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Abstract. 

 

One can give various rigorous definitions to the notion of "functional calculus", but a functional calculus 

is ultimately just a mathematically meaningful way of talking about an operator f(T), where, T is an 

operator and f is a function. This thesis is concerned with this concept and with one of its applications, 

the finding of bounds for powers of operators. It is actually this very application that has prompted the 

entire investigation presented here. This application is relevant to various fields, such as the numerical 

analysis of PDE and Markov chains. Chapter I presents various abstract approaches to the notion of 

"functional calculus" that are given content by three major examples: the Riesz-Dunford functional 

calculus, the Weyl functional calculus and the functional calculus for sectorial operators. Chapter II 

investigates various conditions that ensure power boundedness for operators, putting the Tadmor-Ritt 

condition at its center. The Riesz-Dunford calculus is instrumental for the proofs in this chapter. Chapter 

III investigates Pascale Vitse's use of Cauchy-Stieltjes integrals and their multipliers for obtaining bounds 

on powers of operators; the chapter closes with an investigation of partially power bounded operators. 
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Notation: 

 

                                                                              the peripheral spectrum of the operator T           

                                                                                the resolvent set associated with the operator T    

                                                                                the spectrum of the operator T  

                                                                              the point spectrum (the set of eigenvalues) of the  

                                                                                    operator T     

C                                                                                  the field of complex numbers 

                                                                        the algebra of functions holomorphic on C\D and  

                                                                                    continuous on C\cl(D) 

           
                                                           the space of measures on the unit circle orthogonal 

                                                                                    to             

CSI(D)                                                                         the space of Cauchy-Stieltjes integrals on D 

D                                                                                 the open unit disk 

                                                                                 the extended Riesz-Dunford class  

  
                                                                              the class of functions regularly decaying at zero and  

                                                                                   infinity (the Riesz-Dunford class)      
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                                                                            the class of functions holomorphic at zero and regularly  

                                                                                   decaying at infinity  

Hp                                                                                the Hardy space of order p 

Hol                                                                             the space of holomorphic functions 

                                                                             the algebra of bounded linear operators on the  

                                                                                   Banach space X 

                                                                           the space of measures on the unit circle 

Mult (D)                                                                    the algebra of multipliers of Cauchy-Stieltjes integrals 

                                                                                     on D 

                                                                               the resolvent function associated with the operator T 

                                                                               the range of operator T 

                                                                                  the sector of angle   

T                                                                                   the unit circle   
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Introduction 

 

 Finding bounds on powers of matrices has important consequences for the numerical analysis of 

partial differential equations; as is well known, in this field, partial differential operators are 

approximated by matrices, therefore successive applications of such an operator correspond to powers 

of matrices. Naturally, knowing that all powers of the relevant matrices are bounded from above proves 

crucial for the task of the numerical analyst.  

Take, for example, the following discretization scheme for the heat equation         

          
       

This is the forward Euler scheme in time and the central difference scheme in space (see Lui  [17], p. 

292).  

We obtain  

               
           

So,              

For a fixed      suppose we wish to solve for the solution to final time      The number of iterations 

required is      In the limit      we need      bounded as      

 Another important application that comes immediately to mind lies in the field of Markov chains. A 

Markov chain is a sequence       of random variables that obey the following Markov property: 

For all integers     and all states                     
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In the study of such processes, an important role is played by the transition matrix P=           
, where 

                     

An element      gives the probability of transition from one state to another, so we can see that the 

matrix P gives the evolution of the system. It is of course imperative that the powers of this matrix do 

not become increasingly large after many iterations. 

Obviously, keeping a bound on powers of matrices is a crucial factor in any field that uses matrices and 

recursion.   

 But the problem cannot so be isolated as to restrict it to matrices only; indeed, it is naturally 

embedded in the problem of finding bounds on powers of bounded linear operators on general Banach 

spaces. One can therefore attempt to obtain results for such general operators; or, one can study the 

problem under additional constraints, such as those of a Hilbert space, or any other such conditions 

related to the geometry of the space. This results in mathematics of extraordinary richness and beauty, 

comprising results not only from operator theory, but also from measure theory, complex analysis and 

the theory of functions. This last part is particularly relevant, since the construction of a functional 

calculus for an operator may prove an essential tool for solving the problem. 

 Now, of course, not all operators are power-bounded and the same is true for matrices. So one 

has to select a certain class of matrices (operators) by imposing certain conditions that would ensure 

their power - boundedness. One such condition is the Kreiss condition, encountered in the celebrated 

Kreiss matrix theorem. This condition states: 

 

            
 

     
                                                                                    (0.1)                                  
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 In this thesis I will be more interested, however, in another condition, namely the Tadmor-Ritt 

condition, which imposes the following stronger requirement on an operator T: 

 

            
 

     
                                                                                       (0.2)                                 

 

                 Other conditions as well will form part of the subject matter of the thesis, such as the more 

general condition studied by El-Fallah and Ransford, of which the Kreiss and the Tadmor-Ritt conditions 

are particular instances. 

This thesis deals primarily with linear operators, but this is simply not the place to give a thorough  

account of linear functional analysis. Therefore, I will restrict the following introduction to three main 

concepts: spectrum, resolvent set and resolvent function. 

The spectrum      of a linear operator T over a complex Banach space X is the set of complex numbers 

  for which the operator      is not invertible. 

Although the notion of spectrum applies to operators in general, I will restrict the following discussion to 

bounded linear operators over a Banach space X, since this is the case which interests us the most. Now, 

there are two main ways of dividing the spectrum into parts. First, notice that      is invertible if and 

only if it is bijective. Since, of course, bijective means injective plus surjective, the operator      may 

fail to be bijective in two ways: namely, it may not be injective, in which case   is an  eigenvalue and the 

set of eigenvalues is called the point spectrum of T, or it may be injective, and therefore not surjective. 

The set of all   such that      is not surjective, but its range is dense in X, is called the continuous 

spectrum of T; the set of all   for which         is a proper subspace of X is called the residual 

spectrum.  
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Another way of dividing the spectrum belongs to the theory of bounded linear operators on Hilbert 

spaces; for such an operator, we have a theorem that says that it is invertible if and only if it is bounded 

below and has a dense range. If the first condition fails, we have the approximate point spectrum of T; if 

the second does not occur, we have the compression spectrum of T.  

For a bounded linear operator, the spectrum is a compact set included in the disk centered at zero with 

radius      We have the important value:                          
  

 
   (this is called the 

spectral radius). 

The resolvent set      is the complement of the spectrum, and it is an open set. Naturally, on this set, 

the resolvent function                 makes sense; notice that this is an operator-valued function 

defined on a set of complex numbers. We have the following important properties of the resolvent 

function:  

        is analytic on     . For              ,we have the representation  

        
  

    

 

   

  

 The resolvent identity: 

                                  

          
 

         
   

 If         then 

                           

and the series  

                       
 

   

 

converges uniformly on this disk. 
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References. 

For numerical analysis of PDE, see Lui [17]; for Markov chains, see Bremaud [6].For the Kreiss condition 

and the famous Kreiss matrix theorem, see Strikwerda, Wade [30]. The discussion around the spectrum 

is from MacCluer [19], pp. 96-97, 115; for the properties of the resolvent function, see Dunford an 

Schwartz [8], ch. 7. 

Outline.  

In the following, D denotes the open unit disk, T the unit circle,      the space of all bounded linear 

operators on the Banach space X. 

The thesis is structured into three chapters. The first chapter investigates the notion of functional 

calculus; the applications of the concept go well beyond finding bounds for powers of operators. 

Nevertheless, this latter enterprise is such an application. This chapter skips many of the details involved 

in such a construction, because the interest will be mainly in identifying the structure on which it is 

based. The examples given in this first chapter will exhibit a common pattern: one starts with  a 

relatively small class of functions for which a calculus is defined via an integral representation, and then 

extends that calculus to a larger class of functions through the properties of the representation. These 

examples are: the Riesz-Dunford functional calculus, the Weyl functional calculus, the functional calculus 

for sectorial operators. 

 The second chapter deals with the topic that actually prompted the writing of this thesis, 

namely, condition that ensure the power boundedness of an operator (matrix). The condition 

highlighted here is the Tadmor-Ritt condition, although other constraints are described as well. The core 

of the chapter consists in giving a very thorough characterization of Tadmor-Ritt operators. 

 The third chapter represents a synthesis of the previous two, in that it follows very closely the 

considerations involved in choosing suitable classes of functions relevant for the purpose of finding 
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bounds on powers of Tadmor-Ritt operators. The construction is due to Vitse, and the classes of 

functions are those of Cauchy-Stieltjes integrals and their multipliers. This chapter concludes by 

describing some relevant connections between measures on the unit circle and the growth of powers of 

operators. 
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Chapter I 

1. Functional calculus 

 In this section we introduce the notion of "functional calculus". Usually, when one speaks of a 

"functional calculus" one has in mind a type of calculus that would allow one to build functions of an 

operator; so, basically, what we have is a tool through which we can build     , where A is an operator 

and f is a function with real or complex values. So, in essence, we are applying every function from a 

certain class to the operator A and obtain f(A).  

              Of course, in building such a functional calculus, we have to choose the class to which the 

operator belongs, and also the class of functions. The two have to obey certain properties which allow 

one to establish a correspondence between them, and this correspondence is the functional calculus. 

 We begin with the idea of an abstract functional calculus. Let F be an algebra of functions and K 

an algebra of continuous linear operators on a topological vector space X. We define the abstract 

functional calculus on K relative to F as the map        , that obeys the following properties: 

               (1)         , for every    ; 

               (2)         , for every    ; 

                (3)        is an algebra homomorphism for every    :                           

        

                We say that   is complete if F is closed under composition and  

                     

for every          . 
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In the following, P denotes the algebra of polynomials (either real or complex). 

                  Theorem 1.1 (Bosch, Swartz [4]). Assume that F and K are Frechet algebras with P dense in F. 

Let   be an abstract functional calculus on K relative to P. 

                  (1) If        is continuous for every    , then   has a unique extension,   , to an abstract 

functional calculus on K relative to F such that         is continuous for every    . 

                  (2) If the bilinear map           from     into F is separately continuous and        is 

continuous from K into K for every    , then the extension    is complete. 

                  (3) If the map                          is uniformly continuous when A runs over 

bounded subsets of K, then             is continuous for every    . 

Proof. Since K is complete, every        has a unique continuous linear extension to F, so we have (1). 

(2) Let       and pick         such that          . Then                    implies 

                          

Fix j. Then            as     by hypothesis. By continuity of        , 

                       

Also                 so 

                    
        

by hypothesis (       is continuous). Therefore 
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Since          by hypothesis, 

                      

Also,       
                      so 

                         

(3) First observe that         is uniformly continuous when f runs over bounded subsets of F. Let    . 

Pick      such that      in F. Let     and          . Let     be a continuous semi-norm in 

K. Then  

                                            
                    

                                                                                        

Let    . By uniform continuity there exists   , such that  

                       

for         . Since         is continuous, there exists        such that  

                     

for       Now,          is continuous, so there exists j0 such that 

                          

for       Adding the previous three inequalities , we obtain 

                      

for       Therefore,                   
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                Theorem 1.1 gives us a method for extending a functional calculus from the class P of 

polynomials to an algebra F of functions which contains P as a dense subset. So, basically, if we already 

have an abstract functional calculus for polynomials which obeys certain properties, then we can extend 

this calculus to an algebra F of functions provided this algebra in turn contains P  as a dense subset and 

satisfies the properties mentioned in the theorem. 

 Extending by continuity the functional calculus from a smaller, relatively controllable class of 

functions, to a larger class, is one of the two main procedures involved in building functional calculi. The 

smaller class (sub-algebra) can be the algebra of polynomials, or the algebra of infinitely differentiable 

functions with compact support defined on a certain set. The idea is to have an algebra of functions for 

which the calculus is easily definable, and then extend this to a larger algebra by continuity. 

 The second procedure is to use a reproducing formula for functions from F, 

                   

(e.g., a transform, or a Cauchy-type formula). If the kernel k(x, y) can be used to define an operator 

k(A, y), then the functional calculus can be defined through the formula 
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                  In his seminal paper on "Condition Numbers of Large Matrices and Analytic Capacities", N. K. 

Nikolski works with a more applied notion of functional calculus. Namely, he introduces first the notion 

of function algebra on D as a unital Banach algebra A such that 

(i) A is continuously embedded in the algebra Hol (D); 

(ii) A contains all polynomials and       
   

 
      

(iii)                  
 

   
    

              Given such a function algebra, he defines an A-functional calculus for an operator T on Banach 

space X to be a bounded homomorphism        such that          Also, 

              

for every    , where    stands for the norm of the homomorphism. 

 We must also take into consideration the following remark of Nikolski, to which I will come back 

later; I will give here the full quote: 

"In order to define and to use a calculus, we do not really need to require that A be an algebra. Below, 

we often work with merely a function space on D, that is, a Banach space A satisfying (i)-(iii) and such 

that      for every     and every polynomial p. The calculus over such a space A means a bounded 

mapping        such that                  for every     and every polynomial p." (Nikolski, 

[24], p. 652). 
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2. Examples 

(a) The Riesz-Dunford functional calculus  

 In the following, we will give content to the abstract structure from the first part by describing 

two functional calculi. The first is the Riesz-Dunford functional calculus which constitutes the framework 

for the proofs used in Chapter II. The two main ideas behind this calculus are the following: 

 - the Cauchy integral formula, which gives the reproducing integral formula for functions 

analytic on a domain; 

 - the Bochner integral, which allows us to integrate operator-valued functions. 

 Given that Cauchy integrals and Cauchy's theorem in complex analysis (in its various forms) are 

well known, we will just define the second concept. Also, this concept is relevant for the other functional 

calculi described in this thesis. 

Let         be a measure space and       a function, where X is a Banach space. We say that such a 

function is strongly measurable if there exists a sequence of   simple functions      such that      

in norm   a.e. A simple function 

        

 

   

                 
           
            

  

is Bochner integrable over A in   if and only if           for every j, and, in such a case, the 

Bochner integral of f over A is 

    

 

           

 

   

  

A strongly measurable function       is Bochner integrable if  

(a) there exists a sequence of simple Bochner integrable functions      that converges to f   a.e., and 
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(b)                       
     

We have in this case, the Bochner integral of f 

    

 

    
   

     

 

  

We have the following important fact about the Bochner integral: 

 f is Bochner-integrable if and only if     is Lebesgue integrable and 

     

 

        

 

  

 

 Let A be an operator in  (X). 

Definition. Let F(A) be the set of all functions f which are analytic on an open neighborhood  U of        

 By a Jordan curve C we mean a finite number C1,...., Ck of disjoint, simple, closed, positively 

oriented rectifiable curves. We say that V is an admissible neighborhood if                and 

   is a Jordan curve. 

Definition. Let f be an analytic function on an open neighborhood U of     . We define 

     
 

   
             

  

 

where V is any admissible domain with    positively oriented. 

Theorem1.2 (Bosch, Swartz [4]). Let          and      . Then 

(1)            and                         
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(2)         and                   

(3) if    , then         

(4) if        for all    , then         

(5) if         for k = 0, 1, 2..., then          

(6) if f has a Maclaurin expansion          
  

    in a neighborhood of     , then      

    
  

    (norm convergence); 

(7)         and            , where A' denotes the transpose or adjoint of A. 

 

Proof. (3) If    , 

     
 

   
         
 

 

where C is a circle with center at the origin and radius      . Then 

     
 

   
         

 

 
 

   
          

 

 
 

   
 
 

 
   

 

 
     

 

 
 

   
 
 

 
 

  

  
  

 

    

  

Since  
 

 
    for      , the series converges uniformly over C, and we can integrate term by term,  

      
 

   
 

  

    
  

 

 

   

   

since  
 

    
  

 
   if k > 1 and  

 

    
  

 
     if k=0. 

(4) If f(z) = z for all z, then 
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where C is a circle as in (3). By the same considerations  as the ones from (3), we can integrate the series 

term by term and, after performing some simple contour integrations, we arrive at the result         

(6) The power series for f converges uniformly on a circle C with center 0 and radius        (the 

spectral radius). From (5), we get 

     
 

   
             

 

 
 

   
      

 

 

   

 

 

         
 

   
              

 

 

   

     
 

 

   

 

  

We have, of course, that if p is a complex polynomial,          
  

   , then  

         
 

 

   

  

(a complete proof can be found in the reference, pp. 90-93). 

  

Corollary 1.3 (Bosch, Swartz [4]).  Let       . Then f(A) is invertible iff        for         The 

inverse is g(A), where g is any member of F(A) such that   
 

 
  on a neighborhood of     . 

(a complete proof can be found in the reference, p. 93). 

We give the following results without proof. 

Theorem 1.4 (Bosch, Swartz [4]) (Spectral Mapping Theorem). If       , then                  
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(a complete proof can be found in the reference, pp. 94-95). 

Theorem 1.5 (Bosch, Swartz [4]).  Let                  and      . Then        and 

              

(a complete proof can be found in the reference, p. 95). 

Theorem 1.6 (Bosch, Swartz [4]). Let           and suppose each    is analytic on an open 

neighborhood U of     . If      converges to f uniformly on compact subsets of U, then        

       . 

Proof. Let V be an open neighborhood of      such that     is admissible. By the properties of the 

resolvent function (see Introduction),        is bounded for      so  

                           

uniformly for      and 

             
 

  
                      

  

  
 

  
                     

  

        

  

 

Theorem 1.7 (Bosch, Swartz [4]) (Perturbation). Let    . There exists     such that if         

and         , then 

                                    

and 



25 
 

                   

for              

(a complete proof can be found in the reference, pp. 98-99). 

Theorem 1.8 (Bosch, Swartz [4]). If        and    , there exists     such that if         with 

        , then         and                 

Proof. Let U be a neighborhood of     , where f is analytic and let     be admissible. The 

Perturbation Theorem assets that the location of the spectrum depends continuously on the operator, 

so there exists      such that         for           when        . Since f is holomorphic 

on V,         when            Also, by the Perturbation Theorem,        is near         for 

       small and z not too close to      so we may choose       , such that 

             
 

  
                          

  

  

                                        
 

  
                           

  

   

for all         . 

  

 Now, the construction given in the preceding pages is not yet an abstract functional calculus, 

nor even a functional calculus for an operator. The reason for the latter is that F(A) is not an algebra. 

However, we can make it one if we introduce an equivalence relation on it, identifying two functions if 

they agree on a neighborhood of      (working, thus, with germs of functions instead of the functions 

themselves). We then have the following result: 
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Theorem 1.9 (Bosch, Swartz [4]).  Suppose             is an algebra homomorphism satisfying 

(1)         

(2)         

(3) If      is a sequence of functions analytic on an open neighborhood D of      such that      

uniformly on compact subsets of D, then           .  

 Then           for every         

Proof. First, we show          , for f a rational function in F(A). Now, by the fact that   is a 

homomorphism, for       

                

so for any polynomial 

           

Let q be any polynomial such that 
 

 
     . Then 

          
 

 
        

 

 
        

 

 
  

so 

  
 

 
        

  
 

and q(A) is invertible. If p, q are polynomials such that 
 

 
     , then 
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by Theorem 1.2. 

Let       . By Runge's theorem, f can be approximated uniformly on compact sets by rational 

functions          . By property (3),             But             so           by Theorem 

1.6. 

  

 Still, the functional calculus built thus far is not yet an abstract functional calculus, in that it is 

defined for an operator only and so it depends on the spectrum of that operator. Starting from this, 

however, we can abstract more and build our desired functional calculus. 

 We take F to be the algebra of all entire functions with the topology of uniform convergence on 

compact subsets of C. F is a Frechet algebra which contains the space of polynomials. By the above 

construction, we already know that, for a function f of F,           is well defined. So our abstract 

functional calculus will take the form 

              

             

 By Theorem 1.2 above,   is an algebra homomorphism, and we have             for every 

polynomial p and       . Of course, F will be closed under composition so, by Theorem 1.5 we have 

                     

and thus the calculus is complete. 

Also, by Theorems 1.6, 1.8, the functional calculus is continuous in each variable. We can prove more: 

Theorem 1.10 (Bosch, Swartz [4]). The map               is jointly continuous.  
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Proof.  Let      in F and      in  (X). We have 

                                           

and so by continuity in the first variable, the second term in the right goes to 0 as    . We take the 

first term. Let     and     as in Theorem 1.7. Pick N such that for     we have         . 

Let         and C be the positively oriented circle with center at the origin and radius L. We know 

that, for    , the spectrum of           lies inside C and (given that the points on C lie outside the 

   neighborhood of     ), 

                   

for     by Theorem 1.7. Take 

                        

(Note that    , since      uniformly on compact sets of C) 

For    , 

                
 

   
                        

 

      

so               , which gives our result. 

  

(b) The Weyl functional calculus 

 The next functional calculus that I am about to describe was created by Hermann Weyl in his 

Theory of groups and quantum mechanics, New York: Dover, 1931, in order to deal with the unbounded 
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self-adjoint operators of differentiation and multiplication by a position coordinate in quantum 

mechanics. 

 We will, however, define the Weyl calculus for bounded self-adjoint operators, since quantum 

mechanics is not the concern of this thesis. 

 Given that, in one of the following proofs we will use the spectral integral, we will sketch briefly 

its construction. One starts with the notion of spectral measure.  

Definition. Let       be a measurable space. A spectral measure on S is a function         , where X 

is a Hilbert space, such that: 

(a) For each A in        is an orthogonal projection. 

(b)        and         

(c) For       in   such that          we have  

               

(d) If      is a sequence of pairwise disjoint sets from  , then 

               

 

   

 

   

 

as      for each    .  

Now, given a spectral measure  , we can define a complex measure on S 

                   

with              . 

For a bounded measurable function f on S, we consider 

              
 

 

which defines a bounded sesquilinear form on X2. We have a theorem (see Theorem 2.11 in MacCluer 

[19], p. 35) that guarantees the existence of a unique bounded operator      on X such that  
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                 with 

            

We define  

      

 

        

So we will have 

                        
 

   

Finally, the spectral theorem (or, rather, a version of it) says that for every normal bounded operator T 

on a separable Hilbert space X, there exists a unique spectral measure   on      such that 

      

 

  

Moreover, for every continuous function f on       

         

 

  

As MacCleur puts it, the intuition behind this theorem is that "bounded normal operators can be 

approximated by linear combinations of projections with pairwise orthogonal ranges" (MacCluer [19], p. 

181), just like a bounded  Borel function can be approximated by simple functions. 

 We start by acknowledging the following result, which we will take without proof. We have that 

for a bounded self-adjoint operators A in  (X) (X being this time a Hilbert space),        is a unitary 

operator, for every     (Theorem 4.12 in Bosch, Swartz [4], pp. 47-48).Taking a function f in the 

Schwartz space S(R), we define 
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where       is the Fourier transform of f. The formula is well defined as a Bochner integral, and we have 

                         

 

  

   

 

  

                

 We are in need of more if we want to call        the function     . For this, we can use the 

spectral theorem for bounded normal operators, mentioned above; thus, if E denotes the spectral 

measure for the operator A, we can write 

                   

 

  

Substituting this into the formula for W(f, A), we get 

                         

 

  

 

  

We can reverse the order of integration (again a result that we take as given, see Theorem 5.24 in 

Bosch, Swartz [4], pp. 68-69) and obtain 

                      

 

     

 

           

 

      

since           
 

 is defined for       . Thus, we arrive at            . 

This allows us to extend the calculus to the space F, 
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with the norm         
 
    

The next step would be to bring in polynomials, and even       functions, but this poses a conceptual 

problem caused by the convergence conditions of improper integrals of such functions. Basically, one 

cannot interpret    in        as a function;    has to be seen as a distribution and, consequently one 

must consider        as an operator-valued distribution. Two lemmas whose full contents I will not give 

here help us in our endeavour (see Bosch and Swartz [4], Lemmas 8.4, 8.5); the second lemma, basically, 

says that       , for     
     vanishes  if         lies outside an interval centered at the origin 

and with radius      Naturally, in this context,        can be interpreted as a distribution. 

Given these facts, one can extend the Weyl calculus  to    functions by taking a function     
     

such that     for              and define 

               

for           

The definition does not depend on the choice of infinitely differentiable function with compact support, 

as long as it obeys, of course the above mentioned condition, since any difference between two such 

functions occurs outside the interval with radius    , and so, considering the second lemma, it is a 

difference that makes no difference. 

We will have: 

Theorem 1.11 (Bosch, Swartz [4]). If p is a polynomial, then            . 

(a complete proof can be found in the reference, p. 133). 

And also the more general theorem: 

Theorem 1.12 (Bosch, Swartz [4]).             is a complete functional calculus, continuous in 

both variables simultaneously and is an extension of the Riesz functional calculus.  
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Proof. I will just prove here that we are dealing with a functional calculus so, basically, just the existence 

of the homomorphism, leaving continuity aside. 

  For            
 , with     on a neighborhood of                 we have 

                         

 

  

                   

 

  

                          

 

  

   

 

  

 

                                              

 

  

  

 

  

   

In the above we have used a well known fact relating convolution and the Fourier transform; now we 

make the change of variables         and, given that               commute, we have 

                                   

 

  

  

 

  

                

 

  

               

 

  

 

                                              

Linearity of        follows from that of the integral; also, we will have                    for 

every bounded self-adjoint A, from Theorem 1.11 . 

Thus,        is a functional calculus.  

 (a complete proof can be found in the reference, pp. 134-136). 

  

 

3. Functional calculus for sectorial operators 

 We can look at the building process of a functional calculus also from another angle. This time, 

we will not limit the calculus to bounded linear operators; instead, we will deal with sectorial operators, 

namely operators whose spectra lie in a sector around the positive axis. Differential operators are an 

important class of sectorial operators. The spectrum of such an operator can be an unbounded set, the 
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only requirement being that it be included in such a sector. The procedure described here will exhibit 

the relevant structure needed for building such a calculus. The source of the following is Markus Haase, 

The Functional Calculus for Sectorial Operators [13]. Tadmor-Ritt operators are sectorial operators, but 

they are also bounded, so the Riesz-Dunford calculus is sufficient for dealing with them. However, 

describing the procedure for building a functional calculus for sectorial operators gives more content to 

the idea of "functional calculus" presented here. 

 (a) Once again, we start in an abstract setting. We call the triple         an abstract 

functional calculus (afc) over a Banach space X, where     is a subalgebra of a commutative unital 

algebra   (1   in general) and   a homomorphism:       . We call the afc non-degenerate or 

proper if the set: 

                                  

is not empty. A member of        is called a regulariser. We call a function     regularisable if there 

exists          such that     ; in this case, e is called a regulariser for f. We observe that 1 is 

regularisable if and only if the afc is proper. In the case of such  a proper afc, the set 

                            

is a subalgebra of   that contains  . 

                Now, given         a proper afc, for       we define 

                                       (1) 

where e is such a regulariser for f.  

                  We have the following lemma: 
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Lemma 1.13 (Haase [13]). Let         be a proper afc. Then, by (1) a closed operator on X is well 

defined and the so-defined mapping 

                                      

extends the original mapping         . 

(a complete proof can be found in the reference, p. 5) 

                  We call the original mapping          the primary functional calculus, and the extension 

described in the lemma the extended functional calculus. The algebra    is called the domain of the afc 

       . 

 We define 

                      

 

             We will have the following: 

Proposition 1.14 (Haase [13]). Let         be a proper afc over the Banach space X. 

(i) If        commutes with each     , then it commutes with each          . 

(ii) 1            

(iii) For         we have 

                 

               

with                             . 
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(iv) If       such that     , then      is injective with                

(v) Let      and let F be a subspace of        . Suppose that there is a sequence         such 

that         in the strong topology and                . Then F is a core for      (that is a 

set dense in         in the norm                    ). 

(a complete proof can be found in the reference, pp. 5-6). 

Corollary 1.15 (Haase [13]). With the same structures as before, we have: 

(i)                                                

(ii)    is a subalgebra with 1 of  , and the map  

               

is a homomorphism of unital algebras. 

(iii) If      is such that      is injective, then 

                    

holds for all     . 

(a complete proof can be found in the reference, pp. 6-7). 

Corollary 1.16 (Haase [13]). With the same structures as before, suppose that          such that 

    . Then 

                        

In this case, we have              

(a complete proof can be found in the reference, p. 7). 
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                   We define some more structure. Given a proper afc         over the Banach space X, we 

call a subalgebra      admissible if the set                          is not empty. In such a case, 

        is a proper afc over X. We define by  

                                                               

the regularisable elements of this new afc. 

                    We call a generator of the afc an admissible subalgebra   such that           

                    We will have the following facts. 

For         a proper afc over the Banach space X, and   an admissible subalgebra of   ; if     

and       so that      is injective and         then      .  

Of course, for two admissible subalgebras      of    , if       , then           A 

subalgebra   of    is a generator of the afc iff         

 (b) In this subsection we will describe the mathematical tools used in building what in 

subsection (a) is called a primary functional calculus; the operators of this calculus are sectorial (possibly 

unbounded) operators.  

 Before proceeding, a technical note is in order, given the mathematical apparatus that is about 

to be used. One will encounter in the pages that follow sentences that deal with the behaviour of 

functions at   or with curves that pass through the point at infinity. Now, in the literature, some 

authors (e.g., Michele Audin, see below) interpret these sentences as sentences regarding the behaviour 

of the function   
 

 
  at zero and, in the case of complex integrals, one obtains the corresponding 

improper Riemann integral. One example is encountered in the following definition: 
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 It is said that a function f defined on the complement of a disk of C (respectively, the 

complement of a disk minus a discrete set) is holomorphic at   (respectively meromorphic at 

 ), if the application  

    
 

 
  

is holomorphic (respectively meromorphic) at 0. (Michele Audin [1], p. 74) 

Now, whether one wants to actually add the point at infinity and work with      , depends on the 

objectives that one pursues. Freitag and Busan [11], for example, define the following topology on 

     : 

 A subset            is open if: 

(a)     is open in C; 

(b) If    , then there exists an R>0 so that 

             . 

Now, using the conventions 

 

 
       

 

 
    

they define a function  

           open 

to be meromorphic if  (a) it is meromorphic in    ; 

                                         (b)         
 

 
  is meromorphic in the open set                 (pp. 156-

157). 

Again, the transformation   
 

 
 is essential; one will obtain, for example, the Laurent expansion of a 

function f at  , by the expansion of    at 0. Other concepts, including the various types of singularities 

carry over in the same fashion.  
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As we have mentioned, one can deal with integration on curves that pass through infinity (a line, for 

example) by writing them as improper Riemann integrals. A more elegant and thorough treatment 

(although, in terms of actually calculating the integral, it will come down to the same thing) would be to 

consider them as curvilinear integrals on the Riemann sphere, considered as a Riemann surface. Things 

become a little more complicated, in that one cannot integrate directly functions on an abstract surface, 

only differential forms.  

The Riemann sphere, viewed as a Riemann surface, is not difficult to deal with; one has two charts, 

    , for the whole of the sphere without    , and 

                
 

 
  for a neighborhood of infinity, 

the values of the charts lying, of course, in C.  

The mathematics used is very elegant, as it often happens in differential geometry; one integrates a 

differential form on the sphere, and calculates the integral by pulling it back to C through the 

parametrizations that are the inverses of the charts. It is interesting that in the second parametrization, 

a circle around zero becomes a circle around infinity. So, for example, if one has a function analytic on C, 

except for a finite number of poles, if one integrates the function on a circle around zero whose radius is 

greater than the modulus of every pole, one can then, by using the second chart, consider the curve as a 

curve around infinity (reversing also its orientation, of course and taking into account the change of 

parametrization), so that, in calculating its integral one is concerned with the behaviour of the function 

at infinity. In the case at hand, one is concerned over whether the function has a residue at infinity or 

not. If the function is holomorphic at    then we will have a version of Cauchy's theorem for the integral 

and its value will thus be 0. 

When dealing strictly with C, the residue at infinity can be defined as  

             
 

  
  
 

 
   

The discussion above can then be summed up in the following theorem: 
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Theorem 1.17. If f is analytic everywhere on C except for a finite number of singular points interior to a 

counterclockwise contour C, then 

       

 

           
 

  
  
 

 
    

The proof is very simple (it basically amounts to a change of variables, without forgetting that this 

change also reverses the orientation of the circle) and will not be given here. Notice, again, that, in 

terms of the Riemann sphere, we are dealing with a change of parametrization (or of chart; we are using 

  
 

 
). Obviously, when it comes to integrating over a curve that passes through    one again will be 

interested in the behaviour of the function at  . If the function is analytic at infinity, one may very well 

not only integrate over such a curve, but also use various Cauchy-like theorems.     

 For          denote by    the sector of angle    around the positive axis (if      then we are 

dealing with the positive real axis); we have that an operator A on X is sectorial of angle    written 

           if: 

               (1)              

               (2)                                               

 Notice that in the terminology used here (borrowed from Hasse's book [13], p. 19), a Tadmor-

Ritt operator does not qualify as a sectorial operator. However, it is easily seen, that all the mathematics 

developed here with regard to what Hasse calls sectorial operators can be transferred to the case of 

Tadmor-Ritt operators.    

 Let         and let        . We say that f has polynomial limit     at 0 if there is     

such that                as    . We say that f has polynomial limit   at 0 if 1/f has polynomial 

limit 0 at 0. Similarly, we say that f has polynomial limit      at   if        has polynomial limit d at 0. 



41 
 

If the respective limit belongs to C (in various cases), then we say that f has finite polynomial limit. Also, 

if f has polynomial limit 0 at 0 (at   , we call f regularly decaying at 0 (at   .  

 Next, we define the Riesz-Dunford class on   : 

  
                                                       

endowed with the supremum  norm     . 

               Given the behavior at zero and infinity of the functions from the defined class, we will have 

       
        

 

 
    

       

 

                  The Riesz-Dunford class is not quite enough for our purposes; we must, therefore, define the 

extended Riesz-Dunford class: 

        
                     

 

                   We have the following important lemma: 

Lemma 1.18 (Haase [13]). Let                holomorphic. Then 

(i)         

iff 

(ii) f is bounded and has finite polynomial limits at 0 and  . 

(a complete proof can be found in the reference, p. 28). 
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Let          We denote by        the boundary of the sector   , oriented in the positive sense, 

i.e., 

       
      

     

For             
      we define 

     
 

   
             

   

 

where          is arbitrary (see Figure 1). 

 

Figure 1.       

Lemma 1.19 (Haase [13]). Let          , and let        . Then we have the following: 

(a) The mapping            
           is a homomorphism of algebras. 

 

  

ω' 

σ ( A ) 

∂ Sω 

Γω' 
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(b) If B is a closed operator commuting with the resolvent of A, the B commutes with f(A). In particular, 

f(A) commutes with A and with        for all       . 

(c) We have                          for each         . 

Proof. (a)This part is quite straightforward and it involves essentially Fubini's theorem and the resolvent 

identity. Although it is a beautiful proof, it is not very complicated and it is too long, so it will be omitted 

here; for details regarding the calculation, see Bosch and Swartz, Functional Calculi, pp. 91-92. 

For (b), we have 

       
 

   
              

 

  
 

   
              

 

  
 

   
             

 

          

 (c) Define            and      . Then 

          
 

   
                  

 

 

                                      
 

   
                      

 

 

                                               
 

   
             

 

 
 

   
       

 

 

                                                                                        

since the latter summand equals 0 by Cauchy's theorem. 

  

We now extend the definition of f(A) from   
      to all        . This can be done by defining  



44 
 

                     

for               with     
           . We will show that this yields an algebra 

homomorphism 

                         

which gives rise to a meromorphic functional calculus                . 

 In order to do this, we first define 

    
                                                                     

Lemma 1.20 (Haase [13]). Let       
       

       , and let     be small enough so that f is 

holomorphic in a neighborhood of         . Then 

     
 

   
             

 

 

where         is the positively oriented boundary of           (see Figure 2). 

Proof. First, note that holomorphy at 0 ensures that f belongs to the extended Riesz-Dunford class 

       If       
        

      then the statement is true since one can shrink the path around the 

point 0 to 0 without changing the value of the integral (it is a consequence of Cauchy's theorem that one 

can deform the path within the integrand's domain of analyticity, without changing the value of the 

integral). As a general       
  may be written as              with       

    
 , we are left 

to show the claim for             . The idea is to introduce the contour           with R > 1. 

Cauchy's theorem will imply that  
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The reason for this is given by the following calculation: 

Take      
 

   

 

   
  Then  

 

  
  
 

 
  

 

  
 

  
 
 

 

 
 
  

 
 

  
 

   

 

    
 

 

           
 

which is analytic at 0 (so h has no residue at  ; see also the comments at the beginning of this 

subsection).  

However, if we add the integral over    and the initial integral over  , some parts cancel and there 

remains only a simple closed curve around the singularity   . To find out the residue at     given that 

the resolvent function is analytic at this point, we expand  

 

   
 

 

       

  

   
 

  

   
                   

                                                    
 

   
                    

so the residue at    is  

   
 

    
 

 

   
   

  

   



46 
 

 

Figure 2.       and      .  

We have the following theorem: 

Theorem 1.21 (Haase [13]). Let           on X, and let        . The mapping 

                       

defined above is a homomorphism of algebras. Moreover, it has the following properties: 

(a)                         

(b) If B is a closed operator commuting with the resolvent of A, the B also commutes with f(A) for each 

         In particular, each f(A) commutes with A. 

(c) If        and          then               

 

  

σ ( A ) 

∂ Sω 

R 

δ  -1 
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(d) Let B be the injective part of A. Then               is invariant under the action of each f(A), and one 

has            .  

Proof. We see that for two functions                            in        with      
  

       , one has to deal separately with all the mixed products (linearity is obvious, given that we are 

working with an integral). When one of the members of the product is a constant, the results are 

immediate; when we have products of the form      or            one uses lemma 1.19, while for 

products of the form                        one uses lemma 1.20 plus Fubini's theorem and 

the resolvent identity. 

For (c), we have:               imply that: denote          , therefore   
 

   
    

                  (because the resolvent commutes with A),so          
 

 
  . Therefore 

      
 

   
 
    

 
  

 

          

for     
  (by Cauchy's theorem; so we have, in part what we expected, since functions in this class 

vanish at zero). So, for      we will obtain immediately the desired result (one notices that 
 

   
  

      
 

   
     ).   

(a complete proof can be found in the reference, pp. 33-34) 

  

We call the algebra homomorphism 

                       

the primary functional calculus on    for A as a sectorial operator. 
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Corollary 1.22 (Haase [13]). Let                  , and let         be holomorphic at both 

points 0 and  . Then         and f(A) is given by 

          
 

   
             

 

 

with the contour           from Figure 3. 

Proof. We set                     
 . Then, we will have                 for      we can 

use the formula from lemma 7   

     
 

   
             

     

 

and then, using the fact that the integrand is holomorphic in a neighborhood of  , we deform the path 

of integration to a finite path         (basically, we take R so big that no pole lies outside the circle of 

center 0 and radius R, and we take the path of integration so that the interior is the part that contains 

 , and so, by Cauchy's theorem the value of the integral remains unchanged), so 

     
 

   
       

       

             
 

   
             

       

 
 

   
             

       

 

(it makes sense to break the integral into two, because now we are dealing with a domain in which both 

integrands are holomorphic functions). The second term vanishes (again by Cauchy's theorem), so we 

are left with the desired formula. 
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Figure 3.          

As mentioned, the mathematical structure built so far is only a primary functional calculus; one will then 

extend it, as described in the first part, to what Hasse calls the natural functional calculus for sectorial 

operators. I will not, however, prolong the discussion farther than this point; the interested reader may 

consult Hasse's book. Extending the functional calculus opens the way for exciting mathematics, but I 

am here interested more in describing a procedure than in filling in the details. Notice that although the 

primary functional calculus operates with bounded operators, it is not created for a bounded operator: 

A is sectorial and may be unbounded. Another way to see this is by noticing that the function        

does not belong to the extended Riesz-Dunford class, so that the operator A will not exist as a value of a 

function f(A). Also, one must notice the similarity of the procedure encountered here with what we have 

seen in the case of the Weyl calculus; namely, the starting point is given by a class of  decaying functions 

for which a calculus is given by an integral formula, and which is then extended through the properties 

 

  

σ ( A ) 

∂ Sω 

-R -δ 

- 1 

Γω',δ,R 
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of this formula. These facts, along with integrating along curves that pass through the infinity point, 

make the mathematical facts presented in this section very exciting.  

References. 

The source of much of the chapter is Bosch and Swartz [4]; thus, section 1 has as its source ch. 6, while 

section 2, ch. 7 and 8. See also the paper by Nikolski [24]. The part regarding the Bochner integral is also 

from Bosch an Swartz [4], ch. 5; the construction of the spectral integral is taken from MacCluer [19], ch. 

6. See also the more general concept of operator-valued measure in Bosch and Swartz [4], ch. 1. The 

material in section 3 is largely drawn from Haase [13]; I have supplanted it with facts related to complex 

analysis (see Bibliography); for integration on a Riemann surface, see Miranda [22], ch. IV.  
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Chapter II 

This chapter deals with conditions on operators that ensure power boundedness. It comes as a natural 

continuation of the previous chapter, in that the proofs that these conditions imply power boundedness 

use the Riesz-Dunford functional calculus. The Tadmor-Ritt operators are at the center of the chapter. 

1. Characterization of Tadmor-Ritt operators 

 We will start this part with the following theorem that provides a characterization of Tadmor-

Ritt operators. 

First, we define the following sets: 

           
     

 
 

     

               

                          

                             
 

 
                            

 

 
  

The third set    is an example of a Stolz domain; these sets are used in complex analysis on the disk in 

order to investigate how functions on the unit disk approach their values on the unit circle (see Figure 

4). 

In the following, we will also assume as known the Katznelson-Tzafriri Theorem [Katznelson, Tzafriri 

[14]:  

 Let T be a linear contraction on a Banach space X. Then         
          if and only if 

the peripheral spectrum       of T (the intersection of the spectrum with the unit circle) 

consists of at most the point        
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Figure 4. The set     

 

 

Theorem 2.1 (Malinen, Nevanlinna, Yuan [20]). The following are equivalent:  

 (i) T satisfies (0.2) for all |λ| > 1; 

 (ii)            (it is actually included in a Stolz cone) and there exists     an        

such that (1.2) holds for all     , and 

 (iii) T is power bounded, and it satisfies the Tauberian condition 

                                                                        (2.1) 

    for some      

 

 

 

1 0 

sin δ 

 

δ 

0 



53 
 

Proof: (i) →(ii). We start by proving that if T is a Tadmor-Ritt operator with constant C, then              

This is done in two steps: 

(a) We prove that             This is achieved by adding to the Tadmor-Ritt inequality the following 

inequality for the resolvent:          
 

            
  These two inequalities will give us               

     

 
  

(b) We show that      . In order to do this, we will show that if       then       We have two 

cases: 

(b1)     . Let               
 

 
  then      

 

 
  . We denote by    the point such that 

         and      
    

   
   

 

 
. We will have 

       
    
    

      
 

 
    

 

 
 

so        
      

 
 with        and thus        

(b2)       . Let    
 

   
  To show that       it is sufficient to show that        

      

 
. This 

follows from the fact that                       
 

  
 and            

 

 
  

See Figure 5. 
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Figure 5.  

So, we will have            . We still need to prove that the Tadmor-Ritt condition applies to these 

new points of the resolvent set. We will prove that for any point   in a sector       with    slightly greater 

than    we will have  

       
     

     
  

  Take a point       with      . The vector     determines a chord in the unit disk. Consider the 

corresponding arc of the unit circle lying in the sector and let   be the point in the arc whose orthogonal 

projection onto the chord is  . Let   be the acute angle between the vectors     and    . Then 

 

 

1 0 

 

δ 

z0 

z 

α0 

z1 

z 

0 
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  , hence            

 

 
 . Looking at the triangle with vertices       we see that       

          (See Figure 6.) The Tadmor-Ritt condition yields  

              
      

     
                 

 

 Now we can apply the following formula 

 

                       
 

   

 

 

  to get  

 

        
        

               
 

        

        
  

 

              Using the Tadmor-Ritt condition again we obtain the estimate: 
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Figure 6.  

(ii)→(iii). Consider the path in the integral 

 

        
 

   
                

 

  

 

We decompose   into three parts            of which    denotes a circular arc of the form 

                                    while    is a line segment of the form      
 

 
 

 

  

1 0 

λ 

μ 

θ 

δ 
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            (  is the appropriately chosen sector angle; see the previous part); and    is 

symmetric with    (see Figure 7). The spectrum of the operator is included in a Stolz cone, so we may 

choose   in such a way that               is uniformly bounded over     For   (and for   ) this is 

also true; one has only to look again at the remarks on the geometry of the spectrum in the previous 

part. Notice that our definition of the path does depend on   and we need large enough values of  , 

otherwise the lines and the arcs need not intersect. However, for large values of   we have a connected 

path and the resolvent estimates then hold independently of  . 

 

 

Figure 7.  

We estimate the integral over    first. We obtain: 

 

 

 

1 0 

 
γ1 

γ2 

γ3 
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                In order to estimate the integral over    we need to estimate       . There exist positive 

constants,    and   , such that (for large   and all relevant  )           
  

 
      . Thus  

 

 
 

   
                

  

  
 

  
    

  
 
          

 

 

 
    

     
  

 

                 The integral over    is analogous, so we have               
  

 

 
  and the desired 

result follows. We still have to show that   is power bounded. We use the same path for integration:  

 

   
 

   
           

 

 

We start again with   . We have 

 

 

  
                 

  

    
   

 

Further, over    we have 
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 As the integral over    is analogous we obtain             
  and the proof is complete. 

(iii)→(i). The proof of the third part is mainly a semigroup proof. Namely, it is the application of a 

general proof for a uniformly bounded     semigroup      generated by the operator   to the special 

case of the semigroup         generated by      plus the fact that we are dealing with the discrete, 

and not the continuous, case. As such, it is divided into five parts: 

a) We start the proof by showing the following: 

                
     

 
             

We have 

                     
  

  

 

   

 
 

 
 

  

  

 

   

  
    

 
   

and so, we obtain the desired result. 
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b) Now, we will prove that the     semigroup         can be extended to an analytic semigroup         

in a sector                 with        uniformly bounded in every closed subsector       
    

of     

Thus, we start from the fact that         is differentiable for    , which implies that 

                   
 
 
              

 
 
        

 

  

(notice that, in the last two derivatives, the variable is     ) 

From this, together with the inequality         and  

                             
          

we have that  

 

  
                

  

 
 
 

  

Next, consider the power series 

                 
            

  
      

 

   

   

This series converges uniformly in      for               for every      Therefore,         is 

analytic in                          Since they have identical values for real numbers,         

extends         to the sector    Also, given that         is analytic, it follows that it is a semigroup, and 

from the above series expansion on can see that            as     in    This also shows that 

          is uniformly bounded in every closed subsector                                .   

(c) The core of the proof resides in the following integral representation for the resolvent function: 
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This part will consist in obtaining a first bound for the resovent function. 

As such, having extended the representation to complex numbers in a sector around the positive real 

axis, we let        such that              for          Taking     and      we have 

                                  

 

 

 

The analyticity and the uniform boundedness of the semigroup in     allows us to shift the path of 

integration in the above integral representation from R+ to any ray      within the subsector. For   

   shifting the path of integration to the ray        and estimating the resulting integral, we obtain that 

                            
                

 

 

 

                                   
     

                 
 
    

 
   

 

Notice that we must ensure that the real exponent in the above evaluation stays positive, otherwise the 

integral will diverge; but, of course, the proper angle   can be found; for example, if the imaginary part 

is very large in absolute value, we can take the angle to be very small, thus its cosine will be large and its 

sine small. The same considerations play a role in the next inequalities above.  

For negative imaginary part, we shift the path of integration to the ray       and we obtain the estimate 

                   and so we have 
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(d) We approach now the final evaluation. 

We know that, since     is the generator of a    semigroup, we have           
  

        for 

        From (c) we have that                    and so           
  

        right of 

the imaginary axis. For      we write the Taylor expansion for the resolvent around     : 

                                 
 

   

  

The series converges in      for                          In the above series expansion, we 

fix the imaginary part of   to be    and using the estimate from point (b), we get that the series 

converges uniformly in      for              
    but, as both     and     are arbitrary, this 

will imply that we can extend the series representation to all   with          satisfying 
        

      
 

    and so 

                    
 

 
    

with                        Moreover, in this region 

          
 

   

 

   
 
     

     

 

     
 

 

     
   

(the latter estimates come from considering the inequalities that provide the conditions of membership 

in the sector, conditions who are given in terms of relations between the imaginary parts and the real 

parts of the complex numbers involved).  
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(e) We extend the inequality to every   such that         

By the Katznelson-Tzafriri theorem, a power bounded operator satisfying                has at 

most one point in the peripheral spectrum (       , namely the point {1}. Now, this means that, for 

the part of the complex plane that we are interested in (the part outside the sector), the points on the 

unit circle are part of the resolvent set. Take one such point    with imaginary part        such that 

we can take a point   close to the boundary of the sector for which the Tadmor-Ritt inequality has 

already been proven, such that         and the series 

                       
 

   

 

converges (see Figure 8). This will give us the estimate 

         
 

     

 

   
 

 

         

 

   
 

where   is the angle between     and     and   is the factor that allows the convergence of the 

series. Notice that for each point on the ray that goes from 1 through   the estimate remains valid, 

because the modulus of   increases. We continue this procedure with this new ray and eventually 

evaluate the resolvent at every point outside the sector with modulus greater than 1. We can do this 

because we know that this area is part of the resolvent set. Also, for any point   with modulus greater 

than 1, the resolvent is bounded above, so            will be bounded below, which gives us a 

minimum radius of the balls through which we can extend the estimate. 
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Figure 8.  

 We add the following theorem, which refines the previous result. We need first to introduce a 

new term: Let           be a sequence in a vector space; we write                  
   

                         and               For            we write           for 

   , so                        . 

Theorem 2.2 (Vitse [33]). Let T: X  X be a power bounded operator, where X is a Banach space, 

              
     and let n >0 be an integer. The following are equivalent: 

(1)                             

(2)                           

(3) T is a Tadmor-Ritt operator. 

Proof.        . Since        , the spectrum of T is contained in the closed unit disk:      

     . Moreover, the spectral mapping theorem implies that if             , then  

 

  

1 0 

λ 

μ 
θ 
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and hence     because of condition (1). So, the only complex number of modulus 1 in the spectrum 

can be the point {1}. This implies that           . By the Katznelson-Tzafriri theorem, we will have   

       
    , and hence       

          Therefore,  

          
 
                   

 
     
   

   

  

and for    , 

                

   

       
 

      
   

 
      

   

 

        
 

Therefore, T satisfies (1) also with    . By induction, T satisfies (2). Obviously,             . 

         Already shown, see Theorem 2.1 in this chapter. 

         For    , this is shown (see Theorem 2.1 in this chapter). For the general case, we have 
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Figure 9. (Orientation: positive). 

We know that            , where    is a Stolz domain with         
 

     
, and that         

 
     

     
 for             We integrate directly on the boundary of the spectrum in order to simplify the 

calculations that follow; to be mathematically correct, however, one would have to use a perturbation 

   of           if she\he wants to use integration on the boundary of the spectrum of  , and then 

pass to limit as    . This approach is used in chapter III (see Theorem 3.3, but the proof of this 

theorem is considerably shorter). However, this shortcut does not affect the final result, given that     is 

also Tadmor-Ritt with constant       
 

   
    , and so passing to the limit would occasion no 

surprises. We will have: 

 

 

 

1 0 

 
γ2 

γ1 
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Now, 

       
 

  
                      

   

 
    

 
  

  

  

  

   

where                      ,    is the union of the two segments                

      (see Figure 9). For   , we have                      , and hence 

    

 
                 

  

 
      

 
                       

                                                                                     
 

    
 

    

 

 

 

      
 

                     
   

 
  
        

      
 

since                  
 

    
 

    

   and    
 

    
        

 

      
 
 
   

 

      
. 

For   , we have 
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since                        
 
            

 
   for         . Hence, taking         

and using        , we get 

    

 
                 

  

 
     

        
      

 
        

       

 

 

                                                   
           

 
    

 
       

       

 

 

                                          
           

 
    

 
       

 

 

 

                                                
           

 
 
 

 
 
 

          

 

 

 

                                                                                        
                  

 

 

  
 

                                                                                       
                  

 

 

      
  

 

Finally,                    , where 

                
   

 
 
 

 
           

 
   

  

 As one can see from the previous theorems, there is a relation between the constant appearing 

in the resolvent condition and the constant that bounds the powers of the operators. The sharpest 

estimate known in the literature is given in a paper by Th. Ransford and O. El-Fallah [10], where the 
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bound for the powers of the operators is C2 (C being the constant from the resolvent condition). Next, 

we present the proof which obtains this result. 

 The theorem, of which the desired result is an immediate corollary is the following: 

 Proposition 2.3 (El-Fallah, Ransford [10]). Let X be a complex Banach space and let T be a 

bounded linear operator on X. Suppose that T satisfies: 

 

                                                       (2.2) 

 

where          
  

  is a function holomorphic on the open unit disk. If p is a polynomial of degree n, 

then  

 

                    
 

   

 

  

 

 

Proof. First, notice that in the condition (2.2), we have   
 

 
     Given that the condition is valid for 

complex numbers inside the open unit disk, we must assume that the resolvent function is defined 

outside the closed unit disk. This is a method for moving inside the unit disk an investigation that usually 

takes place on its complement. 

 Let 0 < r < 1. Using the Riesz-Dunford functional calculus and performing an integration by parts, we 

have  
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We make the substitution   
 

 
 and obtain 

 

       
 

   
   

 

 
            

     

 

 

Let g be a holomorphic function, in the open unit disk, to be chosen later. By Cauchy's theorem, 

 

               

     

   

 

and hence 

 

       
 

   
    

 

 
                  

     

 

 

Using (2.2), we obtain 

 

        
 

  
                         

     

  

 

We write          
  

    and           
    

   . Then  
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for some f2 holomorphic on the unit disk. We choose now       

 

     
             

     
  

 

By the way it is defined, g is holomorphic on the unit disk, and 

 

                              
   

 

Substituting this into the estimate for         and letting    , we deduce  

 

        
 

  
                

     

     

             
 

   

   

  

 

This completes the proof. 

  

Theorem 2.4 (El-Fallah, Ransford [10]). We have the following sharpest estimate for a Tadmor-Ritt 

operator with constant C: 

          



72 
 

Proof. The desired result is obtained from putting      
 

   
  and      

  

 
  in the result from the 

previous theorem. 

  

                 Before we proceed to the following section, we would like to make a historical note. The 

Tadmor-Ritt condition was initially two conditions. The first one, the Ritt condition stated that  

 

                

                                                                                      

 

                 Later, Tadmor proposed the following condition: 

 

               

            
 

     
                                                                                    

 

The next lemma shows that the two conditions are equivalent, which guarantees that the phrase 

"Tadmor-Ritt condition" is correct.  

 

 Lemma 2.5 (Borovykh, Drissi, Spijker [3]). There exist constants M and      such that the Ritt 

condition holds, if and only if, there is an L such that the Tadmor condition is valid. 

 

Proof. We will use the following statement, which is based on the properties of the resolvent set and 

resolvent function (see the Introduction): 
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The function        is analytic on     . Furthermore, if         and                  , then 

also        and          
        

   
  

  1. Assume (2.3). Since the function                    is continuous on     , and        for 

      (from the fact that the resolvent function is analytic plus a limit calculation) there is a finite 

constant K such that  

 

       for all      with                 

 

Condition (2.3) gives us the bound M for      with              , so we obtain (2.4) with L = 

max{K, M}. 

2. For the second part, we use the statement at the beginning of the proof, in which one immediately 

recognizes  the standard procedure for extending the resovent set and resolvent function inequalities. 

So, assume that (2.4) is true, and let   be given with      ,    . Choosing  , with      , sufficiently 

close to  , we have, according to the statement at the beginning of the proof, that 

 

                   
 

     
    

 

It follows that         with                       We take the limit    , and obtain that   

               

Thus, we have (2.3) with M = L and any      
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2. Similar constraints                  

 

 As mentioned before, in their seminal paper [10], El-Fallah and Ransford work with a condition 

that subsumes the Kreiss and Tadmor-Ritt conditions. Their condition takes the following form: 

 

                                                                   
 

         
                                                                

where E is a compact subset of the unit circle T. To obtain an upper bound for powers of operators on 

complex Banach spaces, they use the following function: 

 

      
 

 
   

      

 

Now, a short presentation of notation is in order. First,    stands for the   - neighborhood of the set E 

on T: 

 

                         

 

|E| is the Lebesgue measure of the set E; we will also use #E, which stands for the cardinal of E. We have 

the following immediate relations: 

 

               and     
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El-Fallah and Ransford also introduce the following auxiliary functions. First, it must be mentioned that, 

given a compact E, its complement T\E is composed of a at most countable set of disjoint open arcs   . 

Now, we define 

                    

                        

 

We have the following result: 

 

   
  
                            

 

 and so 

 

                                                                    
 

 
   

 

 
     

 

 
                                                         

 

  We have the following result: 

 

Theorem 2.6 (El-Fallah, Ransford [10]). Let X be a complex Banach space, and let T be a bounded linear 

operator on X. Suppose that T satisfies (2.5) for some compact set     and some constant C. Then 
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Proof. The outline of the proof is the following: we use the Riesz-Dunford functional calculus, we 

integrate by parts and then we use the resovent condition to estimate the resulting integral by a 

functional expression whose minimum value we then try to determine.     

We need the following lemma: 

 Lemma 2.7 (El-Fallah, Ransford [10]). Let E be a compact subset of T, let I be an arc of T such 

that       and let    . Then, 

 

 
    

           
 

 
  

    
  

(a complete proof can be found in the reference, p. 140). 

If    , the result is obvious. Let    , and    . By the Riesz-Dunford functional calculus and 

integration by parts, we have 

 

     
 

   
               

     

 
 

   
 

  

 
          

     

  

 

As T satisfies (2.5), it follows that 

 

       
 

  
 

    

 

  

          
    

     

  

 

We make the substitution    
   and obtain  
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We estimate the integral by breaking it into two parts; to this result, take    , and let          be 

the components of T\E such that         Then  

 

 
    

           
 

   
    

           
  

 

   

  
    

           
     

 
 

 

 

 
   

    
 
       

 
 

      
  

 

For the integrals over the    we have used lemma 2.7 and for the integral over the rest of T the estimate 

                   . In terms of the functions NE and LE, this inequality becomes 

 

 
    

           
 

 
       

    
 

     

      
  

 

As a consequence, we arrive at the following estimate for       :  
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This inequality is valid for all     and all    . Since we are looking for a best bound, we choose R so 

as to minimize  
   

       ,  

namely   
        

     
 
  

 . With this choice, 
     

         . Hence, 

 

       
  

 

     
   
 

      
   
 

       
 

 
        

 

Taking   
 

 
  and using (2.6), we obtain 

 

       
  

 

     
   
 

      
   
 

       

 

The function  

 

  
     

   
 

      
   
 

 

 

is increasing for     and tends to e as    , so it is bounded above by e. Thus, 
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This completes the proof. 

  

 

 In closing this first part, we will mention a few other conditions that are present in the 

literature. Borovykh-Drissi-Spijker [3] mention the following two conditions 

 

             

                                                                         
 

     
                                                               

 

              

                                                                          
 

       
                                                           

For these conditions,    is the set 

                                 

 

where   is a constant  satisfying  

     
   

 

and               (see Figure 10). 
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(a)  

(b)  

Figure 10. The set     (a)   
 

 
  (b)   
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Borovykh-Drissi-Spijker [3] also prove a theorem that connects these two conditions with the Kreiss and 

Tadmor-Ritt conditions.  

Theorem 2.8 (Borovykh, Drissi, Spijker [3]). (a) For     
 

 
  condition (2.7) implies (2.8). 

(b) For     
 

 
  condition (2.8) implies (2.4) with     , where   

   

       
  and 

           
 

 
     

(c) condition (2.4) implies (2.7) with   
 

  
     . 

 

We will sketch here the proof of (b). 

Taking   in the given interval and a complex   with      ,                . The proof starts from 

the following fact: 

 

        
    

   
            , for      

  . 

 

For       
       

   
, we have  

 

                          (2.9) 

 

The function f  attains its maximum value at 
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We choose               
     , and with this value we will have in (2.9) 

 

        
     

 
,   where   

   

       
  

 

This completes the proof of point (b). 

(a complete proof can be found in the reference, pp. 428-430). 

  

 Finally, one has to take into account the Yosida approximation of a bounded operator and the 

related theorem regarding power boundedness. 

The Yosida approximation of a bounded operator T is defined in the following way: 

                 

 

The Yosida approximation is analytic in     , and we have 

                   

        
    

  

 

   

  

           
   

       
                

 

Theorem 2.9 (Nevanlinna [25]). Let T be a bounded operator and Y( ,    its Yosida approximation. Then 

the following are equivalent: 
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(2.10)          for k=1,2,.. 

 

(2.11)           
 

   
 

   
 
   for k=1,2,...  and        

 

Proof.  Assuming (2.10), the spectral radius is    and the series representation for the Yosida 

approximation holds in the complement of the closed unit disk. By the binomial formula we have again, 

in the same set 

 

                  
 
             

 
     

 

      
     

 

     
 
 
 
 

 

                                          
     

 
 
  

  

 

   

        
  
 
  

   

  
 

 

   

   

 

Since       
  
 
   ,  we obtain using (2.10) 

 

                  
  
 
      

 

   

 
 

   
 
   
 
 
  

 

so (2.11) holds. 

For the reverse direction, we observe that, by the third formula related to the Yosida approximation 

(just before the theorem), for any fixed k, 
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This, together with (2.11) implies (2.10). 
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85 
 

Chapter III 

 

1. Cauchy-Stieltjes integrals and their multipliers 

 As a way of concluding the topic discussed in this thesis, we will present a functional calculus for 

the Tadmor-Ritt operators. This will constitute a good synthesis of the material discussed so far - 

namely, the classical results for Tadmor-Ritt operators and the idea of "functional calculus". 

 In this, we will follow the construction of P. Vitse, as presented in two papers [31] and[32]. The 

starting point is the space             of all functions holomorphic on        , continuous on     

and vanishing at  , endowed with the supremum norm. The two following remarks need to be 

mentioned: 

             is a closed subspace of     , the space of continuous functions on the unit circle; 

                      
 

   
        In other words,             is spanned by the rational 

functions on the unit circle with poles in the open unit disk. 

The next structure used is the dual space of            , which is  

            
                  

 , 

 

where      is the space of complex Borel measures  on T, and            
  is the set of measures 

orthogonal to            : 

           
                                          . 

The duality used is integration on the unit circle: 
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This fact, combined with the previous remark that rational functions on the circle with poles in the unit 

disk generate            , gives us the following description of            
 : 

           
            

     

   
 

                   

We define, for every       , a Cauchy-Stieltjes integral    (CSI) by 

       
     

   
 

        

We have the following fact: For every function in     representable in this form, there exists a unique 

measure which allows this representation. The reason for this is that a measure   satisfying  

 
     

   
 

          

must annihilate the trigonometric polynomials, so it can only be the null measure. Therefore, the 

mapping      is injective. 

Example.      
 

   
         , with       because 

 

   
  

      

   
 

  

Next, we must bring in a new concept, namely that of Hardy class. Hardy spaces in the complex plane 

are usually defined on the unit disk or in the upper half plane. There is, however, a workable definition 

for arbitrary complex domains as well. We have: 

Definition. Let        a holomorphic function on the domain   is in       if the subharmonic 

function         has a harmonic majorant in    that is, there is a harmonic function      with 

                  

The function f is in       if it is both holomorphic in   and bounded there. 
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                 One usually works on such spaces with regular exhaustions      of the domain  . We define 

this concept in the following way: 

Definition. Let   be a domain. A regular exhaustion  of   is a sequence      of subdomains of   

satisfying 

                                        (1) 

   
 
                                                  (2) 

each component of     is nontrivial   (3)  

For C\cl(D), one such regular exhaustion is given by the annuli 

       
 

 
                              

Working with general domains   proves more difficult, and yet many of the facts proven in the disk 

carry over to the general case. One such fact that is of interest to us in this context is the following: 

       is the set of functions f holomorphic in   and representable by a Cauchy-Stieltjes 

integral which vanishes in the complement of  . 

This fact allows us to identify            
  with              

Next, we bring attention to the following fact: 

 Every Cauchy-Stieltjes integral defines two functions: one holomorphic in D, the other 

holomorphic in C\cl(D) (see Duren [9], p. 39; the same is true for a Cauchy integral, with   

integrable on the unit circle). 

          Given the facts mentioned so far, what this all adds up to is that we can identify the dual of 

            with the space of holomorphic functions on the unit disk that are representable as Cauchy-

Stieltjes integrals. That is, 

           
                                        . 

On this space, we have the quotient norm, obtained from the total variation norm for measures: 
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As Vitse does, we can take into consideration two special cases: 

        . In this case, f can be represented as a Cauchy integral on the unit circle, and so, we 

will have 

           
 

   
    

    
  
 

  

     , with   a singular measure with respect to the arclength. 

The reasoning that will guide us in this case is based on the following: We remark that, for a 

measure   to belong to            
 , it has to annihilate all functions of the form 

 

  
   

    (these are holomorphic on C\cl(D), continuous on C\D, and vanish at  ). Now, what this 

means is that such a measure has the property that 

                

where 

      
 

  
           

  

 

  

At this point comes into play the F. and M. Riesz theorem, which says that such a measure (one 

can call such a measure analytic, although usually one defines an analytic measure to be one for 

which the negative Fourier coefficients          positive, vanish; see Masreghi [21], pp. 116-

119, also Duren [9]; this is because one usually works just on the disk, not on its complement; 

but the Riesz Brothers theorem is valid for our types of measures as well; what happens when 

one works on the complement is that one gets the "conjugate" results of those on the disk, so 

to speak ) is absolutely continuous with respect to Lebesgue measure. 
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So, given all this, we can say that for such a measure there exists a function               

which vanishes at   and whose values on the unit circle make it an       function, such that 

        (m is Lebesgue measure) 

So we can, in fact, characterize            
  by means of such a function    We have the 

following Proposition: 

               Proposition 3.1. Let    denote the Cauchy-Stieltjes integral associated with       , and   

                 

               the set of all measures which represent the Cauchy-Stieltjes integral f. 

               The following hold: 

           (1)      iff       , for a   as above. 

                                      (2) For               , for   as above. 

                                     (3) If       , then        

               (see Cima, Matheson and Ross The Cauchy Transform,[7] p. 42 for something similar). 

 So, we will have, in fact, the following (see Bourdon and Cima [5], p. 468): 

            

where     is the set of all Cauchy-Stieltjes integrals with measure absolutely continuous with 

respect to the Lebesgue measure, and     is the set of all Cauchy-Stieltjes integrals with 

measure singular with respect to the Lebesgue measure. This will yield, of course, that  

                  

in our case (  is singular). We will also have, as another consequence of the above 

decomposition, that 

             
            

           

where         is the Lebesgue decomposition of the measure    



90 
 

The duality between        and             will be given, of course, by integration with respect to 

the measure of   : 

                  

 

  

For       
 

           and    
  

                   , the duality will take the form (if one of 

the two series converges uniformly on T) 

           
   

  

Indeed, if g is uniformly convergent on T, 

      
 

   
               

 

   
     

 

    
  

     

      
   

  

 

There are other equivalent forms of obtaining the above duality. One starts with the duality       

     via             
 

 where    is the conjugate measure of                       We will have 

     
  

    
  

   
    

  
    

         

with the duality 

                       

   

                       

Now, the crucial step in this line of reasoning is the identification of   
  with   

     (this is the space 

conjugate to      ). This is equivalent to the following remark (see Cima,Matheson, Ross [7], p. 42): 

 If     
                 then  
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So, basically, this says that the space of Cauchy-Stieltjes integrals can be factorized to the space of 

functions     such that         and   vanishes at zero. This will give that 

     iff            for some     
     

with the notations as in Proposition 3.1. 

The reasoning is parallel to what I have said about factorizing CSI(D) with respect to          so I will 

not repeat it here. 

The next result is used in the proof of the following lemma: 

 If             , then 

 

   
 
    

   
 
      

   
         

Also,  

   
 

   
   

 

   
 
    

   
 

        

for every               with         

This follows because 

   
 

   
          

 

   
  

 

   
 
         

   
      

 

 

                                                              
 

   
 
         

   
      

 

 
 

   
 
    

   
      

 

 

 

given that  
    

    
     by Cauchy's theorem. 

We have the lemma: 

Lemma 3.2 (Vitse [31]). Let T be Tadmor-Ritt with constant C,                             . 

Then 
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where           
                

 
        Therefore, 

             
 

   
 
      

  

Proof. The resolvent function R(z,T) is holomorphic on C\D, so we will have 

          
 

   
                  

 

 
 

   
 
     

   
      

 

  
  

   
    

(from the remark made just before the lemma). 

We now write                       and we obtain the equality from the statement. Next, we 

use the Tadmor-Ritt condition for     (we know that       , therefore the spectrum of the 

operator lies entirely in the open disk D) 

                          
      

   
 
      

          

so 

                     
      

   
 
      

  

                                  
    

   
 
      

  
      

   
 
      

  

                                                                        
 

   
 
      

  

 

The last equality comes from the previously mentioned decomposition of   , which has as a 

consequence the fact that 
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and the remark that the measure corresponding to 
    

   
 is singular with respect to Lebesgue measure (it 

is in fact the    measure), and the measure corresponding to 
         

   
 is absolutely continuous with 

respect to Lebesgue measure. 

  

Theorem 3.3 (Vitse [31]). Let T be a Tadmor-Ritt operator with constant C,               Then 

             
 

   
         

Proof. The proof consists in applying the preceding lemma to the operator           We have 

          
 

 
   

 

 
     

 

     
 

 

     

 

   
 

for every z with |z| > 1. As a consequence, the operator      satisfies the Tadmor-Ritt condition with 

constant  
 

   
. Also, by the continuity of the Riesz-Dunford functional calculus, we have  

   
   

                

Therefore, 

          
 

   
    

 

   
 
      

 

and passing to the limit as     gives us the result. 

See also the comments made with regard to this procedure in the proof of Theorem 2.2. 

  

                Next, we use the space of multipliers of         

                                      

with the multiplier norm 

                                        

which makes it a Banach algebra. We have therefore: 

Corollary 3.4 (Vitse [31]). If T is a Tadmor-Ritt operator with constant C, then 
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Given all this, we have the following result related to the growth of polynomials of Tadmor-Ritt 

operators: 

Theorem 3.5 (Vitse [31]). For T a Tadmor-Ritt Banach space operator with constant C, we have 

                           

where 

                                     

The proof is quite straightforward (see the reference, pp. 52-53; the proof uses the Riesz projection). 

Notice that 
      

        
  is not an algebra, it is just a Banach space on D. So, we do not talk in this 

case of a functional calculus in the sense of a homomorphism between two algebras. Now is the 

moment to recall the remark made by Nikolski that we have quoted in Chapter I. According to that 

quote, what we sometimes need is just a coherent way to talk about f(T) for some functions f, so that 

we may evaluate the norms of these operators relative to the norms of the functions f. So, one can see 

that, after all, the notion of a functional calculus is not a rigid one, rather it is relative to the objectives 

that the mathematician has. 

The space of multipliers, on the other hand, is, as we have seen, a Banach algebra, and the 

correspondence between it and the algebra of bounded operators is already given in the formulation of 

the Riesz-Dunford calculus. In fact, as one immediately notices, both calculi use the Cauchy-integral 

formulation from the Riesz-Dunford calculus, given that in both cases we deal with holomorphic 

functions on the spectrum of the operator. So, basically, in both cases, we start with the holomorphic 

functions and the Riesz-Dunford calculus and then restricts the class of functions so that one may use 

better norms in estimating the operators.     
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2. Measures as tools for determining the growth of powers of operators 

 The facts presented so far involve measures on the unit circle; one can, however, work on a 

different set: we have seen that the spectrum of a Tadmor-Ritt operator lies in a Stolz domain, and so 

one can work with measures on the boundary of such a domain. The main lesson to be learned here is 

that the set relevant to the mathematical facts presented is the spectrum, and especially its boundary. 

Vitse does that (that is, work on the boundary of the Stolz domain) in a different  paper. The unit disk is, 

however, more generally relevant for the growth of powers of operators, in that if the spectrum of an 

operator goes beyond the unit circle (that is, outside the unit disk), its powers cannot be bounded. So, of 

course, the question is, what happens when part of the spectrum lies on the unit circle? That is, what 

properties the intersection of the spectrum with the unit circle must have so that the powers of the 

operators remain bounded? One interesting result that we have already mentioned (without proof) is 

the Katznelson-Tzafriri theorem which says that a contraction satisfies                   if and 

only if the peripheral spectrum       of T consists of at most the point     (remember, this is 

precisely       ). We will close this section with two theorems related to the same question, namely 

how is the growth of the powers of an operator is influenced by the intersection of its spectrum with the 

unit circle. 

For this investigation, we have chosen operators which exhibit what we may call an intermediary 

behaviour when it comes to the growth of their powers namely, partially power bounded operators. In 

the following,       denotes the point spectrum of T (see Introduction). 

             We start with the following lemma: 

Lemma 3.6 (Ransford [28]). Let T be an operator on a Banach space X, with          , and let 

      be unit eigenvectors corresponding to     respectively. Then 
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Proof. We fix     and we consider          ; first, we have 

                    

                                                                                

                                                                        

Second, we have 

                      

By the spectral theorem, we have that 

          

and so we obtain the desired result. 

  

                    This lemma will set the stage for the investigation of the intersection of the unit circle with 

the point spectrum. The tools used in this investigation are two measures, namely the Rajchman 

measure and the Hausdorff measure (through the related notion of Hausdorff dimension). So we must 

first define these notions. 

Definition. A measure        which is a pseudofunction (i.e.         as        is called a 

Rajchman measure. 

Definition. A set     is called a set of extended uniqueness  if for every positive Rajchman measure   

we have         Otherwise,   is called a set of restricted multiplicity.  

Definition.  Let         be a defining function (an increasing function such that            

    Given    , we define 

                     

 

      
 

         

where the infimum is taken over all countable covers of   by arcs    of length at most    We define the 

h-Hausdorff measure of E by 
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If          we write    for     Given this, the Hausdorff dimension of E is defined as 

                        

Definition. A subset E of T is analytic if there exists a continuous surjection from a complete separable 

metric space (a Polish space) onto E. It is well known that every Borel subset of T is analytic, and every 

analytic subset of T is universally measurable, that is, it is measurable for every probability measure on 

T. 

Lemma 3.7 (Ransford [28]). Let X be a separable Banach space and T an operator on X. Then         

is an analytic subset of T, and there exists a universally measurable function       such that  

                          and          
              

              
   

(a complete proof can be found in the reference, p. 98). 

We have the lemma: 

Lemma 3.8 (Ransford [28]). Let X be a separable Banach space and let T be an operator on X ,and   a 

probability measure on T such that               Then, given    , there exists a Borel probability 

measure   on T such that     and  

                              

Proof. By the preceding lemma 3.6, there exists a universally measurable function       satisfying 

(3.1). Combining this result with Lemma , we have that 

                                                                    

X is separable, and so its unit sphere can be covered by a countable set of balls    of diameter     (we 

assume that none of these balls contains 0, reducing   otherwise, if necessary). The sets         cover 

        so at least one of them satisfies            . With this j, we define a new Borel measure   

on T by 
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Then   is a probability measure concentrated on          it is obvious that   is absolutely continuous 

with respect to  . Also, by (3.2), we have 

                              
 

 

 

 
                 

On the other hand, for each integer  , we have 

                                                                          

   

                                                                    

Combining these two inequalities, we get the desired result. 

  

Lemma 3.9 (Kechris, Louveau [15]). Let   be a Rajchman measure and      Then   is also a Rajchman 

measure. In particular, if   is a Rajchman measure, so is       

Proof.  We have                   The trigonometric polynomials are dense in          so for each 

    we can find          
    

     such that                 Consider the measure 

         Then 

       
 

  
            

  

 

           
   

 

    

     

  

 

           

 

    

            

so    is a Rajchman measure. We have 

                              

therefore                  and do         as         
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Theorem 3.10 (Ransford [28]).  Let X be a separable Banach space, and let T be an operator on X such 

that        as      Then the set         is a set of extended uniqueness. 

Proof. By assumption, there exists a constant M and a strictly increasing sequence of positive integers 

        such that                

Assume, for a contradiction, that         is not a set of extended uniqueness. This means that there 

exists a positive Rajchman measure   on T such that               We may suppose that   is a 

probability measure. By Lemma 3.8, with    
     , there exists a probability measure     such 

that 

        
 
 
 

 
          

By Lemma 3.9,   is also a Rajchman measure, that is         as        We have reached the desired 

contradiction, which shows that our initial assumption is false. Therefore,         is a set of extended 

uniqueness. 

  

We have the following immediate corollary, given by the fact that Lebesgue measure is a Rajchman 

measure: 

Corollary 3.11 (Ransford [28]). Assume T is an operator on a separable Banach space X and         

has positive Lebesgue measure. Then        as       

Now we will focus on the other concept, that of Hausdorff dimension (measure). We start with two 

lemmas. 

Lemma 3.12 (Ransford, Roginskaya [29]). Let X be a separable Banach space and T an operator on X. 

Suppose that         
       where    is an increasing sequence of positive integers. Then, for 

   , there exists a countable subset         of T such that  
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where 

                  

   

  

(a complete proof can be found in the reference, pp. 434-435). 

Lemma 3.13 (Ransford, Roginskaya [29]).  Let         be an increasing sequence of positive integers, 

and let          For each      define  

                   

 

   

  

Then    is composed of    disjoint arcs, where each arc is of length at most       and  

          
  

    
 

 

   

  

(a complete proof can be found in the reference, pp. 435-436_. 

These results are interesting in themselves (as it usually happens when one works on the unit circle), but 

their proofs are not very difficult, so they will not be given here. They serve to prove the following 

theorem: 

Theorem 3.14 (Ransford, Roginskaya [29]).  Let T be an operator on a separable Banach space X. 

Suppose that         
       where         is an increasing sequence of positive integers such that  

                                             
    

  
                                                   

 
      

Then         is of Hausdorff dimension at most      
    

           

Proof. Given the definition of Hausdorff dimension, it suffices to prove that               for all 
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We fix such an     
    

      and we choose          such that     
     

    
 and         

such that                 We will have that          
    

       and so there exists    such 

that 
    

       for all       For     ,    (defined as in Lemma 3.13) is a union of    disjoint 

arcs of length at most        where  

          
  

    
 

 

   

        
  

    
 

  

   

          
  

    
 

 

      

     
 
         

where C is a constant independent of k (given that 
  

    

 

  
   for all     ). Writing           we 

have 

                   
 
      

 
 
  

  
 
 

                  
 

  
      

 
       

 

  

With our notation 

             
 
   

we will have 

          
 

  
      

 
        

 

  
            

As a consequence, we have that          From Lemma 3.12, we deduce that                 

  

It is important to notice that the conditions mentioned in the two main theorems of this section 

(Theorems 3.10 and 3.14) are necessary conditions; so given that they hold for partially power bounded 

operators, they will automatically hold for power bounded operators as well. The obvious drawback is 

that they are not sufficient conditions; still, they are mathematically relevant. One has to see this section 

as essentially an investigation into the relation between the growth of operators and the "size" of the 

set              
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References. 

The two main sources of section 1 in this chapter are Vitse [31], [32]; I have tried, however, to highlight 

every step in her argument (she does not give too many explanations). For Cauchy-Stieltjes integrals, see 

Bourdon and Cima [5], Duren [9], pp. 39-41. For Hardy spaces on general domains, see Fisher [12]. A 

Cauchy-Stieltjes integral is also known as the Cauchy transform of a measure; see the book by Cima, 

Matheson and Ross [7]. 

 Maybe the most important mathematical theorem present in this chapter is the Theorem of F. 

and M. Riesz; for this, see Duren [9], ch. 3, Masreghi [21], ch. 5. For some detailed proof, see Koosis [16], 

ch. II; see also ch. 7 for some interesting results related to duality to Hp spaces. For generalizations, see 

Barbey and Konig [2].  

 For section 2, see mainly Ransford [28] and Ransford and Roginskaya [29]; for the proofs of 

lemma 3.12, lemma 3.13, see [29]. The definition of Hausdorff dimension is taken from El-Fallah, 

Ransford [10]. Lemma 3.9 is taken from Kechris and Louveau [15]; one should consult this source for 

many interesting facts related to Rajchman measures. 
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Conclusion 

                                        

 Functional calculus is a relatively new area of mathematical interest and discoveries. Its 

applications span a vast number of fields, from quantum mechanics to numerical analysis. But we must 

not forget that we are not dealing with a rigid notion, but with one that is relative to the various 

interests that drive the mathematicians. This is a point that I have made in the thesis and it is one that 

must be emphasized. One has definite intuitions, or expectations that the calculus must fulfill, and these 

drive the building process of the calculus. In Markus Haase's apt choice of words, a functional calculus 

must be "reasonable". "Here 'reasonable' means at least that f(A) should have the expected meaning if 

one expects something." (Haase [13], p. 2). He lists two such expectations: 

(1) If         then                    

(2) If A generates a semigroup T, then               

A similar idea was found in Nikolski's statement quoted in chapter I. 

 The first chapter is a review of literature regarding the notion of "functional calculus". The focus 

has been not so much on the proofs and theorems (as these can be found in the books listed in the 

Bibliography), but on making clear the notions and the procedures involved in building a functional 

calculus. Even though we are not dealing with a fixed and rigid notion, a pattern must be discerned 

beyond the variety of definitions and examples. One must notice the central importance of the 

spectrum, as the set on which the functions used must be defined. As the spectrum of a linear operator 

lies in the complex plane, naturally mathematical facts related to complex analysis will prove crucial in 

building the calculus. The connection between the class of functions and the class of operators is 

achieved via a homomorphism, that must establish a significant correspondence between the two 
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classes. This homomorphism, in turn, can be defined in various ways; we have seen that integral 

representations, like Cauchy formulas or Fourier transforms can be used for this purpose.  

 Chapter II sees the Riesz-Dunford functional calculus at work. The main goal of the chapter is to 

provide a thorough analysis of Tadmor-Ritt operators. This is achieved mainly in Theorem 2.1, whose 

statement consists in the equivalence of three mathematical facts. Although the statement of the 

Theorem is taken from Malinen, Nevanlinna, Yuan [20], its proof is not given there. As a consequence, I 

have pieced together the various parts of the proof and in doing so, I adapted proofs from various 

sources listed in the Bibliography. Making explicit every step in the proof is a contribution of this thesis.  

 The main aspect that needs to be noticed with regard to the Tadmor-Ritt condition is that it 

imposes a condition on the growth of the resolvent function. The same holds for all the other resolvent 

conditions encountered in the chapter. As we know from the Introduction, the resolvent function is 

greater than or equal to the inverse of the distance to the spectrum. As a consequence, as this distance 

tends to zero, the resolvent will grow to infinity. In order to ensure power boundedness through 

resovent conditions, we need to control the growth. And the way to do this is by requiring that the 

product between the resolvent function and the distance to the spectrum (or a relevant part of the 

spectrum) is bounded in norm. 

 I have mentioned above that, given the fact that the spectrum of a linear operator lies in the 

complex plane, one will have to use complex analysis in working with this set and the functions defined 

on it. This aspect came to the fore in the third chapter; this chapter investigated the construction by 

Pascale Vitse of a functional calculus for Tadmor-Ritt operators. As such, Chapter III provides a synthesis 

of the two previous chapters that introduced the notion of "functional calculus" (Chapter I) and gave a 

mathematical characterization of Tadmor-Ritt operators (Chapter II). We used here notions related to 

advanced complex analysis, such as Hardy spaces, measures on the unit circle, or Cauchy-Stieltjes 
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integrals. These latter functions and their multipliers are used by Vitse in building a functional calculus 

for Tadmor-Ritt operators. This calculus, however, does not involve a new type of procedure; it is based 

on the Riesz-Dunford calculus which uses integration on a Jordan curve that surrounds the spectrum. 

What is significant is the selection of a type of functions with norms adequate for finding bounds for 

polynomials of Tadmor-Ritt operators. Another way to put this is to draw attention to the fact that one 

still uses holomorphic functions, but holomorphic functions that can be characterized in a certain way 

(as a Cauchy-Stieltjes integral or a multiplier of such an integral), and this characterization provides 

adequate norms for the purposes that are pursued. The contribution of the thesis is that it clearly 

defines the notions and makes explicit the steps in Vitse's construction.  

 Chapter III ended with an investigation of partially power boundedness; this intermediary 

phenomenon was presented as a way of shedding light on the connection between power boundedness 

and the (peripheral) spectrum. This goal was achieved by presenting two necessary conditions (in terms 

of Rajchman measure and Hausdorff dimension on the unit circle) for partially power boundedness. 
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