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Abstract

With the roll-out of 5G in many countries e.g. South Korea, Canada, etc, the discussions

on the development of 6G are overtaking the attention of both academia and industry. In

comparison to 5G, 6G will bring a wider frequency band, higher coverage and spectral effi-

ciency, higher data rate, low latency and more, to enhance communication for the massive

number of users/devices. Two of the emerging enablers for beyond (5G) B5G and 6G com-

munications are unmanned aerial vehicles (UAV) and intelligent reflecting surfaces (IRSs).

When UAVs have already become an integral part of 5G and B5G to meet the high data

rate requirement by offering better communication links due to the proactive placement at

heights (i.e., flexible deployment in all the three dimensions (3D)), the IRSs have emerged as

a key enabler for realizing 6G to provide better coverage by tuning the wireless environment

through an intelligent reflection of the incoming signal at very little power cost. In addition,

B5G networks are expected to support aerial user communications in accordance with the

expanded requirements of data transmission for an aerial user. However, there are some

challenges and unaddressed issues that need attention before accommodating the enablers

like UAVs and IRSs in future wireless standards such as the consideration of different radio

wave propagation properties between terrestrial areas and aerial areas, the effect of product

path-loss experienced by IRS for both ground and aerial communication, gains associated

with 3D IRS installation in static (on fixed location e.g. building height) and dynamic (on

mobile UAV) environment are still unknown, and providing service to remote or un-served

users on both small and large scale.

In order to address the technical issues in the above context, the thesis develops few



innovative enabling frameworks regarding UAV and/or IRS-assisted communication. In par-

ticular, (i) I begin with the optimal UAV-assisted data ferrying scheme to provide coverage

to hard-to-reach or remote areas for delay-tolerant applications by taking aerial and ground

channel model and rotary-wing UAV power consumption into account, (ii) Second, an in-

tegrated UAV-IRS scheme is proposed where IRS is installed on the UAV and therefore,

can benefit from 3D deployment similar to UAV, taking important factors e.g. aerial and

ground channel, height and number of IRS elements for UAV and IRS, respectively, and

power consumption of both UAV and IRS in to account. Finally, (iii) to incorporate massive

devices of different kinds in to consideration, I proposed large-scale IRS-assisted downlink

communication for multi-BS and multi-IRS setup. For the very setup, the user association

with indirect IRS-assisted communication and user association with direct BSs are studied.

The impact of the fraction of each type of user, number of IRS elements and its power

consumption, large-scale deployment intensity of UAV and IRS in to account. Additionally,

the performance of the proposed schemes are investigated through the derivation of closed-

form exact and/or accurate approximate expression of the performance metrics that include

coverage/outage probability, spectral and energy efficiency, bit-error rate, etc. Finally, the

provided expressions are utilized in the various optimization problem and optimization solu-

tions are either convexified by reformulation and using approximations or by designing low

complexity algorithms. The insights are drawn related to available operation modes and

other critical network parameters. Finally, the results are validated through Monte-Carlo

simulations.

iii



Dedication

This dissertation is dedicated to my loving parents, beloved husband, and my adventurous

little son Faateh.

iv



ACKNOWLEDGMENT

First, I would like to thank my advisor, Dr. Ekram Hossain, without his guidance and consis-

tent support this work was not possible. I would also like to thank the committee members

Dr. Philip Ferguson and Dr. Sherif Sherif for their brilliant comments and suggestions to

improve the quality of my thesis. Additionally, the gratitude is due to Dr. Hina Tabassum

for being a constant help and guide throughout the course of my Ph.D. on both personal

and professional levels.

Finally, I would like to deeply thank my parents for their never-ending love and prayers,

my caring husband, my siblings, and my friends for being always there for me when I needed

them, especially, my pal Amna Sadia.

v



Contents

Page

Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii

ACKNOWLEDGMENT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v

List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . x

List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xi

List of Abbreviations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xvii

Chapter

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1 Future Wireless Networks and Enabling Technologies . . . . . . . . . . . 2

1.1.1 Remote Area Communication . . . . . . . . . . . . . . . . . . . . 2
1.1.2 Aerial Access Network and 3D Communication . . . . . . . . . . . 3
1.1.3 Intelligent Beamforming Through Intelligent Reflecting Surfaces . 4
1.1.4 Co-Existence of Enabling Technologies . . . . . . . . . . . . . . . . 4
1.1.5 Large-Scale Communication . . . . . . . . . . . . . . . . . . . . . 5
1.1.6 Machine Learning and Artificial Intelligence . . . . . . . . . . . . . 5

1.2 Key Challenges of Future Wireless Networks . . . . . . . . . . . . . . . . 5
1.3 Scope of Thesis and Motivation . . . . . . . . . . . . . . . . . . . . . . . 8

1.3.1 UAV-Assisted Communication . . . . . . . . . . . . . . . . . . . . 8
1.3.2 UAV-Assisted Data Ferrying . . . . . . . . . . . . . . . . . . . . . 10
1.3.3 IRS-Assisted Communication . . . . . . . . . . . . . . . . . . . . . 13
1.3.4 Integrated UAV-IRS Relaying . . . . . . . . . . . . . . . . . . . . 14
1.3.5 Large-Scale IRS-assisted communication . . . . . . . . . . . . . . . 16
1.3.6 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

1.4 Objective and Contribution of the Thesis . . . . . . . . . . . . . . . . . . 18

vi



1.4.1 Objective . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
1.4.2 Contributions of the Thesis . . . . . . . . . . . . . . . . . . . . . . 20

1.5 Organization of the Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2 End-to-End Energy Efficiency and Reliability of UAV-Assisted Wire-

less Data Ferrying . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.1.1 Background Work . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
2.1.2 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.2 Mathematical Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . 28
2.3 System Model and Assumptions . . . . . . . . . . . . . . . . . . . . . . . 31

2.3.1 UAV-Assisted Data Ferrying Model . . . . . . . . . . . . . . . . . 31
2.3.2 Aerial Channel Model . . . . . . . . . . . . . . . . . . . . . . . . . 34
2.3.3 Uplink and Downlink Transmission Model . . . . . . . . . . . . . . 36
2.3.4 Energy Consumption Model . . . . . . . . . . . . . . . . . . . . . 37

2.4 End-to-End Reliability and Bit Error Probability Analysis . . . . . . . . 40
2.4.1 Methodology of Analysis . . . . . . . . . . . . . . . . . . . . . . . 42
2.4.2 Characterization of Uplink BEP - (P u,L

b and P u,N
b ) . . . . . . . . . 43

2.4.3 Characterization of Downlink BEP - (P k,L
b and P k,N

b ) . . . . . . . 44
2.4.4 End-to-End BEP of RX k, P k

b (dk) . . . . . . . . . . . . . . . . . . 45
2.4.5 Overall BEP of the MultiCasting System, PMC

b (dk) . . . . . . . . . 45
2.4.6 BEP of Any Arbitrary BS . . . . . . . . . . . . . . . . . . . . . . 46

2.5 End-to-End Energy-Efficiency and SNR Outage Probability . . . . . . . . 46
2.5.1 End-to-End Outage Probability of RX k, Ok(dk) . . . . . . . . . . 47
2.5.2 Overall SNR Outage of the MultiCasting System, OMC(dk) . . . . 50
2.5.3 SNR Outage of an Arbitrary BS . . . . . . . . . . . . . . . . . . . 51
2.5.4 Overall Energy-Efficiency . . . . . . . . . . . . . . . . . . . . . . . 51
2.5.5 Approximations for Rician Fading Channels . . . . . . . . . . . . . 51

2.6 Optimization Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
2.6.1 Outage-Constrained Energy Minimization . . . . . . . . . . . . . . 55
2.6.2 Energy-Constrained SNR Outage Minimization . . . . . . . . . . . 58
2.6.3 Multi-Objective Optimization . . . . . . . . . . . . . . . . . . . . 59

2.7 Numerical Results and Discussion . . . . . . . . . . . . . . . . . . . . . . 62
2.8 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

vii



3 Optimization of Wireless Relaying With Flexible UAV-Borne Reflect-

ing Surfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

3.1.1 Background Work . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
3.1.2 Contribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

3.2 System Model and Assumptions . . . . . . . . . . . . . . . . . . . . . . . 74
3.2.1 Spatial Deployment of UAV-IRS System . . . . . . . . . . . . . . . 74
3.2.2 Aerial Channel Model . . . . . . . . . . . . . . . . . . . . . . . . . 75
3.2.3 Spectrum Allocation . . . . . . . . . . . . . . . . . . . . . . . . . . 76
3.2.4 Transmission Modes . . . . . . . . . . . . . . . . . . . . . . . . . . 76
3.2.5 Energy Consumption Model . . . . . . . . . . . . . . . . . . . . . 81

3.3 Performance Characterization of Integrated UAV-IRS Relaying . . . . . . 82
3.3.1 UAV-only Mode of Relaying . . . . . . . . . . . . . . . . . . . . . 83
3.3.2 Outage Probability for IRS-only Mode of Relaying . . . . . . . . . 84
3.3.3 Outage Probability of Integrated UAV-IRS Mode of Relaying . . . 86
3.3.4 Ergodic Capacity Rm and Energy Efficiency EEm for Mode m . . 86

3.4 Approximate Performance Characterizations for UAV-IRS Relaying . . . 87
3.5 Optimization of UAV-IRS Relaying . . . . . . . . . . . . . . . . . . . . . 90

3.5.1 IRS-only Mode: Optimizing the Number of IRS Elements . . . . . 91
3.5.2 IRS-only Mode: Height Optimization . . . . . . . . . . . . . . . . 94
3.5.3 UAV-only Mode: Height Optimization . . . . . . . . . . . . . . . . 98
3.5.4 Mode Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

3.6 Numerical Results and Discussion . . . . . . . . . . . . . . . . . . . . . . 103
3.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

4 Stochastic Geometry Analysis of IRS-Assisted Downlink Cellular Net-

works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

4.1.1 Background Work . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
4.1.2 Contribution and Organization . . . . . . . . . . . . . . . . . . . . 113

4.2 System Model and Assumptions . . . . . . . . . . . . . . . . . . . . . . . 115
4.2.1 Network Deployment and Transmission Model . . . . . . . . . . . 115
4.2.2 Signal and Interference Models (IRS-Assisted Users) . . . . . . . . 120
4.2.3 Signal and Interference Models (IRS-Assisted Users) . . . . . . . . 120
4.2.4 Signal and Interference Models (Direct Mode) . . . . . . . . . . . 122

viii



4.2.5 Power Consumption Model . . . . . . . . . . . . . . . . . . . . . . 122
4.2.6 Methodology of Analysis . . . . . . . . . . . . . . . . . . . . . . . 123

4.3 Statistics of the Received Signal Power (IRS-assisted Transmission) . . . 124
4.4 Statistics of the Aggregate Interference (IRS-Assisted Transmission) . . . 128
4.5 Coverage Probability and Ergodic Capacity Characterization . . . . . . . 135

4.5.1 Coverage Probability (IRS-assisted Transmission) . . . . . . . . . 135
4.5.2 Coverage Probability (Direct Transmission) . . . . . . . . . . . . . 136
4.5.3 Ergodic Capacity . . . . . . . . . . . . . . . . . . . . . . . . . . . 137
4.5.4 Energy Efficiency . . . . . . . . . . . . . . . . . . . . . . . . . . . 138
4.5.5 Overall Network Coverage, Ergodic Capacity, and Energy Efficiency 138

4.6 Numerical Results and Discussion . . . . . . . . . . . . . . . . . . . . . . 139
4.6.1 Simulation Parameters . . . . . . . . . . . . . . . . . . . . . . . . 140
4.6.2 Validation of Analysis . . . . . . . . . . . . . . . . . . . . . . . . . 140
4.6.3 Impact of BS Transmit Power on Direct Communication . . . . . . 141
4.6.4 Impact of IRS Intensity on Direct and IRS-Assisted Communications142
4.6.5 Impact of BS Intensity on Direct and IRS-Assisted Communications 144

4.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146

5 Conclusion and Future Research Directions . . . . . . . . . . . . . . . . 147
5.1 Conclusion/Summary of the Thesis . . . . . . . . . . . . . . . . . . . . . 147
5.2 Research Outcome: Publication List . . . . . . . . . . . . . . . . . . . . . 150
5.3 Future Research Directions . . . . . . . . . . . . . . . . . . . . . . . . . . 150

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168

Appendix

A Convexity of Etot(z) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170

B Monotonicity of Etot(z) in (2.65) . . . . . . . . . . . . . . . . . . . . . . . . 171

C Monotonicity of Outage probability of (2.51) . . . . . . . . . . . . . . . 172

D Ratio of concavity-convexity of (3.44) . . . . . . . . . . . . . . . . . . . . 173

ix



List of Tables

2.1 Chapter 2: Summary of the main symbols and their definitions . . . . . . . . 33

4.1 Chapter 4: Summary of the main symbols and their definitions . . . . . . . . 117

x



List of Figures

1.1 6G technologies. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2 (a) UAV-assited communication between BS and user receiver (a) when UAV

is at fixed location, and (b) when UAV is performing conventional data ferrying. 11

1.3 IRS-assited communication between BS and user when IRS is deployed at

some building or wall. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

1.4 Integrated UAV-IRS communication when IRS is mounted on UAV and placed

between source and destination receiver. . . . . . . . . . . . . . . . . . . . . 15

1.5 IRS-assisted communication in large scale setup with multi-IRS and multi-BS

when the user is connected with a BS through nearest IRS and the direct link

to the nearest BS is blocked. . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.1 UAV-assisted data ferrying for multicasting and serving K terrestrial receivers. 32

2.2 Outage of receivers that are located nearest and farthest from the cell-center

as well as the receiver located at the cell-center, considering Rayleigh/Exp

distribution α = 2.5 as a function of d. . . . . . . . . . . . . . . . . . . . . . 39

2.3 Validation of (a) erf(x) and (b) outage probability of RX k with Rician K-

factor K = 10, γ̄u = 172 dB with τ = 0.3. . . . . . . . . . . . . . . . . . . . . 54

xi



2.4 (a) BEP conditioned on dk, γu = 211dB, γk = 181dB, Γ0 = 10dB, K(θk) and α(θk), (b)

BEP with K(θk) ranging from [2.18 1.92] and α(θk) ranging from [2.313 2.311] vs fixed K, α. 62

2.5 PEP conditioned on dk: comparison of simulation and exact analysis for un-

conditioned on events and conditioned on dk as a function d with and without

ARQ. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

2.6 Outage probability conditioned on dk comparison of simulation, exact, and

approximate analysis for different d. . . . . . . . . . . . . . . . . . . . . . . . 64

2.7 Outage probability as a function of the altitude of UAV considering γu =

172dB, γk = 184dB, and d = 2000m. . . . . . . . . . . . . . . . . . . . . . . 65

2.8 Optimal distance d∗ plotted for (a) outage constrained energy minimization

and (b) energy constrained outage minimization, γu = 188dB, γk = 172dB, &

K = 5.25 with outage threshold τ = 0.2, and energy budget Eτ = 1× 105. . 66

2.9 Multiobjective optimization with minimization of outage and energy consump-

tion for a typical user comparison exhaustive vs difference of convex algorithm

(DCA) based solution for Rician K-factor K = 2 for event υ1, γu = 176dB

and γk = 180dB as a function of weights λ. . . . . . . . . . . . . . . . . . . . 67

3.1 Integrated UAV-IRS communication system with self-interference (SI) at UAV.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

3.2 Comparison of Eq. (3.8) and its approximation in Eq. (3.9) for different

parameters. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

3.3 Comparison of the exact PDF of X through simulations and the PDF of X

when N →∞ that follows non-central chi-square distribution. . . . . . . . . 86

xii



3.4 The comparison of exact ergodic capacity (via analysis and simulations) to

the UAV-only bounds provided in Eq. 3.27(step a) and Eq. (3.27) (step b).

Approximation in Eq. (3.27) (step b) is validated by analytically solving Eq.

(3.27) (step a). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

3.5 The validation of solution obtained from Eq. (3.42), Eq. (3.44) and Eq.

(3.48) for IRS-only mode for Eb/N0 = 130dB, N = 30, pu = pd = 50dBm for

different environment parameters, where (Eb represents per symbol energy). . 97

3.6 The validation of solution obtained from Eq. (3.49), Eq. (3.51) and Eq.

(3.57) for UAV-only mode for Eb/N0 = 122dB, RSI = 5dB, pu = 56dBm,

pd = 45dBm. For given parameters Ii < 1010 ∀i ∈ (u, d) assures the concavity

of Oi(h). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

3.7 Performance comparison of outage probability, and ergodic capacity for IRS-

only, UAV-only and integrated UAV-IRS mode for Pr(b) = 15 × 10−2W and

d = 1250m. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

3.8 Performance comparison of power consumption, and energy-efficiency for IRS-

only, UAV-only and integrated UAV-IRS mode for Pr(b) = 15 × 10−2W and

d = 1250m. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

3.9 Energy-efficiency EE w.r.t numbr of IRS elements N for different different

bit resolution power consumption Pr(b) for d = 1250m. . . . . . . . . . . . . 105

3.10 Optimal number of IRS elements and the optimal EE?
IRS comparison for dif-

ferent source to UAV distance provided in Fig. 3.7 and Fig. 3.8 for pr(b) =

15× 10−2W . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

xiii



3.11 Performance comparison of outage probability and ergodic capacity for IRS-

only, UAV-only and integrated UAV-IRS mode for d = 1250 m, N = 260,

Pr(b) = 35× 10−3 W, w.r.t height of UAV. . . . . . . . . . . . . . . . . . . 106

3.12 Performance comparison of power consumption and energy efficiency for IRS-

only, UAV-only and integrated UAV-IRS mode for d = 1250 m, N = 260,

Pr(b) = 35× 10−3W w.r.t height of UAV. . . . . . . . . . . . . . . . . . . . 106

3.13 Optimal UAV height for different source to UAV distance forN = 260, Pr(b) =

15× 10−3 W. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

3.14 Optimal EE for different source to UAV distance for N = 260, Pr(b) = 15 ×

10−3 W. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

4.1 System model for direct and IRS-assisted communication in multi-IRS and

multi-BS setup: (a) Scenario 1: when the user is connected with a BS through

nearest IRS and the direct link to the nearest BS is blocked, and (b) Scenario

2: when the user is connected with a nearest BS in the presence a weak IRS

link. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

4.2 Validation of conditional LT in (4.7) of the desired received signal power

SR0(r0) considering (i) random IRS phase shifts and (ii) optimal IRS phase

shifts obtained from CVX, using Monte-Carlo simulations. . . . . . . . . . . 126

4.3 (a): Zoomed view of IRS functionality as a reflector, and (b) triangle explain-

ing the IRS distance approximation. . . . . . . . . . . . . . . . . . . . . . . 131

4.4 Comparison of E[r−α0,mt
−α
j ], E[r−α0,m]E[t−αm,j] and the proposed approximation of

E[r−α0,m ]E[t−αj ] in (4.18). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

xiv



4.5 Conditional LT of aggregate interference from IRSs (excluding the nearest

IRS), LIR(s) in (4.19), for λR = 2λ0,M = 300 and λR = 10λ0,M = 1500 with

P = 1 and P = 20, using Monte-Carlo simulations. . . . . . . . . . . . . . . 134

4.6 Conditional LT of aggregate interference from BSs (excluding the nearest BS

in direct mode), LIB(s) (4.16), for P̂ = P = 1, P̂ = P = 20, and λR =

2λ0,M = 300, using Monte-Carlo simulations. . . . . . . . . . . . . . . . . . 134

4.7 Validation of conditional coverage probability in IRS-assisted and direct mode

of communications derived in (4.22) and (4.27), using Monte-Carlo simulations.140

4.8 Analytical and simulation results on conditional achievable rate in IRS-assisted

and direct mode of communications derived in (4.31) and (4.32) with respect

to IRS elements (for p̂t = 1 and p̂t = 5). . . . . . . . . . . . . . . . . . . . . . 142

4.9 Validation of conditional EE for IRS-assisted and direct mode of communica-

tions derived in (4.33) and (4.34), using Monte-Carlo simulations (for different

number of IRS elements, p̂t = 1 and p̂t = 5). . . . . . . . . . . . . . . . . . . 142

4.10 Comparison of conditional coverage probability and achievable rate for IRS-

assisted mode and direct mode of communications with respect to number of

IRS elements (for total number of IRSs M = 300 and M = 1500). . . . . . . 143

4.11 Comparison of power consumption and conditional EE for IRS-assisted mode

and direct mode of communications with respect to number of IRS elements

(for total number of IRSs M = 300 and M = 1500). . . . . . . . . . . . . . 143

xv



4.12 Comparison of conditional coverage probability and achievable rate for IRS-

assisted mode and direct mode of communications with respect to total num-

ber of IRSs (for BS intensity λB = 10−4 and λB = 0.5× 10−4, and N = 100).

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

4.13 Comparison of power consumption and conditional EE for IRS-assisted mode

and direct mode with respect to total number of IRSs (for BS intensity λB =

10−4 and λB = 0.5× 10−4, and N = 100). . . . . . . . . . . . . . . . . . . . 144

4.14 Comparison of conditional coverage probability and achievable rate for IRS-

assisted mode and direct mode, and overall performance with respect to the

fraction of users assisted by IRS A (for number of IRS elements N = 50 and

N = 100 per IRS surface). . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

4.15 Comparison of power consumption, conditional energy-efficiency for IRS-assisted

mode, direct mode, and overall EE with respect to the fraction of users as-

sisted by IRS A (for number of IRS elements N = 50 and N = 100 per

surface). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

xvi



List of Abbreviations

Acronym Description

UAV Unmanned aerial vehicle

BS Base station

BEP Bit error probability

LoS Line of sight

NLoS Non-line of sight

DC Difference of convex funtion

LCAD Load carry and deliver

SNR Signal-to-noise ratio

SINR Signal-to_interference plus noise ratio

QoS Quality of service

DF Decode and forward

EE Energy efficiency

EEMC Overall energy efficiency of the multicasting system

CDF Cumulative distribution function

PDF Probability density function

5G Fifth-generation of Internet

6G Fifth-generation of Internet

IRS Intelligent reflecting surface

CSI Channel state information

IBFD In-band full duplex

SI Self interference

AWGN All white Gaussian noise

SC Selection combining

CTL Central limit theorem

LT Laplace transform

GG Generalized Gamma random variable

MGF Moment generating function

SDP Semidefinite program

xvii



Chapter One

Introduction

Cellular communication has been evolving in stages from first-generation (1G) technologies

to fifth-generation (5G) and beyond (B5G), which is also referred to as the sixth generation

(6G) technology. The 1G cellular wireless communication technologies first introduced voice

communication in analog form. 2G technologies enhanced voice communication and brought

data and digital communication, e.g., sending messages into the picture. They also started

the Internet with a limited average speed below 0.5 Mbps. 3G technologies significantly

improved the downlink speed and data transmission. With 3G technologies, video commu-

nication become real in the form of video calling, video conferencing, and live video chat.

3G had four-fold data transfer capacity than 2G. 4G technologies targeted enhancing the

video quality, smoothing the Internet browsing and playing video games. 5G technologies are

being deployed now which are expected to support a very large number of wireless devices

to realize the Internet of Things (IoT). The major features of 5G are enhanced speed, high

bandwidth between (30GHz -300GHz) and low latency [1].
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1.1 Future Wireless Networks and Enabling Technologies

6G is a successor technology of 5G. While 5G is in the roll-out stage, the advancement in

the 6G research is being done throughout the world. The 6G standardization is estimated

to be sorted out by the international standardization bodies by the year 2030 [2], which

will potentially enable the Internet of Everything (IoE). With 6G, an extravagant number

of devices/machines would be connected the each other to achieve massive connectivity. 6G

technologies will also use higher spectrum bands (e.g. millimeter wave [mmWave] and tera

Hertz [THz] bands), achieve lower latency, and higher speed than 5G [3]. 6G will bring im-

proved battery lifetime, wireless charging, aerial as well as underwater wireless communica-

tion, machine learning (ML), and artificial intelligence (AI)-enabled wireless communications

systems and networks [4].

Some of the enabling technologies for 6G systems are shown in Figure 1.1. These

technologies will provide coverage to remote area users, build 3D communication and aerial

interface to enhance coverage by leveraging the line of sight (LoS) communication. One

innovation of 6G is smart intelligent surfaces, also called intelligent re-configurable surfaces

or intelligent reflecting surfaces (IRSs) that can reconfigure the communication channel by

intelligently reflecting the incident wireless signal. Since the 6G vision is to support millions

of devices, different enabling technologies will coexist to serve a massive number of devices.

Lastly, for real-time and intelligent decision-making, machine learning (ML) and artificial

intelligence (AI) techniques will be vital in 6G.

1.1.1 Remote Area Communication

It is becoming increasingly important to provide coverage to remote area users that lack

the terrestrial cellular wireless infrastructure. The coverage requirement can arise for on-

demand applications and disaster management scenarios. For instance, short-term coverage
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Figure 1.1 6G technologies.

requirement in a certain area for broadcasting a hockey match is an example of on-demand

communication. In a scenario where massive destruction has caused the loss in the existing

communication infrastructure (e.g., due to earth quack). In such a situation deployment of

the terrestrial infrastructure such as BSs are economically expensive and time-consuming.

6G requires addressing such situations at a low cost.

1.1.2 Aerial Access Network and 3D Communication

The expected demand of providing the coverage to ’Everything’ brings an aerial access

network (AAN) as a potential candidate in the 6G communication system that can establish

a line-of-sight (LoS) communication link between the ground and aerial users. The elements

of AANs are unmanned aerial vehicles (UAVs), also known as drones, satellites, high and

low altitude platforms [5]. In contrast to terrestrial infrastructure, the AAN elements such

as UAVs, high and low altitude platforms have the potential to change their locations in all
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three dimensions proactively. This helps to establish better and LoS communication links

that will lead to coverage enhancement in 6G.

1.1.3 Intelligent Beamforming Through Intelligent Reflecting Sur-

faces

An intelligent reflecting surface (IRS) can steer the incident wireless signals in the desired

direction that extends the communication range between sender and the receiver. This is

unlike an omni-directional transmission that spreads the transmission energy in all direc-

tions. Additionally, the construction of IRS includes multiple small passive metasurfaces

and does not require any additional transmission power. Also, since IRS mostly acts as a

reflecting surface that does not spend any time in processing the incoming signal, it does not

introduce any delays in the system. Besides the flexibility in the beamforming, the energy

efficiency is also an important feature of IRS that makes IRS an enabling technology for 6G

communication. The functionality of IRS will be discussed further in Chapter IV.

1.1.4 Co-Existence of Enabling Technologies

In a 6G network, different enabling technologies will co-exist and users should intelligently

decide and switch to the best enabling technology available based on the channel conditions

and quality of service (QoS) requirement. The examples of the enabling technologies are

terrestrial cellular BS, aerial BSs, i.e., UAV, IRS-enabled communication, visible light com-

munication (VLC), etc. Therefore, 6G needs to provide such hardware and infrastructure

that is capable of combining all the enabling technologies [6] together.
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1.1.5 Large-Scale Communication

5G and beyond 5G is an era of IoE where millions of devices will communicate to each

other through different access networks within a small geographical area leading to large-

scale networks. [7] expects to have 10 million devices per square kilometer which is ten folds

larger than the 5G devices. The massive number of connecting devices will bring a list of

new challenges for the 6G network such as blocking, non-line of sight channel, and spectrum

sharing, resource allocation, and interference management. This will require modeling and

characterization of large-scale 6G systems, e.g., using the tools of stochastic geometry.

1.1.6 Machine Learning and Artificial Intelligence

The applications such as automated cars and voice assistance are the ML innovations in 5G

and B5G. However, the core of 6G will lie in handling continuous gigantic real-world data,

its processing, demand-based decision making, and providing secure communication [8]. ML

and AI will assist 6G in the decision-making by designing algorithms to obtain knowledge of

fast varying changes in the channel condition which can not be taken care by the conventional

mathematical modeling. ML and AI will also provide potential solutions for the user decision-

making problem in presence of coexisting enabling technologies. Also, machine learning will

provide an alternative to achieve solutions to optimization problems, especially where the

conventional optimization method fails to provide an optimal solution due to high complexity,

e.g., in combinatorial optimization problems.

1.2 Key Challenges of Future Wireless Networks

With the expected advancement in future wireless networks as described in previous section,

there exist variety of challenges that needs to be taken in to account which are discussed
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next.

i. Providing Coverage to Remote Area Users: The advancement in future network fea-

tures providing coverage to the user in rural areas or hard-to-reach locations that may

not have well-established cellular infrastructure [9]. Future networking should essen-

tially provide a coverage solution to remote area users in such a way that solution is easy

to deploy, power-efficient, cost-effective and has significantly lower time consumption.

ii. 3D Supported Modeling: 6G is required to support the 3D aerial communication be-

cause of the integration of airborne (such as UAVs) and terrestrial networks (terrestrial

BS) in to the architecture. This requires modeling the 3D propagation environment

and channel modeling between air and ground by taking environmental factors such

as rain, fog, and humidity, etc. This also requires consideration of placement design,

mobility management, and resource management, etc due to the mobility feature of

UAVs.

iii. IRS Modeling and Utilization of IRS to Full Capacity: As described above, IRS-aided

communication is gaining attention in both research and academia as a 6G candidate.

The key features of IRS are as follows: (i) IRS can be deployed anywhere from clothes

to the building wall and airplanes, and (ii) IRSs consist of the arrays of multiple low-

cost metasurfaces and each surface individually has the potential to steer the incident

signal in the desired direction. Besides the IRS functionality as a reflector, it is also

capable to perform other functions such as transmission, switching, and refraction.

Therefore, to utilize the IRS in full capacity for the future wireless generation, un-

derstanding IRS-functionality, IRS channel modeling, and integrating IRS with other

technologies is highly needed. The understanding of IRS will answer the research ques-

tions such as how IRSs should be deployed to obtain maximum throughput or energy

efficient solutions under different existing deployment setups. How IRS will behave

when mounted on the mobile surface for instance on UAVs. Under what situation IRS
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extend the communication range although it suffers from product path loss, and the

behavior of IRSs in the IRS-assisted communication setup in the existence of random

blocking objects, etc.

iv. Hardware Design for Co-existing Technologies: As 6G is will support billions of devices

that are connected through different access networks and also utilize different enabling

technologies, there is a need for designing such infrastructure that supports all the

existing and new technologies to keep the transition to future generations smooth and

cost efficient. Also, the devices in the future generation would be able to sense the

channel conditions and will be able to decide and select the optimal network depending

on the availability of the other channels, channel conditions, and QoS requirements.

Therefore, it is a challenge to design such switching-supported hardware where all the

enabling methods can be merged.

v. Large-Scale Network Modeling: With the massive connectivity in 6G modeling and

analyzing large-scale networks is inevitable. With all the devices connected to each

other and through different enabling technologies, the role of interference becomes even

more significant than previous generations. Therefore, accurate modeling of the sys-

tem interference and blockages for all kinds of devices should be taken into account.

Also, analyzing the overall system performance such as outage and bit error probabil-

ity, achievable data rate, and energy efficiency is a fundamental challenge for future

communication networks.

In general, in this work, the common challenges for the thesis are noted below.

vi. Mathematically Tractable Performance Analysis: One of the common open problem

that is not thoroughly studied and well-analyzed performance measures (e.g., for the

communication setup I defined above). Also, the existing derived expression for the

performance measure such as outage probability and capacity, etc are not in closed form
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or represented in the form of integrals. Therefore, their application to the optimization

of network parameters is a fundamental challenge.

vii. Statistical/Analytical Optimization: The existing works consider typical computation-

ally intensive instantaneous optimization frameworks in which the objective function

and constraints are defined for each fading channel realization (which typically assume

perfect knowledge of channel state information (CSI)) and, subsequently, to understand

the impact of a variety of fading channels, an instantaneous optimization problem needs

to be solved for a large number of channel realizations.

1.3 Scope of Thesis and Motivation

The following enabling techniques for 6G wireless communications are within the scope of

this thesis.

1.3.1 UAV-Assisted Communication

Unmanned aerial vehicles (UAVs), also referred to as drones, are expected to be an integral

component of fifth generation (5G)/beyond 5G (B5G) wireless cellular networks [10]. UAVs

have a wide range of applications to civilian and commercial domains [11]. UAVs can work

as flying base stations (BSs) to provide wireless connectivity among users/devices which

otherwise might not be served using the traditional cellular networks. A UAV can also work

as a relay between two BSs and provide backhaul connectivity for cellular BSs. Due to

their ease in deployment and ability to provide good air-to-ground (AtG) communication

links (mainly due to line of sight [LoS] propagation), UAV enabled wireless communication

has recently attracted significant interests in both industry and academia. For example,

Facebook and Google has initiated the project ‘Aquila’ and ‘Wing’, respectively, to provide
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UAV based internet/communication services [10]. Amazon has introduced ‘Amazon Prime

Air’ to deliver items using UAV and tested its first successful air delivery in Dec 2016.

UAV related researches are categorized in three types based on the mobility of the UAVs,

i.e., static-UAV, mobile-UAV networks, and data ferrying. Static-UAV approach majorly

focuses on UAV placement and optimization [12] while the mobile-UAV networking pivot

around shorting the distance significantly between UAV and ground users by proper path

planning. For instance, in [13] circular UAV trajectory centered on ground BS is proposed.

In data ferrying approach the UAV loads the data from source, carries it to the destination

and delivers the data on reaching sufficiently close to the destination.

UAVs are classified into two categories based on their design structure: (i) fixed wing

UAVs and (ii) rotary wing UAVs. There exist pros and cons associated with both types. For

example, the fixed-wing UAVs are high speed and have heavy payload, but the limitation

is that they need to maintain their motion in forward to remain aloft, therefore, fixed wing

UAVs do not fit for the for stationary applications. However, the rotary-wing can move in

any direction as well as they can hover or stay stationary in the air with the limitation on

having limited mobility and limited payload. Therefore, the UAV should be selected wisely

based on the application. The rotary wing UAVs are suitable for data ferrying application.

There main technical challenges that need to be taken into account when considering

UAV-assisted communications are follows:

• Energy consumption: The energy consumed in UAV-communication are data trans-

mission and the propulsion energy required by the UAV to remain aloft or maintain

its movement [13,14]. The propulsion energy is directly proportional to the size of the

UAV and the distance the UAV travels that require precise energy consumption model.

• Aerial channel modeling : The UAV assisted aerial communication are expected to

have line-of-sight (LoS) links in most scenarios, but occasionally the links could be
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blocked by the obstacles and buildings etc, specially when variable height of a UAV is

considered.

• UAV path planning and trajectory design: UAV path planning or trajectory design

is one of the crucial aspect to consider. In particular, the appropriate path planning

can significantly reduce the communication distance and traveling time of a UAV and

hence the throughput gain and energy efficient system can be obtained. Optimizing

the path and trajectory is more crucial and challenging when the UAV is in dynamic

environment. For instance, due to on-boarding energy limitation, time assigned to

complete the task, collision avoidance etc.

Another challenge to UAV communication is UAV mobile relaying and memory requirement.

The UAV assisted relaying also referred as mobile BS leveraging the wireless communication

because the UAV flies between the source and destination with the intend to reduce the

link distances when UAV receives the data and when the UAV relays the data. A common

approach used for UAV relaying is half duplex decode-and-forward (DF) mobile relaying, in

which UAV receives data, process and store it in to a buffer in one time slot and in the next

slot UAV sends the data to the desired node. The larger the buffer size the less number of

cycles UAV need to complete the task e.g., for heavy data dispatch. Therefore, the trade-off

between on-board buffer size and achievable throughput in the UAV assisted mobile relaying

needs to be studied in detail.

1.3.2 UAV-Assisted Data Ferrying

In the conventional data ferrying approach, UAV loads the data from a source, carry, and

then deliver data to the destination after reaching to the final location [15]. However, the

optimal data ferrying system considers the traveling time delay (i.e. duration in which UAV

travels and carries the data) and minimizes this delay by allowing the UAV to travel only to
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a minimum distance (i.e. a distance where the desired quality of service (QoS) can be met).

The conventional data ferrying is power-inefficient in the existence of good quality channel

since unnecessary flight of UAV adds in propulsion power consumption and adds extra delay

specially when the UAV has back to back tasks to perform.

BS UR

du dd

BS UR

D

H

I F

(a) (b)

Figure 1.2 (a) UAV-assited communication between BS and user receiver (a) when
UAV is at fixed location, and (b) when UAV is performing conventional data ferry-
ing.

Figure 1.2 presents the UAV-assisted communication for two scenarios. In (a) when

UAV is static and placed at the middle of the source (i.e, BS) and a destination (i.e UR)

and has the BS to UAV distance du and UAV to user distance dd. In (b) when UAV

performs conventional data ferrying that has data loading where UAV loads the data from

height H above the BS, UAV travelling where UAV travels a distance D to reach closer to

the destination, and data delivery phases where the information is being delivered to the

destination UR.

Applications of UAV-assisted data ferrying: The two main applications of data

ferrying are as follow: (i) UAV-assisted data ferrying for wireless backhauling: Wireless back-

hauling is among one of the primary backhauling techniques in which wireless connections are

typically established between base-stations (BSs) and the core network aggregators [16, 17].

Since the backhaul requirements can significantly vary depending on the locations of the
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BSs (e.g. BSs in rural areas or hard-to-reach locations may not have well-established back-

haul infrastructure [9]), the wireless backhauling is becoming popular alternative to wired

backhauling. Also, wireless backhauling is generally cost-effective compared to wired back-

hauling. In this context, UAV-assisted data ferrying provides a promising solution to assist

wireless backhauling infrastructure through flexible on-demand UAV deployment and mo-

bility in three dimensions [18,19], especially for delay-tolerant services and applications. (ii)

UAV-assisted data ferrying to ground users in disaster situations: UAV-assisted data ferry-

ing enables an instant communication infrastructure on demand. For example, consider a

disaster situation in which the existing communication infrastructure including BSs has col-

lapsed. Also, in scenarios where the communication infrastructure is not sufficient to fulfill

the user requirements (i.e. most of the terrestrial BSs are congested). In such circumstances,

communication of essential data and in turn UAV-assisted data ferrying becomes vital, even

with higher transmission latencies [15]. A similar idea referred to as “Message ferrying"

was studied in [20] for adhoc networks. Please note that, the proposed UAV data ferrying

technique can also be perceived as a UAV that assists data dispatching to multiple ground

nodes as shown in [21].

The phases and power consumption of conventional data ferrying : There are

three phases of data-ferrying. (i): Uplink Data Loading Phase, (ii): UAV Travelling Phase

(iii): Downlink Transmission Phase. In first phase, the UAV hovers above the source for a

duration Tu to load the data from source. The energy consumption due to hovering of UAV

and communication of the source BS in the uplink [21] is given as: Eu = (Ph + pu)Tu, where

pu is the uplink power consumption of source BS and Ph is the propulsion power consumption

of UAV (details in next chapter). In UAV Travelling Phase, the energy consumption is due

to the UAV travelling for a distance D with a constant velocity V i.e, Et = P (V )D/V ,

where P (V ) is the power consumed in travelling by UAV (details in next chapter). In

the final Downlink Transmission Phase, The UAV experiences energy consumption due to
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communication and hovering. The UAV hovering time Td to deliver the data to destination

BS which is given as Ed = (Ph + pd)Td,. The end-to-end energy consumption of UAV is

Etot = Eu + Et + Ed.

It is important to highlight that the energy efficiency and latency of a UAV-assisted

data-ferrying network are primary concerns. Please note that minimizing the travel distance

will also minimize the energy consumption of the UAV. The energy consumption model for

optimal data ferrying is provided in next chapter in detail. In the following, we discuss two

network scenarios in which data ferrying is applicable and can potentially yield benefits to

network operators.

1.3.3 IRS-Assisted Communication

Intelligent reflecting surfaces (IRS) are emerging as a key enabling technique to smartly re-

configure wireless propagation environment in beyond 5G or 6G wireless networks [22]. The

IRS consists of multiple small meta-surfaces that are also referred to as IRS elements. IRS

enables smart reconfiguration via software-controlled reflections and is energy-efficient since

meta-surfaces contain low-cost polymer diode/switch and conductive square patches [23] [24].

The comprehensive intelligent functionality of each element includes reflection, refraction,

transmittance and absorption [22, 25]. The functionalities can be used all together or in

separate based on the application requirement. In contrast to conventional relays that re-

quire active transmission and reception, the IRSs do not require any additional radio chan-

nel/frequency for signal transmission or reception which makes IRS cost-effective. Note that,

IRS usually act as a passive device and does not need any transmission power. However, its

power consumption is due to the number of IRS elements and the phase resolution [23].

In conventional IRS relaying, IRS is usually mounted on building facade, furniture, and

overall any objects in indoor or outdoor environments to establish communication between

BS to the users in three different ways in general. In the presence of direct link, in the absence
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Figure 1.3 IRS-assited communication between BS and user when IRS is deployed
at some building or wall.

of direct link and/or by jointly combine both direct and IRS-assisted link. Moreover, one

important factor behind the emerging IRS-assisted communication is the power consump-

tion. The power consumption of each IRS element is low, the overall power consumption

may become significant for a large number of active IRS elements depending on the phase

resolution power consumption Pr(b). For instance, Pr(b) = 5dBm for 1-bit resolution and

Pr(b) = 45dBm for infinite resolution [26]. The Pr(b) depends on the operating frequency

and the type of power amplifier [27]. The IRS power consumption is given as PIRS = NPr(b).

Figure 1.3 presents the IRS-assisted communication when IRS is placed at the middle

of the source (i.e, BS) and a destination (i.e UR).

1.3.4 Integrated UAV-IRS Relaying

Unlike conventional IRS relaying, integrating IRS with the UAVs will not only improve the

channel by optimizing the IRS angle for reflection but it will also allow flexible deployment of

metasurfaces in three dimensional environment while minimizing the on-board UAV energy

consumption [28, 29]. The proactive placement of integrated UAV-IRS system offers a cost-

effective solution with minimal energy consumption and reduced network-wide spectrum

resources. In future, I will consider the mathematical performance characterization and

14



Figure 1.4 Integrated UAV-IRS communication when IRS is mounted on UAV and
placed between source and destination receiver.

optimization of an integrated UAV-IRS system.

To develop the efficient integrated UAV-IRS system, the optimization of the number

of IRS elements (N) is crucial due to two reasons, (i) given the limited UAV size, the

number of IRS elements that can be deployed on a UAV is limited1 and (ii) due to the

power consumption associated with each IRS element. Although the power consumption of

each IRS element is low, the overall power consumption may become significant for a large

number of active IRS elements depending on Pr(b) [27].

The Figure 1.4 represents the integrated UAV-IRS setup when UAV-borne IRS in 3D

at height H is assisting the communication between S and D.
1The size of one IRS element is typically in the range λ/10 − λ/5 [24], where λ denotes the wavelength

of the transmitted wave. As such, this limitation becomes more evident in low frequencies.
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1.3.5 Large-Scale IRS-assisted communication

With the advances in the wireless technology and extravagant demand of higher data rate to

millions of indoor/outdoor devices, it has become inevitable to utilize the resources wisely to

enable massive connectivity. In this context, IRSs operate as a low cost solution to extend the

communication range and to provide service to more users. To this end, IRS communication

can hapen in three possible way, (i) IRS-only Transmission: When the direct link is blocked

and only IRS-assisted signal is received by the user, (iii) Direct Transmission: in which a user

gets served only through direct transmissions because of unavailability of IRS with in the cell

radius, and (iii) Joint Transmission: When user received both direct and IRS-assisted signal.

Similarly, in such setups user may experience different interference coming from interfering

BSs and interference coming from other BSs reflected from other IRSs. Therefore, accurate

consideration of interference is required for large scale IRS-setup.

IRS0

UR

BS

IRS0

Typical 
User

IRSm

Figure 1.5 IRS-assisted communication in large scale setup with multi-IRS and
multi-BS when the user is connected with a BS through nearest IRS and the direct
link to the nearest BS is blocked.

Also, it is noteworthy that combining the signals coming from the direct and indi-
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rect IRS-assisted path may suffer from incoherent multi-path delays and it may necessitate

sophisticated synchronization, detection, and co-phasing techniques resulting in complex

hardware/software design. Therefore, developing the large scale IRS-assisted network to

understand the performance gain associated to IRS is crucial specially before designing the

complicated hardware in addition to the interference management.

1.3.6 Motivation

The main motivations of the work presented under the scope of the thesis is to tackle few of

the fundamental challenges for the future networks which are given as follows.

• Since the significance of aerial 3D-communication and the relevant challenges for 5G

and B5G is realized, as shown in previous sections. Which include modeling of the aerial

channel, propagation modeling in 3D by taking environmental factors in to account,

integration of both aerial and terrestrial network etc. The above challenge (1.2.i)

motivates me to study the deployment of unmanned aerial vehicle (UAV) as a flying

BS, characterize aerial and ground channel modeling and evaluate the mathematically

tractable analysis and optimization for the delay tolerant application. Besides this, the

need of providing coverage to remote and hard-to-reach areas for the future network

provide me motivation to utilize UAVs as a data-ferry that can load the data from the

transmitting end, carry it towards the destination, and deliver it on reaching to the

destination as a potential solution to (challenge (1.2.ii)).

• The integration of IRS in the future wireless network brings new challenges as men-

tioned in (1.2.iii). The fundamental questions such as the IRS functionality, and un-

derstanding the scenarios where IRSs can significantly enhance the communication

performance, and how to utilize IRS to provide energy efficient solution etc.

Moreover, one of the emerging trend of the 6G is coexisitng enabling technology as
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discussed in previous section, in which the smart user/devices can choose the opti-

mal communication link based on some predefined criteria. Therefore, it is required

to design an association criteria based on the channel statistics which is also energy

efficient. This idea motivated us to design an airborne communication system in which

IRS is mounted on the UAV and terrestrial users are capable to choose the optimal

communication link which can be UAV-only, IRS-only and integrated UAV-IRS mode

(challenge (1.2.iv)).

• The motivation for the chapter 4 of the thesis is to combine the IRS related challenges

to a large scale setup as per 5G and B5G requirement, with the multiple type of com-

munication devices existing together and forming a large scale network. In addition,

the motivation is to provide the insight depending on fraction of users assisted the

coexisitng IRS-assisted BSs and cellular BSs and blocking objects effects. This chapter

answers the outlines challenges in (1.2.iii), (1.2.iv) and (1.2.v).

In general, in this work, the common motivation of all the chapters in the thesis is

that the above defined communication setup are not well studied in the literature. That

motivates me to obtain the performance analysis in closed form and/or deriving the closed

form approximation for simplicity when close form solution is hard to achieve. Moreover, the

utilization of the obtained simpler closed form expression to transform the computationally

intensive non-convex optimization to convex optimization.

1.4 Objective and Contribution of the Thesis

1.4.1 Objective

The main goal of the thesis is to design a mathematically tractable and accurate communi-

cation framework for future wireless networks. In particular, I study various system models
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consisting of aerial communication, IRS-enabled communication in both small and large scale

setups under different objectives. I aim to analyze and optimize the studied system model

for future networks.

To achieve the objective, I use existing approximations, proposed new approximations,

designed algorithms, and used tools of fractional programming and stochastic geometry

throughout the thesis. The other objectives of the thesis are noted below.

• To tackle the coverage providing issue to remote and hard-to-reach areas, an UAV-

assisted data ferrying communication scheme is proposed. In the proposed scheme

UAV act as flying BS and can be flexibly sent to any desired geographical region to

provide coverage. This scheme provides energy efficient solution by optimizing UAV

travelling distance under outage constraint and provide transmission efficient solution

by optimizing UAV traveling distance that provide minimum outage within the limited

energy consumption budget.

• To overcome the lack in understanding, characterization and modeling of IRSs com-

bined with 3D communication, I propose an IRS-assisted airborne communication

scheme. This schemes combats the challenges offered due to LoS and NLoS in 3D

aerial communication. In addition, the proposed framework provides useful insight on

co-existing enabling technologies for 6G by integrating IRS and UAV together. Also,

the scheme develops the understanding regarding the role of integrated IRSs and UAV

in end-to-end communication performance measures. The scheme also provides energy

efficient solution by taking important IRS and UAV communication factor such as

number of IRS elements, the IRS associated power consumption, height of a UAV and

by developing the analytical criteria to maximize SE.

• Since 6G is expected to have massive devices and various types of users connected

through different transmissions (e.g., users served by direct BS transmissions and indi-
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rect IRS-assisted transmissions), characterizing the different types of interference ex-

perienced by users in a cellular network with multiple BSs and IRSs becomes crucial.

Also, there is a need for comprehensive study, modeling of IRS-assisted communication

on large scale for ground users. To tackle these research problems, I propose a com-

prehensive large scale framework consisting of multiple BSs, IRSs, and various types of

users using tools of stochastic geometry. The proposed approach captures the impact

of channel fading, locations of BSs and IRSs, arbitrary phase-shifts, and different inter-

ference experienced by a typical user in the form of downlink achievable rate, coverage

probability, and energy efficiency (EE) of different users.

• To overcome the computationally intensive typical instantaneous optimization frame-

works even with the single optimization variable, I proposed the unique solutions for

different types of optimization problem that uses closed-form analytical expressions

for the end-to-end performance matrices under Rician and Rayleigh fading channels,

followed by derived novel approximations and transformations to formulate a convex

problem.

1.4.2 Contributions of the Thesis

In this thesis, I develop performance modeling and optimization of UAV-assisted commu-

nication systems and IRS-assisted systems for both aerial and ground communication to

address their associated challenges. A brief list of contributions is presented next:

1. End-to-end Performance modeling and optimization a UAV-assisted data ferrying:

• The proposed UAV-assisted data ferrying characterizes different stages of data ferrying

(data loading and delivering links) by considering both the LoS and NLoS transmis-

sions, and specific energy consumption model for rotary wing UAV.

• The novel closed-form expressions of network reliability, bit-error probability (BEP)
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and energy efficiency (EE) of the considered network are derived. Also, EE is derived

as a function of the SNR outage probability using novel tractable approximations for

the derived SNR outage.

• Two different optimization problems are formulated and solved for the optimal ferrying

distance under different system constraints providing 95% accuracy from exhaustive

search after convexification or in closed-form. A multi objective optimization with the

objective of minimizing energy consumption and SNR outage of proposed data ferrying

is reformulated as a difference of convex functions (DC) function and solved using a

DC algorithm.

2. End-to-end Performance modeling and optimization UAV-borne reflecting surfaces (i.e.,

integrated UAV-IRS system):

• I develop a comprehensive mathematical framework to characterize an integrated UAV-

IRS system considering various operation modes, where both UAV and IRS can work

in standalone fashion or the Integrated UAV-IRS mode, where receiver has freedom to

choose from the best of the both UAV-only and IRS-only link. The proposed modeling

captures the LoS air-to-ground (AtG) Rician fading channels and power consumption

of UAV and IRS.

• I obtain closed form expressions of outage probability, spectral and energy efficiency

and also provide approximate expressions to increase the mathematical tractability.

• I provide optimal solutions using tool from fractional programming. The proposed opti-

mization maximize the spectral and energy efficiency by apprehending critical network

parameters such as the number of IRS elements and UAV altitude.

• I derive an analytic criterion to optimally select the UAV-only and IRS-only transmis-

sion modes to maximize the capacity and EE for a given number of IRS elements. In
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general, the channel state information (CSI) may not be available at the receiver and/or

difficult to obtain, therefore the optimization solution I attain is based of average CSI.

3. Performance modeling and analysis of IRS-assisted downlink cellular networks:

• I propose a mathematical framework to study the two types of user coexisting in a real-

istic large-scale multi-BS, multi-IRS scenario, the user performing direct transmission

and the user performing IRS-assisted transmission. The proposed framework capture

the impact of IRS phase-shifts and the aggregate interference from all IRSs on both

kinds of users.

• For the IRS-assisted user, I characterize the desired signal power from the nearest IRS

as a sum of scaled generalized gamma (GG) random variables with the parameters of

the IRS phase shifts. For the very user, I also compare the signal power for optimized

and randomized phase-shifts of the nearest IRS.

• I approximate and validate the aggregate interference from multiple IRSs in a multiple

BS scenario as the sum of normal random variables.

• I analyze the coverage probability, spectral and energy-efficiency of both user types

using Laplace transform (LT) method.

• I derive the overall coverage probability, spectral and energy efficiency based on the

fraction of direct and IRS-assisted users in the network. The analysis captures the effect

of IRS deployment intensity as well as direct transmission link blockage probability.

• Through numerical results, I provide useful insights on IRS-assisted as well as direct

transmissions that capture impact of IRS interference in a large-scale network as a

function of the number of IRS elements, intensity of IRSs and BSs, and the transmit

power of BSs.
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The detailed discussions on the contributions will be provided in the later chapters of the

thesis.

1.5 Organization of the Thesis

The organisation of the thesis is as follows:

Chapter Two: In this chapter, performance analysis and optimization of propose data

ferrying approach is provided. Also, insights on porpoised scheme is provided through nu-

merical results considering analysis, approximations and optimization.

Chapter Three: In this chapter, integrated UAV-IRS scheme is proposed. Performance

analysis and optimization are also presented considering the impact of main IRS and UAV

factors in to account.

Chapter Four: In this chapter, I propose IRS-assisted downlink communication for the

large scale setup with two types of user, the user associated to BS through IRS and the user

associated to the BS directly. Performance analysis and numerical results provide interesting

insights on the IRS-assisted large-scale communication.

Chapter Five: In this chapter, I summarize and conclude the research presented in the

thesis followed by few possible extensions and future directions.

Note: The materials presented in chapter 2, chapter 3 and chapter 4 are reproduced

from the published paper provided in Section 5.2.
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Chapter Two

End-to-End Energy Efficiency and

Reliability of UAV-Assisted Wireless

Data Ferrying

This chapter characterize and design the system model for the UAV assisted data ferry-

ing. The framework for performance analysis in terms of reliability and end to end energy

efficiency is provided in this chapter. This chapter also presents approximate and exact per-

formance performance analysis. I also formulate three different variants of optimization and

the solution approach. In this chapter, first I present the introduction followed by the de-

scription of the system model in Section 2.3. In Section 2.4, I characterize the reliability and

BEP for the considered network. In Section 2.5, I derive the end-to-end energy efficiency and

the SNR outage probability for the considered network followed by approximations. Various

optimization problems are formulated in Section 2.6. Then, I present the numerical results

in Section 2.7 before summary of observations in Section 2.8. A list of important variables

is in Table 2.1.
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2.1 Introduction

Unmanned aerial vehicle (UAV)-assisted data ferrying is a key enabling technology for wire-

less backhauling and multicasting in beyond 5G wireless networks. Different from conven-

tional relaying, where a UAV establishes a communication link between the ground source

and destination simultaneously, data ferrying allows a UAV to load the data from a source,

carry, and then deliver data to the destination when reaching sufficiently close to it [15]. This

approach is known as load carry and deliver (LCAD) for fixed wing UAVs. Data ferrying is

beneficial for delay-tolerant applications where the source and the destination do not have a

direct communication link. However, the energy consumption of UAV-assisted data ferrying

is crucial since the UAVs have limited on-board energy and the UAVs do not only consume

communication energy but also significant propulsion energy to remain aloft or maintain

their movement [13, 14]. The propulsion energy is directly proportional to the size of the

UAV and the distance the UAV travels to ferry the data, whereas the communication energy

depends on the channel fading and the path-loss factors etc. Accurate performance modeling

and optimization of UAV-assisted data ferrying networks require precise energy consumption

model, aerial path-loss and channel fading models.

2.1.1 Background Work

A series of research works [30–35] considered signal-to-noise ratio (SNR) outage characteriza-

tion of UAV-assisted communications assuming either line-of-sight (LoS) Rician or non-LoS

(NLoS) Nakagami-m faded aerial channels. However, in practice LoS and NLoS exists to-

gether, therefore, it is crucial to consider both types of links. The impact of having a certain

LoS and NLoS probability was ignored in [30–35]. Also, the derived expressions are generally

in the form of complicated mathematical functions that cannot be directly used for network

planning and optimization purposes. For instance, [30,31] provided closed-form expressions
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for the SNR outage probability assuming Nakagami-m fading aerial channels with no notion

of LoS and NLoS transmissions. The bit error rate (BER) has also been analyzed in [30]

considering Nakagami-m fading channels. In addition, [32, 33] assumed Rician faded LoS

aerial channels and derived the SNR outage in the form of Marcum Q-function. In [34],

the SNR outage probability was analyzed for Rician and Rayleigh fading channels for LoS

and NLoS channels, respectively. However, the final closed-form expressions in [34] are in

the form of Marcum Q-function and Bessel function. The expressions derived in [30–34]

are generally either in the form of special functions (such as Q-function or Hypergeometric

function) or are represented using integrals. As such, their application to the optimization

of network parameters is a fundamental challenge.

None of the aforementioned research works considered the performance characterization

or optimization of UAV-assisted wireless data ferrying. The idea of UAV-assisted data

ferrying (referred to as LCAD) was proposed in [15] assuming fixed wing UAV. Both the data

loading and delivering links were considered. Similarly, [36] analyzed the throughput and

delay trade-off of a similar data ferrying system where coverage to multiple ground nodes is

provided by the UAV, i.e. UAV delivers data to a node when reaching sufficiently close to it.

Different from fixed-wing UAVs (where hovering is not possible), [21] proposed fly hover and

communicate (FHC) protocol for rotary wing UAVs where multiple ground nodes are served

with a single UAV. That is, UAV flies to each user and communicate using optimal hovering

location to minimize energy consumption and mission completion time. Successive iterative

algorithms are solved at each location to find next optimal hovering location to serve each

ground node. Note that the energy consumption of a rotary-wing UAV is fairly different from

fixed-wing UAVs. In [37], the performance of a UAV was optimized when the UAV multicasts

a data file to multiple ground receivers by designing the optimal trajectory that minimizes

the mission time under a predefined quality of service (QoS) constraint. To minimize the

mission completion time, the authors formulated a traveling salesman (TSM) problem for
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a UAV to communicate with each ground node individually and proposed random linear

network coding (RLNC) to multicast the data [37]. Nonetheless, both [21, 36] considered

only data transmission links and ignored the performance limitation caused by the data

loading links.

2.1.2 Contributions

I consider the performance modeling and optimization of a UAV-assisted data ferrying net-

work with Rician and Rayleigh fading for LoS and NLoS scenarios, respectively. Our contri-

butions are as follows:

• I characterize the end-to-end performance of a UAV-assisted data ferrying considering

(i) both the data loading and delivering links, (ii) both the LoS and NLoS transmissions

in the data loading and delivering links, (iii) Rician fading model for LoS and Rayleigh

fading model for NLoS transmissions, and (iv) specific energy consumption model for

the rotary wing UAV.

• I derive novel closed-form expressions for end-to-end network reliability1 and bit-error

probability (BEP) of the considered UAV-assisted data ferrying network. I characterize

the reliability both with and without packet retransmission technique called automatic

repeat request (ARQ). The derived expressions are novel compared to the expressions

derived in conventional decode-and-forward (DF) relaying literature with Rician fading.

Typically, they used single hop equivalent expression for BEP and does not consider

averaging over the Rician fading channel [44].

• I derive end-to-end energy efficiency (a function of the SNR outage probability) and

develop novel tractable approximations for the derived SNR outage. I demonstrate the
1To date, reliability has been derived either based on the throughput [38], transmission outage probability

[39], bit-error probability (BEP) or packet error probability (PEP) [40–43].

27



use of approximations in optimizing the distance that a UAV should travel to balance

the energy-rate trade-offs.

• I formulate two different optimization problems and solve for the optimal ferrying dis-

tance, i.e. (i) outage-constrained energy minimization and (ii) energy-constrained SNR

outage minimization. In the first problem, I convexify the problem and demonstrate

that the obtained solution is 95% close to the solution from exhaustive search. To

convexify the problem, I propose a modified approximation of the error function ap-

proximation presented in [45]. I provide a comparison to [45] and demonstrate that

the proposed approximation is more accurate with polarity consistency. Closed-form

optimal solutions are obtained for the second problem.

• I formulate a bi-objective optimization problem with the objectives to minimize the

SNR outage and energy consumption with desired SNR outage probability constraints.

The objective function is then reformulated using difference of convex functions (DC)

and solved using a DC algorithm.

Numerical results are presented to validate the derived expressions. Insights are extracted

related to the impact of LoS Rician and NLoS Rayleigh fading channels on a variety of

performance metrics as well as the optimal ferrying distance considering a variety of objective

functions.

2.2 Mathematical Preliminaries

• Signal-to-Interference-Plus-Noise Ratio (SINR):

The received signal power of the typical user from the serving BS given the transmission

mode/channel is expressed as:

S(.) = Pd−α(.) X(.), (2.1)
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Where P is transmission power of the BS, d(.) represents the distance between typical

user and BS, α(.) represents pathloss exponent and X(.) represents the channel fading.

For two tier network transmitting in same bandwidth, the aggregate interference is

sum of interference of tier-1 and tier-2, which can be written as:

I(.) = I1
(.) + I2

(.), (2.2)

Where I i(.) represents the total interference faced by typical user from the i−th tier.

The total SINR γ(i) is given from (2.1) and (2.2) as

γ(.) =
S(.)

I(.) +N0

. (2.3)

However, the given SINR equation simplifies to signal-to-noise ratio for the signal

source, single destination and single BS scenario.

• Outage Probability:

The outage probability of a typical user given a wireless communication link/mode is

defined as O(.) = Pr(γ(.) < γth), where γ(.) and γth represents link SINR and minimum

receiver SINR requirement respectively, O(.) is given as:

O(.) =

∫ γth

0

fγ(.)
(γ)dγ.

where fγ(γ) is the probability density function of the instantaneous SNR. Furthermore,

the coverage probability is given as C(.) = 1−O(.).

• Bit Error Probability (BEP):

By conditioning on fading channel SNR, the BEP of Gaussian noise is given as:

Pb(.) =

∫ ∞
0

Q(
√

2γ)fγ(.)
(γ)dγ.
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• Ergodic Capacity:

The achievable ergodic capacity of a typical user R(.) is given as follows: [46]

R(.) = E[log2(1 + γ(.))]

• Energy Efficiency (EE):

The EE(.) of a typical user is given as follows:

EE(.) =
R0

BEtot
(1−O(.)),

where R0 and B are the desired rate and channel bandwidth, respectively. Energy

consumption Etot of the overall system and O(.) is the SNR outage.

• Moment Generating Function (MGF)-Based Approach for Ergodic Capac-

ity:

The achievable ergodic capacity of a typical user can be given by using the coverage

probability expressions as shown below [46]:

E[log2(1 + SINR)] =
1

ln(2)

∫ ∞
0

P (SINR > t)

t
dt.

However, the aforementioned evaluation adds one more layer of integration on top of

the coverage probability. Therefore, I use an alternative LT-based approach to evaluate

ergodic capacity by leveraging on Hamdi’s lemma [47] given as follows:

E
[
ln

(
1 +

X

Y +N0

)]
=

∫ ∞
0

LY (s)− LX,Y (s)

s
exp(−N0s)ds,

where LY (s) and LX,Y (s) represent the LT of Y and joint LT of X and Y , respectively.

• Rayleigh Fading: Rayleigh fading is considered reasonable when radio signal scatters

from many objects in the environment and cause multipath. The distribution of the

Rayleigh fading channel h is given as follows:
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ph(x) =
2x

Ω
e−x

2/Ω, x ≥ 0,

Where Ω denotes the power of the channel h.

• Rician Fading: Rician fading is considered reasonable when the radio signal received

at the receiver has a dominant line of sight component along with several multipath.

The probability distribution function of a fading channel h

fh(x) =
(K + 1)

λ
exp

(
−K − (K + 1)x

λ

)
I0

(
2

√
K(K + 1)

λ
x

)
,

Where where λ is the mean value of RV h, K is the Rician K-factor defined as the

ratio of the power of the line-of-sight (LOS) component to the separate components

and I0(.) is zeroth order modified Bessel function of the first kind.

Next, the system model is discussed.

2.3 System Model and Assumptions

2.3.1 UAV-Assisted Data Ferrying Model

I consider a UAV-assisted data ferrying network in which a rotary-wing UAV is responsible

to ferry and transmit the data taken from a source BS BSs to K destined RXs. The com-

munication is established from BSs located at S(xs, ys, 0) to UAV and then UAV to k-th

ground receiver RXk located at (xk, yk, 0) or (rk, φk). There is no direct connection avail-

able between the source BS and destination RXs. Each RXk is uniformly distributed in a

circular region of radius R around the cell center C(xc, yc, 0). Since the destination RXs

are uniformly distributed, the distribution of their respective distances from C is given as

fr(rk) = 2rk
R2 , 0 ≤ rk ≤ R.
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Figure 2.1 UAV-assisted data ferrying for multicasting and serving K terrestrial
receivers.

The UAV loads the data from the source BSs which is at distance du = H from the UAV

and carries it to a distance d from I prior to the downlink transmission. The initial and final

locations of the UAV flight, i.e. I(xs, ys, H) and F(xc, yc, H) are located right above S and

C, respectively. Here, d = 0 corresponds to the situation when the UAV decides to transmit

from I and minimizes its energy consumption due to flight and d = D corresponds to the

situation when UAV decides to transmit from F and minimizes the communication outage

probability. Note that, 0 ≤ d ≤ D and D =
√

(xs − xc)2 + (ys − yc)2.

The uplink (data loading) and downlink (data delivering) transmissions use the same

frequency channel but occur at different time slots. In the downlink, the UAV transmits the

same data to each of the K RXs simultaneously (i.e. I consider a multicasting scenario).

Each of the K RXs has a fixed data rate requirement R0 defined as R0 = B log2(1+Γ0), where

Γ0 represents the minimum end-to-end SNR threshold to achieve R0, i.e. Γ0 = 2
R0
B − 1. Here,

B represents the transmission bandwidth. Note that the UAV can travel up to a maximum

distance D from I, however, the UAV may stop in between I and F when the desired data
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rate is met (Figure 2.1). A list of important variables is in Table 1.

Table 2.1 Chapter 2: Summary of the main symbols and their definitions

Notation Description

γu,γk UL SNR, DL SNR of k-th RX

Γ0 End-to-end SNR threshold

pu;pd UL and DL power consumption

Ph power consumption in hovering state

R0 Data rate requirement

P (V ) power consumption of UAV flying with constant velocity

hu, hk UL and DL small-scale fading gain

Xu, Xk |hu|2, |hk|2

θu, θk UL and DL elevation angle

H Height of UAV

dk Distance between UAV at d to k-th RX

d;D Distance travelled by UAV;Distance between I & F

K Number of RXs in downlink side

K(θu);K(θk) Rician fading channel K-factor for UL and DL

Ku;Kk Short representation of K(θu) & K(θk)

d0 Distance between UAV at distance d & C

α(θu);α(θk) Path-loss exponent for UL & DL

αu;αk short representation of α(θu) & α(θk)

k RX index at downlink

N0 Noise power spectral density

R Downlink cell radius

Tu Hovering time in UL

Continued on next page
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Table 2.1 – Continued from previous page

Notation Description

Td Hovering time of UAV in downlink

Tc Transmission time of UAV

pL(θu);pN(θu) Probability of LoS & NLoS in UL

pL(θk),pN(θk) Probability of LoS & NLoS of k-th RX in DL

υi Event based on UL & DL LoS probability

L Packet length

P k
b (υi, dk) End-to-end conditional bit error probability

Pkε (υi, dk) End-to-end packet error probability

P u,L
b ;P u,N

b Bit error probability in UL LoS & UL NLoS

P k,L
ε ;P k,N

ε PEP DL LoS & DL NLoS for BSk conditioned on dk & υi

Pb
k(dk) End-to-end bit error probability conditioned on dk only

(rk, φk) Coordinates of BSk w.r.t., cell center C

τR, τ Threshold on reliability; threshold on outage probability

Ωu; Ωk Mean local power of UL and DL of BSk

P(υi) Probability of occurrence of event υi

FL
Xu

;FN
Xu

UL CDF for LoS and NLoS

2.3.2 Aerial Channel Model

Depending on the elevation angle between the UAV and ground nodes (or altitude of the

UAV) and the environment (e.g. the intensity and heights of buildings), the transmission to

the ground users may have LoS or non-LoS channel. The elevation angle (in rad) between
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the UAV and BSk is given as follows:

θk = arctan

(
H√

(xk − d)2 + y2
k

)

=arctan

(
H√

(rk cos(φk)− d)2 + r2
k sin(φk)2

)
.

(2.4)

Similarly, the elevation angle between the UAV and BSs is θu = π/2 rad. The probability of

LoS in the uplink and downlink is a function of θu and θk, respectively, i.e.

pL(θu) = (euexp(−gu(θu − eu)) + 1)−1, (2.5)

pL(θk) = (ekexp(−gk(θk − ek)) + 1)−1, (2.6)

where eu, ek, gu, and gk are the environment parameters obtained from the curve fitting

using Damped Least-Squares (DLS) method [48]. I model the LoS and NLoS transmissions

with Rician and Rayleigh fast fading channels, respectively. For LoS Rician fading, the

probability density function (PDF) of the fading channel power XL is given as:

fXL(x) =
K + 1

Ω
e−K−

(K+1)x
Ω I0

(
2

√
K(K + 1)x

Ω

)

=
∞∑
`=0

b(bK)`

(`! )2
x`e−bx−K ,

(2.7)

in which K is the Rician factor and I0 is a modified Bessel function of the first kind and

b = K+1
Ω

[49]. The PDF of NLoS Rayleigh fading channel power is obtained by substituting

K = 0 in (2.7) as follows:

fXN (x) =
1

Ω
exp

(
− x

Ω

)
, (2.8)

where Ω is the mean local power of the fading channel. The path-loss exponent α and

K-factor for the Rician uplink channel are a function of the elevation angle, i.e. [50]

α(θu) = pL(θu)qu + vu, K(θu) = wuexp(zuθu). (2.9)
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Here qu,vu,wu, and zu are constants depending on the uplink environment [48]. Similar to

(2.9), for the downlink I can write

α(θk) = pL(θk)qd + vd, K(θk) = wd exp(zdθk). (2.10)

respectively. Again, qd,vd,wd, and zd are constants depending on the downlink environment

[48].

2.3.3 Uplink and Downlink Transmission Model

The uplink received signal at the UAV can be defined as

yu =

√
Âpuη−1

u d
−α(θu)
u hu s+ wu, (2.11)

where s is the binary phase shift keying (BPSK) signal transmitted from BSs to the UAV,

ηu denotes the excess aerial path-loss, pu is the uplink transmission power of BSs, du is the

distance between the BSs and the UAV located at I, i.e. du = H (Figure. 2.1), Â reflects

system parameters (e.g. operating frequency and antenna gain), wu is the noise which follows

zero-mean Gaussian distribution with power spectral density N0, and hu is the channel fading

gain. The uplink signal-to-noise-ratio (SNR) using (2.11) is formulated as:

γu =
Âpuη

−1
u H−α(θu) Xu

N0

, (2.12)

where Xu = |hu|2. The distribution of Xu follows from a non-central chi-square distribution

given in (2.7) for LoS and exponential distribution given in (2.8) for NLoS.

In the downlink, the UAV communicates to K RXs. The distance between the UAV

at d and the k-th ground RX is represented by dk, ∀k (Figure.2.1). The received signal yk

at k-th RX is yk =

√
Âpdη

−1
d d

−α(θk)
k hk yu + wk, where ηd and pd denote the excess aerial

path-loss and downlink transmission power of UAV, respectively. The SNR received at k-th

RX in the downlink can then be expressed as:

γk =
Âpdη

−1
d d

−α(θk)
k Xk

N0

, (2.13)
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where Xk = |hk|2. The distribution of Xk follows from a non-central chi-square distribution

and exponential distribution given in (2.7) for LoS and (2.8) for NLoS, respectively. The dis-

tance between the UAV and RX k is given as dk =
√

(D − d− rk cos(φk))2 + (rk sin(φk))2 +H2.

Note that from this point onward I will use Ku as a short notation for K(θu), Kk

as a short notation for K(θk), αu and αk as α(θu) and α(θk) for brevity, respectively.

2.3.4 Energy Consumption Model

The total energy consumption of a UAV comprises of (i) propulsion energy which is the

energy consumed by UAV in traveling from one location to the other location (plus hovering

energy in case of rotary wing UAVs), and (ii) transmission energy is the energy consumed

by UAV for communication purposes. The propulsion energy (typically in the order of

hundreds of watts [51]) is required to keep the UAV aloft and fly forward/vertically. The

communication energy of UAV is in the order of tens of watts [52]. A trade-off exists between

the communication and propulsion energy as a function of the distance that UAV travels

while ferrying the data. The consumed energy for the data loading phase, UAV travelling

phase, and downlink transmission phase are given in the following.

Uplink Data Loading Phase

The UAV hovers at I for a predefined duration Tu (Figure 2.1)2. The energy consumption

due to hovering of UAV and communication of the source BS in the uplink [21] is given as:

Eu = (Ph + pu)Tu, (2.14)

2I assume that transmission time Tu is the time data takes to reach to the UAV which is at location I

(e.g. Tu = H
c ). To assure that complete data is uploaded to UAV from BSs, I can add an extra delay to the

transmission time.
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where pu is the uplink power consumption of BSs and Ph is the propulsion power consumption

of UAV in the hovering state given as follows (Eq 12.13 of [53]):

Ph = P0 + Pi =
δ

8
ρsAξ3r3 + (1 + κ)

√
(mg)3

2ρA
, (2.15)

where ρ, A, ξ, r, s, δ, and κ denote the air density (in kg/m3), rotor disc area (in m2), blade

angular velocity (in rad/sec), rotor radius (in m), rotor solidity, profile drag coefficient of the

blade, and incremental correction factor of induced power, respectively. The total weight

W of the UAV is approximately equal to the gravitational force, i.e. W = mg (in Newton),

where m is the UAV mass (in kg) and g denotes earth gravity (in m/s2).

UAV Travelling Phase

The energy consumption during the travelling time is solely due to the propulsion energy as

the UAV is not communicating during the flight. When the UAV moves with the constant

velocity V and carries the data to a distance d before delivering to downlink BSs, the energy

consumption can be modeled as follows:

Et(d) = P (V )d/V, (2.16)

where P (V ) is the power consumed by the blade profile, induced power, and parasitic power

of the UAV (Eq 7 of [21]), i.e.

P (V ) = P0

(
1 +

3V 2

U2
tip

)
+ Pi

(√
1 +

V 4

4v4
0

− V 2

2v2
0

) 1
2

+
1

2
d̂0ρsAV

3, (2.17)

where Utip denotes the tip speed of the rotor blade, v0 is the mean rotor induced velocity,

and d̂0 is the fuselage drag ratio. By substituting V = 0 in the aforementioned equation, I

get the hovering power as given in (2.15). Note that Et(d) is directly proportional to the

distance traveled by the UAV d.
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Downlink Transmission Phase

In the downlink, the UAV experiences energy consumption due to communication and

hovering. I consider that the serving region (i.e. the cell radius R) in which all re-

ceivers are located is very small compared to the traveling distance of UAV rk = 0, i.e.

dk = d0 =
√

(D − d)2 +H2 for simplicity. Under this assumption, the farthest or nearest

receiver becomes approximately the same as the receiver who is located at the cell-center

(see Figure 2.2). As such, I consider the outage probability, with respect to the cell-center, as
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Figure 2.2 Outage of receivers that are located nearest and farthest from the cell-
center as well as the receiver located at the cell-center, considering Rayleigh/Exp
distribution α = 2.5 as a function of d.

an approximate performance measure of all users in the serving region. The UAV hovering

time Td is assumed to be at least equal to the time in which a user located at the cell center

receives data from UAV, where Tc is the transmission time of the UAV. It is important to
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note that the UAV can transmit at any specific distance d, from the initial point on the

trajectory, if the QoS criterion is met. Therefore, the traveling time of UAV to location d is

separate from the transmission time in the downlink Tc. The downlink energy consumption

at UAV can thus be modeled as follows:

Ed(d) = PhTd + pdTc = Ph
d0

c
+ pdTc, (2.18)

where d0 =
√

(D − d)2 +H2, c is the speed of light, and Td is the hovering time of UAV.

Since the UAV will be transmitting for the entire hovering duration, I assume that Td = Tc.

End-to-End Energy Consumption

The overall energy consumption can be obtained by adding (2.14), (2.16), and (2.18) as

follows:

Etot(d) =
(Ph + pd)

√
(D − d)2 +H2

c
+
P (V )d

V
+ C, (2.19)

where C = puTu + PhTu. I assume that sufficiently large memory is available at the UAV to

store the complete data for one trip.

2.4 End-to-End Reliability and Bit Error Probability Anal-

ysis

In this section, I derive the end-to-end reliability with and without ARQ and BEP (the ratio

of the number of bits in error to the total number of transmitted bits) of the considered

network. The end-to-end BEP and PEP for the k-th RX are conditioned on the following

events, i.e.

(i) Event υ1: when both the uplink and downlink incur LoS Rician fading, i.e.

{pL(θu) > pN(θu), pL(θk) > pN(θk)}, where pN(·) depicts the NLoS probability,
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(ii) Event υ2: when the uplink experiences LoS Rician fading and the downlink expe-

riences NLoS Rayleigh fading, i.e. {pL(θu) > pN(θu), pL(θk) < pN(θk)},

(iii) Event υ3: when the uplink experiences NLoS Rayleigh fading and the downlink

experiences LoS Rician fading, i.e. {pL(θu) < pN(θu), pL(θk) > pN(θk)}, and

(iv) Event υ4: when the uplink and downlink experience NLoS and NLoS Rayleigh

fading, i.e. {pL(θu) < pN(θu), pL(θk) < pN(θk)}.

Conditioned on υi, dk and using the definition of reliability from [41], the end-to-end

PEP of k-th RX Pkε (υi, dk) should meet the reliability threshold (or packet error threshold)

τR [41]. I model the reliability constraint without ARQ as:

Pkε (υi, dk) ≤ τR, (2.20)

where a packet is assumed to be in error even if a single bit is in error and I assumed that

the bit errors are independent (e.g. due to large interleaver size, fast fading and uncoded

transmission); therefore, I have

Pkε (υi, dk) = 1−
(
1− P k

b (υi, dk)
)L
, (2.21)

where L is the number of bits per packet with the assumption that cyclic redundancy check

(CRC) is not available at the UAV in uplink, and P k
b (υi, dk) is the conditional BEP given as

P k
b (υi, dk) ≤ 1− (1− τR)

1
L .

Remark: The end-to-end PEP with ARQ and n retransmissions Pkε (n, υi, dk) can be

obtained from the BEP under the assumption of i.i.d. channels [54] in each retransmission

(e.g. due to large interleaver size, fast fading and uncoded retransmissions); for both uplink

and downlink as

Pkε (n, υi, dk) = 1− (1− P u
ε (n))(1− P k

ε (n)), (2.22)

where n = 0, 1, · · · , µ and µ is the maximum number of retransmissions, The PEP of both

uplink and downlink are P u
ε (n) = (1 − (1 − P u

b )L)n+1 and P k
ε (n) = (1 − (1 − P k

b )L)n+1,
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respectively. It is assumed that both UAV and downlink receivers have single bit feedback

associated to it. The reliability constraint in (2.20) can be rewritten by considering ARQ as

Pkε (n, υi, dk) ≤ τR. For n = 0 and no CRC in the uplink (i.e. P u
ε (n) = 0, P k

ε (n) = Pkε (υi, dk)),

Pkε (n, υi, dk) converges to (2.21).

2.4.1 Methodology of Analysis

To derive the reliability and Pkb (υi, dk), the steps are as follows:

1. Derive the uplink BEP P u,L
b and P u,N

b for LoS (Rician) and NLoS (Rayleigh) fading

channels, respectively.

2. Derive the downlink BEP P k,L
b and P k,N

b for LoS (Rician) and NLoS (Rayleigh) fading

for BSk, respectively.

3. The bit error can occur in two scenarios [55]: (i) when the uplink transmission is in

error but the downlink transmission is successful (ii) when the uplink transmission is

successful but the downlink transmission is in error. Conditioned on dk and vi, the

end-to-end BEP of k-th BS is given as follows [44,55]:

Pb
k(υi, dk) = (1− Pbu)Pbk + Pb

u
(
1− Pbk

)
, (2.23)

where P u
b and Pbk are the uplink and downlink conditional BEPs for k-th link, respec-

tively, given υi and dk.

For events υ1, υ2, υ3, and υ4, (2.23) can be rewritten as:

Pb
k(υ1, dk) =

(
1− Pbu,L

)
Pb

k,L + Pb
u,L
(
1− Pbk,L

)
,

Pb
k(υ2, dk) =

(
1− Pbu,L

)
Pb

k,N + Pb
u,L
(
1− Pbk,N

)
,

Pb
k(υ3, dk) =

(
1− Pbu,N

)
Pb

k,L + Pb
u,N
(
1− Pbk,L

)
,

Pb
k(υ4, dk) =

(
1− Pbu,N

)
Pb

k,N + Pb
u,N
(
1− Pbk,N

)
.

(2.24)
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4. Derive the BEP of multicasting system (PMC
b (dk)).

5. The unconditioned BEP (after averaging over υi and dk) for any arbitrary BS can then

be given as follows:

Pb =
4∑
i=1

P(υi)Edk [Pb
k(υi, dk)], (2.25)

where P(vi) is the probability of event υi.

2.4.2 Characterization of Uplink BEP - (P u,L
b and P u,N

b )

Proposition 1 (BEP P u,L
b - LoS Rician Fading). The BEP in the uplink LoS transmission

channel (i.e. Rician fading) can be derived as follows:

P u,L
b =

∞∑
`=0

qu(`)
(
β−`−1

1 + 3β−`−1
2

)
, (2.26)

where qu(`) = bue−Ku (buKu)`

12`!
, β1 = Âpuη

−1
u

2HαuN0
+ bu, β2 = 2Âpuη

−1
u

3HαuN0
+ bu, and bu = Ku+1

Ωu
.

Proof. By conditioning on Xu = |hu|2, the BEP in the uplink can be written using the BEP

of Gaussian noise as:

P u,L
b =EXu

[
Q
(√

2(β1 − bu) Xu

)]
. (2.27)

Using the exponential approximation for Q-function [56], i.e. Q(x) = 1
12
e−

x2

2 + 1
4
e−

2x2

3 , I

simplify (2.27) as follows:

P u,L
b = EXu

[
1

12
e−(β1−bu)Xu +

1

4
e−(β2−bu)Xu

]
. (2.28)

The first expectation over Xu in (2.28) can be solved by averaging over the PDF of non-

central chi-square distribution given in (2.7) and by substituting z with Xu and b with bu.

The first term of (2.28) can be solved as follows:

1

12
EXu

[
e−(β1−bu)Xu

]
=
∞∑
`=0

qu(`)β
−`−1
1 , (2.29)
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where the closed-form is calculated using the definition of Gamma function in (2.29), i.e.∫∞
0
e−β1xx`dx = β−`−1

1 Γ(` + 1). Following the same steps, I solve the second expectation in

(2.28) as:

EXu
[

1

4
e−(β2−bu)Xu

]
=
∞∑
`=0

qu(`)β
−`−1
2 . (2.30)

Substituting (2.29) and (2.30) in (2.28), I get Proposition 1. �

Corollary 1 (BEP P u,N
b - NLoS Rayleigh Fading). Substituting Ku = 0 in Proposition 1,

the BEP in the NLoS Rayleigh fading channel (2.26) is given as follows:

P u,N
b =

1

12Ωu

(
β−1

1 + 3β−1
2

)
, (2.31)

where β1 and β2 are given as in Proposition 1.

2.4.3 Characterization of Downlink BEP - (P k,L
b and P k,N

b )

Proposition 2 (BEP P k,L
b - LoS Rician Fading). The BEP Pb

k in the downlink for k-th RX

can be derived as follows:

P k,Lb =
∞∑
`=0

qd(`)

((
β′1
dαkk

+ bk

)−`−1

+ 3

(
β′2
dαkk

+ bk

)−`−1
)
, (2.32)

where qd(`) =
b`+1
d e−KkK`

k

12(`!)
, β′1 =

Âpdη
−1
k

2N0
, β′2 =

2Âpdη
−1
k

3N0
and bk = Kk+1

Ωd
.

Proof. The proof can be done following similar steps as in the proof of Proposition 1. �

Corollary 2 (BEP P k,N
b - NLoS Rayleigh Fading). : The BEP P k,N

b in the downlink NLoS

transmission link can be given by substituting Kk = 0 in (2.32) as follows:

P k,N
b =

1

12Ωd

((
β′1
dαkk

+
1

Ωd

)−1

+ 3

(
β′2
dαkk

+
1

Ωd

)−1
)
, (2.33)

where β′1 and β′2 are given as in Proposition 2.
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2.4.4 End-to-End BEP of RX k, P k
b (dk)

Conditioned on dk, the end-to-end BEP Pb
k(dk) can be derived as follows:

Pb
k(dk) =

4∑
i=1

P(υi)Pb
k(υi, dk), (2.34)

where P(υi) represents the probability of event υi. The occurrence of each event can be writ-

ten as the product of two individual events, i.e. P(υ1) = pL(θu)pL(θk), P(υ2) = pL(θu)pN(θk),

P(υ3) = pN(θu)pL(θk), P(υ4) = pN(θu)pN(θk). Note that pN(·) = 1− pL(·).

Also, P k
b (υ1, dk) is given by using (2.26) and (2.32) in (2.23). Pb

k(υ2, dk) is given by

using (2.26) and (2.33) in (2.23). Pb
k(υ3, dk) is given by substituting (2.31) and (2.32) in

(2.23). P k
b (υ4, dk) is obtained by using (2.31) and (2.33) in (2.23).

2.4.5 Overall BEP of the MultiCasting System, PMC
b (dk)

Conditioned on dk, the overall BEP of the considered multicasting network can be expressed

as follows:

PMC
b (dk) =

2K−1∑
k=1

1

2K − 1

K∏
k=1

(1− Pbk(dk))1−sk(Pb
k(dk))

sk . (2.35)

To elaborate the above expression, let us consider a simple example of two RXs K = 2.

Each RX k ∈ K can experience successful or erroneous transmission denoted by sk = 0

and sk = 1, respectively. S represents the set containing all possible combinations (i.e. 2K

combinations). For two RXs, I have S = {00, 01, 10, 11} where each combination is s ∈ S.

The first combination s = {00} corresponds to both RXs having no errors so need not be

considered in the overall BEP. Then, s = {01} corresponds to the event when first RX in

success while the second RX is in error with BEP given by (1−Pb1(d1))Pb
2(d2). Similarly for

s = {10} and s = {11}, the corresponding BEPs are Pb1(d1)(1−Pb2(d2)) and Pb1(d1)Pb
2(d2),

respectively. Averaging over all combinations with at least one error, I obtain (2.35).

On the other hand, when sk is known a priori for each RX k based on certain QoS
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constraints, the overall BEP can be expressed as follows:

PMC
bsk

(dk) =
K∏
k=1

(Pb
k(dk))

sk(1− Pbk(dk))1−sk , (2.36)

where

sk =


1 Pb

k(υi, dk) > 1− (1− τR)1/L

0 Pb
k(υi, dk) ≤ 1− (1− τR)1/L

. (2.37)

That is, sk obtained by solving (2.20) and (2.21).

2.4.6 BEP of Any Arbitrary BS

Finally, deconditioning over dk (which in turn implies averaging over rk and φk) yields the

BEP Pb
k as:

Pb =1−
∫ R

0

∫ 2π

0

Pb
k(dk)

rk
πR2

drkdφk

=1−
4∑
i=1

∫ R

0

∫ 2π

0

P(υi)Pb
k(υi, dk)

rk
πR2

drkdφk.

(2.38)

The integrals can be solved using standard mathematical software such as MATLAB and

MATHEMATICA.

It is important to note that our analysis can be extended for the nearest (farthest) user

by replacing the probability density function (PDF) of the distance of the k-th user from

cell-center with the PDF of the user who is located at the minimum (maximum) distance

from the cell-center using order statistics.

2.5 End-to-End Energy-Efficiency and SNR Outage Prob-

ability

In this section, I characterize the network energy-efficiency and SNR outage probability of the

considered multicasting network. Energy-efficiency (EE) is defined as the ratio of the number
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of successfully delivered bits and the total network energy consumption (in bits/Joule) [57].

The analytical methodology to derive EE is as follows:

1. Conditioned on υi and dk, characterize the end-to-end EE of k-th RX as follows:

EE (υi, dk) =
R0

BEtot(d)
(1−Ok(dk)), (2.39)

where R0 and B are the desired rate and channel bandwidth, respectively. Energy

consumption Etot(d) is given in (2.19) and Ok(dk) is the SNR outage of k-th BS.

2. Characterize the SNR outage Ok(dk) of the k-th BS.

3. Characterize the overall SNR outage OMC
k (dk) of the multicasting system.

4. Characterize the unconditioned end-to-end outage probability of any arbitrary RX as

follows:

O =
4∑
i=1

Edk [P(υi)Ok(υi, dk)]. (2.40)

5. Characterize the overall EEMC of the network.

2.5.1 End-to-End Outage Probability of RX k, Ok(dk)

Assuming that the UAV can perform decoding and storing of the data during flight, the

end-to-end SNR Γk for k-th RX can be modeled as [58]:

Γk = min{γu, γk}. (2.41)

Conditioned on dk and vi, the end-to-end transmission outage probability of k-th RX is

defined as:

Ok(υi, dk) =P(Γk < Γ0|vi) = P[min(γu, γk) < Γ0|vi]

=1− (1− Fγu(Γ0)) (1− Fγk(Γ0)) ,

(2.42)
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where Fγu(Γ0) and Fγk(Γ0) represent the CDF of uplink and downlink SNR evaluated at Γ0

(i.e. uplink and downlink conditional SNR outage), respectively, for the k-th BS.

For events υ1, υ2, υ3, and υ4, (2.42) can be rewritten as:

Ok(υ1, dk) =1−
(
1− FL

γu(Γ0)
) (

1− FL
γk

(Γ0)
)
,

Ok(υ2, dk) =1−
(
1− FL

γu(Γ0)
) (

1− FN
γk

(Γ0)
)
,

Ok(υ3, dk) =1−
(
1− FN

γu(Γ0)
) (

1− FL
γk

(Γ0)
)
,

Ok(υ4, dk) =1−
(
1− FN

γu(Γ0)
) (

1− FN
γk

(Γ0)
)
.

(2.43)

To evaluate (2.43), I characterize FL
γu(Γ0), FN

γu(Γ0), FL
γk

(Γ0) and FN
γk

(Γ0), respectively, in the

following.

Characterization of FL
γu(Γ0) and FN

γu(Γ0)

Using (2.12), the uplink SNR outage can be given as follows:

Fγu(Γ0) =P (γu ≤ Γ0) = P (Xu ≤ Γ′u) = FXu(Γ′u), (2.44)

where Xu = |hu|2 represents non-central chi square distribution and Γ′u = N0Γ0

Âpuη
−1
u H−αu

.

Using the alternate exact expression for PDF in (2.7), the CDF of non-central chi-square

distribution can be given as follows [49,59,60]:

FX(x) = 1−
∞∑
`=0

∑̀
m=0

f(m, l)xme−bx, (2.45)

where f(m, `) = e−K K`bm

`!m!
, b = K+1

Ω
, Ω is the mean local power of the Rician channel, and

K is the Rician factor.

After substituting x = Γ′u in (2.45), FL
γu(Γ0) = FL

Xu
(Γ′u) for LoS fading can be evaluated

as follows:

FL
Xu(Γ′u) = 1−

∞∑
`=0

∑̀
m=0

fu(m, l) (Γ′u)
m

exp (−buΓ′u) , (2.46)
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where bu = Ku+1
Ωu

, fu(m, `) = e−Ku K
`
ub
m
u

`!m!
,and Ωu is the mean local power of the Rician channel

in uplink.

Substituting Ku = 0 in (2.46), FN
Xu

(Γ′u) for NLoS Rayleigh fading can be expressed as

follows:

FN
Xu(Γ′u) = 1− e−Γ′u/Ωu , (2.47)

where Γ′u is defined as in (2.44).

Characterization of FL
γk

(Γ0) and FN
γk

(Γ0)

Using (2.13), the downlink SNR outage of k-th RX can be given as follows:

FL
γk

(Γ0|dk) = P

(
Âpdη

−1
d d−αkk Xk

N0

≤ Γ0

)
= FL

Xk
(Γ′k|dk)

(a)
= 1−

∞∑
`=0

∑̀
m=0

fd(m, l) (Γ′kd
αk
k )

m2 exp (−bkΓ′kd
αk
k ) , (2.48)

where dk =
√

(D − d− rk cos(φk))2 + (rk sin(φk))2 +H2, Γ′k = N0Γ0

Âpdη
−1
d

, and (a) follows by

taking x = Γ′kd
αk
k in (2.45). Also, bk = Kk+1

Ωd
, fd(m, `) = e−Kk

K`
kb
m
k

`!m!
, and Ωd is the mean local

power of the downlink Rician channel.

Substituting Kk = 0 in (2.48), FXk(Γ′k) for NLoS Rayleigh fading can be expressed as

follows:

FN
Xk

(Γ′k|dk) =1− e−
Γ′k
Ωd
d
αk
k . (2.49)

End-to-End SNR Outage, Ok(dk)

Conditioned on dk, I write Ok(dk) as follows:

Ok(dk) =
4∑
i=1

P(υi)Ok(υi, dk), (2.50)
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where P(υi) represents the probability of event υi. That is, P(υ1) = pL(θu)pL(θk), P(υ2) =

pL(θu)pN(θk), P(υ3) = pN(θu)pL(θk), P(υ4) = pN(θu)pN(θk).

For each event υi, Ok(υi, dk) can be derived as in the following:

(a) Event υ1: Using (2.46) and (2.48) in (2.42), I have

Ok(υ1, dk) = 1−

(
∞∑
`=0

∑̀
m=0

fu(m, l) (Γ′u)
m
e−buΓ′u

)

×

(
∞∑
`=0

∑̀
m=0

fd(m, l) (Γ′kd
αk
k )

m2 exp (−bkΓ′kd
αk
k )

)
.

(2.51)

(b) Event υ2: Similarly, I obtain Ok(υ2, dk) using (2.46) and (2.49) in (2.42). (c) Event

υ3: Ok(υ3, dk) using (2.47) and (2.48) in (2.42). (d) Event υ4: Ok(υ4, dk) using (2.47) and

(2.49) in (2.42).

2.5.2 Overall SNR Outage of the MultiCasting System, OMC(dk)

Conditioned on dk, the overall network outage of the considered multicasting network (similar

to overall BEP) can be expressed as follows:

OMC(dk) =
2K−1∑
k=1

1

2K − 1

K∏
k=1

(1−Ok(dk))
1−sk(Ok(dk))

sk , (2.52)

where sk = 1 when the transmission fails for the k-th RX and sk = 0 when the transmission

is successful. When sk is known a priori for each RX k based on certain QoS constraints,

the overall network outage can be expressed as follows:

OMC
sk

(dk) =
K∏
k=1

(Ok(dk))
sk(1−Ok(dk))

1−sk , (2.53)

where

sk =


1 Ok(υi, dk) > τ ′R

0 Ok(υi, dk) ≤ τ ′R

, (2.54)

where τ ′R is an arbitrary constraint on outage probability.
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2.5.3 SNR Outage of an Arbitrary BS

Deconditioning over dk (which in turn implies averaging over rk and φk) yields the outage O

as follows:

O =1−
∫ R

0

∫ 2π

0

Ok(dk)
rk
πR2

drkdφk

=1−
4∑
i=1

∫ R

0

∫ 2π

0

P(υi)Ok(υi, dk)
rk
πR2

drkdφk.

(2.55)

2.5.4 Overall Energy-Efficiency

Conditioned on dk, the energy-efficiency of the considered multicasting system can be derived

as follows:

EEMC(dk) =
∑
s∈S

R0

(
K −

∑K
k=1 sk

)
(2K − 1)BEtot(d)

OMC
sk

(dk), (2.56)

where R0 depicts bits/sec for each individual link, B is in Hz, sk = 1 when the transmission

fails for the k-th RX and sk = 0 when the transmission is successful. Note that the term
R0(K−

∑K
k=1 sk)

B
represents the total number of successfully received bits of the overall network.

On the other hand, when sk is known a priori for each RX k based on certain QoS constraints,

the overall network energy-efficiency can be expressed as follows:

EEMC(dk) =
R0

(
K −

∑K
k=1 sk

)
BEtot(d)

OMC
sk

(dk), (2.57)

where sk is defined in (2.54).

2.5.5 Approximations for Rician Fading Channels

The exact end-to-end outage for Rician fading can be simplified by approximating the Bessel

function of first kind in (2.7) using sum of pure finite real exponent series approximation
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I0(x) =
∑4

i=1 Si exp(Tix). The PDF of the non-central chi square distribution can thus be

simplified as follows [61]:

fX(x) =
K + 1

Ω
e−K−

(K+1)x
Ω

4∑
i=1

Sie
Ti

(
2
√
K(K+1)x

Ω

)
. (2.58)

Subsequently, I derive the approximate CDF as follows.

Proposition 3 (Approximate CDF). Integrating (2.58) yields the approximate CDF of the

non-central chi square distribution as:

FX(Γ) ≈
4∑
i=1

Si

(
1− e−bΓ+2

√
bΓη2i) + ξi + ψi erf[

√
bΓ− η2i]

)
e−K ,

where ψi = eη
2
2i
√
πη2i, ξi = ψi erf (η2i), and η2i =

√
KTi.

Subsequently, using Proposition 3, I obtain FL
Xu

(Γ′u) by substituting b with bu, K with

Ku, and Γ with Γ′u. Also, I approximate FXk(Γ′k|dk) by substituting b with bk and K with

Kk and Γ with Γ′kd
αk
k , respectively, as follows:

FL
Xu(Γ′u) ≈

4∑
i=1

Sie
−Ku

(
1− e(−buΓ′u+2

√
buΓ′uη2i) + ξi + ψi erf

(√
buΓ′u − η2i

))
, (2.59)

FL
Xk

(Γ′k|dk) ≈
4∑
i=1

Sie
−Kk

(
1− e(−η2

1d
αk
k +Gid

αk/2

k ) + ξi + ψi erf
(
η1d

αk/2
k − η2i

))
, (2.60)

where ψi = eη
2
2i
√
πη2i, ξi = ψi erf (η2i), and η2i =

√
KuTi, η1 =

√
bdΓ′k and Gi = 2η2iη1. Also

Si and Ti are in vector form. Where S ad T are given as S = [0.1682, 0.1472, 0.445, 0.2382]

and T = [0.7536, 0.9739, −0.715, 0.2343], respectively. Next, I approximate (2.60) as

shown in (2.61) where (2.61)(a) follows from the approximate CDF in (2.60) referred to as

Four-Node Approximation, (2.61)(b) follows from the proposed approximation of erf(x) as:

erf(x) = 1− a1e
−b′x2 − a2e

−2b′x, (2.62)

where E1 = e−Kk
∑4

i=1 Si(1 + ξi + ψi) and a = [0.3017 0.4389]T, and b′ = 1.051. I refer

this approximation as Four-Node with Error Function Approximation. Note that (2.62) is
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FL
Xk

(Γ′k|dk)
(a)
=

4∑
i=1

Sie
−Kk

(
1− e(−η2

1d
αk
k +Gid

αk/2

k ) + ξi + ψi erf
(
η1d

αk/2
k − η2i

))
(b)
=1− E1 + e−Kk

4∑
i=1

Si

{
e(−η2

1d
αk
k +Gid

αk/2

k ) + a1ψie
−b′(η1d

αk/2

k −η2i)
2

+ a2ψie
−2b′(η1d

αk/2

k −η2i)
}

(c)
=1− E1 + e−Kk

2∑
i=1

Si

{
e(−η2

1d
αk
k +Gid

αk/2

k ) + a1ψie
−b′(η1d

αk/2

k −η2i)
2

+ a2ψie
−2b′(η1d

αk/2

k −η2i)
}
.

(2.61)

different from the approximation in [45], i.e.

erf(x) ≈ 1−
N=2∑
n=1

ane
−nb′x2 ≈ 1− a1e

−b′x2 − a2e
−2b′x2

. (2.63)

Then, (2.61)(c) follows from truncating the last two terms of the Four-Node approximation. I

refer this approximation as Two-Node with Error Function Approximation. Note that this is

different from finding the two-node approximation of the Bessel function to find the density

function. The applications of these approximations are discussed in the following Remark

and in the next section.

Remark: The proposed approximations of the Rician CDF listed in (2.61)(a), (2.61)(b),

and (2.61)(c) can be directly used to compute the end-to-end outage probability expressions

derived in Section 2.5. Figure 2.3(a) validates the proposed approximations in (2.61) for

the exact erf(x). The existing approximation in (2.63) provides tighter bound to erf(x) for

x ≥ 0. However, the proposed approximation in (2.61) provides a slightly loose bound which

is remarkably valid for a wider region (polarity of the approximation remains the same as

erf(x) function). Figure 2.3(b) compares the SNR outage using Four-Node approximation,

Two-Node approximation, and simulation results. The results depict that the two-node

approximation is less precise compared to the four-node approximation; however, it has

significant analytical tractability.
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2.6 Optimization Problems

In this section, I consider two different optimization problems to minimize the end-to-end en-

ergy consumption and outage probability of RX k located at cell-center. The objectives of the

problems are (i) energy-constrained SNR outage minimization and (ii) outage-constrained en-

ergy consumption minimization. Note that dk =
√

(D − d− rk cos(θ′k))
2 + (rk sin(θ′k))

2 +H2.

However, in this section, I consider that serving region (i.e. the cell radius R) in which all

receivers are located is very small compared to the traveling distance of UAV rk = 0, i.e.

dk = d0 =
√

(D − d)2 +H2 for simplicity. Under this assumption, the farthest or nearest

receiver becomes approximately the same as the receiver who is located at the cell-center.

This assumption is valid for the scenarios such as when UAV starts from the city center and

delivers data to remote area far away as described in Section 1.3.2. Also, I consider K and

α as independent of elevation angles. I demonstrate in the results section that the variation

in elevation angle during the UAV travel does not significantly impact α and K.

2.6.1 Outage-Constrained Energy Minimization

I minimize energy consumption Etot(d) in (2.19) under the SNR outage constraints as for-

mulated in the following:

P1 : min
d

Etot(d)

s.t.C1 : Ok(υi, d0) ≤ τ,

C2 : d ≤ D, d ≥ 0,

where Etot(d) =
(Ph+pd)

√
(D−d)2+H2

c
+ P (V )d

V
+C is convex. The convexity is verified by noting

that the second derivative E ′′tot(d) ≥ 0 is non-negative with respect to optimization variable

d, hence Etot(d) is a convex function. However, the outage constraint based on the four

event i not linear. Hence the problem is non-convex. To solve the optimization problem,

we convexify the problem using the simplifications of the expression with the help of the
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approximation proposed in previous sections. The convexification provides sub optimal result

without running time consuming and computationally expensive simulations. The steps are

provided next.

Optimization for Events υ1 and υ3: First I solve P1 considering downlink LoS

Rician fading channel. This solution approach will be applicable for the events υ1, υ3 for

which

Ok(υi, d0) = 1− U
∞∑
`=0

∑̀
m=0

fd(m, l) (Γ′kd
α
0 )
m2 e(−bdΓ′0d

α
0 ). (2.64)

For event υ1, U =
(
1− FL

γu(Γ0)
)
can be calculated from (2.46). For event υ3, U =

(
1− FN

γu(Γ0)
)

can be calculated from (2.47). The outage probability constraint C1 is complicated because

of the infinite double summations. To simplify C1, I use (2.60) since the approximation

is analytically tractable. However, (i) the approximation still has the error function erf(·)

with the optimization variable d inside it, and (ii) the weights Ti in (2.60) are mixed (both

positive and negative) and I know that “non negative weighted sum of convex function is

convex”. As such, obtaining a convex function is a problem due to T3.

To resolve (i) and (ii), I use (2.61)(b) and (2.61)(c) approximations, respectively. The

modified problem P1 be given by substituting Ok(υi, dk) in C1 as follows:

Ok(υi, d0) =1− U

(
1− E1 + e−K

2∑
i=1

Si

{
e(−η2

1d
α
0 +Gid

α/2
0 )

+ a1ψie
−b′(η1d

α/2
0 −η2i)

2
+ a2ψie

−2b′(η1d
α/2
0 −η2i)

})
.

Then, I transform the optimization variable z = d
α/2
0 = ((D − d)2 + H2)α/4 to simplify C1

as follows:

Ok(υi, z) =1− U

(
1− E1 + e−K

2∑
i=1

si

{
e(−η2

1z
2+Giz) + a1ψie

−b′(η1z−η2i)
2

+ a2ψie
−2b′(η1z−η2i)

})
.
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Subsequently, P1 can be reformulated as follows:

P2 : min
z

Etot(z)

s.t. C1 : Ok(υi, z) ≤ τ

C2 : z ≤ (H2 +D2)α/4, z ≥ Hα/2,

(2.65)

where

Etot(z) =
(Ph + pd)z

2/α

c
+
P (V )(D −

√
z4/α −H2)

V
+ C

is monotonically decreasing function hence quasi-convex (for proof please see Appendix B).

Therefore, I replace Etot(z) in P2 with z in P3. The obtained outage expression is the sum of

log-concave (concave function in the argument of first and second exponents) and log-affine

(due to linear argument of third exponent) functions which is non-convex. To write the

function in the form of log of sum of exponential functions, I use the binomial approximation

(1 + x)n ≈ 1 + nx after completing squares in the argument of first exponential. This step

linearizes the arguments of the three exponents which makes C1 log-affine. P3 can thus be

written as follows:

P3 : min
z

z

s.t. C1 :
2∑
i=1

Si

(
e
η2

1(2z− Gi
2η2

1
)
g + a1ψie

−b′η2
2i(

2η1
η2i

z−1)
+ a2ψie

−2b′(η1z−η2i)

)
≥ τ ′

C2 : z ≤ (H2 +D2)α/4, z ≥ Hα/2,

where τ ′ = eK
(
τ−1
U

+ 1− E1

)
. Note that P3 is now convex with C1 in the form of sum

of log-affine exponential function [62] which is convex since the weights are positive and

argument within exponential functions are linear and can be written as log-sum-exponents.

P3 can thus be solved using standard convex optimization techniques.

Optimization for Events υ2 and υ4: For events with downlink NLoS Rayleigh fading

channels, P3 can be solved by substituting Ok(υi, z) = 1 − Ue−bkΓ′kz
2 using (2.49). Note

that, for event υ2, U =
(
1− FL

γu(Γ0)
)
can be calculated from (2.46) and, for event υ4,

U =
(
1− FN

γu(Γ0)
)
is given from (2.47).
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Proposition 4 (Closed-Form Optimal Solution d∗ for Rayleigh Fading Downlink Channels).

Since the objective is monotonically decreasing with respect to z, the solution lies at the

boundary where the equality of C1 of P3 holds. The closed-form optimal solution z∗ can be

obtained by solving the constraint Ok(υi, z) = 1 − Ue−bkΓ′kz
2

= τ ′. By ignoring the positive

root which is infeasible as it results in optimal value out of the range of d, I obtain d∗ given

as follows:

d∗ = D −

√(
Ωu

Γ′u
log

(
1− τ
U

))2/α

−H2. (2.66)

In addition, d∗ = 0 and d∗ = D, if the constraint satisfies at d = 0 and d = D, respectively.

2.6.2 Energy-Constrained SNR Outage Minimization

Here, I minimize SNR outage subject to energy constraints Etot(z) ≤ Eτ such that the

total energy consumption remains within minimum energy budget of UAV. I formulate the

problem using (2.43) and (2.19) in variable z as follows:

P1 : min
z

Ok(υi, z)

s.t. C1 :
(Ph + pd)z

2/α

c
+
P (V )(D −

√
z4/α −H2)

V
+ C ≤ Eτ ,

C2 : z ≤ (H2 +D2)α/4, z ≥ Hα/2,

C3 :
m

z2
− bdΓ′k < 0,

where constraint C3 is the feasibility constraint. Under this feasibility condition, I can

replace Ok(υi, z) with z in the objective function as follows:

P2 : min
z

z

s.t.C1 :
(Ph + pd)z

2/α

c
+
P (V )(D −

√
z4/α −H2)

V
+ C ≤ Eτ ,

C2 & C3.

Under the feasibility regime, the outage probability Ok(υi, dk) ∀i = 1, 2, 3, 4 is monotonically

decreasing function of z (see Appendix C for proof). Due to the monotonic nature of the
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objective and constraint, the solution to the above problem lies at the boundary where C1

becomes an equality constraint.

Proposition 5 (Closed-Form Optimal UAV Distance for Energy-Constrained Outage Min-

imization). The optimal solution z∗ can be obtained by solving Etot(z) − Eτ = 0, taking the

solution with positive root and then substituting z∗ in z = d
α/2
0 to obtain d∗ by taking the

solution with negative root:

d? = D − 2

√(
κ3 + F 2 + 2F

√
κ3

)
(κ2

1 − 1)2
−H2, (2.67)

where κ3 = κ2
1(F 2+κ2

2), κ2
2 = (κ2

1−1)H2, κ1 = cP (V )
(Ph+pd)V

and F =
(
Eτ − C −DP (V )

V

)
c

(Ph+pd)
.

This solution is valid for events υi, ∀i = 1, · · · , 4.

2.6.3 Multi-Objective Optimization

In this subsection, I simultaneously minimize both the energy consumption and outage prob-

ability. I formulate a bi-objective optimization problem with weights λ and 1−λ to the energy

consumption and outage probability, respectively. The problem is formulated as follows:

P1 min
z

λEtot(z) + (1− λ)Ok(z)

s.t. C1 : Ok(υi, z) ≤ τ

C2 : z ≤ (H2 +D2)α/4, z ≥ Hα/2.

(2.68)

In (2.68) the unit of Etot(z) is Joules and of the order of thousands, whereas the outage

probability is unitless quantity between ‘0’ to ‘1’. The objective function is implicitly biased

towards energy consumption. With the help of normalization of Etot(z) (i.e. shifting and

scaling of Etot(z) as Etot(z)−Emin

Emax−Emin
), (i) I reduce the magnitude of Etot(z) from ’0’ to ’1’ which

was required to create a balance between the energy consumption and outage probability,

and (ii) I make Etot(z) a unitless quantity. Now both the terms are of same order and can be

added together. Note that Emax and Emin represent maximum and minimum value of energy
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consumption that is obtained by substituting the limits of z = Hα/2 and z = (D2 +H2)α/4,

respectively, in Etot(z) defined in Section 2.6.2 problem P1. That is, Emax = (Ph+pd)H
c

+

P (V )
V
D + C and Emin = (Ph+pd)

√
H2+D2

c
+ C. The objective of P1 can thus be rewritten as

follows:

U(z) =Ok(z) + ν̄ (Etot(z)− Emin(z)) , (2.69)

where ν̄ = λ
1−λ

1
Emax−Emin

minimizes outage probability when λ
1−λ = 0 and minimizes energy

consumption when λ
1−λ =∞ [63, 64]. The selection of weights is a choice of decision maker.

To solve P1, I use the fact that the objective function can be formulated as a difference of

two convex functions as follows:

U(z) = ν̄ (Etot(z)− Emin)− (−Ok(z)). (2.70)

By defining Q(z) = G(z)−H(z) where G(z) and H(z) are convex functions given by G(z) =

ν̄(Etot(z)− Emin(z)) and H(z) = −Ok(z), respectively, I formulate P1 as follows:

P2 Q(z) = min
z

G(z)−H(z)

s.t. C1 : Ok(υi, z) ≤ τ

C2 : z ≤ (H2 +D2)α/4, z ≥ Hα/2,

(2.71)

where

G(z) = ν̄

(
(Ph + pd)

z−2/αc
+
P (V )(D −

√
z4/α −H2)

V
+ C − Emin(z)

)
,

H(z) = max

{
−1 + U

(
1− E1 + e−K

2∑
i=1

Si

{
e
η2

1(2z− η2i
η1

)
g

+ a1ψie
−bnη2

2i(
2η1
η2i

z−1)
+ a2ψie

−2bn(η1z−η2i)

})
, 0

}
.

It should be noted that the outage probability approximation results in the value beyond

[0 1] range therefore to limit the range I use max(., 0). It is clear from Appendix A

that G(z) is convex and H(z) is also convex, respectively, with respect to z. However, in
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general, (2.71) is not a convex/concave problem. That is, the objective function is a dif-

ference of convex functions. DC programming approach provides an efficient way to get

local optima numerically which occasionally turns out to be global optimal [65,66]. To find

the efficient sub-optimal solution, this method involves successive convex approximation.

That is, the sub-problem in each iteration j is obtained by linearization of H(z) at point

zj, i.e. H(z) = H(zj) + H ′(zj)(z − zj) where H ′(·) represents the derivative of H(·). Note

that zj is update in z after j-th iteration. The algorithm to solve P2 is presented in Al-

gorithm 1. The complexity and convergence of Algorithm 1 is well-established in [67].

Data: Initial point: z0, Max Iterations Jmax, Error tolerance ε, Objective function

Q(z) and reduction of candidate points based on 0 ≤ Ok(z) ≤ τ

Result: sub optimal desired solution zsub

set j = 0; while |Q(zj+1)−Q(zj)|≤ ε or j > Jmax do
• Convex approximation of Q(x) at the point zj,

Qj(z) = G(z)−H(zj)−H ′(zj)(z − zj)

• Solve zj = argminQ(j)(z)

• j = j + 1.

end
Algorithm 1: DC Algorithm

Next, I provide the discussion based on numerical results of the analysis and optimization

presented earlier.
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2.7 Numerical Results and Discussion

I verify the accuracy of our derived expressions by comparing it to the monte Carlo sim-

ulations and obtain insights related to the optimal ferrying distance, and performance of

a UAV-assisted data ferrying distance system in a variety of scenarios. To perform monte

Carlo simulations, we take average over 10,000 instants where in each instant the fading

channel for uplink and downlink were random. Unless stated otherwise, the simulation pa-

rameters are D = 5000m, H = 500 m, pU = pD = 50 W, η1 = 0.009, ηD = 0.01, R = 200 m,

Γ0 = 10dB, qU = qD = −1.5, vU = vD = 3.5, wU = wD = 15 dB, zU = zD = 5. The typical

N0 = 10−17W/Hz [68], that justifies the values I used for γu and γk herein. Figure 2.4(a)
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Figure 2.4 (a) BEP conditioned on dk, γu = 211dB, γk = 181dB, Γ0 = 10dB, K(θk) and α(θk),
(b) BEP with K(θk) ranging from [2.18 1.92] and α(θk) ranging from [2.313 2.311] vs fixed K, α.

presents the end-to-end BEP of a typical RX as a function of the ferrying distance d con-

sidering the events υ1, υ2, υ3, and υ4 separately that appear in the order from bottom to

62



top. The BEP decreases monotonically as a function of d. Further, the theoretical results

match well with the simulation results. Also, I observe that υ1 (Rician (LoS)-only) and υ4

(Rayleigh (NLoS)-only) have the minimum and maximum BEPs, respectively. The BEP in

other events is similar to υ1 which shows that the significance of LoS transmissions in any

one hop has a positive impact on the BEP.

Figure 2.4(b) depicts the comparison of the end-to-end BEP of two events υ1 and υ3 for

Rician K-factor and path-loss exponent α as a function of elevation angle θk as in (2.9) and

(2.10) to the fixed K and α. I note that the change in ferrying distance does not impact

θk and in turn K(θk), α(θk) significantly. Thus the end-to-end BEP remains the same. This

result also justifies our assumption to consider fixed value of K and α in the optimization

problems presented in Section V. Note that the fixed K and α can not be chosen randomly

but their value needs to be chosen close to K(θk), α(θk).
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Figure 2.5 PEP conditioned on dk: comparison of simulation and exact analysis
for unconditioned on events and conditioned on dk as a function d with and without
ARQ.

Figure 2.5 depicts the end-to-end PEP as a function of d without and with ARQ re-

transmissions. Analytical and simulation results match well for n = 0, i.e. for single trans-
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mission and n = 1, 2, 3 with two and three retransmissions, respectively. As expected, PEP

decreases with d which means reliability is increasing. Figure 2.5 depicts that increasing

retransmissions help in achieving the desired reliability with a lower traveled distance which

will minimize the energy consumption. In addition, I also note that the reduction in PEP is

significant n = 0 to n = 1 and the degree of reduction gradually reduces for n = 2 to n = 3

and onwards.
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Figure 2.6 Outage probability conditioned on dk comparison of simulation, exact,
and approximate analysis for different d.

Figure 2.6 depicts the end-to-end outage probability of a typical RX as a function of

the distance traveled by the UAV. Each curve corresponds to the events υ1, υ2, υ3, and υ4

separately. Theoretical results match well with the simulations. Figure. 2.6 demonstrates

the efficacy of the Bessel approximation. The outage probability decreases monotonically

as a function of the ferrying distance d due to reduction in path-loss. As such, d can be

optimized to meet a specific outage probability constraint.

Note that υ1 (Rician-only) and υ4 (Rayleigh-only) shows the minimum and maximum

outages, respectively, beyond a certain travel distance d ≈ 3500m. For distances smaller than

d = 3500m, Rician-only event υ1 (both uplink and downlink are LoS) performs similar to
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Figure 2.7 Outage probability as a function of the altitude of UAV considering
γu = 172dB, γk = 184dB, and d = 2000m.

Rician-Rayleigh event υ2 (uplink is LoS and downlink is NLoS). The reason is the dominance

of uplink over downlink due to reduced path-loss in the uplink (when the UAV is close to I).

Similarly, Rayleigh-only event υ4 (both uplink and downlink channels are NLoS) performs

similar to Rayleigh-Rician event υ3 (uplink is NLoS and downlink is LoS). For distances

more than d = 4250m, Rician-only event υ1 performs similar to Rayleigh-Rician event υ3

and Rayleigh-only event υ4 performs similar to Rician-Rayleigh event υ2. The reason is the

dominance of downlink over uplink transmission when the UAV is close to F.

Figure 2.7 depicts the end-to-end outage probability of a typical RX as a function of the

altitude taken by the UAV considering different values of ek as given in (2.6). The derived

theoretical results match well with the Monte-Carlo simulation results. As ek decreases, the

LoS probability increases (see (2.6)) and therefore the end-to-end outage decreases. Another

interesting trend is that the SNR outage initially decreases with the increase in height (due

to higher LoS probability); however, after a certain point the SNR outage tends to increase

due to the increasing distance from the ground. It is also interesting to observe that the

reduction in outage due to higher altitude is noticeable only for higher values of ek. The
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energy efficiency curve shows the inverse trend of outage probability.

Figure 2.8 shows the optimal distance d∗ obtained by solving the optimization problems

(i) outage constrained energy minimization and (ii) energy constrained outage minimization,

for all four events υ1, υ2, υ3, and υ4 as a function of the UAV altitude H (please see Sec-

tion 2.4). It is noted that the optimal ferrying distance d∗ in the former problem gradually

increases with the height of UAV for all events. The reason is that, with the increase of

height, the channel becomes weaker due to path-loss dominance which causes UAV to travel

more to meet the constraint on outage probability. For the latter problem, d∗ increases first

and then becomes a constant almost at d∗ = 3500. The derived optimal solutions match well

with the optimal results obtained through exhaustive search. I also note that the optimal

distance for the event υ1 (Rician-only) is minimum because of improved channel condition.

However, υ4 (Rayleigh-only) suffers with worst channel attenuation which causes the d∗ to

be the longest. The optimal distances of the υ2, υ3 lies between the υ1 and υ4.

Figure 2.9(a) shows the impact of λ on the utility function in (2.70). For smaller
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values of λ, outage probability is dominant in the utility function. As λ increases, the bias

towards energy consumption increases and at λ = 0.5 both outage probability and energy

consumption are equally important. Figure 2.9(b) depicts the comparison of the optimal

ferrying distance using exhaustive search to the optimal solution obtained fromAlgorithm 1

with 0 ≤ Ok(dk) ≤ 0.5. In the region for λ ≥ 0.6, the objective is biased towards minimizing

the energy consumption which in turn minimizes the UAV distance traveled while meeting

the outage constraints. With no outage constraints, the energy is minimum when UAV does

not travel from I. In the region for λ ≤ 0.6, the objective is biased towards minimizing

the outage which in turn maximizes the UAV distance traveled while meeting the minimum

energy consumption constraints. With no energy constraints, the outage is minimum when

UAV is at F.
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2.8 Conclusion

A summary of the major observations is as follows: The optimal data ferrying distance

d∗ gradually increases with the height of UAV since with the increase of height the channel

becomes weaker and, in turn, the UAV needs to travel more to meet the constraint on outage

probability. Increasing retransmissions help in achieving the desired reliability with a lower

data ferrying distance. This minimizes the energy consumption. In addition, a reduction in

packet error probability is higher with one retransmission and it gradually decreases for a

higher number of retransmissions. Regarding the impact of weight λ on the utility function

in our multi-objective optimization problem, for λ = 0, the outage probability is dominant;

therefore, the UAV tends to travel a larger distance in order to minimize outage. When

λ = 1, the bias towards energy consumption increases due to which the UAV tends to

minimize its travel distance to minimize energy consumption. For any other value of λ, the

UAV finds optimal distance somewhere between 0 to D to fulfill the outage-energy trade-off.
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Chapter Three

Optimization of Wireless Relaying With

Flexible UAV-Borne Reflecting Surfaces

This chapter characterize and design the system model for the proposed Integrated UAV-IRS

scheme. The framework provide end-to-end performance analysis in terms of outage proba-

bility, Spectral efficiency, and energy efficiency for the three modes of operations, UAV-only

mode, IRS-only mode, and integrated UAV-IRS mode. This chapter also presents variety

of optimization problems under different constraints and objectives and their corresponding

solution approach. In this chapter, I first provide introduction and then describe the system

model in Section 3.2. In Section 3.3, I characterize the end-to-end energy efficiency, the SNR

outage probability and data rate for the considered network modes. In Section 3.4, I propose

approximations for ergodic capacity and energy efficiency. In Section 3.5, optimization is

performed to maximize energy efficiency for IRS elements and UAV height for transmission

modes. Mode selection probability and criteria are presented in the same section. Then, I

present the numerical results in Section 3.6 before I conclude in Section 3.7.
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3.1 Introduction

Intelligent reflecting surfaces (IRS) are emerging as a key enabling technique to smartly re-

configure wireless propagation environment in beyond 5G wireless networks [22]. The IRS

consists of multiple small meta-surfaces that are also referred to as IRS elements that en-

ables smart reconfiguration via software-controlled reflections of IRS. The comprehensive

intelligent functionality of each element includes reflection, refraction, transmittance and

absorption [22, 25]. The functionalities can be used all together or in separate based on the

application requirement. In contrast to conventional relaying, IRS assisted communication

offers multitude of benefits: (i) Reduced energy consumption: Since IRS simply reflects

the incident transmission signals and does not require power consuming complex signal pro-

cessing operations, the energy consumption can be reduced significantly. In addition, IRS can

potentially minimize the on-board UAV energy consumption [28,29] by putting the wireless

transmitter at the UAV in sleep mode, in specific scenarios where desired quality-of-service

(QoS) can be met with IRS-only transmissions. (ii) Efficient spectrum utilization: Since

IRS simply reflects the incident transmission signals and does not require an additional fre-

quency channel for transmission, network-wide spectrum consumption can be minimized.

(iii) Flexible deployment of metasurfaces in three dimensions: The considered in-

tegrated UAV-IRS mode provides flexible placement of IRS in three dimensions and the

number of IRS elements provides an additional degree of freedom to improve the channel

quality. (iv) Low hardware cost: This IRS surface consists of large arrays of low-cost inte-

grated electronics (e.g., polymer diode/switch or conductive square patches [23] [24]) which

reflects the incoming signal to the desired direction with minimal hardware costs. The above

benefits motivate us to characterize and optimize the performance of an integrated UAV-IRS

system.
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3.1.1 Background Work

As mentioned in the Introduction of Chapter 2, that series of research works [30–32, 34, 69]

derive SNR outage characterization of UAV-assisted relaying assuming either LoS Rician

or NLoS Nakagami-m faded aerial channels which are generally in the form of complicated

mathematical functions which cannot be directly used for network planning and optimization

purposes. In [69] and [34], the SNR outage probability was analyzed for Rician and Rayleigh

fading channels considering LoS and NLoS channels with and without shadowing, respec-

tively. [70] provided outage probability considering that channel is perfectly known. The

aforementioned research works [30–32, 34, 69, 70] overlooked the impact of limited on-board

energy of the UAV as well as the circuit and hovering power consumption of the UAV.

Another series of research works that focused on the energy efficiency maximization of

UAV-enabled relaying networks include [13, 36, 71–76] and [Chapter 2 of the thesis]. These

research works are solely based on numerical optimization techniques. Recently, I developed

a mathematical framework to characterize the reliability, energy efficiency, and coverage

probability in a UAV-assisted data-ferrying network considering Rician-faded aerial chan-

nels [Chapter 2 of the thesis]. Using the derived expressions, I optimized the data-ferrying

distance for a UAV with the following three different objectives: (i) minimize the energy

consumption under the constraint of outage probability, (ii) minimize the outage probability

under the constraint of energy consumption, and (iii) minimize both the outage probabil-

ity and energy consumption by considering multi-objective optimization [Chapter 2 of the

thesis]. The aforementioned research works did not consider the IRS-assisted UAV systems.

To date, a number of research works considered the statistical performance characteri-

zation or optimization of IRS-assisted wireless networks either without UAV [23, 26, 77, 78]

or with UAV [79, 80]. A pioneering effort to characterize an upper bound on the average

symbol error probability was undertaken in [77]. The research work considered Rayleigh fad-

ing channels and simplified the instantaneous SNR given the optimal phase shifts for IRS.
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The energy efficiency of the system was not considered. A number of research works [23,26]

focused on maximizing the energy efficiency by optimizing the IRS phase shifts with infinite

and low phase resolution capability. An interesting research work is [78] where the authors

compared the performance of decode and forward (DF) relaying with IRS-assisted transmis-

sion. The IRS and DF relay were placed in the same fixed location. They also considered

maximal ratio combining between the direct and IRS assisted link. Nevertheless, the channel

gain coefficients were assumed to be perfectly known. The authors in [79] considered an IRS

to facilitate the transmission between a mobile UAV and a ground user. The UAV-to-IRS

transmission link was modeled as LoS Rician fading channel whereas IRS-to-ground user

link was modeled as NLoS Rayleigh fading channel. The authors maximized the rate by

optimizing IRS phase shifts and the trajectory through numerical optimization considering

known channel state information (CSI). In [80], the authors used reinforcement learning to

optimize the location of UAV-IRS system in order to maximize the downlink transmission

capacity.

3.1.2 Contribution

Except [77], most of the aforementioned research works focused on the optimization of the

phase-shifts in IRS-assisted networks using numerical optimization techniques. This chapter

develops a comprehensive mathematical framework to characterize the performance of an

integrated UAV-IRS system and optimize critical network parameters such as the number of

IRS elements and UAV altitude to maximize the spectral and energy efficiency. Note that

an IRS micro-controller can perform the optimal switching of IRS elements (e.g. by turning

the corresponding diodes between ’ON’ and ’OFF’ [81]. At this point, it is noteworthy that

maximization of energy efficiency and optimization of the number of IRS elements (N) in

an integrated UAV-IRS system is crucial due to two reasons: (i) given the limited UAV size,
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the number of IRS elements that can be deployed on a UAV is limited1, and (ii) due to the

power consumption associated with each IRS element. Although the power consumption of

each IRS element is low, the overall power consumption may become significant for a large

number of active IRS elements depending on the phase resolution power consumption P̃r(b)

as described in Section 1.3,3. The specific contributions of the chapter are as follows:

• I characterize the outage probability, ergodic capacity, and energy efficiency in an

integrated UAV-IRS system (where IRS surface is mounted on the UAV) considering

three different modes, (i) UAV-only mode, where the UAV performs relaying in full-

duplex mode, (ii) IRS-only mode, where the IRS performs (reflective) relaying which

is implicitly a full-duplex transmission without self-interference (SI) [22, 82, 83], and

(iii) Integrated UAV-IRS mode, where both the UAV and IRS perform relaying and

the receiver uses selection combining (SC). The considered model captures the LoS

air-to-ground (AtG) Rician fading channels and power consumption of UAV and IRS.

• I provide approximate expressions to increase the mathematical tractability of the pro-

posed framework for system optimization purposes. That is, I incorporate the derived

expressions (after some transformations to tractable mathematical forms) into the op-

timization problems. The derived expressions are validated by comparing numerical

results with those obtained from Monte-Carlo simulations.

• I formulate a variety of the optimization problems where objective functions have

a fractional form for IRS-only mode and UAV-only mode, i.e. (i) maximize EE to

optimize the number of IRS elements, (ii) maximize EE to optimize the height of the

IRS, (iii) minimize IRS power consumption to optimize the the number of IRS element

and transmission power subject to rate constraints, and (iv) maximize EE to optimize

the height of the UAV. I solve the aforementioned problems and derive optimal solutions
1The size of one IRS element is typically in the range λ/10 − λ/5 [24], where λ denotes the wavelength

of the transmitted wave. As such, this limitation becomes more evident in low frequencies.
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using quadratic transformation as a tool from fractional programming. Closed-form

optimal solutions are provided, wherever applicable.

• I derive an analytic criterion to optimally select the UAV-only and IRS-only transmis-

sion modes to maximize the capacity and EE for a given number of IRS elements.

• Numerical results compare the proposed optimal solutions with the solutions obtained

through exhaustive search. It is noted that, compared to the UAV-only mode, the IRS-

only mode is energy efficient at lower altitudes with low to moderate number of active

IRS elements, and for larger distances between the UAV and the source or destination.

3.2 System Model and Assumptions

3.2.1 Spatial Deployment of UAV-IRS System

I consider an integrated UAV-IRS network in which a UAV carries a large array of IRS

elements to assist communication between source S and destinationD located on the ground.

I assume that there exists no direct link between the S and D. In particular, the IRS reflects

the incident signal in the desired direction of destination with minimal power consumption.

In addition, the UAV operates as an independent relay between S and D since I assume that

the UAV has separate transmit and receive antennas. In Cartesian coordinates, the locations

of S and D are denoted as ws = (xs, ys, 0), and wd = (xd, yd, 0), respectively (Fig. 3.1). I also

assume that UAV can be placed at any height h such that h ∈ [hmin, hmax] where hmin and

hmax are decided by aviation authorities. I denote the UAV coordinate as wu = (xu, yu, h).

In two-dimensional Cartesian coordinates, the location of source, destination, and the UAV

can be given by zs = (xs, ys), zd = (xd, yd), and zu = (xu, yu), respectively.
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Figure 3.1 Integrated UAV-IRS communication system with self-interference (SI)
at UAV.

3.2.2 Aerial Channel Model

The communication between the UAV and ground receiver S and D depends on the elevation

angle between the nodes (and/or altitude of the UAV) and the environment (e.g. the intensity

and height of buildings). The transmission to the ground users may have LoS or non-LOS

based on the elevation angle (in rad) between the UAV and BSi. The elevation angle can be

given as follows:

θu = arctan

(
h

|zu − zs|

)
, θd = arctan

(
h

|zu − zd|

)
, (3.1)

where h, zs, and zd are defined in 3.2.1. The probability of LoS in each link is a function of

θi, i.e.

pL(θi) = (1 + eiexp(−gi(θi − ei)))−1, ∀i ∈ {u, d}, (3.2)

where eu, ed, gu, and gd, are the environment parameters obtained from the curve fitting

using Damped Least-Squares (DLS) method [48]. The path-loss exponent α is a function of
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the elevation angle [50], i.e.

α(θi) = pL(θi)qi + vi. (3.3)

Here qu, vu, qd, and vd are constants depending on the uplink and downlink environment [48].

3.2.3 Spectrum Allocation

I consider that the destination BS D has a data rate requirement R0 which is defined as

R0 = B log2(1 + Γ0), where Γ0 is the minimum end-to-end SNR threshold required by the

destination to achieve R0, i.e. Γ0 = 2
R0
B − 1. Here, B represents the total transmission

bandwidth available for IRS-only mode, UAV-only mode, and integrated UAV-IRS mode.

The IRS does not need additional frequency to reflect the signals. For the sake of fairness,

I consider in-band full-duplex (IBFD) operation at the UAV. This enables the UAV to

transmit and receive simultaneously over the same frequency band B. The performance of

IBFD communication is, however, limited by self interference (SI) which is introduced by the

IBFD transmitter to its own receiver [17]. That is, the uplink receiver (which is the UAV)

will see the interference from its own downlink transmission. The IBFD antenna is assumed

to be equipped with a three-port circulator to prevent the leakage of transmit chains to

receive chains; however, in practice, perfect SI cancellation is not possible [84].

3.2.4 Transmission Modes

I consider three different modes of data transmission, i.e. (i) UAV-only mode, when UAV

provides coverage to the destination D with all IRS elements switched off (absorbing state of

IRS) and UAV is operating in IBFD transmission mode, (ii) IRS-only mode, when only IRS

is responsible to provide service to the destination D by acting as relay and the UAV does

not communicate, and (iii) Integrated UAV-IRS mode, when both IRS and UAV transmit
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the data and the receiver at the destination combines the data using selection combining2,

i.e. by opportunistically selecting the stronger signal between those received from the UAV

and the IRS. I consider that the destination receiver is equipped with a buffer to store the

observations from IRS transmission that arrives one time slot prior to the UAV transmission.

The IRS is equipped with linear arrays of elements and there is a controller associated with

the IRS which is responsible for smart selection of the functionality of IRS elements such as

absorption and beamforming.

Now I describe the transmission and channel models for each of the modes of operation.

UAV-only Mode

The transmission from S to UAV and the transmission from UAV to D can be given, respec-

tively, as follows:

yu =

√
Âpuη−1

u d
−α(θu)
u hu s+RSI + nu, yd =

√
Âpdη

−1
d d

−α(θd)
d hd yu + nd,

where s is the transmitted signal in binary phase shift keying (BPSK) from the source S to

the UAV and yu is the signal received by the IBFD UAV and relayed to D, ηi denotes the

excess aerial path-loss, pu is the transmission power of S, and pd is the transmission power

of UAV. Also, du is the distance between the S and the UAV, i.e. du =
√
|zu − zs|2+h2

and dd is the distance between UAV and D, i.e. dd =
√
|zu − zd|2+h2. Note that Â

reflects system parameters (e.g. operating frequency and antenna gain), ni is additive white
2In selection combining, the combiner outputs the signal on the branch with the highest SNR, which

requires one receiver switching to active branch, and co-phasing of multiple branches is not required as

is the case the other combining techniques. Therefore, selection combining exhibits low overhead and is

mathematically tractable. Also, this has a simplest receiver implementation since the IRS-only and UAV-

only transmission links are independent and the selection combining is performed at the destination receiver.

For the IRS communication mode, digital-to-analog converter (DAC) and RF chains are not required because

IRS acts as a reflective array and has an advantage that the power is not consumed on the RF chains in

IRS-assisted communication.
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Gaussian noise (AWGN) with zero-mean and power spectral density N0, RSI denotes the

residual SI experienced by the UAV [17], and hi represents the i-th channel fading where

i ∈ (u, d). The SNR for the i-th link is given as follows:

γi = piκi d
−α(θi)
i Xi, ∀i ∈ {u, d}, (3.4)

where κu = Âη−1
u

RSI+N0
, κd =

Âη−1
d

N0
, and Xi = |hi|2 follows non-central chi square distribution

with mean Ωi, which is local mean power of i-th Rician fading channel whose probability

density function (PDF) is:

fXi(x) =
Ki + 1

Ωi

e
−Ki−

(Ki+1)x

Ωi I0

2

√
Ki(Ki + 1)x

Ωi

 =
∞∑
`=0

bi(biKi)
`

(`! )2
x`e−bix−Ki , (3.5)

in which Ki is the Rician factor in the i-th link and I0 is a modified Bessel function of the

first kind and bi = Ki+1
Ωi

[49]. Note that in the UAV-only mode, the IRS absorbs the incoming

signals to each element i.e. all the corresponding diodes are switched OFF, and therefore, no

information is relayed from IRS to the destination. I call this state as the non-active state

of the IRS.

Assuming that the UAV can perform decoding of yu and then relay the decoded data,

using (3.4), the end-to-end SNR ΓUAV from S to D can be modeled as [58]:

ΓUAV = min{γu, γd}. (3.6)

IRS-only Mode

In this mode, I assume that the UAV does not transmit and the IRS controller adjusts

the phase shift of each element intelligently to the optimal value [77, 85]. That is, the IRS

maximizes the signal power by optimizing the phase shifts of the impinging signals and each

element’s functionality as a switch is controlled by switching the diode state between ON

and OFF. In this setup, for the sake of symmetry, I consider an odd number of elements, i.e.
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Figure 3.2 Comparison of Eq. (3.8) and its approximation in Eq. (3.9) for different
parameters.

N = 2n+ 1, where n is any arbitrary positive integer. The received signal at destination D

via k-th IRS element is given by

yIRSk
=

√
Âpuη−1

u d
−α(θuk )
uk huke

j(φk)

√
Âη−1

d ddk
−α(θdk )hdk s+ wu,

where k ∈ {−n,−n + 1, · · · , 0, 1, · · · , n}. The distance between j-th element to S and to

D can be given as duk =
√
|zs − zuk |2+h2 and ddk =

√
|zd − zuk |2+h2, respectively, where

zuk = (xuk , yuk) and xuk = xu − kDIRS, yuk = yu, and DIRS denotes the uniform spacing

between two consecutive elements on IRS. Note that the k = 0-th element is at UAV location

zu. The channel from S to k-th IRS element and k-th IRS element to D can be given as

huk = |huk |e−jθuk and hdk = |hdk |e−jθdk , respectively. The end-to-end SNR for IRS-only mode

ΓIRS [77] for an IRS with N elements can be given as follows:

ΓIRS = V

(
N∑
k=1

d
−α(θuk )/2
uk d

−α(θdk )/2

dk
|huk ||hdk |e−j(θuk+θdk−φk)

)2

, (3.7)

where V = Â2puη
−1
u η−1

d /N0. Given the limited size of UAV and the IRS, I assume that
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the distance between S and k-th IRS element is approximately the same as the distance

between S and UAV. Similarly, I assume that the distance between D and k-th IRS element

is approximately the same as the distance between D and UAV. That is, duk ≈ du, ddk ≈ dd,

θuk ≈ θu, and θdk ≈ θd. From this point onward, I will use αu and αd as α(θuk), and α(θdk),

respectively, for brevity. Now the modified maximum SNR is given as follows:

ΓIRS = V d−αuu d−αdd

(
N∑
k=1

|huk ||hdk |e−j(θuk+θdk−φk)

)2

. (3.8)

It is evident from (3.8) that the maximum SNR is obtained by taking the channel phases

as φk = θuk + θdk , ∀k ∈ (−n,−n+ 1, · · · , n− 1, n) which maximizes the exponential term to

unity because e−j(θuk+θdk−φk) = 1 [77]. Subsequently, (3.8) can be simplified as follows:

ΓIRS ≈ V d−αuu d−αdd (
N∑
k=1

|huk ||hdk |)2. (3.9)

Also, [85] showed that a 3-bit phase resolution is practically sufficient to achieve maximum

SNR/capacity performance that is achievable when infinite phase resolution is considered.

Eq. (3.8) and its approximation in Eq. (3.9) are validated in Fig. 3.2 for different simulation

parameters. Note that, the IRS implicitly operates in full-duplex mode (with zero self-

interference) [22,82,83] and the incident signals on IRS reflect with minimal delay (typically

less than the decoding delay experienced in DF relaying).

Integrated UAV-IRS Mode

Here, both the UAV and the IRS relay the signal transmitted from S, and the receiver uses

SC to obtain the desired signal. The SNR at the receiver can be formulated as follows:

ΓINT = max (ΓUAV,ΓIRS) = max

{
min

(
puκud

−αu
u Xu, pdκd d

−αd
d Xd

)
, V

(
∑N

k=1|huk ||hdk |)2

dαuu d
αd
d

}
.

(3.10)

Note that in both modes, the air to ground distances are very similar; thereby, the

channels are highly correlated. Nevertheless, since the distances are not random variables
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here, statistical correlation is not considered. The small-scale fading channels in both modes

may not necessarily be correlated. In this work, I consider independent fading channels.

3.2.5 Energy Consumption Model

I consider that the UAV hovering time is equal to the time UAV can communicate and can be

computed as Thov = EB
puav

, where EB is maximum UAV battery capacity and puav is the power

consumption of the UAV. The total power consumption of the considered system includes

(i) the power consumed by the UAV for hovering and supporting IRS transmissions (puav)

and data transmission (pd) in downlink and (ii) the hardware power consumption (pbs) of

the ground BS transmitter and receiver as well as (pu).

UAV Power Consumption (puav)

The total UAV power consumption is the sum of powers consumed by UAV in hovering ph,

circuit power consumption pc [86], and the power consumed by UAV in the IRS hardware

pIRS. That is, the UAV power consumption can be given as puav = pc + pIRS + ph. where ph

is hovering power consumption of UAV (please see Section 2.3.4 for detail).

Since I consider that the IRS is mounted on a UAV, IRS power consumption is a

part of the total UAV power consumption. Note that, IRS is acting as a passive device

and does not need any transmission power. The IRS power consumption is written as

pIRS = N(PF + P̃r(b)) = NPr(b) and N is number of IRS elements, PF and P̃r(b) are power

consumption of diode in forward biased mode to operate in ON state [81] and phase resolution

power consumption [23], respectively. For instance, the power consumption of finite phase

resolution for 6 bits is P̃r(6) = 78mW and for infinite phase resolution is P̃r(∞) = 45dBm

(Fig. 4 of [26]). Therefore, an increase in the resolution and the number of IRS elements

increases its hardware power consumption as formulated in [23,26]. Moreover, for an element
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to operate in absorbing state the corresponding diode is turned ‘OFF’ and the IRS element

experiences reversed biased power consumption PR. However, PR is in the order of micro or

nano Watts [87] and therefore it is negligible.

Terrestrial Circuit Power Consumption (pbs)

It is the hardware power consumption, i.e. the circuit power consumed by the source and

destination ground BSs [88] given as pbs.

Transmission Power Consumption

The transmission power consumption includes transmission power of the source BS in the

uplink (pu) and that of the UAV in the downlink (pd).

Subsequently, I can define the total ene-to-end power consumption of each transmission

mode as PUAV = pu + pd + C, PIRS = pu + pIRS + C, and PINT = pu + pd + pIRS + C, where

C = pc + ph + 2pbs. Note that the definition of power consumption here includes terrestrial

power consumption unlike Chapter 1. This is because in Chapter one, the major power

consumption was coming from the traveling distance of UAV so the hardware power cost

was not important. However, the effect of terrestrial power consumption can be ignored by

using pbs = 0 in C.

3.3 Performance Characterization of Integrated UAV-IRS

Relaying

In this section, I characterize the outage probability Om, ergodic capacity Rm and energy-

efficiency EEm for each of the modes (i.e. UAV-only, IRS-only, and integrated UAV-IRS

modes) for the considered integrated UAV-IRS relaying system. The subscript m denotes
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the mode of operation.

3.3.1 UAV-only Mode of Relaying

Conditioned on the distances du and dd, the end-to-end SNR ΓUAV can be given using (3.6).

Subsequently, the SNR outage probability can be defined as follows:

OUAV =P(ΓUAV < Γ0) = P[min(γu, γd) < Γ0] = 1− (1− Fγu(Γ0)) (1− Fγd(Γ0)) , (3.11)

where Fγu(Γ0) and Fγd(Γ0) represent the CDFs of the SNR received on the channel from S to

UAV and UAV to D, respectively, evaluated at the desired SNR threshold Γ0. Using (3.4),

the i-th link SNR outage can be given as follows:

Fγi(Γ0) =P (γi ≤ Γ0) = P
(
Xi ≤ Γ′id

−αi
i

)
= FXi(Γ

′
id
−αi
i ), i ∈ {u, d}, (3.12)

where Xi = |hi|2 represents non-central chi square distribution and Γ′i = Γ0

κipi
. Using the

alternate exact expression for PDF in (3.5), the CDF of Xi can be given as follows [49,59,60]:

FXi(xi) = 1−
∞∑
`=0

∑̀
m=0

fi(m, l)x
m
i e
−bxi , (3.13)

where fi(m, `) = e−Ki
K`
i b
m
i

`!m!
, bi = Ki+1

Ωi
, Ωi is the mean local power of the Rician channel in

the i-th link, and Ki is the Rician factor. Substituting xi = Γ′id
αi
i in (3.13), I obtain

Fγi(Γ0) = FXi(Γ
′
id
αi
i ) = 1−

∞∑
`=0

∑̀
m=0

fi(m, l) (Γ′id
αi
i )

m
exp (−biΓ′id

αi
i ) , i ∈ (u, d). (3.14)

By using (3.14) for i = u and i = d in (3.11), the end-to-end SNR outage OUAV is given as

OUAV =1−
∞∑
`=0

∑̀
m=0

fu(m, l) (Γ′ud
αu
u )

m
exp (−buΓ′udαuu )

∞∑
`=0

∑̀
m=0

fd(m, l) (Γ′dd
αd
d )

m
exp (−bdΓ′dd

αd
d ) .

(3.15)

Corollary 3. In scenarios where NLoS components are dominant (i.e. for Ku = 0 and

Kd = 0) than LoS components, the Rician distribution follows Rayleigh distribution. As
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such, the CDF in (3.14) can be expressed as FXu(Γ′ud
−αu
u ) = 1− e−Γ′ud

−αu
u /Ωu , FXd(Γ

′
dd
−αd
d ) =

1− e−
Γ′d
Ωd
d
αd
d . The end-to-end SNR outage for UAV-only mode of relaying can be simplified as

follows:

OUAV(dd) = 1− e−
Γ′u
Ωu

d−αuu − Γ′d
Ωd
d
−αd
d . (3.16)

3.3.2 Outage Probability for IRS-only Mode of Relaying

Using (3.9), the end-to-end SNR outage in the IRS-only mode of relaying can be given as:

OIRS =P (ΓIRS ≤ Γ0) = P
(
V d−αuu d−αdd Z2 ≤ Γ0

)
= P

(
Z2 ≤ tΓ0

)
, (3.17)

where Z =
∑N

k=1|huk ||hdk | and t =
dαuu d

αd
d

V
. The SNR outage probability can then be derived

as follows.

Proposition 6. The outage probability of IRS-only mode can be given as follows:

OIRS =
1

2

(
erf

(√
tΓ0 −

√
λ√

2

)
+ erf

(√
tΓ0 +

√
λ√

2

))
, (3.18)

where t =
dαuu d

αd
d

V
, λ = 1

2

µ2
Z

σ2
Z
, µz = (N + 1)E[|huk ||hdk |], and σ2

Z = (N + 1)var(|huk ||hdk |).

Proof. In general, a meta-surface is made up of a large number of reflecting elements, i.e.

N � 1 and optimal phase is realizable using because φk = θuk + θdk [77]. Therefore, I apply

central limit theorem (CLT) on Z =
∑N

k=1|huk ||hdk |, where |huk ||hdk | ∀k = 1, 2, · · · , N are

identically and independently distributed (i.i.d) random variables with the mean and variance

E[|huk ||hdk |] and var(|huk ||hdk |, respectively, for i ∈ (u, d). Subsequently, the distribution of

Z will converge to the Gaussian distribution with mean and variance, respectively, given by

µz = (N + 1)E[|huk ||hdk |] and σ2
Z = (N + 1)var(|huk ||hdk |).

Note that |huk | and |hdk | are independent, but may not be identically distributed Rician

variables. The aforementioned product follows the double-Rician distribution [89] with the
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mean and variance given as:

E[|huk ||hdk |] = σ
π

2
1F1

(
−1

2
; 1;
−µ2

u

2Ωu

)
1F1

(
−1

2
; 1;
−µ2

d

2Ωd

)
,

and

var(|huk ||hdk |) = 22σ2

(
1 +

µ2
u

2Ωu

)(
1 +

µ2
d

2Ωd

)
−
(
σ
π

2

)2
[

1F1

(
−1

2
; 1;
−µ2

u

2Ωu

)
1F1

(
−1

2
; 1;
−µ2

d

2Ωd

)]2

,

where σ2 = ΩuΩd and 1F1 (.) is the Confluent Hypergeometric function. Now taking X =

Z2, the distribution of X follows the non-central chi square distribution with unity degree

of freedom and non-centrality parameter λ = 1
2

µ2
Z

σ2
Z
. Subsequently, the probability density

function (PDF) of X is given as:

fX(x) =
1

2

(x
λ

)−1/4

e−
λ+x

2 I−1/2

(√
λx
)
, (3.19)

where Iβ is the modified Bessel function of first kind of order β. Fig. 3.3 shows that the PDF

of X obtained from simulations converges to non-central chi square variable for N ≥ 20, as

is implied by CLT.

OIRS =P
(
Z2 ≤ tΓ0

)
= P

(
−
√
tΓ0 ≤ X ≤

√
tΓ0

)
=

∫ tΓ0

x=0

1

2

(
X

λ

)−1/4

e−
λ+X

2 I−1/2

(√
λX
)
dX.

(3.20)

�

For µu = µd = 0, the mean and variance of the double Rician variable can be simplified

as follows.

Corollary 4. For µu = µd = 0, the double Rician variable converts to double Rayleigh vari-

able. Thus, the mean and variance of the product |huk ||hdk | can be simplified as E[|huk ||hdk |] =

σ π
2
and var(|huk ||hdk |) = 22σ2(1− π2/16) with σ2 = ΩuΩd [90], respectively. After applying

central limit theorem for Rayleigh fading, I obtain µz = (N + 1)σ π
2
, σ2

Z = (N + 1)22σ2(1 −

π2/16).
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Figure 3.3 Comparison of the exact PDF of X through simulations and the PDF
of X when N →∞ that follows non-central chi-square distribution.

3.3.3 Outage Probability of Integrated UAV-IRS Mode of Relaying

In integrated UAV-IRS mode of relaying, I assume that the receiver applies SC and selects

the mode of operation associated to the maximum SNR. This implies additional degree of

freedom, however, at the expense of increased resource consumption, since both the UAV

and the IRS are actively transmitting to D. The outage probability of this mode can thus

be derived using (3.10) as follows:

OINT = Pr (ΓUAV ≤ Γ0) Pr (ΓIRS ≤ Γ0) = OUAVOIRS, (3.21)

where OUAV and OIRS are given in Section III.A and III.B, respectively.

3.3.4 Ergodic Capacity Rm and Energy Efficiency EEm for Mode m

Given mode m, the exact end-to-end ergodic capacity at the receiver can be derived as

follows [46]:

Cm =E[Blog2(1 + Γm)] =
1

ln(2)

∫ ∞
t=0

Pr(Γm > t)

1 + t
dt =

B

ln(2)

∫ ∞
Γ0=0

1−Om

1 + Γ0

dΓ0, (3.22)

where Pr (Γm > Γ0) = 1−Om and Om is derived in (3.15), (3.18), and (3.21) for UAV-only,

IRS-only and integrated UAV-IRS modes, respectively. Along the similar lines, using the
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definition of energy efficiency EEm of each mode m (which is defined as the ratio of ergodic

capacity to the corresponding power consumption Pm), I can derive the exact end-to-end

energy-efficiency as follows:

EEm =
B

ln(2)Pm

∫ ∞
Γ0=0

1−Om

1 + Γ0

dΓ0. (3.23)

3.4 Approximate Performance Characterizations for UAV-

IRS Relaying

In this section, I first derive a bound on the ergodic capacity Rm and energy efficiency EEm

for each mode of relaying (i.e. UAV-only, IRS-only, and UAV-IRS modes).

UAV-only Mode of Relaying: Applying Jensen’s inequality to the ergodic capacity expression,

an upper bound on the ergodic capacity (in bps) can be derived as follows:

E [log2 (1 + SNRm)] ≤ log2 (1 + E [SNRm]) . (3.24)

Subsequently, I derive tractable expressions of the ergodic capacity and energy-efficiency in

UAV-only mode as shown in the following Proposition.

Proposition 7. The ergodic capacity RUAV and energy-efficiency EEUAV expressions in

UAV-only mode can be given, respectively, as follows:

RUAV≤Blog2

(
1 + min

(
puκu d

−αu
u Ωu, pdκd d

−αd
d Ωd

))
, (3.25)

EEUAV ≈
Blog2

(
1 + min

(
puκu d

−αu
u Ωu, pdκd d

−αd
d Ωd

))
pu + pd + C

. (3.26)

Proof. The ergodic capacity RUAV in (3.22) can be bounded as follows:

RUAV

(a)

≤Blog2

(
1 + E

[
min

(
puκu d

−αu
u Xu, pdκd d

−αd
d Xd

)])
(b)
≈Blog2

(
1 + min

(
E
[
puκu d

−αu
u Xu, pdκd d

−αd
d Xd

]))
(c)
=Blog2

(
1 + min

(
puκu d

−αu
u E [Xu], pdκd d

−αd
d E [Xd]

))
,

(3.27)
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Figure 3.4 The comparison of exact ergodic capacity (via analysis and simulations)
to the UAV-only bounds provided in Eq. 3.27(step a) and Eq. (3.27) (step b).
Approximation in Eq. (3.27) (step b) is validated by analytically solving Eq. (3.27)
(step a).

where Xu and Xd follow non-central chi square distribution. Note that (a) is obtained by

using Jensen’s inequality [91], (b) is obtained by interchanging min(.) and E(.) (validated

in Fig. 3.4), (c) follows from non-central chi-square distribution with mean Ωu and Ωd,

respectively, and results in (3.25). Finally, using ergodic capacity in (3.25), I obtain EEUAV

in (3.26). �

Fig. 3.4 validates the accuracy of our proposed bounds in (3.27) (step a) using Jensen’s

inequality and (3.27) (step b) using interchange of min(·) and the expectation operator

E[·] with exact Monte-Carlo simulations. To further justify the approximation in (b),

I calculate the expectation of the minimum of two random variables, i.e. E[ΓUAV] =

E[min
(
puκu d

−αu
u Xu, pdκd d

−αd
d Xd

)
] in an exact form. That is, I first determine the PDF

of ΓUAV, by taking the derivative of the CDF of ΓUAV. The CDF of ΓUAV can be de-

rived using (3.15), by substituting Γ′u and Γ′d and replacing Γ0 with z. Finally, I calculate

E[ΓUAV] =
∫∞
z=0

zfΓUAV
(z)dz, under the condition that mu + md and mu + md > 0 and
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(
bud

αu
u

κupu
+

bdd
αd
d

κdpd

)
≥ 0.

Corollary 5. When NLoS components are dominant, the Rician distribution follows Rayleigh

distribution, i.e. Ωu = 1 and Ωd = 1. The end-to-end EEUAV for UAV-only mode in (3.26)

can be simplified as follows:

EEUAV ≈
Blog2

(
1 + min

(
puκu d

−αu
u , pdκd d

−αd
d

))
pu + pd + C

. (3.28)

IRS-only Mode of Relaying: For IRS-only mode, the ergodic capacity and EE expressions

are derived in the following.

Proposition 8. The ergodic capacity expression can be obtained for IRS-only mode as fol-

lows:

RIRS

(a)

≤ Blog2

(
1 + E

[
V d−αuu d−αdd X

]) (b)
= Blog2

(
1 + V d−αuu d−αdd (v + λ)

)
, (3.29)

where (a) is obtained using Jensen’s inequality and (b) is obtained using E[X] = ν + λ [92].

Using (3.29) (step b), I bound EEIRS as follows:

EEIRS ≈
Blog2

(
1 + V d−αuu d−αdd (ν + λ)

)
PIRS

. (3.30)

Here, I want to highlight that RIRS in (3.30) has the order of log2(N2) for large values

of N that is achieved by ignoring the normalization factor from E[X] as provided in [22,78].

Integrated UAV-IRS Mode of Relaying: For integrated UAV-IRS mode (m = INT), the

ergodic capacity in (3.22) can be formulated as:

RINT =BE
[
log2

(
1 + max

(
V d−αuu d−αdd X,min

(
puκu d

−αu
u Xu, pdκd d

−αd
d Xd

)))]
, (3.31)

where X, Xu, and Xd follow non-central chi square distribution representing end-to-end

channel fading power in IRS transmission, channel fading power from S to UAV and UAV
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to D, respectively. After applying SC, the ergodic capacity (3.31) can be approximated as

follows:

RINT

(a)

≤Blog2

(
1 + E

[
max

(
V d−αuu d−αdd X,min

(
puκu d

−αu
u Xu, pdκd d

−αd
d Xd

))])
(b)
≈Blog2

(
1 + max

(
V d−αuu d−αdd E [X],E

[
min

(
Âpuη

−1
u d−αuu Xu, Âpdη

−1
d d−αdd Xd

)]))
(c)
≈Blog2

(
1 + max

(
V d−αuu d−αdd E [X],min

(
puκu d

−αu
u E [Xu], pdκd d

−αd
d E [Xd]

)))
(d)
=Blog2

(
1 + max

(
V d−αuu d−αdd (ν + λ),min

(
puκu d

−αu
u Ωu, pdκd d

−αd
d Ωd

)))
,

(3.32)

where (a) is obtained using Jensen’s inequality, (b) and (c) are obtained by interchanging

max(.) and min(.) operators with the E(.) operator, respectively, and (d) is obtained by

substituting the mean of X, Xu and Xd with ν + λ, Ωu and Ωd, respectively. Finally, using

(d) I approximate EEINT as follows:

EEINT ≈
Blog2

(
1 + max

(
V d−αuu d−αdd (ν + λ),min

(
puκu d

−αu
u Ωu, pdκd d

−αd
d Ωd

)))
PINT

. (3.33)

3.5 Optimization of UAV-IRS Relaying

In this section, I consider two optimization problems for maximizing the network energy

efficiency and minimizing the network power consumption subject to rate constraints, con-

sidering the UAV-only mode and the IRS-only mode of relaying. For the IRS-only mode,

I optimize the number of active IRS elements N and height of the IRS surface (i.e. UAV

height). For the UAV-only mode, I optimize the UAV height.

90



3.5.1 IRS-only Mode: Optimizing the Number of IRS Elements

EE Maximization

Using (3.30) where λ is a function of N , i.e. λ = (N + 1)λ′, where λ′ = 1
2

(E[|huk ||hdk |])
2

var(|huk ||hdk |)
can

be taken from (3.18), the EE maximization problem can be formulated as follows:

P1 : max
N

EEIRS =
Blog2

(
1 + V d−αuu d−αdd ( v + λ)

)
pu +NPr(b) + C

s.t. C1 : Nmin ≤ N ≤ Nmax,

(3.34)

where Nmax is the maximum number of IRS elements that can be calculated as a ratio of the

size of UAV to the size of one IRS element, Nmin is the minimum number of IRS elements

that can be deployed at a surface in practical settings and for which the objective function is

accurate [refer to Fig. 3.3]. Since λ is directly proportional to N , I reformulate the problem

P1 as follows:

P2 : max
λ

Blog2

(
1 + V d−αuu d−αdd ( v + λ)

)
pu + (λ−λ

′

λ′
)Pr(b) + C

s.t. C1 : (Nmin + 1)λ′ ≤ λ ≤ (Nmax + 1)λ′.

(3.35)

The problem P2 is non-convex in general; however, it is in the form of ratio of concave

and convex function w.r.t variable λ. Fortunately, due to the structure of the problem, the

globally optimal solution can be obtained by applying quadratic transform proposed in [93].

The quadratic transform converts the ratio of concave and convex function to the convex

form by introducing an auxiliary variable y. Thus, I optimize the primal variable λ and the

auxiliary variable yj at each iteration j.

The iterative algorithm is guaranteed to converge to the globally optimal solution for the

single ratio objective function in P1 [93]. As such, using Quadratic Transform, the problem
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P2 can be reformulated as:

P3 : max
λ,y

Q(λ) = 2y
√
Blog2

(
1 + V d−αuu d−αdd ( v + λ)

)
− y2

(
pu + (

λ− λ′

λ′
)Pr(b) + C

)
s.t. C1.

(3.36)

For a given λ, in each iteration j, y∗j can be found in closed-form as y?j =

√
Blog2

(
1+V d−αuu d

−αd
d ( v+λ)

)
pu+(λ−λ

′
λ′ )Pr(b)+C

.

Now I solve P3 using Algorithm 1 for which the convergence to the global optimal solution

is proved in [94].

Data: Initialize λ with any arbitrary value, j = 1, Maximum Iterations Jmax, Error

tolerance ε, Q(λj)

Find y?j by solving Q(λj) and set j = 2;

while |y?j−1 − y?j |≥ ε and j < Jmax do
• Update λ by solving Q(λj) for fixed y?j−1 using any convex optimization tool, e.g.

CVX.

• update y?j

• j = j + 1.

end

Result: optimal desired solution N? is then obtained from λ? using N? = dλ?−λ′
λ′
e

Algorithm 2: Optimization of Number of IRS Elements in IRS-only Mode
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Minimization of Power Consumption Under Rate Constraint

The problem can be formulated as:

P1 : min
N

pu +NPr(b) + C

s.t. C1 : Blog2

(
1 + V d−αuu d−αdd ( v + (N + 1)λ′)

)
≥ R0

C2 : Nmin ≤ N ≤ Nmax.

(3.37)

The objective function in P1 is convex and monotonically decreasing w.r.t N and the IRS

ergodic capacity is monotonically increasing function of N . Therefore, the solution to the

optimization problem lies at the boundary of the constraint C1, which is given as follows:

N? = d 1

λ′


√√√√(2

R0
B − 1

)
V

dαuu d
αd
d − ν − λ

′

e. (3.38)

The generalized optimal solution N? is provided by incorporating the bound C2 as follows:

N? =



Nmin N? ≤ Nmin

Nmax N? ≥ Nmax

d 1
λ′


√(

2
R0
B −1

)
V dαuu dαdd − ν − λ

′

e otherwise

. (3.39)

In addition, the optimization problem (3.37) can be solved to optimize the variable pu given

a fixed N . The objective function in P1 is convex and monotonically increasing w.r.t pu,

whereas the ergodic capacity is monotonically increasing function on pu. Therefore, the

solution to the optimization problem lies at the boundary of the constraint C1 and the

optimal solution for p?u can be given as follows:

p?u =
2
R0
B − 1

Â2η−1
u η−1

d

dαuu d
αd
d N0

v + (N + 1)λ′
. (3.40)

93



3.5.2 IRS-only Mode: Height Optimization

Here, I maximize EEIRS which is equivalent to maximizing the ergodic capacity RIRS in (3.29)

w.r.t height, since the IRS-only power consumption does not depend on height. The problem

can then be formulated as follows:

P1 : max
h

RIRS = Blog2

(
1 + V d−αuu d−αdd ( ν + λ)

)
s.t. C1 : hmin ≤ h ≤ hmax.

(3.41)

In (3.41), I note that only numerator d−αuu d−αdd is a function of h. Therefore, to reformulate

P1 I ignore the logarithm and constants in the objective function of P2 as shown below:

P2 : max
h

d−αuu d−αdd

s.t. C1.

(3.42)

The optimal h obtained from P2 can be substituted back in (3.41) to obtain maximum

EEIRS. By combining (3.1), (3.2), and (3.3), I note that αu = qu
1+ςuexp(−gu arctan( h

ẑu
))

+ vu is a

function of h, where ςu = eue
gueu and ẑu = |zu−zs|. Similarly, αd = qd

1+ςdexp
(
−gd arctan

(
h
ẑd

))+vd

is a function of h, where ςd = ede
gded and ẑd = |zu − zd|. Clearly, the reformulated objective

function in P2 depends on αi, i ∈ {u, d} which is non-linear due to tangent inverse function

of variable h in the denominator of αu and αd.

Subsequently, I apply the following transformations to simplify the problem:

• Taking the log of objective function of P2, the transformed objective function becomes

−αu log (du)− αd log (dd) = −αu
2

log
(
ẑ2
u + h2

)
− αd

2
log
(
ẑ2
d + h2

)
.

• Using arctan(x) ≈ 3x
1+2
√

1+x2 , I get

αi ≈ qi

(
1 + ςiexp

(
−3gih

ẑi + 2
√
ẑ2
i + h2

))−1

+ vi, i ∈ {u, d}

.
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• Applying the second-order Taylor series approximation exp(−x) ≈ 1−x+ x2

2
and some

algebraic manipulations, I obtain

αi(h) ≈
Ai

(
ẑi + 2

√
ẑ2
i + h2

)2

−Bih
(
ẑi + 2

√
ẑ2
i + h2

)
+ Cih

2

(1 + ςi)
(
ẑi + 2

√
ẑ2
i + h2

)2

−B′ih
(
ẑi + 2

√
ẑ2
i + h2

)
+ C ′ih

2

, i ∈ {u, d}, (3.43)

where Ai = qi + vi(1 + ςi), Bi = 3ςivigi, Ci = 9/2viςig
2
i , B′i = 3ςigi, C ′i = 9/2ςig

2
i . Following

the above approximations, the original (3.42) is given as follows:

P3 : max
h
−1

2
αu(h) log

(
ẑ2
u + h2

)
−1

2
αd(h) log

(
ẑ2
d + h2

)
s.t. C1.

(3.44)

The mismatch in the optimal solutions is found to be negligibly small and is mainly due

to the considered arctan and Taylor approximations, as validated in Fig. 3.5. Clearly, the

problem in P3 is in the form of sum of ratio of concave-convex function as is shown in the

following Proposition. This guarantees that an optimal solution for P3 can be obtained.

Proposition 9. The −1
2
αi(h) log (ẑ2

i + h2) is ratio of concave-convex when

ẑi > 10 &


ẑi ≥ h5/4

(
78Ai+14Ci

11Bi

)1/4

ẑi ≥ h

h ≥ ẑi

(
(78Aiẑi+Bi+14Ciẑi)

12Bi

)1/4

h > ẑi

. (3.45)

Proof. See Appendix. �

Now, P3 can be reformulated as follows:

P3′ : min
h

1

2
αu(h) log

(
ẑ2
u + h2

)
+

1

2
αd(h) log

(
ẑ2
d + h2

)
s.t. C1.

(3.46)

Note that P3 is a multiple-ratio fractional programming problem and can be solved by

applying the quadratic transform method, as applied earlier. For the sake of simplicity, I
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rewrite P3′ by using a general notation i, where i = (u, d), as follows [93]:

P4 : min
h

∑
i=(u,d)

Oi(h)

Ti(h)

s.t. C1,

(3.47)

where Oi(h) = 0.5 log(h2 + ẑ2
i )× (Ai

(
ẑi + 2

√
ẑ2
i + h2

)2

−Bih(ẑi + 2
√
ẑ2
i + h2) +Cih

2) and

Ti(h) = (1 + ςi)(ẑi + 2
√
ẑ2
i + h2)2−B′ih

(
ẑi + 2

√
ẑ2
i + h2

)
+C ′ih

2. Note that, the complexity

arises due to the negative sign in Oi(h) that makes
√
Oi(h) a complex number. To avoid the

negative sign, I rewrite the problem P3′ in the minimization form of sum of ratio of convex

functions3. Thus, after introducing auxiliary variable yi and applying quadratic transform,

P5 becomes a convex problem in h [93]:

P5 : min
h,yi

∑
i=(u,d)

2yi
√
Oi(h)− y2

i (Ti(h))

s.t. C1 & yi ∈ R.

(3.48)

For a given h, the optimal yi can thus be obtained in closed form as y?i =

√
Oi(h)

Ti(h)
. The

solution to the problem P5 with Qi(h) = 2yi
√
Oi(h)− y2

i Ti(h) in the objective function can

be obtained using Algorithm 2 that iteratively solves the minimization problem for h.

Fig. 3.5 shows the comparison between the optimal solution obtained from solving Eq.

(3.42), Eq. (3.44) and Eq. (3.48), which are represented by blue, black, and red curves,

respectively. Evidently, due to the considered approximations of (3.42), the optimal solution

obtained by solving (3.42) has a slight mismatch with the exact solution obtained by solving

(3.44) using exhaustive search method. However, it is noteworthy that the transformation

of (3.44) into (3.48) does not impact the optimality of the solution.
3Note that this alternation is particularly applicable to the case where quadratic transform P5 is convex,

not otherwise.
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Figure 3.5 The validation of solution obtained from Eq. (3.42), Eq. (3.44) and
Eq. (3.48) for IRS-only mode for Eb/N0 = 130dB, N = 30, pu = pd = 50dBm for
different environment parameters, where (Eb represents per symbol energy).

Data: Initialize h, j = 1, Maximum Iterations Jmax, Error tolerance ε, Qi(h
j)

Find y?i,j by solving Qi(h
j) and set j = 2;

while |y?i,j+1 − y?i,j|≥ ε, and j < Jmax do
• Update h by solving Qi(h

j) for fixed y?i,j−1 using any convex optimization tool e.g,

CVX.

• update y?i,j ∀i ∈ (u, d)

• j = j + 1.

end

Result: optimal desired solution h?
Algorithm 3: Height Optimization in IRS-only Mode
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3.5.3 UAV-only Mode: Height Optimization

I formulate the height optimization problem using (3.26), which is an approximation of

(3.23), for the UAV-only mode as follows:

P1 : max
h

RUAV = Blog2

(
1 + min

(
puκu d

−αu
u Ωu, pdκd d

−αd
d Ωd

))
C1 : hmin ≤ h ≤ hmax.

(3.49)

Using an approach similar to that followed for (3.42), i.e. by ignoring logarithm and con-

stant scaling function and considering only the terms that are function of h, I recast the

optimization problem P1 as follows:

P2 : max
h

min
(
Iud
−αu
u , Idd

−αd
d

)
= max

h
min
i

Iid
−αi
i

s.t. C1,

(3.50)

where Iu = puκu Ωu, Id = pdκd Ωd, du =
√
ẑ2
u + h2, dd =

√
ẑ2
d + h2, and αi for i ∈ (u, d) is

given in (3.43). where du and dd are convex functions of h, whereas αu and αd are ratio of

concave and convex functions of h. Clearly, this problem is non-convex and cannot be solved

directly. Therefore, I take log of P2 which is an increasing function and does not effect the

solution of the original objective. P2 can then be reformulated as follows:

P3 : max
h

min
i

(
log(Ii)− αi(h) log

(
h2 + ẑ2

i

))
s.t. C1,

(3.51)

where αi is a ratio of concave and convex functions of h, thus the objective function is a ratio

of two functions of h for i ∈ (u, d). However, the ratio in the objective may not necessarily

be concave-convex form. However, under a certain condition, I am able to prove that the

objective in P3 is indeed a concave-convex form in terms of h). This guarantees that an

optimal solution for P3 can be obtained under specific condition. By substituting αi(h) and

simplifying the objective of P3, I get

Oi(h) =G1

(
ẑi + 2

√
ẑ2
i + h2

)2

−G2h

(
ẑi + 2

√
ẑ2
i + h2

)
+G3h

2, (3.52)
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where G1 = 2 log(Ii)(1 + ςi)−Ai log (h2 + ẑ2
i ), G2 = 2 log(Ii)B

′
i −Bi log (h2 + ẑ2

i ), and G3 =

2 log(Ii)C
′
i−Ci log (h2 + ẑ2

i ) and denominator function is Ti(h) = (1+ςi)
(
ẑi + 2

√
ẑ2
i + h2

)2

−

B′ih
(
ẑi + 2

√
ẑ2
i + h2

)
+ C ′ih

2. It is straight-forward to see that Ti(h) is convex. In the

following Proposition, I show that Oi(h) in (3.52) is a concave function of h under a certain

condition.

Proposition 10. The Oi(h) in (3.52) is concave when

2G1ẑ
3
i + (4G1 +G3) (ẑ2

i + h2)3/2 −G2h(3ẑ2
i + 2h2) (3.53)

is negative. Using the identity that norm is less than the sum of the sides, i.e.
√
h2 + ẑ2

i ≤

h+ ẑi, I obtain an upper bound on (3.53) after simplification as

(6G1 +G3)ẑ3
i + (4G1 +G3 − 2G2)h3 + (4G1 +G3) ẑih

2 + (4G1 +G3 − 3G2) ẑ2
i h. (3.54)

Now, for the cases ẑi ≥ h and ẑi < h and replacing min(h, ẑi) with max(h, ẑi) (which gives

an upper bound), I obtain the simplified condition for concavity after substituting G1, G2 and

G3 as

log(Ii) ≤
(18Ai − 5Bi + 4Ci)

36(1 + ςi)− 10B′i + 8C ′i
log
(
h2 + ẑ2

i

)
.

Now to solve P3, I apply quadratic transformation available for max-min problem [93].

The steps include recasting the problem as maximization of z under the constraint on h

such that z ≤ Oi(h)
Ri(h)

. The constraint z ≤ Oi(h)
Ri(h)

can be written using quadratic transform as

2yi
√
Oi(h) − y2

i Ti(h) ≥ z, ∀i ∈ (u, d) with yi as an auxiliary optimization variable. The

equivalent problem of (3.51) can then be given as:

P3′ : max
h,yi,z

z

C1 & C2 : 2yi
√
Oi(h)− y2

i Ti(h) ≥ z, ∀i.
(3.55)

The above problem cannot be solved since Oi(h) is a negative valued function. Therefore, I
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change z to −z ≥ −Oi(h)
Ti(h)

to make Oi(h) positive inside the square root in C2 as follows:

P4 : max
h,yi,z

−z

C1 & C2 : 2yi
√
−Oi(h)− y2

i Ti(h) ≥ −z, ∀i
(3.56)

Now changing maximization over h to minimization over h, the above problem can be refor-

mulated as:

P5 : min
h,yi,z

z

C1 & C2,

(3.57)

which is solved using Algorithm 3 for UAV only mode.

Data: Initialize h, z, j = 1, Maximum Iterations Jmax, Error tolerance ε, Oi(h
j) &

Ri(h
j)

Find y?i,j by solving y?i,j =

√
Oi(hj)

Ri(hj)
and set j = 2;

while |y?i,j+1 − y?i,j|≥ ε, and j ≤ Jmax do
• Update h and z by solving (3.57) for fixed y?i,j−1 using any convex optimization tool,

e.g. CVX.

• update y?i,j ∀i ∈ (u, d)

• j = j + 1.

end

Result: optimal desired solution h?
Algorithm 4: Height Optimization in UAV-only Mode

Fig. 3.6 shows the comparison between the optimal solution obtained from solving (3.49),

(3.51), and (3.57), which are represented by blue, black, and red curves, respectively. Clearly,

due to the considered approximations the optimal solution obtained by solving (3.51) has

a slight mismatch with the exact solution obtained by solving (3.49) using an exhaustive
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Figure 3.6 The validation of solution obtained from Eq. (3.49), Eq. (3.51) and
Eq. (3.57) for UAV-only mode for Eb/N0 = 122dB, RSI = 5dB, pu = 56dBm,
pd = 45dBm. For given parameters Ii < 1010 ∀i ∈ (u, d) assures the concavity of
Oi(h).

search. However, it is noteworthy that the transformation of (3.51) into (3.57) does not

impact the optimality of the solution.

3.5.4 Mode Selection

In this section, I derive the probabilities of selecting modes (UAV-only, IRS-only, integrated

UAV-IRS) to maximize the energy efficiency. However, first I would like to clarify that

the denominator (i.e. power consumption) of energy efficiency in integrated UAV-IRS mode

will always be higher than the power consumption in UAV-only and IRS-only modes. The

reason is that the power consumption of the integrated UAV-IRS mode (the sum of the power

consumption of UAV-only and IRS-only modes) is always higher than the power consumption

of the UAV-only and IRS-only modes. Furthermore, the numerator which is ergodic capacity

in (3.31) chooses between the maximum SNR of either IRS-only mode or UAV-only mode.
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As such, the integrated UAV-IRS mode (which is optimal when the objective is to maximize

the rate) is not selected when the objective is to maximize energy efficiency. Therefore,

the mode selection is essentially performed between UAV-only and IRS-only modes. In what

follows, I derive the mode selection probabilities given the instantaneous fading channels and

devise a criterion to select how many active IRS elements are needed to maximize energy

efficiency in IRS-only mode. I use the proposed criterion for mode selection and obtain

optimal heights to maximize the overall energy efficiency of the integrated UAV-IRS system.

The probability of selecting IRS-only mode can be formulated as follows:

PIRS = Pr

(
ΓIRS ≥

ΓUAVPIRS

PUAV

)
= 1− Pr

(
ΓIRS <

ΓUAVPIRS

PUAV

)
. (3.58)

Conditioned on ΓUAV, the probability in (3.58) can be derived as follows:

PIRS = EΓUAV

[
1− FΓIRS

(
ΓUAVPIRS
PUAV

)]
(a)
= 1−

∫ ∞
0

FΓIRS

(
ΓUAVPIRS
PUAV

)
fΓUAV

(z)dz, (3.59)

where FΓIRS

(
ΓUAVPIRS

PUAV

)
is obtained by replacing Γ0 with ΓUAVPIRS

PUAV
in (3.17). The density

function of ΓUAV in (3.6) is obtained by using order statistics and differentiating (3.11) as

fΓUAV
(z) = (1 − FXu(z))fXd(z) + (1 − FXd(z))fXu(z), where fXi(z) and FXi(z) are given in

(3.5) and (3.14), respectively. Subsequently, the probability of UAV-only mode selection can

be given as PUAV = 1− PIRS.

Now, to maximize the energy efficiency at an arbitrary height, I design the following

mode selection criterion based on the average SNR4 to select the IRS-only mode, i.e.

E[ΓIRS] ≥ E[ΓUAV]PIRS

PUAV

.

N >
(pu − Pr(b) + C) min

(
puκud

−αu
u Ωu, pdκdd

−αd
d Ωd

)
− ν(pu + pd + C)V d−αuu d−αdd

λ′ (pu + pd + C)
(
V d−αuu d−αdd

)
− Pr(b) min

(
puκud−αuu Ωu, pdκdd

−αd
d Ωd

) − 1 = Nth.

(3.60)

That is, the number of IRS elements should be greater than Nth to enable the IRS-only mode.

Another way to maximize the energy efficiency is to calculate E[ΓIRS ]
PIRS

and E[ΓUAV ]
PUAV

with their

4Generally, the instantaneous CSI may not be available at the receiver.
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optimal heights calculated in Section V.B (Algorithm 2) and Section V.C (Algorithm 3),

respectively. Then choose the mode and optimal height corresponding to whichever term

becomes the maximum.

Remark: For mode selection based on the power consumption, the integrated UAV-IRS

mode will never be selected due to its higher power consumption compared to the UAV-only

and IRS-only modes. Furthermore, the IRS-only mode will be selected when N ≤ pd
Pr(b)

and vice versa for the UAV-only mode. Similarly, for the SNR-based mode selection, then

integrated UAV-IRS mode will always be selected as it chooses the maximum SNR of the

IRS-only and UAV-only modes.

3.6 Numerical Results and Discussion

In this section, I verify the accuracy of our derived expressions and obtain insights related

to the number of IRS elements and the optimal height of UAV for different communication

modes. Unless stated otherwise, the simulation parameters are: D = 2000m, B = 5MHz,

H = 550m, pu = pd = 49dBm, ηu = ηd = 0.002, Γ0 = 20dB, qu = qd = −1.7, vu = vd = 3.05,

wu = wd = 15dB, zu = zd = 5, Ωi, RSI = 6dB, DIRS = 0.5cm, PF = 1mW, and Eb/N0 =

50dB.

Fig. 3.7 compares the outage probability and ergodic capacity w.r.t the number of

IRS elements for the UAV-only, IRS-only and integrated UAV-IRS modes. Clearly, the

UAV-only mode is independent of N . However, as N increases, the IRS-only mode and

the integrated UAV-IRS mode minimize the outage probability and maximize the capacity

due to enhanced IRS transmission link. For larger values of N , the IRS-only transmissions

become strong and the opportunistic selection between the UAV-only and IRS-only modes

improves the performance of integrated UAV-IRS mode. As expected, the integrated UAV-

IRS mode outperforms the IRS-only and UAV-only mode for all N in terms of outage and
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Figure 3.7 Performance compari-
son of outage probability, and er-
godic capacity for IRS-only, UAV-
only and integrated UAV-IRS mode
for Pr(b) = 15 × 10−2W and d =
1250m.
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Figure 3.8 Performance comparison
of power consumption, and energy-
efficiency for IRS-only, UAV-only
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Pr(b) = 15× 10−2W and d = 1250m.

ergodic capacity. An interesting observation is that the lower LoS probability worsens the

performance of all schemes. That is, a higher value of N is needed to minimize the outage

and maximize the transmission capacity for scenarios with lower LoS.

Fig. 3.8 compares power consumption and energy-efficiency w.r.t the number of IRS

elements for the UAV-only, IRS-only, and integrated UAV-IRS modes. Clearly, the power

consumption and energy efficiency of UAV-only mode do not depend on N . However, for the

IRS-only mode, the power consumption increases with N with the slope given by the power

consumption per IRS element Pr(b). Note that the power consumption does not change with

the LoS probability; therefore, the reduction in energy efficiency with the decrease in LoS

probability is only due to the reduction in transmission capacity. Furthermore, the energy

efficiency first increases up to a certain value of N , because the capacity is dominant than
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power consumption in this regime. Later, for larger values of N , the power consumption

becomes dominant and thus the reduction in energy efficiency is evident. Finally, it is

intuitive to see that the power consumption of the integrated UAV-IRS mode is higher than

the other modes; therefore, an efficient mode selection mechanism is important.

Fig. 3.9 shows the effect of power consumption of bit resolution Pr(b) on the energy

efficiency of the three communication modes. It is clear that the UAV-only mode is indepen-

dent of Pr(b). However, the IRS-only and integrated UAV-IRS modes show that an optimal

number of IRS elements exists which increases with the reduction in Pr(b). In particular,

for smaller values of Pr(b), the EE continues to increase for a wider range of N , because the

increase in N does not significantly increase the power consumption, whereas the capacity

keeps increasing. For higher values of Pr(b), the power consumption of IRS elements becomes
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more dominant than the impact of IRS elements on the ergodic capacity. As such, after a

specific value of N , a decreasing energy-efficiency trend can be observed. Clearly, for very

high values of Pr(b), minimizing IRS elements is necessary to maximize energy efficiency.

Similar trends are observed for EE in integrated UAV-IRS mode with lower gain than the

IRS-only mode, because this mode consumes more power then the IRS-only and UAV-only

modes.
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son of outage probability and ergodic
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integrated UAV-IRS mode for d =
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Fig. 3.10 shows the optimal number of IRS elements N? (obtained using Algorithm 1)

continues to increase as a function of the distance between the source and UAV. However,

the corresponding values of optimum energy efficiencies continue to decrease with the in-

creasing distance between the source and UAV. On the other hand, when the distance from
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N = 260, Pr(b) = 15× 10−3 W.

the source to UAV decreases, higher values of optimum energy-efficiency can be achieved

with less number of IRS elements. This trend is also true when the distance from UAV

to destination decreases. The proposed optimal solution (shown by marker) matches well

with the optimal solutions obtained by an exhaustive search. Furthermore, it is noted

that a low LoS probability pL(θi) = 0.53 requires more IRS elements for optimal function

while the maximum energy-efficiency values obtained are still low. On the other hand, when

pL(θi) = 0.63, a smaller number of IRS elements provide higher optimum energy efficiency

values. In summary, I can conclude that if bit resolution power is very small, then using

maximum number of IRS elements is optimal, whereas when the bit resolution power is

significantly large, then using small number of IRS elements is optimal.

Fig. 3.11 shows variations in outage probability and ergodic capacity with the height

of the UAV considering the UAV-only, IRS-only, and integrated UAV-IRS modes. I note

that the optimal height varies depending on the selected communication mode. For weak

LoS, I have a higher outage probability in general. However, I note that for weak LoS

PL(θi) ≈ 0.53, the UAV-only mode outperforms the IRS-only mode for h ≥ 500m, and as

expected, the integrated mode performs better than both modes. However, for strong LoS,
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the IRS-only mode performs better than the UAV-only mode for a wide range of heights for

the outage probability. Also, significant energy efficiency gains can be seen with IRS-only

mode compared to UAV-only mode in Fig. 3.12.

Fig. 3.12 depicts power consumption and energy efficiency performance with respect to

height. The power consumption is independent of the LoS probability and height of UAV.

The energy-efficiency in strong LoS PL(θi) = [0.65 0.75] outperforms the EE in weak LoS

PL(θi) = 0.5. For weak LoS, EEIRS is the least energy-efficient. However, for strong LoS, the

IRS-only mode becomes the most energy-efficient mode for a wide range of UAV altitudes,

since the IRS only mode power consumption is much lower than the other communication

modes (i.e. small Pr(b) and N).

Fig. 3.13 compares the optimal heights for different distances between source and UAV.

This figure shows that the height calculated from the proposedAlgorithms 2 and 3matches

well with the exact optimal height obtained from exhaustive search. The performance of

analytical mode selection criterion and its corresponding optimal height can also be seen.

This shows that for the distance between source and UAV in [300 1300] m, the UAV-only

mode is optimal, whereas when the UAV is close to the destination or the source the IRS-only

mode is optimal. Hence, the optimal height switches to IRS-only height. The same trend

is also observed from Figure 3.14 which represents the optimal energy efficiency vs distance

between S and UAV and follows the same trend as in Fig. 3.13.

3.7 Conclusion

I have analyzed the end-to-end performance in terms of SNR outage probability, ergodic

capacity, and energy efficiency for an integrated UAV-IRS relaying system that can operate

in three different modes, namely, IRS-only mode, UAV-only mode and integrated UAV-IRS

mode. For the IRS-only mode, I have optimized the number of IRS elements and UAV
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height, whereas I have optimized the UAV height for the UAV-only mode. I have observed

that the optimal height varies based on the selected transmission mode. I have also provided

an analytical criterion for optimal height and mode selection in terms of energy efficiency.

The extension of analysis and optimization of integrated UAV-IRS system with correlated

fading channels is a potential future research work.
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Chapter Four

Stochastic Geometry Analysis of

IRS-Assisted Downlink Cellular

Networks

This chapter proposed IRS-assisted downlink cellular network scheme. Then the system

model of the proposed scheme is presented followed by the major performance analysis of

coverage probability, spectral efficiency and EE of both IRS-assisted user and direct user.

Validation of the analysis is provided with the monte-Carlo simulations followed by numerical

insights. Lastly, summary of observations is provided.

4.1 Introduction

Intelligent reflecting surfaces (IRSs) are considered as a key enabling technology for the sixth

generation (6G) wireless communications systems. IRSs enable a smart manipulation of the

wireless propagation environment [22, 95]. Each IRS consists of many antenna elements

(a.k.a IRS elements) [23] and each IRS element is controlled via a controller that assists each

IRS element to steer the incident signal into the desired direction [24].
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Also, with the advances in the wireless technology and extravagant demand of higher

data rate to millions of indoor/outdoor devices, it has become inevitable to utilize the re-

sources wisely to enable massive connectivity. In this context, IRSs operate as a low cost

solution to extend the communication range and to provide service to more users. In order to

achieve this goal, the transmissions can happen in three modes, i.e., (i) Joint Transmission:

in which a user receives the IRS signals combined with the direct signal from the base-

stations (BSs), (ii) IRS-only Transmission: in which a user receives only IRS transmissions

and the direct transmissions get blocked, and (iii) Direct Transmission: in which a user is

served only through direct transmissions.

It is noteworthy that combining the signals coming from the direct and indirect IRS-

assisted path may suffer from incoherent multi-path delays and it may necessitate sophis-

ticated synchronization, detection, and co-phasing techniques resulting in complex hard-

ware/software design. Furthermore, the impact of IRS transmissions is generally more un-

derstandable in the absence of direct link; therefore, it is crucial to investigate the significance

of IRS-only transmissions without direct links. Similarly, the fact that the direct transmis-

sions from BSs may be impacted by the presence of IRSs, it is important to study the

performance of direct transmissions in a large-scale IRS-assisted network comprehensively.

Also, the analysis of users with joint transmissions has already been done in [96, 97] and is

thus currently beyond the scope of this chapter. In this chapter, I develop a novel frame-

work to analyze the performance of various types of transmissions in a multi-BS, multi-IRS

network.

4.1.1 Background Work

To date, there have been a number of research works that considered the performance anal-

ysis of IRS-assisted communication systems assuming a single IRS, single source and des-

tination [77, 97–103]. For instance, the authors in [77] applied the central limit theorem
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(CLT) to derive the approximate symbol error probability expressions under independent

Rayleigh fading channels. In [98], the authors derived the approximate outage probabil-

ity, symbol error rate, and upper and lower bounds on ergodic capacity by applying CLT

and assuming uncorrelated Rayleigh fading channels. Later, [99] derived the average bit

error rate, capacity, and outage probability with Rayleigh fading. In [100], the exact outage

probability, symbol error rate, and ergodic capacity expressions under Rayleigh fading were

derived. In [101] and [102], using moment generating function (MGF)-based approach, the

exact outage probability was derived considering Nakagami-m and generalized fading chan-

nels, respectively. The direct link transmission was ignored in [77,98,99,101]; however [102]

considered both the direct and IRS-assisted transmissions. In [97], the authors derived the

outage probability and ergodic capacity expressions considering IRS link modeled with Ri-

cian fading and direct channel modeled as Rayleigh fading. The joint direct and IRS-assisted

transmission was considered.

All of the aforementioned research works were limited to single IRS, sin-

gle source, and single destination under varying fading channels. That is, the

impact of interference is ignored and the IRS is deployed at a fixed location.

Furthermore, the analyses assume optimal phase-shifts and apply CLT, which

simplifies the cascaded signal model substantially. Recently, in [103], using moment

matching method, the authors derived the outage probability and capacity expressions un-

der correlated Rayleigh fading channel while considering arbitrary phase shifts. This work

considered both the direct and IRS-assisted links; however, again the framework was limited

to a single IRS, single source, and single destination. Another work is [104] where multi-pair

D2D network is considered with a single IRS and the authors derive average achievable rate

expressions assuming arbitrary phase-shifts. However, the authors considered approximating

the signal and interference power with their respective statistical averages.

Another series of research works considered multiple IRSs, single source, and single

112



destination [105–107]. In [105], the authors derived the outage probability considering

Rayleigh fading with the direct transmission blocked. The transmission is conducted by

only one IRS that provides the maximum SNR. Instead of applying CLT, the authors pro-

posed Generalized-K approximation. In [106], the authors applied CLT to derive the outage

probability and rate considering Nakagami-m fading. Both the direct and indirect trans-

missions were considered. Similarly, in [107], the authors derived the outage probability by

approximating the end-to-end IRS-assisted channel with the log-normal and gamma distri-

bution.

The aforementioned research works ignored interference from IRSs, assumed

a single BS, and ideal phase shifts were assumed. Recently, a couple of research

works considered a realistic multi-IRS set-up with multiple BSs [96,108]. In [108], the authors

derived the average achievable rate of the IRS-assisted multi-BS network and derived the

Laplace Transform (LT) of the aggregate interference from all BSs and IRSs. However, the

interference from all BSs to a specific IRS is replaced by its average value. The resulting

rate expressions require four-fold integral evaluations. Another relevant research work is [96]

where the authors derived the coverage probability expressions considering joint direct and

IRS transmission. The signal power is approximated with the Gamma distribution and

approximated the interference from all IRS with the mean IRS interference and considering

only users with joint direct and IRS-assisted transmissions. Both of the aforementioned

works [96, 108] assumed optimal phase-shifts in the desired signal and interference which

makes the application of CLT possible.

4.1.2 Contribution and Organization

in this chapter, I develop a comprehensive framework to analyze the coverage probability

and rate of various types of users (e.g., users performing direct transmissions and indirect

IRS-assisted transmissions) in a realistic large-scale multi-BS, multi-IRS network. The pro-
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posed framework can capture the impact of arbitrary phase-shifts on the received signal

power as well as the aggregate interference from all IRSs on users that are served by direct

transmissions from BS or IRS-assisted transmissions. More specifically, I have the following

main contributions:

• For IRS-assisted downlink transmissions, I approximate the desired signal power from

the nearest IRS as a sum of scaled generalized gamma (GG) random variables whose

parameters are a function of the IRS phase shifts. Then, I derive the novel LT ex-

pression and validate its accuracy considering both the optimized and randomized

phase-shifts of the IRS.

• I approximate the aggregate interference from multiple IRSs in a multiple BS scenario

as the sum of normal random variables. Then, I derive the LT of the aggregate inter-

ference from all IRSs. The derived expressions can be customized for both types of

users, i.e., those served by direct BS transmissions and those served by IRS-assisted

transmissions.

• Based on the LT expressions, I characterize the coverage probability, ergodic capacity,

and energy-efficiency of both the IRS-assisted users and direct users.

• Finally, I derive the overall coverage probability, ergodic capacity, and energy efficiency

based on the fraction of direct and indirect IRS-assisted users in the network. This

fraction is derived as a function of the (i) deployment intensity of IRSs as well as (ii)

blockage probability of direct transmission links.

• The analytical results are validated by Monte-Carlo simulations. Numerical results

extract useful insights related to the impact of IRS interference on IRS-assisted as well

as direct transmissions in a large-scale network as a function of the number of IRS

elements, intensity of IRSs and BSs, and the transmit power of BSs.
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Note that stochastic geometry analyses of wireless systems follow more or less similar

methodologies; however, the novelty of a stochastic geometry framework comes from the

novelty in system set-up, modeling of channel, interference, and the corresponding random

variables and their statistics such as PDF or LT expressions. Nonetheless, our provided ex-

pressions expressions are tractable, novel, and can be implemented in any standard software

such as Matlab and Mathematica to gain insights and optimize network parameters in a

large-scale network model without running lengthy Monte-Carlo simulations.

The remainder of the chapter is organized as follows. Section 4.2 describes the system

model and assumptions and the methodology of analysis. I characterize the statistics of the

received signal power, aggregate interference and the corresponding LT of users supported by

IRS in Section 4.3 and Section 4.4, respectively. The coverage probability, ergodic capacity

and energy efficiency of users supported by IRS transmissions and users supported by direct

transmission, also the overall coverage of the network and achievable data rate is provided in

Section 4.5. Then, in Section 4.6, I present selected numerical results followed by conclusions

in Section 4.7. A list of the major notations is presented in Table 4.1.

4.2 System Model and Assumptions

In this section, I present the network, transmission, signal and interference models for users

who are served by direct BS transmissions and those served by IRS-assisted transmissions,

and also our methodology for large-scale analysis of the system.

4.2.1 Network Deployment and Transmission Model

I consider a two-tier downlink cellular network consisting of IRS surfaces, BSs, and users.

The locations of the BSs follow a two-dimensional(2D) homogeneous Poisson Point Process

(PPP) denoted as ΦB with intensity λB, whereas the locations of the IRSs follow Binomial
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Point Process (BPP) in which M IRSs are distributed in a finite region A ⊂ R2. I consider

A = b(o, R) is a disc of radius R centered at origin o = (0, 0) [109]. For simplicity, I refer to

λR = M
πR2 as the IRS intensity throughout the chapter. I assume that the IRSs are deployed

at a fixed height HR and are equipped with N elements each, whereas all the BSs have a fixed

height HB. I assume that there are two different types of users in the considered multi-BS

and multi-IRS network, i.e.,

• Direct users: who are served by direct BS transmissions, and

• IRS-assisted users: who are served by indirect IRS-assisted transmissions.

The typical user who is deployed at origin would reflect the performance of any user within

the coverage region without loss of generality. The Slivnyak’s theorem [110,111] states that

adding a user to the PPP at any location, such as the origin or at a fixed distance from the

origin, do not change the statistical behaviour. The user anywhere has an identical statistical

behavior to the origin [112] therefore, the boundary effect will not exist. I also consider A

IRS-assisted users and 1 − A direct users in the system. For direct transmission from the

BS, the typical user is associated to the nearest BS. In the indirect IRS-assisted transmission

mode, the user associates to the nearest IRS, and then, that nearest IRS associates to the

nearest BS.

I assume that an IRS can relay information from only one BS to only one user at a

predefined time/frequency resource to maintain orthogonality. I consider that the direct

communication (i.e., BS to the typical user) and indirect IRS-assisted communication (i.e.,

BS to IRS and IRS to the typical user) share different frequency spectrum such that a BS

can serve both the direct and indirect IRS-assisted users. Now let us assume that F1 and

F2 is the frequency of direct user and IRS-assisted user, respectively. Overall, there exist

four types of transmissions. (i) IRS-assisted transmission on F2, (ii) direct transmission on

F1, (iii) Interference due to direct transmissions at F1 and the interference due to reflection
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Figure 4.1 System model for direct and IRS-assisted communication in multi-IRS
and multi-BS setup: (a) Scenario 1: when the user is connected with a BS through
nearest IRS and the direct link to the nearest BS is blocked, and (b) Scenario 2:
when the user is connected with a nearest BS in the presence a weak IRS link.

transmissions from IRSs at F1, and (iv) Interference due to IRS-assisted transmissions at F2

and the interference due to direct transmissions from BSs at F2 as shown in Fig. 1.

I assume that an IRS can relay information from only one BS to only one user at a

predefined time/frequency resource to maintain orthogonality. I consider that the direct

communication (i.e., BS to the typical user) and indirect IRS-assisted communication (i.e.,

BS to IRS and IRS to the typical user) share different frequency spectrum such that a BS

can serve both the direct and indirect IRS-assisted users.

Table 4.1 Chapter 4: Summary of the main symbols and their definitions

Notation Description

R Coverage radius

N Number of IRS elements

M Total number of IRSs

Continued on next page
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Table 4.1 – Continued from previous page

Notation Description

λB BS intensity

ΦB PPP for BSs

HB,HR BS height, IRS height

α Path-loss exponent

BSj j-th interfering BS to the typical user in direct mode

BS0 Nearest BS to the typical user in direct mode

`j Direct distance of BSj in 2D

dj Direct distance of BSj in 3D

`0 Direct distance of nearest BS0 in 2D

d0 Direct distance of BSj in 3D

hj Fading channel between typical user and BSj

h0 Fading channel between typical user and BS0

p̂t, pt Transmission power of BSs in direct and IRS-assisted mode

IRSmn The n-th element of interfering IRS m

IRS0n The n-th element of nearest IRS0 to user

|g0,mn |, φ0,mn Fading magnitude and phase from the user to the IRSmn

r0,mn Distance of the user to the IRSmn

|fmn,j |, ψmn,j Fading magnitude and phase from IRSmn
to BSj

tmn,j Distance from IRSmn to BSj

Θmn
Phase shift of IRSmn

Θ0n
Phase shift of IRS0n

|g0,0n|, φ0,0n Fading magnitude and phase from the user to the IRS0n

r0,0n Distance of the user to the IRS0n

Continued on next page
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Table 4.1 – Continued from previous page

Notation Description

|f0n,j |, ψ0n,j Fading magnitude and phase from IRS0n to BSj

t0n,j Distance from IRS0n
to BSj

IB Aggregate interference from all BSs in IRS-assisted mode

IR Aggregate interference from all IRS in IRS-assisted mode

ÎB Aggregate interference from all BSs in direct mode

ÎR Aggregate interference from all IRS in direct mode

SD0
Received signal power from BS0

SR0 Received signal power from IRS0

CD Coverage probability in the direct transmission mode

CID Coverage probability in the IRS-assisted mode

γD Direct mode SINR

γID Direct mode SINR

τ SINR threshold

A Fraction of users assisted by IRS

XG(κ, ζ) Gamma RV and parameters

XGG(a, d, p) Generalized gamma RV and parameters

RD Rate achieved in direct mode

RID Rate achieved in indirect mode

tj Approximation of tm,j

N0 Noise power spectral density

pBS, pU Static power consumption of BS and user

pIRS IRS power consumption

pID, pD Total system power consumption per user in indirect and direct mode

Continued on next page

119



Table 4.1 – Continued from previous page

Notation Description

A Fraction of user associated with IRS-assisted ID communication

β Reference channel power gain on free space path loss at 1-meter distance

4.2.2 Signal and Interference Models (IRS-Assisted Users)

Desired Signal Power

4.2.3 Signal and Interference Models (IRS-Assisted Users)

Desired Signal Power

The signal power received at the typical user from the nearest IRS (IRS0) is given as [104,113]:

SR0 = pt |ĝH0,0Θ0 f̂0,j|2= pt|
N∑
n=1

r
−α/2
0,0n t

−α/2
0n,j

f0n,jg0,0ne
jθ0n |2, (4.1)

where pt is the transmission power of the BSs in IRS-assisted mode, g0,0n = |g0,0n|e−jφ0,0n

is the Rayleigh fading channel gain from the typical user to the n-th element of IRS0, thus

ĝ0,0n = β (r0,0n)−α/2 g0,0n , where α ≥ 2 represents the path-loss exponent, β =
(

4πfc
c

)−2
is the

channel power gain on free-space path-loss model at a reference distance of one meter, fc is

carrier frequency, c represents the speed of light, and ĝ0,0 ∈ C1×N , where r0,0n =
√
`2

0n +H2
R

represents the distance from the n-th element of the IRS0 to the typical user. Note that

|g0,0n| and φ0,0n represent the magnitude and phase component of the fading channel from

the n-th element of IRS0 to the typical receiver. Similarly, f0n,j = |f0n,j|e−jψ0n,j is the fading

channel gain from the n-th element of IRS0 to j-th BS, thus f̂0n,j = β (t0n,j)
−α/2 f0n,j and
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f̂0,j ∈ CN×1, where

t0n,j =
√
r2

0,0n + d2
j − 2r0,0ndj cos( 6 t0n,j)

represents the distance from the n-th element of IRS0 to the typical user, where 6 t0n,j denotes

the angle opposite to t0n,j. Note that |f0n,j| and ψ0n,j represent the magnitude and phase

component of the fading channel from j-th BS to n-th element of IRS0. Finally, Θ0 denotes

the phase shift of the IRS0 and Θ0 = diag{ejθ01 , ejθ02 , · · · , ejθ0N }.

Interference Power

The interference at a typical user in the IRS-assisted mode is composed of two parts (i)

interference from the BSs, and (ii) interference from the IRSs. The aggregate interference

from all the BSs (excluding the nearest BS) is given as follows:

IB =
∑

j∈ΦB\0

ptβ
2|hj|2d−αj =

∑
j∈ΦB\0

ptβ
2|hj|2(`2

j +H2
B)−α/2, (4.2)

On the other hand, the aggregate interference from the IRSs can be modeled as follows:

IR =
∑
j∈ΦB

M\0∑
m=1

pt |ĝH0,mΘm f̂m,j|2=
∑
j∈ΦB

M\0∑
m=1

pt|
N∑
n=1

r
−α/2
0,mn t

−α/2
mn,j

fmn,jg0,mne
jθmn |2, (4.3)

where g0,mn = |g0,mn|e−jφ0,mn is the fading channel gain from the typical user to the n-th ele-

ment of IRS m, thus ĝ0,mn = β (r0,mn)−α/2 g0,mn and ĝ0,m ∈ C1×N , where r0,mn =
√
`2
mn +H2

R

represents the distance from n-th element of m-th IRS to the typical user. Note that |g0,mn|

and φ0,mn represent the magnitude and phase component of the fading channel from n-th

element of m-th IRS to the typical receiver. Similarly, fmn,j = |fmn,j|e−jψmn,j is the fading

channel gain from the n-th element of IRS m to j-th BS, thus f̂mn,j = β (tmn,j)
−α/2 fmn,j

and f̂m,j ∈ CN×1, where tmn,j =
√
r2

0,mn + d2
j − 2r0,mndj cos(6 tmn,j) represents the distance

from n-th element of m-th IRS to the typical user where 6 tmn,j denotes the angle opposite

to tmn,j. Note that |fmn,j| and ψmn,j represent the magnitude and phase component of the

fading channel from j-th BS to n-th element of m-th IRS. Finally, Θm denotes the phase

shift of the IRS and Θm = diag{ejθm1 , ejθm2 , · · · , ejθmN }.
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4.2.4 Signal and Interference Models (Direct Mode)

Desired Signal Power

The signal power from the desired BS to the typical user is:

SD0 = p̂tβ
2|h0|2d−α0 = p̂tβ

2|h0|2(`2
0 +H2

B)−α/2, (4.4)

where p̂t is the transmission power of the BSs in direct mode, h0 and d0 are the small scale

fading channel and the distance between the typical user to the nearest BS, respectively.

Interference Power

The interference at a typical user in the direct mode is composed of two parts (i) interference

from the BSs, and (ii) interference from the IRSs. The aggregate interference from the BSs

(excluding the desired BS) is given as follows:

ÎB =
∑

j∈ΦB\0

p̂tβ
2|hj|2d−αj =

∑
j∈ΦB\0

p̂tβ
2|hj|2(`2

j +H2
B)−α/2, (4.5)

where hj and dj are the small scale fading channel and the distance between the typical user

to the nearest BS, respectively. On the other hand, the aggregate interference from all IRSs

can be modeled as follows:

ÎR =
∑
j∈ΦB

M∑
m=1

p̂t |ĝH0,mΘm f̂m,j|2=
∑
j∈ΦB

M∑
m=1

p̂t|
N∑
n=1

r
−α/2
0,mn t

−α/2
mn,j

fmn,jg0,mne
jθmn |2. (4.6)

4.2.5 Power Consumption Model

I consider the transmission power of IRS-assisted mode and direct mode is pt and p̂t. respec-

tively. The IRS is acting as a passive device and does not have any additional transmission

power consumption. However, the IRS power consumption is required for the IRS opera-

tion and is associated with the number of IRS elements and the phase resolution [23] as
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mentioned in chapter 2. Therefore, hardware power consumption increases with an increase

in resolution and the number of IRS elements as provided in [23, 26]. The system power

consumption per user in the IRS-assisted indirect mode pID is given as pID = U + pt + pIRS,

whereas the power consumption of direct mode p̂D is given as p̂D = U + p̂t. Here U denotes

the sum of static power consumption of a BS and a user.

4.2.6 Methodology of Analysis

To derive the coverage probability of different types of users in a large-scale IRS-assisted

network, our methodology is as follows:

• (IRS-assisted User) Model the received signal power SR0 as a sum of scaled gener-

alized gamma random variables and then derive the LT of SR0 (Section III).

• (IRS-assisted User) Derive the LT of the aggregate interference observed at a typical

IRS-assisted user from all BSs, i.e., LT of IB. Then, I model the aggregate interference

observed at a typical IRS-assisted user from all IRSs as sum of normal random variables

and derive its corresponding LT, i.e., LT of IR (Section IV).

• Then, apply Gil-Pelaez inversion to obtain CID conditioned on the distance r0,0
1.

• (Direct User) Derive the LT of ÎB and ÎR, i.e., LÎB(s) and LÎR(s), respectively, and

obtain CD conditioned on distance d0.

• Derive the ergodic capacity using Hamdi’s lemma [47] and energy-efficiency of typical

IRS-assisted user and direct user.
1I approximate r0,0n ≈ r0,0 since the distance between the typical user and different elements of the nearest

IRS is almost the same, i.e., the distance between IRS elements is negligible compared to the distance between

the nearest IRS and the typical user. Similarly t0n,j ≈ t0,j , r0,mn
≈ r0,m, and tmn,j ≈ tm,j .
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4.3 Statistics of the Received Signal Power (IRS-assisted

Transmission)

In what follows, I model the received power at a typical IRS-assisted user SR0 as a a sum of

scaled generalized gamma random variables and derive the LT of SR0 conditioned on r0,0.

Lemma 11. The desired signal power through nearest IRS SR0(r0,0) in (4.1) can be approx-

imated as a sum of scaled generalized gamma random variable as follows:

SR0 ≈ ptr
−α
0,0 t

−α
0,j

N2∑
q=1

|aq|XGGq(ζ
2, 0.5m, 0.5), (4.7)

where aq = cos(β0n − β0k), ∀q = 1, · · · , n+ k, · · · , N2, n = {1, · · · , N}, k = {1, · · · , N}.

Proof. The desired signal power through nearest IRS SR0(r0,0) in (4.1) is simplified using the

following steps:

SR0(r0,0)
(a)
≈ptr−α0,0 t

−α
0,j |

N∑
n=1

|f0n,j||g0,0n|e−jβ0n |2

(b)
=ptr

−α
0,0 t

−α
0,j

N∑
n=1

N∑
k=1

cos(β0n − β0k)|f0n,j||g0,0n||f0k,j||g0,0k |

(c)
≈ptr−α0,0 t

−α
0,j

N∑
n=1

N∑
k=1

cos(β0n − β0k)XNG = ptr
−α
0,0 t

−α
0,j

N∑
n=1

N∑
k=1

cos(β0n − β0k)XGG(ζ2, 0.5m, 0.5)

(d)
=ptr

−α
0,0 t

−α
0,j

N2∑
q=1

|aq|XGG(ζ2, 0.5m, 0.5),

(4.8)

where (a) is obtained by approximation as discussed in footnote-1, (b) follows from the simpli-

fication using |x|2= Re(x)2 + Im(x)2 and trigonometric identity cos(α−β) = cos(α) cos(β)−

sin(α) sin(β), (c) is followed by noting that |g0,0n ||f0n,j||g0,0k ||f0k,j| is the product of four

independent Rayleigh distributed random variables with mean and variance µx = σπ/2

and σ2
x = 22σ2(1 − π2/16), respectively. However, the exact distribution of the product of
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four independent Rayleigh random variables in [90] is complicated. Therefore, to maintain

tractability, I approximate it as a transformed Nakagami-m random variable [114] with the

density function

fXNG(x) = 2
(m

Ω

)m 1

n̂Γ(m)σ
2m
n̂

x
2m
n̂
−1 exp(− m

Ωσ
2
n̂

x
2
n̂ ),

where m = 0.6102n̂ + 0.4263 = 2.8671, and Ω = 0.8808n−0.9661 + 1.12 = 1.3508, and n̂ = 4.

Here n̂ = 4 represents the product of four-independent Rayleigh random variables. Now by

substituting n̂ = 4 and ζ = Ω
m
, fXNG(x) can be rewritten as fXGG(x) = 0.5

ζmΓ(m)
x0.5m−1e

−
√

x
ζ2 ,

which is the PDF of a generalized Gamma random variable [115]. Finally, in (d), the double

summation n = 1, · · · , N , k = 1, · · · , N and aq = cos(β0n − β0k) is transformed to single

summation q = 1, · · · , n+ k, · · · , N2, where −π/2 ≤ β0n − β0k ≤ π/2. �

In what follows, I derive the conditional LT of the received signal power in the IRS-

assisted communication mode.

Lemma 12. Conditioned on r0,0, the LT of the SR0 experienced by the typical user through

nearest IRS LSR0
in the IRS-assisted indirect communication mode is given as follows:

LSR0
|r0,0(s) =E

[
N2∏
q=1

1

(2ζ2s âq)
d

exp

(
1

8 ζ2s âq

)
D−2d

(
1

2ζ2s âq

)]
, (4.9)

where âq = ptr
−α
0,0 t

−α
0,j aq, aq is defined in Lemma 11 and D−v(·) is the parabolic cylinder

function.

Proof. The LT of SR0 is given by using step (d) of (4.8) as follows:

LSR0
|r0,0(s) = E[e−sSR0 ]

= E[e−sptr
−α
0,0 t
−α
0,j

∑N2

q=1 aqXGGq (ζ2,0.5m,0.5)]

=
N2∏
q=1

E[e−sptr
−α
0,0 t
−α
0,j aqXGGq (ζ2,0.5m,0.5)],

(4.10)
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Figure 4.2 Validation of conditional LT in (4.7) of the desired received signal power
SR0(r0) considering (i) random IRS phase shifts and (ii) optimal IRS phase shifts
obtained from CVX, using Monte-Carlo simulations.

where (4.10) follows from the fact that MGF of the linear combination of independent vari-

ables can be rewritten as the product of MGFs of each of the independent variables, and

E[e−sptr
−α
0,0 t
−α
0,j aqXGGq (ζ2,0.5m,0.5)] =

∫ ∞
0

e−sâqXGGqfXGG(x)dx

(a)
=

∫ ∞
0

0.5

ζmΓ(m)
x0.5m−1e

−sâqx−
√

x
ζ2 dx

(b)
=

2

ζmΓ(m)

∫ ∞
0

gm−1e−sâqg
2− g

ζ dg

(c)
=

1

(2ζ2s âq)
0.5m exp

(
1

8 ζ2s âq

)
D−m

(
1

2ζ2s âq

)
,

(4.11)

where (a) is obtained by substituting the probability density function of GG random variable

fXXG(x) = 0.5
ζmΓ(m)

x0.5m−1e
−
√

x
ζ2 [114], (b) is obtained by changing variable g =

√
x, (c) is

derived by using the identity
∫∞

0
gν−1e−βg

2−γgdg = (2β)−
ν
2 Γ[ν] exp( η

2

8β
)D−ν

(
η√
2β

)
from Eq.

3.462 of [116], where D−ν (.) represents the parabolic cylinder function. Finally, by using

âq = ptr
−α
0,0 t

−α
0,j aq in step (c) of (4.11) and (4.10) results in Lemma 12. �

Fig. 2 validates the accuracy of the LT of the received signal power (derived in Lemma 2)

of the typical IRS-assisted user with the Monte-Carlo simulations. Our derived expressions
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match well with the simulations confirming the accuracy of our SR0 model and its corre-

sponding LT. In both Lemma 2 and simulations, the phase-shifts are obtained optimally

from CVX. Specifically, I solve the following problem (P1) to maximize the received signal

power (given in (4.1)) and obtain the optimal phase-shifts:

P1 : max
θ0n ,∀n

SR0 = P |
N∑
n=1

C0n,jf0n,jg0,0ne
jθ0n |2

s.t. 0 ≤ θ0n ≤ π,∀n = 1, · · · , N.,

(4.12)

Substituting f0n,j = |f0n,j|e−jψ0n,j , g0,0n = |g0,0n|e−jφ0,0n , Θ0 = diag{ejθ01 , ejθ02 , · · · , ejθ0N }

and C0n,j ≈ C0,j = r−α0,0 t
−α
0,j defined in Sec. IIB, the objective function can be rewritten as

Pr−α0,0 t
−α
0,j |
∑N

n=1|f0n,j||g0,0n|e−jβ0n |2. Since Pr−α0,0 t
−α
0,j is independent of the optimization vari-

able, I can discard this term. Now, I transform the objective to equivalent matrix form

as |g̃H0,0 B0 f̃0,j|2, where g̃0,0 ∈ R1×N , f̃0,j ∈ RN×1, and B0 = diag{ejβ01 , ejβ02 , · · · , ejβ0N }.

Since the objective function is a scalar, I can convert absolute square to norm square

as ‖g̃H0,0 B0 f̃0,j‖2. Finally, defining v = [v1, · · · , vn]H , where vn = ejβ0n ,∀n, and Φ =

diag(g̃H
0,0)̃f0,j, I reformulate ‖g̃H0,0B0 f̃0,j‖2= ‖vHΦ‖2. The problem P1 can thus be reformu-

lated as follows:

P2 : max
v

vHΦΦHv

s.t. |vn|2= 1,∀n = 1, · · · , N.
(4.13)

P2 is non-convex quadratically constrained quadratic program (QCQP) in the homogeneous

form and the constraint is rank one [117]. Now, defining V = vvH , I apply semi-definite

relaxation (SDR) to relax the constraint as follows:

P3 : max
V

Tr (ΦΦHV)

s.t. Vn,n = 1,∀n = 1, · · · , N, V ≥ 0.

(4.14)

Since the problem is now transformed in to a convex semidefinite program (SDP), similar

to [25], I solve it for the optimal value using CVX.
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Furthermore, Fig. 2 also compares the LT of SR0 with optimal IRS phase-shifts to LT

of SR0 with random IRS phase shifts. For a given value of s, the LT of SR0 with optimal IRS

phase-shifts is lower than the LT of SR0 with random IRS phase-shifts. Thus, it is evident

that the received signal power SR0 with optimal phase-shifts significantly outperforms the

received signal power SR0 with random phase shifts.

Corollary 6. The optimal received signal power can be obtained if I substitute β0n,j = θ0n −

ψ0n,j − φ0,0n = 0 in (4.7), which maximizes aq to unity ∀n ∈ {1, · · · , N} [77] and results

in maximum SR0 as SR0 = ptr
−α
0,0 t

−α
0,jW . In this case, W =

∑N2

q=1XGGq(ζ
2, 0.5m, 0.5) can be

modeled as a normal random variable Since the square of the number of IRS elements can

be a large number, using CLT with mean µw = N2µGG and variance σ2
w = N2σ2

GG. where

µGG = ζ2 Γ(m+2)
Γ(m)

and σGG = ζ4
(

Γ(m+4)
Γ(m)

− µ2
GG

)
[115], I have the mean and the variance of

SR0 as E[SR0 ] = ptr
−α
0,0 t

−α
0,j µGG and V[SR0 ] = pt

2r−2α
0,0 t−2α

0,j σGG, respectively.

4.4 Statistics of the Aggregate Interference (IRS-Assisted

Transmission)

In this section, I first derive the LT of the aggregate interference observed at a typical IRS-

assisted user from all BSs. Then, I model the worst-case aggregate interference observed at

a typical IRS-assisted user from all IRSs and derive its corresponding LT.

The LT of the aggregate interference observed at a typical IRS-assisted user from all

BSs (excluding the blocked nearest direct BS) LIB(s) is derived as follows:
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LIB |d0(s) =E[e−s
∑
j∈ΦB\0

ptβ2|hj |2(`2j+H
2
B)−α/2 ]

(a)
= EΦB

 ∏
j∈ΦB\0

1

1 + s ptβ2(`2
j +H2

B)−α/2


(b)
= exp

(
−2πλB

∫ ∞
`0

(
1− 1

1 + ptβ2(`2
j +H2

B)−α/2

)
`jd`j

)
(c)
= exp

(
−2πλB

∫ ∞
d0

(
1− 1

1 + ptβ2d−αj

)
dj ddj

)
,

(4.15)

where (a) is obtained by applying the LT of |hj|2 and |hj|2∼ exp(1), and (b) is derived using

PGFL2 for PPP w.r.t the two-dimensional distance `j of the interfering BSs [96], and (c) is

obtained by substituting dj =
√
`2
j +H2

B. The closed-form expression can then be obtained

as follows:

LIB |d0(s) = exp

(
−2πλB

d2−α
0 sptβ

2

α− 2
2F1

(
1,
−2 + α

α
; 2− 2

α
;−s ptβ2d−α0

))
. (4.16)

Corollary 7. For α = 4, the LT of the aggregate interference to the typical user through all

the BSs (except the associated BS0 ) LÎB in the the direct mode can simplified as:

LÎB |d0
(s) = exp

(
−πλB

√
sp̂tβ2 arctan

(√
s p̂tβ2d−4

0

))
,

using 2F1 (1, 0.5; 1.5;−X2) = arctanX
X

, for |X|< 1 [118][Eq. 15.4.3].

Note that Corollary 2 is the special case of (4.16), which is mostly applicable for the

outdoor communication setup.

Lemma 13 (Lower Bound on the Aggregate Interference from Multiple IRSs). I reformulate

the aggregate interference observed at a typical user from all IRSs (excluding nearest IRS)

in a multi-IRS, multi-BS scenario as IR≤
∑

j∈ΦB
PZj, where Zj =

∑M−1
m=1 r

−α
0,m t−αm,j Ym.

2PGFL of any function f(r) for a PPP Φ is defined as E[
∏

r∈Φ f(r)] = exp
(
−λ
∫
R2(1− f(r))dr

)
=

exp
(
−2πλ

∫∞
r

(1− f(r)) rdr
)
.
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Proof. Taking βmn,j = θmn − ψmn,j − φ0,mn , the IR expression in (4.3) can be rewritten as

follows:

IR
(a)
=
∑
j∈ΦB

pt

M−1∑
m=1

r−α0,mt
−α
m,j |

N∑
n=1

|fmn,j| |g0,mn|ejβmn,j |2

(b)

≤
∑
j∈ΦB

pt

M−1∑
m=1

r−α0,mt
−α
m,j|

N∑
n=1

|fmn,j| |g0,mn||2

(c)
=
∑
j∈ΦB

pt

M−1∑
m=1

r−α0,mt
−α
m,jYm

(d)
=
∑
j∈ΦB

ptZj,

(4.17)

where (a) is obtained by the approximation r0,m ≈ r0,mn , tm,j ≈ tmn,j as discussed in footnote-

1, (b) follows from βmn,j = θmn−ψmn,j−φ0,mn = 0 which results in the maximum interference

(excluding nearest IRS) and hence referred to as worst case interference. Finally, step (c)

and step (d) follow by defining Ym = |
∑N

n=1|fmn,j| |g0,mn||2 and Zj =
∑M−1

m=1 r
−α
0,m t−αm,j Ym,

respectively. �

In what follows, I derive the statistics of the aggregate interference observed at a typical

user from multiple IRSs in a multi-BS scenario.

Lemma 14 (Distribution of the Aggregate Interference from Multiple IRSs (Excluding

the Nearest IRS) in a Multi-BS Scenario). Leveraging the results in Lemma 3, given

IR≤
∑

j∈ΦB
PZj, where Zj =

∑M−1
m=1 r

−α
0,m t−αm,j Ym follows a Normal distribution with mean

and variance given by

µZj = E[r−α0,m]((M − 1)t2j)
−α/2 (1 + λ) and σ2

Zj
= 2V[r−α0,m]((M − 1)t2j)

−α(1 + 2λ),

and Ym represents the non-central Chi-square random variable with mean and variance

µY = (1 + λ) and σ2
Y = 2(1 + 2λ), respectively.

Proof. Let Xn = |g0,mn ||fmn,j| denote the product of two independent Rayleigh distributed

random variables with mean and variance µx = σπ/2 and σ2
x = 22σ2(1−π2/16), respectively

[119]. Since the IRS elements are typically large, I leverage on central limit theorem (CLT)
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Figure 4.3 (a): Zoomed view of IRS functionality as a reflector, and (b) triangle
explaining the IRS distance approximation.

to depict X ′ =
∑N

n=1Xn follows a normal distribution with the mean and variance given

by µX′ = NµX and σ2
X′ = Nσ2

X , respectively. I refer to this approximation as Level-1

Gaussian approximation. Consequently, Ym = |
∑N

n=1 Xn|2 will follow a non-central chi-

square distribution with unity degree of freedom ν = 1 and non-centrality parameter λ =

1
2

µX′
σ2
X′

[119]. Therefore, the mean and variance of Ym can be obtained as in Lemma 14.

Let Y ′m = r−α0,m t−αm,j Ym denote the product of three random variables t−αm,j, r
−α
0,m, and Ym,

where t−αm,j, and r
−α
0,m are correlated by cosine law as t−αm,j =

(
r2

0,m + d2
j − 2r0,mdj cosψm

)−α/2
[108,120]. To simplify the analysis, I propose an alternate formulation of tm,j, i.e., instead of

using cosine law I alternatively define tm,j =
√
`2
m,j + (HB −HR)2 (refer to the triangle in

Fig. 4.3(b)). Next, to enhance tractability, I consider that the typical IRS is located in the

middle of the BSj and typical user (i.e., `m,j ≈ `j
2
) which upon substitution gives

tm,j ≈ tj =

√(
`j

2

)2

+ (HB −HR)2. (4.18)

Subsequently, I have Y ′m ≈ r−α0,m t−αj Ym, and Z =
∑M−1

m=1 Y
′
m will follow a normal distribution

using CLT as shown in Lemma 4. I refer to this as Level-2 Gaussian approximation. �

The factor r−α0,mt
−α
m,j is important in modeling Y ′m as is evident in Lemma 4. Note that
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Figure 4.4 Comparison of E[r−α0,mt
−α
j ], E[r−α0,m]E[t−αm,j] and the proposed approxima-

tion of E[r−α0,m ]E[t−αj ] in (4.18).

r−α0,m and t−αm,j are correlated using cosine law. However, Fig. 4 shows that the correlation

is weak and thus the approximation in (4.18) is accurate. In the sequel, I first compare

E[r−α0,m ]E[t−αm,j], and E[r−α0,mt
−α
j ] to show the weak correlation. Then, I demonstrate the validity

of the proposed approximation E[r−α0,m ]E[t−αj ] to validate its accuracy in Fig. 4.4. It is also

clear from the figure that λR does not have any impact on the distances tm,j and r0,m on

average. It is clear from the right figure that increase in path-loss exponent α causes an

increase in the path-loss distance term and hence decreases in E[r−α0,m]E[t−αm,j], E[r−α0,mt
−α
j ] and

E[r−α0,m ]E[t−αj ] are evident.

In what follows, I derive the first and second moment of r−α0,m as is required in Lemma 4.

Lemma 15. The LT of interference experienced by the typical user through the all IRSs

(except nearest IRS to the typical user) LIR in the IRS- assisted communication mode is

given as follows:

LIR|r0,0(s) ≈ exp

(
2πλB

4

α

∞∑
i=1

bi(s)

i− 2
α

(
X
i− 2

α
R −X i− 2

α
0

))
, (4.19)

where bi(s) denotes the Taylor’s series expansion coefficients of exp(−k1(s)x− k2(s)x2) and

k1(s) = µZjs pt/t
−α
j , and k2(s) = 1

2t−2α
j

σ2
Zj
s2pt

2.
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Proof. Using (4.17) in (4.3), I derive LT LIR(s) as:

LIR|r0,0(s) = E[e−sIR ] = E[e−s
∑
j∈ΦB

ptZj ] = E[
∏
j∈ΦB

e−s ptZj ]

(a)
=E[

∏
j∈ΦB

EZ [e−s ptZj ]] = E[
∏
j∈ΦB

e
−(µZj s pt+

1
2
σ2
Zj
s2pt2)

]

(b)
= exp

(
−2πλB

∫ R

0

(
1− e−(k1(s)t−α+k2(s)t−2α)

)
`d`

)
(c)
= exp

(
−2πλB

−4

α

∫ XR

X0

(
1− e−(k1(s)X+k2(s)X2)

)
X−

2
α
−1dX

)
(d)
= exp

(
2πλB

4

α

∫ XR

X0

∞∑
i=1

bi(s) X
i− 2

α
−1dX

)
(e)
= exp

(
2πλB

4

α

∞∑
i=1

bi(s)

i− 2
α

(
X
i− 2

α
R −X i− 2

α
0

))
,

(4.20)

where (a) follows from the LT of Zj where Zj is a Gaussian random variable with µZj , and

σ2
Zj

is given by Lemma 4, (b) follows by substituting k1(s) = µZjs pt/t
−α
j and k2(s) =

1
2t−2α
j

σ2
Zj
s2pt

2 and then I apply PGFL w.r.t `j where t =
√(

`
2

)2
+ (HB −HR)2and tj is

given in (4.18). For simplicity, (c) is obtained by changing of variable ` to X, i.e., X =(
`2

4
+ (HB −HR)2

)−α/2
, where X0 = (HB −HR)−α and XR =

(
R2

4
+ (HB −HR)2

)−α/2
.

Note that (d) is obtained by using Taylor’s series expansion of exp(−k1x − k2x
2) and bi(s)

denotes the coefficients of the expanded Taylor series. Finally, (e) is obtained by solving the

integral. �

Fig. 4.5 validates the accuracy of LT of aggregate interference from IRSs for different

number of IRSs, i.e., M = 300 and M = 1500 and transmission power pt = 1 W and

pt = 20 W. This figure shows that, for a given value of s, increasing transmission power and

IRS intensity decreases IRS interference. Clearly, the interference in higher power and higher

intensity trend dominates compared to all other combinations of power and IRS intensity.

Similarly, Fig. 4.6 validates the accuracy of the LT of the aggregate interference from BSs

(excluding the nearest BS) given in (4.16) as a function of s. Again, the LT of aggregate

interference decreases with increasing transmission power of BSs (i.e., the interference in-
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Figure 4.5 Conditional LT of aggregate interference from IRSs (excluding the near-
est IRS), LIR(s) in (4.19), for λR = 2λ0,M = 300 and λR = 10λ0,M = 1500 with
P = 1 and P = 20, using Monte-Carlo simulations.

35 40 45 50 55 60 65 70 75 80 85

s

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Simulation

Analysis

Figure 4.6 Conditional LT of aggregate interference from BSs (excluding the near-
est BS in direct mode), LIB(s) (4.16), for P̂ = P = 1, P̂ = P = 20, and
λR = 2λ0,M = 300, using Monte-Carlo simulations.

creases). Unlike Fig. 4.5, neither the IRS intensity nor the total number of IRSsM have any

effect on LIB as the direct transmissions are independent of λR or M .
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4.5 Coverage Probability and Ergodic Capacity Charac-

terization

In this section, I first derive the coverage probability of an IRS-assisted user and then the

coverage probability of users who are supported by direct transmissions. Then, I derive the

ergodic capacity and energy efficiency of an IRS-assisted user and the user supported by

direct transmission from BS. Finally, I derive the overall network coverage, ergodic rate, and

energy-efficiency considering the fraction of IRS-assisted and direct users in the network.

4.5.1 Coverage Probability (IRS-assisted Transmission)

The coverage probability of the typical user associated to nearest IRS in the IRS-assisted

indirect mode of communication is defined as CID = Pr(γID ≥ τ), where the SINR for

IRS-assisted indirect transmission is given as follows:

γID =
SR0

IB + IR +N0

. (4.21)

The coverage probability can be calculated numerically by using Gil-Paleaz inversion theorem

[121] as shown in the following:

CID = Pr (γID ≥ τ)

= Pr (SR0(r0,0)− τIR ≥ τ IB + τ N0) = Pr (Ω ≥ τIB + τN0)

=Er0,0
[

1

2
− 1

π

∫ ∞
0

Im[φΩ|r0,0(ω)LIB(−jωτ)ejωτN0 ]

ω
dω

]
=

1

2
− 1

π

∫ ∞
0

Im[φΩ(ω)LIB(−jωτ)ejωτN0 ]

ω
dω,

(4.22)

where

φΩ(ω) =Er0,0 [φΩ|r0,0(ω)] = Er0,0 [e−jωΩ] = Er0,0 [LSR0
|r0,0LIR|r0,0(−jωτ)]. (4.23)
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Note that LIB(−jωτ) = Ed0 [LIB |d0(−jωτ)] is independent of r0,0. Substituting (4.19) and

(4.9) in (4.23) and then substituting (4.23) and (4.16) in (4.22), I obtain CID. The dis-

tribution of the distance of the nearest IRS at height HR to the typical user is given as

follows: [122]:

fr0(r0,0) =
2Mr0,0

R2

(
1−

r2
0,0 −H2

R

R2

)M−1

. (4.24)

Also, the distance of the nearest BS at height HB to the typical user is given as:

fd0(d0) =2πλBd0e
−πλB(d2

0−H2
B). (4.25)

4.5.2 Coverage Probability (Direct Transmission)

The coverage probability of the typical user with the direct mode of communication is defined

as CD = Pr(γD ≥ τ), where the SINR of the direct communication mode is given as

γD =
SD0

ÎB + ÎR +N0

. (4.26)

Now by substituting (4.4), the coverage probability CD can be written as follows:

CD = Pr

(
|h0|2 ≥ dα0

τβ−2

p̂t

(
ÎB + ÎR +N0

))
=Ed0

[
e
− τ d

α
0N0

β2p̂t LÎB

(
τ dα0
β2p̂t

)
LÎR

(
τ dα0
β2p̂t

)]
,

(4.27)

where L(·) is the LT and d0 is the distance between the typical user and the nearest BS, i.e.,

d0 =
√
`2

0 +H2
B. The distribution of the distance of the nearest BS is provided in (4.25).

Corollary 8. The LT of the aggregate interference to the typical user through all the BSs

(except the associated BS0) LÎB in the the direct mode can then be obtained as follows:

LÎB |d0
(s) = exp

(
−2πλB

d2−α
0 sp̂tβ

2

α− 2
2F1

(
1,
−2 + α

α
; 2− 2

α
;−s p̂tβ2d−α0

))
, (4.28)

which is similar to (4.16) with pt replaced with p̂t for the direct mode.
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Corollary 9. Similar to Lemma 15, the LT of interference experienced by the typical user

through the all the IRSs and all the BSs LÎR in direct communication mode is given as

follows:

LÎR(s) ≈ exp

(
2πλB

4

α

∞∑
i=1

b̂i(s)

i− 2
α

(
X
i− 2

α
R −X i− 2

α
0

))
, (4.29)

where b̂i(s) denotes the Taylor’s series expansion coefficients of exp(−k̂1(s)x− k̂2(s)x2) and

k̂1(s) = µ̂Zjs p̂t/t
−α
j , and k̂2(s) = 1

2t−2α
j

σ̂2
Zj
s2p̂t

2, µ̂Zj = E[r−α0,m](Mt2j)
−α/2 (1+λ) and σ̂2

Zj
=

2V[r−α0,m](Mt2j)
−α(1 + 2λ).

Note that the difference arises from the fact that ÎR has M interfering IRSs in Corol-

lary 4, whereas in Lemma 9, I have M − 1 IRSs contributing to the aggregate interference

IR. Finally, substituting (4.28) and (4.29) in (4.27), I obtain the coverage probability of

direct link CD conditioned on the distance d0.

4.5.3 Ergodic Capacity

The achievable ergodic capacity of a typical user can be given by using the coverage proba-

bility expressions as shown below [46]:

E[log2(1 + SINR)] =
1

ln(2)

∫ ∞
0

P (SINR > t)

t
dt.

However, the aforementioned evaluation adds one more layer of integration on top of the

coverage probability. Therefore, I use an alternative LT-based approach to evaluate ergodic

capacity by leveraging on Hamdi’s lemma [47] given as follows:

E
[
ln

(
1 +

X

Y +N0

)]
=

∫ ∞
0

LY (s)− LX,Y (s)

s
exp(−N0s)ds, (4.30)

where LY (s) and LX,Y (s) represent the LT of Y and joint LT of X and Y , respectively.

Subsequently, I derive the ergodic capacity of the typical IRS-assisted user as follows:

RID =

∫ ∞
0

LIB(s)LIR(s)− LIB(s)LIR(s)LSR0
(s)

s
exp(−N0s)ds, (4.31)
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Similarly, the ergodic capacity of the typical user in direct mode RD is given as follows:

RD =

∫ ∞
0

LÎB(s)LÎR(s)− LÎB(s)LÎR(s)LSD0
(s)

s
exp(−N0s)ds, (4.32)

where LSD0
(s) = E[LSD0

|d0(s)] and LSD0
|d0(s) = 1

1+s P̂β2d−α0

.

4.5.4 Energy Efficiency

I define the energy-efficiency of a typical user by dividing the achievable rate with the network

power consumption. The energy-efficiency of IRS-assisted user is given as follows:

EEID =

∫∞
0

LIB (s)LIR (s)−LIB (s)LIR (s)LSR0
(s)

s
exp(−N0s)ds

pBS + pU + P + pIRS

, (4.33)

which is obtained by dividing (4.31) with pIRS. Similarly, the energy-efficiency of a typical

user in the direct communication mode EED can be given by diving (4.32) with the power

consumption in the direct mode p̂t as follows:

EED =

∫∞
0

LÎB (s)LÎR (s)−LÎB (s)LÎR (s)LSR0
(s)

s
exp(−N0s)ds

pBS + pU + P̂
. (4.34)

4.5.5 Overall Network Coverage, Ergodic Capacity, and Energy Ef-

ficiency

The overall coverage probability of the typical user is derived as follows:

C = (1−A)CD +ACID, (4.35)

where A represents the fraction of users in the system performing indirect IRS-assisted

transmission, while (1−A) represents the fraction of users performing direct transmission.

Similarly, the overall achievable rate and energy-efficiency of the typical user can be derived

as follows: R = (1−A)RD +ARID, and EE = (1−A)EED +AEEID, respectively.

The fraction of IRS-assisted and direct users can be perceived in many ways. For

instance, it can be considered that the fraction of IRS-assisted users is proportional to the
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number of IRSs in the network. In this case, A can be defined as λR
λR+λB

. As an example, if

there are five BSs and five IRSs, then A = 0.5 assuming that one IRS can at-most provide

service to one-user at a time. On the other hand, the fraction of IRS-assisted users can

be considered proportional to the blocking probability of nearest direct link (as IRS is only

associated to BS if there is a blocked direct link). For instance, considering a Boolean

blockage model with the assumption that number of blockages follow Poisson distribution

[123], the probability of direct transmission can be given as exp(−(ηd0 + u)), where η and

u are defined on the basis of the shape of considered blockages [124]. Subsequently, the

probability of blockages can be written as A = 1 − exp(−(ηd0 + u)). Considering blockage

the SINR of the direct mode in (4.26) modifies as γD = A SD0

ÎB+ÎR+N0
that results in modified

coverage probability CD in (4.27) as

CD = Ed0

[
e
− τ d

α
0N0

Aβ2p̂t LÎB

(
τ dα0
Aβ2p̂t

)
LÎR

(
τ dα0
Aβ2p̂t

)]
.

4.6 Numerical Results and Discussion

In this section, I validate the accuracy of our derived expressions by Monte Carlo (MC)

simulations and then obtain useful insights related to different interference scenarios, the

total number of IRSs in the setup, number of IRS elements and transmission power for

different communication modes. For MC simulations, I first generate the PPP and BPP for

the distribution of BSs and IRSs in an observed area of radius R = 700 m, respectively. For

each instance of MC simulations, first I pick an arbitrary user and then depending on the

blockage of nearest BS’s line of sight link I associate it to nearest IRS or with the nearest BS

and calculate the corresponding instantaneous SINR. This SINR is then utilized to evaluate

the performance measures overall coverage probability, overall achievable rate and overall

energy efficiency after averaging over 10,000 realizations.
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Figure 4.7 Validation of conditional coverage probability in IRS-assisted and direct
mode of communications derived in (4.22) and (4.27), using Monte-Carlo simula-
tions.

4.6.1 Simulation Parameters

Unless stated otherwise, the simulation parameters are listed herein. The heights of IRSs

and BSs are set to HR = 10 m, and HB = 20 m, respectively. The transmission power for

IRS-assisted mode and direct mode is pt = 20 W and p̂t = 20 W, respectively. The static

power consumption of BS and user is 40 dBm and 10 dBm, respectively [125], and therefore,

U = 50 dBm. The phase resolution power consumption for 6- bits Pr(6) = 78 mW. The

total number of IRS elements per IRS is N = 50, BS intensity within the coverage area is

λB = 10−4, and the total number of IRSs in the coverage area M = 1500 that corresponds

to λR = M/πR2 ≈ 10×λB. Also, λR is IRS intensity, path-loss exponent is α = 4, threshold

on SINR τ = −10 dB, and noise power spectral density is N0 = 10−10 W/Hz.

4.6.2 Validation of Analysis

Fig. 4.7 compares the coverage probability of IRS-assisted user and the user supported by

the direct transmission as a function of the SINR threshold τ considering pt = p̂t = 20 W.

140



Numerical results show that our theoretical analysis and Monte-Carlo simulations match

well. As expected, the conditional coverage probability decreases with the increase in SINR

threshold for both types of users. Nevertheless, the coverage probability of IRS-assisted

transmission lags behind the direct transmission even when the intensity of IRSs is higher

than the intensity of BSs, i.e., λR = 10λB. This fact signifies the efficacy of IRS deployments

mostly in scenarios when the direct transmission link is blocked.

4.6.3 Impact of BS Transmit Power on Direct Communication

Fig. 4.8 compares the achievable data rate of IRS-assisted communication and the direct

mode considering p̂t = 1 W and p̂t = 5 W. I observe that for smaller number of IRS

elements, direct transmissions outperform the IRS-assisted transmissions. As the number of

IRS elements increases, RID increases because the IRS link gets stronger with more elements.

An increase in IRS interference however degrades the achievable data rate RD in direct links.

The figure also depicts that the performance of IRS-assisted communication starts to exceed

direct communication with lower IRS elements if the transmit power of BSs is low as can

be seen from switching point N = 30 and N = 60 for p̂t = 1 and p̂t = 5, respectively. I

note that, for a given deployment density of BSs and IRSs, IRS-assisted mode is useful for a

larger number of IRS elements and low transmit power of BSs in direct mode. Evidently, a

higher transmission power of direct user’s BSs degrades IRS-assisted communication, which

is opposite for direct communication.

Similarly, Fig. 4.9 validates the accuracy of energy-efficiency considering p̂t = 1 W and

p̂t = 5 W. As expected, the IRS-assisted mode outperforms the direct mode for N = 40 and

N = 100, for p̂t = 1 W and p̂t = 5 W, respectively. Compared to p̂t = 5 W, energy-efficiency

is lower for p̂t = 1 W.
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ent number of IRS elements, p̂t = 1
and p̂t = 5).

4.6.4 Impact of IRS Intensity on Direct and IRS-Assisted Commu-

nications

Fig. 4.10 compares the coverage probability and rate for direct and IRS-assisted communi-

cation as a function of the total number of IRS elements and IRSs with in the cell radius.

I note that varying the number of IRS elements per IRS have no significant impact on the

coverage probability and rate for sparse deployment of IRSs M = 300. However, the cov-

erage probability CID and achievable rate RID increases with the increase in number of IRS

elements for dense deployment of IRSs M = 1500. This is encouraging as it shows that the

impact of interference due to dense deployment of IRSs is not significant. On the other hand,

the rate of the direct communication decreases with the increasing IRS elements, especially

142



20 40 60 80 100 120 140
0

0.2

0.4

0.6

0.8

1
C

o
v
e
ra

g
e
 P

ro
b
a
b
ili

ty

20 40 60 80 100 120 140

Number of IRS element N

0

0.1

0.2

0.3

0.4

R
a
te

 [
b
p
s
]

M=1500 M=300IDDirect

Figure 4.10 Comparison of con-
ditional coverage probability and
achievable rate for IRS-assisted
mode and direct mode of commu-
nications with respect to number of
IRS elements (for total number of
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Figure 4.11 Comparison of power
consumption and conditional EE for
IRS-assisted mode and direct mode
of communications with respect to
number of IRS elements (for total
number of IRSs M = 300 and M =
1500).

for dense deployment of IRSs since the IRS interference becomes significantly dominant.

Fig. 4.11 shows power consumption and EE for the IRS-assisted and the direct modes

of communication with respect to the number of IRSs M = 300 and M = 1500. The figure

presents that the pt increases with the increase in N as expected since pt ∝ N . However, the

direct mode power consumption p̂t remains same since p̂t is not the function of N . It is also

clear that M does not have any impact on the power consumption since pt is defined based

on total system power consumption per user (refer to Section 3.2.5) and a user is assumed

to be connected with only one IRS at a time. The energy-efficiency follows the same trend

as conditional rate yet with the smaller slope due to the increasing power of indirect mode

that appears in the denominator of EE.
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Figure 4.13 Comparison of power
consumption and conditional EE for
IRS-assisted mode and direct mode
with respect to total number of IRSs
(for BS intensity λB = 10−4 and
λB = 0.5× 10−4, and N = 100).

4.6.5 Impact of BS Intensity on Direct and IRS-Assisted Commu-

nications

Fig. 4.12 compares the coverage probability and ergodic capacity for IRS-assisted and direct

communication with respect to total number of IRSs in the coverage area for BS intensity

λB = 10−4 and λB = 0.5 × 10−4. I observe that CID increases as total number of IRSs in

the cell increases. Also, a very subtle decrease in CD is observed for both λB = 10−4 and

λB = 0.5× 10−4. This is because, as M increases, the IRS density increases and the nearest

IRS becomes closer to the user that corresponds to smaller r0,0 and higher IRS received signal

power that leads to improvement in CID. Also, an increases in M increases the interference

coming from the IRSs for the direct user resulting in a slight decrease in CD. The figure
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rect mode, and overall EE with re-
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also shows that a more sparse BS deployment leads to a smaller coverage probability of

direct communication mode, and indirect coverage CID outperforms direct mode coverage

for M > 1700 for both the values of λB. A similar trend can be observed for the achievable

rate. This implies that density of deployment of IRSs (i.e., sparse BS deployment or dense

IRS deployment) plays a significant role in the performance of IRS-assisted mode.

Fig. 4.13 presents results on power consumption and EE for the direct and indirect

modes. Fig. 4.13 follows the same trend of achievable rate as in Fig. 4.12 with the difference

in the slope of EEID.

Fig. 4.14 shows the impact ofA on different system performance measures. The coverage

probability of IRS-assisted communication CID increases with A because this increases λR =

A
1−AλB. The overall system coverage probability C follows CD whenA ≈ 0 which corresponds

to very few or no IRS in the system. However, C decreases up to A = 0.6 and then it starts
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to increase and converges to CID when A ≈ 1 for N = 100. Note that, for A ≈ 0.95,

λR = 20λB. Moreover, a decrease in direct coverage probability CD is also visible due to

the aggregate interference coming from IRS. A similar trend is observed for N = 50 with

poorer CID than CD due to fewer IRS elements compared to the case when N = 100. Also,

Fig. 4.15 shows a similar trend in achievable rate because the power consumption does not

change significantly.

4.7 Conclusion

I have analyzed the downlink coverage probability, ergodic capacity, and energy-efficiency

performance for cellular networks under multi-BS and multi-IRS setup considering both the

IRS-assisted communication and direct communication modes. I have observed that using a

larger number of IRS elements per IRS are crucial for IRS-assisted communication to outper-

form direct communication. Also, I have observed that IRS-assisted communication becomes

dominant when IRSs are densely deployed (i.e., when IRS intensity is larger than BS inten-

sity). Also, for dense IRS deployment, the impact of IRS-interference significantly decreases

the performance of direct communication and enhances IRS-assisted communication because

the nearest IRS becomes closer to user. Our results also have demonstrated the impact of

fraction of indirect IRS-assisted users on the overall system performance and given insights

on how to select the proportion of direct or indirect IRS-assisted users in the network to

achieve the desired trade-off between the degradation of direct communication and massive

connectivity. The work can be extended to investigate the impact of multi-antennas at the

BSs and the user devices.
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Chapter Five

Conclusion and Future Research

Directions

In this chapter, I conclude the thesis followed by several future directions.

5.1 Conclusion/Summary of the Thesis

The common conclusion drawn from the thesis are as follows:

• The performance of a UAV-assisted communication can be significantly enhanced by

optimizing the UAV horizontal and vertical location in 3D.

• The performance of a communication system can be enhanced by integrating UAV and

IRS together.

• The IRS-assisted communication performance can be significantly improved in large

scale setup of multi BS and multi IRS by increasing the number of IRS elements, dense

IRS deployment and sparse BS deployment.

The specific conclusion and summary of each chapter of the thesis is provided next:
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The proposed framework of optimal data ferrying in Chapter two addresses the chal-

lenges given in (1.2.i and 1.2.ii) and is novel in three aspects: (i) performance modeling and

optimization of a UAV-assisted data ferrying network with Rician and Rayleigh fading for

LoS and NLoS scenarios, respectively, (ii) novel approximations to the derived BER and

SNR outage expressions while applying them to optimize data ferrying distance, and (iii)

formulation and solution of three different optimization problems, i.e. energy-constrained,

outage-constrained, and multi-objective optimization problems.

The highlighted difference in current literature and my work is as follows: Although the

optimization problem solved in the work is a single variable optimization but its formulation

is significantly challenging compared to typical instantaneous optimization models where

the objective function and constraints are defined for each fading channel realization and,

subsequently, the optimal solutions are computed per channel realization. To understand the

impact of a variety of fading channels, an instantaneous optimization problem needs to be

solved for a large number of channel realizations (assuming perfect knowledge of channel state

information (CSI)) as compared to only one time in our case. However, the optimization

problem I solved is unique since it uses closed-form analytical expressions for the end-to-

end outage probability in Rician and Rayleigh fading channels. To deal with the intricate

outage expression, I derived novel approximations and transformations to formulate a convex

problem.

The proposed framework of integrated UAV-IRS in Chapter Three addresses the chal-

lenges given in (1.2.ii, 1.2.iii and 1.2.iv) and is novel in the following aspects: (i) Performance

modeling and optimization in terms of SNR outage probability, ergodic capacity, and energy

efficiency in which end-users (i.e., transmitter and receiver) can communicate in three ways,

namely, IRS-only mode, UAV-only mode, and integrated UAV-IRS mode. (ii) I considered

the impact of LoS air-to-ground Rician channel and power consumption of both UAV and

IRS for each communication mode, (iii) For each communication mode, I formulated and
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solved several optimization problems that investigate the effect of major parameters on com-

munication modes (e.g., number of IRS elements and UAV height for IRS-only mode and

UAV height for UAV-only mode), and (iv) I provide the impact of critical IRS and UAV

parameter on the optimal mode selection criteria based of EE. I also derived novel approxi-

mations, and transformations or used fractional programming to obtain the optimization in

closed form where applicable.

The developed framework of large-scale IRS-assisted downlink inChapter Four is novel

in the following aspects: Performance modeling and characterization of the downlink cover-

age probability, ergodic capacity, and energy-efficiency for cellular networks under multi-BS

and multi-IRS setup considering both the IRS-assisted communication and direct communi-

cation users. I consider the impact of critical IRS parameter on IRS-assisted communication,

suggesting that the key for dominant IRS-assisted communication (than the direct commu-

nication) lies in the followings: (a) larger number of IRS elements, (b) dense deployment of

IRSs or sparse deployment of BS (i.e., when IRS intensity is larger than BS intensity). I also

present overall system performance measures by taking a fraction of indirect IRS-assisted

users and blocking probability in to account.

The highlighted difference in current literature and my work in Chapter Five is as

follows: Deriving novel closed-form expressions for (i) received signal through IRS-assisted

link in the form of generalized Gamma RV, (ii) modeling the aggregate interference coming

from interfering IRSs and interfering BSs with customize-able normal RV depending on IRS-

assisted or direct communication scenario, and (iii) the analysis is done considering realistic

channel instead of utilizing statistical measure for simplicity, unlike the existing literature.

The Chapter Four addresses the challenges given in (1.2.iii and 1.2.v)
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5.2 Research Outcome: Publication List

All the thesis work is either published or submitted for possible publication. The list of

published/submitted papers related to this thesis is given below:

• Journal Publications:

1. Taniya Shafique, Hina Tabassum, and Ekram Hossain. " Stochastic Geome-

try Analysis of IRS-Assisted Downlink Cellular Networks." Submitted to IEEE

Transactions on Communications.

2. Taniya Shafique, Hina Tabassum, and Ekram Hossain. " Optimization of wire-

less relaying with flexible UAV-borne reflecting surfaces." IEEE Transactions on

Communications, vol. 69, no. 1, pp. 309-325, Oct. 2020.

3. Taniya Shafique, Hina Tabassum, and Ekram Hossain. "End-to-End Energy-

Efficiency and Reliability of UAV-Assisted Wireless Data Ferrying." IEEE Trans-

actions on Communications, vol. 68, no. 3, pp. 1822-1837, Dec. 2019.

5.3 Future Research Directions

In this section, I provide few possible directions for the future work considering the work

done in the thesis.

• Optimal data ferrying for multi cluster scenario: As mentioned in Chapter Two, end-

to-end performance has been studied followed by optimization for UAV data ferrying

model in multicasting application in which the UAV can transmit to those receivers

for which quality-of-service (QoS) can be met, while traveling towards the destination.

However, the considered serving region (i.e. the cell radius) where all receivers are

located is very small compared to the traveling distance of UAV. Under this assumption,
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the farthest or nearest receiver becomes approximately the same to the receiver who is

located at the cell-center. Hence, the problem of optimal UAV-assisted data-ferrying

is designed for a single cluster. Therefore, the framework can be extended to a wider

coverage region by considering a multi cluster scenario and the optimal UAV trajectory

can be optimized based on data-ferry technique.

• Practical considerations for UAV-based communications: The performance of the UAV-

assisted communication is highly dependent on the energy consumption of the UAVs.

There are many factors that affect the energy consumption of a UAV namely, (i)

Design factor, (ii) environmental factors, and (iii) drone dynamic factor [126]. The

design factor consists of the size and the weight of the UAV, size, the weight and

power capacity of the battery, the number and size of rotors, maximum speed, and

payload, lift to drag ratio, etc. [127]. The environmental factor consists of wind con-

ditions, weather conditions such as snowy, rainy, etc. temperature, air density and

gravitational force. The wind condition is extremely important for the vertical UAV

flight [128]. For instance, when the UAV flies up against the wind, the UAV exerts

more energy in stabilizing itself and countering the oncoming wind, and therefore, the

UAV consumes the battery fast. However, when the UAV flies in the direction of the

wind, the UAV battery consumption significantly reduces. Nonetheless, the UAV in

the downwind fly is hard to control and prone to turbulence. Also, flying the UAV at

a predefined inclined angle stabilizes the UAV in the severe wind scenario [129, 130].

Lastly, the UAV dynamics consists of drone travel speed, drone motion (i.e., take-

off/landing, hover, horizontal flight), acceleration, angle of attack and flight altitude.

All of these aforementioned factors are interrelated and impact the utility of the UAVs

in wireless communication applications by changing the hovering and traveling power

consumption of the UAV (please see Section 2.3.4) and hence the energy efficiency and

the UAV flying time. Studying the impact of the UAV and environment dynamics can
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be an interesting future direction.

• Massive integrated UAV-IRS setup: The performance gain brought by UAV-assisted

communication integrated with Intelligent reflecting surface (IRS) mounted on UAV

is studied for single source, single destination, and single UAV-borne IRS. The idea

of integrated UAV-IRS can be studied for a correlated fading channel. Also, Multiple

integrated UAV-IRS surfaces can be designed to assist wireless communication to mul-

tiple ground users. In this case, the assignment of UAV or IRS communication mode

to each of the ground users such that overall system performance is optimized can be

a potential research direction. The centralized optimization could be time inefficient

and higher in complexity so designing such a suboptimal solution that can perform

close to the central solution can be a contribution to the 6G networks. The machine

learning technique can be a potential candidate for this type of optimization problem.

• Spherical IRS surface consideration: The IRS surfaces in existing communication prob-

lems are plane meta-surfaces, which consist of a linear array of multiple IRS elements.

However, the meta-surface can be designed in different shapes e.g., planner and spher-

ical [131]. Studying the performance comparison due to different shape reflecting sur-

faces can bring additional performance gain e.g., in beamforming angle, and might

introduce diffraction which can help the communication between two different medi-

ums. For instance, an IRS deployed on the water level on sea or ocean can assist

underwater and aerial or ground communication.

• Multi user and multi antenna modeling: One straightforward future direction is to ex-

tend the large scale IRS setup with single antennas presented in the thesis to investigate

the impact of multi-antennas at the BSs and the user devices.
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Appendix A

Convexity of Etot(z)

The second derivative of Etot(z) is 2
α
z

2
α
−2
[
TuPh
H

( 2
α
− 1) + A

H2 z
4/α
(
z−2 − 2

α

)
+ ( 4

α
− 1)A

]
, where

A = P (v)z2/αH2

(z4/α−H2)3/2 . The convexity is not conclusive from the second derivative for all values of

z. However we verified the convexity on MATHEMATICA and CVX for different values of

H, D and α. We can check the convexity of Etot(z) in CVX by writing the following problem:

min
z

Etot(z) = TuPh
z2/α

H
+ P (V )(D −

√
z4/α −H2) + C

s.t. z ≤ (H2 +D2)α/4, z ≥ Hα/2

in CVX, using auxiliary variable W , as shown below:

min
z

PhTuz
2/α

H
+
P (V )(D −W )

V

C3 : (z2/α −H)(z2/α +H) ≥ W 2

C2 : z ≤ (H2 +D2)α/4, z ≥ Hα/2

which is convex and solvable in CVX.
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Appendix B

Monotonicity of Etot(z) in (2.65)

I demonstrate that Etot(z) is monotonically decreasing for all values of α, H, and D given

Ph, P (V ), Pc. We first substitute y = z2/α and show that Etot(y) is monotonically decreasing

if E ′tot(y) = PhTu
H
− P (V )

V
y√

y2−H2
≤ 0. That is, PhTuV

HP (V )
≤ y√

y2−H2
. Since Ph < P (V ), Tu is in

order of msec, V is of order of thousands, the product TuV is always less than the altitude

H. As such, L.H.S. is upper bounded by 1. On the other hand, we note that the R.H.S.
y√

y2−H2
> 1. Starting from y = z2/α = H, we see that the R.H.S becomes infinity. Then, for

y = H + 1, we see that the R.H.S becomes H+1√
2H+1

for all y, which is greater than 1. Then,

we substitute y = H + n, where n ≥ 2 which gives H+n√
2H+n

> 1. Therefore, L.H.S.< R.H.S.

and the function is monotonically decreasing.
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Appendix C

Monotonicity of Outage probability of

(2.51)

To prove outage probability for υ1 (2.51) and υ3 is an increasing function w.r.t. z, we take

the derivative as follows:

dOk(υi, z)

dz
=− U

∞∑
`=0

∑̀
m=0

f(m, `)2z2m+1e−bdΓ′kz
2
(m
z2
− bkΓ′k

)
, i = 1, 3.

That is, (2.51) is as an increasing function of z if dOk(υi,z)
dz

≥ 0 which is true if
(
m
z2 − bkΓ′k

)
< 0.

This is due to the reason that in dOk(υi,z)
dz

functions e.g., f(m, `), z2m+1, and e−bkΓ′kz
2 are non

negative for all m, and z therefore
(
m
z2 − bkΓ′k

)
is the only term that can change sign. Thus

the first derivative will remain positive only if (m− bkΓ′kz2) < 0. Note that m is in the range

m ∈ [0 20] for evaluations, bk ∈ {0,∞}, and the range of z is z ∈ {Hα/2 (H2 +D2)α/4}.

Therefore, it is evident that Pc and the contribution of Γ′k is less dominant than z2. Hence

the condition satisfies for our range of variables.
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Appendix D

Ratio of concavity-convexity of (3.44)

We write −1
2
αi(h) log (ẑ2

i + h2) = −Oi(h)
Ri(h)

. The numerator −Oi(h) is concave when the second

derivative is −d2Oi(h)
dh2 ≤ 0. This is true if,

−
[
4Aiẑ

5
i + ẑ4

i

(
−2Bi + 5Ai

√
ẑ2
i + h2

)
+ ẑ3

i

(
8Aih

2 −Bi
√
ẑ2
i + h2

)
+ h2ẑ2

i

(
−4Bi + 5(3Ai + Ci)

√
ẑ2
i + h2

)
+h4

(
−2Bi + 3(4Ai + Ci)

√
ẑ2
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)
+ ẑu

(
4Aih

4 +Bih
2
√
ẑ2
i + h2

)
+ (ẑ2

i + h2) log(ẑ2
i + h2)

×
(

2Aiz
3
us + (4Ai + Ci)h

2
√
ẑ2
i + h2 + ẑ2

i

(
−Bi + (4Ai + Ci)

√
ẑ2
i + h2

))]
≤ 0.

(D.1)

Starting from (D.1), we use log(ẑ2
i + x2) ≥ log(ẑu) + x2

x2+ẑ2
i
and log(ẑi) ≥ 1 when ẑi ≥ 10 and

min(ẑi) > 10 which shows that source and UAV should be at least 10m distance apart in

the horizontal plane (which gives one of the condition to prove concave numerator). Under

this condition, we obtain,

−
[
6ẑ5
iAi + 12Aih

2ẑ3
i + 5h4(4Ai + Ci)

√
ẑ2
i + h2 + ẑ4
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i h
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√
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4
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2
i h

2

]
≤ 0.

(D.2)

Substituting the lower bound
√
ẑ2
i + h2 ≥ max(ẑi, h), which does not change the negativity

of the expression, we have

6ẑ5
iAi + 12Aih

2ẑ3
i + 5h4(4Ai + Ci) max(ẑi, h) + ẑ4

i ((9Ai + Ci) max(ẑi, h)) + ẑ2
i h

2(27Ai + 8Ci)×

max(ẑi, h) + ẑi(4Aih
4 +Bih

2 max(ẑi, h))− ẑ3
iBi max(ẑi, h)− 2Bih

4 − 3Biẑ
4
i − 6Biẑ

2
i h

2 ≥ 0.

(D.3)
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To simplify the expression, we consider case (i) when ẑi > h, and substitute max(ẑi, h) = ẑi

that yields:

(15Ai + Ci)ẑ
5
i + (24Ai + 5Ci)ẑih

4 + 39Aih
2ẑ3
i + 8Cih

2ẑ3
i − 4Biẑ

4
i − 5Biẑ

2
i h

2 − 2Bih
4 ≥ 0.

Replacing ẑi by h in the positive terms and h by ẑi in negative terms, we get

11Biẑ
4
i − (78Ai + 14Ci)h

5 > 0 =⇒ zi ≥ h5/4

(
78Ai + 14Ci

11Bi

)1/4

. (D.4)

Similarly, for case (ii): when h > ẑi: we substitute max(ẑi, h) ≥ h in (D.3), replacing h

by ẑi in the positive terms and ẑi by h in negative terms and simplification gives

= −
[
6ẑ5

iAi + 12Aiẑ
5
i + 5ẑ5

i (4Ai + Ci) + ẑ5
i (9Ai + Ci) + ẑ5

i (27Ai + 8Ci) + 4Aiẑ
5
i +Biẑ

4
i − 12Bih

4
]
≤ 0

=⇒ h ≥ ẑi

(
78Aiẑi +Bi + 14Ciẑi

12Bi

)1/4

. (D.5)

However, the denominator Ri(h) = (1 + ςi)(ẑi + 2
√
ẑ2
i + h2)2−B′ih

(
ẑi + 2

√
ẑ2
i + h2

)
+

C ′ih
2 is convex when the second derivative of Ri(h) is positive. The term d2Ri(h)

dh2 ≥ 0 is

positive when 2ẑ3
iAi + (ẑ2

i + h2)(4Ai + Ci)
√
ẑ2
i + h2 ≥ ẑ2

iBi which is true since 2Aiẑi > Bi

because Ai, Bi, Ci are order of tens but zi is in order of hundreds and thousands, hence Ri(h)

is convex.

Hence, (D.4) and (D.5) under the constraint min(ẑi) > 10 gives the condition on con-

cavity of −Oi(h).
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