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Progressive Image Transmission Abstract 

This thesis presents the theoretical and experimental development of progressive 

image transmission techniques irrvolving hcta ls  and wavelets, with emphasis on progres- 

sive image cornplexity measures to evaluate and guide the image decomposition. A new 

and novel progressive image transmission technique is presented where textures are syn- 

thesized to recreate an image- The textures are synthesized by generating fiactal surfaces 

such that they interpolate control points, resulting in a higher level representation of an 

image. From this work, it was conjectured that fractal and rnultifractal complexity mea- 

sures cm serve as quantitative quality measures, since these dimensions charactenze 

object complexity. The h e w o r k  and expenmentation for a complexity measure is 

developed based on the Rényi generalized entropy, the Rényi dimension spectrum, and the 

Mandelbrot s p e c t m -  This fiamework is extended to the newly introduced relative Rényi 

dimension spectrum, which forrns a new class of measures referred to as relative multi- 

fiactal dimensions. Experimental results show that these muItifracta1 dimensions, and in 

particdar the relative Rényi dimension spectrum, has properties consistent with an image 

quality measure and correlate well with psychovisual charactenstics- It is shown that the 

relative Rényi dimension spectnim is more resilient to calculation errors as compared to 

the other image quality measures. These image complexity measures are used to analyze 

and identiq of regions of complexity disparity in an image for wavelet based progressive 

image transmission. Finally, the theoretical fr-amework is deveioped to extend the idea of 

additive information cost fûnctions in wavelet packet best basis searches such that the 

Rényi generalized entropy can serve as an entropy based information cost function- 
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1 .  Problem Definition 

Transmission and manipulation of large images such as aerial or satellite images of 

city streets and natural resources proves to be a difficult and time consuming problem- 

These images are often used by city planners, telephone companies, hydro companies, and 

natural resource institutions, and therefore require high resolution for project planning. 

One application for high resoiution images includes planning tasks such as deciding where 

to place new sewer pipelines or telecommunication Iines. Another application is in ana- 

Iyzing satellite images of farm land to determine the best application pattern of pesticides, 

herbicides, and nutrient supplements. Other applications include astronomie image data 

warehousing, medical image database transmission, and photographie cartography. 

Unfortunately, images of the required resolution are often large, such as the exam- 

ple aerial rural image in Fig. 1.1 jJGI951 which is 25 megabytes in size. The sheer size 

and high resolution required for images of this class makes storage, transmission, and 

manipulation of these images prohibitive. To compound these problems there may be 

hundreds or thousands of these images in a database. This size and quantity makes perusal 

through a large database of these images and focusing only on images of interest even 

more difficult. 
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Fig. 1.1, Example high resoIution image of a rural area 
(8-bit greyscale 5000x5000 pixels) &G195]- 

These problems are addressed through a number of approaches. The first approach 

is to have every user maintain their own copy of the image database. This way the user 

does not have to worry about transmission of the images during database perusal. The 

user can download the images at of-peak hours- This approach requires that the user has 

enough storage space for the database, which is often an unredistic assurnption, particu- 

larly for large sets of hi& resolution images. Also, there may not be sufficient off-peak 

hours for this download to occur. Additionally, the notion of having to synchronize and 

maintain multiple, duplicate image databases for each user is unappealing since up-to-date 

images may be desircd at al1 tirnes from a central source image database. 
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A second approach is to transmit the image at the request of the user. This is a 

more dynamic approach where little data is stored at the user's end. From a storage and 

usage viewpoint, this is the preferred method. Unfominately, the large size of the images 

requires a lot of bandwidth and a lot of t h e  to transmit the image as the user sits and 

waits. With the exception of image transmission tirne, this is the preferred method for 

most of the mentioned applications. 

Proper ordering and control of the flow of the transmitted data allows for fiirther 

improvements which make the second approach using on-demand image transmission 

more appealing. First of all, irnage compression techniques can help reduce the amount of 

actual data that must be transmitted from source to destination. in addition, if image corn- 

pression is done in a manner where increasing levels of image detail are transmitted and 

then reconstmcted, then important features within the reconstructed image can be recog- 

nized even before al1 of the Iine image details have been transmitted. At the early stages of 

image transmission and reconstruction, if it is noticed that the image is not desired then 

the transmission of the image can be terminated early, and other images in the database 

can be then downloaded for inspection. This extra control over the image transmission is 

a usefûl feature to help reduce total transmission time and improve usability of any such 

large database of high resolution images. 

Progressive image transmission is therefore an important aspect of the image trans- 

mission rnethodologies sought in this thesis. This form of image transmission allows for 

increasing levels of detail to be transmitted at the request of the user and c m  allow for psy- 

chovisual~y relevant image features to be transrnitted first. 
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1.2 Objectives and Goals 

The purpose of this thesis is to research and develop methodologies for the effi- 

cient transmission of digital images, with particular interest in the progressive transmis- 

sion of the image information and the subsequent evaluation of the image reconstruction 

quality. The primary research focus and goal of this thesis is fourfold, 

1. How an image can be decomposed into psychovisually relevant features. 

2. How to select and order these image features for transmission over narrow- 

band channels. 

3. How to reconstmct the image at the receiving end as the data and image 

information is received. 

4. How to measure the quality of the resulting reconstmcted image and image 

transmission process. 

As will be evidenced throughout this thesis, these four points are not mutually exclusive, 

and should be considered as a whole, as we l  as intertwuied and interdependent, when 

doing research and development for the efficient transmission of digital images. 

To address these goals, this thesis focuses on wavelet, wavelet packet, and fractal 

techniques as the primary analysis and decomposition tools for the image compression 

and progressive image transmission. In addition to the actual image compression and pro- 

gressive image transmission, these tools will be used in the development of new image 

quality measures to assist in the selection of the relevant image features, These measures 

will help guide the selection of parameters for the progressive image transmission. This is 
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done with the goal of irnproving the image reconstruction quality at the earliest stages of  

the transmission. Also, these measures wii1 be used to evaluate the progressive image 

reconstructions, from the start of the reconstruction to the end, to determine the change in 

image quality throughout the progressive transmission. 

1.3 Organization of this Thesis 

This thesis consists of eight chapters. Chapter 1 states the purpose for the thesis, 

discusses the major problems to be addressed by the thesis, and provides some motivation 

for the thesis. 

Chapter 2 provides background information on image compression and progres- 

sive image transmission. This background is from a general point of view without focus 

on specific coding techniques. A brief description of current progressive image transmis- 

sion techniques is also given in this chapter. 

in Chapter 3 ,  a background on hctals,  rnultifiactals, and fiactionai Brownian 

motion is given. This background is later used to deveIop an image compression and pro- 

gressive image transmission scheme using fiactal surface segmentation and interpolation 

PaKi961, PaKï971, PaKi98aI. In addition, this background serves as the basis for 

developing image complexity measures to help in guiding the selection of parameters for 

image compression and progressive image transmission techniques pâKi98b], 

paKi99a], [DaKi99b], PaKiOO]. 

Chapter4 provides background on wavelets and wavelet packets to be used in 

some of the progressive image û-ansmission schemes deveioped- Experirnents in later 
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chapters use wavelet based progressive image transmission schemes as the base scheme 

for the evaluation of the developed image complexity measures. 

Chapter 5 introduces a new method for image compression and progressive image 

transmission using fracta1 surface segmentation and interpolation PaKi961, PaKi971, 

PaKi98aJ. This technique is developed using N o  dimensional fractional Brownian 

motion to synthesize textures that are used to recreate the image. 

Chapter 6 introduces new methods for measuring the quality of image reconstruc- 

tions based on the Rényi generalized entropy paKi99al and the Rényi dimension spec- 

trum measures [DaKiSgb] as well as the Mandelbrot spectnim (paKi98b], PaKi99a1, 

PaKi99bl- This measuring of quality is done through the measurement of the complexity 

characteristics of the image and cornparhg to the original. A new class of multifractal 

dimensions is also presented which will be referred to as relative multifiactal dimension 

measures. With this new class of relative multifiactals, a new measure is presented which 

will be referred to as the relative Rényi dimension spectnim. These measures are used to 

determine the quality of progressive image transmissions and to judge the quality of the 

image reconstmctions through signal complexiw differences. The development of these 

rneaçures results from observations made with the h c t a l  surface segmentation and inter- 

polation methods presented in Chapter 5. With these measures, better selection of param- 

eters for the various progressive image transmission techniques can be done to improve 

the overall transmission and reconstruction of the images, especially at the earliest stages 

of the transmission. These results are compared with mean opinion scores to establish 

psychovisual correlations P a K i O O ] .  
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Chapter 7 develops progressive image transmission techniques using wavelets and 

wavelet packets. A pivota1 portion of Chapter 7 is not only how wavelets and wavelet 

packets can be used for progressive image transmission, but, also in how the selection of 

wavelet coefficients and wavelet packet bases can be done using the developed multifi-ac- 

ta1 measures from Chapter 6 .  This selection of wavelet coefficients and wavelet packet 

bases is performed to irnprove the psychovisuai representation of the image at the earliest 

stages of the transmission. 

Finally, Chapter 8 gives concluding remarks about the progressive image transmis- 

sion and image complexity measure research, with some recornmendations for future 

research- 

Please note that due to the size of this dissertation, a separate technical report will 

be released giving the source code used in the research described in the rest of this disser- 

tation pans0  I l .  
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This chapter gives an overview of a nurnber of different theoretical and practical 

concepts needed for the rest of this thesis. The first issue discussed is general image corn- 

pression concepts as well as some of the elementary ideas behind progressive image tram- 

mission. This will give a basis for the goal of the thesis in general terms. 

2.1 Image Compression 

This section gives a brief description of some of the concepts behind image corn- 

pression that are needed as a background for this thesis. This material includes a brief 

introduction to digital image representation, how a general image compression scheme 

works, and how limitations in the hurnan psychovisual system allow for improved image 

compression schemes. Taking advantage of these limitations can reduce bit rates even fur- 

ther than standard data compression techniques would allow. 

2.1.1 Digital Image Representation in Computers 

To start this section on image compression, an outline of digital image representa- 

tion is usefiil to get an idea of what class and scope of images will be dealt with in this the- 

sis. There are two basic methods for representing a digitaI image. The first and by far the 

rnost comrnon method is to represent the image as a rectangular array of small picture de-  

ments known as pixels. These pixels Vary in light intensity and in colour depending on the 
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nature of the image being represented- For example, computer monitors and television 

sets display images in this fashion- The second method of representing an image is 

through vector graphics/object-based representations. With this representation an image is 

broken down into a set of objects such as, but not Iimited to, points, lines, planes, squares, 

circles, and spheres. The position and colour/texture of these objects are stored, and the 

proper placement of these objects within a scene recreates the image. This technique is 

used most often in cornputer aided design (CAD), virtual reaiity, or computer generated 

graphies. This thesis focuses on natural images, such as the aerial image fiom Fig, 1.1, so 

the fist image representation method will be used, where the image is digitized into an 

array of pixels. This choice is made because of the curent difficulty of performing accu- 

rate and meaningful object segmentation as is necessary to make the vector graphicd 

object-based approach usefiil on arbitrary images, 

When dealing with array-based image representations, some important questions 

behind the image representation are "What is the pixel depth/dynamic range of the 

image?" and "What type of greyscale or colour pixel representation does the image use?". 

Ln other words, these questions ask how a pixel is represented, The following discusses 

general pixel representation in an uncompressed format. Note that these tincompressed 

representations are important to understand since it is this representation that acts as the 

yardstick in this thesis when deterrnining what the compression rate or compression ratio 

is of a compressed version of the image- 

The fmt and simplest pixel representation cornes fiom a bitmap representation 

used for monochrome images. Monochrome images, or bi-level images, contain two 
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shade possibilities for each pixel. This is usual?y the colours black and white but may also 

be any other two colours used to represent the foreground and background colour of an 

image. A monochrome image requires only 1 bitperpkel (bpp) to represent the black or 

white since the bit can be either O or 1. Monochrome images therefore have a pixel depth 

or dynamic range of 1 since each pixel requires only 1 bit. These 1 bit pixels are normaliy 

strung together in horizontal scan lines that span verticaily across the image to form the 

bitmap representation of the image. 

Greyscale images are an extension to monochrome images. A greyscale image can 

consist of pixels that are black, white, and a number of shades of grey in between. The 

number of bits used for each pixel determines the number of shades of grey possible in an 

image. A fairly comrnon pixel depth is 8, which allows for a total of 28 = 256 different 

shades of grey. This bit depth is ofien used for images to be viewed by a human observer 

sincejrlst noticeable d~rerence (JND) experiments for light intensity differences, A I / I ,  in 

human vision gives a Weber's fraction (Ernst Weber, De taal: "Concerning Touch" in 

1834) of roughly 

across rnost light intensity ranges [BuGe90]. Given an intensity range of 100-160 millil- 

amberts for the average hurnan eye at different brightness adaption Ievels [GoWo92], this 

gives a total of 

log (intensity range) - 
# graylevels = - 1°g(WQ 160]) 3071 (2.2) 

log ( 1 + Weber's fraction) log( 1 + 1 /GO) 
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discernible light intensities which is just over 28 = 256 shades of intensity. Of course, 

this is an experimental maximum according to specific controlled experirnents using few 

intensities at one tirne. In practice, the number of discemible shades of grey in a pixel 

image is far less. For most people, only 64- 128 shades of grey are distinguishable wiîh the 

limited light intensity range of the average computer monitor. This range is important in 

irnage compression research since this means that for images viewed by human observers, 

the primary target of images in this thesis, reductions are often possible in the encoding of 

8-bit greyscale images without sacrificing irnage quality from a psychovisual perspective. 

Of course, if these images are not solely for viewing or perhaps will be used for scientific 

calculations, then more bits may be required per pixel. For example, many forms of med- 

ical images require 12 bits or more for acceptable pixel representation, and other forms of 

images, such as astronomical images, may require as great a pixel depth as possible with 

the capture device used. 

Colour images fa11 outside of the current scope of this thesis so this is sufficient 

background on image representation, Even though colour irnage compression is not con- 

sidered in this thesis, it should be understood that the majority of research done in grey- 

scale image compression can be extended to colour images. This is typically done by 

applying the image compression algorithrns to each component in the colour model. For 

instance, applying a greyscale image compression algorithm to each of the Hue, Satura- 

tion, Intensity (HSI) components in the HSI colou model since HSI fonns a faùly good 

decomposition of coiour light components from a psychovisual standpoint, 
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2.1.2 Image Compression/Reconstruction 

Image compression refers to the reduction in the number of bits required to repre- 

sent an image compared to the raw uncompressed representation as discussed in 

Sec. 2.1.1. In generd, image compression can be thought of as the processes illustrated in 

Fig. 2.1, 

Input 
Image 

Decomposition 

Lossless Data Stream 
Entropy 
Encoder 

Fig. 2.1. General irnage compression data flow. 

As Fig. 2.2 illustrates for image compression, an input image is taken and decom- 

posed in some manner. This image decomposition is typically some reorder of  the pixel 

information andor some mathematical transformation of the pixel information into 

another domain that allows for a more efficient representation. This decomposition is gen- 

erally perfarxned with the goal of decorrelating local and global pixel information depen- 

dencies to improve the compression potential. In current image compression techniques, 

this decornposition can corne in many forms, with the most basic form performing no 

decorrelation at al1 and other techniques doing difference or predictive coding. The 

decomposition can a1so take the f o m  of transform based coding and subband coding 

using Fourier analysis, the discrete cosine transform [JPEG99], and the wavelet transform. 

Some decomposition techniques are based on neural network techniques such as vector 
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quantkation [Gray84], [GeGr92], and progressive extensions CWaGo891, learned vector 

quantization [Koho90], self-organizing feature maps L?Coho89], Koho901, and some of 

our research group's implernentations of  these techniques PeLK931, PaKC951. Other 

decomposition techniques use fï-actals, such as iterated fünction systems Pam881, 

[JacqgO], [WoJa99]. Of course, there are many other methods and techniques that have 

been used with varying degrees of success for the image decornposition, but this presents 

some of the key techniques in use and being researched. 

AAer the image decomposition step, the data representing this decomposition is 

then taken and lossless entropy encoding is done to remove redundancy in the symbol 

stream. If the decomposition of the image results in a completely decorrelated symbol set, 

then lossless 1st order entropy encoding can be performed with redundancy removed as 

dictated by the Shannon entropy [Shan48a], [Shan48b] minimum. If correlations within 

the symbol set still exist, then higher order statistics may be needed to remove high levels 

of redundancy in the data symbol stream. Lossless entropy encoding can include tech- 

niques such as H u f i a n  coding @3uff52], dictionary methods such as LZ77 [ZiLe77], 

LZ78 [ZiLe78], and LZW meIc84], and other techniques such as arithrnetic coding 

wiNC87]. The resulhg data Stream constitutes the final compressed version of the 

image. 
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Reconstructed 
Image 

Data Stream 
* o .  I l i l  

1 Decoder 1 

Fig. 2.2. General image reconstruction data flow. 

The image reconstruction process is the reverse of the image compression process, 

as illustrated in Fig. 2.2. The compressed data stream is passed through the lossless 

entropy decoder which exactly rebuilds what the lossless entropy encoder removed in the 

compression phase. Reconstruction of  the image through the reverse of the decomposition 

process then completes the image reconstruction. It is important to note that the inverse of 

the image decomposition process, depending on the method used, may not necessarily 

reconstmct an exact duplicate of the original image, This issue of lossy and lossless com- 

pression is discussed M e r  in Sec. 2- 1.3. 

Looking at the entire image compression/reconstniction process, the prirnary ques- 

tion that must be answered is how to decompose the image to decorrelate the image infor- 

mation. This is the question that this thesis looks at with two additional objectives; how 

the most relevant psychovisual features c m  be extracted £ k t  fkom an image, and how 

these irnage feahires can be represented for the progressive transmissions and reconstmc- 

tion of the image. The lossless entropy encoder is also an integral part of the image com- 

pression process. It completes the compression process by removing any additional data 

redundancy lefl by the image decomposition process. While work in this thesis could be 
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extended to investigate the effectiveness o f  different Iossless entropy coders, only adaptive 

arithrnetic coding W C 8 7 1  is used since it still rernains one of the better Iossless coding 

techniques in terms of compression rate. 

2.13 Lossy Versus Lossless Compression 

Data compression requires that the compressed representation of  the data contains 

sufficient information to fully reconstruct the data. This compression is done by the 

removal of data redundancy from the data set with bounds given by information theory 

and Shannon entropy [Shan48a], [Shan48b]. This concept is h o w n  as Zossless data com- 

pression. 

While perfect data reconstruction is a requirement for pure data, source code, 

machine code, etc., oaen the h a 1  use of an image is for it to be viewed by a human 

observer. Keeping this use in mind, when image compression is performed, in general, it 

should be targeted for its intended final user. When the final user of an image is a human 

observer, an entirely new approach to irnage compression beyond data redundancy 

removal presents itself. This approach permits the removal of psychovisual redrrndancy. 

That is, it permits the removal of data from the image that does not add to the interpreta- 

tion of the image by a hurnan observer. In the case of images, the signal representation 

must be capable of recoostmcting the psychovisual information contained in an image and 

not necessarily the exact bits from the original image. 

This approach t o  irnage compression is known as lmsy data compression since 

some of the original data rnay not be recoverable from the compressed representation. 
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Lossy data compression is acceptable as long as a human observer cannot distinguish 

between the original and reconstructed signals [JaJS93], in this case images. This removal 

of redundancy is possible for images since there are lunits to a human's ability to distin- 

guish between image differences (for instance, the limit in distinguishable greylevels as 

discussed in Sec. 2.1.1). Lossy data compression may also allow for a degradation in per- 

ceived reconstruction quality. This degradation is acceptable in image compression if the 

perceived difference is small and the image is still acceptable for its intended application. 

Therefore, the main idea behind a good lossy image compression scheme is the removal of 

redundant Nifornation from the perspective of an observer in addition to redundant data 

through information theoretic techniques. 

2.1.4 Measuring Compression Rate 

When looking at the performance of specific image compression techniques, the 

compression rate is generally used and is typicaily quoted in the number of bits per pixel 

required to represent the image. This measure c m  be expressed as follows 

# of bits in compressed form 
~ P P  = (width) - (height) 

While bpp is a usefbl measure of compression performance, it is sometimes usefùl to fac- 

tor out the pixel depth and quote the compression performance as a ratio of the original 

image size or as a percentage of the original size as follows 

compression % = ~ P P  
bit depth of original image 

x 100% 

This then gives the compression ratio of the compressed image versus the raw uncom- 

pressed format of the onginal image as discussed in Sec. 2.1.1. It should be noted that 
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with Eq. 2.4 it is possible to have a compression scheme that for certain images results in 

the expansion of the bit Stream as opposed to compression- This growth wouId result in a 

compression percentage greater than 100%. 

2.1.5 Objective Fidelity Criteria of Images 

Ln evaluating image reconstmctions, perceptual comparisons are required, but a 

quantitative measure of the reconstmction is also useful. Qumtitative measures can offer 

a method of  evaluating images and their reconstructions. With these measures, quick 

cornparisons can be made and quantitative limits established for the image reconstruc- 

tions. 

One means of evaluating the data lost resulting from a lossy compression is by 

deterrnining the error between the original image and the reconstructed image. The error 

between the original image forig(x, y )  and the reconsû-ucted image f r ( x ,  y) can be 

expressed as follows 

f erro,(x. Y )  = f o r i g ( ~ 9  Y )  - f rf Y )  (2.5) 

This gives the error within the reconstructed image for any specific value of x and y. 

For a measure of the overall error between the images, the mean squared error 

(MSE) can be used. The MSE is expressed as follows 



Progressive image Transmission Ch. 2: Background on Progressive Image Transmission 

=s metrïc is not used alone very often in image compression Iiterature since researchers 

are generally more interested in what the distortion in the reconstructed image is com- 

pared to the original image. For this, the signal-to-noise ratio (SNR) c m  be used which 

can be expressed as follov~s 

or in decibels (dB) 

While the SNR is a somewhat more comrnon measure, it is usefüi only for consid- 

ering how the noise compares to the signal level of a specific signal, or for Our purposes 

the level of distortion in a reconstructed image venus the average squared energy in the 

reconstructed image. Hence, comparison across different distorted or lossy compressed 

images is difficult since the respective original images likely have different average 

squared energies. To ùnprove the comparison across different images, the peak signal-to- 

noise ratio (PSNR) is preferred and can be expressed as follows 

M W 0 9  f,,k) 
= C f 

PSNR = 
MSE(fo,*fr) qx,y)(fr(x?~)-forig(x9~))2 
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where fPeak(x, y) is an image where each pixel has the maximum representation pixel 

value. The PSNR can similarly be expressed in decibels as 

If the images being anaiyzed have a dynamic range of 8 bits, which is the case 

throughout this thesis, then Eq. 2-10 can be reduced to 

PSNR, (àB) = IOlog,, P I 2  
WX, Y )  (f,-(s Y )  - f , , i , ( x ¶ ~ ) ) ~  

While there is no concrete set of PSNR numbers that 

(2.1 1) 

correlate to psychovisual 

quality, there are rough rules of thumb that researchers have noticed across a wide range of 

natural looking images compressed with a wide range of lossy image compression 

schemes- These rough rules of thumb c m  be roughly outlined as in Table 2-1. 

Table 2.1 Rough rules of thumb of image quality for a corresponding PSNR. 

Rough nile of thumb for image quality 

< 25 dB 

25 dB 

28 dB 

poor image quality, image likely unusabIe 

image is recognizable, but quality is perceptually inferior 

fair perceptual image quality, some noticeable artifacts but 
generally quite acceptable 

30 dB 
- - - - 

perccptually good image quality, few noticeable image artifacts 

33 dB 

> 35 dB 

broadcast quality images, very good with nearly no perceptual 
differences with the original image 

image virtually indistinguishable fiom the original 
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2.2 Progressive Image Transmission 

This section gives an overview of progressive image transmission and outlines 

some of the current progressive image transmission technology and implementations 

available, 

2.2.1 Image Transmission and Progressive Image Transmission Overview 

This section describes some of the ideas behind image transmission, progressive 

image transmission, and progressive transmission as related to the goals of this thesis- 

Image transmission comes in many forms and flaveurs. The most basic forrn of image 

transmission is to transmit the entire image file frorn one machine to another and after al1 

of the image file has been received, display the image. This forrn of image transmission is 

Iïmiting since it is often beneficial to the user if they can get a sense of the image content 

while the image is being transferred instead of waiting until a11 of the data has been 

received. There are a number of reasons for having image features appear earlier: 

the user may wish to teminate transmission of the image if it is not 

of interest- 

image details may not be important to the user but basic image 

structure might be of interest. 

the user may wish to quickly browse through the images- 

The last point can be solved through the use of thumbnails of the images (i.e. small 

versions of the image). Unfortunately, while thumbnails aiiow for quick flipping through 
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images they often do not contain sufficient detail for the user- A good progressive image 

transmission scheme would allow the user to control that amount of detail they require. 

(a) 16,3 84 bytes (b) 65,536 bytes (c) 196,608 bytes 

Fig. 2.3. Progressive transmission of horizontal scan lines of the image lena: 
(a) after 16,384 bytes, (b) after 65,536 bytes, and (c) afier 196,608 bytes. 

One of the simplest forrns of progressive image transmission, as illustrated in the 

sarnple progressive image transmission in Fig, 2.3, works by sequentially transmitting 

horizontal scan lines of the image starting from the top of the image. Al1 details at each of 

the horizontal scan Iines are transmitted from left to right and the whole image is transmit- 

ted in one pass. This is one of the simplest methods of transmitting (or storing) an image 

but it has the disadvantage that the user must wait for the entire transfer to occur to get an 

idea of what is at the bottom portion of the image. It should be noted that many people do 

not consider this a progressive image transmission technique. ln this thesis this will still 

be classified as progressive image transmission since the user need not wait for the entire 

image to be transmitted before they can view a portion of the image information. This 

form of image transmission is typical of today's web browsers. 
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(a) 16,384 bytes (b) 65,536 bytes (c) 196,608 bytes 

Fig, 2.4. Progressive transmission of every second scan line of the irnage lena: 
(a) after 16,384 bytes, (b) after 65,536 bytes, and (c)  after 196,608 bytes- 

An extension to the above progressive image transmission technique is to transmit 

every second horizontal scan line of the irnage in one pass and then to go back and trans- 

mit the rernaining scan lines. An example of this is shown in Fig. 2.4. This simple change 

halves the time in which some of the details at the bottom of the image begin to appear. 

Each horizonta1 scan Iine is still transmitted in full detail but a sense of the entire image is 

obtained quicker- This is a better technique for progressive image transmission and begins 

to show some of the many possibilities that can be used. This technique is still naive since 

the structure of the image content itself is not considered in this type of approach. Better 

techniques consider the content of the image and do not just bIindly transmit the data as is 

done with this approach. 
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(a) 16,384 bytes (b) 65,536 bytes (c) 196,608 bytes 

Fig. 2.5. Progressive transmission of every second scan line (fXed) of the image lena: 
(a) afier 16,384 bytes, (b) afler 65,536 bytes, and (c) after 196,608 bytes. 

It should be noticed that the missing lines in Fig. 2.4 c m  be annoying from a per- 

ceptual point of view. By using the sarne algorithm but duplicating the scan lines to the 

ernpty scan lines below, Fig. 2.5 is produced. While there is no change in the actual data 

transmitted, it is clear that this change corrects the perceptual problern of Fig. 2.4 having 

scan lines gaps every second scan line. 

(a) 16,384 bytes (b) 65,536 bytes (c) 196,608 bytes 

Fig. 2.6. Progressive transmission of bit planes starting fkom most significant for the 
image lena: (a) after 16,384 bytes, (b) after 65,536 bytes, and (c) after 196,608 bytes. 
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Another technique for progressive image transmission is to transmit the pixel bit 

layers one at a t h e ,  starting with the Iayer containhg the most si'rjicant bit (MSB) of 

each pixel, and ending with the layer with the Ieast significant bit (LSB). A sarnple pro- 

gressive transmission using this technique is shown in Fig. 2.6. Conceptually this is an 

improvement over the previously discussed techniques since the image detail is ordered 

nicely according to the pixel intensity since much of the main energy components in an 

image can be extracted fkom the MSB first. Unfortunately, from a psychovisuai viewpoint 

the results remain unfavourable at the earfy stages of the transmission since the portions of 

the image that are visible Iack the details and greyscale intensity Ievels fiom the originaI 

image. 

(a) 16,384 bytes (b) 65,536 bytes (c) 196,608 bytes 

Fig. 2.7. Progressive transmission of quad-tree partitioned pixel averages for the image 
lena: (a) after 16,384 bytes, (b) after 65,536 bytes, and (c) afier 196,608 bytes. 

Another simple, yet less naive, technique is to do a quad-tree partitionhg of the 

original image into four equal sized squares. The average pixel intensity of each of these 

squares is then calculated and these averages transrnitted. The receiving machine then 

begins reconstruction of the image using the same square size and the transrnitted pixel 
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intensity averages. Once this is done, each ofthe squares is fùrther partitioned and the 

change in average pixel intensity from the previous average intensity for that square is 

transrnitted, This process is repeated until the entire image has been transrnitted. An 

exarnple progressive image transmission using this technique is shown in Fig. 2.7. Con- 

ceptually, this technique is an improvernent over the previous described techniques since 

some of the psychovisual content of the image (in terms of average greyscale intensity) is 

being considered. Unfortunately, this technique requires extra computations compared to 

the previous techniques in order to calculate the average greyscale values of groups of p i -  

els. Techniques such as this would be what most people classi@ as a progressive image 

transmission technique. 

Some other techniques require better knowledge or interpretation of the image 

content. For instance, one technique requires knowing what types of objects are in the 

image. This may ùiclude recognizing that there is a person in the image or perhaps a 

beachball, This information is transmitted along with their positions in the image. The 

next stage in the progressive image transmission is to flnd details about these objects and 

transmit these details for a fiirther refined image reconstruction. For instance, the person 

might be wearing a green turtleneck and the beachball might have eight stnps in alternat- 

ing red and white colour. As can be seen from this tcchnique this requires a very complete 

and possibly complicated representation of the image objects. Currently, this type of 

image representation for general images is unrealistic. This technique may become attrac- 

tive one day when these types of cornputer models are more prevalent. 
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The general idea behind progressive image transmission, therefore, is the proper 

ordering of psychovisual image details so that important global details of interest are 

transmitted first, while smail and minute details are transrnitted Iast. This raises the ques- 

tion as to what is important in an image and how to decide what details are transmitted 

first. This thesis tries to answer some of these questions in later chapters d d g  the inves- 

tigation into wavelet and hcta l  techniques for progressive image transmission. 

2.2.2 Current Progressive Image Transmission Implementations 

A number of progressive image transmission schemes exist that were developed by 

other research groups and companies. The following is a list of the more common or 

unique progressive image transmission schemes available: 

interlaced G E  

progressive JPEG 

progressive wavelets 

progressive fî-actal iterated function systems 

Interlaced GIF (graphies interchange format), a format developed by Cornpuserve 

[GIF87aJ[GIF90], is currently the most well known and used progressive image transmis- 

sion file format. This image compression technique is algonthmically simple, since it is 

based on linear predictive coding using a form of the LempeZ-Ziv- Welch (LZW) welc84] 

aIgorithm. The GIF image format has the following features: 

Iossless image compression only, 

works with bi-level images, 
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works with 8-bit greyscale images, 

works with 8-bit colour images, 

does not work with 24-bit colour images (there is some push for 

GE24 which also supports 24-bit colour images but littie support 

for this currently exists). 

Since GIF can do only lossless image compression, it does not take advantage of any psy- 

chovisual redundancy and therefore the compression rate is not as good as those methods 

that remove psychovisual redundancy. Also, the progressive nature of interlaced GIF does 

not use any of the image structure itseIf to form progressive steps. It only orders image 

pixels as a quadtree (similar to the partition into squares as discussed in the previous sec- 

tion) and then decodes the image fi-om this quadtree representation. 

Progressive JTEG is an extension of the JPEG still image compression standard 

[JPEG99], PeMi921, Wall9 I ]  which does lossy compression of bi-level, 8-bit greyscale 

and 24-bit colour images. The JPEG stilf image compression standard, described by the 

Joint Photogr-aphics Expert Grozrp, is based on the discrete cosine transform (DCT) over 

8 x 8 pixel blocks from the image. The progressive extension for JPEG reorders the DCT 

coefficients for transmission so that the most important coefficients fkom each 8 x 8 block 

in the image are transmitted first. This method attempts to remove psychovisual redun- 

dancy by giving preference to Iower Frequency image cornponents, which contain rough 

details, over higher frequency components, which contain fine details- Also, the lossy 

nature of JPEG through the rernoval of smaller coefficients from the DCT rneans that 

higher compression ratios are achieved through smal  degradations of image quality. This 

method is not currently as widely used as interlaced G E  for progressive transmission but 
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is quickly gaining acceptance as a standard rnethod for progressive image transmission. A 

newer version of JPEG known as JPEG2000 is currentiy under development that replaces 

the DCT with the wavelet transform of the image and does away with the idea of partition- 

ing the image into 8 x 8 blocks of pixels. 

Progressive wavelet image compression is the next logical step for image compres- 

sion standards. Wavelet image compression retains many of the characteristics of DCT 

based image compression techniques (such as JPEG) but with irnproved compression in 

many situations. This improvement results from the spatial and fkequency localization 

that wavelets enjoy whereas the DCT locakzes o d y  in the fkequency domain, as will be 

expanded upon in Chapter 4- Currently, Infinop's Lighming Strike wavelet image com- 

pression mfi991 which has been updated for progressive transmission is one of the better 

known progressive wavelet transmission implementations. Unfortunately, this is a com- 

mercial irnplementation with the standard not available publicly. A number of others have 

implernented progressive wavelet image transmission including Langi and Kinsner who 

have developed an experirnental progressive waveIet image compressor that this thesis 

extends. Other implementations, such as DjVu from AT&T [DjVu99], use foms of a pro- 

gressive wavelet transmission at their core, though DjVu is more a hybrid of a number of 

techniques. Other proposed standards include the upcoming JPEG2000 standard, ISO 

15444 Part 1, which plans to incorporate progressive wavelet image transmission. Further 

discussion on wavelet and progressive wavelet techniques wiIl be discussed in Chapter 4 

and Chapter 7. 
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ï h e  fi-actal encoder and viewer fiom Iterated Systerns, Inc. is another example of a 

progressive image transmission scheme [Tter99]. This method is a progressive image 

transmission scheme based on h c t a l  iterated functions qwterns (IFS) [Barn88], [Jacq90]. 

This technique relies on the transformation and contractive mapping of sections of the 

image to other sections of the image. This transformation constitutes a self-sirnilar map- 

ping and consequently generates a fiactal. The main problem with this technique is that 

no polynornial time algorithm is knotm that can fînd the contractive mapphg for generat- 

ing the image even though attempts at improving the complexity bave been tried LWa11931, 

While the decoding of an IFS compressed image can be done quickly, the actual encoding 

is an intractable problem, especially for large images. Some simple algorithms have been 

developed that can find contractive mappings of srnail images in a number of minutes, but 

these rnappings are far f?om optimal and the compression rates are not as good as the LIS 

technique suggests is possible. This technique still requires more research in order to h d  

the best contractive mappings for general images and therefore will not be a main focus 

for this thesis. 

2.3 Summary 

This chapter described some of the background image compression ideas needed 

for the rest of this thesis along with building a fiamework for progressive image transmis- 

sion. General image representation was discussed as well as how monochrome and grey- 

scale images are represented, A high level image compression and reconstruction mode1 

was outlùied with the absence of specific compression techniques, which will be discussed 

in the foIlowing chapters. The concept of progressive image transmission was touched 
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upon dong with many of the reasons and concems behind doing progressive image trans- 

mission. The next chapters delve into specifics of the techniques developed and used for 

this thesis, focusing on wavelet, wavelet packet, and hcta l  techniques. 
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This chapter presents the n e c e s s q  background behind fractds and multifiactaIs 

for this thesis. Of primary interest is the fractal and multifractal measure of textures and 

image feature complexity. These measurements are important since they provide a means 

of looking at the cornpiexity of  features withùl an image over a11 resolutions and character- 

ize these image features with fiactal and multifractal dimensions. This background pro- 

vides the setting for Chapter 5 where fkactals are used to synthesize images using fiactal 

surface segmentation and interpolation. The setting will also be set for Chapter 6 where 

multifractal image complexity measures are introduced based on some of the positive find- 

ings fiom the fractal surface segmentation and interpolation. Finally, Chapter 7 puts these 

rnultifiactal image cornplexity measures to use in the selection of waveIet coefficients and 

wavelet packet bases to improve progressive image transmission. 

3.1 Introduction to Fractals 

An introduction to the concepts behind hctals is in order before presenting the 

fiactal based progressive image transmission, as well as the multifractal based image corn- 

plexity measures. In its simplest form, a fiactal is a self-similar object, where its parts are 

similar to the whole and, correspondingly, the whole is similar to its parts. This character- 

istic means that a fiactal has similar, if not identical, structure and complexity at al1 scales 

or magnifications WandSZ]. 
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To illustrate the self-similar structure of hctals, two mathematically self-similar 

fractals are presented with the Koch c w e  Koch041 in Fig. 3 -1 and the Sierphski gasket 

[Sieri5] in Fig. 3.2. Each of these figures iiiustrate the development of their respective 

hc ta l s  beginning with an initiator and then repeatedly perfonning a copy/reduction pro- 

cess ad infinïturn to produce the self-sirnilar fractals. 

Initiator 

Generator 
Step 1 

Generator 
Step 3 

Koch curve 
Step 00 

length = 1 = 

length = 4 - = 
3 (4)' 

length = 16 - - = 
9 (4)' 

Fig, 3-1, Generation of the Koch curve fi-actal. 

The generation of the Koch curve [Koch041 as illustrated in Fig. 3-1 starts with a 

line as an initiator which is then reduced to I/3 of its size and copied 4 times in the pattern 

shown by the four lines in Step 1. This copy/reduction process is then repeated with the 

entire object in Step 1 where it is also reduced to 1/3 of its size and copied 4 times to pro- 
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duce the object in Step 2, This process is repeated an inh i te  number of times to produce 

the finai Koch curve h c t a l  at the bottom of Fig, 3.1. 

Initiator 

Step 3 

Step 1 Step 2 

Step 4 Step 5 

Fig. 3-2. Generation of the Sierpinski gasket fsactaI- 

The generation of the Sierpinski gasket illustrated in Fig. 3.2 shows a similar type 

of copy/reduction process, where a triangle as an initiator is reduced to 1 /4 of its size and 

then copied 3 tirnes in the pattern shown in Step 1. Step 2 of Fig- 3.2 is generated by tak- 

h g  the object in Step 1 (the three triangles), reducing its size b y  1 /4. and copying the 

resulting object 3 times to the positions as illustrated. This process is repeated an infinite 

nurnber of times, where the final Sierpinski gasket fractal is attained [SierlS]. Notice with 

the Koch curve and the Sierpinski gasket, and any other fiactal for that matter, that smaller 

portions of the h c t a l  object are replicas of the whole except for tbe  scaling. 
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Initiator 

Generator 
Step 1 

Generator 
Step 2 

Generator 
Step 3 

Koch curve 
Step = 

H E L L O  length = 1 = (4)" 

Iength = 4 - - = 
3 

length = 16 - - = 
9 

Iength = 64 - 

Cd 

length = (:) = = 

Fig. 3.3. Generation of the Koch curve fractal with "HELLO initiator- 

It should be noted that the generation of these two fractals is through the copy/ 

reduction process itself and does not rely on the initiator object at the beginning. This cm 

be illustrated by generating the Koch curve fiactal using the word "HELLO" as the initia- 

tor as shown in Fig. 3.3. With an infinite number of copy/reduction repetitions, the word 

"HELLO disappears to a single point and only the Koch cunre is lefi. This concept is 

important to realize since it shows that a fracta1 object is generated through a process, such 

as the copy/reduction process used for the Koch curve, as opposed to parameters of the 

initial object. This idea has ramifications that will be seen when performing h c t a l  sur- 

face segmentation and interpolation later in this chapter. 
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3.2 Fractal Dimensions 

This section presents background on fiactal dimensions foliowing the description 

given by Kinsner m s 9 4 a ] ,  w s 9 5 a l  to u n i 5  and classiS. fractai dimensions. Fractals 

are named as such because they are classïfied as having a morphological dimension, or 

structural dimension, that is generally non-integral, that is, they have a fractional dimen- 

sion. In sirnplest tems, this means that the complexity of £tactal objects is such that the 

usual description of one, two or three dimensions is not accurate enough to descnie these 

objects. The two objects presented in Sec. 3.1 are example fractals with fractal dimen- 

sions, as will be s h o w  later in this section, of approximately 1.26 19 and 1.5850 for the 

Koch curve and the Sierpinski gasket, respectively. Note that there are some special case 

objects where the dimension is actually integral, such as with space filling curves like the 

Hilbert curve ~ i l l 9 1 J .  The Hilbert curve has a fiactal dimension of 2 but it must be 

remembered that this c u v e  is constructed using one dimensional line segments. The corn- 

mon featurc behind al1 fractals therefore is that the complexity of the whole is greater than 

the initiating parts that form the object. 

To see how this rnorphological complexity manifests itself, consider again the 

Koch cuve  in Fig. 3.1. The length of the generated curve at successive steps in units of 

the original initiator is (4/3)'  , (4/3)2, (4/3)3, and so on. In fact, the length of the 

cuve can be generalized to (413)" at step n - Hence, if the generation of the curve con- 

tinues with infinite steps producing the Koch c m ,  then the length of the Koch curve 

must be (4/3)" = 00. At first glance this result with the Koch curve having infinite 

length may be a bit disturbing since the Koch cuve clearly has a starting point, a finishing 
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poùit, and a11 of the curve fits in a finite space. Another important characteristic of the 

Koch curve is that each of the line segments within the cuve  becomes infinitely short, or 

in other words each line segment shrinks to a point. With the way the Koch curve is con- 

structed, it is therefore composed entirely of corners and contains no line segments. From 

these realizations it is clear that the Koch curve is not of the same class of objects such as 

lines, circles, parabolas, and other simple curves. 

With some of the traditional rules of topology seemingly broken by the Koch 

curve, as well as other fiactal objects, some new way of atoning for these observations was 

sought Nand821, One way is to re-evaluate how objects are measured. 

1 unit 
s = r  

1/2 unit 
s = r / 2  - 114 unit 

s = r / 4  
C-i 

(a) 6 sticks (b) 12 sticks (c) 25 sticks 

Fig. 3.4. -Measuring the circumference of a circle with a measuring stick. 
(a) s = 1 unit with 6 sticks, 

(b) s = 112 unit with 12 sticks, and 
(c) s = 1/4 unit with 25 sticks. 

For instance, one method of measuring the circurnference of a circle is to take a 

measuring stick and go around the circle counting how many measuring sticks are 
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required, as illustrated in Fig- 3.4- As Fig. 3.4a illustrates, the radius, r ,  of the circle c m  

be taken and then used to approximate the circumference of the circle as 6 r .  It is known, 

of course, that the circumference is actually 2nr, so 6 r ,  while accurate, is not overly pre- 

cise. Better precision can be achieved by reducing the size of the measuring stick. 

Assuming the use of an integral number of rneasurïng sticks for measuring the circumfer- 

ence of the circle, Table 3.1 can be produced. 

Table 3.1 Measuring sticks needed for rneasuring 
the circumference of circle with radius r . 

Table 3.1 shows that as the size of the measuring stick is reduced, that the mea- 

sured circumference of the circle approaches 2n: = 6.283 1853 . More irnportantly frorn a 

Scale of measuring 
stick, s 

(in t e m s  of radius r ) 

r 

Integral number of measurïng 
sticks, N, , to approximate a 

circle 's circum ference 

6 

Total measured length 

6r 
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morphological viewpoint, it should be noticed that the number of measuring sticks 

required versus the scaie of the measuring sticks has the following relationship 

or in other terms 

This relation means that the measured length remains roughly constant as the size of the 

measuring stick is reduced since the number of measurïng sticks required increases corre- 

spondingly. 

1 unit 
s = r  

1/2 unit 
s = r / 2  

1/4 unit 
s = r / 4  

(a) 6 vels (b) 12 vels (c) 25 vels 

Fig. 3.5. Measuring the circumference of a circle with vels. 
(a) s = 1 unit with 6 vels, 

(b) s = 112 unit with 12 vels, and 
(c) s = 114 unit with 25 vels. 

To iilustrate this measuring process further, consider extending the measuring stick 

to a measuring hypersphere or, more generally, a volume element (vel) m s 9 4 a ]  that 



Progressive Image Transmission Ch- 3: FractaIs, Multifractals, and fBm 

extends in alI dimensional spaces. This same measuring process can be repeated for the 

circumference of the circle as illustrated in Fig. 3.5 by covering the circle with these vels 

over different measuring scales. The results obtained fiom these measurements are the 

sarne as those listed in Table 3.1. The advantage of using vels instead of a simple measur- 

ing stick is that now objects within any embedding dimension c m  be measured in this 

marner. 

(a) 9 vels (b) 36 vels (c) 144 vels 

Fig. 3.6. Measuring the area of a square plane with non-overlapping vels. 
(a) s = 1 unit with 9 vels, 

(b) s = 1/2 unit with 36 vels, and 
(c) s = f /4 unit with 144 vels. 

Take for example the square plane illustrated in Fig. 3.6. If vels are taken and used 

to cover and measure the area of a square plane as is illustrated in Fig. 3.6a, it is seen that 

roughly 9 non-overlapping vels are required. As the scale of the vels decreases, the num- 

ber of vels required to cover the square plane increases as listed in Table 3.2. 
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Table 3.2 Veis needed to cover the square plane. 

in analyzing the rate of &owth of the number of needed vels versus the scale of the 

vels, it is noticed that the following relationship is followed 

Scale of vel, s 

"s - (f)' 

Therefore the rate of growth of the nurnber of vels required to cover the square plane 

grows in correspondence to the square of how the vel size shrinks. To show that the mea- 

suring does not have to be done so carefully, consider Fig. 3.7 that uses overlapping vels to 

rneasure the planar square instead of non-overlapping vels as in Fig, 3-6. It can be seen 

Number of needed vels, N, Total measured area of the 
square plane 
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that the rate of growth of the number of vels N, stiii foUows the power-law, or exponen- 

tial, relationship from Eq. 3.3, 

(a) 18 vels (b) 70 vels (c) 280 veis 

Fig. 3.7. Measuring the area of a square plane with overlapping vels. 
(a) s = 1 unit with 18 vels, 

(b) s = 112 unit with 70 vels, and 
(c) s = 1/4 unit with 280 vels- 

The important observation to make from Eq. 3.1 and Eq. 3.3 is that in both cases 

the exponent used in the power-law relationship behveen N, and i/s is precisely what 

would be referred to as the dimension of the object being measured, or the morphological 

dimension. As demonstrated, the boundary of the circle in Fig. 3.5 has a morphological 

dimension of 1 and the planar area of the square in Fig. 3.6 has a morphological dimen- 

sion of 2. 

Using this method of rneasuring objects through vel coverings, the morphological 

dimension of an object can be generalized through the following power-law relationship 
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where Nsi is the number of vels used at the scale si. The exponent D in Eq. 3.5 is known 

as the critical exponent that stabilizes the change in Nsi with the change of ( 1 / s i )  . 

Removing the proportionality by introducing the constant k, the following equation can 

be expressed for Eq. 3 -5, 

Taking Eq. 3.6 at two different scales si and s j ,  and then dividing the two equations gives 

the following equation 

which can be simplified as follows 

Taking the log of both sides of Eq. 3.8 and solving for D gives 

Ki 
log- 

D = 
NS, 

From Eq. 3.9, as the scale becomes infmitely small, the ratios N s i / N s  J and s j /s i  will 

reduce to a constant such that the following relation can be stated, 
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The exponent D is referred to as the fractal dimension associated with the object, 

This dimension is also commonly referred to as the Hausdo@3esicovitch dimension, 

Dm, Wand851, m s 9 4 b I  which is defined as follows. 

Definition 3.1: Given Ns = inf(number of vels of scale s needed 

Hausdo@-Besicovitch dimension, LIHB, is d e h e d  as 

Dm = lim - 
s+- 1 - log- 

S 

to cover object), the 

Usïng this concept of the Hausdorff-Besicovitch dimension, consider the same vel 

measurement scheme applied to the Koch curve fi-om Fig. 3.1. Using the initiator in 

Fig. 3.1 as length r, Table 3.3 can be developed over a nurnber of scales S .  

Table 3.3 Vels needed to cover the Koch curve fractal. 
I I I 1 

Scale of vel, s Number of needed veIs, 
4 

Total measured length of 
~ o c h  curve 
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In the case of the Koch c w e ,  fiom Table 3.3, the following equation cm be wrïtten for 

Eq. 3.9 when s = r / 3  and s = r / 9 .  

Notice that the r cancels out in Eq. 3.12 and that this is equivalent to using the Hausdorff- 

Besicovitch equation which cm be solved as foilows for s = r / 3  . 

logNS- - 1.261 8595 Dm = I h  -- -- 
s-+- 1 log(3) log - 

S 

It follows then that the morphological dimension of the Koch curve is approxi- 

mately 1.26. This shows that the notion of integer dimensions needs to be expanded to 

fractional dimensions to characterize objects such as the Koch curve fractal. 

To complete this section, the Sierpinski gasket illustrated in Fig. 3.2 can dso  be 

measured with the vel covenng scheme with the results given in Table 3.4. 

Table 3.4 Vels needed to cover the Sierpinski gasket fractal. 

Scale of vel, s 
Nurnber of needed vels, 

N~ 
Total measured length of 

Sierpinski curve 
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From Table 3-4, Eq. 3-9 can be written for s = r / 2  and s = r / 4  as follows, 

Equivalentiy, the HausdorfFBesicovitch dimension is expressed as follows for the Sierpin- 

ski gasket. 

In surnrnary, this section has shown a rnethod for measuring objects, including 

fiactals, using vels. This measurement allows for the Hausdorff-Besicovitch dimension of 

the object to be detennined through a power-Iaw relationship between the size of the vel 

and the number of vels needed to cover the object. Most importantly for the rest of this 

thesis is that the dimension measured is not necessarily integral and that this dimension 

value can be used to describe the level of complexity within an object. Simple curves 

result in a morphologica1 dimension of 1, simple planes result in a morphological dimen- 

sion of 2, and more complex objects may have morphological dimensions that are not inte- 

gral. Note that besides the Hausdorff-Besicovitch dimension, there are other fiactal 

dimensions and other similar approaches to measuring the fractal dimension of an object- 

3.3 Multifractal Dimensions 

This section gives some of the needed initial background on multifiactals and mul- 

tifiactal dimension measures, following the descriptions of Kinsner m s 9 4 a ] ,  [Kins95a], 
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that are used later to develop image quality measures in the form of multifhctal complex- 

ity measures- Multifractal (or inhomogeneous hc t a l )  dimension measures are an exten- 

sion of the fiactd dimension measure described in Sec- 3.2 where these measures will be 

usefûl if there is more than one fi-actal dimension complexity within the measured object. 

As pointed out by Staniey and Meakin [StMe88], the majority of non-equilibrium, inho- 

mogeneous phenornena in physics and chemistry exhibit complexities that single fractal 

dimension measures cannot characterize. Multifractal dimension measures are better 

suited for characterizing these complexities, 

The following subsections lay down the prelirninaries and groundwork for the 

Rényi generalized entropy, which is the basis for the Rényi dimension s p e c t m  multifi-ac- 

ta1 measure described in the following subsection. The Mandelbrot spectrum, which is an 

alternative representation to the Rényi dimension spectrum of the rnultifractal nature of an 

object, is then described. 

3.3.1 Preliminaries 

Some preliminary defuü'tions and theorems are required for developing the multi- 

fkactal dimensions for the discrete case in this section. Some introductory concepts in 

probability and information theory are presented next. 

Let X be a discrete random variable with h i t e  alphabet x and probability mass 

fimction p(x)  = Pr{X = x } ,  Vx E x 
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Definition 3.2: Let X be a discrete random variable with probability distribution p(x)  . 

The mean or expected value of X is 

where E denotes expectation. 

Theorem 3.1: Let X be a discrete random variable with probability distribution p(x) . 

The mean or expected value of the random variable g(X) is 

Theorem 3.2: If a fiuiction f has a second derivative which is non-negative (positive) 

everywhere, then the fiinction is convex (strictly convex), O 

Theorem 3.3: (Jensen 's inequaliîy) If f is a convex b c t i o n  and X is a random variable, 

€Cf (ml 2 f (€[KI> (3.18) 

where E denotes expectation. Moreover, if f is strictly convex, then equality in Eq. 3.18 

implies that X = EX with probability 1, Le., X is a constant. O 

With these preliminary concepts in probability and information theory established, 

the next subsection introduces Shannon entropy, which is later generalized to the Rényi' 

generalized entropy. 
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33.2 Shannon Entropy 

The field of information theory owes most of its basis to Shannon's formulation of 

entropy [Shan48a], [Shan48b]. In its simplest tems, Shannon entropy is a measure of the 

uncertainty of a random variabIe X and is defined as follows. 

Definition 33:  The entropy or Shannon entropy H(X)  of a discrete random variable X is 

defined by 

where the convention of Olog O = O is used. 

Ln terms of expectation, the Shannon entropy can be rewritten as 

The general idea behind Shannon entropy is that the more regular or expected an 

event, the less information that can be derived from the event, and, conversely, the more 

irregular or random an event, the more information that can be derived fkom the event. 

This property is particularly usefüi in compression research since Shannon entropy pro- 

vides a lower bound for first-order lossless compression of a data strearn since the mini- 

mum number of events needed to represent a particular data strearn probability 

distribution can be determined. Referring to Eq. 3.20, it is seen that Shannon entropy can 

also be referred to as the mean or average value of log- l [ C o n 9  11. Thus, Shannon 
P ( X >  

entropy is effectively the average value of the information in the probability distribution 
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p ( x ) ,  This fact is useful when thinking about the Rényi generafized entropy which is 

described next, An important theorem to consider about Shannon entropy is as follows. 

Theorem 3.4: H(X)  I I og l~ l  where 1x1 is the cardinality of the set fkom which the ran- 

dom variable X is chosen. Equality is obtained if and only if X has a uniform distribution,O 

This theorem effectively states that H ( X )  is concave with a maximum uncertainty 

only when dl choices of the next symbol are uniformly probable. 

3.33 Rényi Generalized Entropy 

In 1955, Alfiéd Rényi introduced a generalized form of the probability distri'bu- 

tions where incomplete probability distributions are allowed Fényi551. This new fonnu- 

Iation effectively removes the restriction that the summation p ( x )  must equal 1, 
X E  X 

though it still will for a normal probability distribution. Rényi's generalized probabiIity 

distributions gave the basis for the following weight hnction 

where O < W ( X )  5 1 . Clearly, when W ( X )  = 1 then the probability distribution of X is 

complete and is an ordinary probability distribution. When O < W ( X )  < 1 then the proba- 

bility distribution of X is incomplete. 
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In 1959, Rényi extended this generalized probability distribution to entropies and 

dimensions Fény591. With this extension and a paper in 1960, Rényi fomalized a gener- 

alized form of Shannon entropy Fény6Ol as follows 

which reduces to Eq. 3.19 when an ordinary distribution in p ( x )  is used. Usuig this gen- 

eralization it is apparent that Shannon entropy is a mean-value, where the mean-value is 

recognized only when the probability distribution is incomplete. Using this property of 

mean valued entropies, Rényi then searched for other mean valued quantities to generalize 

entropy instead of using the arithmetic mean using a linear fùnction as in Eq. 3.22. Rényi 

showed that the only other admissible choice for mean value is with an exponential func- 

tion. This form is defined as follows. 

Definition 3.4: The Rényi generalized entropy Hq(X)  (or Rényi entropy for short) of 

order q of a discrete random variable X is defined as 

where O < q I =, q # 1 , and p ( x )  can be a complete or incomplete probability distribu- 

tion. Cl 

Certain liberties have been taken with the original definition of Rényi generalized 

entropy to extend the range of the order q to -= < q < 00 and q # 1 . For the purposes of 
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the multifractal measures developed, there is no loss of generality through the expansion 

of this range. 

To see how the Rényi generalized entropy is a generalization of Shannon entropy 

with the inclusion of a moment of order q , consider when q + 1 . 

Lemma 3.1: Let the moment order q + 1 . Then the Rényi generalized entropy reduces 

to Shannon entropy in the limit as folIows. 

Proof: Consider the Rényi generalized entropy as q + I . 

1 lirn H, ( X )  = lim - logX 
q-, 1 q + l 1 - q  C p ( . r )  

and 

lim logX y = logXE = log 1 = 0 
4 - + l  Ç P ( X )  C PW 
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then 1'HÔpital's nile can be used as follows 

which is Shannon entropy. O 

This is an important result since this relates the Rényi generalized entropy back to 

the well studied Shannon entropy. Other interesthg properties of the Rényi generalized 

entropy are at the order limits when q + 00 and q + -- . The Rényi generalized entropy 

at these limits can be stated by the following two lemmata. 
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Lemma 3.2: Let the moment order q + - . Then the Rényi generalized entropy Hq(x)  

for an ordinary discrete random variable X becomes 

Proof: As q -> -, with O S p(x)  < 1 the sum pq(x) is dominated by sup(pqfx)). 
.K E x 

Therefore 

1 
= Ih - log 

q + - 1  - q  

Since p(x )  is positive, the power q can be moved as follows 

And taking the h i t  gives 
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Lemma 3.3: Let the moment order q + -.o. Then the Rényi generalized entropy 

H,(X) for an orduiary discrete random vari-able X becomes 

Proof: As q ++ -O , with O 2 p (x) < 1 the surn p4(x) is dominated by inf(pq(x) ) . 
X E X  

Therefore 

Since p(x)  is positive, the power q can be moved as follows 

And taking the lirnit gives 
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A final important property of the Rényi generalized entropy is that it is a monoton- 

ically non-increashg function. This characteristic is fomulated and proven as follows. 

Lemma 3.4: For a complete probability distribution p(x)  , the Rényi generalized entropy 

Hq(X) of order q is a monotonically non-increasing function in q . 

Pmof: Taking the f b t  derivative of Hq(X) gives 

Eq. 3.34 can be remnged to 

The denominator of Eq. 3.35 is clearly positive since O < p ( x )  < 1 . 

Using Theorem 3.2 the fünction 

f (x) = xlogx 

which has f k t  and second derivatives of 

X f (x) = logx + - = logx + 1 
X 

is convex since the second derivative is non-negative everywhere using the valid domain 

o f  Iogx as x>O. 
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Using Jensen's inequality fiom Theorem 3.3 and with x = pq - 1 for the generai 

convex function f (x) = xlogx , the foliowing inequaiïty can be stated 

Rearranging Eq. 3.40 gives 

and pulling down the exponent q - 1 gives 

The left hand side of Eq. 3.42 tums out to be the nurnerator of Hfq(X) from Eq. 3.35. For 

- 
H',(X), with the denorninator positive and the numerator zero or negative everywhere, 

the Rényi generalized entropy H,(X)  is therefore a non-increasing function in q . O 

Lemmata 3.2, 3-3, and 3.4 define the range and general behaviour of the Rényi 

generalized entropy H J X ) .  From these lemmata it can be seen that H, (X )  is bounded 

and is a rnonotonic non-increasing function. Plotted in Fig. 3.8 is a typical example of the 

Rényi generalized entropy Hg ( X )  versus q for the probability distribution p ( x )  listed in 

the right of the figure. This rnonotonic non-increasing S-cuve is typical for Hq(X)  . The 

Rényi generalized entropy curve will collapse to a horizontal line between the k- limits 

only when the probability distribution p(x)  is uniform, as illustrated in the example in 

Fig. 3-9. 
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Fig. 3.8. Example 1 of Rényi generalized entropy H,(X) versus order q plot. 

It should be noted that the Rényi generalized entropy is, in itself, not a dimension 

measure. The Rényi generalized entropy does not measure the probabilities to an infinite 

resolution of scale to find a critical exponent in a power-law relationship as demonstrated 

by the fractal dimension measures in Sec. 3.2. The Rényi generalized entropy does how- 

ever serve as the basis for multifiactal dimension measures, The next section descnbes the 

Rényi dimension spectrum, which is a multifkactal measure based on the Rényi general- 

ized entropy- 
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H J X )  = H ( X )  = -l0g2{0.2} = 2.32 bits 

Fig. 3.9. Example 2 of Rényi generalized entropy H,(X) versus order q plot. 

3.3.4 Rényi Dimension Spectrum 

The Rényi dimension spectrum was first introduced by Hentschel and Procaccia 

@3ePr83] but is named in honour of Rényi since the dimension is effectively an extension 

of his Rényi generalized entropy introduced in 1960 Pény601. The Rényi dimension 

spectrum is an infinite number of generalized ffactal dimensions which covers the range of 

many previously known fracta1 dimension measures. 
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The Rényi dimension spectrum c m  be formulated as follows. If the Rényi gener- 

alized entropy fiom Eq. 3 -23 is rewritten as 

and using the portion inside the logarithm, then the following power-law relationship, in 

the spirit of Eq. 3.5, c m  be expressed 

2 P:(.) 
( 1  - g r t  

fzpsJ - (f) "'" 
where pJx)  is the probability measurements using vels at scale S. Solving for the cntical 

exponent D,(X),  the following dehinition for the Rényi dimension spectrum is fomed. 

Definition 3.5: The Rényi dimension spectmm Dg(- (for brevity just DI ) of order q 

with measurements of probability ps(x) at scale s is defined as 

where H J X )  is the Rényi generalized entropy for a discrete random variable X .  0 

Assumuig an ordinary discrete random variable X where ps(x) = 1 , 
X E  X 

Eq. 3.45 reduces to the formulation of multifî-actal dimension spectnim as introduced by 

Hentschel and Procaccia weP~-831. 
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The Rényi dimension spectnun has many of the same characteristics as the Rényi 

generaLized entropy as follows, 

Lemma 35: Let the moment order q + - . Then the Rényi dimension spectnun D,(X) 

for an ordinary discrete random variable X becomes 

Lemma 3.6: Let the moment order q + - - Then the Rényi dimension spectmm 

D,(X) for an ordinary discrete random variable X becornes 

D-(X) s lim D,(X) = lim 
H-(x)- - lim 

-log{ inf(p,(x)) 1 

0 

Lemma 3.7: The Rényi dimension spechum D,(X)  of order q is a rnonotonically non- 

increasing function of q . 

Proof: Follows from H,(X)  being monotonically non-increasing from Lemma 3.4. O 

Coroliary 3.1: D, > Dqp for q' > q with equality if and only if the object is homoge- 

neous, 

Proof: The inequality follows directly fiom Lemma 3.7. The equality follows from 

Lemrna 3.5 and Lemma 3.6 when D- = D, with a more rïgorous proof by Hentschel 

and Procaccia FePr831. O 
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Fig. 3.10. Example Rényi dimension s p e c t m  caiculation for the Cantor set, a line, the 
Koch curve, the Sierpinski gasket, a box, and a muttifractal object. 
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The important feature of D J X )  is that it does not give only one nwnber for the 

measurement of the fractal dimension, but, rather an entire spectnun of dimensions. If 

Fig. 3.10 is considered, which has a plot of Dq versus q for a nurnber of fractal objects, it 

is noticed that for simple objects such as a line and a box that the dimension Dq is 1 and 2, 

respectively, for a11 values of q .  For self-sirnilar single h c t a l  objects such as the Koch 

curve, the Sierpinski gasket, and the Cantor set [Cant83] (not descnbed in this text) the 

fiactal dimensions are 1.26, 1.58, and 0.68, respectively, for al1 values of q . These objects 

contain only one level of complexity throughout the object. Therefore, regardless of the 

value of q ,  the fractal dimension rernains constant. This is the same property as with 

Rényi generalized entropy illustrated in the example in Fig. 3.9 where al1 probabilities in 

p,(X) are equal- This equality follows fiom Corollary 3.1 btcause objects such as a line, 

: 
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a box, the Koch curve, the Sierpinski gasket, and the Cantor set ail have unifoxm probabil- 

ities within the set since the parts are always similar to the whole. 

When more compIex objects such as inhornogeneous fiactals which contain more 

then one fractal complexity, otherwise known as multifiactals, are measured, then S- 

curves s h i l a r  to the one illustrated in Fig. 3.10 result. This curve follows partidly fiom 

Lemrna 3.7- In multifractals the probabilities p,(x) in X are not unifom between differ- 

ent regions of the object being measured, Therefore, the order q will ernphasize the dif- 

ferent probabilities p,(x) depending on the value of q .  When q = I then the fractal 

measurerne~t reduces to the morphologicat dimension as described in Sec. 3.2 and mea- 

sures the dominant fracta1 feature in the rnultifiactal. When q # I , then the order q helps 

to suppress the dominant fiactal and emphasize other inhomogeneous fiactal features 

within the object. In actuality, the orders of q extract a spectrum of fractal dimensions 

from the object which can be used to charactenze the object. - 

The exposition on the Rényi dimension spectrum is now complete. The following 

subsection describes an alternate form of multihctal measure, the Mandelbrot spectnun, 

which is a transformation of the Rényi dimension spectnun, 

3.3.5 Mandelbrot Spectrum 

The Mandelbrot spectnim (as referred to by Kinsner CKins94al) is another rnuIti- 

fkactal dimension measure that has some interesthg analytical charactenstics- One of the 

earlier fomulations of what will be referred to as the Mandelbrot spectnun in this thesis 

was by Halsey et al, FJKP861 and other useW descriptions have also been given 
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[AtSV88], ms94a] ,  [Chen97J. The Mandelbrot spectnim can be developed by h t  con- 

sidering local calculations in single vels of an object covering. in a completely homoge- 

neous fractal object (i-e. p J x )  is constant at any scale) the local fracta1 dimension 

measures will be the same for ail vels BePr833, [HJKP86]. This is not the case in a mul- 

tifractal object since it has a inhomogeneous probability distribution of X of fracta1 corn- 

plexity throughout the object. Therefore, the local fkactal dimension measures are Iikely 

diEerent from vel to vel. 

Since multifractals have inhomogeneous probabilities, it is useful to form a mea- 

sure that c m  characterize the change in probabilities. With single fi-actals the probability 

p ,  &x) for the ith vel of size r = l/s follows the following power-law relationship 

Notice the correspondence with the power-law relationship of Eq. 3.5. With multifractals 

this probability will change depending on the scale as well as the vel, so the following 

power-law relationship can be made 

where a , (x )  is a scaling index that describes the variation of the probability versus the 

variation of r [AtSV88]. With Eq. 3.49, the moment order q can be taken for both sides 

of the proportionality to bring it more in the f o m  of the Rényi generalized entropy as fol- 

lows. 
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Now consider the number of tirnes N,(a )  that a takes on a value in the range 

a E [CL', ( X I  + da'] having an object, or singularity, density p(a'f in that range to be of 

the form 

N , ( a )  = p (a') r-f (a3da' (3 -5 1) 

where f(a') is a continuous function BJKP861. Combining Eq. 3.51 with Eq. 3.50, 

gives the following probability moment summation similar to the pq(x) term in 
X 

Rényi dimension spectrum (Eq. 3.45). This combination can be written as follows 

Seeing that s * = in Eq. 3.45 then r + O (recall that r = 1 /s ), the right side of this 

proportionality is dominated by the value a' that makes qu'-/(af) the smallest. 

Replacing a' by the value aq that minimizes qa' - f(a') , a new formulation of Dq can 

be expressed as [HJKP86] 

Solving this equation for f (a,) and aq gives the following definition for the Mandelbrot 

spectnun. 

Definition 3.6: The Mandeibrot spectrum fq(a) - DMan of order q is d e h e d  as 

/,(a) = DM,, = q a q  - ( q  - 1 ID, (3 -54) 

where a, is the value that minimizes a' in qa' - f (a') and is expressed as 
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Taking the first and second derivatives of qa' - f (a') and replacing a' by a(q) 

to h d  the extrema [HJKP86] gives 

and 

d2 [qa'-f(at)ll > O  
d(a')2 

a' = afq) 

From Eq. 3.56 and Eq. 3.57, solving for the k t  and second denvatives of f (cc)  

with respect to a FJKP861 respectively gives 

and 

This gives us some important properties for f (a)  in that it is a concave function 

with an maximum extrema when q = O .  Some other important and usehl properties 

should be noticed about the Mandelbrot as stated in the following lernrnata. 

Lemma 3.8: Let the moment order q = O .  Then the Rényi dimension spectrum Dq is 

related to f (a )  in the Mandelbrot spectrum as follows 



Progressive Image Transmission Ch. 3: Fractals, MultihctaIs, and fBm 
- -- 

Ushg Eq. 3.58, f (ao) is an extrema for f (a) shce q = O .  Eq. 3.59 shows that f (a) is 

concave, therefore this extrema is a maximum. Therefore 

Dq=o = f(ao) = sue f (a )  

Lemma 3.9: Let the moment order q + - . 
approaches 

(3 -62) 

O 

Then the Rényi dimension spectrurn D, 

Proof: Using the fkst and second derivatives of f (a) with respect to a in Eq. 3.58 and 

Eq. 3.59, respectively it is noticed that f ( a )  is a concave continuous function. As q -+ 0 

the tangent to f(a) approaches infini& according to Eq. 3.58. This is only possible 

according to Eq. 3.59 if a is approaching its minimum. 0 

Lemma 3.10: Let the moment order q -+ -m. Then the Rényi dimension spectrum D, 

approaches 

- 
DI+-- - am,- (3 -64) 

Proof: Using the first and second derivatives of f  (a) with respect to a in Eq. 3.58 and 

Eq. 3.59, respectively it is noticed that f ( a )  is a concave continuous h c t i o n -  As 

q + -- the tangent to f  ( a )  approaches infinie according to Eq. 3.58. This is only pos- 

sible according to Eq- 3.59 if a is approaching its maximum. 3 

An example plot of the Mandelbrot s p e c t m  f ( a )  versus a is shown in 

Fig. 3.1 1. The concavity f (a) is clearly seen in this plot along with the markings for 

DO = f rnax(a) > Dao = amin > m d  = am,, - 
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a 

Fig. 3.1 1. Example plot of Mandelbrot spectnun f (a) versus or. 

This completes the generai background on multifractals. The next section moves 

into another area of fiactals dealing with the generation of statisticaily self-similar or in 

other words self-affine fractals- This is al1 based on a concept known as fractional Brown- 

ian motion, 

3.4 Brownian Motion and Fractional Brownian Motion 

One question that may be asked is how to generate fiactals, and more specifically 

how to generate random fiactals that have a specified fracta1 dimension. The most promi- 

nent method is to generate fractional Brownian motion (fBm) LMaVa681, which is a con- 

ceptual extension of Brownian motion Prow283- The following subsections descnbe 
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Brownian motion and fiactional Brownian motion, as well as an extension into multihc- 

tais with a brief discussion on multifhctiona1 Brownian motion [PeVe95]. 

3.4.1 Brownian Motion 

In 1827 the botanist Robert Brown (1 773- 1858) obsenred irregular movements of 

pollen grains under a microscope, but, unfortunately did not have a good explmation for 

such behaviour prow28]. This observed phenornenon came to be known as Brownian 

motion. In the early 19007s, the Swedish chemist Theodor Svedberg suggested that this 

type of motion is due to the unequal bombardment of small particles by molecules. This 

hypothesis is now known to be the case and gave rise to some of the f i t  measurements of 

atom size from a set of equations that Einstein developed for Brownian motion. 

The motion of the grains of pollen that Robert Brown saw would havc been very 

similar in nature to the path illustrated in Fig. 3.12a. A traii of a possibIe path of the pol- 

len grain is shown in a two dimensional plane where the particle c m  collide with other 

particles that are uniformly randomly distnbuted throughout the plane. This motion can 

be described by making a record of the two dimensional random walk in the complex 

plane z as follows 
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where u ( x )  is a uniform random variable on [O, 1 ) and n(x;O, 1 ) is a zero mean Gauss- 

ian random variable with unity standard deviation. The Gaussian density function used 

with mean p and standard deviation u has the fonn 

The initial condition zo is the position of the particle in the complex plane when observa- 

tions start. 

As Fig. 3.12a illustrates, the motion of  the particle appears quite random as it trav- 

els, but some constraints and characteristics of its motion should be noted. The first con- 

straint is that there is continuity in the motion of the particle. This property arises since 

the particle has £hite velocity. With this constraint, the particle is still free to move in any 

direction, giving the particle two degrees of freedom in this illustration. 

Another constraint on the movement of the particle is the density of the particles 

surrounding it. The particle will travel in a straight line at a constant speed until it collides 

with a neighbouring particle, causing it to change direction and speed. Therefore, the den- 

sity of the particles affects the average distance that any particular particle c m  travel 

before colliding with another particle. 
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x [position] 

Fig. 3.12. Example 2D Brownian motion of a particle. 
(a) particle's path and @) magnified portion of the particle's path. 
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A few other characteristic attributes behind the particle motion illustrated in 

Fig. 3.12a shoqld aIso be pointed out. First, consider the average distance that the particle 

travels in time t . If in tirne t the particle collides with n other particles, which are uni- 

forrnly randody distributed, and the displacement vector travelled between collisions is 

Zn, then the particle will have a displacement of 

displacernent = XI, 
Vn 

in tirne t . Using the Gaussian random variable from Eq. 3.65, Eq, 3.67 can be rewritten as 

Another important note about the Brownian motion is that the direction travelied 

afier each collision follows a unifomly distributed probability density function. This 

characteristic follows fiom the phasor notation of e i 2 ~ ~ ( " )  used in Eq. 3.65. The addition 

of these displacement vectors 1, in Eq. 3.67 results in an average displacement or mean of 

Another characteristic of Brownian motion to consider is the mean square dis- 

placement of the particle in time t - Using the central Zimit theorern, the mean square dis- 

placement of the particle follows a Gaussian distribution. This is the case since the mean 

square displacement using 1; is independent and identically distributed, and the variance 

is finite and non-zero because of the continuity in the particle's path as previously 

described. Therefore, at specific snapshots in time the particle will have moved by a zero 

mean Gaussian random variable fiom its current location even though its long-term mean 

displacement is still zero. Figure 3.12 was actually generated this way by displacing a 
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simulated particle by a Gaussian random variable dong a directed vector in the current 

direction of motion, At each collision in the simulation, a new direction vector was deter- 

mined fiom a uniformly distrïbuted random variable. 

Another point to be made is that the Brownian motion considered in this thesis wiil 

be £kom a mathematical standpoint and thus have infinite resolution. This condition is as 

opposed to a physical situation which is limited in resolution, as in the case of a pollen 

p i n  colliding with other particles at a finite resolution. In the mathematical case, any 

portion of the Brownian motion can be magnified to reveal still more Brownian motion as 

illustrated in Fig. 3.12b. This ability demonstrates the scale invariance that Brownian 

motion exhibits. Since the magnification scale is irreIevant, no nurnbers have been marked 

along the axes in Fig. 3.12a or Fig. 3.12b since the numbers have little meaning in this 

case. The emphasis is that the Brownian motion can be magnified to any Ievel and exhibit 

the same Brownian motion characteristics. 

Since the Brownian motion can be rnagnified to any Ievel, Brownian motion also 

exhibits one of the important characteristics behind fractals. Al1 fractals have the charac- 

teristic of self-similarity such as was discussed with the Koch curve- If the trace of 

Brownian motion can be magnified infinitely and always have the sarne Brownian motion 

characteristics at any scale, then Brownian motion follows the self-similanty trait exhib- 

ited by other fî-actals, where the parts are similar to the whole. Though, since the Brown- 

ian motion characteristics are statistically sirnilar instead of perfectly sirnilar, such as with 

the Koch cuve, this property is generally referred to as seljrafinity as opposed to self-sim- 

ilarïty. 
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Another example of  Brownian motion is to take a record over t h e  of one ordinate 

of the two dimensional Brownian motion, An example of this record is plotted in 

Fig, 3.13. This plot shows Brownïan motion at different sampIes through tirne. All of the 

previously discussed properties of Brownian motion still hold, 

O 50 100 150 200 250 300 350 400 450 500 

Time [sarnpies] 

Fig. 3.13. Record of Brownian motion in one dimension. 

To define the concept of Brownian motion a IittIe more fonnally, consider the fol- 

lowing definition for the one dimensional Brownian motion process. 

Definition 3.7: Let B(t ,  w )  be a continuous-the stochastic process defined with time 

-= < t < - and w the set of al1 values of a random function. Also, let the sequence of 

increments B(t + 5) - B ( t )  (defined for t a multiple of 6) be an independent Gaussian 
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randorn variable with zero mean and a variance of 161 , In addition, let any two non-inter- 

secting intervals, [t  I ,  t + 6 ] n [i2, t2 + 82] = 0, of B(t, W) be independent and have 

the same joint distri'bution for aU 6.  If these conditions hold then Bf t, w) is known as a 

Brownian motion process or also called a Wiener process. O 

This definition of Brownian motion brings together aiI of  the previously discussed 

points about Brownian motion. The foliowing subsection expands on the idea of Brown- 

ian motion to fmctiond Brownian motion, As wiil be seen, fiactional Brownian motion is 

a generalization of Brownian motion where the persistence in motion can be changed to 

f o m  objects with different statistical characteristics. 

3.4.2 Fractional Brownian Motion 

This section describes fractional Brownian motion and how it is a generalization of 

Brownian motion. This discussion foliows some of the cornputer experiments done by 

Mandelbrot and Wallis [MaWa69a], WaWa69b1, WaWa69cl to generate fBm and look at 

some of its characteristics, as well as sorne of the compiled descriptions by Kinsner 

@Chs94c], [Xins95a]- The next subsections give an overview of fBm including some of 

Bm's characteristics and some examples of this motion. Techniques for generating fBm 

curves and surfaces will be left to Chapter 5 where they are needed for one of the progres- 

sive image transmission techniques in this thesis which uses fractal surface segmentation 

and interpolation. 
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3.4.2.1 What ii fractional Brownian motion? 

Fractional Brownian motion, as introduced by Mandelbrot and van Ness 

[MaVa68], is a generalization of Brownian motion in tems of  the level of persistence or 

anti-persistence that it possesses. Fractional Brownian motion can be defined as follows. 

Definition 3.8: Let B(t,  w )  be a Brownian motion or Wiener process with time 

-- < t < w , w the set of d l  values of  a random function, and bo an arbitrary real number. 

For index H and r > O ,  fractionalBrownim motion B H ( t ,  W )  is dehned by 

where the gamma h c t i o n  is Euler's second integral which can be expressed as 
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As seen in Eq- 3.70, fi-actional Brownian motion is largely a sununation over this 

Wiener process dependent on the index H .  When the index H = 1/2 then Eq.  3.70 

reduces to 

which is just ordinary Brownian motion B(t,  w) with an arbitrary starting point. At other 

values of the index H, BH(t ,  w) is a weighted moving average of B(t,  w) by the kernel 

( t  - s ) ~  - [MaVa68]. 

The main property to notice with fBm is that the increments of BH(t ,  W )  are sta- 

tionary and self-similar. FormaIly, this rneans that the increments 

BH(to + 8, w )  -BH(to,  W )  have the sarne finite joint distribution as 

h V H [ ~ * ( t o  f hO, w) - BH(to, W )  J , where 6 is the increment size and h some multiple of 

the increment size. Therefore, magni%ing any portion of fBm with a specific index H 

will result in fBm with the same characteristic index H .  The following subsection shows 

some examples of fBm and attempts to give some fürther clarifications to the properties of 

fBm. 
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3-4-22 Charactenktics of fractional Brownian motion 

Before looking at examples of fractional Brownian motion, let us consider again 

the Brownian motion illustrated in Fig- 3-13. In examking Fig, 3.13, it is important to 

notice how the motion of the p d c l e  has persistence in time as it travels- This persistence 

can be thought of physically as the momentum the particle has between collisions with 

other particies. After each collision the momentum changes and a new state in its motion 

is achieved, so the persistence is lùnited- This persistence in time means that Brownian 

motion has a non-stationary mean as, in üiis case, the partide is rnoving slowly fiom one 

portion of the plot to another. 

Tt should be noticed that Fig. 3.13 has no position values labeled on the ordinate. 

This is purposely done, as with Fig. 3.12, since the record of Brownian motion exhibits the 

same scaling characteristics found in the two dimensional Brownian motion illustrated in 

Fig. 3-12a and Fig. 3.12b. Therefore, Brownian motion has the same statistical form and 

characteristics at any scafe of the motion- 
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I 

O 50 100 150 200 250 300 350 400 450 5i 

Time [samples] 

Fig. 3.14. Record of white noise motion in one dimension. 

The Brownian motion's particle persistence from the last state is contrasted by the 

white noise illustrated in Fig. 3.14. This figure, genented by placing the particle in space 

at a location determined by a uniformly distributed random van-able in each time step, 

illustrates uncorrelated and independent motion with a stationary mean. This type of 

uncorrelated and independent signal is generally referred to as white noise because its 

power spectnim, 1 / freqo, is flat and contains ail frequencies at an equal intensity. This 

signal is similar in concept to combining al1 the colours of the light spectnim to produce 

white light The Brownian motion illustrated in Fig. 3.13, on the other hand, has a power 

spectrum density of 1 / freq2 which means that the frequency components in the signal 

taper off with increases in the frequency. 
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1 
White noise - 

f.eqO 

Frequency f (Hz) 

Fig. 3.15. White, pink, Brown, and black noise power spectnim plot. 

Taking the colour idea of white noise a little M e r ,  a spectrum of noise or motion 

colours can be defhed as shown in Fig. 3.15. This figure illustrates different power spec- 

trum densities in the fom 1 / freqp where f3 is the spectral exponent. Illustrated is white 

noise with p = O ,  pink noise with f3 = 1 , Brown noise with = 2 (Brownian motion), 

and finally black noise with 2 3 . These names and spectral exponents are taken as listed 

by Schroeder [Schrg 11, mns94c]  though there is some debate over the narnes with rnany 

other additions such as orange, red, green, blue, purple, and grey noise Wisn961. 
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1 
4 

1 - - - -  1 noise (pink noise) 
f r d  fre4 

O 50 100 150 200 250 300 350 400 450 500 

Tirne [samples] 

Fig. 3.16. Record of pink noise motion in one dimension. 

Fractional Brownian motion extends the idea of pure Brownian motion to alIow for 

different levels of persistence in the direction of the path over tirne. Changing the density 

of the power spectrum through changing the spectral exponent for the signal creates dif- 

ferent "Ciactional" noise values. For instance, pink noise, as illustrated in Fig. 3.16, is 

between white noise and Brown noise according to the power spectrum plot o f  Fig. 3.15. 

Following the idea of persistence, this says that pink noise has more persistence than white 

noise (which has no persistence), but, less persistence than Brown noise. With less persis- 

tence than Brown noise, pink noise is often referred to be anti-persistent in that, in the case 

of a time series, the system tends to revert the direction of its mean more often than not 

and in the limiting case of fBm will change direction of its mean at every step. Following 
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the idea of stationarïty, pink noise is relativeiy more stationary than white noise but less 

stationary than Brown noise. Pink noise can also be referred to as quasi-stationary. 

Another important issue to realize from the power spectnun plot in Fig- 3.15 is the 

distribution of power throughout the spectnim. For white noise the power for any fixed 

sized interval is equal. For example, the power in the range fiom 100 Hz to 200 Hz is the 

same as the power in the range fkom 10,000 Hz to 10,100 Hz. This is not the case for pink 

noise. For pink noise the power distrïïution is the same over logarithmic octaves. For 

example, the power in the range from 100 Hz to 200 Hz is the same as the power in the 

range fiom 10,000 Hz to 20,000 Hz. 

Viewing some of these factors, it has been observed that pink noise rnodels many 

natural phenornena better than white noise models, such as parallel relaxation processes 

CSch1-9 11. For example, many musical pieces have 1 / f power spectra and pink noise 

can be used to generate interesting music, while white noise is too random and Brown 

noise is too correlated Foc178 1. 
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2-8 noise freq P freq 

O 50 IO0 150 200 250 300 350 400 450 500 
Time [samples] 

Fig. 3.17. Record of fiactional Brownian motion in one dimension. 

A final example to illustrate fBm is shown in Fig. 3.17. This example shows 

motion that is more persistent than Brownian motion since it has a power spectrurn density 

of l /  freqZ-8 with a spectral component of = 2.8. This spectrurn can be refened to as 

dynamically persistent in that the trend currently seen in the series is reinforced so that the 

trend in that direction of motion will likely continue. This form of behaviour exists in 

some natural phenornena such as natural disasters and flooding [Schr9 11. 
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To tie in the whole concept of  persistence, Mandelbrot coined the t e m  the Joseph 

effect wand75, p. 1051 after Joseph son of Jacob and son of Israel who said 

"Behold, there corne seven years of great plenty throughout a11 the land of 
Egypt: And there shall arise after them seven years of faniine; and all the 
plenty shall be forgotten in the land of Egypt; and the famine shall con- 
sume the land;" 

(Genesis 41:29-30, King James Version) 

This idea of seven years of plenty and then seven years of famine in Egypt nicely illus- 

trates how persistence in natural phenomena occurs. 

Mandelbrot also coined the terrn the Noah eflect wand75, p. 1051 after the story 

of Noah where discontinuity mies and things can change suddenly as when there was a 

drought and then 40 days of min carne. 

"And it came to pass afier seven days, that the waters of the flood were 
upon the earth. In the six hundredth year of Noah's life, in the second 
month, the seventeenth day of the month, the same day were al1 the foun- . 
tains of the great deep broken up, and the windows of heaven were opened. 
And the min was upon the earth forty days and forty nights." 

(Genesis 7: 10- 12, King James Version) 

Accordingly, events do not necessarily gradually change but c m  change suddenly. These 

happenings may be viewed more with the Brown to pink noise phenomena where wide 

swings of change can occur and do occur suddenly. 

This section outlining some of the additiona1 properties and characteristics of mm. 

is now completed. The next subsection ties in the ideas of f8m with the work done by 

Hurst, the Hurst exponent, and the spectral exponent for power spectra- 
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3.4.2.3 Fractional Brownian motion, the Hurst erponent. and the spectral exponent 

The spectral exponent used in the fBm power spectrum density funciion 

l /  fie@ can be related to what is known as the Hurst exponent H* by the relationship 

MaWa69bl 

f3 = 2H*+1 (3 -73) 

The Hurst exponent ~ u r s S l ] ,  MuBS651 was developed by the British hydmlogist 

Harold Edwin Hurst. Hurst was Qing to determine if the historical yearly water level 

flows of the Nile showed any pattern, so that the Long-term storage capacity of the Nile 

reservoirs could be approprïately built ~ u r s 5  I l .  He found that instead of the flow Ievels 

being random each year, there was a clustering in that there would be m s  of wet or dry 

y e n .  Hurst's results showed that there is a non-random positive correlation in the water 

levels of the Nile over the 800 years of Nile flow records, as well as non-random positive 

correlations in some other natural phenomena such as rainfall, temperature and pressure, 

tree rings, varves, and sunspot activity (HursS 11, fHuBS651. The Hurst exponent used to 

get these results is defùied as follows 

where t is the duration of the time series 6, and R / S  is the rescaled range statisticai anal- 

ysis of the t h e  series data. In R/S-statistics, R is the range of the tirne senes data e, and 

can be defined as follows 
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while S in the RB-statistics is the standard deviation in the t h e  series data 5, and is 

defined as follows 

with the operator < > beïng the mean of the data as follows 

In words, the Hunt exponent measures how the range of the tirne series data 6 ,  changes in 

accordance to the standard deviation of the data over different slices of time. Therefore, 

the Hurst exponent gives a measure as to whether a trend wiIl persist or if a rnean will 

revert back to a historical average. 

The Hurst exponent can be thought of as the H parameter in the fBm BH(t, w ) .  

So, we could effectively write BH*(t, w) = BH( t ,  I V ) .  The Hurst exponent wiIl be used 

in Chapter 5 for the generation of fiactal surfaces using the midpoint displacement algo- 

rithm. Also, the Hurst exponent is related to the previously discussed Hausdorff-Besico- 

vitch dimension, Dm, Wand851. This relationship can be expressed as follows 

where E  + 1 is the Euclidean dimension or support dimension in which the object is 

embedded ( E  = O for a point, E = 1 for a curve, E = 2 for a surface, E = 3 for a vol- 

umetric object, etc.). Equation 3.78 shows that if fBm can be generated with a specific 

Wurst exponent, then this fBm will have a known Hausdorff-Besicovitch dimension, 
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3-4.2.4 Mult~jkactional Brownian motion 

While not a key focus of this thesis, mention should be made of an extension of 

E3m to rnuZtz~ractionaZ Brownion motion (mfBm) as introduced by Peltier and Lévy Véhel 

PeVe951. The idea is similar to that of fBm except that instead of a single H value for 

BH(t, w )  , a function H, is used to represent the changes in dimension through h e .  This 

can be seen by reforrnulating Eq. 3.70 to 

Using this formulation, curves can be created that are effectively concatenations of 

fBm curves with different values of N. 

This chapter covered the general background required for this thesis on fractals, 

multifractals, and fractional Brownian motion. The chapter started by explaining an 

approach to measuring the morphological topology of an object and then how this mea- 

surement is used to formalize the idea of a fiactional dimension- Extensions were then 

made from homogeneous fiactals to inhomogeneous fnctals, or multifkactals, where more 

then one fractal complexity exists in an object. This extension is done with a generaliza- 

tion of Shamon entropy using the Rényi dimension spectrurn as well as the Mandelbrot 
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spectnun, Finaliy, Brownian motion and hctional Brownian motion were described 

mathematical for statistically self-simiIar, otherwise known as self-affine, fiactal objects. 

The next chapter provides background on wavelets and wavelet packets. This dis- 

cussion will set the stage for the developed progressive image transmission in Iater chap- 

t e x  
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BACKGROUND ON WAVELETS 
AND 

WAVELET PACKETS 

This chapter provides the required theoretical background on wavelets and wavelet 

packets for this thesis. This theory wili serve as the basis behind some of the progressive 

image transmission techniques presented in later chapters, 

4.1 Preliminaries 

This section gives some prelirninary mathematics before the overview on wavelets 

and wavelet packets is provided, 

4.1.1 Metric Spaces, the Hilbert Space, and Orthogonality 

WaveIets and wavelet analysis techniques falls into a class of metric spaces 

referred to as the Hilbert space. While this section is not intended to be a complete refer- 

ence on  metric spaces, a brief introduction is given on preliminary concepts of metric 

spaces and the Hilbert space in context of wavelet analysis. Further information on metric 

spaces can be taken from various sources on fûnctional analysis [Krey89], [Shi1741 which 

served a s  references for this writing, 

For this thesis, interest will be only on finite energy signals since anything 

recorded fiom a physical source will have h i t e  energy. In general, a signal f ( x )  having 

finite energy is square integrable as stated in the following definition and lemma. 
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Definition 4.1: A function f :X + R is said to be square integrable if 

Lemma 4.1: A fimction f :X + R hasfinite energy if it is square integrabIe. O 

Definition 4.2: Let f :X + R be a square integrable fimction. Then f is referred to as an 

L2 -function. Aiso, the set of L2 -functions in a rneasurable space forms the ,C2 -space, 

often referred to as L2(R) for r ed  valued vectors and f ict ions.  0 

Another important concept is that of a metric space. A metric space is a vector 

space (Le. sets of vectors X that follow the commutative, associative, distributive, and 

identity properties) that also has a distance measwe associated with the space. This dis- 

tance measure gives a distance between two vectors in the space. More formally, a metric 

space is defined as follows. 

Definition 4.3: A metric space is a pair (X, d )  , where X is a set and d(x, y) is a metric 

on X, that is, the "distance fi-orn x to y" such that for al1 x, y, z E X the following axioms 

are satisfied: 

1. d is real valued, finite, and nonnegative 

2. d(..,y)>O i f x f y ,  d(x,x) = O foreveryx 

3. d(x, y) = d(y, x )  for every x and y 

4. d(x ,  Z) 5 d(x, y) + d(y, z )  for every x , y ,  and z 
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Definition 4.4: A normed space is a vector space with a nom, denoted by the operator 

II -11 , dehed  on it, O 

A n o m  is a measure that c m  be used to gauge the size of an element in a space. 

For the finite energy space L*(R) the following n o m  is often used 

1 /2 

I l  = [ I f  X I ]  c - 
and is referred to as the ~ ~ - n o r r n .  

With this background, the Hilbert space c m  be defined as follows. 

Definition 4.5: A Hilbert space is a nomed vector space with a defked inner product 

operator (-, .) such that the n o m  

IlAl = m-3 
makes the vector space a metric space. 

The inner product in a Hilbert space can be defined in many different ways 

depending on the metric used for that space. For the h i t e  energy space L 2 ( c ) ,  the i ~ e r  

product of f E L2(C) and g E L2(C) is 

where g(x) is the complex conjugate of g(x)  . Of course, this equation reduces to 
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when dealing only with the real valued functions f E L2(R) and g E L2(R) - These inner 

products are valid in an infinite dimensional space so f and g can be of any dirnensional- 

ity, such as one dimensional for t h e  senes and two dimensional for images. 

One important characteristic of the Hilbert space is that the iruier product can be 

used to see if any pair of vectors are orthogonal. Another important property which c m  be 

determined is whether a vector is orthonormal. These two characteristics of a Hilbert 

space are dehed  as foiiows- 

Definition 4.6: A vector f CE X is said to be orthogonal to a vector g E X if 

a 

Definition 4.7: A set of orthogonal vecton { @ k ( x ) ) ,  , is said to be orthonorma2 if the 

nom of every vector is one, that is l l @ i l l  = 1 - O 

4.1.2 Signal Decomposition on an Orthogonal Basis 

Using the idea of orthogonality, a vector can be decomposed into a set of orthogo- 

nal or orthonormal vectors. For instance given the orthonormal set (6, @ y )  E L 2 ( ~ )  , the 

two dirnensional vector v can be decomposed to v = v-, + vy = ex@, + cy$, where 

{c, c,) are the multiplicative coefficients in the decomposition. Graphically, this 

decomposition is illustrated in Fig. 4.1. 
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Fig. 4.1. Example orthogonal decomposition of the two dimensional vector v using the 
orthonoxmal basis {O, QY}. 

In the generai case, the decomposition of a fûnction f ( x )  using an orthonormal 

basis {Qk(x) lk E ,C2 (C) is done as follows 

k = -00 

where ck are the coefficients in the decomposition. In a Hilbert space the coefficients are 

found using the imer product in Eq. 4.4 which results in the coefficients ck being 

Therefore, given the orthonormal basis Ok any fiinction in a Hilbert space can be 

decomposed, or transformed, kto the set of coefficients ck. An important fact about the 

decomposition of a signal with an orthonormal basis is that it defines the signal completely 

and that the decomposition into the coefficients ck is unique. The Fourier transform, 

wavelet transform, and wavelet packet transfonn are exarnples of signal decompositions 
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on different orthogonal bases. These decompositions will be discussed M e r  Iater in this 

chapter. 

4 1  Linear and Nonlinear Approximations 

In some applications, such as signal compression, it is ofien desired to produce 

approximations of a signal as opposed to a full representation of the signal. This ability is 

important in areas such as image compression since it can allow for effective lossy image 

compression with high compression ratios. As seen in a Hilbert space, a signal f c m  be 

decomposed using an orthonormal basis { @ k } k  E L ~ ( c )  as follows 

Many f o m s  of approximations exist for the signal f when inspecting Eq. 4.9. One 

such approximation would be to take only the first A components in the decomposition of 

f to form the approximation f, = f as follows 

This leaves a mean squared error in the representation off by f A of 

With this a priori selection of coefficients to represent fA , a iinear approximation of the 

signal is obtained pa1199]. 
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While this approximation is often good, it can often be improved by selecting the 

set of orthonormal vectors to use from the basis depending on the signal being represented 

in an a posterion marner. In generai, the following approximation o f f  by f, c m  be 

made 

where IK is the set of indices for the selected orthonormal basis vectors Ok dependent on 

the charactenstics of the signal f .  The problem then reduces to how to select which of the 

orthonormal basis vectors Qk to choose. This issue will be discussed M e r  in the context 

of wavelets and wavelet packets later in this thesis- 

4.2 Fourier Series and Fourier Transform 

Before discussing wavelets and the wavelet transforrn, it is instructive to review the 

well known and well studied Fourier series and Fourier trmsform, which have rnany simi- 

larities to their wavelet counterparts. This foundation will give a basis for a discussion on 

wavelets and the wavelet transform for anyone familiar with the Fourier transforrn, and 

will also help in understanding the advantages of waveiets in image compression. This 

knowledge will be particularly important when considering the differences between Fou- 

rier transforrn based image compression, such as JPEG which is one of the better stan- 

dards of the day, and wavelet transform based image compression. 

The Fourier series is an expansion of a periodic function on a possibly infinite set 

of orthonormal sine and cosine functions (or the exponential fùnction in the complex 

case). The Fourier transfonn takes the Fourier senes expansion and develops forward and 
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inverse transfomis for a signal fiorn the tirnelspace domain to the fiequency domain. The 

Fourier series pair and the Fourier transform pair are defined as follows. 

Definition 4.8: Let oo = 2n /To  be the fundamental frequency of a penodic finite 

energy signal f ( t )  E L ~ ( C )  with period To . The Fourier series for the function f ( t )  is 

d e h e d  as follows 

f ( t )  = ckejk%f 

where ck are the Fourier series coeflcients which are d e h e d  as 

1 
cr = (f, = -f f(t)e-jk*ofdt- 

=O r 

Definition 4.9: Let f ( t )  E ,C2(C) be a periodic finite energy signal, t be an independent 

variable-in the time domain, and o be an independent variable in the frequency domain. 

The Fourier transfom F(o) of the fünction f ( t )  is then defïned through to following 

transformation 

Also, let F [ - ]  be an operator denoting the Fourier transfom. O 

Definition 4-10: Let F ( o )  E L ~ ( c )  be a periodic finite energy signal, t be an indepen- 

dent variable in the time domain, and ci, be an independent variable in the frequency 
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domain. The inverse Foufier transfom f ( t )  of the function F ( o )  is then defined through 

to following transformation 

f ( t )  = & 1 F(o)e jmfdo * 

Also, let F-1 [-] be an operator denoting the inverse Fourier transform. 

-8 -7 -6 -5 -4 -3 -2 -1 O 1 2 3 4 5 6 7 8 
Position [radians] 

Fig. 4.2. Example basis function in Fourier analysis. 

While not a wavelet transfom, the Fourier transfonn serves to outline some of the 

key issues, advantages, and disadvantages with this class of mathematical transfonns, The 

Fourier transform is an analysis and representation tooi which models a function/signal as 
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the sum of scaled and dilated trigonometric functions (Le. sine and cosine fiinctions). A 

sarnple basis function in Fourier anaiysis, the sine wave, is plotted in Fig. 4.2. 

-4 -3 -2 -1 O 1 2 3 4 
Position [radians] 

Fig. 4.3, Approximations of a square wave using Fourier decomposition 
with the first 4 lowest frequency components. 

As mentioned, the power behind Fourier analysis and the Fourier transform is the 

ability to decompose a signal into scaled and phase shifted versions of the basis fünction. 

To iIlustrate this, Fig. 4.3 and Fig. 4.4 demonstrate how a square wave is approxirnated by 

sinusoids. Illustrated in Fig, 4.3 is the &st four approximations of a square wave using 

Fourier analysis. The fxst wave is a sinusoid, in this case sinx. The second wave is a 

1 
superposition of two sinusoids, namely sinx + -sin3x. The third and fourth approxima- 

3 

tions to this square wave are 1 1 sinx + -sin3x + -sin5x 
3 5 

and 
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1 1 1 sinx + - sin3x + - s k 5 x  t -sinx, respectively. With the first 50 of these sinusoids, as 
3 5 7 

shown in Fig. 4.4, the approximation to the square wave improves even M e r .  If this 

process is continued to infùiity, then a perfect square wave is obtained. 

Position [radians] 

Fig. 4.4. Approximation of a square wave using Fourier decomposition 
with the fkst 50 lowest fiequency components. 

One of the probIems with uskg  the Fourier transfom is that the sinusoids used to 

decompose the signal span the entire spatial domain (Le, fkom -00 to 00 ). In image repre- 

sentation this basis span results in no localization of image features in the spatial domain 

even though localization is precisely achieved in the fiequency domain. This limitation is 

seen by the infinite nurnber of sinusoids required to represent a signal as simple as a 

square pulse, while only one Fourier basis fiuiction is required to represent a sine wave. 
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The question then is whether basis fiinctions other than sinusoids can be used in the 

decomposition of signals, The next subsection delves into the wavelet transform which 

uses a class of basis fiuictions that do aUow for good spatial localization in addition to fie- 

quency localization. 

4.3 Wavelets and the Wavelet Transform 

A number of different approaches exist for image compression and progressive 

image compression. Some of the most promising approaches incorporate the wavelet 

transform at the principal signal processing level. This section provides a brief introduc- 

tion to some of the ideas behind wavelets and the wavelet transform, as weI1 as some of the 

reasons that wavelets are of interest to signal compression researchers. This section also 

outlines some of the ideas behind multiresolution analysis and how waveleis can decorn- 

pose a signal for multiresolution analysis. 

43.1 The Wavelet Transform 

Sirnilar to the Fourier transfonn, the wavelet transform is a mathematicai transfor- 

mation or decomposition of a signal with a set of orthogonal basis functions. First explic- 

itly introduced by Grossman and Morlet [GrMo84], the wavelet transform decomposes a 

signal using mother wavelet functions as the analyzing f i c t ion  instead of sinusoids as 

with the Fourier transform. These rnother wavelet fünctions wiil be denoted as ~ ( t ) .  To 
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form the set o f  wavelet basis firnctions, the mother wavelet yr(t) E L2(C)  is scaled and 

transIated as  foliows 

1 t - u  
 WU,.(^ = zw(T) 

where s > O is a scaling parameter and u is a translation parameter. With this scaling and 

translation of the mother wavelet ~ ( t )  , the following definition for the continuous wave- 

let transform can be made. 

Definition 4.11: Let ~ ( t )  E L2(C) be a mother wavelet function, s > O be a scaling 

parameter for ~ ( t )  , ti be a translation pararneter for ~ ( t )  , and vu, J t )  be the scaled and 

translated version of \ ~ r ( r ) .  The continuous wavelet transfom (CWT) of a b c t i o n  

f ( t )  E L ~ ( R )  is defbed as 

Also, let WC-] be an operator denoting the continuous wavelet transforrn. a 

Note that the CWT in Eq. 4.1 8 is an b e r  product of the form of Eq. 4.4. There- 

fore, the set of scaled and translated mother wavelets { v , , ( t ) }  E L ~ ( c )  forms the signal 

basis in the CWT. The inverse CWT is defined as follows Ma1199J. 

Definition 4.12: Let ~ ( t )  E L 2 ( c )  be a mother wavelet hc t i on ,  s > O be a scaling 

pararneter for ~ ( t )  , u be a translation parameter for ~ ( t ) ,  and vu, , ( t )  be the scaled and 
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translated version of ~ ( t )  - If f e L2(R), then the inverse continuous wavelet transform 

(ICWT) is defined as 

where C,,, is a constant which is de£ined as 

with F,[v(t)] = Y(w) the Fourier transform of \ y ( t ) .  AIso, let W-' [-] be an operator 

denoting the inverse continuous wavelet transfom. O 

In Iooking at the forward and inverse continuous wavelet transforms, some impor- 

tant properties behind ~ ( t )  c m  be noted. One of the most important properties for ~ ( t )  

follows Eom the Cv factor in Eq. 4.19. For a perfect reconstruction off  (t) to occur, the 

C,,, factor must be a constant and also finite such that 

Therefore, if reconstmction of the signai is desired afier decomposition, ~ ( t )  must be 

restricted to satisw Eq. 4.2 1 which is referred to as the admissibiiity condition. This equa- 

tion indicates that the square of the Fourier transform Y(o) of y(t) must decay faster 

than the factor Iwl at +oo for the inequality to hold. This result indicates that the mother 

wavelet ~ ( t )  must be bandlimited in fkequency. For purposes of signal anaIysis, a band- 

limited signal is usehl when analyùng the signal in the fiequency domain. In signal anal- 
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ysis this means that a wavelet transform can decompose a signal into constituent 

nequency components fiom the bandlimited mother wavelet, 

Another important point about the adrnissibility condition is that Y(o)  must be 

zero when o = 0, otherwise the inequality in Eq. 4.21 does not hold. Expanding this 

condition with the Fourier transform of ~ ( t )  itself, the following equation can be stated 

which shows that the following must also be true of ~ ( t )  for the admissibility condition to 

hoId 

The significance of Eq, 4.23 is that it indicates that ~ ( t )  must be a zero mean function. 

Another important property that results from the adrnissibility condition is that the 

wavelet function yr(t) must have finite energy for reconstruction, so following Lemma 4.1 

and Defn- 4.1, the foflowing must be true 

Combining the properties from Eq. 4.23 and Eq. 4.24, it is noticed that ~ ( t )  has 

 te span. This characteristic is unlike sinusoids in Fourier analysis since sinusoids have 

infinite span and are not square integrable, so Eq. 4.24 does not hold. This property of 

yr(t)  means that wavelet analysis Ieads to spatial localization unlike Fourier anaiysis 
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which has no spatiai !ocalization. Combining the two localization features of wavelets, 

namely fjrequency IocaIization and spatial localization, it shouid become clear that wave- 

lets have advantages of representing non-stationary signals over what Fourier andysis can 

achieve. Specific non-stationary portions of a signal can be analyzed apart from the rest of 

the signal. From these frequency and spatial localization properties of y(t) , as well as 

~ ( t )  having zero mean and finite energy, it should be realized that y(t) is likely a small 

oscillating c w e  dampened at t- . Hence, ~ ( t )  is a small wave or a wavelet as it has 

become known. 

Wavelet fûnctions are aIso oflen designed with specific properties depending on 

the task. One important property is the nurnber of vanishing moments that a wavelet pos- 

sesses, where vanishing moments are defined as follows. 

Definition 4.13: Let ~ ( t )  E L ~ ( c )  be a wavelet function. Then y( t )  is said to have m 

vanishing moments if 

An important result of Eq, 4.25 is that a wavelet with m vanishing moments is 

orthogonal to any polynomial of degree rn - 1 and is a multiscale differential operator of 

order rn wa1199]. 

A final usefiil property for y(t)  to achieve good spatial and fiequency analysis is 

that yr(t) should be well localized in the spatial domain and Y(o) should be well local- 
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ized in the frequency domain. Following this idea of ~ocalization, Daubechies developed a 

number of compact support wavelet functions [DaubgOJ, Paub921. A compact support 

wavelet is one that minimizes the span of the wavelet function in both spatial and ke- 

quency domains simultaneously. By doing this muiimization, signals can be decomposed 

into sparse sets of coefficients which helps in approximating a non-stationary signal by 

fewer coefficients; the primary goal of image compression. An example of a wavelet, the 

weIl known Daubechies 4-tap wavelet (DAUB4) Paub901, waub921 is plotted in 

Fig. 4.5- 

Time [samples] 

Fig. 4.5. DAUB4 wavelet for a unit vector in the 5th component 
of a vector of length 1024 (Le. DAUB4 es). 
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As with dl wavelets, the DAUB4 wavelet can serve as the basis f i c t ion  for 

decomposing signals. As a small example, Fig. 4.6a illustrates two scalings/translations 

of the DAUB4 wavelet. The first is the DAUB4 e5 wavelet, also given in Fig. 4.5, over a 

vector with 1024 samples. When a wavelet transform using the DAUB4 basis fùnction is 

applied to this signal it produces a vector with 1024 samples which are al1 zero except for 

the 5th component which has a unit impulse (hence the es) .  Sirnilarly, the second wavelet 

which is the DAUB4 edO wavelet over a vector with 1024 samples produces a unit impulse 

in the 40th component when transformed. When these two signals are added in the spatial 

domain, as shown in Fig. 4.6b, the resulting signal has a wavelet transform with unit vec- 

tors in the 5th and 40th cornponents. 

This discussion demonstrates how wavelets work as basis functions for signal 

decomposition through the scaling and translation of the wavelets. Seemingly complex 

looking signals can often be decomposed into a sparse set of wavelet coefficients when the 

right basis function ~ ( t )  is selected. The whole process is very similar to the scaling and 

translation of sinusoid fhctions as with the Fourier transforrn, Unlike the Fourier trans- 

form, the wavelet transform is not restricted to one basis fûnction. There are actually an 

infinite nurnber of basis functions as long as they meet the properties outlined. Selection 

of the mother wavelet is entirely dependent on the application and results will Vary 

depending on which mother wavelet is chosen- 
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Time [samples] 
1_ 

Fig- 4.6. Sample wavelet representation. 
(a) two wavelets that make up tirne domain signal and (b) time domain signal. 
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43.2 Discrete WaveIet Transform Through Filter Banks 

With the discrete nature of the array image representation discussed in Chapter 2, 

it is convenient to have a discrete version of the CWT presented in the previous section. 

MalIat describes a simple algorithm for doing a discrete wavelet transfomz @WT) 

through multiresolutioa analysis using filter b d s  Wal1891. 

Before getting into the details of the DWT, note the following definitions for 

downsampling and upsampling of a signal. These terms are used when developing 

approximation and detail signals in the DWT. 

Definition 4.14: (aAer [GoCh99]) Let { x ( n ) )  be an input sequence. Then an M-point 

decimation of { x ( n )  ) is given by 

y(n)  = x(nM) for n  E Z (4.26) 

This concept is also referred to as downsampling and can be represented diagramatically 

Definition 4.15: (after [GoCh99]) Let { y ( n ) )  be an input sequence, Then an M-point 

interpolation of { y ( n ) )  is given by 

1 0 otherwise 

This concept is also referred to as upsampling and can be represented diagramatically as 
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It is clear f h m  Deh. 4.14 that an input sequence is taken and every Mth element 

is extracted to perform an M-point decimation. With Dem. 4.15 an input sequence is 

taken and expanded by adding M - 1 zeros between the M elements to perform the inter- 

polation. 

The general procedure behind Mallat's DWT algorithm Ffa1189) is to decompose 

the discrete signal into an approximation signal A, and a detail signal W, , where s is the 

scale in the multiresolution analysis. The approximation signal A, , or lowpass signal, is 

formed by the projection of the originaI signal ont0 the space formed by the basis 

{qk , : 2 ~ ' ~ 9 ( 2 ~ t  - k);k E Z } where @ ( t )  is a scaling fuoction. The detail signal W, . or 

highpass signal, is similarly formed with the basis {yrk, - k);k  E 2) where 

~ ( t )  is a mother wavelet. Both of these bases are effectively scaled versions of Q(t )  and 

y ( t )  that have been downsarnpled by a 2S-point decimation to a lower resolution. 

A few properties of $ ( t )  and ~ ( t )  exist. Firstly, ~ ( t )  m u t  follow al1 of the pre- 

viously discussed properties of a mother wavelet for this to be a DWT. An important 

property of @ ( t )  is that it must be selected so that approximations A, are subsets of higher 

resolutions approximations As + k, ( k  > O )  E N , as follows 

More importantly, an approximation at one scale sbould be made up of the lower Ievel 

approximation and detail signals as follows 
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where @ is an operator that combines the approximation and detail signal througb the 

inverse DWT. In addition, the approximation and detail signals at a specific resolution 

should not contain overlapping components such that 

A, n W, = {O) S E  Z (4.30) 

It should also be noticed that if A, is the onginal signal, then the decomposition into 

wavelet detail signals at various resolutions is expressed as follows 

As = W s - , @ A s - ,  = W s - , @ ( W s - , @ A , - , )  

= W , - , @ W s - , @ W s - ~ @ - . -  (4.3 1 )  

The algorithm that Mallat proposed actually uses Hter banks G and H to filter the 

signal as $ ( t )  and ~ ( t )  would form A, and W, at each scale S .  To get the required rela- 

tionships as in Eq. 4.29, Eq. 4.30, and Eq. 4.3 1, Mallat showed that when a filter bank for 

~ ( t )  is developed that the foIlowing impulse response relationship between the two filter 

banks holds 

g(n)  = (-l)l-nh(i -n)  (4.32) 

where G is the mirror of H and the pair are known as quadratzue rniwor fïlters [MallS9]. 

Hence, knowing the mother wavelet ~ ( t )  , then the scaling fûnction (I (t ) can be devel- 

oped- With both filter banks in place then the DWT algorithm as depicted in Fig. 4.7 

results. Followïng Fig. 4.7, the original discrete signal is convolved with the quadrature 

mirror filter bank pairs H and G, and then decimated by a factor of 2 to get the ZS -point 

decimation. This procedure results in trvo discrete signals, A,- , and W,- , , which each 

have half the number of sarnples as A,. This process is repeated on As - to form As- 

and W s  - *, and then again on the following approximation signals until the entire signal 
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has been decomposed to the wavelet terms. Decomposition cari be stopped at any chosen 

Ievel, though will be lllnited to when the resulting approximation and detail signals have 

been decomposed down to one sample each. 

Original Signal As 
I 

t 
Approximation As-1 

+ 
Detail 1 Ws-1 

I 
I 1 

Fig. 4.7. Discrete wavelet transform using fil ter banks (afler wa1189]). 

Reconstructing of the signal is done by reversing the process depicted in Fig. 4.7. 

The approximation signals A, and W, are upsampled with a 2 -point interpolation. Then 

the upsampled versions of A, and W, are convolved again with the H and G filter 
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banks, respectively and the resulting vectors added together to form the approximation at 

the next higher resolution A, + . 

4.33 I b o  Dimensional Discrete Wavelet Transform 

With image compression and progressive image transmission being the focus of 

this thesis, a two dimensional DWT algorithm is in order. For developing a 2D DWT 

algorithrn, an important thing to note is that the 2D wavelet transforrn is separable 

rbfa1199]- If wu, s(x) 1 is an ~ d w i p a l  basis then {Y(, .), ( - d W ( ,  SI* (y) ) is an orthogo- 

nal basis for a 2D space. Given a 2D fûnction f(x,y) E L ~ ( R ~ ) ,  the function can be 

decomposed, as usual, through the following inner product 

which can be rearranged to the following 

The rearrangement of the b e r  product in Eq. 4.34 shows that the b e r  product in the 

wavelet transform is separable. Using the separability of the inner product, a simple algo- 

rithm for perfonning the DWT on images c m  be developed using only the 1 D DWT. This 

2D transforrn is done by applying the DWT filter banks f i t  on each of the rows of an 

image and then afienvards applying the D W  filter banks on each of the colurnns. This 

procedure decomposes the image into an approximation image, as well as horizontal, ver- 

tical, and diagonal details. This process is then repeated with the approximation portion of 
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the decomposition. The first three passes of the 2D DWT decomposition are illustrated in 

Fig. 4.8. 

a - A proximation of signal 
v, h, d - petail frm signai 

Original 
Image 

I 
First Pass 

- - -  

Second Pass Third Pass 

Fig. 4.8. Two dimensional wavelet transform on an image. 

As Fig. 4.9 illustrates, there is a hierarchy in the 2D DWT of an image. Each detail 

waveIet coefficient at the highest level (at the top-Ieft of Fig. 4.9) is the parent of four 

wavelet coefficients down one Ievel. Continuing on, these four wavelet coefficients are the 

parents of the sixteen wavelet coefficients at the next detail level. With this form of hierar- 

chy, a higher lever view of the signal can be made by using only some of the more global 

detail values in the top-left quadrants of this 2D DWT. More details can be bcorporated 

into an analysis by going down through the hierarchy. Effectively, this structure ailows for 

an analysis of a signal at different resolutions or scales, depending what level of lower 

details are included. This multiresolution structure will corne in useful when considering 

progressive image transmission techniques since approximations of the image can be 

transrnitted first and then various details subsequently transrnitted. 
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Fig. 4.9. Multiresolution analysis fiom the structure of the 
two dimensional discrete wavelet transfonn, 

- 4.4 Wavelet Packets and the Wavelet Packet Transform 

As noticed in the previous section, the wavelet transform consists of decornposing 

a signal using a mother wavelet y(t) - When performing the DWT described previously, 

the mother wavelet is used to decompose a signal into consecutive octave bands in the fie- 

quency domain [GoCh99]. It is sometimes desirable to obtain finer resolutions within spe- 

cific octave bands, so further spfitting of these bands cm be done by again performing the 

DWT within the band. For the DWT, this effectively results in recursively decomposing 

the detail signals in addition to the aiready decomposed approximation signal Mck941, 

Wa11991. This category of transformation is a generalization of the DWT and is referred 
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to as a wavelet packet decomposition or the wavelet packet transfomi, due to the M e r  

combinuig of extra wavelet decompositions withui octave bands. 

4.4.1 Discrete Wavelet Packet Transform Through Fiiter Banks 

The wavelet packet hansfonn (WPT) is very similar to the wavelet transform. 

Using £ilter banks, the discrete wavelet packet hansform (DWT) on a 1D signal is per- 

formed as illustrated in Fig. 4.10. This figure is similar to that of the DWT shown in 

Fig. 4.7 with the exception that at every pass, both the approximation signal As and the 

detail signal W, are decomposed instead of only the approximation signal As as in the 

DWT. The packet tmsform works by taking the original signal, passing it through the 

quadrature mirror Bter bank pair H and G , and then decimating these filtered signals by 

a factor of 2 to f o m  the various approximation afgzon and detail d$szo, signals for 

each pass and for each section of the signal. This procedure is recursively repeated for 

each resulting approximation and detail dfgzon  signal to form the full wavelet 

packet decomposition. In image compression, the important thing to realize with the 

wavelet packet transform is that the buik of the energy in the wavelet coefficients might be 

redistributed in fewer coefficients depending on the signal. This feature may allow for 

better approximations of an image to be made with fewer coefficients. 
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Level 1 

1 Original Signal 1 
I 

Fig. 4.10. Discrete waveIet packet transfonn using fiiter banks (afier Na1199J). 

4.4.2 Adaptive Selection of Wavelet Packet Bases 

While it is apparent fiom Fig. 4-10 that the wavelet packet transfonn decomposes 

signals more fully than the wavelet transfonn alone, another concept often used with 
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wavelet packets is the adaptive seIection of the waveIet packet basis, The decomposition 

shown in Fig. 4.10 shows af i l l  wavelet packet transform. Ofien, a partial, or selective, 

WPT is more usefiil in specific applications and is generally dependent on the signal char- 

acteristics. 

Full Wavelet 
Packet Transform 

Selective Wavelet 
Packet Transform 

Wavele t 
Transform 

Fig. 4.1 1. One dimensional wavelet and wavelet packet transforrn decompositions. 
(a) Discrete wavelet packet transform, 

(b) selective discrete wavelet packet transform, and (c) discrete wavelet transfom. 

For instance, Fig. 4.1 l a  illustrates the decomposition of a ID signal using the full 

DWPT as described in the previous subsection (Le. a simplified illustration of Fig. 4.10). 

When selecting the function basis using the DWPT, it may be advantageous to only 

decompose certain approximation and detail signals to a certain level, This selective 

decornposition is illustrated in Fig. 4.1 I b where some approximation and detail decompo- 

sitions are no longer decomposed M e r  at later levels. The stopping criteria for deciding 

where to end M e r  decornposition depends on the signal and the application, but can 

include factors such as entropy measures or mean squared error measures after quantiza- 
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tion [CoWi92], Wck94J. In Chapter 7 of  this thesis, multifractal measures that are used 

to evaluate image quaiïty are then used to help in determining the stopping criteria for the 

wavelet packet decomposition. It should also be noted that the standard DWT is actually a 

specific case of the selective wavelet packet decomposition, as illustrated in Fig. 4.1 lc. 

. - 
4.43 Two Dimensional Discrete Wavelet Packet Transform 

The 2D DWPT used for signals such as images is very sinlllar to that of the 2D 

DWT. As illustrated in Fig. 4.12, the fùll wavelet packet decomposition takes the image 

and in the first pass decomposes it both horizontally and vertically to obtain an approxima- 

tion image, a horizontal detail image, a vertical detail image, and a diagonal detail image. 

The DWPT decomposition is recursively repeated for these four smaIIer sections at each 

subsequent pass. This process can be compared to the 2D DWT decornposition illustrated 

in Fig. 4.8 where only the approximation portion of the signal is M e r  decomposed- 

a - Approximation of signal 
v, h, d - Detail from signal 

Original First Pass Second Pass Third Pass 
image 

Fig. 4.12, Full 2D wavelet packet decornposition. 
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Original 
Image 

I 

First Pass 

a - Approximation of signal 
v, h, d - Detail from signal 

Second Pass Third Pass 

Fig. 4.13. ExampIe selective 2D wavelet packet transform decomposition. 

The process is sirnilar for the selective 2D DWPT for a 2D signal such as an image. 

As illustrated in the exarnple decomposition in Fig. 4.13, an image is taken and the DPWT 

is applied, yielding the approximation image, horizontal detail image, vertical detail 

image, and diagonal detail image. At this point it must be decided which of these four 

smaller sections of the signal would most benefit our application with M e r  decomposi- 

tion using the stopping critena for the curent signal. Once selected, the chosen smaller 

signal portions are recursively decomposed with the DWPT and this process repeated at 

each pass. Once completed, some portions of the decomposed image will have had more 

wavelet packet transforms performed than other portions of the image. 

4.5 Summary 

This chapter has provided the background behind wavelets and wavelet packets. 

This discussion included an overview of  the properties behind wavelets as well as how ta 

decompose 1D and 2D signals using wavelets and wavelet packets. The following chap- 
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ters describe the progressive image transmission techniques developed, as well as the rnul- 

tifiactal image complexity measures developed. This expianation includes progressive 

image transmission techniques based on fiactal surface segmentation and interpolation, 

with wavelet and wavelet packet decomposition- The ideas of adaptive wavelet packet 

decomposition wili corne into play when the developed multifiactal measures are used to 

help in the selection of the wavelet packet bases to be used for a particular image. 
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This chapter introduces a new and novel approach to image compression 

PaKi961, [DaKi971 and progressive image transmission PaKi98al that has been devel- 

oped for this thesis. This rnethod is based on an interpolation scheme using fkactal sur- 

faces and will be referred to as fractal slrrface segmentation and inferpolation ( F S S I ) .  

Fractal d a c e  segmentation and interpolation allows for the representation of certaim tex- 

ture features within an image using the fractal dimension of the texture. These texture fea- 

tues  can then be reproduced in a fiactal sense to synthesize natural looking images. 

Hence, the goal is not necessarily to reproduce the textures in an image from a phce1 by 

pixel basis, but, instead to synthesize textures with sirnilar fractal characteristics that 

appear psychovisually similar to the original textures. Some of the findings and realiza- 

tions from this work with FSSI are used in Chapter 6 for the development of progressive 

image q u a l i ~  measures based on multifractal complexity measures. It must be note63 that 

the FSSI techniques described in this chapter are not currently bit rate competitive with 

other state of the art techniques such as EZW [Shap93] or SPIHT [SaPe96], but have 

potential for being combined with other techniques to improve compression- 

Of particular interest for this thesis is the development of progressive image trans- 

mission techniques. An important approach to performing progressive image transmnis- 

sion is to represent the image in a multiresolution form so that increasing levels of image 
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detail can be transmitted and reconstmcted in the image, as discussed in Sec, 2.2.1- Of 

course, many methods exist for representing an image in a multiresolution form. This 

chapter focuses on rnethods which use region segmentation of an image and then interpo- 

lation in the reconstruction process to estimate unknown values located between known 

values- To perform this estimation of the unknown values, the simplest approach is to do a 

linear interpolation between the unknown values. Other atternpts have been made using 

non-linear interpolation functions such as using B-splines Wata97J. This chapter presents 

a method of using fBm in the interpolation process as an alternative with advantages for 

representing some classes of textures, particdarly random-like textures or noise-like tex- 

tures. 

5.1 Interpolation and Fractal Interpolation 

Interpolation is the process of estimating or predicting unknown values within a 

signal that are between other known values in the signal. For instance, if given the signal 

illustrated in Fig. 5.1 then approximations of the signal can be formed by sampling the 

signal at regular intervals and performing a linear interpolation as shown in Fig, 5.2. 

X 

Fig, 5.1. Example signal to perform successive interpolations. 
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Fig. 5.2. Linear interpolation o f  example signal where sarnpling is at every: 
(a) 100 points, (b) 50 points, and (c) I O  points. 

From Fig. 5.2 it is seen that linear interpolation does produce increasingly better 

approximations of the original signal in Fig. 5.1 as the sampling interval is decreased. A 

drawback of this interpolation is perceptual accuracy is poor with only a few samples. 
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Fig. 5.3. Fractal interpolation of exarnple signal where sampling is at every: 
(a) 100 points, (b) 50 points, and (c) 10 points. 

Since there are more characterîstic features to the original signal in Fig. 5.1 other 

than straight lines, it seems logical to extend the form of interpolation to incorporate other 

features in the signal. The feature of interest for this thesis is the fractal dimension of the 
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signal, By calculating the fractal dimension of the signal in Fig. 5.1 and using this to gen- 

erate mm, then a different f o m  of interpolation can be developed, namely fractal interpo- 

lation. An example of this fiactal interpolation is illustrated in Fig. 5.3 and c m  be 

compared with the Iinear interpolation illustrated in Fig. 5.2. From a perceptual view- 

point, the fiactal interpolations in Fig. 5.3 better represent the original signal than the Iin- 

ear interpolations in Fig. 5.2. It should be noted that fractal interpolation is not limited to 

signals that are coarser and rougher such as Fig. 5.1 - Smoother s i s a l s  with fractal dimen- 

sions closer to 1 will result in fracta1 interpolations composed of straighter line segments 

forrned through the mm. Signals closer to white noise wouid be interpolated with fBm 

having a higher fractal dimension, Therefore, the ffactal interpolation can be considered a 

generdization of linear interpolation. 

1 Desired 1 
1 

Desired 

O 1 O 1 
Time [samples] Time [samples] 

(a) (b) 

Fig. 5.4. Fractional Brownian motion interpolation along a path. 
a) not along the desired path, b) superposition with the desired path. 
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Of course there are other interpoIation fhctions that can be used such as B- 

splines, Bezier curves, and higher order polynomial curves. These types of interpolation 

k c t i o n s  can stiii be used in conjunction with fiactal interpolation- This combined inter- 

polation is done by using one of the interpolation curves, Say B-splines, to get an approxi- 

mation of the signal's global path and then superposing a fractal cuve with the fï-actal 

dimension of the originai signal. For instance, Fig. 5.4a illustrates two curves: a self- 

af5.m f13m fi-actal curve. and a desired global path for the cunre. It is clear that the h c t a i  

curve, which is generated between the two endpoints of the curve, does not follow the 

desired path. By performing a superposition of the two c w e s  Fig. 5.4b, is obtained 

where the fiactal curve follows the desired path but still retains its fiactal characteristics. 

An important feature to note is that this superposition does not alter the fi-actal characteris- 

tics of the fBm curve as long as the fiactal dimension of the desired path does not exceed 

that of the fBm. This property can be seen by considering again the Hausdorff-Besico- 

vitch fractal dimension in Eq. 3.11 from Defn- 3.1. Frorn the Hausdorff-Besicovitch frac- 

tal dimension it should be noted that as s + O then N, will be dominated by the vel 

covering needed for the object with the highest fractal dimension. Therefore when mea- 

suring an object that is composed of more then one internal object, the fractal dimension is 

dorninated by the internal object with the highest fracta1 dimension. This is the case when 

using any of the curves generated through B-sphe interpolation, Bezier interpolation, and 

any high order polynomial style interpolation technique since the fiactal dimension of 

these simpler curves is 1. Of course one problem with these calculations is that having 

s -, O means that the signal being measured must be of infinite resolution for the higher 

dimension fractal to completely dominate. With the finite resolution of the images being 
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measured, it was noticed that two quantitative measures can be extracted, narnely the ta-  

turalfiactal dimension and the structural fractal dinlension [CrIv89]. The textural h c t a l  

dimension measures the fBm curve in Fig. 5.4 while the structural fracta1 dimension mea- 

sures the inverteci parabola in Fig. 5-4. In a finite sense these two rneasures do interact, 

but, the textures will still dominate although not completely suppress the structure of the 

curve [SaCh92]. Therefore, the fiactal dimension of the curve resulting from the superpo- 

sition of simpler curves with the fBm c w e  is close to the fkactal dimension for the fBm 

c u v e  itself. 

5.2 Generating Fractional Brownian Motion 

For the fiactal interpolation technique discussed in Sec, 5.1 to be usehl a method 

of generating fractal curves is necessary. Fractional Brownian motion as discussed in 

Sec. 3.4.2 can be used to generate these self-affine fractal curves for fractal interpolation. 

Unfortunately, the main formulation of fBm given in Defn. 3.8 with Eq. 3.70 does not give 

a clear way of efficiently generating fBm with an arbitrary Hurst exponent H* , and partic- 

ularly for generating s d a c e s  as is desired for images. Dealing with the stochastic integral 

in Eq. 3-70 is a bit curnbersome and does not immediateiy offer a simple approach to gen- 

erating fBm curves and surfaces. To this end, a nurnber of different techniques for gener- 

ating fBm have been developed over the years. These mcthods include the randorn 

midpoint displacement aIgorithrn [Carp80], FoFC821, [Saup88]; successive random addi- 

tions Woss851; fast fiactional Gaussian noise [Mand7l]; independent or random cuts algo- 

rithm Pand821; Fourier spectral synthesis Foss85J; wavelet synthesis Wa11891, 

FIan921; multidimensional recursive filters prBa94); and chaotic techniques LMuBa90J. 
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In this thesis the random midpoint displacement (FWPD) algorithm is used for 

generating the desired fBm fiactal curves and surfaces. Some other studies have shown 

that the "random midpoint displacement algorithm is in practice much sirnpler to irnple- 

ment, faster to generate, and results in a comparable accuracy" for generating fBm 

tStLN95f. 

5.2.1 Random Midpoint Displacement Algorithm in One Dimension 

The procedure behind the RMPD algorithm [Carp80], FoFC821, [Kins95a] for 

generating fBm embedded one dimension is illustrated in Fig. 5.5. The approach that the 

RMPD algorithm takes is to start with a coarse, low resolution curve and through a refine- 

ment process develop a high resolution curve containing the desired fiactal characteristic. 

This refinement process must be carefully performed if the self-affine property of the 

resulting fBm curve is to be maintained over a11 scales of the fBm curve, 

The algorithm begins, as illustrated in Fig. 5Sa, by starting with point A and By 

which are Iocated on the abscissa for the fBm fkactal being generated. The point B is 

found by offsetting point B9 perpendicular to the x -axis into the dimension that this fractal 

will span. This offset is deterrnined by a Gaussian random variable, n ( x ; p  = O, o) , with 

zero mean and a variance of o2 . The line segment formed by AB now completes the con- 

struction of the coarsest Ievel for the mm. 

From this point in the EBm construction, the line segment AB is broken into 

smaller pieces and then iteratively refined. The fkst step of this refinement is illustrated in 

Fig. 55b. As the name suggests for the random midpoint displacement aIgorithm, the 
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lteration O 

Point . 

Gaussain Random 4 

Variable 

Offset 
p Point 
18 

,- - - - 

lteration 1 

lteration 2 

(cl 

Offset 
2 Point 

Gaussian 
Dis placement 

of Midpoint 

; - r  
L-- Initial Scalina of 

C 
C 

H Gaussian scaled 

where H* is the 
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Fig. 5.5. Midpoint displacement algondun for generating fiactional Brownian motion. 
(a) initial setup, @) refinement iteration 1, and (c) rehement iteration 2. (after D s 9 5 a l )  
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midpoint C' dong the line segment AB is found and then this point is displaced with a 

random Gaussian variable to get the new point C. For the purposes of this thesis, this dis- 

placement will always occur perpendicular to the abscissa as illustrated in Fig. SSb, 

Fournier et al. suggest that this displacement can also occur perpendicular to the curent 

line segment under consideration FoFC821. To achieve the appropriate scaling for fBm 

the randorn Gaussian variable must be scaled as s h o w  in Eq. 5.1 for this first iteration 

with i = 1 fVoss851 

n(x;p  = 0 , s )  displacement,, , = 
J-2 

As c m  be seen in Eq. 5.1, the scaling is dependent on the Hurst exponent H* so that dif- 

ferent levels of fBm can generated. Recal that the Hurst exponent is related to the fractal 

dimension and the spectral exponent according to Eq. 3.78. In the case of the fBm curves 

being generated, E = 1 for Eq. 3.78. 

Note that the scaling factor in Eq. 5.1 is only valid for the first stage of the RMPD 

algorithm. This equation anses because Mandelbrot and van Ness [MaVa68], Wand851 

showed that any interval t in the fBm has a variance related to the foIlowïng equation. 

(IBH(t) - BH(0)I ' )  = 02t2H* (5.2) 

When splitting up the fBm curve recursiveIy in half, this gives a scaling of the Gaussian 

random variable with variance 02 at the (i - 1 ) th stage to be poss85] 



Progressive Image Transmission Ch. 5: Fnctal Surface Segmentation and Interpolation 

So, at the first stage the scaling is done by the standard deviation of JTi. The 

first iteration of the fBrn refinement process is now complete. 

M e r  the first iteration, subsequent refhement iterations follow a similar procedure 

of recursively h d i n g  the midpoint of each Zuie segment and perfomiing the midpoint dis- 

placement. The second iteration of this refinement is iltustrated in Fig. 5%. In this fig- 

ure, line segment AC and CB have their midpoints D' and E', respectively, displaced 

perpendicular to the abscissa by a Gaussian random variable. For this second iteration and 

al1 subsequent iterations the scaling factor has changed. Ln this case the displacement for 

al1 subsequent iterations i is expressed as 

This equation immediately follows from the standard deviation by taking the square root 

of additional stages in Eq. 5.3. This scaling of the Gaussian random variabIe allows for 

proper scaling so that the fBrn generated remains with the sarne Hurst exponent through- 

out al1 scales [Voss85], [PeJS92, p. 4951 and hence the fBm has the proper self-affine kat- 

ta1 characteristics. This refinement process is continued until the desired resolution is 

obtained. 

The description of  the midpoint displacernent algorithm for fBrn curves with 

E = 1 in the E t 1 Euclidean dimension is now completed. The next section describes 

extensions needed to f o m  a two dimensional midpoint displacement so that surfaces can 

be generated with fBm characteristics as opposed to only curves. 
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5.2.2 Random Midpoint Displacement Algorithm in ï b o  Dimensions 

Generating fBm sudàces using the RPMD is similar to that for generating fBm 

curves. Figure 5.6 illustrates one method for generating fBm surfaces based on triangle 

partitioning [FoFC82], [Saup8 81. Quadrilaterals, which are sometimes convenient when 

working with pixel arrays, can also be considered, but their partitioning is a Little more 

complex than that for triangle partitioning poFC82 1. 

(a) lteration O (b) fteration 1 (c) Iteration 2 

Fig. 5.6. Fractional Brownian motion surfaces through midpoint displacement. 
(a) initial setup, (b) rekement iteration 1, and (c )  refinement iteration 2. 

At the initial setup of the RMPD for surfaces, as illustrated in Fig. 5.6a, a triangle 

is established in the ernbedding dimension sirnilar to how the initial line segment was set 

up in Fig. 5.5 for fBrn curves. The initiai surface starts in the xy-plane in this three 

dimensional space (note that E = 2 for the E + 1 Euclidean space of Eq. 3-78). 

The midpoints along each of the three triangle edge line segments are found and 

then displaced along the z -mis by the scaied Gaussian random variable using Eq. 5.1, 

This process segments the initial triangle into four srnailer triangles as iIlustrated in 
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Fig. 5.6b. It should be noted that the shading of the triangles in Fig. 5.6 is solely to help 

illustrate the different triangles in the surfaces. 

Figure 5 . 6 ~  illustrates the second recursive iteration of the RMPD on each of the 

four resulting triangles in Fig. S.&. The displacement of  the midpoints in the four trian- 

gles is again done dong the z -axis, but, this tirne using the scaling factor in Eq. 5.4 as was 

done in the case for fBm curves. Again note that the displacement couid be made perpen- 

dicular to the triangIe surface itself, but, this would cause confusion since triangIe surfaces 

adjoin with each other and then some decision would have to be made as to how to com- 

bine the two surfaces' normals. Also, displacement according to surface perpendiculars 

would cause the surface to no longer be a function in z = f (x, y). Limiting the displace- 

ment in the z -axis direction only elhinates these two problerns- Similar to fBm curves, 

this process of midpoint displacement is recursively repeated with each of the subsurfaces 

mtil the desired surface resolution is obtained. 

Fig. 5.7. Example of creasing problem with two dimensional 
random midpoint displacement. 

(a) two adjoining surfaces, and (b) disjoint surfaces after midpoint displacement. 
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A special note must be made about implementing the RMPD aigorithm for sur- 

faces. Treating each of the generated surfaces separately, as through a recursive process, 

results in disjoint or creased fractal çurfaces as demonstrated in Fig. 5.7. Figure 5.7a 

shows two adjoinîng triangle surfaces that have become disjoint through the RMPD algo- 

rithrn in Fig. 5.7b. When these surfaces are used as image greyscale intensities, as is done 

later in this chapter, this disjohtness or creasing manifests itself as triangle artifacts 

throughout the image as demonstrated in Fig. 5.8a. This creasing and disjointness in the 

d a c e s  occur when the RMPD algorithm is applied separately to each subsurface without 

considering neighbouring surfaces. To eiiminate these artifacts, the RMPD algorithm 

must allow neighbouring surfaces to properly share a common edge when performing the 

micipoint displacement. Using this strategy with the sanie parameters as in Fig. 5.8a, 

Fig- 5.8b was produced which does not contain the sarne triangle artifacts. Figure 5.8b is 

not as visually disturbing as Fig. 5.8a and the fractal dimension desired for the corre- 

sponding Hurst exponent, H* = 0.5 for this exarnple, is properIy maintained. 

Fig, 5.8. Example images generated using 2D RMPD with H* = 0.5 (Brownian motion) 
and average greylevel value half of fùll scale. 

(a) recursive RMPD producing creasing, and (b) RMPD with creasing eliminated. 
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To give a sense of some of the types of surfaces and textures possible with the fBm 

surface interpoIation, an example set of fBm surfaces is iUustrated in Fig. 5.9. Shown, 

f?om left to right and top to bottom, are 25 sarnple fBm surfaces with a mean pixel inten- 

sity of half scale and a Hurst exponent H* range fiom 0.04 to 1.00 in increments of 0.04, 

It is surfaces similar to these that will be used for the FSSI image compression technique, 

One difference will be that the surfaces will be of varying sizes. The surfaces will act as 

interpolating surfaces sirnilar to what was done in Fig, 5.4 with fractal interpolating 

curves. Hence, the surfaces will follow the contours of the image being represented. 

Fig. 5.9. Example surface tiling showing a set of 25 possible fBm surface with a 
Hurst exponent ranging fkom 0.04 to 1 .O0 in 0.04 increments 

(from Ieft to right and top to bottom). 
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5.3 Measuring Fractal Dimension Locally in Images for FSSI 

Having an interpolation scheme such as the fracta1 interpolation scheme presented 

in Sec. 5.1 is only usefil if the fracta1 dimension of the signal can be measured. Before 

modeling images and textures with fkactal surfaces, their fiactal nature must be deter- 

mined. This information is found by calculating the fracta1 dimension of Iocaiized regions 

wirhin the image. Many algorithmic approaches exist for calculating the flacta1 dimension 

locally within an image including those from PNHA841, PaKe851, KeCC891, [CrIv89], 

[SaCh92], [ChSagS]. This thesis takes the approach of using the Rényi dimension spec- 

t m  Dq to calculate the fmctal dimension in local regions of an image. For the purposes 

of the FSSI technique developed in this chapter, the texture measurements are lirnited to 

single fractals. Namely, the Rényi dimension spectrum is used with q = 1 . Rewriting 

Eq. 3.45 for the Rényi dimension spec tm,  the following expression is obtained for 

D,=,- 

When q = 1 for the Rényi dimension spectnun, the resulting fractal dimension is gener- 

ally referred to as the information dimension because of the use of Shannon entropy 

H ( X )  from information theory. It must be noted that the probabilities p J x )  in Eq. 5.5 

are dependent on the curent scale of measurement. For the developed FSSI techniques, 

which are described in the following section, the scale of measurement is lirnited to 5 x 5 
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blocks of pixels to get the local dimension calculations. For each 5 x 5 block being mea- 

sured in an image, the probability p,(x) is calculated as 

pixel(x) - min [pixel (i) ] 
vi 

PJx) = r 1 

1 (i) - min [pixel (i) ] vi 

where pixel(x) is the centre pixel in the 5 x 5 block and the sumniation goes through 

each of the 25 pixels in the 5 x 5 block and adds up the greyscale intensity values. The 

pixel greyscale values in Eq. 5.6 also have the minimum pixel value in that 5 x 5 sub- 

tracted. This subtraction will partially normalize the texture so that simiiar textures that 

are very dark versus the sarne texture that is very bright results in the same fi-actal dimea- 

sion. Note that this formulation of p,(x) ensures that p J x )  = 1 so that Eq. 5.5 can 
X ' = X  

be rewritten using a complete probability distribution as follows 

The following section describes the FSSI techniques developed using the idea of 

fiactal surface interpolation and this form of local fracta1 dimension calculation. 

5.4 Image Compression and Progressive Image Transmission 

using Fractal Surface Segmentation and Interpolation 

The goal behind fiactal interpolation and h c t a l  surface interpolation is to repre- 

sent a curve or surface faithfully fiom a perceptual point of view using fracta1 curves and 
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surfaces, For image representation specScally, the goal is to represent the surfaces of an 

image projection in a perceptually faithfiil manner. For instance, the two images displayed 

in Fig. 5.10 are of the originaI image of lena &ena99], pSC99] in Fig. 5.10a and its 

three dimensional projection as a d a c e  plot in Fig. 5.10b. The goal therefore is to fhd a 

method of using fracta1 surface segmentation and interpolation to represent the this surface 

projection using fBm surfaces that model the h c t a l  nature of the surface projection. This 

segmentation can follow a process similar to the feature extraction as used by Ferens and 

Kinsner FeKi951 on surface plots. The interpolation c m  foliow a process similar to the 

natural scene description done by Pentland [Pent84], with modifications so that explicit 

surface contours can be generated that model specific image surface plots. The next two 

subsections present two techniques deveIoped in this thesis for this image segmentation 

and interpolating representation using fi-actal dimensions and mm. 

Fig. 5.10. (a) Image of lena Pena991, pSC991 and 
(b) a three dimensional swface plot of lena. 
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5.4.1 FSSI Image Representation/Compression Technique 1 

With the tools in place for generating fiactal surfaces of a desired dimension and a 

method for measuring the fractal dimension of local regions in an image, a scheme i s  now 

developed for image representation and compression which was first described by 

Dansereau and Kinsner PaKi961. The high-level approach taken in this image compres- 

sion scheme is to segment an image s d a c e  plot, such as in Fig. S.lOb, into regions 

according to areas of uniform fiactal dimension. The surfaces in these regions of d o m  

fiactality can then be represented as fBm surfaces with interpolation being performed 

between the edges of the regions. 

Different approaches can be taken to implement this hi&-level view of this first 

FSSI image compression scheme. A f i s t  step is to calculate the local fiactal dimensions 

throughout the irnage. This is done, as partially described in Sec. 5.3, by taking a 5: x 5 

block mask of pixels and cakulating the fiactal dimension, D,, of that block accordimg to 

Eq. 5.7 in combination with Eq- 5.6. The calculated fractal dimension is recorded for that 

block and then the block is shifted by one pixel to get a complete coverage of the image 

being analyzed. Using a 5 x 5 sliding window block to perform the fiactal dimension cal- 

culations on an N x M image results in an (N - 4) x (M - 4) matrix of fiactal informa- 

tion dimension values for local calculations throughout the image. 

With a matrix of local h c t a l  dimensions now calculated, the next step is to decide 

on how to segment the irnage into regions of unifom fractality. Different techniques c m  

be used such as edge detection, region growing, or split-merge algorithms, but, for sim- 

plicity and for proof of concept the segmentation of the image is done using a triangle tes- 
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sellation, That is, the mat& is split into a set of triangular regions of varying sizes, This 

method will later simpl* the generation of fBm surfaces since the RMPD algorithm 

described in Sec. 5-2.2 is based on triangle surface partitioning. 

(a) Step 1 

(c) Step 3 (d) Step 4 

Fig. 5-1 1. Exarnple tessellation of an oval. 
(a) Step 1, (b) Step 2, (c) Step 3, and (d) Step 4. 

Representation of this triangle tessellation is of paramount importance to achieve 

compression. The approach taken for this FSSI technique is ïilustrated in Fig. 5.1 1. 

Shown in Fig. 5.1 la  is an exarnple fractal dimension matrix which happens to contain a 

region of unifom fractality in the shape of an ov2l versus the background which has a dif- 

ferent unifonn fiactality. The tessellation scheme used first splits the matrix into the two 

initial triangles as shown. The algorithm then continues by checkïng each triangle and 

deciding whether the region within the triangle is of uniform h c t a l  dimension. if the 

region within the triangle does not have uniform fiactal dimension then the triangle is par- 
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titioned into four equal sized triangles, as illustrated in Fig. 5.1 1 b. If the triangle region is 

already uniform then no M e r  partitioning is required. This process is recursively 

repeated with each triangle. A sample image tessellation of lena, shown in Fig. 5.12, 

illustrates how an image can be subdivided using this triangle tessellation scheme. 

Fig. 5.12. Sample tessellation of lena with triangles. 

Efficient encoding of the hiangle partitioning is done by representing the partition- 

ing as a quad-tree, that is, a tree structure where each node has four children nodes, with 

each node representing one triangle. Only 1 bit is then required to determine whether a 

specific triangle is a leaf node in the quad-tree or if the triangle is further partitioned with 

four children triangles. A slightly more complicated scheme can be used where the trian- 

gle is partitioned into unequal sized triangles. This approach cm produce a more adaptive 

rnatrix tessellation with fewer triangles depending on the layout of the fracta1 dimensions, 
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but, would increase the bit rate shce the sues of the triangles in each partitionhg would 

somehow have to be represented (Le. more than l bit). 

With the fracta1 dimension matrix now tessellated with triangles, the next step 

required for the fractal surface interpoIation is to determine sets of points to interpolate 

between. The tessellation in the fractal dimension matrix alone only gives uniform 

regions of fractal complexiw in each triangle. So, points must be chosen fkom the original 

image so that the a fractal surface with the corresponding fractal dimension c m  be gener- 

ated to interpolate between these points. The easiest approach to this requirement is to 

encode the greyscale pixels that correspond to the corners of ail of the triangles in the fiac- 

ta1 dimension matrix tessellation. Considering Fig. 5.6a, this is equivalent to setting the 

three corners of the triangle to a height equal to the corresponding greyscale pixel values 

from the original image. Hence, there are three points fonning a triangular region with 

which to perform the fractal surface interpolation. With the three interpolation points for 

the triangle and the fiactal dimension for the surface, the RMPD algorithm can be per- 

formed to synthesize a surface that interpolates the three points. This fiactal surface 

should be perceptually better than if only a smooth surface was interpolated between the 

three points. Doing this surface interpolation for the entire image will reconstruct an 

approximation to the original image. 

A data flow chart for the entire encoding and decoding phase of this FSSI tech- 

nique is illustrated in Fig. 5.13. The process starts with the original image as input. 

Localized fi-actal dimension rneasures are calculated for the image and in this case stored 

as the Hurst exponent H* since this is what the RMPD fkom Sec, 5-2.2 uses (recall that 
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the fi-actal dimensions can be related to H* through Eq, 3.78)- The h c t a l  dimension 

matnx is then tessellated into uniform regions of fractaiity, with the inclusion of an extra 

stopping criteria when a triangle partitioning reaches a desired resolution, The tessellation 

information, Hurst exponent for each tesseliating triangle, and interpolation points fiom 

the corners of each tessellating triangle are then encoded into the output data Stream. Fur- 

ther lossless encoding can also be performed on the output data stream. 

Input lmage 

Reconstructed 
lmage 

: Decoder 
t 
I 
1 
I 
1 
I 

( Fractal Surface 
Interpolation 

Interpolation 

-l 
I I .  I l 

Exponents I 

Fig. 5.13. Data flowchart of the first FSSI image compression~reconstruction scheme. 

For the image reconstruction, the tessellation information, interpolation points, and 

Hunt exponent are extracted fiom the data stream for each of the tesselIating triangles. 

The tessellation quad-tree binary decisions, encoded as 1 bit yeslno answers, are used to 

detennine the triangle Iayout in the fractal dimension matrix, To the triangles the interpo- 

lation point intensities are overlaid at the corners of the triangles and the Hurst exponents 
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associated back to the correspondhg triangles. Using this decoded data Stream, the 

RMPD algorithm can be performed to synthesize the fi-actal s d a c e s  betweeo the interpo- 

lation points to reconstruct the image. 

5.4.2 FSSI Image Representation/Compression Technique 2 

A second approach to performing the fracta1 surface interpolation, fkst proposed 

by Dansereau and Kinsner [paKi97], is presented in this section. This technique has 

many siniilarities to the technique presented in Sec- 5.4.1, but, in addition the fracta1 sur- 

face interpolation is superposed over a wavelet based approximation of the image, sirnilar 

to what was done with the curve superposition in Fig. 5.4 of Sec. 5.1 - 

The data flow for this second FSSI technique is illustrated in Fig. 5.14. The com- 

pression, or encoding stage, starts by taking the input image and passing it through two 

separate decomposition processes. The first decomposition process is to calculate the 

local fiactal dimensions within the image in the sanie manner as is done in Sec. 5.4.1. The 

result is a two dimensional matrix containing local Hurst exponent N* measurements that 

are later used in the FSSI reconstruction phase. This Hurst exponent matnx is passed 

through a DWT, as described in Sec. 4.3.3. The discrete wavelet coefficients fiom this 

transformation then have a hard threshold applied which zeroes out any wavelet coeffi- 

cients with a magnitude srnaller than a user chosen threshold value- This hard threshold of 

the coefficients forms an approximation of the matrix in the form of the non-linear approx- 

imation discussed for Eq. 4.12. The result is then efficiently encoded using an algorithm 

developed for the DWT by Shapiro [Shap93] known as embedded zerotree coding (ZT), 

which is discussed in more detail in Chapter 7. For now, just consider the zerotree coder 
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to be an efficient method of representing discrete wavelet coefficients for progressive 

transmission. Finally, the output of the zerotree coder is passed through a lossless entropy 

coder to remove any M e r  redundancy. In the experiments performed in Sec. 5.5.2 using 

this FSSI technique, an adaptive arithmetic coder, as descnbed by Witten, Neal and Cleary 

WiNC87], is used as this final stage of lossless entropy coding. 

I 
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Local Fractal I I 

Dimension I 

[Losçlesçl j TI Entropy l - ~  
Encoding 

f Decoder 

~econstructed: 
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1 Stream I 

I 

Fig. 5.14. Data flowchart of the second FSSI image compression/reconstniction 
scheme with wavelet support. 
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The second half of the encoding process is shown in the bottorn branch of the 

encûder stage. This stage of the encoding starts by downsarnpling the input image by per- 

fonning an M-point decimation (refer to Defn. 4.14) on ail rows and columns of the 

image. The level M of downsarnpling affects the compression ratio and reconstruction 

quafity of the irnage, and is chosen by the user. Similar to the Hwst exponent rnatrix, the 

downsampled image is passed through a DWT, bard thresholded, zerotree encoded, and 

then lossless entropy encoded using the adaptive arithrnetic coder. The compression side 

of the image encoding process is now complete. 

Image reconstniction reverses this process and perfoms the FSSI as illustrated in 

the bottom half of Fig. 5.14. The compressed data stream is decoded through the lossless 

entropy decoder. Then the downsampled image components and the Hurst exponent corn- 

ponents are separated and each passed through the inverse zerotree (IZT) decoder and the 

inverse discrete wavelet transfom (IDWT). The downsarnpled image data is upsampled 

(refer to Defn. 4.15) back to its original size, This upsampled image now contains the 

required interpolation points for the fractal surface interpolation. 

Regions of uniform h c t a l  dimension in the Hurst exponent matrix are then identi- 

fied. With the interpolation points and regions with uniform Hurst exponents identified, 

fiactai surface interpolation is then perforrned superposing the results on the approxima- 

tion of the image that had been downsampled in the encoding phase. Effectively, as with 

Fig. 5.4, the discrete wavelet approximation of the image is used as the overall path 

desired for the surface and the Hurst exponents are used to add in extra fractal characteris- 
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tics according to the original image. The reconstruction phase of the image is now com- 

pleted. 

5.43 Progressive Image Transmission with FSSI Techniques 

The two FSSI techniques presented in Sec. 5.4.1 and Sec. 5.4.2 can easily be 

adapted to allow for progressive image transmission as is described by Dansereau and 

Kinsner PaKi98al. For the technique presented in Sec. 5.4.1, the quad-tree partitioning 

into a triangle tessellation can inherently be sent progressively because of the partition 

process. To make the rest of the algorithm progressive, the interpolation points at the cor- 

ners of triangles must be transmitted as the partitioning occurs as well as the Hurst expo- 

nent for each triangle. To improve encoding efficiency, the full Hurst exponent does not 

need to be sent, but, instead the change in the Hurst exponent. That is, the difference 

between a child triangle's Hurst exponent and the parent triangle's Hurst exponent 

expressed as 

For the FSSI technique presented in Sec. 5.4.2, the zerotree coding technique 

developed by Shapiro [Shap93] is progressive by design. Therefore, reconstruction of the 

image c m  continuously be done as more and more data is received at the decoding stage. 



Progressive Image Transmission Ch. 5: Fnctal Surface Segmentation and LnterpoIation 

5.5 Experirnental Results with the FSSI Techniques 

A number of experiments were perfonned with the FSSI techniques described in 

Sec. 5.4 to determine any important properties of these techniques. The following two 

subsections descn'be these experiments and present results fiom the experiments. 

5.5.1 Experirnental Results for FSSI Technique 1 

Three images, lena, peppers and baboon, as shown in Appendix A, were used to 

test the first FSSI image compression scheme. These images are 512 x 512 8-bit grey- 

scale images. To start, a number of test image compressions were perforrned to check the 

basic perceptual quality of the image reconstmctions. To illustrate the quality of the 

image reconstructions, a sample of these results for lena are provided in Fig. 5.15. Shown 

are reconstructions of the lena image with 25.34 dB PSNR at 0.450 bpp, 27.09 dB PSNR 

at 0.665 bpp, and 29.74 dB at 1-303 bpp. These sarnples show that some triangle and 

smudging artifacts appear at smaller PSNR values in the images but that none of the sen- 

ous surface creasing as demonstrated in Fig. 5.8a occurs. 



Progressive image Transmission Ch, 5: Fracta1 Surface Segmentation and Interpolation 

(a) Original image (b) 25.34 dB PSNR at 0.450 bpp 

(c) 27.09 dB PSNR at 0.665 bpp (d) 29.74 dB PSNR at 1.303 bpp 

Fig. 5.15. Sample image reconstructions of lena. (a) original image 
(b) 25.34 dB PSNR at 0.450 bpp, (c) 27.09 dB PSNR at 0.665 bpp, and 

(d) 29.74 dB PSNR at 1.303 bpp. 

With the basic image reconstruction verified for the FSSI image compression 

scheme, a number of image compressions and reconstructions were performed on the test 

images to evaluate the compression performance. These experiments were done by vary- 

ing the sensitiviv of the image tessellation to the following: (1) the relative uniformity of 
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local fiactal dimensions calculations and (2) the minimum allowa%le triangle size. Both of 

these are factors in the tessellation of an image being compresseci- The relative unifonnity 

of local fractai dimensions is important since some criteria needs to be in place to deter- 

mine whether a triangle needs to be fiirther subdivided. This decision c m  be made by 

enswing that au fractal dimensions in a region fa11 within a certain small range of values. 

The minimum alIowable triangle size affects the resolution in the k a 1  image compression 

and hence will affect the bit rate for the compression. 

Results of the peak signal-to-noise ratio versus bits per pixel for these experirnents 

are given in Fig. 5.16- Lines have been fitted to the data points to show the trend in PSNR 

as the rate in bpp increases. As expected, for each of the test images the PSNR improves 

as the bpp increases. From the three plots, lena and peppers have similar P S N R  values 

over most of the range of bpp values unlike the plot for baboon which has much lower 

PSNR values than lena and peppers. It is also noted that below approximately the 0.3 

bpp mark, the PSNR drops significantly for al1 three images using this FSSI technique. 

This PSNR drop is prirnarily due to tbere not being enough data to reconstmct rnuch of the 

image. 
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Fig. 5.16. Plots of PSNR vs. bpp experimental results with 
FSSI technique 1 on the images 

(a) lena, (b) peppers, and (c) baboon. 
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The baboon image results in PSNR rneasures consistentiy 5-6 dB below that o f  

lena and peppers. This difference c m  be explained by the relative fkactd complexity of 

the baboon's hair in the image (refer to AppendYt A). As indicated in Chapter 3, 

smoother objects wiil typically have a smaller h c t d  dimension where rougher objects 

will typically have a higher fracta1 dimension. The baboon's hair in the image is rnuch 

closer to a white noise type surface then Say a smoother bfack noise type surface. This 

observation leads to the question as to why the PSNR for the baboon image is consis- 

tently lower then that of fena and peppers, which are composed much more of smoother 

surfaces. 1s h c t a l  surface interpolation lirnited only to smoother surfaces versus the 

rougher surfaces as in baboon's hair? C o n s i d e ~ g  that the FSSI scheme should be able 

to statistically mode1 the baboon's hair just as well as lena and peppers fiom a fractd 

point of view, this drop in PSNR image quality seems out of place. 

The problem lies in what PSNR is actually calculating- Consider the equation for 

PSNR in Eq. 2- 1 1 - It should be reaiized that PSNR eflectively measures the pixel energy 

differences throughout the image reconstruction on a pkel &y pkel basis. This factor is 

key to understanding why rougher surfaces Iike the baboon's hair have a rnuch Iower 

PSNR using this FSSI algorithm. The fractal surface interpolation attempts to synthesis a 

surface between the interpolation points with the same fiactal characteristics as in the 

original image. The hope is that this surface will be perceptuaily similar to the original. 
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(a) Original image of Lena (b) Image of Lena shifted by one pixel 
PSNR = w PSNR = 25.4385 dB 

Fig. 5.17- (a) Original image of Lena and (b) image of Lena translated 
by one pixel diagonally down to the right, 

An important realization is that this interpolation does not attempt to make specific 

pixels a specific value. in a rough surface, one pixel rnay be very bright while the neigh- 

bouring pixel may be very dark. The fracta1 surface interpolation will recreate the rough 

surface, but, having specific pixels as brïght or dark is not guaranteed even if the percep- 

tua1 nature of the surface is similar to the original. Ln other words, the fBm generation has 

a tendency to create perceptually sùnilar surfaces but not necessarily exact pixel intensi- 

ties. Therefore, in terms of the FSSI technique developed, the PSNR measure is not suit- 

able as an image quality measure. This statement can be emphasized by considering what 

happens with the PSNR measure when translation of the irnage occurs, which is in essence 

what occurs with the FSSI technique on a local scale. For instance, consider the two 

images in Fig. 5.17 which are the original image of Lena and the image of Lena shifted by 

one pixel diagonally down and to the right. Since there is no noise for the original image, 
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the PSNR is infmite. For the image that has been translated by one pixel, the PSNR is 

25.4385 dB. From the general nile of thumb use of PSNR, this PSNR suggests an image 

that is of perceptudy poor qudity compared to the original image. This is obviously not 

the true when the perceptual quality of the two images are compared. From the reaiization 

that PSNR is an unreliable indicator of image quaIity for the FSSI technique, Chapter 6 

explores other measures more suitable for compression techniques such as FSSI. 

As an additional experiment, the Shannon entropy (Eq- 3.19) of the output data 

streams was measured and compared with the compression rates obtained. Depending on 

the data compression scheme used, an average boost of 1 : 1.25- 1 : 1.40 extra compression 

over the original output data Stream would be obtained- This wouid bring the bit rate 

down from, for example, 0.5 bpp to 0.35 bpp- 

5.5.2 Experimental Results for FSSI Image Compression Technique 2 

A number of experiments were perforrned with the second FSSI image compres- 

sion scherne on the 512 x 512 8-bit greyscale image of lena, which is shown in 

Appendix A. Of interest is the compression rate in bpp versus the reconstruction PSNR, 

as the input parameters of the compression are changed, 
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(a) Original image (b) 26.033 dB PSNR at 0.2528 bpp 

(c) 26.639 dB PSNR at 0.5497 bpp (d) 26.9889 dB PSNR at 0.7737 bpp 

Fig. 5.18. Sample image reconstructions with FSSI technique 2 on image of lena. 
(a) original, (b) 26.033 dB PSNR at 0.2528 bpp, 

(c) 26.639 dB PSNR at 0.5497 bpp, and (d) 26.9889 dB PSNR at 0.7737 bpp. 

To demonstrate the image reconstniction with this FSSI technique, Fig. 5-1 8 pre- 

sents three different image reconstructions of lena at different bits per pixel. The e s t  

reconstruction shown in Fig. 5.18b is iena at 0.2528 bpp with a PSNR of 26.033 dB. This 
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is one of the higher compression rates achieved -where the image is still recognizable. The 

textures are srnudged throughout the image and some artifacts arise near edges at region 

borders where the Hurst exponent is different. The second image shown in Fig. 5.1 8c is 

lena a t  0.5497 bpp with a PSNR of 26.639 dB. This image has fewer artifacts compared 

to Fig. 5.18b since some extra textures are visible such as in the hat and the edge of the 

scarf around the base of the hat, Also, some of the artifacts fkom Fig. 5.1 8b have disap- 

peared such as those along the white bar running down the left side of the image. More 

definition exists in the feathers and the curved texture of the shoulder is sharper. Finally, 

Fig. 5.18d shows lena at 0.7737 bpp with a PSNR of 26.9889 dB. Again, the textures 

irnprove while some of the artifacts disappear. In this case a gain of less than 1 dB of 

PSNR is obtained by tnpling the bit rate. This result shows that this technique in its cur- 

rent state still requires careh1 selection of parameters to get good image reconstnictions at 

a low bit rate. 

Since a Iarge increase in the nurnber of bits required versus the increase in PSNR is 

noticed with the sarnple reconstmctions in Fig. 5.18, expennients were designed to test 

how the different input pararneters affect the image reconstructions, For the experimenta- 

tion, there are three parameters that affect image compression. The hrst parameter is the 

Ievel the input image is downsampled before being passed through the DWT- The two 

other pararneters are the threshold values used at both zerotree coding stages. Along with 

these parameters at the compression stage, there is also one hidden reconstruction parame- 

ter for the region growing process. This variable controls the region growing process for 

deciding what is considered a uniform region in the Hurst exponent matrix. 
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Fig. 5.19. Experimental results for FSSI technique 2 with 
Hunt exponent quantization = (a) 0.05,@) 0.1, and (c) 0.2. 
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The main set of experhnentai results are shown in the three plots in Fig. 5.19, 

These plots show the PSNR of the image reconstruction versus the compression rate in 

bpp. Focusing on Fig- 5-19% it is evident that the plot has three separate data regions. 

These regions are labelled t 0, t 1, and t 2 and indicate the level of downsampling/upsam- 

pling done with the input image at the compression and reconstruction phases. Each of 

these regions contain seven curves which represent, fiom left to right, decreasing zerotree 

threshold values for the downsampled image (64 to 1 by powers of 2)- Within each curve, 

fiom the bottom of the curve to the top of the curve, are the values for decreasing zerotree 

threshold values for the Hurst exponent rnatrix (64 to 1 by powers of 2). Each of the three 

plots in Fig. 5.19 have these characteristics except that the Hurst exponent quantization 

fevel at the region growing stage during reconstruction is 0.05,O. 1, and 0.2 for Fig. 5.1 9a, 

Fig. 5- 19b, and Fig. 5.19c, respectively. This Hurst exponent quantization dictates the 

range of Hurst exponent values to pass as a uniforrn region of fkactal dimension measure- 

rnents. 

As the plots in Fig. 5.19 show, there is a 3-6 dB difference in PSNR going fiom no 

downsampling, ) 0, to a dyadic downsampling, ) 1, and 3 4  dB difference going fiom a 

dyadic downsampling, t 1, to a quadratic downsarnpling, t 2, This variation is understand- 

able since downsampling the image removes information so the reconstruction quality will 

degrade. 

When the zerotree threshold for the downsampled image is decreased, the charac- 

teristic cuve moves up and to the right (i.e. qualiq gets better, but the coding rate 

increases). Also, when the zerotree threshold for the Hurst exponent matrix is decreased, 
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the quality of the reconstruction increases, whiIe the rate increases. These results are 

expected since higher resolutions obtained from the zerotree coders would irnprove the 

image reconstructions while aIso increasing the nurnber of bits required. An interesting 

point to note is that there is a signifiant knee in each of these curves. This knee is a tran- 

sition point between the two main processes in the reconstruction of the image- Below 

this knee point the major contributing factor in the reconstruction quality is the Hurst 

exponent matrix. Above this knee point the region growing quantization level in the Hurst 

exponent matrix starts to work against the improved accuracy in the downsampled image, 

This influence causes the reconstruction quality to begin to plateau. Therefore, the opti- 

mal operating point for the best reconstruction results versus compression rate is at the 

knee points in these curves. 

Another interesting observation from the three plots in Fig. 5.19 is that the PSNR 

value decreases for al1 of the curves as the quantization range for the Hurst exponent 

matrix increases. Again this is expected since a coarser Hurst exponent representation 

results in a less defined fractal surface reconstruction. A balance must be achieved to keep 

the quantization level high enough so that the enhanced texture benefits fiom FSSI are 

realized, but, not so high as to Lose the detail within the image through the random process 

of FSSI. Additionally, the quantization must not be so low as to rely heavily on the down- 

sarnpled image for interpolation points. 
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Fig. 5.20. Knee points for different Hurst exponent quantization levels and 
downsampling levels for FSSI technique 2. 

The plot in Fig. 5.20 gives a more clear relationship between the optimal operation 

point versus Hurst exponent quantization. In this figure, the knee points for each of the 

curves from Fig. 5.20 have been extracted and plotted, forming curves with other knee 

points having the sarne Hurst exponent quantization (0.05,O. 1, and 0.2). These curves are 

grouped according to the downsamplinghpsampling level (f0, t 1, and t2) used in the 

experiment. It is again clear that the quantization level of the Hurst exponent matrix plays 

an important role shce  the smaller the quantkation, the better the reconstruction. It 

should also be noted that there is actuaiiy a slight decrease in reconstruction quality for 

downsampling levels 1 1 and ) 2 resulting in a slight hump in the curve. This feature is also 

apparent in Fig. 5.19 for these downsarnpling levels. These humps are likely due to an 
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optimal point of operation for the implemented FSSI technique. The implemented FSSI 

operates with a minimum ïesolution area for the surfaces it generates, primarily to avoid 

triangles that are long and thin. 

5.6 Summary 

A main focus of this chapter is the presentaltion of a new form of image compres- 

sion and progressive image transmission based on FSSI done with fiactionai Brownian 

motion. Two progressive image transmission FSSI techniques were presented with some 

experirnental results looking at the PSNR versus compression rate. One important obser- 

vation made is that the PSNR metric is a poor measure when this type of random surface 

generation is perfonned to reconstruct an image, This  issue is considered M e r  in the 

following chapter which develops new image quality measures based on multifi-actal com- 

plexity measures that do not have some of the shoritcomings of the PSNR measure. The 

presented FSSI techniques are unique since images are decomposed and represented by 

fiactional noise generated by fBm- This approach i s  different from the majority of image 

compression techniques since here an image is comsidered as a collection of fiactional 

noises, instead of the normal view where an image is a pure signal that is possibly contam- 

inated by noise. 



Progressive Image Transmission Ch, 6: Multifbctal Measures 

An important concern to those researching Iossy image compression and progres- 

sive image transmission techniques is how to evaluate the quality of the image reconstruc- 

tions- Unfortunately, with the Iack of a precise rnodel for human perception, the only 

current arguably accurate approach to evaluating Mage quality is through a mean opinion 

score (MOS) perceptual quality rating of images. This MOS is done by having a group of 

human observers rate the perceptual quality of test images, with the results statistically 

analyzed to get a population average. Since a hurnan observer is the final intended recipi- 

ent for the class of images considered in this thesis, the MOS has, arguably, the final Say 

since the subjective perceptual quality of an imperfect image is otherwise difficult to char- 

actenze in an objective marner. The primary problem with the MOS is that it is time con- 

surning to set up the experiments, find people to participate in rating the images, and then 

compile the results. Actually, few perceptual studies have been done for progressive 

image transmission specifically. One study that was conducted to evaluate the perceptual 

quality of progressive image transmissions was done by Cen et al. [CPSC97] to evaluate 

the differences between progressive JPEG [JPEG99] and SPIHT [SaPe96], as well as 

between embedded zerotree wavelet (EZW) coding [Shap93] and SPMT CSaPe961, This 

study had 25 observers view 1 18 images in a controlled environment and took roughly 45 

minutes for each observer. The setup of such an experirnent is time consuming and then 

requires the statisticd analysis of the results to draw any conclusions. Obviously, the 
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MOS is not feasible for adaptive image compression schemes where the selection of 

image compression and progressive image transmission parameters are chosen and 

adapted 'on the fly" for each image. This chapter atternpts to develop a new objective 

measure based on multifmctal complexity that can be used in such scenarios. 

6.1 Introduction 

The most commonly used objective measure in the image compression literature 

for evaluating image reconsûuction quality is the peak signal-to-noise ratio distortion 

measure [CPSC97J as expressed in Eq. 2.10 (or more specifically Eq. 2.1 1 for 8 bpp 

images). While PSNR and other similar mean squared error distortion metrics are usefül, 

they are limited in t e m s  of the psychovisual information measured. Considering Eq. 2.10 

closer, PSNR is limited to calculating energy differences between corresponding pairs of 

pixels in the original and reconstnicted images. These energy differences are averaged 

and then formed ïnto a ratio with the largest possible pixel intensity acting as a normaliz- 

h g  factor. The PSNR is Iimited as a psychovisual measure since 

only energy differences between individual reconstnicted pixeIs are 

considered 

local and global neighbourhoods of pixel trends are not considered 

the perceptual nature of edges is ignored 

the perceptual nature of textures is completely ignored 

Attempts to mode1 the hztrnan visrtd system (HVS) a little closer have resulted in 

more effective quantitative measures. Watson introduced the Cortex transforrn [Wats87] 
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as a means of  mtering the signai which c m  then be applied for JND evaluations for image 

evahation, Daiy's visual difference predictor paly931, and Lubin's work on the human 

vision discrimination mode1 bubig31 extend on some of these ideas for JND measuring of 

image quality. Lu et al, [LuAl5951 introduced the picture quality scale ( P Q S )  as another 

atternpt at modeling the HVS. Work by Jayant et. al consider techniques for signal com- 

pression based on human perception [JaSJ93] and the H V S  for images. 

The focus of this chapter is to develop a new quality measure that can analyze 

image content fiom global, regional, local, and structural viewpoints through multifkactal 

complexity measures. If this can be done, then this approach will yield a subjective mea- 

sure that correlates well with psychovisual perception as it relates to MOS experiments- 

In the development of an image quality measure, multifiactal dimension measures 

will be considered as the primary approach, since multifiactals can characterize the corn- 

plexity within a signal, such as an image. Multifractal dimension measures perfonn this 

characterization at multiple scales/resolutions, so, global, regional, and local neighbour- 

hoods of pixels are considered. With these features, multifiactals will alfow for an analy- 

sis of textures in an image as well. The development of these image quality measures 

using mdtifractal complexity measures is presented in the following section. 

6.2 Multifractal Dimension Complexity Measures 

as Progressive Image Transmission Quality Measures 

Through the description and discussion of multifractal dimension measures in 

Chapter 3, a number of characteristic features should be noticed about these measures that 
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lead to a new class of objective image evaluation rneasures- This section considers some 

of the characteristics of multihctals in the design of image complexity measures as well 

as performs experiments to detemiine the feasibility of multifractals as an image quality 

measure. This work extends some of the research by Ferens and Kinsner FeKi95], 

[Fere95] on feature extraction from signals using multifiactals where, instead, character- 

ization of the entire image is done to form the image complexity measure. In some sense, 

the work in this thesis also extends the work in image texture segmentation and classifica- 

tion with the fracta1 measures of Chaudhuri and Sarkar [ChSa95], [SaCh92] and the 

pseudo-multifractal rneasure of Kaplan [Kap199]- These techniques can be considered as 

preliminary to an objective measure using multifractals. 

Under consideration in this thesis for image complexity measures is the Rényi gen- 

eralized entropy, the Rényi dimension spectrum, the Mandelbrot spectnirn, and finally a 

generalization of the Kullback-Leibler distance and Rényi information forming a new 

multifractal measure which will be referred to as the relative Rényi dimension spectrum. 

The formuIation of these measures are presented in Sec. 6.3, Sec. 6.4, Sec. 6.5, and 

Sec. 6.6, respectively, 

When designing an image quality measure, one approach is to develop a measure 

that characterizes image content, apply this measure to both the original and approximated 

images, and then compare the results. A shilar, but not identical, approach is to fhd the 

distortion or difference between the approximated and original images, foming a residual 

image. Then the image quality measure is applied to this residual image to determine the 

level of distortion between the two images. The MSE, SNR, and PSNR rnetrics from 



Progressive Image Transmission Ch. 6: Multifiactal Measures 

Sec. 2.1.5 are examples of distortion measures since these metrics find the residual 

between the reconstructed image and the original image. For these three rnetrics, the 

energy ciifference behveen the two images is found and aggregated on a pixel by pixel 

basis. A final approach to developing an image quality measure is to form a relative mea- 

sure that calculates the image quality using a form of ratio or proportional rneasure 

behveen the reconstmcted and original images. This calculation may be done, for 

instance, by foming a rationd expression between the reconstructed image and the origi- 

nal image. Al1 of these approaches are investigated to various degrees in the multifractal 

techniques presented in the rest of this chapter. 

6.3 Rényi Generalized Entropy as a Progressive 

Image Transmission QuaIity Measure 

This section investigates using the Rényi generalized entropy as an objective mea- 

sure for use in progressive image transmission techniques. Some of this work was initially 

presented by Dansereau and Kinsner [DaKigga]. The Rényi generalized entropy H J X ) ,  

as given in Defi. 3.4 with Eq. 3.23, is a generalization of Shannon entropy evaluated over 

the moment order q of a probability distribution tùnction p ( x )  . It is known that Shannon 

entropy H ( X ) ,  as given in Defn. 3.3, is a measure of the average uncertainty in the ran- 

dom variabIe X that forms the probabiliq distribution pfx) [CoThg 11. From this descrip- 

tion, the Rényi generaiized entropy measures the average uncertainty in the random 

variable X that fom~s p(x)  , but over the different orders q . 
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The uncertainty or  "randomness" in a symbol set {XJ c m  therefore be measured 

with the Rényi generdized entropy- This method is the first approach investigated as an 

objective measure to characterize the level of uncertahty within the image representation. 

This characterization gives the beguuiing of a complexity measure for image quality. 

From the image, an objective measure will be developed by forrning a probability distribu- 

tion p ( x )  using the pixel values in the image as the symbols in the sequence {X) . 

To test out the properties of this approach to rneasuring image quality with the 

Rényi generalized entropy, a number of experiments were perfonned using a series of 

eight snapshots from a progressive image transmission. These images are 512 x 5 12 8-bit 

greyscale images and are formed from the two original images of lena and urban, as 

given in Appendix A. The original images and the first five progressive snapshots for each 

of these images are displayed in Fig. 6.1 and Fig. 6.2 for iena and urban, respectively. 

The other three snapshots are not shown since the differences from the original image are 

nearly imperceptible in the pnnted form of this thesis. 
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(a) 344 bytes at 0.1 3 1 % (8) (b) 91 1 bytes at 0 .M8% (7) 

(c) 2,300 bytes at 0.877% (6) (d) 5,068 bytes at 1 -933% (5) 

(e) 11,018 bytes at 4.203% (4) (f) Original image 

262,744 bytes (1 00%) 

Fig. 6.1. Progressive transmission of lena, (a) 344 bytes at 0.13 1 %, 
(b) 91 1 bytes at 0.348%, (c) 2,300 bytes at 0.877%, (d) 5,068 bytes at 1.933%, 
(e) 1 1 ,O 1 8 bytes at 4.203%, and (f) original image (100%) with 262,144 bytes. 
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(a) 365 bytes at 0.1 39% (8) (b) 886 bytes at 0.338% (7) 

(c) 2,421 bytes at 0.924% (6) (d) 5,552 bytes at 2.1 18% (5) 

(e) 12,080 bytes at 4.608% (4) (9 Original image 

262,144 bytes (1 00%) 

Fig. 6.2. Progressive transmission of urban. (a) 365 bytes at 0.139%, 
(b) 886 bytes at 0.338%, (c) 2,421 bytes at 0.924%, (d) 5,552 bytes at 2.1 18%, 
(e) 12,080 bytes at 4.608%, and (f) original image (100%) with 262,144 bytes. 
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These two images are chosen for the experiments since they compress relatively 

little fiom an information theoretic viewpoint. Lena and urban have Shannon entropies 

of 7.45 bpp and 7.65 bpp, respectively, which limits their first-order Iossless compression 

to only 1.074: 1 and 1 -046: 1, respectively. Hence, these images can roughly be classified 

as tough to compress. These images, therefore, serve as good examples of  difficult images 

to compress that would benefit from a progressive fonn of compression, transmission, and 

reconstruction. The progressive image snapshots in Fig. 6.1 and Fig. 6.2 were generated 

- using the embedded zero-tree coding algorithm of Shapiro [Shap93] with a final lossless 

compression stage using Witten, Neal, and Cleary's adaptive arithinetic coding wiNC871. 

At this point the exact workings of embedded zero-tree coding and adaptive arithmetic 

coding are not needed since the curent goal is to develop objective measures using this 

progression of images solely as sample test images. 

The first set of experirnents consists of calculating the Rényi generalized entropy 

on the original image as well as each of the image snapshots extracted from the progres- 

sive wavelet image transmission. This approach falls in Iine with an objective measure 

applied separately on the reconstructed and original images as discussed in Sec. 6-2. The 

main difficulty to answer when using the Rényi generalized entropy H J X )  is how exactly 

to foxm the probability distribution p ( x ) ,  The approach tried is to f o m  a histogram for 

the image and norrnalize it to forrn p ( x )  . Thus, p (x )  is formed by calculating the relative 

fkequency for each pixel greyscale value in the image. 

The results of the Rényi generalized entropy H,(X) measures using this p ( x )  for- 

mulation are plotted for lena and urban in Fig. 6.3a and Fig. 6.3b, respectively. Plotted in 
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Fig. 6.3 is the Rényi generalized entropy H J X )  vernis moment order q E [-20.0,20.0] 

for the original images and each of the eight progressive image snapshots. It should be 

noted from the debition of H,(X) with Eq. 3.23 that H,(X) is a continuous fûnction in 

q . Therefore, the plots in Fig. 6.3 are continuous. Also, since the pixel values are inte- 

gral, the oniy exrors in this measurernent are numerical round-off errors due to double 

floating point precision math, which are insignincant for these plots. 

An important observation about the plots in Fig. 6.3 is that when q = 1 then 

Hq = , (X) = 7.45 bpp for the original lena image and Hq = ,(X) = 7.65 bpp for the 

original urban image. These are precisely the values calculated for Shannon entropy as is 

expected. This agreement helps veriQ that the Hq(X)  calculations are correct in light of 

Lemma 3.1. It is also observed that al1 of the curves are monotonically non-increasing as 

Lemma 3.4 requires. 

Frorn the Rényi generalized entropy plot for lena in Fig. 6.3.a, it is apparent that 

there is no significant changes in H,(X) across the eight reconstructed images compared 

to the original image during the progressive transmission. This observation likely means 

that the histograms of the different irnage reconstmctions do not differ greatly fiom the 

histogram of the original image. Unfortunately, this property does not assure that the his- 

tograrns of the reconstructed image matches that of the original image, There can be a 

shifl in the entire histogram for a reconstructed image that would result in the sarne 

H,(X) versus q c w e s  since p ( x )  would effectively be the same fiorn the viewpoint of 

HJX) 
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Fig. 6.3. Rényi generalized entropy on the progressive image reconstructions. 
(a) lena and (b) urban. 
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This problem of a shifted histogram occurs with the reconstructions of the urban 

image. As Fig. 6.3b shows, the Hq(X) versus q curves for the reconstructed images are 

not well aligned with the H,(X) versus q curve for the original image. Considering Fig. 

6.3.b, when q < O it is evident that the progressive model of the image does not foUow the 

original urban image's Hq(X)  versus q cuve as closely as it did for lena in Fig. 6.3a. 

For the original image of urban, the curve when q c O is weil beIow that for any of the 

reconstructed venions of the urban image. An increase in the Hq(X)  versus q cuve 

such as this for the reconstmcted images suggests that the probability distributions are flat- 

tened for the reconstructions, or the probability distributions for the original and recon- 

structed images are not lining up as well, or that the probability distributions for the 

original and reconstructed images are quite different- This difference is not directly verifi- 

able with only the Rényi generalized entropy calculations, but, when put in conjunction 

with image histogram analysis and considering the perceptual quality of the images, then 

these three scenarios can be checked- A histogram of the original image of urban along 

with the last five image reconstruction steps fiom the progressive image transmission is 

produced and is plotted in Fig. 6.4. The histogram for the original image of urban is 

stretched and shified to the nght compared with the histograms of the other reconstructed 

irrages- This discrepancy c o n ~ s  that this progressive image transmission model for 

approximating images does not work as well as desired for the image of urban as it 

appears to work for the image of lena. It aiso indicates that the lack of clustering of the 

curves in Fig, 6.3b does not result fkom a problem with the Rényi generalized entropy as 

an objective measure. 
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O 50 1 O0 150 200 250 300 

Pixel value [O, 2551 

Fig. 6.4. Histogram for the image of urban and five approximations. 

The next set of experiments is to perform the Rényi generalized entropy analysis 

on residual images formed fiom reconstructed and original images as is suggested in 

Sec. 6.2. For these experirnents, the absolute differences on a pixel by pixel basis between 

the progressively reconstructed images and the original image are found. The Rényi gen- 

eralized entropy Hq(X)  is then computed on these residual images. The probability dis- 

tribution p ( x )  is again set as before fkom the normalized histogram, but now on the 

residual image. The H,(X) experirnental results using these residual images for the lena 

and urban images are plotted in Fig. 6.5a and Fig. 6Sb, respectiveIy. 
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The plots in Fig. 6.5 show a Iarger spread in the H J X )  versus q curves for this 

residual approach compared with those in Fig- 6.3. An interesthg observation for the 

curves in Fig. 6.5a and Fig, 6% is that for q 2 0 the curves are in descending order 

according to the respective progressive reconstructed image. This observation c m  be used 

as a criterion for an objective measure for progressive image transmission since it would 

generally occur as the range of values in the residual image decreases so as to decrease 1x1 

from Theorem 3.4. This decrease would then limit the maximum value of H,(X) as the 

residual image has fewer unique values, It must be noted that this observed decrease in 

H,(X) for Fig. 6.5a and Fig. 6.5b is not foiiowed for lena or urban when q < O .  In this 

case, the H J X )  curves cross each other at different values of q .  This fact may also be 

useful in analyzing the quality of  a progressive image transmission. 
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Urban 

Fig. 6.5. Rényi generalized entropy on residual images fkom the progressively recon- 
stmcted images and the original image for (a) lena and (b) urban. 
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The Iast set of experiments using the Rényi generalized entropy is similar to the 

previous, but, instead the residuals are calculated between one snapshot of the approxi- 

mated image to the next successive snapshot in the progression of the approximated 

image, This procedure allows the image reconstruction to be viewed fiom the perspective 

of a stage to stage addition of image information throughout the progressive image trans- 

mission. The same Rényi generalized entropy calculations were performed with these 

new residual images for the lena and urban approximations, and the results are plotted in 

Fig. 6.6a and Fig. 6.6b, respectively. 

It is observed from the two plots in Fig. 6.6 that the H4(X)  versus q curves corre- 

sponding to the earlier progressive image snapshots tend to cluster together. Also, as the 

progression continues, the residual images tend to decrease the resulting %(X)  value. 

The clustering, or higher values of X,(X), is mostly due to the greater number of unique 

values in the residual image resulting in a larger 1x1 . Again, according to Theorem 3.4 

this range allows for a high value of H 4 ( X ) .  The c l u s t e ~ g  at the beginning of the pro- 

gression also indicates that the improvements to the image reconstructions produce similar 

residual images from step to step. As the progression continues, the refmement turns out 

to be more fine tuning as the nurnber of unique values in the residuals decreases, causing 

the possible maximum of H,(X) to decrease. 
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Urban 

Fig. 6.6. Rényi generalùed entropy on residual images between successive 
image reconstructions for (a) lena and (b) urban. 
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From these three sets of experiments, it is concluded that the Rényi generalized 

entropy contains some indicatm as to the progression in quality for the image transmis- 

sions. The results show,  unfortunately, do not give an obvious lead into developing an 

encompassing objective measue,  since convergence or movement of the cunres is not 

consistent on either side of q = O .  The main Limitation with using the Rényi generalized 

entropy in this marner is that ;the images are analyzed only fiom the viewpoint of a nor- 

malized histograrn. Many completely dif5erent images c m  form the same noxmaiized bis- 

tograrn. So, the image quality Fnforrnation retained within the nomalized histogam is too 

Iimited and not really enough %r the Rényi generalized entropy to forrn a proper mode1 of 

the image approximations. Also, the histogram approach elirninates any pixel neighbour- 

hood or spatial correlations, which is a key factor in the human visual system. Therefore, 

while some interesting results are obtained with the Rényi generalized entropy, it can only 

serve as an indicator to some image quality characteristics and, hence, has Iimited use as a 

complete image quality measure for progressive image transmission. 

The next subsection coentinues the experiments, now with the Rényi dimension 

s p e c t m  which overcomes some of the limitations of the Rényi generalized entropy. 

These benefits are achieved by lsoking at the image at multiple scales and with probability 

distributions suited more to measuring the image texture complexity. 
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6.4 Rényi Dimension Spectrum as a Progressive 

Image Transmission Quality Measure 

This section investigates how the Rényi dimension spectrum D J X )  can be used 

as a progressive image transmission quality measure and follows some of the initial work 

done by Dansereau and Kinsner paKi98b], paKi99b1, The Rényi dimension spectnun 

Dq(X) , as given with Eq. 3.45 in Deh. 3.5, afYords many analytical advantages over 

those of the Rényi generdized entropy alone. As is described in Sec. 3.3.4, the Rényi 

dimension spectnim is a multifiacta1 measure that measures the fractality of an object 

p,(x) resolved at scale s at specified orders of q . For each order q ,  the fractality of the 

object at that scale is measured and the critical exponent Dq is found satisSing Eq. 3.44. 

Therefore, the rate of change in the object's complexity at different scales is rneasured. 

This idea can be applied as a measure of the complexity within an object such as an image 

to determine the image's complexity over different scales. This concept is different fiom 

the Rényi generalized entropy H,(X) since, instead of only local caIcuIations within the 

image, the measurement is done in a multiresolution fashion su that local, neighbourhood, 

and global measurements of the image are al1 perforrned, resulting in the h a 1  value for 

Dq(X) .  In addition, varying the order q in the Dq(X) calculation changes the extent of 

the contribution of different inhomogeneous fiactal complexities within the image, as dis- 

cussed in Sec. 3.3.4. Ushg these characteristics, this section addresses the use of the 

Rényi dimension spectnun D,(X) as a progressive image transmission qualis. measure. 

The f i s t  issue to address is how the probability distribution pJx) in Eq. 3.45 for 

Dq(X) is calculated for an image over the different scales S .  In the case of the Rényi gen- 



Progressive Image Transmission Ch- 6: Multifractal Measures 
- - - - 

eralized entropy H,(X) from Sec. 6.3, the probabilities p ( x )  are formed fkom the nor- 

maiized histogram of the image. This normalized histogram does not readily incorporate 

the desired property of measuring the image over multiple scales so that the critical expo- 

nent D, c m  be detemiined over the range of scaies. For this section, the probability dis- 

tribution p,(x) at scale s is calculated by summing the greyscale intensity values in a 

particular vel as a proportion of al1 greyscale intensity values in the image as follows 

where pkel(i) is a pixel in vel B, of the image covering and B is the set of al1 vels. Note 

that the summations in Eq. 6.1 include the extra term of 1 to bnng the greyscale range of 

an n -bit unsigned integer pixel depth from [O, 2" - 1 ] to [ 1,2"] or in the case of the %bit 

greyscale images used in this thesis fiom [O, 2551 to [ l ,  2561. This addition is dane to 

ensure that no vel results in a probability of p,(x) = O .  While there is no mathematical 

reason that p,(x)  cannot be zero, it is usefùl to thuik of the multifiactal measure being 

applied to a sudace in a three dirnensional space (recall the surface projection from 

Fig- 5.10b). If p,(x) = O is allowed then the surface can be thought of as having holes 

where pJx)  is zero. The addition of 1 to each greyscale pixel value ensures that no holes 
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exist in the surface. For q = O ,  having no holes in the surface resdts in the Rényi dimen- 

sion spectrurn being 

since the rate of growth of the number of vels is 4 tirnes the rate of growth of the scale, and 

hence 2 tirnes when the Iogarithms are taken, such as with measuruig the square in 

Fig. 3.6. If holes are allowed in the surface, then D, = o ( X )  would be less than 2 and 

would make the objective measure a harder to interpret in the event of p,(.r) = 0. 

The experiments to follow are perforrned on the progressive snapshots of the 

images of lena and urban as described in Sec. 6.3. The first set of experirnents is to cal- 

culate the Rényi dimension spectrum D,(X) for q E [-20.0,20.0] directly on the pro- 

gressive image reconstmctions of the two test images. These results of applying D,(X) 

on the original image and eight progressive reconstructed images are plotted in Fig. 6.7a 

and Fig. 6.7b for lena and urban, respectively, 
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I 

Origina 

Fig. 6.7. Rényi dimension specmim experimental results at progressive 
steps for the image of (a) lena and (b) urban. 
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Lookuig at the results for lena in Fig. 6.7.a, it is noticed that there is a larger 

spread among the Dq(X) curves for q < O .  This variation suggests that this particular 

progressive image transmission is not as representative of the multifractal complexity in 

the original Mage at the earlier stages of the transmission. It is interesting to notice that as 

the image transmission progresses, the Dq(X) versus q curves do converge to the D,(x)  

versus q curve of the original image. This result is reasonable since as the progressive 

image transmission occurs, the reproductions of the image irnprove. Therefore, the mea- 

sure ciearly indicates how the cornpIexity within the image is represented better as the 

transmission occurs, 

Looking at the results for the image of urban in Fig. 6.7b, it is noticed that the 

D,(X) versus q curves are clustered together. This clustering means, from a multifractal 

perspective, that the progressive reproductions of the image during transmission have sim- 

ilar complexity. This result follows the goal of rnaintaining that same multifractal corn- 

p1exit-y throughout the image reconstruction. Unfortunately, fiorn an objective measure 

viewpoint, Fig. 6.7b does not offer a view into the improvement in quality of the image 

reconstructions. 
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Fig. 6.8. Rényi dimension spectnim calculations on residuals of successive images in the 
progressive image transm-ssion for the image of  (a) lena and @) urban. 
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The next set of  experiments conducted investigates what Spe of complexity char- 

acteristic is present in the absoIute residual images between successive image reconstruc- 

tions. This calculation is done for successive image reproductions with both lena and 

urban using the Rényi dimension spectrum D J X ) ,  and the results are plotted in Fig. 6.8a 

and Fig. 6.8b, respectively. The most important point to notice about both plots in Fig. 6.8 

is that as the progressive image transmission occurs, the D,(X) versus q curves for the 

residual images become flatter. This flattening of the Dq(X) versus q means there is a 

reduction in the multifractal complexity between successive reconstructed images, since 

the curve approaches the topological dimension of 2. A reduction in the multifractal com- 

plexity between successive reconstructed images means that there are fewer different fea- 

tures between successive reconstructed images, Hence, the overall image quality 

irnproves as more data is reconstructed into the image. These results give a first glimpse 

into what could be used as an objective measure, where the goal is to flatten out the 

Dq(X) versus q cuve  to the topological dimension of 2 as quickly as possible for the 

residual images. 

When considering what is desired, an optimal progressive image transmission 

would transmit the main multifkactal cornplexity within the image very early in the trans- 

mission process. Therefore, the expected result would be that the Dq(X) versus q curves 

in the residual images would flatten as more image information is incorporated into the 

image reconstmction. This flattening of the Dq(X) versus q means that D,(X) and 

D,(X) in the residual images are converging as the progressive image transmission con- 

tinues and hence using Lemma 3.5 and Lemma 3.6, the probability range for sup(p,(x)) 

and inf(p,(x)) is decreasing. This phenomenon is witnessed in both piots in Fig. 6.8 for 
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the images lena and urban. This result suggests not only that the Rényi dimension spec- 

trum Dq(X) can be used as an objective measure by following the rate at which the 

D,(X) vernis q curves flaîten, but, also the rate at which D,(X) and D,(X) converge 

versus the image data rate in the progressive transmission. 

Wïth the Rényi dimension spectrum D,(X) as a promising objective measure, the 

question now is how to encapsulate the Dq(X) venus q c w e s  into a single value. This 

single value will help indicate the image quality of the reconstruction at any phase of the 

progressive image transmission. Different approaches c m  be taken, but one simple 

approach is to calculate the mot mean squared error (RMSE) of the Rényi dimension 

spectnun for the original irnage and the reconstructed image as follows 

If D (X) and D, , ( X )  are calculated for a total of n specific values of q then Eq. 6.3 
( I m  o r i ( ~  

c m  be approximated by 

Using Eq. 6.4, a single value results for the objective measure of a specific irnage 

reconstmction compared with the original image. To test this objective measure, a number 

of experirnents c m  be perFonned by applying this measure over a set of image reconstruc- 

tions. Since Eq. 6-4 returns o d y  one value per irnage reconstruction, a greater range of 

image reconstructions can be analyzed and visualized above that of the eight image recon- 

structions previously used from Fig. 6.1 and Fig. 6.2. For ease of duplication of these 
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experiments, the approach taken for generating the image reconstmctions is to take the 

original image, perform the DWT using the Daubechies 4-tap mother wavelet [paub92] 

(see Sec. 4.3.3), and then apply a hard-threshold in the wavelet domain to form approxi- 

mations of the image. The hard-threshold is applied in the wavelet domain by choosing Ik 

in Eq. 4.12 of Sec. 4.1.3 as the set of wavelet coefficient indices for those wavelet coeffi- 

cients that have a magnitude greater than the hard-threshold value. In essence, this sets 

any wavelet coefficient with a magnitude less than or equai to the hard-threshold to zero, 

which results in an approximation of the image in the wavelet domain ushg Eq. 4-12, For 

the experiments perforrned in this section, the range of hard-threshold values chosen are 

the integers in the range CI, 2501 which results in a total of 250 progressively recon- 

structed image approximations, 

Before presenting the experimental results, a few notes should be made about the 

accuracy of the Dq(X) calculations that were noticed during this process. The calculation 

of Dq(X) is done by fhding the critical exponent in the proportionality given in Eq. 3.44. 

This critical exponent is calculated by finding the limiting slope in a log-log plot using the 

numerator Hq(X) and the denorninator log( 1 /s) from Eq. 3.45 for the ordinate and 

abscissa axes, respectively, The difficulty with this process is finding the dope within this 

log-log plot and tums out to be the source of error in the D,(X) calculations. Initial 

irnplementations for finding the limiting slope in the log-log plot used the least-squares 

line fitting aigorithm. It is found that for the purposes of calculating D,(X) , that the least- 

squares line fitting algorithm is too sensitive to srnall deviations by outliers at coarser 

scales of s - To combat this sensitivity, the line fitting algorithm was switched to a more 

robust technique as described in Numerical Recipes for C for fitting a Iine by minimizing 
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absolute deviation CpTVF92]. This alternative method greatiy improves the line fitting 

results obtained and helps remove smaU anomalies that are present because of the inaccu- 

rate line fitting by the least-squares algorithm. Another detail to help improve the line fit- 

ting resdts is to increase the nurnber of points with which to perform the line fitting. The 

initial implementation of the D,(X) calcdations went over the range of scales s in a 

dyadic form (Le. for a 512 x 512 image the dyadic set 

{1,2 ,4 ,  8, 16, 32,64, 128,256, 512) for s). This was changed so that any scale witfiin 

the entire size of the image could be selected. The experiments to follow used the set of 

scales (1, 2, 4, 8, 10, 12, 14, 16, 18,20, 22, 24,26, 28, 32, 36,40,44,48, 52, 56, 60, 64, 

80, 96, 1 12, 128, 192, 256,s 12) for the value of S .  Of course, more scale measurements 

can be used but this set seems sufficient for the Dq(X)  calculations since the points faIl in 

a relatively straight line and there are enough to counter-balance a few outliers when using 

the robust line fitting technique. 

Using these hprovements to the D J X )  calculations and with the set of 250 pro- 

gressive image reconstructions for each image, Fig. 6.9, Fig. 6.10, Fig. 6.1 1, Fig. 6.12, 

and Fig. 6.13 were produced for the images of lena, urban, baboon, peppers, and farm, 

respectively (refer to Appendix A for the original images). These pIots in Fig. 6.9 through 

Fig. 6.13 show the RMSE calcuIations fiom Eq. 6.4 versus the hard-threshold value used 

in the wavelet domain to approximate the image fiom a Daubechies 4-tap DWT. The pur- 

pose of these figures is to investigate the relationship between the RMSE of the D,(x) 

versus q curves and the image reconstructions from coarser approximations to more com- 

plete approximations according to Eq. 4-12. The plots in Fig. 6.9 through Fig. 6.13 have 

been cornbined in Fig. 6.14 to see the range of al1 of the curves together. 
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O 50 1 O0 150 200 250 
Hard-threshold value 

Fig- 6.9. RMSE tracking of Dq for lena (Daub4). 

O 50 100 150 200 250 
Hard-threshold value 

Fig. 6.10. RMSE tracking of Dq for urban (Daub4). 
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100 150 
Hard-threshold value 

Fig. 6.1 1. RMSE tracking of Dq for baboon (Daub4). 

1 O0 150 
Hard-threshold value 

Fig. 6.12. RMSE tracking of Dq for peppers (Daub4). 
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100 150 
Hard-threshold value 

Fig. 6.13. RMSE tracking of Dq for farm (DauM). 

farm 

I 

1 O0 150 
Hard-threshold value 

Fig. 6.14. RMSE tracking of Dq for al1 five test images (DauM). 
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Looking at the RMSE results for lena, baboon, and peppers in Fig, 6.9, 

Fig. 6.1 1, and Fig. 6.12, respectively, it is noticed that the error in the D,(X) values 

approach smaller values as the hard-threshold value decreases. This decrease in D,(x) 

error with the hard-threshold value is desired since this correlates with what is intuitively 

expected for an image quality measure, as more image information is added for the image 

reconstructions. This decrease in Dq(X) emor indicates that the multifractal complexity 

of the reconsîructed images approaches the multifractal complexity of the original image. 

Unfortunately, this decrease in D J X )  error values is oot rnonotonic and there are definite 

sharp transitions and spikes in the changing Dp(X) error values. For instance, in Fig. 6.9 

there is a sharp change in the Dq(X) error value at a hard-threshold of 114. 

This same tendency for Dq(X) error to decrease with the hard-threshold is not 

apparent for the images of urban or farm in Fig. 6.10 and Fig. 6.13, respectively. 

Figure 6.10 shows a multifractal eomplexity error that tends to change more haphazardly. 

Figure 6.13 shows a complexity error that remains roughly constant throughout the image 

reconstruction after it hits roughly the 225 hard-threshold mark. 

A question arising from the plots in Fig. 6.9 through Fig. 6.13 is whether there is 

any perceptual significance to the sharp changes and spikes in the experimental results. To 

address this rnatter, an informa1 mean opinion score experiment was conducted to deter- 

mine whether any perceptual correlations can be made with the Rényi dimension spectrum 

D,(X) for the experiments nin on the five images. 

The MOS experiment followed the protocol described in Sec. B. 1 of Appendix B. 

This protocol defines how the experiment is directed in which an original image is shown 
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to the participants, followed by an approximation of the image. The participants then rank 

the perceived level of distortion in the approximated image compared to the original 

image using the 5 point scale given in Sec. B.2 of Appendix B. This MOS experiment 

was held over four sessions with a total of 32 participants and a 50 set of original image/ 

approxünated image pairs were presented- 

As a baseline, 5 sets of image originals/approximations were repeated once at ran- 

dom throughout the MOS experirnent. The purpose for repeating some images is to deter- 

mine the range of MOS values obtained when the same approxirnated image is presented. 

On the 5 point scale, an average of a 0.135 difference in MOS value was found for identi- 

cal images that were presented. This result means that ciifferences in MOS values on sin- 

gle tests are likely statistically similar if they fa11 within this range of difference. 

The first point of interest frorn the MOS expenments is whether any noticeable 

perceptual difference between images exists when a large change in the RMSE for D,(X) 

values occur for close hard-threshold values. For instance, the sharp spike in Fig. 6.9 at a 

hard-threshoId of 114, as previously discussed, was tested. The approximation of lena 

wilh a hard-threshold of 113 and a hard-threshold of f 14 were presented to the MOS 

experirnent participants, A difference in MOS value of 0.25 was found in this case. This 

value is greater than the 0.135 average dxerence found for identical images, but, not a 

large step in ternis of the 5 point MOS range, Other pairs of hard-threshold values for the 

other image approximations were also tested in the MOS experiment and these results are 

Iisted in Table 6.1. 
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Table 6.1 MOS value differences for hard-threshold approximations 
of the original image. 

Original 

1 urban 1 21,22 1 4.87,4.78 1 0.09 1 
1 urban 1 133, 190 1 2.11, 1.84 1 0.27 1 

Two Hard-Threshold 
Values Tested 

I 

The results in Table 6.1 show that most of the sharp change in the Rényi dimension 

2.00,2.02 

1.72, 1-61 

2.40,2.48 

2-08, 1.94 

1.23, 1.25 

baboon 

baboon 

fa rm 

farm 

farm 

spectnim have a difference on the MOS values of less than the 0.135 average noticed for 

MOS Obtained for 
Hard-Thresholds 

-0.02 

0.1 1 

-0.08 

O. 14 

-0.02 

156,163 

178,250 

92,93 

132, 133 

201,221 

identical images. This result suggests that from a perceptual point of view, the shap 

changes in the Rényi dimension spectnim D J X )  error values versus hard-threshold value 

MOS Value 
Difference 

are nearly imperceptible. Therefore, it can be concluded that small changes in the hard- 

threshold value has only a small effect on the result of the MOS value for perceptual dis- 

tortion. This fact is important to note since at many of the hard-threshold values listed in 

Table 6.1 there are sudden jurnps in the respective RSME plots for that image. It rnust 

also be noted from Table 6.1 that results typically show that the image approximation with 

more image information (lower hard-threshold) has a slightly higher MOS value than the 
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approximations with less image information as indicated by the positive MOS value dif- 

ferences. Ail the negative ciifferences in MOS value fall below the 0.135 MOS value aver- 

age for identical images presented to the participants- 

O 50 1 O0 150 200 250 

Hard-threshold value 

Fig- 6.15. RMSE tracking of Dq for urban (Daub20). 

As noted previously, for three of the five test images the resulting RMSE plots 

tended to have decreasing D,(X) error values for decreasing hard-threshold while the 

other two images have results that are more difficult to characterize, One factor in forrning 

the approximations is the selection of the mother wavelet. The Daubechies 4-tap mother 

wavelet paub92j was used, but this is likely not an optimal mother wavelet for al1 classes 

of images. Some RMSE experiments were performed using other mother wavelets in 

place of the Daubechies 4-tap rnother wavelet. Figure 6.15 shows the RMSE results when 

using the Daubechies 20-tap mother wavelet Paub921 to form the hard-threshold approx- 
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irnations of the urban image. These results show a clearer tendency for the D J X )  error 

values to decrease along with the hard-threshold value compared with those results in 

Fig. 6.10. Therefore, choosing the right mother wavelet is also important in being able to 

mode1 the multifractal complexity within the image properly, 

6.5 Mandelbrot Spectrum as a Progressive Image 

Transmission Quality Measure 

The next multifractal dimension measure to investigate as an objective measure for 

progressive image transmission is the Mandelbrot spectrum as described im Sec. 3.3.5. 

Some study of the Mandelbrot spectrum as an objective measure has been described by 

Dansereau and Kinsner PaKi99bl. From Deh. 3.6, the information canied by the Man- 

delbrot s p e c t m  is expected to be similar to that of the Rényi dimension specitnim since it 

is a transformation of Dq(X)  and q to form f, and a,. Since this is the case, only a few 

experiments are perfomed to show the differences between the Mandelbrot s p e c t m  and 

the Rényi dimension spectrum discussed in Sec. 6.4. 

The experiments done in this section are with the lena and urban images from 

Fig. 6.1 and Fig. 6.2, respectively. The Rényi dimension spectrum Dq(X)  results from 

Fig. 6.7 are taken and Eq. 3.54 and Eq. 3.55 applied for fJa) and a,, respectively, to 

obtain the Mandelbrot spectra pIotted in Fig. 6.16. A similar type of spread is noticed in 

the Mandelbrot spectra in Fig- 6.16a for the image of lena as compared t o  the Rényi 

dimension spectra Dq(X) in Fig. 6.7a. Similarly, the clustering of the D,(X) curves in 

Fig. 6.7b for the image of urban is reflected in the f q ( a )  curves in Fig. 6.16b. One 
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important point to notice is that the inflection points of the D,(X) curves from Fig. 6.7 at 

q = O have been û-ansformed into the maxima points in the &(a) curves in Fig. 6.16. In 

addition, il, and LI, are now contained in the plot of the Mandelbrot spectra, which is 

an analytical advantage in having the entire curve bounded in the plot. 

In developing an objective measure based on the Mandelbrot spectnun, sirnilar to 

those looked at for the Rényi dimension spectnun D q ( X )  in Sec. 6.4, the problem is 

hinied into fhding a convergence in the concave functions represented by the f ,(a) ver- 

sus a curves. Even though the Mandelbrot spectrum has been shown to be useful in 

choosing parameters for other wavelet packet based image compression schemes 

[Jang97], [JaKi97], this thesis will not address the Mandelbrot spectmm fully. The reason 

for this brevity is that the information is available in the Rényi dimension spectnun 

D,(X) and extra computational errors are introduced when calculating the Mandelbrot 

spectrum using nurnencal differentiation for the - dDq tenn in Eq. 3.55. Therefore, the - 
dq 

focus in this thesis will be  with the Rényi dimension spectnim D,(X) instead of the Man- 

delbrot spectrum. Also, as noticed in Fig. 6.16, there are artifacts in the &(a) versus a 

curves for larger values of a, which also correspond to larger magnitude negative values 

of q . These sarne artifacts were noticed by Jang [Jang97] and Chen [Cheng71 and result 

from sensitivities in the calculation to the large values of q . 
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Original \ 7 ' Y--)\ 

Fig. 6.16. Mandelbrot spectrum experiinental results at progressive steps for the image of 
(a) lena and (b) urban. 
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6.6 Rényi Information and Relative Multifractal Measures as a 

Progressive Image Transmission Quality Measure 

From a theoretical standpoint, the idea of rneasuring the complexity within an 

image at multiple resolutions is a reasonable approach to forming an objective measure. 

This technique allows for the characterization of the complexity within an image from 

local to global image features. The approaches given in Sec. 6.4 and Sec, 6.5 usïng the 

Rényi dimension s p e c t m  or Mandelbrot spectrum as the complexity measures fil1 the 

need for rneasuring the complexity within an image over these multiple resolutions. 

Unfortunately, when actually applied as descnbed, the results obtained are difficult to 

interpret in an automated way as an objective measure and are sensitive to the whole rnea- 

suring process, in particular the line fitting of the log-log plots. The problems in interpre- 

tation stem fiom the sharp changes in the RMSE calculations of Rényi dimension 

spectrum c w e s  in Fig. 6.9 through Fig. 6.13. An improved approach is needed for per- 

forming these multifractal measures to help remove some of these sensitivities and help 

stabilize the measure into one that can more appropriately be used as an objective mea- 

sure- 

Stepping back and considering at the problem at hand, the goal behind lossy image 

compression and progressive image transmission is to construct a model that approximates 

the original image which is refined over tirne. In view of the multifiactal measures of 

interest, instead of only constructing a model that approximates the original image, the 

key interest is to construct a mode1 having a multifractal complexity that approximates the 

multifiactal cornplexity in the original image. Therefore, the measure should consider the 
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muitifractal complexity models of both the original and reconstructed images to form the 

objective measure, and preferably at the same t h e .  

The models formed so far with the Rényi dimension spectnim and the Mandelbrot 

spectrum use the probability distribution fünction p J x )  at scale s as given in Eq. 6.1. 

Currently, pJx)  for the original image and the reconstructed image are characterized sep- 

arately with the multifractal measures. A different approach combinïng the characteriza- 

tion into one multifractal measure for both probability distributions could be beneficial. 

Lanterman et al. baSM991 looked at ushg the Kullback-Leibler distance FuLeS 11 mea- 

sure as an approach to comparing two different modeIs. The Kuliback-Leibler distance is 

defined as follows. 

Definition 6.1: Let rr  ( x )  and v ( s )  be complete probability distributions defined over the 

alphabet x . 'Ihe relative entropy or Kdlback-Leibfer dislance D(u II v )  between u ( x )  

and v ( x )  is defined as 

It should be noted that D(u (1 v) # D(v (1 n )  in general. Also, the Kullback-Leibler 

distance is not a tn ie  distance metric since it does not, in general, sa t ise  the tnmgle ine- 

quality nile of D(u II v) + D ( v  II w )  2 D(u II w) , given the probability distributions u(x )  , 

V ( X )  , and w(x)  . 
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In the approach by Lanterman et al. FaSM991, the probability distribution of the 

tme system, pme(x) ,  and the probability distribution fkom the model, pmodel(x) ,  are 

defined for their system, Given these two probability distributions, the foIlowing expres- 

sion is stated using the Kullback-LeibIer distance 

O = D(pmie II pme) l D(pme II pmodel) (6-6) 

This indicates that the distance of the true system with itself is zero while the distance 

between the true system and any model approximating the system will be greater than 

zero. More importantly, if given two approximations of the system then pm*eI(l)(x) cm 

be considered better than p m o d e l ( 2 ) ( ~ )  if 

D(pmie 11 pmodeI( 1 1) ~ ( ~ r n e  11 p o d e ~ ) )  (6-7) 

Equation 6.7 meets the goal of the objective measure desired since multiple approximation 

models can be generated for an image and then this f o m  of cornparison used to decide 

which model is of better quality. 

Two main limitations and advantages exist between the Kullback-Leibler distance 

D f u  II v) and the Rényi generalized entropy H,(X). The first limitation is that the Kull- 

back-Leibler distance cannot inherently perforrn multifi-actal analysis on a model since 

there is no way of weighting the probability distributions to extract other inhornogeneous 

characteristics fiom the probability distribution set. This ability is an advantage of the 

Rényi generalized entropy since the use of the moment order q allows for biasing of dif- 

ferent probabilities so that inhomogeneous characteristics can be extracted. The second 

limitation is with the Rényi generalized entropy since it only considers a single prcbability 

distribution in its calculation. This limitation does not exist with the Kullback-Leibler dis- 
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tance since it forms a relative measue between two different probability distributions and 

therefore makes ïnequalities such as Eq, 6.7 possible. 

The goal then is to combine the advantages of the Rényi generalized entropy and 

the Kullback-Leibler distance into a single measure. Two additional critena are placed in 

the design of a measure. The first crÏterion is that the measure rnust always be greater than 

or equal to zero with equaliv only when the two probability distributions are identical. 

The second criterion is that when q = 1 that the measure reduces to the Kullback-Leibler 

distance. The measure developed following these criteria is defined as follows. 

Definition 6.2: Let u ( x )  and v ( x )  be probability distributions and let q be the moment 

order. The generalized relative entropy RHq ( u II v) or generalized KuZlback-Leibk dis- 

tance is then defined as 

It tums out that Eq. 6.8 is the Rényi information Iq(u / I  v) of the two probability 

distributions as developed by Rényi in [Rény60] which means that 

As can be seen, Eq- 6.8 incorporates the different charactenstics outlined for this 

measure. The first is that it incorporates the moment order power q in a marner similar to 

the Rényi generalized entropy in Eq. 3.23. Another important characteristic is that Eq. 6.8 

allows for two probability distributions to be included in the measure. One difference that 
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is obvious with Eq. 6.8 is that negative values are possible. This is will not be a problem 

in our application since the absolute value of the measure could be taken to give a similar 

result as the Kullback-Leibler distance. 

The followùig theorem shows that the measure is zero when the two probability 

distributions are identical. 

Theorem 6.1: Let u(x )  and v ( x )  be probability distributions where u ( x )  = v ( x ) .  The 

generalized relative entropy RHq(u II v )  gives 

RN,(u (1 v) = O for u = v 
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The seconci criterion In the design of the measure in Eq. 6.8 is that when q = 1 

that the measure reduces to the Kullback-Leibler distance. This property is shown with 

the following theorem. 

Theorem 6.2: Let u(x)  and v ( x )  be complete probability distributions. The generalized 

relative entropy RHJu 11 v )  is precisely the Kullback-Leibler distance D(u 11 v) for 

q = 1 as follows 

and 
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then l'Hôpital's mie can be used on Eq. 6.18 to fhd  the limit when q -t 1 as follows 
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Since the probabiiity distributions for the Kullback-Leibler distance D(tr II v) are defined 

as complete, then u ( x )  = 1 . Therefore 
X G X  

which is the Kullback-Leibler distance. O 

These theorems show that the measure given in Defn. 6.2 follow the criteria out- 

lined for the desired measure. The rneasure presented is not yet a multifractal measure 

since it does not consider the self-similarity of the object over multiple scales to build up 

the appropriate power Iaw relationship simitar to Eq. 3.5. This power Iaw relationship is 

necessary for finding the critical exponent that balances out the measured value over the 

multiple scales. The following newly introduced definition transforms the relative Rényi 

generalized entropy R%(u II v) from Eq. 6.8 into the f o m  of a multifractal measure sim- 

ilar to that of Eq. 3.45 for the definition of the Rényi dimension spectnim D,(X). 

Definition 6.3: Let s be the scale of measurement, u,(x) and vJx)  be probability distri- 

bution resolved at scale s, and q be the moment order. The relative Rényi dimension 
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spectrum RDJu  II v )  or relative multijiractaal dimension spectnrm with order q between 

uJx)  and vs(x) is defined as 

s 3 -  1 log - 
S 

1 log - 
S 

Definition 6.3 presents a new class of muitieactal measures that, to the best of our 

knowledge, has not been seen in Iiterahire. This definition opens up a new approach to 

performing multifractal measures where two proba'bility distributions are compared in a 

relative manner, similar to that of relative entropy in information theory. One interesting 

property of the relative Rényi dimension s p e c t m  i s  given in the following theorem. 

Theorem 6.3: Let u,(x) and v,(x) be complete prabability distributions, s be the scale 

of measurement, and let the moment order q = O .  The relative Rényi dimension spec- 

tnim is then 
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= lim X E X  

S + o o  1 log - 
S 

log us(x)  - log C v,(-y) 

= lim X E  X, X E  X, 
1 

With u ( x )  and v ( x )  as complete probability distributions, then Eq. 6.38 reduces to 

Theorern 6.3 States that regardless of the probability distributions u,(x) and 

v,(x),  when q = O the relative R h y i  dimension spectrum between us(x)  and vS(x) is 

zero. This property is interesting since it shows that when q = O ,  cornparing two proba- 
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bility distributions over different scales has constant growth. This can be shown by the 

following power Iaw relationship expressing Eq. 6.34 when q = O 

This proportïonality c m  be reduced as folfows since RDq = & II v )  = O 

which shows that the growth is constant. 

Using the relative Rényi dimension spectrurn, a number of experiments were per- 

formed to see the relationship between RDq(u II v) and q .  For these experiments, the 

hard-threshold approximations of tena as described in Sec. 6.4 are taken and the relative 

Rényi dimension spectrum applied over a range of  values for q , For reasons of space and 

to avoid cluttering the plots, only the approximations of lena with a hard-threshold of 2" 

for O 5 n 'I 10 E N are chosen for the experirnents. The values of RDq(u II v) are calcu- 

lated for q E [-40.0,40.0] in intervals of 0.25. Using these parameters, Fig. 6.17 was 

produced- 
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Fig. 6.17. Plot of relative Rényi dimension spectnim versus q for lena approximated from 
a Daub4 DWT using a hard-threshold of 2" for n = O to n = 10. 

The first thing to note about Fig. 6.1 7 is that al1 of the curves pass through the on- 

gin when q = O as Theorern 6.3 requires. Actually, this is not entirely accurate since the 

curves actually pass through the point 6.20542214e-09 in the calculations. This result is 

Iikely due to some numerical rounding and irnprecision issues with the actual calculations. 

It should also be noticed fiom Fig. 6.17 that as the quality of the image improves with 

decreasing hard-threshold, that the curves converge to the abscissa. This observation is 

promising for using the relative Rényi dimension spectmm as an objective measure, par- 

ticdarly when looking at how the hard-thresholds fiom 21° = 1024 down to Z6 = 64 

converge, 

Unfortunately, some of the greater complexity within the curves of Fig. 6.1 7 can- 

not be clearly seen due to the scale. The curves for 2 O  = 1 through 2' = 128 are replot- 
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ted in Fig. 6.18 through Fig, 6.25, respectively, so that closer analysis can be done. The 

plots for a hard-threshold of 2O = 1 and 2 = 2 in Fig. 6.18 and Fig. 6.19, respectively, 

show a near straight line with a constant negative slope. The plots become more interest- 

ing in Fig. 6.20 for a hard-threshold of 22 = 4 where some of the points begin to f o m  

separate line segments in the plot for q c - 15 and q > 30. The segment for -1 5 c q < 30 

is still roughly linear with a constant slope, though, a larger slope than in the previous two 

figures- 

Starting with Fig. 6.2 1, the additional line segments on either side of q = O begin 

to take on a different shape. The fiirther away from q = 0 ,  the more each line segment 

approaches a larger positive slope. This trend continues with Fig. 6.22 and Fig- 6.23. 

With Fig. 6.24 and Fig. 6.25 the line segments continue approaching larger positive dopes 

the M e r  from q = 0 ,  but, it is clear that the Iine segments continue fiom there and 

change from a large positive dope to flip to a large negative slope that then begins to slope 

back down. Ln essence, there is a slight rotation in each of the line segments forrned as the 

moment orders of q move away from zero. 

At this point it is still unc1ear why these line segments are appearing, but, it may be 

due to the double floating point precision used and the large powers of q . It should also 

be noted that the span of the line segments are contained in a growing envelope for this 

range of q . 
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Fig. 6.1 8. Plot of  relative Rényi dimension spectrum versus q for lena approximated from 
a Daub4 DWT using a hard-threshold of 1.0. 

Fig. 6.19. Plot of relative Rényi dimension spectrum versus q for lena approximated from 
a Daub4 DWT using a hard-threshold of 2.0. 
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Fig. 6.20. Plot of  relative Rényi dimension spectrum versus q for lena approximated fiom 
a Daub4 DWT using a hard-threshold of 4-0. 

Fig. 6.2 1.  Plot of relative Rényi dimension spectnun versus q for lena approximated h m  
a Daub4 DWT using a hard-threshold of 8.0. 
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Fig. 6.22. Plot of relative Rényi dimension spectrum versus q for lena approximated from 
a Daub4 DWT using a hard-threshold of 16.0. 

Fig. 6.23. Plot of relative Rényi dimension spectnim versus q for lena approximated fiom 
a Daub4 DWT using a hard-threshold o f  32.0. 
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Fig. 6.24. Plot of relative Rényi dimension spectrum versus q for lena approximated fiom 
a Daub4 DWT using a hard-threshold of 64.0. 

Fig. 6.25. Plot of relative Rényi dunension spectmm versus q for lena approximated from 
a Daub4 DWT using a hard-threshold of I28.O. 
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The resuits given in Fig. 6.18 through Fig. 6.25 do not make the relative Rényi 

dimension spectnim unusable as an objective measure, but, care will be needed in inter- 

preting the results if larger absolute vahes of q are used- Another observation that can be 

made about the plots, where extra line segments appear for 1arger absolute values of q , is 

that the trend tends to foliow the path made by the 1ine segment in and around the q = O 

mark. Therefore, using the values M e r  out h m  q = O as an average will approximate 

an extended version of the b e r  h e  segment. 

A simple approach to using the relative Rényi dimension spectrum as an objective 

measure is to calculated the spectrurn over a number of moments of order q and then sum 

these values. This objective measure will be referred to as CQM and expressed as follows 

where I I  is a set of values for the moment order q . 

Using this objective measure, a number of experiments are perforrned on the sets 

of 250 hard-threshold images described in Sec. 6.4. The purpose of the experirnents is to 

observe how the IQM changes for different hard-threshold values. The set of values for 

q E Iq of Eq. 6.42 are chosen in the range of [-20.0,20.0] in increments of 0.5. These 

experiments are performed for lena, urban, baboon, peppers, and farm with the results 

plotted in Fig. 6.26, Fig. 6.27, Fig. 6.28, Fig. 6.29, and Fig- 6.30, respectively. Note that 

for Fig. 6.27 and Fig. 6.29 that the RMSE curves from Fig. 6.10 and Fig. 6.12, respec- 

tively, have been overlaid in the plot for the purpose of analysis and cornparison. 
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Hard-threshold value 

Fig. 6.26. IQM measure versus hard-threshold value for image of lena @aub4). 

Hard-threshold value 

Fig. 6.27. IQM measure versus hard-threshold value for image of urban (Daub4). 
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Hard-threshold value 

Fig- 6.28. IQM measure versus hard-threshold value for image of baboon (Daub4). 

Fig. 6.29. IQM measure versus hard-threshold value for image of peppers (DauM). 
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Hard-threshold value 

Fig. 6.30. IQM rneasure versus hard-threshold value for image of farm (Daub4). 

The resuIts of the IQM expenments are very encouraging, particuIar1y for lena, 

baboon, and farm in Fig. 6.26, Fig. 6.28, and Fig. 6.30, respectively, which have a near 

exponential drop in the IQM value as the hard-threshold value decreases. This shape fol- 

lows what would intuitively be expected for an objective measure of image quality, since 

the reconstructions have this sort of improvcrnent in image quality as the hard-threshold 

level decreases and more image information is available in the reconstruction. 

The IQM results for the image of peppers in Fig. 6.29 also predominantly has an 

exponential change in IQM versus hard-threshold level. In some ranges of the hard- 

threshold values, the IQM results for peppers deviate from the exponential c m e  such as 

the range from 178 to 186 where there is a step and the range from 2 1 1 to 242 where the 

curve plateaus. An interesting observation is that these two regions correspond to the step 
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and plateau in the overlaid cunre fiom Fig. 6-12. Therefore, some correlations exist 

between the IQM and the Rényi dimension spectrum measures presented in Sec- 6-4. In 

addition, a smail rise in the points around the hard-threshold value of 125 corresponds 

with a smaller step in the overlaid curve, and the small junp at 145 corresponds with a 

srnall peak in the overlaid curve. Not al1 sharp changes in the overlaid curve are readily 

noticed in the IQM results, but many correlate weU. 

The IQM results for the urban image given in Fig. 6.27 show far less of an expo- 

nential change in IQM versus hard-threshold compared with the other four sets of results. 

While the points, in general, show that the IQM value decreases in correspondence with a 

decrease in hard-threshold, there are more piateaus visible in this plot with sharper drops 

as compared with the other IQM results. Again, a very interesting observation is that the 

IQM results have many correlations with the overlaid results for the Rényi dimension 

spectrum fiom Fig. 6.  IO. For instance, the hard-threshold values of 48, 79, 109, 133,207 

in the IQM results have noticeable transitions that correlate well with sharp changes in the 

overlaid results for the Rényi dimension spectmrn from Fig. 6.10, 

With the prornising results for IQM observed in Fig. 6.26 to Fig. 6.30, the next step 

is to see how the IQM measure correlates with MOS expenmental results- Using the pre- 

viously described MOS experiments, the correlation between the IQM measurz and the 

MOS results are plotted in Fig, 6.3 1. As would be expected fiom a good objective mea- 

sure, there is a high correlation between the plotted lAog(1QM) and the results obtained 

fiom the MOS experiments as the fiited line indicates in Fig- 6.3 1. A more indepth set 
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MOS experiments need to be run to support these initial experiments, but correlation does 

exist between the developed measure and the MOS results. 

O 1 2 3 4 5 

Mean Opinion Score (MOS) 

Fig. 6.3 1. The developed IQM objective measure versus 
mean opinion score experiment correlation results. 

In conclusion, when considering the relative Rényi dimension spectnim and the 

IQM measure, a few important characteristics must be noted. The first is that these mea- 

sures allow for two probability distributions to be compared and hence the original image 

and the reconslnicted image to be compared. More importantly, the combination of the 

probabilities within the sumrnation and logarithm of the relative Rényi dimension spec- 

trum RD,(u II v) ui Eq. 6.34 versus looking at each probability separately as with the 

D,(X) in Eq. 3.45 removes many of the nurneric sensitivity in the calculation, particu- 

lady the errors from the line fining required for finding the critical exponents. Therefore, 
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the relative Rényi dimension spectnim RDq(u I I  v) is better suited as an objective measure 

than the other multihctal measures presented. 

6.7 Summary 

This chapter has investigated and outiined the use of multifractai dimension mea- 

sures such as Rényi generalized entropy, Rényi dimension spectnim, Mandelbrot spec- 

trum, and the newly proposed relative Rényi dimension spectrum for anaiyzing the 

multifi-actal complexity of images. This analysis, in tum, makes way for a new method of 

objectively analyzing the quality of signals in terms of signal complexity and in particular 

the quality of lossy image reconstructions through differences in complexity. This 

approach is especially important since the multifractal analysis is done over al1 resolutions 

of the image, while many other objective measures only consider localized changes in the 

image, such as with the PSNR which oniy looks at squared pixel energy differences on a 

pixel by pixel basis. The proposed approach, therefore, for an objective measure is to use 

the ZQM measure developed in Sec. 6.6 since it has some useful properties, has an encour- 

aging exponential drop as the image quality irnproves, and removes some of the sensitivity 

to the calculation from the result. 

The following chapter considers the development of wavelet and wavelet packet 

based progressive image transmission techniques. Of particuIar interest from the stand- 

point of this chapter, the following chapter considers the use of the developed multifractal 

dimension measures to assist in the selection of parameters, wavelet coefficients, and 

wavelet packet bases, so that the overall progressive image transmission can be irnproved. 
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PROGRESSIVE WAVELET IMAGE COMPRESSION 
WITH MULTIFRACTALS 

This chapter explores using the measures developed in the previous chapters in the 

context of progressive Mage transmission techniques, with focus on wavelet and wavelet 

packet image compression techniques. One component looked at in this chapter is pro- 

gressive wavelet image transmission where regions of compIexiq disparis, can be 

autoidentified using the developed multifractal measures. Another component of this 

chapter is the development of a new generalized wavelet packet best basis cost fùnction 

based on the Rényi generalized entropy. The following section begins this chapter with a 

brief introduction to progressive wavelet image transmission in the context of perceptually 

motivated measures. 

7.1 Progressive Wavelet Image Transmission 

As described in Chapter 2, progressive image transmission is the compression and 

transmission of image information such that the image can be roughly approximated at an 

early stage of reconstruction and then refined as more image information is received. As 

pointed out by Jayant et al. [.JaJS93], image coding, and signal coding in general, has 

advanced to the point where researchers need to focus on the perceptual coding of these 

signals, For very low bit rates, good image coding algorithms will need perceptually moti- 

vated distortion measures. Sirnilar perceptual coding efforts are done with other signais, 

such as digital audio signals as given in the review by Painter and Spanias PaSp971. 



Progressive image Transmission Ch. 7: Progressive Wavelets with Multïfi-actals 

Therefore, progressive image transmission d s o  needs to take advantage of perceptually 

motivated distortion measures- 

808 bytes (0.308%) 1977 bytes (0.754%) 5262 bytes (2.01 %) 

20678 bytes (7.89%) 58173 bytes (22-19%) 96359 bytes (36.76%) 

Fig. 7.1. Sample progressive transmission of the aerial ortho image 
urban with size in bytes and % of original. 

Current state of the art wavelet techniques include the EZW algorithm developed 

by Shapiro [Shap93], [Shap93b], which was later generalized and improved by Said and 

Pearlrnan as the SPMT algorithm [SaPe96]. Exarnple images fkom a progressive image 

transmission using the EZW algorithm is s h o w  in Fig. 7.1 for the image of urban. While 

the EZW and SPmT algorithms perform well, are cornputationally efficient, and mini- 

mize the tractable distortion cnteria such as MSE and PSNR p6KS97], neither of these 

algorithms consider any perceptually motivated distortion measures in the coding of the 
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images. They fûnction by taking advantage of the structure of the wavelet decornposition 

and allocating bits for wavelet coefficients in an efficient manner. 

Many researchers are looking at developing perceptualiy motivated progressive 

image transmission- One technique, as presented by Frajka et al- FrSZ971, modifies the 

SPIHT algorithm by Said and Pearlman [Sape961 so that it can focus on certain regions in 

the image during the embedded image coding. This focus on the regions within the image 

is perfonned by region masking, where important regions are identified and then the next 

few phases in the algorithm transmit bits only for this region- 

Other efforts at modifjing EZW and SPIHT aigorithms were done by Hontsch et 

al. p6KS97], where the wavelet coefficients are weighted by a .JND factor using the 

Minkowsky metrïc. No side information is sent in this technique so it does not rea1ly 

adapt to specific image dynamics. The resulting wavelet coefficients are perceptually 

tuned to the Minkowslq metric, as opposed to the MSE, through the weighting of the 

wavelet coefficients. 

Subband coding is another approach to wavelet image compression where each 

level of  decomposition in the wavelet transforrn is considered a separate band, or subband, 

of dilations. This approach includes some of the first wavelet subband coding by Woods 

and O'Neil LWoON86], the DWT subband coding by MalIat Wa11891, and the DWT sub- 

band progressive image transmission by Jafarkhani and Farvardin [JaFa96]. The latter is a 

fast approach that can reconstruct the image as every wavelet coefficient arrives without 

increasing the computational cost. Some of the compression in progressive wavelet sub- 

band coding can be optimized by using techniques such as that given by Buccigrossi and 
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Simoncefi puSi9;rl, which considers the joint statistics between subbands. Perceptual 

fonns of subband coding have been introduced by Safiruiek and Johnson [SaJo89] with the 

perceptual subband image coder (PIC). Hontsch and Karam w6Ka97] present an adap- 

tive form of the PIC algorithm that determines the JND for local wavelet coefficients to 

improve the image quality. 

Another approach to wavelet based image compression follows the singularity 

detection of Mallat and Hwang @IaHw92]- This technique can represent a signal through 

the zero crossings in the wavelet transfonn, which form the edges within an image. Langi 

and Kinsner present one such method that encodes the singdarities in a chah  code repre- 

sentation that can reconstruct the edges in the image FaKigSa], baKi95cJ. 

Another area of research to improve image compression and progressive image 

transmission is image denoising. While not explicitly following perceptual models, this 

preprocessing step helps remove uncorrelated noise fiom an image, which rnakes the job 

of an image coder easier. Donoho introduced image denoising using wavelet shrinkage 

Pono923, Pono951. Extensions to these ideas were made by Krim et al. KTMD993 

who looked at choosing wavelet packet best basis representations that c m  then have a 

hard-threshold applied instead of sofi-threshoids [pono92], [Dono95], Denoising effects 

in wavelet based progressive image transmission techniques was looked at by Langi and 

Kinsner paKi95b], @hng96], Wns95bl. 

The next section considers the effects of enhancing regions within an image. The 

effects on the developed multifiactal measures of enhancing regions are investigated along 

with how to identiQ these RCD using the multifiactal measures. 
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7.2 Progressive Image Transmission with Enhanced Regions 

One approach used for some progressive image transmission techniques to 

improve image quality is to i d e n e  regions that should be emphasized. During the 

encodîng phase in the progressive image transmission, these regions are encoded first or 

encoded with greater precision initially, perhaps through a rebalancing of bit allocation in 

the quantization step of the coefficients. This special treatment of regions alïows for the 

key portions of the image reconstruction to appear faster if the important regions are iden- 

tified properly. An example of a region rnight be the head and shoulder portion of a pass- 

port image, which would generally be of more interest than the background of the image. 

The finer details of the background can therefore be delayed, while the head and shoulders 

are filled in with more details early in the progressive image transmission. 

7.2.1 EncoderIDecoder Design for Enhanced Region Progressive Wavelet Image 

Transmission 

A number of techniques exist for varying the bit allocation of regions for progres- 

sive wavelet image transmission. Shapiro presented a method for preprocessing and post- 

processing the wavelet coefficients to adjust the bit allocation of the EZW algorithm 

[Shap93b]. Frajka et al. FrSZ971 present a method of extending the Said and Pearlman's 

SPMT algorithm [SaPe96], which also works with Shapiro's EZW algorithrn, by estab- 

lishing an importance fimction for each of the wavelet coefficients. This importance h c -  

tion is used to effectively determine the priority of the bit allocation process for the 

wavelet coefficients in the image decomposition. Other adaptive techniques exist for pro- 
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gressive wavelet image transmission, but, this section focuses on the effects of enhancing 

regions on the IQM mdtifiactal measure developed in Sec. 6.6- 

To set up an experùnental environment for this section, a simple progressive wave- 

let image transmission technique is needed that allows for the enhancernent of regions at 

an early stage in the progressive image transmission. The data fiow diagram in Fig. 7.2 

illustrates the environment used for generating images with enhanced regions. in the pro- 

gressive irnage transmission technique shown in Fig. 7.2, an image is k t  decomposed 

with the DWT. Afterwards, the wavelet coefficients fiom the DWT are taken and then the 

coefficients that spatially map back to specified regions are scaled by a set of rnultipliers, 

The goal is to increase the magnitude of these wavelet coefficients corresponding to the 

region so that the EZW encoder allocates bits to these coefficients earlier than it wouId 

otherwise- Of course, the scaling of the wavelet coefficients must be done across the dif- 

ferent subbands in the wavelet decomposition, following the parentkhild relationship of 

the wavelet coefficients. The coefficient scaling may also be dif5erent fiom subband to 

subband for each region. After the EZW encoduig of the scaled wavelet coefficients, the 

data stream is fbrther losslessly compressed with an adaptive arithmetic coder [WNC87]. 

Some sideband information must also be sent in the data stream including the Iocation of 

the region as well as the scaling factors used for the region. The reconstruction of the 

image is the reverse of the process illustrated in Fig. 7.2. 
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, i  A , a , Data 

Fig. 7.2. Data flow of the test progressive wavelet image transmission coder with 
enhanced regions- 

7.2.2 Relative Rényi Dimension Spectrum Experiments on Enhanced Regions 

To show how the image compression scheme depicted in Fig. 7.2 improves the 

image quality of selected regions, a number of experiments are performed on the image of 

lena with three enhanced regions, as shown in Fig. 7.3. The experiments consider the 

image of lena with no enhanced regions, the image of lena with the two enhanced regions 

around the eyes, and the image of lena with the face as the enhanced region. 
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Fig. 7.3. Image of lena with three selected regions, 
narnely the two eyes and face. 

Using this experimental setup, the image of lena was compressed and recon- 

stmcted usirig the encodeddecoder described in Sec. 7.2.1. Cropped versions of the 

resulting reconstmcted images are given in Fig. 7.4 and Fig. 7.5 at 0.05 bpp and 0.1 bpp, 

respectively. These two figures each show six cropped images of lena consisting of 

the original image of lena, 

results when using no enhanced regions, 

results with the eyes enhanced and the wavelet coefficients multiplied by 2.0, 

results with the face enhanced and the wavelet coefficients multiplied by 2.0, 

results with the eyes enhanced and the wavelet coefficients multiplied by 4.0, 

and results with the face enhanced and wavelet coefficients muitiplplied by 4.0. 
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Lookiag at these images, a number of observations can be made. First, lookuig at 

the image in Fig. 7-4b versus Fig- 7 . 4 ~  and Fig. 7.4d, it is noticed that the eyes have more 

details in Fig. 7 . 4 ~  then in Fig. 7-4b, and that the entire face in Fig. 7.4d has marginally 

more details than in Fig. 7.4b. Both Fig. 7 . 4 ~  and Fig. 7.4d have some features that are not 

as coarse than in Fig. 7.4b, particularly around the eyes and the tip of the nose. These 

results follow what is expected, since rnultiplying the wavelet coefficients by 2.0 for the 

region containing the eyes and face emphasizes these features slightly at an earlier stage of 

the encoding. This emphasis is more prominent when the wavelet coefficients are rnulti- 

plied by 4.0 as evidenced in Fig. 7.4e and Fig. 7.4K Finer details are brought into the 

regions of the eyes for both reconstructions. Also, the nose, nostril, cheek, and mouth area 

in Fig. 7.4f have finer details than in Fig. 7.4b when no enhanced regions are used. Al1 of 

these observations can sunilarly be made about the respective reconstructions at 0.1 bpp in 

Fig, 7.5. The eyes and face in Fig. 7.5 are better defined with some finer resolution corn- 

ponents around the eyes, nose, rnouth, and cheek. 
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(a) Original image (b) 0.05 bpp with no enhancement 

(c)  0-05 bpp with eyes enhanced * 2.0 

(e) 0.05 bpp with eyes enhanced * 4.0 

1) 0.05 bpp with face enhanced * 2.0 

9 0.05 bpp with face enhanced * 4.0 

Fig. 7.4. Cropped image reconstructions of lena with regions cornpressed 
at 0.05 bpp. (a) Original image, (b) no enhancement, (c)  eyes enhanced * 2.0, 
(d) face enhanced * 2.0, (e)  eyes enhanced * 4.0, and (f) face enhanced * 4.0. 
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(a) Onginal image (b) 0.1 bpp with no enhancement 

(c) 0.1 bpp with eyes enhanced * 2.0 (d) 0.1 bpp with face enhanced * 2.0 

(e) 0.1 bpp with eyes enhanced * 4.0 (f) 0.1 bpp with face enhanced * 4.0 

Fig. 7.5. Cropped image reconstructions of lena with regions compressed 
at 0.1 bpp. (a) Original image, (b) no enhancement, (c) eyes enhanced * 2.0, 
(ci) face enhanced * 2.0, (e) eyes enhanced * 4.0, and (f) face enhanced * 4.0. 
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With the images in Fig- 7.4 and Fig. 7.5, the next set of experiments is to take the 

generated image reconstructions and apply the relative Rényi dimension spectrum 

RD,(u II v )  from Sec. 6.6. These experiments are performed in two sets. The first set of 

experiments applies RDJu II v) on the uncropped versions of the images with the recon- 

structed image as v and the original image as u . The second set of expehents applies 

RD,(u Il v) on the cropped versions of the images, as shown in Fig. 7.4 and Fig. 7.5, 

again with v and u as the reconstructed and original images, respectively. Perfoming the 

RD,(u II v) analysis in this manner allows us to see how the measure is affected over the 

entire image versus oniy in the area of the enhanced region, 

The results of the first set of experiments using the full images of lena in the 

RDq(u II v) analysis are plotted in Fig. 7.6 and Fig. 7.7. The plots in Fig. 7.6 reflect the 

RDq(u II v) analysis results using the full images from Fig. 7.4, while the plots in Fig. 7.7 

reflect the RDJu II v) analysis results using the full images frorn Fig. 7.5. Analyzing 

Fig. 7-6 it is apparent that the image reconstruction with no region enhancement and the 

image reconstructions with the eye and face enhanced scaled by 2.0 have quite similar 

RDq(u (1 v) versus q curves. For the image reconstxuctions with the enhanced regions 

scaled by 4.0 the RD,(u II v) venus q curves move away from the abscissa. This depar- 

ture indicates that the overall image reconstruction complexity is degraded when the 

enhanced regions are iricluded. This result is expected since using more bits for the 

enhanced region means that fewer bits are available for the rest of the image. Therefore, 

the overall multiftactal image complexity is degraded when the regions are included, even 

though the specific regions have irnproved quality. This observation corresponds to the 
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PSNR results obtained by Frajka et ai. @?rSZ97] who observed the same change when 

enhanced regions are added to an image. 

Analyzing Fig. 7.7 where the bit rate is 0.1 bpp, the RD,(u I( v) vernis q c w e s  

are al1 very similar. The use of extra bits in the progressive Mage transmission has 

brought the RD,(u 11 v )  versus q curves closer together compared to Fig. 7.6, which 

means that the overail multifiactal cornplexities in the five images are similar. While diffi- 

cult to notice properly in the pIot, for q > O al1 of the images with enhanced regions are 

marginally closer to the abscissa than the image with no enhancement, except for the 

image with the eyes as the enhanced region using a scaling of 4.0. This result indicates 

that the majonty of the images with enhanced regions follow the overall multifractal com- 

plexity of the original quite we11, but that the enhancement of the region has redistributed a 

few additional bits to actually improve the overall image complexity disparity. This effect 

is an interesting reversa1 from the plots in Fig. 7.6, since it shows that at some point in the 

transmission the overall image compleixty is improved by including the enhanced regions. 

This reversal is not noticed in the PSNR results of Frajka et al. [FrSZ97]. The curve that is 

fbrther fiom the abscissa compared to the one for the image with no enhancement indi- 

cates that the balance has not yet been achieved in the number of bits allocated to the 

smaller regions versus the entire image. More multifractal complexity details are needed 

for the rest of the image at this enhancement scaling before this reversai is obtained. 

These same observations can be made for q < 0, but, it is less clear since some of the 

rotating line segment effect noticed in Sec. 6.6 is visible, starting roughly at the q < -5.0 

mark. 
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Eyes 
Face 

No enhancement 

enhanced 2.0 
enhanced * 2.0 

Eyes enhanced * 4-0 / 

Fig. 7.6. Plot of relative Rényi dimension spectnim venus q for Daub4 EZW 
reconstruction of lena at 0.05 bpp with no enhancement, eyes enhanced, and 

face enhanced using a scaling of 2.0 and 4.0. 



Progressive Image Transmission Ch. 7: Progressive WaveIets with Multifractals 

Eyes enhanced * 2.0 
Face enhanced * 2.0 
Face enhanced * 4-0 

Fig. 7.7. Plot of relative Rényi dimension spectnun versus q for Daub4 EZW 
reconstmction of lena at 0.1 bpp with no enhancement, eyes enhanced, and 

face enhanced using a scaling of 2.0 and 4.0. 
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The next set of experirnents calculate the relative Rényi dimension spectnun 

RD,(u II v )  of the cropped images of lena, as opposed to the Full image reconstructions. 

The same experiments are perfonned as in Fig. 7.6 and Fig- 7-7 with these cropped ver- 

sions of the images for u and v ,  respectively. The RD,(u II v) versus q resuits are plot- 

ted for a bit rate of 0-05 bpp and 0.1 bpp in Fig- 7.8 and Fig, 7.9, respectively, 

For the results at 0.05 bpp, Fig. 7.8 shows that three of the four curves with 

enhanced regions converge more towards the abscissa than the cropped reconstmction 

without any enhancements. Since the cropping lirnits the analysis to the region around the 

face of lena, these results are expected since this region has better quality, Here the 

increase in quality is due to the greater number of bits allocated to this region. Of surprise 

is that the curve for the reconstruction with the face as the enhanced region at a scalïng of 

4.0 is M e r  fiom the abscissa. This result is not expected since Fig. 7,4f appears to be of 

better perceptual quality than al1 of the other image reconstructions in Fig. 7.4. Thus, the 

larger distance fiom the abscissa is possibly due to some extra edge artifacis in the image 

reconstruction that add an extra level of rnultifractal complexity which should not be 

present. 
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Fig. 7.8. Plot of relative Rényi dimension spectrum versus q for cropped Daub4 EZW 
reconstruction o f  lena at 0.05 bpp with no enhancement, eyes enhanced, and 

face enhanced using a scaling of 2.0 and 4.0. 
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Face enhanced * 4.0 

Face enhanced " 2.0 

Eyes enhanced " 4.0 

Eyes enhanced * 2-0 

q 
Fig. 7.9. Plot of relative Rényi dimension spectrum versus q for cropped Daub4 EZW 

reconstruction o f  lena at 0.1 bpp with no enhancement, eyes enhanced, and 
face enhanced using a scaling of 2.0 and 4.0. 
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For the results at 0.1 bpp, Fig. 7.9 shows much more o f  what is expected of aiI four 

images with enhanced regions. Al1 four curves are shifted closer to the abscissa as com- 

pared to the image reconstruction with no enhancements. Another interesting observation 

is that the two curves for enhanced regions around the eyes and the two curves for 

enhanced regions around the face are grouped together with a slight improvement when 

going from a scaling of 2.0 to 4.0. This ordering of the face and eye curves is expected, 

since measuring the face when only the eyes are enhanced would only marghally change 

the RD,(u II v) value for the cropped image. 

\ No enhancement 

Bit Rate [bpp] 

Fig. 7.10. IQM measure versus compression rate for image of lena with and without 
enhanced regions around face. 

Another experiment conducted Iooks at how the IQM analysis developed in 

Sec. 6.6 is affected by including some enhanced regions in an image. The experiment is 
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conducted by applying the IQM analysis on the reconstructed image with the enhanced 

regions around the face included. This IQM analysis is appiïed on the full image as well 

as the cropped version of the image over a range of bit rates, with the results plotted in 

Fig. 7.10. This plot shows that the IQM value is lower for the cropped image at the major- 

ity of bit rates fiom 0.005 to 0.6 bpp. This result indicates that the enhanced image is of 

doser signal complexity throughout the transmission until roughly the 0.640 bpp mark, 

where enough bits have been allocated to the rest of the image to improve the complexity 

representation cornpared to the enhanced image. This result aiso shows that 0.640 bpp is 

the point when the enhanced image and the full image have balanced out in tems of over- 

al1 image complexîty fiom the standpoint of the IQM analysis- 

(a) IQM rnap of lena (b) Histogram equalized 
IQM map of lena 

Fig. 7.1 1. IQM rnap of image of lena at 0.1 bpp using a 16x1 6 pixel sliding window. 
(a) IQM rnap of lena, (b) Histogram equalized IQM rnap of lena. 

Following up fûrther on the IQM experiments, one view of the image that is inter- 

esting is to consider how the IQM value changes over different parts of the image. An 

experiment was set up to rnap the IQM values by calculating the IQM value on a 16 x 16 

pixel sliding window over the entire image. The resulting IQM rnap is given in Fig. 7.1 la 
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for the image of lena reconstructed with no enhancement at 0.1 bpp. A histograrn equal- 

ized version of Fig. 7.1 la is given in Fig. 7.1 1 b to provide more detail by using the full 

pixel range available. The darker regions in these two IQM maps are regions where the 

IQM value indicates that Little difference exists between the original and reconstnicted 

images. The brighter areas indicate those regions where finer details are required to 

improve the compIexity disparïty between the original and reconstnicted images. From 

Fig, 7.1 la, it is apparent that the feathers, eyes, and rnirror tiim in the image require the 

addition of h e r  details to further improve the image complexity from an IQM analysis 

standpoint. The histograrn equalized version of the map, given in Fig, 7.1 lb, shows that 

the more textured areas of the image and regions where edges exist also require M e r  

details to be incIuded to improve the image complexity £?om an IQM analysis standpoint. 

7.2.3 Automatic Identification of Regions of Complexity Disparity 

One problem with using enhanced regions for the improvement of overaIl image 

complem is that these regions usually need to be chosen by hand. It would be usefiil to 

have an automated method of i d e n t i w g  regions where the cornplexity differs signifi- 

cantly between the two images being cornpared. These regions will be refered to as 

regions of cornplexity disparity (RCD). The IQM analysis introduced in Sec. 6.6 can be 

used to perform this identification of RCD- This identification is done by using the IQM 

mapping approach described for generating Fig, 7.1 1 in Sec. 7.2.2. With this approach, a 

map of the IQM values throughout the image can be established at specified resolutions, 

and then the regions with the highest IQM values identified as the RCD. 
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Using this approach of IQM mapping, the five test images of lena, urban, 

baboon, peppers, and fann are mapped, and the dominant RCD identified in Fig. 7-12, 

Fig- 7.13, Fig. 7.14, Fig. 7.15, and Fig. 7.16, respectively. Each of these figures show the 

RCD identification for 8,32, and 128 windows of size 64xô4,32x32, and 16x1 6, respec- 

tivel y. 

Some observations c m  be made about the RCD identification in Fig. 7.12 through 

Fig. 7.16. For lena, at a wiadow size of 64x64 the RCD identification chooses important 

edges such as the shoulder, hat, and hair- At the finer resolution of 32x32, the RCD iden- 

tification continues to identie edges around the hat, shodder, cheek, and rnirror as impor- 

tant, as weIl as one of the eyes. This RCD identification continues at 16x1 6 with more 

RCD around the eyes, and edges around the hat, border of the feathers, and the rnirror. 

The IQM mapping has returned primarily edge components as the RCD, and has ignored 

most of the h e r  textures in the interior of the hat and feathers, 

Fig. 7.12. Results of identification of regions of complexity disparity using the IQM map 
for the image of lena at scales of (a) 64x64, (b) 32x32, and (c) 16x1 6. 
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Fig, 7.13. Results of identification of regions of complexi~ disparity using the IQM map 
for the image of urban at scales of (a) 64x64, (b) 32x32, and (c) 16x1 6. 

Fig. 7-14. Resuits of identification of regions of complexity disparity using the IQM map 
for the image of baboon at scales of (a) 64x64, (b) 32x32, and (c) 16x1 6. 

The RCD identification in the image of urban tends to focus on the bouses in the 

image, The cars only begin to be identified with a window size of 16x1 6 and the roads are 

not identified at all, though, the roads are already relatively sharp. This example may 

show a weakness in the LQM analysis in that, for instance, the house in the top right of the 

image is not significantly perceptually different fiom the original, The IQM analysis can 

discern features past the levef of human JND, which suggests that some extra preprocess- 
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ing for JND features, perhaps through a smoothing filter, should be done with the images 

before perfonning IQM mappùlg. 

The RCD identification in the image of baboon shows a strong preference for the 

area around the eyes as well as dong the nose at the border of the hair. It is interesting to 

note that few regions are identified within the hair of the baboon- 

The RCD identification in the image of peppers shows a strong preference for the 

edges around each of the peppers, particularly where there is a sharp transition from light 

to dark. This result agrees with what is known of the importance of edges in human per- 

ception [JaJS93]. 

Fig. 7. t 5. Results of identification of regions of complexity disparity using the IQM map 
for the image of peppers at scales of (a) 64x64, (b) 32x32, and (c) 16x1 6. 
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Fig. 7.16. Results of identification of regions of complexity disparity using the EQM map 
for the image of farm at scales o f  (a) 64x64, (b) 32x32, and (c) 16x1 6- 

Findly, the image of farm shows that most of the RCD identification is in the 

regions with the houses and roads- The finer details of the fields are mostly ignored and 

treated as having a multifï-actal c o m p l e x i ~  much closer to that of the original image, It is 

the more noticeable changes in the image- that are identified as RCD. 

 rom the experiments conductek, IQM analysis shows that edges and areas of 

more irregular changes are identified in these wavelet compressed images as the RCD. 

The next section Iooks at a different problern in signal decomposition, narnely that of find- 

ing the best basis wavelet packet represenatation of a signal. 

7.3 Wavelet Packet Best Basis Search using the 

Rényi Generalized Entrop y 

Wavelet packets, as discussed in Sec, 4.4, are a generalization of the wavelet tram- 

fonn such that detail portions of the signal are also decomposed in the same rnanner as 

approximation portions of the signal (refer to Fig. 4-10). The advantage behind using 
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wavelet packets in signal approximation is that choosing this decomposition in an adaptive 

manner according to the signal may yield better results than the wavelet transform itself. 

As indicated in Sec. 4.4.2, an issue with using wavelet packets is deciding how many lev- 

els of decomposition shouid be performed for each of the approximation and detail signals 

for a particular signal. In other words, what is the stopping criteria that indicates the level 

of wavelet decomposition, 

A nurnber of approaches are available for choosing a wavelet packet decomposi- 

tion, or wavelet packet basis as it is ofien referred. A general approach is to form a dictio- 

nary of a l  wavelet packet decompositions, and then perforrn an exhaustive search for the 

basis representation that minimizes some criteria. For a binary tree decornposition of a 

tirne series, as in Fig. 4.10, or a quaternary tree decomposition for a 2D signal such as an 

image, as in Fig. 4.12, this fimction basis dictionary grows exponentially the deeper the 

tree is decomposed,- With this exponential growth, an exhaustive search of al1 bases in the 

dictionary tree for the best basis is computationally prohibitive. 

Coifinan and Wickerhauser [CoWi92], Wick941 proposed an eEcient search algo- 

rithm for the best basis in the dictionary tree by use of additive cost rneasures. Other 

search algorithms include that by Taswell [Tasw94], [Tasw95] which finds near-best bases 

according to non-additive cost f ict ions,  as well as pursuit algonthms such as the greedy 

approach in the matching pursuit algorithm by Mallat and Zhang WaZh93)- 

In this section, our interest is with extending the entropy based best basis search 

algorithm as proposed by Coifman and Wickerhauser [CoWi92]. The approach described 

f i s t  defines the idea of an additive cost function as follows. 
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Definition 7.1: A map C(xi, 9) fiom sequences { x i )  to R for the orthonormal basis $ 

is called an additive information cost fùnction if C(O,$) = O and 

Ct {xi>. 9) = Cic(xi, $1 - 

From this definition, Coihan and Wickerhauser continue by specifying that a best 

basis representation of a signal is a basis from the dictionary that minimizes C( f, 9) for 

the function f .  If an additive information cost function is defmed for an orthonomal basis 

qj, taken at decomposition level j, then it folIows from Defo. 7.1 that 

where (@;, $)) c @ j .  The search algorithm that follows from this additive property is to 

search through the tree representation of the dictionary and detemine if a parent node has 

a cost b c t i o n  greater or Iess than the sum of the cost fûnctions of the children nodes. If 

the following inequality holds for the parent node and the n children nodes in a decompo- 

sition 

then the children QjiZ', , u . . . u $;i.n are chosen as part of the wavelet packet decomposi- 

tion of that portion of the signal. On the other hand, if 

then the parent $j is chosen as the wavelet packet decomposition for that portion of the 

signal. An example best basis for a cost function C( f, $) is illustrated in Fig. 7.17, which 

is a sirnplified version of Fig. 4.10. The shaded regions illustrate the selection of a wavelet 

packet decomposition of the signal into coefficients at various levels of @$. For instance, 

the c o m p ~ s o n  C( f, Q;) > C( f, 9:) + C( f, $q) results in the children nodes 440 and 414 
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being selected for the wavelet decomposition. A h ,  C( f, @:) S C ( f ,  $5) + C(f, $2) 

resuits in the parent $: being selected for the wavelet packet decomposition. 

Original 
Signal I f 

Levei 2 

Level3 

Level4 

Fig. 7-17. Example best basis, showh in shaded regions, for a one dimensional 
wavelet packet decomposition, 

The additive information cost function proposed by Coifman and Wickerhauser 

(CoWi921 can be expressed as follows @fa11991 

This is effectively the Shannon entropy fiom Eq. 3.19 with a probability distribution of 
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For the additivity requirement in Eq. 7.1 to hold with Eq. 7.4, then the following 

must be true of the Shannon entropy for the probability distributions X and Y 

This relationship is shown to be true as follows 

= H ( X )  + H ( Y ) .  (7-9) 

Therefore, the cost fùnction in Eq. 7.4 is additive since it has the same forrn as Shannon 

en trop y. 

From this entropy based approach for an additive cost function, there is potential 

for using the Rényi generalized entropy in place of the Shannon entropy. The concept of 

additivity for entropy was generaIized by Rényi Pény551, [Rény59], [Rény6O] for incom- 

plete probability distributions such that 

where, as given in Eq. 3 -2 1, W ( X )  = p(x)  . This generalization remains consistent 
X E X  

with the idea of additivi~ in Eq. 7.1 and therefore can be used for evaluating fimctions as 

possible additive cost functions for the best basis search algorithm of Coihan  and Wick- 

erhauser [CoWi92]. Another note about Eq. 7.10 is that it reforrnulates the additive rela- 

tionship into an arithmetic mean of the weighted values of W ( X )  and H( Y )  . 



Progressive Image Transmission Ch, 7: Progressive WaveIets with Multifmctals 

A generalization of the arithmetic mean in Eq. 7.10 is also made by Rényi for a 

more general case and states that 

where y = g(x) is an arbitrary strictIy monotonie and continuous function and 

x = g-l(y) is its inverse [Rény60]. Instead of the arithmetic mean used for Eq. 7.10, an 

exponential mean in the form of  

gq, b(x) = b(l -q )x  (7.12) 

where b E R ,  can also be used which maintains the relationship of Shannon entropy in 

Eq. 7.1 1. in addition, using Eq. 7.12 then the Rényi generalized entropy meets the 

requirement of Eq. 7.1 1 over al1 orders of q and can be expressed as 

This relationship for the Rényi generalized entropy over a11 orders of q is shown to 

be true when using Eq. 7.12 as folfows 
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Replacing gq, &(Hq(X))  and gq, b(Hq( Y ) )  in Eq. 7.14 with Eq. 7.17, the foliowing is 

obtained 

which reduces to 

The inverse o f  Eq. 7.12 can be solved x to give g;lb as follows 
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Substituting giVib ïnto Eq. 7.19 gives the following 

The summations in Eq. 7.21 can be collapsed and written as follows 

which is the Rényi generalized entropy H,(X) for the probability distribution X v Y. 

Since the Rényi generalized entropy H,(X) is effectively an additive function in 

the form of the exponential function gq, b ( x )  using E q .  7.14, then H,(X) c m  also be used 

as an additive information cost fünction in this new sense of additivity. Therefore, a new 

forrn of the additive cost function using the probabilities from Eq. 7.5 c m  be written using 

the Rényi generalized entropy H,(X) as follows 

where additivity is in the sense of Eq. 7.14 ushg the gq, b ( ~ )  h m  Eq. 7. 

7.4 Summary 

This chapter has looked at progressive wavelet h a g e  transmission using region 

enhancement and wavelet packet best basis selection. The region enhancement presented 
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in Sec. 7.2 investigates how the multifi-actal measures development in Chapter 6 are 

afTected when there are regions selected in an image. It was found that the enhanced 

regions irnprove the local image complexity according to the IQM analysis and slightly 

degrade the cornplexity of the rest of the image at low bit rates. Also presented in Sec. 7.2 

is a method of mapphg the IQM values throughout an image so that identification of RCD 

can be performed. The results from the experiments conducted for the identification of 

RCD show that major edge boundaries between different textures are identified, as weIl as 

localized objects that stand out from nearby features. 

The section on wavelet packets presented a generalized entropy approach of Coif- 

man and Wickerhauser's best basis selection [CoWi92]. Tt was shown mathematically that 

the Rényi generalized entropy can be used as an additive information cost fûnction if the 

definition of additive is expanded to mean value as given by Rényi Fény601. 

The presentation of background, theory, and experirnental results for this thesis is 

now concluded. The next chapter closes the thesis with conclusions drawn from the 

research and recornrnendations for fiiture work. 
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Conclusions 

This thesis has presenied the development and study of progressive image trans- 

mission techniques involving fractals and wavelets, as well as progressive image quality 

measures based on rnultihctal complexity measures. One approach developed and pre- 

sented is a progressive image transmission technique that synthesizes image textures using 

fkactal surfaces- Objective measures were then formulated and studied to measure the 

complexity of the surfaces within an image. Finally, the image cornplexity measures were 

applied in the development of wavelet based progressive image transmission techniques, 

including region of complexity disparity selection and the search for a wavelet packet best 

basis. 

It was shown in Chapter 5 that the synthesis of textures is one approach to model- 

Iing the psychovisua1 charactenstics of the surfices within an image. This modelhg was 

done by rneasurïng the fractal dimension of the image and then interpolating a fractal sur- 

face to approximate the textures in the image. The interpolation process produces textures 

with similar characteristics as the original surfaces, but does not attempt to reproduce spe- 

cific pixel values. The model produced perceptually good results, therefore, it is con- 

cluded that the fractal dimension is usefil for characterizing and synthesizing of textures. 
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With the development of new and novel techniques for representing images with 

h c t a l  surface interpolations, observations of the texture synthesis gives credence that 

fiactal dimensions c m  capture important characteristics of image textures and features. 

Thus, hc t a l  dimensions are candidates for the basis of an image quality measure. 

Chapter 6 explored the potential of using fractal dimensions, or more specifically multi- 

fi-actal dimensions, in the formation of these objective measures. Considered was the 

Rényi generalized entropy, the Rényi dimension spectnun, the Mandelbrot spectnun, and 

the newly developed relative Rényi dimension spectnim in Sec. 6.3 through Sec. 6.6, 

respectively. The Rényi generalized entropy, presented in Sec. 6.3, has the shortcoming of 

only considering the measurement at one scale. Therefore, the Rényi generalized entropy 

does not consider the image from a global viewpoint and its results only reflect local cal- 

culations. The Rényi dimension spectrum and the Mandelbrot spectnun, presented in 

Sec. 6.4 and Sec. 6-5, respectively, fix this shortcoming by extending the measurement, in 

a limiting case, to an infinite resolution. This extension allows the measurement to con- 

sider the image from a global scale through to the smallest local scale and, hence, gives a 

better means to an objective rneasure- The primary problem that exists with these two 

rnultifractal measures is that they are sensitive to the approach taken for calculating the 

lirniting case for both the original and reconstructed images, The relative Rényi dimen- 

sion spectnim, presented in Sec, 6.6, minirnizes some of the effects of this problem by per- 

forming the cornparison of the reconstructed image with the original image before the 

lirniting case in the multifractal rneasure. Therefore, it is concluded that of the image 

cornplexity measures presented, the relative Rényi dimension spectrum produces the best 

results. Particularly, the IQM analysis developed in Sec. 6.6 encapsulates the results of the 
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relative Rényi dimension spectrum into a single value, giving a clean exponential decay in 

value as the image quality irnproves. 

From the results obtained in Chapter 6 with image complexity rneasures, applica- 

tions to wavelet based progressive image transmission were then considered in Chapter 7. 

The effects of including enhanced regions in an image decomposition on the developed 

image complexity measures were first investigated in Sec. 7.2-2. It was found that the 

image complexity measures can be applied successfilly to these enhanced regions. When 

applied, the measure results show correspondence with the perceived image quality 

enhancements of the regions. n i e  IQM analysis was then applied to identiQ regions of 

complexity disparity in Sec. 7.2.3. From the results obtained, the regions of complexity 

disparity selected correspond to many of those that the human visual system would con- 

sider perceptually important. Finally, the Rényi generalized entropy was considered in the 

generalization of the entropy based best basis selection for a wavelet packet decomposi- 

tion. The theoretical fÏ-amework was developed in Sec. 7.3 that generalkes the notion of 

an additive information cost function as well as generalizes the entropy based information 

cost fùnction with the Rényi generalized entropy. 

With the development and experimentation with progressive image transmi-ssion 

techniques involving fractals and wavelets, as well as progressive objective measures, it is 

concluded that the objectives of this thesis have been achieved. The following section lists 

the contributions of this thesis, 
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8.2 Contributions 

We believe that this thesis and the research done towards its completion has pro- 

vided the following contributions. 

A new and novel approach to image compression and progressive image 

transmission based on ficictal surface segmentation and interpolation using 

fractional Brownian motion generated surfaces. This technique is not bit rate 

cornpetitive with state of the art techniques such as SPMT or EZW, but does 

show a unique approach signal representation. 

A study of using multifractal dimension measures as objective meausres of 

image quality for progressive image transmission. 

The development of a new theoretical class of mu1tifmctaI measures referred 

to as relative rnultifractal measures. 

The deveIopment of a new measure referred to as the relative Rényi dimen- 

sion spectnim RD,(. II v) . 

The development of an objective measure, IQM, using the relative Rényi 

dimension spectnini complexity measure. 

A study of the effects of enhancing regions in a progressive image transmis- 

sion on the newIy developed relative Rényi dimension spectrum, 

The development of an approach to identiQ regions of complexity disparity 

in an image using the objective measure, IQM. 
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8. The generalization of the concept of additivity for additive cost fhctions in 

wavelet packet best ba i s  searches. 

9. The theoretical development of a new best basis additive cost f i c t i on  using 

the Rényi generaiized entropy. 

8.3 Recommendations for Future Work 

Based on the work done in this thesis, the following fbture work to extend sorne of 

the ideas presented is recommended. 

The extension of the multifractal measures for colour images. 

The extension of the progressive image transmission techniques to colour 

images. 

The development of more robust techniques, such as Iine fitting techniques, 

to reduce the sensitivity in the multifractal measures when calculating the 

limiting case. 

A study of the efYects on the image quality measures of preprocessing the 

image to a just noticeable difference Ievel from the viewpoint of the human 

visual system, perhaps through a smoothing filter, 

Further research shouid be done to explain the results of the RD,(rr II v )  cal- 

culations when q is a large negative or positive number. 

Expenmentation with the newly formed best basis cost fûnction developed 

using the Rényi generalized entropy and the new generalization of additive 

cost functions- 
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7, Research into using the mdtifr-actal measures to select certain classes of fea- 

tues from an image when Iooking at regions of complexity disparïty. This 

may be usefid in cases where, Say, roads need to be selected fiom an aerial 

photo. 
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Fig. A. 1 Original image of lena. 
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Fig. A.2 Onginal image of baboon. 

Fig. A.3 Original image of peppers. 
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Fig. A.4 Original image of urban. 

Fig. A S  Original image of farm. 
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B.1 Statement of Protocol for Mean Opinion Score Experiment 

I would like to thank you for vo lun tee~g  today to participate in the perceptual 

image quality project- To standardize this presentation and help remove any bias in this 

study, 1 have prepared a statement of the procedure and protocol which 1 will read now. 

The purpose of this study is to measure the perceptual quality of images üiat have 

been distorted for purposes of digital image compression. 1 have asked you here today to 

help in assessing the perceptual quality of a nurnber of images. The protocol used for this 

assessrnent is as follows: 

1. An image will be presented for 5 seconds 

2. A 2 second pause will then follow 

3. A second image will be presented for 5 seconds 

4. A 8 second period will be given to fil1 in the evaluation forrn with your rating 

5. This protocol procedure is continued with another image pair 

In addition to this protocol procedure, the following should also be noted 

- The first image presented in the image pair is a reference image 

- The second image in the image pair is the image to be evaluated 

- The second image may or may not be the original reference image 

- Image pairs are presented in a random order so do not anticipate a pattern 
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For the images being evaluated, you are asked to score the level of distortion that  

you perceive compared to the reference image. Scoring is on a 5 point scale with the fol- 

lowing ratings: 

a) 5 for a level of distortion that is imperceptible 

b) 4 for a level of distortion that is perceptible but not annoying 

c) 3 for a level of distortion that is slightly annoying 

d) 2 for a level of distortion that is a ~ o y i n g  

e) and 1 for a level of distortion that is very annoying 

The perceptual score for an image is to be marked on the mean opinion score 

sheets provided with an "X" for that image pair set, I f  you feel that the perceived rating 

falis somewhere between two rating leveIs, you may mark it along the line proportional to 

your perceived rating. 

This study should last no more than 30 minutes. To remove any biases in the scor- 

hg, I wouId like to remind you that participation in this study is on a voluntary basis and 

that you will not be remunerated or receive any payment for participating. AIso, for pur- 

poses of anonyrnity please do not put your name or any other identiwing marks on the 

mean opinion score sheets. 

To start, we will go through two test image pairs so that we are al1 familiar with the 

timings and what to expect. For these image pairs, imagine what you would mark on the 

provided scale if you were to rate the perceptual quality. I f  there are any questions, please 

feel fiee to ask them now or durhg the expenment. 
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B.2 Ranking Scale Used for Mean Opinion Score Experïment 

The following scale was used in the mean opinion score experiment for people to 

mark their perceived perceptual ranking of an image pair. 

Image Pair #I 

very annoying annoyïng slightiy perceptible, imperceptible 
annoying but not annoying 




