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Abstract. Weighted frequent pattern (WFP) mining is considered to
be more effective than traditional frequent pattern mining because of its
consideration of different semantic significance (weights) of items. How-
ever, most existing WFP algorithms assume a static weight for each item,
which may not be realistically hold in many real-life applications. In this
paper, we consider the concept of a dynamic weight for each item and
address the situations where the weights of an item can be changed dy-
namically. We propose a novel tree structure called compact pattern tree
for dynamic weights (CPTDW) to mine frequent patterns from dynamic
weighted item containing databases. The CPTDW-tree leads to the con-
cept of dynamic tree restructuring to produce a frequency-descending
tree structure at runtime. CPTDW also ensures that no non-candidate
item can appear before candidate items in any branch of the tree, and
thus speeds up the construction time for prefix tree and its conditional
tree during the mining process. Furthermore, as it requires only one
database scan, it can be applicable to interactive, incremental, and/or
stream data mining. Evaluation results show that our proposed tree
structure and the mining algorithm outperforms previous methods for
dynamic weighted frequent pattern mining.

Keywords: Data mining · Knowledge discovery · Weighted frequent
pattern mining · Dynamic weights.

1 Introduction

Discovery of meaningful and hidden knowledge from a large collection of data
is the main goal of data mining [4, 7, 10, 13, 16, 19]. Frequent pattern min-
ing [12,17,18] is an important data mining problem where the patterns that occur
frequently in a database are mined. However, in real-life scenarios, the frequency
of a pattern cannot be considered as a sufficient indicator to find the meaningful
patterns in large transaction databases. It is because, through frequency, only
the number of transactions in the database containing the pattern is reflected.
In many cases, the items in a transaction can be considered to have different



degrees of importance (weight). For example, in retail applications, an expen-
sive product generally contributes a large portion of overall revenue although it
may not appear in many transactions. For this reason, weighted frequent pattern
(WFP) mining [6, 21–23] was introduced to discover more useful knowledge by
considering different weights for different items. Some real life examples where
weight-based pattern mining can be applied are market data analysis where the
price of products is an important factor, web traversal pattern mining where
different web pages have different strength of impact.

Even though WFP mining considers diverse application specific weights for
different items, still it cannot reflect real world environment where the signifi-
cance (weight) of items vary with time. Most of the existing WFP algorithms
consider static weight for an item. But in real life, the significance of an item can
be affected by many factors. Consumer behaviors change with time which affect
the significance of products in retail market. For example, the demand of jack-
ets increase in winter, but their demand are quite likely to decrease in summer.
Again, at one period of time, the demand of a particular design or material of
jacket (e.g., jean jacket) can increase or decrease considering the current trend
and other factors. It signifies that considering different weights for a particular
item for different times is a requirement for several real-life applications.

Motivated by these real world scenarios, a new strategy for handling dynamic
weights in WFP mining was introduced [2]. However, the algorithm uses a less
compact tree structure (CanTree [14, 15]) and requires long mining time. The
main focus of the current work is to solve these problems all together. Our key
contributions of this paper include:

– A novel, highly compact tree structure—namely, Compact Pattern Tree for
Dynamic Weights (CPTDW)—is proposed to mine frequent patterns with
dynamic weights that significantly improves the performance with a single
database scan.

– A phase-by-phase tree restructuring method—namely, path adjusting method—
is proposed for dynamic weighted frequent pattern mining, which improves
the degree of prefix sharing in the tree structure.

– A single-scan mining algorithm is developed based on the above tree struc-
ture, that can be applied for finding dynamic weighted frequent patterns
over a data stream.

– Performance characteristics of a pattern-growth mining approach for dy-
namic weighted frequent pattern mining were observed through extensive
experimental study.

The remainder of this paper is organized as follows. The next section discusses
the required preliminary concepts with related works. Section 3 describes our
proposed methodology with proper examples. Section 4 presents our evaluation
results to show the supremacy of our proposed approach. Finally, conclusions
are drawn in Section 5.
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2 Preliminary Concepts and Related Works

2.1 Frequent Pattern Mining

The support/frequency of a pattern signifies the number of transactions that
contain the pattern in the transaction database. Frequent pattern mining is used
to find the complete set of patterns that satisfies a minimum support threshold
in the transaction database. The downward closure property states that, if a
pattern is infrequent, then all of its super patterns must be infrequent and can
be pruned.

The Apriori algorithm [1] is the first solution for the frequent pattern mining
problem. However, it needs several database scans and suffers from the level-
wise-candidate-generation-and-test problem. Frequent Pattern (FP)-Growth [9]
solves this problem by using an FP-tree based technique which requires only
two database scans. There has been several research works which are being used
to devise new algorithms or to improve the existing works for finding frequent
patterns.

2.2 Weighted Frequent Pattern Mining

The weight of an item is a non-negative real number that is assigned to reflect
the importance of that item in the transaction database. For a set of items I =
{i1, i2, ..., in}, the weight of a pattern, P {x1, x2, ..., xn} is given as follows:

Weight(p) =

∑length(P )
q=1 Weight(xq)

length(P )
(1)

For example, consider (i) an item “a” has weight 0.7 and frequency 2, and (ii) an
item “b” has weight 0.3 and frequency 5. Then, according to Eq. (1), the weight
of itemset “ab” will be 0.7+0.3

2 = 0.5. The weighted support of a pattern is the
result of multiplying the pattern’s support with the weight of that pattern:

WSupport(P ) = Weight(P )× Support(P ) (2)

A weighted frequent pattern is the pattern whose weighted support is at least the
minimum threshold.

Example 1. If (i) an item “a” has weight 0.7 and frequency 2 and (ii) item
“b” has weight 0.3 and frequency 5, then WSupport(“a”) = 0.7 × 2 = 1.4 and
WSupport(“b”) = 0.3 × 5 = 1.5 according to Eq. (2). If the minimum support
threshold is 1.2, then both “a” and “b” are weighted frequent patterns.

In real-life applications, normalized weight values are assigned to each item
based on their price. Normalization process is required to adjust the differences
among data from various sources so that a common basis of comparison is being
created [22,23]. Based on the normalization process, a specific weight range can
be determined so that the final item weights can be within that range.
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Some weighted frequent pattern mining algorithms [6, 21] have been devel-
oped based on Apriori technique, which makes the use of candidate generation-
and-test paradigm. These algorithms require multiple database scans, and result
in poor mining performance. Moreover, WFP mining is more challenge because
the weighted frequency of a pattern does not satisfy the downward closure prop-
erty.

Example 2. Continue with Example 1. With Eqs. (1) and (2), Weight(“ab”)
= 0.7+0.3

2 = 0.5 and WSupport(“ab”) = 0.5 × 3 = 1.5, but WSupport(“a”)
= 1.4 and WSupport(“b”) = 0.9. For the minimum support threshold of 1.2,
pattern “b” is infrequent but item “ab” is frequent, which means downward
closure property is not satisfied.

WFIM [23] and its extension WIP [22] maintain the property by multiplying
each item’s frequency by the overall maximum weight.

Example 3. Continue with Example 2. Item “a” has the maximum weight of
0.7. By multiplying it with the support count of item “b”, 2.1 is obtained. As
a result, “b” will not be pruned at an early stage and pattern “ab” will not
be missed. However, at the final stage, the overestimated pattern “b” will be
pruned by using its actual weighted support.

2.3 Dynamic Weighted Frequent Pattern Mining

In dynamic weighted frequent pattern mining, weight of each item changes dy-
namically in each batch based on the importance of that particular item. The
dynamic weighted support of a pattern is the result of adding the weighted sup-
ports of that pattern in each batch. A dynamic weighted frequent pattern is
the pattern whose dynamic weighted support is greater than or equal to the
minimum threshold. Dynamic weighted support of a pattern P is:

DWSupport(P ) =
N∑
j=1

Weightj(P )× Supportj(P ) (3)

where N is the number of batches. Consider an item “a” has weight 0.7 and
frequency 2 in first batch and weight 0.3 and frequency 5 in the second batch.
Then, according to Eq. (2), the weighted support of pattern “a” in the first and
second batches are 0.7 × 2 = 1.4 and 0.3 × 3 = 0.9, respectively. So, the total
DWSupport(“a”) = 1.4 + 0.9 = 2.3 according to equation (3). If the minimum
support threshold is 1.2, then “a” is a dynamic weighted frequent pattern.

Zhang et al. [24] proposed a strategy to find association rules in dynamic
databases by weighting. However, they considered one weight for a database
containing a group of transactions. By doing so, the recently added groups of
transactions are highlighted over the previously added groups. However, this
assumption is not realistic because the importance of an item or itemset can
vary with time.
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Ahmed et al. [2] proposed a dynamic weighted frequent pattern mining 
(DWFPM) algorithm to dynamically handle the changing item weights. It 
exploits pattern growth mining technique that removes the level-wise candidate 
generation-and-test methodology of the dynamic weight algorithm [24]. 
Furthermore, it requires only one database scan which makes it eligible for 
using in incremental, inter-active and stream data mining. However, the 
CanTree structure [14, 15] used in this algorithm results in a less compact 
tree structure and incurs very high mining time due to the canonical order of 
its tree structure.

3 Our Proposed Approach

3.1 Tree Construction

To capture transactions having items with dynamic weights, we construct a com-
pact pattern tree for dynamic weights (CPTDW). A header table is maintained 
with the tree structure. The first value of the header table is the item ID. The 
second value of the header table contains each item’s weight value in a batch-by-
batch fashion, and the third value of header table contains the I-list of items 
which contains the current frequency value of each item in a batch-by-batch 
manner. Our CPTDW builds an FP-tree [9] like compact frequency-descending 
tree structure with a single-scan of transaction database. At first, transactions of 
the first batch are inserted into the CPTDW tree one by one according to a 
predefined item order (e.g., lexicographic order). After inserting a batch of trans-
actions, the CPTDW tree structure is dynamically restructured by the current 
frequency descending item order and I-list is updated accordingly using the path 
adjusting method [3, 11]. In summary, CPTDW tree can be constructed in two 
phases:
1. Insertion phase: Transaction(s) of a batch is scanned, according to the

current item order of I-list, transactions are inserted into the tree and the
frequency count of the respective items is updated in the I-list.

2. Restructuring phase: The I-list is rearranged according to the frequency
descending order of the items and the tree nodes are restructured according
to the newly arranged I-list.

The construction of CPTDW starts with the insertion phase. The first in-
sertion phase begins by inserting the first transaction of the first batch in a
lexicographic item order into the tree. The tree will be restructured after the in-
sertion of all the transactions of the first batch. The tree is restructured by using
the path adjusting method [11]. The paths in a prefix-tree are adjusted through
recursive swapping of the adjacent node in the path until the path completely
achieves the new sorted order. Thus, bubble sort technique is used to process
the swapping between two nodes. One of the basic properties of FP-tree is that
the frequency count of a node cannot be greater than the frequency count of
its parent node. To maintain this property, the path adjusting method inserts a
new node of the same name as a sibling of the parent node in the tree when
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Algorithm 1 Path adjusting method algorithm.

1: Input: Let X,Y and Z be three nodes in a path in a prefix tree where X is the
parent of Y, Y is the parent of Z and Y and Z nodes are needed to be exchanged for
path adjustment. Consider nodeName.name, nodeName.count and nodeName.child
refer to the name, the support count (in the referred path) and a child of a node.
Therefore, the path adjusting is performed according to the following algorithm:

2: function EXCHANGE
3: Exchange parent and children links of Y and Z

4: function INSERTION
5: Insert Y ′ to X as a new child node such that Y ′.name = Y.name
6: Set Y ′.count = Y.count− Z.count
7: Assign all children of Y except Z to Y ′

8: Set Y.count = Z.count
9: function MERGE NODE(P,Q)

10: Set Q.count = Q.count+ P.count
11: for each child node of Q do
12: for each child node of P do
13: if Q.child == P.child then
14: Call MERGE NODE(Q.child, P.child)
15: else if Q.child not equals P.child then
16: Add P.child and its sub tree to Q.child list

17: function MERGE
18: if C is another child node of X and C.name = Z.name then
19: Call MERGE NODE(C,Z )
20: Delete C and its sub tree
21: function PATH ADJUST
22: if Y and Z need to be swapped and Y.count >Z.count then
23: Call INSERTION( )

24: Call EXCHANGE( )
25: Call MERGE( )

26: Repeat to Call PATH ADJUST with next two nodes of Y and Z in another
path to be exchanged and Terminate when no further node exchange is required.

the parent node needs to be exchanged with any child node which has a smaller
count value. Otherwise, if the frequency counts of both the nodes are equal,
then a simple exchange operation between the two nodes is sufficient. However,
after swapping, if two sibling nodes contain the same item due to the exchange
operation, then they should be merged. This insertion and restructuring phases
are executed alternatively until all the transactions of all batches are inserted
into the tree and restructured in the frequency descending order according to a
batch-by-batch fashion. The pseudo-code for path adjusting method is shown in
Algorithm 1.

Consider the example database of Table 1. At first, the items of the first batch
are inserted according to the lexicographic order as shown in Fig. 2(a). Then,
they are sorted in frequency descending order based on path adjusting method
[3,11]. Figure 2(b) shows the tree structure after restructuring the transactions of
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Table 1: An example of transaction database with dynamic weights

Batch TID Transactions Weights

T1 a, d, e
1st T2 c, d, e a: 0.9 b: 0.5 c: 0.3 d: 0.45 e: 0.2

T3 b, a, e

T4 b, d

2nd T5 a, c, e a: 0.7 b: 0.55 c: 0.4 d: 0.2 e: 0.3
T6 b, c, d

T7 d, e

3rd T8 b, e a: 0.5 b: 0.7 c: 0.8 d: 0.6 e: 0.5
T9 c, b, e

the first batch. Figure 2(c) shows the tree after inserting the transactions of the
second batch based on the item order which is achieved after restructuring the
transactions of the first batch. Then, the items are sorted in frequency descending
order based on their current frequency which includes their frequency count of
both the batches. Figure 2(d) shows the tree structure after restructuring. As
frequency information for each batch is kept separately in each node of the tree, it
can be easily discovered which transactions have occurred in which batch. At the
same way, Fig. 2(e) shows the tree structure after inserting the transactions of
the third batch. Figure 2(f) is our final CPTDW tree structure which is achieved
by inserting and restructuring all the transactions of all batches. Our proposed
CPTDW tree structure has the following properties:

– Property 1: The items in the tree are sorted according to the frequency
descending order.

– Property 2: The total frequency count of any node in the tree is greater
than or equal to the sum of total frequency counts of its children.

– Property 3: The tree structure can be constructed in a single database
scan.

3.2 Mining Process

According to the FP-growth mining algorithm [9], while creating a prefix-tree
for a particular item, all branches prefixing that particular item are taken with
their frequency value. After that, the conditional tree is built from the prefix tree
by deleting the nodes containing infrequent items. CPTDW algorithm performs
the same type of mining. The mining operation of CPTDW is done in a top-
down approach [20]. As discussed in Section 2.2, the main challenge in weighted
frequent pattern mining is that, the weighted frequent pattern of an item does
not hold the downward closure property. So, to maintain this property, global
maximum weight GMAXW has to be used. GMAXW is the maximum weight
of all the items in the global database. In our case, this is the highest weight
among every weight in all of the batches. For example, in Table 1, item “a”
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Header Table

item
a
b
c
d
e

a: 2

b: 1

e: 1e: 1

d: 1

c: 1

e: 1

d: 1

W
0.9
0.5
0.3
0.2

0.45

I-list
2
1
1
2
3

{ }

(a) After inserting 1st batch

Header Table

item
e
a
d
b
c

a: 2

b: 1 d: 1

e: 3

c: 1

d: 1

W
0.2
0.9

0.45
0.5
0.3

I-list
3
2
2
1
1

{ }

(b) After restructuring 1st batch

Header Table

item
e

c: 0,1

W
0.2,0.3

I-list
3,1

a
d

0.9,0.7
0.45,0.2

2,1
2,2

b
c

0.5,0.55
0.3,0.4

1,2
1,2

d: 0,2

b: 0,2

b: 1,0 c: 0,1 d: 1,0 c: 1,0

e: 3,1

d: 1,0a: 2,1

{ }

(c) After inserting 2nd batch

Header Table

item
e

c: 0,1

W
0.2,0.3

I-list
3,1

d
a

0.45,0.2
0.9,0.7

2,2
2,1

b
c

0.5,0.55
0.3,0.4

1,2
1,2

d: 0,2

b: 0,2

b: 1,0 c: 0,1 c: 1,0

e: 3,1

d: 2,0

a: 1,0

a: 1,1

{ }

(d) After restructuring 2nd batch

Header Table

item
e

c: 0,1,0

W
0.2, 0.3, 0.5

I-list
3,1,3

d
a

0.45, 0.2, 0.6
0.9, 0.7, 0.5

2,2,1
2,1,0

b
c

0.5, 0.55, 0.7
0.3, 0.4, 0.8

1,2,2
1,2,1

d: 0,2,0

b: 0,2,0

b: 1,0,0 c: 0,1,0 c: 1,0,0

e: 3,1,3

d: 2,0,1

a: 1,0,0

a: 1,1,0 b: 0,0,2

c: 0,0,1

{ }

(e) After inserting 3rd batch

Header Table

item
e

c: 0,1,0

W
0.2, 0.3, 0.5

I-list
3,1,3

d

a

0.45, 0.2, 0.6

0.9, 0.7, 0.5

2,2,1

2,1,0

b
c

0.5, 0.55, 0.7
0.3, 0.4, 0.8

1,2,2
1,2,1

d: 0,2,0

b: 0,2,0 b: 1,0,2 c: 0,1,0

c: 1,0,0

e: 3,1,3

d: 2,0,1

c: 0,0,1a: 1,0,0 a: 0,1,0

{ }

(f) After restructuring 3rd batch

Fig. 2: CPTDW Tree construction

has the GMAXW of 0.9. The local maximum weight LMAXW is needed while
doing the mining operation for a particular item, and it is not always equal to
GMAXW.

As our CPTDW tree is sorted according to the frequency descending order,
LMAXW could be anywhere for a particular item. We start our pattern growth
mining operation from the top-most item of the CPTDW tree structure. So, for
this case, LMAXW is the weight of the first item for sure. After that, for the
second item, we compare its weight with the previous LMAXW and consider the
larger one as the current LMAXW. By moving in this way, LMAXW calculation
for each time can be saved.

We consider the database presented in Table 1, the tree constructed for
that particular database in Fig. 2(f) and minimum support threshold 1.2. Here,
GMAXW is 0.9. After multiplying GMAXW with the total frequency of each
item, we get a: 3 × 0.9 = 2.7, b: 5 × 0.9 = 4.5, c: 4 × 0.9 =3.6, d: 5 × 0.9 =
4.5, and e: 7 × 0.9 = 6.3. So, all items are single element candidates. We start
the mining process with the top-most item of the CPTDW tree, “e”. For ”e”,
LMAXW is 0.5, frequency of “e” is 3+1+3 = 7. By multiplying the frequency of
“e” with LMAXW, we get 0.5×7 = 3.5, which is greater than minimum support
threshold 1.2. So, single element pattern “e” is generated.

After that, we consider item “d” as it is the second top most item in Fig. 2(f).
So, the prefix tree of “d” is created by taking all the branches prefixing item “d”
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Algorithm 2 Mining and Test Candidate Procedure.

1: procedure PROCEDURE MINING(T, H, α, LMAXW)
2: for each item β of H do
3: if (frequency(β) × LMAXW <δ) then
4: Delete β from H and T

5: Let CT be the Conditional tree of α
6: Let HC be the Header table of Conditional tree CT
7: for each item β in HC do
8: Call TEST CANDIDATE(αβ, frequency(αβ),δ)
9: Create Prefix tree PTαβ with its Header table HPαβ for pattern αβ

10: Call Mining(PTαβ, HPαβ, αβ, LMAXW)

11: procedure TEST CANDIDATE(X,B,δ)
12: Let Dynamic weighted support of X be DWX

13: Let frequency(Xk) denotes frequency of pattern X in kth batch
14: Let weight(Xk) denotes weighted average of pattern X in kth batch
15: Set DWX = 0
16: for each Batch Bi in B do
17: DWX = DWX + (frequency(XBi) × weight(XBi)

18: if DWX ≥ δ then
19: Add X in the Dynamic weighted frequent pattern list

as shown in Fig. 4(a). For creating conditional tree, the nodes that cannot be
candidate patterns must be deleted from the prefix tree. For item “d”, LMAXW
is 0.6. After multiplying the frequency of the item in the header table shown
in Fig. 4(a), we get e: 3 × 0.6 = 1.8. As the value is greater than the minimum
support threshold value, that is 1.2, so no node should be deleted from the prefix
tree which signifies that, the prefix and conditional tree for item “d” is same.
So, the candidate patterns “de” and “d” are generated at this point.

The same procedure is conducted for all the items in the I-list of Fig. 2(f)
for finding out all the candidate patterns of our example database. The pseudo-
code of the mining procedure is illustrated in Algorithm 2 and the operations
are shown in Fig. 4. After generating all the candidate patterns, we calculate
the actual DWSupport of each candidate pattern according to Eq. (2) to check
whether they are actually frequent or not. This calculation is shown in Table 2.

4 Performance Evaluation

In this section, we present the overall performance of our proposed algorithm
CPTDW over several datasets. The performance of our proposed algorithm
CPTDW in compared with the existing DWFPM algorithm [2].

Experimental environment and datasets. To evaluate the performance
of our proposed tree structure and algorithm for dynamic weighted frequent
pattern mining, we have performed several experiments on IBM synthetic dataset
(e.g., T10I4D100K) using synthetic weights and real life datasets (e.g., retail,
chess, mushroom, pumsb*, connect, pumsb) using synthetic weights and real-life
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Header Table

e: 2, 0, 1

Fitem

2, 0, 1e

{ }

(a) Prefix and Conditional Tree for “d”

Header Table

e: 1, 0, 2d: 0, 2, 0

Fitem

1, 0, 2e

0, 2, 0d

{ }

(b) Prefix and Conditional Tree for “b”

Header Table

e: 1, 1, 1

b: 0, 1, 0

d: 0, 1, 0

Fitem

1, 1, 1e

1, 1, 0d

b: 0, 0, 1 d: 1, 0, 0
0, 1, 1b

{ }

(c) Prefix and Conditional Tree for “c”

Header Table

e: 0, 0, 1d: 0, 1, 0

Fitem

0, 0, 1e

0, 1, 0d

{ }

(d) Prefix Tree for “bc”

Header Table

e: 1, 0, 0

Fitem

1, 0, 0e

{ }

(e) Prefix Tree for “cd”

Header Table

e: 2, 1, 0

Fitem

2, 1, 0e

1, 0, 0d

b: 1, 0, 0 d: 1, 0, 0

1, 0, 0b

c: 0, 1, 0
0, 1, 0c

{ }

(f) Prefix Tree for “a”

Header Table

e: 2, 1, 0

Fitem

2, 1, 0e

{ }

(g) Conditional Tree for “a”

Fig. 4: Mining Operation

dataset (e.g., chain-store) with real weight values. All the datasets are collected
from frequent itemset mining dataset respiratory [5]. The performance of the
proposed algorithm is compared with the existing algorithm DWFPM [2], with
respect to runtime (aka execution time) and memory usage. Our programs are
written in Java programming language. Programs were run in a time sharing
environment with the Linux 16.04 operating system on a HP Notebook, 64 bits
machine, Intel(R) Core(TM) i3-6100U CPU, 2.30GHz processor, 4GB RAM,
100MHz clock, and 500 GB of main memory. We have divided all the datasets
in such a way that each batch contains at most 10 transactions. The minimum
support threshold values of 2%, 3%, 10% and 15% are used to conduct the
experiments.

Table 3 shows some important characteristics of synthetic and real-life data-
sets. Dense and sparse natures of datasets are very useful properties. A dense
dataset contains many items per transaction and small number of distinct items.
For the chess dataset in Table 3, it has a total of 75 distinct items, an average
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Table 2: DWSupport calculation of the candidate patterns of CPTDW algorithm

No Candidate
patterns

DW support calculation Results

1 e: 3,1,3 (0.2 × 3) + (0.3 × 1) + (0.5 × 3) = 2.4 Passed

2 de: 2,0,1 ( 0.45+0.2
2

× 2) + ( 0.6+0.5
2

× 1) = 1.2 Passed

3 d: 2,2,1 (0.45 × 2) + (0.2 × 2) + (0.6 × 1) = 1.9 Passed

4 be: 1,0,2 ( 0.5+0.2
2

× 1) + ( 0.7+0.5
2

× 2) = 0.95 Pruned

5 bd: 0,2,0 0.55+0.2
2

× 2 = 0.75 Pruned

6 b: 1,2,2 (1 × 0.5) + (0.55 × 2) + (0.7 × 2) = 3 Passed

7 ce: 1,1,1 ( 0.3+0.2
2

× 1) + ( 0.4+0.3
2

× 1) + ( 0.8+0.5
2

× 1) = 1.25 Passed

8 cd: 1,1,0 ( 0.3+0.45
2

× 1) + ( 0.4+0.2
2

× 1) = 0.675 Pruned

9 bc: 0,1,1 ( 0.55+0.4
2

× 1) + ( 0.7+0.8
2

× 1) = 1.225 Passed

10 c: 1,2,1 (0.3 × 1) + (0.4 × 2) + (0.8 × 1)= 1.9 Passed

11 ae: 2,1,0 ( 0.9+0.2
2

× 2) + ( 0.7+0.3
2

× 1) = 1.6 Passed

12 a: 2,1,0 (0.9 × 2) + (0.7 × 1) = 2.5 Passed

Table 3: Dataset characteristics

Datasets #trans. Avg. trans. len.
(A)

#distinct items
(D)

Dense & sparse
characteristics ratio
R = A

D
× 100(%)

T10I4D100K 100,000 10.1 870 1.16
mushroom 8,124 23 119 19.327
chess 3,196 37 75 49.33
pumsb* 49,046 50.48 2,088 2.42
retail 88,162 10.3 16,470 0.0625
Chain-store 1,112,949 7.2 46,086 0.0156

transaction length of 37, and 49.33% items are present in every transaction. If
R > 10%, then the dataset is considered dense, which may generate many long
frequent patterns and dynamic weighted frequent patterns. If R ≤ 10%, then the
dataset is sparse. The dataset chess is too dense and the dataset mushroom is
moderately dense. Similarly, datasets T10I4D100k and pumbsb* are moderately
sparse datasets; datasets retail and Chain-store are too sparse datasets.

Synthetic dataset with synthetic weight. We used IBM synthetic dataset
T10I4D100k developed by the IBM Almaden Quest research group. The dataset
was obtained from the frequent itemset mining dataset respiratory [5]. The
dataset do not provide weight values. According to the real world scenario, the
weight values of each item was heuristically chosen to be in the range from 0.1
to 0.9, and randomly generated by using a log-normal distribution. The pattern
generation times for this dataset for both the existing DWFPM algorithm and
our proposed CPTDW algorithm are shown in Fig. 6(a).

Real life datasets with synthetic weight. We used real-life datasets
chess, mushroom, pumsb* and Retail obtained from the frequent itemset mining
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(a) Runtime on T10I4D100K dataset (b) Runtime on chess dataset

(c) Runtime on mushroom dataset (d) Runtime on pumsb* dataset

(e) Runtime on retail dataset (f) Runtime on Chain-store dataset

Fig. 6: Experimental Results

dataset respiratory [5]. These datasets do not provide weight values. So, weights
for items were generated randomly by using log-normal distribution. The pattern
generation times for these datasets for both the existing DWFPM algorithm and
our proposed CPTDW algorithm are shown in Figs. 6(b)–6(e).

Real life dataset with real weight. We used real-life dataset Chain-
store obtained from SPMF, an open-source data mining library [8] consisting of
multiple data mining applications and databases. This dataset was taken from a
major chain store in California. We have taken real weight values for items from
their utility table. The experiment is conducted on the first half transactions
of the total transactions of the dataset. The pattern generation times of the
DWFPM and CPTDW algorithms for this dataset are shown in Fig. 6(f).

Scalability of CPTDW. The experimental results on different datasets
show that our proposed algorithm can easily handle large number of transaction
containing databses (e.g., T10I4D100k, Chain-store). Hence, these experimental
results demonstrate the scalability of our proposed algorithm to handle large
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Table 4: Node count of CPTDW and DWFPM algorithms

Dataset Node Count (CPTDW) Node Count (DWFPM)

mushroom 12 21
pumsb 21 61
pumsb* 36 70
Chain-store 789 804

Table 5: Runtime Distributions of CPTDW and DWFPM Algorithms

Dataset Tree construction
time of CPTDW
(ms)

Overall runtime
of CPTDW (ms)

Tree construction
time of DWFPM
(ms)

Overall runtime
of DWFPM (ms)

T10I4D100K 1,033 3,925 283 6,001
chess 19 37 3 40
mushroom 13 38 2 44
pumsb* 21 285 3 424
retail 36 367 10 518

number of transactions and distinct items. Our CPTDW algorithm outperforms
the existing DWFPM algorithm by using an efficient tree structure and pattern
growth mining technique in terms of runtime and memory usage.

Memory usage. Research on prefix-tree based frequent pattern mining
shows that, the memory requirement for the prefix tress is low enough to use
the gigabyte range memory available nowadays. Table 4 shows the total number
of nodes of the prefix-trees at the time of generating dynamic weighted frequent
patterns for different datasets for both the CPTDW and DWFPM algorithms.
We have handled our tree structure very efficiently. Our CPTDW tree can rep-
resent transaction information in a very compressed form because transactions
have many items in common. By using more prefix-sharing, our tree structure
can save memory space.

Runtime distribution. Recall from Section 3.1 about our CPTDW tree
construction process, CPTDW requires several swapping operations to restruc-
ture the tree structure in frequency descending order after the insertion of the
transactions of each batch. So, there might arouse an issue that, CPTDW should
require more time for the tree construction which is true. However, observed from
Table 5, although CPTDW requires more time to construct the tree structure,
we get a significant gain in overall runtime due to the frequency descending com-
pact structure of the tree. For the following experiments presented in Table 5,
the datasets were divided into 15 unique symbols and the minimum support
threshold value of 3% is used.
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5 Conclusions

Although there have been several efforts in mining weighted frequent patterns,
they are not designed for handling many real-life situations where the impor-
tance of an item varies dynamically over time. Our key contribution of this paper
is to provide a new tree-based approach to efficiently mine dynamic weighted
frequent patterns. By storing batch-by-batch frequency and weight information,
our compact pattern tree for dynamic weights (CPTDW) algorithm discovers
accurate knowledge about dynamic weighted frequent patterns. CPTDW is ap-
plicable to real time data processing because it requires only one database scan.
By using an efficient tree structure and mining approach, our CPTDW saves
memory space and time consumption. Extensive performance analyses shows
our algorithm is efficient when applied to both sparse and dense datasets, and
can handle a large number of distinct items and transactions. As ongoing and
future work, we are extending the current work for (i) incremental and interac-
tive mining on databases with dynamic weights and for (ii) sliding window based
dynamic weighted frequent patterns mining over data streams.
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