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ABSTRACT

The problem of multiple scattering of a uniform electromagnetic plane wave
incident on an arbitrary configuration of N dielectric spheres of different permittivi-
ties is formulated by expanding the incident, scattered, and transmitted fields in terms
of an appropriate set of vector spherical wave functions. Three methods are employed
to solve this problem: the first two methods are exact analytical while the third is an
approximate analytical method. The exact analytical methods require the use of the
translation addition theorem for the vector spherical wave functions in order to
express the scattered fields by one sphere in terms of the coordinate systems of the
other spheres for the application of the boundary conditions at the surface of the
spheres. In the first method, the boundary conditions are satisfied simultaneously at
the surface of each sphere. The total scattered field by each sphere is due to the
incident field plus the scattered fields from the remaining N-1 spheres. The resulting
system of linear equations is written in a matrix form and solved by matrix inversion
for the unknown scattered field coefficients. In the second method, an iterative pro-
cedure is employed and the boundary conditions are satisfied independently for each
order of scattered fields or iteration. The first order scattered field results from the
excitation of each sphere by the incident field only, while the second order scattered
field results from the excitation of each sphere by the sum of all first order scattered
fields, and hence this process continues to infinity. The third method is approximate
and based on the assumptions that the spheres radii are electrically small. The

interaction fields (usually spherical waves) between the spheres are approximated for
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larger electrical separation by plane waves of unknown magnitudes. The latter
method is shown to be simpler and has computational advantages over the exact solu-
tions, since it does not require computation of the series resulting from applying the
vector spherical addition theorem. The agreement between the approximate and exact
solutions is excellent for the presented numerical results of the backscattering and
bistatic cross section patterns. The formulation is reduced to the special case of N
perfectly conducting spheres, and the numerical results show a reduction in the‘ nor-
malized backscattering and bistatic cross sections for certain choices of permittivity
relative to conducting arrays of spheres of same dimensions and separations. Results
for the scattering by a conducting or dielectric spheroid are given by simulating these
bodies with an appropriate system of spheres. Exact numerical results are also

presented for arrays of dielectric coated conducting spheres.
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CHAPTER 1

INTRODUCTION

The problem of multiple scattering of a uniform plane electromagnetic wave
incident on an arbitrary configuration of N dielectric spheres or a mixture of conduct-
ing and dielectric spheres is considered. The investigation is carried out on this
specific shape since the sphere is a three dimensional body with a simple geometry

for which an exact solution is available.

The scattering by an arbitrary configuration of spheres has numerous applica-
tions ranging from the propagation of electromagnetic waves through rain or hail,
modeling of complex bodies by a collection of spheres, as shown in Figs. 1-1 and 1-
2, such as cylinders capped with half spheres, finite cones, spheroids, scanning of
buried objects to the simulation of human or animal bodies by using inhomogeneous
dielectric spheres. A novel application is that of loading the aperture of an antenna
by a linear array of dielectric spheres (Fig. 1-3) to enhance the gain along preferred

directions.

Early investigations of the scattering by a single sphere by Mie led to the so
called the Mie series solution [1]. For spheres with large radii (greater than three
wavelenghts) the Mie series solution converges slowly. Therefore, to overcome this
problem, an asymptotic solution was derived by the application of the Watson’s
transformation to the Mie series solution [2]. The scattered field is then expressed in
terms of a sum of geometrical optics and creeping wave terms. For the case of small

spheres (ka<<1) one can use the Rayleigh approximation, where only the first term in



Cylinder capped with half spheres Finite cone

Spheroid

Fig.1-1  Simulation of complex bodies.
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Fig.1-2  Plane wave incident on a half space of densely packed spheres.



Fig.1-3  Apcriurc antennas loaded with diclectric spheres.



the series is retained.

Investigations on two-dimensional bodies such as the scattering by two circular
cylinders [3] or diffraction by two wedges [4], as well as the scattering by N parallel
cylinders [5-6], were carried out extensively. For systems of parallel cylinders two
analytic approaches have been used, both requiring the application of the scalar addi-
tion theorem for cylindrical functions {7} to impose the boundary conditions on the

surface of each body.

The first approach considers the total scattered field from each scatterer is due to
incident (primary) field plus scattered (secondary) fields from the remaining scatterers
[8-9]. Application of the boundary condition on the surface of each scatterer leads to
a system of linear equations for the unknown scattered field coefficients. The system
of equations is then solved by direct matrix inversion or by successive iterations. The
second is an iterative scattering approach which requires an infinite order of scattered
fields [10]. The first order of scattered field results from the excitation of each
scatterer by only the incident field (single scattering). The second order scattered field
is due to the excitation of each scatterer by the sum of all first order scattered fields
from the remaining scatterers, and so on to an infinite order of scattered fields. This
approach does not require matrix inversion and therefore the scattered field
coefficients are obtained after each iteration and used in the subsequent iteration until

the solution converges.

For three-dimensional configurations, the first approach has been previously
applied only to the scattering by two conducting or dielectric spheres [11-12]. Inves-

tigations regarding systems of an arbitrary number of conducting or dielectric spheres



randomly located were initiated within the frame of the present doctoral thesis [13-

14].

Trinks [15] formulated long ago the problem of scattering from two identical
spheres of small radii (Rayleigh approximation) and with broadside incidence. Later,
Germogenova [16] extended the analysis to two unequal small spheres and an arbi-
trary angle of incidence. Zitron and Karp [17-18] studied the scattering by two- and
three-dimensional (scalar case) bodies of arbitrary shape, while Twersky [19] used
the dyadic Green’s function formulation to study the multiple scattering of elec-
tromagnetic waves by an arbitrary configuration of scatterers. Angelakos and
Kumagai [20] made use of geometrical optics to obtain the backscattering cross sec-
tion of arrays of three identical spheres and compared their results with experimental
values. On the other hand, Bhartia er al [21] applied the geometrical theory of
diffraction to the scattering by two large spheres. Tsang and Kong [22] presented an
approximate solution to the scattering of a plane wave obliquely incident on a half
space of densely distributed spherical dielectric scatterers. Hunka and Mie [23]
employed a modified unimoment technique to generate the system transfer matrix for
the scattering by two arbitrarily oriented bodies of revolution. Numerical solutions
based on the moment method were presented by Mautz and Harrington [24] to solve
for the scattering by a conducting or dielectric body of revolution in terms of
equivalent electric and magnetic current sheets over the surface of the body. Later,
Kishk and Shafai [25] extended the analysis to the scattering by two bodies of revo-
lution excited by a plane wave or infinitesimal electric dipole. Such numerical solu-
tions require very large computer storage and hence limit the usefulness of these

techniques. An analytic solution to the scattering by two spheres was obtained by



Liang and Lo [11] using the translational addition theorem for vector spherical wave
functions given by Stein [26] and Cruzan [27]. The obtained system of equations was
solved by successive iterations after neglecting the higher order scattered fields.
Bruning and Lo [12] pursued the analysis to the scattering by two dielectric spheres
and obtained more general numerical results for systems of two spheres. Analytical
solutions to the scattering by systems of two spheroids were derived by Sinha and
MacPhie [28] for parallel spheroids, and, more recently, by Cooray and Ciric [29] for

spheroids of arbitrary orientation.

This thesis presents a general solution to the problem of scattering of a plane
electromagnetic wave by an arbitrary configuration of N dielectric spheres using ana-
lytic and approximate solutions based on the multipole expansion method. Numerical
results are computed and plotted for the normalized backscattering and bistatic cross
section patterns for one and two-dimensional arrays of conducting or dielectric

spheres.

In chapter 2 the multipole expansion method is used to express the incident,
transmitted, and scattered fields in terms of the vector spherical wave functions of the
first and third types, respectively. The general translation addition theorem for the
vector spherical wave functions is employed to transform the outgoing scattered fields
from one sphere in terms of incoming fields on the remaining spheres. This is fol-
lowed by the application of the boundary conditions which require that the tangential
electric and magnetic field components must be continuous at the surface of each
sphere. Use of the orthogonality properties of the spherical wave functions leads to a

system of linear equations. The system of equations is written in a matrix form and



solved by matrix inversion for the unknown scattered field coefficients.

The novel iterative solution is formulated in chapter 3. This technique requires
the solution of the field scattered by each sphere, assumed to be alone in the incident
field, and which acts as an incident field on the other spheres. Thus, the first order
scattered field (first iteration) results from the excitation of each sphere by the
incident field only. The second order scattered field results from the excitation of
each sphere by the sum of all first order scattered fields from the remaining N-1
spheres. This process of iteration continues until the solution converges. In order to
compute the higher order terms of scattered fields, the translation addition is
employed. Coefficients for the various order scattered fields are obtained and written
in a matrix form. One of the main advantages of using this iterative solution is to
show the significance of the computed higher order scattered fields on the total scat-

tered field patterns.

Once the scattered electric field coefficients are determined, expressions for the
normalized backscattering and bistatic cross sections are obtained in chapter 4 for
both methods after employing the asymptotic values of the vector spherical wave
functions. In addition, we compare the numerical results of both methods, and show

the effect of the number, size and location of spheres on the numerical results.

The approximate method is derived in chapter 5 for small and non contacting
spheres. The total scattered field by each sphere is due to the incident field plus the
scattered fields from the remaining N-1 spheres which are approximated by plane
waves of unknown magnitudes. The purpose of presenting the approximate solution

is to show that such a solution reduces computational time and computer storage



since it does not require computation of the series resulting from applying the addi-
tion theorem. Finally, the formulation is extended to the scattering by dielectric
coated conducting spheres in chapter 6 to show the effect of the coating on the back-
scattering cross section, while the discussion and outline of future research are given

in chapter 7.



CHAPTER 2

SCATTERING OF ELECTROMAGNETIC WAVES BY AN ARBITRARY
CONFIGURATION OF CONDUCTING OR DIELECTRIC SPHERES

The scattering by an arbitrary configuration of N dielectric spheres is formulated
in this chapter using the modal expansion method. For example, the solution can be
used to simulate human bodies using inhomogeneous dielectric spheres to treat vari-
ous diseases, and for the simulation of dielectric complex bodies. As already men-
tioned, a novel engineering application is that of loading the aperture of an antenna
by dielectric spheres to enhance the gain along preferred directions. To support this,
experimental results to improve the gain of antennas loaded with a single dielectric

sphere have been reported [30-31].

To date, there are no analytical, approximate or purely numerical solutions
available in the literature for the scattering by more than two dielectric spheres due to
the complexity of computing the coefficients of the translation addition theorem.
Therefore, the goal of this chapter is to present analytic solution for the scattering by
N dielectric spheres [32-33], since purely numerical techniques require very large
computer storage and hence tend to limit the usefulness of these techniques.

Early studies of the problem of a plane electromagnetic wave scattering by an
imperfectly conducting, dielectric, or plasma sphere were given by King and Harrison
[34]. Later, tabulated results for the backscattering cross section of a conducting or
dielectric sphere were obtained by Adler and Johnson [35]. Analytical and experi-
mental results to the scattering by two dielectric spheres were presented by [12],

while numerical results were given by [25,36].
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It is perhaps worthwhile to mention that the scattering by N two-dimensional
bodies is a scalar problem and therefore can be solved independently for TE and TM
waves [6]. On the other hand, the case of scattering by three-dimensional bodies is a
vector problem and hence the TE and TM waves are coupled regardless of whether

the excitation is by TE or TM waves.

The multipole expansion method is employed to express the incident and
transmitted fields in terms of the spherical wave functions of the first type
(A?,,SP,I—V—,,SL)) that are associated with the spherical Bessel function, so that the fields
will be finite at the origin [37]. Then, the incident field expansion coefficients of the
pth spheres (p=1,2,...,N) are obtained using the orthogonality properties of the vector
spherical wave functions. Moreover, The scattered electric and magnetic fields are
also expanded in terms of the vector spherical wave functions of the third type
(ﬁ,fi), N—,,(i)) that are associated with the spherical Hankel function to satisfy the radi-

ation condition.

The general translation addition theorem is employed to transform the outgoing
scattered fields from one sphere in terms of incoming fields on the remaining N-1
spheres {26-27]. Application of the boundary conditions require the tangential electric
and magnetic field components must be continuous at r =a, (p=1,2,..,N). Using the
orthogonality properties of the vector wave functions leads to a system of linear
equations for the unknown scattered field coefficients. The system of linear equations
is written in a matrix form and the desired scattered field coefficients are obtained by

direct matrix inversion.

The special case of a linear array of N dielectric spheres is deduced by spacing

11



the spheres along the z-axis. This allows the azimuthal modes to decouple and there-
fore enables us to solve the system of equations for each mode independently. The

scattered fields are then obtained by summing the required azimuthal modes.

Finally, the scattering by an arbitrary configuration of N perfectly conducting
spheres is presented by letting the permittivity of each dielectric sphere become very

high (theoretically infinite).

2.1 Expansion of the incident field

Consider a plane electromagnetic wave incident on an arbitrary configuration of

dielectric spheres as shown in Fig. 2-1, where the radius of the pth sphere is a, and

P
the permittivity is g, (p=1,2,..,N). The spheres are centered at 4 p Wwith local cartesian
coordinates (x,.y,.2,). The separation distance between the centers of the pth and qth
spheres is denoted by d,,,. The incident plane wave has a unit electric field intensity
whose propagation vector k lies in the xz plane and makes an angle o with the posi-
tive z-axis. The incident electric field is considered to be in the § direction. The
incident electric and magnetic fields are expressed by

E'=el*7 9 @-1)

Hi=- %ef E7 (cosod —sinad) 2-2)
M is the intrinsic impedance of the surrounding medium. Considering the relationship
F:EP +Fp, one can write

el kT = gikdy JjET (2-3)

Therefore, the incident plane wave is expressed with reference to the spherical coor-

=ée

dinates of the pth sphere as

iz
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= T . e m=n —m ) .
et B2 oIl 3 5 a4 1)y B by Pincosd, )y hry ) €% (2-4)

n=0m=-n (n+m)!

where j, is the spherical Bessel function, P} is the associated Legendre function of

the first kind with order n and

Ci=sin®, cos®,, sino.+ cos®, cosal

For the special case of a linear array of N dielectric spheres spaced along the z-axis,

as shown in Fig. 2-2, we have ®p =0 (p=1,2,...,N).

Expanding the incident electric and magnetic fields in terms of the spherical
vector wave functions of the first kind, with the e/ time dependence suppressed

throughout, we obtain [38-39]

s m=h

E 08,0, = % X [P, (m.n)NXr,.0,.0,) + Q,(mn)M¢,.0,.0,)1 (2-5)
nr=lm=-n
N (8,8 =i % 3 [Py m )00, 8,,0,) + 0y )N, 8,.0,) 12-6)
n=lm=—n

where p takes integer values from 1 to N, P, and Q, are the unknown field expan-
sion coefficients, while 54_,,(,,1,) and ﬁ,,(,,l) are the spherical vector wave functions of the

first type which represent incoming waves and are given by

M), 8,0, =V X [ (7, .8,.0,) 7, ] 2-7)

— 1 —

N, 8,.0,)= -V XM, .0,.9,) (2-8)
with

Upan (rp 18, 10 ) =jn(krp)P,f'(cosep)ejm¢P , 0fn<oo,—n<m<n

Taking the curl of equations (2-7) and (2-8), we obtain

J— A f .
Mr,.8,.0,) =8, Uy (hp);i%Pf<cosep Yeimoe )



~6, U Chr, ) Pm<cose ye %) (2-9)

and

— 1 . - -
NG, .8,.0,) =1, {?Zr; Jnlkr,) n(n+1) P} (cosep)ef %

+ {L [r Inkrp)l = P’"(cose ye ™% )
P kr, 0
+$P{ k,l,p 57 Updnkrp)] < ep PI(cos8,) e’ %) (2-10)

where it can be seen that the radial components are contained in N_,,(i,ll). Thus, for H
waves (TE), H is represented by IV,,S,) and E by ﬁ,,(l};), while in the case of E waves
(TM) the opposite is true. Using the orthogonality properties of the vector wave
functions (Appendix A) in equations (2-5) and (2-6), we obtain the incident field

expansion coefficients as

n Jkdpg, Cn+l) (n—-m) m
n{n+1) (n+m)! sincx

i ik, G Cr+1) (n—-m) 0
n(n+1) (n+m)! 3o,

while in the case of a linear array of spheres, equations (2-11) and (2-12) reduce to

P,(m.n)=—j Pcos ) (2-11)

Qp(m.n) =—j P(cos o) (2-12)

the following forms, i.e.,

= —jn jkd cosoo. Zn+1) (n—-m)! m m _
Fpm.n) n(n+1) (ntm )l sine " Cos® (2-13)
Qp(m n) - '"J e;ka’ cosQL (211 +1) (n- m) 8 m(COS(l) (2_14)

n(n+l) (n+m)! o
For the limiting case where the direction of the incident plane wave coincides with

the direction of the positive z-axis (x=0 in Fig. 2-2), equations (2-13) and (2-14)

lead to the simpler form

2n+1 Jkd,
2n(n+1)
with §,, ; being the Kronecker delta.

Pp(msn)zgp(m’n)z_jn (2‘15)
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2.2 Expansion of the scattered and transmitted fields

The scattered fields from the pth dielectric sphere ( rp>a,} can be expanded in
terms of spherical wave functions of the third kind as

ms=n

ES(r,.8,.0,) = z1 Y [Asp(m.m)NG, 8,.0,) + Asy(m ) M5, 0,.0,)1
n=1m=-n

(2-16)
_ oo m=n _ —
NH(r,.0,.0,) = j ;1 ) (A (m.nY M), 8,.0,) + Asy (m NS, 6,0,
2-17)

where Ajp and Ajy are the unknown scattered field coefficients due to TM and TE
waves and will be determined later. 1‘;7,,5?,) and fv",,(j;) are the spherical vector wave
functions of the third type which represent outgoing waves and which may be
obtained by replacing j, by the spherical Hankel function 4,{") in equations (2-9) and
(2-10). Similarly, the transmitted electric and magnetic fields into the pth sphere (

r,<a, ) may be written as

P

Ey(rp 8, .0,) = ‘;':"1 mf{" (45 Om 1) N, By 0p) + Apg(m ,n)A?,,(,},)(rp 05,0,
(2-18)

Ny B 8,10, =.fn>°__f1 :>=: (Afp0n 0) M, 8,.0,)+ ALy om )N (7, 8,0,
(2-19)

Here 1, is the medium intrinsic impedance of the pth sphere, while Ay and Ajy are

the unknown transmitted field expansion coefficients.

2.3 Translation addition theorem for spherical wave functions

In order to impose the boundary conditions at rp=a, (p=1,2,...,N), the outgoing

scattered fields from the qth sphere must be transformed in terms of incoming fields

17



on the pth sphere and vice versa. Hence we apply the translation addition theorem

(Appendix B) for the vector spherical wave functions, i. e.,

(3)(rq ’eq ’q}q) - Z Z [A pq: pq :¢pq)M(1) (l" ,Bp ’q)p)

v=] p=—v

( Pq? pq’dr’m)N(l) 7p0p0p) ] (2-20)

(3
Ny (7-84,0,) ZVZIEV [A v (dpg By q’pq)N(l) Tp8p:0p)

+BI (g 8pg 0p )MV (7,.8,.0,) 1 (221)
where A v (d g > pq $pq) and B v (d b pq $pq) are the tanslation coefficients in the

addition theorem given in Appendix B and

d,q =d, —d, (2-22)
=(x, =2, )8+ (3, =9, )9 +(2,-2,) ¢ (2-23)
2, =2,
8,, =cos™! (2-24)
pe )
q)Pq =tan"! {.)_}.?__yp (2-25)
*q =%

M3r,8,.0)= 5 '3 (™ (AT (A By ) ML (1.8,,0,)

v=] p=-v

I (g 905 00 )N, ¢ ¢94:04)] (2-26)
N, 8,0,)=3 3 (lr AT, ), 0,5 00p )NV (.8, .0,)
v=1 p=-v

~ By (dgp 0y ’¢qp)M(l) 8:04)] (2-27)

For the special case of a translation along the z-axis, the translation addition theorem
takes a simpler form (Appendix C). Therefore, equations (2-20) to (2-27) reduce to

the following forms

M5)(rg 8q.05) = z‘,{ s o) M (1, 85 0p) + B (dp )N, 8,.0,) 1 (2:28)
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NXrg 8,.0,) = E [Ars @ YN (7 8 ,0,) + B (dpg) M rp:8p:0p) 1 (2-29)
where A)) ( q) and By i d q) are the translation coefficients in the addition theorem

for a translation along the z-axis, and

MEr,.8,.0,) = 3 I VA ) 0, 80.00) = B () N0 .8,.0,) |
v=1

(2-30)

N“)(p,p,@,,)—z(— VAR (g )N (rg.8,,:0,) = BI%(dy, ) MY (r,.0,.0,) 1

(2-31)

Once the outgoing vector spherical wave functions are transformed into incoming
ones, the boundary conditions can easily be applied on the surface of each dielectric

sphere.

2.4 Application of the boundary conditions

The boundary conditions on the surface of the pth dielectric sphere require con-
tinuity of the tangential electric and magnetic fields, i.e,
oul ot — _
Ry X LES(ry 8, 0p)~Ep(rp 8,001 | , _,=0, p=12...N (2-32)

Ry X [Hy (1, 8,.0,) = Hy (ry 8,001 | . _o=0, p=12,..N (2-33)

where ﬁ}, is the outward unit normal to the surface of the pth dielectric sphere, and

the superscript out refers to the region external to the pth sphere (r,>a,). Hence

— —_ N e m=n
EJ () 8p.0p) = E' (1 8,,0,) + X | X X [A%p(m.n)NSXr,.0,.0,)

g=1 [ n=1m=—n
+AM ()M, 0,001 (2-34)

while the magnetic field 17; ”‘(rp,ep ,q)P) can be written in a similar manner. It should
be noted that E’; and }7; are zero for the special case of perfectly conducting spheres.

Substituting the appropriate forms of the translation addition theorem (2-20)-(2-27)
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into equations (2-32) and (2-33) leads to the following equations in terms of the unk-

nown field expansion coefficients

T, X i E= [P (m nINN@,.8,.0,) + Q, (m.n) M@, .0, .0,

=—h

S(m,nw‘”( 85 .0p) + Ay (m 1) M,5Xa, ,8,.0,)

+Z%(m”izi (Gog Opg 0pg )N (@, 6, 0,)

v=lp=—v
q#p

BJ% (dpg8pg 00 ) M) (@,.8,.0,) ]

A mm) YT (AT W%%wm<ww

v=1j=—V

+Nwwm%wmwwwﬁ

- {A;E (m W ) ﬁn(t}i)(ap ’ep ’@P ) +A]§M (m 5t )Engz)(ap ,ep sq)P] } = 0 (2'35)

and

1 o M=n __(1 (1)
W,Em:_,, [Pp(m’")Mm)( 0p:0p) + Qp (1) Ny (a8, 9,)

Agp(m n) M0)a,.8,.0,) + Asy(m.n)NSNa, 8,.,)
+2 {A;E(m 1) i Z (ALY (dpg 8pg» q’m)M&)(ap’ep’q)p)
=]

v=]p=—v
q#p

+B v (g, pq’¢pq)N G 50,1

o p,:v 1
+HApy(m.n) 3, 3 {Am(dpq’epq’q’pq)N() ap,85.0,)

v=1p=—y
+mwww%wmwwwﬁ
~ 1AL (m o) M a, 0, 0,0+ ALy m 1)V e, 0,0 )}]:0 (2-36)
m, pENTE mn \p sVp Wp pM VT mn \p »¥p Np

Since our main interest is to obtain the scattered field everywhere, a solution for the
unknown scattered field coefficients ;E (m,n) and A;M(m ;) will therefore be given
here. Applying the orthogonality properties (Appendix A) of the spherical wave func-

tions yields



N e p=v
Agp(m. )=V (P )Py (mn)+ T 3 X (AL (dyg 8y 050 ) AZEGLY)

g=1v=]f=—v
q+p
B }LV( pq? pq q)pq)A (li V)]} (2'37)
Sy m,n) =1, (p, ){Q, (m MY 3 S A @ g Opg ) A (V)
g=1v=1y=v
q#p

where p=1,2,...,N, while v, (Pp) and u, (p,) are the electric and magnetlc scattered

field coefficients for a single dielectric sphere [37], which are given by

Jn @) &y Jn G =N2 jn &) [Ppdn (P,
raXPp) p Jn G =N2 (6,0 [, 1D,
Jn @) [Py Jn (P = i (P ) 16, Jn (6,01
In € [Py P Y =10, ) (€, 4, €)1
Here k,=N,k, p, = ka,, &, = k,a, = N,p,. N, =e,/¢, while €, and & are the

Va(p,) = - (2-39)

u,(p,) =- (2-40)
permittivities of the pth sphere and of the surrounding medium, respectively. In the
case of N lossy dielectric spheres, N, is a complex quantity which makes the compu-
tations more complicated since the arguments of the radial functions become com-

plex.

Equations (2-37) and (2-38) are a coupled set of linear algebraic equations and
should be solved simultaneously in order to yield the unknown scattered field
coefficients. In addition, the infinite series must be truncated to a finite number of

terms n=v=M and m=p= 2M+1 in order to obtain numerical resuits [32].

For a linear array of N dielectric spheres spaced along the z-axis, equations (2-
37) and (2-38) reduce to a simpler form due to the symmetry with respect to the z-

axis and hence the summations over | disappear, i ..,
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N o
A (m )=V, (kay)(Py (m )+ 3 T IAMY (dyg YASE (m NY+BI (dy YAS (m W]}

g=1v=1
q+p
(2-41)
N o
o (m.n) =0, (k) (Q, (m )+ Y, T IAZY (g )ASy (m WABIY(d, YASE (m W]}
=1v=1
2%
(2-42)

It should be noted that the above system is solved for each m independently, since
there is no coupling between azimuthal modes, and the scattered field coefficients are

obtained by summing over the required azimuthal modes.

2.5 Solution of the resultant system of equations

The obtained system of linear equations can be written in a matrix form as

_ — N — —
;E =[Vp]Pp +[vp} 3 {AP‘F}A;E +[BP‘7]A;;M }, p=12,..N (2-43)
=1
2%
_ — N —_ —
;M =[up} Qp +[up] PR [AP‘?]A;M +[BP‘7}A;E ), p=12,..,N (2-44)
g=1
q#p

where the above column and submatrices are defined in Appendix D. The above sys-
tem of matrices may be re-written in the following form

PR D 48

iz I L/ B U B L I N L/ % BB R [V L V- LB R TR D
{ ;M} { 0 [up}] [Qp 0 [u,] z_: [BP1] [APT] Y (2-45)

g=1
q#p

where _;E: /I;fM and Z;E, E;M are column matrices of the unknown scattered field
coefficients of the pth and qth sphere, respectively. [v,1 and [u,] are diagonal sub-
matrices containing the scattered field coefficients of a single dielectric sphere, while
Fp and ép are column matrices for the incident field coefficients. Finally, {A”9 ] and

[ BP9 ] are square submatrices associated with the translation addition coefficients.
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Equation (2-45) may be written in a convenient matrix form as

A=L+TA (2-46)
where
- -[VP] 0 | ‘E?
L= i 0 {up}_ [Qp:l (2-47)
(1 o | X|pare) [Bre]
T= ] 0 {up]_q§1 [{BM] [AP9] (2-48)
q#p

The solution of equation (2-46) by matrix inversion yields the scattered field
coefficients in equations (2-16) and (2-17) as

A=U-TYy'L (2-49)
Once the scattered coefficients are computed, the total scattered field can be deter-

mined everywhere,

2.6 Scattering by perfectly conducting spheres

The special case of scattering by N perfectly conducting spheres is obtained
from the dielectric case by letting the permittivity of each dielectric sphere become
very large and hence leads to no transmitted fields inside the spheres. The boundary
condition requires that the tangential electric field components (Ee and E¢ ) must
vanish on the surface of the pth sphere. Thus equation (2-32) reduces to

Ry x B (r, 0,0, | , _0=0, p=12,..,N (2-50)

where

_ . N oo m=n —
EIOIGI (rp ’ep ,q)P) = El (r ,ep ,¢P ) + Zl 2:1 E [A;E (m sn ) N}§13n)(rq ,eq !q}q‘)
q: n=1m=—n

+A;M(m N ) ﬁngi)(rq aeq s(pq ) ] ] (2'51)

Substituting the appropriate forms of the translation addition theorem (2-20)-(20-27)
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into equation (2-50) leads to the following equation in terms of the unknown expan-
sion coefficients

m=n

5_5 z [Pp(m,n)ﬁ,,ﬁik 8p0p) + O (m ) M), 6,.,0,)
+ASp(m n)N(3)( 8,.0,) + Ay (m.n) MSXa, 8,.0,)

* E{A ) TS, (AL (g By ) N S (@18, 0,

v=1p=—y
q#p

(l)
+ B (dpg 8y 99 ) M iy (a5.6,,6,) ]

+Apy (m "y, E ALY (dyg g 05 ) M) (@,.8,.0)

v=lp=—v
W (o Bpq 0pg )N\ @ p,%nH (2-52)
To determine the unknown scattered field coefficients in the above equation we apply
once again the orthogonality properties (Appendix A) of the spherical wave func-
tions, to obtain

p=v

A m) =V 0Py m)+ 3 5 'S ALY @y 8o ) A2 (V)
gﬁljv—lu——v
FBIY (g By Op ) A (W) (2-53)
S ) =0, 0,2, m)+ 3 5 S AR (g 8, ,0) Alsr ()
g;})v-lp._—v
+B A (dyg g 0pg) AZp (V)] (2-54)

Hence v, (p,) and u, (pp) are the electric and magnetic scattered field coefficients for

a single perfectly conducting sphere and are given by

[Py J (pp)Y
: - 2-55
Y (Pp) [Py mD(p,)Y 359
S
UlPp) == Ty Doy (2-56)

It should be pointed out that equations (2-53) and (2-54) for a system of perfectly
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conducting spheres are similar to equations (2-37) and (2-38) for dielectric spheres
with the coefficients v, (py) and u, (p,) of dielectric spheres replaced by those for

perfectly conducting ones.



CHAPTER 3

ITERATIVE SOLUTION TO THE SCATTERING BY AN
ARBITRARY CONFIGURATION OF SPHERES

An exact analytic solution of the problem of scattering by a system of N con-
ducting or dielectric spheres has been obtained in chapter 2 by employing the transla-
tional addition theorem for the vector spherical wave functions in order to enforce the
boundary conditions simultaneously at the surface of each sphere. Thus, the field out-
side each sphere is expressed in terms of the incident field plus the scattered fields

from the remaining spheres.

In this chapter a novel iterative procedure is proposed for the solution of the
scattering by an arbitrary configuration of dielectric or perfectly conducting spheres.
This approach requires the solution of the field scattered by each sphere, assumed to
be alone in the incident field, which acts as an incident field on the other spheres.
Therefore, the first order scattered field (first iteration) results from the excitation of
each sphere by the incident field only, while the second order scattered field results
from the excitation of each sphere by the sum of all first order scattered fields. Hence
this iterative process continues until the solution converges. One of the advantages of
employing this approach is that the proposed solution does not require matrix inver-
sion and therefore the desired scattered field coefficients are obtained after each itera-
tion and used in the subsequent iteration. The translation addition theorem for the
vector spherical wave function is used in order to compute the higher order terms of
the scattered fields. Finally, a general expression is derived and written in a matrix

form for the i th order scattered field.
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3.1 Iterative solution for dielectric spheres

3.1.1 First order field scattered by dielectric spheres

The first order field scattered results form the excitation of the pth dielectric
sphere by the incident plane wave alone. The boundary conditions at the surface of
the pth dielectric sphere require continuity of the total tangential electric and mag-
netic fields at I,=4a,, i. e.,

=0,p=12,..N (3-1)

7, % {E"(rp,ep,q»,,)@;l (rp,e,,,¢,,)~:§;1(r,,,e,,,¢p>} -

¥

=0,p=12,..N (3-2)

p=dp

X {Ei(rp’ep’q’p)*'ﬁ;l(rp’ep"pp)"@l(rp’ep’q)p)}

Substituting equations (2-5),(2-16) and (2-18) into (3-1) yields the following equation

in terms of the first order scattered field coefficients

7 X { i mé" [P, 7.1 N,ji(a,.8,,0,) + Q, (m.n) M@, .8,.0,) ]

+ X X (A5, (mn)NSXa, 8,.0,) + Ady, (m m)M,5a,.8,.0,)]

n=1m=-n
v 5 v (D) 7 (D
= X X [Ajr, mn)NGXa, 8,.0,) + Al (mn) M, 8,0,)1F =0 (3-3)
n=lm=—n
while equation (3-2) can be imposed similarly. In order to obtain the unknown scat-
tered field expansion coefficients, we use the orthogonality properties of the spherical
wave functions. This yields
;E! (m :n~) = vn (pp ) Pp (m 1 ) p=1a29"':N (3'4)

ov, (mn) = 0, (p,) O, (mn) p=1,2,..,.N (3-5)

where v, (pp) and u,,(pp) are given in equations (2-39) and (2-40), respectively.

Equations (3-4) and (3-5) can be written in a matrix form as
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__;E, _ %1 oo }{1__’;} 3.6
;Ml I: 0 [lip} QP . G0

ey s - g N N ,
where PEy Ale s Pp . Qp are column matrices, while [vp], [up] are diagonal subma-

trices.

3.1.2 Higher order fields scattered by dielectric spheres

The second order scattered field results from the excitation of the pth sphere by
the field scattered from the remaining N-1 spheres due to the initial plane wave
incident field. The boundary conditions require continuity of the total electric and

magnetic fields at rp=ag, i. e,

N _ — —
?P X P, %E;I (rq seq 9¢q)+Es2 (rp aep a¢p )—E;Q (rp ,ep a¢p) = O, p = 1,2,...,N(3'7)
q:
q#p
L p=4p
- N Irs I ) 7t
rp X 4 ZlHq 1 (r ’eq ’¢q) + sz (rp ’ep ?¢p ) _sz (rp 99‘0 9¢p) =0 s P= 1,2,...,N
g=
q#p
\ Tp=0dp
(3-8)

To enforce the above boundary conditions, we express the outgoing vector wave
functions in the coordinates associated with each sphere q into incoming vector wave
functions in terms of the coordinates associated with the pth sphere. Hence we apply
the translation addition theorem for the vector spherical wave functions [26-27]. Sub-
stituting the appropriate forms of the translation addition theorem in equations (2-
20)-(2-27) into (3-7) and (3-8), leads to the following equations in terms of the

second order scattered field coefficients
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ms=n

_ co N oo p=v
Ty X X Z{ g, (mn) 3 3 [ATN (dpg.0,0.0,) Ntﬁ')(ap’ep’q’p)

n=1m=-n jg=1 va=lg=—y
q#p

+ By (g pq’q)Pq)M(i) (@,.0,.9,) 1 +AZ, (m ")EE (ALY (dpg 8 » ¢pq)M(U (2,.6,.9,)

v=1p=—v
B (d N, A3 N,Xa, 0
+ By (g Bpg Opg )Ny (@ 8, 0p) 1 [ +[Apg, 00N, (a6, .9,)

+ A, m M,y 8,.0,) 1~ [Akz, (m,n)NGXa, 8, .0,) + Al )M D(a, 8, 0,1

(3-9)

and

_ s m=n 1 N 5 oo Y=y mn —(1)
T X 3 n 2 1A, mn) 3 3 ALY (A 0,005 ) M ' (,.8,,.0,)
n=1m=—n q:l V=1].L=—V
q#p

v (g0, q’pq)N(l)( 6p0p) 1 +Agy (m’")i Z (ALY (dpg-0pg ¢pq)N(1)( @y 8 0)

v=Ip=-v

1 —_
(dpg Bpq 0pg ) M) (@ (@y.8, ’¢p)]}+g[ ;Ez(m’n)Mngi)(ap Bp:0p) +Agy, (m.n)

— 1 —
-NSXa, 8,.9,)] —E[A;Ez(m,n)M,f,}R(ap 8, ,0,) +Aky, (m.nIN 5@, .8,,0,)]

(3-10)

Since we are mainly interested in the field outside the spheres, we present here
expressions for the scattered field coefficients. Applying the orthogonality properties

of the spherical vector wave functions, we obtain

;Ez(m n) v (pp)z Z Z [A pV( pg * pq,q)pq)Aqu(”'!V)
g=1v=1p=-v

q#p
B I,LV ( pq pq q)pq ) AqM1 (l"‘l',v)] (3'1 1)

S, (m.n)=u (pp)z 3T AL (g B Ora) Adig, (L)
g=1v=1p=v

q#p
+B ]J.V( pq* pq 3¢pq )A (F—st)] (3'12)

where Agp , Ajy, are known first order scattered field coefficients given by equation



(3-6), and Ajp,, Ajy, are the second order scattered field coefficients. The infinite
series in equations (3-11) and (3-12) must be truncated to a finite number of terms

n=v=M and m==M+1 to obtain numerical results [39].

For the special case of a linear array of N dielectric spheres spaced along the z-

axis, equations (3-11) and (3-12) reduce to the simpler form

N =
S ) =Va(0,) T T ALY (A Ag, 1 VB () Ady ()] (3-13)
=] v=1
vl
N o
g=1v=1
a#p

The above system of equations is solved for each m independently as in chapter
2, since there is no coupling between the azimuthal modes. Hence equations (3-11)

and (3-12) may be written in a matrix form as

__;Ez _ (vl 0 ]N [[Af’q] [BP‘?]J ErfEl 3.1
. [0 (o, 2 |18#e1 14701 || &3, o
q#p

where [A??] and [B?7] are square submatrices whose elements are A} and B,LY
which depend on the electrical separation between the spheres. Equation (3-15) may

be rewritten in the convenient matrix form

A5, =T Al , p=q (3-16)
with
(vl 0 | & (1ar) (BP]
T"[ 0 [up]:I‘E1 [[qu] [APY] (3-17)
q#p

In order to obtain a general solution, we solve for higher order scattered fields which
are sensitive to the electrical separation between the spheres and the angle of

incidence. This means that if the spheres are located very close to one another or

30



touching, then the higher order fields are significant and should therefore be included
in the solution. However, these decay rapidly as the separation becomes large. The
significance of the higher order scattered fields will be verified numerically by com-

parison with simultaneous boundary conditions solution in chapter 2.
The general expression for the ith order scattered field coefficients can be writ-

ten as

A—,f,. =T /T;H, i=2.3,., p#q (3-18)

It should be noted that the translation addition theorem coefficients in equation (3-18)
are computed once for the separations considered, and used for the subsequent itera-
tions. Once the scattered field coefficients are determined, the field scattered from the

pth sphere due to the ith order scattered field can be written as

E=3 Y T (AG N, 8,.0,)+Asu, (n.m) M0, 0,.0,0]  (3-19)

— N — —
E°=33 3 X [AgmmND0,0,.0,)+ Ak (mn) M3, .0,.0,)]

(3-20)

3.2 Iterative solution for perfectly conducting spheres

An iterative solution of the special case of N conducting spheres can be
obtained from the dielectric solution by letting the permittivity of each dielectric

sphere become high as outlined in section 2.6.

3.2.1 First order scattered field by conducting spheres

The boundary condition at the surface of the pth conducting sphere requires that
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the total tangential electric field at I,=a, must vanish, i. e.,

x{ (rp 8y 0,) + E5y (75.8,.0,) } =0,p=12,..,N (3-21)

i”p=ap

Substituting equations (2-5) and (2-16) into (3-21), we obtain the following equation

in terms of the first order scattered field coefficients

gl

oo m=n - J—
+ ¥ ¥ [As, man)NEXa, 8,.0,) + ;Ml(m,n)M,,@(a,,,ep,%)}}=0 (3-22)
n=1 m=n

uMS

i [Py (1IN, Ia, 8,8, + 0, m ) (@, 6,9, ]

In order to obtain the unknown scattered field coefficients, we use the orthogonality

properties of the spherical wave functions. This yields the first order scattered field

coefficients
pE, (M,n) =V, (p,) P, (m,n) p=1,2,...N (3-23)
Aoy, (m i) = u,(p,) 0, (m,n) p=1,2,..,.N (3-24)

where v, (p,) and u,(p,) are given in equations (2-55) and (2-56), respectively.

3.2.2 Higher order scattered fields by conducting spheres

The total electric field at the surface of the pth conducting sphere is equal to the
sum of all first order scattered fields from the N-1 remaining spheres plus the second

order scattered field from the pth sphere which at r p=ap Mmust vanish, i. e,,

N _ —
rp X ZE;I(rq,Bq,¢q)+E;2 (r.8,.0,) =0, p=12,.,N (3-25)
=1
q#p
=4
Applying the translation addition theorem and the orthogonality properties of the vec-

tor wave functions, we obtain
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N o p=v
o, M) =V, () 3 3 X (AR (dyg 8pq 000 ) AdE, (V)
q=1v=1p=-v
q#p
+ B,#: (dpq aepq :q)pq ) A;M] (IJ.,V)} (3-26)
N o p=v
A;Mz (m i ) = un (pp ) Z Z E [Ar)&t: (dpq :epq ’¢pq ) A;Ml (IJ':V)
g=1 v=1p=-v
q#p
+ Bn!':-l\l}(dpq sepq' :¢pq ) A;El (H,V)] (3'27)

where Agp, , Agy, are known first order scattered field coefficients given by equations

(3-23) and equation (3-24). The general solution of the ith order scattered field can

be written similarly as in equation (3-18).
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CHAPTER 4

RADAR CROSS SECTION CALCULATIONS

In chapters 2 and 3, expressions for the total scattered field at any point in space
for an arbitrary configuration of N conducting or dielectric spheres have been
obtained by using two different exact methods. Of particular interest is the scattered
electric field in the far zone and the radar cross section of the spheres. Asymptotic
expressions for the vector spherical wave function (A?,,Sf),ﬁ,,ﬁi)) are introduced in this
chapter by using the asymptotic form of the Hankel function for large argument. In
addition, analytic expressions for the normalized backscattering, forward scattering,

and bistatic cross sections are derived due to an arbitrary angles of incidence [40].

Numerical results for one- and two-dimensional arrays of spheres based on the
two methods are presented graphically for various electrical separations, sphere sizes,
and arbitrary angles of incidence. In addition, the normalized bistatic cross section
patterns for conducting or dielectric spheroids are obtained by simulating the

spheroids by an appropriate system of spheres.

4.1 Far field approx'imation

In this section, the asymptotic expressions for the spherical wave functions are

obtained using the asymptotic forms of the Hankel function for large argument, i.c.,

jkry
hé”(fcr,,):c—j)("*”%——— (4-1)
"p
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[kr, BVGKr,) g
et = ) ek (4-2)
I'P I‘p

4.2 Normalized scattering cross sections

Substituting the above relations into equations (2-9) and (2-10) leads to

Jjkr :
ar (3) — m m A , 0 pm 8 A Jmbp g
My O 0p) =7 T [y PR0080,) 8, +] =P cost, )y D™ (43
— eJkr
N, 8,0 S [———P’"(cos@ )e + - e L P(cos8,) B, 1% (4-4)
4

In addition, we have the following approximate relations (Fig. 4-1),

r,=r—d,{; (4-5)
0=0,= - =0,= - =6y (4-6)
where

s=sin®, cos®, sinbcosd +sin®, sin®, sinBsing + cos®, cosd

Substituting the above relations with equations (4-3) and (4-4) into equation (2-16),
the total scattered electric field of an arbitrary configuration of spheres in the far zone

may hence be written as

=¥ ejkr A A
E"= T{F 0(6,0)0+ F 4(6,0)91 4-7)
where

7 N
Fg(0.0)= 3 Fg, (6,0) (4-8)

p=1

N
Fy0.0)= 3 Fy, (6,0) (4-9)

=l

and

Fap<e,¢>=§j i 1 (A ) P (c0s6)
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+Asy (m.n) S;:e P,’,"(cose)}sinmcpe_jkdf’g‘ (4-10)
Fop (6, @—EI Z— JH AN (mn)— eF’”‘(cose)
+A gy (m ,n)%P,T(cose)]cosmq) o Tk s (4-11)

For the special case of a linear array of N spheres, the above expressions reduce to

the simpler forms

Fop @)= % /" e Afi (1) Pi(cosd)
n=1m=0
+Asp(mn) ’: 5 P {cosB)]sinm ¢e"jkdp°°se (4-12)
F oy (8:0)= ): Z J“’”le [ApEGm n)—=P;H(cos6)
n=1m=0 9
v (m n) 9 P’”(cose) lcosm ¢ ¢ Hhdpeos® (4-13)

where g,, is Neumann’s number (1 for m=0 and 2 for m>0).

In the case of the iterative solution, equations (4-10) and (4-11) take the follow- _

ing forms

Fop@0)=3 ¥ = .f'"“{[A;E,.(m,n)-ai"é-P:‘(cose)

n=lm=-ni=

+A L (m n)

e P”‘(cose)]smmcb}e e (4a14)

m=n

P (cosB)

Fop®,0)=3 A, O )
i=12... 9

n=lm=-ni=

+Apy, (m.n )-—E—)—-P'"(cose)]cosmq:}e_ﬂlc & (4-15)
The bistatic cross section is defined as

6(0,0) = lim4nr? | ES R/E' |2 (4-16)

r—> co

with the unit vector £ denoting the direction of the polarization of the field received

at the observation point. When %£ has the same direction as E°, the normalized bis-
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tatic cross section is given by

000 __ 4 1| pe@.0) ]2+ | Fo6,0) 2 417
ra? (kap)z[l (0.0 | 2+ | Fy(0.0) 2] 4-17)

The normalized bistatic cross sections in the E and H planes are obtained by substi-

tuting $=nt/2 and ¢=0, respectively, in equation (4-17).

In the backscatter direction 8=n—a and ¢=n, the corresponding normalized cross

section is
o __2 | Fyaml? (4-18)
'n:ap2 (kap )2

where F 4(0,70) is given by

« T nl s m pm
Foplo,m)=3, 3 j"" e, [Ajp(m ,n)——Pl(cosa)
n=1m=0 S

0 - _
+Apu (m ,n)EP,’,"(cosa)]e Jhkdy cos(m-0:) (4-19)

For the special case when a=0, we obtain from the above equation

FopO0)== 3 "1 1 (n+1) (A5 (Ln) + Ay (1,n)] e/ (4-20)

n=1

4.3 Numerical results

In the computations of the normalized backscattering and bistatic cross sections
of one or two-dimensional arrays of spheres, we present numerical results for the
normalized backscattering cross section patterns for different systems ofr spheres of
equal and unequal radii versus the separation distance between the spheres in terms
of the wavelength and the incidence angle .. The normalized bistatic cross section is
presented for systems of identical spheres as a function of the scattering angle 0,
corresponding to endfire incidence (0=0). The system of matrices in (2-37),(2-38),(3-

11) and (3-12) is dimensionally infinite and all series are truncated to an appropriate
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finite number in order to generate accurate numerical results. For instance, four digit
accuracy is obtained for the computation of the backscattering and bistatic cross sec-
tions of three identical spheres (ka=0.5) with kd>3.0 by fetaining a number of terms
n=5. In the case of endfire incidence on a linear array of spheres, the system of
matrices is solved only for m=1 due to the rotational symmetry with respect to the
z-axis, while in the case of an arbitrary angle of incidence it is sufficient to take

m=0,1,2,3 for the cases considered.

Figures (4-2) and (4-3) show the normalized bistatic cross section patterns for
an equispaced linear array of three and eight conducting spheres. The electrical radius
and separation between the successive spheres are ka=0.5 and kd=1.0 (touching),
respectively. In addition, these Figures compare the numerical results obtained by the
simultaneous boundary conditions solution (SBCS) (chapter 2), with the iterative
boundary conditions solution (IBCS) in chapter 3. It can be seen that the agreement
between the two methods is not satisfactory for the first order scattered field (i =1).
This is so, since the first order scattered field does not take into account the interac-
tion fields between the spheres and hence i=1 represents the sum of the field scat-
tered by each sphere due to the incident plane wave only. The significance of the
multiply scattered fields between the spheres can be seen in the second order term
which includes the scattered fields due to the plane wave incidence plus the scattered
fields due to first order fields incident on each sphere. However, the process of itera-
tion is terminated after obtaining the fourth order of scattering, where the numerical
results converge to the same level of accuracy as the simultaneous boundary condi-
tions solution. The results indicate that the first and second orders are only needed to

obtain convergent solutions in the backward scattering cross section, while four
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orders are needed in the forward scattering cross section. In order to terminate the
iteration process, the scattered field after each iteration is calculated and divided by
the total field scattered from all previous iterations; in most of the cases the process

has been terminated when the ratio was smaller than 1074,

Figures (4-4) and (4-5) present the bistatic cross section patterns for the same
geometry and angle of incidence but the electrical separation is increased to kd=2.0.
It is interesting to note that the first order solution gives good results in the backward
scattering cross section direction namely, 6270°. However, the process of iteration is
terminated after obtaining the first and second orders. We see from these two figures
that the higher order scattered fields become weaker as kd increases and can be
neglected in this case for {22, since the higher orders have no significant numerical
contribution to the total scattered field. It is also interesting to note that by increasing
kd from 1 to 2, the magnitude of the forward scattering cross section is increased
while the bistatic cross section patterns vanish at certain scattering angles. Figure (4-
6) shows the normalized bistatic cross section patterns for a system of five equal
spheres with ka=1.5 and kd=4.0. The computer time required to compute the results

in the latter example by using the (IBCS) is about 50% less than using the (SBCS).

Figure (4-7) gives the normalized bistatic cross section patterns for three dielec-
tric spheres of the same geometry as in Fig. (4-2) with the dielectric constant &,
equal to 3.0. It interesting to see that only the first and second orders are needed to
achieve the same accuracy by using the (SBCS). This is partly due to the weak cou-

pling between the dielectric spheres.

Figure (4-8) shows the bistatic cross section patterns of a two-dimensional array
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of four conducting spheres with ka=0.5 located at the vertices of a square which has
a side length kd equal to 1.5. Figure (4-9) presents the same geometry for dielectric
spheres with €,=3.0. We can see from these examples that, contrary to expectation,
the number of iterations required for an arbitrary configuration of four dielectric

spheres is less than for the same configuration of conducting spheres.

Numerical results are also plotted for the normalized backscattering cross sec-
tion patterns for different systems of spheres of equal and unequal radii versus the

electrical separation between the spheres (kd) and the incidence angle (cr).

Figures (4-10) and (4-11) present the normalized backscattering cross section
patterns as a function of o for an array of three and five conducting spheres with
ka=0.5 and kd=1.0 (touching). The results show a discrepancy between the two
methods for the first and second orders, namely for «>30°, and which is significant
in the broadside incidence case until i is increased to 4. In addition, the magnitude of
the backscattering cross section pattern increases with o, since the fields scattered
from the spheres are more in phase while four orders are required to obtain a conver-
gent solution. This is in contrast with the endfire incidence where the results show
that the first and second orders are sufficient to obtain a convergent solution. A possi-
ble interpretation of this result is that the fields scattered from the remaining spheres
are shielded by the front sphere in the illuminated region. On the other hand, Fig.
(4-11) illustrates that by increasing the number of spheres from three to five, the

magnitude of the backscattering cross section pattern vanishes at q=54°.

In Figures (4-12) and (4-13) we have plotted the normalized backscattering

cross section patterns for an array of three and five spheres versus kd with ka=0.5.

48



o/ma®

49

0.81 +
{

0.64 -

0.27 -
0.00
—— SBCS
0.54 - . i=1
00 j=2
E-plane
0.27 -
0.00 : , g-o-0-8-9"8"06-a-09.5-4
0 30 80 90 120 150 180
60

Fig.4-9. Normalized bistatic cross section patterns as a function of the scattering 0

for a two-dimensional array of four spheres with ka=0.5, kd=1.5 , €,=3.0.



do”

5_
4 - — SBCS
. 1=1
00 =2

Fig.4-10. Normalized backscattering cross section patterns as a function of incidence

angle o for a system of three identical spheres, with ka=0.5, kd=1.0.



o/ma?

14.4

12.0

0 15 30 45 80 75 90

Fig.4-11. Normalized backscattering cross section patterns as a function of incidence

angle o for a system of five identical spheres, with ka=0.5, kd=1.0.

51



o
d :
£ |
B )

P

P

D
1)

P
(D

P
()

®
b
(D

o 0 A
) ¢
) ) \Y

(L (V) ©

(Y
D\ - D

1.0 2.8

Fig.4-12. Normalized backscattering cross section as a function of kd for a system

of three identical spheres, with ka=0.5 and endfire incidence.

F = T
4.2 5.8 7.4 9.0
kd

= I

52



18

156

12 1

g
0 T |~

1
1.0 2.6 4.2 5.8 7.4 9.0
kd

Fig.4-13. Normalized backscattering cross section as a function of kd for a system

of five identical spheres, with ka=0.5 and endfire incidence.

53



The agreement is satisfactory except for a small deviation which occurs approxi-

mately every kd=n, due to the resonance between the spheres.

One of the main goals of this thesis is to present some numerical results show-
ing how three-dimensional bodies can be simulated in a scattering sense by a collec-
tion of spheres. We select her for our study the scattering by a spheroid due to an
axial electromagnetic plane wave incidence, since the spheroid has an exact and
numerical solutions available in the literature. Three spheres are needed to simulate
the scattering by a spheroid of a major axis ka=1 and with an axial ratio 2. The small
spheres have an electrical radii ka=0.25, while the larger sphere in the middle has an
electrical radius ka=0.5. The separation distance between the successive spheres is
equal to 0.75 (touching). Figure (4-14) shows the normalized bistatic cross section
patterns (E-plane) obtained by Sinha and MacPhie [41] using the vector spheroidal
wave functions (solid curve) compared with the data obtained using three spheres. It
can be seen that the two curves deviate, and the deviation vanishes as the scattering
angle increases. Figure (4-15) shows another example of the scattering by a dielectric
spheroid with a dielectric constant €,=3.0 [24]. Once again, the results show a devia-
tion in the forward scattering while a good agreement is achieved in the backscatter-

ing cross section.
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CHAPTER 5

APPROXIMATE METHOD FOR THE SCATTERING BY A LINEAR
ARRAY OF CONDUCTING OR DIELECTRIC SPHERES

In chapters 2 and 3, the scattering by an arbitrary configuration of N conducting
or dielectric spheres is formulated analytically using the translation additioﬁ theorem
in order to impose the boundary conditions at the surface of each sphere. The special
case of a linear array of N conducting or dielectric spheres is deduced by spacing the
spheres along the z-axis. Although, the analytic solutions are valid for any spheres
size and electrical separation distances, it has been established that an efficient
approximate solution gives very good numerical results for small spheres when com-
pared with the analytic solutions [32,33,39]. Thus, the purpose of presenting such a
solution is to save computer time as well as computer memory by avoiding computa-
tion of the series resulting from the application of the translation addition theorem

and hence leads to faster convergence.

For the two-dimensional scattering case, Karp and Rusek [42] used fictitious line
sources to account for the multiple scattering by two half planes forming a wide slit
geometry. Thus, the total scattered field by each half plane is considered due to the
incident plane wave and, in addition, to a line source response of unknown magni-
tude located at the edge of the opposite half plane. Ragheb [9] extended the analysis
to the scattering by an arbitrary configuration of N small circular conducting
cylinders, while Elsherbeni [43] employed the same technique to the diffraction by

two conducting wedges.
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In the case of three-dimensional scattering, an approximate solution to the
scattering by two identical spheres with large electrical radii was obtained by Bruning
and Lo [44] using a ray-optical solution. However, the formulation becomes tedious
for the case of more than two spheres because the geometric optics and creeping rays
suffer numerous reflections and diffractions which limit the usefulness of the method.
On the other hand, Bhartia {45] employed the solution derived by Senior and Goo-
drich [2] to obtain an asymptotic solution for the scattering by two large spheres as
well. This solution involved the application of Watson’s transform to the exact Mie
series solution where the scattered field by two spheres is expressed as a sum of

geometrical optics and creeping waves.

In this chapter a simple approximate method for the case of a linear array of N
spheres (N 2 2) is proposed for arbitrary plane wave incidence as shown in Fig. 5-1.
For spheres with small electrical radii we make the approximation that the scattered
field from each sphere is due to the incident field plus the scattered fields from the
remaining spheres approximated by axial plane waves of unknown magnitudes. To
evaluate the unknown magnitudes we impose the condition that the far field scattered
by each sphere due to an axial plane wave of unknown magnitude representing the
interaction with another sphere, be equal to the far field scattered by the sphere con-
sidered due to the total field scattered by the second sphere. The accuracy of the far
field quantity depends on the radii and separations between the spheres and will be

verified numerically by comparison with the analytic solutions.
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5.1 Far scattered field components

The two components of the far scattered electric field from the pth dielectric
sphere in the E and H planes due to an arbitrary plane wave incidence can be written

as [2,32]

ejkrp - —n+41 dJ
fop (@7 0, 0p) = = T B e ¥y min) SE—PP(c0s8,)

BBP
v m P,f'(cosep) ) s
+ T oM (a,m ,H)W]Slﬂm q)p (5-1)
iy o m=n m P*(cosB,)
f 70 .0 )= e " —n+lpgs man) —P
% (a rP P q)P) krp n§lm2=0 o J [ PE (a " n) SineP

+ ‘PPM (cm,n) iP,T(cosep Jcosmd,  (5-2)

38,

where the coefficients W, (0t,;m,n) and W,y (0ym ) are given by

. (2n+1) (n—m)! mPy'(cos)

L ) Jkd, cosa R
Fpp(amn) = =" ) nam)t  sma n P 63

__.n Qn+1) (n-m)! OP7(cosa) jkd, cosot )
Fon (mn) == n{n+l) (n+m)! oo U (pp) € (5-4)

Here v,(p,) and u,(p,) are the scattered field coefficients of a single dielectric
sphere given in equations (2-39) and (2-40), while in the case of a perfectly conduct-
ing sphere the coefficients in equations (2-55) and (2-56) should be used.

For the limiting case where the direction of the incident plane wave coincides

with the direction of the z-axis (0=0), equations (5-3) and (5-4) reduce to

o 2n+l :
¥, (0,1,n) = —j ———Zn?nﬂ) Va(p,) e’ (5-5)
o 2n+1 - '
lI’pM(O,I,ﬂ) =—J m'un(pp)ejkdp (5-6)

In the forward scattering, where 68,=0, the two components of the scattered electric

field in equations (5-1) and (5-2) are singular. Therefore, to overcome this problem,
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the following approximations are used

: Pnl(cosep) __ n(n+1)
6, —0 sinB 2

8 1 n(n+1)
th ~——ae P, (cosB )=~ —

With the above simplifications, equations (5-1) and (5-2) yield the expressions for the

(5-7)

(5-8)

forward scattered field as follows:

(-]

fop (0L7,,0,0,) = = ): T (1) [P (0 1n) + W (0,1,n) 1sing,  (5-9)
kry am1
Jrp o

fop (07, ,0.0,) = = ) 1"+1n(n+1)[ e (@ 1,n)+¥, (0,1,n) T cosd, (5-10)

where the coefficients ‘I"pE (o,1,n) and ‘PPM (o0,1,n) are

1
" (2n+1) 1 Ppcoso) . Jjkd, cosat. )
pE(O‘ Ln)= n(n+1) (n+1)  sinc v,,(pp)e >-11)
9P, L(cosoy
W (0 1n) = —j n 2n+1) 1 (coso) u (pp)ejkd cosot (5-12)

nn+1) (n+1) a0
Adding the two components of the forward scattered field in equations (5-9) and (5-

10), we obtain

Jry
[fop (07 0.05) B+ £y, (01, 0.0,) $1== = 5 " 0 (041) [ ¥, 0, Ln)
P n=1
W o (@1, ] (sing, B8+coso, §) (5-13)

When 6,=0, we have the following transformation identity:

A A
sing, 6 + cosf, ¢ = § (5-14)
Substituting equation (5-14) into (5-13) yields
jkfp i —n+l ( 1)
S T n(nt
krp nel
T¥pp (0 1n)+ W, (@, 1,n)]19 (5-15)

Equation (5-15) may be written in a more convenient form as

[fop (07 0,0, ) B+ £y, (7, 0,0, §1=—
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A A
[ fop (07,.0.0,) B+ £y, (00r, ,0.0,) 01 =g, (a1, ,0) (5-16)
where
ejbp © ;-n+l
gpl(oc,rp 0) =~ krp %j nin+l) [‘I’pE(a,l,n)+‘PpM (o,1,1)] 5-17

In the backscattering direction, where 6=m, the two components of the far scattered

electric field are singular as well. Thus, one may employ the following relations

Pnl(cosep) — e (n+1)

0, -n Sinep 2 (5-18)
. d 1 n(n+l)
= = _(—1yr NPT -
61117:11t 5 Bp P, (cosep) (- 5 (5-19)

With the above approximations, the two components of the backscattered field are

e
fop (047 0,0, ) =~ ir 3 i (1Y (n ) [¥pp(01,n) =¥ (0,1,n)] sing,
P n=l
(5-20)
jr, =
fop (OLT, T,0,) = ‘er ;1 J D n () [ (0,1,n) =¥y (1) 1 cosd,

(5-21)
Adding the above two components of the backscattered fields yields
ejkr" -
X ()
krp 1o
. A A
[Wpp (@.1,n) =¥ (0, 1,n) ] (—sing, 8+cosd, 9) (5-22)

When 6, =m, the transformation takes the following form

[fop (07, T0,0,) B4 Fy, (07, 7,0, ) 01 =

~sing, 6 + coso, & = § (5-23)
Substituting equation (5-23) into (5-22), one obtains
e/Fr =

3D n(n+1)
kr‘p nel

[¥op(0n1n) =Wy (@, 1n)1$ (5-24)

For convenience one can re-write equation (5-24) in the following form

[ fop (007 T0, ) B4 £y, (07 70, §1 =
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A A
[ fgp (0ury T, ) 6+ fy, (007, ,W,0,) 0 1= g, 1 (0, ) § (5-25)
where
e = i+l
8p1(0rpom) = ——— 3 J T (1) n (D [Wpp (0 1n) =Wy (@,1,1)] (5-26)
P n=l

Equations (5-16) and (5-25) represent the forward and backscattering expressions for

a single sphere due to an arbitrary plane wave incidence.

5.2 Total scattered field from the pth sphere

For the case of a linear array of N small spheres illuminated by an arbitrary
electromagnetic plane wave of unit amplitude, the total scattered field from the pth
sphere at any point is due the incident field (non interaction field) plus the multiply
scattered fields from the remaining spheres (interaction field). The total scattered field

by the pth sphere may hence be expressed as
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— A A p-l _ A
Ep 0y 89.99) =6y (©7,,8,.0,)0 + fop (@7, 8, 0,) 81+ T.Cpe e o (0,.8,.0,) 8
q:

A N . A A
+iop 075.8.0,)01+ 3 C, e’ [fy, (0, .m-8,.0,)8 + £, (0,7, ,7~0, ,0,) 6]
q=p+

(5-27)

where the first two terms on the right hand side represent the far scattered field by
the pth sphere due to the incident field, while the remaining terms represent the mul-

tiple interaction between the pth sphere and the remaining N-1 spheres.

5.3 Evaluation of the unknown coefficients Cq

In order to determine the unknown coefficients C,, we impose a condition
analogous to that used in [42] for the wide slit problem. The partial scattered field

from the /th sphere due to the total scattered field from the pth sphere (E‘-,:,) can be
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determined by considering the magnitude of Elf at the center of the /th sphere times

the response of the far scattered field from the [/th sphere, i. €.,

—i A A
Ey(dy 0.0,) e 4 [£01(0,77,8,,0,) 6+ for (0r7,8;.91) 9] for I>p

5 | ) A (5-28)
L E;(dpl ’n’q)p ) ejkdl [fﬁl (0,1‘1 ’n-—el ’q)l) 0+ f¢l (O’rl !E—el :¢1’) q)} for ! <P

The scattered field E,f, from the /th sphere due to an axial plane wave incidence of

unknown magnitude C, can be expressed as

—i A A
Cp e Jkd-" {fel (0,?‘1 ,91,¢[)6+f¢, (0,7‘1,91 ,q)[)q)] for l>p
Ejp,=1C, e’ [£4, (01,18, ,¢,)§+f¢1(0,rl 6,0, 0] for I<p (5-29)
=12, ---,N; I#p

Comparing expressions in equations (5-28) and (5-29), and summing the partial scat-

tered fields from all spheres due to the total field scattered by the pth sphere yields

A S T
(N—l) CP = IE e P gpl(OL,dP, ,Gp[)-l—gpl(o,dp, ,Op,) Z Cq e i
= q=1

I#p
N jkd
+gp Z(Oadpl sepl) Z Cq e’ (5-30)
q=p+1 )
where
A A
fep (O’dpl Jt-epl ,{Dp ) B+ fq’p (O,dpl ,TC—BPI ,¢P )0 Egp‘Z(Oadpl ’epl )9 (5-31)
and
0 for I>p
=1y for I<p (-32)

Once Cq are known, the total scattered field in the far zone can be expressed as

— N A A A A p—l -—jkd
E* = 3 <[y, (007 ,0,0) 6+ £y, (07 ,8,0)0] +[fa, (0,7 ,8,0) 8+ £y, (0, ,8,0)0] 3 C, e/
P=1 q:l



A N . .
+[fa, (O m=0,0) 0 + £, O.r T-6,008] ¥ C, ef’“"e}e‘f’“’v‘“”" (5-33)
g=p+1

5.4 Numerical results

In the computations of the normalized backscattering and bistatic cross sections
of a linear array of spheres, we present numerical results for the normalized back-
scattering cross section for different systems of spheres of equal and unequal radii
versus the separation distance between the spheres in terms of the wavelength and the
incidence angle o. The normalized bistatic cross section is presented for systems of
identical spheres as a function of the scattering angle 8, corresponding to endfire

incidence (a=0).

5.4.1 Radar cross section of arrays of conducting spheres

Figure 5-2 presents the backscattering cross section for a linear array of three
spheres with different radii, namely ka;=0.5, ka,=0.25, and ka;=0.1, versus the electr-
ical distance between the spheres (1<kd<11) for endfire incidence, and shows a com-
parison between the exact (solid curve) and approximate (dotted curve) solutions. It
can be seen that the two curves deviate at small separation distances (kd<2.5), the
deviation becoming significant when kd= n/2. On the other hand, as kd increases,
the deviation vanishes. This is so, since the approximate solution is expected to be
more valid for larger kd (kd>2.5). In addition, the magnitude of the normalized back-
scattering cross section is small because the larger sphere shields the backscattered
field from the smaller spheres, while it varies between a minimum value of 0.4046
and a maximum value which is 1.3217 times the normalized backscattering of a sin-

gle sphere (Table 5-1), and behaves sinusoidaly with approximately half wavelength
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Fig.5-2. Normalized backscattering cross section versus kd for three unequal spheres:

kd

ka;=0.5, k 2,=0.25, ka3=0.1. (—analytic, ...approximate)
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periods. Another example is given in Fig. 5-3 for an array consisting of five spheres
of equal radii ka=0.5, while Fig. 5-4 consists of five spheres of unequal radii, where
the larger sphere has an electrical radius ka;=0.5 and the other radii decrease from
the largest towards the smallest sphere by an increment of 0.1. It is interesting to
note that in the last two cases the approximate solution gives good results at small kd
even when the spheres are in contact (Fig. 5-3), while the peaks occur approximately

every kd=rm.

Figures 5-5 and 5-6 show the normalized bistatic cross section versus the
scattering angle (6) for an equispaced linear array of three and five spheres and
ehdﬁre incidence. The radius and separation between the successive spheres are
ka=0.5 and kd=2.0. The agreement between the exact and approximate solutions does
not seem to be satisfactory, since the electrical distances between the successive
spheres are small compared to their electrical radii. Figures 5-7 and 5-8 present the
bistatic cross section for the same arrays and angle of incidence but the separation
between the successive spheres is increased to kd=4.0, and the agreement between
the solutions in this case is quite satisfactory. In addition, Fig. 5-9 shows an array
consisting of eight spheres with the same size and separation. It can be seen that the
magnitude of the normalized bistatic cross section (H-plane) is increased sharply
from 3.8 in Fig. 5-7 to approximately 27 in Fig. 5-9 at the particular scattering angle
of 6=127°, while it vanishes at certain scattering angles. Moreover the locations of
the maxima are not the same for kd=2.0 and 4.0 and differ from those for a single

sphere.

In Figs. 5-10 and 5-11 we have plotted the normalized backscattering cross sec-
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Fig.5-5. Normalized bistatic cross section versus scattering angle © for a linear array of

identical three spheres: ka=0.5, kd=2.0. (—analytic, ...approximate)
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Fig.5-6. Normalized bistatic cross section versus scattering angle 6 for a linear array of

identical five spheres: ka=0.5, kd=2.0. (—analytic, ...approximate)
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Fig.5-7. Normalized bistatic cross section versus scattering angle © for a lincar array of

identical three spheres: ka=0.5, kd=4.0. (—analytic, ...approximate)
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Fig.5-8. Normalized bistatic cross section versus scattering angle 8 for a linear array of

identical five spheres: ka=0.5, kd=4.0. (—analytic, ...approximate)
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Fig.5-9. Normalized bistatic cross section versus scattering angle O for a linear array of

identical eight spheres: ka=0.5, kd=4.0. (—analytic, ...approximate)
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Fig.5-10. Normalized backscattering cross section versus aspect angle o for a linear

array of three spheres with ka=0.5. (—-analytic, ...approximate)
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76



tion versus the angle of incidence o for an array of three and five identical spheres
with ka=0.5, and different values of kd [46-47]. Due to the symmetry in the angle of
incidence o it is sufficient to get the backscattering cross section pattern for the inter-
val from o=0 to =90°. In the case of the larger separation, kd=4, there is a pro-
nounced maximum at about o=38, as well as more minima than for kd=2. It can be
seen that the agreement is good for kd=4 at all the values of o and also for kd=2
when 0:<75°. The results show that by increasing the number of spheres and kd the
backscattering cross section vanishes at more angles of incidence. This is partly due

to the increase of the interaction between the spheres.

Table 5-1 compares the endfire and broadside backscattering cross sections for a
linear array of system of spheres, corresponding to ka=0.5 where the results are
rounded off to 4 decimal places. For the endfire touching case, the result does not
show significant change in the magnitude of the backscattering cross section for the
scattering by one or two spheres, while a significant change (drop) occurs after
adding the third or sixth sphere, due to resonance and multiple scattering phenomena.
In the broadside touching case, the magnitude of the backscattering cross section
increases with the number of spheres (since the fields scattered by each sphere are in
phase), while it changes insignificantly after adding the eighth sphere and so on. This

is due to the weak coupling between the outer spheres.

5.4.2 Radar cross section of arrays of dielectric spheres

In this section, we present numerical results for systems of dielectric spheres.
The dielectric constant €, is the same for all spheres and equals 3.0 in most of the

results presented. Moreover, the formulation and computer program presented are
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Table.5-1. Nonmalized backscattering cross section o/ma? for a lincar array of N identical

spheres, ka=0.5

kd N  o=0%Endfirc) =90 (Broadside)

1.0 i 0.5295 0.5295
2 0.5271 1.6487

3 0.0042 3.2492

4 0.4598 5.3169

5 0.6004 7.9053

6 0.0340 11.0875

7 05223 14.8951

8 0.8230 152134

2.0 2 0.4229 1.9308
3 0.0409 41914

4 0.6941 7.4326

5 02542 11.5377

6 0.1870 164778

7 0.7485 22.4026

8 0.0863 24.0329




valid for arrays containing a mixture of conducting and dielectric spheres.

Examination of the geometry indicates that an array of dielectric spheres could
have a lower normalized backscattering and bistatic cross sections and weaker sphere
to sphere coupling than a similar array of perfectly conducting spheres. On the other
hand, the forward scattering cross section could be significantly enhanced with an

increase in the number of spheres.

Figure 5-12 presents the normalized backscattering cross section for a linear
array of three dielectric spheres with different radii, namely ka;=0.5, ka,=0.25, and
ka;=0.1, as a function of kd (1<kd<11) for endfire incidence, and compares the exact
(solid curve) and approximate (doted curve) solutions. The discrepancy between the
two curves occurs at kd<2.5, and decreases as kd increases relative to the electrical
size of the spheres. On the other hand, the magnitude of the backscattering cross sec-
tion varies between a minimum of 0.0283 and a maximum of 0.0481 which is about
76% more than the normalized backscattered field of a single dielectric sphere of the
same size (Table 5-2), while there is a reduction of about 6.9% relative to a similar
array of conducting spheres. The curve behaves sinusoidaly as in the case of conduct-
ing spheres with approximately half wavelength periods. Figure 5-13 is another
example for the same array except the second sphere is perfectly conducting. This
leads to a better agreement between the two methods, even for small kd, along with
an increase in the magnitude of the backscattering cross section. Figure 5-14 consists
of five spheres of equal radii ka=0.5. We observe that the high peaks occur at
specific electrical distances, i. e. kd=n, 2r, 3n, which is approximately every kd= 7

as in the case of conducting spheres. Again, very good agreement between the exact
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Fig.5-13. Normalized backscattering cross section versus kd for three unequal spheres of
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Fig.5-14. Normalized backscaticring cross section versus kd for five equal spheres of e=3.0

and ka=0.5. (—analytic, ...approximate)
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and approximate solutions is obtained even when the spheres are in contact. Figure
5-15 consists of five dielectric spheres of unequal radii, where the larger sphere has
an electrical radius ka;=0.5 and the other radii decrease from the largest towards the
smallest sphere by an increment of 0.1. It is interesting to note that the small ripples
in Fig. 5-14 disappear by changing the electrical radii of the spheres in Fig. 5-15

while the high peaks remain at the same locations.

By comparing the above examples with similar ones for the conducting spheres,
we see that the resonances occur in both cases at the same locations and hence

independent from material characteristics.

Figure 5-16 shows the normalized bistatic cross section versus scattering angle ©
for an equispaced linear array of three identical dielectric spheres at endfire
incidence. The radius and separation between the successive spheres are ka=0.5 and
kd=4.0, respectively. The agreement between the exact and approximate solutions is
satisfactory except for a small variation in the forward scattering, and it can be seen
that the back and forward scattering cross sections are equal in the E and H planes,
as expected. In addition, a reduction of about 7.1% in the backscattering is obtained
relative to a similar array of conducting spheres. Figure 5-17 shows the same array
with the second sphere being perfectly conducting. It can be seen from the latter case
that the ripple disappears over the range 60°<6<120° by replacing the dielectric

sphere with a conducting sphere.

Figure 5-18 consists of an array of five dielectric spheres where there is no
significant change in the shape of the bistatic cross section relative to Fig. 5-16,

except for an increase in the number of ripples. Figure 5-19 shows an array of eight
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Fig.5-16. Normalized bistatic cross section versus scattering angle 6 for a linear array of

identical three spheres: ka=0.5, kd=4.0, g,=3.0. (—analytic, ...approximate)
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Fig.5-19. Nommalized bistatic cross section versus scatlering angle O for a linear array of

identical eight spheres: ka=0.5, kd=4.0, £=3.0. (—analytic, ...approximate)



spheres, the two planes are virtually very close for © less than 35°, and the magni-

tude of the backscattering drops from 0.06 in Fig. 5-16 to 0.02 in this case.

In Figs. 5-20 and 5-21 we have plotted the normalized backscattering cross sec-
tion versus angle of incidence (o) for an array of three and five identical dielectric
spheres with ka=0.5 for different values of kd. We observe a significant increase in
the oscillations of the curves by varying kd. Once again, the location of the oscilla-
tions is independent of the material characteristics when compared with those for

conducting spheres.

Figures 5-22 and 5-23 show the backscattering plotted as a function of the
dielectric constant (1<¢,<30) for various values of kd. The magnitude of the back-
scattering is zero at £=1.0 and 30.0 and maximum at €=13.0 for the arrays con-

sidered.

The normalized forward scattering cross section is plotted in Figs. 5-24 and 5-25
as a function of kd (1<kd<9 ) for various numbers of dielectric spheres, namely
N=3,5 and 8, with ka=0.5. The magnitude of the forward scattering is enhanced by
increasing the number of spheres and also by changing the relative dielectric constant
(e,) from 3 to 5, respectively. However, the forward scattering does not change
significantly by varying the electrical separation and converges rapidly for large kd. It
can be seen from the two presented cases that the resonance occurs approximately
every kd= m.

Table 5-2 presents results for the special cases of endfire and broadside back-
scattering cross sections for a linear array of dielectric spheres, corresponding to

ka=0.5, kd=1.0 and 2.0. The magnitude of the backscattering cross section for endfire
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Fig.5-20. Normalized backscattering cross section versus aspect angle o for a linear

array of three spheres with ka=0.5 and £=3.0. (—analytic, ...approximate)
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Fig.5-21. Normalized backscattering cross section versus aspect angle o for a linear

array of five spheres with ka=0.5 and €=3.0. (—analytic, ...approximate)
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Fig.5-23. Normalized backscatlering cross section versus dielectric constant € for a linear
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Table.5-2. Normalized backscattering cross seclion o/ma? for a lincar array of N identical

spheres with ka=0.5, £,=3.0.

kd N a:OO(Endﬁre) 0(29(‘)0 (Broadside)

1.0 1 0.0369 0.0369
2 0.0365 0.1355

3 0.0003 0.2881

4 0.0362 0.4905

5 0.0456 0.7443

6 0.0019 1.0554

7 0.0312 1.4274

8 0.0529 1.5734

2.0 2 0.0283 0.1414
3 0.0029 0.3116

4 0.0471 0.5534

5 0.0163 0.8623

6 0.0128 1.2360

7 0.0494 1.6812

8 0.0055 1.7385



incidence and kd=1.0 drops from 0.0369 (N=1) to 0.0003 (N=3). For broadside
incidence, the magnitude of the backscattering cross section increases for the cases

considered with kd and number of spheres as already encountered in the case of con-

ducting spheres.
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CHAPTER 6

SCATTERING FROM TWO DIELECTRIC COATED
CONDUCTING SPHERES

In this chapter the formulation is extended to the problem of scattering of a
plane electromagnetic wave by conducting spheres covered with a dielectric layer. In
addition to the incident and scattered fields in the region surrounding the spheres, we
have also the fields existing in the dielectric layers. The latter fields are expressed in
terms of the vector spherical wave functions of the first and third kinds to satisfy the

boundary conditions at the various interfaces [48].

Previous work on scattering by one sphere covered with a dielectric layer has
been studied by many authors. Aden and Kerker [49] obtained analytic expressions to
the scattering of plane electromagnetic waves by a dielectric sphere coated with a
concentric spherical shell of a different dielectric material, while Scharfman [50]
presented numerical values for the special case of a small (ka<l) dielectric-coated

conducting sphere.

In section 6.1, the scattered fields are expressed in terms of the vector wave
functions of the third kind which are similar to those used in the case of conducting
or dielectric spheres. In addition, the transmitted fields inside the dielectric layers are
presented by the vector wave functions of the first and third kinds. In section 6.2,
application of the boundary conditions require continuity of the tangential electric and
magnetic fields at the surface of each dielectric layer, and also the tangential
transmitted electric field components must vanish at the metal surface of each sphere.
Finally, numerical results are presented in section 6.3 to show the effects of the

dielectric coating on the scattering cross section behaviour.
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6.1 Expansion of the fields

Fig. 6-1 shows the system geometry. Spheres A and B are spaced along the z-
axis and centered at the origins O and O, respectively. The separation distance

between the centers of the spheres is d.

The incident field in the region surrounding the spheres may be expressed in

terms of the coordinate system attached to sphere A as

Ei=3% 'S (Ponn)NDr8.0)+00mm) MO 0.0)] 1)
n=1lm=—n

The scattered field form sphere A (r>a;) can be written in terms of the spherical vec-

tor wave functions as

—_ o m=n — P
Ei=3 X [ARGn.n)NGr8.0) + Af(m.n) MO 8,0)] (6-2)
n=1m=-n
Here Af, Aj; are the scattering coefficients of sphere A for transverse magnetic (TM)
and transverse electric (TE) waves.

The fields in region 1 (b;<r<a;) are expressed in terms of the vector spherical

wave functions of the first and third kinds. Hence the electric field can be written as

Ef = i m}in [Ag(m n)NSDr .8.0) + Ay (m )N D 0,0)
n=1lm=-n

+ Ay (m o) MS)(r 0,0) + Ay (m n) MO 0,0)] (6-3)
6.2 Application of the boundary conditions

The scattered field from sphere A in the presence of sphere B is due to the incident
field and to the outgoing scattered field from sphere B. In order to impose the boun-
dary conditions at r=a; the latter scattered field is transformed into an incoming field

with respect to the sphere A, expressed in terms of the coordinates attached to this
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sphere. The boundary conditions require continuity of the tangential components
(along 6 and ¢) of the electric and magnetic fields, i. e .,
Fx[ES +ES + Ej4] =7 x E§ forr=a, (6-4)

7 x [Hy +Hj + Hyy] =7 x HS for r=a; (6-5)

The tangential electric field components at r=b, must be zero, i.e.,

FXES =0 (6-6)
Ej, represents the scattered field from sphere B which is expressed in terms of the
coordinate system of sphere A by using the translation addition theorem. This yields

E,=3 Y (Biom n)):[A N D 0,05+ B e 0,60)]

n=1m=n

+Bjy(m 1) T IATMD 807+ BN Dr 0.0)1) (6-7)
y=1
Ay and B are the translation coefficients in the addition theorem, while BS and

Bjy are the scattering coefficients of sphere B. The boundary conditions at r=a, and

r=b, are implemented in a similar way.

Since we are mainly interested in the field outside the spheres, we present here
expressions for the scattered field coefficients. Using the orthogonality properties of
the vector wave functions leads to a system of coupled linear equations for the unk-

nown scattered field coefficients in the form

Afmn)=vy, {P(m,n)+ i (A (d)BE (m V) +BEY(d)Bfy (m )]}

v=1
Ap(m,n)=u,,{Q@m,n)+ i[Anﬂan(d)Bfl(m V) +BnTnv(d)B,§(m W)
v=l
Bg(m.,n)=vg, (P'(m,n)+ E(_l)nw
v=1

[Any @A (m V)-B Y (d)Ajy (m v}



Bim.,n)=up, [Q'(m,n)+ i(—l)’“"

v=1
A ()Afm V)-B R (d)AE (m W]} (6-8)

where P’ and Q' are the incident field expansion coefficients relative to the sphere B,
which differ form those relative to the sphere A by the phase factor /%5 Fyrther-
more, v, and uy, are the scattering coefficients corresponding to the conducting
sphere A covered with a dielectric layer, assumed to be alone in the incident field,

which are given by

Pa JnPA) =Y an[Patn(PadY

n = (6'9)
T AP =i Y anlpa DT
A ~JZpn [Padn (P
0, = - PA(JI)(PA) J A [pAJ(SA : (6-10)
Paln ' (Pa)—JZpn(Pa 1y’ (Pa)l
and the coefficients Z,,, and Y,, are
JnCEORIBL) = jn Ba) BD(EL)
Zan = pa —22A 5 BA, (J?A o , 6-11)
InBa)EA R E = by (B84 Ju (Ga
¢y i ‘i 1) ’
Y, =jpN? By Ca) (BasuBa)Y —inGa) [Ba by (B 612)

" [ pdn €)Y Ba B OB ~IBa ju B en BOEL)
Here klzNAk, Pa = kal, gA = klal, BAzklbI’ NA = \jellﬁ, while £ and &£ are the

permittivities of sphere A and of the medium surrounding the spheres. The
coefﬁcients Vg, and upg, can be written similarly by replacing a; , b; by a,, b,. In the
case of lossy dielectric-coated spheres, N, and Ny are complex.

The series in equation (6-8) are infinite and must therefore be truncated to a

finite number of terms v=n. Hence the system of equations may be written in a

matrix form as

A=L+TA (6-13)

where A and L are column matrices while T is a square matrix representing the cou-
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pling between the spheres and depends on the separation distance between the
spheres.

The total scattered field in the far zone can be obtained after taking the asymp-
totic form of the vector spherical wave functions, Thus the total far scattered field

can be written as

=5 ejkr A A

E° = _IEr_[Fe(e’q)) 8+ F (6,9) ¢] (6-14)
where

Fo(0,0)=F g4 (8,0)+F ¢5(9,0) (6-15)

F 50.0) = F 4 (6,0)+ F 4 (8,0) (6-16)

and

Fou (8, ¢)—E z;—"“a [Ag(m )= P”‘(cosﬁ)

n=1m=0
+Ajr(m ,n) 6 P[M(cosB)] sinm ¢ (6-17)
Fyn (0,0)= z Z J e, [Af(m ) P::‘(cose)
n=1m=0
+A1f4(m,n)%P,f‘(cosB)] cosm ¢ (6-18)

with g, being the Neumann number (1 for m=0 and 2 for m>0). The expressions for
Fop and Fyp are obtained from those Fgs and Foy by replacing A§, Ajy by BE,

Bjy and multiplying each expression by the phase factor e /44c0s6,

The normalized bistatic cross section is given by

G(izq)) [ | Fo(0,0) | 2+ | F(0,0) | 2] (6-19)
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6.3 Numerical results

Typical numerical results are presented graphically in Fig. 6-2 for the normal-
ized bistatic cross section patterns of two identical dielectric-coated spheres with
ka=2, kb=1, kd=4, with €£,=€,=5, as a function of the scattering angle 8 and with
endfire plane wave incidence (a=0). Fig. 6-3 shows the same geometry except kd is
increased to 8. It can be seen that by increasing kd from 4 to 8 the magnitude of the
forward scattering cross section (6=0) is increased from 11.3 to 27.6, and the bistatic
cross section patterns vanish at more scattering angles. Figs. 6-4 and 6-5 present the
same geometry and electrical separations as in the above example except the
dielectric-coatings have permittivities £,=35 and €,=2. By reducing €, from 5 to 2
the ripples are substantially reduced and the magnitude of the backscattering cross
section (B=nr) increases from 0.2 to 5.5. This is in contrast with Fig. 6-3 which shows
reduction in the forward scattering cross section and only a slight change in the back-

scattering cross section.

In the cases considered, the system of matrices is solved only for the azimuthal
mode m=1 due to the symmetry with respect to the z-axis, with n=14 in the case

when the spheres are in contact (kd=4).

In this chapter we have obtained an exact solution of the problem of multiple
scattering by two dielectric-coated conducting spheres with arbitrary size, and angle
of incidence. The boundary conditions are imposed on the outer surface of each
dielectric layer by using the translation addition theorem for the spherical wave func-
tions. The resultant system of equations is written in a matrix form and therefore the

desired field scattering coefficients are obtained by matrix inversion. Some numerical
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Fig.6-2. Normalized bistatic cross section patterns for two identical dielectric-

coated spheres with ka=2, kb=1, £,1=€,,=5, kd=4.
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Fig.6-3. Normalized bistatic cross section pattemns for two identical dielectric-

coated spheres with ka=2, kb=1, €,;=€,=5, kd=8.

106




12

10

] T
0 30 80 90 120 150 180
8 (deg)

Fig.6-4. Normalized bistatic cross section patterns for two identical dielectric-

coated spheres with ka=2, kb=1, €155, €n=2, kd=4,
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Fig.6-5. Normalized bistatic cross section patterns for two identical dielectric-

coated spheres with ka=2, kb=1, £,,=5,€,y=2, kd=8.
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results are presented for the normalized bistatic cross section patterns for the special
case of endfire incidence on two identical spheres with ka=2, kb=1 for various kd

and g,.



CHAPTER 7

DISCUSSION AND OUTLINE OF SUGGESTIONS FOR FUTURE RESEARCH

7.1 Discussion

The problem of scattering of a plane electromagnetic wave by an arbitrary
configuration of conducting, dielectric or a mixture of conducting and dielectric
spheres has been formulated analytically. The incident, transmitted and scattered
fields have been expressed in chapter 2 in terms of the vector spherical wave func-
tions of the first and third kind, respectively. The boundary conditions require con-
tinuity of the tangential electric and magnetic fields on the surface of each dielectric
sphere, and have been imposed by using the translation addition theorem for the vec-
tor spherical wave functions in order to express the outgoing scattered fields from
one sphere in terms of incoming fields incident on the remaining spheres. Using the
orthogonality properties of the vector spherical wave functions, a system of equations
for the unknown scattered field coefficients is obtained. This system of equations has
been written in a matrix form and solved by matrix inversion for the scattered field

coefficients from which the electric and magnetic fields can be computed everywhere.

The special case of perfectly conducting spheres has been obtained from the
dielectric case by letting the relative dielectric constant of each dielectric sphere in
section 2.6 become very high. We have noticed that the resulting system of equations
for perfectly conducting spheres is similar to that for dielectric spheres with the scat-
tered field coefficients of a single dielectric sphere replaced by the perfectly conduct-

ing ones.
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The required computer time and memory to invert the resulting system of
matrices increases rapidly with the number and dimensions of the spheres. Therefore,
in chapter 3 we have presented a novel iterative solution for the scattering by an arbi-
trary configuration of conducting or dielectric spheres. The first order scattered field
(first iteration) requires the solution of the scattered field by each sphere, assumed to
be alone in the incident field. The second order scattered field results from the excita-
tion of each sphere due to the sum of all first order scattered fields. Finally a general

expression for the ith order scattered fields is obtained and written in a matrix form.

The validity of this technique has been verified numerically by comparing the
numerical results with those obtained by the simultaneous boundary conditions solu-
tion (chapter 2). The results show that the iterative solution converges as the number
of iterations increases. However, for the particular cases considered in chapter 4, the
results show that the first and second order scattered fields are needed to obtain the
backscattering cross section patterns with endfire incidence, while four orders of scat-
tered fields are needed for an arbitrary angle of incidence and contacting linear array
of spheres.

One of the main advantages of employing the iterative solution is that of han-
dling each iteration separately and then summing over all previous iterations to obtain
the total scattered field. Another advantage is that of saving computer time and
memory by avoiding the inversion of the system matrix. For example in Fig. (4-6)
the required computer time to obtain the normalized bistatic cross section patterns
using the iterative solution for a system of five spheres with ka=1.5 and kd=4.0 is

about 50% less than using the simultaneous solution.
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In chapter 4 we have presented for the first time numerical results for a one-
dimensional array of more than two spheres, and also a two-dimensional array of
four spheres located at the vertices of a square. The results show that the required
number of iterations to obtain the normalized bistatic cross section patterns for a sys-
tem of dielectric spheres is less when compared with a system of conducting spheres
of the same dimensions and separations. Moreover, it is worth mentioning that the
results in chapter 4 are too difficult to obtained by numerical methods such as the
moment method since the latter requires a large memory compared with the exact

solutions.

As mentioned previously, one of the most useful applications of the scattering
by N spheres is that it can be used to simulate the scattering by three-dimensional
bodies, since we know that most of these bodies do not have analytic solution avail-
able in the literature. Three spheres were used in Figs. (4-14) and (4-15) to simulate

a spheroid with a major axis ka=1.0 and axial ratio of 2.0.

In principle, the analytic solutions are valid for any number of spheres, electrical
sizes and separation distances. However, due to the computational time and storage
required, the presented numerical results are hence given to one and two-dimensional
array of spheres.

For electrically small and non conducting spheres, a novel approximate method
has been derived in chapter 5. The approximate solution is based on the assumption
that the scattered field from each sphere is due to the incident field and the fields

from the other spheres approximated by plane waves of unknown magnitudes.

It should be pointed out that the approximate solution gives excellent agree-
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ments with the exact numerical results for the backscattering cross section patterns
with ka<1.0 and kd>1.5 which means that the assumption of the far field interaction
between the spheres is adequate once these conditions are met. In addition, It has
proven that the approximate method has computational advantages over the exact
solutions, since there is no need to compute the series resulting from application of
the translation addition theorem for the vector wave functions. This approach does

not require large computer storage and leads to fast convergence.

The practical relevance of the numerical results in Figs. (5-24) and (5-25) is
their potential application in studying aperture antennas loaded with a linear array of
dielectric spheres in order to enhance the gain along preferred directions. Figure (5-
24) shows that the forward scattering is equal to 0.45 for three spheres and increases
to 3.38 by increasing the number of spheres to 8 where the incident plane wave is
assumed to be due to the far field of an aperture antenna whose main lobe along the

line joining the centers of the spheres.

One of the most interesting results in chapter 5 is the deviation of the peak
value of the bistatic cross section from 6=180° for a single sphere to 6=127° for the
particular case of N=8, ka=0.5 and kd=4.0, and other values of © for other arrange-
ments of spheres. The physical justifications for these variations are due to the multi-

ple scattering phenomena and the resulting interference by the collection of spheres.

We have shown in chapter 5 that the resonances in the normalized backscatter-
ing cross section patterns occur at the same locations for a system of conducting and

dielectric spheres and hence are independent of material characteristics.

Examination of the presented numerical results for an array of dielectric spheres
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shows lower backscattering and bistatic cross sections for some cases with respect to
those for the conducting spheres. This is partly due to the fields transmitted into the

spheres and also due to the weaker sphere to sphere coupling.

7.2 Future research

Although we have already investigated the scattering of a plane electromagnetic
wave by conducting, dielectric, and dielectric-coated conducting spheres, the analysis
can be extended to the scattering by systems of two and more dielectric spheres
covered with a concentric spherical shell of a different dielectric material. In addition
to the incident and scattered fields in the region surrounding the spheres, we have the
fields existing in the spherical shells and inside the dielectric spheres. The fields
inside the spherical shells are expressed in terms of the vector wave functions of the
first and third kinds, while the fields inside the dielectric spheres are expressed in
terms of the first kind of the vector wave functions, The special case of dielectric
coated conducting spheres can be obtained by letting the relative dielectric constant

of each dielectric sphere become very large,

A potential study is how to generalize the approximate solution to an arbitrary
configuration of conducting or dielectric sphere since the approximate solution has
proven to have computational advantages over the analytical solutions for small
spheres.

Another possible study is that of getting numerical results for three-dimensional

arrays of spheres and using these results to simulate complex three-dimensional

bbdics.
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From the formulation given in section 2.1 for the TE case, where the incident
electric field is perpendicular to the z-axis, the TM case, where the electric field is
parallel to the z-axis, can be easily obtained through an appropriate change in the

incident field coefficients.




APPENDIX A

ORTHOGONALITY PROPERTIES OF THE SPHERICAL
WAVE FUNCTIONS

The following orthogonality properties of the spherical wave functions are used

throughout the report [37],

2nw
MO MDy= [ [MD-MDsin0d0do
00
(n+1) (n+m)! (i) 2 )
2nt1) (n—m)! [Z; (kr)] (A-1)
2nm

(NG NDy= _”N(‘) Nsingd0d¢

- (n+1) (n+m) @) o) )
4n 2n+1) (n-m)! Lkr Z,7(kr)] 8,,, (A-2)

where i=1 and 2 represent the spherical Bessel and Hankel functions, respectively.

The following associated Legendre integrals are applied in the above equations

. 2 (n+m)!
pm. pm = .
J: v Py sinddO= s i O (A-3)
dP; dP} mzP,',"P;" 2 (n+m)!
+ indd0= L (n+1) 8 A-4
3 40 4o sne )" 24l (nomyt D O A-4)
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APPENDIX B

TRANSLATION ADDITION THEOREM FOR VECTOR
SPHERICAL WAVE FUNCTIONS

In this Appendix, the general vector translation addition theorem for a transla-
tion between arbitrarily located two spherical points are cited and discussed. Boun-
dary value solutions involving the scattering by two or more bodies usually require
the use of the translation addition theorem to transform the outgoing scattered field
from one sphere into incoming field (finite at the origin) on the remaining spheres for

the application of the boundary condition on the surface of each sphere.

So far the translation addition theorem is given in the literature for a translation
between two spherical points: one located at the origin while the other is in space. In
this Appendix we express this theorem for an arbitrary two points located in spherical
coordinates in space, say p and ¢ as shown in Fig B-1, since this form can be easily

used in the solution of scattering by an arbitrary configuration of N spheres.

The formulation of the scalar addition theorem for spherical wave functions was
first done by Friedman and Russek [51]. Later, Stein [26] obtained a solution for the
vector translation addition theorem, while Cruzan [27] put the vector addition
theorem in appropriate forms by deriving new recursion formulas. Recently, Bruning
and Lo [52] obtained more efficient recursion formulas to reduce the computation

time required to evaluate the series resulting from applying the addition theorem.
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Fig.B-1  Translation of the Cartesian coordinate system (xq N ,zq) 1o the system (xp ,yp,zp)

a distance dpq‘



B.1 Scalar translation addition theorem

A derivation of the scalar addition theorem for the scalar spherical wave func-

tions was given by Friedman and Russek [51], and then pursued by Stein [26].

We start by the scalar Helmholtz wave equation which has the following form
Viy+k2u=0 (B-1)
where a solution for the above differential equation in spherical coordinates can be
written as
U (p 8 0, ) = ZNkr, ) P 1 (c080, ) %, 0<n Soo, —n <m <n ®B-2)
Here i =1 and 2 represent the spherical Bessel and Hankel functions, respectively.
The translation of the scalar spherical wave functions from the spherical coordinates

{r ,Sq ,q)q) to (rp,ep ,q)p) a separation distance dpq is given by

-] “:v
(g 0.0, = zo Y O (g 8pg 0pg) (7, .8,.0,) (B-3)
y= 1!.=—V

with

O (g B 0pg) = (—1)H* ™ @+ 1) TP a(m v 0"y hD (kd, )

P
.pm- Jlm=p)o
P M (cosB,, de " r<dy, (B-4)
or
a}l”;n(dpq ’epq s(bpq ) = (_1) m_ujv_n Zj_p ' (2P ’+1) a (m i L,U—mp ,:v )jp'(kdpq)
pl
PP (cosB,, )e! P p2g (B-5)

The coefficient a (m ,n,1,v,p”) can be expanded in terms of the product of two asso-

ciated Legendre functions, i.e.,

PrPYE=Fa(mnpyp) PRt (B-6)
Pl
where p’=n+v ,n+v-2, - - -, | n—v |. To obtain a simpler form for (B-5), the fol-
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lowing identity is used:

Py 1y 2Vt _ .
a(m,n,u—-m,p’v)=(-1) 20741 a(m,n,~t,v,p" B-7)

Substituting equation (B-7) into (B-5), we obtain

04 g Bpg Bpg ) =DM/ QD) X j P a(mn,~1v p) j,(kd,,)
pl

Py (cos8,, Yel e sy

g (B-8)

B.2 Vector translation addition theorem

To transform the outgoing vector spherical wave functions which are expressed
in terms of the spherical coordinates (r4,84,9,) into incoming vector spherical wave
functions in terms of the coordinates (r5.8,,9,), we employ the following vector

translation addition theorem [27],

— e U=V —
Mg 8,90 = X T (AL (drg Bpg 0p) MDD 7.8, ,,)

v=1 p=—v

+ B (g Bpg 0p N W (75.8,,9,) 1 (B-9)

A3 = NY (4 mn A7 (D)

"-B;f\’,;l (dpq ’epq ,¢pq ) E;E}U) (rp 7ep a¢p) ] (B'IO)

where A[ and B} are the translation addition theorem coefficients given as

AL (@ng Bpgobp)=DF Zalm.n | -y [pa(n,vip?)
P

P (k) PRH cos(B,) e’ M (B-11)

B (dyg 8,0 05)= 1" Y a(m,n | —-puv | p'p'~1)b(n,v,p%
pf

P (kg ) P cos(8,,) e/ M (B-12)
with

2

1/
A 1y HL (n+m)! (v+)! (p "—m—p)!
almn Ly | p =y p ) | e
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Loy il byn) e

’ 172
a(m,n I [TRY lp’,q):(_l)m+p.(2pr+1) I:(fl"‘m)! (V-{-IJ,)! (p _m_u)! }

(n—m)! (v=)! (p "+m +u)!

ln v p’ nv g
[m i -—(m+u)} [0 0 0] (B-14)

N jv—n+p' . .
a(n,v,p )——————2V(V+1) [2v(v+]1) 2v+1) + (v+1) (r+v—p ") (n+p —v+1)

= V(n+vip +2) (v+p —n+1) (B-15)

N_ (2V+1) vip'—n ’ r_ ’_ S 12 _
b(nyvp’= —_~2v(v+1)j [(n+v+p +1) (v+p "=n) (n+p "=v) (n+v—p '+1)]1"* (B-16)
and

Ji J2 s

[ml my m3] (B-17)

is the Wigner 3-j symbol [53].

B.3 Asymptotic forms of the addition theorem

For large electrical separation distances between the spheres, the previous addi-
tion theorems may reduce to simpler forms which are fast for computations. If the
argument kd,, >0( p’?) where p’<n+v, the Hankel function may reduce to its large
argument asymptotic form as

| e/

1 ~ :p”
hD (kd,,) = jP (B-18)

Pq
Substituting equation (B-18) into (B-4) leads to the asymptotic form of the scalar

addition theorem coefficient, i .e.,

Jkdpg ,
ap.n;n(dpq sepq sq)pq ) = (-'1) ujv_n (2V +1) ekd Z (_1)-‘0 a (m SV LD ’)
SKGpq p
PR (cosO,,)e! "W r<q  (B-19)

Using the identity in (B-6), equation (B-19) reduces to a simpler form, i.e.,
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ejkd”"

kd,,

PyH(cosB, e’ P kd S0y (B-20)

While in the case of the vector wave function, the translation coefficients become

O (dpg Bpg Bpg ) = (1) Hj" 71 2v+1) Py (cosBy, )

ey 2v4l e )
Aﬁl\?(dpq sepq’q)pq):(_-l)u.]n v-l e](m mq”’"Za (m,n ,—"U.,V N )

2v (v+1) kdy, P
[n(n+DHv +D)-p '+ 1PAH (cosB,,) (B-21)

To remove the summation from equation (B-21), the following identity is introduced

2Ln )y @+1)-p ™+ amn n,-ny p WP =2umpP P+
p ’
= E+HHFDPPHP A - (nm ) (n—m+1)P—1 p it (B-22)

Substituting the above relation into equation (B-21), we obtain

W+l e
W+1) kd,,

- P, *(cosb hg) = (V—l)(V +u+1HP I (cos6,,) P‘,‘(”“)(cosﬂpq )
= (n+m)(n-m+1)P; " (cos6,,, )P, #** (cosh,, )] (B-23)

For higher order expansion of the Hankel function, equation (B-18) becomes

PAl [ 21mP [ (cos6),, )

Al (dyg g s0pq) = (1M1

. _
hiP = =) e’ T e =L ppan (B-24)
kdpq depq

With equation (B-24), the final asymptotic form of the scalar addition theorem

coefficient may be written as

mn ‘n—y~]1 ejkdpq J{m—p),
O (g Bpq 0pg ) = I 12 +1) £ 100
Pq

\PaP H U {{n(a+D+v(v+1)2um 1P2PH
2kd,,

+ =) HADP P P () (n—m + )P PR ] (B-25)
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APPENDIX C

TRANSLATION ADDITION ALONG THE Z-AXIS

For translation along the z-axis, the coefficient {x{[:," vanishes for all values of |

except for pl=m. Thus equations (B-4) and (B-8) become

0mdy )= (1) U QuAD TP a(mon—m v p Y RSP (k) 1 <d,, €1
p'

oA, )= (D™ QuAD TSP a(monm v p ) P kd,y) 1 2d,, (C-2)
pr

While in the case of the vector translation addition theorem along the z-axis, we have

Miarg 84.00) = T IATS (dyg) M) 8,.0,) + B (Ao )N X1, 8,.0,) 1 (C3)
v=]

Npalr3:9q:09) = 3 ARG o) N )1y 8,10, + B (o) M05.8,,0,01 (C-4)
v=1

where A,',,";‘(dpq) and B,fw‘"(dpq) are the translation coefficients for a separation distance

dpg along the z-axis given as

2v+1

A )= (7 7 S E;j“" [#(r+1+v (v+1)-p " "+1)]
a(mn,mypYhPkd,,) r<d, (C-5)
AR )= 1 7 S B 57 In (e 641 4]
ca(mnmy p)jdyy) 7 2d,, (C-6)
and
Brii(dpg) == i "(’ﬁ”l") CEA A (&)

The asymptotic forms of the scalar and vector additions theorems are

. 1 ejkd”
o, ) = j L @V 1) S— B8, 080 (C-8)
deq
and
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2v+1 elkd”

i —_pmn =~ jn-v-l
AlNdpg)=-Bi(dpg )= J v(v+1) kdy,

S [V +1) 8y 1 +n(n+1) 8, 1]

(C-9)
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APPENDIX D

ELEMENTS OF THE MATRICES Az, Ajy. Py, 0y, [v,1,[u, 1, [A77],[BP4]

Elements of the scattered field coefficients column matrices AS; and EﬁM are

written as
Az (Lm) |
pE = ©-1)
| 45nm),
A8 (1m) |
=] ©-2)
A3

For p=1,2,..,N. The eclements of the incident field expansion coefficients column

matrices I?p and (_2; are given in the form

o

2 ©-3)
P, (nm)
[0, (1m)]

o= - (D-4)
0, (n.m) |

Elements of the diagonal submatrices [v,] and [u, ] are written in the following form



v1(0,) 0 |
Vpl = R .

| 0 Va(Pp)

[04(p,) 0o |
wi=| o T

i 0 un('Pp)J

D-5)

(D-6)

Elements of the submatrices resulting from the translation addition theorem

coefficients for the vector wave functions are

A7 (dyg) . A (d,) ]

[AP] = I S
| A7 ) ) Amdyy)
81 (d,) : B (d,)]

Bry= | 3 . p*q
| B dyy) '. B ) |

(D-7)

(D-8)
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