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ABSTRÀCT

The problem of multiple scattering of a uniform electromagnetic plane wave

incident on an arbitra¡y configuration of N dielectric spheres of different permittivi-

ties is formulated by expanding the incident, scattered, and transmitted fields in terms

of an appropriate set of vecror spherical wave functions. Th¡ee methods are employed

to solve this problem: the fust two methods a¡e exact analytical while the third is an

approximate analyticai method. The exact analytical methods require the use of rhe

translation addition theorem for the vector spherical wave functions in order to

express the scattered fields by one sphere in terms of the coordinate systems of the

other spheres for the application of the boundary conditions at the surface of the

spheres. In the fust method, the boundary conditions are satisfied simultaneously at

the surface of each sphere. The toøl scattered field by each sphere is due to the

incident field plus the scatte¡ed flelds from the remaining N-l spheres. The resulting

system of linear equations is written in a matrix form and solved by matrix inversion

for the unknown scattered field coefficients. In the second method, an iterative pro-

cedure is empioyed and the boundary conditions are satisfied independently for each

order of scattered fields or iteration. The fust order scatte¡ed field resulrs from the

excitation of each sphere by the incident ñeld only, while the second order scatte¡ed

field ¡esults from the excitation of each sphere by the sum of all fust o¡der scattered

fields, and hence this process continues to infinity. The thi¡d method is approximate

and based on the assumptions that the spheres radii a¡e electrically small. The

interaction frelds (usually spherical waves) between the spheres are approximated for
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larger elecrrical separation by plane waves of unknown magnitudes. The latter

method is shown to be simpler and has computationa.l advantages over the exact solu-

tions, since it does not require computation of the series resulting from applying the

vector spherical addition theorem. The agreement between the approximate and exact

solutions is excellent for the presented numerical results of the backscattering and

bistatic cross section patterns. The formulation is ¡educed to the special case of N

perfectly conducting spheres, and the numerical results show a reduction in the nor-

malized backscattering and bistatic cross sections for cerøin choices of permittivity

relative to conducting arrays of spheres of same dimensions and separations. Results

for the scattering by a conducting or dielectric spheroid are given by simulating these

bodies with an appropriate system of spheres. Exact numerical results are also

presented for arrays of dielectric coated conducting spheres.
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CHAPTER 1

INTRODUCTION

The problem of multiple scattering of a uniform plane electromagnetic wave

incident on an arbitrary configuration of N dielectric spheres or a mixture of conduct-

ing and dielectric spheres is considered. The investigation is carried out on this

specific shape since the sphere is a three dimensional body with a simple geometry

for which an exact solution is available.

The scattering by an arbitrary conñguration of spheres has numerous applica-

tions ranging from the propagation of electromagnetic waves through rain or hail,

modeling of complex bodies by a collection of spheres, as shown in Figs. 1-1 and 1-

2, such as cylinders capped with half spheres, finite cones, spheroids, scanning of

buried objects ro rhe simuiation of human or animal bodies by using inhomogeneous

dielectric spheres. A novel application is that of loading the aperture of an antenna

by a linear array of dielectric spheres (Fig. 1-3) to enhance the gain along preferred

directions.

Early investigations of rhe scatrering by a single sphere by Mie led to the so

called the Mie series solution [1]. For spheres with large radü (greater than three

wavelenghts) the Mie series solution converges slowly. Therefore, to overcome this

problem, an asymptotic solution was derived by the application of the Watson's

transformation to the Mie series solution [2]. The scattered field is then expressed in

te¡ms of a sum of geometdcal optics and creeping wave terms. For the case of small

spheres (ka<<l) one can use the Rayleigh approximation, where only the fi¡st term in



Cylínder capped with half spheres Finíte cone

SPheroid

Fig,l-1 Simulation of complex bodies.
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Fig,l-2 Plane wåve incident on a half space of denscly packed spheres.



Fig.l-3 Apcnurc antcnnas loadcd with dielcctric sphcrcs.



the series is retained.

Investigations on two-dimensional bodies such as the scattering by two circular

cylinders [3] or diffraction by two wedges [4], as well as the scattering by N parallel

cylinders [5-6], were carried out extensively. For systems of parallel cylinders two

analytic approaches have been used, both requiring the application of the scala¡ addi-

tion theorem for cylindrical functions [7] to impose the boundary conditions on the

surface of each body.

The fust approach considers the total scattered fleld from each scattere¡ is due to

incident (prima¡y) field plus scattered (secondary) fields from the remaining scatterers

[8-9]. Application of the boundary condition on the surface of each scanerer leads to

a system of linear equations for the unknown scattered field coefficients. The system

of equations is then solved by direct matrix inversion or by successive iterations. The

second is an ite¡ative scattering approach which requires an infinite o¡der of scattered

fields [10]. The first order of scatte¡ed field ¡esults from the excitation of each

scatterer by only the incident field (single scattering). The second order scattered field

is. due to the excitation of each scatterer by the sum of atl first order scattered fields

from the remaining scatterers, and so on to an infinite order of scattered fields. This

approach does not require matrix inversion and therefore the scattered field

coefficients a¡e obtained after each iteration and used in the subsequent iteration until

the solution converges.

Fo¡ th¡ee-dimensional configurations, the fust approach has been previously

applied only to the scattering by two conducring or dielectric spheres [11-12]. Inves-

tigations regarding systems of an arbitrary number of conducting or dielectric spheres



randomly located were initiated within the frame of the present docto¡al thesis [13-

14).

Trinks [5] formulated long ago the problem of scattering from two identical

spheres of small radii (Rayleigh approximation) and with broadside incidence. Later,

Cermogenova [16] extended the analysis to two unequal small spheres and an a¡bi-

rary angle of incidence. Zitron and Karp t17-181 studied the scattering by two- and

th¡ee-dimensional (scalar case) bodies of arbirary shape, while Twersky [19] used

the dyadic Green's function formulation to study the multiple scattering of elec-

tromagnetic waves by an arbitrary confrguration of scatterers. Angelakos and

Kumagai [20] made use of geometrical optics to obtain the backscattering cross sec-

tion of arrays of three identical spheres and compared their ¡esults with experimental

values. On the other hand, Bhartia et al î271 applied the geometrical theory of

diffraction to the scattering by two large spheres. Tsang and Kong [22] presented an

approximate solution to the scattering of a plane wave obliquely incident on a half

space of densely distributed spherical dielectric scatrerers. Hunka and Mie t23l

employed a modified unimoment technique to generate the system transfer matrix fo¡

the scattering by two arbitrarily oriented bodies of revolution. Numerical solutions

based on the moment method were presented by Mautz and Harrington [24] to solve

for the scattering by a conducting or dielectric body of revolution in terms of

equivalent electric and magnetic cunent sheets over the surface of the body. Later,

Kishk and Shafai I25l extended the analysis to the scatre¡ing by two bodies of ¡evo-

lution excited by a plane wave or infinitesimal electric dipole. Such numerical solu-

tions require very large computer storage and hence limit the usefulness of these

techniques. An analytic solution to the scattering by two spheres was obtained by



Liang and Lo [11] using the translational addition theorem for vector spherical wave

functions given by Stein [26] and Cruzan 1271.'lhe obtained system of equations was

solved by successive iterations after neglecting the higher order scattered fields.

Bruning and L,o [i2] pursued the analysis to the scattering by two dielectric spheres

and obtained more general numerical results fo¡ systems of two spheres. Analytical

solutions to the scattering by systems of two spheroids were derived by Sinha and

MacPhie [28] for parallel spheroids, and, more recently, by Cooray and Ciric [29] for

spheroids of arbitrary orientation.

This thesis presents a general solution to the problem of scattering of a plane

electromagnetic wave by an a¡bitrary confrguration of N dielectric spheres using ana-

lytic and approximate solutions based on the multipole expansion method. Numerical

results a¡e computed and plotted for the normalized backscattering and bistatic cross

section pattems for one and two-dimensional arrays of conducting or dielectric

spheres.

. In chapter 2 the multipole expansion method is used to express the incident,

transmitted, and scattered fields in terms of the vector spherical wave functions of the

fust and third t1pes, respectively. The general translation addition theorem for the

vector spherical wave functions is employed to Eansfo¡m the outgoing scattered fields

from one sphere in terms of incoming fields on the remaining spheres. This is fol-

lowed by the application of the bounda¡y conditions which require that the tangentiat

electric and magnetic field components must be continuous at the surface of each

sphere. Use of the onhogonality properties of the spherical wave functions leads to a

system of linear equations. The system of equations is written in a matrix form a¡d



solved by matrix inversion for the unknown scaltered field coefficients.

The novel iterative solution is formulated in chapter 3. This technique requires

the solution of the field scattered by each sphere, assumed to be alone in the incident

field, and which acts as an incident field on the other spheres. Thus, the fust order

scattered field (fust iteration) ¡esults from the excitation of each sphere by the

i¡cident field only. The second order scattered field results from the excitation of

each sphere by the sum of all fust order scattered fields f¡om the remaining N- 1

spheres. This process of iteration continues until the solution converges. In order to

compute the higher order terms of scattered fields, the translation addition is

employed. coefficients for the various order scattered fields are obtained and written

in a matrix form. one of the main advantages of using this ite¡ative solution is to

show the significance of the computed higher order scattered fields on the total scat-

tered field patterns.

Once the scattered electric field coefficients are determined, expressions for the

normalized backscattering and bistatic cross sections a¡e obtained in chapter 4 for

both methods after employing the asymptotic values of the vector spherical wave

functions. In addition, we compare the numerical results of both methods, and show

the effect of the number, size and location of spheres on the numerical results.

The approximate method is derived in chapter 5 fo¡ small and non contacting

spheres. The toral scattered field by each sphere is due to the incident field plus the

scattered frelds f¡om the remaining N-l spheres which a¡e approximated by plane

waves of unknown magnitudes. The purpose of presenting the approximate solution

is to show that such a solution reduces computational time and computer storage



since it does not require computation of the series resulting from applying the addi-

tion theorem. Finally, the formulation is extended to the scattering by dielectric

coated conducting spheres in chapter 6 to show the effect of the coating on the back-

scattering cross section, while the discussion and outline of future research a¡e given

in chapter 7.



CHAPTER 2

SCATTERING OF ELECTROMAGNETIC WAVES BY AN ARBITRARY
CONFIGURATION OF CONDUCTING OR DIELECTRIC SPHERES

The scattering by an arbitrary configuration of N dielectric spheres is formulated

in this chapter using the modal expansion merhod. For example, the solution can be

used to simulate human bodies using inhomogeneous dielectic spheres to treat vari-

ous diseases, and for the simulation of dielectric complex bodies. As already men-

tioned, a novel engineering application is that of loading the aperture of an antenna

by dielectric spheres to enhance the gain along prefened directions. To support this,

experimental results to improve the gain of antennas loaded with a single dielectric

sphere have been reponed 130-311.

To date, there are no analytical, approximate or purely numerical solutions

available in the literarure for the scattering by more than rwo dielectric spheres due to

the complexity of computing the coefficients of the translation addition theorem.

Therefore, the goal of this chapter is to present analytic solution for the scattering by

N dielectric spheres [32-33], since purely nume¡ical techniques require very large

computer storage and hence tend to limit the usefulness of these techniques.

Early studies of the problem of a plane electromagnetic wave scattering by an

imperfectly conducting, dielectric, or plasma sphere were given by King and Harrison

[34]. Later, tabulated results for the backscattering cross section of a conducting or

dielectric sphere were obtained by Adler and Johnson [35]. Anaiytical and experi-

mental results to the scattering by two dielectric spheres were presented by t121,

while numericai results were given by [25,36].
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It is perhaps worthwhile to mention that the scattering by N two-dimensional

bodies is a scalar problem and therefore can be solved independently for TE and TM

waves [6]. On the other hând, the case of scattering by three-dimensional bodies is a

vector problem and hence the TE and TM waves are coupled regardless of whether

the excitation is by ?'E or TM waves.

The multipole expansion method is employed to express the incident and

transmitted fields in terms of the spherical wave functions of the fust type

<Ul,Ì,ÑH¡ that are associated with the spherical Bessel funcrion, so rhar the fields

will be finite at the origin [37]. Then, the incident field expansion coefficienrs of the

pth spheres (p=1,2,...,N) are obtained using the orthogonality propenies of the vector

spherical wave functions. Moreover, The scatte¡ed electric and magnetic fields a¡e

also expanded in terms of the vector spherical wave functions of the third type

<¡øfì,Ñ,91thar are associated with the spherical Hankel function ro satisfy rhe radi-

ation condition.

The general translation addition theo¡em is employed to transform the outgoing

scattered fields from one sphere in terms of incoming fields on the remaining N- 1

spheres [26-27]. Application of the bounda¡y conditions require the tangential elecrric

and magnetic freld components must be continuous at r =ap þ=1,2,...,N). Using the

orthogonality properties of the vector wave functions leads to a system of linear

equations for the unknown scattered field coefficients. The system of linear equations

is written in a matrix form and the desired scattered field coefficients are obtained by

di¡ect matrix inve¡sion.

The special case of a linear anay of N dielectric spheres is deduced by spacing



the spheres along the z-axis. This allows the azimuthal modes to decouple and there-

fore enables us to solve the system of equations for each mode independently. The

scattered fields a¡e then obtained by summing the required azimuthal modes.

Finally, the scattering by an arbieary configuration of N perfectly conducting

spheres is presented by letting the permittivity of each dielectric sphere become very

high (heoretically infinite).

2.1 Expansion of the incident field

Consider a plane electromagnetic wave incident on an arbitrary configuration of

dielectric spheres as shown in Fig. 2-1, where the radius of the pth sphere is ao and

the permittivity is eo b=1,2,...,N). The spheres are centered at dp with local cartesian

coordinates (xo,lra). The separation distance between the centers of the pth and qth

spheres is denoted by doo.'t'Íre incident plane wave has a unit elecric field intensity

whose propagation vector F lies in the xz plane and makes an angle a with the posi-

tive z-axis. The incident electric field is considered to be in the f direction. The

incident electric and magnetic fields a¡e expressed by

Ei - eiE.r f
,i =-LniÈ'r (cosaf -sinoâ)

I is the intrinsic impedance of the su¡rounding medium. Considering the relationship

--;r = dp + rp , one can wnte

¿l k'r - eJ 
E op 

eJ 
K'rp (2-3)

Therefore, the incident plane wave is expressed with reference to the spherical coor-

dinates of the pth sphere as

(2-r)

(2-2)



Fig.2-1. Arbitrary configuration of dielectric sphercs.



e 
iE' u P + d P ) = e 

i k4 t' 
fP- i " r'" *tl ffi r r <cosa) Pf; (cosoo ) i ̂

 
(kr p ) e 

i ̂  þ' (2' 4)

where 7n is the spherical Bessel function, Pff is the associated Legendre function of

the fust kind with order n and

(¡ =sin@, cosÕo sincr+ cos@o coscr

For the special case of a linear array of N dielectric spheres spaced aiong the z-axis,

as shown in Fig. 2-2, we have @o =O 1p=1,2,...,¡¡.

Expanding the incident electric and magnetic fields in terms of the spherical

vecto¡ wave functions of the fust kind, with the e-id time dependence suppressed

throughout, we obtain [38-39]

æ ln--n
Eí 1ro,0r4)= > t tpoØ,n)ñfler,op,Op) + eo@,n)MÁÌOo,oe,Op) I e-s)

n=l m=-n
æ h7=n

qa ¡ 
çr0,0 o,Q) = i > t ¡e o @,ù M j! (r0,0 o,Q) + eo tu,fi N fl e o,ê r,Þ) J e-6)

n=I m=-n

where p takes integer values from 1 to N, Po and Qo arc the unknown field expan-

sion coefficients, while Mf, and N,$ are the spherical vector wave functions of the

first type which represent incoming waves and are given by

u fl Q o,e o,O; = Y x I u*"(ro,op,þÐ 7p )

ñ fl <,0,e o,q¡ = f,v " 
u fl <, o,e o,Ort

with

uo*Qo,0o,Qp) = in(krÐPtr@os1o)ei^Q,, \sn <æ, -n 1m sn
Taking the curl of equations (2-7) and (2-8), we obtain

M H QP,a p'þì = 6 o u,<ørl ft P {@osê ¡ej^þ' J

(2-7)

(2-8)



and

1

Ñfl1r0,0o ,Q) = fo í j i^{t ,o) n(n+t) Pf(cose¡ ei^Þo 7Kfp

*à, t fi fr ft i,rkr,>t f,- 
r ç@o,e o)"i^ 

Þ, 
)

*6r{t 
frr,ot,n,o, ;ftrprcosor)ei'Þo¡ (2-10)

where it can be seen that the radial components a¡e contained in lUff. Thus, for H

waves (TE), H- is represented by N,$) and E ty Uf , while in the case of E waves

QM ) the opposite is true. Using the orthogonality properties of the vector wave

functions (Appendix A) in equations (2-5) and (2-6), we obrain the incident field

expansion coefficients as

p^(m,n) = -¡n rikÇÇ Qn+l) (n-m)l m ,n,t' ' n(n +D t" -. I .r"" r;'\cos d')

eo(m,n) - -¡nniu,r,ffi m*rl@os..)
while in the case of a linear array of spheres, equations (2-11) and

the foliowing forms, i .¿ .,

po (m,n) = -¡n rikdc 
coso 

ffi t# #p f;@os a)

eo@,n) - -¡" etu" -"" ffi ## *riaos a)

- 6 o U,{rrr r) fr r tr<co"e ; ei^ þ, 
}

Poin,n) = Qo@,n) = - i" 4 õ^,t ejdo

with ô..1 being the Kronecke¡ delta.

(2-e)

(2-rr)

(2-12)

(2-12) reduce to

(2-13)

(2-14)

For the limiting case whe¡e the direction of the incident plane wave coincides with

the direction of the positive z-axis (cr=O in Fig. 2-2), equations (Z-13) and (Z-14)

lead to the simpler form

(2-rs)



Fig.2-2. Linear array of dielectric spheres.



2,2 Expansion of the scattered and transmitted fields

The scattered fields from the pth dielectric sphere ( ro> ap) can be expanded in

terms of spherical wave funcrions of the third kind as

6 m=n
E', {r 0,0 r,Þ ) = > t ¡ e "r¿ (m,n ) ñ }1,) e r,0 o,Þ p) + $y (m,n ) M f} e e,a p,þ ì l

n=1 m=-í

æ m=n - 
(2'16)

11 H ; (r p,a p,q ) = I > t tA "oøtu,n) M fl ? o,e o,Q ) + A"r¡,t 1m,n¡ ñ f;) e o,a o,þ ) )
n=l m=-n

(2_17)

where Ajr and Aju are the unknown scattered field coefficients due to TM and, TE

waves and. will be determined late¡. Ufl ana Ñfl ue the spherical vector wave

functions of the thi¡d type which represent outgoing waves and which may be

obtained by replacing jn by the spherical Hankel function ån(l) in equations (2-9) and

(2- 10). Similarly, rhe tra¡smitted electric and magneric fields into the pth sphere (

rrcao ) may be written as

6 
'i=nn'r{r*eo,ö) = > t lA,os@,n) u }ìop,ø p,þÐ + A'oy@,n) M Áleo,lr,Q)J

n=l ,tt-tr

4 m=n 
(2_19)

ry n ; {rp,ø p,þp) =i I E îA'oB@,ù M }I e r,0 p,Q ) + Ajy çm,n¡ ñ fl to,0 r,Q) )
n=l m=-¡

(2_19)

Here qo is the medium intrinsic impedance of the pth sphere, while A!¿ and Alu ue

the unknown transmitted field expansion coefficients.

2.3 Translation addition theorem for spherical wåve functions

In o¡de¡ to impose rhe boundary conditions at rp=ap (p=1,2,...,1'Ð, the outgoing

scattered fields from the qth sphere must be transformed in terms of incoming fields



on the pth sphere and vice versa. Hence we apply the translation addition theorem

(Appendix B) for the vector spherical wave functions, j. e.,

é ll=v
ufl1ro,êo,Q)

v=1!.=-v

æ ,r=v 
+8ffi(d*,êoo,Qoq)NÍl)(rp,ee,op) I Q-20)

wfl(r{Qn,Q)
v= ltF-v

+ Bffi (d* ,o* ,Qoù M l! Qp ,êe ,þì I Q_21)

where Affi (doo,9pq,þpq) and Bff! (don,Qoo,Qpq) arc the translation coefficients in the

addition theorem given in Appendix B and

doo=do-d,

=(xs -xp )î +0q -to)9 +Q, -zr)î
g-- =cos-l l'o - 

to 
IY'( I drn )

ô--=ran-l l"-" l,r,t 
l ro _ro 

)

- [=v
u fl (r r,Ê r,Q ) = > > (-1 )' * t 4 ii @qp,a w,ø qÐ u {,f; lr o,ø o,Q o)v=1tl=-v

é u=v 
-Biç@qp,aqp,þ,r)N,Í9(ro,0o,Qo)J Q-26)

u fl 11 0,0 o,Þ ) = >'> (-r f *' tA ii @qp,g qp,q qp) lu]f) {ro,0o,0o )
v=1 !¡=-v

-Bii @qe,øqe,þQM {,1) Qo,eo,Q)) Q-27)
For the special case of a translation along the z-axis, the ranslation addition theo¡em

ukes a simpler form (Appendix C). Therefore, equations (2-20) to (2-27) reÅuce to

the following forms

uft)1rr,0o,Þ) = r,tAK@pq)u j!>ço,eo,ÞoI + nffi@fiñÅl,\1rr,0o,Q)I e-28)
v=1

(2-22)

(2-23)

(2-24)

(2-25)



Ñ fl o o,a o,Þ q) = i ¡n g <aool Ñ Á!,) <, o,e o,q Ð + a ffi @ o) M Á 
) 
<, o,e Ðo ¡ I e-2s)

v=1

where Affi(doo) and Bffi(drn) are the translation coefficients in the addition theorem

for a translation along the z-axis, and

M fl e p,e p,þ Ð = > (- Ð" 
+v 

f.A K @ o ¡ u [!) {r o,e o,þ ù - B m @ q p)ruf })1r0, eo,Qn ) J

v=1

(2_30)

ñf ço,eo,Q) = Z eD^*,[Am@oo)ñ[!)tro,oo,þq) - BK@qp)u[!eo,en,Þr) )
v=1

(2-3t)

Once the outgoing vector spherical wave functions are transformed into incoming

ones, the boundary conditions can easily be applied on the surface of each dielectric

sphere.

2.4 Application of the boundâry conditions

The boundary conditions on the surface of the pth dielectric sphere require con-

tinuity of the tangential electric and magnetic fields, i.¿,

ho x tEfü{ro,êo,Q) -E;?o,ao,Q)) 1,,=o"= 0,
hp x I n ;'t (r o,o o,Ool - a to<, 

o,e r,0p ) J I .,=o,= 0,
where âo is the outward unit no¡mal to the surface of the pth dielectric sphere, and

the superscript out refers to the region external to the pth sphere (ro>ao). Hence

E;u'ee,ep,þp) = Eí qro,0o,Q) . Ë I ; ^i ¡e¿r<^,n>ñf)?n,0o,Qq)
q=l | ¡=l a=_r1

+Aiy@,n)Mfu('q,eq,o4)t] e44)
while the magnetic freld, Hfut(ro,0o,0p ) can be written in a similar manner. It should

be noted that E] and H j ue zero for the special case of perfectly conducting spheres.

Substituting the appropriate forms of the translation addition theo¡em (2-20)-(2-27)

p=r,2,...,N (2-32)

p= 1,2,...,N (2-33)



into equations (2-32) and (2-33) leads to the following equations in terms of the unk-

nown field expansion coefficients

-m=n(,, 
P_ P_, le, {m,n ) Ñ,ÍP {a yo p,q p ) + e o @,n ) M fl @ r,0 o,Q o )

+ A"oe@ ,n)Ñf)@, ,ao,Qo) + Aj¡¿(m ,n) Mf)@o,ap,Q)
r |. * p=\,

+ r, lA åE@,n) >' > tAK @eq,a eq,q pq) ñ ilì (a 0,0 p,Q )
C=l I v=ltt=-v
q*P

+ Bffi(deq,oPq,øpìMÍf; @e,êp,þì I

+A"oy@ ,n)i\ ¡ep <ao, ,eoo ,øo¿ u f;ì {a, ,øo ,øo)
v=1p=-v

+ B ffi (d*,e*,Orn 1ru,Í? ør,eo,Oo I t )
)

-tAlB@,n)ñjf;@,,6r,þ)+Alu@,n)Mfi@o,0o,Orr ]=o e-3s)

and

t*m=n(

+ " i Ì, 
^4_, 

lr o <^,n ¡ u fl 1a 0,0 o,Q p ) + Q, @,n ) Ñ fl @ r,ê r,Q e )

+ A j e @,ù M f) @ r,0 o,Þ p ) + e "r¡a @, n ) ñ f) @ 0,0 o,Þ p )
N I æ u=v

+ \, lA iB@,n ) >' r, t{ii @ pq,e pq,q eù M tJ (a 
0,0 o,Þ )

c=l I v=lp=-v
q+p

+nffi (d*,0*,Q0" ¡lt,jl,) {ao,oo,0o ) J

+Afy(m ,n)î,\ up <oo, ,eoø ,Qùñ ff; 1ao ,s, ,*r')
v=1p=-v

+ B ffi (doo,o ro,oonl u fì øo,e o,ø o> ll
)

-ffø¡<^,aufl1ar,0o,Q)+Ajy(m,fiñfløo,eo,oolr 
] 
=o (2-36)

since ou¡ main interest is to obtain the scatte¡ed field everywhere, a solution for the

unknown scattered field coefficients Af6@,n) nd Atoy@,n) will therefo¡e be given

here. Applying the orthogonality properties (Appendix A) of the spherical wave func-

tions yields



At'e@,n) =v, (p ) {p, (m,n) + Ë i i v#: @pq,0 pq,þ p) Alt1r',v)
4=1 v=l P=-v
q+p

+ gfl, (d*,êro,Qo) A'nuQ,v)Jl Q_37)

A j¡a 0n,n) = u, (p ) t Q, @,n ) + È i i ¡¡ ffi (d or,0 ro,Q p) Alu Q,v)
4=1v=l p-v
q*P

+8fl(d*,e*,Qp)Alee,v)Jl (2_3s)

where p=1,2,...,N, while v,, (po ) and u,, (p, ) are the electric and magnetic scattered

field coefficients for a single dielectric sphere [37], which a¡e given by

v,,(Pp) = -
.i 
^ 

@ ) Í40 i, (Eùl' - N p2 i, (E) tP o i ^@ r 
))'

n l') @ ì tEo j 
^(Eo)t' 

- N ; j,Gì tp, hl') ç r)1,

,, rn r= _ i"(4e)Íppi,(pp)l'-i^(pÐlepi^(Eìl'un\Pp)--M

(2-3e)

(2-40')

Here ko=Nok, pp = kao, Ep = koao = Nppp, Np = G-/ e, while eo and e are the

permittivities of the pth sphere and of the surrounding medium, respectively. In the

case of N lossy dielectric spheres, N, is a complex quantity which makes the compu-

tations more complicated since the arguments of the radial functions become com-

plex.

Equations (2-37) and (2-38) are a coupled set of linear algebraic equations and

should be solved simultaneously in order to yield the unknown scattered field

coefficients. In addition, the infinite series must be truncated to a finite number of

terms n =v=M and ¡n =!r= 2M+1 in order to obtain numerical results [32].

For a linear array of N dielectric spheres spaced along the z-axis, equations (2-

37) and (2-38) reduce to a simpler form due to the symmetry with respect to the z-

axis and hence the summarions over ¡r disappear, I .e .,



A f a (m,n ) = v o Ga o) [ 
p 

o 
(m,n ) + l, ;, b H @p q )A ] ø (m,v)+ B H (d o) A,o y (m,v))l

q*P

N æ Q'41)

A "ot a (m,n ) = u n (ka 
o ) 

(Q 
o 

(m,n ) + > > LA H @ p q ) A'q M @,v)+B g; (d 
o o )A i ¿ @,v ))l

c*P

(2-42)

It should be noted that the above system is solved for each rn independently, since

there is no coupling between azimuthal modes, and rhe scattered field coefficients are

obøined by summing over the required azimuthal modes.

2.5 Solution of the resultant system of equations

The obtained system of linear equations can be written in a matrix form as

N
A)¿=îvoJFo + tvrì ! Í[Aec]A'Eal9wlA"oy ], p= 1,2,...,t{ (2-43)

C=I
q*P

N
Alu =ttlQo +Iu) | 1¡n cø 1e'n¡o +ÍBwlA;E ), p = 1,2,,..,N (2-44)

'Ì 
=l

q+p

where the above column and submatrices a¡e defined in Appendix D. The above sys-

tem of matrices may be re-written in the following form

l^0,:)=['';' ,ü,] [;;]. ['î, ,":,]ållç lil;:l)li;1,*,
where Aft,, a)u ^a Aår, Aå, a¡e column -uJ-J, of the unknown scarte¡ed field

coefficients of the pth and qth sphere, respectively. [vol and [uoJ are diagonal sub-

mat¡ices conøining the scatte¡ed freld coefficients of a single dielectric sphere, while

F, and Qo a¡e column marices fo¡ the incident field coefficients. Finally, ¡ne+ I and

lBpc I arc square submatrices associated with the Eanslation addition coefficients.



Equation (2-45) may be written in a convenient matrix form as

A=L+TA
whe¡e

"= ['"t, ,,î,] [ä]

'= f,"r, ,ü,] p,ltt;:lixill)
q*p

The solution of equation (2-46) by matrix inve¡sion yields the scattered field

coefflcients in equations (2-16) and (2-17) as

A = (r -7 ¡-t ¡ e_4s)
Once the scattered coefficients are computed, the total scattered field can be deter-

mined everywhere.

2.6 Scattering by perfectly conducting spheres

The special case of scattering by N perfectly conducting spheres is obtained

from the dielectric case by letting the permittivity of each dielectric sphere become

very large and hence leads to no transmitted fields inside the spheres. The boundary

condition requires that the tangential electric freld components 1F, anO fO ) must

vanish on the surface of the pth sphere. Thus equation (2-32) reduces to

h, x E'o'ot {ro,o,.L) I ,,=o,= o , P= 1,2'...'N (2-50)

(2-46)

(2-47)

(2-48)

where

Etotot (rp ,ap ,þp) = E¡ 1r, ,00,Q) . Ë I ; f re;Br^ ,nlñflto ,0q,Qq)
q=l ln=l m---n 

_
+Aly(m,n)M#ì(,q,oq,Oq)l] e-sl)

Substituting the appropriate forms of the translation addition rheorem (2-20)-(20-27)



into equation (2-50) leads to the following equation in terms of the unknown expan-

sion coefficients

_m=n(
7p , Ð. Z, ler@,n¡ñfl@,,00,Þp) + eo@,n)Mf,@p,ap,qp)

n=l m=-n '

+ At' e@,ù Ñ,f) @ r,0 o,Þ p) + A f ¡t @,n ) M f) @ r,0 r,Q p)
¡l f 6 Lr=v

+ | lA"o¿ Ø,n ¡ l' | @ ffi @ oq,g pq,þeù N f,! (ao,0 r,Q e )
C=l t v=ltt=-v
c+p

+ Brc @eq,o eq,Qoo) M {,! {ao,êo,Q) )

- ll=v
+A)y (m,n) l'> Øp ø*,e oo,Qon) u l,! @o,0 r,Q o)r,-1!'- r,

ìì
+ B tri @eq,ew,o*t ñ f,! ør,e ,,ail 

| ) <z_szt

To determine the unknown scattered field coefficients in the above equation we apply

once again the orthogonality properties (Appendix A) of the spherical wave func-

tions, to obtain

A )p(m,n) = v 
^ 

(Q ) lp o 
(m,n) + È Ë 5 v #l @eq,o pq,þ e) Ai r $,v)

4=l v=l tF-v
q*p

+gffi,(d*,0*,Qpo)Aiu@,v))) (2_s3)

A jy (m,n) = u, (p ) {e o 
(m,n) + È i i IA H @ pq,a pq,þ p) A ]u e,v)

q=l v=l !¿-v
q*P

+ Bfl(d*,êr,Qro )Afr(l,v)J ) (2-s4)

Hence vn (po ) and un (po ) are the electric and magnetic scartered field coefficients for

a single perfectly conducting sphere and are given by

lo,.i@oY
W lll-ì=

Ioo nf)ço¡1'
i"(p,)u"(pp) = _ ,prr;

It shouid be pointed our that equarions (2-53) and (2-54) for a

(2_ss)

(2-s6)

system of perfectly



conducting spheres are similar to equarions (2-3i) nd (2-38) for dielectric spheres

with the coefficients v¿(pp) and u,,(po) of dielectric spheres replaced by those for

perfectly conducting ones.



CHAPTER 3

ITERATIVE SOLUTION TO THE SCATTERING BY AN
ARBITRARY CONFIGURATION OF SPHERES

An exact analytic solution of the problem of scaftering by a system of N con_

ducting or dielectric spheres has been obtained in chapter 2 by employing the rransla-

tional addition theorem for the vector spherical wave functions in order to enforce the

boundary conditions simultaneously at the surface of each sphere. Thus, the field ouç

side each sphere is expressed in terms of the incident field plus the scattered fields

from the remaining spheres.

In this chapter a novel iterative procedure is proposed for the solution of the

scattering by an arbitrary configuration of dielectric or perfecdy conducting spheres.

This approach requires the solution of the field scattered by each sphere, assumed to

be alone in the incident field, which acts as an incident field on the other spheres.

The¡efore, the fust order scattered field (fust iteration) results f¡om the excitation of

each sphere by the incident freld onty, while the second order scattered fleld results

from the excitation of each sphere by the sum of all fust order scattered fields. Hence

this iterative process continues until the solution converges. one of the advantages of

employing this approach is that the proposed solution does not require matrix inve¡-

sion and the¡efo¡e the desired scattered fleld coefflcients a¡e obtained after each itera-

tion and used in the subsequent iteration. The ranslation addition theorem for the

vector spherical wave function is used in order to compute the higher order terms of

the scattered fields. Finally, a general expression is derived and written in a matrix

form for the ith order scattered field.



3,1 Iterative solution for dielectric spheres

3,1,1 First order field scattered by dielectric spheres

The fust o¡der field scattered ¡esults form the excitation of the pth dielectric

sphere by the incident plane wave alone. The boundary conditions at the surface of

úe pth dielectric sphere require continuity of the total tangential electric and mag-

netic fields at rp=%, i. e.,

l-. I r

re x 
IE' 

(rp,øe,þù + E; | (re,ep,þì - E; t op,s e,Aì | l r= u= 
o, p = 1,2,...,N (3-1)

l_L
rp x 

|H' 
vp,0 e,þÐ + H ; t Qo,oo,þ) - Hj r op,ep,þe) I 1,.,=o,= 

o, o = t,t,...,* (3-z)

Substituting equations (2-5),(2-16) and (2-18) into (3-l) yields the following equarion

in terms of the fust order scattered fleld coefficients

(*^=n
-+ 

" I 2. | ¡e o {*,n I ñ }l) @p,o p,qì + eo @,n) M fl @r,0 r,Q) )
I n=7 m-n
æ m--n

+ ¡. ! t,t"oB,@,ùñf)@e,ap,qù + Aiy,@,ùMf)@o,6o,Q))
n=l m=-n
æm=nì

- I > tAlB,@,ùÑj!@o,er,Þp) + Aly,(m,ùMÁI(ao,0o,0o)t f =0 G-3)
n=7 m-n )

while equation (3-2) can be imposed similarly. In o¡der to obtain the unknown scat-

tered fieid expansion coefficiens, we use the orthogonality properties of the spherical

wave functions. This yields

A'04@ ,n.) = v n(po) Pr(m ,n)

Atoy, (m,n ) = un (p o) Q o 
(m,n )

P=1,2,'..'N

P=1'2,'..'N

(3-4)

(3-5)

(2-40), respectively.where vn(po) and u,,(po) are given in equations (2-39) and

Equations (3-4) and (3-5) can be w¡itten in a matrix form as



(3-6)

where Ale,, A;M,,Fe, O, are colu-n matrices, while [vol, [uol are diagonal subma-

trices.

3.1.2 Higher order fields scattered by dielectric spheres

The second order scattered field results from the excitation of the pth sphere by

the fleld scattered from the remaining N-i spheres due to the initial plane wave

incident field. The boundary conditions require continuity of the total electric and

magnetic fields at ro=an, i. e.,

l.*-lr
,, x I Ð e"ø t Qo,0o,Þo) + ElzQrar,þ) - Etez('p,0p,Op ) | I = 0, p = 1,2,...,N(3-7)

lc=tlã* ll,,=,,l*_ l,
ro x lÐn"ør0ø,0q,0q) + a'o2UPQo,Þ)-ajrço,0o,Q)l | =0, p=1,2,...,N

lq=t I Ilà*p I II ) I ro=a,

(3_8)

To enfo¡ce the above boundary conditions, we express the outgoing vecto¡ wave

functions in the coordinates associated with each sphere q into incoming vector wave

functions in terms of the coordinates associated with the pth sphere. Hence we apply

the translation addition theorem for the vector spherical wave functions t26-271. Sub-

stituting the appropriate forms of the translation addition theorem in equations (2-

20)-(2-27) into (3-7) and (3-8), leads to the following equations in terms of the

second order scatte¡ed fleld coefficients



-,,,=, [N [ - p=v

i " Ð > I > ltfu¡m,n) >'2 t¿K@pq,ar*Qo¿ñ'f; @r,a,Oo)
n=l ñ=-n lq=l I v=lp=-v

lq +p

+ B fi @ w,o eq,Q r) M [! ø o,op,Oe ) ] +A i¡a, @,n ) il ¡ep <a oo,e or\ o) M [,! @ o,e o,Þ o)v=l[=-v

+ B K (dw,e pq,O *> ñ f,f; ø o,e o,oo I t ] 
* ta;r, t m,n¡ñ fi) @ 0,0 o,Þ r)

+,t"oy,{n,n)Mf}@o,Qp,Q) | -lA)¿"(m,n)ñ}!@r,e,Q)+ A}u"lm,n)ufl{ao,eo,O, t ] = o

(3-9)

and

-.=, [1 N i - !¡=v
7o * D > I + Z lo"or,@,n) Ð'2 Ap {aro,eoo,øo¿ u 

!,1) 
(ar,0o,Þo)

í=lñ- l 'l C=l L v=lp=-v
I c*P

+ B ffi (doo,a 
oo,Q ool ñ [! ør,ø o,ø o) I +Aiy, @,n ) î \ ø p <o ro,ø pq,þ pì ñ *9 @ p,e p,þ p )

v=lp=-v

+ B ffi (d.oo,e 
ro,Q rol u ff; ø r,e o,Q rl l] * ]ø ; r,<^,n ¡ u fl @0,0 o,Þ r) + A jy,(m,n )

ñ fl @p,a p,q ìl - {ø ir,<^,n'1 u fl @ o,e o,Q r) +Aj¡a,@,ùñ }1,øo,eo,oo lt 
] 

= o

(3_10)

Since we are mainly interested in the field outside the spheres, we present here

expressions for the scattered freld coefflcients. Applying the orthogonality properties

of the spherical vector wave functions, we obtain

N-u=v
A t'p,(m,n) = v, (pp ) I I' > lA H @ pq,a po,Þ o) A"ne, lt,v)

4=l v=l p=-v
q+p

N € u.=v 
+8ff,(d*'6*,Qoo)Aiø,(F,v)l (3-11)

Aly,(m,n) = un(po ) E I > lAH, @pq,O eo,Qr) A[u,Qt,v)
q=lv=l tr=-v
q*p

+Ùfl(d*,Q*,Qpo)Ajø,(t,v)J Q-rz)

where Áj¿,, A)¡a, arc known fust order scattered field coefficients given by equation



(3-6), and A)¿", Aju" are the second order scattered field coefûcients. The infinite

series in equations (3-11) and (3-12) must be truncated to a frnite number of terms

n =v=M and m-þ=M +1 to obtain numerical results [39].

For the special case of a linear array of N dielecu-ic spheres spaced along the z-

axis, equations (3-11) and (3-12) reduce to the simpler form

N-
At'ø"(m,n)=vn(pp)I X lAff (do)Aie,@,v)+Bff (do)A'qu,@,v)) (3-13)

4=l v=l
q*p
N-

A"ry,(m ,n)=u^(po ) Ð X lAff (do) Aiu,@ ,v) + Bff(doo) Alt,@ ,v)) (3-14)
{=l v=l
q*p

The above system of equations is solved for each rz independently as in chapter

2, since there is no coupling between the azimuthal modes. Hence equations (3-11)

and (3-12) may be written in a matrix form as

lf*)= ['?',.;, ],å ltt;tt t'^;tl I [^.;;: ]
(3-1s)

where [APc] and ÍBpcl a¡e square submatrices whose elements are A$i and Bff

which depend on the electrical separation between the spheres. Equation (3-15) may

be ¡ewritten in the convenient matrix form

A;,=r A;, , p*q
with

(3- 16)

(3-r7)

In order to obtain a genera-l solution, we solve for higher order scattered fields which

are sensitive to the elect¡ical separation between the spheres and the angle of

incidence. This means that if the spheres are located very close to one another o¡

.= ['î, ,ü']å liÊ;:,i¡""1
q*p



touching, then the higher order fields are significant and should therefore be included

in the solution. However, these decay rapidly as the separation becomes large. The

significance of the higher order scattered fields will be verified numericaJly by com-

parison with simultaneous boundary conditions solution in chapter 2.

The general expression for the ith order scattered field coefficients can be writ-

ten as

1,"0, =r E"o,-r, i=2,3,.,,, p+q

It should be noted thar the translation addition theorem coefficients in equation (3-1g)

are computed once for the separations considered, and used for the subsequent itera-

tions. Once the scattered field coeffrcients are determined, the field scattered f¡om the

pth sphere due to the ith orde¡ scattered field can be written as

@ tn=nE;=> t > IAt'B,@.ùñf)er,0r,Q)+At'u,1m,4Mf?o,oo,Þ)) (3-1e)
n=l,n-n ¡=7,2,,,,

Summing the fields scatte¡ed from all spheres, equation (3-19) becomes

N - ¡¿ =¡¿" = E I > \_ tAje,@,fiÑfleo,ao,AÐ + A;M 1m,fiMflto,}r,þ))
p=1 n=\ m=-n i=1,2,..

(3-18)

ß-20\

3.2 Iterative solution for perfectty conducting spheres

An iterative solution of the special case of N conducting spheres can be

obtained from the dielectric solution by letting the perminivity of each dielectric

sphere become high as outlined in section 2.6.

3,2,1 First order scattered field by conducting spheres

The bounda¡y condition at the surface of the pth conducting sphere requires that



the total tangential electric field at rp=a? must vanish, i. e.,

l_. _ r
ro x lt'{ro,0r,þp) + E;t(re,ee,qù | , = 0, p=1,2,...,N' l. ' ) l+=o"

substiruting equations (2-5) and (2-16) into (3-21), we obtain the following equation

in terms of the fust order scartered field coefficients

l*^=n
ro ".i I | ¡ro<^,oñÁlt.,so,Q)+ er@,{Mfl@o,eo,Þ)J

I n=l m-n
æ m=n

* 
Ì, P_,, 

oìr, {m,ù r,t,g@ o,ee,Op ) + A"ry,(m,ù M fløo,eo,O, I t 
} 

= o (3-22)

In order to obtain the unknown scattered field coefficients, we use the onhogonality

propenies of the spherical wave functions. This yields the fust order scattered field

coeffrcients

(3-2r)

(3-23)

(3-24)

A)6,fu,n) = vn(po) Pr(m,n)

A'ry,(m ,n) = un(pr) Qr(m ,n)

p=1,2,...,N

P=1,2,...,N

where v,, (po ) and un(po) are given in equations (2-55) and (2-56), respectivety.

3.2.2 Higher order scattered fields by conducting spheres

The total electric field at the surface of the prh conducting sphere is equal to the

sum of all fust order scattered fields from the N-l remaining spheres plus the second

order scatte¡ed field from the pth sphere which at rp=% must vanish, i. e.,

=0, p= 1,2,...,N (3-2s)

Apptying the translation addition theorem and the orthogonality properties of the vec-

to¡ wave funcfions, we obtain



N-u=v
A "oe,(m,n ) = v n (pp ) I X' > lA H. @eq,e pr,6 r) A |a, Qt,v)

q=1v=l p-v
q*p

+8ffi,(d*,0*,Qoo)A"nu,(V,v)) (3-26)
N6u=v

A'oy,(m,n ) = u 

^(n, ) E I' >, t A H, @pq,g eq,Þ rr) A lu, (Þ,v)
4=1 v=l p=-v
qrP

+8ffi,(d*,0*,Qp)Ai¿,Qt,v)) (3_27)

where Ajø, , Alu, are known fust order scattered field coefficients given by equations

(3-23) and equation (3-24). T\e general solution of the ith order scaue¡ed field can

be written similarly as in equation (3-18).



CHAPTER 4

RADAR CROSS SECTION CALCULATIONS

In chapters 2 and 3, expressions for the total scattered field at any point in space

for an a¡bitrary configuration of N conducting or dielectric spheres have been

obtained by using two different exact methods. Of particular interest is the scattered

electric field in the fa¡ zone and the radar cross section of the spheres. Asymptotic

expressions for the vecto¡ spherical wave funcion @fl ,Ñ91 are introduced in this

chapter by using the asymptotic form of the Hankel function for large argument. In

addition, analytic expressions for the no¡malized backscattering, forward scattering,

and bistatic cross sections are derived due to an arbitrary angles of incidence [40].

Numerica-l results for one- and two-dimensional arrays of spheres based on the

two methods are presented graphically for va¡ious electrical sepa¡ations, sphere sizes,

and arbitrary angles of incidence. In addition, the normalized bistatic cross secdon

pattems for conducting o¡ dielectric spheroids are obtained by simulating the

spheroids by an appropriate system of spheres.

4.1 Far field approximation

In this section, the asymptotic expressions for the spherical wave functions a¡e

obtained using the asymptotic forms of the Hankel function for large argument, i.e.,

trjl)ltro¡=Çi)("', # (4-1)
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4,2 Normalized scattering cross sections

Substituting the above relations into equations (2-9) and (2-10) leads to

u fl v,e o,Q; = i -" +¡ {-ef; 1cos0, Å, * i fr r ytcosoo )ôe 1 
" 

i^ Þ, 
14-3¡

ñflço,eo,$l= i' #, #"rnorro 
Åo + i nfrrrÍ1cosoo)ôp lrinÞ, 14-4)

In addition, we have the following approximate relations (Fig. a-1),

(4-5)

(4-6)

ro =r -dpÇ,
0=0r= . =eo = =0N

(4-2)

(4-7)

(4-8)

(4-9)

whe¡e

("=sin@o cosÕo sin0cosQ + sin@o sinÕo sin0sinQ + cos@, cos0

Substituting the above ¡elations with equations (4-3) and (4-4) into equation (2-16),

the total scattered electric field of an a¡bitrary confrguration of spheres in the fa¡ zone

may hence be written as

.ib 
^E' = Çw øo,o)ô+Fo(o,o)ôl

where

N
Fo(e,O)= XFep (0,0)

P=I
N

Fq(0,Q)= >Fop(e,0)
P=l

and

F ep (e,0) j T 
-j 

- u 
tA j n @,n ) 

uL 
rff(coso)

n=1 m-n



Fig.4-1. Scattering geometry of an arbitrary configuration of dielectric sphercs,



+Aju@,n) r*LP{(cosê)lsin4q¿-iu"Ç (4-10)

4 m=n
Fqo (0,Q)= ! t' i-n+t Øt'Ám,ùffipi(coso)

n=I m-4
¡

+Afu@,ù 
ULP|@osg)lcosmþe-ik4Ç' (4-11)

For the special case of a linear array of N spheres, the above expressions reduce to

the simpler forms

æ tt-_n ¡
Fep (0,0)= I 2^¡ -",t e^lA're(m,fi 

U2- 
p { (cos})

n=l m4

+et'u@,n)ffiPfi(cos0)lsiruzQ¿-ikdccøsg Ø-12)
6 ñ--n

Feo (0,9)= I f j-"u",lA'r(m,z )-l;pf(cos0)
n=l m4

+Alu@,n) 
*LP,f;(cos0)lcosnQe-ikd,cosl (4-13)

where en is Neumann's number (1 fo¡ m =0 and 2 for rn >0).

In the case of the iterative solurion, equations (4-10) and (4-11) take the follow-

ing forms

e m=n f -
Foe(o,o)= t I 

" 
r-"*t{ÍgB @,n){e,f(cos0)

h=l ñ=-n ¡=1,2,... t 'e

+Afu, (m ,ùffiP,f(cos0¡lsinrn q )e-rtÇ ø-rø)
)

4 m=n (
Fqo(0,0)=l I > i-"*tjlA"oB,Ø,n){;pf(cos0)

n=l ,tt=-n i=7,2,,,. t sr¡ru

¡l
+As¡. @,ùf6pf;(cos0)lcovngle-l*ç (4-1s)

The bistatic cross section is defined as

o(o,O) = tim4nr2 lE''ttt¡ 12 (4-16)
f -> 4

with the unit vector t denoting the di¡ection of the polarization of the field received

at the observation point. when t has the same di¡ection as E-s, the normalized bis-



tatic cross section is given by

o(e'o) - 4 ltrr(e,o)lr* lrnte,oll2]Ío; (kao¡2 L'

The normalized bistatic cross sections in the E and H planes a¡e obtained by subst!

tuting 0=r/2 and 0=0, respectively, in equation (4-17).

In the backscaner di¡ection O=¡-cr, a¡d 0=n, the corresponding normalized cross

section is

(4-17)

(4- 18)

(4-20)

Sq=-+ lro(cr,¡) l2frap' ltcao y
where Fq(o,æ) is given by

Fop (cr,î)j ffi ^ 
ie^lAìr(m,n)-!- r ({cosc;)

¡=l ¡tt{
I

+A)¡,7 Ø,ùf¿P {(coso,¡1¿-iuo"o'(æ-o) g-1g)

For the special case when c¿=0, we obtain from the above equation

F qo (0,n) = - I I " 
+r n (n +1) [A "p B çt,n ) + A ]y (r,n )J e i 

u,
n=7

4.3 Numerical results

In the computations of the normalized backscattering and bistatic cross sections

of one or two-dimensional anays of spheres, we present numerical results fo¡ the

normalized backscattering cross section pattems for different systems of spheres of

equal and unequal radii ve$us the separation distance between the spheres in terms

of the wavelength and the incidence angle c,. The normalized bistatic cross section is

presented for systems of identical spheres as a function of the scattering angle 0,

corresponding to endfue incidence (o=0). The sysrem of marrices i¡ (2-37),(2-39),(3_

11) and (3-12) is dimensionally infinite and all series a¡e rruncated to an appropriate
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finite number in order to generate accurate numerical results. For instance, four digit

accuracy is obtained for the computation of the backscattering and bistatic cross sec-

tions of three identical spheres (ka=0.5) with kÞ3.0 by retaining a number of rerms

n=5. In the case of endfue incidence on a linear array of spheres, the system of

matrices is solved only for ¡r¡ =1 due to the rotational symmetry with respect to the

z-axis, while in the case of an arbitrary angle of incidence it is sufficient to take

m=0,7,2,3 for the cases considered.

Figures (4-2) and (4-3) show the normaiized bistatic cross section patterns for

an equispaced linear array of three and eight conducting spheres. The electrical radius

and separation between the successive spheres are ka=0.5 and kd=1.0 (touching),

respectively. In addition, these Figures compare the numerical results obtained by the

simultaneous boundary conditions solution (SBCS) (chapter 2), with the iterative

boundary conditions solution (IBCS) in chapter 3. It can be seen that the agreement

between the two methods is not satisfactory for the fi¡st order scattered field (i=1).

This is so, since the fi¡st o¡der scattered field does not take into account the interac-

tion fields between the sphetes and hence i=l represents the sum of the field scat-

tered by each sphere due to the incident plane wave oniy. The significance of the

multiply scattered fields between the spheres can be seen in the second orde¡ term

which includes the scattered fields due to the plane wave incidence plus the scattered

fields due to first order frelds incident on each sphere. However, the process of itera-

tion is terminated after obtaining the founh o¡de¡ of scattering, where the numerical

results converge to the same level of accuracy as the simultaneous boundary cond!

tions solution. The results indicate that the fust and second orders are only needed to

obtain convergent solutions in the backwa¡d scattering cross section, while four
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Fig.4-2. Normalized bistatic cross section pattems as a function of scattering angle

0 for a system of three identical spheres, with ka=0.5, kd=1.0'
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Fig.4-3. Normalized bistatic cross section patterns as a function of scattering angle

0 for a system of eight identioal spheres, with ka=0.5, kd=l.0.



orders are needed in the forwa¡d scattering c¡oss section. In order to terminate the

iteration process, the scartered field after each iteration is calculated and divided by

the total field scattered from all previous iterations; in most of the cases the process

has been terminated when the ratio was smalle¡ than 10+.

Figures (4-4) and (4-5) present the bistatic cross section pattems for the same

geometry and angle of incidence but the electrical separation is increased to kd=2.0.

It is interesting to note that the fust order solution gives good results in the backward

scattering cross section di¡ection namely, 0)700. However, the process of iteration is

terminated after obtaining the fust and second orders. We see from these two figures

that the higher order scattered fields become weaker as kd increases and can be

neglected in this case for i>2, since the higher orders have no significant numerical

contribution to the total scattered fleld. It is also interesting to note that by increasing

kd from 1 to 2, the magnitude of the forward scattering cross section is increased

while the bistatic c¡oss section pattems vanish at certain scattering angles. Figure (4-

6) shows the normalized bistatic cross section pattems for a system of five equal

spheres with ka=1.5 and kd=4.0. The computer time required to compute the results

in the latter example by using the (IBCS) is about 507o less than using the (SBCS).

Figure (4-7) gives the norma-lized bistatic cross section patterns fo¡ th¡ee dielec-

tric spheres of the same geometry as in Fig. (4-2) with the dielectric constant e¡

equal to 3.0. It interesting to see that only the fust and second orders are needed to

achieve the same accuracy by using the (SBCS). This is panly due to the weak cou-

pling between the dielectric spheres.

Figure (4-8) shows the bistatic c¡oss section pattems of a two-dimensional anay
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Fig.4-4. Normalized bistatic cross section pûttems as a function of scattering angle

0 for a system of three identical spheres, with ka=0'5' kd=2'0'
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Fig.4-5. Normalized bistatic cross section pattems as a function of scattering angle

0 for a system of eight identical spheres' with ka=0.5, kd=2'0.
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Fig.4-6. Normalized bistatic cross section pattems as a function of scattering angle

0 for a system of eight identical spheres, with ka=1.5' kd=4'0'



Fig.4-7. Normalized bistatic cross section patterns as a function of the scattering

angle 0 for a system of three identical spheres with ka=O.S, kd=1.0,

e' =3'0'
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Fig.4-8. Normalized bistatic cross section patterns as a function of the scattering 0

for a two-dimensional anay of four spheres with ka=0'5' ftd=l'J '¿'=-'



of four conducting spheres with ka=0.5 located at the vertices of a square which has

a side length kd equal to 1.5. Figure (4-9) presents rhe same geometry fo¡ dielectric

spheres with e.=3.0. We can see from these examples that, contrary to expectation,

the number of ite¡ations required for an arbitrary configuration of four dielectric

spheres is less tha¡ for the same configuration of conducting spheres.

Numerical results a¡e also plotted for the normalized backscattering cross sec-

tion pattems for different systems of spheres of equal and unequal radii versus the

electrical separation between the spheres (kd) and the incidence angle (a).

Figures (4-10) and (4-11) present the normalized backscattering cross section

pattems as a function of cr for an array of three and five conducting spheres with

ka=0.5 and kd=1.0 (touching). The results show a discrepancy between the two

methods for the fust and second orders, namely for cP30o , and which is signiflcant

in the broadside incidence case until i is increased to 4. In addition, the magnitude of

the backscattering cross section pattem increases with o, since the flelds scattered

from the spheres are more in phase while fou¡ orders are requhed to obtain a conver-

gent solution. This is in contrast with the endfue incidence where the results show

that the fust and second orders a¡e sufficient to obtain a convergent solution. A possi-

ble interpretation of this result is that the fields scattered from the remaining spheres

are shielded by the front sphere in the illuminated region. On the other hand, Fig.

(4-11) illustrates that by increasing the number of spheres from three to five, the

magnitude of the backscanering cross section pattem vanishes at a=54o .

ln Figures (4-LZ) nd (4- 13) we have ploued the normalized backscattering

cross section patterns for an alÎay of three and frve spheres versus kd with ka=0.5.
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Normalized bistatic cross section patterns as a function of the scattering 0

for a two-dimensional anay of four spheres with ka=0.5, kd=l.5 ' e¡=3.0.
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Fig.4-10. Normalized backscattering cross section Pattems as a function of incidence

angle cr for a system of tkee identical spheres, with ka{.5, kd=1.0.
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Fig.4-11. Normalized backscattering c¡oss section pattems as a function of incidence

angle cx, for a system of five identical spheres, with ka=0.5, kd=1.0.
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No¡malized backscattering cross section as a function of kd for a system

of th¡ee identical spheres, with ka=0'5 and endfire incidence'
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Normalized backscattering cross section as a function of kd for a system

of flve identical spheres, with ka=0.5 and endfire incidence.
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The agreement is satisfactory except for a small deviation which occurs approxi-

mately every kd=æ, due to the resonance between the spheres.

One of the main goals of this thesis is to present some numerical results show-

ing how three-dimensional bodies can be simulated in a scattering sense by a collec-

tion of spheres. We select her for our study the scattering by a spheroid due to an

axial electromagnetic plane wave incidence, since the spheroid has an exact and

numerical solutions available in the literature. Three spheres are needed to simulate

the scattering by a spheroid of a major axis ka=l and with an axial ratio 2. The small

spheres have an electrical radii ka=0.25, while the larger sphere in the middle has a¡

electrical radius ka=0.5. The separation distance between the successive spheres is

equal to 0.75 (touching). Figure (4-14) shows the normalized bistatic cross section

patterns (E-plane) obtained by Sinha and MacPhie [41] using rhe vector spheroidal

wave functions (solid curve) compared with the data obtained using three spheres. It

can be seen that the two curves deviate, and the deviation vanishes as the scattering

angle increases. Figure (4-15) shows another example of the scattering by a dielectric

spheroid with a dielectric constant er=3.0 124f. Once again, the results show a devia-

tion in the forward scattering while a good agreement is achieved in the backscatte¡-

ing cross section,
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CHAPTER 5

APPROXIMATE METHOD FOR THE SCATTERING BY A LINEAR
ARRAY OF CONDUCTING OR DIELECTRIC SPHERES

In chapters 2 and 3, the scârtering by an arbitrary configuration of N conducting

or dielectric spheres is formulated analytically using the ûanslation addition theorem

in order to impose rhe boundary conditions at the surface of each sphere. The special

case of a linear array of N conducting or dielectric spheres is deduced by spacing the

spheres along the z-axis. Although, the analytic solutions are valid for any spheres

size and electrical separation distances, it has been established that an efficient

approximate solution gives very good numerical ¡esults for small spheres when com-

pared with the analytic solutions 132,33,391. Thus, the purpose of presenring such a

solution is to save computer time as well as computer memory by avoiding computa_

tion of the series resulting from the application of the translation addition theorem

and hence leads to faster convergence.

For the two-dimensional scattering case, Karp and Rusek [42] used fictitious line

sources to account for the multiple scattering by two half planes forming a wide slit

geometry. Thus, the total scanered fretd by each half plane is considered due to the

incident plane wave a¡d, in addition, to a line souÍce ¡esponse of unknown magni_

tude located at the edge of the opposite half plane. Ragheb [9] extended the analysis

to the scattering by an arbitrary configuration of N smaÌl circular conducting

cylinders, while Elsherbeni [43] employed the same technique to the diffracrion by

two conducting wedges.



ln the case of three-dimensional scattering, an approximate solution to the

scattering by two identical spheres with large electrical radü was obtained by Bruning

and to [44] using a ray-optical solution. However, the formulation becomes tedious

for the case of more than two spheres because the geometric optics and creeping rays

suffer numerous reflections and diffractions which limit the usefulness of the method.

On the other hand, Bha¡tia [45] employed the solution derived by Senior and Goo-

drich [2] to obtain an asymptotic solution for the scattering by two large spheres as

well. This solution involved the application of Watson's transform to the exact Mie

series solution where the scatte¡ed field by two spheres is expressed as a sum of

geometrical optics and creeping waves.

In this chapter a simpie approximate method for the case of a linear array of N

spheres (N > 2) is proposed for arbirary plane wave incidence as shown in Fig. 5-1.

For spheres with small electrical radii we make the approximation that the scattered

field from each sphere is due to the incident field plus the scattered fields from the

remaining spheres approximated by axial plane waves of unknown magnitudes. To

evaluate the unknown magnitudes we impose the condition that the fa¡ field scatte¡ed

by each sphere due to an axial plane wave of unknown magnitude representing the

inte¡action with another sphere, be equal to the far field scattered by the sphere con-

sidered due to the total field scartered by the second sphere. The accuracy of the fa¡

field quantity depends on the ¡adii ând sepa¡arions berween the spheres and will be

verified numerically by comparison with the analytic solutions.
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Fig.5-1. Illustration of multiply scattered field of a linear array of dielectric

spheres.



5,1 Far scattered field components

The two components of rhe fa¡ scattered electric field from the pth dielectric

sphere in the E and H planes due to an arbitrary plane wave incidence can be written

as [2,32)

olkte * n
f ,, (u,r 

0,0 r,Þ ) = r; priä" ¡ -" 
*r Íy o B (a ø,,e ¡ rfr ef; tcosoo I

*v o, <o,*,a!!ffilsiruø Qo (5-1)

-ibp * m=n m Pf;(cos1o)
f ,o(a,r, ,êr,Qo) = t^ > 2 e^ i-"*'fY p6(a,m ,n)

NtP n=lø=g sinOo

+Yry(an,n) -fr¡{cosgo )ìcosz 0o 6-2)' oíp

where the coefficients Y oø(a,m,n) andYoy(a,m,n) are given by

Qn+l) (n-m)l nPf(coso)
Yo¿(e,m,n) = -i" |rr*¡ 1r*a si"s vn(pp) eiu"cos" (s-3)

o.n+l) (n-m)l ôPf(coso)
Y oy(a,m,n) = - i" :äiiäffi-Ë .un(po) eiu,cos" (s-4)

Here vn(po) and un(po) a¡e the scattered field coefficients of a single dielectric

sphere given in equations (2-39) and (2-40), while in rhe case of a perfectly conduct-

ing sphere the coefficients in equations (2-55) and (2-56) should be used.

For the limiting case where the direction of the incident plane wave coincides

with the direction of the z-axis (cr=0), equations (5-3) and (5-4) reduce to

Y os Q,t,n) = -i " #i 
. v n(p ì eik¿,

Yo¡a\,r,n) = -i" #'unlp¡eiu'

(5-5)

(s-6)

ln the fo¡ward scattering, where 0o=0, the two components of the scattered electric

field in equations (5-1) and (5-2) are singular, Therefore, to overcome this problem,



the following approximations a¡e used

,.- P,,l(coso, ) - _ n(n+l)
0" -+0 sin0o 2

n(n+l)
JtT, ãil Pn'(cosor)

With the above simplifications, equarions (5-1) and (5-2) yield the

forwa¡d scattered field as follows:

.iktp .
fsr(a,rr,0,Qù = - i 2t-+1 

n(n+7)[Y o¿(a,t,n)+yoy(u,t,n ) ] sinQo (5-9)

.iktp *
f q, (u,r 

0,0,þ o) = - i; pri 
-"+t n (n +t) [ 

yr¿ (a, 1,n ) + yo¡a (cr, 1,n ) ] cosQ, (5- 10)

where the coefficients Y rø(a,7,n) and Y oy(a,7,n) ue

..0n+1\ 1 Pnl(cosa)Yoa(o,l,n)=-i":ffiù-# vn(pp)eiupcosd (s-11)

Yry(a,l,n) = -t" ffi#q#a .vn(pp)eiu"cosa 6-n)
Adding the two components of the fo¡wa¡d scattered field in equations (5-9) and (5-

10), we obtain

^^oib"*I f6o (o,ro ,0,Q0 ) 0+ fqp (e,re ,0,0p ) q]=- î; >tj-"+t n(n+t) [ 
yo¿ (ø,1,2 )

+Yo¡a (cr,1,n)J'1sinq, ô+cosQo $)
When 0r=0, we have the following tra¡sformation identity:

^^sinQr0+cosQri1i=f

Substiuting equation (5-14) into (5-13) yields

^^-ibo*I fs, (û,,rr,0,Q, ) 0 + f q, (a,r 
0,0,þ r) 0 f = - 

= 
Z j -n *t n (n +I)

et P n=\

.IYo¿(s,1,¿)+Yo¡a @,r,n)11 (5-15)

Equation (5-15) may be written in a more convenient form as

(s-7)

(s-8)

expressions for the

(s-13)

(s-14)



t feo (a,ro,O,qo ¡ ô +\o(a,r.,0,þ)ô J=So,{cr,to,O¡9 (s- 16)

where

.iktp *
Ep{a,r*q = -+: lj-"+t n(n+l)lYr¿(u,7,n)+voy(s,l,n)l (5-17)

^t p 
^=l

In the backscattering direction, where 0=n, the two components of the far scattered

electric field are singular as well. Thus, one may employ the following relations

,._ pnr(cosOo ) , ,,n n(n+l)ltm -----:--:: = (-lJ" ------r---------

Qr--+n sinO, 2

.:g ãil""'nosoo) = -(-t)" !þl])
With the above approximations, the two components of the

.ikP *
fsr(a,rrn,þr) =- :---- 2 ¡-n+t' (-1)¿ n (n +1) lY o¿(a,l,n) -y ry (a,1,n ) I sinQ,

"'p n=l

"iktp 
* 

(5-20)

fç, (al,n4) = î > i-n+\ (-1)" n (r +1) [ yo 
¿ (a,t,n) -y ru (o,1,n ) ] cosQ,n'p n=l

Adding the above two components of the backscarrered fields yields 
6-21)

^^oibP*Tsr(u,r,,n,þr)0+fqr(a,ro,n,So)ql= îÇ >tj*n+r (-1)n n (n +t)

'IYoB(a,L,n)-Yr¡4 @,1,n))(-sinQo ô+cosq, $¡ 6-22)
When 0o =æ, the transformation takes the following form

-sinQoô+cosqeô=t
Substituting equation (5-23) into (5-22), one obtains

Í s, (a,r *n,þ r) 6 + f ç, (a,r 
o,n,Q o I h = ff îri - n +1 

1-L¡n n 1n +r¡

'ÍYr6(a,I,n)-Yry (a,l,n)19 6-24)
Fo¡ convenience one can re-write equation (5-24) in the following form

(s- 18)

(5- 1e)

backscattered field are

6-23)



I f s, (a,r,n,þ, ) 6 + f ç, (a,r 
o,n,Q o) ô I = S, 1 {o,ro,n¡ } (s-2s)

where

.jk p _
grr(a,ro,n¡ = 

= 
>l-l¡rr (-1)¡¡ r(n+1)[Yo¿(c,t,n)-ypu (a,l,n)] (5-26)' KrP i=t

Equations (5-16) and (5-25) represent the forward and backscattering expressions for

a single sphere due to an arbitrary plane wave incidence.

5.2 Total scattered field from the pth sphere

Fo¡ the case of a linear array of N small spheres illuminated by an arbirary

electromagnetic plane wave of unit amplitude, the total scattered field from the pth

sphere at any point is due the incident field (non interaction field) plus the multiply

scattered fields from the remaining spheres (interaction field). The total scattered freld

by the pth sphere may hence be expressed as

E;oe,ap,þì=Íreo(aÏo,0o,Þ)â +rqo(a,rr,0o,0olôt+'fco"-t*,¡rro(0,ro,00,00)ô

+ rç, (0,r o,0 r,Qo$r+ Ë, c 
o 
eiu, lrs, (0,r r,"+,0, I ä . rr, {o,ro,æ-00,0o ) ôJ

q=p+l

(s-27)

where the fi¡st two teÍns on the right hand side represent the fat scattered field by

the pth sphere due to rhe incident freld, while the remaining terrns represent the mul-

tiple interaction between the pth sphere and the remaining N-l spheres.

5.3 Evaluation of the unknown coefffcients Co

ln orde¡ to determine the unk¡own coefficients Co, we impose a condition

analogous to that used in [42] fo¡ the wide slit problem. The partial scattered field

from the i th sphere due to the total scatrered freld from the pth sphere (Ef) can Ue



determined by considering the magnitude of Es, at the center of the i th sphere times

the response of the fa¡ scattered field from the /th sphere, i. e.,

I
)4{ao, ,o,Q¡ r-i'' [f6¡ (0,r¡ ,0¡,Q¡ ) ô+ ror {o,ri ,0i ,0r ) ô I ror t>p

'ìo=lr;øo,,nQ)eiu'[fs¡(0,r¡,æ-0¡,Q¡¡ô+fo¡10,r¡,n-0¡,q¡)$¡ ror i<r(s-za)

The scattered freld Efp from the /th sphere due to an axial plane wave incidence of

unknown magnitude C, can be expressed as

[rout',[fs¡(0,r¡,0¡,Q¡)ô+fq¡(0,rr,0r,0r)ô] ror />p
Efr=1co ri*, ¡fr,1o,r,,n-0,,q,)ô+fq¡(0,rr,æ-0r,0¡)ôl Íor tcp (s-2g)

l¡=t,2,.. . ,N; /*p
Comparing expressions in equations (5-28) and (5-29), and summing the panial scat-

tered flelds from all spheres due to the total field scattered by the pth sphere yields

w ... I
(N-1) cp = l r-i',' l r r r{o,oo,,r r,) * s p {0 det,0 eùE C o e-iu,

{=r I q=r
trp

+go2(odot,epù Ë ,,"t*"
q=p+l

where

f s, (0 d., ¡,n-0 ¿,Oo ) ô + rr" {O,ao,, n-4 
o¡,Q )6 = g p 2Q d p t,g pùî

and

lo for I>n
6 

-{upt - ln for l<p

Once Co are known, the total scattered field in the far zone can be expressed as

Nl
¿" = Ð j tfop (s,r,0,0) o+ fop (o,r,e,O)ôl + tfs, (0,r,0,Q) ôF rqo (0,r,0,q¡$1 E 

", "-t*,p=l I q=l

(s-30)

(5-31)

(s-32)



+ [f6o (0,r,n-o,Q) ô + fuo (0,r,r-e,ol ôl Ë cn eiu,]r-rr"-,e (5-33)
q=p+l , )

5.4 Numerical results

In the computations of the normalized backscanering and bistatic cross sections

of a linea¡ array of spheres, we present numerical results for the normalized back-

scattering cross section for different systems of spheres of equal and unequal radii

versus the separation distance between the spheres in terms of the wavelength and the

incidence angle ø. The normalized bistatic c¡oss section is presented for systems of

identical spheres as a function of the scattering angle 0, corresponding to endfue

incidence (cr=O).

5.4.1 Radar cross section of arrays of conducting spheres

Figure 5-2 presents the backscattering cross section for a linear array of three

spheres with different radü, namely kar=9.5, ka2=0.25, and ka3{.1, versus the electr-

ical dista¡rce between the spheres (1<kd<11) for endfi¡e incidence, and shows a com-

parison between the exact (solid curve) and approximate (doned curve) solutions. It

can be seen that the two curves deviate at small separation dista¡rces (kd<2.5), the

deviation becoming significant when kd= nl2. On the other hand, as kd increases,

the deviation vanishes. This is so, since the approximate solution is expected to be

more valid for larger kd (kÞ2.5). In addition, the magnitude of the normalized back-

scattering cross section is small because the largèr sphere shields the backscattered

field from the smaller spheres, while it va¡ies between a minimum value of 0.4046

and a maximum vaiue which is 1.3217 times the norma_lized backscattering of a sin-

gle sphere (Table 5-1), and behaves sinusoidaly with approximarely half wavelength
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Fig.5-2, Normalized backscattering cross section versus kd for th¡ee unequal spheres:

kat=9.5, k a24.25, kar=6.1. (-analytic, ...approximate)
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periods. Another example is given in Fig. 5-3 for an array consisting of five spheres

of equal radii ka=0.5, while Fig. 5-4 consists of five spheres of unequal radii, where

the larger sphere has an electricai radius kar=S.J and the other radii decrease from

the largest towa¡ds rhe smallest sphere by an increment of 0.1. It is interesting to

note that in the last two cases the approximate solution gives good results at small kd

even when the spheres a¡e in contact (Fig. 5-3), while the peaks occur approximately

every kd=?t.

Figures 5-5 and 5-6 show the normalized bistatic c¡oss section versus the

scattering angle (0) for an equispaced linear array of rhree and frve spheres and

endfue incidence. The radius and separation between the successive spheres are

ka=0.5 and kd=2.0. The agreement between the exact and approximate solutions does

not seem to be satisfactory, since the electrical distances between the successive

spheres are small compared to their electrical radü. Figures 5-7 and 5-8 present the

bistatic cross section for the same arrays and angle of incidence but the separation

between the successive spheres is increased to kd=4.0, and the agreement between

the solutions in this case is quite satisfactory. In addition, Fig. 5-9 shows an array

consisting of eight spheres with the same size and sep¿uation. It can be seen that the

magnitude of the no¡malized bistatic cross section (H-plane) is increased sharply

from 3.8 in Fig. 5-7 to approximately 27 in Fig.5-9 at the particula¡ scattering angle

of 0=12i7o, while it vanishes at certain scattering angles. Moreover the locations of

the maxima a¡e not the same for kd=2.0 and 4.0 and differ from rhose for a single

sphere.

In Figs. 5-i0 and 5-11 we have plotted rhe normalized backscattering cross sec-
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Fig.5-3. Normalized backscatlering cross section versus kd for five equal spheres: ka=0.5.
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Fig.5_5. Nomralized bistatic cross section versus scattering angle 0 for a linear array of

identical three spheres: ka=0.5, kd=2.0. (-analytic,,'.approximale)
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Normalized bistatic cross section versus scattering angle 0 for a linear anay of

identical five spheres: ka=0.5, kd=2.0. (-a¡alytic, ...approximate)
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Fig.5-7. Normalized bistatic cross section versus scattering urgle 0 for a linear anay of

identical three spheres: ka=0.5, kd=4.0 (-analytic, " approximate)



Fig.5-8. Normalized bistatic cross section versus scattering angle 0 for a linear anay of

identical fìve spheres: ka=0.5, kd=4.0. (-analytic, ...approximate)



Fig.S-g. Normalized bistatic cross section versus scattering angle 0 for a linear anay of

identical eight spheres: ka=O.5, kd=4.0. (-analytic, "'approximate)



Fig.5-10. Normalized backscattering cross section versus aspect angle c, for a linear

array of thee spheres with ka=0.5. (-analytic, .',approximate)
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Fig.5-11. Normalized backscattering cross section versus aspect angle cr for a

anay of frve spheres with ka=0'5' (-analytic, "'approximate)



tion versus the angle of incidence cr, for an array of three and five identical spheres

with ka=0.5, and different values of kd 146-471. Due to the symmerry in the angle of

incidence c¿ it is sufficient to get the backscattering cross section pattern for the inter-

val from s=0 to s=90o. In the case of the larger separation, kd=4, the¡e is a pro-

nounced maximum at about cr=38o , as well as more minima than for kd=2. It can be

seen that the agreement is good for kd=4 at a-ll the values of cr and also for kd=2

when o<75o. The ¡esults show that by increasing the number of spheres and kd the

backscattering cross section vanishes at more angles of incidence. This is partly due

to the increase of the interaction between the spheres.

Table 5-1 comparcs the endfue and broadside backscattering cross sections for a

linear array of system of spheres, corresponding to ka=0.5 whe¡e the ¡esults are

rounded off to 4 decimal places. For the endfi¡e touching case, the result does not

show signifrcant change in the magnitude of the backscattering cross section for the

scattering by one or two spheres, while a significant change (drop) occu¡s after

adding the third o¡ sixth sphere, due to resonance and multiple scattering phenomena.

In the broadside touching case, the magnitude of the backscattering cross section

increases with the number of spheres (since the fields scattered by each sphere are in

phase), while it changes insignifrcantly after adding the eighth sphere and so on. This

is due to the weak coupling between the outer spheres.

5.4.2 Radar cross section of arrays of dielectric spheres

ln this section, we present numerical results for systems of dielectric spheres.

The dielectric consrant er is the same for all spheres and equals 3.0 in most of the

results presented. Moreover, the formulation and computer pro$am presented are
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valid for arrays containing a mixture of conducting and dielectric spheres.

Examination of the geometry indicates that an array of dielectric spheres could

have a lower normalized backscattering and bistatic cross sections and weaker sphere

to sphere coupling than a simila¡ array of perfectly conducting spheres. On the other

hand, the forwa¡d scattering cross section could be significantly enhanced with an

increase in the number of spheres.

Figure 5-12 presents the normalized backscattering cross section for a linear

array of three dielectric spheres with different radü, namely kat=9.5, ka2=0.25, and

kar=6.1, as a function of kd (1<kd<11) for endfire incidence, and compares the exacr

(solid curve) and approximate (doted curve) solutions. The discrepancy between the

two curves occurs at kd<2.5, and decreases as kd increases relative to the electrical

size of the spheres. On the other hand, the magnitude of the backscattering cross sec-

tion varies between a minimum of 0.0283 and a maximum of 0.0481 which is about

7 6Vo morc than the normalized backscattered field of a single dielectric sphere of the

same size (Table 5-2), while there is a reduction of about 6.9Vo rclauve to a simila¡

array of conducting spheres. The curve behaves sinusoidaly as in the case of conduct-

ing spheres with approximately half wavelength periods. Figure 5-13 is another

example for the same array except the second sphere is perfectly conducting. This

leads to a better agreement between the two methods, even for small kd, along with

an increase in the magnitude of rhe backscattering cross section. Figure 5-14 consists

of frve spheres of equal radii ka=0.5. We observe that the high peaks occur at

specific electrical distances, i. e, kd=n,2r, 3n, which is approximately every kd= 7r

as in the case of conducting spheres. Again, very good agreement between the exact
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and ka=0.5. (-analytic, ..,approximate)



83

and approximate solutions is obtained even when the spheres are in contact. Figure

5-15 consists of flve dielectric spheres of unequal radii, where the larger sphere has

an electricai radius kar=0.5 and the other radii decrease from the largest towards the

smâllest sphere by an increment of 0.1. It is interesting to note thar the smali ripples

in Fig. 5-14 disappear by changing the electrical radii of the spheres in Fig. 5-15

while the high peaks remain at the same locations.

By comparing the above examples with simila¡ ones for the conducting spheres,

we see that the resonances occur in both cases at the same locations and hence

independent from material c h arac teri s tic s.

Figure 5-16 shows the normalized bistatic cross section versus scattering angle 0

for an equispaced linear array of three identical dielectric spheres at endfire

incidence. The radius and separation between the successive spheres are ka=0.5 and

kd=4.0, respectively. The agreement between the exact and approximate solutions is

satisfactory except for a small va¡iation in the forwa¡d scattering, and it can be seen

that the back and forwa¡d scattering cross sections are equal in the E and H planes,

as expected. In addition, a reduction of about 7.77o in the backscatrering is obtained

relative to a similff array of conducting spheres. Figure 5-17 shows the same array

with the second sphere being perfectly conducting. It can be seen from the latter case

that the ripple disappears over the range 600 <0<120o by replacing rhe dielectric

sphere with a conducting sphere.

Figure 5-18 consists of an aray of five dielectric spheres where there is no

significant change in the shape of the bistatic cross secrion relative ro Fig. 5-16,

except for a¡ increase in the number of ripples. Figure 5-19 shows an array of eight



0.150

o.126

0.100

c\¡ F
d
tr 0.0?6

b

0.050

0.026

0.000

/1\ /E*+(+c o

13õ7911
kd

Fig.5-15. Normalized backscattering cross section versus kd for five unequal spheres of

Ç=3.0 a¡d ka1=0.5, kar=9.4, ka3=6.3, kao=g '2, ka5=¡'1' (-analytic' "'approxi-

matc)



c\¡
d
tr 0.23

b

o 30 60 90 120 160 180

e

Fig.5-16. Normalized bistatic cross section versus scattering angle 0 for a linear array of

identical three sphcres: ka=O 5, kd=a 0' E=3 0 (-analytic' "'approximate)
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Fig.5-17. Nont¡alized bistatic cross section versus scattering angle 0 for a linear anay of

identical three spheres: ka=0 5, kd=4.0, err=3'0 , E¡2=æ, Ç¡=3'0 (-anal'tic'

.,.approximate)
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Normalized bistatic cross section versus scattering angle 0 for a linear anay of

identical lìve sphcres: ka=0.5, kd=4.0, e,=3.0. (-analytic, ...approximate)
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Fig.5-19. Normalìzed bistatic cross section versus scattering angle 0 for a linear anay of

identical eight spheres: ka=0.5, kd=a.0, E=3.0. (-analytic, .'.approximate)



spheres, the two planes are virtually very close for 0less than 35o, and the magni-

tude of the backscattering drops from 0.06 in Fig. 5-16 to 0.02 in this case.

ln Figs. 5-20 and 5-21 we have plotted the normajized backscattering cross sec-

tion versus angle of incidence (cr) for an array of three and five identical dielectric

spheres with ka{.5 for different values of kd. We observe a significant increase in

the oscillations of the curves by varying kd. Once again, the location of the oscilla-

tions is independent of the mate¡ial characteristics when compared with those for

conducting spheres.

Figures 5-22 and 5-23 show the backscattering plotted as a function of the

dielectric constant (1<q<30) for various values of kd. The magnitude of the back-

scattering is zero at Ç=1.0 and 30.0 and maximum at q=13.0 for the arrays con-

sidered.

The normalized forwa¡d scattering cross section is plotted in Figs. 5-24 and 5-25

as a function of kd (1<kd<9 ) for various numbers of dielectric spheres, namely

N=3,5 and 8, with ka=0.5. The magnitude of the forward scatrering is enhanced by

increasing the number of spheres and also by changing the relative dielectric constant

(q) from 3 to 5, respectively. However, the forward scattering does not change

significantly by varying rhe electrical separarion and converges rapidty for large kd. It

can be seen from the two presented cases that the resonance occurs approximately

every kd= zr.

'lable 5-2 presents results for the special cases of endfi¡e and b¡oadside back-

scattering cross sections for a linear array of dielectric spheres, corresponding to

ka=0.5, kd=1.0 and 2.0. The magnitude of the backscattering cross section for endfue
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Fig,5-20, Normalized backscattering cross section versus aspect angle cr for a linear

array of three spheres with ka4'5 and e.=3'g' (-analytic' "'approximate)
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Fig.5-22, Normalized backscattefing cross section versus dielectric constant e¡ for a linear

array of three spheres wirh ka=O.5.
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Fig,5_23, Normalized backscattcring cross section versus dielectric constant ef for a

array of frve spheres with ka=0.5.
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Fig.5-24. Nomralizæd forward scaltering c¡oss section ve¡sus kd with ka=0.5 and E=3.0.
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Tablc.5-2. Normalized backscartering cross scclion oha2 lor a lincar ûrriìy ol N idcntical

sphcrcs with ka=O.5, er=3.0.
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incidence and kd=1.0 drops from 0.0369 (N=1) to 0.0003 (N=3). For broadside

incidence, the magnitude of the backscattering cross section increases for the cases

considered with kd and number of spheres as already encounte¡ed in the case of con-

ducting spheres.



CHAPTER 6

SCATTERING FROM TWO DIELBCTRIC COATED
CONDUCTING SPHERES

ln this chapter the formulation is extended to the problem of scattering of a

plane electromagnetic wave by conducting spheres covered with a dielectric layer. In

addition to the incident a:rd scattered frelds in the region surrounding the spheres, we

have also the fields existing in the dielectric layers. The latter fields are expressed in

terms of the vector spherical wave functions of the fust and thi¡d kinds to satisfy the

boundary conditions at the various interfaces [48].

Previous work on scattering by one sphere covered with a dielectric layer has

been studied by many authors. Aden and Kerker [49] obtained analytic expressions to

the scattering of plane elecEomagnetic waves by a dielecric sphere coated with a

concentric spherical shell of a different dielect¡ic materia-l, while scharfman [50]

presented numerical values for the special case of a small (ka<l) dielectric-coated

conducting sphere.

In section 6.i, the scatte¡ed fields a¡e expressed in terms of the vector wave

functions of the third kind which a¡e similar to those used in the case of conducting

o¡ dielectric spheres. In addition, the transmitted fields inside the dielectric layers are

presented by the vector wave functions of the fust and third kinds. In section 6.2,

application of the boundary conditions require continuity of the tangential electric and

magnetic fields at the surface of each dielectric layer, and also the ta¡gential

transmitted elecric field components must vanish at the metal surface of each sphere.

Finally, numerical results are presented in section 6.3 to show the effects of the

dielectric coaring on the scattering cross section behaviour.



99

6.1 Expansion of the fields

Fig. 6-1 shows the system geometry. Spheres A and B are spaced along the z-

axis and centered at the origins O and O', respectively. The separation distance

between the centers of the spheres is d.

The incident field in the region surrounding the spheres

terms of the coordinate system attached to sphere A as

æ m=n
EÀ = > f' ¡e 6,n¡ñfl(r,0,Q) + e@,rujle,e,gt

may be expressed in

(6-1)
n=7 m=-n

The scattered freld form sphere A (r>at) can be written in terms of the spherical vec-

tor wave functions as

6 Ûl=n
EÅ=> i tt"rø,n>ÑH(r,0,0) + n'r6,n¡uflç,e,q¡1 ,f-2)

t=l m=-rt

Here Aj, Afi are the scattering coefficients of sphere A for transverse magnetic (TM)

and transverse electric (lE) waves.

The fields in region 1 (b1Sr<a1) are expressed in terms of the vector spherical

wave functions of the fust and third kinds. Hence the electric field can be written as

æ m=n
EÅ = > | t¡i<m,nt¡t$(r,o,q) + n[6,n¡ñflç,e,q¡

n=l m=-n

+ ty(m,n¡ u fl(r,0,Q) + er6,n¡ u fl çr,e,q¡1

6.2 Application of the boundary conditions

The scattered fleld from sphere A in the presence of sphere B is due to the incident

field and to the outgoing scattered field from sphere B. In order to impose the boun-

dary conditions at ¡=al the latte¡ scattered fleld is transformed into an incoming field

with respect to the sphere A, expressed in terms of the coordinates attached to this

(6-3)



Fig.Gl. A system of two dielectric-coated spheres'



sphere. The boundary conditions require continuity of the tangential components

(along 0 and Q) of the electric and magnetic fields, í. ¿.,

7x¡E)+E'o+Eåol=¡"8Å fo¡ r=a1

txIA) + Uj + n"o1 = r x Hj forr=ar
The tangential electric field components at r=b1 must be zero, i.e.,

(6-7)

(6-4)

(6-s)

rxdi=o (6-6)

El¡ .epr"s"nts the scattered field from sphere B which is expressed in terms of the

coordinate system of sphere A by using the translation addition theorem. This yields

4 m=n
Eil = 2 i @ "e r*,n > > tA #l @ )N Á!) Q,e,Ð+ B K @M ;!)(.,e,o)l

n=l m=-n v=1

+ B sy (m, n ) | lA ffi 6 ¡u )!) ç,e,q)+ B K @ )ñ :? U,o,Ðl)
v=l

Affi and Bffi arc the translation coefficients in the addition theorem, while Bf and

Bft are the scattering coefficients of sphere B. The boundary conditions at Fa2 and

eb2 are implemented in a similar way.

Since we are mainly interested in the field outside the spheres, we present here

expressions for the scattered field coefficients. Using the orthogonality properties of

the vector wave functions leads to a system of coupled linear equations for the unk-

nown scatte¡ed field coeffrcients in the form

A s¿ (m,n ) = v on I P (m,n ) + lLA ff @ )n fi @,v) + B H @ )B 
sM @,v)lt

v=1

A sy (m, n ) = u o 
^ 

( Q @, n ) + 2 tA i,,i @ ) B "u @,v) + B ff (d ) B s¿ (m,v)l I
v=1

B s¿(m,n) 
= v tn V' Ø,n) + X (-1)"*u

v=1

' lA i,] @ ) A È (m,v)-B H U ) A su @,v)lj



B fa(m,n) = ut^ lQ' @,n) + > (-1)'*u
v=1

' lA H @ ) Asu @,v)-n H @ ) A s¿ (m,v)ll

where P' and Q' are the incident field expansion coefficients relative to the sphere B,

which differ form those relative to the sphere A by the phase factor ¿lkdcasa. Further-

û1orê, v¡n and u¿n are the scattering coefficients conesponding to the conducting

sphere A cove¡ed with a dielectric layer, assumed to be alone in the incident freld,

which are given by

P A i 
^@ 

A) - j Y A"Íp A i 
"@ 

A)l'

(6-8)

(6-e)

(6-r0)

p þ 11) @ ¡) - j Y t^tp A h lt)@ Ðl'
p A i, (p A) - i zA^[p,c i 

^ 
@ ¡)]'

p e h lD @.¿,) - j ze^ tp ¿, h l') @ Ðl'
and the coefflcienfs ZAn ar.d YAn arc

j,(Ç)hll)$t)-.r, (P¿ ) å,(t)(Ëa )

j 
" 
$ ùIE¡ h lÐ (E¡)l' - h"(t\Þ¡ )[€¡ i ̂

 
(Eì]'

z*=iPt (6- 1 1)

(6-12)

Here kr=Noþ, p¡ = kat, E¿ = kßt, þt=kþt, N¿ = r/[-er/q while e1 and e are the

perrnittivities of sphere A and of the medium surrounding the spheres. The

coefficients v¡,, and ü¡n cân be w¡itten similarly by replacing a1 , b1 by a2, b2. In the

case of lossy dielectric-coated spheres, N¡ and N¡ are complex.

The series in equation (6-8) are infinite and must therefore be truncated to a

fi¡ite number of te¡ms v = ¿ . Hence the system of equations may be written in a

matrix form as

A=L+TA (6-13)

where A and Z a¡e column marices while I is a square matrix representing the cou-



püng between the spheres and depends on rhe separation distance between the

spheres.

The total scattered field in the far zone can be obtained after taking rhe asymp-

totic form of the vector spherical wave functions. Thus the total fa¡ scattered field

can be written as

- .ikt 
^E' = Çw ø<e,ol ô+rrte,Ol ôl

whe¡e

Fs(0,Q)=Pr 1g,O)+FeB (0,0)

Fq(0,0) =Fq¿ (0,0)+FoB (e,0)

and

Fo,{ (e,O)= i i^j-*te^l,A'E(n ,n ¡$rf;1cosO¡
n=l m4

+e'y @ Ð ffiPf;(cos0)l sinrn Q

Fo,{ (e,0)= i i i-ue^íA'E(n,n )-l;rf1cosO¡n=lm=o 
*''v1n,n)u3-r#(coso)lcoszQ

with e- being the Neumann number (1 for rn={ and 2 for z>0). The expressions for

F6¡ and F6¡ are obtained f¡om those Fs¡ and Foa by replacing Aþ, Asy by ns¿,

Bfi and multiplying each expression by the phase factor ¿-ik"o'o.

The normalized bistatic cross section is given by

#=+ [ I 
",1t,q¡ 

| 2+ 
I rrte,or l']

(6-14)

(6-15)

(6-16)

(6-17)

(6- 18)

(6-1e)
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6,3 Numerical results

Typical numerical resuits are presented graphically in Fig. 6-2 for the normal-

ized bistatic cross section patterns of two identical dielectric-coated spheres with

ka=2, kb=1, kd=4, with Çr=€¿=5, as a function of the scattering angle 0 and with

endfue plane wave incidence (c,=0). Fig. 6-3 shows the same geometry except kd is

increased to 8. It can be seen that by increasing kd from 4 to 8 the magnitude of the

forwa¡d scattering cross section (0=0) is increased from 1 1.3 to 27 .6, and the bistatic

cross section patterns vanish at more scattering angles. Figs. 6-4 and 6-5 present the

same geometry and electrical separations as in the above example except the

dielectric-coatings have permittivities Qr=5 and \z=2.8y reducing q2 from 5 to 2

the ripples are substantially reduced and the magnitude of the backscattering cross

section (e=7¡) increases from 0.2 to 5.5. This is in contrast with Fig.6-3 which shows

reduction in the forwa¡d scattering c¡oss section and only a slight change in the back-

scattering cross section.

In the cases considered, the system of matrices is solved only for the azimuthal

mode rn=l due to the symmetry with respect to the z-axis, with n=14 in the case

when the spheres are in contact (kd=4).

In this chapter we have obtained an exact solution of the problem of multiple

scattering by two dielecric-coated conducting spheres with arbirary size, and angle

of incidence. The boundary cond.itions are imposed on the outer surface of each

dielectric layer by using the translation addition theorem for the spherical wave func-

tions. The resultant system of equations is written in a matrix form and therefo¡e the

desi¡ed field scattering coefficients a¡e obtained by matrix inversion. Some numerical
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I (dee)
Normalized bistatic cross section patterns for two identical dielect¡ic-

coated spheres with ka=2, lçþ=1, srt=€r=J, I(d=d.
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Fig.6-3.

0 (dee)
Normalized bistatic cross section pattems for two identical dielectric-

coated spheres with ka=2, kb=l, err=€r2=5, kd=8.
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Normalized bistatic cross section patterns for two identical

coated spheres with ka=2, kb=l, Er=5, e¿=2' kd-4'
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Fig.6-5.

g (deg)
Normalized bistatic cross section patterns for two identical dielectric-

coated spheres with ka=2, kb=1, qr=5, e,z=2' kd=8'



results are presented for the normalized bistatic cross section patterns for the special

case of endfi¡e incidence on two identical spheres with ka=2, kb=l fo¡ various kd

and e, .



CHAPTER 7

DISCUSSION AND OUTLINE OF SUGGESTIONS FOR FUTURE RESEARCH

7,1 Discussion

The problem of scattering of a plane electromagnetic wave by an arbitrary

configuration of conducting, dielectric or a mixture of conducting and dielectric

spheres has been formulated analytically. The incident, transmitted and scatte¡ed

fields have been expressed in chapter 2 in terms of the vector spherical wave func-

tions of the fust and thi¡d kind, respectively. The boundary conditions require con-

tinuity of the tangential electric and magnetic fields on the surface of each dielectric

sphere, and have been imposed by using the translation addition theorem for the vec-

tor spherical wave functions in order to express the outgoing scattered fields f¡om

one sphere in terms of incoming fields incident on the remaining spheres. Using the

orthogonality properties of the vector spherical wave functions, a system of equations

for the unknown scattered field coefficients is obtained. This system of equations has

been w¡itten in a matrix form and solved by matrix inversion for the scattered field

coefficients from which the electric and magnetic flelds can be computed everywhere.

The special case of perfectly conducting spheres has been obtained from the

dielectric case by letting the relative dielecric constant of each dielectric sphere in

section 2.6 become very high. We have noticed thàt the resulting system of equations

for perfectly conducting spheres is similar to that for dielectric spheres with the scaç

tered freld coeffrcients of a single dielectric sphere replaced by the perfectly conduct-

ing ones.
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The required computer time and memory to invert the resulting system of

matrices increases rapidly with the number and dimensions of the spheres. Therefore,

in chapter 3 we have presented a novel iterative solution for the scattering by an arb!

trary configuration of conducting or dielectric spheres. The fi¡st order scatte¡ed field

(first iteration) requires the solution of the scattered field by each sphere, assumed to

be alone in the incident field. The second order scattered field results from the excita-

tion of each sphere due to the sum of all first order scatte¡ed ûelds. Finally a general

expression for the ith o¡der scattered fields is obtained and written in a matrix form.

The validity of this technique has been verified numerically by comparing the

numerical results with those obtained by the simultaneous bounda¡y conditions solu-

tion (chapter 2). The results show that the iterative solution converges as the number

of iterations increases. However, for the panícular cases considered in chapter 4, the

results show that the first and second order scattered fields a¡e needed to obtain the

backscattering cross secdon patterns with endfue incidence, while four orden of scat-

tered fields are needed fo¡ an a¡bitra¡y angle of incidence and contacting linear anay

of spheres.

One of the main advantages of employing the ite¡ative solution is that of han-

dling each iteration separately and then summing over all previous iterations to obtain

the total scattered field. Another advantage is that of saving computer time and

memory by avoiding the inversion of the system matrix. For example in Fig. (4-6)

the required computer time to obtain the normalized bistatic cross section pattems

using the ite¡ative solution fo¡ a system of five spheres with ka=1.5 and kd=4.0 is

about 50Vo less than using the simultaneous solution.



In chapter 4 we have presented for the fust time numerical results for a one-

dimensional array of more than two spheres, a¡d also a two-dimensional array of

four spheres located at the vertices of a square. The results show that the required

number of iterations to obtain the norma-lized bistatic cross section pattems for a sys-

tem of dielectric spheres is less when compared with a system of conducting spheres

of the same dimensions and separations. Moreover, it is worth mentioning that the

results in chapter 4 a¡e too difficult to obtained by numerical methods such as the

moment method since the latter requires a large memory compared with the exact

solutions.

As mentioned previously, one of the most useful applications of the scattering

by N spheres is that it can be used to simulate the scattering by three-dimensional

bodies, since we know that most of these bodies do not have analytic solution avail-

able in the literature. Three spheres were used in Figs. (4-14) and (4-15) to simulate

a spheroid with a major axis ka=l.0 and axial ratio of 2.0.

In principle, the analytic solutions are valid for any number of spheres, electrical

sizes and separation distances. However, due to the computational time and storage

required, the presented numerical results a¡e hence given to one and two-dimensional

array of spheres.

For electrically small and non conducting spheres, a novel approximate merhod

has been derived in chapter 5. The approximate solution is based on the assumption

that the scattered field from each sphere is due to the incident freld and the fields

from the othe¡ spheres approximated by plane waves of unknown magnitudes.

It should be pointed out that the approximate solution gives excellent agree-



ments with the exact numerical results for the backscanering cross section patterns

with ka<l.0 and kòl.5 which means that rhe assumption of the far field interaction

between the spheres is adequate once these conditions a¡e met. In addition, It has

proven that the approximate method has computational advantages over the exact

solutions, since there is no need to compute the series resulting from application of

the translation addition theorem for the vector wave funcrions. This approach does

not require large computer storage and leads to fast convergence.

The practical relevance of the numerical resuits in Figs. (5-24) and (5-25) is

their potential application in srudying aperture antennas loaded with a linear array of

dielectric spheres in order to enhance the gain along preferred di¡ections. Figure (5-

24) shows that the forward scattering is equal to 0.45 for tkee spheres and increases

to 3.38 by increasing the number of spheres to 8 where the incident plane wave is

assumed to be due to the fff field of an apertue antenna whose main lobe along the

line joining the centers of the spheres.

One of the most interesting results in chapter 5 is the deviation of the peak

value of the bistatic cross section from 0=1800 for a single sphere to Q=127o for the

pa¡ticular case of N=8, ka=0.5 and kd=4.0, and other values of 0 for other arrange-

ments of spheres. The physical justifications for these variations are due to the multi-

ple scattering phenomena and the resulting in¡erference by the collection of spheres.

We have shown in chapter 5 that the resonances in the normalized backscatter-

ing cross section pattems occur at the same locations for a system of conducting and

dielecric spheres and hence a¡e independent of material characterisrics.

Examination of the presented numerical results for an array of dielectric spheres



shows lower backscattering and bistatic cross sections for some cases with respect to

those for the conducting spheres. This is pardy due to the fields transmitted into the

spheres and also due to the weaker sphere to sphere coupling.

7.2 Future research

Although we have already investigated the scattering of a plane electromagnetic

wave by conducting, dielectric, and dielectric-coated conducting spheres, the analysis

can be extended to the scattering by systems of two and more dielectric spheres

covered with a concentric spherical shell of a different dielectric material. In addition

to the incident and scattered fields in the region surrounding the spheres, we have the

fields existing in the spherical shells and inside the dielectric spheres. The fields

inside the spherical shells are expressed in terms of the vector wave functions of the

fust and thi¡d kinds, while the fields inside the dielectric spheres are expressed in

terms of the first kind of the vector wave functions. The special case of dielectric

coated conducting spheres can be obtained by letting the relative dielectric constant

of each dielecric sphere become very large.

A potential study is how to generalize the approximate solution to an arbitrary

configuration of conducting or dielectric sphere since the approximate solution has

proven to have computational advantages over the analytical solutions for small

spheres.

Another possible study is that of getting numerical results for th¡ee-dimensional

arrays of spheres and using these results to simulate complex three-dimensional

bodies.



From the formulation given in section 2.1 for the 1Ë case, where the incident

electric fleld is perpendicular to rhe z-axis, the TM case, where the elecrric field is

parallel to the z-axis, can be easily obtained through an appropriate change in the

incident freld coefficients.



APPENDIX A

ORTHOGONALITY PROPERTIES OF THE SPHERICAL
WAVE FI.JNCTIONS

The following onhogonality properties of the spherical wave functions a¡e used

throughout the report [37],

2ßß

w*,u9t= I I u#. u#'inododQ
00

=0"ffiffi¡zli)1tcr¡72 õ^u (A-1)

2ßÍ
( ¡¿,ji,), ¡¿,j? I = J jru,jl,). ¡¿,jll ri" e d s d þ

00

= "ffi ,r-^þltL[krz^(¡)&r)]'2 
õ^" (A-2)

where í=1 and 2 represent the spherical Bessel and Hankel functions, respectively.

The following associated Legendre integrals are applied in the above equations

frrr.rr,inedo=# ffi u* (A-3)

¿'l aptr ¿ptr m2ryry 
lrine¿e=-2- \ry.!!inu+t)õ* (A-4)Jo [ã ae * *rt J zn+r (n-m)t



APPENDX B

TRANSLATION ADDITION THEOREM FOR VECTOR
SPHERICAL IryAVE FUNCTIONS

In this Appendix, the general vector translation addition theorem for a transla-

tion between arbitrarily located two spherical points are cited and discussed. Boun-

dary value solutions involving the scattering by two or more bodies usually require

the use of the translation addition theorem to transform the outgoing scattered freld

from one sphere into incoming field (finite at the origin) on the remaining spheres for

the application of the boundary condition on the surface of each sphere.

so fa¡ the translation addition theorem is given in the literature fo¡ a translation

between two spherical points: one located at the origin while the other is in space. In

this Appendix we express this theorem for an arbitrary two points located in spherical

coordinates in space, say p and 4 as shown in Fig B-1, since this form can be easily

used in the solution of scattering by an arbirary configuration of N spheres.

The formulation of the scala¡ addition theorem for spherical wave functions was

fust done by Friedman and Russek [51]. Later, stein [26] obtained a solution for the

vecto¡ translation addition theorem, while cruzan l27l put the vector addition

theorem in appropriate forms by deriving new recursion formulas. Recently, Bruning

a¡d l¡ [52] obtained more efficient recu¡sion formulas to reduce the computation

time required to evaluate the series resulting from applying the addition theorem.



Fig.B-l T¡anslarion of thc Cartcsian coordinate system (xt,yq,zq) to rlle sysrem (xp,ypJp)

a distance d*.



8.1 Scalar translation addition theorem

A derivation of the scala¡ addition theorem fo¡ the scala¡ spherical wave func-

tions was given by Friedman and Russek [51], and then pursued by Stein [26].

We start by the scalar Helmholtz wave equarion which has the following form

Yzu+k2u=O (B-1)

where a solution for the above diffe¡ential equation in spherical coordi¡ates can be

written as

u^,(rr,0r,Q)=Z(i)@r)P((cos0o)ei^Þ,, 0tn <.", -n sm tn (B-2)

Here i =1 and 2 represenr the spherical Bessel and Ha¡kel functions, respectively.

The tra¡slation of the scalar spherical wave functions from the spherical coordinates

(ro,0o,Qq) to (rr,0, ,Þo) a separation distance {* is given by

_ lt=y
ufl(ro ,Qn ,Qo) = | | uff (d* ,\rn ,Qo) u[!(ro ,00 ,Þo)

,,-^ "--
with

W@w,}pq,þw) = (-1) tri'-r' (2v+l)l¡-r' oçm,n,-¡t,v ,p') hr(Ð &dpq)
p'
.Pf;-þ (cos}o)ei(¿-P)oPe r 3do,

or

(B-3)

(B-4)

(B-6)

W@*,gpq,qpq) = (-l)ñ-*ie-'t 2¡-0' (2p'+t) a (m ,n ,¡t-m ,p',v) jp,&dpq)
p'

. pff-tL (cos0o)ei@-tl)þn r 2doo (B-5)

The coefficient a(m,n,¡t.,v,p') can be expanded in terms of the product of two asso-

ciated Legendre functions, i .e .,

P{ Pf, =þ(m,n,¡t,v ,p') Pff+P
P,

where p'=nty ,n+v-2, . ' . ,l n-, L To obtain a simpler form for (B-5), the fol-



lowing identity is used:

a(m,n,¡t-m,p',v)=(-1)ø ffior*,n,-U,rr', (B-7)

Substiruting equation (B-7) into (B-5), we obtain

W@pq,g w,þ w) = (- 1) tri v-¿ (2v +1) 2 i -P' a (m,n,-¡t,v,p ) j o,(kd ro)p'
.pff-tt (cos0r)ei@-þ)Þ*' r 2doo (B-g)

8.2 Vector translation addition theorem

To Eansform the outgoing vector spherica.l wave functions which are expressed

i¡ terms of the spherical coordinates (ro,9o,Qq) into incoming vector spherical wave

functions in terms of the coordinates (ro ,00 ,Qo ), we employ the following vector

translation addition theorem [27],

ø u=v
ufl(ro,0o,Q)

v=l ¡t=-v

æ ,r=v 
+8ffi(d*,0*,Q0")4Í?(.p,0p,op) I (B-9)

w fi) (r 0,0 o,Q ) = t'> êfi @eq,a w,þ p4 ) N,!| ('e,0p,Op )
v=1P=-v

+ Bffi (d*,0*.Qo¿ u fJ Qo,oo,gr) I (B_10)

where Affi nd Bff a¡e the translation addition theorem coefficients given as

A ii @pq,A pq,þ p) = (1)þ \ a (m,n I -p,v I p') ø (n,v,p')
p'

.hp9(kdpìPfr-F ror16on;rj(ar-r)Orr 13-11)
B iC @ w,e eq,Q eo ) = (-l)p+r!ø ( 

^,n I -p,v I p',p' - I) b (n,v,p')
P,

. n/l> {uoo¡rp-+ cos{ïoo¡el@-I'Þn @-12)
with

a (m, n lp,v I p') = (- 1 )ø 
+tt ()p' + t)l \' * ^ !: 

(: *vli tl 

"-^ 

-t')"1'''' | (n -m)r. (v-p)l (p'+m +þ)l )



[:" i, -,å'.u,] [; ; 'r'] G-13)

a @,n I ¡t,v I p,,q ) = ç-r),n 
+r (2p, + r) 

| ##iftffi;g ] 

"'

[ni, -,å'.u,] [; ; a] (8.14)
jv-n+P'

a (n,v,p'¡ = å1u_ t2vf v+i ) (2v+ 1 ) + (v+i ) (n +v-p' ) (n +p' -v+t)

-v(n+v+p'+2)(v+p'-n+l) (B-15)

b (n,v,ú = - ## ¡ 
v+e' -n f(n +v +p' + t) (v +p' - n ) (n +p' -v) (n +v -p,+ r ¡ 1¿ 6 - r e¡

and

l¡, iz it)
l^v ^2 ry)

is the Wigner 3-j symbol [53].

8.3 Asymptotic forms of the addition theorem

Fo¡ large electrical separadon distances between the spheres, the previous addi-

tion theorems may reduce to simpler forms which are fast for computations. If the

argument kdpq>O(p'2) where p'ln+v , the Hankel function may reduce to its large

argument asymptotic form as

heq&dpù=ip'" #: cn-18)
,Pq

Substiruting equation (B- 18) into @-4) leads to the asymptotic form of the scala¡

addition theorem coefficient, I .e .,

W @ pq,e pq,þ w) = (-1 ) 
pi'v-'¡ 

tz" +l ff 7 
(D-p' a (m,n,-rt,v,p')

.pf;-* @os}o)ei@-ÐQ' r 3dr, (B-19)

Using the identity in (B-6), equation (B-19) reduces to a simpler form, i.¿.,

(B-17)



W@w,ow,þeq) = (-1) rti¿-v-l Qv +¡ 42 pff@os¡on)
nupq

.P,Î(coslro¡¿ilø-tt)4* kdro>0(n+v)2 (B-20)

While in the case of the vector wave function, the translation coefficients become

A ii @ w,a w,þ e ù = e D* i, -" - t #i 4!!- e i <^ -r'to *,la (m,n,-¡t,,v,p, )

. I n (n +1)+v (v +l)-p'(p'+t)) P ff-rr (cos0on ) (B-21)

To remove the summation from equation (B-21), the following identity is introduced

) [ n (n+1)+v (v +l)-p'(p'+1)la(m,n,-¡t,v ,p')Pff-P =zWPt^P -tr
p'

- (u -p)(v+¡r+1) Pf+tP.-r - (n+m)(n-m+t)pi-t pv-þ+t @-22)
Substituting the above ¡elation into equation (B-21), we obtain

A ii @w,g pq,q po ) = (-1 )pi,-,-r ='u, 
*',, 

".t!^ e 
i (n -p)ô p1' ,r(r-1, U* eJ\-- -¿rx l2¡t'mPi@os0'o)

' P;+(cos0oo) - (v -[Xv+p+i)Pf *r(cosOoo¡ p,-(t *r)1cosOro 
)

- (n+m)(n-m+1)Pf;-1(cos0on )p;1.+11cos0oo )J (B-23)

For higher order expansion of the Ha¡kel function, equation @-18) becomes

þ,()) =¡-þ'+r¡ #trr*;J-p,fp,*tll (B-24)kdro ' 2kdoo' * -"
With equation (B-24), the final asymptotic form of the scalar addition rheorem

coefficient may be wrinen as

W@eq,ew ,qpq) = (-1)ui't -v-r( 2v +7) 4::-ei(,'-.tL)ç*
k4""

(,.lrfe;,,+ 
"¡-{[ 

n (n+t)+v(v+ 1)-2vn ]pi plp
I tKupq

+ (v -¡r)(v +¡r+l)P I *1 P fv*tt * rn +m )(n -m +t)p [-r pv-[r+r 
J ] O-rtl



APPENDIX C

TRANSLATION ADDITION ALONG THE Z.AXIS

For ranslation along the z-axis, the coefficient arff vanishes for all values of ¡r

except for F=rz . Thus equations (B-4) and (B-8) become

affi(d*)-(-1)n ju-" (2v+l)li-P'a(m,n,-m,v p'¡h'Ð1kdo) r <doo (c-1)
p'

affi(do)=Çl)^ ju-" (2v+l)l,j-P' a(m,n,-m,v p'¡¡o<ÐlUro¡ r >doo (C-2)
p'

While in the case of the vector translation addition theorem along the z-axis, we have

u fl çr 0,0 o,Q ) = i ¡eg <aor> u #,> e o,e o,ç ) + n ffi @ o) ñ Å1,) e o,e o,Q ; 1 (c-3)
v=l

t r fl {r 0,0 o,Q ) = i ttg <aoo> ñ }!t ç o,ø r,øot + a ffi @o) M Ál) {, o,e o,O ¡ I (c-4)
v=1

where Affi(dro) nd Bffi(doo) are the translation coefficients for a separation distance

doo along the z-axis given as

A ffi (d r) = (-r)^ i' -^ #h I i -n' I n (n +1)+v (v +t)-p' (p' +1) I

' a (m ,n ,-m ,v ,p ) h;Ð Gdpì , øpq

Affi (d 
o ) = Ç r)^ j' -" #h,2 ¡ 

-e' I n (n +t)+v (v + 1 )-p'(p'+ I ) l

. a (m ,n ,-m ,v p ) I p,&.doo) r >dro

and

imkd--
ng<aoq)=-;O#affi(kdoo)

The asymptotic forms of the scala¡ and vecto¡ additions theorems a¡e

(rff(do) = l'-'-r (2v+1) ff a^.rau,o

and

(c-s)

(c-6)

(c-7)

(c-8)



Affi (do) = -B fr Tdoo) = i 
n -u -t #h # u 

^utu <r+1) ô,,-1 + n (n +1 ) ô,",, l

(c-9)



APPENDIX D

ELEMENTS OF THE MATRICES A;8, A;M,Fp, Op, lvo l, luo J, lApc ],[B pc 
]

Elements of the scattered field coefficients column matrices Aj¿ and n"r, arc

written as

[aarr,rltt
^t'= 

l^0,r,,^)

i^u:'*'l
'o=l . I

le;"ø*>]

f 

r, rr,.ll
tt

"=l . I

lroø,ml)

lu'l''ln'=l . I

lao<rnl)

(D-1)

(D-2)

For p=1,2,...,¡. The elements of the incident field expansion coefficients column

matrices F, and Qo are given in the form

(D-3)

Elements of the diagonal submatrices [v, ì and [uoJ are written in the following form



t26

@-5)
f""?' : I

",,=l : "... : 
I

I o 
"' t'pr lj

fu"oo' t l
r,,=l : . I

t ó ""*,.1
Elements of the submatrices resulting from the

coefficients for the vector wave functions a¡e

lrl ø,,t ' qi@où)

ø*t=l . I

L¡#]<¿or> '. AH@Ðl

lnl 
ø,,> ' "*iø,ù)

tBect=l . : I,

lr#,]<ooo> . ,*roor)

(D-6)

theo¡em

.D-7)

(D-8)

translation addition

p4

p4
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