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Abstract

Object-oriented technology is no longer an obscure research topic but has moved
into the mainstream of software development. Many projects in a variety of areas
have applied object-oriented technology. In particular, object-oriented compilers
have been developed. We have found with inferest that object-oriented technology
has not yet been applied to parser generators. This thesis experiments with building
an LALR(I) parser generator using object-oriented analysis, design, and C-++
programming techniques. The work consists of surveying Object-Orientation and
LR Parsing and the design and implementation of appropriate classes for such
components as symbols, items, item sets, kernel sets, and state graphs, so that they
can be conveniently used in the generator implementation. A comparison between
this experimental object-oriented parser generator and a traditional parser generator

is also made.
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Chapter 1

Introduction

Object-oriented technology is no longer an obscure research topic but has moved
into the mainstream of software development. Many projects in a variety of areas
have applied object-oriented technology. In particular, objected-oriented compilers
have been developed [6,15,16]. I have found with interest that object-oriented tech-
nology seems, however, not yet to have been applied to parser generators. The
objective of this thesis is to build an LALR(1) parser generator using object-ori-
ented analysis, design, and C++ programming techniques. The focus is on the
design of appropriate classes for such components as symbols, items, item sets,
kernel sets and state graphs, so that they can be conveniently used in the generator
implementation.

Several popular object-oriented analysis and design methodologies are sur-
veyed and one of them is chosen to be applied to the construction of the parser gen-

erator. A selected LALR(1) parser construction algorithm is also reviewed.

-1-



The object-oriented methodologies which will be investigated in chapter 2
are the most popular ones. They include:
1. James Rumbaugh’s Object-Oriented Modeling [2]:
Rumbaugh’s Object-Oriented Modeling Techniques(OMT) is model-
driven. It uses a declarative model represented by extended ER diagrams,

a behavioral model represented by state diagrams, and a process-interac-
tion model represented by data-flow diagrams. The technique also sug-
gests a minimal object-interaction model.

2. Coad & Yourdon’s Object-Oriented Analysis [1]:

Coad & Yourdon view their Object-Oriented Analysis (OOA) methodol-
ogy as building “upon the best concepts from information modeling,
object-oriented programming languages, and knowledge-based systems.”
Their OOA technique results in a five-layer model of the problem domain,
where each layer builds on the previous layer. The five layers are the
object layer, structure layer, subject layer, attribute layer, and service layer
respectively.

3. Grady Booch’s Object-Oriented Analysis & Design Technique [4]:
Grady Booch presents a method for the development of complex systems

based on an object model. The method includes a graphical notation for



object-oriented analysis and design, followed by its process. Booch also
examines the pragmatics of object-oriented development, in particular, its
place in the software development life cycle and its implications for
project management.
LALR(1) parser construction has long been an interesting topic in the parser
generation area. The main issue in this sub-area is how to compute LALR(1) look-
ahead sets. Several methods of computing LALR(1) lookahead sets have been pre-
sented. They inclue:
1. Aho, Sethi, and Ullman’s “full LR(1) compression” method [6].
2. Aho, Sethi, and Ullman’s “Spontaneous and Propagated lookahead”
method [6].

3. DeRemer and Pennello’s method presented in “Efficient Computation of
LALR(1) Lookahead Sets” [7].

4. Park, Choe and Chang’s method presented in “A New Analysis of LALR
Formalism” [8].

5. Fred Ives’s method presented in “Unifying View of Recent LALR(1)
Lookahead Set Algorithms” [9].

The purpose of the thesis is to perform experiments in the application of

object-oriented technology to parser construction. Thus it is not necessary to



choose the most efficient algorithm. Futhermore, the most efficient methods are so
obscure and hard to implement that they would be too complex and too hard to
maintain. As a result they are rarely used. In this thesis, the first method will be
reviewed in detail in Chapter 3 and its use in implementing the parser generator is
described in Chapter 4.

A comparison between an object-oriented parser generator and traditional
parser generation is made in Chapter 5, and important differences are examined.
Metrics used for the comparison include:

1. Running time on ISO Pascal and Modula-2 grammars.

2. Number of function calls (direct & indirect calls).

3. Object sizes in bytes and task image size in bytes.

4. Source code size:

a) Number of lines including and excluding comments.
b) Number of characters excluding comments.
¢) Number of tokens

Any special benefits or disadvantages of applying object-oriented technol-

ogy to parser generations are discussed. Every effort is made to minimize the

effects of individual programming styles and compilers used.



Chapter 2

Object-Oriented Analysis
and Design

Analysis is the study and modeling of a given problem domain, within the context
of stated goals and objectives. Analysis focuses on what a system is supposed to
do, rather than how it is supposed to do it. An analysis methodology is a set of con-
cepts, techniques, notations, and tools that help guide an analysis process [13].
While the primary goal of object-oriented analysis and design is similar to the tra-
ditional software engineering methods, the fundamental distinction is that the tradi-
tional methods decompose a system into procedures, whereas OOA/OOD

decomposes a system into objects.

2.1 Overview of Object-Oriented Methods

In recent years, numerous object-oriented analysis methods have merged. Among



those methods, three have high popularity. They are Coad & Yourdon’s Objected-
Oriented Analysis [1], Booch’s Object-Oriented Analysis and Design [4], and
James Rumbaugh’s Object-Oriented Modeling [2]. Rumbaugh’s method will be

discussed in more detail.

2.1.1 Coad & Yourdon’s Object-Oriented Analysis Method

Coad & Yourdon view their OOA methodology as building “upon the best concepts
from information modeling, object-oriented programming languages, and knowl-
edge-based systems.” Coad & Yourdon’s OOA results in a five-layer model of the
problem domain, where each layer builds on the previous layers. The layered
model is constructed using a five-step procedure[1]:

1. Identifying objects and classes. Guidelines for identifying objects and
classes are developed. The approach starts by examining the application
space to identify the classes and objects forming the basis of the entire
application, such as other systems and devices, etc. In the light of this,
the system’s responsibilities in this domain are analyzed. This includes
things such as events remembered, roles played, etc. Investigating the
system environment may produce further classes and objects that the

system should know about, such as locations and organizational units,



etc. Design notes are made of information that needs to be saved about
each object, and what behaviors each object must provide.

. Defining structures is principally done in two different ways. The first,
the general-to-specific structure (e.g. employee-to-sales manager), is
used to capture the inheritance hierachy among the identified classes.
The other structure, the whole-to-part structure (e.g. car-to-engine), is
used to model how an object is part of another object and how objects
are grouped into larger categories.

. Defining subjects is done by reorganizing the objects and class into
larger units. Subjects are groups of objects and classes. The size of each
subject is selected to help readers understand the system through the
model. Structures defined earlier can also be used to define subjects. For
example, a general-to-specific structure can be grouped into one subject.
- Defining attributes is done to identify information and relationships that
should be associated with each instance. For each object, the attributes
needed to characterize it are identified. The identified attributes are
placed at the correct level of the inheritance hierarchy. For example, if a
generalization/specialization exists, the common atiributes are placed at

the high level and the specialization specific attributes are place below.



Any instance connections are also identified by checking previous OOA
results or by mapping problem domain relationships.
5. Defining services means defining the operations (methods) of each class.
This process identifies the object states and defines services such as
occur, calculate, monitor and so on that operate on the state. Message
connections are used to identify how the objects communicate with mes-
sages. A message connection maps one object to another, in which a
“sender” sends a message to a “receiver”, to get some processing done.
The outcome of Coad&Youron’s OOA is documented using a graphical
notation (see Figure 2.1) and special templates for the textual description of classes
and objects [1]. The whole model is presented in the following five layers:
1. Subject layer - only subjects are presented.
2. Class & Object layer - includes subjects, classes, and objects.
3. Structure layer - structures are added to the Class & Object layer.
4. Attribute layer - attributes are added to the Structure layer.
5. Service layer - services are added to the Structure layer.
Fig. 2.1 combines the object layer, the structure layer, the attribute layer and
the service layer. Because the sensor system is so simple, the subject layer, a

higher-level overview, is not needed to help the reader understand the system. Note



that only some basic notations are shown in this figure.

- =/~ Sensor "\

e - Model Attributes
class&object name initSequence
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~
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\ Monitor |/ \ /

Fig. 2.1 Coad& Yourdon notation for a hypothetical sensor system

Service(s)

2.1.2 Booch’s Object-Oriented Analysis & Design Method

Booch views all successful projects as characterized by a strong architectural
vision and a well-managed iterative and incremental development life cycle. The
development process, according to Booch, should consist of two kinds of elements,
micro elements and macro elements [4]. The micro process serves as the frame-
work for an iterative and incremental approach to development. The macro process
is more closely related to the traditional waterfall lifecycle and is used to control
the micro process.

The micro process is driven by the stream of scenarios and architectural
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products that emerge from the macro process; it presents daily activities of the

development team. There are four steps in the micro process [4]:

1. Identifying the classes and objects at a given level of abstraction. This

step discovers key abstractions in the problem domain, finds meaningful
classes and objects, and crafts new classes and objects that derive from
the solution domain. Key abstractions are usually found by learning the
terminology of the problem domain and working in conjunction with
domain experts. The data dictionary is the primary product of this step.

. Identifying the semantics of classes and objects. This phase establishes
the meanings of the classes and objects already identified. The developer
views the objects from the outside and defines the object protocols and
investigates how each object may be used by other objects. This part
may be highly iterative. Products of this step include data dictionary
refinement, a specification for each abstraction, and an interface for each
class.

. Identifying the relationships among classes and objects. The previous
activities are extended to include the relationships between classes and
objects and to identify how these interact with each other. Different types

of associations are used, such as inheritance, instantiation, and uses

-10-



between the classes. This step also defines static and dynamic semantics
of the mechanisms between the objects. Class diagrams, object dia-
grams, and module diagrams are the main products of this step.

- Implementation of classes and objects. Finally, the classes and objects
are examined in detail to determine how to implement them. This
includes the selection of data structures and algorithms. Concurrently, a
decision should be made on how to use a particular programming lan-
guage to implement the classes. This step will eventually have products

of pseudo or executable code.

The basic philosophy of the macro process is that of incremental develop-

ment. There are five steps in the macro process [4]:

1. Conceptualization establishes the core requirements for the system; its

activity serves as a proof of concept, and so is largely uncontrolled to
allow unrestrained innovation. Prototypes are the primary products of

this step.

2. Analysis provides a model of the system’s behavior; primary activities

include domain analysis and scenario planning. The formal requirements
analysis document and the risk assessment are the main products of this

step.

-11-



3. Design creates an architecture for the implementation and establishes
common tactical policies; primary activities include architectural plan-
ning, tactical design, and release planning. Products of this step include a
description of the architecture and descriptions of common policies for
error detection and handling, memory management, data storage man-
agement, etc.

4. Evolution uses successive refinement to ultimately lead to the production
system; primary activities include application of the micro process and
change management. The product of this step is a stream of further
releases which have successive refinements and enhancements to the
preceeding releases.

5. Maintenance is the management of post-delivery evolution; primary
activities are similar to those of the fourth step, with the addition of man-
aging a list of new tasks which serves as the vehicle for collecting bugs

and enhancement requirements.
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Dynamic semantics

Static semantics

Class structure /

Logical view ]
& Object structure

Module structure
Physical view Process structure

Fig. 2.2 Documentation aspects in Booch’s OOD

Booch OOD provides rich diagramming techniques allowing viewing of the
model developed from different views (Figure 2.2) [4]. The logical view consists of
the class structure and the object structure. The physical view consists of module
structure and process structure. All these diagrams are formed by the OOD basic
notation, which is a static description of the system. In addition, two dynamic dia-
grams, the state transition diagram and the timing diagram, are used to describe

event occurrences between objects.

2.2 Rumbaugh’s Object-Oriented Modeling Method

James Rumbaugh, et al. [2] present an object-oriented approach to software devel-
opment based on modeling objects from the real world and then using the model to
build a language-independent design organized around those objects. The approach

includes a set of object-oriented concepts and a language-independent graphical

-13-



notation, the Object Modeling Technique (OMT), that can be used to analyze prob-
lem requirements, design a solution to the problem, and then implement the solu-
tion using a programming language and/or database.

The Object Modeling Technique combines three views of the modeling sys-
tem. The object model describes the static, structural (data) aspects of a system
with classes and their relationships. The dynamic model represents the temporal,
behavioral, (control) aspects of a system with events and states of the objects. The
Junctional model represents the computational (functional) aspects of a system with
data flow diagrams. Rumbaugh states “A typical software procedure incorporates
all three aspects: It uses data structures (object model), it sequences operations in
time (dynamic model), and it transforms values (functional model). Each model
contains references to entities in other models. For example, operations are
attached to objects in the object model, but are more fully expanded in the func-

tional model.”[2]

2.2.1 Object Modeling

An object model captures the static structure of a system by showing the objects in
the system, relationships between the objects, and the attributes and operations that

characterize each class of objects [2]. Only the most important concepts including
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class, link, association, generalization, and inheritance are reviewed.

2.2.1.1 Objects and Classes

Objects and classes are the basic concepts in object-oriented applications. OMT

uses the following notation for classes and objects.

Class-Name

(Class Name)

attribute-name-1: data-type-1 = default-value-1 )
attribute_name = value

attribute-name-2: data-type-2 = default-value-2

operation-name-1(argument-list-1): result-type-1

operation-name-2(argument-list-2): result-type-2

(a) notation for classes (b) notation for objects

Fig. 2.3 Notations for classes and objects

Fig 2.1(a) illustrates object modeling notation for classes. A class is repre-
sented by a box which may have as many as three regions. The regions contain,
from top to bottom: a class name, a list of attributes, and a list of operations. Each
attribute name may be followed by optional details such as type and default value.
Each operation name may be followed by optional details such as an argument list
and a result type. Attributes and operations are optional in the diagrams depending
on the level of detail desired. Fig 2.1(b) is the general notation for objects. It is a

rounded box including the name of the class from which the object is instantiated.
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Attribute names and the values assigned to them may or may not be included

depending on the level of detail desired.

2.2.1.2 Links and Associations

Links and associations are used to establish relationships among objects and
classes. A link connects two or more objects to show the relationships between
those objects. An association describes a group of links with common structure and

common semantics.

Has-Capital .

Country — P City ... Class
name e name Diagram

" Association
(Country) Has-Capital ity <<--- Instance
Canada i Ottawa . Diagram

e, Links

y

L

(%ountry) o (lgit_Y)
rance Has-Capital ans

Fig. 2.4 One-to-one association and links

Fig. 2.2 shows a one-to-one association and corresponding links. Each asso-
ciation in the class diagram corresponds to a set of links in the instance diagrams,
just as each class corresponds to a set of objects. Each country has a capital city.
Has-Capital is the name of the association. The OMT notation for an association is

a line between classes. A link is drawn as a line between objects.
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Multiplicity of the association specifies how many instances of one class

may relate to each instance of another class. Associations may be binary, ternary or

Line Intersects Point
@
name + name

Fig. 2.5 Many-to-many association

higher order and has multiplicity.

The association in figure 2.3 exhibits many-to-many multiplicity. A line
may have zero or more intersection points. An intersection point may be associated
with two or more lines. Generally speaking, OMT uses the following notation for

multiplicity of association.

+ Class —@ Class —(| Class
Exactly one Many(zero or more) Optional(zero or one)
———-—1+ Class ——-—1 48 Class
One or more Numerically specified

Fig. 2.6 Multiplicity of Associations

2.2.1.3 Aggregation

Aggregation is the “part-whole” or “a-part-of” relationship. The notation of aggre-

gation is similar to association, except for a small diamond indicating the assembly
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end of the relationship. Figure 2.5 represents the general notation for aggregation.

Assembly class

i

Part-1-class

1+

Part-2-class

Fig. 2.7 Notation for aggregation

2.2.1.4 Generalization and Inheritance

Generalization and inheritance are fundamental concepts in object-oriented lan-
guages. Generalization is a useful construct for both conceptual modeling and
implementation. During conceptual modeling, generalization can be used to orga-
nize classes into a hierarchical structure based on similarities and differences. Dur-
ing implementation, inheritance facilitates the sharing of code or behaviors
common to a collection of classes. In OMT, the term generalization refers to the
relationship between a class (the superclass) and one or more refined versions of it

(the subclass). The term inheritance refers to the mechanism of obtaining attributes

and operations from the generalized structure[2].
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Superclass

l 1
Subclass-1 Subclass-2

Fig. 2.8 Notation for inheritance

The notation for generalization and inheritance is a triangle connecting a
superclass to its subclasses. As figure 2.6 shows, the superclass is connected by a
line to the apex of the triangle and the subclasses are connected by lines to a hori-

zontal bar attached to the base of the triangle.

2.2.2 Dynamic Modeling

The dynamic model represents control information: the sequences of events, states,
and operations that occur within a system of objects[2]. The major dynamic model-
ing concepts are events, which represent external stimuli, and states, which repre-
sent values of objects. The state diagram is a graphical representation of finite state
machines. OMT emphasizes the use of events and states to specify control, rather

than as algebraic constructs.
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Statel eventl(attribs){conditionl J/actionl State?
do: activity1

Fig. 2.9 Notation for unstructured state diagrams

Figure 2.7 illustrates the notation for unstructured state diagrams. A state
name is written in boldface within a rounded box. An event name is written on a
transition arrow and may optionally be followed by one or more attributes within
parentheses. A condition may be listed within square brackets after an event name.
An activity is indicated within a state box by the keyword “do:” followed by the
name or description of the activity. An action is indicated on a transition following
the event named by a “/” character followed by the event name. All these constructs
are optional in state diagrams [2].

State diagrams can be structured to permit concise descriptions of complex
systems. There are two ways of structuring state diagrams: generalization and
aggregation. Generalization is equivalent to expanding nested activities. It allows
an activity to be described at a high level, then expanded at a lower level by adding
details, similar to a nested procedure call. In addition, generalization allows states
and events to be arranged into generalization hierarchies with inheritance of com-

mon structure and behavior, in a fashion similar to inheritance of attributes and
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operations in classes. Aggregation allows a state to be broken into orthogonal com-
ponents, with limited interactions among them, in a fashion similar to an object
aggregation hierarchy. Aggregation is equivalent to concurrency of states. Concur-
rent states generally correspond to object aggregations, possibly an entire system,

that have interacting parts. Figure 2.8 is a general structured state diagram notation.

State Generalization: Concurrent Subdiagrams:

Superstate 4 Superstate N\

event eventl

—> .—> Substate-2 o Substate-3

o /
* event2

Fig. 2.10 Notation for structured state diagrams

q

Substate-1

Substate-2

__>

¢event3 v event2

2.2.3 Functional Modeling

The functional model describes computations within a system. The functional
model shows how output values in a computation are derived from input values, i.e.
the operations of the objects, independent of the order in which the values are com-
puted.

The functional model consists of multiple data flow diagrams showing the
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flow of values from external inputs through operations and internal data stores, to
external outputs. Data-flow diagrams do not show control or object-structure infor-
mation; these belong to the dynamic and object model. A data-flow diagram is a
graph of processes, which transform data, data flows, which move data, actor
objects, which produce and consume data, and data-store objects, which store data
passively[2].

The notation for a process is an ellipse containing a description of the trans-
formation, usually its name. Each process has a fixed number of input and output

data arrows, each arrow carries a value of a given type [2] (see Figure 2.9 ).

dividend quotient

\

Fig. 2.11 Notation for process

integer
division

remainder

The notation for a data flow is an arrow between the producer and the con-
sumer of the data value. The arrow is labeled with a description of the data, usually
its name or type. As figure 2.10 shows, there are three forms of data flows, compo-
sition of data values (a), decomposition of data values (b), and duplication of data

values (¢)[2].
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di ;
\ composite composite) ‘ di e
— A S

(a) (b) ()
Fig. 2.12 Notation for data flow
There are two kinds of objects in the data flow, called actor objects and data

store objects.
Data Store

d2

Fig. 2.13 Notation for actor & data store

An actor is an active object which produces or consumes data and is drawn
as a rectangle. Arrows between the actor and the diagram are inputs and outputs of
the diagram.

A data store is a passive object which only stores data for later access and is
drawn as a pair of parallel lines containing the name of the store. Input arrows indi-
cate information or operations that modify the stored data; this includes adding ele-
ments, modifying values, or deleting elements. Output arrows indicate information
retrieved from the store. This includes retrieving the entire value or some compo-

nent of it. Figure 2.11 shows the notations for actor and data store concepts [2].
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Chapter 3

LR Parsing and
Parser Generation

In this chapter, an overview of LR parsers and how to build them is given. LR(k)
parsers are so called because they operate in the manner of bottom up, scanning the
input from Left to right, producing the reverse of a Rightmost derivation, and use k
characters of unscanned input to produce deterministic behavior [5].

An LR parser is generally composed of an input, an output, a driver pro-
gram, and a parsing table that has two parts, action and goto. All LR parsers have
two basic actions, shift and reduce, and two kinds of final state, either accept or
error, although the algorithms used to generate parsers can be quite different. The
driver program is identical for all LR parsers; what is different are the parsing
tables which change from grammar to grammar. Aho, Sethi, and Ullman [7] have
explained the typical operation of an LR parser (Figure 3.1). The parsing program

reads characters from an input buffer one at a time. The program uses a stack to
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store a string of the form spX;5;X)s5... X,,5,,, where s,, is on top. Each X; is a gram-
mar symbol and each s; is a parser state. Each parser state summarizes the informa-

tion contained in the stack below it, and the combination of the parser state on top
of the stack and the current input symbol are used to index the parsing table and

determine the shift/reduce parsing decision.

ap| . T R ap|$ | Input Stream
Sy |-—] LR —» O
Xm Parsing Program utput
n
Sm-1
X, 1 y/\'

action goto

Fig. 3.1 Model of an LR parser

The parsing table consists of two parts, a parsing action function action and

a goto function goto. The program determines s, the state currently on the top of
the stack, and a;, the current input symbol, and then consults actionls,,, a;], the
parsing action table entry for state s, and input a;, which can have one of the fol-

lowing four values:
1. “Shift s”. Shift an input symbol and push it onto the stack and go to state

s. This action will continue until the right part of a production appears on
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the stack.

2. “Reduce R”. Reduce by a grammar production. i.e. pop symbols from the
stack matching the right part of a production and push the left part sym-
bol of that rule onto the stack.

3. “Accept” or “Error”. Accept or reject the input.

The goto function takes a state and grammar symbol as arguments and pro-

duces a state. Therefore, the goto function is a state transition function.

Parsing table construction is crucial to LR parser generation. To review LR

parsing table construction methods, it is first necessary to introduce LR parsing ter-

minology.

3.1 LR Parsing Terminology & LR(0) Parser

The following notation and terminology will be used in this chapter and following

chapters:

* A,B,C,...— Upper-case letters early in the alphabet represent a single non-
terminal.

* ... X,Y,Z — Upper-case letters late in the alphabet represent a single ter-
minal or nonterminal.

* ab,,...— Lower-case letters early in the alphabet represent a single termi-
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nal.

- X,¥,2— Lower case letters late in the alphabet represent strings of termi-
nals, or the empty string.

o,B,Y, ...— Lower case greek letters represent strings of terminals or non-
terminals or the empty string.

€ — epsilon represents the empty string, the string with no symbols.

o — subscripted letter means the ith symbol in o

= — directly derives.

=* — derives in zero or more steps.

An LR Item is a production with an item dot somewhere in the right hand

side. For example, [ A — o..3 ]. Either o or B may be ¢..

A State is a set of LR items.

Kernel Items are items generated by advancing the dot in the items of prede-
cessor states.

Item-Set Closure is the generation of the full item set from the kernel set, as
presented below.

Closure Items are items generated by item-set closure.

Complete Items are items with the item dot at the end of the right part.

(e.g. [B—B.1).
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Let us first consider LR(0) parser generation. The steps for constructing an LR(0)
parsing automaton are as follows:

1. Augment the grammar by adding a rule 0: S’ $S$ where $ is the begin and
the end of input marker and S’ is a new start symbol that appears in no other
rules.

2. Create state 0 with the kernel item set of [ S’—$.S$, @]

3. Maintain a list of unprocessed states called USL, and add state 0 to USL.

4. Select next state R from USL while USL is not empty.

4.0. Select next state R from USL
4.1. Perform Item-Set closure on R
4.1.1. Maintain a list UIL (unprocessed item list) of unprocessed items.
Initialize UIL with R’s kernel item set.

4.1.2. Remove items from UIL until encountering the next item of the
form [B—f.Cy] (i.e. a nonterminal C follows the item dot).

4.1.3. For every rule C—9 in the grammar, if the item [C— . 8] is not
already in R, add it to R and to UIL.

4.1.4. Remove [B— 3.Cy] from UIL, if UIL is not empty. Go back to
step 4.1.2.

4.2. Compute the GOTO set (the set of destination states)
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4.2.1. For each symbol X such that R contains an item [A—0.. XB] cre-
ate a new state T = goto(R, X). For each item [ B—o.. X8 ]in R
(i.e. an X follows the dot), add a kernel item [ B=>0X.8]to T (i.e.
move the dot one position right.)

4.3. Remove R from USL.

When a state in an LR(0) parser built for a grammar G contains more than
one item, and one of those items is a complete item then the state is not LR(0) con-
sistent and the Grammar G is not an LR(0) grammar. The reason is that there could
be two kinds of LR conflicts in the state:

1. Reduce-Reduce Conflicts:

The state has at least two complete items, [A—0..] and [B—B.] and we can-

not decide which one should be reduced.
2. Shift-Reduce Conflicts:

The state has at least one complete item, [A—0..] and at least one other

incomplete item [B—f.7y] for some y which is not €. We cannot decide if we

should reduce o to A or shift y; to try to recognize B.

A solution to resolving these conflicts that often works is to look ahead at the next
input symbol to make a decision. One such parser that uses lookahead is the LR(1)

parser.
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3.2 LR(1) Parser Construction

In order to discuss LR(1) parsing, it is useful to define the functions FIRST, LAST,

and FOLLOW which are now described:

3.2.1 FIRST, LAST, and FOLLOW Sets

FIRST(X) is defined as the set of all terminals and nonterminals that can be the first
symbol of any sentential form derivable from X:

FIRST(X)={ Y I X =*Ya}
LAST(X) is the set of all terminals and nonterminals that can be the last symbol of
any sentential form derivable from X:

LASTX)={ Y I X =* oY}
Notice that the symbol itself belongs to its own FIRST set and LAST set. The
FIRST sets and LAST set are used to efficiently compute FOLLOW sets. For each
nonterminal A, FOLLOW(A) is the set of symbols that can follow A in some deri-
vation from S’:

FOLLOW(A)={ YIS’ =* aAY[B}

3.2.2 SLR(1) Parser

Among LR(1) parser families, there is a so-called simple LR(1), i.e. SLR(1), parser
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which attaches FOLLOW(B), as a lookahead set, to each complete item [B—f3.]
and if the next input symbol is not in the lookahead set, the corresponding reduce
action is not allowed. For a shift-reduce conflict [B—>f.] and [C—7y.X8], if X does
not belong to FOLLOW(B) then the conflict is resolved. For the reduce-reduce
conflict [B—f.] and [C—.], if the intersection of FOLLOW(B) and FOLLOW(C)
is empty, then the conflict is resolved. If all conflicts in the LR(0) automaton can be
resolved in this way, then the grammar is SLR(1). Essentially, SLR(1) parser gener-
ators analyze the grammar and individual states, but not the paths between the
states, to determine the lookahead sets. Therefore, SLR is the weakest member of
the LR(1) family in terms of the number of grammars for which it succeeds. The

most general form of LR(1) parser is presented next.

3.2.3 LR(1) Parser

Aho, Sethi, and Ullman [7] present the following LR(1) construction algo-
rithm. Note that the general form of an LR(1) item is [A—0 e B, a], where
A—0af is a production and a is the lookahead symbol, and assume that G’ is an

augmented grammar (“augment” is defined on page 28).

function closure(I)

begin
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repeat
for eachitem [A—0.Bf, a] in /,
each production B—>yin G’
and each terminal b in FIRST(Ba)
such that [B—+y, b] is not already in I do
add [B—.y, b] to I;
until no more items can be added to I;
return /
end;
function goro (I, X)
begin
let J be the set of items [A—>0X. 3, a] such that [A—a.XB, al,
for any A, o, B, and g, is in I;
return closure(J)
end;
procedure items(G’) -- Top level procedure
begin
C = { closure({[S’ >$.S$, @1} };
repeat
for each set of items / in C and each grammar symbol X
such that goto(I, X) is not empty and not in C do
add goto(I, X) to C
until no more sets of items can be added to C

end
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With these routines, the LR(1) parsing table can be constructed by the following
steps [7]:
1. Construct C={ Iy, I, ..., I}, the collection of sets of LR(1) items for G’.

2. State ¢ of the parser is constructed from item set /;. The parsing actions for

state ¢ are determined as follows:
a) If [A—ou.af, b] is in I; and goro(l, a) = I;, then set action[i, a] to
“shift ;. Here, a is required to be a terminal.
b) If [A—«.., al isin [;, A is not S’, then set action[i, a] to
“reduce A—>o”
¢) If [S’=$S.$] is in I}, then set actionli, $] to “accept”.
If a conflict results from the above rules, the grammar is said not to be LR(1),
and the algorithm is said to fail.
3. The goto transitions for state i are determined as follows: If goro( I, A) =1,
then goto[i, A] =].
4. All entries not defined by rules (2) and (3) are made “error’ entries.
5. The initial state of the parser is the one constructed from the set containing
item [S” — $.S$, d].
Essentially, this LR(1) parser generator analyzes paths between the states.

So, the lookahead set is not simply the FOLLOW set. Thus, LR(1) parsers are more
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powerful than SLR(1) parsers, but they are also much larger. A compromise can be
made by constructing an LALR(1) parser, which is discussed in the following sec-

tion.

3.3 LALR(1) Parser Construction

LALR stands for lookahead-LR. The LALR(1) method is often used in practice
because the tables generated by it are considerably smaller than LR(1) tables and
most common syntactic constructs of programming languages can be expressed
conveniently by an LALR(1) grammar. The same is almost true for SLR(1) gram-
mars, but there are a few constructs that cannot be conveniently handled by SLR(1)
techniques.

An LALR(1) parsing table is constructed by merging those LR(1) sets hav-
ing identical “core” items. Core items are items without any lookahead information
attached. The detailed algorithm as described by Aho, Sethi, and Ullman [7] is as
follows:

1. Construct C = { Iy, I}, ..., I}, the collection of sets of LR(1) items.

2. For each core item set present among the set of LR(1) items, find all sets hav-
ing the same core items, and replace these sets by the set with common core

items and the union of lookahead sets.
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3.Let C’ = { Jy, Jy, ..., J,,,} be the resulting sets of LR(1) items. The parsing
actions for state i are constructed from J; in the same manner as constructing

LR(1) parse tables. If there is a parsing action conflict, the algorithm fails to
produce a parser, and the grammar is said not to be LALR(1).

4. The goto table is constructed as follows. If J is the union of one or more sets
of LR(1) items, that is, J = I; ULU ... U1, then the core items of goro(1},X),
goto(I,X), ..., goto(I},X) are the same, since I, I, ..., I, all have the same
core items. Let K be the union of all sets of items having the same core items
as goro(I;,X). Then goto(I1;,X) = K.

Note that, when constructing LALR(1) parsers, the merging of states with
common core items can never produce a shift/reduce conflict that was not present
in one of the original states, since shift actions depend only on the core item, not
the lookahead. Nevertheless, it is possible that a merging will produce a reduce/
reduce conflict. The following simple example shows sample LR(1) states and how
they are combined into LALR(1) states.

Let an augmented grammar G’ be:

0.S—>8§S$
1.S—FF

22F>fF
3.F—>¢g
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The LR(1) states would be as shown in Fig 3.2. Where I; are closure item

sets generated from the following corresponding kernel sets:

Ko: §$—-$.58$,0
Ki: —$%$S.8%,0
Ky S—F.FE{$)
Ky Fof.E{fg]}
Kyt Foge,{f g}
Ks: S—FF.,{$}
Ke: F>f.F,{$}
Ky Fog., {$}
Kg FofF. {fg}
Ko: F—fF. {$)

Fig. 3.2 LR(1) Parsing states & transitions for G’
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Notice that K3 has the same core items as state K, state K, has the same

core items as state K, and state K¢ has the same core items as state K.

By applying the LALR(1) construction algorithm, we can merge K3 with

K¢, K4 with Ky, and Kg with Kg respectively and get the following LALR(1) kernel

item sets:

Kl:

S —>$.S%, 0
S—>$S.%,0
S>F.E{$)
S—FF.,{$}
F—f.F,{$fg)
F—g., {§fg}
F-fF., {$fg}

Therefore, the corresponding LALR(1) states would be as follows:

()

Fig. 3.3 LALR(1) Parsing states & transitions for G’
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Chapter 4

Object-Oriented Parser
Generation

The notations and algorithms of object-oriented analysis & design and LR parsing
just reviewed will now be applied. The object-oriented development of an
LALR(1) parser generator is discussed and the concepts and techniques of Rum-
baugh’s Object-Oriented Modeling Technique (OMT) are used to depict the struc-
ture of the resulting system.

While OMT is composed of three kinds of models, the object model, the
dynamic model, and the functional model, only two of those models, the object
model and the functional model, will be presented because non-interactive pro-
grams such as compilers and parser generators, have a trivial dynamic model. Their
purpose is simply to compute a function. Thus the functional model is the main
model for such programs. The object model is also important for any problem with

nontrivial data structures.
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Design and implementation considerations will also be discussed in this

chapter.

4.1 Object Model

The purpose of the object model is to describe the structure of objects in the sys-
tem. Because object-oriented programming emphasizes building a system around
objects rather than procedures, the object model is the most important one in
object-oriented analysis. Figure 4.1 gives a simpliﬁed description of the object
model for the OO parser generator created. More detail is given in later diagrams.
As Figure 4.1 shows, the system has a symbol-set, a rule-set, and a state-set.
The symbol-set consists of one or more symbols. Each symbol is associated with
the first rule which has that symbol as the left part. The rule-set consists of one or
more rules which have two kinds of information, one left symbol and zero or more
right symbols. The state-set consists of one or more parser states. The number of
parser states increases during the execution of the system. Every state has an item
set and some transition information which includes the reduce information or the
goto information used by the parser based on the lookahead symbol. So, the transi-
tion information contains the input symbol information and either the rule applied

to reduce an item or the state to be shifted to. An item set is composed of items
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which includes information about a Rule. Worthy of mention is that the boxes in the

diagram are classes rather than objects even though the model name is called the

System

<&

Symbol Set State Set Rule Set
1+ 1?
Symbol State
first rule §>
Item set Transition
input symbol l
Svmbol “either
1+ ymbo shift
Item
reduce
— I+
Rule
left symbol J right symbols
Symbol Symbol

Fig. 4.1 Object Model of Parser Generator
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object model. Although this diagram shows only the top-level classes, it does

present the overall structure of parser construction.

Symbol SymbolSet Rule
symText : String numRHS : integer
tnt : Bool numSym : integer
nullable : Bool
firstSet : BitSet Look DosStri
lastSet : BitSet DoEmpty oString
followSet : BitSet DoFirst

DoLast
GetFirstAlt DoFollow
IncludeFirst
Fig 4.1.1 Class Symbol Fig 4.1.2 Class SymbolSet Fig 4.1.3 Class Rule
RuleSet Item ItemSet
numltems : integer
numRules : integer pos : integer maxltems : integer
fSymLyr : BitSet stateHash : integer
fSymLalr : BitSet
operator =
SameCoreltem operator = =
Includel.ookahead Addltern
operator = DoClosure
operator = = SameCoreltemSet
Printltem MergeCoreltemSet
Fig 4.1.4 Class RuleSet Fig 4.1.5 Class Item Fig 4.1.6 Class ItemSet
Transition State StateSet

numLrStates : integer
action : char stateNum : integer numLalrStates: integer
lastState : integer
stateTbl : array of int
hashTbl : array

AddTrans SameCoreState
InsertLrReduces PrintState DoLrStates
InsertLalrReduces DoLalrStates
PrintStates
Fig 4.1.7 Class Transition Fig 4.1.8 Class State Fig 4.1.9 Class StateSet
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4.1.1 The Classes “Symbol” and “SymbolSet”

Symbol is an essential class (Fig 4.1.1) in the system. Symbol objepts contain infor-
mation about a particular symbol in the grammar, including the attributes: tnt, a
boolean which indicates whether it is a terminal or nonterminal; nullable,
which indicates whether the symbol is nullable (C =+ €) or not; firstSet,
lastSet and followSet store the FIRST set, LAST set, and FOLLOW set of
the symbol respectively; and symText which stores the name of the symbol. The
methods in the class “Symbol” are GetFirstAlt, which gets the first rule with
this symbol as the left part, and IncludeFirst, which is used for lookahead
computation.

The class “SymbolSet” (Fig 4.1.2) serves as a symbol table that holds all
symbols of the input grammar. It includes a data member numSym which keeps
track of the total number of input symbols. This class does not have much specific
data-member information, but is used to manage symbols. The methods in this
class include: Look, which either finds a particular symbol in the symbol table, if it
exists, or inserts it into the symbol table; DoEmpty, which computes whether the
symbol is nullable or not; DoFirst, which computes the first set for every sym-
bol; DoLast, which computes the last set for every symbol, and DoFollow,

which computes the follow set for every symbol.
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4.1.2 The Classes “Rule” and “RuleSet”’

The class “Rule” (Fig 4.1.3) represents the rules in the grammar. The characteris-
tics of the grammar rules are defined by the attribute numRHS, the number of sym-
bols on the right hand side of the rule; and by the associations that every rule has,
such as a left part symbol and a number of right part symbols as indicated in Fig.
4.1. Method DoString is used for lookahead computation.

The class “RuleSet” (Fig 4.1.4) holds all the rules of the input grammar.
Attribute numRules indicates the total number of production rules. The RuleSet
object is a object which has no operations of its own but merely stores data. This

kind of object is called a data store in OMT.

4.1.3 The Classes “Item” and “ItemSet”’

The class “Item” (Figure 4.1.5) represents the notion of item in LR parser theory.
An item has a related rule (as indicated in Fig 4.1) with associated dot position
information (attribute pos), and two lookahead sets — the £Sym attribute is for
LR parsing and the £SymLalr attribute is for LALR parsing. The methods in the
class “Item” include PrintItem, which reports the information in item objects;

the operator =, which assign one item to another; the operator ==, which
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compares two items; SameCoreItem, which compares two items disregarding
lookahead sets; and InlcudelL.ookahead, which is used for lookahead computa-
tion.

The class “ItemSet” (Figure 4.1.6) is a collection of Item objects. The mem-
ber stateHash stores the hash value of the state in which this ItemSet object is
contained. The data member numItems stores the number of items in a specific
ItemSet object. The data member maxItems holds the maximum possible number
of items, and is a static member. The value of maxItems depends on the particu-
lar grammar. The top-level methods are the operator =, which copies an item
set; the operator ==, which does item set comparison; and SameCoreSet,
which compares two item sets disregarding lookahead information. In addition,
AddItem adds an item to an item set, and DoClosure computes the closure set

for the given item set.

4.1.4 The Class “Transition”’

The Transition class (Figure 4.1.7) stores state transition information as the
attribute action, which can be either reduce or shift, and has associations with
symbols, rules, and states as indicated in Fig 4.1.

Method AddTrans is defined to store shift transition information, and
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method InsertReduces is defined to add reduce information to transition

objects.

4.1.5 The Classes “State” and ‘“‘StateSet”’

The class “State” (Figure 4.1.8) defines state (or kernel) information. The attribute
stateNum stores the state number assigned by the parser generator. The method
SameCoreState is used to check if two states are mergeable or not during
LALR computation, and PrintState prints essential state information.

The class “StateSet” is defined to manage dynamically created state objects
during parser construction. The top-level methods of the StateSet class include:
DoLrStates, which computes LR states; DoLalrStates, which constructs
LALR(1) states based on the LR(1) states; and printStates, which prints
essential state information. Note that in the actual implementation, there are more
private methods and sub-methods which are not presented here because they are

not needed to understand the system.

4.2 Functional Model

The functional model shows the computation and the functional derivation of the
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data values in it without indicating how, when, or why the values are computed.
This section describes the high-level functional model for parser generation.
Figure 4.2 is the top level functional model and Figure 4.3 is the expansion of the

build-LR-states process.

Grammar

Grammar file

grammar
symbols
empty

Symbol set

ild rules
LR states

‘Qrule
Rule set

build rule
LALR state compute
states
compute
% last set
state info

compute
Screen follow set

Fig 4.2 Functional model for the parser generator

states

State set

symbols

Figure 4.2 shows how the read grammar process reads a grammar from an
external file and then generates a set of rule objects (RuleSet) and symbol objects
(SymbolSet). The compute-empty process computes nullability for every symbol
based on existing rules. After this process, every symbol has information about

whether it is nullable or not. The compute-first-set, compute-last-set, and compute-
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Jollow-set processes update every symbol with FIRST set, LAST set, and FOL-
LOW set information, respectively, based on existing rules and symbol-nullability
information. Note that the follow set is not really needed for LR(1) parser construc-
tion, but is implemented here for the completeness of set computation and for the -
d option of the system (see Appendix A) which dumps FIRST, LAST, and FOL-
LOW set information. The build LR states process generates all LR(1) parsing
states and the build LALR states merges LR(1) states into LALR(1) states. The

print-states process displays LALR(1) states to the standard output.

first rule add item Item set
item

item set
item set
item set
store compute compute~ LR states
reduces closure new kernel) —»
rule

Rule set

Fig. 4.3 Expansion of build LR states process

Figure 4.3 provides a low-level diagram for the build LR states process
which consists of four processes. The add item process is a leaf process, which con-
verts a rule into an item by appending lookahead-set and dot-position information.
The compute-closure process generates closure items based on the given item set.

The generated closure items will be used by the compute-new-kernel process which
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generates LR states. The store-reduces process is also a leaf process which stores
states (in a rule) in which the rule is used to reduce an item. Note that the expected
process store-shifts is actually implemented as a sub-process of compute-new-ker-

nel.

4.3 Implementation Considerations

In this section, some design and implementation considerations pursuant to parser

generation will be discussed.

4.3.1 Implementation of SymbolSet, RuleSet, StateSet
and ItemSet

In parsing theory, although there are concepts (and objects) such as symbols, rules,
items, and states, the only space consuming objects are actually symbols. Symbols
are ultimately the main components of other objects. For example, an item’s main
component is a rule which is composed of the left part symbol and a number of
right part symbols.

Because of the above fact and the fact that the numbers of symbols, rules,
items, and states dynamically increase during computation, and varies from gram-

mar to grammar, SymbolSet, RuleSet, and StateSet are implemented as linked-lists.
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Pointers are used instead of keeping multiple physical copies of symbols in rules,
items, and states. Therefore, the symbols in a rule are implemented as pointers to
the objects corresponding to the left hand symbol and right hand symbols, and the
rule attribute in an item is a pointer to the corresponding rule. A similar philosophy
applies to states. This method improves both efficiency and space usage. Since the
maximum possible size of an item set can be decided when the grammar is entered
in the system, ItemSet is implemented as an array of item pointers for easy and

quicker handling of item sets during computation.

4.3.2 BitSet Implementation

Sets are used in a parser generator to compute and keep FIRST sets, LAST sets,
FOLLOW sets and lookahead sets during parser construction. Since every symbol
has a corresponding first set, last set, and follow set, and every item has a looka-
head set attached to it, attention must be paid to memory consumption and effi-
ciency.

The class “BitSet” is implemented in this program for this purpose. For rea-
sons of space-saving and program portability, the BitSet class consists of two data
members. One is the length of the bit set, which is determined by the actual total

number of symbols in the grammar. The other is the actual bit set represented by a
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dynamic array of char, i.e. a dynamic string (in C++ it’s type is unsigned
char*). Every symbol in the grammar is represented by a bit in the set. There are
two reasons why char is chosen instead of int. First, most current computer sys-
tems’ space is represented by 8-bit bytes, but depending on the size of the com-
puter, the integer bit length may vary. (where 16-bit, 32-bit, and 64-bit are the
common values). Portability is achieved by choosing an 8-bit char as the basic stor-
age unit for set implementation. Second, due to the dynamic length of the string,
minimum space usage is achieved since the maximum possible wasted space is 7
bits per set.

The first set, last set, and follow set should be data members of the symbol
class, and the lookahead set should be a data member of the item class. An object of
Symbol class should be created when a symbol is recognized by the scanner. This
creates a potential problem. Because the total number of symbols in the grammar
cannot be determined until the end of the scanning, the constructor for BitSet is
unable to allocate appropriate space for every set object in the symbol object. The
program has to be responsible for setting the 1ength data member of the set, and
calling another member function of the set to allocate space for every set object

right after scanning the whole grammar.
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4.3.3 The Hash Function for States

Hash functions are often used for looking up symbol names in a table, but in the
parser generator implementation, a hash function is used to find states. The main
objective of using a hash table is to make a reasonable trade off between space and
speed. Therefore, the design of the hash function is critical to performance. In the
implementation, the hash function for each state is the logical OR of each item’s
sum of rule pointer and “dot” position ( (int)rulePointer + pos) since an
item in the parser generator is implemented as a pointer to the corresponding rule
and “dot” position information. An additional benefit of this hash function is that
those LR(1) states with the same core items must have the same hash value. This
helps compute LALR(1) states which must merge LR(1) states with identical core

item sets.

4.3.4 The Parser Construction Algorithm

While several LR parser generation algorithms are available, the algorithm imple-
mented in this thesis is the one described in section 3.3.3. This algorithm was cho-
sen for the following reasons:

1. The algorithm enables the program to generate not only an LALR(1)
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parser, but also an LR(1) parser if the grammar is not LALR(1),

2. Although the algorithm is the least efficient one, it is still acceptable in
terms of the frequency of use — once per language, and

3. The conventional parser generator to which we will compare ours is also
implemented in this way. It would not be fair to make a comparison with

a different construction algorithm.

4.3.5 Combination of Shift and Reduce

The option of combining shift-and-reduce operations can sometimes significantly
reduce the number of parser states. Combining shift and reduce means that, when
there is only one item action in the current state for a particular input, if this item
becomes reducable after the shift action, this item will be reduced immediately
instead of waiting for the next separate reduce action. In the case of ISO Pascal, the
number of LALR(1) states is 365 without shift-and-reduce combination and is 214

with this combination.

4.3.6 Handling of Object Groups

Because of the nature of parser generation, very large groups of objects of the

same class have to be handled during computation. For example, hundreds or thou-
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sands of states or kernels are involved during the computation. Therefore, the
implementation of this kind of association is important to performance. Also, the
number of objects in parser generation are dynamically growing during the compu-
tation. Due to the nature of parser generation, those object groups such as kernels,
rules, and symbols have to be traversed several times. This situation is not favor-
able from the point of object-oriented programming. Because of the above facts,

objects of the same class are implemented as a linked list instead of an array.

4.3.7 Pass by Constant Reference vs. Pass by Value

Thanks to the fact that the implementation is in C++, pass by constant reference is
available. This feature is extensively used in function calls instead of pass by value
for the following two reasons:

1. Performance. If an object is passed by value, there will be considerable
impact on the performance especially when the object is big and the fre-
quency of calls is high (since the copy constructor is involved in pass by
value).

2. Safety. While the issue of efficiency still be addressed by passing a
pointer, constant reference passing guarantees that the object passed to

the function will not be mutated. Any attempts to change the “pass by
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constant reference” variable will be flagged as compile-time errors. It is
also important to note that a reference can never be NULL whereas a

pointer can be NULL.
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Chapter 5

Comparison With A
Traditional Parser Generator

In this chapter, some comparisons with a traditional parser generator written by
Nigel Horspool [14] are made. Although programs can be greatly affected by indi-
vidual programming styles and compilers used, all possible efforts have been made
to minimize these effects. First, the parser construction algorithms are the same and
the outputs are in the same format. Second, the GNU C and C++ compiler (gcc)
has been chosen for the reason that it accepts both C and C++ programs. It is also
assumed that the optimizations performed on the C++ program are as good as on
the C program.

All data presented here is based on tests using the gcc V2.7 compiler run-
ning on a SUN SPARC 1+ workstation under the SunOS 4.1.3 operating system.
The test cases are ISO Pascal and Modula-2 grammars. In the following compari-

son tables, OOPG stands for Object-Oriented Parser Generator (my project), and
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TPG stands for Traditional Parser Generator (Nigel Horspool’s generator).

5.1 Running Time for Pascal & Modula-2 Grammars

The algorithm used for a computation and the quality of the compiler used for
translation can have a significant effect on the running time of a program. By hold-
ing these two constant, the significance of the programming paradigm used can be
measured. Two examples of the ways that the paradigm can influence running
speed are the overhead of calling virtual functions and the added time needed for
invoking constructors and destructors in the OOPG.

Two sets of results are given according to whether or not the optimizer is

used during compilation.

Table 5.1: Running Time

ISO Pascal | Optimized 6.1 3.0 2.03
Grammar T

Un-optimized 12.0 4.0 3.00
Modula-2 Optimized 5.6 3.2 1.75
Grammar —

Un-optimized 114 4.0 2.85

Note that without optimization, only those variables declared to be register
are actually allocated in registers. In the OOPG, the running time difference was

3.5 seconds (on the ISO Pascal grammar) depending on whether variables are
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declared register or not in the program (compiled without optimization). However,
this difference disappears if the optimizer is applied. Because it is believed that this
kind of optimization should be left to the compiler, no registers have been declared
in the program. Meanwhile, the TPG program declares all possible variables as reg-
ister. This explains, to some extent, why the OOPG has a bigger running-time dif-

ference between optimized and unoptimized code.

5.2 Function Calls for Pascal & Modula-2 Grammars

Due to the nature of object-oriented programming, more function calls are expected
to provide support for information hiding and encapsulation. In addition, macros,
which are extensively used in traditional programming, are not common in object-
oriented programming. This too contributes to an increse in the number of function
calls in an OO program. The following is the total number of function calls when
an ISO Pascal parser or Modula-2 parser is constructed. Please note that small per-

centage of function calls are in-lined in the OOPG.

Table 5.2: Function Calls

ISO Pascal Grammar 1,529,964 525,045 291

Modula-2 Grammar 1,637,900 555,610 2.94
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5.3 Object Size and Executable File Size

While TPG consists of only one C source file, OOPG is composed of six header
files and seven C++ source file. So, the object file size discussed below is the total
size of the seven corresponding object files. Again, it is more informative to give

two sets of results here.

Table 5.3: Executable Size

52,623 37,942 1.39
Un-optimized 69,340 46,134 1.50

Optimized

Table 5.4: Object Size

42,154 26,447 1.59
Un-optimized 59,101 37,647 1.57

Optimized

On the one hand, the object and image sizes are naturally dependent on the
compiler used, on the other hand, the difference between OOPG and TPG also indi-
cates that it is hard to accomplish some object-oriented programming and software
engineering ideas, such as information-hiding/encapsulation and good code-read-
ability and maintainability, without the sacrifice of program size and object size in
some situations. Of course, some object-oriented programming features such as

templates and inheritance could shorten the code if applied properly.
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5.4 Source Size

Although the source size does not necessarily indicate the degree of complexity, it
is a rough measure of the overall programming style, including naming convention,

degree of conciseness, readability, and so on. Four comparisons, regarded as useful,

are listed here.

Table 5.5: Source Size

[ines Excluding Comments 1933 1599 1.21
ines Including Comments 2212 1626 1.36
Characters Excluding Comments | 40916 24932 1.64
Tokens Excluding Operators 433 387 1.12

It is not surprising to discover, from table 5, that the OOPG is bigger than
the TPG because object-oriented programming languages such as C++ require
more definitions or “protypes” than C. Also, as mentioned in the previous section,
there will likely be more functions in C++. The amount of comments usually
depends solely on individual programming style.

It is also interesting that while the size of the source code grew by only 21%,
the sizes of object file and running time increased by 57% and 185-200% respec-

tively (un-optimized).
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Chapter 6

Conclusions

This thesis investigates the current popular object-oriented methods as applied to
LR parsing theory. An experiment applying object-oriented techniques to parser
generation is presented and a parser generator has been implemented and tested
with an ISO Pascal and Modula-2 grammars.

This experiment does not exaggerate the advantages of object-oriented pro-
gramming in the parser generation area. Instead, an honest comparison between an
object-oriented parser generator and a traditional one has been made, and every
effort in both design and implementation has been made to minimize the effects of
individual programming styles, compilers, and the behavioral differences between
C and C++ programs as observed by Calder [11].

Some experience was gained from this experiment including that object-ori-
entedness in parser generation is not as beneficial in some aspects as in other areas

of software developmenet. This is due to the following reasons. First of all, because
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parser construction computation is not highly interactive, the design and implemen-
tation issues are usually relatively simple and straightforward although the algo-
rithms applied could be very complicated. Secondly, parser construction is almost a
pure computation and the objects in the system are obvious and limited, just the
same as those in the theory, such as symbols, rules, items, kernels or states, etc.
Thirdly, as mentioned in chapter 4, the nature of parsing makes such unfavorable
situations as walking through objects inevitable.

While the data obtained in this experiment do not favor object-oriented pro-
gramming in parser generation in some aspects, it is important to note that object-
oriented programming never promised faster and smaller programs. Unfortunately,
it is hard to compare OOPG and TPG based on what object-oriented programming
techniques promise — clearer, easier to debug, easier to maintain and reuse pro-
grams without longer term analysis & data collection. Nevertheless, the experience
and test data in this experiment can still be used as a reference or start for further

object-oriented parser generation research and development.
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Appendix A

System User’s Guide

1. Introduction

The program reads either an LALR(1) or LR(1) grammar and builds the states and
lookahead sets necessary to implement a shift-reduce parser. Two forms of output
are available: one is a human-readable listing of terminals, non-terminals, gram-
mar, and state sets, which is sent to standard output; the other is a . tbl file which
contains similar information that can be read easily by other programs. If the gram-
mar is not an LALR(1) grammar, but is an LR(1) grammar, the program will report
that there are LALR(1) conflicts and then produce the corresponding LR(1) state

sets and . tbl file instead of LALR(1) ones.
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2. Program Input

The input to the system is an LALR(1) or LR(1) grammar. Terminals and non-ter-
minals may be any sequence of characters delimited by blanks or end-of-line. One
replacement rule appears per line in the input file. The first rule defining a given

non-terminal is of the form:
non-terminal right-hand-side-of-rule
Subsequent alternatives for the same non-terminal are of the form:
| alternative-right-hand-side

The generator automatically assigns symbol numbers to each terminal and non-ter-
minal symbol. Any symbol not appearing as the left-hand side of a rule is assumed
to be a terminal symbol.

The first rule must have a right-hand side of the form.
bof non-terminal eof

Where bof (begin-of-file-mark) and eof (end-of-file-mark) are unique terminals.
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3. Program QOutput

The program output produced depends on the program options chosen. The options

are as follows:

-1

List terminals, non-terminals, production rules which are numbered by
the program, and state sets. In every state set, there is such information
as kernel items, shift transitions, and reduction rules.

List first sets, last sets, and follow sets for the symbols.

Do not produce a . tbl file.

Do not combine shift & reduce operations into a single step. Conse-

quently, there will be more states.

~w<number> Define the width of standard output. e.g. ~w40.

The format of the . tbl file is as follows. The first line in the file contains

three numbers: the number-of-symbols, the number-of-grammar-rules, and the

number-of-states. For each symbol, rule, and state there is one subsequent line in

the file. The first symbol, rule, and state are numbered 0.

For each symbol, there is a bit indicating whether or not the symbol is a ter-

minal (0 means terminal, 1 means non-terminal) followed by the symbol itself.

Each rule appears in the following format:
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left-side 1length-of-right-side right-side-symbols

For each state, a line is produced containing the number of transitions,
reductions, and shift & reduce actions, followed by these actions. A transition (i.e.
“Shift” action) is represented by:

<symbol-number> S<new-state-number>
A reduction is represented by:

<symbol-number> R<rule-number>
A shift&reduce action is represented by:

<symbol-number> *<rule-number>
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Appendix B

Tests on an ISO Pascal
Grammar

This appendix contains information about running the parser generator on an ISO
Pascal grammar. Because of the large size of the output, it has been shortened to
enhance readability. All output are in Courier font and all comments added to help

you understand the output are in Italic-Times font.

Program Output

Terminal Symbols:

1l: BOF 3: EOF 6: T _DOT 8: T_SEMI 12: T _PROGRAM

13: T_ID 14: T_LPAR 16: T RPAR 17: T _COMMA

23: T _LABEL 25: T_INT 26: T_CONST 29: T _EQUAL

32: T_PLUS 33: T_MINUS 34: T_STRING 35: T_REAIL

36: T_TYPE 42 : T_POINT 44 : T_DOTDOT 46: T_PACKED

47: T_ARRAY 48: T_LSQOR 50: T_RECORD 52: T _END

53: T_SET 54: T _OF 55: T _FILE 56: T _RSOR 60: T_COLON
61: T CASE 63: variant_lis 67: T_VAR 78: T_PROCEDURE
79: T_FUNCTION 84: T _BEGIN 93: T_ASSIGN 96: T _REPEAT
97: T UNTIL 99: T GOTO 105: T_NE 106: T_LE 107: T_LT
108: T _GE 109: T_GT 110: T_IN 112: T_OR 114: T _MULT
115: T_RDiV 116: T_DIV 117: T_MOD 118: T_AND

122: T _NOT 123: T_NIL 131: T_DO 135: T_ELSE

136: T_IF 137: T_THEN 138: T _WHILE 139: T_FOR

- 66 -



141: T_TO 142: T_DOWNTO 143: T_WITH

Non-Terminal Symbols:

0: start 2: program 4: program_decls 5: block

7: program_head 9: decls 10: program_name

11: program_parms 15: file_list 18: label_decl_part

19: const_decl_ part 20: type_decl_part 21: var_decl_part
22: proc_decl_part 24: label_decl_list

27: const_decl list 28: const_decl 30: const

31: unsigned_num 37: type_decl_list 38: type_decl

39: type 40: simple_ type 41: structured_ type

43: enum_list 45: u_struct_type 49: array_rest

51: field list 57: fixed_part 58: variant_part

59: fixed item list 62: tag_field 64: variant_list

65: variant 66: case_label list 68: var_decl list

69: var_decl 70: proc_decl_list 71: proc_decl

72: proc_heading 73: proc_beg 74: f_parm_decl

75: func_beg 76: proc_head_beg 77: func_head_beg

80: f_parm_list 81l: f_parm 82: val_fparm list

83: var_fparm list 85: stmt_list 86: stmt 87: ul_stmt
88: label 89: simple_stmt 90: struct_stmt 91: beg_stmt
92: var 94: expr 95: proc_invok 98: case_stmt

100: noparms_pinvok 101: plist_pinvok 102: parm

103: subscripted var 104: simple expr 111: term

113: factor 119: unsigned_const 120: func_invok

121: set 124: plist_finvok 125: start_finvok

126: element_list 127: element 128: if_then else

129: if_beg 130: while_beg 132: for_beg 133: with_beg
134: matched_stmt 140: updown 144: with_list

145: case_alt 146: case_beg 147: ul_matched_stmt

Production Rules:

W oo u b whPREr o

11.

.start := BOF program EOF

.program := program_decls block T_DOT

.program_decls := program_head T SEMI decls

.program_head program_name program_parms

.program_name T_PROGRAM T_ID

.program_parms :=

.program_parms := T_LPAR file_list T RPAR

.file_list := T_ID

.file_list := file_list T COMMA T _ID

.decls := label_decl_part const_decl_part type_decl_part
var_decl_part proc_decl_part

.label_decl_part :=

label_decl_part

T_LABEL label_decl_list T_SEMT
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12.
13.
.const_decl_part
.const_decl_part
16.
.const_decl_list := const_decl_list T SEMI const_decl
.const_decl := T _ID T _EQUAL const

.const := unsigned num

20.

14
15

17
18
19

180
181

183

188
189
190
191
192
183
194
195
196
197

THE

THE

label_decl_list
label_decl_list

T_INT
label_decl_list T_COMMA T_ INT

T_CONST const_decl_list T SEMT
const_decl

const_decl_list

const := T_PLUS unsigned_num

-- Rules 21 to 179 are omitted.

.updown := T_DOWNTO

.with_beg := T_WITH with_list
182.
.case_stmt := case_alt stmt T_END
184.
185.
186.
187.
.matched_stmt := ul_matched_stmt

.matched_stmt := label ul_matched_ stmt
.ul_matched_stmt := simple_stmt

.ul_matched stmt :=

.ul_matched_stmt := 1f_then else matched stmt
.ul_matched_stmt := while _beg T DO matched_stmt
.ul_matched_stmt := for_beg T DO matched_stmt
.ul_matched_stmt := with_beg T_DO matched stmt
.with list := wvar

.with_list := with_list T COMMA var

case_stmt := case_alt stmt T_SEMI T_END

case_beg := T_CASE expr T _OF const
case_beg := case_beg T_COMMA const
case_beg case_alt stmt T _SEMI const
case_alt := case_beg T_COLON

NUMBER OF LR(1) STATES IS 1248

NUMBER OF LALR(1l) STATES IS 214

LALR(1l) TABLE IS OK

State 0:

Kernel Items:
[[ 0. start ::= BOF ### program EOF ]] T_SEMI T_RPAR
T COMMA T_LABEL T EQUAL T _LSQR T SET
T OF T FILE T BEGIN T_UNTIL
Shift Transitions:
to state 5 on T_PROGRAM to state 4 on program_name
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to state 3 on program_head to state 2 on program decls
to state 1 on program

State 1:
Kernel Items:
[[ 0. start ::= BOF program ### EOF ]] EOF

Shift-Reduces:
by rule 0 on EOF

State 2:
Kernel Items:
[[ 1. program ::= program decls ### block T DOT ]] EOF
Shift Transitions:
to state 101 on T BEGIN to state 6 on block
State 3:
Kernel Items:
[[ 2. program_decls ::= program_head ### T_SEMI decls ]]
T BEGIN

Shift Transitions:
to state 7 on T_SEMI

State 4:
Kernel Items:
[[ 3. program head ::= program_name ### program_parms ]]

T _SEMI
Shift Transitions:
to state 8 on T _LPAR
Shift-Reduces:
by rule 3 on program_parms

State 5:
Kernel Items:
[[ 4. program _name ::= T_PROGRAM ### T ID ]] T SEMI
T _LPAR
Shift-Reduces:
by rule 4 on T_ID

State 6:
Kernel Items:
[[ 1. program ::= program_decls block ### T _DOT ]] EOF

Shift-Reduces:
by rule 1 on T_DOT

State 7:

Kernel Items:
[[ 2. program _decls ::= program_head T_SEMI ### decls ]]
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T BEGIN
Shift Transitions:
to state 15 on T_LABEL
Shift-Reduces:
by rule 2 on decls

State 8:
Kernel Items:
[[ 6. program parms ::=
T_SEMI

Shift Transitions:

to state 16 on file list
Shift-Reduces:

by rule 7 on T_ID

T_LPAR ###

to state 14 on label_decl_part

file_list T RPAR ]]

State 9:

Kernel Items:

[[ 177. while_beg ::= T_WHILE ### expr ]] T_DO

Shift Transitions:
to state 159 on start_finvok
to state 160 on plist_finvok to state 158 on T NOT
to state 155 on term to state 118 on simple_expr
to state 151 on subscripted_var to state 156 on wvar
to state 162 on T_LSOR to state 153 on T_MINUS
to state 152 on T_PLUS to state 157 on T _LPAR
to state 161 on T_ID

Shift-Reduces:
by rule 158 on T _NIL
by rule 154 on set
by rule 153 on func_invok
by rule 151 on unsigned const
by rule 144 on factor
by rule 177 on expr
by rule 27 on T_REAL
by rule 157 on T_STRING
by rule 156 on unsigned num
by rule 26 on T_INT

State 10:
Kernel Items:
[[ 178. for_beg ::= T_FOR ### T _ID T_ASSIGN expr updown
expr ]] T_DO

Shift Transitions:
to state 23 on T_ID

State 11:
Kernel Items:
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[[ 181. with beg ::= T WITH ### with list ]1 T _DO
Shift Transitions:
to state 25 on with_list to state 151 on
subscripted_var
to state 24 on var
Shift-Reduces:
by rule 121 on T _ID

State 12:
Kernel Items:
[[ 184. case_beg ::= T _CASE ### expr T_OF const ]] T_COMMA

T_COLON

Shift Transitions:

to state 159 on start_finvok

to state 160 on plist_finvok to state 158 on T_NOT

to state 155 on term to state 118 on simple_ expr

to state 151 on subscripted_var to state 26 on expr

to state 156 on var to state 162 on T _LSOR

to state 153 on T_MINUS to state 152 on T_PLUS

to state 157 on T_LPAR to state 161 on T_ID
Shift-Reduces:

by rule 158 on T NIL

by rule 154 on set

by rule 153 on func_invok

by rule 151 on unsigned_const

by rule 144 on factor

by rule 27 on T _REAL

by rule 157 on T STRING

by rule 156 on unsigned_num

by rule 26 on T_INT

State 13:
Kernel Items:
[[ 187. case_alt ::= case_beg ### T COLON ]] T_SEMI
T_ID T_INT T END T CASE T BEGIN
T REPEAT T GOTO T IF T _WHILE T _FOR
T WITH
[[ 185. case_beg ::= case beg ### T COMMA const 1]
T_COMMA
T _COLON

Shift Transitions:

to state 27 on T_COMMA
Shift-Reduces:

by rule 187 on T_COLON

State 14:
Kernel Items:
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[[ 9. decls ::= label_decl_part ### const_decl_part
type_decl_part var_decl_part proc_decl_part ]] T_BEGIN
Shift Transitions:

to state 29 on T_CONST to state 28 on const_decl_part
State 15:
Kernel Items:
[[ 11. 1label decl_part ::= T LABEL ### label decl list
T _SEMI 1] T_CONST T _TYPE T VAR T_PROCEDURE
T_FUNCTION T_BEGIN

Shift Transitions:

to state 30 on label_decl_list
Shift-Reduces:

by rule 12 on T_INT

State 16:
Kernel Ttems:
[[ 8. file_list ::= file list ### T COMMA T ID 11 T_RPAR
T COMMA
[[ 6. program parms ::= T_LPAR file_list ### T RPAR ]]
T _SEMI

Shift Transitions:

to state 31%on T_COMMA
Shift-Reduces:

by rule 6 on T _RPAR

State 17:
Kernel Items:
[{ 103. stmt ::= label ### ul_stmt ]] T SEMI T_END
T _UNTIL

Shift Transitions:
to state 13 on case_beg to state 44 on case_alt
to state 11 on T _WITH to state 10 on T_FOR
to state 9 on T WHILE to state 22 on T _IF
to state 21 on with_beg to state 20 on for_ beg
to state 19 on while_beg to state 43 on if_beg
to state 18 on if_ then else to state 42 on T_GOTO
to state 41 on T_REPEAT to state 40 on beg_stmt
to state 101 on T_BEGIN to state 12 on T_CASE

Reductions:

by rule 107 on T _SEMI T END

by rule 114 on T_ID
Shift-Reduces:

by rule 111 on case_stmt

by rule 106 on struct_stmt

by rule 105 on simple_stmt

by rule 103 on ul_stmt
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by rule 113 on block

State 18:
Kernel Items:
[[ 170. struct_stmt ::= 1if_ then_else ### stmt ]]
T_END T UNTIL
Shift Transitions:

to state 13 on case beg to state 44 on case_alt

to state 11 on T_WITH to state 10 on T_FOR
to state 9 on T_WHILE to state 22 on T_IF

to state 21 on with_beg to state 20 on for_beg
to state 19 on while_beg to state 43 on if_beg

T__SEMI

to state 18 on if_then_else to state 42 on T_GOTO

to state 41 on T _REPEAT to state 40 on beg stmt

to state 17 on label to state 101 on T_BEGIN

to state 12 on T_CASE to state 39 on T_INT
Reductions:

by rule 107 on T_SEMI T END

by rule 114 on T _ID
Shift-Reduces:

by rule 111 on case_stmt

by rule 106 on struct_stmt

by rule 105 on simple_stmt

by rule 102 on ul_stmt

by rule 170 on stmt

by rule 113 on block

State 19:
Kernel Items:
[[ 172. struct_stmt ::= while_beg ### T DO stmt ]]
T END T_UNTIL
Shift Transitions:
to state 36 on T_DO

State 20:
Kernel Ttems:
[[ 173. struct_stmt ::= for_beg ### T DO stmt 1]
T END T _UNTIL
Shift Transitions:
to state 37 on T_DO

-- States 21 - 199 are omitted.

State 200:
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Kernel Items:
[[ 48. array rest ::= simple_type T_COMMA ### array rest ]]
T_SEMI T_RPAR T_END
Shift Transitions:
to state 193 on simple_type to state 192 on T_MINUS
to state 191 on T_PLUS to state 144 on const
to state 143 on T_LPAR to state 142 on T_ID
Shift-Reduces:
by rule 48 on array rest
by rule 27 on T _REAL
by rule 25 on T_STRING
by rule 19 on unsigned_num
by rule 26 on T _INT

State 201:
Kernel Items:
[[ 64. wvariant ::= case_label_list T COLON T LPAR ###

field_list T RPAR 1] T _SEMI
Shift Transitions:
to state 205 on T_CASE to state 203 on fixed_part
to state 206 on field list to state 204 on T_ID
Shift-Reduces:
by rule 54 on fixed item list
by rule 52 on variant_part

State 202:
Kernel Items:
[[ 47. array rest ::= simple_type T RSQR T OF ### type ]]
T SEMI T_RPAR T _END

Shift Transitions:
to state 149 on T_FILE to state 148 on T_SET
to state 147 on T_RECORD to state 146 on T_ARRAY
to state 145 on T_PACKED to state 141 on T_POINT
to state 192 on T _MINUS to state 191 on T _PLUS
to state 144 on const to state 143 on T_LPAR

to state 142 on T_ID
Shift-Reduces:

by rule 41 on u_struct_type

by rule 34 on structured_type

by rule 33 on simple_type

by rule 47 on type

by rule 27 on T_REAL

by rule 25 on T _STRING

by rule 19 on unsigned_num

by rule 26 on T_INT

State 203:
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Kernel Items:

[[ 55. fixed part ::= fixed part ### T SEMT
fixed item list ]] T_SEMT T RPAR T_END
[[ 51. field_list ::= fixed part ### T SEMI variant_part ]]
T _RPAR T END
[[ 50. field_ list ::= fixed part ### T _SEMI ]] T_RPAR
T END

[[ 49. field list
Shift Transitions:

to state 207 on T_SEMI
Reductions:

by rule 49 on T _RPAR T_END

fixed part ### ]] T_RPAR T _END

State 204:
Kernel Items:
[[ 57. fixed_item_list ::= T_ID ### T COMMA
fixed item_list ]] T_SEMI T RPAR T_END
[[ 56. fixed item list ::= T ID ##i T_COLON type ]] T_SEMI
T_RPAR T END
Shift Transitions:
to state 208 on T_COLON to state 209 on T_COMMA
State 205:
Kernel Items:
[[ 59. variant_part ::= T_CASE ### tag field T_OF
variant_list T SEMI ]] T RPAR T _END
[[ 58. wvariant_part ::= T_CASE ### tag field T OF
variant_lis ]] T_RPAR T_END
Shift Transitions:
to state 210 on tag field to state 128 on T_ID
State 206:
Kernel ITtems:
[[ 64. wvariant ::= case_label_list T_COLON T_LPAR field list

### T _RPAR ]] T_SEMI
Shift-Reduces:

by rule 64 on T_RPAR

State 207:
Kernel Items:

[[ 55. fixed_part = fixed part T_SEMI ###
fixed item list 1] T _SEMI T_RPAR T END

[[ 51. field_list ::= fixed_part T_SEMI ### variant_part ]]
T_RPAR T _END

[[ 50. field_ list ::= fixed_part T _SEMI ### ]] T_RPAR
T_END

Shift Transitions:
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to state 205 on T CASE to state 204 on T _ID
Reductions:

by rule 50 on T _RPAR T END
Shift-Reduces:

by rule 55 on fixed_item list

by rule 51 on variant_part

State 208:
Kernel Items:
[[ 56. fixed_item list ::= T_ID T_COLON ### type ]] T_SEMI

T _RPAR T _END
Shift Transitions:

to state 149 on T_FILE to state 148 on T_SET

to state 147 on T_RECORD to state 146 on T_ARRAY
to state 145 on T_PACKED to state 141 on T_POINT
to state 192 on T_MINUS to state 191 on T_PLUS
to state 144 on const to state 143 on T_LPAR

to state 142 on T_ID
Shift-Reduces:

by rule 41 on u_struct_type

by rule 34 on structured_type

by rule 33 on simple_type

by rule 56 on type

by rule 27 on T_REAL

by rule 25 on T STRING

by rule 19 on unsigned_num

by rule 26 on T_INT

State 209:
Kernel Items:
[[ 57. fixed_ item list ::= T _ID T _COMMA ###

fixed_item_list ]] T_SEMI T_RPAR T_END
Shift Transitions:
to state 204 on T_ID
Shift-Reduces:
by rule 57 on fixed_ item list

State 210:
Kernel Items:
[[ 59. wvariant_part ::= T_CASE tag field ### T OF
variant_ list T SEMI ]] T_RPAR T _END
[[ 58. wvariant_part ::= T_CASE tag field ### T OF
variant_lis ]] T RPAR T_END

Shift Transitions:
to state 211 on T_OF

State 211:
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Kernel Items:

[[ 59. wvariant_part ::= T _CASE tag_field T_OF ###
variant_list T SEMI ]] T _RPAR T_END

[[ 58. wvariant_part ::= T_CASE tag_field T_OF ###
variant_lis 1] T _RPAR T_END

Shift Transitions:

to state 176 on case_label list

to state 212 on variant_list to state 192 on T_MINUS

to state 191 on T_PLUS
Shift-Reduces:

by rule 62 on variant

by rule 58 on variant_1lis

by rule 27 on T_REAL

by rule 25 on T_STRING

by rule 19 on unsigned_num

by rule 65 on const

by rule 26 on T_INT

by rule 22 on T_ID

State 212:
Kernel Items:
[[ 63. wvariant_list ::= variant_list ### T SEMI variant 1]
T _SEMI
[ 59. wvariant _part ::= T _CASE tag_field T_OF variant_list
### T_SEMI ]] T_RPAR T END

Shift Transitions:
to state 213 on T_SEMI

State 213:
Kernel Items:
[[ 63. wvariant_list ::= variant_list T_SEMI ### wvariant 1]
T SEMI
[[ 59. wvariant_part ::= T _CASE tag_field T_OF variant_list
T_SEMI ### 11 T _RPAR T _END

Shift Transitions:

to state 176 on case_label_list to state 192 on T_MINUS

to state 191 on T PLUS
Reductions:

by rule 59 on T_RPAR T _END
Shift-Reduces:

by rule 63 on variant

by rule 27 on T_REAL

by rule 25 on T_STRING

by rule 19 on unsigned_num

by rule 65 on const

by rule 26 on T_INT

by rule 22 on T_ID
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-- The following is the contents of the .tbl file.

148 198 214 -- Number of symbols, number of rules, number of states.
-- The following are symbols. O = terminal, 1 = nonterminal.

start

BOF

program

EOF

program_decls

block

T_DOT

program_head

T_SEMI

decls

program_name

program_parms

T_PROGRAM

T_ID

T_LPAR

file_ list

T_RPAR

T_COMMA

label_decl_part

const_decl_part

HFEROOROOORRMHMORORREFERORORHR

-- Other symbols are omitted.

element
if_then_else
if_beg
while_beg

T _DO

for_beg
with_beg
matched_stmt
T_ELSE

T IF

T_THEN

T WHILE
T_FOR
updown

T _TO

OCRPROOCOOORRERORRRE M
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P RRERPRoOo

T_DOWNTO

T _WITH
with_list
case_alt
case_beg
ul_matched_stmt

-- The following are rules in the .tbl file.

03123
2 3 456
4 37 8 9
7 2 10 11
10 2 12 13
11 0
11 3 14 15 16
15 1 13
15 3 15 17 13
9 5 18 19 20 21 22
18 0
18 3 23 24 8
24 1 25
24 3 24 17 25
19 0
19 3 26 27 8
27 1 28
27 3 27 8 28
28 3 13 29 30
30 1 31
-- Rules 21 - 179 are omitted.
130 2 138 94
132 6 139 13 93 94 140 94
140 1 141
140 1 142
133 2 143 144

98 4 145 86 8 52
98 3 145 86 52

146
146
146
145
134
134
147
147

OR NEFENB WD

61 94 54 30
146 17 30
145 86 8 30
146 60

147

88 147

89
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147 2 128 134
147 3 130 131 134
147 3 132 131 134
147 3 133 131 134
144 1 92
144 3 144 17 92
-- The following are the states in the .tbl file.
512 S5 10 sS4 7 83 4 82 2 s1
13 *0
2 84 S101 5 g6
1 8 g7
2 14 88 11 *3
113 *4
16 *1
3 23 S15 18 S14 9 *2

2 15 816 13 *7

22 125 S159 124 si60 123 *158 122 S158 121 *154 120 *153 119 *151
113 *144 111 S155 104 S118 103 S151 94 *177 92 S156 48 S162 35 *27
34 *157 33 S153 32 S152 31 *156 25 *26 14 S157 13 s16l

113 s23
4 144 S25 103 8151 92 824 13 *121

22 125 5159 124 8160 123 *158 122 S158 121 *154 120 *153 119 *151
113 *144 111 S155 104 S118 103 S151 94 S26 92 S156 48 S162 35 *27
34 *157 33 s153 32 S152 31 *156 25 *26 14 s157 13 S161

2 60 *187 17 827
2 26 829 19 s28
2 25 *12 24 S30
2 17 831 16 *6

24 8 R107 13 R114 52 R107 146 S13 145 S44 143 S11 139 S10 138 S9
136 S22 133 S21 132 S20 130 S19 129 S43 128 S18 99 S42 98 *111 96
S41 91 sS40 90 *106 89 *105 87 *103 84 S101 61 S12 5 *113

27 8 R107 13 R114 52 R107 146 S13 145 s44 143 s11 139 S10 138 S9
136 s22 133 S21 132 S20 130 S19 129 S43 128 S18 99 s42 98 *111 96
S41 91 sS40 90 *106 89 *105 88 S17 87 *102 86 *170 84 S101 61 S12
25 839 5 *113

1 131 836
1 131 837
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-- States 21 - 199 are omitted.

11 49 *48 40 8193 35 *27 34 *25 33 8192 32 S191 31 *19 30 S144 25
*26 14 S143 13 8142

6 61 S205 59 *54 58 *52 57 S203 51 $206 13 S204

19 55 5149 53 5148 50 S147 47 S146 46 S145 45 *41 42 S141 41 *34
40 *33 39 *47 35 *27 34 *25 33 5192 32 S191 31 *19 30 S144 25 *26
14 5143 13 sl142

3 8 5207 16 R49 52 R49

2 60 S208 17 S209

2 62 8210 13 5128

1 16 *64

6 16 R50 52 R50 61 S205 59 *55 58 *51 13 S204

19 55 5149 53 5148 50 S147 47 S146 46 S145 45 *41 42 S141 41 *34
40 *33 39 *56 35 *27 34 *25 33 S192 32 S$191 31 *19 30 S144 25 *26
14 5143 13 s142

2 59 *57 13 5204
1 54 s211

12 66 S176 65 *62 64 S212 63 *58 35 *27 34 *25 33 $192 32 S191 31
*19 30 *65 25 *26 13 *22

1 8 s213

12 16 R59 52 R59 66 S176 65 *63 35 *27 34 *25 33 S192 32 8191 31
*19 30 *65 25 *26 13 *22
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