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Abstract

F~statistics calculated from an Analysis of Variance (ANOVA) are
biased when the treatment populations sampled have unequal variances, and
especially so when the samples are unequal in size (Glass, Peckham, and
Sanders, 1972). Several solutions to this problem have been developed
which use the standard F tables but adjust the calculated statistics and
their degrees of freedom by factors related to the heterogeneous variances
(e.g., Welch, 1951). While these alternative procedures control the pro-
bability of Type I error when the ANOVA assumption of homogeneity of
varlance is violated, they may have less power than the ANOVA when the
assumptions are met (Kohr and Games, 1974). Prior testing of the valid-
ity of the variance homogeneity assumption would allow a choice of tests
and hopefully optimize control of Type I error and power, but this pro-
cedure has not been popular because traditional variance tests are highly
sensitive to non-normality, while the ANOVA F-test of mean differences is
not (Box, 1953). Using more recently developed robust variance tests
(e.g., Brown and Forsythe, 1974b), the present research re-examined the
question of allowing the outcome of a test of variance homogeneity to
dictate the choice of a test on means.

Monte Carlo methods were used to simulate a one-way fixed effects
ANOVA design having four treatment groups. The performance of individual
means tests and several sequential procedures (in which a variance test
chose between the ANOVA and one of two alternate procedures) was evalu~—

ated under a variety of conditions representing all possible combinations



of: a) four degrees of variance heterogeneity plus equal variances,

b) three degrees of group size inequality plus equal sizes, c¢) positive
and negative pairing of variances and group sizes, d) two population
shapes (normal and chi-square), e) two levels of overall sample size,

f) two patterns of group mean differences plus equal means, and g) posi-
tive and negative pairing of group means and variances. The means tests
evaluated were a) the ANOVA F-test, b) Welch's (1951) procedure, and

c) Brown and Forsythe's (1974a) F* test, while the variance tests used to
choose between the ANOVA F-test and one of the other two tests were

a) Bartlett's (1937) test, b) Box and Andersen's (1955) test, c¢) Brown
and Forsythe's (1974b) test on absolute deviations from the median,

d) Miller's (1968) jacknife test, and e) the Box-Scheffé test (Box, 1953;
Scheffé, 1959). Data transformations were also performed in order to
assess this procedure as a method of removing variance heterogeneity;
subsequent F-tests on transformed data were compared with the other means
tests.

In accordance with previous studies (e.g., Kohr and Games, 1974)
the results demonstrated the superior robustness and power of the Welch
test when the population sampled was normal, however in the chi-square
population it failed to control Type I error rates. Brown and Forsythe's

* test was the preferred test in this latfer situation and was therefore
recommended overall since its Type I error rates were still acceptable
even on those occasions when the Welch test Qas more robust. Although
the power of the F* test was invariably less than that of the Welch test,
it usually was close to a priori power calculated for the ANOVA F-test.

When variance tests were used to choose between tests of mean



equality, control of Type I error rates was never substantially better
and usually worse than when uniformly adopting the alternate test to
the ANOVA F-test: this was especially true for the situations where
the ANOVA F-test was positively biased. On those few occasions when
Type I error control was better for the sequential procedures, power was
considerably less than when uniformly adopting the alternate test:
the small gain in improved Type I error rates was not considered worth
the cost in power. Thus Brown and Forsythe's F* test was considered
better overall than all single or sequential testing procedures.
Finally, F-tests on transformed data did not perform as well as

those on the original untransformed data.



Introduction

Scheffé (1970, p.1501) states "The most commonly occurring
problem in applied statistics is, in my opinion, the comparison of the
means of two populations.' Usually this comparison is made using
Students t-test. Probably the second most frequently occurring
problem is the comparison of the means of more than two populations,
for which the usual method is the analysis of variance (ANOVA) F-test.
Both the t- and F-test have been derived on the basis of certain simpli-
fying assumptions, which should be met before these tests are used.
These assumptions are: (a) Observations are sampled from normally dis-
tributed populations. (b) Each population sampled has the same variance,
i.e., variances are homogeneous. (c) Errors associated with any pair
of observations are independent. Failure to meet any of these assump-
tions may result in loss of accuracy of the statistical test. When
inferences are made, based on the results of statistical tests, there
is always a certain probability of an error of inference. However, if
the derivational assumptions of a test are met, the probability of
error is accurately known; but when they are not, the probability of
error is uncertain. The two major errors of inference are: (a) con-
cluding that population differences exist when they in fact do not;
and, (b) concluding that no population differences exist when in fact
they do. These two errors are referred to respectively as Type I and
Type II errors, their attendant probabilities being denoted by a and 8.

Power is the probability of correctly concluding that population



differences exist, i.e., power = 1 - B. A statistical test is said to
be robust to violation of its derivationai assumptions if such viola-
tion does not alter the probability of correct or erroneous inferences
based on the test, i.e., if these probabilities remain accurately known.
Violation of the normality assumption, alone, does not seriously affect
the accuracy of the t- and F-tests and they are therefore said to be
robust to non-normality (see Glass, Peckham, and Sanders, 1972). How-
ever, violation of the homogeneity of variance assumption may have con-
siderable effects on the t- and F-test's accuracy, especially if the
groups of observations sampled from the various populations differ in
size (see Glass et al., 1972). The tests are thus non-robust to
variance heterogeneity. Independence of errors, the final assumption,
will not be considered here, although it should be noted that the t-
and F-tests are not robust to non-independence of errors (see Glass

et al., 1972).

Since variance heterogeneity may substantially affect the
accuracy of the t- and F-tests, alternative methods have been developed
for use in this situation (e.g., Welch, 1938, 1951). In addition to
these alternative statistical procedures, it is often possible to
correct variance heterogeneity by transforming the original data, in
which case the t- or F-tests may then be used on the transformed data.
Empirical sampling studies, using computer simulated populations, have
been used to compare the accuracy of the ANOVA F-test and t-test with
the accuracy of such alternative statistical procedures as the Welch

tests (Welch, 1938, 1951), under conditions of variance heterogeneity



and unequal group size (Brown and Forsythe, 1974a; Kohr and Games,
1974). However, no empirical studies have been conducted upon the pro-
cedure of performing an F~test or t-test upon data which has been
subjected to a variance stabilizing transformation. One purpose of

the present research is to make an empirical comparison of the perform-
ance of: (a) the F-test; (b) alternative statistical procedures
believed to be robust to variance heterogeneity; and, (¢) the F-test on
transformed data.

If procedures exist that are insensitive to variance hetero-
geneity, Why are they not always used in preference to the F-test or
t-test? The answer to this question is that when variances are equal,
the ANOVA F-test is more likely to find differences between‘population
means, where they exist (i.e., has greater power), than procedures such
as the Welch tests (Kohr and Games, 1974). In order to make the best
use of the available tests, a researcher should test for heterogeneity
of variance before testing for differences in population means. This
is a practice, which is not much used, because the conventional variance
tests are not robust to violation of their derivational assumption of
normality (Box, 1953).

Variance tests may also be used to determine a variance stabi-
lizing transformation. If a whole sequence of transformations are
performed on the data, that set of transformed data, which gives the
lowest value of the variance test statistic and permits the hypothesis
of variance equality between groups to be retained, may be used in an

F-test or t-test. Since theoretically a data transformation which



stabilizes variance may both fail to eliminate non-normality where it
exists and introduce it where it does not exist, variance tests to be
used on transformed data must be robust to non-normality.

The performance of some robust variance tests under conditions
of unequal sample size and/or non-normality has been investigated
recently (Games, Winkler and Probert, 1972; Gartside, 1972; Brown and
Forsythe, 1974b; Martin and Games, 1976) and the results indicate that
only one test, the Box (1953) test, is truly robust to both non-
normality and inequality of sample size. Unfortunately, the Box (1953)
test is less powerful than some of the less robust (but reasonably
acceptable) tests, such as the Box-Andersen Test (Box and Andersen,
1955), or the jacknife test (Miller, 1968).

If a variance test is to be used prior to an F- or t—-test of
mean differences, it is difficult to decide which feature, robustness
or power, is more important. A non-robust variance test may lead to
erroneous rejection of the homogeneity of variance assumption which
would lead to E performing a possibly less powerful test of mean
equality such as the Welch test. On the other hand, a not very power-
ful but robust variance test may fail to detect variance heterogeneity
of an order which would affect a subsequent F- or t-test of mean dif-
ferences: this may lead to erroneous rejection of the null hypothesis
of mean equality. The only way in which this question may be answered
is to perform an empirical invéstigation of the sequence of variance
testing followed by an ANOVA F-test, if the variance test retains the

homogeneity of variance assumption, or a procedure such as the Welch



test, 1f the homogeneity of variance assumption is rejected. Thus a
further purpose of the present research is to compare the performance
of the Box (1953) variance test and some more powerful but less robust
variance tests (e.g., the Box-Andersen and Jacknife tests) in choosing
between alternative tests of mean differences. The question to be
answered is which variance test leads to the greatest robustness and
power in a subsequent test of mean differences regardless of the actual
test of mean differences used.

Since the effect of unequal group size on the performance of
the Box-Andersen test is not known, this will be investigated here.
Also the performance of these variance tests in choosing transformations

will be investigated.

Notation

At this point it is convenient to define the common notation
system which will be used and also certain of the statistics which
will be referred to.

Let Xij represent the ith observation in the jth group where
i=1, ...n, and j = 1,...K. The Xij are independent variates with
expected value uj and variance cjz. The analysis of variance (ANOVA)
statistic, F, is used for the comparison of K group means and is given

by: ;
an (Si.j —i..)z / (K-1)
F = -3 (1)

L(n,-1)s. / (N-K)
3 ] J




where

N = an = the total number of observations
3

X = IX.., / n, = the group mean

] i 1] ]

X.. = IX,. /N = In,X.. /N = the grand mean
.. 1] PR B |
Jji ]

2 - 2 ] ] 2
s, = I(X,,~X..)"/ (n, = 1) = an unbiased estimate of o,
3 1] ] . J ]

The numerator of the F ratio is known as the mean square between groups

(MSMB) and the denominator is known as the mean square within groups

MS__ ).

WG
In the case where K = 2 the Student t-statistic is used instead

of the ANOVA F statistic to compare the two group means. t 1s equal to

the square root of F when K = 2 and is given by:

2

(n.-1)s.% + (n,,-1)s.,
B J 1 J (1/nj + l/“j') . (2)

(nj +nj| - 2)

Effect of Assumption Violations on Type I Errors

When population means are compared the computed values of t
or F are subsequently compared with a critical value at a certain per-
centage point in the tail of their sampling distribution. The tabled
values of these statistics, at given percentage points, are calculated

on the basis that the derivational assumptions of the tests have been met



and that differences between population means do not exist. The chosen
region of rejection is known as the level of significance of the test
or a. If the calculated value of the statistic falls within the region
of rejection, the means of the populations are considered as differing
from each other. However, a difference between means is not the only
reason why the critical value may be exceeded. The calculated value
may be one of the 5% of calculated statistics which exceed the critical
value when the means are identical and the assumptions have been met,
in which case a Type I error has been made. It can be seen then, that
if the assumptions of the test are met, the probability of a Type I
error 1s equal to the level of significance chosen for the test (also
known as the nominal level of significance).

If the assumptions of a test are violated, the sampling dis-
tribution of the test statistic is not the same as when the assumptions
are met. This means that the tabled critical values are no longer
appropriate. When a nominal level of significance is chosen, the
tabled critical value will not cut off the correct percentage of that
sampling distribution which exists when assumptions are violated. The
statistical test is now inaccurate or biased. TFor example, suppose the
nominal level of significance is set at 5% and the tabled critical
value cuts off more than 5% of the actual sampling distribution; now
the probability of a calculated statistic exceeding the critical value
is greater than 57%. Under these circumstances a test is biased for
finding differences between means and is fermed liberal. On the other

hand, if the tabled critical value cuts off less than 5% of the actual



sampling distributicn, the probability of a calculated value exceeding
the critical value is less than 5%. ©Now the test is biased against
finding differences between means and is said to be conservative. Thus,
if a test is liberal, the actual probability of a Type I error (or the
actual level of significance) is greater than the nominal level of
significance and if the test is conservative, the reverse is true.

If an experimenter concludes, on the basis of a statistical
test at the 5% level of significance, that mean differences exist, he
has a 5% chance of being wrong. Thus the statement that mean differ—
ences exist is not a statement of fact but a probability statement based
on evidence from a statistical test. The experimenter knows, that five
times in 100, a value exceeding the critical value may arise by chance,
when no mean differences exist. For the experimenter, or anybne else,
to have faith in his probability statements, they must be accurate.
Unfortunately, assumption violations can lead to inaccurate probability
statements, therefore it is important to know, if possible, in what
direction and to what extent the various assumption violations affect
the probability of Type I errors.

Glass, Peckham and Sanders (1972, p.245) reviewed the empirical
and theoretical studies on the effects of violating the assumptions
upon which the derivation of the F-test is based. Specifically, in the
case of the effect of heterogeneous variances upon Type I errors,
their review permitted the following general conclusions: (a) When
group sizes are equal, the effect of variance heterogeneity on the

probability of a Type I error is generally small, but if variance



heterogeneity is extreme, this is no longer so. (b) When group sizes
are unequal and the larger groups are sampled from populations with
larger variances, the actual probability of a Type I error is less

than the nominal level of significance. (c) When group sizes are
unequal and the smaller groups are sampled from populations with larger
variances, the actual probability of a Type I error is greater than the
nominal level of significance. These conclusions give only a qualita-
tive picture of the effect of heterogeneity of variance and group size;
however, it is desirable to know how much a given degree of hetero~-
geneity will affect the probability of a Type I error.

For example, in the two cases outlined below, the smaller
samples have larger variances but the pattern of the sample sizes and
variances is different. F-tests on both sets of data will be liberal,
and presumably one more so than the other, but which set will lead to

‘the higher value of o is not clear.

Case A Case B
Sample Sizes 12,23,48,72 12,18,36,90
Sample Variances 14.0,14.0,6.0,6.0 15.0,15.0,5.0,5.0

Empirical studies alone are sufficient to support Glass,
Peckham and Sanders' (1972) general conclusions, but in order to make
more specific statements, it is necessary to turn to a theoretical
analysis of the situation.

Box (1954) provides an exact mathematical method for determining

the probability of Type I error of the F-test when variances and/or
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sample sizes are unequal. In addition, he provides a more accessible
approximate solution in which he shows that the ratio of mean squares
is distributed approximately as bF(h',h), where b, the bias coefficient,

is given by

b = 1+ 1-1/N (52 / éZ - 1) (3)
1 -1/

.

where o » the weighted mean variance is given by

= i - D62/ 1 - 1) (4)
J N J

-2 . . . .
and ¢, the unweighted mean variance is given by

¥ = Zojz / K . (5)

h' and h are reduced degrees of freedom (df) given by

A 27 2 2,2 3 4
h _§(N nj)cj } / (?njc) + N [:§(N an)cj ] (6)

ho= [z.-1)o 2 ]2 S(n.-1o 4| . (7)
-j N J 3 J 3

When group sizes are equal the weighted mean variance is equal to

the unweighted mean variance and therefore b = 1. Thus for equal group
sizes the F-test is not biased, in the sense that the numerator and

denominator of F have the same expected value. However, h' and h can be
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shown to depend on the coefficient of variation of the variances, c,

which is given by

10,2 - 3% ) GH?
¢t = ] . (8)

K

If variance heterogeneity is not present and group sizes are equal,

¢ = 0, and h' and h become equal to the conventional numerator and
denominator degrees of freedom for the F-test. However, if variance
heterogeneity is present with equal group sizes, ¢ > 0, and h' and h
become less than the conventional degrees of freedom. Thus, when
variance heterogeneity is present, even if group sizes are equal, use
of the conventional degrees of freedom for the F-test will give actual
Type I error rates which exceed their nominal values. An extreme
example given by Box (1954) is the case of seven groups of three obser-
vations each, where the variances are in the ratio 1:1:1:1:1:1:10 and
the actual probability of a Type I error, when o = .05, was reported as
12,

When group sizes are also unequal, b may assume a value greater
or less than 1, which is determined by the extent of skewness of the
distribution of the variances, as measured by the ratio of weighted and
unweighted mean variances. If the group sizes differ, but the distribu-
tion is symmetrical (e.g., variances are say 1,2 and 3 and group sizes
are 3,9 and 3), the weighted and unweighted mean variances will be equal
and b will again equal 1; but, if the distribution is non-symmetrical,

b may assume a value greater or less than 1. h' and h again depend

mainly upon the coefficient of variation of the variances.
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It can be seen that 1f the larger groups have larger variances,
the weighted mean variance will exceed the unweighted mean variance
and b will be less than 1; while if the smaller groups have the larger
variances, the unweighted mean variance and b will be greater than 1.
Consequently, a b value less than 1 indicates a conservative test,
while a b value greater than 1 indicates a liberal test. Furthermore,
the extent to which b differs from 1 is an indicator of the extent to
which a given test may be conservative or liberal.

In empirical simulation studies, group size differences, group
variaﬁce differences and numbers of groups are variables which, it
appears, are usually chosen independently of each other so as to pro-
vide a range of values of each variable, representative of usual
experimental situations. Various possible combinations of values of
these variables are then tested for their effect on the probability of
Type I error in an F-test of mean differences. If the intent of the
study is.to show the range of bias that can be introduced by inequality
of group sizes and variances, this type of approach may not succeed very
well. Often two apparently different patterns of variance and group
size heterogeneity may give rise to the same degree of bias and only a
small range of bias is demonstrated (see for example, Horsnell, 1953).
However, if group sizes and variances were chosen to satisfy a wide
range of b values, it would be possible to give a much more comprehen-
sive picture of the effect of variance heterogeneity combined with
unequal sample sizes. For each set of observations investigated, a

b value and an associated actual probability of Type I error could be
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found and any experimenter referring to this data would, after calculat-
ing his/her own sample b value, be able to infer the extent to which
his/her test might be liberal or conservative.

Glass et al. (1972) reviewed two articles (Norton, cited in
Linquist, 1953; and Boneau, 1960) concerning the combined effects of
non-normality and variance heterogeneity on the probability of a Type I
error in the t- and F-tests. Boneau's (1960) study indicated, as ex-
pected, that heterogeneneous variances produced only a small degree of
bias in the t-test when group sizes were equal and populations normal;
however, if the additional factor of non-normality was also present the
degree of bias increased. For example, when taking samples of size
five from two normal populations having variances of one and four the
actual probability of a Type I error was .064 at the nominal .05 level,
whereas when sampling from two rectangular populations under the same
conditions the actual probability of a Type I error was .071. Actual
and nominal probabilities of a Type I error were shown to be equal when
sampling from two rectangular populations of equal variance.

Recent results obtained by Havlicek and Petersen (1974) con-
firmed Bomeau's (1960) observations but in addition demonstrated the
effects of sample size. Increasing sample size considerably reduced
the probability of a Type I error, when taking equal sized samples from
two positively skewed populations with different variances. For example,
when taking samples of size five from two normal populations, one having
twice the variance of the other, the probability of a Type I error for a

one-tailed t—test was .0560 and .0602 in the left and right tails,
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respectively (at a nominal significance level of five percent) and for
the positively skewed populations, the corresponding values were .0294
and .1048. When the sample size was increased to 15, the normal
population values became .0586 and .0578, whereas the values became
.0338 and .0848 when sampling from positively skewed populations. It
should be emphasized that when the variances were equal, there is not a
substantial discrepancy between nominal and actual probabilities of a
Type I error for the positively skewed distribution.

It would seem that having equal group sizes affords little pro-
tection againstthe effects of variance heterogeneity when sampling from
skewed distributions unless the group size is comparatively large.
Unequal sample sizes and variances produce even greater discrepancies
between actual and nominal probabilities of a Type I error than those

obtained with normal populations.

Effects of Assumption Violations on Power

Power is the probability of detecting a true difference between
population means and if this true difference is not detected a Type II
error has been made. An experimenter may determine a priori the power
of the t-~ and F-tests for detecting a specified difference between
population means. When a difference between population means exists
the sampling distribution of t or F is different from the distribution
that exists when there are no mean differences, and is referred to as
the non-central t or F distribution. As can be seen from their formulae,

t and F will be larger when population mean differences exist, therefore
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the critical value, which cuts off say the upper five percent of t or

F values when no mean differences exist, will cut off a much larger
percentage of the appropriate non-central t or F distribution. The
power of a test is then the probability of a calculated t or F value
falling beyond the critical value in their non-central distributions.
Any factor which affects the probability of a Type I error might also
be expected to affect the probability of a Type II error (g) or power
(1-8). Thus if an assumption violation increased the probability of

a Type I error beyond its nominal value, i.e., was liberal, it would be
expected to increase power and vice versa.

Control of the probability of Type I errors is important so that
if mean differences are said to exist we know there is a high probabil-
ity that they do in fact exist. On the other hand control of the pro-
bability of Type II errors is important so that if true mean differ—
ences do exist there is a high probability that they will be detected.
For this reason it is also necessary to know how assumption violations
affect the probability of a Type IL error or power.

Considering first the effect of heterogeneous variances on the
power of the F-test, Glass et al. (1972, p.267) state "that there exists
no method by which the theoretical péwer of the F-test can be determined
when error variances are heterogeneous.' Empirical power values under any
conditions, may be determined by simulation techniques: however nothing
will be learned concerning the effect of heterogeneous variances unless
there exists a theoretical power with which to compare the empirically

determined power values. Power is a function of, amongst other
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things, the non-centrality parameter which is given by
2
In, (M, = ®..)
.13
82 = (9)
02

where u.. is the grand mean of all the populations. As can be seen, the
formula for 52 involves a single value for 02, the common population
variance. When variances are heterogeneous, there is no single value
for 02 : investigators have dealt with this problem by substituting the
average within group variance, 52 (e.g., Horsnell, 1953; Donaldson,
1968; and Lunney, 1970).

Horsnell (1953) has shown that for equal group sizes there is a
close correspondence between the actual power and the "theoretical’ power
calculated using 82. With unequal group sizes, when the larger group
has the larger variance, actual power values are less than "theoretical
power values: when the larger group has the smaller variance actual
power values exceed ''theoretical' power values. These results for power
exactly parallel the results obtained for the probability of Type I
error: this could have been predicted, since any increase or decrease
in o is usually accompanied by a corresponding increase or decrease in
power.

Donaldson (1968) investigated the combined effect of hetero-
geneous variances and non-normality on the power of the F-test. The two
non-normal populations that he used were the exponential and lognormal
distributions : for both distributions the arithmetic mean squared

was set equal to the variance, thus any differences between the means
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resulted in heterogeneous variances and the greater the mean differences
the greater was the degree of variance heterogeneity. For the normal
distribution the mean and variance are not related to each other and
thus any pairing of means and variances may be introduced into normal
distributions. Therefore, in order to obtain a proper power comparison,
Donaldson (1968) made the variance equal to the mean squared for the
normal population also.

For the upper ranges of ¢ (¢ = § /drfﬁ Donaldson (1968) found
that the F-test based upon the two non-normal distributions had higher
power than that based upon the normal distribution; while at lower i)
values the tests based on the non-normal distributions were only slightly
less powerful than those based on normal distributicns. The points at
which the power curves crossed depended on the number of groups and
group size and occurred at lower ¢ values for the lognormal than it did
for the exponential distributicn. For example at o = .05 , with two
groups of 16 observations the lognormal and normal power curves crossed
at ¢ = .50 and a power of .10 while the exponential and normal curves
crossed at ¢ = 1.30 and a power of .40, The corresponding crossover
points for four groups of 16 observations were at ¢ = 1.10, power = .40
and ¢ = 1.25, power = .50, respectively.

Donaldson's (1968) power curves for the normal distribution with
heterogeneous variances were practically identical ﬁothose obtained
when variances were homogeneous. Thus the particular pattern of vari-
ance heterogeneity seen with lognormal and exponential distributions
actually provides a power advantage over the conventional situation of

normal distributions and homogeneous variances, in the upper power
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ranges. If an experimenter calculated power a priori, assuming equal
variances and normality, it is highly unlikely that he would be
satisfied with a power value below .50. Since it is only below .50
that the power of the non-normal populations becomes less than that of
the normal population this would not seem to be a matter for concern,
given that E determines power a priori to be > .50.

In spite of the extreme variance heterogeneity that may occur
with lognormal and exponential distributions, when mean differences
exist, the power of the F-test does not seem to be much affected. The
explanation for this lies in the fact that when non-normal distributions
are used, the numerator and denominator of the F-ratio are no longer
independent of each other as they are with normal distributions.
Donaldson (1968) obtained empirical correlations between the numerator
and denominator of F for all the conditions which he used; it was then
possible to show that "The size of the correlation co-efficient is
closely associated with the degree to which F is conservative." (That
is, conservative with respect to Type II errors.)

Unfortunately Donaldson (1968) did not investigate the effect of
unequal group size on power in non-normal populations with heterogeneous
variances. It is to be expected from what has been discussed previously
that this would affect the power of the F-test considerably.

Violation of the normality assumption by itself does not usually
cause major discrepancies between nominal and actual probabilities of
Type I error or power. Generally, leptokurtosis increases and platy-

kurtosis decreases power values (Glass et al., 1972). Because of the
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relationship between a levels and power one might expect an increased
probability of rejecting the null hypothesis when it is true (i.e., in-
creased probability of a Type I error) for leptokurtic populatiomns.
Interestingly though, for Donaldson's two non-normal leptokurtic popula-
tions, there is the combined advantage of being both more likely to reject
the null hypothesis when it is false and retain it when it is true.
Donaldson attributes this doubly advantageous feature of the F-test, on
his non-normal populations, to the correlation between numerator and
denominator of F. Furthermore, he demonstrated that under the null
hypothesis, this correlation is a function of the kurtosis of the popula-
tion. Donaldson did not investigate the additional affect of unequal
sample size.

In the case where variance heterogeneity is combined with
unequal sample sizes the distortions of o levels and power for the t-
and F-tests may become so great as to render these tests useless. The
question remains as to how one may accurately test the significance of
the difference between two or more means under these conditions. There
are a variety of approaches to this problem and each will be considered

in turn.

Alternative Procedures for Comparing Means

When there are two means to be compared and the ratio of the
population variances is unknown, the problem of testing the significance
of the differences between these two means is known as the Behrens-—

Fisher problem (Behrens, 1929; Fisher, 1935). Both the original
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Behrens-Fisher solution and the later Welch—-Aspin solution (Welch, 1947;

Aspin, 1948) require special tables for the critical values of their

respective distributions. Each of the distributions is defined by the

degrees of freedom for each sample (fj) and a quantity which is depend-
, 2 2 2 2 . .

ent on the ratio sj / Sj' , where sj and Sj' are unbiased estimates

of the population variances. Tables of the critical values of the

Behrens-Fisher distribution are entered with fj s fj' and © , where

_ 2 2
© = arctan A/(Ajsj Y / (Aj,sj, ) (10)

and Aj = l/nj » the reciprocal of the sample size; whereas tables of the

critical values of the Welch-Aspin distribution are entered with fj s

f., and
J
2 2 2
¢ = A,s.,” /[ ().s,. + A,,s, R 11
355 (JJ J'J,) (11)

© and c are related by the following equality

- i

© = arcsin ¢’ (see Scheffé, 1970, p.1505). (12)

In addition to the Welch-Aspin asymptotic series solution, Welch
(1938, 1947) has provided an approximate degrees of freedom (APDF)

solution using the t-distribution. Specifically the criterion

- X, - (u. -y,
.Jv) (uJ uj.)

X..
_ ]
2 2
A.s, + A.,s,
/VQ i3 ity )

(13)

v
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(where X 5 are sample means and uj are population means) follows

approximately the t-distribution with degrees of freedom given by

i T A (14)

when the population means are equal.

Wang (1971) has calculated the probabilities of Type I error for
each of the above tests under various conditions of population variance
ratlos, sample sizes and nominal levels of significance. Generally the
Behrens-Fisher test was found to be rather conservative while the Welch-
Aspin test showed a maximum deviation from nominal o (under the condi-
tions investigated) of only .0009. The Welch approximate degrees of
freedom test agreed very closely with the Welch-Aspin test, showing a
maximum deviation from nominal o of .0018 under the same conditions.
Since the Welch-Aspin critical values are available for only a selected
set of a , (fj , £.4), and ¢ (e.g., the smaller number of degrees of
freedom must be > 6 when o = .10, > 8 when a = .05, and > 10 when o
= ,02 or .01), it would seem more reasonable to use the Welch APDF test
which only requires the t-tables. Scheffé (1970, p.1505) has stated "I
judge Wang's work will justify the conclusion that Welch's approximate
t-solution, . . . , is a satisfactory practical solutiop of the Behren's-
Fisher problem."

Welch (1951) has shown that his APDF solution to the Behren's

Fisher problem may be generalized to the case where there are more than
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two group means to be compared. In this case the distribution of the

statistic
= : 2
Tw, (X, - X )"/ (k-1)
3 3 ]
W= (15)
1+ 2858 50w we)? ) -1
(where wg = l/ljsj,2 , and i,, = (iji.j) / (ZMB), when the population

means are equal, follows approximately the distribution of F with
denominator degrees of freedom given by

-1

3 2
f,=|l— (@ -w /) / (»n, - 1) (16)
2 [(KZ_l) ] ] N }

and the usual numerator degrees of freedom. For large samples the
numerator of W is distributed as a chi-square variable with (K-1) degrees
of freedom: however this is not true for small samples, James (1951)
has shown that the distribution of this quantity in small samples may

be approximated by

3x2 + (K+1)
2(K>-1)

2
2 1+ I(l - w. / Iw, / £,
X ( 5 J) 5

where x2 is a chi square variable with (K-1) degrees of freedom.

In an empirical investigation, Brown and Forsythe (1974a) have
compared the performance of the usual ANOVA F-test, the generalized

Welch APDF solution, James' solution and another solution, in which the
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denominator of F is altered to have an expected value equal to the
numerator when the means are equal, regardless of the value of the

variances. In this latter solution the value

tn, X, - X )2
. J *]
Frx = 7 (18)
(1 - n, / N) s,
3 ] ]

is distributed approximately as F with the usual numerator degrees of
freedom and denominator degrees of freedom, f, given by the Satterthwaite

(1941) approximation.
1 2
i ch / (n-1) , (19)

o 2 ) 2
where cj = (1 nj/ N) sj / [Z(l ,gj/ N) sj ]

The results of the study demonstrate the usual lack of robustness of

the ANOVA under conditions of heterogeneous variances and unequal sample
sizes. Of the alternatives, James' procedure gives actual probabilities
of a Type I error which are greater than the nominal level of signifi-
cance when the sample sizes are small (i.e., 4),while the Welch pro-
cedure and F* show reasonably good control of the probability of a Type
I error. On occasions F* performs better than the Welch procedure and
on other occasions the situation is reversed, however no consistent
trends emerge. The Welch actual probabilities of a Type I error vary
less over the conditions investigated than they do for F*, but the dif-

ference is slight. Empirical power determinations showed that F* and
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the Welch procedure produced very similar results to the ANOVA when
variances were equal. When variances were unequal, only F* and the
Welch procedure were compared since Brown and Forsythe (1974a) con-
sidered the actual probability of a Type I error for the ANOVA to be
unacceptable under these conditions. Which of the two procedures has
the greater power depends upon whether the extreme means have compara-
tively large or small variances. Since,in the Welch procedure, means
are weighted by nj/sj2 and in F* by nj » an extreme mean with a small
varlance would tend to increase W more than F* and conversely for
extreme means with large variances. This feature makes a very sizeable
difference to the empirical power of the two tests.

Kohr and Games (1974) have also compared the performance of the
Welch procedure and the ANOVA under conditions of equal and unequal
variances and sample sizes. Also included in their empirical investi-
gation of Type I error rates and power were the unweighted means
analysis and a procedure due to Box (1954). The unweighted means

as the ANOVA, however, the MS is cal-

analysis employs the same MS‘ RG

NG

culated giving equal weight to each group mean and is given by

MS . = nI (i.j - G) / (R-1) (20)
where n = K/ (1/nj)
and G = Zi_j / K.

In the Box (1954) procedure the usual mean square ratio obtained in an

ANOVA is divided by the Box bias coefficient b, calculated from the
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sample data, and this statistic is referred to the ¥ distribution with
degrees of freedom h' and h (see (6) and (7) above). This study was
unusual in that the extent of variance heterogeneity was quantified by
calculation of the coefficient of variation of the population variances:
also b values were calculated for all conditions of unequal sample size.
The results show that the unweighted means analysis was even less
robust than the conventional ANOVA, while the.Welch procedure showed
the best control of the probability of a Type I error, with the Box
procedure a close second.

Results for power indicate that the ANOVA had superior power
when the assumptions were met. When group sizes were equal and vari-
ances were unequal, the Welch procedure showed superior power, except
when the deviant means were paired with larger variances, in which case
it was less powerful than the Box procedure, which in turn was less
powerful than the ANOVA. This was in accordance with Brown and
Forsythe's (1974a) findings. The Box procedure was never the most
powerful in the equal n case. For unequal n's and variances the Welch
procedure was again usually the most powerful and when deviant means
were paired with large variances the Welch procedure was again dis-
placed as the most powerful test. The only situation in which the Box
procedure was most powerful was if deviant means were all paired with
large variances; it was not sufficient for one deviant mean to be
paired with a large variance if another deviant mean was not. Consider-
ing the extreme specificity of the situation in which the Box procedure

is most powerful, the small likelihood of knowing the situation a priori
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and the small extent to which the power of the Box procedure exceeds
that of the Welch procedure in these situations, it would seem that
the Box procedure is not a particularly useful alternative.

All the foregoing tests belong to a general class of solutions
to the problem of testing for mean differences in the presence of
variance heterogeneity. Each of the tests allows for the existence of
variance heterogeneity and therefore does not require the assumption
of equal group variances. An alternative approach is to bend the
data to fit the assumptions of the conventional ANOVA F-test or the

t-test.

Removal of Assumption Violations by Data Transformation

Data transformations have frequently been used to make the data
fit the assumptions of the ANOVA F-test; this procedure, although it
sounds simple, is not without attendant difficulties. Firstly, the null
hypothesis of mean equality is usually phrased in terms of the original
data, whereas the actual hypothesis tested is on the transformed data.
However, if the transformed variate has some theoretical meaning
(e.g., reaction times are often transformed before analysis by a reci-
procal transformation: the transformed variate then has some meaning
as ''speed of response") the experimenter may be perfectly willing to
perform a hypothesis test on the transformed data and restrict his
conclusions to the transformed variate. Problems arise when the trans—
formation is performed merely to alter the form of the distribution of

the dependent variable, in order to facilitate data analysis, and has no
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value in terms of the scientific theory being tested. Under these

latter circumstances the experimenter "ends up testing a different hypo-
thesis than originally intended, and is typically not logically justi-
fied in extending his conclusions back to the original measure of inter—
est:" (Games and Lucas, 1966, p.315). As an example, suppose the group
means of the variable X are identical but the treatment populaticns
differ from each other in some other respect such as variance. Under
these circumstances an experimenter may wish to perform a variance
stabilizing transformation. It is now perfectly possible that the treat-
ment group means will differ from each oﬁher on the transformed variate,
Y = £(X). Thus, hrejecting the hypothesis of equal treatment means on
f(X) may occur because the treatment populations on X differ in vari-
ance, or in skewness, or in kurtosis, even though the population means

on X are equal. Thus rejecting the hypothesis that uf(Xl) = uf(xz) =, .=
uf(X3) implies some difference in the treatment effects, but does not

clearly imply the rejection of u, = yp_ = .., =u_ " (Games and Lucas,

5% X4

1966, p.315).

When heterogeneity of variance (heteroscedasticity) exists a
transformation can be found which will stabilize variance across groups
if a functional relationship exists between the mean and the variance.
There are many naturally occurring forms of variation such as Poisson,
binomial and lognormal distributions where the appropriate variance
stabilizing transformation is known (Bartlett, 1947), however the experi-
menter often may not know what the shape of the population distribution

is and can only work on the sample evidence. 0lds, Mattson and Odeh
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(1956) suggest the procedure of using sample means and variances to
obtain an estimate of the regression of the population variance on the
population mean. Once a regression function has been determined it is
then possible to determine the variance stabilizing transformation by
the method given by Bartlett (1947). Suppose the estimated relation-

ship between the population variances and means is represented by

oy = Ey) (21)

2 . .
where GX is the variance on the original scale of measurements X

with the mean of X equal to p Then for any transformation, which

%
may be represented by the function g(X), the variance of this function

is given approximately by
o © = @e/an)? £ (22)
X X

The purpose of the transformation is that the variance of the trans—

. 2 2
formed variate Og should be a constant, say c” , thus

dg/duX = c/ /f(uX) (23)

¢ du
I X

g(u,) ———
X /f(uX)

and

]

(24)
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This integral may then be evaluated for any function of the mean (for
example, when mean and variance are proportional as in the Poisson
distribution, integration gives the square root transformation).

Mueller (1949, p.209) notes that this procedure involves "several severe
approximations,' however Olds et al. (1956, p.12) maintain that "it
seems to be the best one generally available.'' Since a transformation
arrived at in this manner is omly an approximation it would seem
advisable to check that the variance of the transformed variate has been
stabilized before proceeding with the analysis.

Transformations may be applied to the data for reasons other
than achieving homoscedasticity: for example, a normalizing transforma-
tion may be required or one that removes non-additivity. It is often
true that a transformation applied for one of the above reasons will
incidentally achieve the remaining objectives also: but there is no
guarantee that this will be true. In the method outlined above for
determining the (scedasticity) transformation, it was seen that the
functional relationship between mean and variance determined the trans-
formation used; but a variety of different distribution forms may have
the same relationship between mean and variance: thus the transforma-
tion which gives homoscedasticity cannot be expected to produce normal-
ity in every one of these cases (see Mueller, 1949, and Curtiss, 1943).
Tarter and Kowalski (1972) have defined the precise situation in which
the scedasticity transformation will also produce normality, but this
will not be discussed here.

As was discussed previously, non-normality alone does not
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seriously influence the conclusions drawn from the results of a t— or
F-test, so it would seem relatively pointless to perform a transforma-
tion for this reason alone. In a computer simulation study, Games and
Lucas (1966) have shown that performing a normalizing transformation
actually caused greater deviations from theoretical power and signifi-
cance levels than using the non-normal, untransformed data. Add to
this the fact that the population form was known and therefore also the
correct normalizing transformation, which is not the case for the
typical experimenter, and the whole procedure emerges as having limited
usefulness.

Another approach to achieving homoscedasticity is to choose a
transformation, within a restricted family, to minimize some measure
of variance heterogeneity. Box and Cox (1964) used a power family of
transformations where the original variable, X, is transformed into

variable Y, which is some function of X, by the equations given below.

d
X -1)/d (d#0)
v - : (25)

log X (d=0)
Basically the original variable X is raised to some power d, which is a
curvilinear transformation and will therefore influence the subsequent
ANOVA F-test. When d#0, the remaining procedures of subtracting 1 and
then dividing by d are linear transformations which have no further

effect on the ANOVA F-test. This means that (25) is exactly equivalent

to
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X (d#0)

Y = (26)
logeX (d=0)

The form (25) is preferred because it is a continuous function at d=0,
since it may be shown that the limit of Y = (Xd - 1)/ 4d, as d
approaches zero, is logeX (Schlesselman, 1973). This power family gives
rise to many of the commonly used transformations; for example, from

(26):

d = -1 gives Y = X—_l = 1/X, the reciprocal transformation,

1
L gives Y = X* = A/ X , the square root transformation,

ja W
il

d = 0 gives Y log X , the logarithmic transformation.

Having decided upon this family of transformations, Box and Cox
(1964) attempted to arrive at a value for d (i.e., chose a transforma-
tion from within the family) which would best enable the transformed
data to satisfy not only a homoscedastic model but also one which was
additive and normal. The mathematical sophistication of the procedures
by which the value for d was arrived at, place them beyond the scope of
the present discussion.

While a procedure which attemptsbto satisfy all the objectives
of a transformation simultaneously is theoretically appeaiing, it may
not be particularly useful in practice as one of the objectives may bé
more compelling than the others. For example, in a one-way ANOVA, it is
clear that there is more reason to choose d to achieve homoscedasticity
than normality. Draper and Hunter (1969) have suggested that a trans-
formation may be chosen by plotting against d, functions which occur

naturally in the usual analysis. They include in these functions the



32

mean square (MS) ratios (F values) for treatments and interactions and

a statistic which supplies information on variance heterogeneity. Thus
one could choose a transformation that maximized the MS ratios for
treatments, or ome that minimized the MS ratio for interactions (if an
additive model were preferable), or one that minimized variance hetero-
geneity. When choosing a transformation on the basis of maximizing the

- mean square ratio for a treatment, it must be clearly remembered that
rejecting the hypothesis of equal group means on the transformed data
may not imply its rejection on the original data. Under these cir-
cumstances, making inferences in terms of the original untransformed
variable may be very tempting, but it is dangerous. Maximizing mean
square ratios to obtain significant treatment effects, or minimizing
them to simplify the theoretical model are not, per se, sufficient
reasons for choosing a particular transformation, since variance hetero-
geneity can bias the F-test and reducing it should be a primary not
secondary goal of the transformation. If a transformation, which
achieves homoscedasticity, also maximizes F values for treatment effects,
so much the better. Also, if the transformed variable is meaningful,

the transformation is even more valuable since this will lessen the temp-
tation to make inferences in terms of the original variable.

When choosing a transformation to achieve homoscedasticity some
measure of the attainment of this objective is necessary., Testing for
variance homogeneity prior to an ANOVA test for equality of means has
traditionally been regarded as pointless because of thé notorious sensi-

tivity of variance tests to non-normality. As Box (1953, p.333) states
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"To make the preliminary test on variances is rather like putting out

to sea in a rowing boat to find out if conditions are sufficiently calm

for an ocean liner to leave port!" This problem is of great concern in

testing the efficiency of a transformation since it is possible for the

transformation to achieve homoscedasticity without achieving normality.

Fortunately tests for the equality of several (K 2 2) variances which

are robust to non-normality are now available, however they seem to have

lower power than the less robust alternatives.

Procedures for Comparing Variances

Bartlett's test (Bartlett, 1937) has traditionally been used as

a test of variance homogeneity: the test statistic is given by:

M = (N-K) loge MS‘

2
el %'.(nj - 1) loge Sj . (27)

J

It may be shown that when the null hypothesis of equal group variances
is true and provided the parent population is normal, M is distributed
in large samples as x2 with K-1 degrees of freedom, while for small
samples the quéntity M/(1+A) has approximately the same distribution
(Bartlett, 1937). A is an adjustable constant which tends to zero for

large group sizes and is given by

A = [1/3(K—l)] [

Box (1953) has shown that M is distributed asymptotically not as XK—lz

2L/ =D -1/ () :’ : (28)
3

but as (1 + v, / 2) 2 where Yy, is a measure of the kurtosis of the
2 K~-1 2

parent population given by
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Box (1953, p.330) states that "asymptotically the M test is like
an analysis of variance on the sample variances instead of sample means,
but the quantity . . . corresponding to the between—-groups mean square
is compared not with an estimate from the internal evidence of the
samples but with a theoretical value of the variance which is appropri-
ate only when the parent distribution is normal." He then goes on to
suggest that a criterion less sensitive to kurtosis may be found by
utilizing the information on the variation to be expected in the sample
variances, which may be gathered from the internal evidence in the
samples. To this end he suggests breaking up the groups, whose vari-
ances are to be compared, into subsamples and then performing an analysis
of variance upon the logarithms of the subsample variances. Bartlett
and Kendall (1946) suggested the logarithmic transformation for use with
variance data. Since the mean of the distribution of sample variances
is proportional to its variance, this transformation would be expected
to stabilize variance. The results of a small sampling study on a rec-—
tangular population presented by Box (1953) indicated the greater robust-
ness of his suggested method compared to Bartlett's test.

Examples of other tests which do not use evidence on variance
variability within samples are those proposed by Cochran (1941) and
Hartley (1950). Cochran's criterion is the ratio of the largest group
variance to the sum of the group variances, for which tabled values of
the upper percentage points are available; while Hartley's Fmax test
refers the ratio of the largest over the smallest variance to the tables

of the F distribution. Box (1953) calculated actual probabilities of
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exceeding the nominal five percent level when the null hypothesis was
true for Fmax » and found similar discrepancies to those found using M
when working with a non-normal parent population. He concluded also
that Cochran's test might be expected to show similar deviations.

Games, Winkler and Probert (1972) performed an empirical sampl-
ing study in which they confirmed Box's (1953) findings concerning the
lack of robustness of the Bartlett, Cochran and Hartley tests to non-
normality while at the same time showing the excellent robustness of
Box's suggested procedure of performing an analysis of variance on the
logarithms of the subsample variances. The power of Box's procedure is
considerably less than that of Bartlett's test especially if the small-
est possible subsample size of two is used. If a large number of sub-
samples is used this gives a greater number of degrees of freedom for
MSWG and thus greater power , however the larger the number of subsamples
the smaller the subsample size which leads to a greater expected value
of MSWG and thus lower power. Since subsample number and size are
inversely related to each other and affect power oppositely, there must
clearly be an optimum value for subsample size given the sample size.
Games et al. (1972) came to the conclusion that for sample sizes from 12
to 18 a subsample size of three vielded optimum power with very little
loss of power up to sample sizes of 36, while for the larger samples
(i.e., > 36) it made very little difference whether the subsample sizes
were four, five, or six.

Games et al. (1972) also demonstrated that the Box-Anderson

procedure was less robhust than the Box (1953) procedure discussed in the
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preceding paragraph: it produced a liberal test in all but a symmetric
leptokurtic population, where the test was almost exact, and a rectangu-
lar population where the test was extremely conservative. In normal
populations the power of the Box-Andersen test exceeds that of the Box
(1953) procedure but in Games et al.'s (1972) extremely skewed and sym-
metric leptokurtic populations the power of the tests was practically
identical if the Box subsample size was three.

Overall and Woodward (1974) have proposed a Z-variance test
which has the advantage over Bartlett's test of simplicity and easy
generalizability to complex factorial designs for the purpose of analyz-
ing variance heperogeneity as a treatment effect. This test also carries
the objection that it does not utilize internal evidence from the treat-
ment groups concerning variability of variance estimates, which makes
it susceptible to non-normality. Levy (1975) has compared the Z-
variance test and the Box (1953) test under varying conditions of non-
normality: he found, as predicted by Overall and Woodward (1974) that
the Z-variance test was not robust to non-normality. Levy (1975) con-
firmed Games et al.'s (1972) findings on the robustness of the Box (1953)
procedure and also found it to have very low power in comparison to the
Z-variance test on normal populations. For the Box (1953) procedure
Levy (1975) used a subsample size of two which was shown by Games et al.
(1972) to produce a power of about half that obtained when using a sub-
sample size of three. Thus Levy (1975) demonstrated the power of the
Box (1953) procedure under the most unfavourable conditions.

Levene (1960) proposed two forms of a test of variance homogeneity

which he found relatively robust to non-normality. One form of the test
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is an analysis of variance upon the absolute deviations of observa-—
tions from their group mean, while the second form uses squared devia-
tions in place of the absolute deviations. Miller (1968) has shown

that the absolute deviation form is not asymptotically distribution free
and should therefore not be robust to non-normality: Levene (1960) did
in fact observe this in his sampling study as did Games et al. (1972).
All of the above authors found the squared deviation form to be rela-
tively robust. 1In comparing the power of the alternative forms of the
test, both Levene (1975) and Games et al. (1972) found the power of the
absolute deviation form to be greater.

Levene (1960) also stated that the power of the absolute devia-
tion form of his test was comparable to that of the Box—Andersen test,
one of the more powerful tests available. Miller (1968) compared the
power of the squared deviation form to that of the Box-Andersen test and
found it to be slightly less in samples of size 25 but considerably less
in samples of size 10, while Games et al. (1972) found an even lower
power in samples of size six. Thus the relative inferiority of the
squared deviation form of Levene's test increases as sample size de-
creases. Games et al. (1972) attributed this phenomenon to the fact that
the squared deviation values are not independent of each other and the
degree of dependence increases as sample size decreases: the same is
also true for absolute deviations.

Brown and Forsythe (1974b, p.366) have proposed an adaptation of
the absolute deviation form of Levene's (1960) test which makes it more

robust to non-normality. They recommend that 'when departures from
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normality are anticipated, the estimate of the mean for each group in
the Levene statistic should be replaced by a more robust estimate of
central location.'" Thus the 10 percent trimmed mean (the mean obtained
after deleting the 10 percent largest and the 10 percent smallest

values in a group) is recommended for long-tailed distributions and the
median for skewed distributions. Use of the median brought the actual
probabilities of Type I error very close to their nominal values in both
a long-tailed distribution (Student's t on 4 df) and a skewed distribu-— -
tion (Chi square on 4 df); however, use of the 10 percent trimmed mean
was only effective for the long-tailed distribution but did not make the
test robust with the skewed distribution. Substitution of the median
for the mean produced only slight power losses with either a normal, a
long-tailed or a skewed distribution, provided the sample size was large
(nj = 40); however, with small samples (nj = 10) a dramatic power loss
resulted. Fellers (cited in Martin and Games, 1976) has shown that

with even smaller samples (nj = 5) the ANOVA on absolute deviations

from the median produces erratic, uninterpretable results.

Miller (1968) applied the jacknife procedure to testing hypo-
theses on variances in the two group case and the procedure was subse-
quently generalized to the K > 2 group situation by Layard (1973). 1In
this procedure, the observations in each group are divided into pj sub-
groups and variance estimates are made on the remaining observations in
each group after deleting the zth subgroup: each of the pj subgroups

. - . . 2
is deleted in turn thus giving a total of pj variance estimates (s, 2 )

3=
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2

in each group. For each of the Sj—i 's a new estimate, ng, is formed:

2 2
0, = .lo s, - .- 1) 1o s, 30)
ig pylog, s, (p, 8o Sy (

The jacknife test statistic is an F statistic from a one-way ANOVA on

the @j2 , namely

B, (0, - 0.7 / (&)
7= - > , (31)
£z (0., - ej,) / z (pj -1

Jg 3% 3

i
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where O,
N g 327

0., = §§ ej2 / §pj
In Miller's (1968) sampling study the actual probability of a Type I
error and the power of the jacknife test were both shown to be approxi-
mately equivalent to the values obtained for the Box-Andersen test,
provided the subsample size for the jacknife test was one.

Since unequal group sizes are a common occurrence, it is impor-
tant that tests of homogeneity of variance should be robust to inequal-
ity of group size. If a test of the homogeneity of variance assumption
is performed prior to an ANOVA F-test of mean equality, it is even more
important that the variance test should not be biased by unequal group
size. This is firstly, because the F~test on means is not itself
affected by inequality of group size per se, secondly, because the

effect of variance heterogeneity on the F-test of means is most
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pronounced when group sizes also differ and thirdly, because a variance
test permissively biased by unequal group sizes, could erroneously
reject the homogeneity of variance assumption and lead E to perform a
less powerful test of mean equality, such as the Welch procedure, which
is robust to heterogeneous group variances.

Brown and Forsythe (1974b) performed an investigation of the
effect of unequal group sizes and non-normality on the robustness and
power of certain varijance tests, including the jacknife and Levene tests,
in the two group situation. They noted that the size of the jacknife
statistic was larger than it should be when group sizes differed and
suggested that this was probably due to the lack of robustness of the
ANOVA when the within group variances were unequal. In the jacknife

procedure the variance estimates, ,» are calculated from a larger

Sj—2
number of observations in larger groups and they will therefore be more
stable in larger groups. Thus the variance of the variance estimates
within each group will be less for larger groups and more for smaller
groups. This pairing of smaller within group variances and larger

group sizes is known to produce a liberal bias in the ANOVA F-test of
group mean differences hence the jacknife procedure should always be
liberal in the presence of unequal group sizes. Martin and Games (1976)
confirmed Brown and Forsythe's (1974b) findings of a liberal bias in the
jacknife test, when nj's are unequal, for the more general condition of
K > 2 groups (X = 3 in this case). It should be noted that Brown and

Forsythe (1974b) did not detect a permissive bias in the jacknife test

with unequal nj's and normal distributions and Martin and Games (1976)
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found significant differences between actual and nominal probabilities
of a Type I error in only one out of four sets of 1,000 simulated
analyses in this condition. Apparently, unequal nj's, per se, do not
have much effect on the probability of a Type I error for the jacknife
test in spite of the rationale outlined above. It is only in combina-
tion with non-normality that unequal nj's have an effect: the already
permissive bias created by non-normality is comsiderably augmented by
the introduction of unequal nj's.

Brown and Forsythe (1974b) demonstrated that their modification
of the Levene test using absolute deviations from the median was robust
to unequal group size in both normal and non-normal populations. How-
ever, they only investigated the two group situation for two conditions
of unequal group size, namely, nj = 10, nj, = 20 and nj = 20, nj, = 40,

Martin and Games (1976) also investigated the effect of non-
normality and unequal group size on the probability of a Type I error
and power of three forms of the Box (1953) procedure. In addition to
the original Box (1953) procedure, they investigated Scheffé's (1959,
p.83) modification of the test and a modification due to Bargman which
was introduced by Gartside (1972). The original Box (1953) test has the

form
. (Y. - ¥.0%/ (x-D)
Al B
] (32)
Iz (Y,, - Y. )/ Tt (p, - 1)
2 i | g 3
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Y = lo s 2
where it ge i R

Y = Iy, /

i . i% P >

Y = ?Esz / Ip s

j2 j
2 . . th
SjR = variance estimate calculated on the £

subgroup in the jth group,
which is an ANOVA on the logarithms of the subgroup variances. The
Scheffé (1959) adaptation was designed to accommodate unequal subgroup
sizes (as might occur when the subgroup size is not a factor of the

group size) and sampling from non-normal populations: it has the form

2
Zvj (nj, -n..) / (K1)
J ) (33)
BIvi, (V= 007/ S, - D)
bR b
where vj2 = degrees of freedom upon which Sjlz is based,
v, = v,
] g 3%
n. = Lv, Y. [wv,
i PR K E
n,., = Zv, Y, [/ Irw,
jo 3 jL g j4

As can be seen this procedure weights the contribution of each subgroup
variance estimate according to its degrees of freedom. The Bargmann
modification (Gartside, 1972) was designed to accommodate unequal group

2
size and uses two constants one of which is added to the lOgeSjZ value
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and another which weights this combined value. Thus the variable Y, =

iR
2, , 3 2
lOgesz is replaced by the variable ij = wjl(lOgesjz + Cj2> where
Cj2 is given by
2
le = 1/Vj£ + 1/ (3Vj2 ), (34)
and the weighting constant wj2 is given by
Vw,, = 2/v,, + 2/(v,,5) + 4/(3v, " (35)
wjz = ng ij ij ) .

These constants are used to remove bias and to satisfy better the homo-
scedasticity assumption of the ANOVA when the nj's are unequal. The

test statistic is:

2
T W& (n',. = n". )"/ (R-1)
3 (36)
2
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where n' = T w, 9z, / w
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1 —
n = Ilw, z,, [ Il w,
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59 3% 9 3
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3 . 34

The condition where group sizes are equal but subgroup sizes are not
must always occur if nj is a prime number: e.g., if nj = 7 then the
group of observations may either be divided into three groups of size
two, two and three or two groups of size three and four, beéring in

mind that a variance estimate can only be calculated on two or more
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observations. Under this type of condition (equal nj of 7 or 17),
Martin and Games (1976) found both the Box and Scheffé procedures to be
robust to non-normality while the Bargman modification was robust under
moderate population leptokurtosis (YZ = 3,0903) but not under extreme
leptokurtosis (Yz = 6.0041). The Scheffé procedure was more powerful
than the Box procedure and the Bargman procedure more powerful than the
Scheffé.

When group sizes are unequal the subgroup size may be maintained
constant across groups or may be increased with increase in group size.
In the situation where each different group size may be factored by a
constant subgroup size the Box, Scheffé and Bargman procedures are
identical: Martin and Games (1976) found the procedure robust with
three groups of size 6, 12 and 18 and a constant subgroup size of three
in normal and non-normal populations. When each different group size
cannot be factored by a constant subgroup size, the situation is
similar to that in the preceding paragraph except that the group sizes
are now different. Martin and Games, (1976) found essentially the same
results in this situation as with equal group sizes except that the
Bargman procedure was now not robust in the moderately leptokurtic
population either. Increasing subgroup size with group size caused
liberal Type I error rates for both the Box and Scheffé procedures but
the Bargman procedure was robust even in the extremely leptokurtic popu—
lation, unfortunately however, at the expense of power.

When group sizes are unequal, the Box and Scheffé procedures

with constant subgroup size across groups and the Bargman procedure
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with subgroup size increasing as group size increases are all robust.
However, of the three, the Box and Scheffé procedures are to be pre-
ferred, as they produce greater power on the same sets of data. The
Scheffé procedure is slightly more powerful than the original Box pro-
cedure under all conditions where both are robust.

On comparison of all of the available tests of variance homo-
geneity, it becomes apparent that the most robust tests are the Box
(1953) procedure, its modification by Scheffé (1959), and Brown and
Forsythe's adaptation of the Levene test. On the other hand, the
jacknife and Box-Andersen tests are more powerful; and although they
are not as robust as the Box and Scheffé procedures, they still perform
much better than the conventional Bartlett test. Martin and Cames
(1976, p.13) found that if the jacknife test is used with a nominal
alpha of ,01, "the true risk of a Type I error is approximately .05
or less" and power "is approximately equal to that of the Box tests
when the population is leptokurtic." It seems that the Box and jack-
nife tests are equivalent if nominal alpha is reduced for the latter.
If this is indeed so (Martin and Games do not present any data on this),
then the Box test is still preferable as it is easier to compute. Also
the one advantage of the jacknife test, its power, is lost. From the
preceding information it seems that the usual situation of paying for
increased power by losing robustness and vice versa, also applies to
tests on variances.

There are two points of view regarding desirable features of
variance tests to be used prior to a test of mean differences. The

rationale for choosing a very robust test such as the Box procedure is
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that one would not wish to abandon an ANOVA F-test on means and proceed
to a less powerful test of mean equality, just because a liberal vari-
ance test had caused erroneous rejection of the assumption of variance
homogeneity. If one were using, say Bartlett's test on a non-normal
population, this is precisely the situation that might occur. The
ANOVA F-test on means is not affected by non-normality while Bartlett's
test is. Thus Bartlett's test might find variance heterogeneity where
none exists, and the ANOVA F-test on means might be abandoned for no
reason. This is the type of situation which prompted Box (1953) to
suggest that prior tests on variance were pointless. The other side of
the coin is presented by Kohr and Games (1974, p.67) who subscribe to
the opinion "that with small nj's E may have such low power on his test
of homogeneity of variance that he fails to detect more extreme vari-
ance conditions" (Kohr and Games, 1974, p.67). If a degree of variance
heterogeneity, which would substantially affect the probability of a
Type I error in an ANOVA F-test of mean equality, were not detected by
a robust variance test, then again the test is pointless: the ANOVA
F-test on means might now be done under conditions where its probability
of a Type I error was high, and the very situation the variance test was
designed to protect against might in fact occur.

However there is one feature of variance tests, evident in both
Brown and Forsythe's (1974b) and Martin and Gamesg' (1976) data, that
would mitigate against the problem of insufficient power to detect a
degree of variance heterogeneity which might affect a subsequent ANOVA

F-test on means: the Box test especially has more power to detect
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heterogeneity of variance when small group sizes are paired with large
variances, which is precisely the situation which gives rise to liberal
Type I error rates in an F-test of mean equality. When large group
sizes and large variances are paired, the Box test is less powerful,
and this is the situation which gives rise to conservative Type I error
rates in an ANOVA F-test of mean differences. Thus, the variance test
has more power where it is needed (from the point of view of the ANOVA
F-test on means) and less power where it is not needed.

To date the performance of tests on variances and tests on means
have been empirically studied only in separate investigations. If one
wishes to discover how a variance test will perform in deciding between
a test of means which is not robust to variance and group size hetero-
geneity (such as the ANOVA F-test) and one which is (such as the Welch
test), it is necessary to perform both the test of variance homogeneity
and the test of mean equality recommended by the variance test on the
same set of data. If the variance test functions well in its capacity
of choosing between tests on means, a more robust and more powerful
overall test of mean differences should result. It is intended here to
compare the performance of several variance tests, which cover a range
of robustness (and consequently power), in making effective choices
between alternative tests of mean differences.

A data transformation to remove heteroscedasticity has been sug-
gested as a method of overcoming the problem of using the ANOVA F-test
of the equality of group means in the presence of unequal group variances.
Since there are problems with this approach, such as finding the appro-

priate transformation and the necessity of confining inferences to the
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transformed variable, it would seem important to determine if such a
procedure does indeed provide a viable solution, and if so, under

what conditions. The ready availability of computer programmes for

the ANOVA with several transformation options, and also the general
familiarity of the ANOVA make data transformaticns an attractive solu-
tion to the variance heterogeneity problem. However, alternative
statistical tests such as Welch's (1951) W and Brown and Forsythe's
(1974a) F* do not suffer from the difficulties of use and interpretation
that are inherent in the use of data transformations. Also, although
the calculation of W or F* is more cumbersome than that of the ANOVA F,

computer programmes for their calculation are easily prepared.

Use of data transformations to correct variance heterogeneity
is a common procedure, but it is highly probable that the procedﬁre may
frequently be used incorrectly, as persons naive to the problems of data
transformation may mistakenly make inferences in terms of the untrans-
formed variable. Since investigators often apply standard variance
stabilizing transformations where they are not appropriate, it is pro-
posed that the probability of a Type I error and power, in this investiga-
tion, be determined for the ANOVA F-test on means after a variance sta-
bilizing transformation, and that these empirically determined values be
compared with the a priori determined alpha and power values. Thus, for
example, if the populations sampled do not differ in their means but

only in their variances, transformation and subsequent testing of mean



50

differences by the F-test should lead to rejection of the null hypo-
thesis of mean equality on the original variable no greater percentage
of times than that indicated by nominal alpha. However, it is entirely
possible that the transformation while removing variance heterogeneity,
may introduce mean differences on the transformed variable and thus the
null hypothesis of mean equality on the original variable may be
rejected a greater percentage of times than that indicated by nominal
alpha. If this is the case the transformation creates a new problem of
interpretation even though it may remove the original problem of vari-
ance heterogeneity. Thus it is important to determine if anything is
to be gained by the procedure of comparing means via an ANOVA F-test

on data transformed to eliminate variance heterogeneity.

In this investigation both a normal and a non-normal population
will be used. The non-normal population will, like the normal popula-
tion, have a mean and variance which are not functionally related. It
is only rarely in behavioural research that grossly non-normal popula-
tions are encountered; more often the population is of a type which
could be called a "contaminated" normal population (see Andrews, Bickel,
Hamﬁel, Huber, Rogers and Tukey, 1972, p.60). These populations may
have slight or moderate skewness and kurtosis but do not have a well-
defined distributional form such that a specific relationship exists
between the mean and variance. Thus it would in most cases prove dif-
ficult to derive the appropriate variance stabilizing transformation by
the method outlined previously (pp. 28-29).

When sampling from either population the following chart
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indicates the sequence of procedures which will be performed on each

set of computer generated data

DATA
¥
¥ ¥ + ¥ ¥ ¥ AN S A S

ANOVA WELCH F* TRANSFORMATIONS VARTANCE TESTS

1 2 3 4 5
1 2 3

¥ ¥ ) ¥ ¥
ANOVA VARIANCE ANOVA VARIANCE
TEST TEST
¥ ¥
ANOVA VARIANCE

TEST

Data will be generated under a variety of population and sampling condi~
tions: the variables to be manipulated are degree of variance hetero-
geneity across treatment populations, degree and pattern of differences
in treatment population means and group size {(equal and unequal across
treatment groups). The combinations of group sizes and variances will
be chosen so as to satisfy a wide range of values of the Box bias coef-
ficient, b. For each combination of treatment population and sampling
conditions 2,000 sets of data will be generated and thus the above chart
will be followed 2,000 times. The percentage of the 2,000 statistics
for each procedure that falls beyond the critical value gives either the

probability of a Type I error (when treatment effects are absent), or
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power (when treatment effects are present).

As can be seen from the preceding chart the performance of the
ANOVA F-test, the Welch test, F* and the ANOVA F-test following each
of three data transformations may be compared directly under a variety
of conditions. This comparison will answer the question of which test
is the best overall for a given set of conditions. However, since E
does not ever know what the population conditions are, he may wish to
perform a sample variance test before proceeding to a test on means.
Thus the above chart will be used to simulate the sequence of procedures
an actual E might perform. The chart includes several variance tests
but for now one only will be considered. Suppose Scheffé's modification
of the Box procedure (Box-Scheffé test) has been performed on the data:
if the Box-Scheffé test is significant, E would proceed to say a Welch
test and, if it is not, E would proceed to an ANOVA F-test. It is
important to know what the probability of a Type I error and power in
testing mean differences are for this whole procedure. Thus, in the
2,000 simulations performed on each set of population and sampling con-
ditions, the number of significant ANOVA F-test results occurring with
insignificant Box-Scheffé test results will be added to the number of
significant Welch test results occurring with significant Box-Scheffé
test results. For each variance test used two overall procedures may
be compared: the variance test choosing between an ANOVA F-test or a
Welch test and the variance test choosing between an ANOVA F-test or F*
test.

In the case of transformations the percentage of ANOVA F
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statistics falling beyond the critical value will be counted in two ways.
Regardless of the presence or absence of variance heterogeneity in the
populations sampled it is probable that, due to sampling fluctuation,
different transformations and sometimes no transformation will be recom-
mended for each sample on the basis of a variance test. Thus for one
sample no transformation, another sample a square root transformation
and another a logarithmic transformation may be recommended by the
variance test. Regardless of which transformation (e.g., none, square
root, logarithmic or reciprocal) precedes the ANOVA F-test of mean
equality, all these procedures will be considered equivalent and counted
together. A second method of counting ANOVA F statistics will be for
each transformation regardless of the variance test results. Thus, on
the one hand, the usefulness of the procedure of choosing transforma-
tions on the basis of a variance test may be evaluated, and, on the
other hand, the usefulness of a specific transformation for specific
population conditions may be found.

The use of both normal and non-normal populations will allow
determination of the robustness of the Welch and F¥ procedures to non-
normality. It is probable that these procedures are as robust as the
ANOVA F-test to non-normality, since both are based on the F distribu-
tion, however this does remain to be demonstrated.

When variance tests are used to detect differences in variance
between treatment groups, they may often be used when treatment popula-
tion means differ. If E is concerned with hypotheses on variances, it
is possible that population mean differences also exist but if E is

mainly concerned with hypotheses on means, and uses a variance test
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merely as a test of the ANOVA homogeneity of variance assumption, it is
not only possible but probable that mean differences exist. However
the performance of variance tests has not so far been investigated in
the presence of mean differences: the design of the present study wili

permit this investigation.



Method

Probability of a Type I error and power was empirically deter-

mined for several individual statistical tests and also several com—

binations of statistical tests under a variety of simulated population

conditions and for different patterns of sampling from the simulated

treatment populations. The tests and combinations of tests evaluated

were:

A. Tests for variance homogeneity

1.

2.

the Bartlett test (see p. 33)

the Box-Andersen test (see p. 34)

the Brown and Forsythe test (see pp. 38-39)
the Miller jacknife test (see pp. 39-40)

the Box-Scheffé test (see p. 43)

B, Tests for mean equality

1.

2.

the ANOVA F-test (see pp. 5-6)

the Welch test (see p. 22)

Brown and Forsyth;'s F* test (see p. 23)

the ANOVA F-test following a logarithmic transformation (Tl)
the ANOVA F-test following a square root transformation (Tz)
the ANOVA F-test following a reciprocal transformation (T3)
the ANOVA F-test subsequent to whichever of the following
procedures gives the lowest value of the Box-Scheffé
statistic: logarithmic transformation; square root

transformation; reciprocal transformation; no transforma-
tion (T4)



56

C. Combinations of means tests following testing for variance
homogeneity

1. ANOVA F test following a non-significant Box-Scheffé test
and Welch test following a significant Box-Scheffé test
(FW/BS).

2. ANOVA F test following a non-significant Miller's jacknife
test and Welch test following a significant Miller's
jacknife test (FW/JK).

3, ANOVA F test following a non-significant Brown and Forsythe
variance ftest and a Welch test following a significant
Brown and Forsythe variance test (FW/BF).

4, ANOVA F test following a non-significant Box-Andersen test
and a Welch test following a significant Box~Andersen
test (FW/BA).

5. ANOVA F test following a non-significant Bartlett test and
a Welch test following a significant Bartlett test (FW/B).

6. ANOVA F test following a non-significant Box-Scheffé test
and a Brown and Forsythe F* test following a significant
Box-Scheffé test (FF%/BS).

7. ANOVA F test following a non-significant Miller's jacknife
test and a Brown and Forsythe F* test following a signifi-
cant Miller's jacknife test (FF*/JK).

8. ANOVA F test following a non-significant Brown and Forsythe
variance test and a Brown and Forsythe F* test following a
significant Brown and Forsythe variance test (F¥%/BF).

9. ANOVA F test following a non-significant Box-Andersen test
and a Brown and Forsythe F* test following a significant
Box-Andersen test (FF%/BA).

10. ANOVA F test following a non-significant Bartlett test and

a Brown and Forsythe F* test following a significant
Bartlett test (FF*/B).

When simulating the various conditions under which the perform—
ance of the above tests and test sequences were assessed, the following

model for the one-way fixed effects ANOVA was used:
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X, =wu, +e . ,i=1,...n ,3=1,...Kk . (37)

Each individual observation, Xij , was considered to be composed of two
elements: uj , the jth population mean, and eij , the random error
associated with each individual observation. The eij's are normally
distributed with a mean of zero and variance Gez . In addition to the
simulation of normally distributed errors, a non-normal population dis-
tribution form was used to investigate robustness to non-normality:
this was a chi square distribution with two degrees of freedom, Xo
which is eXtremely leptokurtic.

Simulation of sampling from a normal distribution proceeded
according to the method of Marsaglia, MacLaren and Bray (1964). In
this method, pairs of independent pseudorandom numbers (Ul s UZ)’ in
the range of zero to ome, are generated from a rectangular distribution
and are then transformed into pairs of normally-distributed pseudo~-
random numbers (Zl s ZZ) with a mean of zero and variance one N(0,1)

by the relationship:

N
0

1
2
(-2 logeUl) cos 27rU2

(38)
Lo,
(-2 lOgeUl) sin 27U

&N
I

2

Pseudorandom numbers distributed as sz may be obtained from

independent random normal deviates through the relationship:

= L Z . (39)
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Thus, to obtain pseudorandom numbers distributed as X22> two squared
random normal deviates were summed.

Since the mean of a chi-square distribution is equal to its df
and the variance is equal to 2df, it was necessary to scale the chi-
square variates so that their distribution had the same mean and vari-
ance as the normal, N(0,1), distribution. Thus, the x22 distribution
had a mean and variance of two and four, respectively, before scaling;
and in order to give it a mean of zero and a variance of one, each Xy
variate firstly had two subtracted from it and then was divided by the
square root of four. This procedure resulted in a skewed, leptokurtic
distribution having the same mean and variance as the normal distribu~
tion. The skewness (Yl) and kurtosis (Yz) of the X22 distribution are
theoretically equal to two and six, respectively. Values of skewness
and kurtosis for unit normal populations are both theoretically equal
to zero. Both normal and skewed variates were distributed to four
treatment groups.

Initially, all distributions had a variance of one, but in order
to assess the power of the variance tests and robustness of the means
tests, varying degrees of heteroscedasticity were simulated. Unequal
variances across groups were obtained by multiplying the generated
variables within each treatment group by the standard deviation required
for each level of the treatment variable such that the unweighted mean
variance was equal to one. The degree of variance heterogeneity was
indexed by the coefficient of variation of the group variance, c.
According to Box (1954), although ¢ can be as large as (K—l)%, values

greater than one are extremely rare in practice. Therefore, four degrees
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of variance heterogeneity were investigated, corresponding to ¢ values
of .2, .4, .6, and 1.0. Table 1 gives the values of the group vari-

ances for each value of c.

Table 1

Group Variances for Given Coefficients of Variation

c Group 1 Group 2 Group 3 Group 4
.2 . 7317 .9106 1.0894 1.2683
b .4633 . .8211 1.1789 1.5367
.6 .1950 L7317 1.2683 1.8050
1.0 L1515 L4343 L7172 2.6971

Power of the tests of mean equality was investigated by simulat-
ing conditions of unequal group means. This was achieved by the addition
of an appropriate constant, i.e., treatment effect, to each of the obser-
vations within each of the K levels of the treatment variable. The size
of the treatment effects were chosen so as to givé an intermediate
"effect size' as defiﬁed by Cohen (1969). Effect size, f, is given by:

H.
£Foo= — , (40)

2
where o = Ip, (U, - W) s
M3 i
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., = n,/N

PJ i ’

N = an and
J

o= In,u.,/N .
. 1]
J

f = .25 is considered by Cohen (1969) to be a value representative of

intermediate sized effects found in behavioural research and is the
value which was approximated here.

As was pointed out previously, when variances and means differ,
the way in which these two parameters are paired affects the power of the
test of mean differences. Also, the different tests are affected in dif-
ferent ways by a given combination of means and variances. Thus, in order
to thoroughly investigate this phemomenon, two strategies were adopted:
firstly, means and variances were both positively and negatively correl-
ated across groups, i.e., as the means increased from groups one to four,
the variances also increased (positively correlated) or as the means
increased from groups one to four, the variances decreased (negatively
correlated); and, secondly, two patterns of mean differences were inves-—
tigated. Group means were either dichotomized at each end of the range
of means or were spaced equidistantly from each other over the range,
i.e., the pattern of means was either ul = “2 < u3 = u4 or ul < U2 < u3
< Hy s where each successive mean increases by a constant amount. These
two patterns of mean differences do not give rise to the same effect

size, 1f the range of the means is constant, since dichotomizing the

means leads to greater mean variability (O“ ) than spreading them
k|
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equidistantly over the range. In order to obtain an equal effect size
for both patterns, the range of the equidistant means must be greater

than that of the dichotomized means. Table 2 gives the values of the

means which were used: these values were determined for f = .25,
o, = 1, ¥ = 0 and equal sample sizes.
Table 2

Group Meansa

Pattern Group 1 Group 2 Group 3 Group 4

Equidistant -.3354 -.1118 +.1118 +.3354

Dichotomized -.2500 -.2500 +.2500 +.2500

qpntries in the table are based on a Cohen's (1969) £ = .25, o, = 1
and u = 0.

Since all populations start out with a mean of zero, approximately 50
per cent overall, of the individual generated observations had a nega-
tive value. (This was true even when treatment effgcts were present
as the mean of the means, u = ZIp,/K , was still held at zero under
these circumstances.) This poied a problem when transforming the

data prior to an ANOVA F-test, as the built-in computer functions for
determining logarithms and square roots cannot accept negative numbers.
In order to eliminate negative values, a sufficiently large positive

constant (10) was added to all generated observations prior to all

transformations.
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Group sizes were chosen to give an a priori ANOVA F-test power
of approximately .70. The values for the group means in Table 2 give
an effect size of .25, when the group sizes are equal. According to
Cohen's (1969, p.377) tables, a group size of 36 is required to give a
power of .70 for £ = .25. When group sizes are unequal, this disparity
was quantified by the ratio of the maximum to minimum group size (see
Spjdtvoll and Stolime, 1973). Thus, u, the degree of sample size

imbalance, is given by:

)

u = max(n 1700y

l,...nK) / min(n

Three levels of u were used: small, u = 1.4 or 1.5; medium, u = 2.0;
and large, u = 3.0. The same total N wés used when the nj's were
unequal and the group sizes were spread approximately equidistantly over
the range between max(nj) and min(nj). However, as may be seen from
inspection of equation (41), introduction of unequal sample sizes
alters the value of cu' for given values of the group means. If the
groups whose means areJextreme, i.e., have large (uj - u)z, also have
large nj's relative to the others, f, and therefore power, is larger
than with equal nj's; conversely, if extreme groups have small nj's,

f and power is smaller (see Cohen, 1969, p.353. Therefore, different
values of u for the same group mean values and total N lead to differ-
ent values for power. Thus the empirically deterﬁined power values
were expected to deviate from the value of .70 when group sizes are

unequal. The upper part of Table 3 gives the group sizes for different

u values when power is .70 for the equal nj condition: £ wvalues for
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each condition are also shown., It is not possible to accurately deter-
mine power for these f values either from Cohen's (1969) tables or from
the standard nomographs for ¢ (¢ = £4/n): however for a mean nj.of 36
the power ranges from a value of .50 at £ = .20 to .70 at £ = .25,

As can be seen, choosing group sizes on the basis of power
considerations results in large values per group, if Cohen's (1969) inter-
mediate effect size is used. Unfortunately, however, E may not always
be able to obtain such large groups and the power of his tests of mean
differences will, therefore, suffer. Under these circumstances the per-
formance of a variance test in making decisions between alternative
tests of mean equality may become crucial. Therefore, smaller group
sizes comparable to those used in other studies (e.g., Kohr and Games,
1974, and Martin and Games, 1976) were also investigated. When the total
N was 48, the lower part of Table 3 gives the group sizes for the equal
nj condition and the various degrees of group size imbalance. It is

worthy of note that, at a mean nj of 12, the power associated with £

ranges from only .26 at £ = .25 to .17 at £ = .20.

Table 3

Group Sizes and f Values

u f(ema) f(dmb) Group 1 Group 2 Group 3 Group 4
N chosen to give a power of = .7OC
1.0 . 250 .250 36 36 36 36
1.5 247 . 248 29 34 38 43
2.0 242 244 24 32 40 48
3.0 .232 .236 ) 18 30 42 54
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Table 3 (cont.)

u f(ema) f(dmb) Group 1 Group 2 Group 3 Group 4

Mean nj chosen to equal Martin and Games (1976) mean nj

1.0 .250 .250 12 12 12 12
1.4 248 . 248 10 11 i3 14
2.0 .243 .245 8 11 13 16
3.0 .232 .236 6 16 14 18
qem = equidistant means
bdm = dichotomized means

°f = .25

o = .05

When variances and group sizes differ across groups, these two
quantities were also both positively and negatively paired with each
other in order to simulate conditions giving rise, respectively, to
conservative and liberal F-tests. Values of the Box (1954) bias coef-
ficient, b, for the combined unequal group size and variance conditions
are given in Table 4. The value of b varies from .6714 to 1.6522, an
extensive range of bias.

Figure 1 summarizes all of the 193 combinations of mean, vari-
ance and group size variability conditions that were simulated. All
these conditions were generated for two levels of sample size: one
chosen to give an a priori power of .70 and the other chosen to match
the sample size used by Martin and Games (1976). (Values of the Box
(1954) bias coefficient are only slightly more extreme under the latter

conditions and are, therefore, not tabled.) This whole procedure will



Table 4

Values of the Box Bias Coefficient
for Given Group Size and
Variance Inhomogeneity

Unweighted Group Size Pairing of Box Bias
 Coefficient of Imbalance Group Sizes a Coefficient
Variation and Variances

c u b

.2 1.5 POS .9632

iy " " .9284

.6 " " .8954

1.0 " " .8501

.2 " NEG 1.0389

4 " " 1.0803

.6 " " 1.1242

1.0 " " 1.1938

.2 2.0 POS . 9397

iy " " .8803

.6 " " .8282

1.0 " " L7612

.2 " NEG 1.0692

s " " 1.1461

.6 " " 1.2320

1.0 " " 1.3735

.2 3.0 POS .9081

A " " .8282

.6 " " .7580

1.0 " " 6714

.2 " NEG 1.1066

4 " " 1.2320

.6 " " 1.3814

1.0 " " 1.6522

a . . . .
POS - positive pairing of group sizes and variances
NEG — negative pairing of group sizes and variances
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be repeated for each of the populations (normal and X22) giving rise
to a total of 2 x 2 x 193 = 772 conditions.

A total of 2000 sets of data were generated for each of the 772
conditions. All the individual tests and test combinations under the
headings A, B and C above were calculated on each of the 2000 data sets;
then, for each of the tests or combination of tests, the proportion of
the 2000 that were significant were recorded.

Referring again to Figure 1, it can be seen that all cells below
the heavy horizontal line represent conditions in which the group means
were equal; therefore, the proportions of significant means test statis-
tics recorded in these cells represent the probability of a Type I
error for the means tests. On the other hand, all cells above the
horizontal line represent conditions of group mean inequality and,
therefore, proportions of significant means test statistics recorded
here represent the power of the means tests.

The cells of Figure 1 which contain a diagonal line represent
conditions of homoscedasticitf and, therefore, proportions of signifi-
cant variance test statistics recorded in these cells give the proba-
bility of a Type I error for the variance tests. Cells in the remainder
of Figure 1 all represent heteroscedastic conditions and, therefore, the
proportion of significant variance test statistics recorded for them
give the power of the wvariance éésts.

During the "debugging" of the computer program, which calculated
all the statistics of the tests investigated, a negative value was

calculated for Box and Andersen's (1955) M'. Checking of all the
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computational steps revealed no errors but a value below -2.0 was found
for o the correction factor in the denominator of M' (see p.34), thus
accounting for the obtained negative value.

Since the formula for M' seemed to be predicated upon the fact that
<, should never approach -2.0, let alone become less than this value, a
sampling study of c, was conducted. In all cases four groups of 18
normally distributed variates were generated and, if desired, variance
heterogeneity was introduced as described above: c, was then computed.

This procedure was repeated 1000 times for each level of variance

heterogeneity investigated thus producing a sampling distribution of

1000 cases for e Table 5 gives the results obtained.
Table 5
Highest and Lowest ¢,y values and percentages
of cy values less than -2.0
Population Variances Lowest <, Highest ¢, Zc2< =2.0

Group 1  Group 2 Group 3  Group &

1.0000 1.0000 1.0000 1.0000 -1.4219 3.2468 0
.4633 .8211 1.1789 1.5367 -1.9367 3.7488 0
.1515 L4343 L7172 2.6971  -4.3821 12.3247 7.4

These results indicate a fairly high probability of obtaining a negative
value of M' (or <, < =2.0) if the highest degree of variance heterogene-

ity (i.e., ¢ = 1.0) is present.
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Since Bartlett's (1937) test performs very well on normal and
platykurtic populations, a possible solution to the problem of c,
values less than -2.0 seemed to be using M if <, is less than zero and
M' if s is greater than zero. This combined procedure has been
designated ''combined M", and was added to the list of variance tests
investigated. Thus two more sequential procedures were also generated
by using ''combined M' to choose between either the ANOVA F and Welch

test or between the ANOVA F and F* tests. (These procedures are desig-

nated as FW/CM and FF%*/CM, respectively.)



Results and Discussion

Type I Errors of the Means Tests

Type I error rates of the means tests are presented in Table 6
for the small sample size. When the population sampled had a normal
distribution, the ANOVA F-test showed its familiar characteristics of
(a) becoming liberal when group sizes and variances were unequal and
larger group sizes were paired with smaller variances, and (b) becom-
ing conservative when the relationship between group sizes and
variances was reversed. In contrast, the Welch test showed its
usual excellent control of Type I error rates regardless of the degree
of assumption vielation. Overall the Brown and Forsythe F* test was
slightly liberal, never exceeding the nominal level of significance by
more than 2.85 percentage points.

When sampling from the non-normally distributed (xzz) popula-
tion the Type I error rates for the ANOVA F and F* tests were not
markedly different than those obtained for the normal population. In
contrast, the Welch test showed an increase in Type I error rates for
most conditions investigated. Not only was the nominal alpha level
exceeded by as much as 8.4 percentage points for the more extreme cases
of positive bias, but also, the Welch test performed worse than the
ANOVA F-test, when a small degree of positive bias was present (i.e., a
Box bias coefficient between 1.0 and 1.3). Nominal alpha levels were
also exceeded by this test in the presence of negative bias and when

only variances or group sizes were heterogeneous.
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Table 6.

Empirical Type I error rates (%) for the means tests (small N)

Group Coefficient Normal distribution Chi-square distribution
sizes of
condition variation F W F& F W F*
u=1.0 0.0 5.25 5.05 5.05 3.80 4.45 3.25
0.2 5.15 5.30 4 .90 4.50 5.60 3.95
0.4 6.15 4,75 5.70 5.20 6.30 4.30
0.6 5.85 5.55 5.40 6.25 9.20 5.30
1.0 8.50 5.25 6.85 9.55 8.85 8.30
Posifively correlated group sizes and variances
u=1.5 0.0 4.10 4,30 3.90 4.35 5.90 4,00
0.2 5.20 5.15 5.75 4.65 5.80 4,60
0.4 4.30 5.10 5.15 4,10 5.95 4,25
0.6 5.45 5.65 6.35 5.80 9.85 6.15
1.0 5.85 4.55 6.90 7.80 9.00 8.90
u = 2.0 0.0 4.55 5.05 4.90 4.30 5.65 3.75
0.2 4,05 4,85 4.70 4,10 5.50 ~ 4.20
0.4 . 3.15 4.80 4.60 4.45 5.70 4.85
0.6 3.40 4.30 5.60 3.60 7.50 4.95
1.0 3.95 4.80 6.05 5.70 7.65 7.85
u = 3,0 0.0 5.00 5.45 4.65 4 .55 7.65 3.95
0.2 4,20 5.60 5.30 3.95 6.80 4.45
0.4 2.80 4,70 5.50 3.35 5.30 4,55
0.6 2.85 4.90 5.95 3.65 7.75 5.70
1.0 3.25 5.75 7.55 4.25 6.70 7.80
. Negatively correlated group sizes and variances
u = 1.5 0.2 5.15 4.80  4.55 4,75 5.25  3.95
0.4 6.50 5.35 5.59 6.20 7.20 4,25
0.6 '8.85 5.45 6.05 7.05 10.00  4.35
1.0 11.35 5.35 7.45 12.80 11.35 8.80
u= 2,0 0.2 6.55 5.40 5.30 4,70 6.70 3.80
0.4 8.75 5.50 5.60 8.45 9.90 5.20
0.6 10.25 4.50 5.90 11.00 12.35 7.30
1.0 15.85 5.15 7.85 .16.00 10.85 8.70
u= 3.0 0.2 5.75 4,25 3.75 5.50 8.15 4,40
0.4 9.60 5.80 4.85 10.05 12.30 6.35
0.6 13.55 5.25 5.65 13.65 13.40 5.95
1.0 20.70 6.40 7.25 22.40 12.70 10.30
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A comparison of the differences in performance of the Welch
and F* tests indicates that the former is more robust for normal dis-
tributions and the latter for non-normal distributions. Since the
difference in Type I error rates was generally greater in the non-
normal population, this would indicate a preference for the F¥ test
when no prior information is available regarding the shape of the popu-
lation distribution: obviously, if the distribution form is known,
this should dictate the choice of test.

Table 7 shows the Type I error rates of the means tests for
the large sample size (N=144). Essentially the same pattern of results
was obtained for each test at both sample sizes but there were differ-
ences between tests in the response to increasing total sample size.
The major difference was the improved performance of the Welch test in
the chi-square population: since this test was the one most affected
by non-normality it is not surprising that it showed improvement on
increasing sample size. In contrast the F* test became slightly more
liberal, overall, at the larger N (the maximum deviation from nominal
alpha now being 3.35%). Because of the opposite effect of sample size
on these two tests, the case for preferring the Brown and Forsythe F*

test, although still extant, was not so convincing.

Power of the Means Tests

Power at small sample size. Power values obtained for the means

tests using the small sample size (N=48) are presented in Table 8.
Because of the extent of the data, results for the equal and most unequal

group size conditions, only, are presented. Results obtained for the
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Table 7.

Empirical Type I error rates (¥%) for the means tests (large N)

Group Coefficient = Normal distribution Chi-square distribution
size of
condition variation F W F* F W F*
u=1.0 0.0 4,80 5.05 4.80 5.00 5.85 4.75
0.2 5.90 5.95 5.90 4.90 6.25 4.75
0.4 5.80 5.45 5.65 6.25 6.00 6.15
0.6 6.35 5.50 6.30 5.80 5.90 5.55
1.0 7.75 4,80 7.35 7.95 6.45 7.75

Positively correlated group sizes and variances,

u=1.5 0.0 4.95 5.15 4.80 4,00 5.45 4.15
0.2 4,55 5.00 5.65 4,55 5.65 4.70
0.4 5.60 5.60 6.95 5.15 6.05 5.85
0.6 5.50 5.85 7.30 5.15 6.75 6.70
1.0 5.75 5.75 8.35 6.10 6.80 7.75
u=2.0 0.0 4.50 4,85 4 .55 4.80 5.95 4.55
0.2 3.55 3.50 4.25 4,00 6.20 5.75
0.4 4.30 5.90 6.40 3.45 5.40 5.40
0.6 2,65 3.85 5.05 3.35 6.50 5.75
1.0 ‘3.10 4.50 7.05 4,80 6.25 7.30
u=3,0 0.0 4.75 5.05 4,90 5.30 7.05 4.70
0.2 3.90 5.15 5.40 4,00 6.20 5.75
0.4 3.10 5.20 5.85 2.50 5.10 5.15
0.6 2.90 4.90 6.15 2.65 5.30 5.85
1.0 3.10 5.90 7.75 3.40 .. 6.25 8.15
Negatively correlated group sizes and variances.
u=1.5 0,2 6.00 5.80 5.55 5.60 5.80 4.45
0.4 7.25 5.40 5.80 6.65 6.30 5.10
0.6 8.45 5.35 6.45 7.80 6.35 5.65
1.0 10.35 4.90 6.70 12.30 7.75 8,90
u=2.,0 0,2 7.00 5.30 5.85 6.75 6.90 5.65
0.4 6.80 4,30 4.25 7.85 7.30 5.45
0.6 10.50 5.45 5.75 10.40 8.30 5.95
1.0 14.95 4.95 6.95 16,25 8.75 9.00
u = 3.0 0.2 8.50 5.80 6.00 5.70 6.10 4.10
0.4 10.05 5.00 5.60 9,95 7.20 5.70
0.6 13.20 4.90 5.85 14.90 10.65 7.20
1.0 20.30 5.30 7.70 . 20.95 10.30 9.65




Empirical Power Values for the Means Tests

Correlation Cocfficient

Table 8.

Normal Distribution

(Small 1)

Chi-Square Distributlion

Means of HMcans of I T Cem e
Condition & Variances Variation F W F F W F*
Fqual group sizes

0.0 28,05 25.50 27.4% SUL3Y 30. 065 27.50
0.2 26.45  25.85 25,95 3.95 26.70  22.45
positive 0.4 24.95 27,15  23.80 23.80 28015 21.60
0.6 22,55  28.50  21.30 20,35 23.90  17.40
fqui- 1.0 26.00  36.05 23.1% 19.95 28,40 16.35
distant . . . p [
0.0 28.05  25.50  27.45 29.35 36.65  27.50
0.2 25.30  24.55 24,65 30.25 32.05  29.10
negative 0.4 24,95  26.05 24.15 30.50 38.50  29.35
0.6 24,75  31.00 23.70 33.35 50,15  31.55
1.0 24.60  34.30 21.80 34.20 53.10  32.10
0.0 26.90  25.65  76.55 27.40 30.90  25.65
0.2 25.35 24.80 24.75% 28.30 29.30  26.80
positive 0.4 24,75 23.65 24.00 24.45 25.50 22.75
0.6 26.50  26.05 24.20 23.60 20.75  20.50
Dichot- 1.0 25.70  33.95  23.20 21.75 32.35  17.65
omized 0.0 "26.90  25.65  26.55 2000 30,90 25.65
0.2 21,75  22.00  21.10 30.15 35.60  28.85
negative 0.4 25.90  24.80  25.25 2.05 37.45  30.75
0.6 24.80  25.60  22.90 34,25 43.60  32.45
1.0 25.20  32.35 21.90 34.20 49.85  31.25
Positively correlated group sizes and variances (u=3.0)
0.0 22.45  20.85 21.95 23.35 36.75 26,70
0.2 19.45  21.95  22.5% 17.30 33.80 24.90
positive 0.4 14,20 23.50  21.85 245 33.50 22.60
0.6 13.75  32.05  24.00 10,15 34,65 21.30
Equi- o L1.3% 3255 2410 L. 3Y 375 18,40
distant 0.0 19.80  19.45  19.30 24,20 17.70  18.50
0.2 18.20  21.50 21.70 23.35 22.25 21.80
negative 0.4 16.70  25.95  24.05 20,25 28.70  23.75
0.6 12,35 30.4%  21.60 TR EN 43,90 ?26.30
] 1090 32.70  22.80 21,30 46.40  30.60
0.0 23.15 20,40 22.10 25.30 36.15  26.50
0.7 16.60 20,20 20.60 .00 34,95  25.90
pusitive 0.4 [H.00  23.9% 22,3 13,00 .25 23,70
0.6 13.00  27.45  23.25 9.7 31.65  22.95
Dichot- 1.0 10.80  34.10 23.65 7.30 41.85  20.75
omized 0.0 22.05 21.05 21.30 26,60 20.45  20.15
' 0.7 18.30  21.65 21.80 2440 ?2?7.85  23.50
negalive 0.4 15,80 25,10 23.7% 22,30 29.30  25.7%
0.6 12.95  26.85  24.55 19.50 38.65 27.65
1.0 10,10 32.55  22.70 19.60 45.30  30.80
Hegatively correlated group sizes and variances (u = 3.0)
0.0 19.80  19.45 19.30 24.20 17.70  18.50
0.2 25.70 21,00  19.05 27.85 15.45  15.25
positive 0.4 31.65 21.35 19.55 28.95 12,80 12.60
0.6 36.00  24.00 18.60 34.00 12.25  11.60
Equi- 1.0 41.65 28.20 16.55 39.75 1910 11.30
distant 0.0 22.45  20.85 21.95 23.35  36.75  26.70
0.2 26.35 20.85 20.05 31.15 38.50  29.05
negative 0.4 32.70  22.20  19.70 37.45 42.90  29.95
0.6 36.15  23.20  19.25 43.90 47.85  29.65
1.0 45,20 31.75  18.60 51.45 52.75  31.35
0.0 22,05  21.0%  21.30 20,60 20,45 20.1%
0.2 26.25 19.85  20.3 26.9% 16.80  17.25
positive 0.4 30.20  18.40 19.10 28.95 13.30  13.20
0.6 39.05  19.65 19.7% 34.20 12.25  12.95
Dichot- .0 45.95 25.90 18.55 46.30 20.90 15,60
omized 0.0 23,15 20,40 2210 25,300 3615 26.50
a.7 YaIWAS 21,06 21010 0,00 BRI fR.A0
e Live .4 .7h 19,14 18.20 .00 1,04 2910
U 36,50 19.4%  18.70 A 7% 300 2902
52.95 30.50

45,45 26.45 17.85

.00

74
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small and intermediate levels of group size inequality show the same
pattern as those presented in Table 8 (for the greatest degree of
group size inequality) but effects are not as marked.

Confining attention firstly to the normal distribution results,
it will be seen that neither the pattern of mean differences (i.e., equi-
distant vs. dichotomized) nor the pairing of group means and variances
had any appreciable effects upon the power of the tests.

As was anticipated on a priori grounds, the power of the ANOVA
F-test was about 57 less in the extremely unequal group size condition
(u=3.0) than when nj's were equal (for equal group variances). Refer-
ring back to page 63, it will be seen that the power values for F fall
in the expected range. Both W and F* were similarly affected.

Violation of the homoscedasticity assumption in the presence of
equal group sizes had a relatively small effect on F and F* and a some-
what larger effect on W. The ANOVA F-test and the F* test were affected
almost identically, both showing a small decrease in power with increas-
ing variance heterogeneity, whereas the Welch test showed a slightly
larger increase (v 10%). Thus the tests have about equal power when
variances are equal but as heteroscedasticity increases the power superior-
ity of the Welch test becomes more pronounced.

With the introduction of unequal group sizes, heteroscedasticity
produced more marked effects on the power of F, about the same magnitude
of effects on the power of W and negligible effects on F%. When larger
group sizes occurred in groups having larger variances, the power of F

dropped from v 23% to v~ 10% as ¢ (the coefficient of variation of the



variances) increased, and, when the pairing of group sizes and variances
was reversed, power of F rose from ~ 207% to ~ 427 between zero and
maximum variance heterogeneity. TFor W, the pairing of group sizes and
variances made only a small difference to the effect of variance hetero-
geneity, the effect being greater for the positive pairing. For both
pairings there was an increase in power, as when the group sizes were
equal. Overall, then, the rankings of the tests for power were W > F#*
>F for positively paired group sizes and variances and F > W > F* for
the negative pairing.

Responses of W and F* to increasing variance heterogeneity were
not substantially influenced by the degree of group size inequality,
but, as may be anticipated from the calculated bias coefficients,
increasing values of u led to an increasing responsiveness to hetero-
scedasticity for F. These relationships are illustrated in Figure 2,

Turning now to the results obtained when sampling from the chi-
square distribution and confining attention to the equal group size data,
two distinct differences emerge between these results and the normal
distribution data. Firstly, the response to variance heterogeneity is
different for the two pairings of means and variances and, secondly,
the chi-square values are generally larger. As for the normal distri-
bution, the pattern of results differs negligibly for the two patterns
of dispersion of the group means (see Figure 3).

When group sizes are equal and larger group means are associlated
with larger variances, both F and F* show a power drop of ~ 10% over the

range of increasing c values, while W shows a smaller drop. Reversal
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of the pairing of means and variances leads to a slight power increase
for F and F* (v5%) as heteroscedasticity increases and a dramatic
increase from v 31% to ~ 53% for W. Overall for the equal group size
condition, there is little to choose between the power of F and F¥*

and that of W is superior to both, especially when means and variances
are negatively paired. Figure 3 illustrates the effects of mean-—
variance pairing, when group sizes are equal, for all three tests.

When group sizes are unequal, the pairings of group sizes with
variances and of means with variances automatically results in specific
pairings of means and group sizes. Thus, when means and group sizes are
either both positively or both negatively paired with variances, they
are also positively paired with each other, and, when the pairing of
means and variances is in the opposite direction to the pairing of
group sizes and variances, the means and group sizes are negatively
paired with each other. The result of these relationships between
group sizes, variances and means is that any interaction of the effects
of mean-variance and group size~variance pairing will necessarily be con-
founded with the effect, if any, of mean-group-size pairing. Only when
variances are homogeneous can the effect of mean-group-size pairing be
evaluated. Thus results for this effect may be found in Table 8 under
either positively or negatively correlated group sizes and variances
when ¢=0. While the relationship of means and group sizes appeared to
be irrelevant in determining power when sampling from the normal dis-
tribution, it became a sizeable factor for the chi-square distribution.

For the ANOVA F~test extremely unequal group sizes produced
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about the same power loss (from the equal group sizes condition) as
occurred with the normal distribution, regardless of the pairing of

means and group sizes. In contrast, the Welch test showed a power
increase of Vv 6%, when means and group sizes were positively paired, and,
a decrease of 10%-13% for the negative pairing of means and group sizes.
F* had similar power to the equal group size condition, for positive
pairing of means and group sizes, but, when the pairing was reversed,
there was a ~ 9% drop.

In the presence of extremely unequal group sizes and hetero-
geneous variances there were three factors influencing the power of the
means tests, in the data presented in Table 7, mamely, degree of variance
heterogeneity, pairing of means and variances and pairing of means and
group sizes. Inspection of Figure 4 shows that while there were similar-
ities in the interactions of these factors on W and F*, the pattern of
interactions was different from F. The ANOVA F-test demonstrated the
expected interaction between variance heterogeneity and pairing of group
sizes and variances, and when means and variances were positively paired
this interaction was practically identical in form to that which occurred
with the normal distribution for both pairings of means and variances.
However, when means and variances were negatively paired, although the
interaction between variance heterogeneity and group size-variance pair-
ing was almost the same size, increasing variance heterogeneity caused
practically no drop in power for negatively paired group sizes and
variances and a much larger increase for positively paired group sizes

and variances: thus there was also a clear interaction between degree of
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variance heterogeneity and mean-variance pairing. Since the latter
interaction was identical over both pairings of group sizes and
variance, there was obviously no interaction between mean-variance
pairing and group size-variance pairing and no triple interaction
between the three factors affecting power. In summary, the most impor-
tant difference between the results for F in the two population distri-
butions was the presence of an interaction between degree of variance
heterogeneity and mean-variance pairing in the chi-square distribution
and its absence in the normal distribution. Apparently, for the chi-
square population distribution, negative pairing of means and variances
causes increasing power of the F-test as variance heterogeneity increases,
while the reverse is true for positive mean-variance pairing, and, this
effect of mean-~variance pairing is additive with the effects on power
of group size-variance pairing.

As stated above, the three factors of variance heterogeneity,
mean-variance pairing and group size-variance pairing combined to pro-
duce similar effects on the power of the Welch and F* tests. A triple
interaction existed between these three factors in their effects on
the two tests with the Welch test being most affected by the three
manipulations. When means and variances were positively paired, there
was little effect of variance heterogeneity on the power of W for either
pairing of group sizes and variances. If anything, a bowed relation-
ship existed between variance heterogeneity and power, i.e., power fell
then rose again with increasing c, the maximum difference between any

two ¢ values being ~ 77%Z: this relationship was the same for both
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pairings of group sizes and variances, the same difference in power
levels of ~ 207 existing for all values of c. If power is averaged

over pattern of mean differences and variance heterogeneity, for this
level of sample size inequality, it is ~ 35% for negative group size-
variance pairing and v 15% for positive group size-variance pairing.
Presumably this difference is due to the pairing of means and group sizes
only, since it exists when homescedasticity prevails.

For F* much the same effects were observed, except that the pat-
tern of the relationship between power and variance heterogeneity was
a steady decline as c¢ increased, but again, the maximum difference
between any two values of ¢ was ~ 7%. However, the averaged power, when
variances and group sizes were positively paired, was ~ 23%, and, for
the opposite relationship of variances and group sizes it was ~ 14Y%
thus giving a difference of only ~ 9%, which was considerably less than
for the Welch test.

When means and variances were negatively paired, both W and F*
showed increases in power with increasing variance heterogeneity, this
relationship being steeper for the positively paired group sizes and
variances for both tests. Averaging over patterns of mean differences,
the power increases from c¢=0 to ¢=1.0 for W and F* were ~ 27% and ~ 117z,
respectively, for positively paired group sizes and variances and ~ 14%
and v 4%, respectively, for the negative group size-variance pairing.

The interaction of variance heterogeneity (C), mean-variance
pairing (V), and group size-variance pairing (S) on the power of W and
F* can best be visualized, by noting in Figure 4, the completely dif-

ferent pattern of VC interaction for the two different pairings of group
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sizes and variances.

As for the normal population, the degree of group size inequal-
ity greatly influenced the response to variance heterogeneity of F, but,
unlike the results for the normal distribution, there was also a sub-
stantial effect on W and a small effect on F*, TFigure 5 illustrates
the results obtained when the degree of group size inequality was
smallest and a comparison of Figures 4 and 5 demonstrates the effects
of group size inequality on all three tests. From the graph for the Welch
test it can be seen that the previously discussed three-way interaction
(SxVxC) was somewhat less when group size inequality (u) was at its
smallest value but the most dramatic effect of reducing u was on the two~
way interaction between mean-variance pairing aﬁd group size-~variance
pairing (VxS): this latter effect is illustrated more clearly in
Figure 6. Again, it must be remembered that any VxS interaction is con-
founded with the effects of group size-mean pairing. From Figures 4 and
5, it appears that the effect of mean and group size pairing, per se
(i.e., when variances are equal), is about three times larger for the
greater degree of group size inequality and, from Figure 6, this is also
the ratio of the VxS effects at the two levels of u. Similar, though
much smaller effects are apparent for F*,

Power at large sample size. Results for the large sample size

(N=144) are presented in Table 9. For the normal population distribution
the effects of the various manipulations were in the same direction only
larger. Whereas, for the small sample size, the combined effects of

variance heterogeneity, group size inequality and group size-variance
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fmpiricel Power Values for the Means Tests

Correlation Coefficient

Table 9.

{Large H)

Chi-Square Distribution

Hormal Distribution

Means of Mixans of e e e e
Condition L, Variences Vertabion f W [ t W fe
[qual group sizes
0.0 70.55 69.20 70.50 71.10 71.05 71.00
0.2 68.35 68.55 68.10 71.40 71.00 71.20
nositiye 0.4 68.75 74.80 68.45 72.50 75.15 72.20
0.6 69.10 82.25 68.30 73.95 84.50 73.30
fqui- 1.0 64.20 87.30 62.75 70.00 88.20 68.30
,
distant 0.0 70055  69.20  70.50 A 71,05 71.00
0.2 70.95  70.50  70.90 68.95  72.35  68.45
negative 0.4 70.00  74.20  69.70 69.50  77.15  68.15
0.6 67.25 81.70  67.05 68.25  85.40  67.50
1.0 §5.40  87.15  64.10 65,80 90.80  64.45
0.0 68.30 67.45 68.30 70.05 70.15 71.00
0.2 69.65 68.80 69.60 71.55 72.35 71.45
positive 0.4 70.70 71.60 70.55 72.05 73.75 71.70
0.6 68.60 72.65 67.95 72.60 78.40 72.15
Dichot- 1.0 69.15 86.60 68.20 73.50 91.00 72.20
omized 0.0 68.30  67.45 68.30 70.05  70.15  71.00
[$ 08,95 69,35 68 RN 70,60 2.10 70.60
negative 0.4 69.40 70.20 69.10 [ 73.0% 68,35
0.6 69.05 73.80 68.65 68.00 76.75 68.25
1.0 67.30 84-.45 66.00 67.05 88.95 65.70
Positively correlated group sizes and variances (u = 3.0)
0.0 61.50 61.05 61.80 63.35 67.10 61.90
0.2 57.50 61.45 62.40 61.20 70.30 65.55
positive 0.4 53.25 69.85 64.15 55.15 72.25 64.70
0.6 48,20 83.05 63.90 47.50 -82.40 65.10
Equi- 1.0 39.45 85.45 62.95 37.70 83.90 -64.90
distant
0.0 62.20 59.70 60.65 62.65 61.55 64.10
0.2 57.45 63.05 62.50 59.15 64.95 64.85
negative 0.4 51.20 68.90 62.75 53.40 72.75 64.80
0.6 46.10 82.50 64.45 48.70 85.05 64.90
1.0 38.70 85.50 62.40 44 .65 88.05 62.95
0.0 65.50 63.15 65.30 64,50 66.90 62.85
0.2 60. 60 66.60 67.00 62.65 69.05 66.00
positive 0.4 54,65 69.35 65.80 55.80 72.35 67.85
0.6 49.25 77.40 67.30 51.10 79.85 69.70
Dichot- 1.0 42.50 87.25 68.85 43.75 90,65 72.00
omized 0.0 64.50  62.45  63.75 63.15  63.10  63.75
0. 59.35 65.05 65.50 59.80 67.40 66.35
negative 0.4 53.80 68.25 64.85 56.720 69.485 66.55
0.6 47.90 76.05 65.95 H3.th 79.65 68 .50
0 43.00 86.70 69.80 46,35 85.90 67.85
Hegatively correlated group sizes and variances {u = 3.0)
0.0 62.20 59.70 60.65 62.065 61.55 64.10
0.2 67.15 61.40 60.15 67.15 8.25 61.40
positive 0.4 ©71.35 63.00 57.50 72.20 £0.35 58.75
0.6 76.70 72.75 57.90 749,90 71.¢5 59.40
fqui- 1.0 77.40 80.55 48.60 #h. 70 R1.80 53.90
distant e ap
0.0 61.50 61.05 61.80 63.35 67.10 61.90
0.2 66.60 61.00 60.05 70.00 70.05 62.75
negative 0.4 70.95 63.60 57.55 70.65 71.35 58.45
0.6 76.30 70.95 55.70 75.75 79.45 57.85
1.0 79.85 82.05 49.40 75.80 85,10 53.05
0.0 64.50 62.45 63.75 63.15 63.10 63.75
0.7 L8.60 0 59,45 6070 70,00 63,70 GALGD
positive 0.4 71.85 59.25 60.85 74.45 60.70 61.90
0.6 75.35 59.45 57.55 75.70 59.45 58.20
Dichot- 1.0 £81.90 75.25 51.30 86,70 82.15 56.85
omized 0.0 65.50  63.15  65.30 64.50 66.90  62.45
(3.7 67.25 60.05 61.05 (O 66,05 62.70
negative 0.4 71.10 58.40 60.35 73.60 6610 60.80
0.6 74.35 58.50 58.20 76.15 63,50 60.70
56.75

52,70 76.05 5430 51,70

78,60
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pairing had been rather small for W and F* they were much more sub-
stantial at the large sample size, especially for F*. Interestingly,
the interaction between the effects of variance heterogeneity and group
size-variance pairing was reversed for W and F* compared to F,

i.e., power was greater for positively correlated group sizes and vari-
ances for W and F* as opposed to the conservative bias introduced by
this combination on F. The effect of group size inequality on this
interaction at the large sample size was about the same for F, but was
now also evident for the other two tests. Comparison of Figures 2 and
7 illustrates the differences between the results for small and large
sample sizes when the normal population was sampled.

Several differences between the large and small sample size
were observed in the results from the chi-square population. When group
sizes were equal, the interaction of variance heterogeneity and mean-
variance pairing was greatly diminished in the large sample size as
compared to the small sample size, for all three tests. Not only was
the interaction diminished in size, but the direction was reversed, so
that, for the large sample size the power of the tests was greater when
means and variances were positively correlated (see Figures 3 and 8).

When both group sizes and variances were unequal, the most
dramatic effect of iﬁcreasing total sample size on the F test was the
appearance of a three-way interaction between variance heterogeneity,
mean variance pairing and group size-variance pairing. Unlike the situa-
tion for the small sample size, the relationship between variance hetero-

geneity and mean-variance pairing, in their effects on power, was
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different for the two combinations of group sizes and variances. When
means and variances were positively paired, as opposed to negatively
paired, there was both a greater increase in power with increasing
variance heterogeneity for negatively paired group sizes and variances
and a greater decrease in power with increasing ¢ for positively paired
group sizes and variances (see Figure 9 and compare with Figure 4y,

This was true for all levels of group size inequality, the effect not
being substantially less for the smallest degree of group size inequal-
ity. Other effects observed at the small sample size were either the
same or slightly increased at the larger sample size.

For the Welch test, the large effect of pairing of means and
group sizes, when variances were equal, almost disappeared at the larger
sample size. Since this effect is confounded with the interaction
between group size-variance and mean-variance pairing (SxV), it is not
surprising that the two three-way interactions involving this SxV
interaction (noted at small N) were also reduced. The SxVxC inter-
action was only slightly less, as may be seen by comparing Figures &4
and 9, but the substantial three-way interaction between group size
inequality, group size-variance pairing and mean-variance pairing, noted
at the small sample size, was hardly evident at the large sample size:
comparison of Figures 6 and 10 illustrates this latter point.

For F* the effects of sample size were similar to those for W
but in addition, a noticeable effect of degree of group size inequality
on the interaction of variance heterogeneity and group size-variance
pairing was present at large N and not at small N. The same effects

were observed in the normal distribution.
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Summary of Results for the Means Tests

In the normal population distribution the ANOVA F-test makes
too many Type I errors when a positive bias exists and too many Type I;
errors when a negative bias exists. On the other hand, the data which
have been presented here indicate that the Welch test controls both
these error rates exceptionally well, i.e., the Type I error rate is
always very close to the nominal o value and the pewer is very close to
and often exceeds a priori power calculated for the ANOVA F-test. Only
very occasionally did thé ANOVA F-test show adequate control of Type I
error and superior empirical power to the Welch test (e.g., at ¢= 0
and c¢=.2 when group sizes and variances were negatively paired): how-
ever, this power superiority was slight (v 5%). The Brown and Forsythe
F* test controlled neither Type I nor Type II errors as well as the
Welch test.

In the c¢hi-square population the situation was not as simply
defined. In the equal group size situation there is little to choose
between the control of Type I error by the three tests, therefore it
seems reasonable to prefer the test which has the greatest empirical
power under these conditions, i.e., the Welch test. When group sizes
and variances are positively correlated, the control of Type II error
by the ANOVA F-test is unacceptable, and, under these circumstances,
since there is again little to choose between the control of Type 1T
error by the Welch or F* tests, the preference is for the test with the
greatest power, i.e., the Welch test. When group sizes and variances
are negatively correlated, the Type I error rates for the ANOVA F-test

and Welch test become unacceptable, except for the ANOVA at small degrees
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of variance heterogeneity (i.e., c<.2). With the exception of the high-
est degree of variance heterogeneity, the F* test controls Type I error
rates fairly well under conditions that positively bias the ANOVA F test:
additionally its empirical power is relatively close to a priori power
calculated for the ANOVA F test, except for the small sample size, when
means and variances are positively correlated. For this latter situation
there is a case for using the ANOVA F test, when variance heterogeneity

is low (i.e., c£.2), since its power is superior.

Type I Errors of the Variance Tests

Type I error rates for the variance tests are presented in Table 10.
Since neither mean differences nor group size inequality produced any
effects on Type I error rates, these valueé were obtained by averaging
over dichotomized, equidistant and equal means and also over equal and
unequal group sizes, so that each value was obtained from 24,000 simula-

tions.

Table 10

Empirical Type I Error Rates (%) for the Variance Tests®

Population Sample Box- Brown & Box- Combined

Shape Size Scheffé Jacknife Forsythe Bartlett Andersen M
Normal small  4.646 5.108 2.912 4.808  10.858 3.392
large  4.429 5.017 4.037 4,904 6.404 3.937

small 4,887 12.275  4.221 42.662 11.612 9.621

Chi-square ., ..o  4.792  9.767 4.592  51.429  '6.254  6.237

a . . . . .
Averaged over mean differences and group size inequality, i.e., each
value was obtained from 24,000 simulations. ZOP = ,0028
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In the normal population, the jacknife and Bartlett tests
accurately controlled Type I errors regardless of sample size, whereas
the Box-Scheffé, Brown and Forsythe, and combined M tests were conserva-
tive with the latter two being more so at the small sample size. How-
ever the Box-Andersen test was liberal and especially so at small N.

In the chi-square population, only the Box-Scheffé and Brown
and Forsythe tests continued to control Type I error rates, with the
latter test still being conservative. As has been observed many times
before, the Bartlett test showed a huge increase in Type I error rates,
up to 40-50%. The jacknife, combined M, and Box-Andersen tests showed
similar degrees of nmon-robustness, Type I error rates being larger at
the smaller sample size. However, the Type I error rates for the Box-
Andersen test were approximately the same as in the normal population.

Only the Box-Scheffé and Brown and Forsythe tests were robust
both to pon-normality and at the small sample size. The jacknife,
Bartlett,and combined M tests were robust at the small sample size, but
were not robust to non-normality while the Box-Andersen test was robust
to non-normality but had inflated Type I error rates at small sample
size.

It can be seen that the combined M test (which is a combination
of, (a) the Box-Andersen test if its correction factor, c, , is greater
than zeroj; and, (b) Bartlett's test if this factor is less than zZero)
had lower Type I error rates than the lowest of the two values of its
component tests. This is because there must have been occasions on

which the correction factor would have been between zero and minus two
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and therefore could have turned a non-significant Bartlett value to a

significant Box-Andersen value.

Power of the Variance Tests

Empirical power values for the variance tests at equal and
extremely unequal group sizes (U=3.0) are presented in Tables 11 and 12
for the small and large sample sizes, respectively. In the normal popu-
lation, of the tests which were robust at small sample size (i.e., all
except the Box-Andersen test), the power of the tests at equal group
sizes were ranked in the following decreasing order: Bartlett, jacknife,
combined M, Brown and Forsythe, and Box-Scheffé. 1If the Box—-Andersen
test had been included in the above ranking, it would have appeared at
different places depending on the actual degree of variance heterogene-
ity. This is because its power is too high at low c values, as a
result of the inflated risk of Type I error, and, because its power
drops at high ¢ values for reasons discussed under Methods. When power
was averaged over ¢ values the Box-Andersen test had exactly the same
power as the jacknife test. At large sample size the same rank order of
tests prevailed, except that the power of the Box-Andersen test now fell
between that of the jacknife and Bartlett tests.

Introduction of unequal group sizes maintained the same rank
order of power of the tests with respect to each other. However, power
was greater when group sizes and variances were negatively correlated as
opposed to positively correlated and this effect was especially notice-

able at ¢ =.4 and ¢ = .6, i.e., in the middle range of variance
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Table 11.

Empirical power values (%) for the variance tests (small N, equal means)

Pairing Statistics

of group Coeffic-

sizes & ient of Box- Brown & Box— Combined
variances variation Scheffe Jacknife Forsythe Bartlett Andersen M

Normal Distribution

0.2 7.15 9.15 6.25 10.45 16.95 7.65
Equal 0.4 18.25 28.50 20.05 34.20 38.35 26.15
n's 0.6 51.90 81l.45 59.85 89.80 79.90 78.10
1.0 71.10 93.70 87.90 98.05 77.60 90.45
0.2 6.55 9.45 4.85 8.65 14.80 6.45
Positive 0.4 12.65 20.70 11.95 22.10 28.25 16.70
(u= 3.0) 0.6 33.45 59.30 33.90 63.10 59.75 50.65
1.0 58.00 88.25 82.35 96.80 79.50 88.05
0.2 5.85 9.20 7.00 10.05 17.55 7.00
Negative 0.4 14.65 29.65 21.35 34.70 36.10 24.90
(u= 3.0) 0.6 51.05 84.60 69.75 91.60 70.50 78.15
1.0 56.75 89.80 81.85 94.65 55.25 81.20

Chi-square Distribution
0.2 5.00 13.55 5.80 48.30 14.45 12 40
Equal 0.4 11.70 22.95 12.30 60.30 21.80 20.00
n's 0.6 27.40 46.60 31.45 87.95 44,50 44.75
1.0 40.50 60.95 57.15 94.60 53.80 59.65
0.2 5.95 14.15 4.60 42.75 11.00 9.35
Positive 0.4 10.40 20.80 7.00 57.60 15.95 14.30
(u = 3.0) 0.6 20.00 37.10 14 75 78.10 26.40 26.05
1.0 37.60 56.25 41.80 98.25 44.30 45.85
0.2 5.05 14.85 6.40 44.60 13.95 11.75
Negative 0.4 10.15 -23.50 16.00 57.10 21.65 21.45
(u = 3.0) 0.6 30.95 48.90 41.15 84.75 43.05 48.55
1.0 34.80 53.85 56.55 89.10 43.10 55.90
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Table 12.

Empirical power values (%) for the variance tests (large N, equal means)

Pairing Statistics

,of group Coeffic-

sizes & ient of Box—- Brown & Box— Combined
variances variation Scheffe Jacknife Forsythe Bartlett Andersen M

Normal Distribution

0.2 17.20 24 .15 19.45 26.15 28.15 22.35

Equal 0.4 65.70 84.20 76.15 87.30 86.75 83.70

n's 0.6 99.55 99.95 100.00 100.00 99.90 100.00

1.0 99.95 100.00 100.00 100.00 98.10 100.00

0.2 14.50 21.20 16.90 20.80 23.45 18.00

Positive 0.4 49.15 72.80 60.90 75.30 73.30 69.75

(u = 3.0) 0.6 96.30 99.85 99.30 100.00 99.80 99.80

1.0 99.95 100.00 100.00 100.00 99.20 100.00

0.2 12.05 22.70 18.35 24.60 27.15 20.25

Negative 0.4 58.15 84.60 76.15 87.35 84.90 82.60

(u= 3.0) 0.6 99.05 100.00 99.95 100.00 99.80 100.00

1.0 99.80 100.00 100.00 100.00 91.10 100.00

Chi~-square Distribution

0.2 9.35 16.10 10.75 61.80 11.55 11.55

Equal 0.4 31.45 40. 40 38.85 87.70 34.95 34.95

n's 0.6 85.66 85.70 91.90 99.80 80.60 80.60

1.0 96.35 93.35 99.70 100.00 92.75 92.90

0.2 8.85 15.60 8.10 60. 80 9.20 9.20

Positive 0.4 26.00 34.65 24.75 82.85 23.05 23.05

(u= 3.0) 0.6 70.30 74.35 68.70 98.35 57.85 57.85

1.0 94.20 92.95 98.60 99.90 86.30 86.35

0.2 7.70 16.70 11.75 59.90 12.55 12.55

Negative 0.4 60.30 39.70 44.95 83.90 39.50 39.50

(u=3.0) 0.6 85.70 86.85 95.45 99.65 88.30 88.50
1.0

91.80 89.95 98.45 99.95 91.85 93.00
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heterogeneity. Power of the tests, when group sizes and variances were
negatively correlatgd, approximated that of the equal group size condi-
tion. This relationship of power to pairings of group sizes and vari-
ances was equally valid at both the large and small sample size. In-
creasing group size inequality accentuated the effect of power reduc-
tion in the middle variance heterogeneity range for positively correl-
atgd group sizes and variances, therefore Tables 11 and 12 illustrate
the extremes of this effect.

In the chi-square population for the small sample size condi-~
tion, comparison of the behaviour of the two tests which control Type I
error, namely the Box-Scheffé and Brown and Forsythe tests, reveals
that the power preference depends upon the relationship between group
sizes and variances. If nj's are equal, or, unequal and negatively cor-
related with variances, the Brown and Forsythe test has superior power,
whereas, if larger groups have larger variances, the Box-Scheffé teét
has greater power. The Box-Andersen and combined M tests, which have
empirical alpha values of about twice the nominal level, demonstrate
approximately equal power values, that are somewhat higher than those of
the two robust tests. The jacknife and Bartlett tests have the second
highest and highest power, respectively, however the former has a Type I
error rate greater than twice nominal alpha and the latter is completely
unacceptable because of its 50% Type I error rates.

At the large sample size, in the chi-square population, the
Type I error rates of the Box-~Scheffé, Brown and Forsythe, Box-Andersen,

and combined M tests are all acceptable. The same power relationships
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exist between the former two tests, with respect to the group size-
variance relationship, as occurred at small N. Power of the Box-
Andersen and combined M tests is identical, falling between that of

the Box-Scheffé and Brown and Forsythe tests for equal nj's and nega-
tively paired nj's and variances, and, is less than either for posi-
tively paired nj's and variances. The jacknife test, which has an
empirical alpha of twice the nominal value, is more powerful when nj's
are equal or unequal and positively correlated with variances, than the
four tests which are robust at large sample size, but has lower power
than the Brown and Forsythe test at ¢ > .4 for negatively paired group

sizes and variances.

Summary of Results for the Variance Tests

Overall, the preferred variance test seems to Be the Brown and
Forsythe test on absolute deviations from the median. Not only does this
test control Type I error rates but it is also more powerful than the
other truly robust test, i.e., the Box-Scheffé. Although there are
specific situations when the Box-Scheffé test is actually more powerful,
the excess is not great, and averaged over all conditions (where the
group means are equal) the power of the Box-Scheffé and Brown and
Forsythe tests is, respectively, 42.90 and 48.82. Since these tests
have rather low power at the low end of the variance heterogeneity con-
tinuum, it may be preferable, at times, to sacrifice control of Type I
error and use a less robust test, in order to gain more power to detect

a small difference in variances. This, of course, depends on the relative
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cost, in a given situation, of making a Type I as opposed to a Type II
error, a matter of some concern when performing variance tests as a

preliminary to a test of mean differences.

Type I Errors of the Sequential Testing Procedures

Type I error rates for all sequential procedures and individual
means tests, under all conditions when group sizes are equal, are pre-
sented in Table 13. In general, for the sequential procedures, Type I
error rates (and power) were closer to the ANOVA values when variance
heterogeneity was small, and closer to the values for the alternate
test (i.e., Welch or Brown and Forsythe's F*) when variance heterogeneity
was large. This relationship exists because, when the power of any
variance test is less than 50%, the ANOVA F-test on means will be per-
formed more often than the alternate test; and, conversely, when the
power of the variance test is greater than 507%, the alternate test will
be performed more often. Naturally, the power of any variance test is
lower at low degrees of variance heterogeneity and is therefore more
likely to be less than 50%. Also, therefore, Type I error rates (and
power) of the sequential procedures approximated those of the alternate
test more often at the larger sample size because the variance tests are
more powerful at large N.

When sampling from the normal population using equal group sizes,
it is clear that none of the sequential procedures, for either alternate
test, showed better control of Type I errors than did the Welch test

alone. This is inevitably so, since the performance of the Welch test



Table 13.

Type 1 Error Rates (%) for the Individual Means Tests and Sequential Procedures.
(Equal nj's)

Coefficient

of variation Combined ANOVA and Welch Procedures Combined AHOVA and F* Procedures
of the variances
C ANOYA  WELCH  FW/BS  FW/JK  FW/BF  FW/BA  FW/B FW/CH ANOQVA F* FF*/BS FF*/JK FF*/BF FF*/BA FF*/B  FF*/CM

Normal Distribution (Small H)

0.0 5.25 5.05 5.45 5.45 5.35 5.60 5.30 5.35 5.25 5.05 5.20 5.20 5.20 5.20 5.15 5.20
0.2 5.15 5.30 5.15 5.55 5.45 5.5% 5.55 5.40 5.1% 4.90 5.10 5.15 5.15 5.10 5.10 5.15
0.4 6.15% 4,75 6.15*  6.25*  6.55* 6.20* 6.25* 6.35*% 6.15*% 5.70 6.00" 5.95 6.05* 5.85 5.95 6.00*
0.6 5.85 5.55 6.80* 6.40* 6.70* 6.15* 6.20* 6.50* 5.85 5.40 5.65 5.40 5.45 5.40 5.40 5.40
1.0 8.50* 5.25 7.00*  5.75 6.15* 5.85 5.40 5.80 8.50* 6.85* 7.50~ 7.00* 7.20~ 7.35% 6.85* 7.05*
Normal Distribution (Large N)
0.0 4.80 5.05 4.85 5.00 4.95 5.05 5.05 5.00 4.80 4.80 4.80 4.80 4,80 4.80 4.80 4,80
0.2 5.90 5.95 5.95 6.05*  6.00" 5.95 6.05%  6.05* 5.90 5.90 5.90 5.90 5.90 5.90 5.90 5.90
0.4 5.80 5.45 5.75 5.65 5.80 5.70 5.60 5.70 5.80 5.65 5.70 5.70 5.75 5.70 5.70 5.70
0.6 6.35* 5.50 5.55 5.55 5.50 5.50 5.50 5.50 6.35* 6.30* 6.30* 6.30* 6.30* 6.30* 6.30* 6.30*
1.0 7.75* 4.80 4.80 4.80 4.80 4,70 "4.80 4.80 7.75% 7.35% 7.35% 7.35% 7,35+ 7.35% 7.35% 7.35*
Chi-Square Distribution (Small N)
0.0 3.80%* 4.45 4.35 4.85 3.10*% 3.65** 4.95 3.75%%  3.80%% 3.25%% 3.65%*+ 3.60%* 3.55%* 3.60** 3.35** 3.55**
0.2 4.50 5.60 4.75 5.00 4.10 4.70 5.85 4.60 4.50 3.95%% 4.45 4.20 4,30 4.30 4.15 4.30
0.4 5.25 6.30* 5.40 5.80 4.55 5.10 6.45*% 5.10 5.20 4.30 4.85 4.70 4,60 4.65 4.40 4.60
0.6 6.25* 9,20 7.20* 7.95* 7.60* 7.60* 9.15% 7.70* 6.25* 5.30 5.95 5.45 5.55 5.55 5.40 5.60
1.0 g.55* 8.85* 9.65* 9.95* 9.90 9.30* 9.45* 9.15* 9.55*  8,30* 8.85*  8.55* 8.55* 8.70" 8.30" 8.50*
Chi-Square Distribution (Large N)
0.0 5.00 5.85 5.20 5.85 4.75 5.35 5.90 5.35 5.00 4.75 5.00 4.85 4.95 4.90 4.75 4,90
0.2 4.90 6.25*% 5.25 5.50 5.00 5.20 6.00* 5.20 4.90 4.75 4.90 4.90 4.80 4,90 4.75 4.90
0.4 6.25*  6.00* 5.80 6.10* 5.60 5.60 6.05* 5.60 6.25*  6.15%  6.25*  6.15* 6.15% 6.15* 6.15*  6.15*
0.6 5.80 5.90 5.45 5.65 5.65 5.35 5.90 5.35 5.80 5.55 5.55 5.55 5.55 5.55 5.55 5.55
1.0 7.95%  6.45*  6.85% 6.95* 6.50* 6.70* 6.45% 6.60* 7.95%  7.75%  7.75% 7.75% 7.75% 7.15% 7.75* 7.75*

*

Type | error rates 20p greater than o, where op = {a(1 - a)/Z.OOO)Xﬁ = .0097

** Type | error rates 20p Jess than a.

£0T
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is the best of all the tests of mean differences. In order for any
sequential procedure to be as good as the Welch test, the variance

test involved would have to have a power of 100% at all levels of vari-
ance heterogeneity -— an obvious impossibility. Of the sequential
procedures involving the Welch test as the alternate test to the ANOVA
when the assumption of homogeneity of variance was rejected, that using
Bartlett's variance test performed best; the same was true when using
F* as the alternate means test. The foregoing held true for both small
and large N. (When N=144, F and F* behave almost identically; and,
therefore, all sequential tests involving F* as the alternate are also
almost identical to both F and F*.)

For equal group sizes sampled from the Chi-square distribution,
the situation changes considerably. When the sample size is small, the
Welch test and the sequential procedures in which it is the alternate
test, perform worse overall than the ANOVA F-test. The best of the com-
bined ANOVA F-test and Welch procedures is that using the Box-Scheffé
variance test. In contrast, the sequential procedures combining F and F*
showed smaller deviations from nominal o , overall, than did either test
separately, the best of these being that using the Jacknife variance
test. When the sample size is large, the situation improves for the
Welch sequential procedures because the Welch test becomes more robust.
In fact, all sequential procedures for either of the alternate means
test are superior to either of their component means tests. For the
Welch and ANOVA F-test combined procedures, that using the Brown and

Forsythe variance test was best, whereas there was little to choose
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between the sequential procedures combining the ANOVA F and F* tests.

When group sizes are unequal, different situations obtain depend-
ing upon whether group sizes and variances are positively or negatively
paired. These results are presented in Table 14. When small samples
were taken from the normal population and group sizes and variances
were positively paired, the situation is analogous to the equal nj con—
dition in that the Welch test is superior to all single and combined
tests. In general, the sequential procedures err on the conservative
side because (a) the ANOVA F-test is comservative under these conditions,
(b) the power of the variance tests is at its lowest with this pairing
of nj's and variances, and therefore (c) the ANOVA F-test will be chosen
more frequently because of fallure to reject the homogeneity of variance
assumption. Of the sequential procedures combining the ANOVA F-test and
the Welch test, those using the combined M and Box-Andersen variance
tests were best; whereas, for the sequential procedures combining the F
and F* tests, the best procedures were those using the Box-Scheffé and
Box—-Andersen variance tests. These were also an improvement on uni-
formly adopting the F* test. At large sample size, preferences were
essentially in the same order although none of the sequential tests was
now significantly conservative.

When small samples were taken from the chi-square population
and group sizes and variances were positively paired, the Welch test
showed the largest deviations from nominal o , as when group sizes were
equal. However, unlike the latter situation, the sequential procedures

involving the Welch test were now an improvement on the use of either



Type 1 Ervor Rates (%)

{Unequal ni's (u=3.0) positively paired with variances)

Table

14.

for the individual Means Tests and Sequential Procedures

Coefficient
of variation
of the variances

AROVA

Combined ANOVA and Welch Procedures

WELCH  Fa/BS

FH/C#‘

Combined ANOYA andg 7+ Procedures

c Fa/Jk FWBF  FW/BA  FR/3 ANOVA  F* FF*/BS FF*/JK FF*/BF FFe/8h FPe/B  FFA/CH
Noreal Distribution (Small N)
0.0 5.00 5.45 3,40 5.5C 5.40 5.75 5.35 5.53 5.00 4.65 5.15 5.05 5.0% 5.2% 5.10 5.15
0.2 4.20 5.60 <.65 5.30 4,70 5.3 5.20 5.00 4.20 5.30 4.30 4.55 4.25 2L40 4.4 .40
0.4 2.50* 4.70 3.70%% 3,90+ 3.60** 3.90** 4.15 3.85+" 2.80** 5.50 3.207%  3.35** 3.35*r 3,50 3.60* 3407+
0.6 2.85* 4,90 215 4.60 4.45 4,80 5.20 4.80 2.85* 5.95 3.85* 4.65 4,00 2.50 4,95 4,35
1.0 3.25* 5,75 ) 5.60 5.65 5.05 5.35 5.5% 3.25%% 7.55*% 5.50 6.90* 6.65" 6.45% 7.50% 7.00~
Norral Distribution  Large N)
0.0 4,75 5.05 <.85 4.90 4,85 4.85 4,90 4,80 4.75 4.90 4.80 4.85 4.80 4.80 4.75 4.75
0.2 3.80** 5.15 <.30 4.50 4.35 4.50 4,45 4.45 3.90** 5,40 4.20 4,45 4,30 4.40 4.40 4,40
0.4 3,10 5,20 4.25 4.85 4.70 4.90 4,95 4.85 3.10** 5,85 4.45 4,80 4.85 5.00 5.00 4.90
0.6 2.90** 4,90 4.90 4,90 4,90 4,90 4.90 4,90 2.90** 6.15* 6.00* 6.15* 6.15* 6.15%  6.15* 6.15*
1.0 3.30* 5,90 5.90 5.90 5.90 5.90 5.90 5.90 3.10%* 7.75%  7.75%* 7.75+  7.75* 7.70% 7.75* 7.75*
Chi-Square Distribution {Small N)
0.0 4.55 7.65* L.65 6.20" 3.55%* 5,25 7.30* 5.0C 4.55 3.95** 4,35 4,20 3.75%* ¢ 60 4.15 4.25
0.2 3.95*~ 6,80 3.25 3,78 3.85%* 4,60 6.95* 4.70 3.95** 4,45 4.50 4.25 4.35 4.00% 4.60 4.10
0.4 3.35* 3.30 270 I 3.75%% 475 5.75 4,90 3.35** 4.5% 3,75 3.8% 4.0 200 4.75% 4,25
0.6 3,85+ 7,75 t.20 6.9C 5.00 5.50 7.75% 5.4% 3.65** 5,70 4.30 4.70 4.70 270 5.50 4.75
1.0 <25 6.70* 2.25% £.65% 6.30* 6.10* 7.50* 6.25 4.25 7.80* 5.75 6.40* 5.65 5.00" 7.50* 6.05*
Chi-Square Distribution (Large ¥;
0.0 5.30 7.05*% .70 5.85 4.60 5.00 7.00* 5.00 5.30 4.70 5.10 5.05 4.75 4.85 4,70 4.85
0.2 5.00* 6.20* .80 6.00* 5.05 5.55 6.50* 5.55 4.00* 5,75 5.10 5.35 5.50 5.15 5.85 5.15
0.4 2.50** 5,10 .65 4,70 4.50 4.45 5.2% 4.45 2.50** 515 4.50 4,30 4.50 4,20 5.15 4,20
0.6 2.65** 5,30 270 5.00 4.80 4.40 5.25 4.40 2.65** 5.85 5.35 5.40 5.45 5.00 5.85 5.00
1.0 3.40**  6.25* 6.35%  6.40C 6.30* 6.25* 6.25* 6.25* 3.40** 8.15* 7.60* 7.85* 7.90* 7.45*  B.15* 7.45*%
*  Type | error rates 20p greater than a, where o4 = (a() - u)/Z,OOO)li = .0097.

* %

Type 1 error

rates

20p less than a.

p

90T




Table 14.(continued)

Type | Error Rates (%) for the Individual Means Tests and Sequential Procedures.
{Unequatl nj's (u=3.0) negatively paired with variances)

Coefficient
of varijation

: Combined ANOVA and Welch Procedures. Combined ANQVA and F* Procedures
of the variances

c ANOVA  WELCH  FW/BS  FW/JUK  FW/BF  FW/BA  FW/B FW/CH ANQVA F* FF*/BS FF*/JK FF*/BF FF*/BA FF*/B FF=/CH

Normal Distribution (Small N)

.00 .15 5.05

0.0 S 5.45 5.40 5.50 5.40 5.75 5.55 5.55 5.00 4,65 5 5.0% 5.25 5.10 5.1%
0.2 5.75 4.25 5.90 6.00* 5.95 5.60 5.95 5.95 5.75 3.75** 5,70 5.40 5.56 5.10 5.45 5.6C
0.4 9.60* 5.80 9.05* 8.40* 8.40% 7.95* 8.40% 8.40* g.60* 4.85 8.60* 7.95* 7.95+ 7.45% 7.40* 7.70
0.6 13.55* 5.25 9.70* 6.80* 8.55%  7.45%  §.45¢  7.35* 13.55* 5.65 10.15* 6.90*  8.50* 7.90" 6.35* 7.90+
1.0 20.70* 6.40* 13.35* 8.20* 9.15%* 12.85*% 7.20* 9.25* 20.70* 7.25% 13.30* 8.80* 9.35 13.35* 7.90" 9.85+
Normal Distribution (Large N)
0.0 4.75 5.05 4,85 4.90 4;85 4.85 4.90 4.80 4.75 4.90 4.80 4.85 4.80 4.80 4.75 4.75
0.2 8.50* 5.80 8.10* 7.40* 7.75% 7.35% 7.60x 7.75* 8.50  6.00* 8.05% 7.35* 7.70 7.40* 7.45* 7.60*
0.4 10.05* 5.00 6.95* 5.85 6.30* 5.80 5.55 5.90 10.05* 5.60 7.40% 6.30* 6.80~ 6.30* 6.05* 6.40*
0.6 13.20* 4.90 5.10 4,90 4.90 4.90 4,90 4.90 13.20* 5.85 6.00* 5.85 5.85 5.85 5.85 5.85
1.0 20.30* 5.30 5.35 5.30 5.30 6.50* 5.30 5.30 20.30* 7.70*% 7.75* 7.70% 7.70" 8.80* 7.70* 7.70"
Chi-Square Distribution (Small HN)
0.0 4.55 7.65%  4.65 6.20* 3.55%* 5,25 7.90*  5.00 4.55 3.95** 4,35 4.20 3.75" 4,60 4.15 4.25
0.2 5.50 8.15* 5.65 6.15% 4,65 5.45 7.25* 5.05 5.50 4.40 5.00 5.25 4.60 5.15 4,60 4.50
0.4 10.05* 12.30* 9.50* 10.20* 3.20* 9.25* 11.11* 8.55* 10.05% 6.35* 8.65% 8.25* 7.25%  8.05* 6.40* 7.25*
0.6 13.65% 13.40* 11.20* 12.55* 10.65* 12.55* 13 25+ 11.25* 13.65* 5.95 9.30* 8.50* 7.60  9.80*  6.55* 7.85
1.0 22.40* 12.70* 18.10* 16.80* 16.05% 17.90* 13.75* 16.15* 22.40* 10.30* 16.90* 14.65% 14,15+ 16.85* 11.10* 14.35
Chi-Square Distribution (Large N)
0.0 5.30 7.05%  5.70 5.85 4.60 5.00 7.00* 5.00 5.30 4.70 5.10 5.05 4.75 4.85  4.70 4.85
0.2 5.70 6.10* 5.10 5.20 4.40 4.60 5.65 4.60 5.70 4.10 4.70 4.35 4.25 4,25 3.95**  4.25
0.4 9.95* 7.20* 7.85* 7.60% 6.75* 7.00¢ 7.00% 7.00* 9.95* 5.70 7.75*% 6.80* 6.45* 6.60* 5.95 6.60*
0.6 14.90* 10.65* 10.50* 10.45% 10.45% 10.45* 10.65% 10.25* 14.90* 7.20* 8.00* 8.00* 7.45* 7.85* 7.25*% 7.70%
1.0 20.95* 10.30* 10.90* 11.55%* 10.50%* 11.35* 10.35+ 10.90* 20.95%  9.65* 10.40* 10.75* 9.75* 10.70*  9.65* 10.35"

Type 1 error rates 20p greater than a, where o = (a1 - a)/Z,OOO)% = ,0097.
** Type | error rates 20, less than a.
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the ANOVA F-test or the Welch test alone, the best being that using the
combined M variance test. The combined procedures using the F* and
ANOVA F-tests also showed better control of Type I error rates than
each test alone, with the best combination being that using the Box-
Andersen test. This sequential procedure was not as good as the best
ANOVA-Welch sequential procedure. Essentially the same situation
existed when using large unequal samples from the chi-square population.

When group sizes and variances are negatively paired, Type I
error rates were seriously inflated for the ANOVA F-test in both popu-
lations and for the Welch test in the chi-square population. In the
normal distribution, no sequential procedure improved upon the perform-
ance of the Welch test alone, especially when the sample size was large.
Similarly, for the combined ANOVA F and F* procedures, none controlled
Type I errors as well as the F*¥ test alone. The best of the sequential
procedures in all cases were those using Bartlett's variance test.

For negative pairing of group sizes and variances in the chi-~
square population, all sequential procedures combining the ANOVA T and
Welch tests showed superior control of Type I error rates compared to
either test individually, the best procedure being that using the
combined M variance test. The relative behaviour of the tests was the
same for both sample sizes, but control of Type I error rates was
better at large N. Combined procedures using the ANOVA F and F* tests
did not improve on the F* test alone at either sample size in the chi-
square population, and the F* test alone was an improvement on the best

sequential procedure using the combined ANOVA F and Welch tests. The
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best sequential procedure combining the ANOVA F and F* tests was that

using the Bartlett variance test.

Summary of Type I Error Rates of Combined Versus Individual Means Tests.

When the population sampled is normal, no sequential testing
procedure is preferable to uniformly adopting the Welch test regardless
of whether group sizes and/or variances are unequal. When the chi~
square population is sampled and nj's are equal, sequential procedures
using F* as the alternate test are preferable for N=48, and procedures
using the Welch test as the alternate test are preferable for N=144, A
more critical situation exists when nj's and variances are both unequal.
If pairing of n,'s and variances is positive, sequential procedures
combining the ANOVA F test and Welch test are to be preferred; but, when
the pairing of nj's and variances is negative, uniformly adopting the

Brown and Forsythe F* test is best for both sample sizes.

Power of the Sequential Testing Procedures

Discussion of the power of the sequential procedures will be
limited to the situations in which a sequential procedure improved on
the control of Type I error rates. This only occurred when the chi-
square population was sampled and was of most importance under condi-
tions where the ANOVA F-test is notably conservative, i.e., when
variances are heterogeneous and positively paired with unequal group
sizes. These results are presented in Table 15. In the chi—squaré

population, especially at small N, the Welch test significantly exceeded



Table 15.

. .
power {%) for the Individual Means Tests and Sequential Procedures in the Chi-Square Population.
(unequal nj's (u=3.0) positively paired with variances)

Coefficient
of variation
of the variances

Combined ANCVA and Welch Procedures

Combined ANQVA and F* Procedures

[« ANOYA  WELCH  FW/BS  FW/JK  FW/BF FW/BA FW/B Fw/CH ANQVA F* FF*/BS FF*/JK FF*/BF FF*/BA FF*/B  FF*/CH
Positively Paired Means and Yariances (Small N)
0.0 24.33  36.45 24.93 26.60 24.50 25.53 32.03 24.93 24.33  26.60 24.28 24.30 24.00 24.00 25.48 23.98
0.2 18.10  34.38 19.48 22.03 !'8.45 20.30 29.50 19.98 18.10 25.40 18.60 19.68 18.23 19.35 23.18 19.03
0.4 12,73 33.88 16.65 21.03 13.28 17.00 30.88 16.58 12.73  23.15 14.30 16.60C 13.65 15,55  21.30 15.28
0.6 9.95 33.15 19.08 25.70 13.58 19.43 32.55 16.38 9.95 22.13 14.23 17.23 14.05 15.83 21.63 15.73
1.0 6.83 38.30 24.20 31.55 Z3.45 24.68 38.30 25.43 6.83 19.58 14.38 16.40 15.95 15.08 19.35 15.73
Positively Paired Means and Variances (Large N)
0.0 63.93 67.00 63.98 64.53 84.10 64.08 66.34 61.08 $3.93 62.38 63.75 63.43 63.68 63.73 62.95 63.73
0.2 61.93 69.68 62.13 62.70 €1.95 62.05 67.73 62.05 61.93 65.78 62.10 62.35 61.90 62.05 64.58 62.05
0.4 55.48 72.30 58.28 60.98 56.00 57.40 71.03 57.40 55.48  66.28 57.37 59.25 56.38 56.93 65.38 56.93
0.6 49,30 81.13 72.43 73.73 68.55 66.15 81.03 66.15 49.30 67.40 62.93 63.43 62.55 59.55 67.30 59.55
1.0 40.73 87.28 84.65 84.05 86.60 78.83 87.28 78.83 40.73  68.45 67.58 66.70 68.18 64.48 68.45 64.48
Negatively Paired Means and Yariances (Small N)
0.0 25.40 19,08 25.03 24.13 24,73 24.15 23.35 24.25 25.40  19.33  24.70 23.75 24.73 24.30 21.95 24.30
0.2 23.88 22.55 23.85 24.38 23.90 23.63 25.65 24.00 23.88 22.65 23.70 23.33 23.90 23.35 23.25 23.65
0.4 21.88 29.00 22.70 24.60 z2.68 23.50 28.98 23.53 21.28 24.75 21.75 22.28 21.75 22.43 23.73 22.33
0.6 18.83 41.28 24.35 30.33  23.73 25.68 38.95 25.70 18.83  26.98 20.70 22.28 20.23 21.28 25.33 21.20
1.0 20.45 45,85 32,22 38.10 35.65 33.68 45.38 34.75 20.45 30.70 23.73 25.68 24.13 24.90 30.08 25.15
Negatively Paired Means and Variances (Large N}
0.0 62.90 62.33 62.70 62.78 62.93 62.95 62.95 62.95 62.90 63.93 62.93 62.95 62.98 63.03 63.73 63.03
0.2 59.48 66.18 60.03 61.08 60.48 60.30 65.45 60.30 59.48 65.60 60.05 60.58 60.23 60.13 64.25 60.13
0.4 54.80 71.30 60.20 63.20 60.60 59.98 70.68 59.98 54.80 65.68 58.15 59.93 58.08 58.03 65.23 58.03
0.6 50.93 82.35 75.50 76.43 76.15 71.05 82.28 71.05 50.93 66.70 63.15 63.48 63.15 61.20 66.65 61.20
1.0 45.50 86.98 86.28 85.40 36.90 81.35 86.98 81.38 45.50 65.40 64.93 64.60 65.33 62.58 65.40 62.58

a

fach value in

the table was based on 4,00 simulations.
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Table 15. {continued)

- . . . . a
Power (%) for the Individual Means Tests and Sequential Procedures in the Chi-Square Population

(Unequal nj's (u=3.0) negatively paired with variances)

Coefficient
of variation
of the variances

Combined ARQOVA and Welch Procedures.

Combined AHOVA and F* Procedures.

C ANOYA  WELCH  FW/BS  FW/JK  FW/BF  FW/BA  FW/B FW/CM ANOVA F* FF*/BS FF*/JK FF*/BF FF*/BA FF*/B ﬁF*/CM
Positively Paired Means and Variances (Small N)
0.0 25.40 19.08 25.03 24.13 24,73 24.15 23.35 24.25 25.40 19.33 24,70 23.75 24.73 24.30 21.95 24.30
0.2 27.40  16.13  26.25 24.43 24.45 24.65 20.60 24.30  27.40 16.25 26.08 23.58 24.73 24.88 19.23 24.23
0.4 25.95 13.05 25.78 23.18 21.88 22.63 16.70 21.80 28.95 12.90 25.48 21.55 22.23 22.68 15.38 21.70
0.6 3410 12,25 2410 20.63 17.60 21.33 13.50 17.93 34,10 12.28 23.68 19.85 17.90 2).80 13.03 18.40
1.0 43.03  20.00 31.68 29.40 24.83 31.50 20.85 25.15  43.03 13.45 27.05 23.50 19.18 28.28 14.08 19.93
Positively Paired Means and Variances (Large N)
0.0 62.90 62.33 62.70 62.78 62.93 62.95 62.95 62.95 62.90 63.93 62.93 62.95 62.98 63.03 63.73 63.03
0.2 65§.58 60.98 68.10 67.25 67.70 67.70 63.88 67.70 68.58 63.00 68.25 67.28 68.20 68.10 64.40 68.10
0.4 73.33  60.53 71.10 68.68 68.83 69.48 62.23 69.48 73.33 60.33 70.18 67.45 68.85 69.10 61.30 69.10
0.6 77.80 65.35 67.53 67.58 65.65 66.75 65.38 66.75 77.80 58.80 61.23 60.70 59.08 69.33 58.85 61.33
1.0 86.20 81.98 82.78 83.05 82.20 81.89 81.98 81.80 86.20 55.38 57.75 57.93 55.60 57.08 55.38 56.95
Negatively Paired Means and Yariances (Small H)
0.0 24.33  36.45 24.93 26.60 24.50 25.53 32.08 24,93 24.33 26.60 24.28 24,30 24.00 24.00 25.48 23.98
0.2 30.88 38.45 31.20 32.75 31.20 32.28 36.50 32.]0 30.88 28.73 30.23 29.63 29.63 30.00 28.93 29.73
0.4 37.70 40.73 38.00 39.08 38.25 38.40 41.78 3g.68 37.70  29.33 36.60 34.73 35.15 35.10 .31.88 34.63
0.6 44,83  45.53 45.38 46.28 45.93 44.75 46.83 45.18 44.83 29.45 39.93 36,75 37.23 38.38 31.10 36.60
1.0 52.20 50.38 52.78 52.85 54.28 51.05 51.28 595 52.20 30.85 44.93 39.98 39.25 43.30 31.63 33 58
Negatively Paired Means and Variances (Large N)
0.0 3.93 67.00 63.98 64.53 64.10 64.08 66.34 64.08 63.93 .62.38 63.75 63.43 63.68 63.73 62.95 63.73
0.2 63.33 68.05 69.30 69.40 69.65 69.55 69.65 69.55 69.33 62.73 68.28 67.65 67.83 67.93 64.30 67.98
0.4 72.13  68.73 71.18 70.93 70.75 70.50 69.10 70.50 72.13 59.63 . 67.63 65.33 64.48 65.40 59.93 65.40
0.6 75.70 73.98 74.15 7413 73.98 73.85 73.98 73.85 75.70 59.28 60.43 60.58 59.48 60.63 59.28 60.63
1.0 76.75 81,85 81.80 81.68 81.85 81.65 81.85 81.68 78.75 54,90 55.45 55.95 54.93 56.10 54.90 55.45

Each value in

the table was based on 4,000 simulations.
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the nominal o values, while the ANOVA F-test had empirical o values
significantly less than nominal ¢. At small N, the sequential proce-
dures choosing between these two tests, that show best control of
Type I error rates are, in order, those using the combined M, Box-
Scheffé énd Box—-Andersen variance tests; at large N the ordervof prefer-
ence is the Brown and Forsythe followed by either the combined M or the
Box-Andersen test. Since there is little to recommend one over the
other of the three best sequential procedures at either éamplé size in
terms of control of Type I error, it seems reasonable to prefer the pro-
cedure having most power, which was that using thé Box-Andersen variance
test at small N and that using the Brown and Forsythe test at large N.
However, in the interests of consistency, since there was little to
choose between the two procedures at large N, the Box-Andersen test is
recommended for selecting between the ANOVA F-test and the Welch‘test
when group sizes and variances are positively paired.

When nj’s were equal and small, the recommended sequential pro-
cedure for controlling Type I error (i.e., that combining the ANOVA F
and F* tests and using the jacknife variance test to decide between
them) was also more powerful than the F* test alone but was not as power—
ful as the ANOVA F-test alone. The recommended procedure, when N was
large (i.e., the Brown and Forsythe variance test choosing between the
ANOVA F and Welch tests), was almost as powerful as the Welch test alone
and was therefore a considerable improvement on the ANOVA F-test (see

Figure 16).



Table 16.

Power {%) for the Individual Means Tests and Sequential Procedures in the Chi-Square Popu]ationa
Equal n.'s
(€q J)

Coefficient
of variation Combined ANOVA and Welch Procedures. Combined ANOVA and F* Procedures.
of the variances

c ANQVA  WELCH  FW/3S  FW/JK  FW/BF  FW/BA  FW/B FH/CM ANOQVA F* FF*/BS FF*/JK FF*/BF FF*/BA FF*/B FF*/CM

Positively Paired Means and Yariances (Small H)

0.0 28.38 30.78 28.4 29.18 28.03 ] 28.25 31.40 28.23 28.38 26.58 28.20 28.03 28.20 28.05 27.23 28.10
0.2 26.13  28.00 26.35 27.28 25.53 25.88 28.30 25.90 26.13  24.63 26.03 25.68 26.03 25.78 24.85 25.83
0.4 24,13 26.83 24.83 25.95 22.78 24.08 27.35 23.98 2413 22.18  23.48 22.98 23.60 23.25 22.35 23.23
0.6 21.98 22,33 22.70 23.60 20.20 21.68 22.55 21.45 21.98 18.95 20.40 19.73 20.13 20.13 18.98 20.03
1.0 20.85 30.38 26.75 29.28 26.35 26.88 30.63 26.70 20.85 17.00 18.33 17.73 17.53 18.08 17.05 17.60
Positively Paired Means and Variances (Large N)
0.0 70.58 70.60 70.70 70.78 70.65 70.60 71.28 70.60 70.58  70.50 70.55 70.53 70.55 70.58 70.50 70.58
0.2 71.48  71.68 71.53 71.58 71.53 71.48 72.00 71.48 71.48 71,33 71.48 71.43 71.48 71.48 71.33 71.48
0.4 72.28 74.45 72.73 73.38 72.10 72.55 74.70 72.55 72.28 71.98 72.18 72.15 72.25 72.18 72.00 72.18
0.6 73.28 81.45 80.95 81.03 80.73 79.68 81.45 -79.68 73.28 72.73 72.83 72.75 72.75 72.80 72.73 72.80
1.0 71.75 89.60 88.43 88.50 89.60 86.98 89.60 86.98 71.75 70.25 70.25 70.73 70.25 70.33 70.25 70.33
Negatively Paired Means and Yariances (Small N)
0.0 28.38 30.78 28.45 29.18 28.03 28.25 31.40 28.23 28.38 26.58 28.20 28.03 28.20 28.05 27.23 28.10
0.2 30.20 -33.83  30.90 31.80 31.10 31.58 34.43 31.50 30,20 28.98 29.98 29.80 30.03 29.90 29.23 29.90
0.4 31.28 37.98 32.35 34.20 32.95 33.75 38.28 33.75 31.28  30.05 31.08 30.83 31.00 31.00 30.38 31.00
0.6 33.80 46.88 37.88 41.15 38.90 39.60 46.48 39.98 33.80 32.00 33.38 32.78 33.13 33.10 32.08 33.08
1.0 34,20 51.48 43.28 47.60 48.35 44.40 51.60 46.30 34,20 31.68 32.98 32.58 32.53 32.70 31.73 32.50
Negatively Paired Means and Variances (Large N)
0.0 70.58 70.60 70.70 70.78 70.65 70.60 71.28 70.60 70.58 70.50 70.55 70.53 70.55 70.58 70.50 70.58
0.2 69.78 72.23 70.48 70.88 70.78 70.60 72.50 70.60 69.78 69.73 69.78 69.78 69.78 69.78 69.73 69.78
0.4 68.58 75.10 71.80 72.93 73.08 72.05 75.05 72.35 68.58 68.25 68.45 68.35 68.38 68.43 68.25 68.43
0.6 66.58 51.08 80.13 80.10 80.58 78.90 81.08 78.90 68.56 67.88 67.95 67.95 67.88 67.95 67.88 67.95
1.0 66.43 87.38 87.20 86.98 87.38 85.78 87.38 85.83 66.43  65.08 65.08 65,13 65.08 65.15 65.08 65.15

a fach value in the table was besed on 4,000 simulations.
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Type I Errors of the Transformation Procedures

There were no conditions under which the use of the transforma-
tion procedures significantly improved upon the control of Type 1 error
rates exhibited by the ANOVA F-test on untransformed data. These
results are presented in Tables 17 and 18 for small and large sample
sizes, respectively. As was discussed pre&iously, no transformation can
achieve homoscedasticity unless a functional relationship exists between
the mean and variance of a distribution. Therefore, when no mean dif-
ferences exist and there is heterogeneity of variance between treatment
populations, a transformation cannot achieve homoscedasticity. Con-
sequently the results obtained are not surprising.

Using a variance test to select between transformations (Ta)
gave a slight improvement in control of Type I error rates when a
liberal bias was present: however this improvement was not sufficient
to warrant recommendation of the procedure. Also, when a conservative
bias was present, use of this procedure served to accentuate.the bias
and therefore also led to reduced power.

As Type I error rates were not substantially improved by any of

the transformation procedures, their power will not be discussed.



Table 17.
Type I Error Rates (%) for the ANOVA F-Test on Transformed and Untransformed Data

(Small N)
Group Coefficient Normal Distribution Chi-Square Distribution
Size of
Condition Variation T To T3 Tg T Ty T3 Tg
0.0 5.25 5.15 5.15 4.85 4.55 3.80 4.00 3.85 4.10 4.05
0.2 5.15  4.85 4.95 5.10 4.90 4.50 4.55 4.70 5.10 4.80
u=1.0 0.4 6.15 5.80 6.10 5.95 5.60 5.20 5.65 5.40 5.70 5.45
0.6 5.85 5.90 5.65 6.10 5.45 6.25 6.95 6.75 7.85 6.40
1.0 8.50 8.70 8.80 9.40 7.15 9.55 10.60 10.10 11.75 9.05
Unequal Group Sizes Positively Paired with Variances
0.0 4,170 4.00 4.00 4.10 3.9 4,35 4.40 4.60 4.90 4.70
0.2 5.20  5.30 5.25 5.35 5.00 4,65 4.95 4.70 4.85 4.75
u=1.5 0.4 4,30 4.20 .4.25 4.20 3.80 4,170 4.60 4.20 4.90 4.50
0.6 5.45 5,55 5.45 5,55 4.75 5.80 6.15 6.15 6.95 5.85
1.0 5.85 5.55 5.55 6.15 4.95 7.80 9.35 8.65 11.50 7.55
0.0 4.45 4,60 4.50 4.60 4.25 4,30 4.25 4.20 4.45 4.35
0.2 4,05 3.95 3.95 3.85 3.70 4,10 4.15 4.05 4.20 4.25
u=2.0 0.4 3.15 3.30 3.20 3.15 2.85 4,45 4,55 4,60 4.85 4.55
0.6 3.40 3.40 3.40 3.20 3.00 3.60 4.00 3.75 4.95 3.95
1.0 3.95 3.75 3.75 3.90 3.00 5,70 7.00 6.20 8.20 5.45
0.0 5.00 4.90 4.95 5.15 4.60 4.55 4,45 4,55 4,45 4.50
0.2 4,20 4.10 4.10 4.10 3.95 3.95 4.15 4.20 4.25 4.00
u= 3.0 0.4 2.80 2.55 2.85 2.65 2.55 .3.35 3.55 3.40 3.60 3.50
0.6 2.85 2.75 2.90 2.75 2.40 3.65 4.25 3.90 4.55 4.15
1.0 3.25  3.45 3,20 3.45 2.50 4.25 5.10 4.60 6.55 4.25
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Table 17. (continued)
Type 1 Error Rates (%) for the ANOVA F-Test on Transformed and Untransformed Data

(Small N)
Group Coefficient Normal Distribution Chi-Square Distribution
Size of
Condition Variation F T3 Ty T3 Ty F T T, T

Unequal Group Sizes Negatively Paired with Variances

R~ P

ol - 00 U1

0.0 4,10 4.00 4.00 4.10 3.95 4.35 4.40 4.60 4.90

0.2 5.15 5.30 5.20 5.35 5.00 4.75 4.75 4.80 5.00
u=1.5 0.4 6.50 7.00 6.75 6.95 6.20 6.20 6.50 6.50 6.80

0.6 8.85 9.55 9.25 9.90 8.25 7.06 7.85 7.30 8.75

1.0 11.35 11.60 11.45 12.95 10.50 12.80 14.10 13.20 15.85 1

0.0 4.45 4.60 4.50 4.60 4.25 4.30 4.25 4.20 4.45

0.2 6.55 6.55 6.40 6.05 6.10 4,70 5.05 4.85 5.40
u=2.0 0.4 8.75 8.90 8.80 9.00 8.05 8.45 8.35 8.20 9.05

0.6 10.25 10.20 10.20 10.15 9.25 11.00 12.05 11.30 12.85 1

1.0 15.85 16.05 15.65 17.35 13.85 16.00 17.80 16.95 20.20 1

0.0 5.00 4.90 4.95 5.15 4.60 4,55 4.45 4,55 4.45 4,

0.2 5.75 6.20 5.80 6.15 5.45 5.50 5.95 5.65 6.20 6.
u=3.0 0.4 9.60 10.30 9.95 10.45 8.75 10.05 10.40 10.15 11.20 10.

0.6 13.55 13.70 13.45 14.25 12.60 13.65 15.50 14.65 15.75 13.

1.0 20.70 21.00 20.80 22.50 18.45 22.40 23.00 22.70 24.50 21.
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Table 18.
Type I Error Rates (%) for the ANOVA F-Test on Transformed and Untransformed Data

(Large N)
Group Coefficient Normal Distribution Chi-Square Distribution
Size of

Condition Variation F T] T2 T3 T4 F T] T2 T3 1
0.0 4.80 4.70 4.70 4.55 4.45 5.00 5.00 4.95 5.00 4.95
0.2 5.90 6.25 6.10 6.70 5.45 4,90 5.20 5.15 5.85 5.50
u=1.0 0.4 5.80 6.05 5.80 6.40 4.95 6.25 6.30 6.25 6.90 6.25
0.6 6.35 6.25 6.40 7.75 6.10 5.30 6.30 5.95 8.45 5.65
1.0 7.75 9.30 7.80 15.70 9.05 7.95 11.25 9.45 17.25 7.80

Unequal Group Sizes Positively Paired with Variances

0.0 4.95 4.75 4.65 4.55  4.30 4.00 4.00 3.90 4.35 4.15
0.2 4.55 4.90 4.70 5.40 4.25 4.55 4,55 4.50 4.80 4.80
u=1.5 0.4 5.60 5.35 5.30 5.55 4.20 5.15 5.35 5.20 6.05 4.95
0.6 5.50 5.75 5.50 6.65 5.40 5.15 5.70 5.55 6.95 5.10
1.0 5.75 7.60 6.60 12.05 6.40 6.10 8.85 7.20 14.70 6.10
0.0 4.50 4.75 4.60 5.00 4.30 4.80 4.70 4.75 4.80 4.75
0.2 3.55 3.50 3.45 3.70 3.05 4.00 4.50 4.35 4.60 4.40
u=2.0 0.4 4.30 4.50 4.45 5.00 3.70 3.45 3.90 3.95 4.75 3.70
0.6 2.65 2.75 2.65 4.00 2.55 3.35 4,05 3.55 5.35 3.30
1.0 3.10 5.40 4.05 10.10 4.85 4.80 7.40 5.50 12.40 4.75
0.0 4.75 4.75 4.80 4.65 4.40 5.30 5.30 5.25 5.55 5.45
0.2 3.90 3.95 3.90 3.95 3.40 4.00 4.30 4.15 5.15 4.80
u=3.0 0.4 3.10 3.15 3.20 3.85 2.70 2.50 2.90 2.65 3.60 2.45
0.6 2.90 3.10 3.10 3.80 2.35 2.65 3.00 2.85 4.10 2.65
1.0 3.10 3.90 3.15 7.20 3.10 3.40 5.80 4.40 10.95 3.40
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Table 18. (continued)
Type I Error Rates (%) for the ANOVA F-Test on Transformed and Untransformed Data

(Large N)
Group Coefficient Normal Distribution Chi-Square Distribution
Size of
Condition Variation F T] T2 T3 T4 F T] T2 T3
Unequal Group Sizes Negatively Paired with Variances

0.0 .95 4,75 4.65 4,55 4.30 4,00 4.00 3.90 4.35 4.15
0.2 .00 6.40 6.25 6.55 5.25 5.60 5.45 5,40 5.85 5.75

= 0.4 .25 7.65 7.25 8.50 6.70 6.65 7.35 7.10 8.35 6.25
0.6 45 10.05 9.00 12.70 9.35 7.80 8.35 8.15 10.30 7.80
1.0 .35 13.40 11.85 19.30 11.35 2.30 16.60 13.40 22.95 12.10
0.0 .50 .75 4.60 5.00 4.30 4,80 4.70 4.75 4.80 4.75
0.2 .00 .55 7.30 7.60 6.75 6.75 6.75 6.75 7.00 6.60

= 0.4 .80 .30 6.75 8.20 6.05 7.85 8.90 8.20 10.15 8.35
0.6 .50 .40 10.25 12.60 9.80 10.40 12.05 11.15 14.90 10.40
1.0 .95 .45 15.70 20.80 13.00 16.25 19.00 16.80 24.45 15.75
0.0 .75 .75 4.80 4.65 4.40 5.30 5.30 5.25 5.55 5.45
0.2 .50 .50 8.50 8.40 7.25 5.70  5.65 5.75 5.95 6.00

= 0.4 .05 .40 10.00 11.55 8.90 9.95 10.20 10.05 11.00 9.95
0.6 .20 .30 13.45 16.95 12.20 14.90 16.25 15.70 19.45 14.80
1.0 30 .85 20.75 26.85 17.80 20.95 23.00 21.45 28.25 20.55
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Concluding Remarks

Empirical Type I error rates for the tests of mean equality
agree with the values obtained by other investigators (see Brown and
Forsythe, 1974a and Kohr and Games, 1974). However, no effect of mean
variance pairing on the relative power values of the Welch and F¥* tests
was found in this study when the data was normally distributed, whereas
both Brown and Forsythe (1974a) and Kohr and Games (1974) did observe
such an effect. The discrepancy between these previous results and the
results presented here may be explained by the absence of any particu-
larly deviant means in the present study. Brown and Forsythe (1974a)
showed that the Welch procedure had greater power than F* when extreme
means had larger variances and vice versa for extreme means with smaller
variances: they explained this by pointing out that means were weighted
by nj/sj2 in the Welch formula and by n in their formula for F*. Since
there were no extreme means in the present study a large weighting
factor at one end of the range of means would be exactly offset by a
small one at the other end of the means range, especially so since the
variances were also equally spaced over their range of values (except
for ¢ = 1.0).

Sampling from the chi-square population leads to bias in the
sample means and variances as estimators of the corresponding popula-
tion parameters and this is especially true when group sizes are small.
In a positively skewed distribution the sample mean will tend to under-

estimate the population mean and this effect will be more pronounced
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the greater the population variance and the smaller the sample size.
These facts provide an explanation for why mean-variance pairing
affected the power of all tests when the chi-square population was
sampled. If larger means are associated with larger variances they will
be underestimated to a greater degree than smaller means thus restrict-
ing the range of the means and leading to lower power for positive mean
variance pairing: conversely when smaller means have larger variances
they will be relatively more underestimated than larger means thus
expanding the range of the means and leading to higher power for nega-
tive mean-variance pairing.

The effect of group size-mean pairing on W and F* is not easily
explained because it is not easy to determine the relative degree of
bias in the sample estimates that enter into the more complex formulae
for these two statistics. However this effect diminishes at the larger
sample size as does the effect of mean-variance pairing as would be
expected if bias in the sample means is the reason for the power dif-
ferences.

Type I error rates and power of F* were the least variable of
the three tests. Thus F* is recommended if no information regarding
population shape and variances is available. Type I error rates for F*
only verged on the unacceptable when variance heterogeneity was at its
highest value but they were still approximately equal to or less than
those for the other tests. At the small sample size, although the
power of F* was generally less than that of W, it was usually close to
the a priori calculated power for F, and, on those occasions when it was

less than this value, W did not perform substantially better. At the
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larger sample size the power of F* again was usually below that of W but
the only occasions on which it was much less than the a priori power of
F, were those when variance heterogeneity was greatest (¢ = 1.0).

For the sequential procedures Type I error control was evalu-
ated in terms of deviations from nominal alpha in both conservative and
liberal directions. Conservative values were considered less accept-
able because of the usual concomitant power loss for these conditions.
The only situation in which a sequential procedure controlled Type I
error rates better than any single means test was in the chi-square
population when group sizes and variances were positively paired. How-
ever the power of the sequential procedures was not uniformly preferable
to that of F*, and, since F* only had liberal Type I error rates at the
highest degree of variance heterogéneity the advantage of performing the
more complicated sequential procedure is negligible.

As had been predicted a priori, using data transformations to
control Type I error rates in the presence of unequal group sizes and
variances was completely ineffective. Thus Brown and Forsythe's (1974a)

* emerges as the only procedure that reliably controls Type I error
rates despite non-normality, small sample size and heterogeneous vari-

ances and group sizes.
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APPENDIX

Glossary of Statistical Terms Not Defined in Text

DEGRERES OF FREEDOM: A sample of n variate values, Xi’ is said to have n
degrees of freedom, whether the variates are dependent or not, and a
statistic calculated from it is, by natural extension said to have n
degrees of freedom. But, if K functions of the sample values are held
constant, the number of degrees of freedom is reduced by K. For

n

_2 —
example, the statistic z (Xi ~ X)” , where X is the sample mean,

.

i
is said to have n-1 degrees of freedom, since the sample mean is
regarded as fixed.
By a further extension, the distribution of a statistic based on
n independent variates is said to have n degrees of freedom, particularly
2

in relation to X = ;Zi (see p. 50)
i

KURTOSIS: A term used to describe the extent to which a unimodal frequency
curve is 'peaked'; that is to say, the extent of the relative steepness
of ascent in the neighbourhood of the mode. The moment ratio

8, = Ex- 0 @E- 0
is used as a measure of kurtosis and is related to Yoo the measure used
here, by Yo 82— 3. If Y, is adopted as a measure of kurtosis, the
value it assumes for a normal distribution, namely zero, is taken as
a standard. Curves for which the ratio is less than, equal to or
greater than zero are known respectively as platykurtic, mesokurtic and
leptokurtic. Thus a platykurtic distribution is flatter or less peaked

than a normal distribution, whereas a leptokurtic distribution is

more soO.



MOMENT: A moment is the expected value (mean value) of the power of a
4
variate. For example, E(Xi~ u)  is the expected value of the fourth
power of deviations from the mean and is known as the fourth moment

about the mean.

NULL HYPOTHESIS: 1In general this term relates to a particular hypothesis
under test, as distinct from the alternative hypotheses which are under
consideration. It is therefore the hypothesis which determines the
probability of the Type I error. Here the term is restricted to a
hypothesis under test of 'no difference'. Thus the null hypothesis

in a test of mean equality is that 'no mean differences are present'.

SAMPLING DISTRIBUTION: The distribution of a statistic in all po;sible
samples which can be chosen according to a specified sampling scheme.
The expression always relates to a sampling scheme involving random
selection, and most usually concerns the distribution of a function

of a fixed number n of independent variates.

SKEWNESS: A term for assymmetry in relation to a frequency distribution.
If a unimodal distribution has a longer tail extending towards lower
values of the variate it is said to have negative skewness; in the

contrary case, positive skewness.



