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Abstract

Quantile Regression, as introduced by Koenker, R. and Bassett, G. (1978), provides

a complete picture of the relationship between the response variable and covariates

by estimating a family of conditional quantile functions. Also, it offers a natural

solution to challenges such as; homoscedasticity and sometimes unrealistic normality

assumption in the usual conditional mean regression. Most of the results for quantile

regression are based on simple random sampling (SRS). In this thesis, we study

the quantile regression with rank-based sampling methods. Rank-based sampling

methods have a wide range of applications in medical, ecological and environmental

research, and have been shown to perform better than SRS in estimating several

population parameters. We propose a new objective function which takes into

account the ranking information to estimate the unknown model parameters based

on the maxima or minima nomination sampling designs. We compare the mean

squared error of the proposed quantile regression estimates using maxima (or minima)

nomination sampling design and observe that it provides higher relative efficiency

when compared with its counterparts under SRS design for analyzing the upper

(or lower) tails of the distribution of the response variable. We also evaluate the

performance of our proposed methods when ranking is done with error.
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Chapter 1

Introduction

In this chapter, we briefly describe the conditional mean and quantile regression

models and motivate the problem of quantile regression analysis with rank based

data. To this end, we give some preliminary results regarding quantile regression,

its estimates as well as some of its properties. We also describe how resampling

methods can be used to make inference under the quantile regression setting. Finally,

we perform a numerical study to fit quantile regression in R and provide the outline

of the thesis.

1.1 Motivation

Regression is commonly used as a statistical method to quantify the relationship

between explanatory variables and a response variable by modeling the relationship

between the conditional mean of the response variable and explanatory variables. For

example, in a medical study one might be interested in examining the relationship

between the spinal bone mineral density (BMD) and age of adolescent. Figure

1.1 shows the measurements of the BMD (Y ) and age (X) of 261 north American

1



Figure 1.1: Bone mineral density as a function of the adolescent age for the baseline
study with the least squares regression line.

adolescents (Bachrach, L.K. et al., 1999) as well as a fitted regression line between

Y and X using a linear regression model. A classical linear regression model for this

example can be written as follow

Y = X>β + ε (1.1)

where X = (1, X1)
> with X1 being the age of adolescent, β = (β0, β1)

>, Y =

(Y1, . . . , Yn)> is the vector of spinal BMD measurements and ε = (ε1, . . . , εn) is the

vectors of errors which is assumed to follow a normal distribution.

As we can see in Figure 1.1, the fitted linear regression model does not provide a

complete picture of the relationship between BMD and age in the sense that the

change in the shape of the distribution of BMD is not captured. This is because the

focus of (1.1) is to describe the relationship between the expectation of the response

2



Figure 1.2: Bone mineral density as a function of the adolescent age for the baseline
study with the least squares regression line and quantile regression line for τ =
(0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9).

variable given the values of a set of covariates, which gives an incomplete picture of

the relationship between the response variable and covariates in non-central locations,

which is incisively where the interest of most researchers lies. A better descriptive

model could be a set of quantile regression models as shown in Figure 1.2.

There are many real situations where one might be interested in studying the

behaviour of the tails of the distribution of the response variable as a function

of the explanatory variables. In such situations, modeling the conditional mean

has inherent limitations which makes it inefficient to address research questions

regarding non-central locations on the response distribution. As an example, consider

the problem of investigating the impact of various demographic characteristics and

3



maternal behavior on the birth weight of infants born in the United States (Abreveya,

J., 2001). It is known that low birth weight is associated with several health problems.

These problems have been linked with educational attainment and labor market

outcomes, resulting in study factors that influence birth weight and public policy

initiatives that might prove effective in reducing the number of infants with low

birth weight. Most of the literature on the analysis of birth weight have employed

traditional conditional mean regression methods. It has been recognized that the

resulting estimates of various effects on the conditional mean of birth weights were

not necessarily indicative of the size and nature of these effects on the lower tail

of the birth-weight distribution (Koenker Roger, 2005). Several studies have used

probit models in the case of binary response for the occurrence of low birth weights

in an effort to directly concentrate on the lower tail.

Also, sometimes the homoscedasticity assumption in the conditional mean regres-

sion fails (e.g., Fig 1.1), which makes it ill-equipped to fit a good model or capture

necessary information in model fitting. In areas such as epidemiology, economics

and environmental studies where heavy tailed distributions are common, leading to

a prevalence of outliers, the conditional mean can then become inappropriate and

misleading because it is heavily influenced by outliers.

Quantile regression introduced by Koenker, R. and Bassett, G. (1978) offers

a natural solution to these aforementioned challenges posed by the conditional

mean regression. A more complete picture of covariate effects can be provided by

estimating a family of conditional quantile functions. While the classical regression

model specifies change in the conditional mean of the response variable associated

with changes in the explanatory variables, the quantile regression model specifies

4



changes in the conditional quantile.

The possibility of using multiple quantiles allows us to have a complete under-

standing of how the distribution of the response variable is affected by explanatory

variables, including information about the change in the shape of the distribution.

The nature of quantile regression and the ability to deal with different types of

distributions enable us to eliminate dependence upon the normality assumptions

and deal with the problem with more realistic solutions.

Quantile regression has been used to study the effects of demographics and

maternal behavior on the distribution of birth outcomes (Koenker Roger, 2005).

Austin, P.C. and Schull, M.J. (2003) assessed the association between hospital

transport interval and patient and system characteristics using quantile regression.

They demonstrated that richer inferences can be drawn from the data using quantile

regression. Wei, Y. et al. (2006) compared estimated reference curves for height

using the penalized likelihood approach of Cole, T.J. and Green, P.J. (1992) with

quantile regression curves based on data used for modern Finnish reference charts.

Most of the literature on quantile regression are based on simple random sampling

(SRS). However, this sampling technique is not economical in situations where the

actual measurement of the variable of interest is difficult, destructive and expensive,

such as BMD measurement, determination of age structure of fish. Also, there are

cases where one might be interested in studying the effect of explanatory variables

on the tails of the distribution of the response variable. In such cases, SRS might

not necessarily give a good sample from the tail of the distribution of the response

variable and it will be beneficial to work with more structured sampling designs

to get more directed samples from the underlying population. In this thesis, the

5



goal is to study quantile regression based on some of the variation of ranked set

sampling (RSS) (McIntyre, G.A., 1952). RSS is a sampling approach that could lead

to improved statistical inference for many situations where the measurements are

difficult or expensive to obtain but sampling units can be easily and cheaply ordered

by some means before taking the actual measurement on them. In this chapter, we

briefly review quantile regression and demonstrate it using a SRS data, collected by

Bachrach, L.K. et al. (1999), to study bone mineral acquisition in healthy Asian,

Hispanic, Black, and Caucasian Youth. A formal definition of RSS and some of its

properties are presented in chapter 2.

1.2 Quantiles

Suppose Y is a continuous random variable with a cumulative distribution function

(CDF), F (y) = P (Y ≤ y), y ∈ R. For any 0 < τ < 1, the τ th quantile of Y, defined

by Qτ (Y ), is given as

Qτ (Y ) = F−1(τ) = inf{y : F (y) > τ}.

Examples of Qτ (Y ) are the first, second and third quartiles corresponding to

the choices of τ = 0.25, 0.50 and 0.75, respectively. One can easily show that

Qτ (Y ) is a non-decreasing function of τ , i.e Qτ1(Y ) ≤ Qτ2(Y ) for τ1 < τ2. To

see this, we note that {y : F (y) ≥ τ1} ⊃ {y : F (y) ≥ τ2}. This implies that

inf{y : F (y) ≥ τ1} ≤ inf{y : F (y) ≥ τ2}, which means Qτ1(Y ) ≤ Qτ2(Y ).

6



1.2.1 Conditional Quantile

Suppose Y is the response variable, and X is the p-dimensional explanatory variable.

Let FY (y | X = x) = P (Y ≤ y | X = x) denote the conditional CDF of Y given X.

Then, the τ th conditional quantile of Y is defined as

Qτ (Y | X) = inf{y : FY (y | X) > τ}.

Assuming a linear regression between Qτ (Y | X) and X, the linear quantile

regression model for a given conditional quantile τ can be formulated as follows

Qτ (Y | X) = X>β(τ), (1.2)

where 0 < τ < 1, Qτ (· | ·) denotes the conditional quantile function for the τ th

quantile and β(τ) = (β0(τ), β1(τ), . . . , βp(τ))> is the vector of quantile coefficients

that depends on τ .

The classical regression model in (1.1) has only one conditional mean expressed

by one equation. In contrast, (1.2) shows that the quantile regression model can

have several conditional quantiles. As a result, several equations can be expressed in

the form of (1.2). For example, if the quantile regression model specifies 10 quantiles,

the 10 equations will yield 10 sets of coefficients for the covariates, associated with

specific choices of quantiles.

1.3 Quantile Regression Estimation

Suppose we observe (Yi,Xi, i = 1, ..., n) is a random sample of size n from the under-

lying population. Using the least squares method one can estimate the parameter of
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the model (1.1) by minimizing the sum of squared residuals;

min
β

n∑
i=1

(Yi −X>i β)2. (1.3)

Minimization of (1.3) can be achieved by taking the partial derivatives of (1.3)

with respect to β, and setting the partial derivatives equal to zero. This results in

the least squares estimation of β as follow

β̂ = (X>X)−1X>Y,

where X is an n× (p+ 1) design matrix with full column rank, that is rank(X) =

p+ 1 ≤ n and Y is the vector of the response variable. For quantile regression and

to model Qτ (Y | X) as a function X, one needs to replace the squared error loss in

(1.3) by the following loss function

ρτ (Ui) = (τ − I(Ui < 0))Ui, Ui = Yi −X>i β, (1.4)

which is also known as the check function. One can easily show that the check

function (1.4) can be written in the following form,

ρτ (Ui) = |Ui|(τI(Ui > 0) + (1− τ)I(Ui < 0)), (1.5)

Note that ρτ can be considered as an asymmetric absolute error loss function as

shown in Figure 1.3. That is, a weighted sum of absolute deviations, where a weight

(1− τ) is assigned to the negative deviations and a weight τ is used for the positive

deviations. When τ = 0.5, the quantile loss function is equivalent to the absolute

error loss function. Examples of ρτ for different values of τ are shown in Figure 1.3

Quantiles can be obtained as solutions to minimization problems associated with

suitable choices of the check function. Without loss of generality, assume that Y is
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a continuous random variable. The expected value of the sum of deviations from a

given center a with the check function can be written as E[ρτ (Y − a)]. We show

that a specific choice of the check function in (1.5) guarantees the modeling of the

τ th quantile of Y as function of X. To see this, we have

Qτ (Y ) = argmin
a

E[ρτ (Y − a)]

≡ argmin
a

[
(1− τ)

∫ a

−∞
|y − a|f(y)dy + τ

∫ +∞

a

|y − a|f(y)dy

]
.

Differentiating E[ρτ (Y − a)] with respect to (w.r.t.) a and setting the partial

derivatives equal to zero, we have

∂

∂a
Qτ (Y ) =

∂

∂a

[
(1− τ)

∫ a

−∞
(a− y)f(y)dy + τ

∫ +∞

a

(y − a)f(y)dy

]

= (1− τ)

∫ a

−∞
f(y)dy − τ

∫ +∞

a

f(y)dy = 0,

which results in

(1− τ)F (a)− τ(1− F (a)) = 0,

or equivalently,

F (a) = τ.

That is, what minimizes E[ρτ (Y − a)] in a is equal to Qτ (Y ), the τ th quantile of

Y . Following the same method, the necessary coefficients of the linear quantile

regression in (1.2) can be obtained as

β̂(τ) = argmin
β

n∑
i=1

ρτ (Yi −X>i β). (1.6)
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Figure 1.3: Absolute error loss (solid), squared (dashed) and quantile error loss
function (dotted).

1.3.1 Difficulties in Estimation of Quantile Regression

Parameters

Estimating the quantile regression parameters using the least squares or maximum

likelihood method does not lead to closed form expressions for β(τ) even in the

simplest quantile regression model with minimal assumptions. Also, calculating

such estimates is not easy. This is because,
∑n

i=1 ρτ (Yi −X>i β) is not differentiable

everywhere so standard numerical algorithms do not work. To be more specific,∑n
i=1 ρτ (Yi − X>i β) is not differentiable at points where one or more residuals

Yi −X>i β are zero.

One way to look at the problem is to approximate the loss function ρτ (U)

with a smooth function (Chen, C., 2003) and apply standard numerical algorithms.
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Another way, which is the most popular, is to the minimize (1.6) by applying linear

programming approach using the simplex method (Koenker Roger, 2005). This is

the method that will be adopted for this thesis. In the next section, we briefly review

the linear programming approach towards finding β̂(τ) in the quantile regression.

1.4 Linear Programming

A linear programming is an optimization method in achieving the best solution

in a system of equations in which the objective and all constraints are linear. In

other words, the objective of a general linear program is minimizing c>x subject

to linear constraints such as a>i x ≥ bi, i ∈ M1, a
>
i x ≤ bi, i ∈ M2, a

>
i x = bi, i ∈

M3, xj ≥ 0, j ∈ N1, xj ≤ 0, j ∈ N2, where c ∈ Rp is a cost vector, x ∈ Rp is a

vector of decision variables, and constraints are given by ai ∈ Rp and bi ∈ R for

i ∈ {1, 2, ...,m}. Index sets M1,M2,M3 ⊆ {1, 2, ...,m} and N1, N2,⊆ {1, 2, ..., n}

are used to distinguish between different types of constraints. This type of problem

was first solved formally using linear programming methods by Stigler, G. (1945).

An equality constraint a>i x = bi is equivalent to the pair of constraints a>i x ≤ bi

and a>i x ≥ bi. Also a constraint of the form a>i x ≤ bi can be written as (−ai)>x ≥

−bi. Each occurrence of an unconstrained variable xj can be replaced by xj
+ + xj

−

where xj
+ and xj

− are two new variables with xj
+ ≥ 0 and xj

− ≤ 0. We can thus

write every linear program in the following general standard form

min
c
{c>x : Ax ≥ b,x ≥ 0}, (1.7)

where x, c ∈ Rp, b ∈ Rm and A ∈ Rm×p.
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One can easily write any linear programming problem into the standard form by

replacing each inequality constraint of the form a>i x ≤ bi or a>i x ≥ bi by a constraint

a>i x + zi = b∗i or a>i x − zi = b∗i where zi is a new so called slack variable, and an

additional constraint zi ≥ 0. The general form is typically used to discuss the theory

of the linear programming, while the standard form is often used when designing

algorithms for linear programming to solve problems numerically.

1.4.1 Linear Program Duality

Every linear program has an inverse or dual formulation. Suppose our original

objective, known as the primal problem, is a minimization problem. Corresponding

to any primal problem, we may formulate a dual linear program in which minimizing

with respect to the original variables turns into maximizing with respect to the

Lagrange multiplier of the dual formulation. The concept of duality can be examined

more generally following Berman, A. (1973). To this end, consider the linear

programming problem

min{c>x : Ax ≥ b,x ≥ 0}. (1.8)

By introducing slack variable z we can rewrite (1.8) as follows

min{c>x : Ax− z = b,x, z ≥ 0}. (1.9)

Let X = {(x, z) : x, z ≥ 0} ⊆ Rm+p. Using the Lagrangian multiplier method,

optimization of (1.9) can be written as

L((x, z), λ) = c>x− λ>(Ax− z − b)

= (c> − λ>A)x + λ>z + λ>b,
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which has a finite minimum over x if and only if

λ ∈ Y = {u ∈ Rm : c> − u>A ≥ 0, u ≥ 0}.

for λ ∈ Y , the minimum of L((x, z), λ) is attained when both (c> − λ>A)x = 0 and

λ>z = 0. Thus, we have

g(λ) = inf
(x,z)∈X

L((x, z), λ) = λ>b,

and so, we obtain the dual problem in the following maximization form:

max{b>λ : A>λ ≤ c, λ ≥ 0}.

The dual can be determined analogously as max{b>λ : A>λ ≤ c}.

For the quantile regression problem, the primal formulation of the basic linear

quantile regression optimization can be written as

min
β∈Rp

τ ∑
{i:Yi>X>i β}

|Yi −X>i β|+ (1− τ)
∑

{i:Yi<X>i β}

|Yi −X>i β|

 . (1.10)

Splitting the residual vector into positive and negative parts, ei = ui − vi, with

ui = eiI(ei > 0) and vi = |ei|I(ei < 0), we obtain an equivalent (1.10) expression of

the form

min
β∈Rp

[
τ

n∑
i=1

|ei|I(ei > 0) + (1− τ)
n∑
i=1

|ei|I(ei < 0)

]
= min

β∈Rp

[
τ

n∑
i=1

ui + (1− τ)
n∑
i=1

vi

]
,

which can be written as

min
{β(τ),u,v}

{
τ1>nU + (1− τ)1>nV

}
,

where U = eI(e > 0) and V = |e|I(e < 0). Therefore, the problem of finding

the unknown parameters β(τ) in a linear quantile regression can be written as the
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following linear programming problem

min
β

n∑
i=1

ρτ (Yi −X>i β(τ)) ≡ min
{β(τ),u,v}

{
τ1>nU + (1− τ)1>nV

}
, (1.11)

subject to

Yi −X>i β(τ) = U − V, β(τ) ∈ Rp, U ≥ 0, V ≥ 0.

Equivalently, we can write (1.10) as follow

min{τ1>nU + (1− τ)1>nV | Y = Xβ(τ) + U − V, (β(τ), U, V ) ∈ Rp ×Rn
+ ×Rn

+}.

As shown in Koenker Roger (2005) the primal quantile regression problem has

the corresponding dual problem as below

max
d
{y>d | X>d, d ∈ [τ − 1, τ ]>}.

By linear programming, solutions are obtained on the vertices of the constraint

set (Gill, P. et al., 1991). That is, subsets that provide exact fits to the p observations.

Using the simplex method, the first step is to find an initial feasible vertex. For

example, one can choose any subset h such that X(h) is of full rank and β(h) =

X(h)−1Y . Second step is to travel from one vertex to another until optimality is

achieved (Barrodale, I. and Roberts, F. D. K., 1973).

This method is efficient for problems with modest size (several thousands). Speed

is comparable to the least squares estimate (LSE) for sample sizes up to several

hundreds. However, the method is slow relative to LSE for large problems (Koenker,

R. and D’Orey, V., 1985).

A more efficient method than the simplex method for larger sample size is

the Frisch-Newton interior point method. In contrast to the simplex method, the
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algorithm traverses the interior of the feasible region. More details can be found in

Stephen, P. and Koenker, R. (1997). In this thesis, we use the simplex method to

obtain the unknown parameters β in a linear quantile regression. Another approach

that we use is based on the M-quantiles which we briefly explain in the next section.

1.5 M-Quantile Regression

In this section, we present another approach, known as M-Quantile regression, to

estimate the unknown τ th quantile regression coefficients which uses an iterative

method to obtain its solution. M-Quantile regression introduced by Breckling, J.

and Chambers, R. (1988) is a generalization of the M-Estimation (Huber, P. J.,

1964) approach on robust regression methods. M-Quantile regression models the

relationship between the response variable and the covariates for different quantiles

of the distribution. The τ th M-Quantile of a continuous random variable Y with

CDF F (y) is obtained as the minimizer of
∫
ρτ (y − a) dF (y). M-Quantile estimator

reduces to the least absolute value estimator when the loss function ρτ (U) = |U |

and to the least squares estimator when the loss function is ρτ (U) = U2.

M-Quantile regression has been widely studied in the literature using nonparamet-

ric and semiparametric approaches for count data (Pratesi, M. et al., 2009; Dresassi,

E. et al., 2014). Chambers, R. and Tzavidis, N. (2006) applied the M-Quantile

approach in small area estimation. Bianchi, A. and Salvati, N. (2015) derived

the asymptotic properties and variance estimators of the M-Quantile regression

coefficients estimators. In this thesis, we use the M-Quantile regression to estimate

the regression coefficients and τ th conditional quantile, Qτ (Y | X), using maxima or

15



minima nominated samples.

To this end, assuming a linear relationship between Qτ (Y | X) and X, the linear

M-quantile regression model for a given conditional quantile τ can be formulated as

follows

MQτ (Y | X) = X>β(τ), (1.12)

where 0 < τ < 1, MQτ (· | ·) denotes the conditional quantile function for the

τ th quantile and β(τ) = (β0(τ), β1(τ), . . . , βp(τ))> is the quantile coefficient that

depends on τ . β(τ) is the solution of the following minimization problem

argmin
β

E

[
ρτ

(
Yi −X>i β

στ

)]
,

where στ is a scale parameter that characterizes the distribution of εi(τ) = Yi −

X>i β(τ). Since ρτ is continuously differentiable and convex, the M-Quantile regression

coefficient estimator β̂(τ) can be obtained as the solution of the system of equations∑n
i=1 ψτ

(
Yi−X>i β

σ̂τ

)
Xi = 0, where ψτ (U) = dρτ (U)/dU = |τ − I(U < 0)|ψ(U), with

ψ(U) = dρ(U)/dU , and σ̂τ is an estimator of στ . We need to solve this system of

equations using an iterative method.

1.6 Properties of Quantile Regression

Some useful theoretical properties of the quantile regression are shown in Koenker,

R. and Bassett, G. (1978). Here we mention a few of them that will be used

in the thesis. To this end, let H(τ, Y,X) be the parameter space, and suppose

β̂∗(τ, Y,X) ∈ H(τ, Y,X). Then,
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(1) β̂∗(τ, Y,X) is scale invariant. In other words,

(a) β̂∗(τ, λY,X) = λβ̂∗(τ, Y,X) for λ ∈ [0,∞),

(b) β̂∗(τ,−λY,X) = λβ̂∗(1− τ, Y,X) for λ ∈ (−∞, 0).

To see this, for example when λ ∈ (0,∞), one can easily see that

β̂∗(τ, λY,X) = τ
∑

{i:Yi>X>i β}

|λYi −X>i β|+ (1− τ)
∑

{i:Yi<X>i β}

|λYi −X>i β|, λ > 0,

= τ
∑

{i:Yi>X>i β}

|λYi − λ
X>i
λ

β|+ (1− τ)
∑

{i:Yi<X>i β}

|λYi − λ
X>i
λ

β|,

= λτ
∑

{i:Yi>X>i β}

|Yi −
X>i
λ

β|+ λ(1− τ)
∑

{i:Yi<X>i β}

|Yi −
X>i
λ

β|,

= λ

τ ∑
{i:Yi>X>i β}

|Yi −
X>i
λ

β|+ (1− τ)
∑

{i:Yi<X>i β}

|Yi −
X>i
λ

β|

 ,

= λ

τ ∑
{i:Yi>X∗>i β}

|Yi −X∗
>
i β|+ (1− τ)

∑
{i:Yi<X∗>i β}

|Yi −X∗
>
i β|

 , X∗
>
= X>/λ,

= λβ̂∗(τ, Y,X)

(2) β̂∗(τ, Y,X) is invariant under regression shift. That is, for any γ ∈ Rp,

β̂∗(τ, Y + Xγ,X) = β̂∗(τ, Y,X) + γ
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To show this, we have

β̂(τ, Y +Xγ ,X) = τ
∑

{i:Yi>X>i β}

|Yi +Xγi −X>i β|+ (1− τ)
∑

{i:Yi<X>i β}

|Yi +Xγi −X>i β|, λ > 0,

= τ
∑

{i:Yi>X>i β}

|Yi −X>i β +Xγi |+ (1− τ)
∑

{i:Yi<X>i β}

|Yi −X>i β +Xγi |,

≤ τ
∑

{i:Yi>X>i β}

|Yi −X>i β|+ |Xγi |+ (1− τ)
∑

{i:Yi<X>i β}

|Yi −X>i β|+ |Xγi |,

= τ
∑

{i:Yi>X>i β}

|Yi −X>i β|+ (1− τ)
∑

{i:Yi<X>i β}

|Yi −X>i β|+
n∑
i=1

|Xγi |,

= β̂∗(τ, Y,X) + γ, where, γ =

n∑
i=1

|Xγi |.

More generally, one can easily show that β̂∗(τ, Y,X) is equivariance w.r.t mono-

tone transformations. This is true, since for any non decreasing function h, P (Y ≤

a) = P (h(Y ) ≤ h(a)) and so Qh(Y )(τ) = h(Qτ (Y )). The quantiles of the transformed

random variable h(Y ) are simply the transformed quantities on the original scale.

For example, if X>β is the τ th conditional quantile of lnY , then exp (X>β) is the

τ th conditional quantile of Y . Expectation does not have this property because in

general, E(h(Y )) 6= h(E(Y )) except when h is linear.

Finally, β̂∗(τ, Y,X) is invariant with respect to the re-parameterization of the

design matrix. In other words, for any |A| 6= 0, β̂(τ, Y,XA) = A−1β̂∗(τ, Y,X). This

can be easily verified as follows
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β̂∗(τ, Y,XA) = τ
∑

{i:Yi>X>i β}

|Yi −X>i Aβ|+ (1− τ)
∑

{i:Yi<X>i β}

|Yi −X>i Aβ|,

= τ
∑

{i:Yi>X>i β}

|YiAA−1 −X>i Aβ|+ (1− τ)
∑

{i:Yi<X>i β}

|YiAA−1 −X>i Aβ|,

= A−1

τ ∑
{i:Y ∗i >X∗>i β}

|Y ∗i −X∗>i β|+ (1− τ)
∑

{i:Y ∗i <X∗>i β}

|Y ∗i −X∗>i β|

 ,
= A−1β̂∗(τ, Y,X),

where Y ∗ = Y A and X∗ = X>A2.

1.7 Inference on Quantile Regression

Statistical inference on quantile regression is very important to validate our theory,

methods, and practice of forming judgments about the parameters of the popula-

tion quantiles and the reliability of statistical relationships. In most applications,

inferences are based on confidence intervals associated with the quantile regression.

In this section, we show the consistency and the asymptotic normality of the linear

quantile regression coefficient estimators which are necessary to construct confidence

intervals and conduct hypothesis testing. In the context of rank-based set sampling,

we rely on inference based on the bootstrap method as we explain in section 1.7. This

is because theoretical results regarding statistical inference on quantile regression

based on rank-based sampling design are very challenging and left as open problems

for future studies in this direction.
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1.7.1 Consistency

To show the consistency of the estimators of the coefficients of a linear quantile

regression model, we need the following regularity conditions (Koenker, R. and

Bassett, G., 1982).

(A1) The distribution functions of Y given Xi, Fi(·), are absolutely continuous with

continuous densities fi(·) that are uniformly bounded away from 0 and ∞ at

ηi(τ) = Qτ (Y | Xi).

(A2) There exist positive definite matrices D0 and D1 such that lim
n→∞

1
n

∑n
i=1 XiX

>
i =

D0, lim
n→∞

1
n

∑n
i=1 fi(ηi(τ))XiX

>
i = D1 and maxi=1,...,n ||Xi|| = o(n

1
2 ).

Having these conditions, we show that β̂(τ)
p−→ β(τ) as n −→∞. To this end, using

the uniform law of large numbers, we have

sup
b∈B

1

n

n∑
i=1

[
ρτ (Yi −X>i b)− E[ρτ (Yi −X>i b)]

]
,

where B is a compact subset of Rp. If for any ε > 0, Q̄(b) = 1
n

∑n
i=1E[ρτ (Yi−X>i b)]

is bounded away from zero with probability approaching one for ||b − β(τ)|| > ε

then β̂(τ)
p−→ β(τ). Under the regularity conditions, Q̄(b) has a unique minimizer

β(τ).
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1.7.2 Asymptotic Normality

Under the regularity conditions (A1) and (A2) the linear quantile regression model

coefficient estimators β̂(τ) are asymptotically normal. In other words,

√
n{β̂(τ)− β(τ)} d−→ N(0, τ(1− τ)D−11 D0D1), (1.13)

where D1 and D0 are defined in (A2).

For the independent and identically distributed (i.i.d) error models, i.e, fi(ηi(τ)) =

fε(0), (1.13) can be simplified as

√
n{β̂(τ)− β(τ)} d−→ N

(
0,
τ(1− τ)

f 2
ε (0)

D−10

)
.

Similar results hold for the non-i.i.d. case. In this situation, Koenker, R. and

Machado, J.A.F. (1999) showed that

√
n{β̂(τ)− β(τ)} d−→ N(0, τ(1− τ)D−11 D0D1(τ)),

where,

D1(τ) = lim
n→∞

1

n

n∑
i=1

fi(X
>
i β(τ))XiX

>
i .

It is worth noting that, the usual derivation of the asymptotic normality for the

non-i.i.d. case using the Taylor expansion will not directly work as
∑n

i=1 ρτ (Yi−X>i β)

is not differentiable everywhere.

Using the asymptotic distribution of β̂(τ), one can easily construct confidence

intervals and perform testing hypothesis about β(τ). See Koenker, R. and Bassett,

G. (1982) for more details.
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1.8 Resampling methods

Resampling method especially for small sample sizes, is a very good alternative to

make inferences on parameters of interest as it allows estimation of quantities of

interest, e.g., standard errors or confidence intervals, with minimal assumptions.

In this thesis, we use the bootstrap method as a reliable and highly recommended

re-sampling technique in quantile regression analysis (Cristina, D. et al., 2013).

The bootstrap methods are useful tools when the asymptotic approximation on

the parameter of interest is difficult or hard to compute. However, the bootstrap

method can be computationally expensive and may not be the best method to use

for high-dimensional problems.

The two common methods for bootstrap estimation of the parameter of interest

are; the residual and the paired bootstrap (Efron, B. and Tibshirani, R.J., 1998).

The residual bootstrap works well when the errors are exchangeable in distribution,

while the paired bootstrap is based on the assumption that the observations come

from a multivariate distribution F (X, Y ) (Kocherginsky, M. and He, X., 2007).

Resampling the residuals or pairs of observations (Xi,Yi) B times, we obtain the

bootstrap samples (X∗i ,Y
∗
i ) which are used to produce estimates β̂∗1(τ), . . . , β̂∗B(τ) of

β(τ). The paired bootstrap makes no assumption about error variance homogeneity,

and is therefore more robust (Kocherginsky, M. and He, X., 2007).
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1.8.1 Residual Bootstrap

Consider (1.2) with i.i.d. errors. To make inference about β̂(τ) using the residual

bootstrap we follow the following steps

1. Compute β̂(τ) using the observed sample, and calculate residuals ε̂i = Yi −

X>i β̂(τ).

2. Draw bootstrap samples ε∗i i = 1, . . . , n from ε̂i with replacement, and define

Y∗i = X>i β̂(τ) + ε∗i .

3. Compute the quantile regression bootstrap estimator β̂∗(τ) using the bootstrap

sample. Compute the steps B times to obtain β̂∗1(τ), . . . , β̂∗B(τ)

4. Estimate the standard error of β̂(τ) with ̂SE(β̂(τ)) =

√
̂V ar(β̂(τ)) where,

̂V ar(β̂(τ)) =
1

B − 1

B∑
i=1

(β̂∗(τ)− ¯̂
β∗(τ))2,

and
¯̂
β∗(τ) = 1

B

∑B
i=1 β̂

∗
i (τ).

5. Carry out inference on β̂(τ) based on the standard error of the bootstrap

estimator obtained by constructing confidence interval using the approximate

normal method or the percentile method.
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1.8.2 Paired Bootstrap

Considering the same scenario as used in the residual bootstrap, the first two steps

in the residual bootstrap will not be considered in the paired bootstrap. To perform

the paired bootstrap algorithm we proceed as follows:

1. Generate bootstrap samples (Y ∗ib, X
∗
ib) by drawing with replacement samples

from the n pairs (Yi,Xi), i = 1, . . . , n and b = 1, . . . , B.

2. Compute the quantile regression bootstrap estimators using the bootstrap

samples, to obtain β̂∗1(τ), . . . , β̂∗B(τ).

3. Repeat steps 4-5 as stated under the residual bootstrap.

1.9 Implementation in R

The quantile regression can be implemented in R following the steps below;

1. Install the “quantreg” package in R

2. Load the library using require(“quantreg”)

3. Use rq() to fit the necessary model.
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require("quantreg")

quantile = c(0.10 ,0.25 ,0.35 ,0.50 ,0.75 ,0.95)

for(i in 1: length(quantile )){

fit = rq(y~x, tau = quantile[i],data = pop.data)

# Assuming iid errors use

summary.rq(fit ,tau = quantile[i],alpha =0.05 ,iid=TRUE)

# Assuming non iid errors use

summary.rq(fit ,tau=0.5, alpha =0.05 ,iid=FALSE)

}

1.10 Example

In this section, we present an example for the quantile regression using a dataset

collected by Bachrach, L.K. et al. (1999) to study on bone mineral acquisition in

healthy Asian, Hispanic, Black, and Caucasian Youth. In this example, we consider

the baseline data of participants who completed the follow up study. In estimating

the BMD using the age, we showed in Figure 1.1 that the conditional mean regression

model does not provide a complete picture of the relationship between BMD and age

in the sense that the change in the shape of the distribution of BMD is not captured

in the model. Also, we observed that the typical constant variance assumption for

the conditional mean does not hold. In Figure 1.4, we use the quantile regression to

show how the shape of the distribution of BMD changes with respect to age. The

intercept and slope of different quantiles of the BMD (Y ) as a function of age (X)

are shown in the Table 1.1. We also present the bootstrap confidence intervals and

schematic boxplots of the estimates of the quantile regression coefficients at different
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choices of τ in Figures 1.5 and 1.6.

Table 1.1: Intercept and slope obtained from linear quantile regression between
BMD and age in bone mineral acquisition dataset.

τ Intercept Slope

0.10 0.017 −0.002
0.25 0.057 −0.003
0.35 0.091 −0.005
0.50 0.110 −0.005
0.75 0.169 −0.007
0.95 0.286 −0.011

Figure 1.4: Bone mineral density as a function of the adolescent age for the baseline
study with the least squares and quantile regression lines associated with different τ .
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Figure 1.5: Bootstrap Confidence intervals and schematic boxplots of the
estimates of the quantile regression coefficients at different quantiles τ =
0.10, 0.25, 0.35, 0.50, 0.75, 0.95, Intercept(Left), slope(Right).
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Figure 1.6: Distribution of the Bootstrap values of the regression coefficients and
95% C.I for quantiles at τ = 0.25, 0.50, 0.75. Intercept(Left) and slope(Right)
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1.11 Thesis Outline

The outline of the thesis is as follow. In chapter 2, we introduce the balanced

ranked set sampling (RSS) and study some of its properties for estimating the

population mean and quantiles. We also review some resampling methods to make

inference about population parameters using the balanced RSS. In chapter 3 we

propose a new objective function which takes into account the ranking information to

estimate the unknown model parameters of quantile regression based on maxima and

minima nominated samples. Also we conduct a simulation study to investigate the

performance of the proposed objective function for minima and maxima-nominated

samples for different quantiles. In Chapter 4, we present a real data application

of our new method to a BMD dataset collected by the Manitoba Bone Density

Program. Finally Chapter 5 provides a concluding remark and some future works.
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Chapter 2

Ranked Set Sampling

In this chapter, we introduce the balanced and unbalanced ranked set sampling (RSS)

designs and show how they can be used for the estimation of the population mean

and quantiles. Also, we discuss resampling techniques for balanced and unbalanced

ranked set samples using different algorithms.

2.1 Introduction

The idea of RSS was first proposed by McIntyre, G.A. (1952) in his effort to find a

more efficient method to estimate the mean yield of pastures. As an alternative to

simple random sampling (SRS), RSS has been proven to improve the efficiency of

some statistical procedures in situations where the measurement of the variable of

interest is destructive, difficult or expensive to obtain, but sampling units can be

easily ordered by some means before taking the actual measurements on them. The

improved efficiency of the statistical procedures based on RSS can be explained by

its feature of assigning observations to homogeneous judgment order groups without

complete measurement of the entire sample units. As a result, these judgment order
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groups act like strata in stratified sampling, and homogeneity in these strata leads

to improvement in precision for many statistical procedures relative to their SRS

counterparts.

In the literature, RSS has been widely studied for many purposes such as the

one sample inference (McIntyre, G.A., 1952; Dell, T.R. and Clutter, J.L., 1972),

estimation of the distribution function (Samawi,H. M. et al., 1996), one-way design

layout (Muttlak, H. A., 1996), rank regression (Ozturk, O., 2002), confidence intervals

for a population proportion (Terpstra and Wang, 2008), design-based estimation in

finite populations (Jafari Jozani, M. and Johnson, B., 2011) and so on. In addition

to these areas, Muttlak, H. A. (1995) studied the estimation of regression parameters

in a simple linear regression model using RSS. Similarly, Philip, L.H. and Lam,

K. (1997) studied regression type RSS estimators of the population mean for the

response variable Y by utilizing the concomitant variable X in both the ranking

process of the units and the estimation process. Barreto, M. C. M. and Barnett, V.

(1999) studied the best linear unbiased estimators for the simple linear regression

model using RSS. In this thesis, we study the estimation of the conditional quantile

regression Qτ (Y | X) using some variations of RSS with different set sizes and cycles.

The process of generating a ranked set sample involves randomly drawing k units

(called a set of size k) from the underlying population and ranking them (ranking can

be perfect or imperfect) using some means that do not require actual quantification

of the units. For example, ranking can be done using concomitant variables or visual

inspection. For this ranked set, the unit ranked the lowest is chosen for taking the

actual measurement of the variable of interest. This initial measurement is called

the first judgement order statistic and is denoted by Y(1). A second set of size k
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(independent of the first set) is drawn and ranking is done as before. The unit in

the second lowest position is then chosen and the variable of interest for this unit

is measured and it is denoted by Y(2). This process continues until we select the

unit ranked k from the kth independent set and include its measurement, say Y(k),

into our sample. This entire process is called a cycle and results in k measured

observations Y(1), . . . , Y(k). To complete one cycle of RSS, a total number of k2 units

from the underlying population is required. The measured observations Y(1), . . . , Y(k)

are called a balanced ranked set sample (BRSS) of size k which implies that one

judgement order statistic has been collected for each of the ranks 1, 2, . . . , k. A

desired BRSS of size n = mk can be obtained by repeating the entire process for m

independent cycles.

Another form of the RSS is the unbalanced ranked set sample (URSS). The

structure of the URSS can be represented as follow;

{Y(1)1, . . . , Y(1)n1}
i.i.d.∼ F(1),

{Y(2)1, . . . , Y(2)n2}
i.i.d.∼ F(2),

...
...

...

{Y(k)1, . . . , Y(k)nk}
i.i.d.∼ F(k),

where all the Y(i)j’s are independent and the Y(i)j’s with the same i are identically

distributed. Here, Y(i)j is the jth observation (j = 1, . . . , ni) from F(i), the distribution

of the ith order statistic in a set of size k, i = 1, . . . , k. The sample can be considered

as obtained from n =
∑k

i=1 ni sets of SRS units, each of size k, by first ranking
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the units of each set and then, for i = 1, . . . , k, measuring the ith ranked order

statistic for ni ranked sets. For example, consider an underlying distribution which

is symmetric and unimodal about its median Q0.5 and suppose our interest is to

make inference about Q0.5 using data collected by RSS design, where the set size

k is supposed to be an odd number. Park, S. (1996) showed that among all the

order statistics of a random sample of size k, the sample median Y (k+1)
2

has the most

information about η. Consequently, to estimate Q0.5 in this case, it is natural to

consider measuring the same order statistic, namely, the sample median Y (k+1)
2

, in

each set, so that it is measured all k times in each of the m cycles. The resulting

ranked set sample is an unbalanced ranked set sample of size mk measurements,

each of which is a judgment median from a set of size k. For more details about

the theory and application of URSS see Samawi,H. M. et al. (1996), Muttlak, H. A.

(1998), Al-Omari, A.I. and Al-Nasser, A.D. (2012) and references there in.

RSS designs are efficient when the ranking process is free of error, that is, when we

have perfect rankings. Perfect ranking with respect to the response Y is consistent,

that is F (y) = 1
k

∑k
i=1 F(i)(y) for all y. However, in many applications, it is difficult

to have an error free ranking, thus it becomes essential to study the impact of

imperfect ranking. We use Y[i] to show that the ith judgment order statistic is

obtained via imperfect ranking with corresponding CDF F[i]. Imperfect ranking can

arise as a result of ranking errors due to the use of auxiliary variables for the ranking

of the variable of interest or the mis-match of the ranks and the real numerical

orders when the ranks are induced by some other mechanism such as visual ranking

and so on. Chen Zehua et al. (2004) showed that as long as the ranking in RSS is

not done at random, RSS always provides more information about the underlying
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population than SRS even when the ranking is imperfect. Dell, T.R. and Clutter,

J.L. (1972) reviewed the RSS concept with particular consideration of errors in

judgment ordering. In their simulation study, it was assumed that observer ranks

the elements on the basis of estimates that are equal to the true values plus random

error component (an additive model). It was established that the RSS method yields

an unbiased estimate provided that ranking errors are not related to the process of

selecting elements for quantification.

For more details as well as several applications of RSS in reliability, environmental

and medical studies see Chen Zehua et al. (2004).

2.2 Estimation of the Population Mean using RSS

Suppose Y1, . . . , Yn is random sample of size n = mk collected using SRS design

from a population with a continuous distribution function F , density function f and

finite mean µ and variance σ2. An unbiased estimator of the population mean µ is

the sample mean Ȳ = 1
n

∑n
j=1 Yj with V ar(Ȳ ) = σ2

n
.

Suppose {Y[1]i, . . . , Y[k]i, i = 1, . . . ,m } represents a BRSS of size n = km from F

where m is the cycle size and k is the set size. The mean of this sample is given by

ȲRSS =
1

km

m∑
j=1

k∑
i=1

Y[i]j. (2.1)

Consider only the case of one cycle (m = 1) for simplicity, so that the total sample size

n is equal to the set size k. Under the perfect ranking assumption, we can represent

the RSS observations for this setting by Y(1), . . . , Y(k) where these k variables are
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mutually independent and Y(i), i = 1, . . . , k is distributed as the ith order statistic of

a random sample of size k from F . It follows that

E[ȲRSS] =
1

k

k∑
i=1

E[Y(i)], (2.2)

where

E[Y(i)] =

∫ ∞
−∞

y
k!

(i− 1)!(k − i)!
[F (y)]i−1[1− F (y)]k−if(y) dy, (2.3)

for i = 1, . . . , k. Combining (2.2) and (2.3), we obtain

E[ȲRSS] =
1

k

k∑
i=1

[∫ ∞
−∞

ky

(
k − 1

i− 1

)
[F (y)]i−1[1− F (y)]k−if(y) dy

]

=

∫ ∞
−∞

yf(y)

[
k∑
i=1

(
k − 1

i− 1

)
[F (y)]i−1[1− F (y)]k−i

]
dy. (2.4)

setting z = i− 1 in (2.4), we get

k∑
i=1

(
k − 1

i− 1

)
[F (y)]i−1[1− F (y)]k−i =

k−1∑
z=0

(
k − 1

z

)
[F (y)]z[1− F (y)](k−1)−z = 1.

(2.5)

Substituting (2.5) in (2.4), (2.4) becomes

E[ȲRSS] =

∫ ∞
−∞

yf(y) dy = µ, (2.6)

showing that ȲRSS is an unbiased estimator of the population mean µ.

The mutual independence of the Y(i)’s, i = 1, . . . , k enables us to write the

variance of the RSS estimator as (Wolfe, D.A., 2012)
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V ar[ȲRSS] =
1

k2

k∑
i=1

V ar(Y(i)). (2.7)

Letting µ(i) = E[Y(i)], for i = 1, . . . , k, we get

E[(Y(i) − µ)2] = E[(Y(i) − µ(i) + µ(i) − µ)2] = E[(Y(i) − µ(i))
2] + (µ(i) − µ)2 (2.8)

= V ar(Y(i)) + (µ(i) − µ)2.

Combining (2.7) and (2.8) yields the expression

V ar(ȲRSS) =
1

k2

k∑
i=1

E[Y(i) − µ]2 − 1

k2

k∑
i=1

(µ(i) − µ)2. (2.9)

=
σ2

k
− 1

k2

k∑
i=1

(µ(i) − µ)2,

= V ar(Ȳ )− 1

k2

k∑
i=1

(µ(i) − µ)2

≤ V ar(Ȳ ),

since
∑k

i=1(µ(i)−µ)2 ≥ 0. In the case of perfect ranking not only is ȲRSS an unbiased

estimator, but also its variance is always less than the variance of the SRS estimator

Ȳ considering equal sample sizes. For similar results under imperfect ranking see

Chen Zehua et al. (2004).

2.3 Quantile Estimation using RSS

In this section, we define the sample quantiles for balanced and unbalanced ranked

set samples analogous to the simple random sample quantiles and investigate their
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properties. Let Y1, . . . , Yn be a simple random sample of size n from F , with an

empirical distribution function given by F̂n(t) = 1
n

∑n
i=1 I(Yi ≤ t). The τ th quantile,

Qτ , is then estimated by Q̂nτ,SRS = inf{t : F̂n(t) ≥ τ}.

Now, consider a BRSS of size n = mk denoted by YRSS = {Y[i]j, i = 1, . . . , k, j =

1, . . . ,m}. Let the empirical distribution function of YRSS be defined as

F̂B(t) =
1

km

m∑
j=1

k∑
i=1

I(Y[i]j ≤ t).

For 0 < p < 1, the τ th ranked set sample quantile, denoted by Q̂nτ,BRSS, is defined

as the τ th quantile of F̂B, i.e.,

Q̂nτ,BRSS = inf{t : F̂B(t) ≥ τ}.

Some useful theoretical results in estimating population quantiles using ranked set

samples are shown in Chen Zehua et al. (2004). Below we provide some of these

properties while proofs can be found in Chen Zehua et al. (2004).

Theorem 2.3.1. Suppose that the ranking mechanism in RSS is consistent. Then,

with probability 1,

|Q̂nτ,BRSS −Qτ | ≤
2(log n)2

f(Qτ )n1/2
,

for sufficiently large n, when n = mk and k is fixed.

Theorem 2.3.2. Suppose that the ranking mechanism in RSS is consistent and

that the density function f is continuous at Qτ and positive in a neighborhood of Qτ .
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Then, for large n, with n = mk and fixed k,

Q̂nτ,BRSS = Qτ +
τ − F̂B(Qτ )

f(Qτ )
+Rn,

where, with probability one,

Rn = O(n−3/4(logn)3/4).

Using theorem 2.3.2 the asymptotic normality of the ranked set sample quantile

follows from the following result.

Theorem 2.3.3. Under the conditions of theorem 2.3.2, as m→∞,

√
n(Q̂nτ,BRSS −Qτ )

D−→ N

(
0,

σ2
k,τ

f 2(Qτ )

)
,

where,

σ2
k,τ =

1

k

k∑
i=1

F[i](Qτ )[1− F[i](Qτ )].

In particular, if ranking is perfect, noting that F[i](Qτ ) = B(i, k + i− 1, τ), we have

σ2
k,τ =

1

k

k∑
i=1

B(i, k + i− 1, τ)[1−B(i, k + i− 1, τ)],

where B(i, s, x) =
∫ x
0
ti−1(1− t)s−1 dt, i > 0, s > 0 denotes the distribution function

of a beta distribution with parameters i and s.
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The quantity σ2
k,τ does not depend on any unknowns when ranking is perfect. In

general, F[i](Qτ ) depends on both the ranking mechanism and the unknown F, that

are needed to be estimated from the data.

Theorem 2.3.4. Let 0 < τ1 < . . . < τj < τl < 1 be l probabilities. Let ψ =

(Qτ1 , . . . , Qτl)
> and ψ̂ = (Q̂τ1,BRSS, . . . , Q̂τl,BRSS)>. Then, as n −→∞, with n = mk

and fixed k,

√
n(ψ̂ − ψ)

D−→ Nl(0,Σ),

where, for r ≤ j, the (i, j)th entry of Σ is given by

σrj =
1

k

k∑
i=1

F[i](Qτr)[1− F[i](Qτj)]/[f(Qτr)f(Qτj)].

Theorem 2.3.5. (i) If kn
n

= τ + o(n−1/2) then

Z(kn:n) = Qτ +
kn
n
− F̂B(Qτ )

f(Qτ )
+Rn,

where, with probability 1,

Rn = O(n−3/4(log n)3/4),

as n→∞.

(ii) If kn
n

= τ + c
n1/2 + o(n−1/2) then,

√
n(Z(kn:n) − Q̂τ )

D−→ N

(
c

f(Qτ )
,
σ2
k,τ

f 2(Qτ )

)
.
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The asymptotic relative efficiency (ARE) of Q̂nτ,BRSS with respect to Q̂nτ,SRS is

given by

ARE(Q̂nτ,BRSS, Q̂nτ,SRS) =
τ(1− τ)

1
k

∑k
i=1 F[i](Qτ )[1− F[i](Qτ )]

,

where Q̂nτ,SRS is the τ th sample quantile in SRS. Chen Zehua et al. (2004) showed

that ARE(Q̂nτ,BRSS, Q̂nτ,SRS) is always greater than 1 for any τ ∈ (0, 1).

For an unbalanced RSS YURSS = {Y[i]j, i = 1, . . . , k, j = 1, . . . , ni} with n =∑k
j=1 nj, the empirical distribution function of YURSS is defined as

F̂U(t) =
1

n

ni∑
j=1

k∑
i=1

I(Y(i)j ≤ t) =
k∑
i=1

qniF̂(i)(t),

where qni = ni
n
, qni = (qn1, . . . , qnk)

> and F̂(i)(t) = 1
n

∑ni
j=1 I(Y(i)j ≤ t). For 0 < τ < 1,

the τ th unbalanced ranked set sample quantile, denoted by Q̂nτ,URSS, is defined as

the τ th quantile of F̂U , i.e.,

Q̂nτ,URSS = inf{t : F̂U(t) ≥ τ}.

Suppose that, as n→∞, qni → qi, i = 1, . . . , k. Let FU =
∑k

i=1 qiF(i), where FU is

the distribution function.

Chen Zehua et al. (2004) showed the asymptotic properties of the unbalanced

ranked set sample quantile using the following theorems.

Theorem 2.3.6. (i) (The strong consistency). With probability 1, Q̂nτ,URSS con-

verges to Qτ . (ii) Suppose that qni = qi + O(n−1). If fu is continuous at Qτ and
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positive in a neighborhood of Qτ , then

Q̂nτ,URSS = Qτ +
τ − F̂U(Qτ )

fu(Qτ )
+Rn,

where, with probability one,

Rn = O(n−3/4(log n)3/4),

as n→∞. (iii) (The Asymptotic Normality). Suppose that qni = qi +O(n−1). If fu

is continuous at Qτ and positive in a neighborhood of Qτ , then,

√
n(Q̂nτ,URSS −Qτ )

D−→ N

(
0,

σ2
uτ

f 2
u(Qτ )

)
,

where

σ2
uτ =

k∑
i=1

qiF(i)(Qτ )[1− F(i)(Qτ )].

The above results hold in both perfect and imperfect ranking cases.

2.4 Resampling Ranked Set Samples

So far in this chapter, we have presented the asymptotic results for the balanced

and unbalanced ranked set samples with focus on inferences about the population

characteristics under specific parametric assumptions. However, in applications with

small samples, which often happens when dealing with expensive measurements,

asymptotic inference for complex statistics, say, ψ̂n may not be valid with sampling

distribution Gn,F (t); their standard errors may not be known which will make it
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difficult or impossible to construct confidence intervals. Therefore, other means such

as resampling techniques are used to make inference in such situations. Resampling

is a viable approach to obtain sampling distribution of a statistic of interest. In

particular, the bootstrap approach is used for the estimation of the standard error

of any well-defined statistic and allows one to draw inferences when the exact

or asymptotic distribution of the statistic of interest is unavailable or difficult to

obtain. In this section, we describe methods of bootstrapping BRSS using three

different algorithms: BRSSR (bootstrap RSS row-wise), BoRSS (bootstrap RSS), and

MRBRSS (mixed row bootstrap RSS). Also we discuss the methods of bootstrapping

URSS as presented in Amiri, S. et al. (2013).

2.4.1 BRSSR: Bootstrap RSS by Rows

Chen Zehua et al. (2004) introduced the method of bootstrapping ranked set sam-

ples row-wise (BRSSR) by considering a ranked set sample, with each row being

i.i.d. samples from the distribution function F(i) of the ith order statistic; i.e.,

F(i)(y) = P (Z(i) ≤ y) where Z(i) is the ith order statistic from F. Chen Zehua

et al. (2004) showed that as the distribution function F can be represented by

F (y) = 1
k

∑k
i=1 F(i)(y) for each i, each F(i) can be estimated using the observed data

on the ith order statistic by F(i),m(t) = 1
m

∑m
j=1 I(Y(i)j ≤ t). The BRSSR method

resamples from each F(i),m(y) independently and then combines the obtained samples

to form a bootstrap sample. The algorithm is as follow;

1. Assign to each element of the ith row a probability of 1
m

and select m elements

randomly from F(i),m(y) with replacement to obtain Y ∗(i)1, . . . , Y
∗
(i)m.

42



2. Repeat step 1 for i = 1, . . . , k to obtain a bootstrap ranked set sample Y ∗(i)j.

3. For each i = 1, . . . , k, define

F ∗(i),m(t) =
1

m

m∑
j=1

I(Y ∗(i)j ≤ t) and F ∗n(y) =
1

k

k∑
i=1

F ∗(i),m(t).

Note that this method cannot be applied when m = 1 as the bootstrap empirical

distribution is degenerate.

2.4.2 BoRSS : Bootstrap RSS

The bootstrap RSS as described by Modarres, R. et al. (2006) generally performs

better than SRS of the same size. It draws ranked set samples from Fn. The

algorithm is as follow;

1. Assign to each element of the ranked set sample a probability of 1/mk.

2. Randomly draw k elements Y1, . . . , Yk
i.i.d.∼ Fn, sort them in ascending order

Y(1) ≤ . . . ≤ Y(k), retain Y ∗(i) = Y(i).

3. Perform step 2 for i = 1, . . . k.

4. Repeat steps 2 and 3, m times, to obtain Y ∗(i)j.

5. Define the bootstrap empirical distribution by

F ∗n(t) =
1

km

m∑
j=1

k∑
i=1

I(Y ∗(i)j ≤ t).
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Note, when k = 1, this method reduces to the usual SRS bootstrap and this method

is valid for all m ≥ 1.

2.4.3 MRBRSS : mixed row bootstrap RSS

The MRBRSS as proposed by Modarres, R. et al. (2006) differs from other resampling

approach because it draws more stratified units than BRSSR by taking into account

some partial ordering information in RSS which are not considered in the row-wise

resampling. The MRBRSS method resamples from the entire Fn. The resampling

algorithm is as follow;

1. Assign to each element of the ith row a probability of 1
m

for i = 1, . . . , k and

randomly select one element from each row to obtain y∗1, . . . , y
∗
k.

2. Sort Y ∗1 , . . . , Y
∗
k in ascending order to get Y(1) ≤ . . . ≤ Y(k) and retain Y ∗(i) = Y(i).

3. Perform steps 1 and 2 for i = 1, . . . , k to obtain Y ∗(1)1, . . . , Y
∗
(k)1.

4. Repeat steps 1-3, m times, to obtain Y ∗(i)j.

5. Define the bootstrap empirical distribution by

F ∗n(t) =
1

km

m∑
j=1

k∑
i=1

I(Y ∗(i)j ≤ t).

The statistical procedure of SRS that are extended to balanced RSS cannot

directly be applied to URSS due to the complication in the design, as a result

of the absence of the balanced structure. Amiri, S. et al. (2013) described one
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possible approach to avoid this difficulty by transforming the URSS to a BRSS

using a transformation (BTR) that involves an initial step of resampling within

strata to create a balanced RSS. This BTR is included in each bootstrap run as

part of new bootstrap algorithms that are designed to allow for URSS. Once the

bootstrap transformation of the URSS to BRSS is achieved, one can use the bootstrap

techniques discussed above.

45



Chapter 3

Quantile Regression with

Nominated Samples

In this chapter, we estimate the quantile regression using the nomination sampling

technique, which is a variation of the ranked set sampling. To this end, we propose a

new objective function which takes into account the ranking information to estimate

the unknown model parameters based on data that are obtained from a maxima

nomination sampling (MNS). Our method is built upon the distribution of the

maximum order statistic from an asymmetric Laplace distribution, which serves

as the link between the minimization of the sum of deviations and the maximum

likelihood method. We show how the results can be extended to a minima nomination

sample. Finally, we perform simulation studies to compare the performance of our

proposed method with that of SRS for estimating the upper and lower quantiles of

the variable of interest.
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3.1 Introduction

The concept of nomination sampling (NS) design was first proposed by Willemain,

T.R. (1980) in his effort to study new ways to pay for nursing home services.

Willemain, T.R. (1980) presented an application where is practically impossible

to select samples using SRS that can serve as a representative sample from the

underlying population. In this application, the federal officials were interested

in relating a facility’s rate of reimbursement to the typical level of debility of its

residents so that payment might better match the costs of care. Willemain, T.R.

(1980) introduced NS design and showed that his proposed sampling design not only

was advantageous for political reasons but also provided an improvement in the

distribution of estimation error. NS is a sampling process in which every observation

is the maximum or the minimum (depending on the research interest) of a random

sample set from the population of interest. Let Yi = (Yi1, . . . , Yiki , i = 1, . . . , n),

with Yi1, . . . , Yiki be a random sample of size ki from a distribution with continuous

distribution function. Define the map Ψi : Rki → R such that Ψi maps Yi into

a particular element in Yi, say Yi. Then, Yi is called the nominee of Yi and

the collection of {Yi, i = 1, . . . , n} is called the nomination sample. For example,

consider an experiment in which only one observation is available from each of the

N populations. Assume that observation from the ith population is in fact the

maximum or the minimum of a random sample of size k from that population, this

experiment is clearly a NS.

In several applications such as economics, environmental studies and medical

research, focus is often on the description of the upper or lower quantiles as well
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as extremes of the study population. For instance, in medical studies, exposure to

infectious diseases varies from one patient to the other, patients with high exposure

to the disease are most likely the first set of patients to receive treatments, therefore

the nominee could be those who have the maximum exposure to the disease. Another

example is in consumer behavior studies, where consumers have a known number

of options from which a single decision is required. Consumers will usually choose

the option that costs the least and hence the nominee will be the option with the

minimal cost.

Over the past few years, NS has gained a reasonable attention in the literature. For

example, NS has been used in the estimation of the population median (Willemain,

T.R., 1980), the distribution function (Boyles, R.A. and Samaniego, F.J., 1986), and

in quality control charts for attributes (Jafari Jozani, M. and Mirkamali, S.J., 2011).

In all these application, Ψi(Yi) = max1≤j≤ki Yij was used and the population was also

assumed to be infinite or very large. Wells, M.T. and Tiwari, R.C. (1990), estimated

the distribution function in the case where Ψi(Yi) = min1≤j≤ki Yij for an infinite

population. Jafari Jozani, M. and Johnson, B. (2012) introduced a randomized

minima-maxima nomination sampling design, which is a random combination of

the minima and maxima NS in a finite population and results in both minima and

maxima NS as special cases.

In the next section, we present some preliminary results of quantile regression

and a parametric link between the minimization of the sum of absolute deviations

and the maximum likelihood approach. Then, we present different methods of

estimating the τ th regression quantile parameter using MNS data. Also we present

comprehensive simulation study to evaluate the performance of our proposed methods
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in the subsequent section. We show how the results can be extended to a minimum

nomination sampling. Similar to Nourmohammadi, M. et al. (2015) we observe that

one can better model the upper or lower quantiles of the study variable using the

maxima or minima NS compared with SRS. This will help to reduce the number

of required observations using NS designs to achieve the same efficiency as in SRS.

Hence, when there is a budget constraints NS could be used as a more economical

rival to SRS.

3.2 Preliminary Results

In chapter 1, where the distributional form of the response variable Y is unknown,

we defined the τ th regression quantile as a solution to the equation (1.10) given as;

min
β∈Rp

τ ∑
{i:Yi>X>i β}

|Yi −X>i β|+ (1− τ)
∑

{i:Yi<X>i β}

|Yi −X>i β|

 . (3.1)

which is an optimization problem. We presented the solution to this problem

using the simplex method. The method described in Chapter 1 for estimating

the conditional mean regression is called least squares approach. Another method

to estimate the unknown parameter in the conditional mean regression model is

the maximum likelihood estimation (MLE) approach, where the error term (ε) is

assumed to follow a normal distribution, ε ∼ N(0, σ2). The τ th regression quantile

can also be considered as the MLE by assuming a distribution for the response

variable.

A possible distribution which connects the minimization of (3.1), the weighted

sum of the absolute deviations and the maximum likelihood approach is given by
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the asymmetric Laplace distribution (ALD). ALD is a skewed distribution which

has been extensively used to study quantile regression, see for example Koenker, R.

and Machado, J.A.F. (1999) and Yu, K. and Moyeed, R.A. (2001). A continuous

random variable Y is said to follow an ALD with parameters (µ, σ, τ) and is denoted

by Y ∼ AL(µ, σ, τ), if its probability density function (pdf) can be expressed as:

f(y | µ, σ, τ) =
τ(1− τ)

σ
exp

{
−ρτ

(
y − µ
σ

)}
, (3.2)

where ρτ (U) = (τ − I(U ≤ 0))U , 0 < τ < 1 is the skewness parameter, σ > 0 is the

scale parameter and µ ∈ R is the location parameter. AL(µ, σ, τ) is right skewed

when τ < 0.5 and left skewed when τ > 0.5. When τ = 0.5, we have the Laplace

(double exponential) distribution which has the pdf of the form

f(y | µ, σ, 0.5) =
1

4σ
exp

{
−|y − µ|

2σ

}
, y ∈ R, y ∈ R, σ > 0.

The CDF and the quantile functions of Y ∼ AL(µ, σ, τ) are given respectively as;

F (y) =


τ exp(−(τ − 1)(y−µ

σ
)), if y < µ,

1− (1− τ) exp(−(y−µ
σ

)τ), if y > µ,

(3.3)

and

F−1(y) =


µ+ σ

1−τ log( y
τ
), if 0 ≤ y < τ,

µ− σ
τ

log( 1−y
1−τ ), if τ < y ≤ 1.

(3.4)

The mean and the variance of Y are respectively given by E(Y ) = µ+ σ(1−2τ)
τ(1−τ) and

V ar(Y ) = σ2(1−2τ+2τ2)
(1−τ)2τ2 (Yu, K. and Zhang, J., 2005).
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From equation (1.1), let µi = X>i β and Y = (Y1, . . . , Yn)>. Assume that

Yi ∼ AL(X>i β, σ, τ), then the likelihood for n independent observations can be

written as

Lτ (β, σ) =

(
τ(1− τ)

σ

)n
exp

{
−

n∑
i=1

ρτ

(
Yi −X>i β

σ

)}
. (3.5)

The maximization of equation (3.5) w.r.t β is equivalent to the minimization of

equation (3.1) when σ is considered as a nuisance parameter (normally taken to be

σ = 1). In the literature, QR methods based on the ALD has been widely used in

longitudinal data analysis (Geraci, M. and Bottai, M., 2006; Farcomeni, A, 2012),

and in Bayesian analysis (Yu, K. and Moyeed, R.A., 2001; Yu, K. and Stander, J.,

2007). Bera, A. K. et al. (2016) studied the connections between the asymmetric

Laplace pdf, maximum likelihood, maximum entropy and quantile regression. In

Figure 3.1: Asymmetric Laplace densities with τ ∈ (0.25, 0.5, 0.75, 0.90), σ = 1 and
µ = 0
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this thesis, we use the ALD to propose an objective function for QR using maxima

or minima nominated samples. The proposed method can be easily extended to any

rank-based sampling design. However, the difficulty resides in theoretical derivation

of the properties of the resulting estimators. The proposed objective function is

derived and explained in the next section.

3.3 Estimation

In this section, we present two different methods for estimating the τ th regression

quantile parameters using MNS data. The first method is based on the distribu-

tion of the maximum order statistic from an ALD. The second method extends

Nourmohammadi, M. et al. (2015) and is based on the relationship between SRS

and MNS data in estimating τ th regression quantile parameters. This method is

implemented by selecting samples from the population using MNS approach. The

maxima nominated samples are then treated as simple random samples using the

relationship between MNS and SRS as shown in Nourmohammadi, M. et al. (2015).

3.3.1 First Method

Without loss of generality, we assume that set sizes ki are all the same, Let Yi be

the maximum of the sample Yi of size k, i = 1, . . . , n. Then Yi has a distribution

function of GY (y) = [FY (y)]k and density gY (y) = kf(y)[FY (y)]k−1 for all y ∈ R.

The joint density for n independent copies of Yi can be written as

n∏
i=1

kf(yi)[FY (yi)]
k−1. (3.6)
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Suppose it is known that Y ∼ AL(X>β, σ, τ), using equation (3.3) we write the

distribution function as

F (y;β, σ, τ) =


τ exp{−(y−X

>β
σ

)(τ − 1)}, if y < X>β,

1− (1− τ) exp{−(y−X
>β

σ
)τ}, if y > X>β.

(3.7)

Using (3.7) and (3.6) the likelihood function is given by

Lτ (β, σ)

=

n∏
i=1

[
kτ(1− τ)

σ
exp

(
−(Yi −X>i β

σ
)(τ − 1)

)[
τ exp

(
−(Yi −X>i β

σ
)(τ − 1)

)]k−1
]I(Yi<X>i β)

×
n∏
i=1

[
kτ(1− τ)

σ
exp

(
−(Yi −X>i β

σ
)τ

)[
1− (1− τ) exp

(
−(Yi −X>i β

σ
)τ

)]k−1
]I(Yi>X>i β)

.

(3.8)

Now, the log-likelihood function is given by;

lτ (β)

= n ln

(
kτ(1− τ)

σ

)
−

∑
{i:Yi<X>i β}

[
(τ − 1)

(
Yi −X>i β

σ

)
− (k − 1)

(
ln τ − (τ − 1)

(
Yi −X>i β

σ

))]

−
∑

{i:Yi>X>i β}

[
τ

(
Yi −X>i β

σ

)
− (k − 1) ln

(
1− (1− τ) exp

(
−τ(Yi −X>i β

σ
)

))]
.

(3.9)

From equation (3.9), we define the τ th regression quantile using MNS as

Qτ (Y | X) = X>β̂, where β̂ is obtained as the solution of

max
β∈Rp

n ln(kτ(1− τ)
σ

)
−

∑
{i:Yi<X>i β}

[
(τ − 1)

(
Yi −X>i β

σ

)
− (k − 1)

(
ln τ − (τ − 1)

(
Yi −X>i β

σ

))]

−
∑

{i:Yi>X>i β}

[
τ

(
Yi −X>i β

σ

)
− (k − 1) ln

(
1− (1− τ) exp

(
−τ
(
Yi −X>i β

σ

)))] ,
(3.10)
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or equivalently,

min
β∈Rp

 ∑
{i:Yi<X>i β}

[
(τ − 1)

(
Yi −X>i β

σ

)
− (k − 1)

(
ln τ − (τ − 1)

(
Yi −X>i β

σ

))]

+
∑

{i:Yi>X>i β}

[
τ

(
Yi −X>i β

σ

)
− (k − 1) ln

(
1− (1− τ) exp

(
−τ
(
Yi −X>i β

σ

)))] ,
(3.11)

which again is an optimization problem. Equation (3.10) can therefore be solved

using any appropriate optimization method. However, optimizing equation (3.10)

using the simplex method is difficult because it is unclear how to define the constraints

with the set size k. To obtain the maximum likelihood estimate of the unknown

parameter for the τ th regression quantile using maxima nominated samples we adopt

the idea of M-Quantiles approach introduced by Breckling, J. and Chambers, R.

(1988). The M-quantile approach is an extension of the M-estimation of Huber, P. J.

(1964) to a wide range of the location parameters of the population of interest. To

solve (3.11), we use the M-estimation approach. First, note that minimizing (3.11)

in βp does not depend on the first term n ln
(
kτ(1−τ)

σ

)
. Let εi = Yi −X>i β̂ be the

residual, where β̂ is an estimate of β. Using the M-estimation approach, β̂ is defined

by minimizing the following objective function over all βp

n∑
i=1

ρ

(
Yi −X>i β

σ

)
,

with ρ(U) = −[(τ − 1)U − (k − 1) ln τ − (τ − 1)U ]I(U < 0) + [τU − (k − 1) ln(1−

(1− τ) exp(−τU)]I(U > 0), where the function ρ(.) gives the contribution of each

residual to the objective function. Let ψ = ρ′ be the derivative of ρ, which is also

known as the influence curve. Differentiating the objective function w.r.t β and
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setting the partial derivatives to 0 produces a system of equations for the coefficients
n∑
i=1

ψ

(
Yi −X>i β

σ

)
X>i = 0. (3.12)

Let w(t) = ψ(t)
t

and wi = w(Yi−X>i β). To estimate β, we first write (3.12) as below

n∑
i=1

wi
(
Yi −X>i β

)
X>i = 0.. (3.13)

Solving this problem will be done using an iterative method

1. Define an initial estimate for β at any τ , and denote it by β̂
(0)

. This can be

done using quantile regression when the MNS data is treated as SRS.

2. Calculate ε
(j−1)
i = Yi −X>i β̂

(j−1)
at each iteration j.

3. Calculate w
(j−1)
i = w(ε

(j−1)
i ) where we take σ = 1 without loss of generality.

4. Solve
∑n

i=1w
(j−1)
i (Yi −X>i β)X>i = 0, in β to obtain β(j).

5. Repeat steps 2-4 until convergence. Convergence is achieved when |β̂
(j+1)

−

β̂
(j)
| < ε, for small predefined tolerance level ε > 0.

3.3.2 Second Method

The second method we present is built upon the result established in Nourmoham-

madi, M. et al. (2015). This approach is carried out by selecting samples from the

population using MNS. The maxima nominated samples are then treated as simple

random samples to estimate the τ th regression coefficients. To this end, we first

present the following result.
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Lemma 3.3.1. Suppose F is a continuous cdf and let R and S denote observations

obtained from F using SRS and MNS designs respectively. Then, Qτ (R) = Qτk(S),

where τ ∈ (0, 1) and k is the set size.

Proof: By definition, the distribution function of S is given as G(s) = [F (s)]k which

is a non-decreasing function. Then,

Qτ (R) = inf{r : F (r) ≥ τ}

= inf{r : [F (r)]k ≥ τ k}

= inf{r : G(r) ≥ τ k}

= Qτk(S).

Lemma 3.3.1 allows us to define the τ th regression quantile using MNS as the solution

of

min
β∈Rp

τ k ∑
{i:Yi>X>i β}

|Yi −X>i β|+ (1− τ k)
∑

{i:Yi<X>i β}

|Yi −X>i β|

 . (3.14)

Remark. The methods discussed in this section can be easily extended to minima

nomination samples. To see this, let Yi be the minimum of the sample Yi of size k,

i = 1, . . . , n. Then Yi has a distribution function of GY (y) = 1− [1− FY (y)]k and

density gY (y) = kf(y)[1− FY (y)]k−1 for all y ∈ R. Now the τ th regression quantile

using minima nominated samples can be easily derived by simple modifications of

previously derived methods for MNS data.
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3.4 Simulation Study

In this section, we conduct simulation studies to investigate the performance of the

proposed objective function for maxima-nominated samples for different quantiles

and set sizes. From the result established in Nourmohammadi, M. et al. (2015), it has

been shown that maxima-nominated samples performs well at upper quantiles. Hence,

we set τ = (0.4, 0.5, 0.6, 0.7, 0.8, 0.9) and work with set sizes k = (2, 3, 4, 5, 6, 7, 8) to

obtain maxima-nominated samples from a population of size N = 10000. To this end,

we generated datasets from a classical linear regression model given as; Y = X>β+ε,

where Y is the response variable, X = (X1, . . . , Xn)> are the covariates which can

be categorical or continuous, and ε = (ε1, . . . , εn) is the vector of errors with εi’s

being generated from a normal distribution. The regression coefficients of the

classical regression model were randomly generated between 1 to 10 which resulted

in the parameter values β = (β0, β1, β2, β3) = (7, 10, 6, 9) for four different categories

which we assumed to have unequal sample sizes. The categories are denoted as

X1, X2, X3, X4. For the continuous case, we generated our continuous variable X5

as, X5 = ρY + (
√

1− ρ2)Z, where Z ∼N(0, 5), such that the correlation coefficient

between X5 and Y is ρ. We conducted our simulation studies in two stages. In

both stages, additive perceptual error model of Dell, T.R. and Clutter, J.L. (1972)

discussed in Chapter 2 of this thesis, was used to generate the population and

associated concomitants with correlation coefficient ρ = 0.6, 0.7, 0.8 and 0.9 that

are used for the purpose of ranking of the variable of interest. It is important to

note that throughout this study our ranking process is imperfect (see Chapter 2 for

details). The histogram of the underlying population is given in Fig. 3.2. Also, in
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Fig. 3.3 we provide the population quantiles for different values of τ corresponding

to the four subpopulations in our data set.

Figure 3.2: Histogram of the underlying population.

3.4.1 Categorical Covariates

In many applications in the social sciences, medical sciences and public health

sciences, investigating the effect of covariates which split the population into several

subgroups, is of interest. For example, in a study to predict the change in BMD

which is important to determine the risk of osteoporosis, factors to be considered

include: smoking history, family history of bone fracture, age. It is evident that

most of the factors that will help us explain the response variable of interest are

categorical variables. To this end, we considered in this section purely categorical

covariates to explain the response variable. We select a random sample of size 200

from the population of size 10000, using the proportional to size sampling approach.

We estimate the τ th regression quantile for specified τ using simple random samples
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and maxima-nominated samples with the “quantreg” a built-in function in R and

our proposed objective function respectively. We examined the effect of different set

sizes for given parameter values of perceptual error model with ρ = 0.6, 0.7, 0.8, 0.9,

where ρ is the correlation coefficient between the ranking variable and response

variable. We considered three scenarios based on (i) our proposed objective function,

(ii) approximation of the objective function and (iii) treating MNS as SRS, that is,

instead of estimating Qτ (Y | X) we estimate Qτk(Y | X). This process is repeated

5000 times to see the behaviour of our proposed method in the long run. One can

also try the simulation study with different number of replications other than 5000,

however, as our simulation studies (that are not presented here) show, the results

will remain almost the same as long as the number of replication is high enough, say

more than a few thousand times. The estimated bias, averaged over the number of

simulations, is given as;

B̂ias(Q̂τ (Y | X)) =
1

5000

5000∑
i=1

Q̂(i)
τ (Y | X)−Qτ (Y ),

and the estimated mean squared error (MSE) is calculated as,

M̂SE(Q̂τ (Y | X)) = B̂ias
2
(Q̂τ (Y | X)) + V ar(Q̂τ (Y | X)),

where Q̂τ (Y | X) is the estimated τ th regression quantile of Y | X. We presented in

figures and tables the relative efficiency of MNS with respect to SRS with different

set sizes and different correlation coefficients. The relative efficiency is computed as;

R̂E(Q̂τ (Y | X)) =
M̂SESRS(Q̂τ (Y | X))

M̂SEMNS(Q̂τ (Y | X))
,

where R̂E > 1 indicates the superiority of MNS over SRS method. Also, we presented

relative efficiency of SRS compared with MNS using the approximated objective
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function of τ th quantile regression, in order to check how much efficiency we loose if

we exclude the last terms from each line in the objective function 3.10 because of

the difficulty in its maximization. The approximated objective function of the τ th

quantile regression is given as;

min
β∈Rp

 ∑
{i:Yi<X>i β}

[
(τ − 1)

(
Yi −X>i β

σ

)
− (k − 1)

(
ln τ − (τ − 1)

(
Yi −X>i β

σ

))]
+

∑
{i:Yi>X>i β}

τ

(
Yi − x>i β

σ

) .
(3.15)

In each simulation, using the method of Dell, T.R. and Clutter, J.L. (1972), we

create a concomitant variable which has a correlation coefficient ρ with the study

variable and use it for the ranking purpose.

In each simulation, using the method of Dell, T.R. and Clutter, J.L. (1972),

we create a concomitant variable which has a correlation coefficient ρ with the

study variable and use it for the ranking purpose. One can easily observe that

our proposed methods (quantile regression using MNS) outperform the quantile

regression using SRS at upper quantiles even if the ranking is not very good. One

can also observe that if the ranking is relatively good the MNS outperforms SRS for

most quantiles. This is because the ranking information is considered in deriving the

objective function. The relative efficiency of the approximated objective function

of MNS over SRS showed that we will be losing efficiency by approximating the

objective function when compared with the full objective function. This could be

significant when ρ is small. On the other, the results obtained using lemma 3.3.1,

that is, treating MNS data as SRS showed that we gained efficiency mostly at the

upper quantile when compared with quantile regression using SRS which makes it

similar to what we obtained using the proposed method.
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Figure 3.3: Population Quantiles for τ = (0.4, 0.5, 0.6, 0.7, 0.8, 0.9) corresponding
to four subpopulations created by a categorical variable with 4 levels (Cat1, Cat2,
Cat3, Cat4) .
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Table 3.1: Estimated Bias (B̂ias) and Estimated Mean Squared Error (M̂SE) for Qτ (Y | X)
when τ = (0.50, 0.60, 0.80, 0.90) quantile regression using simple random samples (k = 1) and
maxima-nominated samples for categorical covariates with set size, k = (2, 3, 4, 5, 6, 7, 8) and
ρ = 0.6. The results are based on 5000 Monte Carlo replications for each sampling methods.

τ = 0.50 τ = 0.60 τ = 0.80 τ = 0.90

Set Size Cat. B̂ias M̂SE B̂ias M̂SE B̂ias M̂SE B̂ias M̂SE

k = 1 1 0.059 0.272 0.072 0.276 0.160 0.428 0.158 0.652
2 -0.046 0.240 -0.094 0.253 -0.119 0.348 -0.247 0.487
3 -0.018 0.282 0.039 0.289 -0.082 0.382 -0.117 0.568
4 -0.101 0.300 -0.079 0.285 -0.118 0.342 -0.194 0.473

k = 2 1 -0.379 0.378 -0.304 0.312 -0.171 0.294 -0.201 0.376
2 -0.359 0.328 -0.349 0.318 -0.257 0.289 -0.257 0.362
3 -0.364 0.366 -0.260 0.286 -0.264 0.328 -0.191 0.383
4 -0.378 0.365 -0.301 0.285 -0.250 0.278 -0.237 0.362

k = 3 1 -0.614 0.598 -0.515 0.458 -0.359 0.342 -0.318 0.361
2 -0.627 0.577 -0.594 0.535 -0.454 0.377 -0.388 0.389
3 -0.614 0.587 -0.478 0.416 -0.472 0.426 -0.325 0.371
4 -0.600 0.562 -0.512 0.449 -0.459 0.383 -0.406 0.402

k = 4 1 -0.791 0.847 -0.681 0.659 -0.512 0.476 -0.425 0.418
2 -0.836 0.894 -0.791 0.814 -0.612 0.541 -0.548 0.521
3 -0.777 0.832 -0.632 0.606 -0.618 0.582 -0.434 0.439
4 -0.784 0.813 -0.688 0.658 -0.622 0.537 -0.548 0.507

k = 5 1 -0.897 1.014 -0.780 0.791 -0.618 0.574 -0.512 0.471
2 -1.009 1.209 -0.952 1.091 -0.739 0.697 -0.667 0.645
3 -0.900 1.027 -0.746 0.749 -0.748 0.734 -0.550 0.509
4 -0.933 1.060 -0.827 0.859 -0.759 0.712 -0.690 0.661

k = 6 1 -1.010 1.250 -0.892 0.997 -0.735 0.741 -0.617 0.580
2 -1.151 1.519 -1.087 1.377 -0.861 0.899 -0.794 0.825
3 -1.035 1.301 -0.869 0.960 -0.875 0.939 -0.675 0.652
4 -1.043 1.291 -0.932 1.052 -0.871 0.894 -0.804 0.828

k = 7 1 -1.088 1.406 -0.960 1.120 -0.812 0.857 -0.680 0.658
2 -1.260 1.787 -1.181 1.593 -0.946 1.052 -0.891 0.971
3 -1.124 1.491 -0.949 1.101 -0.958 1.080 -0.754 0.751
4 -1.153 1.540 -1.031 1.253 -0.980 1.094 -0.956 1.026

k = 8 1 -1.157 1.579 -1.024 1.260 -0.885 0.988 -0.747 0.754
2 -1.358 2.044 -1.279 1.836 -1.041 1.245 -0.989 1.149
3 -1.203 1.686 -1.020 1.254 -1.041 1.246 -0.843 0.885
4 -1.250 1.769 -1.119 1.440 -1.076 1.287 -1.038 1.233
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Table 3.2: Estimated Bias (B̂ias) and Estimated Mean Squared Error (M̂SE) for Qτ (Y | X)
when τ = (0.50, 0.60, 0.80, 0.90) quantile regression using simple random samples (k = 1) and
maxima-nominated samples for categorical covariates with set size, k = (2, 3, 4, 5, 6, 7, 8) and
ρ = 0.7. The results are based on 5000 Monte Carlo replications for each sampling methods.

τ = 0.50 τ = 0.60 τ = 0.80 τ = 0.90

Set Size Cat. B̂ias M̂SE B̂ias M̂SE B̂ias M̂SE B̂ias M̂SE

k = 1 1 0.059 0.272 0.072 0.276 0.160 0.428 0.158 0.652
2 -0.046 0.240 -0.094 0.253 -0.119 0.348 -0.247 0.487
3 -0.018 0.282 0.039 0.289 -0.082 0.382 -0.117 0.568
4 -0.101 0.300 -0.079 0.285 -0.118 0.342 -0.194 0.473

k = 2 1 -0.215 0.262 -0.170 0.234 -0.069 0.260 -0.136 0.338
2 -0.212 0.233 -0.215 0.232 -0.156 0.239 -0.184 0.305
3 -0.208 0.260 -0.124 0.222 -0.166 0.270 -0.121 0.353
4 -0.220 0.256 -0.170 0.214 -0.153 0.231 -0.161 0.326

k = 3 1 -0.341 0.315 -0.283 0.254 -0.190 0.226 -0.196 0.274
2 -0.378 0.310 -0.365 0.299 -0.288 0.244 -0.252 0.268
3 -0.345 0.307 -0.243 0.227 -0.294 0.273 -0.193 0.292
4 -0.345 0.308 -0.285 0.249 -0.294 0.247 -0.265 0.297

k = 4 1 -0.447 0.396 -0.378 0.315 -0.288 0.270 -0.273 0.289
2 -0.517 0.445 -0.494 0.413 -0.394 0.310 -0.369 0.328
3 -0.430 0.384 -0.318 0.277 -0.379 0.326 -0.255 0.304
4 -0.454 0.387 -0.384 0.308 -0.397 0.292 -0.352 0.313

k = 5 1 -0.502 0.436 -0.431 0.346 -0.343 0.286 -0.316 0.288
2 -0.626 0.559 -0.584 0.500 -0.468 0.348 -0.436 0.356
3 -0.498 0.426 -0.379 0.303 -0.461 0.373 -0.328 0.305
4 -0.532 0.451 -0.457 0.357 -0.484 0.350 -0.440 0.364

k = 6 1 -0.574 0.525 -0.495 0.413 -0.416 0.340 -0.389 0.319
2 -0.718 0.697 -0.665 0.615 -0.543 0.424 -0.517 0.432
3 -0.577 0.525 -0.450 0.370 -0.551 0.464 -0.414 0.358
4 -0.597 0.533 -0.515 0.418 -0.561 0.432 -0.520 0.437

k = 7 1 -0.617 0.574 -0.532 0.449 -0.459 0.377 -0.426 0.348
2 -0.783 0.796 -0.715 0.685 -0.594 0.479 -0.580 0.489
3 -0.628 0.586 -0.491 0.408 -0.599 0.511 -0.460 0.383
4 -0.661 0.612 -0.573 0.479 -0.632 0.509 -0.598 0.518

k = 8 1 -0.657 0.631 -0.567 0.494 -0.494 0.414 -0.462 0.376
2 -0.857 0.920 -0.780 0.784 -0.653 0.548 -0.647 0.568
3 -0.670 0.636 -0.522 0.439 -0.650 0.571 -0.517 0.434
4 -0.733 0.713 -0.632 0.549 -0.704 0.602 -0.683 0.622
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Table 3.3: Estimated Bias (B̂ias) and Estimated Mean Squared Error (M̂SE) for Qτ (Y | X)
when τ = (0.50, 0.60, 0.80, 0.90) quantile regression using simple random samples (k = 1) and
maxima-nominated samples for categorical covariates with set size, k = (2, 3, 4, 5, 6, 7, 8) and
ρ = 0.8. The results are based on 5000 Monte Carlo replications for each sampling methods.

τ = 0.50 τ = 0.60 τ = 0.80 τ = 0.90

Set Size Cat. B̂ias M̂SE B̂ias M̂SE B̂ias M̂SE B̂ias M̂SE

k = 1 1 0.059 0.272 0.072 0.276 0.160 0.428 0.158 0.652
2 -0.046 0.240 -0.094 0.253 -0.119 0.348 -0.247 0.487
3 -0.018 0.282 0.039 0.289 -0.082 0.382 -0.117 0.568
4 -0.101 0.300 -0.079 0.285 -0.118 0.342 -0.194 0.473

k = 2 1 -0.081 0.208 -0.057 0.197 0.008 0.245 -0.088 0.318
2 -0.076 0.184 -0.096 0.185 -0.073 0.216 -0.123 0.268
3 -0.077 0.206 -0.013 0.197 -0.092 0.238 -0.067 0.335
4 -0.084 0.201 -0.058 0.181 -0.074 0.208 -0.106 0.304

k = 3 1 -0.111 0.184 -0.084 0.166 -0.051 0.177 -0.101 0.229
2 -0.150 0.176 -0.161 0.175 -0.149 0.176 -0.149 0.202
3 -0.111 0.180 -0.041 0.159 -0.154 0.197 -0.093 0.254
4 -0.121 0.184 -0.091 0.161 -0.154 0.174 -0.154 0.235

k = 4 1 -0.140 0.188 -0.114 0.169 -0.098 0.174 -0.146 0.215
2 -0.212 0.203 -0.212 0.192 -0.199 0.184 -0.219 0.207
3 -0.126 0.186 -0.050 0.160 -0.180 0.194 -0.116 0.240
4 -0.160 0.190 -0.124 0.158 -0.207 0.171 -0.197 0.212

k = 5 1 -0.151 0.176 -0.117 0.153 -0.107 0.156 -0.153 0.189
2 -0.259 0.214 -0.248 0.195 -0.235 0.174 -0.252 0.198
3 -0.142 0.173 -0.065 0.141 -0.219 0.189 -0.150 0.209
4 -0.187 0.181 -0.147 0.147 -0.255 0.173 -0.244 0.210

k = 6 1 -0.182 0.190 -0.142 0.165 -0.144 0.162 -0.202 0.188
2 -0.307 0.246 -0.208 0.216 -0.274 0.189 -0.296 0.214
3 -0.173 0.185 -0.088 0.144 -0.264 0.207 -0.202 0.216
4 -0.213 0.195 -0.169 0.156 -0.298 0.195 -0.282 0.223

k = 7 1 -0.191 0.187 -0.144 0.159 -0.154 0.157 -0.216 0.189
2 -0.333 0.267 -0.295 0.228 -0.298 0.198 -0.333 0.229
3 -0.196 0.193 -0.100 0.145 -0.284 0.210 -0.222 0.206
4 -0.238 0.198 -0.185 0.155 -0.333 0.209 -0.322 0.240

k = 8 1 -0.211 0.199 -0.154 0.170 -0.167 0.165 -0.235 0.192
2 -0.369 0.293 -0.319 0.246 -0.326 0.210 -0.373 0.252
3 -0.204 0.196 -0.099 0.143 -0.301 0.221 -0.240 0.214
4 -0.276 0.212 -0.212 0.159 -0.378 0.236 -0.370 0.267
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Table 3.4: Estimated Bias (B̂ias) and Estimated Mean Squared Error (M̂SE) for Qτ (Y | X)
when τ = (0.50, 0.60, 0.80, 0.90) quantile regression using simple random samples (k = 1) and
maxima-nominated samples for categorical covariates with set size, k = (2, 3, 4, 5, 6, 7, 8) and
ρ = 0.9. The results are based on 5000 Monte Carlo replications for each sampling methods.

τ = 0.50 τ = 0.60 τ = 0.80 τ = 0.90

Set Size Cat. B̂ias M̂SE B̂ias M̂SE B̂ias M̂SE B̂ias M̂SE

k = 1 1 0.059 0.272 0.072 0.276 0.160 0.428 0.158 0.652
2 -0.046 0.240 -0.094 0.253 -0.119 0.348 -0.247 0.487
3 -0.018 0.282 0.039 0.289 -0.082 0.382 -0.117 0.568
4 -0.101 0.300 -0.079 0.285 -0.118 0.342 -0.194 0.473

k = 2 1 0.040 0.190 0.039 0.186 0.067 0.239 -0.049 0.302
2 0.045 0.172 0.009 0.165 -0.004 0.205 -0.081 0.246
3 0.039 0.184 0.086 0.198 -0.027 0.220 -0.029 0.321
4 0.032 0.184 0.036 0.174 -0.011 0.197 -0.065 0.287

k = 3 1 0.091 0.159 0.086 0.152 0.061 0.172 -0.030 0.209
2 0.063 0.147 0.023 0.133 -0.027 0.150 -0.070 0.162
3 0.085 0.154 0.127 0.163 -0.039 0.159 -0.017 0.235
4 0.074 0.158 0.074 0.146 -0.037 0.145 -0.074 0.203

k = 4 1 0.122 0.158 0.112 0.152 0.058 0.151 -0.051 0.182
2 0.074 0.141 0.038 0.126 -0.032 0.137 -0.107 0.146
3 0.135 0.165 0.176 0.174 -0.020 0.140 -0.014 0.210
4 0.095 0.146 0.097 0.136 -0.047 0.124 -0.088 0.165

k = 5 1 0.154 0.152 0.161 0.148 0.081 0.135 -0.037 0.150
2 0.077 0.128 0.048 0.114 -0.033 0.116 -0.110 0.119
3 0.166 0.153 0.211 0.164 -0.018 0.120 -0.013 0.168
4 0.117 0.136 0.118 0.125 -0.055 0.105 -0.089 0.141

k = 6 1 0.166 0.157 0.177 0.155 0.082 0.129 -0.058 0.135
2 0.077 0.125 0.060 0.113 -0.040 0.107 -0.128 0.113
3 0.175 0.156 0.220 0.165 -0.029 0.114 -0.040 0.160
4 0.126 0.139 0.136 0.130 -0.060 0.103 -0.093 0.132

k = 7 1 0.185 0.154 0.207 0.161 0.103 0.122 -0.046 0.124
2 0.080 0.129 0.074 0.118 -0.035 0.103 -0.140 0.107
3 0.185 0.157 0.244 0.172 -0.017 0.104 -0.029 0.142
4 0.132 0.131 0.151 0.124 -0.063 0.095 -0.104 0.124

k = 8 1 0.196 0.161 0.225 0.172 0.111 0.124 -0.053 0.118
2 0.069 0.119 0.081 0.113 0.039 0.098 -0.155 0.107
3 0.204 0.157 0.274 0.183 -0.008 0.102 -0.025 0.136
4 0.113 0.122 0.148 0.121 -0.080 0.096 -0.124 0.127
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Figure 3.4: Relative Efficiency of SRS vs MNS when k = (2, 3, 4, 5) and ρ = 0.6
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Figure 3.5: Relative Efficiency of SRS vs Approximated objective function of MNS
when k = (2, 3, 4, 5) and ρ = 0.6
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Figure 3.6: Relative Efficiency of SRS vs MNS, where MNS data is treated as SRS
when k = (2, 3, 4, 5) and ρ = 0.6
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Figure 3.7: Relative Efficiency of SRS vs MNS when k = (2, 3, 4, 5) and ρ = 0.7
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Figure 3.8: Relative Efficiency of SRS vs Approximated objective function of MNS
when k = (2, 3, 4, 5) and ρ = 0.7
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Figure 3.9: Relative Efficiency of SRS vs MNS, where MNS data is treated as SRS
when k = (2, 3, 4, 5) and ρ = 0.7
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Figure 3.10: Relative Efficiency of SRS vs MNS when k = (2, 3, 4, 5) and ρ = 0.8
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Figure 3.11: Relative Efficiency of SRS vs Approximated objective function of MNS
when k = (2, 3, 4, 5) and ρ = 0.8
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Figure 3.12: Relative Efficiency of SRS vs MNS, where MNS data treated as SRS
when k = (2, 3, 4, 5) and ρ = 0.8
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Figure 3.13: Relative Efficiency of SRS vs MNS when k = (2, 3, 4, 5) and ρ = 0.9
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Figure 3.14: Relative Efficiency of SRS vs Approximated objective function of MNS
when k = (2, 3, 4, 5) and ρ = 0.9
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Figure 3.15: Relative Efficiency of SRS vs MNS, where MNS data is treated as SRS
when k = (2, 3, 4, 5) and ρ = 0.9
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3.4.2 Categorical and Continuous Covariates

In this section, we consider a case where we have both categorical and continuous

variables as our explanatory variables. Applications of such a case is common in

medical science and public health studies. For example, we might be interested in

estimating or predicting the change in BMD given the age group category, weight,

height and body mass index (BMI) as continuous variables. We select a random

sample of size 200 from the population of size 10000. We estimate the τ th regression

quantile for specified τ using simple random and maxima-nominated samples with the

“quantreg” a built-in function in R and our proposed objective function respectively.

From the graphs and tables presented, we observe that the MSE and the relative

efficiency of the τ th quantile regression using MNS is better than the case where

we use the SRS technique for our estimation. The effects of set size k and the

correlation coefficient between the response variable and concomitant (ρ) based on

the relative efficiency are examined. The relative efficiency increases as ρ increases.

Also, increase in the set size increases our efficiency at the upper quantiles and

reduces the efficiency at the lower quantile. This implies that there is a trade off

between the set size and the efficiency in estimating the quantile of interest. If our

interest is to gain efficiency across all quantiles, we require a small set size, say k = 2.

On the other hand, if our goal is to estimate the τ th quantile regression of the upper

quantile with high efficiency, it is required to increase our set size, say k = 4, 5.

In general, the first method which is built upon the distribution of maximum

order statistics from an ALD outperforms the second method which allows us to

treat the MNS as SRS, especially when the ranking is relatively good. However, the
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two methods have almost the same relative efficiency at the upper quantiles, say

τ ≥ 0.7. Also, we observe that MNS works better for analyzing the upper quantiles

of the population. Similar behavior is expected for lower quantiles if we work with

minima NS. This is explored in our real data application in chapter 4.
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Table 3.5: Estimated Bias (B̂ias) and M̂SE for Qτ (Y | X) when τ = (0.50, 0.60, 0.80, 0.90)
quantile regression using simple random samples (k = 1) and maxima-nominated samples
categorical and continuous covariates with set size, k = (2, 3, 4, 5, 6, 7, 8) and ρ = 0.6. The
results are based on 5000 Monte Carlo replications for each sampling methods.

τ = 0.50 τ = 0.60 τ = 0.80 τ = 0.90

Set Size Cat. B̂ias M̂SE B̂ias M̂SE B̂ias M̂SE B̂ias M̂SE

k = 1 1 0.039 0.255 -0.014 0.278 -0.193 0.384 -0.416 0.699
2 0.044 0.237 -0.037 0.243 -0.196 0.333 -0.486 0.612
3 -0.030 0.252 -0.024 0.279 -0.253 0.412 -0.322 0.608
4 -0.074 0.269 -0.092 0.286 -0.292 0.402 -0.389 0.640

k = 2 1 -0.262 0.267 -0.255 0.269 -0.273 0.296 -0.424 0.522
2 -0.241 0.256 -0.294 0.263 -0.296 0.307 -0.498 0.492
3 -0.267 0.264 -0.241 0.263 -0.361 0.372 -0.381 0.459
4 -0.327 0.319 -0.312 0.310 -0.369 0.347 -0.412 0.479

k = 3 1 -0.445 0.387 -0.429 0.361 -0.392 0.333 -0.476 0.472
2 -0.497 0.441 -0.507 0.419 -0.462 0.403 -0.560 0.496
3 -0.446 0.387 -0.392 0.332 -0.472 0.430 -0.425 0.414
4 -0.553 0.507 -0.505 0.441 -0.514 0.428 -0.488 0.461

k = 4 1 -0.562 0.511 -0.547 0.487 -0.487 0.422 -0.550 0.536
2 -0.689 0.673 -0.661 0.616 -0.606 0.562 -0.649 0.596
3 -0.582 0.528 -0.507 0.438 -0.587 0.543 -0.502 0.466
4 -0.751 0.759 -0.682 0.658 -0.647 0.579 -0.605 0.564

k = 5 1 -0.749 0.781 -0.623 0.558 -0.585 0.512 -0.613 0.575
2 -0.801 0.845 -0.800 0.809 -0.725 0.704 -0.714 0.663
3 -0.652 0.629 -0.598 0.526 -0.675 0.629 -0.580 0.512
4 -0.856 0.942 -0.826 0.865 -0.765 0.730 -0.697 0.657

k = 6 1 -0.799 0.845 -0.709 0.675 -0.677 0.629 -0.694 0.668
2 -0.921 1.052 -0.894 0.968 -0.821 0.851 -0.788 0.778
3 -0.750 0.773 -0.666 0.613 -0.745 0.732 -0.668 0.616
4 -1.001 1.210 -0.944 1.066 -0.868 0.898 -0.793 0.787

k = 7 1 -0.845 0.903 -0.785 0.797 -0.733 0.701 -0.741 0.718
2 -1.035 1.259 -0.985 1.138 -0.937 1.050 -0.879 0.922
3 -0.850 0.921 -0.727 0.692 -0.849 0.886 -0.749 0.711
4 -1.114 1.445 -1.025 1.243 -0.966 1.084 -0.881 0.929

k = 8 1 -0.915 1.032 -0.900 1.026 -0.819 0.842 -0.806 0.816
2 -1.114 1.435 -1.039 1.260 -1.014 1.198 -0.948 1.051
3 -0.900 1.016 -0.748 0.741 -0.899 0.968 -0.812 0.804
4 -1.208 1.665 -1.092 1.389 -1.058 1.268 -0.968 1.079
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Table 3.6: Estimated Bias (B̂ias) and M̂SE for Qτ (Y | X) when τ = (0.50, 0.60, 0.80, 0.90)
quantile regression using simple random samples (k = 1) and maxima-nominated samples
categorical and continuous covariates with set size, k = (2, 3, 4, 5, 6, 7, 8) and ρ = 0.7. The
results are based on 5000 Monte Carlo replications for each sampling methods.

τ = 0.50 τ = 0.60 τ = 0.80 τ = 0.90

Set Size Cat. B̂ias M̂SE B̂ias M̂SE B̂ias M̂SE B̂ias M̂SE

k = 1 1 0.039 0.255 -0.014 0.278 -0.193 0.384 -0.416 0.699
2 0.044 0.237 -0.037 0.243 -0.196 0.333 -0.486 0.612
3 -0.030 0.252 -0.024 0.279 -0.253 0.412 -0.322 0.608
4 -0.074 0.269 -0.092 0.286 -0.292 0.402 -0.389 0.640

k = 2 1 -0.122 0.201 -0.125 0.210 -0.181 0.246 -0.349 0.449
2 -0.089 0.196 -0.158 0.192 -0.192 0.246 -0.410 0.403
3 -0.121 0.202 -0.100 0.206 -0.248 0.289 -0.292 0.380
4 -0.165 0.228 -0.167 0.231 -0.263 0.274 -0.315 0.399

k = 3 1 -0.223 0.227 -0.217 0.217 -0.229 0.223 -0.343 0.353
2 -0.241 0.237 -0.280 0.225 -0.277 0.254 -0.416 0.348
3 -0.205 0.217 -0.174 0.194 -0.288 0.273 -0.287 0.303
4 -0.286 0.274 -0.261 0.240 -0.330 0.264 -0.333 0.327

k = 4 1 -0.278 0.251 -0.286 0.259 -0.273 0.244 -0.371 0.358
2 -0.363 0.308 -0.364 0.285 -0.359 0.303 -0.464 0.376
3 -0.279 0.250 -0.217 0.215 -0.350 0.303 -0.325 0.310
4 -0.414 0.355 -0.360 0.306 -0.405 0.308 -0.404 0.350

k = 5 1 -0.389 0.349 -0.319 0.262 -0.323 0.261 -0.395 0.341
2 -0.435 0.358 -0.450 0.345 -0.422 0.334 -0.494 0.377
3 -0.314 0.267 -0.270 0.225 -0.398 0.314 -0.365 0.299
4 -0.479 0.406 -0.441 0.355 -0.475 0.353 -0.460 0.366

k = 6 1 -0.454 0.399 -0.364 0.294 -0.385 0.308 -0.448 0.379
2 -0.499 0.423 -0.507 0.394 -0.482 0.384 -0.538 0.419
3 -0.357 0.307 -0.303 0.240 -0.436 0.346 -0.424 0.339
4 -0.536 0.472 -0.506 0.408 -0.525 0.401 -0.515 0.409

k = 7 1 -0.467 0.389 -0.398 0.321 -0.407 0.321 -0.468 0.385
2 -0.586 0.503 -0.574 0.468 -0.565 0.466 -0.592 0.474
3 -0.418 0.337 -0.343 0.260 -0.506 0.398 -0.480 0.368
4 -0.611 0.561 -0.555 0.475 -0.588 0.473 -0.568 0.458

k = 8 1 -0.499 0.415 -0.458 0.396 -0.442 0.356 -0.509 0.416
2 -0.642 0.571 -0.609 0.516 -0.621 0.537 -0.639 0.530
3 -0.448 0.369 -0.349 0.271 -0.538 0.429 -0.520 0.406
4 -0.686 0.637 -0.602 0.520 -0.649 0.540 -0.629 0.523
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Table 3.7: Estimated Bias (B̂ias) and M̂SE for Qτ (Y | X) when τ = (0.50, 0.60, 0.80, 0.90)
quantile regression using simple random samples (k = 1) and maxima-nominated samples
categorical and continuous covariates with set size, k = (2, 3, 4, 5, 6, 7, 8) and ρ = 0.8. The
results are based on 5000 Monte Carlo replications for each sampling methods.

τ = 0.50 τ = 0.60 τ = 0.80 τ = 0.90

Set Size Cat. B̂ias M̂SE B̂ias M̂SE B̂ias M̂SE B̂ias M̂SE

k = 1 1 0.039 0.255 -0.014 0.278 -0.193 0.384 -0.416 0.699
2 0.044 0.237 -0.037 0.243 -0.196 0.333 -0.486 0.612
3 -0.030 0.252 -0.024 0.279 -0.253 0.412 -0.322 0.608
4 -0.074 0.269 -0.092 0.286 -0.292 0.402 -0.389 0.640

k = 2 1 0.006 0.180 -0.013 0.188 -0.099 0.218 -0.288 0.398
2 0.045 0.176 -0.040 0.161 -0.102 0.209 -0.339 0.340
3 0.007 0.180 0.018 0.190 -0.154 0.241 -0.222 0.337
4 -0.029 0.188 -0.042 0.196 -0.173 0.228 -0.236 0.348

k = 3 1 -0.023 0.165 -0.029 0.158 -0.087 0.163 -0.240 0.282
2 -0.015 0.160 -0.086 0.143 -0.124 0.181 -0.295 0.254
3 0.002 0.159 0.021 0.150 -0.138 0.192 -0.177 0.242
4 -0.049 0.171 -0.050 0.163 -0.175 0.175 -0.202 0.247

k = 4 1 -0.018 0.155 -0.052 0.167 -0.086 0.161 -0.225 0.258
2 -0.075 0.162 -0.106 0.147 -0.147 0.178 -0.307 0.239
3 -0.014 0.154 -0.034 0.156 -0.152 0.181 -0.179 0.227
4 -0.106 0.173 -0.074 0.166 -0.201 0.174 -0.234 0.231

k = 5 1 -0.053 0.160 -0.040 0.147 -0.095 0.146 -0.223 0.221
2 -0.111 0.152 -0.147 0.142 -0.165 0.160 -0.311 0.215
3 -0.019 0.142 0.023 0.141 -0.159 0.164 -0.192 0.196
4 -0.130 0.165 -0.103 0.152 -0.224 0.165 -0.257 0.211

k = 6 1 -0.125 0.192 -0.039 0.142 -0.126 0.153 -0.245 0.223
2 -0.127 0.162 -0.171 0.148 -0.192 0.168 -0.327 0.218
3 -0.004 0.154 0.018 0.135 -0.177 0.167 -0.222 0.204
4 -0.141 0.176 -0.134 0.150 -0.243 0.169 -0.288 0.217

k = 7 1 -0.114 0.175 -0.041 0.148 -0.118 0.140 -0.238 0.205
2 -0.184 0.175 -0.205 0.161 -0.241 0.182 -0.358 0.232
3 -0.044 0.143 -0.001 0.124 -0.209 0.168 -0.257 0.200
4 -0.169 0.189 -0.146 0.161 -0.269 0.183 -0.309 0.219

k = 8 1 -0.133 0.178 -0.052 0.157 -0.123 0.146 -0.262 0.212
2 -0.209 0.182 -0.216 0.170 -0.262 0.193 -0.375 0.241
3 -0.054 0.145 -0.009 0.126 -0.225 0.172 -0.272 0.206
4 -0.211 0.190 -0.170 0.157 -0.302 0.195 -0.345 0.236
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Table 3.8: Estimated Bias (B̂ias) and M̂SE for Qτ (Y | X) when τ = (0.50, 0.60, 0.80, 0.90)
quantile regression using simple random samples (k = 1) and maxima-nominated samples
categorical and continuous covariates with set size, k = (2, 3, 4, 5, 6, 7, 8) and ρ = 0.9. The
results are based on 5000 Monte Carlo replications for each sampling methods.

τ = 0.50 τ = 0.60 τ = 0.80 τ = 0.90

Set Size Cat. B̂ias M̂SE B̂ias M̂SE B̂ias M̂SE B̂ias M̂SE

k = 1 1 0.039 0.255 -0.014 0.278 -0.193 0.384 -0.416 0.699
2 0.044 0.237 -0.037 0.243 -0.196 0.333 -0.486 0.612
3 -0.030 0.252 -0.024 0.279 -0.253 0.412 -0.322 0.608
4 -0.074 0.269 -0.092 0.286 -0.292 0.402 -0.389 0.640

k = 2 1 0.112 0.182 0.084 0.185 -0.039 0.203 -0.243 0.360
2 0.165 0.187 0.062 0.154 -0.028 0.190 -0.278 0.296
3 0.114 0.186 0.119 0.194 -0.083 0.211 -0.168 0.305
4 0.087 0.182 0.063 0.191 -0.102 0.200 -0.177 0.311

k = 3 1 0.154 0.175 0.136 0.164 0.027 0.148 -0.158 0.237
2 0.187 0.176 0.086 0.134 0.002 0.155 -0.198 0.197
3 0.192 0.184 0.191 0.176 -0.017 0.156 -0.091 0.210
4 0.153 0.172 0.129 0.166 -0.050 0.139 -0.107 0.211

k = 4 1 0.221 0.191 0.163 0.177 0.071 0.142 -0.110 0.203
2 0.187 0.165 0.122 0.136 0.028 0.139 -0.179 0.165
3 0.226 0.191 0.253 0.203 0.012 0.140 -0.064 0.189
4 0.156 0.162 0.165 0.173 -0.032 0.124 -0.107 0.174

k = 5 1 0.243 0.192 0.223 0.185 0.097 0.131 -0.081 0.165
2 0.189 0.153 0.126 0.122 0.047 0.118 -0.157 0.130
3 0.251 0.184 0.278 0.198 0.032 0.119 -0.052 0.153
4 0.173 0.153 0.178 0.152 -0.024 0.105 -0.104 0.145

k = 6 1 0.216 0.198 0.263 0.197 0.105 0.129 -0.074 0.152
2 0.203 0.162 0.135 0.126 0.057 0.112 -0.151 0.120
3 0.292 0.213 0.307 0.215 0.045 0.116 -0.057 0.147
4 0.199 0.166 0.191 0.155 -0.009 0.098 -0.105 0.136

k = 7 1 0.225 0.202 0.296 0.214 0.128 0.122 -0.047 0.138
2 0.185 0.151 0.134 0.117 0.046 0.107 -0.157 0.113
3 0.283 0.201 0.308 0.204 0.039 0.105 -0.066 0.131
4 0.201 0.170 0.202 0.155 -0.003 0.095 -0.102 0.126

k = 8 1 0.226 0.205 0.319 0.227 0.149 0.127 -0.053 0.130
2 0.178 0.147 0.145 0.125 0.050 0.104 -0.156 0.106
3 0.297 0.211 0.339 0.224 0.045 0.105 -0.058 0.127
4 0.191 0.156 0.207 0.151 -0.008 0.089 -0.116 0.118
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Figure 3.16: Relative Efficiency of SRS vs MNS of categorical and continuous
covariates when k = (2, 3, 4, 5) and ρ = 0.6
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Figure 3.17: Relative Efficiency of SRS vs MNS treated as SRS of categorical and
continuous covariates when k = (2, 3, 4, 5) and ρ = 0.6
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Figure 3.18: Relative Efficiency of SRS vs MNS of categorical and continuous
covariates when k = (2, 3, 4, 5) and ρ = 0.7
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Figure 3.19: Relative Efficiency of SRS vs MNS treated as SRS of categorical and
continuous covariates when k = (2, 3, 4, 5) and ρ = 0.7
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Figure 3.20: Relative Efficiency of SRS vs MNS of categorical and continuous
covariates when k = (2, 3, 4, 5) and ρ = 0.8
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Figure 3.21: Relative Efficiency of SRS vs MNS treated as SRS of categorical and
continuous covariates when k = (2, 3, 4, 5) and ρ = 0.8
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Figure 3.22: Relative Efficiency of SRS vs MNS of categorical and continuous
covariates when k = (2, 3, 4, 5) and ρ = 0.9
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Figure 3.23: Relative Efficiency of SRS vs MNS treated as SRS of categorical and
continuous covariates when k = (2, 3, 4, 5) and ρ = 0.9
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3.4.3 Robustness

In previous sections, we generated ε’s from a normal distribution implying that

Yi’s are normally distributed in the underlying populations. In this section, we

perform simulation studies to explore the effect of different distribution of ε on the

performance of our proposed method. To this end, we repeat the simulation studies

when ε’s are assumed to follow a double exponential(0,2), chisq(3) and Exp(0.5).

Fig.3.24 shows the histogram and the distribution of the Y values associated with

four population generation using different distribution for ε. We only consider the

case with categorical explanatory variable and work with the first method when

ρ = 0.9. Results of the relative efficiency are presented accordingly. From the results

obtained by assuming ε follows different distribution, it is evident that our proposed

method is robust to different distribution of the underlying population.

Figure 3.24: Histogram of the four distributions used in our simulation studies.
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Figure 3.25: Relative Efficiency of SRS vs MNS when k = (2, 3, 4, 5), ρ = 0.9 and
we assume ε follows a Laplace distribution.
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Figure 3.26: Relative Efficiency of SRS vs MNS when k = (2, 3, 4, 5), ρ = 0.9 and
we assume ε follows a Chi-square distribution.
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Figure 3.27: Relative Efficiency of SRS vs MNS when k = (2, 3, 4, 5), ρ = 0.9 and
we assume ε follows an Exponential distribution.
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Chapter 4

Quantile Regression with rank

based samples: An application to

Bone Mineral Density

In this chapter, we apply our proposed method to a Bone mineral density (BMD)

dataset collected in Manitoba since 2000 till present. Manitoba with a population

of approximately 1.2 million provides health services to virtually all its residents

through a public health care system. The BMD is measured using dual-energy x-ray

absorptiometry (DXA). Measurement of the BMD is important for the diagnosis

of osteoporosis which is often times based on finding low BMD from the DXA

(Raisz, L., 2005). The cost of measuring the BMD of each patient is relatively high

which requires a huge amount of money especially in a large cohort study. Our

goal is to predict the lower and upper tail of the distribution of the follow-up BMD

measurement as well as the BMD change of women using the baseline information

as the covariates (note that the follow-up BMD measurements might change alot

due to treatments received by patients). The objective here is to reduce the size of
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the follow-up in the cohort study due to budget constraints and still maintain the

precision of our prediction. In the next section we present the summary of the data

set.

4.1 Data Description

The underlying data set which we consider as our population consists of lumbar

spine, femoral neck and total hip measurements of 10394, 10451 and 11069 women

respectively. The summary statistics of the underlying population are reported in

Table 4.1. Average weights and ages at baseline were 67.8kg and 61.9 respectively.

The BMD testing interval is the difference between the first measurement (baseline)

and next measurement (follow-up). This interval is categorized into three classes as;

1-3yrs, 4-5yrs and 6yrs above. The first, second and the third categories consists of

32.3%, 32.6% and 35.1% of the population respectively. The first quartile, median

and the third quartile of the baseline lumbar spine BMD measurement are 0.91, 1.02

and 1.14 respectively. Figure 4.1 provides the distribution of the lumbar spine BMD

for the baseline and the follow-up in three classes denoted by Cat1, Cat2 and Cat3.

Figure 4.2 shows the scatter plots between the lumbar spine BMD in the baseline

and the follow-up in three classes and their corresponding correlation coefficients.

We also present the quantile of the follow-up population for the lumbar spine BMD,

femoral neck BMD as well as total hip BMD for τ = (0.5, 0.6, 0.7, 0.8, 0.9, 0.95).
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Figure 4.1: Histograms of the baseline and follow-up BMD measurements of the
three categories respectively.

Figure 4.2: Scatter plots of the baseline and follow-up BMD measurements of the
three categories respectively.
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Figure 4.3: Quantiles of the follow-up population for the lumbar spine BMD, femoral
neck BMD and Total hip BMD for τ = (0.5, 0.6, 0.7, 0.8, 0.9, 0.95)
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4.2 Results

In this section we present the results obtained using the minima as well as the maxima

nominated samples to estimate the τ th lower and upper quantiles of the variable

of interest and study their behavior as a function of some auxillary information

available in our data set.

We predict the follow-up lumbar spine BMD measurement using both methods

as proposed in previous chapters. Significant covariates in our model for prediction

are baseline age, baseline average hip fat, baseline spine BMD, baseline weight,BMD

testing interval (difference between the baseline and first follow-up), baseline average

spine fat, change in average hip fat, change in average spine fat and change in

average weight.

The BMD testing interval is used as a categorical variable with three categories

in both model. Category one includes patients with BMD testing interval less than

three years. Category two includes patients with BMD testing interval greater than

three years but less than or equal to five years and the third category includes

patients with BMD testing interval greater than five years.

4.2.1 Quantile regression for lower quantiles of lumbar spine

BMD

In clinical studies, BMD measurements are used to assess fracture risk, therefore it

is important to understand the tail behavior of the BMD distribution. Estimating

the τ th quantile regression of the lower quantile of the lumbar spine BMD allows

us to effectively study patients with low BMD, that is, patients that are likely to
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have bone fracture. We predict the follow-up lumbar spine BMD measurements for

lower quantiles using minima nominated samples. The baseline lumbar spine BMD

measurement was used for ranking because of its strong linear relationship with the

follow-up lumbar spine BMD measurement. This approach is an extension of the

quantile regression with maxima nominated samples discussed in Chapter 3.

To this end, let Yi be the minimum of the sample Yi of size k, i = 1, . . . , n.

Then Yi has a distribution function of GY (y) = 1 − [1 − FY (y)]k and density

gY (y) = kf(y)[1 − FY (y)]k−1 for all y ∈ R. Now the τ th quantile regression using

minima nominated samples can be easily derived. The joint density for n independent

copies of Yi can be written as

n∏
i=1

kf(yi)[1− FY (yi)]
k−1. (4.1)

Suppose it is known that Y ∼ AL(X>β, σ, τ), using equation (3.3) and (3.7) we

write the distribution function as substituting F (y) and f(y) in equation (4.1) we

have

Lτ (β, σ)

=

n∏
i=1

[
kτ(1− τ)

σ
exp

(
−
(
Yi −X>i β

σ

)
(τ − 1)

)[
1− τ exp

(
−
(
Yi −X>i β

σ

)
(τ − 1)

)]k−1]I(Yi<X>i β)

×
n∏

i=1

[
kτ(1− τ)

σ
exp

(
−
(
Yi −X>i β

σ

)
τ

)[
−(1− τ) exp

(
−
(
Yi −X>i β

σ

)
τ

)]k−1]I(Yi>X>i β)

.

(4.2)

Now, the log-likelihood function is given by
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lτ (β, σ)

= n ln

(
kτ(1− τ)

σ

)
−

∑
{i:Yi<X>i β}

[
(τ − 1)

(
Yi −X>i β

σ

)
− (k − 1)

(
ln

(
1− τ exp

(
−(τ − 1)

Yi −X>i β

σ

)))]

−
∑

{i:Yi>X>i β}

[
τ

(
Yi −X>i β

σ

)
+ (k − 1)

(
ln(1− τ)−

(
τ(
Yi −X>i β

σ
)

))]
.

(4.3)

From equation (4.3), the τ th regression quantile using minima nominated samples is

obtained as the solution of

max
β∈Rp

n ln

(
kτ(1− τ)

σ

)
−

∑
{i:Yi<X>i β}

[
(τ − 1)

(
Yi −X>i β

σ

)
− (k − 1)

(
ln

(
1− τ exp

(
−(τ − 1)

Yi −X>i β

σ

)))]

−
∑

{i:Yi>X>i β}

[
τ

(
Yi −X>i β

σ

)
+ (k − 1)

(
ln(1− τ)−

(
τ(
Yi −X>i β

σ
)

))] ,
(4.4)

which can be completely optimized using similar approach discussed earlier.

We randomly select 200 samples from the BMD dataset using SRS and minima-

nominated sampling approach, and estimate the τ th quantile regression at τ =

(0.1, 0.2, 0.3, 0.4, 0.5). Table 4.1 shows the estimated bias and MSE associated with

each quantile. Also, we present the relative efficiency of our prediction using SRS

compared with the proposed method in Figure 4.4. The MSE of the τ th quantile

regression at say, τ ≤ 0.4 of the proposed method is smaller than the MSE using

SRS most especially when small set size is selected, say, k = 2, 3. This implies

that at the lower quantiles even with an imperfect ranking, the proposed method

outperforms the quantile regression using SRS.

The financial implication of this is simple. Suppose the DXA scan costs $100

per person, and we take a simple random sample of 200 patients, and we estimate
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the MSE at different τ th quantile regression with a reasonable precision. We require

about one tenth of the sample used in SRS to estimate the MSE of the τ th quantile

regression with the same precision using our proposed method. We save about 90

percent of the total amount spent using the SRS approach.
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Figure 4.4: Relative Efficiency of SRS vs Minima-nominated sampling for lumbar
spine BMD follow-up prediction, when k = (2, 3, 4, 5) and ρ = 0.9
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4.2.2 Quantile regression for upper quantiles of lumbar spine

BMD

In an effort to further understand the upper tail behavior of the lumbar spine BMD

distribution, we predict the τ th quantile regression of the upper quantiles of the

follow-up lumbar spine BMD using maxima-nominated sample. Patients in these

quantiles are less likely to fracture risk because of their high BMD measurement.

We randomly select 200 samples from the BMD dataset using SRS and MNS,

and estimated the τ th quantile regression at τ = (0.5, 0.6, 0.7, 0.8, 0.9). Table 4.2

provides the estimated bias and MSE associated with each quantile. Also, figure

4.5 shows the relative efficiency of the prediction of our method compared with the

commonly used SRS approach.

The results obtained using the BMD dataset is closely related to what we

established using our simulation study. The MSE of the τ th quantile regression for

τ ≥ 0.7 of the proposed method is smaller than the MSE associated with the τ th

quantile regression using SRS. This implies that at the upper quantiles even with an

imperfect ranking, the proposed method outperforms the quantile regression using

SRS. However, in this real data application, we observed that the relative efficiency

nose dived at the upper quantile. This is as a result of the high variation in our

dataset.
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Figure 4.5: Relative Efficiency of SRS vs MNS for lumbar spine BMD follow-up
prediction, when k = (2, 3, 4, 5) and ρ = 0.9
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Chapter 5

Concluding Remarks and Future

Work

In this thesis, we proposed a new objective function which is built upon the distri-

bution of minimum and maximum order statistics to estimate the τ th regression

quantile using minima and maxima-nominated samples. The MSE of our proposed

method is compared with the MSE obtained using simple random samples, and we

showed that the proposed method outperforms the estimates obtained using simple

random samples, most especially at lower and upper quantiles of the distribution,

say, τ ≥ 0.7, τ ≤ 0.4 respectively.

Also, we extended the result established in Nourmohammadi, M. et al. (2015)

which showed the relationship between SRS and MNS to the quantile regression

setting. In this case, we select samples from the population using MNS, samples

obtained are then treated as simple random samples to estimate the τ th regression

coefficients. The MSE obtained using this approach is also shown to be smaller than

the SRS for estimating lower or upper quantiles of the distribution of the variable of

interest in the underlying population.
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In Chapter 4, we applied our proposed methodology to the lumbar spine BMD

measurement collected in Manitoba from 2000-2016. We predicted the lower and

upper quantiles of the lumbar spine BMD follow-up measurements using the baseline

BMD measurement as our concomitant variable. The results obtained are presented

in tables and graphs. We proved that it is economical to use our proposed method

by showing the relative efficiency of our method when compared with the established

SRS approach. The analysis can be equally used to predict the follow-up of other

BMD measurements in clinical studies.

It is important to note some of the limitations of our proposed method when

applied on real data. The relationship between the concomitant and the response

variable should be at least ≥ 0.7 to obtain better precision than estimates obtained

using SRS. This limitation serves as a drawback for us to predict the change in BMD

(as there were no variable in the real data that explained the change in BMD up to

70%), which is important in clinical studies. One way to address this issue is to use

judgments from different experts for ranking. Also, the computation time in using

our proposed method is longer when compared with quantile regression using SRS.

In the future, we would like to explore quantile regression with randomized

nomination sampling which is a random combination of the minima and maxima

NS in a finite population (Jafari Jozani, M. and Johnson, B., 2012). Also, we

would like to study some statistical properties of the quantile regression “estimator”

using rank-based samples. Another area of interest to explore in future is quantile

regression with size-biased sampling to predict change in BMD measurement. In

terms of real application which is of more interest from the clinical perspective, we

would like to study change in BMD using our proposed approach. This is a more
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challenging problem that requires meticulous research.
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