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Abstract

Object-oriented technology is no longer an obscure research topic but has moved

into the mainstream of software development. Many projects in a variety of areas

have applied object-oriented technology. In particular, object-oriented compilers

have been developed. We have found with interest that object-oriented technology

has not yet been applied to parser generators. This thesis experiments with building

an LALR(I) parser generator using object-oriented analysis, design, and C++

programming techniques" The work consists of surveying Object-Orientation and

LR Parsing and the design and implementation of appropriate classes for such

components as symbols, items, item sets, kernel sets, and state graphs, so that they

can be conveniently used in the generator implementation. A comparison between

this experimental object-oriented parser generator and a traditional parser generator

is also made.
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Chøpter I

Introduction

Object-oriented technology is no longer an obscure research topic but has moved

into the mainstream of software development. Many projects in a variety of areas

have applied object-oriented technology. In particular, objected-oriented compilers

have been developed [6,15,16]. I have found with interest that object-oriented tech-

nology seems, however, not yet to have been applied to parser generators. The

objective of this thesis is to build an LALR(I) parser generator using object-ori-

ented analysis, design, and C++ programming techniques. The focus is on the

design of appropriate classes for such components as symbols, items, item sets,

kernel sets and state graphs, so that they can be conveniently used in the generator

implementation.

Several popular object-oriented analysis and design methodologies are sur-

veyed and one of them is chosen to be apptied to the construction of the parser gen-

erator. A selected LALR(I) parser construction algorithm is also reviewed.

-1-



The object-oriented methodologies which will be investigated in chapter 2

are the most popular ones. They include:

1. James Rumbaugh's Object-Oriented Modeling [2]:

Rumbaugh's object-oriented Modeling Techniques(oMT) is model-

driven. It uses a declarative model represented by extended ER diagrams,

a behavioral model represented by state diagrams, and a process-interac-

tion model represented by data-flow diagrams. The technique also sug-

gests a minimal object-interaction model.

2. Coad & Yourdon's Object-Oriented Analysis [1]:

coad & Yourdon view their objecr-oriented Analysis (ooA) methodol-

ogy as building "upon the best concepts from information modeling,

obj ect-oriented programming languages, and knowledge-based systems.,'

Their ooA technique results in a five-layer model of the problem domain,

where each layer builds on the previous layer. The five layers are the

object layer, structure layer, subject layer, attribute layer, and service layer

respectively.

3. Grady Booch's object-oriented Analysis & Design Technique [4]:

Grady Booch presents a method for the development of complex systems

based on an object model. The method includes a graphical notation for

-2-



object-oriented analysis and design, followed by its process. Booch also

examines the pragmatics of object-oriented development, in particular, its

place in the software development life cycle and its implications for

project management.

LALR(1) parser construction has long been an interesting topic in the parser

generation area. The main issue in this sub-area is how to compute LALR(1) look-

ahead sets. Several methods of computing I-ALR(l) lookahead sets have been pre-

sented. They inclue:

1. Aho, sethi, and ullman's "full LR(1) compression" method t6l.

2. Aho, sethi, and ullman's "spontaneous and propagated lookahead,,

method [6].

3. DeRemer and Pennello's method presented in "Efficient Computation of

LALR(I) Lookahead Sers" [7].

4. Park, Choe and Chang's method presented in "A New Analysis of LALR

Formalism" [8]"

5. Fred lves's method presented in "Unifying View of Recent LALR(I)

I-ookahead Set Algorithms" [9].

The purpose of the thesis is to perform experiments in the application of

object-oriented technology to parser construction. Thus it is not necessary to

-3-



choose the most efficient algorithm. Futhermore, the most efficient methods are so

obscure and hard to implement that they would be too complex and too hard to

maintain. As a result they are rarely used. In this thesis, the first method will be

reviewed in detail in Chapter 3 and its use in implementing the parser generator is

described in Chapter 4.

A comparison between an object-oriented parser generator and traditional

parser generation is made in Chapter 5, and important differences are examined.

Metrics used for the comparison include:

1. Running time on ISO Pascal and Modula-2 grammars.

2. Number of function calls (direcr & indirect calls).

3. Object sizes in bytes and task image size in bytes.

4. Source code size:

a) Number of lines including and excluding comments.

b) Number of characters excluding comments.

c) Number of tokens

Any special benefits or disadvantages of applying object-oriented technol-

ogy to parser generations are discussed. Every effort is made to minimize the

effects of individual programming styles and compilers used.

-4-



Ckapter 2

Obj ect- Oriented Analysis
and Design

Analysis is the study and modeling of a given problem domain, within the context

of stated goals and objectives. Analysis focuses on what a system is supposed to

do, rather than how it is supposed to do it. An analysis methodology is a set of con-

cepts, techniques, notations, and tools that help guide an analysis process [13].

While the primary goal of object-oriented analysis and design is similar to the tra-

ditional software engineering methods, the fundamental distinction is that the tradi-

tional methods decompose a system into procedures, whereas ooA/ooD

decomposes a system into objects.

2.L Overview of Object-Oriented Methods

In recent years, numerous object-oriented analysis methods have merged. Among

-5-



those methods, three have high popularity. They are Coad & Yourdon's Objected-

oriented Analysis [1], Booch's object-oriented Analysis and Design [4], and

James Rumbaugh's Object-Oriented Modeling [2]. Rumbaugh's method will be

discussed in more detail.

2.1.1coad & Yourdon's object-oriented Analysis Method

Coad & Yourdon view their OOA methodology as building "upon the best concepts

from information modeling, object-oriented programming languages, and knowl-

edge-based systems." Coad & Yourdon's OOA results in a five-layer model of the

problem domain, where each layer builds on the previous layers. The layered

model is constructed using a five-step proceduref1]:

1. Identifying objects and classes. Guidelines for identifying objects and

classes are developed. The approach starts by examining the application

space to identify the classes and objects forming the basis of the entire

application, such as other systems and devices, etc. In the light of this,

the system's responsibilities in this domain are analyzed. This includes

things such as events remembered, roles played, etc. Investigating the

system environment may produce further classes and objects that the

system should know about, such as locations and organizational units,

-6-



2.

etc. Design notes are made of information that needs to be saved about

each object, and what behaviors each object must provide.

Definíng structures is principally done in two different ways. The f,rst,

the general-to-specífic structure (e.g. employee-to-sales manager), is

used to capture the inheritance hierachy among the identified classes.

The other structure, the whole-to-part structure (e.g. car-to-engine), is

used to model how an object is part of another object and how objects

are grouped into larger categories.

Defining subjects is done by reorganizing the objects and class into

larger units. Subjects are groups of objects and classes. The size of each

subject is selected to help readers understand the system through the

model. Structures defined earlier can also be used to define subjects. For

example, a general-to-specific structure can be grouped into one subject.

Defining attributes is done to identify information and relationships that

should be associated with each instance. For each object, the attributes

needed to characterize it are identified. The identified attributes are

placed at the correct level of the inheritance hierarchy. For example, if a

generalization/specialization exists, the common attributes are placed at

the high level and the specialization specific attributes are place below.

Ĵ.

4.

-7 -



Any instance connections are also identified by checking previous OOA

results or by mapping problem domain relationships.

5. Defining servíces means defining the operations (methods) of each class.

This process identifies the object states and defines services such as

occur, calculate, monitor and so on that operate on the state. Message

connections are used to identify how the objects communicate with mes-

sages" A message connection maps one object to another, in which a

"sender" sends a message to a "receiver", to get some processing done.

The outcome of Coad&Youron's OOA is documented using a graphical

notation (see Figure 2.7) and special templates for the textual description of classes

and objects [1]. The whole model is presented in the following f,ve layers:

1. Subject layer - only subjects are presented.

2. class & object layer - includes subjects, classes, and objects.

3. Structure layer - structures are added to the class & object layer.

4. Attribute layer - attributes are added to the structure layer.

5. Service layer - services are added to the Structure layer.

Fig.2.1 combines the object layer, the structure layer, the attribute layer and

the service layer. Because the sensor system is so simple, the subject layer, a

higher-level overview, is not needed to help the reader understand the system. Note
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that only some basic notations are shown in this figure.

class&object

_--'/,
I

name I

.\

a Jensor \
Modei
initSequence
Conversion
Interval
Location
Threshold
State
Value
Monitor

/Uritical \ Æitandarö
Lolerance

Monitor

Attributes

Service(s)

Inheritance

Fig" 2.1Coad&Yourdon notation for a hypothetical sensor system

2.1.2 Booch's Object-Oriented Analysis & Design Method

Booch views all successful projects as charccterized by a strong architectural

vision and a well-managed iterative and incremental development life cycle. The

development process, according to Booch, should consist of two kinds of elements,

micro elements and macro elements [4]. The micro process serves as the frame-

work for an iterative and incremental approach to development. The macro process

is more closely related to the traditional waterfall lifecycle and is used to control

the micro process.

The micro process is driven by the stream of scenarios and architectural
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products that emerge from the macro process; it presents daily activities of the

development team. There are four steps in the micro process l4l:

1' Identifuing the classes and objects at a given level of abstraction. This

step discovers key abstractions in the problem domain, finds meaningful

classes and objects, and crafts new classes and objects that derive from

the solution domain. Key abstractions are usually found by learning the

terminology of the problem domain and working in conjunction with

domain expefts. The data dictionary is the primary product of this step.

2" Identifuing the semantics of classes and objecrs. This phase establishes

the meanings of the classes and objects already identified. The developer

views the objects from the outside and defines the object protocols and

investigates how each object may be used by other objects. This part

may be highly iterative. Froducts of this step include data dictionary

refinement, a specification for each abstraction, and an interface for each

class.

3' Identífyíng the relationships among classes and objeus. The previous

activities are extended to include the relationships between classes and

objects and to identify how these interact with each other. Different types

of associations are used, such as inheritance, instantiation, and uses
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between the classes. This step also defines static and dynamic semantics

of the mechanisms between the objects. Class diagrams, object dia-

grams, and module diagrams are the main products of this step.

4. Implementation of classes and objecrs. Finally, the classes and objects

are examined in detail to determine how to implement them. This

includes the selection of data structures and algorithms. Concurrently, a

decision should be made on how to use a particular programming lan-

guage to implement the classes" This step will eventually have products

ofpseudo or executable code.

The basic philosophy of the macro process is that of incremental develop-

ment. There are five steps in the macro process l4l

1. Conceptualization establishes the core requirements for the system; its

activity serves as a proof of concept, and so is largely uncontrolled to

allow unrestrained innovation. Prototypes are the primary products of

this step.

2. Analysls provides a model of the system's behavior; primary activities

include domain analysis and scenario planning. The formal requirements

analysis document and the risk assessment are the main products of this

step.
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-J. Design creates an architecture for the implementation and establishes

common tactical policies; primary activities include architectural plan-

ning, tactical design, and release planning. Products of this step include a

description of the architecture and descriptions of common policies for

error detection and handling, memory management, data storage man-

agement, etc.

Evolution uses successive refinement to ultimately lead to the production

system; primary activities include application of the micro process and

change management. The product of this step is a stream of further

releases which have successive refinements and enhancements to the

preceeding releases.

Maintenance is the management of post-delivery evolution; primary

activities are similar to those of the fourth step, with the addition of man-

aging a list of new tasks which serves as the vehicle for collecting bugs

and enhancement requirements.

4.

5.
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Dynamic semantics

Static semantics

Logical view

Physícal view

Fig.2.2 Documentation aspects in Booch's OOD

Booch OOD provides rich diagramming techniques allowing viewing of the

model developed from different views (Figure 2.2) l4l. The logical view consists of

the class structure and the object structure. The physical view consists of module

structure and process structure. All these diagrams are formed by the OOD basic

notation, which is a static description of the system. In addition, two dynamic dia-

grams, the state transition díagram and the timing diagram, are used to describe

event occurrences between objects.

2.2 Rumbaugh's Object-Oriented Modeling Method

James Rumbaugh, et al. [2] present an object-oriented approach to software devel-

opment based on modeling objects from the real world and then using the model to

build a language-independent design organized around those objects. The approach

includes a set of object-oriented concepts and a language-independent graphical

Class structure

Object structure

Module structure

Process structure
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notation, the Object Modeling Technique (OMT), that can be used to analyzeprob-

lem requirements, design a solution to the problem, and then implement the solu-

tion using a programming language and/or database.

The Object Modeling Technique combines three views of the modeling sys-

tem. The object model describes the static, structural (data) aspects of a system

with classes and their relationships. The dynamic model represents the temporal,

behavioral, (control) aspects of a system with events and states of the objects. The

functional model represents the computational (functional) aspects of a system with

data flow diagrams. Rumbaugh states "A typical software procedure incorporates

all three aspects: It uses data structures (object model), it sequences operations in

time (dynamic model), and it transforms values (functional model). Each model

contains references to entities in other models. For example, operations are

attached to objects in the object model, but are more fully expanded in the func-

tional model."[2]

2.2.1Object Modeling

An object model captures the static structure of a system by showing the objects in

the system, relationships between the objects, and the attributes and operations that

chatacterize each class of objects [2]. Only the most important concepts including
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class, link, association, genercIization, and inheritance are reviewed.

2.2.L.1, Objects and Classes

Objects and classes are the basic concepts in object-oriented applications. OMT

uses the following notation for ciasses and objects.

CIass-Narne

attribute-name-1 : data-type-1 - default-value-1

attribute-name-2: data-ty pe-2 - default-value-2

operation-name- 1 (argument-list- I ) : -type-1

operation-name-2(argument-list-2) : result-type-2

(a) notation for classesor classes (b) notation for objects

Fig. 2.3 Notations for classes and objects

Fig 2.1(a) illustrates object modeling notation for classes. A class is repre-

sented by a box which may have as many as three regions. The regions contain,

from top to bottom: a class name, a list of attributes, and a list of operations. Each

attribute name may be followed by optional details such as type and default value.

Each operation name may be followed by optional details such as an argument list

and a result type. Attributes and operations are optional in the diagrams depending

on the level of detail desired. Fí92.1(b) is the general notation for objects. It is a

rounded box including the name of the class from which the object is instantiated.

(Class Name)
attribute_name = value

-15-



Attribute names

depending on the

and the values assigned to them may or may not be included

level of detail desired.

2.2.I.2 Links and Associations

Links and associations are used to establish relationships among objects and

classes. A link connects two or more objects to show the relationships between

those objects. An association describes a group of links with common structure and

common semantics.

Has-Capítal
Ottawa

Links

4--- C/ass
Diagram

Diagram

l/
(Çountry¡

t{rance

Fig.2.4 One-to-one association and links

Fig.2.2 shows a one-to-one association and corresponding links. Each asso-

ciation in the class diagram corresponds to a set of links in the instance diagrams,

just as each class corresponds to a set of objects. Each country has a capital city.

Has-Capítal is the name of the association. The OMT notation for an association is

a line between classes. A link is drawn as a line between objects.

Association

untry
nadaCa
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Multiplicity of the association specifies how many instances of one class

may relate to each instance of another class. Associations may be binary, ternary or

Fig. 2.5 Many-to-many association

higher order and has multiplicity.

The association in figure 2.3 exhibits many-to-many multipticity. A line

may have zero oÍ more intersection points. An intersection point may be associated

with two or more lines. Generally speaking, OMT uses the following notation for

multiplicity of association.

Æ
Exactly one

r-4,8

One or more Numerically specified

Fig. 2.6 Multiplicity of Associarions

2.2.L.3 Aggregation

Aggregation is the "part-whole" or "a-part-of'relationship. The notation of aggre-

gation is similar to association, except for a small diamond indicating the assembly

Many(zero or more) -oFlOptional(zero or one)
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end of the relationship. Figure 2.5 represents the general notation for aggregation.

2.2.1.4 Generali zation and Inheritance

Generalization and inheritance are fundamental concepts in object-oriented lan-

guages. Generalization is a useful construct for both conceptual modeling and

implementation. During conceptual modeling, generaLization can be used to orga-

nize classes into a hierarchical structure based on similarities and differences. Dur-

ing implementation, inheritance facilitates the sharing of code or behaviors

common to a collection of classes. In OMT, the term generalization refers to the

relationship between a class (the superclass) and one or more refined versions of it

(the subclass). The term inheritance refers to the mechanism of obtaining attributes

and operations from the generalized structure[2].

Assembly class

Part-1-class Part-2-class

Fig.2.7 Notation for aggregation
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Subclass-1 Subclass-2

Fig. 2.8 Notation for inheritance

The notation for generalization and inheritance is a triangle connecting a

superclass to its subclasses. As figure 2.6 shows, the superclass is connected by a

line to the apex of the triangle and the subclasses are connected by lines to a hori-

zontal bar attached to the base of the triangle.

2.2.2 Dynamic Modeling

The dynamic model represents control information: the sequences of events, states,

and operations that occur within a system of objects[2]. The major dynamic model-

ing concepts are events, which represent external stimuli, and states, which repre-

sent values of objects. The state diagram is a graphical representation of finite state

machines. OMT emphasizes the use of events and states to specify control, rather

than as algebraic constructs.
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StateL
do: activityl

event I ( attribs ) [ conditionl ] /actionl

ßig.2.9 Notation for unstructured state diagrams

Figure 2.7 illustrates the notation for unstructured state diagrams. A state

name is written in boldface within a rounded box. An event name is written on a

transition arrow and may optionally be followed by one or more attributes within

parentheses. A condition may be listed within square brackets after an event name.

An activity is indicated within a state box by the keyword "do:" followed by the

name or description of the activity. An action is indicated on a transition following

the event named by a"/" character followed by the event name. All these constructs

are optional in state diagrams [2].

State diagrams can be structured to permit concise descriptions of complex

systems. There are two ways of structuring state diagrams: generalization and

aggregation. Generalization is equivalent to expanding nested activities. It allows

an activity to be described at a high level, then expanded at a lower level by adding

details, similar to a nested procedure call. In addition, generalization allows states

and events to be arranged into generalization hierarchies with inheritance of com-

mon structure and behavio¡ in a fashion similar to inheritance of attributes and
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operations in classes. Aggregation allows a state to be broken into orthogonal com-

ponents, with limited interactions among them, in a fashion similar to an object

aggregation hierarchy. Aggregation is equivalent to concunency of states. Concur-

rent states generally colrespond to object aggregations, possibly an entire system,

that have interacting parts. Figure 2.8 is a general structured state diagram notation.

eventl<-

Fig.2.10 Notation for structured state diagrams

2.2.3 Functional Modeling

The functional model describes computations within a system. The functional

model shows how output values in a computation are derived from input values, i.e.

the operations of the objects, independent of the order in which the values are com-

puted.

The functional model consists of multiple data flow diagrams showing the

State Generalizatíon: C onc urrent S ub diagrams :
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flow of values from external inputs through operations and internal data stores, to

external outputs. Data-flow diagrams do not show control or object-structure infor-

mation; these belong to the dynamic and object model. A data-flow diagram is a

graph of process¿s, which transform data, data flows, which move data, actor

objects, which produce and consume data, and data-store objects, which store data

passively[2].

The notation for a process is an ellipse containing a description of the trans-

formation, usually its name. Each process has a fixed number of input and output

data arrows, each arrow carries a value of a given type lzl (see Figure 2.9 ).

Fig. 2.trL Notation for process

The notation for a data flow is an ¿urow between the producer and the con-

sumer of the data value. The arrow is labeled with a description of the data, usually

its name or type. As figure 2.10 shows, there are three forms of data flows, compo-

sition of data values (a), decomposition of data values (b), and duplication of data

values (c)121.

quotient
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\d1
\ composite

/dz
(a)

d1 -r---+<-
\

(b) (c)

Fig.2.l2 Notation for data flow

There are two kinds of objects in the data flow, called actor objects and. d,ata

store objects.

Fig. 2.L3 Notation for actor & data store

An actor is an active object which produces or consumes data and is drawn

as a rectangle. Arrows between the actor and the diagram are inputs and outputs of

the diagram.

A data store is a passive object which only stores data for later access and is

drawn as a pair of parallel lines containing the name of the store. Input arrows indi-

cate information or operations that modify the stored data; this includes adding ele-

ments, modifying values, or deleting elements. Output ¿uïows indicate information

retrieved from the store. This includes retrieving the entire value or some compo-

nent of it. Figure 2.11 shows the notations for actor and data store concepts [2].

Data Store
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Ckapter 3

LR Parsing and
Parser Generation

In this chapter, an overview of LR parsers and how to build them is given. LR(k)

parsers are so called because they operate in the manner of bottom up, scanning the

input from l,eft to right, producing the reverse of a Rightmost derivation, and use /r

characters of unscanned input to produce deterministic behavior [5].

An LR parser is generally composed of an input, an output, a driver pro-

gram, and a parsing table that has two parts, action and goto. All LR parsers have

two basic actions, shift and reduce, and two kinds of final state, either accept oÍ

error, although the algorithms used to generate parsers can be quite different. The

driver program is identical for all LR parsers; what is different are the parsing

tables which change from grammar to grammar. Aho, Sethi, and Ullman [7] have

explained the typical operation of an LR parser (Figure 3.1). The parsing program

reads characters from an input buffer one at a time. The program uses a stack to

-24 -



store a string of the form sfi s1X2s2.." X*s*, where s- is on top. Each X; is a gram-

mar symbol and each s¿ is a parser state. Each parser state summarizes the informa-

tion contained in the stack below it, and the combination of the parser state on top

of the stack and the current input symbol are used to index the parsing table and

determine the shift/reduce parsing decision.

Input Stream

-> 
Output

action I goto

F'ig. 3.L Model of an LR parser

The parsing table consists of two parts, a parsing action function action and

a goto function goto. The program determines s., the state currently on the top of

the stack, and a¡, the current input symbol, and then consults actionls*, a¡\, the

parsing action table entry for state s* and input a¿, which can have one of the fol-

lowing four values:

1. "Shift s". ,shift an input symbol and push it onto the stack and go to state

s. This action will continue until the right part of a production appears on

à,1 ai an $

sm

xm
sm-l

m-

,SN

LR.
Farsing Program
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the stack.

2. "Reduce R". Reduce by a grammar production. i.e. pop symbols from the

stack matching the right part of a production and push the left part sym-

bol of that rule onto the stack.

3. "Accept" or "Error". Accept or reject the input.

The goto function takes a state and grammar symbol as arguments and pro-

duces a state. Therefore, the goto function is a state transition function.

Parsing table construction is crucial to LR parser generation. To review LR

parsing table construction methods, it is first necessary to introduce LR parsing ter-

minology.

3.1 LR Parsing Terminology & LR(0) Parser

The following notation and terminology will be used in this chapter and following

chapters:

. A,B,C: ...- Upper-case letters early in the alphabet represent a single non-

terminal.

' ..., X, Y, Z 
-Upper-case 

letters late in the alphabet represent a single ter-

minal or nonterminal.

' a,b,c, Lower-case letters early in the alphabet represent a single termi-
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nal.

' ..., x,Y,z- Lower case letters late in the alphabet represent strings of termi-

nals, or the empty string.

' o,Þ,% Lower case greek letters represent strings of terminals or non-

terminals or the empty string.

. t 
- 

epsilon represents the empty string, the string with no symbols.

. oti 
- subscripted letter means the ith symbol in crt.

. = - 
directlyderives.

" =+* - 
derives in zero or more steps.

' An LR ltem is a production with an item dot somewhere in the right hand

side. For example, I A - G.P ]. Either o or B may be e..

o I State is a set of LR items.

' Kernel ltems are items generated by advancing the dot in the items of prede-

cessor states.

' Item-Set Closure is the generation of the full item set from the kernel set, as

presented below.

. Closure ltems are items generated by item-set closure.

' complete ltems are items with the item dot at the end of the right part.

(e.g. I B-F.] ).
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Let us first consider LR(O) parser generation. The steps for constructing an LR(O)

parsing automaton are as follows:

1. Augment the grammar by adding a rule 0: S'-+ $S$ where $ is the begin and

the end of input marker and S' is a new start symbol that appears in no other

rules.

2. Create state 0 with the kernel item set of I S'--+g.S$, Ø]

3. Maintain a list of unprocessed states called USL, and add state 0 to USL.

4. Select next state R from USL while USL is not empty.

4.0. Select next state R from USL

4.I. Perform ltem-Set closure on R.

4.I.1. Maintain a list UIL (unprocessed item list) of unprocessed items.

Initialize UIL with R's kernel item set.

4.I.2. Remove items from UIL until encountering the next item of the

form [B--+Þ.Cy] (i.e. a nonterminal C follows the irem dor).

4.r.3. For every rule c*ô in the grarnmar, if the item [c--+.ô] is not

already in R, add it to R and ro UIL.

4.r.4- Remove [B* F.cy] from uIL, if UIL is nor empry. Go back to

step 4.1.2.

4.2. Compute the GOTO set (the set of destination states)
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4.2.1. For each symbol X such that R contains an item [A--+u.XB] cre-

ate a new state T = goto(R, X). For each item I B--+a.Xô ] in R

(i.e. an X follows the dot), add a kernel item I B--+cx,X.ô ] to T (i.e.

move the dot one position right.)

4.3" Remove R from USL.

When a state in an LR(O) parser built for a grammar G contains more than

one item, and one of those items is a complete item then the state is not LR(O) con-

sistent and the Grammar G is not an LR(0) grammar. The reason is that there could

be two kinds of LR conflicts in the state:

I. Reduce-Reduce Conflicts :

The state has at least two complete items, [A--+u.] and [B*F.] and we can-

not decide which one should be reduced.

2 " Shift- Reduce Conflícts :

The state has at least one complete item, [A--+o. ] and at least one other

incomplete item [B*Þ.y] for some y which is not e. We cannot decide if we

should reduce o to A or shift y1 to try to recognizeB.

A solution to resolving these conflicts that often works is to look ahead at the next

input symbol to make a decision. One such parser that uses lookahead is the LR(1)

parser.
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3.2 LR(tr ) Parser Construction

In order to discuss LR(l) parsing, it is useful to define the functions FIRSï LAS1-,

and FOLLOW which are now described:

3.2.1. FIRST, LAST, and FOLLOW Sets

FIRST(X) is defined as the set of all terminals and nonterminals that can be the first

symbol of any sentential form derivable from X:

FIRST(X)={YlX+*Ya}

LAST(X) is the set of all terminals and nonterminals that can be the last symbol of

any sentential form derivable from X:

I-AST(X)={YlX+*oY}

Notice that the symbol itself belongs to its own FIRST ser and LAST set. The

FIRST sets and LAST set are used to efficiently compute FOLI-OV/ sets. For each

nonterminal A, FOLLOW(A) is the set of symbols that can follow A in some deri-

vation from S':

FOLI-OW(A) = { Y I S' =* aAYB}

3.2.2 SL,R(l) Parser

Among LR(1) parser families, there is a so-called simpte LR(I), i.e. sLR(1), parser
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which attaches FOLLOW(B), as a lookahead set, to each complete item [B--+B.1

and if the next input symbol is not in the lookahead set, the corresponding reduce

action is not allowed. For a shift-reduce conflict [B*Þ.] and [C-y.Xô], if X does

not belong to FOLLOW(B) then the conflict is resolved. For the reduce-reduce

conflict [B--8. ] and [c*T. ], if the inrersecrion of FoLLow(B) and FoLLow(c)

is empty, then the conflict is resolved. If alt conflicts in the LR(0) automaton can be

resolved in this way, then the grammar is SLR(l). Essentially, SLR(1) parser gener-

ators analyze the grammar and individual states, but not the paths between the

states, to determine the lookahead sets. Therefore, SLR is the weakest member of

the LR(1) family in terms of the number of grammars for which it succeeds. The

most general form of LR(1) parser is presented next.

3.2.3 LR(l) Parser

Aho, Sethi, and Ullman [7] present the following LR(1) construction algo-

rithm. Note that the general form of an LR(l) item is [A--+a.þ, a), where

A--+orP is a production and a is the lookahead symbol, and assume that G' is an

augmented gr¿ütmar ("augment" is defined on page 28).

function closure(I)

begin
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repeat

for each item [A--+u .Fþ, af in I,

each production B+yin G'

and each terminal å in FIRST(Ba)

such that [B*"y, å] is not already in 1do

add [B--+.y , b] to I;

until no more items can be added to 1;

return 1

end;

function goto (I,X)

begin

let-Ibe the set of items [A-+aX.þ, o] such that [A--+c.Xþ, af,

for any A, 0, B, and a, is in I;

return closure(J)

end;

procedure items(G' ) - - Top level procedure

begin

C:- { closure({[S'-$.S$, Ø ]]) ];
repeat

for each set of items I in C and each grammar symbol X

such that goto(I, X) is not empty and not in C do

add goto(I, X) to C

until no more sets of items can be added to C

end
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With these routines, the LR(1) parsing table can be constructed by the following

steps [7]:

1. Construct C = { Io, It, ... , In}, the collection of sets of LR(l) items for G'.

2. State i of the parser is constructed from item set I¡.The parsing actions for

state i are determined as follows:

a) If [A--+a..aþ, b] is in l¡and goto(I¡ a) = Ij, then set action[i, a] to

"shift j" . FIere, a is required to be a terminal.

b) If [A--+o., a] is in {, A is not S', then set action[i, a] to

"reduce A--+c["

c) If [S'-+$S.$] is in {, then set actionli, gl to "accept".

If a conflict results from the above rules, the grammar is said not to be LR(l),

and the algorithm is said to fail.

3. The goto transitions for state I are determined as follows: If goto(I¡, A) = Ij,

then goto[í, A] - ¡.

4. All entries not defined by rules (2) and (3) are made "error" entries.

5' The initial state of the parser is the one constructed from the set containing

item [S' --> $.S$, Ø].

Essentially, this LR(l) parser generator analyzes paths between the states.

So, the lookahead set is not simply the FOLLOW set. Thus, LR(l) parsers are more
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powerful than SLR(I) parsers, but they are also much larger. A compromise can be

made by constructing an LALR(I) parser, which is discussed in the following sec-

tion.

3.3 I-ALR(l) Parser Construction

LALR stands for lookahead-LR. The LALR(I) method is often used in practice

because the tables generated by it are considerably smaller than LR(l) tables and

most coÍlmon syntactic constructs of programming languages can be expressed

conveniently by an LALR(I) grammar. The same is almost true for SLR(I) gram-

m¿Irs, but there are a few constructs that cannot be conveniently handled by SLR(1)

techniques.

An LALR(1) parsing table is constructed by merging those LR(1) sets hav-

ing identical "core" items. Core items are items without any lookahead information

attached. The detailed algorithm as described by Aho, Sethi, and Ullman [7] is as

follows:

1. construct c = { Io, I l, ... , In}, the collection of sets of LR(1) items.

2. For each core item set present among the set of LR(l) items, find all sets hav-

ing the same core items, and replace these sets by the set with common core

items and the union of lookahead sets.
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3.Letc'= { Js, J1,..., Jn} be theresulting sets of LR(l) items. Theparsing

actions for state i are constructed from 
"r¿ in the same manner as constructing

LR(1) parse tables. If there is a parsing action conflict, the algorithm fails to

produce a parser, and the grammar is said not to be I_ALR(1).

4. The goto table is constructed as follows. If ,I is the union of one or more sets

of LR(l) items, that is, J = tr t U I2U ... U It, then the core items of goto(|1,x),

goto([2,X), ... , goto(Ip,X) are the same, since 11, 12, ... , I¡rall have the same

core items .Let K be the union of all sets of items having the same core items

as goto(l7,X). Then goto(11,X) - t(.

Note that, when constructing LALR(I) parsers, the merging of states with

common core items can never produce a shiflreduce conflict that was not present

in one of the original states, since shift actions depend only on the core item, not

the lookahead. Nevertheless, it is possible that a merging will produce a reduce/

reduce conflict. The following simple example shows sample LR(1) states and how

they are combined into LALR.(1) states"

I-et an augmented grammar G' be:

0.S'--+$S$
1.S--+FF
2.F--+fF
? F-+ob
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The LR(1) states would be as shown in Fig 3.2. Where I¡ are closure item

sets generated from the following corresponding kernel sets:

K¡: S' --+$. S $, Ø

Kt: S'*$S. $,Ø
K1 S--+F.F,{$}
K¡: F-+f.F,{f,g}
K¿: F --+ 9., { f, g }

Ks: S--+FF.,{$}
KO: F--+f .F,{ $ }
Kl: F+g.,{$}
Ks: F--+f F",{f,g}
Kq: F--+f F", { $ }

Fig. 3.2 LR(1) Parsing states & t¡ansitions for G'
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Notice that K3 has the same core items as state K6, state Ka has the same

core items as state K7, and state Kg has the same core items as state K9.

By applying the LALR(I) construction algorithm, we can merge K3 with

K6,K¿ with K7, and K3 with K9 respectively and get the following LALR(1) kernel

item sets:

K¡: S'*$.S$,Ø
Kt: S'-$S.$,Ø
K¡ S--+F.F,{$}
K¡: S--+FF.,{$}
K+: F--+f .F, { $,f,g }

Ks: F+9.,{$,f,g}
Ko: F--+f F.,{$,f,g}

Therefore, the corresponding LALR(I) states would be as follows:

Fig. 3.3 LALR(I) Parsing states & transitions for G'
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Chøpter 4

Obj ect-OrÍented Parser
GeneratÍon

The notations and algorithms of object-oriented analysis & design and LR parsing

just reviewed will now be applied. The object-oriented development of an

LALR(I) parser generator is discussed and the concepts and techniques of Rum-

baugh's ObjecrOriented Modeling Technique (OMT) are used to depict the srruc-

ture of the resulting system.

While OMT is composed of three kinds of models, the object model, the

dynamic model, and the functional model, only two of those models, the object

model and the functional model, will be presented because non-interactive pro-

grams such as compilers and parser generators, have a trivial dynamic model. Their

purpose is simply to compute a function. Thus the functional model is the main

model for such programs. The object model is also important for any problem with

nontrivial data structures.
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Design and implementation considerations will also be discussed in this

chapter.

4.L Object Model

The purpose of the object model is to describe the structure of objects in the sys-

tem. Because object-oriented prograrnming emphasizes building a system around

objects rather than procedures, the object model is the most important one in

object-oriented analysis. Figure 4.1 gives a simplified description of the object

model for the OO parser generator created. More detail is given in later diagrams.

As Figure 4.1 shows, the system has a symbol-set, a rule-set, and a state-set.

The symbol-set consists of one or more symbols. Each symbol is associated with

the first rule which has that symbol as the left part. The rule-sef consists of one or

more rules whích have two kinds of information, one left symbol and zerc or more

right symbols. The state-set consists of one or more parser states. The number of

parser states increases during the execution of the system. Every state has an item

set aîd some transition information which includes the reduce information or the

goto information used by the parser based on the lookahead symbol. So, the transi-

tíon information contains the input symbol information and either the rule applied

to reduce an item or the state to be shifted to. An item set is composed of items
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which includes information about a Rule. Worthy of mention is that the boxes in the

diagram are classes rather than objects even though the model name is called the

Fig. 4.L Object Model of Parser Generator

Symbol Set Rule Set

Symbol

right symbols
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object model. Although this diagram shows only the top-level classes, it does

present the overall structure of parser construction.

Fig 4.1.1 Class Symbol Fig 4.1.2 Class SymbolSet Fig 4.1.3 Class Rule

Symbol

symText: String
tnt: Bool
nullable: Bool
firstSet: BitSet
lastSet: BitSer
followSet: BitSet

GetFirstAlt
IncludeFirst

RuleSet

numRules : integer

Transition

action : char

AddTrans
InsertlrReduces
InsertlalrReduces

Fig 4.1.4 Class RuleSet Fig 4.1.5 Class ltem

SymbolSet

numSym: integer

Look
DoEmpty
DoFirst
DoLast
DoFollow

ltem

pos : integer
fSymlr: BitSet
fSymlalr: BitSet

SameCoreltem
Includelookahead
operator =
OpOfâtOr = =
Frintltem

State

stateNum: integer

SameCoreState
PrintState

Rule

numRHS: integer

DoString

Fig 4.1.6 Class ltemSet

Fig 4.1.7 Class Transition Fig 4.1.8 Class State Fig 4.1.9 Class StateSer

numltems : integer
maxltems : integer
stateHash : integer

Operator =
Operator = -
Addltem
DoClosure
SameCoreltemSet

StateSet

numlrStates : integer
numlalrStates: integer
lastState : integer
stateTbl : array ofint
hashTbl : array

DoLrStates
Dol-alrStates
PrintStates
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4.1.1. The Classes ttSyrnbol" and "SyrnbolSettt

Symbol is an essential class (Fig a.1.1) in the system. Symbol objects contain infor-

mation about a particular symbol in the grammar, including the attributes: tnt., a

boolean which indicates whether it is a terminal or nonterminal; nullable,

which indicates whether the symbol is nullable (C ++ e) or not; f irstSet.,

lastSet. and f ollowSet store the FIRST set, LAST set, and FOLLOW set of

the symbol respectively; and symText which stores the name of the symbol. The

methods in the class "Symbol" are GetFirstAlt, which gets the first rule with

this symbol as the left part, and IncludeFirst, which is used for lookahead

computation.

The class "SymbolSet" (Fig 4.1.2) serves as a symbol table that holds atl

symbols of the input grammar. It includes a data member numsym which keeps

track of the total number of input symbols. This class does not have much specific

data-member information, but is used to manage symbols. The methods in this

class include: Look, which either finds a particular symbol in the symbol table, if it

exists, or inserts it into the symbol table; DoEmpty, which computes whether the

symbol is nullable or not; DoFirst, which computes the first set for every sym-

bol; Dolast, which computes the last set for every symbol, and DoFo1low,

which computes the follow set for every symbol.
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4.1..2 The Classes "Rule" and "RuleSett'

The class "Rule" (Fig a.1.3) represents the rules in the grammar. The characteris-

tics of the grammar rules are defined by the attribute numRHS, the number of sym-

bols on the right hand side of the rule; and by the associations that every rule has,

such as a left paft symbol and a number of right pafi symbols as indicated in Fig.

4.1. Method ¡ostring is used for lookahead computation.

The class "RuleSet" (Fig a.1.4) holds all the rules of the input grammar.

Attribute nrunRul-es indicates the total number of production rules. The Ruleset

object is a object which has no operations of its own but merely stores data. This

kind of object is called a data store in OMT.

4.1.3 The Classes ttltemtt and 66ltemSettt

The class "Item" (Figure 4.I.5) represents the notion of item in LR parser theory.

An item has a related rule (as indicated in Fig 4.1) with associared dot position

information (attribute pos), and two lookahead sets - the f Sym attribute is for

LR parsing and the f Syml-,alr attribute is for LALR parsing. The methods in the

class "Item" include Printrtem, which reports the information in item objects;

the operator =, which assign one item to another; the operator -=, which
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compares two items; SameCoreItem, which compares two items disregarding

lookahead sets; and Inl-cudelookahead, which is used for lookahead computa-

tion.

The class "ItemSet" (Figure 4.1.6) is a collection of Item objects. The mem-

ber stateHash stores the hash value of the state in which this Itemset object is

contained. The data member numÏtems stores the number of items in a specific

ItemSet object. The data member maxf t.ems holds the maximum possible number

of items, and is a static member. The value of maxrtems depends on the particu-

lar grammar. The top-level methods are the operator -, which copies an item

set; the operat.or ==, which does item set comparison; and samecoreset,

which compares two item sets disregarding lookahead information. In addition,

Addrt.em adds an item to an item set, and DoClosure computes the closure set

for the given item set.

4.1,.4 The Class t'TFansitÍont'

The Transition class (Figure 4.I.7) stores state transition information as the

attribute action, which can be either reduce or shift, and has associations with

symbols, rules, and states as indicated in Fig 4.1.

Method AddTrans is defined to store shift transition information, and
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method rnsertReduces is defined to add

objects.

reduce information to transition

4.1..5 The Classes '6State" and 66stateSett'

The class "State" (Figure 4.1.8) defines state (or kernel) information. The attribute

stateNum stores the state number assigned by the parser generator. The method

SameCoreState is used to check if two states are mergeable or not during

LALR computation, and PrintState prints essential state information.

The class "StateSet" is defined to manage dynamically created state objects

during parser construction. The top-level methods of the StateSet class include:

DolrStates, which computes I-R states; DoI,alrStates, which constructs

LALR(I) states based on the LR.(l) states; and printstates, which prints

essential state information. Note that in the actual implementation, there are more

private methods and sub-methods which are not presented here because they are

not needed to understand the system.

A.2Functional Model

The functional model shows the computation and the functional derivation of the
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data values in it without indicating how, when, or why the values are computed.

This section describes the high-level functional model for parser generation.

Figure 4.2 is the top level functional model and Figure 4.3 is the expansion of the

b uild- LR- st at e s ptocess.

G**** frl" Grammar

symbols

first rule

symbols

Fig4.2 Functional model for the parser generator

Figure 4.2 shows how the read grammar process reads a grarnmar from an

external file and then generates a set of rule objects (RuleSet) and symbol objects

(SymbolSet). The compute-empty process computes nullability for every symbol

based on existing rules. After this process, every symbol has information about

whether it is nullable or not. The compute-first-set, compute-last-set, and compute-
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follow-set processes update every symbol with FIRST set, LAST set, and FOL-

LOW set information, respectively, based on existing rules and symbol-nullability

information. Note thatthefollow set is not really needed for LR(1) parser construc-

tion, but is implemented here for the completeness of set computation and for the -

d option of the system (see Appendix A) which dumps FIRST, LAST, and FoL-

LOW set information. The build I-R states process generates all LR(l) parsing

states and the build LALR states merges LR(l) states into LALR(I) srates. The

print-state.ç process displays LALR(I) states to the standard output.

LR states

--------_->

Fig. 4.3 Expansion of build LR states process

Figure 4.3 provides a low-level diagram for the build LR states process

which consists of four processes. The add ítem process is a leaf process, which con-

verts a rule into an item by appending lookahead-set and dot-position information.

The compute-closure process generates closure items based on the given item set.

The generated closure items will be used by the compute-new-kernel process which

first rule
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generates LR states. The store-reduces process is also aleaf process which stores

states (in a rule) in which the rule is used to reduce an item. Note that the expected

process store-shifts is actually implemented as a sub-process of compute-new-ker-

nel.

4.3 Implementation ConsideratÍons

In this section, some design and implementation considerations pursuant to parser

generation will be discussed.

4.3.1, Implementation of Symbolset, RuleSet, StateSet
and ltemSet

In parsing theory although there are concepts (and objects) such as symbols, rules,

items, and states, the only space consuming objects are actually symbols. Symbols

are ultimately the main components of other objects. For example, an item's main

component is a rule which is composed of the left part symbol and a number of

right part symbols.

Because of the above fact and the fact that the numbers of symbols, rules,

items, and states dynamically increase during computation, and varies from gram-

mar to grammar, SymbolSet, RuleSet, and StateSet are implemented as tinked-lists.
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Pointers are used instead of keeping multiple physical copies of symbols in rules,

items, and states. Therefore, the symbols in a rule are implemented as pointers to

the objects colresponding to the left hand symbol and right hand symbols, and the

rule attribute in an item is a pointer to the coffesponding rule. A similar philosophy

applies to states. This method improves both efficiency and space usage. Since the

maximum possible size of an item set can be decided when the grammar is entered

in the system, ItemSet is implemented as an array of item pointers for easy and

quicker handling of item sets during computation.

4.3.2 BitSet Implementation

Sets are used in a parser generator to compute and keep FIRST sets, LAST sets,

FOLLOW sets and lookahead sets during parser construction. Since every symbol

has a corresponding first set, last set, and follow set, and every item has a looka-

head set attached to it, attention must be paid to memory consumption and effi-

ciency.

The class "BitSet" is implemented in this program for this purpose. For rea-

sons of space-saving and program portability, the BitSet class consists of two data

members. One is the length of the bit set, which is determined by the actual total

number of symbols in the grammar. The other is the actual bit set represented by a
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dynamic array of char, i.e" a dynamic string (in C++ it's type is unsigned

char*). Every symbol in the grammar is represented by a bit in the set. There are

two reasons why char is chosen instead of int. First, most current computer sys-

tems' space is represented by 8-bit bytes, but depending on the size of the com-

puter, the integer bit length may vary. (where 16-bit,32-bít, and 64-bit are the

common values). Portability is achieved by choosing an 8-bit char as the basic stor-

age unit for set implementation. Second, due to the dynamic length of the string,

minimum space usage is achieved since the maximum possible wasted space is 7

bits per set.

The first set, last set, and follow set should be data members of the symbol

class, and the lookahead set should be a data member of the item class. An object of

Symbol class should be created when a symbol is recognized,by the scanner. This

creates a potential problem. Because the total number of symbols in the grammar

cannot be determined until the end of the scanning, the constructor for BitSet is

unable to allocate appropriate space for every set object in the symbol object. The

program has to be responsible for setting the length data member of the set, and

calling another member function of the set to allocate space for every set object

right after scanning the whole grammar.
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4.3"3 The Hash Function for States

Hash functions are often used for looking up symbol names in a table, but in the

parser generator implementation, a hash function is used to find states. The main

objective of using a hash table is to make a reasonable trade off between space and

speed. Therefore, the design of the hash function is critical to performance. In the

implementation, the hash function for each state is the logical OR of each item's

sum of rule pointer and "dot" position ( ( int ) rulepoint.er + pos ) since an

item in the parser generator is implemented as a pointer to the coffesponding rule

and "dot" position information. An additional benefit of this hash function is that

those LR(l) states with the same core items must have the same hash value. This

helps compute LALR(1) states which must merge LR(1) states with identical core

item sets.

4.3.4 The Farser Constnuction Algorithm

While several LR parser generation algorithms are available, the algorithm imple-

mented in this thesis is the one described in section 3.3.3. This algorithm was cho-

sen for the following reasons:

1. The algorithm enables the program to generate not only an LALR(I)
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parser, but also an LR(1) parser if the grammar is not LALR(1),

2. Although the algorithm is the least efficient one, it is stilt acceptable in

terms of the frequency of use - once per language, and

3. The conventional parser generator to which we will compare ours is also

implemented in this way. It would not be fair to make a comparison with

a different construction algorithm.

4.3.5 Combination of Shift and Reduce

The option of combining shift-and-reduce operations can sometimes significantly

reduce the number of parser states. Combining shift and reduce means that, when

there is only one item action in the current state for a particular input, if this item

becomes reducable after the shift action, this item will be reduced immediately

instead of waiting for the next separate reduce action. In the case of ISO Pascal, the

number of LALR(1) states is 365 without shift-and-reduce combination and is 214

with this combination.

4.3.6 [Iandtring of Object Groups

Because of the nature of parser generation, very large groups of objects of the

same class have to be handled during computation. For example, hundreds or thou-
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sands of states or kernels are involved during the computation. Therefore, the

implementation of this kind of association is important to performance. Also, the

number of objects in parser generation are dynamically growing during the compu-

tation. Due to the nature of parser generation, those object groups such as kernels,

rules, and symbols have to be traversed several times. This situation is not favor-

able from the point of object-oriented prograrnming. Because of the above facts,

objects of the same class are implemented as a linked list instead of an array.

4.3.7 Pass by Constant Reference vs. Pass by Value

Thanks to the fact that the implementation is in C++, pass by constant reference is

available. This feature is extensively used in function calls instead of pass by value

for the following two reasons:

1. Performance. If an object is passed by value, there will be considerable

impact on the performance especially when the object is big and the fre-

quency of calls is high (since the copy constructor is involved in pass by

value).

2. safety. while the issue of efficiency stilt be addressed by passing a

pointer, constant reference passing guarantees that the object passed to

the function will not be mutated. Any attempts to change the "pass by
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constant reference" variable will be flagged as compile-time errors. It is

also important to note that a reference can never be NULL whereas a

pointer can be NULL.
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Chøpter 5

Comparison With A
Traditional Parser Generator

In this chapter, some comparisons with a traditional parser generator written by

Nigel Horspool ll4l arc made. Although programs can be greatly affecred by indi-

vidual programming styles and compilers used, all possible efforts have been made

to minimize these effects. First, the parser construction algorithms are the same and

the outputs are in the same format. Second, the GNU C and C++ compiler (gcc)

has been chosen for the reason that it accepts both C and C++ programs. It is also

assumed that the optimizations performed on the C++ program are as good as on

the C program.

All data presented here is based on tests using the gcc Y2.J compiler run-

ning on a SUN SPARC 1+ workstation under the SunOS 4.1.3 operating system.

The test cases are ISO Pascal and Modula-2 granmars. In the following compari-

son tables, OOPG stands for Object-Oriented Parser Generator (my project), and

-55-



TPG stands for Traditional Parser Generator (Nigel Horspool's generator).

5.1 Running Time for Pascal & Moduta-2 Grammars

The algorithm used for a computation and the quality of the compiler used for

translation can have a significant effect on the running time of a program. By hold-

ing these two constant, the significance of the prograrnming paradigm used can be

measured. Two examples of the ways that the paradigm can influence running

speed are the overhead of calling vírtual functions and the added time needed for

invoking constructors and destructors in the OOPG.

Two sets of results are given according to whether or not the optimizer is

used during compilation.

Table 5.L: Running Time

Tirnel(Èê,óöiids:) OOPG T,PG,,, ,RátiCI

ISO Pascal
Grammar

Optimized 6.1 3.0 2.03

Un-optimized 12.0 4.0 3.00

Modula-2
Grammar

Optimized 5.6 3.2 r.75

Un-optimized 1,1.4 4.0 2.85

Note that without optimization, only those variables declared to be regíster

are actually allocated in registers. In the OOPG, the running time difference was

3.5 seconds (on the ISO Pascal grammar) depending on whether variables are
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declared register or not in the program (compiled without optimization). However,

this difference disappears if the optimizer is applied. Because it is believed that this

kind of optimization should be left to the compiler, no registers have been declared

in the program. Meanwhile, the TPG program declares all possible variables as reg-

ister. This explains, to some extent, why the OOPG has a bigger running-time dif-

ference between optimized and unoptimized code.

5.2 Function Calls for Pascal & Modula-2 Grammars

Due to the nature of object-oriented programming, more function calls are expected

to provide support for information hiding and encapsulation. In addition, macros,

which are extensively used in traditional programming, are not common in object-

oriented programming. This too contributes to an increse in the number of function

calls in an OO program. The following is the total number of function calls when

an ISO Pascal parser or Modula-2 parser is constructed. Please note that small per-

centage of function calls are in-lined in the OOPG.

Table 5.2: Function Calls

Torâ|c Is(rcs) o','' G .TPG Ràtio

ISO Pascal Grammar r,529,964 525,045 2.91

Modula-2 Grammar r,637,900 555,610 2.94
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5.3 Object Size and Executable FiIe Size

V/hile TPG consists of only one C source file, OOPG is composed of six header

files and seven C++ source file. So, the object file size discussed below is the total

size of the seven conesponding object files. Again, it is more informative to give

two sets of results here.

Thble 5.3: Executable Size

:

Ërccútff le.S i¿.é'(byt. êSJ
'1. rr'' 1:.1 i : r::;.r:::: ::;::..:::::::,:::.:,:.::r.r,i,:r::::.: . li::ri,.::::::::: j ,t,,.Or'@',,,|.,P..,9 TPG Rãtiö,..''

Optimized 52,623 37,942 r.39

Un-optimized 69,340 46,134 1.50

Thble 5.4: Object SÍze

CIbjc isi¿e(bt ) :l..,,OOPG TPG RâtiO,.:,1

Optimized 42,I54 26,441 1.59

Un-optimized 59,tr01 37,647 r.57

On the one hand, the object and image sizes are naturally dependent on the

compiler used, on the other hand, the difference between OOPG and TPG also indi-

cates that it is hard to accomplish some object-oriented programming and software

engineering ideas, such as information-hiding/encapsulation and good code-read-

ability and maintainability, without the sacrifice of program size and object size in

some situations. Of course, some object-oriented programming features such as

templates and inheritance could shorten the code if applied properry.
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5.4 Source Size

Although the source size does not necessarily indicate the degree of complexity, it

is a rough measure of the overall programming style, including naming convention,

degree of conciseness, readability, and so on. Four comparisons, regarded as useful,

are listed here.

Table 5.5: Source Size

füm!,,N.üúb,et ,oo.PG.. P,G Rátió

Lines Excluding Comments 1933 r599 r.21

l-ines Including Comments 2212 1626 1.36

lharacters Excluding Comments 409r6 24932 1,.64

fokens Excluding Operators 433 387 1.r2

It is not surprising to discover, from table 5, that the OOPG is bigger than

the TPG because object-oriented programming languages such as C++ require

more definitions or "protypes" than C. Also, as mentioned in the previous section,

there will likely be more functions in C++. The amount of comments usually

depends solely on individual programming style.

It is also interesting that while the size of the source code grew by onty 217o,

the sizes of object file and running time increased by 577o and I85-200Vo respec-

tively (un-optimlzed).
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Chøpter 6

Conclusions

This thesis investigates the current popular object-oriented methods as applied to

LR parsing theory. An experiment applying object-oriented techniques to parser

generation is presented and a parser generator has been implemented and tested

with an ISO Pascal and Modula-2 grammars.

This experiment does not exaggerate the advantages of object-oriented pro-

gramming in the parser generation area. Instead, an honest comparison between an

object-oriented parser generator and a traditional one has been made, and every

effort in both design and implementation has been made to minimize the effects of

individual prograrnming styles, compilers, and the behavioral differences between

C and C++ programs as observed by Catder [11].

Some experience was gained from this experiment including that object-ori-

entedness in parser generation is not as beneficial in some aspects as in other areas

of software developmenet. This is due to the following reasons. First of all, because
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parser construction computation is not highly interactive, the design and implemen-

tation issues are usually relatively simple and straightforward although the algo-

rithms applied could be very complicated. Secondly, parser construction is almost a

pure computation and the objects in the system are obvious and limited, just the

same as those in the theory, such as symbols, rules, items, kernels or states, etc.

Thirdly, as mentioned in chapter 4, the nature of parsing makes such unfavorable

situations as walking through objects inevitable.

While the data obtained in this experiment do not favor object-oriented pro-

gramming in parser generation in some aspects, it is important to note that object-

oriented progranìming never promised faster and smaller programs. Unfortunately,

it is hard to compare OOPG and TPG based on what object-oriented programming

techniques promise 
- clearer, easier to debug, easier to maintain and reuse pro-

grams without longer term analysis & data collection. Nevertheless, the experience

and test data in this experiment can still be used as a reference or start for further

object-oriented parser generation research and development.
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Appendix A

System fJser's Guide

1. lntroduction

The program reads either an LALR(I) or LR(1) grammar and builds the srates and

lookahead sets necessary to implement a shift-reduce parser. Two forms of output

are available: one is a human-readable listing of terminals, non-terminals, gram-

mar, and state sets, which is sent to standard output; the other is a . tbl file which

contains similar information that can be read easily by other programs. If the gram-

mar is not an LALR(I) grammar, but is an LR(1) grammar, the program will report

that there are LAI-R(1) conflicts and then produce the coffesponding LR(1) state

sets and . tbl file instead of LALR(1) ones.

-62-



Z.Program Input

The input to the system is an LALR(1) or LR(1) grammar. Terminals and non-ter-

minals may be any sequence of characters delimited by blanks or end-of-line. One

replacement rule appears per line in the input file. The first rule defining a given

non-terminal is of the form:

non-terminal righL-hand-side-of-rul_e

subsequent alternatives for the same non-terminal are of the form:

| -1ternative-right-hand-side

The generator automatically assigns symbol numbers to each terminal and non-ter-

minal symbol. Any symbol not appearing as the left-hand side of a rule is assumed

to be a terminal symbol.

The first rule must have a right-hand side of the form.

bof non-terminal eof

Where bof (begin-of-file-mark) and eof (end-of-file-mark) are unique terminals.
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3. Program Output

The program output produced depends on the program options chosen. The options

are as follows:

-1 List terminals, non-terminals, production rules which are numbered by

the program, and state sets. In every state set, there is such information

as kernel items, shift transitions, and reduction rules.

-d List first sets, trast sets, and follow sets for the symbols.

-t Do not produce a " tbl file.

-c Do not combine shift & reduce operations into a single step. Conse-

quently, there will be more states.

-wcnumber> Define the width of standard output. e.g. _w40.

The format of the . tbl file is as follows. The first line in the file contains

three numbers: the number-of-symbols, the number-of-grammar-rules, and the

number-of-states. For each symbol, rule, and state there is one subsequent line in

the f,le. The first symbol, rule, and state are numbered 0.

For each symbol, there is a bit indicating whether or not the symbol is a ter-

minal (0 means terminal, 1 means non-terminal) followed by the symbot itself.

Each rule appears in the following format:
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l-eft- side length-of-right-side right-s ide- symbols

For each state, a line is produced containing the number of transitions,

reductions, and shift & reduce actions, followed by these actions. A transition (i.e"

"Shift" action) is represented by:

<symbol-number> S<new-state-number>

A reduction is represented by:

<symbol-number> R<rule-number>

A shift&reduce action is represented by:

<symbol-number> *<rul-e-number>
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ABpendíx B

Tests on an ISO Pascal
Grammar

This appendix contains information about running the parser generator on an ISO

Pascal grammar. Because of the large size of the output, it has been shortened to

enhance readability. All output are in Courier font and all comments added to help

you understand the output are in trtalic-Times font.

Frogram Output

Terminal Symbols:

1: BOF 3: EOF 6: T_DOT 8: T_SEMI L2: T PROGRAM
T_ID tLz T_LPAR 1-6: T_RPAR 17 z T_COMMA
T_LABEL 25: T_INT 26: T_CONST 29: T_EQUAL
T_PLUS 33: T_MTNUS 34: T_STRING 35: T_REAL
T_TYPE 42: T_POINT 44: T_DOTDOT 46 T_PACKED
T_ARRÄY 48: T_LSQR 50: T_RECORD 52 T_END
T_SET 54: T_OF 55: T_FrLE 56: T_RSQR 60: T_COLON
T_CASE 63: variant_lis 67: T_VAR 78: T_PROCEDURE
T_FUNCTION 842 T_BEGIN 93: T_ASSIGN 96: T_REPEAT
T_UNTIL 99: T_GOTO 105: T_NE 106: T_LE 1,07: T LT
T_cE 1-09: T_cT 11-0: T_IN Lt2: T_OR t1"4: T_MULT
T_RDIV 1-16: T_DIV 1-t7 : T_MOD 118: T_AND
T_NOT L23: T_NIL 131: T_DO 135: T_ELSE
T_IF 1,37: T_THEN 138: T_WHILE l-39: T FOR

1_3

ZJ
?,

36
4t
53
6L
79
97
l_08
115
1,22

t-3 6
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141, z T_TO 142: T_DOT¡JI\TO 1-43 : T V\/ITH

Non-Terminal Symbols:

0:
t:
1l_

L9
22
2l
31
39
43
51
59
65
69
72
15
80:
83:
88:
92|
100
103
113
1"21,

t26
1,29
1,34
]-45

start 2: program 4: program_decls 5: block
progiram_head 9 z decls 10: program_name
programJarms 15: f ile_list j_B: label_decl3art
const_dec13art 20:. type_decl3art 2L: var_decl_3art
proc_decljart 24 label_decl_list
const_decl_list 28l. const_decl_ 30: const
unsigned_num 3'7 : tlpe_decl_list 38: tlpe_decl
tlpe 40: simple_type 41,: structured type
enum_l-ist 45: u_struct_tlæe 49: array_rest
f ield-list 57 z f ixed3art 58: variant3art
fixed-item_list 62: tag_field 64: variant_list
variant 66: case_label_Iist 68: var_d.ec1_list
var_decl 7 0 : proc_decl_Iist 'l 1-; proc_d.ecl
proc_heading 73: proc_beg j4: f r:arm_d.ecl
func_beg 76: proc_head_beg 7j z func_head_beg
f parm_list 81: f3arm 82: val_fparm_l-ist
var_fparm_l-ist B5: stmt_list B6: stmt 87 ; ul_stmt
label 89: simple_stmt 90: struct_stmt 91: beg_stmt
var 94: e)q)r 95 : proc_invok 98 : case_stmt

: rroparms3invok 101_: plist3invok L02: parm
: subscripted_var 1,04: simple_e>q>r L1,1,: term
: factor 1l-9: unsigned_const L20: func_invok
: set I24z plist_f invok 1-25: start_finvok
: element_list 1,27 -. el_ement L2B: if_then_else
: íf_beg 130: while_beg L32: for_beg 133: with_beg
: matched_stmt L40t updown 1"442 with_list
: case_al|' t46: case_beg L47: u1_matched_stmt

Production Rules:

0. start : = BOF program EOF
l.program := program_decls block T_DOT
2.program_decls ; = program_head T_SEMf decl-s
3 .program_head : = program_name programJarms
4.program_name := T_PROGRAM T ID
5.program3arms : =
6.programjarms := T_LpAR file list T RPAR
7.fi]e_list := T_fD
8. file_list : = file_]ist T_COMMA T_ID
9 " decls : = label_decl3art const_decl3art Llrpe_decl3art

var_decl3art proc_dec 13art.
10 .label_decl3art : =
l-1-.label_decljart : = T_LABEL label decl list T SEMI
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l-2 . label-_decl-_1 i st
1-3 .labe]_decl_list
14 . const_decl3art
15. const_decl3art
l-6. const_decl-_1ist
17 . const_decl_list
18. const_decl- : = T_ID T_EQUAL const
19.const := unsigrred num
20.const := T_PLUS unsigned_num

-- Rules 2I to 179 are omitted.

1-80.updown : = T_DOWNTO

= T_fNT
= label_decl_list T_COMMA T_INT
=
= T_CONST const_decl_list T_SEMI
= const_decl
= const_decl_list T_SEMI const decl

181- "with_beg
182 . case_stmt
183 . case_stmt
184 . case_beg
185 . case_beg
l-86. case_beg

= T_WITH with_list
: = case_alt stmt T_SEMI T_END
: = case_al-t stmt T_END

= T_CASE Ð<tr)r T_OF const
= case_beg T_COMMA const
= case_alt stmt T SEMI const

187.case_alt := case_beg T_COLON
188.matched stmt := ul-_matched stmt
189.matched stmt := label- ul__matched._stmt
190 "u]_matched stmt := simple_stmt
191 .ul_matched_stmt : =
192.u]_matched. stmt := if_then_else matched stmt
193.ul_matched_stmt : = while_beg T_DO matched_stmt
194.ul_matched stmt := for_beg T_DO matched._stmt
i-95.ul_matched_stmt := with_beg T_DO matched stmt
196.with_list := var
l-97.with_list := with_list T_COMMA var

THE NUMBER OF LR (1) STATES TS 1.248

THE NUMBER OF LALR ( 1- ) STATES IS 21.4

LALR(]-) TABLE rS OK

State 0:
Kernel- Items:
t t 0. sLart : : = BOF ### program EOF I I T_SEMI T_RPAR

T_COMMA T_LABEL T_EQUAL T_LSQR T_SET
T_OF T_FILE T-BEGTN T UNTIL

Shift Transitions:
to state 5 on T_PROGRAM to state 4 on prog.ram_name
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to state 3 on program_head to state 2 on program_decl-s
to state 1 on program

State l-:
Kernel ftems:
t t 0. start : : = BOF program ### EOF I I EOF

Shift-Reduces:
by rule 0 on EOF

State 2:
Kerne] f tems:
tt l-" program ::= program_decls ### bl_ock T_DOT ll EOF

Shift Transitions:
to state l-01 on T_BEGIN to state 6 on block

State 3:
Kernel Items:
tt 2. progratn_decls ::= prog,ram_head ### T_SEMI decls ll

T_BEG]N
Shift Transitions:

to state 7 on T SEMI

State 4:
Kernel- Items:
tt 3. program_head ::- program_nane ### program3arms ll

T_SEMI
Shift Transitions:

to state 8 on T_LPAR
Shift-Reduces:

by rule 3 on programJarms

State 5:
Kernel- Items:
tt 4. program_name ::= T_PROGRAM ### T_ID ll T_SEMI

T_LPAR
Shift-Reduces:

by rule 4 on T_ID

State 6:
Kernel Items:
t t l-. program : : = progiram_decls block ### T_DOT I I EOF

Shift-Reduces:
by rule 1 on T_DOT

State 7:
Kernel ftems:
tt 2. prog-ram_decls ::= program_head T_SEMI ### decl_s ll
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T_BEGIN
Shift Transitions:

to state l-5 on T-LABEL to state 1,4 on label-_decl3art
Shift-Reduces:

by rule 2 ort d.ecls

State 8:
Kernel ftems:
tt 6. prog-ramJarms ::= T_LPAR ### fíle_líst T_RPAR ll

T_SEM]
Shift Transitions:

to state 16 on file_list
Shift-Reduces:

by rule J on T_ID

State 9:
Kernel Items:
It 1,71 " while_beg ::= T_VüHILE ### e)q)r ll T_DO

Shift Transitions:
to state 159 on start_finvok
to state 160 on plist_finvok to state 158 on T_NOT
to sl,ate 155 on term to state 118 on simple_e>cpr
to state 151 on subscripted_var to state 156 on var
to state 162 on T_LSeR to state 153 on T_MfNUS
to state 152 on T_PLUS to state l_57 on T LPAR
to state 161- on T_ID

Shift-Reduces:
by rule 158 on T_NIL
by rule 154 on set
by rule 153 on func_invok
by rule l-51 on unsigned const
by rule 1-44 on factor
by rule 1,77 on e)q)r
by rule 27 on T_REAL
by rule 157 on T_STRING
by rule 156 on unsigned_num
by rule 26 on T_INT

State 10:
Kerne] Items:
t t L78. for_beg ::= T_FOR ### T_ID T_ASSIGN elq)r updown

e)q)r I I T_DO
Shift Transitions:

to state 23 on T ID

State 1l-:
Kernel- Items:
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tt l-81-. wíth_beg ::= T_WITH ### with_tist ll T_DO
Shift Transitions:

to state 25 on with_list to state 151_ on
subscripted_var

to state 24 on var
Shíft-Reduces:

by rule L2L on T_ID

State l-2:
Kerne] f tems:
I t L84. case_beg : : = T_CASE ### e>pr T_OF const I I T_COMMÄ,

T_COLON
Shift Transitions:

to state i-59 on start_finvok
to state 160 on plist_finvok to state 158 on T_NOT
to state 155 on term to state 118 on simple_e>qpr
to state 151- on subscripted_var to state 26 on e)çpr
to state 156 on var to state l_62 on T_LSeR
to state 153 on T_MINUS to state l_52 on T_pLUS
to state 157 on T_LPAR to state l-61 on T ID

Shift-Reduces:
by rule 1-58 on T_NIL
by rule 154 on set
by rule 153 on func_invok
by rule 151 on unsigned const
by rule L44 on factor
by rule 2'7 on T_REAL
by rule 157 on T_STRING
by rule 156 on unsigned_num
by rule 26 on T_INT

State 13:
Kernel- Items:
tt 1,87. case_alt ::= case_beg ### T_COLON ll T_SEMI

T_ID T_TNT T_END T_CASE T_BEGIN
T-REPEAT T-GOTO T_IF T_WHILE T_FOR
T_WÏTH

t t 185. case_beg : : = case_beg ### T_COMMA const I l
T_COMMA

T_COLON
Shift Transitions:

to state 27 on T_COMMA
Shift-Reduces:

by rule 187 on T_COLON

State 14:
Kernel Items:
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tt 9. decl-s ::= l-abel_decl3art ### const_decl3art
tlpe_decl3art var_dec}3art proc_decl3art I I T_BEGIN

Shift Transítions:
to state 29 on T-coNST to state 28 on const_decr3art

State l-5:
Kernel- Items:
I t 1,1,. label-_dec13art : : = T_LABEL ### l_abel__decl_l_ist

T_SEMI ] ] T_CONST T_TYPE T_VAR T_PROCEDURE
T_FUNCTION T_BEGTN

Shift Transitions:
to state 30 on l_abel_dec1_l_ist

Shift-Reduces:
by rule 1-2 on T_INT

State l-6:
Kernel- Items:
tt 8" file_Iist ::= file_l-ist ### T_COMMA T_rD ll T_RPAR

T_COM}4A

I t 6. programjarms : : = T_LPAR f í]e_list ### T_RPAR I l
T_SEMI

Shift Transitions:
to state 31"on T_COMMA

Shift-Reduces:
by rule 6 on T_RPAR

State 17:
Kernel Ïtems:
tt l-03. stmt ::= l-abel_ ### ul__stmt ll T_SEMI T_END

T_LINTTL
Shift Transitions:

to state l-3 on case_beg to state 44 on case_al_t
to state 1l- on T_WITH to state L0 on T_FOR
to state 9 on T_WHILE to state 22 on T_IF
to state 2L on with_beg to state 20 on for beg
to state 19 on while_beg to state 43 on if_beg
to state 18 on if_then_el-se to state 42 on T_GOTO
to state 4l- on T_REPEAT to state 40 on beg_stmt
to state 101 on T_BEGIN to state !2 on T CASE

Reductions:
by rule l-07 on T_SEMI T_END
by rule 114 on T_ID

Shif t-Re<r.uces:
by rule 111- on case_stmt
by rule 106 on struct_stmt
by rule 105 on simple_stmt
by rule i-03 on ul_stmt
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by rule 1-13 on block

State 18:
Kerne] Items:
t t 1,70. struct_stmt : := if_then_el_se ### stmt I I T_SEMI

T_END T_UNT]L
Shift Transítions:

to state 13 on case_beg to state 44 on case_alt
to state l-l- on T_WITH to state 10 on T_FOR
to state 9 on T_WHfLE to state 22 on T_IF
to state 2! on with_beg to state 20 on for_beg
to state 19 on while_beg to state 43 on if_beg
to state 18 on if_then_else to state 42 on T_GOTO
to state 41 on T_REPEAT to state 40 on beg_stmt
to state 1,7 on label to state l-01 on T_BEGIN
to state l_2 on T_CASE to state 39 on T INT

Reductíons:
by rule 107 on T_SEMI T_END
by rule 114 on T_TD

Shift-Reduces:
by rule l-11 on case_stmt
by rule i-06 on struct_stmt
by rule 105 on simple_stmt
by rule 102 on ul_stmt
by rule 170 on stmt
by rule 113 on block

State 19:
Kerne] Items:
tt 1,72. struct_stmt ::= while_beg ### T_DO stmt ll T SEMI

T_END T_UNTIL
Shift Transitions:

to state 36 on T DO

State 20:
Kernel- Items:
tt 1,73. struct_stmt ::= for_beg ### T_DO stmt ll T SEMI

T_END T_UNTTL
Shift Transitions:

to state 37 on T DO

-- States 2I - 199 are om¡tted.

State 200:
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Kernel- Items:
t t 48. array_rest ; : = simple_t1pe T_COMMA ### array_rest I l

T_SEMT T_RPAR T_END
Shift Transitions:

to state l-93 on simple_t]¡pe to state l_92 on T_MINUS
to state 191 on T_PLUS to state ]-44 on const
to state 143 on T_LPAR to state 142 on T ID

Shift-Reduces:
by rule 48 on array_rest
by rule 27 on T_REAL
by rule 25 on T_STRING
by rule 19 on unsigned_num
by rule 26 on T_INT

State 201:
Kernel Items:
t t 64. variant : : = case_l_abel__list T_COLON T LPAR ###

f iel-rl-líst T-RPAR I I T-SEMI
Shift Transitions:

to state 205 on T_CASE to state 203 on fixed3art
to state 206 on field_list to state 204 on T ID

Shift-Reduces:
by rule 54 on fixed_item_Iíst
by rule 52 on variant3art

State 202:
Kernel Items:
t t 47 . array_rest : : = simple_t14ge T_RSQR T_OF ### t]T)e I l

T_SEMI T_RPAR T_END
Shift. Transitions:

to state L49 on T_FILE to state l_48 on T_SET
to state 1,47 on T_RECORD to state l-46 on T_ARRAY
to state 145 on T_PACKED to state LAL on T_POINT
to state l-92 on T_MINUS to state 191 on T_PLUS
to state ]-44 on const to state 143 on T LPAR
to state 142 on T_fD

Shift-Reduces:
by rule 4l- on u_struct_tl¡pe
by rule 34 on structured tlpe
by rule 33 on simple_t1pe
by rule 47 on tlpe
by rule 2'7 on T_REAL
by rule 25 on T_STRING
by rule 19 on unsigned_num
by rule 26 on T_INT

State 203:

-74-



Kernel- Items:
tt 55. fíxed3art :;= fixed3art ### T_SEMI

fixed_item_list I I T_SEMI T_RPAR T_END
It 51. fiefrr-list ::= fixedJart ### T_SEMf variant3art ll

T_RPAR T-END
tt 50. field-list ::= fixed3art ### T_SEMr ll T_RPAR

T_END

it 49. field-list ::=fixedpart ### ll T_RPAR TEND
Shift Transitions:

to state 207 on T_SEMI
Reductions:

by rule 49 on T_RPAR T_END

State 204:
Kernel Items:
tt 57. fixerl_item_l_ist ::= T_ID ### T_COMMA

fixed-item_list I I T_SEMI T_RPAR T_END
t t 56. fixed-item_l-ist. : : = T_rD ### T_COLON type I I T_SEMI

T_RPAR T_END
Shift Transitions:

to state 208 on T_COLON to state 209 on T COMMA

State 205:
Kernel It.ems:
t t 59 . varíantjart : : = T_CASE ### tag_f ield T_OF

variant_list T_SEMI I I T_RPAR T_END
i t 58 " variant3art : : = T_CASE ### tag_f ield T_OF

variant_lis ll T_RPAR T_END
Shift Transitions:

to state 210 on tag_field to state l_28 on T ID

State 206:
Kernel Items:
t t 64. variant : : = case-label_list r_coloN T_LpAR field,list

### T_RPAR ll T_SEMÏ
Shift-Reduces:

by rule 64 on T_RPAR

State 207:
Kernel- f tems:
tt 55. fixedjart ::= fixedjart T_SEMI ###

fixed_item_list I I T_SEMI T_RPAR T_END
It 51. field_list ::= fixed__part T_SEMI ### variant3art ll

T_RPAR T_END
It 50" field-list ::= fíxed part T_SEMI ### ll T RPAR

T_END
Shift Transitions:
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to state 205 on T_CASE to sLate 204 on T tD
Reductions:

by rule 50 on T_RPAR T_END
Shift-Reduces:

by rule 55 on fixed-item_l-ist
by rule 51 on variant_part

State 208:
Kernel Ttems:
t i 56. fixed-item-l-ist : : = T-rD T-coLoN ### type I I T_sEMr

T_RPAR T_END
Shift Transitions:

to state '1,49 on T_FILE to state 148 on T_SET
to state !41 on T_RECORD to state 146 on T_ARRAY
to state 1_45 on T_PACKED to state 141 on T_POINT
to state L92 on T_MfNUS to state 191 on T_PLUS
to state 1,44 on const to state 143 on T LPAR
to state L42 on T_ID

Shift-Reduces:
by rule 41 on u_struct_t1pe
by rule 34 on structured_type
by rule 33 on simple_t1zpe
by rule 56 on tlpe
by rule 27 on T_REAL
by rule 25 on T_STRING
by rule l-9 on unsigned_num
by rule 26 on T_INT

State 209:
Kernel Items:
It 57. fixed-item_]ist ::= T_ID T_COMMA ###

fixed_item_l_ist ll T_SEMI T RPAR T END
Shift Transitíons:

to state 204 on T_ID
Shift-Reduces:

by rule 57 on fixed_item_list

State 210:
Kernel- f tems:
t t 59. variant3art : : = T_CASE tag_f ield ### T_OF

variant_list T_SEMI I I T_RPAR T_END
t t 58. variantjart : : = T_CASE tag_f ield ### T_OF

variant_l-is ll T_RPAR T_END
Shift Transitions:

to state 21,1, on T OF

State 2l-1:
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Kernel Items:
t t 59 . varíant3art : : = T_CASE tag_f ield T_OF ###

varianl-]isL T_SEMI ] ] T_RPAR T_END
I t 58 " variant3art : : = T_CASE tag_f ield T_OF ###

variant_Iis ll T_RPAR T_END
Shift Transitions:

to state 1,76 on case_l-abel_]ist
to state 2i-2 on variant_list to state 192 on T MINUS
to state l-91 on T_PLUS

Shift-Reduces:
by rule 62 on variant
by rule 58 on variant_lis
by rule 27 on T_REAL
by rule 25 on T_STRING
by rule 19 on unsigned_num
by rule 65 on const
by rule 26 on T_INT
by rul-e 22 on T_ID

StaLe 2L2:
Kernel ftems:
I t 63. variant_list : : = variant_list ### T_SEMI variant I l

T_SEMT

t t 59. variant3art : : = T_CASE tag_f ield T_OF variant_list
### T_SEMT ] ] T_RPAR T_END

Shift Transítions:
to state 213 on T SEMI

State 2l-3:
Kernel ftems:
t i 63 . variant_list : : = variant_líst T_SEMI ### variant I l

T_SEM]
i t 59. variantjart : : = T_CASE tag_f ield T_OF variant_list

T_SEMI ### ] ] T_RPAR T-END
Shift Transitions:

to state 1,76 on case_]abel_]ist to state ]-92 on T MINUS
to state 191 on T PLUS

Reductions:
by rule 59 on T_RPAR T_END

Shift-Reduces:
by rule 63 on variant
by rule 27 on T_REAL
by rule 25 on T_STRING
by rule 19 on unsigned_num
by rule 65 on const
by rule 26 on T_INT
by rule 22 on T_fD
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L48 1,98 2L4

1 start
O BOF
1 program
O EOF
1 program_decls
1 block
O T_DOT
1 program_head
O T_SEMI
1 decls
1 program_name
1 program3arms
O T_PROGRÀM
O T_TD
O T_LPAR
1 file_list
O T_RPAR
O T_COMMA
1 l-abel_decl3art
1 const_decl3art

1 element
1 if_then_el-se
1- if_beg
1 while_beg
O T_DO
1 for beg
1 with_beg
1 matched_stmt
O T_ELSE
O T_IF
O T_THEN
O T_WHTLE
O T_FOR
1- updown
O T_TO

-- The following ís the contents of the .tblfiIe.

-- Number of symbols, number of rules, number of states.
-- The following are symbols. 0 = terminal, I - nonterminal.

-- Other symbols are omitted.
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O T-DOWNTO
O T_WITH
1\,yith_list
1 case_alt
1 case_beg
1 ul_matched stmt

03r23
23456
43189
7 210 i-l_

t0 2 L2 1-3

l_l_ 0

i-1 3 1,4 1_5 L6
r-5 r_ 13
1_5 3 1-5 L7 13
9 5 t_8 1,9 20 2t 22
1-8 0

l_8323248
24L25
24 3 24 1,7 25
]-90
1,9326278
27 1" 28
27321828
28 3 r-3 29 30
30 1_ 31,

-- The following are rules in the .tbl file.

: 
-- Rules 2I - 179 are omitted.

1,30 2 1-38 94
L32 6 1,39 1-3 93 94 1,40 94
140 L 1,41,

1,40 1, r42
133 2 1,43 L44
98 4 1,45 86 8 52
98 3 ]-45 86 52
1,46 4 61, 94 54 30
L46 3 1,46 r7 3 0

1,46 4 1,45 86 B 30
I45 2 L46 60
134 I 1,47
1,34 2 88 L47
]-47 1 89
L47 0
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L47 2 L28 1,34
L47 3 1_3 0 l-31 1,34
1,41 3 1,32 131_ r34
1,41 3 1-33 1,3L L34
1,44 t 92
L44 3 L44 17 92

-- The following are the states ín the .tbl file.
51,255 1054753452251_
l- 3 *0

2 84 s1_01 5 56

18s7
2 L4 S8 1_t_ *3

1_ 1-3 *4

1, 6 *1

3 23 Sl_5 1_8 Sl_4 9 *2

215 5l_6 l_3 *7

22 125 SL59 1,24 5l-60 1,23 *158 L22 5158 1,21, *r54 L2o *l_53 1,19 *151
1l-3 *1,44 I1,1, S1_55 104 S1-18 1_03 515l_ 94 *1,'77 92 5156 48 Sl-62 35 *27
34 *157 33 Sl-53 32 SL52 3l_ *]-56 25 *26 1_4 sL57 1-3 516l-

1_ l-3 523

4 1,44 s25 103 Sl-51_ 92 524 l_3 *L21,

22 1,25 Sl_59 ]-24 5160 1,23 *l-58 I22 s158 1,21, *L54 1_20 *153 L1,9 *151
1-t-3 *1,44 1l-1 51-55 r04 S1-i-8 l_03 S15i_ 94 526 92 5156 48 5L62 35 *2'7
34 *L57 33 Sl_53 32 Sl-52 31_ *156 25 *26 1,4 s1_51 l-3 s161-

2 60 *187 1,1 527

2 26 529 L9 S28

2 25 *1,2 24 530

2 1,7 S3l_ 1,6 *6

24 B R107 1-3 Rl-l-4 52 Rl-07 L46 Sl_3 1"45 544 L43 Sl_l_ 139 S10 1_38 S9
136 522 t-33 521- 1-32 S20 1_30 S19 1,29 S43 t2B Sl-8 99 542 98 *l_l_1 96
s4l- 91 S40 90 *106 89 *105 87 *103 84 Si_01 61, SL2 5 *113

27 8 Rl-07 13 Rl-1-4 52 R107 L46 S1_3 1,45 544 1_43 S1l- i_39 Sl_0 138 59
l-36 522 133 521- L32 S20 1_30 St_9 !29 S43 1,28 S1B 99 542 98 *l_11 96
s41- 91, s40 90 *i-06 89 *105 88 51,7 81 *r02 86 *L70 84 s101- 61 sL2
25 S39 5 *t_t-3

1 r_31_ 536

11_31- s37
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-- States 2I - 199 are omitted.

L1. 49 *48 40 s193 35 *27 34 *25 33 Sr92 32 Sl-91_ 31_ *19 30 sL44 25*26 L4 Si_43 13 SL42

6 6L 5205 59 *54 58 *52 57 5203 5i- 5206 1_3 s204

t9 55 SL49 53 5148 50 51-47 47 5L46 46 Sl_45 45 *41_ 42 Sl_41- 4L *34
40 *33 39 *4'7 35 *27 34 *25 33 5192 32 Si_91_ 31_ *L9 30 sL44 25 *26
L4 SL43 1_3 51_42

3 8 5201 l-6 R49 52 F.49

2 60 s208 L7 5209

2 62 521,0 l_3 5128

L 1,6 *64

6 1_6 R50 52 R50 61_ 5205 59 *55 58 *51 1-3 5204
1,9 55 51-49 53 Sl_48 50 5L47 47 51,46 46 51_45 45 * 41_ 42 s141 41 *34
40 *33 39 *56 35 *2'7 34 *25 33 3L92 32 51_91- 3I *1_9 30 51_44 25 *26
t4 sL43 13 s1,42

2 59 *57 l_3 5204

1, 54 521,r

L2 66 s1,76 65 *62 64 s2L2 63 *58 35 *2'7 34 *25 33 St92 32 5191 3t_
*1_9 30 *65 25 *26 13 *22

1 8 S2I3

L2 16 R59 52 R59 66 St76 65 *63 35 *27 34 *25 33 51_92 32 Si_91 3l_*L9 30 *65 25 *26 l_3 *22
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