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Abstract

The focus of this research is on a tolerance space-based approach toimage analysis
and correspondence. The problem considered in this thesis is one of extracting percep-
tually relevant information from groups of objects based on their descriptions. Object
descriptions are represented by feature vectors containing probe function values in a
manner similar to feature extraction in pattern classification theory. The motivation
behind this work is the synthesizing of human perception of nearness for improve-
ment of image processing systems. In these systems, the desired output is similar to
the output of a human performing the same task. Thus, it is important to have sys-
tems that accurately model human perception. Near set theory provides a framework
for measuring the similarity of objects based on features that describe them inmuch
the same way that humans perceive the similarity of objects. In this thesis, nearset
theory is presented and advanced, and work is presented toward a near set approach
to performing content-based image retrieval. Furthermore, results are given based on
these new techniques and future work is presented. The contributions ofthis thesis
are: the introduction of a nearness measure to determine the degree that near sets re-
semble each other; a systematic approach to finding tolerance classes, together with
proofs demonstrating that the proposed approach will find all tolerance classes on a set
of objects; an approach to applying near set theory to images; the application of near
set theory to the problem of content-based image retrieval; demonstration that near set
theory is well suited to solving problems in which the outcome is similar to that of
human perception; two other near set measures, one based on Hausdorff distance, the
other based on Hamming distance.

Keywords: Description, near sets, tolerance near sets, tolerance space, perception,
probe functions, feature values, nearness measure, content-basedimage retrieval (CBIR).
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1 Introduction

The focus of this thesis is on perceptual nearness theory andapplications. The view of the

perception of nearness presented in this thesis combines the basic understanding of per-

ception in psychophysics with a view of perception found in Merleau-Ponty’s work [1].

That is, perception of the nearness of objects (i.e., in effect, our knowledge about objects)

depends on sensor signals gathered by our senses. The proposed approach to perception is

feature-based and is similar to the one discussed in the introduction of [2]. In this view, our

senses are likened to probe functions,i.e., mappings of sensations to values assimilated by

the mind. A human sense modelled as a probe measures the physical characteristics of ob-

jects in our environment. The sensed physical characteristics of an object are identified with

object features. It is our mind that identifies relationships between object feature values to

form perceptions of sensed objects [1]. In this thesis, it isconjectured that perception,i.e.

human perception of nearness, can be quantified through the use of near sets by providing

a framework for comparing objects based on object descriptions. Objects that have similar

appearance (i.e., objects with similar descriptions) are consideredperceptually near each

other. Sets are considered near each other when they have “things”(perceived objects) in

common. Specifically, near sets facilitate measurement of similarity between objects based

on feature values (obtained by probe functions) that describe the objects. This approach is

similar to the way humans perceive objects (see,e.g, [3]) and as such facilitates the creation

of perception-based systems.

This thesis is divided into two main components, namely a section presenting (and

contributing to) near set theory, and a section demonstrating that near set theory can be used

in applications where the result is similar to that of human perception. Specifically, near

set theory is applied to the problem of content-based image retrieval, which is a research

area focusing on the retrieval of images from a database based on the perceptual content of

the images, as well as segmentation evaluation, an application concerned with measuring

the quality of an image partition to capture the perceptual objects contained within the

1



image. Implicit in most applications concerning digital images is human perception of

images, and the objects we perceive that the images contain.A system that employs image

processing either purposely or inadvertently mimics the human visual system due to fact

that these systems ultimately aide visual perception by people. Thus a generalization of

definitions for image processing leads to the manipulation of digital images for the purpose

of extracting or enhancing perceptual information contained in images.

The termperceptionappears in the literature in many different places with respect to

the processing of images. For instance, the term is often used for demonstrating that the

performance of methods are similar to results obtained by human subjects (as in [4]), or it is

used when the system is trained from data generated by human subjects (as in [5]). Thus, in

these examples, a system is considered perceptual if it mimics human behaviour. Another

illustration of the use of perception is in the area of semantics with respect to queries [6,7].

For instance, [7] focuses on queries for 3-D environments,i.e., performing searches of

an online virtual environment. Here the question of perception is one of semantics and

conceptualization with regard to language and queries. Forexample, users might want to

search for a tall tree they remembered seeing on one of their visits to a virtual city.

Other interpretations ofperceptionare tightly coupled to psychophysics,i.e. perception

based on the relationship between stimuli and sensation [8]. For example, [9] introduces

a texture perception model. The texture perception model uses the antagonistic view of

the human visual system in which our brain processes differences in signals received from

rods and cones rather than sense signals, directly. An image-feature model of perception

has been suggested by Mojsilovicet al. [10], where it is suggested that humans view or

recall an image by its dominant colours only, and areas containing small, non-dominant

colours are averaged by the human visual system. Other examples of the term perception

defined in the context of psychophysics have also been given [11–17].

Perception as explained by psychologists [18,19] is similar to the understanding of per-

ception in psychophysics. In a psychologist’s view of perception, the focus is more on

the mental processes involved rather than interpreting external stimuli. For example, [19]

2



presents an algorithm for detecting the differences between two images based on the rep-

resentation of the image in the human mind (e.g., colours, shapes, and sizes of regions and

objects) rather than on interpreting the stimuli produced when looking at an image. In other

words, the stimuli from two images have been perceived and the mind must now determine

the degree of similarity.

Much work has been reported based on the perceptual approachpresented by near set

theory [20–25], an outgrowth of the rough set approach to obtaining approximate knowl-

edge of objects that are known imprecisely [26–30]. The perceptual approach to near-

ness presented in this thesis is an outgrowth of research into applications of near set the-

ory [31–33], as well as, application of near sets to the imageprocessing problems of seg-

mentation evaluation [34, 35], image correspondence [33, 36–39]. Briefly, disjoint sets

containing objects with matching descriptions are called near sets. The discovery of near

sets begins with the selection of probe functions that provide a basis for describing and

discerning affinities between sample objects (see,e.g., [20, 40, 41]). Aprobe functionis a

real-valued function representing a feature of physical objects. The perceptual approach of

near set theory is based on the idea that our mind identifies relationships between object

features to form perceptions of sensed objects. As was mentioned, our senses gather the in-

formation of the objects we perceive and map sensations to values assimilated by the mind.

Thus, our senses can be likened to perceptual probe functions in the form of a mapping of

stimuli from objects in our environment to sensations (values used by the mind to perceive

objects). It is this idea of probe functions that is at the heart of near sets.

This thesis presents the theory and applications of near sets. The approach is by way of

extracting perceptually relevant information from a set ofobjects, where each object has an

associated feature vector describing object features (perceived object characteristics such

as colour). It is the information contained in these featurevectors that is used to extract

perceptual information from classes of objects and to measure the similarity among them.

The contributions presented in this thesis are:

• The introduction of a nearness measure to determine the degree that near sets resem-

3



ble each other,

• A systematic approach to finding tolerance classes, together with proofs demonstrat-

ing that the proposed approach will find all tolerance classes on a set of objects,

• An approach to applying near set theory to images,

• The application of near set theory to the problem of content-based image retrieval,

• Demonstration that near set theory is well suited to solvingproblems in which the

outcome is similar to that of human perception,

• Two other near set measures are considered, one based on Hausdorff distance, the

other based on Hamming distance.

This thesis is organized as follows: Section2.1 contains background information on near

set theory and image processing; Section3 presents tolerance near sets, and introduces

the nearness measuretNM ; Section5 presents an application of near set theory to the

problem of content-based image retrieval; and Section6 concludes the thesis. In addition,

AppendixA presents another application of near set theory by way of segmentation evalu-

ation, and AppendixB presents the NEAR System, a GUI that contains an implementation

of all the code used to generate the results presented in thisthesis, and is freely available

at [42].

4



2 Background

2.1 Near Sets

Nearness is an intuitive concept that allows us to function in our daily lives. At a young

age, we become adept at identifying the similarity of objects in our environment, and can

quickly assess the degree of similarity. In fact, our day-to-day conversations are full of

adverbs and adjectives used to encapsulate the nearness of “things” in our environment.

Phrases like “he was about as tall as you are” or “those suits look similar” serve to demon-

strate the frequency with which we are making analogies to objects that are not the same,

but share some common characteristics. However, it was onlyrecently, relatively speaking,

that this idea of nearness was first explored mathematically. Frigyes Riesz first published

a paper in 1908 on the nearness of two sets, initiating a field of study which has now be-

come known as proximity spaces [43,44]. Proximity spaces axiomatically characterize the

proximity relation, a relation that, in brief, provides a framework for identifying the near-

ness of a point to a set and the nearness of two sets, where nearness is based on the spatial

relationship between objects, rather than in terms of the descriptions associated with the

objects. In contrast, near set theory is concerned with the nearness of objects based on their

descriptions.

The introduction of near set theory was significantly influenced by work on rough set

theory established by Z. Pawlak in 1981 [26], and by the work of E. Orłowska on approxi-

mation spaces [45,46]. Briefly, a setX is considered a rough set ifX cannot be reproduced

by the union of cells in a partition, where the partition is defined by an equivalence relation

on object descriptions, called the indiscernibility relation. A set that is considered rough

can be approximated using this relation. The main concept from rough set theory present

in near set theory is the notion of indiscernibility of objects. Near set theory was founded

on the idea that two disjoint sets of objects are near each other, if they contain objects that

have the same descriptions, which can be identified using theindiscernibility relation. The

principal difference between rough set theory and near sets(as reported in [25, Section 6.1,
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pp. 18]) is that near sets can be discovered without the approximation of sets.

Near set theory was inspired by a collaboration in 2002 by Z. Pawlak and J. F. Peters on

a poem entitled “How Near” [47]. The poem’s theme is the humanperception of nearness,

conveying imagery about the proximity of snow flakes to trees, and the nearness of icicles

to the ground. At the same time, work began on applying rough set theory to the problem

of measuring the similarity of images,i.e. image correspondence, and content-based image

retrieval, the problem of retrieving images by their content rather than strings of text asso-

ciated with the image. It was these events which led to the first two publications on near

set theory in [21,48]. These papers represent the introduction of near theory,e.g.the intro-

duction of the definitions fundamental to the field of near settheory, and mark a transition

from focusing on the approximation of a single set, as in rough set theory, to discovering

the nearness/similarity of disjoint sets based on object descriptions. This can be seen by

the discovery of near sets in approximation spaces,i.e. the approximation of one set by

another set [21], the introduction of a nearness approximation space (also in [21]), and the

approximation of the nearness of objects in [48]. Notice that these papers are still using the

terminology in the approximation of sets that are qualitatively near each other, a fact that

shows the influence of rough set theory in the introduction ofnear sets.

Subsequently, there have been many publications in the areaof near set theory [25].

While, near set theory was motivated by the image correspondence problem, the first few

papers on near set theory had as their aim the application of near sets to the problem of dis-

covering affinities between perceptual information granules, where a perceptual granule is

a non-empty set containing objects with common descriptions [20,23,24]. As will become

apparent in this thesis, sets that are near each other are examples of information granules

(see,e.g., definition in [23]). Other examples of the application of near set theory include:

identification of features in an automated facial feature extraction procedure [49]; image

correspondence [33,36–39] (still using approximation spaces [50]); adaptive learning [31]

and near set theory applied to patterns of observed swarm behaviour stored in tables called

ethograms, where the goal is to measure the resemblance between the behaviours of differ-
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ent swarms [51]; and finally image morphology and segmentation evaluation [34,35].

Finally, it is worth mentioning that the papers [20, 48] alsocontain a nice discussion

on the differences between features and attributes, which is an important distinction be-

tween the traditional applications of rough set theory, andthe application of near set theory

presented in this thesis. Namely, an attribute is a partial function measuring some charac-

teristic of an object. In contrast, a feature is a perceived characteristic of an object, and

there can be more than one feature for a given characteristic, e.g. colour can be described

by the RGB colour model or the HSV colour model.

2.1.1 Perceptual Systems

A logical starting point for a discussion on near set theory begins with establishing a basis

for describing elements of sets. All sets in near set theory consist of perceptual objects.

Definition 1. Perceptual Object. A perceptual objectis something perceivable that has its

origin in the physical world.

A perceptual object is anything in the physical world with characteristics observable to the

senses such that they can be measured and are knowable to the mind. Examples of per-

ceptual objects include patients, components belonging toa manufacturing process, and

camera images. Here, the termperceptionis considered relative to measurable characteris-

tics called the object’s features.

In keeping with the approach to pattern recognition suggested by M. Pavel [52], the

features of an object are quantified by probe functions.

Definition 2. Probe Function [21, 40]. A probe functionis a real-valued function repre-

senting a feature of a perceptual object.

In this work, probe functions are defined in terms of digital images such as: colour, texture,

contour, spatial orientation, and length of line segments along a bounded region. In the

context of near set theory, objects in our visual field are always presented with respect to

the selected probe functions. Moreover, it is the probe functions that are used to measure
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characteristics of visual objects and similarities among perceptual objects, making it pos-

sible to determine if two objects are associated with the same pattern without necessarily

specifying which pattern (as is the case when performing classification).

Next, a perceptual system is a set of perceptual objects, together with a set of probe

functions.

Definition 3. Perceptual System[25]. Aperceptual system〈O,F〉 consists of a non-empty

setO of sample perceptual objects and a non-empty setF of real-valued functionsφ ∈ F

such thatφ : O → R.

The notion of a perceptual system admits a wide variety of different interpretations that

result from the selection of sample perceptual objects contained in a particular sample

spaceO. Two examples of perceptual systems are: a set of images together with a set

of image processing probe functions, or a set of results froma web query together with

some measures (probe functions) indicating,e.g., relevancy or distance (i.e. geographical

or conceptual distance) between web sources.

Combining Definitions1 & 2, the description of a perceptual object within a perceptual

system can be defined as follows.

Definition 4. Object Description. Let 〈O,F〉 be a perceptual system, and letB ⊆ F be

a set of probe functions. Then, thedescriptionof a perceptual objectx ∈ O is a feature

vector given by

φB(x) = (φ1(x), φ2(x), . . . , φi(x), . . . , φl(x)),

wherel is the length of the vectorφB, and eachφi(x) in φB(x) is a probe function value

that is part of the description of the objectx ∈ O.

Note, the idea of a feature space is implicitly introduced along with the definition of object

description. An object description is the same as a feature vector as described in tradi-

tional pattern classification [53]. The description of an object can be considered a point

in an l-dimensional Euclidean spaceRl called a feature space. As was mentioned in the
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introduction, near set theory is concerned with the nearness of objects based on their de-

scriptions. Thus, the relationship between objects is discovered in a feature space that is

determined by the probe functions inB.

2.1.2 Perceptual Indiscernibility Relations

Building on the foundational definitions of a perceptual system and the description of an

object, this section introduces the perceptual indiscernibility relation and its relationship

to near sets. Near set theory originated with the indiscernibility relation, an equivalence

relation defined with respect to object descriptions (seee.g.[25,48]). Recall, a relation on

two sets is a subset of their Cartesian product, and an equivalence relation is any relation

that is reflexive, symmetric, and transitive.

Definition 5. Perceptual Indiscernibility Relation [25, 26]. Let 〈O,F〉 be a perceptual

system. For everyB ⊆ F theperceptual indiscernibility relation∼B is defined as follows:

∼B= {(x, y) ∈ O ×O : ∀φi ∈ B � φi(x) = φi(y)}.

The perceptual indiscernibility relation is a variation ofthe one given by Z. Pawlak in

1981 [26]. Furthermore, notice that equivalence is defined with respect to the description

of an object,i.e. objects are considered equivalent when the features used todescribe them

are the same.

Using the indiscernibility relation (together with the probe functions inB), a set of

objects can be partitioned into classes of objects with matching descriptions such that each

class has the highest possible object resolution under the indiscernibility relation. These

classes are called elementary sets or equivalence classes and are given in Definition6.

Definition 6. Equivalence Class. Let 〈O,F〉 be a perceptual system and letx ∈ O. For a

setB ⊆ F anequivalence classis defined as

x/∼B
= {x′ ∈ O | x′ ∼B x}.
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Observe that a single object is sufficient to label the class,since all objects in a class have

the same description. Moreover, the set of all equivalence classes induced by the partition

of a set using the indiscernibility relation is called a quotient set .

Definition 7. Quotient Set. Let〈O,F〉 be a perceptual system. For a setB ⊆ F a quotient

setis defined as

O/∼B
= {x/∼B

| x ∈ O}.

Similar to the indiscernibility relation, another equivalence relation can be defined such

that only a single probe functionφi ∈ B is required for equivalence.

Definition 8. Weak Perceptual Indiscernibility Relation [25, 54]. Let 〈O,F〉 be a per-

ceptual system, and letφi ∈ F. Then, theweak perceptual indiscernibility relation'φi
is

defined as follows:

'φi
= {(x, y) ∈ O ×O : ∃φi ∈ F � φi(x) = φi(y)}.

The weak indiscernibility relation can provide new information or relationships about a

set of objects for a given application. For instance, consider a scenario where near set

theory is applied to an existing problem or process where objects are already being associ-

ated with feature values; examples include a problem already formulated in terms of near

sets without using the weak perceptual indiscernibility relation, or problems in other areas

such as pattern recognition or image analysis. In other words, a set of probe functions,

B, has already been selected to solve the problem. In such a scenario, the perceptual in-

discernibility relation could produce a quotient set as given in Fig.1a(where each colour

represents a different class), indicating these two sets ofobjects, representing some percep-

tual information in the original problem domain, are not related to each other. However,

selecting a singleφi ∈ B could produce the equivalence classes shown in Fig.1b, where

it is now apparent that there is some relationship between these two sets of objects. Also,

as described in [24], Definition8 can be used to discover similarities in a manner similar
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to humans, namely, we identify similarity between objects using only a subset of all the

possible features associated with an object.

(a) (b)

Figure 1: Example demonstrating the practical application of Definition 8. (a) Quotient set created using
Definition 5 showing no relationship between the two sets, and (b) quotient set created using Definition8
showing a relationship between the two sets.

2.1.3 Near Sets and the Nearness Relation

Definition 5 provides the framework for comparisons of sets of objects byintroducing a

concept of nearness within a perceptual system. Sets can be considered near each other

when they have “things” in common. In the context of near sets, the “things” can be

quantified by objects or equivalence classes. The simplest example of nearness between

sets sharing “things” in common is the case when two sets haveindiscernible elements.

This idea leads to the definition of a weak nearness relation.

Definition 9. Weak Nearness Relation[25]. Let 〈O,F〉 be a perceptual system and let

X,Y ⊆ O. A setX is weakly near to a setY within the perceptual system〈O,F〉 (X./FY )

iff there arex ∈ X andy ∈ Y and there isφi ∈ F such thatx 'B y. In the case where

setsX,Y are defined within the context of a perceptual system, thenX,Y are weakly near

each other.

An example of disjoint sets that are weakly near each other isgiven in Fig. 2a, where

each colour represents an equivalence class. These sets areweakly near each other since

both sets share objects belonging to the same equivalence class. As a practical example of

weakly near sets, consider a database of images where each image is described by some
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feature vector,i.e. the images are considered perceptual objects and the feature vectors are

the object descriptions. Examples of features are the values of different colour models [55]

or moments [56]. In this case, two disjoint sets of images areweakly near each other if

each set contains one or more images with descriptions that match an image in the other

set.

Figure 2: Examples of Definitions9 & 10, where each colour represents an equivalence class. (a) Example
of Definition 9, (b) example ofO/∼B1

, (c) example ofO/∼B2

, and (d) example ofO/∼φi
showing (together

with (b) and (c)) that setsX andY are near to each other according to Definition10.

Next, the notion of nearness in Definition9 can be strengthened by considering equiv-

alence classes rather than objects which is the case in the following definition.

Definition 10. Nearness Relation[25]. Let 〈O,F〉 be a perceptual system and letX,Y ⊆

O. A setX is near to a setY within the perceptual system〈O,F〉(X ./F Y ) iff there

areB1,B2,⊆ F andφi ∈ F and there areA ∈ O/∼B1
, B ∈ O/∼B2

, C ∈ O/∼φi
such that

A ⊆ X,B ⊆ Y , andA,B ⊆ C. If a perceptual system is understood, than a setX is near

to a setY .

The concept of the nearness relation can be further explained as follows. First, recall that

within a perceptual system there is a set of probe functions,F, where each probe function

describes the objects in a different manner. Further, each set in the family of subsets ofF

(i.e. eachB ∈ F) produces different partitions of the setsX andY , where each partition
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presents different perceptual information. In other words, the selection ofB ∈ F constrains

our ability to describe the objects in the setsX andY in same manner as if one were told

they could only describe fruit by colour or by shape,etc. Consequently, the setsX andY

are near each other if there are three subsets ofF that respectively produce an equivalence

class inX andY that are subsets of an equivalence class that covers both thesetsX andY .

As an intuitive example, letO be the set of fruit found in the produce section of the local

grocery store, letX be the set of apples and bananas, and letY be the set of strawberries

and pears. SelectingF1 as a single probe function identifying the shape of the fruit, F2

as a single probe function identifying “bite sized” fruit, and f as a single probe function

identifying fruit colour, gives an equivalence class containing round apples fromX, an

equivalence class containing strawberries fromY , and an equivalence class containing both

the red apples fromX and the red strawberries fromY . Thus, using Definition10 the sets

X andY are near each other. Furthermore, notice that, in this example, the setsX andY

are weakly near each other using only the probe functionf . This suggests that one approach

to determine if two sets are near each other would be first to partition the sets using a set

of probe functions, and then use Definition8 to “cycle” through the probe functions in

B looking for a partition that is a superset of the equivalenceclasses from the two sets.

Also, Definition10 does not put any restriction on the setsF1 andF2 being disjoint. As a

result, these sets could share probe functions or even be thesame. Lastly, a visualization of

Definition 10 is also given in Fig.2. SetsX andY are near to each other in Fig.’s 2b-2d,

since the setsA ∈ O/∼F1
in Fig. 2b andB ∈ O/∼F2

in Fig. 2c are subsets ofC ∈ O/∼f

given in Fig. 2d.

Next, as given in the following definition, setsX,Y are near sets if they satisfy the

nearness relation.

Definition 11. Perceptual Near Sets[25] Let〈O,F〉 be a perceptual system, letX,Y ⊆ O

denote disjoint sets. SetsX,Y are near sets iffX ./F Y .

Lastly for completeness, a formalization of identifying similarities among objects is

given by way of Definition12 that is a principle for determining the nearness of objects.
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Definition 12. Nearness Description Principle (NDP)[21,25].Let〈O,F〉 be a perceptual

system and letx, y ∈ O. Objectsx, y are perceptually near each otherwithin 〈O,F〉 (or,

more concisely,near each other), if and only if{x} ./F {y}. In other words, objectsx, y

are near each other within〈O,F〉 if and only if there existsφ ∈ F such thatx ∼φ y, i.e.,

objectsx, y are indiscernible with respect to the family of probe functions of the perceptual

system〈O,F〉.

Note, as mentioned in [25], the nearness of objects is alwayswith respect to Definition9

(without the adjective weak) since Definition10 would require 1-element equivalence

classes, a case which cannot be guaranteed.

2.2 Approximate Nearest Neighbours

Given a set of pointsP = {p1, . . . , pn} in and-dimensional vector spaceX and a query

point q ∈ X, the nearest neighbour search problem is defined as finding the point inP that

is closest toq [57]. This problem arises in many research areas, especially in computer

vision, and for high dimensional data, there is no known algorithm that performs much

better than a linear search of the data points inP [57]. As a result,α-approximate2 nearest

neighbour searching has been introduced where query times can be reduced by orders of

magnitude while sill achieving near-optimal accuracy. Anα-approximate nearest neigh-

bour to a query pointq ∈ X is defined asp ∈ X if dist(p, q) ≤ (1 + α)dist(p∗, q) where

p∗ is the true nearest neighbour [57].

Although there are a number of recent contributions to the fast calculation of approx-

imate nearest neighbours [58], the results presented in this thesis were obtained using the

Fast Library for Approximate Nearest Neighbours (FLANN) [59], since it is a library easily

added to any C++ program, and because of the option for automatic optimization. FLANN

uses two data structures to efficiently perform approximatenearest neighbour searches,

namely, the randomized kd-tree algorithm and the hierarchical k-means tree algorithm [57].

2Note: the symbolα is being used instead ofε (as is traditional in the literature) to avoid confusion with
the tolerance relation introduced below.
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A kd-tree organizes the data using a binary tree where the tree nodes are points fromP .

Since points belong to ad-dimensional vector space, each node must have an associated

splitting dimension (i.e. a dimension used to divide subsequent nodes in the tree). The

next data point added to the tree is assigned to either the left or right child node depending

on whether its value in the splitting dimension is less than or greater than the value of the

current node. The kd-tree algorithm used in FLANN is called randomized because the split-

ting dimension for each node is selected randomly from the firstD dimensions that have

the greatest variance [57]. The other data structure used isthe hierarchical k-means tree.

This structure is created by recursion,i.e. the set of data is partitioned intoK regions using

the k-means clustering algorithm and then each region is again partitioned intoK regions

etc.The recursion is terminated when there are less thanK data points in a region [57].

FLANN is the ideal library for performing approximate nearest neighbour searching

because of the option for automatic optimization. The choice of algorithm used for approx-

imate nearest neighbour searching is highly dependent on the dataset [57]. Consequently,

the FLANN library has an option to select automatically the search algorithm and to opti-

mize the input parameters of the selected algorithm. Both options are based on the points

in P . Optimization is guided by a set of parameters specified by the user in the following

equation

cost=
s+ wbb

(s+ wbb)opt
+ wmm,

wheres is the search time for the number of vectors in the sample dataset,b is the build time,

m = mt/md is the ratio of memory used for the tree and memory used to store the data,

wb is the importance of build time over search time, andwm is the importance of memory

overhead [57]. Settingwb = 0 means that the fastest search time is desired, and similarly,

settingwm = 0 means that faster search time is more important than memory requirements.

Additionally, optimization is also performed based on the desired precision (percentage of

query points for which the correct nearest neighbour is found) of the results from a nearest

neighbour search (see [57] for more details). To generate the results presented here, a target

precision of 0.8 was used together withwb = wm = 0.
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2.3 Image Processing

The application of near set theory demonstrated in this thesis is in the area of image cor-

respondence and content-based image retrieval. Briefly, theproblem of image correspon-

dence is the unaided process of assessing the degree in whichone image resembles another.

Similarly, content-based image retrieval is the problem ofretrieving images from a database

based on the content of the image,e.g. colour, shapes, texture, objectsetc., rather than on

some semantic description or set of key words associated with the image [60]. Each of

these applications deal with assessing the similarity of images, which proves to be a natural

arena for near set theory. As will be described latter, the approach is to consider portions of

the images as perceptual objects and to use image processingtechniques as probe functions.

Consequently, the following sections describe image processing techniques that were used

to generate the results presented in this thesis.

2.3.1 Normalized RGB

The normalized RGB values is a feature described in [61], and the formula is given by

NX =
X

RT +GT +BT

,

where the valuesRT , GT , andBT are respectively the sum ofR,G,B components of the

pixels in each subimage, andX ∈ [RT , GT , BT ].

2.3.2 Entropy

Shannon introduced entropy (also called information content) as a measure of the amount

of information gained by receiving a message from a finite codebook of messages (see [62]

for a comprehensive presentation of entropy). The idea was that the gain of information

from a single message is proportional to the probability of receiving the message. Thus,

receiving a message that is highly unlikely gives more information about the system than a

message with a high probability of transmission. Formally,let the probability of receiving
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a messagei of n messages bepi, then the information gain of a message can be written as

∆I = log(1/pi) = − log(pi), (1)

and the entropy of the system is the expected value of the gainand is calculated as

H = −
n∑

i=1

pi log(pi).

Work in [63,64] shows that Shannon’s definition of entropy has some limitations. Shan-

non’s definition of entropy suffers from the following problems: it is undefined when

pi = 0; in practise, the information gain tends to lie at the limitsof the interval[0, 1];

and statistically speaking, a better measure of ignorance is 1 -pi rather than1/pi [63]. As

a result, a new definition of entropy can be defined with the following desirable properties:

P1: ∆I(pi) is defined at all points in[0, 1].

P2: limpi→0 ∆I(pi) = ∆I(pi = 0) = k1, k1 > 0 and finite.

P3: limpi→1 ∆I(pi) = ∆I(pi = 1) = k2, k2 > 0 and finite.

P4: k2 < k1.

P5: With increase inpi, ∆I(pi) decreases exponentially.

P6: ∆I(p) andH, the entropy, are continuous for0 ≤ p ≤ 1.

P7: H is maximum when allpi’s are equal,i.e.H(p1, . . . , pn) ≤ H(1/n, . . . , 1/n).

With these in mind, [63] defines the gain in information from an event as

∆I(pi) = e(1−pi),

which gives a new measure of entropy as

H =
n∑

i=1

pie
(1−pi).
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2.3.3 Mean Shift Segmentation Algorithm

Image segmentation is the process of partitioning an image into regions such that each re-

gion represents a perceptual object within the image. The mean shift algorithm (introduced

in [65]) segments an image using kernel density estimation,a nonparametric technique for

estimating the density of a random variable. Nonparametrictechniques are characterized

by their lack of assumptions about the density and differ from parametric techniques which

assume a parametric form of a given density and then estimateparameters that describe the

density, such as mean or variance [53]. The estimate of the density is calculated from the

number of observations within a volume ind-dimensional space centred onx, and a kernel

that weights the importance of the observations [53]. Formally, given n observations of a

random variableX ∈ R
d, the kernel density estimate of the pdf ofX is given by

f(x) ≈ f̂(x) =
1

n

n∑

i=1

KH(x− xi), (2)

where

KH(x) =| H |−1/2 K(H−1/2x),

the matrixH is called the bandwidth, and the functionK(·) is the kernel used to perform

the estimation. The kernel defines how the observed data points influence the estimate. For

example, all data within the volume contribute equally using the uniform kernel, whereas

the Gaussian kernel gives more weight to the observations closest tox. Often kernels are

specified using profile notation written as

K(x) = ck(‖ x ‖2), (3)
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wherec is an constant ensuring that the kernel integrates to one [65]. As an example, the

Epanechnikov kernel is given as

KE(x) =





ckE(‖x‖), ‖x‖ ≤ 1,

0, otherwise,
(4)

where

kE(x) =





1− x2, 0 ≤ x ≤ 1,

, 0, x > 1.

Similarly, the bandwidth is used to define the size of thed-dimensional volume aroundx

for which the observations,xi, are included in the estimate off(x). Common choices for

the bandwidth include

H = diag[h2
1, . . . , h

2
d],

where each component of the vector is assigned a separate area of influence, and

H = h2I,

where each component has the same area of influence [65]. Using the latter approach and

the kernel profile notation given in Eq.3, Eq.2 can be rewritten as

f̂K(x) =
ck
nhd

n∑

i=1

k

(∥∥∥∥∥
x− xi

h

∥∥∥∥∥

2)
. (5)

As was mentioned, the main idea behind this algorithm is finding the modes of the

density from observations in the form of an image. These modes lie at the zeros of the

gradient. The gradient of a functionf(x) is defined as

∇f(x) =


 ∂f

∂x1

, · · · , ∂f
∂xn


.
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The zeros of the gradient∇f̂(x) = 0 can be found by exploiting the linearity of Eq. 5 [1]

giving

∇̂fK(x) ≡ ∇f̂K(x) =
2ck
nhd+2

n∑

i=1

(x− xi)k
′

(∥∥∥∥∥
x− xi

h

∥∥∥∥∥

)
.

In other words, the density gradient estimate∇̂fK(x) is calculated as the gradient of the

density estimatêfK(x). Next, a new kernelG(·) is defined as

G(x) = cgg(‖x‖2), (6)

where

g(x) = −k′(x)

yields

∇̂fK(x) =
2ck
nhd+2

n∑

i=1

(xi − x)g

(∥∥∥∥∥
x− xi

h

∥∥∥∥∥

2)
,

=
2ck
nhd+2




n∑

i=1

g

(∥∥∥∥∥
x− xi

h

∥∥∥∥∥

2)
 ·



∑n

i=1 xig
(∥∥∥x−xi

h

∥∥∥
2)

∑n
i=1 g

(∥∥∥x−xi

h

∥∥∥
2) − x


 (7)

which is at the heart of the mean shift algorithm. The second term in Eq.7 is given by

mG(x) =

∑n
i=1 xig

(∥∥∥x−xi

h

∥∥∥
2)

∑n
i=1 g

(∥∥∥x−xi

h

∥∥∥
2) − x,

and is the mean shift vector that always points in the direction of maximum increase in

density [65]. This can be seen by defining a new density estimate using the kernel in Eq.6

as

f̂G(x) =
cg
nhd

n∑

i=1

g

(∥∥∥∥∥
x− xi

h

∥∥∥∥∥

2)
.
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Then,

∇̂fK(x) = f̂G(x)
2ck
h2cg

mG(x),

which yields

mG(x) =
1

2
h2c
∇̂fK(x)

f̂G(x)
, (8)

wherec = cg/ck. Thus, as was mentioned, Eq.8 shows that the mean shift is a normalized

vector pointing in the direction of the maximum increase increase in the density at location

x [65]. The segmentations used in this thesis were created using an implementation of

Eq.8 called EDISON [66], a system for which both the source code and binaries are freely

available online. A sample segmentation produced by the EDISON system is given in

Fig.3. Finally, note, the choice ofh (actuallyhs andhr) used to generate the segmentations

in this thesis was selected based on trial and error using theEDISON system,i.e., the

values were selected by experimenting on a few sample imagesbefore segmenting the

entire database.

(a) (b)

Figure 3: Example demonstrating the mean shift segmentation algorithm [65]. (a) Sample image, and (b)
Segmentation of (a) using the EDISON system [66].

2.3.4 Multiscale Edge Detection

Mallat’s multiscale edge detection method uses Wavelet theory to find edges in an im-

age [67, 68]. Edges are located at points of sharp variation in pixel intensity. These points

can be identified by calculating the gradient of a smoothed image (i.e. an image that has
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been blurred). Then, edge pixels are defined as those that have locally maximal gradient

magnitudes in the direction of the gradient. Formally, define a 2-D smoothing function

θ(x, y) such that its integral overx andy is equal to 1, and converges to 0 at infinity. Using

the smoothing function, one can define the functions

ψ1(x, y) =
∂θ(x, y)

∂x
and ψ2(x, y) =

∂θ(x, y)

∂y
,

which are, in fact, wavelets given the properties ofθ(x, y) mentioned above. Next, the

dilation of a function by a scaling factors is defined as

ξs(x, y) =
1

s2
ξ(
x

s
,
y

s
).

Thus, the dilation bys of ψ1, andψ2 is given by

ψ1
s(x, y) =

1

s2
ψ1(

x

s
,
y

s
) and ψ2

s(x, y) =
1

s2
ψ2(

x

s
,
y

s
).

Using these definitions, the wavelet transform off(x, y) ∈ L2(R2) at the scales is given

by

W 1
s f(x, y) = f ∗ ψ1

s(x, y),

and

W 2
s f(x, y) = f ∗ ψ2

s(x, y),

which can also be written as



W 1

s f(x, y)

W 2
s f(x, y)


 = s




∂
∂x

(f ∗ θs)(x, y)

∂
∂y

(f ∗ θs)(x, y)


 = s∇(f ∗ θs)(x, y).

Next, the modulus and angle of the gradient vector are definedrespectively as

Msf(x, y) =
√
|W 1

s f(x, y)|2 + |W 2
s f(x, y)|2,
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and

Asf(x, y) = tan−1(W 2
s f(x, y)/W 1

s f(x, y)).

These equations can be used to detect an edge and calculate its orientation. Edge pix-

els are those belonging to the modulus maximum, defined as pixels with modulus greater

than the two neighbours in the direction indicated byAsf(x, y), and the orientation of an

edge pixel is simply given by the angle of the gradient (see [67] for specific implementa-

tion details). Examples of my own implementation of Mallatt’s edge detection and edge

orientation methods are given in Fig.4.

(a) (b)

Figure 4: (a) Example demonstrating implementation of Mallat’s multiscale edge detection method [67]. (b)
Example of finding edge orientation using the same method. White represents 0 radians and black2π radians.

2.3.5 Normalized Probabilistic Rand Index

The normalized probabilistic rand index (introduced in [69] and summarized here) is a non-

parametric technique for evaluating the performance of an image segmentation algorithm.

This index is a supervised technique since evaluation is performed with respect to ground

truth images. A supervised measure provides a nice benchmark for testing purposes, since

human perceptual grouping is inherent to the evaluation of the segmentation due to the use

of ground truth images. Furthermore, the normalized probabilistic index was selected due

to its use of multiple ground truth images when evaluating a proposed segmentation, thus

taking into account multiple perceptual sources.

The NPR index has its roots in the rand index, a measure developed based on the idea

of counting pixel pairs that have the same segmentation labels. First, define an imageX =
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{x1, . . . , xN} ofN pixels and two segmentations ofX, S andS ′, where each segmentation

respectively assigns labelsli andl′i to the pixels inX. Then the rand index is given as

R(S, S ′) =
1(
N
2

)
∑

i,j

i6=j

[
Π
(
li = lj ∧ l′i = l′j

)
+ Π

(
li 6= lj ∧ l′i 6= l′j

)]
,

whereΠ is the identity function and
(

N
2

)
is the number of unique pixel pairs inX. Next, the

rand index was extended to allow for the use of more ground truth images in the evaluation

of a proposed segmentation. The idea is that observing the same pixel pair in each ground

truth image is considered a Bernoulli trial with the two outcomes being either they have the

same label or they do not. Then, the set of observations across all ground truth segmenta-

tions forms a Bernoulli distribution with expected valuepij. Thus, given a set of manual

segmentations{S1, . . . , SK}, a segment for evaluationStest, and a label ofxi denoted aslSi

whereS denotes the segment used to labelxi, the probabilistic rand index is defined as

PR(Stest, {Sk}) =
1(
N
2

)
∑

i,j

i<j

[cijpij + (1− cij)(1− pij)],

where

cij = Π(lStest
i = lStest

j ).

Finally, the normalized probabilistic rand index extends the probabilistic rand index by

normalizing with respect to its baseline. The selected baseline is the expected value of

probabilistic rand index. Consequently, the NPR index is defined as

NPR=
PR− E[PR]

max(PR)− E[PR]
,

where the maximum value is taken to be 1 and the expected valueof the PR index is given
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as

E

[
PR(Stest, {Sk})

]
=

1(
N
2

)
∑

i,j

i<j

{
E

[
Π(lStest

i = lStest
j )

]
pij

+ E

[
Π(lStest

i 6= lStest
j

]
(1− pij)

}
,

=
1(
N
2

)
∑

i,j

i<j

[
p′ijpij + (1− p′ij)(1− pij)

]
,

wherep′ij = E[Π(lStest
i = lStest

j ]. To make the baseline representative of perceptually consis-

tent groupings,p′ij is estimated from segmentations of all images for all unordered pairs.

In other words, givenΦ as the number of images in the database used for testing,p′ij is

defined as

p′ij =
1

Φ

∑

φ

1

Kφ

Kφ∑

k=1

Π(l
Sφ

k
i = l

Sφ
k

j ).

2.3.6 Grey Level Co-occurrence Matrices

Image texture is an important part of perceiving images. Texture is difficult to describe,

and is generally associated with a region of the image, rather than restricted to a specific

pixel. Generally, there are statistical and structural approaches to identifying texture [70].

The textural features used in this thesis are based on secondorder measures, as reported

in [71–73], where the approach is considered second-order,since the measures are not

derived directly from the pixel values themselves, but rather on statistics generated from

relationships between groups of two pixels given by a grey-level co-occurrence matrix.

In other words, the features are based on the average spatialrelationship between pixel

values [71].

In general, the grey level co-occurrence matrix is defined with respect to the angle and

distance between pixel pairs. However, to keep things simple, the grey level co-occurrence

matrix will first be defined with respect to horizontally adjacent pixels, which corresponds

to an angle of0◦ and a distanced = 1 in the traditional literature. Using the notation

given in [71], letLx = {1, 2, . . . , Nx} andLy = {1, 2, . . . , Ny} respectively denote the
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horizontal and vertical spatial domains of a grey level image quantized toNg levels,i.e. the

grey levels in an image are in the setG = {0, 1, . . . , Ng − 1}. Then,Ly × Lx is the set of

all pixel coordinates belonging to an imageI, whereI : Ly × Lx → G, and the grey level

co-occurrence matrix is given as

P (i, j) = |{((k, l), (m,n)) ∈ (Ly × Lx)× (Ly × Lx) :

m− k = 0, n− l = 1, I(k, l) = i, I(m,n) = j}|. (9)

For clarity, an example of Eq.9 is given graphically in Fig.5. One can add the degree and

distance to Eq.9, by the following simple modification,

P (i, j, d, 0◦) = |{((k, l), (m,n)) ∈ (Ly × Lx)× (Ly × Lx) :

m− k = 0, |n− l| = d, I(k, l) = i, I(m,n) = j}|.

For angles45◦, 90◦, and 135◦, see [71]. Finally, the following textural features can be

derived from the grey level co-occurrence matrix,

Maximum Probability max
i,j

(pij),

Contrast
Ng−1∑
i=0

Ng−1∑
j=0

(i− j)2pij,

Uniformity (also called Energy)
Ng−1∑
i=0

Ng−1∑
j=0

p2
ij,and

Homogeneity
Ng−1∑
i=0

Ng−1∑
j=0

pij

1+|i−j|
,

wherepij = P (i, j) divided by the sum of the elements inP . In brief, the maximum proba-

bility returns the strongest response ofP , contrast measures the intensity contrast between

a pixel and its neighbour, uniformity is the angular second moment, and homogeneity mea-

sures the spatial closeness of the distribution of elementsin P to the diagonal (see [74] for

further details).
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Figure 5: Example demonstrating the creation of a grey level co-occurrence matrix. (a) Quantized image,
and (b) grey level co-occurrence matrix of0◦ andd = 1.

2.3.7 Zernike Moments

There are many approaches to analyzing shapes contained in images. For example, re-

searchers in the computer vision community at Brown University are, to say the least, work-

ing on areas such as measuring the similarity between two shapes, modelling shapes from a

pattern theory perspective, shape representation and perceptual grouping [75]. Another en-

tire research area is that of the statistical theory of shapepioneered by David Kendall [76].

However, in this thesis, Zernike moments are used to provideregion-based descriptors of an

image that are invariant with respect to rotation and reflections, where the notion of the term

“moment” referred to here is that of the general theory of moments which appears in areas

of mathematics, physics, and statistics [56]. Moreover, a small set of Zernike moments

can characterize the global shape of a pattern effectively,where the lower order moments

represent the global shape, and the higher order moments represent the detail [77–79].

As given in [56], for a continuous image functionf(x, y), the Zernike moment of order

n with repetitionm is defined as

Anm =
∫ ∫

D
f(x, y)V ∗

nm(x, y)dxdy, (10)

where the double integral is defined over the unit diskD = {(x, y) : x2 + y2 ≤ 1}, n is a

non-negative integer, andm is an integer that makes result ofn−|m| even and non-negative.
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In Eq.10, Vnm(x, y) is a Zernike function defined as

Vnm(x, y) = Rnm(ρ)ejmθ,

whereρ =
√
x2 + y2, θ = tan−1(y/x), and the radial Zernike polynomialRnm(ρ) is

defined by

Rnm(ρ) =
(n−|m|)/2∑

s=0

(−1)s(n− s)!pn−2s

s!
(

n+|m|
2
− s

)
!
(

n−|m|
2
− s

)
!
.

As explained in [56], Eq.10 cannot be applied directly to digital images. Consequently,a

mapping of the digital image must occur. LetF (i, j), i = 1, . . . , N, j = 1, . . . , N denote

anN ×N image, thenF (i, j) can be mapped onto a functionf(xi, yi) defined on[−1, 1]2

according to

f(xi, yi) = F (i, j), i = 1, . . . , N, j = 1, . . . , N,

wherexi = (2i−N − 1)/N andyj = (2j −N − 1)/N . Note, it can be assumed, without

loss of generality, thatf(xi, yi) is a function with all its pixels inside the unit circle [56].

Moreover, since the image is not analog, but actually a discrete function, the following

approximation can be used to calculate the Zernike moments from sampled data

Ãnm =
∑

i

∑

j

wnm(xi, yj)f(xi, yj), (11)

wherei andj are taken such that(xi, yj) ∈ D,

wnm(xi, yj) =
∫ xi+

∆

2

xi−
∆

2

∫ yj+
∆

2

yj−
∆

2

V ∗
nm(x, y)dxdy,

and∆ = 2/N is the pixel width/height. Finally,wnm(xi, yj) can be approximated by a

simple one-point numerical integration formula

wnm(xi, yj) ≈ ∆2V ∗
nm(xi, yj). (12)
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Note, it was shown in [56] that using Eq.11 & 12 is a highly inaccurate approach to

computing Zernike moments due to both the geometric error caused by the difference be-

tween the total area covered by the pixels in Eq.11and the actual area of the unit circle, as

well as the error due to the approximation ofwnm(xi, yj) in Eq.12. Instead, a method for

calculating Zernike moments in polar coordinates (rather than the Cartesian method given

above) is given that eliminates the previously mentioned errors. Nevertheless, Eq.11& 12

were still used to generate rotationally invariant features due to the following reasons. First,

only low order moments were used (e.g.n ≤ 4), and evidence in [56] demonstrated that the

results of using only low orders of Zernike moments producedmagnitudes with acceptable

level of errors, both in comparisons of the magnitudes on a constant image and for use in re-

constructing images. Also, others have reported success using low order Zernike moments

for content-based image retrieval (see,e.g.[80,81]), and implementation of Eq.11& 12 is

simple and fast.

2.3.8 CIELUV Colour Space

The CIE 1976L∗u∗v∗ Colour Space (also written CIELUV) is a uniform colour space

where the Euclidean distances between points in the space isproportional to human per-

ception of differences in colour [82]. In contrast, the RGB colour space represents a non-

uniform space with respect to the human visual system. TheL∗u ∗ v∗ colour components

are given (in terms of the XYZ colour components) by the following equations [83]:

L∗ = 116
( Y
Yn

)1/3 − 16, (
Y

Yn

)
> 0.008856,

L∗ = 903.3(
Y

Yn

)
, (
Y

Yn

)
≤ 0.008856,

u∗ = 13L∗(u′ − u′n),

v∗ = 13 ∗ L∗(v′ − v′n),
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where

u′ = 4X/(X + 15Y + 3Z), u′n = 4Xn/(Xn + 15Yn + 3Zn),

v′ = 9Y/(X + 15Y + 3Z), v′n = 9Yn/(Xn + 15Yn + 3Zn),

andYn, Xn, andZn are based on the reference white point. For the results presented in this

thesis, the D50 reference white point was used giving valuesof Yn = 1, Xn = 0.964221,

andZn = 0.825211. Similarly, the XYZ colour components can be calculated using




X

Y

Z




=




0.607 0.174 0.200

0.299 0.587 0.114

0.000 0.006 1.116







R

G

B



.
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3 Tolerance Near Sets

Disjoint sets containing objects with similar descriptions are near sets. Similarity is de-

termined quantitatively via some description of the objects. Near set theory provides a

formal basis for identifying, comparing, and measuring resemblance of objects based on

their descriptions,i.e. based on the features that describe the objects. The discovery of near

sets begins with identifying feature vectors for describing and discerning affinities between

sample objects. Objects that have, in some degree, affinities in their features are consid-

eredperceptually neareach other. Groups of these objects, extracted from the disjoint sets,

provide information and reveal patterns of interest.

Tolerance near sets are near sets3 defined by a description-based tolerance relation.

Tolerance relations provide a view of the world without transitivity [84]. Consequently,

tolerance near sets provide a formal foundation foralmost solutions, solutions that are

valid within some approximation, which is required for realworld problems and applica-

tions [84]. In other words, tolerance near sets provide a basis for a quantitative approach

for evaluating the similarity of objects without requiringobject descriptions to be exact.

Sossinsky addresses the question of “Why Tolerance?”,i.e., why consider the tolerance

relation at all [84]. One answer, which is the main focus of this thesis, is that practical

applications deal with imprecise data and that solutions only need to be accurate to a degree,

i.e. to within some tolerance. Other answers to the question of “why tolerance?” (outside

the scope of this thesis) consider the fact that tolerance fits quite nicely in other areas of

mathematics, and that tolerance can be convenient for many existing mathematical studies.

3.1 History

The idea of tolerance first surfaced in Poincaré’s work in 1905 in which he reflects on exper-

iments performed by Ernst Weber in 1834, and Gustav Fechner’s insight in 1850 [84–87].

Weber (Fechner’s doctoral supervisor) was interested in the sense of touch and kinethesis

3See Section2.1for a comprehensive introduction to near set theory.

31



and was the first to discover that the sense of touch consistedof pressure, temperature, and

pain [87]. Moreover, Weber performed experiments to determine our ability to perceive

two pin points on the surface of our skin. He would blindfold asubject and use a compass,

with increasing distances between the pin points, to determine the threshold at which a

person can perceive the points as two. He labelled this pointas the two-point threshold.

Weber discovered that our skin is partitioned into regions based on the domain of sensory

nerves, and we perceive the pin points as one if they fall intothe same region. For instance,

he found the sensitivity to be the highest on the tip of the tongue, followed by the volar side

of the finger tip. In contrast, the least sensitive part was the upper part of the spine and the

middle of the upper arm [88]. While Weber was not investigating the concept of tolerance,

this idea can be easily identified in his experiments. For instance, his results indicate that

there is a specific tolerance on the distance between two points under which they are per-

ceived as one (i.e. indistinguishable), which varies with the density of nerves in our skin.

If for a specific region on the skin this distance was labelledε, then any distance less than

ε would be classified in the same category, namely a single pin prick.

Both Weber and Fechner were also interested in our ability to detect the difference in

a pair of weights [87]. Specifically, Weber performed two types of experiments, either the

weights were placed on a subject’s hands or a subject was asked to lift the weights. In each

case a standard weight was applied to one hand, and the subject was asked to determine

if the unknown weight was heavier, the same, or lighter than the standard. The results

of these experiments led Weber to introduce a term calledjust noticeable differences, the

point at which a person is able to perceive the difference in astimulus presented to the

senses, and to introduce a law (labelled Weber’s Law by Fechner) stating that detection

of a stimulus is directly dependent on the amount of stimulusalready present [88]. For

example, one must speak with greater volume when having a conversation in a noisy room

versus a quiet room. Fechner in his interest in the relationship between the physical world

and our sensations, built on Weber’s law [86]. He realized that just noticeable differences

represented a psychological difference and developed a lawthat states that sensation is
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proportional to the logarithm of the stimulus.

Poincaŕe’s work on tolerance was inspired by Fechner, but the key difference is

Poincaŕe’s work marked a shift from stimuli and sensations to an abstraction in terms of

sets together with an implicit idea of tolerance. Although the general idea of tolerance

is present in an essay titledSpace and the Sensespublished in 1913 [89], the concept

of a tolerance space is directly implied in a discussion on Fechner’s law (with respect

to the weight experiments) in the bookScience and Hypothesis[85], a fact identified by

Sossinsky when he states Poincaré “discerned” a tolerance space but did not write out the

mathematics [84]. A tolerance space〈X, ξ〉 consists of a setX and a binary relationξ on

X (ξ ⊂ X ×X) that is reflexive (for allx ∈ X, xξx) and symmetric (for allx, y ∈ X, if

xξy, thenyξx) but transitivity ofξ is not required [84,90]. The idea of a tolerance space is

apparent when Poincaré states:

It has, for instance, been observed that a weightA of 10 grammes and a weight
B of 11 grammes produced identical sensations, that the weightB could no longer
be distinguished from a weightC of 12 grammes, but that the weightA was readily
distinguished from the weightC. Thus the rough results of the experiments may be
expressed by the following relations:A = B, B = C, A < C, which may be regarded
as the formula of the physical continuum. But here is an intolerable disagreement with
the law of contradiction, and the necessity of banishing this disagreement has com-
pelled us to invent the mathematical continuum. We are therefore forced to conclude
that this notion has been created entirely by the mind, but it is experiment that has
provided the opportunity. We cannot believe that two quantities which are equal to a
third are not equal to one another, and we are thus led to suppose thatA is different
from B, andB from C, and that if we have not been aware of this, it is due to the
imperfections of our senses [85].

By separating the three weights into two sets{w10, w11} and {w11, w12}, Poincaŕe has

implicitly identified a tolerance space〈W,'wt,ε〉, wherewt : W → R and for a sensation

sensitivity thresholdε (implicit in what Poincare writes), a tolerance relation can be written

as

'wt,ε= {(x, y) ∈ W ×W : ‖ wt(x)− wt(y) ‖
1
≤ ε},

where‖ · ‖
1

is theL1 norm.

Next, the idea of tolerance is formally introduced by Zeeman[90] with respect to the
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brain and visual perception. Zeeman makes the observation that a single eye cannot iden-

tify a 2D Euclidean space because the Euclidean plane has an infinite number of points.

Instead, we see things only within a certain tolerance. Of particular importance is the

first formal definition of a tolerance space and the tolerancerelation. Continuing, Sossin-

sky [84] presents homology and homotopy theories on tolerance spaces and gives practical

applications. Finally, the contributions of this thesis involve tolerance near sets introduced

by Peters [36,91], which combines near set theory (see,e.g., Section2.1) with the ideas of

tolerance spaces and relations.

4 Perceptual Systems4

A logical starting point for a discussion on near set theory begins with establishing a basis

for describing elements of sets. All sets in near set theory consist of perceptual objects.

Definition 13. Perceptual Object. A perceptual objectis something perceivable that has

its origin in the physical world.

A perceptual object is anything in the physical world with characteristics observable to the

senses such that they can be measured and are knowable to the mind. Examples of per-

ceptual objects include patients, components belonging toa manufacturing process, and

camera images. Here, the termperceptionis considered relative to measurable characteris-

tics called the object’s features.

In keeping with the approach to pattern recognition suggested by M. Pavel [52], the

features of an object are quantified by probe functions.

Definition 14. Probe Function[21,40]. A probe functionis a real-valued function repre-

senting a feature of a perceptual object.

In this work, probe functions are defined in terms of digital images such as: colour, texture,

contour, spatial orientation, and length of line segments along a bounded region. In the

4The theory presented in this Section is a reproduction of Section 2.1.1and is reproduced here in the
interest of clarity for those who skip directly to this section.
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context of near set theory, objects in our visual field are always presented with respect to

the selected probe functions. Moreover, it is the probe functions that are used to measure

characteristics of visual objects and similarities among perceptual objects, making it pos-

sible to determine if two objects are associated with the same pattern without necessarily

specifying which pattern (as is the case when performing classification).

Next, a perceptual system is a set of perceptual objects, together with a set of probe

functions.

Definition 15. Perceptual System[25]. A perceptual system〈O,F〉 consists of a non-

empty setO of sample perceptual objects and a non-empty setF of real-valued functions

φ ∈ F such thatφ : O → R.

The notion of a perceptual system admits a wide variety of different interpretations that

result from the selection of sample perceptual objects contained in a particular sample

spaceO. Two examples of perceptual systems are: a set of images together with a set

of image processing probe functions, or a set of results froma web query together with

some measures (probe functions) indicating,e.g., relevancy or distance (i.e. geographical

or conceptual distance) between web sources.

Combining Definitions13& 14, the description of a perceptual object within a percep-

tual system can be defined as follows.

Definition 16. Object Description. Let 〈O,F〉 be a perceptual system, and letB ⊆ F be

a set of probe functions. Then, thedescriptionof a perceptual objectx ∈ O is a feature

vector given by

φB(x) = (φ1(x), φ2(x), . . . , φi(x), . . . , φl(x)),

wherel is the length of the vectorφB, and eachφi(x) in φB(x) is a probe function value

that is part of the description of the objectx ∈ O.

Note, the idea of a feature space is implicitly introduced along with the definition of object

description. An object description is the same as a feature vector as described in tradi-

tional pattern classification [53]. The description of an object can be considered a point
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in an l-dimensional Euclidean spaceRl called a feature space. As was mentioned in the

introduction, near set theory is concerned with the nearness of objects based on their de-

scriptions. Thus, the relationship between objects is discovered in a feature space that is

determined by the probe functions inB.

4.1 Perceptual Tolerance Relation

The introduction to a tolerance view of near sets grew out of aneed for a relation less re-

strictive than the equivalence condition of the indiscernibility relation to facilitate observa-

tion of similar objects and associations in a perceptual system. Specifically, this approach is

useful in real world problems (especially when dealing withcomponents in images) where

a probe function value for two objects perceived to be “the same” is rarely an exact match.

As a simple example, consider Fig.6 along with a probe function that returns the number of

pegs on each block. Using the indiscernibility relation on these blocks produces six differ-

ent classes, each containing only one object, and no new information is revealed. However,

allowing classes to be formed where the number of pegs on eachblock in the class must

be within five of all the other blocks produces the sets of objects shown in Fig.6b. The

result is three classes of objects that present perceptual information about the relationship

of these blocks to one another (with respect to the selected probe function) that was not

present using the indiscernibility relation. Namely, these sets now represent the concept of

small, medium, and large blocks. Moreover, by relaxing the equivalence relation, objects

can belong to more than one class as shown in Fig.6c. This matches human descriptions of

objects where, for example, one could say “in terms of the number of pegs, the block with

six pegs is kind of small,” which is reflected by the block belonging to both the medium

and small classes.

As was mentioned in Section3.1, a tolerance space can be defined as follows.

Definition 17. Tolerance Space[84, 90]LetO be a set of sample perceptual objects, and

let ξ be a binary relation (called a tolerance relation) onX (ξ ⊂ X ×X) that is reflexive
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Figure 6: Example showing the need to relax the equivalence conditionof Definition5. (a) Set of six objects
together with the number of pegs of each object, (b) classes formed by grouping objects where the difference
in the number of pegs is less than five, and (c) example demonstrating that objects can belong to more than
one class when the equivalence relation is relaxed.

(for all x ∈ X, xξx) and symmetric (for allx, y ∈ X, if xξy, thenyξx) but transitivity ofξ

is not required. Then a tolerance space is defined as〈X, ξ〉.

Thus, a specific tolerance relation is given in Definition18.

Definition 18. Perceptual Tolerance Relation[36,91] (see [33,39] for applications). Let

〈O,F〉 be a perceptual system and letε ∈ R. For everyB ⊆ F, theperceptual tolerance

relation∼=B,ε is defined as follows:

∼=B,ε= {(x, y) ∈ O ×O : ‖ φ(x)− φ(y) ‖
2
≤ ε},

where‖ · ‖
2

is theL2 norm. For notational convenience, this relation is written∼=B instead

of∼=B,ε with the understanding thatε is inherent to the definition of the tolerance relation.

Notice the relation∼=B,ε is defined with respect to the description of a pair of objects, i.e.,

objects resemble each other when the feature vectors used todescribe them are within some

epsilon value. Furthermore, the perceptual tolerance relation differs from the indiscernibil-

ity relation (see Section2.1) by allowing‖ · ‖
2
≤ ε instead of requiring‖ · ‖

2
= 0. In fact,

Definition18is a generalization of the indiscernibility relation, a special case occurring for

ε = 0, a fact that is, in part, highlighted in the following simpleexamples on the effect of

the perceptual tolerance relation.
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As defined in Section2.1, an equivalence class is a set of objects that satisfy the indis-

cernibility relation,i.e. the descriptions of objects in an equivalence class are all the same.

A visualization of a set of equivalence classes is given in Fig.7awhere the oval represents a

set of objects and each colour represents an equivalence class. Moreover, in this figure, the

position of class is also relevant, which is not always the case. Here, the distance between

the object descriptions in feature space increases with thedistance between classes in the

image. In accordance, Fig.7b & 7c represents the classes that result from a low and high

value of epsilon, which respectively correspond to the object descriptions of two adjacent

equivalence classes satisfying Definition18, and the object descriptions of four adjacent

classes satisfying Definition18. Observe that low values of epsilon tend to produce a large

number of small classes, and high value of epsilon tend to produce a small number of large

classes.

(a) (b) (c)

Figure 7: Example highlighting the effect of the perceptual tolerance relation. (a) A set of objects represented
by the oval, each colour represents an equivalence class (see Section2.1), and the distance between the object
descriptions in feature space increases with the distance between classes (b) the classes produced by a “low”
value of epsilon such that the descriptions of two adjacent equivalence classes satisfy Definition18, and (c)
the classes produced by a “high” value of epsilon such that the descriptions of four adjacent equivalence
classes satisfy Definition18.

The next example demonstrates the effect of the perceptual tolerance relation on real

data. Consider Table1 that contains 20 objects with|φ(xi)| = 1. Lettingε = 0.1 gives the
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Table 1: Tolerance Class Example

xi φ(x) xi φ(x) xi φ(x) xi φ(x)

x1 .4518 x6 .6943 x11 .4002 x16 .6079

x2 .9166 x7 .9246 x12 .1910 x17 .1869

x3 .1398 x8 .3537 x13 .7476 x18 .8489

x4 .7972 x9 .4722 x14 .4990 x19 .9170

x5 .6281 x10 .4523 x15 .6289 x20 .7143

following classes:

{{x1, x8, x10, x11}, {x1, x9, x10, x11, x14},

{x2, x7, x18, x19},

{x3, x12, x17},

{x4, x13, x20}, {x4, x18},

{x5, x6, x15, x16}, {x5, x6, x15, x20},

{x6, x13, x20}}

Observe that each pair of objects in each of the above classessatisfies the condition‖

φ(x) − φ(y) ‖2≤ ε, and that almost all of the objects appear in more than one class.

Moreover, there would be twenty classes, if the indiscernibility relation were used since

there are no two objects with matching descriptions.

In each of the previous examples, there was a need for structures that correspond to the

equivalence class under the tolerance relation,i.e. there is a need to define a method by

which objects are grouped together when transitivity no longer applies. In an equivalence

class, an object is added to a class if its description matches the description of the objects

already in the class, which by definition are all the same. However, the lack of transitivity

gives rise to the two very different classes given in the following definitions.

Definition 19. Neighbourhood. Let 〈O,F〉 be a perceptual system and letx ∈ O. For a
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setB ⊆ F andε ∈ R, a neighbourhoodis defined as

N(x) = {y ∈ O : x ∼=B,ε y}.

An example of a neighbourhood in a 2D feature space is given inFig. 8, where the position

of all the objects are given by the numbers 1 to 21, and the neighbourhood is defined with

respect to the object labelled 1. Notice that the distance between all the objects and object

1 is less than or equal toε = 0.1, but that not all the pairs of objects in the neighbourhood

of x satisfy the tolerance relation.
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Figure 8: Example demonstrating the difference between a neighbourhood and a tolerance class in 2 dimen-
sional feature space. The neighbourhood is all the objects within the circle, and the tolerance class is shown
in orange.

In contrast, all the pairs of objects within a pre-class mustsatisfy the tolerance relation

as given in the next definitions.

Definition 20. Pre-Class. Let 〈O,F〉 be a perceptual system. ForB ⊆ F andε ∈ R, a set

X ⊆ O is a pre-classiff x ∼=B,ε y for any pairx, y ∈ X.

Definition 21. Tolerance Class. A maximal pre-class with respect to inclusion is called a

tolerance class.
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An example of a tolerance class is given by the set of objects coloured orange in Fig.8 since

no object can be added to the set and still satisfy the condition that any pairx, y ∈ X must

be within ε of each other. Also, the example given in Fig.7 was created with tolerance

classes in mind, and the classes formed from the data in Table1 are clearly tolerance

classes.

As was mentioned in the introduction to this section, objects can belong to more than

one tolerance class. Consequently, the following notation is required to differentiate be-

tween classes and facilitate discussions in subsequent sections. The set of all tolerance

classes using only the objects inO is given byH∼=B,ε
(O) (also called the cover ofO), a

single tolerance class is represented byC ∈ H∼=B,ε
(O), and the set of all tolerance classes

containing an objectx is denoted byCx ⊂ H∼=B,ε
(O).

Finally, this section is concluded by introducing another tolerance relation similar to

the weak indiscernibility relation given in Section2.1, where resemblance is defined with

respect to a single probe function.

Definition 22. Weak Perceptual Tolerance Relation [24] Let 〈O,F〉 be a perceptual

system and letε ∈ R, φi ∈ F. Then, theweak perceptual tolerance relationuB,ε is defined

as follows:

uB,ε= {(x, y) ∈ O ×O : ∃φi ∈ F � |φi(x)− φi(y)| ≤ ε}.

The weak tolerance relation can provide new information or relationships about a set of

objects for a given application. For instance, consider a scenario where near set theory is

applied to an existing problem or process where objects are already being associated with

feature values; examples include a problem already formulated in terms of near sets without

using the weak perceptual tolerance relation, or problems in other areas such as pattern

recognition or image analysis. In other words, a set of probefunctions,B, has already been

selected to solve the problem. In such a scenario, the perceptual tolerance relation could

produce a covering as given in Fig.9a(where each colour represents a difference tolerance
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class), indicating these two sets of objects, representingsome perceptual information in the

original problem domain, are not related to each other. However, selecting a singleφi ∈ B

could produce the tolerance classes shown in Fig.9b where it is now apparent that there is

some relationship between these two sets of objects.

(a) (b)

Figure 9: Example demonstrating the practical application of Definition 22. (a) Covering of two sets showing
no relationship between, and (b) covering created using Definition 22showing a relationship between the two
sets.

4.2 Tolerance Near Sets

The termrelationshipwas mentioned in the explanation of Fig.9; however, a definition

on which the relationship is based was not given (although itmay have been clear from

the context). Recall that sets of objects that have similar descriptions are called near sets,

and a method for determining similarity was provided by way of the perceptual tolerance

relation (and to a lesser degree with the weak perceptual tolerance relation). Consequently,

the following two definitions enunciate the fundamental notion of nearness between two

sets and provide the foundation of the results presented in this thesis.

Definition 23. Tolerance Nearness Relation[36, 91]. Let 〈O,F〉 be a perceptual system

and letX,Y ⊆ O, ε ∈ R . A setX is near to a setY within the perceptual system

〈O,F〉 (X./
F
Y ) iff there existsx ∈ X andy ∈ Y and there isB ⊆ F such thatx ∼=B,ε y.

Definition 24. Tolerance Near Sets[36, 91]. Let 〈O,F〉 be a perceptual system and let

ε ∈ R,B ⊆ F. Further, letX,Y ⊆ O, denote disjoint sets with coverings determined by

the tolerance relation∼=B,ε, and letH∼=B,ε
(X), H∼=B,ε

(Y ) denote the set of tolerance classes
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for X,Y , respectively. SetsX,Y are tolerance near setsiff there are tolerance classes

A ∈ H∼=B,ε
(X), B ∈ H∼=B,ε

(Y ) such thatA./
F
B.

Observe that two setsX,Y ⊆ O are tolerance near sets, if they satisfy the tolerance

nearness relation. Also, notice that Tolerance near sets are a variation of the original defini-

tion of near sets using the indiscernibility relation [21].Moreover, the original definition of

tolerance near sets given in [36,91] defines nearness in terms of pre-classes (as opposed to

tolerance classes as given in Definition24), however the results presented in this thesis are

obtained using tolerance classes, and so the definition was adjusted accordingly. Finally,

an example of tolerance near sets is given in Fig.9b, where the colours represent different

tolerance classes, and classes with the same colour represent the situation whereA./
F
B .

4.3 Nearness Measure

The nearness measure was created out of a need to determine the degree that near sets

resemble each other, a need which arose during the application of near set theory to the

practical applications of image correspondence and content-based image retrieval. Specifi-

cally, the nearness measure was introduced by Henry and Peters in [92]. At the same time,

the nearness measure was also introduced by Henry and Petersin [33, Section VII.A, pp.

964-965] where it was given as a solution to the problem of image resemblance of MRI

images. Since then, the notation of the nearness measure hasbeen refined (as reported

in [93]) and it has been applied to the problems of image resemblance and correspon-

dence [36–38, 91, 94–96] which is closely related to content-based image retrieval [93],

i.e. the problem of retrieving images based on the perceived objects within the image

rather than based on semantic terms associated with the image. The nearness measure

has also been applied to patterns of observed swarm behaviour stored in tables called

ethograms, where the goal is to measure the resemblance between the behaviours of dif-

ferent swarms [51]. In each of these applications, the nearness measure has been applied

to problems formulated either in terms of near sets and the indiscernibility relation or as

tolerance near sets and the perceptual tolerance relation.
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The catalyst for the creation of the nearness measure was theobservation that under

Definition24disjoint sets are either considered near, or not,i.e. there is no middle ground.

However, the practical application of near set theory requires a method for quantifying the

nearness of sets, as in, for example, retrieving images froma database that are similar to

a query image. In this case, a positive measure of similaritypoints to the resemblance

between a query image and the retrieved images. In essence, the nearness measure presents

a systematic approach to determining the degree of similarity between a pair of disjoint sets,

an idea that can be visualized by asking “which pair of sets inFig. 10are more similar?”

(a) (b)

Figure 10: Example of degree of nearness between two sets, where each colour corresponds to an equivalence
class. (a) High degree of nearness, and (b) low degree of nearness.

The nearness measure was first proposed in working with the indiscernibility relation

and equivalence classes. The approach was that the degree ofnearness of sets in a percep-

tual system is determined by the cardinalities of the equivalence classes that have the same

description (an idea that is visualized in Fig.11). For sets that are considered “more simi-

lar” as in Fig.10a, there should be more pairs of equivalence classes (from therespective

sets) that have matching descriptions. Consequently, the nearness measure is determined

by counting the number of objects in equivalence classes that have matching descriptions.

Thus, the sets in Fig.10aare closer (more near) to each other in terms of their descriptions

than the sets in Fig.10b. Moreover, this notion can be generalized to tolerance classes as is

the case in the following definition.

Definition 25. Nearness Measure[33,93]. Let〈O,F〉 be a perceptual system, withε ∈ R,

andB ⊆ F. Furthermore, letX andY be two disjoint sets and letZ = X ∪ Y . Then a
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Figure 11: Visualization of nearness measure based on equivalence classes and the indiscernibility rela-
tion. Similar images should produce equivalence classes that are evenly divided betweenX andY . This is
measured by counting the number of objects that belong to sets X andY for each equivalence class, and
comparing the results.

nearness measurebetween two sets is given by

tNM∼=B,ε
(X,Y ) =




∑

C∈H∼=B,ε
(Z)

|C|



−1

·
∑

C∈H∼=B,ε
(Z)

|C|min(|C ∩X|, |[C ∩ Y |)
max(|C ∩X|, |C ∩ Y |) .

As was explained, the idea behind Definition25 is that similar sets should produce

equivalence classes with matching descriptions. However,the addition of the perceptual

tolerance relations subtly adds to the complexity of calculating the measure. The main idea

stays the same, namely, similar sets should produce classesthat are evenly divided between

the two setsX andY . It is the approach to calculating the measure that is important with

the addition of the tolerance relation. For instance, usingthe indiscernibility relation it

is simply a matter of determining the equivalence classes ofobjects in both sets and then

comparing the description of each equivalence class in setX to the description of each

equivalence class in setY . In contrast, the process of calculating the measure under the

perceptual tolerance relation involves first finding the tolerance classes of all objects in

the union ofX andY . This approach is best because of the fact that all objects within

a tolerance class must satisfy the tolerance relation. Because of this fact, a comparison
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of two tolerance classes cannot be made directly without comparing all the objects in one

class with all the objects in the other class. As a result, a more efficient approach is to find

the tolerance classes of the union ofX andY , and then determine which portion of each

tolerance class (form the covering ofZ) belongs toX andY , which is whyC is intersected

with X andY in above equation.

In any event, the measure is calculated by counting the number of objects that belong to

setsX andY for each tolerance class, and then comparing these counts asa proper fraction

(guaranteed by the min and max functions). Then, the final value of the measure is simply a

weighted average of all the fractions. A weighted average was selected to give preference to

larger tolerance classes with the idea that a larger tolerance class contains more perceptually

relevant information. Calculating the proper fraction for asingle tolerance classC is shown

graphically in Fig.12, where Fig.12ais a single sample tolerance class in a 3D feature

space, and Fig.12bcontains two disjoint sets of objects, where the objects arerepresented

by small square blocks laid out in rows and columns, and only the members of the tolerance

class in Fig.12aare shown in green. Observe that a tolerance class in featurespace can be

distributed throughout the sets, and that the nearness measure would compare the number

of objects from the tolerance class in setX to the number of objects from the tolerance

class in setY . In this case, the ratio would be close to 1 because the numberof objects in

both setsX andY are nearly the same.

(a) (b)

Figure 12: Example relating tolerance class objects to their coordinates within a pair of images. (a) Tolerance
class in 3 dimensional feature space. (b) Two disjoint sets of objects, where the objects are represented by
small square blocks laid out in rows and columns, and only themembers of the tolerance class in Fig.12aare
shown in green.

The nearness measure produces values in the interval[0, 1], where, for a pair of sets
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X,Y , a value of 0 represents no resemblance in terms of the probe functions inB, and a

value of 1 indicates the setsX,Y completely resemble each other, a fact that can be seen

by calculating the nearness measure on a single set,i.e. tNM∼=B,ε
(X,X) = 1. In addition,

the nearness measure provides a methodical approach for determining whether two sets are

tolerance near sets as seen in the following proposition andits corollary.

Proposition 1. A nearness measure oftNM∼=B,ε
(X,Y ) = 0 indicates that the setsX,Y

are not tolerance near sets.

Proof. A tNM∼=B,ε
(X,Y ) = 0 is produced by either the empty set (i.e. Z = X ∪ Y = ∅)

or each tolerance class inH∼=B,ε
(Z) is either completely a subset ofX or completely a

subset ofY . In other words, there is no tolerance class that consists ofobjects from both

X andY . Consequently, there is nox ∈ X andy ∈ Y such thatx ∼=B,ε y, and so, by

Definitions23& 24, the setsX andY are not tolerance near sets.

Corollary 1. A nearness measure oftNM∼=B,ε
(X,Y ) > 0 indicates that the setsX,Y are

tolerance near sets.

Proof. A tNM∼=B,ε
(X,Y ) > 0 is produced, if there is at least one tolerance classC ∈

H∼=B,ε
(Z) such thatX ∩ C 6= ∅ andY ∩ C 6= ∅. Consequently, there must bex ∈ X

andy ∈ Y that satisfiesx ∼=B,ε y, and so, by Definitions23 & 24, the setsX andY are

tolerance near sets.

Next, a concrete example of calculating the nearness measure is given with the aid of

Fig. 13. Assume each of Fig.13a- 13eis a set of objects, where each square represents

100 objects, and the different colours correspond to tolerance classes (with each object

belonging to only one class). Thus, Fig.13aconsists of 400 objects distributed into three

classes of 200, 100, and 100 objects, respectively. Further, assume all pairs of objects taken

from two different classes that share the same colour will satisfy the perceptual tolerance

relation5. The results of comparing the set in Fig.13awith itself and then the remaining

5Generally, the approach is not to compare separate coverings (as in this example), but to calculate the
nearness measure based on the covering obtained from the union of the sets being measured. However, the
example was presented in this manner in the interest of clarity.
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four other sets is given in the caption of Fig.13. Notice the nearness measure ranges from

1, produced by calculating the measure on a single set, to 0, produced by sets that are

completely dissimilar. For the most part, the results of calculating the nearness measure

in this example matches intuition. For example, Fig.13a& 13b differ only by the lower

left tolerance class, thus one would naturally come to the conclusion that these two sets

are 75% similar. In contrast, when considering Fig.13a& 13c, one might venture that

half of objects of each set belong to classes that are shared by both sets. Consequently, the

nearness measure should be 0.5. However, this does not accurately reflect the perceptual

information contained in each of these classes. For instance, using the data given in Table2,

the tolerance nearness measure between Fig.’s13a& 13bis calculated as

tNM∼=B,ε
(8a,8b) =

1

800

(
1 · 400 + 1 · 200

)
= 0.75,

and the nearness measure between Fig.’s13a& 13cis calculated as

tNM∼=B,ε
(8a,8c) =

1

800

(
0.5 · 300 + 1 · 200

)
= 0.4375.

Observe,tNM∼=B,ε
(8a,8c) = 0.4375 since the black tolerance class consisting of 200 ob-

jects represents half of the perceptual information of the set in Fig.13c(and a quarter of the

total perceptual information in both sets), yet it is not reflected at all by the set in Fig.13a.

Furthermore, the grey tolerance class (consisting of objects from both classes) represents

roughly 38% of the perceptual information in both sets, yet only 1/3 of the class is common

to both sets. Consequently, while half of each set shares the same label, less than half of

the perceptual information in the union of these two sets is common to both, a fact that is

reflected in the nearness measure.
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(a) (b) (c)

(d) (e)

Figure 13: Example of calculatingtNM∼=B,ε
(X,Y ) by comparing the set in (a) with itself and the remaining

four. tNM∼=B,ε
(X,Y ) = {1, 0.75, 0.4375, 0.25, 0} for comparing set (a) with itself and with the sets (b), (c),

(d), and (e).

Table 2: NM∼=B
Calculation Example

Covering Tolerance Class TC Size Object inX Objects inY TC Ratio

400 200 200 1

100 100 0 0

100 0 100 0

200 100 100 1

300 200 100 0.5

100 100 0 0

200 0 200 0

200 100 100 1

4.4 Finding classes

The practical application of the nearness measure rests on the ability to efficiently find all

the classes for a setZ = X ∪ Y . In the case whereε = 0, the process is straightforward,

i.e., the first object is assigned to a tolerance class (which is anequivalence class since,ε =

0), then the description of each subsequent object is compared to objects in each existing

tolerance class. If a given object’s description does not match any of the descriptions of the

existing tolerance classes, then a new class is created. Thus, the algorithm runtime ranges

from orderO(|Z|2) in the worst case, which occurs when none of the object descriptions

match, toO(|Z|), which occurs when all the object descriptions are equivalent. In practise,
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the runtime is somewhere between these two extremes.

The approach to finding tolerance classes in the case whereε 6= 0 is based on the

observations presented in the following Propositions.

Proposition 2. All tolerance classes containingx ∈ O are subsets of the neighbourhood

of x,N(x).

Proof. Given a tolerance space〈O,∼=B,ε〉 and tolerance classA ∈ H∼=B,ε
(O), then(y, z) ∈

∼=B,ε for everyy, z ∈ A. LetN∼=B,ε
(x) be a neighbourhood ofx ∈ O and assumex ∈ A.

For everyy ∈ A, (x, y) ∈ ∼=B,ε. Hence,A ⊂ N∼=B,ε
(x). As a result,N∼=B,ε

(x) is superset of

all tolerance classes containingx.

Proposition 3. Letz1, . . . , zn ∈ Z be a succession of objects, called query points, such that

zn ∈ N(zn−1)\zn−1, N(zn) ⊆ N(zn−1)\zn−1 ⊆ . . . ⊆ N(z1)\z1. In other words, the se-

ries of query points,z1, . . . , zn ∈ Z, is selected such that each subsequent objectzn (where

zn 6= zn−1) is obtained from the neighbourhoodN(zn−1), that is created only using objects

from the previous neighbourhood. Then, under these conditions, the set{z1, . . . , zn} is a

pre-class.

Proof. For n ≥ 2, let S(n) be the statement that{z1, . . . , zn} is a pre-class given the

conditions in Proposition3.

BASE STEP (n = 2): Let z1 ∈ Z be the first query point, and letN(z1) be the first

neighbourhood. Next, letz2 represent the next query object. Sincez2 must come from

N(z1), and all objects inx ∈ N(z1) satisfy the tolerance relationz1
∼=B,ε x, S(2) holds.

INDUCTIVE STEP: Fix somek ≥ 2 and suppose that the inductive hypothesis holds,i.e.,

{z1, . . . , zk} is a pre-class, and choosezk+1 fromN(zk)\zk. SinceN(zk)

⊆ N(zk−1)\zk−1 ⊆ . . . ⊆ N(z1)\z1, zk+1 must satisfy the perceptual tolerance relation

with all the objects in{z1, . . . , zk}. Consequently,{z1, . . . , zk+1} is also a pre-class.

Therefore, by MI,S(n) is true for alln ≥ 2.
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Corollary 2. Let z1, . . . , zn ∈ Z be a succession of objects, called query points, such that

zn ∈ N(zn−1)\zn−1, N(zn) ⊆ N(zn−1)\zn−1 ⊆ . . . ⊆ N(z1)\z1. In other words, the se-

ries of query points,z1, . . . , zn ∈ Z, is selected such that each subsequent objectzn (where

zn 6= zn−1) is obtained from the neighbourhoodN(zn−1), that is created only using objects

from the previous neighbourhood. Then, under these conditions, the set{z1, . . . , zn} is a

tolerance class if|N(zn)| = 1.

Proof. Since the cardinality ofN(z1) is finite for any practical application, and the con-

ditions given in Corollary2 dictate that each successive neighbourhood will be smaller

than the last, there is an such that|N(zn)| = 1. By Proposition3 the series of query points

{z1, . . . , zn} is a pre-class, and by Proposition2 there are no other objects that can be added

to the class{z1, . . . , zn}. As a result, this pre-class is maximal with respect to inclusion,

and by definition is called a tolerance class.

The above observations are visualized in Fig.14 using the example first introduced in

Fig. 8, where the following conventions are used in the figures. In this case, only the first

21 objects ofZ are shown, where each object is represented by a number from 1to 21. A

neighbourhood is represented by the colour grey. For example, the entire circle in Fig.14a

is grey because it represents the neighbourhood of object1, i.e. N(1). Similarly, the grey

portion of Fig.14brepresents the neighbourhood of object20 only using the objects from

N(1) excluding object1. In the above propositions and proofs this is labelled asN(20) ⊆

N(1)\1. Also, note these figures gives examples of the portion of theset of objects not

contained in a neighbourhood. These areas are represented by the colours red, pink, green,

and yellow; and an example can be seen in Fig.14bwhere the area shaded red is the part of

N(1) that does not satisfy the tolerance relation with20. Next, objects coloured black (as

opposed to blue) are objects that have been added to the potential tolerance class (called

a pre-class) and are not considered part of the neighbourhood. For instance, in Fig.14b

{1} is black, in Fig.14c {1, 20} are coloured black, in Fig.14d{1, 20, 10} are coloured

black,etc. Moreover, objects that are coloured blue satisfy the tolerance relation with all

the black objects in the potential tolerance class (again, also known as a pre-class), but not
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necessarily with all the other objects coloured blue. As an example, the objects coloured

blue in Fig.14call satisfy the tolerance relation with{1, 20}, but they do not all satisfy the

tolerance relation with each other, as is the case for objects14 and21.

Starting with the the proof of Proposition3, a visual example of the base step in is

given in Fig.14a& 14b. Here, Fig.14acontainsN(z1), and according to Proposition3,

another query pointz2 ∈ N(z1)\z1 is selected (i.e., z2 can be any object inN(z1) except

z1). Here,z2 = 20 is selected because it is the next object closest toz1. Sincez1
∼=B,ε z2,

the class{z1, z2} is a pre-class. Continuing on, an example of the inductive step from

the proof of Proposition3 is given in Fig.14e. In this case, there arek = 5 objects and

{z1, . . . , z5} = {1, 20, 10, 6, 15}. The area shaded grey representsN(z5)\z5 ⊂, . . . ,⊂

N(z1)\z1, along with the black coloured query points{z1, . . . , z5}6. Note, whilez5 = 15

is not coloured black, it is considered a query point becauseit is the object used to create the

current neighbourhood, and is added to the pre-class. It is coloured black in the subsequent

figure. Notice that, as was mentioned above, all the blue objects in the grey area satisfy

the tolerance with all the query points, but that the grey area does not represent a pre-

class. Moreover, any new query point selected fromN(z5)\z5 = {16, 18, 3, 14, 11} will

also satisfy the tolerance relation with all the query points {z1, . . . , z5}. Finally, Fig.14f

demonstrates the idea behind Corollary2. In this figure, the area shaded grey represents

the neighbourhood ofz7 = 3 along with all black query points. Observe that (besides the

black query points) the shaded area only contains one object, namelyz7. Also, note that

there are no more objects that will satisfy the tolerance relation with all the objects in the

shaded area. As a result, the set{z1, . . . , z7} is a tolerance class.

Using Propositions2 & 3 and Corollary2, Algorithm 1 gives the pseudocode for an

approach for finding all the tolerance classes on a set of objectsZ. The general concept

of the algorithm is, for a given objectz ∈ Z, to recursively find all the tolerance classes

containingz. The first step, based on Proposition2, is to setz as a query point and to find

the neighbourhoodN(z). Next, consider the nearest neighbour ofz from the neighbour-

6According to the conditions given in Proposition3 queries points are not included in subsequent neigh-
bourhoods.
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Figure 14: Visualization of Propositions2 & 3 and Corollary2. (a) N(1), (b) N(20) ⊆ N(1)\1, (c)
N(10) ⊆ N(20)\20 ⊆ N(1)\1, (d) N(6) ⊆ N(10)\10 ⊆ N(20)\20 ⊆ N(1)\1, (e)N(15) ⊆ N(6)\6 ⊆
N(10)\10 ⊆ N(20)\20 ⊆ N(1)\1, and (f)N(3) ⊆ · · · ⊆ N(1)\1.
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hoodN(z) as a query point and find its neighbourhood only considering objects inN(z).

Continue this process until the result of a query produces a neighbourhood with cardinality

17. Then, the series of query points becomes the tolerance class. The tolerance class origi-

nally given in Fig.8 was produced using this algorithm, and the intermediate steps of this

algorithm are visualized in Fig.14. As was mentioned, the tolerance class is then the series

of query points given as

C = {1, 20, 10, 6, 15, 16, 3},

where the sequence of neighbourhoods is given in Table3 (notice that results of the nearest

neighbour search are obtained in order of increasing distance). Finally, it is important to

note for this algorithm (and Algorithm3) that the input is specified asZ = X∪Y since it is

assumed here that the user wants to find tolerance classes to calculate the degree of nearness

(i.e. tNM ) between two setsX andY . As was mentioned in Section4.3, it is best to find

the tolerance classes on the union of two setsX,Y , rather than find the tolerance classes

on the individual sets when calculatingtNM .

Algorithm 1 : Algorithm for finding tolerance classes
Input : Z = X ∪ Y
Output : H∼=B,ε(Z)
HZ ← ∅;1

for (i = 0; i < |Z|; i++) do2

C ← ∅;3

findNN(Z,C, i,H∼=B,ε(Z));4

end5

While Algorithm 1 finds all the tolerance classes of objects from a setZ = X ∪ Y , it

is not very efficient. As a result, Algorithm1 was modified, producing Algorithm3. While

the performance of this algorithm was much better than that of Algorithm 1, its runtime is

still poor. For the worst case scenario, occurring when eachpair of objects inZ satisfies the

tolerance relation, the runtime is of orderO(|Z|3T ), whereT is the complexity of finding

an object’s neighbourhood from among the other|Z| − 1 objects. However, this runtime

7The result of a query will always be at least 1 since the tolerance relation is reflexive.
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ProcedurefindNN(N(z), C, i,H∼=B
(Z))

if (|N(z)| = 1) then1

C ← C ∪N(z);2

H∼=B
(Z)← H∼=B

(Z) ∪ C;3

else4

z′ ← N i(z);5

N(z)← N(z)\N i(z);6

C ← C ∪ z′;7

findN(z′) only using the objects inN(z);8

for (j = 0; j < |N(z′)|; j++) do9

findNN(N(z′), C, j,H∼=B
(Z));10

Table 3: Intermediate steps of Algorithm3 using data in Fig.8

z′ N(z′)

1 {1, 20, 12, 7, 9, 6, 19, 10, 17, 11, 14, 16, 18, 3, 13, 21, 15, 2, 5, 8, 4}

20 {20, 10, 6, 16, 3, 15, 21, 18, 11, 14, 7, 12, 9}

10 {10, 6, 15, 16, 3, 18, 11, 14, 21, 7, 12}

6 {6, 15, 16, 3, 18, 11, 14, 7, 12, 21}

15 {15, 16, 18, 3, 14, 11}

16 {16, 3}

3 {3}

can be significantly reduced by the addition of a simple heuristic. For example, step 3 can

be changed so that an object fromN(z) can only be selected asz′ in step 3 (i.e., this rule is

reset each time step 2 is visited), if it has not already been added to a tolerance class created

from the original neighbourhoodN(z). As a result of this modification, the runtime in the

worst case is nowO(|Z|2T ). Moreover, it should be noted that the algorithm is rarely run

on worst case data. The worst case suggests that either the epsilon value is much too large,

or that the data is so clustered that, from a perceptual pointof view, every pair of objects

in the set resembles each other. In either case, the data is not interesting from a nearness

measure or image correspondence perspective. Lastly, the runtime on typical data is of

orderO(|Z|cT ), wherec ≤ |Z| is a constant based on the objectz ∈ Z that has the largest

neighbourhood.

Next, consider the affect of using Algorithm3 (and the added heuristic) instead of using

Algorithm 1. The main difference (besides improved runtime) is that thenew algorithm

55



Algorithm 3 : Algorithm for finding tolerance classes
Input : Z = X ∪ Y
Output : H∼=B

(Z)
H∼=B,ε

(Z)← ∅;1

Take an elementz ∈ Z and findN(z);2

Add z to a new tolerance classC. Select an objectz′ ∈ N∼=B,ε
(z);3

Add z′ toC. Find neighbourhoodN(z′) using only objects fromN(z). Select a new4

objectz′′ ∈ N(z′). Re-labelz′ ← z′′ andN(z)← N(z′);
Repeat step 4 until a neighbourhood of only 1 element is produced. When this5

occurs, add the last element toC, and then addC toH∼=B,ε
(Z);

Perform step 3 (and subsequent steps) until each object inN(z) has been selected at6

the level of step 3;
Perform step 2 (and subsequent steps) for each object inZ;7

Delete any duplicate classes;8

Table 4: Tables showing classes found and not found by Algorithm3 (and the added heuristic).

Found Classes

{1, 2, 7, 11, 12, 13, 19}
{1, 3, 6, 10, 15, 16, 20}
{1, 3, 6, 10, 16, 20, 21}
{1, 4, 5, 8, 9, 17, 19}
{1, 6, 10, 11, 14, 15, 18, 20}

Missing Classes

{1, 2, 5, 19}
{1, 2, 7, 11, 12, 13, 14}
{1, 6, 7, 10, 11, 12, 14, 18, 20}
{1, 7, 11, 12, 13, 14, 18}
{1, 9, 20, 21}

does not find all the tolerance classes containing objects inZ; however the result is still a

covering ofZ. For example, Fig.15aand Table4 show the classes found and not found by

Algorithm 3 (and the added hueristic). Another concern is whether the new algorithm will

affect the outcome of the nearness measure. I conjecture that perceptually the difference

does not matter because the result of the algorithm is still acovering ofZ. Moreover, it

is usually the case that an object belongs to more than one class, and that the extra classes

would not significantly alter the perceptual information contained in the tolerances classes

that are discovered. To test this conjecture, an experimentwas conducted on the objects in

Fig.15to provide an empirical argument indicating that using Algorithm 3 to find tolerance

classes does not significantly affect the nearness measure between two sets of objects.

To perform this experiment, the 21 objects in Fig.15 needed to be separated into two

disjoint sets. Then, the nearness measure was calculated using only the tolerance classes
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Figure 15: Example of a tolerance classes not produced by Algorithm3 (and the added heuristic). (a) Classes
found by Algorithm3 (and the added heuristic), and (b) classes not found by the algorithm.

Table 5: Error in nearness measuretNM using Algorithm3 to find tolerance classes.

Error % of Combinations Below Error

0.2 99.9%

0.15 98%

0.1 87%

0.05 55%

found by Algorithm3 (and the added heuristic), as well as using all the toleranceclasses.

As one could guess, these objects can be separated into two disjoint sets in many different

ways. The approach was to set the number of objects in each disjoint set, then calculate the

nearness measures for all combinations of dividing these objects into two sets of specific

cardinalities. This process was then repeated for each unique set of cardinalities between

the two disjoint sets,e.g.two sets consisting of 1 and 20 elements, 2 and 19 elements, 3 and

18 elements,etc. The results of this comparison are given in Fig.16, and Table5. Notice

that, for the objects in Fig.15, the difference between calculating the nearness measure

using all the classes and the classes found by Algorithm3 is less than 0.2 for 99.9% of all

combinations of objects divided into two dijoint sets. Thus, as a result of this experiment,

Algoirthm 3 (and its reduced runtime) was used to generate the results presented in this

thesis.
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Figure 16: Plot showing error in nearness measuretNM using Algorithm3 (and the added heuristic) to find
tolerance classes.

Finally, this section is concluded by mentioning a few observations about the algo-

rithms. First, both the original algorithm and the improvedheuristic algorithm produce a

set of classes that contain duplicates (more so in the case ofthe first algorithm). Conse-

quently, it is necessary to remove duplicate classes beforecalculating the nearness measure.

Also, the runtime of these algorithms can be significantly improved by approximate nearest

neighbour searching, which is why the runtime was presentedpartially in terms of the com-

plexity of finding neighbourhoods. The results presented inthis thesis were obtained using

the approximate nearest neighbour algorithm reported in [57], and discussed in Section2.2.

Lastly, these algorithms lend themselves to parallel processing techniques, and the results

in this paper were also obtained using multi-threading on a quad core processor.

58



5 Application of Near Sets

As demonstrated in Section3, tolerance near sets provide a systematic framework for mea-

suring the similarity of objects and sets of objects, based on object descriptions, and in a

manner similar to the way people perceive objects and the affinities between them. Thus,

one might conjecture that near set theory is a natural choicefor problems and research ar-

eas where the desired solution or result matches that of human perception. Indeed, the goal

of this section is to demonstrate the validity of this conjecture, namely, that near set theory

is well suited to solving problems in a manner similar to the problem-solving approach by

humans in discerning similarities between objects.

The choice of an application for this demonstration is in thearea of content-based im-

age retrieval (see,e.g., [60]), where the goal is to retrieve images from databases based

on content of an image rather than on some semantic string or keywords associated with

the image. The content of the image is determined by image processing functions that

characterize qualities such as colour, texture, shape of objects in the images, and edges.

Notice, that this approach is conducive to producing feature vectors, and as such, is an

application in which near set theory can be easily applied. Furthermore, tolerance near

sets together with the nearness measure on classes of objects derived from two perspective

images provides a quantitative approach for accessing the similarity of images. Thus, the

focus of this chapter is to demonstrate a practical application of near set theory in terms of

content-based image retrieval, and to show that this framework does indeed produce results

similar to those produced by human perception. The outline of the chapter is as follows:

Section5.1 demonstrates an approach to applying near set theory to images, Section5.2

presents initial results toward applying near set theory tothe problem of content-based im-

age retrieval, Section5.3discusses the selection ofε, Section5.3presents other methods of

measuring the nearness of two sets in a perceptual system, and Sections5.5& 5.6present

the results of performing content-based image retrieval onthe SIMPLIcity image database

using the near set approach.

59



5.1 Perceptual Image Analysis

Near set theory can easily be applied to images by partitioning an image into subimages

and considering each subimage as an object in the near set sense,i.e. each subimage is a

perceptual object, and each object description consists ofthe values obtained from tech-

niques of image processing on the subimage (see,e.g. Fig. 17). Moreover, this technique

of partitioning an image, and assigning feature vectors to each subimage is an approach

that has also been traditionally used in content-based image retrieval.

Formally, define a RGB image asf = {p1,p2, . . . ,pT}, wherepi = (c, r, R,G,B)T,

c ∈ [1,M ], r ∈ [1, N ], R,G,B ∈ [0, 255], andM,N respectively denote the width and

height of the image andM × N = T . Further, define a square subimage asfi ⊂ f such

thatf1 ∩ f2 . . . ∩ fs = ∅, andf1 ∪ f2 . . . ∪ fs = f, wheres is the number of subimages in

f . Next,O can be defined as the set of all subimages,i.e.,O = {f1, . . . , fs}, andF is a set

of image processing descriptors or functions that operate on images. Then, the nearness of

two images can be discovered by partitioning each of the images into subimages and letting

these represent objects in a perceptual system,i.e, let the setsX andY represent the two

images to be compared where each set consists of the subimages obtained by partitioning

the images. Then, the set of all objects in this perceptual system is given byZ = X ∪ Y .

Figure 17: Example demonstrating the application of near set theory toimages, namely the image is parti-
tioned into subimages where each subimage is considered a perceptual object, and object descriptions are the
results of image processing techniques on the subimage (Image used with permission [97]).
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5.2 Initial Results

This section presents the initial results (published in [93]) demonstrating that near set theory

can successfully be applied to the problem of content-basedimage retrieval. The adjective

“initial” is stressed since these results are based on performing content-based image re-

trieval on a database containing only two categories that are quite different from each other,

namely the database consists of images are from the Berkeley Segmentation Dataset [97]

and the Leaves Dataset [98] (see,e.g., Fig. 18). Nevertheless, these results represent an

important first step to demonstrating the application of near set theory to the problem of

content-based image retrieval.

(a) (b) (c)

Figure 18: Sample images. (a), (b) Leaves Dataset (Images used with permission [98]), and (c) Berkeley
Segmentation Dataset (Image used with permission [97]).

To begin with, Fig.19is a plot oftNM values comparing the nearness of Fig.’s18a& 18b

and Fig.’s18a& 18c using the normalized green value from the RGB colour model and

Pal’s entropy (see Sections2.3.1& 2.3.2). Furthermore, the results were obtained using

ε = 0, 0.01, 0.05, 0.1 (note, the perceptual indiscernibility relation is used for ε = 0), and a

subimage size of10× 10. Observe that the two leaf images produce higher nearness mea-

sure values than Fig.18aand the Berkeley image because the leaf images produce objects

that have more in common in terms of their descriptions (using the probe functions inB).

These results match our perception of the similarity between these three images. Also, note

that the values using the perceptual indiscernibility relation are quite similar (near zero).

In practise features values tend not to be exactly equal thusproducing lower nearness mea-

sure values. As shown by the results, this problem can be overcome by using the perceptual

tolerance relation.

The plot given in Fig.19 suggests that the nearness measure would be useful in mea-
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Figure 19: Plot showingNM values comparing Fig.’s18a & 18b and Fig.’s 18a & 18c for ε =
0, 0.01, 0.05, 0.1.

suring the similarity of images. To investigate this property further, the Berkeley Segmen-

tation Dataset and the Leaves Dataset were used to perform content-based image retrieval.

Specifically, the image in Fig.18awas selected as the query image and was compared to

200 images, 100 from both the leaves and Berkeley datasets, respectively8. The ideal result

is for the highest 100tNM values to be associated with the 100 leaf images. The re-

sults were generated using the same parameters as in Fig.19, and they are compared using

precision versus recall plots. Precision/recall plots arethe common metric for evaluating

content-based image retrieval systems where precision andrecall are defined as

precision=
|{relevant images} ∩ {retrieved images}|

|{retrieved images} ,

and

recall=
|{relevant images} ∩ {retrieved images}|

|{relevant images} .

In the idea case (described above), precision would be 100% until recall reached 100%,

at which point precision would drop to # of images in query category / # of images in the

database. In this case, the final value of precision will be 50% since there are two categories

each containing 100 images.

8Note, the number of pixels in the leaf images were decimated by a factor of 4 to be closer in size to the
Berkeley images,i.e., their dimension was reduced from896× 592 to 448× 296.
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The results of these comparisons are given in Fig.20. Notice,tNM produces a preci-

sion/recall plot with 73 images retrieved from the leaves dataset before a Berkeley image is

selected. These results match intuition in that, at some level, our mind assesses similarity

by comparing the descriptions of the objects we are considering, and that the comparison

is not based on exact values (i.e., the equivalence of features) but rather our mind easily

allows some tolerance in making these comparisons.
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Figure 20: Precision versus recall plot obtained using Fig.18aas a query image compared to 100 images
from the Leaves Dataset [98] and Berkeley Segmentation Dataset [97].

5.3 Parameter Adjustment

While the results in the previous section are positive, some more work needs to be ac-

complished before applying near set theory to databases with multiple classes containing

images with resemblance across categories. First, an investigation into selecting the value

of ε needs to be performed. For normalized feature values, the largest distance between

two objects occurs when one object has a feature vector (object description) of all zeros,

and the other has a feature vector of all ones. As a result,ε is in the interval[0,
√
l], where

l is the length of the feature vectors. In any given application, there is always an optimalε

when performing experiments using the perceptual tolerance relation. For instance, a value

of ε = 0 produces little or no pairs of objects that satisfy the perceptual tolerance relation,

and a value ofε =
√
l, means that all pairs of objects satisfy the tolerance relation. Conse-
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quently,ε should be selected such that the objects that are relatively9 close in feature space

satisfy the tolerance relation, and the rest of the pairs of objects do not. The selection ofε

is straightforward when a metric is available for measuringthe success of the experiment.

In this instance, the value ofε is selected based on the best result of the evaluation met-

ric. Fortunately, in this case, precision versus recall plots, defined in the context of image

retrieval, can be used to evaluate the effectiveness ofε.

To demonstrate the selection ofε, a small database is used containing a collection of

hand-finger movement images from three patients. One of the patients has rheumatoid

arthritis, while the other two do not. Here, the goal is to perform content-based image

retrieval and separate the images into three categories, one for each patient. The images

were extracted from video sequences obtained from a telerehabilitation system that moni-

tors patient hand-finger motion during rehabilitation exercises (see,e.g., [99]). An example

of the type of images obtained directly from the video is given in Fig. 21a. These images

needed to be further processed to remove the common background (e.g. all the images

contain the white desktop, the square blue sensor,etc) that would produce results indicat-

ing all the images were similar. Therefore, the mean shift segmentation algorithm (see

Section2.3.3) was used to create a segment containing only the hand in eachimage. The

resultant segmented image is given in Fig.21bwhere objects with similar colour are now

grouped together into segments. The next step was to use the segment representing the

hand as a mask to separate the hand from the original image (given in Fig.21c). Next,

notice the absence of the majority of the black background (representing the masked pixels

in the original image) in Fig.21d. Each image was cropped to an image containing only

the hand because the output of probe functions on the black background would be the same

for each image, and therefore, not contribute to differentiating the images.

Next, perceptual objects are created by partitioning the image into subimages, and, in

this case, only one probe function was used, namely the average orientation of lines within

a subimage. For example, the orientation can be determined (using the process given in

9Here, distance of “objects that are relatively close” will be determined by the application.
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(a) (b) (c)

(d) (e)

Figure 21: Figure showing preprocessing required to create toleranceclasses and calculate nearness measure.
(a) Original image, (b) segmented image, (c) hand segment only, (d) cropped image to eliminate useless
background, and (e) final image used to obtain tolerance classes. Each square represents an object where the
colour (except black) represents the average orientation of a line segment within that subimage.

Section2.3.4) for each pixel considered part of a line detected in an image. Then, the

probe function takes an average of all the orientations for pixels belonging to edges within

a specific subimage. An example of the output of this probe function is given in Fig.21e.

As was mentioned, these images will be used to demonstrate the selection ofε for a

given application of tolerance near sets. Specifically, an image belonging to one of the

three patients is used as a query image, and then the images are ranked in descending order

based on their nearness measure with the query image. For example, the database of images

used in this section contains 98 images, of which 30 are from the patient with arthritis, and

respectively, 39 and 29 of them are form two patients withoutarthritis. Then, each image is

in turn selected as the query image, and a nearness between the query image and every other

image in the database is determined. Subsequently, a toleranceε can be selected based on

the number of images that are retrieved from the same category as the query image before

a false negative occurs (i.e. before an image from a category other than the query image

occurs).

Using this approach, Fig.22 contains a plot showing the number of images retrieved

before the precision dropped below 90% for a given value ofε. The image (out of all
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possible 98 images) that produced the best query results is given in red, and the average is

given in blue. Notice the best results in the average case occur with toleranceε = 0.05,

which is close to theε = 0.07 in the best case. This plot suggests that retrieval of images

in this database improves with a slight easing of the equivalence condition, but not much.

Lastly, note thatε is also low due to the use of approximate nearest neighbour searching

(see,e.g. Section2.2) because the nearest neighbour of an objectp can bep∗ such that

dist(p, q) ≤ (1 + α)dist(p∗, q), whereq is the actual nearest neighbour. The effect is an

increase inε because it is now possible to include objects in the neighbourhood that are at

a distance of(1 + α)ε.
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Figure 22: Plot giving the number of images retrieved before the precision falls below 90%.

Verifying the validity of selectingε in this manner can be accomplished by both the

visualization of the nearness measure for all pairs of images in the experiment, and by

observing the precision recall plots directly. First, an image can be created where the

height and width are equal to the number of images in the database, each pixel corresponds

to the nearness measure from the comparison of two images, and the colours black and

white correspond to a nearness measure of 0 and 1 respectively. For example, an image

of size 98×98 can be created like the one in Fig.23a where patient B is the one with

arthritis, and each pixel corresponds to the nearness measure between two pairs of images

in the database. Notice that a checkered pattern is formed with a white line down the

diagonal. The white line corresponds to the comparison of animage with itself in the
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database, naturally producing a nearness measure of 1. Moreover, the lightest squares in

the image are formed from comparisons between images from the same patient, and that

the darkest squares are formed from comparisons between thearthritis and healthy images.

Also notice, that the boundaries in Fig.23c& 23dare more distinct than for images created

by other values ofε suggestingε = 0.05, or ε = 0.07 is the right choice ofε. Similarly,

square corresponding to patient C has crisp boundaries in Fig. 23a& 23h, and is also the

brightest area of the figure, suggesting that a value ofε = 0.3 would also be a good choice

for images belonging to patient C.
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Figure 23: Images of nearness measure obtained from comparing the 98 images from three subjects to
each other. (a) - (h) Visualization of nearness measure using ε ∈ {0.01, 0.03, 0.05, 0.07, 0.09, 0.1, 0.2, 0.3}.
Patients B has arthritis, while A and C do not.

Next, Fig.24 gives plots of the average precision versus recall for each patient. These

plots were created by fixing a value ofε, and calculating precision versus recall for each

image belonging to a patient. Then, the average of all the precision/recall values for a

specific value ofε are added to the plot for each patient. The results for selecting ε = 0.05

are given in red, and in the case of patients B and C, the choice of ε that produce a better

result thanε = 0.05 are also highlighted.
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Figure 24: Plots showing the average precision recall plots for patients A-C.

5.4 Other measures

This section introduces two additional measures for determining the degree that near sets

resemble each other. These measures were created out of a need for making comparisons

of the results generated by the nearness measure. Here, one of two approaches could have

been investigated. Namely, the nearness measure could be compared with a content-based

image retrieval system or measure that is currently regarded as the best approach for a

database with given characteristics. Or, the nearness measure could be compared with

measures that determine nearness in a manner comparable totNM . Since the focus of this

thesis is to demonstrate that the application of near sets tothe problem of content-based

image retrieval is possible, where the results match that ofhuman perception, the latter

approach was taken. As a result, approaches were created, based on existing theories, that

measure the distance between sets.

5.4.1 Hausdorff Distance

The Hausdorff distance is used to measure the distance between sets in a metric space

[100–102], and is defined as

dH(X,Y ) = max{ sup
x∈X

inf
y∈Y

d(x, y), sup
y∈Y

inf
x∈X

d(x, y) },
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wheresup andinf refer to the supremum and infimum, andd(x, y) is the distance metric

(in this case it is theL2 norm). The distance is calculated by considering the distance from

a single element in a setX to every element of setY , and the shortest distance is selected

as the infimum (see,e.g., Fig.25). This process is repeated for everyx ∈ X and the largest

distance (supremum) is selected as the Hausdorff distance of the setX to the setY . This

process is then repeated for the setY because the two distances will not necessarily be the

same. Keeping this in mind, the measuretHD [93] is defined as

tHD∼=B,ε
(X,Y ) =




∑

C∈H∼=B,ε
(Z)

|C|



−1

·
∑

C∈H∼=B,ε
(Z)

|C|(
√
l − dH(C ∩X,C ∩ Y )).

Observe, that low values of the Hausdorff distance correspond to a higher degree of re-

semblance than larger distances. Consequently, the distance is subtracted from the largest

distance
√
l. Also, notice that the performance of the Hausdorff distance is poor for low

values ofε, since, as tolerance classes start to become equivalence classes (i.e. asε → 0),

the Hausdorff distance approaches 0 as well. Thus, if each tolerance class is close to an

equivalence class, the resulting distance will be zero, andconsequently the measure will

produce a value near to 1, even if the images are not alike. In contrast, asε increases, the

members of classes tend to become separated in feature space, and, as a result, only classes

with objects that have objects inX that are close to objects inY will produce a distance

close to zero. What does this imply? If for a larger value ofε, relatively speaking, the set of

objectsZ = X ∪ Y still produces tolerance classes with objects that are tightly clustered,

then this measure will produce a high measure value. Notice,that this distinction is only

made possible ifε is relaxed. Otherwise, all tolerance classes will be tightly clustered.

x

x

x

x
x

x

x

x

x

x
y

y

y

y

y

y

y

y

X Y

Figure 25: Example demonstrating a single step in determining the Hausdorff distance between two sets.
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The Hausdorff distance is a natural choice for comparison with the tNM nearness

measure because it measures the distance between sets in a metric space. Recall, that

tolerance classes are sets of objects with descriptions inl-dimensional feature space. The

nearness measure evaluates the split of a tolerance class between setsX andY , where the

idea is that a tolerance class should be evenly divided betweenX andY , if the two sets are

similar (or the same). In contrast, the Hausdorff distance measures the distance between

two sets. Here the distance being measured is between the portions of a tolerance class

in setsX andY . Thus, two different measures can be used on the same data, namely the

tolerance classes obtained from the union ofX andY .

5.4.2 Hamming Measure

The Hamming measure introduced in this section was inspiredby the Hamming measure

in [103], and since the Hamming measure is not defined in termsof sets, it was modified to

give the following

tHM∼=B
(X,Y ) =

1

|H∼=B
(Z)| ·

∑

C∈H∼=B
(Z)

1(‖ avgn(C ∩X)− avgn(C ∩ Y ) ‖
2
≤ th),

where1(·) is the indicator function and avgn(C ∩X) is the average feature vector used to

describe objects inC ∩ X. For example, the average feature vector can be calculated by

adding all the values for a specific feature in the feature vector inC ∩X, and then dividing

by the number of objects. The idea behind this measure is that, for similar sets, the average

feature vector of the portion of a tolerance class (obtainedfromZ = X ∪ Y ) that lies inX

should have values similar to the average feature vector of the portion of the tolerance class

that lies inY . Observe, that ifth = ε, this function will simply count the number of classes

that are not singletons,i.e. classes that contain more than one element, since all objects

have descriptions whose distances are less thanε. If th = ε, than this measure will perform

best for low levels ofε, since only sets that resemble each other will contain classes with

cardinality greater than one. Otherwise, this measure willperform in a similar manner to
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tHD, namely, this measure will produce high values for classes which have objects inX

that are close to objects inY with respect toth.

5.4.3 Application

The method of applying these measures to the image correspondence problem is the same

as that described in Section5.1. To reiterate, consider Fig.26 where each rectangle rep-

resents a set of subimages (obtained by partitioning the original imagesX andY ) and the

coloured areas represent some of the obtained tolerance classes10. Recall, as mentioned in

Section4.3, the tolerance classes are created based on the feature values of the subimages,

and consequently, do not need to be situated geographicallynear each other (as shown in

Fig.26). In the case of the nearness measure, the idea is that similar images should produce

tolerance classes with similar cardinalities. Consequently, the cardinality of the portion of

a tolerance class belonging to setX is being compared with the cardinality of the portion of

the tolerance class belonging to setY (represented in Fig.26as sets with the same colour).

The Hausdorff and Hamming measures take the same approach, but rather consider the

Hausdorff distance or the average vector distance between the portions of the classes.

X Y

Z = X U Y

Figure 26: Graphical representation of the application of the nearness measures to a pair of images.

10The tolerance relation covers both images, but not all the classes are shown in the interest of clarity

71



5.5 SIMPLIcity Image Database

This section presents the application of near set theory to the problem of content-based im-

age retrieval on the SIMPLIcity image database [104,105], adatabase of images containing

10 categories with 100 images in each category. The categories are varied with different

objects and scenes, and images in different categories can also resemble each other (see,

e.g.Fig. 27). While the goal is to retrieve images in a manner similar to that of human per-

ception, one must recall from Section3, perceptual information is always presented with

respect to the probe functions contained inB just as our senses define our perception of

the world. For example our ability to view light in the visible spectrum rather than infra

red or microwaves spectra defines our perception of the worldjust as the selection of probe

functions constrains the amount of perceptual informationavailable for extraction from a

set of objects. Thus, the ability of a near set-based system to assess similarity of images in

a manner that mimics human perception of nearness, is completely dependent on the fea-

tures selected to describe the objects (subimages). This dependence is not a new concept,

and is present in any research area that is dependent on feature extraction and feature value

vectors (see,e.g., [53]). Moreover, the precision versus recall plots measure the ability of a

system to return images from the correct category. However,since images across categories

can also be similar (depending on the features used to describe the images), the results will

be presented using both precision versus recall plots, as well as showing the top 10 images

that match a given query image.

Before performing retrieval, bothε and the probe functions need to be selected. A

common approach to performing content-based image retrieval is to use features based on

colour, and texture [60, 80, 106, 107]. Also, another type offeature that is commonly used

in pattern recognition, image analysis, ophthalmology, medical imaging, optical engineer-

ing, and watermarking are Zernike moments, since they provide region-based descriptors

of an image that are invariant with respect to rotation and reflections [56]. Accordingly, the

results of image retrieval in this section were obtained using 18 features, namely 4 texture

features obtained from the grey-level co-occurrence matrix of a subimage (see,e.g. Sec-
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 27: Examples of each category of images. (a) - (d) Categories 0 - 3, and (e) - (i) categories 5 - 9
(Images used with permission [104,105]).

tion 2.3.6), the first and second moments ofu andv in the CIELUV colour space (see,e.g.,

Section2.3.8), an edge based feature (see,e.g.Section2.3.4), and the Zernike moments of

order 4, excludingÃ00 (see,e.g., Section2.3.7).

While the selection ofε should have followed the approach outlined in Section5.3, this

was not the case due the runtime of the algorithm used to find the tolerance classes and the

size of the database. The approach was to perform a comprehensive comparison of each im-

ages in the database with each other image. Since the result of comparing two images with

the nearness measure is symmetric,i.e. tNM(X,Y ) = tNM(Y,X), comparing each im-

age to each other image involves(1000)(1001)/2 comparisons. Some of average runtimes

for finding tolerance classes on objects obtained from a pairof images in the SIMPLIcity

database (using a subimage of20× 20) is given in Fig.28, where the runtime ranges from

0.3 sec. forε = 0.2 to 606 sec. forε = 1.5. Since this section is devoted to demonstrating

a practical application of near set theory, the value ofε was selected based on performing
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the experiment in a reasonable amount of time, rather than onthe value ofε that preformed

best on a small subset of the database, with the goal of showing that even for small values

of ε this approach is quite powerful. The runtime of the experiment was further reduced by

removing the category of images shown in Fig.28. They were removed because correctly

retrieving images from this category was trivial, as demonstrated by the precision versus

recall plot of a random image from this category in Fig.28. A more realistic experiment

would be to identify the different type of dinosaurs and perform retrieval among this single

category. In any event, this category was removed to reduce the total time to perform the

experiment.

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6
10

−1

10
0

10
1

10
2

10
3

ε

se
c.

Time to Find Tol. Classes

Figure 28: Plot ofε versus time to find all the tolerance classes on a pair of images in the SIMPLIcity image
database, using the algorithm given in Section4.4on a quad-core 2.4 GHz machine, running a multi-threaded
application.

(a) (b) (c)

Figure 29: Examples of images from category 4 (Images used with permission [104,105]).

5.6 Discussion

The results of applying near set theory to the problem of content-based image retrieval on

the SIMPLIcity image database are presented in this section. Fig. 31 contains three plots,
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Figure 30: Precision versus recall plot for image 412.jpg.

one for each measure, giving the precision versus recall data for each category, and Fig.32

gives the precision versus recall plots for all three measures grouped by category. These

plots were generated by comparing each image in the SIMPLIcity database to each other

image. Moreover, the precision versus recall plots for a specific category were generated

by taking the average of all the precision and recall values for each image in that category.

Next, Fig.33 - 41 give the ten highest ranked images, using thetNM nearness measure,

for each category based on the query image that produced the best results, determined by

the largest area under the precision recall curve. Also given in these figures is the largest

tolerance class obtained between the query image and the second highest ranked image

(the first ranked image being the query image). These resultswere generated withε = 0.2

(giving a total runtime of approximately(900)(901)(0.3)/2 = 1.4 days), a subimage size

of 20× 20 and the 18 probe functions identified in the previous section.
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Figure 31: Precision versus recall plots for all three measures on the simplicity database. (a) Nearness
measure, (b) Hausdorff distance, and (c) Hamming measure.
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Figure 32: Precision versus recall plots for all three measures grouped by category. (a) - (i) Categories 0 - 9
(excluding category 4).
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

Figure 33: Results of best query from Category 0 usingtNM . (a) Query image, (b) - (j) closest images
usingtNM , and (k) & (l) largest tolerance class (shown by white boxes)between images (a) & (b) (Images
used with permission [104,105]).

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

Figure 34: Results of best query from Category 1 usingtNM . (a) Query image, (b) - (j) closest images
usingtNM , and (k) & (l) largest tolerance class (shown by white boxes)between images (a) & (b) (Images
used with permission [104,105]).
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(i) (j) (k) (l)

Figure 35: Results of best query from Category 2 usingtNM . (a) Query image, (b) - (j) closest images
usingtNM , and (k) & (l) largest tolerance class (shown by white boxes)between images (a) & (b) (Images
used with permission [104,105]).

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

Figure 36: Results of best query from Category 3 usingtNM . (a) Query image, (b) - (j) closest images
usingtNM , and (k) & (l) largest tolerance class (shown by black boxes)between images (a) & (b) (Images
used with permission [104,105]).

79
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(e) (f) (g) (h)

(i) (j) (k) (l)

Figure 37: Results of best query from Category 5 usingtNM . (a) Query image, (b) - (j) closest images
usingtNM , and (k) & (l) largest tolerance class (shown by black boxes)between images (a) & (b) (Images
used with permission [104,105]).

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

Figure 38: Results of best query from Category 6 usingtNM . (a) Query image, (b) - (j) closest images
usingtNM , and (k) & (l) largest tolerance class (shown by white boxes)between images (a) & (b) (Images
used with permission [104,105]).
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(e) (f) (g) (h)

(i) (j) (k) (l)

Figure 39: Results of best query from Category 7 usingtNM . (a) Query image, (b) - (j) closest images
usingtNM , and (k) & (l) largest tolerance class (shown by white boxes)between images (a) & (b) (Images
used with permission [104,105]).

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

Figure 40: Results of best query from Category 8 usingtNM . (a) Query image, (b) - (j) closest images
usingtNM , and (k) & (l) largest tolerance class (shown by black boxes)between images (a) & (b) (Images
used with permission [104,105]).
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

Figure 41: Results of best query from Category 9 usingtNM . (a) Query image, (b) - (j) closest images
usingtNM , and (k) & (l) largest tolerance class (shown by white boxes)between images (a) & (b) (Images
used with permission [104,105]).
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Starting with Fig.31, the following observations can be made. First, the measurebased

on the Hausdorff Distance performs quite poorly;i.e. it does so poorly that the plots for

nearly every category start with a precision of 0, meaning that the query image was not

the highest ranked image. This is due to the observation madein Section5.4.1, that the

Hausdorff distance does not perform well for low values ofε. An improvement oftHD

can be seen in Fig.42 for a specific query image11. Notice, that asε increases from 0.2

to 0.7, the results do improve,i.e., the query image is now given the highest ranking by

the measure, and the area under the curve has increased, implying that a greater number

of images from the correct category are initially retrievedfor ε = 0.7 than forε = 0.2.

For example, if the images are ranked according to thetHD measures, there are 80 images

in the first half that are retrieved from the correct categoryusingε = 0.7, compared with

6 with ε = 0.2. Furthermore, as suggested by the results published in [93], these results

would probably continue to improve with a larger value ofε (if the testing time was not

prohibitive), before they begin to decline.
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Figure 42: Plot demonstrating improvement oftHD asε increases.

The other observations that can be made about Fig.31 is thattNM andtHM produce

similar results, and that categories 6 and 7 seem to produce the best results. This can easily

be explained by observing that category 6 is quite differentfrom all the other categories

since these images are close-up shots of flowers, and both these categories are the only

11This image was selected since it was the query image that produced the best results in Category 6 using
tNM .

83



ones where the background in all 100 images have similar colour and texture. Next, the

explanation of why the results of the other categories are sopoor is as follows. As can

be seen in Fig.33 - 41, especially Fig.37 & 40, there are images in different categories

that are similar to each other, especially describing the images using the 18 probe functions

mentioned in the previous section. Thus, queries will produce results that are similar to

the query image in terms of the selected probe functions, butthe images may be from

different categories, which drives down the precision of the query. However, as can be seen

in the results most of these images are perceptually similar, both in terms of our subjective

observations, and, obviously, by the probe functions selected to perform this experiment.

Moreover, these results can be improved by increasingε. Notice, that in terms of the

maximum distance between objects,
√

18, the choice ofε is quite small. Thus, the query

images in Fig.37 & 40 that produced the poorest results were retested withε = 0.7. The

results of these queries are given in Fig.43 & 44. Notice the the improvement. Another

approach to improving the precision versus recall plots would be to change the selection of

probe functions, although, since the database is so varied,there is bound to be images that

are retrieved from other categories.
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

Figure 43: Results of best query from Category 5 usingtNM with ε = 0.7. (a) Query image, (b) - (j) closest
images usingtNM , and (k) & (l) largest tolerance class (shown by white boxes)between images (a) & (b)
(Images used with permission [104,105]).

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

Figure 44: Results of best query from Category 8 usingtNM with ε = 0.7. (a) Query image, (b) - (j) closest
images usingtNM , and (k) & (l) largest tolerance class (shown by white boxes)between images (a) & (b)
(Images used with permission [104,105]).
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As was mentioned, Fig.32 gives the results of each measure grouped by category.

Furthermore, since the selection ofε was so low, the value ofth was set toε. Thus,

tHD in this case is giving a measure of the number of tolerance classes that were not

singletons. Observe that thetNM nearness measure performs slightly better thantHD for

all categories, with the possible exception of category 9. For this reason, Fig.33 - 41 are

the best query images from each category usingtNM .

Lastly, a question one might ask is “Why do all the subimages belonging to all the

largest tolerance classes in Fig.33 - 41 tend to be of uniform colour, especially since

the selected probe functions take into account colour, texture, and local geometry?” The

answer is due to the selection ofε = 0.2, a choice that was based on time constraints rather

than on optimal performance. Selectingε = 0.2 means that most of the tolerance classes

are quite close to equivalence classes,i.e. the objects of a single tolerance class are quite

close in feature space. Consequently,ε is not large enough to account for the differences in

the descriptions of subimages containing texture in the image that is perceptually similar.

Note, there are classes that have texture, they are just not the largest, which is depicted in

Fig. 33 - 41. However, by increasingε the subimages that contain texture start to form

larger classes, as evidence by Fig.43k& 43l and Fig.44k& 44l.

5.6.1 Future Work

The goal of this thesis was to contribute to near set theory, and to provide practical appli-

cations demonstrating near set theory is well suited to problems where the desired solution

is based on human perception of objects. While this goal was achieved, there are still some

open problems to consider for future work.

Improve Algorithm Runtime While the results in this thesis are promising, there is one

significant drawback to the tolerance near set approach, namely, the time required to de-

termined tolerance classes. First, it should be noted that generally one does not compare

every image in a database to every other image. This approachwas taken to perform a

comprehensive test using the nearness measures. That beingsaid, there are two solutions
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that may, either independently or together, significantly reduce the computation time, and

consequently, warrant investigation. The first approach involves increasing the amount of

processors available for performing the calculations. Forinstance, most modern computers

have Graphics Processing Units (GPUs) with many cores (processors). For example, the

machine used to produce the results presented in this thesishas a GPU with 128 cores oper-

ating at 600 MHz. Even if it is possible to reduce the execution time by a factor of 10, then

the time required to perform the test that generated the results from SIMPLIcity database

goes from approximately 1.4 days to 3 hours.

The other approach is based on preprocessing the images in the database prior to per-

forming queries12. For instance, an approach that should be investigated is tofind the

tolerance classes for each image independently, prior to any queries being performed, and

store only the average feature vector values created from all the objects in each tolerance

class. Then, during an actual query, instead of finding tolerance classes on the objects

Z = X ∪ Y , whereX is the query image, andY is an image belonging to the database,

it may be a good idea to create neighbourhoods using the stored average feature vectors as

neighbourhood centres, and the objects from the query imageto populate the neighbour-

hoods. This would significantly reduce the computation timein two ways. First, tolerance

classes only need to calculated once for each image in the database, rather than for each

image in the database during each new query. Second, during aquery, onlyn comparisons

need to be made, wheren is the number of objects generated from the query image. This

method would definitely be faster, and is likely to produce comparable results since it is

still based on tolerance classes. It may even produce betterresults in scenarios where larger

valuesε can be used without penalty of extremely large computation times.

Other Content-Based Image Retrieval MethodsAs was mentioned above, the focus of

the thesis was to advance near set theory, and to provide an application of near set theory

which demonstrates both its utility, and that solutions based on the near set approach pro-

12A simple solution (which was used to generate the results in this thesis) would be to compute and store
the feature values for each sub image ahead of time so that they do not need to be computed anew during
each query. However, this was not the major bottleneck in generating these results.
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duce results matching human perception. That being said, future work definitely warrants

contrasting the application of the near set approach to the problem of content-based image

retrieval should with other methods to identify its strengths and weakness. Furthermore,

preliminary work toward this aim is presented here. To reiterate, the strength of the pro-

posed approach is its apparent ability to measure the similarity of objects, and, in this case,

images, in a manner similar to human perception. Moreover, initial testing demonstrates

that the near set approach is competitive with other existing content-based image retrieval

systems as demonstrated below in Fig.45 & 46. Note, Fig.45 represents the query image

from the category that produced the worst results usingε = 0.2 and the 18 probe functions

used to generate the above results, and Fig.46represents the query image from the category

that produced the best results using the same parameters. Finally, this work is considered

preliminary since this comparison was not exhaustive in that there are many other methods

not considered, and the selected methods used default settings.
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Figure 45: img(Anaktisi) system [108](CEDD [109] FCTH [110] JCD [111]C.CEDD & C.FCTH [108])
MUVIS system [112–114]

Other Distance Measures

While theL2 norm was the distance used to define the tolerance relation inthe first

papers published on tolerance near sets (see,e.g. [33, 36]), an interesting area for future

work is an investigation into using different distance measures for defining other tolerance

relations. To that end, the plot in Fig.47 demonstrates a few tests using Minkowski dis-
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Figure 46: img(Anaktisi) system [108](CEDD [109] FCTH [110] JCD [111]C.CEDD & C.FCTH [108])
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tances of orders other than 2 (which is theL2 norm). This work is considered preliminary

since there are many other distance measures that could be considered.
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Figure 47: Plot of results from CBIR using distance measures other thantheL2 norm.

Curse of DimensionalityThe curse of dimensionality refers the problem of distance be-

tween feature vectors in a high-dimensional hypercube. As reported in [115–117], any two

randomly picked vectors in a high-dimensional hypercube tend to have a constant distance

from each other due to this curse of dimensionality. Furthermore, with each additional di-

mension the spread of clusters in feature space is increased, but also the distance between

two previously well-separated clusters is decreased. As a result, this “curse” could be a
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problem for the near set approach, and definitely warrants future work. However, notice

that the dimensionality of the approach taken in the thesis is low, only 18, and that a gen-

eral rule of thumb is to pick a selection of important features rather than consider as many

features as possible. Moreover, the FLANN library used in this thesis has been used with

feature vectors that have dimensionality in the thousands [59].

Invariance Invariance is a property of a mathematical object that does not change when the

object is transformed in some manner. A frequent use of invariant properties arises in image

processing, where the desired output of a feature value, system, or process produces the

same result if an image is,e.g., translated, rotated, or scaled. Invariance is not a desirable

property in the perception of objects. For instance, if sometransformation is performed

on the objects such that the probe functions used to observe the objects produce different

values, then this transformation needs to be reflected in thedistance measure. The near

set approach does not start out with predefined classes of objects, and then define relations

with specific measures, choose specific probe functions, or define nearness measures to

conform to these groupings. Instead, the probe functions define our “view” of the objects,

and this view determines the classes of objects that are similar. This is similar to our

senses which define our perception of the world. For example our ability to view light

in the visible spectrum rather than infra red or microwaves spectra defines our perception

of our environment. In the case of near set theory, the probe functions were selected for

a reason,i.e. their particular view of the objects is valuable. If a transformation occurs

on the objects, such that the output of the probe functions isdifferent, then this change

needs to be reflected in assessing the similarity of the sets of objects. However, invariance

could be further investigated in the near set approach to content-based image retrieval. In

this case, it is desirable to return images that are similar to the query image except for

some transformation like rotation or scaling of the objectsin the image. This was one

of the reasons for choosing to use Zernike moments which are invariant to rotation and

reflection. Dealing with the problem of invariance in the near set approach to content-

based image retrieval is a matter of choose probe functions that are invariant to a particular
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transformation present in the application.

Image Noise

Image resolution and noise have not been addressed in this thesis, which are problems

that arise in practical applications. Philosophically speaking, if the objects being compared

are obtained from images that contain defects (such as noise, or blurring) and these de-

fects are reflected in the probe functions, then this approach should assess other images

containing defects (and similar content) as more similar than those images without. This is

intended result and is not a short coming of the near set approach. Recall probe functions

define our view of the objects, and are the basis for making judgements on similarity. An

analogous example is our senses. Surely our senses have noise, i.e. we are not viewing

our environment as it truly exists, however, we are still able to assess similarity based on

the output of our senses. Practically speaking, this problem falls into the realm of image

processing. If one has an image that contains defects, but wants to retrieve images similar

to the content and without noise, then one must either pre-process the query image to re-

move the defects, or to use features like the ones reported in[56] which are robust to noise.

Either way this an application specific problem (which is whyit was not addressed in the

thesis), but still warrants future investigation.
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6 Conclusion

The focus of this research is on a tolerance space-based approach to image analysis. This

approach was chosen because coverings of finite non-empty sets, determined by tolerance

relations, tend to reveal resemblances between disjoint sets. In keeping with this insight

about resemblance made by Sossinsky, this thesis introduces a tolerance near set approach

that includes: the introduction of a nearness measure to determine the degree that near

sets resemble each other (see,e.g.Section4.3); a systematic approach to finding tolerance

classes (see,e.g. Section4.4), together with proofs demonstrating that the proposed ap-

proach will find all tolerance classes on a set of objects (also in Section4.4); an approach

to applying near set theory to images (see,e.g. Section5 and AppendixA); the applica-

tion of near set theory to the problem of content-based imageretrieval (also in Section5);

demonstration that near set theory is well suited to solvingproblems in which the outcome

is similar to that of human perception (see, results in Section 5.6); and two other near set

measures are considered, one based on Hausdorff distance, the other based on Hamming

distance (see,e.g.Section5.4).

The results presented in Section5 demonstrate that the near set approach is a powerful

tool in content-based image retrieval applications applications, even for small values of

ε. Moreover, these results suggest that the near set approach, and more specifically, the

tolerance near-set approach, is suitable for applicationswhere the desired outcome is close

to the human perception of nearness, where a problem can be formulated in terms of sets

of objects together with feature value vectors describing the objects. In fact, in terms of

perception, the near set approach is advantageous, since itprovides a formal framework for

the quantification of the perception of similarities of objects based on a manner in which

people perceive objects and the affinities between them, since people tend to grasp not

single objects, but classes of them [45].

In summary, near sets themselves reflect human perception ofnearness,i.e., they re-

semble collections of object-comparison measurements that are byproducts of perceiving
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and, possibly, recognizing objects in the environment. Although a consideration of human

perception itself is outside the scope of this thesis, it should be noted that a rather common

sense view of perception underlies the basic understandingof near sets (in effect, perceiv-

ing means identifying objects with common descriptions). And perception itself can be

understood in Maurice Merleau-Ponty’s sense, where perceptual objects are those objects

captured by the senses. However, it is important to note thatthese methods are depen-

dent on probe function selection and that poor selection of probe functions results in less

perceptually relevant information. This is to be expected and is similar to the feature ex-

traction problem in pattern recognition and other feature dependent disciplines. This thesis

has demonstrated that near set theory is a powerful approachto solving problems based on

the human perception of nearness.

A Other Applications of Near Sets

This section presents a new form of morphological image processing based on perception

rather than geometry, which was introduced by Henry and Peters (see,e.g., [35]). First, a

review of traditional mathematical morphology is presented, followed by a discussion on

perceptual morphology. Gonzalez and Woods [55] define morphology as the study of form

and structure in complex biological organisms. Similarly,they define mathematical mor-

phology in terms of set theory where the sets consist of tuples containing pixel coordinates

in a binary image. In contrast, perceptual morphology, inspired by traditional morphology,

is an approach where the operations are based on objects defined in near set sense.

A.1 Mathematical Morphology

The following review uses the same notation given in [55]. Mathematical morphology

starts with the assumption that an image is a set of points (pixels), that are represented by

two dimensional vectors. With this view of an image, it is then possible to consider set

theory-based operations on images, namely, dilation⊕ and erosion	. Let the ·̂ operator

93



represent the reflection of a setB, defined as

B̂ = {w | w = −b,∀ b ∈ B},

and let the operator(·)z denote the translation of a set by pointz = (z1, z2)
T, that is,

(A)z = {c | c = a+ z,∀ a ∈ A}.

Then, the dilation of an imageA by a structuring elementB is defined as

A⊕B = {z | (B̂)z ∩ A 6= ∅},

and, similarly, an erosion operationA	B is defined as

A	B = {z | (B)z ⊆ A},

whereA usually indicates the image to be transformed, and the structuring elementB

consists of a geometric arrangement of pixels in which the shape and binary value of the

pixels play an important role in the transformation ofA. A simple example of dilation and

erosion is given in Fig.48 (see both [55,118] for more examples). Notice that dilationand

erosion operators respectively cause the setA to grow and reduce in size, where the terms

grow and reduce are defined with respect to area since the objects in the sets correspond to

pixels coordinates.

(a) (b) (c)

Figure 48: Example of mathematical morphology. (a) Segment obtained from an image in the Berkeley
Segmentation Dataset [97], (b) dilation of (a) using squarea structuring element of width 5, and (c) erosion
of (a) using the same structuring element. (Original unsegmented image used with permission [97])
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A.2 Perceptual Morphology

If set theory is the language of mathematical morphology, then near set theory is language

of perceptual morphology. The central idea between the two approaches is the same,i.e.,

both methods increase or decrease set membership based on comparison with a structuring

element. The difference lies in the definition of the objects, in particular, the perceptual

approach defines objects in the near set sense. Thus, objectscan be anything as long as

it is possible to define probe functions that operate on the objects under consideration.

In terms of image processing, the goals are the same. Mathematical morphology is used

for identifying structure [55], whereas the near set approach is used to identify perceptual

properties in images. The latter is similar to the former in that identification of structure

facilitates human perception of images [13].

The proposed approach to perceptual morphology is based on mathematical morphol-

ogy, yet it takes advantage of the perceptual information inherent to near set theory. Again,

let the set of objects be represented byO, and the quotient set isO/∼B
, whereB is a set

of probe functions on objects inO selected fromF. Now, define a setA ⊆ O such that it

has somea priori perceptual meaning associated with it,i.e. this set has definite meaning

in a perceptual sense outside of the probe functions inB. Next, let the quotient set repre-

sent the structuring element from traditional mathematical morphology, in other words let

B = O/∼B

13. As will be seen shortly, the quotient set is used as the structuring element in

perceptual morphology, since it contains the perceptual information necessary to augment

the setA in a perceptually meaningful way. This perceptual information is in the form

of elementary sets (collections of objects with matching descriptions), since we perceive

objects by the features that describe them and that people tend to grasp not single objects,

but classes of them [45].

13The quotient set is being relabelled only to be notationallyconsistent with traditional mathematical mor-
phology defined in SectionA.1.
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Keeping the above in mind, perception-based dilation is defined as

A⊕B = {x/∼B
∈ B | x/∼B

∩ A 6= ∅}, (13)

and the perception-based erosion is defined as

A	B =
⋃

x/∼B
∈B

{x/∼B
∩ A}. (14)

Notice, the setA is grown perceptually by the structuring elementB (and consequently by

the probe functions inB) using the dilation operator by including objects in the result that

have similar descriptions to those contained inA. In other words, the dilation operation

perceptually enhances the setA by including the full membership of the elementary sets

that have at least one object inA. Conversely, the erosion operation essentially masks the

setB (usingA) by including in the result only the portions of the elementary sets contained

in A already. Thus, perceptual information can be reduced if theentire elementary set is

not contained in the result.

By way of example the above concepts are illustrated with images. LetO contain

subimages as set elements,i.e. perceptual objects, and letA be a subset of the subimages14.

Then, the structuring element,B = O/∼B
, can be viewed as an image where each class is

assigned a unique colour (or grey value). Similarly, the results of dilation and erosion can

be viewed as images as well where the objects in the result areassigned the same colour as

the objects inB, and the rest of the image can be coloured white representingan absence

of objects (since it is most likely the case that not all of theobjects inO will be included in

the result).

Fig.49is an example of these techniques applied to a simple greyscale image containing

five circles in which a gradient operation from white to blackwas applied as shown in

Fig. 49a. The gradient was used so that there is no crisp boundary to indicate the start

14Sometimes a setA will be given in terms of a segment of the original image (as inFig. 49c). In this
case it is necessary to rasterize the set by converting from aset with pixel granulation to a set with subimage
granulation.
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of the circle. Next, Fig.49b contains the elementary sets created using a subimage size

of 10 × 10 andB = {φavg(fs)} where each colour represents a different set. Notice that

each circle has similar elementary sets since they are identical (except for the centre circle

which is slightly larger). Next, Fig.49ccontains the setA representinga priori perceptual

information, in this case it is a segment representing the point at which the centre circle

is predominately black. The result of perceptually growingthe segment using the dilation

operator defined in Eq.13 is given in Fig.49d15. Notice the results show that the segment

A was enlarged to include the other four circles that are perceptually similar with respect

the probe functions inB. Thus, more perceptual information was gained about the segment

represented byA. Similarly, the result of perceptually reducingA using Eq.14 is given

in Fig. 49e. The perceptual information is reduced since all the information contained in

B = O/∼B
is not being used. For instance, there is no representation of the other four circles

in the result, which are perceptually similar to the centre circle. However, the operation is

still useful in that it gives us perceptual information (in the form of elementary sets) about

A with respect to the probe functions inB.

(a) (b) (c)

(d) (e)

Figure 49: Example of perceptual morphology on simple greyscale image. (a) Original image, (b) quo-
tient set of (a), (c) perceptual segmentation of the centre circle in (a), (d) perceptual dilation of (b), and (e)
perceptual erosion of (b).

15Note, the white area of Fig.’s49d& 49eand Fig.’s50d& 50edo not represent an elementary set. This
area is meant to be a background used to indicate a lack of elementary sets that are found in the same location
in the image of the quotient set.
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Another example of perceptual morphology is given in Fig.50. In this case, Fig50a

contains an image from the Berkeley Segmentation Dataset [97] and Fig.50c is a single

ground truth segment from the same dataset. As before, Fig.50bcontains the elementary

sets, this time created using a subimage of size2×2 andB = {φIC(fs), φNormG(fs)}. Notice,

for the most part, the elementary sets represent perceptualconcepts of the image,e.g, the

horses tend to share the same elementary sets which differ from those of the background.

Next, the setA represented by the segment of the younger horse is perceptually dilated

in Fig. 50d. Again, the result now includes other areas of the image thatare perceptually

similar (with respect to probe functions inB) including the other horse and parts of the

background. Recall, that we may not find the background perceptually similar to the horse

but the similarity occurs using only the probe functions inB, i.e. information content and

the normalized green value from the RGB colour model. Similarto the last example, the

perceptual reduction caused by the erosion operator occursdue to the lack of inclusion of

the full elementary sets in the result. Although, as was mentioned before, this result still

contains perceptually valuable information of the original setA as will be seen in the next

section.

(a) (b) (c)

(d) (e)

Figure 50: Example of perceptual morphology on image from Berkeley Segmentation Dataset [97]. (a)
Original image (Used with permission [97]), (b) quotient set of (a), (c) perceptual segmentation of younger
horse in (a), (d) perceptual dilation of (b), and (e) perceptual erosion of (b).
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A.3 Segmentation Evaluation

This section presents an application of perceptual morphology in the form of a new method

for segmentation evaluation called the Near Set Index (NSI)first introduced by Henry and

Peters in [34,35]. The NSI index was created out of a need for an unsupervised segmenta-

tion evaluation method that could be used in real world systems yet still based on human

perception rather than characteristics of ideal segmentations that is popular in most unsu-

pervised segmentation evaluation methods.

There are generally three classes of segmentation evaluation techniques, namely, ana-

lytic, empirical discrepancy, and empirical goodness methods [119, 120]. Analytic meth-

ods generally perform evaluation solely by examining the algorithm without considering

the resultant segmentations. These methods are concerned with processing complexity and

strategy and are not useful for evaluating the perceptual relevance of a given segmentation.

The next category is empirical discrepancy (also called relative or supervised evaluation)

and is characterized by the comparison of the test segmentation with ground truth images

(segmentations performed by people or experts). These methods are popular because they

evaluate segmentations based on the perceptual groupings created by people which is the

end result of any segmentation algorithm. Unfortunately, it is not realistic to assume that

systems incorporating image segmentation will have accessto ground truth images and

so these methods are generally used for the comparison of segmentation algorithms dur-

ing the design phase. The last type of segmentation categoryis called empirical goodness

(also known as stand-alone or unsupervised). These methodsare based on some properties

that ideal segmentations should contain. Generally, it is more difficult for these evaluation

methods to be based on human perception of objects due to the lack of ground truth input

or a formal framework for the quantification of perception and similarities of objects.

The are many examples of empirical goodness methods for segmentation evaluation.

For example, [120] implements a co-evaluation framework inwhich multiple unsupervised

methods are combined with learning algorithms to take advantage of different measures.

Examples of the measures they consider are ones based on squared colour error ratio to

99



segment area [121, 122], on entropy (information content) of an image and the minimum

description length principle (MDL) [123], on the geometricshape of a segment (e.g.com-

pactness, circularity and elongation), and a contrast measure between the inside and out-

side of a segment [124]. Similarly, [125] present a review ofsix unsupervised methods

based on image features such as segmentation contrast, standard deviation, and colour er-

ror. Likewise, [119] is another often sited survey of segmentation evaluation techniques

also describing unsupervised measures where again the unsupervised methods are based

solely on image characteristics. Notice that all these methods suffer because of the lack

of the perceptual information contained in a ground truth image or the lack of a formal

framework for the quantification of perception and similarity of objects introduced by near

set theory. This is a problem we attempt to rectify with the introduction of the NSI.

A.4 Near Set Index

This section introduces a method for segmentation evaluation using perceptual morphology

presented above. The goal of image segmentation is to partition an image into disjoint

regions such that each one reflects some perceptual component of the image16. Since it

has been observed that the quotient set captures perceptualinformation of objects [46], it

makes sense to use the quotient set to measure the quality of asegmentation,i.e., the degree

to which a segmentation represents an image component.

Let f represent an RGB image and letA representa priori information in the form of

an image segment. Then, the result of perceptual erosion canbe used to evaluate the quality

of the segment since it only contains perceptual information about the setA. Further, since

this set should represent a perceptual component withinf and the quotient set represents

perceptual information about the subimages inO, it should be possible to select probe

functions inB such that the elementary sets begin to represent these components. As such,

a good measure of segmentation quality is the variability ofthe classes contained in the

16Here we refer to theobjectscontained in images as components to avoid confusion withobjectsin the
near set sense.
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perceptual erosion ofA. In general, the measure of variability of objects that takeon labels

from a discrete set is called the information content, and ittakes on values in the interval

[0, log2 L] whereL is the number of different labels the objects can assume [126, 127]. A

value of 0 is produced when the objects contains all the same labels and the highest value

occurs when each label occurs with equal frequency. Thus, for this application, low values

of information content of the erosion ofA corresponds to good segmentations andvice

versa. This leads to the following definition:

Definition 26. Near Set Index[35]. Let A represent a single image segment for evalua-

tion, and letB = O/∼B
represent the quotient set obtained using the probe functions inB.

Then, theNear Set Index(NSI) is the information content of the perception-based erosion

ofA.

(a) (b)

(c) (d)

Figure 51: Example of quotient set and perception based erosion of Fig.50ausing different probe functions.
(a) Fig. 50b created using probe functionsB = {φIC(fs), φNormG(fs)} and repeated here for comparison,
(b) quotient set obtained usingB = {φavg(fs)}, (c) perceptual based erosion using (a) as the SE, and (d)
perceptual based erosion using (b) as the SE (Original unmodified image used with permission [97]).
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A.5 Segmentation Evaluation Examples

To demonstrate these concepts two examples are given in Fig.’s 51 & 52 and the resultant

information content is given in Table6. The first example shows that poor choices of

B lead to poor segmentations evaluations demonstrating thismethod is dependent on the

selection of probe functions in the same manner that patternrecognition is dependent on

feature selection. Notice that the elementary sets of Fig.51atend to capture the perceptual

components of Fig.50abetter than those in Fig.51b. Consequently, the information content

of the erosion given in Fig.51d is higher (and so worse) than that of Fig.51c. Thus, the

same segment can have different NSI values depending on the choice ofB. This example

was given to highlight the need for careful probe function selection for a given application.

The next example (given in Fig.52) demonstrates the ability of the NSI to evaluate different

segmentations. The segmentation given in Fig.52ais the same as Fig.50c shifted to the

right, and the segmentation given in Fig.52cwas created by placing boxes of approximately

the right size over the horse. Both of these segmentations arebad in the sense that they do

not capture the perceptual component representing the smaller horse in the image as well

as the segmentation in Fig.50c. This is reflected by the information content values given

in Table6 which are higher than that of Fig.51c.

(a) (b)

(c) (d)

Figure 52: Segmentations of the smaller horse in Fig.50aand their perception-based erosions. (a) Sample
segmentation, (b) erosion of (a), (c) sample segmentation,and (d) erosion of (b) (Original unmodified image
used with permission [97]).
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Table 6: Information content of perceptual-based erosion

Erosion image Information content

Fig. 51c 1.6619

Fig. 51d 2.5682

Fig. 52b 2.1954

Fig. 52d 2.0797

Next, further demonstration of the ability of the NSI index to evaluate an image seg-

mentation,Stest, is given by way of comparison with the normalized probabilistic rand index

(see Section2.3.5). But first the NSI must be extended to handle more than one segment.

This is easily accomplished by letting the NSI of a proposed image segmentation be the

information content of the worst segment in the image,i.e. let the NSI be the value of the

highest information content resulting from the erosions ofall the segments inStest. The

idea being that a proposed segmentation is only as good as itsworst region. Using this

approach, the NSI was used to evaluate the segmentations from an example given in [69]

and repeated in Fig.53. The results of evaluating the segmentations in Fig.53 using both

the NPR and the NSI index are reported in Fig.54. Notice all three measures give similar

evaluations of the segmentations of Fig.53, i.e., Fig.’s53c-53eare all ranked the highest

(with Fig. 53eranked the best). Additionally, the NSI index gives similar(poor) ratings

for both the over and under segmentations shown in Fig.’s53a& 53f, rather than treating

one case much worse than the other (a rather nice result sine both are usually equally bad

outcomes).

B Near System

This section introduces the Near set Evaluation and Recognition (NEAR) system, a system

developed to demonstrate practical applications of near set theory in the problems of image

segmentation evaluation [34,35] and image correspondence[92,93]. This system was also

used to demonstrate and visualize concepts from near set theory reported in [20,23–25,33,
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(a) (b) (c)

(d) (e) (f)

Figure 53: Mean shift segmentation of Fig.50awith hs (spatial) = 7 andhr (range) = 3,7,11,15,19,23 for
(a), (b), (c), (d), (e), and (f) (Original unsegmented imageused with permission).
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Figure 54: Results of evaluating the segmentations given in Fig.53: (a) NPR index, and (b), (c) NSI on a
window size of2× 2 using respectivelyB = {φHShannon(fs), φNormG(fs)} andB = {φHPal(fs), φNormG(fs)}.

36, 40, 48, 50]. It was motivated by a need for a freely available software tool (available

at [42]) that can provide results for research and to generate interest in near set theory.

The functionality of the NEAR system is given in the following sections. This system

implements a Multiple Document Interface (MDI) (see,e.g., Fig. 55) where each separate

processing task is performed in its own child frame. The perceptual objects in this system

are subimages of the images being processed and the probe functions are image processing

functions defined on the subimages. The system was written inC++ and was designed to

facilitate the addition of new processing tasks and probe functions17. Currently, the sys-

17Parts of the Graphical User Interface (GUI) were inspired bythe GUI reported in [66] and the wxWidgets
example in [128].
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tem performs siz major tasks: displaying equivalence and tolerance classes for an image;

performing segmentation evaluation; measuring the nearness of two images; performing

content-based image retrieval; and displaying the output of processing an image using in-

dividual probe functions.

Figure 55: NEAR system GUI.

B.1 Equivalence class frame

This frame calculates equivalence classes using the Perceptual Indiscernibility relation in

Definition5, i.e., given an imageX, it will calculateX/∼B
, where the objects are subimages

of X (see Section2.1 for further explanation). An example using this frame is given in

Fig. 56and is obtained by the following steps:

1. Click Load Imagebutton and select an image.

2. Click theSet Parametersbutton.

3. Select window size. The value is taken as the square root ofthe area for a square

subimage,e.g., a value of 5 creates a subimage containing 25 pixels.

4. Select number of features (maximum allowed is 24).
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Figure 56: Sample run of the equivalence class frame using a window sizeof 2 × 2 andB = {φAverage Grey

(Image shown in NEAR system used with permission [98]).

5. Select features.

6. Click Run.

The result is given in Fig.56, where the bottom left window contains an image of the

equivalence classes, and each colour represents a single class. The bottom right window is

used to display equivalence classes by clicking in any of thethree images. The coordinates

of the mouse click determine the equivalence class that is displayed. The results may be

saved by clicking on the save button.

B.2 Tolerance class frame

This frame finds tolerance classes using the perceptual tolerance relation in Definition18,

i.e., given an imageX, this frame findsH∼=B,ε
(O), where the objects are subimages ofX

(see Section3 for further explanation). An example using this frame is given in Fig.57and

is obtained by the following steps:

1. Click Load Imagebutton and select an image.

2. Click theSet Parametersbutton.
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Figure 57: Sample run of the tolerance class frame using a window size of20 × 20, 18 features used to
generate the results in this thesis, andε = 0.7 (Image shown in NEAR system used with permission [104,
105]).

3. Select window size. The value is taken as square root of thearea for a square subim-

age,e.g., a value of 5 creates a subimage containing 25 pixels.

4. Selectε, a value in the interval[0,
√
l], wherel is the number of features (length of

object description).

5. Select number of features (maximum allowed is 24).

6. Select features.

7. Click onFLANN Parameterstab, and select the FLANN parameters for calculating

tolerance classes.

8. Selectε, a value in the interval[0,
√

Num. features].

9. Click Run.

The result is given in Fig.57 where the left side is the original image, and the right

side is used to display the tolerance classes. Since the tolerance relation covers an image

instead of partitioning the image, the tolerance classes are displayed upon request. For
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instance, by clicking on either of the two images, a window appears letting the user display

each tolerance class containing the subimage selected by the mouse. Further, the subimage

containing the mouse click contains an ‘X’, and the subimages can be coloured white or

black.

B.3 Segmentation evaluation frame

This frame performs segmentation evaluation using perceptual morphology as described in

SectionA, where the evaluation is labelled the Near Set Index (NSI). For instance, given a

set of probe functionsB, an image, and a segmentation of the image (labelledA), this frame

can perform the perceptual erosion or dilation usingB = O/∼B
as the structuring element.

Also, the NSI is calculated if perceptual erosion was selected. A sample calculation using

this frame is given in Fig.58and is obtained by the following steps:

Figure 58: Sample run of the segmentation evaluation frame using a window size of2 × 2, andB =
{φEdge Present} (Image shown in NEAR system used with permission [97]).

1. Click Load Image & Segmentbutton.

2. Select an image clickOpen.

108



3. Select segmentation image and clickOpen. Image should contain only one segment

and the segment must be white(255, 255, 255) and the background must be black

(0, 0, 0). The image is displayed in the top frame, while the segment isdisplayed in

the bottom right (make sure this is the case).

4. Click eitherErode to perform perceptual erosion and segmentation evaluation, or

Dilate to perform perceptual dilation (no evaluation takes place during dilation).

5. Select window size. The value is taken as the square root ofthe area for a square

subimage,e.g., a value of 5 creates a subimage containing 25 pixels.

6. Select number of features (maximum allowed is 24).

7. Select features.

8. Click Run.

The result is given in Fig.58 where the bottom left window contains the an image of

the equivalence classes where each colour represents a different class. The bottom right

window contains either the erosion or dilation of the segmentation. Clicking on any of the

three images will display the equivalence class containingthe mouse click in the bottom

right image. The NSI is also displayed on the left hand side (if applicable).

B.4 Near image frame

This frame is used to calculate the similarity of images using the measures given in this

thesis. The use has the option of comparing a pair of images (and viewing the resulting tol-

erance classes), or comparing a query image to an entire directory of images. The following

two subsections outline the steps involved under both options.

B.4.1 Evaluating a pair of images

The steps involved in comparing a pair of images are as follows, and sample output for this

process is given in Fig.59.
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Figure 59: Sample run comparing a pair of images using a window size of20 × 20, 18 features used to
generate the results in this thesis, andε = 0.7 (Image shown in NEAR system used with permission [104,
105]).

1. Select theNew near image windowicon, select File→New near image window, or

press Alt+N.

2. SelectA pair of images(the default value) from theSelect type of Comparisonwin-

dow, and click OK.

3. Click Load Imagesbutton and select two images.

4. Click theSet Parametersbutton.

5. Select window size. The value is taken as the square root ofthe area for a square

subimage,e.g., a value of 5 creates a subimage containing 25 pixels.

6. Selectε, a value in the interval[0,
√
l], wherel is the number of features (length of

object description).

7. Select number of features (maximum allowed is 24).

8. Select features.
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9. Click onFLANN Parameterstab, and select the FLANN parameters for calculating

tolerance classes.

10. ClickRun.

The result is given in Fig.59 where the left side contains the first image, and the right

side contains the second image. Clicking in any of the two images will bring up a window

that allows the user to view each tolerance class containingthe subimage selected by the

mouse. Further, the subimage containing the mouse click is marked with an ‘X’, and the

subimages can be coloured white or black. Also, the similarity of the images is evaluated

using the measures described in this thesis, where the results are displayed on the left hand

side.

B.4.2 Comparing a query image with a directory of images

The steps involved in comparing a query image with a directory containing images is as

follows.

1. Select theNew near image windowicon, select File→New near image window, or

press Alt+N.

2. SelectQuery image with a directory of imagesfrom theSelect type of Comparison

window, and click OK.

3. Click Load Query Image + Dir.button and select an image plus a directory contain-

ing images for comparison with query image.

4. Click theSet Parametersbutton.

5. Select window size. The value is taken as the square root ofthe area for a square

subimage,e.g., a value of 5 creates a subimage containing 25 pixels.

6. Selectε, a value in the interval[0,
√
l], wherel is the number of features (length of

object description).
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7. Select number of features (maximum allowed is 24).

8. Select features.

9. Click onFLANN Parameterstab, and select the FLANN parameters for calculating

tolerance classes.

10. ClickRun.

The result is the left side contains the query image, and the right side contains an image

from the directory. Clicking in any of the two images will bring up a window that allows

the user to view the images from the directory in the order they were ranked by the selected

similarity measure. In addition, three output files are created containing the similarity

measure of each image in the database, sorted from most similar to least similar. Finally,

three figures are also displayed plotting the similarity measures vs. images in the directory

for all three measures. Note, the results are sorted from best to worst, so the output files are

also required to relate the abscissae to actual image files.

B.5 Feature display frame

This frame is used to display the output of processing an image with a specific probe func-

tion. An example using this frame is given in Fig.60 and is obtained by the following

steps:

1. Click Load Imagebutton and select an image.

2. Select features.

3. Select probe function.

4. Click Display feature.
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Figure 60: Sample run of the feature display frame (Image shown in NEAR system used with permis-
sion [97]).
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