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Abstract 

This thesis investigates the influence of predator movements upon habitat 

selection and foraging success. It deals with two very distinct datasets one from a marine 

system, the snow crab (Chionoecetes opilio) fishery, and the second from a freshwater 

system, an experimental rainbow trout (Oncorhynchus mykiss) aquaculture operation. 

Deriving a standardized measure of catch from logbook data is important because catch 

per unit effort (CPUE) is used in fisheries analysis to estimate abundance, but it some 

cases CPUE is a biased estimate. For the snow crab fishery, a relative abundance measure 

was developed using fisher movements and logbook data that reflected commercially 

available biomass and produced an improved relative abundance estimate. Results from 

the aquaculture dataset indicate that escaped farmed rainbow trout continue to use the 

cage site when waste feed is available, while native lake trout do not interact with the 

cage. Once access to waste feed is removed, both lake trout and escaped rainbow trout do 

not use the cage site. This thesis uses methods to identify patterns and behaviours using 

movement tracks to increase our understanding of predator habitat usage. 
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My MSc thesis consists of two primary research projects. The first project 

investigates vessel movement in the snow crab (Chionoecetes opilio) fishery in the Gulf 

of St. Lawrence and the second project examines escaped rainbow trout (Oncorhynchus 

mykiss) movement from a commercial aquaculture operation at the Experimental Lakes 

Area (ELA). The major theme of my thesis is to quantify and interpret movement 

patterns in two distinct data sets, one from a marine and the other from a freshwater 

environment.  

 Movement, or sometimes lack thereof, can influence population dynamics 

through various processes such as foraging, breeding and habitat selection. With the 

exception of sessile organisms, movement is a key feature that enables animals to 

survive. The topic of animal movement is covered in many areas such as conservation 

and island biogeography (Quammen 1996), fisheries analysis (Bertrand et al. 2007), 

individual animal tracking (Jonsen et al. 2003) and hidden Markov models to identify 

behaviours of tagged animals (Franke et al. 2004). Typically, due to the availability of 

information, humans can make informed decisions concerning their environment, but 

these decisions are still affected by risks and rewards. Many of the different activities that 

organisms perform can be visually identified, but problems arise when trying to identify 

behaviours when direct observation is not possible. To interpret data from remote 

sensing, quantitative models of animal movement and space utilization must be 

developed. 

Early work on animal movement was concentrated on areas such as net 

displacement (Kareiva and Shigesada 1983), fractal dimensions (Dicke and Burrough 

1988), home range analysis (Anderson 1982) and angular data (Cain 1989). More recent 
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techniques have been developed such as Levy flights (Viswanathan et al. 1999), state 

space models (Jonsen et al. 2003) and memory effects (Gautestad 2011) to improve our 

understanding and analytical abilities in the field of animal movement. Early work was 

restricted because of limits in computing power and available methods, but developments 

of new hardware, software and programming languages (R, MATLAB, Python, etc.) has 

led to the expansion of available methods for researchers.  

Along with the more recent techniques, new methods for tracking animal 

movements have also been developed. Remote sensing technology has increased the 

ability of researchers to record positions of animals in greater detail (Jonsen et al. 2005). 

Satellite tags and acoustic tags have become more pivotal in tracking studies in the last 

decade, with use in studies of both avian and non-avian animals. Tracking animal 

movement paths has been used to characterize the movement paths of many species such 

as leatherback turtles (Dermochelys coriacea) (Hughes et al. 1998), green turtles 

(Chelonia mydas) (Luschi et al. 1996), woodland caribou (Rangifer tarandus) (Franke et 

al. 2004), bluefin tuna (Thunnus thynnus) (Block et al. 1998), Belugas (Delphinapterus 

leucas) (Richard et al. 1998) and whale sharks (Rhincodon typus) (Gifford et al. 2007). 

However satellite tracking is not restricted to animal tracking as the entire Peruvian 

industrial fishing fleet is equipped with a vessel monitoring system (VMS) (Bertrand et 

al. 2005). 

Satellite, ARGOS, archival and harmonic radar tags allow researchers to follow 

marine and terrestrial animals over large distances where previous methods failed. These 

methods however all come with inherent errors which must be corrected before data 

processing (Jonsen et al. 2003). Telemetry technology has great implications for 
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monitoring aquatic organisms in their natural environment. In the early stages, 

biotelemetry positions were recorded manually over time (manual tracking), recent 

advances in telemetry technology allows for automated tracking (Blanchfield et al. 2005). 

Further upgrades in biotelemetry now allows remote sensing of multiple organisms 

simultaneously and removes the burden of time consuming and expensive data collection. 

The availability of high resolution data showing the spatial and temporal 

resolution of foragers gives insights into behaviours across long distances and time 

periods. This kind of data has revealed fine scale information about behaviours such as 

foraging and feeding as well as habitat use, migration and dispersal (Giuggioli and 

Bartumeus 2010). Foraging behavior can be divided into two major states; (1) searching 

and (2) feeding (or collecting). Searching behavior can be classified as long steps and 

linear movements with small, occasional turning angles and fast constant velocity. There 

may be a transition to feeding behavior when prey densities increase and this is 

characterized by short steps, decreased travel rate and increased turning frequency and 

angle (Benichou et al. 2005, Jonsen et al. 2007, Mills et al. 2007). A fishing vessel does 

not feed, but instead has a state classified as effort (fishing), incorporating similar 

behaviours as previously described for feeding.  

The foraging success of fishing vessels is commonly calculated by the size of 

their catch, with higher catch rates associated with increased success. Within the field of 

fisheries analysis, it is important to develop indices that represent the success of fishers. 

Catch per unit effort (CPUE) is one of the most widely used and most important statistics 

in fisheries analysis. This fact is due to the assumption that CPUE is assumed to be 

proportional to abundance (Kimura 1981). Catch rates can not only be used to estimate 
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stock size, but also may give information about reproduction, growth and the size 

structure of the stock (Hilborn and Walters 1992). Unfortunately CPUE does not always 

accurately reflect stock size and it is in these fisheries where the interpretation of CPUE 

must be further developed.  

Forager’s attempt to maximize energy input through a combination of habitat 

selection, avoiding stress, movement and environmental interactions.  These interactions 

include a combination of factors such as temperature, light, predation risk and food 

availability which can display significant spatial variation. Food patch quality varies 

spatially and temporally and thus it may be difficult to locate the optimal food patches. 

When a rich patch is encountered, energy gain should be maximized and therefore 

foraging effort is expected be concentrated on these areas. This assumption does not 

strictly hold true however as patch use is not solely dependent on resource availability, 

there are trade-offs between resource availability and safety (Moenting and Morris 2006). 

For example, minnow movement was found to be restricted in the presence of a predator 

in complex habitats, but in simple habitats minnows formed larger shoal sizes and there 

was no change in movement (Orpwood et al. 2008). Snow crabs may be able to find 

sanctuary in areas that are unfishable (rocky, uneven ground) to vessels, resulting in a 

proportion of the population that cannot be exploited. In this situation, classical CPUE 

would not represent the true abundance of the population. The previous cases may lead to 

predators foraging near boundaries of habitats and thus habitat edges may be very 

important in maximizing energy gain.  

 Habitat selection is incorporated in the concept of an animal’s home range. Home 

range can be defined as the area used by an individual in everyday activities for foraging, 
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mating and caring for young.  A more probabilistic definition is based upon the bivariate 

probability density function which gives the probability of finding an animal at a 

particular location. This is termed as the “utilization distribution”, or UD. This is a useful 

definition because the UD describes the use of space and not the use of resources 

(Anderson 1982). Since the UD only gives information about space use, identifying the 

behaviours will also be important. Behaviours can be inferred from the speed, step 

lengths and turning frequencies and angles of an individual’s movement pathway. Habitat 

use and activity of animals can be identified by investigating a series of positions 

recorded over time. Home ranges can be calculated by the kernel density estimator 

method and this method has shown to be a good estimator of space use and can 

effectively highlight areas of concentrated activity. This method could result in two or 

more unconnected areas for an individual (Worton 1987).  

This master’s thesis will investigate movement patterns in a marine fishery and 

freshwater fish. The first project will examine how vessel movement patterns relate to 

catch rates and using hidden Markov models to create a new standardized abundance 

estimate. The second project will investigate the behaviour of rainbow trout after they 

have escaped from an aquaculture farm during periods of operation and post-operation. 

The first project will show how vessel movement patterns can be used to develop a 

fishery dependent index of abundance in a fixed gear fishery and the second project will 

give insight into rainbow trout behaviour once they disperse from the cage site and no 

longer have access to waste feed. 
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Introduction 

Increasing commercial catches and the demands of growing human populations 

adds new urgency to the development of more accurate and accessible stock assessments. 

An important statistic in fisheries analysis has always been catch per unit effort (CPUE) 

due to the assumption that CPUE is proportional to abundance (Kimura 1981). 

Unfortunately many researchers have found that this is not the case. Harley et al. (2001) 

found that in 70% of the cases examined CPUE was likely to remain high while 

abundance declined. This indicates that while CPUE can be useful measure of abundance, 

new measures must be developed in order to assess populations where traditional CPUE 

does not accurately reflect stock size.  

The broad array of commercial fishing methods can be classified as either mobile 

or fixed gear. Mobile gear fisheries include methods such as purse seining, bottom 

trawling and Danish seining. Their method of fishing involves deploying a net at reduced 

speeds. These speeds vary among fisheries, but for fishers in Galicia (NW Spain) the 

speeds can range from 1.5 to 2.1 knots for pair trawlers or 3.2 to 4.5 knots for single 

trawlers (Vazquez-Rowe et al. 2010), the silver hake (Merluccius bilinearis) fishery on 

the Scotian Shelf displays mean trawling speeds of 3.4 knots (Gillis 1999), while Dutch 

beam trawlers, which typically target groundfish, maintain trawling speeds of 4 to 5 knots 

(Rijnsdorp et al. 2000). Fixed gear fisheries use traps, gillnets, and longlines to catch their 

target species. In a fixed gear fishery vessels typically travel at reduced speed to set their 

gear. They then leave the area and later return to collect the catch after letting the gear 

soak for periods ranging from less than an hour to several days. A recent strategy 

employed by fisheries managers requires the implementation of vessel monitoring 
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systems (VMS). These systems use satellites for positioning and data retrieval. In some 

cases entire fleets have been equipped with VMS which transmit vessel position at 

regular intervals (Vermard et al. 2010, Bertrand et al. 2007). The spatial distribution of 

fishers provides researchers and managers information on the spatial distribution of both 

effort and fish, and allows the detection of vessels encroaching into marine protected 

areas (Peel and Good 2011). Inferring behaviours from movement pathways can be 

challenging because positions are recorded at discrete time intervals and provide no 

information about fishing activities. In a study performed by Bez et al. (2011) looking at 

fishing activity of tuna purse seiners, where the targeted species were yellowfin tuna 

(Thunnus albacares), skipjack (Katsuwonus pelamis), and bigeye tuna (Thunnus obesus), 

VMS records were used to identify activities using speed and turning angles between 

successive positions. A VMS can be a very powerful tool for measuring effort, but the 

detection time associated with a VMS, usually 1-2 hours, can introduce compounding 

factors into the interpretation of effort. Vermard et al. (2010) analyzed VMS records 

collected from pelagic trawlers in the Bay of Biscay and used a hidden Markov model 

(HMM) to infer behavioural state changes when the VMS detection frequency was not 

synchronous with switching instant. Due to the detection frequency of a VMS, records 

are not associated with specific behaviours and thus we must rely on physical factors 

(speed, turning angles) to identify changes in behaviour (Peel and Good 2011).  

The analysis of vessel movements follows that of natural foragers and reflects the 

spatial distribution of target species (Bertrand et al. 2005). Ecologists have long been 

interested in modeling behaviours from movement pathways. New techniques designed 

to interpret animal movements have been developed to study dispersal, foraging, 
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behaviour, and memory (Viswanathan 2010, Giuggioli and Bartumeus 2010). The 

increased use, as well as miniaturization of satellite and acoustic receivers, has led to the 

collection of vast databases of animal movement. The variance in detection time and 

resolution has created complex data structures, biological mechanisms and statistical 

properties (Jonsen et al. 2005). Individual animal movements are indicative of not only 

spatial distribution, but also behavioural responses to the environment (Gurarie et al. 

2009). Similarly, Peel and Good (2011) successfully applied a HMM based on vessel 

movement to classify fishing activities in three coastal trawl fisheries near Queensland, 

Australia.  

The Gulf of St. Lawrence snow crab (Chionoecetes opilio) fishery is one of the 

most economically important species in Eastern Canada. In 2006, 2007 and 2008 the 

value of landings for the Gulf of St. Lawrence region exceeded $71 million, $110 million 

and $92 million respectively. The economic importance of this species has led to 

increased interest in conservation and fishing management strategies (Biron et al. 2008). 

The snow crab fishery has existed since the 1960’s and occurs in several zones, with the 

largest fishery located in zone 12 (Figure 2-1). This fishery opens in early spring and lasts 

about 10-12 weeks. Legal landings are exclusively hard shelled male snow crabs with a 

carapace width of 95 mm or greater (Swain and Wade 2003). 

In this paper, I initially estimate the activities of vessels using HMMs based upon 

VMS records. In a HMM, the states are not directly observable and the classification of a 

finite number of hidden states can be made according to the observed distribution of the 

observations (Patterson et al. 2009). HMMs can be thought of as a generalization of 

mixture models, where each state is not independent, but rather related to each other by a 
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Markov process. Secondly, I will relate the HMM parameter estimates and logbook 

information to develop a fishery dependent measure of abundance. I will investigate 

differences in movement patterns in years with different biomass estimates and use 

logbook information to investigate movement patterns for varying catch rates. Finally I 

will introduce a novel method for estimating abundance in a fishery using a generalized 

linear model (GLM), HMM parameters estimates and logbook information. 

Materials and Methods  

The fishery 

My study focuses on the Gulf of St. Lawrence snow crab fishery (Zone 12, Figure 

2-1). Vessels from ports in New Brunswick, PEI, Quebec and Nova Scotia participate in 

this fishery. Within the fleet there are distinct fish harvesters which are classified as 

Traditional, New Access and First Nations. Traditional fishers, who have a permanent 

allocation within the fishery, are composed of two groups. Traditional midshore fishers 

have a maximum allocation of 150 traps, while traditional inshore fishers from PEI are 

allowed 75 traps. New access and First Nations fishers with quotas up to 50 t are entitled 

to 75 traps while fishers who receive quotas over 50 t are allowed 150 traps (Gillis et al. 

2006; http://www.dfo-mpo.gc.ca/decisions/fm-2012-gp/atl-021-eng.htm, May 4, 2012). 

All vessels within the fishery are fitted with a VMS that records time, position and speed. 

The VMS delivers high resolution data, recording positions at 15 minute intervals 

throughout the season. 

The snow crab fishery is a fixed gear fishery deploying traps by two different 

modes:  initial sets and replacing traps at the same location after removing the catch 

(resets). Initial sets occur when fishers arrive at a new area. In this case vessels travel 
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rather quickly (~4-7 knots) through the water as the traps can be set in the water as soon 

as they are baited. When fishers return to previously set traps they haul each trap onto the 

vessel. After the trap contents are emptied onto the sorting table the captain has two 

options (1) reset the traps in the same location or (2) relocate them in an attempt to 

increase catch rates. During retrieval, vessels travel at slower speeds (~1-4 knots) to 

allow sufficient time for sorting catch and re-baiting of traps. Movement among sites and 

to or from port occurs at higher speeds, with unset traps secured on deck and the catch 

sorted and stowed in the hold, though some final sorting may occur.  

The dataset 

 The data collected for this study spans three fishing seasons from years 2006-

2008. The VMS database includes each registered position (latitude and longitude), a 

unique vessel identifier, a unique trip identification number, landing and the vessels’ 

homeport. A separate logbook database provided records by trip that included catch 

information, number of traps used and the date and time of the beginning (hail out) and 

end (hail in) of the trip. 

Data manipulations  

All data manipulations and subsequent analysis were done using the R statistical 

language (R Development Core Team 2011). To begin, I applied a three step pre-

processing algorithm to filter the raw data. I first matched the date and time when a 

vessel left port and when the ship returned to port using logbook information. Visual 

inspection of these initial trips showed that the hail out and hail in times were insufficient 

to properly define individual trips due to multiple VMS detections while still anchored at 
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port. Therefore, I defined each unique fishing trip by limiting each trip to start and end 

within a 5 kilometer (3 mile) radius of a port. A second filtering step was able to 

successfully identify and remove multiple entries for a vessel docked at port. Turchin 

(1998) classifies trajectories that are sampled at regular time intervals as “steps”, but this 

process artificially breaks a single activity into several observations. Such steps do not 

correspond to unique behavioral events, which are referred to as movement legs. To 

reduce autocorrelation I followed methods developed by Bertrand et al. (2007) to 

transform the steps into moves by choosing a threshold to identify significant changes of 

direction and used 10° as a suitable threshold to identify changes in behavioral events. 

Thus when vessels had turning angles less than 10° between successive steps, these steps 

were combined to form a movement leg. After the pre-processing algorithm the dataset 

included 757, 996 and 1033 unique fishing trips and 32 163, 39 750 and 49 571 data 

points in 2006, 2007 and 2008 respectively.  

The distance travelled during a move was calculated from latitudes and longitudes 

using the haversine formula (Sinnot 1984). Speeds were calculated for each move by 

taking the distance traveled between point A and point B divided by the time difference. 

The methods for calculating bearing and distances are shown in Appendix I. 

Continuous time Markov processes 

 The vessel activities during different movement legs were represented as a 

continuous time Markov model with transitions between all states allowed. A multi-state 

model can be used to describe how an individual changes between k number of states S = 

{1,2,…,k}. Assuming that an individual is able to freely change back and forth between k 
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number of states through continuous time, a k x k transitional intensity matrix (Q matrix) 

is defined as: 

(1) 

 

where     is the instantaneous rate of change from state r to state s. The rows of the Q 

matrix sum to zero, the diagonal entries are defined by       ∑       , and the off-

diagonal entries can be any non-negative number (Saint-Pierre et al. 2003, Jackson 2011).  

Alternatively, the P matrix contains discrete time switching probabilities which 

correspond to the same state transitions as the Q matrix. The P matrix can be calculated 

using the matrix exponential (Spencer and Susko 2005): 

(2) 

 

where   is the base of natural logarithms. The P matrix corresponds to the Q matrix of a 

continuous time Markov model when making predictions at evenly-spaced points in time.  

HMMs also provide other insights into the modeled processes. The time spent in 

each state (sojourn time) in a time-homogenous Markov model is exponentially 

distributed with mean       . Finally, a Pnext matrix can be constructed that defines the 

probability of transition from r to s regardless of time elapsed. The diagonal entries of the 

Pnext matrix are equal to zero. 
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Development of hidden Markov models 

HMMs were developed using the msm package for R (Jackson 2011). The models 

were fit to the snow crab fleet based upon the calculated speed of the movement legs in 

order to identify different behaviours. The distributions used to represent emissions from 

the hidden states within the models were the normal distribution, the Weibull distribution 

and the t-distribution. Other distributions such as uniform and gamma were tried, but the 

models did not converge to solution, nor did they appear to reflect the observed 

distributions well. Modifications to the software were required to support the t-

distribution (see Appendix I). In order to examine the possible speed distributions for 

each hidden state, quantile plots were examined using the car package (Fox and Weisberg 

2011). The number of hidden states was initially inferred by visual inspection and tests 

comparing the fits of alternative HMMs suggested the possibility of either two or three 

underlying states.  Therefore I compared a simple two state HMM (fast and slow speeds) 

to a more complex three state model (fast, intermediate and slow speeds). The mixtools 

package for R (Benaglia et al. 2009) was used to provide initial estimates of the speeds 

for each hypothesized state, assuming normality. The values calculated using the 

mixtools package were used as the initial estimates of the emission distributions in the 

msm package. Using the msm package, I developed this initial two state model with two 

normal distributions and then I applied a two state model with one normal distribution 

and one Weibull distribution. The initial values of the two Weibull parameters, shape and 

scale, were estimated using the lmom package (Hosking 2009), these parameters were 

estimated when the speed distribution predicted from the HMM were non-normal. To 

account for an additional behaviour, a three state model was developed using normal, 
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Weibull, and t distributions. The two state models classified observations into two 

groups, based upon speed (labeled slow and fast), while the three state models classified 

three speed groupings: slow, intermediate and fast. I interpreted slow and intermediate 

speeds with fishing activities, with slow speeds simultaneously associated with retrieving 

and resetting traps, intermediate speeds with initial sets, and fast speeds with movements 

among fishing sites or to and from port (steaming). In the two state model, the slow speed 

classification included both the setting and the retrieving and resetting behaviours. 

Covariates 

 In the application of a HMM to VMS data in the snow crab fishery, the impact of 

CPUE (kg/trap) and year were examined by fitting them as covariates within the HMM 

(Jackson 2011). This allowed me to determine if hidden state transitions varied with local 

fishing success or among the years examined. 

Generalized linear models 

The effect of vessel characteristics and movements on catch per trip was 

examined with generalized linear models (GLMs). There are three components 

incorporated into a GLM; (1) the random component, (2) the systematic component and 

(3) the link function. The random component identifies the distribution of the response 

variable Y, with independent observations (y1,...,yn). The systematic component 

represents the linear predictors in a model. Let xij denote the value of predictor j 

(j=1,2,…,k) for subject i, then: 
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(3) 

 

This combination of variables is referred to as the linear predictor (Agresti 2002). The 

predictors may be continuous or categorical and any interactions between may also be 

included (Quinn and Keough 2001). The third component of a GLM is the link function 

which connects the random and systematic components (Agresti 2002). The basic 

purpose of the link function is to transform the data into a linear relationship and can be 

written as:  

(4) 

 

It is important to note that the link function is applied to the expected values and not used 

to transform the original observations. This can be expressed as: 

(5) 

 

where Distribution() is the pattern of deviations around the expected values of Y, θ 

represents the parameters of this distribution and     indicates the inverse of the link 

function. The Gamma distribution was chosen because the variance of the response 

variables increased with the mean.  

The link function used in the GLM was the inverse linear polynomial and had the 

form: 
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(6) 

 

Taking the reciprocal gives: 

(7) 

 

The inverse linear polynomial link was chosen over others based upon the distribution of 

the residuals and due to the fact that it is effective at representing a variety of functional 

forms (linear, asymptotic, exponential decay) (Crawley 2002). Parameter estimates were 

performed using the glm() function in the R statistical programming environment (R 

Development Core Team 2011).  

Results  

Vessel movement patterns: Hidden Markov model 

A visual inspection of the observed distribution of VMS speed estimates (Figures 

2-2 and 2-3) suggested that there could be either two or three distinct underlying states. 

To select between them the best fit two and three state HMMs were compared. 

 The two state HMM effectively classified observed speeds into two groups with 

fishing behaviours classified by a Weibull distribution and steaming behaviour classified 

by a normal distribution (Figure 2-2). The two state models identified two distinct states 

which are referred to as fishing (slow) and steaming (fast) based upon the reduction in 

speed required to set or retrieve traps.  
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A three state HMM was used to partition the former fishing state into trap 

"setting" and "retrieval" (where retrieval may involve resetting traps at the same 

location). Table 2-2 lists the parameter estimates of the emission distributions of three 

state HMM that were obtained using the msm package. To begin, a simple model with 

three normal distributions (N–N–N) was used, which was compared to alternative models 

that could also use t-distributions. The final model used normal distributions to define 

fishing and relocating and a t-distribution to describe steaming behaviour (N-N-t). Both 

the initial and final models converged to an optimal solution (Table 2-2). Figure 2-3 

depicts the distribution of states predicted by the N-N-t distributions. In this model 

retrieving and steaming behaviours are similar to the two state models, but with the 

intermediate speeds classified as setting behavior. I examined both AIC and BIC as 

criteria to select the most strongly supported model for further analysis (Table 2-3). The 

model chosen as superior by both AIC and BIC was the three state N-N-t model and this 

model was used for further analysis of covariates. The movement characteristic speed 

was used to define each of the behavioural states. These states of “retrieving”, “setting” 

and “steaming” were estimated with means of 1.59, 5.43 and 9.56 knots respectively 

 The final model was formally defined by the instantaneous rate of change 

between states (Q matrix, Table 2-4), but was also represented by the transition 

probabilities (P matrix, Table 2-5), sojourn times (Table 2-6), and the most probable 

future state transition (Pnext, Table 2-7).  

Year as a covariate  

 Changes among years were examined by using year as a covariate within the 

HMM. The behavioral states of “retrieving”, “setting” and “steaming” were estimated 
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with means of 1.72, 6.11 and 9.60 knots respectively. The sojourn times, showing the 

average time spend in each state over the course of the study were estimated from the 

HMM. Figure 2-4 shows the sojourn times while “retrieving”, “setting” and “steaming” 

for the years 2006-2008, with the observed steaming times of 3.57 ± 0.11 hours in 2006, 

2.89 ± 0.05 hours in 2007 and 2.34 ± 0.06 hours in 2008. Setting times also decreased as 

years progressed with an average sojourn time of 1.73 ± 0.05 hours in 2006, 1.52 ± 0.03 

hours in 2007 and 1.34 ± 0.03 hours in 2008. In contrast the time to retrieve traps was not 

influenced by the interannual variation abundance of snow crabs. 

The state changes over a 15 minute time interval show significant changes at a 5% 

confidence level for all interannual transitions except for two events, when continuing to 

set traps and when transitioning from setting to retrieving (Figure 2-5). Figure 2-5 shows 

that there is a high probability of remaining in the same state after a 15 minute interval 

for all states over each year. Similar patterns are revealed by the instantaneous transition 

rates shown in Figure 2-6.  

The probabilities of entering a different state other than the current state were 

calculated for all states as well as all years. Switching from the retrieving or steaming 

state showed no significant changes over the period of the study. Switching from a setting 

state showed significant differences between seasons with the probability of switching 

from setting to retrieving decreased over time and switching from setting to steaming 

increased over the same period (Figure 2-7). 
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CPUE as a covariate 

 Changes in behaviour with local fishing success were examined by using CPUE 

as a covariate within the HMM. The behavioural states of “retrieving”, “setting” and 

“steaming” were readily estimated with means of 1.73, 5.62 and 9.55 knots respectively. 

The sojourns times related to CPUE are displayed in Figure 2-8. Steaming times increase 

with increasing CPUE, retrieving and setting times show little change with increasing 

CPUE. The P matrix values (Figure 2-9) show little to no changes in behaviours from 

when switching from retrieving or steaming states, but as CPUE increases, the probability 

of changing from setting to retrieving increases to the point where it is as likely as 

remaining in a setting state.   

Vessel movement and fishing success: Generalized linear model 

 Using estimates obtained from the HMM described in the HMM section above as 

well as logbook information, a GLM was developed to define each year using parameters 

shown in Table 2-8. The form of the relationship between a trip’s catch and the variables 

found to be statistically significant at the 5% level are shown in Table 2-8 for each 

period. In 2006 only two variables 1/traps (p < 0.001) and time steaming (p <0.001) had 

significant influences. In 2007 only one variable (1/time soaking, p = 0.387) was not 

found to be significant.  Finally, in 2008 all of the variables were found to be highly 

significant (p < 0.001) except the intercept which was weakly significant (p = 0.0351). 

Over the course of this study, there were changes to the overall biomass of the 

commercial snow crab and these changes are shown in Table 2-9. Over the period of 3 

years the estimated commercial biomass available to the fleet decreased from 74,285 t to 
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52,564 t (DFO 2012). Though the quota decreased each year, CPUE (kg/trap) was similar 

in 2006 and 2007, but then dropped off dramatically in 2008. The start of the crab fishing 

season varied from year to year, as did the CPUE throughout the seasons (Figure 2-10).  

The initial catch rates among years showed a negative trend as time increased, with 

higher biomass years showing increased catch rates at the beginning of each respective 

season and then becoming more similar among years as the seasons progressed.  

 The GLM was used to estimate an expected catch for a trip in each study year 

based upon a “typical trip”. To estimate a typical trip, the median values of the variables 

used to fit the GLM were used to define the typical effort employed by fishers during a 

trip. The following are used to define the measures of effort for a typical trip: number of 

traps (73), trap soak time (72 hours), time setting (2.64 hours) and time steaming (6.72 

hours) were used to predict catch per trip (Table 2-9). The GLM predicted catch per trip 

to decline in each year of study, there was no significant difference from 2006 to 2007, 

while 2008 was significantly different from the other two years of study. The estimated 

commercial biomass followed the same pattern as the predicted catch per trip. 

The complexity of the inverse polynomial link function prevents simple 

interpretation of the parameters. To more clearly define the relationships, catch was 

estimated from the GLM for each predictor over the range of their observed values. 

Figure 2-11 illustrates the relationship between catch and each predictor used in the GLM 

with other predictors held at their typical trip values. Time setting shows a slightly 

negative relationship with catch while time steaming shows a positive relationship. The 

soak time reaches an asymptote around 12 hours suggesting that longer soak times do not 

increase catch while number of traps has a highly positive relationship with catch.  
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Discussion 

 The analysis from this study led to the development of a fishery dependent 

relative measure of abundance which reflected annual available biomass within the snow 

crab fishery more closely than the current CPUE measure (kg/trap). In order to estimate 

fishers’ activities, a three state HMM was developed to identify behaviours within a fixed 

gear fishery. The three state HMM successfully described vessel behaviours in the Gulf 

of St. Lawrence snow crab fishery. From this model three distinct states of retrieving, 

setting and steaming were inferred based on the continuous distribution of observed 

vessel speeds. HMM classifications allowed the estimation of time spent in each state 

during a trip which led to new behavioural variables for the prediction of fishing success. 

These predictors combined with current effort measures to provide a new abundance 

index that can explicitly incorporate fish harvester behaviour into assessment 

methodology using data collected during the normal prosecution of the fishery.  

Observer data has been increasingly used to verify behaviours in mobile gear 

fisheries. Mills et al. (2007) developed rules to identify fishing and steaming behaviours 

using observer data for a beam trawler fishery in the North Sea. From vessel speed 

observations they were able to define the upper and lower boundaries for individual 

vessel actions. Though they were able to isolate behaviours very well, they found that the 

frequency of detections from the VMS was lower than required to identify all behaviours 

during a fishing trip. Previous studies using VMS data to identify fishing grounds, fishing 

effort or apply management strategies have had detection intervals of one hour or more 

(Bertrand et al. 2007, Mills et al. 2007, Peel and Good 2011). The high frequency rate of 
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detection (15 minute intervals) in the snow crab fishery allowed me to identify 

behaviours that other studies may have missed due to lower temporal resolution.  

VMS records provide additional detailed information on fishing activities where 

observer data may be limited or unavailable. VMS records can define fishing grounds 

(Jennings and Lee 2012), effort distribution (Bertrand et al. 2008) and can be linked to 

logbook data to examine independent effort data across an entire fleet (Gerritsen and 

Lordan 2011). For example, Mullowney and Dawe (2009) used VMS data to develop 

indices of commercial fishery performance in the Newfoundland and Labrador snow crab 

fishery. Fishing activity was defined directly by speed between successive VMS readings 

using thresholds based on the experience of the observers. However, the relationship 

between speed and activity, including the number of activities, were defined a priori 

rather than objectively from the data. HMMs increase the utility of VMS data by 

allowing the detailed inference of fishing activities without the need for an onboard 

observer. Hypothesized activity models (number of states or alternative distributions of 

observations) can be compared based upon information theoretic criteria (AIC, BIC, etc.). 

Ideally these inferences should be compared to directly observed vessel behaviours. 

Unfortunately, in this study onboard observer data was not available to validate the 

HMM. However, its utility in predicting catch per trip supports its potential for further 

research. 

The significance of year as a covariate in the HMM provides insight into 

behavioural variation among the seasons studied. Due to changes in snow crab abundance 

over the course of the study, we would expect changes to CPUE, measured as kg/trap. 

Variation in CPUE could also be compounded by the uncertain location of the target 
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species, with unpredictability increasing as the fishing season progresses (Gillis et al. 

2006). Years of high abundance were associated with increased vessel steaming times. 

These increased steaming times suggest that vessels were travelling further away from 

port, possibly to more abundant areas (Sampson 1992). More distant fishing is usually 

more costly, due to increased fuel consumption, longer times at sea and exposure to more 

risk (ie. storms, breakdowns, accidents) (Sampson 1991). Distant trips would require 

higher payoffs (CPUE) to balance these costs. During the low abundance year (2008), 

steaming times and CPUE both decreased. The lower abundance of snow crab appeared 

to alter fishers behaviour in a way that kept vessels in closer proximity to port. Fishers 

seemed less willing to impart riskier ventures when the chance of a large payoff declined.  

Increased steaming times were associated with higher catches, but variability in 

catch rates and the increased risk of more distant fishing trips prevented fishers from 

exploiting higher density sites. Using CPUE as a covariate with effort represented as 

number of traps, I was able to examine the relationships between fishing behaviours and 

catch rates. Steaming time showed the greatest change with increasing CPUE, with 

setting and retrieving times showing little change. Catch rates of 110 kg/trap show 

steaming times almost 3 times longer than when catch was 30 kg/trap (Figure 2-8). This 

reinforces the idea that as local populations become overexploited and density decreases, 

fishers are forced to exploit new locations. Venturing to relatively unexploited patches is 

costly because patch densities become uncertain and operating costs increase. Daw 

(2008) examined the relationship between catch and distance travelled in the lobster 

fishery around the Corn Islands and found that exploiting more distant sites can lead to 
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higher catch rates as well as higher revenues. These incentives do not always lead to 

fishers using these more distant fishing grounds however due to variability of catch rates.  

The snow crab fishery is another example where simple CPUE may not reflect 

abundance (Harley et al. 2001, Maunder et al. 2006). Instead of using the classical CPUE 

(kg/trap) to standardize catch, my four component measure of effort incorporated vessel 

activities, which may change in response to the distribution and abundance of crab. This 

model estimates catch for a typical trip (median predictor values) that could more 

accurately reflect target species abundance on a yearly basis. In my data, the fishery 

independent abundance estimates support the greater accuracy of my model, but 

additional years will be required to fully test this proposition. However, the ongoing 

collection of detailed, georeferenced effort data make this both possible here, and 

expandable to other commercial fisheries. 

 The nonlinear relationship between soaktime and catch suggests gear saturation 

occurs quickly and there is little advantage in terms of catch for fishers to leave their 

traps unchecked for prolonged periods of time.  However, other factors may contribute to 

the extended soak times observed such as storms, injuries, illness, gear failure, and 

logistic considerations while in port. As generally expected, I observed a positive 

relationship between number of traps and catch. However, this trend was highly variable, 

likely due to differences in local densities around each trap, possible changes in substrate 

and other environmental factors along the length of a string of traps and throughout the 

Gulf of St. Lawrence. The types of traps used may also affect catch rate within the 

fishery. Hebert et al. (2001) conducted a study comparing catchability between three 

different traps, they found that conical and pyramidal traps caught larger male snow crabs 



30 

 

compared to rectangular traps if soak times were 24 hours. Although conical traps caught 

larger snow crabs than rectagular traps, CPUE between trap types did not differ 

significantly. Dufour (1984) tested catch rates between three types of traps at differing 

soak times and found that conical traps outperformed rectangular traps at longer soak 

times. These results could impact the estimates from the GLM only if different styles of 

traps were used, though this was was not noted in the logbook records. 

Using a combination of fishers’ activities and logbook data I was able to develop 

a fishery dependent relative measure of abundance. By utilizing fishers’ behaviours and 

logbook data I produced a standard trip in which to compare interannual differences in 

expected catch rates.  Hidden Markov models allowed me to identify three unique fishing 

behaviours in a fixed gear fishery. Future studies should focus on applying HMMs and 

logbook data to additional years of data in order to further develop the measure of 

relative abundance. My analyses have shown that HMMs can produce credible 

representations of fishing activity from VMS data and these activity estimates can be 

used to improve catch predictions using a GLM. These models provide fisheries scientists 

and managers with an alternative index of abundance, based upon regularly collected 

information, which can be used to reflect variation within seasons in addition to the 

survey data that currently estimates variation between seasons.  

Literature Cited 
 

Agresti, A. 2002. Categorical Data Analysis. John Wiley and Sons. Hoboken, New 

 Jersey. 

 

Benaglia, T., Chauveau, D., Hunter, D., and Young, D. 2009. mixtools: An R package for 

 analyzing finite mixture models. J. Stat. Softw. 32 (6): 1-29. 

 



31 

 

Bertand, S., Bertrand, A., Guevara-Carrasco, R., and Gerlotto, F. 2007. Scale-invariant 

 movements of fishermen: The same foraging strategy as natural predators. Ecol. 

 Appl. 17 (2): 331-337. 

 

Bertrand, S., Burgos, J.M., Gerlotto, F., and Atiquipa. J. 2005. Levy trajectories of 

 Peruvian  purse- seiners as an indicator of the spatial distribution of anchovy 

 (Engraulis ringens).  ICES J. Mar. Sci. 62: 477-482. 

 

Bertrand, S., Diaz, E., and Lengaigne, M. 2008. Patterns in the spatial distribution of 

 Peruvian anchovy (Engraulis ringens) revealed by spatially explicit fishing 

 data. Prog. Oceanogr.  79: 379-389. 

 

Bez, N., Walker, E., Gaertner, D., Rivoirard, J., and Gaspar, P. 2011. Fishing activity of 

 tuna purse seiners estimated from vessel monitoring system (VMS) data. Can. 

 J. Fish. Aquat. Sci. 68: 1998-2010. 

 

Biron, M., Ferron, C., and Moriyasu, M. 2008. Movement of adult male snow crab, 

 Chionoecetes  opilio, in the southern Gulf of St. Lawrence and eastern Nova 

 Scotia, Canada. Fish. Res.  91: 260-270. 

 

Crawley, M. 2002. Statistical Computing: An Introduction to Data Analysis using S-Plus. 

 Wiley.  Imperial College. 

 

Daw, T. 2008. Spatial distribution of effort by artisanal fishers: Exploring economic 

 factors  affecting the lobster fisheries of the Corn islands, Nicaragua. Fish. Res. 

 90: 17-25. 

 

DFO. 2012. Assessment of snow crab in the southern Gulf of St. Lawrence (areas 

 12,19,12E and 12F) and advice for the 2012 fishery. DFO Can. Sci. Advis. 

 Sec. Sci. Advis. Rep. 

 

Dufour, R., 1984. Rendements comparatifs et sélectivité de trois types de casiers à crabe 

 des neiges. Can. Atl. Fish. Sci. Adv. Com. Res. Doc. 84/1, 25. 

 

Fox, J., and Weisberg, S. 2011. An R companion to applied regression. (2nd ed.). Sage. 

 Thousand Oaks, CA. 

 

Gerritsen, H., and Lordan, C. 2011. Integrating vessel monitoring systems (VMS) data 

 with daily catch data from logbooks to explore the spatial distribution of catch 

 and effort at high resolution. ICES J. Mar. Sci. 68 (1): 245-252. 

 

Gillis, D. 1999. Behavioral inferences from regulatory observer data: catch rate variation 

 in the  Scotian Shelf silver hake (Merluccius bilinearis) fishery. Can. J. Fish. 

 Aquat. Sci.  56 (2): 288-296. 

 



32 

 

Gillis, D., Wade, E., and Swain, D. 2006. Spatial evidence for information exchange in 

 the Gulf  of St. Lawrence snow crab (Chionoecetes opilio) fishery. Can. J. 

 Fish. Aquat. Sci.  63 (2): 254-267. 

 

Giuggioli, L., and Bartemeus, F. 2010. Animal movement, search strategies and 

 behavioural ecology: A cross-disciplinary way forward. J. Anim. Ecol. 79: 906-

 909. 

 

Gurarie, E., Andrews, R.D., and Laidre, K.L. 2009. A novel method for identifying 

 behavioural changes in animal movement data. Ecol. Lett. 12 (5): 395-408. 

 

Harley, S., Myers, R., and Dunn, A. 2001. Is catch-per-unit-effort proportional to 

 abundance? Can. J. Fish. Aquat. Sci.  58: 1760-1772. 

 

Hebert, M., Miron, G., Moriyasu, M., Vienneau, R., and DeGrace, P. 2001. Efficiency 

 and ghost fishing of snow crab (Chionoecetes opilio) traps in the Gulf of St. 

 Lawrence. Fish. Res.  52: 143-153. 

 

Hosking, J. 2009. L-moments. R package, version 1.6. URL: http://cran.r-

 project.org/web/packages/lmom/lmom.pdf. 

 

Jackson, C. H. 2011. Multi-state models for panel data: The msm package for R. J. Stat. 

 Softw.  38 (8): 1-28. 

 

Jennings, S., and Lee, J. 2012. Defining fishing grounds with vessel monitoring system 

 data. ICES J. Mar. Sci. 69 (1): 51-63. 

 

Jonsen, I., Flemming, J., and Myers, R. 2005. Robust state-space modeling of animal 

 movement data. Ecology. 86(11): 2874-2880. 

 

Kimura, D.K. 1981. Standardized measures of relative abundance based on modeling log 

 (cpue), and the application to Pacific ocean perch (Sebastes alutus). J. Cons. Int. 

 Explor. Mer. 39: 211–218. 

 

Maunder, M.N., Sibert, J.R., Fonteneau, A, Hapmton, J. Kleiber, P, and Harley, S.J. 

 2006.  Interpreting catch per unit effort data to assess the status of individual 

 stocks and communities.  ICES J. Mar. Sci. 63: 1373-1385. 

 

Mills, C., Townsend, S., Jennings, S., Eastwood, P., and Houghton, C. 2007. Estimating 

 high resolution trawl fishing effort from satellite-based vessel monitoring  system 

 data. ICES J. Mar. Sci. 64: 248-255.  

 

Patterson, T.A., Basson, M., Bravington, M.V., and Gunn, J.S. 2009. Classifying 

 movement behaviour in relation to environmental conditions using 

 hidden Markov models. J. Anim. Ecol. 78 (6): 1113-1123.  

 



33 

 

Peel, D., and Good, N. 2011. A hidden Markov model approach for determining vessel 

 activity from vessel monitoring system data. Can. J. Fish. Aquat. Sci. 68: 1252-

 1264. 

 

Quinn, G. P., and Keough, M. J. 2001. Experimnental Design and Data Analysis for 

 Biologists. Cambridge University Press. Cambridge, United Kingdom. 

 

R Development Core Team. 2011. R: A language and environment for statistical 

 computing. Vienna, Austria. 

 

Rijnsdorp, A., Dol, W., Hoyer, M., and Pastoors, M. 2000. Effects of fishing power and  

 competitive interactions among vessels on the effort allocation on the trip level of 

 the Dutch beam trawl fleet. ICES J. Mar. Sci. 57: 927-937. 

 

Saint-Pierre, P., Combescsure, C., Daures, J., and Godard, P. 2003. The analysis of 

 asthma control under a Markov assumption with use of covariates. Stat. Med. 22: 

 3755-3770. 

 

Sampson, D. B. 1991. Fishing tactics and fish abundance, and their influence on catch 

 rates. ICES J. Mar. Sci. 48: 291-301. 

 

Sampson, D. 1992. Fishing technology and fleet dynamics: Predictions from a 

 bioeconomic model. Mar. Resour. Econ. 7: 37-58. 

 

Sinnot, R. 1984. Virtues of the Haversine. Sky Telescope. 68 (2): 159. 

 

Spencer, M., and Susko, E. 2005. Continuous-time Markov models for species 

 interactions. Ecology. 86 (12): 3272-3278. 

 

Swain, D., and Wade, E. 2003. Spatial distribution of catch and effort in a fishery for 

 snow crab (Chionoecetes opilio): tests of predictions of the ideal distribution. 

 Can. J. Fish. Aquat. Sci. 60: 897-909. 

 

Turchin, P. 1998. Quantitative Analysis of Movement. Measuring and Modeling 

 Population Redistribution in Animals and Plants. Sinauer Associates. 

 Sunderland, Massachusetts,  USA. 

 

Vazquez-Rowe, I., Moreira, T., and Feijoo, G. 2010. Life cycle assesment of horse 

 mackeral fisheries in Galicia (NW Spain): Comparative analysis of two major 

 fishing methods. Fish. Res. 106 (3): 517-527. 

 

Vermard, Y., Rivot, E., Mahevas, S., Marchal, P., and Gascuel, D. 2010. Identifying 

 fishing trip behaviour and estimating fishing effort from VMS data using 

 Bayesian hidden Markov models. Ecol. Model. 221: 1757-1769. 

 

Viswanathan, G. 2010. Fish in Levy-flight foraging. Nature. 465: 1018-1019. 



34 

 

Tables 
 

Table 2-1: The mean and standard deviation of speeds (knots) to which each hidden state 

was assigned for the two-state models. The 95% confidence interval is given in 

parentheses. “Norm” indicates that a normal distribution was used and “Weib” indicates 

that a Weibull distribution was used. 

Model Fishing Steaming 

 Mean SD Mean SD 

two state [Norm,Norm] 3.443 (0.038) 2.555 (0.031) 9.465 (0.033) 1.290 (0.029) 

two state [Norm,Weib] 3.459 (0.038) 2.604 (0.029) 9.284 (0.040) 1.544 (0.022) 
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Table 2-2: The mean and standard deviation of speeds (knots) to which each hidden state 

was assigned for the three-state models.  The distributions used are displayed in the 

model column. The 95% confidence interval is given in parentheses. *No confidence 

interval due to degrees of freedom being kept fixed during analysis. 

Model Retrieving Setting Steaming 
 Mean SD Mean SD Mean SD 

three state 

[N-N-N] 
1.8 (0.029) 1.17 (0.21) 6.192 (0.155) 2.373 (0.079) 

9.581 

(0.038) 
1.784 (0.028) 

three state 

[N-N-t] 
1.596 

(0.028) 
1.139 (0.02) 5.431 (0.139) 2.484 (0.067) 

9.557 

(0.023) 
2.44* 
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Table 2-3: Summary of hidden Markov model comparisons using AIC and BIC. 

Distributions used are represented by N = normal distribution, W = Weibull distribution, t 

= t-distribution.  

Number of 

hidden states (k) 
Model df AIC BIC 

k=2     

 N-N 6 571 018.8 571 076.9 

 N-W 6 577 071.5 577 129.6 

k=3     

 N-N-N 12 527 797.3 527 913.5 

 t-N-N 12 506 271.3 506 387.5 
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Table 2-4: Instantaneous transition (Q) matrix for the 3 state (t –N – N) hidden Markov 

model with the 95% CI in parentheses. The “from” state is represented by the rows and 

the “to” state is represented by the columns. 

                    To 
  Steaming Setting Retrieving 

 

F
ro

m
 

Steaming -0.391 

(-0.404, -0.377) 

0.287  

(0.274, 0.300) 

0.104 

 (0.096, 0.112) 

Setting 0.492 

(0.468, 0.52) 

-1.8 

(-1.869, -1.731) 

1.308 

(1.246, 1.366) 

Retrieving 0.030 

 (0.026, 0.036) 

0.634  

(0.61, 0.658) 

-0.665 

(-0.688, -0.641) 
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Table 2-5: Transition probability (P) matrix for a 3 state (t –N – N) hidden Markov model 

using a time interval of 15 minutes with the 95% CI in parentheses. The “from” state is 

represented by the rows and the “to” state is represented by the columns. 

                    To 
  Steaming Setting Retrieving 

 

F
ro

m
 

Steaming 
0.911 

(0.908, 0.914) 

0.057  

(0.055, 0.059) 

0.032  

(0.031, 0.034) 

Setting 
0.096  

(0.091, 0.1) 

0.659 

(0.649, 0.669) 

0.245 

 (0.236, 0.254) 

Retrieving 
0.015  

(0.013, 0.016) 

0.118 

 (0.115, 0.122) 

0.867  

(0.863, 0.871) 
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Table 2-6: State specific sojourn times (in hours) showing the average amount of time 

spent in each state in the 3 state (t –N – N) hidden Markov model. 

 Estimates SE Lower Upper 

Steaming 2.559 0.043 2.478 2.652 

Setting 0.556 0.011 0.532 0.577 

Retrieving 1.505 0.028 1.449 1.559 
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Table 2-7: Shows the probability (pnext matrix) of entering the next state given the 

current state for the 3 state (t –N – N) hidden Markov model. The 95% confidence 

intervals are shown in parentheses. 

                    To 
  Steaming Setting Retrieving 

 

F
ro

m
 Steaming 0 0.735 (0.715, 0.756) 0.265 (0.244, 0.285) 

Setting 0.273 (0.262, 0.285) 0 0.727 (0.715, 0.739) 

Retrieving 0.046 (0.038, 0.054) 0.954 (0.946, 0.962) 0 
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Table 2-8: Catch models by trip among years for the snow crab fishery. GLMs used the 

gamma distribution and inverse link function. The 95% confidence intervals for each 

variable are shown in parentheses. P values that are significant at the 5% level are shown 

in bold.  

Year Variable Coefficient Estimates p-value 

(a) 2006 (n = 1192) 

 Intercept -9.13 ×10
-6 

(-2.25 ×10
-5

, 4.27 ×10
-6

) 0.182 

 1/Traps 1.67 ×10
-2 

(1.59×10
-2

, 1.75 ×10
-2

) <0.001 

 1/Time Soaking 9.63 ×10
-5 

(-8.5 ×10
-5

, 2.78 ×10
-4

) 0.298 

 Time Steaming -1.25 ×10
-6

 (-1.87 ×10
-6

, -6.41 ×10
-7

) <0.001 

 Time Setting 1.44 ×10
-7

 (-9.28 ×10
-7

, 1.22 ×10
-6

) 0.793 

    

(b) 2007 (n = 1554) 

 Intercept -2.19 ×10
-5 

(-3.34 ×10
-5

, -1.06 ×10
-5

) <0.001 

 1/ Traps 1.85 ×10
-2 

(1.78 ×10
-2

, 1.92 ×10
-2

)
 

<0.001 

 1/Time Soaking -6.5 ×10
-5 

(-2.12 ×10
-4

, 8.23 ×10
-5

) 0.387 

 Time Steaming -1.82 ×10
-6 

(-2.4 ×10
-6

, -1.24 ×10
-6

) <0.001 

 Time Setting 1.45 ×10
-6 

(5.89 ×10
-7

, 2.31 ×10
-6

) <0.001 

    

(c) 2008 (n = 1553) 

 Intercept -1.49 ×10
-5 

(-2.87 ×10
-5

, -1.05 ×10
-6

) 0.0351 

 1/ Traps 2.03 ×10
-2 

(1.94 ×10
-2

, 2.11 ×10
-2

)
 

<0.001 

 1/Time Soaking 4.69 ×10
-4 

(2.25 ×10
-4

, 7.13 ×10
-4

) <0.001 

 Time Steaming -2.09 ×10
-6 

(-2.76 ×10
-6

, -1.42 ×10
-6

) <0.001 

 Time Setting 2.09 ×10
-6 

(1.12 ×10
-6

, 3.06 ×10
-6

) <0.001 
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Table 2-9: Quota, fishing effort, catch and predicted catch per trip for the snow crab 

fishery in area 12.  The 95% confidence intervals are shown in parentheses. Quota, CPUE 

and commercial biomass were obtained from DFO (2012). 

 2006 2007 2008 

Quota (t) 25 869 23 207 20 900 

CPUE (kg/trap-haul) 64.4 65.7 56.4 

Commercial Biomass (t) 74 285 

(66 192 - 83 087) 

66 660 

(60 183-79 638) 

52 564 

(46 658 - 59 006) 

Model Prediction 

(Catch per trip (kg)) 

4704.1 

(4566.3 - 4850.4) 

4506 

(4399.6 - 4617.6) 

3831.6 

(3733.6 - 3934.9) 
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Figures 

 
Figure 2-1: Fishable area in zone 12 for the snow crab fishery (Chionoecetes opilio) 

fishery in the Gulf of St. Lawrence. This fishery is located on the eastern seaboard in 

Canada, with the grid representing the sampling area for the pre-season survey. 
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Figure 2-2: Two state HMM using normal distributions to describe both the fishing and 

steaming states. Fishing activities are represents by slower speeds and steaming activities 

are represented by faster speeds. 
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Figure 2-3: Three state HMM using normal distributions for the retrieving and setting 

states and a t-distribution for the steaming state.  
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Figure 2-4: The sojourn times for a vessel staying in a particular state for each year of the 

study. The 95% CI for the means are shown. 
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Figure 2-5: State specific probability of entering another state based on the current state 

over a 15 minute interval. The x axis displays the “from” state and the symbols represent 

the “to” state with differences shown between years for all “from” states. 
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Figure 2-6: State specific Q matrix values over each year of study showing the transition 

intensities between states. The x axis displays the “from” state and the symbols represent 

the “to” state and differences shown between years for all “from” states. 
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Figure 2-7: The probability of entering a different state, given the current state over the 3 

years of study. The values on the x-axis show the “from” state while the symbols 

represent the “to” state. 
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Figure 2-8: The sojourn times for each hidden state across a wide range of catch rates. 

The catch rates shown on the graph contain 90% of the observed catch records over the 

period of study. 
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Figure 2-9: The probability of entering the next state given the current state, as well as 

the catch rate. 
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Figure 2-10: Catch rates throughout each individual season as season length progresses. 

Means are plotted using a loess line with the 95% CI shown by the shaded regions around 

each line. 
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Figure 2-11: Catch predicted for each response variable in the GLM. Responses are modeled using typical values for each 

measure of effort (as previously described in Table 10). The black line depicts the mean predicted catch over the range of 

observed values, the dark grey line is the 95% confidence interval of the mean and the lightly shaded grey region is the 95% 

prediction interval.
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escaped rainbow trout (Oncorhynchus mykiss) from 
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Introduction 

In Canada, rainbow trout (Oncorhynchus mykiss) open pen aquaculture 

production is a multimillion dollar industry, with approximately 3 800 tonnes (~$15.7 

million) produced in Ontario fish farms in 2006. The total annual contribution that 

aquaculture made to the Ontario economy was estimated to be $55 – 60 million in 2006 

(Moccia and Bevan 2007). The environmental impacts of the aquaculture industry are 

under close observation and continued scrutiny from government and public agencies, be 

it through the release of solid and dissolved wastes (Azevado et al. 2011) or large scale 

escapes of farmed fish (Naylor et al. 2005). Escape events from aquaculture cages are 

referred to as acute or chronic. Chronic escapes are a continuous, slow process, while an 

acute loss results in a large scale loss of fish over a short amount of time (Bridger and 

Garber 2002). The potential for escapes from aquaculture cages present serious 

challenges for farm owners, law makers and the public. Escaped farm fish have the 

ability to negatively affect wild fish populations through high propagule pressure, 

competition and interbreeding (Gross 1998, Naylor et al. 2005, Consuegra et al. 2011). 

After an escape event, farmed fish are known to disperse away from the cage site and 

thus have the opportunity to interact with native fish or wild conspecifics (Fiske and 

Lund 1999). 

Habitat use of ectotherms is known to be strongly tied to temperature due to 

physiological and bioenergetic performance (Rodnick et al. 2004). North-temperate lakes, 

especially small lakes like those found at the Experimental Lakes Area (ELA), are subject 

to summer stratification. During this time the thermocline depth increases as temperatures 

rise throughout the spring and summer causing a decrease in lake trout habitat. The 
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optimal habitat for lake trout can be defined by a combination of temperature (<15°C) 

and oxygen (>4 mg/L) (Plumb and Blanchfield 2009), while rainbow trout have a higher 

thermal tolerance with an upper lethal temperature above 24°C (Bear et al. 2007). During 

the stratified period lake trout do not have access to high energy littoral prey species and 

are mainly restricted to pelagic prey items. However, rainbow trout are able to access 

littoral regions during the stratified period and therefore are able to exploit the resources 

in these areas. 

 Space use is commonly associated with resource availability, especially the 

relationship between home range size and resource distribution (Mitchell and Powell 

2007). Home range size as a result of limiting resources has previously been discussed in 

home range studies for black bears (Ursus americanus) (Lindzey and Meslow 1977, 

Mitchell and Powell 2007), Shiras moose (Alces alces shirasi) (Baigas et al. 2010) and 

roe deer (Capreolus capreolus) (Said et al. 2005). Food especially is considered a density 

dependent entity, with patches located independent of each other which causes predators 

to actively search for abundant patches and compete for resources. Predators encounter 

food within these patches, but must travel between patches to exploit their resources. As 

soon as a predator encounters a patch and begins foraging, the prey density and the 

predator’s foraging efficiency decreases in that patch as time spent increases (Charnov 

1976). In the presence of a continued food source (the cage site), it would be expected 

that the spatial distribution of foragers would be concentrated near this location.   

Escaped rainbow trout have the ability to not only negatively impact the 

environment through predator-prey interactions or habitat degradation, but they may also 

damage native fish stocks by preying on eggs during spawning seasons. The objective of 



57 

 

this study is to compare the movement patterns and habitat use of farmed rainbow trout 

released from an experimental aquaculture operation and native lake trout in the same 

lake. Specifically, I want to quantify potential habitat interactions between species. I will 

examine interspecific (rainbow trout and lake trout) differences in attraction to an 

aquaculture cage, during and post-operation (simulating dispersal from the cage site) as 

well as variation in interspecific habitat overlap throughout the study. A better 

understanding of escapee movements will help with recapture efforts and predicting 

ecological impacts.  

Methods 

Study Area 

All field work was conducted at the ELA, located in Northwestern Ontario 

(Figure 3-1). It consists of 58 small glacial relict lakes and their watersheds set aside for 

research purposes (Cleugh and Hauser 1971). The ELA aquaculture experiment was in 

operation from 2003-2007 with two years of background research and two years of 

ecosystem recovery observations. The study site was Lake 375 which is a small (23 ha) 

double basin lake with max depths of 17 and 26 m in the north and south basins 

respectively (Figure 3-2). A large steel frame was built to suspend a fish cage measuring 

approximately 10 m × 10 m × 10 m in the north basin of Lake 375 and the base of the 

cage hung approximately 5 m above the lake bottom. Each year the cage was stocked 

with roughly 10 000 female rainbow trout fingerlings weighing less than 200 g. The 

rainbow trout were hand fed twice daily in the morning and evening, usually 2 hours after 

sunrise and 2 hours before sunset (Blanchfield et al. 2009, Rooney and Podemski 2009).  
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Each fall from 2003 to 2007 rainbow trout were surgically implanted with 

pressure-sensing acoustic transmitters and released into Lake 375 to simulate an escape 

scenario. Lake trout have been tagged in Lake 375 since 2002. The surgical tagging 

procedure is described in more detail by Blanchfield et al. (2009). The acoustic 

transmitters in the fish were detected by two RAPT systems where one sytem was 

postioned in the north basin and the other in the south basin in Lake 375 (Figure 3-2). 

The RAPT systems consisted of a triad of moored buoys which recived signals from tags 

and recorded four dimensions of information: latitude, longitude, depth and time 

simultaneously throughout the open water season. The buoys received signals from the 

implanted receivers and then transmitted their information to a nearby onshore receiving 

station where a computer calculated fish positions over time. More information about the 

RAPT system is available from Blanchfield et al. (2005).  

Dataset and Manipulations 

The data collected for this study spans four open water seasons from years 2006-

2009. An experimental aquaculture operation was in effect in 2006 and 2007, followed 

by two years of ecosystem recovery in 2008 and 2009.  All data manipulations and 

subsequent analysis were done using the R statistical programming language (R 

Development Core Team 2012). A method to spatially correct telemetry positions was 

developed using stationary tags deployed at various locations within the lake. This 

method was used to correct the biases associated with the telemetry system using a 

geostatistical method, specifically Kriging (Journel and Huijbregts 1978) using the geoR 

package in R. Methods and results for the spatial correction of stationary tag trials and 
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fish positions are shown in Appendix II. Kriged positions are used for all subsequent 

spatial analyses. 

Behaviour and Space Use 

The spatial distribution of tagged fish was analyzed using the kernel method in 

the adehabitatHR package (Calenge 2006). The kernel method calculates a utilization 

distribution (UD) giving the probability density that an individual is found at a certain 

point in space (Worton 1987). I focused on core area use (50% of UD) to compare habitat 

size among each species over each year of study. Core area estimates were restricted 

from extending outside of the lake to reduce over estimation of habitat usage. 

 Using the fixed kernel estimates, a utilization distribution overlap index (UDOI) 

was calculated to assess the amount of habitat overlap shown by each fish species in the 

lake in each year and season. Fieberg and Kochanny (2005) reviewed different methods 

of analyzing space use sharing and concluded that the UDOI is the most appropriate 

index for quantifying overlap. The UDOI is a generalization of Hurlbert’s (1978) 

E/Euniform statistic and has the form: 

 

(1) 

 

This measure is a product of the two UDs, where they equal the joint distribution of the 

two animals’ UDs under the assumption that they use space independently of one 

another. A1,2 is the area of overlap between the two animals’ home range. The UDOI can 

range in value from zero (no overlap) to 1 (if both UDs are uniformly distributed and 
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have 100% overlap). The UDOI value can be >1 if the UDs are not uniformly distributed 

and show a high degree of overlap. In general, UDOI values <1 indicate less space use 

sharing than would be expected from overlapping uniform distributions while UDOI 

values >1 indicate more space use sharing than would be expected from overlapping 

uniform distributions. The UDOI calculates overlap in two dimensions, but fish occupy a 

three dimensional space within lakes, therefore during periods of stratification when fish 

may occupy different thermal habitats, the UDOI does not discern between depth 

distributions. I used a randomization test procedure to statistically compare mean UDOI 

values among each species to test interspecific habitat overlap and cage overlap. First I 

compared the difference (D1) in means for each group, then randomly allocated samples 

to each group and calculated D2. I repeated the random allocation 10 000 times to 

generate a randomization distribution. Finally I calculated a p-value from the 

randomization distribution and D1 to test whether the overlap index could have arisen 

from a random process (Manly 1997). 

 To measure space use around the cage, a square buffer of 25 m was defined 

around the cage site (Figure 3-2). Fish presence around the cage site was measured two 

ways. First, the mean number of detections per minute within the buffer was calculated 

for each individually tagged fish over each open water season over the course of each 

day. Secondly, a Near Cage Habitat (NCH) was created by simulating a uniform UD 

within the area of the buffer. The NCH was used to calculate UDOI values between the 

cage and fish species in the lake.   

 As part of the long term monitoring program, temperature and dissolved oxygen 

(DO) measurements during the open water season were taken at two week intervals and 1 
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m depth intervals over the deepest part of the lake using a portable temperature and DO 

meter. In the metalimnion, where temperature change was >1°C/m, the sampling interval 

was every 0.25 m. During the ice covered periods sampling was performed twice, usually 

in early January and late March.  Due to physiological constraints imposed by 

environmental variables upon lake trout during the stratified period, temperature and 

oxygen measurements can be used to define habitat requirements.   

Results 

Habitat use 

During the open water seasons, rainbow trout generally occupied warmer water 

habitats compared to lake trout, especially during the stratified periods. Rainbow trout 

showed the greatest depth overlap with lake trout in 2006, displaying continuous overlap 

for the entire open water season (Figure 3-3). During the rest of this study, there was 

some vertical overlap, but there were also periods of clear depth separation. As 

temperature and oxygen became depleted during the summer months (June – September) 

lake trout habitat became confined until fall turnover except in 2009. During the final 

year of study, lake trout depth distribution did not become limited by an oxygen 

limitation (Figure 3-3). 

 Yearly open water core area sizes for individual rainbow trout ranged from 0.29 

to 4.50 ha and from 0.22 to 4.03 ha for individual lake trout. Mean core area size did not 

vary significantly among years for rainbow trout, but mean core area size for lake trout 

declined each year from 2006-2008 and then increased again in 2009 (Figure 3-4). Lake 

trout maximum seasonal depth decreased each year from 2006 to 2008, followed by a 

drastic depth shift in 2009 where lake trout reached a maximum depth of about 10 m in 
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early September before moving into the upper few meters of the water column for fall 

spawning. In contrast, rainbow trout maximum depth decreased throughout the study 

(Figure 3-5). Lake trout exhibited seasonal depth changes each year that coincided with 

changes in surface water temperatures. During the spring and summer months, as air and 

water temperatures increased, lake trout were forced to continually seek colder depths in 

Lake 375 (Figure 3-5) due to temperature and oxygen constraints (Plumb and Blanchfield 

2009). In 2006, rainbow trout mean depth increased as the season progressed and then 

decreased rapidly during fall turnover. In 2007 and 2008, rainbow trout maximum depth 

peaked in August and didn’t reach the maximum depth observed in 2006. In the final 

study year rainbow trout depth did not change throughout the open water season, with 

rainbow trout remaining in the upper 1-2 meters of the water column for the entire open 

water season. 

 In 2006 and 2007, when the commercial production of rainbow trout was 

ongoing, the core areas of rainbow trout show considerable overlap with the cage site 

during the fall and summer, while in 2008 and 2009, after production ceased, their spatial 

distribution does not display the same affinity to the cage site. In all 4 years of study, lake 

trout show considerable attraction to a near shore area in the north basin as well as to the 

east shore between the RAPT systems (Figure 3-6). In 2008 neither species has any core 

areas in the south basin of the lake. 

Affinity to cage site 

 Presence of acoustically tagged fish at the cage site was measured by number of 

detections within the 25 m buffer around the cage site. Rainbow trout were attracted to 

the cage in 2006 and 2007 although presence at the cage site was not consistent 
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throughout all hours of the day, but rather detections displayed a diurnal pattern (Figure 

3-7). In the two years of ecosystem recovery, rainbow trout did not display the same 

attraction to the cage site and were rarely detected there. Lake trout on the other hand 

showed no affinity to the cage site during periods of production or ecosystem recovery. 

Lake trout were rarely detected (<2 detections/day) at the cage site. This indicates no 

attraction to the cage site (Figure 3-7).   

 Measuring cage use by comparing space use by each species to the NCH, rainbow 

trout spent more time around the cage when it was in production than did lake trout 

(Table 3-1). In the summer of 2006 the UDs of individual rainbow trout overlapped with 

the NCH more than lake trout (randomization test, P < 0.006) as well as in the fall of 

2006 (randomization test, P < 0.015). A similar trend was seen in 2007 when rainbow 

trout overlap with the cage was significantly higher in both the summer (randomization 

test, P < 0.041) and fall (randomization test, P < 0.0065). When production ceased, there 

was no significant difference in cage space use between the two species. 

Interspecific interactions 

 During times of cage production, the rainbow trout overlap with conspecifics had 

UDOI values ranging from 0.99 – 2.7 which means overlapping uniform distributions 

(0.99) to highly concentrated overlapping habitat use (2.7). Alternatively, rainbow trout 

overlap with lake trout during this same period showed relatively low overlap indices of 

0.36 – 0.56 (Table 3-2). In each year and season during cage production, intraspecific 

rainbow trout overlap was significantly higher than the interspecific overlap revealing 

similar attraction to the cage site by individuals and attraction to each other. During the 

post-production phase there were significant differences in spatial overlap in the summer 
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of 2008 (randomization test, P < 0.001) and fall of 2009 (randomization test, P < 0.05). 

However, there was no evidence for interspecific differences in spatial overlap during the 

fall of 2008 and summer of 2009. 

Discussion 

 At some point in each year of this study, trout displayed interspecific overlap at a 

known spawning shoal. This may be a case where escapees may have a negative effect on 

native fish by eating their eggs and reducing recruitment for following years. Rainbow 

trout remain one of the highest potential invaders due to their introduction in many 

countries for sport fishing and their value to the aquaculture industry (Fausch 2007). 

Global aquaculture production has increased rapidly, especially for salmonids (FAO 

2012), increasing the potential for large scale escapes. Though the likelihood of escaped 

salmonids establishing a naturally producing population is considered to be minimal 

(Soto et al. 2006, Podemski and Blanchfield 2006), the competition effect of escapees on 

native species in lieu of successful reproduction should be a concern for producers and 

the public. In order to minimize risk to the ecosystem, steps should be taken to reduce the 

potential impacts such as construction of fish barriers to reduce dispersal or choosing 

fishless lakes as potential sites for fish farms.  

Changes in food abundance and quality during the stratified period may have 

driven the reduction in observed habitat use by lake trout, but not affected rainbow trout. 

Vander Zanden and Rasmussen (1996) reported that lake trout diets typically consisted of 

pelagic forage fish, but Lake 375 lacks pelagic forage fish which alters the food web and 

places more importance on a freshwater shrimp, Mysis diluviana (previously M. relicta). 

Mysis have similar habitat preferences to those of lake trout and their abundance declined 
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throughout this study (Paterson et al. 2011). The disappearance of Mysis, a major food 

source for lake trout during the stratified period, along with reduced available habitat 

likely led to their reduced core areas observed in 2007 and 2008. Changes in food 

availability and habitat usage may have been driven by water temperature and oxygen 

limitations throughout that time due to the fact that Lake 375 did not undergo a full 

turnover in the fall of 2007 or the spring of 2008. Heightened anoxic levels in the lake 

diminished the available habitat for Mysis to avoid predators in dark, cold, well 

oxygenated waters increasing their predation risk from trout. The higher thermal 

tolerance of rainbow trout allowed them access to high energy littoral minnows for longer 

periods than cold-water dependent fish. Access to this food source reduces their energetic 

stress and allows them to meet their metabolic demands. Escaped rainbow trout may not 

forage as efficiently as wild fish because they have been known to mistake indigestible 

materials as food pellets (Rikardsen and Sandring 2006). 

While the aquaculture cage was in production escaped rainbow trout displayed an 

attraction to the cage site, but not after. Post-production, rainbow trout were not detected 

at the cage site, but rather their spatial distribution shows that littoral regions in the north 

basin became more important. The crepuscular activity of rainbow trout at the cage site 

suggests that they exploit the cage site during feeding times when they have access to 

waste feed. The diets of escaped rainbow may not have been significantly altered due to 

the presence of continued waste feed during the open water seasons in 2006 and 2007. 

The waste feed is not only available to fish however, as excess feed can accumulate on 

the sediments and become available to invertebrates (Ramos et. al. 2008, Kullman et al. 

2009). Instead of actively pursuing live prey, rainbow trout could have minimized 
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energetic output and directed more energy to lipid storage rather than protein storage, as 

lipids are an easily mobilized energy reserve and can be used during times of low food 

quality or abundance (Rikardsen and Elliot 2000). In addition, rainbow trout conspecific 

associations may partly be due to the fact that for the first year of their lives they were 

reared in high concentrations and perhaps they habituated to high conspecific densities 

and actively sought out other fish. Johnston et al. (2010) indicate that salmonid cage 

culture in Lake Huron attracted wild fish, but results from my experiment suggest the 

opposite in that wild lake trout were not attracted to the cage site. Other studies have also 

reported wild fish attraction to cages sites (Dempster et al. 2002, Fernandez-Jover et al. 

2008). The differences in attraction to the cage site may be due to behavioural and habitat 

preferences of the study species. 

The strength of using applying the UDOI methodology in fish biology has been 

shown in two ways, (1) using it to measure attraction to an area of interest and (2) 

interspecific overlap of top predators in a lake. The UDOI could have major implications 

for management decisions based on assessing interactions among individuals and site 

fidelity (Fieberg and Kochanny 2005). The utility of the UDOI as an estimator of site 

fidelity has been shown in this study. Previous uses of the UDOI have studied sexual 

segregation and water source use by bighorn sheep (Ovis Canadensis) (Whiting et al. 

2010), spatial overlap between Eastern Rockhopper Penguins (Eudyptes filholi) and 

Northern Rockhopper Penguins (E. moseleyi) (Thiebot 2012) and breeding affiliations in 

sandhill cranes (Grus canadensis) (Krapu et al. 2011). The study performed by Whiting 

et al. (2011) could further quantify water source importance by simulating uniform UDs 

around each water source and measuring bighorn overlap with each area to determine 
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which sources are highly used for future conservation implications. Some other areas that 

could benefit from this methodology include testing if coral reef remediation is 

successful, off-shore structure impacts on fish and animal behaviour and prediction of 

disease spread. 

Monitoring the environmental impacts of escaped farmed fish should receive 

increased effort due to the high likelihood of farmed fish escaping enclosures. The 

relatively small size of Lake 375 made it an excellent system to contrast the movements 

of escapees when a commercial aquaculture facility was in operation and after operations 

ceased. My results suggest that in the case of farmed fish escapes, recapture efforts 

should focus on areas near the cage sites during feeding times. Future studies should 

focus on studying systems where larger commercial aquaculture cages are in use and 

monitor the movements of more native fish species and their attraction to the cage site. 

The high thermal tolerances and invasive threat of rainbow trout should be a concern for 

managers when aquaculture facilities are being planned in lakes where rainbow trout are 

not native due to the effects they can have on the structure of the food web (zooplankton, 

benthic invertebrates) and spawning success of native fish (eating eggs and young of year 

fish). 

In addition to biological concerns, my work provides significant methodological 

refinements to the use of fish telemetry data. I introduced a new method to measure space 

sharing of mobile fish with an immobile aquaculture cage using a technique that focuses 

on an organism’s use of space and related these estimates to the availability of resources. 

Additionally, studies should focus on lifespans and fecundity of escapees to monitor the 
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potential environmental impacts to native fish stocks, zooplankton and invertebrate 

populations and diversity.  
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Tables  

Table 3-1 – UDOI values for aquaculture operation in Lake 375  with each species in the 

summer and fall. Sample sizes are shown in parentheses and P values significant at the 

5% level are shown in bold. 

 

Year Season Production Lake trout Rainbow trout P value 

2006  Yes    

 Summer  0.0749 (11) 0.311 (18) 0.005 

 Fall  0.0149 (9) 0.49 (13) 0.0149 

2007  Yes    

 Summer  0.0409 (10) 0.227 (19) 0.0409 

 Fall  0.00424 (8) 0.358 (15) 0.0064 

2008  No    

 Summer  0.0774 (9) 0.0882 (12) 0.283 

 Fall  0.00545 (9) 0.0459 (7) 0.0537 

2009  No    

 Summer  0.0494 (10) 0.0475  (4) 0.465 

 Fall  0.00597 (10) 0.0102 (3) 0.193 
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Table 3-2 – UDOI values for rainbow trout overlap with lake trout in each year and 

season. Sample sizes are shown in parentheses and P values significant at the 5% level 

are shown in bold. 

Year Season Lake trout Rainbow trout P value 

2006     

 Summer 0.423 (11) 1.065 (18) 1.48 x 10
-3 

 Fall 0.409 (9) 2.668 (13) 6.92 x 10
-6 

2007     

 Summer 0.564 (10) 0.991 (19) 2.42 x 10
-3 

 Fall 0.362 (8) 1.238 (15) 1.13 x 10
-3 

2008     

 Summer 0.675 (9) 1.128 (12) 4.34 x 10
-5 

 Fall 0.55 (9) 0.587 (7) 0.4002 

2009     

 Summer 0.606 (10) 0.656  (4) 0.314 

 Fall 0.315 (10) 0.186 (4) 4.34 x 10
-2 
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Figures 

 

Figure 3-1: Map of Canada showing location of the Experimental Lakes Area in 

northwestern Ontario. 
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Figure 3-2: Bathymetric map of Lake 375 showing positions of the two VRAP systems 

(triangles) with individual buoys located at the points of the triangles. Location of cage 

(filled box) shown in north basin and 25m buffer around the cage (dashed black line). 

Depth contours are shown in grey (dashed), with 5m intervals shown as solid grey lines. 

Lake 375 is located in UTM zone 15. 
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Figure 3-3: Daily occupied vertical habitat for acoustically tagged lake trout and rainbow 

trout in Lake 375 (shading represents the 2.5
th

 to 97.5
th

 percentiles of all occupied 

depths). Depths are plotted by calendar date for 2006-2009. The 15°C temperature and 4 

mg/L oxygen boundaries are also shown. The vertical black line shows the cut-off for the 

spring and fall seasons. 
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Figure 3-4: Differences in core area sizes between lake trout and rainbow trout among 

years. The size of the boxes represent the 50% of the observations, the umbrellas show 

data within 1.5 times the interquartile range and outliers displayed as points. The notches 

represent the 95% confidence interval of the median.   

 

 

 

 



78 

 

 
Figure 3-5: Differences in mean depth distribution between species throughout the open water seasons from 2006-2009. The 

upper temperature (15°C) and lower oxygen (4 mg/L) limitations for lake trout are displayed to represent usable area for lake 

trout in each year. Lake trout are represented by LT, while rainbow trout are represented by RT in the legend. The vertical 

black line shows the cut-off for the spring and fall seasons. 
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Figure 3-6: Spatial distribution of core areas displayed by each species in Lake 375. Rainbow trout core areas are shown in 

grey and lake trout core areas are shown in black. The position of the north and south VRAP systems are shown by the 

triangles, the 25 m buffer around the cage is shown by the dotted line and the cage site is the black square.  
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Figure 3-7: Mean number of detections within the 25 m buffer around the cage site over 

the course of a day from 00:00 to 23:59. Detections were calculated by mean number per 

minute while the RAPT systems were operational. Grey regions represent the 95% 

confidence interval around the mean. 
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Chapter IV: Conclusion 
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 The overall theme of my MSc thesis was the analysis of forager movements and 

consisted of two primary projects. The first focused on snow crab fishing vessel 

movements in the Gulf of St. Lawrence by defining their behaviours based on speed 

distributions using hidden Markov models (HMM) and relating these movements to 

fishing success, measured by catch rate. The second project dealt with escaped rainbow 

trout movements in a small glacial relict lake and the relationship of these movements to 

both the aquaculture operations and native fish habitat during production and post-

production. Though the study systems differed, the general underlying ecological 

concepts about movement applied to both.  

In Chapter II, catch rate was modeled by a combination of vessel movement 

metrics and number of traps set during an individual fishing trip using a generalized 

linear model (GLM; Nelder and Mead 1972) to develop a model to predict catch using 

available fisheries data. The purpose of this project was to develop a new estimate of 

standardized catch which more closely reflected the natural variations displayed by the 

snow crab population from year to year. Commercial biomass, as estimated from a yearly 

DFO trawl survey showed that the classical measure of catch-per-unit-effort (CPUE) 

(kg/trap) did not follow the commercial abundance estimates from the trawl survey thus 

required a new measure to represent abundance. Combining trip catch records with HMM 

estimates, provided the framework for variables in a GLM which was used to predict 

catch based on a typical trip (effort) displayed by the fishermen and produced an estimate 

for yearly crab abundance that more closely reflected the pattern estimated by the trawl 

survey than the classical CPUE measure.  
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My novel application of HMMs to vessel movements in a fixed gear fishery 

provides distinct advantages in behavioural classification. Previous studies have applied 

HMMs to a wide variety of systems from free ranging woodland caribou (Rangifer 

tarandus) (Franke et al. 2004) to determining vessel activity in the Queensland trawl 

fishery (Peel and Good 2011). Unlike the study performed by Peel and Good (2011) 

which looked at mobile gear, the snow crab fishery uses fixed gear which adds 

complexity to the interpretation of behaviours due to differences in observed speeds 

during different fishing activities (relocating and resetting traps). Identifying behaviours 

from movement pathways has always caused problems for biologists (Turchin 1998), but 

using a technique such as HMMs can explicitly define behaviours as long as the sampling 

resolution is adequate. Within the framework of a HMM, in order to identify the hidden 

states one must choose the appropriate distributions. Since the models are described 

within a statistical framework it is simple to implement goodness-of-fit tests (AIC or 

BIC) and model diagnostics to measure the strength of the models (Peel and Good 2011). 

Another advantage gained by using HMMs is that states can be identified using 

continuous distributions instead of distinct cutoffs. The ability to analyze and classify 

behavioural states exhibited by snow crab fishers has long been of interest to fisheries 

managers, but until now they have been unable to successfully develop a model (E. 

Wade, personal communication). In this study I was able to identify three distinct 

behaviours of fishers using vessel monitoring system (VMS) records. The observed 

vessel speeds when performing distinct behaviours allowed me to use continuous 

distributions in the HMM to identify each behaviour and how long a vessel remained in 
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each state during individual trips. Future studies should involve onboard observers to 

verify the speeds used during fishing trips to their respective behaviour. 

Standardized CPUE measures are critical to monitoring population fluctuations of 

marine fish. Absolute population estimates of fish stocks cannot be quantified because 

most populations are not directly observable, instead standardized abundance measures 

are used to monitor and track changes in abundance (Hilborn and Walters 1992). GLMs 

have developed into one of the most common methods used for standardizing catch and 

effect data (Maunder and Punt 2004), while Gavaris (1980) seems to be one of the first to 

use GLMs in this manner. In his early study, only categorical explanatory variables were 

used to model catch and they were applied to the natural logarithm of CPUE so that catch 

rate would meet the classical assumptions of generalized linear models.  

Catch rates can vary in a fishery from year to year and the efficiency of a fishing 

fleet is also constantly changing. There are three possible scenarios when using catch rate 

to estimate abundance, these being hyperstability, hyperdepletion and proportionality 

(Hilborn and Walters, 1992). The sustainability of a fishery is one of the most important 

aspects in determining whether it can continue to be profitable over the long term, 

therefore changes in stock abundance are needed to monitor the population and predict 

future catches (Stocker and Fournier, 1984). Recently, GLMs have been used to estimate 

abundance for highly migratory species such as Pacific bigeye tuna (Thunnus obesus) 

(Bigelow et al. 2002), blue marlin (Makaira nigricans) (Hinton and Nakano 1996) and 

yellowfin tuna (Thunnus albacares) (Langley et al. 2005). In the past, GLMs have been 

used in management decisions regarding stock assessments. The GLM input into the 

annual South African rock lobster (Palinurus gilchristi) assessment is the most important 
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component, which is based on an age-structured production model (Groeneveld 2003). In 

Chapter II, the variables used in the GLM represented various measures of effort 

displayed by individual fishermen to quantify the success of the entire fleet in each 

fishing season. Using median values of effort expressed by fishermen within the fleet, I 

was able to predict the catch for a single trip in each year that represented the overall 

abundance. Though the GLM output did not produce an absolute population estimate it 

did produce an index that represented the total available biomass to fishers. Further 

development of this model could include variables such as discards and weights of soft-

shell and immature snow crab per trap to predict future biomass.   

The application of HMMs to vessel movement contributes to the developing fleet 

dynamics literature. Fleet dynamics can be broadly defined as changes that relate to the 

fishing capacity of a group of vessels and their fishing activities, which include the 

intensity of their fishing effort and spatial distribution through time. Two main areas that 

have dominated the literature are models that focus on individual behaviour and models 

that explain the behaviour of individuals in groups (reviewed in van Putten et al. 2012). 

Using expected utility theory, one expects decision makers (fishers) to make a decision 

that maximizes profit and minimizes costs (van Putten et al. 2012). These decisions 

typically involve many factors such as distance to fishing site, fuel costs, market prices, 

risk assessment, competition from other fishers and information exchange.  

The snow crab fishery has the advantage of a thorough pre-season survey, which 

is conducted yearly, usually in the summer or fall prior to the next fishing season. This 

survey serves two purposes, the first is to regulate the fishery and minimize over-

exploitation risk and the second is to provide fishers with information on crab abundance 
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and location. Finding profitable fishing sites is the utmost concern for fishers, but the 

importance of the pre-season survey decreases as the season progresses and fishers must 

employ new tactics to target abundant snow crab patches (Gillis et al. 2006). One of these 

tactics involves setting more than a single string of traps during a fishing trip to explore 

new areas to achieve higher catch rates as local prey density declines and it may also 

possibly reduce competition between fishers, though further work would needed to be 

done to confirm this.  

In the third chapter I have demonstrated new methodology for the spatial 

correction of acoustically tagged fish using a stationary tag trial data and measures of 

spatial overlap using the utilization distribution overlap index (UDOI).  The 

methodologies implemented in this project can be further explored in future research. 

Measuring two dimensional habitat overlap using the UDOI proved easy to apply to this 

ecological dataset and it would be interesting to see how it performs in other aquatic 

studies. The application of simulating a uniform distribution of space use for the cage site 

should be further explored and applied to future aquaculture studies, as this method 

provides a comparison of habitat overlap between an individual and its space use around 

an inanimate object of interest to researchers. As a whole, this project has contributed to 

aquaculture research and the fate of escapees as time in the wild increases. 

 The biological implications of large scale escapes usually receive the most 

interest, but these escape events also have economic consequences as well. Farm 

operators can sustain significant financial losses in the result of large scale escapes and 

unless the cause of the escape was negligence, other factors are usually to blame (storms, 

sabotage, etc.). Recapture efforts should focus on important questions such as how long 
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do escaped fish remain at the cage site and when are they most likely to be located there. 

I found that rainbow trout only remained near the aquaculture cage when the operation 

was active, and chiefly at feeding times. My findings suggest that recapture efforts should 

begin immediately after an escape event and should be focused during feeding times to 

increase the likelihood of success. If recapture efforts are delayed for some reason and 

rainbow trout disperse from the cage site, the chances for successful recapture efforts 

diminish rapidly because of the uncertainty of where efforts should be concentrated. A 

confounding factor may be the size of the study system, with a relatively small lake used, 

the escaped fish could only disperse less than 1 km from the cage site. This element 

removes the dispersal element during cage production, but it still produces evidence for 

cage attraction.  

Both of my studies are centered in the theories of foraging ecology. Typically, the 

success of an individual is judged by its breeding success, though in order to breed, 

animals must consume resources from the environment (foraging ecology or predator 

prey interactions) (Morris 2003). A similar definition can be used for fishers, but their 

success comes from the size of their catch or their profitability throughout a season. The 

more foraging success an individual achieves over their lifetime, we would expect a 

greater advantage over its competitors. For fish, this typically means greater breeding 

potential, speed or fitness, while for fishers it could mean equipment upgrades to increase 

their advantage over other fishers or increased catch rates. Unfortunately, food patches 

are a density dependent entity, with patches located independent of each other which 

causes predators to actively search for abundant patches and compete for resources. 

Predators encounter food within these patches, but must travel between patches to exploit 
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their resources. As soon as a predator encounters a patch and begins foraging, the prey 

density decreases, as does the predator’s foraging efficiency as time increases (Charnov 

1976). Foraging behaviour is not a random activity in this study as results obtained in 

Chapter III show that rainbow trout attraction to the cage site shows that even organisms 

with less developed cognitive abilities can also alter their behaviour to maximize foraging 

efficiency. The patterns in trout distributions associated with the increased food 

availability at the cage site suggest that different species do not use the same resource 

patch and therefore probably target different prey items.  

This thesis has produced novel methodology for application of ecological 

foraging theory in fisheries and aquaculture. I have shown that using fishers behaviours 

combined with traditional measures of effort produces an index of abundance that more 

closely reflects exploitable biomass in the snow crab fishery. This first study can be 

further developed to be included in methods of stock assessment in other fisheries where 

obtaining accurate estimates are difficult or impossible to implement quotas and 

guidelines to ensure sustainable fisheries. The increasing availability of VMS data create 

a high potential for this methodology to be further used to increase our understanding of 

fleet and stock dynamics. In the second project I was able to quantify overlap indices of 

escaped rainbow trout to an aquaculture cage and other fish using acoustic telemetry. 

This project showed the significance of the presence of the cage as an area of interest to 

escapees while food was available and then how rainbow trout did not use the cage site 

when waste feed was not available. My work clearly demonstrates the potential of the 

interdisciplinary application of general ecological principles to specific problems in 

fisheries and aquaculture. 



 

89 

 

Literature Cited 
 

Bigelow, K.A., Hampton, J., and Miyabe, N. 2002. Application of a habitat-based model 

 to estimate effective longline fishing effort and relative abundance of Pacific 

 bigeye  tuna (Thunnus obesus). Fish. Oceanogr. 11: 143–155. 

 

Charnov, E.L. 1976. Optimal foraging, marginal value theorem. Theor. Popul. Biol. 9 (2): 

 129-136. 

 

Franke, A., Caelli, T., and Hudson, R.J. 2004. Analysis of movements and behaviour of 

 caribou (Rangifer tarandus) using hidden Markov models. Ecol. Model. 173: 

 259-270. 

 

Gavaris, S. 1980. Use of a multiplicative model to estimate catch rate and effort from 

 commercial data. Can. J. Fish. Aquat. Sci. 37: 2272–2275. 

 

Gillis, D.M., Wade, E., and Swain, D.P. 2006. Spatial evidence for information exchange 

 and competition in the Gulf of St. Lawrence snow crab (Chionoecetes opilio) 

 fishery. Can. J. Fish Aquat. Sci. 63: 254-267. 

 

Groeneveld, J.C. 2003. Under-reporting of catches of South Coast rock lobster Palinurus 

 Gilchristi, with implications for the assessment and management of the fishery. 

 Afr. J.  Mar. Sci. 25: 407-411. 

 

Hilborn, R., and Walters, C.J. 1992. Quantitative fisheries stock assessment. Chapman & 

 Hall,  London. 

 

Hinton, M.G., and Nakano, H. 1996. Standardizing catch and effort statistics using 

 physiological,  ecological, or behavioral constraints and environmental data, with 

 an application to blue  marlin (Makaira nigricans) catch and effort data from 

 Japanese longline fisheries in the Pacific. Inter-Am. Trop. Tuna Comm. Bull. 

 21: 171–200. 

 

Langley, A., Bigelow, K.A., Maunder, M.N. 2005. Longline CPUE indices for bigeye 

 and  yellowfin in the Pacific Ocean using GLM and statistical habitat 

 standardization methods [SA WP-8]. Noumea, New Caledonia: SPC, 

 Secretariat of the Pacific Community. Meeting of the Scientific Committee 

 of the Western and Central Pacific Fisheries  Commission. WCPFC-SC1. New 

 Caledonia. 8-19 August 2005. 1st. 39 p. 

 

Maunder, M.N., and Punt, A.E. 2004. Standardizing catch and effort data: a review of 

 recent approaches. Fish. Res. 70, 141–159. 

 

Morris, D.W. 2003. Toward an ecological synthesis: a case for habitat selection. 

 Oecologia. 136: 1- 13. 

 



 

90 

 

Nelder, J.A. and Mead, R. 1965. A simplex method for function minimization. Comp. J. 

 7: 308-313 

 

Peel, D., and Good, N. 2011. A hidden Markov model approach for determining vessel 

 activity from vessel monitoring system data. Can. J. Fish. Aquat. Sci. 68: 1252-

 1264. 

 

Stocker, M. and D. Fournier. 1984. Estimation of relative fishing power and allocation of 

 effective fishing effort, with catch forecasts, in a multi-species fishery. North 

 Pacific  Commission. (Bulletin No. 119). 

 

Turchin, P. 1998. Quantitative Analysis of Movement. Measuring and Modeling 

 Population Redistribution in Animals and Plants. Sinauer Associates. 

 Sunderland, Massachusetts,  USA. 

 

van Putten, I. E., Kulmala, S., Thébaud, O., Dowling, N., Hamon, K. G., Hutton, T. and 

 Pascoe, S. 2012. Theories and behavioural drivers underlying fleet  dynamics 

 models. Fish  Fish. 13: 216–35. 

 

 

 

 

 

 

 

 

 



 

91 

 

Appendix I 

Distance Calculation 

In order to calculate the turning angles and distances between successive locations I had 

to compute the bearing of each step. The bearings were calculated using the following 

formulas described by Bullock (2007), two quantities, S and C must first be calculated 

using the following equations: 

(1) 

 

(2) 

 

where   denotes latitude and    denotes differences in longitudes. Point A will have 

latitude    and longitude LA, and point B will have latitude   and longitude LB. The 

bearing β of B from A is calculated from the following equation: 

(3) 

 

The distances were calculated using the haversine. The basis for choosing this method is 

because of its ability to accurately estimate distance even when two points are in very 

close proximity to one another. The haversine is able to accurately estimate distances 

because the algorithm avoids the inverse cosine function (Kotwicki et al., 2011).  As 

described by Sinnot (1984), the haversine can be calculated as follows: 
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(4) 

 

The distance between two points can be found using the following formulas as described 

by Sinnot (1984) and Bullock (2007): 

(5) 

 

(6) 

 

(7) 

 

where    is the difference in latitudes, θ is the angular distance in radians,      is the 

square of half the chord length between the points and R is the radius of the earth. R is 

taken to be equal to 6371.00 km as published by Haynes (2011). 

Modifications to the msm Library 

The msm package was already able to fit normal and Weibull distributions, but not t 

distributions. The package maintainer provided the source code for the msm package and 

we were able to add a t distribution into the msm function. The degrees of freedom within 

the t distributions were kept fixed during analysis to prevent the distribution from 

wavering. 
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Maximum Likelihood Estimation and Model Comparison 

The method of maximum likelihood used for model optimization is described by 

Nelder and Mead (1965). This is the default method used in the msm package. Model 

comparison was done by using Akaike’s information criterion (AIC) and Bayesian 

information criterion (BIC). The AIC method is originally described by Akaike (1973) 

and measures the quality of fit of a model by applying criteria from information theory. 

AIC is computed as: 

(8) 

 

where p is the number of parameters in the model. This equation accounts for the increase 

in likelihood expected with increases in the number of parameters regardless of the true 

accuracy of the model. BIC is calculated in a similar way to AIC, but it also adds a 

penalty for sample size (n). BIC is computed as: 

(9) 

 

When comparing models, the model that minimizes the value of AIC or BIC is chosen as 

superior to the other models being tested (Ward 2008). A model was said to converge 

when the optimization reached a global maximum rather than a local maximum over the 

likelihood surface (Jackson 2011). The AIC and BIC values were compared between 

models that converged to an optimal solution to select the best model for further analysis. 
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Appendix II – Spatial Correction using Kriging 

Positioning Error and Correction 

 In order to test the accuracy and precision of the RAPT system, stationary tag 

trials were performed in the fall of 2005. In total there were 17 different test locations 

using 3 different tags (Figure II-1). One location between the two RAPT systems suffered 

from an echo effect that caused positions from this station to be very erratic with 

sequential positions located across the entire lake and was dropped from further analysis. 

To predict the spatial error of the stationary tag trials the easting and northing error were 

calculated at each station and a geostatistical technique called Kriging was used (Journel 

and Huijbregts 1978). This technique incorporates spatial autocorrelation modeled from 

the tag trials through a variogram (Figure II-2a and II-2c). A Gaussian theoretical 

variogram was used to represent both the northing and easting errors, as they provided 

the best relocations in relation to the location of the stationary tags. Easting and northing 

errors were interpolated from a 10 m × 10 m grid of estimates calculated from the 

Kriging model (Figure II-2b and II-2d).  

Spatial Correction 

Although the RAPT system was able to detect the stationary tags at all locations, 

the systems’ accuracy was low. Fortunately, the precision of the system was fairly high, 

allowing the use of kriging to correct the spatial locations of the stationary tags. In the 

north and south basins of Lake 375, many of the points were ‘pulled’ in towards the 

centre of their respective triads, but in some cases the RAPT system ‘pushed’ points 

outwards and the resulting positions would have been located on land. Many of the 
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stationary tag locations were located near shore where some of the most biologically 

important behaviours (e.g. spawning, feeding on minnows) occur. The interpolated values 

for the tag trials (Figure II-1) show that kriging effectively corrected the RAPT positions 

at all remaining stations. The northing error estimated from the stationary tag trials 

ranged from -9.8 – 171.1 m (where negative values represent positioning points south of 

their actual position and positive values north of their actual position) and the easting 

errors ranged from -60.6 – 61.7 m (where negative values represent positioning points 

west of their actual position and positive values east of their actual position). The 

absolute error range of the stationary tag trials ranged from 2.64 – 170.3 m. 

Uncorrected positions of acoustically tagged fish recorded in Lake 375 over the 

four years of study are shown in figure II-3a. There are two problem areas in Lake 375, 

the first is located at the north end of the lake and the second is located on the west side 

of the lake in the south basin. In these areas, the RAPT system consistently positioned 

fish outside of the lake, causing problems for interpreting biologically relevant behaviour. 

Including these positions in further analysis could bias results by inaccurately 

representing fish core area size. Removing them could also remove records of important 

behaviours. Using information developed from the stationary tag trials, a correction was 

applied to the fish positions in order to relocate detections to their assumed positions. The 

Kriged fish positions shown in Figure II-3b display much more affinity to the depth 

contours of the lake. I examined the validity of calculated positions according to 2 

criteria; (1) whether a fish was above or below the sediment at its spatial coordinates and 

(2) whether the fish was positioned within the lake. Before the correction was applied, 

there were 40,073 (14.53%) positions below the sediment at their calculated position and 
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29,386 (10.65%) positions outside of the lake shoreline. Post-correction these values both 

decreased, with 30,404 (11.03%) positions below the sediment and 6,510 (2.36%) outside 

the shoreline. These remaining points outside of the shoreline were removed from further 

analysis, resulting in 269,261 locations for further analysis. 
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Figures 

Figure II-1: Map of Lake 375 showing stationary tag trial positions, pre-processing 

positions and post-processing positions. 
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Figure II-2: Empirical variograms used to describe the error structure in Lake 375. The 

easting variogram is shown in II-2a and the northing variogram in II-2c. The error 

estimates of the easting (II-2b) and northing (II-2d) error estimates from the stationary 

tag trials. 
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Figure II-3: Positions of fish by the RAPT system in Lake 375. Fish positions in Lake 

375 before kriging was applied (II-3a) and post correction positions (II-3b). Location of 

cage (filled box) shown in north basin and 25m buffer around the cage (dashed black 

line). Depth contours are shown in grey (dashed), with 5m intervals shown as solid grey 

lines. Fish positions are represented by grey points. 

 

 


