
Automating service composition and Delivery

in rrighly r{eterogenous Distributed Environments

Hossein Pourreza

by

A Thesis submitted to the Faculty of Graduate Studies of

The University of Manitoba

in partial fulfilment of the requirements of the degree of

Doctor of Philosophy

Department of Computer Science

University of Manitoba

Winnipeg, Manitoba, Canada

Copyright O 2009 by Hossein pourreza

THE UNIVERSITY OF MANITOBA

FACULTY OF GRADUATE STI]DIES
it**tr*

COPYRIGHT PERMISSION

Automating servíce composition and Derívery

in Highly Heterogenous Distributed Environments

A Thesis/Practicum submitted to the Faculty of Graduate Studies of The University of

Manitoba in partial fulfillment of the requirement of the degree

of

By

Hossein Pourreza

Permission has been granted to the University of Manitoba Libraries to lend â copy of this
thesis/practicum, to Library and Archives Canada (LAC) to lend a copy of this thesisþracticum,
and to LACrs agent (UMI/ProQuest) to microfilm, sell copies and to [ublish an abstract of this

thesis/practicum.

This reproduction or copy of this thesis has been made available by authority of the copyright
o\ilner solely for the purpose of private study and research, and may only be reproduceO an¿ copied

as permitted by copyright laws or with express written authorization from thã copyright ownór.

Doctor of Philosophy

Hossein PourrezaO2009

Abstract

T n u distributed environment, devices and components can share their resources by of-

-l- fering different services. By abstracting devices using the services that they offer, we

can define a service-based architecture that readily supports the discovery and creation of

new, composite services to expand the capabilities available in the distributed environment.

Pervasive environments such as a Home Area Network (HAN), meeting/conference room,

etc. are examples of a highly heterogeneous distributed environment that can exploit such

a service-based architecture. In this thesis, I propose an architecture for service deliv-

ery and composition in a pervasive environment. The proposed architecture uses external

third-party service enablers to automatically compose new services and deliver them to a

pervasive environment. Composing new services using available services and deploying

them in a pervasive environment makes such environments more attractive to their mostly

non-technical users. It also reduces costs associated with offering services in those envi-

ronments, since human intervention is not required. In this thesis, I review the relevant

literature, explain the implementation of the prototype of my architecture and present the

results of its perfonnance evaluation. The developed prototype shows the feasibility of

my proposed architecture (implementation as well as performance wise) and uses a unique

way of deploying a composite service as well as a novel method of applying a workflow

repository for service composition.

Acknowledgments

1-
esPecially want to thank God who gave me opportunity and the strength to start and

;[nnistr my PhD. I am also grateful for having Dr. Graham as my PhD supervisor who

was the continuous support in different stages of my progïam. I was delighted to have Dr.

Atnason, Dr. Anderson, Dr. Diamond, and Dr. Nikolaidis as my committee members who

had to read my thesis several times and helped me to improve my PhD work. I would like

to thank all the members of the PDSL lab who gave me invaluable feedbacks during my

study.

I could not survive during my long PhD period without financial supporr that I received

from my supervisor, TRLabs, and the University of Manitoba. I am also thankful to Dr.

Gole and Dr. Filizadeh (from Electrical and Computer Engineering department) who gave

me the opportunity to work with their group and provided me financial support in the most

deserving time.

I owe my deepest gratitude to my mother and my father whose supports and prayers are

with me since I remember. Undoubtedly, without their support I could not have achieved

what I have done so far.

Last but not least my especial thank goes to my beloved wife, Fereshteh, who was with

me in all the ups and downs. Without her, it was impossible to tackle the challenges that I
faced during my study.

111

To someone special

Fereshteh

1V

Contents

Abstract

Acknowledgments

List of Tables

List of Figures

1 Introduction

1.1 Motivation and Approach .

1.2 Example Scenario

1.3 Contributions

1.4 Results

i.5 Thesis Overview

Background and Related Work

2.1 Service Oriented Computing

2.1.1 Service Oriented A¡chitecture

2.1.2 Introduction to Pervasive/Ubiquitous Computing

2.1.2.1 Evolution of the pervasive Computing

2.1.2.2 Pervasive Computing Model

2.1.1.1 Ontology-enabledSOA

I
3

7

9

10

11

t2

l2

t4

15

17

17

18

VI

2.1.2.3 Using SOA for Pervasive Computing

2.1.3 Service Oriented Computing and Failure Handling

2.2 Service Discovery

2.1.3.1 FailureDerection

2.1.3.2 FaultTolerance

2.2.1 ServiceDiscoveryPrinciples

2.2.1.1 Se¡viceAnnouncement

2.2.1.2 Service Lookup

2.2.1.3 Service Invocation

2.2.2 Service Discovery Systems .

2.2.2.1 Jini

CONTENTS

2.2.2.2 UPnP

2.2.2.3 HAVi . .

2.2.2.4 Osci

2.2.2.5 Obje

2.2.2.6 AuroHan

2.2.2.7 @HA

2.2.2.8 The Service Location protocol

2.2.2.9 Bluetooth SDP .

2.2.2,10 SSDS

2.2.3 Summary of Service Discovery Systems

Composition of Services

2.3.1 Composite Service Creation Systems

2.3.1.1 Semantic Service Description

2.3.I.2 Semanric Matching

2.3.1.3 Semantic-based Service Composition Systems

20

2t

23

24

25

25

25

26

27

27

28

3t

34

35

JI

38

39

40

4t

4T

42

43

44

45

46

47

2.3

CONTENTS

2.3.1.4 Graph-based Service Composition 50

2.3.1.5 Summary of Composite Service Creation Systems 52

2.3.2 Composite Service Execution Platforms 52

2.3,2.1 ICARIS 53

2.3.2.2 eFlow 54

2.3.2.3 The Ninja Service Composition plarform 56

2.3.2.4 TaskComputing 5g

2.3.2.5 InterPlay 60

2.3.2.6 SpiderNet60
2.3.2.7 Broker-basedServiceComposition 6l

2.3.2.8 CoSMoS : 63

2.3.2.9 Synthy 64

2.3.2.10 summary of composite service Execution platforms 65

2.3.3 Shortcomings of Existing Sysrems 66

2.4 Composite Service Execution

Overall Architecture

3.1 Service Composition Methods

VIl

3.2 Ranking Composite Services

3.3 Fault Handling in Composite Services

3.3.1 Selecting an Alternate Service ..

3.4 Prototype Implementation Overview

3.5 Summary

Designing a Domain Ontology t7
4.1 Modeling a Type Ontology 89

4.1.1 Properties as Types 9l

73

77

79

80

82

83

85

vlll

4.1.2 Generic Types with Properties

4.1.3 The Selected Modeling Srraregy

4.I.4 Using the Selected Type Onrology . .

4.2 Ontological Siblings and Matching .

Implementation Details

5.1 ServiceDescription

5.2 Semantic Matching

5.3 Repository-based Service Matching

5.3.1 Implementing Repository-based Matching in the prototype

5.3.2 The Complexity of Repository-based Marching

5.4 Input/OutputMatching

5.4.1 VO Matching Using Lookup Tables

5.4.2 Complexity of l/O-based Marching

5.4.3 Services with Multiple Inputs and/or Outputs

5.4.4 Ranking Composite Services

5.4.4.I AbstractRanking

5.4.4.2 Concrere Ranking

5.5 Composite Service Deployment

CONTENTS

92

93

94

95

Experimental Results 143

6.1 RealWorldScenarios145
6.2 EmulatingtheSystem149

6.2.1 Applying the Ranking Function . . . 151

6.3 SimulatingtheSystem155
6.4 Scalability Analysis . . 166

97

97

102

105

109

tt2

tt4

116

r20

t25

127

128

136

140

CONTENTS

7 Conclusion and Future Work 170

7.1 Contributions1'72
7.2 FutureWork.173

Appendix A

Acronyms . . 116

Appendix B

DomainOntology ..177

Appendix C

ServiceDescription180
C.l Display Video and Play Audio Service 180

C.2 PlayMPGFileService183
C.3 Convert PDF to PS Service . . 186

Appendix D

AdditionalServiceCompositionScenarios190

Bibliography

lx

199

List of Tâbles

2.1 Relation between types and modes of failure

2.2 Comparison of different service discovery protocols

2.3 Comparing composite service creation systems

2.4 Comparison of different service composition platforms

3.1 Comparison of different service composition methods

5.1 Notation used in calculating the complexity of repository-based matching

5.2 Comparing the average number of compositions of length 2,3, 4, and 5

obtained by an experiment to that obtained using formula 5.1 .

5.3 The calculated concrete rank for the composite service example shown in

Figure 5.i5

6.1 Values selected for parameters and weights of Formula 5.2

6.2 Computed ranks associated with different composition characteristics

6.3 Results of using different ontologies for composition and applying ranking

method and a threshold value

6.4 Simulation results to find an I/o compatible sequence assuming a maxi-

mum of 150 available services and À : 0.5

6.5 simulation results to find an vo compatible sequence assuming a maxi-

mum of 150 available services and À : 0.33 .

x

23

70

71

12

78

tt3

t22

139

t46

146

t54

159

160

LIST OF TABLES

6.6 Simulation and analytical results to find I/O compatible sequences assum-

ing a maximum of 150 available services, À : 0.33, and an exponential

6.7 Simulation results to find an vo compatible sequence using weibull dis-

tribution without the constraint of having a maximum of 150 available ser-

vicesand):0.25

D.1 Services and their input and output types participating in Scenario A

D.2 Services and their input and output types participating in Scenario B

distribution for I/O matching times with þt : 17

XI

160

166

197

198

List of Figures

1.1

1.2

2.1

2.2

2.3

2.4

3.1

3.2

J.J

4.1

A simple home area network as an example of a local pervasive environment

Steps in achieving the main goal of fully automated service composition

The basic service oriented architecture [64]

Pervasive computing model: pervasive devices can talk either directly, if
they know each other's protocol, or via middleware (adapted from [72])

Lookup and discovery in Jini (adapred from [84])

Bundle service registration and subscription (adapted from [55])

Overall architecture for service composition

Addition of the new serviceType tag to the service description

Components of the prototype implementation

Part of a type ontology

4.2 Modeling MP3 files similar to this hierarchy violates the "is-a" relationship

4.3 Part of a type onrology in which siblings do nor have any relationship

5.1 The description of the Get. St atus service encoded in OWL-S

5.2 component view of implemented bundles within the osGi framework

5.3 Sequence diagram for creating an OSGi grounding for an advertised service

5.4 OSGi-specific grounding for the Getstatus service

5.5 component view of the sE side code used to match a composite service

and create a workflow corresponding to it for a given pervasive environment

xii

4

7

l4

T9

29

36

74

81

84

90

9L

96

101

r02

103

103

t04

LIST OF FIGURES

5.6 Sequence diagram for creating a composite service on the SE side

5.'7 Applying a hash function on two services with the same input types but in

a different orders

5.8 The PrintMapWF workflow's partial structure containing three services

5.9 Additions to the repository after adding PrintMapWF workflow

5.10 Input and output caches corresponding to input and output pa¡ameter types .

5.11 Input and output caches after inserting ,S¿ and finding sequences

5.12 The number of possible compositions for different numbers of available

services and types

5.13 Information stored about each workflow per each GD category (e.g. expert,

average, and novice)

5.14 The process of composing services and the different stages of filtering them

5. 1 5 Three service types and corresponding service instances with assigned QoS

values

5.16 The sequence diagram of creating wrappe¡s within the GD

5.17 The sequence diagram of calling a composite se¡vice by a user within a

pervasive environment

6.1 Average time required to create a sequence using only VO matching

6.2 Number of possible sequences of maximum length 5 . .

6.3 Average time required to find a sequence using only the repository

6.4 Average time required to create a sequence using only VO matching(U3

of services have two inputs)

6.5 Number of possible sequences of maximum length 5 (1/3 of services have

two inputs)

6.6 Average time required to find a sequence using only the repository (1/3 of

services have two inputs)

xlll

105

110

112

112

120

r20

124

134

135

138

t4I

t42

151

152

153

154

155

156

xlv

6.1 Simulation model of the service composition process at the SE side. ¡-l¡ is

the composition time and p is the service residence time. . . l5'7

6.8 Cumulative Distribution Function (CDF) of sample data and estimation us-

ingWeibulldistributionsfork:100,125, and150162

6.9 Q-Q plots for sample data and the fitted Weibull distribution for k : 100,

125,and150..163
6.10 Estimating scale and shape parameteß of the fitted Weibull distribution

usinglinearandquadraticfits.164
6.11 Q-Q plots for sample data and the quadratic estimated Weibull distribution

fork:100,125,and150 ..165

LIST OF FIGURËS

Chapter I

IntroductÍon

In the past, most devices participating in distributed computing systems were similar in

terms of computing power and communication protocols used. Further, the participants

normally cooperated to provide a single function. With the introduction of ubiquitous/

pervasive computing [85], however, the variety of devices and their capabilities, the het-

erogeneity of networks connecting them and the variety of tasks concurrently being done

have all increased significantly. Moreover, in contrast to earlier distributed environments,

the communication links used are now often wireless and the devices are sometimes mobile

and may also have limited capabilities. Thus, many heterogeneous distributed computing

systems are now comprised of very different computing devices of varying abilities and

using different operating environments. Accordingly, the key research challenges are now

shifting to focus on providing effective device interoperability.

A wide range of devices including personal electronics (e.g. cell phones, PDAs, etc.),

entertainment equipment (e.g. stereos, PVRs, etc.) and even home appliances now have

sufficient processing power and abilities to be connected to a network (either directly or

using a GD) and therefore may participate in ubiquitous computing systems. Further mul-

tiple such computing devices are commonly found together in pervasive environments.

1

With the increasing prevalence of wireless mobile devices, the set of available devices and

corresponding services that they offer in a given pervasive environment may also change

dynamically and sometimes frequently.

The pervasive environment targeted in this research is assumed to be comprised of

several network-enabled devices connected together using, potentially, different connection

technologies (wired or wireless) and protocols. The underlying functionalities provided by

each of the different devices are described as one or more services. Services are self-

describing and platform independent (with respect to invocation) and can be provided by

a physical device directly or via a software program [64]. (For example, a DVD player

can offer a "play video" service just as video playing software running on a PC might.)

Services can be partially described and characterized by their inputs and outputs.

The ability to automatically discover and combine the services offered by devices in any

given environment offers the potential to provide a significantly improved user experience

through enhanced (collective) capabilities, increased interaction between device owners,

and simplified access to infrastructure and other facilities/capabilities. Unfortunately, this

potential is seldom realized because the vast majority of the users of pervasive devices

are non-technical and the devices themselves are currently incapable of automatically self-

configuring and cooperating to meet users' needs. Since a fundamental tenant of pervasive

computing is ease of use, it is becoming increasingly important to be able to allow pervasive

devices to discover and inter-operate with one another without direct user involvement.

The number and type of pervasive environments (e.g. homes, meeting/conference

rooms, airport lounges, etc.) with a broadband connection to the Internet is increasing

rapidly [33]. This suggests the possibility of involving one or more remote third parties in

the process of automating the composition of services (i.e. "service composition") to help

realize the potential of pervasive computing. Taking this approach not only provides more

computational "horsepower" for doing the composition but also provides the opportunity

Chapter 1 : Introduction

to measure the effectiveness of known compositions, to exploit their reuse and, when/if

necessary, to involve knowledgeable human experts in the composition process.

In this thesis I use a Home Area Network (HAN) [62] as an example of a rich pervasive

computing environment, without loss of generality. A HAN is comprised of computing

devices, audio/video devices, sensory devices, and networked appliences connected one to

another using wireless or wired technology. The connection point between each pervasive

environment and the Internet is assumed to be provided by a Gateway Device (GD). t

Normally, the GD is a relatively powerful device (from a computation and, possibly, storage

perspective) and can be managed remotely by the Internet Service Provider (ISP) supplying

it. This provides a reliable computation source in each pervasive environment and a reliable

link from the environment to the Internet. In our assumed environment, there wìll also be

one or more Service Enablers (SEs), that may be distinct from the ISP, providing service

management and composition to each pervasive environment. Figure 1.1 shows a simple

home area network as an example of a local pervasive environment.

l.tr Motivation and Approach

Due to the variety of devices, communication media, and manufacturers, pervasive envi-

ronments are highly heterogeneous. Different services (such as video on demand, health-

monitoring, etc.) as well as software components used by the participating devices need to

be updated regularly to satisfy users' needs and to support interoperability between devices

and, possible, Internet-based services (e.g. streaming video with QoS guarantees). With

the increasing numbers of such environments and devices in each one, distributing new

services and upgrading and composing available ones has become a cumbersome, difficult,

and expensive task that requires greater technical ability than most users are capable of.

tF- @ferred to as a residenlial gateway.

Chapter 1 : Introduction

Figure 1.1 : A simple home area network as an example of a local
pervasive environment

Software development companies try to overcome the existing heterogeneity by develop-

ing new protocols or middleware but new standards are slow to evolve and incompatibility

between different software components makes the existing service integration and distribu-

tion problem more difficult.

In a HAN (or similar) environment, trying to integrate services (provided by devices) in

a uniform way requires many issues to be addressed. Among these issues, service discovery

and service composition are two related, important, and challenging topics.

Service registration and discovery protocols act as a bridge between devices providing

service (devices willing to share their capabilities) and service consumers (client devices

which need a service). These protocols therefore not only help devices to advertise and

discover services, but also clients to meet their requests. These protocols must also strive

to have minimal overhead on the hosting devices.

Gateway Device

1.1 : Motivation and Approach

Composing a new service out of discovered services is a promising solution to help

automate the creation of new services for pervasive environments. Unfortunately, when

the services available in a pervasive environment are many and their potential interactions

numerous, service composition can be expensive and hence impractical for embedded de-

vices to do. This suggests the need for a separate, more powerful entity being involved

in composition. SEs can provide not only the required power for service composition but

also a shared repository to store commonly used composite services to increase reusability

and speed of composition. They can also collect statistics about composite service usage to

identify similar environments. This classification, as will be presented later in this thesis,

can help sEs to send only suitable composite services to a given environment.

The composition of Web services has been studied extensively in the literature 165,77,

54, 68, 42,271. Being able to compose a nevr' service using existing ones can provide

added value for users. For example, a user might express his/trer interest in going to a

conference and a composite service comprised of conference registration, flight booking,

and hotel reservation could perform the required task, ensuring that all the user's specified

constraints are satisfied. Unfortunately, in many pervasive environments, goals cannot be

defined, devices offering a variety of services are many, "on-the-fly" (real-time) response

is needed, and the user is non-technical and therefore is unlikely to be capable of, or even

willing to, direct service compositions. Systems for service composition developed by

Sirin et al. [77], Rao et al. [68], etc. involve the user in defining a goal and selecting

component services to achieve the goal. Masuoka et al. [56] semi-automatically generate

composite services for a pervasive environment but their work is limited in a number of

ways. None of the existing work, to the best of my knowledge, is able to automatically

find and offer new and useful composite services based only on the available services in

a pervasive environment without direct user involvement in somehow pre-specifying the

desired service(s).

6

In this thesis, I propose an architecture to address the challenge of doing composition

without direct user involvement. To keep the end-use¡ out of the service composition pro-

cess, services must be described more accurately. In common with some other work, I use

semantic information to describe services' input and output types. Once inputs and out-

puts have been described using a type ontology, it is possible to discover all the possible

sequences of services in which the output of one service can be redirected to the input of

another. This approach is called inpuloutput-based matching and is the default mecha-

nism behind the service composition process. Unfortunately, input/output-based matching

is computationally expensive. Accordingly, I also use a shared repository of pre-defined ab-

stract compositions (workflows) to speed up the service composition process by "reusing"

previously composed services. This helps to address the computational expense of service

composition. Other challenges addressed include efficiently reusing previously generated

composite services and ranking discovered composite services to filter out ones which are

less likely to be of end-user interest. Generally speaking, my thesis follows the steps pre-

sented in Figure l.2to achieve its main goal of supporting effective service composition

without direct user involvement.

As it can be seen from the figure, to fully automate the composition process, input/output

matching must be employed. This method, however, is computationally expensive and gen-

erates many composite services that can overwhelm the end-user. Third party SEs can step

in the composition pÍocess and provide required computation for input/output matching as

well as a storage to keep the generated composite services. The SE also applies a ranking

function to generated composite services to identify more useful ones to deploy in a perva-

sive environments. Later in this thesis different methods of ranking and their impact on the

final result of composition will be discussed in detail.

By using an architecture that involves SEs in the creation of each composite workflow

and in the deployment of newly created composite services in the pervasive environment(s),

Chapter 1 : Introduction

1.2 : Example Scenano

Predeflned
paramelers

Figure i.2: Steps in achieving the main goal of fully automated service
composition

non-technical users will be able to benefit from composite services without being involved

in their creation. Also, ISPs can reduce their maintenance costs using such an architecture

by allowing them to do some of their activities (including upgrading software components)

remotely.

"1,"2 Exarnple Scenanio

Consider an example scenario that might occur in a typical home network environment.

A father has bought a new game console for his seven year old son. He connects it to

the existing home area network and powers it up. At this point, the console is likely im-

mediately capable of performing its primary function (playing games, possibly including

Internet-based multi-player games) without assistance from its users. Howeve¡ the new

game console might also be capable of doing tasks other than just playing video games.

For example, it might be able to play high definition videos, store and play multimedia files

(audio, video, and picture), etc. Expecting either the non-technical father or the young son

to be able to exploit the benefits offered by these capabilities is unrealistic.

Using the approach described later in this thesis, the game console will advertise its ser-

vices in the network and the GD will send information about the newly available services to

a SE. The SE, based on the information it has about already deployed devices in the home,

will automatically generate new composite services involving one or more of the newly

advertised services from the game console. It will then select the most useful composite

services and send them back to the home for deployment. Some composite services that

could possibly be generated might include:

o Video recording service: The video signal from a TV cable box could be directed

to the new game console and the game console could store it as a video file thereby

offering a PVRlike service. This new service might initially be run explicitly by a

home occupant, or could conceivably be run automatically based on context informa-

tion indicating that no one is at home when it is time for someone's favorite television

show. This sort of video recording service could also be used to store the output of a

home monitoring camera as a video file.

ø High definition video playback service: The video play back service of the new game

console could also be composed with the display service of a high definition TV that

already exists in the home.

ø Upconverting standard definition video service: The new game console would likely

Chapter 1 : Introduction

1.3 : Contributions

have sufficient computational ability to be capable of upconverting standard defi-

nition videos to better match a home's high deffinition TV. Existing video files on

DVDs or even on video cassettes might be sent to the game console for conversion

and the recoded output could later be played back on the high definition TV.

In addition to these services, the new game console's services might also be composed

with those offered by devices such as digital cameras, video cameras, cell phones, etc.

which are commonly available in many homes.

L.3 Contributions

The contributions of my thesis are as follows:

1. A novel service composition model for pervasive environments in general and Home

Area Networks (HANs) in particular which involves SEs in the service composition

process

2. A novel method for storing workflows (i.e. the SE's shared repository) and an inte-

grated method of semantic matching including both input/output-based and repository-

based approaches (described in Chapter 5).

3. Designing a type ontology to help describe services semantically (described in Chap-

ter 4).

4. A method for ranking the automatically generated composite services (both abstract

and concrete) to ensure that only the most useful generated se¡vices will be offered to

the end-use¡ and thereby avoiding "information overload" (described in Chapters 3

and 5.

5. General verification of the ranking scheme (described in Chapter 6)

10

6. A mechanism for deploying composite services in pervasive environments using

OSGi and the UPnP and Jini ubiquitous computing protocols.

7. A novel "OSGi grounding" for OWL-S descriptions and a mechanism for the dy-

namic creation of such groundings (described later in Chapter 5).

8. A simulation study and scalability analysis to assess the feasibility of supporting

many GDs by SEs (described in Chapter 6).

1.4 Results

I developed a prototype system to assess the success of my approach to perform service

composition without user involvement. The prototype system, as a whole, \¡/as tested with

a few real as well as simulated devices. Services offered by these devices were described

using the developed realistic type ontology. The system was able to successfully detect

devices, identify composite services based on advertised services, and finally deploy them.

The composed services are invoked in the same way as other available atomic services are.

I then created many synthetic services, that could potentially be offered by different

devices, to test the service composition process more specifically. A program acting as

a SE, received these services one at a time and identified all possible compositions using

both inpuloutput and repository-based matching. The generated composite services were

ranked and at the end (i.e. after all services were received by the SE) statistics about the

total number of composed services and number of composed services with a given rank

value were collected. By manually inspecting the results of composition, it was clear that

the ranking scheme successfully filters out most "undesirable" compositions.

I also performed a simulation to study how my proposed system scales under different

Chapter 1 : Introduction

1.5 : Thesis Overview

scenarios to assess its practicality in various pervasive environments. The result of sim-

ulation shows that the proposed system is capable of handling a very dynamic pervasive

environment (such as an airport lounge).

Although the home area netTvork was considered as an example in this thesis, the pro-

posed method for service composition is equally applicable in any pervasive environment

such as airport lounges, meeting rooms, etc.

L.5 Thesis Overview

This thesis is organized in seven chapters. After the introduction, Chapter 2 overviews

related work in the area of service discovery and composition including service discovery

protocols and a number of service composition systems. Chapter 3 describes my highJevel

service composition architecture for use in pervasive environments that supports a wide

range and number of pervasive devices and which can provide composition without direct

user involvement. The key components involved in the architecture and their interactions

are introduced. To be able to test the proposed system, a domain ontology is required. The

design of such an ontology (reflecting real world devices) is presented in Chapter 4. The de-

tails of my implementation are described in Chapter 5. Chapter 6 presents the experimental

results evaluating my proposed architecture for composition. This chapter also presents a

scalability analysis of the proposed system for a variety of pervasive environments. Finally,

Chapter 7 concludes the thesis and identifies some areas for possible future work.

11

Chapter 2

Background and Related Work

Service oriented computing (SOC) [6a] is a relatively new paradigm that abstracts different

resources as services. This abstraction makes use of resources independent of their plat-

forms. Different capabilities can be used collectively. Using SOC concepts in pervasive

computing environments can help developers to hide underlying differences from users.

2.1 Service Oriented Computing

Service Oriented Computing (SOC) is a rapidly growing approach to software structuring

particularly for Web-based distributed systems. SOC has evolved to address two short-

comings of existing component-based software development; platform heterogeneity and

assumed tight coupling between system components t191. SOC achieves its goals by using

services as the fundamental elements for application development [64]. Although many

definitions have been proposed for a service, in this thesis, I assume a service to be a self-

describing and platform independent (with respect to invocation) entity that can be provided

by a physical device or a software program [64]. For example, a DVD player device can

offer a "play video" service just as video playing software might.

12

2.1 : Service Oriented Computing

Services abstract functionalities and present them to the end-users, as well as to one

another, through interfaces defined using standard languages and protocols. Services are

not bound to a specific user nor to a particular run-time environment. Software services

can also be provided locally or by service providers (running on service enablers), refer

again to Figure 1.1. Service consumers (i.e. clients), may be either devices or other entities

and require no knowledge about the service providers, a priori. Services should have the

following features [64] :

e Technology neutral: services should be accessible (discoverable and invokable) using

widely accepted standards.

e Loosely coupled: services should not need to know about the internal structure of a

client nor that of a server.

o Location transparent: services should be accessible without needing to know their

locations a priori. This feature can be achieved either by registering service descrip-

tions in a directory or by using broadcast mechanisms in local environments.

AWeb service is a special and ubiquitous kind of service whose description is available

via a URI [64]. Web services are described using XMl-based languages and use standard

Internet protocols (e.g. HTTP) for communication. Web services are currently the most

common instance of the software-as-a-service concept [64]. Complex business processes

(e.g. loan processing, vacation planning, etc.) and software-based applications can be

offered, via subscription or on a rental basis, as services over the Internet. New applications

can be constructed by assembling service components (Web services or others) offered by

different service providers.

13

t4 Chapter 2 : Background and Related Work

2.1.1 Service Oriented Architecture

Service Oriented Architecture (SOA) is a way of designing software by organizing avail-

able services and identifying relations among them so that different services can commu-

nicate and exchange data using standard interfaces and messaging protocols [60] to build

software systems from available services. SOA identifies three different participants in

a service-based environment: service provider, service client, and service registry (See

Figure 2.1). SOA separates the description of a service's interface(s) from their imple-

mentation. An interface describes what is provided by a service. The interface should

provide enough information to service clients about operations provided by a se¡vice to

allow clients to invoke them. The implementation of a service can be in any language on

any platform.

Using SOA, as compared to traditional software design methods, can provide the fol-

lowing benefits [60]: finding the right services (with respecr ro a requirement at hand) is

fastet, replacing a service provider is easier, creating new applications is possible using

"service composition", inco¡porating new services is easier, and supporting new and un-

predicted requirements is possible by having an abstract definition of a service.

Figure 2.1: The basic service oriented architecture [64]

2.1 : Service Oriented Computing

A Web services platform, for example, provides the necessary facilities (i.e. describing,

publishing, and invoking services) to implement an SOA. Some of the key elements of a

Web services platform are:

o Web Se¡vices Definition Language (WSDL): WSDL [6] describes publicly available

functions (interfaces) of a service, their inputs and outputs, binding information about

the transport protocol to use, and address information to locate a service. WSDL thus

describes a service in terms of messages exchanged in a service interaction [31].

o Universal Description, Discovery and Integration (UDDI): UDDI [8] defines a rcg-

istry service for (Web) services. Service providers can use UDDI to publish their

own services. Service clients then use the UDDI lookup service to discover, and later

obtain the description of, their desired services.

o Simple Object Access Protocol (SOAP): SOAP [82] is a message passing and service

invocation protocol which normally uses HTTP as its transport protocol. WSDL has

built-in support for services accessible via SOAP.

Relying on open-standards elements, a Web services platform allows service providers and

consumers to interact in a consistent manner without considering underlying differences

such as location and run-time environment. While increasingly common, Web services

platform is not the only SOA platform.

2.l.l.l Ontology-enabled SOA

15

Ontology-enabled SOA [61] is a combination of the use of semantic information, provided

by a domain ontology to describe services, and SOA. An ontology describes different con-

cepts and relations (e.g. subclass, equivalence, etc.) among them. The idea of augmenting

16

SOA with semantic information has been motivated by the need to infer relationships be-

tween two concepts, irrespective of their name or other syntactic information. This enables

more accurate service composition.

WSDL describes a service's input(s) and output(s) using XML Schema data types [60]

and these data types alone are used to find relations between input(s) and output(s) of two

services to determine the flow of a composite service. Also, languages such as WSDL

are not capable of describing internal interactions among services. WSDL, just describes

what functionalities a service provides and how they are accessible using message passing.

To be able to describe the flow of execution within a composite service (i.e. the order of

interaction among components of a composite service), we need (among other things) a

language to specify the order of messages exchanged between services. However, having

such a language only partially addresses the issue since the order of services participating in

a composite service must still be specified manually. In dynamic, heterogeneous pervasive

environments this requirement could overwhelm end-users and is highly undesirable.

A possible approach to solve both the flow determination and flow description problems

is using semantic information to describe services. Machine-readable semantic information

about a service makes it possible to discover other services that are "compatible" with a

given one. Here, compatibility is defined in terms of the type compatibility of the input(s)

and output(s) of two services. Hence, two services are considered compatible if the output

of one service can be redirected to the input of another. To be able to find compatible

services, their input and output types must be described semantically.

The Web Ontology Language for Services (OWL-S) [30] is a language capable of using

types defined in an ontology to describe input and output types of services. OWL-S is also

capable of describing the flow between different services in a composite service. By using

a common ontology to describe services in a given environment, compatible services can

be discovered automatically to create composite services.

Chapter 2 : Background and Related Work

2.1 : Service Oriented Computing

Ontology-enabled SOA is particularly appealing in pervasive computing environments

where there is no explicit goal to create a composite service. In such environments the

users cannot or do not want to, specify wbai service(s) are desired. They simply want

such services to be provided automatically. Having semantic information about services,

composite services can be automatically created and then made available to users without

their direct involvement.

2.1.2 Introduction to Pervasive/Ubiquitous Computing

Ubiquitous computing, also referred to as pervasive computing, is a vision of computing in-

troduced by Mark Weiser [85]. In his vision, computing devices should "weave themselves

into the fabric of everyday life until they are indistinguishable from it". Current advances

in hardware, softwate, and networking technologies make Weiser's ideas feasible and prac-

tical. In this section I review the historical roots of pervasive computing. Then, I explain

the pervasive computing model and major "actors" in a pervasive computing environment.

Finally, I link the use of soA to developing pervasive apprications.

2.1.2.1 Evolution of the Pervasive Computing

l7

Pervasive computing can be considered an evolutionary product of the integration of two re-

lated areas, namely distributed systems and mobile computing [7a]. As a result, a pervasive

computing environment is both heterogeneous and dynamic in nature. Distributed comput-

ing arose with the popularity of personal computers and the development of networking

technology. Once many computers became connected, the idea of sharing resources be-

came important. Distributed computing provided users access to shared resources (e.g.

storage, printers, files, computing, etc.) without requiring users to have explicit knowledge

about the physical location of resources.

18

The challenges in building a distributed system, which are also relevant to pervasive

computing, are to provide remote communication, fault tolerance, high availability, and

security [74]. Although there are solutions to these challenges for distributed systems, they

are not, in many cases, directly applicable to all pervasive computing environments where

there may be no pre-configured network infrastructure and possibly no powerful computing

devices capable of acting as different "servers" (e.g. name server, file server, etc.).

Mobile computing is another area related to and influencing pervasive computing. Mo-

bile computing was bom, mainly, with the introduction of mobile devices (e.g. cell phones,

laptops, etc.) and wireless communication (e.g. cellular and local area networks). Mobile

computing supports the idea of anywhere, anytime computing. Some challenges, related

to mobile computing, include mobile networking (ad-hoc protocols), energy awareness,

and location sensitivity [74]. These challenges are also relevant to pervasive computing

where many of the devices may be tiny, resource limited, and sometimes mobile (due to

the mobility of their operating environments such as cars, human bodies, etc.).

2.1.2.2 Pervasive Computing Model

Chapter 2 : Background and Related Work

In a pervasive computing environment four different components (actors) commonly ex-

ist l72l:

1. Devices: different devices with different computation and communication capabili-

ties can participate in a pervasive environment. The devices can be considered to be

the core of the pervasive computing.

2. Ad-hoc networking: an ad-hoc network connects potentially many devices "on-the-

fly" without predefined infrastructure. The available networking protocols and mod-

els for traditional networks (e.g. the client/server model) must be tuned or even

re-designed to be applicable in such pervasive environments.

2.1 : Service Oriented Computing

Figure 2.2: Pervasive computing model: pervasive devices can talk
either directly, if they know each other's protocol, or via
middleware (adapted from [72])

3. Pervasive middleware: Some middleware layer typically needs to be available in a

pervasive computing environment to present the devjces (i.e. network core) function-

alities to the end-user applications. Middleware can also abstract underlying func-

tionalities by advertising them as "services" allowing application developers to use

Service Oriented Architecture (SOA) to structure their software. This provides a

homogeneous view of an underlying network of different devices.

4. Pervasive applications: a pervasive application is the contact point between a perua-

sive computing environment and end-users. The application should operate accord-

ing to the end-user's expectations and must require minimum user involvement to

hide computing devices, protocols, etc. as much as possible in the environment.

The relation between different components of a pervasive environment is shown in Fig-

ure 2.2 where the middleware layer acts as an umbrella over the potentially heterogeneous

network of devices.

t9

20

2.1.2.3 Using SOA for Pervasive Computing

SOA is a useful approach to designing pervasive applications where heterogeneity and

dynamism are important characteristics. The loose coupling feature of services can help to

solve the heterogeneity problem by allowing standard interfaces irrespective of underlying

device or execution platform. A device, in a home for example, can publish its provided

services using standard interfaces. Another device can then discover and later use the

published services without knowledge of the implementation details of the invoked service.

Another typical characteristic of pervasive environments is their dynamism in terms of

addition and removal of devices and their corresponding services. In such environments,

applications cannot be deployed a priori. Different environments, according to their cur-

rent occupants and available devices, may require very different applications to run. SOA

is a promising potential solution to allow new applications to be dynamically created by

assembling existing services.

A networked home, as an example of a pervasive environment, has the potential to ben-

efit from SOC. Currently, homes may be equipped with different sensors, computing, and

entertainment devices and they will have more in the future [15]. Further, homes typically

no longer use only one vendor to provide all the devices they need. Devices, manufactured

by different vendors, may use different protocols which is an impediment to inter-operation.

However, many useful applications (e.g. printing a picture from a digital camera, etc.) re-

quire interaction between multiple devices which makes developing such applications both

important and challenging. By using services, as the fundamental components of interac-

tion in such environments, we can use service composition to dynamically create such new

applications.

To be able to exploit the benefits of SOC in a pervasive environment, there must be

some middleware providing an interface between the devices and service technologies (i.e.

Chapter 2 : Background and Related Work

2.1 : Service Oriented Computing

description and messaging). Pervasive devices will, normally, communicate using their pre-

defined (sometimes proprietary) protocols and thus, middleware must exist which under-

stands the various protocols and which can be used to publish device functionalities through

a standard that is understood by other service clients and providers. Such middleware can

also be used as the foundation for deploying new (composite) services as described later.

2.1.3 Service Oriented Computing and Failure Handling

Services in SOA can become unavailable due to reasons such as device failure, network

failure, etc. In a pervasive environment, service failure can happen more frequently as a

result of participating mobile devices. Failure, in this context, refers to the unavailability

of a part of a composed service (e.g. sub-service, device, or network) due to mobility or

incorrect behaviour of a service component, for example due to overloading. To handle

a failure, it must first be detected. Then, the detected failure can either be tolerated or

reported. In this section I briefly review different failure types and modes. Then, I briefly

discuss failure detection and tolerance techniques applicable in pervasive environments.

Shankar et al. [75] classify the types of failu¡es in a pervasive (non SOA-enabled) en-

vironment into the following categories:

ø Device failure: a device can fail due to power loss, broken part, etc.

2l

ø Application failure: applications, running on devices can

their code, operating system errors, unhandled exceptions,

Network failure: participating devices in pervasive environments are often wireless

and can be temporarily disconnected from the network due to low signal strength,

heavy communication traffic, or low link bandwidth. Network failures may some-

times be incorrectly detected as device failures.

fail

etc.

as a result of bugs in

22

ø Service failure: there are a number of essential supporting services in a pervasrve

environment such as registry and discovery services. A service can fail for a number

of reasons including bugs in the code, operating system errors, and errors in sensing

or inferring events.

In an SOA-based pervasive environment, there is no difference between an application

and a service since devices offer their functionalities as services. A service, in addition

to the reasons mentioned for application failure, can be unavailable if a SE stops offering

that service for any of a number ofreasons such as upgrading to a new version or changing

access permissions. Therefore, service failures will be a superset of application failures.

Gorbenco et al. [39] identify different modes of failure of Web services. Their identified

modes, which are also applicable in pervasive environments, are:

o Transient failure: this mode of failure can be tolerated/handled using generic tech-

niques such as rollback and retry.

e Non-transient failure: this is a permanent failure that can be detected and later han-

dled by redundancy.

o Evident failure: this type of failure is easy to detect using classical techniques such

as timeout.

Chapter 2 : Background and Related Work

ø Non-evident failure: this type of failure requires a special detection mechanism, typ-

ically supported at the application level. In this type of failure, the faulty component

commonly generates erroneous data.

Table 2.1 shows the relation between types and modes of a failure.

2.1 : Service Oriented Computing

Table 2.1: Relation between types and modes of failure

Component
Type

2.1.3.1 FailureDetection

Device
Service

Network

Detecting a failure in a pervasive environment is not necessarily an easy task. Mobile

and resource-limited devices as well as unreliable communication links make it difficult

to correctly detect a failed service in a timely fashion. Timeout, a classical approach, is

considered to be an easy and, in most cases, effective way of detecting some failures. To

be able to use the timeout method, heartbeat messages are normally used to keep track of

alive devices [75]. Each device periodically sends an "I am alive" message to a fault detec-

tor. However, this method does not scale well, since the messages can create considerable

network traffic when many devices exist in an area. Another lirnitation of the timeout tech-

nique is its inability to detect service failures unless each service, hosted on a device, sends

heartbeat messages separately which makes network traffic higher.

Another approach to failure detection is associatin g a lease time with each service. If a

service (or host device) fails to renew its lease before expiration, the service is considered to

be unavailable. Service clients, on the other hand, can use lease time to specify the amount

of time they need a service. If they fail to renew their lease, the requested service can be

considered free. Although renewing leases also requires exchanging extra messages, the

number of messages can be minimized if the lease time is assigned carefully [20].

Heartbeat messages normally detect a fault, shortly (depending on the timeout period)

after its occurrence. On the other hand, lease mechanisms postpone the detection of a failed

Failure Mode
Transient Non-transient Evident Non-evident

23

24

service until the point of invocation or lease renewal. It is, of course, possible to trigger an

event when a lease expires but this will put more overhead on the service registry service.

In addition to failure, a device can become unavailable due to its mobility. A mobile

device can join and leave a network easily. The unavailability of a mobile device should be

detected and subsequently handled. The handling of failure due to mobility may have to be

treated differently from other failures.

2.1.3.2 FaultTolerance

Chapter 2 : Background and Related Work

Once a failure (device, service, or network) is detected, depending on the type of failure,

it may be possible to tolerate it. The simplest approach to tolerating a service/application

failure is restarting the failed service/application. Restarting is possible if the device host-

ing the service/application is still operational. If a service fails as a result of device failure,

a similar service running on another device needs to be found. This type of fault tolerance

is achieved through replication either explicit or by chance (e.9. a DVD player can co-exist

with a computer having a DVD drive to provide redundancy). Both service and device

replication are possible. For example, video playing software on a desktop computer and a

DVD player can both offer a "play video" service. Also we can have two printers offering

a "print" service. In either case of replication, an appropriate replica must be discovered

when a failure is detected. To provide a smooth transition to a new service, the state of the

failed service can be stored on some stable storage which can then be used by the replica

service fo resume the failed service's work at or near the point of failure.

If a failure cannot be tolerated (i.e no replacement or prefered service/device is avail-

able), it must be reported to the user properly U5l. Reporting a failure depends on the

severity of failure and, possibly, the location of a user. For example, if a user is in a room

with an appropriate display device, a good choice for reporting an error to the user might

be showing an error pop-up on the display device. Whereas, if no one is in a home and a

2.2 : Service Discovery

fault happens, sending an e-mail to the home owner or calling him/her (depending on the

urgency of the fault) might be a better choice. This is a substantial problem which is not in

the scope of this thesis.

2.2 Service Discovery

Once we have services in an environment, we need to be able to discover and use them.

Thus, service discovery becomes an important issue in SOC. Also different services can

be aggregated, using service composition techniques, to provide new functionality. In this

chapter, I will, first, describe service discovery principles and provide a representative sam-

ple of available service discovery protocols. Then, I will review service composition tech-

niques and systems developed mainly for pervasive environments.

2.2.1 Service Discovery Principles

Service discovery enables clients, looking for services, to find their desired services. Also

it allows devices, providing a service, to advertise their capabilities [80]. In general, the

following actions take place in the context of service discovery:

e Service Announcement,

ø Service Lookup, and

ø Service Invocation

25

2.2.1.1 Service Announcement

Each device must be able to announce its capabilities if it wants to share its resources.

Further, a service should be presented in an appropriate way so that subsequent lookups

26

can find it easily.

Service representation can be done in a programming language dependent or in a lan-

guage independent way. Programming language dependent methods (e.g Java based) use

a specific language's capabilities to specify a service. On the other hand, programming

language neutral methods (e.g. XML based techniques) specify a service in a format which

is not restricted to any specific language(s).

Common approaches are to either use a directory, to register available services' descrip-

tions, or to use a periodic broadcast mechanism to announce services. For small networks

with a limited number of devices, broadcast or multi-cast methods can work well. How-

eve¡ for larger networks with many devices such mechanisms may impose unacceptable

network traffic load.

A service directory can be centralized or distributed. In the distributed case, one or

more directories exist in the network and reside on different machines and the directories

may be organized in either a hierarchical or a flat fashion. This method provides some level

of fault tolerance by removing the single point of failure present when using a centralized

directory. However, each client has to use multicast or broadcast to figure out the addresses

of directories. In the centralized case, only one directory exists in the network and all the

nodes can easily and quickly find the location of this directory (either by pre-configuring the

directory's address or by broadcasting a message). The service directory in this approach

might, however, become a bottleneck and, in the case of failure, the rest of the system will

not be operational.

2.2.1.2 Seryice Lookup

Chapter 2 : Background and RelatedWork

Regardless of the service announcement technique used, a client must be able to find its

desired services. A lookup service tries to find a match between available and requested

services. Different factors such as proximity to a resource, context information, or QoS

2.2 : Service Discovery

issues may be considered in selecting a match [87]. Some lookup services try to find an

exact match based on the client's request and the service's attributes [87]. (Each service

may have several attributes and these attributes should use a standard naming convention.)

Some others return a list of possible matches to the user so he/she can select the best

service. Some proposed lookup services also try to compose a client's requested service

from multiple existing ones [66]. To increase the accuracy of a service discovery protocol

(i.e. the probability of finding a service), semantic information about the inputs and outputs

of a service can be used in the discovery phase [26]. (Additional details about the semantic

description of services is given in Section 2.3.1.1.)

2.2.1.3 Service Invocation

Once a client finds its desired service, it must be able to use it. Thus, the client needs

a mechanism to invoke the discovered service. Some service discovery protocols (e.g.

the Bluetooth Service Discovery Protocol) do not have invocation mechanisms and the

client has to use another protocol after locating a service. Most service discovery systems,

however, do provide an invocation mechanism as well. The result of discovery might be

a simple address which is subsequently used to access the resource. In some cases an

interface object might be returned to the client instead while, in other cases, a complete

object is downloaded to the client.

27

2.2.2 Service Discovery Systems

Different service discovery protocols have been implemented to handle the heterogeneity

present in dynamic networked environments (e.g. pervasive environments). These proto-

cols try to connect existing devices and appliances seamlessly regardless of what systems

and, in some cases, lowet level protocols are being used to provide them. Furthermore,

28

they must be concerned about scalability to be able to handle the addition and removal of

numerous devices from a network. In this section I will briefly review the most common

service discovery middleware used in home area and related networks. This illustrates the

diversity of the protocols available which complicates the practical aspects of supporting

automated service composition.

2.2.2.1 Jini

Jini [84, l0], introduced by Sun Microsystems, is network middleware that provides APIs

for system developers that facilitate the creation of dynamic distributed applications. Jini

uses a registry to register available services in the environment and this registry is used for

discovery purposes.

Jini runs on top of a Java Virtual Machine (JVM) and consequently provides a machine

independent environment. (Jini can run wherever there is a JVM available.) Each device in

a Jini-enabled network is represented as an object and each device can provide services to

other devices. Jini uses Java's Remote Method Invocation (RMI) capability for inter-object

communication.

All of Jini's services are distributed and each device must have the capability to commu-

nicate with the registry to be able to participate in a Jini network. There is also a surrogate

architecture and a version of Jini, Jini Mobile Edition (JiniME), which enable non-Jini

devices (i.e. devices with limited resources which are unable to run a full JVM) to be

connected to a Jini network [43]. These are explained in more detail in the next section.

A lookup service is needed to provide the required information about available services

in the network. Each server (the device which wants to provide a service) sends an object

representing its service to the lookup service using Java's object serialization mechanism.

A client that needs a specific service sends its request to the lookup service which, if there

is a suitable registered service, sends the appropriate service prory object to the client [84].

Chapter 2 : Background and Related Work

2.2 : Service Discovery

Se!rvice
rproxY.
object:

Discovery request

Jini service

Discovery request

jseruice registration\

| ! Discovery response.' ServÍce
: , Pltxyi:1
i : LookuP rcquest r. obiect
i : -t ;# æA
: i LooKuP resPOnS€ I
i-.. .. t< ' '-"-- ''' J

Jini client

Jini client

Lookup service

The sequence of registering and using a service in Jini is depicted inFigure2.3.

Figure 2.3: Lookup and discovery in Jini (adapted from [84])

S9¡ylce
Þ-Toxy
object

Due to the distributed nature of Jini, a lookup service can be run on any machine. Thus

a basic discovery service introduces the lookup seruice to a newly added device. Different

lookup services can also exist in the network to provide a level of fault tolerance [43]. A,

server will register its own services with as many lookup services as it discovers. Thus, a

client accessing any of these lookup services can find a reference to the desired service.

To handle network unreliability, Jini uses the lease concept [84,431as follows. Each

resource is leased to a client and the client has to renew the lease to hold it for another

period of time. Also services, at the time of registration, are given a lease time. If a service

wants to be used, it should renew its lease before expiration. When a service becomes

unavailable/inaccessible (e.g. due to network failure) all authorized users' leases expire.

29

Lookup service

Jini service

30

This mechanism guarantees that a client can access any service that it discovers as long as

the service is accessible.

The Jini Surrogate Architecture

The Jini sutrogate architecture [43] enables non-Jini devices to participate in Jini networks.

In this architecture, a Jini-capable surrogate host is connected to the non-Jini device (nor-

mally a small embedded device with limited resources) to provide Jini services to this

device. The surrogate host, naturally, must be powerful enough to run a JVM.

Each device has a surrogate Java proxy object (similar to a service proxy). When a

non-Jini device joins a Jini network it registers its surrogate object with a lookup service

using the surrogate host. Communication between a non-Jini device and a lookup service

takes place through the surrogate host. The communication between such a device and its

sulrogate is done via a predefined protocol and is transparent to other Jini devices commu-

nicating with the non-Jini device.

JiniME

Chapter 2 : Background and Related Work

Anothe¡ solution to connecting resource-limited devices to a Jini network is using Jini

Mobile Edition (JiniME) 149,431, which was developed at the Rochester Institute of Tech-

nology. This solution, compared to the surrogate architecture, does not need an established

Jini network with a surrogate host. While Jini uses Java 2 Standard Edition (J2SE) for its

runtime environment, JiniME uses Java 2MicroEdition (J2ME) [43] for this purpose which

is able to run on many resource constrained devices. In J2SE, object movement between

different JVMs is done using object serialization and the marshaling and unmarshaling

processes are done automatically using Java libraries. These libraries need a considerable

amount of memory and processing power. In contrast, J2ME lacks this feature so JiniME

2.2 : Service Discovery

uses separate libraries and forces the programmer to do the object marshaling manually.

This results in a far smaller memory footprint for this version of Jini.

Each JiniME device hosts a lookup service and a class-file server and registers its own

services with the local lookup service [43]. Each lookup service has a service proxy object

which is downloadable by other devices to access the lookup service and subsequently the

services offered by a given device.

A Jini bridge can also be used to connect a JiniME network to a Jini network [43]. Thís

device must be able to talk with both sides and hence it must run J2SE as well as J2ME.

A Jini bridge detects new devices in the JiniME (usually, wireless) part of the network and

creates corresponding objects to advertise the provided services to the Jini network part. A

similar service is provided to the wireless part for services in the wired network by the Jini

bridge.

2.2.2.2 UPnP

Universal Plug and Play (UPnP) [59] is a "service discovery protocol" developed by Mi-

crosoft which uses existing Internet protocols (such as IP and TCP) to connect different

devices. Unlike Jini, UPnP does not use a registry to keep track of existing services. There

are three types of entities in a UPnP network [81]:

1. Services,

2. Devices, and

3. Control points.

3l

Services are the smallest controllable entities in UPnP [9]. Devices can be physical or log-

ical. Physical devices are hardware components that may contain multiple logical devices

or services. Logical UPnP devices can be implemented in any programming language and

32

on any operating system [9]. They use an XMl-based device schema to inter-operate with

each other. The XMl-based description file contains information about the type of input

parameters that a device accepts, and output values that a device returns after doing its task.

Devices which can not implement TCP/IP can participate in a UPnP network using a proxy.

Control points control and discover other devices in a UPnP network.

UPnP defines six steps in a typical interconnection as follows [59]:

1. Addressing: Each device must have an IP address. It gets its IP address from a DHCP

server. In the case of failure to get an address, a client is assigned an address in the

default 169.254/16 range [9]. After choosing a random address from the aforemen-

tioned range, the client checks for a conflict and if the address is already in use, it

tries another one until the conflict is ¡esolved. Once a temporary address is obtained,

the client continues to check periodically to find a DHCP server.

Chapter 2 : Background and Related Work

2. Discovery: After being added to the network, a device introduces itself to a control

point. (A control point is a device which provides interaction with a client who needs

to use a service.) Devices use a discovery protocol based on the Simple Service Dis-

covery Protocol (SSDP) [38] and multicast discovery messages (including a device

type and a URL pointing to the corresponding device description). Interested control

points, listening to standard multicast ports, get notified about new services. Sim-

ilarly, when a control point is added to a network it multicasts an SSDP discovery

message (including a description of the desired service) to search for a new service.

Devices which have a matching service (according to the disseminated description)

will reply to this message.

3. Description: A control point uses the URL provided in the discovery message de-

scribed to find more information about the device. Described in XML format, a

2.2 : Service Discovery

UPnP description is divided into two parts: device description and se¡vice descrip-

tion. The device description contains vendor specific information (e.g. model name

and number, etc.) and the service description contains the service name, a URL to the

service description, a URL for control and a URL for event handling. (These URLs

provide addresses to which a command for execution or event notification request

should be sent. These are described further in the "Control" and "Event handling"

bullets described next.) A service description also includes a list of actions the ser-

vice responds to, and arguments for each action.

Control: After getting the information about a device and its provided services, a

control point can send an action to a service to be executed. Cont¡ol messages are

expressed in the Simple Object Access Protocol (SOAP) format. SOAP uses XML

and HTTP for implementing remote procedure calls and UPnP uses SOAP to send

control messages to control URts (provided by the description message) and return

results and errors back to control points [9]. SOAP is comparable to Java's RMI

technique for executing remote methods. However, SOAP is language independent

and is based on XML.

Event handling: A control point can also subscribe itself to receive a notification

when the state of a service changes. The control point sends a subscription message

using General Event Notification Architecture (GENA) [29] messages to a specified

device's service. If the subscription is accepted, the device sends a unique identifier

as well as an initial event message containing all event variables (i.e. variables whose

values will be changed upon receiving an event) back to the control point. After this

step, when an "evented" variable changes, subscribing control points are notified by

GENA NOTIFY messages sent over HTTP [59]. When a control point needs no more

event notification, it may cancel the subscription.

4.

35

5.

34

6. Presentation: Some devices may also have a presentation URL in addition to a de-

scription URL. Having this URL, the control point can retrieve a page from this

address and, depending on the capabilities provided by the page, a control point can

allow a client to control the device and/or view the device's status via the correspond-

ing HTML page.

2.2.2.3 HAVi

Home Audio Vdeo Interoperability (HAVi) [7] is a special purpose networking standard

used to connect different audio and video devices to each other. HAVi provides an en-

vironment in which different audio and video devices from different manufacturers can

communicate.

HAVi is language and operating system neutral. In a HAVi network there is no master

node. Instead, each node can control the others. Nodes can also be placed anywhere in

a HAVi network. HAVi uses the high bandwidth digital IEEE 1394 (a.k.a. "FireWire")

network to physically connect the audio and video devices.

HAVi is comprised of a set of software components implementing such basic function-

alities as device abstraction, network management, event management, resource manage-

ment, and inter-device communication. These components provide APIs to allow users to

build a distributed application on a HAVi network.

Each device in HAVi is modeled as an object-based software component [7]. Objects

have well-defined interfaces through which the services they provide are accessible. Each

host provides an execution environment in which a service can run. Services can be pro-

vided either by device manufacturers or by third parties. Each object has a system-wide

unique identifier assigned by the HAVi messaging system.

A HAVi system also maintains a registry in which each object registers itself. The

registry offers an interface for clients to query for specific services. HAVi uses message

Chapter 2 : Background and Related Work

2.2 : Service Discovery

passing for inter-object communication. The implementation details of message passing

can differ from device to device and between vendors as well. However, the message

format is determined by the HAVi specification. Before sending messages, objects must

find each other using the registry. One object can then send a message to another.

Each device in HAVi is represented and controlled by a software component called a

Device Control Module (DCM). DCMs provide flexibility for devices joining and leaving

the system. When a device joins or leaves a system, a DCM is installed or removed from

the network, respectively, and an event is fired. The events in a HAVi network are handled

by an event manager component which is responsible for event delivery. Moreover, for

each controllable fiinction inside a DCM, there is a Functional Component Module (FCM).

FCMs are similar to logical devices or services in UPnP. Depending on the device, a DCM

may contain different FCMs. For example, an entertainment unit might have tuner and

display components which are both represented as FCMs.

2.2.2.4 OSGi

The Open Services Gateway initiative (OSGi) [17, 55] provides a Java based framework in

which different services, offered by different devices, can be integrated. For portability and

scalability reasons, implementation of a service is separated from its interface(s). Thus,

depending on the environment in which a service is being deployed, different implementa-

tions may be chosen.

A bundle [55] is a package (deployed as a Java ARchive (JAR) file) for service imple-

mentation. All bundles have a similar structure specified using the OSGi standard. (e.g.

they must all have start and s/op methods.) A bundle contains the required resources for im-

plementing zero (e.g. a utility bundle that only provides some packages for other bundles)

or more services and a maniftsf file containing headers that specify the required parameters

for installing that bundle. The OSGi framework provides a mapping from services to their

35

36

OSGi *rvicc frameworka\
Bundle A

{...)

Chapter 2 : Background and Related Work

Senice registry

---ù¿+r.Ë \r
3\

\

Figure 2.4: Bundle service registration and subscription (adapted

from [55])

implementations.

a\
Bundle B

(...)

\/

One of the installed bundles, the initial bundle, is started first and it then manages

the life-cycle (installing, starting, stopping, and uninstalling) of all other bundles [62].

Moreover, each bundle has a special class, bundle activator, instantiated by the framework,

with stop and start methods for stopping and starting bundles, respectively.

Once a bundle is installed, it registers its services which can then be discovered and used

by users as well as by other services to accomplish their tasks (see Figure 2.4). The OSGi

framework is responsible for dynamically installing and updating bundles. This feature of

the framework allows installed bundles to be extensible even after installation.

OSGi can generate and handle three types of events [62]:

1 . ServiceEvent: This event is generated upon registration, de-registration, or changing

of a property of a service.

Þ*;

\

-l
Bundle C

{...1

2.2 : Service Discovery

2. BundleEvent: This event is used to report a change in the lifecycle of a bundle

3. FrameworkEvent: This event reports the start of the framework. It also reports any

effors at framework startup time.

To handle a generated event there is a corresponding listener interface for each type of

event. Bundle implementers can use these interfaces to catch and handle events of interest.

One of the interesting goals of OSGi was to provide interoperability among different

middleware (e.g. Jini and UPnP). Such interoperability can be achieved by installing ap-

propriate driver bundles in the OSGi framework. A driver bundle (e.g. Jini driver) imports

all the services advertised outside of the OSGi framework, using the corresponding mid-

dleware (in this case, Jini), as OSGi services. Once the services are imported into the OSGi

framework, they can be used by other services within OSGi. In this way, different services

advertised by different protocols can make use of each other within the OSGi framework.

A driver bundle can also export native OSGi services (provided by different bundles

within OSGi) using its supported protocol (e.g. Jini) to the outside of the OSGi framework.

2.2.2.5 Obje

37

Obje [11] is a service interoperability framework developed at the Xerox Palo Alto Re-

search Center (PARC). Obje tries to provide interoperability between different devices and

services by allowing them to "teach" each other new media formats and transport protocols.

Devices and services use mobile code (e.g. a Java program) to deploy a new protocol or

media format on another device.

The Obje framework defines a few general agreements, called meta-interfac¿s that each

device involved in an Obje network (a.k.a. an Obje-enabled device) must implement [11].

For example, consider a meta-interface called Data Transfer that an Obje-enabled music

jukebox and an Obje-enabled music player have implemented. When these two devices

38

want to communicate with each other, the Data Transfer meta-interface establishes a con-

nection and defines a media format between the two parties based on the network and

device's capabilities respectively. Once this connection has been established, the jukebox

can teach the target music player the network protocol and media format by sending mobile

code to the music player. The player can then play the music after "learning" the protocol.

2.2.2.6 AutoHan

AutoHan [73] is a complete home area network solution (mainly based on UPnP) con-

necting AutoHan compliant devices together. AutoHan uses a UDP version of the HT'TP

protocol for data transfer and XML for describing services and other entities. The three

main components of AutoHan are: a directory service named DHan that is used for service

discovery, an event handling system based on UPnP GENA, and a module named IHan for

accessing AutoHan from the Internet.

DHan, AutoHan's directory service, manages the available devices and their services.

Each device acquires DHan service using broadcast messages and subsequently registers its

properties and functionalities using DHan. DHan provides a lookup service so that different

devices can use each other's services. Similar to Jini, AutoHan uses a lease mechanism to

handle unavailable objects and services. Each registered service is assigned a lease that

automatically expires unless the service renews its lease.

Control in AutoHan is based on events. AutoHan uses, and extends UPnP GENA to

send and receive events. If a device does not support the GFNA event system, AutoHan

provides a proxy to convert a non-compatible event to GENA.

To access devices in AutoHan from the Internet, a software module named IHan is used

which accepts user requests from the Internet via HTTP, authenticates them, and if they are

valid, forwards them to other parts of AutoHan. Before forwarding requests, IHan extracts

GENA and DHan headers from the relevant HTTP request. IHan does the reverse of this

Chapter 2 : Background and Related Work

2.2 : Service Discovery

operation when a reply is sent to the user. This feature enables a user to control in-home

devices remotely.

2.2.2.7 @HA

The At Home Anywhere (@HA) [81] project is a home appliance integration project from

the University of Twente, in the Netherlands. In this project, home appliances, based on

their capabilities and resources, are divided into three categories (from low to high capabil-

itv):

1. 3C appliances: very simple devices which only have basic network connection capa-

bility

2. 3D appliances: simple devices implementing a network protocol stack as well as a

service discovery protocol

3. 300D appliances: powerful devices with a memory size bigger than 1MB and an

embedded computer. The most powerful 300D appliance, available in a HAN, is

selected to provide a service directory. This is done using an election algorithm.

The service discovery protocol in the @HA project has two important features: re-

source awareness and robustness [81]. To address resource awareness, the protocol selects

a service directory, called Central, from the 300D devices. However, if such a device does

not exist, the protocol will instead work in peer-to-peer mode without a central node. When

a 300D device starts, it broadcasts a message to announce its presence. If there is another

300D device in the network, it also broadcasts the same message and the central node elec-

tion algorithm is initiated. Otherwise, the single, new 300D device becomes the central

node. Once a central node is elected, it broadcasts a message and asks all other nodes

39

40

to register their available services. If a device becomes available after a central node is

selected, it broadcasts a message to find the central node.

Robustness, in the @HA service discovery protocol, is provided by selecting a backup

for the main service directory. In the directory selection algorithm, the second most pow-

erful 300D device is selected as a backup directory. The main directory and its backup

communicate at specific intervals to detect failure of each other. In the case of the failure

of either device, device handover takes place and the failed device is replaced by the other.

Depending on the type of failed device (main directory or backup) a different handover

algorithm is run.

2.2.2.8 The Service Location Protocol

Chapter 2 : Background and Related Work

The Service Location Protocol (SLP) [45] is a language independent service discovery

protocol developed by an Internet Engineering Task Force (IETF) working group. There

are three different software entities (a.k.a. agents) in this protocol: User Agents (UAs),

Service Agents (SAs), and Directory Agents (DAs). The protocol can operate both with

and without DAs. A DA s address can be configured either statically (i.e. by entering it

manually, reading it from a file, or hard-coding it) or dynamically (i.e. using DHCP) t441.

If these methods do not work, SAs and UAs can also try to find a DA (if any exists) using

multicast messages 1441. lf a DA exists, SAs register themselves with the DA and UAs can

then unicast their queries to the DA to find suitable services. An SLP network may have

several DAs but there is no synchronization mechanism between them [44]. When there is

no DA in the network, UAs use multicast to find services. Any SA which can provide the

desired service, unicasts a response to the UA.

SLP only provides a service lookup mechanism (location and contact information) t801.

A client has to use some other method (which is determined by the implementer) to actually

invoke the discovered service(s).

2.2 : Service Discovery

2.2.2.9 Bluetooth SDP

The Bluetooth protocol stack [50] has a builrin mechanism for service discovery called

the "Service Discovery Protocol" (SDP) [67]. This protocol was designed to operate in a

dynamic environment such as ad-hoc networks. It is capable of matching services by type

and attributes and browsing available services without a priori knowledge about them [67].

Each device, providing a service, has to run an SDP server. For each service provided by

the device, a service record is kept on the SDP server. A client sends an SDP request to the

server to find a service. The server searches the service records and, in the case ofa match,

it sends a service handle to the client [81]. Bluetooth SDP does not provide a mechanism

to send commands to the target service or to invoke remote methods. Thus, the discovered

services must still be accessed through other protocols built on top of Bluetooth's basic

communications facilities.

2.2.2.10 SSDS

Secure Service Discovery Service (SSDS) [32] was an early attempt to integrate a discovery

protocol with security. It was developed as part of the Ninja project at the University of

California, Berkeley. Although SSDS is implemented in Java, it uses XML, rather than

Java objects, to describe and locate services. Its target v/as enterprise-wide distributed

applications trying to find and use resources in a secure way. It uses both symmetric and

asymmetric encryption [79] (also known as secret and public key encryption, respectively)

fo¡ data confidentiality. It also uses message authentication code (MAC) [79] to guarantee

message integrity. A MAC is an authentication tag (a.k.a a checksum) obtained by applying

the secret key to a message. To provide authenticated and encrypted communication, SSDS

uses a custom re-implementation of Java RMI.

There are three main components in the SSDS architecture [32]: clients, services, and

41

42

Secure Discovery Service (SDS) servers. SDS servers use authenticated multicast mes-

sages to periodically announce their presence to the system. Described in XML, a ser-

vice, after finding an appropriate SDS server, sends its description using an authenticated

and encrypted one-way broadcast message. A client connects to an SDS server using au-

thenticated RMI and sends the requested service's description, presented in XML, to it.

Subsequently, the SDS server searches the available services, stored in an XML database

called XSet [40], to find a match. In the case of failure, the SDS server might, based on its

configuration, send the request to other SDS servers [32].

To support the dynamic addition and deletion of SDS servers, the available SDS servers

can be organized as a hierarchy. When the load of a server exceeds a specified threshold, it

spawns a new child and delegates a portion of the load to the new server. New servers, like

their parents, will announce their presence using multicast messages. Parent servers keep

track of their children by using "heartbeat" messages.

2.2.3 Summary of ServÌce Discovery Systems

Chapter 2 : Background and Related Work

Tab\e2.2 summarizes the key features of some main service discovery protocols. As dis-

cussed earlier, some of these protocols (e.g. Jini and UPnP) have mechanisms for both

discovery and invocation of a service. While, others (e.g. SLP and Bluetooth SDP) only

enable clients to locate a service. Clients must then use another mechanism to access the

located service.

2.3 : Composition of Services

2.3

Service composition is a technique used to create new services using smaller, existing ones.

The composition of services is usually addressed in two stages:

1. Composite service creation: in this stage a user's composite service request is con-

verted to a "composite service template" (a.k.a. a serviqe workflow). This stage is

similar to parsing a database query or a computer program. At this stage possible

service components and their control flows are identified. Normally, a user specifies

his/her desired input(s) and output(s) and a service composition system tries to find

a sequence of services accepting the user's input(s) and producing the uset's out-

put(s). Different methods such as modeling services as graph nodes, using semantic

information about services, etc. can be used to find "Input/Output" (VO) compatible

services.

2. Composite service execution: in this stage, a composite service template is mapped

onto an execution path. Service composition frameworks execute the template and

access the physical services and at the same time try to execute the composite se¡vice

efficiently (from different points of view such as bandwidth consumption, response

time, etc.). This stage requires "service discovery, integration, and execution" 1271.

Generally, we can define the following steps in a service composition process [69]:

1. Service Description: All providers of services must describe their provided services

in such a way that searching for them becomes as easy as possible. Different XML-

based languages such as Web Service Definition Language (WSDL) and DARPA

Agent Markup Language for Services(DAML-Si) [2] have been used for this pur-

pose.

Composition of Services

43

lA newer version of DAML-S is the Ontology Web Language for Services (OWL-S) which is described

later in Section 2.3.1.1

44

2. Description Translation: Sometimes two different languages are used for the external

(user-side) and internal (system-side) representation of services. In such a service

composition framework, some component must take the responsibility for translating

between the two representations.

3. Workflow Generation: A workflow generator tries to find one or more valid se-

quences of available services fulfilling a user's request. The generated workflow(s)

will subsequently be used for execution.

Chapter 2 : Background and Related Work

4. Workflow Selection: If the number of generated workflows (i.e. valid workflows sat-

isfying a user's request) is more than one, an evaluation is carried out based on certain

user preferences (e.g. non-functional attributes such as cost and/or performance) and

the top ranked workflow is selected for execution.

5. Workflow Execution: The selected

can be executed by the framework

another system for execution.

2.3.1 Composite Service Creation Systems

In this section I review some of the attempts to create a system for automatic (or semr-

automatic) service composition. The reviewed systems either accept a user's composite

service description (in terms of input(s) and output(s)) and try to find a workflow based on

the available services or help the user to build his/trer own desired workflow. The funda-

mental assumption in these systems is the existence of a (semantically described) goal and

the need to match between the requested and advertised services. What is really needed in

pervasive environments, however, is a system that does not require any goal defined by the

end-user and which finds all the possible composite services based on the available ones.

workflow is executed in this step. The woikflow

which generated it or the workflow may be fed to

2.3 : Composition of Services

To remove the unnecessary compositions (those that are unlikely to be of end-user interest)

from the list of generated composite services, it must also be possible to accurately rank

the compositions and then filter out the low-ranked compositions.

Semantic service description and service matching are reviewed in some detail first.

2.3.1.1 Semantic Service Description

Services need to be described to enable subsequent discovery. The more information you

can provide about a service, the more effective service discovery can be. Most of the service

discovery protocols presented in Section 2.2.2 use syntactic information (e.g. name, simple

data type, etc.) to describe a service's input(s) and output(s). One method to increase the

probability and accuracy of discovery is to use semantic rather than just syntactic informa-

tion to describe a service. To describe a service semantically, we need an ontology, more

specifically a domain ontology, to describe the different concepts which are available in a

specific domain and which are useful for describing services. Some details of designing

such an ontology for a pervasive environment are discussed in Chapter 4.

The Web Ontology Language (OWL2) [12] is the W3C recommendation for specify-

ing an ontology. Based on XML, OWL is a language that allows ontology developers to

describe new concepts (i.e. anything that information must be collected about) and rela-

tionships between them. Once the desired concepts are described, a language is required to

describe services operating on those concepts. The V/eb Ontology Language for Services

(OV/L-S) [30] is such a language and it exploits OWL's capabilities and provides markup

language constructs to describe a service based on its input(s), output(s), precondition(s),

and effect(s).

The OWL-S description of a service is composed of the following parts:

45

2OWL is, in fact, an acronym for Web Ontotogy Language

46

o service profile: explains what a service does in terms of its inputs, outputs, precon-

ditions, and effects.

ø service grounding: explains how to access the service. A service grounding describes

where the implementation of a described service can be found and what protocol(s)

should be used to invoke the service's implementation.

o service process: explains how a service works. It shows the sequence of operations,

ite¡ations, decisions, etc. A service process effectively glues together a service profile

and a service grounding. The service process also indicates whether a service is

composite or atomic.

OWL-S, by describing a service using these three different aspects (profile, process, and

grounding), provides a separation between service description and implementation. This

separation means that other parties (such as device manufacturers as well as service cre-

ators) can provide semantic descriptions of services. Also, it means that a service descrip-

tion can have multiple implementations corresponding to where the service is going to be

deployed.

2.3.1.2 Semantic Matching

Chapter 2 : Background and Related Work

Once we define a service semantically using OWL-S constructs, we can use semantic

matching [63] to frnd similar services as well as those that are exactly the same. Semantic

matching relaxes the normal, "exact" matching concept by considering hierarchical rela-

tions which may exist between the input and output types of two services.

For example, assume that we have an advertised service A and a requested service R.

For an exact match, we will say service A matches Service R if the inputs of the two services

as well as their outputs have exactly the same types, respectively. On the other hand, using

2.3 : Composition of Services

semantic (or "partial") matching, service A matches R if there is a relation (based on an

ontology defined in a language such as OWL) between the inputs and, respectively, the

outputs of the two services. Using this concept, Paolucci, et al. [63] introduce four different

levels of matching; exact, plugin, subsume, andfail.

Paolucci et al. match the outputs of the two services first. Let us assume that O¿ is

the output type of an advertised service and On is the output type of a requested service.

If OA : O;7 then Oa and Op are the same concept and the match will be exact. If OA

subsumes OnG.e. O¿isasuperclass of Onin an ontology hierarchy) then the advertised

service provides more than what is requested and Oa can be plugged-in in place of Op

and the match type will be plugin. lf OAis a direct supercalss of Op, the match will

be assumed to be an exact match and this relation is called "direct subsumption". If the

super/subclass relation is not direct, it is called "indirect subsumption". On the other hand,

if O¿ subsumes O¿ then the requester needs more than the advertised service provides and

the match type will be subsume indicating that only part of the requested functionality is

provided by O¿. If there is no subsumption relation between O¡ and Op, ihe match will

fail. This process is then also applied to the inputs of the two services and the final result

of matching is determined based on the matching results of the outputs and inputs. If both

the input and output types of two services are the same, the two services will match. The

level of matching between two services is determined by the level of matching between the

input and output types.

2.3.1.3 Semantic-based Service Composition Systems

47

In this section, I review semantic-based service composition systems. As the reviewed

systems do not all have specific names I refer to them based on who their developers were.

Sirin et al. [78] proposed a semi-automatic solution for service composition. Their

implemented system has two components: a composer engine and an inference engine

48

with a KnowledgeBase (KB). Written in OWL-S, service descriptions are converted to

RDF (Resource Description FormaÐ t13l triples 3 and loaded into the KB. The composer

system then helps a user to create a workflow step-by-step.

A composition starts when a user selects a registered service. A query is then sent to the

KB to retrieve the selected service's inputs and for each input another query is generated

to retrieve (using the inference engine) all the possible services providing this input. The

results of queries are shown to the user to choose from. Since the ¡esult of matching might

produce many services, a user can also define filtering rules to make handling the results of

queries more manageable. Matching can be done exactly or "generically". If an output of a

service, say ,S1, is the same as an input of another service, say 52, those services are exactly

matched. If there is a subsumption relation between the output of ,S1 and ,S2's input, the

two services are said to be generically matched.

The result of composition is realized as an OWL-S document (using the composer en-

gine) specifying the order ofthe involved services. The new service can also be advertised

and composed with other services. After this document is generated, execution of the work-

flow can be done by invoking each service and passing data according to the user selected

workflow.

Rao et al. t68l proposed a framework to automatically generate a DAML-S a work-

flow from a user's request. The user's request (i.e. inputs and expected output(s)) is also

described in the DAML-S language. The proposed system uses a Linear Logic (LL) t68l

theorem prover to find a logical (i.e. input/output compatible) sequence of available ser-

vices fulfilling the user's request. First, the description of all available services as well as

the user's request are translated from DAML-S into LL. The theorem provff accepts de-

scriptions in LL and tries to find a valid sequence of services capable of doing a requested

Chapter 2 : Background and Related Work

3Each RDF triple is composed of a subject, an object, and a predicate which is normally represented as a

graph whose nodes are the subject and the object. The predicate, links the nodes.
4DAML-S is the older version of OWL-S.

2.3 : Composition of Services

task. The output of the theorem prover is a workflow presented in process calculus [68].

Then, a translator converts the generated workflow into a DAML-S or BPEL4WS (Business

Process Execution Language for Web Services) [1] document. To the best of my knowl-

edge, this system can not execute the generated workflow but it can be fed to any system

accepting DAML-S or BPEL4WS.

Another system, proposed by Majithia et al. [54], translates a DAML-S composite ser-

vice description into a BPEL4WS document. Their system stores two types of workflows,

abstract and concret¿, with the goal of increasing re-usability. An abstract workflow does

not have any information about service instances and its service specification is high level.

A concrete workflow, on the other hand, is a mapping from an abstract workflow onto avail-

able services. Majithia et al.'s system is similar to Rao's but they do not convert DAML-S

descriptions to Linear Logic and, instead, use an inference engine for DAML-S to carry out

subsumption reasoning.

SWORD [65] is a toolkit for service composition. Unlike other service composition

systems, SWORD models a service based on its inputs and outputs using Entity-Relation

(ER) modeling. Users specify initial and final states (i.e., inputs and outputs) of a com-

posite service and SWORD finds a sequence of rules, using its rule-based plan generator,

satisfying the request.

Each service has two types of inputs: 1) conditional inputs (a.k.a preconditions) spec-

ifying conditions on input types and the relationship to other services, and 2) data inputs

on which a service operates [65]. Similarly, each service has conditional outputs (a.k.a

postconditions) and data outputs. For a composite service, the preconditions will be the

conjunction of all conditional inputs of the involved services. The same thing holds for the

postconditions of a composite service.

49

50

2.3.1.4 Graph-based Service Composition

The relation between inputs and outputs of services can be modeled as a directed graph. In

such a graph, nodes represent services and edges show the compatibility between the output

and input of two services. Using such a notation, the problem of creating a composite

service can be modeled as finding a path in a graph. The composition methods reviewed in

this section use this idea to create composite services.

Arpinar et al. [1 8] assume that services are described in DAML-S. They create a weighted

graph showing the relations between different services. Nodes in this graph represent ser-

vices and two nodes are connected if the output of one service can be fed into the input of

the other (considering both exact and partial matching). The weight on a link is the result of

applying a function on quality and similarity measures between the input and output types

of the two services. Arpinar et al. also extend the concept of a simple graph to include

services with multiple inputs and outputs.

A request specifies the input and output types for a desired service and the Bellman-

Ford algorithm [18] is used to find the shortest path between the request's input and output

types, if one exists. A user can give different weights to similarity and quality rates, de-

pending on his/her requirements, and based on these values, different paths can be selected

from the graph. Arpinar et al. do not describe how to add a new node to the graph and how

to update the appropriate links when a new node is added.

Kalasapur eI" al. [47)use a graph, called a "service graph" to represent services. Their

associated service composition technique is called SeSCo [48]. Nodes in the service graph

represent (sub)components of a service required for execution of a service. Edges between

nodes represent the order of (sub)components. Nodes, as well as edges, can have their

properties (e.g. name, location, etc.) assigned by different functions. Once the description

Chapter 2 : Background and Related Work

of individual services are ready (i.e. their service graphs), another graph called a "commu-

nity graph" s is created. The community graph has a different structure than a service graph

in which nodes represent parameter (i.e. input or output) types. For each service graph, the

input and output types are added (if such a type has not been added before) as new nodes

to the community graph. An edge is also added to the community graph to link the newly

added node(s). Kalasapur et al. also assume that a request for a service is represented as a

graph called a "tequest graph".Similar to the service graph, nodes in the request graph are

(sub)components of services and edges show the order of (sub)components.

Given the community graph, an algorithm tries to find a set of services matching the

request graph. First, the algorithm tries to find a match (from the community graph) for

each node i of the request graph r,V|. If such a service does not exist, the algorithm

locates nodes corresponding to the input and output types of node V| in the community

graph (V::** andVffi-,). Successfully locating these nodes and a path between them in

the community graph shows an existing composite service matching V;. lf a service or

a composition is found for each edge in the request graph, it means that matching was

successful.

Hashemian et al. [46] use a directed graph, similar to Kalasapur et al.'s community

graph, whose nodes are parameter types and edges show services converting an input type

to an output type. Interface Automata (IA) t46] are used to represent inputs, outputs, and

the dependencies (i.e. i, --+ o) between them. The dependency information is represented

using a collection of dependency sets in which each set specifies relations between an input

and an output. Dependency sets provide a mechanism to know how two operations should

be executed. For example, if dependencies corresponding to two services appeff in the

same dependency set, those two services must be performed sequentially.

A request is also represented using IA in terms of its inputs, outputs, and dependencies.

5l

5This graph is called "property graph" in [48].

52

To discover the possible services capable of fulfilling a request, Hashemian et al. apply

Breadth First Search (BFS) on all nodes appearing on the left hand side of at least one

dependency. For a dependency like ¿ ---+ o, all nodes reachable from i, represented as a path,

will be returned using the BFS algorithm. The algorithm will stop if it finds o, otherwise it

will run the BFS until it terminates without returning o. In the next step, dependencies and

corresponding returned paths will be examined to find possible compositions. If the length

of a path corresponding to a dependency is one, it means that we have an atomic service

capable of generating the requested output and we do not need a composition. Otherwise,

the services appearing in the path define a composite service. Finally, the result of a request

is represented as a binary expression tree.

2.3.1.5 Summary of Composite Service Creation Systems

Chapter 2 : Background and Related Work

A summary of the characteristics of a representative sample-of the reviewed systems that

try to create a composite service given a user's request is shown in Table 2.3. The "semantic

matching" feature, in the table, indicates whether or not the reviewed system uses semantic

matching to find a composite service. The language to describe a service is identified in the

"description language" feature. The user involvement in the service composition process

is indicated by "low", if the user only enters the requested service's input(s) and output(s),

and "high", if the user has to choose components of a composite service. The ability of a

system to execute the created composite service is determined by the "seryice execution"

feature.

2.3.2 Composite Service Execution Flatforms

In this section I review some representative service composition platforms that, given a

pre-existing composite service workflow described based on its components, try to execute

this workflow efficiently, possibly with some non-functional constraints (e.g. QoS, etc.).

Some of the reviewed systems in this section are no longer available or supported but are

included for completeness.

2.3.2.I ICARIS

The Infrastructure for Composability At Runtime of Internet Services (ICARIS) [83] project

tries to support service composition in a distributed environment. This work is based on

the authors' previous work on dynamic software component upgrading at run-time called

software hot-swapping [34]. Services, their inputs, and outputs are described in XML and

service discovery is done using Jini's service discovery mechanism.

ICARIS provides three different approaches to composing services [83,24]. In the

first method, interface fusion, a composite service interface is created by extracting the

signatures of available services and combining them together as a single interface. Later, at

the time of using the composite service, individual services incorporated in the composite

service are called in the predefined sequence. In this case we may (or may not) have

input/output dependencies between involved services.

In the second, standalone, approach unlike in the interface fusion approach, an actual

composite service is created (not just an interface description of it). In this method com-

ponents are independent and they are connected together using a method called "pipe and

filter". In this approach ICARIS creates some "connection services" [83] which retrieve

the output(s) from one service and send them to the input(s) of another service.

In the third, stand-alone with a single body method, the code and logic (overseeing the

sequence of execution) of the component services are inserted into the composite service.

In other words, composable methods from different component services, involved in the

composition, are extracted and assembled into a single body. This method eliminates the

message passing and invocation cost. However, the method is more complicated and they

53

54

require more time to complete than using the previous methods. This method requires

access to the source code of methods and, naturally, generated composite services will get

bigger as the number of services involved in the compositions increases.

2.3.2.2 eFlow

eFlow [21,22] is a service composition system developed at HP laboratories. eFlow inte-

grates heterogeneous services (e;g. services on the Web) to make a composite service. The

specification of a composite service is given by the user and eFlow models the composite

service as a process represented by a graph 124). This graph has service, decision, and

event nodes [21]. Service nodes represent a basic or composite service invocation. De-

cision nodes control the order of execution and event nodes enable services to signal and

respond to various events (e.g. notification of the completion of a service, suspension of a

service, etc.). Also, an eFlow graph supports "transactional regions" [24] which identify

portions of the graph that must be executed in an atomic fashion.

The main components of eFlow are:

e Composition engine: The composition engine is the main component of eFlow which

handles composite service requests. It processes all completion messages received

from service nodes and subsequently schedules the execution of the next service

node(s) in the graph. It uses a service discovery mechanism to find the actual services

that correspond to service nodes.

Chapter 2 : Background and Related Work

Service discovery service (broker): A service broker finds the actual service compo-

nents that can fulfill service node requests.

Basic services: Component services that are the building blocks for service compo-

sition.

2.3 : Composition of Services

Service graph nodes have associated "service selection rules" specifying the desired

seryice's characteristics. Service selection rules are specified in a language that is recog-

nized by the service broker. Usually an XMl-based language is used to describe service

selection rules and services as well. Based on the service selection rules, the service broker

finds an appropriate service satisfying the needed criteria. The service broker, as a result,

returns to the composition engine a document in XML specifying the discovered service's

location, its input and output information, etc. eFlow users may define their own service

broker and plug it into the system. In this case the language for specifying service selection

rules must be compatible with the new service broker.

eFlow provides repositories of processes, service nodes, and data type definitions to

increase re-usability of the system 122]. A process in the repository of processes can be

complete or just a template which allows plugging in of service definitions by a service

designer. Service node and data type repositories provide storage for definitions ofservices

and data types, respectively, that are frequently used to compose services in a given envi-

ronment. Definitions of service nodes and data types are structured into groups and group

hierarchies for easy access by service designers. The repositories in eFlow, however, are

not used for automatic composition of services. Furthermore, no mechanism for updating

the repository is presented by the developers.

To be more flexible, eFlow also supports a concept called "dynamic service flow mod-

ification". Dynamic service flow modification allows eFlow to dynamically modify the

sequence of service components in a composite service. This feature may be required to

handle unexpected exceptions, to incorporate nerv business policies, etc. Modifications can

be done in either ad-hoc or bulk mode. An ad-hoc change is applied only to a specific

composite service whereas, in contrast, bulk changes affect all existing composite se¡vices.

Dynamic service flow modification is controlled by authorization rules. Only authorized

users are allowed to make such modifications.

55

s6

2.3.2.3 The Ninja Service Composition Platform

The Ninja [40] project at the University of California, Berkeley, developed another service

composition platform for use in wide area networks hosting a wide range of clients on

different devices (from cell phones to desktop computers). The Ninja system uses service

composition to enable different clients with varying resources and network accessibility to

use the same network services. For example, different clients can request the "play video"

service, provided by a host in the network and the Ninja system will deliver the service in

different formats, by composing it with other services to do operations such as transcoding,

based on the capabilities of the client device, the existing bandwidth between the client

and the original SE, etc. Ninja uses SSDS (discussed in Section 2.2.2.10) as its service

discovery protocol.

The main concept in Ninja is the path. A path chains different operators together using

connectors. Operators are services doing computation on a passing data flow. Described in

XML, each operator has attributes and a type. The operator's description helps the system

to find a logical combination of operators that can do a user requested task. Operators can

be either long-lived or short-lived [40). LongJived operators are registered and located

using a service discovery mechanism. Shortlived operators (a.k.a. dynamic operators), on

the other hand, are created dynamically by the system to do necessary transformations and

are transparent to the users t40]. A service capable of converting a high resolution video

stream to a low resolution one might be implemented as a shortlived service. Connectors

abstract away the details of underlying links and connect operators residing on different

nodes.

The main functional component of the Ninja system is the Automatic Path Creation

(APC) service. The APC service accepts a user's request, identifies required components,

Chapter 2 : Background and Related Work

2.3 : Composition of Services

discovers the services, sends information to the component services, and monitors the exe-

cution flow.

To create a path, a user provides the APC with a specification of the endpoint nodes

in the path, a partially-ordered list of operators that must be included in the path, and

some cost-related criteria that the path should satisfy [40]. Path construction is a four-step

iterative process as follows [40]:

1. Logical path creation: The APC searches the XML descriptions of operators to find

logical sequences of operators capable of fulfilling the user's request. The result

is a list of sequences sorted in descending order based on the user's optimization

parameters. As this list may be large (if the number of operators is high), only a

subset from this list is selected for subsequent processing. After running the physical

path creation phase (the next step), it might be necessary to choose another subset

of the already created logical paths if the selected paths do not satisfy the user's

requirements.

2.

57

Physical path creation: A physical path is a mapping from a logical path onto phys-

ical nodes that are capable of running the required operators. Nodes for long-lived

operators are located using service discovery. Nodes for shortlived operators are

chosen based on the nodes' capabilities (CPU, memory, etc.). If none of the con-

structed physical paths meet the user's requirements, a different set of logical paths

are selected (step 1) and this process is repeated.

Path instantiation and maintenance: The APC service selects the best possible phys-

ical path (based on the user's inputs) and sets up the required dynamic operators (i.e.

shortJived operators) and appropriate connections between nodes hosting operators.

Once the connections have been established, data flow is started. After that, a control

58

path between the APC service and the operator nodes is set up. This path is used for

gathering performance information as well as for error reporting.

4. Path tear-down: Once a path is no longer needed, the user asks the APC service

to remove it. The APC service stops the data flow, removes connectors, and frees

resources. It can also cache path information for subsequent re-use.

Due to the importance of path creation, Ninja runs the APC service on a cluster of

workstations to provide fault tolerance and scalability through load distribution.

2.3.2.4 Task Computing

Chapter 2 : Background and Related Work

Task Computing [56, 57] tries to fill the gap between tasks (i.e. what a user wants) and

services (what is offered by devices). Task Computing tries to enable non-expert users to

accomplish their tasks (which may be composed of several services) using services which

are available in their environment (e.g. in a meeting room, etc.).

Task Computing assumes the availability of semantically described services on the Web

(i.e. Web services) and/or offered by different devices. The high-level and semantically rich

description of services allows Task Computing to do the required service composition to

fulfill a user's request. Once the required services for a particular task are found, Task

Computing uses UPnP to interact with actual devices providing services.

A Task Computing Environment (TCE) includes the following components [57]:

ø one or more Task Computing Clients (TCCs)

ø one or more semantically described services

o one or more semantic service discovery mechanisms

optionally, one or more service controls (which enable a user to create, temporarily

hold, and remove services)

One Task Computing client, called the Semantic Task Execution EditoR (STEER), pro-

vides a user interface showing what is available in a user's environment. STEER uses the

UPnP discovery protocol to find underlying services (e.g. "display on a projector", "local

file storage", etc.). Once a service is found, STEER either retrieves its semantic description

(if there is one) or creates a description based on pre-defined templates. The semantic de-

scription is then used for subsequent composition. STEER has an inference engine as well

as an execution engine that are used to create and subsequently run composite services.

When a user wants to compose a service, he/she runs STEER from his/her browser.

STEER shows the user all possible compositions (limited to only two services and starting

with no-input services) that can be done in the user's environment. In this step, the user

can decide either to execute one of the proposed compositions or he/she can manually build

more complex compositions stailing with one of the suggested compositions. Finally, when

a user wants to execute a composite service, STEER invokes each component service and

redirects the output ofeach service to the input ofthe next.

For example, assume that a user wants to execute a composite service including "display

on projector" and "local file storage" services. First, STEER locates the user's preferred

local file (e.g. by showing a list of files to the user to choose from). Once the file is

retrieved, STEER sends this file to the projector which is presented as a UPnP device. The

projector device receives the file from STEER and displays it.

STEER plays a broker's role in composition and monitors the execution process. To the

best of my knowledge, however, Task Computing does not provide any storage of newly

created composite services for future use. A user's computing devices (e.g. laptop, PDA,

etc.) are also required to run STEER which places a burden on resource-limited devices

such as PDAs.

s9

60

2.3.2.5 InterPlay

InterPlay [58] tries to integrate devices in a networked home using two concepts: pseudo

sentences and task sessions. A pseudo sentence, in the simplest form, has a verb, a subject

(content type) and target device(s) to describe a user task (e.g. "pluy" (verb) "the movie

M" (content) "on living room TV" (target device)). Different parts of a pseudo sentence

are selected from pre-defined lists. Once the user task is defined using a pseudo sentence,

InterPlay maps the task to a sequence of invocations of services running on UPnP-enabled

devices.

A task session captures the current execution state of a task like "playing", "paused",

etc. A session is a dynamic concept and devices can be added/removed to/from a session.

For example a second TV can be added to a DVD playback session to show a DVD on two

TVs. InterPlay uses OWL (Web Ontology Language) and Resource Description Frame-

work (RDF) [4] to describe devices as well as user tasks. The Semantic description of

tasks helps InterPlay to find appropriate devices on to which to map the task at hand.

2.3.2.6 SpiderNet

Chapter 2 : Background and Related Work

SpiderNet Ia2l is a peer-to-peer service composition framework developed at the University

of Illinois at Urbana-Champaign. Its main emphasis is on guaranteeing decentralized QoS-

aware service composition in a service overlay network [42]. SpiderNet is implemented

as distributed middleware that maps a user's composite service requests onto available dis-

tributed services. Service composition requests consist of a "function graph", showing

service functions and their relations, as well as certain QoS requirements. The function

graph in SpiderNet is a directed acyclic graph and SpiderNet can change, if required, the

order of nodes in the function graph to meet the user defined QoS constraints.

SpiderNet maps a function graph onto a "service graph" whose nodes are services,

found by a service discovery process and the links are mapped onto the available overlay

network links. SpiderNet uses the Pastry Distributed Hash Table (DHT) [71] for service

discovery. Each service that wants to register itself, generates a hash key based on its

function name by applying a secure hash function. A device or client, on the other hand,

who wants to find a service, generates a hash key in the same way and sends a query for

the service using this key to the "target service " which the DHT routes to.

SpiderNet uses a novel method called Bounded Composition Probing (BCP) to col-

lect resource and QoS information about its contributing providers. A node that wants to

provide a composite service (e.g. streaming video service which may consist of finding

a server, enhancing the image, and playing components) sends a limited number of probe

packets to the destination node in the service graph. Probe packets are processed in each

passing node and contain the user's QoS requirements. The destination collects all probe

packets and, based on the gathered information and the user's QoS requirements, selects

one path and sends an acknowledgment message back along the reserved path (i.e. the

service composition graph) to the sender.

SpiderNet assumes that each service component runs continuously and accepts data

for processing and outputs some data to send on the network. Thus, service invocation in

SpiderNet is done by sending data to the first service in the composition chain and from that

point on, other services will be invoked automatically. SpiderNet also maintains a small

number of backup service composition graphs and in the case of node failure in one graph,

it switches to an alternate graph.

61

2.3.2.1 Broker-based Service Composition

Chakraborty et al. [2]l at the University of Maryland, Baltimore County, proposed a dis-

tributed broker-based protocol for service composition in pervasive/ad-hoc environments.

62

In their protocol, clients select a nearby broker dynamically and delegate the service com-

position task (i.e. discovery, integration, and execution) to the selected broker. This mech-

anism evenly distributes the service composition task among potential brokers, achieves

load balancing, and avoids single point of failure problems. It is assumed that composite

services are pre-described in DAML-S and that the order of subcomponents is known.

The broker selection phase is followed by the service discovery phase. Service dis-

covery is done using Group-based Service Discovery (GSD) [25]. GSD is a peer-to-peer

service discovery protocol capable of doing semantic service matching. Services are de-

scribed in the DAML-S language and GSD does not need a directory to register available

services. Each node in a GSD-based network, keeps a cache of nearby advertised services

and forwards its cache information to others based on the existing group hierarchy in the

DAML-S specification of services. This selective forwarding property of GSD, generates

a controlled number of broadcast messages and results in better use of network bandwidth.

After finding appropriate services, the seruice integration phase is started. Service inte-

gration deals with combining discovered services and filtering out unnecessary components

based on execution-level cost estimates. In this phase an Executionlevel Service Flow

(ESF) l27l is generated. An ESF contains the addresses of actual services (an ESF can be

considered to be a concrete workflow) and also network parameters (such as bandwidth,

number of hops, etc.) and finally specifies the execution flow of services.

Once an ESF is created, the actual execution takes place during lhe service execution

phase. In this phase, the broker coordinates the execution of services in the order spec-

ified by the ESF. The broker sends the information received from a previously executed

service to the next service in the ESF. Since many component services and computing

nodes can be involved in a composite service, it is possible to experience failure of services

in the workflow and consequently failure of the composite service execution process. To

take advantage of partial results from services executed so-far, Chakraborty et al. use a

Chapter 2 : Background and Related Work

2.3 : Composition of Services

checkpoint-based fault tolerance mechanism during the execution phase [27].

2.3.2.8 CoSMoS

Fujii et al. [36] propose a system to dynamically compose services. Their system allows

a user to describe a composite service as well as its semantics in an intuitive form (e.g.

a natural language). As an example, a user might enter "print direction from home lo

restaurant" as a request to get directions from his home to a restaurant. The semantics of

the requested composite service (i.e. its operation, its inputs and outputs, etc.) are inferred

and converted into a semantic graph to be used as a template in the composition process.

Fujii et al. use the Component Service Model with Semantics (CoSMoS) to capture the

semantics of component services. CoSMoS defines a component by specifying its opera-

tions and properties. CoSMoS models the semantics of a component by using concepts.

Concepts represent abstract ideas (e.g. "direction") and actions (e.g. "print"). The seman-

tics of a component's operations, inputs, outputs, and properties are annotated by concepts.

CoSMoS uses its semantic graph representation to describe operations, properties, and con-

cepts of a component service in a machine-understandable format. Once the semantics of

the requested composite service as well as all the component services are described us-

ing the semantic graph representation, a service composition mechanism, called Semantic

Graph-based Service Composition (SeGSeC), discovers appropriate component services

based on the semantics of the requested composite service.

SeGSeC has four different modules: 1) RequestAnalyzer,2) ServiceComposer, 3) Se-

manticAnalyzer, and 4) ServicePerformer. The RequestAnalyzer parses the natural lan-

guage description of the user request and converts it into a CoSMoS semantic graph repre-

sentation. The output of this module is consumed by the ServiceComposer which discovers

component services based on the user request. The result of this module is a workflow in-

cluding the discovered component services. The ServiceComposer starts generating the

63

64

workflow by finding a component service that performs the same operation as specified in

the uset's request ("print" in the above example). Once the first component is discovered,

ServiceComposer discovers other services that provide inputs to the initial component ser-

vice and adds them to the workflow. This process continues recursively for all the newly

added services that require an input. An input and an output are considered compatible if
their data types as well as their associated concepts are compatible.

The generated workflow is sent to the SemanticAnalyzer which examines the semantics

of the generated workflow to make sure that it satisfies the user's request. For example, in

the example of getting directions from home to a restaurant, the SemanticAnalyser will

discard a composition if home is selected as the destination. If the generated workflow is

approved by the SemanticAnalyzer, the ServiceComposer passes the workflow to the Servi.

cePerformer. The ServicePerformer executes the generated composite service by invoking

the operations of the component services.

Fujii et al.'s results show that their approach to service composition is not scalable.

Although they evaluated their implemented prototype with very few component services

and only simple compositions, the number of nodes in the semantic graph is relatively high

which can potentially be a bottleneck as the number of component services increases.

2.3.2.9 Synthy

Chapter 2 : Background and Related Work

Synthy [14] is a Web service composition platform that requires a user request for com-

position. Synthy is a multi-stage composition platform that performs service composition

at two levels: 1) logical composition and 2) physical composition. The logical compo-

sition involves only Web service lypes to create a logical workflow (a.k.a. a template).

Web service types are abstract and do not corespond to any implementation. The physical

composition, on the other hand, includes Web service instances to generate an executable

workflow (a.k.a. workfl ow instance).

Synthy has three different modules: 7) the Logical Manager,2) the Physical Manager,

and 3) the Runtime Manager. When a request arrives, the Logical Manager generates

K templates that meet the functional requirements of the request. To select K templates

from all possible templates, Synthy uses Hamming distance among the templates to select

the templates in such a way that their service types are maximally different from each

other. (This decreases the number of failed workflows due to the failure of one service).

These templates are passed to the Physical Manager to create executable workflows by

selecting appropriate instances for each component service. The Physical Manager uses

the non-functional requirements of the request to select service instances. Synthy uses cost,

response time, and availabiltty of a service instance as selection criteria. The generated

executable workflows are passed to the Runtime Manager which selects the best workflow

(in terms of overall composite QoS) to execute.

2.3.2.10 Summary of Composite Service Execution Platforms

The features of the reviewed platforms for service composition are summarized in Ta-

b\e2.4.

65

66

2.3.3 Shortcomings of Existing Systems

Tables 2.3 and 2.4 show that most of the reviewed service composition systems and plat-

forms have targeted either'Web services or infrastructure-based networks and assume the

existence of a target service and powerful computing nodes. While this work is of inter-

est, the methods are less directly applicable to pervasive environments for the following

reasons:

c In pervasive environments, unlike Web services, "on-the-fly" composition must be

done by non-technical use¡s so it is impractical to assume that a specific target service

can be defined by the user. Involving a user in the composition process is highly

unattractive in pervasive computing where a primary goal is hiding the details of

using computing devices from the end user.

o The breadth of different devices possible in pervasive environments normally means

different vendors and most likely different protocols for communication will be the

norrn. This makes creating composite services a more challenging task and one

where the value of being able to re-use previous compositions is high.

o The required computing resources fo¡ matching (in particular semantic matching) are

often beyond the capabilities of resource limited devices that are commonly found

in pervasive environments. This suggests the need to involve a third party which has

enough computing power and other resources to support the matching process.

To address these issues, I propose a service composition approach which is more suit-

able for pervasive environments. The proposed approach tries to automatically find pos-

sible new composite se¡vices driven by the discovery of newly advertised services. With

this approach, a user does not have to specify a desired composite service but can, instead,

Chapter 2 : Background and Related Work

2.4 : Composite Service Execution

be offered a list of possible composite services ordered by expected usefulness to choose

from. This minimizes end-user involvement in the composition process.

To move the overhead of service composition off of resource limited devices, my ap-

proach to composition involves third party (SEs) that have adequate resources (computa-

tionally as well as technically) to do service composition. Such SE can store predefined

as well as generated abstract composite services in a repository and share this information

among different pervasive environments to permit rapid and automated re-use. In addi-

tion to such re-use, the SE can, when necessary, generate composite services on-the-fly

using input/output matching. To remove undesirable generated composite services, the SE

employs an intelligent ranking scheme to remove low-ranked composite services from the

list of generated ones. SEs can also use the shared repository to collect statistics about

composite service use in similar environments to identify "recurring" usage patterns. Such

information can then be exploited to offer only those composite services that are likely to

be of end-user interest in a given pervasive environment. Although eFlow stores processes

and services, it only helps service designers to design new composite services and are not

used for automating the service composition process.

To deal with the heterogeneity of a pervasive environment, I have built on an inter-

operability framework designed to handle different communication protocols. I also avoid

introducing any new protocol or changing any existing ones by advertising newly created

composite services in terms of all the available protocols.

67

2.4 Composite Service Execution

Execution of a composite service (a.k.a. service orchestration) is the process of invoking

components of the composite service based on an order defined in a workflow. The exe-

cution is performed by a "workflow execution engine" (or an "o¡chestration engine"). In

68

the execution phase, instances of component services must be accessed and invoked. In-

vocation of a service may require providing correct number of parameters. The result of

invoking a service is normally sent as an input to the next service in the workflow.

There are two main patterns in executing a composite service workflow: star and

mesh [27]. In the star pattern, data and control flow between component services resemble

a star. In other words, there is a central entity which is responsible for invoking com-

ponent services with required parameters. It also receives output of an invoked service.

Mesh-based approach, on the other hand, does not involve a central entity to shape data

and control flow. Each service provider is responsible for invoking the next service in the

workflow.

No matter which execution pattern is selected, there are some issues related to execution

of a composite service that must be considered:

o Parallel execution of services: the workflow of a composite service is not necessar-

ily linear and parallel execution of component services is possible. The workflow

execution engine must provide required mechanisms (e.9. synchronization, etc.) to

accurately run service instances in parallel.

Chapter 2 : Background and Related Work

Concurrent accesses to a service instance: services offered by devices such as TV in

a home are network, can participate in many composite service workflows. If more

than one of such workflows run at the same time, it is possible to have concurent

accesses to the same instance of a service. The workflow execution engine must

handle these conditions to correctly execute different workflows.

Atomic execution: different components of a workflow may have atomicity require-

ments. For example, booking a flight and reserving a hotel room as two separate

components of a "vacation planer" service must be executed as a transaction. In

other words, if one of these component services fails, the whole composite service

2.4 : Composite Service Execution

must fail. The workflow execution engine can provide such mechanisms to run trans-

actional workflows.

Failure handling: services involved in composite service workflows can fail or be-

come unavailable. The workflow execution engine must provide required mecha-

nisms for detecting and later handling failed services. This feature is more important

in pervasive environments where most of devices are mobile.

69

-vt
rè

'tl
a)

q)

&
'U
ñ

'll

òO
¡<o
a
el
¡-
c)
Ê.
CE'

U

Feature

Announcement
/Lookup

Service

Matching

Table 2.2: Comparison of different service discovery protocols

Jini

Service

Invocation

Drrectory

lnterface-
based

Architecture

UPnP

Security

Multicast

Mobile
code

Directory
Address

Syntax

HAVi

Client/Serve:
(c/s)

Directory

Number of

Directories

SOAP

JVM-based

Syntax

Leasing Con-
cept

SLP

Configured
Avlulticast

(-r

P2P

Programming
Language

Directory
Aylulticast

Vendor

Dependent

One or
more

No

Applicable to
pervasive env.

Syntax

Bluetooth
SDP

N/A

C/S

Yes

Broadcast

Access

Cont¡ol
/Signature

N/A

Java

N/A

Syntax

Yes

SSDS

Configured

C/S or P2P

Yes

Directory

N/A

Independent

No

One

Syntax

Yes

@HA

Configured
/I4ulticast

P2P

Yes

Directory
/Broadcast

N/A

One or
more

No

Independent

Syntax

Yes

N/A

C/S

Yes

XML pars-
ing

Independent

Auth.

/Encryption

N/A

Yes

Multicast

C/S or P2P

No

Independent

No

Multiple

Yes

Broadcast

No

One with
backup

Independent

No

Yes

lndependent

Yes

2.4 : Composite Service Execution

Table 2.3: Comparing composite service creation systems

Semantic matching

Features

Description language

7l

(semi)Automatic

User involvement
Service execution

Target environment

Sirin et al. I Rao et al.

Yes

OWL-S
Semi

High
Yes

DAML-S
Yes

Web

Auto
Low

SeSCo

Graph-based

No

No

Web

Auto

My SYStem

Low
No

Pervaslve

Yes

OWL-S
Auto
No
Yes

Pervasive

t¿ç
\o
;>

0)

a)
É,
'çl
cú

þo
A<
o
cü

a
c\
t-
0)

Èr
C!

U

Feature/
System

Table2.4: Comparison of different service composition platforms

Area of
Applica-
bility

ICARIS
l83l

Needs
user's

request

eFlow

121)

Pervasive

Deploying
compos-
ite
service

Yes

Web ser-

vices

Ninja
t40l

Multi
protocol

Yes

Storing
com-
posite

service

Yes

WAN-
based

SpiderNet

t42)

No

Yes

c\
c-

Ranking
com-
posite
services

Yes

Broker-
based

t27l

WAN-
based

N/A

No

Yes

Task

Com-
puting

t56l

Yes

Ad-hoc

Yes

No

No

Yes

Yes

InterPlay

tssl

Pervasive

No

No

No

Yes

No

User-
defined
criteria

CoSMoS

t36l

Pervasive

No

No

Yes

Yes

Web ser-

vices

Synthy

t14l

QoS con-
trol

N/A

No

Yes

Yes

Web ser-

vices

My Sys-
tem

No

N/A

No

Yes

Yes

Pervasive

No

No

No

Yes

No

No

No

No

Yes

No

Yes

Yes

Yes

Yes Yes

Chapter 3

Overall Anchitecture

To address the shortcomings of existing service composition systems identified in Sec-

tion2.3.3, in this chapter, I describe an architecture that can make use of semantic-based

service composition to dynamically build workflows without direct user involvement. My

proposed architecture supports a variety of protocols and does not involve the end-user in

specifying a composite service. The similarity of different pervasive environments in terms

of type of devices and services, pattern of service usage, etc. suggests having a shared

repository of predefined as well as on-the-fly generated workflows. Such a repository will

increase re-usability of workflows and decrease the overhead of composition. It also offers

the potential to assess the usefulness of compositions stored in the repository by track-

ing their use. My proposed architecture involves third-party SEs to keep such a shared

repository. The SE uses a ranking scheme to decide which of the automatically generated

composite services should be presented/offered to users. Composite service usage informa-

tion, collected by the SE in the shared repository, from similar environments, is also used

in my architecture to further filter out automatically generated workflows that are unlikely

to be useful.

The presentation of my architecture in this chapter is high level and discusses only

t5

74

@R
@õ

Chapter 3 : Overall Architecture

the major components. I assume a pervasive environment in which devices are connected

to each other (using wired or wireless technology) as well as to some sort of remotely

managed GD which provides Internet access and hence, indirectly, support for composition

via communication with an SE.

Figure 3.1 shows the overall architecture. Each device provides one or more services

(^9" in the figure) which can be used by other devices, as part of composite services, or

by users within a pervasive environment. Devices in the architecture may use different

communication as well as service discovery protocols (e.g. Jini, UPnP, etc.) to advertise

their services. The GD maintains a directory of all available services (The "Directory"

in Figure 3.1) and is connected to one or more SEs through the Internet connection pro-

vided by the GD. SEs support service composition and may also provide remote services

(e.g. health monitoring, entertainment, software upgrades, etc.) that are available in the

pervasive environment.

The SEs perform service composition using repository-based (a.k.a. template-based)

Figure 3.1: Overall architecture for service composition

Gateway Device

and/or input/output-based (a.k.a. interface-based) matching, (as will be described in Sec-

tion 3.1) based on device information sent by the GD. As shown in Figure 3.1, the GD

sends newly added devices' descriptions and capabilities to the SE. The SE maintains a

"shared" repository of pre-defined as well as automatically generated workflows used by

the service composition modules (i.e. I/O maîcher and Repository matcher in Figure 3.1).

It is assumed that all devices in a pervasive environment have built-in descriptions of

their offered services, specified in OWL-S. Such descriptions, in a real world environment,

could also be accessed by the SEs, via the Internet, on the device manufacturer's Web

site based on a simple model number provided by the device. The implementation de-

pendent part of each OWL-S description, (i.e. the "grounding") must be generated based

on each device's supported communication protocol. This means that the GD, which runs

the middleware, must create the service grounding dynamically and attach it to the service

description, encoded in OWL-S.

Workflows in my architecture come in two forms: abstract and concret¿. The descrip-

tions of component services in an abstract workflow are used to discover concrete services

(provided by a device or software) when such services are available in a pervasive environ-

ment. This type of workflow is maintained in the SE-side repository. Concrete workflows,

on the other hand, are "instances" of abstract workflows and carry, in addition to abstract

description of services (i.e. service "profile" in OWL-S), the implementation dependent

part of services (i.e. "grounding" in OWL-S). When service descriptions are sent to the

SE by the GD (whenever a new device is discovered), they are matched against the com-

ponents of abstract workflows. If all the components of an abstract workflow are matched

with descriptions of available concrete services, the concrete workflow, conesponding to

the abstract one, is sent to the GD for deployment in the pervasive environment.

Given information about existing devices and services in a pervasive environment, the

SE can also automatically discover new composite services (using input/output matching)

75

76

of potential interest to the users. The SE is expected to be connected to many different

GDs and this provides the SE with the opportunity to share composite services among

different pervasive environments. Reusing pre-existing compositions can be significantly

more efficient than re-generating them. This is important when an SE "manages" many

GDs.

When a new high-ranked composite service is found, the SE adds it to the repository

and sends the description of the new composite service as a workflow to the GD. The

Workflow Execution Engine, shown in Figure 3.1, is responsible for receiving and later

deploying the workflows sent by the SEs. The workflow is already bound by the SE (using

device information received from the GD), using its OWL-S grounding, to the available

services/devices in the target pervasive environment. The workflow is thus ready to be

executed by the GD. A GD may also, however, have to consider certain constraints (e.g.

availability of protocols) during the eventual workflow execution. Such execution details,

however, are beyond the scope of this thesis.

Deployment of composite services (for subsequent execution) in my architecture is

handled in a unique way which makes it possible to integrate newly created composite

services with available ones seamlessly. Each composite service is deployed in terms of

all the available protocols (e.g. UPnP, Jini, etc) in a pervasive environment. To do this,

a wrapper is dynamically created (by the Workflow F.xecution Engine) for each available

protocol and for each new composite service when it is received by the GD. Each generated

wrappff translates the composite service's functionality to one of the existing protocols

in the pervasive environment. The wrapper service is first registered with the GD and

then becomes available for use in the pervasive environment. When a composite service

is accessed by a user or other services, usage information is sent to the SE by the GD.

The SE collects statistics about composite service usage to identify "similar" pervasive

environments in terms of their service usage pattems and to determine the "popularity" of

Chapter 3 : Overall Architecture

specific compositions so that the SE can discard less useful composite services accurately.

Although creating a wrapper for each available protocol in a given environment seems

to be extra work, it integrates the new composite services without having to change any

protocols or install any additional software. Furthermore, it can also be safely assumed

that only a few protocols will likely be widely used in pervasive environments.

3.1 Service Composition Methods

Service composition at the SE side is done in an incremental fashion. In other words, each

time an SE receives a new service (or device) description, it tries to find new composite ser-

vices (using either or both of the following methods) that involve the newly added service

and other pre-existing services within the pervasive environment.

o Repository-based service composition: In the repository-based approach, we use

the pre-existing repository of useful composite service templates residing at the SE.

When the SE receives a service description (provided by a newly discovered device)

from a pervasive environment, it tdes to find a match between the abstract description

of a service in any of its templates and that of the received service. The Repository

matcherin Figure 3.1 is responsible for doing this "repository matching". The match

is exact if we can find a service from the repository where the number and type of

its inputs and outputs are exactly the same as those of the received service. If we

can find a subsumption relation between the inputs/outputs of the received service

and a service from the repository, the match will be partial. (More specifically, if an

input type of the received service is a superclass of the corresponding input type of

a service from the repository and an output type ofthe received service is a subclass

of the corresponding output type of service from the repository, a partial match will

be detected.) If a match is either exact or partial, the SE will ma¡k this service in the

11

78

Table 3.1: Comparison of different service composition methods

Template-based

Method

Interface-based

template as "resolved". If all the services of a template are resolved based on services

provided within the pervasive environment in question, then a composition has been

found and the SE can send the worffiow instance (concrete workflow) corresponding

to the matched template to the GD. Otherwise, no match is found. Marking a se¡vice

at the SE side indicates that this service is provided in a pervasive environment and

can be used in creating a workflow instance.

simple, fast, useful composition

Pros

Chapter 3 : Overall Architecture

simple, flexible
limited to known components

time consuming, requires ranking

Input/output-based service composition: An SE tries to find a sequence of services,

corresponding to those available in a pervasive environment, where the output(s) of

each service are compatible (syntactically or semantically, given an ontology) with

the input(s) of the next. The I/O matcher component in Figure 3.1 is responsible

for doing interface-based matching. If such a sequence is found, the SE calculates

a rank (reflecting quality) of this sequence based on a set of parameters and sends

the generated workflow to the GD if the calculated rank is higher than a threshold

value. Compositions (workflows) discovered by such VO matching are then stored

as templates (abstract workflows) in the shared repository to facilitate subsequent

compositions using repository-based method. (The link between the VO tnatcher

and the workflow repository in Figure 3.1 shows this relationship.)

Cons

Each method of service composition has pros and cons that are summarized in Ta-

ble 3.1. In some sense, the techniques complement one anothe¡ with each addressing in-

adequacies of the other. By using them together, template-based first, if possible, followed

by interface-based, only if necessary, a powerful composition system results.

3.2 Ranking Composite Services

The number of composite services generated using VO matching can be large. I use ab-

stract and concrete rankings, conesponding to abstract and concrete workflows, to select

the best possible workflow instances in a pervasive environment to deploy and execute.

Abstract ranking is applied at the SE side, where abstract workflows are created using VO

matching, whereas concrete ranking is used by the GD when it receives a concrete work-

flow from an SE. Each ranking scheme, as will be described in Section 5.4.4,has its own

set of criteria to calculate the rank of a composite service. In my prototype I only imple-

mented and used abstract ranking to reduce the number of composite services sent to the

GD.

The key challenge to making ranking effective is selecting a set of criteria for the rank

function and the threshold value(s) as cut-off point(s) so that only compositions that are

of end-users interest will be deployed. To select these values in my thesis, I reviewed the

results of composing services whose input and output types were selected from a realistic

ontology. Then, I selected and fine tuned the weights of different criteria in the ranking

function (according to the structure of the type ontology, etc.) to cluster composite services

into different categories with distinct rank values. Having these categories, it is not hard to

determine appropriate threshold values to identify and then discard non-useful (low-ranked)

compositions. The realistic domain ontology that I developed is presented and explained

in Chapter 4.

79

80

3.3 Fault [Iandling in Composite Services

A composite service, which is supposed to be deployed in a pervasive environment, in-

cludes component services that can be either atomic or composite. A composite service

may fail due to the failure of any of its components. The fault detection and tolerance

mechanisms discussed in Section 2.l.3,for a service in general, can also be applied to a

composite service's components.

In a pervasive environment where devices/services come and go frequently, the un-

availability of a given service will affect all composite servìces having the failed service as

one of their components. Detection of failed service components can be done using either

heartbeat messages or a lease mechanism (see Section 2.1.3.l). Once a failed service is de-

tected, we can either immediately make the involved composite services unavailable (due

to the unavailability of the failed service) or find an alternative component (or composite)

service. These approaches can either be done immediately after finding a failed service

("eager") or postponed until the composite service is actually invoked ("lazy").

To choose the most appropriate of the aforementioned methods in case of service fail-

ure, services in my system are classified into mobile and stationary depending on the type

of device hosting the service. To distinguish mobile services from stationary ones, an extra

tag is added to the OWL-S description of each service (see Figure 3.2). This tag identifies

the type (mobile or stationary) of the device hosting the service. If a composite service has

at least one mobile service, it will be marked as mobile as well.

If a mobile component service becomes unavailable (assuming that unavailability is

detected using heartbeat messages), we wait until the composite service is actually invoked

hoping the mobile component service will become available again. On the other hand,

the unavailability of a stationary service can imply a peffnanent problem (at least a longer

lasting one than a mobile component) so the SE is notified about removal of this service.

Chapter 3 : Overall Architecture

3.3 : Fault Handling in Composire Services

<prof i le : Prof iIe rdf : about: " #ServicelProf i.l-e " >
<pro f ile : serviceName) Service 1 Service< /pro f i le : serví ceName)
<profiJ-e : haslnput rdf : resource:"#inpuLI" / >

:::"ttt"
: hasOutput rdf : resource:"#outputI" />

<hostDevi ce : s ervi ceType>Mobile< /ho s t.Devi ce : s e rvi ceType >

</prof ile : Prof il-e>

Figure 3.2: ,Addition of the new serviceType tag to the service
description

As described earlier, each SE maintains a repository of predefined abstract workflows

(i.e. potential composite services) and marks components of workflows as "resolved" upon

receiving description of matching concrete service from a given pervasive environment.

Each SE typically manages many pervasive environments, thus the marking of component

services is done on a per-environment basis. In other words, the SE will only send a work-

flow to a GD if all the component services are marked as "resolved" and corresponding

concrete services belong to a single environment.

Marking a service, as mentioned earlier, indicates the use of such a service in a com-

posite service for some pervasive environment. To deal with service removal/failure in a

pervasive environment, the inverse processing must be performed. Thus, upon detecting a

service failure for a fixed device, the GD must send the description of the failed service to

the SE so it can unmark this component service in all abstract workflows having the de-

scription. Unmarking a component service within a workflow does not have any effect on

the workflow structure. It just prevents sending workflows including a component service

81

82

\¡/hose abstract description matches with the description of the failed service to the environ-

ment in which service failure occurred. The corresponding abstract workflow remains in

the repository and can be used in matching and to send a corresponding workflow to another

pervasive environment if all its component services are available in the environment.

Not sending any workflows including failed services only partially solves the problem

of handling failed services. We also need to deal with those composite services that have

already been sent to a GD and which involve a failed component service. To avoid losing

pre-deployed services in a given pervasive environment, we need to be able to find an

alternative component (or composite) service.

Chapter 3 : Overall Architecture

3.3.1 Selecting an Alternate Service

The GD, which is responsible for deploying composite services, detects the unavailability

of a service at execution time. The process of handling a failure, as we mentioned ear-

lier, can start either right after detecting the failure or at the time of actual execution of a

composite service using the failed component service. With either approach, the GD can

either generate an enor message and show it to the requester or select an alternate service

(composite or atomic). Selecting an alternate service is clearly preferable and can be done

by replacing either the whole composite service with a new one (given that such a backup

service is available) or by replacing only the unavailable component service. In some cases,

replacing only the unavailable component service can save computation by not re-invoking

already executing component services. However, finding another component service ex-

actly matching the failed one may not be simple. Also, the result(s) of previously executed

services must be saved using a mechanism such as checkpointing so they can be used to

resume the execution of failed composite service.

3.4 : Prototype Implementation Overview

To be able to discover alternate services, extra information must be kept about the avail-

able services in the OSGi framework in terms of their input(s) and output(s). A challenge

to doing this is that the gateway device typically is an embedded device having limited

resources so we must keep the overhead of finding new alternative services to a minimum.

This can be achieved by using only the exact matching of input and output types without

considering semantic matching and can be implemented using a list to map each service

(atomic or composite), based on its input and output types (available from the OWL-S de-

scription of the service), to an entry in the OSGi directory. This list can be easily updated

on the arrival/removal of a service. Having this mapping enables us to cheaply find other

services (if such services exist) which can act as a replacement for a failed service.

If a replacement for a component service cannot be found, the list can be searched

to find another service to replace the whole composite service. If a replacement for a

composite service can not be found, an eüor message must be sent to the requester of

the composite service. Handling a failure on the GD by selecting an alternate composite

service is not provided in the current implementation of the prototype.

3"4 Frototype Implernentation Overview

83

In my prototype (see Figure 3.3), I have implemented a GD running the Oscar [3] imple-

mentation of the OSGi [17] framework. My prototype curently supports a few real as

well as a number of emulated UPnP devices and Jini services. All services are registered

using OSGi in the GD. A separate program (that can run on the same machine or a sepa-

rate computer) acts as an SE which is responsible for receiving service descriptions from

the GD, retrieving compositions from the shared repository and/or creating new composite

service workflows using inpuVoutput matching, and sending them (if the SE finds high-

ranked composite services) back to the GD. As mentioned earlier, each service carries its

84

own description encoded in OWL-S.

OSGI Framework

Chapter 3 : Overall Architecture

Figure 3.3: Components of the prototype implementation

To take advantage of the interoperability provided by OSGi, I have implemented OSGi

groundings to bind service descriptions to their implementations in OSGi. Using OSGi as a

grounding mechanism allows my system to support heterogeneoas composite services. For

example, one component of a composite service can be selected from the available UPnP

services while another can be selected from, for example, the available Jini services. The

grounding part of a service is created on the fly when the service is registered with OSGi.

Once a service is registered in the GD (using one of the Jini or UPnP drivers shown in

the figure), I extract its semantic specification (encoded in OWL-S) as well as information

about the number of inputs and the types of each input. Then, I use the OWL-S API 176l

to create a grounding using the extracted information. The "OWLS Grounder" module,

shown in Figure 3.3, creates the grounding part of the OWL-S description for a registered

service. Once the grounding is created, I append the grounding to the semantic description

of the service.

Once the service grounding is created, the whole OWL-S file, including the service

"profile", "process", and "grounding", is sent to the SE (i.e. the program acting as the

3.5: Summary

SE in my prototype). The SE then uses the previously described composition techniques,

both template-based and interface-based, to find useful composite service workflow(s). If
such workflow(s) exist, the SE will send them, encoded in OWL-S, back to the GD. The

"OWLS receiver" module in Figure 3.3, receives the OWL-S description from the SE and

subsequently calls the appropriate code modules to create Jini and/or UPnP wrappers based

on the abstract description of the received composite service.

The GD deploys all received composite services by creating wrappers for them. By

creating a wrapper and registering it within OSGi, the other devices in a pervasive environ-

ment will be notified of the existence of the new service. After that, devices can interact

with the new composite service(s) just like any other service. The invocation of a new

composite service goes through one of the Jini or UPnP drivers to the OSGi framework

and the "OWLS Executer" bundle performs the required operations (i.e. calling compo-

nent services) to return the result of calling a composite service to the caller. The "OWLS

Executer" bundle also sends service usage information to the SE to be stored in the shared

repository.

3.5 Summary

85

In this chapter I provided an overview of my architecture for service composition in a perva-

sive environment. The architecture does not involve the end-user in specifying a composite

service but, instead, offers a list of highly ranked and hence hopefully useful composite

services to the end-user to choose from. Pervasive devices are usually resource-limited and

their corresponding environments are similar in terms of available devices, usage pattern of

services, etc. Thus, my architecture involves an SE in the service composition process to

provide not only enough compute pov/er required for semantic matching but also a reposi-

tory to store composite services that can be shared among different pervasive environments.

86

The SE uses input/output matching to create new composite services that do not exist in the

repository. Input/output-based service composition can potentially generate a large number

of composite services and only a subset of them are likely to be of end-use¡ interest. Thus,

the SE uses a ranking method to prune composite services that are less likely to be useful in

a given pervasive environment. Information about the usage of a composite service in simi-

lar environments is used to adjust the computed rank of automatically generated composite

services.

Chapter 3 : Overall Architecture

Chapter 4

Designing a Dornain Ontology

The semantic matching of services' input and output types requires a common definition

of types. Such a definition is usually abstract (to make it independent from a program-

ming language and run-time platform) and specific to a domain. For example, the input

type of a "Print Service" might be "PostScript File" which should be well-defined and its

relationship to other types of a file must be identified to permit semantic comparisons. One

generally accepted approach to provide definitions about different concepts of a domain

and to present relationships among them is using an ontology. An ontology, as will be used

in the next chapter, is also related to ranking generated composite services. Different cii-

teria for ranking and corresponding weights are selected, in part, based on the structure of

the domain ontology. A detailed and precise ontology results in more accurate composition

and in better ranking of services.

An ontology [41] "is a formal, explicit specification of a shared conceptualization. Con-

ceptualization refers to an abstract model of phenomena in the world by having identified

the relevant concepts of those phenomena. "Explicit" means that the type of concepts used,

and the constraints on their use are explicitly defined. "Formal" refers to the fact that the

87

88

ontology should be machine readable. "Shared" reflects that ontology should capture con-

sensual knowledge accepted by the communities". An ontology inte¡weaves human and

computer understanding of terms and relations [35]. An example of such a relationship is

the superconcept-subconcept relationship (a.k.a. "is-4" relationship). Such relationships

are easy to understand by humans and, since they are formally defined, a computer can

capture/model the relationships that a human perceives.

There have been many ontologies developed for different purposes in different areas.

However, the generality (i.e. scope) of these ontologies as well as their expressiveness (i.e.

the level of details that they can provide) are not the same t351. To be able to assess my

service composition system, I need one or more domain ontologies suitable for home area

networks and other local interaction environments. The developed ontologies must capture

the possible types used to describe a service's inputs and outputs, and their relationships.

For example, an ontology dealing with personal entertainment services should demonstrate

that MP3, WMA, etc. are different types of audio files. To express the desired ontology I

use OWL which can be easily integrated with OWL-S for service description. The Amigo

project [37] has already defined several ontologies mostly for describing and categorizing

devtces in pervasive environments such as a home. However, my system requires a type

ontology to be able to match the input and output types of services semantically. Thus,

the available ontologies from the Amigo project cannot,be directly used in my system to

describe the different input and output types.

Chapter 4 : Designing a Domain Ontology

In the rest of this chapter I focus on two main issues related to the design of a type ontol-

ogy: representing the types existing in a domain, and considering the different relationships

(other than just "is-a" relationship) among identified types.

4.1 : Modeling a Type Ontology

4.1 Modeling a Type Ontology

My primary test environment is a home area network with a variety of devices of different

types. Each device offers one or more services. The functionality of a service is partially

described by its input and output types. Inputs and outputs must take their types from a

"domain ontology" to make semantic matching possible. As an example, consider part

of a simple type ontology describing audio types as shown in Figure a.1. (My complete

ontology is depicted in Appendix B.) In the figure, numbers following different MP3 types

represent bit rate and sampling rate used in a particular MP3 file respectively. Similar to

the class concept in object oriented programming languages, a class in a type hierarchy can

be either abstract or concrete. Abstract classes cannot have instances and should not appear

as input or output types of a service unless the service supports all the concrete subclasses

of that type as its input or output types. Furthermore, concrete classes can have instances

and instances of a superclass are not necessarily instances of its subclasses. For example,

we might have an 'Address" class describing the general concept of an address. This

class can have a subclass called 'Add¡essWithPostalCode". This subclass has a property

such as "postalCode" which its parent class does not. Thus, if we have an instance of

address without postal code, it will be considered an instance of the Address class not the

AddressWithPostalCode class.

Using a type hierarchy reflecting "is-a" relations, however, is not as simple when ap-

plied to automating service composition as it can be when used in programming language

type systems. Using a general class such as MP3 as an input or output type can cause an

incompatibility problem at run-time. Specifically, the MP3 type intuitively has properties

such as bit rate and sampling rate that distinguish different kinds of MP3 files. Some MP3

playing services (offered by devices or software) may not be able to play all such kinds

of MP3 files. Not considering such properties at matching time can therefore result in an

89

90

MP3 r28 48

Chapter 4 : Designing a Domain Ontology

apparently legal composition which will fail at run-time due to having an incompatible in-

put type. This is highly undesirable in a setting where users are typically nontechnical in

nature.

Unfortunately, there is no straightforward and unique way of representing and later

using properties at matching time. Trying to model different types of an MP3 file as shown

in Figure 4.2 violates "is-a" relationship that we have among other types. Since, in the

figure, one cannot say that MP3-128 "is-a" or "is a kind of'MP3-192.

Generally speaking, we can either use a generic type with properties or different prop-

erties can be modeled using separate subtypes. Without loss of generality, I consider the

MP3 type as an example to explain these two options. The same argument is, of course,

valid for other similar types (e.g. video files, ...).

As an example and to assess the capabilities of a personalMP3 player in playing MP3

files, I arbitrarily chose a Samsung YP-P2JCB portable MP3/Video player as a sample

device. Based on its user manual, it is capable of playing MP3 files with bit rates between

8 and 320 kbps and a sampling rate of 22 to 48 KHz. Commonly used bit rates in MP3

MP3 192 48

Figure 4.7: Part of a type ontology

I\83 l9Z 44 I\æ3 128 44

4.1 : Modeling aType Ontology

Figure 4.2: Modeling MP3 files similar to this hierarchy violates the
"is-a" relationship

encoding are 8, 76, 32, 64,96, 128, 760, 792,224,256, and 320 kbps. (The most common

one is 128 kbps.) The sampling rate can have values such as 17.025,22.05,32.0,44.05,

44.1,47.25, and 48 KHz.

Having this information, we can categorize MP3 files using one of the following two

methods: 1) every possible combination of propenies appears as a separate type (similar to

Figure 4.1), and 2) there is a single generic type with properties for bit rate and for sampling

rate.

91

4.1.7 Properties as Types

If the values of a property can be discretized, we can enumerate all of the possible values

as different types. This must only be done for important properties of a type. Important

properties are those properties whose values have an impact on the successful execution of

the generated composite service. For example, two important properties of an MP3 file (i.e.

bit rate and sampling rate) might be enumerated using commonly used values. Thus, for

our sample device, we would have J7 (11 (number of bit rates) * 7 (number of sampling

rates)) different types covering all realistic/implemented combinations.

92

Using this approach the example MP3 player must advertiselT different versions of the

PlayMP3 service, one for each of the different types. This argument also holds for other

media types supported by the example MP3 player.

The advantage of this approach is the simplicity (and potentially enhanced accuracy) of

composition. At composition time, the inputs and outputs of services can be simply com-

pared based on the pre-agreed types and there is no need to deal with separate propefies

during composition. It is also guaranteed that no composition will fail at execution time

due to incompatible types. However, possible disadvantages of this approach are:

o The number of services advertised by each device will increase as the number of

properties of a type increases. This may be tedious for device manufacturers and will

increase matching overhead due to the need to deal with so many services versions.

o Limited applicability. If we cannot discretize the values of a type, all the legal val-

ues cannot be enumerated and matching between two services producing/consuming

such types will be hard or even impossible. While clearly an issue, this problem does

not appear to be common in practice.

Chapter 4 : Designing a Domain Ontology

4.1.2 Generic Tlpes with Properties

Using properties there will be a single generic type for MP3 with different properties such

as bit rate and sampling rate. Therefore, an MP3 player will announce only one playing

service accepting MP3 type with specified properties having constrained values as its input.

Possible advantages ofthis approach are:

o The number of advertised services by a device is much lower compared to the previ-

ous approach. This simplifies the advertising of a service by a device, may be more

convenient for manufacturers to specify and will require fewer but more complex

matching operations.

4.1 : Modeling aType Ontology

e Properties with continuous values can be presented in this method. A property such

as "length" can be given an upper and lower bound and services are free to choose

any arbitrary values from the pre-defined range. Logical operators (i.e. >,):, (,
etc.) can be used to compare two properties with continuous values.

The major disadvantage of using properties is the current lack of a standard way to

describe and later use them. A service described in OV/L-S can include preconditions and

post-conditions to check/change properties. However, there is no standard way of describ-

ing pre/post-conditions. There are also other issues such as handling missing properties

and properties without values, which add to the difficulty of using this approach.

4.1.3 The Selected Modeling Strategy

Considering the complexity of handling properties at matching time and the importance of

these properties in composition, I chose to model important properties (i.e. properties such

as bit rate and sampling rate of an MP3 type) having separate types.

To remove or lessen the burden of creating many services offered by each device, a

single service using generic types (higher level classes in the type hierarchy) could be de-

scribed (by the device manufacturer for example) and a set of services whose inputs and/or

outputs are from each subclass of the defined type could then be generated automatically

based on the structure of the type ontology. For example, the manufacturer of an MP3

player which is capable of playing any type of MP3 file (based on the agreed-to type ontol-

ogy) can describe a service accepting an input of the generic type MP3 and services with

inputs taken from each subclass of the MP3 type would be generated. This approach solves

the evolution problem associated with using generic types. For example, if the MP3 type

evolves over time and new subtypes are introduced (e.g. a higher encoding rate is added as

technology improves), existing devices will still wo¡k since they have not announced the

93

94

generic MP3 type. On the other hand, device manufacturers can freely incorporate new

subtypes in the services offered by their new products.

4.1.4 [Jsing the Selected T]pe Ontology

Given the type ontology subgraph shown in Figure 4.1 with distinct subclasses for impor-

tant properties of the generic MP3 type, consider an MP3 player capable of playing MP3

files with 128 kbps bit rate as well as recording audio as MP3 files with 64 kbps bit rate

(assuming 44kHz sampling rate in both cases). This player would announce the following

services (service names are shown in bold face):

M P3-I28-44 ---+ PIayMPS-L28- 44 ---+ 71sT'Ls

none --+ RecordMPS-64-44 -+ MP3-64-44

Chapter 4 : Designing a Domain Ontology

Now, conside¡ a service, provided by software, capable of playing all types of MP3

files as well as converting them to wave files. This software might announce the following

services:

MP3-64-44 -+ PlayMPS-64-44 ---+ none

M P3-64-44 ---+ StreamMP3-64 -44 ---+ uaue

M P3-728-44 -+ PlayMPS-L28-44 --+ none

MP3-I28-44 --+ $¿¡samMPS-l28-44 --+ lilaue

M P3-192-44 ---+ PlayMPS-192-44 ---+ none

M P3-792-44 --+ StreamMPS-192-44 --+ uaue

4.2 : Ontological Siblings and Matching

If there is some other software capable of encoding wave files into MP3s (any type of

MP3), it would announce services such as:

'tuo,ue --+ EncodeMPS-64-44 --+ M P3-64-44

'u)cn)e ---+ EncodeMPS-L23-44 ---+ M P3-728-44

u)aue -+ EncodeMPS-L92-4A ---+ M P3-792-44

Having all these services would enables the creation of a composite service such as:

RecordMPS-64-44 --- StreamMP3-64-44 -+ EncodeMPS-128-44 ---+ PlayMP3 -L28-44

4"2 Ontological Siblings and Matching

There may be composable services whose input and output types are siblings of a generic

type in the type hierarchy. In such cases, this reflects a relationship that might be useful

in semantic matching. For example, MP3 and WMA are two audio file types which are

subclasses of the generic type AudioFile in Figure 4.1. According to the normal definition

of semantic matching, there is no match between a service with input type WMA and a

service with output type MP3 since they are not related by an "is-a" relationship. In this

case, however, they are clearly related and it would be logical to consider replacing a WMA

device with a similar MP3 device in some situations. To accomplish this, some intermediate

glue serv\ces are, of course, needed to convert between the types. This is complicated by

the fact that not all sibling types are related, so simply extending the "is-a" relationship used

in semantic matching is unsafe. Figure 4.3 shows part of an ontology describing different

95

96

Figure 4.3: Part of a type ontology in which siblings do not have any

relationship

Chapter 4 : Designing a Domain Ontology

file types. Although "Executable" and "Viewable" types are siblings, it does not imply any

relationship amon g them.

The penalty of using such glue services will be reflected in having longer composite

services. Having a hierarchical type ontology, however, does enable the domain experts

maintaining the ontology and using it to define the services offered by specific devices to

easily recognize related sibling types and provide appropriate glue services as needed to

support compositions that are foreseen to be useful. In my prototype, glue services can be

offered as OSGi bundles and deployed remotely on gateway devices.

Chapter 5

lmplementation Details

In this chapter I explain the details of describing a service in OWL-S, integrating (as an

example) a UPnP device and service description, and most importantly, the composition

process taking place at the SE side. I also provide a basic complexity analysis of the

process of finding a sequence of services at the SE side.

5.1 ServiceDescription

OWL-S is a language for the semantic description of services. It uses OWL, an ontology

language, to describe services input and output types. OWL-S is also capable of describing

composite services as workflows. Services, provided by different devices, are described in

OWL-S using three different aspects: service profile, service process, and service ground-

ing. A service profile describes a service in terms of its inputs, outputs, pre-conditions,

and effects. The inputs and outputs of a service have types which come from an ontology

such as described in Appendix B. These types are used for subsequent semantic matching.

A service process explains how a service works. The service process for a composite ser-

vice shows how different components interact with each other. Finally, a service grounding

9'l

98

provides required information about how to access the service. Service grounding is im-

plementation dependent and in my prototype system, I have implemented an OSGi-based

service grounding for OWL-S descriptions.

Although it is not practical to create a unique standard ontology to be used across all

possible pervasive applications, there are a few existing ontologies that can be extended to

accommodate different applications' requirements. The Simple Ontology for Ubiquitous

and Pervasive Application (SOUPA) [28], for example, is an ontology developed to support

knowledge sharing and interoperability in ubiquitous and pervasive systems. This ontology

can help system developers to quickly build ontology-driven applications without spending

too much time on building their own ontologies from scratch.

SOUPA is encoded in OWL and comprises two distinct but related ontologies: the

SOUPA Core and the SOUPA Extension. The SOUPA Core includes common vocabular-

ies (e.g. time, event, person, etc.) that are universal among different pervasive applications.

Extended from the SOUPA Core, the SOUPA Extension defines additional vocabularies

(e.g. meeting and scheduling, location, etc.) for specific applications. The SOUPA Exten-

sion also demonstrates how a new ontology can be defined by extending the SOUPA Core

ontology.

To implement my prototype, I have created a simple yet "realistic" domain ontology (as

described in Chapter 4 and shown pictorially in Appendix B). In a real implementation of

a service composition system, more general ontologies (e.g. SOUPA) could also be used.

Different ontologies from different sources, however, are not necessarily cornpatible. The

process of merging different ontologies is, itself, an interesting research topic [53] but one

that is outside ofthe scope ofthis thesis.

For the rest of this chapter I assume that a multitude of services may exist in a given

pervasive environment of interest. I further assume that their descriptions are available in

OWL-S. In a typical, real-world pervasive environmeilt a large number of service-offering

Chapter 5 : Implementation Details

5.1 : Service Description

devices will be available ranging from the powerful and complex (e.g. a home PC) to

the simple and small (e.g. sensors). The services offered are, naturally, device specific

and must be composed correctly to provide useful functions. Let us consider two simple

services, Getstatus and SetPower, that might be offered by two devices, namely a

computer-controlled (binary) switch and a TV. The TV might advenise its service(s) using

the UPnP protocol and the software switch might use Jini. Using these two services we

can see how the service composition process creates a sequence combining the services

and how a new composite service is deployed. While this example and others are focused

on home networks, my method for composition is general and can be equally well used in

other local pervasive environments such as smart meeting rooms, airport lounges, etc.

To start the composition process, the semantic description of a service encoded in OWL-

S is needed. Figure 5.1 shows a description of the Getstatus service which reads the

status of a binary switch. (The grounding part is implementation dependent and is not

shown in detail in the figure. I will describe it later in this chapter). Recall that OV/L-

S describes a service based on three components: profile, process, and grounding. The

service:presents tag creates the link between a service and its profile. The de-

scription of a profile starts with the prof ile: Prof ile tag in the OWL-S description.

The service:describedBy tag specifies the process associated with this service. A

process can be atomic, simple, or composite. A simple process is not directly callable

and serves only as an abstraction for an atomic or composite service. In Figure 5.1 the

description of an atomic process starts with the process:AtomicProcess tag. The

service: supports tag links the service with its grounding. The OSGi grounding of

a service is described using the grounding : OSGiGrounding tag. In addition to these

three components of a service, the input(s) and output(s) of a service can be described in

the OWL-S description as well. In Figure 5.1 the only output of the Getstatus service

is described using the proces s : Output tag.

99

100

The binary switch can be in the "On" or "Off" state. As can be seen from the description

in Figure 5.1, the output of the Getstatus service is of type Status which is defined

as an OWL class in our domain ontology. Similarly, there will be a description for the

SetPower service which accepts one input and, based on the input value, turns the TV on

and off. Having the description of both Getstatus and SetPower services in OWL-S,

one can see that these two services are input/output compatible and composing them results

in a computer-based on/off control for the TV.

I assume that each device carries a link to its service's description. If a device is not

capable of carrying this link, the description can be downloaded by looking up the device's

model number on the Internet. A UPnP device, normally, has a set of built-in attributes (e.g.

a descriptive name, manufactu¡er's name, etc.) that are announced at discovery time. These

attributes provide information about the device. This provides a mechanism by which UPnP

devices can provide a link to their services' descriptions. I assume that UPnP devices do

carry links to their service descriptions, encoded in OWL-S, in one of these attributes. Al-

ternatively, if space on the device is limited, the actual description can be kept on the device

manufacturer's Web site and a URL to the Web site provided by the relevant attribute. If a

UPnP device has more than a single service, the links to different services can be provided

in a single string separated by a pre-agreed on delimiter.

Figure 5.2 shows a component view of the implemented bundles within my OSGi proto-

type. The lines in this figure show dependencies between components and the arrows show

the direction of each dependency. Once a UPnP device, for example, becomes available

in a pervasive environment, it will be detected and subsequently registered within OSGi

using the UPnP driver bundle. Then, a bundle, OWLS Grounderl, creates the grounding

part for each service provided by the UPnP device. (Figure 5.3 shows a sequence dia-

gram for this operation.) The grounding, created in this way, is specific to OSGi and has

dingtheowLSGrounde¡werepreSentedinFigure3.3

Chapter 5 : Implementation Details

5.1 : Service Description

<service : Service rdf : ID:"GetStatusService">
<service:presents rdf : resource:"#GetStatusProfj-1e",/>
<service :describedBy rdf :resource:"#GetstatusProcess" />
(service:supports rdf :resource:"#GetStatusGrounding" />

<,/service: Service)

<profile : Profil-e rdf : TD:"GetStatusProfife">
<service : presentedBy rdf : resource: " #GetstatusService " />
<prof i J-e : serviceName xml- : 1 ang: " sn " >Get St atus Se rvice
<,/prof i le : serv j- ceName)
<profi1e : hasOutput rdf : resource:"#RetTargetValue",/>

</profile : Profife>

<process :AtomicProcess rdf : TD:"GetStatusProcess">
<process : hasOutput rdf : resource:" #RetTargetVaJ-ue ",/>
<service : describes rdf : resource:"#GetStatusService"/>

<,/proces s : AtomicProces s>

<proceSS:outputrdf:ID:''RetTargetVa].ue''>
<process : parameterType rdf : datatype:

"http : / /www .w3.org/2001/XMLSchema#anyURl ">
http: / /www. somedomain. org,/Domainont. owl#status

< /proces s : parameterType>
</process : Output>

<grounding : OSGiGrounding rdf : fD:"GetStatusGroundingr'>
<servj-ce : supportedBy rdf : resource:"#GetStatusService'r/)

<,/qrounding : OSGiGroundlng>

101

Figure 5.1: The description of the Getstatus service encoded in
OWL-S

information about how to access the registered service within OSGi. Figure 5.4 shows

the OSGi-specific grounding for the Get Status seruice. The grounding, represented by

O. G: OsGiAtomicProcesscrounding, specifies the type of input(s) and output(s) of

102

E=.,,-*, l,+H_-
I

I

I

I

J

Chapter 5 : Implementation Details

Figure 5.2: Component view of implemented bundles within the OSGi
framework

UPnP Wrãpper Crealor

-tl

$ riniw,unn",c,*"'F ¡---tl
+"*."..".''*L-;Ë_J

-]_
¡ owLs Et¿cùr€r Þ

-Ë_J

the service based on Java's primitive data types. The O . G : osgiClas s defines the class

name by which the service is accessible within the OSGi framework. The service itself

is described using the O.G:osgiService tag. The output of this service is described

using the O. G: osgiserviceOutput tag. (This is similar to the Java grounding which

is available in the OWL-S API [76].) The grounding is attached to the service description,

provided with the device, and the whole description (service profile, process and ground-

ing) is sent to the SE for matching and composition operations. (The "Request Receiver"

component shown in Figure 5.3 represents the SE side receiving the service description

from some pervasive environment.)

I

- -JJ
E= "'r.*, I

ç! osciÁer
Ir#

I

I

I

I

5.2 Semantic Matching

As described earlier, service matching is done at the SE side for a number of reasons

including:

5.2 : Semantic Matching

servicelistener(servìce) r
_t ¡

UeVlCe createGrounding(serv¡ce)

-l

| * | la!vlsG-r"d"'li

Pervasive Environment

Figure 5.3: Sequence diagram for creating an OSGi grounding for an

advertised servìce

<O . G : OSGj-At omi cP roce s sGrounding rdf : TD: " Get st atu sP roce s sGrounding " >

<grounding:owlsProcess rdf :resource:"#GetstatusProcess" />
<O. G : osgiClass>org .osgi . service .upnp . UPnPDevi ce< / O. G: osgiCJ-as s>
<O. G: osgiService>GetStatus</O . G: osgiService>
<O. G : osgiServiceOutput>

<O. G : osgiVariabl-e rdf : TD:"Out'r)
<O. G: javaType>java. lang. Boolean</O. G: javaType>
<O.G: owlsParameter rdf : resource:"#RetTargetValue" />

</o.ç: osgiVariabl-e>
< / O . e : osgiServiceOutput>

< / O . e : OSGiAt.omi cP roce s sGrounding>

I T-l
I

I

SE

SE_Requesl Receiver

103

Figure 5.4: OSGi-specific grounding for the Getstatus service

o Performing fully automated service composition without user involvement,

o Removing the overhead of service matching from resource limited pervasive devices,

ø Enabling the (re)use of information between different environments using a shared

104

(file)
Domaln Ontology

Chapter 5 : Implementation Details

Figure 5.5: Component view of the SE side code used to match a

composite service and create a workflow corresponding to it
for a given pervasive environment

(f¡leD

Workflow Reposltory

repository of composite services, and

o Identifying "similar" pervasive environments based on their service usage informa-

tion.

Figure 5.5 shows the software components that have been implemented as part of the SE

side code. This figure shows which components interact with each other and the direction

of data flow.

Se¡vice composition done by the SE could, in general, be done using either or both

of the repository-based and VO-based matching schemes. In this section I explain the im-

plementation details of each scheme and the challenges that I faced. Before going into

the details of each scheme, I show the overall sequence of executed operations used to

5.3 : Repository-based Service Matching

HomeGaleway

The result ol call¡ng lhe search
hethod may have no workflows.
¡n this case l/O matching is required

' search(seruiæ)

|-{

|
'o,*ool"*o*o*_ f- - - -l -

rffiï*.i

Figure 5.6: Sequence diagram for creating a composite service on the
SE side

tt
tt

findMoreworkflows,,
I

create a composite service in Figure 5.6. The f indMoreWorkFlows O method in Fig-

ure 5.6 checks the workflows returned from the repository search to find further composi-

tionswheneverpossible. Inthisfigure,the findSequence (service) methodiscalled

if the repository search returns no workflows, otherwise no I/O-based matching is done and

the corresponding overhead is avoided. Two methods, f indPref ix and f indPostf ix,
are called to find all possible composite services using VO matching. These methods are

described in Section 5.4.1.

105

I add(workflow) |I r -l

-ttl

5.3 Repository-basedServiceMatching

Workflows describing composite services are represented using OWL-S. Since it is useful

to be able to share workflows between different pervasive environments, the workflows

cannot simply be stored on participating computing devices in the pervasive environments.

Instead, the workflows must be stored by a third party at a generally accessible location.

106

Such workflows are stored in a repository maintained by the service enabler.

Abstract workflows stored in the repository specify the relations between different ab-

sÍact component services in a composite service. Having abstracVgeneric descriptions of

services (described by OWL-S profiles) allows us to match newly discovered services with

services in existing workflows. Once all the service descriptions in an abstract workflow

have been matched with the description of service instances for a given pervasive environ-

ment, an instance of the abstract workflow (i.e. a concrete workflow) can be created for

that environment.

Consider the example described in Chapter 1, where a new game console is added to

a home network. The new game console will advertise its services such as "play video",

"display picture", etc. which will be sent to the SE where they can be matched against the

abstract descriptions of component services in repository workflows. If I assume an abstract

workflow such as "capfure image+display picture" is available in the shared repository, its

component services might be matched with the description of a service coming from a dig-

ital camera (i.e. "capture image" producing an output of type JPG from the type ontology)

and the new game console (i.e. "display picture" taking an input of type JPG and producing

an output of type SDVSignal from the type ontology). After matching descriptions of these

services, a concrete workflow will be ready to be deployed in the home.

Different devices will become available at different times and most likely will be pro-

vided by different vendors. Thus, no assumption can be made about the names of services

and used to find matching services. Semantic descriptions of services (based on the com-

mon ontology) are required. This allows matching using only the input and output types of

two services (independent of their names) to find matches.

All services as well as composite service workflows are described in OWL-S using the

common domain ontology. Although OWL-S can describe a service in terms of its inputs,

Chapter 5 : Implementation Details

outputs, pre-conditions, and post-conditions, I only use the description of input(s) and out-

put(s) for matching purposes. I chose to do this because pre-conditions and post-conditions

do not have a widely accepted standard notation for representation. More importantly, using

pre/post-conditions increases the complexity of composition which means longer execution

times for composition.

My matching algorithm must match a newly announced service, S, within a pervasive

environment with a// workflows in which ,5 can participate. To find such workflows, I

compare the inputs and outputs of the newly received service from the GD with the inputs

and outputs of all services stored in the repository. If a service in the repository exactly

matches with ,S (input and output types of the two services exactly match), ,S is marked in

all workflows involving it as being resolved for the pervasive environment in question. If
no service in the repository exactly matches the received service, I then try to find a similar

service.

To find a similar service, I use the available semantic information associated with a

service's inputs and outputs to do partial matching [63]. Specifically, I try to find a service,

,S¿, whose inputs are either subclasses or the same as the inputs of S and whose outputs

are either super-classes or the same as the outputs of ,S. Services in the repository having

subclass/superclass relations with the received service will be marked as resolved in the

corresponding workflows for the pervasive environment in question. During such marking

of services in the workflows, if all the services used in any given workflow are marked as

resolved, that workflow is ready to be specialized to the available devices and deployed

in the pervasive environment in question. Once a workflow is deployed, the workflow

description in the repository is returned to its original state by removing all markings.

Pseudocode for this operation is provided in the next section.

Once a matched workflow is returned to its original state, a deployed flag, associated

with the workflow, is set indicating that the workflow has been deployed at least once. Some

101

108

time later, if a new service, from the same environment, becomes available that matches

any of the services in the already deployed workflow, that workflow can be immediately re-

deployed using the new service instance without having to match instances for all the other

services in the workflow. This speeds the overall matching process and also decreases

its overhead. The "resolved" and "deployed" tags are associated with the location of a

service so that similar services from different pervasive environments do not interfere. For

example, if a workflow has two services Sr and Sz and the SE received ,91 from GD A and

,S2 from GD B, the SE will send the workflow to neither of the GDs.

My method of marking assumes serial processing in which only one process/thread can

receive a new service and mark it in workflows at a time. If multiple processes marking

concurrently (to handle very frequent service arrivals corresponding, for example, to the

presence of many mobile devices) is required this method needs to be modified slightly. For

example, to make sure that component services of a composite service are safely marked

concurrently, a locking mechanism, used by the marking process at the SE side, can be

used to guarantee the exclusive access to a service for marking. The inherent problems

associated with the locking mechanism (e.g. deadlock) must be handled by the marking

process accordingly.

In my prototype, the repository search is done first and if workflow(s) are available to

be sent to a pervasive environment, no inpuVoutput matching is performed to find other

possible compositions. However, this approach may miss some compositions that might

be possible by composing a workflow from the repository with a newly received service

whose description is not in the repository. Let us assume a composite service workflow

comprised of "Scan to JPG" (with the output type JPG) and "JPG to PostScript" (with the

input type JPG and the output type PostScript) services. If the description of a new "Print

PostScript" (with the input type PostScript) service is received by the SE, it will not match

the mentioned workflow. However, it is possible to extend the workflow by attaching the

Chapter 5 : Implementation Details

newly received seÍvice at the end of it (by sending the output of "JPG to PostScript" to

"Print PostScript").

To address this issue, I could use each of the workflows that is going to be deployed

in a given pervasive environment to build ne\¡/ composite services using the VO matching

techniques described in Section 5.4. Building new services by involving already existing

workflows, can be done in a "7azy" fashion, in the background, to maintain acceptable

overall system performance.

5.3.1 Implementing Repository-based Matching in the Prototype

The repository was implemented using a hash table whose key is a combination of the input

and output URIs of a service. The order of inputs and outputs in two service descriptions,

one teceived from a pervasive environment and the other stored in the repository, can be

different. To solve this ordering problem among inputs and outputs, I sort the input and out-

put URIs separately (i.e. inputs are sorted together and outputs together) before combining

and using them as a hash key.

Let us assume there is a service ,S" in the repository with two inputs Audio, Vídeo

and an output AV. Also assume there is a service ,9o, received from a pervasive environment,

with inputs the same as ,S"'s but in a different order. Figure 5.7 shows how applying the

hash function on the combination of inputs and the output (without sorting them first) can

generate two different hash values.

The entry corresponding to a hash key is a link to a list of workflows containing the

service used to generate the hash key. Each workflow, in turn, is implemented as another

hash table. The key fo¡ the workflow hash table is created by combining the input and

output URIs of each component service appearing in the workflow along with the "input"

and "output" prefix respectively (See Figure 5.8 on page 112). The entry corresponding to

109

110

Figure 5.7: Applying a hash function on two services with the same

input types but in a different orders

AV hashKey = hash(inputAudio+inputvideo+outputAv) = H

Chapter 5 : Implementation Details

a hash key has multiple fields including a flag indicating whether or not an instance of the

service used to generate the hash key has been discovered in a pervasive environment.

The pseudocode for adding a workflow to the repository is shown in Algorithm 1. When

a new workflow is added to the repository, the hash value for the combination of the input

and output URIs of each component service in the workflow is calculated (line 6). The hash

value is searched for in the repository and if the service already exists in the repository, the

link to the new workflow is added to the corresponding entry Qine 9). Otherwise, a new

entry in the repository is created and the hash key as well as the link for the new workflow

are added to the newly created hash entry (line 12). This process is repeated for all services

in a workflow.

The details of searching for a service in the repository and marking the corresponding

workflows are shown in Algorithm 2. When a service, ,S, arrives from a given pervasive

environment, a hash value for the combination of its input and output URIs is calculated

and searched for in the repository (lines 4 and 5). If such a service exists in the repository

(either by having an exact match or partial match), we can mark it in the corresponding

workflow(s) as resolved (line 7). If there is a fully resolved workflow, its deployed flag is

AV hashKey = ¡¿5¡1;¡pstv¡deo+lnputAudìo+outputAv) = H'

5.3 : Repository-based Service Matching

Algorithm 1 adding IM F to the repository
1: seru'ices = get component services of workfl ow W F
2: for each service S in seruices do
3: i,nputs = get inputs of ,S

4: outputs = get outputs of .9

5: sort'inputs and outputs
6: hashKey =hash(inputs+outputs) /* "+" means concatenation */
t: retVal = search(hashKey)
8: if retV al != null then
9: addW F to already existing service's entry
10: else

I l: /* seruice is not in the repository */
l2: insert(hashKey,W F) ínto repository
13: end if
14: end for

set and sent to the GD for deployment. The workflow is returned to its original state by

unmarking its services (lines 8 to 11).

Example: Assume we have three services as follows:

l. cetttlap: accepts two inputs of type Address and returns a map between the two

addresses in JPG format

111

2. topS: accepts an input of type JPG and returns one of type Postscript

3. print: accepts an input of type Postscript and returns no output (but prints the result

on a printer)

Having these three services, a workflow, called PrintMapWF, corresponding to a compos-

ite service: GetMap-+ToPS--+Print can be created. Before adding this workflow to the

repository, the new workflow must be created as a hash table as shown in Figure 5.8. Fig-

ure 5.9 shows the state of the repository after adding only the created workflow2. Recall

that the services in the stored workflow are abstract place holders for the service instances.

t for services from other workflows.

112

Algorithm 2 search ,S in the repository
1: i,nputs = get inputs of S
2: outputs = get outputs of ,9
3: sort inputs and outputs
+: hashkey = hash(znputs+outputs)
5: W Fs = workflows corresponding to a given hashkey
6: for eachW F inWFs do
7: mark S in W F as resolved
8: ifWF is fully resolved then
9: send l4l-F to the GD
l0: set the deployed flag
1l: unmark all services inW F
1z'. else

13: if deployed flag is set then
14 send WF' to the GD
15: else

16: no workflow can be sent

17 end if
18: end if
l9: end for

Chapter 5 : Implementation Details

nputAddress+inputAddress+outputJPG
nputJPG+outputPostscript
nputPostscript

Service's VO (key)

Figure 5.8: The PrintMapWF
workflow's partial
structure containing
three services

5.3.2 The Complexity of Repository-based Matching

Resolved

To discuss the complexity of repository-based matching, I use the notation shown in Ta-

ble 5.1 . To find an exact match between a received service and the services in the repos-

itory, I need one search (O(t¡¡ in the repository hash table to find workflows containing

No

No
No

nputAddress+inputAddress+outputJPG
npu tJPG+outputPostscript

inputPostscript

Service's VO (key)

Figure 5.9: Additions to the

repository after
adding PrintMapWF
workflow

PrintMapWF
WFs

PrintMapWF
PrintMapWF

5.3 : Repository-based Service Matching

Table 5.1: Notation used in calculating the complexity of
repository-based matchin g

Number of services in the repository
Number of workflows in the repository

the received service. (This search may require multiple comparisons if there are hash col-

lisions.) Once a service in the repository is matched with the received service, all the

workflows must be examined to mark this service as resolved. The average number of

workflows that a service will be involved in is f,. (This average is just an order of magni-

tude estimate.) Within a workflow, only one search is needed to find the service in question.

Thus, the total number of comparisons required to mark a service in workflows is f,. If
we assume a static repository without dynamic additions of new workflows, this value is a

constant.

If there is no exact match in the repository, I use partial matching which searches for all

possible combinations of subclasses of inputs (we have (n",a * 1)'r combinations includ-

ing inputs and their subclasses) and super-classes of outputs (we assume only one super-

class for each type so we have 2'o combinations including the output and its superclass). In

this case, the total number of combinations that must be checked will be (n"uu I I)"1 x2o .

For each combination, a search within the repository is required which can be, in turn, ei-

ther exact or partial. Since any realistic ontology is not very deep (e.g. see Appendix B),

this process will finish quickly.

Average length of a workflow
Average number of inputs

Concepts

Average number of outputs
Average number of subclasses

Number of super-classes

113

Notation
n

m
I

rL1

n,6

hsub

I

114

It will be shown in the next chapter that searching for an exact match in the reposi-

tory scales well when the number of stored services increases. However, enabling partial

matching in the repository search will increase the matching time as the above analysis

suggests.

5.4 Input/OutputMatching

A repository may not record all the possible compositions that can be made with the an-

nounced services (e.g. from a home). For example, when new devices offering previously

unseen services arrive on the market, there is no way to have pre-existing workflows in-

volving those services in the repository. As a complementary technique, we therefore also

use semantic-based, Input/Output (I/O) matching to find possible compositions not defined

in the repository. After ranking sequences found using this technique, a highly ranked sub-

set of them are added, as workflows, to the repository to speed up similar matches in the

future.

The game console example described earlier offers many services that can be composed

with other available services in the home. It is not possible to foresee all these possibilities

and put them in the shared repository. For example, a "store audio video" service offered by

the game console might take video and audio signals (SDVSignal and AudioSignal types

in the designed type ontology) as its inputs and stores them as an MPG file (MPG type

in the type ontology). On the other hand, the standard definition TV cable box might of-

fer the "decode signal" service which takes encoded signal (SDEncSignal type in the type

ontology) as its input and produces decoded video and audio signals (SDVSignal and Au-

dioSignal types in the type ontology). These two services are inpuVoutput compatible and

could be used to generate a composite service "decode signal+store audio video". This

service could then be used, for example, to record favorite TV shows. Similar composite

Chapter 5 : Implementation Details

5.4 : Input/Output Matching

services could be created to store "security" videos coming from a home monitoring cam-

era. Centrally, for the first person installing such a game console in his home there will be

no pre-existing workflows in the repository. Thus, I/O matching is required.

Another composite service "play video+upconvert video+display video" could be gen-

erated by involving an "upconverter video" service, offered by the game console, which

takes a video signal (SDVSignal type) as its input and generates an upconverted video sig-

nal (EnhancedVSignal type) as its output. The generated composite service would play

normal video files and upconverts them to a better quality to display on a high definition

TV in the home. This composition will not exist until a game console and appropriate

HD TV ate co-located in the same pervasive environment. Thus, again, I/O matching is

required.

I/O-based composition, in its simplest form, consists of finding a sequence of services

in which the output of a service is type compatible with, and therefore can be sent to, the

input of the next service. This simple form of I/O matching is conceptually straightforward

but there are some issues that must be addressed:

ø The number of possible compositions increases with the number of available services

in an environment (i.e. with increasing service density). Creating too many services

of low interest to the user is clearly undesirable. Ranking the generated composite

services in some way will assign them a quantitative value that can be used to discard

low-ranked (i.e. non-interesting) composite services and hence reduce number of

generated services.

115

Doing semantic matching to find input/output compatible services is costly. Calling

an inference engine for each matching to find subclass/superclass relationships be-

tween inputs and outputs will further increase the matching time. Service enablers

116

can provide much more computing power to do input/output matching than embed-

ded devices.

o Sometimes the output of a service cannot be sent directly to the input of another

one (e.g. when two types are siblings in the type ontology). In this case we must

use glue services (similar to short-lived services in Ninja [a0]) to solve this problem.

Short-lived services can be downloaded to and exist on the GD without being bound

to any particular device in the environment. Shortlived services can also be used

to improve the expressiveness of a workflow. For example, a service can copy the

output of one service to multiple inputs enabling concurrent invocation of component

services in a workflow.

o A user may be required to provide input for some services and we wish to be able

to use such services in compositions. To formalize this process, we define a set of

em user-input services with no inputs and one output. Using one of these services to

provide user input for a service implies getting some data from a user (e.g. prompting

for a selected TV program to record). Similarly, we define user-output services with

one input and no output that are used in cases where the result of a service are to be

presented to the end user in some way (e.g. printing an image).

o A service can also have multiple inputs and/or outputs. This implies that our work-

flows are not necessarily linear. I discuss such multi-input services in Section 5.4.3.

My approach to I/O matching addresses all these issues.

5.4.1 VO Matching Using Lookup Tables

Chapter 5 : Implementation Details

To increase the speed of UO matching at the SE side, my system caches information about

different types, prior to the actual matching, in lookup tables. To permit this, I assume

5.4 : Input/Output Matching

that the ontology remains static during active composition 3. The ontology is read in ad-

vance and the information (i.e. URI, relationships, etc.) about different types are extracted

from and stored into lookup tables. In my prototype I use two lookup tables; one for the

input parameters of services (input cache) and the other for the output parameters (output

caclte). We will eventually see how the information about subclass/superclass relationships

between two types are kept in the lookup tables but for simplicity, we first concentrate on

exact matching. Since \¡/e assume a unique URI for each type that is read from the ontology,

we can implement the lookup table as a hash table whose key is the URI of a type.

When a service, S¿, is discovered and sent to the SE, because I assume a common

ontology between the pervasive environments and the SEs, its input and output types can

be located in the input and output cache respectively and the service,
^9¿

is inserted in

the location corresponding to the hash key created for its input and output types. (i.e. a

"pointer" to the service
^9¿

is stored in two locations; one pointer from the input cache

and the other is from the output cache.) The entries in the input and output cache are

header nodes to linked lists connecting all the services that have the same input or output,

respectively, depending on which cache we are referring to. This organization allows us

to quickly identify all services that may participate in a possible composition based on the

types they support.

The implemented input and output caches also maintain information about the sub-

classes and super-classes of each input and output type. This information is generated

using an inference engine, Pellet [76] in our case, operating on the domain ontology shared

between services. Having input and output caches in place (i.e. preloaded with ontological

information), requests for type matching can be answered without invocation of the infer-

ence engine at run-time which is the major source of overhead in VO-based matching. In

117

3changes to the ontology require temporary suspension of composition and rebuilding of the lookup
tables. This rebuilding can be done in an incremental fashion to minimize suspension time but discussing
how this would be done is outside the scope of this thesis.

118

practice, these tables could be populated in aTazy fashion by making inference engine calls

only when necessary.

When a service
^9¿

is received by the SE which is not already in the repository, it is added

to the input and output caches. One can then search for services (composite or component)

that are composed of acyclic sequences involving the new service. To avoid producing an

unduly large number of compositions, I both ensure that the composite service is cycle free

and limit the length of compositions. To be able to detect a cycle in result of a composition,

I check the composite service to make sure that each service appears only once. I use

a hash-based structure to keep track of which services have appeared in what composite

services. This structure also minimizes the overhead of cycle checking. Assuming the

arrival of service
^9¿,

such composite services can be created using the following steps:

1. Prefix matching: Algorithm 3 shows how prefix matching finds I/O compatible se-

quences. It first looks for the list of services whose output matches, exactly or par-

tially, the input of S, (line 5). For each service, ^9r, in the list, .9¡S¿ will be a compat-

ible sequence. The sequence
^9r^9¿

is then added to the cache in the same way that S¿

was (lines 6 to 9).

2. Posffix matching: Postfix matching is presented in Algorithm 4. lt finds the list of

services whose input matches, again exactly or partially, the output of
^9¿

(line 5). For

each service, S¡, in the list, S¿,9¡ will be a compatible sequence. The sequence S¿S¡

is added to the cache as well (lines 6 to 9).

3. If sequences like,9r,S¿ and S¿S¡ are found, a new sequences can be created by con-

catenating these sub-sequences. (Cycle checking is, of course, performed to make

sure that the result of any merged services is cycle free.)

Assume there are three services: ,91 with input type úi and output type ú3, ,S2 with input

fype \ and output type t5 and ,S3 with input type 13 and output Type t2. Figure 5.10 shows

Chapter 5 : Implementation Details

5.4 : Input/Output Matching

Algorithm 3 prefix VO matching of services with one input/output
1: znput¿ = get input of ,S¿

2: output¿ = get output of ,9¿

3: hash'in¿ = hash(i,nput¿)
q: hashout¿ = hash(oztput¿)
5: seru'ices = search(outputCache,h ashi,n¿)
6: for each S¡ in seru'ices do
7: input¡ = get input of ,5¡

8: hashin¡ =hash(i,nputt)
9: add(hashinr,Sr,S¿) to inputCache
l0: add(hashout¿,5¡S¿)tooutputCache
I l: end for

Algorithm 4 postfix VO matching of services with one input/output
1: input¿ = get input ofS¿
2: output¡ = get output offi
3: hashin¿ = hash(input¿)
4: hashout¿ = hash(output¿)
5: seru'ices = search(inputCache,ä ashout¿)
6: for each ,S¡ in seruices do
l: outputi = get output of ^9¡

8: hashout¡ =hash(outputù
9: add(hashin¿,9¿Si)toinputCache
10: add(hashout¡,5¿S¡)to outputCache
I l: end for

119

the input and output caches corresponding to the inputs and outputs ofthese three services:

St, Sz, and ,5s. Now, assume the discovery of a new service ,9¿ whose input type is f2

and output type is f1. Following the aforementioned steps to find compatible services, we

would discover the sequences: ,9s,S¿, S¿,Sr, and ,S¿,S2. These discovered sequences can be

further composed to discover,gsfi,Sr and 5¡,S¿,S2. Figure 5.i 1 shows the state of the lookup

tables after adding the discovered sequences. (Recall that we place a limit on the length

of sequences to control the composition length and subsequently the running time of I/O-

based composition.) All the cache structures have been implemented using hash classes

that handle the collisions that may occur when an entry is added to the cache.

120 Chapter 5 : Implementation Details

þt{Jã¿r* i

Input and output caches corresponding to input and output
parameter types

EÞ¡,
.F.-[r,q lFl¡]t,Ér, I

Figure 5.11: Input and output caches after inserting fi and finding
sequences

5.4.2 Complexity of V0-based Matching

Output Cache I__J

In this section, I determine the average number of possible compositions for a given number

of services. Based on these results, I can estimate the overhead of finding all composite

sl i s's' I s3s si

s2 | S's' I s3s s'

5.4 : Input/Output Matching

sequences using I/O matching upon the discovery of a new service in a given pervasive

environment.

Assume we have N atomic services in a pervasive environment each with one input

and one output whose types are taken uniformly at random from an ontology having T daÍ,a

types. Assume further that the assignment of types to inputs and outputs is independent.

Also assume that the length of composition is limited to 5. (A value chosen to reflect an

expected limit on the length of practically useful compositions.) For simplicity, I assume

an ontology without any sub-class/super-class relations between types. (That is, there is

no partial matching and hence this gives only a lower bound on.the average number of

compositions.) Using this information, I can find the average a number of sequences of

length 2,3,4, and 5 (denoted as ¡y'2,
^¡3,

etc. in the following equations):

or

12t

To find the number of compositions of length 2, each service is compared with all the

other /y' - 1 services, thus there are ,A/(1/ - 1) comparisons. Since we have ? different data

types in the ontology and assuming that the services' inputs and outputs are taken uniformly

from this ontology, on average lfT services will be VO compatible and we should divide

N(¡/- 1) by
".

If we select T : l, in the worst case, all the services will be I/O compatible

and we will have ¡/(¡/ - 1) compositions.

N2

^/3

N(N-1)
T

^r
(N-3)N3t\4 r

^r
(¡f -4)N4I v5 T

j-1

N, :7t-i lltlr - rl
À:0

aBy average, I mean an average over samples where each sample is one realization of assignment of inputs
and outputs to all N atomic services.

(s.1)

r22

Table 5.2: Comparing the average number of compositions of Teng|h 2,

3,4, and 5 obtained by an experiment to that obtained using
formula 5.1

Type of measurement

Experiment

Similarly, we can calculate compositions of length 3,4, and 5 in a recursive manner.

These equations are just based on ly' and 7 so by knowing the number of discovered ser-

vices and the number of types in the ontology one can calculate the average number of

sequences of length 2,3, 4, and 5.

To assess the validity of formula 5.1, I created 100 different groups of services each

having 100 different services with one input and one output. All the types for inputs and

outputs were selected from a synthetic ontology with72 different types. I ran my matching

algorithm on different groups of services and collected statistics about the number of gen-

erated compositions of length 2, 3, 4, and 5. Table 5 .2 compares the results of running the

experiment to those obtained from by formula 5. 1 . The result of the experiment verifies the

result of formula 5.1.

Another question that is worthy of answering is how many sequences might be added

upon the discovery of a new service. If we assume /y' servìces in an environment, and then

a new service S¿, is added, the number of newly created sequences of length 2 (i.e. A¡/2),

using the formula in 5.1, will be:

Formula 5.1

Chapter 5 : Implementation Details

Avg. number of compositions

912.91

95Vo confrdence interval
(878.176,969.03)

A¡/, : N(N + 1)

T
_ ¡\r(¡./ - 1)

T
2N:-
T

5.4 : Input/Output Matching

And similarly for sequences of length 3,4, and 5:

Using these equations we can find the total number of services after adding ,S¿:

5

l/¿:lv'+1+IOt,
;-,

a¡/3 :

a¡/4

3(N)(¡/ - 1)

T2
4¡/(¡i-1)(¡i-2)

713

5N(N-1)(¡i-2)(¡i-3)a¡is :

Recall that we have ly' -l 1 services after adding ,S¿ and we have compositions of length

2, 3, 4, and 5. Figure 5. 1 2 shows a graph of the total number of compositions for different

numbers of services and available types in the ontology. The figure shows that the number

of available compositions grows exponentially with the number of available services. Also

we can see from this figure that the size of the ontology (i.e. the number of different types

in the ontology) has a great impact on the average number of compositions. This makes

sense since by increasing the number of specific data types in the ontology the likelihood of

having two services with the same (or similar) data types is lower which in turn decreases

the number of compositions.

If we consider, as an example, a typical home with a variety of home appliances, en-

tertainment and computing devices, the number of services, N, might be on the order of a

hundred. Each device would normally provide more than one functionality or service. For

123

r,: t*,("J t)r'-^
l--1 \ /

124

1 e+06

1 00000

100Types +
150 Types -""¿"--
200Types..'¡.'.
250 Types -".c1"',
300 Types

Ø5 toooo

=ø
o-
E

I looo
o
0)
-o
Ef 100z

Chapter 5 : Implementation Details

:-:/l i--":
l-{'i"..

100

Figure 5.12: The number of possible compositions for different
numbers of available services and types

example a cell phone can also play audio files, keep schedules, take pictures, and in some

cases run Java programs. The number of types, 7, depends on the ontology used in an

environment. The real domain ontology developed in this thesis (discussed in Chapter 4)

has a very detailed distinction between data types so the number of types, in a complete

ontology, would be on the order of a few hundred. This estimate is based on my experience

with implemented parts of the ontology and realizing that other real world environments

will have different characteristics (in terms of types used in services' inputs and outputs,

shape of ontology, etc.).

150 200 250 300 3s0

Number of Services

5.4 : Input/Output Matching

To compute the average number of comparisons required to find composite services

upon the discovery of a new service, I assume ly' services and ? different types. If I further

assume that the input and output cache use a balanced hashing scheme, we will have, on

average, 1(7 services in each hash entry. When a service ,S, arrives, we have to do prefix

and postfix matching (as described earlier). Thus, we need to deal with at most 1(7
services. Since we already know that these services are type compatible with ,Sr, *e do not

need to do any comparison at this point. The same argument holds for postfix matching.

However, when we want to merge two composite services, discovered after prefix and

postfix matching, such as S"S, and SiSa (5" and ,9, can themselves be composite services),

we must do cycle checking to make sure that our final composite service is cycle free. To

detect a cycle in a composite service, as mentioned earlier, I check the composite service

to make sure that each component service appears only once. Since I use a hash-based

structure to keep track of component services of a composite service, cycle checking does

not incur significant overhead.

5.4.3 Services with Multiple Inputs and/or Outputs

125

So far we have considered only services with at most one input and/or one output. There

are some services (e.g. the GetMap service discussed in an earlier example) that can

accept more than one input and/or generate more than one output. In the lookup table-

based approach each such service will be added to different locations (corresponding to

each inpuVoutput) of either the input and/or output cache.

Simply adding a service to different locations of a cache would solve the problem if the

service could generate its output when either of its inputs were provided (i.e. supporting

an OR presence relation among the inputs). The problem is more challenging if, as typical,

a service requires all its inputs to operate (i.e. having an AND presence relation among

126

the inputs). In the latter case, each service with multiple inputs must know whether or not

all its inputs can be provided by some other services. If so, the service can participate in

a composition otherwise it must continue "waiting" for services that can provide any, as

yet, unprovided inputs. I assume an OR relationship between lhe outputs of a multi-output

service. Thus, a multi-output service can participate in a composition using only a subset

of its outputs. Such composition, howeve¡ will be penalized for the missing output when

the ranking of the composite service is calculated (discussed later).

Assume we have a service, 51, with two required inputs of type ú1 and ú2, respectively.

When another service, ,S2 with output type fi arrives, S2S1 cannot form a sequence since

,S1 also needs its other input to be provided. Another service, say ,S3, with output lype t2

is required to complete the composition. On the other hand, if I assume a service 51 with

one input of type ú1 and service 52 with two outputs of type ú1 and ú2 respectively, ,S2S1

will be a possible composite service, although one of ,S2's outputs has not been used in this

composition.

In my implementation, services in the input cache with multiple inputs, maintain links

to keep track of their all inputs. In other words, having access to one of the inputs of a

multi-input service, provides the necessary links to the other inputs. A similar arrangement

is made in the output cache for services with more than one output. Whenever a multiple-

input service is received, the code running at the SE side tries to find all the needed services

with outputs compatible with the inputs of the received service. If there are not available

services for all the inputs, those inputs that services have been found for are marked. Later,

when other services arrive, if their outputs match with the remaining inputs of a multi-

input service, that service can become involved in subsequent compositions with all the

necessary services providing inputs as its predecessors.

Chapter 5 : Implementation Details

5.4 : Input/Output Matching

5.4.4 Ranking Composite Services

The number of composite services created using I/O matching can be overwhelming. This

is one of the main challenges of doing fully automated service composition. To select

a subset of the generated composite services and present them to the end-user (without

overloading the user with a multitude of unuseful composite services) some sort of ranking

is needed. For example, the "store file" service offered by our hypothetical game console

can participate in a composite service such as "capture image+store file+print file". This

composite service may not be of end-user interest if the user already has a service capable

of printing a picture directly from a digital camera, i.e. "capture image+print image".

Some work on ranking composite services has been done and I build on this work.

Arpinar et al. [18] use similaríty value (the match type (exact, partial, etc.) between the

output and input of two successive services in a composition) as well as quality rate (i.e.

QoS metrics such as reliability of a service, cost of accessing a service, etc.). They model

a composite service as a graph with nodes representing component services and links be-

tween pairs of VO compatible services. They then assign different weights to different

edges based on the quality rate and similarity value. Their approach then finds the shortest

path in the composite service graph and this results in selecting the "best" service instances

for the final composite service. Unfortunately, they do not provide any justification for

the selected weights. Arpinar's ranking method mixes parameters that belong to abstract

services (i.e. matching quality) with those related to concrete services (i.e. QoS metrics).

Furthermore, their goal was not reducing the number of generated composite services.

Chafle et al.l23l consider a technique to select K (an arbitrarily chosen number) work-

flows f¡om the pool of generated abstract workflows. They use the Hamming distance

between two generated abstract workflows. The Hamming distance specifies how many

service types in two abstract workflows must be different. Selecting a higher Hamming

127

t28

distance decreases the number of possible abstract workflows that can be generated. How-

ever, they do not consider any similarity value in their decision. Thus, their technique only

reduces the number of generated workflows without considering how useful a composite

service can be in a given pervasive environment.

The main focus of Chafle et al. is to satisfy QoS requirements. They use three QoS

metrics (cost, response time, and availability) associated with each service to find better

service instances to use to create a workflow instance (i.e. an abstract workflow with dis-

covered service instances). They calculate the aggregate value of each QoS metric for a

workflow and these aggregated values are added up to determine the final QoS value of a

workflow. They evaluated their method in terms of its responsiveness to change of QoS

parameters.

I use a ranking method which is a combination and extension of these approaches to

reduce the number of possible sequences (i.e. abstract workflows) that will be sent to the

GDs as well as added to the repository at the SE side. The method is also used to select

the best possible service instances when deploying a workflow in a particular pervasive

environment. The ranking that I use are:

o Abstract ranking: this method is used to rank different abstract workflows (i.e. com-

posite service templates).

Chapter 5 : Implementation Details

o Concrete ranking: this method is used to find the best possible service instances to

use to deploy an abstract workflow.

5.4.4.1 Abstract Ranking

To be able to calculate the abstract rank of a composite service, I use the following values:

1. Matching value (i.e. the type of match between input and output types of two ser-

vices, either "exact" or "subsume"),

5.4 : Input/Output Matching

2. Therank of each conxponent service (recall that each component service can be either

atomic or composite),

3. The length of a composition, and

4. The number of component services with missing outputs.

I refer to the fi¡st two parameters collectively as matching quality later in this section.

Similar to Paolucci et al. [63] I assume that an exact match as well as a direct sub-

sumption match have the highest matching value, i.e. 1.0. Indirect subsumption match is

assigned a value less than 1.0. I also assume that the rank of a component service is 1.0 if
it is an atomic service otherwise its rank is calculated using Formula 5.2.

The Matching Quality (MQ¿¡) between two component services in a composite service

might logically be calculated in either of the following ways:

l. By taking rhe minimum of the matching values between two services and the rank of

each component service. That is:

129

MQ¿¡ : min(marching value,rank of each component service)

2. By multiplying the matching value between two services and the rank of each

ponent service. That is:

Assume two component services,Sl and ^92, with rank 1.0 and 0.8 respectively, par-

ticipate in a composition ,S1,S2 (Sz is a composit¿ se¡vice whose rank has already been

calculated). Also assume that the matching value between these two services is 0.8 (i.e.

MQ¿¡ : matching value x rank of each component service

130

there is an indirect subsumption match between these two services). The matching quality,

d[Qtr, of this composition is either mi,n(7.0,0.8,0.8) : 0.8 or 1.0 x 0.8 x 0.8 : 0.64

(depending on which of the potential methods is used). Clearly, the latter approach more

aggressively penalizes multiple "imperfections" i n composite services.

The result of the calculation of MQ¿i,will always be a number between 0 and 1. If a

composite service has only two component services, MQ¿¡ specifies the total (over the en-

tire composition) matching quality for that composite service. Otherwise, the total match-

ing quality of a composite service, MQ, will be either:

Chapter 5 : Implementation Details

MQ : min(MQ12,. . . , MQ@-t)n), n=# of component services

MQ : fr*Or;Uo, n=# of component services
2

depending on the method chosen. If a composite service has branches (i.e. it has a

service with multiple inputs and/or outputs), the minimum calculated matching quality for

branches will be selected to conservatively compute the total abstract rank.

The length of a composition (l) can also be used as a measure to rank composite ser-

vices. Longer composite services involve many component services and are more prone to

failure. Also, a longer composite service has longer running time since each of its com-

ponent services need to be invoked separatelys. Finally, long composite services are more

likely to have equivalent shorten ones that would be preferred by users. Since the mini-

mum length of a composition is two (involving only two component services), two over the

composition length Ø : ?) will be a number less than or equal to one and can be easily

factored into the calculation of the total abstract rank. If a composite service has branches,

swhile there can be concurrency among component services, generally they run sequentially. For these

reasons, equivalent shorter compositions should be preferred.

5.4 : Input/Output Matching

the longest branch will be conservatively selected as the composition length.

Composite services involving component services with more than one output and using

a subset of outputs, tend to have less appeal for the end-user. For example a "play video"

service might have "video signal" and "audio signal". Not using either of these outputs

in a composition, in most cases, will result in a less useful (or even non-useful) service.

To consider this issue in calculating the total rank of a composite service, I use a factor

M .: pn where p < 1.0 and n is the number of component services with one or more

unused outputs in the composed service.

Having the total matching quality (M Q),lengrh of a composition (tr), and number of

services with missing outputs (M), the total abstract rank of a composite service can be

calculated as:

Based on the perceived importance of each factor (i.e. matching quality, composition

length, and number of services with missing outputs), different weights can be assigned

in calculating ranko. This assignment of weights might be specific to the domain (and

corresponding ontology) used.

Once the total abstract rank is calculated, possible compositions obtained using VO

matching are sorted based on the calculated total abstract rank. To be able to send to the GD

and add to the repository only a "manageable" number of workflows, I use two threshold

values (ú1 and t2 where h < tù to prune unnecessary workflows off the list. The threshold

values can be built into the system or entered by an SE expert. Again, selection of those

thresholds may be domain specific. Composite services whose rank is greater than ú2 will

always be sent to the gateway device and added to the repository. Composite services whose

rank is between ú1 and ú2 should be "assessed" at the SE side before deciding whether to

ranko: û x MQ + IJ x Li1 x M, where a+ P*? : 1

131

(s.2)

132

keep or prune them. Finally, composite services with ranks below Í1 will be discarded. The

next chapter discusses how threshold values can be computed for different scenarios.

Usage-based Abstract Ranking

The frequency of use of a composite service in a pervasive environment can also be used

to reduce the number of workflows maintained in the repository and hence, ultimately pre-

sented to users. The SE which is responsible for finding composite services, can also keep

track of the use of deployed composite services. Whenever a composite service is accessed

within a pervasive environment, the GD can send the relevant information about this access

to the SE. Each GD is associated with on" ôf a number of pre-selected user categories (e.g.

"expert", "average", and "novice"). The number ofcategories is flexible and, depending on

the deployment environment, different number of categories might be selected. A GD will

be assigned to one of these categories based on the level of technical sophistication of its

managed environment's occupants. 6 In this way, "similar" pervasive environments, based

on predefined preference settings and/or the usage information about deployed composite

services, can be identified and corresponding GDs (in the same category) can be grouped

together.

Initially, the SE composes services and ranks them. Only highly-ranked composite

services (those whose ranks are above ú1) are sent to the pervasive environment for deploy-

ment and added to the repository. However, it is possible that some of these highly-ranked

services are actually not of end-user interest or may be of interest for only a very short

period of time (e.g. until they are supplanted by more desirable compositions, possibly re-

lated to new multi-function devices). It is also possible to have a composite service which

might be frequently used in some environments but which has a lower rank (i.e. between

ú1 and tù. The SE will store such lower ranked composite services in the repository to

'IrifsuchinformationiSnotautomaticallyavailable.

Chapter 5 : Implementation Details

5.4 : Input/Output Matching

be able to collect their usage statistics for different environments. Then, the SE, before

sending a composite service with a low computed rank to an environment, can check to

see if other similar environments (i.e. GDs in the same category) have already used the

newly-composed service or not. Based on usage information in similar environments, it is

therefore possible for a composite service with a low rank to be selected and sent for de-

ployment. Of course, to bootstrap this process some users must "try out" such mid-ranked

compositions. Expert users are more likely to do this and a mechanism where by their

experiences may be exploited will be described shortly.

Input/Output matching in the game console might result in a long composite service

such as: "decode signal+store video+play video+display video". This composite service

will get a relatively low rank because of its length. The generated long composite service,

however, acts as a Personal Video Recorder (PVR) which records a TV program while

it is playing and therefore could be very desirable. The information about the usage of

such a long composite service in other homes can be collected at the SE side to infer that

this composite service is indeed useful despite its comparatively low rank. The collected

information can be used to adjust the calculated rank and this long composite service will

therefore later be deployed in other pervasive environments.

To implement this filtering method based on the use of composite services, additional

information must be stored for each workflow. The structure of an entry for each workflow

will be similar to that shown in Figure 5.13. In particular, for each workflow in the repos-

itory, its computed rank, number of deployed instances, and number of times an instance

has been accessed must also be stored. The number ofdeployed and accessed instances ofa

workflow should be maintained for each GD category to allow differentiation of usefulness

for different types of users.

Consider service composition again which starts when the SE receives a description

of new services from a GD. If a composite service using the new component service is

133

134

Workflow lD Rank

Figure 5.13: Information stored about each workflow per each GD
category (e.g. expert, average, and novice)

<_Expert_-_____________ Aver

discovered in the repository and its rank is above the selected threshold value, ú2, it will

be sent (without further check) to the GD for deployment. If its rank is between the two

threshold values (i.e. it is a "mid-ranked" composite service), the discovered composite

service will be sent to the GD under either of the following conditions:

o The requesting GD is in the "expert" category. The users of a GD in the expert

category are assumed to be technical enough to be exposed to composite services

that are not highly ranked. Since they can easily and quickly select the services they

actually want from the larger list presented to them. The usage information about

mid-ranked composite services will subsequently be collected from these "technical"

users, and can be used to decide if a mid-ranked composite service should be sent to

other, less technical, environments or not. Users in the expert category thus provide

boot strapping support for the system as a whole.

Deployed # Accessed #

Chapter 5 : Implementation Details

Deployed # Accessed # Deployed #

Novice__>

Accessed #

The requesting GD is not in the "expert" category but the number of accesses to this

composite service in environments managed by a GD belonging to the same or the

next more technical category is high enough that the composite service can be sent to

the requesting GD. For example if the requesting GD is in the "novice" category and

the rank of discovered composite service is not high enough, the service will only be

deployed on the requesting GD if either the same service has already been deployed

in the "novice" category or the number of accesses to this service is high enough in

5.4 : Input/Output Matching

Figure 5.14: The process of composing services and the different stages

of filtering them

"average" GDs.

Once the composite service is sent to a GD for deployment, statistics about the deployed

workflow are updated accordingly at the SE side.

135

Later, when a composite service is used in a pervasive environment, the GD sends

information about the use of the composite service (e.g. number of times invoked) along

with its own identification to the SE. The SE, after receiving the information, updates the

related usage information for the appropriate
"u,"gory

in the repository.

Figure 5.14 shows the different stages of composing and later filtering the generated

composite services. It starts with VO-based matching which usually results in many com-

positions. The generated composite services are ranked based on different criteria before

adding them to the repository. Once they are deployed in pervasive environments, usage

information is collected and the computed ranks are further revised.

136

5.4.4.2 Concrete Ranking

Concrete ranking is similar to abstract ranking but considers service instances instead of

service types. Hence, it involves more QoS related metrics. The following criteria are used

to compute the concrete rank of a composite service:

c Service type: a service can be offered by either a mobile or stationary host. An

availability metric (see the next item) factors into the service type in calculating the

overall concrete rank. Stationary services are preferred over mobile ones due to their

enhanced, relative availability.

e QoS metrics: different QoS metrics for composing services have been proposed by

Zeng et al. [86]. I use a subset of the metrics proposed which were also used by

Arpinar et al. [18] as well as Chafle etal.l23l. These metrics are: availability (,4),

cost of accessing a service (C), and response time (Â). Generally speaking, these

metrics can be calculated by considering service type (mobile or stationary), amount

of load on the device hosting a service (low, moderate, or high), type of communi-

cation link between the host device and the GD (low bandwidth or high bandwidth),

and available resources (processing power and memory, etc.) on the host device. Us-

ing these measurable parameters, a number can be assigned to each QoS metric. The

details of gathering and representing these metrics are not considered in this thesis.

Service type and QoS metrics are computed for each component service. To be able to

find the aggregated value of each criterion (including QoS metrics) for a composite service

(e.g. to find the availability of a composite service containing several component services

with different availability rates), I use the approach of Chafle et al. I multiply values for

availability of each component service (these are values between 0 and 1) to calculate the

availability ("4) of a composite service:

Chapter 5 : Implementation Details

5.4 : Input/Output Matching

A : fl ro , where ,4¿ is the availability of service S¿

i
(5.3)

The cost (C) and response time (R) of a composite service, on the other hand, are com-

puted as the sum of the costs and response times of each component service, respectively.

Since these values can be greater than 1, they must be normalized to be conveniently incor-

porated in a formula with "4. Assume C^o* and Cp¿n ã1ê the maximum and minimum cost

of accessing a service in an environment. Also, assum è R*o, and R*¿n are the maximum

and minimum response time for a service. The normalized values of cost and response time

for a composite service can then be simply calculated as:

C:

R:

t37

D, C,no* - D, C,

If a composite service has branches, the minimum of the calculated values of A, C, and

R for each branch are conservatively selected. The overall concrete rank of a composite

service based on the selected criteria can then be calculated as:

\- /- _\- r'lri v'¡naî /Ji "mzn

Ðn R^o, - Do Rn

D, R,no, - Ð¡ R*¿n

, where C. is the cost of accessing service S¿

, where -R¿ is the response time of service
^9¿

where Wt, Wc, and Wp are different weights assigned based on the importance of each

criterion. The value of rank", as we will see in Section 5.5, can be used as an overall metric

to sort different instances of a workflow. If one wants ranlt" to be between 0 and 1, the

rank" - W¡ x A +Wc x C -l Wn x R (s.4)

138

o
o
o

Service Types

o
o
o
@

A=0.61,C=1.42.R=19.83

A=0.32,C=1.15.R=10.73

A=0.96.C=2.96,R=1 1.1 9

A=0.46,C=3.47,R=1 9.01

Chapter 5 : Implementation Details

O
A=o.3s,c=2.s3,R=14.24

Service lnstances

Figure 5.15: Three service types and corresponding service instances
with assigned QoS values

aggregate value of weights must be equal to 1. This concrete ranking was not implemented

in the current prototype.

Example: In this example, I show how abstract and concrete ranking work. Let us assume

there are three service types (i.e. abstract services) St, Sz, and ,S3 that can create a compos-

ite service ,Sr,S¡Sz. The matching between 51 and 53 is exact and the matching between

,93 and 52 is partial. Therank of 51 is 1.0,,92 is also 1.0, and 53 is 0.5. Figure 5.15 (right

hand side) shows this composite service.

To calculate the abstract rank of this composition using Equation 5.2, the Matching

Quality (MQ) of each pair of this composition (i.e. S1,S3 and Ss,Sz) as well as the whole

composition must be calculated first. Using the first formula for matching quality, we have:

Partial Match = 0.5

-____-_rank=0.51 lrank=1.0

l__,

An abstract composite workflow

5.4 : Input/Output Matching

Table 5.3: The calculated concrete rank for the composite service
example shown in Figure 5.15

Composition
SrrS:r,Szl
SrrSsrS2z

,Srz,S¡lSzr

S12S31Szz

A
0.20

MQ,,s

MQzz

MQ

The length of this composition is three and tr in Equation 5.2 will be 0.67 . Having weights

o : 0.5, 0 : 0.25, and 1 : 0.25 and considering the fact that there is no service with more

than one output, the abstract rank of this composition is:

ranlto: e x MQ + þ x L *7 x M:0.5 x 0.5*0.25 x 0.67+ 0.25x 1.0:0.67

The concrete rank of this composition can also be calculated using the service instances

shown in the left side of Figure 5.15. In this example, the values for availability (A),

cost (C), and response time (R) are selected uniformly from [0.2,1.0], [1,5], and [10,20]

respectively. I also assume that service types 51 and ^92 each have two instances whereas

service type ^93 has only one instance. The concrete rank for the given composite service

can be calculated using Equation 5.4. I chose weights of 0.33 for each factor to make the

final concrete rank a number between 0 and l. Table 5.3 shows the result of this calculation.

0.10

c

0.11

0.61

0.05

0.63

R

0.10

min(r.0, i.0,0.5) : 0.5

mi,n(O.5,0.5, 1.0) : 0.5

mi.n(MQs, MQzz) : mi,n(0.5,0.5) : 6.5

0.49

0.65

0.23

ranlt"

139

0.79

0.45

0.53

0.32

0.53

0.41

140

5"5 Composite Service Deployment

To have a fully automated service composing system, discovered composite services (either

from the shared repository or by performing UO matching) must eventually be deployed

in a pervasive environment. The GD must deploy the new composite service in such a

way that other existing devices/services in that environment can make use of it. A bundle

within OSGi (see Figure 3.3), the "OWLS Receiver", is responsible for receiving OWL-S

descriptions of composite services from the SE which sends the selected workflows to the

GD. The GD keeps a record of received workflows along with their associated concrete

ranks. Thus, the GD tracks how many instances of a given abstract workflow have been

deployed and what the concrete rank of each deployed workflow is. This information could

be used to help the GD to select a better replacement workflow in case of a failure but this

feature has not been implemented in the prototype.

Once the description of a composite service has been received by the GD, the OWLS Re-

ceiver creates a coresponding wrapper (a virtual service) for each available protocol in

the corresponding pervasive environment (e.g. UPnP, Jini, etc.) by calling corresponding

bundles within OSGi (See Figure 5.16). The UPnP wrapper creator bundle, for example,

creates a UPnP service (using createUPnPDevice in the figure) that knows how to in-

voke the newly received composite service and registers the UPnP version of the service in

the OSGi dictionary. Each wrapper will then advertise the composite service using one of

the available protocols. These operations are performed by the GD.

The created wrapper services are registered within OSGi and are exported by the ap-

propriate driver bundles outside of the OSGi environment, (i.e. the pervasive environment).

Devices and other services available in the pervasive environment will detect the presence

of this new service and can then make use of it. When a device/service (outside the OSGi

framework) invokes a wrapper service that is available in the environment, the request is

Chapter 5 : Implementation Details

5.5 : Composite Service Deployment

Ç

Å
Service Enabler

eceive(compositeService)

-¡¡
|

createJiniService(compositeService)

Jini Wraooer Creator I UPnP Wraoper Creator

createU Pn PDevicelcomoositeService)

I

Figure 5.16: The sequence diagram of creating \¡/rappers within the GD

I

I

I

forwarded, by the corresponding driver bundle, into OSGi and another bundle inside OSGi,

the OWLS Executer, calls the component services of the composite service. Recall that

each component service has its OSGi grounding and the grounding has enough informa-

tion to contact the actual service outside of the OSGi framework through a driver bundle. If
the invoked service has an output, the output will be returned to the calling service via the

wrapper. Invocations of the same logical composite service via different \ /rappers count,

collectively, towards the frequency of use totals for the service that are maintained by the

GD and sent, periodically, to the SE. Figure 5.17 shows a sequence diagram of calling a

composite service by a user within a pervasive environment.

The OWLS Executor bundle must be able to handle exceptions that occur while exe-

cuting a composite service. As mentioned in Section3.3, an exception can happen as a

result of a fault in a service or temporary or permanent unavailability of the service. The

OWLS Executor bundle will either find an alternate composite service, if such a service

exists, or return an en:or to the requester if there is no alternate service. Since the GD keeps

141

l"*l+
I

registerService(service Handler)r-J

142

r
user

serv¡cel¡stener(serv¡ce) |JI
runservrce(servrce)F--4

ca ll Registered Service(service)l*T
result

Chapter 5 : Implementation Details

Figure 5.17: The sequence diagram of calling a composite service by a

user within a pervasive environment

all the composite services created from the same workflow (i.e. different composite ser-

vices using different instances of component services), it is possible to find an alternative

workflow simply by looking at the abstract description of the failed composite service. The

GD also keeps the concrete rank of each composite service which is useful in selecting the

best available alternate workflow. Currently the prototype just returns an error in the case

of component service failure.

<---l

OWLS Executer

result F---t

Chapter 6

Experirnental Results

To evaluate my system I implemented a small scale proof of concept prototype based on the

components shown in Figure 3.3. I Implemented all the GD components using the Oscar [3]

implementation of the OSGi framework on a norrnal PC with a Pentium IV 2.6GHz CPU

and 512MB RAM, running RedHat Linux 9.0. The PC acts as both the GD and service

enabler in the prototype system. I added OSGi groundings to the OWL-S API [76] so each

service defined by OWL-S can be accessed within OSGi. Further, I have tested the system

using a variety of emulated UPnP devices (e.g. emulated fridge, TY and camera running

on both normal PCs and PocketPCs) and several sample Jini services (e.g. binary switch,

reading status of a device, etc. running on a normal PC) which are all fully functional

within the prototype.

The implemented prototype can make effective use of both UPnP and Jini services reg-

istered within OSGi as components of composite services. Further, it is extensible to other

"middleware systems" (e.g. HAVi) through the addition of required driver bundles. We

have experienced no difficulties in discovering and creating composite services using UPnP

and Jini services. My prototype has also been used by another student to create composite

services out of services offered by X10 [28] devices. X10 devices communicate with my

143

t44

composition system through Jini and UPnP proxy services. All created composite services

are also registered as OSGi services and can therefore be used in subsequent service com-

positions (i.e. composite services can be built consisting of both existing non-composite

and composite services). Additionally, the deployment of composite services as UPnP or

Jini services (as well as OSGi services) is implemented. This allows other (non-OSGi) ser-

vices in a pervasive environment to seamlessly make use of the newly created composite

services. The created UPnP wrappers can be detected and later controllèd by, for example,

a UPnP control point running on a PocketPC. Such a control point for PocketPCs has been

also implemented as part of my prototype.

For a fully automated composition system to be considered effective and hence attrac-

tive to both end users and SEs, it must be able to correctly discover new compositions in

realistic environments, it must be able to do this efficiently, it must not "overwhelm" users

with undesirable composite services and it should be useful in different pervasive environ-

ments. To assess my system and ensure that it met these goals, I tested the implemented

prototype in three different ways:

1. Using real world scenarios and a realistic domain ontology derived from actual de-

vices to make sure that the prototype works as expected. To achieve this goal I created

scenarios for adding different devices to a home area network and checked the result

of the composition (after ranking) manually. These different scenarios being based

on a realistic ontology, to some extent, show that my prototype system is capable of

handling real environments.

2. Emulating the real system using synthetic services with an artificial ontology to col-

lect data about average matching time, average number of services, etc. This col-

lected data is used to do scalability testing.

3. Using simulation to show that the proposed architecture is deployable in different

Chapter 6 : Experimenral Resulrs

6.1 : Real World Scenarios

pervasive environments. Their required data to setup the simulation was collected

by emulating the system and thus grounds the simulation, basing it on actual perfor-

mance numbers.

6.1 Real World Scenarios

Real world scenarios use the real domain ontology developed in this thesis (See Chapter 4

and Appendix B). The scenarios are taken from a home area network. Home area network

scenarios were chosen because a multitude of devices may exist in a home making it a rich

environment for composition.

Scenario 1: In this scenario I assume an empty home and add a TV, a cable box, a DVD

player, and an MP3 player in that order. (The details of the services provided by these

devices are presented in Appendix C.) After sending service descriptions to the prototype

system, 89 different composite services can be generated. (The composed services are

shown in Appendix D.)

The result of composition was then manually checked to see what type of composi-

tions were created. Some of composed services were trivial and some of them were

not. Composite services, overall, show possible usage of available devices/services in an

environment. Then, different parameters of the ranking function (i.e Formula 5.2) were

selected in a way that useful composite services get higher ranks with a clear distinction (if

possible). Table 6.1 shows values for weights and parameters of the ranking function.

Ranking the generated composite services using the values from Table 6.1 resulted in

a set of composite services with relatively clear "cut points". To discard compositions

with ranks below a particular threshold, I manually examined the calculated ranks to find

appropriate cut points. Some of the calculated ranks and descriptions of the service char-

acteristics used in determining those ranks are shown inTable 6.2.

145

146

Table 6.1 : Values selected for parameters and weights of Formula 5.2

WeighlParameter

Chapter 6 : Experimenral Resulfs

Table 6.2: Computed ranks associated
characteristics

1 (exact), 0.8 (non-direct subsu

Rank
1.0

0.92

2/l,l:2,3,...

0.90

0.25",n:0,L,

Composition of length 2having exact match

0.88

Composition of length 3 having exact match

0.85

Composition of length 2 having non-direct subsumption

0.82

Composition of length 4 having exact match

0.81

Composition of length 5 having exact match

In Table 6.2 compositions with rank values less than 0.73 are very unlikely to be of end-

user interest and can therefore probably safely be discarded. Composite services whose

ranks are between 0.73 (inclusive) and 0.92 might be assessed at the SE side to decide

whether it is worth sending them to a pervasive environment or not. This would be done

based on usage information about these "mid-ranked" services collected from different en-

vironments (see Section Usage-based Abstract Ranking on page 132) Finally, composite

with different composition

0.13

Composition of length 3 having non-direct su

Composition of length 2 having a service with a missing output
Composition of length 3 having a service with a missing output

Description

6.1 : Real World Scenarios

services whose ranks are between 0.92 (inclusive) and 1.0 are sent to a pervasive envi-

ronment for deployment. Of course, composite services whose ranks are greater than or

equal to 0.13 are added to the repository. As described earlier, it is possible that some

environments will not use one or more highly-ranked composite services. For example, a

composite service involving a cell phone for taking pictures or recording a video will not

be appreciated by a novice user who uses his/her cell phone mainly for talking purposes.

Usage information about these services can also be used to filter the mid-ranked composi-

tion and this prevents sending those composite services to environments where they are not

used frequently.

The results of the ranking function, and consequently the selected threshold values, are

related to general characteristics of a composite service regardless of the type of component

services. Specifically, the results are only dependent on the relationships between the input

and output types of components in a composite service, their length, and whether or not

they have missing outputs. Thus, these threshold values, as shown in Table 6.2, are not

limited to a particular domain and can be applied across different domains. The scenario

B in Appendix D shows the application of the ranking function and threshold values in a

meeting room environment which is different from a home area network.

Applying the ranking function with the selected threshold value of 0.8 filters out 667o

of the composite services generated in Scenario 1. Collecting the usage information about

deployed services could further reduce the number of deployed composite services.

Scenario 2: In this scenario I assume having a TV a cable box, a DVD player, and a

digital camera instead of an MP3 player. Running my prototype system with the services

offered by the assumed devices results in 80 different composite services. The calculated

ranks for the generated composite services are similar to the previous scenario and the same

threshold values can be used in this case as well. By selecting a threshold value of 0.8 ,69Vo

of the composite services are filtered out.

141

r48

Scenario 3: In this scenario I assume having a TV a cable box, an MP3 player. I then add

a game console (with the capabilities described earlier) to the assumed environment. After

sending service descriptions to the prototype system, 97 different composite services could

be generated. Applying the same abstract ranking function with a threshold value of 0.8

results in filtering onrJ3Vo of generated composite services.

I also did a few other "real-world scenario" experiments and their results are presented

in Appendix D. Due to the type and number of services in these scenarios, only a few

composite services with a relatively short length have been generated. In more general

scenarios (e.g. Scenario 1), I had composite services of maximum length five. This length

was selected to avoid very long composition times and can be set to a large number.

I also compared my implemented prototype system with a system developed by Sirin

et al. [78]. I loaded my described services (from Scenario 1, for example) to Sirin's system

to ensure that I can generate the same set of composite services. Then, I used the provided

user interface to manually build a composite service using the loaded services. Since my

prototype system uses their API for semantic matching, the set of composite services gener-

ated by both systems are, not surprisingly, the same. Sirin's system, however, is completely

manual and is not capable of incorporating services with multiple outputs in a composition.

Chapter 6 : Experimenral Resu/fs

6"2 Ernulating the Systern

Once I obtained confidence that the implemented prototype system was capable of handling

real-world scenarios, I decided to test the prototype to collect data about average matching

time, average number of services, etc. used to do scalability testing. I performed this test

by emulating the real service composition system using a synthetic ontology encoded in

OWL containingT2 different types. This number of types is comparable to what I have

in the "real" domain ontology. To capture different possible structures of a real domain

6.2 : Emulating the System

ontology, I organized the types in four different ways: l) as a one-level hierarchy (i.e. all

types are direct subclasses of classThing in OWL) shown as "Ontology l" in the figures in

this section ,2) as a twolevel hierarchy shown as "Ontology 2" in the figures, 3) as a three-

level hierarchy shown as "Ontology 3" in the figures, and 4) as a four-level hierarchy shown

as "Ontology 4" in the figures. Each ontology has equal numbers of types in each level. For

each ontology, I then created 10 different sets ofservices each ofwhich having 100 different

service descriptions (encoded in OWL-S) with a single input and a single output. (The

input and output types were selected uniformly at random from the types in the synthetic

ontology.) The URIs fo¡ the description of each service were then sent, one at a time, to

the program acting as the SE to find possible composite services. The program first used

repository-based matching and then, if it could not find any workflows, it used I/O-based

matching. The program goes through the entire process of creating a composite service (i.e.

doing all the required comparisons) up to creating the description of the composed service

(i.e. encoding the generated workflow in OWL-S). Thus the measured time for doing a

particular operation is a reflection of real world costs. Whenever a sequence is found using

VO-based matching it is added to the repository for future use. This experiment further

shows the capability of my prototype in handling service descriptions specified by different

(synthetic) ontologies. The synthetic ontologies gave me the required flexibility to change

their properties (e.g. their shapes, number of types, etc.) as desired.

The average required time to find a composite service using VO-based matching upon

discovery of a new service for each domain ontology is shown in Figure 6.1 . The results

were obtained by taking the average ofrunning 10 different service sets each having 100

services whose inputs and outputs were selected from each ontology. As the figure shows,

and as was expected, the required time to find a composite service increases with the num-

ber of available services in a pervasive environment. The reason for this is the increasing

number of possible combinations of services that can be involved in a composite service.

149

150

Figure 6.1 also shows that multi-level ontologies incur more overhead than a flat ontology.

This is because partial matching requires checking sub-class/super-class relations between

inputs and outputs and this has high overhead.

Figure 6.2 shows the total number of possible compositions of length between 2 and 5

for each test case in Figure 6.1 . This figure explains (by showing the number of generated

compositions given a number of available services in the system) the amount of time that

has been spent for VO matching as reported in Figure 6.1.

The average time required to find a sequence using repository based matching upon

discovery of a new service is presented in Figure 6.3. The difference between the time re-

quired to find a composite service using I/O matching versus finding it using the repository

is striking (few hundred milliseconds verses 10 milliseconds). Also the number of available

services in a pervasive environment does not have an impact on the matching time, which

suggests repository based matching will be more scalable. These properties of repository

based matching, make it an effective way of supporting larger, more complex pervasive

environments containing potentially many services.

A similar experiment was done with a mixture of services having one and two inputs.

In this experiment, T/3 of the services had two inputs and the rest had only one. Al1 the

services had a single output. Corresponding to each ontology, I created 10 different sets

of services each having i00 services (as described earlier) and sent them to the program

acting as the SE to find possible compositions. Figure 6.4 shows the average time required

to create sequences of length between 2 and 5 using only VO matching. Comparing this

figure with Figure 6.1 shows a significant increase in composition time. The comparison

suggests that VO matching of multi-input services does not scale well, as the number of

services in a pervasive environment increases. Even with relatively few expected multi-

input services, this is a potential concern. The number of detected sequences of length 2 to

5 is presented in Figure 6.5.

Chapter 6 : Experimental Results

6.2 : Emulating the System

Figure 6.1: Average time required to create a sequence using only I/O
matching

The time required to find a composite service using repository-based matching when

dealing with multi-input service is largely unchanged as shown in Figure 6.6. Thus, the

value of repository-based matching for large pervasive environments is clear. Further, the

importance of only having to do UO-based matching infrequently is also clear.

151

6.2.1 Applying the Ranking Function

In this section I present the results of applying my abstract ranking method, discussed

in Section 5.4.4, to the composite services generated using the synthetic ontologies and

component services. To calculate the abstract rank of a composition, as mentioned earlier,

I use the rank of each service (calculated using Form ula 5.2 if it is not atomic), the type of

matching between two component services (exact or subsume), the number of component

152

9

E

3
Ê

Chapter 6 : Experimental Results

services with missing outputs (i.e. component services having more than one output and

only a subset of the outputs have been used in the composition), and the length of the

composition. To setup this experiment, I generated 10 different sets of services each having

100 service descriptions for each of the two-level, threelevel, and four-level ontologies

discussed earlier in this chapter. I created 10 different sets of services for each ontology to

make sure that the randomly generated input and output types did not have transient effects

on the results.

Table 6.3 shows the number of generated compositions before and after applying the ab-

stract ranking function (Formula 5.2). To select the better compositions I chose a threshold

value of 0.8 (based on my experience with the real world scenarios) and all the compo-

sitions with a rank below that threshold value were not considered in counting the total

compositions. Table 6.3 shows that using the ranking function with a threshold value of

Figure 6.2: Number of possible sequences of maximum length 5

6.2 : Emulating the System

E
tr

Figure 6.3: Average time required to find a sequence using only the
repository

0.8 can remove up to 66Vo of the generated composite services. This finding is consistent

with the results obtained by ranking the generated composite services using the real domain

ontology.

Different parameters (i.e. matching type, having component services with missing out-

puts, and length of composition) are considered in calculating the abstract rank of a com-

posite service. Furthermore, penalty values in the ranking function are fine tuned based on

the real-world scenarios. Thus, it can be safely assumed that by selecting a proper thresh-

old value, important composite services will not be removed from the list of services that

is sent to the GD for deployment.

By reviewing the numbers in Table 6.3 it is clear that the number of generated compo-

sitions increases with an increasing number of levels in an ontology. This is a direct result

of having more subclass relations in an ontology that has a deeper structure. However, the

153

4567
Numhr ol Serylces ('10)

154 Chapter 6 : Experimenral Resu/fs

Figure 6.4: Average time required to crsate a sequence using only IiO
matching (1/3 of services have two inputs)

Table 6.3: Results of using different ontologies for composition and

applying ranking method and a threshold value

type of matching tends to be more subsume which decreases the matching quality. Thus,

the ratio of compositions having a rank higher than the selected threshold decreases. Given

that type ontologies tend to be relatively shallow the computation time required in the real-

world should be manageable. It would also be feasible to employ a "processor farm" to

Ontology 2

Ontology 3

Ontology 4

Total Composition Total With th=0.8

6.3 : Simulatingthe Sysfem

9

E

E

z

Figure 6.5: Number of possible sequences of maximum length 5 (1/3 of
services have two inputs)

help speedup matching if necessary since different sub-trees in the type ontology could be

explored independently. Doing matching at the SE makes this feasible. The availability of

such resources in pervasive environments, however, is very unlikely.

155

4567
Numbe¡ of Sedlces {'10)

6.3

To study the long-term behavior of my composition system and to collect statistics about

the different parameters of the system, I simulated the system using the SSJ [5] simulation

package. The input parameters of the simulation were service arrival rate (À) and aver-

age time a received service stays in the list of available services ("service lifetime")(¡l).

Running the simulation system with a large number of service arrivals without removing

services from the system results in explosion of the system. Therefore, a lifetime for each

Simulating the System

1s6

.E
ts

Chapter 6 : Experimenfal Resulfs

Figure 6.6: Average time required to find a sequence using only the
repository (1/3 of services have two inputs)

service must be assigned to balance the number of active services in the system. In the

real-world implementation, only services coming from the same GD will be considered for

composition and assigning a lifetime might not be necessary.

To measure the performance of the system, I collected statistics on the average number

of services waiting fo¡ VO matching, the average number of services received from perva-

sive environments, and the average time required for UO matching. The required matching

times for repository-based matching, as shown earlier, are almost independent from the

number of available services. Thus, I study only VO-based matching using a simulation

model.

4S67
Number ot Seru¡ces ('10)

To avoid very long matching times, I assumed a maximum of 150 available services.

(Testing my system with more than 150 services could sometimes result in a very long

6.3 : Simulating the Sysfem

Figure 6.7: Simulation model of the service composition process at the
SE side. ¡ls is the composition time and p is the service
residence time.

Queue 1

matchingtime. Figure5.12 onpagel24,somehow,showsthisfactaswell.) Ionlycon-

sider VO matching (no repository matching) in my simulation and therefore my results

show the worst case. Figure 6.7 shows the simulation model of the service composition

process taking place at the SE side. This model is an approximation of the real system and

captures the important aspects of it. The first queue, Queue 1 in this figure, is a M I G ll l K
queue [16] in which the buffer size (and consequently the arrival rate to the first queue) is

determined by the number of available services in the second queue. The second queue,

Queue 2inthe figure, is a GlMlæ queue that models the lifetime of a service.

Before starting the simulation, since I did not have a distribution for matching times (¡/s

in the figure), I ran my prototype SE program with a two-level ontology with 36 different

types in each level. To get a better estimate on the matching time, I created 1000 different

sets of services each having 150 different service descriptions. This gives me 1000 different

values of service time. Whenever an arrival occurred, I measured the VO matching time

for that service and associated this time with the number of available services after the

arrival of that service. I collected pairs (matching time, number of services) for 150 service

Queue 2

r57

158

arrivals to use in my simulation. I limited the number of available services to 150 to keep

the running time of my prototype SE program reasonable. (Later in this section, I show

how this constraint is removed from the simulation model.)

During the simulation, I used exponentially distributed sojourn times for services in

Queue 21 with a rate of 1 service per 300 seconds (p in Figure 6.7). Selecting any equal

arrival/departure rate will also result in the same statistics about matching times. Whenever

a new service arrives (i.e. a birth event happens), if the total number of services in the

system does not exceed 150, I find the corresponding matching time randomly from the

1000 pre-calculated matching times. Whenever a service disappears (i.e. a death event

happens), if there is an available service in tbe system, I simply decrement the number of

available services.

Queue 2 in this Figure 6.7 is a G lM læ queue so the average number of services will

be [16]:

E(n) : ÀzÐ(s)

Chapter 6 : Experimenfal Resu/fs

where À2 is the arrival rate to this queue and E(s) is the average lifetime of a service. If
E(n), the average number of available services in Queue 2, is less than 150, there is a very

low probability of having drops at Queue 1 (Figure 6.7). Thus, the service arrival rate to

Queue 2 will be very close to that of Queue 1. Having E(s) : 300, the uppff limit of

service arrival rate to the system before dropping services will be:

E(n\I - - \'-l : 0.5 seruicef secE(')

Using the assumed parameter values (i.e.) : 0.5 and E(s) : 300) and after running

the simulation with a maximum of 150 services for a relatively long period of time (10000

service arrivals of which 1000 was used for warm up), I measured the average service time

'I*@rinter-eventtimessinceitcanmodelmostarrivaUdeparturetimes'

6.3 : Simulating the Sysrem

Table 6.4: Simulation results to find anI/O compatible sequence
assuming a maximum of 150 available services and À : 0.5

Avg. No. of services in Queue 2

Avg. matching time (llp,ù
Avg. queue length of Queue 1

Avg. waiting time in Queue I

(i.e. average time required to do an VO match), average number of available services, aver-

age length of queue that services join before doing I/O matching, average waiting time in

the queue, average lifetime of a service, and average arrival rate to Queue 2. The results are

shown in Table 6.4. The results shown in this table are based on replicating the simulation

100 times. The average number of available services, as can be seen from the table, is lower

than the anticipated 150 services. The reason for this discrepancy is that some services are

dropped in Queue 1 and the effective arrival rate to Queue 2 is lower than À : 0.5 (Table 6.4

shows that this value is 0.47). If the arrival ¡ate is decreased to À : 0.33 (an arbitrary value

less than 0.5), the average number of available services calculated during simulation will

completely match with the anticipated value. Table 6.5 shows the collected statistics from

a simulation where À : 0.33. Table 6.5 presents that with this low arrival rate, the length of

the first queue is zero. This indicates that time spent for service composition is very small

when services do not arrive in the system very often.

To further ensure that my simulation was correct and to be able to compare the simu-

lation results to coresponding analytical formulas, I used an exponential distribution with

lq: L10.09 : 11 (instead of pre-calculated matching times) to generate service times in

Metrics

Avg. lifetime of a service in Queue 2

Avg. arrival rate to Queue 2 (Àz)

Blocking probability

Simulation Values

159

139.94

0.48 sec

0.15

1.4 sec

299.86 sec

0.41

0.07

160

Table 6.5: Simulation results to find an I/O compatible sequence
assuming a maximum of 150 available services and À : 0.33

Avg. No. of services in Queue 2

Avg. matching time (1llL,ù
Avg. queue length of Queue 1

Avg. waiting time in Queue 1

Chapter 6 : Experimental Results

Metrics

Avg. lifetime of a service in Queue 2

Avg. arrival rate to Queue 2 (Àz)

Blocking probability

Table 6.6: Simulation and analytical results to find UO compatible
sequences assuming a maximum of 150 available services,
À : 0.33, and an exponential distribution for VO matching
times with þt :71'

Simulation Values

Avg. No. of services in Queue 2

Avg. matching time (1/p1) (sec)

Avg. queue length of Queue I

Queue 1. (Table 6.5 shows that the average service time in Queue 1 is 0.09.) The results of

running the simulation with the parameters as before (other than service times in Queue 1

which are from an exponential distribution) are presented in Table 6.6.It can be seen from

this table that analytical results confirm the simulation results.

To remove the limit of 150 services in the simulation without having to run the prototype

SE program for a very long time to collect matching times, I tried to find a distribution for

100.1

Avg. waiting time in Queue 1 (sec)

0.09 sec

Avg. lifetime of a service in Queue 2 (sec)

Metrics

Avg. arrival rate to Queue 2 (Àz)

0.0
0.0 sec

299.73 sec

0.33

0.0

Simulation Values

100.1

0.09
0.00
0.0

Analytical Values

299.13

0.33

99

0.09
0.00
0.0
300

0.33

6.3 : Simulating the Sysfem

matching times by fitting a distribution to the available sample data. By examining sample

matching times when the number of available services was more than 100 (using Matlab's

statistics toolbox2), I realized that the Weibull distribution [70] might give a good estimate

of matching times. I tried different heuristic methods to check the goodness-of-fit of the

Weibull distribution for my sample data.

Figure 6.8 shows the cumulative probability function of both the sample data and the

estimated Weibull distributions when there are 100,725,150 services in the system. (Sim-

ilar plots were generated for a few other numbers of available services which were similar

to the presented figure.) The figure shows the result of Matlab's fitted Weibull distribution

(FittedWeibutl in the figure) as well as Weibull distributions whose scale and shape pa-

rameters are estimated (based on those values from the fitted distribution) using linear and

quadratic frts (Weibull (quadratic fit) and Weibull (linear fit) in the figure). It can be seen

that the two plots for sample data and the fitted Weibull are very similar. The estimation is

necessary to find scale and shape parameters when there are more than 150 services in the

system. The details of estimation will be explained later in this section.

I also tried Q-Q plots [51] when there are 100,725, and 150 services in the system to

see how well the Weibull distribution estimates my sample data. Figure 6.9 shows Q-Q

plots of the sample data with the fitted Weibull distribution. The plots are almost linear

indicating that the middle of the fitted Weibull distribution agrees with the middle of the

true underlying distribution.

For a given number of available services, k, I found the scale parameter, ,4, and shape

parameter, B, of the Weibull distribution. I calculated these two parameters for k : 100

to k : 150 generating 50 different parameters for the Weibull distribution. Then, I used

a polynomial as well as a quadratic fit to extrapolate the parameters of the Weibult distri-

bution for services over 150. Figure 6.10 shows how these two parameters are estimated

'N4.tffiation method to fit a distribution to data.

161

r62

(a) CDF of sample and the estimated Weibull (b) CDF of sample and the estimated Weibull

0r00?m@1æ5ææ07æ8æw
DÂb

distributions fo¡ k : 100

Chapter 6 : Experimental Results

0.

o.

o.

o.

0-

o.

o.

o_

o.

-ó

E
e

E
E

orm2wm
0ab

distributions lor k : L25

Figure 6.8: Cumulative Distribution Function (CDF) of sample data
and estimation using Weibull distributions for
k : 100,125, and 150

(c) CDF of sample and the estimated Weibull
distributions for ,k : 150

using linear and quadratic fits.

Figure 6.10 suggests using the quadratic fit and the result is:

A:
B:

0.20rk2 -4r.273k+2204

-0.0028k + 1.0096

where k> 100 is the number of services

(6.1)

6.3 : Simulating the System

o
5
'õ

(a) Q-Q plot of sample data with fitted Weibull (b) Q-Q plot of sample data with fitted V/eibull
distributionfork:100

ræ2@æ04æm@7æm9ærmo
Samdc oab Ouan@s

"tL4

e
E1
o
e

e
E

163

distributionfork:125

Figure 6.9: Q-Q plots for sample data and the fined Weibull distribution
for k : 100, 125, and 150

SaEple Oab OuaÞdes x lO.

(c) Q-Q plot of sample data with fiued Weibull
distributionforÀ:150

To further check the suitability of the quadratic fit, I plotted the cumulative distribu-

tion function of the Weibull distribution estimated using linear and quadratic methods in

Figure 6.8. This figure shows that the quadratic method estimates the fitted Weibull distri-

bution better. I also tried Q-Q plots for quadratic estimate for k : 100, 125, and 150 which

are shown in Figure 6.1 1.

Having parameters for the Weibull distribution, I removed the constraint of 150 services

1 1.2 t.4 16 1A

164

k

(a) Estimating the scale parameter

Figure 6.10: Estimating scale and shape parameters of the fitted
Weibull distribution using linear and quadratic fits

Chapter 6 : Experimenral Resuirs

from my simulation and ran it with the same parameters as before (i.e. À : 0.5 and

E(s) : 300, where E(s) is the sojourn time of a service). If there are less than 100

available services, I randomly chose one of the 1000 sample running times. Otherwise

I used formula 6.1 to calculate the parameters of the Weibull distribution for the given

number of services, k, and then generated a Weibull random variable as the matching time.

The experiment with the Weibull distribution suggested using a lower anival rate since

the matching times were higher than before. So I selected À : 0.25 to keep the system

stable. Table 6.7 shows the result of the new simulation experiment. Since I did not drop

any services in Queue 1, the arrival rates of both Queue 1 and Queue2 , as can be seen

from Table 6.7,are the same and the average number of available services matches with

the anticipated value (i.e. I x E(s) :0.25 x 300 :75).

In the previous simulations, I selected the input and output types of services uniformly

from available types. However, this does not reflect a real world scenario in which some

of the services are more popular than the others. To model this aspect of the real world,

I used Zipf distribution [52] to select the input and output types of services. In the Zipf

(b) Estimating the shape parameter

6.3 : Simulating the System

(a) Q-Q plot of sample data with quadratic es- (b) Q-Q ptot of sample data with quadratic es-

timated Weibull distribution for ft : 100 timated Weibull distribution for k : 125

9

o
¿
e

2Ì

165

Figure 6.1 1: Q-Q plots for sample data and the quadratic estimated
Weibull distribution for k : 100, 125, and 150

sampre Þta ouanÞLcs x lo.

(c) Q-Q plot of sample data v/ith quadratic es-

timated Weibull distribution for k : 150

distribution, the probability of selecting an element with rank k out of .fy' elements is:

l(k;s,//):#whereScharacteriZeSthedistribution(6.2)

To select the rank of the input and output types, I assume (without loss of generality)

that each type is arbitrarily associated with a number between 7 and72 (recall that we have

72 types in the sample ontology). I use this number as the rank of a type and I choose s : 1 .

t66

Table 6.7: Simulation results to find anUO compatible sequence using
Weibull distribution without rhe constraint of having a

maximum of 150 available services and À : 0.25

Avg. No. of services in Queue 2

Avg. matching time (Ilp)

Having these parameters, I can pre-calculate the probability of selecting each element using

Formula 6.2. At simulation time, I generated a random number and compared it with the

previously calculated Zipf probabilities to select an input and output type for a service. The

results of simulating the system using Zipf distribution show only a minor difference in the

collected statistics and hence are not provided.

Avg. queue length of Queue 1

Chapter 6 : Experimental Results

Avg. waiting time in Queue 1

Met¡ics

Avg. lifetime of a service in Queue 2

Avg. arrival rate to Queue 2 (Àz)

6"4 ScalabilityAnalysis

Simulation Values

Having an estimate of the average number of available services at the SE side and the

average matching time to find a sequence, I decided to determine how well my system

scales. Scalability is an important, practical consideration for SEs. I consider three different

environments: 1) a home, 2) a conference/meeting room, and 3) an airport lounge each

having different characteristics related to frequency, complexity, etc. of compositions.

The first environment that I chose fo analyze, a home, has relatively static behavior in

terms of arrival and departure of services. Let us assume that the mean arrival time of a

new service to a home is 30 days (I assume a steady period). In other words, on average,

every month we will have the arrival of one new service in a home (possibly corresponding

73.56
1.24 sec

126

503 sec

299.91 sec

0.25

6.4 : Scalability Analysis

to a somewhat less frequent arrival of new devices providing the new services). Services,

once they arrive, will be added to the input/output caches at the SE side for VO matching.

Services will remain in this list for some time and then be removed based on an exponential

distribution. The result of I/O matching after ranking, of course, will be added to the

permanent repository for future matching. Based on my simulation results, the highest

arrival rate before the system becomes unstable (i.e. a system with long waiting times, very

long queue length, etc.) is:

Às¿able :0.25 seruicef sec

This equation applies to a deterministic system (i.e. the system that I simulated) and

just shows an order of magnitude calculation. Having an arrival rate of 1 service each

month gives:

If we assume that each SE can support ll GDs (or homes in this case), we will have:

Alto¡ne -

167

30+24x3600

Equation 6.3 suggests that my proposed approach for composition will not cause any

problems despite supporting a large number of gateway devices deployed in different homes.

The second environment that I chose to analyze was a confe¡ence/meeting room. A

conference room is more dynamic than a home in terms of arrival and departure of services.

Each time that a speaker changes or a new meeting starts, many arrivals/departures may

occur. I assume that changes in a meeting room (and subsequently arrivals/departures)

occur based on an exponential distribution with a mean of half an hour. Thus, the arrival

Àstable

+ mar(H)

: 0.386 x 10-6 serui,cef sec

H * À¡o*"

À"tout"/Àno,n.: 648 * 703 homes

(6.3)

168

rate will be:

Using equation 6.3 with the new arrival rate yields:

_Ameeting -

This means that an SE can support a reasonable number of GDs corresponding to different

meeting rooms.

The third environment chosen was a very dynamic one, i.e. an ai¡port lounge. If I

assume that a wireless access point can cover several gates in an airport, at a moderately

busy airport, the service arrival time might follow an exponential distribution with a mean

of five minutes. The arrival rate will be:

Àstabte

+ rnar(M)

30x60
: 0.56 x 10-3 seruicefsec

Chapter 6: Experimental Results

M + À*""¡¿,,n

Àrtob¿"/À*""tins : 450 meeti,ng roorns

The maximum number of GDs will be:

_Aairport -

which is a reasonable number.

The matching times used in

sured pure VO matching time.

namic environment such as an

5x60
: 0.33 x 10-2 seruicef sec

Àstabte

+ man(L)

L * Ào¿roor¿

À"toarclÀo1rport : 75 lounges

these analyses came from the simulation study that mea-

Nevertheless, these results show that even for a very dy-

airport lounge, each service enabler is able to support a

6.4 : Scalability Analysis

reasonable number of GDs. Keeping in mind that after running the proposed service com-

position system in an environment for a while, most of the compositions can be handled

using repository-based matching, the number of GDs that can be supported by each SE, in

practice, will be higher than my calculated values. Thus, the scalability of my approach to

composition will not be an issue for implementation in a real environment.

169

Chapter 7

Conclusion and Futune Work

Service Oriented Architecture (SOA) is rapidly gaining popularity in developing new soft-

ware systems. However, most of work has been done in the Web services area and little

work has tried to apply this idea in pervasive environments. Improvements in technology

have enabled end-user devices (e.g. cell phones, PDAs, etc.) to be powerful enough (from

both the computation and memory perspective) to offer services and perform calculations.

Having a multitude of pervasive devices/services in an environment gives us the potential

opportunity to build and offer new services based on the existing ones. This is highly de-

sirable but users in pervasive environments are seldom capable or interested in overseeing

this process.

Most existing service composition systems require a pre-specified "target" workflow

and then try to identify available services in a pervasive environment that can be combined

to implement that workflow. Unfortunately, describing a target composite service for most

users of pervasive environments is a challenging task. Users in such environments do not

want to be involved in configuring, running, and maintaining available services. Further-

more, services in pervasive environments, due to the mobility of most of the devices/users,

170

may come and go frequently. This makes it difficult to create dependable composite ser-

vices.

In my thesis, I designed, prototyped and evaluated a composition system which can

offer new services in pervasive environments containing many heterogeneous (and pos-

sibly mobile) devices without involving end-users. Services are described semantically

using a domain ontology developed in the thesis. Semantic description enables finding

input/output compatible services and generating composite services on the fly. To avoid

involving end-users, I assume existing third party SEs who have both the technical knowl-

edge and computing power needed to create new services for end-users. Service enablers

maintain a shared repository of previously generated and used composite se¡vices to in-

crease reusability and improve the performance of composition by avoiding the expensive

process of doing VO matching. Composite services generated by the SE using input/output

matching are ranked to filter out composite services that are unlikely to be of end-user inter-

est. Several criteria based on general forms of weakness in composition are used to rank a

composite service. The SE also uses service usage information collected from different per-

vasive environments to identify "similar" environments. This information can later be used

to adjust the computed rank of composite services per environment type. The final stage

in a fully automated service composition process is deployment of generated composite

services. To make deployment of newly created services seamless, I assume the existence

of a GD which provides network connection between pervasive devices/services and the

SEs. The GD advertises the received composite services in terms of available pervasive

protocols. In this way, the existing devices in such an envi¡onment can easily interact with

the advertised services.

t71

I implemented a proof of concept prototype running on a PC acting as GD. Different

emulated devices used in this prototype provide a variety of services. The GD detects the

presence of a new service and interacts with the SE which applies repository based and, if

172

necessary, input/output based matching to suggest different composite services that can be

created involving the newly discovered service.

My implemented prototype has been tested with real-world scenarios to make sure that

it is capable of generating composite services using a real domain ontology. It has also been

evaluated using different parameters (corresponding to characteristics of different pervasive

environments such as a home, meeting/conference room, etc.) to assess the scalability of

the service composition model. The results show that repository-based (a.k.a. template-

based) service matching is highly scalable. However repository-based matching alone can-

not find compositions that do not exist in the repository. On the other hand, interface-based

matching incurs more overhead for composition but can find entirely new composite ser-

vices. Thus, interface-based matching is used to complement the template-based matching

technique. To reduce the composition time for future compositions, the results of interface-

based matching, after ranking, are stored in the repository. Assuming that SEs provide

services to many pervasive environments, the probability of finding suitable compositions

in the repository should be very high, making the overall system efficient.

Chapter 7 : Conclusion and Future Work

7.1. Contributions

The contributions of my thesis are as follows:

l. A novel fully automatic service composition model for pervasive environments in

general and Home Area Networks (HANs) in particular which involves SEs in the

service composition process

2. A novel method for storing workflows (i.e. shared repository by the SE) and an inte-

grated and efûcient method of semantic matching including optimized both inpuVoutput-

based and repository-based approaches.

7.2 : Future Work

3. Creation of a realistic type ontology used to describe services semantically.

4. A method for ranking the automatically generated composite services (both abstract

and concrete) to ensure that only the most useful generated services will be offered

to the end-user and thereby avoiding "information ovetload".

5. Basic verification of the ranking scheme

6. A mechanism for deploying composite services in pervasive environments using

OSGi and two available ubiquitous computing protocols (i.e. UPnP and Jini).

7. A novel OSGi grounding for OWL-S descriptions and a mechanism for the dynamic

creation of such groundings

8. A simulation study and scalability analysis to assess the feasibility of supporting

many GDs by SEs.

7 "2 Future Work

The work presented in this thesis might be extended in the following ways:

r73

ø A more complicated ranking function could be developed which would consider pa-

rameters like contextual information. Heuristic techniques from Artificial Intelli-

gence (AI) can result in developing a better ranking function. Applying such a rank-

ing function, could select only the most useful services (based on a specific user's

contextual information) which could then be deployed in the user's environment.

Adding more semantic information should result in finding more accurate and rele-

vant compositions. In addition to type information, which is currently used in my ser-

vice composition model, task/method information could also be used. Task/method

t74

information would provide a higher level of abstraction by which more relevant com-

positions could be generated. Further, non-functional characteristics (sometimes re-

ferred to as QoS parameters) could also be used to refine the composition process.

Such characteristics could be supported within the current OWL-S prototype using

"properties" associated with each service.

Handling service failure for composite services is a crucial issue. Since a composite

service involves other services (composite or atomic) the likelihood of a composite

service failing is higher than an atomic one. In this thesis I touched upon this issue

and proposed a simple fault tolerance method. However, saving the partial execution

state of a composite service using checkpointing mechanisms might improve the

execution reliability of a composite service.

I did a simulation based assessment of my prototype implementation that only fo-

cused on finding average matching time to measure the scalability of the system.

Numerous other aspects of the system's use might also be of interest. To study differ-

ent aspects of a pervasive environment (e.g. response time, overhead of composition,

etc.), a (simulation) model must be specifically designed for pervasive environments.

The model could then be later used to study the effect of changing different parame-

ters (e.g. arrival rate, service time, etc.) in different pervasive environments.

Each generated composite service could be conveniently presented to the end-user

by having awidget or other user-interface object added to their interaction interface.

Additionally, each such user-interface could be further customized for each user (e.g.

based on user preferences, past usage history, level of user expertise, etc.) to help the

end-user to select his/her preferred services easier.

Chapter 7 : Conclusion and Future Work

7.2 : Future Work

ø Modeling pervasive environments based on their device information and usage pat-

tern of composite services can be used to cluster similar envitonments. I assumed a

predefined cafegorization for GDs in my thesis but the same idea might be expanded

to automatically identify similar environments. A generated composite service could

then be selectively sent to only particular pervasive environments.

The usage-based ranking implemented in the prototype needs to be tested in an actual

deployment to assess the usefulness of this ranking scheme.

175

Appendix A

Acronyms

DAML
DAML-S
GD
HAN
OSGi
owL
OWL-S
RDF
SDP
SE

SLP
SOA
SOAP
SOC
SOUPA
UDDI
UNSPSC
UPnP
WAN
V/SDL

DARPA Agent Markup Language
DARPA Agent Markup Language for Services
Gateway Device
Home Area Network
Open Service Gateway initiative
Web Ontology Language
Ontology Web Language for Services
Resource Description Framework
Service Discovery Protocol
Service Enabler
Service Location Protocol
Service Oriented Architecture
Simple Object Access Protocol
Service Oriented Computing
Standard Ontology for Ubiquitous and Pervasive Applications
Universal Description Discovery and Integration
United Nations Standard Products and Services Code

Universal Plug and Play
Wide Area Network
Web Service Definition Language

176

Appendix B

Domain Ontology

In this appendix I present different parts of the domain ontology designed in this thesis.

177

178 Appendix B : Domain Ontology

6LT

Appendix C

Service DescriptÍon

Description of a few example services encoded

sented in this appendix.

C"l Ðisplay Video and Play Audio Service

<?xmI version:"1.0"?>
<rdf : RDF

xmlns:process:"http: //www.daml-.orglservices/owl-s/1.1,/Process.owl#"
xmlns:1ist="http:. / /www. daml. orglservices/owl--s/1.1/generic/objectlist. owl#"

xmlns : swrf = " http :, / / www .w3 . org / 2003/ 1 1,/swrl+ "

xmlns: rdfs:"http:. / /www.w3.orq/2000/ 0I/ rdf- schema#"

xmlns: owL:"http: / /www .w3 .orq/2002/ 0'7 / owl#"

xmLns:expression="http:.//www.daml-.orglservices/owl--s,/7.I/generic/
Expression . owÌ# "

xml-ns :OE="http : / / Localhost,/OWLSEXIensions. owf #"

xmÌ n s: " htt p : / / Ioc alhLost,/ home / D i spl ayvideoAud i o . owÌ "

180

in OV/L-S with OSGi grounding are pre-

C.l : Display Video and PIay Audio Service

xmlns:service:"http: //www.daml.orglservices/owl-s/1.1,/Service.owl#"
xmlns : grounding: " http : / / www. damf . orgl servi ces /owl-- s / 1 . 1,/Grounding. ow1 #,'

xmlns : rdf:"http : / / www .w3 . org / 1999 / 02 / 22-rdf-syntax-ns# "

xmlns : xsd:"http : / /www .w3. orq/ 2001/XMLSchema#"

xml-ns : dam]: " http : / / www. daml- . or q / 20 0 I/ 03,/daml+oi I # "

xml-ns : dc:"http :, / / purI. org/ dc/ elements/1 . 1/ "

xmfns:profile="http: //www.darnl .orglservices,/owf-s/1.1/profile.owl#',
xm1 : base= " http : / / localhost,/home,/Di sptayVideoAudio . ow1 " >

<owl :Ontology rdf : about=" ")
<ow1 : imports rdf: resource:"http : / /www. damf . orglservi ces/ owl-s/i. .I/

Service.owl" />

<owf : imports rdf : resource:"home-ont. owl-"/>

<ow-I : imports rdf : resource= "http : / / www. damf . orgl servi ce s / owl- s / I . I /
Process.owl",/>

<owf : imports rdf : resource= "http : / / www. daml . org/services,/owl-s/ 1 . 1,/

Grounding . owI " ,/ >

<owl :imports rdf :resource:"http://www.daml-.orglservices,/owl--s,/1.1/
Profile.owf"/>

</ owl: OntoJ-ogy>

<service : Service rdf : ID= "DisplayVideoAudioServi ce ")
< service : present s rdf : resource= " #Di spf ayVideoAudioprof i f e " / >

<servi ce : des cribedBy rdf : resource= " #Displ_ayVideoAudiop roces s t' / >

<service : support s rdf : resource= " #Di spl ayVideoAudioGrounding" >

<rdf s : 1abe1>Di splayVideoAudioServicelabel< / rdf s : labef >

</service: Service>

<prof ile : P rof i Le rdf : ID= " #Di splayvideoAudioProf i l-e " >

<service : presentedBy rdf : resource= " #Di splayVideoAudioS erv ice', / >

<profil-e: serviceName>DisplayVideoAudioService<,/profile : serviceName>

<profile:hasfnput rdf : resource="#input1"/>
<profile :haslnput rdf : resource:"#input2"/>

</profile: Profile>

181

182

<proces s : At omi cP roces s rdf : ID: " #Di splayVideoAudioProces s " >

< service : describes rdf : resource= " #Displ ayvideoAudioService " / >

<process :haslnput rdf : resource:"#input1"/>
<process :haslnput rdf : resource:"#input2"/>

</process : AtomicProcess>

<process : Input rdf : ID="input 1">

<rdf s : label>input 1 </rdf s : labe1>

<process :parameterType rdf :datatype="http : / /www.w3.orq/2007 /
XMLSchema#anyURI "

>http://localhost/home/home-ont.owf#VideoSignal</process:parameterType>

</process: Input>

<process: Input rdf: ID="input2">
<rdf s : J-abeJ->input2</ rdf s: label->

<process :parameterType rdf :datatype:"http : / /www.w3 -org/ 200I/
XMLSchema#anyURI "

>http://Iocalinost/home,/home-ont.ow1#AudioSignal</process:parameterType>

</process: Input>

<OE : OSGiGrounding rdf : ID: " Di splayVideoAudioGrounding" >

<service : supportedBy rdf : resource:"#DlsplayVideoÀudioService"/>
<grounding : hasAt oml cP roce s s Groundlng

rdf : resource= " #DisplayVideoAudioP roce s sGrounding" />>

</ ot:. oSGiGrounding>

<OE: OSGiAtomicProcesscrounding rdf : ID="DisplayVideoAudioProcessGrounding">

<OE : osgi Servi ce>D i spl ayVi deoAudi o< /OE : osqi Se rvi ce>

<OE: servicelnput>
<OE : osgiParameter rdf : ID:'r In0">

<OE: owfsParameter>

<process : Input rdf : resource:" #inputl " />

< / OE:. owl-sParameter>

<OE: javaType> java. lang. String</OE: javaType>

<OE : paramlndex> 0 < /OE : paramlndex>

Appendix C : Service Description

C.2 : PIay MPG Fí|e Service

< / OE:. osgiParameter>

</Ot:servicelnput>
<OE: servicelnput>

<OE : osgiParameter rdf : ID:"In1 ">

<OE: owfsParameter>

<process : ïnput rdf : resource="#input2"/>
< / OE: owlsParameter>

<OE : javaType> java. lang. String</OE : javaType>

<OE : paramlndex> 1 < /OE : paramlndex>

</OE:osgiParameter>

< / OE:. servicefnput>
<OE : osgiClass>org. osgi . service .upnp. UPnPDevice<,/OE : osgiClass>
< groundlng : owl sProcess)

<proces s : Atomi cProcess rdf : about: " #Di spl ayVideoÀudiop rocess " />
</grounding : owlsProcess>

< / OE:. OSGiAtomi cProcessGroundi ng>

</ rdf: RDF>

183

C"2 Flay MPG File Service

<?xml version:"1.0"?>
<rdf: RDF

xmlns:process="http: //www.daml-.orglservices/owl-s,/1.1,/process.owl#"
xmlns: l-ist:"http:. / /www. daml. org,/servlces/owÌ-s/1.1/generic/ObjectList. owf#"

xml-ns : swrl= " http : / / www . w3 . or g / 200 3,/ 1 1 / swrl# "
xmlns: rdfs="httpl. / /www.w3.org/2000 / 0I/rdf-schema#"
xmf ns : owl-:"http : / /www .w3 . org/ 2002 / 01 / owl#,,

184

xmlns : expression:"http : / /www. daml- . orglservices/owÌ-s,/7 .1/ qenertc/

Expression. owl-#"

xmf ns : OE="http: ,/,/localhost/OWLSExLensions . owf # "

xmf ns= " http : / / loca Ihost /home,/ P J-ayMPGFi Ie . owJ- "

xmlns : servlce:"http : / / www. damf . orql services/ow1-s/ 1 . 1 /Service . owl# "

xmlns : grounding:"http:. / /www. daml- . orglservices/owl-s/1 . 1 /Grounding. owl# "

xmlns : rdf = " http : / / www . w3 . org / 19 9 9 / 02 / 22-rdf -synt ax-ns # "

xmlns : xsd:"http : / / www.w3. org/ 2001/XMLSchema#"

xml-ns : daml: " htt p : / / www. daml" . or g / 20 0Il 0 3 /daml+oi 1 # "

xml-ns : dc:"http : / / pur I. org / dc / e).ement s/ 1 . 1 / "

xml-ns:profile="http: //www.daml .orglservices/owf-s/1.1,/Profile.owl-#"

xml : base:"http: / /locafhost/home/PlayMPGFi_le. owf ")
<owl- : Ontology rdf: about=" ">

<owl : import s rdf : resource="http : / / www. damf . orgl servi ces / owl- s / L . I /
Service. owf"/>

<owl- : imports rdf : resource="home-ont. owl- " /)
(owl- : imports rdf : resource:"http : / / www. daml- . orglservi ces / ow:.- s / 7 . 7 /

Process.ow-I"/>

<owl : imports rdf : resource:"http : / / www. damf . orglservi ces / owl- s / L I /
Grounding. owf " />

<owl- : imports rdf : resource:"http : / / www. daml- . orglservi ces / owl- s / L. 7 /
Profile.owl"/>

</ owt.: Ontology>

<service : Service rdf : ID:"PfayMPGFileService">

<service :presents rdf : resource:"#PfayMPGFileProfi1e"/>

<service : des cribedBy rdf : resource: " #P layMPGFi f eProcess " />

<service : supports rdf : resource="#PlayMPGFilecrounding">

< rdf s : 1 abe l- >P l- ayMP GF i 1 e Se rvi cef abe I < / rdf s : f abe-L>

</service: Service>

<prof i-le:Prof il-e idf : ID:"#PlayMPGFileProf il-e">

<service : presentedBy rdf : resource: " #P I ayMPGFi leService " />

Appendix C : Service Description

C.2 : PIay MPG File Service

<prof i le : serviceName>P layMPGFi leSe rvice< /prof i le : servi ceName>

<profile:hasOutput rdf : resource="#outpuLI,, / >

<profi-J-e : hasOutput rdf : resource="#outpuL2" / >

</profile: Profile>
<process : AtomicProcess rdf : ID:" #PIayMPGFi leprocess " >

<service : describes rdf : resource: " #playMpGFif eService " /)
<process:hasOutput rdf : resource:"#outputL" />
<process : hasOutput rdf : resource="#outpuL2,, / >

</process : AtomicProcess>

<process :Output rdf : ID:"output1 ">
<rdf s: -lal¡ef >outputl</rdf s: f abel->

<process :parameterType rdf : datatype:"http : / /www.w3. org/Z00I /
XMLSchema#anyURI "

>http / /Iocalhost,/home/home-ont. owl#VldeoSignal</process:parameterType>
</process : Output>

<process :Output rdf : ID:"output2">
<rdfs : label>out puL2< / rdfs : fabel>
<process :parameterType rdf : datatype:"http : / /www.w3. org/ 200L /

XMLS chema+ anyURI "

>http://Iocalhost/home/home-ont.owl#AudioSignaI</process:parameterType>

</process : Output>

<OE: OSGiGrounding rdf : ID:"PlayMPGFileGrounding" >

<service : supportedBy rdf : resource= " #P I ayMpGFi l-eService " / >

<grounding : hasAt omi cP roce s sGrounding

rdf : resource:" #P f ayMPGFi l-eP roce s sGrounding " />>
</OE: OSGì-Grounding>

<OE : OSGiAtomicProcessGrounding rdf: ID="PlayMPGFiJ-eProcessGrounding")

<OE : os gi Servi ce>P J- ayMPGFi I e <,/ OE : osql Serv j_ ce>

<OE: serviceOutput>

<OE : osgiVariable rdf : ID:"Out0">
<OE: owlsParameter>

185

186

<process :Output rdf : resource:"+outpuLT', />
</OE: owfsParameter>

<OE: javaType> java . lang. String<,/OE : javaType>

<OE : varlndex> 0</OE : varlndex>
< / OE:. osgiVariable>

< / OE:. servi ceoutput >

<OE: serviceOutput>

<OE: osgiVariab-Ie rdf : ID="Out2 ">
<OE: owl-sParameter>

<process :Output rdf : resource:"#ouLpuL2" />
</OE: owlsParameter>

<OE : javaType> jâva. lang. String</OE : javaType>

<OE : varl ndex> 1 </OE : varfndex>

< / OÊ:. osgiVariable>
</OE serviceOutput>

Appendix C : Service Description

<OE: osgiClass>org. osgi . service. upnp. UpnpDevice</OE: osgiClass>
<grounding : owl sProcess)

<proces s : Atomi cP roces s rdf : about: " #P layMPGFi leproces s " />
</grounding : owl sProcess>

< / OE: OSGiAt omi cProce ssGrounding>

< / rdf: RDF>

C.3 Convent PDF to FS ServÍce

<?xml- version="1. 0" ?>

<rdf: RDF

xml-ns:process="http: //www.daml.orglservices/owr-s/1.1/process.owl#',
xmlns : list:"http: / /www. daml . orglservices/owl-s/1 .1,/generic,/Ob jectI,ist . owÌ#

xml-ns : swrl= " http : / / www . w 3 . or q / 200 3 / 1 1,/ swrl_# "

C.3 : Convert PDF ro PS Service

xmf ns : rdf s="http : / / www .w3 . org / 2000 / 0I / rdf -schema# "

xml-ns : ow-I="http : / /www.w3 . orq/ 2002 / 0'7 / owI#"

xmÌns : express ion: " http : / / www. daml . orgl services / owl- s / I . I / qener íc /
Expression. owl# "

xml-ns : OE: " http : / / Iocalhost /OWLSExI en s ion s . owl # "

xmfns="http :,//localhost/home/PDFToPS. owf "

xmfns:service:"http: //www.daml .orglservices/owl-s,/1.1,/Service.owl#"
xmfns : grounding="http : / /www. damÌ. orglservices/owl-s/ 1 . 1,/Grounding. owl# "

xmf ns : rdf=" http : / / www . w3 . org / 1999 / 02 / 22-rdf -syntax-ns+ "
xml-ns : xsd="http : / / www .w3 . org/ 2001lXMLSchema# "

xmf ns : daml-: " http : / / www. daml- . or g / 20 0Il 0 3 /daml +oi f # "

xmf ns : dc:"http : / / pur I . org / dc / element s / 1 . 1 / "

xmLns : prof i le:"http : / / www. damf . orgl services/owl-s/ 1 . 1 /Prof ile . owL# "

xml :base:"http : //locafhost/home/PDFToPS. owl")
<owl :OntoJ-ogy rdf : about:" ">

<ow1 : imports rdf : resource: "http : / / www. daml . orgl servi ces / owl- s / I . 7 /
Service.owf"/>

<owl- : imports rdf : resource:"home-ont. owf "/>
<ow1 : i-mports rdf : resource:"http : / / www. damf . orglservi ces / owl- s / 1 . 7 /

Process.ow-l"/>
(ow1 : import s rdf : resource="htLp : / / www. daml . orgl servic es / owl- s / I. I /

Grounding.owl-"/>

<owl: import s rdf: resource:"hLtp:. / /www. daml. orglservices/owl-s/I.I/
Profile.owl"/>

</ owJ-: Ontology>

<service : Service rdf : ID="PDFToPSService")

<service :presents rdf : resource:"#PDFToPSProfile"/>

<service : describedBy rdf : resource:"#PDFToPSProcess"/)

<service : supportS rdf : resource:"#PDFToPSGrounding'">

< rdf s : 1 abe I >PDFToP SSe rvice l- abeL <,/ rdf s : l- abe f >

</service: Service>

187

188

<profile : Profil-e rdf : ID:"#PDFToPSProfile">

<service :presentedBy rdf : resource="#PDFToPSService" />

<prof i 1e : serviceName>PDFToPSService</prof ile : serviceName>

<profile: haslnput rdf : resource="#input1"/)
<profile: hasOutput rdf : resource="#output\" />

</profile: Profile>
<process :AtomicProcess rdf : ID:"#PDFToPSProcess">

<service : describes rdf : resource="#PDFToPSServlce"/>

<process :haslnput rdf : resource:"#j-nput1"/)
<process : hasOutput rdf : resource="+outpuLl" / >

</process : AtomicProcess>

<process : Input. rdf : ID:"input1 ">

<rdf s : Iabel>input 1 <,/ rdf s : f abel>

Appendix C : Service Description

<process :parameterType rdf :datatype="http : / /www.w3. orq/200I/
XMLSchema#anyURI "

>http : / / loc alhost /home/home-ont . owl#pdf < /process : paramet erType>

</process: Input>

<process : Output rdf : fD:"output1">
<rdf s: l-abeI>outputl</rdf s: l-abe1>

<process :parameterType rdf :datatype:"http : / /www.w3. orq/2001/

XMLSchema#anyURI "

> htt p : / / Iocalhost / home / home-ont . owl #Col-ourP SL3 < /proce s s : paramet e rType>

</process : Output>

<OE : OSGiGrounding rdf : ID:"PDFToPSGrounding">

<service : supportedBy rdf : resource="#PDFToPSService" />

<grounding : hasAt omicP roce s sGrounding

rdf : resource: " #PDFToP SProcessGrounding," />>

< / OE:. OSGiGrounding>

<OE : OSGiAtomicProcessGrounding rdf : ID="PDFToPSProcessGrounding">

<OE : osgiservice>PDFToPS</OE : osgii-Servi ce>

<OE: servicelnput>

C.3 : Convert PDF ro PS Service

<OE : osgiParameter rdf : ID:"In0">
<OE: owlsParameter>

<process : Input rdf : resource="#input1"/)
< / OE:. owl- sP arameter>

<OE: javaType> java. lang. String<,/OE: javaType>

<OE : paramlndex> 0</OE : paramlndex>

< / Ot:. osgiP aramet er>

< / OE:. service I nput >

<OE: serviceOutput>

<OE : osgiVariable rdf : ID:"Out0">
<OE: ow-IsParameter>

<process:Output rdf : resource:"#outpuLl" />
< / OY,: owl sParameter>

<OE : javaType> java. J-ang. St ring<,/OE : javaType>

<OE : varlndex> 0 <,/OE : varlndex>

< / oE:. osgiVariable>

< /Oz: serviceOutput>
<OE : osgiClas s>org'. osgi . servi ce . upnp . UPnPDevi c e< / OE: osgiClass>

<grounding : owlsProcess>

<process : AtomicProcess rdf : about: r' #PDFToPSProces s " />
</grounding : owlsProcess>

< / OE : OSGiAtomicProcessGrounding>

< / rdf: RDF>

189

Appendix D

Additional Service Composition

Scenarios

Results of Scenariol:

rank

rank

rank

rank

rank

rank

0.59 DecodeSignalServicePlayDivXFil-eService--

D i spl ayVideoAudio S ervi ce

0.59 DecodeSignaIServicePIayDVDService--

D i spl ayVideoAudioS ervi ce

0.59 DecodeSignalServicePJ-ayMPGFileService--

D i spl ayVideoAudi o S ervi ce

0.59 DecodeSignaJ-ServicePlayWMVFll-eService--

Di spl ayVi deoAudioS e rvi ce

0.59 PIayDivXFil-eServiceDecodeSignaJ-service--

Di spl ayVideoAudi o S e rvi ce

0.59 PlayDivXFil-eServicePlayDVDService--

Di spl ayVi deoAudioS ervi ce

190

rank

rank

rank

rank

rank

rank

rank

rank

rank

rank

rank

rank

rank

0.59 PlayDivXFileServicePlayMPGFil-eService--

D i sp1 ayVi deoAudi oS ervi ce

0.59 PJ-ayDivXFiIeServicePlayWMVFil-eService--

D i sp J- ayVideoAudio S ervi ce

0.59 PlayDVDServiceDecodeSignalservice--

Di spJ- ayVi deoAudio S ervi c e

0.59 PlayDVDServicePJ-ayDivXFifeService--

Di sp1 ayVideoAudi oS e rvi ce

0.59 PlayDVDServicePlayMPGFileService--

D i spl ayVideoAudio S e rvi ce

0.59 PlayDVDServicePlayWMVFil-eService--

Di splayVideoAudioServi ce

0.59 PlayMPGFil-eServiceDecodeSignalservice--

Di sp1 ayVideoAudioS ervice
0.59 PlayMPGFiIeServicePlayDivXFii-eService--

D i spl ayVideoAudio S ervi ce

0.59 PlayMPGFileServicePlayDVDService--

D i sp I ayVideoAudi oS ervice
0.59 PJ-ayMPGFileServicePJ-ayWMVFileService--

D i sp J- ayVi deoAudio S ervi ce

0.59 PlayWMVFileServiceDecodeSignalservice--

Di spl ayVideoAudi oS ervi ce

0.59 PlayWMVFil-eServicePIayDivXFil-eService--

D i spl- ayVideoAudio S ervi ce

0.59 PJ-ayWMVFileServicePIayDVDService--

D i spì- ayVi deoAudi o S ervi c e

191

192

rank

rank

rank

rank

rank

rank

rank

rank

rank

rank

rank

rank

rank

0. 59 PlayWMVFil-eServicePlayMPGFil-eService--

Di spl ayVideoAudioS e rvr ce

0 .1 Composite_RecordMP3FifeServicel-abel_PlayMP3_64_44Fi1e

S e rv i c e l- abe l- D e code S i gn a 1 S e rvi c e - -D i sp 1 ayVi de oAudi o S e rv i c e

0 .1 Composite_RecordMP3FileServicelabeI_PÌayMP3_64_44Fi1e

S e rv i c e l- abe I P I ayD ivXF i I e S e rvi c e - -D i sp I ayVi de oAudi o S e rv i c e

0 .1 Composite_RecordMP3FifeServicel-abel-_PlayMP3_64_44File

ServicelabelP I ayDVDService--Di spl ayVideoAudioService

0 .1 Composite_RecordMP3FileServicelabel_Pl-ayMP3-64_44File

S e rv i c e I abe 1 P I ayMPGF i I e S e rvi c e - -D i sp 1 a yVi de oAud i o S e rvi c e

O .1 Composite-RecordMP3Fil-eServicel-abel-PlayMP 3-64-44File

S e rvi c e I abe 1P I ayWMVF i I e S e rvi ce - -D i sp I a yVi de oAu di o S e rvi c e

0.73 DecodeSignalServicePlayBWJPGFifeService--

Di spl ayVideoAudi o S ervi ce

0.73 DecodeSignalServicePJ-ayColourJPGFifeService--

Di splayVideoAudioServi ce

0.73 PlayDivXFifeServicePlayBWJPGFiIeService--

Di spl ayVideoAudioS ervice
0.73 PlayDivXEil-eServicePlayCoIourJPGFil-eService--

D i spl ayVideoAudioS ervice

0.73 PIayDVDServicePl-ayBWJPGFil-eService--

D i spI ayVi deoAudi oS ervi ce

0.73 PIayDVDServicePl-ayCoIourJPGFiÌeServíce--

D i spl ayVideoAudio S ervi ce

0.73 PlayMP3_728_44Fi1eServj-ceDecodeSignal-Service--

D i sp J- ayVideoAudio S ervice

Appendix D : Additional Service Composition Scenarios

rank

rank

rank

rank

rank

rank

rank

rank

rank

rank

rank

rank

rank

0. 73 PlayMP3_I2B_44Fil-eServicePlayDivXFileService--

D i spI ayVideoAudi o S e rv j- ce

0.73 PlayMP3_I2B_44FileServicePlayDVDService--

Di spl ayVideoAudioServi ce

0. 73 PlayMP3_]28_44FiIeServicePJ-ayMPGFileService--

Di spl ayVideoAudio S e rvi ce

0. 73 PlayMP3_f2B_44Fil-eServicePlayWMVFileService--

Di spl ayVideoAudioS ervice
0 .13 PlayMP3_I2B_4BFileServiceDecodeSignalservice--

Di sp J- ayVi deoAudi o S e rvi ce

0.73 PlayMP3_I28_4SFifeServicePlayDivXFiIeService--

Di splayVideoAudioServi ce

0. 73 PlayMP3-I2B_ABFiIeServicePlayDVDService--

Di sp I ayVideoAudi o S ervi ce

0.73 PlayMP3_I28_4BFileServicePlayMPGFileService--

D i spl ayVideoAudi oS ervi ce

0.73 PlayMP3_I2B_4BFil-eServicePIayWMVFil-eService--

D i sp I ayVideoAudi o S e rvi ce

0.73 PlayMP3_792_44FiIeServj-ceDecodeSignalservice--

D i sp1 ayVideoAudi oS ervice
0. 73 PlayMP3_792_44FifeServicePlayDivXFiIeService--

Di spl ayVideoAudioS ervi ce

0.73 PlayMP3_192_44FileServicePlayDVDService--

D i spJ- ayVideoAudio S e rvice
O .13 PlayMP3-192-44FileServicePlayMPGFileServíce--

Di splayVideoAudioServi ce

t93

194

rank

rank

rank

rank

rank

rank

rank

rank

rank

rank

rank

rank

rank

0. 73 PJ-ayMP3_192_44EileServicePlayWMVFiIeService--

D i sp1 ayVideoAudi oS ervi ce

0.13 PlayMP3_I92-4BFileServiceDecodeSignalService--

Di sp1 ayVideoAudioS ervice

0. 73 PlayMP3-]92_48Fil-eServicePJ-ayDivXFiÌeService--

D i spl ayVideoAudioS ervi ce

0.73 PtayMP3_I92-4BFileServicePlayDVDService--

Di sp J- ayVideoAudi o S e rvi ce

0. 73 PlayMP3-I92-4BFil-eServicePlayMPGFileService--

Di spJ- ayVideoAudioSe rvice
0. 73 PlayMP3_I92_4BFileServicePIayWMVFiIeService--

Di splayVideoAudioService

0. 73 PIayMP3-64-44Fil-eServiceDecodeSÍgnalService--

D i spl ayVideoAudi o S e rvi ce

0.73 PlayMP 3-64_{4FileServicePlayDivXFifeService--
Di sp1 ayVideoAudio S ervi c e

0.73 PlayMP3-64-44FiLeServj-cePlayDVDService*-

D i spl ayVj-deoAudi oS ervi ce

0.73 PlayMP3-64-44Fil-eServicePlayMPGFiIeService--

D i spl ayVideoAudio S e rvi ce

0.73 PlayMP3_64-44F'íLeServicePlayWMVFileService--

Di sp1 ayVideoAudioS ervi ce

0.73 PlayMPGFifeServicePlayBWJPGFiIeService--

D i sp J- ayVideoAudi oS e rvi ce

0. 73 PIayMPGFileServicePlayCofourJPGFil-eService--

D i spI ayVideoAudioS ervi ce

Appendix D : Additional Service Composition Scenarios

rank

rank

rank

rank

rank

rank

rank

rank

rank

rank

rank

rank

rank

rank

rank

0.73 Pl-ayWMVFileServicePlayBWJPGFil-eServj-ce--

D i sp J- ayVideoAudi o S ervi ce

0. 73 PlayWMVFileServicePlayColourJPGFil-eService--

D i spl ayVideoAudi oS e rvi ce

0.8 DecodeSignalservice--Pl-ayAudioService

0.8 PJ-ayDivXFileService--PlayAudioService

0. B PIayDVDService--PlayAudioService

0.8 PJ-ayMPGFileService--PlayAudioService

0.8 Playl.nlMVFiIeService--PlayAudioServj_ce

0. 8B Composite_RecordMP3Fil-eServicelabel_P1ayMP3_64 44Fite

Se rvicef abelP layBWJPGFileServi ce--
D i sp1 ayVideoAudi oS ervi ce

0 . BB Composite_RecordMP3Fj-leService.label_PlayMP3_64_44File

S e rvi ce l- abelP J- ayCo Iou rJP GFi I e S e rvi ce--
D i spl ayVideoAudi o S ervi ce

0 . 92 Composite_RecordMP3FileServicelabel_PlayMip3_64_44File

S ervi ce l- abe l- --P I ayAudi oSe rvi ce

0.92 PlayMP3_I2B_44FileServicePlayBWJPGFileService--

Di spl ayVideoAudioS ervi ce

O . 92 PlayMP3-728_44FiIeServicePlayColourJPGFil-eService--

D i spl ayVideoAudi o S ervi ce

0 . 92 PIayMP3_I2B_4BFileServicePlayBWJPGFileService--

D i spl ayVideoAudi oS ervice
0 . 92 PlayMP3_728_4SFileServicePlayCol-ourJPGFil-eService--

Di spI ayVideoAudioS ervi ce

0 . 92 PJ-ayMP3_192_44FileServicePlayBWJPGFiteService--

195

196

rank

rank

rank

0 .92

0 .92

0 .92

Di spI ayVideoAudi oS e rvi ce

Appendix D :

P I ayMP 3_I 9 2 _44 F i f e S e rvi c eP I ayC o I ou r Jp GF i l- e S e rvi c e - -
D i sp1 ayVideoAudi oS ervi ce

P I ayMP 3_I 9 2 _48 F i l- e S e rvi_ c eP 1 a yBVüJp GF i l_ e S e rvi c e- -
Di sp J- ayVideoAudi o S e rvi c e

P 1 ayMP 3_I 9 2 _4BF i l- e S e rvi ceP 1 ayCo ÌourJp GF i f e Se rvi ce --
Di splayVideoAudioS ervi ce

P I ayMP 3_ 6 4 _4 4F il eS e rvi c eP I ayBWJpGF i I e S e rv i ce--
Di splayVideoAudi oS ervi ce

P 1 ayMP 3_ 6 4 _4 4E í Le S e rvi c eP I ayC o I ou r Jp GF i I e S e rv j- c e - -
Di spl ayVideoAudioS ervice

DecodeS ignal Service--Di sp1 ayVideoAudioService

P I ayD i vXF i I e S e rvi c e - -D i s p I ayVi de oAudi o S e rvi c e

P J- ayDVD S e rvi c e - -D i s pl ayVi de oAu di o S e rv j_ c e

P I ayMP 3_I2 B _44 F i f e S e rvi ce - -P I ayAud i o S e rv i c e

P layMP 3_I2B_4 BFi leS ervice--P l- ayAudioService

P 1 ayMP 3 _\ 9 2 _44 F i I e S e rvi c e - -P I ayAudi o S e rvi c e

P IayMP 3_792_4 BFi l- eService--P l_ ayAudioS ervi ce

P 1 ayMP 3 _6 4_44 Fi I e Se rvi ce --P f ayAudi oS e rvi ce

P t ayMP GF i 1 e S e rvi ce - -D i sp J- a yVi de oAudi o S e rvi c e

P layVüMVFi leServi ce--D i splayVideoAudioServi ce

RecordMP 3Fi I e S ervi ce--P l- ayMP 3 6 4 _4 4F if e S e rvi ce

rank

rank

rank

rank

rank

rank

rank

rank

rank

rank

rank

rank

rank

Additional Service Composition Scenarios

0 .92

0 .92

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

It can be seen from the output that higher ranked composite services (e.g. playing a

video file on a TV and playing an MP3 file using a TV's speaker/ an amplifier) are more

useful than the others.

Table D.1: Services and their input and output types participating in
Scenario A

BWPSLlPrint
ColourJPGToBV/PSL1
Col ourJPGToCol ourPSL 1 S ervice

Service Name

Scenario A: In this scenario I add an MP3 player, a digital camera, and a PostScript printer.

Table D.1 shows some of these services and their corresponding input and output types. In

this scenario, only three composite services are generated as follows:

ColourPSLlPrint
PlayMP3-64-44F11e
RecordMP3File

rank: 1.0

rank: 1 .0

rank: 1.0

Input Type
BWPSLI

197

CoIouTJPGToBWP SL1 Servi ce--BWPSLlPrint Service

Scenario B: This scenario shows the interaction of services in a smart meeting room. Ser-

vices such as "Display Video", "Play Multimedia Presentation", "Set Light Level", etc.

participate in this scenario. Table D.2 shows services and their corresponding input and

output types.

The result of composition is as follows:

Co lourJPGToColourPSLl Service--ColourPSLlP rintS ervice
Re c o rdMP 3 F i l- e S e rvi ce --P I ayMP 3 _6 4 _44 F i I e S e rv i c e

ColourPSLl

AudioSignal

rank: 0.73 GetPresentationFileService--
Compo s it e_P 1 ayMu lt iMedi aPre s ent at i onS ervi ce_D i spl ayVi deoS e rvi ce

198

Table D.2: Services and their input and output types participating in
Scenario B

DisplayVideo

Appendix D : Additional Service Composition Scenarios

GetPresentationFile

Service Name

PlavAudio
Pl ayMultiMedi aPresentati on

PlayPresentationFile
SetBlind
Setl-ightl-evel

rank: 0.'73 GetPresentationFileService--
Compo s i t e_P I ayMu 1 t iMe di aP r e s e nt at i on S e rvi c e_P I ayAu di o S e rv j- c e

rank: 0. 8 PlayMultiMediaPresentatj-onServi-ce--DisplayVideoService

rank: 0.8 PlayMultiMediaPresentationService--PlayAudioService

rank: 0.92 PlayMultiMediaPresenlationServj-ce--

P 1 ayAudi oServiceDi splayVideoService

rank: 0.92 GetPresentationFil-eService--
Compo s it e_P IayP re s ent at i onFí l- e S e rvi ce_D i spl ayVi deo S e rvi ce

rank: 1.0 GetPresentationFileService--
PlayMult iMedi aPresent at ionServi ce

rank: 1.0 GetPresentationFileService--
P layP res entat ionFi l-eService

rank: 1.0 PlayPresentationFileService--DisplayVideoService

VideoSignal
Input Type

Location and ïme
AudioSignal
Presentat

Presentat

OpenCloseState

Lightlevel

onFile

None

onFile

PresentationFile

Output Type

None

VideoSignal and AudioSignal
VideoSignal
Status

Status

BiblÍography

[1] Business Process Execution Language for Web Services.

http ://xml.coverpages. org/bpel4ws.html.

[2] DAML'Web site. http://www.daml.org.

[3] Oscar: An OSGi framework implementation. http://oscar.objectweb.org/.

[4] Resource Description Framework (RDF). http ://www.w3.org/RDF.

[5] SSJ: Stochastic simulation in Java. http://www.iro.umontreal.cal lecuyer/ssj/index.html.

[6] Web services description language (wsdl) 1.1. http://www.w3.orgÆR/wsdl.

[7] HAVi, the A/V digital network revolution. http://www.havi.org/pdf/white.pdf, 1999.

t8l UDDI technical white paper. http://www.uddi.orglpubsllru-UDDI-Technical

-White-Paper.pdf, 2000.

[9] Universal plug and play device architecture. Microsoft,

http://www.upnp.org/download/UPnPDA102000061 3.htm, June 2000.

[10] Jini architecture specification version 2.0.

http://wwws.sun.com./software/jini/specs/jini2-0.pdf, June 2003.

199

Sun Microsystems,

200

[11] Obje interoperability framework. http://www.parc.com/research/csl/projects/obje/Obje-Whitepaper.l

2003.

112) hrrp: / lwww.w3. orgÆR/owl -r ef l, 200 4.

[13] Resource description framework (RDF): Concepts and abstract syntax.

http : //ww w. w3 . orgÆR/rdf-c on cepts l, F ebruary 200 4 .

[14] V. Agarwal, G. Chafle, K. Dasgupta, N. Karnik, A. Kumar, S. Mittal, and B. Srivas-

tava. Synthy: A system for end to end composition of Web services. Jountal of Web

Semantics , 3(4):317-339 , 2005 .

t15l M. Aiello. The role of web services at home. In Proceedings of the International

Conference on Internet and Web Applications and Services/Advanced Intentational

C onfe renc e on Tel e c o mmunic atio ns (A I CT- I C I W' 0 6), pages 1 64-11 0, 200 6.

BIBLIOGRAPHY

[16] A. O. Allen. Probability, statistics, and queueing theory with computer science ap-

plications. Academic Press,2 edition, 1990.

[17] OSGI Alliance. The Open Services Gateway initiative. http://www.osgi.org.

[18] I. B. Arpinar, B. Aleman-Meza, R. Zhang, and A. Maduko. Ontology-driven Web ser-

vices composition. In Proceedings of IEEE Intemational Conference on E-Commerce

Technolo gy, pages 146-152, 2004.

[19] J. Bourcier, A. Chazalet, M. Desertot, C. Escoffier, and C. Marin. A dynamic-SOA

home control gateway. In Proceedings of the IEEE International Conference on Ser-

vices Computing (SCC'06), pages 463470,2006.

BIBLIOGRAPHY

[20] K. Bowers, K. Mills, and S. Rose. Self-adaptive leasing for Jini. In Proceedings of the

First IEEE International Conference on Pervasive Computing and Communicattons

(PerCom), pages 539-542, March 2003.

[21] F. Casati, S. Ilnicki, L. Jin, V. Krishnamoorthy, and M. Shan. Adaptive and dynamic

service composition in eFlow. Technical Report HPL-2000-39, HP Software Tech-

nology Laboratory, 2000.

[22) F. Casati, S. Ilnicki, L. Jin, V. K¡ishnamoorthy, and M. Shan. eFlow: a plat-

form for developing and managing composite e-services. ln Proceeedings of the

Academia/lndustry Working Conference onResearch Challenges, pages 341-348,

2000.

l23l G. Chafle, K. Dasgupta, A. Kumar, S. Mittal, and B. Srivastava. Adaptation in web

service composition and execution. In Proceedings of the IEEE Intentational Confer-

ence on Web Services (ICWS'06), pages 549-551,2006.

[24] D. Chakraborty and A. Joshi. Dynamic service composition: State-of-the-art and

research directions. Technical Report TR-CS-01-19, University of Maryland, 2001.

201

l25l D. Chakraborty and A. Joshi. GSD: A novel group-based service discovery protocol

for MANETS. ln Proceedings of the 4th IEEE Conference on Mobile and Wireless

Communications Networks (MWCN 2002), pages 140-144, September 2002.

[26] D. Chakraborty, F. Perich, S. Avancha, and A. Joshi. Dreggie: A smart service dis-

covery technique for E-commerce applications. In Workshop on Reliable and Secure

Applications in Mobile Environment,In Conjunctionwith20th Symposium on Reliable

Distributed Systems (SRDS), 2001.

202

[27] D. Chakraborty, Y. Yesha, and A. Joshi. A distributed service composition protocol

for pervasive environments. In Proceedings of IEEE Wireless Communications and

Nerworking Conference (WCNC), pages 2575-2580, March 2004.

t28] W. Y. Chen. Home networking basis: Transmission environment and wired/wireless

p rot o c ols. Prentice Hall, 2004.

[29] J. Cohen, S. Aggarwal, and Y. Y. Goland. Internet Draft, general event notification

architecture, 2000.

[30] W3C Consortium. OWL-S 1.1 release. http://www.daml.org/services/ow1-s/1.1,

2004.

[31] F. Curbera, M. Duftler, R. Khalaf, W. Nagy, N. Mukhi, and S. Weerawarana. Un-

raveling the Web services Web: an introduction to SOAP, WSDL, andIJDDI. IEEE

Int e nte t C o mputin g, 6(2) :86-93, 2002.

t32l S. E. Czerwinski, B. Y. Zhao, T. D. Hodes, A. D. Joseph, and R. H. Karz. An ar-

chitecture for a secure service discovery service. In Proceedings of the 5th arutual

ACM/IEEE international conference on Mobile conxputitxg and networking, pages24-

35,1999.

t33l P. Dobrev, D. Famolari, C. Kurzke, and B. A. Miller. Device and service discovery in

home networks with OSGi. IEEE Communications MagaTine, a0(8):86-92, August

2002.

t34l N. Feng, G. Ao, T. White, and B. Pagurek. Dynamic evolution of network manage-

ment software by software hot-swappin g. In Proceedings of the IEEE/IFIP Sympo-

sium on Integrated Network Managemenf, pages 63-76,2001.

BIBLIOGRAPHY

BIBLIOGRAPHY

[35] D. Fensel, H. Lausen, A. Polleres, J. de Bruijin, M. Stollberg, D. Roman, and

J. Domingue. ln Enabling Semantic Web Services, chapter 3, pages 25-36. Springer

Be¡lin Heidelberg, 2007.

[36] K. Fujii and T. Suda. Semantic-based dynamic service composition. IEEE Joumal

on S e Ie c t e d Are as in C o mmuni c ati o n s, 23 (1 2) :23 6l -231 2, 2005 .

t37] N. Georgantas, S. B. Mokhtar, Y. Bromberg, V. Issarny, J. Kalaoja, J. Kantarovitch,

A. Grodolle, and R. Mevissen. The Amigo service architecture for the open networked

home environment. ln Proceedings of the 5th IEEE/IFIP Working Conference on

S ofrw are Archite cture, 2005 .

t38l Y. Y. Goland, T. Cai, P. Leach, and Y. Gu. Intenet Draft, simple service discovery

protocol/1.0. http://www.upnp.org/download/draft-cai-ssdp-v1-03.txt, 2000.

t39l A. Gorbenko, V. Kharchenko, P. Popov, and A. Romanovsky. Dependable composite

Web services with components upgraded online. In Architecting Dependable Systems,

volume 3549 of Lecture Notes in Computer Science, pages 9Ç128,2005.

[40] S. D. Gribble and et al. The Ninja architecture for robust Internet-scale systems and

services. Computer Networks, Special Issue on Pen¡asive Computing,35(4):413497,

2001.

[41] T. R. Gruber. Toward principles for the design of ontologies used for knowledge

sharing. International Journal of Human-Computer Studies,43(5):907-928, 1995.

[42] X. Gu, K. Nahrstedt, and B. Yu. SpiderNet: An integrated peer-to-peer service

composition framework. ln Proceedings of IEEE Intenzational Symposium on High-

Pe rfo rmanc e Dis tribute d C omputing, pages 1 I 0-1 19, 2004.

203

204

[43] R. Gupta, S. Talwar, and D. P. Agrawal. Jini home networking: a step toward perva-

sive computing. IEEE Computer, S(35):34-40, August 2002.

I44l E. Guttman. Service location protocol: automatic discovery of IP network services.

IEEE Internet Computing, 3(4):7 1-80, 1 999.

l45l E. Guttman, C. Perkins, J. Veizades, and M. Day. RFC2608: Service location proto-

col, versi on 2. ftp : / / ftp.isi. edu/i n -notes/rfc2608.txt, I 999.

[46] S. V. Hashemian and F. Mavaddat. A graph-based approach to web services composi-

tion. In Proceedings of the Intenntiotzal Symposium on Applications and the lrLternet,

pages 183-189,2005.

t47l S. Kalasapu¡ M. Kumar, and B. Shirazi. Personalized service composition for ubiq-

uitous multimedia delivery. In IEEE Intentational Symposium on aWorld of Wireless,

Mobile and Multimedia Networks, pages 258-263,2005.

t48l S. Kalasapur, M. Kumar, and B. Shirazi. Seamless service composition SeSCo in

pervasive environments. In Proceedings of the first ACM international workshop on

M ultimedia S e rvic e C ompositior?, pages 1 1 -20, 2005.

I49l A. Kaminsky. JiniME: Jinirtul connection technology for mobile devices.

http://www.cs.rit.edu/ anhinga/whitepapers/JiniMEWhitePaper, August 2000.

t50l J. Kardach. Bluetooth a¡chitecture overview.

http ://www.intel.com/technology/i tjl q22000 I pdf/art-1 .pdf.

[51] A. M. Law and W. D. Kelton. Simulation modeling and analysis. Mc Graw Hill, 3

edition, 2000.

BIBLIOGRAPHY

BIBLIOGRAPHY

[52] W. Li. Random texts exhibit Zipf s-law-like word frequency distribution . IEEE Trans-

actions on Info rnmtion The o ry, 3 8(6) : 1 842-1 845, 1992.

[53] Y. Liang, H. Bao, and H. Liu. Hybrid ontology integration for distributed system.

In Proceedings of the 9th ACIS Intentational Conference on Software Engineering,

Artificíal Intelligence, Networking, atzd Parallel/Distributed Computing, pages 309-

314,2001.

t54l S. Majithia, D. W. Walker, and W.A.Gray. Automated Web service composition using

semantic Web technologies. In International Conference on Autonomic Computing

(ICAC -04), pages 306-301, May 2004.

[55] D. Marples and P. Kriens. The open services gateway initiative: An introductory

overvi ew. I E E E C o mmunic ations M a g aline, 39 (12) :1 1 0-1 7 4, December 200 1 .

156l R. Masuoka, Y. Labrou, B. Parsia, and E. Sirin. Ontology-enabled pervasive comput-

ing applications. IEEE intelligent Systems, 1 8(5):68-72, 2003.

IsTl

20s

R. Masuoka, B. Parsia, and Y. Labrou. Task Computing - the semantic Web meets per-

vasive computing. In Proceedings of the 2nd International Semantic Web Conference

(ISWC), pages 866-88 1, 2003.

A. Messer et al. Interplay: a middleware for seamless device integration and task

orchestration in a networked home. In Proceedings of the Fourth Annual IEEE Inter-

national Conference on Pervastve Computing and Communicatiotts, pages 29Ç305,

March 2006.

B. A. Miller, T. Nixon, C. Tai, and M. D. Wood. Home networking with universal

plug and play. IEEE Communications Magazine,39(72):104-109, December 2001.

tssl

tsel

206

[60] E. Newcomer and G. Lomow. Understanding SOA wtth Web services. Addison Wes-

ley, 2005.

[61] Q. Ni. Service composition in ontology enabled service oriented architecture for

pervasice computing. A position paper in a joint workshop between the UK-UbiNet

Ubiquitous Computing Network and the e-Science Programme, 2005.

t62l G. O'driscoll. The essential guide to home networking technologies. Prentice Hall,

Upper Saddle River, 2001.

[63] M. Paolucci, T. Kawamura, T. R. Payne, and K. Sycara. Semantic matching of Web

services capabilities . In Proceedings of tlrc I st International Semantic Web Confer-

ence (\SWC2002), volume 2342 of Lecture Notes in Computer Science, pages 333-

347. Sprin g er-Yerlag, 2002.

[64] M. P. Papazoglou. Service-oriented computing: concepts, characteristics and direc-

tions. ln Proceedings of the Fourth International Conference on Web Information

Systents Engineering, WISE 2003, pages 3-12,2003.

[65] S. R. Ponnekanti and A. Fox. SWORD: A developer toolkit for web service compo-

sition. In Proceedings of the Eleventh World Wide Web Conference (Web Engineeríng

Track),2002.

[66] S. R. Ponnekanti and A. Fox. Application-service interoperation without standardized

service interfaces. ln Proceedings of the First IEEE International Conference on

Pervasive Computing and Communications, pages 30-37, March 2003.

t67] A. Rakotonirainy and G. Groves. Resource discovery for pervasive environments. In

International Conferences on Distributed Objects and Applications (DOA), volume

2519 of Lecture Notes in Computer Science, pages 866-883. Springer-Verlag,2002.

BIBLIOGRAPHY

BIBLIOGRAPHY

[68] J. Rao, P. Kungas, and M. Matskin. Logic-based web service composition: from

service description to process model. In Proceedings of the IEEE Intentational Con-

ference onWeb Services, pages 446453, July 2004.

t69l J. Rao and X. Su. A survey of automated Web service composition methods. In

Proceedings of the First Intemational Workshop on Semantic Web Sen¡ices and Web

P rocess Composition, 2004.

[70] S. Ross. lntroduction to Probability Models. Academic Press, ninth edition,2007.

t71l A. Rowstron and P. Druschel. Pastry: Scalable, distributed object location and rout-

ing for large-scale peer-to-peer systems. In Proceedings of IFIP/ACM International

C onfe re nc e on D is t ribut e d Sy s t e ms P I atfo rnts, 2001 .

l72l D. Saha and A. Mukherjee. Pervasive computing: a paradigm for the 2ist century.

I EEE C omp ut e r, 3 6(3) :25 -3 7, 2003 .

[73] U. Saif, D. Gordon, and D. Greaves. Internet access to a home area network. IEEE

Internet Computing, 5(1):54-63, February 2001.

U4l M. Satyanarayanan. Pervasive computing: vision and challenges. IEEE Personal

C ommunic ations, 8(4):10-17, 2007 .

[75] C. Shankar, A. Ranganathan, and R. Campbell. Towards fault tolerant pervasive com-

puting. IEEE Te chnolo gy and S o ciety, 24(1):3844, 2005.

U 6l E. Sirin. The OWL-S API. http ://www.mindsw ap.orgl2004lowl-s/api/.

l17l E . Sirin, J. Hendler, and B. Parsia. Semi-automatic composition of web services using

semantic descriptions. ln Web Services: Modeling, Architecture and Infrastructure

workshop in ICEIS 2003, pages 17-24, April 2003.

207

208

t78l E. Sirin, B. Parsia, and J. Hendler. Filtering'and selecting semantic Web services with

interactìve composition techniques. IEEE Intelligent Systems,19(4):4249,2004.

t79l V/. Stallings. Cryptography and Network Security: Principles and Practic¿. Prentice

Hall, second edition, 1998.

t80l V. Sundramoorthy and J. Scholten. Challenges in the at home anywhere (@ha) service

discovery protocol. ln Ttlt Cabernet Radicals Workshop, October 2002.

t81] V. Sundramoorthy, J. Scholten, P. G. Jansen, and P. H. Hartel. Service discovery at

home. ln Proceedíngs of the 4th International Conference on Information, Comntuni-

cations and Signal Processing and 4th IEEE Pacific-Rim Conference On Multimedia

(rcrc9/P CM), pages 1929-1934, 2003.

t82l W3C technical recommendation. Simple object access protocol version'1.2.

http ://www.w3.orgÆR/soap 1 2-part 1 /, 200L

183] V. Tosic, D. Mennie, and B. Pagurek. On dynamic service composition and and

its applicability to e-business software systems. In Proceedings of the workshop on

Object-Oriented Business Systems,pages 95-108, 2001.

l84l J. Waldo. The Jini architecture for network-centric computing. Communications of

the ACM, 42(7):7 Ç82, 7999.

t85l M. Weiser. The computer for the 21st century. Scientific American, pages 94-100,

1991.

tS6l L. Zeng,B. Benatallah, A. H. H. Ngu, M. Dumas, J. Kalagnanam, and H. Chang.

QoS-aware middleware for Web services composition. IEEE Transactiotts on Soft-

ware Engineering, 30(5):3 1 1-321, 2004.

BTBLIOGRAPHY

tSTl F. Zhu, M. Mutka, and L. Ni. Classificationi of service discovery in pervasive com-

puring environments. Technical Report MSU-CSE-02-24, Michigan State University,

Eastlansing ,2002.

209

