE

END IF

CON=199.,9998437

DO 401 1=1,TN

14

I
X
Y
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O

401

4477

306

307

56

7777

RN=XX(1)/(CON+YY(I))
DR=XX(I)/(CON-YY(I))
IF(YY(I).GT.CON) THEN DO
ETAA=PI+ATAN(RN)+ATAN(DR)
ELSE DO
ETAA=ATAN(RN)+ATAN(DR)
END IF
AITA(I)=ETAA
PRINT ,I,ETAA
CONTINUE
PRINT 4477,(1,AITA(I),XX(1),YY(I),I=1,TN)
FORMAT('0',14,10X,3F15.4)
N=TDN-TAD
READ IN DIRICHLET VALUES
READ, (DN(1),DV(I),I=1,N)
PRINT 306, (DN(1),DV(I),I=1,N)
FORMAT('0',10%X,15,12X,F15.8)

IF(TAD .NE. 0) THEN DO
DO 56 1=1,TAD
READ,M,NN,D
PRINT 307,M,NN,D
FORMAT('0',11X,216,F15.8)
DN(N+I)=E(M, 3+NN)
DV(N+I)=D
CONTINUE
END IF
GO TO 8881
READ, (ROV(I),I=1,TN)
READ(15,7777) (EMTP(1),C2(1),C3(1),RM2(I),RM3(I),I=1,TN)
FORMAT('0',5F12.3)
AREA=0.0
DEFINE COORDINATES OF GAUSS POINTS AND WEIGHTS
IF(NGP.EQ.3) THEN DO
GPx(1)=GpPY(2)=0.0
GPY(1)=GPX(2)=GPX(3)=GPY(3)=0.5
Ww(1)=wW(2)=w(3)=1.0/6.0
END IF
IF(NGP.EQ.9) THEN DO
GPX(1)=GPX(2)=GPX(3)=0.1127017
GPXx(4)=GPX(5)=GPX(6)=0.5
GPX(7)=GPX(8)=GPX(9)=0.8872983
GPY(1)=GPY(9)=0.1
GPY(2)=GPY(6)=0.4436482
GPY(4)=GPY(8)=0.0563509
GPY(3)=0.7872983
GPY(5)=0.25
GPY(7)=0.0127017
W(1)=W(3)=0.0684644
W(4)=w(6)=0.0617284
W(7)=Ww(9)=0.008696"
w(2)=0.109543
w(5)=0.0987654
w(8)=0.0139138
END IF
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IF(NGP.EQ.4) THEN DO
GPX(1)=GPY(1)=1.0/3.0
GPX(2)=GPY(2)=GPY(3)=GPX(4)=0.2
GPx(3)=GPY(4)=0.6
w(1)=-27.0/96.0
W(2)=wW(3)=W(4)=25.0/96.0

END IF

DEFINE ENTRIES OF MATRIX J AT GAUSS POINT K
DO 1 K=1,NGP
J(K,1,3)=0.0
J(K,1,5)=-4.0%GPY(K)
J(K,1,1)=4.0%(GPX(K)+GPY(K))-3.0
J(K,1,4)=4.0-8.0%GPX(K)-4.0%GPY(K)
J(K,1,2)=4.0%GPX(K)~-1.0
J(K,1,6)=4,0%GPY(K)
J(K,2,3)=4.0*GPY(K)-1.0
J(K,2,5)=4.0-4.0*GPX(K)-8.0*GPY(K)

J(K,2,1)=4.0*(GPX(K)+GPY(K))-3.0
J(K,2,4)=-4,0*%GPX(K)
J(K,2,2)=0.0
J(K,2,6)=4.0*%GPX(K)

CONTINUE

DEFINE VALUES OF SHAPE FUNCTION AT GAUSS POINT K

DO 2 K=1,NGP
AGP(K,3)=GPY(K)*(2.0*GPY(K)=-1.0)
AGP(K,5)=4.0*GPY(K)*(1.0-GPX(K)-GPY(K))
AGP(K,1)=(1.0-GPX(K)—GPY(K))*(1.0—2.0*GPX(K)-2.0*GPY(K))
AGP(K,4)=4.0*(1.0-GPX(K)-GPY(K))*GPX(K)
AGP(K,2)=GPX(K)*(2.0%GPX(K)-1.0)
AGP(K,6)=4.0*GPX(K)*GPY(K)

CONTINUE

INITIALIZE THE MATRICES A AND S
LIST(1)=750
DO 33 I1I=1,TE
SuM=0.0
DO 34 K=1,6
NU=E(I,K)
SUM=SUM+ROV (NU)
CONTINUE
ROU(I)=SUM/6.0
PRINT ,I,ROU(I)
CONTINUE
DO 456 IT=6,7
KOUNT=1
DO 1001 ITN=1,KOUNT
LIST(ITN)=0
CONTINUE
DO 43 11=2,3
DO 8 M=1,TN
c(M)=0.0
DO 9 N=1,TN
S(M,N)=0.0
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CONTINUE .
CONTINUE

MAIN PROGRAM TO ACCUMULATE MATRICES
DO 3 T=1,TE -
DO 5 U=1,6

XG(U)=xXX(E(T,U))
YG(U)=YY(E(T,U))

CONTINUE
IF(IT .EQ. 1) GO TO 1330

IF(II .EQ. 3)GO TO 1330

AK=0.0
DO 770 MK=1,6
NU=E (T,MK)
NNODE=1

DO 4455 KI=1,ROUNT

IF(NU.EQ.LIST(KI)) THEN DO
NNODE=0
AK=AK+ROV(NU)

END IF

CONTINUE

IF(NNODE .NE. 0) THEN DO
IF(Cc2(NU) .EQ. 0.0) GO TO 1112

IF(AITA(NU) .LE. 0.18) THEN DO
YMN (NU)=2.0*RM2(13) /(RM2(13)+RM3(13))
EPN(NU)= 8414.28/RM2(1)/EMTP(1)

_YND(NU)=EMTP (NU) /EMTP(13)

ROV (NU)=0.5% (EMTP (NU) +EMTP ( 13) *EPN (NU) *¥YND(NU) ** YMN (NU) )
GO TO 771
END IF

1F(AITA(NU) .LE.0.33) THEN DO
YMN(NU)=2.0*RM2(14)/(RM3(14)+RM2(14))

EPN(NU)= 8386.040/EMTP(26)/RM2(26)

YND(NU)= EMTP(NU)/EMTP(14)

ROV (NU)=0.5% (EMTP (NU) +EMTP( 14 ) *EPN (NU) *¥YND (NU) **YMN (NU) )
GO TO 771

END IF

IF(AITA(NU) .LE. 0.55) THEN DO
YMN(NU)=2.0*RM2(39)/(RM2(39)+RM3(39))

EPN(NU)= 8056.62§/EMTP(27)/RM2(27)

YND(NU)=EMTP (NU) /EMTP (39)

ROV(NU)=0.5%* (EMTP (NU) +EMTP (39) *EPN (NU) *YND (NU) **YMN (NU) .
GO TO 771

END IF

IF(AITA(NU) .LE. 0.8) THEN DO
YMN(NU)=2.0*RM2(40)/(RM3(40)+RM2(40))
EPN(NU)= 7058.956/RM2(52)/EMTP(52)
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YND (NU) =EMTP (NU) /EMTP(40)

ROV{(NU)=0.5% (EMTP (NU)+EMTP (40 )*EPN(NU)*YND(NU) **YMN (NU) )
GO TO 771

END IF

IF(AITA(NU) .LE. 1.0) THEN DO

YMN (NU)=2.0*RM2(65)/(RM3(65)+RM2(65))

EPN(NU)= 5722.46}/EMTP(53)/RM2(53)

YND(NU) =EMTP (NU) /EMTP(65)

ROV(NU)=0.5% (EMTP (NU)+EMTP (65 ) *EPN (NU) *YND (NU) **YMN (NU) )
GO TO 771

END IF

IF(AITA(NU) .LE. 1.2) THEN DO
YMN(NU)=2.0*RM2(66)/(RM3(66)+RM2(66))
EPN(NU)=4423.612;/EMTP(78)/RM2(78)

YND (NU) =EMTP (NU) /EMTP(66)

ROV(NU)=0.5% (EMTP (NU) +EMTP (66 ) *EPN (NU) *YND(NU ) **YMN (NU) )
GO TO 771

END IF

IF(AITA(NU) .LE. 1.45) THEN DO
YMN(NU)=2.0*RM2(91)/(RM3(91)+RM2(91))
EPN(NU)=2823.5825/EMTP(79)/RM2(79)

YND (NU) =EMTP (NU) /EMTP(91)

ROV (NU)=0.5% (EMTP (NU) +EMTP(91) *EPN (NU) *YND (NU) **YMN (NU) )
GO TO 771 '

END IF

IF(AITA(NU) .LE. 1.67) THEN DO

YMN(NU)=2.0*RM2(92) /(RM3(92)+RM2(82))
EPN(NU)=1882.388§/EMTP(104)/RM2(104)

YND (NU) =EMTP(NU) /EMTP(92)

ROV (NU)=0.5% (EMTP (NU) +EMTP (92 ) *EPN (NU) *YND (NU) **YMN (NU) )
GO TO 771

END IF

IF(AITA(NU) .LE. 1.9) THEN DO

YMN (NU)=2.0*RM2(117) /(RM3(117)+RM2(117))
EPN(NU)=1129.433/EMTP(105)/RM2(105)
YND(NU)=EMTP (NU) /EMTP(117)

ROV (NU)=0.5% (EMTP (NU)+EMTP (117 )*EPN(NU) *¥YND(NU) **YMN (NU)
GO TO 771

END IF

IF(AITA(NU) .LE. 2.15) THEN DO

YMN(NU)=2,0*RM2(118) /(RM3(118)+RM2(118))

EPN(NU)= 752.955§/EMTP(130)/PM2(130)

YND (NU) =EMTP (NU) /EMTP(118)

ROV (NU)=0.5% (EMTP (NU) +EMTP (118 ) *EPN (NU) *YND (NU) ** YMN (NU)
GO TO 771

END IF

IF(AITA(NU) .LE. 2.36) THEN DO
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YMN (NU)=2.0*RM2(143)/(RM3(143)+RM2(143))

EPN(NU)= 423.537/EMTP(131)/RM2(131)

YND (NU) =EMTP (NU) /EMTP( 143)

ROV (NU)=0.5% (EMTP (NU)+EMTP(143) *EPN (NU) *YND (NU) **YMN (NU)
GO TO 771 -

END IF

IF(AITA(NU) .LE. 2.6) THEN DO
ROV(144)=0.85*ROV(143)

IF(NU .EQ. 144) GO TO 771

YMN(NU)=2.0*RM2(144) /(RM3(144)+RM2(144))
EPN(NU)= 1.94424E7/EMTP(61)/RM2(61)

YND (NU) =EMTP (NU) /ROV (144)

ROV(NU)=0.5% (EMTP (NU)+ROV (144 ) *YND(NU) **YMN (NU) )
GO TO 771

END IF

IF(AITA(NU) .LE. 2.8) THEN DO
ROV(169)=ROV(144)-0.2%ROV(144)%*1.75

IF(NU .EQ. 169) GO TO 771

YMN(NU)=2.0*RM2(169) /(RM3(169)+RM2(169))
EPN(NU)= 1.928E6/EMTP(80)/RM2(80)

¥YND (NU ) =EMTP (NU) /ROV(169)

ROV (NU)=0.5%* (EMTP(NU)+ROV (169 ) *YND(NU) **YMN(NU) )
GO TO 771 :

END IF

IF(AITA(NU) .LE. 2.95) THEN DO
ROV(170)=ROV(144)-0.2%ROV(144)*2.5

IF(NU .EQ. 170) GO TO 771
YMN(NU)=2.0*RM2(170)/(RM3(170)+RM2(170))
EPN(NU)= 8.0673E4/RM2(81)/EMTP(81)

YND (NU ) =EMTP (NU) /ROV{170)

ROV(NU)=0.5* (EMTP(NU)+ROV(170) *¥YND(NU) **¥YMN (NU) )
GO TO 771

END IF

IF(AITA(NU) .GE. 2.95) THEN DO
ROV(195)=ROV{(144)-0.2%ROV(144)%*3.2

IF(NU .EQ. 195) GO TO 771

YMN(NU)=2.0*RM2(195) /(RM3(195)+RM2(195))
EPN(NU)= 8.0673E4/RM2(81)/EMTP(81)

YND (NU) =EMTP (NU) /ROV(195)

ROV (NU)=0.5% (EMTP(NU)+ROV(195) *¥YND (NU) **YMN (NU) )
GO TO 771

END IF

1112 CONTINUE
ROV(1)=8414,276%2.0/(RM3(1)+RM2(1))

ROV(26)=8386.0402*%2.0/(RM3(26)+RM2(26))
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ROV(27)=8056.622%2,0/(RM3(27)+RM2(27))
ROV(52)=7058.956%2.0/(RM3(52)+RM2(52))
ROV(53)=5722.461%2,0/(RM2(53)+RM3(53))
ROV(78)=4423.6127%2.0/(RM2(78)+RM3(78))
ROV(79)=2823.583%2,.0/(RM2(79)+RM3(79)) .
ROV(104)=1882.3884*2.0/(RM2(104)+RM3(104))
ROV(105)=1129.433%2.0/(RM2(105)+RM3(105))
ROV(130)=752.9554%2.0/(RM2(130)+RM3(130))
ROV(131)=846.0/(RM2(131)+RM3(131))
ROV(156)=620.0/(RM2(156)+RM3(156))
ROV(157)=375.00/(RM2(157)+RM3(157))
ROV(183)=350.000/(RM2(183)+RM3(183))
ROV(196)=8395.452%2.0/(RM2(196)+RM3(196))
ROV(281)=8235.449%2.0/(RM2(281)+RM3(281))
ROV (282)=7529,5535%2.0/(RM2(282)+RM3(282))
ROV(355)=6287.1771%2.0/(RM2(355)+RM3(355))
ROV (356)=5082.4486%2.0/(RM2(356)+RM3(356))
ROV(429)=3529,478%2.0/(RM2(429)+RM3(429))
ROV (430)=2258.866*2.0/(RM2(430)+RM3(430))
ROV(503)=1458,851%2.0/(RM2(503)+RM3(503))
ROV(504)=903.5464%2.0/(RM2(504)+RM3(504))
ROV(577)=1035.31/(RM2(577)+RM3(577))
ROV(578)=920.0/(RM2(578)+RM3(578))
771 CONTINUE
ARK=AK+ROV(NU)
KOUNT=KOUNT+1
LIST(KOUNT)=NU .
END IF -

C PRINT 273,T,NU,AITA(NU),¥YMN(NU),YND(NU),EPN(NU) ,EMTP(NU),ROV
770 CONTINUE
273 FORMAT(214,6F15.5)

ROU(T)=AK/6.0
1330 CONTINUE
DO 30 K=1,NGP
X=Y=0.0
J11(R)=J22(R)=J21(K)=J12(K)=0.0
DO 10 I=1,6
J11(R)=J(K,1,1)*XG(1)+J11(K)
J12(R)=J(K,1,1)*¥G(I)+J12(K)
J21(K)=J(K,2,I)*XG(1)+J21(K)
J22(R)=J(K,2,1)*¥YG(I)+J22(K)
X=XG(I)*AGP(K,I)+X
Y=YG(I)*AGP(K,I)+Y
10 CONTINUE
IF(II .EQ. 2) THEN DO
EPS=ROU(T)
ROH=0.0
END IF
IF(I1 .EQ. 3) THEN DO
EPS=1.0-
ROH= ROU(T)
END IF
EPSI (K)=EPS
RO(K)=ROH .
DET(K)=J11(KR)*J22(K)-J21(K)*J12(K)
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AREA=AREA+DET(K)*W(K)
AA(K)=J22(K)*J22(K)
BB(K)=J12(R)*J12(K)
CC(K)=J22(KR)*J12(K)
DD(K)=J21(K)*J21(K) -
EE(K)=J11(R)*J11(K)
FF(K)=J21(K)*J11(K)
CONTINUE
DO 6 M=1,6
SUM=0.0
DO 73 K=1,NGP
SUM=SUM+DET(K) *W(K)*RO(K)*AGP(K,M)
CONTINUE
C(E(T,M))=C(E(T,M))-SUM
DO 7 N=M,6
ES=0.0
DO 21 2Z=1,NGP
ES=ES+EPSI(2)/DET(Zz)*W(z)*(J(2,1,M)*3(2,1,N)*AA(
J(z,2,M)*J3(z,1,N)*cc(z)+J(Z,1,M)*J(2,1,N)*DD(2)
J(z,2,M)*J3(2,1,N)*FF(2))
CONTINUE
s(g(T,M),E(T,N))=S(E(T,M),E(T,N))+ES
s(g(T,N),E(T,M))=S(E(T,M),E(T,N))
CONTINUE
CONTINUE
CONTINUE

DO 26 I=1,TDN
NL=DN(1I)
DO 27 K=I,TDN
IF(DN(K) .LE. NL) THEN DO
NL=DN(K)
NUM=K
END IF
CONTINUE
NA=DN(I)
DN(1I)=DN(NUM)
DI=DV(I)
DN (NUM) =NA
DV (I )=DV(NUM)
DV(NUM)=DI
CONTINUE

DO 11 I=1,TN
DO 12 K=1,TDN
C(1)=-DV(K)*S(I,DN(K))+C(I)
CONTINUE
CONTINUE

K2=NM=MN=1
12=1
DO 31 I=1,TN
R1=1
IF(I .NE.DN(K2)) THEN DO
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32

31

1040
1030

6768

@]

1140

1130
1120

B(MN)=C(1)
MN=MN+1
DO 32 M=1,TN
IF(M.NE.DN(K1)) GO TO 133
GO TO 417
IF(M.GT.I) GO TO 32
A(NM)=S(M, 1)
NM=NM+ 1
GO TO 32
IF (TDN .GE. K1+1) THEN DO
K1=K1+1
END IF
CONTINUE
ELSE DO
iIF (TDN .GE. K2+1) THEN DO
K2=K2+1
END IF
END IF
CONTINUE
N=TN-TDN

MS=1
DO 1030 JJ=1,N
DO 1040 1=1,3Jd
$(JJ,1)=A(MS)
s(1,33)=s(33,1)
MS=MS+1
CONTINUE
CONTINUE
NKI=N*(N+1)/2
DO 6768 I=1,NKI
A(1)=0.0
PRINT, 'AREA IS',AREA
NN=1
DO 1120 I=1,N
KOUNT=1
DO 1130 JJg=1,1
1F(s(JJ,1).EQ.0.0) GO TO 1130
DO 1140 K=JJ,1
KP=1+KOUNT-K
A(NN)=S(KP,I)
IF(KP.EQ.I) THEN DO

MAXA (I)=NN
PRINT ,I,MAXA(I)
END IF
NN=NN+1
CONTINUE
GO TO 1120
KOUNT=KOUNT+ 1
CONTINUE
MAXA(672)=NN
NNK=NN-1
N=TN-TDN
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NWA=N+1

NN=NNK
KKK=1
CALL COLSOL
KKK=2
CALL COLSOL
REORGANZE NODE NUMBERINGS FOR OUTPUT
K=1
M=0
DO 20 I=1,TN
IF (I .NE. DN(KR)) THEN DO
M=M+1
c(1)=B(M)
ELSE DO
C(DN(K))=DV(K)
IF (TDN .GE. K+1) THEN DO
R=K+1
END IF
END IF
IF(II .EQ. 2) THEN DO
c2(1)=Cc(1)
END IF
IF(II .EQ. 3) THEN DO
c3(1)=c(1)
END IF
20 CONTINUE

CALCULATES THE VALUE OF THE FUNCTIONAL
F=0.0
DO 24 M=1,TN
DO 25 I=1,TN
F=F+S(M,I)*C(I)*C(M)
25 CONTINUE
24 CONTINUE
PRINT 1155,IT,F
1155 FORMAT(10X,I16,F15.8)

PRINT 101

PRINT 200,(1,(E(I,N),N=1,6),I=1,TE)
200 FORMAT('0',10X,18,10X,61I5)

PRINT 101

PRINT 100, (1I,xx(1),¥Y¥(1),I=1,TN)

DO 1600 K=1,TE

X1=XX(E(K,1))

X2=XX(E(K,2))

X3=XX(E(K,3))

X4=XX(E(K,4))

X5=XX(E(K,6))

X6=XX(E(K,5))

Y1=YY(E(K,1))

v2=YY(E(K,2))

v3=YY(E(K,3))
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va=YY(E(K,4))
¥5=YY(E(K,6))
v6=YY(E(K,5))
v1i=C(E(K,1))
v2=C(E(K,2))
v4=C(E(K,4))
v5=C(E(K,6))
v6=C(E(K,5))
0(1,1)=X1*X1-X2*X2
0(2,1)=X2%X2-X3*X3
0(3,1)=X3*X3-X4*X4
0(4,1)=X4*X4-X5%X5
0(5,1)=X5*X5-X6*X6
0(1,2)=Y1*Y1-¥2%Y2
0(2,2)=Y2%Y2-Y3*Y3
0(3,2)=Y3%Y3-Y4*Y4
0(4,2)=Y4%xY4-Y5%Y5
0(5,2)=Y5*¥Y5-Y6*Y6
0(1,3)=X1%Y1-X2%Y2
0(2,3)=X2*Y2-X3%*Y3
0(3,3)=X3*xY3-X4*Y4 .
0(4,3)=X4*xY4-X5%Y5
0(5,3)=X5*Y5-X6*Y6
0(1,4)=x1-X%2
0(2,4)=X2-X3
0(3,4)=x3-X4
0(4,4)=X4-X5
0(5,4)=X5-X6
0(1,5)=Y1-Y2
0(2,5)=Y2-Y3
0(3,5)=Y3-Y4
0(4,5)=Y4-Y5
0(5,5)=¥5-Y6
R(1)=vV1-V2
R(2)=Vv2-V3
R(3)=V3-V4
R(4)=V4-V5
R(5)=V5-V6

I1A=5

5
5

TRE T

n w
=0 nug

1JOB=0
CALL LEQIF(O,IA,N,MA,R,IB,M,I1J0B,WARA,IER)
UT(K)=R(1)
U2(K)=R(2)
U3(K)=R(3)
U4(K)=R(4)
US(K)=R(5)
PRINT 1616,U1(K),U2(K),U3(K),U4(K),U5(K)
1600 CONTINUE
DO 1609 1=1,TN
15=0
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AN=0.0
BN=0.0
DO 1610 N=1,TE
IF((1.EQ.E(N,1)).0R.(I.EQ.E(N,2)).0R.(I.EQ.E(N,3)).0R.
* (1.EQ.E(N,4)).0R.(I.EQ.E(N,5)).0R.(I.EQ.E(N,6)))GO TO 1612
GO TO 1610
1612 GRADX=-1.0% (2.*UT(N)*XX(I)+U3(N)*YY(I)+U4(N))
GRADY=-1.0%(2.%U2(N)*YY(I)+U3(N)*XxX(I)+U5(N))
GX (N)=GRADX
GY(N)=GRADY
BN=BN+GX (N)
AN=AN+GY (N)

I15=15+1
AAA=I5
1610 CONTINUE
FX=BN/AAA
FY=AN/AAA
1IF (FY) 61,62,63
61 IF (FX) 64,65,66
62 IF (FX) 67,999,68
63 IF (FX) 69,70,71
64 THETA= (PI+ATAN(FY/FX))*180.0/PI
GO TO 666
65 THETA=(3,0%PI1/2.0)*180.0/PI
GO TO 666
66 THETA=(2.0*PI-ATAN(-FY/FX))*180,0/PI
GO TO 666 .
67 THETA=180.0
‘ GO TO 666
68 THETA=0.0
GO TO 666
69 THETA=(PI-ATAN(-FY/FX))*180.0/PI
GO TO 666
70 THETA=90.0
GO TO 666
,,,,,, 71 THETA= (ATAN(FY/FX))*180.0/PI
GO TO 666
93898 PRINT 988

666 RM=SORT (FX**2+FY*%2)
IF(II .EQ. 2) THEN DO
RM2(I)=RM
THETA2 (I )=THETA
END IF
IF(II .EQ. 3) THEN DO
RM3(1I)=RM
THETA3(I)=THETA
END IF
GO TO 667
988 FORMAT(1H, , 'ANGLE INDETERMINATE')
667 CONTINUE
1609 CONTINUE
PRINT 1222,F
1222 FORMAT(10X,E15.8)
43 CONTINUE
SUM=0.0
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DO 3113 1IM=1,8
IM1=13%(2*IM-1)
IM2=IM1+1
AJ1=1.8%4,427E-14*ROV(IM1)* (RM2(IM1)+RM3(IM1))
IF(IM .EQ. 8) THEN DO N
AJ2=0.0
ELSE DO
AJ2=1.8%4,427E-14*ROV(IM2)* (RM2(IM2)+RM3(IM2))
END IF
SUM=SUM+AJ1+AJ2
3113 CONTINUE
SUMI=SUM*PI*1,0E8/30.0
EXPT=38.95
ERRI=(SUMI-EXPT)*100.0/EXPT
PRINT 123,1T,SUMI,EXPT,ERRI,ALPHA
“23  FORMAT(' ',12X,'ITERATION # =',16//12X%,
'I-TOTAL =',F9.3//12%,
'1-EXPTL =',F9.3//12X%,
'"ERROR-1 =',F9.3//12X,
'"ALPHA =',F4.1//12%,
'BEETA =',F4.1/'1")
PRINT 1000
1000 FORMAT(128('-')//'NODE #',3X,'PHIA',7X,'PHIB',
*5X, 'ERROR-PHY',4X,'EA',8X,'EB',6X, 'ERROR-E',
*2X, 'RHO-NEW', 3X, 'RHO-OLD', 3X, 'ERROR-RHO',
*x4%,"'JA',8X,'JB',6X, 'ERROR-J'//128("'~"))
DO 1234 JL=1,TN
ERRE= (RM3(JL)-RM2(JL))*200.0/((RM3(JL)+RM2(JL)))
PP(JL)=ROV(JL)*8.854E-14
IF(IT .EQ. 1) GO TO 2666
DP{JL)=EMTP(JL)*8.854E-14
2666 CONTINUE
IF(IT .EQ. 1) GO TO 5555
1F ((rov(JL) .EQ. 0.0) .OR. (EMTP(JL) .EQ. 0.0)) THEN DO
ERRR=0.0
ELSE DO
ERRR= (ROV(JL)-EMTP(JL) )*100.0/EMTP (JL)
END IF
GO TO 5556
5555 ERRR=0.0
EMTP (JL)=ROV(JL)
5556 CONTINUE
AJ=1.8*ROV(JL)*8.854E-04*RM3(JL)
BJ=1.8*ROV(JL)*8.854E-04*RM2(JL)
1F(AJ .EQ. 0.0) THEN DO
ERRJ=0.0
ELSE DO
ERRJ=(AJ-BJ)*200.0/(AJ+BJ)
END IF
IF(C2(JL) .EQ 0.0) THEN DO
ERRP=0.0
ELSE DO -
ERRP=(C3(JL)-C2(JL))*200.0/(Cc2(JL)+C3(JL))
END IF
PRINT 2233,JL,C3(JL),Cc2(JL),ERRP,RM3(JL),RM2(JL) ,ERRE,PP(JL.

G W —
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1pP(JL) ,ERRR,AJ,BJ,ERRJ
1234 CONTINUE
2233 FORMAT('0',13,2F11.3,F8.3,2E11.4,F10.3,2E11.4,F10.3,2E11.4,F’
IF(IT .NE. 1) THEN DO
PRINT 6333, (IN,EMTP(IN),YMN(IN),6YND(IN),EPN(IN),
1 ROV(IN),IN=1,TN) )
6333 FORMAT('0',I14,5F15.8)
END IF
DO 332 1=1,TN
332 EMTP(I)=ROV(I)
456 CONTINUE
C PRINT 100, (I,C(I),xXx(1),¥Y¥(1) ,I=1,TN)
100 FORMAT('0',10X,I18,10X,3F10.5/)
c100 FORMAT('0',10X,18,10X,F10.5,10%X,1X,F10.5,6X,F10.5/)
o WRITE(15,7778) (EMTP(1),Cc2(1),C3(I1),RM2(I),RM3(I),I=1,TN)
7778 FORMAT('Q',5F12.3)
8681 CONTINUE
STOP
END

SUBROUTINE COLSOL

PROGRAM
. . TO SOLVE SIMULTANEOUS EQUATIONS IN CORE, USING COMPACTED
. STORAGE AND COLUMN REDUCTION SCHEME -

. A = MATRIX STORED IN COMPACTED FORM

. \Y = VECTOR TO BE REDUCED

. MAXA = VECTOR CONTAINING ADDRESSES OF DIAGONAL ELEMENTS

. OF A

. NN = NUMBER OF EQUATIONS

. NWK = NUMBER OF ELEMENTS BELOW SKYLINE OF MATRIX A
NNM = NN+1

. KKK = INPUT FLAG

. IOUT = NUMBER OF OUTPUT DEVICE

OO0 N0O0O0000O0O0 OO0

COMMON /VENKA /A (230000),v(750) ,MAXA(700) ,NN,NWK,NNM, KKK
IF (KKK-2) 40,150,150
40 DO 140 N=1,NN
KN=MAXA (N)
KL=KN+1
KU=MAXA (N+1)-1
KH=KU-KL
IF (KH) 110,90,50
50 K=N-KH
1C=0
KLT=KU
DO 80 J=1,KH
IC=1C+1
KLT=KLT-1
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70

80
90

100

110
120

140

C

150

170

@]

200
714

220
711
230

KI=MAXA(K)

ND=MAXA (K+1)-KI-1

1Fr (ND) 80,80,60
KK=MINO(IC,ND)

Cc=0.0

DO 70 L=1,KK

C=C+A(KI+L)*A(RLT+L)

A(RLT)=A(KLT)-C

R=K+1

K=N

B=0.0

DO 100 KK=KL,KU

K=K-1

KI=MAXA(K)

C=A(KK)/A(KI)

B=B+C*A (KK)

A(KK)=C

A(KN)=A(KN)-B

IF (A(KN)) 120,120,140

WRITE(6,2000) N,A(KN)
STOP

CONTINUE

RETURN

REDUCE THE LOAD VECTOR

DO 180 N=1,NN

KL=MAXA (N)+1

KU=MAXA (N+1)-1

IF (KU-KL) 180,160,160

K=N

c=0.0

DO 170 KRK=KL,KU

K=K-1

C=C+A(KK)*V(K)
CONTINUE

V(N)=V(N)-C

CONTINUE

BACK SUBSTITUTE

DO 200 N=1,NN

K=MAXA(N)

V(N)=V(N)/A(K)

CONTINUE

FORMAT(218,E12.5)

IF (NN .EQ. 1) RETURN

N=NN

DO 230 L=2,NN

KL=MAXA (N)+1

RU=MAXA (N+1)-1
IF(KU-KL) 230,210,210

K=N

DO 220 KK=KL,KU

K=K-1

V(K)=V(K)-A(KK)*V(N)

CONTINUE
FORMAT(2X,18,3E15.8)

N=N-1
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RETURN
2000 FORMAT(//48H STOP-STIFFNESS MATRIX NOT POSITIVE DEFINITE ./

1 32H NON POSITIVE PIVOT FOR EQUATION ,14,//
2 : 10H PIVOT = ,E20.12)
END -
101 FORMAT('1")
ENTRY
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o

DATA INPUT FOR FEP (2-D)

TE Total number of elements

TN Total number of nodes at input

TDN = Total number of Dirichlet nodes (including secondary
nodes that are Dirichlet)

TALT = Total number of altered secondary nodes

TAD = Total number of secondary nodes that are Dirichlet nodes

NGP = Number of Gauss point gQuadrature

Mz jor nodes of triangular elements ex: 12 3
3

1 2
(x,y) coordinates of the major nodes

Altered coordinates of the secondary nodes
ex: 3 2 X y
elementy arm#  new coordinates

Mz jor Dirichlet nodes
ex: 2 100.0
node# Dirichlet value

Secondary Dirichlet nodes

ex: 3 2 100.0
element# armf Dirichlet value
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Appendix C

MESH GENERATING PROGRAM

//VENKA JOB '0817124,,,T=
// EXEC FORTXCLG,USERLIB
/FORT.SYSIN DD *.

Coooo-onooouooooooc.oa..oo.toceooocoto'o.o.ooooo.ocoo-oo.oo-oo.-loo

5,L= C 1,I1=20"', 'VENKA'
='85YS4. PIC LINK'

NELM: TOTAL # OF ELEMENTS.

NNOD: TOTAL # OF PRINCIPAL NODES.
DND(I,J) CORRESPOND TO X,Y COORDINATES.
NELM: TOTAL # OF ELEMENTS.

NNOD: TOTAL # OF PRINCIPAL NODES.
DND(I,J) CORRESPOND TO X,Y COORDINATES.

e TeNeTeNaTeXeXeReRe

ooonooo.--.oooo.uoo-oo..oooo-oo...nooooo.ooao..oeo-.uoou..to--onoo

DIMENSION 1BUF(4000),NEL(1000,3),DND(1000,3)
READ (5, * )NELM,NNOD
WRITE(6,100)NELM,NNOD
100 FORMAT (20X, 'THE NO. OF ELEMENTS',13,2X,'THE NO. OF NODES',I3
DO 5 1=1,NELM
READ(5,*) (NEL(I,J),J=1,3)
5 WRITE(6,97) (NEL(I,J),J=1,3)
o7 FORMAT('0',20X,314)
DO 6 I=1,NNOD
READ(5,*) (DND(1,J),3=1,2)

6 WRITE(6,98) (DND(I,J),Jd=1,2)
98 FORMAT('0',10X,2F15.4)
o PICK MAX. AND MIN. X AND Y
C SELECT THE LARGEST DIFFERENCE OF X AND Y
A=0.0
B=0.0
A1=0.0
B1=0.0

DO 7 I=1,NNOD
IF(DND(I,1).GE.A)A=DND(I,1)
1F(DND(I,1).LT.A1)A1=DND(I,1)
IF(DND(I,2).GE.B)B=DND(I, 2)
1F(DND(I,2).LT.B1)B1 DND(I 2)

7 CONTINUE
G=B
IF(A.GE.B)G=A
IF(G.GT.6.0)GO TO 10
$=6.0/G
GO TO 11

10 5=6.0/G
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11 DO 12 I=1,NNOD
DO 12 J=1,2

12 DND(I,J)=DND(I,J)*S
CALL PLOTS(IBUF,4000)
CALL PLOT(1.0,6.0,-3)
DO 14 1=1,NELM
N1=NEL(I,1)
N2=NEL(I,2)
N3=NEL(I,3)
X1=DND(N1,1)
X2=DND(N2,1)
X3=DND(N3,1)
Y1=DND(N1,2)
Y2=DND(N2,2)
Y3=DND(N3,2)
CALL PLOT(X1,Y1,3)
CALL PLOT(X2,Y2,2)
CALL PLOT(X3,Y3,2)
CALL PLOT(X1,Y¥1,2)

14 CONTINUE
CALL PLOT(12,0.0,999)
STOP
END

*

//GO.SYSIN DD =*
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Appendix D

MATRIX ELEMENTS STORAGE

A very important aspect in the computer implementation of
any method for solving system of algebraic eqguations is that
a minimum time should be used. In addition, high-speed
storage reguirements should be as small as possible to avoid
the use of back up storage. An advantage of finite element
analysis is that the stiffness matrix is not only symmetric
and positive definite but is also banded. The fact that in
finite element analysis all non-zero elements are clustered
around the diagonal of the system matrices greatly reduces
the total number of operations and the storage reguired in
the eguation solution. However, this property depends on
the nodal point numbering of the mesh, and care must be ex-
ercised to obtain an effective nodal point numbering. The
Figure D.1 shows the element pattern of a typical stiffness
matrix. Derivation of the storage scheme and addressing
procedure that is being adopted is as follows. Since the
matrix is symmetric, we need to store only elements above
and including the diagonal. It can be observed that the el-
ements (i,j) of K(ie. Kij) are zero for j>i+m . The value m
is known as the half-band width of the matrix. Dgfining by
m the row number of the first nonzero element in column i,

the variables m. i=1,2...n define the skyline of the ma-
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trix, and the variables (i—mg are the column heights. Fur-
thermoré, the half-band width of the stiffness matrix, my
,equals the maximum degree of freedom pertaining to any one
of the finite elements in the mesh. The column heights vary
with i, and it is important that all zero elements are out
side the skyline not to be included in eguation solution.
on the other hand, zero elements within the skyline of the
matrix are stored and operated upon, since they will be-
come, in many cases nonzero elements during the matrix re-
duction. With the column height of the stiffness matrix de-
fined, all elements below the skyline of K can be stored as
s one dimensional array; ie the active columns of K includ-
ing the diagonal elements are stored in A. Figure D-2 shows
which storage locations the elements of the matrix K given
i, the Figure would take in A. The addresses of the diago-
nal elements of K in A is stored in an array MAXA; ie., the
o3dress of the i th diagonal element of K, Kii in A is
MAXA(T). From Figure D-2 it can be «clearly seen that
MAXA(I) 1is equal to the sum of the column heights upto
(i-1)st column plus I. Hence the number of nonzero elements
in the i th column of K is egual to MAXA(I+1)-MAXA(I), and
the element addresses are MAXA(I) ,MAXA(I)+1 ... MAXA(I+1)-1,

The storage scheme described above is wused in computer
program, in Appendix A. The effectiveness of the scheme
lies essentially in that no elements outside the skyline are
stored and processed in the calculations. it should be

borne in mind that in the discussion of the above storage
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scheme,

does fit

it was implicitly assumed that the entire array A

into available high speed storage of the computer.

program COLSOL is an active column solver to obtain obtain

T . . . .
LDL factorization of a stiffness matrix or reduce and back

substitute.

The complete process gives the solution of the

finite element eguations. The argument variables and use of

the subroutine are defined by means of the comment cards in

the program.

Figure D.2

mg =3
-——— Skyline
. q
knlky| O ka0 0O 0 O
~
kya{ k33| O | O 9 0 O
L SR
kyy | k34 1 0 | k36 ~0 0
K Lku Lk.s k46 0 \0’
i N
ke Lkss 0 { k58 }\
"ee\Lksr 0
Symmetric
k”\Lk,B
kgg
. N
A(21) stores kgg
Figure D.1 Actual stiffness matrix
- " ~
All}  A(3) A(9) 1
Al2) A(5) A(8) 2
Ald) A7) A(15) 4
A AlB) A{11) A(14) 6
® IMAXA =
A(10} A(13) @ 10
A{12) Al1T) A(20) 12
Al16) Al19) 16
A(18) 18
L J
L22

Storage scheme used for a typical stiffness matrix
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