
PERFORMANCE EVALUATION OF ISCSI FOR
IP STORAGE AND TRANSPORT PROTOCOLS

BY

SAJID HUSSAIN

A Dissertation Submitted to
the Faculty of Graduate Studies

In Partial Fulfillment of the Requirements for the Degree of

DOCTOR OF'PHILOSOPHY

Department of Electrical and Computer Engineering
University of Manitoba

V/innipeg, Manitoba

e Sajid Hussain, July 2004

TIIE TJNTVERSITY OF MANITOBA

FACULTY OF GRADUATE STUDIES
**t<?trk

COPYRIGHT PERMISSION

Performance Evaluation of iSCSI for IP Storage and Transport Protocols

BY

Sajid Hussain

A ThesislPracticum submitted to the Facultv of Graduate Studies of The Universitv of

Manitoba in partial fulfillment of the requirement of the degree

of

DOCTOR OF PHILOSOPIIY

Saiid Hussain @ 2004

Permission has been granted to the Library of the University of Manitoba to lend or sell copies of
this thesis/practicum, to the National Library of Canada to microfilm this thesis and to lend or sell
copies of the film, and to University Microfilms Inc. to publish an abstract of this thesis/practicum.

This reproduction or copy of this thesis has been made available by authority of the copyright
owner solely for the purpose of private study and research, and may only be reproduced and

copied as permitted by copyright laws or with express written authorization from the copyright
owner.

Contents

Acknowledgement

Introduction

1.1 Storage Interface

1.1.1 Small Computer Systems Interface (SCSÐ

I.I.2 Advanced Technology Artachmenr (ATA)

I.2 Storage Systems

1.2.1 JBOD

1.2.2 RAID

I.2.3 Tape Subsystems

1.3 Network Storage

1.3.1 Network Attached Storage (NAS)

I.3.2 Storage A¡ea Networks (SAN)

The iSCSI Protocol

Motivation

Summary

The iSCSI Protocol

2.I Protocol Stack .

2.2 iSCSI Naming and Discovery . . .

11

11

T2

9

9

10

10

10

t1

11

L2

t2

t3

15

t6

r6

T6

T7

t.4

1.5

t.6

2.2.I Name, Address. and Alias

2.2.2 iSCSI Discovery Mechanisms

2.3 Login Phase and Full Feature phase

18

18

202.3.1 ConnectionAllesiance

Data Transfer1A

2.5

2L

21

22

22

23

23

¿J

24

25

iSCSI Numbering

2.5.1 Command Numberi

2.5.2 Status Numberins

ng

2.5.3 Data Numberins

2.6 iSCSI PDUs

2.6.1 Basic Header Segmenr (BHS)

2.6.2 SCSI Command pDU

2.6.3 SCSI Response

2.6.4 Data-OulDara-In and R2T pDUs

2.6.5 SNACK PDU

2.6.6 Reject, Nop-Out, and Nop-In pDUs

2.7 iSCSI Error Recovery .

2.7.I Mechanisms for Error Recovery

2.8 Message Synchronization and Steering

2.8.1 Fixed Interval Markers

2.8.2 Upper Layer Protocol Framing

2.9 Summary

Related Research

3.t Fibre Channel

3.2 Performance Analysis of iSCSI

3.2.I Efficient implementarion of iSCSI

26

27

27

27

28

29

29

30

30

31

31

32

33

3.3 Summary
34

Simulation

4.1 Introduction to Network Simulator (ns-2)

4.2 The iSCSI simulation classes

4.2.I The iSCSI initiator and target classes

4.2.2 The iSCSI session and connection classes

4.2.3 iSCSI support classes

4.2.4 Timer Handler classes

4.3 SimulationScenarios

4.3.I Simulation of multiple commands

4.3.2 Simulation of WRITE command

4.3.3 Illustration of the WRITE command simulation.

SimulationofErrorRecovery46
4.4.1 Error Recovery Algorithm 46

4.4.2 Simulation of Error Recovery for the READ command 47

Simulation of Message boundaries within TCp byte stream. 49

Simulation of iSCSI over LIDP 50

Traffic Generation 5l

4.7 -l Probability Distriburions

4.7.2 Trace Files

Incorporating Errors in iSCSI Simulation

Verification of the Simulation

35

35

37

37

4T

4T

42

43

43

44

45

4.4

4.5

4.6

4.7

4.8

4.9

4.10

4.rL

The protocol features not simulated

Summary

51

52

54

54

56

s6

58

58

58

Performance Evaluation

5.1 PerformanceMetrics

5.i.1 Response Time

5.1.2 Throughpur and Utilization .

5.2 Command window size

5.3 Bit Error Rate and Throughput

5.4 iSCSI over UDP

5.5 Summary

CRC Errors and iSCSI

6.I Introduction

6.1.1 CRCs

6.2 Aliased Packets

6.3 Aliased Packet Probabilities

6.4 TCP Error Control

6.5 CRC Simulations

6.5.1 iSCSI Error Conrrol

Experimental Results

Discussion and Summary

7 Summary and Future Work

7.1 Summary

7.2 Future Work

Glossary

Bibliography

61

64

66

66

68

70

70

72

74

76

78

81

81

6.6

6.7

82

83

84

84

85

87

93

List of Figures

1.1 An iSCSI storase network.

2.1 iSCSI protocol layering model.

2.2 Login/Text Operational Keys .

2.3 48-Byte Basic Header Segment.

2.4 SCSI Command PDU.

4.1 A basic ns-2 script.

4.2 The class hierarchy of the iSCSI simulation classes.

4.3 A simulation script to create the iSCSI initiator and the iSCSI target simu-

Iated objects.

4.4 A sample of c++ code to bind c++ class variables to orcl variabres.

4.5 The error recovery algorithm used in the simulation of error recovery of

missing PDUs.

T3

17

20

/)À
LA

25

36

38

40

40

4.6

4.7

4.8

4.9

Error Recovery Processing of Data-In PDUs for a READ Command.

A simulation script to create Marker PDU Aligned (MPA) objects

Cumulative distribution function (CDF) of the command sizes.

Records of a trace file

48

49

50

52

53

5.1 Response Time Definition 59

5.2 An experimental setup for the iscsl iniriaror and the iscsl targer. 61

5.3 Response time vs Expected Data Transfer Length. 62

5.4 Utilizationfordifferentbuffersizes. 62

5.5 Utilization Vs Expected Data Transfer Length. 63

5.6 A set of different input commands with the same total number of bytes. 64

5.7 Throughput for varying number of commands with constant data payload. 65

5.8 Throughput and Command'Window Size. 66

5.9 Throughput and Bit Error Rate (BER). 67

5.10 Response times for TCp and uDp for different values of EDTL. 6g

5.1 1 Response times for TCP and UDP where the TransferContext timeout value

for UDP is 0.1 seconds and the TransferContext timeout value for TCp is

1 second.
69

7T

73

6.1

6.2

6.3

78

79

80

6.4

6.5

6.6

6.7

6.8

6.9

Typical Internet scenario showing various nodes and connectivities.

An LFSR generaring a 3 bit CRC .

An alternative cRC implementation for the same function as shown in Fis_

ure 6.1.1

State space trajectory of a detected packet in error and an aliased packet. . .

Signature for an input data stream.

Markov model for a 3 bit CRC

Probability of packets aliasing

Aliasing transient from 20, 16 and 8 bit CRCs

Probability of TCP checksum aliasing

74

75

75

76

Acknowledgement

This work could not have been accomplished without the ardent and impetuous sup-

port from my adviser, Bob Mcleod, who was always available for any assistance, whose

critiques were very valuable, whose office door was never closed (until 4:30pm, even in

his absence!). I will always remember our coffee break meetings at Tim Horton's and

Starbucks!

I am also thankful to committee members Professors Ekram Hossain, Peter Graham,

and Micaela Serra. Professor Hossain \ryas a source of encouragement and gave valuable

comments regarding performance evaluation based on TCP and UDP. I am obliged to Pro-

fessor Graham for his untiring guidance in compiling this dissertation. He is also my role

model for being an excellent teacher. Professor Serra, who is from the Computer Science

Department at the Unive¡sity of Victoria, critically reviewed the dissertation and assisted

in formulating future research directions.

I am fortunate to be blessed with a wonderful family. My mother, Zubuda Begum,

and my father, Talib Hussain Awan, were very keen for my studies, from kindergarten to

this dissertation. My sister, Mohni Awan, and my brothe¿ Saqib Hussain Awan, were more

concerned about my dissertation than myself! I am extremely grateful to my sweet wife,

Sadia Dar, for her endless support. I can't wait anymore to see her refreshing smiles on

the completion of this dissertation. I love to thank my little son, Mohammed Omar Awan,

for his rewarding company. He also spent several evenings in my lab and drew innova-

tive diagrams on the white board, when my wife was busy in evening shifts of her family

medicine residency. I am extremely thankful to my family members for thei¡ patience and

cooperation.

'Working with other students, such as lmran and Dong, was a delightful experience.

Dong was extremely helpful in this research. My other friends such as Hazem, Farook,

Alieu, Ashraf, Adel, and Faraj will always be remembered.

The technical and administration staffmembers were very cooperative. Guy Jonatschick,

the UNIX guru, was always willing to install or update software packages and tools. He

did a superb job in blocking "spam" emails. Jefferey Anderson and Andora Jackson were

"industrial liaisons" for our lab. Marcia Labiuk and Karin Kroeker facilitated the research

by sharing the burden of printing, filling the forms, and reminding of deadlines.

I am thankful to the Electrical and Computer Engineering Department, the Internet In-

novation Center, and the University of Manitoba for the resea¡ch facilities and the valuable

financial support.

Chapter I
Introduction

The storage industry has shown remarkable performance by providing high end storage de-

vices at signif,cantly lower prices; the storage cost of terabytes (trillion bytes) and perabytes

(quadrillion bytes) is within the budget range of medium size companies. Furtherrnore,

the telecommunication industry with relentless technology breakthroughs is currentìy an-

nouncing the arrivai of Gigabit Ethernet (GbE) and 10 Gigabit Ethernet (10GbE). Due ro

the recent advancement in the storage and telecommunication technologies, IP (Internet

Protocol) Storage has become a feasible alternative to the traditional fibre channel (FC)

storage area networks (SANs), for medium as well as high end enterprise applications. A1-

though high performance computing has also shown significant improvements in the last

few decades, the system data path seems to be the limiting factor for data intensive appli-

cations of high speed networks.

1-.L Storage fnhrface

Small computer system interface (SCSI) devices provide efficient enterprise storage sys-

tems for server applications such as web servers, database management systems, and other

on-line processing applications. SCSI and Serial Advanced Technology Attachment (SATA)

interfaces for storage devices are described in the following subsections.

1.1.1 Small Computer Systems Interface (SCSI)

Small Computer Systems Interface (SCSI, pronounced as skuzzy) is an interface to request

services from UO devices such as hard drives, tape drives, compact disks (CDs), printers,

scanners and interface cards. It is based on a client/server architecture where the device

that initiates a request is called the initiator and the one that receives the request is called

the target. For example, when reading a file from a SCSI hard disk, the SCSI interface

card (the initiator) requests data from the SCSI hard disk (the target), and the hard disk (rhe

target) responds to the request by sending the data. SCSI devices can act as initiators and

as well as targets.

L.L.2 Advanced Technology Attachment (ATA)

SCSI disks are often compared with Advanced Technology Attachment (ATA) disks. The

two devices differ not only in their interfaces but also in their mechanics, materials, elec-

tronics and firmware. Although SCSI disks are more expensive than AIAs, the SCSI disks

provide better reliability, faster random access, and higher connectivity than the ATA disks.

The ATA disks are designed for personal storage but SCSI disks are more suitable for en-

terprise applications [ADR03].

The Serial ATA (SATA) is an improved ATA interface that is more reliable and efficient

than ATA. The SATA devices can be the most cost effective storage devices for the backup

storage of enterprise applications [LoB02].

1.2 Storage Systems

A storage system with a group of several hard disks is more economical than manufacfuring

one huge hard disk. several storage systems are discussed in the followine sub-sections.

10

t.z.r JBOD

Just a Bunch Of Disks (JBOD) is an enclosure with multiple disk drives installed on a com-

mon backplane. The disks are addressed individuatty because there is no front-end logic

to manage the distribution of data over the disks. Since the JBOD enclosure consolidates

multiple disks sharing power supplies and fans, JBOD is more cost effective than a set of

individual hard disks.

I.2.2 RATD

Redundant Array of Independent Disks (RAID) is an intelligent storage array with specific

methods to distribute data on multiple disks. Embedded in the enclosure, implemented

in either hardware or in software, an intelligent controller performs RAID functions and

stands between the external interface to the host and the internal configuration of disks.

RAID provides an economical storage solution for low or medium size enterprise indus-

tries.

1.2.3 Tape Subsystems

Although tape subsystems are quite slow as compared to disks, the tape subsystems provide

high capacities at very low cost. They use block SCSI VO to transfer large volumes of data.

The tape subsystems are used for archives and periodic backup.

1-.3 Network Storage

A direct attached storage (DAS) device is a storage device that is directly attached to the

host system. Although DAS systems a¡e less expensive, the maintenance cost of DAS

systems is relatively higher. Furthermore, the storage allocation is quite challenging in

DAS systems. On the other hand, network storage makes the storage devices independent

of any host, resulting in highly efficient storage maintenance and allocation strategies. The

11

two common types of network storage are described in the following sub-sections.

1.3.1 Network Attached Storage (NAS)

NAS systems use file-oriented delivery protocols such as Network File System (NFS) and

Common Internet File System (CIFS). Although NAS also has a block component where

blocks are addressed on a per-file basis, the block access methods are hidden in the NAS

enclosure. A NAS device is a server of files and directories, providing the sharing of storage

resources over a coÍìmon network.

1.3.2 Storage Area Networks (SAN)

Although NAS devices serve assembled files, SANs serve blocks of data. The block-

oriented service has the advantage of using more efficient serial SCSI transport that requires

minimal central processing unit (CPU) resources for protocol processing. Traditionally, Fi-

bre Channel (FC) was the only mechanism to implement SANs; however, due to the arrival

of Gigabit Ethernet (GbE) and 10 Gigabit Ethernet (10GbE), IP networks are becoming

cost effective alternatives to the traditional FC-SANs.

L.4 The iSCSI Protocol

The RFC 3720 ISSCZO4] describes the iSCSI protocol that is an Interner standards track

protocol to send SCSI commands over the Transmission Cont¡ol Protocol (TCP). Thus,

iSCSI can be used to interconnect SCSI disks, disk anays, and also SANs through TCp/p.

Figure 1.1 illustrates a storage network where all servers and storage resources support an

Ethernet interface (or Gigabit Ethemet) and an iSCSI protocol stack. The iSCSI server at

node A uses the Internet to connect to iSCSI disks at node B and the iSCSI tape library at

node D. Hence, iSCSI eliminates the traditional limitation of shorter distances of the SCSI

cable.

T2

,-,r.rN
iSCSITapeLibnry iSCSISeryer*.tT N

IP Network

iSCSI Disks

-tr
iscsrDi

Figure 1.1: An iSCSI storage network.

1.5 Motivation

The iSCSI protocol provides the IP storage that is significantly less expensive than Fibre

Channel SANs. IP storage synthesizes two mature technologies: SCSI and IP networks.

Thus, the iSCSI protocol has the potential to meet the demands of emerging storage appli-

cations.

Since iSCSI is designed to operate over the TCP protocol, which can be the limiting

factor for the end-to-end system performance for data intensive applications, one of the

goals of the research is to help extend iSCSI to individual hosts as an efficient end-to-end

process. This includes identifying redundancies in layered protocols and inefficiencies in

terms of error and flow control. The iSCSI performance analysis for wide area networks

(WANs) and local area networks (LANs) can assist in protocol tuning required for efficient

operation.

Although there are a few research projects doing iSCSI performance evaluation us-

t3

ing kernel level tools, it appears to be cumbersome to correlate the iSCSI protocol with

telecommunication protocols using the current kernel level tools. Since the network sim-

ulator (ns-2) provides simulation of almost all the Internet protocols, including variations

of the TCP protocol, the simulation and modeling of the iSCSI protocol was also a desir-

able goal. The simulation of iSCSI will facilitate future research involving iSCSI and other

Intemet protocols.

As such, the dissertation obiectives are as follows:

1. Simulate the iSCSI protocol in an environment where it is more effective to study

the correlation of the Internet protocols and the iSCSI protocol. Since the Network

Simulator ns-2 is widely used for the Internet protocols research, the simulation of

the iSCSI protocol in ns-2 will provide opportunities for the Intemet protocols tuning

for IP storage.

2. Evaluate the performance of the iSCSI protocol for various network conditions. The

iSCSI performance in local area networks is compared to wide area networks. The

effect of different network parameters, such as effective maximum segment size

(EMSS), maximum transmission unit (MTU), and delay bandwidth product, over

the iSCSI performance metrics, such as response time, command throughput, and

data throughput is analyzed.

3. Tune the transport protocols parameters, such as those of TCP and UDP. The efficient

implementation and tuning of TCP can be a significant factor in the end systems

performance enhancement.

4. Analyze the performance of iSCSI error control mechanism when iSCSI is deployed

over unreliable transport protocols such as UDP. If iSCSI is used to connect SANs

in a local environment, UDP can provide more efficient transfer of SCSI commands

because of reduced errors of the LAN environment. iSCSI can run effectively without

t4

requiring all of the overhead imposed by the TCP reliability mechanisms.

5. Estimate packet aliasing using techniques such as Markov model analysis, simula-

tion, and experimental measurements.

L.6 Summarv

This chapter provides the motivation for the performance evaluation of iSCSI for IP storage

and transport protocols. The remaining dissertation is organized as follows:

c Chapter 2 provides the basic understanding of iSCSI to develop a model for the

simulation.

o Chapter 3 briefly discusses related research for IP Storage.

o Chapter 4 describes the símulation of iSCSI protocol within ns-2.

o Chapter 5 provides the system performance evaluation using the iSCSI layer in ns-2.

o Chapter 6 provides an analysis of potential error control redundancies when layering

iSCSI over TCP.

¡ Chapter 7 concludes the dissertation and outlines the directions of future research.

15

Chapter 2

The iSCSI Protocol

This chapter briefly describes the iSCSI protocol to facilitate the simulation and perfor-

mance evaluation of the protocol.

2.I Protocol Stack

The iSCSI protocol is based on a client server architecture. The SCSI initiator builds and

sends the blocks, which are related to the SCSI command, to the iSCSI initiator, which

encapsulates the SCSI blocks in iSCSI Protocol Data Units (PDUs) and sends the iSCSI

PDUs to the iSCSI target by using TCP. There is also an optional layer of data synchro-

nization and data steering mechanism, ensuring in-order receipt of iSCSI PDUs. The data

synchronization framing mechanism is needed to preserve the boundaries of iSCSI PDUs

in the TCP byte stream. The iSCSI specification allows a lower functional level layer on

top of Internet Protocol (IP), to provide services such as IPsec data encryption. Figure 2.1

shows the protocols involved to send/receive the SCSI commands over the Internet.

2.2 iSCSI Naming and Discovery

The RFC-3721, iSCSI Naming and Discovery [BHH+04], discusses the naming and dis-

covery of iSCSI storage resources. An iSCSI node can be either an initiator, or a target, or

both.

16

Initiator Target

SCSI SCSI

iSCSI iSCSI

Data Sync Data Sync

TCP TCP

Lower Functional
Level (e.g. IPSec)

Lower Functional
Level (e.g. IPSec)

IP IP

Link Link

IP Network

Figure 2.1: iSCSI protocol layering model.

2.2.1 Name, Address, and Alias

An iSCSI name is a unique name for an iSCSI node. It is also the SCSI device name of

the iSCSI device. The iSCSI name is never modified because is associated with the iSCSI

node instead of the network adapter card. The iSCSI name refers to a logical software

entity, which is not tied to a port or hardware that can be changed. For example, the iSCSI

qualified name from an equipment vendor is i,qn.2007 - 04.corn.ac-rne : disk - arro,as -
sn - a8675309, where i,qn is the type, 2001 - 04 is the date, conl.aane is the organization

naming authority, and di,slt - orraqs - sn - a8675309 is the subgroup naming authority.

An iSCSI address specifies a single path to an iSCSI node. The iSCSI address format

is < domain - name > l:< port >], where < domai,n - no,rne > can be an IPv4 address,

an IPv6 address, or a fully qualified domain name.

An iSCSI alias is a string that can be used as a descriptive name for an initiator, or

t7

a target. It cannot be used for identification during login. Furthennore, the iSCSI alias

does not follow the uniqueness or other requirements of the iSCSI name. For instance,

LocalDi,slt can be an alias for i,qn.2000 - } .com.acme ; sn.555L2r2.target.48g.

2.2.2 iSCSI Discovery Mechanisms

The iSCSI protocol supports discovery mechanisms, such as "static Configuration", "Send-

Targets configuration", and "Zero-Confi guration".

Static Configuration assumes that the IP address, the TCP port number and the iSCSI

target name are already available to the initiator. The initiator does not need to perform any

discovery.

SendTargets Configuration assumes that the IP address and TCP port information are

available to the initiator. The initiator issues a SendTargets text command to query infor-

mation about the iSCSI targets available at the particular network entity.

Zero-Confrguration assumes that the initiator does not have any information about the

target. The initiator can either multicast discovery messages directly to the targets, or it can

send discovery messages to storage name servers.

2,3 Login Phase and Full Feature Phase

The login phase is the first phase to establish a connection between the initiator and the tar-

get. The login sequence is used to negotiate and exchange parameters between the initiator

and the target, and may invoke a security routine to authenticate allowable connectivity.

If successful, the target will issue a login accept to the initiator; otherwise, the login is

rejected and the connection is broken.

The iSCSI login uses text fields to negotiate allowable parameters between the initiator

and the target. These fields are associated with keys, which are followed by their core-

sponding values. The text fields are also used to exchange names and aliases of the targer

and initiato¡ as well as negotiated parameters such as security protocol, maximum data

18

payload size, unsolicited data support, the allowable length of unsolicited data, and time-

out values. For instance, if the initiator and target have negotiated the key Ini,tialR2T to

l/o during login, unsolicited data can be sent to the target.

An initiator logging on to a target would include its iSCSI name and an initiator session

ID (ISID), the combination of which would be unique within its host network entity. A tar-

get, responding to the login request, would generate a unique target session ID (TSID). A

single ISID/TSID session pair may have multiple TCP connections, where the maximum

number of connections is negotiated during the login phase. When the login phase is com-

pleted, the iSCSI session enters into the full feature phase, where the initiator sends SCSI

commands and data to the various Logical Units (LUs) on the target. The text fields (or

keys) that are negotiated between the initiator and the tar¡et can be divided into following

categories:

o LO - Leading Only: Keys that can only be carried on the leading connection and

cannot be changed after the leading connection login.

o IO - Initialize only: Keys that can be used only during login.

o ALL: Keys that can be used in both the login phase and the full feature phase.

FFPO - FulI Feature Phase only : Keys that can only be used during full feature

phase.

o Declarative : Keys that do not require an answer.

Figure 2.2 shows a few keys and the coresponding values for category scope, and

value-range. The key scope is indicated as either session-wide (SW) or connection-only

(CO). The combined effect of Immedi.ateData and Ini,ti,aIRZT is described as follows:

o If both ImmediateData and Ini,ti,alR2T are negotiated as Yes, the initiator sends

immediate data with the command but no unsolicited data-out PDUs are transfered.

19

Key Category Senders Scope Value range Default Result
MaxConnections LO Initiator/Ta¡get SIV < I -to-ó5535> Min.
TargetName lO by initiator and

FFPO by Target
Initiator/Target SW <iSCSI-name>

InitiatorName IO, Decla¡ative, Any-Stage lnltiâtoÍ SW (iSCSI-name>
TargetAlias nLL, lJeClarâtlve, Any-stage Target sw <local-name>
InitiatorAìias All, Decla¡ative, Any-Stage nitiatot SW <local-name>
'IargetAddress All, Decla¡ative, Any-Stage 'Iarget SW domain name[:port]

[.portal-prouo-tas]
'l argetPortalGroup Iäg IO by tÀget,

All, Declarative, Any-Stage

'l?¡rget SW < 16-bit-binary>

lnitlalR2'l LO Initiator/Target SVr' <boolean-value> Yes OR
lmmediateData LO Initiator/Tarpet SW Yes ANI)
MaxRecvDataSegmentl-ength All, Declarâtive InitiatorÆarset CO <512-to-(2"4-l)> 8192
MaxBurstLength LO lnitiator/Target SW <512-to-(2¿a -l\> 256 KB Min.
tsirsttsurstl-ensth LO InitiatorÆarget SW <5 I 2+o-(22'¡- 1)> 25ó K-B Min.

Figure 2.2: Loginllext Operational Keys

o If Immedi,ateData is No and Ini,ti,al&2T isYes,the initiator sends neither imme-

diate nor unsolicited data.

o If both Immedi,ateData and Ini,tialR2T aÍe No, the initiator sends unsolicited

data-out PDUs but no immediate data is sent with the command.

If lrnmediateData is Yes and Ini.ti,alR2T is /y'o, the initiator sends irnrnediate data

as well as unsolicited data-out PDUs.

2.3.1 ConnectionAllegiance

If a session contains multiple TCP connections, individual command/response pairs must

flow over the same TCP connection. This connection constraint ensures that specific read

or write commands are fulfilled without the additional overhead of monitoring multiple

connections to observe the request completion and to maintain the order of arrival. An

iSCSI write, for example, \¡/ould be performed over a single connection until all data was

transmitted. Un¡elated transactions, however, could simultaneouslv be issued on different

connections during the same session.

20

2.4 Data Transfer

An initiator can send SCSI data as either solicited or unsolicited. The unsolicited data can

be sent as a part of an iSCSI command PDU (immediate data), and/or in separate iSCSI

data PDUs that are sent immediately after the command PDU. Although unsolicited data is

sent without any response from the target, the solicited data can be sent only after receiving

Ready-to-Transfer (R2T) PDUs from the target.

The Fi,rstBurstLength field specifies the maximum number of bytes that can be sent

as unsolicited data; however, the MarBurstLength field specifies the maximum number

of bytesthatcanbesentinasequenceof soliciteddata. Thevalues of Fi,rstBurstLength

and MarBurstLength are negotiated during the login phase. For each sequence of data

transfer, the initiator must send a number of bytes equal to either F'irstBurstLength (for

the unsolicited data) or MarBurstLength (for the solicited data); unless it is the last

sequence.

Command and unsolicited data PDUs may be interleaved on a single connection but

ordering requirements must be maintained. For example, the command ¡/ + 1 may be

sent before unsolicited data PDUs for the command l/ but unsolicited data PDUs of the

command l/ must precede unsolicited data PDUs of the command ¡/ + 1.

2.5 iSCSI Numbering

iSCSI uses several numbering schemes for identification of different entities such as ses-

sions, connections, command PDUs, data PDUs and other iSCSI PDUs. The numberine is

used in the error recovery mechanisms of iSCSI.

A session is formed by the group of TCP connections that link an initiator and a target.

A session is identified by a session ID that comprises an initiator session ID (1S1D) and a

target session ID (T S I D).

2l

2.5.1 CommandNumbering

Command Numbering is session-wide and is used to ensure ordered command delivery

over multiple connections. It can also be used for command flow control over a session.

The command number is carried by the iSCSI PDU as a CrndSN field, which is incre-

mented by 1 for each additional command except for commands marked for immediate

delivery. Commands meant for immediate delivery are marked with an immediate delivery

flag and they carry the current CmdSN. If immediate delivery is used with task manage-

ment cornmands, the commands are allowed to reach the tarset before the tasks on which

they are supposed to act.

The iSCSI PDUs sent by the target contain frelds ErpCmdSN and MarCmdSN.

The ErpCmdSN field specifies the next command expected by the target; therefore,

the target acknowledges all the commands up to, but not including, this number. The

MarCmdSll field specifies the maximum command number that can be sent by the initia-

tor; thus, the queuing capacity of the receiving iSCSI layer is M arCmdS N - ErpC mds¡l+

1. The expression MarCmdSN - ErpCmdSN * 1 is referred as the command window

for the initiator. If the command window is greater than zero, the initiator is allowed to

send the commands to the target; otherwise, the initiator must wait fo¡ the increase in the

command window size.

2.5.2 Status Numbering

The StatS N field is a status sequence number, which is a field in iSCSI PDUs sent by

the target. It is used to enumerate the responses sent by the target. -lhe ErpStaú,SN field

is an expected status sequence number, which is used by the initiator to acknowledge the

responses received from the target. The status numbering stafis with the login response of

the first login request of the connection. The login response includes an initial value for

the status numbering. A large absolute difference between StatSN and ErpStatSN may

22

indicate a failed connection.

2.5.3 Data Numbering

T\e DataSll field is used for data sequencing. It starts with 0 and is incremented by 1

for each additional data PDU. There is only one data sequence for the READ command;

however, there can be multiple data sequences for the V/RITE command. At most one

data sequence is allowed for the unsolicited data, although several sequences are possible

for solicited data because the initiator sends one unsolicited data sequence for each R2T

received from the target. The R2Ts are identified using R2TSN field defined in the R2T

PDUs sent by the target.

2.6 iSCSI PDUs

Atl iSCSI PDUs have one or more header segments and, optionally, a data segment. The

Basic Header Segment (BHS) is the first segment in all iSCSI PDUs. It may be followed

by Additional Header Segments (AHSs), a Header-Digest, a Data Segment, and/or aData

Digest.

2.6.I Basic Header Segment (BHS)

The BHS header is 48 bytes long. The Opcode and DataSegmentLength frelds appear

in every iSCSI PDU header. If the Ini.ti,atorTaskTag and the Logi,calUni,tNumber are

used, they always appear in the same location of the header.

Fields of Basic Header Segment (BHS)

Figure 2.3 shows the format of the BHS header. The 1 bit identifies PDUs that are marked

for the immediate delivery. If the 1 bit is set to 1 then the delivery is immediate; otherwise

it is queued. The Opcode field specifies the type of iSCSI PDU. There are two types of

opcodes: initiator opcodes and target opcodes. The initiator opcodes are in request PDUs

23

Byte 0
olrlzl3l415l6l7

I
olrlzl3l4l5l6l7

¿

oltlzl3141516l:.
J

0l1121314lsl617
00-03 I Opcode Fl Opcode-specific fields
04-07 Total AHS Lensth Data Segment Length
08-1 1 LUN or Opcode-specific fields
t2-15
16-19 Initiator Task Tag

20-47 LUN or Opcode-specific fields

Figure 2.3: 48-Byte Basic Header Segment.

from the initiator; whereas, the target opcodes are in response PDUs from the target. The

-t' bit identifies the end of the sequence. If the F bit is 1, it indicates that the PDU is the

final PDU of the sequence.

TheTotalAHSLength field specifies the total length of all the AHS header segments

in units of 4-byte words including padding, if any. The DataSegmentLength freld speci-

fies the data payload in bytes, padding is excluded. The Ini,tiatorTaskTag field identifies

each iSCSI task issued by the initiator. See RFC 3720ISSCZO4I for the remaining fields

of the BHS header.

2.6.2 SCSI Command PDU

The initiator sends the SCSI command PDU to initiate the command at the tarset. The

format of a SCSI command PDU is shown in Fisure 2.4.

Fields specific to the SCSI command PDU

The A bit is set to 1 when the command is expected to input (read) data. If R is set to 0, no

data will be read from the target. TheW bit is set to 1 when the command is expected to

output data.

The ErpectedDataTransf erLength @Df D field, bytes 20 -23, specifies the total

amount of data to be transferred for the command. For unidirectional (either W : I or

A : 1) operations, the EDTL field contains the number of bytes of data for this SCSI

24

Byte 0
ol rl zl El +l sl 61 7

I
olrl2l¡l¿lsl611

2

0l ll2lzl¿l sl617
3

olrl2lzlqlslelt
00-03 I | 0x01 FI RI W OI OI ATTR Reserved
04-07 TotalAHSLeneth DataSegmentlength
08-1 I LUN - Logical Unit Number
12-15

r6-19 Initiator Task Tag
20-23 Expected Data Transfer Length
.t /1 a1 CmdSN
28-31 ExpStatSN

32-47 SCSI Command Descriptor Block (CDB)

AHS (Optional)
Header Digest (Optional)
Data Segment, Command Data (Optional)
Data Digest (Optional)

Figure 2.4: SCSI Command pDU.

operation. For bidirectional operations (both R and W are set to 1), this field contains

the number of data bytes for the write transfer. For bidirectional operations, an additional

header segment must be present in the header sequence that indicates the Bidirectional

Read Expected Data Transfer Length.

The CmdSll field, bytes 24 - 27, is a command sequence number, which is used to

enable ordered delivery of commands across multiple connections in a single session. The

ExpStatS N field, bytes 28 - 3I, is the expected status sequence number, which acknowl-

edges the command responses received on the connection. See RFC 3720 1SSCZO4I for

the remaining fields of the iSCSI command PDU.

2.6.3 SCSI Response

target sends the SCSI response PDU to the initiator, indicating the command comple-The

tion.

25

Fields specific to SCSI response PDU

The Response fr,eld contains the iSCSI service response code. The value 0 shows the

command completion at the target, whereas the value 1 indicates the command failure. The

Status field is used to report the SCSI status of the command. [SAM02] provides the

complete list of Status codes and their definitions.

The initiator sends a SNACK PDU (Sequence Number Acknowledgement PDU) when

the response PDU is received from the target. The ^9úøúSll field is a status sequence num-

ber that the iSCSI target generates per connection. It enables the initiator to acknowledge

the reception stafus. The ,Sú¿ú,S// ûeld is incremented by 1 for every response/status sent

on a connection except for responses sent as a result of a retry or SNACK. In the case of

response retransmission, the value of StatSN remains unchanged, the value is same as

used in the original transmission, unless the connection has since been restarted.

The ErpCmd,S,¡/ field stands for the expected command sequence number, which

is returned to the initiator to acknowledge command reception. If ErpCmd.9l/ equals

to MarCmd^g¡/ + 1, the target cannot accept new corìmands. The MarCmdSl[field

specifies the maximum command sequence number, which the iSCSI target sends to the

initiator to indicate the maximum value of Cmd,SN that can be sent bv the initiator.

2"6.4 Data-Out/Data-In and R2T PDUs

The data-ouldata-in PDUs are used to transfer data that is associated with the SCSI com-

mand. The data-out PDU is used for the write command and the data-in PDU is used for

the read command.

The target uses R2T PDUs to request the sequences of data blocks to be delivered in

the order that is convenient for the target. The initiator sends MarBurstLength amount

of data-out PDUs for each R2T received from the target, other than the last R2T, which

specifies only the remaining bytes.

26

2.6.5 SNACK PDU

The SNACK, which stands for sequence number acknowiedgement, is used by the initiator

to request retransmission of missing PDUs. SNACK PDU may be issued against missing

data, response, or R2T PDUs.

Digest errors represent the comrption of the iSCSI PDU. There are two types of digest

errors: 1) the data digest error, which means that the data payload is comrpted, and 2) the

header digest error, which identifies the comrption of the header. If data digest error is

detected then SNACK is sent for the comrpted/missing PDUs. A single SNACK PDU can

be used for retransmission of several contiguous missing/comrpted PDUs.

2.6.6 Reject, Nop-Out, and Nop-In PDUs

Format error means that an individual PDU has missing or inconsistent fields within the

frame. When format elrors occur, a reject iSCSI PDU is sent, which contains an offset

indicator for the first bad byte detected in the PDU header. The reject PDUs can be ignored

or saved for any future analysis of the implementation and/or network conditions.

The Nop-out/Nop-in PDUs are sent when there is no other iSCSI PDU to be sent. Thus

Nop-out/Nop-in PDUs ensure the connectivity and the session establishment between the

initiator and the target.

2.7 iSCSI Error Recoverv

One of the primary requirements for iSCSI error handling and recovery is the ability of

both initiators and targets to buffer commands and responses until they are acknowledged.

In a SCSI write, for example, the initiator should keep the transmitted data in its buffer

until another R2T is received from the target, which indicates that the target has received

the previous data and is ready for more. At minimum, the iSCSI end devices must be able

to selectively rebuild the missing or comrpted PDU for retransmission.

27

The iSCSI error detection and recovery contains several levels of hierarchy. The lowest

level is within command error recovery, where the missing or comrpted PDU is reûansmit-

ted. The next level is within connection recovery where commands are restarted. The next

level is within session recovery where connections are rebuilt. Finally, a session recovery

provides restarting the session through login.

2.7.1 Mechanisms for Error Recoverv

The error recovery mechanisms of the initiator differ from the error recovery mechanisms

of the target. The initiator effor recovery mechanisms are described as follows:

l. Nop-Out is a no operation PDU sent from the initiator when there is no iSCSI PDU

to be sent. The nop-out PDU probes sequence numbers from the target.

2. The command retry mechanism supports the retransmission of the command PDU.

3. The SNACK (Sequence Number Acknowledgement) mechanism requests the retrans-

mission of missing status, data, and R2T PDUs.

The target mechanisms for error recovery are as follows:

I- Nop-In is the target's no operation PDU that is sent in response to nop-out PDU

received from the initiator. The nop-in PDU is transmitted when there is no iSCSI

PDU to be sent.

2. Recovery R2T PDU is used to request the retransmission of missing data-out PDUs.

T1ne R2T PDU's DesiredDataTransf erLength field indicates the number of bytes

to be transferred and the Buf f erO f f set field indicates the address of the first miss-

ing byte. Since R2T PDU indicates only the starting address and the total bytes, the

number of bytes to be retransmitted must be contiguous.

28

2.8 Message Synchronization and Steering

This section describes the mechanisms to identify boundaries of iSCSI PDUs in the TCP

byte stream. iSCSI provides a mapping of the SCSI protocol onto TCP. The iSCSI headers

contain a message length field, DataSegmentLength, which serves to indicate the end of

the current message as well as the beginning of the next message. However, relying only on

the DataSegmentLengúh field of the iSCSI header is not sufficient because it is possible

to lose the TCP segment that contains the DataSegmentLength freId. Since the missing

TCP segment(s) must be received before any of the following segments can be steered to

the correct SCSI buffers, temporary buffers are required to save the out-of-order segments,

which can be copied to the SCSI buffers after the arrival of the missing headers.

2.8.1 Fixed Interval Markers

The Fixed Interval Markers (F I M) scheme is used for synchronization and/or data steer-

ing. The F I M scheme inserts markers at fixed intervals in the payload stream. Under

normal conditions (no PDU loss, or out-of-order data reception), iSCSI data steering can

be accomplished by using the identifying tag (Initiator Task Tag), the iSCSI header's data

offset fields, and the TCP sequence number. Although the identifying tag associates the

PDU with a SCSI buffer address, the data offset and TCP sequence number are used to de-

termine the offset within the buffer. If the TCP segment containing the iSCSI PDU header

is delayed or lost, markers are used to minimize the damage. Markers indicate the begin-

ning of the next iSCSI PDU and enable continued processing when the iSCSI headers are

dropped due to the iSCSI level data errors. Moreover, markers reduce the amount of data

to be stored by the TCP/iSCSI layer because while waiting for the arrival of the late TCP

segments, the markers may assist to find later iSCSI PDU heade¡s that may steer the related

data to the SCSI buffers.

29

2.8.2 Upper Layer Protocol Framing

The Upper Layering Protocol (ULP) framing mechanism works as a "shim" between TCP

and higher-level protocols [CT90]. If the record is less than or equal to the maximum

transmission unit (MTU), the ULP mechanism preserves the higher-level protocol record

boundaries. Framing-aware TCP implementations indicate the path maximum segment size

(MSS) to the framing protocol. This size may change during the course of the connection

due to the changes in the path MTU. The framing protocol must notify the ULP sender of

the changes in the MSS. The framing protocol provides the current value of the path MSS

to the ULP.

2.9 Summary

This chapter provides sufficient background and understanding of the iSCSI protocol to

develop a model for simulation and undertake performance evaluation studies. First, the

iSCSI protocol stack, the naming and discovery mechanism, and the login and full feafure

phases were explained. Then, several iSCSI PDUs such as command, response, data in/out,

SNACK, reject, and Nop in/out were briefly described. Finally, the iSCSI effor recovery

and message synchronization and steering mechanisms were discussed. Thus, the chapter

provides the protocol basis for further simulation and performance evaluation.

30

Chapter 3

Related Research

This chapter briefly discusses research related to storage over Ip networks.

3.L Fibre Channel

Fibre Channel (FC) Storage Area Networks (SANs) are cornmonly used for high-end en-

terprise applications. Although FC-SANs use the SCSI interface, the fibre channel protocol

stack is quite different from the TCPIIP stack. The FC protocol stack contains FC specific

protocols for physical, data link, network and transport layers.

The Internet Engineering Task Force (IETF) has proposed two standards to connect

existing FC-SANs using TCP/IP based networks. Fibre Channel over TCp/Ip (FCIp)

[RRW02] connects FC-SANs by a virnral FC link, where encapsulated FC frames are

sent over the TCP/IP connection. The other standard, the Internet Fibre Channel Proto-

col (iFCP) [MTJM02] specifies an architecfure and gateway-to-gateway protocol for the

fibre channel functionality implementation over an IP network. The lower-layer FC trans-

port is replaced with TCPIIP and Gigabit Ethernet. The FC session is terminated at rhe

local gateway/switch and converted to a TCP/IP session via iFCp.

Thus, FCIP and iFCP allow the connectivity of existing FC-SANs using TCP/IP based

networks. The former creates a virtual FC link to send encapsulated FC frames, whereas

the latter replaces the lowerJayer FC transport with TCPÆP and Gigabit Ethernet.

31

Voruganti and Sarkar IVSO1l compared iSCSI with Fibre Channel (FC) and Infiniband

Architecture (IBA). They conciuded that for efûcient iSCSI performance at gigabit wire

speeds, support for framing mechanism is necessary for iSCSI network cards, and support

for zero-copy, framing and interrupt coalescing is necessary if iSCSI is implemented using

commodity gigabit network cards. When SANs are deployed across WANs (Wide Area

Networks), iSCSI is more suitable than FC and IBA protocols because of its flow con-

trol, and dynamic time-out calculation mechanism. The study also suggests the support of

jumbo frame sizes in all three protocols because storage applications usually perform large

block size transfers (4K and 8K).

3.2 Performance Analvsis of iSCSI

Several studies have been done to compare the performance of iSCSI and Fibre Chan-

nel. Lu and Du [LD03] compared the iSCSI with the Fibre Channel for block VO and file

VO over various configurations and concluded that iSCSI performs better in local environ-

ments. Aiken et al. [AGPW03] concludes that iSCSI protocol must be tuned to utilize the

network resources effectively.

Storage Petformance Evaluation Kernel Module (SPEK) tHYO3l is a block level bench-

marking performance evaluation tool for SCSI storage devices. The VO requests are sent

directly to the SCSI laye¡ thus bypassing the file system cache and the buffer cache. SpEK

is reported to be more accurate and efficient than other file system performance evaluation

tools, which usually work in user space. The tool also provides a java graphical user inter-

face for parameter input. Performance metrics such as response time and throughput (VOs

per second, or bytes/second) can be analyzed. Both the average and the runtime values

of the performance metrics can be obtained. Thus, SPEK appears to be an accurate and

efficient benchmarking performance evaluation tool for SCSI devices.

In addition to SPEK, there are several storage systems benchmarking tools, such as

32

PostMark [Kat01], Iozone [CN], Iometer [DSE+], Bonnie++ [cok]. postMark is a file-

system benchmark tool, which addresses the performance evaluation of traffic loads with

smaller files, such as electronic mail and web-based commerce. Another file-system bench-

mark tool is lozone, designed for the performance evaluation of various file operations.

Iometer is an VO subsystem measurement and characterization tool for single and clus-

tered systems. Bonnie++ is a disk VO benchmark tool, which tests for file operations such

as creat0, stat0, and unlink0.

The above studies were kernel level studies to measure and benchmark the iSCSI per-

formance. It is not easy to change the network parameters and study the correlation of

iSCSI protocol with other protocols. Thus, in this study iSCSI is simulated in ns-2 to

facilitate the performance evaluation of iSCSI in IP networks.

3.2.1 Efficient implementation of iSCSI

Current TCP implementations have the problem of making intermediate copies of the data

because data from the user buffers is copied to the buffers in the transmit/receive queues.

Since this problem is quite significant in networks with larger delay-bandwidth products,

Direct Data placement (DDP) [SPRCO4] can be used to avoid extra copying overhead. The

iSCSI PDU header contains data placement information, such as Initiator task tag (ITT),

which DDP can use to place iSCSI PDUs directly into the main memory. Remote Direcr

Memory Access (RDMA) is a copy avoidance technique that uses network interface cards

(MCs) to steer incoming data directly inro user-specified buffers tccyOll.

The iSER protocol [CSE+03], iSCSI Extensions for RDMA, is proposed to provide

Remote DirectMemory Access (RDMA) mechanism foriSCSI. Since RDMA requires the

message boundaries to be known, there is a need for an additional layer to insert message

boundaries because TCP is a stream service with no message boundaries. The Marker PDU

Aligned (MPA) framing layer inserts record boundaries by creating Framed Protocol Data

Units (FPDUs). The FPDUs are delivered by the TCP agent to the MPA receiver. The MpA

JJ

receiver extracts the iSCSI PDUs and delivers them to the DDP receiver. The DDP receiver

places the iSCSI PDUs in the main memory, with no intermediate copying.

He and Yang [HY02] introduced a storage architecture that couples reliable high-speed

data caching with low over-head conversion between SCSI and IP protocols. The stor-

age devices were used to cache the data while the intelligent processing units carried out

caching algorithm, protocol conversion, and self-management functions.

3.3 Summary

Since the deployment and maintenance costs of IP storage are significantly less as com-

pared to the costs associated with the traditional fibre channel SANs, there was a huge

industrial pressure for the standardization of the iSCSI protocol. However, FCIP and iFCP

have also been proposed to leverage existing FC storage systems.

Several IP storage performance evaluation studies have been conducted to verify the

proposition that IP storage is more feasible rather than FC SANs. Consequently, perfor-

mance analysis and benchmarking of iSCSI was performed for various storage systems.

Since numerous network conditions and trafÊc loads are required to study the correlation

of iSCSI protocol with other protocols, the simulation of iSCSI is seen to be highly desir-

able.

Our work is more focused on the simulation of iSCSI within ns-2 to facilitate the in-

vestigation of the tuning of the iSCSI protocol for use with available network resources.

Specifically, we are more interested in the performance of iSCSI within a telecommunica-

tion environment than with iSCSI storase mechanisms.

34

Chapter 4

Simulation

This chapter describes an implementation of the iSCSI simulation in the ns-2 simulator.

4.1 Introduction to Network Simulator (ns-2)

Since simulation based performance evaluation of iSCSI requires a simulation of Inter-

net protocols such as Transmission Control Protocol (TCP), Internet Protocol (IP), and

User Datagram Protocol (UDP), a simulation of iSCSI is implemented in the simulator

ns-2 [FV04]. ns-2 is an open-source event-driven simulator extensively used for TCP/IP

research.

The simulator is written in an object oriented architecture where C++ is used for fre-

quently executed code and OTcl interpreter is used where the code is executed fewer times.

The OTcl also provides the framework for the runtime variation of input parameters to

facilitate the execution of numerous simulation scenarios. Since a C++ class in ns-2 can

be associated with the corresponding OTcl class, the C++ class variables can be bound to

the variables of the corresponding OTcl class. As a consequence, the values of C++ class

variables can be dynamically modified by the modification of the corresponding OTcl class

va¡iables.

Figure 4.1 illustrates a partial OTcl script of ns-2 to simulate data transfer between

two nodes. First, an object of the simulator is created as shown in line 1. The simulator

35

Line 01 seL ns lnew Simulator]
Line 02 #---- - Create Nodes
Line 03 set nodel [$ns nodeJ
Line 04 set routerl [$ns node]
Line 05 set router2 [$ns node]
Line 06 set node2 [$ns nodeJ
Line 07 #---- creaLe links
Line 08 $ns duplex-l-ink $node1 $rout.er1 100Mb 1ms DropTaiì_
Line 09 $ns duplex-link $routerl $rout.er2 10Mb 10ms RED
Line 10 $ns gueue-limit $routerl $router2 100
Line 11 $ns duplex-Iink $router2 $node2 100Mb 1ms DropTail
Line 12 #-------- create transport agent.s
Line 13 set Lcpl [new Agent/rCe/rullrcpl
Line 1-4 set tcp2 [new Agent,/TcP/FultTcp]
Line 15 $ns att.ach-agent $node1 $tcp1
Line 16 $ns at.t.ach-agenL $node2 $tcp2
Line 17 $ns connect $tcp1 $tcp2
Line 18 #------- setup TCP connection)
Line l-9 $tcp2 listen
T,ine 2O Sl-r-nl set. window 100
Line 21 #----- create FTP application]
'r.inê)) <êf frñ lnew Application/FTp]
T.ina ?1 (fÈñ ãl-l-ântr-aaanÈ (l.¡n'l

Yrey geesv YuvF:

Line 24 Sns af 1 0 I' Sf f n senrì ?'l 680 "

Figure 4.1: A basic ns-2 script.

object ns is used to start the simulator and to connect other objects such as nodes, transport

agents and applications. Then, four node objects are created to simulate the two end nodes

and the two intermediate routers, as shown in lines 3 - 6. The nodes ¿ìre connected using

the dupler - li,nk operation of the ns object. Several queue management strategies are

available for node buffers; for example, drop tail queue management is used in the link

from nodel to routerl whereas random early detection (RED) queue management is used

in the link from routerl to router2. The creation and connectivity of nodes are followed

by the creation and connection setup of transport agents as shown in lines 13 - 20. Line

20 is an example of a transport agent parameter adjustment, which illustrates the protocol

tuning provision in ns-2.

Since a traffic source is needed to generate the data to be transferred, an object offile

36

transfer protocol (FTP) application is created as shown in line 22 of Figure 4.1. The FTP

object is attached to the transport agent associated with nodel, thus data can be sent from

nodel to node2. The operation aú of the ns simulator object is used to schedule events for

the simulator. When the simulator clock time is 1.0 seconds , the send operation of the /úp

object is scheduled, which starts the transfer of 71680 bytes, as shown in line 24. Thus a

script for an ns-2 simulation of FTP file transfer is demonstrated in Fieure 4.1.

4.2 The iSC$ simulation classes

The following subsections describe the iSCSI simulation classes. First, the iSCSI simula-

tion classes for the iSCSI initiator and the iSCSI target are described. Secondly, the simu-

lation classes for iSCSI sessions and connections are discussed. Thirdly, the other support

classes for the simulation are described. The support classes describe the state information

for the active commands, the sequences of data transfer, and the iSCSI header. Finally, the

timer handler classes associated with different iSCSI simulated obiects are discussed.

4.2.1, The iSCSI initiator and target classes

The ns-2 Appli,cation class provides the basic functionality for the simulation of traffic

generators and applications as shown in the chapter "Applications and transport agent

API" of tFV03]. Several traffic generators such as exponential, pareto, and constant bit

rate (CBR) are simulated as subclasses of the Appli,cat'ion class. Similarly, applications

such as the telnet application and the file transfer protocol (FIP) application a¡e simulated

as subclasses of the Appli,cati,on class by TelnetApp and FTP respectively. Since iSCSI

is also an application that generates traffic for transport agents, the IscsilnitApp and the

Iscsi'TargetApp are created as subclasses of the Appli,cati,on class to model the iSCSI

initiator and the iSCSI target respectively. Figure 4.2 shows the class hierarchy of the

iSCSI simulation classes.

In ns-2, several applications such as FTP and TelnetApp simulate their packet transfer

37

Figure 4.2: The class hierarchy of the iSCSI simulation classes.

38

by the objects of the Packet class. Since the Packet class provides packet transfer simu-

lation by computing the transfer time from the values of the packet length and the available

bandwidth, there is no real transfer of packets or bytes; the transfer is virtual. On the other

hand, application level data transfer can be simulated by using application-level data units

(ADUs) of ns-2. For example, in the simulation of a web cache application, the ADUs are

used to simulate the transfer of the hyper text transfer protocol (HTTP) tags as shown in

the chapter "Web cache as an application" [FV03]. Since simulation of iSCSI requires the

exchange of header contents between the iSCSI initiator and the iSCSI target, the ADUs

are used to simulate the transfer of the iSCSI protocol data units (PDUs).

Figure 4.3 shows the OTcl script where objects of I scs'iIni,tApp and I scsi,TargetApp

are created and the values of C++ class variables are modified from the corresponding

OTcl class variables. The Iscsi,Ini,tApp and the Iscsi,TargetApp objects are named

as iscsi - i.ni,t and i,scs'i - target respectively. The values of class variables such as

f irst-burst-Iength-, rnar-burst-length-,'immediate-data-, andi,ni,ti,alt2t-canbe changed

from the OTcl script as shown in Figure 4.3.

The associative array object, data, provides the values of the class variables, as shown

in Figure 4.3. The associated values of data can be obtained by modifying rhe OTcl

script or by reading a text file. The logical O-B operation is used to negotiate the value

of i,ni'tialt2t-but the logical AN D operation is used for the immedi,ate-data- negotia-

tson;'immedi,ate -data- and ini,tial t2t - are boolean variables.

Figure 4.4 shows a code segment of the Iscsi,Ini,tApp constructor where the C++

class variables are bound with their corresponding OTcl class variables. Although the same

va¡iable names are used for both C++ and OTcl classes, different names could also be used.

The value shown as cornments at the end of each line is only for documentation purposes

but the same value is also provided as the default value for the OTcl class variable in the

frle ns - def ault.tcl.

39

#------ Create iSCSI initiator/target, objects ---

set iscsi-init [new Application/Iscsi]nitappì
set iscsi-target [new Application/TscsiTargetAppJ

#------ Sefrrn for the iSCSf Initiator

(i <nci -ini i col-

$iscsi-init. set.
(ì c¡ci -init- ca|-
(i q¡qì - i ni t. qoÈ
(i<¡ci -init- cot

#------ .Qcfrrn fnr

$iscsi-target set
(i <¡cì -l- ârñêl- eôÈ

$iscsi-target seL
(i q¡<i -f ârõêf <êl-

$iscsi-target set
(i <¡ci -l-ârdôF côt-

$iscsi-target set

f irs t_burs t._1 ength_ $data (f i rs t_burs t_length)

max_burst_length_ $data (max burst. lengt.h)
rdsl_ $data (rdsl-)

immediate_data_ gdata (immediate_data)
initial 12t $data (initial 12t)

E.ne L5u5I Iarcret

arll-1 (¡l¡t-r /aÁll \

rdsl $dat.a (rdst)
f irst_burs t_I ength_ $dat.a (f i rs t_burst_I ength)

max_burs t_l- ength_ $ da ta (max_bur s t_1 ength)

immediat.e_data_ $data (ímmediat e_daLa)

initial_r2t_ $dat.a (initial_r2t)

max_cmd_sn_ $data (max_cmd sn)

+t- Start the simulation (establish an iSCSI session)

$ns at 0.0 "$iscsi-init. startt'
$ns at 0.0 "$iscsi-target start"

Figure 4.3: A simulation script to create the iSCSI initiator and the iSCSI target simulated
objects.

bind("immediate_dat.a_n, &immediate_data_) ; / / f(true)
bind(f initial_r2t_tt, cinitial_r2L_) ¡ // L (true)
bind('rmax_cmd sn_rt, &max_cmrl_sn_¡; // 7
bind ('lmax_burst_lengLh_", &max_burst_length_) ¡ / / I
bind (rrf irst burst_length_" , &f irst._burst_length_) ; / / e

Figure 4.4: A sample of C++ code to bind C++ class variables to OTcl variables.

40

4.2.2 The iSCSf session and connection classes

The iSCSI sessions and connections are simulated by the Sess'ion and Connection classes

respectively. For example, CmdSN is simulated by the crnd-sn-variable of the simulated

session object, and MarRecuDataSegmentLengúh is simulated by the rdsl- variable of

the simulated connection object. Since multiple sessions can be established between the

iSCSI initiator and the iSCSI target, a linked list of session objects is maintained by each

of the objects, i,scsi, - i,nit and iscsi, - target. Similarly, multiple connections of a session

are simulated by a linked list of connection objects within each session object. Each of

the objects, iscsi - init and'iscsi, - target, contains a start operation, which creates a

Sess'ion object containing a linked list of Connecti,on objects. Figure 4.2 shows that the

connection objects are contained in the session object.

Figure 4.3 and Figure 4.4 demonstrate the setup of login and session parameters. Static

Configuration, a discovery mechanism where each of the initiator and the target knows the

name and the address of the other one, is used for the simulation of the iSCSI discovery

mechanism. Simulation of the negotiation of login and session parameters is done by the

start operations of the iscsi - i.ni,t and'iscsi - target objects. After the execution of the

start operutions, the initiator and the target are at the full feature phase. Hence, the initiator

can send the iSCSI commands to the corresponding target.

4.2.3 iSCSI support classes

TheTCB class models a task control block to store the state information for the active

command in the connection. -It,e TCB object simulates the command parameters such

as CmdSN, ITT, and EDTLby cmd-sn-,,itt-, and edtl- variables respectively. Since

several commands can be simultaneously active, a linked list of TCB objects is maintained

in the connection objects of i,scsi - i,nit arñ i,scsi, -targeú. Figure 4.2 shows thattheTC B

objects are contained in the connection object.

4l

The Transf erConterú class manages the transfer of a sequence of data PDUs. A

write command can be accomplished by several sequences of data PDUs depending on the

TCB object's edtl- and the connection object's rdsl,values. Hence, eachTCB object

contains a linked list of Transf erContert objects to simulate several sequences of data

PDUs. Figure 4.2 shows that the Transf erContert objects are contained in the TC B

object.

The Iscsi,Header class is used to simuiate all types of iSCSI headers such as com-

mand, data, R2l and response. The Basi,cHeaderSegment fields such as Opcode, DataSeg-

mentlength, and Initiator Task Tag are simulated by op-code, data-segment-Iength, and

iúú respectively. Furthennore, the opcode-specific fields such as ExpectedDataTransfer-

Length, DesiredDataTransferlength, BufferOffset, CmdSN, TargetTransferTag, and StatSN

are simulatedby edtl,buf f er-of f set, crnd-sn,ttt, ddtl, and stat-sn respectively.

4.2.4 Timer Handler classes

The simulation of iSCSI uses several timer classes such as SendT'imer, CmdT,i,mer.

EndTi,mer, TCTi,mer, NopoutT'imer, and NoplnTimer; all timer classes are sub-

classes of theTi,merHander class.

The initiator object contains the SendTi,mer object to simulate the arrival of SCSI

commands to the initiator. The arrival of a SCSI command is simulated by scheduling

the SendTimer object to expire on the arrival time of the associated SCSI command.

The SendTi'rner object's resched operation schedules the command arrival event and its

erpi,re operation calls iscsi, - 'init's send,-cmd,operation to initiate the SCSI command.

Each TCB object of the target contains CmdTi,mer and EndTi,mer objects. The

Cmd'Ti,mer object provides a timeout mechanism to start the data transfer. When the data

transfer is not started within the specified time limit, the CmdTi,mer objecttimes out and

the command is retransmitted. The EndT'imer object ensures the command completion.

If the response of the command is not acknowledged within the specified time limit, the

42

EndTi,mer object times out and the response is retransmitted.

TheTransf erContert object contains theTCTimer object to ensure that the transfer

of the sequence of data PDUs is completed within the specified time limit.

The initiator object contains the NopOutTi,mer object that sends a nop-out PDU if no

iSCSI PDU is sent from the initiator object within the specified time limit. Similarly, rhe

target object contains the NopInTi,rner object that sends a nop-in PDU when no iSCSI

PDU is sent from the target object within the specified time limit.

4.3 SimulationScenarios

This section describes the simulation of few features of the iSCSI protocol. First, the

simulation of sending multiple commands is described. Then the simulation of a write

command is discussed. Finally, the illustration of the simulation of the write command is

provided.

4.3.1 Simulation of multiple commands

The simulated iSCSI initiator object, i,scsi - init, is allowed to send multiple commands

depending on the current values of mar-crnd-sn-and erp-cmd-sn-received from the sim-

ulatediSCSltargetobject,'iscsi-target-Theiscsi,-targeúobjectincreases erp-cmd-sn-

when the expected command atrives, and increases mar-cmd-sn- when the target is ready

to receive an additional command. In the iSCSI simulation, mar-cmd-sn- is immediately

increased on the command completion; however, command processing time can be simu-

lated by delaying the mar-cmd-sn- increase. The maximum number of commands that

can be sent is given by the expression T'no,r-c:nd-sn- - enp-cmd_sn_ * 1, which is also

known as a command window. For example, if mar-cmd-sn-is 10 and erp-cmd_sn_is T,

then the command window is 4, which means that'iscsi, - ini,t can send 4 more commands

to 'iscsi, - target. If the command window is greater than zero, then commands waiting

in iscsi' - i'ni't's command queue can be sent to i,scsi - target when either of the follow-

43

ing two events occur at the initiator: 1) the send-crnd operation of iscsi, - ini,t is called,

which indicates a new command has arrived at the initiator; or 2) there is an increase in

max-cmd-sn- received from'iscsi - taroet.

4.3.2 Simulation of WRITE command

The data for WRITE command can be transferred as unsolicited and/or solicited data.

Simulation of unsolicited data transfer

Although command processing begins in full feature phase, the immediate and,/or unso-

licited data transfer is negotiated during the login phase. Thus, the simulated iSCSI ini-

tiator object, iscsi - ini,t and the simulated iSCSI target object, iscsi - target, have

already agreed on values of i,mmediate-data-, i,ni,ti,alt2t-, f,irst-burst_length_, and

mør-burst-Iength- even before the beginning of the WRITE command.

lf i'scsi -'in'it's i,ni,ti,alt2t-is FALSE, the initiator object can send unsolicited data

PDUs to the target object. The sum of all data-segment-length's of all unsolicited data

PDUs must be less than the f irst-burst_Iength-value.

A portion of unsolicited data can be sent with the V/RITE command as immediate data.

When iscsi - i,nit's'immedi,ate-data- is FALSE, no data is sent with the command. In

thiscase,thedata-segment-Iengúh-variableof the Iscs'iHeaderobject, header,issetto

0. Howeve¡ If immediate-data- is TRUE, the value of data-segment-length- variable

is set to the amount of data being sent with the command. The amount of immediate data

cannot be greater than the rdsl vahte of the connection object.

The final-bit of the header object is set to TRUE when there is no more data to

be sent for that sequence of data PDUs. The f i,nal-'bzú is associated with one sequence

of data PDUs. If the total data is transferred in five sequences, the last head,er of each

sequence will have its fi,nal-biú set to 1. The TCB object for the command creates the

Trans f erC ontert object to manage the sequence transfer. The Trans f erC ontert object

44

creates the object of TCTimer, which ensures the sequence transfer completion in the

specified time limit.

Simulation of solicited data transfer

The simulated iSCSI initiator, iscsi - ineú, sends a sequence of data-out PDUs for each

R2T received from the simulated iSCSI target, 'iscsi, - target. T\e TC B object creates

the Transf erContert object for each sequence of data-out PDUs sent to the target. The

amount of data sent in each sequence is mar-Aurst-length- bytes except for the last se-

quence, where the amount of data is the remaining bytes. The data-segment_lengúh_ field

of each data packet is determined by the connection object's rds|. ,iscsi - i,ni,t maintains

theTCB object until the command response is received from the target.

4.3.3 Illustration of the WRITE command simulation.

The simulated iSCSI initiator, i,scsi - in'it, sends a WRITE command to the simulated

iSCSI tar1et, iscsi, - target, where edtl is set to 168 KB. The parameters negotiated be-

tween the initiator and the target as follows: f irst-burst-length-=32K<B,mar-burst_length_

= 64K8, i'mrnediate-data-= True, i,niti,alt2t-= False, connection object's rd,sl = lKB.
T\elscsi,Header object, header,simulatestheheaderofiSCslPDUs. Since immedi,ate_d,ata-

is True, i,scsi,-i,nit sends immediate data with the command PDU. Similariy, as i,ni.ti,al_r2t_

is False, the command PDU is followed by 21 additional data-out PDUs. The fi,nat_bit

field of header of the last data-out PDU is set to True. Since the header's edtl is less than

f i,rst-burst-length-, the target will send tfuee R2Ts to trigger the initiator to send the re-

maining data (168K-32K= 136K). The initiator will send a sequence of data-out PDUs for

each R2T it will receive from the target. Each of the data sequences that will be triggered

by the first two ,827s will bemar-aurst-length-(64 KB) lengrh, 44 pDUs. The third A2?

requires 6 data-out PDUs. The above data transfer example is summarized as follows:

45

PDUs Transfer¡ed Bytes Transferred
Unsolicited Sequence

For the first R2T

For the third R2T

When the target object receives all the data-out PDUs, the target object increases its

stat-sn- variable, sends a response PDU, and can increase the rnar-crnd-sn-to allow the

initiator object to send more corlmands. The initiator object acknowledges the sú¿ú-sn- by

increasing the value of erp-stat-sn-.

4.4 Simulation of Error Recoverv

The numbering of iSCSI PDUs is used to recover the missing and comrpted PDUs. The

receiver object maintains a linked list of missing packets. For example, iSCSI target's

lisú is the linked list of missing commands. Similarly, the iSCSI initiator's li,st is the list of

missingresponses; theTransf erContert object's lisúisthelistof missingdataPDUs; the

initiator's TC B object's list is the list of missing R2Ts. In addition to l,ist, the simulated

objects contain erp varÌable. The erp vaÅable indicates that each PDU with sequence

number less than erp has been received. Since iSCSI has the provision of direct memory

access (DMA), where data from the network interface card can be directly transferred to

the application memory buffers, the out-of-order PDUs are delivered to the higher layers

without any temporary storage. Hence, there is no need to simulate the storage of out of

order PDUs. Finally, the mar variable of the simulated objects indicates the maximum

sequence number received so far.

4.4.1 Error Recovery Algorithm

Figure 4.5 describes the algorithm for the recovery of missing or comrpted PDUs in the

iSCSI simulation. Initially, the missing list, lzst, is empty and the values of erp and mar

are 0 and - 1 respectively. If all the PDUs arrive in order then li,st remains empty. Although

46

the values of erp and mar are increased accordingly, erp will remain greater thart mar. lf
the out of order PDU is received, the error recovery algorithm will be activated and mar

will become greater lhan erp, as shown in case 1 of Figure 4.5 where r) i,. The error

recovery algorithm is active when max is greater than erp. If the expected PDU arrives

and error recovery algorithm is active, there is no change in the value of rnar. Howeve¡

the value of erp is modified as shown in Figure 4.5. If any missing PDU arrives, r.nar

and erp remain same but list is modified because the received PDU is removed from the

li,st. If the sequence number of the received PDU is greater than mar, the value of mar is

changed to the received sequence number and li,st is also modified accordingly, as shown

in case 2 of Fisure 4.5.

4.4.2 Simulation of Error Recovery for the READ command

Figure 4.6 shows an example of the recovery of missing data-in PDUs for a READ com-

mand. It is assumed that the target requests a data-ack when 4 in-order packets a¡rive at the

initiator. The target sends data-in PDUs with sequence numbers 0' . .5. When the initiator

receives all data-in PDUs, the initiator will send data-ack of 4, mar will be changed to 5,

erp will be changed to 6, and list wlll remain empty. When the initiator receives a data-in

PDU with sequence number 9, the initiator will request retransmission of missing PDUs

by sending a SNACK PDU for the missing data-in PDUs from 6 to 8, the value of mar

will be increased to 9, the value of erpwill remain as 6, the /isú will contain sequence

numbers from 6 to B. When the initiator receives 10- - -12, mar wiTlbe changed to 12; erp

will remain as 6; list will remain as 6, 7,8. In this case, a data-ack PDU will not be senr

because there are missing PDUs. When the initiator receives 16, mar will be changed to

16, erp will remain as 6, the li,st will be increased to contain 6, . . . 8, 18, . . . 1b.

When the initiator receives 14, mar will remain as 16, erp w|Ll remain as 6; the lesú

will be reduced to contain 6, .' .8, 13, and 15. When the initiator receives the expected

packet 6, mar will remain as \6; erp will be increased to 7; li,st will be reduced to contain

+t

Initial condition: erp : 0; mar - -1; and l¿sú : {}.
Pre-condition: erp: s;i ffLar: sjl and i < j.

Case L l¿st: {}
IF r ::'i
€ïp:: S¿q1i

lFr>i,
Let r : Çi and without any loss of generality i < j < q.

rnar :: sqi
list :: {"¡*r, sj+2,. ' . , sq_2trn-r}.

END IF

Case 2 l'ist: {s*rs^+u...r sn-1r sn*tr' .. ,so_t,s.p},
where'i<m<n<p<j.

IFr::i
eTp i: Sn:

IFmlr<p
Let r : o; and without any loss of generality n < o < p.
list :: Iist - {s"}
l'ist: {t*rt**rr'.'¡Sn-ttSn*r¡... tSo_t rSo*1 r

..- rSp-1rSp}.

IFr>p
Let , : q: and without any loss of generality p < j < q
fnÙf :: Ss',

l,ist :: {S*, S*+t, ' . . r Sn-l r Sn¡tt .. . , Sp_t r Sp¡ S¡+t, S j+2, . . . , Sq_2tsq_l}.

ENDIF

Figure 4.5: The error recovery algorithm used in the simulation of er¡or recovery of missing
PDUs.

48

Remarks Received max exp Iist
Initial Values -I 0)
Receives in-order PDUs
Sends DataACK 4.

0, 1, ..., 5 o

Sends SNACK for 6 - 8. I I o 6,7,8Ì
Receives in-order PDUs
DataACK is not sent.

10, 11 and 12. T2 o 6,7,8

Sends SNACK for 13 - 15. 16 16 o t6, 7, g, 13, 14, 15
Receives the missine PDU. t4 IO o 6,7,8, 13, 15Ì
Receives the expected PDU. 6 l6 7 {7,9, 13, 15
Receives all the PDUs exceDt one. 7,8 and 15 l6 13 { 13}
Receives the last missins PDU.
Sends DataAck 17.

13 16 17

Figure 4.6: Error Recovery Processing of Data-In pDUs for a READ command.

7,8,73, and 15. When the initiator receives 7, 8, and I5, mar will remain as 16, erpwill be

changed to 73:' list will be reduced to contain onty 13. Finally, when the initiator receives

13, mar will remain as 76; erp will be changed to 1z; and list wlllbecome empty.

4.5 simulation of Message boundaries within TCp byte
stream.

In iSCSI over TCP model, an additional layer is needed to insert message boundaries be-

cause TCP is a byte sream protocol with no message boundaries. The iSCSI application

layer sends the iSCSI PDU to the Markers PDU Aligned (MPA) framing layer. The MpA

layer assembles one or more iSCSI PDUs into one Framing Protocol Data Unir (FpDU).

MPA peers exchange FPDUs using TCP and deliver iSCSI PDUs ro rhe associared iSCSI

initiator/target.

MPA layer is implemented by MpaIni,t anð MpaTargeú classes, which are subclasses

of the Appli'cati,on class. Figure 4.7 shows the creation of the Mpalni,t object, mpal and

the MpaTarget object, mpa2. mpal and mpa2 are attached to the iSCSI initiator object,

'iscsi' - i,ni't and the iSCSI target object, 'iscsi, - tar get, respectively. The TCP objects úcp1

andtcp2 are attached with MPA objects mpal and mpa2 respectively, as shown in Figure

49

#------ ---- Create MPA ob"iects

set mpal [new Application/Mparnit gtcpl gdata(out.file)]
set mpa2 [new Applicat.ion/MpaTarget. gtcp2 gdata(outfile)]

$mpa1 connect $mpa2

#------- Attach MPA objects to the iSCSI object.s

$mpa1 attach-uIp giscsi-init
$mpa2 attach-uIp $iscsi-t.arget

Figure 4.7: A simulation script to create Marker PDU Aligned (MPA) objecrs

4.1.

Since there is no transfer of actual packets in ns-2, the FPDU headers are stored in a

queue that is shared by both MPA peers, rnpal and rnpo,2. The target's MPA object , rnpa2,

stores the bytes received from its associated transport agent, tcp2. When the number of

bytes delivered from tcp2 arc equal or greater than the size of the FPDU then the next

available FPDU is retrieved from the queue. Since TCP is a reliable transport agent, all the

FPDUs are delivered in order. mpa2 extracts the iSCSI PDUs from the received FPDU and

delivers the iSCSI PDUs to the attached iSCSI target object,'iscs'i - target. Consequentl¡

the insertion of iSCSI message boundaries in the TCP byte steam is simulated in ns-2.

4.6 Simulation of iSCSI over UDP

The simulation of iSCSI over the User Datagram Protocol (UDP) is implemented by MpaIni,tU d,p

and MpaTargetUdp which are subclasses of Mpalni,t and MpaTargeú respectively. The

objects of MpaIni,tUdp and MpaTargetUdp are attached to the iSCSI initiator and tar-

get objects respectively. The FPDUs created by MPA objects, rnpa - ini,t - udp and

rnpa - target - udp, are transferred using UDP. Since message boundaries are not lost

in UDP data transfer, there is no need to simulate temporary storage buffers to assemble

FPDUs, as the temporary buffers were required for the iSCSI over TCP simulation.

50

Since the information regarding application memory buffers is known in the iSCSI

PDUs, the PDUs can be moved directly to the application memory buffers. Therefore,

there is no need to buffer the out-of-order iSCSI PDUs transferred by the UDP agent. As

IIDP is an unreliable transport protocol, the iSCSI error recovery mechanism is used to

recover the lost or comrpted iSCSI PDUs.

4.7 Tþaffic Generation

The SCSI commands for the iSCSI initiator can be simulated by probability distriburions

and trace files.

4.7.1 ProbabilityDistributions

The SCSI commands can be generated by either an arbitrary distribution of probabilities

or a well defined probability distribution function. For command sizes, the arbitrary dis-

tribution of probabilities is commonly done in benchmarking and performance evaluation

experiments. For example, [HY03] describes the probability mass function (pmf) of the

command size as follows:

Px(r):
0.1, r :8KB
0-2, r : l6KB
0.3, r :32K8
0.4, r:64K8

The cumulative distribution function (CDÐ is defined as follows:

Fx(t) :Ð,.rpx(r), -oo < ú < oo (4.2)

Figure 4.8 shows the probability disribution function of the command sizes described

in Equation 4.1.

The interarrival times between successive SCSI commands can be considered as ex-

ponentially distributed. The memoryless property of the exponential distribution implies

(4.r)

51

.t

0.9

0.8

X
><

LL

0

o.4

0.

0.2

0.1

0 8 16 32

Figure 4.8: Cumulative distribution function (CDF) of the command sizes.

that the time to wait for the arrival of a new SCSI command is independent of the time

being spent in waiting for the command arrival. The exponential distribution function is

described as follows:

F(r\:{ \-"-^"', o(r<oo
L u, otherwi,se Ø3)

The probability density function (pdf) of the interarrival times is given by the the fol-

lowing equation:

(4.4)

4.7.2 TFace Files

Trace files containing VO traces are useful in system verification and performance evalu-

ation. The same trace file can be used for several simulation experiments to illustrate the

impact of several parameters for similar load.

¡/ \ (
^"-^',

ø>o/(rJ:t o, otherw,ise

I

I

I

52

0,20941264,8 1 92,W,0.55 I 706,Alpha/NT
0,20939940, g 1 92,W,0.5 54041
0,20939909,9 I 92,w,0.5 56202
1,3 43 628 8, I 5 87 2,W, 1 .25 07 20,0 xI 23, 5 . 9 9, tes t
1,3435999,5 12,W 1.609959
1, 3435 8 89,5 12,W,1.6347 6l
0,1 69 53 60,409 6,R,2.3 46629

Figure 4.9: Records of a trace file

The Storage Performance Council (SPC), http://www.storageperfonnance.org, provides

several trace files that can be used as input to simulation experiments to measure system

performance. The trace files are available athttp:lltraces.cs.umass.edu/storage/. A trace

frle, Fi,nanci,all.trt, which records VO traces from OLTP (Online Transaction Process-

ing) applications from two large financial institutions is used in the simulation experiments.

Figure 4.9 shows few records from a trace file, where each trace file record contains the fol-

lowing fields:

1. Application Specific Unit (ASU): If there are n logical units (LUs) rhen rhe number
may vary from 0 to n - L.

2. Logical Block Address (LBA): The block address for the data transfer.

3. Size: The number of bytes to be transferred for this command.

4. Opcode: The type of command, R or W.

5. Timestamp: The relative time in seconds starting from the first record of the trace
file.

6. Optional: More optional fields can be added to the trace file.

Furthermore, trace files can be created using probability distributions or any other user

defined inputs. Several trace files are created using Poisson distribution and other empirical

user defined inputs.

53

4"9 Incorporating Errors in iSCSI Simulation

The simulation of iSCSI provides two types of errors: deterministic and stochastic. The

former is used for protocol verificatìon by introducing errors in specific iSCSI pDUs. The

latter is used for performance evaluation where effors are introduced based on a given bit

error rate, BER.

Deterministic errors are generated using a uniform probability distribution. The prob-

ability error rate for all types of iSCSI PDUs can be given in the Tcl script. For example,

if the error rate of data-out PDUs is 0.1 then every tenth data-out PDU will be in error.

Similarly, if the error rate of R2T PDUs is 0.05 then every twentieth R2T PDU will be er-

roneous. Hence, the deterministic error mechanism generates errors in the desired packets.

Since the output of the deterministic errors is already known, the simulation of the protocol

is verified by comparing the simulation output with the expected output.

The stochastic errors are generated from the bit error rate, BER, which is given from

the Tcl script. Since all iSCSI PDUs are transfer¡ed using the the same channel, the same

BER is used for the er¡or generation of all the packets. If the number of bits in each packet

is B and the bit error probability is PB7R, the packet error probabilit!, Ppo"r".t, is computed

as follows:

Paclcet Error ProbaAiti,ty, Ppactcet - 1 - (I - pBuà" (4.s)

The generation of non-deterministic errors is illustrated as follows: if B : 12000

(1500 x 8) and PBøa : 10-7 theî Ppacreet : 0.0012. These non-deterministic errors

facilitate the iSCSI performance evaluation for different network conditions.

4.9 Verification of the Simulation

The verification of the iSCSI simulation is performed by comparing the simulation output

with the expected output. The verification comprises the following scenarios:

54

. Without errors

o With errors

o Without any underlying lower layer protocol

First, the sample output files are created to verify the simulation output. Several test

cases are developed for each of the simulated protocol features such as:

o Immediate data transfer

o Solicited data transfer

o Unsolicited data transfer

o Combined solicited and unsolicited data transfer

o Several sequences of a write command (which means multiple R2Ts)

o Multiple write and read commands

o The command window

o Phase collapse (the response is given in the last data-in pDU)

o Nop In/Out mechanism

Secondly, the er¡or recovery mechanism is verified by generating the deterministic er-

rors. Since the erroneous packets are known in the deterministic error mechanism, the

expected output can be obtained before the simulation. Hence, the simulation of error re-

covery mechanism is verified by comparing the simulation output with the expected output.

The test cases for the error recovery mechanism verification are as follows:

o Command recovery

55

o The target's recovery R2T mechanism, which recovers missing data-out pDUs.

o The initiato¡'s SNACK mechanism, which recovers missing R2Ts, responses, and

data-in PDUs.

Finally, the protocol features were verified in the absence of other lower layer proto-

cols. The iSCSI initiator and the iSCSI target were directly connected to verify the simula-

tion of iSCSI protocol features without any effect from the lower layers. A constant delay

factor was used to simulate the data transfer time.

Thus, the iSCSI simulation is verified by generating several test cases to compare the

simulation output with the expected output.

4.I0 The protocol features not simulated

Although the iSCSI simulation includes most of the protocol features such as multiple com-

mands per connection, error recovery within command, solicited and/or unsolicited data

transfer, and phase collapse, the protocol feafures associated with other iSCSI related pro-

tocols such as discovery, authentication, task management functions are not implemented.

The above features are ignored because their simulation is not essential for the performance

evaluation of iSCSI for IP storage and transport protocols.

Furthermore, protocol features such as multiple connections per session, processing

overhead, and disk transfer time are also not simulated. Although the above features can

be helpful for more accurate performance evaluation, the iSCSI simulation is simplified by

avoiding the simulation of these features.

4.ll Summarv

A partial implementation of an iSCSI simulation within ns-2 is presented. This chapter

has provided the details of classes , data structures, message passing between objects of

56

different layers, and the simulation of error recovery mechanism. Errors can be simulated

by deterministic or stochastic approaches and the SCSI commands can be obtained from

a trace file or from a probability distribution function. The iSCSI simulation can be used

for performance evaluation of storage systems for various network conditions and several

transport layer protocols.

57

Chapter 5

Performance Evaluation

This chapter provides a performance evaluation of the iSCSI protocol using its ns-2 simu-

Iation.

5.L Performance Metrics

The following subsections describe the performance evaluation metrics. First, the response

time of a command is described. Secondly, throughputs based on commands and data are

explained. Finally, the bandwidth utilizarion is discussed.

5.1.1 Response Time

The response time of a command is an aggregate of several components. Figure 5.1 iden-

tifies the most significant points in the timeline of a command completion. The time ú1

is the time when the iSCSI initiator receives the command from the SCSI initiator. The

command may be immediately processed or queued depending on the size of command

window. Recall that the command window is described by the expression MarCmdSN -
ErpCrndSN + 1. The time úz is the time when the iSCSI command is sent to the targer.

The target receives the command at time ú3. The target will immediately start process-

ing the command. Since command sequence numbers (CmdSNs) are session wide, Cmd-

SNs in a connection are not necessarily contiguous. Consequently, a hole in the command

58

Initiator
Receives
Comma¡d

Initiator
Sends
Command

Target
Receives
Command

Initiator Target
Receives Receives
Response Response Ack.

Figure 5.1: Response Time Definition

sequence numbers does not indicate any missing command PDUs. The timeout mech-

anism at the initiator detects the missing/comrpted command PDUs and retransmits the

missing/comrpted commands. If the command is a WRITE command, the target will send

one or more RzT request packets depending on the size of the command and the state of

the target. If a READ command is received, the target sends data-in PDUs. The target

can start sending data-in PDUs immediately or with some delay depending on its current

available resources. The resource allocation time and the time between successive data-in

PDUs are ignored because their values are negligible as compared to other values of time.

The target immediately sends a response PDU on the command completion.

The initiator receives the response from the target at time ta. '[he initiator then sends

the acknowledgement of the response that is received by the target at time ú5. The response

time from the initiator's perspectiveista-fi. The target will release any allocated resources

at time ú5. The time intervals during command completion may be described as follows:

l. tz - ú1: The command waits in the queue at the initiator until the target increases the
command window size.

2. ts-t2: The time required to transfer the command. The average time can be reduced
by sending several iSCSI commands in one TCP segment.

3. ta - ú3: The time required to transfer the bytes in response to the command.

4. ts - ú¿: The time required to send the response acknowledgement from the initiator
to the target.

The command completion time for the iSCSI protocol can be described by the follow-

ing equation:

s9

T(S) : ¡ç5" (5.1)

After taking log on both sides of Equation 5.1 we get the following equation, Equation

5.2:

IogT:logk*alogS (s.2)

In Equation 5.2,T is the time for the command completion; S is the size of data load,

which is called ErpectedDataTrans f er Length in the iSCSI protocol; k is a constant pro-

tocol overhead determined by the protocol parameters such as R2Ts, immediate andTor un-

solicited data transfe¡ FirstBurstlength, MaxBurstlength, MaxRecvDatasegmentlength;

and a is a critical exponent, which is a function of network conditions, protocol parameters,

and data source.

Figure 5.2 describes the experimental setup to observe the response time variation for

different values of ErpectedDataTransf erLength. The response times for different sim-

ulated command sizes are shown in the graph of Figure 5.3, where the response time in-

creases no more than linearly with a linear increase in the command size, as was expected

from Equation 5.2.

Figure 5.3 shows that the graph is basically sub-linear or linear, then there is a sharp

increase in the response time and then the graph is again linear. Because immediate and/or

unsolicited data sent with the command is limited to Fi,rstBurstLength bytes while the

remaining data must be sent only after receiving an R2T PDU from the target, the dis-

continuities or sharp increases a¡e observed in the command response times. If the target

sends all R2Ts at the same time, the initiator has a choice to send all data-out PDU either

at the same time or with some delay. The simultaneous transfer of large number of data-

out PDUs will result in intermediate buffers overflow, causing retransmissions of transport

layer PDUs. In the above experimental setup, the buffer-queue-limit was 500 packets and

60

r\
_/
Initiator Target

MaxRecvDataSegmentlength = 8KB
FirstBurstlength = 64KB

MaxBurstlength = 64KB

EMSS (TCP Effective Maximum Segment Size) = 1500 Byres

Propagation Delay = 10 mílliseconds

10 Mbps | 100 Mbps | 1000 Mbps

Figure 5.2: An experimental setup for the iSCSI initiator and the iSCSI target.

the TCP EM SS was 1500 bytes, resulting in 750 KB buffer capacity. Hence, when the

cumulative size of simultaneously transferred data-out PDUs was greater than 750 KB, the

packet overflow was observed, resulting in sharp increase in the response time.

Figure 5.4 shows the effect of changing the size of the buffe¡ which is at the initiator

for the link between the initiator and the target. The size of the buffer varies from 100 to

1000 packets. There is a spike when the buffer size is 100 because a large number of data-

out PDUs are sent to the transport agent causing packets to be dropped at the node buffer,

and the dropped packets must be retransmitted by the transport agent. Since the buffer size

of 1000 is large enough to hold all the packets, there is no spike in the curve.

5.1.2 Throughput and Utilization

The throughput and utilization are metrics to measure system performance. The observa-

tion interval during simulation is ?, the number of commands that arrive in the interval is

denoted by ,4, the number of commands completed is denoted by C, the total number of

bytes sent is ,L, and the bandwidthis BW - The command throughput X", the data through-

pat X¿, the utilizationU and the average command arrival rate À are defined as follows:

61

103

6
c
o(),
E 10'

0)
E
tr-
o
3 loo

Ø
q)
tr

ioo

E
o)
.N
G

o
Stoo
o

.N

l
10'

lot 'ro" .too rot rou
Expected Data Transfer Length (EDTL), KB

Figure 5.3: Response time vs Expected Data Transfer Length.

1o"

10' lo' io"
Expected Data Transfer Length (EDTL), KB

'to -

1ouroo

'* 100 Mbps
+10

**x,x
&"êxre-*-

#'-o""**-
I

I

-;*¿d

Figure 5.4: Utilization for different buffer sizes.

10-

102

-Â- 1000Mbps
-+- 1ooMbps

0)
N
õ 10'

z

(ú ,u
.N

f

'to -L
100 10-1or 102 103 104 105

Expected Data Transfer Length (EDTL), KB

Figure 5.5: Utilization Vs Expected Data Transfer Length.

Comrnand Throughput, X" : Comrnands Completed _ C
ti,me

Data Throughput, X¿: Total nurnber of bytes

ti,me

Uti,li,zation,U -
Throughput
Bandwi,dth TxBW

LIT :
BW

(s.3)

(s.4)

(5.5)

(s.6)

T

T

X¿

BW

A . tD, , Numberof Arri,uals AArrzuo,lHo,te.^:W:
T

Figure 5.5 shows the utilization of the bandwidth for the experiment shown in Figure

5.2. T1ae utilization increases as the size of the data increases. The utilization of l\Mbps

is the highest as compared to 1000Mbps. T\e utilization of \\Mfus is the first one ro

saturate, followed by l)}Mbps. The bandwidth of I000Mbps does not safurate because of

63

Number of commands Size of each command

Figure 5.6: A set of different input commands with the same total number of bvtes.

the ErpectedDataTransf erLength range chosen for the experiment.

5.2 Command windo\ry size

Figure 5.6 illustrates a set of different input commands where although the number of com-

mands and thei¡ sizes are varied but the total bytes to be transferred remain fixed at B¡M B.

Figure 5.7 shows that, although the number of commands is increased, there is no change

in the system performance as long as the command window size is greater than the maú-

mum number of simultaneously active commands. A straight line of zero slope is obtained

when the command window size is greater than the maximum number of simultaneously

active commands. However, when the command window size is fixed at 8 and the number

of commands is increased, the slope is zero while the number of commands is less than or

equal to B and then the throughput drops linearly with the linear increase in the number of

commands.

Figure 5.8 shows the effect of varying the command window size on the throughput.

As expected one can improve the response time by adjusting the command window size.

Also evident is the effect of diminishing returns when the command window becomes

unnecessarily large. The command throughput reaches the maximum value when command

window size is 30, thus any further inc¡ease in the command window size will not yield

any benefit. The system parameters for the simulation experiment are as follows:

64

Ð
0)
.N
(ú

E
oz
=
-c
Jo

t--

10

Number of Commands

Figure 5.7: Throughput for varying number of commands with constant data payload.

c M ar Recu D ataS egmentLength=l 500 Bytes

Fi,rstBurstLength = 64 KBytes

MarBurstLength = 64 KB

Bandwi,dth=l000 Mbps

o EM SS = 1500 Bvtes

o Propagati,onDelay = 10 milliseconds.

The details of the trace file used in the experiment

= 1919.74 seconds; number of requests = 100000; and

Bvtes.

are as follows: observation interval

total bytes requested = 871,516,160

65

.N

z
=o-

-cF

t< â^ aÃ

Command Window Size

Figure 5.8: Throughput and Command Window Size.

5.3 Bit Brror Rate and Throughput

Figure 5.9 shows the graph of the throughput variation as the bit error rate increases. It

should be noted however that iSCSI error detection is effective in detecting packet errors

and recovering from them. Under normal operating conditions with a BER on the order of

10-e the impact on the system performance is minimal.

5.4 iSCSI oYer UDP

The iSCSI over UDP is compared with iSCSI over TCP in error free environment. The

packet loss can only occur because of buffer overflow. The experimental details are follows:

o bandwidth=lO0MB

o propagation delay=lQ milliseconds

o queue-limit at the nodes=1000 packets

66

(l) ôÂN -'-:
oz

o)
f

_c
f-

0.3 0.4 0.5 0.6 0.7
Bit Error Rate (BER)

Figure 5.9: Throughput and Bit Error Rate (BER).

o M ar Recu D ataS egmentLength : 944bAtes

o MarBurstLenoth:64K8

o Fi,rstBurstLenoth : 64K B.

Figure 5.10 shows that UDP performs better for shorter values of EDTL. Howeve¡

the performance of UDP was drastically degraded for higher values of EDTL. Figure

5.10 shows a huge jump in IIDP response times, from 0.1195 seconds to 20.0445 sec-

onds, when EDTL was increased from 1 MB to 2 MB. The huge jump was because the

Transf erContert timeout value was 10 seconds and the iSCSI error recovery mechanism

was not activated until the timeout was fired. If the timeout values are not well chosen. the

performance can be severely degraded.

Figure 5.11 shows that suitable TransferContext timeout values can improve iSCSI

performance. The performance crossover point between UDP and TCP is increased to 8

67

EDTL
KB

TCP
sec

UDP
sec

I 0.07 0.02

10 0.1106 0.0208

100 0.17411 0.0431,4

i000 0.2716 0.1195

2000 0.3458 20.0445
3000 0.454 30.0493
4000 t.622 40.054
5000 1.86 50.0588

6000 1.928 60.063s

7000 2.036 70.0681

8000 2.r04 80.0726
9000 2.2t2 90.077

10000 2.281 100.081

20000 3.t62 200.ttg
30000 4.0436 310.081

Figure 5.10: Response times for TCP and UDP for different values of EDTL.

MB as compared to 1MB, which was obtained in Figure 5.10. The iSCSI TransferContext

timeout value in case of UDP was 0.1 second but the value was changed to 1 second for

TC P. If the timeout value of 0.1 seconds is also used for TCP, iSCSI performance will be

severely degraded because iSCSI effor recovery mechanism will interfere with TCP error

recovery, resulting in more redundant retransmissions leading to more buffer overflows.

5.5 Summarv

Performance evaluation is done for various parameters of the iSCSI protocol. The results of

the simulation experiments show that the iSCSI protocol can perform quite well if parame-

ters such as the command window size, the amount of unsolicited data, and timeout values

are properly tuned. Recall that data is transmitted in sequences of packets, one sequence

for each corresponding R2T packet. As expected, sequence-based transmission without

proper regard for network conditions can introduce spikes or burstiness in the traffic. Er-

68

EDTL
KB

UDP
seconds

TCP
seconds

1000 0.1438 0.256r
1500 0.1861 0.3000
2000 0.2484 0.3438
2500 0.2901 0.3878
3000 0.3530 0.4315
4000 0.4576 0.5193
s000 0.562r 0.6070
6000 0.6670 0.6947
7000 0.7712 0.7824
8000 0.8758 0.8701
9000 0.9804 0.9578
10000 1.0849 1.0455
10500 r.1472 1.0893
10600 1.1482 1.0981

Figure 5.i1: Response times for TCP and UDP where the TransferContext timeout value
for UDP is 0.1 seconds and the TransferContext timeout value for TCP is 1 second.

ratic transmission behavior can be avoided by proper pacing of R2T packets.

69

Chapter 6

CRC Errors and iSCSI

This chapter addresses potential error control redundancy that may be inherent in running

iSCSI over wide area IP networks. The iSCSI standard recommends the use of a 32-bit error

control CRC on iSCSI data frames of, typically 8 KBytes. In a similar manner the TCP

transport layer provides a TCP 16-bit checksum on each TCP data packet of, typically 1500

bytes, and the Ethernet physical layer provides a 32-bit CRC on each frame, again typically

1500 bytes. In addition to data packets, there a¡e approximately half as many control

frames of minimal length, typically 64 bytes in a given iSCSI session. The probability of

data and control frames or packets escaping error detection is discussed in this chapter and

alternative mechanisms that may be required to ensure high data integrity are suggested.

Although the context of the present discussion is iSCSI, the analysis of the CRC be-

havior during its transient toward asymptotic behavior applies equally well to all systems

where CRCs are deployed.

6.1 Introduction

A simplified view of the Internet has packets being shunted between routers using Ethernet

as the underlying physical layer protocol. On top of Ethernet, the protocol is IP, which does

not provide any elror control. TCP, which is on top of IP, is usually responsible for reliable

end to end flow and error control. With these assumptions, we are usually interested in

70

Figure 6.1: Typical Internet scenario showing various nodes and connectivities.

considering certain "what if" scenarios. For example, determining what happens in the

cases where enors occur. At the physical layer, a 32-bit CRC error checker is used to

provide error detection. On the wired segments, if an error is caught, the packet is dropped;

whereas on a wireless (802.11) link, the frame is not acknowledged. The /osr packet is

assumed to have not arrived at its destination and retransmission is attempted some limited

number of times. If repeatedly not acknowledged, a time-out will eventually occur at a

higher level and end-to-end recovery techniques will be used.

These methods work quite well under the assumption that the error is detected. A

problem arises for packets in error that avoid detection. An aliased packet is an erroneous

packet that is indicated as not an erroneous packet by the error checker. Aliased packets

have largely been ignored or never considered, although well documented [SP00]. One

of the reasons that they perhaps were ignored was that under most circumstances they are

pathological, occurring so seldom that their effect can be ignored. Error coverage from a

32-bit maximal length CRC such as that employed in Ethernet alone is 1 part in 232 (or

4.3 billion). This is, however, an asymptotic limit, which will be discussed later. Aliased

packets from a combined iSCSI, TCP, and Ethernet system would be considerably less

likely. One can, however, argue that at each level where data is manipulated, buffered, or

moved there is a possibility of errors occurring manifesting themselves as aliased packets.

Figure 6.1 shows a scenario illustrating a typical client server architecture (target ini-

tiator iSCSI) where users are accessing data over the Internet. The situation of interest here

11

is the connection between an iSCSI target and iSCSI initiator which is part of a network

running various protocols over IP in addition to the iSCSI protocol of this particular ses-

sion. Of central importance to this discussion is that the connection can be characterized

with a bit error rate (BER) and primary error control is provided by a 32-bit CRC at the

physical layer, the 16-bit TCP checksum at the transport layer and a 32-bit CRC at the

iSCSI application layer.

6.1.1 CRCs

CRCs or cyclic redundancy checks are extremely powerful techniques for detecting errors.

In almost all literature, the probability of CRC aliasing is taken to be extremely small. In

fact most references will cite the probability of an aliased packet escaping detection by the

CRC as being2-32 if a32-bitmaximal length CRC checker is employed. This value is well

known and results from the observation that the state transition matrix associated with the

CRC is doubly stochastic and in the limit all states are equally likely. As such, the problem

of aliased packets is rarely if ever addressed. This 2-32 limit however is an asymptotic

bound. On the Internet, the packet size is basically governed by the maximum frame size

of an Ethernet frame, 1500 bytes, or minimal frame sizes of 64 bytes. The question arises

as to whether the asymptotic bound is close enough under these circumstances.

The basic model that will be presented here has been a¡ound for approximately 15

years in relation to VLSI signature analysis and the probability of signature registers mak-

ing similar mistakes [WDGS88], [Dav90]. One of the difficulties at the rime, as well as in

the present, was in computing the probability of errors for large signature analyzers. The

difference of the present discussion is that VLSI testing is not constrained in a similar man-

ner as packets on the Internet. As such, re-evaluating the aliasing performance of Ethernet

CRCs, and TCP checksum error control warrants further investigation. In addition, there

is a class of unexplained aliasing packet that may be contributed by larger than expected

aliasing probabilities, as reporred in [SP00].

72

State Transition Diasram

000 _
l oo I010 | ¡ro1 | 2-r
110

|11r
I011 |001r

100
3

LFSRl+x+x

Figure 6.2: AnLFSR generating a 3 bit CRC

A similar approach to VLSI signature analysis will be presented here illustrating the

usefulness of both the general approach as well as approximation techniques in the context

of aliased packets. The type of CRC that is considered here is a maximal length CRC, that

is, one whose state transition diagram is of maximal length. That is not to say that all CRCs

employed for error control are of maximal length, but it makes the present discussion and

coding simpler. A maximal length CRC is essentially equivalent to a linear feedback shift

register (LFSR) whose feedback taps are selected in such a manner as to produce a state

machine that traverses the entire non-zero state in one cycle, as illustrated in Figure 6.1.1.

For a maximal length LFSR, the non-zero state space is one large cycle, plus the all zero

state. The LFSR will remain in the all zero state if the incoming data pattern is also all

zeros. In what follows, the word "packet" will be used in association with an Ethernet

frame or IP packet, TCP segment, or iSCSI frame. The more specific terminology will be

clear from the context.

There are alternative hardware implementations for the same generator polynomial as

illustrated in Figure 6.3. The main difference is in the orientation of the feedback taps.

The corresponding state transition diagrams are isomorphic. The type of CRC illustrated

in Figure 6.3 is more commonly implemented in hardware than that of Figure 2 because it

t)

000 _100 I010
I001 |110 |011
|lll I

101 _L
100

32-l

3

LFSRl+x+x State Transition Diagram

Figure 6.3: An alternative CRC implementation for the same function as shown in Fisure
6.1.1

generates the remainder when the input polynomial (data) is divided by the CRC poiyno-

mial. This allows for more efficient processing at both the receiver and sender.

Although not considered further here, error performance comparisons have been made

between the two implementations for a 4 bit generator represented by the polynomial 1 *
13 + ra and the results are identical. For the remainder of the discussion here. the LFSR of

Figure 6.1.1 was employed.

6.2 Aliased Packets

Aliased packets are those that necessarily have more than one bit in error. For the model

here, it suffices to start in the all zero state and have an effor occur in the packet and

have at least another elror occur such that the effect of the first error is masked. Figure

6.4 illustrates this effect on the state transition diagram in the case of an erroneous packet

being detected, as well as for an aliased packet.

Figure 6.5 illustrates how a CRC register is implemented in practice. Data arrives

serially and is mixed with the LFSR representing the CRC. Upon receipt of the packet, the

value remaining in the CRC register is the signature and can be compared with the known

t+

Sinele bit error Sinsle bit error

State Transition Diagram: Single bit in error detected
The CRC never returns to the all zeros state.

State Transition Diagram: Second bit
in error puts the state machine on its
original trajectory.

Figure 6.4: State space ffajectory of a detected packet in error and an aliased packet.

Mod 2

LFSRl+x+x3

00
00
l0
11
1 1 Slgnature

Figure 6.5: Signature for an input data stream.

good signature, which can be made to be the all zero vector. If the two are different, the

packet contains errors and is discarded, or not acknowledged. The packet is subsequently

retransmitted at either the physical layer or as a result of error control at the transport

layer. Similarly, in the case of detection at the iSCSI layer the iSCSI frame would be

retransmitted.

75

9r;;;=
,"- PY l-P

p : transition with error

1 - p : transition without error

Figure 6.6: Markov model for a 3 bit CRC

6.3 Aliased Packet Probabilities

The basic model for calculating aliased packet probabilities is a simple Markov model

derived from the state transition diagram in the presence of a medium with a bit error rate'

The Markov model for the example 3 bit CRC previously discussed is shown in Figure 6.6.

Mathematically the Markov model can be cast as a probability transition matrix equa-

tion relating the probability of being in any given state at time ¿ to that of being in any state

at time ú * 1, as shown in Equation 6.1.

t

P6

Pt
P^

P3
P,

P5

Pe

P-

I-p 0 0 0 0 0 0 P

p 0 0 0 0 0 0 l-P
0 1-p 0 P 0 0 0 0

0 0 L-p 0 0 0 P 0

0 p 0 l-P 0 0 0 0

0 0 0 0 l-P P 0 0

0 0 0 0 P I-P 0 0

0 0 P 0 0 0 L-P 0

Ps

Pt
Pz

Ð

P5

P6

P7

76

(6.1)

The probability matrix is doubly stochastic and has the well known property of asymp-

totically converging to the probability of any state being fi where n is the number of bits

in the CRC. The probability of a packet aliasing through the CRC (i.e. being in error)

is modeled as the probability of a bit stream in error generating the error free signature.

This model is the same for all packets and as such the model can use an all-zero packet

as the error free packet and a packet in error as any packet that contains non zero bits. In

effect, for cyclic codes such as these, it is only necessary to analyze the error polynomial

to analyze the aliasing behavior. This allows one to start the matrix iteration with P6 : l,

with the remaining state probabilities as all-zero.Iteration of the state transition probability

matrix allows one to calculate the probability of being in any given state at time equal to

the iteration number. Since the probability of aliasing is defined to be the conditional prob-

ability, the probability of aliasing is calculated as the probability of being in the P[0] state,

given that an error has occurred. The state transition matrix is sparse and hence relatively

efficient techniques can be deployed to calculate the state transition probabilities as data

bits enter the CRC register. However, the algorithm is still O(i2") where i is the number

of iterations we are interested in and n is the number of bits in the CRC. Although exact

results such as those presented here are primarily for 16-bit maximal length CRCs, results

of extensive simulation for 32-bit CRCs are presented subsequently.

Figure 6.7 illustrates the probability of a packet aliasing given the channel has an asso-

ciated bit error rate (BER) ranging from 10-a to 10-8. These BERs are likely higher than

those encountered on reliable networks, but may reflect a cumulative error over a number

of routers.

The interesting aspects of Figure 6."7 arc as follows. For BERs on the order of 10-a or

10-8, the asymptotic limit of P(atiasing) being approximately ¡L is not approached until

the CRC has evaluated well over 72,000 bits. At 12,000 bits the probability of aliasing is

still approximately 5 times higher than predicted by the asymptotic limit. In the figure the

77

Probabil¡ty of ailâsing using a 1 6b¡t CRc

-4+
16bit-5 x
l6bit-6 x
16b¡t-7 0
16b¡t-8 !

I

I
a

2000 4000 6000 8000

Packet size in bils

Figure 6.7: Probability of packets aliasing

curves are basically on top of each other. For the 16-bit CRCs analyzed here, the probability

of minimum size ethernet frames (64 Bytes) aliasing is on the order of 0.002 or 0.2 percent

ofpackets detected in error are aliased.

For packets on the order of iSCSI data frames (B KBytes), the probability of aliasing is

very close to that predicted by the asymptotic limit (within I%). Againshort control packets

such as acknowledgements would be more susceptible to aliasing. Although preliminary,

the asymptotic behavior appears to be present even as the size of the CRC register increases.

For a BER of 10-7, the behavior of a 20-bit maximal length CRC is almost identical to that

of a 16 bit maximal length CRC, as illustrated in Figure 6.8.

6.4 TCP Error Control

In addition to CRC aliasing there is also a potential problem when an aliased packet is sent

on to the TCP layer where the segment is checksummed.

Checksums are error detection techniques designed for lower computation cost rather

o 0.008

6
.q

å
0.006

o
et

o.oo4

78

Probabil¡ty of Aliasing BER 10-7

8 BIT CRC
16 BtT CRC
20 Btr cRc

-f-.
-E--

4000 6000 8000
Packel Size (bits)

Figure 6.8: Aliasing transient from 20, 16 and 8 bit CRCs

than higher chances of error detection capability. Basically, checksum is a 16-bit ones-

complement sum of the data. For uniformly distributed data, the checksum error detection

probability is 2-16; however, for non-uniformly distributed data, the checksum's perfor-

mance can be significantly worse, such as 2-10 [SGPH98].

Unfortunately the Markov model technique used previously can not be used without

requiring dense matrix multiplications. A simple rare event simulator was written that

indicated thar the aliasing probability was approximately 0.0027 (total packets 100,001

with 16,743 packets in error and 45 aliased packets). The error model was a uniform BER

stream of approximately 1.5 x 10-5 with a single bit in word error probabitity of ¡fu. fn"

packet size was 1500 bytes. Increasing the TCP segment size increases the probability of

the TCP checksum aliasing.

The simulator was run with various seeds and test packets yielding variations on the

results on the order of plus or minus one packet being aliased. For example, assuming

rhere is a 0.00008 probability of aliasing from the CRC at a BER of 10-5, of these packets

.0027 (0.27%) of them will pass through the transport layer in error to the application layer,

0.01

o
'õ
6

o nnnt

=56
o

79

TCP Checksum Alias¡ng

600 800 1000
Packet Size (Bytes)

1200

Figure 6.9: Probability of TCP checksum aliasing

which means that there is a probability of 0.00000021 that an erroneous packet will make it

to the application layer. The expected number of packets seen before an eûor occurs would

then be 4,800, 000, or equivalently a 7GB file. Statistical independence is assumed here

between the two detection schemes. In cases where extreme data integrity is required this

may be significant, though it should be noted that these results were obtained with a 16-bit

CRC and 16-bit TCP checksum. The TCP checksum can not be improved upon, but it is

anticipated that a 32-bit CRC would provide many of orders magnitude greater protection

than the result mentioned here.

Figure 6.9 illustrates the probability of TCP checksum aliasing as a function of packet

size. The checksum calculation in Figure 6.9 is based on the number of packets aliased over

the number in error. The simulation used a constant BER of approximately 1.5 x 10-5.

.a

.g

=
o
r

0.1

80

6.5 CRC Simulations

An attempt to predict maximal length CRC aliasing has been initiated through simulation.

The coverage provided by the CRC defined by : 232+ 126 +r23 +r22 +116 +rt2 +rr7 +r1o +

18 +r7 +r5 +r4 +r2 +r+1 is being simulated. Even with a BER on the order of 10-a, we

have not been able to detect an aliased packet as a result of the CRC improperly classifying

an enoneous packet. The simulation has exercised 1 billion maximum size packets running

for over 280 hours on a Sun Fire 6800, 24 processor machine. The simulation is a batch

mode process and utilizes under 5% of the available CPU resources.

6.5.1 iSCSI Error Control

Adding an iSCSI CRC to the above scenario would also improve aliasing performance

considerabiy. Unfortunately, the CRC aliasing does not account for the discrepancies seen

on real networks with real data. Here erroneous packets fairly routinely escape detection as

discussed in [SP00]. A signature attached to the entire file is a potential solution although it

may mean retransmitting a very large file once the entire file is checked for integrity, hence

an impractical solution. A better solution, and one that perhaps should be included in a

reliable iSCSI implementation, would be one that provides signatures on data from iSCSI

boundaries of 64 KBytes using an H M AC, as well as requiring iSCSI to be implemented

within the lPsec authentication framework at the packet level. In the case of control packets,

their aliasing behavior warrants further consideration. Although not integral to the actual

data they can play a role in how well the application and transport layer respond in terms

of error and flow control. In certain circumstances the control information mav also be of

crucial importance.

81

6.6 Experimental Results

I Two experiments were performed to attempt to determine if CRCÆCP aliasing errors

could be detected in a manner similar to that in the study by Stone tSPOOl. The wide area

network environment was created by connecting a wireless LAN and an ADSL connection

from a residential host to the University and back.

The first was a file transfer experiment over the wireless LAN. The experiment con-

sisted of FTP over TCP of a 4 MB file. An MD5 hash was performed after every transfer

to verify that no aliasing had occurred - i.e. that no error escaped both the CRC check and

the TCP checksum. The network topology consisted of a receiving station with an ethernet

switch at 100 Mbps; a wireless access point (802.1lb at 11 Mbps) connected to a wireless

host (running windows XP). The 4MB file was sent 100, 082 times without ever failing the

MD5 check. In effect approximately 3.2 Terabits of actual data was transmitted without

incurring 1 aliased packet.

A second experiment transferred data ofvarious packet fypes and various sizes from a

residential host to the University and back over an ADSL connection. The trials spanned

a total of approximately 12 hours, on different days, with 18 hops between the two hosts

used. The UDP packets were sent from the residential ADSL host to the UM, where a

Linux iptables firewall rule redirected the UDP packets back to the originating IP host.

Thus all figures refer to UDP packets that have traveled a total of 36 hops. UDP checksums

were disabled (set to 0x0000) both in the incident and reflected packets, thereby allowing

the monitoring of packets in error that escaped the physical layer error detection. Although

there were several periods of excessive round trip times and packet loss in excess of 20

packets in a tow, only one instance of packet errors escaping CRC detection was observed.

Out of the 313, 985 packets and approximately 235M8 sent in tests so far, the¡e have been

21 bytes in erro¡ which occurred within packets of 67 bytes in size. The source of the errors

'The experimental results were obtained by Mr. M. Laskowski and Mr. J. Berkes and a¡e included here
as they directly relate to experimental evidence of aliasing and/or packet comrption.

82

is still undetermined and not reproducible. This type of intermittent aliasing is perhaps of

more concern, as it is a source of er¡ors that is nondeterministic.

6.7 Discussion and Summarv

The Markov analysis used to model aliased packets that escape CRC or TCP detection does

not seem to account for the anomalously high degree of aliased packets seen in real trafñc

studies tSPOOl. Notwithstanding this, if packet aliasing errors appear to be present, a model

should be developed to account for aliasing independent of its origin. These aliased packets

do in fact influence network performance and potentially data integrity.

The results presented in this chapter lead to the following conclusions:

1. Results of network models and their simulations should take aliasing into account.

Howeve¡ current simulations, such as those based on ns-2, do not take aliasing into

account. Based on our studies and those of [SP00], this aliasing model should be

parametric, that is value such as Po¿¿o";nn È 10-8 based on empirical measurements

such as those of tSPOOl.

2. Even in the presence of strong error detection techniques, data may be comrpted

without the user beins aware.

3. If data integrity is of importance, stronger digital signing, for example, using MD5

should be employed.

When designing a system where a CRC is used, the possible limitations of CRC should

be considered rather than simply CRC's asymptotic behavior. This is especially true if the

size of the packets is small and the integrity of those packets is important.

Based on mounting empirical evidence, all systems should consider aliasing as inher-

ent, whether caused by the mathematics or not, at least in cases where data integrity is

important.

83

Chapter 7

Summary and Future Work

7.L Surnmarv

This dissertation concerned itself with performance evaluation of mass data storage and

efficient transport of data across a wide area network. Contributions made during the course

of the Ph.D. study include:

o The development of an iSCSI module for use within ns-2. This is the first iSCSI pro-

tocol implementation for ns-2. As ns-2 is an open source initiative, the implemen-

tation can be used by others interested in simulating iSCSI under various network

conditions.

o The performance evaluation of the iSCSI protocol was performed for several network

conditions. Since iSCSI data transfer occurs in sequences of solicited data transfer,

the burstiness of the data car be controlled by appropriate values of iSCSI parame-

ters, such as FirstBurstLength, MarBurstLength, and command window size.

. Protocol tuning was done to improve the iSCSI performance. The iSCSI performs

better for larger values of MTU and EMSS. The buffer queue size at the target node

was seen to have a significant impact on the performance of iscsl over uDP.

o The performance of iSCSI error control mechanism is analyzed when iSCSI is de-

ployed over unreliable transport protocol such as UDP. The simulation results verify

84

that in low error environment, the iSCSI error recovery mechanism is sufficient to

send SCSI commands over UDP. However, for relatively higher error rates, the iSCSI

over IJDP performance degrades drastically as compared to iSCSI over TCP.

o In terms of CRC error control, a Markov model analysis, simulation and experimental

measurements were done to provide estimates of packet aliasing.

7.2 Future Work

The iSCSI protocol has immense potential to address the needs of emerging storage ap-

plications. The current research can be extended in at least three directions as described

below.

First, the simulation of iSCSI in ns-2 can be improved by the addition of the following

features:

o The simulation of kernel queues such as user buffers, transmit queue, and send queue.

o Modeling the processing overhead at the initiator and the target.

o The estimation of optimum timeout values, which are dependent on the network

conditions and the available resources. For example, the timeout value to transfer

a sequence of data-out PDUs can be a function of Desi,redDataTransf erLength,

round-trip-time, and the network congestion.

o The estimation of the optimum values for the data transmission rate, the command

window size, and the size of ErpectedDataTransf erLength.

. Compare the ns-2 simulation results with the results of other benchmarking tools.

Secondly, performance evaluation of the iSCSI protocol can be enhanced as follows:

o More accurate performance evaluation of the iSCSI protocol by incorporating kernel

level performance tools.

85

Tuning of iSCSI protocol based on the simulation results of ns-2. It seems that iSCSI

performance could be improved when successive transmissions of sequences of data

PDUs are delayed by a suitable facto¡ which is a function of the network condition

and the available end-to-end resourcss.

o Analyze the impact of different queuing policies, such as drop tail, random early

detection (RED), and adaptive RED, over different transport agents (TCP, LIDP) for

the iSCSI protocol.

Finally, the iSCSI protocol can improve the performance of various applications that

use block VOs and are dependent on their storage systems. For example, Database Man-

agement System (DBMS) performance is highly dependent on the block VOs of the storage

system. The DBMS performance could be improved by the following techniques:

o Since the DBMS works with blocks of data, the disk access is a very significant

factor in database tuning and query optimization. The iSCSI protocol could assist

in the optimization of the overall block VOs by associating database block VOs with

SCSI block VOs.

o Distributed DBMSs have to deal with the challenge of optimum allocation and repli-

cation strategies. It would be interesting to investigate the possibility of any associa-

tion of iSCSI based storage management with the DBMS allocation and replication

sftategies.

Since the iSCSI protocol has the potential to address several challenges of storage sys-

tems, the performance evaluation of various data storage applications should be revisited.

Hence, there is a significant demand for future research to assess the impact of the iSCSI

protocol over the cuffent computing and storage resources.

86

Glossary

The list of acronyms and other related terms are described here.

ACK Acknowledgement
ADU Application Data Unit
AHS Additional Header Segment
ASU Application Specific Unit
ATA Advanced Technology Attachment
BHS Basic Header Segment
CHAP Challenge Handshake Authentication Protocol
CIFS Common Internet File System
CmdSN Command Sequence Number
CRC Cyclic Redundancy Check
DataSN Data Sequence Number
DDP Direct Data Placement
EDTL Expected Data Transfer Length
EMSS Effective Maximum Segment Size
ExpCmdSN Expected Command Sequence Number
ExpDataSN Expected Data Sequence Number
ExpStatSN Expected Status Sequence Number

Fibre Channel
Fibre Channel over Internet Protocol
full-Feature Phase

Full-Feature Phase Onlv
Fix Interval Marker
Framing Protocol Data Unit
Gigabit per second
Host Bus Adapter
Hard Disk Drive
Internet Fibre Channel Protocol
Internet Key Exchange
Input/Output
Initialize Only
Internet Protocol
IP storage
Internet Protocol Securitv
iSCSI qualified name
iSCSl-based Storage Area Network
iSCSI Extension for RDMA
SCSI over IP
Internet Storage Name Service

FC
FCIP
FFP
FFPO
FIM
FPDU
Gbps
HBA
HDD
iFCP
IKE
ao
IO
IP
ips
IPsec/IPSec
iqn
iSAN
iSER
iSCSI
iSNS

81

ISID Initiator Session ID
I-T Initiator_Target
I-TI Initiator_TargetlUN
ITN iSCSI Target Node or iSCSI Target Name
ITT Initiator Task Tag
JBOD Just a Bunch Of Disks
KRB5 Kerberos version 5
LAN Local Area Network
LBA Logical Block Address
LO leading Only
LONP Login Operational Negotiation Phase
LU Logical Unit
LLIN Logical Unit Number
MAN Metropolitan Area Network
MaxCmdSN Maximum Command Sequence Number
MC/S Multiple Connections per Session
MD-5 Message Digest version 5
MIB Management Information Base
MPA Markers PDU Aligned
MSS Maximum Segment Size
MTU Maximum Transfer Unit
NA Not Applicable
NAS Network Attached Storage
NFS Network File System
NIC Network Interface Card
NOP No Operation
NSG Next Stage
OS Operating System
PDU Protocol Data Unit
PKI Public Key Infrastructure
R2T Ready to Transfer
R2TSN Ready to Transfer Sequence Number
RAID Redundant Array of Independent Disks
RDMA Remote Direct Memory Access
RFC Request for Comments
SAM SCSI Architectural Model
SAM2 SCSI Architectural Model2
SAN Storage Area Network
S-ATA Serial ATA
SCSI Small Computer Systems Interface
SCTP Stream Transmission Control Protocol
SLP Service Location Protocol
SN Sequence Number

88

SNACK Sequence Number Acknowledgement or Selective Negative Ac-
knowledgement

SNMP Simple Network Management Protocol
SNIA Storage Networking Industry Association
SoHo Small officeÆIome office
SoIP Storage over IP
SSID Session ID
StatSN Status Sequence Number
SW Session-Wide software
TCB Task Control Block
TCP Transmission Control Protocol
TOE TCP/IP Offload Engineer
TPGT Target Portal Group Tag
TSID Target Session ID
TSIH Target Session Identifying Handle
TLIF TCP Upper-Level-Protocol Framing
TTT TargetTransferTag
UDP User Datagram Protocol
ULP Upper Level Protocol or Upper Layer Protocol
ULPDU Upper Layer Protocol Data Unit
IIRL Uniform Resource Locator
URN Uniform Resource Name
UTF Universal Transformation Format
VPN Virtual Private Network
WAN Wide Area Network
WG Working Group

89

Bibtiography

[ADR03] Dave Anderson, Jim Dykes, and Erik Riedel. More than an interface - SCSI

vs. AIA. In Proceedings of the 2nd USENIX Conference on File and Storage

Technolo gies, pages 245-257, 2003.

[AGPWO3] Stephen Aiken, Dirk Grunwald, Andrew R. Pleszkun, and Jesse Willeke.

A performance analysis of the iSCSI protocol. In Proceedings of the 20th

IEEE/L|th NASA Goddard Conference on Mass Storage Systems and Tech-

nologies (MSST 2003), pages lZ3-I34, April 2003.

[BHH+04] Mark Bakke, Jim Hafner, John Hufferd, voruganti Kaladhar, and Marjorie

Krueger. iSCSI naming and discovery. RFC 3721, Apnl2004.

[cGY01] Jeffrey S. chase, Andrew J. Gallatin, and Kenneth G. yocum. End system

optimizations for high-speed TCP. IEEE Communications, Special Issue on

H i gh- S p e e d TC P, 39 (4) :68-:7 4, 2007.

ICN] Don capps and william D. Norcott. Iozone - Filesystem benchmark tool

http ://www. iozone. org.

Russell Coker. B onnie + +. http://www.coker.com.au/bonnie++.

Mallikarjun chadalapaka, Hemal shah, uri Erzur, patricia Thaler, and

Michael Ko. A study of iscsl extensions for RDMA (isER). rn proceed-

lCokl

lcsE+031

90

ings of the ACM SIGCOMM workshop on Network-I/O convergence, pages

209-219. ACM Press . 2003.

[CT90] David D. Cla¡k and David L. Tennenhouse. Architectural considerations for a

new generation of protocols. In SIGCOMM Symposium on Communications

Archite cture s and P rot cols, pages 200-208, 1990.

[Dav90] Rene David. Comments on signature analysis for multiple ouþut circuits.

I E E E Tran s actt on s o n C omp ut e rs, 39 (Z) :287 -288, February 1 9 90.

[DSE+] Dan B. Dov, Daniel scheibli, Joe Eiler, Ming Zhang, Richard Riggs,

Thayne Harmon, Tony Asleson, and vedran Degoricija. Iometer-

http ://www.iometer. org.

tFVO3l Kevin Fall and Kannan Varadhan. The ns Manual. The VINT Project, Decem-

ber 2003.

tFVO4l Kevin Fall a¡rd Kannan Varadhan. The network simulator - ns-2.

http : //www. isi. edu./nsnam/ns/, version 2.26, 2004.

tHYO2l Xubin He and Qing Yang. A caching strategy to improve iSCSI performance.

In Proceedings of the 27th Annual IEEE Conference on Local Computer Net-

works, pages 27 8-285, 2002.

tHYO3l Xubin He and Qing Yang. SPEK: A storage performance evaluation kernel

module for block level storage systems. In Proceedings of the 11th IEEE/ACM

International Symposium on Modeling, Analysis, and Simulation of Computer

and Telecommunicatíon Systems MAS C OTS' 03. 2003.

[Kat01] Jeffrey Katcher. PosMark: A new file system benchmark. Technical Report

TR3022, Network Appliance, http ://www.netapp.com/tech Jibrary / 3022.hrm1,

2001.

9l

lLD03l Yingping Lu and David H. C. Du. Performance study of iSCSl-based storage

subsystems. I EEE C ommunications M agazine, 4l(8):7 Ç82. August 2003.

Michael T. LoBue. Surveying today's most popular storage interfaces. Com-

put e r, 3 5 (12) :48-55, December 2002.

lLoB02l

[MTJM02] Charles Monia, Franco Travostino, Wayland Jeong, and Edwards Mark. iFCP

- a protocol for internet fibre channel networking. IP Storage Working Group's

Internet Draft, December 2002.

[RRW02] Murali Rajagopal, Elizabeth Rodriguez, and Ralph Weber. Fibre channel over

TCP/IP (FCIP). IP Storage Working Group's Internet Draf-t, August 2002.

IsAM02]

[sGPH98]

SAM-2. SCSI architecture model - 2. TI0/I157D, September 2002.

Jonathan Stone, Michael Greenwald, Craig Partridge, and James Hughes. Per-

formance of checksums and CRCs over real data. IEEE Transactions on Com-

puters, 6(5):529-543, October 1998.

Jonathan Stone and Craig Partridge. When the CRC and TCP checksum dis-

agree. In Proceedings of the ACM SIGCOMM, pages 309-319,2000.

tsP00l

[SPRCO4] Hemal Shah, James Pinkerton, Renato Recio, and Paul Culley. Direct data

placement over reliable transports. Remote Direct Data Placement Working

Group's Internet Draft, February 2004.

[SSCZO4] Julian Saftan, Constantine Sapuntzakis, Mallikarjun Chadalapaka, and Efri

Zeidner.Internet small computer systems interface - iSCSL RFC 3720, Apnl

2004.

rys0il Kaladhar Voruganti and Prasenjit Sarkar. An analysis of three gigabit net-

working protocols for storage area network. ln Proceedings of the 20th

92

IEEE International Performance, Computing, and Communications Confer-

ence (IPCCC),200I.

[WDGS88] Thomas W Williams, Wilfried Daehn, Matthias Gruetzner, and Cordt W.

Starke. Bounds and analysis of aliasing errors in linear feedback shift reg-

isters. IEEE Transactions on Computer-Aided Design of Integrated Circuits

and Systems, 7 (l):7 5-83, January 1 988.

93

