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Abstract

F-statistics calculated from an Analysis of Variance (ANOVA) are

biased when the treatment populations sanpled have unequal variances, and

especially so r+hen the samples are unequal in size (Glass, peckham, and

Sanders, I972). Several solutions to this problem have been developed

which use the standard F tables but adjust the calculated statistics and

Lheir degrees of freedom by factors relaËed to the heterogeneous variances

(".g., I^Ielctr, 1951) . i^lhile these alternative procedures control the pro-

bability of Type r error when the ANovA assumption of homogeneity of

variance is violaËed, they may have less po\^rer than the ANOVA when the

assumptions are met (fohr and Games, 1974). Prior testing of the valid-

Íty of the variance homogeneity assumption r¿ould a1low a choice of tests

and hopefully optimize control of Type r error and power, but this pro-

cedure has not been popular because traditional variance lesEs are highly
sensítive to non-norrnality, while the ANOVA F-test of mean differences Ís

not (Box, 1953). Using more recently developed robust varíance tests
(e.g., Bror,rn and Forsythe, rg74b), the present research re-examined the

question of allowing the outcome of a test of variance homogeneity to

dictate the choice of a test on means.

Monte Carlo methods were used to simulate a one-way fixed effects

ANOVA design having four treatment groups. The performance of individual
means tests and several sequential procedures (in which a variance test

chose between the ANOVA and one of two alternate procedures) was evalu-

ated under a variety of conditions representing all possible combinatj-ons



of: a) four degrees of variance heterogeneÍty plus equal variances,

b) three degrees of group size inequality plus equal sizes, c) positive

and negative pairing of varÍances and group sizes, d) two population

shapes (normal and chi-square), e) two levels of overall sample size,

f) two patterns of group mean differences prus equal means, and g) posÍ-

tive and negative pairing of group means and variances. The means tests

evaluated were a) Ëhe ANOVA F-test, b) welch's (1951) procedure, and

c) Brown and Forsythefs (L974a) F* test, while the variance tests used to

choose between the ANOVA F-test and one of the other tr/o tests \.¡ere

a) Bartlett's (7937 ) test, b) Box and Andersen's (1955) rest, c) Bror,rn

and Forsythets (L974b) test on absoLute devÍations from the median,

d) Millerls (1968) jacknife resr, and e) rhe Box-scheffé tesr (Box, 1953;

Scheffá' 1959). Dat.a transformations were also perforrned in order to

assess thÍs procedure as a uethod of removing variance heterogeneity;

subsequent F-tests on transforued data were compared with the other means

tests.

rn accordance rvit.h previous studies (e.g., Kohr and Games, rg74)

the results deoonstrated the superior robustness and power of the Inlelch

test when the population sampled \{as nortnar, however in the chi-square

population it failed to control Type I error rates. Brovm and. Forsythe's

F'x test was the preferred test in this latter situation and vras therefore

recommended overall since its Type I error rates were stí1I acceptable

even on those occasions when the I,IeIch test \¿as more robust. Although

the power of the F* test was invariably less than that of the i,Ielch test,

it usually was close to a priorí power calculated for the ANOVA F-test.

i^Ihen variance tests \¡zere used to choose between tests of mean



equality, control of Type I error rates l''as never substantially better

and usually worse t.han r¿hen uniformly adopting the alternate test to

the ANOVA F-test: this $ias especÍally true for the situations rvhere

the ANOVA F-test was positively biased. On those few occasÍons rvhen

Type I error control was better for the sequential procedures, po\^rer was

considerably less than when uniformly adopting the alternate test:

the small gaín in improved Type I erroï rates \^ras not considered worth

the cost in power. Thus Brovm and Forsythets F* test r",as considered

beËter overall than all single or sequential testing procedures.

Finallyr F-tests on transfor¡aed data did not perform as well as

those on the original untransformed data.



Introduction

Scheffé OglO, p.1501) states "The most commonly occurring

problern in applied statistÍcs is, in my opinion, the comparison of the

means of two populations." usually this comparison is mad.e using

students t-test. Probably the second most frequently occurring

problem is the comparison of the means of more than two populations,

for which the usual method is the analysis of variance (ANOVA) F-test.

Both the t- and F-test have been deríved on Lhe basis of certain simpli-

fying assumptions, which should be met before these tests are used.

These assumptions are: (a) Observations are sampled from normally dis-

tributed populations. (b) Each population sampled. has the same variance

i.e., variances are homogeneous. (c) Errors associated with any paÍr

of observations are Índependent. Failure to meet any of these assump-

tions may result ín loss of accuracy of the statistical- test. inlhen

ínferences are maden based on the resulEs of staËistical tests, there

is always a certain probability of arr error of inference. However, if

the derivational assumptions of a test are met, the probability of

error is accurately known; but when they are not, the probability of

error is uncertain. The two major errors of inference aïe: (a) con-

cluding that population differences exist when they in fact do not;

and, (b) concluding that no population differences exíst when in fact
they do. These t\^ro errors are referred Lo respectively as Type r and

Type rr errors, their attendant probabilities being denoted by o and ß.

Por¿er is the probabiliEy of correctly concluding that populaËion
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dif f erenees exist, i.e. , po\,rer = f - ß. A statistical test is said to

be robust to vÍolation of its derivational assumptions Íf such vj-ola-

tion does not alter the probability of correct or erroneous inferences

based on the test) i.e. , if these probabÍlities remaj-n accurately knor^m.

Violation of the normalÍty assumption, alone, does not seriously affect

the accuracy of the t- and F-tests and they are therefore said to be

robust to non-normality (see Glass, peckham" and sanders, rg72). Hor¿-

ever' violation of the homogeneity of variance assunption r¡ay have con-

siderable effects on the t- and F-testts accuracy, especially íf the

groups of observations sarnpled from the various populations differ in

size (see Glass et al., L972). The tests are thus non-robust to

variance heterogeneity. rndependence of errors, the final assumption,

r¿il1 not be considered here, although it should be noËed that the t-

and F-tests are not robust to non-independence of errors (see Glass

et al., 1972).

since varíance heterogeneity may substantially affect the

accuracy of the t- and F-tests, alternaÈive methods have been developed

for use in rhís situarion (e.g., welch,1938, 1951). rn addition to

these alternatíve statistical procedures, it is often possible to

correct variance heterogeneity by transforming the original data, in

which case the t- or F-tests may then be used on the transformed data.

EmpÍrical sampling studies, using computer símulated populations, have

been used to compare the accuracy of the ANOVA F-test and t-test \,¡ith

the accuracy of sueh alternative statistical procedures as the l^Jelch

tests (welch, 1938, 1951), under conditions of variance heterogeneity
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and unequal group size (Brovrn and Forsythe, r9l4a; Kohr and Games,

L914). However' no empirical studies have been cond.ucted upon the pro-

cedure of performing an F-tesÈ or t-test upon data which has been

subjected to a variance stabj.Lizíng transformation. one purpose of

the present research is Ëo make an empirical comparison of the perform-

ance of: (a) the F-test; (b) alternative statistical procedures

believed to be robust to variance heterogeneity; and, (c) the F-test on

transformed daËa

If procedures exist Ëhat are insensitive to variance hetero-

geneity, whY are they not always used in preference to the F-test or

t-test? The ansr¿er to this question is that r+hen variances are equal,

the ANOVA F-test is more likely to find d.ifferences between populatÍon

means, where they exist (i.e., has greater power), than proced.ures such

as the I^Ielch tests (tcohr and Games, rg74). rn order to make the besË

use of the available tests, a researcher should test for heterogeneity

of variance before testing for di-fferences Ín population means. This

is a practice, which is not much used, beeause the conventional variance

tests are not robust to violatj-on of theír derivational assumption of

normality (Box, 1953).

Variance tests may also be used to determine a variance stabi-
Lizing transformation. rf a whole sequerice of transformations are

perforroed on the data, that set of transformed d.ata, which gives the

lowest value of the variance test statistic and permits the hypothesÍs

of varianee equality bet\,/een groups to be retained, flây be used in an

F-test or t-test. Since theoreticaLly a data transformation r¿hich
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stabilizes varÍance may both faÍl to eliminate non-normality where it

exists and introduce it where iÈ does not exist, varíance tests to be

used on transformed data must be robust to non-normalíty.

The performance of some robust variance tests under conditions

of unequal sample size and/or non-normality has been investigated

recently (Games, tr{ínk1er and probert, rg72; Gartside, 1972; Brovm and

Forsythe, L974b; Martin and Games , L976) and the results índicate that

only one test) the Box (1953) test, is truly robust to both non-

normality and inequalÍty of sarnple size. Unfortunately, the Box (1953)

test is less powerful than some of the less robust (but reasonably

acceptable) tests, such as the Box-And.ersen Test (nox and Andersen,

1955), or the jacknife rest (Mi11er, 1968).

ïf a variance test is to be used prÍor to an F- or t-test of

mean differences, ít is difficult to decíde r¿hich feature, robustness

or power, is more important. A non-robust variance test may lead to

erroneous rejection of the homogeneity of variance assumptíon whi_ch

would lead to E performing a possibly less porverful test of mean

equality such as the l,.Ie1ch test. On the other hand, a not very po\"/er-

ful but robust variance test may fail to detect variance heterogeneity

of an order which r.¡ould affect a subsequent F- or t-test of mean dif-
ferences: this may lead to erroneous rejection of the nu1l hypothesis

of mean equality. The only way in which this question may be ansr,¡ered

is to perform an empirical investigation of the sequence of variance

testing followed by an ANOVA F-test, if the varÍance test retains the

homogeneiLy of. variance assumption, or a procedure such as the l^lel_ch
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test, if the homogeneity of variance assumption is rejected. Thus a

further purPose of the present research is to compare the performance

of the Box (1953) variance test and some more powerful but less robust

variance tests (e.g., the Box-A¡dersen and Jacknife tests) in choosing

betvzeen alternative tests of mean differences. The quesÈion to be

answered is which variance test leads to the greatest robustness an¿

por¡Zer in a subsequent test of urean differences regardless of the actual

test of roean differences used.

Since the effect of unequar group size on the performance of

the Box-Andersen test is not knor¿n, ÈhÍ-s will be investigated here.

Also the performance of these variance tests in choosÍng transformations

will be ínvestigated.

Notation

At this point it is convenient to define the comrnon notation

system which will be used and also certain of the statistics which

wíll be referred to.

Let x- . represent the ith observation in the j th group whererJ

i = 1, ...n. and j = 1r...K. The X_. are ind.ependent variates wÍthJ-ij-
)expected value r. and variance o.'. The analysis of variance (aNove)

statistic, F, is used for the comparison of K gïoup means and is given

by:

I
j

p= (1)



vr'here

In,
JJ

the total number of observations

the group mean

rn.Î.. / ¡l,J l
J

ç
ll . .

J

v
ll ..

rx.. /n.
iAJ J

xrx.. / ¡r
l-'ì

Ja

ar(x..- x..)-r-J J
(n. - 1)

J

the grand mean

an unbiased estimate of o.2.
J

The numerator of the F ratio is known as the mean square between groups

(l'isMB) and the denominator is known as the mean sguare within groups

(us".).

fn the

of the ANOVA F

the square rooË

ease where

statistic t

of F when

K=2the

o compare

K=2and

Student t-statistic is

the tr¿o group means.

is given by:

used instead

t is equal to

r = (x. .-x. ., )J I' (2)

Effect of Assumption Violations on Type I Errors

I{hen populatíon means are compared the compuÈed values of t

or F are subsequently compared r+ith a critical value at a certain per-

centage poÍnt in the tail of their samplíng distribution. The tabled

values of these statistics, at gÍven percenLage points, are calculated

on the basis that the derivational assumptíons of the tests have been met

(t/n.
l
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and that differences between populatíon means do not exist. The chosen

region of rejection Ís knovm as the level of signifÍcance of the test

or o. If the calculated value of the statj.stic fa1ls r¿ithÍn the region

of rejection, the means of the populations are considered as differing

from each other. However, a difference between means is not the only

reason why the critíca1 value may be exceeded. The calculated value

may be one of tl'e 5"/" of calculated statístics r.¡hich exceed the critical

value r^¡hen the means are identical and the assumptions have been met,

in which case a Type r error has been made. rt can be seen then, that

if the assumptions of the test are met, the probability of a Type r

error is equal to Lhe level of significance chosen for the tes¡ (also

known as the nominal level of significance).

rf the assumptions of a test are violated, the sampling dis-

tribution of the test statistic is not the same as when the assumptions

are met. This means Lhat the tabled critical values are no longer

appropriate. when a nominal level of signifÍcance is chosen, the

tabled critical value r,¡ill not cut off the correct percentage of that

sampling dístribution whích exists when assumptions are violated. The

statistícal test is now inaccurate or biased. For example, suppose the

nomi.nal level of significance is set at 5% and the tabled critical

value cuts off more than 5Z or. the actual sampling distribution; no\ü

the probability of a calculated statistic exceeding the critical value

is greater L]nan 57". Under these circumstances a test is biased for

finding differences betweerì. means and is termed. liberal. On the other

hand, if the tabled critical value cuts off less than 5% of. the actual
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sarnPlÍng distribution, the probabÍlity of a calculated value exceeding

the critical value is less than 52. Noru the test is biased against

finding differences between means and is said to be conservative. Thus.

if a test Ís liberal, the actual probability of a Type r error (or the

aclual 1evel of signifÍcance) is greater than the nomínal level of

significance and if the test is conservative, the reverse is true.

If an experimenter concludes o on the basis of a statistical

test at the 52 1eve1 of signíficance, that mean dífferences exist, he

has a 5% chance of being wrong. Thus the statement that mean differ-

ences exj.st is not a statement of fact but a probability statement based

on evj-dence from a statistical test. The experimenter knows, that five

times in 100, a value exceeding the critical value may arise by chance,

when no mean differences exÍst. For the experimenter) or anyone else,

to have faith in his probability statements) they must be accurate.

Unfortunately, assumption violatíons can 1ead. to inaccurate probability

statements, therefore it is important to know, if possible, in what

direction and to what extent the various assumption violations affect

the probability of Type I errors.

Glass, Peckham and sanders (L972, p.245) reviewed rhe empirical

and theoretical studies on the effects of violating the assumptions

upon which the derivation of the F-test is based. specifically, ín the

case of the effect of heterogeneous varÍances upon Type r errors,

their review permitted the following general conclusions: (a) Ittren

group sizes are equa1, the effect of variance heterogeneity on the

probability of a Type r error is generally snall, but if variance
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heterogeneity is extreme, this ís no longer so. (b) I^lhen group sizes

are unequal and the larger groups are sampled from populations with

larger variances, the actual probabílity of a Type I error is less

than the nominal level of significance. (c) I^ihen group sizes are

unequal and the smaller groups are sampled from populations with larger

variances, Èhe actual probability of a Type I error is greater than the

nominal level of signÍficance. These conclusions give only a qualita-

tive picture of the effect of heterogeneity of variance and group size;

however, iÈ is desirable to know how much a given degree of hetero-

geneity wíll affect the probability of a Type f error.

For example, in the two cases outlined below, the smaller

samples have larger variances but the pattern of the sample sizes and

variances is differenË. F-tests on both sets of data r¿il1 be 1ibera1,

and presumably one more so than the other, but which set \,/ill lead to

the higher value of s is not clear.

Case A Case B

Sample Sizes L2 ,23 ,48 ,7 2 L2,78,36,90

Sample Variances L4.0,I4.0,6.0,6.0 15.0,15.0,5.0,5.0

Erapirical studies alone are suffÍcient to support Glass,

Peckham and Sanders' (L972) general conclusions, but in order to make

more specific statements, it is necessary to turn to a theoretical

analysÍs of the situation.

Box (f954) ,provides an exact mathematical method for determining

the probability of Type I error of the F-test when variances and,/or
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sample sízes are urì.equal. rn addition, he provídes a more aecessible

approximate solution in which he shor¿s that the ratio of mean squares

is distributed approximately as bF(tt',h), where b, the bias coeffÍ-cient,

is gíven by

. 1_ lr" -') !')
þ = 1+ * */N(ã'/õ'-Ð (3)

L_T/K

where o , the weighted mean variance is given by

02 - '(nj - 1)õj' /r(n. - 1)

and ã2, the unweighted mean variance is given by

-))Õ- = Io.' /t<.
J

hr and h are reduced degrees of freedom (df) given by

h' = 
[i(N-,j 

,"r' 
]' 

, (:n.o2)2 * N 
[î,*r"r,,ro] 

(6)

(4)

(s)

(7)

When group sizes are equal the weighted mean variance Í-s equal to
the unweighted mean variance and therefore b = l. Thus for equal group

sizes the F-test is not bÍased, in the sense that the numerator and

denominator of F have the same expected value. However, hr and h can be
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shov¡n to depend on

which is given by

the coefficient of variation of the variances,

,)-))-))
r(o.--o")'/(o")-

l (B)
K

rf variance heterogeneity is not present and group sizes are equal,

c = 0, and ht and h become equal to the conventional numerator and

denominator degrees of freedom for the F-test. However, if variance

heterogeneity ís present røith equal group sizes, c ) 0, and h'and h

become less than the conventional degrees of freedom. Thus, when

varÍance heË.erogeneity is present, even if group sizes are equal, use

of the conventional degrees of freedom for the F-test r+i1l give actual

Type r error rates which exceed their nominal values" An extreme

example given by Box (L954) is the case of seven groups of three obser-

vations each, where the variances are in the ratio 1:l:l:l:1:1:10 and

the actual probability of a Type r error, when 05, was reported as

.L2

when group sizes are also unequal, b may assume a value greater

or less than 1, which is determíned by the extent of skev¡ness of the

distribution of the variances, as measured by the ratio of weighted and.

unweighted mean variances. If the group sizes differ, but the distribu-

tion is syrrmetrical (e.g., variances are say 1,2 anð,3 and group sizes

are 3,9 and 3), the r+eighted and unweighted mean variances v¡i]1 be equal

and b ruill again equal 1; but, if the distribution is non-symnetrical,

b may assume a value greater or less than 1. h' and h again depend

mainly upon the coefficient of variation of the variances.
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It can be seen that if the larger groups have larger varíances,

the weighted mean variance will exceed the unweighted mean variance

and b will be less than 1; while if the smaller groups have the larger

variances, the unweighted mean variance and b v¡ill be greater than l.

consequently, a b value less than 1 indícates a conservative test,

while a b value greater than I indicates a liberal test. Furthermore,

the extent to r¡hich b differs from I is an indicator of the extent to

which a given test rnay be conservatÍve or liberal.

In empírical simulation studies, group size diffeïences, group

variance dífferences and numbers of groups are variables which, it

appears, are usually chosen independently of each other so as to pro-

vide a range of values of each variable, representative of usual

experimental situations. Various possible combinations of values of

these variables are then tested for their effect on the probability of

Type ï error in an F-test of mean differences. rf the intent of the

study is to shor¿ the range of bias that can be introduced by inequality

of group sizes and variances, this type of approach may not succeed very

v¡ell. 0ften tv/o apparently different patterns of variance and group

size heterogeneity may give ríse to the same degree of bias and only a

small range of bías is demonstrated (see for example, Horsnell, 1953).

However, if group sí-zes and variances \^rere chosen to satisfy a wid.e

range of b values, it v¡ould be possÍble to give a much more comprehen-

sive picture of the effect of variance heterogeneity combined with

unequal sample sizes. For each set of observations investÍgated, a

b value and an associated actual probabirity of Type r error could be
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found and any experimenter referring to this data r-rould, after calcufat-

ing his/her own sample b value, be able to infer the extent to whÍch

his/her test might be liberal or conservative.

Glass et al . (1,972) revier+ed tr¿o articles (Norton, cÍted in

Linquist, 1953; and Boneau, 1960) concerning the combined effects of

non-normality and variance heterogeneÍty on the probability of a Type I

error in the t- and F-tests. Boneau's (1960) sEudy indicated, as ex-

pected, that heterogeneneous variances produced only a smal-l degree of

bias in the t-test when group sizes r,üere equal and populations normal;

horvever, if the additional factor of non-normality rvas also present the

degree of bias Íncreased. For example, r,rhen taking samples of size

five from t\'ro normal populations havíng variances of one and four the

actual probability of a Type I error was .064 at the nominal .05 leve1,

whereas when sampling frorn trüo rectangular populations under the same

conditions the actual probability of a Type I error was .07I. Actual

and nominal probabilÍties of a Type I error were shol,¡r to be equal when

sampling from trvo rectangular populations of equal variance.

Recent results obtained by Havlicek and Petersen (L974) con-

firmed Boneau's (f960) observations but in addition demonstrated the

effects of sample size. Increasing sample size considerably reduced

the probabilíty of a Type I error, when taking equal sized samples from

t\^/o positively skewed populatÍons with dj-f ferent variances. For example,

rvhen takÍng samples of size five from t\../o normal populations, one having

twice the variance of the other, the probability of a Type I error for a

one-tailed t-test was .0560 and .0602 in the left and right tails,
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respectively (at a nominal significance level of five percent) and for

the positively skerved populations, the corresponding values were .0294

and .1048. When the sample size was increased to 15, the normal

population values became .0586 and .0578, r,rhereas the values became

.0338 and .0848 when sampling from posítively skewed populations. rt

should be emphasized that when the variances ruere equal, there is not a

substantial discrepancy betr¿een nominal and actual probabilities of a

Type I error for the positively skewed distribution.

It r+ould seem that having equal group sizes affords little pro-

tection againsLthe effects of varj-ance heterogeneity when sampling from

skewed distributions unless the group síze is comparatively large.

Unequal sample sizes and variances produce even greater discrepancies

betr¡een actual and nominal probabilities of a Type r error than those

obtained r.¡ith normal populations.

Effects of Assumption Violatíons on Power

Por¡er is the probability of detecting a true difference betr^Teen

population means and if thís true difference is not detected a Type II

error has been made. An experimenter may determine a priori the power

of the t- and F-tests for detecting a specified difference betr¿een

population means. I^Ihen a difference between population means exísts

Èhe sampling dÍstríbution of L or F is different from the distribution

that exists r¿hen there are no mean differences, and is referred to as

the non-central t or F distribution. As can be seen from their formulae

t and F will be larger when population mean differences exist, therefore
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the critical value, whÍch cuts oif say the upper five percent of t or

F values r¿hen no mean differences exist, will cut off a much larger

percentage of the appropriate non-central t or F distributÍon. The

po\rer of a test Ís then the probability of a calculated t or F value

falling beyond the critical value in their non-central distributions.

Any factor r¿hich affects the probability of a Type r error might also

be expected to affect the probability of a Type rr error (ß) or po\,¡er

(1- ß). Thus if an assumptÍon violation increased the probability of

a Type r error beyond its nomínal value,.i.e., was liberal, it would be

expected to increase porTer and vice versa.

Control of the probabílity of Type I errors is important so that

if mean differences are said to exist we knor¿ there is a high probabil-

ity that they do in fact exist. on the other hand control of the pro-

bability of Type rr errors is important so that if true mean differ-

ences do exist there is a hÍgh probability rhat they will be detecred.

For this reason ít is also necessary to knor¿ how assumption violations

affect the probabilíty of a Type fI error or power.

Considering first the effect of heterogeneous variances on the

po\../er of the F-test, Glass et al . (tgl 2, p.267) state "that there exists

no method by which the theoretical porn/er of the F-test can be determined

r'rhen error variances are heterogeneous.t' Empirical power values under any

conditions, may be determined by simulation techniques: hor¿ever nothing

}¡il1 be learned concerning the effect of heterogeneous variances unless

there exísts a theoretical power with which to compare the empirically

determined power values. Porver is a function of) amongst other
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things, the non-centralíty parameter r¡hich Ís gíven by

^atl - (e)

r+here u.. is the grand mean of all the populations. As can be seen, the

formula for ô2 irr.rol.r"s a single value fot o2, the comnon population

variance. I^Ihen variances are heterogeneous, there Ís no single value
)for o- : investigators have dealt with this problem by substituting the

average within group variance, ã2 (e.g., Horsnell, 1953; Donaldson,

1968; and Lunney, 1970).

Horsnell (f953) has shovm that for equal group sizes there is a

close corresPondence between the actual power and the tttheoreticaltt power

calculated using ;2. trIith unequal group sizes, when the larger group

has the larger variance, actual po\^/er values are less than "theoretical"

po\.,Ier values: when the larger group has the smaller variance actual

po\¡rer values exceed tttheoretÍcalt' power values. These results for power

exactly parallel the results obrained for rhe probability of Type r

error: this could have been predicted, since any increase or decrease

in c¿ is usually accompanied by a corresponding increase or decrease in

pov¡er.

Donaldson (f968) investigated the combined effecE of hetero-

geneous variances and non-norrnality on the poi^rer of the F-test. The two

non-normal populations that he used were the exponential and lognormal

distributions : for both distributions the arithmetic mean squared

was set equal to the variance, thus any differences between the means

.2
fri(ui - u..)
J- "

62
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resulted in heterogeneous variances and the greater the mean differences

the greaLer was the degree of variance heterogeneity. For the normal

dist.ribution Lhe mean and variance are not related to each other and

thus any pairing of means and variances rTray be introduced into norma1

distributions. Therefore, in order to obtain a proper por,rer comparÍson,

Donaldson (1968) made Èhe variance equar to the meån squared for the

normaL population also.

For the upper ranges of þ (0 = 6 /J-l) Donatdson (196g) found

that the F-test based upon the Lwo non-normal dist,ributions had higher

po!¡er than that based upon the normal distríbutÍon; while at lower $

values the tests based on the non-normal distributions were only slightly

less powerful than those based on normal distributicns. The points at

which the power curves crossed depended on the number of groups and

group size and occurred aË lorqer $ values for the lognormal than it did

for the exponential distributicn. For example at cx = .05 , with two

grouPS of 16 observations the lognormal and normal power curves crossed

at 0 = .50 and a power of .10 while the exponential and normal curves

crossed at $ = 1.30 and a por,rer of .40. The corresponding crossover

points for four groups of 16 observaLions t/ere at ó = 1.10, pa\¿er = .40

4nd 0 = L.25, po\,¡er = .50, respectively.

Donaldsonrs (1968) power curves for the normal distribution r+ith

heterogeneous variances were practically identical to those obtained

when variances r¿ere homogeneous. Thus the particular pattern of vari-

ance heterogeneity seen with lognormal and exponential distributions

actually provides a Pover advantage over the conventional siruation of

normal distributions and homogeneous variânces, in the upper po\,¡er
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ranges. rf an experimenter calculated power a priori, assuming equal

variances and normality, it is highly unlikely that he would be

satisfied r"ith a po\,ier value belorv.50. since it is only be1ow.50

that the po\,/er of the non-normal populations becomes less than that of
the normal population this r¿ou1d not seem to be a matter for concern,

given that E determines povTer a priori to be > .50.

In spite of the extreme varÍance heterogeneÍty that may occur

with lognormal and exponential distributions, v¡hen mean d.ifferences

exist, the po\¡/er of the F-test does not seem to be much affected. The

explanation for this lies in the fact that when non-norrnal distributions

are used, the nunerator and denominator of the F-ratio are no longer

independent of each other as they are with normal dístributions.

Donaldson (f968) obtained empirical correlations between the numeraror

and denominator of F for all the conditions which he used.; ít was Ehen

possible to show Lhat 'rThe size of Ehe correlation co-effÍcÍent is
closely associated with the degree to which F is conservat.ive." (That

is, conservative with respect Ëo Type II errors.)

Unfortunately Donaldson (1968) did not invesEigate the effecr of
unequal grouP size on po\,/er in non-normal populations with heterogerieous

variances. It is to be expected. from what has been discussed previously

that this would affect the power of the F-test considerably.

Violation of the normality assumption by itself does not usually

cause major discrepancies between nominal and. actual probabilities of
Type r error or power. Generally, leptokurtosis increases and praty-

kurtosis decreases po\^¡er values (G1ass et a1 ,, LgTz). Because of the
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relationship between o levels and polrer one night expect an increased

probabílity of rejecting the nu1l hypothesís when it Ís true (i.e., in-

creased probability of a Type I error) for leptokurtic populations.

Interestingly though, for Donaldson's t\ro non-normal leptokurtic popula-

tions, there is the combined advantage of being both more likely to rej ect

the null hypothesis r¿hen it Ís false and retain ít rvhen Ít ís true.

Donaldson attríbutes this doubly advantageous feature of the F-test, on

his non-normal populations, to the correlation betr¿een numerator and

denomÍnator of F. Furthermore, he demonstrated that under the null

hypothesis, this correlation is a functíon of the kurtosis of the popula-

Èion. Donaldson did not investigate the additional affect of unequal

sample síze.

In the case r¿here variance heterogeneity is combined with

unequal sample sizes the dÍstortions of q levels and poT¡/er for the t-

and F-tests may become so great as to render these tests useless. The

question remains as to hov¡ one may accurately test the significance of

the dÍf f erence between t\.vo or more means under these conditions. There

are a variety of approaches to this problem and each will be considered

in turn.

Alternatíve Procedures for Comparing Means

When there are tr,Jo means to be compared and the ratio of the

populati-on variances is unknown, the problem of testing the signifícance

of the differences between these two means is known as the Behrens-

Fj-sher problem (Behrens, L929; Fisher,1935). Both the original
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Behrens-Fisher solution and the later We1ch-Aspin solution (Llelch , L947;

Aspin, 1948) requÍ-re speciar tables for the crÍticar values of their

respective distributions. Each of the distributions is defined by the

degrees of freedom for each sample (f. ) and a quantity which is depend-

ent on the ratio 
"r2 / ".12, 

where ".2 "nd ,.,2 ur" unbiased estimatesJ J J J'
of the population variances. Tables of the critical values of the

Behrens-Fisher distribution are entered r¿ith f. , fj , ana õ , where

9- (ro¡

and À. = Ifn: , the reciprocal of the sample síze; whereas lables of theJJ
critical values of the Welch-Aspin dístribution are entered \^/ith f. ,

f.., and
I'

0 and c are related by the following equalÍty

^j"j' / (^j"j + À.,"r,2) ,

arcsin 
"% 1""" Scheffé , Lg7O, p.1505).0

(n¡

(rz)

In addition to the Welch-Aspin asymptotic series solution, I^Ielch

(1938, L947 ) has provided an approximate degrees of freedom (APDF)

solution using the t-distribution. specifically the críteríon

(i.¡ -i..,) - (ui-ui,)

ffi (13 )
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(where i . are.J

approximately

sample means and

the t-distrÍbution

Uj are population means) follows

with degrees of freedom given by

)
(^. s.

.1 1

))
Â. r S= r Jtt

-¿4

^. 
S, /JJ

Í.
J

)L
* Àj, 

"j, / fj,

(14)

when the population means are equal.

Wang (1971) has calculated the probabilities of Type I error for

each of the above tests under various conditions of populalion variance

ratios, sample sizes and nominal levels of significance. Generally the

Behrens-Fisher test was found to be rather conservative while the l^Ielch-

Aspin test sho\,/ed a maximum deviation from nominal c (under the condi-

tions investigated) of onry .0009. The l-lelch approxim.ate degrees of

freedom test agreed very closely with the l,Ielch-Aspj-n test, showing a

maxímum deviatíon from nominal cr of .0018 under the same condi-tions.

Since the l^Ielch-Aspin critical values are avaílable for only a selected

set of o, , (f* , f..r), and c (e.g., the smaller number of degrees ofJJ
freedommustbe > 6when o=.10, > Bwhenq=.05, and > l0wheno,

= .02 or .01), it would seem more reasonable to use the i,Ielch A?DF test

which only requires the t-rables. scheffê (L970, p.1505) has stated I'r

judge Wang's work will justify the conclusion that l,Ielch's approximate

t-solution, is a satisfactory practícal solution of the Behren's-

Fisher problem."

Welch (195f) has shovm that his APDF solution to the Behrenrs

Fisher problem may be generalized to the case where there are more than
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t'tn¡o group means to be

stat is t ic

compared In this case the distribution of the

(i.. - x
J

)2 / (r-r¡
(1s)

r(1 - r¿. / 2r.72 ¡ (n.-r)J J 'J

(x2-r)
(r a;

w=
Iw.

1j'

1 ' 2(K-2)t * ---5--
(K--1)

(where w. = 1,/À.s.,2 , "nd i.. = (rw.i..) / (Lwr), when the popularionJ J J' j .j' j
means are equal, follows approximately the distribution of F with

denomÍnat.or degrees of freedom gÍven by

f 2 = 
| "] 

-1

and the usual numerator degrees of freedom. For large samples the

numerator of Iù is distributed as a chÍ-square variable with (K-1) degrees

of freedom: hor¡ever this is not true for smalr sampres. James (1951)

has shovm Ëhat the rlisrribution of this quantity in sma1l samples may

be approximated by

x2
3x2 + (K+1)

2(K2-L)
r(1 -w. /zv.)z/tJJ

r¿here x2 is a chi square variabre with (r<-r¡ degrees of freedom.

rn an empirical invest.ígatÍon, Bror¿n and Forsythe (1974a) have

cornpared the performance of the usual ANOVA F-test, the generalized

i^lelch APDF solution, Jamest soLution and another solution, in which the

['.

Ijj



¿-)

denomi-nator o f

numerator v¡hen

varÍances. In

F is altered to have an expected value equal

the means are equal, regardless of the value

this latter solutÍon the value

to the

of the

is distributed approximately as

freedom and denominator degrees

(f941) approxÍmation.

Xc.
.'lJ"

' / (n-1) ,

where c. = (r-n./ x) "j'

(18)

F with the usual numerator degrees of

of freedom, f, given by the SatËerthr¡aite

(re)

Ir^

tIn. (X - X..)-. J 'l
I

,>

r(1 - n. / N) s.',JJ
-t

I
f.

l[tri-nr/ tr) "rt]

The results of the study demonstrate the usual lack of robustness of

Ehe ANOVA under conditions of heterogeneous variances and unequal sample

sizes. 0f the alternatives, Jamest procedure gives actual probabÍ1itíes

of a Type I error which are greater than the nominal level of signifí-

cance when the sample sizes are small (i.e., 4),whi1e the l,Ielch pro-

cedure and Fj.- show reasonably good control of the probability of a Type

I error. 0n occasions F* perforrns better than the Welch procedure and

on other occasions the situation Ís reversed, however no consistent

trends emerge. The i^lelch actual probabilities of a Type r error vary

less over Ëhe conditions investigated Ëhan they do for Fx, but the dif-

ference is slight. Ernpirical power determinations showed that F¡" and
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the l{elch procedure produced very similar results to the ANOVA when

variances were equal. when variances \^¡ere unequal, only F* and the

l{elch procedure \^¡ere compared since Brovm and Forsythe (1974a) con-

sidered the actual probabilÍty of a Type r error for the ANOVA to be

unacceptable under these conditions. Inrhich of the ti"/o procedures has

Ëhe greater Pol{er depends upon whether the extreme means have compara-

tively large or smarr variances. sincerín the welch procedure, means

are weighted by n./s.2 
"rrd in Frr by n, , an extreme mean with a smallJJ'J

vartrance would tend to increase i^i more than F* and conversely for

extreme means \tith large variances. This feature makes a very sizeable

dÍfference to the empirical power of the two tests.

Kohr and Games (L974) have also compared the performance of the

i^Ielch procedure and the ANOVA under conditions of equal and unequal

variances and sample sizes. Also included in their empírical investi-
gation of Type r error rates and power were the unweighted means

analysis and a procedure due to Box (1g54). The unweighted means

ñ = KlL (1/n. )l

^rrrl--\]-L^'ll\. .J

analysÍ-s employs the same MSTIG "" the ANOVA, however, the MSra is cal_

culated givíng equal weight to each group mean and is given by

MSo,. = ñr(i.-õ)/(K-1)Õu .J (20)

where

and

rn the Box (1954) procedure the usual mean square ratio obtained in an

ANOVA is divided by the Box bias coeffi-cienr b, calculated from the
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sample data, and this statistic is referred to the F distribution r.¡ith

degrees of freedom ht and h (see (6) and (7) above). This study \^¡as

unusual in that the extent of variance heterogeneity \,ras quantified by

calculation of the coefficient of variatÍon of the populatÍon variances:

also b values were calculated for al1 conditions of unequal sample size.

The results show that the unweighted means analysis ¡¿as even less

robust t.han the conventional ANOVA, while the.welch procedure shor¡ed

the best control of the probability of a Type I error, with the Box

procedure a close second.

Results for power indicate that the ANOVA had superior power

r+hen the assumptions were meË. itrhen group sizes \¡/ere equal and vari-

ances \,,/ere unequal , the Welch procedure shor,¡ed superior power, except

when the deviant means were paired with larger varíances, Ín which case

it was less powerfur than the Box procedure, which in turn was less

powerful than the ANOVA. This v¡as in accordance r¿iËh Brov¡n and

Forsythets (L974a) findings. The Box procedure v/as never the most

powerful in the equal n case. For unequal nts and variances the l,Ielch

procedure was agaín usually the most powerful and when deviant means

were paired r¡ith large variances the wel-ch procedure was again dis-

placed as the most po'$rerful test. The only situation in which the Box

procedure was most powerful ¡¡as if deviant means ¡,¡ere all paired with

large variances; it was not sufficíent for one deviant mean to be

paired r,¡ith a large variance if another deviant mean \,ras not. Consider-

ing lhe extreme specificity of the sítuation in which the Box procedure

is most powerful, the small líkelihood of knor¿ing the situation a priori
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and the small extent to rthich the power of the Box procedure exceeds

that of the welch procedure in these situations, it r¿ould seem that

the Box procedure is not a particularly useful alternative.

A1l Lhe foregoing tests belong to a general class of solutions

to the problem of testing for mean differences in the presence of

variance heterogeneity. Each of the tests allows for the existence of

variance heterogeneity and therefore does not require the assumption

of equal group variances. An alternative approach is to bend the

data to fiË the assumpEions of the conventional ANovA F-tesÈ or the

t-test.

Removal of AssumÞtion Violations Data TransformatÍon

Data transformations have frequently been used to make the data

fit the assumptions of the ANOV.A, F-test; this procedure, although it

sounds simple, is not without attendant difficulties. Firstly, the nu1l

hypothesÍs of mean equality is usually phrased in terms of the origínal

data, whereas the actual hypothesis Lested is on the transformed d.ata.

Hor¿ever, if the Ëransformed variate has some theoretical meaning

(e.g., reaction times are often transformed before analysis by a reci-

procal transformation: the transformed variate then has some meaning

as "speed of response") the experjmenter may be perfectly willing to

perform a hypoLhesis test on the transformed data and rest.rÍct his

conclusions to the transformed variate. Problems arise r¿hen the trans-

formation is performed merely to alter the form of the distribution of

the dependent variable, in order to facilitate data analysi-s, and has no
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val-ue in terms of the scientific theory being tesEed. under these

latter circumstances the experimenLer "ends up testi-ng a different hypo-

thesis than originally intended, and is rypically not logically justÍ-

fied in extending his conclusíons back to the original measure of inter-

estl" (Games and Lucas, 1966, p,315). Às an exampre, suppose the group

means of the variable X are identical but the treatrnent populaticns

differ from each other in some other respect such as variance. Under

these circumsËances an experirnenter rnay wish to perform a variance

stabilizing transfornation. It is nov perfectly possible that. the treat-

ment group means will differ from each other on the transformed variate,

Y = f(x)' Thus, ;'re¡ectlng the hypothesis of equal treatmenË means on

f(X) may occur because the t.reatment populations on x differ in vari-

ance, or in skewness, or in kurtosis, even though the population means

on X are equal. Thus rejecring rhe hyporhesis char Uf(Xf) uf{Xr)

!r{xr) implies so¡ne difference in the treatment effects, but does not

clearly imply Èhe rejection of ux = Þx = ... = u* " (Games and Lucas,"1 "z ^3
1966, p. 315) .

When heterogeneity of variance (heteroscedasticity) exists a

Ëransformation can be found r+hích v¡ill stabiJi.ze variance across groups

if a functional relationship exists betr¿een the mean and the variance.

There are mâny naturally occurríng forrns of variation such as Poisson,

bino¡nial and lognorrnel distributions r¿here the appropriate variance

stabilizing transformation Ís knovn (Bartlert , Lg47 ), however the experi-

menter often rnay not know what the shape of the population distrlbution

is and can only work on the sample evidence. olds, Ilattson and odeh
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(1956) suggest the procedure of using sampre means and variances ro

obtain an estimate of the regression of the population variance on the

population mean. Once a regression function has been determined it is

then possible to determine the variance stabilizing transformation by

Ëhe method given by Barr]err (1947). suppose the estimated relation-

ship between the population variances and means is represented by

f (ux) (2t¡

)
r¿here o,-- is Ëhe variance

Å

\,rith the mean of X equal

may be represented by the

is given approximately by

The purpose of the
1

formed variate o '
É

on the original scale of measurements X

ro uX . Then for any transformation, which

function g(X), the variance of this function

2(deldu*) - r(ux) (22)

transformation is that the

should be a constant, say c

variance of the trans-

' , thus

dg/ dv* (23)

(24)

and

c (ux)
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ThÍs integral may then be evaluated for any function of the mean (for

exampre, when mean and variance are proportional as in the poisson

distribution, integration gives the square rooË transformation).

Mueller (I949, p.209) notes that this procedure involves "several severe

approximationsr" however olds et al. (1956, p.12) maintain that "it

seems to be the best one generally available." Since a transformation

arrived at. in this manner is only an approximation it would seem

advisable to check that the variance of the transformed variate has been

stabilized before proceeding with the analysis.

Transformations may be applied to Ehe data for reason.s other

than achieving homoscedasticity: for example, a norrnalízíng transforma-

tíon may be required or one that renoves non-addítivity. rt is often

true that a transformation applied for one of the above reasons r¿i1l

inci-dentally achieve the remaining obj ectives also: but there is no

guarantee that this r¡i1l be true. rn the met.hod outlined above for

determining the (scedasticity) transformation, it was seen that the

functional relationship between mean and varíance determined the trans-

formation used; but a variety of different dj-stribution forms may have

the same relationship betrveen mean and variance: thus the transforura-

tion which gives homoscedasticity cannot be expected to produce norural-

ity in every one of these cases (see Mueller, Lg4g, and curtiss, 1943).

Tarter and Kor¿a1skL (L972) have defined the precise situation in r.¡hich

the scedasticiLy transformation will also prod.uce normality, but this

will noE be discussed here.

As was discussed previously, non-normality alone does not
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seriously Ínfluence the conclusions drar¿n from the results of a t- or

F-test, so it would seem relatÍvely pointless to perform a transforma-

tion for this reason alone. In a computer simulation study, Games an¿

Lucas (1966) have shovm that performing a normalizing transformation

actually caused greater d.eviations from theoretical power and signifi-

cance levels than using the non-normal, untransformed data. Add to

this lhe facÈ that t.he population foru was knor,m and therefore also the

correct normalizing transformation, which is not the case for the

typical experimenter, and the whole procedure emerges as having limited

usefulness.

Another approach to achieving homoscedasticity is to choose a

transform¡tion, trÍthín a restricted family, to minimize some measure

of variance heterogeneity. Box and cox (1964) used a por./er family of

transformations where the original variable, x, is transformed. into

variable Y, which is some function of x, by the equations given below.

1)/a (dlo)

(d=0)
(2s)

Basically the oríginal variable x is raised to some po\¡¡er d, which is a

curvilinear transformation and v¡i11 therefore influence the subsequent

ANovA F-test. when dlO, the remaining procedures of subtracting I and

then dividing by d are linear transformations which have no further

effect on the ANOVA F-test. This means thar (25) is exactly equivalent

to

[,*u -Y =(

I 
tot.'



Y ={

t

x-l
t-

1og

xd

1og X
e

(dl0)

(d=o)
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(26)

The form (25) is preferred because it is a continuous function at d=0,

sÍnce it rnay be shov¡n that the limit of y = (Xd - f) / d, as d

approaches zero, is log.x (schlesselman, 1973). This power family gives

rise to many of the commonly used transformaËions; for example, from

(26):

d

d

d

-1 gives Y =

Z gr-ves Y =

0 gives Y =

= L/X, the recíprocal transformarion,

,V X , the square root transformation,

X , the logarithmic transformation.

Having decided upon this faraily of transformations, Box and Cox

(L964) aLtempted to arrive at a value for d (i.e., chose a transforma-

tion from within the family) which would best enable the transformed

data to satisfy not only a homoscedastic mod.el but also one v¡hich was

addítive and normal. The mathematical sophistication of the procedures

by which the value for d was arrived at, place them beyond the scope of

the present discussion.

Whí1e a procedure which aLtempts to satísfy all the objectives

of a Èransformatíon simultaneously is theoreticalty appealing, it may

not be particularly useful in practice as one of the objectives may be

more compelling than the others. For example, in a one-way ANOVA, ít is

clear that there ís more reason to choose d to achÍeve homoscedasticÍty

than normality. Draper and Hunter (1969) have suggested that a trans-

formation may be chosen by plotting against d, functions which occur

naturally in Èhe usual analysis. They include in these functions the
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mean square (MS) ratios (F values) for treatments and interactions and

a statistic which supplÍes information on variance heterogeneíty. Thus

one could choose a transformation that maximized the MS ratios for

treatments, or one that minimized the MS ratio for interactíons (if an

additive model were preferable), or one that minimized variance hetero-

geneity. hhen choosing a transforination on the basis of maximizÍng the

mean square ratio for a treatment, ít must be clearly remembered that
rejecting the hypothesis of equal group means on the transformed data

may not imply its rejection on the original data. under these cir-
cumstances, maki.ng inferences in terms of the original untransformed.

variable may be very tempting, but it ís d.angerous. Maximizing mean

square ratíos to obtain significant treatment effects, or minimizing

them to simplify the theoretícal rnod.el are not¡ per se, sufficient

reasons for choosing a particular transformation, since variance hetero-
geneity can bías the F-test and reducing it should be a primary not

secondary goal of the transformation. rf a transformation, r*hich

achieves homoscedasticÍty, also maximízes F values for treatment effects,
so much the better. Also, if the transformed varÍable is meaningful,

the transformation is even more valuable since this r¿il1 lessen the temp-

tation to make inferences in terms of the original variable.

I'rrhen choosi-ng a transformation to achieve homoscedastícity some

measure of the âttainment of this objective is necessary. Testing for
variance homogeneity prior to an ANOVA test for equality of means has

traditionally been regarded. as pointless because of the notorious sensi-

tivity of variance tests to non-normality. As Box (1953, p.333) states
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"To make the preliminary test on variances is rather like putting out

to sea in a ror¿ing boat to find out if conditions are sufficiently calm

for an ocean liner to leave port:" This problem is of great concern in

testing the efficiency of a transformation since it is possible for the

transformation to achieve homoscedasticity without achieving normality.

Fortunately tests for the equality of several (r > z¡ variances r,¡hich

are robust to non-normalÍty are rrorü available, however they seem to have

lor.¡er po\,rer than the less robust alternatives.

Procedures for Comparing Variances

Bartlett's test (Bartlett , L937 ) has traditionally been used as

a test of variance homogeneity: Ëhe test statistic is given by:

(N-K) lor. 
"t,0, - I (r, - r) logo ".2JJEJ

(27 )

(28)

2
Xr-t

of the

It may be shovm that i'¡hen the null hypothesis of equal group variances

is true and provÍded the parent population is normalo M is distributed

in large samples as x2 with K-l degrees of freedom, while for small

samples the quanÈíty 14/ (l+e¡ has approximately the same distribution
(Bartlett , L937). A is an adjustable constant which tends to zero for

large group sizes and is given by

A = lut(K-r)] [rcr
Lj

Box (1953) has shor¡n rhar M is

but as (t + y, / Z) *O_r'where

parent population given by

/ (n. - L) - L / (N-r¡
J

distributed asyrnptotica

\, is a measure of the

-1

I

J

lly not as

kurtosis
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Box (1953, p.330) states that "asymptotically the M tesr is tike

an analysÍs of variance on the sample varíances ínstead of sample means,

but the quantity . corresponding to the between-groups mean square

is compared not with an estimate from the internal evídence of the

samples but ¡¿ith a theoretical value of the variance which is appropri-

ate only when the parenL distríbution is normal.rr He Ëhen goes ori to

suggest that a criterion less sensitive to kurlosis may be found by

utílizing the information on the variatíon to be expected in the sample

variances, r+hich may be gathered from the internal evidence in the

samples. To this end he suggests breaking up the groups, whose varí-

ances are to be compared, into subsamples and then performing an analysis

of varíance upon the logarithms of the subsample variances. Bartlett

and KendaLL (L946) suggested the logarithmic transformation for use with

variance data. Since the mean of the distribution of sample variances

is proportional to its variance, this transformation would be expected

to stabirize variance. The results of a sma1l sampling study on a rec-

tangular populat.ion presented by Box (1953) indicated the greater robust-

ness of his suggested method compared to Bartlett's test.

Examples of other Ëests r.¡hich do not use evidence on variance

variability withín samples are those proposed by cochran (r941) and

Hartley (1950). cochran's criterion is the ratÍo of the largest group

variance to the sum of the group variances , f.or rshich tabled values of

the upper percentage points are available; while ll,artley's Frn.* test

refers the ratio of the largest over the smallest variance to the tables

of the F distribution. Box (1953) calculated actual probabiliries of
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exceeding the nominal five percent level when the nul1 hypothesis was

true for F*^* , and found similar discrepancies to those found using l'{

when working wíth a non-normal parent population. He conclud.ed also

that cochran's tesL might be expected to show similar deviations.

Games, i^lÍnlcler and Probert (L972) performed an empirical sampl-

ing study in which they confirmed Boxts (f953) findings concerning the

lack of robustness of the Bartlett, cochran and Hartley tests to non-

normality whíle at the same time showíng the excellent robustness of

Boxrs suggested procedure of performing an analysis of variance on the

logarithms of the subsample variances. The po\,rer of Boxts procedure is
considerably less than that of Bartlettrs test especially if the sma11-

est possible subsample size of two ís used. rf a large number of sub-

samples is used this gives a greater number of degrees of freedom for
MS*a and thus greater power, however the larger the number of subsamples

the smaller the subsample size which leads to a greater e)cpected value

of MSwc and thus lower po\^/er. since subsample number and size are

i-nversely related to each other and affect por.Ter opposítely, there must

clearly be an optimum value for subsample size given the sample size.

Games et al. (7972) came to the conclusion that for sample sízes from 12

to 18 a subsample síze of three yielded optimum po\"/er with very little
loss of po\^/er up to sample sizes of 36, while for the larger sampres

(i.e., > 36) it made very little difference whether the subsample sizes

were four, five, or six.

Games et a1. (1972) also demonstrated that the Box-Anderson

procedure r¿as less ro-bust than the Box (l-953) procedure discussed in the
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it produced a liberal test ín all but a symmetric

leptokurtic population, where the test r¿as almost exact, and a rectangu-

lar population where the test \,ras extremely conservative. rn normal

populations the po\{er of the Box-Andersen test exceeds that of the Box

(1953) procedure but in Games et a1.ts (1972) extremely skewed and sym-

metric leptokurtic populations the power of the tests was practically

identícal if the Box subsample size was three.

0vera11 and \^Ioodr+ard (f974) have proposed a Z-variance test

which has the advantage over Bartlettrs test of simplicity and easy

generalizabílity to complex factorial designs for the purpose of anaLyz-

ing variance heterogeneity as a treatment effect. This test also carries

the objection that it does not utilíze internal evidence from Ëhe treat-

ment grouPs concerning variability of variance estimates, which makes

it susceptible to non-normality. Lewy (1975) has compared the Z-

variance test and the Box (1953) test under varying conditions of non-

normality: he found, as predicted by Overall and l^/oodward (I974) that

t]ne z-variance test \,ras not robust to non-normality. Levy (1975) con-

fírmed Games et a1.rs (7972) findings on the robustness of rhe Box (1953)

procedure and also found it to have very 1ow porver in comparison to the

z-varj-ar.ce test on normal populatíons. For the Box (1953) procedure

Levy (L975) used a subsample sLze of tr¿o which rvas shor¡n by Games et al.

(L972) to produce a po\Árer of about half that obtained when using a sub-

sample síze of three. Thus Levy (1975) demonstrated the power of the

Box (1953) procedure under the most unfavourable cond.i.Lions.

Levene (f960) proposed two forms of a test of variance homogeneity

which he found relatively robust to non-normality. One form of the test
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is an analysis of variance upon the absolute deviations of observa-

tions from their group mean, r¿hile the second form uses squared. d.evia-

tions in prace of the absolute deviations. MÍl1er (1968) has shovm

that the absolute deviation form is not as).rnptotically distribution free

and should therefore not be robust to non-normality: Levene (1960) did

j.n fact observe rhis in his sampring study as did Games et al . (rg7z).

Al1 of the above authors found the squared cteviation form to be rela-

tively robust. In comparing t.he power of the alternaËive forms of the

test, both Levene (1975) and Games et al. (1972) found the poraer of rhe

absolute deviation form to be greater.

Levene (1960) also stated that the power of the absolute devia-

Èion forro of his test was comparable to that of the Box-Anderserì. test,

one of the more powerful tests available. Míller (1968) compared the

Po\^Ier of the squared deviation forrn to that of the Box-Andersen test and

found it to be slightly less in samples of size 25 but considerably less

in samples of size 10, r,rhile Games et al . (1972) found. an even lower

power in samples of size sj-x. Thus the relative inferiorj-ty of the

squared deviatíon form of Levenets test increases as sample size de-

creases. Games et al. (7972) attributed this phenomenon to the fact that

the squared deviation values are not independent of each other and the

degree of dependence increases as sample size decreases: the same is

also true for absolute deviations.

Bror¿n and Forsythe (r974b, p.366) have proposed an adaptation of

the absolute deviation form of Levene's (1960) test which makes it more

robust to non-normality. They recommend that "when departures from
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normality are antÍcipated, the estimate of the mean for each group in

the Levene statístic should be replaced by a more robust estimate of

central location." Thus the l0 percent trimmed mean (the mean obtained

after deleting the 10 percent largest and the 10 percent smallest

values in a group) is recommended for long-tailed distributions and the

median for sker.¡ed distributÍons. Use of the median brought the actual

probabilities of Type I error very close to their nominal values in both

a long-tailed distribution (Student's t on 4 df) and a skewed distribu-

tion (chi square on 4 df); however, use of the l0 percent trimmed. mean

was only effective for lhe long-tailed distribution but did not make the

test robust with the skewed distribution. Substitution of the median

for the mean produced only slight po\,/er losses lvith either a normal , a

long-tailed or a sker.¡ed distribution, provided the sample size was large
(n; = 40); however, wiÈh small samples (n* = 10) a dramatic power lossJ ' j
resulted. Fellers (cited in Martin and Games , rg76) has shor,m that
r,¡ith even smaller samples ("j = 5) the ANOVA on absolute deviatÍons

from the median produces erratic, uninterpretable results.

I'liller (r968) applied the jacknife procedure ro testing hypo-

theses on variances in the two group case and the procedure was subse-

quently generalized to rhe K > 2 group siruarion by Layard (1973). Tn

thís procedure, the observations in each group are divíded into p. sub-

groups and variance estimates are made on the remaíning observations in
each group after deleting the rth subgroup: each of the p. subgroups

is deleted in turn thus giving a total of p, variance estiüates (".,_ut)
J-&
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J

p..J

/r,.p.
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In Miller's (1968) sampling study rhe actual probabiliry of a

error and the pov¡er of the jacknife test r,rere both shovm to be

mately equivalent to the values obtained for the Box-Andersen

provided the subsample size for the jacknife test \,/as one.

Since unequal group sizes are a coûrnon occurrence, it is impor-

tant that tests of homogeneity of variance should be robust to inequal-

ity of group size. If a test of the homogeneity of variance assumptíon

is performed prior to an ANOVA F-test of mean equalíty, it is even more

important that the variance test should not be biased by unequal group

síze. This is firstly, because the F-test on means is not itself

affected by inequality of group size per se, secondly, because the

effect of varianee heterogeneity on the F-test of means is most
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pronounced when group sizes also dÍffer and thirdly, because a variance

test permÍ-ssively biased by unequal group sizes, could erroneously

reject the homogeneÍty of variance assumption and lead E to perform a

less poruerful tesË of mean equality, such as the l{elch procedure, which

is robust to heterogeneous group variances.

Brovm and Forsythe (l-974b) performed an investigation of the

effect of unequal group sizes and non-normality on the robustness and

Power of eertain variance tests, including the jacknife and Levene tests,

in the t\ro group situation. They noted that the size of the jacknife

statistic was larger than it should be when group sizes differed and

suggested that this was probably due to the lack of robustness of the

ANOVA when the wÍthin group varÍances r,zere unequal. In the jacknífe

procedure the variance estimates 2ì, "j_n- ) are calculated from a larger

number of observaEions in larger groups and they rvill therefore be more

stable j-n larger groups. Thus the variance of the variance estimates

within each group will be less for larger groups and more for smaller

groups. This pairing of smaller within group variances and larger

group sizes is knovm to produce a liberal bias in the ANOVA F-test of

group mean differences hence the jacknífe procedure should always be

liberal in the presence of unequal group sizes. Martin and Games (7976)

confirmed Brovrn and Forsythe's (L974b) findings of a liberal bias in the

jacknífe test, when n.ts are unequal, for the more general conditj-on of

K > 2 groups (K = 3 in this case) . It should be noted that Bror.¡n and

Forsythe (L974b) did not detect a permissive bias in the jacknife resr

wíth unequal n.'s and normal distributions and l''lartin and Games (f976)
J
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found signitÍcant differences betr,¡een actual and nomÍna1 probabilities

of a Type I error in only one out of four sets of 11000 simulated

analyses in this condition. Apparently, unequal o,ts, per se, do not
J

have much effect on the probabilÍty of a Type r error for the jacknife

test in spite of the rationale outlined above. rt is only in combina-

tion with non-normarity that unequal n.'s have an effect: the already

permissive bj.as created by non-normality is considerably augmented by

the introduction of unequal n. ts.
J

Brov¡n and Forsyt]ne (L974b) demonsÈrated that their modÍfication

of the Levene test using absolute deviations from the median \,/as robust

to unequal group size in both nornal and non-normal populatíons. How-

ever, they only investigated the tr,7o group situation for trvo conditions

of unequal group size, namely, n. = 10, nrr = 20 and n. = 20r rj, = 40.

Martin and Games (L976) also ínvestigated the effect of non-

normality and unequal group size on the probability of a Type r error

and power of three forms of the Box (1953) procedure. rn addition to

the origÍnal Box (r953) procedure, they investigated scheffé's (1959,

p.83) modification of the test and a modification due to Bargman r¿hich

was introduced by Gartside (I972). The original Box (f953) test has the

form

- Y. .)2 / (K-t)Ip, (Y,
i.J J

(tz¡
t
j

(r, - r)
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r^rhere Y.n = log^ s.n ' ,J}: E JE

Y.. = Iy, n / p, ,J- LJL -J

Y.. = ll"iu / lo: ,

JL - J

2 timate calculated on the !,th"jU = varlance es

subgroup Ín the ¡ 
th g.orrp,

which is an A.r\OvA on the logarithms of the subgroup variances. The

Scheffé (1959) adaptation was designed to accommodate unequal subgroup

sizes (as might occur when the subgroup sÍze is not a factor of the

group size) and sampling from non-normal populations: it has the form

.2IV, (n,. - n.. )- / (K-1)
JJ J (33 )

rlr¡ & - n.)2/r(o. - 1)
lT":n "jø ""' j"j

)r^¡here rj U = degrees of f reedom upon which s¡ I is based,

v. = Iv."J g. J*

n. = Iv."y.^/v.
J' 9. JL Jv" J

n.. = :: 'jn "j u / ll "tu
JL JL

As can be seen this procedure weíghts the contribution of each subgroup

variance estimate according to its degrees of freedom. The Bargmann

modification (Gartside, J'972) was designed to accommodate unequal group

size and uses tv¡o constants one of v¡hich is addecl to the log"rjn2 ,r.1l,"
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the vari-able Y
jv"

2 + c.^) where
lx" 1Y-

thÍs combined value. Thus

the variable z ..t = rj 
U 

(log"s

I/v. "-lx. / (su . ^2)JL

given by

z/ {r 
rn2)

+1 (:+¡

(3s)

(36)

and the weighÈing constant ,oj U t"

Llw. "fv,
,/u ju + ql Gu. ^3))L

These constants are used to remove bias and to saÈisfy better the homo-

scedastícity assumption of the ANOVA when the n.ts are unequal. The
J

test statÍstic Ís:

- rì'. .)z / (K-1)

II r,¡. 
^

..i o JY'
J*

kiu n'j.)' , ,, (r, - r)

where nt l'

nt..

w,
J

ç -.
i 

*it. 'it.

l,l "io::u

I w.^
n J{
L

J

II w.o
jg. J&

The condition where group sizes are equal but subgroup sizes are not

must always occur if n. is a prime numberl e.g., if n. = 7 then theJ j --
group of observations may eíther be div-ided into three groups of síze

t\.vo, two and three or t\.,/o groups of síze three and four, bearing in

mind that a variance estimate can only be calculated on tr^¡o or more
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observations. Under this type of condition (equal n. of 7 or 17),

Martin and Games (1976) found both the Box and Scheffé procedures to be

robust to non-norrnality while the Bargman modification was robust under

moderate populatl-on leptokurtosis (r2 = 3.0903) but not under exLreme

leptokurtosis (r, = 6.004f). The Scheffé procedure was more powerful

than the Box procedure and the Bargman procedure more porverful than the

Scheffé.

When group sizes are uD.equal the subgroup size may be maíntained

constant across groups or may be increased r+ith j-ncrease in group size.

In the situatíon where each different group size may be factored by a

constant. subgroup size the Boxn Scheffé and Bargman procedures are

identícal: Martin and Games (r976) found the procedure robust r^¡ith

three groups of síze 6,12 and 18 and a constant subgroup size of three

in normal and non-normal populations. when each different group size

cannot be factored by a constant subgroup síze, the situatíon is

similar to that in the preceding paragraph except that the group sízes

are noç/ different. Martin and Games, (L976) found essentially the same

results in this situation as r¿irh equal group sizes except that the

Bargman procedure \^/as no\,r not. robust in

population either. Increasing subgroup

1Íberal Type I error rates for both the

the Bargur.an procedure \^/as robust even in

the moderately leptokurtic

size r¡ith group size caused

Box and Scheffé procedures but

the extrernely leptokurtíc popu-

lation, unfortunately however, at the expense of power.

When group sizes are unequal, the Box and Scheffé procedures

with conslant subgroup size across groups and the Bargman procedure
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with subgroup size increasing as group size increases are all robust.

However, of the three, the Box and scheffé procedures are to be pre-

ferred, as they produce greater po\^/er on the same sets of data. The

scheffé procedure is slightly more powerful than the original Box pro-

cedure under all conditions where both are robust.

0n comparison of all of the available tests of variance homo-

geneity, it becomes apparent that the most robust tests are the Box

(1953) procedure, its modification by scheffé (1959), and Brown and

Forsythe's adaptation of the Levene test. on the other hand., the

jacknÍfe and Box-Andersen tests are more powerful; and although they

are not as robust as the Box and Scheffé procedures, they sti11 perform

much better than the conventionar Bartlett test. Martin and Games

(L976, p.r3) found that if rhe jacknife rest is used with a nominal

alpha of .01, "the true risk of a Type r error ís approximately.05

or less" and power t'is approxirnately equal to thaÈ of the Box tests

when the population is leptokurtic." rË seems that the Box and jack-

nife tests are equivalent if nominal alpha j-s reduced for the latter.

If this is indeed so (Martín and Games do not present any d.ata on this),

then the Box t.est is still preferable as it is easier to compute. Also

the one advantage of the jacknife test, its power, is lost. From the

preceding information it seems that the usual situatÍon of paying for

increased po\,¡er by losing robustness and vice versa, also applies to

tests on variances.

There are two points of vÍew regardÍng deslrable features of

variance tests to be used prior to a test of mean dífferences. The

rati-onale for choosing a very robust test such as the Box procedure ís
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that one would not \"rislì to abandon an ANOVA F-test on means and proceed

to a less porverful test of mean equality, just because a liberal vari-

ance test had caused erroneous rejection of the assumpLÍon of variance

homogeneity. rf one were using, say Bartlettts test on a non-normal

popuratÍon, thÍs is precisely the situatj-on that m-íght occ.ur. The

ANOVA F-test on means is not affected by non-normality r,¡hile Bartlettrs

test is. Thus Bartlett's test night find variance heterogeneity ¡¿here

none exists, and the ANOVA F-test on means might be aband.oned for no

reason. This is the type of situation which prompted Box (1953) to

suggest that prior tests on varÍance were pointless. The other side of

Ëhe coin is presented by Kohr and Games (1914, p.67) who subscribe to

the opinion I'that r¿ith smalt tj's E may have such low porver on his test

of homogeneity of variance that he faíls to detect more extreme vari-

ance conditÍons" (rohr and Games, r974, p.67). Tf a degree of variance

heterogeneity, r¿hÍch r.¡ould substantially affect the probability of a

Type r error in an ANovA F-test of mean equality, were not detected by

a robust variance test, then again the test is pointless: the ANOVA

F-test on uleans might now be done under conditions where its probability

of a Type I error was high, and the very situation the variance test was

designed to protect against míght Ín fact occur.

However there is one feature of variance tests, evÍdent in both

Brov¡n and Forsyrhers (L974b) and Martin and Games' (Lg76) data, that

r¿ould mitígate against the problem of insufficient po\rer to detect a

degree of variance heterogeneity which might affect a subsequent ANOVA

F-test on means: the Box test especially has more porrer to detect
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heterogeneity of variance when small group sizes are paired with large

variances, r+hich is precisely the situation which gives rise to liberal

Type r error rates in an F-test of mean equality. when large group

sizes and large variances are paired, the Box test is less por,",erful,

and this is the situation which gives rise to conservative Type I error

rates in an ANOVA F-test of mean differences. Thus, the variance test

has more po\,¡er r¿here it is needed (from the point of view of the ANOVA

F-test on means) and less power r¿here it is not needed.

To date the performance of tests on varíances and tests on means

have been ernpirically studied only in separate investigatíons. If one

r¿ishes to discover how a variance test rvill perform in decÍding between

a Ëest of means which is not robust to varj-ance and group size hetero-

geneity (such as the ANOVA F-test.) and one r,¡hích Ís (such as the i^Ielch

tesL), it is necessary to perform both the test of variance homogeneÍty

and the test of mean equality recommend.ed by the variance test on the

same set of data. If the variance test functions well in its capacity

of choosíng between tests on means, a more robust and more powerful

overall test of mean differences should result. It is intended here to

compare the performance of several variance tests, which cover a range

of robustness (and consequently power) o in uiaking effective choices

between alternative tests of mean differences.

A data transformation to remove heteroscedasticity has been sug-

gested as a method of overcoming the problem of using the ANOVA F-test

of the equality of group means in the presence of unequal group varíances

since there are problems with this approach, such as finding the appro-

pri-ate transformation and Lhe necessity of confiníng inferences to the
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transformed variable, it would seem importanl to determine if such a

procedure does indeed provÍde a viable solution, and if so, under

r,¡hat conditions. The ready availability of computer prograrunes for

the ANOvA with severar transforuration options, and arso the general

familiarity of the ANOVA make data transformaticns an attractive solu-

tion to the variance heterogeneity probrem. However, alternative

statistical tests such as l^Ierchrs (1951) tr.I and Bror"¡n and Forsyt.hers

(f974a) F'k do not suffer from the difficulties of use and interpretation

that are inherent in the use of data t.ransformatíons. A1so, although

the calculation of I^l or Fx is more cumbersome than that of the ANOVA F,

computer progranmes for their calculation are easily prepared.

Use of data transformations to correct variance heterogeneity

is a conmon proeedure, but it is highly probable that Èhe procedure may

frequently be used incorrectly, as persons naive to the problems of dat.a

transformation may mistakenly make Ínferences in t.erms of the untrans-

formed variable. since investigators ofLen apply standard variance

stabilizing transformatíons where they are not eppropriate, it is pro-

posed that the probability of a Type f error and power, in this investiga-

tion, be determined for the ANOVA F-test on means after a variance sta-

bilizing transformation, and that these empirically determined values be

compared \,rith the a priori det.ermined alpha and power values. Thus, for

example, if the populat.ions sampled do not dÍffer in their means but

only in their variances, transformation and subsequenL testing of mean
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differences by the F-test should lead to rejecÈÍon of the null hypo-

thesis of mean equality on the origÍnal variable no greater percentage

of tÍmes Lhan that indicated by nominal a1pha. However, ít Ís entirely

possible that the transformation while removing variance heterogeneity,

may introduce mean differences on the transformed variable and thus the

null hypothesis of mean equality on the original variable may be

rej ected a greater percentage of times than that indicated by nominal

alpha. If this is the case the transformation creates a ne\./ problem of

interpretation even though it may remove the original problem of vari-

ance heterogeneity. Thus it is important to determine if anything is

to be gained by the proeedure of comparing means vÍa an ANOVA F-test

on data transformed to eliminate variance heterogeneity.

In this investigation both a normal and a non-normal population

v¡ilI be used. The non-normal population will, like the normal popula-

tion, have a mean and variance which are not functionally related. It

is only rarely in behavioural research that grossly non-normal popula-

ËÍons are encountered; more often the populatíon is of a type v¡hich

could be called a "contaminated" norrnal population (see Andrews, Bickel,

Hampel, Huber, Rogers and Tukey, L972, p.60). These popurations ,oay

have slight or moderate skewness and kurtosis but do not have a well-

defined distributional form such that a specific relationship exists

between the mean and variance. Thus it r¿ould in most cases prove dif-

ficult to derive the appropriate variance stabilizing transformation by

the method outlj-ned previously (pp. 28-29).

i'4een srrmplii-rg frcln either populalÍon the fol-1o'".'ing charE
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indÍcates the sequence of

set of computer generated

procedures which rvill be performed on each

data

DATA
+

+

ANOVA

+

WELCH

+

I^

+++
TRANSFORMATIONS

+++++
VARIANCE TESTS

L2345

ANOVA VARIANCE
TEST

ANOVA

ANOVA VARIANCE
TEST

Data wÍl1 be generated under a variet.y of population and sampling condí-

tions: the variables to be manipulated are degree of variance hetero-

geneity across treatment populations, degree and pattern of differences

in treatment populatíon means and group size (equa1 and unequal across

treatment groups). The combÍnations of group sizes and varíances rvill

be chosen so as to satísfy a wide range of values of the Box bias coef-

ficient, b. For each combination of treatment population and sampling

conditions 2,000 sets of data will be generated and thus the above chart

will be follorved 2,000 times. The percentage of the 2,000 statistics

for each procedure that falls beyond the crítical value gives either the

probability of a Type I error (when treatment effects are absent), or
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po\^¡er (r.rhen treatment effects are present).

As can be seen from the preceding chart the performance of rhe

ANOVA F-test, the welch test, F'-' and the ANOvA F-test following each

of three data transformations may be compared directly under a variety

of conditions. This comparison will ans\,/er the question of r¿hich test

is the best overall for a given set of condj-tions. However, since E

does not ever know what the population conditions are, he may wish to

perform a sample variance test before proceeding to a test on means.

Thus the'above chart will be used to símulate the sequence of procedures

an actual E might perform. The chart includes several variance tests

but for no\^t one only will be considered. Suppose Schefféts modificatíon

of the Box procedure (Box-Scheffé test) has been performed on the data:

if the Box-scheffé test Ís significant, E would proceed to say a l,Ielch

test and, íf it is not, E would proceed to an ANOVA F-test. It is

Írnportant to know what the probability of a Type I error and power in

testing mean differences are for this whole procedure. Thus, in the

21000 simulations performed on each seË of population and sampling con-

dítions, the number of signÍficant ANOVA F-test results occurring with

insignificant Box-Scheffó Ëest results will be added to the number of

sígnificant Welch test results. occurring raith sÍgnificant Box-Scheffé

test results. For each variance test used L$7o overall procedures may

be compared: the variance test choosing between an ANOVA F-test or a

Welch tesL and the variance test choosing between an ANOVA F-test or F*

test.

In the case of transformations the percentage of ANOVA F



statj-scics fal-ling beyond

Regardless of the presence

populations sampled it is

dif ferent trans formations

mended for each sample on

53

the critical value will be counted in two \"rays.

or absence of varíance heterogeneity in the

probable that, due to sampling fluctuation,

and sometimes no transformation i¿i1l be recom-

the basis of a variance test. Thus for one

sample no transformation, another sample a square root transformatíon

and another a logarithmic transformation may be recommended by the

variance test. Regardless of whÍch transformation (e.g., none, square

root, logaríthmic or reciprocat) precedes the ANOVA r'-test of mean

equality, all these procedures ruill be considered equivalent and counted

together. A second method of counting ANOVA F statistícs will be for

each Lransforrnation regardless of Ehe variance test results. Thus, on

the one hand, the usefulness of the procedure of choosing transforma-

tions on the basis of a variance test may be evaluated, and, on the

other hand, the usefulness of a specifÍc transformaÈion for specific

population conditions may be found.

The use of both normal and non-normal populations r¿ill allow

determination of the robustness of the l^Ielch and F* procedures to non-

normality. It is probable that these procedures are as robust as the

ANOVA F-test to non-normality, since both are based. on the F distribu-

tion, however this does remain to be demonstrated.

When variance tests are used to detect differences in variance

between treatment groups, they may often be used when treatment popula-

tion means differ. rf E ís concerned with hypotheses on variances, it

ís possible that population mean dífferences al-so exíst but if E is

mainly concerned \,/ith hypotheses on means, and uses a variance test
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merely as a test of the ANOVA homogeneity of variance assumption, it is

not only possible but probable that mean dj-fferences exist. Horvever

the performance of variance tests has not so far been investígated in

the presence of mean differences: the design of the present study wil1

permit this investigation.
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Probability of a Type r error and power was empirically deter-

mined for several individual statistical tests and also several com-

binatíons of statistical tests under a variety of simulated population

conditions and for different patterns of sarnplíng from the simulated

treatment populations. The tests and combínations of tests evaluated

\{ere :

A. Tests for variance homogeneity

t. the Bartlert rest (see p. 33)

2, the Box-Andersen test (see p. 34)

3. the Brorvn and Forsythe tesË (see pp. 38-39)

4. rhe Miller jacknífe rest (see pp. 39-40)

5. the Box-Scheffé test (see p. 43)

B. Tests for mean equalit,y

1. the ANOVA F-resr (see pp. 5-6)

2. Ëhe tr^Ielch resr (see p. 22)

3. Brown and Forsythe's F* test (see p. 23)

4. the ANOvA F-test following a logarithmic transformation (T1)

5. the ANovA F-test followíng a square root transformatíon (T2)

6. the ANOvA r'-test following a reciprocal transfor¡nation (T3)

7. the ANOvA F-test subsequent to whichever of the following
procedures gives the lor¿est value of the Box-scheffé
stat.istíc: logarÍthnic transformation; square root
transformation; reciprocal transformation; no transforma-
tion (T, )

t+
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c. combinations of means tests followÍng testing for variance
homogeneity

1. ANOVA F test forrowing a non-sígnificant Box-Scheffé test
and l{elch test for-rowing a significant Box-scheffé test
(FIr/BS ) .

ANOVA F test following a non-signÍficant Miller's jacknife
test and i,,Ielch test following a significant Miller'sjacknife resr (FW/JK).

,

J.

4.

ANOVA F test following a non-significant
variance Eest and a Welch test following
Brovm and Forsythe variance test (FWiBF).

ANOVA F test following a non-significant
and a i^Ielch test following a significant
resr (zu/BA).

Brov¡n and Forsythe
a significant

Box-Andersen test
Box-Andersen

q

6.

ANOVA F tesr following a
a i^lelch test following a

ANOVA F test follorving a
and a Brovm and Forsythe
Box-Scheffé test (ff*7Bt,

non-significant Bartlett test and
signif icant Barrlerr resr (zu/B).

non-signÍficant Box-Scheffé test
F'* test following a significant

varj-ous conditíons under r¿hich the perform_

test sequences \^/ere assessed, the following

effects ANOVA was used:

7. ANOVA F test following a non-significant Millerrs jacknife
test and a Brovm and Forsythe F/. test fo11owÍng a signifi-
cant Miller's jacknif e rest (FF'I/JK)

8. ANOVA F test folrowing a non-signifÍcant Brov¡n and Forsythe
variance test and a Brov¡n and Forsythe F''. test following asignificant Brovm and Forsythe variance test (ff-*7Urr. -

9. ANOVA F test following a non-significant Box-Andersen test
and a Brovm and Forsythe F* test folrowing a significant
Box-Andersen rest (ff,*7BOr.

10. ANOVA F test following a non-sígnificant Bartlett test anda Broi¿n and Forsythe F:k test following a significant
Bartlerr resr (ff -*7U, 

.

\{hen simulating the

ance of the above tests and

model for the one-wav fixed
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Each individual observatiot't, Xij , rrras consj-dered to be composed of two

erements: ì-l . , the ¡th pop,rlation mean, and e. . , the random errorJij
associated with each individual observation. tn. .rjts are normally

distribured rvÍth a mean of zero and varian". o 2 rn addition to thee

simulation of normally distributed errors, a non-normal population dis-

tribution form r¿as used to investigate robustness to non-normality:

this was a chi- square distribution with two degrees of freedom , x22,

which Ís extremely leptokurtj-c.

Simulation of sampling from a normal distribution proceeded

according to the method of Marsaglj-a, Maclaren and Bray (1g64). rn

this method, pairs of independent pseudorandom numbers (ul , ur) , in

the range of zero to one, are generated from a rectangular distribution

and are then transformed into pairs of normally.distributed pseudo-

random numbers (rr, zr) wíth a mean of zero and variance orre N(Orl)

by the relationship:

,t

zz

Pseudorandom numbers distributed r" Xk

independent random normal deviates through the

may be obtained from

relationship:

v
t.?

l-
a=,L

(:e¡
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Thus, to obtain pseud.orandom numbers distributed 2as X2 , two squared

random normal deviates were summed.

Since the mean of a chÍ-square distribution is equal to its df

and the variance is equal to Zdf, it was necessary to scale the chi-

square variates so that their distributj-on had the same mean and vari-

ance as the normal, N(0,1), distribution. Thus, trle yrz distribution

had a mean and varíance of tr.¡o and four, respectively, before scaling;

and in order to give it. a mean of zero and a variance of one, u^"h yrz

variate firstly had two subtracted from it and then was divíded by the

square root of four. This procedure resulled in a skewed, leptokurtic

distribution having the same mean and variance as the normal distribu-

tion. The sker,mess (vr) ana kurtosis (l) of trLe yrz distribution are

theoretically equal to two and six, respectively. values of skevmess

and kurtosis for unit normal populations are both theoretically equal

to zero. Both normal and skewed varíates \,/ere dístributed to four

treatment. grouPs.

Initially, all distributions had a variance of one, but in order

to assess the power of the variance tests and robustness of the means

tests, varyíng degrees of heteroscedasticity were simulated.. unequal

variances across groups were obtained by üu1tip1yíng the generated

variables within each treatment group by the standard deviation required

for each level of the treatment variable such that the unweighted mean

variance rvas equal Lo one. The degree of variance heterogeneity was

indexed by the coefficient of variatíon of the group variance, c.

Accordíng to Box (1954), although c can be as large as (r-r¡ä, values

greater than one are extremely rare in practice. Therefore, four degrees
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of variance heterogeneity r.rere investigated ) corresponding to c values

of .2, .4,.6, and 1.0. Table 1 gives the values of the group vari-

ances for each value of c.

Table I

Group Varíances for Given Coefficients of VariatÍon

Group 1 Group 2 Group 3 Group 4

)

.4

.6

1.0

.7 3I7

,4633

.1950

. 1515

. 9106

.82LL

.7 3L7

.4343

1. 0894

1.1789

r.2683

.7]-7 2

r.2683

r. s367

l. 8050

2.697L

Por¿er of the tests of mean equality was investigated by simulat-

ing eonditj-ons of unequal group means. This was achieved by the addition

of an appropriate constant, i.e., treatment effect, to each of the obser-

vations within each of the K levels of the treatment variable. The size

of the treatment effects ¡¿ere chosen so as to give an íntermedÍate

"effect size" as defÍned by Cohen (1969). Effect size, f, is given by:
o
u.l

o
e

(40¡

where
u.

J



bU

oj

N

u

n. /Nl

In. and
JJ
In.u./N
JJJ

f = .25 is consídered by Cohen (1969) to be a value representative of

intermediate sized effects found in behavioural research and is the

value which was approximated here.

As was pointed out previously, when variances and means differ,

the way in which these t\ro parameters are paired affects the power of the

test of mean dÍfferences. Also, the different tests are affected in dif-

ferent ways by a given combination of means and varÍances. Thus, in order

to thoroughly investigate thís phenomenon, two strategies r.¿ere adopÈed:

firstly, means and variances v/ere both positively and negatively correl-

at.ed across groups, i.ê., as the means increased from groups one to four,

the variances also increased (positively correlated) or as the means

increased from groups one to four, the variances decreased (negatively

correlated); and, secondly, t\^ro patterns of mean dif ferences vrere inves-

tigated. Group means were either dichotomized at each end of the range

of means or \.^/ere spaced equidístantly from each other over the range,

i.e., the pattern of means r¿as either Ul U2 < U3 = U4 or Ul. !2. 13

t 14, where each successive mean increases by a eonstant amount. These

tv/o Patterns of mean differences do not give rise to the same effect

síze, if the range of the means is constant, since dichotomizing the

means leads to greater mean variabilitf (oU. ) than spreading them
l
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equidistantly over the range. In order to obtain an equal effect size

for both patterns, the range of the equidistant means must be greaÈer

than that of the dichotomized means. Table 2 gives the values of the

means r+hich were used: these values were determined for f = .25,

o^ = 1, þ = 0 and equal sample sizes.
e

Table 2

Group Meansâ

PatÉern Group 1 Group 2 Group 3 Group 4

Equidistant

Dichotomízed

- .33s4

- .2500

-. ltl8

-. 2500

+.1118

+.2500

+.3354

+.2500

Entríes in the table are based on a Cohents (f969) f = .25, o"= I
andP=9.

Since all populations start out ¡^rith a mean of zero, approxirnately 50

Per eent overall, of the individual generated observations had a nega-

tive value. (This r{as true even r¿hen treatment effects \^rere present

as the mean of the means, ll =:rji* , v¡as still held at zero under
J

these circumstances.) fnis posed a problem when transforming the

data prior to an ANOVA F-tesL, as the built-in computer functions for

determining logarÍthms and square roots cannot accept negatíve numbers.

In order to eliminate negative values, a suffíciently large positive

constant (10) was added to all generated observations prior to all

transformations.
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Group sizes were chosen to give an a pri-orÍ ANOVA F-test po\,rer

of approxírnately .70. The values for the group means in Table 2 gíve

an effect size of.25, when the group sizes are equal. According to

Cohents (1969, p.377) tables, a group size of 36 Ís required ro give a

power of .70 for f = .25. i^lhen group sizes are unequal, this disparíty

'ç./as quantified by the ratio of rhe maximum Lo mj-nimum group size (see

Spjdtvott and Stoline, 1973). Thus, u, rhe degree of sample size

imbalance, is given by:

max(nr,...rK) / min(nr,...*K)

Three levels of u were used: small, u = 1.4,or 1.5; medium, u = 2.0;

and large, u = 3.0. The same total N was used ¡,¡hen the n. rs were

unequal and the group sizes \.,¡ere spread approximately equidistantly over

the range between max(n.) and min(n,). However, as may be seen fromJ]
inspect.ion of equation (4f¡, introduction of unequal sample sizes

alters the value of oU. for given values of the group mearrs. If the
J)

groups whose means are extreme, i.e., have large (pj - U)-, also have

large n.ts relative to the others, f, and therefore power, is larger
J

than wíth equal r., t"; conversely, if extreme groups have small n. ts,
J7

f and por./er is smaller (see Cohen, L969, p.353. Therefore, different

values of u for the same group mean values and total N lead to differ-

ent values for po\,rer. Thus Ëhe empirically determined power values

\{ere expected to deviate from the value of .70 when group sizes are

unequal. The upper part of Table 3 gives the group sizes for d.ifferent

u values when power is .70 for the equal n. conditi-on: f values for
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each condition are also shown. It is not possible to accurately deter-

mine power for these f values either from Cohenrs (1969) tables or from

the standard nomographs for $ (0 = fl n): hor¡ever for a mean n, of 36
J

the power ranges from a value of .50 at f = .20 to .70 at f. = .25,

As can be seen, choosing group sizes on the basis of power

considerations results in large values per group, if Cohents (1969) inter-

mediate effect sj.ze is used, Unfortunately, however, E may not always

be able to obtain such large groups and t.he poü/er of his tests of mean

differences wi11, Ëherefore, suffer. Under these circumstances the per-

formance of a variance tesi in making decisions between alternative

Ëests of mean equality may become crucial. Therefore, smaller group

sizes comparable to those used in other studies (e.g., Kohr and Games,

L974, and l"lartin and Games, I97 6) were also investigated. When the t.otal

N was 48, the lower part of Table 3 gives the group sizes for the equal

n. condition and the various degrees of group size imbalance. It is
J

worthy of note that, at a mean n. of L2, the povrer associated with f

ranges from only .26 at f = .25 to .L7 at f = .20.

Table 3

Group Sizes and f Values

a.l(em ) r (¿mb) Group 1 Group 2 Group 3 Group 4

N chosen to give a por,rer of = 7oc

1.0
1.5
2.0
3.0

.250

.247

.242

.232

.250

.248

.244

.236

36
34
32
30

36
JO

40
4¿

36
4J
4B
54

36
29
¿L+

LB
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Table 3 (cont. )

a.t (em )
h

f (dm" ) Group 1 Group 2 Group 3 Group 4

Mean n. chosen to equal Martin and Games (L976) mean n.
JJ

1.0
L.4
2.0
3.0

.250
a t.o

.243

.232

.250

.248

.245

.236

11LL

11
I1
10

I2
13
13
L4

I2
I4
16
18

L2
l0

B

6

em = equrclistant means
b."dm = dichotomized means
c

f̂ = /\

d = .05

I^Ihen variances and group sizes dif f er across groups, these trao

quantities LTere also both positively and negatively paired with each

other in order to simulate conditions giving rise, respectively, to

conservative and liberal F-tesËs. Values of the Box (1954) bias coef-

ficient, b, for the combined unequal group size and variance condítions

are given in Table 4. The value of b varies from .67L4 to 1.6522, an

exËensive range of bías.

Figure 1 surmnarizes al-I of the 193 combinations of mean, varÍ-

ance and group size variability conditions that were simulated. All

these conditions were generated for two levels of sample síze: one

chosen to give an a priori power of .70 and the other ehosen to match

the sample size used by Martin and Games (1976). (Values of the Box

(L954) bias coefficient are only slightly more extreme under the latter

condj,tions and are, therefore, not tabled.) This whole procedure will
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Table 4

Va1ues of the Box Bias Coefficient
for Given Group Size and
Variance Inhomo geneity

Unweighted
Coefficient of
Variat ion

c

Group Size
Imbalance

u

Pairing of
Group Sizes
and Variances

Box Bias
CoeffÍcient

b

?

.4
,6

1.0

)
.4
.6

1.0

)
.4
.6

1.0

)
.4
.6

1.0

t
.4
.6

1.0

)
.4
.6

1.0

2.0
ll

It

il

It

ll

ft

POS
il

il

il

NEG
ft

il

tl

POS
il

II

It

NEG
il

il

il

POS
il

il

lt

NEG
il

tr

il

.9632

.9284

.89 54

. Bs01

1.0389
1.0803
r.L242
1. r93B

.9397

.8803

.8282

.7 612

7.0692
1.1461
r.2320
L.37 35

.9081

.8282

.7580

.6714

1. 1066
L.2320
1. 3814
r.6522

il

a^

il

il

il

il

lt

il

tt

tpos -
l\ Ì,,r., -

posÍ-tive pairing
negative pairing

group sizes and variances
group sizes and variances

of
of
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be repeat.ed for each of the populatÍons (normal una yr27 giving rise

to a totaL of 2 x 2 x 193 = 772 condítions.

A total of 2000 sets of data were generated for each of t]ne 772

condÍtions. All the individual tests and test combinations under the

headings A, B and C above were calculated on each of the 2000 data sets;

then, for each of the tests or combination of tests, Èhe proportion of

the 2000 that were significant were recorded.

Referring agaÍn to f'Ígure 1, it can be seen that all cells belor,¡

the heavy horizontal line represent conditions in whj"ch the group means

r^Iere equal; therefore, the proporËions of significant means test statis-

tícs recorded in these ce11s represenÈ the probability of a Type I

error for the means tests. 0n the other hand, all cells above the

horizontal 1íne represent conditions of group mean inequality and,

therefore, proporÈions of signífícant means test statistics recorded

here represent the power of the means tests.

The cells of Figure 1 r¿hich conËain a diagonal line represent

conditions of homoscedasLicity and, therefore, proportions of signifi-

cant variance test statístics recorded in these ce11s give the proba-

bÍlity of a Type I error for the variance tests. Cells in the remainder

of Figure 1 all represent heteroscedastic conditions and, therefore, the

proportion of significant variance test statistics recorded for them

give the povrer of the variance tests.

During the "debugging" of the computer program, r¿hích calculated

all the statistics of the tests investigated, a negative value was

calculated for Box and Andersents (1955) M'. checkÍng of all the
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computational steps revealed no errors but a value below -2.0 r¿as found

for c., the correction factor in the denominator of Mr (see p .34) , thus¿-

accounting for the obtained negative va1ue.

Since the formula for Mt seemed to be predicated upon the fact that

c, should never approach -2.0r let alone become less than this value, a

sarnpling study of c, rvas conducted. In all cases four groups of 18

normally distributed variaËes \,,¡ere generated and, if desired, varíance

heterogeneíty was introduced as described above, "Z was then computed.

This proeedure was repeated 1000 times for each level of variance

heterogeneity investigaLed thus producing a sampling dístribution of

1000 cases for cr. Table 5 gíves t.he results obtained.

Table 5

HÍghest and Lowest c, values and percentages

of c, values less than -2.0

Population Variances Lowest c, tlighest c, %cr<'2.0

Group 1 Group 2 Group 3 Group 4

1. 0000
.4bJJ
. 1515

1. 0000
.B2LL
.4343

l. 0000
L.L7 89

.7I7 2

1. 0000
r.5367
2 .697 r

-L.42L9
-r.9367
-4.382L

3.2468
3.7 488

12.3247

0

0
7.4

These results índicate

value of M' (or c, < -2

ity (i.e., c = 1.0) is

a fairly high probabiliry

.0) if the highest degree

present.

of obtaining a negative

of variance heterogene-
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since Bartlett's (r937) test performs very well on normar and

platykurtic populations, a possible solutÍon to the problem of c,

values less than -2.0 seemed to be using M if c, is less than zero and

Mt if c. is greater than zero, This combÍned procedure has beenL-

designated I'combined M", and r¿as added to the list of variance tests

investigated. Thus tr¿o more sequential procedures l/ere also generated

by using "combíned M' to choose between either the ANOVA r and welch

test or between the ANOvA F and F?t tests. (these procedures are desig-

nated as FI^I/CM and FF*/CM, respectively. )



Resufts and Discussion

Type I Errors of the Means Tests

Type I error rates of the means tests are presented in Table 6

for the smalr sample size, when the population sampred had a normal

distributíon, the ANOVA F-test shor¿ed its familiar characteristics of

(a) becoming lÍberal t¿hen group sÍzes and variances \ùere unequal and

larger group sizes were paired l¿ith smaller variances, and (b) becom-

ing conservative when the relatíonship between group sizes and

variances was reversed. rn contrast, the l^Ielch test showed its

usual excellent control of Type I error rates regardless of the degree

of assumption violatíon. overall the Brov¡n and Forsythe F-* test 1ùas

slightly liberal, never exceeding the nominal level of signifieance by

more than 2.85 percentage points.

i^lhen sampling from the non-normally clistributed {xr2) popula-

tion the Type r error rates for the ANOVA F and F'x tests were not

markedly different than those obtained for the normal populatÍon. rn

contrast, the l{elch test shor"zed an increase in Type I error rates for

most condÍtions investigated. Not only rvas the nominal alpha level

exceeded by as much as 8.4 percentage poinLs for the more extreme cases

of positive bias, but also, the l"Ielch test performed \^/orse than the

ANOVA F-test, lvhen a small degree of positive bias was present (i.e., a

Box bias coefficient berween 1.0 and 1.3). Nominal alpha levels were

also exceeded by this test Ín the presence of negative bias and r¿hen

only variances or group sizes were heterogeneous.
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Table 6.

Eurpiri cal Type I error rates (",¿) f or the means ies ts (snall |l)

Group Coefficient.
sizes of

condition varÍation

Normal distribution Chi-square distribution

t,^

u = 1.0 5 .25
5. 15
6. r5
5.85
8 .50

5. 05
5.30
4.7s
5 .5s
5.25

5.05
4.90
5.70
5.40
6.8s

3.80
4.s0
s.20
6.25
9.55

0.0
0.2
0.4
0.6
1.0

4.45 3.25
5. 60 3.95
6.30 4.30
9 .20 5.30
B.Bs 8.30

Positively correlaÈed. group sizes and- variances

u = I.5

u = 2.0

u = 3.0

0.0
0.2
0.4
0.6
1.0

0.0
0.2
0.4
0.6
1.0

0.0
0.2
0.4
0.6
1.0

4.r0
5.20
4 .30
5.4s
5. B5

4 .5s
4 .0s
3. 15
3 .40
3. 9s

5. 00
4.20
2.80
2.85
3.25

4.30
5 .15
5. l0
5 .-65
4.55

5 .05
4 .85
4. B0
4 .30
4. B0

5.4s
5.60
4.70
4.90
5.7 5

3.90
s.75
5. r5
6.35
6. 90

4. 90
4.70
4 .60
5.60
6. 05

4 .6s
5 .30
5,50
5. 9s
7 -55

4.35
4 .6s
4 .10
5 .80
7. B0

4.30
4 .10
4.4s
3.60
5.70

4.ss
3.9s
3 .35
3. 65
L)\

5. 90 4.00
5. B0 4.60
5. 95 4 .25
9 . 85 6.15
9.00 8.90

5.65 3.7 s
5. s0 4.20
5 .7 0 4.85
I .50 4 .95
7 .65 7 .85

7 .65 3.95
6. B0 4 .45
5 .30 4 .ss
7.7s 5.70
6.70 7.80

Negatively correlated group sizes and varíances

u = 1.5

u = 2.0

0.2
0.4
0.6
1.0

0.2
0.4
0.6
1.0

0.2
o.4
0.6
1.0

5.1s
6.50

'B .85
11.35

6 .55
8.75

L0.25
15. 8s

5.75
9. 60

13.55
20.7 A

4.80
5 .3s
5.45
5.35

s.40
5. 50
4. 50
5.15

4.25
5.80
5 .25
6.40

4 .5s
5.50
6. 05
7 .45

5 .30
s. 60
5.90
7 .85

I '7C

4.85
s.6s
? ,)<

. 4.75
6.20
7 .05

r2.80

4.70
8.45

11. 00
16. 00

5 .50
10.05
13.65
22 .40

s.25 3. 95
7 .20 4.25

10. 00 4 .35
rr.35 8.80

6.70 3.80
9. 90 5.20

L2.35 7.30
10.85 8.70

8.15 4.40
L2.30 6.35
13.40 5.95
L2.70 10.30

u = 3.0
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A comparÍson of the dif ferences in performance of the trlelch

and Ftk tesEs indicates that the former is more robust for normal dis-

tributions and the latter for non-normal distributions. since the

difference in Type r error rates \{as generally greater in the non-

normal population, this would indicate a preference for the F'* test

when no prior information j-s available regarding the shape of the popu-

lation distribution: obviously, if the distributíon form is knovm,

this should dÍctate the choice of test.

Table 7 shows the Type r error rates of the means tests for

the large sample size (N=144). Essentially the sane pattern of results

was obtaíned for each test at both sample sizes but there were díffer-

ences between tests ín the resporise to increasing total sample síze.

The major difference \^Ias the improved performance of the \,Ielch test in

the chi-square population: since this test was the one most affected

by non-normality Ít is not surprising that it showed improvement on

Íncreasíng sarnple síze. rn contrasË the F* test became slightly more

liberal, overall, at the larger N (the maximum devÍatíon from nominal

alpha now being 3.35%). Because of the opposíte effect of sample size

on these two tests, the case for preferring the Brovm and Forsythe F*

test, although sti11 extant, \^ras not so convincing.

Power of the Means Tests

Power at small sample size. power values obtained for the

tests using the small sample size (N=48) are presented in Table B.

Because of the extent of the data, results for the equal and most

group size conditions, only, are presented. Results obtained for

means

unequal

the
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Table 7.

Empiricar Type r error rates ("/") for trre rneans tests (targe N)

Group Coefficient
síze of

condÍti.on varia tion

Normal distribution Chi-square distribution

F
T^J

t, ,1IJ

u = 1.0 0.0(\)
0.4
0.6
r.0

¿+. Õu

5.90
5.80
6. 3s
7.7s

5. 05
5.95
s.4s
5. 50
4. B0

4. B0
5.90
s. 65
6. 30
7.35

5.00
4.90
6 .25
s.B0
7 q5

s.85 4.75
6.25 4.7 5
6.00 6.15
5. 90 5.5s
6.45 7.7s

Positively correlated.- group sizes and. variances,

u = 1.5

u = 2.0

u = 3.0

4.9s
4.5s
5. 60
5. 50
5.75

4. 50
3 .55
4. 30
2.65
'3.10

4.75
3. 90
3 .10
2.90
3.10

5 .15
5.00
5.60
5. 85
5.-75

4 .85
3.50
5.90
3. B5
4. s0

5. 05
5.15
5.20
4.90
5.90

4. B0
5. 65
6 .9s
7 .30
8.35

4 .55
4.25
6 .40
5. 05
7.05

4 .90
5 .40
5.85
6.15
1 1a

4.00
4.s5
5.15
5.15
6.10

4.80
4. 00
3.4s
3 .3s
4. B0

5.30
4.00
2.50
2 .65
3.40

5. 95
6.20
5.40
6.50
6.25

7.0s
6 .20
5.10
s.30
6.2s

4.55
5.7 5
5 .40
5.7s
7.30

4.70
5.7 5
5 .15
5.85
8.15

0.0
0.2
0.4
0.6
1.0

0.0
o.2
0.4
0.6
1.0

0.0
0.2
0.4
0.6
1.0

5.45 4.15
5.65 4.70
6. 05 5.85
6.7 5 6.70
6.80 7.75

Negatively correlated group sizes and variaRces.
_aÉu - -L.J

u = 2.0

u = 3.0

6. 00
7 .25
I .4s

10.35

7.00
6.80

r0. 50
L4.95

8.50
10. 05
L3.20
20. 30

5.80
5.40
5. 35
4.90

5. 30
4.30
5.45
4.95

5.80
5.00
4.90
5. 30

5 .55
5. B0
6 .4s
6.70

5. B5
4.25
5.7s
6.95

6. 00
5. 60
5.85
7.70

5. 60
6 .65
7 .80

L2.30

6.75
7 .85

10.40
16.25

5.70
9,9s

L4.90
20 .95

6.90
7 .30
8. 30
8.75

6 .10
7 .20

r0.65
r0.30

s.65
5.45
5. 95
9. 00

4 .10
5.70
7 .20
9 .65

0.2
0.4
0.6
1.0

0.2
0"4
0.6
1.0

ñ2
0.4
0.6
1.0

s.80 4.45
6.30 5.10
6.35 5.65
7 .7 5 8.90
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(_0¡¡r:l,l t. i0n (.{)(:! f ic irjilL
l'lcôrìS of l.l(rdrì., 0{

Condìfion ,i, Vari¿nccs VòriaIion f{ f*

Iqui-
dist¿nt

(J, (J

4.2
0.4
0.6
ì.f)

0.0
0. ?.

0.1
0.6
l.c
0.0
0.2
0.4
0.6
'I .0
0. ()

0.¿
0.4
0.6
1.0

'l/.4'¿
25.95
23. B0
2l .30
2l.lr;
27.45
24 . 6l)
24 .15
23.70
2ì.80
26 .55
24.75
24.00
24 .?0
23.20

26 .55
2ì . t0
25.?5
22 .90
21.90

Dositive

¿r\ .45 25 . 50
26.45 25.U5
24.95 27 .15
?',¿- ,5s 2B. 50'¿6.O0 36.Oft

?8.05 2s. 50
?5.30 24.55
24.95 26.05
24.75 3i.00
24.60 34.30

26.90 25.65
2s.35 24.80
24 .t 5 23. 65
26.50 26. 05
?5.70 33.95

26.90 25.65
21.75 22.00
25.90 24.90
24 .f\0 25.60
25.20 32. 3s

;',r ..J5 i0.û5 ?/.50
2i. 95 26.7 0 22 .45
;)3. rì0 28. I 5 2ì . 60
,.,0.35 23.90 17.4t)
ì().95 2ü.,10 ì6.j5
2fl .ls 30.65 ?7.50
l{).25 32.05 29.10
30.50 38.50 29.35
i3.35 50.15 3ì.55
34.24 53.ì0 32.t0
'¿/ .40 30. 90 25.65
zrJ. 30 29. 30 26.110
24.45 25.50 22.75
23. 60 ?0.t 5 20. 50
?l .75 12.35 ì7.65

neqatlve

Dichot-
ollizcd

posi¿ive

neq¿r'ìve

2/ .40 30.90
t0. ì 5 35.60
32. 05 37 .45
14.25 43.60
34.20 49.85

25.65
¿0.0)
30.75
32.45
3ì.25

Posìtiveìy correlated group sizes and variances (u 3.0)

Lquj-
d i s ta n t

Dichol-
onì i zed

f)01i1ìvrj

r¡c9.r t i ve

lr(r', ¡ L lvr:

rrr:gaLivc

0.0
0.2
0.4
lt. (t

| . {)

0.0
4.2
ît.4
l). {)

| . r)

0.0
o.?
I) .4
0. r,

lr)

22 .45 20.85
r 9.45 21.95
I4 .'ì0 23. 50
13.t5 32.A5
ll..r5 3¿.55

19.80 t9.45
I8.20 2ì.50
I 6.70 25.95
11.35 30.45
ì0.90 32.]0
23. I 5 20.40
I 6. 60 ?ft.?O
I 1,. (J() '¿.3.95

I l.00 27 ,45
ì0.rì0 34.10

22.05 2l .05
lfr.30 21.65
I5.tiO 25.I0
1 2 .95 26 .85
10.10 3?..55

23.35 36.75 ?6,70
r i. J0 33. riO 24 .90
1,,.45 33.50 22.60
l0.li¡ 34.65 2t.10
{,. .i5 34 . / it ì lJ.4 0

24.20 1Ì.7A ì8.50
23. 35 22.?5 2 t .80
?0.?5 2B--10 23.75
lll.l5 41.()0 ?(¡.10
ZI.JO 46.40 30.{r0

25. 30 36. I 5 26. 50
ì lì. q0 :14 .95 ?'.¡.9O
l.r.o(i .t4.i'5 ¿3.70
9./5 it.65 ',¿z.95
7.10 4t.85 20.75

?6.60 ?0.45 20. ì 5
'14 .4O '?? .t\'.¡ 21. 50
¿ ta . ,tl) 79 . Jl) 25 .l'¿
ì9.50 ltì.65 21.65
I c). 60 /i 5. 30 30 B0

2ì .95
'?.?. .5'.t
21.{ì5
24 .00
'/4.lt)

t9.30
21.70
?4 .05
21.60
z'.¿ .uo

?2.t0
20.60

23.'¿.5
23 .65

2ì .30
2l . ft0
'¿3./5
24 .55
2?. t0

0.0
o./
0.4
0.6
1.0

tieg¿tiveìy corre'làtsd group sizes and variònccs (u = J.0)

positivc

nega I i vc

posiLive

ì9.80 19.45'¿5.70 21.00
3r.65 2t.35
36. 00 24 .00
4 I .65 28.20

27..45 20.85
26.35 2A.A5
3?.7 0 22.20
36. ì 5 23.20
45.?-0 3t .7 5

2¿.05 21 .tJ\
26.?5 19.85
30.20 ì8.40
39.05 I 9.65
4 5.95 25.90
'¿3 .l5 20.40
/|./\ '/l.o(,
.tl./t, 1,,. l0
10. 50 1 9.4 5

45.45 26.45

24.24 17 .t0
27.U5 15.45
21t .95 1 2. riO

34 .00 12.?5
39.75 19.10Equi-

d'i stónr

Dichot-
otni zed

0.0
0 .'¿
().4
0.6
1.0

0. t)
4.2
0.4
0.6
lr)

r9.30
ì9.05
19. s5
I U.60
ì6.55
2l.95
20.05
ì9.70
19.25
ì8.60
2l .lr)
20. l0
19.ì0
)9.75
l{}. s5

?¿.)o
'/ t .1\
llr. 20
ìlJ. /0
1i.85

t3.50
15.25
l2-60
ìt .60
ll .30

(J. 0
0.2
0. ti

0.rr
t.0
l). r)

l)..'
t).¡t
t). t,
1.0

23.35 36.7s 26.70
lì.ì5 38.50 29.05
3't .45 42.9A ?9 .95
43.90 47.35 ?9.65
51.45 5?.75 3t.35
2'(r.(¡0 ?0.45 20.ì5
26.95 ì6.rì0 17.25
'2ll .9's I 3. 30 I 3. 20
l¡1 .20 12.25 12.95
46.10 20.90 t5.60
21,. lf) :16. I 5 26. 50
ll).(,(ì .llt.,iO ;'lì.40
t/ .\r't .ltr.,,r, ;,'). I {)
,\'.¡.i'L 4J.;]0 19.2't
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smal1 and intermediate revels of group sÍze inequality shoçr the same

pattern as those presented in Table 8 (for the greatest degree of

group size inequality) but effects are not as marked.

Confining attention fÍrstly to the normal distributÍon results,

it will be seen that neither the pattern of mean differences (i.e., equi-

distant vs. dichotomized) nor the pairing of group means and variances

had any appreciable effects upon Lhe power of the tests.

As was anticipated on a priori grounds, the povrer of the ANovA

F-test was about 5Z less in the extremely unequal group size condition

(u=3.0) than ¡¿hen n.ts were equal (for equal group variances). Refer-

ring back to page 63, it r+il1 be seen that the po\"zer values for F fall

in the expected range. Both W and F* were similarly affected.

Violation of the homoscedasticity assumptíon in the presence of

equal group sizes had a relatively sma1l effect on F and Frk and a some-

what larger effect on W. The ANOVA F-test and the F:k test were affected

almost identically, both showing a small decrease in power r¿ith increas-

ing variance heterogeneíty, whereas the I^lelch test sho\^/ed a slightly

larger j-ncrease (^' L07"). Thus the tests have about equal porver when

variances are equal but as heteroscedasticity increases the power superÍor-

ity of the Welch test becomes more pronounced.

I^Iith the introductÍon of unequal group sizes, heteroscedasticity

produced more marked effects on the po\^/er of F, about the same magnitude

of effects on the po\,/er of w and negligíble effects on F*. when larger

group sizes occurred in groups having larger variances, the por,ier of F

dropped from't 23"/. to ru 102 as c (the coeffÍcient of variation of the
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variances) increased, and, when the paÍring of group sizes and variances

\.,/as reversed, power of F rose from * 207. to N 42% between zero and

maximum variance heterogeneity. For W, the pairíng of group sizes and

variances made only a small difference to the effect of variance hetero-

geneíty, the effect being greater for the positive pairing. For both

pairings there r,7as an increase in power, as when the group sizes were

equal . 0vera11, then, the rankings of the tests for power r¿ere I^I > F*

>F for positively paired group sizes and varíances and F > W > F* for

Lhe negative pairing.

Responses of I,I and F¡l to increasing variance heterogeneity were

not substantially influenced by Lhe degree of group size inequality,

but, as may be anticipated from the calculated bias coefficients,

increasing values of u led to an increasing responsiveness to hetero-

scedasticity for F. These relationships are illustrated in Figure 2.

Turning now to the results obtained when sarnpling from the chi-

square distribution and confining attentíon to the equal group size data,

tr¿o distinct differences emerge between these results and the normal

distríbution data. Firstly, the response to variance heterogeneity is

different for the two pairíngs of means and variances and, secondly,

the chi-square values are generally larger. As for the normal distrÍ-

bution, the pattern of results differs negligibly for the two patterns

of dispersion of the group means (see Figure 3).

When group sizes are equal and larger group means are associated

\^/ith larger variances, both F and F* shor¿ a power drop of N IOZ over the

range of increasing e values, while I{ shor¿s a smaller drop. Reversal
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of the pairing of means and variances leads Lo a slight po\.rer increase

for F and F^" (N5%) as heteroscedasticity increases and a d.ramatj-c

increase from ru 3LZ to N 53"/. for I.i. overar-r- for the equal group size

condition, there is little to choose between Ehe power of F and F>r

and that of tr{ is superior to both, especially when means and variances

are negatively paired. Figure 3 illustrates the effects of mean_

variance pairÍng, rvhen group sizes are equal, for all three tests.
Lrhen group sizes are unequar, the pairings of group sizes with

variances and of means with variances automatíca1ly results in specific
pairings of means and group sizes. Thus, when means and group sizes are

either both positively or both negatively paired with variances, they

are also positivery paired with each other, and, when the pairing of
means and variances is in the opposite direction to the pairing of
group sizes and variances, the means and group sizes are negatively
paired i¿i-th each other. The result of these relatÍonships beLween

grouP sizes, varÍances and means is that any interaction of the effects
of mean-variance and group size-variance pairing will necessarily be con-

founded with the effect, if any, of mean-group-size paÍring. only when

variances are homogeneous can the effect of mean-group-size paírÍng be

evaluated. Thus results for this effect may be found in Table B under

either posítively or negatively correlated group sizes and variances

¡vhen c=0. i"'Thile the relationshÍp of means and group sizes appeared to
be írrelevant in determi-ning po\,/er when sampring from the normal dis-
tribution, it became a sizeable factor for the chi-square distrÍbutíon.

For the ANOVA F-test extremely unequal group sizes produced
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abouL the same power loss (from the equal group sizes condition) as

occurred i¿ith the normal distributÍ-on, regardless of the pairing of

means and group sizes. rn contrast, the l{elch test showed a power

increase of N 6"/., when means and group sizes were positively paired, and,

a decrease of L)"L-I3Z f.or the negative pairing of means and group sizes.

F'l had similar po\{er to the equal group size condition, for positive

pairing of means and group sizes, but, when the pairing was reversed,

there was a N 9"1 drop.

In the presence of extremely unequal group sizes and het.ero-

geneous variances there were three factors influencing the pol¡er of the

means tests, in the data presented in Table 7, namely, degree of variance

heterogeneity, pairing of means and variances and pairing of ueans and

group sizes. Inspection of Figure 4 shows that \{hile there were similar-

ities in the interactions of these factors on W and F*, the pattern of

ínteractions \¡/as different frou F. The ANOVA F-test demonstrated the

expected interactÍon between variance heterogeneity and pairing of group

sizes and variances, and when means and variances \rere positively paired

this interaction \^/as practícally identical in form to that whÍch occurred

\^¡ith rhe normal distributÍon for borh pairings of means and variances.

However, when means and variances r,/ere negatively paired, although the

interaction between variance heterogeneity and group size-variance paír-

ing was almost the same síze, increasing varÍance heterogeneity caused.

practically no drop in po\4?er for negatively paired group sizes and

variances and a much larger increase for positively paired group sízes

and variances: thus there was also a clear interacËion between degree of
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variance heterogeneity and mean-variance pairing. Since the latter

interaction \^/as identical over both pairings of group sizes and

variance, there rvas obviously no interaction between mean-variance

pairing and group síze-variance pairing and no triple interaction

between the three factors affecting po\^/er. In sunmary, the most impor-

tant difference between the results for F in the two population distrÍ-

butions r¿as the presence of an interaction between degree of varíance

heterogeneity and mean-variance pairing in the chi-square distríbution

and its absence in the normal distribution. Apparently, for Èhe chi-

square populatíon distribution, negative pairing of means and variances

causes increasing po\^rer of the F-test as variance heterogeneity increases,

vhile the reverse is true for positive mean-variance pairing, and, t.his

effect of mean-variance pairing is additive with the effects on po\trer

of group sLze-varLance pairing.

As stated above, the three factors of variance heterogeneity,

mean-variance pairing and group size-variance pairing combíned to pro-

duce similar effects on the power of the l,/elch and F* tests. A triple

interaction existed betr¿een these three factors in thei-r effects on

the two tests with the welch test being most affected by the three

manipulations. I^Ihen means and variances were posítively paired, there

was little effect of variance heterogeneity on the por,zer of I^i for either

pairing of group sizes and variances. rf anything, a bowed relation-

shíp existed between variance heterogeneÍty and power, i.e., power fell

then rose agaín with increasing c, the maximum difference between any

t\ro c values being u 7"/": this relationship was the same for both
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pairings of group sizes and variances, the same difference in power

1evels of * 2oz existing for all values of c. rf power is averaged

over pattern of mean differences and variance heterogeneity, for this

level of sample size inequality, it is x 35:l for negative group size-

variance pairing and ru 15% for posLtive group size-varíance pairing.

Presumably this difference is due to the paíring of means and group sizes

only, since Ít exists when homoscedasticity prevails.

For F* much the same effects r"/ere observed, except that the pat-

tern of the relationship between po$/er and variance heterogeneity r+as

a steady decline as c increased, but again, the maximum difference

between any t\"ro values of c was u 77". Ilowever, the averaged power, when

varj.ances and group sizes were posítively paíred, \4ras.u 23%, and, for

Lhe opposite relationship of variances and group sizes it. was N L4"/"

thus giving a difference of only rv 9%, which was considerably less than

for the Welch test.

tr^Ihen means and variances r¡rere negatively paired, both tr{ and F*

showed increases in power with increasing varíance heterogeneity, this

relationship being steeper for the positively paíred group sizes and

variances for both tests. Averaging over patterns of mean differences,

the power increases from c=0 to c=1.0 for W and F* were ¡, 27"/" and.v 11%,

respectively, for positívely paired group sízes and variances and .v 74/"

and'v 47., respectively, for the negative group size-variance paÍrÍng.

The Ínteracti_on of variance heterogeneity (C), mean-variance

pairÍng (V), and group size-variance pairing (S) on the po\^/er of I^l and

FJc can best be visualized, by noting Ín Figure 4, the completely dif-

ferent pattern of VC interaction for the two different pairings of group
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sizes and variances.

As for the normal population, the degree of group size inequal-

ity greatly influenced the response to variance heterogeneity of F, but,

unl-ike the results for the normal dístributíon, there was also a sub-

stantial effect on I{ and a smal1 effect on F*. Figure 5 illustrates

the results obtained when the degree of group size inequality v/as

smallest and a comparison of Figures 4 and 5 demonstrates the effects

of group size inequality on all three tests. From the graph for the Welch

test it can be seen that the previously dÍscussed three-way interaction

(SxVxC) \ras somei'rhat less when group size inequality (u) was at its

smallest value but the most dramatic effect of reducing u \.¡as on the two-

way Ínteraction between mean-variance pairing and group size-variance

pairing (VxS): this latter effect is illustrated more clearly in

Figure 6. Again, it must be remembered that any VxS interaction is con-

founded with the effects of group size-mean pairing. From Figures 4 and

5, it appears that the effect of mean and group síze pairing, per se

(i.e., when varíances are equal), is about three times larger for the

greater degree of group size inequaliLy and, from Figure 6, this is also

the ratio of the VxS effects at the tr"¡o leve1s of u. Símilar, though

much smaller effects are apparent for I/..

Power at large sample sÍze. Results for the large saruple size

(N=144) are presented Ín Table 9. For the norual populatÍon distribution

the effecls of the various manipulations were in the same direction only

larger. I^fhereas, for the sma1l sample síze, the combined effects of

variance heterogeneity, group size inequality and group size-variance
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pairj-ng had been rather small for I^l and F'! they were much more sub-

stantial at the large sample síze, especiallY for Fx". Interestíngly,

the interaction between the effects of variance heterogeneÍty and group

size-variance pairing was reversed for W and F* compared to F,

i.e., po\./er Lras gleater for positively correlated group sizes and vari-

ances for l^I and F-* as opposed to the conservatÍve bias introduced by

this combínation on F. The effect of group size ínequality on this

interaction at the large sample size was about the same for F, but- rvas

now also evident for the other t\,/o tests. Comparison of Figures 2 and

7 illustrates the d.ifferences betrveen the results for small and large

sample sizes when the normal populatiorl \'zas sampled'

Several differences betr¡een the large and small sample size

r¿ere observed in the results from the chi-squale populaLíon. When group

sizes \{ere equal, the interactÍon of variance heterogeneity and mean-

variance pairing \fas greatly diminíshed in the large sample síze as

compared to the srn¿ll sample síze, for all three tesls. Not only was

the interaction diminished in size, but the direct.ion \,/as reversed, so

that, for the large sample size the pol,rer of the tests was greater when

means and variances \^Iere positíve1y correlated (see Figures 3 and B).

when both group sizes and variances r^rere unequal , the most

dramatic effect of increasing total sample size on the F test was the

appearance of a Lhree-way interaction betr¡een variance heterogeneity,

mean variance pairing and group size-variance pairíng. Unlike the situa-

tion for the smal1 sample size, the relationship between variance hetero-

geneity and mean-variance pairing, i-n their effecLs on Po\^leI, \'^/as
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different for the trvo combinations of group sizes and variances. Lìhen

means and variances rrere positively paired, as opposed to negatively

paired, there v¡as both a greater increase in power v¡ith increasing

variance heterogeneity for negatively paired group sizes and variances

and a greater decrease in power r¿ith increasing q for positively paired

group sizes and variances (see Figure 9 and compare with Figure 4).

Thís r¿as true for all levels of group size inequality, the effect not

being substantially less for the smallest degree of group size inequal-

ity. Other effects observed at the small sample size r¿ere either the

same or slightly increased at the larger sample síze.

For the l^lelch test, the large effect of pairing of means and

group sizes, when variances \.{ere equal, almost disappeared at the larger

sample síze. Since this effect is confounded \^Iith the interaction

betr¿een group size-variance and mean-varianee paíring (SxV), it is noÈ

surprisíng that the tr.¡o three-way ínteractions involving this SxV

interaction (noted at small N) rvere also reduced. The SxVxC inter-

action was only slightty less, as may be seen by comparing Fígures 4

and 9, but the substantial three-way interaction between group size

inequality, group size-varLance pairíng and nean-variance pairing, noted

at the small sample sLze, was hardly evident at the large sample sízez

comparison of Figures 6 and 10 ill-ustrates this latter poÍnt.

For F* the effects of sample size v¡ere similar to those for I^i;

but in additíon, a noticeable effect of degree of group size inequality

on the interaction of variance heterogeneÍty and group size-variance

pairing \,/as present at large N and not at small N. The same effects

were observed in the normal distribution.
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Summary of Results for the Means Tests

In the normal population distribution the ANOVA f'-test makes

too many Type I errors when a positive bias exists and too many Type II

errors when a negative bias exists. on the other hand, the data which

have been presented here indj-cate that the i¡Jelch test controls both

these error rates exceptionally we11, i.e., the Type I error rate is

alrvays very close to the nominal cr value and the po\{er is very close to

and often exceeds a priori por¡¡er calculated for the ANOVA F-test' OnIy

very occasionally did the ANOVA F-test show adequate control of Type I

error and superior empirical power to the !,Ielch test (e.g. , at c = 0

and c=.2 when group sizes and variances \^¡eIe negatively paired) : how-

ever' this power superiority was slight ("' 57") ' The Brovm and Forsythe

F,k test cont.rolled neither Type I nor Type IT errors as well as the

I^lelch test.

In the c.hi-square population the situation \^Ias noE as simply

defined. In Lhe equal group size situation there is liLtle to choose

between the control of Type I error by the three tests, therefore it

seems reasonable to prefer the test which has the greatest empirical

pol,rer under these conditions, i.e., the Welch test. fiihen group sizes

and variances are positively correlated, the control of Type II error

by the ANOVA F-test is unacceptable, and, under these circumstances,

since there ís again little to choose between the control of Type I

error by the Welch or F'! tests, the preference is for the test with the

greatest power, i.e., the \^lelch test. \,trhen group sizes and variances

are negatively correlated, the Type I error raLes for the ANOVA F-test

and i"Ielch test become unacceptable, except for the ANOVA at small degrees
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of variance heterogeneity (Í.e., cS.2). VJith the exception of the high-

est degree of variance heterogeneíty, the F'l test controls Type I error

rates faírly well under conditions that positively bias the ANOVA F test:

additionally íts empirical power is relatively close to a priori po\^/er

calculated for the ANOVA F test, excePt for the small sample size, when

means and variances are positively correlated. For this latter situation

there is a case for using the ANOVA I' test, when variance heterogeneity

is low (i.e., cS.2), since its power is superior'

Tvoe I Errors of the Variance Tests

Type I error rates for the variance tests are presented in Table 10.

Since neither mean differences nor group size inequality produced any

effects on Type I error rates, these values were obtained by averaging

over dichotomized, equidístant and equal Eeans and also over equal and

unequal group sizes, so that each value vlas obtained ftom 24r000 símula-

tions.

Table l0

Empírical Type I Error Rates (%) tor the Variance
a

Tes ts

Population Sample Brovm &

Jacknife ForsYthe BartlettShape
Box-

Scheffé
Box-

Andersen
Comb ined

I,fSLze

Normal

Chi-square

small
large

small
large

4.646
4 .429

4 .887
4.792

5. 108
5.0L7

L2.27 5

9 .167

2.9L2
4 .037

4.22L
4 .592

4. BOB

4.904

42.662
51.429

r0. B5B 3.392
6.404 3.937

LL.6L2 9 .62L'6.254 6.237

aAveragecl oveï mean
value was obtained

differences and grouP size
f.rom 24,000 simulations'

inequality, i. e. , each
2o = .0028

p
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In the normal population, the jacknife and Bartlett tests

accurately controlled Type I errors regardless of Sample size, whereas

the Box-Scheffé, Brovm and Forsythe, and combined M tests r\¡ere conserva-

tive with the lattel t$/o being more so at the small sample síze. How-

ever the Box-Andersen test was liberal and especially so at small N.

In the chi-square population, only the Box-Scheffé and Bror"n

and Forsythe tests contÍnued to control Type I error rates, with the

latter test sti1l being conservative. As has been observed many times

before, the Bartlett test showed a huge increase in Type I error rates'

up to 40-50"/". The jacknife, combined M, and Box-Andersen tests showed

similar degrees of non-robustness, Type I error rates being larger at

the smaller sample síze, However, the Type I error rates for the Box-

Andersen test were approximately the same as in the norrnal population.

Only the Box-scheffé and Brovm and Forsythe tests were robust.

both to non-normality and at the small sample size. The jacknife,

BartleËt, and combined M tests were robust at the sma1l sample size, but

\^rere not robust to non-normality r.^¡hile the Box-Andersen test \'Tas robust

to non-normality but had inflated Type I error rates at small sample

stze.

It can be seen that the combined l'{ test (which is a combination

of, (a) the Box-Andersen test if its correction factor, c2, is greater

than zero; and, (b) Bartlettts test if this factor is less than zeto)

had lor,¡er Type I error rates than the lowest of the two values of its

component tests. This is because there must have been occasions on

whích the correction factor would have been betrveen zero and minus two
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and therefore could have turned a non-sÍgnificant Bartlett value to a

signif icant Box-Andersen va1ue.

Power of the Variance Tests

Empirical power values for the variance tests at equal and

extremely unequal group sizes (U=3.0) are presented in Tables 11 and 12

for the small and large sample sizes, respectively. In the normal poPu-

lation, of the tests ¡.¡hich were robust at small sample size (i.e., all

except the Box-Andersen test), the po\,rer of the tests at equal grouP

sizes were ranked in the following decreasing order: Bartlett, jacknife,

combined Mo Brown and Forsythe, and Box-scheffé. If the Box-Andersen

test had been included in the above ranking, it would have appeared at

different places depending on the actual degree of variance heterogerie-

ity. This is because its porver is too high at low c values, as a

result of the inflated risk of Type I error, and, because its power

drops at high c values for reasons discussed under Methods. When pov/er

was averaged over c values the Box-Andersen test had exactly the same

po\rrer as the ¡acknife test. At large sample size the same rank order of

tests prevailed, except that the poïrer of the Box-Andersen test now fell

beÈween that of the iacknife and Bartlett tests.

fntroduction of unequal group sizes maintained the same rank

order of power of the tests with respect to each other. However, Po\{er

v¡as greater when group sizes and varíances \^lere negatively correlated as

opposed to positively correlated and this effect \das esPecially notice-

able at c =.4 ând s =.f, i.e., in the middle range of variance
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Empirical po\^/er values ("Á)

Table 11.

for the variance tests (small N, equal means)

Pairing
of group Coeffic-
sizes & ient of
variances variation

Statis tics

Box-
S chef fe

Brown &

Jacknife Forsythe
Box- Combined

Bartlett Andersen M

Normal Distribution

EquaI
nt s

Positive
(u = 3.0)

Nega tive
(u = 3.0)

0.2
0.4
0.6
1.0

0.2
0.4
0.6
1.0

0.2
0.4
0.6
1.0

7 .r5
18.25
51.90
71.10

6.55
L2.65
33.45
58.00

s. 85
L4.65
5l .05
56.75

9.15
28.50
8r. 45
93. 70

9 .45
20.70
59.30
88.25

9.20
29.65
84.60
89 .80

6.25
20.05
59.85
87.90

4.85
11 .95
33 .90
82 .35

7 .00
2L.35
69 .75
81. 85

r0 .45
34 .20
89.80
98.05

8.65
22.r0
63.10
96.80

r0.05
34 .70
91.60
94.6s

16.95 7 .65
38. 35 26 .L5
79 .90 78. r0
7 t .60 90 .45

14.80 6 .45
28.25 76 .70
59 .75 50.65
79.50 88.05

r7 .55 7.00
36 .10 24 .90
70.50 78. 15
55.25 8L.20

Chi-square Dis tribution

Equal
nts

Pos i tive
(u = 3.0)

Negative
(u = 3.0)

0.2
0.4
0.6
1.0

0.2
0.4
0.6
1.0

^)
0.4
0.6
1.0

5 .00
1r.70
27.40
40.s0

5.95
10.40
20. 00
37.60

5.05
10. 15
30.95
34.80

13.55
22.95
46 .60
60.95

14.15
20. B0

37.10
56.25

14. 85
23.50
48.90
< I Oq

5.80
72.30
31 .45
57 .L5

4 .60
7 .00

14 75
41.80

6 .40
t6 .00
41.15
56. s5

48.30
60. 30
87 .95
94 .60

42.75
51.60
78.10
98.25

44.60
57.10
84.7s
89.10

L4.45 L2 40
21. B0 20.00
44.50 44.75
53.80 59.65

11.00 9. 35
15.95 14. 30
26.40 26.O5
44.30 45 .85

13. 95 rL.7 5

2r.65 2r.45
43.05 48.55
43.10 55.90
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Empirical Po$/er values (7")

Table 12.

for the variance tests (large N, equal means)

Pairing
of group Coeffic-
sizes & ient of
variances variation

Statistics

Box-
Scheffe Jacknife

Brown &

Forsythe Bartlett
Box- Combined

Àndersen M

Normal Distribution

EquaI
nts

Pos i tive
(u = 3.0)

Neg ative
(s = 3.0)

L7 .20
6s.70
99.55
oo oc

14.50
49.L5
96.30
99 .95

L2.05
58.1s
99.05
99.80

24.L5
84.20
99.95

100 .00

2l-.20
72.80
99.85

100 .00

22 .10
84.60

100. 00
100. 00

19 .45
16.L5

100. 00
100. 00

r6.90
60. 90
99.30

100. 00

18. 35
76.15
99 .95

100. 00

26.15
87.30

100.00
100 .00

20. 80
75.30

100.00
100 . 00

24.60
87.35

100 .00
100 .00

28.15
86 .15
99 .90
98.10

23. 45
73.30
99.80
99 .20

27 .r5
84.90
99.80
91.10

ÔÔ aF¿¿. JJ

83.70
100.00
r00. 00

18 .00
69.7s
99. B0

r00. 00

20.25
82 .60

r00. 00
100 . 00

0.2
0.4
0.6
1.0

0.2
0.4
0.6
1.0

0.2
0.4
0.6
1.0

Chi-square Dis tribution

Equal
nts

Posi tive
(u = 3.0)

Nega L ive
(u:3.0)

u.¿
0.4
0.6
1.0

0.2
0.4
0.6
1.0

U.L
0.4
0.6
r.0

9.35
31 .45
85 .66
96 .3s

8. 85
26.00
70.30
94.20

7.70
60. 30
8s.70
91.80

16 .10
40. 40
85.70
93 .35

15.60
34 .65
11. a(

92.9s

L6 .70
39.70
86.85
89.95

10.75
38 .8s
91.90
99.70

B.l0
24.75
68.70
98.60

LL.7 5

44.9s
95 .45
9B .45

6r. B0

87 .70
99.80

100 .00

60. B0

82.85
98. 35
99.90

59.90
83.90
99 .65
99.9s

11.55 11.55
34.9s 34.95
80.60 80.60
92.75 92.90

9.20 9.20
23.05 23.05
57.8s 57.85
86.30 86.3s

L2.55 L2.55
39 .50 39.50
88.30 88.50
91.85 93.00
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heterogeneity. Power of the tests, rvhen group sizes and variances r,rere

negalively correlated, approximated that of the equal group size condi-

tion. This relationship of por+er to pairings of grouP sizes and varí-

ances \ras equally valid at both the large and small sample slze. In-

creasing group size inequality accentuated the effect of power reduc-

tion in the middle variance heterogeneíty range for positively correl-

ated group sizes and variances, therefore Tables 1l and 12 illustrate

the extremes of t.his effect.

In the chi-square population for the small sample size condi-

tion, comparison of the behaviour of the two Èests which control Type I

error, namely the Box-scheffé and Brovm and Forsythe tests, reveals

that the po\,zer preferenee depends upon the relationship between group

sj-zes and variances. If nrts are equal, or, unequal and negatively cor-

relaËed with variances, the Brown and Forsythe test has superior power,

r¿hereas, if larger groups have larger variances, the Box-Scheffé test

has greater po\^/er. The Box-Andersen and combined M tests, which have

empírical alpha values of about Ëwice the nominal level, demonstrate

approximately equal power values, that are some\^Jhat hígher than those of

the two robust tests. The jacknife and Bartlett tests have the second

highest and highest pov¡er, respectively, however the former has a Type I

error rate greater Ëhan twice nominal alpha and the latter is completely

unacceptable because of its 50"/" Type I error rates.

At the large sample size) in the chi-square population, the

Type I error rates of the Box-Scheffé., Brown and Forsythe, Box-Andersen,

and combined M tesEs are all acceptable. The same po\^/er relationships
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exist between the former t!/o tests, with resPect to the grouP size-

variance relationship, as occurred at small N. Porver of the Box-

Andersen and.combined M tests is identical, falling beEween that of

the Box-Scheff é. and Bro\.rn and Forsythe tests for equal n.ts and nega-.J

tively paired n.ts and variances, and, is less than either for posi-
J

tively paired n.rs and variances. The j'acknife test, which has an
J

ernpirical alpha of twice the nominal value, is more powerful when n.'s
J

are equal or unequal and positively correlated with variances, than the

four tests which are robust at large sample síze, but has lorver Power

than the Brovm and ForsyËhe test at c > .4 fot negatively paired group

sizes and variances.

Sunrnary of Result.s for t.he Variance Tests

Overall, the preferred variance test seems to Be the Brown and

Forsythe test on absolute deviations from the median. Not only does this

test control Type I error rates but it is also more po\^Terful than the

other truly robust Lest, i.e., the Box-Scheffé. Although there are

specif íc situations r.¡hen the Box-scheffé test is actually more po\¿erful,

the excess is not Ereat, and averaged over all conditions (rvhere the

group means are equal) the po\.ùer of the Box-Scheffó and Brown and

Forsythe Lests is, respectively, 42.90 and 48.82. Since these tests

have rather low po\,/er at the low end of the variance heterogeneity con-

tinuum, it may be preferable, at times, to sacrÍfice control of Type I

error and use a less robust test, in order to gain more power to detect

a small difference in variances. This, of course, depends on the relative
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cosL, in a given situation, of making a Type I as opposed to a Type II

error) a matter of some concern when performÍng variance tests aS a

preliminary to a tesÈ of mean differences.

Type I Errors of the Sequentþllesr!þ Procedures

Type I error rates for all sequential procedures and individual

means tesls, under all conditions when group sizes are equal' are pre-

sented in Table 13. In general, for the sequential procedures, Type I

eïror rates (and power) were closer to the ANOVA values when variance

heterogeneity was small, and closer to the values for the alternate

test (Í.e., Welch or Bror¿n and Forsythers p;t) when variance heterogeneity

was large. This relationship exists because, when the power of any

variance test is less than 50"/", tlne ANOVA F-test on means vill be per-

formed more often than the alternate test; and, conversely, when the

power of the variance test is greater than 50%, the alternate test will

be performed more ofcen. Naturally, the power of any variance test is

lower at low degrees of variance heterogeneity and is therefore more

likely to be less than 502. Also, therefore, Type I error rates (and

power) of the sequential procedures approximated those of the alternate

test more often at the larger sample size because Ëhe variance tesfs are

more po\^¡erful at large N.

When sampling from the normal population usíng equal group sizes,

it is clear that none of the sequential procedures, for either alternate

test, showed bettel control of Type I errors than did the Welch test

alone. This is Ínevitably so, since the performance of the Welch test
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Table ì3.

Type I Error Rates (Ì) for the Individual He¿ns Tests and Sequential Procedures.

(tqual n¡'s)

ANOYA l,rtLCH

s.25 5.05
5. I 5 5.30
6.15. 4.75
5.85 5.55
8. 50. 5.25

0.0
0.2

0.6
1.0

Conrb'ined AI{0VA and lielch Procedures

Ft,r/BS FlliJK il.r/Bf

5.45 5.45 5.35 5.60 5.30 5.35
5. I 5 5.55 5.45 5. ss 5. s5 5.40
6. I 5* 6.25- 6.55' 6.20' 6.25* 6.35'
6.80* 6.40, 6.70. 6.ì5' 6.20* 6.50',
7.00* 5.15 6.ì5. 5.85 5.40 5.80

4.80 5.05 4.85
5.90 s.95 5.95
s.Bo 5.45 5.75
6.35* 5.50 5.55
7.75* 4.80 4.B0

0.0
0.2
0.4
0.6
ì.0

t't

3.80**
4. 50
5.25
6.25*
9. 55i

BA

0.0
0.2
0.4
0.6
1.0

Nornr¿l Distribution (Snaì ì l'l )

F'i/ B FH/CH ANOVÂ

5.00 1.95 5.05 5.05 5.00
6.05* 6.00. 5.95 6.05r 6.05-
5.65 5.80 5.70 5.60 5.70
5.55 5.50 5.50 5.50 5.50
4.80 4.80 4.70 4.80 4.80

4.4 5 4. 35 4 .85
5.60 4.75 5.00
6.30' 5.40 5.80
9.20* 7.20" 7.95'
8.85- 9.65* 9.95'

^ Type I error rales 2oO qreater th¿n o, where op

ìype I error rates 2oO less th¡n q.

5.00 5.85 5.20 5.85 4.15
4 .90 6.25' 5.25 5. 50 5. 00
6.25* 6.00. 5.80 6.ì0* 5.60
5.80 5.90 5.45 5.65 5.65
7.95* 6.451 6.85* 6.95t 6.50'

Nonn¿l 0istribution (Large ll)

5.25 5.05 5. 20 5.20 5. 20
5.ì5 4.90 5.ì0 5.ls 5.15
6.ì5* 5.70 6.00', 5.95 6.05',
5.85 5.40 5.65 5.40 5.45
8.50* 6.85* 7.50' 7.00- 1.20.

F-

3.10** 3.65*¡ 4.95 3.75**
4. 1 0 4 .10 5.85 4. 60
4.55 5.t0 6.451 5.10
7.6t* 7.60* 9..l5* 7.70*
9.90* 9.30* 9.45* 9.',Ì 5',

Chi-square Distributjon (Str'¿l I N)

FF'l85 FF-l¡X FF'/gF FF'/BA FI'*/D FF'/C¡I

Conbined All0VA and Fr Procedures

4.80 4.80 4.80 4.80 4.80
5. 90 5.90 5.90 5. 90 5. 90
5.80 5.65 5. 70 5.7 0 5.7 5

6.35* 6.30* 6.30. 6.30- 6.30.
1.75* 7.35* 7.35- i.35* 7.35*

Chi-Square 0istribution (Large N)

5.35 5.90 5.35
5. ?0 6. 00* 5 .20
5.60 6.05* 5.60
5. 35 5.90 s.35
6.70* 6.45* 6.60*

3.80"" 3.25*" 3.65*'
4.50 3.95*i 4.45
5.20 4.30 4.85
6.25* 5.30 5.95
9.55* 8.30* 8.85*

= (o(ì - o)/2,000)') = .0097

5. 20 5. ì 5 5.20
5.r0 5.10 s.ls
5.85 5.95 6. 00'
5.40 5.40 5.40
7.15' 6.85' 7.05'

5.00 4.75 5.00 4.85 4.95
4.90 4.15 4.90 4.90 4.80
6.25* 6.,l5* 6.25- 6.15. 6.15-
5.80 5.55 5.55 5.55 5.55
7.95* 7.15+ 7.75' 1.15* 1.75',

4 .80 4 .80 4 .80
5.90 5. 90 5. 90
5.70 5.70 5.70
6. 10. 6. 30' 6. l0'
7.3s' 7.35* 7.35.

3.60** 3.55** 3.6O** 3. 35.* 3. 55.'
4.20 4.30 4.30 4 .1 5 4.30
4.70 4.60 4.65 4.40 4.60
5.45 5.55 5.55 5.40 5.60
8. 55* 8.55* 8.70' B. 30' B. 50-

4.90 4.15 4.90
4.90 4.75 4.90
6.ì51 6.15. 6..l5'
s.55 5.5s 5.5s
1 .ls' 7 .15' 7 .75'

H
O(,
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is the best of all the tests of mean dÍfferences. In order for any

Sequential procedure to be as good as the t^lelch test ' the variance

test involved would have to have a porter of. LOOZ at all levels of vari-

ance heterogeneÍty -- an obvious impossibility. Of the sequential

procedures invol-ving the l^Ielch test as the alternate test to the ANOVA

r+hen the assumption of homogeneity of variance \^Ias rejected, that using

Bartlettts varíance test performed best; the same \^/as true when using

F^" as the alternate means test. The foregoing held true for both small

and large N. (i{hen N=144, F and F"" behave almost identically; and,

therefore, all sequenLial tests Ínvolving F* as the alternate are also

almost identical to both F and F"".)

For equal group sizes sampled from the Chi-square distribution,

the situation changes consíderably. !.Ihen the sample size is small, the

l,lelch test and the sequential procedures in r^¡hich it is the alternate

test, perform \^zorse overall than the ANOVA F-test. The best of the corn-

bined ANOVA F-test and Welch procedures Ís that using the Box-Scheffé

variance test. In contrast, the sequential procedures combining F and Ix

showed smaller deviations from nominal o , overall, than did either test

separately, the best of these being that using the Jacknife variance

test. I^Jhen the sample sLze ís large, the sÍtuation improves for the

I,Ielch sequential procedures because the Welch test becomes more robust.

In fact, all sequentíal procedures for either of the alternate means

test are superior to either of theÍr component means tests. For the

Welch and ANOVA F-test combined procedures, that using the Brovm and

Forsythe variance test was best, r¡hereas there was little to choose
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betr+een the sequential procedures combining the ANOVA F and F'\' tests.

When group sizes are unequal, different situatíons obtain depend-

í-ng upon rghether group sizes and variances are positively or negatively

paired. These results are presented in Table 14. When small samples

'¡ere taken from the normal population and group sizes and variances

were positively paired, the situation is analogous to the equal n. con-

dition in that the Welch test ís superior to a1l single and combined

tests. In general, the sequential procedures err on the conservative

side because (a) the ANOVA F-test is conservative under these condítions,

(b) the power of the variance tests is at its lowest with this pairing

of n,'s and variances, and therefore (c) the ANOVA F-test rvill be chosen
J

more frequently because of failure to reject the homogeneity of variance

assumptíon. 0f the sequential procedures combining the ANOVA F-test and

the i^lelch test, those using the combined M and Box-Andersen variance

tests r+ere best; whereas , for Lhe sequential procedures combíning the F

and F'k tests, the best procedures r,¡ere those using the Box-Scheffé and

Box-Andersen variance tests. These were also an improvemenL on uni-

formly adopring the F'k test. At large sample size, preferences \{ere

essentially in the same order although none of the sequential tests was

now significantly conservative.

I.rrhen small samples were taken from the chi-square population

and group sizes and varíances were positively paíred, the i^Ielch test

showed the largest deviations from nominal c, , as when group sizes r¿ere

equal. Hov¡ever, unlike the latter situation, the sequentíal procedures

involving the Welch test r./ere now an improvement on the use of either
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0.0
0.2
U.c
0.6
1.0

T¡blc 14.

iype I Irror Rates (Ì) for the lndjviduaì lçle¿ns Tcsts and Sequcrìtj,ll P''oceciures
(Llneoua'ì rr.'s (u=3-0) positivel_v o¡jr.ed rvilh väri3nces)

5.00 5.J5 :..i0 ).5C 5.40 5.75
1.20 5.ó0 j.65 :.i0 4.70 5.35
2.ó0"- ,1. i0 j.70r* j.9c.- 3.60** 3.90."
2.S5"' 4.90 :.15 j.6C ,1.45 4.E0
-ì.25" 5.75 :..10 5.60 5.65 5.05

0.0
0.?
U.c
0.6
t.0

Coir:bined Ali0VA and I,leìch Procedufes

4.t 5 5. 05
3.90*. 5.t5
3.10*. 5.20
2. 90.. 4. 90
3. ì 0-' 5. 90

0.0
0.2
rl.4
0.6
1.0

Fl.l/LìÂ Fl{,'3 tw/CY 
^ll.VA

:.10
, ai
r .90
5. 90

,i.55 7.65r
3. 95" 6. e0'
i.i5" 5.3û
1.55" ì.i5-
: .25 6. 7C-

0.0
0.2
0.4
0.6
1.0

lloriì¿l 0istr'ibutton !SmôlI ti)

i.90 4.85
4. 50 4.35
4.35 4.1A
4.90 4.90
s.90 5. 90

* Type I error ra[es 2on g_Lg¿jlr than c, where op = (o(] - o)72,996¡L

ïype I error r¡tes 20p less than c.

5.;5
5. 20
4.t5
5. 20
5._î5

.: . 65 ó. 2C*a.2a a.ia' ;_, : ì:
:.24 6.9C-
¿.25* ó.ô5'

5.30 7.05-
1 .00" 6. 20"
2.50'. 5.10
?.65t, 5. 30
L 40.' 6.?5-

llol.rel Distribution ,'iàr-ge il)

5.55
5. 00
3.E5.'
4 .6C
5. 5r

4.85 4 .90 4. S0
¿r.)U q.15 ¿l-41
4.90 4.95 4.85
4.90 4.90 4.90
s. 90 5. 90 5.90

i'

5.00 .r.65 5.t5 5.05 5.05
4 .20 5.30 4 ..i0 4 .55 4 .?5
2.80-' 5.50 1.20-. i.3s'" 3.35"
2.85.- 5.95 3.85.- 4.65 4.00-'
3.25.' 7.55- 5.50 6.90- 6.65-

3. 55**
3.85--
3.75{r
5. 00
6. 30-

:.7C 5.e5 4.60
:.40 6.00' 5.05:.65 1. 70 4 . 50
r.70 5.00 4.80
6.35. 6.4C- 6.30.

Chì-Square DìstribuLion (Smàl I lì)

Ir-lôs FFrli].

5.25 7.10. 5.0c
4.60 6.95* 4.iA
4.i5 5.7a 4.9ù
5. 50 7 . ;3' 5.4a
6. 10' 7 . iû' 6.2'.'

Contb.ined All0VÂ ¿nc i' iìr.ocedurc,s

4.75
3 . 90".
3.l0**
2.90**
3.r0--

Chi-Square 0jslribution (Large Ìl)

;i./ta-;.,hi, - 
¡, i: lt¡

4. 90
5.40
5.8s
6.15*
7.t5'

5.00 7.00. 5.00
5.55 6.50" 5.55
4 .45 5.25 4 .4 5

4 .40 5.25 4 .4 0
6. 25- 6.25. 6.25'

4.55 3.95.- 4.3s 4.20 1.75*.
3.95.' 4.45 4.50 4.25 4.15
3.35" ¡;.55 3.75" 3.85" ,1 .10
3.65.' 5.70 4.30 4.7A 4.70
4.25 i.80- 5.t5 6.40' 5.65

.80 4.85 4.80 ¡.80 4.75 1.75

.20 4.15 4.30 1.40 4.40 4.40

.45 4.80 4.85 5.00 5.00 4.90

.00. 6.15* 6.15- 6.t5. 6.t5. 6.t5"

.75' 7.15, 7.75, 7.70â 7.Ì5, 7.75'

), ta

i . 5c-.
l. 50
o. r f -

rr,/cr1

5.r0 5.15,ì.45 ¡i.40
3.60.- 3.40"
:¡. y) ¡ì. Jf
i. 50. 7.00'

5.10 4.70 5.10 5.05
4.00-- 5.75 5.t0 5.35
2.50.. 5.15 4.50 4.30
2.65'- 5.85 5.35 5.40
3.40'. 8.15' 7.60, 7.85'

.0097

,1 .60
.r . 00"'
:.10

5.00'

¿i.15 t).¿5
¿.60 ,1 .10
4.75 4.25
5.50 4.15
i .50, 6. 0s'

4..t5 j.e5 4.70
5.50 ó.r5 5.25
4.50 4.2A 5.15
5.45 5.00 5.85
7.90. t.45. E.ì5'

5.15
4.2A
5.00
7 .45.

P

o\
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Table ì4.(continued)

Type I Error Rates (i) for the lndividual Heòns Tests and Sequentiaì Procedures.

(Unequaì n.'s (u=3.0) negativeìy paired wìth v¿r'i¿nces)

l.ltLct{

5.00 5.45 5.40
5.75 A.25 5.90
9. 60* 5.80 9.05*

I 3. 55. 5.25 9. 70'
20.70* 6.40* 13.35'

Combined ANOVA and Weìch Procedures.

0.0
0.?
0.4
0.6
1.0

F'¿ll BS FhI/ J X

4 .15 5.05
8.50" 5.80
ì0.05* 5.00
ì 3.20a 4. 90
20.30, 5.30

0.0
0.2
c.l
0.6
1.0

s.50 5.40 5.75 5.55 5.55
6.00. s.9s 5.60 5.95 5.95
8.4 0" E.40* 7 . 95. 8.40* B.,1 0.
6.90* 8.55* 7.45* 6.45* 7.35.
9.20* 9.15* 12.85{ 7.ZOi 9.25*

4.85 4.90 4 .85
8.10* 7.40* 7.75.
6.95* 5.85 6.30*
5.ì0 4.90 4.90
5.35 5.30 5.30

4 . 55 7 .65* 4 .65 6.20*
5.50 B.l5- 5.65 6.15-

10.05' t2.30. 9.50. ì0.20.
t3.65. ì3.40* 1.l.20* 12.55*
22.40. ì2.70. 18.10. ì6.80-

llornròl 0istribution (Sn¿ì I N)

FH/B FU/CH ANOVA

0.0
0.?

0.6
'l.0

' Type I

" Type I

5,30 7.05. 5.70 5.85 4.60
5.70 6.10* 5.ì0 5.20 4.40
9.95' l.?0' /.85* 7.60 6.75.

14.90. ì0.65* ì0.50. ì0.45* ì0.45.
20.95' ì0.30r ì0.90" 'l1.55- 10.50*

Norflal Distrihrtìon ([arge l{)

4 .85 4.90 4.80
7.35* 7.60* 7.75.
5.80 5.55 s.90
4.90 4.90 4.90
6.50* S.30 5.i0

error rates 20^ r¡reater tlìôn û. where o^ =P-v

error r¿ tes 20^ I ess than c¡.P-_

5.00 4.65 5.ì5 5.05
5.75 3.75*" 5.70 5.40
9. 60* 4 .85 B. 60* I .95',

ì 3. 55* 5.65 1 0. 
.ì 5* 6.90i

20.70* 7.?5* 13.30* 8.80'

3. 55** 5.?5 7 .90* 5. 00
,i.65 5.45 i.?5' 5.05
z.?0* 9.25* lì.ìl* 8.55.
t0.65* 12.55* ìi 25* ìl.25'
ì6.05. 1i.90* ì3.75* l6.15'

Combined AN0VA ¿nd F* Procedures.

Chi-Square Distribution (Sraìl ll)

FF-lBS FF*/JK

4.15 4.90 4.80 4.85 4.80
8.50* 6.00* 8.05* 7.35* 1.70'
ì0.05* 5.60 7.40* 6.30" 6.BO'
ì3.20- 5.85 6.00* 5.85 5.85
20.30" 7.70" 1.75' 7.70* 7.70'

Chi'square Distribution (Large tl)

5.00 7 .00* 5. 00
4.60 5.65 4.60
7.00* 7. o0* 7. 0Û-

t0.45* 10.65* 10.25'
11.35' 10.35* 'l0.90-

5.0: 5.?5 5. I 0 5. I 5
5.50 5.ì0 5.45 5.6i1
7 .95' t .45' 7.40- Ì .7A-
8.50. 7.90' 6.35* 7.9C'
9. 35' I l. 35. 7. 90' 9. S5'

4 . 55 3.95** 4. 35 4 .20
5. 50 4.40 5. 00 5.25

10.05* 6.35* 8.65* 8.25.
ì 3.65* 5.95 9. 30* B. 50*
?2.40r 10.30* 16.90' 14.65'

(o(ì - o)/2,000)

5.30 4.70 5.10 5.05
5.70 4.ì0 4.70 4.35
9. 95' 5. 70 I .7 5* 6. B0*

14.90* 7.20* 8.00* 8.00*
20.95* 9.65* ì0.40* 10.75.

4.80 4.75 4.75
7.40* 1.45, 7.60'
6.30r 6.05. 6.40.
5.85 5.85 s.B5
8.80. l -70' 7.7A'

.0097

3.7a.' 4.60 4.15 1.?)
4.60 5.15 4.60 4.-o0
7 .21' 8. 05* 6.40', 7 .25'
7 .6V 9.80' 6.55' 1 .e5'

t4.t5' 16.E5- ì'l..l0' t4.35'

4.75 4.85 4.70 4.A;
4 .25 4 .25 3. 95" 4 .23
6.45. 6.60' 5.95 6.60"
7 .45' 7 .85- 7 .25' 7 .'lîr'
9.75. ì0.70* 9.65. 10.35'

P
O
!
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the ANOVA F-test or the l^ielch test alone, the best being that using the

combined M variance test. The combined procedures using the F^" and

ANOVA F-tests also showed better control of Type I error rates Ëhan

each test alone, with the best combinatíon being that using the Box-

Andersen test. This sequential procedure was noË as good as the best

ANOVA-l^lelch sequential procedure. Essentially the same situation

exisÈed when using large unequal samples from the chi-square population'

\^Jtten group sizes and variances are negatively paired, Type I

error rates \,ùere seriously inflated for the ANOVA F-test in both poPu-

lations and for the i^lelch test in the chi-square population. In the

normal distribution, no sequential procedure improved upon the perform-

ance of the Welch test alone, especially when the sample size r+as large.

Similarly , f.or the combined ANOVA F and F* procedures, none controlled

Type I errors as well as the F* tesË alone. The besÈ of the sequential

procedures in all cases were those using Bartlettts varianqe test.

For negative paíring of group sizes and variances in the chi-

square population, all sequent.ial procedures combining the ANOVA F and

I^Ielch tests showed superior control of Type I error rates compared to

eÍther test individually, the best procedure being that using Ëhe

combined M variance test. The relative behaviour of the tests was the

same for both sample sizes, but control of Type I error rates v/as

better at large N. Combined procedures using the ANOVA F and F¡" tesLs

did not improve on the F,l test alone at either sample size in the chi-

square population, and the F* test alone \tas an improvement on the best

sequential procedure using the combined ANOVA F and l^lelch tests. The
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best sequential procedure combining the ANOVA F and F)'r tests was that

using the Bartlett variance test.

Lrhen the populatíon sampled is normal, no sequentÍal testíng

procedure is preferable to uniformly adopting the Welch test regardless

of whether group sizes and/or variances are unequal. Lrhen the chi-

square population is sampled and n.'s are equa1, sequential procedures

using F¡" as the alternate test are preferable for N=48, and procedures

using the i^Ielch test as the alternate test are preferable for N=144. A

more critíca1 situation exists when n.ts and varíances are both unequal.

If pairing of n. ts and variances is positive, sequential proeedures
J

combíníng the ANOVA F test and I^ielch test are to be preferred; but, \,rhen

the pairing of n.rs and variances is negative, uniformly adopting the

Brown and Forsythe F:k test ís best for both sample sizes.

Power of the Sequential Testing Procedures

Discussion of the po\../er of the sequential procedures will be

limited to the situations in r¿hich a sequeritial procedure improved on

the control of Type I error rates. This only occurred when the chi-

square population \.^ras sampled and was of most importance under condi-

tions where the ANOVA F-test is notably conservative, i.e., when

variances are heterogeneous and positively paired vrith unequal group

sízes. These results are presented in Table 15. In the chi-square

population, especially at small N, the l^lelch test signif icantly exceeded

e I Error Rates of Combíned Versus Individual }leans Tests.
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T¿bìe 15.

Power (l) for the Indiv'iduaì lrlcans Tests ànd Sequentiðl Procedures ìn the Chi-Square Popuìation
(uneou¿ì n.'s (u=3.0) positiveìy paired with variances)

0.0
0.2
0.4
0.6
1.0

ANOVA I,,IELCH F,I/ BS FH/J K F\I/BI

¿q. JJ
t8.'l0.l2.73

9.95
6.83

0.0
0.2
0.4
0.6
1.0

Conbi ned Aliù\ I 3nd lJel ch Procedures

36. 45 21 .93 26. 60
34 . 38 ì 9.48 22.03
33.83 ló.65 21.03
33.t5 19.08 25.70
3S. 30 21. ?0 3l . 55

63. 93 67.00
6t . 93 69.68
55.48 72.30
49.30 Bl.ì3
40.73 Bt .28

0.0
a.2
0.4
0.6
ì.0

Positiveìy Paired l4eans ¿nd Y¿riances (S,î¿lì N)

2.1 .50 25.53 32.03 21 .93
ì8.45 20.30 29.50 19.98
13.28 17.00 30.88 ì6.58
13.58 ì9.43 32.55 I9.38
23.45 24.68 38.30 25.{3

FH/ßA Fr.l/B FriiCM ANOVA

63.98 64 . 53 ó1. I 0
62.ì3 62.70 6ì.95
sB . 28 60. 98 56. 00
72.43 73.13 68.55
84.65 84.05 86.60

25.40 19.08 25.03
23.88 22.55 23.85
2ì.88 29.00 2?.10
t8.83 4t.28 24.35
20.45 45.8s 32.22

0.0
0.2
0.4
0.6
t.0

Positively Paired l4e¿ns and Yariances (Large N)

a tach value in the tabìe Has based on 4,00C simulations.

62.90 62. 33 62.70 62.78 52.93
59. 48 66. l 8 60. 03 6 1 . 08 60.48
54.80 7r.30 60.20 63.20 60.60
50.93 82.35 75.50 76.43 76..l5
45.50 86.98 86.28 85.40 46.90

64.08 66.34 63.0B
62.05 67.73 62.05
57.40 7'l.03 57.40
66.ì5 Bì.03 66.15
78.83 81.28 78.83

24. I 3 21 .73 24. I 5 23. 35 24.25
24.3B 23.90 23.63 25.65 2!.00
24.60 ¿2.68 23.50 ?8.98 23.53
30.33 23.73 25.68 38.95 ?4.70
38.'ì0 35.65 33.68 45.38 3.1.75

24 .33 26.60 24 .28 24.30 24.00
t8.ì0 25.40 ìE.60 19.68 18.23
)2.73 23.15 14.30 I6.6C 13.65
9.95 22 .t3 14 .23 17 .23 I 4 .05
6.83 .l9.58 14.38 ì6.40 15.95

Negativeìy Pajred Heans and Yarìances (Sr¿ll l{)

Fr ¡FrlBSlIlllK JF-¿qI lIjljA FFVB FF*/CH _

Cornbined AN0VA and F* Procedures

l{egatively Pð ired Heans ¿nd Variances (Lar9e N)

63.93 62.38 63.75
61 .93 65.78 62. ì 0
5s.48 66.28 51.31
49.30 67.40 62.93
40.73 68.45 67.58

62.95 62.95 62.95
60.30 65.45 60.30
59. 98 70.68 59.98
7ì.05 82.28 71.05
8r.35 86.98 8.l.38

25.40 19.33 24.'10 ?3.75 24.13
23.88 ?2.65 23.10 23.33 23.90
?1.28 ?4.75 21.75 22.28 21.75
18.83 26.98 20.70 2?.28 ?0.23
20.45 30.70 23.73 25.68 ?4.13

24.00 25.48 23.98
t9.35 23.18 19.03
15.55 2ì.30 l5.2tl
'I 5.E3 21.63 ì5.73
ì5.08 19.35 15.73

63.43 63.68 63.73 6?.95 63.73
62.35 6l .90 62.05 64. 58 62.05
59.25 56.38 56.93 65.38 56.93
63.43 62.55 59.55 67.30 59.55
66.70 68.ì8 64.48 68.45 64.48

62.90 63.93 62.93
59.48 65.60 60.05
54.80 65.68 58.15
50.93 66.70 63.15
45. 50 65.40 64. 93

24.30 ?l .95 24. 30

23.55 23.25 23.65
22.43 23.73 ?2.33
?t.2a 25.33 ?1.20
24 .90 30.08 25. ì 5

62.95 62.98 63.03 63.13 63.03
60.58 60.23 60.13 64.25 60,ì3
59. 93 58 . 0B 58 . 03 65 .23 58. 03

63.48 63. I 5 6ì .20 66.65 6l .20
64.60 65.33 6?.58 6s.40 62.s8

H
H
O
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Tabl e I 5. (conti nued )

Power (i) for the tndìvjduaì Means Tests and Sequentìaì Procedures jn the Chi-Square Population
(Unec¡ual nj's (u=:.0) negativeìy paired rvith varìances)

0.0
0.2
0.4
0.6
1.0

A\OVA !ìTLCH F},/ôS FH/JK

25.40
¿/,cu
25.95
3.1 .t0
i-\.UJ

Combined AN0VA and l{elch Procedures.

0.0
0.2
0.4
0.6
t.0

19.08 25.03 24.t3
ì6.13 26.25 24..13
I 3. 05 25.78 23. I I
12.25 2{.ì0 20.61
20.00 3l.68 29.,10

62.90
a-c to

73.33
77.80
86.20

0.0
^2
0.4
0.6
t.0

FI.UBF FX/SÅ F!]/D FH/CH ANOVA FT

62.33 62.70 62.78
60.98 6B. l0 67.25
60.53 7t .'l 0 68.6B
65.35 67.53 67.58
81.98 62.78 83.05

Positively P¿ired He¿ns and Variances (Srn¿ll N)

24.73 24.t5 23.35
24.45 24.65 20.60
2l.88 22.63 ì6.70
r7.60 2.l.33 ì3.50
2,i.83 3ì.50 20.85

24 .33 36. 4 5 24 .93
?^ oo ro ¡c 1l ,^

3t.10 40.73 38.00
1¿.83 45.53 45.38
52.20 50.38 52-78

0.0
0.2
0.4
0.6
t.0

Posi tiveìy Pa ired Heans and Variðnces (Lar9e H)

62.93 62.9s 6?.95
67.70 67.70 63.88
68.83 69.48 6?.23
65.65 66.75 65.38
8?.20 Bì.89 8ì.98

a [òch vàlue in the !¿b]e w¿s based on 4,000 simul¿tions.

63.93 67.00 63.98 64.53
69.33 68.05 69.30 69.40
12.13 68.73 71.18 70.93't5.70 73.98 74.t5 74.t3
18.75 Bt.85 Bì.80 8l.68

?4.25 25.40 19.33 ?.4.70 ?3.75 24.73
24.30 27.40 16.25 26.06 23.58 ?4.73
2 l .8C 28. 95 I 2. 90 25.48 2ì . 55 ?2.23
17.93 34..l0 12.28 23.6€ 19.85 ì7.90
25.ì5 43.03 13.45 27.05 23.50 19.ìB

26 . 60 24 .50 25 .53 32. 08
32.75 31.20 32.29 36.50
39.C8 38.25 38.40 4t.78
46.?E 45.93 44.75 46.83
52.65 54.28 5l .05 5l .2ô

Negativeìy Paired lbans and Varjances (S{nal I ll)

Combined AllOVA and F' Procedures.

FF*/AS FF-lJK FF* /BF TF*/M FF* /B FF-lC¡I

6?.95 62.90 63.93
6t.70 68.58 63.00
69.48 73.33 60.33
66.15 71.80 58.80
Bì .80 86.20 55.38

Negatìveìy Paired Heans and V¿riances (La19e ¡l)

64. I 0 64. 08 66.34
69.6s 69.55 69.65
70.75 70.50 69.10
73. 98 7 3.85 73.98
8 l .85 Bì .65 8ì .85

24 .93 ?4 .33 26.60 24 .28 24 .30
32.10 30.88 28.73 30.23 29.63
38.68 3t.10 29.33 36.6c 34.73
45.tA 44.83 29.45 39.93 36.75
5ì.95 52.20 30.e5 44.93 39.98

62.93 62.95 62.98
68.25 67.28 68.20
70. ì8 67.45 68.85
6r.23 60.70 59.08
57.75 57.93 55.60

24.30 2 t .95 24 .30
24.88 ì 9. 23 24 .23
22 .68 I 5.38 ?l .74
21.80 ì3.03 18.40
28.28 1 4. 08 1 9.93

64.08 63.93 62.38 63.75 63.43
69.55 69.33 62.73 68.28 67.65
70.50 72.13 59.63 67.63 6s.33
73.8s 15.70 59.28 60.43 60.58
Bì.6A 78.75 54.90 5s.4s 55.9s

63.03 63. 73 63. 03
68.10 64.40 68.10
69.10 6'ì.30 69.10
69. 33 58. 85 6t . 33
57.08 ss.38 56.95

24.00 24.00 25.48 n.98
29.63 30,00 28.93 29.t335.ì5 35.10 3ì.BB 34.63
31.23 38.38 3,l.10 36.60
39.25 4 3. 30 3l . 63 38. SB

63. 68 63.73 62.95 63 .7 3
6i .83 67. 93 64. 30 67 .98
64.48 65.40 59.93 65.40
59 . 48 60. 63 59 .28 60. 63
54.93 56.ì0 54.90 55.45

F
ts
ts
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the nominal o values, while the ANOVA F-test had empirical cl, values

significantly less than nominal cr. At small N, the sequentíal proce-

dures choosing beËween these two tests, that show best control of

Type I error rates are, in order, those using the combined M, Box-

Scheffé and Box-Àndersen variance tests; at large N the order of prefer-

ence is Ëhe Brovm and Forsythe followed by either the combined M or the

Box-Andersen test. Since there is little to recoümend one over the

other of che three best sequential procedures at either saruple size in

ter65 of control of Type I error, it seems reasonable to prefer the pro-

cedure having most po\rer, which was that using Ëhe Box-Andersen variance

test at small N and thaË using the Bror.m and Forsythe test at large N.

However, in the interesEs of consistency, sÍnce there was little to

choose betr.qeen the two procedures at large N, the Box-Andersen test is

recornmended for selecËing between the ANOVA F-test and the l,Ielch test

when group sizes and variances are positively paired.

I,,Ihen n. ts were equal and small; the recournended sequential pro-
l

cedure for controlling Type I error (í.e., thaE combining the ANOVA F

and FJ. tests and using the Sacknife varíance test to decíde between

them) was also more po\"/erful than the Fx test alone but I^las not as power-

ful as the ANOVA F-test alone. The recormended procedure, \,lhen N v¡as

large (i.e., the Brown and Forsythe variance test choosing between the

ANOVA I' and l^Ielch tests), rvas almost as pouTerful as the trlelch test alone

and r.¡as therefore a considerable improvement on the ANOVA F-test (see

Fígure 16).
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Tabl e I 6.

Power (Ì) for the ln<jividuaì l.le¿ns Tests and Sequentiaì Procedures

(tqual n.'s)

0.0
4.2

0.6
1.0

28 . 38 30. 78
26.13 '28.00
24. I 3 26.83
2l .98 22.33
20.85 30. 38

Conbined ANOVA and Heìch Procedures.

0.0
0.2
0.4
0.6
t.0

2E.,15 29.t3 28.03 I 28.25 31.40 28.?3
26. r5 27 .28 25.53 2s.88 28.30 25.90
24.53 25.95 ?2.78 24.08 27.35 23.98
?2.70 23.60 20.20 2t.68 22.55 21.45
26.15 29.28 26.35 26.88 30.63 26.70

70.58 70.60
71.48 7t.68
72.28 74.45
13.28 8ì.45
7) .75 89.60

0.0
0.2
0.4
0.6'l.0

FH/ BF

Positively Paired lleans and Yariances (Smalì ll)
FI.// BA

70.70 70.78 70.65
7l .53 7ì .58 7l .53
72.73 73.38 72.10
80.95 8'l.03 80. i3
88.13 8B. 50 89.60

28.38 30.78 28.45
30.20 33.83 30.90
3'l . 28 37 .98 3?. 35

33.80 ,i6.BB 37.û
i4.20 5t.48 43.æ

0.0
0.2
0.4
0.6
1.0

FI,,]/ B

Posìtiveìy Paired Heans and Vôrjònces (Lar9e N)

a tach value in the i¿ble was b¿sed on 4,000 simulations.

70.58 70.60
69.78 72.23
68.58 i5.t0
68. 58 AÌ .08
66.43 87.38

in the Chi-Square Populatìon"

70.60 7) .28 70.60
71.48 72.00 7ì .48
7Z.55 74.70 12.55
79.68 81.45 79.68
86. 98 89. 60 86. 98

29.18 28.03 28.25 31.40 28.23
31.80 3ì.r0 3l,58 34.43 3'l.50
34.20 32.95 33.75 38.28 33.75
4 r . r 5 38. 90 39. 60 46.48 39.98
47 .60 48.35 44.40 5l .60 46.30

Negatively Paired He¿ns and Variances (Small lt)

28 . 38 26. 58 28 .20 28. 03
26. I 3 24.63 26. 03 25.68
24.13 22.18 23.48 ?2.98
2t.98 18.95 20.40 ì9.73
20.85 .]7.00 18.33 lt.t3

70.70 70.78 70.65
70.48 70. BB 70.78
7t.80 7?-93 73.08
80.13 80.10 80.58
87 .20 86.98 87.38

Combined All0VA and F* Procedures.

Negatively Paired Heðns and Vari¿nces (Large tl)

FF*/JI( FF*/BF FF*/BA TF' /B FF. /CH

70.58 70.50 70.55 70.s3
7ì.48 iì.33 7ì.48 71.43
72.28 7r.98 72.t8 72.15
73.28 72.73 72.83 72.75
71.15 70.25 70.25 70.13

70.60 7).28 70.60
70.60 72.50 70.60
12.05 75.05 72.3s
78.90 Bt .0B 78. 90
85.78 87.38 85.83

28.20 28. 05 27 .?3
26. 03 ?5.78 24 .85
23.60 23.25 2?.35
20.ì3 20.13 18.98
17.53 ì8.08 t7.05

28.38 26.58 28.20
30.20 28.98 29.98
3ì . 28 30.05 31 .08
33.80 32.00 33.38
34. 20 3ì .68 32. 98

70. 55 70. 58 70. 50
7ì.48 7ì.48 71.33
72.25 72.18 72.00
72.75 i2.80 72.13
70.25 70.33 10.25

70. s8 70.50 70.55 70.53
69.78 69.73 69.78 69.78
68.58 68.25 68.45 68.35
68.58 67 .Pß 67 .95 67 .95
66.43 65.08 65.08 65.13

28.r0
¿J.ÖJ
23 .23
20. 03
ti .60

28.03 28.20 28.05 27.23
29.80 30. 03 29 .90 29 .23
30.83 3ì.00 31.00 30.38
3?.t8 33.13 33.10 32.08
32.58 32.53 32.10 31.73

/0.58
7l .48
72.t8
72.80
70.33

70.55 70. 58 70. 50
69.78 69.78 69.73
68.38 68.43 64.25
67.88 67.95 67.88
6s.0B 65.r5 65.08

28. I0
29. 90
it .00
33 .0A
32. 50

70.58
69.18
68.43
67.95
65.ì5

H
P(,
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Type I Errors <-lf the Transformation Procedures

There were no conditions under which the use of the transforma-

tion procedures significantly improved upon the control of Type I error

rates exhibited by the ANOVA F-test on untransformed data. These

results are presented in Tables 17 and lB for small and large sample

sizes, respectively. As was discussed previously, no transformation can

achieve homoscedasticity unless a functional relationship exists between

the mean and variance of a distribution. Therefore, r+hen no mean dif-

ferences exíst and there is heterogeneity of variance between treatment

populatíons, a transformation cannot achieve homoscedasticity. Con-

sequently the results obtained are not surprising.

Using a variance test to select between transformations (Ta)

gave a slight improvement in control of Type I error. rates rn¡hen a

liberal bias was present: however this improvement vras not sufficient

Èo \^/arrant recoTnmendation of the procedure. Also, when a conservative

bias was present, use of this procedure served to accentuate the bias

and therefore also led to reduced power.

As Type I error rates \^7ere not substantially improved by any of

Èhe transformation procedures, their por'rer will not be dÍscussed.



Table 
.l7.

Type I Error Rates (%) for the ANOVA F-Test on Transformed and Untransformed Data

(Smal I N )

Group
Size

Cond'ition

u = -l.0

Coeffi c i ent
of

Variation

0.0
0.2
0.4
0.6
1.0

u = 
.l.5

Normal Di stri bution

F

5.25
5.'t5
6.15
5. B5
B. 50

u = 2.0

Unequal Group Sizes Positive'ly Paìred with Variances

0.0
0.2
0.4
0.6
1.0

0.0
0.2
0.4
0.6
1.0

0.0
0.2
0.4
0.6
1.0

T1 T2

5.15 5.15
4. B5 4. 95
5.80 6. 1 0
5. 90 5.65
B. 70 B. B0

u = 3.0

4.10
5.20
4. 30
5.45
5. B5

4.45
4. 05
3.15
3.40
3. 95

5. 00
4.?0
2. B0
2. 85
3.25

T" T,tJ't

4. 85 4. 55
5.10 4.90
5. 95 5.60
6.10 5.45
9.40 7 .15

4.00 4.00
5.30 5.25
4.20 4.?5
5. 55 5.45
5. 55 5. 55

4. 60 4. 50
3.95 3.95
3.30 3.20
3. 40 3. 40
3.75 3.75

4. 90 4 .95
4.10 4.10
2.55 2.85
2.75 2.90
3 .45 3 .20

Chi-Square Di stri butjon

FTr
3.80 4.00
4.50 4.55
5.20 5. 65
6.25 6. 95
9.55 10.60

4. l0
5.35
4.20
5. 55
6.15

3. 95
5. 00
3 .80
4.75
4.95

T2 T3 T4

3.85 4. 1 0 4. 05
4.70 5.10 4.80
5.40 5. 70 5. 45
6.75 7.85 6.40

10.10 ll.i5 9.05

4.60 4.25
3. B5 3.70
3.1 5 2.85
3.20 3. 00
3.90 3.00

A 2tr

4. 65
4.10
5. B0
7 .80

4. 30
4.10
4.45
3. 60
5.70

4.55
3.95
3.35
3. 65
4.?5

4.40
4.95
4.60
6.1 5

9. 35

4.25
4.15
4.55
4. 00
7.00

4.45
4.15
? trtr

4.?5
5.10

5..1 5
4..l0
2.65
2.7 5
3.45

4.60 4.90
4.70 4.85
4.20 4. 90
6.15 6.95
8.65 11.50

4. 60
3.95
2.55
2.40
2. 50

4.20
4. 05
4. 60
3.75
6.20

4.70
4.75
4. 50
5. B5
7.55

4.45 4. 35
4.20 4.25
4. 85 4. 55
4.95 3.95
8.20 5.45

4. s5 4 .45
4.20 4.25
3.40 3.60
3.90 4.55
4. 60 6. 55

4. 50
4. 00
3.50
4..l5
¿, 2q

H
ts
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Table 17. (continued)

Type I Error Rates (%) for the ANOVA F-Test on Transformed and Untransformed Data

(Small N)

Grou p
Si ze

Cond'i ti on

Coefficìent
of

Variation

u = 1.5

Unequal Group Sizes Negatively Paìred with Variances

u = 2.0

0.0
0.2
0.4
0.6
1.0

0.0
0.2
0.4
0.6
1.0

0.0
0.2
0.4
0.6
1.0

Normal D'istri butìon

u = 3.0

Ti 12 T3

4.1 0
5.15
6. 50
8.85

1t.35

4.45
6. 55
8.75

10.25
1 5.85

5. 00
5.7 5
9. 60

13.55
20.7 0

4.00 4.00
5. 30 5.20
7.00 6.75
9. 55 I .25

11.60 11.45

4.60 4.50
6. 55 6. 40
B. 90 8. B0

10.20 10.20
16.05 15.65

4. 90 4. 95
6 .20 5. B0

10.30 9.95
I 3.70 I 3.45
21.00 20.80

T4

4.10 3.95
5. 35 5.00
6. 95 6.20
9. 90 B.?5

12 .95 I 0. 50

4.60 4.?5
6.05 6. I 0
9.00 8.05

10.15 9.25
17.35 13.85

5.15 4.60
6. I 5 5.45

10.45 8.75
14.25 12.60
22.50 I8.45

Chi -Square Di strj bution

Tl T2 T3

4 .35 4 .40
4.75 4.75
6 .20 6. 50
7 .05 7 .85

12.80 14.10

4.30
4.70
8.45

11.00
16.00

4. 55
5. 50

10.05
13.65
22.40

4.60 4.90 4.70
4. B0 5. 00 4. 85
6. 50 6. B0 6.25
7.30 8.75 7.35

13.20 15.85 12.10

4.25 4.20
5. 05 4. B5
8.35 8.20

12.05 11.30.l7.80 
16.95

4.45 4.55
5. 95 5. 65

10.40 10..l5
I 5.50 I 4.65
23.00 ?2.70

T4

4.45 4.35
5.40 5. 30
9.05 8.50

12.85 11.30
20.20 I 5. 35

4.45 4.50
6.20 6 . 05

11.20 10.35
15.75 r3.20
24.50 2l .00

F
F
o\



Group
S'ize

Cond i ti on

Type I Error Rates (%)

Coeff ic i ent
of

Variati on

u = 1.0

Table lB.

for the ANOVA F-Test on Transformed and Untransformed Data

(Large N )

0.0
0.2
0.4
0.6
1.0

u = .ì.5

Normal Di stri but'ion

4. B0
5. 90
5. B0
6. 35
7.75

u=2,0

Unequal Group Sizes Positiveìy Pa'ired with Variances

0.0
0.2
0.4
0.6
1.0

0.0
0.2
0.4
0.6
1.0

0.0
0.2
0.4
0.6
1.0

Tl T? T3

4.70
6.25
6. 05
6.25
9. 30

4.7 0 4. 55
6.10 6.70
5.80 6.40
6.40 7 .7 5
7.80 I 5.70

u = 3.0

4. 95
4.55
5. 60
5. 50
5.7 5

4. 50
3. 55
4. 30
?.65
3.10

4.75
3. 90
3.10
2.90
3.10

Tq

4.75
4. 90
5. 35
5.7 5

7 .60

4.45
5.45
4. 95
6. l0
9. 05

Chi-Square Di stri butìon

4.65 4.55
4 .7 0 5.40
5. 30 5. 55
5. 50 6. 65
6.60 I 2.05

5.00 5.00
4. 90 5.20
6.25 6.30
5. 30 6. 30
7 .95 11 .25

4.75 4.60
3. 50 3. 45
4. 50 4 .45
2.7 5 2.65
5.40 4.05

4.75 4.80
3.95 3.90
3.15 3.20
3.10 3.10
3.90 3.15

Tl Tz Tg

4.30
4.25
4.20
5.40
6. 40

5. 00 4. 30
3.70 3.05
5.00 3.70
4.00 2.55

10.10 4.85

4 .95 5. 00
5. 1 5 5.85
6.25 6. 90
5.95 8.45
9.45 17 .25

4. 00
4.55
5.15
5.15
6.10

4. 00
4. 55
Ã ?Ã

5.70
B. 95

4.70
4. 50
3.90
4. 05
7 .40

5. 30
4. 30
2.90
3.00
5. B0

Tq

4.65
3.95
3 .85
3. B0
7 .20

4. 95
5. 50
6.25
5. 65
7 .80

4. B0
4 .00
3.45) )Ê.

4. B0

5. 30
4. 00
2.50
2.65
3 .40

3.90
4. 50
5.20
5. 55
7 .20

4.40
3 .40
2.7 0
2.35
3.10

4.35 4. I 5
4. B0 4. B0
6.05 4.95
6.95 5.10

14.70 6.10

4.75 4.80
4.35 4.60
3.95 4.75
3.55 s.35
5.50 1?.40

5.25 5. 55
4.15 5.15
2.65 3. 60
2.85 4.10
4.40 10.95

4.75
4 .40
3.70
3. 30
4.75

5.45
4. B0
2.45
2.65
3 .40

ts
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Table lB. (continued)

Type I Error Rates (%) for the ANOVA F-Test on Transformed

(Large N)

Gro up
Si ze

Cond'ition

Coeffic'ient
of

Variation

u = 1.5

Unequal Group Sizes Negatively Pa'ired with Variances

u=?.0

0.0
0.2
0.4
0.6
1.0

0.0
0.2
0.4
0.6
1.0

0.0
0.2
0.4
0.6
1.0

Normal D'i stri but'ion

u = 3.0

Tl rz Tg

4. 95
6. 00
7 .25
8.45

I 0.35

4. 50
7.00
6. 80

10.50
14.95

4.75
B. 50

10.05
13.20
20. 30

4.75 4.65
6. 40 6 .25
7 .65 7 .25

10.05 9.00
13.40 ll.85

4.75 4.60
7 .55 7.30
7 .30 6.7 5

10.40 10.25
16.45 15.70

4.75 4.80
8.50 8.50

I 0.40 I 0.00
14.30 'l3.45

2l . B5 20.7 5

and Untransformed Data

r4

4. 55 4.30
6. 55 5.25
B. 50 6.7 0

1?.70 9.35
19.30 11.35

5.00 4.30
7.60 6.75
B. 20 6. 05

1 2. 60 9.80
20.80 I 3.00

4.65 4.40
8.40 7 .25

11.55 8.90
I 6. 95 1?.20
26.85 l7 . B0

Chì -Square Di stri bution

Tt T2 T¡

4.00 4.00
5. 60 5.45
6. 65 7 .35
7.80 B. 35

I 2.30 I 6.60

4. B0
6.7 5
7 .85

I 0.40
16.25

5. 30
5.70
9. 95

14. 90
20.95

3.90 4.35 4.15
5.40 5. 85 5 .7 5
7.10 8.35 6.25
B.l5 10.30 7.80

13.40 22.95 12.10

4.70 4.75
6.7 5 6.75
B. 90 8.20

12.05 il.15
I 9.00 I 6. B0

5. 30 5.25
5. 65 5. 75

I 0.20 I 0.05
16.25 I 5.70
23.00 2l .45

Tq

4.80 4 .7 5
7.00 6.60

10..l5 8.35
14.90 10.40
24.45 I 5. i5

5. 55 5.45
5. 95 6. 00

l'l .00 9.95
19.45 14.80
28 .25 20. 55

H
ts
co



Concluding Remarks

Empirical Type I error rates for the tests of mean equality

agree with the values obtained by other investigators (see Brovrn and

Forsythe, L974a and Kohr and Games, L974). However' no effect of mean

variance pairing on the relative Power values of the i^lelch and F* tests

r,¡as found in this study when the daËa was normally distributed, whereas

borh Brovm and Forsythe (1974a) and Kohr and Games (L974) did observe

such an effect. The discrepancy between these Previous results and the

results presented here mal' be explained by the absence of any particu-

larly deviant means in the Present study. Brov¡n and Forsythe (L974a)

showed that the Welch procedure had greater power than F* when extreme

means had larger variances and vice versa, for extreme means with smaller

variances: they explained this by pointing out that rneans were weighËed

')
bv n. /t.t in the l^Ielch formula and by n, in their formula for F'k. Since"j'-j r

there v¡ere no extreme means in the Present study a large weightiug

factor at one end of the range of means r¿ould be exactly offset by a

small one at the other end of the means range, especially so since the

variances v¡ere also equally spaced over their range of values (except

for c = f.0).

sarnpling from the chi-square population leads to bias in the

sample flIeans and variances as estimators of the corresponding popula-

tion parameters and this is especially true when group sizes are small.

In a positively skewed distribution ¡he sample mean l¡ill tend to under-

estimate the population mean and Ehis effect will be more pronounced
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the greater the population variance and the smaller the sample size'

These facLs provide an explanation for why mean-variance pairing

affected the power of a1l Èests when the chi-square population was

sarnpled. If larger means are associated with larger variances they will

be underestimated to a greater degree than smaller means thus restrict-

ing the range of the means and leading to lower power for posítive mean

variance pairing: conversely when smaller means have larger variances

they will be relatively more underesËimated than larger means thus

expanding the range of the means and leading to higher power for nega-

tive mean-variance Pairing.

The effect of group size-mean pairing on W and F* is not easily

explained beeause Ít is not easy to determine the relative degree of

bias in the sample esti-mates that enter into the more comPlex formulae

for these two stalistics. However this effect diníníshes at the larger

sample size as does the effect of mean-variance pairing as would be

expected if bias in the sample means is the reason for the power dif-

ferences.

Type I error rates and power of Fx were the least variable of

the three tests. Thus F* is recouunended if no information regarding

population shape and variances is available. Type I error rates for F'k

only verged on the unacceptable r¿hen variance heterogeneity Tdas at its

highest value but they r¡ere sti1l approximately equal to or less than

those for the other tests. At the small sample síze, although the

po\^rer of F'k \^ras generally less than that.of I^l , it was usually close to

the a priori calculated power for F, and, on those occasíons when it was

less than this value, I^l did not perform substantially better. At the
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larger sample size the power of F'k agaín r'¡as usually belor+ that of W but

the only occasions on r¿hich it was much less than the a priori power of

F, were those rùhen variance heterogeneity \474s greaLest (c = f ' 0) '

For the sequential procedures Type I error contlol was evalu-

ated in terms of deviations from nominal alpha ín both conservative and

liberal directions. Conservative values \ùere considered less accepL-

able because of the usual concomitant po\ùer loss for these condifions'

The only sítualion in whích a sequential procedure controlled Type I

error rates better than any single means test \'ras in the chi-squar e /'

population when group sizes and variances \¡/ere posítively paired. Hovr-

ever the po\^Ier of the sequential procedures vlas not uníformly preferable

to that of Fx, and, since F'l only had liberal Type I error rates at the

highest degree of variance heEerogeneíty the advantage of performÍng the

more complícated sequential procedure is negligible'

As had been predicted a priori, using data transformations to

control Type I error rates ín the Presence of unequal group sizes and

variances was completely íneffective. Thus Brown and Forsythe's (I974a)

F* emerges as the only procedure that reliably controls Type I error

rateS despite non-normality, small sample síze and heterogeneous vari-

ances and group sizes.
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APPENDIX

Glossarv of Statistical Terms Not Defined in Text

DEGREES 0F FREEDOM.' A sample of n variate values, Xí, is said to have n

degrees of freedom, whether the variates are dependent or not, and a

statistic calculated from it is, by natural extension said to have n

degrees of freedom. But, if K functions of the sample vafues are held

constant, the number of degrees of freedom is reduced by K. For
n 

-)example, the statistic 
ilf 

(Xi - X)" , where X is the sample mean,

is said to have n-l degrees of freedom, since the sample mean is

regarded as fixed.

D---çuy a rurther extension, the distribution of a statistic based on

n Índepend.ent variates Ís said to have n degrees of freedom, particularly
2t

in relation ro X = LZ-: (see p. 50)
iL

K:RI7SIS: A term used to describe the extent to which a unimodal frequency

curve ís'peakedt; Lhat is to say, the extent of the relative steePness

of ascent in the neighbourhood of the mode. The moloenL ratio
/, )L

ß2 = E(X.- u)-/(E(Xt- u)-) '

is used as a measure of kurtosís and is related to \2, the measure used

here, by ^(Z= ßZ- 3. If TrÍs adopted as a measure of, kurtosis, the

value it assumes for a normal distribution, nameLy zero, ís taken as

a standard. Curves for which the ratío is less than, equal to or

greater than zero are knovm respectively as platykurtíc, mesokurtÍc and

leptokurtic. Thus a platykurtic distribution is flatter or less peaked

than a normal distribution, whereas a leptokurtic distributíon is

more so.



i4Ol4EÌtlT: A moment is the expected

variate. For example, E(Xi-

polJer of deviations from the

about the mean.

value (mean value) of the power of a

u)* Ís the expected value of the fourth

mean and Ís known as the fourth moment

NULL HYP)THESIS: In generaf this term relates to a particular hypothesis

under test, as distinct from the alternative hypotheses which are under

consideration. It is therefore the hypothesis which determines the

probability of the Type I error. Here the term is restricted to a

hypothesis under test of rno dífference'. Thus the nul1 hypothesis

in a test of mean equality is that tno mean dífferences are present'.

SAMPLING DLSTRfBUTT)N: The distribution of a statistic ín all possíble

samples which can be chosen according to a specified sampling scheme.

The expression always relates to a sampling scheme involving random

selectíon, and most usually concerns the distribution of a function

of a fixed number n of índependent variates.

SI.EWNESS: A term for assymmetry in relation Eo a frequency distribution.

If a unímodal distribution has a longer tail extending towards lower

values of the variate it is said to have negative skewness; in the

contrary case, posítive skevmess


