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ACTIVE RC SYNTHESIS CF STATE EQUATICORS
USING AN OPERATIONAL AMPLIFIER

Sheridan L.Ce Schwartz
ABSTRACT

A necessary condition on the A matrix that it be reali-
zable as an RC network, with one differential-input voltage-
controlled operational amplifier, is given. It is shown
that If the capacitive sub-network is a star tree, then this
condition 1is also sufficient. A test is given to determine
by inspection whether a given second-order A matrix is
realizable uvaing this configuration.

Also, state equations obtained from transfer-function
matrices by Zadeh and Desoer's method are realized using
a current-controlled operational amplifier for the case of
& single outpute.

A current-controlled amplifier is further used to realize
& larger class of second~order A matrices than that which is
realizable above. It is seen that the second-order A matri
which results from a voltage=controlled amplifier reali-
zation is contained in this classe An application to two-

port transfer-function synthesis is also given.
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CHAPTER 1
INTRCDUCTION

The use of state equations of the form

px = Ax 4 Bu

y = Cx - Du
for the description and analysis of systems is well known EI].
Here x denotes a column matrix of state variables (usually
capacitor voltages and inductor currents when dealing with
linear electrical networks), y denotes a column matrix of
responses, u a column matrix of inputs, 4, B, C
and D are matrices of constants or time functions {depending
upon whether or not the system is time-variant) and p indi-
cates differentiation with respect to time.

Ag is equally well known, the elimination of inductors
from electrical networks is highly desirable since they are
of ten bulky and lossye

Even though a required realization may be that of a
transfer function, it is often simpler to synthesize a
network using a state-variable technique [210 A minimum
number of capacitors may then be used. This is a valuable
feature since capacitors are the most difficult elements
to fabricate in an integrated circuit.

An important problem, then, is the active RC synthesis
of state equations:

Solutions have been given using the classical tech-




nique of analog computer simulation by Kerwin, Huelsman
and Newcomb [éiland Tow [S] using integrators, where n
integrators are required for the realization of an nth
order set of state equations. A controlled source reali-
zation has been given by Martens/[%], where (nﬁm)z’controlled

th order set of

gources may be required for synthesis of an n
state equations with m inputs and responsese.
Since it is usually desirable to minimize the number
of active elements in & network, this work is concerned
with & realization containing only one active element.
The operational amplifier is considered as it is readily
available in integrated form.
A characterization of the state equations of an RC
network containing one differential-input voltage-controlled
operational amplifier is given in Chapter 2. Necessary
conditions on the second-order A matrix, where the capa-
citive sub-network is a star tree, are also given in this
chapter. It is later shown in Chapter 3 that these conditions
are. sufficient for such & realizatione.
In addition, a realization using a current-controlled
differential-input operational amplifier is given in Chapter
3 for the diagonal A matrices obtained by Zadeh and Desoer [1]
from transfer-function matrices. Single-~output transfer-
function matrices are also realized here. Finally, a realizsation is
given in this chapter for a class of second-order A matrices

along with an application. to two=port transfer-funciion

synthesis.




CHAPTER 2

ON STATE EQUATION REALIZATION
USING A SINGLE VOLTAGE-CONTRCLLED OPERATIONAL AMPLIFIER

2.1 Characterization. of State Equations for RC Networks

Containing One Differential-Input Voltage-Controlled

Operational Amplifier

The use of a voltage-controlled operational amplifier
is investigated in this section. In order to determine the
usefullness of this device, the state equations for RC
networks containing it are characterized.

Ta facilitate finding a necessary condition on a set
of state equations that it be realizable as an HC network
with one differential-input voltage-conirolled operational
amplifier, the following theorem will first be proved:

Theorem I:

*
For any proper tree of an RC network with voltage
sources, the resistive branch voltages are always expressible

as Iinear combinations of the capacitive and source voltages.

Proof:
Let VR, VC and VS be the column matrices of resistive

branch, capacitive and source voltages, respectively. The
corresponding current matrices are IR! IC and IS.
Let.vch’and Ich be the matrices of chord voltages and

currents. (The only chards which exist are resistive.}

#* Proper trees only are considered, as excess capacitars are
superfluous. Only n capaciters are required for realization
of an n'h order system.




Then, partitioning the fundamental cut-set matrix
of the network yields [ﬁj

¢ .

Qy QO U o;'IS =0
Qz; O @ U/’\IR /

|

.\Ic/

where U is the unit matrix.
From the second of the above system of equations
Ir = Qa1lcn
Also, partitioning the fundamental circuit matrix

for the network yields [5]

(U Byp Byg Byy ) (Vgp\ = 0

s
R
Vo
or
Von = = BiaVg = BigVg — By,Ve
Since

B.Qr =0 [5],

. | TOOT T\ e
(U By, Byg By )/Qyy Qp Qg O

u 0 0]
o) U 0
) o U

From Equetion (8):

T
Qo = — Byg

Let Gz and Ry be the (diagaonal; matrices of conductive

o

(1)

(2)

(3)

(4)

(8)

(6)




branches and resistive chordse.

Then

IR = GBVR (7)
and

v‘?c:h = RcIch (8)
or

Vg =Rgl, (2)
and _

Ich - Gc?ch (10}

Equations (6), (4), (10}, (2) and (9) may then be

combined (where substitutiens are made in the order indicated)}

%

to yield after premultiplying by Go:

_ | T |
GgVp = = Qu1Gal = ByoVg + Qg = ByyVo )

aor

A

T _ ,
( Gg + Qp6Roy Vg =Qp3Gc( Byp Byy ) (Vs (11)
and
(Gg + Qp1GaQ51) = (T Q) ( Gg O\[U
T
0 Gg/\Qay

The matrix (GB 0) is dijagonal with positive entries.
Q Gc

T | R - o
Therefore (GB + QZJ.GCQZ'_'L} is positive definite (Lemma 6-12
of [5]) and therefore this matrix is non-singular.
Then, from (11):
- T -1 ,
Y = (Gg + QG051 ) " Cc(Brp Bry) <Vs (12)
o]




Thus the resistive branch voltages are related to
capacitive-branch and source voltages.
The necessary condition will be found by considering
the state equations for a general* RC network with one
differential-input voltage-controlled operational amplifiere.
Kuh and Rohrer [6] have characterized the state equations
of an BLC network with sources. They have shown that deri-
vatives of capacitor voltages may be expressed as linear
combinations of capacitor veoltages and source voltages as
followss:
pV, = -@ Ty, ¢t HYg | (13)
where T and H are transfer matfices determined by the topology
and element values._ of the.resistive.sub-network; the diagonal
matrix of capacitances is denoted by &. |
Partitioning VS* the voltage source matrix:
Vg = <K(vp - vq)' >
Yy
where K(vp - vq} is the dependent voltage source (of the

operational amplifier} with gain K and Vy represents the
source woltages. The node voltages vp and vq are then the.
cantrolling voltages for the operational amplifier.
Also partitioning H in (13), the following equation
reaults:
Yo = -7l —eTNEy Byp) /Ky - )

Yy

* The. previcus assumption of the existence of a proper tree
is still made.
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e

are neither capacitor

PVy = ~&7 TV, -l K(1 -1 )\CP) -&7 v, (14)

Since the variables vp and vq
voltages (state variables} nor source voltages, they muét
now. be eliminated from the above expression. This may be
done by expressing these node woltages as linear combinations
of all tree~branch voltages. [5]. However, as has been shown
in Theorem 1, the resistive branch voltages are themselves
linear combinations of capacitive agd source: voltages.

Thus it is possible to express vp and vq as linear combina=-
tions of capacitive and source voltages. This relationship

may be expressed by a partitioned matrix F:

(“p _[F11 Fiz2 Fi3\/ V¢

g Foq Fpo Fog vy (15)
KCVp - vq)
or .
v\ _ /P Fi2\ /Y +K(F13>(1 -1)(vp
¥q For Fop v Fogz) ¥q
and
1= KFyg K3 \[%p | _(F11 E12>(Vc 16)
- KFog 1 4 KFp)\v, For Foo/\Vy

\

is non-singular. TFor if, as Dervisoglu [?] has shown, it

The coefficient matrix of(fﬁ in the above equation

is singular for a particular choice of K, elementary row




gperations will produce at least one row of zeros. ‘This
results in at least one equation containing only VC and VV’
implying that the two are not independent. But, since
state variables and source voltages are necessarily inde-
pendent, the ccefficient matrix is always non-singular.

Then, from (16):

-1
( - KFyg KFpg | Fi11 B2\ [/ V&
‘ﬂ'za 1 + KFpq For Fog J\ Wy

— ( 11 T KFoqfiq - KF9F01 )\ ¥
I+ K(Fas = Fy3) (\KEggFy7 t Fop = KFi3Fp;

o +KF - KF._F_\ V.
23 12 1322\ 'V (17)

KFz;aEla T Foo = KFy4F09

Substituting (17) inte (14) and simplifying:
o= -0 (Tt mL o - Fpy) e
I 4 K(F,q - Fyg)
~&7h (K (P, - Fpp) 1 El Wy

14 K(an - F13)‘

¢18)

The following may now be stated:
Theorem 2:

& pnecessary condition on a set of state equations
that it be realizable as an RC network with one differential-
input voltage-controlled operational amplifier is that it
Be expressible in the form of equation (18).




&

If the capacitive sub=-network is a star tree; then,

each of Fyy and Foy in (18) will contain a 1, and all

11
agther entries in these two matirices will be zerose.
Upon defining a new constant term,
1 +—K(F23 - FlB)

(18) becomes:

pV 511(0 cee 01 0 *¢=0 =L O ¢°°Q) Vb

G 1

o =100 11 . _ N . .
-6 {KIHll(FILZi Fag) 1 HlZ} Yy (19)

Hence, the following may be stated:

= m@"’l{% b X

Corollary:

A necessary condition on a set of state equations that
it be realizable as an RC network, where the capacitors form
a star tree, and one differential-input voltage-controlled
operational amplifier is that it be expressible in the form

of equation (19).

2,2 Wecessary Conditions for Second=0Order A Matrices

Let V; be a column matrix of capacitor voltages (state
variables), V, a column matrix of source voltages, Vg the
controlled voltage (amplifier output), and Il’ 12 and 13
the currents entering nodes defined by Vl’ Vz and VS; then

upon. remgval of capacitors from the network, the following

node—-admittance equations may be written:




1Q

L vy |
I, |= Y| V, (20)
I3 Vs

If the capacitors form a star tree, and all node voltages
are taken as positive, then the capacitor currents are actu-
ally leaving the nades, and

I, = -g p¥q (ZI)

Substituting (21) into the first equation of (2Q)
yields

If the amplifier inputs are state variables, then the
cutput, Va, will be:

Vo= K(Q ***Q 21 Q °= Q «1 Q === Q)Vi (23)

3
where the locatiens of the neon-zero entries in the above
row matrix are determined by the capacitor voltages which
are amplifier inputs. (Since only one amplifier input is
allaowed, either the 1 or the -I may not appear in the above
expression.)
Substituting (23) into (22) yields

eV, = {Yn +K¥y(0 *** 010 **= 010 ** a§v1 +YTyoVs
and

BV = - B L{¥;; 4 KI3q(0 ¢~ 020 +e» 0 =1 Q == 0)}4’1

- &, (24)

The follawing may then be stateds
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Theorem 3¢

A sufficient condition on the A matrix that it be
realizable as an active RC network using one differential-~
input voltage-controlled operational amplifier is that it be
expressible in the following form *:

- - @-I{Y'll $ K¥y(Q " @1 0Q**Q-10 -~ 0)} (25)

where;Yil, Yiagand Yia are submatrices of a realizable
node admittance matrix

Ty Y3 N

T=| T, T2z Ta3

Y1a Yo Yag

Thus the necessary condition on the A matrix, given
in (19), is alsoc sufficient.

As there are n state variables, but only twa amplifier
inputs, the connection may be made in several different ways.
The first input may be one of n capacitor voltages, leaving
(n = 1) voltages. Therefore the second input may be one of
(n = I))capacitor voltages. If both inputs are used, a
total of n({n - 1) possibilities exists.

Haowever, either the non-inverting or inverting input
may be used alone, yielding another 2n passibilities. The
total, then, is n(n + 1) for an_nﬁh'order system.

The second-order A matrix is here examined in.detail-

The six second-order cases ares

* As previously mentioned, either the 1 or the ~I may be
~absent. o .




1z

1. a=-02"1 {Yn + K¥p4(1 -1)}
2. a=-p"1 inl F KTy4(-T 103
3. E=-Q71§T) +KT,(1 0%
4 = -7y, + K40 DS
5. a=-87T v, + K41 o)
6. A= ~-("L gfu b KY; 400 -1)}
A= -o7L {Y‘n + XY 5(1 -1 )}

Kecessary forms for Y 1 and Y . are, respectivelyrs
- -d
and

gt+d=<a

where

and
g+e=<h,

and all variables are non-negative.

ayy 855\ _ e N a =-g +K(—d (1 -1}
a1 azz) (Q °z Cg b) e
| _ sl Q\{/a -2\ +K /-4 a
0) So Cg b> -2 e
-sl(a - K4} Sl(g - Kd)
sy(g + Ke)  -sy(b 4 Ke)

I

(28)
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where the aij are entries of A.
Since all variables are non-negative, the following
necesgsary conditions may immediately be noted (81, Sos and

K are, in fact, positive):

31 > 0
and
8oo < Q
Addings
811 T 815 = s;(g ~ a)
Since g = a, sl(g = a} = 0; therefore:
a1 t "“12'"5 Q.
Similarly
81 T 8z < O
Case 2%

A== @iy FRY(-1 1 )%

This differs from Case 1 in that the inputs to the
amplifiier have been reversed. This is equivalent to consi-
dering the twe state variables as being interchanged. Then,
it is only necessary to interchange the rows and columns of
the A matrix in Case 1, and the necessary conditions are:

815 7> Q,

a1 <0,

aj7 + 815 < 0,
and

8oy T 8gp % &
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Casge 3:
_ -1 ~ .
a=-o1 v, +x7,0 O)‘E
Then, from (26):

-a.(a - Kd) 8- g
s= [T 1 (27)

The necessary conditions then are:

810 > 0,

a'Z'I > Q,
and

3224 e
Case 4:

A=-g1 { Ty, + K¥p400 1)}
This differs from Case 3 in that the inputs te the
amplifier have been reversed. Once again considering the
state variables, and hence rows and columns of the A matrix

as being interchanged, the necessary conditions are:

81 >0,

835 > 0,
and

all'< Q.
Case &:

A=-pt g’fu + K¥q4(-1 o)}

This is equivalent to considering K as now being negative
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in Case 3.
From (27), if K is negative, the following necessary

conditions result:

ail-< 0,
812 > 0,
and
322.<10.
Adding:
81 + 819 = sl(g -a) 4 s{Ka
Since g < a, sl(,g - a) = 0y and as K < Q¢
all + ea\lz < Q..
Similarly
257 + agp < 0.
Case 6:

=gl {Yn + KTy 5(0 ——I)}

This differs from Case § in that the inputs teo the
amplifier have been reversed. Once again considering the two
state variables, and hence the rows and columns of the A
matrix as being interchanged, the resulting necessary con—

ditions are:

<a




and

857 + 859 < Qe

The necessary conditions on the A matrix for realizabi-

1ity are summarized in Table l.

conditions is shown in Section 4 of Chapter 3.

Table 1

The sufficiency of these

Necessary Conditions for Healizability of Second-

Order A Matricese.

16

Paositive Negative Non-Positive
Case 89y 8oo a17 + 852
851 t 85y
Case 812 11 811 + 212
891 1 899
Case 812 azz
421
Case a12: all
82
Case 813 a1y 817 t+ 82
859 891 + ago
Case 891 a7y 817 t 212
850 851 t 855




CHAPTER 3

ON STATE EQUATION REALIZATION
USING A SINGLE CURRENT-CONTROLLED OPERATIONAL AMPLIFIER

A procedure for realizing a set of state equations
from a transfer-function matrix H(s), where all elements of
H(s) are rational and have simple poles, has been given by
Zadeh and Desocer El:[. The resultant A matrix is diagonal
with negative entries. It is here shown that any such A
matrix may be realized with an RC network and one current-
controlled cperational amplifier.

It is further shown that if H(s} is a single-cutput
multiple~input transfer-function matrix, then it, too,

is realizable.

A realization of a larger class of second—-order A.
matrices than that realized abeve and its application to
two-port synthesis is alsc given in this chapter.

3.1 Network Configuration

A star tree of capacitors is used, and the amplifier
eutput is connected to each capacitor through a resistore.
This, however, is equivalent to connecting a current source
and resistor in parallel with each capacitor. If the ampli-
fier ocutput is e, and J is the column matrix of current
soqurces, then.

J = Gpe | (1)
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where.GLhis.a column matrix of conductances, and the con-
ductance Gi is connected between the amplifier output and
capacitor Ci’
ILet the voltage of Ci (with respect to datum) be
The: state vector is then X; its dimension is n.
If a conductance g; is connected between capacitor Ci
and the non-inverting input of the amplifier, and a can-
ductance g; is connected between capacitor Ci and the
inverting input of the amplifier, then
= K(gI - & &y - gy ceeeees g; - g )X (2)
where K is the gain constant of the amplifier.
Substituting (2} into (I):
J= GtK(gI - gI' gg'- gy Cueeece gg - g;)X (3)
ILet V be a column matrix of source voltages; upon re-

moval of capacitors from the network, it may be described

by the following node-admittance equations:

I, + 3 Y. X
1z c4)
12 Yéz, v '

where Ix is the column matrix of currents entering
nodes whose voltages are: state variables.

If Gy is a diagonal matrix whose ii element is Gi’
Gt is a diagonal matrix whose ii element is g+ G is a
diagonal matrix whose ii element is g; and G is a node-—
admittance matrix containing additional conductances, then

Yy;= Gy + 6" + G + & (5)
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Since the node voltages are taken. as positive, the
capacitor currents are leaving fhe.nodes, and
I,= -@px (6)
where @ is a diagonal matrix of capacitances.

Substituting (3), (5) and (6} inta the first of the
two matrix equations in.(4);

-Bpx = (G + GT + G + G)X

Y B N S
g
ar
px = - &7H(Gy + Gh+ 6T+ G - kG set + kG seTIX - e A S &)

where S is an nxn matrix whose entries are all I.

3.2 Realization of Diagonal A Matrices With Negative Entries

From (7,
-1 + - ' + -
A= -G MGy + G + G + G - KG;SG + KGSG™)

r(set - s67) = 657 6A 4 Gy + G + G 4+ G) (8)
The rows of the matrix on the left hand side of the
above equation are identical. Since A is a diagonal matrix,
GA is also diagonal, and the only off-diagonal contribution
to the right hand side of (8) must come from G. This con-
dition is certainly satisfied if all entries ( on both

sides of (8) )} are identical.
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To realize this condition, Iet

g+= g{: gg - CY X XX - g-rt

and
g —= gl_": 82 seacee :gno
Furthermore, let each off-diagonal entry of G be -g,
the ii entry be g;; + (n - 1)g and all entries of G, be I.

D
Since all entries in (8) must be identical,

K(gt - g7y = -¢ | (9)
and
cia; +1+gt + e tgyt(a-1lg=-g i=1,"7"", n
(10}
where ai’is the ii eniry of A, (and is negativel.
From (10),
o,= E11t g +e +1+ng (11)
—83
Substituting (9} into (II)g
g;; +& (1 + 0K} 4 gf(1 - oK) + 1
Cy= (12)
84

Values are now chosen for gi;», g~ and g¥, and the Cy
are determined. It is necessary to choose g sufficiently
larger than_g+'such.that all C; are positive. (The value

4+

chosen for g' may be zera.) Equaticn (9) then determines ge.

3.3 Realization of Transfer~-Function Matrices

From (7),
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- -1
B=- & T
and
le;: -8B (13)
In using the procedure of Zadeh and Desocer for obtaining
a gset of atate equations from a single-ocutput transfer~function
matrix, the entries ef C may be chosen arbitrarily, but
these then determine the entries of B.
If the entries of C are chosen to be identical, then

the amplifier output may be taken as the system cutput:

y= e= K(g+ -—g gt m g eeeees g -gT)x
: + . - n -
+ K(g. - g cessee g: - )V (14)
i “i -

where D is realized by connecting suitable conductances gi
and g;k, k=1, ¢+~ ,m, between the m sources and amplifierkinputs.
From (14), since g > g*, the entries of C are nega-
tive. If the entries of the desired C are positive, then
the inverted output of the amplifier may be used. (It is
assumed that the operational amplifier has an inverted
output as well aé a non-inverted one; if not, a voltage
amplifier with gain -1 may be added.)
Once & has been found, Y;, is determined from (138).
For realizability, it is necessary that
n
=
43

where m inputs are present and yij is a typical entry of

yij, =< &;;»

Yia. That this inequality may always be satisfied is now
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demonstrated.

It g+== O, then all entries of C may be chosen equal
to Kg-. Then, a typical entry of B becomes bij/Kgf, where
the biJ are the entries of B obtained by the Zadeh and Descer
method provided the entries of C are chosen equal to 1.

Then, from (13)
_ C1Piy

Kg

xii:

Upon substituting (12) intc the above equation, then
substituting the resulting expression for yij into the

inequality and simplifying:

b

Ms

g (L +nK) +1

D3 L8541 -
= §
3

ij

i3 (15)

(g
EIM,

4
d

a;ke * aiKg—

A sufficiently large g will produce a positive right
hand side for (13). Clearly, it is then always possible teo
choose g;; sufficiently Iarge to satisfy (15).

The design procedure is summarized as follows:

I. Choose a sufficiently lérge g— to produce a positive

right hand side for (15]).

2. Choose sufficiently large g;; to satisfy (15).

3. Use (12) to determine the Cie

4. Use (2) tao determine g.

5. Use (13) to determine Yioe
6. Realize I by choosing suitable conductances gi
k

and s;k» k =1, ****°y m, in (14).




The general network configuration is shown in Figure 1.
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Netwogk ffr realizing a single-output m~input
transfer~Tunciion matrix.
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An example to illustrate the synthesis procedure is

now givens.

Example 1¢
Given
2 ,
v 23 4+ 3 6s8™ + 25s + 23 v
°=\Tz 3 5 1q
8” + 38 4+ 2 8" 4 638 4+ 11s + 6
Vs
2
The resulting state equations are:
p\ /-1 0 ON\A&\ (ke z/xem\ (v,
1

Xy \=| O -2 Ofx, |4 1/Kg°  3/Kg Vs
PXg 0 a -3/\xq o} 1/Kg”
v, =(Kg" Kg Kglfx

X2

X3

where g+= O.
Iet g = Q.01, 811 = 895 = 835 = 30 and K = 1000.
Then, from (12},
¢, = 61.01, C, = 61.01, and Cqy = 61.01

N 3
From (9},
= I0
From (13),
6.101 12.202
¥, = -| 8.0505 9.1515

0 6.101
3




The g; are zera since D = 0. The network shown in
k

Figure 2 then results.

Ve, o=

ad

Vg o

coe|
, A I R R
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o & : i Yo
. } g S
FEXI L 1z 29
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- R "_J‘Q’ b 4
ST A N TSR TI P q
3 < =4 =l - o Yo = & [ W P
IR & %‘32‘2_ R 5‘} U5 Y3
| ) ) |
w
4 L. U < = 2
% i 92 ?' 2% g %5

Figure 2. TNetwork for realizing the transfer—functiion

matrix of Example 1.




3.4 Realization of a (Class of Second-Order A Matrices

In this section it is shown that, using the configu-
ration described in Section 1 of this chapter, it is pog=-
sible to realize a much larger class of second—order A
matrices than that realizable in Section. 2. This class
may be defined as follows: If either diagonal entry is
positive aor zere, then the off-diagonal entry in that column
must be positive. (Or, equivalently, the contrapositive

. of this statement: If either off-diagonal entry is negative
or zero, then the diagonal entry in that column must be
negative. ). ”

For the second-order case, if all entriea of the matrix

G are zero, (8) becomes

+ + -
g1 - & & -~ &

& -6 & -5
+ A -
1/G; O\|/c.a Cy 8o G, O g O g, Q
:.< I 1711 1712 _‘_(1 + 1 AL, 1 _ (16)
0 l/G2 CoBny  Colog 0 G23 Q g 0 g
Equating entries in the first column:
- Cols
Kgt -g)= _2 2 (17)
Go
and
+ -
Clan + G et g (18)

+ - had)
K(gl gll- -
1




From (18)
+ G877 + G glﬁc@l + 1)
&1 = +
KG; =1 KGy - 1

and from (17)
. + _
g = Cofn + &
KGZ

The expressiens en the right hand sides of (19) and
(20} may then be equated. Upon simplifying in aerder teo
fsolate gi:

- (KG, - 1)Coay; - (Ciap; +6;)
1 =

2KG,. . 2
SimiTarly, upon equating entries in the second column
af (16), the equation coerresponding to (20} is:
gz = G812 4 &2

KG1

The equation corresponding ta (21) .is:

- (KGy = 1)Cjay5 = (Coagy +Gy)
823 —_— ‘ ‘

2KGq 2
I a5y is positive,, then.all>may be positive, negative
or zerc. If, however, 851 is negative or zero, then.aIl
may only be:negative. Similarly, if 512 is positive, then
85y WAY be positive, negative or zerec. If alz_is negative
dr~zero, then.azz‘may only be negative. | | |

I 85q is positive, let Gi be choseg.such.that KG1,>-1.

27

(19)

(20)

(21)

(23)




I all.is nagaﬁive; as may be seen in (21), a‘sufficiently
large Cy wiII,guaraniee,élpositive value.fcr'gz. If a4 is
pasitive or zero, then a sufficiently large Cz will guarantee
a-paéitive value for gi.

If ayo is positive, Ilet G2 be chesen such that KGZ > 1.
If a,, ia negative, as may be seen in (23}, a sufficiently
large C, will guarantee a positive value for g,. If &, p is
positive or zero, then a sufficiently Iarge Ci wilk praoduce
a pgaitive<value~for'g§. | |

Once gi and gé are determined, substitution into (20)

and (22) yields required values for g{ and gg, respectively.

Since 8oy and &12:are~positive, Poaitive values for g{7&nd gg
necessarily result.

If'aZI is}negative or zera, t‘hen.avl1 must be negative,
and a sufficiently large.cl will result in a positive value
for gi, as seen in (21). Similarly, if ay5 is negative or
zere,, the—naz23 must be negative, and a sufficiently large Cz

will result in & positive value far gg, as seen in (23).

VYalues for g;'and ggiare again determined by substi-
tuting inta (20} and (22}, respecﬁively, gy and gg. Care
must now be taken, however, tc ensure that gi and gé‘are made
sufficienily large (by chaosihg C, and C, sufficiently large)
ta produce positive values for gI'and gg;

I¥ a5y and a,, are both negative, Gy and,Gi should be
chosen such that KG, < I and KG < 1. Clearly, a salution is

then always posasible for this case.
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3.5 An Application. to Two-Port Transfer-Function Synthesis

It is here shown that the A matrix realization of the
previous section may be applied to two-port transfer-function
gynthesis. | |

ILet a set of state equations be obtained from the
given transfer function by simulation_using integrators
where integrator ocutputs are state variables [?]. The last
integrator outgut.is the system ocutput, and the first integ-
rator input is the system inpute. Hence, for the second-
erder case: | '
c=(o 1), (24)
D =(0)

B= (1 (25)
. .

Substituting (25) inte (13):

(L0

A canductance Gl must then be connected between the

and

saurce voltage and capacitor Cl, whose voltage is the first
state variable. It is then necessary to add C; to the (1,1)
entry of the node admittance matrix. The (1,1} entry in
the right hand side of (16) then becomes

Cragy + G +& +&] +C

G
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or
, b -
cl(all + 1)+ GI + &1 + &,
G
Let
1 _ :
a3= e vl
It is then necessary to realize a new A matrix, A;,
where
1
a a
A;ﬁz 11 12
821 %22
The following may now be stated:
Thearems:

A sufficient condition on a second-order voltage-transfer
function that it be realizable using the configuration
described in Section 1 of this chapter is that its Al matrix
be a member of the class of A matricies realizable in Section
4, where the state equations have been determined using the
pracedure described in this section.

An example to illustrate the procedure is now given.

Example 2t

Given

X

Yé —
—_— > ‘
Vi s“+ a2 +1

(a second-order Butterworth low-pass veltage-transfer function)

The resulting state equations are:




Ca

DN

pxl‘ - W> <:l \'
<DX2/ i\l kyz/ \}

v, = (0

- 1)<%1T>
Xo
Then
1 el
Al = < w:)
1 mVZ,

If X = 1000, Gy = G, =1, C; = I and C, = 10,
from 20}, (22), (19) and (21)

g“ifsz: 3995

gg = 57 « 0.9995
gi — £.008

gy = 5§2 ~ 1.0005

The network shown in Figure 3 then resultse.
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Figure 3. HNetwork 0.8
of Example 2.
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CHAPTER 4
CONCLUSICNS

A necessary condition on the A matrix that it be resli-
zable as an RC network with one differential-input voltage-
controlled goperaticnal amplifier has been found. It has
further been shown that if the capacitive sub-network is
a.star tree, then this condition is alsc sufficient.

A test has been given to deiermine by inspection whether
a_given second-order A matrix is thus realizable. It was
shown that these resulting necessary conditions are aiso
sufficient for realization using a current-controlled
cperationalAamplifier;

Also, using a current-controlled operational amplifier,
a.realization of the diagonal A matrices ob¥ained by Zadeh
and Descer from transfer-function matrices has been founde.
It was further shown that a larger class of second-order
A matrices is realizable using this configuratione

Applications to transfer-function synthesis have
Been given using a state-equation representation.

Thus it is seen that wide classes of stafe equations
and transfer functions are realizable using only one active
element and the minimom number eof capacitors, all of which
are grounded.

The presence of only one active element and the
minimum number of capacitors makes this realization atirac—

tive from an economic paint of view.
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