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ABSTRÀCT

In this t,hesis an algorithm is presenLed for the evalua-

tion of the field quantities at the surface of a monopolar

coronating conductor. The basic goal- of this work is to de-

Lermine, numerically, the variation and magnitude of the

electric field intensity around the surface of the coronat-

ing conductor" À finite element based scheme has been used

to solve the ionized field problem. The algorithm has been

inrplemented for conductors of both positive and negative po-

l-arity" In the proposed scheme the third boundary condition

reguired to obtain a solution to the ionized field problem

is supplied in the form of measured ionic current density

distribution at ground level.

The resufts show that, following the onset, the average

conductor gradient drops below Peek's onset value. The ex-

tent of this drop is shown to depend on the applied voltage"

It is also shown that the electric field at the surface of a

coronating conductor varies around its periphery. The ex-

tent of variation is greater than that before onset.
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ChaPter I

I NTRODUCTT ON

One of the important factors which affects the design of

a HVDC transmission line is its corona performance. Corona

is an electric field related phenomenon which occurs when

the electric field at the surface of a conductor exceeds a

critical value known as the onset gradient [14]. Consider

the case of a single conductor situated at a constant height

ab'ove a perfectly conducting ground. lf. the voltage applied

to the conductor is increased, the associated electric field

al,so increases in direct proportion. The field is Laplacian

¿¡r,.1 remains so until the el-ectric gradient at the surface of

the energized conductor exceeds the onset gradient. Àt this

:::n'-, the surrounding air gets ionized; i.e" the air may no

longer be considered as a perfect dielectric. In fact due

ro ionization, ions exist in the Space between the conductor

a¡-¡i ground" It is the movement of these ions t.hat consti-

tutes corona current and the associateo polter loss.

HVDC transmission line corona is an extrernely complex

phenomenon. It depends on design factors such as applied

voltage, line geometry and other parameters such as conduc-

tor surface irregularities, weather conditions(relative hu-

nidity,rain,fogfsnow etc. ) and atmospheric purity(dust con-

irnt ) .
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The phenomenon of corona on overhead H\DC transmission

Iines manifests itself as a steady unidirectional flow of

ionic species, away from the efectrode in coronã. In the

case of unipolar corona, the polarity of the ionic species

coincides with that of the coronating electrode. In bipolar

corona, ions of each polarity are generated near the corre-

sponding pole of the HVDC line" Positive ions dominate the

region between the positive pole and ground, while negative

ions take up the corresponding space near the opposite pole.

In the zone between the two poIes, ionic species of both po-

larities are present.

The occurrence of corona generates audible noise, radio

and TV interferencei besides as already mentioned, it causes

por¡er loss[11]. ÀIso, the generated ions cause the e]ectric

field at ground level to increase beyond the electrostatic

value. The ions close to the coronating conductor have ve-

Iocities far in excess of normat wind velocities. However'

aS the ions move away from the energized conductor their ve-

locities decline and, in the low field areas, become compa-

rable to typical wind velocities. Under such conditions the

movement of ions can be influenced by windlZll" Consequent-

ly it is possible for ions generated by a transmission line

to accumulate on metallic or dielectric objects situated

downwind and remote from the line" This process resul.ts in

the charging up of the objects and thus constitutes a shock

hazard[20]. There is also considerable concern regarding

2-



the biological effects of the ionic current" ÀI1 the above

mentioned effects are of practical importance because the

present day practice is to design transmission l-ines which

operate at voltage Levels well beyond onset. For exampfe,

the conductors of the Nelson river transmission line are

scheduled to operate at a theoretical gradient of 25 kV/cn"

Taking into account a surface factor of 0.5[21], the effec-

tive gradient is approximately 50 kV/cm and the line will be

operating well into corona. It should be clear from the

above that the predetermination of the corona performance of

a line is important.

1 .1 Problem formulation

For all cases of DC corona, the flow of ions is deter-

nined by the magnitude and direction the local electric

field intensity E. This quantity in turn, is the resuft of,

on the one hand, the effects of electrode geometry and on

.ire other the influences of all charges distributed in

space. Às a consequence, the electric field intensity vec-

tor is governed by both, the potentials applied to the elec-

trodes, and the space charge distribution which is influ-

enced by the electric field E" This mutual interaction

L¡etween the fundamental quantities is reflected in the math-

ematical formulation where the permittivity of free space,

É. ¡ and ion mobility k are also taken into account.

3-



The system of equati

discharge in the steady

ons describing the

state are

monopolar corona

:- P/e

@):o

These equations represent the

inhomogeneous Laplace' s equation

field as derived from the scalar

Poisson's equation and the

respectively. The electric
potential O is

v.v Õ

v.(pv
(1.1)
(1.2)

In equation (1"2)

tion of position.

from equations (1.1)

corona problem.

E:-V @

p , volume charge density, is a

The simultaneous solution of O

and (1.2) yields the solution

(1.3)

func-

and p

to the

Equations (1"1) and

thi rd order , nonl inear

be represented

ferential equat

by a single

ion, namely

( 1 .2) can

partial dif

v .((v .v o)v Õ):0

This is the general form of equation describing monopolar

corona.

Solution of the DC ionized field is in general, extremely

difficult because of the nonlinearity of the equations de-

scribing it. Furthermore, the main difficulty in the theo-

retical analysis is that, ât the conductor surface no elec-

(1.4)
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trical quantities except its pot,ential are known. Thus all

attempt.s in the IiteraLure are based on some simplifying as-

sumpt i on s

1 .2 Boundarv condit ions

The following boundary condit'ions are used

of the problem,

The potent ial on t,he coronat ing conductor

in the analysis

is known "

Since for transmission I

unbounded, an artificial

ú:. scance f rom the energized

that boundary assumed to

electrostatic value

(1.s)

(1.6)

ine configurations, the domain is

boundary i s P1aced at a sui ta ol-e

conductor, with the Potential on

be equal to the corresPondilig

@*V

The potential on the ground Plane is zeto.

(Þæ 0

@ = O
es

The two boundary conditions equations (1"5) and (1.6) are

not sufficient to obtain a unique solution Èo the problem'

Therefore, the first attempts at a solution were based on

the Deutsch assumption which states that the presence of the

5-



space charge affects only the magnitude and not the direc-

tion of the electric fie1d. The assumption simplifies the

problem because it reduces 2-dimensionat ionizeð field prob-

lems to a 1-dimensional problem. Hor¿ever, the methods em-

ploying Deutsch's assumption yield accurate results at low

levels of corona current only[11].

Deutsch's assumption has been waived by many researchers

who adopted a finite element technique to solve the ionized

field problem. However, a third boundary condition is sti1l

neceSsary. 1o fulfill this condition the researchers have

used the Kaptzov assumption which states that after onset of

corona the magnitude of the electric field intensity on the

conductor surface remainS conStant at itS onset valuer F€-

gardless of the magnitude of the applied voltage.

Yet another group of researchers 117) have provided the

third boundary condition in the form of constant charge den-

sity of the corresponding polarity on the surface of each

source conductor. The drawback of their method is that Pt

the charge density is not known a priori" In order to ar-

rive at a solution the authors use experimentally determined

values of totaf current emitted by a fuIl scale model of the

transmission 1ine. The authors, however do not present any

results concerning the variation of field guantities around

the coronating conductor surface.

6



The invalidity of the Kaptzov's assumption is easily as-

certained from physical consideraLions[10]. Consider a mo-

nopolar transmission line with the conductor ehergized at

positive polarity, ât a voltage greater than the onset val-

ue. In this case the electrons are attracted towards the

conductor. In the high field areas they are effective ion-

ízers and positive ions are produced. The fast moving elec-

t,rons are neutralized at the anode leaving behind a cloud of

slow moving positive ions which effectively lower the elec-

tric fietd at the conductor surface. The percent decrease

rn the surface electric field depends on the positive ion

charge density and will not be the same at all points on the

conductor periphery. The situation about a negative charged

monopolar conductor is different. Here, the electrons are

iÉ:pe1led from the conductor and form avalanches in the high

field region. The electrons move quickly alray from the cor-

:-,rting conductor leaving behind a cloud of positive ions

whi.ch journey slow1y towards the conductor where, eventuaL-

\y, they get neutralized. However the presence of the ionic

späce charge increases the elecbric field at the conductor

surface. Às in the previous case the percent increase is

not uniform at all points on the circumference but depends

on the space charge densitY.

Experimental evidence provided by Popkov [15] supports

the conclusions arrived at above from consideration of the

basic physical process. Popkov's investigation of fields at

7-



the conductor surface was carried out by using an incandes-

cent probe" His experimental line consisLed of a conductor

of radius 0,056 cm which was held at a constant h.eight of 25

cm above a ground plane. Measurements were carried out at

both positive and negative polarities to yield the distribu-

tion of ion density, potential and electric field E" Popkov

concluded that there is a variation in the electric field

around the conductor surface; the extent of variation was

found to depend on the charge density.

1 .3 Thesis obiective

The main objective of this thesis is to determine' numer-

ica]Iy, the nature of the variation and magnitude of the

electric field around the surface of a coronating monopolar

conductor; i.e. to examine the validity of Kaptzov's aSSump-

tion. A finite efement based technique has been used to

solve equations (1.1) and (1"2) iterativeLy and calculations

have been performed for both positively and negatively

charged conductor. Às explained earlier a third boundary

condition is necessary to enable a solution of the ionized

f ield problem. In the present work this is supplied in t.he

form of known values of ionic current density at the ground

as determined experimentally. Using this value, âD algor-

ithm has been developed which enables t.he determination

all the field quantities at the surface of the coronat

conductor "

of

ing
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Three geometries have been examined in this thesis; in

each case, tor the voltage 1evels considered, accurate val-

ues of íonic current density at ground level measured under

still air conditions were available from literature.

Before a finite element solution could be implemented it

was found necessary to examine certain aspects concerning

the accuracy of the electrostatic field solution and its de-

pendance on mesh size, growth, shape and nature of the in-

terpolating polynomiat. This work is presented in chapter

II.

ChapÈer III deals with the solution of the ionized field.

The field quantities at the conductor surface have been com-

puted. Chapter IV presents the conclusions of this work.

9



Chapter I I

ELECTROSTÀTIC FIELD SOLUT]ON OF
TRÀNSMISSION LINE

À MONOPOLÀR DC

The electrostatic field solution under HVDC lines ob-

tained by application of the finite element method, FEM, is

important not only by itself but also because it may be used

to evaluate the accuracy of the FEM solution of the associ-

ated ionized fieId. Indeed, the solution of the ionized

field problem employs the same Laplacian operatori the accu-

racy of this solution which is obtained on an iterative ba-

sis can not be checked because an exact analytical solution

does not exist. The determination of the accuracy of the

Finite Element electrostatic solution for the monopolar sin-

g]e conductor geometry, on the other hand, is possible be-

cause of the existence of an exact method for the calcula-

t.ion of the eLectrostatic fieId.

Ànother important reason for considering the analysis of

the electrostatic field is that the algorithm set up in this

thesis(Chapter 3) for the calculation of the electric field

at the surface of the coronating conductor empJ.oYS, initial-

1y, the electrost,at ic vaf ue. Naturally it is desirable to

use accurate values. Àlso, the potential at nodes on the

artificial boundary is maintained at its electrostatic val-

ue. It is therefore obvious that the electrostatic analysis

10



is very important. Furthermore, it is known that the accu-

racy of a finite element. solutiorr is dependent on the type

of the mesh, mesh density and growth[31. Since the same

mesh has been used for the ionized field solution, the accu-

racy of the electrostatic solution wiIl provide some infor-

mation regarding the accuracy of the ionized field results

obtainable from that mesh"

The accuracy of the FEM electrostatic solution was as-

sessed by performing computations on two models of a trans-

mission line of the general geometry shown in Figure 2"1

'*;nich aLso shows the values of the H and r in the two mod-

e1s.

Due to the large H/r ratio, typical of transmission

iines, the choice of element shape, density and growth pat-

rern becomes critical especially in the high field region.

The choice of the interpolating polynomial is also important

and is related to mesh densitY"

Two different meshes were used in the analysis. For mod-

eI 1, a mesh composed of 195 principle nodes and 335 e1e-

ments was used with 15 conductor nodes and 14 ground nodes.

For model 2 the mesh consisted of 121 principle nodes , 195

elements, 11 conductor nodes and 10 ground nodes. This fi-

nite element mesh is shown in Figure 2"2 which also Shows

the artificial boundary. It may be noted that that the ar-
+. i f icial boundary meets t.he ground at a lateral distance of

6.3i1 where H is the conductor height. The bipolar system of

11



Figure ?"1 Conductor to plane geometry

nodel 1 model ?

H (cm)

r (cm)

H/r

200"0

0"25

800

40"0

0. 165

242
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Figure 2"2 Finite Element Hesh of model 2

13



coordinates (Chapter 3) was employed to fix the focation

the nodes, Èhe basis for which will be made clear in

next chaPter.

Dirichlet conditions were enforced on the conductor and

ground. The potential at nodes on the artificial boundary

was caLculated by replacing the conductor with a filamentary

line charge at its geometrical center and imaging it with

respect the ground p1ane. For the chosen configuration, the

expression for potential at any point (x,Y) is given by

of

t.he

O=$r"ffi (2.1)

was assessed

obtained from

carried out at

and the electric
values,

field is evaluated using its component

-gAHx(H+y) (2.2)FÞl

( x2+y2)(r2+(y+zH)2)

E,: 4AH (y2+ZH y -¡2) (2.3)(r2+y')(12+U2+zHf,)

In eguations (2"1)-(2.3) À is a constant and can be found

by enforcing the Dirichlet condition in equation Q.1)" For

Iarge H/r values i'e. tl/r

be considered to yield almost exact values [21 ] '

The accuracy of the electrostatic sol'ution

by comparing the numerical results with those

This comparison wasequations Q"1l-(2.3).

14



nodes on the ground, the conductor surface and along t.he

vert, ical l ine joining t,he center of the conductor to ground.

lnitial computations rùere carried out using Iinear, quad-

ratic and cubic elements; the accuracy of the resufts ob-

tained using these interpolating polynomials ttere com-

pared[18J with each other. The comparison study indicated

that best results are obtained with the use of quadratic el-

ernents. An advantage of employing quadratic elements is

that the conductor surface can be modelled faithfully¡ using

i soparametric elements.

Since a node is shared by more than one element, there

are as many values for E as there are elements which share

rhat node" In order to obtain a unique value fot E, âh av-

eraging process has to be resorted to. For example, one may

compute the arithmetic mean or the area'weighted mean value

ôr the value obtained from centroidal length weighting; i.e.

ó

2e'
- I -lFþ 

^ú1. n

6

}, A¡ E,
.- j=l
A:
" øttc i

:Ai
, =l

ålt Et
J =l

n

2r,
I -l

centroidal length weighted average

arithmetic mean weighted average

area weighted average (2 .4)
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vrhere

n = number of el-ements which share a common node

Et = electric field of the ità element

At = area of the i,à element

À comparison study indicated[18] tlat, except on the con-

ductor surface, there is not much difference in the values

of E obtained by employing the three averaging methods. On

the conductor surface, the use of the area weighting tech-

nique provides only a slightly better result. Based on

these findings, it v¡as decided to use quadratic interpolat-

ing polynomials and calculate the electric field at a node

by computing the arithmetic mean of the field values con-

trih.¡uted by all elements sharing that node.

¿.1 Discussion of results

The results obtained from the electrostatic analysis of

riìorlopolar single conductor geometry, f or both modeIS are

presented in Tables 2.1-2.6. The conductors of models 1 and

2 were assigned potentials of 300 and 80 kv respectively.

The variation of electrostatic potential and field along the

vertical Iine joining the center of the conductor to ground

is shown in Table 2"1 for model 1 and Tab1e 2.4 for model 2'

Tables 2"2 and 2.5 present information regarding the varia-

tion of the electrostatic field intensity around the conduc-

tor surface for the two models. Field variations along the

ground are shown in Tab1es 2"3 and 2.6 for models 1 and 2

16



respectively. From these Tables it is seen that all errors'

in both f ield and potential, are less t.han 1eo" Tables 2"1

and 2.4 show that for both models, the error in p-otential is

maximum at a node next to the ground node on the vertical

line joining the center of the conductor to ground. The

maximum error in the electric fieId, however, does not occur

at this node, but at a location much closer to the conduc-

tor . Compar i son of the data in Tables 2.2 ,2 .3 ,2.5 and 2 .6

shows that the maximum error in lfl along the vertical l-ine

joining the conductor center to ground is greater than the

errors around the conductor and along the ground.

It may be noted that, along the ground the maximum error

in iFf occurs at a lateral distance in excess of four times

the conductor height in both models. The magnitude of the

ei'ror is less than 1>o. Errors in the angle of E Þtere also

monitored. They were found to be much Ior¿er than errors in

the corresponding magnitudes of E. Figures 2.3 and 2.4 show

the variation of the electrostatic field around the conduc-

tor surface. In model 1 the variation, defined by:

luax" lrl - Min. lnll/tttax. lrl

is 0.133e". The corresponding value f or model 2 is 0.363e".

The reason for the large variation in the latter case is due

to reduced value of the ratio H/r.

From the above, it is concluded that the use of quadratic

el:ements and the arithmetic mean averaging technique of

electric fietd calculation results in extremely good accura-

17



cy for the finite element electrostaLic solution of the ge-

ometry of models 1 and 2' Since the same mesh is used to

obtain the ionized field solution, one expects that the mesh

characteristics and the finite element field calculation

techniques adopted will contribute insignificantly to the

overall error.

À brief discussion of the finite element

implementation is included in Àppendix À.

method and its

18



:'
(cm)

Exac t
potential

(kv)

Computed
potent ia I

( kv)
9oEr ror

Exac t
E f ield
kv/cn

Computed
E field
kv/cn

9oError

0.25 300.00 300.00 0.000 162.77 1 62 "64 0.086

'r, . ¿, i)

i L).85

27 4.96 275.13 0"050 88.10s 88.018 0.099

250.01 2s0.1 3 0.048 47.754 47 " 583 0.3s8

I 1 . sB 225.01 225 .1 1 0.042 25 "920 25.790 0.498

Z -tt) 200.01 200. 18 0.082 14.110 14.030 0.59s

\ ., it

9.76

175.01 175.15 0.080 7 .724 ?.669 0 .712

150.01 150.10 0.062 4.272 4.245 0.632

1 't ,'7

Jr.5

s;.;-
I

i-

125.01 125 .12 0.089 2 .407 0.389 0.748

100.01 100.09 0.086 1.401 1 .393 0.571

75.01 75.11 0. 137 0.862 0"858 0"464

aì| -V. r
I

50.00 50. 13 0.244 0.581 0.577 0.588

140 .4 25 " 00 25.08 0.316 0"446 0.443 0.573

2DA .0 0.00 0.00 0.407 0.4064 0.067

T'aole 2.1 Variation of @and I along the line 0= 0

(mode). 1 , @= 300 kV)
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g0

Exac t
E f ield
kv/cn

Comput ed
E f ield

kv/cn
9o Er ror

0.0 162 "7 66 162 "626 0.086

12.847 162 .7 62 162 "47 6 0.175

25 .663 162 .757 162 "346 0.253

38.509 162 .7 45 162.322 0.259

s1 .365 162 .727 162 "309 0.257

64.204 162 .712 162.301 0.2s3

77 .059 162.688 162 .292 0.243

90.000 1 62 .664 162 .284 0.234

102 -7 4 1 62 .641 162 .27 7 0.224

1 15 .62 1 62 .623 162 .268 0.218

128 - 47 152.601 162.260 0.209

141.38 1 62 .591 162 .257 0.205

154.24 162.571 162 .246 0.200

167.12 162 .563 162 .239 0. 199

180.00 1 62.55 162 "228 0.198

Table 2.2 Variation of E around the conductor

(model 1, @= 3oo kv)



x
m

Exac t
g field

kv/cm

Cornputed
E f ield
kv/cn

9o Er ror

0.000 406 "662 406 " 389 0.067

0.225 401 .564 401 .236 0.082

0.457 386.526 386. 1 89 0"087

0.699 362 "302 362.127 0.048

0.963 380. 1 06 329.863 0.074

1 .257 291 .553 291 "243 0. 106

1 .595 248.577 248.391 0.07s

1 .999 203.332 203.284 0.024

2.508 1 58.086 158.009 0.049

3.183 1 15. 109 115.046 0.064

4.153 76. 558 7 6 .436 0.158

5.176 44 .361 44.281 0.179

8.760 20.136 20.098 0.191

Table 2.3 variation of E along ground

(model 1, O= 300 kV)
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v
cm

Exact
potentiaJ.

kv

Computed
potential

kv
9"Error

Exac t
E f ield

kv/cn

Computed
r field

kv/cn
9oError

0.155 80.000 80.000 0.000 78.590 78.486 0.132

0.305 72.001 72.047 0.055 42.536 42.448 0.207

0. s65 64"013 64 " 043 0.047 23.081 22 "997 0.364

1 . 041 s6.004 56.032 0.050 12.591 12.509 0.651

1 .911 48.003 48.028 0.052 6.937 6.879 0.836

3.176 40.002 40.024 0.05s 3.892 3.856 0.925

6 "219 32.010 32.019 0.028 2.256 2 -249 0.310

i 0 .822 24.007 24 .01 4 0.029 1.383 1.377 0.434

18.000 1 6.004 16.011 0.044 0.927 0.924 0,324

28 .012 8.001 8.021 0.249 0.71 1 0.708 0 .429

40.000 0.000 0.000 0.647 0.6468 0. s68

Tabl. e 2.4 Variation of ôand g along the line 0 = 0

(model 2, @= 80 kv)
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00

Exact
E f ield
kv/cn

Computed
E f ield
kv/cn

9oEr r or

0.0 78.590 78.486 0. 132

17"93 78.582 78.441 0. 179

35"86 78.551 7 I .424 0"174

53.79 78.527 78 " 403 0.158

71 "72 7 8 .482 78.384 0. 125

89.6s 7 8 .432 78. 318 0.145

1 07.58 78"385 78.271 0.145

1 25.51 78.344 78 "239 0.134

1 43 .44 78.311 78 "207 0.133

161 .37 79.298 78 "204 0 " 120

180.00 78.288 78 .20 1 0.111

Tab]e2.SVariationofEaroundtheconductor(model 2, Ö= 8o kv)
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x
cm

Exact
E f ield
kv/cn

Computed
E f ield

kv/cm
9oEr r or

0.00 547 .064 646.873 0. 187

6 "34 631 "209 630.982 0.3s9

12.99 585.276 s85"109 0.28s

20.38 s13.701 513.584 0.228

29.06 423.512 423.396 0.274

40.00 323.53s 323.469 0.204

5s.06 223.559 223 "491 0.304

78.50 133.367 133"286 0.607

121.11 61 .791 61 .736 0.890

252.55 15.835 1 5"826 0.568

Table 2.6 Variation of E along ground
(model 2,@ = 80 kv)
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Chapter III

I ONT ZEDÀNÀLYSIS OF DC FI ELD

Às pointed out earlier, the basic aoal of this thesis is
j-s to evaluate the magnitude and variation of the field

quantities E and p around the surface of a coronating monop-

olar conductor and to examine the dependence of these guan-

tities on conductor potential. Such an analysis requires,

¿haÈ the conductor field gradient, for potentials greater

tiran the onset value, is not constant at the onset value i.e.

the Kaptzov assumption can not be utilized. Therefore the

Lhircl boundary condition is supplied in the form of experi-

nental values of current density at ground level. These ex-

perimental values wilI have to be obtained under sti11 air

condition as the analysis does not take into account wind

effects. No measurements vrere conducted in this work; the

experimental values were obtained from fiterature" The

analysis has been carried out for three different models,

some characterstics of which are included in Tab1e 3'1"

Figure 3,1 shows the experimentally obtained current density

distribution at ground level for each of the models.

For the sake of completeness, the equationS governing mo-

nopolar corona are described below.
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Model 1 Model 2 Model 3

Reference # l8l 1,2) [1s]

Author M. Hara et. aI Abdel Salam V.I. Popkov

H 200 cm 40 cm 25 cm

r 0.25 cm 0"165 cm 0"056 cm

u/r 800 242 446

Da ra ava i labl.e J,E J J'I

o 200V,300 kv 80 kv 50 kv

Onset voltage 93.8kv s6"55 kv 27 .75 kv

+ve onset
grad i ent 50.84 kv/cn 55.42kv/cn 7 2 .92kv /cn

- ve onset
grad i en t 52.92kv/cm

Table 3.1 Some features of the models under consideratlon
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Condsct€n

-. - JH/ t,'-pz<;æI.S Va/m
--- JH/ L .'f-<'t*I4lt{'

F i gure

0

3.1.3

" x/H

Ionic current density distribution

for model 3 obtained from [15].

lt is the total corona current.
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3.1 Mathematical model of monopolar corona

The system of equations describing the

discharge in the steady state are

V.vÕ=-ple
V.(pV Õ):0

monopolar corona

(3.1)
(3.2)

1S

The electric f ield as derived from the scalar potential

E=-VÕ

The above system of equat ions ( 3. 1 ) - ( 3.2 ) can

by a single third order, nonlinear partial

equation namely,

be replaced

di f ferent ial

Àn analytical treatment

is possible only in a few

(3.3)

yielding closed-form expressions

simple cases ç¡hich exhibit high

v .((v .v 6)v o¡:s (3.4)

Eguation (3.4) requires three boundary conditions for its

solution. However, only two are available in the form of

conductor potential and ground potential" The selection of

the third boundary condition plays an important role in the

solution of equations (3.1)-(3.2)" Besides, no information

is available regarding the distribution of E,Ö and P in the

interelectrode space.
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symmet.ry i"e. infinite parall.el plates, infinitely long co-

axial cylinders and concentric spheres. In such cases equa-

tion (3.4) reduces to an ordinary differential eguation.

Às an example consider the geometry of an infinitely long

coaxial cylinder shown in Figure 3.2" The inner conductor

is held at a potential v while the outer one is grounded.

Symmetry dictates that all electrical quantities ví2. ó, E

and p are functions of radial position r in cylindrical co-

ordinates " The governing eguations in cylindrical coordi-

nates are
(1/r) d /dr(rdA/dr): -p/e

(3"s)

7/r d /dr (rodQ/dr¡ : g

From equation (3.6),

(3"6)

r pd$/dr = K

-r1Pc Eo = K

From eguation (3"7),

r dQ f dr =-rtp, E"/?

From equation (3.5),

(3.7)

(1/r) d /dr (r t p, Eo /p) = ç /e

(Eo po r¡)/r d /dr(l/p) = p/c

33



Figure 3"2 Coaxial cy).indrical geometry.
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(,- E, pe r rfr) (t/pz) d p/dr : p/ e

-,t (p/p3) : , dr /(e Eo e, t't)

(Ltz) (1/p2) : ,?/(2"" Eo p" rtl

t/p2 : t/p? + (r,-rl)/e, E" e, r,

P=\4 eo Eo P, r,
(r'-r l )*., Eo r t/p,

= (kt/r') Ç*p,

(3.8)

dQ/dr

where

L_É¡

and P2:eEo rtl P" ,l

Õ(r) : -*rl{1r2+p2)-p tnþ+{Qz+p2\/r)l 3

Imposing the boundary condition at r=rr we obtain'

ö(r) = v -kíl r (r)-& ,+klQn(r lr,'¡+ln(å3+& )-tn(kr+/ (')))l (3.9)

where

&z: kte/p,

kt:{ttEoe o,¡¡f tU)

Í t þ) : f('2-rl +*|¡



From the foregoing analysis, it is evident that it is

very difficult to obtain a closed form solution of the ion-

ized field problem. It can also be noted that one has to

solve the transcendental equation (3"9) to obtain the value

of Pe. Knowingp", the value of. E and all other field quan-

tities at any radial distance can be found, Two other sim-

ple cases which can be dealt with in similar fashion are

geometries of the infinite paralle1 plate and concentric

spherical configurations. All other cases must rely on some

simplifying assumptions and numerical formulations.

3 "2 Steps involved in the
monopofar corona

ionized field solution of

À logical iterative scheme using a numerical method (f'nU)

consists of the following steps.

Step Discretize the problem domain into finite elements.

Step 2: Specify initial values of

at all nodes.

p in the prob)-em domain

Step 3: Solve equation (3.1) for potential, with the values

of p chosen as in Step 2 and compute E and J values at aLl

nodes. The mobility, &+or k-, depending on the polarity of

the energized conductor, is assumed to be constant.

Step 4: Using the same values of p used in step 2, solve

equation (3.2) for potential and conpute the field quanti-

ties E and J at all nodes in the problem domain"

1:
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Step 5: the field solution obtained in steps 3 and 4 will

differ if the distribution of p is incorrect. i.e' the po-

tential and field values at any node obtained in steps 3 and

4 will differ. Therefore, in step 5, the value of P is cor-

rected so as to bring the potential and field values comput-

ed from equations (3.1)-(3.2) as close to each other as pos-

sible at all nodes. This is accomplished by using the most

recent field values from steps 3 and 4 in an updating formu-

la for the charge density.

Step 6: Steps 3-5 are repeated until specified convergence

criterion are met.

Each of the above steps is discussed below in detail.

Step 1 ; consLruction of the Finite Element mesh

Table 3"2 Summarízes the characterstics of the meshes

used to obtain t.he ionized field solution of models 1- 3.

In all cases a quadratic interpolating polynomial Y¡as

used. The electric field was calculated using the arith-

metic mean technigue as explained in chapter II. In the

case of model 3 with an tl/r ratio of 446, as shown in Table

3.1, the mesh is identical to the one used for analyzing

model 2" Às already mentioned, the solution of the differ-

ential equations governing corona, using FEM, requires the

problem domain to be subdivided into sma1I elements. In

this work the location of the nodes is chosen so aS to re-

produce the bipolar coordinate system (E,n)"
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Model- 1 Mode1 2 Model- 3

iìeference# t8l l2l llsl
u/r 800 242 446

lJ umbe r
of nodes 195 (7 27 ) 121 (440) 121 (440)

ì{umber
of elements 33s 195 195

N'.'rnbe r
of ground

node s
14 10 10

N umbe r
of conductor

nodes 15 1',I 'l'l

I

' L,utera]
I aistance of
I t¡," farthest
I ground node
I f rom thet_
I conductor
I center 8.75H 6. 3H 6. 3H

L--

na\le 3.2 Characterstics of the meshes used in the analysis.
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While the nodes are defined

cartesian coordinates (x,y) , the

latter are selected in such a way

ditions

and ident

numerical

so as to

i f ied by thei r

values for t.he

satisfy the con-

Ë = Constant

Tl = Consldtit

The relations between the two sets

sian(x,y) and bipolar ({,î) are

of coordinates, carte*

nts plotted Ín

The center of

int (0,C cotht)

J:

v:
whe re

ç =ffi and

H is the height

t he conductor radius.

If. t is kePÈ constant

cartesian coordinaÈes, t

the circle is located on

and its radius is C coshf

/- s¡n fl
" (cosh [ + cos q)

sinh Er' -" (cosh f + cos r¡)

of the conductor above ground and r is

, the locus of Poi

races out a circle.

the y axis at the Po

Similarly if Ë is allowed

circles are centered at (-C

c osec 4

to vary, keeping n

cot4 ,0"0) r¿ittr

constant, Lhe

a radius of C

Às Ë and ? are independent of each other and since the

ccnstant f and q circles are centered aJ.ong the x and y axes

respectively, the two families of circles are mutually or-

thogonal to each other at the point of intersection. In-
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deed, for the geometry considered i.e. cylindrical conductor

at constant height above a pIane, the consLant f circles de-

fine equipot.ential lines and constant ? circles - define the

flux Iines in the absence of corona. Choice of the no<le

placement as described above proves to be advantageous while

executing the numerical procedure.

The finite element mesh rsas generated by using a semÍau-

trrnatic procedure, the program for implementation of which

j. s shown in Àppendix C.

3.2.2 Step !i selection o'f initial p distribution

The initial values of p at all nodes were specified as

í¿1Lows. First the totaL curren! emitted by t'he conductor

at e particular voltage was computed by finding the area en-

closeci by the ground ionic current density profiles ( i.e '
Fi gure 3.1 " 1 for model 1 ) . Alternatively, this current may

be obtained directly from the VI characterstic if available'

Next, Since the corona current density around the conduc-

tor surface is known to be cosinusoidal, [13] ttre conductor

current density value at any angular position,0, J was writ-

Een âs r

J(0) : J*", "rt 1 |)
(3.10)

J.-,. = J(0:0) = ¡,

where
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The total

ing J around

corona current

the conductor

, Í t, is calculated

sur face .

by integrat-

(3.11)

was calcu-

trt : 2r (0)l"t $>¿

which yields

The charge densitY

lated using the relat

I.
t-Jrb 4r

values at conductor nodes

ion

J : kpE, (3 .'t2)
where

J=J ( 0) and

¿ =¿+or &- depending on the conductor PolaritY and

field quantitY at that node.Ec = electrostatic

ÀS mentioned earlier, the finite element nodeS are located

using the bipolar coordinate system. Consider the set of

nodeS À,...,J which are located at the intersection of the

circle rt = ?rand the circles | = tl ,.... { = tro' as in Fig-

ure 3. 3. These nodes I ie on an electrostat ic flux I ine

AJ"

In order to find the initial vaJue of p at nodes such as

À,8 and C the following procedure was adopted' An equiva-

lent coaxia] cylindrical system was constructed with the in-

ner radius equal to the conductor fadius and outer radius

egual to the length of the line OJ.
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FinlÈe Element, MeshPigure 3.3
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With the potent.ial gradient on the inner conductor chosen to

be equal to the approximate corona onseL vafue given by the

empirical Peek's formula, the analytical solution for the

coaxial cylindrical geometry equation (3"8) was then applied

to obtain the initial space charge distribution at any

point inside this equivalent coaxial cyJ.indrical system.

For example the initial vaLue of p at say node C is then

easily obtained by f inding p f.rom eguation (3"8) corre-

sponding to a radial distance egual to the length of the

line OC. For all nodes lying on the flux line ÀJ, the value

of p in equation (3.8) is obtained using equation (3.1 3)

which yields the charge density at the node on the conductor

surface lying on the flux line AJ.

The above procedure was followed to determine the initial

space chrarge density at aII nodes lying on all lines for

which a ground node exists corresponding to a conductor

node" Such a situation does not prevail if one considers

noCes lying on flux lines which meet the artificial bound-

ary. In these cases the procedure followed was identical

except that the outer radius of the equivalent coaxial cyl-

indrical- system was chosen to be egual to the length of the

line joining the centre of the conductor to the farthest

ground node i.e. line Oz.
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3 "2.3 SteÞs 3 and {

In Lhis step equations (3"1)-(3"2) are solved separately

by apptication of the FEM with proper boundary conditionsi Õ

=V at all conductor nodes, & =0 on ground nodes andÕ = ÖnraL

nodes lying on the artificial boundary. The initial value

of p at all nodes is obtained in step 2" ]t should be noted

LÌ¡aL the conductor potential, (Þ =v, is that value which cor-

rcsponds to the experimental val.ues of J at ground level

used in step 2 to determine the initial charge distribution

in the problem region.

The solution yields the values of E and Õ at all interior

node s .

3.2"4 Step !; application of the proposed alqorithm

If the p distribution does not correspond to the true

vaiue, the solution of field quantities obtained from equa-

tions (3"1 )- (3"2) will differ. The charge density distribu-

tion is therefore updated at all nodes in accordance with an

upCate algorithm which takes into account the location of

the nodes. Generally t,hese nodes may be classified into the

ioliowing categories"

Conductor and interior nodes tying on { circles(4

=constant) at the extremeties of l¿hich both conductor

and ground nodes are Present.
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Nodes which lie on E circles terminating on the ar-

tificial boundary including conducLor nodes and nodes

lying on the artificial boundary"

Ground nodes.

Update alqorithm for nodes of cateqorv

2.

3.

1

The charge density

scheme

distribution updated using the1S

E:E+Eb

e""(#>r l (3.13)

where p is the updated value of the vol-ume charge density at
dd

any node, p-is the charge density at the same node from the

previous iteration and d'i" the value of the charge density

at the conductor node lying on the same t circle as the node

under consideration determined from the previous iteration.

e¡ and Ez are the electric field intensities determined from

equations (3.1)-(3.2) respectively at the conductor node 1y-

:.Ilg on the same { c i rcle (n =constant ) as the node under

consideration. Finally, J, ís the experimentaL values of J

and J1-âDd !2-àre the computed values of J at a ground node

which lies on the same å circle as the node under considera-

tion.

Update alqorithm for nodes of cateqorv z

Under this category, there are three types of nodes. i

conductor nodes, interior nodes and nodes lying on the ar ri-
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ficial boundary. For conductor nodes the value of p is

found by quadratic extrapolation uSing the most recent val-

ues of p at the two neighboring conducLor nodes. -

For other nodes t.he updating algorithm uses the relation

(E b +E z.)

pnu- = a.s lpdd + p, (+) T 
I

P'

(3.14)

where Pt = mOSt

ing on the same

!:pSlate. alqorithm

recent value of ,p at the conductor node ly-

flux line as the node under consideration.

:-e

for nodes of cateqorv l

The p values at these nodes are updated at the beginning

each iteration(with the exception of the first)using the

Iat ion

ç,*:2
Jm

k(En* Ezr)
(3.1s)

where J- is the experimental value of J and 81, and E2n are the

E field values at ground leve1 obtained from equations

( 3.1 ) - ( 3.2 ) in the previous iteration "

Equations (3.13) (3.15) reflect the fact that the space

charge distribution is affected not only by the conductor

surface potential gradient alone, but also by the combined

ef fect of J and ^8.
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3"2"5 Step É

Following the first iteration, using the initial p dis-

t.ribution, the finite element solution of- equations

(3.1 )-(3.2) is obtained again using the new updated distri-

bution of p" This iteration process is continued until the

following conditions are simultaneously satisfied at all

nodes in the interelectrode region with the exception of

nodes lying on the artificial boundary"

(Õr - qÞz)
sô¡

(Et - Ez)
E*

( p*n - pol" \
Pu*

(3"16)

ô3

where ô1,ô2and ô3 are the small deviations specified in terms

of the desired accuracy. In this work the values assigned

to 6¡,b2and E3were 0.025,0.03 and 0.025 respectively. In

equat ion ( 3. 16 ) (Þl , Q2, E 1, E2 are the potent ial and f ield val--

ues from equations (3.1 ) and (3.2) " E* and (Þ- are ob-

tained by averaging 87, E2anð Õ1,Õ2 respectively.
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3.3 Performance of the proposed alqorithm

In contrast t.o the procedure usually employed to deter-

mine the ionized fieId, the updating scheme does not contain

any imposed value for the electric field on the conductor

surface and hence the algorithm does not utilize Kaptzov's

assumption. However Lhe corona onset gradient at the coro-

nating conductor surface aS determined from Peek's formula

is necessary to Start the iterative process. In all itera-

t.ions the field intensity on the conductor surface is let

free to vary as dict.ated by the updating algorithm. This

yields a field variation on the conductor surface after con-

vergence has been achieved. It was found that about 15 it-

erations were needed to attain the specified convergence in

all field quantities with an accuracy of 2.seo in lf l on the

conductor surface and 1eo in lfl anywhere in the interior re-

gion. The algorithm is therefore efficient and yields good

accuracy, For example in reference[2] it is reported that
?l'l iterations were necessary to Obtain an accuracy of 5eo in

the potential values.

Figure 3.4 shows a detailed flow chart, which includes

the steps discussed earlier, which were implemented in order

to arrive at field quantities on the surface of a coronating

monopolar single conductor given experimental values of ion-

ic current density at ground level.
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Figure 3"ê Flow chart indicating the steps involved

involved in solving the ionized field problem
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3"4 Solution, gIÆ and converqence of the iterative
Drocess

Error in Õ : ((Þr-tÞz)
o-

(Er - Ez)
Error in E :

Es"

The method of solution described above was applied to

each of the three chosen geometries mentioned earlier in Ta-

ble 3.1. In all cases the finite efement solution was im-

plemented over one half of the total region taking advantage

of the problem symmetry; the line of symmeÈry in all cases

being the vertical line joining the cenLre of the conductor

to the ground plane. Àlong this line the normal derivative

of the Potential + : 0.
ön

lnitially the errors and convergence rate of the solution

h'aS examined in all cases; details are presented below for

model 1 only with the conductor energized at +300 kv.

Table 3.3 shows the errors in lflana Ö along the vertical

line joining the conductor centre to ground.

These errors are defined as

(3.17)

The maximum error in

from the ground while

occurs at a height of

potential is 0.591eo at height of 177 cm

the maximum error in lll l is 1 .515e" which

60 cm from the ground.
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v
cm

@¡

kv
o2
kv

9oE r ror E,
kv/cn

E2
kv/cn

9oError

0.2s 300.00 300 " 00 0.0 45.38 44 " 420 2"138

0.40 292.86 292.31 0. 188 24 "420 24.230 0.781

0.85 285.75 284.86 0 .312 1 3.830 1 3.650 1"327

1 .58 278 .65 277.62 0"370 7"189 7 "099 1.269

2.90 271.47 269.87 0.591 4.071 3"996 1"26

q 'tÀ 263.98 262.89 0.414 2 "326 2 "321 0.215

9 .16 255.27 254.82 o.176 2.156 2 .139 0.792

i 7.00 244.58 244.23 0.143 2.O94 2.083 0.526

31 51 227.81 228.66 -0.372 2"014 2.008 0.298
II 54.51
I

I go. so

200.73 200.34 0.194 1 .964 1 .939 0.770

155. 23 156.649 0.910 1"886 1.864 1"173

140.39 89.808 89 .632 0.196 1"873 1.843 1.615

200.0 0.0 0.0 1"856 1 .838 0 " 937

Tab1e 3-3 Errors inÖand ¿ aLong the line0=0
(model 1, O=300 kv)

51



Table 3.4 shows the error in lfl along the ground and

around the conductor surface. The position 0=0ocorresponds

to the point on the conductor surface which ]ies:n the ver-

tical line joining the conductor centre to ground" On the

conductor Surf ace t,he maximum error in lf l occurs at 0 =0o

and is slightly over Zeoi al} other errors are less than or

equal to 2>o. Àlong the ground, most errors are fess than

1soì the maximum error is egual to 2"09>" anð this occurs at a

ìateral di stance of 8. 2m i . e . 4 "1 t imes the conductor

height. Figures 3.5 and 3.6 show the variation of the maxi-

:nun error in potential and maximum deviation in P . This

iatter quantity is the maximum deviation of the ratio

(:,-,* _ poa) to p* . These quantities vrere calcu-

lated at all nodes in the problem region with the exception

of nodes on the artificial boundary.

the comPutedFigures 3 '

value of the

7 and 3.8 show the variation

total corona current I defined

of

by

Ir=
n
fS"li 2 r r
J -l 

-

n

and the variation of the average value

on the conductor surface, E*, r v€rsus

tions. At each node on the conductor

field is obtained by averaging Er 
"n9

thi s quantity over al-l conducLor nodes

(3.18)

of the electric f ield

the number of itera-

surface the electric

82. The average of

iS Eø,s.
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B

E¡
kv/cn

E2
kv/cn BError

x
m

E,
kv/cn

E2
kv/cm tEr ror

0. 00 45"38 44"42 2.138 0.0 185.7 183.9 0.987

12.85 4s.39 44.51 1 .9s8 0 "225 184 .0 182.5 0.805

25 .66 45 .42 44.58 1"857 0"456 182. 1 179.8 1 .28

38.51 45 .46 44.64 1"82 0"700 168.8 167 .6 0.563

51.37 45"49 44.69 1 .772 0.859 164 .3 164.1 0.150

64.2 45.53 44.75 1 .728 1"259 149.2 148 .2 0.678

77.06 45.61 44.81 1.?69 1 .595 135.2 134.5 0.539

90"0 45.63 44.87 1.679 2.0 119.0 117 .4 1.430

142.7 4 45.70 44 .90 1.766 2.51 107.6 105.9 r tro

115 .62 4s"68 44.86 1.813 3 "20 81 .76 81.08 0.836

7? .4''t 45.62 44.82 1.77 4.15 63.21 62.54 1 .069

141 " 38 4s.58 44.76 1.817 8.20 29.54 28.92 2 .09

1q¿ )? 45.57 44.73 1-862

1 67 .12 45.52 44.70 1 .820

i 80.0 45.51 44 .61 2.00

Table 3.4 Error in lflaround the conductor surface and

along ground (modeL 1, O= 300 kv)
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3.5 quantltles on and aI
l--( æsl-L-i-"". po I a r i t v )

Figures 3.9,3.10 and 3.11 show the variation of P,J and

lfl around the conductor surface when the conductor is ener-

gized at a polarity with a voltage of 300 kV. The efectric

field values at the conductor nodes are the average values

of E 7 and 82. The ionic current density vaf ues v{ere ob-

tained by computing the value of k P E* at each node"

From Figure 3.9, p is maximum at B=ooand minimum at g

=180Õ, âs expected. From Figure 3.10 J is maximum at 0 =0(

and minimum at 0 =1g0o . The variation of J with 0 is

quite similar to that of p thus indicating that E* does

not a exhibit Iarge variation with angular position.

From Figure 3.11 it is seen that Eou peaks at e =102o;

the minimum occurs at 0 =0? The value of E* at 0 =0o is

Iess than that at g =1800. The average vaLue of the conduc-

tor gradient E*, is 45.12 kY/cm which is 11.26e" belor^' the

onset gradient r Eo, as determined from Peek's formula. The

ii I f erence between the values of Esu at 0=0o and B =180'" ana

the average value of the conductOr gradient , E*u, expreSSed

as a percent of Eovs is 0"488 and 0"1249a respectively" The

value of (E*-.

corresponding

0.133eo"

-8.¡,. )/E^,riE 0"?55¿which is greater than the

value for the electrostat ic fiel.d, i,e

Variation of field
sur f ace f.or model

and around conduc tor
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From reference t8] data concerning J at ground leve1 was

also available at {i = 200 kv" and it was therefore possible

to calculate the variation of 8., around the conductor Sur-

face at this voltage" Although data was also available in

reference[8] for Õ =100 kV, a similar calculation could not

be performed due to the difficulty in obtaining current den-

sity values at ground level from the graph provided. Figure

3.12 shows the variation of E* vs 0 for Õ=200 kV. From

thi s Figure it is seen that Eo, peaks once again at 0 =102o

the minimum val-ue of E6u Occurs at 0 =0o. The average value

ol t.he conductor gradient Ea,s is 46.05 kV/cn which is 9.42e"

below Eo as determined by Peek's formula.

Since the variation of the electric field around the con-

ductor surface is of the Same order aS the errors in lfl re-

pcrted in Table 3.4 on page 59, one may be tempted to con-

clude that the reported variation with angular position of

rhe conductor gradient on the ccronating conductor's surface

i; of doubtful validity. However, this is not the case' Àn

examination of the resuLts showed that the errors in the

computed value of the electric field are in the same direc-

tion at all nodes i,e" al-l positive. It is theref ore possi-

ole to conclude that Figure 3.11 represents the nature of

i|.e variation of the electric field variation of the eLec-

tric field with angular position to an accuracy of ?>o"
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3.6 Effect of the voLtaqe level on the field variation
around the conductor surface

From Figures 3"11 and 3.12 it is seen that although the con-

iuctor voltage has decreased by 33eo, t.he average value of

the conductor gradient Eøve increases only by 1"84e". À1so

it is seen that the variation of Eo"'with 0 around the con-

ductor periphery is more pronounced at Õ=200 kV" Figure

3.1 3 indicates the variation of the quantity ( E*r-- E) 
as'Eo

a function of the applied voltage" At Õ =Õo=93.8 kv the

electric field is equal to the onset value calculated from

Peek's formula. Às the voltage is increased beyond the on-

set value the deviation of the Ect,s from the onset gradient

Eo increases nonlinearly. The slope of the curve of Figure

.13 decreaSes and eventually approaches zeto. In figure 3.13

a smooth curve has been drawn through 3 points corresponding

Eo 0-o,200 and 300 kv. It is seen that the sloPe of the

curve decreases and eventually approaches zero.

r,i Discussion of results

The above results show that the electric field on the

coronating conductor surface does vary with position, and

thac the percentage variation depends on the applied volt-

age. The greater the voltage the lesser the variation.

Àlso the average value of lEl on the conductor surface is

lesser than that calculated by Peek's formula' Às the volt-

age is increased beyond onset the average conductor gradi-

ent, Eava drops noticeably at first but this trend does not
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continue indefinitely; eventually, E*,

ticular value"

stabilizes at a par-

These findings reported

ported by consideration of

in Figures 3.11 and 3.13 are suP-

the physical process of corona.

With a positive coronating conductor, space charge of

like polarity surrounds the conductor. In the steady state

this layer is responsible for the lowering of potential gra-

dient from the onset value. This effect is more pronounced

where the Space charge density is greatest i.e. O =0o. Hence

cÌ:e conductor gradient regiSters a minimum at this

point (rigure 3.1 1 ) . In order to explain, qualitatively, the

shape of the curve in Figure 3.1 3 one has to consider the

anguiar variation of p and the electrostatic conductor 9ra-

Cient. Àt 0 =18Oothe space charge density is weak and the

electric field is not affected much. In between, at 0 =102o

, the charge density is greater than at 18Oo but so is the

eLectrostatic aradient. These two factors combine in such a

manner so as to yield a maximum.

The trend exhibited by Figure 3.9 can also be expLained

qualitatively. As the applied voltage is increased beyond

the onset value the density of the space charge in t.he ioni-

zation layer increases dramaticalJ-y resuLting in a notice-

able drop in the average value of the conductor gradient

f rom its onset vaLue i with a f urther increase in t,he ap-

pÌied voltage the space charge density increases but not in
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the same proportion" Eventually the

considered to be saturated with space

the average conductor gradient stabi1

ionization layer may be

charge. At this point.

izes

3.8 Models Z and 3(positive Polaritv)

Data available in references 12) and [15] were used to

calculate the variation of E around Lhe conductor surface in

both cases as shown in Figures 3"14 and 3.15. These Figures

show that the variation is similar to that shown earlier.

The value Of Eø"s are once again Lower than the Onset values

calculated by Peek's formula" Table 3.5 summarizes some sa-

lient features which emerge from the analysis of the three

models.

?ô Resul t s with -ve polaritv

Experimental data vtas available in reference[8] concern-

ing model 1 for -ve polarity at conductor voltages of 200

and 300 kv" A procedure similar to that. adopted for the po-

sitively charged conductor ltas fol1owed. The only change is

that the mobility k, of negative ions, has to be used in-

stead of e: In this study k- was chosen to be 1.8 cnz/vs

t8l. It was found that the average value of the conductor

surface gradient, E*u , was lower than the onset gradient aS

calculated from the Peek's formula; In fact the results
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Mode] 1 Mode1 2 Model 3

Reference l8l 'f,2) [ 1s]

H 200 cm 40 cm 25 cm

E 0.25 cm 0"165 cm 0.056 cm

tt/r 800 242 446

(Þ 200,300 80 50

Onset voltage 93.8kv 56.55 kv 27"75 kV

(þ,/Ø 
o

2.'13 ,3.2 1.42 1.802

+ Onset grad. 50.84 55.42 72.92

Onset grad. 52.92

E*, 46.051,45.116 48.4 62 "87

!-E*Å--E.)-
Eo

9.42,11 "26e" 12.26e" 13.78e"

Table 3.5 Some salient features resulting from the analysis

of three models
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obtained !ùere similar in character to those

the conductor energized at positive polarity.

These results can not. be

eraLions. with a negativelY

is known that, in the steadY

sitive space charge in the

an ir¡crease in the value of

obtained with

justified from PhYsical consid-

charged coronating conductor it

state, the Presence of the Po-

ionization layer contributes to

the conductor surface gradient.

In the analysis, however, the positive space charge is

not considered at all which accounts for the fact that an

Increase in the average value of the E field is not shown by

calculations.

However, since the positive space charge may be consid-

ered to occupy a thin layer surrounding the coronating elec-

trode, the thickness of which is usually three orders of

magnitude small-er than the interelectrode distance,l2l), the

ccrrrputed values of the electr ic f ield on the conductor sur-

iace may be considered to be applicable at the edge of the

ionization layer.
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The results

ChaPter IV

, CONCLUSIONS

of this study show that folÌowing onset of

corona, the electric field at the surface of a monopolar

single conductor does not remain constant at the onset vaI-

ue. With a positively charged conductor, the average Sur*

face electric field decreases from the onset gradient. As

the conductor voltage is increased above the onset voltage,

Lhis decrease is rapid at firsÈ but eventually the average

conductor gradient stabilizes at a particular 1eve1. The

electric fieLd also varies around the periphery of the con-

ductor surface; the extent of variation, Y¡hich increases

r*ith the applied voltage, is small when compared to the drop

in the value of the average conductor surface gradient from

the onset gradient as provided by Peek's formula. The ex-

perimental results of popkov[15] support the conclusions ar-

rived at for positive polarity. Popkov's experimental work

utilized the geometry of model 3.

The computations performed with a negatively charged con-

ductor indicate results similar to those obtained with posi-

tive polarity. It has been pointed out thaL this is not

correct and is, infact, in contradiction with results ex-

pected from consideration of the physical process. This oc-
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curs because, the steady st.ate model ignores the presence of

positive space charge ¡shich is responsible for the increased

conductor gradient

Finally, the conclusions drawn from positively charged

conductor enable one to appreciate the reason for the occur-

rence of rather large errors in electric field valueS on the

conduclor surface in conventional ionized f ield analysis of

mcnopolar single conductor geometries. In such an analysis,

one usually invokes the Kaptzov assumption and solves for

field quantities at ground level. Since the Kaptzov assump-

.,ion is unrealistic one should, fogically, not expect sma1l

errors in the electric field on t,he coronating conductor's

sur face .
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Appendix A

F]N]TE ELEMENT ANÀLYSIS

In this appendix, the basic principles of the Finite Ele-

ment Method are discussed. Over the years, this method has

developed into a very appealing' powerful and flexible ap-

proach Èo obtain numerical soLutions of boundary vaLue prob-

lems. It must be stressed that only two boundary conditions

are required to solve a boundary val'ue problem described by

a second order differential equation. The third boundary

condition is an essential part of the formuJation of the

ionized field problem. In this work it is employed to com-

pute the initial and subsequent values of space charge den*

sity after every iteration.

The standard way of numericallY

ue problem consists of superimposi

the region of interest and locallY

functions. By doing so the di

transformed into set of algebraic

solved.for the unknown variables.

For the sake of convenience the equations

monopolar corona can be writÈen as

governing the

V'(o V Õ¡ = I

solving the boundarY val-

ng a suitable grid over

fitting the known basis

f ferent ial equat ions are

equations which can be
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The guantities a, @and p are functions of space coordinates

which represent the region O' The solution ís accomplished

t,hrough the use of variational FEM. The prelimin-ary step in

the VFEM is the formulation of the functional" However, the

requirement of the variational equivalent of the differen-

tial equation limits significantly the types of the problems

to which the concept of finite elements may be applied.

Àpplication of FEM proceeds by first

gion of interest O into smaller subregi

subregions are triangular in shape. I

discretizíng the re-

ons. I'fost of ten, the

n 3-d problems tetra-

s conf ined onlY tohedrons are used. The attention i

2-dimensional regions of interest and is focussed on the

methods for the minimization of the functional of the form

(o(v ø)2-2Êo)dl) (À.2)

Trial functions are constructed in a piecewise manner'

Às in any variational method, aPProximate finite element so-

lutions are obtained through extremization of the function-

al. This requires the first derivative of the functional

with respect to aIl the variational parameters be ze:ro,

r¡hich is a necessary condition for stationarity. Àn a19e-

braic system of equations is formed whose soJution give an

approximate solution to the problem under consideration'

F:l
n
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À.1 Isoparametric transformation

Consider the use of the 2nd order quadrabic finite ele-

ments. Same set of functions is used to map the master ele-

ment from the local simplex to the globaI coordinates and

also for the expansion of the unknown potential within the

element. In order to transform the triangular simplex, fol-

ìouirrg transfornations are introduced.

6

.r : [.r¡a¡ (€,t)
I =l
6

y : ãyro¡ (€,r¡)
,-l

In the E - q simplex, the unknown function

erement is approximated by using the same shape

(À.3 )

6 with in the

functions as

6

@ (Ê,q) = ã ,Þ, a¡ (6,n)
J =l

uliÊre o ( Ë ,n) are the Lagrangian shape

i;;^cier the node numbering scheme in Figure

(À.4)

functions defined

4.1 are given by

er(€,q) = 2(1-G-q) (1rZ-€-q)
c21€,R) :2 g (€ -1/Z)
a31€,n)=2q (\-l/Z)
cq€,n) = 4 € rt

c51€,1)=4f(1-f-r¡)
oq€,n) :4 q (1-€-q)
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F i gure A.1 Mapping of the quadratic element.
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AII the necessary calculations are can be done in the 1o-

caI simpJ.ex using transf ormations f(À.3 ). The compatibility

can be ensured by assigning the same coordinates -and the po-

tent.ial value to the nodes that are shared by adjacent el-e-

menÈS. Àssuming the transformation does not entail exces-

sive distortion of the element, the mapping is one to one.

A"2 Seekinq I stationarv Point

In fact, numerically it is rarely possible to ensure the to-

tal arbitrariness of 0 and so, the stationary point located

*,iir approximate the solution" Since a stationary point

corresponds to a solution, and since there can not be more

than a single solution for a positive definite operator, it

Ís crear that there is only a single stationary point of the

fr:nctional"

In the E-n simplex, the unknown function @ within the eL-

e:--ent k is approximated using same set of shape functions as

6

rÞ(€,"r) =ãÕio,(€,"1)
t-l

with the domain 0 divided into

bec ome s

N subregions the functional

¡ú

ã
&=l

6
xþ

l=l
ft
oÃ

6SlVol.v
éd\ .

l*r

6

ãÕ¡o,!ao (¡.0)
l*l"!)-zpe
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For the extremization of the functional, one requires the

derivatives of (4"6) with resPect to aLl of the variaÈional

parameters be zeto. The variaLional parameters are the no-

dal potentials Of tfrat are unknown.

6 F/ô d)

À11 integrations wi

plex. This makes the

a]lows the aPPlication

are readily available.

To test the

of cases were

developed and

the University

B can be used

o and 0 can be

ing solved"

The amount of

6

IN ã, (V o, .V o;)Õ; -P",tj
J =l

l=[
O¡

(e.z)

Using (a.g) and (n.Z) and identifying

unknown, one then obtains a system of simul

from which the unknowns Öf can be solved.

those Of that are

Laneous equations

11 be performed in the local t-4 sim-

finite element analysis systematic and

of standard quadrature formuLae that

feasibility of the proposed algotithm number

tested. The program r¿r i tten in FORTRÀN was

all cases were tested on Àmdahl 5850 system at

of Manitoba. The program listed in Àppendix

to solve any equation of the kind V '(a V tÞ): 9'

chosen according to the type of equation be-

The total number can changed by varying IT'

CPU time required to solve is problem depen-
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dent. Discretization and the type of the element also play

a vital role. The program stores the elements on and below

the main diagonal. The dat.a input sheet is f urnished which

makes the program user's friendly. The program Iisted in

Appendix C would draw the mesh for a given set of node coor-

dinates and numbering. Appendix D gives the storage scheme

emplo¡red by the Finite Element Program listed in Àppendix B'
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Àppendix B

FINITE ELEMENT PROGRÀM

//ve,xxn JoB ' ,L=30, ,,T=32M' ,cl,Àss=1
// sxøc t7ÀTFIV, sr zE=39ooK
//svsIN DD *

JOB WÀTFIV VENKA,NOEXT,NO9TÀRN
c
c
C.....REF: IEEE TRÀNSACTTONS OF PÀ AND S

c
c
C. "...AUTHOR: MÀSÀNORI HÀRÀ (JEP¡NESE)
c
c
C.....DÀTÀ AVÀILABLE: J-GROUND AND I-TOTÀL
c
c
C. . . . .CONFIGURATION: CONDUCTOR TO PLANE.
c
c
c. . . . .R=0.25 CM, H=200.0 CM, V=-3ooKV , H/A=800. oo, rr=39.85 lrÍl)A/A"l/
c
c
C. . . . .MU=199.99937,UO=1 .37
c
C

C...."MESH HÀS 121 PRTNCIPLE NODES WITH 199 ELEMENTS. THERE ÀRE

c
c
c. ".
L
c

REÀL GPx(9),GPY(9),w(9),J (9,2,6),¡cp(9,6),xx(727),Yv(727)
* - 

,xC(6) ,yc(g) ,S (727 ,727) ,DV(75) f C Q27),EÀ,J11 (9) ,ll2(9) ,

2'(g') ,Eps r ( 1 0 ) , DEr ( 9 ) , ÀÀ ( 9 ) , ss ( 9 ) , Cc ( 9 ) 
' 
DD ( 9 )* J21(9),J22(9),EPSI(10),DET(9),ÀÀ(9),BB(9),CC(e)'

..11 CONDUCTOR NODES. TDN=40, TN=440, CPU TIME=3 MINUTES 40 SEC

*,EE(gj,rr.(gi,n,ES,iO( 1 0),ROU( 727),C1 (727 ),C2(727).,Ca(727 )

o,nov 027 ),c23 (727 ),Ul ( 727 ),rJzQ27 ),U3 ( 727 ).,V4Q.27^) .
*,nru2 Q27 ),n¡rg t 727 ),tHeteZ (727 ),THETÀ3 Q27 ),ETA \7?71
ne¡L u5(727 r,R(6),O(5, 5),WARA( 1 5),PX( 1 50),ÀITÀ (727 ),

yMN(8OOi,pp(800),vNO(800),EP(382),DP(800),EpN(800),
# EFL( 182),EMTP(800 ),RNÀ( 500)" iÑiecen e t 335, 6 ), TÉ, TN, TDN,DN ( 75 ), t, z,rJ,TÀLT, TAD, H, LI sr ( 800 )

coMMoN/vENKÀ/A ( 230000 ), B ( 750 ),MÀXÀ ( 700 ),N,NN,NWA' KKK

PI=3.14159
ÀLPHÀ= 1.0
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301

302

30-?

BEETÀ=1.0
REÀD, TE, TN, TDN, TALT, TÀD, NGP
PRINT 3O1,TE, TN,TDN,TÀLT,TÀD,NGP
FORI{ÀT('0"10x,618)
REÀD, ( (B(t't,lt),N=1,3) ,M='.1 ,TE)
PRINT 302,( (e(¡A,N),N=1,3),M=1,TE)
FORMÀT('0"10x,3I8)
REÀD, (XX(r ),YY(t ),r=1,ÎN)
PRINT 303, (XX(I ),YY(r ),r=1,TN)
FORMÀT(' 0 

" 
1 0x, 2F1 5. 8 )

GENERÀTE SECONDÀRY NODES
NN= 1

DO 51 I=1,TE
NC=3
DO 52 l4=1 ,2

¡4q=|,{+ 1

DO 53 N=MM,
¡g=¡fe+ 1

xs=(xx(E
YS=(YY(E
NEW=1
DO 54 l(=

'NN

r,M) )+xx(E(I,N) ) ) /2.0
r,r'l) )+yy(E(I,N) ) ) /2.0

c

54

rr(xs.EQ.xx(tN+x,-1
NEW=0
E(I,¡qç)=l|ì+K-1

END IF
CONTINUE
IF(NEW .EQ. 1) THEN DO

XX(TN+NN)=XS
YY(TN+NN)=YS
E(I,NC)=TN+NN
¡q¡=!r{}l+ 1

END IF
.3 CONTTNUE
52 CONTINUE
¡ .i CONTI NUE

TN=TN+NN_ 1

C PRINT ,TN
c PRINT 7744,(r,(E(r,N),N=1,6),I=1,T8)
7744 FORMÀT('0 

" 
14,1 0X,6r 5)

DO 102 I=1,TN
YY(r)=YY(r)-200.0

102 CONTINUE
ÀLTER COORDTNÀTES OF THE GENERÀTED NODES

IF(TÀLT .NE. O) THEN DO

DO 55 I=1,TÀLT
READ,M,N,X,Y
PRrNT 305,M,NrX,Y

305 FORMÀT( '0 
" 

11N,216 ,2F 1 5.8 )

XX(E(t'1,3+N) )=X
YY(E(t¿,3+N))=Y

55 CONTTNUE
END IF
CON= 199 "9998437
DO 401 I=1,TN

).enp.Ys.EQ.YY(TN+K-1 )) THEN D
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.c

RN=XX(TI/(CON+YY(I ) )

ÐR=xx(r)/(coN-YY(i ) )
rr(YY(l ) .Cr.coN) rHn¡¡ no

ETÀÀ=pI +ÀTAN ( p¡ ) +ÀTÀN ( On )
ELSE DO

ETÀÀ=ÀTÀN ( RN ) +ÀTÀN (DR )

END IF
ÀITÀ(I )=ETÀA
PRINT , I ,ETAÀ

401 CONTINUE
pRrNT 4477, (r,ÀrrÀ(I ),XX(r ),YY(I ),I=1,TN)

4477 FORMÀT('0 
" 

14,1 0X,3F1 5 "4)
N=TDN-TÀD

C REÀD IN DIRICHLET VÀLUES
READ, (DN(l ),DV(r ),r=1,N)

c PRINT 306, (DN(r ),DV(r ),1=1,N)
306 FORMÀT('0' ,1 0X, I 5,12X,F1 5.8 )

c
IF(TÀD "NE. O) THEN DO
DO 56 I=1 rTAD

REÀD,M,NN,D
C PRINT 3O7,M,NN,D

307 FORMÀT( '0' , 11X,2I 6,F1 5.8 )

DN (N+1 ) =n (l't, 3+NN )
DV(U+t ) =O

56 CONT]NUE
END IF

c Go ro 8881
REÀD, (nOV(l ),1=1,TN)
REÀD'(1s,7777i (elrrp (t),c2(r ),c3(r ),R¡a2(r ),RM3(r ),r=1,TN)

7777 FORMÀT( '0' ,5F1 2.3 )
ÀREA=0.0

C DEFINE COORDINATES OF GAUSS POINTS ÀND WEIGHTS
rF(NGP"EQ"3) tUeN po

GPx(1)=GPY(2)=0.0
GPY('1 ) =GPX( 2 ) =GPX( 3 ) =GPY ( 3 ) =0. 5
w( 1 ) =9?( 2 ) =w( 3 ) =1 .0/6 "0

END IF
rF(NGP.EQ.9) tr¡nN oo
cPx( 1 )=GPx(2
GPX(4)=GPX(5

=GPX(3)=0 "1127017
=GPX(6)=0.5
=GPX(9)=0.8872983
=0. 1

=0 .4 436492
=0.0563509

GPx(7)=GPX(8
GPY(1)=GPY(9
GPY(2)=GPY(6
GPY(4)=GPY(8
GPY
GPY

3 ) =0 .7 87 2983
5)=0"25

cPY(7)=0 .0127017
w(1 )=W(3)=0,0684644
ç,1( 4 ) =W( 6 ) =0. 0 617 284
w(7)=w(9)=0.0086961
w(2)=0.109543
w(5)=0.0987654
w( I ) =0.01 391 38
END TF
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c..c

rF(NcP.EO.4) rHeN no
Cpx( 1 )=Gpy( I )=l .0/3 "0

Cpx( 2 ) =GPY( 2 ) =GPY ( 3 ) =GPX (4) =0 "2
cPX(3)=GPY(4)=0"6
w(1)=-27"0/96.0
w( 2 ) =w( 3 ) =w( 4 ) =25.0/96 "0

END IF

DEFINE ENTRIES OF MÀTRIX J AT GÀUSS POINT K
DO 1 K=1,NGP

J(K,1,3)=0.0
J(K,1,5)=-4.o*CPY(n)
J ( K , 1 , 1 ) =4. O* ( Gpx ( x ) +cpv ( K ) ) - 3 . 0
,: (x, 1', 4) =4. O-8 . 0*GPX(K ) -4 . 0*GPY (K)
J (K, 1,2) =4. 0'kGPx(K) -1 " 0

J ( K, 1 ,6\ =4. 0*GPY ( K

J (K, 2,3)=4.o*GPY (K) -1 " 0

¡ (lt, 2,5\ =4.0-4. 0*GPX(n) -8 . 0*cpy (x)
¡ (n, 2,1 )=4. 0* (CpX(X) +Gpv (n) ) -3. O

J (R,2 ,4
J (K,2 ,2

=-Q.0*cPx(n)
=0.0

c
(-

I
c

J(K,2,6)=4.0*CpX(¡<)
CONTT NUE

DEFINE VÀLUES OF SHÀPE FUNCTION ÀT GÀUSS POINT K

ÐO 2 K=1 
'NGPAGp(K; 3 ) =GPY(X) " ( 2. 0*GPY (K) -1 . 0 )

Àcp ( K; 5 ) =4 . 0'IGPY ( x ) '. ( 1 . o-GPx ( K ) -GPY ( K ) )

;GÞ i ü ; 1 i = ( 1 . 0-cPx ( n ) -cpy ( n ) ) * ( 1 . o-2 " o*GPx ( n ) -2 . 0*cpv ( tt )

Àcp ( K; 4 ) =4 . 0* ( 1 . 0-cPX ( x ) -cpv ( n ) ) "cpx ( n )
ÀcP ( K,z)=GPX(r) " ( 2. O*GPx (n) -l . 0 )

ÀGP(K, 6 ) =4. 0*GPX (n) *Cpv (x)
CONTI NUE

INITIÀLIZE THE MÀTRICES À ÀND S

LIST(1)=750
DO 33 I=1,TE

SUM=O.0
DO 34 K=1,6

NU=E(l rn)
SgM=SUM+ROV ( NU )

34 CONTINUE
ROU(I)=SUM/6.0

C PRINT ,I,ROU(T )

33 CONTINUE
DO 456 lT=6,'7

KOUNT=1
DO 1001 ITN=1 'KOUNTLTST(iTN)=O

1 OOl CONTINUE
DO 43 II=2,3

DO I M=1 
'TNc (M) =0. 0

DO 9 N=1 
'TNS (t't,N ) =0.0
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9
I

c
c

CONTI NUE
CONTINUE

MÀTN PROGRÀM TO ACCUMULÀTE MÀTRICES
DO 3 T=1,TE

DO 5 U=1 ,6
xc(u)=xx(e(r,u) )

Yc(u)=YY(e(t,u) )

5 CONTINUE
IF(Ir .EQ. 1) GO TO 1330

rF(Ir .EQ. 3)GO rO 1330
ÀK=0.0

DO 770 MK=1,6
NU=E (r,l,tx )

NNODE= 1

DO 4455 KI=1,KOUNT
IF(NU.EQ.LIST(KI ) ) THEN DO

NNODE=0
¡¡=tr1(+ROv ( NU )

END IF
4455 CONTINUE

IF(NNODE .NE. O) THEN DO

IF(C2(NU) .EQ. 0.0) Go ro 1112

TF(ÀiTÀ(NU) .LE. 0.18) THEN DO
yMN (NU) =2. o*RM2 (13) /(RM2 ( 13 ) +RM3 ( 13 ) )

EpN (NU) = 841 4 .28/PJ.t'z( 1 ) r/n¡atp ( 1 )

YND (NU ) =EMTP (Nu),/eurP ( 1 3 )
RóviNu) =0. 5* (eMrÞ (Nu) +EMrP ( 1 3 ) *ppN (Nu) *YNo(Nu) "*YMN 

(NU)

GO TO 771
END IF

IF(ÀITÀ(NU) .L8.0.33) THEN DO
yMN (NU) =2. O*RM2 (14) /(RM3 ( I ¿ ) +n¡{2 ( 14 ) )

EpN (NU ) = 8386 . o4o /EYITP (26) /PJ42 (25)
YND (NU ) = EMTP(NU),/EÞTTP ( 1 4 )
Rôt i Ñu i = O . S* ( sMrp'( ¡¡u ) +EMTP ( 1 4 ) *EPN ( ¡¡u )'tv¡¡o ( Nu ) * *v¡a¡ ( Nu )

GO TO 771
END IF

IF(AITÀ(NU) .T,8. 0.55) THEN DO
yMN (NU) =2.0,rRM2 (39\ / (RM2 ( 39 ) +n¡43 ( 39 ) )
EpN (NU ) = 8056 . 622/eurP (27 ) /PJ"12 (27 )
yND (NU ) =EMTp ( Nu ) /evrp ( 39 )

RôiiÑu i =õ -å" iÈr'rrþ (¡u ) +EMrP ( 39 ) *epx (¡¡u ) *vNp (Nu ) **YMN (NU )

GO TO 771
END IF

IF(ÀrrÀ(NU) .r,e, 0"8) tr¡gN oo
yMN(NU) =2. O*RM2 (40) / (RM3 (40 ) +RM2 ( 40 ) )

EpN (NU ) = TosB .956/PNtz ß2) /nurP ( 52 )

c
c

C

c

c
c

c
c
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c
c

vND (NU ) =EMTP (¡¡U ) r/eMrP ( 40 )

RoV (NU ) =0 . 5* ( el,frþ (Nu ) +EMTP ( 4 O ) *epN ( ¡¡u ) "vNo ( Nu ) "*v¡m ( Nu )

GO TO 771
END IF

rF(Àrre(Nu) .¡,e. 1.0) rHnN oo
v¡n¡ (NU) =2. o*Rl'12 (65) / (RM3 ( 65 ) +rut2 ( 65 ) )
epN (NU) = 5722 "461/EMTP ( 53 ) /PJ"12(53)
vNo ( NU ) =Et'flP ( ¡¡U ) r/e¡{rp ( 6S )
nOv(NU) =0 . 5* (EMTþ (Nu) +e¡,frP ( 65 ) *spN (¡tu) "vNo(t'tU ) **v¡tN (Nu)
GO TO 771
END IF

rr(erre(¡¡u) .LE. 1.2) rHeN OO

v¡o¡(Hu) =2. 0*RM2 (66) / (RM3 ( 66 ) +RM2 ( 66 ) )
epN (NU) =44 23.6127 /EMTP(78) /PJ42(78)
vHo ( NU ) =EMTP ( ¡¡u ) /B¡atP ( 66 )
ñOvtNU) =0.5* (elarþ (NU) +e¡ttP ( 66 ) *sp¡¡ (¡¡U) *vNo (¡¡u) **YMN (NU) )

GO TO 771
END IF
rr(err¡(Nu) .r,e. 1.45) THEN DO
y¡rH (HU) =2.0*RM2 (91) /(RM3 ( 9'1 ) +RM2 ( 91 ) )

epN ( NU ) =28 2 3 . 58 26 /eutp (7 9 ) /PJ"tz (7 9 )

vNo (NU ) =EMTP ( NU ) /elrrp ( 9 I )

ñovtNU) =0. 5* (EMTþ(Nu) +eMrP( 91 ) *npx (Nu) *vNo(Nu) **YMN (NU) )

GO TO 771
END IF

rF(Àrre(Nu) .r,e . 1.67) rHeN OO
y¡ry (NU ) =2 . o*RM2 (92) / (RM3 ( 92 ) +RM2 (92) )

epN (NU) =1 882 "3884/EMIP ( 1 04) /RÌ,12( 1 04 )

vNp (NU ) =EMTP (NU ) /eì,ftp ( 92 )
ñôv ( Nu ) = o . s" ( nurþ ( ¡.Ig ) +EMT P ( 92) ospx ( Nu ) *YHo ( ¡tu ) o *vptx ( Hu ) )

GO TO 7'71
END IF
rF(Àrr¡(Nu) "r,e, 1.9) tsnN po
y¡ar(NU)=2. O*RM2 (117 ) /(wtZ( 1 1 7 )+RM2 ( 1 1 7 ) )
eplr (NU) = 1 129 " 433/EMTP ( 1 0 s) /nuz( 1 0s )

v¡¡p (NU ) =Et'ftP ( ¡¡U ),/e¡mP ( 1 1 7 )
ñôv i NU ) = 0 . 5',, ( EMTþ ( NU ) +eÞrtP ( 1 1 Z ) * gpN ( NU ) "YNo 

( Nu ) "'tYMN 
( NU )

GO TO 771
END IF
rr(arra(¡lu) .r,e. 2.15) THEN DO
yMN(NU)=2. 0*RM2 ( 1 1 I ) /(w}( 1 1 I ) +RM2 ( 1 1 I ) )

epN (NU) = 752.tss+/eutP( 1 3 0) /puz( 1 30 )
vNo (NU ) =EMTP (WU )/eutP ( 1 1 I )

c

c
c

ñOv t NU ) = 0 . 5* ( EMTþ ( Nu ) +e¡'{tP ( 1 1 I ) *ept.I ( NU ) *vNo ( ¡¡U ) * *v¡o¡ ( NU )

GO TO 771
END IF

IF(Arre(NU) "r,e. 2.36) THEN DO
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yMN(NU) =2. 0*RM2 ( 1 43 ) / (w,q,g( 1 43 ) +RM2 ( 1 43 ) )

EpN(NU)= 423 "s37 /EMTP( 1 31 ) /puz( 1 31 )

YND ( NU ) =EMTP ( Nu ) r/eurP ( 1 4 3 )
ñôv ( NU ) = 0 . 5* ( sì,ltþ ( NU ) +EMTP ('1 4 3 ) *epN ( ¡¡u ) *v¡¡¡ ( ¡¡u ) * *YMN ( NU )

c
c

GO TO 771
END IF

rF(ÀrrÀ(NU) "r,e" 2"6) rHeN
ROV( 1 44) =0. 85*ROV( 1 43 )
rF(NU "EQ" 144) GO TO 771
YMN (NU) =2.0*RM2 (144) /@,1'g(
EPN (NU) = 1 .9442487 /EM']P( 61
YND ( NU ) =EMTP ( HU ),/NOV (1 44)

DO

l¿¿)+nM2(144))
) /Rri2 (61)c

c
c

Rov(NU)=0" 5* (nurp(Nu)+nOv( 144
GO TO 771
END IF

)*vND(¡¡u)**YMN(Nu) )

rF(Arre(Nu) .r.e. 2.8) rHeN OO

ROV( 1 69 ) =ROV( 1 44 ) -0. 2*ROV( 1 44 ) *1 . 75
rF(NU .EQ. 169) GO TO 771
yMN (NU ) =ã.0",RM2 ( 169 ),/(n¡ag ( 169 ) +RM2 ( 169 ) )
epN (NU) = 1 "92886/EMTP( 80 )/RM2 (80 )
yxp ( NU ) =EMTp ( NU ),/nOv ( 1 69 )

Rov (NU ) =0. 5* (EMTÞ (Nu) +Rov ( 1 69 ) *vNo (¡¡u) *'tYMN (NU )

GO TO 771
END TF

rF(ArrÀ(NU) .Le. 2.95) rUeN pO

ROV('1 70 ) =ROV( 1 44 ) -0. 2*ROV( 1 44 ) *2.5
rF(NU .EQ. 170) GO TO 771
y¡aq(NU) =2. O*RM2 ( 1 70 ) / (p¡¿.S( 1 70 )+RM2 ( 1 70) )

EpN (NU) = 8. 067 384/PJtt2( 8l ),/ewP ( I 1 )

YND ( NU ) =EMTP (NU ),/NOV ( 1 7O )
Rov(NU) =0. 5* ( EMTþ (¡¡u) +Rov( 1 70 ) *YND (Nu ) **YMN (NU )

GO TO 'Ì71
END IF
rF(Arra(¡¡u) .ce" 2.95) THEN DO

Rov( 1 95 )=RoV( 1 44 ) -0 " 2*Rov( 1 44 ) *3.2

c

c
c

c

C

rF(NU "EQ" 195) GO TO 771
yMN (NU) =ã. o*Rl"r2 ( 1 95 ),/(nMg ( 1 95 ) +Rl't2 ( 1 95 ) )

EpN (NU) = I . 067 384/PJ"tz( 81 )/eurP ( 81 )

v¡rp ( NU ) =EMrP ( NU ) /nOv ( 1 95 )

Rov(NU ) =0.5* (eurÞ (¡¡u) +Rov( 1 95 ) *vlto (Nu ) **v¡ot (¡¡u)

c
c

1112
c
c

GO TO 771
END IF

CONTJNUE

Rov( 1 )=84 14.27 6*2.0,/(n¡tg ( 1 )+RM2 ( 1 ) )

ROv( 26) =8386. O4OZ*2 " O/ (RM3 ( Zø) +w¡2 (26)
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Rov ( 27 ) -_8036 " 622*2 .0 / (p¡a.E (27 ) +wtt? (27 ) )
Rov( SZ) =7058. 9S6t,Z. O/(nvg 1 52 ) +nu2 ( 52 ) )
Rov( 53 ) = 5722. 461*2 .0/ (RJ''r2 ( 53 ) +n¡43 ( 53 ) )

nov( 7B) =4423. 6127*z.O/ lRM2 ( 7B )+RM3 ( 78 ) )

Rov( 79)=2823. FB3*2.0/(puz1 79 ) +nM3 ( 79 ) )

nov( 1 04)=1882. 3884*2.0/lRM2 ( 1 04 )+RM3 ( 1 04)
ROv( 1 05)= 1129. 433* 2.0/tRM2 ( 1 05)+RM3 ( 1 05) )

nov( 130 ) =7 52.9s54* 2.0/(RM2 ( 130 ) +RM3 ( 130 ) )

nov( 1 31 ) =B e6,O/ (Rlr2 ( I 3l ) +RM3 ( 1 31 ) )
nov( 1 56) =620 "0/ (R¡,f2 ( I S6) +nM3 ( 1 56 ) )

Rov( 1 SZ)=375.0.0/(RM2 ( 1 57)+nM3 ( 1 s7 ) )

Rov( 183 )=3S0. 0OO/(RM2 ( I gg ) +n¡13 ( 183 ) )

Rov( 196 ) =839s. 4S'z*2.0/(RM2 ( 1 95 ) +RM3 ( 196 ) )

Rov(281 ) =8 235. 449*2.0/ tRM2 ( 281 ) +R¡a3 ( 281 ) )
ROV ( 282) =7 529 "5s3s* 2. 0 / tRM2 ( 2821+RM3 (282)
ROV ( 3 5 5 ) = 6 2 I 7 . 1 7 7 1 * 2 . O / (Rt"tZ( 3 5 5 ) +RM3 ( 3 5 5 )

nov( 356 ) =508 2. 4486*2. O'/ (P¡¡Z( 356 ) +R¡13 ( 356 )

ROv( 429)=352 9 . 47 8t 2.0/ (PJ'{,Z (429)+RM3 (429) )

nov( 430) =2258. 866* 2.0/ (RM2 ( ¿30 ) +n¡,f3 ( 430 )

Rov( 503 ) =1 458 . 851 * 2.0/ (RM2 ( 593 ) +RM3 ( 503 )

ROv ( 504 ) =90 3 . 54 64*2.0/ @uZ ( 504 ) +RM3 ( 504 )

nov( 577 )=1 035 .31 /(RM2 ( Szz )+nM3 ( 577 ) )
Rov( 37B) =920.0/ lRM2 ( S78 ) +RM3 ( 578 ) )

77 1 CONTTNUE
ÀK=ÀK+ROV(NU)
KOUNT=KOUNT+1
LI ST ( XOU¡lr ) =NU

END IF
pRI NT 27 3,1, NU, AI TÀ ( NU ), y¡A¡ ( NU ), YND ( NU ), EPN ( NU ), EMTP ( ¡¡U ), ROV

i-]O CONTINUE
27 3 FORMAT (2t+ ,6F1 5. 5 )

ROU(T)=AK/6"0
1330 CONTINUE

DO 30 K=1
X=Y= 0
J11 (K
DO 10

,NGP
0
=J22(K ) =,¡21 (K) =J1 2 (K) =0. 0

f =1r6
J11(K)=J(K,1,r)*xG

J21 (K ) =J (X ,2, r ) *XG
J22(K)=J(X,2,r)*YG

x=xG(t)*¡Gp(tt,l
Y=YG(t)*¡Gp(n,t

J12(K)=J(K,1,I )*YG

+x
)+Y

CONTI NUE
rF(rr .88. 2) THEN DO

EPS=ROU ( T )
ROH=0.0

END IF
rr(rr .EQ. 3) THEN DO

EPS=1 .0
ROH= ROU (T)

END IF
EPSI (K)=EPS
RO(K)=ROH

DET(K) =J1 1 (K ) "¿ZZ(x) -¡21 (K) *J1 2 (K)

I
I
I
ï

+J11(K)
+J12(K)
+J21 (K)
+J22(K)

'1 ù
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ÀREA=ÀREA+DET ( ¡t ) *W ( N )

ÀÀ(K)=J22 (n)*,:22 (x)
BB(K)=J12(n)",:12(K)
cc(K)=J22(n)".:12(K)
DD ( K ) =J21 ( K ) *J21 ( K )
EE(K)=J11 (n)*¡11 (K)
FF(K)=J21 (K)'tJ11(K)

30 CONTINUE
DO 6 M=1 16

SUM=0.0
DO 73 K=1 ,NGP

suM=suM+DET (n )'tW(n ) *no(n) "ecp(K,¡{)
73 CONTI NUE

c (E (T,M) ) =c (e (r,u) ) -stn¿
DO 7 N=M,6

ES=O.0
DO 21 Z=1,NGP

ES=ES+Ëpsr (z)/oer (z)*w(z)*( J(2,1 ,M)*J (2, 
.1 ,N)*ÀÀ(

* J (2,2,M)'kJ (2,'1 ,N)*CC (Z)+¿(2,1 ,M)"tJ (2,1 ,¡¡)'tOO(Z)

21
J (2,2,14) *J (2, 1,N) *rr ( Z ) )

CONTINUE
s(E(T,M),8(T,N) )=s (e(r,M),8(T,N) ) +ES

s(E(T,N),E(T,M) )=s (e(r,M),8(r,¡¡) )

7 CONTINUE
6 CONTINUE
3 CONT]NUE

c
DO 26 I=1,TDN

NL=DN ( I )
Do Îi,ffiiiTol"u. NL) tHeN po

¡¡r,=DN ( K )
NUM=K

END IF
27 CONTINUE

iillnli;iî:DV(r)=DV(Ntn¿)
DV(NUM) =D]

26 CONTINUE
c

DO 11 I='1 ,TN
DO 12 K=1,TDN

c(I )=-DV(tt)*s(l,D¡¡(K) )+c(r )

12 CONTINUE
.1 ,1 CONTINUE

K2=NM=},nq= 1

C IZ=1
DO 31 I=1,TN

K1 =1
IF(I "NE.DN(NZ) ) THEN DO
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B(¡û{)=c(r)
MN_MN+1
DO 32 M='1 ,TN

IF(M,NE.DN(XI)) GO TO 133
GO TO 417

133 IF(M.GT.I) CO rO 32
. A(N¡t)=s(¡a,t )

1g¡rq=¡{},t+ 1

GO TO 32
417 IF (rpN .GE. K'1+1) rHnN OO

K1=K1+'1
END IF

32 CONTINUE
ELSE DO

rF (roN .GE. K2+1 ) tHeN OO

¡1!=l(/+ 1

END IF
END IF

31 CONTINUE
N=TN-TDN

MS= 1

DO 1030 JJ=1 ¡N
DO 1 040 I=1 ,JJ

s(JJ,t)=a(us)
s(I,JJ)=S(¡,:,r )
MS=MS+

1 O4O CONTINUE
1 O3O CONTINUE

NKr =N* (N+l ) /z
DO 6768 I=1,NKI

6768 À(i)=0.0
C PRINT,'ÀREA IS"ÀREA

NN= 1

DO 1120 I=1,N
KOUNT=1
DO 1 1 30 JJ=1 ,1

rF(s(JJ,t).eQ"0.0) co ro 1130
DO 1140 K=JJ,I

Kp=I +KOUNT-K
À(NN)=s(ttp,t)

rF(KP.EQ.r ) rHsN oo
MÀXA(I)=NN
PRINT ,I,MÀXÀ(I)

END IF
NN=NN+ 1

CONTINUE
GO TO 1120

11+0

I I 30 KOUNT=KOUNT+1
1120 CONTINUE

MÀxÀ(672)=NN
NNK=NN-1

c

N=TN-TÐN
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NWA=N+ 1

NN=NNK
KKK=1
CÀLL COLSOL
KKK=2
CÀLL COLSOL

c
c.c
C REORGÀNZE NODE NUMBERINGS FOR OUTPUT

K=1
M=0
DO 20 I=1,TN

TF (i .NE. DN(K) ) THEN DO
¡1=!,!+ 1

c(t)=s(M)
ELSE DO

c(DN(t<) )=ov(x)
IF (tpN .cE. ¡+1) THEN DO

K-K+ 1

END IF
END IF
rF(rr .EQ. 2

c2(r)=c(r
END IF
rF(rr .EQ. 3

c3(I)=C(t
END IF

20 CONTINUE
c
C CALCULÀTES THE VÀLUE OF THE FUNCTIONÀL

F=0.0
DO 24 t1=1 

'TNDO 25 I=1,TN
F=F+S (t'1, t ) *C ( I ) "C 

(¡t)
?5 CONTINUE
24 CONTINUE

C PRTNT 1 1 55, IT,F
1 1 55 FORMÀT( 1 0X, r 6,F1 5.8 )

c
C PRINT 1 01
c PRINT 2OO,(r,(E(I,N),N=1,6),r=1,TE)
2OO FORMÀT('0" 1 0X,I8,1 0X,615)

C PRINT 1 01
c PRINT 1OO,(r,XX(I),YY(r),r=1,TN)

DO 1600 K=1,T8
x1=xx(e(x,l )

712=1tx(E(K,2)
x3=xx(e(K,3)
x4=xx(e(K,¿
x5=xx(E(K,6) )
x6=xx(e(K,s) )

Y1=YY(n(x, I ) )
Y2=YY(e(X,z) )

THEN DO

THEN DO

Y3=YY(e(x,g) )
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Y4=YY(e(¡t,¿)
Y5=YY(e(K,6)
Y6=YY(e(X,S)
vl=c (E (K, 1 ) )

YZ=C(e(X,Z)
v3=c(e(n,3)
v4=C(e(x,¿)
v5=C(p(r,e)
v6=c(p(tt,s)
o(1, =x1*x1 -N,2*x2
O(2 ,1) =X2*x2-X3*X3
O(3,1 )=X3*X3-X4*X4
o(4,1 ) =x4*x4-x5'tx5
o(5,1 )=x5*x5-x6*x6
O ( 1 , 2\ =Y 1*Y'i -Y2*Y2
o(2 ,2) =y2*Y2-Y3*Y3
O(3,2)=Y3*Y3-Y4*Y4
o(4,2)=Y4*Y4-Y5*Y5
o(5,2)=Y5*Y5-Y6*Y6
o(1,3)=x1*Y1-x2*Y2
o(2 ,31=X2*Y2-X3'tY3
O( 3,3 ) =X3*Y3-x4*Y4
o(4,3)=x4'tY4-x5*Y5
o(5,3)=X5*Y5-X6*Y6
O( 1 ,4)=X1-X2
o(2 ,4 ) =x2-x3
o(3,4)=x3-x4
o(4,4)=X4-X5
o(5,4)=x5-x6
o(1,5)=Y1-y2
O(2,5 ) =Y2-Y3
O(3,5)=Y3-Y4
O(4,5)=Y4-Y5
O(5,5)=Y5-Y6
R( 1 ) =V1-V2
R(2)=V2-V3
R(3)=V3-V4
R(4)=V4-V5
R(5)=VS-VG
IA=5
N=5
MÀ=5
I B=5
M=1
I JOB=0
CÀLL LEOI F ( O, T À, N,MA, R, I B, M, I JOB'WÀRÀ, I ER )
U1 (K)=R( I
U2(K)=R(2
u3(K)=R(3
U4(K)=n(¿
u5(K)=R(5
pRrNT 1616,U',l (K),u2(X),U3(X),U4(tt),US(n)

1 60O CONTINUE
DO 1609 I=1,TN

I 5=0
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ÀN=0 " 0
BN=0 " 0
DO 1 61 0 N=1 ,TE

rF( (I.EQ.E(N,1 ) ) "oR. (r.EQ.E(N,2)) .oR. (I.E8.q(N,3) ) .oR.
* ( r.eOle(N,á ) ) .on. ( t .nç"E(N,5) ) .oR, ( I.EQ.¡(N,6) ) )Go ro 1612

GO TO 16'1 0
1612 GRÀDX=-1 .O*(2.*Ul (N)*xx(r )+U3(N)*yy(I )+U4(N) )

GRÀDY=-1 .O* (2.*v2(¡t)*vv(r )+u3(N)*xx(l )+u5(N) )

GX(N)=GRÀDX
GY (N ) =GRADY
BN=BN+GX (N )
ÀN=ÀN+GY ( N )
15=19+1
ÀÀÀ=I 5

1 61 O CONTINUE
FX=BN/AÀÀ
FY=ÀN/ÀÀA

IF (r'V) 61 ,62,63
61 IF (rX) 64,65,66
62 rF (rX) 67 ,999,68
63 rF (rX) 69,70,71
64 THErÀ= (Ér +atÀN (eY/rx) ) *l g 0.o/Pr

GO TO 666
65 THETÀ=(3.o*PI /2"0)*180"o/Yt

GO TO 666
66 iHeta=(2.o*Pr-ATAN (-sv/sx) )*lg0.a/et

GO TO 666
67 THETÀ=1 80.0

GO TO 666
68 THETÀ=o.o

GO TO 666
69 THETÀ=(pr-eteN (-tu/tx) )*180.0/et

GO TO 666
70 THETA=90.0

GO TO 666
1i THETA=(¡r¡¡¡ (tv/vx) )*l90.o/pt

GO TO 666
999 PR]NT 988
666 RM=SQRT(FX't't2+FY**2)

rF(Ii .EQ. 2) THEN DO
RM2(I)=RM
THETÀ2(I)=THETA

END IF
IF(II .EQ" 3) THEN DO

RM3(T )=RM
THETA3(I)=THETÀ

END IF
GO TO 667

988 FORMÀT( 1H, ,'ANGLE INDETERMINATE')
667 CONTINUE
1 609 CONTTNUE

PRrNT 1222,F
1222 FORMÀT(10X,815.8)
43 CONTINUE

SUM=0.0
otr¿J



3113

'23

DO 3113 IM=1,8
IM1=13*(Z*IM-1 )
IM2=IM1 + 1

ÀJ1=1 .8* 4.4278-14*ROV( t¡¿l ) * (RM2 ( r¡¿l ) +RM3 ( iul ) )

IF(IM .EQ. 8) THEN DO
ÀJ2=0 " 0

ELSE DO
ÀJ2=1 . g* 4.4278-14,,ROV( l¡¡Z ) * (RM2 ( rUZ ) +RM3 ( r¡¡Z )

END IF
SUM=SUM+ÀJ1 +ÀJ2
CONTINUE
SUMI =SUM*P] * 1 . OE8/30. O

EXPT=38 .95
ERRI = ( sUUl -EXPT) " I O0 . OrlnXer
PRINT 123,TT,SLMI ,EXPT,ERRI ,ALPHÀ. -

F'ORMÀT(' ;,12N,'ITERATION # ="I O//IZX,
' I-TOTÀL =' ,Fg"g//lzX,
'I-EXPTL ="F9.3//12X,
'ERROR-I ="Fg.g//lzX,
'ÀLPHA =,,F4 "l//lzX,
' BEETÀ =t ,F4 .1 /' L' )

PRINT 1 OOO

1000 FoRMÀT(128(', -', )//'.NODE #"3X,'PHIA"7X,'PHrB"
*5XI' ERROR-PHY.,4X,' EA"8X,' EB" 6X'' ERROR-E"
* 2X , ' RHO-NEW 

" 
3X , ' RHO_OLD 

" 
3X ,-'ERROR-RHO 

"*471, 'JÀ"8X,'JB 
"6X,'ERROR-¿'. 

//128 ('-' ) )
DO 1234 JL=1,TN
ERRE= (nMg (JL) -RM2 (.:r,) ) r'200 .o/ I tRM3 (JL) +ruq2 (¡l) ) )

PP(JL ) =ROV(.:t ) *8. 854E-1 4

rF(rr "EQ. 1) GO TO 2666
DP ( JL ) =EMTP (,:r, ) *g . 8548-1 4

2666 CONTTNUE
rF(IT .EQ. 1) GO TO 5555
rF ((nov(,:¡) .e8" 0"0) .on. (eMrp(,1i,) .EQ. 0.0)) THEN Do

ERRR=0.0
ELSE DO
ERRR= (nov(,:i,) -gMrP(JL ) ) * I oo. o/eure (.]i, )

END IF
GO TO 5556

5555 ERRR=0.0
EMTP (,:r, ) =nov (.:r, )

5556 CONTINUE
AJ=1 . 8*ROV ( ;r. ) *.8 . 854E-04*RM3 ( JL )

BJ=1 . 8*ROV(,:r, ) *8 . 854E-04*RM2 ( JL )

rF(ÀJ "EQ. 0"0) THEN DO
ERRJ=O.0

ELSE DO
ERRJ= ( e¡-g,J ) "t 2o 0 " 0 / (AJ+BJ )

END IF
rF(c2(JL) .EQ;0.0) THEN DO

ERRP=O " 0
ELSE DO

ERRp= (Cg (¡L) -Cz(;l) ) *200 "o/ Gz(,:r.) +c3 (¡l) )

END IF
pRI NT 2233, JL, C3 (.¡r, ), C2 ( JL), EnRp, RM3 (,:l ), RM2 ( JL ), ERRE, PP ( JL

1

2
3
4
5
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1 DP ( JL ) , ERRR, AJ , BJ , ERRJ
1234 CONTINUE
2233 FORI'{ÀT (' 0 

" 
I 3, 2F1 1 . 3, F8. 3,281 1. 4, F1 0 . 3,281 1 . 4, F 1 0 . 3, 281 1' 4, F'

]F(IT .NE. 1 ) THEN DO
pRrNT 6333, (TN,EMTP(¡¡t),YMN(rN),YND( r¡¡),EPN(rN),

1 Rov(r¡¡),rN=1,TN)
6333 FORMÀT(' 0 

" 
I 4, 5F1 5.8 )

END TF
DO 332 I=1,TN

332 EMTP(r )=nov(r )

456 CONTINUE
c PRINT 1OO, (r,C(I ),XX(r ),vv(r )- ,r=1 ,TN)

1 0o FoRMAT( '0i ,1 ox, r 8,1 0x ,3F10 "5/)
c100 FoRM¡,Ti'o"lox,ra,lox,rlo.s,iox'1x,F10.9,6x,F10 "?/l
ð wñlCetì s,zitel ' (eúrp (tl ,c2(r ),c3(r ),RM2 (r ) ,RM3 (t ) , r=1 ,rN)
7778 FORMÀT( ' 0' ,511 2.3 )

8881 CONTINUE
STOP
END

c
c

c
c
c
c

c
c
c
c
c
c
c
c
C

c
c
c
c
c

SUBROUT]NE COLSOL

PROGRÀM
. TO SOLVE SIMULTÀNEOUS EQUÀTIONS IN CORE, USING COMPACTED

STORÀGE ÀND COLTIMN REÐUCTION SCHEME

MÀTRIX STORED IN COMPACTED FORM
VECTOR TO BE REDUCED
VECTOR CONTÀINING ÀDDRESSES OF DIÀGONÀL ELEMENTS

OFÀ
NUMBER OF EQUÀTIONS
NUMBER OF ELEMENTS BELOW SKYLINE OF MÀTRIX À

NN+ 1

INPUT FLÀG
NUMBER OF OUTPUT DEVICE

A
v
MÀXÀ

NN
NWK
NNM
KKK
] OUT

40

''.;;.-r't"-^^r^, 
rroo;, ;,;, rro,,;,.;,rrr, :";,;,o;,;-;,KKK

rF (ttttn-e) ¿0,150,150
DO 140 N=1,NN
KN=MÀXÀ (N )
¡¡=6¡'{+ 1

KU=MÀXÀ(N+1)-1
KH=KU-KL
rF (xu) 110,90,50
K=N-KH
IC=0
KLT=KU
DO 80 J=l,KH
1g=lÇ+1
KLT=KLT-1
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NT=MEXÀ(K)
ND=MÀXÀ1¡1+1 )-KI_1
rF (NO) 80,80,60

60 KK=MIN0(IC,ND)
C=0 .0
DO 70 L=1 ,KK

7 O C=C+À ( ttt +1, ) *e ( fr.t+f, )
À(KLT)=¡(nr,r)-c

I0 ¡1=l(+ 1

90 K=N
B=0"0
DO 100 KK=KL,KU
K=K- 1

NI=MEXA(K)
c=À(KK),/À(Ki )
B=B+C*À ( KK )

1 00 e(nx) =c
A(KN)=e(KN)-e

1 1 o rF (a(nN) ) 120,120 ,140
120 WRrrE(6,2000) N,A(KN)

STOP
1 4O CONTTNUE

RETURN
C REDUCE THE LOAD VECTOR

1 50 DO 1 80 N=1 ,NN
KL=MÀXÀ(N)+1
KU=MÀXA(N+1 )-I
rF (nu-nl) I e0,1 60,1 60

150 K=N
C=0. 0
DO 170 KK=KL'KU
K=K-1
c=c+À ( ¡üt ) *v ( tr )

1 ?O CONTTNUE
v(N)=v(N)-c

; AC CONTINUE
C BACK SUBSTITUTE

DO 200 N=1,NN
r=l¡eXÀ ( N )
v(N)=v(N)/x(t<)

2OO CONTINUE
714 FORMÀT (2r8 ,81 2.5 )

IF (NN .EQ. 1) RETURN
N=NN
DO 230 L=2,NN
KL=MÀXA(¡¡)+1
KU=MÀXA (N+1 ) -1
rF(KU-KL) 230,210,210

210 K=N
DO 220 KK=KL,KU
K=K- 1

v(K ) =v( K ) -¡ (nn ) *v(¡t )

220 CONTINUE
111 FORMÀT(2X,18,3815.8)
230 N=N-1
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RETURN
2o0o i;õRMÀl (//lBH srop-srrFFNEss MÀrRrx Nor posIrIVE DEF.rNrrE , /,

1 32H NON POSTTIVE PIVOT FOR EQUÀTION ,r4,//
Z 1OH pMT = ,EZ1 "12)

END
1 01 FORMÀT('1' )

ENTRY
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1)

2\

DÀTÀ INPUT FOR FEP (2-D)

TE = Total number of elements
TN = Total number of nodes at inPut
TDN = TotaL number of Dirichlet ñodes (includinÇ secondary

nodes that are Dirichlet)
TÀLT = Total number of altered secondary nodes
TÀD = Total number of secondary nodes that are Dirichle+- nodes
NGP

Major nodes of triangular elements ex: 1 2 3

3) (x,y) coordinates of

Àl-tered coordinates
ex: 3 2

elernent# arm#

the major nooes

of the secondarY nodes
xy

new coordinates

5)

b)

Major Dirichlet nodes
exl 2 1 00.0

node# Dir ichlet value

Secondary Dirichlet nodes
ex: 3- Z 100.0

element# arm# Dirichlet value
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Àppendix C

MESH GENERÀTING PROGRAM

//vgNKa ¡og' 0817124, t,1=5,L=5,c='1,r=20','VENKÀ'
// EXEc FoRTxcLG , usERLr B= ' sYS4 . EPI c . LI NK '

//row.sYSrN DD *
c.
c
c
c
c
c
c
c
c
c
c
C. r. e . û o ô c o o.. " " " ' 

o t 
' 

o o o o o ! o

DTMENSTON rBUF(4000),NEt (1000,3),DND(1000,3)
REÀD(5,*¡NELM,NNOD

wRr rE ( 6, 1 00 ) NerÌ'f , NNoD
1 00 FoRMÀT(20X,'THE NO. OF ELEMENTS"I 3,2X,'THE

DO 5 I=1 
'NELMREÀD(5,o ¡ (Nnr,( t,J¡,¡=1, 3 )

5 WRirE(6 ,97) (NEL(r,J),J=1,3)
97 FORMÀT ( ' o' , 20x, 31 4 )

DO 6 I=1,NNOD
REÀD( 5, * ¡ (O¡tO( l,J),3=1,2)

6 SrRirE(6,98) (DND(r,J) ,J=1 ,2)
98 FORMAT( '0' ,1 0X,2F1 5 " 4 )

C PICK MÀX. ÀND M]N. X AND Y
C SELECT THE LÀRGEST DIFFERENCE OF X ÀND Y

NELM: TOTÀL # OF ELEMENTS.
NNOD: TOTAL # OF PRINCIPÀL NODES.
DND(I,J) CORRESPOND TO X,Y COORDINÀTES.
NELM: TOTÀL # OF ELEMENTS.
NNOD: TOTÀL # OF PRINCIPÀL NODES.
DND(I,J) CORRESPOND TO X,Y COORDINÀTES.

A=0.0
B=0.0
À1 =0. 0
B1=0.0
DO '1 !=1 

'NNIF (DND( r ,1
IF(DND(I,1
IF (DND (T ,2
rF (DND (t ,2
CONTINUE

NO. OF NODES' , I 3

G=B
IF(À.GE.B)G=¡
rF(G.Gr"6"0)GO TO 10
s=6 "0/G
GO TO 11

1 0 s=5 "0/G

OD

"GE.A)¡=ONO(r,1 )

.LT.À1 )¡1=ONO(r, I )

" cE . B ) g=pNo (t ,2)
.LT.81 )91=ONO(1,2)
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11

12

DO 12 I=1,NNOD
DO 12 J=1 ,2
DND(I ,J)=DND(I,J)*S
cÀLL PLOTS(r9Ur,4000)
cÀLL PLOT(1.0,6.0,-3)
DO 14 I=1 ,NELM
N1=NEL(I,1
N2=NEL (t ,2
N3=NEL(I,3
X1=DND(WT ,1
X2=DND(N2,1
X3=DND(N3,1
Y1=DND(N1 ,2
Y2=DND(N2,2)
Y3=DND (N3 ,2 )

CALL PLOT(X1 ,Y1 ,3 )

cÀLL PLOT Q12,y2,2)
cÀLL PLOT(X3,Y3,2)
cÀLL PLOT(X1,Y1,2)
CONTI NUE
cÀLL PLOT(12,0.0,999)
STOP
END

14

,/ /co. sYs I N DD *
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ApPendix D

MÀTRIX ELEMENTS STORÀGE

À very important aspect in the computer implementation of

any method for solving system of algebraic equations is that

a minimum time should be used. In addition, high-speed

storage requirements should be as small as possible to avoid

the use of back up storage. Àn advantage of finite element

analysis is that the stiffness matrix is not only symmetric

and positive definite but is also banded. The fact that in

finite element analysis aIl non-zero elements are clustered

around the diagonal of the syStem matrices greatly reduces

the tot.al number of operat ions and tt¡e storage requi red in

the equation solution. However, this property dePends on

the nodal point numbering of the mesh, and care must be ex-

ercised to obtain an effective nodal point numbering" The

Figure D.1 shows the element pattern of a typical stiffness

matrix. Derivation of the storage scheme and addressing

procedure that is being adopted is as fotlows. Since the

matrix is Symmetric, we need to store only elements above

and including the diagonal lt can be observed that the el-

ements (i,j) of K(ie. Kij) are zero for j>i+m " The value m

is known as the half-band width of the matrix" Defining by

m the royr number of the first nonzero element in column i,

the variables ri , i=1 ,2...n define the skyline of the ma-
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trix, and the variables (í-mJ are the col.umn heights. Fur-

thermorä, the half-band widt,h of t'he stiffness matrix, mi

,equals the maximum degree of freedom pertaininE to any one

of the finite elements in the mesh. The column heights vary

with i, and it is important that all zero elements are out

side the skyline not to be included in equation solution"

On the other hand r zero elements within the skyline of the

matrix are stored and operated upon, since they will be-

come, in many cases nonzero elements during the matrix re-

duction. with the column height of the stiffness matrix de-

fined, all elements bel.ow the Skyline of K can be stored as

3 one dimensional arrayi ie the active columns of K includ-

ing the diagonal elements are stored in À. Figure D-2 shows

which storage locations the elements of the matrix K given

i:: the Figure would take in A. The addresses of the diago-

nal efements of K in À is stored in an array MÀxÀi ie., the

ojdress of the i th diagonal eLement of K, Kii in À is

HÀXÀ(]). From Figure D-2 it can be clearly seen that

MÀXÀ(I) is equal to the sum of the column heights upto

(i-i)st column plus I. Hence the number of nonzero elements

in the i th column of K is egual to 0,1ÀXÀ11+1)-MÀXÀ(I)' and

the ef ernent addresses are l'fÀXÀ(I ),MÀ)(À(f )+1 ' " " MÀXÀ(t+1)-1"

The storage scheme described above is used in computer

program, in Àppendix A. The effectiveness of ttre scheme

ljes essentially in that no elements outside the skyline are

sLored and processed in the calcula't ions " I t should be

borne in mind that in the discussion of the above storage
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scheme, it was implicitly assumed thet the entire srray A

does fit, into eveilable high speed storage of the eomputer'

program coLSoL is 8n active column solver to obt'ain obtain

f,nf factorization of a stiffness matrix or reduce and back

substitute"Thecomp}eteProcessgivesthesolutionofthe
finite element equations. The årgument variables and use of

thesubroutinearedefinedbymeansofthecommentcardsin
the Program"
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