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Abstract

The focus of this research is on a tolerance space-based approaeytanalysis
and correspondence. The problem considered in this thesis is onteauitarg percep-
tually relevant information from groups of objects based on their desangtiobject
descriptions are represented by feature vectors containing probiofunalues in a
manner similar to feature extraction in pattern classification theory. The motivatio
behind this work is the synthesizing of human perception of nearness fooveyp
ment of image processing systems. In these systems, the desired output isteimila
the output of a human performing the same task. Thus, it is important to have sy
tems that accurately model human perception. Near set theory providanework
for measuring the similarity of objects based on features that describe thawncim
the same way that humans perceive the similarity of objects. In this thesissetear
theory is presented and advanced, and work is presented toward sehe@proach
to performing content-based image retrieval. Furthermore, results ane lgased on
these new techniques and future work is presented. The contributidhss dhesis
are: the introduction of a nearness measure to determine the degreeahs¢tsere-
semble each other; a systematic approach to finding tolerance classésertage
proofs demonstrating that the proposed approach will find all tolerdasseas on a set
of objects; an approach to applying near set theory to images; the applichti@ar
set theory to the problem of content-based image retrieval; demonstratioretraset
theory is well suited to solving problems in which the outcome is similar to that of
human perception; two other near set measures, one based on Hiadistkmce, the
other based on Hamming distance.

Keywords: Description, near sets, tolerance near sets, tolerance spaceptiperce
probe functions, feature values, nearness measure, contentibagedetrieval (CBIR).
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1 Introduction

The focus of this thesis is on perceptual nearness theorgppictations. The view of the
perception of nearness presented in this thesis combieesas$ic understanding of per-
ception in psychophysics with a view of perception found ierMau-Ponty’s work [1].
That is, perception of the nearness of objects, (in effect, our knowledge about objects)
depends on sensor signals gathered by our senses. Thegui@um®oach to perception is
feature-based and is similar to the one discussed in thedunttion of [2]. In this view, our
senses are likened to probe functioins, mappings of sensations to values assimilated by
the mind. A human sense modelled as a probe measures theallgfsracteristics of ob-
jects in our environment. The sensed physical charadtsstan object are identified with
object features. It is our mind that identifies relationshygtween object feature values to
form perceptions of sensed objects [1]. In this thesis, aoisjectured that perceptione.
human perception of nearness, can be quantified througtsthefunear sets by providing
a framework for comparing objects based on object desoriptiObjects that have similar
appearancei.g., objects with similar descriptions) are considepedceptually near each
other. Sets are considered near each other when they have “thipgsieived objects) in
common. Specifically, near sets facilitate measurementrolsity between objects based
on feature values (obtained by probe functions) that desdhe objects. This approach is
similar to the way humans perceive objects (geg,[3]) and as such facilitates the creation
of perception-based systems.

This thesis is divided into two main components, namely dieegresenting (and
contributing to) near set theory, and a section demonsg #tiat near set theory can be used
in applications where the result is similar to that of humancpption. Specifically, near
set theory is applied to the problem of content-based imatyeeval, which is a research
area focusing on the retrieval of images from a databasellmsthe perceptual content of
the images, as well as segmentation evaluation, an apphcabncerned with measuring

the quality of an image partition to capture the perceptigéas contained within the



image. Implicit in most applications concerning digitalages is human perception of
images, and the objects we perceive that the images coAtaystem that employs image
processing either purposely or inadvertently mimics thendw visual system due to fact
that these systems ultimately aide visual perception bylpeorhus a generalization of
definitions for image processing leads to the manipulatfahigital images for the purpose
of extracting or enhancing perceptual information coredim images.

The termperceptionappears in the literature in many different places with eespo
the processing of images. For instance, the term is ofted imsedemonstrating that the
performance of methods are similar to results obtained byamusubjects (as in [4]), or itis
used when the system is trained from data generated by humgatts (as in [5]). Thus, in
these examples, a system is considered perceptual if itasimiman behaviour. Another
illustration of the use of perception is in the area of semantith respect to queries [6, 7].
For instance, [7] focuses on queries for 3-D environmeints, performing searches of
an online virtual environment. Here the question of pericapis one of semantics and
conceptualization with regard to language and queries.ekample, users might want to
search for a tall tree they remembered seeing on one of tisés to a virtual city.

Other interpretations gderceptiorare tightly coupled to psychophysic®. perception
based on the relationship between stimuli and sensationH&] example, [9] introduces
a texture perception model. The texture perception modes tise antagonistic view of
the human visual system in which our brain processes diftexgin signals received from
rods and cones rather than sense signals, directly. An hfeagere model of perception
has been suggested by Mojsilowet al. [10], where it is suggested that humans view or
recall an image by its dominant colours only, and areas @untasmall, non-dominant
colours are averaged by the human visual system. Other dgampthe term perception
defined in the context of psychophysics have also been givkeAil[7].

Perception as explained by psychologists [18,19] is sinléhe understanding of per-
ception in psychophysics. In a psychologist’'s view of ppti, the focus is more on

the mental processes involved rather than interpretingreat stimuli. For example, [19]



presents an algorithm for detecting the differences betwwe images based on the rep-
resentation of the image in the human miedy( colours, shapes, and sizes of regions and
objects) rather than on interpreting the stimuli producéémiooking at an image. In other
words, the stimuli from two images have been perceived amdiihd must now determine
the degree of similarity.

Much work has been reported based on the perceptual apppoasénted by near set
theory [20-25], an outgrowth of the rough set approach taiolitg approximate knowl-
edge of objects that are known imprecisely [26—30]. The gq@r@l approach to near-
ness presented in this thesis is an outgrowth of researatapylications of near set the-
ory [31-33], as well as, application of near sets to the infageessing problems of seg-
mentation evaluation [34, 35], image correspondence [8333]. Briefly, disjoint sets
containing objects with matching descriptions are calledrrsets. The discovery of near
sets begins with the selection of probe functions that pl@w basis for describing and
discerning affinities between sample objects (seg, [20, 40, 41]). Aprobe functions a
real-valued function representing a feature of physicg@ab. The perceptual approach of
near set theory is based on the idea that our mind identifiaBarships between object
features to form perceptions of sensed objects. As was am&adj our senses gather the in-
formation of the objects we perceive and map sensationduesassimilated by the mind.
Thus, our senses can be likened to perceptual probe fusatidhe form of a mapping of
stimuli from objects in our environment to sensations (galused by the mind to perceive
objects). It is this idea of probe functions that is at therhebnear sets.

This thesis presents the theory and applications of nesr be approach is by way of
extracting perceptually relevant information from a seblojects, where each object has an
associated feature vector describing object featuresdped object characteristics such
as colour). It is the information contained in these feautgetors that is used to extract
perceptual information from classes of objects and to nrease similarity among them.

The contributions presented in this thesis are:

e The introduction of a nearness measure to determine theedgat near sets resem-

3



ble each other,

e A systematic approach to finding tolerance classes, togeiltie proofs demonstrat-
ing that the proposed approach will find all tolerance classea set of objects,

e An approach to applying near set theory to images,

e The application of near set theory to the problem of conbersied image retrieval,

e Demonstration that near set theory is well suited to solgraplems in which the
outcome is similar to that of human perception,

e Two other near set measures are considered, one based odorfadsstance, the

other based on Hamming distance.

This thesis is organized as follows: Sect®@n contains background information on near
set theory and image processing; Sectbpresents tolerance near sets, and introduces
the nearness measur®' M; Section5 presents an application of near set theory to the
problem of content-based image retrieval; and Sedioancludes the thesis. In addition,
AppendixA presents another application of near set theory by way aheatation evalu-
ation, and AppendiB presents the NEAR System, a GUI that contains an implementat
of all the code used to generate the results presented ith#sss, and is freely available

at [42].



2 Background

2.1 Near Sets

Nearness is an intuitive concept that allows us to functioour daily lives. At a young
age, we become adept at identifying the similarity of olgectour environment, and can
quickly assess the degree of similarity. In fact, our daykdg conversations are full of
adverbs and adjectives used to encapsulate the nearnegsngfs” in our environment.
Phrases like “he was about as tall as you are” or “those saotssimilar” serve to demon-
strate the frequency with which we are making analogies jeatd that are not the same,
but share some common characteristics. However, it wasreogntly, relatively speaking,
that this idea of nearness was first explored mathematidatigyes Riesz first published
a paper in 1908 on the nearness of two sets, initiating a fietdualy which has now be-
come known as proximity spaces [43,44]. Proximity spacésaatically characterize the
proximity relation, a relation that, in brief, provides arfnework for identifying the near-
ness of a point to a set and the nearness of two sets, whereegeas based on the spatial
relationship between objects, rather than in terms of tleerg@ions associated with the
objects. In contrast, near set theory is concerned withélaeness of objects based on their
descriptions.

The introduction of near set theory was significantly inflcesh by work on rough set
theory established by Z. Pawlak in 1981 [26], and by the wdf&.dDrtowska on approxi-
mation spaces [45,46]. Briefly, a sEtis considered a rough set\f cannot be reproduced
by the union of cells in a partition, where the partition iided by an equivalence relation
on object descriptions, called the indiscernibility redat A set that is considered rough
can be approximated using this relation. The main concept fiough set theory present
in near set theory is the notion of indiscernibility of oldgecNear set theory was founded
on the idea that two disjoint sets of objects are near eadr,aflthey contain objects that
have the same descriptions, which can be identified usingptigcernibility relation. The

principal difference between rough set theory and near(asteported in [25, Section 6.1,



pp. 18]) is that near sets can be discovered without the appation of sets.

Near set theory was inspired by a collaboration in 2002 byaxul&k and J. F. Peters on
a poem entitled “How Near” [47]. The poem’s theme is the huiperrception of nearness,
conveying imagery about the proximity of snow flakes to tre@sl the nearness of icicles
to the ground. At the same time, work began on applying roegltheory to the problem
of measuring the similarity of imageise. image correspondence, and content-based image
retrieval, the problem of retrieving images by their contather than strings of text asso-
ciated with the image. It was these events which led to thetiirs publications on near
set theory in [21,48]. These papers represent the intramuof near theorye.g.the intro-
duction of the definitions fundamental to the field of neartBebry, and mark a transition
from focusing on the approximation of a single set, as in hoset theory, to discovering
the nearness/similarity of disjoint sets based on objestrigions. This can be seen by
the discovery of near sets in approximation spaces,the approximation of one set by
another set [21], the introduction of a nearness approximapace (also in [21]), and the
approximation of the nearness of objects in [48]. Notice thase papers are still using the
terminology in the approximation of sets that are qualitdyi near each other, a fact that
shows the influence of rough set theory in the introductionear sets.

Subsequently, there have been many publications in thecdneear set theory [25].
While, near set theory was motivated by the image correspmedproblem, the first few
papers on near set theory had as their aim the applicatiogasfaets to the problem of dis-
covering affinities between perceptual information grasuiwhere a perceptual granule is
a non-empty set containing objects with common descriptj@f, 23, 24]. As will become
apparent in this thesis, sets that are near each other armgpksaof information granules
(see.e.qg, definition in [23]). Other examples of the application ofinget theory include:
identification of features in an automated facial featureagtion procedure [49]; image
correspondence [33, 36—39] (still using approximatiorcepd50]); adaptive learning [31]
and near set theory applied to patterns of observed swaravizein stored in tables called

ethograms, where the goal is to measure the resemblancedyetiie behaviours of differ-



ent swarms [51]; and finally image morphology and segmemntavaluation [34, 35].
Finally, it is worth mentioning that the papers [20, 48] atsmtain a nice discussion
on the differences between features and attributes, wkiem iimportant distinction be-
tween the traditional applications of rough set theory, #twedapplication of near set theory
presented in this thesis. Namely, an attribute is a padiation measuring some charac-
teristic of an object. In contrast, a feature is a perceiMeatacteristic of an object, and
there can be more than one feature for a given charactegsgiccolour can be described

by the RGB colour model or the HSV colour model.

2.1.1 Perceptual Systems

A logical starting point for a discussion on near set theagibs with establishing a basis

for describing elements of sets. All sets in near set theongist of perceptual objects.

Definition 1. Perceptual Object A perceptual objeds something perceivable that has its

origin in the physical world.

A perceptual object is anything in the physical world wittacdcteristics observable to the
senses such that they can be measured and are knowable tintheEwamples of per-
ceptual objects include patients, components belongirg reanufacturing process, and
camera images. Here, the tepmrceptions considered relative to measurable characteris-
tics called the object’s features.

In keeping with the approach to pattern recognition suggebly M. Pavel [52], the

features of an object are quantified by probe functions.

Definition 2. Probe Function[21,40] A probe functions a real-valued function repre-

senting a feature of a perceptual object.

In this work, probe functions are defined in terms of digitahges such as: colour, texture,
contour, spatial orientation, and length of line segmetdagaa bounded region. In the
context of near set theory, objects in our visual field areagbvpresented with respect to

the selected probe functions. Moreover, it is the probetfans that are used to measure
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characteristics of visual objects and similarities amoegeeptual objects, making it pos-
sible to determine if two objects are associated with theespattern without necessarily
specifying which pattern (as is the case when performingsdi@ation).

Next, a perceptual system is a set of perceptual objectsthegwith a set of probe

functions.

Definition 3. Perceptual Systenj25]. Aperceptual systeqO, IF) consists of a non-empty
setO of sample perceptual objects and a non-emptyfFset real-valued function® € F

such thatp : O — R.

The notion of a perceptual system admits a wide variety dédiht interpretations that
result from the selection of sample perceptual objectsainetl in a particular sample
spaceO. Two examples of perceptual systems are: a set of imagethtageith a set
of image processing probe functions, or a set of results fmomweb query together with
some measures (probe functions) indicatieg, relevancy or distance.€¢. geographical
or conceptual distance) between web sources.

Combining Definitiondl & 2, the description of a perceptual object within a perceptual

system can be defined as follows.

Definition 4. Object Description. Let (O, F) be a perceptual system, and I8tC F be
a set of probe functions. Then, thescriptionof a perceptual object € O is a feature

vector given by

dp(x) = (91(x), P2(7), ..., di(2), ..., du(T)),

wherel is the length of the vectap,, and each¢;(x) in ¢;(x) is a probe function value

that is part of the description of the objecte O.

Note, the idea of a feature space is implicitly introducexhglwith the definition of object
description. An object description is the same as a featactov as described in tradi-
tional pattern classification [53]. The description of arjeab can be considered a point

in an/-dimensional Euclidean spa@¥ called a feature space. As was mentioned in the



introduction, near set theory is concerned with the nearoésbjects based on their de-
scriptions. Thus, the relationship between objects isodsied in a feature space that is

determined by the probe functions/ih

2.1.2 Perceptual Indiscernibility Relations

Building on the foundational definitions of a perceptual sgstand the description of an
object, this section introduces the perceptual indisbdityi relation and its relationship
to near sets. Near set theory originated with the indisbéityi relation, an equivalence
relation defined with respect to object descriptions gsgd25, 48]). Recall, a relation on
two sets is a subset of their Cartesian product, and an egqas@lrelation is any relation

that is reflexive, symmetric, and transitive.

Definition 5. Perceptual Indiscernibility Relation [25, 26] Let (O, ) be a perceptual

system. For ever§y C I the perceptual indiscernibility relatior s is defined as follows:

~p={(2,9) €O x O : Vo, € B. ¢i(x) = ¢i(y)}.

The perceptual indiscernibility relation is a variationtbe one given by Z. Pawlak in
1981 [26]. Furthermore, notice that equivalence is defingld mespect to the description
of an objectj.e. objects are considered equivalent when the features uskxstoibe them
are the same.

Using the indiscernibility relation (together with the pefunctions inB), a set of
objects can be partitioned into classes of objects with hilagcdescriptions such that each
class has the highest possible object resolution undemnttiscernibility relation. These

classes are called elementary sets or equivalence classaseagiven in Definitiorb.
Definition 6. Equivalence ClassLet (O, F) be a perceptual system and let O. For a
setB C F anequivalence class defined as

Tig ={2' € 0|2 ~pux}.

9



Observe that a single object is sufficient to label the clsissge all objects in a class have
the same description. Moreover, the set of all equivaletasses induced by the partition

of a set using the indiscernibility relation is called a deot set .

Definition 7. Quotient Set Let(O, F) be a perceptual system. For a $&t_ F a quotient
setis defined as

O/NB = {:E/NB | T € O}

Similar to the indiscernibility relation, another equigate relation can be defined such

that only a single probe function, € B is required for equivalence.

Definition 8. Weak Perceptual Indiscernibility Relation [25, 54]. Let (O, F) be a per-
ceptual system, and let € F. Then, theweak perceptual indiscernibility relatian,, is

defined as follows:

~o={(r,y) €O X O: J¢; €F . di(x) = ¢s(y)}.

The weak indiscernibility relation can provide new infotma or relationships about a
set of objects for a given application. For instance, carsal scenario where near set
theory is applied to an existing problem or process whereatbjare already being associ-
ated with feature values; examples include a problem aréadhulated in terms of near
sets without using the weak perceptual indiscernibilitgtien, or problems in other areas
such as pattern recognition or image analysis. In other syaadset of probe functions,
B, has already been selected to solve the problem. In suchharszethe perceptual in-
discernibility relation could produce a quotient set agiin Fig.1a(where each colour
represents a different class), indicating these two saibjefts, representing some percep-
tual information in the original problem domain, are notatet to each other. However,
selecting a singlep; € B could produce the equivalence classes shown inHagwhere

it is now apparent that there is some relationship betweesethwo sets of objects. Also,

as described in [24], DefinitioB can be used to discover similarities in a manner similar
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to humans, namely, we identify similarity between objedg only a subset of all the

possible features associated with an object.

(a) (b)
Figure 1. Example demonstrating the practical application of Datni8. (a) Quotient set created using

Definition 5 showing no relationship between the two sets, and (b) quiosiet created using Definitid
showing a relationship between the two sets.

2.1.3 Near Sets and the Nearness Relation

Definition 5 provides the framework for comparisons of sets of objectsnbypducing a
concept of nearness within a perceptual system. Sets caons@&lered near each other
when they have “things” in common. In the context of near,stits “things” can be
guantified by objects or equivalence classes. The simpkashgle of nearness between
sets sharing “things” in common is the case when two sets imaliscernible elements.

This idea leads to the definition of a weak nearness relation.

Definition 9. Weak Nearness Relatio{25]. Let (O, F) be a perceptual system and let
X,Y C O. AsetX is weakly near to a sét within the perceptual systef®, [F) (X>izY)

iff there arex € X andy € Y and there isp; € F such thatr ~5 y. In the case where
setsX, Y are defined within the context of a perceptual system, #hexi are weakly near

each other.

An example of disjoint sets that are weakly near each othgiven in Fig. 2a, where
each colour represents an equivalence class. These seteakly near each other since
both sets share objects belonging to the same equivaleas® @s a practical example of

weakly near sets, consider a database of images where eagk ismdescribed by some
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feature vector.e. the images are considered perceptual objects and thedegdctors are
the object descriptions. Examples of features are the satidifferent colour models [55]
or moments [56]. In this case, two disjoint sets of imagesvagakly near each other if
each set contains one or more images with descriptions tatthnan image in the other

set.

(d

Figure 2: Examples of Definition® & 10, where each colour represents an equivalence class. (a)fxa
of Definition 9, (b) example oD, .., , (c) example oD, , and (d) example otD/Nd,i showing (together
with (b) and (c)) that setX andY” are near to each other according to Definitidh

Next, the notion of nearness in Definiti@tan be strengthened by considering equiv-

alence classes rather than objects which is the case inltbeiftg definition.

Definition 10. Nearness Relatiorf25]. Let (O, ) be a perceptual system and [§tY C

O. A setX is near to a seft” within the perceptual syste®, F)(X i Y) iff there
are B;,B;,C Fand¢; € Fandthere areA € O/, ,B € O/, ,C € Oy, such that
ACX,BCY,andA, B C C. If a perceptual system is understood, than a’sas near

to a setY.

The concept of the nearness relation can be further explaiadollows. First, recall that
within a perceptual system there is a set of probe functi®nghere each probe function
describes the objects in a different manner. Further, eaicim she family of subsets df

(i.e. eachB < ) produces different partitions of the sefsandY’, where each partition
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presents different perceptual information. In other wotlds selection oB € F constrains
our ability to describe the objects in the s&fsandY” in same manner as if one were told
they could only describe fruit by colour or by shapé;: Consequently, the sefs andY
are near each other if there are three subsefstbét respectively produce an equivalence
class inX andY that are subsets of an equivalence class that covers bagktdné andY'.
As an intuitive example, leD be the set of fruit found in the produce section of the local
grocery store, leX be the set of apples and bananas, and’lee the set of strawberries
and pears. Selecting, as a single probe function identifying the shape of the fiiit
as a single probe function identifying “bite sized” fruihdaf as a single probe function
identifying fruit colour, gives an equivalence class camtay round apples fromX, an
equivalence class containing strawberries fiopand an equivalence class containing both
the red apples fronX and the red strawberries froim. Thus, using Definitiori0the sets
X andY are near each other. Furthermore, notice that, in this ebartie setsY andY
are weakly near each other using only the probe fungtiorhis suggests that one approach
to determine if two sets are near each other would be first fiitipa the sets using a set
of probe functions, and then use Definiti8rto “cycle” through the probe functions in
B looking for a partition that is a superset of the equivaledesses from the two sets.
Also, Definition 10 does not put any restriction on the s&tsandF, being disjoint. As a
result, these sets could share probe functions or even Isathe. Lastly, a visualization of
Definition 10is also given in Fig2. SetsX andY are near to each other in Fig.'s 2b-2d,
since the setsl € O,., inFig. 2b andB € O,., inFig. 2c are subsets @f € O,.,
given in Fig. 2d.

Next, as given in the following definition, sef§, Y are near sets if they satisfy the

nearness relation.

Definition 11. Perceptual Near Set$25] Let (O, F) be a perceptual system, 1§t Y C O

denote disjoint sets. Sek§ Y are near sets iffX > Y.

Lastly for completeness, a formalization of identifyingndarities among objects is

given by way of Definitiorl2 that is a principle for determining the nearness of objects.
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Definition 12. Nearness Description Principle (NDPJ21,25]. Let (O, F) be a perceptual
system and let,y € O. Objectsz, y are perceptually near each otheithin (O, F) (or,
more conciselynear each othgrif and only if{z} >t {y}. In other words, objects, y
are near each other withifO, F) if and only if there existsp € I such thatz ~ y, i.e.,
objectsr, y are indiscernible with respect to the family of probe funetiof the perceptual

systemO, F).

Note, as mentioned in [25], the nearness of objects is alwatysrespect to Definitior®
(without the adjective weak) since DefinitidtD would require 1-element equivalence

classes, a case which cannot be guaranteed.

2.2 Approximate Nearest Neighbours

Given a set of point®® = {pi,...,p,} in and-dimensional vector spac¥ and a query
pointg € X, the nearest neighbour search problem is defined as findéngpint in P that

is closest tag [57]. This problem arises in many research areas, espeaatdomputer
vision, and for high dimensional data, there is no known wdigon that performs much
better than a linear search of the data point®if57]. As a resultp-approximaté nearest
neighbour searching has been introduced where query tiamebe reduced by orders of
magnitude while sill achieving near-optimal accuracy. éapproximate nearest neigh-
bour to a query poing € X is defined a® € X if dist(p,q) < (1 + «a)dist(p*, q) where
p* is the true nearest neighbour [57].

Although there are a number of recent contributions to tisedalculation of approx-
imate nearest neighbours [58], the results presentedsrilibsis were obtained using the
Fast Library for Approximate Nearest Neighbours (FLANN9]5since it is a library easily
added to any C++ program, and because of the option for autogimization. FLANN
uses two data structures to efficiently perform approxinmegarest neighbour searches,

namely, the randomized kd-tree algorithm and the hieraatkimeans tree algorithm [57].

°Note: the symbok is being used instead ef(as is traditional in the literature) to avoid confusiontwit
the tolerance relation introduced below.
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A kd-tree organizes the data using a binary tree where tieenineles are points frorR.
Since points belong to &dimensional vector space, each node must have an assbciate
splitting dimensioni(e. a dimension used to divide subsequent nodes in the tree). The
next data point added to the tree is assigned to either therlefjht child node depending
on whether its value in the splitting dimension is less thagreater than the value of the
current node. The kd-tree algorithm used in FLANN is calkrtdomized because the split-
ting dimension for each node is selected randomly from tts¢ firdimensions that have
the greatest variance [57]. The other data structure usen isierarchical k-means tree.
This structure is created by recursioe, the set of data is partitioned infg regions using
the k-means clustering algorithm and then each region i gogatitioned into/X” regions
etc. The recursion is terminated when there are less thatata points in a region [57].

FLANN is the ideal library for performing approximate nestr@eighbour searching
because of the option for automatic optimization. The ahoicalgorithm used for approx-
imate nearest neighbour searching is highly dependenteoddtaset [57]. Consequently,
the FLANN library has an option to select automatically tearsh algorithm and to opti-
mize the input parameters of the selected algorithm. Botiooepiare based on the points
in P. Optimization is guided by a set of parameters specified eyter in the following
equation

s+ wpb

COSt= ——— + wy,m,
(S + wbb)opt

wheres is the search time for the number of vectors in the samplesdgtas the build time,

m = my/my is the ratio of memory used for the tree and memory used te $her data,

wy, is the importance of build time over search time, angis the importance of memory
overhead [57]. Setting;, = 0 means that the fastest search time is desired, and similarly
settingw,, = 0 means that faster search time is more important than meraquyrements.
Additionally, optimization is also performed based on tlesiced precision (percentage of
guery points for which the correct nearest neighbour is @wrf the results from a nearest
neighbour search (see [57] for more details). To generatesults presented here, a target

precision of 0.8 was used together with = w,, = 0.
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2.3 Image Processing

The application of near set theory demonstrated in thisghesn the area of image cor-
respondence and content-based image retrieval. Brieflypriftdem of image correspon-
dence is the unaided process of assessing the degree inavi@émage resembles another.
Similarly, content-based image retrieval is the problemetrieving images from a database
based on the content of the imageg. colour, shapes, texture, objeets, rather than on
some semantic description or set of key words associatédthé image [60]. Each of
these applications deal with assessing the similarity afjes, which proves to be a natural
arena for near set theory. As will be described latter, thpea@gech is to consider portions of
the images as perceptual objects and to use image procéssimggues as probe functions.
Consequently, the following sections describe image psicgsechniques that were used

to generate the results presented in this thesis.

2.3.1 Normalized RGB

The normalized RGB values is a feature described in [61], Baddrmula is given by

B X
_RT—FGT—FBT’

Nx

where the value®;, G, and By are respectively the sum &, G, B components of the

pixels in each subimage, add € [Rr, Gr, Br].

2.3.2 Entropy

Shannon introduced entropy (also called information auit@s a measure of the amount
of information gained by receiving a message from a finiteebok of messages (see [62]
for a comprehensive presentation of entropy). The idea hatstlhe gain of information

from a single message is proportional to the probabilityeafeiving the message. Thus,
receiving a message that is highly unlikely gives more imfation about the system than a

message with a high probability of transmission. Forméditythe probability of receiving
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a messageof n messages bg, then the information gain of a message can be written as

AT =log(1/p;) = —log(p:), 1)

and the entropy of the system is the expected value of theagains calculated as

H=-=> p;log(p;).

=1

Work in [63,64] shows that Shannon’s definition of entropg kame limitations. Shan-
non’s definition of entropy suffers from the following prebhs: it is undefined when
p; = 0; in practise, the information gain tends to lie at the linofsthe interval(0, 1];
and statistically speaking, a better measure of ignoraste jp; rather thanl /p; [63]. As

a result, a new definition of entropy can be defined with thiedahg desirable properties:

P1: Al(p;) is defined at all points ifD, 1].

P2: lim,, .o AI(p;) = AI(p; = 0) = k1, k; > 0 and finite.
P3: lim,,_1 Al(p;) = Al(p; = 1) = ko, ky > 0 and finite.
P4: ko < k.

P5: With increase ip;, Al(p;) decreases exponentially.
P6: Al(p) andH, the entropy, are continuous for< p < 1.

P7: H is maximum when alp;’s are equali.e. H(p1,...,p,) < H(1/n,...,1/n).

With these in mind, [63] defines the gain in information fromewvent as
Al(p;) = '),
which gives a new measure of entropy as

H=3 pel».
i=1
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2.3.3 Mean Shift Segmentation Algorithm

Image segmentation is the process of partitioning an imatgeregions such that each re-
gion represents a perceptual object within the image. Traenmahift algorithm (introduced
in [65]) segments an image using kernel density estimatigrgnparametric technique for
estimating the density of a random variable. Nonparam&tohniques are characterized
by their lack of assumptions about the density and diffemfgarametric techniques which
assume a parametric form of a given density and then estpaaéeneters that describe the
density, such as mean or variance [53]. The estimate of thsitgds calculated from the
number of observations within a volumedrdimensional space centred gnand a kernel
that weights the importance of the observations [53]. Fdgngiven n observations of a

random variabl&X < R?, the kernel density estimate of the pdfXfis given by

FO) ~ F00) = T3 K — ), @

=1

where

Ku(x) =| H|["V? K(H /%),

the matrixH is called the bandwidth, and the functiéf(-) is the kernel used to perform
the estimation. The kernel defines how the observed datésgofiuence the estimate. For
example, all data within the volume contribute equally gdime uniform kernel, whereas
the Gaussian kernel gives more weight to the observati@sest tax. Often kernels are

specified using profile notation written as

K(x) = (| x |I*). 3)
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wherec is an constant ensuring that the kernel integrates to orje f&ban example, the

Epanechnikov kernel is given as

cke(|x|), x| <1,
Kg(x) = (4)
0, otherwise

where

, 0, x> 1.

Similarly, the bandwidth is used to define the size of dhdimensional volume arounxl
for which the observations;, are included in the estimate @¢fx). Common choices for
the bandwidth include

H = diag[hi, ..., h2],

where each component of the vector is assigned a separatefandluence, and
H = r’1,

where each component has the same area of influence [65]g WaHratter approach and

the kernel profile notation given in E§, Eq.2 can be rewritten as

) : (5)

As was mentioned, the main idea behind this algorithm is figpdhe modes of the

X — X

h

fK(X) = % Zn:/f(
i=1

density from observations in the form of an image. These mdédeat the zeros of the

gradient. The gradient of a functigfix) is defined as

0 0
Vf(X): (al{i??axfn>
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The zeros of the gradieﬁff(x) = 0 can be found by exploiting the linearity of Eq. 5 [1]
giving

n

V() = Vo) = i Dl (

nhd—f—Q

In other words, the density gradient estim@téK(x) is calculated as the gradient of the

density estimatg (x). Next, a new kernefi(-) is defined as

G(x) = cyg(|x]). (6)

where

yields

Vi) = s 30 x|

i=1

Xj

h

)

>> - X] (7)

which is at the heart of the mean shift algorithm. The secenu in Eq.7 is given by

2
me(x) i:lxig(H h )_X7

sia(|52)

and is the mean shift vector that always points in the dioectf maximum increase in

)

2¢

_ hlzg
[ a5

> i1 9(“%

X — X;

X—X4

density [65]. This can be seen by defining a new density estioging the kernel in Ed

)

as

fot) = 30
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Then,
QCk

@fK(X) = fG(X)WmG(X),
g
which yields A
. 1 VfK(X)
mg(x) = §h2c fG(X) ) (8)

wherec = ¢,/c;,. Thus, as was mentioned, EBjshows that the mean shift is a normalized
vector pointing in the direction of the maximum increase@ase in the density at location
x [65]. The segmentations used in this thesis were createt) @1 implementation of
Eq.8 called EDISON [66], a system for which both the source codklanaries are freely
available online. A sample segmentation produced by theSEIN system is given in
Fig. 3. Finally, note, the choice df (actuallyh, andh,) used to generate the segmentations
in this thesis was selected based on trial and error usingeDISON systemj.e., the

values were selected by experimenting on a few sample imbgfese segmenting the

entire database.

¥

(b)

Figure 3: Example demonstrating the mean shift segmentation algor65]. (a) Sample image, and (b)
Segmentation of (a) using the EDISON system [66].

2.3.4 Multiscale Edge Detection

Mallat’'s multiscale edge detection method uses Wavelairth®o find edges in an im-
age [67,68]. Edges are located at points of sharp variatigrixel intensity. These points

can be identified by calculating the gradient of a smootheaben{.e. an image that has
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been blurred). Then, edge pixels are defined as those thatibeally maximal gradient
magnitudes in the direction of the gradient. Formally, de@#n2-D smoothing function
0(z,y) such that its integral over andy is equal to 1, and converges to 0 at infinity. Using

the smoothing function, one can define the functions

0(z,y)
oy

() = 5, and V¥ (x,y) =

which are, in fact, wavelets given the propertiesf6f, y) mentioned above. Next, the

dilation of a function by a scaling facteris defined as

1l xy
&z, y) = 2 (8, S)-
Thus, the dilation by of 1!, andy/? is given by
Ol y) = = (5 ) and v2(a,y) = 0*(EY)
s 52 s’ s s 52 s’ s’

Using these definitions, the wavelet transformféf, y) € L*(R?) at the scale is given
by
Wi f(z,y) = f*yi(a,y),

and

W2f(z,y) = f*v2(,y),

which can also be written as

(W;ﬂx,y)) . (ai(f : @)(w)) )
W2 (x,y) 2(f%0,)(x,y) |

Next, the modulus and angle of the gradient vector are defemukctively as

M, f(x,y) = \/IWEf(x,9)]? + [W2f (2, y)[2,
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and

Af(x,y) = tan™ (W2 f(z,y) /Wi f(x,y)).

These equations can be used to detect an edge and calcslatéiitation. Edge pix-
els are those belonging to the modulus maximum, defined aéspith modulus greater
than the two neighbours in the direction indicatedAyf (z, y), and the orientation of an
edge pixel is simply given by the angle of the gradient (s&¢ {6r specific implementa-
tion details). Examples of my own implementation of Maltatdge detection and edge

orientation methods are given in Fig).

(b)

Figure 4: (a) Example demonstrating implementation of Mallat’s nsgkile edge detection method [67]. (b)
Example of finding edge orientation using the same methodtébpresents 0 radians and bl&ekradians.

2.3.5 Normalized Probabilistic Rand Index

The normalized probabilistic rand index (introduced in][&d summarized here) is a non-
parametric technique for evaluating the performance ofreage segmentation algorithm.
This index is a supervised technique since evaluation i®peed with respect to ground
truth images. A supervised measure provides a nice ben&Horaesting purposes, since
human perceptual grouping is inherent to the evaluatiohe@tegmentation due to the use
of ground truth images. Furthermore, the normalized pritiséb index was selected due
to its use of multiple ground truth images when evaluatingappsed segmentation, thus
taking into account multiple perceptual sources.

The NPR index has its roots in the rand index, a measure deeloased on the idea

of counting pixel pairs that have the same segmentationdab@st, define an imag& =
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{z1,..., 2y} Of N pixels and two segmentations &f, S andS’, where each segmentation

respectively assigns labéelsand!; to the pixels inX. Then the rand index is given as

/ 1 / / / /
R(S, ") = mz[r[(z N :zj> +H<li AN #zjﬂ,
i

wherell is the identity function an@’) is the number of unique pixel pairs K. Next, the
rand index was extended to allow for the use of more grount tnbages in the evaluation
of a proposed segmentation. The idea is that observing the p&el pair in each ground
truth image is considered a Bernoulli trial with the two ouas being either they have the
same label or they do not. Then, the set of observations @atbground truth segmenta-
tions forms a Bernoulli distribution with expected valpg. Thus, given a set of manual
segmentation$S;, . .., Sk}, a segment for evaluatiofies, and a label ofr; denoted ag’

whereS denotes the segment used to labglthe probabilistic rand index is defined as

1
PR(Stest {Sk}) = m Z[Cijpij + (1 = ¢i5) (1 = pij)],
273
where

Cij = H(lftest — lftest).

Finally, the normalized probabilistic rand index extenks probabilistic rand index by
normalizing with respect to its baseline. The selected Ibesés the expected value of
probabilistic rand index. Consequently, the NPR index isngefias

PR E[PR
max(PR) — E[PR’

NPR=

where the maximum value is taken to be 1 and the expected ghthe PR index is given
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as

E | PR(Stest {Sk})] :<]1V) Z{E{H(lfmst = lfrest)]pij

2) i
1<)

+ E [H(lft%t 7é l;gtest:| (1 _ ng)},

1
~y St + -
) 2,

Ses J— Ses H M .
wherep); = E[II([;*" = [;**]. To make the baseline representative of perceptually sensi
tent groupingsp;; is estimated from segmentations of all images for all unedgairs.

In other words, giverb as the number of images in the database used for tegtings

defined as

K
1 1 22 g9 g%
p;j = 6 E¢ F’;:1H(llk = ljk)
2.3.6 Grey Level Co-occurrence Matrices

Image texture is an important part of perceiving images.turexis difficult to describe,
and is generally associated with a region of the image, rdkt@a restricted to a specific
pixel. Generally, there are statistical and structurakragphes to identifying texture [70].
The textural features used in this thesis are based on secxded measures, as reported
in [71-73], where the approach is considered second-ositere the measures are not
derived directly from the pixel values themselves, buteatbn statistics generated from
relationships between groups of two pixels given by a gesgll co-occurrence matrix.
In other words, the features are based on the average spfiibnship between pixel
values [71].

In general, the grey level co-occurrence matrix is definegl vaspect to the angle and
distance between pixel pairs. However, to keep things gnmpé grey level co-occurrence
matrix will first be defined with respect to horizontally acgat pixels, which corresponds
to an angle of)° and a distancé = 1 in the traditional literature. Using the notation

given in [71], letL, = {1,2,...,N,} andL, = {1,2,..., N, } respectively denote the
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horizontal and vertical spatial domains of a grey level imggantized taV, levels,i.e. the
grey levels in an image are in the get= {0,1,..., N, — 1}. Then,L, x L, is the set of
all pixel coordinates belonging to an imagewhere! : L, x L, — G, and the grey level

CO-occurrence matrix is given as

P, ) = [{((k, 1), (m,n)) € (Ly X La) X (Ly X Lg) :

m—k=0n—-101=11(k1)=1i1I(mn)=7}. (9)

For clarity, an example of EQ is given graphically in Figs. One can add the degree and

distance to EQ, by the following simple modification,

P(i,7,d,0°) = [{((k,1),(m,n)) € (L, x L) x (L, X L) :

m—k=0,|n—1=dI(k1)=1I(mn)=j}.

For anglesi5°,90°, and 135°, see [71]. Finally, the following textural features can be

derived from the grey level co-occurrence matrix,

Maximum Probability max(p;;),
Ny 1 N1

Contrast > (i —7)%pij,
i=0 j=0

Ng—1Nyg—1
Uniformity (also called Energy) > > pfj,and
=0 ;=0

7
Ny—1 Ny—1

. i
Homogeneity EO EO W-J—jw

wherep;; = P(i, j) divided by the sum of the elementsih In brief, the maximum proba-
bility returns the strongest responsefgfcontrast measures the intensity contrast between
a pixel and its neighbour, uniformity is the angular secommant, and homogeneity mea-
sures the spatial closeness of the distribution of elemertsto the diagonal (see [74] for

further details).
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(b)
Figure 5: Example demonstrating the creation of a grey level co-oetige matrix. (a) Quantized image,

and (b) grey level co-occurrence matrix@fandd = 1.

2.3.7 Zernike Moments

There are many approaches to analyzing shapes containethges. For example, re-
searchers in the computer vision community at Brown Unitgesie, to say the least, work-
ing on areas such as measuring the similarity between twmeshanodelling shapes from a
pattern theory perspective, shape representation andpgiaet grouping [75]. Another en-
tire research area is that of the statistical theory of sipegeeered by David Kendall [76].
However, in this thesis, Zernike moments are used to proegien-based descriptors of an
image that are invariant with respect to rotation and ratlest where the notion of the term
“moment” referred to here is that of the general theory of ranta which appears in areas
of mathematics, physics, and statistics [56]. Moreovemalkset of Zernike moments
can characterize the global shape of a pattern effectivdigre the lower order moments
represent the global shape, and the higher order momemesesy the detail [77-79].

As given in [56], for a continuous image functigitz, y), the Zernike moment of order

n with repetitionm is defined as

where the double integral is defined over the unit disk= {(z,y) : 22 + 4> < 1},nisa

non-negative integer, and is an integer that makes resultof-|m| even and non-negative.
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In EqQ.10, V,,,,(z,y) is a Zernike function defined as

Vo (2,9) = Rum(p)e™,

wherep = 22+ 32, 0 = tan"'(y/z), and the radial Zernike polynomidt,,.(p) is

defined by
(n—|m[)/2 (_1)s(n _ S)!pn72s

Run(p) = . s!(%'"” _S)!("—T‘m‘ —s)!'

s=0
As explained in [56], Eq1l0 cannot be applied directly to digital images. Consequeatly,
mapping of the digital image must occur. LEti,j),i =1,...,N,j = 1,..., N denote
anN x N image, then¥'(i, j) can be mapped onto a functigitz;, y;) defined on—1, 1)
according to

f(xz7yz):F(Z7j>7Z:177N7j:177N7

wherez; = (2¢ — N — 1)/N andy,; = (2j — N — 1)/N. Note, it can be assumed, without
loss of generality, thaf(x;, y;) is a function with all its pixels inside the unit circle [56].
Moreover, since the image is not analog, but actually a eisciunction, the following

approximation can be used to calculate the Zernike momemts $ampled data
i

wherei and; are taken such that;,y,) € D,

>

zi+s yits .
wnm(miayj) = / A /y A Vnm<x7y)dxdy?
x j*?

1T

andA = 2/N is the pixel width/height. Finally,,,(z;,y;) can be approximated by a

simple one-point numerical integration formula

Won (i, y5) = AV (21, 5). (12)
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Note, it was shown in [56] that using Efj1 & 12 is a highly inaccurate approach to
computing Zernike moments due to both the geometric ernasexh by the difference be-
tween the total area covered by the pixels in Ehand the actual area of the unit circle, as
well as the error due to the approximatiomaf,,(x;,y;) in Eq.12. Instead, a method for
calculating Zernike moments in polar coordinates (rathantthe Cartesian method given
above) is given that eliminates the previously mentionedrsr Nevertheless, EG1 & 12
were still used to generate rotationally invariant feagutee to the following reasons. First,
only low order moments were usegl@.n < 4), and evidence in [56] demonstrated that the
results of using only low orders of Zernike moments produoegnitudes with acceptable
level of errors, both in comparisons of the magnitudes omatemt image and for use in re-
constructing images. Also, others have reported succ&sg lasv order Zernike moments
for content-based image retrieval (se.[80, 81]), and implementation of E41 & 12is

simple and fast.

2.3.8 CIELUV Colour Space

The CIE 1976L*u*v* Colour Space (also written CIELUV) is a uniform colour space
where the Euclidean distances between points in the spgwepsrtional to human per-
ception of differences in colour [82]. In contrast, the RGBoctw space represents a non-
uniform space with respect to the human visual system. [Tex v+ colour components

are given (in terms of the XYZ colour components) by the felltg equations [83]:

L = 116(X)1/3 16, (X) > 0.008856,

Y, Y,
. Y\ Y
L = 903.3(7n), <7n) < 0.008856,

ut = 13L* (v — ),

vt = 13x L*(v =),
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where

o =4X/(X +15Y +32), u, =4X,/(X, + 15Y, +3Z,),

V= 9Y/(X +15Y +32), v, =9Y,/(X, + 15Y, + 3Z,),

andY,,, X,,, andZ, are based on the reference white point. For the resultsmezsan this
thesis, the D50 reference white point was used giving vatfigs = 1, X,, = 0.964221,

andZ, = 0.825211. Similarly, the XYZ colour components can be calculated gsin

X 0.607 0.174 0.200| |R
Y| = 10299 0.587 0.114| |G| -
A 0.000 0.006 1.116| |B

30



3 Tolerance Near Sets

Disjoint sets containing objects with similar descripsoare near sets. Similarity is de-
termined quantitatively via some description of the olgediear set theory provides a
formal basis for identifying, comparing, and measuringereslance of objects based on
their descriptiond,e. based on the features that describe the objects. The dryaufugear
sets begins with identifying feature vectors for descgltand discerning affinities between
sample objects. Objects that have, in some degree, affinititheir features are consid-
eredperceptually neaeach other. Groups of these objects, extracted from theinlisets,
provide information and reveal patterns of interest.

Tolerance near sets are near $etsfined by a description-based tolerance relation.
Tolerance relations provide a view of the world without s#inity [84]. Consequently,
tolerance near sets provide a formal foundationdbnost solutionssolutions that are
valid within some approximation, which is required for readrld problems and applica-
tions [84]. In other words, tolerance near sets provide &lfas a quantitative approach
for evaluating the similarity of objects without requiringject descriptions to be exact.

Sossinsky addresses the question of “Why Tolerance&?"why consider the tolerance
relation at all [84]. One answer, which is the main focus a$ thesis, is that practical
applications deal with imprecise data and that solutiomg meed to be accurate to a degree,
i.e. to within some tolerance. Other answers to the question bf/“telerance?” (outside
the scope of this thesis) consider the fact that toleransejtiite nicely in other areas of

mathematics, and that tolerance can be convenient for mastyng mathematical studies.

3.1 History

The idea of tolerance first surfaced in Poirigawork in 1905 in which he reflects on exper-
iments performed by Ernst Weber in 1834, and Gustav Fechmesight in 1850 [84-87].

Weber (Fechner’s doctoral supervisor) was interestedarsémse of touch and kinethesis

3See Sectior2.1for a comprehensive introduction to near set theory.
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and was the first to discover that the sense of touch cono$fm@ssure, temperature, and
pain [87]. Moreover, Weber performed experiments to detggnour ability to perceive
two pin points on the surface of our skin. He would blindfolsidoject and use a compass,
with increasing distances between the pin points, to deterrine threshold at which a
person can perceive the points as two. He labelled this paithe two-point threshold.
Weber discovered that our skin is partitioned into regioasdda on the domain of sensory
nerves, and we perceive the pin points as one if they fallthreasame region. For instance,
he found the sensitivity to be the highest on the tip of thgten followed by the volar side
of the finger tip. In contrast, the least sensitive part wasuper part of the spine and the
middle of the upper arm [88]. While Weber was not investigatime concept of tolerance,
this idea can be easily identified in his experiments. Faamse, his results indicate that
there is a specific tolerance on the distance between twaspaider which they are per-
ceived as onei.g. indistinguishable), which varies with the density of nervwe our skin.
If for a specific region on the skin this distance was labelleithen any distance less than
¢ would be classified in the same category, namely a singlenmi.p

Both Weber and Fechner were also interested in our abilityeteat the difference in
a pair of weights [87]. Specifically, Weber performed twodgmf experiments, either the
weights were placed on a subject’s hands or a subject wad &sk# the weights. In each
case a standard weight was applied to one hand, and the sulsjg@sked to determine
if the unknown weight was heavier, the same, or lighter thendtandard. The results
of these experiments led Weber to introduce a term calisdnoticeable differenceshe
point at which a person is able to perceive the difference stiraulus presented to the
senses, and to introduce a law (labelled Weber’s Law by Fagtstating that detection
of a stimulus is directly dependent on the amount of stimalusady present [88]. For
example, one must speak with greater volume when having\secsation in a noisy room
versus a quiet room. Fechner in his interest in the relatiprisetween the physical world
and our sensations, built on Weber’s law [86]. He realized fiast noticeable differences

represented a psychological difference and developed ahatvstates that sensation is
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proportional to the logarithm of the stimulus.

Poincagé’s work on tolerance was inspired by Fechner, but the kdgreifce is
Poincaé’s work marked a shift from stimuli and sensations to anrabsbn in terms of
sets together with an implicit idea of tolerance. Althoufk general idea of tolerance
is present in an essay titlédpace and the Senspablished in 1913 [89], the concept
of a tolerance space is directly implied in a discussion ochRer’s law (with respect
to the weight experiments) in the bo&cience and Hypothedi85], a fact identified by
Sossinsky when he states Poiricadiscerned” a tolerance space but did not write out the
mathematics [84]. A tolerance spak, ¢) consists of a sek” and a binary relatiog on
X (¢ C X x X)thatis reflexive (for alk € X, z£x) and symmetric (for alk, y € X, if
&y, theny&x) but transitivity of¢ is not required [84, 90]. The idea of a tolerance space is

apparent when Poindastates:

It has, for instance, been observed that a weigltf 10 grammes and a weight
B of 11 grammes produced identical sensations, that the wéigtauld no longer
be distinguished from a weigldf of 12 grammes, but that the weigAtwas readily
distinguished from the weight’. Thus the rough results of the experiments may be
expressed by the following relationd: = B, B = C, A < C, which may be regarded
as the formula of the physical continuum. But here is an intolerable disagreevith
the law of contradiction, and the necessity of banishing this disagreememboha
pelled us to invent the mathematical continuum. We are therefore forced ¢tuden
that this notion has been created entirely by the mind, but it is experimentdbkat h
provided the opportunity. We cannot believe that two quantities which aral ég a
third are not equal to one another, and we are thus led to suppos# ibalifferent
from B, and B from C, and that if we have not been aware of this, it is due to the
imperfections of our senses [85].

By separating the three weights into two séts,, wy;} and {wq;, w2}, Poincaé has
implicitly identified a tolerance spadéV., ~,.), wherewt : W — R and for a sensation
sensitivity threshold (implicit in what Poincare writes), a tolerance relatiom &ee written

as

~ure= {(2,y) € WX W || wi(z) — wi(y) ||, < €},

where|| - ||, is theL; norm.

Next, the idea of tolerance is formally introduced by Zeerf@lj with respect to the
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brain and visual perception. Zeeman makes the observdiatratsingle eye cannot iden-
tify a 2D Euclidean space because the Euclidean plane hadiaite number of points.
Instead, we see things only within a certain tolerance. Qfiqdar importance is the
first formal definition of a tolerance space and the toleraetaion. Continuing, Sossin-
sky [84] presents homology and homotopy theories on toterapaces and gives practical
applications. Finally, the contributions of this thesigdlve tolerance near sets introduced
by Peters [36,91], which combines near set theory @ee Section2.1) with the ideas of

tolerance spaces and relations.

4 Perceptual Systents

A logical starting point for a discussion on near set the@gibs with establishing a basis

for describing elements of sets. All sets in near set theongist of perceptual objects.

Definition 13. Perceptual Object A perceptual objeds something perceivable that has

its origin in the physical world.

A perceptual object is anything in the physical world wittacdcteristics observable to the
senses such that they can be measured and are knowable tintheEwamples of per-
ceptual objects include patients, components belongirgy teanufacturing process, and
camera images. Here, the teparceptionis considered relative to measurable characteris-
tics called the object’s features.

In keeping with the approach to pattern recognition suggebly M. Pavel [52], the

features of an object are quantified by probe functions.

Definition 14. Probe Function[21,40] A probe functionis a real-valued function repre-

senting a feature of a perceptual object.

In this work, probe functions are defined in terms of digitahges such as: colour, texture,

contour, spatial orientation, and length of line segmetdagaa bounded region. In the

4The theory presented in this Section is a reproduction ofi@e@.1.1and is reproduced here in the
interest of clarity for those who skip directly to this secti
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context of near set theory, objects in our visual field areagbvpresented with respect to
the selected probe functions. Moreover, it is the probetfans that are used to measure
characteristics of visual objects and similarities amoegseptual objects, making it pos-
sible to determine if two objects are associated with theespattern without necessarily
specifying which pattern (as is the case when performingsdiaation).

Next, a perceptual system is a set of perceptual objectsfiiegwith a set of probe

functions.

Definition 15. Perceptual Systen{25]. A perceptual systemO,F) consists of a non-
empty seO of sample perceptual objects and a non-emptyFset real-valued functions

¢ € Fsuchthatp: O — R.

The notion of a perceptual system admits a wide variety déwdiht interpretations that
result from the selection of sample perceptual objectsainetl in a particular sample
spaceO. Two examples of perceptual systems are: a set of imagethtrgeith a set
of image processing probe functions, or a set of results fmomeb query together with
some measures (probe functions) indicatieg, relevancy or distance.€. geographical
or conceptual distance) between web sources.

Combining Definitionsl3 & 14, the description of a perceptual object within a percep-

tual system can be defined as follows.

Definition 16. Object Description. Let(O,TF) be a perceptual system, and I8tC F be
a set of probe functions. Then, thescriptionof a perceptual object € O is a feature

vector given by

¢B(x> = <¢1(l‘), ¢2(‘r)7 s 7¢i(x)7 SRR ¢l(x))7

wherel is the length of the vectap,, and each¢;(x) in ¢5(x) is a probe function value

that is part of the description of the objecte O.

Note, the idea of a feature space is implicitly introducexhglwith the definition of object
description. An object description is the same as a featactov as described in tradi-

tional pattern classification [53]. The description of arjeab can be considered a point
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in anl-dimensional Euclidean spa@® called a feature space. As was mentioned in the
introduction, near set theory is concerned with the nearoésbjects based on their de-
scriptions. Thus, the relationship between objects isadisied in a feature space that is

determined by the probe functions/h

4.1 Perceptual Tolerance Relation

The introduction to a tolerance view of near sets grew outméed for a relation less re-
strictive than the equivalence condition of the indisdeaitity relation to facilitate observa-
tion of similar objects and associations in a perceptudesysSpecifically, this approach is
useful in real world problems (especially when dealing witmponents in images) where
a probe function value for two objects perceived to be “thraesas rarely an exact match.
As a simple example, consider Fjalong with a probe function that returns the number of
pegs on each block. Using the indiscernibility relation loese blocks produces six differ-
ent classes, each containing only one object, and no newnatmn is revealed. However,
allowing classes to be formed where the number of pegs onldack in the class must
be within five of all the other blocks produces the sets of aigjshown in Fig6b. The
result is three classes of objects that present perceptioamation about the relationship
of these blocks to one another (with respect to the seleatgukegdunction) that was not
present using the indiscernibility relation. Namely, #nests now represent the concept of
small, medium, and large blocks. Moreover, by relaxing theielence relation, objects
can belong to more than one class as shown in@€gThis matches human descriptions of
objects where, for example, one could say “in terms of thebmmof pegs, the block with
six pegs is kind of small,” which is reflected by the block ejomg to both the medium
and small classes.

As was mentioned in Sectid1, a tolerance space can be defined as follows.

Definition 17. Tolerance Spacg84,90]LetO be a set of sample perceptual objects, and

let £ be a binary relation (called a tolerance relation) on (¢ C X x X) that is reflexive
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Figure 6: Example showing the need to relax the equivalence condifi@efinition5. (a) Set of six objects
together with the number of pegs of each object, (b) classessd by grouping objects where the difference
in the number of pegs is less than five, and (c) example dematimst that objects can belong to more than
one class when the equivalence relation is relaxed.

(forall z € X, x&x) and symmetric (for alk, y € X, if z€y, theny&x) but transitivity ofé

is not required. Then a tolerance space is definedlast).
Thus, a specific tolerance relation is given in Definiti

Definition 18. Perceptual Tolerance Relatior{36,91] (see [33, 39] for applicationd)et
(O,TF) be a perceptual system and ke R. For everyB C F, the perceptual tolerance

relation=_ is defined as follows:

=g ={(r,y) €O xO:| p(x) —dy) |[,< e},

where|| - ||, is theL? norm. For notational convenience, this relation is writteg instead

of =5 . with the understanding thatis inherent to the definition of the tolerance relation.

Notice the relatiort= . is defined with respect to the description of a pair of objaats
objects resemble each other when the feature vectors udedd¢abe them are within some
epsilon value. Furthermore, the perceptual tolerancéoeldiffers from the indiscernibil-
ity relation (see SectioB.1) by allowing|| - ||,< ¢ instead of requiring| - ||,= 0. In fact,
Definition 18is a generalization of the indiscernibility relation, asjpécase occurring for
e = 0, a fact that is, in part, highlighted in the following simggamples on the effect of

the perceptual tolerance relation.
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As defined in Sectiof.1, an equivalence class is a set of objects that satisfy the-ind
cernibility relation,i.e. the descriptions of objects in an equivalence class areaame.
A visualization of a set of equivalence classes is given @ Fawhere the oval represents a
set of objects and each colour represents an equivalerss 8fmreover, in this figure, the
position of class is also relevant, which is not always treec&lere, the distance between
the object descriptions in feature space increases witdiftance between classes in the
image. In accordance, Figb & 7crepresents the classes that result from a low and high
value of epsilon, which respectively correspond to the aigescriptions of two adjacent
equivalence classes satisfying Definitib8 and the object descriptions of four adjacent
classes satisfying Definitiob8. Observe that low values of epsilon tend to produce a large

number of small classes, and high value of epsilon tend tdyz®a small number of large

MW AN

<

@) (b) (c)

classes.

2

24

Figure 7: Example highlighting the effect of the perceptual tolermaredation. (a) A set of objects represented
by the oval, each colour represents an equivalence clasSésgior?.1), and the distance between the object
descriptions in feature space increases with the distagtweclen classes (b) the classes produced by a “low”
value of epsilon such that the descriptions of two adjacquivalence classes satisfy Definitia8, and (c)

the classes produced by a “high” value of epsilon such thatd@scriptions of four adjacent equivalence
classes satisfy Definitioh8.

The next example demonstrates the effect of the percepmlemhnce relation on real

data. Consider Tablethat contains 20 objects witlp(x;)| = 1. Lettinge = 0.1 gives the
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Table 1: Tolerance Class Example

i ¢lx)  x 9lz) x d@) z d(2)

ry 4518 x5 .6943 xz;; .4002 x4 .6079
xo 9166 w7 .9246 x5 .1910 ;7 .1869
xr3 1398 axg .3537 w13 .7476 215 .8489
ry 1972 x9 4722 w14 4990 219 .9170
rs .6281 w19 .4523 x5 .6289 x5 .7143

following classes:

Hezr, w8, 210, 711}, {21, 29, T10, 711, 714},
{w2, w7, 118, 219},

{73, 119, 717},

{74, 113, 020}, {74, 718},

{ws, w6, 115, 216}, {75, 76, 715, T20

{$6,$13,I20}}

Observe that each pair of objects in each of the above clasdissies the conditiot
o(z) — ¢(y) |2< e, and that almost all of the objects appear in more than orss.cla
Moreover, there would be twenty classes, if the indiscédlityitrelation were used since
there are no two objects with matching descriptions.

In each of the previous examples, there was a need for stesduat correspond to the
equivalence class under the tolerance relati@n,there is a need to define a method by
which objects are grouped together when transitivity ng&@rapplies. In an equivalence
class, an object is added to a class if its description mattieedescription of the objects
already in the class, which by definition are all the same. él@w the lack of transitivity

gives rise to the two very different classes given in theotwihg definitions.

Definition 19. Neighbourhood Let (O, F) be a perceptual system and letc O. For a
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setB C F ande € R, aneighbourhoods defined as

N(z)={y € O:z =5y}

An example of a neighbourhood in a 2D feature space is givéigir8, where the position

of all the objects are given by the numbers 1 to 21, and thenbeigrhood is defined with
respect to the object labelled 1. Notice that the distanted®n all the objects and object
1 is less than or equal to= 0.1, but that not all the pairs of objects in the neighbourhood

of x satisfy the tolerance relation.

04

o
w
«

Normalized feature
o
w

0.25

) ‘ ‘ ‘
0.45 0.5 0.55 0.6 0.65
Normalized feature

Figure 8: Example demonstrating the difference between a neighlbodrand a tolerance class in 2 dimen-
sional feature space. The neighbourhood is all the objeititsnthe circle, and the tolerance class is shown
in orange.

In contrast, all the pairs of objects within a pre-class nsasisfy the tolerance relation

as given in the next definitions.

Definition 20. Pre-Class Let (O, F) be a perceptual system. H&rC F ande € R, a set

X C Oisapre-classff » =5, y for any pairz,y € X.

Definition 21. Tolerance Class A maximal pre-class with respect to inclusion is called a

tolerance class
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An example of a tolerance class is given by the set of objedtaiced orange in Fig since
no object can be added to the set and still satisfy the camditiat any pair, y € X must
be within e of each other. Also, the example given in Figwas created with tolerance
classes in mind, and the classes formed from the data in Table clearly tolerance
classes.

As was mentioned in the introduction to this section, olgj@an belong to more than
one tolerance class. Consequently, the following notasorequired to differentiate be-
tween classes and facilitate discussions in subsequetibrsgc The set of all tolerance
classes using only the objectsdhis given by H~, _(O) (also called the cover ab), a
single tolerance class is represented’by H~, (O), and the set of all tolerance classes
containing an object is denoted by, C H~,_(O).

Finally, this section is concluded by introducing anoth@erance relation similar to
the weak indiscernibility relation given in Secti@nl, where resemblance is defined with

respect to a single probe function.

Definition 22. Weak Perceptual Tolerance Relation [24] Let (O, F) be a perceptual
system and let € R, ¢; € F. Then, theveak perceptual tolerance relaties . is defined

as follows:

Rpe={(r,y) € OxO0: J¢p; € F .|pi(x) — ¢i(y)| < e}

The weak tolerance relation can provide new informationetationships about a set of
objects for a given application. For instance, consideremaio where near set theory is
applied to an existing problem or process where objectslegady being associated with
feature values; examples include a problem already forediia terms of near sets without
using the weak perceptual tolerance relation, or problemsther areas such as pattern
recognition or image analysis. In other words, a set of pfabetions,3, has already been
selected to solve the problem. In such a scenario, the peiadeplerance relation could

produce a covering as given in FRa(where each colour represents a difference tolerance
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class), indicating these two sets of objects, represestinte perceptual information in the
original problem domain, are not related to each other. Heweselecting a single; € B
could produce the tolerance classes shown in®gvhere it is now apparent that there is

some relationship between these two sets of objects.

‘&

(@) (b)
Figure 9: Example demonstrating the practical application of Datini22. (a) Covering of two sets showing

no relationship between, and (b) covering created usingiifiefa 22 showing a relationship between the two
sets.

4.2 Tolerance Near Sets

The termrelationshipwas mentioned in the explanation of F&. however, a definition

on which the relationship is based was not given (althoughay have been clear from
the context). Recall that sets of objects that have similacmgtions are called near sets,
and a method for determining similarity was provided by wayhe perceptual tolerance
relation (and to a lesser degree with the weak perceptwaktote relation). Consequently,
the following two definitions enunciate the fundamentaliotof nearness between two

sets and provide the foundation of the results presentdddritesis.

Definition 23. Tolerance Nearness Relatior{36, 91]. Let (O, F) be a perceptual system
and let XY C O,e € R. A setX is near to a sefY” within the perceptual system

(O,F) (Xpa.Y) iff there existsr € X andy € Y and there isB C F such thatr =5, y.

Definition 24. Tolerance Near Sets[36,91]. Let (O, F) be a perceptual system and let
e € R,B C F. Further, letX,Y C O, denote disjoint sets with coverings determined by

the tolerance relation=s ., and letH~, (X), H~,_(Y’) denote the set of tolerance classes
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for X,Y, respectively. Set&,Y are tolerance near seiff there are tolerance classes

A€ Hxy, (X), B € Hx, (V) such thatdxa, B.

Observe that two set&, Y C O are tolerance near sets, if they satisfy the tolerance
nearness relation. Also, notice that Tolerance near set ariation of the original defini-
tion of near sets using the indiscernibility relation [2Moreover, the original definition of
tolerance near sets given in [36,91] defines nearness irstefpre-classes (as opposed to
tolerance classes as given in Definit@4), however the results presented in this thesis are
obtained using tolerance classes, and so the definition @jastad accordingly. Finally,
an example of tolerance near sets is given in Big.where the colours represent different

tolerance classes, and classes with the same colour rapteseesituation wherelx, B .

4.3 Nearness Measure

The nearness measure was created out of a need to determidegtee that near sets
resemble each other, a need which arose during the apphcatinear set theory to the
practical applications of image correspondence and cobtesed image retrieval. Specifi-
cally, the nearness measure was introduced by Henry antsRe{82]. At the same time,
the nearness measure was also introduced by Henry and Pef@8s Section VII.A, pp.
964-965] where it was given as a solution to the problem ofgengesemblance of MRI
images. Since then, the notation of the nearness measuigebasrefined (as reported
in [93]) and it has been applied to the problems of image rétamse and correspon-
dence [36-38, 91, 94-96] which is closely related to corbased image retrieval [93],
i.e. the problem of retrieving images based on the perceivedctsbjeithin the image
rather than based on semantic terms associated with thesimalge nearness measure
has also been applied to patterns of observed swarm belnastioned in tables called
ethograms, where the goal is to measure the resemblancedryetive behaviours of dif-
ferent swarms [51]. In each of these applications, the msarmeasure has been applied
to problems formulated either in terms of near sets and ttisgernibility relation or as

tolerance near sets and the perceptual tolerance relation.
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The catalyst for the creation of the nearness measure wasbdesvation that under
Definition 24 disjoint sets are either considered near, or netthere is no middle ground.
However, the practical application of near set theory nexpua method for quantifying the
nearness of sets, as in, for example, retrieving images &aatabase that are similar to
a query image. In this case, a positive measure of similagipts to the resemblance
between a query image and the retrieved images. In essbeaggdrness measure presents
a systematic approach to determining the degree of sityilaetween a pair of disjoint sets,

an idea that can be visualized by asking “which pair of sei&gn10 are more similar?”

€Y (b)

Figure 10: Example of degree of nearness between two sets, where dachoorresponds to an equivalence
class. (a) High degree of nearness, and (b) low degree afiessar

The nearness measure was first proposed in working with thecernibility relation
and equivalence classes. The approach was that the degrearogss of sets in a percep-
tual system is determined by the cardinalities of the edginee classes that have the same
description (an idea that is visualized in Fid). For sets that are considered “more simi-
lar” as in Fig.10g there should be more pairs of equivalence classes (fromepective
sets) that have matching descriptions. Consequently, themess measure is determined
by counting the number of objects in equivalence classashthae matching descriptions.
Thus, the sets in Fig.0aare closer (more near) to each other in terms of their desmmip
than the sets in Fig.Ob. Moreover, this notion can be generalized to tolerancesekaas is

the case in the following definition.

Definition 25. Nearness Measurg33,93] Let(O, F) be a perceptual system, withe R,

andB C F. Furthermore, letX andY be two disjoint sets and léf = X U Y. Then a
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Figure 11: Visualization of nearness measure based on equivalenssesland the indiscernibility rela-
tion. Similar images should produce equivalence classgsatie evenly divided betweeXi andY. This is
measured by counting the number of objects that belong ®0)etndY for each equivalence class, and
comparing the results.

nearness measubetween two sets is given by

-1
min(|C' N X[, [[CNY])
tNMe, (X,Y) = : :
oy (X,Y) ( > )l(fl) 2 N s(en XL enY)

CeH%B,E(Z CEH%B,s (Z)

As was explained, the idea behind Definiti@h is that similar sets should produce
equivalence classes with matching descriptions. Howekieraddition of the perceptual
tolerance relations subtly adds to the complexity of calting the measure. The main idea
stays the same, namely, similar sets should produce cliésdese evenly divided between
the two setsX andY'. It is the approach to calculating the measure that is inapomvith
the addition of the tolerance relation. For instance, usirggindiscernibility relation it
is simply a matter of determining the equivalence classeaxbjcts in both sets and then
comparing the description of each equivalence class inXs&i the description of each
equivalence class in sét. In contrast, the process of calculating the measure umder t
perceptual tolerance relation involves first finding thestahce classes of all objects in
the union of X andY. This approach is best because of the fact that all objedtarwi

a tolerance class must satisfy the tolerance relation. Becatithis fact, a comparison
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of two tolerance classes cannot be made directly withoutpaoing all the objects in one
class with all the objects in the other class. As a result, eerafiicient approach is to find
the tolerance classes of the union)6fandY’, and then determine which portion of each
tolerance class (form the covering.6j belongs taX andY’, which is whyC'is intersected
with X andY in above equation.

In any event, the measure is calculated by counting the nuoilodjects that belong to
setsX andY for each tolerance class, and then comparing these couafgsraper fraction
(guaranteed by the min and max functions). Then, the finalkevaf the measure is simply a
weighted average of all the fractions. A weighted averageseected to give preference to
larger tolerance classes with the idea that a larger tateralass contains more perceptually
relevant information. Calculating the proper fraction fairagle tolerance class is shown
graphically in Fig.12, where Fig.12ais a single sample tolerance class in a 3D feature
space, and Figl2bcontains two disjoint sets of objects, where the objectsepeesented
by small square blocks laid out in rows and columns, and drdyrembers of the tolerance
class in Figl2aare shown in green. Observe that a tolerance class in fesgace can be
distributed throughout the sets, and that the nearnessuneeasuld compare the number
of objects from the tolerance class in sétto the number of objects from the tolerance
class in set’. In this case, the ratio would be close to 1 because the nuafilmdgjects in

both setsX andY” are nearly the same.

e, r
L .

(@) (b)

Figure 12: Example relating tolerance class objects to their cootdswaithin a pair of images. (a) Tolerance
class in 3 dimensional feature space. (b) Two disjoint sktbjects, where the objects are represented by
small square blocks laid out in rows and columns, and onlyrtembers of the tolerance class in Fig@aare
shown in green.

The nearness measure produces values in the intgérvdl where, for a pair of sets
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X.,Y, avalue of O represents no resemblance in terms of the pwlaéidns in3, and a
value of 1 indicates the sef§, Y completely resemble each other, a fact that can be seen
by calculating the nearness measure on a singlé.setN M=, (X, X) = 1. In addition,

the nearness measure provides a methodical approach éondeing whether two sets are

tolerance near sets as seen in the following propositiontamarollary.

Proposition 1. A nearness measure oV M~ (X,Y) = 0 indicates that the setX, Y’

are not tolerance near sets.

Proof. AtNM=, (X,Y) = 0is produced by either the empty see(Z = X UY = ()

or each tolerance class -, _(Z) is either completely a subset of or completely a
subset ofY". In other words, there is no tolerance class that consistéjects from both
X andY. Consequently, there is no € X andy € Y such thatr =5, y, and so, by

Definitions23 & 24, the setsX andY are not tolerance near sets. Ol

Corollary 1. A nearness measure ofV M-, (X,Y’) > 0 indicates that the set¥, Y are

tolerance near sets.

Proof. A tNM=, (X,Y) > 0 is produced, if there is at least one tolerance cldss
H~, (Z) such thatX N C' # () andY N C' # (. Consequently, there must bec X
andy € Y that satisfiess =5, y, and so, by Definition23 & 24, the setsX andY are

tolerance near sets. [

Next, a concrete example of calculating the nearness measgiven with the aid of
Fig. 13. Assume each of Figl3a- 13eis a set of objects, where each square represents
100 objects, and the different colours correspond to tolaclasses (with each object
belonging to only one class). Thus, FiiBaconsists of 400 objects distributed into three
classes of 200, 100, and 100 objects, respectively. Fuaghsume all pairs of objects taken
from two different classes that share the same colour wiilfyathe perceptual tolerance

relatior?. The results of comparing the set in Figdawith itself and then the remaining

SGenerally, the approach is not to compare separate cogefasgin this example), but to calculate the
nearness measure based on the covering obtained from the efrhe sets being measured. However, the
example was presented in this manner in the interest ofylari
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four other sets is given in the caption of Fi. Notice the nearness measure ranges from
1, produced by calculating the measure on a single set, too@uped by sets that are
completely dissimilar. For the most part, the results otelting the nearness measure
in this example matches intuition. For example, Ai§a& 13bdiffer only by the lower
left tolerance class, thus one would naturally come to theclesion that these two sets
are 75% similar. In contrast, when considering Fi§a& 13c one might venture that
half of objects of each set belong to classes that are shgreadtb sets. Consequently, the
nearness measure should be 0.5. However, this does noasalgueflect the perceptual
information contained in each of these classes. For instarsing the data given in Tali2e

the tolerance nearness measure between Higg& 13bis calculated as

1
tN M-, (8a8b) = <1 400 +1- 200) — 0.75,

and the nearness measure between Fi§&& 13cis calculated as
1
tNM-=, (8a8c) = 300 (O.S -300+1- 200> = 0.4375.

ObservefN M-, (8a 8c) = 0.4375 since the black tolerance class consisting of 200 ob-
jects represents half of the perceptual information of gtérsFig.13c(and a quarter of the
total perceptual information in both sets), yet it is noteefiéd at all by the set in Fig.3a
Furthermore, the grey tolerance class (consisting of ébjeem both classes) represents
roughly 38% of the perceptual information in both sets, ydy d/3 of the class is common

to both sets. Consequently, while half of each set sharesathe fabel, less than half of
the perceptual information in the union of these two set®mroon to both, a fact that is

reflected in the nearness measure.

48



(@)

(d) (e)

Figure 13: Example of calculatingN M~ , _ (X, Y") by comparing the set in (a) with itself and the remaining
four. tNM=, . (X,Y) = {1,0.75,0.4375,0.25, 0} for comparing set (a) with itself and with the sets (b), (c),
(d), and (e).

Table 2: N M~, Calculation Example

Covering Tolerance Class TC Size Objecfin ObjectsinY’ TC Ratio
sl u] = - 400 200 200 1
Il 100 100 0 0
] ] 100 0 100 0
(o [ 200 100 100 1
sl & ™ ™ 300 200 100 0.5
wl [ 100 100 0
L1 I 200 0 200
(o [ 200 100 100 1

4.4 Finding classes

The practical application of the nearness measure restseoability to efficiently find all
the classes for a set = X U Y. In the case where = 0, the process is straightforward,
i.e, the first object is assigned to a tolerance class (which egaivalence class since=
0), then the description of each subsequent object is cordparebjects in each existing
tolerance class. If a given object’s description does ndtmany of the descriptions of the
existing tolerance classes, then a new class is created, fialgorithm runtime ranges
from orderO(]Z]?) in the worst case, which occurs when none of the object deimms

match, toO(|Z]), which occurs when all the object descriptions are equitale practise,
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the runtime is somewhere between these two extremes.
The approach to finding tolerance classes in the case whefe0 is based on the

observations presented in the following Propositions.

Proposition 2. All tolerance classes containing € O are subsets of the neighbourhood

of z, N(x).

Proof. Given a tolerance spa¢®), =) and tolerance class ¢ H~, _(O), then(y, z) €
~5. for everyy,z € A. Let N~, (x) be a neighbourhood of € O and assume € A.
For everyy € A, (7,y) € =5.. Hence,A C N~ _(z). AsaresultN~, () is superset of

all tolerance classes containimg n

Proposition 3. Letzy, ..., 2z, € Z be a succession of objects, called query points, such that
Zn € N(zn—1)\2n-1, N(2n) € N(zp-1)\2n—1 € ... € N(21)\z. In other words, the se-
ries of query pointsz, . .., 2z, € Z, is selected such that each subsequent obje@there

zn 7# Zn—1) IS Obtained from the neighbourhodd(z,,_1), that is created only using objects
from the previous neighbourhood. Then, under these comditithe se{z;,...,z,} isa

pre-class.

Proof. Forn > 2, let S(n) be the statement thdt;, ..., z,} is a pre-class given the

conditions in PropositioB.

BASE STEP(n = 2): Let z; € Z be the first query point, and 1€¥(z;) be the first
neighbourhood. Next, let, represent the next query object. Singemust come from

N(z), and all objects in: € N(z) satisfy the tolerance relation =5, z, S(2) holds.

INDUCTIVE STEP. Fix somek > 2 and suppose that the inductive hypothesis halds,
{z1,...,2} isapre-class, and choosg,; from N (z;)\zx. SinceN(z)
C N(zk-1)\2zk—1 € ... € N(z1)\z1, zx-1 must satisfy the perceptual tolerance relation

with all the objects in{z, ...,z }. Consequently{ zy, ..., z;+1} iS also a pre-class.

Therefore, by MI1,S(n) is true for alln > 2. ]
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Corollary 2. Letz,...,z, € Z be a succession of objects, called query points, such that
Zn € N(zn—1)\2n-1, N(2n) € N(zp-1)\2n—1 € ... € N(21)\2. In other words, the se-
ries of query points;y, . .., z, € Z, is selected such that each subsequent objefwhere

zn # 2n—1) iS Obtained from the neighbourhodd(z,,_;), that is created only using objects
from the previous neighbourhood. Then, under these comditithe se{z;,...,z,} isa

tolerance class ifN(z,)| = 1.

Proof. Since the cardinality ofV(z,) is finite for any practical application, and the con-
ditions given in Corollary2 dictate that each successive neighbourhood will be smaller
than the last, there israsuch that N (z, )| = 1. By Proposition3 the series of query points
{z1,...,2,}isapre-class, and by Propositidthere are no other objects that can be added
to the clasgzy, ..., z,}. As a result, this pre-class is maximal with respect to isiclo,

and by definition is called a tolerance class. O

The above observations are visualized in Bigusing the example first introduced in
Fig. 8, where the following conventions are used in the figureshis ¢ase, only the first
21 objects ofZ are shown, where each object is represented by a number ftor@1l A
neighbourhood is represented by the colour grey. For exgrtipt entire circle in Fig4a
is grey because it represents the neighbourhood of objeet N(1). Similarly, the grey
portion of Fig.14brepresents the neighbourhood of objgeinly using the objects from
N(1) excluding object. In the above propositions and proofs this is labelledv&ag0) C
N(1)\1. Also, note these figures gives examples of the portion of#teof objects not
contained in a neighbourhood. These areas are represetieel tolours red, pink, green,
and yellow; and an example can be seen in Edpwhere the area shaded red is the part of
N(1) that does not satisfy the tolerance relation v@ith Next, objects coloured black (as
opposed to blue) are objects that have been added to thetipbtelerance class (called
a pre-class) and are not considered part of the neighbodrhéor instance, in Figl4b
{1} is black, in Fig.14c {1,20} are coloured black, in Figl4d {1, 20,10} are coloured
black, etc. Moreover, objects that are coloured blue satisfy the tolsgaelation with all

the black objects in the potential tolerance class (agéso,kinown as a pre-class), but not
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necessarily with all the other objects coloured blue. Asxan®le, the objects coloured
blue in Fig.14call satisfy the tolerance relation witi, 20}, but they do not all satisfy the
tolerance relation with each other, as is the case for abjdcnd?21.

Starting with the the proof of Propositid®) a visual example of the base step in is
given in Fig.14a& 14b Here, Fig.14acontainsN(z;), and according to Propositid3)
another query point, € N(z1)\z is selectedi(e., z; can be any object itV (z;) except
z1). Here,z, = 20 is selected because it is the next object closest.t&incez; =z, 29,
the class{z, 2o} is a pre-class. Continuing on, an example of the inductivp &tam
the proof of Propositior8 is given in Fig.14e In this case, there are = 5 objects and
{z1,...,25} = {1,20,10,6,15}. The area shaded grey represeNts:;)\z; C,...,C
N(z1)\z1, along with the black coloured query poirts;, . .., z; }°. Note, whilez; = 15
is not coloured black, itis considered a query point becauséhe object used to create the
current neighbourhood, and is added to the pre-class. dlasiced black in the subsequent
figure. Notice that, as was mentioned above, all the bluectdbja the grey area satisfy
the tolerance with all the query points, but that the greyaatees not represent a pre-
class. Moreover, any new query point selected fidifes)\z; = {16, 18,3, 14, 11} will
also satisfy the tolerance relation with all the query point;, .. ., z5}. Finally, Fig. 14f
demonstrates the idea behind Coroll@ryin this figure, the area shaded grey represents
the neighbourhood of; = 3 along with all black query points. Observe that (besides the
black query points) the shaded area only contains one ohjantelyz;. Also, note that
there are no more objects that will satisfy the tolerancatiaa with all the objects in the
shaded area. As aresult, the §et, .. ., 27} is a tolerance class.

Using Proposition® & 3 and Corollary2, Algorithm 1 gives the pseudocode for an
approach for finding all the tolerance classes on a set ottshie The general concept
of the algorithm is, for a given object € Z, to recursively find all the tolerance classes
containingz. The first step, based on Propositi&ns to setz as a query point and to find

the neighbourhoodv(z). Next, consider the nearest neighbourzdfom the neighbour-

6According to the conditions given in PropositiBmueries points are not included in subsequent neigh-
bourhoods.
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Figure 14: Visualization of Proposition? & 3 and Corollary2. (a) N(1), (b) N(20) € N(1)\1, (c)

N(10) € N(20)\20 € N(1)\1, (d) N(6) € N(10)\10 € N(20)\20 € N(1)\1, (€) N(15) € N(6)\6 C
N(10)\10 € N(20)\20 C N(1)\1, and (N (3) C --- € N(1)\1.
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hood N (z) as a query point and find its neighbourhood only considerljgats inV(z).
Continue this process until the result of a query producesgihheurhood with cardinality

17. Then, the series of query points becomes the tolerance. das tolerance class origi-
nally given in Fig.8 was produced using this algorithm, and the intermediafesstéthis
algorithm are visualized in Fig4. As was mentioned, the tolerance class is then the series
of query points given as

C ={1,20,10,6,15,16, 3},

where the sequence of neighbourhoods is given in Tafietice that results of the nearest
neighbour search are obtained in order of increasing disjarinally, it is important to
note for this algorithm (and Algorithi8) that the input is specified &= X UY since itis
assumed here that the user wants to find tolerance classsutate the degree of nearness
(i.e. tN M) between two setX andY. As was mentioned in Sectigh3, it is best to find
the tolerance classes on the union of two s€t¥", rather than find the tolerance classes

on the individual sets when calculatingy M .

Algorithm 1 : Algorithm for finding tolerance classes
Input : Z=XUY
Output: Hx~, .(Z)

1 Hy — 0;

2 for (i = 0; i < |Z]; i++) do

3 C 0

4 | findNN(Z, C,i, Hap o (2));

5 end

While Algorithm 1 finds all the tolerance classes of objects from aset X U Y, it
is not very efficient. As a result, Algoriththwas modified, producing Algorithr®. While
the performance of this algorithm was much better than thatgorithm 1, its runtime is
still poor. For the worst case scenario, occurring when gaatof objects inZ satisfies the
tolerance relation, the runtime is of ordet|Z|>T'), whereT is the complexity of finding

an object’s neighbourhood from among the oth#&fr— 1 objects. However, this runtime

"The result of a query will always be at least 1 since the tolegaelation is reflexive.
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Proceduref i ndNN(N(2) , C, i, H~,(Z))

if (|NV(z)| =1)then
2 C— CUN(z);

=

Hep(Z) «— He,(Z) U C,
4 else
5 | 2/ N'(2);
6 N(z) « N(2)\Ni(2);
7 C—Cuz;
8 find N(z') only using the objects itV (z);
9 for (j =0; j <|N(2')|; j++) do

10 L findNN(N (2'), C, j, H~,(2));

Table 3: Intermediate steps of Algorith@using data in Fig8

z N(2)

1 {1,20,12,7,9,6,19,10,17,11, 14,16, 18,3,13,21,15,2,5,8,4}
20 {20,10,6,16,3,15,21,18,11,14,7,12,9}

10 {10,6,15,16,3,18,11,14,21,7,12}

6 {6,15,16,3,18,11,14,7,12,21}

15 {15,16,18,3, 14,11}

16 {16,3})

3 {3}

can be significantly reduced by the addition of a simple Istiari For example, step 3 can
be changed so that an object fra¥i{z) can only be selected aSin step 3 {.e., this rule is
reset each time step 2 is visited), if it has not already béee@to a tolerance class created
from the original neighbourhood¥ (z). As a result of this modification, the runtime in the
worst case is now)(|Z|*T'). Moreover, it should be noted that the algorithm is rarely ru
on worst case data. The worst case suggests that eitherdit@negalue is much too large,
or that the data is so clustered that, from a perceptual pbiniew, every pair of objects
in the set resembles each other. In either case, the dataiistaesting from a nearness
measure or image correspondence perspective. Lastlyutitene on typical data is of
orderO(|Z|cT), wherec < |Z] is a constant based on the object Z that has the largest
neighbourhood.

Next, consider the affect of using AlgorithB{and the added heuristic) instead of using

Algorithm 1. The main difference (besides improved runtime) is thatrién algorithm
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Algorithm 3: Algorithm for finding tolerance classes

Input : Z=XUY

Output: Hx~,(Z)

H%B,s (Z> — Q);

Take an element € Z and find N (z);

Add z to a new tolerance clags. Select an object’ € N~ (2);

Add 2’ to C. Find neighbourhood (z") using only objects fromV(z). Select a new

objectz” € N(z'). Re-label’ < z" andN(z) «— N(z');

5 Repeat step 4 until a neighbourhood of only 1 element is predlué/hen this
occurs, add the last elementdt and then add’ to H~,, (Z2);

6 Perform step 3 (and subsequent steps) until each objé¢tin has been selected at
the level of step 3;

7 Perform step 2 (and subsequent steps) for each objett in

s Delete any duplicate classes;

A W N P

Table 4: Tables showing classes found and not found by Algorighfand the added heuristic).

Found Classes Missing Classes
{1,2,7,11,12,13,19} {1,2,5,19}
{1,3,6,10,15,16,20} {1,2,7,11,12,13, 14}
{1,3,6,10,16,20,21} {1,6,7,10,11,12, 14, 18, 20}
{1,4,5,8,9,17,19} {1,7,11,12,13,14,18}
{1,6,10,11,14,15,18,20} {1,9,20,21}

does not find all the tolerance classes containing objects mowever the result is still a
covering ofZ. For example, Figl5aand Table4 show the classes found and not found by
Algorithm 3 (and the added hueristic). Another concern is whether theabgorithm will
affect the outcome of the nearness measure. | conjectur@éneeptually the difference
does not matter because the result of the algorithm is stithering of Z. Moreover, it
is usually the case that an object belongs to more than oss, @ad that the extra classes
would not significantly alter the perceptual informatiomtained in the tolerances classes
that are discovered. To test this conjecture, an experimastconducted on the objects in
Fig. 15to provide an empirical argument indicating that using Aitjon 3 to find tolerance
classes does not significantly affect the nearness meastwedn two sets of objects.

To perform this experiment, the 21 objects in Fi§.needed to be separated into two

disjoint sets. Then, the nearness measure was calculateglardy the tolerance classes
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Figure 15: Example of a tolerance classes not produced by AlgorBifamd the added heuristic). (a) Classes
found by Algorithm3 (and the added heuristic), and (b) classes not found by ¢fueitim.

Table 5: Error in nearness measur® M using Algorithm3 to find tolerance classes.

Error % of Combinations Below Error
0.2 99.9%

0.15 98%

0.1 87%

0.05 55%

found by Algorithm3 (and the added heuristic), as well as using all the toleralasses.
As one could guess, these objects can be separated intogjemtsets in many different
ways. The approach was to set the number of objects in egointliset, then calculate the
nearness measures for all combinations of dividing thegectshinto two sets of specific
cardinalities. This process was then repeated for eactuarsgt of cardinalities between
the two disjoint sets.g.two sets consisting of 1 and 20 elements, 2 and 19 elementsl, 3 a
18 elementsetc. The results of this comparison are given in Fi§, and Tables. Notice
that, for the objects in Figl5, the difference between calculating the nearness measure
using all the classes and the classes found by Algor8hsness than 0.2 for 99.9% of all
combinations of objects divided into two dijoint sets. Thas a result of this experiment,
Algoirthm 3 (and its reduced runtime) was used to generate the resekgmed in this

thesis.
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Figure 16: Plot showing error in nearness meastuke\/ using Algorithm3 (and the added heuristic) to find
tolerance classes.

Finally, this section is concluded by mentioning a few olsagons about the algo-
rithms. First, both the original algorithm and the improvezlristic algorithm produce a
set of classes that contain duplicates (more so in the catfe dirst algorithm). Conse-
guently, it is necessary to remove duplicate classes beé&bcalating the nearness measure.
Also, the runtime of these algorithms can be significantlgrioved by approximate nearest
neighbour searching, which is why the runtime was presquaethlly in terms of the com-
plexity of finding neighbourhoods. The results presenteatii;ithesis were obtained using
the approximate nearest neighbour algorithm reporteddp fd discussed in Secti@2.
Lastly, these algorithms lend themselves to parallel @siog techniques, and the results

in this paper were also obtained using multi-threading onaddore processor.
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5 Application of Near Sets

As demonstrated in Sectid@)tolerance near sets provide a systematic framework for mea
suring the similarity of objects and sets of objects, basedlgect descriptions, and in a
manner similar to the way people perceive objects and theited between them. Thus,
one might conjecture that near set theory is a natural ctioigeroblems and research ar-
eas where the desired solution or result matches that of nper@eption. Indeed, the goal
of this section is to demonstrate the validity of this cotyee, namely, that near set theory
is well suited to solving problems in a manner similar to thebtem-solving approach by
humans in discerning similarities between objects.

The choice of an application for this demonstration is indhea of content-based im-
age retrieval (seeg.g, [60]), where the goal is to retrieve images from databasesed
on content of an image rather than on some semantic stringyavdeds associated with
the image. The content of the image is determined by imageepsing functions that
characterize qualities such as colour, texture, shape jettshin the images, and edges.
Notice, that this approach is conducive to producing feauectors, and as such, is an
application in which near set theory can be easily appliedithermore, tolerance near
sets together with the nearness measure on classes ofsotgented from two perspective
images provides a quantitative approach for accessingntimsty of images. Thus, the
focus of this chapter is to demonstrate a practical appdicatf near set theory in terms of
content-based image retrieval, and to show that this frasriedoes indeed produce results
similar to those produced by human perception. The outlfrtbechapter is as follows:
Section5.1 demonstrates an approach to applying near set theory tcesn&gctiorb.2
presents initial results toward applying near set theothégroblem of content-based im-
age retrieval, Sectiob.3discusses the selectiongfSections.3 presents other methods of
measuring the nearness of two sets in a perceptual systengemion$.5& 5.6 present
the results of performing content-based image retrievaherSIMPLIcity image database

using the near set approach.
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5.1 Perceptual Image Analysis

Near set theory can easily be applied to images by partitgpan image into subimages
and considering each subimage as an object in the near s&t,seneach subimage is a
perceptual object, and each object description consistiseofalues obtained from tech-
niques of image processing on the subimage @€eFig. 17). Moreover, this technique
of partitioning an image, and assigning feature vectorsatthesubimage is an approach
that has also been traditionally used in content-basedemetgeval.

Formally, define a RGB image &= {pi,ps,...,pr}, Wherep; = (¢,7, R,G, B)T,
ce[l,M],r € [1,N], R,G,B € [0,255], and M, N respectively denote the width and
height of the image and/ x N = T. Further, define a square subimagefas. f such
thatfiN fo...N fy=0,andf U fo...U f, = f, wheres is the number of subimages in
f. Next,O can be defined as the set of all subimages,O = {f1,..., fs}, andF is a set
of image processing descriptors or functions that openaienages. Then, the nearness of
two images can be discovered by partitioning each of the @mago subimages and letting
these represent objects in a perceptual systeiet the setsX andY represent the two
images to be compared where each set consists of the sulsimbtgned by partitioning

the images. Then, the set of all objects in this perceptiusiésyis given byZ = X UY.

Figure 17: Example demonstrating the application of near set theomémges, namely the image is parti-
tioned into subimages where each subimage is consideradeppeal object, and object descriptions are the
results of image processing techniques on the subimaggémmsed with permission [97]).
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5.2 Initial Results

This section presents the initial results (published iff)@8monstrating that near set theory
can successfully be applied to the problem of content-besade retrieval. The adjective
“initial” is stressed since these results are based on penigy content-based image re-
trieval on a database containing only two categories tieadjaite different from each other,
namely the database consists of images are from the Berkefgyeéhtation Dataset [97]
and the Leaves Dataset [98] (seeg, Fig. 18). Nevertheless, these results represent an
important first step to demonstrating the application ofrreed theory to the problem of

content-based image retrieval.

\
(@)

Figure 18: Sample images. (a), (b) Leaves Dataset (Images used withigston [98]), and (c) Berkeley
Segmentation Dataset (Image used with permission [97]).

To begin with, Fig19is a plot oft N M values comparing the nearness of Fij8a& 18b
and Fig.’s18a& 18cusing the normalized green value from the RGB colour model and
Pal's entropy (see Sectios3.1& 2.3.2. Furthermore, the results were obtained using
£ =10,0.01,0.05,0.1 (note, the perceptual indiscernibility relation is usedsfe= 0), and a
subimage size of0 x 10. Observe that the two leaf images produce higher nearness me
sure values than Fid.8aand the Berkeley image because the leaf images produce ®bject
that have more in common in terms of their descriptions @ifive probe functions ).
These results match our perception of the similarity betwibese three images. Also, note
that the values using the perceptual indiscernibilitytrefaare quite similar (near zero).

In practise features values tend not to be exactly equalgraducing lower nearness mea-
sure values. As shown by the results, this problem can beower by using the perceptual
tolerance relation.

The plot given in Figl9 suggests that the nearness measure would be useful in mea-
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Figure 19: Plot showing NM values comparing Fig.'d8a & 18b and Fig's18a & 18c for ¢ =
0,0.01,0.05,0.1.

suring the similarity of images. To investigate this prapéuarther, the Berkeley Segmen-
tation Dataset and the Leaves Dataset were used to perfart@ntebased image retrieval.
Specifically, the image in Figl8awas selected as the query image and was compared to
200 images, 100 from both the leaves and Berkeley datassp&atively. The ideal result

is for the highest 100N M values to be associated with the 100 leaf images. The re-
sults were generated using the same parameters as ib%-and they are compared using
precision versus recall plots. Precision/recall plotstteecommon metric for evaluating

content-based image retrieval systems where precisionegadl are defined as

|{relevant imagesnN {retrieved imaged
|{retrieved images

precision=

Y

and
|{relevant imagesn {retrieved imageg

recall = .
|{relevant images

In the idea case (described above), precision would be 10@#oracall reached 100%,
at which point precision would drop to # of images in queryegaty / # of images in the
database. In this case, the final value of precision will B Sthce there are two categories

each containing 100 images.

8Note, the number of pixels in the leaf images were decimayeal factor of 4 to be closer in size to the
Berkeley imagesd,e., their dimension was reduced fra$A6 x 592 to 448 x 296.
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The results of these comparisons are given in E@y.Notice,t N M produces a preci-
sion/recall plot with 73 images retrieved from the leavesssiet before a Berkeley image is
selected. These results match intuition in that, at sonmal,leur mind assesses similarity
by comparing the descriptions of the objects we are consigleand that the comparison
is not based on exact valuase( the equivalence of features) but rather our mind easily

allows some tolerance in making these comparisons.

100

801

60

Precision (%)

40
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——NM (e=0.01)
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Recall (%)

Figure 20: Precision versus recall plot obtained using Hifaas a query image compared to 100 images
from the Leaves Dataset [98] and Berkeley Segmentationseafa7].

5.3 Parameter Adjustment

While the results in the previous section are positive, somesmvork needs to be ac-
complished before applying near set theory to databasésmuittiple classes containing
images with resemblance across categories. First, antigaBsn into selecting the value
of € needs to be performed. For normalized feature values, tgedadistance between
two objects occurs when one object has a feature vectordiptdgscription) of all zeros,
and the other has a feature vector of all ones. As a resiglin the interval0, /1], where

[ is the length of the feature vectors. In any given applicgtibere is always an optimal
when performing experiments using the perceptual toleraslation. For instance, a value
of e = 0 produces little or no pairs of objects that satisfy the peteal tolerance relation,

and a value of = /I, means that all pairs of objects satisfy the toleranceicglaConse-
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quently,e should be selected such that the objects that are relativlelge in feature space
satisfy the tolerance relation, and the rest of the pairdb@ais do not. The selection of
is straightforward when a metric is available for measuthgsuccess of the experiment.
In this instance, the value aefis selected based on the best result of the evaluation met-
ric. Fortunately, in this case, precision versus recallyyldefined in the context of image
retrieval, can be used to evaluate the effectiveness of

To demonstrate the selection gfa small database is used containing a collection of
hand-finger movement images from three patients. One of dients has rheumatoid
arthritis, while the other two do not. Here, the goal is tofpen content-based image
retrieval and separate the images into three categoriesfooreach patient. The images
were extracted from video sequences obtained from a telbii@htion system that moni-
tors patient hand-finger motion during rehabilitation eises (sees.g, [99]). An example
of the type of images obtained directly from the video is giue Fig.21a These images
needed to be further processed to remove the common bacidfewy. all the images
contain the white desktop, the square blue seretorthat would produce results indicat-
ing all the images were similar. Therefore, the mean shiirsmntation algorithm (see
Section2.3.3 was used to create a segment containing only the hand inieacfe. The
resultant segmented image is given in RR@bwhere objects with similar colour are now
grouped together into segments. The next step was to usegneest representing the
hand as a mask to separate the hand from the original imagen(gi Fig.219. Next,
notice the absence of the majority of the black backgroueprésenting the masked pixels
in the original image) in Fig21ld Each image was cropped to an image containing only
the hand because the output of probe functions on the blatgbaund would be the same
for each image, and therefore, not contribute to diffeedimg the images.

Next, perceptual objects are created by partitioning thegeninto subimages, and, in
this case, only one probe function was used, namely the geengentation of lines within

a subimage. For example, the orientation can be determusdg(the process given in

%Here, distance of “objects that are relatively close” wéldetermined by the application.
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@) (b)

(d) (e)

Figure 21: Figure showing preprocessing required to create tolerelasses and calculate nearness measure.
(a) Original image, (b) segmented image, (c) hand segmdyt (@) cropped image to eliminate useless
background, and (e) final image used to obtain toleranceetagach square represents an object where the
colour (except black) represents the average orientafiariioe segment within that subimage.
Section2.3.9 for each pixel considered part of a line detected in an imableen, the
probe function takes an average of all the orientationsifalp belonging to edges within
a specific subimage. An example of the output of this probetfan is given in Fig21e

As was mentioned, these images will be used to demonstratsellection ot for a
given application of tolerance near sets. Specifically,raage belonging to one of the
three patients is used as a query image, and then the images&ed in descending order
based on their nearness measure with the query image. Fopéxdahe database of images
used in this section contains 98 images, of which 30 are flenpatient with arthritis, and
respectively, 39 and 29 of them are form two patients witlaotitritis. Then, each image is
in turn selected as the query image, and a nearness betvesguety image and every other
image in the database is determined. Subsequently, anoeraan be selected based on
the number of images that are retrieved from the same categahe query image before
a false negative occurgs€. before an image from a category other than the query image
occurs).

Using this approach, Fi@2 contains a plot showing the number of images retrieved

before the precision dropped below 90% for a given value.offhe image (out of all
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possible 98 images) that produced the best query resuliges o red, and the average is
given in blue. Notice the best results in the average casar ath tolerance= = 0.05,
which is close to the = 0.07 in the best case. This plot suggests that retrieval of images
in this database improves with a slight easing of the egeinad condition, but not much.
Lastly, note that is also low due to the use of approximate nearest neighbauclsag
(see,e.g. Section2.2) because the nearest neighbour of an objecan bep* such that
dist(p,q) < (1 + a)dist(p*,q), whereq is the actual nearest neighbour. The effect is an
increase ire because it is now possible to include objects in the neigiiomd that are at

a distance ofl + «a)e.
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Figure 22: Plot giving the number of images retrieved before the piecifalls below 90%.

Verifying the validity of selecting: in this manner can be accomplished by both the
visualization of the nearness measure for all pairs of irmagethe experiment, and by
observing the precision recall plots directly. First, araga can be created where the
height and width are equal to the number of images in the dawgleach pixel corresponds
to the nearness measure from the comparison of two imagdsharcolours black and
white correspond to a nearness measure of 0 and 1 respgctivel example, an image
of size 98<98 can be created like the one in Fig3awhere patient B is the one with
arthritis, and each pixel corresponds to the nearness meehstween two pairs of images
in the database. Notice that a checkered pattern is form#édawvhite line down the

diagonal. The white line corresponds to the comparison ofreage with itself in the
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database, naturally producing a nearness measure of 1.oMrehe lightest squares in
the image are formed from comparisons between images frersame patient, and that
the darkest squares are formed from comparisons betweantthiis and healthy images.
Also notice, that the boundaries in FRBc& 23dare more distinct than for images created
by other values of suggesting = 0.05, ore = 0.07 is the right choice ot. Similarly,
square corresponding to patient C has crisp boundariegireBa& 23h and is also the
brightest area of the figure, suggesting that a value-ef0.3 would also be a good choice

for images belonging to patient C.

@

Figure 23: Images of nearness measure obtained from comparing the &gesrirom three subjects to
each other. (a) - (h) Visualization of nearness measurgusin {0.01, 0.03,0.05,0.07,0.09,0.1,0.2,0.3}.
Patients B has arthritis, while A and C do not.

Next, Fig.24 gives plots of the average precision versus recall for eatlemt. These
plots were created by fixing a value gfand calculating precision versus recall for each
image belonging to a patient. Then, the average of all theigiom/recall values for a
specific value ot are added to the plot for each patient. The results for sefeet= 0.05
are given in red, and in the case of patients B and C, the chbic¢hat produce a better

result thare = 0.05 are also highlighted.
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Figure 24: Plots showing the average precision recall plots for p&iénC.

5.4 Other measures

This section introduces two additional measures for dateng the degree that near sets
resemble each other. These measures were created out af fonesaking comparisons

of the results generated by the nearness measure. Heref veapproaches could have
been investigated. Namely, the nearness measure couldiyEoed with a content-based
image retrieval system or measure that is currently reghesgethe best approach for a
database with given characteristics. Or, the nearnessumeasuld be compared with

measures that determine nearness in a manner comparabl@foSince the focus of this

thesis is to demonstrate that the application of near sdtsetproblem of content-based
image retrieval is possible, where the results match thdiuofan perception, the latter
approach was taken. As a result, approaches were creassd] ba existing theories, that

measure the distance between sets.

5.4.1 Hausdorff Distance

The Hausdorff distance is used to measure the distance b&etseais in a metric space

[100-102], and is defined as

dy(X,Y) = max{ sup in}f/ d(x,y), sup in)f( d(z,y) },

zeX Y€ yey T€
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wheresup andinf refer to the supremum and infimum, a#d:, y) is the distance metric
(in this case it is thé.? norm). The distance is calculated by considering the distdrom

a single element in a séf to every element of sét, and the shortest distance is selected
as the infimum (see.qg, Fig. 25). This process is repeated for everg X and the largest
distance (supremum) is selected as the Hausdorff distdritbe getX to the sety”. This
process is then repeated for the sdbecause the two distances will not necessarily be the

same. Keeping this in mind, the measureD [93] is defined as

-1
tHD=~, (X,Y) = ( 3 |cy) Y IOV dg(CnX,CNY)).
CeHxy (2) CeHxy (2)

Observe, that low values of the Hausdorff distance cormego a higher degree of re-
semblance than larger distances. Consequently, the déstasabtracted from the largest
distancey/l. Also, notice that the performance of the Hausdorff distaiscpoor for low
values ofs, since, as tolerance classes start to become equivalassesi(e. asc — 0),
the Hausdorff distance approaches 0 as well. Thus, if edehatae class is close to an
equivalence class, the resulting distance will be zero,@m$equently the measure will
produce a value near to 1, even if the images are not alikeonirast, ag increases, the
members of classes tend to become separated in feature apédcas a result, only classes
with objects that have objects ik that are close to objects iri will produce a distance
close to zero. What does this imply? If for a larger value,otlatively speaking, the set of
objectsZ = X U Y still produces tolerance classes with objects that arelyighustered,
then this measure will produce a high measure value. Ndtie this distinction is only

made possible if is relaxed. Otherwise, all tolerance classes will be tigbithstered.

Figure 25: Example demonstrating a single step in determining the ¢tatfsdistance between two sets.
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The Hausdorff distance is a natural choice for comparisah Wie ¢t N M nearness
measure because it measures the distance between sets incaspace. Recall, that
tolerance classes are sets of objects with descriptiofglimensional feature space. The
nearness measure evaluates the split of a tolerance clagsdpesetsX andY’, where the
idea is that a tolerance class should be evenly divided legtweandY’, if the two sets are
similar (or the same). In contrast, the Hausdorff distaneasuares the distance between
two sets. Here the distance being measured is between ttiensoof a tolerance class
in setsX andY. Thus, two different measures can be used on the same datalynthne

tolerance classes obtained from the uniokcindY .

5.4.2 Hamming Measure

The Hamming measure introduced in this section was insfyeitie Hamming measure
in [103], and since the Hamming measure is not defined in tefrasts, it was modified to

give the following

tHM~,(X,Y) = . > 1(lavgnC N X) —avgnCNY) ||,< th),
o D) peie 2

wherel(-) is the indicator function and avg@' N X) is the average feature vector used to
describe objects i@’ N X. For example, the average feature vector can be calculgted b
adding all the values for a specific feature in the featuréorec C' N X, and then dividing
by the number of objects. The idea behind this measure isftraimilar sets, the average
feature vector of the portion of a tolerance class (obtafred 27 = X UY) that lies inX
should have values similar to the average feature vectdregbortion of the tolerance class
that lies inY". Observe, that ifh = ¢, this function will simply count the number of classes
that are not singletons.,e. classes that contain more than one element, since all sbject
have descriptions whose distances are lessdhHrt/ = ¢, than this measure will perform
best for low levels ot, since only sets that resemble each other will contain etagsth

cardinality greater than one. Otherwise, this measurepeiiform in a similar manner to
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tH D, namely, this measure will produce high values for clasd@siwhave objects ik

that are close to objects i with respect tah.

5.4.3 Application

The method of applying these measures to the image corrdspoe problem is the same
as that described in Secti@l To reiterate, consider Fi@6 where each rectangle rep-
resents a set of subimages (obtained by partitioning thygnadiimagesX andY’) and the
coloured areas represent some of the obtained tolerareseéfa Recall, as mentioned in
Sectiond.3 the tolerance classes are created based on the featues wdlilhe subimages,
and consequently, do not need to be situated geographiezdiiyeach other (as shown in
Fig. 26). In the case of the nearness measure, the idea is thatrsimalges should produce
tolerance classes with similar cardinalities. Consequgthi¢ cardinality of the portion of
a tolerance class belonging to séis being compared with the cardinality of the portion of
the tolerance class belonging to 3efrepresented in Fi®26 as sets with the same colour).
The Hausdorff and Hamming measures take the same appraaictgther consider the

Hausdorff distance or the average vector distance betvigpartions of the classes.
o T A O

Z=XUY

Figure 26: Graphical representation of the application of the nearnesasures to a pair of images.

10The tolerance relation covers both images, but not all thesels are shown in the interest of clarity
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5.5 SIMPLIcity Image Database

This section presents the application of near set theotyetptoblem of content-based im-
age retrieval on the SIMPLIcity image database [104,1083tabase of images containing
10 categories with 100 images in each category. The cag=gare varied with different
objects and scenes, and images in different categorieslsamesemble each other (see,
e.g.Fig. 27). While the goal is to retrieve images in a manner similar & tf human per-
ception, one must recall from Secti@nperceptual information is always presented with
respect to the probe functions containedsifust as our senses define our perception of
the world. For example our ability to view light in the visgbspectrum rather than infra
red or microwaves spectra defines our perception of the viustdas the selection of probe
functions constrains the amount of perceptual informaeailable for extraction from a
set of objects. Thus, the ability of a near set-based sysieasdess similarity of images in
a manner that mimics human perception of nearness, is ctehptiependent on the fea-
tures selected to describe the objects (subimages). Thendence is not a new concept,
and is present in any research area that is dependent orgfeattaction and feature value
vectors (seeg.g, [53]). Moreover, the precision versus recall plots meashe ability of a
system to return images from the correct category. Howsugre images across categories
can also be similar (depending on the features used to tegbe images), the results will
be presented using both precision versus recall plots, hasvehowing the top 10 images
that match a given query image.

Before performing retrieval, both and the probe functions need to be selected. A
common approach to performing content-based image ratrigew use features based on
colour, and texture [60, 80,106, 107]. Also, another typ&ature that is commonly used
in pattern recognition, image analysis, ophthalmologydiced imaging, optical engineer-
ing, and watermarking are Zernike moments, since they geokegion-based descriptors
of an image that are invariant with respect to rotation afidegons [56]. Accordingly, the
results of image retrieval in this section were obtained@di8 features, namely 4 texture

features obtained from the grey-level co-occurrence mafra subimage (see&.g. Sec-
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@ (b) ©

Figure 27: Examples of each category of images. (a) - (d) Categories,&n@ (e) - (i) categories 5 - 9
(Images used with permission [104, 105]).

tion 2.3.6, the first and second momentswéndv in the CIELUV colour space (see,g,
Section2.3.89, an edge based feature (seqy. Section2.3.4, and the Zernike moments of
order 4, excludingdy, (seee.g, Section2.3.7).

While the selection of should have followed the approach outlined in Seci@this
was not the case due the runtime of the algorithm used to fentbterance classes and the
size of the database. The approach was to perform a compiedeomparison of each im-
ages in the database with each other image. Since the résoltnparing two images with
the nearness measure is symmeiree,t N M (X,Y) = tNM(Y, X), comparing each im-
age to each other image involvei$)00)(1001)/2 comparisons. Some of average runtimes
for finding tolerance classes on objects obtained from agfamages in the SIMPLIcity
database (using a subimage26fx 20) is given in Fig.28, where the runtime ranges from
0.3 sec. for = 0.2 to 606 sec. foe = 1.5. Since this section is devoted to demonstrating

a practical application of near set theory, the value wfas selected based on performing
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the experiment in a reasonable amount of time, rather thaheovalue ot that preformed
best on a small subset of the database, with the goal of shaat even for small values
of ¢ this approach is quite powerful. The runtime of the expentweas further reduced by
removing the category of images shown in F2§. They were removed because correctly
retrieving images from this category was trivial, as deni@ted by the precision versus
recall plot of a random image from this category in 2§. A more realistic experiment
would be to identify the different type of dinosaurs and perf retrieval among this single
category. In any event, this category was removed to recheéotal time to perform the

experiment.

Time to Find Tol. Classes

0.2 0.4 0.6 0.8 1 12 1.4 1.6
€

Figure 28: Plot of ¢ versus time to find all the tolerance classes on a pair of is\agéne SIMPLIcity image
database, using the algorithm given in Sectiahon a quad-core 2.4 GHz machine, running a multi-threaded

application.
(a) (b) (c)

Figure 29: Examples of images from category 4 (Images used with peioni§$04, 105]).

5.6 Discussion

The results of applying near set theory to the problem oferaAbased image retrieval on

the SIMPLIcity image database are presented in this seckimn 31 contains three plots,
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Figure 30: Precision versus recall plot for image 412.jpg.

one for each measure, giving the precision versus recallfdaeach category, and Fig2
gives the precision versus recall plots for all three mezsgrouped by category. These
plots were generated by comparing each image in the SIMBLldieitabase to each other
image. Moreover, the precision versus recall plots for i§jpecategory were generated
by taking the average of all the precision and recall valoegéch image in that category.
Next, Fig.33 - 41 give the ten highest ranked images, using#Né// nearness measure,
for each category based on the query image that producece#tedsults, determined by
the largest area under the precision recall curve. Alsonginghese figures is the largest
tolerance class obtained between the query image and tbedséighest ranked image
(the first ranked image being the query image). These reselts generated with = 0.2
(giving a total runtime of approximatel§00)(901)(0.3)/2 = 1.4 days), a subimage size

of 20 x 20 and the 18 probe functions identified in the previous section
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Figure 31: Precision versus recall plots for all three measures on ithplisity database. (a) Nearness
measure, (b) Hausdorff distance, and (c) Hamming measure.
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Figure 32: Precision versus recall plots for all three measures grbbyecategory. (a) - (i) Categories 0 - 9

(excluding category 4).
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Figure 33: Results of best query from Category 0 usiigM . (a) Query image, (b) - (j) closest images
usingtN M, and (k) & (I) largest tolerance class (shown by white boxegjveen images (a) & (b) (Images
used with permission [104, 105]).

Figure 34: Results of best query from Category 1 usiigM . (a) Query image, (b) - (j) closest images
usingtN M, and (k) & (I) largest tolerance class (shown by white boxetjveen images (a) & (b) (Images
used with permission [104, 105]).
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Figure 35: Results of best query from Category 2 usiigM . (a) Query image, (b) - (j) closest images
usingtN M, and (k) & (I) largest tolerance class (shown by white boxetjveen images (a) & (b) (Images
used with permission [104, 105]).

Figure 36: Results of best query from Category 3 usifgM . (a) Query image, (b) - (j) closest images
usingtN M, and (k) & (I) largest tolerance class (shown by black boketjveen images (a) & (b) (Images
used with permission [104, 105]).
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Figure 37: Results of best query from Category 5 usifgM . (a) Query image, (b) - (j) closest images
usingtN M, and (k) & (l) largest tolerance class (shown by black boketjveen images (a) & (b) (Images
used with permission [104, 105]).

Figure 38: Results of best query from Category 6 usiigM. (a) Query image, (b) - (j) closest images
usingtN M, and (k) & (l) largest tolerance class (shown by white boxetjveen images (a) & (b) (Images
used with permission [104, 105]).
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Figure 39: Results of best query from Category 7 usimgM . (a) Query image, (b) - (j) closest images
usingtN M, and (k) & (I) largest tolerance class (shown by white boxetjveen images (a) & (b) (Images
used with permission [104, 105]).

Figure 40: Results of best query from Category 8 usiigM . (a) Query image, (b) - (j) closest images
usingtN M, and (k) & (I) largest tolerance class (shown by black boketjveen images (a) & (b) (Images
used with permission [104, 105]).
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Figure 41: Results of best query from Category 9 usimgM. (a) Query image, (b) - (j) closest images
usingtN M, and (k) & (I) largest tolerance class (shown by white boxetjveen images (a) & (b) (Images
used with permission [104, 105]).
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Starting with Fig.31, the following observations can be made. First, the medsased
on the Hausdorff Distance performs quite pooilg; it does so poorly that the plots for
nearly every category start with a precision of 0, meanirag the query image was not
the highest ranked image. This is due to the observation nma8ection5.4.], that the
Hausdorff distance does not perform well for low values.ofAn improvement ot H D
can be seen in Figt2 for a specific query imagé Notice, that ag increases from 0.2
to 0.7, the results do improvee., the query image is now given the highest ranking by
the measure, and the area under the curve has increasedingniiiat a greater number
of images from the correct category are initially retriefedes = 0.7 than fore = 0.2.
For example, if the images are ranked according td th® measures, there are 80 images
in the first half that are retrieved from the correct categmings = 0.7, compared with
6 with ¢ = 0.2. Furthermore, as suggested by the results published in {9&3e results
would probably continue to improve with a larger value=dif the testing time was not

prohibitive), before they begin to decline.
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Figure 42: Plot demonstrating improvement o D ase increases.

The other observations that can be made about3igs thatt N M andt H M produce
similar results, and that categories 6 and 7 seem to protiedasist results. This can easily
be explained by observing that category 6 is quite diffefearh all the other categories

since these images are close-up shots of flowers, and bath taegories are the only

1This image was selected since it was the query image thatipeathe best results in Category 6 using
tNM.
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ones where the background in all 100 images have similaucalnd texture. Next, the
explanation of why the results of the other categories arposw is as follows. As can
be seen in Fig33 - 41, especially Fig37 & 40, there are images in different categories
that are similar to each other, especially describing theges using the 18 probe functions
mentioned in the previous section. Thus, queries will poedresults that are similar to
the query image in terms of the selected probe functionstH®iimages may be from
different categories, which drives down the precision efdnery. However, as can be seen
in the results most of these images are perceptually sirbitdh in terms of our subjective
observations, and, obviously, by the probe functions seteto perform this experiment.
Moreover, these results can be improved by increasindNotice, that in terms of the
maximum distance between object$]8, the choice ot is quite small. Thus, the query
images in Fig37 & 40that produced the poorest results were retested avith0.7. The
results of these queries are given in M8.& 44. Notice the the improvement. Another
approach to improving the precision versus recall plotsldibe to change the selection of
probe functions, although, since the database is so vdherk is bound to be images that

are retrieved from other categories.
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Figure 43: Results of best query from Category 5 usidg) with e = 0.7. (a) Query image, (b) - (j) closest
images using N M, and (k) & (I) largest tolerance class (shown by white boxetjveen images (a) & (b)
(Images used with permission [104, 105]).

@) (b) (© (d)

Figure 44: Results of best query from Category 8 usidg)M with ¢ = 0.7. (a) Query image, (b) - (j) closest
images using N M, and (k) & (I) largest tolerance class (shown by white boxetjveen images (a) & (b)
(Images used with permission [104, 105]).

85



As was mentioned, Fig32 gives the results of each measure grouped by category.
Furthermore, since the selection ©ofwas so low, the value ofh was set tos. Thus,
tH D in this case is giving a measure of the number of tolerancesekathat were not
singletons. Observe that th& M/ nearness measure performs slightly better tifab for
all categories, with the possible exception of category &. this reason, Fig33 - 41 are
the best query images from each category usivig/ .

Lastly, a question one might ask is “Why do all the subimagdsriggng to all the
largest tolerance classes in F@B - 41 tend to be of uniform colour, especially since
the selected probe functions take into account colourutexiand local geometry?” The
answer is due to the selectionof 0.2, a choice that was based on time constraints rather
than on optimal performance. Selecting= 0.2 means that most of the tolerance classes
are quite close to equivalence classes,the objects of a single tolerance class are quite
close in feature space. Consequentlig not large enough to account for the differences in
the descriptions of subimages containing texture in thegarthat is perceptually similar.
Note, there are classes that have texture, they are jush@ddrgest, which is depicted in
Fig. 33 - 41. However, by increasing the subimages that contain texture start to form

larger classes, as evidence by 8k & 43l and Fig.44k & 44l.

5.6.1 Future Work

The goal of this thesis was to contribute to near set theowy,ta provide practical appli-
cations demonstrating near set theory is well suited tolprod where the desired solution
is based on human perception of objects. While this goal whaigeed, there are still some

open problems to consider for future work.

Improve Algorithm Runtime While the results in this thesis are promising, there is one
significant drawback to the tolerance near set approachelyathe time required to de-
termined tolerance classes. First, it should be noted a¢mglly one does not compare
every image in a database to every other image. This appwashaken to perform a

comprehensive test using the nearness measures. Thatdagilhghere are two solutions
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that may, either independently or together, significargiyuce the computation time, and
consequently, warrant investigation. The first approagblues increasing the amount of
processors available for performing the calculations.ifFgtance, most modern computers
have Graphics Processing Units (GPUs) with many cores égsmrs). For example, the
machine used to produce the results presented in this theses GPU with 128 cores oper-
ating at 600 MHz. Even if it is possible to reduce the executime by a factor of 10, then
the time required to perform the test that generated thdtsefsom SIMPLIcity database
goes from approximately 1.4 days to 3 hours.

The other approach is based on preprocessing the images database prior to per-
forming querie¥. For instance, an approach that should be investigated fisdathe
tolerance classes for each image independently, priorjt@aeries being performed, and
store only the average feature vector values created frbtheabbjects in each tolerance
class. Then, during an actual query, instead of finding aolee classes on the objects
Z = X UY, whereX is the query image, andl is an image belonging to the database,
it may be a good idea to create neighbourhoods using thedstwezage feature vectors as
neighbourhood centres, and the objects from the query in@agepulate the neighbour-
hoods. This would significantly reduce the computation timevo ways. First, tolerance
classes only need to calculated once for each image in tlabakse, rather than for each
image in the database during each new query. Second, dugugrg, onlyn comparisons
need to be made, whereis the number of objects generated from the query image. This
method would definitely be faster, and is likely to producenparable results since it is
still based on tolerance classes. It may even produce be#glts in scenarios where larger

values: can be used without penalty of extremely large computatioeg.

Other Content-Based Image Retrieval MethodsAs was mentioned above, the focus of
the thesis was to advance near set theory, and to providepdicaton of near set theory

which demonstrates both its utility, and that solutionsglolasn the near set approach pro-

12A simple solution (which was used to generate the resultsisthesis) would be to compute and store
the feature values for each sub image ahead of time so thatltheot need to be computed anew during
each query. However, this was not the major bottleneck iriggimg these results.
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duce results matching human perception. That being sdiarefuvork definitely warrants
contrasting the application of the near set approach torbiglggm of content-based image
retrieval should with other methods to identify its strdregyand weakness. Furthermore,
preliminary work toward this aim is presented here. To rate the strength of the pro-
posed approach is its apparent ability to measure the sityitd objects, and, in this case,
images, in a manner similar to human perception. Moreowéial testing demonstrates
that the near set approach is competitive with other exjstontent-based image retrieval
systems as demonstrated below in H§& 46. Note, Fig.45 represents the query image
from the category that produced the worst results usiag).2 and the 18 probe functions
used to generate the above results, and4dgepresents the query image from the category
that produced the best results using the same parametesedlyFihis work is considered
preliminary since this comparison was not exhaustive inttieere are many other methods

not considered, and the selected methods used defautigsetti
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Figure 45: img(Anaktisi) system [108](CEDD [109] FCTH [110] JCD [11C]CEDD & C.FCTH [108])
MUVIS system [112-114]

Other Distance Measures

While the L2 norm was the distance used to define the tolerance relatitmeifirst
papers published on tolerance near sets (@€p[33, 36]), an interesting area for future
work is an investigation into using different distance meas for defining other tolerance

relations. To that end, the plot in Fig7 demonstrates a few tests using Minkowski dis-
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Figure 46: img(Anaktisi) system [108](CEDD [109] FCTH [110] JCD [11C}CEDD & C.FCTH [108])
MUVIS system [112—114]

tances of orders other than 2 (which is thienorm). This work is considered preliminary

since there are many other distance measures that couldhbigleced.
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Figure 47: Plot of results from CBIR using distance measures othertian? norm.

Curse of Dimensionality The curse of dimensionality refers the problem of distaree b
tween feature vectors in a high-dimensional hypercube epented in [115-117], any two
randomly picked vectors in a high-dimensional hypercube te have a constant distance
from each other due to this curse of dimensionality. Furtitee, with each additional di-
mension the spread of clusters in feature space is increlgedlso the distance between

two previously well-separated clusters is decreased. Assaltr this “curse” could be a
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problem for the near set approach, and definitely warrantsduvork. However, notice
that the dimensionality of the approach taken in the thasiew, only 18, and that a gen-
eral rule of thumb is to pick a selection of important feasur@her than consider as many
features as possible. Moreover, the FLANN library used is tihesis has been used with

feature vectors that have dimensionality in the thousab@f [

Invariance Invariance is a property of a mathematical object that doésimange when the
objectis transformed in some manner. A frequent use of iaraproperties arises in image
processing, where the desired output of a feature valuégrsyr process produces the
same result if an image is,g, translated, rotated, or scaled. Invariance is not a dasira
property in the perception of objects. For instance, if sdraasformation is performed
on the objects such that the probe functions used to obseevebjects produce different
values, then this transformation needs to be reflected imidtance measure. The near
set approach does not start out with predefined classes@ttsband then define relations
with specific measures, choose specific probe functionsgfing nearness measures to
conform to these groupings. Instead, the probe functiofisaleur “view” of the objects,
and this view determines the classes of objects that ardasimrhis is similar to our
senses which define our perception of the world. For exampteability to view light

in the visible spectrum rather than infra red or microwavyesctra defines our perception
of our environment. In the case of near set theory, the probetibns were selected for
a reasonj.e. their particular view of the objects is valuable. If a traorshation occurs
on the objects, such that the output of the probe functiomsffierent, then this change
needs to be reflected in assessing the similarity of the $elsjects. However, invariance
could be further investigated in the near set approach teeatibased image retrieval. In
this case, it is desirable to return images that are similahé query image except for
some transformation like rotation or scaling of the objentshe image. This was one
of the reasons for choosing to use Zernike moments whichreegiant to rotation and
reflection. Dealing with the problem of invariance in the meat approach to content-

based image retrieval is a matter of choose probe functi@tsate invariant to a particular
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transformation present in the application.

Image Noise

Image resolution and noise have not been addressed in #sis thvhich are problems
that arise in practical applications. Philosophicallyapeg, if the objects being compared
are obtained from images that contain defects (such as,nmidgurring) and these de-
fects are reflected in the probe functions, then this appreaould assess other images
containing defects (and similar content) as more similantthose images without. This is
intended result and is not a short coming of the near set apprdRecall probe functions
define our view of the objects, and are the basis for makinggaotents on similarity. An
analogous example is our senses. Surely our senses haegirisve are not viewing
our environment as it truly exists, however, we are stilkaiol assess similarity based on
the output of our senses. Practically speaking, this prolidls into the realm of image
processing. If one has an image that contains defects, miswaretrieve images similar
to the content and without noise, then one must either pregss the query image to re-
move the defects, or to use features like the ones repor{&éjmvhich are robust to noise.
Either way this an application specific problem (which is winwwas not addressed in the

thesis), but still warrants future investigation.
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6 Conclusion

The focus of this research is on a tolerance space-basedaapio image analysis. This
approach was chosen because coverings of finite non-engtyde¢ermined by tolerance
relations, tend to reveal resemblances between disjoist $e keeping with this insight
about resemblance made by Sossinsky, this thesis intreduttderance near set approach
that includes: the introduction of a nearness measure &rrdete the degree that near
sets resemble each other (seg. Sectiond.3); a systematic approach to finding tolerance
classes (see.g. Section4.4), together with proofs demonstrating that the proposed ap-
proach will find all tolerance classes on a set of objecto(@sSectiord.4); an approach
to applying near set theory to images (se@. Section5 and AppendixA); the applica-
tion of near set theory to the problem of content-based imemgval (also in Sectiob);
demonstration that near set theory is well suited to solpirodplems in which the outcome
is similar to that of human perception (see, results in $a&i6); and two other near set
measures are considered, one based on Hausdorff distarcether based on Hamming
distance (see.g.Section5.4).

The results presented in Sectiddemonstrate that the near set approach is a powerful
tool in content-based image retrieval applications apgibnis, even for small values of
e. Moreover, these results suggest that the near set appraagimore specifically, the
tolerance near-set approach, is suitable for applicatMrese the desired outcome is close
to the human perception of nearness, where a problem carmripeléded in terms of sets
of objects together with feature value vectors describiregdbjects. In fact, in terms of
perception, the near set approach is advantageous, sprowides a formal framework for
the quantification of the perception of similarities of atigebased on a manner in which
people perceive objects and the affinities between theroe gpeople tend to grasp not
single objects, but classes of them [45].

In summary, near sets themselves reflect human perceptineashessi.e., they re-

semble collections of object-comparison measurementsatieabyproducts of perceiving
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and, possibly, recognizing objects in the environmenth@ligh a consideration of human
perception itself is outside the scope of this thesis, iuthbe noted that a rather common
sense view of perception underlies the basic understamdingar sets (in effect, perceiv-
ing means identifying objects with common descriptionshdAperception itself can be
understood in Maurice Merleau-Ponty’s sense, where parakpbjects are those objects
captured by the senses. However, it is important to notettieeste methods are depen-
dent on probe function selection and that poor selectiorraibg functions results in less
perceptually relevant information. This is to be expected & similar to the feature ex-
traction problem in pattern recognition and other featuweethdent disciplines. This thesis
has demonstrated that near set theory is a powerful apptoaciving problems based on

the human perception of nearness.

A Other Applications of Near Sets

This section presents a new form of morphological imagegssioag based on perception
rather than geometry, which was introduced by Henry andr®&eeg.g, [35]). First, a
review of traditional mathematical morphology is presdntellowed by a discussion on
perceptual morphology. Gonzalez and Woods [55] define nodogly as the study of form
and structure in complex biological organisms. Similattey define mathematical mor-
phology in terms of set theory where the sets consist of sugdataining pixel coordinates
in a binary image. In contrast, perceptual morphology,inesiby traditional morphology,

is an approach where the operations are based on objectsdlafinear set sense.

A.1 Mathematical Morphology

The following review uses the same notation given in [55]. tiManatical morphology
starts with the assumption that an image is a set of pointel§)i that are represented by
two dimensional vectors. With this view of an image, it isrh@ossible to consider set

theory-based operations on images, namely, dilaticend erosiore. Let the* operator
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represent the reflection of a sif defined as
B={w|w=—-bVbe B},
and let the operatdfr). denote the translation of a set by point (21, 20)7, that is,
(A), ={c|c=a+2Vae A}
Then, the dilation of an imagé by a structuring elemen® is defined as
A®B={z](B).NA%#0},
and, similarly, an erosion operatiohc B is defined as

Ae B={z|(B). C A},

where A usually indicates the image to be transformed, and thetsting elementB

consists of a geometric arrangement of pixels in which ttswehand binary value of the

pixels play an important role in the transformation/fA simple example of dilation and

erosion is given in Figd48 (see both [55, 118] for more examples). Notice that dilatiod

erosion operators respectively cause thedst grow and reduce in size, where the terms

grow and reduce are defined with respect to area since thetsljehe sets correspond to

pixels coordinates.

2 2 ke

@) (b) (c)

Figure 48: Example of mathematical morphology. (a) Segment obtainewch fan image in the Berkeley
Segmentation Dataset [97], (b) dilation of (a) using sq@es&ructuring element of width 5, and (c) erosion

of (a) using the same structuring element. (Original unseged image used with permission [97])
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A.2 Perceptual Morphology

If set theory is the language of mathematical morphologn thear set theory is language
of perceptual morphology. The central idea between the ppoaaches is the samieg.,
both methods increase or decrease set membership basechpargmn with a structuring
element. The difference lies in the definition of the objectsparticular, the perceptual
approach defines objects in the near set sense. Thus, obggctse anything as long as
it is possible to define probe functions that operate on thectd under consideration.
In terms of image processing, the goals are the same. Matlamaorphology is used
for identifying structure [55], whereas the near set apginda used to identify perceptual
properties in images. The latter is similar to the formerhattidentification of structure
facilitates human perception of images [13].

The proposed approach to perceptual morphology is basecatimematical morphol-
ogy, yet it takes advantage of the perceptual informatibeiant to near set theory. Again,
let the set of objects be represented®yand the quotient set i9,.,, whereB is a set
of probe functions on objects i selected fron¥. Now, define a sel C O such that it
has some priori perceptual meaning associated with.g, this set has definite meaning
in a perceptual sense outside of the probe functiori$. iNext, let the quotient set repre-
sent the structuring element from traditional mathematiwarphology, in other words let
B = 0,.,". As will be seen shortly, the quotient set is used as thetsiring element in
perceptual morphology, since it contains the perceptdatnmation necessary to augment
the setA in a perceptually meaningful way. This perceptual infolorats in the form
of elementary sets (collections of objects with matchingcdgtions), since we perceive
objects by the features that describe them and that peapledegrasp not single objects,

but classes of them [45].

13The quotient set is being relabelled only to be notationadiysistent with traditional mathematical mor-
phology defined in SectioA.1.
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Keeping the above in mind, perception-based dilation isdefas

A@B:{IL‘/NBEBll’/NBﬂA%Q}, (13)

and the perception-based erosion is defined as

AeB= J {z/sNA} (14)
T/ EB

Notice, the setd is grown perceptually by the structuring eleméhfand consequently by
the probe functions i) using the dilation operator by including objects in theutethat
have similar descriptions to those containeddin In other words, the dilation operation
perceptually enhances the séty including the full membership of the elementary sets
that have at least one object.ih Conversely, the erosion operation essentially masks the
setB (usingA) by including in the result only the portions of the elementets contained
in A already. Thus, perceptual information can be reduced ittiige elementary set is
not contained in the result.

By way of example the above concepts are illustrated with asaglLetO contain
subimages as set elements, perceptual objects, and ldtbe a subset of the subimagdgs
Then, the structuring element, = O,., can be viewed as an image where each class is
assigned a unique colour (or grey value). Similarly, thelltesof dilation and erosion can
be viewed as images as well where the objects in the resudisaigned the same colour as
the objects inB, and the rest of the image can be coloured white represeatirapsence
of objects (since it is most likely the case that not all of thigects inO will be included in
the result).

Fig.49is an example of these techniques applied to a simple grieyistage containing
five circles in which a gradient operation from white to blag&s applied as shown in

Fig. 49a The gradient was used so that there is no crisp boundarydtoaite the start

4sSometimes a sett will be given in terms of a segment of the original image (a§ig. 499. In this
case it is necessary to rasterize the set by converting freet @&ith pixel granulation to a set with subimage
granulation.
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of the circle. Next, Fig49b contains the elementary sets created using a subimage size
of 10 x 10 andB = {¢av(fs)} Where each colour represents a different set. Notice that
each circle has similar elementary sets since they areiadé(@xcept for the centre circle
which is slightly larger). Next, Figd9ccontains the sefl representing priori perceptual
information, in this case it is a segment representing thet@ which the centre circle

is predominately black. The result of perceptually growiing segment using the dilation
operator defined in Eq.3is given in Fig.49d"™. Notice the results show that the segment
A was enlarged to include the other four circles that are peuedly similar with respect
the probe functions i#8. Thus, more perceptual information was gained about theeeg
represented byl. Similarly, the result of perceptually reducingusing Eqg.14 is given

in Fig. 49e The perceptual information is reduced since all the infttom contained in

B = O/, isnotbeing used. For instance, there is no representdttbe other four circles

in the result, which are perceptually similar to the centrele. However, the operation is
still useful in that it gives us perceptual information (hetform of elementary sets) about

A with respect to the probe functions th

» » Y i}
. @)
» » Y L
(@) (b)
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(d) (e)

Figure 49: Example of perceptual morphology on simple greyscale imggg Original image, (b) quo-
tient set of (a), (c) perceptual segmentation of the centodedn (a), (d) perceptual dilation of (b), and (e)
perceptual erosion of (b).

SNote, the white area of Fig.49d & 49eand Fig.'s50d & 50edo not represent an elementary set. This
area is meant to be a background used to indicate a lack oéatany sets that are found in the same location
in the image of the quotient set.
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Another example of perceptual morphology is given in B@. In this case, Figd0a
contains an image from the Berkeley Segmentation Datasgaf8¥ Fig.50cis a single
ground truth segment from the same dataset. As beforebBlgcontains the elementary
sets, this time created using a subimage of3iz2andB = {¢ic(fs), dnorma( fs) }. Notice,
for the most part, the elementary sets represent perceginaepts of the image,g the
horses tend to share the same elementary sets which ddfartirose of the background.
Next, the setd represented by the segment of the younger horse is pertigdilated
in Fig. 50d Again, the result now includes other areas of the imageareperceptually
similar (with respect to probe functions ) including the other horse and parts of the
background. Recall, that we may not find the background paraby similar to the horse
but the similarity occurs using only the probe functiondsin.e. information content and
the normalized green value from the RGB colour model. Sintdahe last example, the
perceptual reduction caused by the erosion operator odagrso the lack of inclusion of
the full elementary sets in the result. Although, as was moeat before, this result still
contains perceptually valuable information of the origiset A as will be seen in the next

section.

(b)

(d) (e)
Figure 50: Example of perceptual morphology on image from BerkeleynSagation Dataset [97]. (@)

Original image (Used with permission [97]), (b) quotient s&(a), (c) perceptual segmentation of younger
horse in (a), (d) perceptual dilation of (b), and (e) peraaperosion of (b).
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A.3 Segmentation Evaluation

This section presents an application of perceptual moggyah the form of a new method
for segmentation evaluation called the Near Set Index (fiSh)introduced by Henry and
Peters in [34, 35]. The NSI index was created out of a needfamnaupervised segmenta-
tion evaluation method that could be used in real world sgstget still based on human
perception rather than characteristics of ideal segmentathat is popular in most unsu-
pervised segmentation evaluation methods.

There are generally three classes of segmentation evauatthniques, namely, ana-
lytic, empirical discrepancy, and empirical goodness mash119, 120]. Analytic meth-
ods generally perform evaluation solely by examining tlgoathm without considering
the resultant segmentations. These methods are conceithgai@cessing complexity and
strategy and are not useful for evaluating the perceptlgtaace of a given segmentation.
The next category is empirical discrepancy (also calledtired or supervised evaluation)
and is characterized by the comparison of the test segnmmntaith ground truth images
(segmentations performed by people or experts). Theseohetire popular because they
evaluate segmentations based on the perceptual groupmaied by people which is the
end result of any segmentation algorithm. Unfortunatelis not realistic to assume that
systems incorporating image segmentation will have acttegsound truth images and
so these methods are generally used for the comparison wiesggtion algorithms dur-
ing the design phase. The last type of segmentation catégoalled empirical goodness
(also known as stand-alone or unsupervised). These metinedsmsed on some properties
that ideal segmentations should contain. Generally, itasendlifficult for these evaluation
methods to be based on human perception of objects due tadkef ground truth input
or a formal framework for the quantification of perceptiorn amilarities of objects.

The are many examples of empirical goodness methods foresggtion evaluation.
For example, [120] implements a co-evaluation frameworkfiich multiple unsupervised
methods are combined with learning algorithms to take atdwegnof different measures.

Examples of the measures they consider are ones based aedgoéour error ratio to
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segment area [121, 122], on entropy (information conteh§hamage and the minimum
description length principle (MDL) [123], on the geometsitape of a segmeng.g.com-
pactness, circularity and elongation), and a contrast aredsetween the inside and out-
side of a segment [124]. Similarly, [125] present a reviewsiaf unsupervised methods
based on image features such as segmentation contrasiarstateviation, and colour er-
ror. Likewise, [119] is another often sited survey of segtagon evaluation techniques
also describing unsupervised measures where again thpemged methods are based
solely on image characteristics. Notice that all these pussuffer because of the lack
of the perceptual information contained in a ground trutlage or the lack of a formal
framework for the quantification of perception and simthadf objects introduced by near

set theory. This is a problem we attempt to rectify with thieaduction of the NSI.

A.4 Near Set Index

This section introduces a method for segmentation evalunasing perceptual morphology
presented above. The goal of image segmentation is toiparéih image into disjoint
regions such that each one reflects some perceptual contpafnére imagé®. Since it
has been observed that the quotient set captures percegratation of objects [46], it
makes sense to use the quotient set to measure the qualisggfreentation,e., the degree
to which a segmentation represents an image component.

Let f represent an RGB image and létrepresent priori information in the form of
an image segment. Then, the result of perceptual erosiobecased to evaluate the quality
of the segment since it only contains perceptual infornmediloout the setl. Further, since
this set should represent a perceptual component wjttand the quotient set represents
perceptual information about the subimageginit should be possible to select probe
functions inB such that the elementary sets begin to represent these cemgoAs such,

a good measure of segmentation quality is the variabilitthefclasses contained in the

®Here we refer to thebjectscontained in images as components to avoid confusion etjctsin the
near set sense.
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perceptual erosion od. In general, the measure of variability of objects that takdéabels
from a discrete set is called the information content, andkies on values in the interval
0,log, L] whereL is the number of different labels the objects can assume [1228. A
value of 0 is produced when the objects contains all the sabedd and the highest value
occurs when each label occurs with equal frequency. Thughi®application, low values
of information content of the erosion of corresponds to good segmentations aiod

versa This leads to the following definition:

Definition 26. Near Set Index[35]. Let A represent a single image segment for evalua-
tion, and letB = O, represent the quotient set obtained using the probe funstio.
Then, theNear Set IndeXNSI) is the information content of the perception-basediero

of A.

Figure 51: Example of quotient set and perception based erosion obbmusing different probe functions.

(a) Fig.50b created using probe functiol® = {pic(fs), Pnorma(fs)} and repeated here for comparison,
(b) quotient set obtained using = {¢ayy(fs)}, (C) perceptual based erosion using (a) as the SE, and (d)
perceptual based erosion using (b) as the SE (Original uifimdimage used with permission [97]).
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A.5 Segmentation Evaluation Examples

To demonstrate these concepts two examples are given ia Flgk 52 and the resultant
information content is given in Tablé. The first example shows that poor choices of
B lead to poor segmentations evaluations demonstratingrtétbod is dependent on the
selection of probe functions in the same manner that patesognition is dependent on
feature selection. Notice that the elementary sets offdigtend to capture the perceptual
components of Figo0abetter than those in Fi§lb. Consequently, the information content
of the erosion given in Figoldis higher (and so worse) than that of Figlc Thus, the
same segment can have different NSI values depending orntheescof 5. This example
was given to highlight the need for careful probe functioleston for a given application.
The next example (given in Fi§2) demonstrates the ability of the NSI to evaluate different
segmentations. The segmentation given in BRpis the same as FighOc shifted to the
right, and the segmentation given in Fi@cwas created by placing boxes of approximately
the right size over the horse. Both of these segmentatiorisaarée the sense that they do
not capture the perceptual component representing thdesrhakse in the image as well
as the segmentation in Fi§Oc This is reflected by the information content values given

in Table6 which are higher than that of Fi§lc

(©) (d)
Figure 52: Segmentations of the smaller horse in Fifaand their perception-based erosions. (a) Sample

segmentation, (b) erosion of (a), (c) sample segmentatiuth(d) erosion of (b) (Original unmodified image
used with permission [97]).
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Table 6: Information content of perceptual-based erosion

Erosion image Information content

Fig. 51c 1.6619
Fig. 51d 2.5682
Fig. 52b 2.1954
Fig. 52d 2.0797

Next, further demonstration of the ability of the NSI indexdvaluate an image seg-
mentation Sies;, IS given by way of comparison with the normalized probahtirand index
(see Sectior2.3.5. But first the NSI must be extended to handle more than one esgigm
This is easily accomplished by letting the NSI of a proposedge segmentation be the
information content of the worst segment in the image,let the NSI be the value of the
highest information content resulting from the erosiongalbthe segments ibies. The
idea being that a proposed segmentation is only as good a®it region. Using this
approach, the NSI was used to evaluate the segmentatiaonsafieexample given in [69]
and repeated in Figh3. The results of evaluating the segmentations in 5&using both
the NPR and the NSI index are reported in F5d. Notice all three measures give similar
evaluations of the segmentations of Fi@, i.e., Fig.'s53c53eare all ranked the highest
(with Fig. 53eranked the best). Additionally, the NSI index gives sim{lpoor) ratings
for both the over and under segmentations shown in Fa@&& 53f, rather than treating
one case much worse than the other (a rather nice result gthabke usually equally bad

outcomes).

B Near System

This section introduces the Near set Evaluation and Redogr{NEAR) system, a system
developed to demonstrate practical applications of né¢dhsery in the problems of image
segmentation evaluation [34, 35] and image correspond®2¢@3]. This system was also

used to demonstrate and visualize concepts from near seytteported in [20,23-25, 33,
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w 'ty

(d) (e) (f)

Figure 53: Mean shift segmentation of Fi§0awith h (spatial) = 7 and:,. (range) = 3,7,11,15,19,23 for
(a), (b), (c), (d), (e), and (f) (Original unsegmented imaged with permission).

Normalized NPR index Normalized NS index Normalized NSI index
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Figure 54: Results of evaluating the segmentations given in 58.(a) NPR index, and (b), (c) NSl on a
window size of2 x 2 using respectively8 = { dugamal fs)s PNorma(fs)} andB = {dua, (fs)s dnorma([fs) -

36, 40, 48, 50]. It was motivated by a need for a freely avélaoftware tool (available
at [42]) that can provide results for research and to geaénégrest in near set theory.
The functionality of the NEAR system is given in the followisections. This system
implements a Multiple Document Interface (MDI) (seeg, Fig. 55) where each separate
processing task is performed in its own child frame. The getteal objects in this system
are subimages of the images being processed and the pralt®fsare image processing
functions defined on the subimages. The system was writt@+#and was designed to

facilitate the addition of new processing tasks and prolmetfans’. Currently, the sys-

"parts of the Graphical User Interface (GUI) were inspirethieyGUI reported in [66] and the wxWidgets
example in [128].

104



tem performs siz major tasks: displaying equivalence aleldnce classes for an image;
performing segmentation evaluation; measuring the nearoétwo images; performing
content-based image retrieval; and displaying the outpptacessing an image using in-

dividual probe functions.

Figure 55: NEAR system GUI.

B.1 Equivalence class frame

This frame calculates equivalence classes using the Raatdpdiscernibility relation in
Definition5, i.e., given an imag4’, it will calculateX ;.. ., where the objects are subimages
of X (see Sectior2.1 for further explanation). An example using this frame isegivn

Fig. 56 and is obtained by the following steps:
1. Click Load Imagebutton and select an image.
2. Click theSet Parameterbutton.

3. Select window size. The value is taken as the square roibtecérea for a square

subimagee.g., a value of 5 creates a subimage containing 25 pixels.

4. Select number of features (maximum allowed is 24).
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Figure 56: Sample run of the equivalence class frame using a windowdize< 2 andB = {daverage Grey
(Image shown in NEAR system used with permission [98]).

5. Select features.
6. Click Run

The result is given in Figh6, where the bottom left window contains an image of the
equivalence classes, and each colour represents a siagte ¢he bottom right window is
used to display equivalence classes by clicking in any offthese images. The coordinates
of the mouse click determine the equivalence class thas@alied. The results may be

saved by clicking on the save button.

B.2 Tolerance class frame

This frame finds tolerance classes using the perceptuahtale relation in Definitiord8,
i.e., given an image, this frame findsf/~; _(O), where the objects are subimagesof
(see SectioB for further explanation). An example using this frame isegivn Fig.57 and

is obtained by the following steps:
1. Click Load Imagebutton and select an image.

2. Click theSet Parameterbutton.
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Figure 57: Sample run of the tolerance class frame using a window sizZ¥ of 20, 18 features used to
generate the results in this thesis, ang 0.7 (Image shown in NEAR system used with permission [104,
105)).

3. Select window size. The value is taken as square root @rdeefor a square subim-

age,e.g., a value of 5 creates a subimage containing 25 pixels.

4. Select, a value in the interva, /1], wherel is the number of features (length of

object description).
5. Select number of features (maximum allowed is 24).
6. Select features.

7. Click onFLANN Parametersab, and select the FLANN parameters for calculating

tolerance classes.
8. Seleck, a value in the intervgD, v/ Num. featurejs

9. ClickRun

The result is given in Figs7 where the left side is the original image, and the right
side is used to display the tolerance classes. Since thancke relation covers an image

instead of partitioning the image, the tolerance classedmplayed upon request. For
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instance, by clicking on either of the two images, a windowesps letting the user display
each tolerance class containing the subimage selecte@ Imgydbse. Further, the subimage
containing the mouse click contains an ‘X', and the subinsaggn be coloured white or

black.

B.3 Segmentation evaluation frame

This frame performs segmentation evaluation using peue¢ptorphology as described in
SectionA, where the evaluation is labelled the Near Set Index (N®l) ifistance, given a
set of probe function8, an image, and a segmentation of the image (labellethis frame

can perform the perceptual erosion or dilation usihg- O,..,, as the structuring element.
Also, the NSl is calculated if perceptual erosion was seficA sample calculation using

this frame is given in Figh8 and is obtained by the following steps:

(=358 |

= > .
B Ele Window Help
a

[ Load image & Segment

Figure 58: Sample run of the segmentation evaluation frame using aominsize of2 x 2, andB =
{®Edge Presert (IMage shown in NEAR system used with permission [97]).

1. Click Load Image & Segmeiuutton.

2. Select an image clic®pen
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3. Select segmentation image and cligken Image should contain only one segment
and the segment must be whitg55, 255, 255) and the background must be black
(0,0,0). The image is displayed in the top frame, while the segmedisigayed in

the bottom right (make sure this is the case).

4. Click eitherErodeto perform perceptual erosion and segmentation evalyation

Dilate to perform perceptual dilation (no evaluation takes plaoeng) dilation).

5. Select window size. The value is taken as the square roibtecérea for a square

subimagee.g., a value of 5 creates a subimage containing 25 pixels.
6. Select number of features (maximum allowed is 24).
7. Select features.
8. Click Run

The result is given in Figh8 where the bottom left window contains the an image of
the equivalence classes where each colour representeeedificlass. The bottom right
window contains either the erosion or dilation of the segtagon. Clicking on any of the
three images will display the equivalence class contaitiiegmouse click in the bottom

right image. The NSl is also displayed on the left hand sitlegjplicable).

B.4 Nearimage frame

This frame is used to calculate the similarity of images gighe measures given in this
thesis. The use has the option of comparing a pair of imagebyiawing the resulting tol-
erance classes), or comparing a query image to an entitatiyeof images. The following

two subsections outline the steps involved under both optio

B.4.1 Evaluating a pair of images

The steps involved in comparing a pair of images are as falland sample output for this

process is given in Figho.
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Figure 59: Sample run comparing a pair of images using a window siz20cf 20, 18 features used to
generate the results in this thesis, ang 0.7 (Image shown in NEAR system used with permission [104,
105]).

1. Select theNew near image windoveon, select File-New near image window, or

press Alt+N.

2. SelectA pair of imagegthe default value) from th8elect type of Comparisamin-

dow, and click OK.
3. Click Load Imagedutton and select two images.
4. Click theSet Parameterbutton.

5. Select window size. The value is taken as the square roibtecérea for a square

subimagee.g., a value of 5 creates a subimage containing 25 pixels.

6. Select;, a value in the intervaD, v/1], wherel is the number of features (length of

object description).
7. Select number of features (maximum allowed is 24).

8. Select features.
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9. Click onFLANN Parametersab, and select the FLANN parameters for calculating

tolerance classes.
10. ClickRun

The result is given in Figh9 where the left side contains the first image, and the right
side contains the second image. Clicking in any of the two &sagill bring up a window
that allows the user to view each tolerance class contathi@gubimage selected by the
mouse. Further, the subimage containing the mouse cliclarked with an ‘X’, and the
subimages can be coloured white or black. Also, the sinylaf the images is evaluated
using the measures described in this thesis, where thégesaldisplayed on the left hand

side.

B.4.2 Comparing a query image with a directory of images

The steps involved in comparing a query image with a dirgct@ntaining images is as

follows.

1. Select theNew near image windoveon, select File-New near image window, or

press Alt+N.

2. SelectQuery image with a directory of imagé&®m the Select type of Comparison

window, and click OK.

3. Click Load Query Image + Dirbutton and select an image plus a directory contain-

ing images for comparison with query image.
4. Click theSet Parameterbutton.

5. Select window size. The value is taken as the square roibtecérea for a square

subimagee.g., a value of 5 creates a subimage containing 25 pixels.

6. Select, a value in the interval, v/1], wherel is the number of features (length of

object description).
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7. Select number of features (maximum allowed is 24).
8. Select features.

9. Click onFLANN Parametersab, and select the FLANN parameters for calculating

tolerance classes.

10. ClickRun

The result is the left side contains the query image, anddiné side contains an image
from the directory. Clicking in any of the two images will bgrup a window that allows
the user to view the images from the directory in the ordey tiere ranked by the selected
similarity measure. In addition, three output files are wdacontaining the similarity
measure of each image in the database, sorted from mosasimieast similar. Finally,
three figures are also displayed plotting the similarity sueas vs. images in the directory
for all three measures. Note, the results are sorted frotrtd@sorst, so the output files are

also required to relate the abscissae to actual image files.

B.5 Feature display frame

This frame is used to display the output of processing an @wdath a specific probe func-
tion. An example using this frame is given in F§0 and is obtained by the following

steps:

1. Click Load Imagebutton and select an image.
2. Select features.
3. Select probe function.

4. Click Display feature
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Figure 60: Sample run of the feature display frame (Image shown in NEA&esn used with permis-
sion [97]).

113



References

[1] M. Merleau-PontyPhenomenology of PerceptionParis and New York: Smith, Callimard,
Paris and Routledge & Kegan Paul, 1945.

[2] D. Calitoiu, B. J. Oommen, and D. Nussbaum, “Desynchronizing atahpattern recogni-
tion neural network to model inaccurate perceptidBEE Transactions on Systems, Man,
and Cybernetics, Part Brol. 37, no. 3, pp. 692—-704, 2007.

[3] M. Fahle and T. Poggidrerceptual Learning Cambridge, MA: The MIT Press, 2002.

[4] E.D. Montag and M. D. Fairchild, “Pyschophysical evaluation ahgémapping techniques
using simple rendered images and artificial gamut boundafteSE Transactions on Image
Processingvol. 6, no. 7, pp. 977-989, 1997.

[5] I. EI-Naga, Y. Yang, N. P. Galatsanos, R. M. Nishikawa, and MWrnick, “A similarity
learning approach to content-based image retrieval: application to digital marphygr
IEEE Transactions on Medical Imagingol. 23, no. 10, pp. 12331244, 2004.

[6] M. Rahman, P. Bhattacharya, and B. C. Desai, “A framework foricadmage retrieval
using machine learning and statistical similarity matching techniques with relefesde
back,” IEEE Transactions on Information Technology in Biomediciva. 11, no. 1, pp.
58-69, 2007.

[7] J. I. Martinez, A. F. G. Skarmeta, and J. B. Gimeno, “Fuzzy apgrda the intelligent
management of virtual space$ZEE Transactions on Systems, Man, and Cybernetics, Part
B, vol. 36, no. 3, pp. 494-508, 2005.

[8] V. Bruce, P. R. Green, and M. A. Georgesbdfisual perception: physiology, psychology, and
ecology Hove, East Sussex, UK: Psychology Press, 1996.

[9] T. V. Papathomas, R. S. Kashi, and A. Gorea, “A human vision basegbatational model
for chromatic texture segregatioEEE Transactions on Systems, Man, and Cybernetics,
Part B, vol. 27, no. 3, pp. 428-440, 1997.

[10] A. Mojsilovic, H. Hu, and E. Soljanin, “Extraction of perceptually impont colors and
similarity measurement for image matching, retrieval and analyt&E Transactions on
Image Processingrol. 11, no. 11, pp. 1238-1248, 2002.

[11] N. Balakrishnan, K. Hariharakrishnan, and D. Schonfeld, &vnmage representation algo-
rithm inspired by image submodality models, redundancy reduction, andiganrbiologi-
cal vision,”|IEEE Transactions on Pattern Analysis and Machine Intelligermoé 27, no. 9,
pp. 1367-1378, 2005.

[12] A.Qamra, Y. Meng, and E. Y. Chang, “Enhanced perceptugce functions and indexing
for image replica recognitionfJEEE Transactions on Pattern Analysis and Machine Intelli-
gencevol. 27, no. 3, pp. 379-391, 2005.

[13] Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli, “Imagelgyassesment: from
error visibility to structural similarity,”IEEE Transactions on Image Processingl. 13,
no. 4, pp. 600-612, 2004.

114



[14] L. Dempere-Marco, H. Xiao-Peng, S. L. S. MacDonald, S. M. EllisM. Hansell, and G.-Z.
Yang, “The use of visual search for knowledge gathering in image idecssipport,”IEEE
Transactions on Medical Imagingol. 21, no. 7, pp. 741-754, 2002.

[15] S. Kuo and J. D. Johnson, “Spatial noise shaping based on huiswed sensitivity and its
application to image codingJEEE Transactions on Image Processingl. 11, no. 5, pp.
509-517, 2002.

[16] B. A. Wandell, A. El Gamal, and B. Girod, “Common principles of imageguasition systems
and biological vision,Proceedings of the IEEEol. 90, no. 1, pp. 5-17, 2002.

[17] T. A. Wilson, S. K. Rogers, and M. Kabrisky, “Perceptual-lthgmage fusion for hyper-
spectral data,IEEE Transactions on Geoscience and Remote Sengaig35, no. 4, pp.
1007-1017, 1997.

[18] A. Hoogs, R. Collins, R. Kaucic, and J. Mundy, “A common set afcgptual observables
for grouping, figure-ground discrimination, and texture classificati®EE Transactions on
Pattern Analysis and Machine Intelligenaml. 25, no. 4, pp. 458-474, 2003.

[19] N. G. Bourbakis, “Emulating human visual perception for measuriffgrdnce in images
using an SPN graph approaclEEE Transactions on Systems, Man, and Cybernetics, Part
B, vol. 32, no. 2, pp. 191-201, 2002.

[20] J.F. Peters, “Classification of objects by means of feature®faneedings of the IEEE Sym-
posium Series on Foundations of Computational Intelligence (IEEE SG@)2Honolulu,
Hawaii, 2007, pp. 1-8.

[21] ——, “Near sets. General theory about nearness of objemlied Mathematical Sciences
vol. 1, no. 53, pp. 2609-2629, 2007.

[22] J.F. Peters, A. Skowron, and J. Stepaniuk, “Nearness of@bjextension of approximation
space model Fundamenta Informaticaeol. 79, no. 3-4, pp. 497-512, 2007.

[23] J.F. Peters, “Discovery of perceptually near information grasjlile Novel Developments in
Granular Computing: Applications of Advanced Human Reasoning aftdC®mputation
J. T. Yao, Ed. Hersey, N.Y., USA: Information Science Referenc@92p.in press

[24] J. F. Peters and S. Ramanna, “Affinities between perceptuallgsan Foundations and
perspectives,” inHuman-Centric Information Processing Through Granular Modelling
A. Bargiela and W. Pedrycz, Eds. Berlin: Springer-Verlag, 20094pp66.

[25] J. F. Peters and P. Wasilewski, “Foundations of near delségvier Sciencevol. 179, no. 1,
pp. 3091-3109, 2009.

[26] Z. Pawlak, “Classification of objects by means of attributes,” InstitoteCfomputer Science,
Polish Academy of Sciences, Tech. Rep. PAS 429, 1981.

[27] ——, “Rough sets,International Journal of Computer and Information Scienoas. 11,
pp. 341-356, 1982.

[28] Z. Pawlak and A. Skowron, “Rudiments of rough setaformation Sciencesvol. 177, pp.
3-27, 2007.

115



[29] ——, “Rough sets: Some extensionBjformation Sciencewol. 177, pp. 28-40, 2007.
[30] ——, “Rough sets and boolean reasoningformation Sciencewol. 177, pp. 41-73, 2007.

[31] J. F. Peters, S. Shahfar, S. Ramanna, and T. Szturm, “Biologicalhyred adaptive learn-
ing: A near set approach,” iRrontiers in the Convergence of Bioscience and Information
TechnologiesKorea, 2007.

[32] J. F. Peters and S. Ramanna, “Feature selection: A near seaapprinECML & PKDD
Workshop in Mining Complex Dat&Varsaw, 2007, pp. 1-12.

[33] A. E. Hassanien, A. Abraham, J. F. Peters, G. Schaefer, ande@ry, “Rough sets and
near sets in medical imaging: A reviewEEE Transactions on Information Technology in
Biomedicinevol. 3, no. 6, pp. 955-968, 2009.

[34] C. Henry and J. F. Peters, “Near set index in an objective imageeatation evaluation
framework,” inProceedings of the GEOgraphic Object Based Image Analysis: Pixéls, O
jects, IntelligenceUniversity of Calgary, Alberta, 2008, pp. 1-8.

[35] ——, “Perception image analysisfhternational Journal of Bio-Inspired Computatipn
vol. 2, no. 3/4, pp. 271-281, 2010.

[36] J. F. Peters, “Tolerance near sets and image correspondémteenational Journal of Bio-
Inspired Computatioyvol. 1, no. 4, pp. 239-245, 2009.

[37] A. H. Meghdadi, J. F. Peters, and S. Ramanna, “Toleranceeslassneasuring image re-
semblance,” irKnowledge-Based and Intelligent Information and Engineering Systerhs
5712, Santiago, Chile, 2009, pp. 127-134.

[38] J.F. Peters, L. Puzio, and T. Szturm, “Measuring nearneshahilitation hand images with
finely-tuned anisotropic wavelets,” Image Processing & Communication Challeng®sS.
Chora and A. Zabludowski, Eds. Warsaw: Academy Publishing House, 2p0842—-349.

[39] C. Henry, “Near set Evaluation And Recognition (NEAR) systemRough Fuzzy Analysis
Foundations and Applications. K. Pal and J. F. Peters, Eds. CRC Press, Taylor & Francis
Group, 2010, pacceptediSBN 13: 9781439803295.

[40] J.F. Peters, “Classification of perceptual objects by means tfréesg” International Journal
of Information Technology & Intelligent Computingpl. 3, no. 2, pp. 1 — 35, 2008.

[41] A. Skowron and J. F. Peters, “Rough-granular computingiiamdbook on Granular Com-
puting V. K. W. Pedrycz and A. Skowron, Eds. N.Y., U.S.A: John Wiley & Soins,,
2008, pp. 285-328.

[42] J. F. Peters, “Computational intelligence laboratory,” 2009, http:/AeEnumanitoba.ca/.

[43] S. A. Naimpally, “Near and far. A centennial tribute to Frigyes Rie&iberian Electronic
Mathematical Reportsvol. 6, pp. A.1-A.10, 2009.

[44] S. A. Naimpally and B. D. Warrack, “Proximity spaces,”@ambridge Tract in Mathematics
No. 59 Cambridge, UK: Cambridge University Press, 1970.

[45] E. Ortlowska, “Semantics of vague concepts. Applications of rag,” Institute for Com-
puter Science, Polish Academy of Sciences, Tech. Rep. 469, 1982.

116



[46] ——, “Semantics of vague concepts,”foundations of Logic and Linguistics. Problems and
Solutions G. Dorn and P. Weingartner, Eds. London/NY: Plenum Pres, 198%3.655-482.

[47] Z. Pawlak and J. F. Peters, “Jak blisko (how ne&B)ystemy Wspomagania Decyxjl. |,
pp. 57, 109., 2002.

[48] J. F. Peters, “Near sets. Special theory about nearnesgeat®pFundamenta Informaticae
vol. 75, no. 1-4, pp. 407-433, 2007.

[49] S. Gupta and K. Patnaik, “Enhancing performance of face rattogrsystems by using near
set approach for selecting facial featureiurnal of Theoretical and Applied Information
Technologyvol. 4, no. 5, pp. 433-441, 2008.

[50] C. Henry and J. F. Peters, “Image pattern recognition using e¢sf' 81 Proceedings of the
Eleventh International Conference on Rough Sets, Fuzzy Sets, DatagMimihGranular
Computer (RSFDGrC 2007), Joint Rough Set Symposium (JRS@T)re&otes in Com-
puter Sciencevol. 4482, 2007, pp. 475-482.

[51] S. Ramanna and A. H. Meghdadi, “Measuring resemblances betsvesrm behaviours: A
perceptual tolerance near set approa¢tuhdamenta Informaticaevol. 95, pp. 533-552,
20009.

[52] M. Pavel,Fundamentals of Pattern RecognitionNY: Marcel Dekker, Inc., 1993.
[53] R. Duda, P. Hart, and D. StorRattern Classification2nd ed. Wiley, 2001.

[54] E. Ortowska, “Incomplete information: Rough set analysis Stadies in Fuzziness and Soft
Computing 13 Heidelberg, Germany: Physica-Verlag, 1998.

[55] R. C. Gonzalez and R. E. WoodBigital Image Processing2nd ed. Toronto: Prentice-Hall,
2002.

[56] M. Pawlak, Image analysis by moments: reconstruction and computational aspects
Wroctaw: Wydawnictwo Politechniki, 2006.

[57] M. Muja and D. G. Lowe, “Fast approximate nearest neighbors aittomatic algorithm
configuration,” ininternational Conference on Computer Vision Theory and Applications
(VISAPP) Lisbon, Portugal, 2009, pp. 331-340.

[58] G. Shaknarovich, T. Darrel, and P. Indy¥earest-Neighbor Methods in Learning and Vision:
Theory and Practice The MIT Press, 2006.

[59] M. Muja, “FLANN - Fast Library for Approximate Nearest Neighisg 2009,
http://www.cs.ubc.ca/ mariusm/index.php/FLANN/FLANN.

[60] A. W. M. Smeulders, M. Worring, S. Santini, A. Gupta, and R. Ja@pritent-based image
retrieval at the end of the early yearf2EE Transactions on Pattern Analysis and Machine
Intelligence vol. 22, no. 12, pp. 1349-1380, 2000.

[61] J. Marti, J. Freixenet, J. Batlle, and A. Casals, “A new approaciutdoor scene description
based on learning and top-down segmentatitmgge and Vision Computingol. 19, pp.
1041-1055, 2001.

117



[62]

[63]

[64]

[65]

[66]

[67]

[68]

[69]

[70]

[71]

[72]

[73]

[74]

[75]

[76]

[77]

[78]

T. M. Cover and J. A. Thomas, “Elements of information theory.” Néwk: John Wiley
& Sons, Inc., 1991.

N. R. Paland S. K. Pal, “Entropy: A new definition and its applicatfoHSEE Transactions
on Systems, Man, and Cybernetiesl. 21, no. 5, pp. 1260 — 1270, 1991.

——, “Some properties of the exponential entropggformation Sciencewol. 66, pp. 119—
137, 1992.

D. Comaniciu, “Mean shift: A robust approach toward featurecsganalysis, |EEE Trans-
actions on Pattern Analysis and Machine Intelligened. 24, no. 5, pp. 603-619, 2002.

C. Christoudias, B. Georgescu, and P. Meer, “Synergism in lg@l kgsion,” in Proceedings
of the 16th International Conference on Pattern Recognjtiah 4, Quebec City, 2002, pp.
150-156.

S. Mallat and S. Zhong, “Characterization of signals from multiscdéges,”|EEE Transac-
tions on Pattern Analysis and Machine Intelligeneel. 14, no. 7, pp. 710-732, 1992.

S. Mallat,A Wavelet Tour of Signal ProcessingCalifornia: Academic Press, 1999.

R. Unnikrishnan, C. Pantofaru, and M. Hebert, “Toward obyecgvaluation of image seg-
mentation algorithms,IEEE Transactions on Pattern Analysis and Machine Intelligence
vol. 29, no. 6, pp. 929-944, 2007.

H. Tamura, M. Shunji, and T. Yamawaki, “Textural features cgpomnding to visual per-
ception,”|IEEE Transactions on Systems, Man, and Cybernetis 8, no. 6, pp. 460-473,
1978.

R. M. Haralick, “Textural features for image classificatiodlsEE Transactions on Systems,
Man, and Cyberneticwol. SMC-3, no. 6, pp. 610-621, 1973.

——, “Statistical and structural approaches to textuRrfceedings of the IEEE/oIl. 67,
no. 5, pp. 786-804, 1979.

P. Howarth and S. Ruger, “Robust texture features for still-imagewal,”|EE Proceedings
Vision, Image, & Signal Processingol. 152, no. 6, pp. 868874, 2005.

R. C. Gonzalez and R. E. Wood3igital Image Processing3rd ed. Upper Saddle River,
NJ, USA: Person/Prentice Hall, 2008.

M. J. Black and B. B. Kimia, “Guest editorial: Computational vision aiMan,” International
Journal of Computer Visigrvol. 54, no. 1-3, pp. 5-11, 2003.

D. G. Kendall, D. Barden, T. K. Crane, and H. L&hape and Shape Theory Chichester,
England: John Wiley & Sons Ltd, 1999.

C. H. Teh and R. T. Chin, “On image analysis by the methods of momeEBEE Transac-
tions on Pattern Analysis and Machine Intelligeneel. 10, no. 4, pp. 496-513, 1988.

A. Khotanzad and Y. H. Hong, “Invariant image reconstructiorzlbynike moments,JEEE
Transactions on Pattern Analysis and Machine Intelligened. 12, no. 5, pp. 489-497,
1990.

118



[79] W.Y. Kimand Y. S. Kim, “A region-based shape descriptor usingil& moments,Signal
Processing: Image Communicatiorol. 16, pp. 95-102, 2000.

[80] R. S. Chorg, T. Andrysiak, and M. Cho& “Integrated color, texture and shape information
for content-based image retrievaPattern Analysis & Applicationsvol. 10, no. 4, pp. 333—
343, 2007.

[81] P. Toharia, O. D. Robles, A. Rodriguez, and L. Pastor, “A staflZernike invariants for
content-based image retrieval,” Advances in Image and Video TechnologyBerlin Hei-
delberg: Springer-Verlag, 2007, vol. LNCS 4872, pp. 944-957.

[82] J. M. Kasson and W. Plouffe, “An analysis of selected computerahtsrge color spaces,”
ACM Transactions on Graphigcsol. 11, no. 4, pp. 373—-405, 1992.

[83] K. Nallaperumal, M. S. Banu, and C. C. Christiyana, “Content basege indexing and re-
trieval using color descriptor in wavelet domain,”limernational Conference on Computa-
tional Intelligence and Multimedia Applications (ICCIMA 200¥dl. 3, 2007, pp. 185-189.

[84] A. B. Sossinsky, “Tolerance space theory and some applicatidiotg’ Applicandae Mathe-
maticae: An International Survey Journal on Applying Mathematics aath®matical Ap-
plications vol. 5, no. 2, pp. 137-167, 1986.

[85] H. Poincag, Science and Hypothesis Brock University: The Mead Project, 1905, L. G.
Ward’s translation.

[86] L. T. Benjamin, Jr.A Brief History of Modern Psychology Malden, MA: Blackwell Pub-
lishing, 2007.

[87] B. R. Hergenhahrn Introduction to the History of PsycholagyBelmont, CA: Wadsworth
Publishing, 2009.

[88] G. T. FechnerkElements of Psychophysics, vol. ILondon, UK: Holt, Rinehart & Winston,
1966, H. E. Adler’s trans. of Elemente der Psychophysik, 1860.

[89] H. Poincage, Mathematics and Science: Last Essayil. Y.: Kessinger Publishing, 1963, J.
W. Bolduc’s trans. of Dergires Perees, 1913.

[90] E. C. Zeeman, “The topology of the brain and the visual perceptianopoloy of 3-
manifolds and selected topicels. M. Fort, Ed. New Jersey: Prentice Hall, 1965, pp.
240-256.

[91] J. F. Peters, “Corrigenda and addenda: Tolerance nearrskimage correspondenceti-
ternational Journal of Bio-Inspired Computatiowol. 2, no. 5, pin press 2010.

[92] C. Henry and J. F. Peters, “Perception based image classificafiomputational Intelli-
gence Laboratory, University of Manitoba, Tech. Rep., 2009, uM &idratory Technical
Report No. TR-2009-016.

[93] ——, “Perception-based image classificatiomternational Journal of Intelligent Comput-
ing and Cyberneticg. accepted2010.

[94] J. F. Peters and L. Puzio, “Anisotropic wavelet-based image asameasurelhternational
Journal of Computational Intelligence Systemsl. 2-3, pp. 168-183, 2009.

119



[95] J. F. Peters, “Fuzzy sets, near sets, and rough sets for yooputational intelligence
toolbox,” in Foundations of Compuational Intelligencd. Abraham and F. Herrera, Eds.
Springer, Heidelberg, 2009, vol. 2.

[96] ——, “Discovering affinities between perceptual granulesiorm-based tolerance near pre-
class approachAdvances in Man-Machine Interactions and Soft Computiad 59, pp.
43-54, 2009.

[97] D. Martin, C. Fowlkes, D. Tal, and J. Malik, “A database of humang-se
mented natural images and its application to evaluating segmentation algorithms
and measuring ecological statistics,” ifProceedings of the 8th International
Conference on Computer Visisorwvol. 2, 2001, pp. 416-423, Database URL:
http://www.eecs.berkeley.edu/Research/Projects/CS/vision/groupingisbgbe

[98] M. Weber, “Leaves dataset. Images taken in and around caltedBdmputational Vision
at California Institute of Technology, 2003, Permission recived July820@&tabase URL:
www.vision.caltech.edu/archive.html

[99] T. Szturm, J. F. Peters, C. Otto, N. Kapadia, and A. Desai, “Bagcific rehabilitation of
finger-hand function using interactive computer gamidg¢hives of Physical Medicine and
Rehabilitation vol. 89, no. 11, pp. 2213-2217, 2008.

[100] F. HausdorffGrundZige der mengenlehre Leipzig: Verlag Von Veit & Comp., 1914.
[101] ——, Settheory New York: Chelsea Publishing Company, 1962.

[102] W. Rucklidge,Efficient Visual Recognition Using Hausdorff Distance Springer-Verlag,
1996.

[103] M. A. Ferrer, A. Morales, and L. Ortega, “Infrared handslon images for identification,”
IET Electronic Lettersvol. 45, no. 6, pp. 306—-308, 2009.

[104] J. Z. Wang, J. Li, and G. Wiederhold, “SIMPLicity: Semanticssstive integrated match-
ing for picture libraries,”IEEE Transactions on Pattern Analysis and Machine Intelli-
gence vol. 23, no. 9, pp. 947-963, 2001, Permission recived May 20Hdatiase URL:
http://wang.ist.psu.edu/docs/related/

[105] J. Li and J. Z. Wang, “Automatic linguistic indexing of pictures by atisti@al mod-
eling approach,” IEEE Transactions on Pattern Analysis and Machine Intelligence
vol. 25, no. 9, pp. 1075-1088, 2003, Permission recived May 20Hlabase URL:
http://wang.ist.psu.edu/docs/related/

[106] A. Grigorova, F. G. B. De Natale, C. Dagli, and T. S. Huang, ri@at-based image retrieval
by feature adaptation and relevance feedbalfkZE Transactions on Multimedijavol. 9,
no. 6, pp. 1183-1192, 2007.

[107] J. C. Caicedo, F. A. Goatez, E. Triana, and E. Romero, “Design of medical image database
with content-based retrieval capabilities,” Advances in Image and Video Technology
D. Mery and L. Rueda, Eds. Berlin: Springer-Verlag, 2007, vol. ISN@872, pp. 919—-
931.

[108] K. Zagoris, “img(Anaktisi),” 2010, http://orpheus.ee.duth.gr/andktis

120


http://www.eecs.berkeley.edu/Research/Projects/CS/vision/grouping/segbench/
www.vision.caltech.edu/archive.html
http://wang.ist.psu.edu/docs/related/
http://wang.ist.psu.edu/docs/related/

[109] S. A. Chatzichristofis and Y. S. Boutalis, “CEDD: Color and edmedtivity descriptor - a
compact descriptor for image indexing and retrieval Pioceedings of the 6th International
Conference in Advance Research on Computer Vision Systems IC8,S@0Qecture Notes
in Computer Science (LNCS). Santorini, Greece: Springer, 2008,123-322.

[110] ——, “FCTH: Fuzzy color and texture histogram - a low level featiar accurate image re-
trieval,” in Proceedings of the 9th International Workshop on Image Analysis fdtirivkdia
Interactive Services Klagenfurt, Austria: IEEE Computer Society, 2008.

[111] S. A. Chatzichristofis and A. Arampatzis, “Late fusion of compachposite descriptors for
retrieval from heterogeneous image database®taceedings of the 5th International Multi-
Conference on Computing in the Global Information Technology, ICCEEE Computer
Society, 2010.

[112] S.Kiranyaz, “Advanced techniques for content-based maneageof multimedia databases,”
Ph.D. dissertation, Tampere University of Technology, Finland, 2005.

[113] E. Guldogan, “Improving content-based image indexing and refrigerformance,” Ph.D.
dissertation, Tampere University of Technology, Finland, 2009.

[114] M. Gabbouj, “MUVIS a system for content-based indexing artdenaal in multimedia
databases,” 2010, http://muvis.cs.tut.fi/index.html.

[115] G. Zervas and S. M. Ruger, “The curse of dimensionality andiehent clustering,” iHEE
Colloguium on Microengineering in Optics and Optoelectroniad. 187, 1999, pp. 19/1—
19/3.

[116] K. Beyer and J. Goldstein, “When is nearest neighbor meanihgfulnternational Confer-
nce on Database Theqr§999.

[117] C. C. Aggarwal, A. Hinneburg, and D. A. Keim, “On the surprisioghavior of distance
metrics in high dimensional space,” Rroceedings of the ICDT Conferen@901, pp. 420—
434.

[118] E.R.Dougherty and R. A. Lotuféjands-on Morphological Image ProcessingPIE Press,
2003, vol. TT59.

[119] Y. J. Zhang, “A survey on evaluation methods for image segmenfaiattern Recognition
vol. 29, no. 8, pp. 1335-1346, 1996.

[120] H. Zhang, J. E. Fritts, and S. A. Goldman, “A co-evaluation fraorkwor improving seg-
mentation evaluation,” iISPIE Defense and Security Symposium - Signal Processing, Sensor
Fusion, and Target Recognition XI2005, pp. 420-430.

[121] M. Borsotti, P. Campadelli, and R. Schettini, “Quantitative evaluationoddr image seg-
mentation results,Pattern Recognition Letersol. 19, pp. 741-747, 1998.

[122] J. Liu and Y.-H. Yang, “Multi-resolution color image segmentatidBEE Transactions on
Pattern Analysis and Machine Intelligene®l. 16, no. 7, pp. 689-700, 1994.

[123] H. Zhang, J. E. Fritts, and S. A. Goldman, “A fast texture feagxeaction method for
region-based image segmentation,Aroceedings of IS&T/SPIE’s 16th Annual Symposium
on Image and Video Communication and Processiof) 5685, 2005.

121



[124] P. L. Correia and F. Pereira, “Objective evaluation of videarsagation quality,"IEEE
Transactions on Image Processjngl. 12, no. 2, pp. 156-200, 2003.

[125] S. Chabrier, B. Emile, H. Laurent, C. Rosenberger, and FeivarUnsupervised evaluation
of image segmentation application to multi-spectrual imagesProceedings of the 17th
International Conference on Pattern Recognition (ICPR 2004l 1, 2004, pp. 576 — 579.

[126] D.J.C. MacKaylnformation Theory, Inference, and Learning AlgorithmgK: Cambridge
University Press, 2003.

[127] T. Seemann, “Digital image processing using local segmentatiory.lissertation, School
of Computer Science and Software Engineering, Monash Universiig.20

[128] wxWidgets, “wxwidgets cross-platform gui library v2.8.9,” 2008vw.wxwidgets.org

122


www.wxwidgets.org

Author Index

Abraham, A.3, 6, 37,43, 44, 88, 104

Aggarwal, C. C89
Andrysiak, T.29, 72
Arampatzis, A88, 89

Balakrishnan, N2
Banu, M. S.29
Barden, D27
Batlle, J.16
Benjamin, L. T., Jr31, 32
Beyer, K.89
Bhattacharya, R
Black, M. J.27
Borsotti, M.100
Bourbakis, N. G2
Boutalis, Y. S.88, 89
Bovik, A. C. 2,95
Bruce, V.2

Caicedo, J. C72
Calitoiu, D.1
Campadelli, P100
Casals, A16

Chabrier, S100
Chang, E. Y2
Chatzichristofis, S. A88, 89
Chin, R. T.27

Choras, M. 29, 72
Chors, R. S29, 72
Christiyana, C. C29
Christoudias, C21, 104
Collins, R.2
Comaniciu, D18-21
Correia, P. L100
Cover, T. M.16

Crane, T. K27

Dagli, C.72

Darrel, T.14

De Natale, F. G. B72
Dempere-Marco, L2
Desai, A.64

Desai, B.C2

Dougherty, E. R94
Duda, R.O8, 18, 35,72

El Gamal, A.2
El-Naga, 1.2
Ellis, S. M.2
Emile, B.100

Fahle, M.1

Fairchild, M. D2

Fechner, G. T31, 32

Ferrer, M. A.70

Fowlkes, C60, 61, 63, 94, 98, 101, 102,
108 113

Freixenet, J16

Fritts, J. E99, 100

Gabbouj, M.88, 89
Galatsanos, N. R
Georgescu, B21, 104
Georgeson, M. A2
Gimeno, J. B2

Girod, B.2

Goldman, S. A99, 100
Goldstein, J89
Gonalez, F. A.72
Gonzalez, R. C12, 26, 93-95
Gorea, A2

Green, P. R2
Grigorova, A.72
Guldogan, E88, 89
Gupta, A.16, 59, 72
Gupta, S6

Hansell, D. M.2

Haralick, R. M.25, 26

Hariharakrishnan, K2

Hart, P.ES8, 18, 35, 72

Hassanien, A. B3, 6, 37,43, 44, 88,104

Hausdorff, F68

Hebert, M.23, 103

Henry, C.3, 6, 7, 37, 43, 44, 61, 69, 83, 88,
93,99 101, 103 104

123



Hergenhahn, B. R31, 32
Hinneburg, A.89

Hong, Y. H.27

Hoogs, A.2

Howarth, P25

Hu, H.2

Huang, T. S72

Indyk, P.14

Jain, R.16,59, 72
Johnson, J. D2

Kabrisky, M 2
Kapadia, N64
Kashi, R. S2
Kasson, J. M29
Kaucic, R.2
Keim, D. A.89
Kendall, D. G.27
Khotanzad, A27
Kim, W. Y. 27
Kim, Y. S.27
Kimia, B. B. 27
Kiranyaz, S88, 89
Kuo, S.2

Laurent, H.100

Le, H.27

Li, J. 72-74, 7882, 85, 107,110
Liu, J.100

Lotufo, R. A.94

Lowe, D. G.14, 15, 58

MacDonald, S. L. S2

MacKay, D. J. C101

Malik, J. 60, 61, 63, 94, 98, 101, 102 108,
113

Mallat, S.21, 23

Marche, P100

Marti, J.16

Martin, D.60, 61, 63, 94, 98, 101, 102 108,
113

Martinez, J. 1.2

Meer, P.21, 104

Meghdadi, A. H3, 6, 7, 43

Meng, Y.2
Merleau-Ponty, M1, 93
Mojsilovic, A. 2
Montag, E. D.2
Morales, A.70

Muja, M. 14, 15, 58, 90
Mundy, J.2

Naimpally, S. A5
Nallaperumal, K29
Nishikawa, R. M.2
Nussbaum, D1

Oommen, B. J1

Ortowska, E5, 10, 92, 95, 100
Ortega, L.70

Otto, C.64

Pal, N. R.17

Pal, S. K.17

Pantofaru, C23, 103

Papathomas, T. \2

Pastor, L29

Patnaik, K.6

Pavel, M.7, 34

Pawlak, M.12, 27-29, 72, 91

Pawlak, 2.3, 5, 6,9

Pereira, F100

Peters, J. B, 4, 6-14, 34, 35, 37, 41-44,
61, 64, 69, 83, 88, 93, 99, 101, 103 104

Plouffe, W.29

Poggio, T.1

Poincage, H.31, 33

Puzio, L.3, 6, 43

Qamra, A2

Rahman, M2

Ramanna, S3, 6, 7, 10, 41, 43,104
Riesz, F5

Robles, O. D29

Rodriguez, A29

Rogers, S. K2

Romero, E72

Rosenberger, .00

Rucklidge, W.68

124



Ruger, S25
Ruger, S. M89

Santini, S16, 59, 72

Schaefer, G3, 6, 37, 43, 44, 88, 104
Schettini, R100

Schonfeld, D2

Seemann, T101

Shahfar, S3, 6

Shaknarovich, G14

Shannon, C. E16, 17

Sheikh, H. R2, 95

Shuniji, M.25

Simoncelli, E. P2, 95

Skarmeta, A. F. G2

Skowron, A.3

Smeulders, A. W. M16, 59, 72
Soljanin, E.2

Sossinsky, A. B31, 33, 34, 36, 92
Stepaniuk, J3

Stork, D.G.8, 18, 35, 72

Szturm, T.3, 6, 43, 64

Tal, D.60, 61, 63, 94, 98, 101, 102 108

113
Tamura, H25
Teh, C. H.27
Thomas, J. A16
Toharia, P29
Triana, E.72

Unnikrishnan, R23, 103

Wandell, B. A.2

Wang, J. Z72-74, 78-82, 85, 107, 110
Wang, Z.2, 95

Warrack, B. D5

Wasilewski, P3, 6, 8-14, 35, 104
Weber, E31, 32

Weber, M.61, 63, 106

Wernick, M. N.2

Wiederhold, G72-74, 7882, 85, 107, 110
Wilson, T. A.2

Woods, R. E12, 26, 93-95

Worring, M. 16, 59, 72
wxWidgets104

Xiao-Peng, H.R

Yamawaki, T.25
Yang, Guang-Zhong@
Yang, Y.-H.100
Yang, Yongyi2

Zagoris, K.88, 89
Zeeman, E. C33, 36
Zervas, G89
Zhang, H.99, 100
Zhang, Y. J99, 100
Zhong, S21, 23

125



Subject Index

H=~, _(O) (Set of all tol. classes on a set

0),41
N(z) (Neighbourhood)40
O (Sample Perceptual Objects),35
O/~ (Quotient Set)10
X g Y (Nearness Relation),2
XY (Weak Nearness Relatiorf)1
XY (Tolerance Nearness RelatioAp

Ez; (Weak Perceptual Tolerance Relation),

41

=5 (Perceptual Tolerance RelatioB)]

(O,F), 39

(O, F) (Perceptual System3-12, 35, 37,
4042, 44

(O, F) (Perceptual System}.3

(X, &) (Tolerance Space3}7

F (Set of Probe Functions§, 35

B (Set of Probe Function}0

B (Set of Probe Functions)0, 37, 40, 44,
61

¢ (Probe Function)3, 10, 11, 35, 39, 41,
42

~p (Perceptual Indiscernibility Relation),

9

~,. (Weak Perceptual Indiscernibility Re-

lation), 10

>, (Tolerance Nearness RelatioAB

e, 37,41, 42, 44, 49, 61, 64-67, 69, 70,
72,73, 83,84, 86,92

[ (Object Description Lengtt8, 36

[ (Object Description Lengthg, 35

tH D (Haudorff Distance Measurejl

tH D (Hausdorff Distance Measurg6

tH D (Hausdorff Distance Measure§9,
83

tH M (Hamming Measure)/0, 83

tN M (Nearness Measure)s, 47, 48, 54,
62, 63, 70, 75, 83, 86

x =g y (Perceptual Tolerance Relation),

40, 42, 47
7/, (Equivalence Class§

126

Adaptive Learningb

Algorithm Runtime 49, 54, 58, 73, 86
Approximate Nearest Neighbouis}
Approximation Space%, 6
Attributes,7

Bandwidth,18, 19

CIELUV Colour Space29, 73

Computer Vision 14, 27

Content-Based Image Retrieva],43

Content-based Image Retrieva, 59, 61,
62, 64, 68, 72, 74, 87, 90, 92

Cover,41, 47, 92

Curse of Dimensionality89

Dilation, 94, 96

Edge Detection21

EDISON System21

Elementary Se97, 98

Elementary Set$®, 95, 100

Entropy,16, 17, 61

Epanechnikov Kernell9

Equivalence Clas4,0-12, 38, 39, 44, 45,
49, 69, 105

Equivalence ClasseS,

Equivalence Relatiorg, 9, 10, 36

Erosion,94, 96

Euclidean Distance29

Euclidean Space, 34, 36

Feature9

Feature Extractior, 72

Feature Spacé5, 38, 46

Feature Value7l, 90

Feature Valuedl, 10

Feature Vector3, 8, 35, 37,59, 63, 70, 89
Feature Vectors31

Features], 3,7

FLANN, 14, 58,90

Gaussian Kernell 8



Gradient19, 21, 22

Grey Level Co-occurrence Matri2b
Grey-level Co-occurence MatriX2
Ground Truth Image98

Ground Truth Image<3, 24

Hamming Distance92
Hamming Measure/0, 71
Hausdorff Distance§8, 83, 92
Hausdorff Distance Measurél
Human Perceptior?

Human Visual Systen®

Image Analysis10, 41, 72, 92

Image Corresondenc&03

Image Correspondenc®, 16, 43, 55, 71

Image correspondenceg,

Image Morphology7

Image Processing,

Image Texture25

Indiscernibility Relation5b, 9, 10, 36-38,
43-45

Information Content16, 101, 102

Information Gain17

Invariance 27, 29, 72, 90

Just Noticeable Difference32

k-means treel4, 15
kd-tree,14

Kernel Density Estimatiorl.8
Kinethesis 31

Mathematical Morphology93, 95
Mean Shift Segmentation Algoirithm3
Mean Shift Segmentation Algorithr64
Morphology,93

Multiscale Edge Detectior21

Near Set Index99, 100, 103 108

Near Sets], 3,57, 9, 10, 13, 31, 34, 36,
41-44, 59, 60, 63, 68, 72-74, 86,
90, 91, 95, 103

NEAR System]103

Nearnessb

Nearness Approximation Spade,

Nearness Description Principl&4

127

Nearness Measuréd3, 44, 46-49, 55, 56,
58,59, 61, 66, 70, 75, 86, 92

Nearness Measuresl

Nearness Relatiori2, 13

Neighbourhood39, 50-52, 54, 87

Noise,91

Normalized Probabilistic Rand IndeX3,
103

Normalized RGB16

Object Description], 8-10, 31, 35, 37—
39, 44, 45,59-61, 63, 95

Object Descriptions

Objects,1

Partition,12, 18, 60

Pattern Classificatior8, 35

Pattern Recognitior10, 41, 72

Perception], 2, 6, 23, 32, 34, 59, 61, 68,
72,90, 92

Perceptual Granules,

Perceptual Image Analysi60

Perceptual Indiscernibility Relatiof, 10,
61,105

Perceptual Morphology93, 95, 98-100
108

Perceptual Object, 8, 16, 34, 35, 60

Perceptual Objects, 35

Perceptual Systeni—9, 11, 12, 34-36,
44

Perceptual Tolerance Relati®6-38, 41—
43, 45, 47,61, 106

Pre-class40, 43, 50, 52

Precision62, 65, 67, 75

Probe Functiony-9, 34-36, 41, 65, 72,
86, 88, 90, 93, 96, 102 104, 112

Probe Functionsl, 3, 10, 12, 91, 95, 108

Proximity, 6

Proximity Relationp

Proximity Spacesh

Psychology2

Psychophysicsl, 2

Query Imageb5
Query Point50-52, 54
Quotient Set10, 95



Rand Index23

Recall,62, 67, 75
Reflexivity, 33, 36
Region-based Descriptora7
Relation,9, 33, 36, 90
Resolution91

Rough Sets3, 5-7

Segmentationl8, 21, 23
Segmentation Evaluatiod, 3, 7, 23, 99,
102 103 108

Sensation2
Sensesl
SIMPLIcity Databaser2, 73, 75
Singletons70
Subimagel6, 60, 65, 86, 100, 104-106
Symbol

5,8, 35

¢i(z), 8,35
Symmetry33, 37

Tolerance Class40, 41, 43, 45-50, 56,
69-71, 75, 86, 87, 92, 105, 106
Tolerance Classe52, 54, 73, 86
Tolerance Near Set81, 42, 43, 47, 59,
65, 86, 88, 92
Tolerance Nearness Relatiat®, 43
Tolerance Relatior81, 33, 34, 36, 39-41,
45,50, 51, 54, 63, 71, 88,92
Tolerance Spac@&3, 34, 36, 50, 92
Transitivity, 31, 33, 37, 39

Vector Spacel4, 15

Wavelet Theory21

Weak Indiscernibility Relatior41

Weak Nearness Relatiohl

Weak Perceptual Indiscernibility Relation,
10

Weak Perceptual Tolerance Relatiatd,
42

Weber’s Law,32

Zernike Moments27, 72, 90
Zernike Polynomial28

128



	Abstract
	Acknowledgements
	List of Tables
	List of Figures
	Introduction
	Background
	Near Sets
	Perceptual Systems
	Perceptual Indiscernibility Relations
	Near Sets and the Nearness Relation

	Approximate Nearest Neighbours
	Image Processing
	Normalized RGB
	Entropy
	Mean Shift Segmentation Algorithm
	Multiscale Edge Detection
	Normalized Probabilistic Rand Index
	Grey Level Co-occurrence Matrices
	Zernike Moments
	CIELUV Colour Space


	Tolerance Near Sets
	History

	Perceptual Systems
	Perceptual Tolerance Relation
	Tolerance Near Sets
	Nearness Measure
	Finding classes

	Application of Near Sets
	Perceptual Image Analysis
	Initial Results
	Parameter Adjustment
	Other measures
	Hausdorff Distance
	Hamming Measure
	Application

	SIMPLIcity Image Database
	Discussion
	Future Work


	Conclusion
	Other Applications of Near Sets
	Mathematical Morphology
	Perceptual Morphology
	Segmentation Evaluation
	Near Set Index
	Segmentation Evaluation Examples

	Near System
	Equivalence class frame
	Tolerance class frame
	Segmentation evaluation frame
	Near image frame
	Evaluating a pair of images
	Comparing a query image with a directory of images

	Feature display frame

	References
	Author Index
	Subject Index

