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Progressive Image Transmission Abstract

ABSTRACT

This thesis presents the theoretical and experimental development of progressive
image transmission techniques involving fractals and wavelets, with emphasis on progres-
sive image complexity measures to evaluate and guide the image decomposition. A new
and novel progressive image transmission technique is presented where textures are syn-
thesized to recreate an image. The textures are synthesized by generating fractal surfaces
such that they interpolate control points, resulting in a higher level representation of an
image. From this work, it was conjectured that fractal and multifractal complexity mea-
sures can serve as quantitative quality measures, since these dimensions characterize
object complexity. The framework and experimentation for a complexity measure is
developed based on the Rényi generalized entropy, the Rényi dimension spectrum, and the
Mandeibrot spectrum. This framework is extended to the newly introduced relative Rényi
dimension spectrum, which forms a new class of measures referred to as relative multi-
fractal dimensions. Experimental results show that these multifractal dimensions, and in
particular the relative Rényi dimension spectrum, has properties consistent with an image
quality measure and correlate well with psychovisual characteristics. It is shown that the
relative Rényi dimension spectrum is more resilient to calculation errors as compared to
the other image quality measures. These image complexity measures are used to analyze
and identify of regions of complexity disparity in an image for wavelet based progressive
image transmission. Finally, the theoretical framework is developed to extend the idea of
additive information cost functions in wavelet packet best basis searches such that the

Rényi generalized entropy can serve as an entropy based information cost function.
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CHAPTER 1
INTRODUCTION

1.1 Problem Definition

Transmission and manipulation of large images such as aerial or satellite images of
city streets and natural resources proves to be a difficult and time consuming problem.
These images are often used by city planners, telephone companies, hydro companies, and
natural resource institutions, and therefore require high resolution for project planning.
One application for high resolution images includes planning tasks such as deciding where
to place new sewer pipelines or telecommunication lines. Another application is in ana-
lyzing satellite images of farm land to determine the best application pattern of pesticides,
herbicides, and m_ltrient supplements. Other applications include astronomic image data

warehousing, medical image database transmission, and photographic cartography.

Unfortunately, images of the required resolution are often large, such as the exam-
ple aerial rural image in Fig. 1.1 [LGI9S5] which is 25 megabytes in size. The sheer size
and high resolution required for images of this class makes storage, transmission, and
manipulation of these images prohibitive. To compound these problems there may be
hundreds or thousands of these images in a database. This size and quantity makes perusal
through a large database of these images and focusing only on images of interest even

more difficult.
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Fig. 1.1. Example high resolution image of a rural area
(8-bit greyscale 5000x5000 pixels) [LGI95].

These problems are addressed through a number of approaches. The first approach
is to have every user maintain their own copy of the image database. This way the user
does not have to worry about transmission of the images during database perusal. The
user can download the images at off-peak hours. This approach requires that the user has
enough storage space for the database, which is often an unrealistic assumption, particu-
larly for large sets of high resolution images. Also, there may not be sufficient off-peak
hours for this download to occur. Additionally, the notion of having to synchronize and
maintain multiple, duplicate image databases for each user is unappealing since up-to-date

images may be desired at all times from a central source image database.
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A second approach is to transmit the image at the request of the user. This is a
more dynamic approach where little data is stored at the user’s end. From a storage and
usage viewpoint, this is the preferred method. Unfortunately, the large size of the images
requires a lot of bandwidth and a lot of time to transmit the image as the user sits and
waits. With the exception of image transmission time, this is the preferred method for

most of the mentioned applications.

Proper ordering and control of the flow of the transmitted data allows for further
improvements which make the second approach using on-demand image transmission
more appealing. First of all, image compression techniques can help reduce the amount of
actual data that must be transmitted from source to destination. In addition, if image com-
pression is done in a manner where increasing levels of image detail are transmitted and
then reconstructed, then important features within the reconstructed image can be recog-
nized even before all of the fine image details have been transmitted. At the early stages of
image transmission and reconstruction, if it is noticed that the image is not desired then
the transmission of the image can be terminated early, and other images in the database
can be then downloaded for inspection. This extra control over the image transmission is
a useful feature to help reduce total transmission time and improve usability of any such

large database of high resolution images.

Progressive image transmission is therefore an important aspect of the image trans-
mission methodologies sought in this thesis. This form of image transmission allows for
increasing levels of detail to be transmitted at the request of the user and can allow for psy-

chovisually relevant image features to be transmitted first.
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1.2 Objectives and Goals

The purpose of this thesis is to research and develop methodologies for the effi-
cient transmission of digital images, with particular interest in the progressive transmis-
sion of the image information and the subsequent evaluation of the image reconstruction

quality. The primary research focus and goal of this thesis is fourfold.
I.  How an image can be decomposed into psychovisually relevant features.

2. How to select and order these image features for transmission over narrow-

band channels.

3. How to reconstruct the image at the receiving end as the data and image

information is received.

4. How to measure the quality of the resulting reconstructed image and image

transmission process.

As will be evidenced throughout this thesis, these four points are not mutually exclusive,
and should be considered as a whole, as well as intertwined and interdependent, when

doing research and development for the efficient transmission of digital images.

To address these goals, this thesis focuses on wavelet, wavelet packet, and fractal
techniques as the primary analysis and decomposition tools for the image compression
and progressive image transmission. In addition to the actual image compression and pro-
gressive image transmission, these tools will be used in the development of new image
quality measures to assist in the selection of the relevant image features. These measures

will help guide the selection of parameters for the progressive image transmission. This is
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done with the goal of improving the image reconstruction quality at the earliest stages of
the transmission. Also, these measures will be used to evaluate the progressive image
reconstructions, from the start of the reconstruction to the end, to determine the change in

image quality throughout the progressive transmission.

1.3 Organization of this Thesis

This thesis consists of eight chapters. Chapter 1 states the purpose for the thesis,
discusses the major problems to be addressed by the thesis, and provides some motivation

for the thesis.

Chapter 2 provides background information on image compression and progres-
sive image transmission. This background is from a general point of view without focus
on specific coding techniques. A brief description of current progressive image transmis-

sion techniques is also given in this chapter.

In Chapter 3, a background on fractals, multifractals, and fractional Brownian
motion is given. This background is later used to develop an image compression and pro-
gressive image transmission scheme using fractal surface segmentation and interpolation
[DaKi96], [DaKi97], [DaKi98a]. In addition, this background serves as the basis for
developing image complexity measures to help in guiding the selection of parameters for
image compression and progressive image transmission techniques [DaKi98b],

[DaKi99a}, [DaKi99b], [DaKi00].

Chapter 4 provides background on wavelets and wavelet packets to be used in

some of the progressive image transmission schemes developed. Experiments in later
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chapters use wavelet based progressive image transmission schemes as the base scheme

for the evaluation of the developed image complexity measures.

Chapter 5 introduces a new method for image compression and progressive image
transmission using fractal surface segmentation and interpolation [DaKi96], [DaKi97],
[DaKi98a). This technique is developed using two dimensional fractional Brownian

motion to synthesize textures that are used to recreate the image.

Chapter 6 introduces new methods for measuring the quality of image reconstruc-
tions based on the Rényi generalized entropy [DaKi99a] and the Rényi dimension spec-
trum measures [DaKi98b] as well as the Mandelbrot spectrum [DaKi98b], [DaKi99a],
[DaKi99b]. This measuring of quality is done through the measurement of the complexity
characteristics of the image and comparing to the original. A new class of multifractal
dimensions is also presented which will be referred to as relative multifractal dimension
measures. With this new class of relative multifractals, a new measure is p;resented which
will be referred to as the relative Rényi dimension spectrum. These measures are used to
determine the quality of progressive image transmissions and to judge the quality of the
image reconstructions through signal complexity differences. The development of these
measures results from observations made with the fractal surface segmentation and inter-
polation methods presented in Chapter 5. With these measures, better selection of param-
eters for the various progressive image transmission techniques can be done to improve
the overall transmission and reconstruction of the images, especially at the earliest stages
of the transmission. These results are compared with mean opinion scores to establish

psychovisual correlations [DaKi00].
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Chapter 7 develops progressive image transmission techniques using wavelets and
wavelet packets. A pivotal portion of Chapter 7 is not only how wavelets and wavelet
packets can be used for progressive image transmission, but, also in how the selection of
wavelet coefficients and wavelet packet bases can be done using the developed multifrac-
tal measures from Chapter 6. This selection of wavelet coefficients and wavelet packet
bases is performed to improve the psychovisual representation of the image at the earliest

stages of the transmission.

Finally, Chapter 8 gives concluding remarks about the progressive image transmis-
sion and image complexity measure research, with some recommendations for future

research.

Please note that due to the size of this dissertation, a separate technical report will
be released giving the source code used in the research described in the rest of this disser-

tation {Dans01].
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CHAPTER I1

BACKGROUND ON IMAGE COMPRESSION AND
PROGRESSIVE IMAGE TRANSMISSION

This chapter gives an overview of a number of different theoretical and practical
concepts needed for the rest of this thesis. The first issue discussed is general image com-
pression concepts as well as some of the elementary ideas behind progressive image trans-

mission. This will give a basis for the goal of the thesis in general terms.

2.1 Image Compression

This section gives a brief description of some of the concepts behind image com-
pression that are needed as a background for this thesis. This material includes a brief
introduction to digital image representation, how a general image compression scheme
works, and how limitations in the human psychovisual system allow for improved image
compression schemes. Taking advantage of these limitations can reduce bit rates even fur-

ther than standard data compression techniques would allow.

2.1.1 Digital Image Representation in Computers

To start this section on image compression, an outline of digital image representa-
tion is useful to get an idea of what class and scope of images will be dealt with in this the-
sis. There are two basic methods for representing a digital image. The first and by far the
most common method is to represent the image as a rectangular array of small picture ele-

ments known as pixels. These pixels vary in light intensity and in colour depending on the
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nature of the image being represented. For example, computer monitors and television
sets display images in this fashion. The second method of representing an image is
through vector graphics/object-based representations. With this representation an image is
broken down into a set of objects such as, but not limited to, points, lines, planes, squares,
circles, and spheres. The position and colour/texture of these objects are stored, and the
proper placement of these objects within a scene recreates the image. This technique is
used most often in computer aided design (CAD), virtual reality, or computer generated
graphics. This thesis focuses on natural images, such as the aerial image from Fig. 1.1, so
the first image representation method will be used, where the image is digitized into an
array of pixels. This choice is made because of the current difficulty of performing accu-
rate and meaningful object segmentation as is necessary to make the vector graphics/

object-based approach useful on arbitrary images.

When dealing with array-based image representations, some important questions
behind the image representation are "What is the pixel depth/dynamic range of the
image?" and "What type of greyscale or colour pixel representation does the image use?".
In other words, these questions ask how a pixel is represented. The following discusses
general pixel representation in an uncompressed format. Note that these uncompressed
representations are important to understand since it is this representation that acts as the
yardstick in this thesis when determining what the compression rate or compression ratio

is of a compressed version of the image.

The first and simplest pixel representation comes from a bitmap representation

used for monochrome images. Monochrome images, or bi-level images, contain two
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shade possibilities for each pixel. This is usually the colours black and white but may also
be any other two colours used to represent the foreground and background colour of an
image. A monochrome image requires only 1 bit per pixel (bpp) to represent the black or
white since the bit can be either 0 or 1. Monochrome images therefore have a pixel depth
or dynamic range of 1 since each pixel requires only 1 bit. These 1 bit pixels are normally
strung together in horizontal scan lines that span vertically across the image to form the

bitmap representation of the image.

Greyscale images are an extension to monochrome images. A greyscale image can
consist of pixels that are black, white, and a number of shades of grey in between. The
number of bits used for each pixel determines the number of shades of grey possible in an
image. A fairly common pixel depth is 8, which allows for a total of 28 = 256 different
shades of grey. This bit depth is often used for images to be viewed by a human observer
since just noticeable difference (JND) experiments for light intensity differences, AZ/[ ,in

human vision gives a Weber's fraction (Emst Weber, De tacu: “Concerning Touch” in

1834) of roughly
Al 1
P 2.
I 60 (2.1)

across most light intensity ranges [BuGe90]. Given an intensity range of 100-160 millil-
amberts for the average human eye at different brightness adaption levels [GoWo092], this

gives a total of

log (intensity range) - log([100, 160]) _ 5
log(1 + Weber’s fraction) log(l + 1/60) [278,307] 2.2)

# graylevels =
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discernible light intensities which is just over 28 = 256 shades of intensity. Of course,
this is an experimental maximum according to specific controlled experiments using few
intensities at one time. In practice, the number of discernible shades of grey in a pixel
image is far less. For most people, only 64-128 shades of grey are distinguishable with the
limited light intensity range of the average computer monitor. This range is important in
image compression research since this means that for images viewed by human observers,
the primary target of images in this thesis, reductions are often possible in the encoding of
8-bit greyscale images without sacrificing image quality from a psychovisual perspective.
Of course, if these images are not solely for viewing or perhaps will be used for scientific
calculations, then more bits may be required per pixel. For example, many forms of med-
ical images require 12 bits or more for acceptable pixel representation, and other forms of
images, such as astronomical images, may require as great a pixel depth as possible with

the capture device used.

Colour images fall outside of the current scope of this thesis so this is sufficient
background on image representation. Even though colour image compression is not con-
sidered in this thesis, it should be understood that the majority of research done in grey-
scale image compression can be extended to colour images. This is typically done by
applying the image compression algorithms to each component in the colour model. For
instance, applying a greyscale image compression algorithm to each of the Hue, Satura-
tion, Intensity (HSI) components in the HSI colour model since HSI forms a fairly good

decomposition of colour light components from a psychovisual standpoint.
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2.1.2 Image Compression/Reconstruction

Image compression refers to the reduction in the number of bits required to repre-
sent an image compared to the raw uncompressed representation as discussed in

Sec. 2.1.1. In general, image compression can be thought of as the processes illustrated in

Fig. 2.1.
input
Image
image Lossless Data Stream
ge —| Entropy —| [eee] | | [ ]
Decomposition
Encoder

Fig. 2.1. General image compression data flow.

As Fig. 2.2 illustrates for image compression, an input image is taken and decom-
posed in some manner. This image decomposition is typically some reorder of the pixel
information and/or some mathematical transformation of the pixel information into
another domain that allows for a more efficient representation. This decomposition is gen-
erally performed with the goal of decorrelating local and global pixel information depen-
dencies to improve the compression potential. In current image compression techniques,
this decomposition can come in many forras, with the most basic form performing no
decorrelation at all and other techniques doing difference or predictive coding. The
decomposition can also take the form of transform based coding and subband coding
using Fourier analysis, the discrete cosine transform [JPEG99], and the wavelet transform.

Some decomposition techniques are based on neural network techniques such as vector
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quantization [Gray84], [GeGr92], and progressive extensions [WaGo89], learned vector
quantization [Koho90], self-organizing feature maps [Koho89], [Koho90], and some of
our research group’s implementations of these techniques [FeLK93], [DaKC95]. Other
decomposition techniques use fractals, such as iterated function systems [Bam88],
[Jacq90], [WoJa99]. Of course, there are many other methods and techniques that have
been used with varying degrees of success for the image decomposition, but this presents

some of the key techniques in use and being researched.

After the image decomposition step, the data representing this decomposition is
then taken and lossless entropy encoding is done to remove redundancy in the symbol
stream. Ifthe decomposition of the image results in a completely decorrelated symbol set,
then lossless 1st order entropy encoding can be performed with redundancy removed as
dictated by the Shannon entropy [Shan48a], [Shan48b] minimum. If correlations within
the symbol set still exist, then higher order statistics may be needed to remove high levels
of redundancy in the data symbol stream. Lossless entropy encoding can include tech-
niques such as Huffman coding [Huff52], dictionary methods such as LZ77 [ZilLe77],
LZ78 [ZiLe78], and LZW [Welc84], and other techniques such as arithmetic coding
[WIiNC87]. The resulting data stream constitutes the final compressed version of the

image.
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Reconstructed
Image
lmage. ) Lossless Data Stream
Recor:rr:gsmon < Entropy « Tees [ T 11
Reconstruction Decoder

Fig. 2.2. General image reconstruction data flow.

The image reconstruction process is the reverse of the image compression process,
as illustrated in Fig. 2.2. The compressed data stream is passed through the lossless
entropy decoder which exactly rebuilds what the lossless entropy encoder removed in the
compression phase. Reconstruction of the image through the reverse of the decomposition
process then completes the image reconstruction. It is important to note that the inverse of
the image decomposition process, depending on the method used, may not necessarily
reconstruct an exact duplicate of the original image. This issue of lossy and lossless com-

pression is discussed further in Sec. 2.1.3.

Looking at the entire image compression/reconstruction process, the primary ques-
tion that must be answered is how to decompose the image to decorrelate the image infor-
mation. This is the question that this thesis looks at with two additional objectives; how
the most relevant psychovisual features can be extracted first from an image, and how
these image features can be represented for the progressive transmissions and reconstruc-
tion of the image. The lossless entropy encoder is also an integral part of the image com-
pression process. It completes the compression process by removing any additional data

redundancy left by the image decomposition process. While work in this thesis could be
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extended to investigate the effectiveness of different lossless entropy coders, only adaptive
arithmetic coding [WiINC87] is used since it still remains one of the better lossless coding

techniques in terms of compression rate.

2.1.3  Lossy Versus Lossless Compression

Data compression requires that the compressed representation of the data contains
sufficient informatiom to fully reconstruct the data. This compression is done by the
removal of data redumdancy from the data set with bounds given by information theory
and Shannon entropy [Shan48a], [Shan48b]. This concept is known as lossless data com-

pression.

While perfect data reconstruction is a requirement for pure data, source code,
machine code, etc., offten the final use of an image is for it to be viewed by a human
observer. Keeping this use in mind, when image compression is performed, in general, it
should be targeted for its intended final user. When the final user of an image is a human
observer, an entirely new approach to image compression beyond data redundancy
removal presents itself. This approach permits the removal of psychovisual redundancy.
That is, it permits the removal of data from the image that does not add to the interpreta-
tion of the image by a human observer. In the case of images, the signal representation
must be capable of reconstructing the psychovisual information contained in an image and

not necessarily the exact bits from the original image.

This approach to image compression is known as lossy data compression since

some of the original data may not be recoverable from the compressed representation.
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Lossy data compression is acceptable as long as a human observer cannot distinguish
between the original and reconstructed signals [JaJS93], in this case images. This removal
of redundancy is possible for images since there are limits to a human’s ability to distin-
guish between image differences (for instance, the limit in distinguishable greylevels as
discussed in Sec. 2.1.1). Lossy data compression may also allow for a degradation in per-
ceived reconstruction quality. This degradation is acceptable in image compression if the
perceived difference is small and the image is still acceptable for its intended application.
Therefore, the main idea behind a good lossy image compression scheme is the removal of
redundant information from the perspective of an observer in addition to redundant data

through information theoretic techniques.
2.14  Measuring Compression Rate

When looking at the performance of specific image compression techniques, the
compression rate is generally used and is typically quoted in the number of bits per pixel

required to represent the image. This measure can be expressed as follows

# of bits in compressed form
= 2.
bpp (width) - (height) (23)

While bpp is a useful measure of compression performance, it is sometimes useful to fac-
tor out the pixel depth and quote the compression performance as a ratio of the original

image size or as a percentage of the original size as follows

. bpp
% = ° 2.4
compression % bit depth of original image x 100% 2.4)

This then gives the compression ratio of the compressed image versus the raw uncom-

pressed format of the original image as discussed in Sec. 2.1.1. It should be noted that
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with Eq. 2.4 it is possible to have a compression scheme that for certain images results in
the expansion of the bit stream as opposed to compression. This growth would result in a

compression percentage greater than 100%.

2.1.5 Objective Fidelity Criteria of Images

In evaluating image reconstructions, perceptual comparisons are required, but a
quantitative measure of the reconstruction is also useful. Quantitative measures can offer
a method of evaluating images and their reconstructions. With these measures, quick
comparisons can be made and quantitative limits established for the image reconstruc-

tions.

One means of evaluating the data lost resulting from a lossy compression is by
determining the error between the original image and the reconstructed image. The error

between the original image f, . (x,y) and the reconstructed image f,(x,y) can be

rig
expressed as follows
ferror(x’ y) = farfg(x’ J’) —fr’(x’ Y) (2‘5)

This gives the error within the reconstructed image for any specific value of x and y.

For a measure of the overall error between the images, the mean squared error

(MSE) can be used. The MSE is expressed as follows

3 L2 = il 1T

MSE(f i, f,) = =2 1 (2.6)

Y(x,y)
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This metric is not used alone very often in image compression literature since researchers
are generally more interested in what the distortion in the reconstructed image is com-
pared to the original image. For this, the signal-to-noise ratio (SNR) can be used, which

can be expressed as follows

2

SNR = MSE(0, /,) — V(g.'vlfr(x’ Y 2.7)
MSE(fon’g’ fr) 2 [forig(x’ y) —‘fr(x’ Y)lz
V(x,y)
or in decibels (dB)
Y, fxp)?

SNR (dB) = 10log Y(x. v) (2.8)

0 Z [farig(x7 Y) _fr(x’ y)]z

Y(x, )

While the SNR is a somewhat more common measure, it is useful only for consid-
ering how the noise compares to the signal level of a specific signal, or for our purposes
" the level of distortion in a reconstructed image versus the average squared energy in the
reconstructed image. Hence, comparison across different distorted or lossy compressed
images is difficult since the respective original images likely have different average
squared energies. To improve the comparison across different images, the peak signal-to-
noise ratio (PSNR) is preferred and can be expressed as follows

MSE(0, f pear) _ S pear(% ¥)?
MSE(forig’ fr) Y(x,y) (fr(x: y) - forig(x! y))2

PSNR = 2.9)
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where f,...(%, y) is an image where each pixel has the maximum representation pixel

value. The PSNR can similarly be expressed in decibels as

(2.10)

f k(x1 )’)2
PSNR (dB) = 101 £eg
( ) oglovgy) (fr(xy }’) —forig(x’ }’))2

If the images being analyzed have a dynamic range of 8 bits, which is the case

throughout this thesis, then Eq. 2.10 can be reduced to

(2.11)

(25)2
PSNRg (dB) = 10lo
s (5 gmv(%) (f % 2) = f orig(%, ))?

While there is no concrete set of PSNR numbers that correlate to psychovisual
quality, there are rough rules of thumb that researchers have noticed across a wide range of
natural looking images compressed with a wide range of lossy image compression

schemes. These rough rules of thumb can be roughly outlined as in Table 2.1.

Table 2.1 Rough rules of thumb of image quality for a corresponding PSNR.

PSI\Eng; lue Rough rule of thumb for image quality

<25dB poor image quality, irnage likely unusable
25dB image is recognizable, but quality is perceptually inferior
28 dB fair perceptual image quality, some noticeable artifacts but

generally quite acceptable
30dB perceptually good image quality, few noticeable image artifacts
33dB broadcast quality images, very good with nearly no perceptual
differences with the original image
>35dB image virtually indistinguishable from the original
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2.2 Progressive Image Transmission

This section gives an overview of progressive image transmission and outlines
some of the current progressive image transmission technology and implementations

available.

2.2.1 Image Transmission and Progressive Image Transmission Overview

This section describes some of the ideas behind image transmission, progressive
image transmission, and progressive transmission as related to the goals of this thesis.
Image transmission comes in many forms and flavours. The most basic form of image
transmission is to transmit the entire image file from one machine to another and after all
of the image file has been received, display the image. This form of image transmission is
limiting since it is often beneficial to the user if they can get a sense of the image content
while the image is being transferred instead of waiting until all of the data has been
received. There are a number of reasons for having image features appear earlier:

= the user may wish to terminate transmission of the image if it is not
of interest.

e image details may not be important to the user but basic image
structure might be of interest.

= the user may wish to quickly browse through the images.

The last point can be solved through the use of thumbnails of the images (i.e. small

versions of the image). Unfortunately, while thumbnails allow for quick flipping through
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images they often do not contain sufficient detail for the user. A good progressive image

transmission scheme would allow the user to contro! that amount of detail they require.

(a) 16,384 bytes (b) 65,536 bytes (c) 196,608 bytes

Fig. 2.3. Progressive transmission of horizontal scan lines of the image lena:
(a) after 16,384 bytes, (b) after 65,536 bytes, and (c) after 196,608 bytes.

One of the simplest forms of progressive image transmission, as illustrated in the
sample progressive image transmission in Fig. 2.3, works by sequentially transmitting
horizontal scan lines of the image starting from the top of the image. All details at each of
the horizontal scan lines are transmitted from left to right and the whole image is transmit-
ted in one pass. This is one of the simplest methods of transmitting (or storing) an image
but it has the disadvantage that the user must wait for the entire transfer to occur to get an
idea of what is at the bottom portion of the image. It should be noted that many people do
not consider this a progressive image transmission technique. In this thesis this will still
be classified as progressive image transmission since the user need not wait for the entire
image to be transmitted before they can view a portion of the image information. This

form of image transmission is typical of today’s web browsers.
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(a) 16,384 bytes (b) 65,536 bytes (c) 196,608 bytes

Fig. 2.4. Progressive transmission of every second scan line of the image iena:
(a) after 16,384 bytes, (b) after 65,536 bytes, and (c) after 196,608 bytes.

An extension to the above progressive image transmission technique is to transmit
every second horizontal scan line of the image in one pass and then to go back and trans-
mit the remaining scan lines. An example of this is shown in Fig. 2.4. This simple change
halves the time in which some of the details at the bottom of the image begin to appear.
Each horizontal scan line is still transmitted in full detail but a sense of the entire image is
obtained quicker. This is a better technique for progressive image transmission and begins
to show some of the many possibilities that can be used. This technique is still naive since
the structure of the image content itself is not considered in this type of approach. Better
techniques consider the content of the image and do not just blindly transmit the data as is

done with this approach.
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N/

(a) 16,384 bytes (b) 65,536 bytes (c) 196,608 bytes

Fig. 2.5. Progressive transmission of every second scan line (filled) of the image lena:
(a) after 16,384 bytes, (b) after 65,536 bytes, and (c) after 196,608 bytes.

It should be noticed that the missing lines in Fig. 2.4 can be annoying from a per-
ceptual point of view. By using the same algorithm but duplicating the scan lines to the
empty scan lines below, Fig. 2.5 is produced. While there is no change in the actual data
transmitted, it is clear that this change corrects the perceptual problem of Fig. 2.4 having

scan lines gaps every second scan line.

e

(a) 16,384 bytes (b) 65,536 bytes (c) 196,608 bytes

Fig. 2.6. Progressive transmission of bit planes starting from most significant for the
image lena: (a) after 16,384 bytes, (b) after 65,536 bytes, and (c) after 196,608 bytes.
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Another technique for progressive image transmission is to transmit the pixel bit
layers one at a time, starting with the layer containing the most significant bit (MSB) of
each pixel, and ending with the layer with the least significant bit (LSB). A sample pro-
gressive transmission using this technique is shown in Fig. 2.6. Conceptually this is an
improvement over the previously discussed techniques since the image detail is ordered
nicely according to the pixel intensity since much of the main energy components in an
image can be extracted from the MSB first. Unfortunately, from a psychovisual viewpoint
the results remain unfavourable at the early stages of the transmission since the portions of
the image that are visible lack the details and greyscale intensity levels from the original

image.

oE

(a) 16,384 bytes

(c) 196,608 bytes

Fig. 2.7. Progressive transmission of quad-tree partitioned pixel averages for the image
lena: (a) after 16,384 bytes, (b) after 65,536 bytes, and (c) after 196,608 bytes.
Another simple, yet less naive, technique is to do a quad-tree partitioning of the
original image into four equal sized squares. The average pixel intensity of each of these
squares is then calculated and these averages transmitted. The receiving machine then

begins reconstruction of the image using the same square size and the transmitted pixel
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intensity averages. Once this is done, each of the squares is further partitioned and the
change in average pixel intensity from the previous average intensity for that square is
transmitted. This process is repeated until the entire image has been transmitted. An
example progressive image transmission using this technique is shown in Fig. 2.7. Con-
ceptually, this technique is an improvement over the previous described techniques since
some of the psychovisual content of the image (in terms of average greyscale intensity) is
being considered. Unfortunately, this technique requires extra computations compared to
the previous techniques in order to calculate the average greyscale values of groups of pix-
els. Techniques such as this would be what most people classify as a progressive image

transmission technique.

Some other techniques require better knowledge or interpretation of the image
content. For instance, one technique requires knowing what types of objects are in the
image. This may include recognizing that there is a person in the image or perhaps a
beachball. This information is transmitted along with their positions in the image. The
next stage in the progressive image transmission is to find details about these objects and
transmit these details for a further refined image reconstruction. For instance, the person
might be wearing a green turtleneck and the beachball might have eight strips in alternat-
ing red and white colour. As can be seen from this technique this requires a very complete
and possibly complicated representation of the image objects. Currently, this type of
image representation for general images is unrealistic. This technique may become attrac-

tive one day when these types of computer models are more prevalent.
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The general idea behind progressive image transmission, therefore, is the proper
ordering of psychovisual image details so that important global details of interest are
transmitted first, while small and minute details are transmitted last. This raises the ques-
tion as to what is important in an image and how to decide what details are transmitted
first. This thesis tries to answer some of these questions in later chapters during the inves-

tigation into wavelet and fractal techniques for progressive image transmission.

222 Current Progressive Image Transmission Implementations

A number of progressive image transmission schemes exist that were developed by
other research groups and companies. The following is a list of the more common or

unique progressive image transmission schemes available:
* interlaced GIF
= progressive JPEG
= progressive wavelets

= progressive fractal iterated function systems

Interlaced GIF (graphics interchange format), a format developed by CompuServe
[GIF87a][GIF90], is currently the most well known and used progressive image transmis-
sion file format. This image compression technique is algorithmically simple, since it is
based on linear predictive coding using a form of the Lempel-Ziv-Welch (LZW) [Welc84]

algorithm. The GIF image format has the following features:
= lossless image compression only,

* works with bi-level images,
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» works with 8-bit greyscale images,
« works with 8-bit colour images,
s does not work with 24-bit colour images (there is some push for
GIF24 which also supports 24-bit colour images but little support
for this currently exists).
Since GIF can do only lossless image compression, it does not take advantage of any psy-
chovisual redundancy and therefore the compression rate is not as good as those methods
that remove psychovisual redundancy. Also, the progressive nature of interlaced GIF does
not use any of the image structure itself to form progressive steps. It only orders image
pixels as a quadtree (similar to the partition into squares as discussed in the previous sec-

tion) and then decodes the image from this quadtree representation.

Progressive JPEG is an extension of the JPEG still image compression standard
[JPEG99], [PeMi92], [Wall91] which does lossy compression of bi-level, 8-bit greyscale
and 24-bit colour images. The JPEG still image compression standard, described by the
Joint Photographics Expert Group, is based on the discrete cosine transform (DCT) over
8 x 8 pixel blocks from the image. The progressive extension for JPEG reorders the DCT
coefficients for transmission so that the most important coefficients from each 8 x 8 block
in the tmage are transmitted first. This method attempts to remove psychovisual redun-
dancy by giving preference to lower frequency image components, which contain rough
details, over higher frequency components, which contain fine details. Also, the lossy
nature of JPEG through the removal of smaller coefficients from the DCT means that
higher compression ratios are achieved through small degradations of image quality. This

method is not currently as widely used as interlaced GIF for progressive transmission but
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is quickly gaining acceptance as a standard method for progressive image transmission. A
newer version of JPEG known as JPEG2000 is currently under development that replaces
the DCT with the wavelet transform of the image and does away with the idea of partition-

ing the image into 8 x 8 blocks of pixels.

Progressive wavelet image compression is the next logical step for image compres-
sion standards. Wavelet image compression retains many of the characteristics of DCT
based image compression techniques (such as JPEG) but with improved compression in
many situations. This improvement results from the spatial and frequency localization
that wavelets enjoy whereas the DCT localizes only in the frequency domain, as will be
expanded upon in Chapter 4. Currently, Infinop’s Lightning Strike wavelet image com-
pression [Infi99] which has been updated for progressive transmission is one of the better
known progressive wavelet transmission implementations. Unfortunately, this is a com-
mercial implementation with the standard not available publicly. A number of others have
implemented progressive wavelet image transmission including Langi and Kinsner who
have developed an experimental progressive wavelet image compressor that this thesis
extends. Other implementations, such as DjVu from AT&T [DjVu99], use forms of a pro-
gressive wavelet transmission at their core, though DjVu is more a hybrid of a number of
techniques. Other proposed standards include the upcoming JPEG2000 standard, ISO
15444 Part 1, which plans to incorporate progressive wavelet image transmission. Further
discussion on wavelet and progressive wavelet techniques will be discussed in Chapter 4

and Chapter 7.
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The fractal encoder and viewer from Iterated Systems, Inc. is another example of a
progressive image transmission scheme [Iter99]. This method is a progressive image
transmission scheme based on fractal iterated functions systems (IFS) [Barn88], [Jacq90].
This technique relies on the transformation and contractive mapping of sections of the
image to other sections of the image. This transformation constitutes a self-similar map-
ping and consequently generates a fractal. The main problem with this technique is that
no polynomial time algorithm is known that can find the contractive mapping for generat-
ing the image even though attempts at improving the complexity have been tried [Wall93].
While the decoding of an I[FS compressed image can be done quickly, the actual encoding
is an intractable problem, especially for large images. Some simple algorithms have been
developed that can find contractive mappings of small images in a number of minutes, but
these mappings are far from optimal and the compression rates are not as good as the IFS
technique suggests is possible. This technique still requires more research in order to find
the best contractive mappings for general images and therefore will not be a main focus

for this thesis.

2.3 Summary

This chapter described some of the background image compression ideas needed
for the rest of this thesis along with building a framework for progressive image transmis-
sion. General image representation was discussed as well as how monochrome and grey-
scale images are represented. A high level image compression and reconstruction model
was outlined with the absence of specific compression techniques, which will be discussed

in the following chapters. The concept of progressive image transmission was touched
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upon along with many of the reasons and concems behind doing progressive image trans-
mission. The next chapters delve into specifics of the techniques developed and used for

this thests, focusing on wavelet, wavelet packet, and fractal techniques.
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CHAPTER III

BACKGROUND ON FRACTALS, MULTIFRACTALS, AND
FRACTIONAL BROWNIAN MOTION

This chapter presents the necessary background behind fractals and multifractals
for this thesis. Of primary interest is the fractal and multifractal measure of textures and
image feature complexity. These measurements are important since they provide a means
of looking at the complexity of features within an image over all resolutions and character-
ize these image features with fractal and multifractal dimensions. This background pro-
vides the setting for Chapter 5 where fractals are used to synthesize images using fractal
surface segmentation and interpolation. The setting will also be set for Chapter 6 where
multifractal image complexity measures are introduced based on some of the positive find-
ings from the fractal surface segmentation and interpolation. Finally, Chapter 7 puts these
multifractal image complexity measures to use in the selection of wavelet coefficients and

wavelet packet bases to improve progressive image transmission.

3.1 Introduction to Fractals

An introduction to the concepts behind fractals is in order before presenting the
fractal based progressive image transmission, as well as the multifractal based image com-
plexity measures. In its simplest form, a fractal is a self-similar object, where its parts are
similar to the whole and, correspondingly, the whole is similar to its parts. This character-
istic means that a fractal has similar, if not identical, structure and complexity at all scales

or magnifications [Mand82].
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To illustrate the self-similar structure of fractals, two mathematically self-similar
fractals are presented with the Koch curve [Koch04] in Fig. 3.1 and the Sierpinski gasket
[Sieri5] in Fig. 3.2. Each of these figures illustrate the development of their respective
fractals beginning with an initiator and then repeatedly performing a copy/reduction pro-

cess ad infinitum to produce the self-similar fractals.

0
Initiator length = 1 = (3)

Generator ‘

~ 4 ko8
Step 1 length = 4 -3 _(3)
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Step 3 37 3
Koch curve _

Fig. 3.1. Generation of the Koch curve fractal.

The generation of the Koch curve [Koch04] as illustrated in Fig. 3.1 starts with a
line as an initiator which is then reduced to 1/3 of its size and copied 4 times in the pattern
shown by the four lines in Step 1. This copy/reduction process is then repeated with the

entire object in Step 1 where it is also reduced to 1/3 of its size and copied 4 times to pro-
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duce the object in Step 2. This process is repeated an infinite number of times to produce

the final Koch curve fractal at the bottom of Fig. 3.1.

AL L

Initiator Step 1

Step 3 Step 4

Fig. 3.2. Generation of the Sierpinski gasket fractal.

The generation of the Sierpinski gasket illustrated in Fig. 3.2 shows a similar type
of copy/reduction process, where a triangle as an initiator is reduced to 1/4 of its size and
then copied 3 times in the pattern shown in Step 1. Step 2 of Fig_ 3.2 is generated by tak-
ing the object in Step 1 (the three triangles), reducing its size by 1/4, and copying the
resulting object 3 times to the positions as illustrated. This process is repeated an infinite
number of times, where the final Sierpinski gasket fractal is attained [Sierl5]. Notice with
the Koch curve and the Sierpinski gasket, and any other fractal for that matter, that smaller

portions of the fractal object are replicas of the whole except for the scaling.
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Fig. 3.3. Generation of the Koch curve fractal with “HELLO” initiator.

It should be noted that the generation of these two fractals is through the copy/
reduction process itself and does not rely on the initiator object at the beginning. This can
be illustrated by generating the Koch curve fractal using the word “HELLO” as the initia-
tor as shown in Fig. 3.3. With an infinite number of copy/reduction repetitions, the word
“HELLQO” disappears to a single point and only the Koch curve is left. This concept is
important to realize since it shows that a fractal object is generated through a process, such
as the copy/reduction process used for the Koch curve, as opposed to parameters of the
initial object. This idea has ramifications that will be seen when performing fractal sur-

face segmentation and interpolation later in this chapter.
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3.2 Fractal Dimensions

This section presents background on fractal dimensions following the description
given by Kinsner [Kins94a], [Kins95a] to unify and classify fractal dimensions. Fractals
are named as such because they are classified as having a morphological dimension, or
structural dimension, that is generally non-integral, that is, they have a fractional dimen-
sion. In simplest terms, this means that the complexity of fractal objects is such that the
usual description of one, two or three dimensions is not accurate enough to describe these
objects. The two objects presented in Sec. 3.1 are example fractals with fractal dimen-
sions, as will be shown later in this section, of approximately 1.2619 and 1.5850 for the
Koch curve and the Sierpinski gasket, respectively. Note that there are some special case
objects where the dimension is actually integral, such as with space filling curves like the
Hilbert curve [(Hill91]. The Hilbert curve has a fractal dimension of 2 but it must be
remembered that this curve is constructed using one dimensional line segments. The com-
mon feature behind all fractals therefore is that the complexity of the whole is greater than

the initiating parts that form the object.

To see how this morphological complexity manifests itself, consider again the
Koch curve in Fig. 3.1. The length of the generated curve at successive steps in units of
the original initiator is (4/3)!, (4/3)2, (4/3)3, and so on. In fact, the length of the
curve can be generalized to (4/3)" at step n. Hence, if the generation of the curve con-
tinues with infinite steps producing the Koch curve, then the length of the Koch curve
must be (4/3)® = o. At first glance this result with the Koch curve having infinite

length may be a bit disturbing since the Koch curve clearly has a starting point, a finishing
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point, and all of the curve fits in a finite space. Another important characteristic of the
Koch curve is that each of the line segments within the curve becomes infinitely short, or
in other words each line segment shrinks to a point. With the way the Koch curve is con-
structed, it is therefore composed entirely of corners and contains no line segments. From
these realizations it is clear that the Koch curve is not of the same class of objects such as

lines, circles, parabolas, and other simple curves.

With some of the traditional rules of topology seemingly broken by the Koch
curve, as well as other fractal objects, some new way of atoning for these observations was

sought [Mand82]. One way is to re-evaluate how objects are measured.

1 unit 1/2 unit 1/4 unit
s=r s =r/2 s =r/4
p— —
(a) 6 sticks (b) 12 sticks (c) 25 sticks

Fig. 3.4. Measuring the circumference of a circle with a measuring stick.
(a) s = | unit with 6 sticks,
(b) s = 1/2 unit with 12 sticks, and
(c) s = 1/4 unit with 25 sticks.

For instance, one method of measuring the circumference of a circle is to take a

measuring stick and go around the circle counting how many measuring sticks are
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required, as illustrated in Fig. 3.4. As Fig. 3.4a illustrates, the radius, r, of the circle can
be taken and then used to approximate the circumference of the circle as 6. It is known,
of course, that the circumference is actually 2nt#, so 6, while accurate, is not overly pre-
cise. Better precision can be achieved by reducing the size of the measuring stick.

Assuming the use of an integral number of measuring sticks for measuring the circumfer-

ence of the circle, Table 3.1 can be produced.

Table 3.1 Measuring sticks needed for measuring
the circumference of circle with radius .

Scale of measuring Integral number of measuring
stick, s sticks, N, to approximate a Total measured length
(in terms of radius r) circle’s circumference
r 6 6r
r/2 12 6r
r/4 25 6.25r
r/8 50 6.25r
r/16 100 6.25r
r/32 201 6.28125r
r/64 402 6.28125r
r/128 804 6.28125r
r/256 1608 6.28125r
r/512 3216 6.28125r
r/1024 6433 6.2822265625r

Table 3.1 shows that as the size of the measuring stick is reduced, that the mea-

sured circumference of the circle approaches 27 = 6.2831853. More importantly from a
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morphological viewpoint, it should be noticed that the number of measuring sticks

required versus the scale of the measuring sticks has the following relationship
1 1
N, o (3) G.1)
or in other terms

SIN eclec2m ass —0 3.2)

This relation means that the measured length remains roughly constant as the size of the
measuring stick is reduced since the number of measuring sticks required increases corre-

spondingly.

1 unit 1/2 unit 1/4 unit
s=r s =r/2 s =r/4

N4 ()
=< ==X () ()
) @

(a) 6 vels (b) 12 vels (c) 25 vels

Fig. 3.5. Measuring the circumference of a circle with vels.
(a) s = 1 unit with 6 vels,
(b) s = 1/2 unit with 12 vels, and
(c) s = 1/4 unit with 25 vels.

To illustrate this measuring process further, consider extending the measuring stick

to a measuring hypersphere or, more generally, a volume element (vel) [Kins94a] that
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extends in all dimensional spaces. This same measuring process can be repeated for the
circumference of the circle as illustrated in Fig. 3.5 by covering the circle with these vels
over different measuring scales. The results obtained from these measurements are the
same as those listed in Table 3.1. The advantage of using vels instead of a simple measur-
ing stick is that now objects within any embedding dimension can be measured in this

manner.

s =r s =r/2 s =r/4

(a) 9 vels (b) 36 vels (c) 144 vels

Fig. 3.6. Measuring the area of a square plane with non-overlapping vels.
(a) s =1 unit with 9 vels,
(b) s = 1/2 unit with 36 vels, and
(c) s = 1/4 unit with 144 vels.
Take for example the square plane illustrated in Fig. 3.6. If vels are taken and used
to cover and measure the area of a square plane as is illustrated in Fig. 3.6a, it is seen that

roughly 9 non-overlapping vels are required. As the scale of the vels decreases, the num-

ber of vels required to cover the square plane increases as listed in Table 3.2.
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Table 3.2 Vels needed to cover the square plane.

Scale of vel, s Number of needed vels, N, Total nﬁﬁeglﬁ: of the
r 3x3=9 9r2

r/2 6x6 = 36 36(r/2)2 = 9r2
r/4 12x12 = 144 144(r/4)2 = 9r2
r/8 24 x24 = 576 576(r/8)% = 9r2
r/16 48 x48 = 2304 2304(r/16)% = 9r2
r/32 96 X 96 = 9216 9216(r/32)2 = 9r2
r/64 192 x 192 = 36864 36864(r/64)2 = 9r2
r/128 384 x 384 = 147456 147456 (r/128)2 = 9,2
r/256 768 x 768 = 589824 589824 (r/256)2 = 9,2
r/512 1536 x 1536 = 2359296 2359296(r/512)% = 9,2
r/1024 3072 x 3072 = 9437184 9437184(r/1024)2 = 9,2

In analyzing the rate of growth of the number of needed vels versus the scale of the

vels, it is noticed that the following relationship is followed

Ngo< (1)2 (3.3)

s

or similarly

s2N,<1<97>  ass—0 (3.4)
Therefore the rate of growth of the number of vels required to cover the square plane
grows in correspondence to the square of how the vel size shrinks. To show that the mea-

suring does not have to be done so carefully, consider Fig. 3.7 that uses overlapping vels to

measure the planar square instead of non-overlapping vels as in Fig. 3.6. It can be seen

- 40 -



Progressive Image Transmission Ch. 3: Fractals, Multifractals, and fBm

that the rate of growth of the number of vels N still follows the power-law, or exponen-

tial, relationship from Eq. 3.3.

s=r s =r/4
Gy~ N ey
‘,. ., )]
SRS
(a) 18 vels (b) 70 vels (c) 280 vels

Fig. 3.7. Measuring the area of a square plane with overlapping vels.
(a) s = 1 unit with 18 vels,
(b) s = 1/2 unit with 70 vels, and
(c) s = 1/4 unit with 280 vels.

The important observation to make from Eq. 3.1 and Eq. 3.3 is that in both cases
the exponent used in the power-law relationship between N, and 1/s is precisely what
would be referred to as the dimension of the object being measured, or the morphological
dimension. As demonstrated, the boundary of the circle in Fig. 3.5 has a morphological

dimension of 1 and the planar area of the square in Fig. 3.6 has a morphological dimen-

sion of 2.

Using this method of measuring objects through vel coverings, the morphological

dimension of an object can be generalized through the following power-law relationship

N, o< (l)D (3.5)

S;
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where N is the number of vels used at the scale s;. The exponent D in Eq. 3.5 is known
as the critical exponent that stabilizes the change in N, with the change of (1/s;).
Removing the proportionality by introducing the constant &, the following equation can

be expressed for Eq. 3.5.

N, = k(l)o (3.6)

5 s;

Taking Eq. 3.6 at two different scales s; and s 7> and then dividing the two equations gives
the following equation

()

s 3.7
(5)

which can be simplified as follows

=

N, s A\D

— = . ) 3.8

7= 69
Taking the log of both sides of Eq. 3.8 and solving for D gives

1 e,
og—
N
D = (3.9)

S .
1 v
oe(3)

From Eq. 3.9, as the scale becomes infinitely small, the ratios N,/N s, and s;/s; will

reduce to a constant such that the following relation can be stated.

s (3.10)
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The exponent D is referred to as the fractal dimension associated with the object.
This dimension is also commonly referred to as the Hausdorf-Besicovitch dimension,

D, [Mand85], [Kins94b] which is defined as follows.

Definition 3.1: Given N, = inf(number of vels of scale s needed to cover object), the

Hausdorff-Besicovitch dimension, D g 1S defined as

logN
Dyp = lim —£2s. (.11)

5 —> oo 1
lOg;

Q

Using this concept of the Hausdorff-Besicovitch dimension, consider the same vel
measurement scheme applied to the Koch curve from Fig. 3.1. Using the initiator in

Fig. 3.1 as length r, Table 3.3 can be developed over a number of scales s.

Table 3.3 Vels needed to cover the Koch curve fractal.

Scale of vel. s Number of needed vels, Total measured length of
, N Koch curve
r=rrs30 1 = 40 p,
r/3 = r/31 4 =41 4r/3
r/9 = r/32 16 = 42 427732
r/27 = rs/33 64 = 43 43,/33
r/81 = r/34 256 = 44 44r/34
r/243 = r/35 1024 = 45 457 /35
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In the case of the Koch curve, from Table 3.3, the following equation can be written for
Eq.39whens = r/3 ands = r/9.
(%)
B\ 7

- = log(4) _
D 1(”/3) oe(3) = 12618595 (3.12)

8\ 7 /9

Notice that the r cancels out in Eq. 3.12 and that this is equivalent to using the Hausdorff-

Besicovitch equation which can be solved as follows for s = r/3.

o o
5 > o2 log; Og( )

DHB -

~1.2618595 3.13)

It follows then that the morphological dimension of the Koch curve is approxi-
mately 1.26. This shows that the notion of integer dimensions needs to be expanded to

fractional dimensions to characterize objects such as the Koch curve fractal.

To complete this section, the Sierpinski gasket illustrated in Fig. 3.2 can also be

measured with the vel covering scheme with the results given in Table 3.4.

Table 3.4 Vels needed to cover the Sierpinski gasket fractal.

Scale of vel. s Number of needed vels, Total frxea§mefi length of
, N Sierpinski curve
r=r/20 1 = 30 .
r/2 = r/2! 3 = 3! 37/
r/4 = r/22 9 = 32 32,72
r/16 = r/23 27 = 33 33,23
r/32 = r/24% g1 = 34 34, /94
r/64 = r/23 243 = 35 35,25
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From Table 3.4, Eq. 3.9 can be written fors = r/2 and s = »/4 as follows.

log(g) _ log(3)

—_— = 1.5849625 3.14
(r/Z log(2) G-19)
log

D =

r/4

Equivalently, the Hausdorff-Besicovitch dimension is expressed as follows for the Sierpin-

ski gasket.
log N
Dy = lim £%s_ 1080) _ s349625 (3.15)
s B172

In summary, this section has shown a method for measuring objects, including
fractals, using vels. This measurement allows for the Hausdorff-Besicovitch dimension of
the object to be determined through a power-law relationship between the size of the vel
and the number of vels needed to cover the object. Most importantly for the rest of this
thesis is that the dimension measured is not necessarily integral and that this dimension
value can be used to describe the level of complexity within an object. Simple curves
result in a morphological dimension of 1, simple planes result in a morphological dimen-
sion of 2, and more complex objects may have morphological dimensions that are not inte-
gral. Note that besides the Hausdorff-Besicovitch dimension, there are other fractal

dimensions and other similar approaches to measuring the fractal dimension of an object.

3.3 Multifractal Dimensions

This section gives some of the needed initial background on multifractals and mul-

tifractal dimension measures, following the descriptions of Kinsner [Kins94a], [Kins95a],
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that are used later to develop image quality measures in the form of multifractal complex-
ity measures. Multifractal (or inhomogeneous fractal) dimension measures are an exten-
sion of the fractal dimension measure described in Sec. 3.2 where these measures will be
useful if there is more than one fractal dimension complexity within the measured object.
As pointed out by Stanley and Meakin [StMe88], the majority of non-equilibrium, inho-
mogeneous phenomena in physics and chemistry exhibit complexities that single fractal
dimension measures cannot characterize. Multifractal dimension measures are better

suited for characterizing these complexities.

The following subsections lay down the preliminaries and groundwork for the
Rényi generalized entropy, which is the basis for the Rényi dimension spectrum multifrac-
tal measure described in the following subsection. The Mandelbrot spectrum, which is an
alternative representation to the Rényi dimension spectrum of the multifractal nature of an

object, is then described.

3.3.1 Preliminaries

Some preliminary definitions and theorems are required for developing the multi-
fractal dimensions for the discrete case in this section. Some introductory concepts in

probability and information theory are presented next.

Let X be a discrete random variable with finite alphabet % and probability mass

function p(x)=Pr{X =x},Vxe g
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Definition 3.2: Let X be a discrete random variable with probability distribution p(x).

The mean or expected value of X is

B=gX) = 3 xp(x) (3.16)
xex
where € denotes expectation. a

Theorem 3.1: Let X be a discrete random variable with probability distribution p(x).

The mean or expected value of the random variable g(X) is

Moy = ElgN] = ¥ g(x)p(x) (3.17)

xey

a

Theorem 3.2: If a function f has a second derivative which is non-negative (positive)
everywhere, then the function is convex (strictly convex). Q
Theorem 3.3: (Jensen's inequality) If f is a convex function and X is a random variable,

then

e[f(X)] = f(elX]) (3.18)
where £ denotes expectation. Moreover, if f is strictly convex, then equality in Eq. 3.18

implies that X = £X with probability 1, i.e., X is a constant. Q

With these preliminary concepts in probability and information theory established,
the next subsection introduces Shannon entropy, which is later generalized to the Rényi’

generalized entropy.
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3.3.2 Shannon Entropy

The field of information theory owes most of its basis to Shannon’s formulation of
entropy [Shand48a], [Shan48b]. In its simplest terms, Shannon entropy is a measure of the

uncertainty of a random variable X and is defined as follows.

Definition 3.3: The entropy or Shannon entropy H(X) of a discrete random variable X is

defined by
H(X) = - p(x)logp(x) (3.19)
xey
where the convention of Olog0 = 0 is used. Q

In terms of expectation, the Shannon entropy can be rewritten as

H(X) = g[-logp(X)] = 8[I°gp(1X)]' (3.20)

The general idea behind Shannon entropy is that the more regular or expected an
event, the less information that can be derived from the event, and, conversely, the more
irregular or random an event, the more information that can be derived from the event.
This property is particularly useful in compression research since Shannon entropy pro-
vides a lower bound for first-order lossless compression of a data stream since the mini-
mum number of events needed to represent a particular data stream probability

distribution can be determined. Referring to Eq. 3.20, it is seen that Shannon entropy can

also be referred to as the mean or average value of logp (IX) [CoTh91]. Thus, Shannon

entropy is effectively the average value of the information in the probability distribution
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p(x). This fact is useful when thinking about the Rényi generalized entropy which is

described next. An important theorem to consider about Shannon entropy is as follows.

Theorem 3.4: H(X) <logl|y| where |¥| is the cardinality of the set from which the ran-

dom variable X is chosen. Equality is obtained if and only if X has a uniform distribution.Q

This theorem effectively states that A/ (X) is concave with a maximum uncertainty

only when all choices of the next symbol are uniformly probable.
3.33 Rényi Generalized Entropy

In 1955, Alfréd Rényi introduced a generalized form of the probability distribu-
tions where incomplete probability distributions are allowed [Rényi55]. This new formu-
lation effectively removes the restriction that the summation Z p(x) must equal 1,

xey

though it still will for a normal probability distribution. Rényi’s generalized probability

distributions gave the basis for the following weight function

w(X) = 3, p(x) (3.21)

xey

where 0 < W(X) < 1. Clearly, when W(X) = 1 then the probability distribution of X is
complete and is an ordinary probability distribution. When 0 < #(X) < | then the proba-

bility distribution of X is incomplete.
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In 1959, Rényi extended this generalized probability distribution to entropies and
dimensions [Rény59]. With this extension and a paper in 1960, Rényi formalized a gener-

alized form of Shannon entropy [R€ny60] as follows

~-Y p(0logp(x) - p(x)logp(x)
H(X) = 254 = XSX (3.22
Y p(x) w(X) )
xXeEY

which reduces to Eq. 3.19 when an ordinary distribution in p(x) is used. Using this gen-
eralization it is apparent that Shannon entropy is a mean-value, where the mean-value is
recognized only when the probability distribution is incomplete. Using this property of
mean valued entropies, Rényi then searched for other mean valued quantities to generalize
entropy instead of using the arithmetic mean using a linear function as in Eq. 3.22. Rényi
showed that the only other admissible choice for mean value is with an exponential func-

tion. This form is defined as follows.

Definition 3.4: The Rényi generalized entropy H ¢(X) (or Rényi entropy for short) of

order g of a discrete random variable X is defined as

Y p(x)

1
log=EX (3.23)
4 > p

xey

where 0 <g<o, g#1, and p(x) can be a complete or incomplete probability distribu-
tion. Q

Certain liberties have been taken with the original definition of Rényi generalized

entropy to extend the range of the order g to —co < g <oc and g # | . For the purposes of
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the multifractal measures developed, there is no loss of generality through the expansion

of this range.

To see how the Rényi generalized entropy is a generalization of Shannon entropy

with the inclusion of a moment of order g, consider when ¢ — 1.

Lemma 3.1: Let the moment order ¢ — |. Then the Rényi generalized entropy reduces

to Shannon entropy in the limit as follows.
lim H (X) = H(X) (3.24)
q—1

Proof: Consider the Rényi generalized entropy as g — | .

Y pA(x)

. . 1
lim # (X) = lim log==X 3.25
g1 o goil—q Y p(x) 25
xey
Since
liml-qg =20
g—1
and

> pi(x) Y p(x)

lim logESX——— = log=sX—— =Jogl = 0
=1 " Y p(x) > px)
xey xey
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then ’Hoépital’s rule can be used as follows

g&-[log D pi(x)-log Y, p(x)]

lim H (X) = lim xey xex
qg—1 7 g1 —i(l— )
dq 1
3 %pq(x)
o —H]Tl XEX
¢=1 3 pa(x)
xey
Y p9(x)log(p(x))
= —lim | £&X
qg—1 z pi(x)
xeyx

- p(x)logp(x)

- _X€Y
>
xey
= H(X) (3-26)
which is Shannon entropy. a

This is an important result since this relates the Rényi generalized entropy back to
the well studied Shannon entropy. Other interesting properties of the Rényi generalized
entropy are at the order limits when g — o and ¢ — —e=. The Rényi generalized entropy

at these limits can be stated by the following two lemmata.
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Lemma 3.2: Let the moment order ¢ — o=. Then the Rényi generalized entropy A q(X)

for an ordinary discrete random variable X becomes

H (X)= lim H,(X) = —log| 22PN (3.27)
g Y p(x)
xex

Proof: As g — o, with 0< p(x) <1 the sum Y p7(x) is dominated by sup(p(x)).
xex
Therefore

- 1 1 sup(p9(x))
H_(X) = lim log
9-=l-¢q > p(x)

xey

Since p(x) is positive, the power ¢ can be moved as follows

- 1 [sup(p(x))]}?
H_(X) = lim ——log!
g-=l-q Y p(x)
L xex
. l' q l SUP(P(x)) 3.28
e T—g 8 S p(x) G-28)
Lxe g
And taking the limit gives
H_(X) = —log EJZPT(E((X—))) (3.29)
p X
xey
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Lemma 3.3: Let the moment order ¢ — —~. Then the Rényi generalized entropy

H q(X) for an ordinary discrete random variable X becomes

H__(X)= lim Hq(X) = —log inf(p(x)) .
g > p(x)

xey

(3.30)

Proof : As q— —oo, with 0< p(x) <1 the sum » p9(x) is dominated by inf(p9(x)).
xey
Therefore

o 1 inf(p9(x))
H = 1 1 3.31
—ea(X) S T8 S () (3.3

xey

Since p(x) is positive, the power g can be moved as follows

H 00 = lim —L_log) IRFRCNI

go>—=l-q Y p(x)
xey
= lim —Ilog) R2(x)) (3.32)
go-=l=2 71 % p(x)
xey
And taking the limit gives

H__(X) = —log) Dfp(0) { (3.33)
Y. p(x)

xey
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A final important property of the Rényi generalized entropy is that it is a monoton-

ically non-increasing function. This characteristic is formulated and proven as follows.

Lemma 3.4: For a complete probability distribution p(x), the Rényi generalized entropy

H q(X) of order ¢ is a monotonically non-increasing function in g.

Proof : Taking the first derivative of A 7(X) gives

> p(x)logp(x)
(1-gq)f ==X +log 3 p9(x)
Z pi(x) xgx

B0 = xe , 34
7(X) =) (3.34)

Eq. 3.34 can be rearranged to

(1-9) 3, pUx)logp(x) + 3, pi(x)log Y p?(x)
HI (X) = xex XEX XeEX _ (3.35)
7 (1-9)2 Y p9(x)

xey

The denominator of Eq. 3.35 is clearly positive since 0 < p(x) < 1.

Using Theorem 3.2 the function

f(x) = xlogx (3.36)

which has first and second derivatives of
f(x) = logx +§ = logx+1 (3.37)

’ _ 1
S = 2 (3.38)

is convex since the second derivative is non-negative everywhere using the valid domain

of logx as x> 0.
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Using Jensen’s inequality from Theorem 3.3 and with x = p7-! for the general

convex function f(x) = xlogx, the following inequality can be stated

e[p?~1(x)log(p~1(x))] 2 e[ p?~!(x)log{e[p7~1(x)1} (3.39)

This inequality can be expanded using Theorem 3.1 as follows.

Y, pix)log(p?~1(x)) 2 Y p9(x)log Y, pi(x) (3.40)

xey xex xey

Rearranging Eq. 3.40 gives

- > pUx)log(p?-1(x)) + Y, pi(x)log D pi(x)<0 (3.41)

xex xey xey

and pulling down the exponent ¢ — 1 gives

(1-9) Y pi(x)logp(x) + Y pi(x)log ¥ p(x)<0. (3.42)

Xex xey xey
The left hand side of Eq. 3.42 turns out to be the numerator of H’ 4(X) from Eq. 3.35. For
H’q(X) , with the denominator positive and the numerator zero or negative everywhere,

the Rényi generalized entropy H 7(X) is therefore a non-increasing function in g . Q

Lemmata 3.2, 3.3, and 3.4 define the range and general behaviour of the Rényi
generalized entropy H q(X) . From these lemmata it can be seen that A q(X) is bounded
and is a monotonic non-increasing function. Plotted in Fig. 3.8 is a typical example of the
Rényi generalized entropy H 7(X) versus g for the probability distribution p(x) listed in
the right of the figure. This monotonic non-increasing S -curve is typical for H (X The
Rényi generalized entropy curve will collapse to a horizontal line between the *oo limits
only when the probability distribution p(x) is uniform, as illustrated in the example in

Fig. 3.9.
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6 - —_ —
H___(X) = -logl[inf(p(x))] = —Iogz(0.03)==5.06 bits

11 H_(X) = -log[sup(p(x))] = —Iogz(0.40)z1.32 bits

Rényi Generalized Entropy, Hq(X) [bits]

20 15 0 5 0 5 10 15 20

Fig. 3.8. Example 1 of Rényi generalized entropy A 4(X) versus order g plot.

It should be noted that the Rényi generalized entropy is, in itself, not a dimension
measure. The Rényi generalized eﬁtropy does not measure the probabilities to an infinite
resolution of scale to find a critical exponent in a power-law relationship as demonstrated
by the fractal dimension measures in Sec. 3.2. The Rényi generalized entropy does how-
ever serve as the basis for multifractal dimension measures. The next section describes the
Rényi dimension spectrum, which is a multifractal measure based on the Rényi general-

ized entropy.
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6 —— v - v
p(x)
5| 1
0.2
0.2
0.2
4 0.2
0.2

H_(X) = H__(X) = —-log,{0.2} =2.32 bits

Rényi Generalized Entropy, Hq(X) [bits]
w

10 15 20

ot
it

20 -15 10 5

Fig. 3.9. Example 2 of Rényi generalized entropy A q(X) versus order g plot.
3.3.4 Rényi Dimension Spectrum

The Rényi dimension spectrum was first introduced by Hentschel and Procaccia
[HePr83] but is named in honour of Rényi since the dimension is effectively an extension
of his Rényi generalized entropy introduced in 1960 [Rény60]. The Rényi dimension
spectrum is an infinite number of generalized fractal dimensions which covers the range of

many previously known fractal dimension measures.
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The Rényi dimension spectrum can be formulated as follows. If the Rényi gener-
alized entropy from Eq. 3.23 is rewritten as

L)
H(X) = log| ££X— (3.43)

Y p(x)
xex

and using the portion inside the logarithm, then the following power-law relationship, in

the spirit of Eq. 3.5, can be expressed

1 —g)!

Som| 07 -

where p_(x) is the probability measurements using vels at scale s. Solving for the critical

exponent D (X}, the following definition for the Rényi dimension spectrum is formed.

Definition 3.5: The Rényi dimension spectrum Dq(X) (for brevity just D q) of order g

with measurements of probability p (x) atscale s is defined as

Y pl(x)
logx € X:
Y, py(x)
H
D = D (X)= lim 1 2 X = lim g (3.45)
0 7 s—oel—gq l 1 5§00 1 1
() ()
where H q(X) is the Rényi generalized entropy for a discrete random variable X. Q

Assuming an ordinary discrete random variable X where 2 p(x) =1,
xey

Eq. 3.45 reduces to the formulation of multifractal dimension spectrum as introduced by

Hentschel and Procaccia [HePr83].
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The Rényi dimension spectrum has many of the same characteristics as the Rényi
generalized entropy as follows.

Lemma 3.5: Let the moment order ¢ — . Then the Rényi dimension spectrum Dq(X)

for an ordinary discrete random variable X becomes

D_(X) quigluoq 0 = :ﬁ_lfl Hm(jlYL Sl:‘f,“m —IOg{SUP(iDS(x))}_ (3.46)
Iog(;) log(;)
Q

Lemma 3.6: Let the moment order ¢ — —o<. Then the Rényi dimension spectrum

D (X) for an ordinary discrete random variable X becomes

H _ -
D_(X)= lim D,(X) = lim 2=y, Clo8UnfeD}

g —> —oo s> o0 | 1 S =300 1 1
og(3) og(;)

(3.47)

Q

Lemma 3.7: The Rényi dimension spectrum Dq (X) of order g is a monotonically non-
increasing function of ¢q.

Proof : Follows from H q(X) being monotonically non-increasing from Lemma 3.4. QO
Corollary 3.1: D, ZDq, for ¢” > q with equality if and only if the object is homoge-
neous.

Proof: The inequality follows directly from Lemma 3.7. The equality follows from
Lemma 3.5 and Lemma 3.6 when D__ = D_ with a more rigorous proof by Hentschel

and Procaccia [HePr83]. Q
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Fig. 3.10. Example Rényi dimension spectrum calculation for the Cantor set, a line, the
Koch curve, the Sierpinski gasket, a box, and a multifractal object.

The important feature of D 4(X) is that it does not give only one number for the
measurement of the fractal dimension, but, rather an entire spectrum of dimensions. If
Fig. 3.10 is considered, which has a plot of Dq versus g for a number of fractal objects, it
is noticed that for simple objects such as a line and a box that the dimension D g island2,
respectively, for all values of g. For self-similar single fractal objects such as the Koch
curve, the Sierpinski gasket, and the Cantor set [Cant83] (not described in this text) the
fractal dimensions are 1.26, 1.58, and 0.68, respectively, for all values of . These objects
contain only one level of complexity throughout the object. Therefore, regardless of the
value of g, the fractal dimension remains constant. This is the same property as with
Rényi generalized entropy illustrated in the example in Fig. 3.9 where all probabilities in

py(X) are equal. This equality follows from Corollary 3.1 because objects such as a line,
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a box, the Koch curve, the Sierpinski gasket, and the Cantor set all have uniform probabil-

ities withein the set since the parts are always similar to the whole.

When more complex objects such as inhomogeneous fractals which contain more
then one fractal complexity, otherwise known as multifractals, are measured, then S-
curves simnilar to the one illustrated in Fig. 3.10 result. This curve follows partially from
Lemma 3.7. In multifractals the probabilities p_(x) in X are not uniform between differ-
ent regions of the object being measured. Therefore, the order ¢ will emphasize the dif-
ferent probabilities p (x) depending on the value of g. When g = 1 then the fractal
measurement reduces to the morphological dimension as described in Sec. 3.2 and mea-
sures the dominant fractal feature in the multifractal. When g # 1, then the order g helps
to suppress the dominant fractal and emphasize other inhomogeneous fractal features
within the object. In actuality, the orders of g extract a spectrum of fractal dimensions

from the object which can be used to characterize the object.

The exposition on the Rényi dimension spectrum is now complete. The following
subsectiom describes an alternate form of multifractal measure, the Mandelbrot spectrum,

which is a transformation of the Rényi dimension spectrum.
3.3.5 Mandelbrot Spectrum

The Mandelbrot spectrum (as referred to by Kinsner [Kins94a}) is another multi-
fractal dimeension measure that has some interesting analytical characteristics. One of the
earlier formulations of what will be referred to as the Mandelbrot spectrum in this thesis

was by Halsey er al. [HIKP86] and other useful descriptions have also been given
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[AtSV88], [Kins94a], [Chen97]. The Mandelbrot spectrum can be developed by first con-
sidering local calculations in single vels of an object covering. In a completely homoge-
neous fractal object (i.e. p,(x) is constant at any scale) the local fractal dimension
measures will be the same for all vels [HePr83], [HIKP86]. This is not the case in a mul-
tifractal object since it has a inhomogeneous probability distribution of X of fractal com-
plexity throughout the object. Therefore, the local fractal dimension measures are likely

different from vel to vel.

Since multifractals have inhomogeneous probabilities, it is useful to form a mea-
sure that can characterize the change in probabilities. With single fractals the probability

P, {(x) for the ith vel of size r = 1/s follows the following power-law relationship

Py i(x) < rP (3.48)

Notice the correspondence with the power-law relationship of Eq. 3.5. With multifractals
this probability will change depending on the scale as well as the vel, so the following

power-law relationship can be made

Dy, i(x) oc P (3.49)

where o (x) is a scaling index that describes the variation of the probability versus the
variation of » [AtSV88]. With Eq. 3.49, the moment order ¢ can be taken for both sides
of the proportionality to bring it more in the form of the Rényi generalized entropy as fol-

lows.

pg i(x) o< r3%(%) (3.50)
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Now consider the number of times N, (o) that o takes on a value in the range
a € [0, o’ +da’] having an object, or singularity, density p(c) in that range to be of

the form
N (o) = p(a)yr/(®)da’ 3.51)

where f(o) is a continuous function [HIKP86]. Combining Eq. 3.51 with Eq. 3.50,

gives the following probability moment summation similar to the > p7?(x) term in
xex

Rényi dimension spectrum (Eq. 3.45). This combination can be written as follows

[N, (00 pt(x)der = [p(a)r/ (e rax )y (3.52)

Seeing that s — o= in Eq. 3.45 then » — 0 (recall that » = 1/s), the right side of this
proportionality is dominated by the value o that makes gqa’— f(o) the smallest.
Replacing o” by the value o, that minimizes go.” — /(o) a new formulation of D g can

be expressed as [HIKP86]

D, = ——lae,~f(e,)] (3.53)

Solving this equation for f7 (o) and a, gives the following definition for the Mandelbrot

spectrum.

Definition 3.6: The Mandelbrot spectrum f () =D,,,, of order q is defined as

fl@)=Dypy = qo,—(g—1)D,.. (3.54)

where o, is the value that minimizes o in go” — f(o’) and is expressed as

o, = Zlta=DD,) (3.55)
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Taking the first and second derivatives of ga” — f(a”) and replacing o’ by ot(q)

to find the extrema [HJKP86] gives

d. . ., _
gplae e =0
o’ =a(q)
and
L qe - fa)] 0
———[gqa’ ~ f(a >
d(a )2 o’ = afg)

(3.56)

(3.57)

From Eq. 3.56 and Eq. 3.57, solving for the first and second derivatives of f(a)

with respect to oo [HIKP86] respectively gives

af _
da 7
and
2
g_-f_<()
do?

(3.58)

(3.59)

This gives us some important properties for f(a) in that it is a concave function

with an maximum extrema when ¢ = 0. Some other important and useful properties

should be noticed about the Mandelbrot as stated in the following lemmata.

Lemma 3.8: Let the moment order ¢ = 0. Then the Rényi dimension spectrum D, is

related to f (o) in the Mandelbrot spectrum as follows

Dq=0 = supf(a).

Proof: With ¢ = 0 then Dy is

Dyoo = Zlaoy -S| = f(og)

(3.60)

(3.61)
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Using Eq. 3.58, f(0,) is an extrema for f(a) since ¢ = 0. Eq. 3.59 shows that f() is

concave, therefore this extrema is a maximum. Therefore

D,_o = f(t) = supf(e) (3.62)

a

Lemma 3.9: Let the moment order g — . Then the Rényi dimension spectrum Dq

approaches

Dy, = Opin- (3.63)
Proof: Using the first and second derivatives of f (o) with respect to o in Eq. 3.58 and
Eqg. 3.59, respectively it is noticed that (o) is a concave continuous function. As g —> oo
the tangent to f(o) approaches infinity according to Eq.3.58. This is only possible

according to Eq. 3.59 if a is approaching its minimum. a

Lemma 3.10: Let the moment order g — —eo. Then the Rényi dimension spectrum D g

approaches

D, o= Opy- (3.64)
Proof: Using the first and second derivatives of f(a) with respect to ¢ in Eq. 3.58 and
Eq. 3.59, respectively it is noticed that f(a) is a concave continuous function. As
g — —o the tangent to (o) approaches infinity according to Eq. 3.58. This is only pos-

sible according to Eq. 3.59 if a is approaching its maximum. a

An example plot of the Mandelbrot spectrum f(a) versus o is shown in
Fig. 3.11. The concavity f(o) is clearly seen in this plot along with the markings for

Dy = foux(®), D, =0 yn,and D_ = o .
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f(o)

Fig. 3.11. Example plot of Mandelbrot spectrum f(ct) versus .

This completes the general background on multifractals. The next section moves
into another area of fractals dealing with the generation of statistically self-similar or in
other words self-affine fractals. This is all based on a concept known as fractional Brown-

ian motion.

34 Brownian Motion and Fractional Brownian Motion

One question that may be asked is how to generate fractals, and more specifically
how to generate random fractals that have a specified fractal dimension. The most promi-
nent method is to generate fractional Brownian motion (fBm) [MaVa68], which is a con-

ceptual extension of Brownian motion [Brow28]. The following subsections describe
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Brownian motion and fractional Brownian motion, as well as an extension into muitifrac-

tals with a brief discussion on multifractional Brownian motion [PeVe95].
3.4.1 Brownian Motion

In 1827 the botanist Robert Brown (1773-1858) observed irregular movements of
pollen grains under a microscope, but, unfortunately did not have a good explanation for
such behaviour [Brow28]. This observed phenomenon came to be known as Brownian
motion. In the early 1900’s, the Swedish chemist Theodor Svedberg suggested that this
type of motion is due to the unequal bombardment of small particles by molecules. This
hypothesis is now known to be the case and gave rise to some of the first measurements of

atom size from a set of equations that Einstein developed for Brownian motion.

The motion of the grains of pollen that Robert Brown saw would have been very
similar in nature to the path illustrated in Fig. 3.12a. A trail of a possible path of the pol-
len grain is shown in a two dimensional plane where the particle can collide with other
particles that are uniformly randomly distributed throughout the plane. This motion can
be described by making a record of the two dimensional random walk in the complex

plane z as follows

z; = z;_| +n(x0, 1)ei2ru(x) (3.65)
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where u(x) is a uniform random variable on [0, 1) and n(x;0, 1) is a zero mean Gauss-
ian random variable with unity standard deviation. The Gaussian density function used
with mean p and standard deviation ¢ has the form

1(x-pnY
L 5(58)
ﬁ;to'e (3.66)

The initial condition z, is the position of the particle in the complex plane when observa-

n(x;u, ¢) =

tions start.

As Fig. 3.12a illustrates, the motion of the particle appears quite random as it trav-
els, but some constraints and characteristics of its motion should be noted. The first con-
straint is that there is continuity in the motion of the particle. This property arises since
the particle has finite velocity. With this constraint, the particle is still free to move in any

direction, giving the particle two degrees of freedom in this illustration.

Another constraint on the movement of the particle is the density of the particles
surrounding it. The particle will travel in a straight line at a constant speed until it collides
with a neighbouring particle, causing it to change direction and speed. Therefore, the den-
sity of the particles affects the average distance that any particular particle can travel

before coiliding with another particle.
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x [position]

[uowsod] A

(a)

x [position]

[uoisod] A

(b)

Fig. 3.12. Example 2D Brownian motion of a particle.
(a) particle’s path and (b) magnified portion of the particle’s path.
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A few other characteristic attributes behind the particle motion illustrated in
Fig. 3.12a should also be pointed out. First, consider the average distance that the particle
travels in time ¢#. If in time ¢ the particle collides with n other particles, which are uni-
formly randomly distributed, and the displacement vector travelled between collisions is

[, then the particle will have a displacement of
displacement = Y[, (3.67)
Vn
in time ¢. Using the Gaussian random variable from Eq. 3.65, Eq. 3.67 can be rewritten as

displacement = Y [, = Zn(x;O, 1)ei2ru(x) (3.68)
Vn Vn

Another important note about the Brownian motion is that the direction travelled
after each collision follows a uniformly distributed probability density function. This
characteristic follows from the phasor notation of e/2™#(¥) used in Eq. 3.65. The addition

of these displacement vectors /, in Eq. 3.67 results in an average displacement or mean of

Kgisplacement = VZI,, = vZn(x;o, 1)ef2ru(x) = @ (3.69)
n n

Another characteristic of Brownian motion to consider is the mean square dis-
placement of the particle in time ¢. Using the central limit theorem, the mean square dis-
placement of the particle follows a Gaussian distribution. This is the case since the mean
square displacement using /? is independent and identically distributed, and the variance
is finite and non-zero because of the continuity in the particle’s path as previously
described. Therefore, at specific snapshots in time the particle will have moved by a zero
mean Gaussian random variable from its current location even though its long-term mean

displacement is still zero. Figure 3.12 was actually generated this way by displacing a
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simulated particle by a Gaussian random variable along a directed vector in the current
direction of motion. At each collision in the simulation, a new direction vector was deter-

mined from a uniformly distributed random variable.

Another point to be made is that the Brownian motion considered in this thesis will
be from a mathematical standpoint and thus have infinite resolution. This condition is as
opposed to a physical situation which is limited in resolution, as in the case of a pollen
grain colliding with other particles at a finite resolution. In the mathematical case, any
portion of the Brownian motion can be magnified to reveal still more Brownian motion as
illustrated in Fig. 3.12b. This ability demonstrates the scale invariance that Brownian
motion exhibits. Since the magnification scale is irrelevant, no numbers have been marked
along the axes in Fig. 3.12a or Fig. 3.12b since the numbers have little meaning in this
case. The emphasis is that the Brownian motion can be magnified to any level and exhibit

the same Brownian motion characteristics.

Since the Brownian motion can be magnified to any level, Brownian motion also
exhibits one of the important characteristics behind fractals. All fractals have the charac-
teristic of self-similarity such as was discussed with the Koch curve. If the trace of
Brownian motion can be magnified infinitely and always have the same Brownian motion
characteristics at any scale, then Brownian motion follows the self-similarity trait exhib~
ited by other fractals, where the parts are similar to the whole. Though, since the Brown-
ian motion characteristics are statistically similar instead of perfectly similar, such as with
the Koch curve, this property is generally referred to as self-affinity as opposed to self-sim-

ilarity.
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Another example of Brownian motion is to take a record over time of one ordinate
of the two dimensional Brownian motion. An example of this record is plotted in
Fig. 3.13. This plot shows Brownian motion at different samples through time. All of the

previously discussed properties of Brownian motion still hold.

y [position]

i
1 1

freq p freq N B
0 50 100 150 200 250 300 350 400 450 500
Time [samples]

5 noise (Brown noise)

Fig. 3.13. Record of Brownian motion in one dimension.

To define the concept of Brownian motion a little more formally, consider the fol-

lowing definition for the one dimensional Brownian motion process.

Definition 3.7: Let B(¢, w) be a continuous-time stochastic process defined with time
—oco <t <o and w the set of all values of a random function. Also, let the sequence of

increments B(t+ &) — B(¢) (defined for ¢ a multiple of 8) be an independent Gaussian
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random variable with zero mean and a variance of |8|. In addition, let any two non-inter-
secting intervals, [¢(, ¢, +&,1N{t5, ¢, +8,] = D, of B(t, w) be independent and have
the same joint distribution for all §. If these conditions hold then B(¢, w) is known as a

Brownian motion process or also called a Wiener process. a

This definition of Brownian motion brings together all of the previously discussed
points about Brownian motion. The following subsection expands on the idea of Brown-
ian motion to fractional Brownian motion. As will be seen, fractional Brownian motion is
a generalization of Brownian motion where the persistence in motion can be changed to

form objects with different statistical characteristics.
34.2 Fractional Brownian Motion

This section describes fractional Brownian motion and how it is a generalization of
Brownian motion. This discussion follows some of the computer experiments done by
Mandelbrot and Wallis [MaWa69a], [MaWa69b], [MaWa69c] to generate fBm and look at
some of its characteristics, as well as some of the compiled descriptions by Kinsner
[Kins94c], {Kins95a]. The next subsections give an overview of fBm including some of
fBm’s characteristics and some examples of this motion. Techniques for generating fBm
curves and surfaces will be left to Chapter S where they are needed for one of the progres-
sive image transmission techniques in this thesis which uses fractal surface segmentation

and interpolation.
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3.4.2.1 What is fractional Brownian motion?

Fractional Brownian motion, as introduced by Mandelbrot and van Ness
[MaVa68], is a generalization of Brownian motion in terms of the level of persistence or

anti-persistence that it possesses. Fractional Brownian motion can be defined as follows.

Definition 3.8: Let B(¢,w) be a Brownian motion or Wiener process with time
—oo <t <oo, w the set of all values of a random function, and b, an arbitrary real number.

For index H and ¢ >0, fractional Brownian motion By (t, w) is defined by
By(0,w) = b,

By (t,w) —By(0,w) =

I
I T 3
e 1/2){f m[(’ 5) (=s) ]dB(s, w) 370

where the gamma function is Euler’s second integral which can be expressed as

I(x) = f: (t=—tet)dr . (3.71)
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As seen in Eq. 3.70, fractional Brownian motion is largely a summation oveer this

Wiener process dependent on the index /. When the index H = 1/2 then Eq.3.70

reduces to
jo [1—1]dB(s, w) j; dB(s, w)
BH= l/Z(t’ W) _BH= 1/2(0’ W) = r(1) - (1)
) J aBGs, Mo [ @B, w)
T J:(tl"e“)dt
JJ dB(s, w)
=20 = fo dB(s, w) = B(t, w) —B(0, w) G.72)

E e~'dt

which is just ordinary Brownian motion B(¢, w) with an arbitrary starting point. At other
values of the index H, B,(t, w) is a weighted moving average of B(z, w) by the kemnel

(t-s5)H~1/2 [MaVa68].

The main property to notice with fBm is that the increments of B, (¢, w) are sta-
tionary and self-similar. Formally, this means that the increrments
By(ty+ 8, w) = By(ty, w) have the same finite joint distribution as
h~H(B y(to + hd, w) — By(t,, w)], where 3 is the increment size and # some multiple of
the increment size. Therefore, magnifying any portion of fBm with a specific index A
will result in fBm with the same characteristic index /. The following subsection shows
some examples of fBm and attempts to give some further clarifications to the properties of

fBm.
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3.4.2.2 Characteristics of fractional Brownian motion

Before looking at examples of fractional Brownian motion, let us consider again
the Brownian motion illustrated in Fig. 3.13. In examining Fig. 3.13, it is important to
notice how the motion of the particle has persistence in time as it travels. This persistence
can be thought of physically as the momentum the particle has between collisions with
other particles. After each collision the momentum changes and a new state in its motion
is achieved, so the persistence is limited. This persistence in time means that Brownian
motion has a non-stationary mean as, in this case, the particle is moving slowly from one

portion of the plot to another.

It should be noticed that Fig. 3.13 has no position values labeled on the ordinate.
This is purposely done, as with Fig. 3.12, since the record of Brownian motion exhibits the
same scaling characteristics found in the two dimensional Brownian motion illustrated in

Fig. 3.12a and Fig. 3.12b. Therefore, Brownian motion has the same statistical form and

characteristics at any scale of the motion.
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y [position]

i

0 noise (white noise)

1 1

freq p freq
0 50 100 150 200 250 300 350 400 450 500
Time [samples]

Fig. 3.14. Record of white noise motion in one dimension.

The Brownian motion’s particle persistence from the last state is contrasted by the
white noise illustrated in Fig. 3.14. This figure, generated by placing the particle in space
at a location determined by a uniformly distributed random variable in each time step,
illustrates uncorrelated and independent motion with a stationary mean. This type of
uncorrelated and independent signal is generally referred to as white noise because its
power spectrum, 1/ freq®, is flat and contains all frequencies at an equal intensity. This
signal is similar in concept to combining all the colours of the light spectrum to produce
white light. The Brownian motion illustrated in Fig. 3.13, on the other hand, has a power
spectrum density of 1/ freq? which means that the frequency components in the signal

taper off with increases in the frequency.
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Fig. 3.15. White, pink, Brown, and black noise power spectrum plot.

Taking the colour idea of white noise a little further, a spectrum of noise or motion
colours can be defined as shown in Fig. 3.15. This figure illustrates different power spec-
trum densities in the form 1/ freqP where B is the spectral exponent. Illustrated is white
noise with B = 0, pink noise with 8 = 1, Brown noise with § = 2 (Brownian motion),
and finally black noise with § > 3. These names and spectral exponents are taken as listed
by Schroeder [Schr91], [Kins94c] though there is some debate over the names with many

other additions such as orange, red, green, blue, purple, and grey noise [Wisn96].
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y [position]

1 _ 1
frqu freq
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Time [samples]

1 noise (pink noise)

Fig. 3.16. Record of pink noise motion in one dimension.

Fractional Brownian motion extends the idea of pure Brownian motion to allow for
different levels of persistence in the direction of the path over time. Changing the density
of the power spectrum through changing the spectral exponent B for the signal creates dif-
ferent “fractional” noise values. For instance, pink noise, as illustrated in Fig. 3.16, is
between white noise and Brown noise according to the power spectrum plot of Fig. 3.15.
Following the idea of persistence, this says that pink noise has more persistence than white
noise (which has no persistence), but, less persistence than Brown noise. With less persis-
tence than Brown noise, pink noise is often referred to be anti-persistent in that, in the case
of a time series, the system tends to revert the direction of its mean more often than not

and in the limiting case of fBm will change direction of its mean at every step. Following
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the idea of stationarity, pink noise is relatively more stationary than white noise but less

stationary than Brown noise. Pink noise can also be referred to as quasi-stationary.

Another important issue to realize from the power spectrum plot in Fig. 3.15 is the
distribution of power throughout the spectrum. For white noise the power for any fixed
sized interval is equal. For example, the power in the range from 100 Hz to 200 Hz is the
same as the power in the range from 10,000 Hz to 10,100 Hz. This is not the case for pink
noise. For pink noise the power distribution is the same over logarithmic octaves. For
example, the power in the range from 100 Hz to 200 Hz is the same as the power in the

range from 10,000 Hz to 20,000 Hz.

Viewing some of these factors, it has been observed that pink noise models many
natural phenomena better than white noise models, such as parallel relaxation processes
[Schr91]. For example, many musical pieces have 1/ f! power spectra and pink noise
can be used to generate interesting music, while white noise .is too random and Brown

noise is too correlated [VoCl178].
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Fig. 3.17. Record of fractional Brownian motion in one dimension.

A final example to illustrate fBm is shown in Fig. 3.17. This example shows
motion that is more persistent than Brownian motion since it has a power spectrum density
of 1/ freq?® with a spectral component of B = 2.8. This spectrum can be referred to as
dynamically persistent in that the trend currently seen in the series is reinforced so that the
trend in that direction of motion will likely continue. This form of behaviour exists in

some natural phenomena such as natural disasters and flooding [Schr91].
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To tie in the whole concept of persistence, Mandelbrot coined the term the Joseph

effect [Mand75, p. 105] after Joseph son of Jacob and son of Israel who said

“Behold, there come seven years of great plenty throughout all the land of
Egypt: And there shall arise after them seven years of famine; and all the
plenty shall be forgotten in the land of Egypt; and the famine shall con-
sume the land;*

(Genesis 41:29-30, King James Version)

This idea of seven years of plenty and then seven years of famine in Egypt nicely illus-

trates how persistence in natural phenomena occurs.

Mandelbrot also coined the term the Noa#h effect [Mand75, p. 105] after the story
of Noah where discontinuity rules and things can change suddenly as when there was a

drought and then 40 days of rain came.

“And it came to pass after seven days, that the waters of the flood were
upon the earth. In the six hundredth year of Noah’s life, in the second
month, the seventeenth day of the month, the same day were all the foun-
tains of the great deep broken up, and the windows of heaven were opened.
And the rain was upon the earth forty days and forty nights.”
(Genesis 7:10-12, King James Version)
Accordingly, events do not necessarily gradually change but can change suddenly. These

happenings may be viewed more with the Brown to pink noise phenomena where wide

swings of change can occur and do occur suddenly.

This section outlining some of the additional properties and characteristics of fBm.
is now completed. The next subsection ties in the ideas of fBm with the work done by

Hurst, the Hurst exponent, and the spectral exponent for power spectra.
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3.4.2.3 Fractional Brownian motion, the Hurst exponent, and the spectral exponent

The spectral exponent P used in the fBm power spectrum density function
1/ freqB can be related to what is known as the Hurst exponent H* by the relationship

[MaWa69b]

B =2H*+1 (3.73)

The Hurst exponent [Hurs51], [HuBS65] was developed by the British hydrologist
Harold Edwin Hurst. Hurst was trying to determine if the historical yearly water level
flows of the Nile showed any pattern, so that the long-term storage capacity of the Nile
reservoirs could be appropriately built [Hurs51]. He found that instead of the flow levels
being random each year, there was a clustering in that there would be runs of wet or dry
years. Hurst’s results showed that there is a non-random positive correlation in the water
levels of the Nile over the 800 years of Nile flow records, as well as non-random positive
correlations in some other natural phenomena such as rainfall, temperature and pressure,
tree rings, varves, and sunspot activity [Hurs51], [HuBS65]. The Hurst exponent used to

get these results is defined as follows

R(7T)
. oo( 555 (3.74)
— log(T) ]

where T is the duration of the time series §, and R/S is the rescaled range statistical anal-
ysis of the time series data. In R/ S -statistics, R is the range of the time series data &, and
can be defined as follows

R(t) = max 2 (§,—<€>)— min Z (&, —<€>)) (3.75)

I<t _‘t 1<t <1:
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while S in the R/ S -statistics is the standard deviation in the time series data &, and is

defined as follows

- Ny - 2
S(0) «/(T)g'. (5~ <E>0) (3.76)

with the operator < > being the mean of the data as follows

1
<& =1 2% 3.77)

In words, the Hurst exponent measures how the range of the time series data §, changes in
accordance to the standard deviation of the data over different slices of time. Therefore,
the Hurst exponent gives a measure as to whether a trend will persist or if a mean will

revert back to a historical average.

The Hurst exponent can be thought of as the A parameter in the fBm B, (¢, w).
So, we could effectively write By.(f, w) = By(t, w). The Hurst exponent will be used
in Chapter 5 for the generation of fractal surfaces using the midpoint displacement algo-
rithm. Also, the Hurst exponent is related to the previously discussed Hausdorff-Besico-

vitch dimension, Dy, [Mand85]. This relationship can be expressed as follows
Dy = E+32=B = g1 _px 3.78
by = E+=5t = E+1- (3.78)

where £ + 1 is the Euclidean dimension or support dimension in which the object is
embedded (£ = 0 fora point, £ = 1 foracurve, £ = 2 for a surface, £ = 3 fora vol-
umetric object, etc.). Equation 3.78 shows that if fBm can be generated with a specific

Hurst exponent, then this fBm will have a known Hausdorff-Besicovitch dimension.
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3.4.2.4 Multifractional Brownian motion

While not a key focus of this thesis, mention should be made of an extension of
fBm to multifractional Brownian motion (mfBm) as introduced by Peitier and Lévy Véhel
[PeVe95]. The idea is similar to that of fBm except that instead of a single A value for
B (t, w), a function H, is used to represent the changes in dimension through time. This

can be seen by reformulating Eq. 3.70 to
mBH‘(O, w) = b,

mBH’(t, w)— mBH'(O, w) =

1 -1 H,-L
r(H,+"1/'_z)'{fm[("S) 2= (=) 2}"3(3’ w) (3.79)

H,

_i
+J';(r-s) 2dB(s, w)

Using this formulation, curves can be created that are effectively concatenations of

fBm curves with different values of H.

3.5 Summary

This chapter covered the general background required for this thesis on fractals,
multifractals, and fractional Brownian motion. The chapter started by explaining an
approach to measuring the morphological topology of an object and then how this mea-
surement is used to formalize the idea of a fractional dimension. Extensions were then
made from homogeneous fractals to inhomogeneous fractals, or multifractals, where more
then one fractal complexity exists in an object. This extension is done with a generaliza-

tion of Shannon entropy using the Rényi dimension spectrum as well as the Mandelbrot
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spectrum. Finally, Brownian motion and fractional Brownian motion were described

mathematical for statistically self-similar, otherwise known as self-affine, fractal objects.

The next chapter provides background on wavelets and wavelet packets. This dis-
cussion will set the stage for the developed progressive image transmission in later chap-

ters.
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CHAPTER IV

BACKGROUND ON WAVELETS
AND
WAVELET PACKETS

This chapter provides the required theoretical background on wavelets and wavelet
packets for this thesis. This theory will serve as the basis behind some of the progressive

image transmission techniques presented in later chapters.
4.1 Preliminaries

This section gives some preliminary mathematics before the overview on wavelets

and wawvelet packets is provided.
4.1.1 Metric Spaces, the Hilbert Space, and Orthogonality

Wavelets and wavelet analysis techniques falls into a class of metric spaces
referred to as the Hilbert space. While this section is not intended to be a complete refer-
ence ory metric spaces, a brief introduction is given on preliminary concepts of metric
spaces and the Hilbert space in context of wavelet analysis. Further information on metric
spaces can be taken from various sources on functional analysis [Krey89], [Shil74] which

served as references for this writing.

For this thesis, interest will be only on finite energy signals since anything
recorded from a physical source will have finite energy. In general, a signal f(x) having

finite energy is square integrable as stated in the following definition and lemma.
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Definition 4.1: A function f:X — R is said to be square integrable if

Jin2<e. (4.1)
X
Q
Lemma 4.1: A function f:X — R has finite energy if it is square integrable. a

Definition 4.2: Let f:X — R be a square integrable function. Then [ is referred to as an
L2 -function. Also, the set of L2 -functions in a measurable space forms the L2-space,

often referred to as L2(R) for real valued vectors and functions. Q

Another important concept is that of a metric space. A metric space is a vector
space (i.e. sets of vectors X that follow the commutative, associative, distributive, and
identity properties) that also has a distance measure associated with the space. This dis-

tance measure gives a distance between two vectors in the space. More formally, 2 metric

space is defined as follows.

Definition 4.3: A metric space is a pair (X, d), where X is a set and d(x, y) is a metric
on X, that is, the “distance from x to y ” such that for all x, y, z € X the following axioms

are satisfied:
1. d isreal valued, finite, and nonnegative
2. d{x,y)>0ifx#y,d(x,x) = 0 forevery x
3. d(x,y) = d(y, x) forevery x and y

4. d(x,z)<d(x,y) +d(y,z) forevery x, y,and z
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Definition 4.4: A normed space is a vector space with a norm, denoted by the operator

[}, defined on it. Q

A norm is a measure that can be used to gauge the size of an element in a space.

For the finite energy space L2(R) the following norm is often used

Il = [ |

—~00

172
Lf (x)lz] <eo 4.2)
and is referred to as the L2 -norm.

With this background, the Hilbert space can be defined as follows.

Definition 4.5: A Hilbert space is a normed vector space with a defined inner product

operator (-, -) such that the norm

A= JCAH N (4.3)
makes the vector space a metric space. a

The inner product in a Hilbert space can be defined in many different ways
depending on the metric used for that space. For the finite energy space L2(C), the inner

product of fe L2(C) and ge L2(C) is

(f,8 = | f(x)g(x)dx (4.4)

where g(x) is the complex conjugate of g(x). Of course, this equation reduces to

(f.8) = [ f()glx)ax (4.5)
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when dealing only with the real valued functions f € L2(R) and ge LZ(R). These inner
products are valid in an infinite dimensional space so f and g can be of any dimensional-

ity, such as one dimensional for time series and two dimensional for images.

One important characteristic of the Hilbert space is that the inner product can be
used to see if any pair of vectors are orthogonal. Another important property which can be
determined is whether a vector is orthonormal. These two characteristics of a Hilbert

space are defined as follows.
Definition 4.6: A vector f € X is said to be orthogonal to a vector ge X if

(f,g) = 0. (4.6)
a

Definition 4.7: A set of orthogonal vectors {¢,(x)}, _ , 1s said to be orthonormal if the

norm of every vector is one, thatis [|¢,] = 1. Q

4.1.2  Signal Decomposition on an Orthogonal Basis

Using the idea of orthogonality, a vector can be decomposed into a set of orthogo-
nal or orthonormal vectors. For instance given the orthonormal set {¢,, q)y} € L%(R), the
two dimensional vector v can be decomposed to v = v +v, = ¢ ¢ +c,6, where
{cc,} are the multiplicative coefficients in the decomposition. Graphically, this

decomposition is illustrated in Fig. 4.1.

- 91 -



Progressive Image Transmission Ch. 4: Wavelets and Wavelet Packets

Fig. 4.1. Example orthogonal decomposition of the two dimensional vector v using the
orthonormal basis {¢,, o,}.
In the general case, the decomposition of a function f(x) using an orthonormal

basis {¢,(x)}, . , € L*(C) is done as follows

oo

[y = T i) @.7)

k = —co

where ¢, are the coefficients in the decomposition. In a Hilbert space the coefficients are

found using the inner product in Eq. 4.4 which results in the coefficients ¢, being

e = (fi b = [ F(D)0(x)dx 4.8)

Therefore, given the orthonormal basis ¢, any function in a Hilbert space can be
decomposed, or transformed, into the set of coefficients ¢, . An important fact about the
decomposition of a signal with an orthonormal basis is that it defines the signal completely
and that the decomposition into the coefficients ¢, is urique. The Fourier transform,

wavelet transform, and wavelet packet transform are examples of signal decompositions
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on different orthogonal bases. These decompositions will be discussed further later in this

chapter.

4.1.3 Linear and Nonlinear Approximations

In some applications, such as signal compression, it is often desired to produce
approximations of a signal as opposed to a full representation of the signal. This ability is
important in areas such as image compression since it can aliow for effective lossy image
compression with high compression ratios. As seen in a Hilbert space, a signal f can be
decomposed using an orthonormal basis {¢,} keNE L2(C) as follows
= (fio00, (4.9)
k=0
Many forms of approximations exist for the signal f when inspecting Eq. 4.9. One

such approximation would be to take only the first 4 components in the decomposition of

f to form the approximation f , = f as follows
A-1
f=fa= 2 (o0, (4.10)

k=0

This leaves a mean squared error in the representation of f by f, of

IF=7dl* = X KS 0 (4.11)
k=A

With this a priori selection of coefficients to represent f ,, a linear approximation of the

signal is obtained [Mall99].
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While this approximation is often good, it can often be improved by selecting the
set of orthonormal vectors to use from the basis depending on the signal being represented
in an a posteriori manner. In general, the following approximation of f by f, can be

made

fa= 2 (fi000 (4.12)

kel,
where [ is the set of indices for the selected orthonormal basis vectors ¢, dependent on
the characteristics of the signal /. The problem then reduces to how to select which of the
orthonormal basis vectors ¢, to choose. This issue will be discussed further in the context

of wavelets and wavelet packets later in this thesis.

4.2 Fourier Series and Fourier Transform

Before discussing wavelets and the wavelet transform, it is instructive to review the
well known and well studied Fourier series and Fourier transform, which have many simi-
larities to their wavelet counterparts. This foundation will give a basis for a discussion on
wavelets and the wavelet transform for anyone familiar with the Fourier transform, and
will also help in understanding the advantages of wavelets in image compression. This
knowledge will be particularly important when considering the differences between Fou-
rier transform based image compression, such as JPEG which is one of the better stan-

dards of the day, and wavelet transform based image compression.

The Fourier series is an expansion of a periodic function on a possibly infinite set
of orthonormal sine and cosine functions (or the exponential function in the complex

case). The Fourier transform takes the Fourier series expansion and develops forward and
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inverse transforms for a signal from the time/space domain to the frequency domain. The

Fourier series pair and the Fourier transform pair are defined as follows.
Definition 4.8: Let ®, = 2n/T, be the fundamental frequency of a periodic finite
energy signal f(t) € L?(C) with period T,. The Fourier series for the function f(t) is

defined as follows

f@e) =Y cpelte (4.13)

k = —oco

where ¢, are the Fourier series coefficients which are defined as
cp = (f, /¥ = 71- [ rne 7 eotar. (4.14)
07,

Q

Definition 4.9: Let f(z) € L2(C) be a periodic finite energy signal, ¢ be an independent
variable-in the time domain, and @ be an independent variable in the frequency domain.

The Fourier transform F(®) of the function f(¢) is then defined through to following

transformation
F(®) = j F()eTodt (4.15)
Also, let F[-] be an operator denoting the Fourier transform. Q

Definition 4.10: Let F(®) € L2(C) be a periodic finite energy signal, ¢ be an indepen-

dent variable in the time domain, and ® be an independent variable in the frequency
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domain. The inverse Fourier transform f(t) of the function F(w) is then defined through

to following transformation

1 :
= e—_— yiols
S = 5 J' F(®)e/dw . (4.16)
Also, let F~1[-] be an operator denoting the inverse Fourier transform. Q
1

0.5

Amplitude

-0.5

-1

8 7 6 5 4 3 2 10 1 2 3 4 65 6 7 8
Position [radians]

Fig. 4.2. Example basis function in Fourier analysis.

While not a wavelet transform, the Fourier transform serves to outline some of the
key issues, advantages, and disadvantages with this class of mathematical transforms. The

Fourier transform is an analysis and representation tool which models a function/signal as
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the sum of scaled and dilated trigonometric functions (i.e. sine and cosine functions). A

sample basis function in Fourier analysis, the sine wave, is plotted in Fig. 4.2.

1.5 ' T sine)
sin(x)+(1.0/3.0)*sin(3.0*x) \

sin(x)+(1.0/3.0)*sin(3.0*x)+
ST T (4.0/5.0)*sIR(5.07X)

sin(x)+(1.0/3.0)*sin(3.0*x)+
— " (1.0/5.0)*sin(5.0")+"~

05} i
P (1.0/7.0)*sin(7.0*x)
3
2
E o
05}
1}
4 3 2 1 0 > 2 3 a

Position [radians]

Fig. 4.3. Approximations of a square wave using Fourier decomposition
with the first 4 lowest frequency components.

As mentioned, the power behind Fourier analysis and the Fourier transform is the
ability to decompose a signal into scaled and phase shifted versions of the basis function.
To illustrate this, Fig. 4.3 and Fig. 4.4 demonstrate how a square wave is approximated by
sinusoids. Illustrated in Fig. 4.3 is the first four approximations of a square wave using
Fourier analysis. The first wave is a sinusoid, in this case sinx. The second wave is a
superposition of two sinusoids, namely sinx + %sin3x. The third and fourth approxima-

tions to this square wave are sinx + 31- sin3x + % sinSx and
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sinx +-§-sin3x+§sin5x+%sinx, respectively. With the first 50 of these sinusoids, as

shown in Fig. 4.4, the approximation to the square wave improves even further. If this

process is continued to infinity, then a perfect square wave is obtained.

1 . ~ —
o5+ — -}
[e}]
ks,
=
E’ 0
<
-05¢
-1

-4 -3 -2 -1 0 1 2 3 4
Position [radians]
Fig. 44. Approximation of a square wave using Fourier decomposition
with the first 50 lowest frequency components.

One of the problems with using the Fourier transform is that the sinusoids used to
decompose the signal span the entire spatial domain (i.e. from —eo to o). In image repre-
sentation this basis span results in no localization of image features in the spatial domain
even though localization is precisely achieved in the frequency domain. This limitation is
seen by the infinite number of sinusoids required to represent a signal as simple as a

square pulse, while only one Fourier basis function is required to represent a sine wave.
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The question then is whether basis functions other than sinusoids can be used in the
decomposition of signals. The next subsection delves into the wavelet transform which
uses a class of basis functions that do allow for good spatial localization in addition to fre-

quency localization.

4.3 Wavelets and the Wavelet Transform

A number of different approaches exist for image compression and progressive
image compression. Some of the most promising approaches incorporate the wavelet
transform at the principal signal processing level. This section provides a brief introduc-
tion to some of the ideas behind wavelets and the wavelet transform, as well as some of the
reasons that wavelets are of interest to signal compression researchers. This section also
outlines some of the ideas behind multiresolution analysis and how wavelets can decom-

pose a signal for multiresolution analysis.
43.1 The Wavelet Transform

Similar to the Fourier transform, the wavelet transform is a mathematical transfor-
mation or decomposition of a signal with a set of orthogonal basis functions. First explic-
itly introduced by Grossman and Morlet [GrMo84], the wavelet transform decomposes a
signal using mother wavelet functions as the analyzing function instead of sinusoids as

with the Fourier transform. These mother wavelet functions will be denoted as y(¢). To
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form the set of wavelet basis functions, the mother wavelet y(¢) € L2(C) is scaled and

translated as follows

Vo = 9(5) @.17)

where s > 0 is a scaling parameter and « is a translation parameter. With this scaling and
translation of the mother wavelet y(¢), the following definition for the continuous wave-
let transform can be made.

Definition 4.11: Let y(z) € L2(C) be a mother wavelet function, s>0 be a scaling
parameter for y(¢), u be a translation parameter for y(¢), and y, ((¢) be the scaled and
translated version of W(r). The continuous wavelet transform (CWT) of a function

£(¢) € L2(R) is defined as

_ = T rov G = 2L T reyw(t=y ~
Wofs) = (L) = [ JOW Bd = o= [ rov(FE)a @19
Also, let W[-] be an operator denoting the continuous wavelet transform. Qa

Note that the CWT in Eq. 4.18 is an inner product of the form of Eq. 4.4. There-
fore, the set of scaled and translated mother wavelets {v,(0)}e L2%(C) forms the signal

basis in the CWT. The inverse CWT is defined as follows [Mall99].

Definition 4.12: Let y(¢) € L2(C) be a mother wavelet function, s >0 be a scaling

parameter for y(¢), v be a translation parameter for y(¢), and v, s(2) be the scaled and
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translated version of y(z). If /'€ L2(R), then the inverse continuous wavelet transform

(ICWT) is defined as
f(t) = C—wReal[j j WS (4, 5)Y,, S(t)duds] (4.19)

where C\V is a constant which is defined as

2 -
I|F [\v(t)]l _ I!‘PI(S)Ide (4.20)

)
with F [y(7)] = ¥(w) the Fourier transform of y(¢). Also, let W-![-] be an operator

denoting the inverse continuous wavelet transform. Q

In looking at the forward and inverse continuous wavelet transforms, some impor-
tant properties behind y(¢) can be noted. One of the most important properties for y(¢)
follows from the Cy factor in Eq. 4.19. For a perfect reconstruction of f(¢) to occur, the

CV factor must be a constant and also finite such that
2
J I‘P(m)l () 4.21)

Therefore, if reconstruction of the signal is desired after decomposition, y(¢) must be
restricted to satisfy Eq. 4.21 which is referred to as the admissibility condition. This equa-
tion indicates that the square of the Fourier transform ¥(®w) of y(¢) must decay faster
than the factor |@| at £ for the inequality to hold. This result indicates that the mother
wavelet y(¢) must be bandlimited in frequency. For purposes of signal analysis, a band-

limited signal is useful when analyzing the signal in the frequency domain. In signal anal-
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ysis this means that a wavelet transform can decompose a signal into constituent

frequency components from the bandlimited mother wavelet.

Another important point about the admissibility condition is that ¥ (®) must be
zero when @ = 0, otherwise the inequality in Eq. 4.21 does not hold. Expanding this

condition with the Fourier transform of y(¢) itself, the following equation can be stated

¥(@=0) = Fly()l|,_, = [ w(O)e/O%dr = [wnae =0 (4.22)

which shows that the following must also be true of y(¢) for the admissibility condition to

hold

Jwnyae =0 (4.23)

—c0

The significance of Eq. 4.23 is that it indicates that y(¢) must be a zero mean function.

Another important property that results from the admissibility condition is that the
wavelet function Y (¢) must have finite energy for reconstruction, so following Lemma 4.1

and Defn. 4.1, the following must be true

[ lw)2de <o (4.24)

—oco

Combining the properties from Eq. 4.23 and Eq. 4.24, it is noticed that y(¢) has
finite span. This characteristic is unlike sinusoids in Fourier analysis since sinusoids have
infinite span and are not square integrable, so Eq. 4.24 does not hold. This property of

y(¢) means that wavelet analysis leads to spatial localization unlike Fourier analysis
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which has no spatial localization. Combining the two localization features of wavelets,
namely frequency localization and spatial localization, it should become clear that wave-
lets have advantages of representing non-stationary signals over what Fourier analysis can
achieve. Specific non-stationary portions of a signal can be analyzed apart from the rest of
the signal. From these frequency and spatial localization properties of y(t), as well as
y(t) having zero mean and finite energy, it should be realized that y(¢) is likely a small
oscillating curve dampened at +e=. Hence, y(¢) is a small wave or a waveler as it has

become known.

Wavelet functions are also often designed with specific properties depending on
the task. One important property is the number of vanishing moments that a wavelet pos-

sesses, where vanishing moments are defined as follows.

Definition 4.13: Let y(¢) € L2(C) be a wavelet function. Then y(t) Is said to have m

vanishing moments if

f tPy(t)dt = 0 0<p<m. (4.25)

Q

An important result of Eq. 4.25 is that a wavelet with m vanishing moments is
orthogonal to any polynomial of degree m — 1 and is a multiscale differential operator of

order m [Mall99].

A final useful property for y(r) to achieve good spatial and frequency analysis is

that y(¢) should be well localized in the spatial domain and ¥ (®) should be well local-
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ized in the frequency domain. Following this idea of localization, Daubechies developed a
number of compact support wavelet functions [Daub90], {[Daub92]. A compact support
wavelet is one that minimizes the span of the wavelet function in both spatial and fre-
quency domains simultaneously. By doing this minimization, signals can be decomposed
into sparse sets of coefficients which helps in approximating a non-stationary signal by
fewer coefficients; the primary goal of image compression. An example of a wavelet, the
well known Daubechies 4-tap wavelet (DAUB4) [Daub90], [Daub92] is plotted in

Fig. 4.5.
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Fig. 4.5. DAUB4 wavelet for a unit vector in the 5th component
of a vector of length 1024 (i.e. DAUB4 es).
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As with all wavelets, the DAUB4 wavelet can serve as the basis function for
decomposing signals. As a small example, Fig. 4.6a illustrates two scalings/translations
of the DAUB4 wavelet. The first is the DAUB4 eg wavelet, also given in Fig. 4.5, over a
vector with 1024 samples. When a wavelet transform using the DAUB4 basis function is
applied to this signal it produces a vector with 1024 samples which are all zero except for
the 5th component which has a unit impulse (hence the e, ). Similarly, the second wavelet
which is the DAUB4 e,, wavelet over a vector with 1024 samples produces a unit impulse
in the 40th component when transformed. When these two signals are added in the spatial
domain, as shown in Fig. 4.6b, the resulting signal has a wavelet transform with unit vec-

tors in the 5th and 40th components.

This discussion demonstrates how wavelets work as basis functions for signal
decomposition through the scaling and translation of the wavelets. Seemingly complex
looking signals can often be decomposed into a sparse set of wavelet coefficients when the
right basis function y(¢) is selected. The whole process is very similar to the scaling and
translation of sinusoid functions as with the Fourier transform. Unlike the Fourier trans-
form, the wavelet transform is not restricted to one basis function. There are actually an
infinite number of basis functions as long as they meet the properties outlined. Selection
of the mother wavelet is entirely dependent on the application and results will vary

depending on which mother wavelet is chosen.
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Fig. 4.6. Sample wavelet representation.
(a) two wavelets that make up time domain signal and (b) time domain signal.
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4.3.2 Discrete Wavelet Transform Through Filter Banks

With the discrete nature of the array image representation discussed in Chapter 2,
it is convenient to have a discrete version of the CWT presented in the previous section.
Mallat describes a simple algorithm for doing a discrete wavelet transform (DWT)

through multiresolution analysis using filter banks [Mall89].

Before getting into the details of the DWT, note the following definitions for
downsampling and upsampling of a signal. These terms are used when developing

approximation and detail signals in the DWT.
Definition 4.14: (after [GoCh99]) Let {x(n)} be an input sequence. Then an M -point
decimation of {x(n)} is given by

y(n) = x(nM) forne Z (4.26)
This concept is also referred to as downsampling and can be represented diagramatically

as @ a

Definition 4.15: (after [GoCh99]) Let {y(n)} be an input sequence. Then an M -point

interpolation of {y(n)} is given by

n —
x(n) = y(ﬁ) forn=ikM,ke Z (4.27)

0 otherwise

This concept is also referred to as upsampling and can be represented diagramatically as

(U] a
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It is clear from Defn. 4.14 that an input sequence is taken and every M th element
is extracted to perform an M -point decimation. With Defn. 4.15 an input sequence is
taken and expanded by adding M — 1 zeros between the M elements to perform the inter-

polation.

The general procedure behind Mallat’s DWT algorithm [Mall89] is to decompose
the discrete signal into an approximation signal A and a detail signal W, where s is the
scale in the multiresolution analysis. The approximation signal A_, or lowpass signal, is
formed by the projection of the original signal onto the space formed by the basis
{0 5:2572¢(25¢ — k);k € Z} where ¢(z) is a scaling function. The detail signal W_, or
highpass signal, is similarly formed with the basis {w, 1252y (25t —k);k e Z} where
y(t) is a mother wavelet. Both of these bases are effectively scaled versions of ¢(¢) and

y(¢) that have been downsampled by a 2¢-point decimation to a lower resolution.

A few properties of ¢(¢) and y(¢) exist. Firstly, y(¢) must follow all of the pre-
viously discussed properties of a mother wavelet for this to be a DWT. An important
property of ¢(¢) is that it must be selected so that approximations A are subsets of higher

resolutions approximations A, ., (k>0) e N, as follows

{0}e—...eA_CcAjcA c...cL? (4.28)

More importantly, an approximation at one scale should be made up of the lower level

approximation and detail signals as follows

A =A®W, seZ (4.29)

5
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where ® is an operator that combines the approximation and detail signal through the
inverse DWT. In addition, the approximation and detail signals at a specific resolution

should not contain overlapping components such that
A.NW, = {0} seZ (4.30)

It should also be noticed that if A is the original signal, then the decomposition into

wavelet detail signals at various resolutions is expressed as follows

A, =W, _ QA _ [ =W, ®&(W,_,®A, )

5 S
=W, W, ,0W, ,®.. (4.31)

The algorithm that Mallat proposed actually uses filter banks G and H to filter the
signal as ¢(¢) and y(¢) would form A_ and W, at each scale s. To get the required rela-
tionships as in Eq. 4.29, Eq. 4.30, and Eq. 4.31, Mallat showed that when a filter bank for
W (?) is developed that the following impulse response relationship between the two filter

banks holds

g(n) = (1)1 -"h(t —n) (4.32)
where G is the mirror of H and the pair are known as quadrature mirror filters [Mall89].
Hence, knowing the mother wavelet y(z), then the scaling function ¢(¢) can be devel-
oped. With both filter banks in place then the DWT algorithm as depicted in Fig. 4.7
results. Following Fig. 4.7, the original discrete signal is convolved with the quadrature
mirror filter bank pairs H and G, and then decimated by a factor of 2 to get the 25 -point
decimation. This procedure results in two discrete signals, A;_; and W__ |, which each
have half the number of samples as A;. This process is repeated on A, _; to form A __,

and W__,, and then again on the following approximation signals until the entire signal
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has been decomposed to the wavelet terms. Decomposition can be stopped at any chosen

level, though will be limited to when the resulting approximation and detail signals have

been decomposed down to one sample each.

| Original Signal As

v2 2
' '

L Approximation As-1 Detail 1 Ws-1

|

1

H G

{2 v2
'

|~ As-2 T Ws-2 [ Ws-1

l Ws-3T Ws-2 Ws-1

As-5 Ws-5 Ws4

Fig. 4.7. Discrete wavelet transform using filter banks (after [Mall89]).

Reconstructing of the signal is done by reversing the process depicted in Fig. 4.7.

The approximation signals A, and W are upsampled with a 2 -point interpolation. Then

the upsampled versions of A, and W, are convolved again with the H and G filter
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banks, respectively and the resulting vectors added together to form the approximation at

the next higher resolution A__ , .

4.3.3 Two Dimensional Discrete Wavelet Transform

With image compression and progressive image transmission being the focus of
this thesis, a two dimensional DWT algorithm is in order. For developing a 2D DWT
algorithm, an important thing to note is that the 2D wavelet transform is separable
[Mall99]. If {y, (x)} is an orthogonal basis then {w, 5, IV, S)z(y)} is an orthogo-
nal basis for a 2D space. Given a 2D function f(x, y) € L?(R2), the function can be

decomposed, as usual, through the following inner product

oo oo

oW Yasn) = | [ 7NV 0, I, 5, ()dxdy (4.33)

—00 —00

which can be rearranged to the following

Fo ¥ Y = [ Y000 [ SO0, 5, ()dxdy (4.34)

The rearrangement of the inner product in Eq. 4.34 shows that the inner product in the
wavelet transform is separable. Using the separability of the inner product, a simple algo-
rithm for performing the DWT on images can be developed using only the 1D DWT. This
2D transform is done by applying the DWT filter banks first on each of the rows of an
image and then afterwards applying the DWT filter banks on each of the columns. This
procedure decomposes the image into an approximation image, as well as horizontal, ver-

tical, and diagonal details. This process is then repeated with the approximation portion of
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the decomposition. The first three passes of the 2D DWT decomposition are illustrated in

Fig. 4.8.
a- ABproximation of signal
v, h, d - Detail from signal

aa| ha alh

a h v|d
va | da

v d

Original First Pass Second Pass Third Pass

image

Fig. 4.8. Two dimensional wavelet transform on an image.

As Fig. 4.9 illustrates, there is a hierarchy in the 2D DWT of an image. Each detail
wavelet coefficient at the highest level (at the top-left of Fig. 4.9) is the parent of four
wavelet coefficients down one level. Continuing on, these four wavelet coefficients are the
parents of the sixteen wavelet coefficients at the next detail level. With this form of hierar-
chy, a higher level view of the signal can be made by using only some of the more global
detail values in the top-left quadrants of this 2D DWT. More details can be incorporated
into an analysis by going down through the hierarchy. Effectively, this structure allows for
an analysis of a signal at different resolutions or scales, depending what level of lower
details are included. This multiresolution structure will come in useful when considering
progressive image transmission techniques since approximations of the image can be

transmitted first and then various details subsequently transmitted.
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Fig. 4.9. Multiresolution analysis from the structure of the
two dimensional discrete wavelet transform.

.4.4 Wavelet Packets and the Wavelet Packet Transform

As noticed in the previous section, the wavelet transform consists of decomposing
a signal using a mother wavelet y(¢). When performing the DWT described previously,
the mother wavelet is used to decompose a signal into consecutive octave bands in the fre-
quency domain [GoCh99]. It is sometimes desirable to obtain finer resolutions within spe-
cific octave bands, so further splitting of these bands can be done by again performing the
DWT within the band. For the DWT, this effectively results in recursively decomposing
the detail signals in addition to the already decomposed approximation signal [Wick94],

[Mall99]. This category of transformation is a generalization of the DWT and is referred
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to as a wavelet packet decomposition or the wavelet packet transform, due to the further

combining of extra wavelet decompositions within octave bands.

4.4.1 Discrete Wavelet Packet Transformn Through Filter Banks

The wavelet packet transform (WPT) is very similar to the wavelet transform.
Using filter banks, the discrete wavelet packet transform (DWPT) on a 1D signal is per-
formed as illustrated in Fig. 4.10. This figure is similar to that of the DWT shown in
Fig. 4.7 with the exception that at every pass, both the approximation signal A and the
detail signal W are decomposed instead of only the approximation signal A; as in the
DWT. The packet transform works by taking the original signal, passing it through the
quadrature mirror filter bank pair H and G, and then decimating these filtered signals by
a factor of 2 to form the various approximation af£253, ~ and detail d£25% =~ signals for
each pass and for each section of the signal. This procedure is recursively repeated for
each resul.ting approximation a£%% =~ and detail d£3257,, signal to form the full wavelet
packet decomposition. In image compression, the important thing to realize with the
wavelet packet transform is that the bulk of the energy in the wavelet coefficients might be

redistributed in fewer coefficients depending on the signal. This feature may allow for

better approximations of an image to be made with fewer coefficients.
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Original Signal
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Level 1 af di
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Fig. 4.10. Discrete wavelet packet transform using filter banks (after [Mall99]).

4.4.2  Adaptive Selection of Wavelet Packet Bases

While it is apparent from Fig. 4.10 that the wavelet packet transform decomposes

signals more fully than the wavelet transform alone, another concept often used with
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wavelet packets is the adaptive selection of the wavelet packet basis. The decomposition
shown in Fig. 4.10 shows a full wavelet packet transform. Often, a partial, or selective,

WPT is more useful in specific applications and is generally dependent on the signal char-

acteristics.
Full Wavelet Selective Wavelet Wavelet
Packet Transform Packet Transform Transform

(a) (b) ()

Fig.4.11. One dimensional vs;avelet and wavelet packet transform decompositions.
(a) Discrete wavelet packet transform,

(b) selective discrete wavelet packet transform, and (c) discrete wavelet transform.
For instance, Fig. 4.11a illustrates the decomposition of a 1D signal using the full
DWPT as described in the previous subsection (i.e. a simplified illustration of Fig. 4.10).
When selecting the function basis using the DWPT, it may be advantageous to only
decompose certain approximation and detail signals to a certain level. This selective
decomposition is illustrated in Fig. 4.11b where some approximation and detail decompo-
sitions are no longer decomposed further at later levels. The stopping criteria for deciding
where to end further decomposition depends on the signal and the application, but can

include factors such as entropy measures or mean squared error measures after quantiza-

- 116 -



Progressive Image Transmission Ch. 4: Wavelets and Wavelet Packets

tion [CoWi92], [Wick94]. In Chapter 7 of this thesis, multifractal measures that are used
to evaluate image quality are then used to help in determining the stopping criteria for the
wavelet packet decomposition. It should also be noted that the standard DWT is actually a

specific case of the selective wavelet packet decomposition, as illustrated in Fig. 4.11c.

4.4.3 Two Dimensional Discrete Wavelet Packet Transform

The 2D DWPT used for signals such as images is very similar to that of the 2D
DWT. As illustrated in Fig. 4.12, the full wavelet packet decomposition takes the image
and in the first pass decomposes it both horizontally and vertically to obtain an approxima-
tion image, a horizontal detail image, a vertical detail image, and a diagonal detail image.
The DWPT decomposition is recursively repeated for these four smaller sections at each
subsequent pass. This process can be compared to the 2D DWT decomposition illustrated

in Fig. 4.8 where only the approximation portion of the signal is further decomposed.

a - Approximation of signal
v, h, d - Detail from signal

aal hajah | hh
a h
va|da}]vh | dh
avi hvlad ! hd
v d
vw|dvijvd | dd
Original First Pass Second Pass Third Pass

image

Fig. 4.12. Full 2D wavelet packet decomposition.
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a - Approximation of signal
v, h, d - Detail from signal

aa| ha}ah | hh
a h
valda]vh |dh
ad | hd
v d
vd | dd
Original First Pass Second Pass Third Pass

Image

Fig. 4.13. Example selective 2D wavelet packet transform decomposition.

The process is similar for the selective 2D DWPT for a 2D signal such as an image.
As illustrated in the example decomposition in Fig. 4.13, an image is taken and the DPWT
is applied, yielding the approximation image, horizontal detail image, vertical detail
image, and diagonal detail image. At this pc;int it must be decided which of these four
smaller sections of the signal would most benefit our application with further decomposi-
tion using the stopping criteria for the current signal. Once selected, the chosen smaller
signal portions are recursively decomposed with the DWPT and this process repeated at
each pass. Once completed, some portions of the decomposed image will have had more

wavelet packet transforms performed than other portions of the image.

4.5 Summary

This chapter has provided the background behind wavelets and wavelet packets.
This discussion included an overview of the properties behind wavelets as well as how to

decompose 1D and 2D signals using wavelets and wavelet packets. The following chap-
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ters describe the progressive image transmission techniques developed, as well as the mul-
tifractal image complexity measures developed. This explanation includes progressive
image transmission techniques based on fractal surface segmentation and interpolation,
with wavelet and wavelet packet decomposition. The ideas of adaptive wavelet packet
decomposition will come into play when the developed multifractal measures are used to

help in the selection of the wavelet packet bases to be used for a particular image.
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CHAPTER V

PROGRESSIVE FRACTAL IMAGE COMPRESSION USING
FRACTAL SURFACE SEGMENTATION
AND INTERPOLATION

This chapter introduces a new and novel approach to image compression
{DaKi96], [DaKi97] and progressive image transmission [DaKi98a] that has been «devel-
oped for this thesis. This method is based on an interpolation scheme using fractal sur-
faces and will be referred to as fractal surface segmentation and interpolation (FFSSI).
Fractal surface segmentation and interpolation allows for the representation of certaim tex-
ture features within an image using the fractal dimension of the texture. These textur«e fea-
tures can then be reproduced in a fractal sense to synthesize natural looking immages.
Hence, the goal is not necessarily to reproduce the textures in an image from a pixel by
pixel basis, but, instead to synthesize textures with similar fractal characte'ristics that
appear psychovisually similar to the original textures. Some of the findings and realiza-
tions from this work with FSSI are used in Chapter 6 for the development of progre-ssive
image quality measures based on multifractal complexity measures. It must be noted that
the FSSI techniques described in this chapter are not currently bit rate competitive with
other state of the art techniques such as EZW [Shap93] or SPIHT [SaPe96], but have

potential for being combined with other techniques to improve compression.

Of particular interest for this thesis is the development of progressive image tr-ans-
mission techniques. An important approach to performing progressive image transmmis-

sion is to represent the image in a multiresolution form so that increasing levels of image
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detail can be transmitted and reconstructed in the image, as discussed in Sec. 2.2.1. Of
course, many methods exist for representing an image in a multiresolution form. This
chapter focuses on methods which use region segmentation of an image and then interpo-
lation in the reconstruction process to estimate unknown values located between known
values. To perform this estimation of the unknown values, the simplest approach is to do a
linear interpolation between the unknown values. Other attempts have been made using
non-linear interpolation functions such as using B-splines [Wata97]. This chapter presents
a method of using fBm in the interpolation process as an alternative with advantages for
representing some classes of textures, particularly random-like textures or noise-like tex-

tures.

5.1 Interpolation and Fractal Interpolation

Interpolation is the process of estimating or predicting unknown values within a
signal that are between other known values in the signal. For instance, if given the signal
illustrated in Fig. 5.1 then approximations of the signal can be formed by sampling the

signal at regular intervals and performing a linear interpolation as shown in Fig. 5.2.

0] 50 100 150 200 250 300 350 400 450 500
X

Fig. 5.1. Example signal to perform successive interpolations.
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y '0/

0 50 100 150 200 250 300 350 400 450 500
X

0 50 100 150 200 250 300 350 400 450 500
X

0 50 100 150 200 250 300 350 400 450 500
X

Fig. 5.2. Linear interpolation of example signal where sampling is at every:
(a) 100 points, (b) 50 points, and (c) 10 points.
From Fig. 5.2 it is seen that linear interpolation does produce increasingly better
approximations of the original signal in Fig. 5.1 as the sampling interval is decreased. A

drawback of this interpolation is perceptual accuracy is poor with only a few samples.
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0 50 100 150 200 250 300 350 400 450 500
X

0 50 100 150 200 250 300 350 400 450 500
X

0 50 100 150 200 250 300 350 400 450 500
X

Fig. 5.3. Fractal interpolation of example signal where sampling is at every:
(a) 100 points, (b) 50 points, and (c) 10 points.
Since there are more characteristic features to the original signal in Fig. 5.1 other
than straight lines, it seems logical to extend the form of interpolation to incorporate other

features in the signal. The feature of interest for this thesis is the fractal dimension of the
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signal. By calculating the fractal dimension of the signal in Fig. 5.1 and using this to gen-
erate fBm, then a different form of interpolation can be developed, namely fractal interpo-
lation. An example of this fractal interpolation is illustrated in Fig. 5.3 and can be
compared with the linear interpolation illustrated in Fig.5.2. From a perceptual view-
point, the fractal interpolations in Fig. 5.3 better represent the original signal than the lin-
ear interpolations in Fig. 5.2. It should be noted that fractal interpolation is not limited to
signals that are coarser and rougher such as Fig. 5.1. Smoother signals with fractal dimen-
sions closer to | will result in fractal interpolations composed of straighter line segments
formed through the fBm. Signals closer to white noise would be interpolated with fBm
having a higher fractal dimension. Therefore, the fractal interpolation can be considered a

generalization of linear interpolation.

-t
-=d

X Desired
Desired Path

»  Path /

w_ Fractal Desired
Curve Path

X [position]
X [position]

o
o

Time [samples] Time [samples]

(a) (b)

Fig. 5.4. Fractional Brownian motion interpolation along a path.
a) not along the desired path, b) superposition with the desired path.
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Of course there are other interpolation functions that can be used such as B-
splines, Bezier curves, and higher order polynomial curves. These types of interpolation
functions can still be used in conjunction with fractal interpolation. This combined inter-
polation is done by using one of the interpolation curves, say B-splines, to get an approxi-
mation of the signal’s global path and then superposing a fractal curve with the fractal
dimension of the original signal. For instance, Fig. 5.4a illustrates two curves: a self-
affine fBm fractal curve, and a desired global path for the curve. It is clear that the fractal
curve, which is generated between the two endpoints of the curve, does not follow the
desired path. By performing a superposition of the two curves Fig. 5.4b, is obtained
where the fractal curve follows the desired path but still retains its fractal characteristics.
An important feature to note is that this superposition does not alter the fractal characteris-
tics of the fBm curve as long as the fractal dimension of the desired path does not exceed
that of the fBm. This property can be seen by considering again the Hausdorff-Besico-
vitch fractal dimension in Eq. 3.11 from Defn. 3.1. From the Hausdorff-Besicovitch frac-
tal dimension it should be noted that as s — 0 then N_ will be dominated by the vel
covering needed for the object with the highest fractal dimension. Therefore when mea-
suring an object that is composed of more then one internal object, the fractal dimension is
dominated by the internal object with the highest fractal dimension. This is the case when
using any of the curves generated through B-spline interpolation, Bezier interpolation, and
any high order polynomial style interpolation technique since the fractal dimension of
these simpler curves is 1. Of course one problem with these calculations is that having
s ~> 0 means that the signal being measured must be of infinite resolution for the higher

dimension fractal to completely dominate. With the finite resolution of the images being
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measured, it was noticed that two quantitative measures can be extracted, namely the zex-
tural fractal dimension and the structural fractal dimension [CrIv89]. The textural fractal
dimension measures the fBm curve in Fig. 5.4 while the structural fractal dimension mea-
sures the inverted parabola in Fig. 5.4. In a finite sense these two measures do interact,
but, the textures will still dominate although not completely suppress the structure of the
curve [SaCh92]. Therefore, the fractal dimension of the curve resulting from the superpo-
sition of simpler curves with the fBm curve is close to the fractal dimension for the fBm

curve itself.

5.2 Generating Fractional Brownian Motion

For the fractal interpolation technique discussed in Sec. 5.1 to be useful a method
of generating fractal curves is necessary. Fractional Brownian motion as discussed in
Sec. 3.4.2 can be used to generate these self-affine fractal curves for fractal interpolation.
Unfortunately, the main formulation of fBm given in Defn. 3.8 with Eq. 3.70 does not give
a clear way of efficiently generating fBm with an arbitrary Hurst exponent A * , and partic-
ularly for generating surfaces as is desired for images. Dealing with the stochastic integral
in Eq. 3.70 is a bit cumbersome and does not immediately offer a simple approach to gen-
erating fBm curves and surfaces. To this end, a number of different techniques for gener-
ating fBm have been developed over the years. These methods include the random
midpoint displacement algorithm [Carp80], [FoFC82], [Saup88]; successive random addi-
tions [Voss85]; fast fractional Gaussian noise [Mand71]; independent or random cuts algo-
rithm [Mand82); Fourier spectral synthesis [Voss85]; wavelet synthesis [Mall89],

[Flan92]; multidimensional recursive filters [BrBa94]; and chaotic techniques [MuBa90].
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In this thesis the random midpoint displacement (RMPD) algorithm is used for
generating the desired fBm fractal curves and surfaces. Some other studies have shown
that the “random midpoint displacement algorithm is in practice much simpler to imple-
ment, faster to generate, and results in a comparable accuracy” for generating fBm

[StLN95].

5.2.1 Random Midpoint Displacement Algorithm in One Dimension

The procedure behind the RMPD algorithm [Carp80], [FoFC82], [Kins95a] for
generating fBm embedded one dimension is illustrated in Fig. 5.5. The approach that the
RMPD algorithm takes is to start with a coarse, low resolution curve and through a refine-
ment process develop a high resolution curve containing the desired fractal characteristic.
This refinement process must be carefully performed if the self-affine property of the

resulting fBm curve is to be maintained over all scales of the fBm curve.

The algorithm begins, as illustrated in Fig. 5.5a, by starting with point A and B’
which are located on the abscissa for the fBm fractal being generated. The point B is
found by offsetting point B* perpendicular to the x -axis into the dimension that this fractal
will span. This offset is determined by a Gaussian random variable, n(x;u = 0, ¢), with
zero mean and a variance of 62. The line segment formed by AB now completes the con-

struction of the coarsest level for the fBm.

From this point in the fBm construction, the line segment AB is broken into
smaller pieces and then iteratively refined. The first step of this refinement is illustrated in

Fig. 5.5b. As the name suggests for the random midpoint displacement algorithm, the
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A Offset
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Fig. 5.5. Midpoint displacement algorithm for generating fractional Brownian motion.
(a) initial setup, (b) refinement iteration 1, and (c) refinement iteration 2. (after [Kins95a])
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midpoint C’ along the line segment AB is found and then this point is displaced with a
random Gaussian variable to get the new point C. For the purposes of this thesis, this dis-
placement will always occur perpendicular to the abscissa as illustrated in Fig. 5.5b.
Fournier et al. suggest that this displacement can also occur perpendicular to the current
line segment under consideration [FoFC82]. To achieve the appropriate scaling for fBm
the random Gaussian variable must be scaled as shown in Eq. 5.1 for this first iteration

with i = 1 [Voss85]

”(-’C;p- = 0: G) (5.1)

/1 _22H*-2

As can be seen in Eq. 5.1, the scaling is dependent on the Hurst exponent H* so that dif-

displacement,_ | =

ferent levels of fBm can generated. Recall that the Hurst exponent is related to the fractal
dimension and the spectral exponent according to Eq. 3.78. In the case of the fBm curves

being generated, £ = 1 for Eq. 3.78.

Note that the scaling factor in Eq. 5.1 is only valid for the first stage of the RMPD
algorithm. This equation arises because Mandelbrot and van Ness [MaVa68], [Mand85]

showed that any interval ¢ in the fBm has a variance related to the following equation.

(|By(2) =By (0)2 = o2r2H" (5.2)
When splitting up the fBm curve recursively in half, this gives a scaling of the Gaussian

random variable with variance 62 at the (i — 1) th stage to be [Voss85]

2. _02 o _ _ 62 1 some2
Gi (2i)2H' 4 (2i)2H'[] 2 ] (5'3)
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So, at the first stage the scaling is done by the standard deviation of /1 — 22H* =2 Tphe

first iteration of the fBm refinement process is now complete.

After the first iteration, subsequent refinement iterations follow a similar procedure
of recursively finding the midpoint of each line segment and performing the midpoint dis-
placement. The second iteration of this refinement is illustrated in Fig. 5.5c. In this fig-
ure, line segment AC and CB have their midpoints D’ and E’, respectively, displaced
perpendicular to the abscissa by a Gaussian random variable. For this second iteration and
all subsequent iterations the scaling factor has changed. In this case the displacement for

all subsequent iterations I is expressed as

"———"‘(x(;;;*())} o) (5.4)

displacement;, | =
This equation immediately follows from the standard deviation by taking the square root
of additional stages in Eq. 5.3. This scaling of the Gaussian random variable allows for
proper scaling so that the fBm generated remains with the same Hurst exponent through-
out all scales [Voss85], [PeJS92, p. 495] and hence the fBm has the proper self-affine frac-

tal characteristics. This refinement process is continued until the desired resolution is

obtained.

The description of the midpoint displacement algorithm for fBm curves with
E =1 in the E + 1 Euclidean dimension is now completed. The next section describes
extensions needed to form a two dimensional midpoint displacement so that surfaces can

be generated with fBm characteristics as opposed to only curves.
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5.2.2 Random Midpoint Displacement Algorithm in Two Dimensions

Generating fBm surfaces using the RPMD is similar to that for generating fBm
curves. Figure 5.6 illustrates one method for generating fBm surfaces based on triangle
partitioning [FoFC82], [Saup88]. Quadrilaterals, which are sometimes convenient when

working with pixel arrays, can also be considered, but their partitioning is a little more

complex than that for triangle partitioning [FoFC82].

W L

(a) lteration O (b) Hteration 1 (c) Iteration 2

Fig. 5.6. Fractional Brownian motion surfaces through midpoint displacement.
(a) initial setup, (b) refinement iteration I, and (c) refinement iteration 2.
At the initial setup of the RMPD for surfaces, as illustrated in Fig. 5.6a, a triangle
is established in the embedding dimension similar to how the initial line segment was set
up in Fig. 5.5 for fBm curves. The initial surface starts in the xy-plane in this three

dimensional space (note that £ = 2 forthe £ + 1 Euclidean space of Eq. 3.78).

The midpoints along each of the three triangle edge line segments are found and
then displaced along the z-axis by the scaled Gaussian random variable using Eq. 5.1.

This process segments the initial triangle into four smaller triangles as illustrated in
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Fig. 5.6b. It should be noted that the shading of the triangles in Fig. 5.6 is solely to help

illustrate the different triangles in the surfaces.

Figure 5.6¢ illustrates the second recursive iteration of the RMPD on each of the
four resulting triangles in Fig. 5.6b. The displacement of the midpoints in the four trian-
gles is again done along the z -axis, but, this time using the scaling factor in Eq. 5.4 as was
done in the case for fBm curves. Again note that the displacement could be made perpen-
dicular to the triangle surface itself, but, this would cause confusion since triangle surfaces
adjoin with each other and then some decision would have to be made as to how to com-
bine the two surfaces’ normals. Also, displacement according to surface perpendiculars
would cause the surface to no longer be a function in z = f(x, y). Limiting the displace-
ment in the z-axis direction only eliminates these two problems. Similar to fBm curves,
this process of midpoint displacement is recursively repeated with each of the subsurfaces

until the desired surface resolution is obtained.

Gap between
surfaces

(b)

Fig. 5.7. Example of creasing problem with two dimensional
random midpoint displacement.
(a) two adjoining surfaces, and (b) disjoint surfaces after midpoint displacement.
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A special note must be made about implementing the RMPD algorithm for sur-
faces. Treating each of the generated surfaces separately, as through a recursive process,
results in disjoint or creased fractal surfaces as demonstrated in Fig. 5.7. Figure 5.7a
shows two adjoining triangle surfaces that have become disjoint through the RMPD algo-
rithm in Fig. 5.7b. When these surfaces are used as image greyscale intensities, as is done
later in this chapter, this disjointness or creasing manifests itself as triangle artifacts
throughout the image as demonstrated in Fig. 5.8a. This creasing and disjointness in the
surfaces occur when the RMPD algorithm is applied separately to each subsurface without
considering neighbouring surfaces. To eliminate these artifacts, the RMPD algorithm
must allow neighbouring surfaces to properly share a common edge when performing the
midpoint displacement. Using this strategy with the same parameters as in Fig. 5.8a,
Fig. 5.8b was produced which does not contain the same triangle artifacts. Figure 5.8b is
not as visually disturbing as Fig. 5.8a and the fractal dimension desired for the corre-

sponding Hurst exponent, //* = (.5 for this example, is properly maintained.

(b)

Fig. 5.8. Example images generated using 2D RMPD with A* = 0.5 (Brownian motion)
and average greylevel value half of full scale.
(a) recursive RMPD producing creasing, and (b) RMPD with creasing eliminated.
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To give a sense of some of the types of surfaces and textures possible with the fBm
surface interpolation, an example set of fBm surfaces is illustrated in Fig. 5.9. Shown,
from left to right and top to bottom, are 25 sample fBm surfaces with a mean pixel inten-
sity of half scale and a Hurst exponent A * range from 0.04 to 1.00 in increments of 0.04.
It is surfaces similar to these that will be used for the FSSI image compression technique.
One difference will be that the surfaces will be of varying sizes. The surfaces will act as
interpolating surfaces similar to what was done in Fig. 5.4 with fractal interpolating

curves. Hence, the surfaces will follow the contours of the image being represented.

Fig. 5.9. Example surface tiling showing a set of 25 possible fBm surface with a
Hurst exponent ranging from 0.04 to 1.00 in 0.04 increments
(from left to right and top to bottom).
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53 Measuring Fractal Dimension Locally in Images for FSSI

Having an interpolation scheme such as the fractal interpolation scheme presented
in Sec. 5.1 is only useful if the fractal dimension of the signal can be measured. Before
modeling images and textures with fractal surfaces, their fractal nature must be deter-
mined. This information is found by calculating the fractal dimension of localized regions
within the image. Many algorithmic approaches exist for calculating the fractal dimension
locally within an image including those from [PNHA84], [DaKe85], [KeCC89], [CrIv89],
[SaCh92], [ChSa95]. This thesis takes the approach of using the Rényi dimension spec-
trum D, to calculate the fractal dimension in local regions of an image. For the purposes
of the FSSI technique developed in this chapter, the texture measurements are limited to
single fractals. Namely, the Rényi dimension spectrum is used with ¢ = 1. Rewriting
Eq.3.45 for the Rényi dimension spectrum, the following expression is obtained for

Dq=l-

=Y py(x)log pfx)

xey
Y py(x) .
D ., =D; = lim— Xt = fim Z&X) (5.5)
s—0 1 s—>0 1
log(;) Iog(;)

When ¢ = 1 for the Rényi dimension spectrum, the resulting fractal dimension is gener-
ally referred to as the information dimension because of the use of Shannon entropy
H(X) from information theory. It must be noted that the probabilities p (x) in Eq.5.5
are dependent on the current scale of measurement. For the developed FSSI techniques,

which are described in the following section, the scale of measurement is limitedto 5§ x 5
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blocks of pixels to get the local dimension calculations. For each 5 x5 block being mea-

sured in an image, the probability p_(x) is calculated as

pixel(x) —min[pixel(7)]
Vi (5.6)

py(x) =
Z{pixel(i) — min[pixel(#)] }
Vi vi
where pixel(x) is the centre pixel in the 5x 5 block and the summation goes through
each of the 25 pixels in the 5 x5 block and adds up the greyscale intensity values. The
pixel greyscale values in Eq. 5.6 also have the minimum pixel value in that 5 x5 sub-
tracted. This subtraction will partially normalize the texture so that similar textures that
are very dark versus the same texture that is very bright results in the same fractal dimen-
sion. Note that this formulation of p_(x) ensures that z ps(x) = 1 sothat Eq. 5.5 can

xey
be rewritten using a complete probability distribution as follows

— 3 py(x)log p(x)
D,_, = D, = lim ==X (5.7)

g=1 s—0 1
log( )

S

The following section describes the FSSI techniques developed using the idea of

fractal surface interpolation and this form of local fractal dimension calculation.

5.4 Image Compression and Progressive Image Transmission

using Fractal Surface Segmentation and Interpolation

The goal behind fractal interpolation and fractal surface interpolation is to repre-

sent a curve or surface faithfully from a perceptual point of view using fractal curves and
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surfaces. For image representation specifically, the goal is to represent the surfaces of an
image projection in a perceptually faithful manner. For instance, the two images displayed
in Fig. 5.10 are of the original image of lena [Lena99], [USC99] in Fig. 5.10a and its
three dimensional projection as a surface plot in Fig. 5.10b. The goal therefore is to find a
method of using fractal surface segmentation and interpolation to represent the this surface
projection using fBm surfaces that model the fractal nature of the surface projection. This
segmentation can follow a process similar to the feature extraction as used by Ferens and
Kinsner [FeKi95] on surface plots. The interpolation can follow a process similar to the
natural scene description done by Pentland [Pent84], with modifications so that explicit
surface contours can be generated that model specific image surface plots. The next two
subsections present two techniques developed in this thesis for this image segmentation

and interpolating representation using fractal dimensions and fBm.

(b)

Fig. 5.10. (a) Image of lena [Lena99], [USC99] and
(b) a three dimensional surface plot of lena.
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5.4.1 FSSIImage Representation/Compression Technique 1

With the tools in place for generating fractal surfaces of a desired dimension .and a
method for measuring the fractal dimension of local regions in an image, a scheme is now
developed for image representation and compression which was first describe-d by
Dansereau and Kinsner [DaKi96]. The high-level approach taken in this image comupres-
sion scheme is to segment an image surface plot, such as in Fig. 5.10b, into regions
according to areas of uniform fractal dimension. The surfaces in these regions of uni form
fractality can then be represented as fBm surfaces with interpolation being perfommed

between the edges of the regions.

Different approaches can be taken to implement this high-level view of this first
FSSI image compression scheme. A first step is to calculate the local fractal dimensions
throughout the image. This is done, as partially described in Sec. 5.3, by taking a 5: x S
block mask of pixels and calculating the fractal dimension, D, of tilat block accordimg to
Eq. 5.7 in combination with Eq. 5.6. The calculated fractal dimension is recorded for that
block and then the block is shifted by one pixel to get a complete coverage of the immage
being analyzed. Usinga 5 xS sliding window block to perform the fractal dimension cal-
culations on an N X M image results in an (N —4) x (M —4) matrix of fractal informa-

tion dimension values for local calculations throughout the image.

With a matrix of local fractal dimensions now calculated, the next step is to decide
on how to segment the image into regions of uniform fractality. Different techniques can
be used such as edge detection, region growing, or split-merge algorithms, but, for s.im-

plicity and for proof of concept the segmentation of the image is done using a triangle #tes-
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sellation. That is, the matrix is split into a set of triangular regions of varying sizes. This
method will later simplify the generation of fBm surfaces since the RMPD algorithm

described in Sec. 5.2.2 is based on triangle surface partitioning.

(a) Step 1 (b) Step 2

(c) Step 3 (d) Step 4

Fig. 5.11. Example tessellation of an oval.
(a) Step 1, (b) Step 2, (c) Step 3, and (d) Step 4.

Representation of this triangle tessellation is of paramount importance to achieve
compression. The approach taken for this FSSI technique is illustrated in Fig. 5.11.
Shown in Fig. 5.11a is an example fractal dimension matrix which happens to contain a
region of uniform fractality in the shape of an oval versus the background which has a dif-
ferent uniform fractality. The tessellation scheme used first splits the matrix into the two
initial triangles as shown. The algorithm then continues by checking each triangle and
deciding whether the region within the triangle is of uniform fractal dimension. If the

region within the triangle does not have uniform fractal dimension then the triangle is par-
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titioned into four equal sized triangles, as illustrated in Fig. 5.11b. If the triangle region is
already uniform then no further partitioning is required. This process is recursively
repeated with each triangle. A sample image tessellation of lena, shown in Fig. 5.12,

illustrates how an image can be subdivided using this triangle tessellation scheme.

we

ﬂba

G 20!
‘2&3!‘33 3

TR R A

LR Lo DL AN

vevw

90000

Fig. 5.12. Sample tessellation of lena with triangles.

Efficient encoding of the triangle partitioning is done by representing the partition-
ing as a quad-tree, that is, a tree structure where each node has four children nodes, with
each node representing one triangle. Only 1 bit is then required to determine whether a
specific triangle is a leaf node in the quad-tree or if the triangle is further partitioned with
four children triangles. A slightly more complicated scheme can be used where the trian-
gle is partitioned into unequal sized triangles. This approach can produce a more adaptive

matrix tessellation with fewer triangles depending on the layout of the fractal dimensions,
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but, would increase the bit rate since the sizes of the triangles in each partitioning would

somehow have to be represented (i.e. more than 1 bit).

With the fractal dimension matrix now tessellated with triangles, the next step
required for the fractal surface interpolation is to determine sets of points to interpolate
between. The tessellation in the fractal dimension matrix alone only gives uniform
regions of fractal complexity in each triangle. So, points must be chosen from the original
image so that the a fractal surface with the corresponding fractal dimension can be gener-
ated to interpolate between these points. The easiest approach to this requirement is to
encode the greyscale pixels that correspond to the comers of all of the triangles in the frac-
tal dimension matrix tessellation. Considering Fig. 5.6a, this is equivalent to setting the
three corners of the triangle to a height equal to the corresponding greyscale pixel values
from the original image. Hence, there are three points forming a triangular region with
which to perform the fractal surface interpolation. With the three interpolation points for
the triangle and the fractal dimension for the surface, the RMPD algorithm can be per-
formed to synthesize a surface that interpolates the three points. This fractal surface
should be perceptually better than if only a smooth surface was interpolated between the
three points. Doing this surface interpolation for the entire image will reconstruct an

approximation to the original image.

A data flow chart for the entire encoding and decoding phase of this FSSI tech-
nique is illustrated in Fig. 5.13. The process starts with the original image as input.
Localized fractal dimension measures are calculated for the image and in this case stored

as the Hurst exponent A * since this is what the RMPD from Sec. 5.2.2 uses (recall that
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the fractal dimensions can be related to A* through Eq. 3.78). The fractal dimension
matrix is then tessellated into uniform regions of fractality, with the inclusion of an extra
stopping criteria when a triangle partitioning reaches a desired resolution. The tessellation
information, Hurst exponent for each tessellating triangle, and interpolation points from
the corners of each tessellating triangle are then encoded into the output data stream. Fur-

ther lossless encoding can also be performed on the output data stream.

r
Encode Tessellate E
Calculate| ™ |mage |
& Local _\> Generate|
Dimension —==| Data o
|' Stream ~L:.._
__________________________________________ e
3E
Reconstructed! pecoder ————————1 [ . | ®
ecoder Tessellation L &
Image ' essellatl < :
. J : Information N %
: : 3
: Interpolation L
| Points * ;
" Fractal Surface ‘ Hurst !
! Interpolation Exponents | :
1

Fig. 5.13. Data flowchart of the first FSSI image compression/reconstruction scheme.

For the image reconstruction, the tessellation information, interpolation points, and
Hurst exponent are extracted from the data stream for each of the tessellating triangles.
The tessellation quad-tree binary decisions, encoded as 1 bit yes/no answers, are used to
determine the triangle layout in the fractal dimension matrix. To the triangles the interpo-

lation point intensities are overlaid at the corners of the triangles and the Hurst exponents
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associated back to the corresponding triangles. Using this decoded data stream, the
RMPD algorithm can be performed to synthesize the fractal surfaces between the interpo-

lation points to reconstruct the image.

5.4.2 FSSIImage Representation/Compression Technique 2

A second approach to performing the fractal surface interpolation, first proposed
by Dansereau and Kinsner [DaKi97], is presented in this section. This technique has
many similarities to the technique presented in Sec. 5.4.1, but, in addition the fractal sur-
face interpolation is superposed over a wavelet based approximation of the image, similar

to what was done with the curve superposition in Fig. 5.4 of Sec. 5.1.

The data flow for this second FSSI technique is illustrated in Fig. 5.14. The com-
pression, or encoding stage, starts by taking the input image and passing it through two
separate decomposition processes. The first decomposition process is to calculate the
local fractal dimensions within the image in the same manner as is done in Sec. 5.4.1. The
result is a two dimensional matrix containing local Hurst exponent A* measurements that
are later used in the FSSI reconstruction phase. This Hurst exponent matrix is passed
through a DWT, as described in Sec. 4.3.3. The discrete wavelet coefficients from this
transformation then have a hard threshold applied which zeroes out any wavelet coeffi-
cients with a magnitude smaller than a user chosen threshold value. This hard threshold of
the coefficients forms an approximation of the matrix in the form of the non-linear approx-
imation discussed for Eq. 4.12. The result is then efficiently encoded using an algorithm
developed for the DWT by Shapiro [Shap93] known as embedded zerotree coding (ZT),

which is discussed in more detail in Chapter 7. For now, just consider the zerotree coder
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to be an efficient method of representing discrete wavelet coefficients for progressive
transmission. Finally, the output of the zerotree coder is passed through a lossless entropy
coder to remove any further redundancy. In the experiments performed in Sec. 5.5.2 using
this FSSI technique, an adaptive arithmetic coder, as described by Witten, Neal and Cleary

[WiNC87], is used as this final stage of lossless entropy coding.

Input Image | Encoder Thresholdrl :
: ) |
Ay Calculate 7T !
Local Fractal—® | DWT[—# |
Dimension '
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®'Encoding : .
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: Decoder Fractal b 2
Reconstructed: Uniform Dimension . | |0
Image : Fractal Stream .
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' Lossless}; | |
_| Entropy |« |
Decoding|:
Fractal Surface !
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? M|=IDWT|= [ZT |= :
Downsampled:
Image N
Stream !

Fig. 5.14. Data flowchart of the second FSSI image compression/reconstruction
scheme with wavelet support.
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The second half of the encoding process is shown in the bottom branch of the
encoder stage. This stage of the encoding starts by downsampling the input image by per-
forming an M -point decimation (refer to Defn. 4.14) on all rows and columns of the
image. The level M of downsampling affects the compression ratio and reconstruction
quality of the image, and is chosen by the user. Similar to the Hurst exponent matrix, the
downsampled image is passed through a DWT, hard thresholded, zerotree encoded, and
then lossless entropy encoded using the adaptive arithmetic coder. The compression side

of the image encoding process is now complete.

Image reconstruction reverses this process and performs the FSSI as illustrated in
the bottom half of Fig. 5.14. The compressed data stream is decoded through the lossless
entropy decoder. Then the downsampled image components and the Hurst exponent com-
ponents are separated and each passed through the inverse zerotree (IZT) decoder and the
inverse discrete wavelet transform (IDWT). The downsampled image data is upsampled
(refer to Defn. 4.15) back to its original size. This upsampled image now contains the

required interpolation points for the fractal surface interpolation.

Regions of uniform fractal dimension in the Hurst exponent matrix are then identi-
fied. With the interpolation points and regions with uniform Hurst exponents identified,
fractal surface interpolation is then performed superposing the results on the approxima-
tion of the image that had been downsampled in the encoding phase. Effectively, as with
Fig. 5.4, the discrete wavelet approximation of the image is used as the overall path

desired for the surface and the Hurst exponents are used to add in extra fractal characteris-
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tics according to the original image. The reconstruction phase of the image is now com-

pleted.

5.4.3  Progressive Image Transmission with FSSI Techniques

The two FSSI techniques presented in Sec. 5.4.1 and Sec. 5.4.2 can easily be
adapted to allow for progressive image transmission as is described by Dansereau and
Kinsner [DaKi98a]. For the technique presented in Sec. 5.4.1, the quad-tree partitioning
into a triangle tessellation can inherently be sent progressively because of the partition
process. To make the rest of the algorithm progressive, the interpolation points at the cor-
ners of triangles must be transmitted as the partitioning occurs as well as the Hurst expo-
nent for each triangle. To improve encoding efficiency, the full Hurst exponent does not
need to be sent, but, instead the change in the Hurst exponent. That is, the difference
between a child triangle’s Hurst exponent and the parent triangle’s Hurst exponent

expressed as

AH* = H iy —Hparens (5.8)
is transmitted instead of H ;.

For the FSSI technique presented in Sec. 5.4.2, the zerotree coding technique

developed by Shapiro [Shap93] is progressive by design. Therefore, reconstruction of the

image can continuously be done as more and more data is received at the decoding stage.
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5.5 Experimental Results with the FSSI Techniques

A number of experiments were performed with the FSSI techniques described in
Sec. 5.4 to determine any important properties of these techniques. The following two

subsections describe these experiments and present results from the experiments.

5.5.1 Experimental Results for FSSI Technique 1

Three images, lena, peppers and baboon, as shown in Appendix A, were used to
test the first FSSI image compression scheme. These images are 512 x 512 8-bit grey-
scale images. To start, a number of test image compressions were performed to check the
basic perceptual quality of the image reconstructions. To illustrate the quality of the
image reconstructions, a sample of these results for lena are provided in Fig. 5.15. Shown
are reconstructions of the lena image with 25.34 dB PSNR at 0.450 bpp, 27.09 dB PSNR
at 0.665 bpp, and 29.74 dB at 1.303 bpp. These samples show that some triangle and
smudging artifacts appear at smaller PSNR values in the images but that none of the seri-

ous surface creasing as demonstrated in Fig. 5.8a occurs.

- 147 -



Progressive [mage Transmission Ch. 5: Fractal Surface Segmentation and Interpolation

(c) 27.09 dB PSNR at 0.665 bpp (d) 29.74 dB PSNR at 1.303 bpp

Fig. 5.15. Sample image reconstructions of lena. (a) original image
(b) 25.34 dB PSNR at 0.450 bpp, (c) 27.09 dB PSNR at 0.665 bpp, and
(d) 29.74 dB PSNR at 1.303 bpp.
With the basic image reconstruction verified for the FSSI image compression
scheme, a number of image compressions and reconstructions were performed on the test

images to evaluate the compression performance. These experiments were done by vary-

ing the sensitivity of the image tessellation to the following: (1) the relative uniformity of
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local fractal dimensions calculations and (2) the minimum allowable triangle size. Both of
these are factors in the tessellation of an image being compressed.. The relative uniformity
of local fractal dimensions is important since some criteria needs to be in place to deter-
mine whether a triangle needs to be further subdivided. This decision can be made by
ensuring that all fractal dimensions in a region fall within a certain small range of values.
The minimum allowable triangle size affects the resolution in the final image compression

and hence will affect the bit rate for the compression.

Results of the peak signal-to-noise ratio versus bits per pixel for these experiments
are given in Fig. 5.16. Lines have been fitted to the data points to show the trend in PSNR
as the rate in bpp increases. As expected, for each of the test images the PSNR improves
as the bpp increases. From the three plots, lena and peppers have similar PSNR values
over most of the range of bpp values unlike the plot for baboors which has much lower
PSNR values than lena and peppers. It is also noted that below approximately the 0.3
bpp mark, the PSNR drops significantly for all three images using this FSSI technique.
This PSNR drop is primarily due to there not being enough data to reconstruct much of the

image.
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Fig. 5.16. Plots of PSNR vs. bpp experimental results with
FSSI technique 1 on the images
(a) lena, (b) peppers, and (c) baboon.
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The baboon image results in PSNR measures consistently 5-6 dB below that of
lena and peppers. This difference can be explained by the relative fractal complexity of
the baboon’s hair in the image (refer to Appendix A). As indicated in Chapter 3,
smoother objects will typically have a smaller fractal dimension where rougher objects
will typically have a higher fractal dimension. The baboon’s hair in the image is much
closer to a white noise type surface then say a smoother black noise type surface. This
observation leads to the question as to why the PSNR for the baboon image is consis-
tently lower then that of lena and peppers, which are composed much more of smoother
surfaces. Is fractal surface interpolation limited only to smoother surfaces versus the
rougher surfaces as in baboon’s hair? Considering that the FSSI scheme should be able
to statistically model the baboon’s hair just as well as lena and peppers from a fractal

point of view, this drop in PSNR image quality seems out of place.

The problem lies in what PSNR is actually calculating. Consider the equation for
PSNR in Eq. 2.11. It should be realized that PSNR effectively measures the pixel energy
differences throughout the image reconstruction on a pixel by pixel basis. This factor is
key to understanding why rougher surfaces like the baboon’s hair have a much lower
PSNR using this FSSI algorithm. The fractal surface interpolation attempts to synthesis a
surface between the interpolation points with the same fractal characteristics as in the

original image. The hope is that this surface will be perceptually similar to the original.
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(a) Original image of Lena (b) Image of Lena shifted by one pixel
PSNR = = PSNR = 25.4385 dB

Fig. 5.17. (a) Original image of Lena and (b) image of Lena translated
by one pixel diagonally down to the right.

An important realization is that this interpolation does not attempt to make specific
pixels a specific value. In a rough surface, one pixel may be very bright while the neigh-
bouring pixel may be very dark. The fractal surface interpolation will recreate the rough
surface, but, having specific pixels as bright or dark is not guaranteed even if the percep-
tual nature of the surface is similar to the original. In other words, the fBm generation has
a tendency to create perceptually similar surfaces but not necessarily exact pixel intensi-
ties. Therefore, in terms of the FSSI technique developed, the PSNR measure is not suit-
able as an image quality measure. This statement can be emphasized by considering what
happens with the PSNR measure when translation of the image occurs, which is in essence
what occurs with the FSSI technique on a local scale. For instance, consider the two
images in Fig. 5.17 which are the original image of Lena and the image of Lena shifted by

one pixel diagonally down and to the right. Since there is no noise for the original image,
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the PSNR is infinite. For the image that has been translated by one pixel, the PSNR is
25.4385 dB. From the general rule of thumb use of PSNR, this PSNR suggests an image
that is of perceptually poor quality compared to the original image. This is obviously not
the true when the perceptual quality of the two images are compared. From the realization
that PSNR is an unreliable indicator of image quality for the FSSI technique, Chapter 6

explores other measures more suitable for compression techniques such as FSSI.

As an additional experiment, the Shannon entropy (Eq. 3.19) of the output data
streams was measured and compared with the compression rates obtained. Depending on
the data compression scheme used, an average boost of 1:1.25-1:1.40 extra compression
over the original output data stream would be obtained. This would bring the bit rate

down from, for example, 0.5 bpp to 0.35 bpp.
5.5.2  Experimental Results for FSSI Image Compression Technique 2

A number of experiments were performed with the second FSSI image compres-
sion scheme on the 512x512 8-bit greyscale image of lena, which is shown in
Appendix A. Of interest is the compression rate in bpp versus the reconstruction PSNR,

as the input parameters of the compression are changed.
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(c) 26.639 dB PSNR at 0.5497 bpp  (d) 26.9889 dB PSNR at 0.7737 bpp

Fig. 5.18. Sample image reconstructions with FSSI technique 2 on image of lena.
(a) original, (b) 26.033 dB PSNR at 0.2528 bpp,
(c) 26.639 dB PSNR at 0.5497 bpp, and (d) 26.9889 dB PSNR at 0.7737 bpp.
To demonstrate the image reconstruction with this FSSI technique, Fig. 5.18 pre-

sents three different image reconstructions of lena at different bits per pixel. The first

reconstruction shown in Fig. 5.18b is lena at 0.2528 bpp with a PSNR of 26.033 dB. This
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is one of the higher compression rates achieved where the image is still recognizable. The
textures are smudged throughout the image and some artifacts arise near edges at region
borders where the Hurst exponent is different. The second image shown in Fig. 5.18c is
lena at 0.5497 bpp with a PSNR of 26.639 dB. This image has fewer artifacts compared
to Fig. 5.18b since some extra textures are visible such as in the hat and the edge of the
scarf around the base of the hat. Also, some of the artifacts from Fig. 5.18b have disap-
peared such as those along the white bar running down the left side of the image. More
definition exists in the feathers and the curved texture of the shoulder is sharper. Finally,
Fig. 5.18d shows lena at 0.7737 bpp with a PSNR of 26.9889 dB. Again, the textures
improve while some of the artifacts disappear. In this case a gain of less than 1 dB of
PSNR is obtained by tripling the bit rate. This result shows that this technique in its cur-
rent state still requires careful selection of parameters to get good image reconstructions at

a low bit rate.

Since a large increase in the number of bits required versus the increase in PSNR is
noticed with the sample reconstructions in Fig. 5.18, experiments were designed to test
how the different input parameters affect the image reconstructions. For the experimenta-
tion, there are three parameters that affect image compression. The first parameter is the
level the input image is downsampled before being passed through the DWT. The two
other parameters are the threshold values used at both zerotree coding stages. Along with
these parameters at the compression stage, there is also one hidden reconstruction parame-
ter for the region growing process. This variable controls the region growing process for

deciding what is considered a uniform region in the Hurst exponent matrix.
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Fig. 5.19. Experimental results for FSSI technique 2 with
Hurst exponent quantization = (a) 0.05, (b) 0.1, and (c) 0.2.
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The main set of experimental results are shown in the three plots in Fig. 5.19.
These plots show the PSNR of the image reconstruction versus the compression rate in
bpp. Focusing on Fig. 5.19a, it is evident that the plot has three separate data regions.
These regions are labelled t0, ¢1, and $2 and indicate the level of downsampling/upsam-
pling done with the input image at the compression and reconstruction phases. Each of
these regions contain seven curves which represent, from left to right, decreasing zerotree
threshold values for the downsampled image (64 to 1 by powers of 2). Within each curve,
from the bottom of the curve to the top of the curve, are the values for decreasing zerotree
threshold values for the Hurst exponent matrix (64 to 1 by powers of 2). Each of the three
plots in Fig. 5.19 have these characteristics except that the Hurst exponent quantization
level at the region growing stage during reconstruction is 0.05, 0.1, and 0.2 for Fig. 5.19a,
Fig. 5.19b, and Fig. 5.19c, respectively. This Hurst exponent quantization dictates the
range of Hurst exponent values to pass as a uniform region of fractal dimension measure-

ments.

As the plots in Fig. 5.19 show, there is a 3-6 dB difference in PSNR going from no
downsampling, $0, to a dyadic downsampling, ¢1, and 3-4 dB difference going from a
dyadic downsampling, ¢ 1, to a quadratic downsampling, $2. This variation is understand-
able since downsampling the image removes information so the reconstruction quality will

degrade.

When the zerotree threshold for the downsampled image is decreased, the charac-
teristic curve moves up and to the right (i.e. quality gets better, but the coding rate

increases). Also, when the zerotree threshold for the Hurst exponent matrix is decreased,
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the quality of the reconstruction increases, while the rate increases. These results are
expected since higher resolutions obtained from the zerotree coders would improve the
image reconstructions while also increasing the number of bits required. An interesting
point to note is that there is a significant knee in each of these curves. This knee is a tran-
sition point between the two main processes in the reconstruction of the image. Below
this knee point the major contributing factor in the reconstruction quality is the Hurst
exponent matrix. Above this knee point the region growing quantization level in the Hurst
exponent matrix starts to work against the improved accuracy in the downsampled image.
This influence causes the reconstruction quality to begin to plateau. Therefore, the opti-
mal operating point for the best reconstruction results versus compression rate is at the

knee points in these curves.

Another interesting observation from the three plots in Fig. 5.19 is that the PSNR
value decreases for all of the curves as the quantization range for the Hurst exponent
matrix increases. Again this is expected since a coarser Hurst exponent representation
results in a less defined fractal surface reconstruction. A balance must be achieved to keep
the quantization level high enough so that the enhanced texture benefits from FSSI are
realized, but, not so high as to lose the detail within the image through the random process
of FSSI. Additionally, the quantization must not be so low as to rely heavily on the down-

sampled image for interpolation points.
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Fig. 5.20. Knee points for different Hurst exponent quantization levels and
downsampling levels for FSSI technique 2.

The plot in Fig. 5.20 gives a more clear relationship between the optimal operation
point versus Hurst exponent quantization. In this figure, the knee points for each of the
curves from Fig. 5.20 have been extracted and plotted, forming curves with other knee
points having the same Hurst exponent quantization (0.05, 0.1, and 0.2). These curves are
grouped according to the downsampling/upsampling level (40, t1, and $2) used in the
experiment. It is again clear that the quantization level of the Hurst exponent matrix plays
an important role since the smaller the quantization, the better the reconstruction. It
should also be noted that there is actually a slight decrease in reconstruction quality for
downsampling levels ¢1 and #2 resulting in a slight hump in the curve. This feature is also

apparent in Fig. 5.19 for these downsampling levels. These humps are likely due to an
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optimal point of operation for the implemented FSSSI technique. The implemented FSSI
operates with a minimum resolution area for the starfaces it generates, primarily to avoid

triangles that are long and thin.

5.6 Summary

A main focus of this chapter is the presentattion of a new form of image compres-
sion and progressive image transmission based on FSSI done with fractional Brownian
motion. Two progressive image transmission FSSI techniques were presented with some
experimental results looking at the PSNR versus commpression rate. One important obser-
vation made is that the PSNR metric is a poor meassure when this type of random surface
generation is performed to reconstruct an image. This issue is considered further in the
following chapter which develops new image quality measures based on multifractal com-
plexity measures that do not have some of the shorstcomings of the PSNR measure. The
presented FSSI techniques are unique since imagess are decomposed and represented by
fractional noise generated by fBm. This approach is different from the majority of image
compression techniques since here an image is comsidered as a collection of fractional
noises, instead of the normal view where an image is a pure signal that is possibly contam-

inated by noise.
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CHAPTER VI

MULTIFRACTAL MEASURES OF PROGRESSIVE IMAGE
TRANSMISSION SCHEMES

An important concern to those researching lossy image compression and progres-
sive Image transmission techniques is how to evaluate the quality of the image reconstruc-
tions. Unfortunately, with the lack of a precise model for human perception, the only
current arguably accurate approach to evaluating image quality is through a mean opinion
score (MOS) perceptual quality rating of images. This MOS is done by having a group of
human observers rate the perceptual quality of test images, with the results statistically
analyzed to get a population average. Since a human observer is the final intended recipi-
ent for the class of images considered in this thesis, the MOS has, arguably, the final say
since the subjective perceptual quality of an imperfect image is otherwise difficult to char-
acterize in an objective manner. The primary problem with the MOS is that it is time con-
suming to set up the experiments, find people to participate in rating the images, and then
compile the results. Actually, few perceptual studies have been done for progressive
image transmission specifically. One study that was conducted to evaluate the perceptual
quality of progressive image transmissions was done by Cen et al. [CPSC97] to evaluate
the differences between progressive JPEG [JPEG99] and SPIHT [SaPe96], as well as
between embedded zerotree wavelet (EZW) coding [Shap93] and SPIHT [SaPe96]. This
study had 25 observers view 118 images in a controlled environment and took roughly 45
minutes for each observer. The setup of such an experiment is time consuming and then

requires the statistical analysis of the results to draw any conclusions. Obviously, the
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MOS is not feasible for adaptive image compression schemes where the selection of
image compression and progressive image transmission parameters are chosen and
adapted “on the fly” for each image. This chapter attempts to develop a new objective

measure based on multifractal complexity that can be used in such scenarios.

6.1 Introduction

The most commonly used objective measure in the image compression literature
for evaluating image reconstruction quality is the peak signal-to-noise ratio distortion
measure [CPSC97] as expressed in Eq. 2.10 (or more specifically Eq.2.11 for 8 bpp
images). While PSNR and other similar mean squared error distortion metrics are useful,
they are limited in terms of the psychovisual information measured. Considering Eq. 2.10
closer, PSNR is limited to calculating energy differences between corresponding pairs of
pixels in the original and reconstructed images. These energy differences are averaged
and then formed into a ratio with the largest possible pixel intensity acting as a normaliz-

ing factor. The PSNR is limited as a psychovisual measure since

s

only energy differences between individual reconstructed pixels are
considered

« local and global neighbourhoods of pixel trends are not considered
» the perceptual nature of edges is ignored

= the perceptual nature of textures is completely ignored

Attempts to model the human visual system (HVS) a little closer have resulted in

more effective quantitative measures. Watson introduced the Cortex transform [Wats87]
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as a means of filtering the signal which can then be applied for JND evaluations for image
evaluation. Daly’s visual difference predictor [Daly93], and Lubin’s work on the human
vision discrimination model [Lubi93] extend on some of these ideas for JND measuring of
image quality. Lu et al. [LuAE95] introduced the picture quality scale (PQS) as another
attempt at modeling the HVS. Work by Jayant et. al consider techniques for signal com-

pression based on human perception [JaSJ93] and the HVS for images.

The focus of this chapter is to develop a new quality measure that can analyze
image content from global, regional, local, and structural viewpoints through multifractal
complexity measures. If this can be done, then this approach will yield a subjective mea-

sure that correlates well with psychovisual perception as it relates to MOS experiments.

In the development of an image quality measure, multifractal dimension measures
will be considered as the primary approach, since multifractals can characterize the com-
plexity within a signal, such as an image. Multifractal dimension measures perform this
characterization at multiple scales/resolutions, so, global, regional, and local neighbour-
hoods of pixels are considered. With these features, multifractals will allow for an analy-
sis of textures in an image as well. The development of these image quality measures

using multifractal complexity measures is presented in the following section.

6.2 Multifractal Dimension Complexity Measures

as Progressive Image Transmission Quality Measures

Through the description and discussion of multifractal dimension measures in

Chapter 3, a number of characteristic features should be noticed about these measures that
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lead to a new class of objective image evaluation measures. This section considers some
of the characteristics of multifractals in the design of image complexity measures as well
as performs experiments to determine the feasibility of multifractals as an image quality
measure. This work extends some of the research by Ferens and Kinsner [FeKi95],
[Fere95] on feature extraction from signals using multifractals where, instead, character-
ization of the entire image is done to form the image complexity measure. In some sense,
the work in this thesis also extends the work in image texture segmentation and classifica-
tion with the fractal measures of Chaudhuri and Sarkar [ChSa95], [SaCh92] and the
pseudo-multifractal measure of Kaplan [Kapl99]. These techniques can be considered as

preliminary to an objective measure using multifractals.

Under consideration in this thesis for image complexity measures is the Rényi gen-
eralized entropy, the Rényi dimension spectrum, the Mandelbrot spectrum, and finally a
generalization of the Kullback-Leibler distance and Rényi information forming a new
multifractal measure which will be referred to as the relative Rényi dimension spectrum.
The formulation of these measures are presented in Sec. 6.3, Sec. 6.4, Sec. 6.5, and

Sec. 6.6, respectively.

When designing an image quality measure, one approach is to develop a measure
that characterizes image content, apply this measure to both the original and approximated
images, and then compare the results. A similar, but not identical, approach is to find the
distortion or difference between the approximated and original images, forming a residual
image. Then the image quality measure is applied to this residual image to determine the

level of distortion between the two images. The MSE, SNR, and PSNR metrics from
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Sec. 2.1.5 are examples of distortion measures since these metrics find the residual
between the reconstructed image and the original image. For these three metrics, the
energy difference between the two images is found and aggregated on a pixel by pixel
basis. A final approach to developing an image quality measure is to form a relative mea-
sure that calculates the image quality using a form of ratio or proportional measure
between the reconstructed and original images. This calculation may be done, for
instance, by forming a rational expression between the reconstructed image and the origi-
nal image. All of these approaches are investigated to various degrees in the multifractal

techniques presented in the rest of this chapter.

6.3 Rényi Generalized Entropy as a Progressive

Image Transmission Quality Measure

This section investigates using the Rényi generalized entropy as an objective mea-
sure for use in progressive image transmission techniques. Some of this work was initially
presented by Dansereau and Kinsner [DaKi99a]. The Rényi generalized entropy A q(X) ,
as given in Defn. 3.4 with Eq. 3.23, is a generalization of Shannon entropy evaluated over
the moment order g of a probability distribution function p(x). It is known that Shannon
entropy H(X), as given in Defn. 3.3, is a measure of the average uncertainty in the ran-
dom variable X that forms the probability distribution p(x) [CoTh91]. From this descrip-
tion, the Rényi generalized entropy measures the average uncertainty in the random

variable X that forms p(x), but over the different orders ¢ .
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The uncertainty or “randomness” in a symbol set { X'} can therefore be measured
with the Rényi generalized entropy. This method is the first approach investigated as an
objective measure to characterize the level of uncertainty within the image representation.
This characterization gives the beginning of a complexity measure for image quality.
From the image, an objective measure will be developed by forming a probability distribu-

tion p(x) using the pixel values in the image as the symbols in the sequence {X}.

To test out the properties of this approach to measuring image quality with the
Rényi generalized entropy, a number of experiments were performed using a series of
eight snapshots from a progressive image transmission. These images are 512 x 512 8-bit
greyscale images and are formed from the two original images of lena and urban, as
given in Appendix A. The original images and the first five progressive snapshots for each
of these images are displayed in Fig. 6.1 and Fig. 6.2 for lena and urban, respectively.
The other three snapshots are not shown since the differences from the original image are

nearly imperceptible in the printed form of this thesis.
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(e) 11,018 bytes at 4.203% (4) (f) Original image
262,144 bytes (100%)

Fig. 6.1. Progressive transmission of lena. (a) 344 bytes at 0.131%,
(b) 911 bytes at 0.348%, (c) 2,300 bytes at 0.877%, (d) 5,068 bytes at 1.933%,
(e) 11,018 bytes at 4.203%, and (f) original image (100%) with 262,144 bytes.
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(e) 12,080 bytes at 4.608% (4) (f) Original image
262,144 bytes (100%)

Fig. 6.2. Progressive transmission of urban. (a) 365 bytes at 0.139%,
(b) 886 bytes at 0.338%, (c) 2,421 bytes at 0.924%, (d) 5,552 bytes at 2.118%,
(e) 12,080 bytes at 4.608%, and (f) original image (100%) with 262,144 bytes.
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These two images are chosen for the experiments since they compress relatively
little from an information theoretic viewpoint. Lena and urban have Shannon entropies
of 7.45 bpp and 7.65 bpp, respectively, which limits their first-order lossless compression
to only 1.074:1 and 1.046:1, respectively. Hence, these images can roughly be classified
as tough to compress. These images, therefore, serve as good examples of difficult images
to compress that would benefit from a progressive form of compression, transmission, and
reconstruction. The progressive image snapshots in Fig. 6.1 and Fig. 6.2 were generated
using the embedded zero-tree coding algorithm of Shapiro [Shap93] with a final lossless
compression stage using Witten, Neal, and Cleary’s adaptive arithmetic coding [WiINC87].
At this point the exact workings of embedded zero-tree coding and adaptive arithmetic
coding are not needed since the current goal is to develop objective measures using this

progression of images solely as sample test images.

The first set of experiments consists of calculating the Rényi generalized entropy
on the original image as well as each of the image snapshots extracted from the progres-
sive wavelet image transmission. This approach falls in line with an objective measure
applied separately on the reconstructed and original images as discussed in Sec. 6.2. The
main difficulty to answer when using the Rényi generalized entropy A ¢(X) is how exactly
to form the probability distribution p(x). The approach tried is to form a histogram for
the image and normalize it to form p(x). Thus, p(x) is formed by calculating the relative

frequency for each pixel greyscale value in the image.

The results of the Rényi generalized entropy A 4(X) measures using this p(x) for-

mulation are plotted for iena and urban in Fig. 6.3a and Fig. 6.3b, respectively. Plotted in
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Fig. 6.3 is the Rényi generalized entropy H q(X) versus moment order g € [-20.0, 20.0]
for the original images and each of the eight progressive image snapshots. It should be
noted from the definition of H q(X) with Eq. 3.23 that A q(X) is a continuous function in
q . Therefore, the plots in Fig. 6.3 are continuous. Also, since the pixel values are inte-
gral, the only errors in this measurement are numerical round-off errors due to double

floating point precision math, which are insignificant for these plots.

An important observation about the plots in Fig. 6.3 is that when ¢ = 1 then
H,_ (X) = 7.45 bpp for the original lena image and H, g=1(X) = 7.65 bpp for the
original urban image. These are precisely the values calculated for Shannon entropy as is
expected. This agreement helps verify that the H 4(X) calculations are correct in light of
Lemma 3.1. It is also observed that all of the curves are monotonically non-increasing as

Lemma 3.4 requires.

From the Rényi generalized entropy plot for lena in Fig. 6.3.a, it is apparent that
there is no significant changes in H_(X) across the eight reconstructed images compared
to the original image during the progressive transmission. This observation likely means
that the histograms of the different image reconstructions do not differ greatly from the
histogram of the original image. Unfortunately, this property does not assure that the his-
tograms of the reconstructed image matches that of the original image. There can be a
shift in the entire histogram for a reconstructed image that would result in the same

H,(X) versus g curves since p(x) would effectively be the same from the viewpoint of

H(X).
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Fig. 6.3. Rényi generalized entropy on the progressive image reconstructions.
(a) lena and (b) urban.

-7 -



Progressive Image Transmission Ch. 6: Multifractal Measures

This problem of a shifted histogram occurs with the reconstructions of the urban
image. As Fig. 6.3b shows, the H 4(X) versus g curves for the reconstructed images are
not well aligned with the H_(X) versus g curve for the original image. Considering Fig.
6.3.b, when g <0 it is evident that the progressive model of the image does not follow the
original urban image’s H q(X) versus g curve as closely as it did for lena in Fig. 6.3a.
For the original image of urban, the curve when g <0 is well below that for any of the
reconstructed versions of the urban image. An increase in the H q(X) versus g curve
such as this for the reconstructed images suggests that the probability distributions are flat-
tened for the reconstructions, or the probability distributions for the original and recon-
structed images are not lining up as well, or that the probability distributions for the
original and reconstructed images are quite different. This difference is not directly verifi-
able with only the Rényi generalized entropy calculations, but, when put in conjunction
with image histogram analysis and considering the perceptual quality of the images, then
these three scenarios can be checked. A histogram of the original image of urban along
with the last five image reconstruction steps from the progressive image transmission is
produced and is plotted in Fig. 6.4. The histogram for the original image of urban is
stretched and shifted to the right compared with the histograms of the other reconstructed
irmages. This discrepancy confirms that this progressive image transmission model for
approximating images does not work as well as desired for the image of urban as it
appears to work for the image of lena. It also indicates that the lack of clustering of the
curves in Fig. 6.3b does not result from a problem with the Rényi generalized entropy as

an objective measure,
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Fig. 6.4. Histogram for the image of urban and five approximations.

The next set of experiments is to perform the Rényi generalized entropy analysis
on residual images formed from reconstructed and original images as is suggested in
Sec. 6.2. For these experiments, the absolute differences on a pixel by pixel basis between
the progressively reconstructed images and the original image are found. The Rényi gen-
eralized entropy H q(X) is then computed on these residual images. The probability dis-
tribution p(x) is again set as before from the normalized histogram, but now on the
residual image. The H 4(X) experimental results using these residual images for the lena

and urban images are plotted in Fig. 6.5a and Fig. 6.5b, respectively.
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The plots in Fig. 6.5 show a larger spread in the A 4(X) versus g curves for this
residual approach compared with those in Fig. 6.3. An interesting observation for the
curves in Fig. 6.5a and Fig. 6.5b is that for 4 >0 the curves are in descending order
according to the respective progressive reconstructed image. This observation can be used
as a criterion for an objective measure for progressive image transmission since it would
generally occur as the range of values in the residual image decreases so as to decrease [y|
from Theorem 3.4. This decrease would then limit the maximum value of H q(X) as the
residual image has fewer unique values. It must be noted that this observed decrease in
H He9) for Fig. 6.5a and Fig. 6.5b is not followed for lena or urban when g < 0. In this
case, the A q(X) curves cross each other at different values of ¢. This fact may also be

useful in analyzing the quality of a progressive image transmission.
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Fig. 6.5. Rényi generalized entropy on residual images from the progressively recon-
structed images and the original image for (a) lena and (b) urban.
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The last set of experiments using the Rényi generalized entropy is similar to the
previous, but, instead the residuals are calculated between one snapshot of the approxi-
mated image to the next successive snapshot in the progression of the approximated
image. This procedure allows the image reconstruction to be viewed from the perspective
of a stage to stage addition of image information throughout the progressive image trans-
mission. The same Rényi generalized entropy calculations were performed with these
new residual images for the lena and urban approximations, and the results are plotted in

Fig. 6.6a and Fig. 6.6b, respectively.

It is observed from the two plots in Fig. 6.6 that the A 4(X) versus g curves corre-
sponding to the earlier progressive image snapshots tend to cluster together. Also, as the
progression continues, the residual images tend to decrease the resulting A q(X) value.
The clustering, or higher values of H_(X), is mostly due to the greater number of unique
values in the residual image resulting in a larger |x|. Again, according to Theorem 3.4
this range allows for a high value of A _(X). The clustering at the beginning of the pro-
gression also indicates that the improvements to the image reconstructions produce similar
residual images from step to step. As the progression continues, the refinement turns out
to be more fine tuning as the number of unique values in the residuals decreases, causing

the possible maximum of H q(X) to decrease.
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Fig. 6.6. Rényi generalized entropy on residual images between successive
image reconstructions for (a) lena and (b) urban.
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From these three sets of experiments, it is concluded that the Rényi generalized
entropy contains some indicators as to the progression in quality for the image transmis-
sions. The results shown, unfortunately, do not give an obvious lead into developing an
encompassing objective measwre, since convergence or movement of the curves is not
consistent on either side of ¢ = 0. The main limitation with using the Rényi generalized
entropy in this manner is that the images are analyzed only from the viewpoint of a nor-
malized histogram. Many comepletely different images can form the same normalized his-
togram. So, the image quality ¥nformation retained within the normalized histogram is too
limited and not really enough foor the Rényi generalized entropy to form a proper model of
the image approximations. Also, the histogram approach eliminates any pixel neighbour-
hood or spatial correlations, which is a key factor in the human visual system. Therefore,
while some interesting results are obtained with the Rényi generalized entropy, it can only
serve as an indicator to some image quality characteristics and, hence, has limited use as a

complete image quality measure for progressive image transmission.

The next subsection continues the experiments, now with the Rényi dimension
spectrum which overcomes soane of the limitations of the Rényi generalized entropy.
These benefits are achieved by l-ooking at the image at multiple scales and with probability

distributions suited more to measuring the image texture complexity.
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6.4 Rényi Dimension Spectrum as a Progressive

Image Transmission Quality Measure

This section investigates how the Rényi dimension spectrum D, (X) can be used
as a progressive image transmission quality measure and follows some of the initial work
done by Dansereau and Kinsner [DaKi98b], [DaKi99b]. The Rényi dimension spectrum
D (X), as given with Eq.3.45 in Defn. 3.5, affords many analytical advantages over
those of the Rényi generalized entropy alone. As is described in Sec. 3.3.4, the Rényi
dimension spectrum is a multifractal measure that measures the fractality of an object
P(x) resolved at scale s at specified orders of g. For each order g, the fractality of the
object at that scale is measured and the critical exponent D, is found satisfying Eq. 3.44.
Therefore, the rate of change in the object’s complexity at different scales is measured.
This idea can be applied as a measure of the complexity within an object such as an image
to determine the image’s complexity over different scales. This concept is different from
the Rényi generalized entropy H q(X) since, instead of only local calculations within the
image, the measurement is done in a multiresolution fashion so that local, neighbourhood,
and global measurements of the image are all performed, resulting in the final value for
Dq(X) . In addition, varying the order ¢ in the D q(X) calculation changes the extent of
the contribution of different inhomogeneous fractal complexities within the image, as dis-
cussed in Sec. 3.3.4. Using these characteristics, this section addresses the use of the

Rényi dimension spectrum D 4(X) as a progressive image transmission quality measure.

The first issue to address is how the probability distribution p (x) in Eq. 3.45 for

D q(X) is calculated for an image over the different scales s. In the case of the Rényi gen-
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eralized entropy H q(X) from Sec. 6.3, the probabilities p(x) are formed from the nor-
malized histogram of the image. This normalized histogram does not readily incorporate
the desired property of measuring the image over multiple scales so that the critical expo-
nent D, can be determined over the range of scales. For this section, the probability dis-
tribution p (x) at scale s is calculated by summing the greyscale intensity values in a
particular vel as a proportion of all greyscale intensity values in the image as follows

2 (pixel(i) + 1)

() = = 6.1)
b Y (pixel(i) + 1) (
ie VB

where pixel(?) is a pixel in vel B, of the image covering and B is the set of all vels. Note
that the summations in Eq. 6.1 include the extra term of 1 to bring the greyscale range of
an n -bit unsigned integer pixel depth from [0, 27— 1] to [1, 2”] or in the case of the 8-bit
greyscale images used in this thesis from [0, 255] to [1, 256]. This addition is done to
ensure that no vel results in a probability of p (x) = 0. While there is no mathematical
reason that p_(x) cannot be zero, it is useful to think of the multifractal measure being
applied to a surface in a three dimensional space (recall the surface projection from
Fig. 5.10b). If p(x) = O is allowed then the surface can be thought of as having holes

where p (x) is zero. The addition of 1 to each greyscale pixel value ensures that no holes
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exist in the surface. For ¢ = 0, having no holes in the surface resuits in the Rényi dimen-

sion spectrum being

3 P2\ > !

Iog e log XEX
pIPXE) Y py(x)
Xe€ X, € X,

D,_y,(X) = lim = lim =2 6.2)

7 PR o (1) soe (1)

85 Bs
since the rate of growth of the number of vels is 4 times the rate of growth of the scale, and
hence 2 times when the logarithms are taken, such as with measuring the square in
Fig. 3.6. If holes are allowed in the surface, then Dq = o(X) would be less than 2 and

would make the objective measure a harder to interpret in the event of p (x) = 0.

The experiments to follow are performed on the progressive snapshots of the
images of lena and urban as described in Sec. 6.3. The first set of experiments is to cal-
culate the Rényi dimension spectrum D 40 for g € [-20.0, 20.0] directly on the pro-
gressive image reconstructions of the two test images. These results of applying Dq(X)
on the original image and eight progressive reconstructed images are plotted in Fig. 6.7a

and Fig. 6.7b for lena and urban, respectively.
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Fig. 6.7. Rényi dimension spectrum experimental results at progressive
steps for the image of (a) lena and (b) urban.
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Looking at the results for lena in Fig. 6.7.a, it is noticed that there is a larger
spread among the D, (X) curves for g < 0. This variation suggests that this particular
progressive image transmission is not as representative of the multifractal complexity in
the original image at the earlier stages of the transmission. It is interesting to notice that as
the image transmission progresses, the D q(X) versus g curves do converge to the D 7 X
versus g curve of the original image. This result is reasonable since as the progressive
image transmission occurs, the reproductions of the image improve. Therefore, the mea-
sure clearly indicates how the complexity within the image is represented better as the

transmission occurs.

Looking at the results for the image of urban in Fig. 6.7b, it is noticed that the
Dq(X) versus g curves are clustered together. This clustering means, from a multifractal
perspective, that the progressive reproductions of the image during transmission have sim-
ilar complexity. This result follows the goal of maintaining that same multifractal com-
plexity throughout the image reconstruction. Unfortunately, from an objective measure
viewpoint, Fig. 6.7b does not offer a view into the improvement in quality of the image

reconstructions.
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Fig. 6.8. Rényi dimension spectrum calculations on residuals of successive images in the
progressive image transmission for the image of (a) lena and (b) urban.
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The next set of experiments conducted investigates what type of complexity char-
acteristic is present in the absolute residual images between successive image reconstruc-
tions. This calculation is done for successive image reproductions with both lena and
urban using the Rényi dimension spectrum Dq(X) , and the results are plotted in Fig. 6.8a
and Fig. 6.8b, respectively. The most important point to notice about both plots in Fig. 6.8
is that as the progressive image transmission occurs, the D o(X) versus g curves for the
residual images become flatter. This flattening of the Dq(X) versus g means there is a
reduction in the multifractal complexity between successive reconstructed images, since
the curve approaches the topological dimension of 2. A reduction in the multifractal com-
plexity between successive reconstructed images means that there are fewer different fea-
tures between successive reconstructed images. Hence, the overall image quality
improves as more data is reconstructed into the image. These results give a first glimpse
into what could be used as an objective measure, where the goal is to flatten out the
Dq(X) versus g curve to the topological dimension of 2 as quickly as possible for the

residual images.

When considering what is desired, an optimal progressive image transmission
would transmit the main multifractal complexity within the image very early in the trans-
mission process. Therefore, the expected result would be that the D q(X) Versus g curves
in the residual images would flatten as more image information is incorporated into the
image reconstruction. This flattening of the D ¢(X) versus g means that D__(X) and
D_(X) in the residual images are converging as the progressive image transmission con-
tinues and hence using Lemma 3.5 and Lemma 3.6, the probability range for sup(p.(x))

and inf(p (x)) is decreasing. This phenomenon is witnessed in both plots in Fig. 6.8 for
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the images lena and urban. This result suggests not only that the Rényi dimension spec-
trum D (X) can be used as an objective measure by following the rate at which the
D,(X) versus g curves flatten, but, also the rate at which D__ (X) and D_(X) converge

versus the image data rate in the progressive transmission.

With the Rényi dimension spectrum D (X) as a promising objective measure, the
question now is how to encapsulate the D, (X) versus g curves into a single value. This
single value will help indicate the image quality of the reconstruction at any phase of the
progressive image transmission. Different approaches can be taken, but one simple
approach is to calculate the root mean squared error (RMSE) of the Rényi dimension

spectrum for the original image and the reconstructed image as follows

T /2
RMSE(qurig(X)’ Dq"c(X)) - ltf}ifw%ffrquung(X) - qurt(X)l qu} (6.3)
3

If D, (X)and D, (X) are calculated for a total of » specific values of ¢ then Eq. 6.3

can be approximated by

n 172
RMSE(D, (X)), D, (X)) = {,’lz Z |D Gorig( (XD =D q,.c(i)(X)lz] (6.4)

i=1
Using Eq. 6.4, a single value results for the objective measure of a specific image
reconstruction compared with the original image. To test this objective measure, a number
of experiments can be performed by applying this measure over a set of image reconstruc-
tions. Since Eq. 6.4 returns only one value per image reconstruction, a greater range of
image reconstructions can be analyzed and visualized above that of the eight image recon-

structions previously used from Fig. 6.1 and Fig. 6.2. For ease of duplication of these
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experiments, the approach taken for generating the image reconstructions is to take the
original image, perform the DWT using the Daubechies 4-tap mother wavelet [Daub92]
(see Sec. 4.3.3), and then apply a hard-threshold in the wavelet domain to form approxi-
mations of the image. The hard-threshold is applied in the wavelet domain by choosing 7,
in Eq. 4.12 of Sec. 4.1.3 as the set of wavelet coefficient indices for those wavelet coeffi-
cients that have a magnitude greater than the hard-threshol<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>