Delay Insensitive Protocol
and IC Design

by

Greg F. Soprovich

A thesis
presented to the University of Manitoba
in partial fulfillment of the
requirements for the Degree of
Magster of Science
in
Electrical Engineering

Winnipeg, Manitoba, 1989
Greg F. Scprovich

Bibliothéque nationale
du Canada

National Library
of Canada

Canadian Theses Service Service des théses- canadiennes

Ottawa, Canada
K1A ON4

The author has granted an irrevocable non-
exclusive licence allowing the National Library
of Canada to reproduce, loan, distribute or sell
copies of his/her thesis by any means and in
any form or format, making this thesis available
to interested persons.

The author retains ownership of the copyright
in his/her thesis. Neither the thesis nor
substantial extracts from it may be printed or
otherwise reproduced without his/her per-
mission.

L’auteur a accordé une licence irrévocable et
non exclusive permettant a la Bibliotheque
nationale du Canada de reproduire, préter,
distribuer ou vendre des copies de sa these
de quelque maniére et sous quelque forme
que ce soit pour mettre des exemplaires de
cette these a la disposition des personnes
intéressées.

L’auteur conserve la propriété du droit d’auteur
qui protége sa thése. Nila thése ni des extraits
substantiels de celle-ci ne doivent étre
imprimés ou autrement reproduits sans son
autorisation.

ISBN 0-315-54840-1

ada

DELAY INSENSITIVE PROTOCOL AND IC DESIGN

BY

GREG F. SOPROVICH

A thesis submitted to the Faculty of Graduate Studies of
the University of Manitoba in partial fulfillment of the requirements

of the degree of

MASTER OF SCIENCE

© 1989

Permission has been granted to the LIBRARY OF THE UNIVER-
SITY OF MANITOBA to lend or sell copies of this thesis. to

the NATIONAL LIBRARY OF CANADA to microfilm this
thesis and to lend or sell copies of the film, and UNIVERSITY
MICROFILMS to publish an abstract of this thesis.

The author reserves other publication rights, and neither the
thesis nor extensive extracts from it may be printed or other-

wise reproduced without the author’s written permission.

Abstract

The purpose of this thesis is to study a class of logic
that has the property of being system clock-free. Independence
from system level clocking is provided by relaxing timing
requirements S0 that signals are fundamentally Delay
Insensitive. A class of signal specifications, and protoéol
methods, are provided as a basis for exploring Delay
Insensitive logic.

During this project a Delay Insensitive protocol was
proposed as a means for providing high level communication
between logical blocks. An integrated circult (IC) was
implemented in order to test various Delay Insensitive
principles, and to evaluate the overhead associated with adding
delay insensitivity to a serial protocol, Overall testing
indicated that IC overhead was not excessive given the tasks
the asynchronous Delay Insensitive Communication IC implements.
Further. the validity of delay insensitivity was demonstrated
by the correct logical functioning of the IC despite
introduction of significant external delays, and the overall
limitations imposed by insufficient off-chip driver circuits.

A Delay Insensitive design methodology is presented and is
utilized to describe fully Delay Insensitive representations
for the asynchronous protocol. A mixed mode circuit
methodology is developed to provide the capability of combining
Delay Insensitive logic with locally synchronous devices. The
advantage of mixed mode circuits is the capability to extend
the lifespan of many current cell libraries within a Delay
Insensitive framework. The ability to design within a Delay
Insensitive environment appears promising since it could
enhance automation of many of the synchronization tasks between

major functional blocks of logic.

il

Acknowledgements

I would like to thank my advisor Professor Robert D. McLecd
without whose assistance and encouragement this thesis would
not have been possible. Additionally, I would like to thank
Dr. Fred U. Rosenberger for providing me with timely reprints
and internal memoranda regarding this research area.

I would like to also thank Roland Schneider, Chris
Schneider, and Peter Hortensius for their assistance in the
VLSI design laboratory. Additional thanks are given to the
many coworkers who helped me weather the travails of the
Northern Telecom Dracula Design Rule Checker in the VLSI design
lab.

Financial support from the University of Manitoba, and
equipment loans from the Canadian Microelectronics Corporation

are greatly appreciated.

I would also like to thank my family and friends for their

support during this project.

Abstract

TABLE OF CONTENTS

Acknowledgements

LIST OF Figures

LIST OF TABLES

CHAPTER 1: DELAY INSENSITIVITY AND DEVICE DESIGN

1.

1

Synchronization and System Behavior

1.2 Self-Timed Systems

1.2.1 Definition of Self-Timed Systems
1.2.2 Requirements for a Self-Timed System

1.3 Attributes of Self-Timed Systems

CHAPTER 2: DELAY INSENSITIVE SYSTEMS

2.
2.

w W
[$1 00N

3.

1
1

2

Delay Insensitive Modules

System Considerations in DI Modules
2.1.1 Signal Conventions in DI Modules
2.1.2 Synchronization Signals

2.1.3 The Muller C Element (Join)
2.1.4 Module Forms

Delay Insensitive Protocols

Design Considerations in DI Systems

AN ASYNCHRONQOUS DI INTERFACE IC
Implementation Goals
Protocol Specificatlions
Physical Implementation
3.3.1 Input Serial Channel Desiogn
3.3.2 QOutput Channel Design
3.3.3 Muiler C Desiogn
3.3.4 MHMicroprocessor Interface
3.3.5 Design Area and Layout
Design for Testability
F

.5.1 Simulation Procedure

3

3

Test Results
3.6.1 Functional Testing
3

E

CHAPTER 4: MACROCELL DESIGN

4.
4.
4.

1
2
3

Why Another Design Method?

A Logic Design Methodology

A Hardware Implementation of DI State Equations
4.3.1 Construction of an EISG Protocol Receiver
4,3.2 Mixed Mode Design

iv

15
15
16
16
20
22
23
28
33

39
39
40
44
44
50
55
57
59
63
67
67
69
71
71
73
76

78
78
79
85
92
101

4.3.4 System Level Design 114
CHAPTER 5: SUMMARY 117
REFERENCES 119

LIST OF FIGURES

Figure 1: Alpha Scaling 4
Figure 2: Handshaking 9
Figure 3: Self Timed Systems 11
Figure 4: Isochronic Zones 12
Figure 5: DI Modules 17
Figure 6: DI Partial Ordering 19
Figure 7: 4 Cycle Protocol - 21
Figure 8: Multiple Joins 24
Figure ¢9: Pipelined STEs 25
Figure 10: Pipeline Modules 27
Figure 11: Parallel STEs 29
Figure 12: Tri-State Line 31
Figure 13: Protocol (1 Rail> 32
Figure 14: Protocol (2 Rail) 34
Figure 15: Double Rail Data 35
Figure 16: DI Modules 38
Figure 17: Chip Protocol 42
Figure 18: Input Channel 45
Figure 19: Input SM 49
Figure 20: Qutput Channel 52
Figure 21: Qutput SM 54
Figure 22: Muller C Circuit 56
Figure 23: Register Ordering 58
Figure 24: SM Observability €6
Figure 25: Test System 75
Figure 26: 1ISG of C Element 81
Figure 27: EISG of C Element 83
Figure 28: C Element Logic 84
Figure 29: Q Module 87
Figure 30: Q Flop 89
Figure 31: Q0 Module Waveform 91
Figure 32: Q Flop Reset 93
Figure 33: Two Rail Protocol 94
Figure 34: Protocol 156G 96
Figure 35: EISG of Receiver 97
Figure 36: EISG Logic Map 99
Figure 37: DI Receiver 102
Figure 38: Pulse Circult 105
Figure 39: Rail Data to Binary 107
Figure 40: Binary to Rail Data 108
Figure 41: Central DI Stage 109
Figure 42: Driver DI Stage 112
Figure 43: Driver ISG 113

vi

TABLE
TABLE
TABLE
TABLE
TABLE
TABLE
TABLE
TABLE

IT:
II1:
1V

VI:
VII:
VIII:

LIST OF TABLES

MULLER C ELEMENT TRUTH TABLE
INPUT CHANNEL SM SIGNAL FUNCTION
OUTPUT CHANNEL SM SIGNAL FUNCTION
INTERNAL REGISTER CONFIGURATION
PIN USAGE

DIE AREA USAGE

STATE TEST ADDRESSES

CHANNEL PERFORMANCE UNDER APLSIM

vil

22
50
53
57
60
62
65
70

CHAPTER 1: DELAY INSENSITIVITY AND DEVICE DESIGN

1.1 Synchronization and System Behavior

Modern digital systems, both at the integrated circuit
level and higher levels, require very stringent synchronization
to satisfy basic operating characteristics. In particular, the
distribution constraints of clock signals and synchronization
of parallel data along long data paths can be particularly
difficult to satisfy in system specifications. In this thesis,
system will refer to the transistor/logic networks common to
all digital and computer organizations, whether on a single
chip or spread across many boards. The scope of the thesis is
based upon the effect that delay has upon synchronization and
control signals. It is the act of synchronizing signals, and
signal ordering over long paths, that provides one of modern
system designs greatest challenges now, and in the future.

In any significant modern system, the actual wires that
interconnect switching elements and operational blocks are far
from the idealized versions represented in elementary switching
theory and logic. Instead, on-chip wires generally have

significant amounts of resistance and capacitance distributed

along their length, and wires at the board level have
resistance, capacitance, and inductance along their length.
The result is that transistor switching speed is significantly
retarded by long wires both on and off-chip. Further,
significant delays in a signal can often be introduced by the
line itself since the signal must physically propagate down the
highly non-ideal transmission line. Modern integrated circuits
(ICs) have reached the point where the switching speed of
individual transistors is no longer significantly greater than
the transmission line delay of a long wire. Thus, logic
designers may no longer discount the wire 1length and
characteristics when designing logic circuits in silicon, or at
a board level. Of course, this problem is not new; system
designers have long contended with the delay problem when
designing major computers since even TTL can switch much faster
than most card cage delays in such systems. A good example of
this characteristic is the VAX 750 family which exists on a
1000 nS bus at the card cage level, while having much greater
card-level performance. Thus, line delay is an increasingly
pervasive problem at all levels of system design.

How has technology influenced the problem of transmission
line delay? Primarily, the advance of technology has only made
the problem much more difficult to approach. It is true that
great effort has been made to reduce wire capacitance,
inductance and resistance by using high density packing,

improved board materials, and so on, but these remedies only

moderately alleviate the problem. While progress was made in
board layout and materials, integration has correspondingly
resulted‘to smaller active devices with substantially shorter
switching times. As switching speeds continue to increase, the
significance of line delay induced signal skew in clock, data
and control signals becomes much more crucial. For example,
Figure 1 shows an example of scaling a circuit down by a factor
of (A) while an input wire delay mismatch stays essentially
unscaled along its length. If wire delay were to stay
constant, the ratio between the switching time and the delay is
obviously much smaller -- in fact, the delay may have become
more significant, or even critical.

Unfortunately, transmission line delay is a much greater
problem than it would superficially appear to be. After ali,
if the line delay increases, why not simply insert delays, as
needed, in order to assure proper synchronization? This is
often exactly what is done. The difficulty with such an
approach is that variations in the fabrication process make it
very difficult to accurately estimate line delay. If we must
insert a large number of delay lines we will likely see such
adjustments reflected in reductions in device yields.
Furthermore, clock distribution over a chip becomes much more
complex if proper IC operation depends on the insertion of many
carefully tailored delays between functional blocks. Such

design methodologies can be very arduous and time consuming,

INPUT /‘ i
| l
| 1 DELAV
L
INPUT B : \ /
f
OUTPUT AB \

(RY NAND RESPONSE WITH LINE DELAY

INPUT A

h\r

INPUT B

OUTPUT RB

e

—
[

GLITCH

(B> ALPHA SCALED NAND RESPONSE WITH LINE DELAY

Frgure 1

Alpha Scal ing

and such solutions are likely to become much more difficult.

The problem of delays between synchronous elements has led
to a number of alternate approaches at the system level. For
example, communication between synchronous, locally clocked
processors is provided by serial, asynchronous links in the
InMosTM Transputer series. The assumption 1is that
synchronizing many independent computational elements.would be
difficult and costly; hence, an asynchronous link is provided
to facilitate interprocessor communication. Although the
InMosTM Transputer is a microprocessor intended for parallel
processing, the choice of an asynchronous communication 1ink
was made to eliminate the need for global clocks of any kind;
hence, a large system could be relatively free from skew
problems at a rack or system level. Additionally, the
individua elements do not have to slow down to accommodate a
structure like a shared synchronous bus. Although the
Transputer is an architecture intended to solve the memory and
communication problems inherent in parallel processing, many of
the delay and system design problems encountered at the systen
level are increasingly experienced by logic designers. Some of
the methods that are applicable at the board level may be
appropriate to the very large scale integrated chips that will
soon be in the design stages.

An alternative to a clocked, synchronous, inherently
delay-sensitive system is to throw away the global, system-wide

clock altogether. That is, to design with asynchronous systems

from the outset. Such methods have the property that system
désign and interconnection of unclocked elements may well be
more simple, consistent and reliable. A correct
interconnection of validated asynchronous elements would free
the designer from the difficulty of accommodating the critical

races and other delay dependencies of synchronous logic.

1.2 Self~Timed Systems
1.2.1 Definition of Self-Timed Systems

A self-timed system is any system that relies upon signal
events embedded within data, rather than a global clock or
control signal, to provide correct operation and
synchronization [1]. It is a basic property that self-timed
systems, or elements, are insensitive to arbitrary delays in

their primary inputs and outputs.

1.2.2 Requirements for a Self-Timed System

In a self-timed system overall operation will be assured by
a logical interconnection of elements that also exhibit a
self-timed nature. There are a number of functional features

that will allow us to construct logical devices that require

neither a global clock, nor careful interblock synchronization.
The goal of self-timed design is to loosen or remove many of
the synchronization requirements of current logic design
methodologies.
In order to provide clock-free realizations we must follow
some basic rules:
(1) Signal transitions must be unique, either from 0
to 1, or 1 to 0. Thus, an event is a transition
without assumptions regarding the time delay inherent
in any signal event.
(2) Where order is not important to a design we
define a partial ordering of delay insensitive lines.
The design should assure that any reordering of events
on these lines will not adversely affect a driven
circuits outputs.
(3) Logical 0 and 1 must be differentiated. Hence, a
tri-state signalling of 0, 1 and null (=) is generally
proposed. Optionally, distinct lines may be allocated
to logical 1 or 0 to provide differentiation between
the two. Data is represented by transitions from null
to'valid data and back again. This provides an
inherent clock in the Self Timed Element (STE) data.
(4) Synchronization is still necessary in some
manner. A sending circuit which is forcing inputs
into a receiving circuit must not place new data on

the lines until the previous data has been processed.

Hence, a handshaking protocol using request (REQ) and
acknowledge (ACK) signals is typical. Protocol
operation is relatively simple. The sender places
data inputs to a circuit and a REQ onto the input
lines of the receiving circuit. Once the receiver has
carried out all appropriate processing tasks (logical
or otherwise), the receiver sends an ACK signal to
indicate readiness for more data. This is similar to
physical layer handshaking on a network, or like that
between a computer and a parallel printer. Refer to
Figure 2 for an illustration of this process.

In order to provide design correctness, it is presumed that
signal ordering may not be subject to circuit delays.
Therefore, any signal ordering requires a distinct set of
handshaking events for each set of ordered signals. Note that
such a system does not, in general, preclude absolute maximuma
on delay. If limits must be placed upon delay, such as those
necessary for dynamic logic, some relaxation of STE
restrictions may be allowed. 1In such a case, some estimation
of line delay may be necessary to assure that appropriate
safety margins can be designed into the circuit.

The above conditions constrain circuit operation
sufficiently so that the circuit can be said to be self-timed.
Clocking is not derived externally but is inherent in the basic
operation on the data. Such circuits tend to exhibit a well

behaved nature at the block or system level; hence, the systen

— —-%Q___“__i%7[——___- REQUEST

(RY HANDSHAKING PROTOCOL WAVEFORM

SENDER

ACKNOWLEDGE
DATA
REQ)
ACK
RECETVER
DATA DATA

(B) BLOCK DIAGRAM

FlEure 2

Handshaking

design task should be significantly easier.

1.3 Attributes of Self-Timed Systems

One of the major attributes of self-timed systems is a
greater reliance on a hierarchical design methodolégy° A
typical system, such as the one portrayed in Figure 3, would
consist of several self-timed blocks interconnected in an
appropriate fashion. Correct operation is based upon correct
interconnection, not upon adequate delays and external
sequencing/control. It is the nature of a correctly designed
self-timed element, which are the functional blocks in the
system, to inherently reject the need for time-critical
sequencing. Thus, at the system 1level, design could
potentially be clock free whatever the actual implementation
details of the individual elements.

It is worthwhile to note that a STE does not have to be
totally «clock free in internal realization. A wvalid
specification for a STE may include an external self~-timed
definition with synchronous, locally clocked logic implementing
the function internally. Figure 4 illustrates just such a
locally isochronic STE block.

If time sequencing is no longer a critical part of the
design process, STEs promise to accelerate the design effort by

significantly reducing the effort expended in the analysis of

10

DI INITIATING

MODULE STAGES
PIPELINE
STAGES

(A

ﬁ/TERMINﬂL STAGE Jj 170 STAGE

Flgure 3@ Self Timed Systems

DH DL REQ1 ACK1

Wy 1

INPUT INTERFACE

DATA IN CLOCK

ISOCHRONIC

ZONE

DATA OUT DATA CLOCK

OUTPUT INTERFACE

‘ Bk’ Bk Régé ACK2

Figure 4: Isochronic Zones

clock distribution and sequencing in modern ICs and systems.
Further, the STE approach should provide greater reliability in
design since relatively little attention need be given to the
line delays; only in the case of performance studies would
line delay need to be extensively analyzed. This systematic
approach is particularly attractive to designers who work at an
IC standard cell level, or higher, since they will not be
concerned with the design of the STEs themselves. The greatest
current source of difficulty is the initial effort needed to
produce a verified base of STE building blocks. In any case,
STE design promises to ease the design process at the systenm
building block level.

One reason that STE cell, IC, and board based methods
appear so promising is that simple methods are available to
provide pipelining, parallel synchronization, and cascading of
such elements. Ullmann and others [2][1] mention simple ways
to control ACK/REQ signals to produce such effects. Since
blocks may be combined in sufficiently complex organizations,
STEs may well be suited for design automation applications. a
proper design is guaranteed by an appropriate interconnection
of lines since delay is non-critical; hence, a tool need only
provide the connections and a routing path. Thus, STEs provide
significant support to some of the design methods and tools
that will be needed for the dense Ultra Large Scale ICs (ULSI)
of the future.

A number of authors, such as Molnar [3] and Fang [2],

13

provide a class of STEs which are even more flexible. Their
class of circuits, called Delay Insensitive (DI) modules
consist of input and output signals whose time characteristics
are only partially ordered. That is, a request and a proper
subset of inputs have switching events prior to each ACK
signal. In this class of circuits, Delay Insensitivity permits
any arbitrary delay to be inserted in any line while
guaranteeing correct circuit operation. DI circuits generally
differ from STEs only in absolute adherence to DI limits and
incorporate a general requirement of resistance to
metastability. As well, it is uncommon for a DI network to use
a null state to differentiate data bits. Instead, all clocking
is incorporated into the data lines without the use of a null
signal. If a DI circuit requires ordering, it is necessary to
provide separate ACK signals for each and every ordered event.
The most general form of STE system is, therefore, a DI systen.
The next chapter will detail many of the attributes of DI

design.

14

CHAPTER 2: DELAY INSENSITIVE SYSTEMS

2.1 Delay Insensitive Modules

Delay Insensitive (DI) modules are 1logic generating
circuits that satisfy the delay insensitivity condition. A DI
module is said to be in an environment which introduces a
finite but unknown delay in input and output signals. Figure 5
illustrates the environmental to modular relationship in DI
systems. Thus, given an environment with finite delay, a
signal set {Aj;,A,... ,Ap} could, even if the arrival order at
the environment boundary is known, be received in any arbitrary
reordering at the circuit boundary {aj,ag,;e..,an}. If the
output of the circuit, by = fyx{aj,as,...,apn}, is produced with
consistent correctness regardless of signal reordering, then we
may indicate that the element is Delay Insensitive.

Delay Insensitive modules conform to the basic rules of
STEs with a number of extensions. The fundamental rule set is
as follows:

(1) All inputs are semi-modular. That is, the only legal

transition on any line is from logical 1 to logical 0, or

vice=-versa, during any one full cycle of

15

request/acknowledge. Further, there must be a monotonic
and stable transition; examples of non-monotonic
transitions would be glitches, or other transients, on the
circuit inputs.
(2) A circuit cycle is initiated by a partial ordering of
signals and REQ, and is terminated, after an arbitrary
internal delay, by circuit output and ACK. That is, some
signals may be asserted with REQ in any order, followed by
assertion of valid outputs and the ACK signal. Proper
design consists of specifying which combinations of signals
may occur.
Practical circuits will also have logical 1 or logical 0 data
encoded in a special manner; either separate lines are usually
employed for 1 and 0, or a tristate signalling method must be
utilized. Practical design assumes a two line configuration
with the general goal of eliminating all explicit circuit
clocking in DI realizations. If a module satisfies the above

two rules, it is said to be Delay Insensitive.

2.1 System Considerations in DI Modules

2.1.1 Signal Conventions in DI Modules

Signals in DI modules are said to be semi-modular and

monotonic. Once a transition or excitation onalineis

16

IN'1 —H

IN 2

DI

MODULE

ENVIRONMENT

— REPRESENTS ARBITRARY DELAY

DATA

Freure 5: DI Modules

initiated, it must progress to the other line state without

multiple transitions. The only way an excited signal returns
to stability is by entering a complementary state. We refer to
this behavior mathematically by writing the expression 0->0%-
>1->1#%->0... where the asterisk represents the excitation or
instability condition.

Fundamentally, the semi-modularity property is critical to
forming a DI system. The implication is that any transition on
an input line may occur only once in the circuit REQ/ACK cycle.
If we allow multiple transitions on a line in each cycle, we
are then assuming time dependencies on the part of the DI
module. This would violate delay insensitivity since we now
must know the internal and environmental performance of the
system. Therefore, it is typical that some subset of signals
will undergo transition along with the REQ signal. Further
variation of input lines is thereafter forbidden until an
appropriate ACK signal reaches the sending circuit. Figure 6
illustrates the behavior of a system having a partial ordering
of inputs. All limitations upon signal transition are entirely
dependent upon the functional specification of the DI module;
hence, partial ordering is a design matter that depends upon

the specific application for the DI module.

18

REQ
DATA 1
ACK

PARTIAL ORDER TO

ACK SIGNAL

PARTIAL ORDER TO

ACK SIGNAL

A CIRCUIT ALLOWING MULTIPLE PARTIAL ORDERINGS

PRIOR TO ACK

Flgure 6: DI Partiral Ordering

2.1.2 Synchronization Signals

In all self-timed systems, such as a DI module, it is
necessary to have a signal that initiates a cycle or functional
state change in that module. 1In DI systems, this function is
served by a simple handshaking protocol. A protocol of REQ
followed by ACK can take a number of forms, the simplést of
which is called the single rail, or 4 cycle, protocol. 1In all
such handshake protocols the basic cycle is of data input and
REQ, followed by data output (state change) and ACK. Figure 7
(a) illustrates the single rail protocol in state terms, while
Figure 7 (b) provides a depiction of typical waveforms that
would satisfy the single rail protocol. In this type of
protocol the signal must return to a null level (commonly 0),
hereafter referred to as REQ™ and ACK™, prior to beginning a
new cycle. In practical applications it is convenient to
encode REQT and ACKt as a logical 1, and REQ™ and
ACK™ as a logical 0. Please note that 0 and 1 can easily be
interchanged if done so in a consistent manner. In this thesis
I assume that the logical 1 and 0 values will correspond to the
standard voltage levels for CMOS and TTL.

Although this is not the only formulation for an STE
protocol, it does serve as a basic starting point for module
construction. We will find that the use of protocols and a
fundamental circuit called the "join" will allow us to form

more complex circuits.

20

ACK- REQ- ACK+

DI - DATA IN
DO - DATA OUT

(a) Four Cycle Protocol

|

REG+ I REQ-
. REQUEST
i

i
!
I
|
i
|
|
|
|
1
1
|

|

|

|

I

5 DATA

71 s 4k

Ll

ACK+ ACK-
ACKNOWLEDGE

(b) Four Cycle Waveforms

-1gure /i 4 Cycle Protocol

2.1.3 The Muller C Element (Join)

One circuit that can be shown to be fundamentally self-
timed and delay insensitive is the Muller C element. Although
it does not have a REQ/ACK protocol, Miller [4] demonstrates
that it satisfies all the criteria of a self-timed block.
Further, it is inherently delay insensitive and satisfies all
DI conditions as shown by Molnar [3], and others [11(4]([5].
This circuit is often called a join function because of the
unique properties it exhibits.

As a two input circuit, the join will produce a 1 output if
all its inputs are a 1, or a 0 if all its inputs are a 0;
otherwise, it retains the previous output state. Table I shows
the logic function of the Muller C in a +truth table format.
Delay variation cannot adversely affect this circuit other than
to cause delay variation at the outputs.

TABLE I: MULLER C ELEMENT TRUTH TABLE

A B OUTPUT

0 o0 0

0 1 OUT (t-1)
1 0 OUT (t~1)
11 1

Why is this circuit important? This circuit's importance
results from the ease with which DI modules and STEs are
cascadable to form a variety of configurations from pipelined
to parallel operation. The Muller C serves to provide the
global synchronization that would otherwise be provided by a
clock in many systems. Further, if it is desired that action

22

be synchronized upon a specific set of signals, a simple
cascade of C elements is known to work consistently. In a
circuit sense, the Muller C function may be freely reorganized
or extended in the same way a boolean OR or boolean AND
function may; that is, it is fully associative. Figure 8
illustrates the action of "joining" signals to provide a
synchronization event. 1In this case, we are joining several
ACK signals to provide some system level synchronization in the
form of a common ACK. 1In practical realizations, the join is
most commonly used to provide synchronization of control

signals in pipelined, or parallel, final stages.

2.1.4 Module Forms

The fundamental DI module has data inputs, data outputs, a
REQ, and an ACK signal. Although there are ways to construct
DI systems without an explicit REQ/ACK, there must be a
mechanism of feedback present in the system; otherwise the
system cannot possibly provide delay insensitivity. Typically
such signals are present explicitly. a typical central module
would appear as shown in Figure 9 (a) . The number of inputs
and outputs in a DI module is arbitrary and fully dependent
upon the specific implementation. The basic module format
depicted is, in itself, quite useful. This form, with one or

moreinputs,isoftenusedaseabasicbuildingblockformore

23

QC<@”—i%

ACK] —) 1

QC<2—‘“*>C)T@

ACK3 S ACK
] ACKE
] ACK1

/ ACK?
-/ ACK3
/ ACK

Clgure 8: Multiple Joins

DI —>

REQL——— >
ACK 1<

SELF TIMED
ELEMENT

EEEN
REQZ

<5}——£—— ACK?2

(R) - General Self Timed Module

DATAIN —>

R(j)— >
A

STE

(BY - Pipelined Self Timed Elements

STE

———> DATAout

S R([42)
< A+

-1gure 9: Pipelined STEs

complex circuits.

' For example, it is common to desire some level of
pipelining in a circuit design. Figure 9 (b) illustrates how
STEs could easily be pipelined. In a pipeline system, changes
must propagate up the full chain in a lockstep fashion before
we dare begin a new cycle at the base of the pipeline. For
example, a FIFO could be envisioned as a chain of DI registers
connected in series. It is convenient to note that we do not
have to adopt a special design to cope with pipelining. Aall
that is needed is a standard module and a Muller C element.
Figure 10 shows how a DI module could be prepared for pipelined
operation. Assuming the system started at a known state
(usually 0), an incident REQ would initiate module activity.
The module would then generate an ACK signal as appropriate;
this ACK serves as both the outgoing REQ to the next module and
the returned ACK to the sender. 1Is this a contradictory
condition? No, it is not; the outgoing REQ initiates the next
pipeline stage, while the ACK will allow completion of the
current cycle at the sender. If the sender starts a new cycle,
it will have to wait until the module receives an ACK from the
pipeline stage downstream since REQ1 and ACK2 are joined by a
Muller C function. Thus, the pipeline does proceed in
lockstep. 1In any signal ordering, new transitions into the
module must wait for both a valid REQ1l and ACK2. Therefore,
the next pipeline stage must be ready for more activity before

further operations can continue. The C element assures correct

26

DATAIN —>| oop rep > DATR OUT

MODULE
A =

(R) PIPELINED SELF TIMED MODULE

|
DATA > DATA
it > saF TIMED > 0
MODULE
’.—-9‘ — REQ2
reat —>{)
Lo< S ACK2

(B) PIPELINED MODULE FROM A BASIC SELF TIMED MODULE

Figure 10: Pipeline Modules?

operation by functional design.

Similarly, modules can readily be connected in parallel.
All that must be done is to connect a series of ACK signals
through an appropriate number of Muller C elements. Figure 11
illustrates just such an ofganization. A common ACK signal is
generated by the circuit and is fed back to all the individual
parallel module inputs. As before, the join will facilitate
the synchronization activity at this point. By utilizing
appropriate combinations of STEs and Muller C elements major

architectural variations are easily accommodated.

2.2 Delay Insensitive Protocols

One useful methodology in circuit design is to use a delay
insensitive protocol between major blocks of circuitry. This
protocol may incorporate either a parallel or serial
communication path complemented by the appropriate use of a
REQ/ACK signal set. By using a standard protocol to connect
major functional blocks, the block design process may be
simplified to incorporate standard components/elements.
Further, a standard protocol between blocks would simplify the
system integration process. The following paragraphs will
discuss a tristate protocol system as one method for block
interconnection.

In the tristate or pseudo-tristate method, all data must be

formatted so that there are no time dependencies on signalling

28

STE

<]
— ACK?
- STE N
=,
_> =z
- |
|
B8
STE J/ .
< S>> REQ2

-rgure 11: Parallel STEs

a logical 1 or 0 to the receiving circuit. A common method is
to provide two lines for each logical data bit since true three
state data lines are quite difficult to fabricate in practical
circuits. Two such lines generally encede a '1', '0', and null
('-') state. Data lines must return to the null state between
each and every transmitted data bit, much as a return to zero
code does. Typically, one line is labelled as a high déta line
(DH) and the other a low data line (DL). Figure 12 shows a
sample encoding scheme, and sample waveform, that implements a
pseudo-tristate. Each transition from null to a valid data
value, and from valid data to null, will require one full
REQ/ACK cycle. The implication of such a signalling method is
that there will be significant protocol overhead. An alternate
method involving single line transitions without a null state
has great advantages over the tristate line.

The REQ/ACK signal pair may have one of two convenient
signal conventions: (1) single rail. (2) double rail. 1In
the single rail convention, both REQ and ACK must return to a
null state prior to initiating a new cycle. Thus, as Figure 13
illustrates, the handshaking signals return to '0' as triggered
by signal edges. The single rail protocol is the simplest of
the two protocols to implement in practical logic.

Unfortunately, a single rail protocol has a significant
weakness. The total data cycle requires that REQ and valid
data travel to the receiver, followed by the return of ACK to

the sender. Next the sender must null the data lines using the

30

DH

R, e S

DL

= T

- NULL

LOGICAL ©
LOGICAL 1
UNDEFINED (-

I

(R) LOGIC TABLE DEFINING A TRI-STATE LINE

A

DH

(B) WAVEFORM FOR A TRI-STATE LINE

F1gure 12: Tri-State Line

- erne L~/
D LN e

A
—
ACK- < REG- ACK+
DI - DATA INPUT REQ - REQUEST
DO - DATA OUTPUT ACK - ACKNOWLEDGE

(A) STATE DIAGRAM OF THE SINGLE RAIL PROTOCOL

_ f \ REQ

——

|
’ i L ACK
I
l
{

DATA

L]

(B) SINGLE RAIL PROTOCOL. WAVEFORMS

-1gure 13: Protocol (1 Rail)

same REQ/ACK cycle sequence. Over a long trace having
significant delay there could prove to be significant overhead.
A double rail protocol remedies this problem. The double rail
protocol relies upon a single, unidirectional transition to
signal an ACK or REQ. Figure 14 shows a protocol signal set
where each pair of transitions on the REQ/ACK lines signals is
a full data cycle. 1In this protocol the REQ/ACK pair must
still travel between the sending and recieving circuit:
however, this happens only once each way, not twice as in the
single rail protocol. Since the protocol lacks a null state,
it is much more efficient. The only drawback to a double rail
protocol is the reality that circuit implementations are
generally significantly more complex, and hence, significantly
larger in circuit area than a single rail implementation.
Figure 15 illustrates the edge encoded nature of data in a
double rail DI protocol. Although the side effect of using a
double rail is the probability that protocol handling will
consume more IC area, the significant advantages in performance

may well outweigh any sacrifice in silicon.

2.3 Design Considerations in DI Systems

When producing a design using DI principles and modules, it
is necessary to assure a number of basic conditions. First,

design"correctness"byi.nterconnecticniscritical° If the

33

(oo e F>(0)

/ N7
ACK- } ACK+
DO | REQ- <5}-—w<; DI >
DO - DATA OUTPUT REQ - REQUEST
DI - DATA INPUT ACK - ACKNOWLEDGE
(R) DOUBLE RAIL PROTOCOL STATE DIAGRAM
i ! |
r’ir 1 / l
_ L i REQ
f i |
| f |
T I | S
: \ : [
I ! / : L ACK
| T |
I | |
{ | i
A E h
| | ___ DATA

(BY SINGLE RAIL PROTOCOL WAVEFORMS

“i8ure 14: Protocol (2 Rail)

(R) DOUBLE RAIL DATA PROTOCOL TABLE

A

A

I
I
i
!
i
{
t 1 I
1 l\k {
! I I
!

N

[
=

1]
i i
i i
i i
{ I
! |
{ I
i i
!
I
!
I
!
i

DH

-
S
-

)@} ,1))1,)@}

(B) DOUBLE RAIL DATA WAVEFORM

~igure 15: Double Rail Data

modules are not related by a general protocol, then the design
biocks must mesh very tightly in order to provide adequate or
correct operation. Simplifying system level integration is the
essential reason for using protocols in the first place.
Second, a sense of "liveness" must be assured. Liveness refers
to having a network free from deadlock. Deadlock, or deadly
embrace, is a situation in which two or more modules are
waiting for a signal from each other in a configuration that
cannot be satisfied, thus halting operation; functionally,
they are all waiting upon each other. This is a problem
peculiar to DI and asynchronous networks in general since
continuation, completion, REQ/ACK, and other signals used for
circuit operation and arbitration operate in a lockstep
fashion. Great care must be taken to avoid such classes of
problems in DI systems.

When implementing DI modules, it is fundamental that the
circuit be a critical-race free, non-fundamental mode circuit.
DI modules must accommodate signal re-ordering; thus, a
circuit must be tolerant of switching orders that include the
possibility of simultaneous switching. Since many circuits
could be produced with state machines, care must be taken to
permit any valid reordering of signals in circuit switching
behavior.

The internal organization of a DI module is arbitrary and
wholly dependent upon the designer. If desired, a fully

unclocked design may be produced. Unfortunately, it is often

36

much more difficult to produce a design having no clocks. An
alterhative is to rely upon a local clock within a limited
region within the IC. Such local clocks are not synchronized
globally. A clock operating in a limited, synchronous region is
called an Isochronic clock. The region that it operates within
is called an Isochronic Zone. Figure 16 contrasts Isochronic
and fully unclocked DI modules. Building circuits that are
locally synchronous has the advantage that synchronous design
over small areas is well understood, and quite reliable since
line delay is relatively limited. Therefore, an IC could be
globally DI while it has regions of synchronous logic within
its Isochronic zones. Any design method within those zones is
valid as long as it satisfies DI behavior in a global sense.
If communication into and out of the zone is DI, than the
device is said to be DI at a system level. Chapter 4 will

present a general method for DI design.

37

ﬂmmammnn?

=
;
!
=

oD o o o o @ @ e ol

DATA

R o oo R o oD G @ 6N G
annm-m-uq

(B) LOCALLY CLOCKED ISOCHRON

Figure 16: DI Modules

CHAPTER 3: AN ASYNCHRONOUS DI INTERFACE IC

3.1 Implementation Goals

A major goal of this thesis is to implement a DI Protocol
in a practical CMOS IC. The IC is to implement a number of
serial channels for byte-sized, asynchronous communication
between microprocessor and microprocessor based devices.
Further, the IC is to incorporate only local clocking methods
for all fundamental circuit operations within the serial
channels. The device uses the fundamental asynchronous DI
protocol signals to derive all signals within the channel's
single isochronic zone. This allows us to use synchronous
logic elements, such as D flip-flops from the University of
Manitoba VLSI cell library, while still retaining many of the
benefits of avoiding global clocking. Essentially this IC is
implemented as a set of locally synchronous internal blocks
that are linked to a DI, asynchronous protocol.

The protocol that each channel provides is a single rail
data protocol coupled with a double rail REQ/ACK protocol.
Selection of this combination was made for the following

reasons: (1) Single rail data signalling provides much

39

simpler clocking while supplying framing information for the
data words. (2) Double rail REQ/ACK signalling provides
significantly greater performance while adding only a moderate
increase in circuit complexity. (3) The mix of double rail
REQ/ACK and single rail data proved to be convenient for
deriving appropriate clocking for the channel's internal
synchronous logic.

Appropriate interface logic is provided to allow the DI
channels to be linked to a typical synchronous processor. The
Asynchronous DI Channel (ADIC) IC was designed to behave as a
memory mapped, interrupt driven device:; therefore, control is
via memory mapped registers.

This design demonstrates that synchronous and asynchronous
design elements may be successfully mixed. Further, it
illustrates the advantages of a DI protocol approach at a

system level.

3.2 Protocol Specifications

As has been mentioned, the IC implements a number of serial
channels for asynchronous communications. Since this chip
provides communication between current microprocessor based
systems, it transmits information in a standard byte format.
In this manner, software using current serial chips would need

to be minimally rewritten. Only details of control and

40

initialization would vary, not the data formats. Thus, line
signalling and waveform activity would be transparent to the
programmer.

The IC protocol is DI and asynchronous. Figure 17
demonstrates a double rail REQ/ACK protocol with one single
rail data channel. There is one simple variation on the
fundamental single rail data pbrotocol in this IC. Not only are
logical one, zero and null provided on the data lines, but a
data framing signal is also encoded. A sequence of DH DL equal
to 11 indicates that the line is between data bytes.
Therefore, this data value can serve to frame the data into
bytes and provide channel initialization. In fact, the
implementation forces a reset of certain internal states, as
appropriate, upon receiving a framing value on DH and DL.

Please note that both the placement of the data event, and
the null event, upon DH DL each require a full REQ/ACK
sequence. Such behavior is necessary because the sender could
otherwise be required to incorporate time metrics in its
transmission behavior. It is desired that assumptions about
delay, in either the interconnecting lines, or the receiver's
internal behavior, be incorporated into the design of the
system. Examination of Figure 17 clearly shows this
relationship.

The DI protocol selected provides a number of major
advantages over typical microprocessor serial channels. First,

the hardware designer does not have to presume a specific

41

—-—Iy o 1 i | I |
. N
l ! -—‘—-\ t i -4—\
N T
ARV O R U I O VI B
[1 —_ml i I
l | t { o i
. i
U‘T: TR
{0 (A R B I Y
IR IR
—— e
l noo1 !] | I
NS S (I

DL DH VALUE

0 0 NULL (-)

0 1 LOGICAL 1

1 0 LOGICAL @

1 1 DATA BYTE FRAMING

(B) PROTOCOL FRAMING CONVENTION

-lgure 17: Chip Protocol

transmission rate for the hardware. The channel will operate
as quickly as internal delays and the communication medium will
allow. Thus, if coaxial cable connects the two channels,
operation will be automatically raised to the limits of the
medium limits by the protocol itself. Since time metrics are
not assumed, the protocol operates as quickly as the medium
will permit the REQ/ACK cycle to operate. Systems connected in
this manner would have a wide latitude in interconnect
variation and upgrading. Further, low level synchronization is
inherent in the protocol itself; thus, initialization of a
network is simplified. Although some software protocol
synchronization is needed on all networks, this task should be
somewhat simplified under +this type of organization.
Unfortunately, a DI protocol does extract some cost from the
system--in this case time. The REQ/ACK handshaking that is
inherent in a protocol can double the best case time in many
serial channels. Further, a tri-state single rail code reduces
performance further by requiring that both data and null have a
REQ/ACK cycle. Potentially, such a channel's maximum speed
could be as little as one quarter of the serial channel
maximum. On the positive side, the performance of this
protocol is based upon edges rather than levels:; hence, overall
behavior should be quite acceptable in many systens.
Additionally, it is quite difficult to provide reliable
asynchronous communications in many systems. A DI protocol,

such as the one above, could regularize many design tasks in

43

such computer networks/systems.

3.3 Physical Implementation

The ADIC IC was implemented using three micron Northern
Telecom CMOS. Static design was utilized extensively
throughout the IC since estimates showed that pin-limitation,
not silicon area, would determine the number of channels that
could be placed on-chip. The following sections will detail

the ADIC IC as implemented.

3.3.1 Input Serial Channel Design

The serial input channel is essentially self-clocked logic
controlled by a fundamental mode state machine. A state
control design was selected because it was believed that a
state machine could most easily interface between the
asynchronous nature of the serial link, and the synchronous
nature of the internally clocked logic and microprocessor
interface. A block diagram schematic in Figure 18 represents
the DI Serial Channel receiver circuit.

A number of basic features are incorporated in this chip.
First, an even parity bit is appended to every data word for

primary error checking. Second, a chip reset is provided to

44

INPUT LATCH — PARITY
N LATCH
INUT 8 SHIFTER PARITY T COUNTER
—9{ H DD ND PE Il
DL OUT RD K RD
SE 0K OLK -~ LK~~~ ~- CLK
RSTb
DTRANS -] PLRST lj‘RST
% N *
S REQ REQI R DTRANS >(<’:~;)<-
0| RSTb
301
CLR . \
E RSTD K L e
Rr Pr Re
ar q
INT | STATE MACHINE
ACK RO
{E RSTD E
“ L ENABLE INT OUT¢—

Figure 18: Input Channel

allow quick initialization of all channels on the IC to a known
sét-up state. Third, a channel enable register permits the
selective reset and disabling of any input or output channel.
Fourth, selection of an appropriate channel by either reading
an input shift register, or writing to an output shift
register, provides the means of responding to received data, or
initiating data transmission. Finally, the chip drives an
interrupt line to provide a microprocessor with interrupt
driven communications; as well, both input and output channels
are interrupt driven. The following sections shall detail the
various functional blocks shown in Figure 18.

The input level generator receives DH and DI, from off-chip,
and produces a binary logical data value, as appropriate, as
well as a synchronous clock edge signal. This edge provides
all the needed clocking signals in the circuit. Additionally,
an asynchronous reset is produced to provide appropriate
internal conditions upon receiving a framing state. This block
drives all the synchronous logic that directly receives data in
the input state of the input channel. Finally, a completion
signal (DTRANS) indicates when valid logical data is present at
the inputs.

The shifter is a nine bit shift register and simply serves
to convert the binary serial data into a parallel format. Note
that the design assumes that the most significant bit of data
arrives first. This circuit is a simple cascading of D type

flip-flop circuits implemented in static CMoOS.

46

The counter is four bits wide and serves to indicate when
the input channel has provided nine consecutive input bits. At
this point it signals the state machine that eight data bits
and one parity bit are ready in the input channel. This allows
the state machine to provide an interrupt to the systenm
(indicating the presence of data) and to delay its ACK signal
until the microprocessor has read the available data from the
shift register.

The parity register simply provides an even parity check on
the data. Included in this block is a tri-state driver to
allow the latching of the parity bit onto the common IC data
bus as part of a parity register.

The input request (InREQ) module is responsible for
converting the double rail REQ signal inté a form more
acceptable to a fundamental mode state machine. It simplifies
the state design considerably by having the double rail act as
a single rail internally. Since transitions on an internal
line are usually much faster than on external lines it was
considered an acceptable compromise. The output of this stage
is joined by a Muller C with the DTRANS signal from the input
stage. The effect of this is to force the state machine to
wait until all inputs are valid. This stage can be reset by a
chip reset or by the enable signal.

The input acknowledge (InACK) module produces the double
rail ACK output signal. This signal is produced by a

toggle~-type flip-flop initialized by the chip reset. This

47

signal is driven by a state output of the controlling state
machine. Thus, the state machine arbitrates the protocol by
controlling the acknowledgements.

The state machine itself maintains the fundamental mode
restriction; that is, only one input may change at one time.
Careful design of the overall input channel and analysis of the
various signals allowed the use of this restriction. Further,
signals that could potentially be simultaneous are provided for
in the state design. Design and analysis of the state machine
has shown that this machine should be able to resist
simultaneous input changes on all appropriate inputs from the
various channel stages. Figure 19 detéils the state transition
graph of the input state machine while Table II details signal
functions. Design of the state transition table accounts for
variation in ordering in INT and REQ; further, appropriate
logic methodologies void critical races and hazards in the
implemented circuit. One detail to notice is that acknowledge
signals for both logical data and null adds considerable
complexity to this machine. If the null state could be
eliminated, considerable circuit simplification would be
achieved for both the state machine and the input channel as a

whole.

48

ERGI/ARrPrRe

E - ENABLE Rr - REQ RESET
RQ - REQUEST Pr - PARITY RESET

I - INT PENDING Rc - COUNTER RESET

A - ACK OUT

Bxx/0011 100/0000 110/1108

>

00 e 83

o1 04 Z‘ 05

110/8111 101/0011 111/0000
NOTE: IT IS ASSUMED THAT ENABLE = @ FORCES A RETURN

T0 STATE 09.

Figure 19: Input SM

TABLE II: INPUT CHANNEL SM SIGNAL FUNCTION

FUNDAMENTAL INPUTS

E Enable Bit 1 channel active
Rg Input Request 1 data pending
I Interrupt Pending 1 signals wait on processor

FUNDAMENTAL CONTROL OUTPUTS

A Acknowledge Qut 0->1 toggle acknowledge line
Rr Request Reset 0->1 reset request input to SM
Pr Parity Reset 0->1 reset parity register
Rec Counter Reset 0->1 reset control counter

The remaining circuitry is primarily glue logic. All
built-in test features and the overall microprocessor interface
are not shown in this diagram. Thege aspects of the IC are

presented in subsequent sections in this chapter.

3.8.2 Output Channel Design

The output serial channel is very similar to the input
channel in design and scope. The major difference is the fact
that this channel converts parallel data into a serial signal.
Further, the synchronous clocking is provided by the output
state machine In conjunction with ACK signals received from
prior transmissions. Another major feature is that some action
must initiate a transmission sequence. In this design it is
appropriate that a write to the output channel shift register
will initiate data transmission. The following paragraphs
describe the output channel block diagram pictured in Figure

50

20.

The output level generator (Outdriver) receives a binary
data signal, a data output strobe, and two control lines. The
control lines serve to force either a null/frame signal, or a
data signal, depending upon the value of the DCLK (data strobe)
signal. The DCLK signal forces out data if its level is a 1,
otherwise the OutDriver circuit will force out a null/frame
signal as appropriate. Data input is via OH or OL which allow
the circuit to output either the parity bit, or a data bit.
The data clock signal is controlled by the output channel state
machine.

The output shift register (S-REG) converts parallel data
from the data bus into serial data for output on the serial
channel. Data is written into the shift register by driving a
negative edge on the input data-latch line. All data is
shifted out with the most significant bit first.

The counter provides a count of the number of bits sent out
on the serial channel. It serves to signal the OutDriver that
the parity signal must be sent on the serial channel; thus, it
allows arbitration between data output and parity output.
Additionally, the state machine receives a signal indicating
the status of the clock and the number of bits sent. The state
machine uses this information, along with a delay to allow the
circuit to settle, to provide arbitration and to control the
internal clock generation. Please note that actions forced by

the SM-generated clock must be allowed to settle before circuit

51

18 N
LATCH DATA IN READ ERROR
QUTDRIVER OI 1} C(l.NTER-l
S o ot DG-D7 PERROR c1
dn @2 2 R & | @
1ok - - ok ok
OH SOUT Il
DOV pr sﬁ, S DIN
AHE DoKX | o b7 RST ? RST
T‘ S-REG PRIy T || E[:T
Ack | | D)
-1 4
ACK RAIN N
[51\(::, FORCE INTI-
G_R .
RST
E RSTH »
I Ib
Hrewo R l oot
 [RAPDROCI 7
REQ I If
S{E RSTH ACK
\ E
ENABLE — CRSTb

Figure 20: Output Channel

activity can be allowed to progress; the SEQ input is provided
to assure this internal synchronization. 1In essence, it allows
the design of a state machine using the fundamental mode
restriction. Care was taken during state design to permit the
possibility of simultaneous switching events where needed.
Fundamental SM mode is modified only to allow for asynchronous
events upon the Enable line since it was found to be a useful
design choice. The state machine state transition graph for
the implemented in Figure 21. Table I1II provides a summary of

the SM signals.

TABLE III: OUTPUT CHANNEL SM SIGNAL FUNCTION

FUNDAMENTAL INPUTS

E Enable Bit 1 active

AQ Acknowledge In 1 acknowledge pending output

1 Interrupt Pending 1 wait on external servicing

S Sequence Signal 0 wait on internal synchronization

FUNDAMENTAL CONTROL OUTPUTS

R Request Qut 0->1 force request to toggle

A Acknowledge Reset 0->1 reset acknowledge SM input

Pr Parity Reset 0->1 reset parity register

D Clock Data Out 1 place data on DH DL, 0 place
nuil

Rec Reset Counter 0->1 reset counter

Cl Clock Shift Reg 0->1 clock parallel to serial
shift

If Force Interrupt 0->1 force a pendlng interrupt

The ACK circuit converts the double rail ACK into a single
rail circuit. This 1is joined with a data completion signal

from the OutDriver circuit to simplify internal state machine

53

EAIIS/RAPDReCl If
Oxxx/0110100 1000/0110101 1010/ 0000000

00 =L = |

1002/ 060000 Nﬁé
-1 03 '
1100/0110100 | 1011/1000808,|, 1001/1000060,]
14 09 <o
1000/ 1000000/ 1010/1@01%,{—1000/1001

13 10

11@01/01%7[< 1110/ 1100/01%
12 <

NOTE: IT IS ASSUMED THAT IFE =0 , THEN THE

Figure 21: Output SM

design. The circuit is otherwise similar to the fequest
circuit in the input channel. As well, the REQ circuit is
virtually the same circuit as the ACK circuit in the input
channel.

The remaining logic is primarily random logic within the
circuit. Overall, the output channel was moderately more
difficult to design than the receiver, and required a élightly

larger area on the IC.

3.3.3 Muller C Design

The vast majority of the circuits in the IC use CMOS cells
from the University of Manitoba VLSI cell library. Thus, most
of the design uses Dand T flip-flops, NANDs, NORs, and XORs.

The one major exception is the Muller C, or Join, element.
This logic element had to be produced for this design;
further, it is not a standard static CMOS circuit. It is
implementedusingPseudo—NMOSandisbaseduponanNMOSversion
presented in Mead and Conway [6]. The basic NMOS circuit is
depicted in Figure 22. Since this circuit is a low level
element and is critical to the reliable operation of the
design, extensive simulation was essential, Therefore, I
utilized the SPICE circuit simulator to gain an accurate view
of its behavior under circuit loading of two to five gates.

SPICE simulation indicated that the given circuit

55

Vss Vss

Figure 22: Muller C Circuit

implementation should preduce an acceptable performance.

3.3.4 Microprocessor Interface

The DI serial IC provides a register-style interface to
external processors. Access to internal registers, test
points, and several other resources is via an eight bit data
path. To read or write to this chip an external processor must
assert the read/write line (R/W), two address lines, A; and ag,
and an enable line. Such a configuration provides the user
with a total of eight registers, four used for input and four
used for output. Table IV summarizes the addressing for each

register and its general purpose.

TABLE IV: INTERNAL REGISTER CONFIGURATION
A; Ay RW FUNCTION

Channel 1 input register

Channel 2 input register
Internaltestpointforshiftregisters
Read parity register
Channel 1 output register

Channel 2 output register

Not currently used

Enable register

HHOOKFRKFLOO
HOFROMOMKO
COO0OOHHHRK

The register set provided will be briefly described in the
following text, while Figure 23 provides a complete
description of individual register configurations. First, the
two input channels, referred to as icO0 and icl, are the eight
bit serial devices on chip. They reside at the base of

57

B/ B6 B> B4 B3 B2 Bl BO

“m= === -==|--=-|ocl |icl |oc® | ich |PARITY

== | === |---|---Jocl |icl|oc® | ic® |ENARBLE

=== {-== 1 -=-|=---1s0l |sil |so@|si® |SHIFT TEST
D7 (D6 |D5 |D4 |D3 (D2 |DL |D@ |DATA IN/OUT
013 | 0l12 |01l [003 | 002 |0B1 | i12 | i1l |02 | 0L

STATE TEST

ocl/ocl - output channel 0l13-011 - output SM 1
icd/icl - input channel 003-001 - output SM @
so@/sol - output shift 112-111 - input SM 1
Si@/sil - input shift 102-i101 - input SM 0
D@-D7 - data byte SM - state machine

-l gure

231 Register Ordering

the address range for read operations and are full eight bit
parallel_data registers. The two output channels, oc0 and ocl,
are the eight bit parallel data outputs. These registers are
at the base of the register set for write operations. All the
above registers provide the device with the basic conversion
from parallel to serial and vice-versa. The shift test
register provides access to internal parts of the shift
circuits and is intended solely for IC testing. The enable
register allows us to individually enable or disable individual
channels in either direction by loading a one or zero bit
respectively; thus, we can disable the outgoing channel 1
while still being able to receive data on that channel. The
parity register provides parity for both input and output. It
provides both input and output parity bits in order to enhance
the ease of testing for the output channel. The other
registers listed in Figure 23 are used for testing purposes and

are further discussed in the test section of this document.

3.3.5 Design Area and Layout

The asynchronous DI protocol IC implements two fully
bidirectional serial channels on one chip 7518 by 7518 microm
chip. The pad selected is a forty pin pad providing sufficient
lines for the channels. Each channel, either sender or

receiver, requires four pins to support the protocol and data

59

conventions. Thus, each and every fully bidirectional channel
actually requires eight pins. The remaining IC pins are used
for interrupts, parallel data, power, ground, and other
microprocessor support functions. See Table V for a summary of
the total pin count and usage. Unfortunately, even forty pins
Is quite limiting in this application since the two channels
did not utilize the full chip area. In fact, only about 60% of
the total chip area is wutilized in the current desian.
Therefore, it would be desirable to sacrifice pad area for
additional 1/0 pads by using a sixty pin package in future
designs. Pad dictated arbitrated the choice of design layout

and placement.

TABLE V: PIN USAGE

Total Pins Pin Name Usage

1 SSI Shift in state condition

1 SS0 Shift out state information

1 SCLK Shift clock for test

1 LD/SH Load or shift state

1 MUXCON Control of state mux
(normally O

8 D>-Da Parallel data I/0

2 A;-Aq Address lines

1 TicO Interrupt icO

1 Tict Interrupt icit

1 IocO Interrupt ocg

1 Ioci Interrupt oct

1 RW Read/Write

1 E Chip enable

1 RST Chip reset (active low)

4 icO iOREQ, i10ACK, i0DH, i0DL

4 ict As per ic0

4 ocQ o0REQ, o0ACK, o0DH, o0DL

4 ocl As per oc0

1 VCC Power

1 GND Ground

60

The implementation of the two bidirectional channels, the
miéroprocessor interface logic, and the test circuitry in the
ADIC IC utilizes approximately 60% of the total chip area
available. In providing this area estimate it is only
reasonable to mention that each channel is far from being
packed as densely as possible. During the cell placement
process I was acutely aware of the fact that pin availability
limited this initial design. Many cells route input and output
in configurations that did not provide efficient routing;
hence, significant IC area is consumed by routing channels.

Major improvements can be made to the layout. Cell
redesign to optimize inter-cell routing could greatly compress
the individual channels in the current IC design. I estimate
that tailoring cells more closely to final placement objectives
could easily result in savings of ten to twenty percent over
the current size of individual channels on this chip.
Additionally, sacrificing some of the convenience of full CMOS
for pseudo~NMOS could substantially reduce the size of many of
the larger cells. If further reduction of area is needed, some
attention could be given to providing a dynamic implementation
of some of the blocks. Prime candidates for pseudo~NMOS, or
dynamic logic, would be the shift registers, the microprocessor
interface components, and any other logic where CMOS design is
nonessential and the additional effort would yield significant
compression in the circuit. Another major source of wasted

area are the state machines themselves. Time constraints

61

forced me to implement the state machines in fundamental mode
logic using NANDs, NORs, and NOTs. Implementation of the state
machines using PLAs would substantially reduce the SM size
which would, in turn, be a significant saving since these
devices alone are about ten percent of the total channel area.
Overall, I believe I could readily shrink individual channel
area by twenty to thirty percent, which could result in a
decrease in current IC area used to fifty percent or less. A
single channel should drop from using about fifteen percent of
chip area to about ten to twelve percent. Given the overall
lack of packing of the individual cells such a reduction does
not seem overly optimistic. Therefore, a more usable IC with
four bidirectional channels should be possible using the sixty-
eight pin package currently available from Northern Telecom.

Table VI summarizes the chip layout statistics.

TABLE VI: DIE AREA USAGE

CURRENT DIE USAGE (60% of TOTAL IC AREA)

15% State Machines

20% Shift Registers
15% Interface Logic
10% - Glue Logic

40% Interblock Routing

REDUCTIONS OF 30-40% COULD BE ACHIEVED BY:

Cell redeign to improve routing

PLA State Machine implementation

Pseudo-NMOS/Dynamic logic blocks

Improved placement

Of the channels themselves, it is important to note that
only about twenty-five percent of the total area is exclusively

62

devoted to the DI protocols. This includes all the level
generétors, REQ/ACK circuitry, and the full state machine. In
reality, the control of the DI protocol is fairly simple for
the state machine, and it is the synchronous interface logic
that greatly complicates the current design. Perhaps protocol
simplification and greater adherence to DI properties in the
state machine itself could greatly simplify this part of the
logic design. Overall, the overhead added seems reasonable
given the advantages a DI protocol can provide in simplicity
and consistency of interconnection between serial channels.
Please note that protocol overhead should be significantly less
in designs that incorporate more DI features in their internal
design rather than using a DI system simply added to an
existing synchronous systen. The ADIC IC design is
isochronically clocked and uses highly synchronous design
methodologies, while the state machine provides integration
between modular DI asynchronism and the synchronous elements
within a consistent framework. Chapter four will discuss

alternatives to this design at some length.

3.4 Design for Testability

It was desired that there be some provision for testing
provided within the IC implementing the DI asynchronous

protocol. During the design process the options of built-in

63

self-test and external test were considered. Analysis showed
that a high percentage of the signals are, or can be relatively
easily made to be observable by using fairly simple methods.
This is simply a consequence of the great independence of the
various channels; testing is much like testing four simple
chips rather than one large, highly interconnected chip.
Therefore, it was decided to implement a combination of scan-
type and adhoc methodologies for testing. The primary goal of
testing was to initially determine defective chips rather than
to isolate specific defects. The following sections will
discuss measures taken to facilitate the testing procedure.

The primary goal of my efforts in testing was to make as
many of the critical internal lines available to the tester as
possible. One of the basic methods used was to make primary
internal lines available to the tester. Therefore, the parity
register includes the output parity bits to aid in testing the
parity data path. Second, all shift register inputs and
outputs are provided via a gated register for testing.
Further, two other simple structures were added to facilitate
testing, as described below.

First, it was considered convenient that state machine
current state, and machine inputs, be directly observable.
Thus, each set may be gated onto the data bus by driving the
MUXCON input high (MUXCON has the dual purposes of controlling
the SM multiplexor and the gating of state information onto the

eight-bit data bus). Upon asserting this input line, the

64

address lines A; and Agp will address the data according to
Table VI. This method was deemed acceptable since it allowed
the observation of a great number of the internal control lines
for each device. Thus, testing could easily proceed by testing
each channel individually by giving s a simple check on the

results produced by the primary state machine input circuits.

TABLE VII: STATE TEST ADDRESSES

Ay Ap ST CHANNEL STATE MACHINE ACCESSED
0 0 1 Input channel 0 (ic0)

0 1 1 Input channel 1 (icl)

1 0 1 Output channel 0 (oc0)

1 1 1 Output channel 1 (ocl)

X X 0 Normal operation

In a fundamental mode circuit the primary inputs and the
state combine to produce the state machine output values. A
simple scan-path type of test circuit is provided for further
state control and testing as illustrated in Figure 24. A
register and multiplexor arrangement allows us to either read
the state machine state by using an appropriate combination of
control values (drive MUXCON to 1, clock LD/SH by forcing in a
1, and then set LD/SH to 0) or by simply clocking the state
test clock. This will effectively shift the current state
machine states out of the SSO line for observation by the
tester. As well, we can shift values into the state machine
register by placing data on the SSI line and driving the shift

clock correctly. In this manner we can literally force any

65

STATE —> STATE
L—> MACHINE
e OUTPUTS
CONTROL MUX |4
>
L1neuTs /]\ OUTPUTS<
MUXCON | > OTHER
STATE
\Ez MACHINES
SHIFT IN [ST SO SHIFT OUT
SHIFT REGISTER

)

LOAD/SHIFT /I\ /f\ SHIFT CLOCK

SI - SHIFT STATE CONDITION INTO SM

S0 - LATCH STATE CONDITION OUT OF SM

SM - STATE MACHINE

Figure 24: SM Observability

state machine output condition we desire by shifting into the
state register and driving MUXCON low. Therefore, the user has
the ability to observe the state outputs and can control the
state outputs to test other parts of the machine. Figure 23
indicates the register format implemented on the current IC.
Extensive attention was paid to the state machine because
almost all internal control lines, and most other vital lines
terminate at the state machine. It was felt that greater
observability and testing control could be gained most easily

by adding more control at this level of the design.

3.5 Functional Simulation Results
3.5.1 simulation Procedure

Prior to fabricating a chip of any complexity it is
hecessary to extensively simulate the performance of such an
IC. The goal of simulation is to verify both the functional
behavior and the overall dynamic performance. Extensive
simulatioh provides greater confidence in the results of the
design process prior to committing the design to semiconductor.

The simulators were used in verifying the DIAC IC were the
SPICE circuit simulator, the CSIM switch simulator, and the
APLSIM simulator implemented at the University of Manitoba by

Roland Schneider. SPICE is an extremely accurate simulator for

67

analog simulation. It was used to simulate low level circuits
wherever timing or analog effects could be critical. SPICE
could not be utilized to simulate the entire circuit because it
imposes excessive demands upon computational resources. Thus,
for larger blocks of logic, and for the overall functional and
performance simulation, APLSIM and CSIM was extensively used.
CSIM is a switch-level simulator which was used to provide a
simple verification of logical connection and operation of
logic blocks. APLSIM is quite reliable for overall simulation
providing that the logic conforms to reasonable standards in
logic levels and behavior. Therefore, SPICE was chosen to test
analog effects at a low level, and APLSIM was chosen for
overall simulation from the highest level to the lowest level
in the design.

IC simulation started from small functional elements in the
circuit hierarchy and moved to higher levels as blocks were
linked together to form the total circuit. An incremental
approach in design and simulation provided reasonable assurance
that low levels of the circuit would perform as expected in the
final design. Ultimately, simulation was needed at the IC
level to verify overall operation. Since the IC can be divided
into four highly independent channel elements, microprocessor
interface logic, and test logic, the simulation never reached
unmanageable circuit sizes. High level testing involved
simulation of the microprocessor interface, and individual

simulation of the I/O channels. The channels were individually

68

tested for functional and performance behavior. Final tests
involved linking separate output and input channels together
for a full test of functionality and performance.

The high level of testing provides a reasonable assurance
of the correct behavior of the IC. Additionally, APLSIM
allowed us to determine if timing and logical problems were
likely to exist within the circuit. In fact, APLSIM allowed
the early determination of serious timing errors in the input

channel state machine thus strongly justifying its use.

3.5.2 Simulation Performance

Each channel was driven separately by external signals to
initially determine the overall internal delay within the
channel circuitry. Once the first simulation runs were
completed, it was possible to fine-tune the simulation
parameters to determine the overall channel performance. The
test results shown here are for a system that assumes very
small 1line delays and a relatively 1low channel load.
Therefore, predictions of performance in a real system will
have to factor-in overall line delay. As well, remember that
all estimates include the fact that the data line is a four
cycle REQ/ACK protocol as a result of sending both data and a
data null.

Separate simulation of the input and output channels

69

provides the result listed in Table VII. Minor variations due
to the layout are expected in the results. The delay rates
shown in the table are peak performance Figures and assume
instant response to outputs generated by the channel under
test. Obviously this is not the case and channel to channel
communication will involve circuit delay at both ends. As
well, the data rates are burst rates and do not accoﬁnt for
interrupt latency involved in servicing the DIAC IC. Overall,

the performance indicated by the simulation is promising.

TABLE VIII: CHANNEL PERFORMANCE UNDER APLSIM

Input Channel 0 60 nS
Input Channel 1 65 nS
Output Channel 0 80 nS
Output Channel 1 75 ns

When the simulation was run with an output and an input
channel connected together, a fair measure of overall
performance is presumed was obtained. Functional behavior was
as expected. The overall response varied from channel to
channel but the best rate was approximately 300 nS per bit in
burst mode. Once again it is necessary to remind the reader
that the line delay for this test was negligeable.

Finally, I would like to note that performance will be
affected by two factors. First, line delay and additional
charge times under heavy loads will increase the time per bit.
The burst bit rate can be estimated by using the simple

relation of

70

tB=3OO+2xDxthD (ns)
where tp is the burst time per bit, tp is the line delay per
edge, and P is the number of rails for the ACK/REQ (in our case
two), and D is the number line data transitions per data bit
(in our case two for data/null). Second, overall bit rates are
highly dependent upon interrupt latency in the target systen.
Note that the greater the line delay the lower the sustained
bit rate will be. A measure of the overall time per bit
transmitted can be found with the equation of the form

tps = (tg x 8 + tyyy) / 8 (ns)
where tpg is the sustained bit time, and tinT is the interrupt
latency time. As can be seen, interrupt servicing rate can

significantly reduce the transmission rate.

3.6 Test Results
3.6.1 Functional Testing

The first test of the DIAC IC was a functional test. This
test was carried out on a test rig using prototype
perf-board which has basic switches and LEDs. All outputs to
the LEDs were buffered by drivers to avoid excessive loading of
the IC outputs. The functional test consisted of exercising
individual receivers, or transmitters, with appropriate driving

signals and observing primary outputs. This type of testing is

71

acceptable for a number of reasons: (1) All internal logic is
statié CMOS and can therefore operate at any arbitrarily low
frequency. (2) Functional blocks on the IC are relatively
small and are easily isolated for testing. (3) Basic
functional tests can fairly easily verify correct operation.
(4) On-chip testing paths improved the testability of the
channels and greatly simplified the overall functional test.
Of course, such a simple testing method cannot easily locate
the cause of a fault but it can verify overall logical
operation in this particular IC. This is not true, in general,
for all ICs nor is it implied that this was an exhaustive test.
Initially, all of the ICs failed the functional test.
Observation of the primary outputs of the ICs gave an
indication of why the devices were performing so poorly--the
logic levels were inadequate. Although some ICs were producing
relatively high and low voltage values, as appropriate, noise
margins and levels were totally inadequate. Replacement of the
buffers by proper low power CMOS parts allowed testing to
proceed for some devices. With no loading, or low loading with
one low power CMOS load, proper voltage levels were finally
obtained.with some devices. Under such conditions, three of my
five devices utterly failed the functional test. Of these
devices, one had a non-functional input channel 1 and 2,
another appeared totally non-functional, and the last had three
of four channels totally non-functional. Of the remaining two,

one barely maintained adequate levels on channel 1, and the

72

second was acceptable only for low load conditions.

Why did the devices originally fail? Examination of the
simulation results indicated that the simulation was carried
out with excessively low loads. True TTL loading was not
properly applied to the outputs of the devices; the result is
that the IC output driver stages are not adequate for greater
than a low CMOS fanout. Although this is not entirely
disasterous (one device did work), it does require the IC to
have buffers placed between all outputs and their corresponding
loads. As well, it would tend to limit yields. This certainly
underlines the essential need to subject a device to realistic

conditions at the IC boundaries during simulation.

3.6.2 Dynamic Testing

Dynamic performance testing was carried out on a Motorola
MC68HC11 prototype module. This module has a microcontroller,
a ROM, and interface circuitry on a small board. As well, a
cable connector allows the interfacing of external boards to
the prototype module bus directly. To test the device, wire
was directly wrapped to cable connector pins so that the board
could directly interface to the DIAC IC on a perfboard. A
number of LEDs formed a simple diagnostic display on the
perfboard. 1In order to measure the performance, one input and

one output channel were simply tied together on a single IC.

73

Thus, I tested the interconnection performance for a small
local wire length. See Figure 25 for an illustration of the
test system. A simple interrupt service brogram was written to
provide servicing of the input and output channels used.
Diagnostic information about program and system operation were
displayed on a simple four-segment intelligent display.

Performance measurement was accomplished in a very direct
fashion. An Arion 100 MHz logic state analyzer was connected
to REQ, ACK, DH, DL, RW, and INT which has an effective capture
rate of 50 MHz for six inputs. By triggering on the interrupt
line, a full data cycle could be observed for the IC. The main
reason for using the logic state analyzer, however, was so that
the peak performance could be directly measured.

Direct measurement provided a bit rate of approximately
1150 nS per bit (870 Kbps). This was a disappointing result
but it was not surprising given the poor driving
characteristics discovered in the functional testing of the
ICs. Direct observation of the line with an oscilloscope was
carried out by externally triggering the scope from the
interrupt line. This provided a stable enough image to clearly
see that excessive charge/discharge times appeared to be the
problem. The IC spent most of its time charging or discharging
the external 1loads, while internal operations appeared to
require relatively 1little time. This is the expected
interpretation since the time spent at a stable level was quite

short which is in keeping with the simulation predictions of

74

SUSTAINED BI-DIRECTIONAL TRANSM

68HC11

170
CHIP

DISPLAY

DI 1/0
LINES

Figure 25: Test System

150 nS for a full cycle. It is somewhat pleasing that the IC
functioned at all given the severe drive problems it
experienced.

Finally, a delay line was produced using D flip-flops and a
One Shot IC. The REQ line was delayed by 5000 nS to see if the
device still operated. It did continue to function correctly
with the expected 10000 nS additional delay per bit (remember,
two edges occur on REQ in each cycle) for a total transfer time
of 11180 nS. Note that the discrepancy between these
measurements and those of the logic state analyzer is due to

the fact that the delay is not exactly 5000 nS.

3.7 Evaluation

Unfortunately, the current IC proves to be inadequate due
to its weak output driver circuits. Therefore, any attempt to
use this IC in practical circuits would require new output
drivers to be added to the IC.

Nonetheless, the IC does operate in a delay insensitive
manner. In fact, it is probably the delay insensitivity of the
internal logic that allowed it to operate with such inadequate
output drivers. Thus, it does demonstrate that DI techniques
have some merit. The error in simulation does not really alter
the fact that the DI 1IC adjusted to its environment

automatically when large line delay was inserted at the chip

76

boundary.

Fufther study could include redesign of this IC. A new IC
should incorporate proper drivers, a two cycle REQ/ACK and data
protocol, and internal mixed mode or fully DI circuitry. as
well, attention could be paid to reducing channel area so that
a more practical number of channels could be placed in the 64

pin Northern Telecom package.

77

CHAPTER 4: MACROCELIL DESIGN

4.1 Why Another Design Method?

I believe that it would be desirable to utilize another
design method for the implementation of DI systems for a number
of reasons. The current design was an ad-hoc solution of a
specific DI protocol. Unfortunately, this type of design is
quite difficult, being expensive both in time and effort.
Further, the specific protocol implemented in the ADIC IC is
not as efficient as it could be: therefore, it is desirable to
utilize a more efficient protocol specification. This is
particularly important if DI methodologies are to be used at a
lower level within logic circuitry than was carried out in this
specific design.

Therefore, a more consistent, regular method of design is
desirable for implementing DI systems and DI protocols between
major functional blocks of logic. A more suitable design
methodology should provide shorter design cycles and may well
be more amenable to design automation. In particular, it
should be remembered that using DI modules at a low level

greatly simplifies interconnections since time critical paths

78

between blocks are of little concern.

4.2 A Logic Design Methodology

C. E. Molnar and others [3] present a general method for
the implementation of DI specifications. In that paper, both a
generalized formal circuit specification and a method for
circuit implementation are presented. The method consists of
three distinct steps: (1) For a given circuit, an interface
state graph (ISG) must be produced. (2) An enhanced ISG
(EISG) 1is then derived from the primary circuit specification
ISG. (3) sState equations are derived from the EISC. (4)
These equations are then implemented in a DI macrocell. Thus,
if a complete specification for a circuit can be produced, the
tools are available to produce state equations to implement the
functional behavior.

The core of this process is the derivation of an Interface
State Graph to implement the procedure desired. The ISG is
related to Petri Nets [5]. Like a Petri Net, an ISG requires a
monotonic transition on a line which is signified by a graph
variable. Variable transition is referred to as firing the
variable. This variable activity is represented by arcs in the
graph. For an ISG to make a change of state, a variable must
carry out a firing event. A circuit implementing the ISG must,

therefore, provide for monotonic transitions of each variable

79

represented in the ISG. Figure 26 is the proper ISG of the
Muller C element mentioned previously as specified by Molnar
and others [3][4][7]. In an ISG, a state node (represented by
a circle) with two or more outgoing arrows represents a choice
between one of two or more behavioral options. A state node
with two or more incoming arrows represents a state reachable
by many behavioral paths. If a state node has one input and
one output, a clear sequence of events is explicitly indicated-
-first the input must fire and then one specific output must
fire. This is the situation if we have a full ordering of the
input signals. It is the goal of the ISG to specify all valid
partial and full orderings of inputs and outputs in the DI
circuit. Any number of inputs or outputs may be specified, but
a circuit must output its data prior to accepting new inputs.
Thus, a C element ISG indicates that A or B may fire in any
order, but both must fire before the output, C, undertaking an
output transition. Thus, A and B are partially ordered signals
since they may be arbitrarily reordered prior to a valid change
in the output. It is useful to note that an ISG may assume an
initial state that is achieved either asynchronously or via
state inputs in practical circuits.

An EISG is produced by giving each state node a binary code
such that all inputs and outputs are represented by a unique
binary symbol, and a start state in the ISG is assigned the
state value 0000...00. The designer traces through the network

by inverting the current variable state each time a related

80

-lgure 26: ISG of C Element

trace arc is encountered in the ISG. The designer must
continue to traverse the original network, extending it as
needed, until he traverses all of the traces and produces a
result identical to the starting state bit pattern. It is
normal procedure to begin with a bit pattern of all zeros, but
this is not essential--it is merely a convenient consistency.
Figure 27 illustrates the EISG of the Muller C element's ISG
portrayed in Figure 26, Notice that the function is
essentially duplicated in this case; in many other situations,
the designer may find redundancy in the EISG paths.

Now it is possible to produce a state implementation of
this function. Simply produce a boolean function for the state
node values using a Karnaugh map (or use any other Boolean
simplification method). 1In this specific case, we have an
eight-valued, three-variable Karnaugh map. Wherever the
function produces a '1°? output (the C element in the preceding
Figure‘27), a 1l is placed in the Karnaugh map. From the map
illustrated in Figure 28 (A) a logic function producing the
desired result is readily implemented as shown in Figure 28
(B). |

Clearly this is a bit simplistic as an approach for DI
systems in general. It is well known that a designer could
produce hazards, races, and so on, within the circuits in the
process of converting directly to logic in this way. It is
necessary to provide circuitry to prevent metastable behavior

and common circuit component variation from causing severe

82

EISG BIT ORDER -- A B C

J/cw@@
B 010 Q A 100

-lgure 27: EISG of C Element

ab
C oo 01 11 10

0| @ U 1 0

11 © 1 1 1

F=AB+CA+CB=RAB+CA+B

(R) KARNAUGH MAP OF THE C ELEMENT

A

R”R
1 %)

& +

+ &
—>

(B) LOGIC IMPLEMENTATION OF C ELEMENT

> C

Figure 28: C Element Logic

operational difficulties. The next section describes a
hardware methodology that satisfies the DI requirements at the

circuit level.

4.3 A Hardware Implementation of DI State Equations

A major design consideration in state machines, and many
state-dependent implementations of DI systems, is that a number
of basic circuit problems may occur. First, function hazards
may be produced by delays in the feedback logic of the state
machine implementations. Second, 'simultaneous' changes in
state inputs can lead to logical and functional critical races.
Unfortunately, this wusually leads designers to specify
fundamental mode restrictions or to use other approaches that
limit circuit behavior. Removal of the fundamental mode
restriction greatly complicates the design of most state
machines unless a clocking methodology is employed. Such
approaches are generally unacceptable in DI design since
partial reordering of inputs and other characteristics must be
easily accommodated. Further, state table solutions to
hazards, races and similar problems are excessively difficult
to implement in realistic circuits. Rosenberger et. al. [8]
have suggested an alternative that will satisfy the DI
requirements and provide reasonable design freedom for the

stateapproachoutlined:h1precedingsections.

85

A fundamental method for controlling state machines, is to
pléce registers at all state inputs and outputs, and rely upon
clocking to latch input variables and output results. The use
of registers provides a more reliable, more easily implemented
state machine for the designer. The only time-sensitive
aspects of the design are the requirements that an appropriate
delay occur between the clocking of input events and the
production of valid outputs, and that the registered inputs
have an acceptable setup time prior to the clocking events
themselves. Unfortunately, changing a signal at the moment of
clocking can produce undesirable metastable or unstable
behavior in such a circuit [8]. Rosenberger has broposed a
self-clocked state design called the Q-=Module that can provide
a DI implementation method that provides a robust environment
suitable for the demands of metastability tolerant,
non-fundamental mode state machines for DI systems. The goal
of the Q-module is to simplify the task of the DI module
designer to merely specifying the ISG, EISG, and equations,
while freeing him from the difficulty of making standard state
machines robust enough to behave reliably in a DI environment.

A Q-Module (see Figure 29) consists of Q-Flops, a state
machine, a Muller C element, and a clock generator. A Q-Flop
is a special flip-flop organized to form an input and output
register. A state machine in a Q-Mcdule accepts all inputs and
outputs, and places output and state information into storage

Q-Flops. A Rendezvous circuit (a multiple Muller C) and a

86

M ettt]
¥ |
o !
= “
“ M @ o
|| E & - gy
m & _ oc o “
: I - “
i 7] P | “
H I 7 7 / 7 7 x|
| A < < A <4 & “
i h !
“ "
t i
t i
" s oo] “
IR 2 b | |4 5| |
1. 2 / :
” _ﬁ |
S Do o=

0 -> OUTPUT

&
e
<3
N
&

: @ Module

Figure 29

clock generator provide the clocking for the Q-Flops. The
critical features of a Q-Module are the unique behavior of Q-
Flops and the circuit Q-Flop clocks.

The Q-Flop itself has a number of interesting features.
The most important is the fact that metastable behavior of the
input, such as an input changing at the instant of clocking,
only delays an output signal. Hazards or other circuit
instabilities cannot occur as has been verified by Rosenberger
et. al. [8]. Secondly, the Q-Flop provides a completion
signal, that is, it drives an acknowledge line when the output
of the Q-Flop has been successfully updated. This acknowledge
signal is a double rail signal and is consistent with DI signal
specifications. The Q-Flop is implemented as two parts, a Q-
Flop resolver and an output generator, as depicted in Figure
30. Rosenberger provides a number of circuits that produce the
Resolver/Output pair by using thirty-seven transistors in NMOS
Oor Pseudo-NMOS. It is the non-metastable nature of the Q-Flop
that guarantees the proper activity of the DI state equation by
assuring the presentation of valid inputs to the machine, while
the Q-Flop acknowledge signal provides valid machine clocking.

The Q-Flop clocking method is also quite unique. Whenever
the Q-Flop clock makes a low transition, the Q-Flop resolver
samples the input signal. The resolver will not signal that
data is valid until the input reaches a valid stable state; it
provides such signaling by using a pseudo-tri-state line

internally. When the clock for the Q-Flop carries out a high

88

D >

RH-L

LFL

aye

RL-L

QrL
Qro

CLOCK

@ FLOP RESOLVER

Q@ FLOP OUTPUT
DATA INPUT
Q@ oUT

Q FLOP ACKNOWLEDGE LINE

—lgure 30: Q Flop

transition, the Q-Flop output stage will place the resolver
value on the Q-Flop output lines. Thus, input to output in the
Q-Flop requires one full clock cycle where one major assumption
is made; the Q-Flop signals the validity of output data,
therefore the clock must wait for the Q-Flop acknowledge before
clocking continues.

Within a Q-Module, a specific clock signal is continuously
generated. This Q-Clock has the edge organization pictured in
Figure 31. It consists of a store input edge, CS, followed by
an edge that will store the state machine outputs, CO. The
signals that drive this clock are the individual acknowledges,
Ax, from the Q-Flops themselves. The clock issues a store
event, CS, so that new inputs may be stored into the Q-Flop
resolvers. At this time, the old outputs will still be in
effect; thus, only inputs can vary at the CS edge. This will
clock data into the Q-Flop resolver circuits, but all outputs
will still be stable. After a delay dependent upon the
assertion of all Q-Flop Axs, the clock will produce a clock
output edge, CO, and store all of the valid outputs. At this
point, the outputs will be placed on circuit output lines and
into the environment. In practical terms, a state output is
functionally delayed by one internal clock cycle since an input
takes one clock edge to get to the state machine, and thén one
clock edge to reach the output Q-Flops. In this design the
circuit must satisfy only one critical delay; there must be

sufficient a logic delay between A0 and CS

90

@-FLOP METASTABILITY

D LOGIC DELAY
2 >
' i
L *
!]
CLK : / > : L
. 1 !
& c cs
3 !
f]
!)
! §
] |
Ak :
FSk ROk !
! !
i
§
]
A
AS RO
AS - ALL VALUES STORED CS - STORE VALLES
A0 - ALL QUTPUTS UPDATED CO - UPDATE QUTPUTS
Ak - TYPICAL Ak q e

Figure 31: Q Module Waveform

to guarantee that the input Q-Flop results have been processed
by the state machine prior to clocking results into the output
Q-Flops. Other than this one critical delay, no other delays
must be produced to ensure proper circuit operation. Finally,
it may be convenient to ensure that the Q-Module starts at a
known state. Such a condition may be easily achieved with
minimal circuit overhead; simply logical AND the Q-Flop inputs
with a global reset line to ensure preloading the Q-Flop with a
reset state. Note that this method corresponds very well with
the assumption that the EISG base state has state variables all
equal to zero. Refer to Figure 32 for an illustration of a
single Q-Flop reset circuit.

The next section will discuss a specific implementation
method for a DI protocol. 1In particular, an extension will be
offered for integrating sequential blocks into the current

protocol methodologies.

4.3.1 Construction of an EISG Protocol Receiver

In thislsection we shall describe the design of a circuit
that accepts a standard DI protocol and provides appropriate
REQ/ACK signalling. The design methodology outlined in the
Previous section shall be used to produce.

Observation of the protocol in Figure 33 shows that a full

double rail protocol cycle consists of either DL and REQ

92

DATA l >

(AY Q-FLOP CLEAR CIRCUIT

CLOCK

STORE INPUT

-

—> b | I
‘ Q - FLOP
c Al>
_UPDATE QUTPUT

X |

(B) Q-FLOP CLEAR SIGNALS

Figure 32: @ Flop Reset

DATA MAY LEAD/LAG AN EDGF -- THE PROTOCOL

NOTE:

MUST ACCOMODATE THE SKEW OF THESE SIGNALS.

Flgure 33: Two Rai] Protocol

followed by ACK, or DH and REQ followed by ACK. As indicated,
the data line and request are only partially ordered in this
protocol, as would be expected in any robust DI system. This
is a fairly simple cycle behavior and an interface state graph
can be readily be derived that satisfies the requirements of a
full DT interface. The graph in Figure 34 fully specifies this
system. If we consult the protocol waveforms, it can.be seen
that both the waveforms and the DI reordering are satisfied by
the graph pictured.

Extension of the graph by the method given in Section 4.2
results in the EISG depicted in Figure 35. This graph included
extensive simplifications where duplicate paths resulted from
the initial ISG graph extension. Note that duplication is
amenable to simplification and the pictured graph is so
simplified. This protocol EISG represents the full state
representation for producing a DI protocol receiver having the
above behavior. It is interesting to note that simplification
after ISG extension reduced the number of nodes originally
produced by about six, which leads one to wonder whether
redundancy is a common situation with more elaborate ISG
representations. In any case, the acknowledge signal is the
output of this EISG and it may be easily encoded by the
Karnaugh map technique mentioned earlier. The Karnaugh map of
the EISG is portrayed in Figure 36 and it has been verified for
proper operation by using the PALASM logic equation simulation

tool produced by Monolithic Memories Corp. The equation in

95

DL R R DH

L L
R - REQUEST DL - LOW DATA
A - ACKNOWLEDGE DH - HIGH DATA

-lgure 34: Protoco]l ISG

1100

10088 Q)) 6100

{1018 8110 |

Figure 35: EISG of Receiver

figure 36 does implement the functional specification detailed
by the ISG in Figure 34. Therefore, the formal method produced
by Rosenberger, Molnar, and others (2][3] provided a simple and
elegant solution for implementing +this DI protocol.
Inplementation by Q-Modules would be straightforward.

For a given task, it is fairly simple to extend the
functionality for this DI Module. A designer could insert the
ISG of a data manipulation function into the protocol ISG just
prior to the firing of the ACK signal. This would provide an
operation prior to acknowledging the module's readiness for
more data. The design would be completed by re-expressing the
EISG and rederiving the logic equations for this circuit. It
is probable that a complete Q-Flop module in which the function
is inserted into the ISG at the outset would be more efficient
than multiple modules. This is because much of the circuit
overhead, such as clock generators, would not need to be
repeated.

Alternately, this DI Module could be used as the interface
to more extensive DI logic that performs computational or other
tasks. For example, in a design like the asynchronous
communication IC, we could cascade the DT input protocol into
DI implementations of shift registers and logic interface
control blocks. As well, there is really no requirement that
future stages follow the protocol which this device implements;

it is simply a functional block utilizing an enhanced protocol

98

R/H

DH/DL

00 01 11 10
o0 O 0 0 0
ol 0 1 0 1
VIBRIRE

A = R¥A + DH*DL’%A + DHXDL’XR + DH’xDLXA + DHXDLAR

x - LOGICAL AND
* - LOGICAL NOT
+ - LOGICAL OR

-18ure 36: EISG Logic Map

Fover the one used for the ADIC IC produced in this project.
All that is required is that each stage use the basic rules
established in earlier sections of this document for parallel
and serial operation of DI stages.

Principally, this DI receiver is intended for interfacing
of synchronous isochronic logic within a DI environment. The
reasoning is quite simple~-clocked design in a iimited
isochronic zone is well understood and quite efficient. Aas
well, cell libraries would initially be lacking DI components;
hence, creating cell libraries would slow initial designs. An
approach of gradual cell library creation would probably be
preferable in most facilities. As well, the design of reliable
synchronous systems over short IC distances is quite possible.
It is the design of synchronization networks for long IC line
distances that is increasingly difficult and prone to failure.
Clock delays over long traces, clock distribution problems, and
other details of signal skew are essentially solved by DI
realizations. Therefore, the DI protocol specified above could
be used for major long distance/time signal transmission while
local design could still be isochronic.

Ultimately, the goal is to eliminate the clock altogether.
However, it is 1likely that clocking will be used in the
majority of logic for some time yet. Therefore, a mixture of
DI and synchronous logic may have great merit for cost and ease
of design. The type of design that mixes synchronous and DI

logic shall be referred to as mixed mode design.

100

4.3.2 Mixed Mode Design

I will call the combination of fully DI elements and
sequential logic in a DI module a "mixed mode" implementation
methodology. The essential idea, as shown in Figure 37, is to
use a DI receiver circuit to provide clocking to 1local
sequential logic; thus, a DI protocol would be used between
logical blocks while the designer has the option of
implementing the needed functions using sequential logic. The
clocking pulse, or DI ACK, 1is produced only after all
appropriate inputs and REQ signals have been received.
Parallel data can be handled by a simple parallel
concatenation of serial stages using Muller C elements, or by
proper redesign of the serial protocol for parallel data. 1If
parallel data is desired, we need only have one set of DH/DL
lines for each logical data line, as well as one REQ line. The
logical extension of the ISG is relatively straightforward and
merely involves more parallel paths. For example, an ALU could
be the block following the DI interface and it could be
implemented in sequential logic. All that is needed is an
interface that provides the ALU with an appropriate clock
signal. This design is free from global assumptions about
clocking and synchronization beyond the DI standards while
allowing the designer to locally optimize isochronic circuits.
All that matters to a system designer is that the block itself

be globally DI, and therefore it must globally support a DI

101

L4]

DELAY INSENSITIVE
INTERFRCE

e

\'4 V

SEQUENTIAL LOGIC A

¥

/\ DeLAY ELEENT

Figure 37: DI Recelver

protocol and signalling scheme.

A delay element is generally needed between the DI module's
ACK signal and whatever ACK is generated by a typical DI
interface. The purpose of such a delay is to allow sequential
logic into the local environment of the DI module. Normally
the DI interface will produce an ACK signal upon satisfying all
input and output conditions required by the ISG, and in fact
that is exactly what the DI interface must do. However, we
have sequential logic that is driven by the DI interface ACK
signal. The local sequential logic needs some finite time to
carry out its operations and update the sequential outputs. If
we immediately sent out the ACK signal from the DI interface,
we would allow the sender to possibly send new outputs before
all sequential calculations were completed -~ a clear violation
of the DI restriction that all outputs must be updated prior to
sending an ACK signal. Therefore, a delay must be introduced
to ensure that all circuit outputs are appropriately updated
prior to continuation of the protocol cycle. A logic delay
that meets the worst case delay of the sequential logic must be
provided in the simplest implementation, otherwise the logic
must generate a completion signal using a more elaborate
design. The latter configuration is preferable since it tends
to optimize performance although it will almost always result
in significantly more logic. In this manner the DI
restrictions are preserved by the sequential logic in this

circuit.

103

Unfortunately, introducing fixed delays is less optimal
than having an entirely DI module. This is because the circuit
would already have all the DI delays associated with it by
generating a full logic function directly, while sequential
logic must add an additional delay to assure correct interface
operation. The principal advantage of using sequential logic
is the fact that an ISG and EISG for the function need not be
derived. Thus, many existing sequential cells in cell
libraries may well be used with minor modifications. When one
considers the man-years of development that such libraries
entail this can be a significant advantage. Thus, a trade off
between logic speed and design effort must be made.

Although assumptions regarding the internal configuration
of the clocked logic circuit are not made, a few circuits would
commonly be quite useful for interfacing sequential logic to
the DI interface. First, we must remember that transitions on
all outputs of a DI circuit are monotonic. Most clocked
sequential logic, however, responds to a specific clock edge.
One approach is to produce a pulse, or glitching, circuit that
will produce both clock edges each time a full input cycle is
completed. Figure 38 provides an example of just such a
circuit. By introducing an appropriate delay in one input line
of the exclusive or gate, one can produce a momentary pulse at
its output. as we know, a sufficient delay will produce a lag
in one of the edges reaching the gate. Momentarily, then, the

gate will receive both '1' and '0! inputs which will produce a

104

(R) LOGIC PULSE CIRCUIT

X-0R > G-0uT

DATA DELAY

X-OR EXCLUSIVE OR FUNCTION
G-0UT PULSE OUT

(B) TRUTH TABLE OF LOGIC PULSE CIRCUIT

DATA G-0UT
1 0
0

v L
5oL

Flgure 38: Pulse Circuit

'1l' at the output. Hence, a useful clock pulse would be
geherated.

A similar technique could be utilized on the data lines
(DH/DL) to convert them to single rail binary data. Figure 39
shows a fairly simple method to convert the rail data into
binary data acceptable to a typical sequential logic circuit.
Although this technique utilizes a significant amount of logic,
it has the utility of being highly robust and easily
implemented using standard components. Note that it is
desirable that DH and DL be fed directly into this circuit from
the inputs and that a Macro-Module implementation of the DI
interface only provide the ACK signal. 1In this manner, we may
avoid some of the delay associated with the Macro-Module
internal logic. However, this direct logic method is somewhat
wasteful. The Macro-Module already provides a great deal of
logic to handle the DIL/DH signals; therefore, we are only
using the input protocol for arbitration and timing.

Additionally, it may be necessary to convert binary data
back to the standard DI double rail data convention. In such a
situation, a simple circuit like the one shown in Figure 40
could be used. Finally, implementation of a central DI stage
could result in a combination of the above conversion circuits
and this is depicted in Figure 41. Remember that the general
nature of the circuit implementation may greatly increase logic
overhead; in many cases it would be desirable to implement

this function within the sequential logic itself as part of the

106

LOGIC
DL —>
PULSE -
D FLIP
FLOP
Q
CLR
LOGIC
DH —>
PULSE

BINARY DATA OUT

RST - ASYNCHRONOUS RESET
SET - ASYNCHRONGUS SET
@ - FLIP FLOP OUTPUT

-1gure 39: Rail Data to Binary

REQ

SEND > A LOGIC
LOGIC
CIRCUIT PULSE
X~0R X-OR
™ D
DFF DFF

q
N
=

DH

-lgure 40: Binary to Raill Dats

ACK1

REQ1
N —
DL IN 1/ ;t
DL DH R
RAIL INTERFACE
BIN_DATA A i]
DIN A Tt
SEQ DIN
DOUT LOGIC DIN
"DIN q
RAIL INTERFACE
DL DH ZX
L > DH oUT REQ2 ACK2
> DL oUT
Figure 41: Central DI Stage

design process.

Ultimately, a judicious use of both fully DI modules and
some mixed-mode circuitry may provide the best combination of
design ease, efficiency, and flexibility. The next subsection
discusses the system level and block level considerations in DI

module usage.

4.3.3 Construction of a Driver Interface

It should be apparent from earlier discussions that a logic
design involving many DI modules ultimately requires a driving
circuit. Some module must initiate activity to start circuit
execution. Further, it must continue to provide inputs or
control as the circuit requires. Unfortunately, the task being
implemented tends to shape the driver in almost all major
respects. For example, in the ADIC communication chip
previously described, I would probably use data writes by a
processor as an initiating signal to begin data transmission.
Data transmission would then continue until all remaining bits
had been transmitted. Thereafter, another write would be
needed to reinitiate activity by the sender in the
communication link.

Essentially, all drivers require a number of basic
elements. Figure 42 provides a typical driver circuit

implemented in a mixed-mode format. First, the driver requires

110

a start-up or initiating signal to force activity. This signal
prbmpts the computation or other activity that the circuit as a
whole provides. Thereafter, initiation depends upon both the
data involved, the arbitration and task the circuit must
perform, and other application specific details. In some cases
an initiating signal may be continuously needed during each
cycle; in others, the circuit may be free-running depending
upon dependent DI blocks. Thereafter, the driving and
maintenance of circuit activity could simply depend upon
received ACK signals, or a combination of external signals and
ACK signals; the only limit is that the driver may not be
allowed to supercede the restrictions of the DI protocol
standard employed.

If desired, this cell could also be placed in a fully DI
form. An ISG that will implement a DI version is very close in
nature to a typical DI stage; the only major difference is the
presence of an initiator or reset signal to force initial
circuit operation. A simple ISG that implements a very basic
driver is portrayed in Figure 43. Greater detail is difficult
to provide due to the application-specific nature of circuit

driving blocks.

111

CONTROL

CONTROLLER
S
DATA IN
SEQUENTIAL A
L0GIC
e

DATA T
RAIL INTERFACE D
= ot \L’ 1\

S - SEND DATA SIGNAL

-igure 42: Driver DI Stage

START/RESET STATE

R/D

S - SEND/COMPUTE DATA SIGNAL
R/D - SEND REQ AND DATA
A - ACKNOWLEDGE SIGNAL

Slgure 43: Driver ISG

4.3.4 System Level Design

A mixed mode DI module is capable of all the standard
behavioral functions in a normal DI system. For example, a
typical mixed mode DI module, such as the one pictured in
Figure 41, implements a pipelined central stage. That stage
‘may well have all of the features of the DI protocol, a
sequential 1logic core, and input and output conversion
circuits. Combining all the above with appropriate join
functions produces a central pipelined stage as outlined
previously.

Parallel and chain termination is produced in a similar
manner. All a mixed mode method requires is the use of
appropriate interface logic between the DI interface circuitry
and the sequential and combinatorial core of the logic block.
This methodology suggests that it may be convenient to utilize
isochronic zones to accelerate design and testing in many DI
systems.

Anyone curious about the proper interconnection of blocks
using parallel, serial, pipelined or other methods should refer
to chapter 3. The DI modules described here follow the
protocol restrictions required for such configurations.

Is mixed mode or DI design excessively wasteful of IC area?

I do not believe that the overhead need be prohibitive. For
example, I estimate that I could convert a significant portion

of my Asynchronous DI Channel IC to a fully DI block form with

114

only ten to twenty percent overhead. Admittedly, the IC has
many aspects that make it amenable to such conversion, but it
is still implemented in fully synchronous logic at the lower
level. Further, a fully DI module may well be reasonably
efficient. Some authors, such as Molnar and Fang [3][7],
propose that fully DI cells may yield only modest overhead
penalties from studies they carried out in producing anstandard
DI cell library (called MacroCells). Therefore, it is not
necessarily true that excessive area overheads are the outcome
of DI designs.

Further, the major advantage that must be considered is the
greater design ease that DI modules provide to system level
designers. The huge ICs of the future with one million or more
transistors will be difficult to design in a purely synchronous
manner. It may be far more essential to guarantee correct
operation by design than to save ten or twenty percent in logic
overhead. The problems that logic designers will face in
avoiding critical edges, interblock delays, and other
transmission problems between chips may well be prohibitive.
DI modules, however, free the designer from many of these
difficulties; thus, I believe that DI modules will provide a
powerful tool in the design, construction, and reliability of
the ULSI devices in the future.

The major short term challenge will be to provide DI
structures and design methods amenable to major design efforts.

In particular, DI structures that provide all of the basic gate

115

functions and common circuit elements would be highly

desirable. Further, tools that simplify the logic derivation
process from ISG are greatly needed. Additionally, more work
on integrating sequential and combinational logic into DI
modules and settings are warranted. 1In any case, a designer
has an alternative to purely sequential design that may well
prove to be the more desirable option freeing the designer from

dependence on the clock.

1lle

CHAPTER 5: SUMMARY

Chapter 1 provides an overview of the synchronization
problems increasingly found in IC and system designs. Since
synchronization is consuming greater IC chip area and design
effort, an alternate design methodology involving self-clocking
could be attractive. Asynchronous logic could free many
designs from the synchronization requirements that currently
serve to limit many designs.

Chapter 2 details a class of circuits that exhibit Delay
Insensitive behaviour. The task in Delay Insensitive design is
reduced to providing a logical and correct interconnection
between elements since such devices are immune to arbitrary
line delay. Such a methodology should reduce the overhead and
design complexity associated with clocking and synchronization
within large circuits or systems. Finally, a Delay Insensitive
protocol was introduced. This protocol could provide a
consistenﬁ interconnection method between high-level logic
within a systen. The description of a Delay Insensitive
Asynchronous Communication IC design is given in chapter 3.

This IC provides two fully bidirectional eight bit serial DI
communication links on one IC. It also implements bus

interface logic to provide a memory mapped peripheral. Circuit

117

testing is enhanced by providing a simple scan path, and by
allowing logic to drive internal states onto the TC external
data bus. Analysis of the DIAC IC implementation demonstrated
a number of areas where the design could be optimized to
further improve layout and performance. Nonetheless, the Delay
Insensitive IC overhead was deemed to be reasonable given the
application. The IC is functional despite significant external
driver problems, and it demonstrates a practical DI
application.

Finally, Chapter 4 presents a number of purely DI
representations of the input and output functions of the DIAC
protocol which demonstrate the practicality of DI design
methods. Additionally, a mixed mode design methodology permits
a combination of traditional clocked circuits within a DI
system framework. Mixed mode designs allow designers to
quickly extend cell libraries to satisfy Delay Insensitivity by
utilizing currently functioning synchronous elements.
Additionally, designers can optimize circuit layouts by
including a mix of fully Delay Insensitive cells and locally
clocked cells. Further work could include the development of a
full Delay Insensitive cell library implementing fundamental
functions within that framework, and the redesign of the DIAC
IC using these library elements. Additional work could provide
software generation of EISGs from ISG circuits, and the

automation of the circuit generation.

118

REFERENCES

(1] A. Yakoviev, "Designing Self-Timed Systems", VLSI System

Design, September 1985, pp. 70-83.

(2] T.P. Fang and C. Molnar, Synthesis of Reliable Speed-

Independent Circuit Modules, Technical Memorandum 298,

Computer Systems laboratory internal Report, Computer
Systems Laboratory Internal Report, Washington University,

St. Louis, Missouri.

[3] C. Molnar, F. Rosenberger, T.P. Fang, "Synthesis of Delay-

Insensitive Modules", Proceedings of the 1985 Chapel Hill

Conference on VLSI, Computer Science Press, 1985, Chapel

Hill, pp. 67-86.

{4] R. Miller, Switching Theory: Sedquential Circuits, Vvol. 2,

John Wiley and Sons, 1965, New York, New York, Chapter 10.

(5] 8. Unger, Asynchronous Switching Circuits, Wiley

Interscience,l969,NewYork,Newark,Chapters.

(6] L. Conway and C. Mead, Introduction to VIST Systems,

119

Addison-Wesley Publishing Company, 1980, Reading,

Massachusetts, pp. 229-254,

(7] C. Molnar and T.P. Fang, Preventing Problems Caused by

Distribution of Delays in Clock-Free Realizations of

Modules of Delay Insensitive Systems, Technical Memorandum

313, Computer Systems Laboratory Internal Report,

Washington University, St. Louis, Missouri.

[8] F. Rosenberger, C. Molnar, and T. Chaney, Q-Modules:

Internally Clocked Delay-insensitive Modules, Technical
Memorandum 312, Computer Systems Laboratory Internal

Report, Washington University, St. Louis, Missouri.

(9] K. Eshraghian and N. Weste, Principles of CMOS VIST Design:

A Systems Perspective, Addison-Wesley Publishing Company,

1985, Reading, Massachusetts, pp. 259-268.

120

